

https://theses.gla.ac.uk/

Theses Digitisation:

https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/

This is a digitised version of the original print thesis.

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study, without prior permission or charge

This work cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given

Enlighten: Theses <u>https://theses.gla.ac.uk/</u> research-enlighten@glasgow.ac.uk The Regulation of Avena Coleoptile Growth

by Abscisic Acid and Indole-acetic Acid

A thesis submitted to the University of Glasgow

for the degree of Doctor of Philosophy

in the Faculty of Science

by

J.J. Philipson

September 1973

ProQuest Number: 10647115

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 10647115

Published by ProQuest LLC (2017). Copyright of the Dissertation is held by the Author.

All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

> ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106 – 1346

Acknowledgements

I wish to thank Professor M. B. Wilkins and Dr. J. R. Hillman for sound advice and encouragement during their supervision of this research.

Dr. B. Capon is also gratefully acknowledged for his guidance in the design of experiments concerned with enzyme kinetic analysis. I am indebted to Hoffmann-La Roche for the gifts of abscisic acid, ABA-analogues and radioactive ADA. I also thank Miss M. G. Cuthill for typing the manuscript, Mr. T. N. Tait for photographic assistance, Dr. G. N. Philipson for assistance in preparation of the figures and all my colleagues at Garscube for many helpful discussions.

This project was carried out at Garscube Research Laboratories of the Botany Department of Glasgow University during the tenure of a postgraduate Agricultural studentship awarded by the Ministry of Agriculture, Fisheries and Food. p.15 line 18 : removal of IAA.
p.44 line 25 : Rank Strand.
p.64 line 25 : demonstrated.
p.122 line 21 : 85 minutes.
p.156 line 34 : Endeavour.

p.3 line 1

.

Errata

van Steveninck (mistake occurs else

SUMMARY

This thesis presents an investigation into the regulation of cell elongation in coleoptile segments of <u>Avena sativa</u>. The mode of action of the inhibitor abscisic acid has been examined and a survey of the biological activity of plant growth inhibitors, of potential commercial importance, has been carried out.

Abscisic acid induces a non-toxic inhibition of cell elongation in the <u>Avena</u> coleoptile straight growth assay. The use of ADA-analogues has elucidated certain molecular requirements for the inhibitory activity of ABA. The complete carbon skeleton of the 2,4-pentadiene side chain appears to be essential for inhibition and, provided this is present, there are two active moleties in the ABA molecule, <u>viz</u>. the ring double bond and an oxygen or nitrogen containing functional group at C-1 in the side chain. The carbonyl and hydroxyl groups attached to the ring appear unnecessary for inhibitory activity. Although 33 ABA-analogues were bloassayed none was more inhibitory than ABA itself.

In view of the importance attached to the promotory effects of indoleacetic acid on cell elongation the effect of ABA, in the presence of IAA, was examined. ABA overcomes the stimulation of growth by IAA and on a mole for mole basis, at 10^{-4} M, ABA is a more powerful inhibitor than IAA is a promoter. Certain presentations of the data from a straight growth assay of IAA and ABA in combination reveal a statistical interaction between these hormones, but transformation of the data reduces the evidence for this interaction. Furthermore, analysis in terms of enzyme reaction kinetics does not demonstrate either a competitive or a non-competitive inhibition of IAA activity by ABA.

A technique was developed which utilizes a linear displacement transducer to continuously monitor the elongation of a column of segments immersed in flowing solution. The instrumentation is able to detect a latent period before the promotion of a high growth rate with an accuracy of 0.5 minutes and can detect a growth rate of less than 2 μ m min.⁻¹ for a column of 10 segments.

TAA at 10⁻⁹M in phosphate buffer of pH 7.0 promotes a high growth after a latent period of 11 minutes at 25°C, the initial maximum growth rate occurring after 25 minutes. Both the initial maximum growth rate and the duration of the latent period are dependent upon IAA concentration and temperature. The promotion of a high growth rate by IAA is never immediate and a minimum latent period of 7.3 minutes is observed at 25°C with 10^{-3} H IAA in phosphate buffer of pH 7.0. A re-evaluation of a previous report of an immediate response to IAA strongly suggests that this may be attributed to low-pH-induced growth.

Simultaneous treatment with 10^{-5} M ABA and 10^{-5} M IAA does not affect either the latent period or the initial maximum growth rate in response to the IAA treatment alone but subsequently gives rise to an inhibition of growth detectable after 30 minutes. Pretreatment with ABA for 100 minutes, however, increases the duration of the latent period and reduces the initial maximum growth rate. Removal of ABA rapidly relieves the inhibition of IAA-induced growth but a growth rate comparable to that of material treated only with IAA is never attained. Studies using $2-[^{14}C]$ ABA and $1-[^{14}C]$ IAA suggest that the latent period before ABA inhibition of growth is detectable is not due to a lag in ABA uptake, and that ABA is not acting by reducing IAA uptake.

18

18

19

23 23

23

24

24

40

42 44

44

45

48

49

54

67

75

82

95

97

97

98

101

109

116

122

126 127

131

133

150

157

Acknewledgements

SUMMARY

INTRODUCTION.

MATERIALS AND METHODS

- 1. Plant Material and Cultivation
- 2. Preparation of Solutions
- 3. pH Measurements
- 4. Radioactive Growth Hormones
- 5. Straight Growth Assay
- 6. Shadowgraph Technique
- 7. Continuous Monitoring of Elongation
- 8. Uptake of Radioactive Growth Substances
- 9. Assessment of Radioactivity
- 10. Gas Liquid Chromatography of ABA
- 11. Green Lights
- 12. Statistical Analysis

EXPERIMENTS AND RESULTS

- 1. The Elongation Growth of Avena Coleoptile Segments in Response to Abscisic Acid and Indole-acetic Acid
- 2. The Molecular Requirements for Abscisic Acid Activity.
- 3. The Action of Abscisic Acid in the Presence of Indoleacatic Acid : The Straight Growth Assay
- 4. The Molecular Regulrements for Abscisic Acid Activity in the Presence of Indole-acetic Acid : The Straight Growth Assay
- 5. The Action of Abscisic Acid in the Presence of Indole-Acetic Acid : Enzyme Kinetics
- 6. The Continuous Monitoring of Elongation
 - a. The Techniques
 - b. The Incubation of Segments before Freatment
 - c. The Response to Indole-acetic Acid
 - d. The Latent Period of the INA Response
 - e. The Rate of IAA-induced Elongation
 - f. The Rosponse to Abscisic Acid
 - g. Critical Examination of the Transducer Technique
- 7. The Uptake of Radioactivity from 2-[¹⁴C]ABA and 1- $\frac{1}{4}$ ²⁴C]TAA a. The Uptake of Radioactivity from 2-[¹⁴C]ABA

 - b. The Uptake of Radioactivity from 1-[14C] TAN

DISCUSSION

BIBLIOGRAPHY

Abbreviations

INTRODUCTION .

The development of plants involves the growth and differentiation of the component cells. The regulation of development is believed to be under the control of endogenous regulators, as well as environmental parameters. The rôle of these endogenous regulators, first termed hormones by Fitting (1910), has been a major area of research in plant physiology, and particular interest has been attached to the correlative effects of these substances on cell elongation.

Because of the complexity of the processes regulating plant growth it is helpful to choose an apparently simple system in order to study the regulation of growth. The coleoptile of <u>Avena sativa</u> has been employed in investigations of this type because it is a relatively simple organ. Once the <u>Avena</u> coleoptile has grown to approximately 1 cm cell elongation proceeds in the absence of cell differentiation (Avery and Burkholder, 1936). The <u>Avena</u> coleoptile was used by Darwin (1881) and the technique of immersing excised segments in solution and measuring the growth after a known incubation period was pioneered by Bonner (1933). This convenient technique for measuring elongation is termed the straight growth assay. Excising the segments removes both the tip in which growth promoting substances originate (Pa&1, 1918), and the influence of the remaining seedling.

The growth active substance produced in coleoptile tips has been termed auxin, and the auxin-like properties of urine extracts have been attributed to the presence of indole-acetic acid (IAA) (Kögl et al., 1934). It is widely assumed that IAA is the auxin produced in coleoptile tips; the basis of this evidence rests mainly on the similarity of their growth activity, chromatographic properties and transport properties. Yet there has only recently been an unequivocable affirmation, by the use of direct probe mass spectrometry, that the auxin in a diffusate from Zea coleoptile tips is IAA (Greenwood et al., 1972). Although initially the theories of hormonal regulation of plant growth concerned only growth promoting compounds, attention quickly turned towards the rôle of inhibitors, and the compound abscisic acid (ABA) has been of notable importance in recent years. Indeed, a large number of theories have implicated a balance between inhibitors and promoters in the regulation of plant development (e.g. Snow, 1937; Wareing et al., 1968b). Consequently, many of the techniques developed during the investigation of IAA action have been used in studies of ABA. The techniques employed include the use of analogues to elucidate the molecular requirements for hormone activity (Porter and Thimann, 1965; McWha et al., 1973), the study of the interactions between hormones (Wareing et al., 1968a), the application of enzyme kinetics in the analysis of growth data (Bonner and Foster, 1956; Rothwell and Wain, 1964) and the continuous monitoring of elongation using sensitive measuring techniques (Ray and Ruesink, 1962; Rehm and Cline, 1973).

