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Abstract 

Förster resonance energy transfer (FRET) imaging with a combination of 

multiphoton and fluorescence lifetime measurements (FLIM) analysis allows for 

accurate, spatially resolved and live monitoring of protein activity in cells. Here, I 

used this approach to look at the spatial and temporal monitoring of drug efficacy and 

clearance in vitro and in vivo.  

First, the utility of a Src biosensor in the context of KPC (KrasG12D and p53R172H) 

driven pancreatic cancer cells was used to monitor pharmacodynamics of Src 

inhibition by dasatinib treatment. This revealed spatial regulation of Src activity in 3D 

organotypic invasion assays and in the primary tumour. There, Src activity was 

differentially regulated at the invasive border and in relation to the local vasculature. 

Temporal treatment monitoring was further explored as well as the application of 

optical imaging windows. This demonstrated the utility of FLIM-FRET imaging in the 

tracking of drug treatment responses as well as innate protein signaling in vivo. 

Using transgenic FRET reporter mice for the small GTPases Rac-1 and RhoA 

further allowed for the tracking of the pharmacodynamics of Rac-1 and RhoA 

inhibition in vitro and in vivo in polyoma middle T antigen (PyMT) mammary 

carcinoma model and the KPC model of pancreatic cancer in mice. Moreover, the 

activity of both GTPases was examined in the ErbB2-driven mammary tumour model, 

as well as during the different cancer progression stages of all three tumour models. 

Rac-1 activity was finally shown to be linked to mTRAIL expression in KPC 

cells in vitro and in vivo by FLIM-FRET imaging. The Rac-1 GEF P-Rex1 was also 

shown to be a key driver in regulating Rac-1 activity in the PyMT, ErbB2 and KPC 

model as determined by the use of the P-Rex1 KO mouse. 
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PBS – Phosphate buffered saline 
PDAC – pancreatic ductal adenocarcinoma 
PDGF – Platelet-derived growth factor 
PDGFR – Platelet derived growth factor receptor 
Pdx1 – Pancreatic and duodenal homeobox 1 
PEAK1 – Pseudopodium-enriched atypical kinase 1 
PH – Pleckstrin homology domain 
PI3K – Phosphoinositide 3-kinase 
PI3KCA - Phosphatidylinositol 3-Kinase, Catalytic Subunit Alpha 
PIG – p53-induced genes 
PIP2 – Phosphatidylinositol-4,5-biphosphate 
PIP3 – Phosphatidylinositol-3,4,5-triphosphate 
PKN – Protein kinase N 
PMT – Photomiultiplier tubes 
PR – Progesterone receptor 
PyMT – Polyoma virus middle T-antigen 
Qdot – Quantum dot 
Rac – Ras-related C3 botulinum toxin substrate 
Ral – Ras-like GTPase 
Rb – retinoblastoma protein 
RBD – Rho binding domain 
RCT – Reverse cholesterol transport 
RFP – Red fluorescent protein 
Rho – Ras homolog family member 
RIPA buffer – Radioimmunoprecipitation assay buffer 
RNA – Ribonucleic acid 
ROCK – Rho-associated coiled-coil containing protein kinase  
ROS – Reactive oxygen species 
RPMI – Roswell Park Memorial Institute-1640 
RTK – Receptor tyrosine kinase 
SD – Standard deviation 
SDS-PAGE - Sodium dodecyl sulfate polyacrylamide gel electrophoresis 
SEM – Standard error of the mean 
SFK – Src family kinases 
SH2 – Src homology 2 
SH3 – Src homology 3 
SHG – Second harmonic gerneration 
Shh – Sonic hedgehog 
shRNA – Short hairpin RNA 
Sra – Specifically Rac-1-assciated protein 
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Src – Sarcoma 
sREACh – Super-Resonance-Energy-Accepting Chromoprotein 
TBST – Tris-buffered Saline and Tween 20 
TCSPC – Time correlated single photon counting 
TFP – Teal fluorescent protein 
TGF – Transforming growth factor 
THG – Third harmonic generation 
Tiam1 – T-Cell Lymphoma Invasion And Metastasis 1 
TIFF – Telomerase immortalized foetal fibroblast 
TNF – Tumour Necrosis Factor 
TrkB1 – Tropomyosin-related kinase B splice variant 1 
v-Src – Viral Src 
VEGF – Vascular endothelial growth factor 
WAVE – Wasp family verprolin homologs 
WT – Wild type 
YFP – Yellow fluorescent protein 
YPet – YFP for energy transfer 
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1 Introduction 
1.1 Tumour progression and invasion 
1.1.1 Tumour progression models in mammary and pancreatic 

cancer 
	
  

There are many mutations in tumour suppressor genes and oncogenes 

associated with pancreatic cancer (Sohn and Yeo, 2000). Over 90 % of pancreatic 

ductal adenocarcinomas (PDAC) present with point mutations in the KRas gene 

(Almoguera et al., 1988). This in turn results in constitutively active signal 

transduction in pancreatic cancer cells through MAPK/Erk, PI3K/Akt and Ral 

GTPase pathways (Lim et al., 2005; Feldmann et al., 2010; Collisson et al., 2012; 

Eser et al., 2013, 2014). Furthermore, the tumour-suppressor gene p16 is inactivated 

in over 95 % of pancreatic cancer as well (Caldas et al., 1994; Schutte et al., 1997). 

This leads to uncontrolled growth, through phosphorylation of the Rb protein by 

cyclinD-Cdk4/6. These are usually inhibited by the action of p16                      

(Liggett and Sidransky, 1998). The third most frequent mutation encountered in 

PDAC is the tumour-suppressor gene p53, which is found in > 50 % of PDACs.     

p53 controls the transcription of a large number of genes including p21,                 

14-3-3 sigma and p53-induced genes (PIG) which are important in maintaining G2 

cell cycle arrest. Mutation of p53 abrogates these functions leading to unchecked cell 

cycle progression amongst other things in cancer cells (Macleod et al., 1995;        

Hermeking et al., 1997; Yu et al., 1999). p53 inactivation in pancreatic cancer, 

however, constitutes a late event in tumourigenesis (Wilentz et al., 2000).  

Notably, a cooperation of the KRas and p53 mutation has been demonstrated 

previously (Hinds et al., 1989; Kalthoff et al., 1993). KRas mutation was associated 

with early initiating events and p53 was needed for the progression from lower to 

higher grades of PDAC (Pellegata et al., 1994). The specific mutations for both 

KRas and p53 most common in human PDAC were further identified as being 

KRasG12D (Hingorani et al., 2003) and p53R175H with the murine ortholog p53R172H 

(Olivier et al., 2002). These mutant drivers were then expressed in a mouse model of 

pancreatic cancer under the pancreas lineage specific Pdx1-Cre. This model 

recapitulated human disease in progressive stages of pancreatic intraepithelial 

neoplasias in situ (PanINs) to invasive PDAC and liver metastasis               
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(Hingorani et al., 2005; Hruban et al., 2006). Further analysis of this model 

concluded that the invasive behaviour was dependent on p53R172H expression and not 

loss of p53. This represents a gain of function by mutant p53, as it promotes 

metastasis. It was also established that a key driver of metastasis was the kinase Src 

(Morton et al., 2010a, 2010b). 

Mammary cancer presents a more heterogeneous disease with many driver 

mutations (Vargo-Gogola and Rosen, 2007). One particular subtype is represented by 

the overexpression of the ErbB2 receptor tyrosine-protein kinase (also called 

Her2/neu), which is a family member of ErbB receptors that includes EGFR 

(Schechter et al., 1984). Amongst others, two main signalling pathways are activated 

by ErbB dimerization, the MAPK and PI3K-Akt pathways (Olayioye et al., 2000; 

Yarden and Sliwkowski, 2001; Baselga and Swain, 2009). Expression of ErbB2 

under the MMTV-Cre promoter, targeting expression to the mammary ducts in 

transgenic mice, resulted in metastatic disease in these animals (Guy et al., 1992). 

Another mouse model of metastatic mammary carcinoma was described with 

overexpression of the viral polyoma virus middle-T-antigen under the control of 

MMTV promoter (PyMT model) (Guy et al., 1992b). It has been demonstrated that 

upon progression toward invasive carcinoma in this model, ErbB2 expression was 

strongly upregulated, and expression of estrogen receptor (ER) and progesterone 

receptor (PR) strongly downregulated. It was thus concluded that the PyMT model 

represents another late stage ErbB2 overexpression model, indirectly resulting in 

ErbB2 overexpresssion (Lin et al., 2003). 
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1.1.2 Cytoskeletal regulation of invasion 
 

The cytoskeleton is comprised of three different filament networks. 

Intermediate filaments such as vimentin and keratin provide structural support and 

resilience. Microtubules form a dynamic network, which mediates chromosomal 

rearrangement during mitosis, but also mediates the transportation of vesicular cargo. 

Finally, the actin cytoskeleton presents a dynamic structural network which mediates 

protrusion, adhesion and retraction of the cell body (Fletcher and Mullins, 2010; 

Alberts et al., 2015). In recent years the cross-talk between the actin and microtubule 

networks, especially regulation of the actin cytoskeleton by microtubules has been an 

area of intense research. 

Rho family GTPases have been shown to regulate the actin cytoskeleton 

(Hall, 1998). This occurs in a variety of ways and has therefore been associated with 

migration and metastatic progression in cancer (Karlsson et al., 2009; Sahai and 

Marshall, 2002). Epithelial to mesynchymal transition (EMT) is a developmental 

process in which cancer cells undergo genetic and morphologic changes allowing 

them to break free from their primary loci to colonize distant sites. This has been 

described in great detail for both pancreatic and mammary carcinoma previously. 

Briefly, for pancreatic cancer several stages of PanINs are passed (1-3) until fully 

developed PDAC can be observed. These are in turn a result of intense cytological 

and architectural atypia following the accumulation of genetic aberrations such as 

KRas mutation, ErbB2 overexpression and p53 mutation to name a few           

(Hruban et al., 2000). In ErbB2 driven mammary carcinoma EMT can be observed 

by the formation of ductal carcinoma in situ (DCIS) which are presented in the 

ErbB2 mouse model by orthologous mammary intraepithelial neoplasms (MIN). 

These then further progress into invasive carcinomas (Ursini-Siegel et al., 2007; 

Tomaskovic-Crook et al., 2009). 

Cells that have undergone EMT exhibit reorganization of their cortical actin 

cytoskeleton, with structures like lamellipodia and filopodia, to facilitate their 

movement and sensing of their extra-cellular milieu (Ridley, 2011). Invasive 

structures in turn, which are termed invadopodia degrade components of the ECM in 

order for cancer cells to move (McNiven, 2013). These are mainly associated with 

the action of Rac-1 and Cdc42. Furthermore, activation of either of the two GTPases 

has been shown to activate the family of p21 activated kinases (PAKs) resulting in 
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cell migration (Ha et al., 2015). Increased stress fiber formation and contractility is 

further associated with cancer progression via the action of RhoA. Actomyosin 

contractility is enhanced by the activation of Rho-associated kinase (ROCK) and the 

formin diaphanous 1 (DIA1), through RhoA signalling. Furthermore, LIM kinase 

(LIMK) acts to inactivate cofilin-mediated actin severing, stabilizing actin at the 

plasma membrane (Narumiya et al., 2009). Finally Rho family GTPases regulate 

adherens junctions and mediate cell-cell contacts. During EMT p120 catenin is 

expressed, which inhibits the function of Rho and allows for the breaking down of 

cell junctions. This in turn can activate Rac-1 and Cdc42 resulting in cell migration 

and the formation of protrusions (Anastasiadis and Reynolds, 2001;             

Lamouille et al., 2014). 

The kinase Src has further been associated with many aspects of cancer cell 

migration and metastasis (Guarino, 2010). To name a few, it functions as a negative 

regulator of Rho-associated cell-ECM adhesion structures in cellular adhesion 

(Yeatman, 2004). Src activity is further associated via integrin signalling 

(Klinghoffer et al., 1999) and adhesion disassembly (Webb et al., 2004), allowing for 

cell migration to occur. Crosstalk therefore exists between Src and Rho signalling 

(Huveneers and Danen, 2009). Invasion is further aided by ECM breakdown by 

matrix-metalloproteases the expression of which is upregulated by Src                 

(Hsia et al., 2003; Rivat et al., 2003). 

As these proteins constitute key regulators of cancer cell migration and 

invasion processes, they were examined in more detail in the context of mammary 

and pancreatic cancer. 
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1.2 Src 
1.2.1 Morphology and functions of Src 
 

The non-receptor tyrosine kinase Src is the first proto-oncogene to be 

described. In 1911 a virally transmissible tumour growth was shown in chickens 

(Rous, 1911) (later named: Rous Sarcoma virus (Rubin, 1955)) leading to virally 

induced tumour cells. In the 1970s the viral Src-gene (v-Src) was identified in the viral 

genome (Czernilofsky et al. 1980; Takeya et al. 1982; Takeya & Hanafusa 1982).       

v-Src is evolutionarily conserved in vertebrates differing in sequence from the human 

cellular Src (c-Src) only in C-terminal deletions, with v-Src lacking the negative 

regulatory domain of c-Src (Figure 1.1 A). This in turn leaves v-Src with stronger 

transforming capabilities than c-Src. c-Src further plays a significant role in the 

development of several human cancers (Hjelle et al., 1988). 

The structure of Src contains (like all Src family kinases, SFKs) four Src 

homology domains (SHs), a unique domain and a regulatory domain                   

(Brown and Cooper, 1996; Frame, 2002; Hilbig, 2008). While the SH4/unique domain 

constitutes the membrane localization signal via myristoylation (Sefton et al., 1982), 

interaction through SH3, SH2 and the kinase domain SH1 have been shown to regulate 

activity of Src. Autophosphorylation of the tyrosine 416 has been found to activate Src 

(Patschinsky et al., 1982) and leads, through the loss of interaction of the SH3 (Erpel 

et al., 1995), SH2 (Gonfloni et al., 1997) and the kinase domain to an open 

confirmation of the kinase upon activation (Gonfloni et al. 1999; Xu et al. 1999). 

Finally the autoinihibitory/regulatory domain at the N-terminal end of Src, is regulated 

via another tyrosine phosphorylation site: Y527, that upon phosphorylation by CSK 

(c-Src tyrosine kinase) leads to binding of the SH2 domain to the N-terminal domain 

and inactivation of Src (Figure 1.1 B) (Okada & Nakagawa 1989; Cooper et al., 1986). 

This domain further binds platelet-derived growth factor β-receptor (PDGFβR)     

(Mori et al., 1993). 

Targeting of active Src to the membrane has further been demonstrated 

previously to depend on coordination of RhoB and actin polymerization. Moreover, 

Src controls the actin dependence of RhoB endosome movement toward the plasma 

membrane (Sandilands et al., 2004). This membrane-associated activation of Src was 

further linked to palmitoylation (Sandilands et al., 2007). 
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Down-stream effectors of Src include, amongst others, focal adhesion kinase 

(FAK) and CRK-associated substrate (Cas), the binding of which results in an 

activation of Src as well (Thomas et al., 1998). p130Cas in particular has been shown 

to associate with Src (Kanner et al. 1990; Honda et al. 1998) and regulate FAK 

dependent cell motility (Cary et al., 1998). E-cadherin levels in cells have further been 

linked to the activity of Src and other tyrosine kinases, leading to ubiquitination and 

the endosomal degradation of E-cadherin (Fujita et al., 2003). E-cadherin is further 

regulated via its associated p120-catenin, which in turn is phosphorylated by Src 

(Roura et al., 1999). 

 

 
Figure 1.1: Schematic of the tyrosine kinase Src and its membrane-associated 
activation 
A Schematic of the domain structure of cellular Src (c-Src) and viral Src (v-Src), with 
an amino-terminal myristoylated and key tyrosine phosphorylation sites at Y416 and 
Y527. The C-terminal regulatory domain (R) is missing in v-Src. B Schematic of Src 
activation and unfolding upon dephosphorylation of the Y527, displacement of SH2 
and SH3 or autophosphorylation of Y416. Selected associated proteins in the active 
state include FAK and p130Cas (adapted from Frame, 2002). 
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1.2.2 Src and pancreatic cancer 
 

Overexpression of Src was shown in immunohistochemical stains of human 

pancreatic carcinoma tissue, as well as by Western blot analysis, when compared to 

normal pancreatic tissue. Kinase activity was further upregulated in the carcinoma 

cells, linking cell proliferation with Src activity in pancreatic cancer cells              

(Lutz et al., 1998). Furthermore, expression of Src in pancreatic cancer cell lines was 

linked to metastatic dissemination. Culturing of pancreatic cancer cell lines on 

collagen type I and collagen type III substrate led to a reduction E-cadherin expression 

and increase in proliferation and migration. This was further linked to elevated c-Src 

activity within these cells (Menke et al., 2001). 

Src overexpression was shown to increase insulin-like growth factor I (IGF-1) 

expression in human pancreatic cancer cells. This in turn stimulated IGF-1 dependent 

proliferation in these cells (Flossmann-Kast et al., 1998). Activation of Akt was 

further linked to this feedback, controlling IGF-1R expression and increasing invasion 

in pancreatic cancer cells (Tanno et al., 2001). Co-expression of IGF-1R and c-Src 

was moreover shown in biopsies of human pancreatic ductal adenocarcinoma (PDAC) 

(Hakam et al., 2003a). Caveolin-1 (Cav-1) is furthermore overexpressed in human 

pancreatic cancer cell lines, mouse models of PDAC and in biopsies of human 

pancreatic tumours. It was associated with worse clinical outcome and advanced 

tumour grades. Depletion of Cav-1 in vitro and in vivo led to a change in Src 

activation (Tyr416 dephosphorylation and Tyr527 auto-inhibitory phosphorylation) 

and decreased invasive potential (Chatterjee et al., 2015). 

The secreted calcium binding protein S100A4 has also been found to be 

markedly overexpressed in pancreatic cancer, linking its expression with poorer 

clinical outcome in patients (Ai et al., 2008). In a patient derived orthotopic tumour 

model suppression of S100A4 expression led to a reduction in growth, invasion and 

metastasis in vivo. Furthermore, S100A4 was shown to activate Src/FAK within the 

pancreatic cancer cells promoting tumour progression (Che et al., 2015). 

Finally, crosstalk between KRas and Src was observed in PDAC after the 

deletion of C-terminal Src kinase (CSK) in vivo. In KRas driven PDAC cooperative 

action of KRas and Src could further contribute to genomic instability                

(Shields et al., 2011). Moreover, mutant KRas was shown to induce an activation loop 

between Src, PEAK1 (pseudopodium-enriched atypical kinase 1) and ErbB2 in PDAC, 
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driving tumour growth and metastasis in vivo. Inhibition of ErbB2 further led to an 

increased Src-dependent expression of PEAK1, indicating an observed resistance in 

patients with PDAC to be dependent on the feedback loop of these kinases         

(Kelber et al., 2012).  

 

1.2.3 Src inhibition in pancreatic cancer 
 

Targeting Src in pancreatic cancer has been explored in great detail previously. 

In a study employing patient derived xenografts of pancreatic cancer tissue in nude 

mice, Src was inhibited in vivo using the anilinoquinazoline AZM475271.               

This decreased primary cancer growth by 40 % and in conjunction with gemcitabine 

was able yield a reduction of growth up to 90 %. Also, in the combination treatment 

metastasis and lymph node invasion was significantly inhibited in the xenografts 

(Yezhelyev et al., 2004). In another study, xenografts of a pancreatic cancer cell line 

treated with AZM475271 lead to an abrogation of liver metastasis and a reduction in 

angiogenesis. Phosphorylation of FAK and activity of Src was reduced in the treated 

mice, as well as in the pancreatic cancer cell lines. The same held true in human 

umbilical vein endothelial cells (HUVECs) in vitro, indicating a potential role of Src 

and FAK in angiogenic processes (Ischenko et al., 2007). 

Another inhibitor used in inhibiting Src activity in pancreatic cancer was 

dasatinib (previously called: BMS-354825), with the commercial name Sprycel®. 

Dasatinib is a tyrosine kinase inhibitor, targeting Bcr-Abl kinases, c-Src, c-KIT and 

amongst others also the platelet derived growth factor receptor (PDGFR) (Lombardo 

et al., 2004). Cell lines were isolated from a previously described model of PDAC the 

KPC model (Pdx1-Cre, KRasG12D/+, p53R172H/+), which has been shown to accurately 

recapitulate human disease progression and metastasis sites of the liver in vivo 

(Hingorani et al. 2005; Morton et al. 2010; Olive & Tuveson 2006). Treatment of 

these PDAC cell lines with dasatinib displayed reductions in phosphorylation levels of 

Src, FAK and p130Cas. Progressive stages of PDAC in the KPC model were shown to 

display increased levels in Src phosphorylation. While in vivo treatment with dasatinib 

did not confer a survival advantage, a marked decrease in the incidence of metastasis 

was reported (Morton et al. 2010). 
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Dasatinib, however, failed in phase II clinical trails, not conferring a survival 

advantage when administered as a single agent (Chee et al., 2013) or in conjunction 

with gemcitabine treatment (Carlson 2014). This could be due to poor distribution of 

dasatinib in the treated PDACs and thus ineffective inhibition of Src activity. These 

results highlight the need for more precise pre-clinical in vivo modelling of drug 

pharmacodynamics and the possible optimization of treatment delivery and efficacy 

before moving to clinical trials. One such approach could be the in vivo imaging of 

genetically engineered mouse (GEM) models and their visualized response to therapy 

on a single cell level in the context of the tumour microenvironment. Evaluating 

treatment response at this level could help determine limitations of drug treatments 

occurring in the native tumour microenvironment. Strategies of improved delivery, 

dosing or scheduling could therefore be tested in more detail, than with other methods 

before moving to clinical trials. 

 
 

1.3 Rac-1 
1.3.1 Rac-1 and its effectors 
	
  

Rac-1 is a member of the family of small Rho GTPases, three of which have 

been the main focus of investigation: Rac1, RhoA and Cdc42. 

Rac-1 has been associated with the leading edge of cells, together with another 

small GTPase Cdc42 (Kurokawa et al. 2004; Nobes & Hall 1995). There, lamellipodia 

formation is driven by Rac-1 activation. It further associates with downstream 

effectors of the WAVE complex, which are localized at the leading edge      

(Kawamura et al. 2004; Innocenti et al. 2005). The WAVE complex components 

linking to Rac, have been shown to be IRSp53 (Suetsugu et al., 2006), Sra-1 and Nap1 

(Steffen et al., 2004). WAVE in turn activates Arp2/3, which induces actin branching 

morphogenesis (Machesky & Gould 1999; Mullins & Pollard 1999; Ridley 2006).  

Next to the cytoskeletal regulatory action of Rac-1, it has been shown that Rac-1 

is required for cell proliferation and cell cycle progression. It has been demonstrated 

that expression of a dominant negative form of Rac-1 in fibroblasts resulted in cell 

cycle arrest and an accumulation of cells in G2/M phase (Olson et al., 1995;        

Moore et al., 1997). Rac-1 has further been found to be a major regulator of cell cycle 
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and proliferation via mTOR (Saci et al., 2011), formation of cell-cell adhesions 

(Ehrlich et al., 2002) as well as contact inhibition regulated by merlin                 

(Bosco et al., 2010). Finally, Rac-1 was found to be essential in Ras transformation in 

fibroblasts (Khosravi-Far et al. 1995; Qiu et al. 1995). Elevated levels of Rac-1 and its 

activation were moreover associated with and found to be required for KRas 

transformation in the lung (Kissil et al. 2007), skin (Samuel et al. 2011;                 

Wang et al. 2010), ulcerative colitis (Muise et al., 2011) and pancreatic cancer       

(Heid et al., 2011). Finally, activating mutations in the Rac1 gene have been identified 

in sun-exposed melanomas (Krauthammer et al., 2012). 

 

1.3.2 Rac-1 in pancreatic and mammary carcinoma 
	
  

Rac-1 overexpression and hyperactivation has been reported in pancreatic cancer 

(Crnogorac-Jurcevic et al., 2001) and play a vital role in progression and survival 

(Murga et al. 2002; Westwick et al. 1997; Guo et al. 2013a). E-cadherin mediated 

adherens junctions were inhibited in pancreatic cancer cells, where expression of 

dominant negative Rac-1 led to an increase in E-cadherin levels and expression of a 

constitutively active form of Rac-1 led to a decrease (Hage et al., 2009).                  

Rac-1 expression was increased in human and murine pancreatic carcinoma, especially 

in the stroma. Deleting Rac-1 expression in PDAC progenitor cells, Heid and 

colleagues showed that upon KRasG12D induction, the formation of acinar-ductal 

metaplasia (ADM), PanINs and tumours was reduced. Further the survival of the mice 

was significantly increased (Heid et al., 2011). Rac-1 dependent superoxide 

production further led to an increase in proliferation in pancreatic cancer cells          

(Du et al., 2011).  

Rac-1 has further been found to be upregulated in breast cancer tumours           

(G. Fritz et al. 1999; G. Fritz et al. 2002) and in triple-negative breast cancer cell lines 

(Feng et al., 2014). Overexpression and identification of a common splice isoform 

Rac-1b was moreover shown. Schnelzer and colleagues further demonstrated in their 

study by IHC that Rac-1 expression was particularly prominent in ductal carcinoma    

in situ (DCIS), primary breast cancer and lymph node metastasis. In line with this,      

in benign mammary carcinoma, Rac-1 expression was low (Schnelzer et al., 2000). 
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In a subtype of mammary carcinoma, Rac-1 activity has previously been 

strongly linked to the expression of the receptor tyrosine kinase ErbB2 and its 

activation (Arias-Romero et al. 2010; Sosa et al. 2010). Activation of Erk and Akt 

pathways was observed in ErbB2 expressing ER positive cells in 3D culture. This in 

turn was dependent on activation of the p21-activated kinase-1 (PAK1) – Rac-1 

pathway, with inhibition of either leading to a downregulation in Akt and Erk 

signalling cascades (Arias-Romero et al., 2010). Furthermore, mutation of the ErbB2 

receptor, leading to a resistance to tratuzumab, was associated with Rac-1 activated 

TGF beta overexpression as well as VEGF secretion (Wang et al. 2010). Exposure of 

mammary epithelial cells to MMP-3, upregulated in many breast tumours (Sternlicht 

and Werb, 2001), was further shown to result in an increase in the expression of Rac-

1b, cellular reactive oxygen species (ROS) and epithelial-mesenchymal transition 

(EMT) via Snail (Radisky et al., 2005). 

 

 

 

 
Figure 1.2: Overview of Rac-1 activation via selected GEFs and downstream 
effectors 
Schematic depiction of Rac-1 activation via selected GEFs such as Tiam1, P-Rex1 and 
Vav1 and stimulation of these GEFs by receptor tyrosine kinases (RTKs), ErbB2 
receptor dimerization and activation, as well as via G-coupled protein receptors 
(GCPRs). Effectors of GTP-bound Rac-1 include the WAVE and Arp2/3, PAK1, 
MAPK, mTOR and NF-κB to name a few (adapted from  Bid et al. 2013). 
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1.3.3 Rac-1 GEFs 
	
  

Small Rho family GTPases are controlled in cells by the action of GTPase 

activating proteins (GAPs) and guanine-nucleotide exchange factors (GEFs).            

The latter activate the GTPases by opening the binding sites of specifically GDP 

bound forms, allowing for an exchange of GDP to GTP (Worthylake et al., 2000). 

GEF activity was first found to be stimulated by the Dbl-homology (DH) domain of 

the GEFs, catalysing GDP to GTP exchange in the GTPase upon binding of the GEF 

to the GTPase (Hart et al. 1991). DH domains in turn have further been described in 

many GEFs (Kjoller and Hall, 1999). GTP hydrolysis on the GTPases is stimulated by 

GAPs, thereby inactivating GTPases (Garrett et al. 1991; Hart et al. 1991).       

GTPases are further regulated by the action of guanine nucleotide dissociation 

inhibitors (GDIs). GDIs in turn inhibit the localisation of the GTPases to the 

membrane and keep them as inactive complexes in the cytoplasm. They further 

prevent the activation of GTPases by inhibiting GDP dissociation (Olofsson, 1999; 

Hoffman et al., 2000; Grizot et al., 2001; Ridley, 2001). Here, a select few GEFs will 

be introduced, especially in the context of their action in pancreatic and mammary 

carcinomas. 

 

Vav1 is part of a family of GEFs (Vav1-3), with Vav1 recently emerging as an 

important player in the pathogenesis of pancreatic cancer. Patients with Vav1 positive 

tumours had poorer survival rate compared to patients with Vav1 negative tumours. 

Furthermore Vav1 was found to be acting together with EGFR to promote pancreatic 

cancer cell proliferation (Fernandez-Zapico et al., 2005). This GEF has also been 

found to be ectopically expressed in invasive pancreatic tumour cells, promoting 

matrix degradation and invadopodia formation via its activation of Cdc42         

(Razidlo et al., 2014). Further, treatment of KPFLC mice (p48-Cre, KRasG12D/+, 

p53floxed/+) mice with a Vav1 inhibitor, azathioprine, inhibited metastasis in these mice. 

This was in a Vav1 dependent manner, as Vav1-negative cell lines and tumours were 

largely resistant to azathiopurine treatment (Razidlo et al., 2015a).  
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Tiam1 (T-cell Lymphoma Invasion and Metastasis 1) is another GEF with 

emerging importance in both mammary and pancreatic carcinoma. It has been found to 

be partially upregulated in pancreatic cancer cells and to mediate the invasive 

behaviour through activation of Rac-1 in cells with high expression levels of α4β6 

integrins (Cruz-Monserrate & O’Connor 2008). Tiam1 was further found to be 

upregulated in primary stages of pancreatic cancer, with increasing expression 

observed in cancers without lymph node involvement and distant metastasis             

(Guo et al. 2013a). Ablation of Par3 expression has previously been established to 

disrupt epithelial tight junction assembly. This was further linked to Rac-1 activity via 

Tiam1, showing that Par3 inhibits Tiam1-Rac-1 signalling (Chen & Macara 2005). 

Par3 was also shown to be downregulated and interacting with Tiam1 in pancreatic 

cancer. Furthermore knocking down Par3 resulted in a reduction of tight junctions and 

increased pancreatic cancer cell invasion and migration (Guo et al. 2015). In breast 

cancer, Tiam1 was found to overexpressed in higher grades of clinical stages       

(Adam et al., 2001) and in triple negative breast cancer cell lines (Chavez et al., 2010). 

Additionally, heregulin-β1 stimulation of cells led to redistribution of Tiam1 to 

membrane ruffles and loosening of cellular junctions (Adam et al., 2001).      

Moreover, binding of Tiam1 to the cytoskeletal protein ankyrin was shown to promote 

breast tumour cell invasion and migration (Bourguignon et al., 2000).           

Apicobasal polarity is controlled by Par3 at the apical and by β–syntrophin at the basal 

surface of polarised epithelia. Both control Rac-1 activation via Tiam1, with               

β–syntrophin promoting and Par3 inhibiting activation (Mack et al., 2012).                  

In vivo, downregulated Tiam1 expression in stromal cells led to a decrease in invasion 

and metastatic potential of breast cancer cells (Xu et al. 2010). Tiam1 was also found 

to be essential for ErbB2-driven tumour formation and metastatic progression, but not 

in c-myc induced breast cancer mouse model mice (Strumane et al., 2009). 

 

Trio overexpression has previously been linked to poor outcome in breast cancer 

patients (Lane et al., 2008). Furthermore, in breast cancer cells, Trio-Rac-1-PAK1 

signalling axis has been linked to invadopodia disassembly, by phosphorylation of 

cortactin (Moshfegh et al., 2014). 

 

 

 



31	
  

P-Rex1 is part of the P-Rex (Phosphatidylinositol 3,4,5-triphosphate Rac 

exchange factors) family of Dbl-type GEFs (Welch 2015). It has been shown by 

Welch et al. to function downstream of phosphatidylinositol 3,4,5-triphosphate (PIP3) 

and Gβγ, directly linking Rac-1 activation to PI3 kinase activity and G-protein coupled 

receptors (GPCR) (Welch et al. 2002). KO mice of P-Rex1 have been described to 

have mild neutrophilia, with neutrophils impaired in their capability to be recruited to 

sites of inflammation, displaying, however, only slightly impaired chemotactic 

abilities (Welch et al. 2005). In breast cancer, P-Rex1 was overexpressed in estrogen 

receptor positive (ER+) and ErbB2 expressing human tumours. Activation of P-Rex1 

was further linked to ErbB2 receptor activation, and the GCPR CXCR4 was described 

as a key mediator of Rac-1 activation via P-Rex1 (Sosa et al., 2010). The 

phosphorylation status of P-Rex1 was further linked to Rac-1 activation, after ErbB2 

signalling. This further regulated both proliferation and invasiveness of breast cancer 

cells. A correlation between P-Rex1 expression and poor patient outcome was 

moreover shown (Montero et al., 2011). P-Rex1 expression was further found to be 

linked to sensitivity of PIK3CA mutated and ErbB2 overexpressing breast cancer 

cells, acting downstream of PIP3 and PI3K. Inhibition of PI3K was particularly 

effective in these subsets of breast cancer and led to a downregulation of both Akt and 

Rac1/Erk pathways (Ebi et al., 2013). In line with this, P-Rex1 knockdown or Rac-1 

inhibition caused a downregulation of PI3K/Akt and MEK/Erk pathways. 

Furthermore, P-Rex1 promoted insulin growth factor 1-receptor (IGFR1) activation, 

suggesting a feedback-loop between P-Rex1 and PI3K activators (Dillon et al., 2015).  

Recently, the crystal structure of P-Rex1 revealed the auto-inhibitory 

confirmation of P-Rex1 prior to PIP3 or Gβγ signalling. P-Rex1 binding of the latter, 

allowed it to assume on open conformation permitting access to its GEF-acting 

domains (DH and PH domain) in order to in turn activate Rac-1 (Lucato et al., 2015) 

(Figure 1.3 B). 
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Figure 1.3: The Rac-1 GEF P-Rex1 and its activation 
A The Phosphatidylinositol 3,4,5-triphosphate Rac exchange factor P-Rex1, contains 
3 key domains, the inositol polyphosphate 4-phosphatase domain (IP4P) regulating its 
auto-inhibitory confirmation and the DH, PH domains responsible for its GEF activity. 
B Upon G-coupled protein receptor (GCPR) activation and Gα GTP binding, 
phosphatidylinositol(3,4,5)P3 (PIP3) synthesis by PI3K and de-phosphorylation of      
P-Rex1 by protein phosphatase 1α (PP1α), P-Rex1 can assume an open confirmation 
exposing the DH and PH domains. These in turn can then bind Gβγ and PIP3 allowing 
for P-Rex1 GEF function on Rac-1 to take place (adapted from Lucato et al. 2015; 
Barber et al. 2012). 
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1.4 RhoA 
1.4.1 RhoA in breast cancer 
	
  

In normal murine mammary epithelial cells, RhoA activity is amongst other 

GAPs, downregulated via the action of p190RhoGAP. This GAP is in turn activated 

via β3 integrin binding to fibronectin and subsequent EGFR activation cross-talk 

(Balanis et al., 2011). 

RhoA overexpression in turn has been shown to be able to transform 

preneoplastic human mammary epithelial cells showing alteration in several genes 

associated with malignant transformation and breast cancer progression, such as 

ZNF217, ELF3 and S100P (Zhao et al. 2009). 

In MCF-7 breast cancer cells conversely, p190RhoGAP phosphorylation is 

maintained by Brk (Breast tumour kinase), a kinase that is often found to be 

overexpressed in breast cancer cells. p190RhoGAP is further associated with 

p120RasGAP, which in turn downregulates Ras activity. When Brk is activated by 

EGFR signalling, it was shown to downregulate RhoA activity via p190RhoGAP,     

but upregulate Ras activity by attenuating p120RasGAP function (Shen et al. 2008). 

Contrary to this, RhoA activation in a different breast cancer cell line, MDA-MB-231, 

has been shown to be downstream of EGF stimulation via galectin-3 and         

phospho-caveolin-1, leading to cell migration and dorsal actin ruffling              

(Boscher and Nabi, 2013).  

Ephrin receptor A2 (EphA2) was shown to be involved in RhoA activity in the 

breast cancer cell line 4T1 in vitro and in vivo. Upon loss of the cytoplasmic domain 

of the receptor or a mutation in the kinase domain, RhoA activity was lost and cells 

displayed reduced cell migration as well as a reduction in the number of lung 

metastasis in an injection mouse model (Fang et al. 2005).                          

Furthermore, overexpression of EphA2 in MCF-10A breast cancer cells led to a 

weakening of  E-cadherin mediated cell-cell adhesion and RhoA activation. This was 

in conjunction with the action of Src and the low molecular weight phosphotyrosine 

phosphatase (LMW-PTP) dephosphorylating p190RhoGAP (Fang et al. 2008).           

Gab2 docking protein overexpression in MCF-10A breast cancer cells delays cell 

spreading and enhanced cell migration. It further supressed RhoA activation in these 

cells via the action of p190A RhoGAP (Herrera Abreu et al., 2011). 
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In the MMTV-ErbB2 overexpressing breast cancer mouse model, loss of the 

EphA2 receptor was concurrent with downregulation of Ras and RhoA activity.      

This led to impairment in tumour initiation and metastatic progression. The same was 

not observed in the MMTV-PyMT model in which EphA2 was also eliminated by 

genetic editing (Brantley-Sieders et al., 2008). ErbB2 signalling was further shown to 

phosphorylate Plexin-B1, leading to an activation of RhoA via the RhoGEF11/12 in 

human breast cancer cell lines. In MMTV-ErbB2 mice, loss of Plexin-B1 led to a 

reduction in lung metastasis. Moreover, Plexin-B1 high expression was correlated with 

poorer patient disease free survival (Worzfeld et al., 2012). In a study looking at statin 

inhibition of ErbB2 overexpressing mouse tumours, it was demonstrated that the 

treatment resulted in a decrease in Ras/Erk1/2 signalling, but an upregulation of the 

RhoA/ROCK/NF-κB pathway. Combined treatment of statins with NF-κB inhibitors 

circumvented this problem (Riganti et al., 2011). 

RhoA activation in breast cancer cells in the context of the tumour 

microenvironment was shown recently by interaction of the cancer cells                   

with macrophages. There, the intravasation of breast cancer cells was                 

demonstrated following contact with macrophages in vitro or in vivo, leading to                

invadopodia formation and penetration through the basement membrane                                     

(Roh-Johnson et al., 2014). The ability of macrophages to activate RhoA in cancer 

cells, had been established before in gastric and colon carcinoma that same year 

(Cardoso et al., 2014). 

Loss of polarity in breast cancer cells before progression to invasive stages has 

been shown to be regulated by an increase in RhoA activity via several proteins. 

PDLIM2, a regulator of NF-κB and other transcription factors, has been associated 

with the maintenance of polarity in mammary acini structures. Loss or downregulation 

of PDLIM2 led to an upregulation of RhoA and ROCK activity in MCF10A breast 

cancer cells (Deevi et al., 2014). In progressive stages of breast cancer, WNT5A,          

a planar cell polarity ligand, is highly expressed in invasive mammary carcinoma cells. 

In atypical and ductal carcinoma in situ cells conversely its expression level is basal. 

The upregulated expression of WNT5A also resulted in higher RhoA activity in these 

cells (MacMillan et al., 2014). Overexpression of the protein 14-3-3τ is found in 

several types of breast cancer. It furthermore regulates progression via binding of 

RhoGDIα and thus increasing levels of active RhoA and ROCK.                      
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Increased invasion and metastatic potential of breast cancer cells was demonstrated 

both in vitro and in vivo (Xiao et al. 2014).  

NHERF1 (Na+/H+ exchanger regulatory factor) expression is enhanced in human 

breast cancer biopsies and associated with metastatic progression and HIF-1α   

(hypoxia inducible factor-1α) expression. NHERF1 overexpression was further 

associated with a more invasive phenotype in breast cancer cells, potentiated in a 

serum free milieu and 3D culture. This was linked to protein kinase A (PKA)-RhoA 

and p38 signalling (Cardone et al., 2007). 

Several microRNAs (miRs) have been implicated in breast cancer progression 

and associated with RhoA activation. Upregulation of miR-182 has been shown in the 

malignant cell line variants for both human MCF10 and mouse 4T1 cell line groups. 

Overexpression led to an increase of invasion in vitro and in vivo.               

Furthermore, miR-182 was shown to directly target MIM (Missing in Metastasis), 

which normally supressed the activity of RhoA (Lei et al. 2014). Another microRNA 

directly targeting RhoA transcription has been shown to be miR-155             

(Johansson et al., 2013). Knockdown of miR-155 in breast cancer cells resulted in a 

decrease of previously shown TGF-β induced EMT (Bhowmick et al., 2001), 

migration and invasion as well as RhoA activity (Kong et al., 2008). 
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1.4.2 RhoA GEFs and associated receptors in breast cancer 
 

A wide variety of GEFs have been associated with regulating RhoA activity.    

The GEF SmsGDS has been shown to be a key regulator of RhoA and NF-κB in breast 

cancer cells. It was further demonstrated that elevated SmsGDS expression is 

correlated with poorer prognosis and survival outcome in breast cancer patients 

(Hauser et al., 2014). 

The Neuroepithelial transforming gene 1 (Net1) is a GEF associated with 

branching morphogenesis in the ductal tree of the native mammary gland                

(Zuo et al., 2014). It is furthermore overexpressed in breast cancer cells and associated 

with controlling FAK activation and ameboid invasion (Carr et al., 2013).          

Moreover, Net1 expression together with α6β4-integrins was shown as a prognostic 

factor associated with reduced metastatic-free and overall survival in ERα positive 

breast cancer patients (Gilcrease et al., 2009). 

The GEF termed Leukemia-associated RhoA guanine exchange factor (LARG) 

was shown previously to regulate the motility and invasion of breast cancer cells 

T47D by the iodide transporter NIS. Overexpression of NIS has been shown in breast 

cancer (Tazebay et al., 2000) and was associated with RhoA activation in T47D cells 

(Lacoste et al., 2012). 

Expression of the adhesion G-protein-coupled receptor GPR116 was positively 

correlated with metastatic progression in breast cancer cells in vitro and in vivo via the 

p63RhoGEF and RhoA and Rac-1 activation. Knock-down of the receptor led to a 

decrease in RhoA and Rac-1 activity. This furthermore reduced the invasive 

capabilities of the breast cancer cells. Elevated expression of GPR116 was also 

demonstrated in progressive stages of human breast cancer biopsies, as well as 

correlated with decreased recurrence-free and distant metastasis-free survival        

(Tang et al. 2013).  

Estrogen-related receptor α (ERRα) controls RhoA protein turnover in       

MDA-MB-231 breast cancer cells via the activated expression of BACURD2          

(BTB/POZ domain-containing adaptor for Cullin2-mediated RhoA degradation 2). 

This protein in turn is responsible for RhoA targeted degradation                       

(Sailland et al., 2014).  
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Kiss1 receptor (GPR54) has been shown to drive metastasis in the PyMT 

mammary cancer model through activation of RhoA via p63RhoGEF. Kiss1 receptor 

knock out mice crossed to the PyMT model showed that the loss of one copy of Kiss1 

receptor led to haploinsufficiency. This in turn resulted in slowed tumour initiation, 

progression and decreased lung metastasis (Cho et al. 2011). 

 
1.4.3 Pancreatic Cancer and RhoA signalling 

 
Activation of RhoA signalling can lead to cancer cell migration and invasion in 

pancreatic cancer. Listed here are a variety of factors that can contribute to this 

process.  

PDAC cells derived from a KPC model (Pdx1-Cre + KRasG12D/+ + p53R172H/+) 

showed spatially defined RhoA activation at the leading edge and the rear of the cells 

in a 3D context both in vitro and in vivo. This activity of RhoA was absent in PDAC 

cells derived from a KPFLC model (Pdx1-Cre + KRasG12D/+ + p53floxed+/+), showing 

an involvement of mutant p53 in driving pancreatic cancer cell invasion           

(Timpson et al., 2011a). 

In pancreatic cancer cells p190RhoGAP expression led to a downregulation of 

RhoA activity and metastatic capability of these cells. Inhibited RhoA activity in 

pancreatic cancer cells injected intrasplenically into nude mice resulted in a reduction 

in number and size of metastasis in the liver as compared to mice injected with control 

cells (Kusama et al., 2006). 

The tropomyosin-related kinase B splice variant 1 (TrkB1) has been associated 

with RhoA signalling in pancreatic cancer cells, by sequestering RhoGDI and thus 

activating RhoA. Further downstream activation of ROCK led to an increased invasive 

phenotype of pancreatic cancer cells. An increase in liver metastasis by TrKB1 

overexpression was further observed (Li et al. 2009). It has been reported that there is 

a balance between RhoA activity and Tiam1/Rac1 activation in pancreatic cancer 

cells. While Tiam1/Rac1 signalling promoted PDAC proliferation and tumour growth 

via Wnt signalling in vitro and in vivo, RhoA activation resulted in increased invasion 

and migration (Guo et al. 2013b). 

Lysophosphatidic acid (LPA) receptors are common chemotactic regulators and 

were shown to be expressed in pancreatic cancer cell lines. LPA stimulation resulted 
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in Ras activity and the marked activation of first RhoA and then Rac-1                

(Stähle et al., 2003).  

Insulin-like growth factor 2 mRNA binding protein 3 (IMP3) has been found to 

be overexpressed in pancreatic cancer cells and associated with poor prognosis in 

PDAC. Knock down of IMP3 showed decreased motility, invasion and adhesion of 

PDAC cells in vitro, via RhoA signalling reduction (Pasiliao et al. 2015).  

Stimulation of PANC-1 pancreatic cancer cells with the glial cell-line derived 

neurotrophic factor (GDNF) led to a transient activation of RhoA signalling as well as 

Rac-1 and their respective down stream pathways, including the PI3K/Akt and the 

Ras-Raf-MAP/Erk pathway. Inhibition of the two pathways stopped GDNF stimulated 

cancer cell invasion both in vitro and in vivo (Veit et al., 2004). RhoA activity was 

further shown to be activated by EGFR signalling. Moreover, EGF stimulated ROCK 

activity as well as that of Erk1/2 and Akt (Nakashima et al., 2011). 

Elevated RhoA activity and invasion in pancreatic cancer has therefore become a 

key target with several approaches aimed toward inhibition of these processes.            

In p48-Cre + KRasG12D/+ mice treated for 35 weeks with a first generation EGFR 

inhibitor, a marked reduction in tumour progression and initiation events in the 

pancreas was recorded. Moreover, reduced levels of protein expression for a number 

of proteins, including RhoA was observed (Mohammed et al., 2010a). Treatment of 

p48-Cre + KRasG12D/+ mice with a statin drug, Atorvastatin, showed dose dependent 

reduction in PDAC, PanIN3 formation and development of primary lesions.    

Moreover, a variety of genes showed reduced expression, including amongst others 

RhoA and the PI3K/Akt signalling axis, after prolonged treatment of 35 weeks                   

(Mohammed et al., 2012).  

Treating PDAC cell lines with cAMP elevating agents resulted in a reduced 

invasion and migration of these cells. cAMP elevating drugs also hindered TGF-β 

directed PDAC cell migration and levels of active RhoA amongst other proteins was 

reduced (Zimmerman et al., 2015).  

Inhibition of HMG-CoA (3-hydroxy-3-methylglutaryl-conenymeA) with    

HMG-CoA reductase inhibitors resulted in a reduction in pancreatic cancer cell 

invasion in vitro and liver metastasis in vivo following intrasplenic injection.           

EGF stimulated cancer cell invasion was also blocked in vitro by a reduction in RhoA 

membrane translocation following reductase treatment (Kusama et al., 2002). 
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1.5 FRET biosensors and FLIM 
1.5.1 Fluorescence Lifetime Imaging (FLIM) 
 

Fluorescence lifetime imaging microscopy (FLIM) (Lakowicz et al., 1992) 

measures the fluorescent lifetime of a fluorophore, i.e. how fast an electron decays 

after excitation to be emitted as fluorescence. FLIM is independent of the 

fluorophore’s intensity and concentration as well as the local excitation intensity and 

detection efficiency. Furthermore it has been demonstrated that FLIM is largely 

insensitive to moderate levels of photobleaching (Van Munster & Gadella 2004;     

Chen & Periasamy 2004). The fluorescent lifetime is a unique property of every 

fluorophore, however, the surrounding environment of a fluorophore can influence this 

value via e.g.: the pH (Sanders et al., 1995) and the temperature (Foguel et al., 1992). 

Measuring FLIM can be done by either of two approaches:                               

The time domain method using time correlated single photon counting (TCSPC)                        

(O’Connor & Phillips 1984) or the frequency domain method (Jameson et al. 1984, 

Chang et al. 2007). TSCPC is performed by the use of a pulsed laser excitation source 

being split into two beams. One beam excites the sample, while the other triggers a 

“timer” (Figure 1.4 A). After the detector collects the emission i.e. single photons 

from the sample, with the detector signal stopping the timer and the recorded event 

allocated to a time bin. The time-binned signal, quantifying the number of photons in 

each time interval, is then plotted in a histogram and an exponential decay 

reconstructed (Figure 1.4 B). The half-life of the decay is called the fluorescence 

lifetime in nanoseconds measured.  

In the frequency method conversely a sinusoidally modulated light source is 

used. The exaction light is modulated at a frequency of multiple of 10 mHz         

(Figure 1.4 C). The resulting emission signal will mirror this modulation with a delay 

in time in the form of a phase shift, and a decrease in the modulation depth. In order to 

detect this, the intensified camera detection is modulated with the same frequency as 

the excitation light source. Furthermore, the detector sensitivity is shifted in and out of 

phase with the emission fluorescence in a pseudorandom order, resulting in the 

frequency domain FLIM signal. This signal in turn is a function of the phase 

difference between the excitation light and detected emission for each pixel in the 

image. In order to accurately determine the correct lifetime, the system needs to be  



40	
  

calibrated at the pixel level with a reference fluorophore, of which the lifetime is 

known. The lifetime is then calculated by comparing the phase and modulation shift of 

the sample with the phase and modulation shift of the reference (Figure 1.4 D). 

Förster Resonance Energy Transfer (FRET) is another factor that can influence 

fluorescence lifetime of a fluorophore. When FRET occurs, the lifetime of the donor 

fluorophore decreases for a population of fluorophores, because the longer lifetimes 

are removed from the detection signal by FRET. Advantages of measuring FRET via 

FLIM include the fact that only the lifetime of the donor fluorophore needs to be 

measured in order to detect FRET (Elangovan et al., 2002). In other detection methods 

of FRET such as ratiometric FRET, both the intensities of the donor and the acceptor 

fluorophore have to be reported to obtain a read-out. Application of FLIM to measure 

FRET therefore removes the necessity of recording two fluorophores simultaneously.  

Furthermore, FLIM measurements are not intensity dependent, allowing for 

application of FLIM-FRET in high scattering surroundings such as an in vivo imaging 

setting (Wallrabe and Periasamy, 2005). Again a ratiometric approach is very much 

dependent on the intensity of the fluorophores used, making it difficult to measure 

FRET in high scattering surroundings, without the application of rigorous corrections 

and control read-outs. Eliminating these extra measurements and being intensity 

independent, FLIM allows for the reliable measurement of FRET in an in vivo setting. 
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Figure 1.4: Time correlated single photon counting (TCSPC) and frequency 
domain methods for the determination of fluorescent lifetimes 
A Set-up of a TCSPC system and B collection and quantification of single photons 
after excitation of the sample. C Frequency domain approach, with phase shifting 
detection of the modulated emission from the sample (adapted from                        
Borst and Visser, 2010). D Frequency domain signals of the reference and sample 
fluorophores, with the respective shifts in phase and modulation (adapted from 
Lambert Instruments: http:// www. lambertinstruments. com/ technologies -1/ 2014/ 
12/ 4/ frequency- domain- flim- for- beginners). 
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1.5.2 Förster Resonance Energy Transfer (FRET) 
 

Förster Resonance Energy Transfer is a non-radiative process, that was first 

described in 1946 (Förster 1946; 1948). The process occurs when molecules are in 

close proximity to each other, in the order of several nanometres. This in turn is to 

scale with the size of proteins, their interactions with each other and the thickness of 

biological membranes. It has therefore been proposed that FRET can be used as a 

spectroscopic ruler in cells, occurring between a range of 1-8 nm (Stryer & Haugland 

1967; Bücher et al. 1967). Measuring the distance of either fluorophores or dye-tagged 

proteins and thus their interaction within cells was further explored (Sun et al. 2013; 

Stryer 1978). FRET can occur when the emission of the donor overlaps with the 

excitation spectrum of the acceptor (Figure 1.5 A). Upon excitation of the donor 

fluorophore non-radiative energy transfer occurs when the two molecules are in close 

proximity of each other. Commonly used FRET pairs in terms of the fluorophores,     

are represented by cyan fluorescent protein (CFP) paired with yellow fluorescent 

protein (YFP) and green fluorescent protein (GFP) with red fluorescent protein (RFP). 

There has further been a great effort invested in optimizing fluorophores in order to 

increase their photostability, quantum yield as well as their fluorescent lifetimes, 

making them longer (in ns) and presenting with mono-exponential decays.           

Useful variants of CFP include: mTFP (Day et al. 2008), mCerulean                     

(Rizzo et al., 2004) or mTurqouise (Goedhart et al., 2010). Similar efforts were 

undertaken in order to improve the properties of acceptor fluorophores as well, such as 

for YFP with YPet (YFP for energy transfer). There an increase in FRET was 

observed compared to normal YFP variants (Nguyen and Daugherty, 2005).            

Use of dark acceptors lacking an emission signal, such as YFP based                     

super-Resonance-Energy-Accepting Chromoprotein (sREACh) represent further 

optimization of the FRET pairing of fluorophores (Ganesan et al., 2006;        

Murakoshi et al., 2008). 

Next to optimal overlapping spectral properties of the donor and the acceptor, 

FRET can indeed also be influenced by the dipole orientation of the fluorophores to 

each other within the reporters (Dale et al., 1979). FRET is optimal when fluorophores 

are aligned perfectly parallel to each other and can decrease when this is not the case.  
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To circumvent this problem one approach has been to use circular permutated 

fluorescent proteins, changing the order of amino acid sequence in the protein while 

conserving its overall 3D structure as closely as possible (Klarenbeek et al. 2015;   

Fritz et al. 2013). 

 

 
Figure 1.5: Förster Resonance Energy Transfer between CFP and YFP 
A Spectral overlap as demonstrated on the frequently used fluorophore pair CFP and 
YFP, with the emission of CFP overlapping with the excitation of YFP (spectral data 
taken from http://www.tsienlab.ucsd.edu/Documents.htm). B Jabłoński diagram 
illustrating FRET, with transmission of energy of the excited electrons in the donor 
over to the acceptor and subsequent fluorescence emission (adapted from        
Ishikawa-Ankerhold et al. 2012). 
 

 
 

1.5.3 FRET biosensors 
 

There are a variety of FRET based biosensors that have been described to date. 

Among these, different kinds of architectures exist, with probes either containing    

full-length proteins of interest and/or response regions subject to conformational 

changes upon activation, static membrane association or free cycling on and off the 

plasma membrane. In this section, the FRET-biosensor probes used to analyse the 

functionality of the proteins of interest in the subsequent chapters will be introduced. 

A FRET reporter able to track spatially defined Src activity within cells was first 

described by Wang and colleagues in 2005. The biosensor is made up of a donor 

fluorophore, ECFP, an SH2 domain, a substrate peptide sequence for c-Src derived 

from p130Cas (WMEDYDYVHLQG) and the acceptor fluorophore YPet.                   

In an unphosphorylated state the probe would assume a FRET conformation with the 

two fluorphores in close proximity to each other. However, when Src was active 
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within cells, it would phosphorylate the substrate peptide, resulting in a binding of the 

substrate peptide region to the SH2 domain and a conformational change in the 

reporter (Figure 1.6A). This would abrogate FRET and could be antagonized by the 

action of cellular phosphatases. 