The discovery of abscisic acid may be attributed to three research groups, led by Addicott, Wareing and Wain. At the Fifth International Conference on Plant Growth Regulators (1963) they each described the properties of an extracted inhibitor and, following collaboration with organic chemists, the structures of the inhibitors were found to be identical. In the U.S.A., Carns and Addicott were investigating abscission-accelerating substances in cotton fruit, and they isolated abscisin I and abscisin II (Lui and Carns, 1961; Addicott et al., 1964). Subsequently, abscisin II was isolated by Ohkuma et al., (1963) and its structure published (Ohkuma et al., 1965); but abscisin I has not been re-isolated or identified.

At Aberystwyth dormancy in birch and sycamore was being investigated and an inhibitory substance, dormin, was extracted (Eagles and Wareing, 1963; Wareing et al., 1964). Dormin was later shown to be identical to abscisin II (Cornforth et al., 1965a; Robinson and Wareing, 1964) and the structure was confirmed by synthesis (Cornforth et al., 1965b).

In addition, the growth inhibitor in yellow lupin fruit which was first

.

described by van Stevenick (1959) and also reported by Fothwell and Wain (1964), has been shown to be identical to abscisin II (Cornforth et al., 1966b; Koshimizu et al., 1966). Both dormin and abscisin II are now termed abscisic acid (Addicott et al., 1968); 1969); the abbreviation ABA has been agreed upon and the formula is that given in Table 1.

ABA exhibits both geometrical and optical isomerism. The geometrical isomerism depends upon the configuration of the double bonds in the side chain and the relative positions of specific groups attached to the carbon atoms at either end of the double bond. The groups to be considered are datermined by the sequence rule (Cahn, 1964); they are the hydrogen atoms for C-4 and C-5 and for the C-2, C-3 double bond the position of C-1 and the hydrogen atom attached to C-4 are considered. For the proximal double bond the hydrogen atoms are always on opposite sides of the bend which is thus trans (E). The H atom on C-4 is in a fixed position but C-1 may be cis(2) or trans (E) relative to this. Thus two isomers of ADA exist: trans, trans- (t, t- or E,E-) and cis, trans- (c,t- or Z,E-) (Tables 1 and 2). Both isomers have been extracted and varying biological activity has been reported. The optical isomerism of ABA is conferred by the asymmetric carbon atom at C-1' (it has four different substituents). Naturally occurring ABA is destrorotating (+); rotating the plane of polarized light to the right (Cornforth at al., 1966a), but synthetic ABA is a racenic mixture of these enantiomers, it is optically inactive and is referred to as (-) ABA. Milborrow (1970a) using radioactive ABA, showed that in short term

experiments tomato shoots converted the (+) component into 2 major products, but the (\pm) component gave only one. Thus it might be expected that the (+) and (-) enantiomers have different activity, and first indications were that the synthetic ($\stackrel{+}{-}$) ABA had only about one half the activity of the natural (+) ABA (Wareing and Ryback, 1970). Subsequently, however, there have been varying reports. Pure (\pm) ABA was prepared (Cornforth <u>et al.</u>, 1967) and this was shown to be equally as active as the (+) and ($\stackrel{+}{-}$) forms (Milborrow, 1968) but in a recent report the (+) component was markedly less active than the (-) component in the closure of stomates (Cummins and Sondheimer, 1973). It may well be that the activity depends upon the bloassay selected, as suggested by Sondheimer et al. (1971).

The possible differences in activity of the natural (+) isomer and the synthetic $(-)^{\circ}$ isomer must be borne in mind when evaluating experiments in which the synthetic ABA was applied to the plant.

The absolute stereochemistry of the natural (+) ABA was originally determined as 5 (Cornforth et al., 1967) based on Mills' rules (Cahn, 1964), with the side chain in the same plane as the ring. Yet doubt was cast on this configuration by Oritani et al. (1972) and Burden and Taylor (1970); the latter authors showed that violaxanthin will yield t,t-ABA and the stereochemistry of violaxanthin had previously been established as having the side chain at right angles to the ring. Finally, by correlation with malic acid the original configuration was shown to be incorrect (Ryback, 1972). Nevertheless, a reconsideration of the sequence rule (Cahn et al., 1966) has now come to light and the natural (+) ABA, with the side chain at right angles to the ring, is still termed 5.

Studies of the physiological rôles of ABA have been facilitated by the availability of synthetic ABA. This inhibitor has been shown to affect many physiological processes (Addicott and Lyon, 1969) and it has been extracted from a wide variety of plant tissues and species (e.g. Milborrow, 1968). Consideration will be given mainly to studiess of the mechanism of action of ABA as a plant growth inhibitor.

Analogues of abscisic acid have been used to study the molecular requirements for ABA activity. Because of the restricted availability of these analogues much of the work has been carried out by chemists who have also reported the preparation of these analogues. Consequently, there has frequently been greater emphasis on the preparation of these analogues than on their structure-activity relations (e.g. Oritani and Yanashita, 1970a) and even where the biological activity of the analogues has been considered the bloassays have frequently been insufficiently described (e.g. Tamura and Magao. 1969a). An additional problem in appraising the published results is that different bloassays have been used. The Japanese investigators primarily used the rice second loaf sheath bicassay [Oritani and Yamashita; 1970a, 1970b; 1970c, 1970d, 1970e; Yamura and Nagao, 1969a, 1969b, 1969c, 1970; Koshimizu et al., 1966) although Ohkuma (1965, 1966) studied absolution using the cotton explant bloassay, as did Asmundson et al. (1968). Sondheimer and Walton (1970) studied the growth inhibition of exclaed embryonic axes of Phaseolus vulgaris and Popoff et al. (1972) examined bean stem elongation. In contrast, Taylor and Burdon (1970b, 1972) tested fewer compounds, mainly the extracted compound xanthoxin and the synthetic compounds abscisic aldehyde and alcohol, but they used a range of bloassays. In some publications the authors have discussed the differences in activity of a compound between bloassays as disagraphents (a.g. Popost <u>et al.</u>, 1972) yet the most interesting conclusions are probably those that have suggested that the structural. requirements for ABA activity depend on the bloassay used (Takura and Nagao, 1969a; Sondheimer and Walton, 1970). Nevertheless, the data are of interest, both for the agreed structural requirements and for the differences observed.

There have been differing reports over the possible requirement of the ionylidenacetic acid skeleton for inhibitory activity. Both Sondheimer and Walton (1970) and Oritani and Yazashita (1970a) regarded this as necessary but Popoff et al. (1972) listed 9 compounds that have alterations to this skeleton yet possessed activity relatively high compared with that of ABA. The detailed requirements within the ring and side chain should, however, be considered separately.

Consistent reports have indicated that neither the carbonyl group in the ring nor the hydroxyl group are required for inhibitory activity (Tamura and Magao, 1969a, 1969c, 1970; Sondheimer and Walton, 1970). Indeed, Oritani and Yamashita (1970a) excluded these moistics from the structure which they

5

concluded possessed the fundamental requirements for activity. Some of these results must be interpreted with care because Sondheimer and Walton (1970) compared the activity of analogues with the activity of a compound that they referred to as active, yet which possessed only 18% of the activity of ABA.

The double bond in the ring between C-2' and C-3' has generally been reported to be an important requirement for inhibition (Tamura and Nagao, 1969c, 1970; Oritania and Yamashita, 1970a; Sondheimer and Walton, 1970) though there are inconsistencies in the literature. For example, Tamura and Nagao (1969a) found that opoxidation of the methyl and ethyl esters of ABA, a process that removed the ring double bond, enhanced the activity of these analogues beyond that of ABA. In addition, there are reports of compounds that are active but which lack the ring double bond (Oritani and Yamashita, 1970à).

Songheimer and Walton (1970) are the only authors to discuss the structure-activity relations on storic considerations. They suggested that for a fit between ABA and required macromolecules within the cell the C-2' methyl group must be coplanar with four ring carbon atoms, as occurs in compounds that lack the ring double bond.

The cis, trans-2,4-pentadienoic acid side chain of ABA has been considered necessary for inhibition and analogues possessing this were generally found to be more active than the 2-trans isomers (Tamura and Nagao, 1969a, 1970; Sondheimer and Walton, 1970) and Oritani and Yamashita (1970a) included the cis, trans- configuration in their fundamental structure. In contrast, there was no such agreement in publications concerning the geometrical isomerism of ABA itself. There were reports that the 2-trans isomer was inactive (Cornforth <u>et al.</u>, 1965b; Milborrow, 1966); that the isomers had similar activity (Mitseh, 1967) and that the 2-trans isomer became active only after a lag of about 1 day (Asmundson <u>et al.</u>, 1968). The differences possibly reflect the conversion of cis, trans-ABA to a 1:1 equilibrium mixture of cis, trans-ABA and its 2-trans isomer (Mousseron-Canet et al., 1966; Lenton et al., 1971). Indeed, Milborrow (1970a) suggested that the trans, trans-ABA found in rose leaves was probably formed by photolytic isomerization from cis, trans-ABA.