It was further shown that there was some activity of Fyn kinase toward the 

reporter in SYF cells (deficient for Src, Yes and Fyn kinases), when c-Fyn was 

reconstituted in these cells. Other SFKs displayed negligible responses in terms of 

FRET on the reporter. The probe responded both to stimulation via EGF, PDGF as 

well as to inhibition by the Src inhibitor PP1 (Wang et al. 2005). 

The GTPase Raichu probes were developed previously in order to track the 

activation of cellular GTPases such as Rac-1, Cdc42 and RhoA at the plasma 

membrane. To this end, the reporters were tethered to the membrane via a CAAX box 

of Ki-Ras. The reporters therefore contained the CAAX conjugated donor fluorophore 

fused to the full-length GTPase, followed by a PAK1 responsive fragment for Rac-1 

(Itoh et al., 2002) and a protein kinase N (PKN) fragment for RhoA               

(Yoshizaki et al., 2003a) via a flexible linker region. Finally this sequence was 

followed by the acceptor fluorophore. In the original reporters the FRET fluorophore 

pair was made up of ECFP and YPet. However, in a second generation reporter for the 

RhoA probe they were swapped for EGFP and mRFP (Timpson et al., 2011a).  

In a GDP bound state of the GTPase, the probes would assume an open,         

non-FRET conformation. Upon the activity of GEFs within the cell, GDP would be 

exchanged for GTP on the GTPases and they would bind their respective responsive 

regions within the probe. This would result in a closed and thus FRET conformation of 

the probes. When the activity of GAPs within the cells would however be prominent, 

the GTPase part of the reporter would become GDP-bound and the probe once again 

assume an open conformation (Figure 1.6 B+C). 
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Figure 1.6: Schematics of the FRET biosensors used reporting on Src, Rac-1 and 
RhoA activity in cells (adapted from Wang et al. 2005, Itoh et al. 2002 and 
Yoshizaki et al. 2003) 
A The Src FRET reporter reacts to phosphorylation by Src, of its p130Cas fragment 
substrate, resulting in a conformational change of the reporter, hindering FRET.    
Upon the action of cellular phosphatases the probe assumes a conformational change 
resulting in FRET (Wang et al. 2005). B + C The Rac-1 and RhoA-Raichu probes are 
membrane tethered by their donor fluorophore to the membrane by a CAAX motif. 
Upon the action of GEFs the GTPase bind their responsive regions resulting in FRET. 
This process is turn is antagonized by the action of cellular GAPs (Itoh et al. 2002; 
Yoshizaki et al. 2003). 
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1.5.4 Multiphoton Imaging 
 

The theory of multiphoton excitation was first introduced in 1931           

(Göppert-Mayer, 1931), however, the first functional instrumentation for the 

application of multiphoton imaging in a biological setting was first described in 1990 

by Denk and colleagues (Denk et al. 1990). The focal plane is where photon density is 

the highest. A pulsed laser is needed to achieve such required photon density. 

Excitation is further limited to the optical section in focus, as excitation by two 

photons simultaneously outside the focal plane is extremely unlikely. Using a         

near-infrared excitation source is required as each photon has double the wavelength 

and therefore half the energy required for excitation of the fluorphore compared to 

excitation with a conventional visible light source. Near-infrared thus allows for 

deeper imaging in tissues and avoids scattering to a greater extent than with 

conventional confocal microscopy. Because multiphoton excitation is confined to the 

focal volume of the objective, photobleaching outside the focal plane is minimal 

compared to confocal microscopy and allows for longitudinal imaging without 

extensive photodamage to the tissue (Centonze & White 1998; Squirrell et al. 1999; 

Helmchen & Denk 2005). Thermal damage due to the near-infrared excitation laser 

may, however, occur if the sample contains chromophores such as melanin             

(Liu et al. 1994; Pustovalov 1995). Using a femtosecond pulsed excitation source, 

with a repetition rate of up to 80 mHz, an enhancement of the signal can be achieved 

(Cox & Sheppard 2004). This is due to the non-linearity of the emission intensity, 

which works out as being the laser power squared. Furthermore, the excitation source 

can be modulated to wavelengths ranging from 770 to 880 nm with a Titanium-

Sapphire laser, further extendable to reach up to 1600 nm with an optical parametric 

oscillator (OPO) (Figure 1.7 A). The emission is collected by photomultiplier tubes 

(PMTs) via a non-descanned detection light path. There is no signal loss due to 

scattering as observed with confocal microscopy, resulting in deeper imaging depths 

achievable. Following excitation of the sample, the emitted light is the same 

wavelength of the corresponding single photon excitation, i.e. in two photon excitation 

the resultant emission signal is approximately half that of the near-infrared wavelength 

laser used (Figure 1.7 B). Another advantage of multiphoton imaging is the production 

of so called second and third harmonic generation signals (SHG/THG)               

(Freund & Deutsch 1986; Barad et al. 1997; Zipfel, Williams & Webb 2003).       



47	
  

These signals allow for the visualization of non-centrosymmetric ordered biological 

structures such as collagen (SHG) (Zipfel et al. 2003) or lipids (THG)               

(Débarre et al., 2006). This results in a non-linear polarization when two photons 

simultaneously interact with e.g. collagen. SHG and THG do not represent 

fluorescence but rather the merging of 2 photons of a certain wavelength to a new 

photon of half that wavelength (Figure 1.7 C). For THG this is in turn 3 photons 

merging to a photon with a third of the wavelength as the original excitation photons. 

This again constitutes a non-linear process, like 2-photon excitation, only working at 

high laser intensities and thus requiring a pulsed laser excitation source.  

This endogenous signal has been used extensively in the imaging of collagen I in 

tissues (Zipfel et al. 2003; Mohler et al. 2003; Campagnola et al. 2002), also in the 

context of cancer research revealing differential arrangement and amount of      

collagen I structures in e.g. breast cancer models in vivo (Wang et al. 2002; 

Provenzano et al. 2009). 
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Figure 1.7: Set up of the multiphoton LaVision TrimScope, two photon near-
infrared excitation imaging and SHG 
A Schematic of the mutliphoton imaging set up, with a Titanium Sapphire (Ti:Sa) 
laser, variable beam splitter, allowing for imaging with a two tuneable wavelengths 
simultaneously, 740-880 nm and through the optical parametric oscillator (OPO) 
1100-1600 nm. The emission from the sample is collected by photomultiplier tubes 
(PMTs) (taken from: http://www. lavisionbiotec. com/ files/TriM-Scope-II.pdf).          
B Two-photon excitation of a fluorophore with photons in the near-infrared range of 
830 nm, leading to an emission from CFP at 470 nm. C Second harmonic generation 
signal (SHG) leading upon excitation of a non-centrosymmetric structures such as 
collagen I to a combining of 2 photons of 830 nm in wavelength to one emitted photon 
of 415 nm (adapted from Provenzano et al. 2009). 
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2 Materials and Methods 
2.1 Antibodies, reagents and buffers 
2.1.1 Antibodies and reagents 
 

Antibody target Species Source Dilution (Western/IHC) 
Src rabbit NEB Cell Signaling 1:1000 
phospho-SrcTyr416 rabbit NEB Cell Signaling 1:1000 / 1:200 
GFP rabbit Abcam 1:1000 / 1:100 
Rac-1 mouse Cytoskeleton 1:1000 
Rac-1-GTP mouse New East Bioscience 1:1000 / 1:100 
RhoA mouse Cytoskeleton 1:1000 
PAK1 rabbit NEB Cell Signalling 1:1000 / 1:50 
phospho-PAK1Thr423 mouse Santa Cruz 1:1000 / 1:50 
GAPDH rabbit NEB Cell Signaling 1:5000 
actin rabbit Sigma 1:1000 
α-tubulin mouse Sigma 1:1000 
anti-mouse-IgG-HRP horse NEB Cell Signaling 1:10000 
anti-rabbit-IgG-HRP goat NEB Cell Signaling 1:10000 
anti-mouse-IgG 
IRDye®800/680 

goat Lorne 1:10000 

anti-mouse-IgG 
IRDye®800/680 

goat Lorne 1:10000 

 
 
Reagent Source Stock Final (in vitro/in vivo) 
hEGF Stem Cell Technologies 20 µg/mL 10 ng/mL 
insulin Roche 20 mg/mL 5 µg/mL 
Cholera Toxin Sigma 100 µg/mL 10 ng/mL 
GM-CSF PeproTech 10 µg/mL 10 ng/mL 
EHT 1864 Tocris 50 mM 20 µM/4 mg/kg 
NSC 23766 Tocris 100 mM 50 µM/ 4 mg/kg 
IPA-3 Tocris 10 mM 10 µM/ 4 mg/kg 
Dasatinib Bristol Meyer Squibb 10 mM 100 nM/ 10mg/kg 
Erlotinib LC Laboratories 10 mg/mL 100 mg/kg 
Qtracker®655 Life Techonolgies 2 µM 200 nM 

 

2.1.2 Ripa buffer 
 

Reagent Source Final 
Tris pH 7.5 Fisher Scientific 50 mM 
NaCl Fisher Scientific 150 mM 
SDS Fisher Scientific 0.1 % 
Na-deoxycholate Sigma 1 % 
Inhibitor Cocktail Calbiochem MERCK 1x 
NP 40 Sigma 1 % 



50	
  

2.1.3 Modified Ripa buffer 
 

Reagent Source Final 
Tris pH 7.5 Fisher Scientific 50 mM 
NaCl Fisher Scientific 150 mM 
SDS Fisher Scientific 0.1 % 
Na-deoxycholate Sigma 0.5 % 
Inhibitor Cocktail Calbiochem MERCK 1x 
Triton X-100 Sigma 1 % 
NaOrthoP Aldrich 1 mM 
NaF Sigma 1 mM 
PMSF Sigma 2.85 mM 

 

2.1.4 Inhibitor cocktail composition (Calbiochem MERCK) 
 

Product MW 1x Concentration Target Protease 
AEBSF, 
Hydrochloride 239.5 500 µM Serine Proteases 

Aprotinin, Bovine, 
Lung, Crystalline 6512 150 nM Serine Proteases and 

Esterases 
E-64 Protease 
Inhibitor 357.4 1 µM Cysteine Proteases 

EDTA, Disodium 372.2 0.5 mM Metalloproteases 
Leupeptin, 
Hemisulfate 475.6 1 µM Cysteine Proteases and 

Trypsin-like Proteases 
 

2.1.5 Anaesthesia and analgesia 
 

Reagent Source/Commercial Name Concentration Administered 
Midazolam Roche/Hypnovel 1 mg/mL 12 mg/kg 
Fentanyl VetaPharma Limited/Hypnorm 0.3 mg/mL 3.6 mg/kg 
Fluanisone VetaPharma Limited/Hypnorm 10 mg/mL 120 mg/kg 
Carprofen Pfizer/Rimadyl 1 mg/mL 5 mg/kg 
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2.2 Cell culture and cell line generation 
2.2.1 PDAC cells expressing the Src-biosensor 

Primary murine PDAC cells were derived from KPC mice and a stable cell line 

established (Morton et al., 2010a). PDAC cells were maintained in complete medium 

composed of Dulbecco’s Modified Eagle Medium (DMEM) supplemented with         

10 % FBS, 2 mM L-glutmaine, 100 U/mL penicillin and 100 ug/mL streptomycin 

(1%) (Gibco). These cells were transfected with ECFP-YPet version of the                

Src-biosensor (Wang et al., 2005b) using polyfectamine as per the manufacturers 

protocol (Qiagen). Stable pools were generated using standard procedures including 

the application of 0.6 mg/mL G418. 

 

2.2.2 Isolation of primary mammary carcinoma cell lines 

Primary murine mammary carcinoma cell lines from either MMTV-PyMT     

(Guy et al., 1992b) or MMTV-ErbB2/neu (Her2) (Guy et al., 1992b) expressing mice 

crossed with the Rac-1-FRET mouse (Johnsson et al., 2014) were isolated by 

dissection of primary tumours and washing once in PBS. Tumours were finely minced 

using 2 scalpels in tandem and placed in a T75 flask with 10 mL of growth factor 

supplemented medium made up of DMEM with 10 % FBS, 2 mM L-glutmaine,           

1 % penicillin/streptomycin (Gibco), 5 µg/mL insulin (Roche), 10 ng/mL EGF      

(Stem Cell Technologies) and 10 ng/mL Cholera Toxin (Sigma). Cells were allowed 

to adhere and grow out of bits of tumour for up to 2 weeks. After that, cells were 

washed rigorously with PBS and passaged up to 10 times in order to obtain 

immortalized mammary carcinoma cell lines. Stock cells were maintained in the 

growth factor supplemented medium, while during experimental conditions cells were 

cultured in normal complete medium. 

 

2.2.3 Isolation of primary neutrophils from bone marrow 

Primary neutrophils were isolated from wildtype mice as described previously 

(Condliffe et al., 2005; Damoulakis et al., 2014). Tibia and femurs were dissected 

from mice and washed in Hank’s Balanced Salt Solution without –Ca2+ and –Mg2+ 
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supplemented with 15 mM HEPES and 0.25 % (w/v) endotoxin-free BSA (Sigma) 

(HBSS--/++) and kept on ice. Bone marrow was extracted by flushing the bones with 

pre-chilled HBSS--/++ through a 25 gauge needle. The marrow was then put through a 

40 µm cell strainer. 10 mL of pre-chilled 58% of Percoll Plus (with phenol red in 

HBSS –Ca2+ and –Mg2+) were aliquoted into a 50 mL falcon tube and the cell 

suspension carefully layered on top. The gradient was spun at 160 x g for 30 min at 

4°C at the slowest acceleration and deceleration settings (Beckman Coulter). The top 

layer above the Percoll and excess HBSS were discarded and the Percoll fraction 

containing the neutrophils, just above the pelleted red blood cells, was resuspended in 

HBSS--/++. The suspension was centrifuged again at 330 x g for 10 minutes at 4°C and 

the Percoll subsequently discarded. Remaining erythrocytes were removed by the 

addition of Gey’s solution (Sigma) for 5 minutes. Subsequently, HBSS--/++ was added 

again to resuspend the pellet and spun again at 330 x g for 10 min at 4°C.                 

The neutrophil pellet was resuspended in 10 µL of HBSS--/++ and added atop the 

respective organotypic matrices. 

 

2.2.4 Isolation of primary dendritic cells from bone marrow 

Primary dendritic cells were cultured from the bone marrow of Rac-1-FRET 

mice (Johnsson et al., 2014), as described previously (Lutz et al., 1999). Tibia and 

femurs were dissected from mice and bone marrow isolated by flushing the bones with 

Roswell Park Memorial Institute-1640 (RPMI) medium, supplemented with 10% FBS, 

1% penicillin/streptomycin, 2 mM L-glutamine and 50 µM β-mercaptoethanol  

(Sigma). The suspension was passed through a 40 µm cell strainer and centrifuged of 

1200 rpm for 5 minutes. The pellet was then resuspended in RPMI supplemented as 

above plus 20 ng/mL of GM-CSF (Peprotech) and seeded at a density of 1 x 106 cells 

per glass bottom dish (MatTek). The cells were allowed to differentiate into primary 

dendritic cells for up to 9 days with the medium being changed every 3 days. 

 

2.2.5 Generation of lentiviral vectors 

Lentiviral vectors were produced using the pLKO.1 TRC cloning vector 

(Addgene) backbone system in HEK-293T cells as described previously             
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(Moffat et al., 2006). HEK-293T cells were seeded at a density of 2 x 106 cells per     

10 cm2 dish. The following day the cells were transfected using the calcium phosphate 

system with helper plasmids encoding for viral envelope glycoprotein VSV-G in 

pMD2.G and packaging proteins gag, pol, rev and tat in psPAX2 and the pLKO.1 with 

the specific hairpin sequences targeting murine TRAIL-R2 sh23 5'-CCGG-GCTCT 

TCAGTATTATGAGAAT- CTCGAG- ATTCTCATAATACTGAAGAGC-TTTTT-3' 

(TRCN0000012323) (Sigma) and sh25 5'-CCGG- GCTCTTCAGTATTATGA 

GAAT-CTCGAG-ATTCTCATAATACTGAAGAGC-TTTTT-3' (TRCN0000012325) 

(Sigma). On the third day, the medium was replaced on the transfected cells with 6 mL 

of DMEM, 20 % FBS, 2 mM L-glutamine and 1 % penicillin/streptomycin. On the 

same day recipient PDAC cells were seeded at a density of 1 x 105 cells per well in a  

6 well dish. After overnight incubation viral particles were harvested, passed through a 

0.45 µm filter and added to the PDAC cells supplemented with 10ng/mL polybrene.    

6 mL of fresh medium was added to the transfected HEK-293T cells and the infection 

process repeated a second round. After this the medium containing viral particles was 

removed and PDAC cells were selected to generate stable pools using 10 µg/mL of 

puromycin. 
	
  

2.2.6 Collagen extraction from rat tail tendons 

Collagen I was extracted from rat tail tendons as described previously 

(Chandrakasan et al., 1976; Rhodes and Miller, 1978; Timpson et al., 2011b).            

12 to 14 adolescent rat tails were used either fresh or frozen (at -70°C) and washed in 

70 % ethanol. Using a scalpel the skin was removed by slicing down the middle of the 

tail from top to bottom. The tendons were then detached from the proximal region of 

the tail (about 1 cm from where the tail was cut) by the use of teethed forceps and 

further removed down the length of the tail. The extracted tendons were then placed in 

1.5 L of pre-chilled 0.5 M acetic acid for the duration of 48 h at 4°C in order to 

solubilize the collagen. The extract was then centrifuged at 7500 x g for 30 min and 

any pellet discarded. The supernatant was collected in a pre-chilled beaker and 

precipitated by the addition of 10 % (w/v) NaCl, under stirring for 60 min at 4°C.    

The precipitate was centrifuged again at 10,000 x g for 30 minutes and the supernatant 

discarded. The pellets were again collected in a pre-chilled beaker and resolubilised at 

4°C using cold 0.25 M acetic acid for 24 h under stirring. Dialysis of the extract was 
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performed using BioDesignDialysis TubingTM (14,000 MWCO, Fisher Scientific).     

30 cm of tubing was soaked in heated H2O and heated prior to being filled with the 

extract. Avoiding bubbles, the tubing was closed by knots. The collagen solution was 

dialysed for 3 - 4 days in 5 L of 17.5 mM acetic acid, changed twice daily. On the final 

day the solution was removed from the tubing and centrifuged for 1.5 h at 30,000 x g 

at 4°C to remove any residual debris. The viscous supernatant was put into a sterile 

glass tissue culture bottle and adjusted to a final concentration of about 0.5 mg/mL 

using 0.5 mM acetic acid. The collagen I solution was then kept at 4°C until use for 

organotypic assay analysis. 
 

2.2.7 Organotypic Culture 

Organotypic invasion assays were preformed as described previously     

(Timpson et al., 2011b). Either primary human fibroblasts or mCherry expressing 

telomerase immortalized foetal fibroblast cell lines (TIFF) (Munro et al., 2001) were 

embedded at a density of approximately 1 x 105 cells/mL in a matrix of rat tail 

collagen I. The matrix with the embedded fibroblasts was allowed to polymerize 

overnight, then detached from the edges of 35 mm petri dishes and supplemented with 

2 ml of DMEM containing 10 % FBS, 2 mM L-glutamine and 1 % penicillin/ 

streptomycin. The matrices were allowed to further contract for about 7-14 days to a 

final size of around 1.5 cm in diameter. They were then transferred using sterile 

forceps to 24-well plates and seeded with cells of interest at a density of 5 x 104 or       

1 x 105 cells per well. The cells were then allowed to grow to confluence for up to          

3 days. Subsequently, the matrices were mounted on a metal grid resulting in an 

air/media interface, in which the matrices are fed from below with complete medium. 

This was changed every 2 days. Cells were allowed to invade for up to 12 days and 

drug treated matrices were treated up to 2 days prior to imaging with 100 nM dasatinib 

or every 2 days with the respective Rac-1 inhibitors. After the invasion period, the 

individual matrices were either imaged or fixed in 4 % paraformalehyde and processed 

using standard techniques for haematoxylin and eosin (H&E) staining by internal 

Histology Services. 
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2.2.8 Immunoblotting 

Cells of interest were seeded at a density of 2 x 105 cells per well in a 6 well 

dish, drug treated the following day and harvested at the appropriate time points after 

treatment. The cells were put on ice, washed once with PBS and then lysed in RIPA 

buffer (2.1.2). Tissue samples we dissected from mice and snap frozen on dry ice. 

Following thawing, the samples were suspended in modified RIPA buffer (2.1.3).     

The tissue samples were lysed using a tissue homogenizer (Precellys®24) and ceramic 

beads (Precellys® Lysing Kit). Cell lysates and tissue protein extracts were spun down 

at 13,400 rpm for 15 min at 4°C and subsequently run on a 4 % to 12 % Bis-Tris 

acrylamide SDS-PAGE gel (NuPAGE®). The proteins were then transferred on to a 

nitrocellulose membrane, blocked with 5% BSA in TBST and incubated for one     

hour or overnight at 4°C on a shaker with 1:1000 anti-phospho-SrcTyr416,                        

(NEB Cell Signalling), 1:2000 anti-GFP ab290 (Abcam), 1:1000 anti-Src              

(NEB Cell Signalling), or 1:1000 anti-actin (Sigma), respectively. The next day the 

membrane was incubated with either anti-mouse or anti-rabbit horseradish peroxidase-

conjugated (NEB Cell Signalling) or IRDye® 680LT and IRDye® 800CW (Licor) 

secondary antibody at 1:10000 and visualized using enhanced chemiluminescence 

(ECL) (Amersham) and the Odyssey® CLx Imager (Licor).  

 

2.3 Mice 

2.3.1 Genetically engineered mouse model breeding 

Animals were kept in conventional animal facilities and all experiments were 

carried out in compliance with UK Home Office guidelines. Mice were kept on a       

12 hour day-night cycle and fed ad libitum. Rac-1-FRET mice (Johnsson et al., 2014), 

where the lox-stop-lox (LSL) site was removed previously by a deletor-CRE,         

were crossed with PyMT (Guy et al., 1992b) or ErbB2 (Guy et al., 1992a) expressing 

mice on a mixed background to obtain homozygous expression of the FRET reporter 

in the F2 generation.  Rac-1-FRET mice still retaining the LSL were crossed with 

KPC mice, rendering expression of the FRET reporter in Pdx-1 linage cells, mainly in 

the pancreas, but also liver, duodenum and the haematopoietic system.  
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In order to examine the effect of P-Rex1 knock out on Rac-1 signalling in these 

model systems, the previously generated P-Rex1 KO (Welch et al., 2005) mice were 

crossed with the PyMT, ErbB2 and KPC described above. The newly generated RhoA 

mouse was crossed with a deletor-CRE, which was later crossed out again, in order to 

remove the LSL site and analyse RhoA activity in a variety of tissues.  This mouse 

was further crossed to the Her2 model. The LSL retaining RhoA-FRET mouse in turn 

was crossed with MMTV-Cre (Andrechek et al., 2000) and PyMT and put through 1-2 

rounds of gestation in order to induce expression of the FRET reporter. In order to 

look at RhoA signalling in different stages of PDAC progression the RhoA mouse was 

crossed to Pdx1-CRE mice and the KPC model. 

 

2.3.2 Generation of the RhoA FRET mouse 

The conditional RhoA reporter mouse was generated by David Stevenson          

at the CRUK Beatson Institute. Briefly, a modified RhoA-Raichu probe                 

(Yoshizaki et al., 2003b) was used, expressing the fluorophore pair EGFP and mRFP 

(Timpson et al., 2011a). The final targeting vector was generated as described 

previously by targeting a lox-stop-lox transgene under the control of a CAGSA 

promoter to the HPRT locus (Bronson et al., 1996; Samuel et al., 2009;         

Schachtner et al., 2012). The conditional strain was then crossed with a strain 

expressing a X-chromosomal Cre recombinase (Schwenk et al., 1995) to allow for 

ubiquitous expression of the reporter and the Cre later crossed out again.   

Homozygous offspring were healthy, fertile, exhibited no abnormal behavioural 

defects and followed the expected Mendelian ratio of hereditary transmission. 

 

2.3.3 Immunohistochemistry 

Immunohistochemistry was preformed as described previously                  

(Morton et al., 2010b). Briefly, formalin-fixed (10 %) and paraffin-embedded tissue or 

organotypic sections were deparaffinised in xylene and subsequently rehydrated in a 

graded alcohol series. Antigen retrieval was preformed using microwave heated 1 mM 

EDTA buffer for 20 minutes. Quenching of endogenous peroxidases was carried out 

using 3 % hydrogen peroxide. The sections were blocked in 5 % goat serum in PBS + 

0.05 % Tween20 for 30 min and afterwards incubated overnight at 4°C with a dilution 
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of 1:200 of the primary antibody anti-pSrcTyr416 (Cell Signaling Technologies).         

The next day, the sections were incubated with the secondary biotinylated anti-rabbit 

IgG antibody for 30 min and amplified using avidin/biotin conjugated with HRP mix 

(Vectastain ABC System). Visualization by 3,3'-diaminobenzidine chromogen (DAB) 

was carried out as well as counterstaining with hematoxylin. 

 

2.4 Intravital and In vivo Imaging 
2.4.1 Intravital imaging using skinflaps 

Intravital imaging was preformed as described previously (Nobis et al., 2013; 

Timpson et al., 2011a). Following trypsinization, 1 x 106 cells were resuspended in 

100 µl HBSS (Gibco) and subcutaneously injected into the rear flank of a CD1-/- nude 

mouse.  Tumours were then allowed to develop for 7 days. Mice were subsequently 

treated 3 days with daily gavages of 10 mg/kg dasatinib. To permit imaging,           

mice were non-recovery anaesthetized using an intraperitoneal (i.p.) injection of 300 

µL of an anaesthetic combination of 1:1:3 hypnorm - hypnovel - H2O. Following 

induction of anaesthesia the subcutaneous tumour was surgically exposed and the 

mouse restrained on a 37ºC heated stage for imaging on the multiphoton microscope. 

 

2.4.2 Cutaneous and Abdominal Imaging Windows Surgeries 

The application of optical imaging windows in in vivo imaging and their 

implantation into either the skin (Kedrin et al., 2008; Gligorijevic et al., 2009;     

Zomer et al., 2013) or in the peritoneal wall (Ritsma et al., 2012, 2013) were described 

in detail previously. Prior to the surgeries and 1 – 2 days afterwards the mice were 

kept on 5 mg/kg of the analgesic Carprofen (Rimadyl) (Ingrao et al., 2013) in the 

drinking water. To the titanium window ring to be used, a glass coverslip with a 

diameter of 12 mm was glued with cyanoacrylate on top a day prior to the surgery.   

For both surgeries the incision site was cleared of hair by shaving and depilation and 

disinfected with 70 % ethanol. For the cutaneous imaging windows, an incision was 

made in the skin overlying the palpable primary developed tumour. For the abdominal 

imaging windows the incision was placed down the midline of the peritoneum for 

imaging of the small intestine or to the left of the midline of the mouse for the imaging 
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of the pancreas or KPC tumours. After blunt dissectioning of the skin surrounding the 

incision, a purse string suture (Mersilk, non-absorbable silk based) was placed either 

through the skin alone (for the cutaneous imaging window) or though the skin and 

muscle of the abdominal wall (for the abdominal imaging window). This creates a 

continuous suture around the incision site, with four loops exposed to the outside for 

later tightening. In order to avoid peristaltic and respiration-associated movement of 

the organs to be imaged in the peritoneum, a drop of cyanoacrylate was place at the 

inner ring of the abdominal imaging windows and the organ of interest immobilized at 

the edge. Positioning was done using sterile cotton gauzes. The respective windows 

were then inserted into the incisions with the skin alone or in conjunction with the 

muscle layer placed in the groove of the windows. Finally the suture was tightened 

and firmly tied of at the ends. The mice were allowed to recover from the surgery up 

to 2 days, actively foraging, grooming and feeding within minutes after being removed 

from the anaesthesia respirator.  

 

2.4.3 In vivo Imaging 

After transfection of PDAC shCtr and shTRAIL-R2 (sh23 and sh25) cell lines 

with a GFP and RFP version of the Rac-1-FRET reporter (Mack et al., 2012) and 

selection for stable expression with neomycin, 2 x 106 cells were subcutaneously 

injected into the flanks of nude mice. The same was done for PDAC cells expressing 

the Src-biosensor. Following primary tumour development of 7-8 days a cutaneous 

imaging window described previously (Zomer et al., 2013) was surgically implanted 

on top of the tumours as described above. The same was done once PyMT and ErbB2 

mice expressing either the Rac-1 or RhoA FRET reporter had developed primary 

tumours. For KPC mice and WT mice expressing the RhoA reporter under the      

Pdx1-CRE the abdominal windows were surgically implanted into the peritoneal wall 

of the mice. Imaging was performed through the optical window at regions away from 

the fixed part of the tissue. For drug treatments, mice were gavaged with either 10 

mg/kg dasatinib, 100 mg/kg erlotinib, or injected i.p. with 4 mg/kg of either EHT 1864 

or NSC 23766. Mice were subsequently imaged for up to 2 h at a time or at several 

timepoints after treatment was administered on a 37°C heated stage under isoflurane, 

using the system described below (2.5.2, Figure 1.7 A).   
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For treatment of mTRAIL KO PDAC subcutanoues tumours, mice were imaged 

prior to, and 1 h post i.p. injection of either PBS or 0.5 mg/mouse of mTrail-Fc-R2. In 

order to visualize the local vasculature mice were intravenously injected with 200 µL 

of Quantum Dots Qtracker®655 (2 nM) prior to intravital or in vivo imaging. 

 

2.5 Microscopy 
2.5.1 Frequency Domain FLIM-FRET 

Widefield fluorescence lifetime microscopy (FLIM) measurements were 

conducted on a Nikon Eclipse TE 2000-U microscope equipped with a ×60 objective 

and a filter block consisting of a 436/20 excitation filter, a T455LP dichroic mirror, 

and a 480/40 emission filter, using a Lambert Instruments LIFA system.        

Frequency domain FLIM-FRET was performed as described previously               

(Nobis et al., 2013) (Figure 1.4 B + C). Briefly, a modulated 445 nm LED was used as 

light source and fluorescein (10 µM in 0.1 M Tris-Cl, pH >10) as reference standard 

with a known lifetime of 4.0 ns. The donor lifetime (ECFP), τ, was analyzed using the 

LI-FLIM software (version 1.2.12; Lambert Instruments, Netherlands) recording the 

phase lifetime of ROIs comprising individual cells.  

Spinning disk FLIM was performed using a Nikon Eclipse TE 2000-U 

microscope with a Lambert Instruments LIFA attachment equipped with a Yokogawa 

CSU 22 confocal scanner unit and a ×100 1.4 NA oil objective. FLIM-FRET for the 

GFP donor was measured as described previously (Mack et al., 2012). A 488  nm laser 

modulated at 40  mHz (60  mW, Deepstar, Omicron) was used together with a           

GFP-filterblock (470/40X, T495LP, 525/50M) to detect GFP emission. Erythrosin B 

(1  mg/mL) was used as a reference standard with a known lifetime of 0.086  ns.     

Donor lifetime was analysed by manually drawing ROIs around whole cell 

membranes using the LI-FLIM software. 

 

2.5.2 Multiphoton TCSPC FLIM-FRET 

Intravital and in vivo imaging was performed as described previously     

(Timpson et al., 2011b; Nobis et al., 2013), on a Nikon Eclipse TE2000-U inverted 

microscope with an Olympus long working distance 20× 0.95 NA water immersion 
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lens. A Titanium:Sapphire femtosecond pulsed laser (Chameleon) was used as an 

excitation source tuned to optimal EGFP and ECFP excitation wavelengths of 890 nm 

and 840 nm, respectively. A dichroic filter (Chroma 475 nm or 455 nm) was used to 

separate the second harmonic signal from the donor EGFP or ECFP. SHG, EGFP and 

ECFP signals were passed through band pass filters (Semrock 435/60, 525/50 and 

460/60 respectively) and detected by non-descanned detectors (Hamamatsu).            

For FLIM a 16-anode PMT (FLIMx16, LaVision Biotec) was used for time correlated 

single photon counting (TSCPC). Fluorescent lifetimes were analysed using 

ImSpectorPro (Version 292, LaVision Biotech) by drawing ROIs around single cells 

and recording the half-life (τ) of the single exponential function fit to the fluorescence 

decay data. Lifetime values for multiple cells were then entered into Excel and the 

mean as well as the standard deviation calculated. Lifetime maps were further 

generated with intensity thresholds set to the average background pixel value for each 

recording. The raw data was smoothed 3 x 3 and a standard rainbow colour look up 

table (LUT) applied with a 1.5 to 3.5 ns limit for ECFP measurements and 1.0 to      

3.0 ns for EGFP. Src activity was displayed by yellow to red colours, while green to 

blue represented Src inactivity. However, due to the different nature of the Raichu 

probes (see Chapter 1.4.3 FRET biosensors), Rac-1 and RhoA activity are displayed 

by green to blue regions and their respective inactivity by yellow to red colours in the 

lifetime maps. Areas where no lifetime measurement above the background noise 

could be achieved were displayed in black. Finally, for smoothing purposes, a 5 x 5 

median or   3 x 3 mean filter was further applied. 

 

2.6 Statistics 

Statistical analysis of the data was performed using Graph Pad Prism v 5.0. 

Either unpaired, two-tailed student’s t-test or one-way ANOVA analysis were applied, 

as indicated in the respective figure legends. Unless otherwise stated a minimum of     

3 independent experiments were performed for each experiment. Statistical 

significance was defined as groups with a confidence interval of above 95 %,           

i.e. p < 0.05. 
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3 Drug targeting efficiency of the Src inhibitor 
Dasatinib monitored live by in vivo imaging 

 

3.1 Summary 
 

The aim of this chapter was to establish FLIM-FRET as an in vivo imaging tool 

for the analysis of drug pharmacodynamics over time and in the context of the local 

tumour microenvironment. To that end, a previously established Src inhibitor, 

dasatinib (Lombardo et al., 2004; Morton et al., 2010b), was used in cells isolated 

from an invasive PDAC model, which in turn has previously been shown to have 

upregulated Src activity. Further stable expression of a Src-FRET biosensor        

(Wang et al., 2005a) in these cells, then allowed for the live monitoring of Src activity. 

This was done on 3D invasion matrices as well as in primary allograft tumours.     

Using intravital imaging, treatment with dasatinib, the ECM remodeller cyclopamine, 

as well as combination treatment of the two was followed. This revealed the spatial 

distribution of Src activity with respect to the local vasculature in the control situation, 

as well as a spatially confined effective inhibition after treatment.                  

Employing cutaneous imaging windows further allowed for in vivo imaging of a 

CXCR2 inhibitor, showing Src inhibition in spatially distinct regions away from the 

vasculature. 

 

 

3.2 Introduction 
 

Inefficient drug targeting in vivo still remains a large challenge in the treatment 

of many types of cancer (Kola and Landis, 2004), with 16 % of Phase I clinical trial 

drugs still failing due to their poor pharmacokinetics and bioavailability             

(Waring et al., 2015). Therefore, in order to increase effective drug delivery, more 

innovative approaches to monitor drug targeting in live tissue at a molecular level are 

needed. The role of the tumour microenvironment is important in drug targeting and 

thus analysing treatment regimens for cancer in this context is vital. Intravital imaging 

can be used as a tool to address this need. The technical read-outs of protein activity 

on a cellular level provides a context dependent signal in both 2D and 3D 
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environments in vitro as well as in vivo. Furthermore, a temporal aspect of drug 

delivery can be examined in the readily treatable in vitro situation as well as the more 

complex in vivo setting that is subject to different environmental cues influencing 

protein activity. FLIM-FRET in this context can provide a strong tool to link the         

in vitro to the in vivo drug response data, as the same biosensor read-out is used and 

assay differences can be avoided. The PDAC tumour microenvironment in particular 

is characterized with low vascularity as well as dense accumulation of ECM 

components in the large stromal compartment, leading to especially poor drug 

targeting efficacy (Vincent et al., 2011; Jacobetz et al., 2013). 

Therefore here, cells were used from a primary tumour developed from the KPC 

(KRasG12D, p53R172H, Pdx1-Cre) mouse model (Morton et al., 2010a), which has been 

shown previously to accurately recapitulate the observed histophathlogy of human 

disease (Hingorani et al., 2005; Hruban et al., 2006). In human pancreatic cancer, 

point mutations in the KRas2 proto-oncogene are present in over 90 % of the cases. 

Furthermore, point mutations in the TP53 tumour suppressor gene were identified in 

over 75 % of pancreatic cancers, along with other deletions and mutations of different 

genes to a lower extent (Almoguera et al., 1988; Pellegata et al., 1994;                   

Sohn and Yeo, 2000). Expression of these two specific mutations in a mouse model 

driven by the pancreas lineage specific Pdx1-Cre promoter, has been shown to result 

in invasive progressive PDAC by chromosomal instability and metastasis of the liver, 

as observed in human PDAC (Hingorani et al., 2005). Furthermore, this model         

has been used previously in the assessment of treatment response                                 

(Olive and Tuveson, 2006)  in PDAC. The KPC model has additionally been shown   

to have up-regulated Src activity, that could be effectively inhibited with a Src 

inhibitor, dasatinib, in vitro and in vivo (Morton et al., 2010b).  Alteration in Src 

activity in turn has been shown to be associated with invasive tumour cell behaviour 

by deregulating cellular adhesions (Lutz et al., 1998; Frame, 2002), seen in a variety 

of pancreatic cancers (Hakam et al., 2003b). Src and phospho-Src levels have further 

been shown to be important indicators of prognosis in human PDAC, lymph node and 

vascular invasion (Morton et al., 2010b).  

The anti-metastatic activity of dasatinib could potentially be improved by a 

combination treatment with tumour stroma targeting agents, thereby modulating        

the microenvironment to be more permissive to specific drug targeting                            

(Yu and Tannock, 2012).  
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A key defining feature of the pancreatic cancer microenvironment is the dense 

deposition of extra-cellular matrix (ECM) components, such as e.g. collagen or 

hyaluronan by cancer associated fibroblasts and stellate cells (Toole, 2004;            

Toole and Slomiany, 2008). High desmoplasia of pancreatic tumours in turn leads to a 

high interstitial pressure in these tumours, inducing vascular collapse. This results in a 

barrier to perfusion and diffusion and can greatly hinder drug targeting response. 

Breaking down these physical barriers by enzymatic targeting of e.g. hyaluronan,       

led to an increased drug perfusion in these tumours and increased drug response to 

common chemotherapeutics (Provenzano et al., 2012). 

A G-protein-coupled cell surface chemokine receptor, CXCR2, has also been 

found to be overexpressed in pancreatic cancer (Wang et al., 2013) and further 

identified to be crucial for neutrophil movement. CXCR2 has therefore been 

considered as another important target in the crosstalk between PDAC and its 

microenvironment (Hertzer et al., 2013). 

In order to more accurately monitor treatment response in vitro and in vivo we 

wanted to explore, whether a FRET biosensor for Src could be utilized in the 

introduced context of pancreatic cancer and Src signalling. Furthermore we wanted to 

test whether temporal and spatial evaluation of drug targeting efficacy was feasible 

using FLIM-FRET in vitro and in allograft tumours in vivo. Finally the possibility of 

monitoring combination treatments targeting Src and the ECM of allograft tumours in 

the context of the tumour microenvironment was explored. 

To address these questions, the Src-FRET biosensor, previously described 

(Wang et al., 2005b) (see Chapter 1.4.3 Figure 1.6 A) to report on activation states of 

Src, was used as a pre-clinical imaging tool to monitor Src activity of PDAC cells in 

native 3D environments over time and in response to different treatment regimens       

in vitro and in vivo.  
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3.3 Results 

3.3.1 Characterization of the Src-biosensor in PDAC cell lines 
 

PDAC cells isolated previously from KPC mice (Morton et al., 2010a) were 

stably transfected with a ECFP-YPet version of the Src-FRET biosensor              

(Wang et al., 2005b) (Figure 3.1 A). Expression was controlled for by immunoblotting 

for GFP, with an expected molecular weight of the reporter at ~ 70 kDa (Figure 3.1 B). 

The probe consists of the two fluorophores ECFP and YPet, between which a peptide 

sequence of the Src substrate p130cas and the SH2 domain is located. The mode of 

action of the Src-biosensor depends on fluorescence resonance energy transfer 

(FRET). FRET involves energy transfer from a donor to an acceptor fluorophore, 

providing the two are within a ~ 5 nm distance of each other. When the Src substrate 

p130cas is phosphorylated within the cell, the probe undergoes a conformational 

change, which pushes the two fluorophores apart to a distance greater than 5 nm and 

thus impeding FRET. The conformational change of the probe is therefore based on 

the differential affinity of the SH2 domain to the phosphorylated and non-

phosphorylated forms of the p130cas peptide. The probe is further targeted by cellular 

phosphatases antagonizing Src phosphorylation. Thus, when kinase activity is 

dominant over that of phosphatases the probe will be phosphorylated and there will be 

no FRET. However, under conditions where the phosphatase activity dominates the 

probe will be non-phosphorylated and react by juxtaposition of the two fluorophores to 

one another resulting in FRET. Using FLIM, the lifetime of the donor fluorophore 

ECFP was measured, which decreases upon FRET. The fluorescence lifetimes in turn 

are presented as lifetime heat maps, with a scale ranging from 1 ns to 3.5 ns.          

Low lifetimes and consequently Src inactivity are displayed in cold colours, such as 

blue and green, while higher lifetimes, and therefore Src activity, are mapped in warm 

colours ranging from yellow to red. Areas with low signal to noise ratio, where 

lifetimes could not be recorded, are coloured in black (Figure 3.1 C). 

First, the dynamic range of the biosensor and its behaviour in the cells of interest 

had to be established. The PDAC cells were therefore subjected to dasatinib treatment 

in vitro at the previously established inhibitory concentration of 100 nM             

(Morton et al., 2010b), in order to establish the FLIM lifetimes acquired as an accurate 

read-out of Src activity in these cells. Indeed, once a histogram of the lifetimes 
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recorded from individual cells was made, it became apparent that there was a normal 

distribution of lifetimes. In control cells the distribution of lifetimes ranged from       

2.2 ns up to 2.8 ns and a peak was observed in the frequency of occurrence between 

2.4 and 2.5 ns. In dasatinib treated cells this distribution shifted toward shorter 

lifetimes, ranging from 1.9 ns up to 2.7 ns with a peak between 2.2 and 2.3 ns      

(Figure 3.2 A). This shift enabled us to define a cut-off value at 2.35 ns in order to 

classify cells as either “active” for Src at lifetimes above 2.35 ns or “inactive” at 

respective lifetimes below 2.35 ns. This classification scheme, then allowed for 

quantification of the percentage of individual active and inactive within a population 

in each treatment condition. A shift from 88.2  ± 3.4 % to 16.7 ± 7.1 % in the active 

cell population was thus observed after treatment of the cells with dasatinib for 2 hours 

(Figure 3.2 B). Finally, this classification allowed us to accurately evaluate Src 

activity in the following experiments in vitro and in vivo. 
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Figure 3.1: Establishment of a stable cell line expressing the Src-FRET-biosensor 
in PDAC cells 
A Schematic representation of the Src-biosensor (as adapted from Wang et al. 2005), 
with the FRET probe in the confirmations resulting in active/inactive lifetimes, 
respectively, following Src acitivty. The lifetime colour map scale is associated with 
either active (yellow to red) or inactive (blue to green) lifetimes after the action of Src 
phosphorylation or cellular phosphatases on the p130Cas substrate region.                    
B Immunoblot of PDAC cells stably expressing the Src-biosensor, detected by a 
positive GFP band at ~ 70 kDa, the expected molecular weight of the expressed 
biosensor. C Representative intensity (left panel) and lifetime map images (right hand) 
of the PDAC + Src-biosensor cell lines challenged with 100 nM of dasatinib for           
2 hours in vitro 
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Figure 3.2: FLIM of dasatinib treated PDAC cells reveals a distinct distribution 
and cut off value of Src-FRET lifetimes in vitro 
A Quantification of a distinct shift in lifetime distribution of Src activity in vitro after 
treatment of PDAC cells for 2 hours with 100 nM of dasatinib. With a bin size of      
0.1 ns, a cut-off value at 2.35 ns was chosen for grouping cells displaying either              
Src “activity” or “inactivity” based on the distribution peaks for both groups.                     
B Representation of the data from A, with lifetimes classified as “active” or “inactive” 
in terms of Src activity, with the average lifetimes per group displayed below each 
column ± the SD; n = 4 independent experiments with 105 cells in total; columns: 
mean; error bars: SEM; **** p < 0.0001 by unpaired standard student’s t test 
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Figure 3.3: Stimulation with EGF increases number of Src active cells after 
serum starvation and pre-treatment with Src inhibitor PP1 in vitro 
A Quantification of Src active and inactive cells in vitro after serum starvation in 
conjunction with pre-treatment with 10 µM of Src-inhibitor PP1, as well as after          
5 minutes of stimulation with 50 ng/mL of EGF; columns: mean. B Representative 
lifetime images of Src-FRET before and after EGF stimulation showing the 
differential responses of individual cells. C Immunoblot analysis of Src auto-
phosphorylation in PDAC cells at serum starvation, pre-treatment with the PP1 Src 
inhibitor and EGF stimulation after PP1 removal, with anti-phospho-Src Y416, anti-
total Src and anti-actin. 
 
 
 

As a proof of principle and in order to establish that the FRET-sensor, and thus 

Src activity, was also able to respond to stimulus and not only inhibition, PDAC cells 

were serum starved overnight and pre-treated with 10 µM of the Src family kinase 

inhibitor PP1. This resulted in a predominantly inactive cell population in the sample 

and following washout of the inhibitor and stimulation with 50 ng/mL of EGF resulted 

in an increase in the percentage of Src-active cells imaged (Figure 3.3 A+B). This was 

further confirmed by immunoblotting the PDAC cells for phosphorylated Src using an 

anti-phospho-SrcY416 (p416-Src) antibody, detecting the autophosphorylation of the 

kinase (Figure 3.3 C).  
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Immunoblotting of phosphorylated proteins with phospho-specific antibodies is 

the established standard approach to assessing protein kinase activity. I therefore 

wanted to compare assessment of Src activity using the Src FRET reporter with Src 

activity detected with immunoblotting of p416-Src. 

 

 
Figure 3.4: FLIM-FRET of single cells reveals IC50 of dasatinib on Src active 
PDAC cells in vitro 
A Quantification of the average fluorescent lifetimes of Src activity in PDAC cells at 
specific concentrations of dasatinib in vitro as well as quantification of percentage of 
Src active cells (B) after exposure to 5 – 200 nM of dasatinib for 2 hours in vitro.        
C Immunoblot analysis of Src auto-phosphorylation in PDAC cells, with                 
anti-phospho-SrcY416, anti-total Src and anti-actin, after inhibition with 5 – 200 nM       
of dasatinib for 2 hours and (D) 24 hours; data point: mean; error bars: SEM;            
line: non-linear fit 
 
 

In order to establish a drug response curve, PDAC cells stably expressing the 

Src-biosensor were further exposed to increasing concentrations of dasatinib               

(5 to 200 nM) and FLIM measured. A drug response curve to dasatinib on a single cell 

basis was created with the average fluorescent lifetime in each sample (Figure 3.4 A). 

The percentage of active cells was further plotted, normalized to 100 % in the control. 

From this, an IC50 of Src-active cells at around 70 nM of dasatinib could be 

determined (Figure 3.4 B). Src inhibition was further controlled for by 

immunoblotting for pSrcY416 levels and control total Src levels, showing a steady 

decrease is Src autophosphorylation after 2 and 24 hours of exposure to increasing 

concentrations of dasatinib (Figure 3.4 C+D). 
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3.3.2 Application of FLIM-FRET for the rapid monitoring of 
dynamic drug targeting in vitro 

 

In order to see how Src-FRET compares to p416-Src blots in the temporal 

monitoring of Src response to dasatinib treatment in vitro, PDAC cells were treated 

with 100 nM of dasatinib. Immunoblots for p416-Src were conducted and controlled 

to total Src levels, to see at what time point after dasatinib treatment the Src 

autophosphorylation was maximal. It became apparent that the n-fold reduction in 

phospho-Src levels was already maximal after 1 hour of treatment and remained 

constant for up to 24 hours of observation (Figure 3.5 A+B).  

Wash-out experiments of dasatinib-inhibited PDAC cells were further 

conducted, in order to show temporal drug targeting monitoring. First, immunoblots 

for phospho-Src levels were performed at 30 minutes after dasatinib inhibition and 

between 30 minutes and 24 hours after removal of the medium containing the inhibitor 

(Figure 3.5 C). Three independent experiments were then quantified for the n fold 

change in p416-Src levels (Figure 3.5 D). The data showed a 5.5 fold increase in the 

level of Src autophosphorylation after only 30 minutes following dasatinib removal. 

This further decreased steadily to 2 fold after 24 hours of drug removal.                       

A compensatory mechanism of the “re-bound” up-regulated cellular p416-Src levels 

following drug removal can be observed, with the overactivation of Src following 

dasatinib wash-out. The original equilibrium was moreover steadily approached again 

in the time period monitored up to 24 hours. 
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Figure 3.5: Recovery of phospho-Src in vitro quantified by immunoblot after 
dasatinib treatment and wash-out 
A Immunoblot analysis of Src auto-phosphorylation in PDAC cells with anti-phospho-
SrcY416, anti-total Src and anti-actin before and after defined time-points of treatment 
with dasatinib (100 nM or 200 nM) in vitro and B quantification of the n-fold change 
in Src phosphorylation of 3 independent experiments. C Representative experiment 
showing washout of 100 nM of dasatinib and monitored by Src phosphorylation over a 
period of 24 hours. D Quantification of the n-fold change in Src phosphorylation for     
3 independent repeats of the washout experiment; columns: mean; error bars: SEM 
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Figure 3.6: FLIM-FRET can be used to monitor Src activity on the single cell 
level after dasatinib washout in vitro 
A Quantification of Src activity based on single cell lifetimes measured in vitro, before 
and after treatment with 100 nM of dasatinib as well as up to 6 hours after washout of 
dasatinib. Src “activity” was assigned above 2.35 ns of lifetimes measured, cells 
grouped accordingly and the average lifetimes ± SD recorded below each column;       
n = 3 independent repeats, 1175 cells in total; column: mean; error bars: SEM;            
* p = 0.036, ** p = 0.041, *** p = 0.014, **** p = 0.0006 by unpaired standard 
students t test 
 
 
 

In order to see how the FRET biosensor would compare to the immunoblot   

read-out, the same washout experiment was conducted, with the Src activity assessed 

using FLIM-FRET. This revealed a slightly different temporal dynamic. As with the 

immunoblot, a significant decrease in the percentage of active cells was observable 

following dasatinib treatment (from 54.8 ± 3.7 % to 35.7 ± 6.9 %). Also in line with 

the immunoblot results the percentage of active cells was increased (68.6 ± 2.8 %) 

relative to the control at 1 hour following drug washout. Further, however, monitoring 

at 6 hours showed a return in the percentage of Src active cells to the levels observed 

in the control (Figure 3.6). Thus, following drug washout, cells assessed by              

Src-FRET returned to baseline sooner (at 6 hours) than cells assessed by p416-Src                   

(past 24 hours). 
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3.3.3 Src activity is spatially regulated in 3D environments      
in vitro 

 

In order to monitor the spatial distribution of Src activity, PDAC cells were 

seeded on top of organotypic matrices (Timpson et al., 2011b), preconditioned and 

contracted by either primary or immortalized human fibroblasts (Figure 3.7 A).  

 

 
 
Figure 3.7: Dasatinib treatment impairs invasion of PDAC cells on organotypic 
matrices 
A Schematic representation of an organotypic invasion assay set-up (adapted from 
Timpson et al. 2011). Invading tumour cells are presented in green and fibroblasts 
within the organotypic matrix comprised of rat tail collagen I are depicted in red.     
The organotypic matrix rests on a metal mesh grid and the invading cells are exposed 
to air, creating an air-liquid interface with the medium (in purple) as well as a serum 
gradient across the matrix from bottom to top. B 3D rendering of a region of an 
organotypic matrix, with invading GFP-labeled PDAC cells (green) and mCherry 
expressing TIF fibroblasts (red) embedded in the collagen I matrix (SHG in magenta). 
C H&E cross-sections of organotypics with PDAC cells expressing the Src-biosensor 
invading into the matrices for a total of 8 days, with maximum invasion denoted        
by red dotted line. During the last 2 days, treatment of 100 nM of dasatinib was      
applied, impairing further invasion during that time in the respective matrices;                    
scale bars: 100 µm 
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The invasive properties of the PDAC cells could therefore be assessed in the 

context of a collagen I matrix and in the presence of fibroblasts. Following contraction 

of the matrices and subsequent seeding of PDAC cells at confluent density on top, the 

matrices were transferred on to a metal grid, allowing for an air-liquid interface to 

form. Complete medium containing 10% FBS was added to the bottom, thus creating a 

serum gradient across the matrix. The PDAC cells were then allowed to invade and 

then visualized. This was done either by multiphoton imaging, with the PDAC cells 

expressing GFP (green), the immortalized TIF fibroblasts (Munro et al., 2001) 

expressing mCherry (red) and the collagen I being visualized by SHG signalling 

(magenta) (Figure 3.7 B) or by fixation in paraformaldehyde and conventional H&E 

staining (Figure 3.7 C). PDAC cells were allowed to invade into the matrices for a 

total of 8 days and during the last two days the cells were challenged with 100 nM of 

dasatinib. Drug treated matrices showed a reduction in PDAC penetration depth 

compared with untreated controls (Figure 3.7 C). The relative depth of cells inside the 

matrix was classified into “shallow sections” (0, 20 and 40 µm) and “deeper sections” 

(60 – 120 µm, at 20 µm intervals). 