There have been additional references to specific molecular requirements within the side chain. For example, the unsaturated bonds have been implicated for activity (Oritani and Yamashita, 1970c) although there have been reports of partially active analogues that possess a triple bond in the side chain (Ohkuma, 1965, 1966). Oritani and Yamashita have also presented evidence that the side chain length is critical; in compounds with either shorter side chains (1970b) or longer side chains (1970d) the activity was reduced, although there were other structural changes that may have reduced the activity of these analogues.

The terminal group in the side chain has also been investigated and Tamura and Nagao (1969c, 1970) concluded that this group must be carboxyl; this suggestion is consistent with reports that abscisic aldehyde is active (Oritani and Yamashita, 1970c; Taylor and Eurden, 1970b). Furthermore, the mathyl ester of AEA possessed similar activity to ABA in the rice leaf sheath assay (tochimizu et al., 1966) and in the cotton explant bicassay (Assaudson et al., 1968). Jones and Mansfield (1971) recorded that both the methyl and phenyl esters of AEA were slightly more active than ABA in the suppression of stomatal opening and suggested that this activity may be a result of greater penetration into the plant or gradual breakdown to release an active compound.

The activity of one ABA-like compound, manthomin, has been related to endogenous occurrence and possible physiological rôles. Manthomin has activity similar to that of ABA in the cross seed germination and wheat coleoptile bioassays (Taylor and Burden, 1970b; 1972) and this compound has been entracted from shoots of a wide variety of plants (Taylor and Burden, 1970a; Firm et al., 1972). In addition, photoomidation of violamenthin, a common plant xanthophyll, yielded the cis, trans- and trans, trans- isomers of xanthoxin as well as two other inhibitory compounds (Taylor and Smith, 1967; Burden and Taylor, 1970). This light-effect is of particular relevance because Burden <u>et al.</u> (1971) showed that red illumination of dwarf pea seedlings increased the levels of extractable cis, trans- and trans, transxanthoxin but had no significant effect on the low level of ABA found in dark grown seedlings. Thus it was suggested that a xanthophyll is a precursor to xanthoxin in some species and that this inhibitor accumulates during illumination.

One technique for studying the mode of action of a growth hormone is to see if it will modify the effect of a different plant hormone. This technique has been used in the study of the action of IAA and was recently employed (Memberg, 1972; Hemberg and Larsson, 1972). Because IAA stimulates growth the effect of the inhibitor, ABA, on IAA-induced growth, has been Abscisic acid was shown to inhibit growth caused by IAA in Avena studied. mesocotyls (Milborrow, 1966) and Avena coleoptiles (Mareing et al., 1968a). Yat Wareing et al. (1968a) pointed out that the observation that two growth substances have opposite effects in a plant tissue does not necessarily indicate that they act at the same point or on the same pathway; they suggested that an analysis of the responses to the two substances in combination was required, in order to examine the possibility of a statistical Their results showed that the slope of the ABA response curve interaction. was unaffected by the addition of 1 ppm of IAA and they detected no interaction in an analysis of variance. Indeed, both Wareing et al. (1968a,b) and Good (1967) investigated the interaction of ABA with other plant hormones in several bloassays and concluded that there was predominantly no interaction, although in the lettuce germination aspay ABA did interact with kinetin.

The problem arises as to the precise meaning of the term interaction and the conclusions that can be drawn from these studies. Furthermore,

8

consideration is required of the form of the data to be analysed. These problems were discussed by both Drury and Milborrow.

Drury (1969) gave the statisticians definition of an interaction as the failure of a response to one agent to be the same at different amounts of a second agent. Thus graphically the dosage-response curves for one agent at different amounts of the second will not be equidistant, whereas for no interaction the curves are equidistant. Drury claimed that physiologists are inclined to define an interaction as the relationship between two agents which affect the same response in algebraically opposite ways. With consideration to these points Drury (1969) re-evaluated the interaction. claimed between GA, and ABA (Thomas et al., 1965; Chrispeels and Varner, 1967; Milborrow, 1966; Dey and Sircar, 1968) and decided there was no evidence of a statistical interaction. Drury, however, appeared unaware of the approach of Wareing et al. (1968a) in which both the shape of the response curve and the analysis of variance are considered. Surprisingly, Drury additionally claimed that if there is no interaction the mode of action of the hormones was independent and vice versa.

In reply to these criticisms Milborrow (1970b) regarded Drury's definition to be over simplified, because it did not account for the fact that most plant tissues have a non-linear response to applied substances. He also correctly pointed out that transformation of non-additive data may render them additive and remove the statistical interaction. Consequently, Milborrow suggested that the term interaction should be applied exclusively to measurements and not used for physiological responses. In his defence, brury (1970) stated that his original definition of interaction did not require revision when transformations are carried out and he explained this in mathematical terms. Yet he admitted that if such transformations are required, e.g. to meet the assumptions of the analyses of variance, then the analysis refers to the transformations and not to the original data. Thus it would seem wise to adopt Milborrow's suggestion and avoid the term interaction in considerations of the mode of action of a hormone.

An extension of the statistical analysis of the interaction between IAA and ABA is analysis in terms of enzyme kinetics. Bonner and his co-workers analysed auxin action in these terms and this work is pertinent because it forms the basis for the exploration of the inhibitory activity of ABA.

The enzyme studies to which Bonner drew comparisons are those put forward by Michaelis and Menton (1913). The latter authors adopted the earlier suggestion of Hehmi (1902) that an enzyme (E) reversibly forms a complex with its substrate (S) and this complex subsequently breaks down giving the free enzyme and the products of the reaction. In hearly all enzyme reactions a plot of initial reaction velocity (v) against substrate concentration corresponds to a section of a rectangular hyperbola, i.e. at high substrate concentrations no further increase in reaction velocity is obtained if the substrate concentration is increased. The velocity of the reaction obtained at this high substrate concentration is defined as the maximum velocity of the enzyme-catalyzed reaction (V). The substrate concentration required to yield half the maximum velocity ($^{V}/2$) defines the Michaelis constant or Km (Dixon and Webb, 1958).

Certain compounds have the ability to combine with specific enzymes but, because they do not serve as substrates, they block the catalysis by that These compounds are called competitive and non-competitive enzyme. When a compound competes with a substrate for the active site inhibitors. on the enzyme and thereby reduces the catalytic activity of that enzyme, the compound is considered to be a competitive inhibitor. This type of inhibition may be reversed by increasing the concentration of the substrate. Since the active site is directly involved the Km for the enzyme is altered by the competitive inhibitor. Non-competitive inhibition is the type that cannot be reversed by increasing the substrate concentration. The inhibitor combines rather strongly with a site on the enzyme and cannot be displaced by increasing substrate concentration. In this type of inhibition the Km

is not altered by the inhibitor, which simply reduces the maximum reaction velocity (Conn and Stumpf, 1963).

It must be borne in mind, however, that these definitions apply to particular types of inhibition, and intermediate forms of inhibition exist. For example, the inhibition may be partially competitive, partially noncompetitive, or mixed (Dixon and Webb, 1956).

Lineweaver and Burk (1934) showed that a double reciprocal plot $(\frac{1}{V} \times \frac{1}{S})$ yields a straight line for an enzyme reaction and the Km and V values for an enzyme reaction may be determined from this plot. Because of the differential effect of competitive and non-competitive inhibitors on the Km and V for an enzymic reaction, the Lineweaver-Burk plot discerns between these two types of inhibitor.

Bonner and his co-workers (Bonner and Foster, 1955, 1956; Foster et al., 1952; McRae and Bonner, 1952; McRae et al., 1953) using <u>Avena</u> coleoptile segments, showed that a graph of segment length <u>VS</u> IAA concentration formed a rectangular hyperbola, and that a double reciprocal plot yielded a straight line. They suggested that the data support the view that the IAA molecule exerts its effect through combination with a suitable receptor site in the cell and that the reversible formation of the auxin-coleoptile complex is analagous to the formation of an enzyme-substrate complex.

By application of enzyme-kinetic theory they demonstrated that the different auxins react within the plant cell as would be expected on the basis that they compete for a common site and that certain diortho-substituted phenoxyacetic acids competitively inhibit the action of IAA. In these studies Bonner and hid co-workers estimated the initial reaction velocity from the total growth after 12h or 18h, having shown that in the presence of 3% sucrose and 0.0025M potassium maleate buffer growth was linear for 18h-24h.

Bonner's method was criticised by Bennet-Clark and Kefford (1954) who found that in the absence of buffer the growth rate over 19h is not linear with time. Nevertheless, the application of Michaelis enzyme kinetics to the <u>Avena</u> colcoptile-IAA system, has been confirmed (Housley et al., 1954) although Marinos (195%) concluded that these studies must be approached with great care because the linear response can be realised only under strictly limited conditions. Housley et al. (1954) pointed out that the function of sucrose in enhancing cell elongation is not understood and that the use of sucrose should be avoided if possible. The effects of sucrose on the IAA dosage-response curve were recently described by Cleland (1972), who suggested that there may be an interaction between sucrose and IAA, either on sucrose uptake or utilization.

Bonner's work forms the basis for the application of enzyme kinetics to the interaction of TAA and growth inhibitors. Using the lupin inhibitor, the active constituent of which has been shown to be ABA (Cornforth <u>et al.</u>, 1966b), Rothwell and Wain (1964) demonstrated that a Lineweaver-Burk type of plot $(\frac{1}{S+0.178} \text{ VS} \frac{1}{v})$ gave a straight line at all inhibitor levels tested and that because these lines have a common intercept on the $\frac{1}{S+0.178}$ axis they suggested a non-competitive inhibition was indicated. The growth, however, was not shown to be linear with time and the time period for the experiments was not clearly specified. In addition, the necessity of the constant (0x176) to obtain straight lines has not been commonly used in enzyme kinetics (Capon, pers. comm.; Dixon and Webb, 1958) although the authors suggested that the constant related to an endogenous level of TAA equivalent to an externally supplied solution of 0.176 ppm ($\pm 10^{-6}$ M).

In these enzyme studies the IAA is believed to be acting as a substrate and, apart from the similarity of the graphs drawn to graphs of enzyme reactions, there is no strong evidence to support this. In addition, these considerations assume that there is a single enzyme, as yet unidentified, which binds to the IAA substrate, and this may be an over-simplification in the multi-enzyme plant system (Marinos, 1955).

In one study of the inhibition induced by ABA these assumptions were not required (Saunders and Poulson, 1968) because the enzyme yeast invertase and

12

its substrate, sucrose, were studied. A Lineweaver-Durk plot of enzyme activity in the presence and absence of ABA indicated that the ABA showed apparently competitive kinetics. Nevertheless, these authors considered it unlikely that the ABA molecule would cause a true competitive inhibition of invertase activity because ABA bears no structural resemblance to the substrate under consideration, sucrose. They suggested that a more detailed kinetic analysis was necessary before definite conclusions could be reached.

13

Another technique for studying the mechanism of action of a hormone is to continuously monitor its effect on the growth of an organ. During the last decade this technique has been used to study auxin action and recently there have been reports of the timing of the effect of ABA on IAA-induced growth. By the use of sequential and simultaneous hormone treatments, metabolic inhibitors, and comparisons with the time course of biochemical reactions, this technique can be extremely useful.

This approach was probably initiated during early studies of "growth substance" when the growth of a decapitated <u>Avena</u> seedling, treated with acidulated pollen extract, was monitored with an interferometer. (Laibach and Kornmann, 1933). These investigations revealed a latent period of approximately 0.25 h before growth was promoted; this latent period is similar to that now accepted for IAA-induced promotion of growth in several organs.

In the mid 1950's it was known that there was a latent period of about 10 minutes bafere a physiological concentration of IAA would stimulate growth (Bonner and Foster, 1955), although this time was not determined accurately. The first technique which was sufficiently sensitive to time the responses of tissue to applied IAA was developed by Ray and Ruesink (1962). In essence, this technique allowed the growth of a single <u>Avena</u> coleoptile segment, which was maintained in flowing solution, to be monitored with a microscope fitted with a micrometer eyopiece. A similar technique has been used in the study of Avena coleoptile segments (Nissl and Zenk, 1969) and lupin hypocotyl segments (Penny at al., 1972). A modification of this basic technique has now heen more extensively used. This allows the growth of a column of segments to be monitored by casting the shadow of a small weight, placed on the top of the elongating column of segments, on to photographic paper which is moving horizontally. This technique has been exploited in the study of the responses of several tissues to applied hormones; e.g. Avena colcoptiles (Evans and Ray, 1969), pea stem sequents (Barkley and Evans, 1970) and corn colcoptiles (Evans and Nokanson, 1969). The latter technique has now been developed to allow an electrical transducer to monitor the plant growth (dela Fuente and Leopold, 1970; Rehm and Cline, 1973) and transducer techniques have also been employed to monitor the growth of intact plants, e.g. etiolated pea (Warner and Leopold, 1971) and leaf elongation in intact maize plants (Haalo et al., 1970). In addition, capacitance auxanemotry has been developed whereby the growth of the plant material alters the electrical capacitance between two metal plates (Gordon and Dobra, 1972). This technique is useful for studying light effects on growth as neither light nor contact with the tismue is required to monitor the growth.

The use of these techniques has shown that <u>Avena</u> coleoptile sequents will respond to 10^{-5} M IAA at 25°C in approximately 10 minutes (Ray and Ruesink, 1962; Evans and Ray, 1969; Missl and Zonk, 1969). It is now established that the latent period for the IAA response is shortened by increasing the temperature and IAA concentration of the bathing solution (Nissl and Zenk, 1959; Durand and Zenk, 1970) although there were preliminary indications that the latent period was independent of IAA concentration (Ray and Ruesink, 1962; Evans and Ray, 1969). There have been two reports of an immediate growth response of <u>Avena</u> coleoptiles to IAA. Firstly at 29°C with 5 x 10^{-3} M IAA at pH 4.7 (Nissl and Zenk, 1969) and secondly following the removal of an AEA pretreatment, although the latter finding was reported to be obtained in only three out of six trials (Rehm and Cline, 1973).

ThA has been shown to induce a steady growth rate in Avena colsoptiles,

probably within 25 minutes of IAA treatment (Nisel and Zenk, 1969) though a shorter lag before the steady state point is reached has been reported (Evans and Ray, 1969). Yet data from a technique which allowed the rate of growth of segments to be calculated directly from the initial readings suggested that the initial maximum in growth rate in lupin hypocotyls was followed by a depression in growth rate and subsequent fluctuations in rate (Fenny <u>et al.</u>, 1972). Metabolic inhibitors, such as cyanide, reduced the growth rate in response to IAA, as did removal of oxygen (Ray and Ruesink, 1962; Evans and Ray, 1969) and it was suggested that the growth mechanism is controlled by a metabolic process.

The supply of pulses of IAA to <u>Avena</u> coleoptile segments (dela Fuente and Loopold, 1970) showed that the growth rate declined rapidly after the removal of IAA, and it has been suggested that there is an easy association and dissociation of IAA with a growth limiting site in the cell. This theory is consistent with the idea that the coleoptile-IAA complex may behave as an enzyme-substrate complex. Pulse studies with corn yielded similar results and Evans and Hokanson (1969) suggested that the rapid decline in growth rate after the removal if IAA indicated that IAA does not act via the promotion of the synthesis of a protein because the half-lives of proteins in higher organisms are of the order of days or at least several hours: Cloland (1971), however, has presented evidence concerning growthlimiting proteins which are functionally stable for only 20-30 minutes.

The possible involvement of protein synthesis in the initial growth response to IAA has received considerable attention, but the question has not been resolved. The growth response to IAA is certainly within 10 minutes and possibly immediate, yet most reports for IAA action on protein synthesis have indicated a lag of at least 1 hour (Trewavas, 1968; Key, 1969) though a 10-minute latent period for the stimulation of RNA synthesis in <u>Avena</u> colceptile segments has been reported (Masuda and Kamisaka, 1969). Thus the timing of IAA action on growth and protein synthesis has not elucidated

the problem and neither has the use of inhibitors of protein synthesis. The investigations of Evans and Ray (1969) revealed that pretreatment with actinonycin D, cyclohexamide, or puromycin did not affect the latent period for TAA to stimulate growth but reduced the growth rate. Similarly, it has been deconstrated that after a treatment with cycloheamide, which was sufficient to inhibit over 90% of protein synthesis, wheat coldop**tile se**gments exhibit a reduced response to IAA (Pope and Black, 1972) and yet Cleland (1970) reported that such a cyclohexamide treatment completely abolished the response of Avena colomitiles to TAA. Penny et al. (1972) concluded that protein synthesis is not required for the initial action of auxin on elongation though they emphasized that growth does depend on the availability of protein, thus explaining the potent and quick effect of cyclohexamide on elongation. If protein synthesis is not involved in the initial TAA mechanism then an alternative explanation for IAA action is required, interesting conclusions have been drawn from studies of the effect of low-pH on the promotion of growth. Wydrogen lons at pN 3.0 have been shown to induce an immediate promotion of growth (Rayle and Cleland, 1970) and close similarities between INA-induced and low-pH-induced growth have been demonstrated (Rayle and Cleland, 1972). The latter authors suggested that TAA induces elongation either by stimulating the release of protons from the protoplast and that these lons hydrolyse acid labile linkages in the cell wall, or by causing the appearance in the cell wall of an encyme which can hydrolyse the acid-labile linkages.

1.6

There have been only a few reports of the accurate timing of ABA action on growth. In etholated pea seedlings ABA inhibited the endogenous growth in 5 minutes (Warner and Leopold, 1971). ABA also inhibited the growth induced by TAA in <u>Avena</u> coleoptile segments (Zenk, 1970; Rehm and Cline, 1973) when the ABA was added after the TAA had initiated rapid growth and the latent period for the inhibition was shortened as the ABA concentration was increased (Rehm and Cline, 1973). The latter authors also stated that a 30 or 60 minute pretreatment in 10⁻⁹M ABA did not affect the latent period for the response to 10⁻⁶M TAA. In addition, they examined the effect of several metabolic inhibitors and concluded that the kinetics of ABA inhibition were not the same as the kinetics of the transcriptional and translational inhibitors tested; they suggested that rigorous biochemical studies are required.