The Src activity of invading PDAC cells within the organotypic matrix was 

assessed by FLIM-FRET and revealed that the fraction of Src active cells increased 

with increasing penetration depth into the matrix (Figure 3.8 A+B). Matrices were 

further analysed by immunohistochemistry with the p416-Src antibody, showing 

positive staining especially in cells that had penetrated into the collagen I matrix and 

negative staining PDAC cells which remained on the top (Figure 3.8 C). With this 

method, however, there was no gradient of any kind detectable in terms of Src activity 

in a spatial manner. Dasatinib treated organotypics in turn showed a complete loss of 

Src active cells in deeper sections as assessed by FRET, while the more shallow 

sections displayed the same basal percentage in Src active cells as observed in the 

control matrices (Figure 3.8 D). 
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Figure 3.8: FLIM-FRET reveals spatially distinct Src activation of PDAC cells 
invading on organotypic matrices 
A Representative lifetimes maps of Src-activity of PDAC cells invading into 
organotypic matrices, in shallow (0 – 40 µm) and deeper (60 – 120 µm) sections,     
with white arrows denoting Src inactive cells and red arrows showing cells displaying 
Src activity. B single cell quantification of Src-activity after FLIM-FRET imaging of 
invading PDAC cells on and into organotypic matrices; n = 3 independent repeats, 
with 965 cells measured in total. C IHC of Src phosphorylation in invading PDAC 
cells using anti-phospho-Src Y416. D Quantification of Src activity in shallow and 
deeper sections of organotypic matrices untreated or treated with 100 nM of dasatinib 
for the last 2 days of invasion; n = 3 independent repeats and 280 cells measured in 
total; columns: mean; error bars: SEM; * p = 0.027, ** p = 0.021, *** p = 0.006 and               
**** p = 0.001 by unpaired students t test; scale bar: 100 µm 
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3.3.4 FLIM-FRET imaging can be used to monitor live drug 
targeting in the tumour microenvironment in vivo 

 

The tumour microenvironment can have a significant impact on drug delivery    

in vivo. It can lead to impaired drug delivery especially in PDAC by the dense 

disposition of ECM and poor vascularization (Provenzano et al., 2012). We therefore 

wanted to assess whether FLIM-FRET imaging represents a robust tool in the 

monitoring of temporal drug targeting in the context of the tumour microenvironment 

in vivo. First, the temporal drug targeting of dasatinib treatment in allograft tumours 

was examined. Therefore, PDAC cells stably expressing the Src-FRET biosensor were 

subcutaneously injected in to CD1-/- nude mice and primary tumours allowed to 

develop for up to 7 days. Mice were further treated daily for 3 consecutive days with 

oral gavages at a previously established inhibitory dose of 10 mg/kg dasatinib    

(Morton et al., 2010b) and then imaged at defined time points after the final gavage 

was administered (Figure 3.9 A). 
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Figure 3.9: Intravital FLIM-FRET can be used to measure the response of single 
cells to Src inhibition in living tumours 
A Schematic of the timeline of the intravital imaging to monitor drug-targeting 
efficacy of dasatinib. Primary tumours were allowed to form for up to 7 days. Mice 
were then treated with daily oral gavages of 10 mg/kg of dasatinib (day 8, 9 and 10) 
and imaged at specific timepoints after the final gavage was administered.                    
B Representative images of PDAC allograft tumours (Src-biosensor: green, collagen I 
visualized by SHG: magenta) and corresponding Src activity (lifetime maps) with 
white arrows denoting Src inactive cells and red arrows cells displaying Src activity at 
1-2 hours, 4-6 hours (C) and 24 hours (D) after the final gavage was administered.           
E Quantification of Src activity as measured by FLIM-FRET on a single cell basis at 
1-2 hours, 4-6 hours, 16 hours and 24 hours after the final gavage was administered, 
with the average lifetimes ± SD in each group displayed below each column; n = 10 
mice and 724 cells measured in total; columns: means; error bars: SEM; * p = 0.037, 
** p = 0.025 and *** p = 0.021 by unpaired standard students t test  
 

 

The percentage of Src active cells was significantly reduced after 1-2 hours of 

the final gavage being administered from (63.9 ± 2.8 % to 51.7 ± 2.1 %). A re-bound 

effect was observed again as in the in vitro wash-out experiments, but on a different 

time scale (after 16 hours), with the percentage of active cells being increasing to      

71.9 ± 3.8 %. After 24 hours post-treatment, Src activity finally returned to control 

values (Figure 3.9 E). 
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3.3.5 Spatial regulation of Src activity can be observed in vivo 
within tumour subpopulations 

 

It is known that a subset of tumour cells respond better to therapy than others, 

but it is not entirely understood why. One possible cause of differential response to 

therapy could be the position within the tumour, i.e. the tumour microenvironment   

and its constituents such as tumour fibroblasts. These in turn can influence    

therapeutic efficiency by regulating collagen I disposition as described previously              

(Loeffler et al., 2006; Minchinton and Tannock, 2006). It is currently still quite 

difficult to assess response of individual cells in different tumour regions.      

Therefore, in order to understand how different tumour regions respond to treatment 

we compared Src activity quantified in both the core of primary tumours and their 

border. These regions in turn were defined by their distinct collagen I signal. The SHG 

revealed that tumour centre regions had an anisotropic distribution of collagen fibres, 

while the border regions displayed isotropic, frizzled collagen fibres of the tissue 

surrounding the allograft tumour mass (Figure 3.10 A+B). Primary PDAC tumours of 

both control and dasatinib treated mice were compared and an increased percentage of 

Src active cells observed in the border regions. This was effectively reverted by 

dasatinib treatment from a predominantly active cell percentage to a majority of Src 

inactive cells. The distribution of Src active and inactive cells was, however,             

not altered at the tumour core of treatment animals (Figure 3.10 C). 
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Figure 3.10: FLIM-FRET reveals that Src activity is increased and effectively 
inhibited by dasatinib at the tumour border in PDAC allografts 
A Representative intensity images of PDAC cells stably expressing the Src-biosensor 
(green) in vivo in the tumour core (collagen I/SHG signal in magenta), before and after 
dasatinib treatment with the respective lifetime maps of Src activity. B The border of 
the allograft tumours was visualized by the frizzled collagen I detected by SHG and 
the Src activity of the PDAC cells in the vicinity measured. C Quantification of Src 
activity of PDAC cells in the tumour core and borders of control and dasatinib treated 
mice; n = 6 mice and 471 cells measured in total; columns: mean; error bars: SEM;      
* p = 0.04 by unpaired standard students t test 
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3.3.6 Drug delivery with respect to tumour vasculature can be 
monitored by in vivo imaging 

 

The targeting efficacy of dasatinib was further assessed in relation to the local 

tumour vasculature using Src FLIM-FRET intravital imaging. Tumour bearing mice 

were i.v. injected with quantum dots (Qdot tracker655) in order to label the vasculature 

prior to imaging, and Src activity was imaged and correlated to the distance of the 

cells away from the closest vessel (Figure 3.11 A). This revealed distinct zones of Src 

activity from proximal to distal regions, which were defined as 0-25 µm, 25-50 µm, 

50-100 µm and above 100 µm from the nearest vessel. In control mice Src activity 

steadily increased with progressive distance from a vessel. The Src activity was 

effectively inhibited by gavaging the mice with dasatinib, switching the PDAC cells to 

being predominantly Src inactive up to about 100 µm away from the vasculature.   

Cells were no longer effectively targeted by dasatinib treatment in terms of Src 

activity, displaying a similar predominantly active cell population as observed in the 

control at a distance beyond 100 µm away from the vasculature This could be due to a 

perfusion limit at this point (Figure 3.11 B).  
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Figure 3.11: Intravital FLIM-FRET allows for measuring of Src activity and 
quantification of drug delivery in vivo in relation to local vasculature 
A Representative 3D rendering of PDAC cells expressing the Src-biosensor (green)    
in vivo, in relation to the local vasculature labeled by i.v. injection of quantum dots 
(Qdot-tracker655: red) prior to imaging and visualization of the local ECM by SHG of 
the collagen I (magenta). B Visualization and (C) quantification of Src activity inside 
PDAC cells by FLIM imaging on a single cell basis of Src activity at certain distances 
away from the local vasculature, within regions ranging from < 25 µm, 25-50 µm,      
50 -100 µm and > 100 µm. Control mice or mice treated with 10 mg/kg dasatinib were 
imaged and a limit in the shift to Src inactivity after dasatinib treatment observed at 
regions above 100 µm away from the local vasculature; n = 8 mice with 782 cells 
analyzed in total; columns: mean; error bars: SEM; red arrows denoting Src activity 
inside cells and white arrows Src inactivity 
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3.3.7 Dasatinib penetration efficiency is improved by the use 
of a combination therapy targeting the tumour stroma 

 

In order to potentially improve the rather poor distribution of dasatinib inside the 

primary tumour away from the local vasculature, the tumour stroma was considered as 

a potential target (Yu and Tannock, 2012). The dense desmoplasia observed in 

pancreatic cancer is a key barrier to drug perfusion in this cancer type, that can be 

optimized by targeting ECM deposition (Provenzano et al., 2012). To that end,             

a previously described inhibitor of sonic hedgehog signalling, cyclopamine        

(Thayer et al., 2003), was employed to modulate the tumour microenvironment. 

Cyclopamine inhibits sonic hedgehog (Shh) signalling in cells, which has been shown 

previously to lead to a reduction in ECM deposition in KPC mice (Olive et al., 2009). 

Organotypic matrices were therefore treated with 10 µM of cyclopamine during 

contraction of the collagen I by the embedded fibroblasts. It was observed that the 

diameter of treated matrices was greater than that of untreated and that they contracted 

to a smaller extent (Figure 3.12 A). The organotypics were treated with increasing 

concentrations of cyclopamine, ranging from 2.5 to 10 µM and the area calculated 

(Figure 3.12 B). The matrices were further imaged on a multiphoton system and the 

amount of fibrillar collagen I visualized by SHG signalling, with less fibrillar collagen 

I observed in the cyclopamine treated samples (Figure 3.12 C). This was subsequently 

quantified by an Image J plug-in, calculating the total area covered by fibrillar 

collagen in any given Z-stack of SHG signal collected. The total peak coverage was 

significantly decreased from 85.6  ± 6.4 % to 41.4  ± 10.7 % in the cyclopamine 

treated organotypics (Figure 3.12 D). 
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Figure 3.12: Cyclopamine decreases contraction and deposition of fibrillar 
collagen I in organotypic matrices 
A Representative images of organotypic matrices after 10 days of contraction in 
control medium or medium supplemented with 10 µM of cyclopamine.                         
B Quantification of the area in cm2 of matrices treated with different concentrations of 
cyclopamine. C 3D rendering of collagen I as visualized by SHG signal in control 
organotypics and matrices treated with cyclopamine. D Quantification of SHG signal 
by representation of fibrillar collagen percentage at depths into the matrices, as well as 
the peak median percentage for both control and cyclopamine treated matrices; 
column/data points: mean; error bars: SEM; * p = 0.012 by unpaired standard    
students t test (experiments performed and analysed by Dr. Paul Timpson and           
Dr. Ewan McGhee) 
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Src activity was further found to be unaffected by cyclopamine treatment at 

concentrations ranging from 2.5 µM to 20 µM in vitro as observed by FLIM-FRET 

imaging or immunoblotting for p416-Src (Figure 3.13 A+B). 

 

 
 
Figure 3.13: Src activity in PDAC cells is not decreased by cyclopamine 
treatment in vitro 
A Representative lifetime images of Src activity in control and cyclopamine-treated 
PDAC cells in vitro and quantification of 2 independent experiments comprising       
358 cells; columns: mean; error bars: SEM. B Immunoblot of phospho-Src levels in 
PDAC cells treated with increasing concentrations of cyclopamine. 
 

Nude mice were injected again with PDAC cells stably expressing the             

Src-biosensor and treated for 6 consecutive days with daily gavages of 25 mg/kg 

(Thayer et al., 2003) of cylopamine, in order to assess the effect of cyclopamine 

treatment on primary tumours in vivo. While the cyclopamine treatment did not affect 

Src activity in vitro, there was an ablation of the previously observed Src activity away 

from the vasculature. This could be due to the mice having a more normalized tumour 

ECM, and thus have an indirect effect on the Src activity distribution away from the 

local vasculature (Figure 3.14 A). Further combination treatment of the mice with both 

cyclopamine and dasatinib increased the targeting efficacy of the latter, particularly in 

regions proximal to the local vasculature.  



85	
  

Compared to dasatinib treatment alone, the percentage of Src inactive cell 

increased from 71.1 ± 4.4 % to 95.8  ± 4.2 % at 25-50 µm, in the mice that received 

the combination treatment regimens (Figure 3.11 C vs Figure 3.14 B). However, the 

effect of the combination treatment at distances greater than 100 µm away from the 

vasculature was the same in the cyclopamine only treated animals, indicating that a 

shift in the limit was not achieved by this treatment (Figure 3.14 A vs B). 

 

 

 
 

Figure 3.14: Cyclopamine treatment in vivo ablates Src activity distribution of 
PDAC cells away from local vasculature and increases in drug penetrance of 
dasatinib in vessel proximal regions 
Quantification of the distribution of Src activity in PDAC cells in relation to the local 
tumour vasculature of mice treated with 3 daily gavages of (A) 25 mg/kg 
cyclopamine; n = 3 and 236 cells quantified. Data from Figure 3.11 C was plotted in 
(B) to compare to combination treatments consisting of 25 mg/kg cyclopamine         
and 10 mg/kg dasatinib; n = 3 mice and 131 cells quantified; columns mean;                  
error bars: SEM 
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3.3.8 CXCR2 inhibition reduces Src activity in vitro and in vivo 
 

Neutrophils have previously been associated with the tumour stroma in 

pancreatic cancer and have been shown to actively influence tumourigenesis and 

pancreatitis through CXCR2 signalling (Jamieson et al., 2012; Steele et al., 2015).    

We therefore sought to determine, whether inhibition of CXCR2 signalling by a small 

molecule inhibitor (CXCR2SM) would influence the invasive behaviour of PDAC 

cells on organotypic matrices and whether Src signalling would be perturbed in these 

assays and in primary allograft tumours in vivo. Co-incubation of PDAC cells with 

primary BM isolated neutrophils seeded on top of organotypic matrices showed an 

increase in invasion of the PDAC cells (Figure 3.15 A). There were no detectable 

differences in invasion of the invading PDAC cells in control and CXCR2SM treated 

matrices as visualized by H&E staining (Figure 3.15 B). Further quantification of Src 

activity by FLIM confirmed the distribution of increased Src activity in control cells 

that had invaded further into the matrices (see Figure 3.8 B). This was, however, 

abolished upon CXCR2SM treatment, decreasing Src activity especially in cells that 

had invaded into deeper sections of the organotypic matrices (Figure 3.15 C). 
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Figure 3.15: CXCR2 inhibition results in a decrease of invasion of PDAC cells on 
organotypic matrices and reduces Src activity 
A Co-incubation of PDAC cells with primary neutrophils on top of organotypic 
matrices results in an increase in invasion of the PDAC cells. B Organotypic matrices 
with PDAC cells stably expressing the Src-biosensor invading for 6 days with or 
without treatment of 20 µM of CXCR2SM; scale bars: 100 µm. C Src activity was 
quantified on a single cell basis using FLIM-FRET in control and CXCR2SM      
treated organotypics at depths of 0 µm, 40 µm, 80 µm and 120 µm into the matrices.              
n = 1 and 306 cells quantified; columns: mean 
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In order to further gauge Src activity in response to CXCR2SM, optical imaging 

windows were implanted on top of developed primary PDAC subcutaneous tumours. 

The window consisting of a titanium ring and a glass coverslip was inserted into the 

skin on top of the previously developed tumours (see Materials and Methods 2.4.2) 

(Figure 3.16 A). Mice were then allowed to recover from surgery for a day. Prior to 

imaging mice were treated with gavages of either the vehicle or CXCR2SM at          

100 mg/kg, two times a day for 3 days, and on the final day with an i.v. injection of 

Qdot tracker655 to visualize the local tumour vasculature. Representative intensity 

images display the PDAC cells expressing the Src-biosensor (green), SHG signal 

(magenta) and the local vasculature (red) (Figure 3.16 B, top) as well as the 

corresponding lifetime maps in the control and CXCR2SM treatment situation    

(Figure 3.16 B, bottom). Quantification of Src activity in relation to the vasculature 

revealed a similar gradient of Src activity with increasing distance to the vasculature as 

observed previously (see Figure 3.11 C). Additionally, in the CXCR2SM treated mice 

there was an increase in the percentage of Src inactive cells, especially below 25 µm 

from a local vessel (Figure 3.16 C). 
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Figure 3.16: In vivo FLIM-FRET imaging using CIWs reveals decreased Src 
activity close to the local vasculature upon CXCR2SM inhibition 
A Schematic representation of the titanium cutaneous imaging window (CIW) 
implanted in the skin on top of a developed primary tumour, allowing for imaging of 
the tumour in its native microenvironment. B, top: Representative intensity images of 
PDAC cells expressing the Src-biosensor (green) in vivo, in relation to the local 
vasculature labeled by i.v. injection of quantum dots (Qdot-tracker655: red) prior to 
imaging and visualization of the local ECM by SHG of collagen I (magenta).              
B, bottom: Visualization of Src activity by    FLIM-FRET imaging inside PDAC cells 
in control and 100 mg/kg CXCR2SM treated tumours, in relation to the local 
vasculature. C Quantification on a single cell basis of Src activity at < 25 µm,           
25-50 µm, and > 50 µm away from the local vasculature in control and CXCR2SM 
treated mice; n = 6 mice with 267 cells analyzed in total; columns: mean;                
scale bar: 50 µm  
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3.4 Discussion 
 

High drug attrition rate in drug development is still a major concern and 

continuing reason for substandard treatment regimens in, amongst others, cancer 

therapies (Kola and Landis, 2004; Hay et al., 2014; Waring et al., 2015). Intravital and 

in vivo imaging on a single cell basis of key signalling molecules in cancer can help in 

that respect. A more reliable testing of specific drug targeting in pre-clinical models, 

not achieved currently by conventional drug screening tools can help to reduce the 

high attrition rates of drugs encountered in the clinical setting (Kamb 2005;    

Isherwood et al., 2011). The results in this chapter illustrate how FLIM-FRET can be 

used to assess dynamic biomarkers in the pre-clinical evaluation of specific therapeutic 

targets. The longitudinal and spatially defined nature of the cellular read-out acquired 

can help in the optimization of treatment regimens. By providing a temporal readout 

treatment scheduling could be improved. Furthermore, the spatial readout can help 

identify barriers that the treatment needs to overcome to be effective throughout the 

tumour mass. Both in turn can moreover help in evaluating the application of 

combination treatments with complementary therapeutic agents. 

Using cells from a mouse model that accurately recapitulates the histopathology 

of human pancreatic cancer (Hingorani et al., 2005; Hruban et al., 2006) in 

conjunction with FLIM-FRET imaging, I first showed that the temporal dynamics of 

dasatinib treatment of PDAC cells could be reliably monitored in vitro. There was, 

however, a notable difference in the    “re-bound” effect observed after the removal of 

the primary dasatinib inhibition, when monitoring Src activity by immunoblotting for 

p416-Src compared to FLIM-FRET. While the immunoblot showed a 4.5 times 

increase in     phospho-Src levels 1 hour after drug removal the Src-FRET reporter 

only showed an increase in about ~ 14 % of Src active cells compared to the initial 

controls. There are several possible reasons for this discrepancy in readouts, which can 

be attributed to the specific methodologies used for the read-outs and thus the different 

cellular cues observed. While the immunoblot reports on the state of 

autophosphorylation of Src itself, the Src-FRET reporter actually reports, due to its 

architecture, on the ability of Src to phosphorylate a substrate, more specifically the 

responsive region of p130Cas (Wang et al., 2005b). The reporter may well also be 

phosphorylated in part by Fyn kinase, but seeing as dasatinib also inhibits all Src 

family kinases (SFK), this should not play a role. Next to SFKs, dasatinib also inhibits 
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phosphorylation of p130Cas directly, which could further account for the lower shift 

observed after drug removal in the FLIM-FRET read-out compared to that of the 

immunoblot (Buettner et al., 2008). Another explanation for differences in read-outs 

could be that the reporter is subject to the whole range of cellular phosphatases. It thus 

reports on the dynamic system of antagonistic phosphatases competing with the 

phosphorylation of the reporter by Src, rather than just on Src phosphorylation itself. 

The “re-bound” was, however, also observed in vivo, at an expected delayed time 

point. This indicates that over-activation of Src after drug removal occurs both 

physically in vitro or by metabolic processes in vivo. This side-effect, when treatment 

subsides, could be overcome by more stringent treatment time points, assuring optimal 

inhibition of Src over time. 

On the spatial site, the observed gradient in Src activity across the section of 

organotypic matrices in the control situation, showed the power of FLIM-FRET 

imaging in more accurately differentiating in activity of Src on a single cell basis in a 

3D context. As seen in Figure 3.8 C mere positivity of phospho-Src could be detected 

by IHC staining, failing to detect the gradient of acitivty as revealed by FLIM imaging 

(see Figure 3.8 B). Two things could possibly explain the observed increase in Src 

activity with penetration depth in the PDAC cells. The serum gradient created across 

the matrix, with higher concentrations of FBS and associated growth factors near the 

bottom could account for an increase in Src activity observed at deeper penetration 

depths. The exposure to an air interface could further negatively regulate Src 

signalling inside the cells, which may in turn be increased by a more hypoxic setting. 

This becomes especially apparent when looking at the in vivo results of Src activity 

away form the local vasculature. Src activity appears to increase with increasing 

distances from a labelled blood vessel. This could be due to the decreasing 

concentration of oxygen away from the vessels and therefore the increase in hypoxia. 

The observation is in line with a previous study showing exactly that, namely that Src 

activity, and more precisely phospho-Src levels increase in hypoxic settings inside 

xenograft tumours (Pham et al., 2009).  

It has been established in the KPC model that the inhibition of Shh by 

cyclopamine leads to a reduction in ECM (Olive et al., 2009). A normalization of this 

distribution of Src activity away from vessels after cyclopamine treatment could 

therefore be attributed to a decrease in ECM disposition in these tumours.  
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This in turn could further decrease interstitial pressure and allowing for a more 

free diffusion of oxygen and other soluble factors, away from local vasculature. 

Further, the decrease in ECM components could account for the decrease in Src 

signalling, as there may be fewer interactions via the integrin-FAK-Src axis to the 

local microenvironment (Chen et al., 2013). Finally, the fact that the effect of 

cyclopamine plus dasatinib on Src signalling was the same as cyclopamine treatment 

alone above 100 µm away from the local tumour vasculature, shows the inability of 

this combination treatment to improve drug efficacy above this threshold. 

The results illustrating a decrease in Src activity after CXCR2SM inhibition both 

on organotypics and during in vivo imaging shows the usefulness of FLIM-FRET 

imaging in predicting treatment response for different treatment methods.            

Further refining intravital imaging, with the use of cutaneous imaging windows, 

helped to preserve the native tumour environment in this setting in especially, where 

neutrophil response was particularly important. Surgical exposure of the primary 

tumour for imaging can result in an influx of neutrophils, as it has been described 

previously that cutaneous wounds lead to an influx of inflammatory cells such as 

neutrophils (Singer and Clark, 1999). This in turn could perturb the therapeutic       

read-out of the CXCR2SM treatment. Using imaging windows therefore can allow for 

proper in vivo imaging to be conducted, without the immediate infiltrate of neutrophils 

following incision wounding. 
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4 Rac-1 activity dynamics revealed by the Rac-1 
FRET mouse in a variety of mouse cancer 
models in vivo 

	
  

4.1 Summary 
 

Rac-1 is a small GTPase and an essential regulator of cell motility. To assess     

its role in variety of tissues and disease models, the Rac-1 FRET mouse was made.       

Rac-1 activity was found to be governed by autophagy in dendritic cells and 

upregulated in PyMT, ErbB2-driven breast cancer models as well as in the KPC 

pancreatic cancer model. Rac-1 activity was further spatially regulated both in 3D 

model in vitro and in tumour model in vivo. The GEF P-Rex1 constitutes an important 

regulator of Rac-1 activity in these models, with its loss leading to reduction or 

ablation of Rac-1 activity in primary tumours. Application of optical imaging   

windows showed differential spatial regulation of Rac-1 activity in PyMT and                   

ErbB2-driven tumours, subject to cues from the local tumour microenvironment.                

Furthermore, longitudinal imaging in PyMT tumours revealed different response 

levels to Rac-1 inhibitors EHT 1864 and NSC 23766. Finally, elevated Rac-1 activity 

in KPC cells was linked to mTRAIL-receptor expression, the stable knock down and 

inhibition of which lead to a reduction in Rac-1 activity in vitro and in vivo. 
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4.2  Introduction 
 

The Rho-GTPase Rac-1 is a key regulator of actin cytoskeletal organization, 

reactive oxygen species (ROS) production and cell migration. Its activity is 

upregulated in breast cancer (Schnelzer et al., 2000; Vega and Ridley, 2008;           

Feng et al., 2014). To assess the activity of Rac-1 in vivo in different tissues and in   

the context of different breast cancer models, the Rac-1 FRET mouse was made   

(Johnsson et al., 2014). To this end the Rac-1 Raichu FRET sensor was used           

(Itoh et al., 2002), targeted to the ROSA 26 locus and ubiquitously expressed.  

Inhibition of autophagy in dendritic cells (DCs) has been shown to lead to 

increased activation of the adaptive immune response in inflammatory bowel disease 

(IBD) (Wildenberg et al., 2012). Furthermore, an increase in ruffling and reduction     

in filopodia formation was observed in autophagy deficient human DCs         

(Wildenberg M. A. personal communication). Rac-1 activity has been shown to 

regulate membrane ruffling (Ridley et al., 1992). In order to examine Rac-1 activity in 

DCs, bone marrow was isolated from Rac-1 FRET mice and differentiated to DCs 

using GM-CSF (Inaba et al., 1992). These were then treated with 3-methyladenine    

(3-MA), a common inhibitor of autophagy. 

The activity of Rac-1 is governed by guanine nucleotide exchange factors 

(GEFs) and GTPase activating proteins (GAPs) (Rossman et al., 2005;         

Wertheimer et al., 2012). A particular GEF, phosphatidylinositol-3,4,5-trisphosphate-

dependent Rac exchange factor 1 (P-Rex1) has been shown to be overexpressed in 

breast cancer. Furthermore, it has been demonstrated that P-Rex1 is associated with 

ErbB2 overexpression and can regulate PI3K signalling in breast cancer cells        

(Sosa et al., 2010; Montero et al., 2011;   Hynes and Gattelli, 2011; Ebi et al., 2013). 

Rac-1 activity was shown to be unregulated in several mouse model of cancer         

such as the PyMT, KPC (Johnsson et al., 2014) and Erbb2-driven models                      

(Johnson et al., 2010). As it is not entirely clear which of many possible GEFs control 

Rac-1 activity in these mouse models, the influence of P-Rex1 has been investigated in 

more detail here, by crossing the Rac-1 FRET cancer mouse models to P-Rex1 KO 

mice (Welch et al., 2005). Moreover, inhibition of Rac-1 has been shown       

(Rosenblatt et al., 2011; Katz et al., 2012;), by the inhibitor EHT 1864, effecting 

binding of GTP to Rac-1 and thus association of it with its effector proteins such        

as Pak1 and others (Désiré et al., 2005; Onesto et al., 2008; Shutes et al., 2007).    
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Another inhibitor of Rac-1 activity is NSC23766. It acts by inhibiting Rac-1           

GEF exchange activity, notably that of Tiam1 and Trio (Gao et al., 2004).       

Understanding how these inhibitors fare in vitro would be the next step in models that 

display overactivation of Rac-1 such as the PyMT model. Further evaluation in vivo 

would give an idea of how the inhibitors would fare in primary PyMT tumours 

expressing the Rac-1 FRET reporter. The application of surgically engrafted with 

optical imaging windows (Kedrin et al., 2008; Gligorijevic et al., 2009)                    

and longitudinal imaging could help to answer these questions. If Rac-1 activation in 

the context of the tumour microenvironment would be spatially regulated in both 

PyMT and ErbB2 primary tumours in the in vivo situation could further be 

investigated. Another aspect in which Rac-1 activity may be differentially regulated is 

mammary tumour progression to invasive carcinoma, described previously              

(Lin et al., 2003; Cowell et al., 2013). This in turn could have strong implications as to 

when Rac-1 is most potent and at which stage treatment of mammary cancers with 

Rac-1 inhibitors would yield the greatest benefit. 

In a KRasG12D driven mouse model of pancreatic cancer, Rac-1 loss lead to a 

reduction in PanIN and adenoma formation with significantly prolonged survival rates 

(Heid et al., 2011). It has been shown that there are high levels of TRAIL apoptosis 

receptors expressed in pancreatic cancer cell lines (Ozawa et al., 2001). This seems 

counterintuitive when considering that tumours generally insensitive to TRAIL 

induced apoptosis and have even shown to upon inhibition lead to increased metastasis 

of pancreatic cancer cells (Trauzold et al., 2006). However, tumour cells still retain 

TRAIL expression, with murine cells in turn only expressing mTRAIL-R                  

(Wu et al., 1999). When knocking down mTRAIL-R in cells, they displayed a        

more rounded morphology and a reduction in lamellopodia formation                     

(Von Karstedt et al., 2015). This morphology was described before for cells lacking 

Rac-1 expression (Steffen et al., 2013). It would there fore be prudent to investigate 

what could contribute to this dependency on Rac-1 activity by expressing the Rac-1 

Raichu reporter in KPC cells, knocking down mTRAIL-R and thus being able to 

measure Rac-1 activity in vitro and in vivo. 
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4.3 Results 

4.3.1 Generation of the Rac-1 FRET mouse and reduction of 
Rac-1 in primary DCs after autophagy inhibition 

 
A constitutively expressing Rac-1 FRET mouse was generated as described by 

Johnsson et al., 2014. The Rac-1 FRET reporter used was the Rac-1 Raichu probe 

(Itoh et al., 2002). It consists of full length Rac-1 and an active Rac-1 binding domain 

of PAK1 (a known effector of active Rac-1, see Chapter 1.2.2), flanked by the YFP 

and CFP (Figure 4.1 A). The donor CFP in turn is tethered to the membrane by a 

CAAX motif. When guanine nucleotide exchange factors (GEFs) are active in the cell, 

the GDP bound to Rac-1 in the probe is exchanged with GTP, leading to a 

conformational change in the reporter and the binding of Rac-1 to Pak1-domain.      

This in turn results in CFP and YFP being in close proximity to each other, resulting in 

FRET, when CFP is excited. This process is reversed upon the action of            

GTPase-activating proteins (GAPs) within the cell, rendering the probe in a non-FRET 

confirmation (Figure 4.1 A). This process in turn can be detected by FLIM of the 

donor fluorophore CFP. A short lifetime (FRET) indicates an active state of Rac-1, 

whereas a long lifetime (no FRET) indicates low Rac-1 activity. Therefore, through 

the action of GEFs and GAPs, Rac-1 activity at the membrane of the cells can be 

assessed live in a variety of tissues in these mice.  
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Figure 4.1: Rac-1 activity is down-regulated during DC maturation and increased 
upon autophagy inhibition 
A Schematic of the Rac-1 FRET reporter with the fluorophore pair CFP and YFP,    
full length Rac-1 and an active Rac-1 binding domain of PAK1                            
(adapted from Itoh et al. 2002). B Tissues analysed with the Rac-1 FRET reporter 
mouse (adapted from Johnsson et al. 2014). C Primary dendritic cells differentiated 
from the bone marrow of the Rac-FRET reporter mice, quantified for Rac-1 activity  
in vitro during successive days of differentiation ranging from day 7 to day 10,             
n = 2-3 mice per condition, 302 cells in total; Mann Whitney U test, * p < 0.05,        
*** p < 0.001, **** p < 0.0001. D Distribution of Rac-1 FRET lifetimes at a bin size 
of 0.1 ns at day 10 of differentiation; n = 3 mice, 157 cells. E Quantification of 
average lifetimes of DCs at day 9 to 10 of differentiation, untreated and treated with 
20 µM of 3-MA; n = 3 mice per condition, 646 cells in total; columns: mean;           
bars: SEM; Mann Whitney U test, **** p < 0.0001. F Representative lifetime map 
images of control DCs between day 9 and 10 of differentiation and DCs treated       
with 3-MA.  
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Treatment of isolated bone marrow cells with GM-CSF has been demonstrated 

to be an effective way of obtaining a large number of dendritic cells (DCs)           

(Inaba et al., 1992). Therefore, primary DCs were first differentiated from isolated 

bone marrow of Rac-1 FRET mice in culture. During the days 6 to 10 of the 

differentiation under GM-CSF in vitro, a decrease in Rac-1 activity was observed 

(Figure 4.1 C). A distribution of the single cell lifetimes and thus Rac-1 activity in the 

DC population at day 10 was also recorded (Figure 4.1 D). This in turn indicates that a 

range of Rac-1 activity can be found in a control situation in vitro. We further found, 

that Rac-1 could be activated to an extent in DCs by stimulation with an autophagy 

inhibiting agent, 3-MA, resulting in lower average lifetimes and thus more Rac-1 

activity (Figure 4.1 E+F). 

 

4.3.2 Rac-1 activity is upregulated in PyMT tumours and 
reduced upon heterozygous loss of P-Rex1  

 

In order to determine whether Rac-1 activity was increased in an in vivo setting 

of a genetic mouse breast cancer model, the Rac-1 FRET mouse was crossed with the 

polyoma-middle-T antigen model (Guy et al., 1992b). Indeed, when compared to the 

native mammary epithelial tissue, Rac-1 was observed to be upregulated in PyMT 

driven lesions (Figure 4.2 A). The Rac-1 FRET reporter is subject to GEF activity 

inside the cells, which act upstream of Rac-1. We therefore further sought to determine 

whether the presence of a specific GEF, which has been recently implicated in breast 

cancer (Sosa et al., 2010; Hynes and Gattelli, 2011; Montero et al., 2011;            

Lucato et al., 2015), namely P-Rex1, would have an effect on Rac-1 activity in this 

model. The Rac-1 FRET expressing PyMT mice were consequently crossed with         

P-Rex1 KO mice (Welch et al., 2005) and allowed to form primary tumours. 

Heterozygous loss of P-Rex1 already revealed significantly reduced Rac-1 activity, 

when imaged ex vivo (Figure 4.2 B, mean ± SEM: MMTV-PyMT + P-Rex1+/+:       

1.82 ± 0.02 ns vs MMTV-PyMT + P-Rex1+/- : 1.93 ± 0.02 ns).  

Furthermore, the survival of PyMT mice crossed with the P-Rex1 KO mice 

revealed significantly increased survival in both heterozygous and homozygous KO 

mice compared to the WT PyMT cohort (Figure 4.2 C, from an average of 98 days 

survival in the WT control to 112 days in the homozygous KO). 
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Figure 4.2: Rac-1 activity is upregulated in PyMT tumours and reduced upon 
heterozygous KO of P-Rex1. PyMT mice show increased survival upon KO of P-
Rex1  
A Rac-FRET mice crossed with MMTV-PyMT and P-Rex1 KO, taken at clinical 
endpoint of < 1.5 cm primary tumour size and imaged ex vivo, with intensity image in 
green for the Rac-FRET reporter and magenta for the SHG of collagen I, as             
well as the corresponding lifetime maps for each condition; scale bars: 50 µm.             
B Quantification of average lifetimes of individual cells inside the tumour mass, n = 3 
mice per condition, 147 cells in total; columns: mean; bars: SEM; one way ANOVA, 
*** p < 0.001, * p < 0.05. C Survival curve of P-Rex1 KO mice; n = 32, Log-rank 
(Mantel-Cox) Test, ** p< 0.01 
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4.3.3 Rac-1 FRET expression in PyMT breast cancer models 
reveals differential Rac-1 activity in 2D versus 3D 
environments 

 

To assess whether the inhibition of elevated Rac-1 activity observed in primary 

PyMT tumours expressing the Rac-1 FRET reporter could be effectively monitored by 

FLIM imaging using commercially available small molecule Rac-1 inhibitors,          

cell lines were isolated from primary PyMT tumours. Rac-1 has also been implicated 

next to migration in cell cycle progression (Olson et al., 1995; Moore et al., 1997;   

Saci et al., 2011). The cells were therefore first subjected to an MTT assay, in order to 

determine whether the Rac-1 inhibitors EHT 1864 and NSC 23766 had any effect on 

cell proliferation in vitro. 6 days of incubation at increasing concentrations of the 

respective inhibitors revealed that proliferation was not negatively altered for NSC 

23766. For EHT 1864, however, there was a pronounced effect at concentrations 

above 1 µM   (Figure 4.3 A). 

Measuring the average fluorescent lifetime of the Rac-1 FRET reporter in these 

cells showed a significant reduction in Rac-1 activity in vitro, when they were 

subjected to previously established inhibitory concentrations of 20 µM EHT 1864    

and 50 µM for NSC 23766 (Katz et al., 2012) for 1 hour prior to imaging            

(Figure 4.3 B+C). 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



101	
  

 
 
Figure 4.3: Rac-1 activity is effectively inhibited in vitro using EHT 1864 and 
NSC 23766 
A PyMT cell line isolated from a primary PyMT tumour expressing the Rac-1 FRET 
reporter was subjected to increasing concentrations of EHT 1864 and NSC 23766 for   
6 days and proliferation assessed by MTT assay; 3 independent experiments,           
data points: mean, bars: SEM. B Quantification of the average fluorescent lifetime of 
the Rac-1 FRET reporter expressed in the PyMT derived cell line, subjected to 
previously established inhibitory concentrations of EHT 1864 with 20 µM and NSC 
23766 with 50 µM in vitro (Katz et al., 2012), with representative lifetimes heat map 
images in C; n = 2, columns: mean; bars: SEM; Mann Whitney U test, ** p < 0.01, 
*** p < 0.001 

 

Rac-1 has been shown to be induced in cells via integrin engagement on ECM 

substrates previously (Berrier et al., 2002). Furthermore, plating of invasive breast 

cancer cells on a dense fibrillar collagen matrix resulted in increased invadopodia 

formation and Rac-1 activation (Artym et al., 2015). Having established that Rac-1 

can be effectively inhibited in 2D culture, I wanted to examine whether Rac-1 

inhibition could influence invasion in the PyMT cell line, as indicated previously 

(Katz et al., 2012). Rac-1 FRET expressing PyMT cells were therefore seeded on top 

of 3D organotypic matrices and allowed to invade for up to 12 days. During this time, 

cells completely traversed the matrices in the control situation, while in the presence 

of both EHT 1864 and NSC 23766 a reduction in invasion could be observed        

(Figure 4.4 A).  
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Further quantifying Rac-1 FRET signal of the invading PyMT cells, on a single 

cell basis, revealed increased Rac-1 activity with correlation to the depth penetrated in 

to the matrices (Figure 4.4 B+C). 

 

 
Figure 4.4: Rac-1 activity in PyMT cells is spatially regulated in organotypic 
matrices, the invasion into which is moderately inhibited by both EHT 1864 and 
NSC 23766 
A PyMT cells isolated from a primary PyMT tumour expressing the Rac-1 FRET 
reporter were allowed to invade in to organotypic matrices for up to 12 days in a 
control setting and display a reduction in invasion in the presence of EHT 1864         
(20 µM) and NSC 23766 (50 µM); 3 independent experiments. B Representative 
images of PyMT cells expressing the Rac-1 FRET reporter (green) invading into an 
organotypic matrix (collagen I from the SHG signal in magenta) with the respective 
lifetime heat map images at depths from 0 to 80 µm into the matrix. C Quantification 
of increased Rac-1 activity in invading PyMT cells, correlating to the penetration 
depth up to 80 µm into the matrices, on a single cell basis; n = 3 with 225 cells            
in total; columns: mean; bars: SEM; One-way ANOVA, ** p < 0.05, ** p < 0.01,     
*** p < 0.001 
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4.3.4 Rac-1 is differentially active during progressive stages of 
PyMT tumourigenesis and in different compartments of 
the tumour microenvironment as imaged in vivo 

 

Having established that Rac-1 activity is differentially regulated in cell lines 

derived from primary Rac-1 FRET expressing tumours, I wanted to determine whether 

there was an influence of tumour progression on Rac-1 activity. Progressive stages of 

PyMT-driven tumours have been described previously, with hyperplasias progressing 

via adenomas to invasive carcinomas (Lin et al., 2003). PyMT mice expressing the 

Rac-1 FRET reporter were therefore allowed to develop primary tumours, which in 

turn were then imaged ex vivo during their progressive stages, from hyperplastic 

lesions to metastasis of the lung (Figure 4.5 A). Quantification of the single cell 

FLIM-FRET signal revealed that Rac-1 activity steadily deceased in progressive stage 

of cancerous lesions in the PyMT beast cancer model (Figure 4.5 B, mean ± SEM: 

hyperplasia: 1.66 ± 0.02 ns vs carcinoma: 1.86 ± 0.02 ns). It should be noted, that even 

at the carcinoma and metastasis stage, Rac-1 activity is still high, when compared to 

the native mammary tissue, which exhibited basal to no activity (Figure 4.5 vs     

Figure 4.2, mean ± SEM: carcinoma/metastasis: 1.86 ± 0.02 ns vs mammary:          

2.10 ± 0.01 ns;). 
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Figure 4.5: Rac-1 activity decreases in progressing stages of PyMT driven breast 
cancer 
A Representative images of PyMT model expressing the Rac-1 FRET imaged ex vivo 
during progressing stages of breast cancer including hyperplasia, adenoma, carcinoma 
and metastasis of the lung, with intensity image in green for the Rac-1 FRET reporter 
and magenta for second harmonic generation (SHG) of collagen I as well as the 
corresponding lifetime maps. B Quantification of average lifetimes of individual cells 
inside the PyMT tumour mass at different stages of progression, n = 3 mice,             
133 cells in total; columns: mean; bars: SEM; Mann Whitney U test, **** p < 0.0001;          
scale bars: 100 µm 
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The analysis of the PyMT cell lines expressing the Rac-1 FRET reporter 

revealed that Rac-1 was spatially regulated and indeed more active in a 3D 

environment compared to 2D (Figure 4.3 B vs Figure 4.4 C, mean ± SEM: on glass: 

2.17 ± 0.04 ns vs on organotypic matrix: 1.92 ± 0.04 ns). An analysis of Rac-1 activity 

in the native tumour microenvironment was the logical next step in order to investigate 

whether Rac-1 was differentially regulated in vivo. PyMT mice expressing the Rac-1 

FRET reporter were therefore allowed to develop primary tumours and optical 

windows surgically engrafted on top of them. Following 1-2 days of recovery mice 

were imaged. PyMT tumours and isolated cells have been shown to be locally invasive 

(Waldmeier et al., 2012) and form invasive border regions (Lin et al., 2003). 

Therefore, first the tumour border regions versus the center were analysed. The border 

and center regions were distinguished from one another by their probe expression, 

absent from beyond the border regions and their distinct collagen I (SHG) signature, 

observed previously from PyMT and human breast cancer cells xenograft tumours 

imaged on a multiphoton system (Wang et al., 2002; Provenzano et al., 2009).        

This revealed slightly elevated activity of Rac-1 at the primary tumour borders   

(Figure 4.6 A+B).  

Another feature of the tumour microenvironment of interest is the local 

vasculature. In order to assess Rac-1 activity away from vessels, tumour and optical 

windows bearing mice were intravenously injected with a tracer dye prior to imaging 

(quantum dots, Qdot-tracker655) (Figure 4.6 C). This allowed for the visualization of 

the vessels, measuring the proximity of single cells to the vasculature and correlating 

this with their respective Rac-1 activity signals. A general decrease of Rac-1 activity 

away from local vessels was recorded (Figure 4.6 D), with a distinct sharp increase 

between 10 µm and 20 µm. 
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Figure 4.6: Rac-1 activity is upregulated at the border of PyMT tumours and 
decreases away from the local tumour vasculature 
A Representative images of primary PyMT models expressing the Rac-1 FRET 
reporter imaged, implanted with AIWs, imaged in vivo, with intensity image in green 
for the Rac-1 FRET reporter and magenta for second harmonic generation (SHG) of 
collagen as well as the corresponding lifetime maps for both center and border regions. 
B Quantification of average lifetimes of individual cells inside the PyMT tumour mass 
at either center and borders regions, n = 3 mice per condition, 180 cells in total;    
Mann Whitney U test, **** p < 0.0001. C Representative image of the local tumour 
vasculature in red (Qdot-tracker655) and corresponding lifetime map. D Quantification 
of the average fluorescent lifetime in 10 µm steps away form the local vasculature;      
n = 3 mice, 160 cells in total; columns: mean; bars: SEM; Student t test,                  
**** p < 0.0001; scale bars: 100 µm 
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4.3.5 Longitudinal imaging of Rac-1 activity in the PyMT model 
in vivo reveals different pharmacodynamics of two Rac-1 
inhibitors 

 

Many factors can influence the ability of a drug to reach its target in an in vivo 

setting, including metabolic clearing, unspecific binding, uptake by non-target cells 

and their chemical composition (Benet and Zia-Amirhosseini, 1995; Lipinski, 2001). 

As Rac-1 activity is elevated in PyMT tumours and commercially available Rac-1 

inhibitors effectively inhibited Rac-1 in vitro both in a 2D and 3D environment to 

different extents (Figure 4.3 vs Figure 4.4), an in vivo evaluation of these inhibitors 

was the next step. PyMT tumour bearing mice with a cutaneous optical imaging 

window (CIW) engrafted on top of their primary tumour were therefore imaged 

longitudinally to examine drug efficacy in vivo. First, in a control situation, mice were 

imaged up to 2 hours and an image acquired every 10 minutes. This revealed little to 

no fluctuation in Rac-1 activity in vivo, when Rac-1 FLIM lifetimes were quantified 

(Figure 4.7). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



108	
  

 
Figure 4.7: Rac-1 activity in primary PyMT tumours is unaltered during 
prolonged imaging in vivo 
A Representative images of primary PyMT models expressing the Rac-1 FRET 
reporter, implanted with CIWs, imaged in vivo, with intensity image in green for       
the Rac-1 FRET reporter and magenta for second harmonic generation (SHG) of 
collagen as well as the corresponding lifetime maps during 2 hour time courses;       
scale bars: 100 µm. B Quantification of average lifetimes of individual cells inside the 
PyMT tumour mass after 10 minute intervals up to 2 hours; n = 3 mice per condition,          
380 cells in total; columns: mean; bars: SEM 

 

 

Next, mice were treated with a single intraperitoneal (i.p.) injection of 4 mg/kg 

of the Rac-1 inhibitor NSC 23766. This revealed a distinct targeting efficacy of this 

Rac-1 inhibitor by showing an effective inhibition after 50-60 minutes of the injection 

being administered to the mice (Figure 4.8 A+B). Further follow-up revealed that   

Rac-1 remained inactive up to 6 hours after the i.p. injection, increasing again further 

at 18 hours and finally returning to control values after 24 hours (Figure 4.8 C). 
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Figure 4.8: Rac-1 activity decreases upon treatment with NSC 23766 in vivo over 
time in PyMT driven breast carcinomas 
A Representative images of primary PyMT carcinomas expressing the Rac-1 FRET 
reporter as imaged through CIWs in vivo, before and 50 minutes after i.p. administered 
treatment of 4 mg/kg of NSC 23766, with intensity image in green for the Rac-1 FRET 
reporter and magenta for second harmonic generation (SHG) of collagen I as well as 
the corresponding lifetime maps. B Quantification of average lifetimes of individual 
cells inside the PyMT carcinoma mass at different time points during NSC 23766 
treatment up to 1 hour. C Quantitative monitoring in vivo of NSC 23766 treatment in 
PyMT carcinomas up to 24 hours post i.p. injection, n = 2 mice, 402 cells in total; 
columns: mean; bars: SEM; Mann Whitney U test, ** p < 0.01, **** p < 0.0001;   
scale bars: 100 µm 
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Evaluation of a different Rac-1 inhibitor, EHT 1864, affecting binding of active 

Rac-1 to down-stream targets, by imaging GTP-binding (Désiré et al., 2005), revealed 

poorer targeting in vivo by comparison. Here, Rac-1 activity was only effectively 

inhibited 120 minutes post i.p. (Figure 4.9 A+B) and already returned to control values 

after 6 hours of the injection being administered, demonstrating poor inhibition 

(Figure 4.9 C).  

 

 
 
Figure 4.9: Rac-1 activity decreases upon treatment with EHT 1864 in vivo over 
time in PyMT driven breast carcinomas 
A Representative images of primary early PyMT carcinomas expressing the Rac-1 
FRET reporter as imaged through CIWs in vivo, before and 120 minutes after i.p. 
administered treatment of 4 mg/kg of EHT 1864, with intensity image in green for the 
Rac-1 FRET reporter and magenta for second harmonic generation (SHG) of collagen 
I as well as the corresponding lifetime maps. B Quantification of average lifetimes of 
individual cells inside the PyMT carcinoma mass at different time points during     
EHT 1864 treatment up to 2 hours. C Quantitative monitoring in vivo of EHT 1864 
treatment in early PyMT carcinomas up to 24 hours post i.p. injection, n = 2 mice,   
270 cells in total; columns: mean; bars: SEM; Mann Whitney U test, ** p < 0.01;   
scale bars: 100 µm 

A 
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4.3.6 Rac-1 activity is upregulated in Her2 driven carcinomas 
and absent upon loss of P-Rex1 

 

P-Rex1 has previously been strongly linked to regulating Rac-1 activity in 

ErbB2 receptor (Her2/neu) overexpressing breast cancer (Montero et al., 2011;       

Sosa et al., 2010). To examine this in the context of a transgenic mouse model,          

the Rac-1 FRET reporter mouse was first crossed to the MMTV-ErbB2 expressing 

breast cancer model (Guy et al., 1992a). These mice in turn were further crossed to the 

P-Rex1 KO mice (Welch et al., 2005). This revealed that Rac-1 activity is indeed 

upregulated in ErbB2 overexpressing tumours compared to the native mammary 

tissue. Further, the loss of P-Rex1 decreased Rac-1 activity in a gradual, dose 

dependent manner. Heterozygous loss led to a reduction in Rac-1 activity and a 

homozygous KO of P-Rex1 lead to basal Rac-1 activity, comparable to that found in 

the native mammary tissue (Figure 4.10 A+B). 

Looking at the overall survival of the MMTV-ErbB2 tumour bearing mice,        

in terms of their clinical endpoint, revealed that despite the measurable reduction in      

Rac-1 activity observed in P-Rex1 heterozygous mice, only complete loss of P-Rex1 

in the homozygous KO conferred a significant survival advantage (Figure 4.10 C). 
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Figure 4.10: Loss of P-Rex1 abrogates upregulated Rac-1 activity in ErbB2 
tumours and increases survival 
A Rac-1 FRET mice crossed with MMTV-ErbB2 and P-Rex1 KO, taken at clinical 
endpoint of < 1.5 cm primary tumour size and imaged ex vivo, with intensity image in 
green for the Rac-1 FRET reporter and magenta for second harmonic generation 
(SHG) of collagen as well as the corresponding lifetime maps for each condition;    
scale bars: 50 µm. B Quantification of average lifetimes of individual cells inside the 
tumour mass, n = 3 mice per condition, 277 cells in total; columns: mean; bars: SEM; 
one way ANOVA, *** p < 0.001. C Survival curve of P-Rex1 KO mice, n = 71,    
Log-rank (Mantel-Cox) Test, ** p < 0.01 
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4.3.7 In vivo imaging reveals the ErbB2 breast cancer model 
displaying differential Rac-1 activation during disease 
progression and in specific compartments of the tumour 
microenvironment 
 

In order to look at progressing stages of ErbB2 breast cancer mice, primary 

tumour bearing mice were implanted with optical imaging windows. This revealed 

high Rac-1 activity in imaged hyperplasias, which was significantly reduced in solid 

mammary intra-epithelial neoplasia (MIN) stage of ErbB2 tumour progression    

(Figure 4.11 A+B). It is worth noting again, that the Rac-1 activity is still very high at 

the MIN stage, when compared to the native mammary epithelial tissue               

(Figure 4.11 vs Figure 4.10 mean ± SEM: carcinoma/metastasis: 1.75 ± 0.03 ns vs 

mammary: 2.10 ± 0.01 ns). 

 
 

 
 
Figure 4.11: Rac-1 activity decreases in progressing stages of ErbB2 driven 
breast cancer 
A Representative images of ErbB2 model expressing the Rac-1 FRET reporter during 
progressing stages including hyperplasia and solid mammary intra-epithelial neoplasia 
(MIN), with intensity image in green for the Rac-1 FRET reporter and magenta for 
second harmonic generation (SHG) of collagen I as well as the corresponding lifetime 
maps. B Quantification of average lifetimes of individual cells inside the ErbB2 
tumour mass at different stages of progression, n = 1 mouse, 60 cells in total;   
columns: mean; bars: SEM; Mann Whitney U test, ** p < 0.01; scale bars: 100 µm 
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Figure 4.12: Rac-1 activity is upregulated at the border of ErbB2 tumours and 
decreases away from the local tumour vasculature 
A Representative images of primary ErbB2 models expressing the Rac-1 FRET probe 
and implanted with CIWs were imaged in vivo, with intensity image in green for the 
Rac-1 FRET reporter and magenta for second harmonic generation (SHG) of collagen 
as well as the corresponding lifetime maps for both center and border regions.            
B Quantification of average lifetimes of individual cells inside the ErbB2 tumour mass 
at either center and borders regions, n = 4 mice per condition, 160 cells in total;    
Mann Whitney U test, **** p < 0.0001. C Representative image of the local tumour 
vasculature in red and corresponding lifetime map. D Quantification of the average 
fluorescent lifetime in 10 µm steps away from the local vasculature; n = 3 mice,       
168 cells in total; columns: mean; bars: SEM; Student t test, * p < 0.05, ** p < 0.01; 
scale bars: 100 µm 
 

 

 

A B 

C D 



115	
  

Further, evaluating Rac-1 activity in the MMTV-ErbB2 overexpressing tumour 

mice in the context of the local tumour microenvironment revealed significant 

upregulation of Rac-1 activity in the border regions as imaged in vivo                  

(Figure 4.12 A+B). In the context of the local vasculature Rac-1 decreased again 

steadily the further the cells were situated away from the closest vessel               

(Figure 4.12 C+D). 

 

 
 

4.3.8 Rac-1 activity is upregulated in KPC tumours with 
haploinsufficiency of P-Rex1 leading to reduced native 
tissue levels of activity 

 

Loss of Rac-1 has been shown to reduce the occurrence of tumours and early 

PanIN lesions in a KRasG12D driven PDAC model (Heid et al., 2011). We therefore 

wanted to determine whether Rac-1 signalling was upregulated in KPC tumours 

compared to the native pancreas tissue and whether the GEF, P-Rex1 had an influence 

on this activity. Rac-1 FRET mice were therefore crossed to the KPC model of PDAC 

and further with P-Rex1 KO mice. First and foremost this revealed that Rac-1 activity 

is indeed upregulated in primary PDAC compared to the native pancreas. Furthermore, 

heterozygous loss of P-Rex1 resulted in haploinsufficiency by showing a close to 

complete loss in Rac-1 activity in PDAC lesions. This activity was at basal           

levels, comparable to that of control pancreata (Figure 4.13 A+B, mean ± SEM:                 

WT: 2.03 ± 0.01 ns vs KPC + P-Rex1+/-: 2.00 ± 0.03 ns). 

No significant advantage or disadvantage in terms of survival became apparent, 

when comparing the KPC mice to the P-Rex1 heterozygous knock-out cohort       

(Figure 4.13 C). 
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Figure 4.13: Rac-1 activity is upregulated in KPC tumours and reduced upon 
haploinsufficiency of P-Rex1  
A Rac-1 FRET mice crossed with the KPC model and P-Rex1 KO mice, taken at 
clinical endpoint and imaged ex vivo, with intensity image in green for the Rac-1 
FRET reporter and magenta for second harmonic generation (SHG) of collagen as well 
as the corresponding lifetime maps for each condition; scale bars: 50 µm.                     
B Quantification of average lifetimes of individual cells inside the tumour mass, n = 3 
mice per condition, 744 cells in total; column: mean; bars: SEM; one way ANOVA, 
*** p < 0.001, C Survival curve of KPC mice vs P-Rex1+/- mice, n = 15,                   
Log-rank (Mantel-Cox) Test 
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4.3.9 Rac-1 upregulation in KPC tumours is dependent on 
mTRAIL-R expression in vitro and in vivo 
 

Overexpression of TRAIL and its receptor have been shown previously in 

human pancreatic cancer cell lines (Ozawa et al., 2001). Mice in turn only express a 

single TRAIL like receptor, mTRAIL-R (Wu et al., 1999). Here, we sought to 

determine, whether knock down (KD) of mTRAIL-R decreases the previously 

observed high activity of Rac-1 in KPC cells. 

To examine this, an EGFP/mRFP version of the Rac-1 Raichu FRET reporter 

was used (Figure 4.14 A). Stable KD PDAC cell lines, transduced with either a control 

vector (shCtr) or short-haiprin RNAs targeted toward   mTRAIL-R (sh23, sh25) were 

generated (Figure 4.14 B). These were subsequently transfected with the EGFP/mRFP 

Rac-1 FRET reporter and Rac-1 measured in vitro (Figure 4.14 C). This revealed that, 

particularly for sh25, stable knock down cells showed a reduction of Rac-1 activity 

(Figure 4.14 D). Furthermore, treatment of the shCtr PDAC cell line with recombinant 

receptor blocking protein mTRAIL-R-Fc, lead to a significant reduction in Rac-1 

activity, which was not observed in turn, when cells were treated with the vehicle 

(Figure 4.14 E). 