This theois presents investigations into the mode of action of ABA in inhibiting cell clongation in Avena colcoptile segments. The molecular requirements for inhibitory activity have been examined both in the absence and presence of applied IAA. The action of ABA in the presence of IAA has The possible interaction between these hormones was also been studied. explored by statistical analysis of factorial experiments and by the utilization of the theories of enzyme reaction kinetics in an attempt to establish whether a competitive or non-competitive inhibition was involved. In addition, a transducer technique has been developed to facilitate the continuous monitoring of elongation with sufficient sensitivity to detect minute by minute changes in growth rate. This technique has been used to examine the initial effect of ABA on TAA-induced growth and to study the nature of the initial action of TAA itself. Finally, the uptake of radioactive IAA and ABA into coleoptile segments has been investigated to assist the interpretation of the growth data.

MATERIALS AND METHODS

Unless stated otherwise the following procedures were employed.

1. Plant Material and Cultivation

Experiments were carried out using coleoptile segments of <u>Avena sativa</u> L., cv. Svalöf Victory 1, the fruits (seeds) of which were obtained from Svalöf, Sweden.

The fruits were soaked in flowing tap water for 3-6h, sown at a depth of 20 mm in 50-60 mm of damp vermiculite in open polythene boxes, and grown in the dark at $25 \stackrel{+}{=} 1^{\circ}$ C. For experiments concerned with the continuous monitoring of the elongation of segments treated with ABA the vermiculite was soaked for 24h in an excess of water and drained for 15-30 minutes before planting the fruits. The latter procedure was used to increase the uniformity of the seedlings which developed. For all other experiments the vermiculite was obtained from a stock which had been mixed with water at least 24h before use.

In certain experiments the growing seedlings were exposed to red light for 24h during the 3rd and 4th days of development. The light source was a 60 watt tungsten filament bulb in a Kodak bechive light filtered with a red filter (Kodak, No. 1). The light was 600 mm above the seedlings.

Coleoptiles were excised from 4-day-old seedlings and placed on damp filter paper in a petri dish. Segments 5 mm in length were excised 2 mm below the tip using a cutting device with parallel blades and were placed on damp filter paper before use. For experiments concerned with the continuous monitoring of the elongation of segments treated with ABA the segments were excised from coleoptiles 15-25 mm in length.

2. Preparation of Solutions

a. <u>Growth substances and analogues</u>. Indole-3-acetic acid (IAA) was supplied by Sigma Chemical Company Ltd., London. $RS(\frac{+}{2})$ abscisic acid (ABA) and its analogues (Tables 1 and 2) were donated by Hoffmann-La Roche Ltd., Basle; the cis,trans- (Z,E-) isomer of ABA was used. All compounds were dissolved in a minimal quantity of redistilled organic solvent and dispersed in distilled water at 50°C to provide the stock solutions; working concentrations were prepared from the stocks by serial dilutions with distilled water. The organic solvent concentrations are listed in Table 3.

Table 3. Organic solvent concentrations and pH values for 10⁻⁵M solutions.

.

Compound	ppm Méthanol	pom Acatone	ph of solution
taa	15		5.4
g,t-ABA	40		5.7
t,t-ABA	40		- Here
ï	100		6.1
II	100		5.0
III	1.00		5.4
IV	86		6.9
V		26	6.2
VI	42		5.6
VII	100		6.2
VIII	50		6.4
IX.	200	•	6.1
X	100	· · · · ·	6.4
XI	400		6.5
XII	24*		6.2
XIII	51		6.2
XIV	- 159*		6.5
XV	200		5.9
IVX	200		. 6.2
XVII .	200		5.9
XVIII	158		6.4
XIX	200		6.2

Table 3 continued

20

Compound	ppm	Methanol	ppm	Acetone	pH of solution	n Hartin California and Ang
XX	- · · ·	150		an an an	6.4	. v [.]
		150	· · ·		6.4	
XXII	f _	150			6.3	•
XXIII	· .	200			6.4	
XXIV	ж.)	200	" .	2	6.7	
XXV		150			6.6	2
XXVI		86		-	6.2	2 - 14 12
XXVII		146*	· ·	· .	6.4	, , , , , , , , , , , , , , , , , , ,
XXVIII	· ·			10	6.2	
XXIX	•	50			5.5	
2125.75		40	<u>1</u>		5.5	
XXXI				200	6.2	
XXXXII		200			5.9	
XEXIII		50	,		5.5	
	× .					

* The stock solution appeared slightly cloudy.

The IAA used in the experiments in which growth was monitored continuously was dissolved directly in distilled water which was stirred rapidly with a Magnetic stirrer and maintained at 50°C. All the stock solutions were stored in the dark at approximately 3°C. Solutions of IAA were kept for a maximum of 2 weeks and 5 x 10^{-3} M IAA was prepared within 12h of use.

b. <u>Buffer solutions</u>. Three buffer systems were used, all of which were propared using "Analar" reagents. Phosphate buffer was prepared from aqueous solutions of 0.01M KH_2PO_4 and 0.01M K_2HPO_4 or from these salts at 0.02M. The 0.01M phosphate buffer was used to buffer IAA and ABA solutions to pH 7.0 although 0.01M K_2HPO_4 alone was used to buffer 5 x 10⁻³M TAA providing a solution of pH 6.8 - 6.9. Citrate buffer was prepared from citric acid and Ma_2HPO_4 with the final concentrations not exceeding 0.01M and 0.02M respectively. Glycine-HC1 buffer contained 0.01M glycine (aminoacetic acid) adjusted to the required pH with 2N HC1. Table 1. The molecular structures of cis, trans-abscisic acid and analogues I to XXII.

 $\mathcal{D}_{i}^{(i)}$

The Chemical Abstracts code number for ABA, and the numbering of the carbon atoms in the ABA skeleton, are also shown.

.

21

۰.

Table 2. The molecular structures of trans, trans-abscisic acid

and analogues XXIII to XXXIII.

3. pH Measurements

The pH of the solutions was measured with a Pye Model 79 or EIL Model 7030 pH mater using Pye pH electrodes. A microelectrode (Tough microcombination electrode Type CMT, Russell pH Ltd., Fife) connected to the Pye meter was used for pH measurements of solutions contained in petri dishes. In all assessments of pH the meters were standardised using solutions of pH 7.0 and 4.0 prepared from buffer tablets.

4. Radioactive Growth Hormones

 $1-[{}^{14}C]$ TAA at a specific activity of 52 Ci M⁻¹ (297 µCi. mg⁻¹) was obtained from the Radiochemical Centre, Amersham, U.K. The solutions used were diluted with distilled water from the laboratory stock which was kept in redistilled absolute methanol; $10^{-5}M 1-[{}^{14}C]$ TAA contained 10,000 ppm MeOH. Hoffmann-La Roche Ltd. donated the $2-[{}^{14}C({}^+)ABA$ at a specific activity of 45 µCi mg⁻¹. A stock solution of 4.66 x $10^{-5}M$ was prepared containing 5000 ppm MeOH and working solutions were diluted from this using either distilled water or non-radioactive ABA; the latter procedure provided $10^{-5}M$ $2-[{}^{14}C]ABA$ of specific activity 9 µCi. mg⁻¹. All solutions were stored in a refrigerator at approximately 3°C.

5. * Straight Growth Assay

Segments were prepared under dim green light; the time between the excision of coleoptiles and the placement of segments in the test solution was typically 10 - 15 minutes. For each replicate ten segments were placed in 10 ml of test solution in a 50 mm plastic petri dish. After 24h dark incubation at $25 \stackrel{+}{=} 1^{\circ}$ C segment lengths were measured to the nearest 0.1 mm using a shadowgraph technique. In experiments to test the activity of analogues in the presence of IAA the analogue solutions were pipetted at twice the molarity required and diluted with distilled water or TAA. In these experiments, which also indicate the activities of the analogues alone, there were 2 replicates of 10 segments for each treatment. Certain analogues were only tested alone, pipetted at the molarity required with 1 dish of 10 segments for each treatment.

Neither methanol nor acetone have significant effects in this assay over the concentration ranges 0.01 - 500 ppm and 0.1 - 1000 ppm respectively (Fig. 1a and b). Consequently, water controls were used in all assays, arranging at least 1 control for each box of plant material used.

6. Shadowyraph Technique

Segments were filtered from the incubation media, arranged in rows on a glass plate and the assembled plate placed in a photographic enlarger. The images were focused at a fivefold magnification and exposed on photographic paper. Permanent records were prepared by developing the paper in Tlford Contrast Developer (1:4 dilution) and fixing in Kodafix solution (1:4 dilution). After the paper had been washed and glazed on a Kodak glazing machine the images were used for the determination of segment lengths.