In order to see if the in vitro results would hold true in an in vivo setting,      

CD1-/- nude mice were subcutaneously injected with the stable KD cell lines and 

primary tumours allowed to develop. Optical imaging windows were subsequently 

implanted on top of the primary tumours and Rac-1 activity imaged in vivo         

(Figure 4.15 A). This revealed that both sh23 and sh25 had indeed an effect on 

reducing Rac-1 activity in the stable PDAC cell lines (Figure 4.15 B). Furthermore, to 

see if the blocking protein mTRAIL-R-Fc in mice bearing shCtr PDAC allograft 

tumours would result in inhibition of Rac-1 activity in vivo, tumour-bearing mice were 

treated by i.p. injections. This showed effective inhibition of Rac-1 activity in vivo 

after 1 hour of the injection being administered (Figure 4.15 D). This in turn was not 

observed when mice were treated with the PBS vehicle control (Figure 4.15 C). 
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Figure 4.14: Knock down of mTRAIL-R in PDAC cells as well as treatment with 
mTRAIL-R-Fc results in a reduction in Rac-1 activity in vitro 
A Schematic of the Rac-1 Raichu FRET reporter, expressing the fluorophore pair 
EGFP and mRFP. (adapted from Itoh et al. 2002). B Immunoblot for mTRAIL-R 
expression, with GAPDH as a control, in PDAC cells stably expressing a control 
shRNA (shCtr) or shRNAs for mTRAIL-R (sh23 and sh25). C Representative FLIM 
images of control and stable KD (sh23 and sh25) PDAC cells in vitro.                          
D Quantification of single cell Rac-1 activity before and after KD of mTRAIL-R        
in vitro, n = 3, 93 cells; Mann Whitney U test, ** p < 0.01, E PDAC shCtr expressing 
the Rac-1 FRET reporter treated with either PBS or the recombinant mTRAIL-R-Fc 
protein, with single cell Rac-1 activity quantified before, 2 and 4 hours after addition 
in vitro, n = 3, 182 cells; columns: mean; bars: SEM; Mann Whitney U test,                 
* p < 0.05, *** p < 0.001 
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Figure 4.15: Knock down of mTRAIL-R and treatment with mTRAIL-R-Fc leads 
to reduced Rac-1 activity in PDAC cells imaged through optical imaging windows 
in vivo 
A Representative images of PDAC cells expressing the Rac-FRET reporter and a 
control shRNA (shCtr) or a shRNA targeted toward mTRAIL-R (sh25) in an allograft 
tumour, implanted with optical skin imaging windows, with intensity image in green 
for the Rac-1 FRET reporter and magenta for second harmonic generation (SHG) of 
collagen I as well as the corresponding lifetime maps. B Quantification of single cell 
Rac-1 activity of PDAC cells stably expressing shCtr, sh23 or sh25 in vivo, 
respectively, n = 3 mice per condition, 389 cells. C Quantified single cell Rac-1 
activity in primary PDAC allograft tumours treated with an i.p. injection of PBS 
(vehicle), n = 3 mice per condition, 364 cells. D or the recombinant mTRAIL-R-Fc 
protein and imaged 1 hour post i.p., n = 3 mice per condition, 349 cells;             
column: mean; bars: SEM; Mann Whitney U test, * p < 0.05, **** p < 0.0001;           
scale bar: 50 µm 
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4.4  Discussion 
 

In this chapter the activity of Rac-1 in a variety of tissues and cancer mouse 

models was described, using the Rac-1 FRET mouse (Johnsson et al., 2014) on the 

basis of the Rac-1 Raichu FRET sensor (Itoh et al., 2002). 

In primary murine DCs Rac-1 was increasingly down-regulated in progressing 

days of differentiation (Figure 4.1 C). In a different immune cell population present in 

IBD, namely macrophages, Rac-1 and Rac-2 are dispensable for directional movement 

(Wheeler et al., 2006). Moreover, increased Rac-1 activity results in arrest of 

macrophage locomotion (Pagler et al., 2011), potentially trapping the cells at sites of 

chronic inflammation. A similar mechanism may occur in DCs deficient for 

autophagy, which have been shown to increase the adaptive immune response 

(Wildenberg et al., 2012). Here we have shown that inhibition of autophagy in these 

cells increased Rac-1 activity (Figure 4.1 E). Migration in primary DCs was        

further greatly reduced when autophagy was inhibited (Wildenberg M.,                          

personal communication, data not shown). Thiopurines, which are commonly used     

in the treatment of IBD, inhibit Rac-1 activity. They have previously been shown in 

macrophages to restore migration in trapped Rac-1 hyper-activated cells, by inhibiting 

that Rac-1 activity (Park et al., 2012). Thiopurines were therefore applied to 

autophagy reduced DCs and showed a reduction in Rac-1 activation levels as well 

(Wildenberg M., personal communication, data not shown). Rather than migration,       

it becomes clear that Rac-1 functions in these cell types in a different capacity.        

This could be for example as a regulator of the actin cytoskeleton track along which 

autophagosome trafficking inside the cells could occur. This has been described 

before, again in macrophages, where Rac-1 mediated actin remodelling is required the 

for recycling of endosome-mediated secretion of tumour necrosis factor (TNF)              

(Stanley et al., 2014). 

Upregulation of Rac-1 activity in breast cancer cells, conversely, has been 

established to drive invasion in an integrin dependent manner on collagen substrate 

(Keely et al., 1997). This is in line with our observation that Rac-1 activity was 

upregulated in PyMT cells on top of collagen I organotypic matrices compared to 2D 

culture on glass (Figure 4.3 B). Further, increasing depths penetrated by the PyMT 

cells was correlated to increased Rac-1 activity in these cells (Figure 4.4 C). This can 

be further attributed to the activation of Rac-1 in cells by serum (Ridley et al., 1992). 
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A gradient of serum has been proposed to exist across the organotypic matrices          

by diffusion of the serum from the bottom upward into the matrix                            

(Muinonen-Martin et al., 2014). Specifically growth factors contained in               

foetal bovine serum, such as transforming growth factor β (TGF-β), insulin-like 

growth factor (IGF) and insulin-like growth factor binding protein 2 (IGFBP2)   

(Zheng et al., 2006), amongst others, act on Rac-1 activation, cell motility and 

invasion (Wang et al., 2006a, 2006b; Zhao et al., 2011).  

A similar argument can be made for the observation of the reduction in Rac-1 

activity away from the local tumour vasculature (Figure 4.6 D and Figure 4.12 D). 

This would suggest that Rac-1 activity in both PyMT and ErbB2-driven primary 

carcinomas is dependent on growth factor diffusion away from local vessels.             

For PyMT mice a proteomic screen of the plasma identified, IFGBP2 and IGF, 

amongst others, to be upregulated (Pitteri et al., 2008). A further screen was conducted 

for the plasma of a doxycycline induced ErbB2 driven cancer model, which showed, 

amongst many others, IFGBP2 upregulated in the tumour bearing situation compared 

to wildtype controls (Schoenherr et al., 2011). Which growth factors play the 

dominant role in the tumour microenvironment, in terms of the tumour vasculature 

remains to be determined.  

Inhibition of Rac-1 activity in vitro showed that both EHT 1864                

(Shutes et al., 2007) and NSC 23766 (Gao et al., 2004) were able to actively reduce 

invasion on organotypic matrices (Figure 4.4 A). For EHT 1864, however,                

this activity may be linked to its negative effect on proliferation, rather than invasion, 

as shown by MTT assay. Rac-1/PAK1 signalling in turn has been shown to be 

disrupted by EHT 1864 treatment and further found to be essential in beast cancer cell 

proliferation and survival (Arias-Romero et al., 2010).  

The Rac-1 GEF P-Rex1 has previously been described to be overexpressed in 

human breast cancers (Hynes and Gattelli, 2011) and closely associated with the action 

of the ErbB2 receptor (Sosa et al., 2010). Furthermore, it has been related to PI3K 

regulating ERK signalling (Ebi et al., 2013). Moreover, in breast cancer cells loss of 

expression of P-Rex1 results in a reduction of invasiveness (Montero et al., 2011).       

It comes as no surprise then, that upon loss of P-Rex1 in the PyMT and ErbB2 

overexpressing mouse breast cancer models, Rac-1 activity was reduced. There are a 

variety of GEF associated with Rac-1 activity.  
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Here, loss of P-Rex1 indicates that this particular GEF plays the major role in 

regulating Rac-1 activity in the ErbB2 driven breast cancer model. This becomes 

apparent when looking at the fact that homozygous KO of P-Rex1 completely ablated 

Rac-1 activity in tumours.  

Furthermore, the fact that heterozygous KO lead to an almost dose-dependent 

reduction in Rac-1 signalling, halfway between the WT and complete KO situation, 

points toward P-Rex1 being the major regulator of Rac-1 activity in this tumour type. 

Further to the reduction of Rac-1 activity, a survival advantage in both PyMT and 

ErbB2 overexpressing mice was observed upon P-Rex1 KO. This is in line with a 

previous report, stating that loss of either P-Rex1 or Rac-1 signalling leads to a 

decrease in viability in breast cancer cells in vitro and in vivo (Dillon et al., 2015). 

Heightened Rac-1 activity was also observed in the KPC model, in line with 

previous reports that show a requirement of Rac-1 and its activity in the 

tumourigenesis and progression of PDAC tumours (Heid et al., 2011;                  

Razidlo et al., 2015). The Rac-1 GEF Vav1 has recently been further associated      

with pancreatic cancer metastasis. Here, we find that, in turn, the heterozygous loss of 

the Rac-1 GEF P-Rex1 reduces Rac-1 signalling in primary KPC tumours down to 

levels comparable to that of the native pancreas (Figure 4.13 B). This indicates a key 

role of this GEF in the control of Rac-1 activity in pancreatic cancer. An impact on 

survival in the KPC mice with heterozygous loss of P-Rex1 was not observed      

(Figure 4.13 C). As demonstrated previously, however, reduction in for example 

metastatic formation, which was not yet examined in detail here, does not confer a 

survival advantage in the KPC model (Morton et al., 2010b). Further examination of 

the invasive capability of PDAC cells lacking P-Rex1, however, still needs to be 

evaluated, to establish its role in pancreatic cancer cell migration and invasion. 

Taken together the data suggest that P-Rex1 plays a key role in regulating   

Rac-1 in these models of breast and pancreatic cancer. A small molecule inhibitor that 

hinders the GEF action of specifically P-Rex1, and none of the other GEFs, on Rac-1 

has been described previously. It would therefore be prudent in the future to examine, 

whether this inhibtior, 1A-116 (Cardama et al., 2014), would have an effect on 

reducing this elevated activity in vitro and in vivo in the PyMT, ErbB2 and KPC 

tumour models. 
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It appears counterintuitive that many cancers overexpress apoptosis       

inducing TRAIL-R receptors (Daniels et al., 2005; Ganten et al., 2009;                             

Macher-Goeppinger et al., 2009; Ozawa et al., 2001). In the case of pancreatic cancer, 

TRAIL-Rs have been shown to be overexpressed (Ozawa et al., 2001) and more 

specifically TRAIL-R2 expression has been found to promote tumour progression via  

non-apoptosis pathways (Haselmann et al., 2014). Furthermore, constitutive signalling 

from TRAIL-R2 increases invasion and promotes activation of the PI3K and Rac-1 

signalling axis (Von Karstedt et al., 2015). PI3K regulation of Rac-1 in turn has been 

found to be required for mutant KRas-induced PanIN formation (Wu et al., 2014).     

We have shown here, that Rac-1 activity is indeed dependent on mTRAIL-R 

expression in murine PDAC cells, the loss of which in a knockdown led to the 

reduction of Rac-1 activity both in vitro and in a allograft in vivo. 

Rac-1 in turn has been described as an important mediator of migration and 

invasion in several cell types (Sanz-Moreno et al., 2008; Yamazaki et al., 2009).         

In a model of pancreatic cancer, specific inhibition of the GEF Vav1 reduced Rac-1 

signalling and thus invasion and metastasis (Razidlo et al., 2015b). Finally, the 

absence of human TRAIL-R2 or systemic treatment with TRAIL-R2-Fc inhibited lung 

tumour growth and KPC liver metastasis (Egberts et al., 2008), pointing toward an 

active role of Rac-1 signalling in the migration and invasion of PDAC cells. Here, we 

have shown that systemic treatment of PDAC cells in vitro and by i.p. injection in vivo 

with the TRAIL receptor inhibitory protein, mTRAIL-R-Fc, effectively inhibited    

Rac-1 activity and thus potentially cell migration and invasion. 
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5 A RhoA-FRET mouse reveals tissue and 
disease specific RhoA activity in vivo 

	
  

5.1 Summary 
 

RhoA constitutes another GTPase with key roles in several types of cancer in 

terms of proliferation and migration. In this chapter, the generation of a RhoA-FRET 

biosensor mouse, which expresses the Raichu-RhoA reporter in either all tissues or 

under the regulation of tissue specific Cre-recombinases was described. RhoA activity 

was assessed in healthy and disease states of skin, intestinal, pancreatic and mammary 

tissues. The basal RhoA activity observed both in normal mammary tissue and ErbB2 

driven breast cancer was increased in the PyMT driven cancer model and effectively 

inhibited using dasatinib as observed using longitudinal imaging through cutaneous 

imaging windows. In vivo imaging using the abdominal imaging windows in turn 

allowed for the observation of RhoA activity in both the gut and the pancreas.      

There, RhoA activity was found to be decreased in progressing states of pancreatic 

cancer (PanINs) driven by mutant KRasG12D alone or in conjunction with mutant 

p53R172H. However, in the end stages of PDAC, RhoA activity was increased again, 

especially at the invasive edge of the tumour and in metastasis of the liver.      

Targeting Src with dasatinib and EGFR with erlotinib treatment was effective at 

indirectly RhoA activity. Both were monitored in vivo employing abdominal imaging 

windows.  
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5.2  Introduction 
 

It has been demonstrated that RhoA plays key roles in several aspects of cellular 

homeostasis, ranging from cell cycle progression, apoptosis, angiogenic factor 

secretion and cell motility (Karlsson et al., 2009). RhoA further plays a key role in 

regulating actomyosin contractility (Wheeler and Ridley, 2004). RhoA and Rac-1   

have been shown to be reciprocally active at the edge of moving cells            

(Machacek et al., 2009), as well as function during different modes of migration,    

with Rac-1 activity associated with mesenchymal migration and RhoA with amoeboid 

migration (Friedl and Alexander, 2011). RhoA acts on stimulating actin 

polymerization through the activation of diaphanous-related formins (DRFs),        

which in turn act in conjunction with ROCKs to mediate stress fiber formation                 

(Ridley et al., 2003). RhoA activity was also shown to be present at both protrusions 

and retractions of cells (O’Connor and Chen, 2013) and to be a key transforming 

factor in initial cancer formation as well as in metastatic processes (Ridley, 2004). 

RhoA activity has further been linked to metastasis in an invasive PDAC model in the 

presence of mutant p53R172H and shown to be active in both poles of invading cells     

in vivo (Timpson et al., 2011a). 

Because of these observed pleiotropic functions of RhoA, a RhoA-FRET mouse 

was generated and RhoA activity monitored in a variety of tissues in health and 

cancerous disease models. To validate in vitro findings in an in vivo setting is crucial, 

especially for GTPase signalling events. As shown previously, RhoA signalling in 

particular can be impacted by several factors of the microenvironment not encountered 

in in vitro culture. These can include in the tumour setting in particular, signalling 

from the tumour specific ECM (Provenzano and Keely, 2011), tumour-associated 

immune infiltrates such as macrophages (Roh-Johnson et al., 2014) or soluble factors 

such as hypoxia inducible factors and TGF-β (Gilkes et al., 2014;                

Papageorgis and Stylianopoulos, 2015). All in turn have been shown to activate RhoA 

signalling in cancer cells. This in turn could further impact therapeutic interventions 

targeting RhoA. To achieve this, abdominal imaging windows (AIWs) were used to 

examine RhoA activity in native pancreatic and intestinal tissue as well as primary 

tumours of the pancreas. 
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5.3  Results 

5.3.1 Generation of the RhoA-FRET mouse 
 

A conditional RhoA-FRET reporter mouse was made, in order to examine RhoA 

activity in a variety of native tissues and during stages of different cancerous lesions. 

To that end, a modified RhoA-Raichu probe (Yoshizaki et al., 2003b), was used, 

expressing the fluorophore pair EGFP and mRFP (Timpson et al., 2011a)            

(Figure 5.1 A). The reporter is modulated by the action of cellular GEFs and GAPs in 

a similar manner as the Rac-1 Raichu probe. Upon the binding of GTP of the reporter 

encoded RhoA facilitated by cellular GEFs, the Rho-binding domain (RDB) is bound 

and a FRET conformation assumed by the membrane tethered reporter. When GAPs 

act on the sensor, GTP is hydrolysed and the probe assumes an open confirmation,      

in which FRET is hampered. FRET was measured as before by employing FLIM and 

recording the lifetime of the EGFP donor. Visual representation of the data was 

achieved by using lifetime colour maps, with blue to green colours showing RhoA 

activity and yellow to red inactivity. 

The reporter headed by a lox-stop-lox (LSL) was targeted to the HPRT locus, as 

described previously, under the control of a CAGSA promoter (Bronson et al., 1996; 

Samuel et al., 2009; Schachtner et al., 2012). In order to allow for ubiquitous 

expression of the reporter in all tissues, the conditional mouse was crossed with an    

X-chromosomal Cre recombinase expressing mouse (Schwenk et al., 1995). This Cre 

was then later crossed out again. Indeed, the RhoA-FRET probe was detectable in a 

variety of tissues of interest such as the skin, intestine, pancreas and the liver,              

as detected by anti-GFP immunoblot, with an expected band at around 100 kDa 

(Figure 5.1 B).  

A concern that arises with Raichu-reporter FRET mice is possible side-effects on 

the levels of endogenous signalling when overexpressing the full-length GTPases 

contained in the probe. In a recent example, the Rac-1 FRET mouse generated showed 

that endogenous levels of Rac-1 were not altered to a great extent in mice ubiquitously 

expressing the Rac-1-Raichu FRET reporter (Johnsson et al., 2014). Tissues from the 

RhoA-FRET mouse were therefore isolated and subjected to immunoblot analysis 

probing for levels of endogenous and reporter-associated RhoA by staining with a 

monoclonal RhoA antibody.  
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There, endogenous RhoA levels, detected at around 23 kDa, were not 

significantly altered in the RhoA-FRET mice, when compared to littermate wild types. 

Transgenic RhoA contained in the Raichu FRET reporter, at an expected band of 

around 100 kDa, was detected in the tissues of interest as well (Figure 5.1 C). FLIM of 

the respective tissues was further acquired and example images displaying RhoA 

activity at the membranes in lifetime maps recorded (Figure 5.1 D). 
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Figure 5.1: Generation of the RhoA-FRET biosensor mouse  
A Schematic of the mode of action of Raichu-RhoA probe used in the generation of 
the transgenic mouse subject to the activation/inactivation of cellular GEFs/GAPs.       
B Expression levels of the RhoA-FRET probe as detected by α-GFP immunoblot after 
removal of the Lox-stop-Lox by deletor-Cre in different tissues of interest, the skin, 
intestine, pancreas and the liver. C Endogenous RhoA expression levels (~ 23 kDa) 
and that of the reporter at ~ 100 kDa). D Expression of the RhoA-FRET probe in skin, 
intestine, pancreas and liver shown in green, with second harmonic generation (SHG) 
of tissue collagen I in magenta and the corresponding lifetime maps of RhoA activity 
in these organs; scale bars: 50 µm 
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5.3.2 Rac-1 inhibition in melanocytes of embryonic skin 
explants can stimulate RhoA activity 

 

It has recently been demonstrated that RhoA is localized both to protrusions and 

retractions of cells (Pertz et al., 2006). Further, RhoA has been identified to have a 

role in the initial formation of such protrusions, followed by the more widely studied 

activation of Rac-1 and Cdc42 (Machacek et al., 2009). It has been shown that loss of 

Rac-1 in the melanocyte lineage leads to a reduction in the formation of active 

protrusions in melanocytes in embryonic skin explants (Li et al., 2011) (Figure 5.2 A) 

and that strong Rac-1 activity can further antagonize RhoA activation                 

(Sander et al., 1999; Nimnual et al., 2003).  

First, the activity of RhoA in melanocytes was analysed by expressing the 

RhoA-FRET reporter with Tyr-CreB (Delmas et al., 2003) and isolating the 

embryonic skin at E14.5 - E15.5 (Figure 5.2 B). To see whether Rac-1 inhibition 

indeed leads to an increase in RhoA activity, embryonic skin explants were treated 

with the Rac-1 inhibitors EHT 1864 and NSC 23766. A significant activation of RhoA 

in the melanocytes was recorded following the treatment of the embryonic skin 

explants (mean ± SEM = 2.02 ± 0.01 ns) with Rac-1 inhibitors 75 µM of EHT 1864 

(mean ± SEM = 1.90± 0.01 ns) and 100 µM of NSC 23766 (mean ± SEM = 1.86 ± 

0.01 ns), with NSC 23766 being slightly more potent than EHT 1864 (Figure 5.2 C). 
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Figure 5.2: RhoA activity in E14.5 – E15.5 embryonic skin explants  
A Schematic representation of the isolation of dorsal skin of E14.5 – E15.5 day old 
embryos (adapted from Servier Medical Art) and preparation of the ex vivo imaging 
set up, with the skin placed in a Lumox culture dish® with the epidermal side in 
contact with the gas permeable membrane and immobilized by matrigel. B Tyr-Cre-B 
expression of the RhoA-FRET sensor in melanocytes, revealing activated RhoA in the 
FLIM images; scale bar: 100 µm. C Treatment of the embryonic skin explants with the 
Rac-1 inhibitors EHT 1864 and NSC 23766, resulting in significantly increased RhoA 
activity in melanocytes; box: mean; bars: min-max values; n = 3 embryos of                     
2 independent matings for each condition; cell number below each condition;           
*** p<0.001 by one-way ANOVA; scale bars: 20 µm 
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5.3.3 PyMT but not ErbB2 driven breast cancer increases 
basal RhoA activity 

 

In order to explore a possible role of RhoA activation in different types of 

mammary cancer, the RhoA FRET mouse was crossed with the ErbB2/Her2 receptor 

overexpressor (Guy et al., 1992a) as well as the PyMT driven breast cancer model 

(Guy et al., 1992b) (Figure 5.3 A). Previous reports show that there is only basal 

RhoA activity in Her2 overexpressing cancer cell lines (Novitskaya et al., 2014).        

In agreement with this we found that RhoA activity remained basal in normal 

mammary glands (mean ± SEM = 2.08 ± 0.02 ns) and in the presence of Her2 

overexpression (mean ± SEM = 2.09 ± 0.01 ns). However, expression of the PyMT    

led to significant up-regulation of RhoA activity in PyMT breast cancer mice            

(Figure 5.3 B, mean ± SEM = 1.83 ± 0.01 ns). 

 

 
 
Figure 5.3: Mammary tissue displays differential RhoA activity in different 
disease states  
A There was basal RhoA activity observed in virgin mammary tissue as well as     
Her2-driven tumours, however, observed elevated RhoA activity in PyMT-driven 
mammary tumours and quantified in B, n = 3 mice, 270 cells; columns: mean;        
bars: SEM; *** p<0.001 by one-way ANOVA; scale bars: 50 µm 
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5.3.4 RhoA activation in PyMT breast cancer displays effective 
inhibition over time by dasatinib in live imaged lesions 

 

In order to see whether the RhoA activity observed in PyMT expressing mice 

could be effectively inhibited in vivo over time, the RhoA FRET reporter was 

expressed in the mammary ductal cells by MMTV-Cre (Guy et al., 1992a) and crossed 

to the PyMT model. To induce the MMTV-Cre, mice were put through 1-2 rounds of 

pregnancy and a primary PyMT tumour was allowed to develop. On top of such a 

tumour, the optical imaging window (Ritsma et al., 2013) was implanted into the skin 

and mice allowed to recover after surgery for 1 day. Mice were then gavaged with a 

previously established inhibitory concentration of 10 mg/kg of the Src inhibitor 

dasatinib (Morton et al., 2010b), which in turn has been shown previously to indirectly 

inhibit the activity of RhoA (Timpson et al., 2011a). RhoA activity was effectively 

inhibited after 2 hours of the gavage being administered and remained in an inactive 

state at 6 hours. After 24 hours of the mouse being gavaged for the first time, RhoA 

activity returned back to initial values (Figure 5.4 B). 
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Figure 5.4: Elevated RhoA activity in PyMT can be effectively inhibited over time 
period of 6 hours by dasatinib treatment 
A Live timecourse after the last of 3 daily oral gavages of 10 mg/kg dasatinib in vivo 
in a primary PyMT tumour imaged through skin imaging window, showing effective 
inhibition of RhoA after 2 h and 6 h, leveling off to initially detected RhoA activity 
after 24h after last treatment, quantified in B; n = 1 mouse, 100 cells; columns: mean; 
bars: SEM; ** p<0.01 by one-way ANOVA; scale bars: 100 µm 
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5.3.5 Live imaging of RhoA in the intestinal crypt reveals 
activity is governed by the 3D environment 

 

Higher RhoA activity has previously been shown in undifferentiated intestinal 

crypt cells in conjunction with expression of α8β1 integrins. In turn, when α8 was 

knocked down, more differentiated villus cells as well as lower RhoA activity were 

observed (Benoit et al., 2009). Furthermore, the LGR5+ stem cell compartment marker 

has previously been shown to extend between 10 and 40 µm up from the base of 

intestinal crypts. This bottom in turn was marked by a pronounced SHG signal of the 

underlying dense irregular layer of connective tissue (Roth et al., 2012). 

To examine whether this reported RhoA activity could indeed be visualized in 

vivo using the RhoA reporter mouse, abdominal imaging windows were surgically 

implanted in the abdominal wall as described previously (Ritsma et al., 2012, 2013) 

(Figure 5.5 A). The activity of RhoA along the crypt-villus axis was imaged in vivo 

starting at the first cells observed (0 µm), which were about 10 µm above the dense 

irregular connective tissues’ SHG signal, up to 30 µm into the crypt (Figure 5.5 B). 

Quantification of the RhoA-FRET signal revealed a gradient of RhoA activity,     

which was at its maximum at the crypt base and decreased to basal levels at about      

30 µm in (Figure 5.5 C). 
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Figure 5.5: RhoA activity in the intestine is spatially confined to the base of the 
crypts  
A Schematic of the surgical implantation of abdominal imaging windows (AIWs) for 
the live in vivo imaging of RhoA activity in organs of the peritoneal cavity and a 
schematic of in vivo imaging of intestinal crypts through abdominal imaging windows 
(adapted from Ristma et al. 2012 and Servier Medical Art). B Live in vivo imaging of 
RhoA activity in crypts of the duodenum, revealing spatial distinct RhoA activity 
reduction with the progression toward the villi away from the base of the crypts and 
the quantification thereof in C; columns: mean; bars: SEM; * p < 0.05, *** p < 0.001 
by unpaired Student t test; scale bars: 100 µm 

A 

B 0 µm  10 µm  20 µm  30 µm  
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5.3.6 RhoA activity can be effectively inhibited ex vivo in the 
pancreas and is decreased in pre-cancerous lesions 

 

RhoA activity has further been associated with a variety of tissues, such as the 

pancreas. There, RhoA has previously been associated with active insulin secretion     

in islet-like aggregate culture in vitro (Liu et al., 2014). To look at RhoA activity        

in the pancreas the RhoA-FRET reporter was expressed under the Pdx1-Cre           

(Hingorani et al., 2003), as confirmed by anti-GFP and anti-RFP IHC (Figure 5.6 A). 

FLIM-FRET imaging of the ex vivo excised pancreata revealed high levels of RhoA 

activity, which was effectively inhibited by gavaging the mice beforehand with          

10 mg/kg of dasatinib (Figure 5.6 B).  

To look at progressive stages of PDAC, the RhoA-FRET mouse was crossed to 

the KC (Pdx1-Cre + KRasG12D) and the KPC (Pdx1-Cre + KRasG12D + p53R172H) 

models. RhoA activity was decreased in consecutive PanIN stages in both KC and 

KPC tumours (Figure 5.6 C+D). Normal ducts displayed an activity of 1.85 ± 0.02 ns 

(mean ± SEM). In both KC and KPC similar values in PanIN-1 (mean ± SEM:          

KC = 1.94 ± 0.003 ns vs KPC = 1.93 ± 0.02 ns) and PanIN-2 (mean ± SEM:             

KC = 2.00 ± 0.004 ns vs KPC = 2.08 ± 0.01 ns) were observed. Complete RhoA 

inactivity was observed in PDAC, solely driven by KRasG12D (mean ± SEM =          

2.11 ± 0.005) ns. 
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Figure 5.6: RhoA activity in the pancreas is decreased upon dasatinib treatment 
as well as in progressive stages of of KC and KPC 
A IHC of the pancreas and KPC tumours stained with GFP and RFP antibodies 
respectively. B Pancreata of mice treated with 3 daily oral gavages of 10 mg/kg of 
dasatinib, displaying decreased RhoA activity after treatment; n = 3 mice per treatment 
group, and a total of 540 analysed. C RhoA activity in KC (KRasG12D) PanIN stages 
and PDAC; n = 4 mice per stage, 200 cells, scale bars: 100 µm. D RhoA activity 
during the progression of KPC (KRasG12D + p53R172H) tumours arising from the 
pancreatic ductal cells forming PanIN 1 and PanIN 2 stages; n = 3 mice per tumour 
stage, 274 cells; columns: mean; bars: SEM; *** p < 0.001, **** p < 0.0001 by 
unpaired Student t test and one-way ANOVA respectively; scale bars: 50 µm 
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5.3.7 KPC tumours exhibit distinct RhoA activation at the 
invasive edge and in metastatic sites of the liver 

 

It was recently shown that KPC derived PDAC cells stably transfected with the 

RhoA-FRET reporter display a spatial activation in terms of RhoA in a subcutaneous 

allograft environment (Timpson et al., 2011a). This activity was further established to 

be dependent on the presence of mutant p53 (p53R172H). The offspring of KPC crossed 

with the RhoA-FRET reporter mice, were therefore left to develop primary tumours 

and these imaged ex vivo for RhoA activity. This revealed, when comparing the 

tumour centres with their cortices, significantly up-regulated RhoA activity at the 

invasive borders (Figure 5.7 A). Furthermore, the large metastatic lesions of the liver 

in end stage tumour bearing mice were examined, which could easily be seen by eye             

(Figure 5.7 B). These also showed significantly increased RhoA activity when 

compared to the overall primary tumour mass (Figure 5.7 C). Hepatocytes, however, 

also expressed the RhoA FRET reporter, due to the leakiness of the Pdx1-Cre.      

These were distinguished from the metastatic tissue by simple bright field microscopy 

of the liver tissue, as well as the shape and size of the cells, and the disorganized 

collagen I structure visualized by second harmonic generation (SHG) (Figure 5.7 C, 

frizzled collagen I fibres in the normal liver versus long straight collagen I fibres 

associated with cancerous tissue). 
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Figure 5.7: RhoA activity is increased at the border of KPC tumours and liver 
metastasis ex vivo 
A Quantification of RhoA activity in late stage KPC tumours comparing the tumour 
center with border regions; n = 3 mice, 148 cells. B Picture of a liver metastasis.          
C Comparison of the RhoA activity in primary PDAC with that of liver          
metastasis and hepatocytes; n = 3 mice, 94 cells; columns: mean; bars: SEM;               
* p < 0.05, **** p < 0.0001 by unpaired Student t test; scale bars: 100 µm 
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5.3.8 RhoA activity can be imaged reliably in the pancreas and 
pancreatic cancer in vivo 

 

There are several limitations encountered when imaging excised tissue ex vivo, 

including amongst others limited temporal viability of the sample. An additional 

problem is that only a single time point can be examined for individual samples. 

Construction of a time course thus requires use of multiple experimental animals, the 

comparison of which constitutes a source of unnecessary biological noise in the final 

read-out. Surgical engraftment of abdominal optical imaging windows is a way to 

circumvent this problem (Ritsma et al., 2012, 2013) (Figure 5.8 A). First, native 

pancreata were examined before and after treatment with 3 daily oral gavages of        

10 mg/kg of dasatinib, which revealed the effective inhibition of RhoA activity in vivo 

(Figure 5.8 B, mean ± SEM: control = 1.75 ± 0.006 ns versus dasatinib = 1.82 ±      

0.004 ns). RhoA activity was further found to be reduced, as observed ex vivo,            

in primary cancerous ductal cells. However, the surrounding untransformed acinar 

cells still displayed unaltered native RhoA signalling as observed before (Figure 5.8 B 

control: mean ± SEM = 1.75 ± 0.006 ns, versus Figure 5.8 C, acinar: mean ± SEM = 

1.76 ± 0.01 ns). 
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Figure 5.8: RhoA activity can be imaged in vivo in the pancreas and KPC 
tumours using AIWs  
A Schematic of imaging performed on either native pancreas or primary KPC tumours 
through optical windows implanted in the abdominal wall (adapted from Servier 
Medical Art). B Quantification of RhoA activity in the pancreas before and after 
treatment with 3 daily oral gavages of 10 mg/kg dasatinib; n = 3 mice per treatment 
group, 1165 cells. C Comparison of the RhoA activity in ductal adenocarcinoma cells 
with remaining acinar cells; n = 3 mice, 293 cells; columns: mean; bars: SEM;        
**** p < 0.0001 by Mann-Whitney U test; scale bars: 100 µm 
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5.3.9 In vivo pharmacodynamics reveal different temporal 
dynamics of dasatinib and erlotinib in live imaged KPC 
tumours 

 

Expanding on previous studies employing longitudinal imaging to monitor drug-

targeting response in subcutaneous allograft tumours in vivo, primary KPC tumours, 

endogenously expressing the RhoA-FRET reporter, were allowed to develop and 

AIWs surgically implanted in the peritoneal wall. Mice were treated with 3 daily 

gavages of dasatinib and RhoA activity monitored before the last gavage was 

administered and at 3 h, 7 h and 24 hours afterwards (Figure 5.9 A). The baseline of 

RhoA activity was the same before the treatment regimen was started compared to the 

control time point on the day of the last gavage (Figure 5.9 B). Following the final 

treatment with dasatinib RhoA activity did not change at 3 hours, however, at 7 hours 

RhoA activity was effectively inhibited. By 24 hours, dasatinib appeared to be 

completely cleared from the primary tumour mass, with the RhoA-FRET FLIM      

read-out having returned to control values (Figure 5.9 B). 

Another important therapeutic target in KRas driven pancreatic cancer has been 

as previously identified, the epidermal growth factor receptor (EGFR)                 

(Navas et al., 2012). The EGFR has been previously targeted effectively in vivo by 

using the ATP competitive kinase inhibitor gefitinib (Mohammed et al., 2010b).    

Here, a second generation EGFR tyrosine kinase inhibitor, erlotinib, was administered 

by a single gavage of 100 mg/kg (Cufí et al., 2013) to mice with developed primary 

KPC tumours, bearing abdominal AIWs (Figure 5.9 C). RhoA activity was effectively 

inhibited after 3 hours and cleared to a similar extent as dasatinib after 24 hours of 

being administered (Figure 5.9 D). 
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Figure 5.9: In vivo FLIM-FRET through AIWs reveals RhoA activity in KPC 
tumours is effectively inhibited by dasatinib and erlotinib in a temporal manner 
A Live time course after the last of 3 daily oral gavages of 10 mg/kg dasatinib in vivo 
in a primary KPC tumour, showing effective inhibition of RhoA after 7 h, quantified 
in B, n = 3 mice, 351 cells, *** p<0.001 by one-way ANOVA. C Live time course 
after the last of 3 daily oral gavages of 100 mg/kg erlotinib in vivo in primary KPC 
tumours, showing effective inhibition of RhoA after 3 h, quantified in D; n = 3 mice, 
90 cells; columns: mean; bars: SEM; **** p < 0.0001 by Mann-Whitney U test;      
scale bars: 100 µm 
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5.4 Discussion 
 

Observing cellular signalling events on a time-resolved level and with high 

fidelity in vivo, is a major challenge in cancer biology. This holds true especially for 

GTPases, the activity of which are difficult to assess by conventional biochemical 

methods, due to the fast rates of GTP hydrolysis in samples extracted from cells and 

tissues. Here, we described a RhoA-FRET biosensor mouse based on a RhoA-FRET 

reporter described previously (Yoshizaki et al., 2003b). This mouse was then used to 

report on RhoA activity in a variety of tissues. Further crossing of the RhoA-FRET 

biosensor mouse to different models of cancer revealed the dynamics of RhoA 

signalling during different stages of cancerous lesions as well as its use as a tool to 

monitor drug-targeting efficiencies in vivo. Homozygous RhoA-FRET reporter mice, 

expressing the probe in all tissues, were healthy, fertile, exhibited no behavioural 

defects and followed the expected Mendelian ratio of hereditary transmission. 

Immunoblotting for GFP and RhoA, revealed effective expression in all examined 

tissues and no significant alteration of endogenous RhoA levels in the FRET-reporter 

mice, compared to littermate WT controls (Figure 5.1 B + C). A similar observation 

was made for the previous Rac-1 Raichu-FRET reporter expressing mouse, in terms of 

possible alterations of endogenous GTPase expression following the transgenic 

induction of a FRET reporter in tissues (Johnsson et al., 2014). We observed different 

basal levels of RhoA activity in the native skin and intestinal as well as higher RhoA 

activity in the pancreas and liver. This is not surprising and can most likely be 

attributed to differential expression of RhoA GEFs and GAPs in these respective 

native tissues.  

Especially in the pancreas, the high level of RhoA acitivity observed seems 

contradictory with the high expression levels of GDP-dissociation inhibitor RhoGDIγ 

recorded previously in this organ (Adra et al., 1997). This in turn must then be 

outweighed by an, until now, unidentified GEF counteracting the activities of the 

RhoGDI via extracellular signalling through two possible routes, previously described 

in pancreatic acinar cells. The first is via the insulin-like growth factor receptor IGFR 

and the leukemia-associated Rho-GEF LARG (Taya et al., 2001). RhoA signalling has 

further been previously associated with cholecystokinin (CCK) stimulation of 

pancreatic acini and their subsequent secretion of amylases (Nozu et al., 1999) and 

cytoskeletal changes in morphology (Kiehne et al., 2002; Bi and Williams, 2005;                 
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Bi et al., 2005). Therefore, the second possibility is signalling through CKK, which 

can activate RhoA via Gα13 and the p115-Rho guanine nucleotide exchange factor 

(Sabbatini et al., 2010).  

Down-regulation of these signalling cues, in turn, could account for the observed 

decrease in RhoA activity in progressive stages of PDAC either in the presence of 

KRasG12D mutation alone or in conjunction with mutant p53R172H. We have previously 

observed that RhoA activity was indeed upregulated in invasive PDAC cells in a 3D 

environment in a subcutaneous allograft and in conjunction with p53R172H       

(Timpson et al., 2011a). These observations were further confirmed here, by showing 

elevated RhoA activity at the borders of primary KPC tumours and in liver metastasis.  

The detected high RhoA activity in the liver seen by FLIM-FRET imaging      

was described previously in isolated primary cultures of rat hepatocytes                     

(Dohda et al., 2004). Furthermore, the activity of RhoA and its downstream effector 

ROCK I has been associated with high density lipoprotein (HDL) endocytosis             

in hepatocytes via the P2Y13 purinergic ADP-receptor (Malaval et al., 2009).               

This demonstrates a key metabolic function of RhoA activity in reverse cholesterol 

transport (RCT), in which HDLs act as carriers in transferring cholesterol form 

peripheral tissue to the liver for degradation. The RhoA-FRET mouse could therefore 

be used in the future to study RhoA signalling in the liver and its impact in metabolism 

or hepatocellular cancer. 

In the skin in turn, it has been previously been shown that RhoA activity is 

dispensable for the development of the epidermis and maintenance of adherence 

junctions in vivo (Jackson et al., 2011), as mirrored by the basal activity detected in 

the adult RhoA-FRET mouse. However, RhoA activity was observed in protrusions of 

melanocytes in embryonic skin explants. Furthermore, the overall activity in 

melanocytes was increased by inhibiting Rac-1, which has previously been shown to 

be essential in the formation of protrusions in melanocytes (Li et al., 2011). 

RhoA activity was found to be basal in both the native mammary tissue as well 

as in the ErbB2 amplified breast cancer mouse model, which is in line with the 

findings that show that ErbB2 overexpressing cell lines display low RhoA activity 

(Novitskaya et al., 2014). The elevated RhoA activity in ex vivo and in vivo in 

MMTV-PyMT driven tumours (see Figure 5.3B and Figure 5.4 B) could be attributed 

to several signalling cues described previously.  
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First and foremost it has been shown that KISS1 receptor (GPR54), through its 

ligands kisspeptins, regulates tumourigenesis in the PyMT model by activation of 

RhoA via the p63RhoGEF. Loss of this receptor in turn led to downregulation             

of RhoA activity and late onset of tumourigenesis in the PyMT model                        

(Cho et al., 2011b). Another regulator of RhoA activity, that has been identified was 

the tetraspanin CD151, which acts through α3β1 integrins as described previously 

(Johnson et al., 2009; Novitskaya et al., 2014). It was further shown that upon loss of 

CD151, PyMT tumourigenesis was reduced, by near significant reduction in tumour 

onset, as well as significant reduction in tumour sizes and numbers of lesions.       

RhoA activity was, however, not directly assessed in this context (Roselli et al., 2014). 

The PyMT mouse model most closely resembles luminal metastasising breast cancers. 

In conclusion, direct or indirect targeting of the RhoA signalling axis therefore could 

constitute a viable therapeutic approach in treating this breast cancer subtype           

(Vargo-Gogola and Rosen, 2007).  

In the intestinal crypts, RhoA activity was found to be spatially regulated.    

While previous reports show that in this highly proliferative zone (Roth et al., 2012) 

RhoA is linked to expression of α8β1 integrins (Benoit et al., 2009), the spatial 

distribution of RhoA activity visualized by in vivo imaging on a single cell level, could 

not have been achieved with such fidelity by conventional methods such as IHC or IF. 

This is in no small part due to the volatile nature of GTPase activity, which can be 

easily lost by fixing procedures leading to false readouts during the conventional 

biochemical processing of cells, and even more problematically, in whole tissues.      

By eliminating the need to excise and stain tissues, in vivo imaging can provide the 

necessary bridge when trying to observe and monitor these signals in a temporal and 

spatial manner in a live setting.  

Another important advantage of in vivo imaging is demonstrated by the detected 

difference in RhoA signalling in ex vivo and in vivo imaged pancreatic tissue      

(Figure 5.8 B, control in vivo: mean ± SEM = 1.75 ± 0.01 ns, versus Figure 5.6 B, 

control ex vivo: mean ± SEM = 1.84 ± 0.02 ns). This observation further shows the 

need for in vivo imaging in maintaining the signalling events occurring in the native   

in vivo setting, especially in longitudinal monitoring of GTPase activity. This was 

finally achieved in full genetic primary KPC tumours and allowed for more accurate 

treatment response prediction than previously possible.  
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It showed, that unlike previously thought, oral gavages of dasatinib treatment did 

not achieve optimal inhibition in primary KPC tumours after 3 hours of the last gavage 

being administered, but rather after 7 hours. Further, an additive effect of dosing the 

mice with 3 daily gavages of dasatinib, rather than a singular treatment, was not 

observed. There, it was indeed possible to compare RhoA activity before the treatment 

regimen had commenced and before the final gavages had been administered            

(Figure 5.9 B). This detailed knowledge, on when drug inhibition is maximal and for 

how long, can be applied in the tailoring of more effective future treatment regimens. 

This in turn will allow for a more precise pre-clinical assessment of drug targeting 

efficacy in full genetically engineered mouse models and potentially optimize drug 

targeting in an in vivo setting, possibly reducing drug attrition rates in human clinical 

trials. 
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6 General Discussion 
6.1 Summary 
 

In this thesis I have described the use of FLIM-FRET imaging in the           

spatio-temporal monitoring of drug targeting in both allograft tumours and GEM 

models of mammary and pancreatic tumours. Different tumour microenvironmental 

cues, such as location within the tumour distance to the local vasculature, and their 

influence on signalling of Src, Rac-1 and RhoA were examined. Furthermore, the use 

of FRET-biosensor mice of the GTPases Rac-1 and RhoA were examined in the 

context of a variety of tissues as well as pancreatic and mammary tumour models.   

The successful utility of cutaneous and peritoneal imaging windows in monitoring 

tumour progression and treatment was additionally shown. In conclusion, these results 

demonstrate that FLIM-FRET imaging adds a new dimension to drug response readout 

in vivo, not achieved previously by other techniques. The FLIM readout further 

showed high fidelity, reproducibility and the potential applicability to a large range of 

models and proteins of interest. 
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6.2 In vivo imaging and FLIM-FRET biosensor 
 

The application of in vivo imaging has recently provided unprecedented insight 

into several aspects of tumour progression and treatment. In vivo imaging has for 

example revealed clonal expansion dynamics of cancer stem cells using the confetti 

construct to be able to track single cell clones and their fates. The cutaneous imaging 

windows allowed for longitudinal monitoring of cancer stem cell fate upon 

differentiation in the PyMT model (Zomer et al., 2013). Furthermore, using abdominal 

imaging windows, a similar approach was used employing the confetti construct in the 

LGR5+ stem cell compartment to track cell linages in intestinal crypt over time in vivo       

(Ritsma et al., 2014). 

The application of FRET reporters has been explored previously as well to 

examine cancer dynamics and treatment responses. An example of a FRET-reporter 

mouse described previously constitutes the Erk-FRET mouse which has been used for 

the analysis of Erk activity in the MMTV-ErbB2 overexpressing breast cancer tumour 

model (Kumagai et al., 2015). Intravital FLIM-FRET has further been used to monitor 

chemotherapeutic response in xenograft tumours using in vivo imaging windows 

(Janssen et al., 2013). 

Expression of FRET-reporter has been suggested to potentially lead to a 

perturbation of signalling pathways within the transfected cells. Overexpression of the 

e.g. full length and functional GTPases contained in FRET-reporters could lead to an 

alteration in their respective signalling. This in turn could lead to upregulation of their 

usual cellular functions and thus alter their innate responses, especially in cancer.       

It has been shown that overexpression of GTPases such as RhoA can for example lead 

malignant transformation of native mammary cells (Zhao et al., 2009). 

As shown before in the Rac-1 biosensor mouse (Johnsson et al., 2014), 

ubiquitous expression of the FRET-reporter resulted in negligible expression 

alterations in the amount of cellular Rac-1 levels as detected by immunoblot. Here, we 

have shown a similar trend in the RhoA mouse. The ubiquitous expression of the 

RhoA reporter in tissues did not markedly alter the levels of endogenous RhoA in the 

tissues analysed (Figure 5.1 C).  

The use of in vivo imaging techniques employing optical windows was further 

crucial in maintaining native GTPase signalling events, which were decreased over 

time when tissue was excised (Figure 5.8 B, control in vivo: mean ± SEM = 1.75 ± 
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0.01 ns, versus Figure 5.6 B, control ex vivo: mean ± SEM = 1.84 ± 0.02 ns).   

Assaying GTPase activity by conventional biochemical methods does not confer the 

same fidelity and often results in a rather poor read-out. Especially transient activation 

events may be lost during fixation steps due to the activity of cellular GAPs.           

Live tissue imaging furthermore prevents the possibility of preservation artefacts. 

Such staining artefacts observed in fixed tissue following e.g. IHC or IF can further be 

avoided, with genetically expressed biosensors representing a more specific readout of 

activity than can be achieved by secondary staining with e.g. antibodies. 

 

The use of different FRET reporters could further improve the spatial read-out of 

protein activity in the future. The use of membrane cycling reporters could constitute a 

real alternative to the reporters described here, due to their ability to cycle on and off 

the membrane and thus allowing for more native spatially defined readouts on Src or 

GTPase activity in cells. The insertion of the fluorescent protein between the GTPase 

and the membrane tether (Figure 1.6 B+C) inhibits dissociation of the inactive        

form from the membrane. This insertion further blocks the association of the      

GTPase with GDIs, which would sequester inactive forms in the cytoplasm                  

(Hoffman et al., 2000). However, they still require optimization in several aspects as 

described below. 

The Src merobody biosensor comprises a fibronectin monobody able to bind to 

the SH3 domain of activated Src, a conjugated merocyanine dye, with reduced 

fluorescence upon hydrophobic pocket binding near the variable region of the 

monobody and fused cerulean on the opposite end (Figure 6.1 A). The probe directly 

reports on the action of Src on the membrane following stimuli, due to the membrane 

targeting of Src upon activation. Upon binding of the variable region of the monobody 

to the exposed SH3 domain of activated SFKs, the fluorescence of the merocynanine 

dye 53 increases, resulting in a change in ratiometric output of the dye and Cerulean 

fluoresence (Gulyani et al., 2011). Introducing a FRET pair of fluorophores could 

greatly enhance the utility of this biosensor in a live cell imaging system, as the sensor 

as is has to be injected into cells, after dye labelling. Using a permutated version of 

Venus has been done, but requires more characterization for FRET optimization. 
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To track GTPase activity in different subcellular contexts, the fluorescent 

activation reporters (FLAREs) were conceived and characterized previously      

(Kraynov et al., 2000; Machacek et al., 2009). They function in a similar manner as 

the Raichu reporters used here, with the difference that they constitute bi-molecular 

reporters that are not initially membrane tethered (Figure 6.1 B+C). A problem with 

the CAAX box motif is that, the Raichu reporters are unresponsive to RhoGDI 

inhibition (Itoh et al., 2002). In the FLARE reporter constructs, the membrane 

localization following GTP exchange on the donor fluorophore tagged GTPases is 

conserved. Once GTP bound and membrane localized, they again bind their respective 

responsive fragment tagged with the acceptor fluorophore, resulting in FRET.       

GAPs are once again able to revert this action, leading to GDI binding of the probes 

and disassociation from the membrane. A main problem with these probes, however, 

remains the expression of both parts of the reporter at equal levels within the cell,       

in order to avoid possible false positive/negative read outs of activity. This in turn can 

complicate the analysis and interpretation of data obtained. 
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Figure 6.1: Schematic of Src and RhoGTPase biosensors as described by Hahn 
and colleagues 
A A fibronectin monodoy binding to the SH3 domain of activated Src was conjugated 
to Cerulean and the merocyanine dye 53 on opposite ends. Fluorescence of the dye is 
decreased in association with the monobody and upon binding of the exposed SH3 
domain of Src, fluorescence increases, changing the ratiometric readout between the 
mero53 and Cerulean (Gulyani et al., 2011). B + C Fluorescent activation reporter 
(FLARE) biosensors for Rac-1 and RhoA have been described by tethering YPet to 
full length Rac-1/RhoA and ECFP to a fragment the Pak1 binding domain (PDB) 
(Kraynov et al., 2000) and the RhoA binding domain of Rhotekin (RDB)               
(Pertz et al., 2006). The probes can cycle on and off the membrane in accordance to 
their activation status, with FRET occurring in the active state (adapted from 
Machacek et al. 2009). 
 

 

 

 

 



153	
  

6.3 In vivo pharmacodynamics 
 

Using in vivo imaging in the native tumour setting can provide a powerful tool in 

order to more precisely monitor longitudinal and spatially drug treatment responses. 

This has been demonstrated previously by the use of intravital imaging to track the 

chemotherapeutic response of PyMT mice to doxorubicin. Doxorubicin itself displays 

fluorescence under 480 nm excitation, allowing for it to be tracked by imaging in vivo 

(Nakasone et al., 2012). Further, depletion of macrophages in this tumour model and 

its impact on therapeutic outcome was monitored by intravital imaging as well   

(Lohela et al., 2014). Expanding on previous studies, this has allowed for the 

monitoring of drug responses in vivo over time and in spatial contexts. This in turn is 

necessary when considering that several factors of the tumour microenvironment can 

contribute to reduced drug responses (Dittmer and Leyh, 2015). Among them are the 

ECM, stromal cells and immune infiltrating cells, which can contribute to drug 

resistance mechanisms. Using intravital imaging in monitoring the targeting of also 

stromal compartments as described before, could help to improve the efficacy of the 

primary drug treatments in vivo. This was done for example by treatment of tumour 

bearing mice with angiotensin, reducing collagen and hyaluronin deposition in the 

tumours and allowing for increased vascular perfusion und drug influx            

(Chauhan et al., 2013). 

Here, we have shown that in vivo imaging can be achieved in conjunction with a 

mechanistic read-out of protein activity, combining FLIM-FRET and optical windows. 

This is especially useful, as it clearly mirrors a drug capability of reaching its target in 

the native tumour microenvironment. Inhibition in defined areas of a tumour, away 

from local vessels was shown (Figure 3.11 and Figure 3.16) and center versus border 

(Figure 3.10). This allowed for the gauging of the innate signalling in the native 

tumour microenvironment and how current treatment may target it. Further, the 

limitation of treatment was shown by the observed limits of treatment perfusion. 

Moreover, ways that these may be overcome by were explored with combination 

treatments modulating the ECM. Finally, longitudinal drug efficacy imaging was 

conducted (Figure 4.8; Figure 4.9 and Figure 5.9). Using this longitudinal readout can 

further aid in optimizing treatment regimens, by timed administration and exploring 

the possible additive effect of dose increase or combination with carrier molecules to 

facilitate drug delivery. 
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6.4 Future directions 
 

In this thesis I have described the use of FLIM-FRET as a tool in assessing the 

pharmacodynamics of cancer treatments in vivo.  

Having explored single time point treatments in the PyMT model with specific 

inhibitors of Rac-1, this could be expanded upon in the future by optimizing the 

inhibitor concentrations, timing and possible combination treatments. Assessing the 

same treatments used in the PyMT model could further be applied to the ErbB2 model 

as well, where an even higher level of Rac-1 activity was observed. Exploring other 

treatment options, such as those targeting down- or upstream effectors of Rac-1 

signalling in these cells could also be done in the future. There, utilizing specific small 

inhibitors of e.g.: PAK1 with IPA-3 (Deacon et al., 2008) could be monitored for 

targeting efficacy in vivo. 

The role of the GEF P-Rex1 in Rac-1 signalling in KPC tumours demonstrated 

here could also be further expanded upon. The loss of one copy of P-Rex1 resulted in 

haploinsufficiency in terms of Rac-1 signalling in vivo and decreased Rac-1 activity 

down to baseline wildtype pancreas levels. The possible resultant defect in migration 

and invasion of the KPC cells, could be examined in the future. Furthermore, since 

reduction of Rac-1 signalling upon loss of P-Rex1 was observed in all three tumour 

models examined (PyMT, ErbB2 and KPC), application of the inhibitor 1A-116, could 

also be explored. It has been shown that this inhibitor only targets P-Rex1 specific 

GTP exchange on Rac-1 and not that of other GEFs (Cardama et al., 2014). 

Taking the application of FLIM-FRET further, multiplexing could be considered 

in observing multiple signalling pathways simultaneously. This could be done by the 

use of dark acceptors, opening the possibility of imaging another fluorophore without 

the need of spectral unmixing. Designing e.g. a reporter with a CFP-based donor and 

dark acceptor and co-expressing said reporter with another that contains fluorphores 

outside the CFP emission spectrum could be done. In this way there is no cross-talk 

between emission read-outs and 2 protein activities could be imaged simultaneously in 

the same cellular setting as demonstrated to an extent previously (Grant et al., 2008). 

 

 

 



155	
  

Finally, having demonstrated the using of in vivo FLIM-FRET imaging in the 

evaluation of drug treatment responses in several models using different targets    

shows that this technique could be further applied successfully to a board               

range of targets and treatment models in the future. A great variety of FRET reporters 

exist (Conway et al., 2014) that could be used in in vivo mouse models endogenously 

expressing them. As our understanding of different cancers and their drivers evolve,   

so does the possibility of targeted personalized therapies. Applying the techniques 

shown here can provide a powerful tool in the mechanistic read-out of 

pharmacodynamics of treatment regimes in the context of specific genetic drivers. 
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