7. Continuous Monitoring of Elongation.

a. The apparatus. Three techniques were developed to monitor accurately the elongation growth of segments.

Preliminary experiments were carried out using a microscope technique based on that of Ray and Ruesink (1962). The elongation of a single segment, contained in solution in a plastic chamber, was monitored using a high power binocular microscope (Patholux Microscope, Vickers Ltd.) fitted with a micromater eyepiece. The elongation of individual cells was also examined using this technique.

In the second technique the growth of a column of 10 segments was

24

The effect of organic solvent concentration on segment elongation in the Avena coleoptile straight growth assay.

19 19

Ser a standard the

2017 - 14,51-

Mean data from one experiment, 20 segments per treatments a) Methanol.

Mean date from one experiment, 20 segments per treatment. b) Acetone.

Similar data were obtained in two repeats of these treatments.

Statistical Analysis. The t-test was used to test the difference in segment length between the water control in

each experiment and the organic solvent concentration indicated.

t value .090 1.457 1.457 1.559 0.438 0.438 0.102 0.102 0.102 0.102	concentration t value 0.01 .090 5.0 1.467 1.467 5.0 0.5 50.0 0.438 100.0 0.102 250.0 0.043 1.142 500.0 0.043
t value 1.457 1.457 0.438 0.102 1.142 0.0438 0.102 1.142	concentration t value 0.01 .090 5.0 0.15 1.457 0.5 1.376 50.0 0.438 100.0 0.102 250.0 0.043 500.0 0.043
	concentration 0.01 50.0 50.0 100.0 250.0 500.0 500.0
	concentrat 0.01 50.0 100.0 250.0 250.0 250.0

monitored using a lever system and smoked kymograph drum. The segments were threaded and supported as described for the following transducer technique.

The third technique employed a linear displacement transducer (Type D2/2.00 mm, Sangamo Weston Controls Ltd., Plate 1). This technique Was refined during the project and consequently experiments have been carried out with two forms of the apparatus. The basic measuring system and technique was as follows. Ten colsoptile segments were threaded on to a nylon line of 0.4 mm diameter ("Racine Torture" Nylon fishing line, 15 1b or 16 1b) and placed in a 30 ml cylindrical reservoir which was supported in a metal frame. Polythene tubing was threaded above and below the coleoptile segments to provide contact with a perspex lever threaded on the nylon line (Fig. 2A). The lever was counterbalanced with a small weight; the weight acting downwards on the colcoptiles was calculated to be approximately 200 mg. Elongation of the segments resulted in movement of the lever which displaced the central armature of the transducer (Fig. 2B). The transducer operated on a stabilized 12 volt D.C. supply and generated a D.C. output signal proportional to the displacement of the amature; the proportionality was linear for a 2 mm armature displacement (Sangamo Weston Controls, Ltd.). The reservoir containing the threaded segments was held in an adjustable stand allowing the segments to be easily re-positioned relative to the transducer armature. The armature displacement could thus be maintained within the linear range. The output signal was connected to a potentiometric chart recorder and elongation was monitored continuously.

The first measuring system (apparatus I, Plate 2a and b) utilized a reservoir constructed from a plastic measuring cylinder which was supported in a 'Maccano' frame. The counterbalance weight was hung from the lever and solutions were supplied to the reservoir in polytheme tubing.

Subsequently, two additional measuring systems were constructed (apparatus II and III, Plate 3a and b). These were of essentially similar

Plate 1. Linear displacement transducers.

A. Transducor with a 2mm linear displacement; as used in the experiments reported in this thesis.

B. Transducer with a Sma linear displacement.

DISPLACEMENT TRANSDUCERS

In the second second

,

.

13. Apparetus for the continuous multiculuy of the elongation of coleocitie sequents in solution.
3) The reservoir with coleopitile sequents in position. The lever acts at right angles to the plane of the diagram.
3) Arrangement of the lever, reservoir and transducer.

. . .

2E

design to apparatus I but the reservoirs were glass, the balance weights were fixed on to the levers and the solutions were supplied to the reservoirs in rubber tubing. The two recording systems enabled treatment and control experiments to be monitored simultaneously; treatment or control were assigned randomly to each apparatus.

31

The solutions were incubated in conical flasks in a water bath, the temperature of which was regulated. The flow of solutions to the reservoirs was maintained by passing air into the conical flasks, thus providing a pressure feed system. The flow was regulated using three-way taps on the tubes delivering the solutions.

The power supply for the transducers was modified from the mains using the circuit illustrated in Fig. 3a. Whe transformer and rectifier converted the mains supply to 12 yolts D.C. which was stabilized with the Zener diode. The voltage output from this supply was checked at intervals with an "Avometer" and no alterations in voltage were observed.

The temperature of the solution in the reservoir was continuously monitored using a thermistor inserted through a hole in the side of the reservoir; the hole was scaled with plasticine. A naked bead thermistor (Type VA 3102, Mullard Ltd.) of resistance 2.2K at 25°C, was used, with the bead embedded in the end of a thin metal tube using "Araldite". The thermistor was connected to a WheatStone bridge circuit (Fig. 3b) which was supplied with a constant voltage from a 9 volt battery. As the temperature of the thermistor increased its resistance decreased and this resulted in an increase in current in the circuit. The change in current was monitored on an asseter. The system was calibrated over the range 10°C - 35°C using water, the temperature of which was measured with a hercury thermometer (Fig. 4).

The pu of the solution in the reservair was continuously monitored using an BIL pH mater (Model 7030) and Pye pH electrode with a small bulb which was immersed in the solution in the top of the reservoir. Fig. 3. Diagrams of electrical circuits.

a) The power supply for the transducers

b) The circuit for the thermistor.

.

Fig. 4. Calibration curve for thermistor.

The graph shows the affact of increasing the temperature of the water in which the bead of the thermistor was immersed, on the current in the electrical circuit to which the

thernistor was connected.

Temperature and pH measurements were always made in apparatus I but for paired experiments these measurements were made in apparatus II only.

b. Experimental conditions. Experiments were carried out in dim green light. The ambient temperature was maintained at 25 \pm 1°C for experiments using solutions of this temperature but for experiments at other temperatures the ambient temperature was adjusted to aid regulation of the temperature in the reservoir. In addition, the tubing esupplying the solutions to the reservoirs was lagged with cotton wool in experiments using solutions at low and high temperatures. The solution temperature was maintained to within one centigrade degree of the value quoted.

Solutions were passed through the reservoir at 5 ml min.⁻¹; the flow was increased to 100 ml min.⁻¹ for at least one minute when solutions were changed and this achieved an estimated 98% change in log. concentration of the solution after 1 minute. Flowing solutions were not used for treatments using KCN and their associated controls; the flow of incubation buffer was stopped and the reservoir was drained and refilled twice with the new solution. This solution change was complete within 1 minute.

Solutions of ABA at 10^{"5}M contained 40 ppm MeOH and this concentration of organic solvent was present in all solutions.

The following experiments were carried out with the apparatus indicated:

(1)	The incubation	of segments before treatment (Section 6b)					
(11)	The effect of temperature and IAA concentration on the latent period and rate of IAA-induced elongation				Apparat us	Ĩ	
			(Sections 6d and e)	;			
(111)) The response	to ABA	(Section 6f)	})	Apparatús	II an	nd III
(1.V)	Whe effect of induced elong	E KCH on IAA-	induced and low pH- n Section 6d)	·) ·			

c. <u>Calibration and sensitivity of the instrumentation</u>. A separate lever was used in each apparatus which was calibrated independently. The lever was displaced, at the position that the coleoptiles act, specific distances using a micrometer screw and the displacement on the recorder chart measured. The chart displacements produced by 0.5 mm and 0.1 mm micrometer adjustments at recorder sensitivities of 5V and IV respectively, were measured, over a total lever displacement of 2 mm. The chart displacement was linearly proportional to the lever displacement over this 2 mm range and mean calibration data are presented in Table 4.

Table 4. Column elongation in um equivalent to 1 division (2 mm) on the

٦,	recorder	ch	art. 7	he re	corder	sensitivity	/ X(efers	to the	voltag	8
	required	to	produce	full	scale	deflection	of	the	recorder	pen.	
-	3					•					
	a.							~,			

19		Coluan	Elongation
Recorder Sensitivity	ada Ananar az esta de alta de alta de a	5V	
Apparatus	· · · ·		· · ·
I		33.2	6.6
	ہ م بہ ر	33.2	6.6
III	ξ	31.9	6.4
		-	lan - algorang - a Salarang ang analan ang ang ang ang ang ang ang ang ang a

A chart displacement of 1 mm equivalent to approximately 15 µm elongation of the column of segments and a chart speed of 2 mm min.⁻¹ were routinely used but both settings were increased fivefold for measurements of latent periods.

Figure 5 illustrates the original trace from one typical experiment. The instrumentation was able to detect a latent period before the IAA response with an accuracy of 0.5 minutes in an individual experiment and could detect a growth rate of less than 2 μ m min.⁻¹ for the column of 10 segments.

Illustration of a trace from the recorder during the continuous monitoring of elongation of Avena coleoptile segments using the transducer technique. F19. 5.

100 minutes incubation of segments in phosphate buffer at pH 7.0 and 25°C there is a low steady growth rate, shown from -5 to 0 minutes. At time zero (0 minutes) the buffer was changed for 10^{-5} H IAA at There is a slight discontinuity in the trace at time zero but the low growth rate A growth rate of After This is a graph of elongation of the 10 segments in um as a function of time in minutes. continues for a latent period of 10.5 minutes before rap id growth is initiated. 53 µm min." for the column of 10 segments is observed after 20 minutes. pH 7.0 and 25°C.

Зř

d. <u>Terminology</u>. The term "latent period" refers to the time from the commencement of a treatment to the observation of an effect. For the response to IAA and low pH the latent period was determined from the recorder charts. To determine the point at which significant ABA inhibition occurred a paired analysis on 5 replicates of the treatment and control was frequently carried out.

Time course graphs are presented either as elongation (mm) of the column of 10 segments VS time (minutes) or as rate of elongation (um min.⁻¹) VS time. The rates are presented at 5-minute intervals and the rate at a specific time was calculated over a 10-minute period starting 5 minutes before that point in time.

The term "initial maximum growth rate" refers to the first maximum in growth rate minus the steady growth rate in buffer, the latter having been calculated from -15 minutes to time zero.

e. Estimation of the efficiency of changing the solutions. A solution of 10⁻⁴N IAA in buffer, having an absorbance maximum at 280 nm was used to monitor the efficiency of solution changes. A typical U.V. spectrum for this IAA solution is illustrated in Fig. 6. The solution in the reservoir was changed, using flowing solutions, from buffer to IAA and <u>vice versa</u>. Five 25 ml aliquots of solution overflowing from the reservoir were collected immediately the solution change began and their absorbance spectra measured in a Unicam SP 8000 Ultraviolet Recording Spectrophotometer.

The data from the spectra indicate that the absorbance at 280 nm is proportional to the log. TAA concentration (Fig. 7a). The absorbance due to TAA in the aliquots tested is expressed as a percentage of the absorbance due to TAA in the 10^{-4} M stock solution (Fig. 7b and c). The data show there is a rapid change of solutions both when adding and removing TAA. In the 5th 25 ml aliquot, which represents the solution in the reservoir after a 100 ml change of solution, there has been a 98t change in log. TAA concentration in both instances.

A. Some are the finite in the finite interface in the finite interface in the finite interface interfac

1.1.1. identifieres, it 2.8° m, of 12a solutions in 0.014 possible index (pl 1.3); is a function of 12 observation. ¹2³ restars to its index equation show.
1.1.2. identifieres. ¹2³ restars to 120 m data to 20 m da

8. Uptake of Radioactive Growth Substances

Experiments were carried out at $25 \stackrel{-}{=} 1 \stackrel{\circ}{=} C$ in dim groon light using either threaded or floating segments. Radioactive solutions were buffered togph 7.0 using 0.01M phosphate buffer which was also used as the incubation redium. The methanol concentrations in the radioactive solutions were adjusted to be constant.

For experiments using floating segments the required number of segments were incubated in 25 ml of huffer or ABA for 100 minutes and groups of 10 segments transferred to 1 ml of radioactive solution in a 1 dram vial, using three replicates for each treatment.

Alternatively, 10 segments were threaded on to a mylon line (0.4 mm diameter) and columns of segments were supported in 25 ml of incubation medium in the space between a boiling tube and a narrow test tube which was supported in the boiling tube (Fig. 8). This was achieved by securing one end of the nylon line to a washer around the lower end of the test tube and supporting the free end of the line against a rubber bung, which positioned the test tube centrally in the boiling tube. This system allowed uptake to be studied under conditions similar to those in the continuous monitoring of growth In addition, several columns of segments could be incubated in expariments. a small volume of solution, the solution could be changed easily by removing the test tube and segments to a boiling tube containing a new solution, and the columns of segments could be removed easily from the solution. Columns of segments were incubated in buffer or ABA for 100 minutes and then transferred to radioactive solution.

Whether floating or threaded segments were used, they were removed from the radioactive solutions after known time periods and the radioactivity in the segments assayed.

To investigate the removal of surface held radioactivity three columns of threaded segments were incubated for 100 minutes in buffer followed by Apparatus for examining the uptake of radioactive

compounds into threaded coleop tile segments.

One column of 10 segments, immersed in solution,

is illustrated.

Fig. 8.

۰.

exposure to radioactive ABA. After 1h treatment the segments were removed and each group of 10 segments placed on gauze in a filter funnel and 5 volumes of distilled water consecutively poured over the segments, collecting each volume separately. Radioactivity in the washings was assessed.

42

9. Assessment of Radioactivity

After treatment in radioactive solutions groups of 10 segments were washed in 3 x 10 ml distilled water to remove surface held activity. The segments were placed in 2 ml of 95% ethanol in a glass scintillation vial and kept at 3° C for at least 24h to extract the radioactivity. The ethanol was removed under reduced pressure and 10 ml of scintillation fluid containing 4 g. PPO (2,5 diphenyloxazole) per litre of commercial grade toluene were added to each vial.

The activity in 10 ml distilled water samples which had been used to wash radioactive segments, was assessed with a different procedure. A 3 ml aliquot of each washing was placed in a scintillation vial and 10 ml of Insta-Gel scintillation fluid (Packard Ltd.) were added to form a gel.

Radioactivity was detected using a Packard Tri-carb scintillation spectrometer. The instrument printed radioactivity in counts per minute (cpm) corrected for a preset background and an A.E.S. ratio which indicated the quench level for each vial. An A.E.S. ratio of 0 indicated complete quench and 10 indicated no quench. The efficiency of counting was governed by the quench of the sample. A quench correction curve (Fig. 9) was determined by assessing the cpm from vials which contained N hexadecane-1-¹⁴C (specific activity 1.016 μ Ci g.⁻¹; Radiochemical Centre, Amersham, U.K.) of known activity and quenched to different levels using acetone, ethanol and plant material. Radioactivity in disintegrations per minute (dpm) was calculated from this curve. Fig. 9. Quench correction curve for ¹⁴C.

The graph indicates the efficiency of detecting radioactivity as a function of the quench level

of the sample (A.E.S. ratio).

10. Gas Liquid Chromatography of ABA

Gas liquid chromatography was carried out using a Pye Unicam 104 Series Gas Liquid Chromatograph fitted with a 5' OV 310 column. The carrier gas was nitrogen and the temperature was typically 200°C. Samples were methylated with encess diazomethane which was afterwards evaporated. The methyl ester of ABA was resuspended in methanol and injected into the column together with a standard of octokosane (C 23) dissolved in heptane. A 1 µl sample containing 3 µg methyl-ABA together with 1 µg C28 in 1 µl heptane was injected into the column.

a. <u>Ultra-violet irradiation</u>. U.V. irradiation was carried out using a Camag Universal U.V. lamp with a wavelength of 254 nm. A methylated sample of ADA was placed in a silica cell and irradiated for 3h.

b. <u>Preparation of diazomethane</u>. Sodium hydroxide (20g) was dissolved in 50 ml H₂O in a 500 ml narrow necked conical flask and a layer of 100 ml ethylene glycol placed over it. A 25 ml layer of ether was placed on top and a quantity of nitrosane added, rinsing the nitrosane from the neck of the flask with ether. A cork stopper and delivery tube were fitted to the flask and the diazomethane evolved was collected in cold ether until a yellow \sim solution was formed.

11. Green Lights

Two light sources were used, viz: a 3ft. Atlas fluorescent tube (30 watt, Warm White) supported 3ft. above the preparation area, and a Philips 60 watt tungston filament bulb in a Kodak beehive light which was approximately lft. from the material while setting up experiments. Both light sources were filtered with Cinamoid filters (Rank Stand Electric Ltd., London) using 3 green filters (No. 39) and one orange filter (No. 5). Visual examination of these filtered sources using a hand spectroscope revealed a narrow band of green light but there was also blue and red light visible adjacent to the green. Nevertheless, colcoptile segments responded to TAA at 10^{-7} to 10^{-4} M after setting up a 24-h straight growth assay in the presence of these lights and both treatments and controls received the same exposure to light.

12. Statistical Analysis

a. <u>Replication</u>. Experiments involving straight growth assays and uptake studies were repeated on 3 occasions and when only one parameter, e.g. activity of ABA at different concentrations, was investigated the mean values of the 3 repeats were calculated. Btatistical comparisons were made only between treatments and controls where both were carried out on the same 3 occasions. For comparisons between treatments within one experiment, e.g. the activity of ABA at different IAA concentrations, the statistical analysis was carried out on the mean data from 1 experiment only. The analysis was repeated on experiments carried out on different occasions.

There was no replication within experiments on the continuous monitoring of the elongation of segments. The means and standard errors quoted are typically derived from experiments carried out on 5 occasions and comparisons between different treatments are made using these mean values.

b. <u>Standard error</u>. The standard error of the mean value for each series y of observations was calculated from the relationship:

It was calculated using an Olivetti programma 101 desk top computer (Dritish Olivetti Ltd., London).

The standard errors are shown on the graphs as vertical bars, typically drawn symmetrical about the data points and equal to twice the s.e., but where space is limited the bars are drawn on one side of the point and

c. <u>"Student's" t²test</u>. This t²test was used to ascertain whether the mean values of two samples differed significantly. The Olivetti programma 101 was used to compute the 't' value, and the significance levels obtained from the "Student's" t distribution (Fisher and Yates, 1963) with the degrees of freedom given by (nl + n2)-2, where nl and n2 were the numbers of observations in samples 1 and 2 respectively. Differences were referred to as significantly different when the probability value (P) \leq 0.05. For convenience the following notation was used:

> $P \approx 0.05$: N.S. (not significant) $P \leq 0.05$: * $P \leq 0.01$: ** $P \leq 0.001$: ***

For experiments in which treatment and control were paired the 't' value was computed by the method of paired comparisons using the Olivetti programma 101; with a paired experiments the degrees of freedom were given by (n-1). In analysis of TAA and ADA treatments from experiments in which growth was monitored continuously physiological considerations lead one to expect TAA to promote growth relative to ABA. Thus, only the hypothesis that the differences were greater than zero needed to be tested (Bailey, 1950). The t-test was consequently based on one tail of the 't' distribution and the significance levels were read from "Student's" t distribution at twice the probability level, i.e. for a true 5% level the table was entered in the 10% column.

d. <u>Analysis of variance</u>. This test was used to examine the effects of replicated treatments of promoters and inhibitors on segment elongation. The data were analysed with an Olivetti programma 101 which computes the sum of squares (SS) and mean square (MS) values for the row items (R), column items (C), interactions between items in rows and columns (I) and error (E). The variance ratios (F) were computed by dividing the respective mean square values by the error mean square.

F interaction = $\frac{1715}{10105}$

The significance levels for the F ratios were obtained from tables of the variance ratio distribution (Fisher and Yates, 1963).

e. <u>Curve fitting</u>. Time courses of segment elongation in various hormone solutions were carried out (Section 5) and the initial rate of elongation, i.e. the initial slope of the graph, was required to allow analyses in terms of enzyme kinetics to be explored. The Capon-Sutherland initial slope programme (Capon, pers. comm.) was employed to calculate the initial rates. This programmed a KDF 9 computer to fit a polynomial equation, by a least squares method, to the data provided. The programme used was based on the technique described by Wentworth (1965a, 1965b). The computer printed parameters of the equation, including the initial slope of the curve.

The time required by the RDF 9 to calculate an equation which described each time course was dependent partly on the variability of the data. Because of the pressure on computer time a limited period was available for the calculation of each equation. If no equation had been obtained when the time limit was reached the data were rejected and no estimate of the initial slope was available.

EXPERIMENTS AND RESULTS

1. The Elongation Growth of Avena Coleoptile Segments in Response to Abscisic Acid and Indole-acetic Acid

The first experiments were designed to investigate the elongation growth of <u>Avena</u> coleoptile segments in response to exogenously applied ABA and IAA. Coleoptile segments, 5 mm in length, excised 2 mm below the tip of 4-dayold seedlings, elongate in H₂O, IAA and ABA when using the 24-h straight growth assay (Fig. 10). Promotion of growth is significant (P < 0.001) with 10^{-7} M IAA compared with the H₂O control and the promotion increases as the IAA concentration is raised to 10^{-4} M. Little growth occurs in 10^{-3} M IAA, and there is both loss of turgidity of the cells and discolouration of the segments. Significant inhibition is observed with 10^{-7} M ABA (P < 0.001) and increases to 78% with 10^{-5} H ABA (Fig. 14a). No further increase in inhibition is achieved using 10^{-4} H ABA.

A time course of growth in 10⁻⁵M ABA, 10⁻⁵M IAA and distilled water shows that the growth is not linear with time, over the 24-h period, in all treatments (Fig. 11a and b). The results of this experiment indicate that the growth rate of segments exposed to IAA increases to a maximum after 4h, followed by a decline in rate: this maximum, however, is not observed in an-8-h time course although there is an overall decline in rate (Fig. 27b). In H₀O the growth rate is almost constant over the 24-h period and in ABA treated segments there is a slight decline in rate. After only 12h treatment in IAA 83% of the total elongation has occurred, yet in H_2O and ABA treated segments only 47% and 34% respectively, of the elongation is complete. The data suggest that to assess the activity of TAA a 12-h incubation would be The 24-h period, however, was used because it is convenient and adequate. allows the sections to be measured when the growth rate in IAA is low, thereby reducing error. In addition, the 24-h incubation allows greater elongation

Fig. 10. The effect of IAA and ABA on segment elongation in the Avena coleoptile straight growth assay.

The data are the mean from three experiments; at least 10 segments per treatment were used in each experiment.

Statistical Analysis. The t-test was used to test the difference

Ĭr.

્રંત્ર

100

- 12

in segment length between the treatments indicated.

Item	1 ()		•	t value	1,811		Signifi	cance
H20/10 ⁻⁷ H	INA	40040000000000000000000000000000000000		3.549	for the second	n na sana sa	***	
н20/10 ⁻⁷ н	ABA		*	5.031			いたい (1997年) (1997年) (1997年) (1997年)	

Fig. 11. 24-h time courses of the elongation of <u>Avena</u> colsoptile segments at 25°C.

Treatments 1 : 10⁻⁵M INA.

2 : Distilled H_2^{0} . 3 : 10^{-5} M ABA.

a) Colcoptile segment length (mm) as a function of time.

b) Rate of elongation of segments as a function of time. The rates were calculated from time zero to the time

at which the segment lengths were measured.

The data are the mean from 1 experiment, employing 20 segments for each time point. Similar results were observed in one rep_eat of this experiment.

in H_2^0 than a 12-h incubation and is thus more suitable for the assessment of the activity of inhibitors.

51

The effect of seedling age on the response to 10^{-9} M IAA has been studied (Fig. 12). Segments from 3-day-old seedlings are the most responsive to IAA and they also show the greatest elongation in water. A reduced effect is observed with segments from 4-day seedlings and a further slight reduction is apparent with segments from 5-day seedlings, but no significant difference between 5- and 6-day material is observed. The material grown for 3 days, however, is unsuitable for the straight growth assay because many coleoptiles are shorter than 7 mm and thus a 5 mm segment excised 2 mm below the tip includes the node and part of the mesocotyl. In addition, slight variations in the timing of experiments using 3-day-old material would result in larger variations in section length after treatment than if older material were used.

Thus the 24-h straight growth assay, using segments excised from the coleoptiles of 4-day-old Avena seedlings, is suitable for assaying the biological activity of IAA and ABA.

Abscisic acid does not appear to exert a toxic effect on the coleoptile segments (Fig. 13). To demonstrate this segments were placed in distilled water, 10^{-6} and 10^{-4} M ABA, with 3 replicates of 10 segments for each treatment. After 24-h dark incubation the segments from one replicate of the treatments were shadowgraphed. The remaining 2 replicates were rinsed with 3 x 10 ml distilled water and transferred to either distilled water or 10^{-4} M TAA. Segment lengths were determined after a further 24h.

The growth during 48h incubation in distilled H_2O markedly declines during the second 24h period. Transfer to IAA, after an initial 24h incubation in H_2O , stimulates growth and this observation indicates that endogenous IAA may be limiting growth during the 48-h H_2O treatment. In the presence of IAA growth also continues during the second 24h after exposure to ABA and, in fact, growth is stimulated compared with segments transferred from AEA to H_2O . Thus ABA is not apparently killing the segments during the

동안 - 이상 방법은 이상 - 이상 가장은 물질 것은 모양을 가지 않는다. 같은 것은 사람은 것이 아이들은 것이 같은 것을 알려야 한다.			
			이 같은 이 같아요. 것 못 있는 것이 가 있는 것이 같은 것이 있는 것이 못 같이 가 있는 것이 같은 것이 있는 것이 가 못 같이 가 있는 것이다.
			general de la presenta de la tradición de la composition de la composition de la composition de la composition Reference de la composition de la compos Reference de la composition de la compo
		(1) The state of a solution of the state	(a) Construction of the second secon second second sec
	R		
	54 11ue	624	
		000	
	8		
	t day		
	65 Å		
	ci day	B B	
5			
성 같은 것 같은			
	5		

(mm) dignal inampas aliiqoalo)

Fig. 13. Data from 1 experiment to investigate the toxicity of ABA.

<u>Treatment</u>. 24 h incubation of segments in distilled H₂O (0), 10^{-6} M ABA and 10^{-4} M ABA, followed by 24 h incubation in a) 10^{-4} M IAA and b) distilled water. 25°C.

10 segments per sample. Similar results were observed in 2 repeats of this experiment.

first 24h. After segments have been given 10^{-6} H ABA for 24h, however, the growth rate during the subsequent 24h is reduced, even in the presence of 10^{-4} H IAA. Thus an inhibitory effect of this ABA solution is persisting and possibly some of the cells may have been killed. The result may indicate, however, that the ABA has not been satisfactorily removed from the segments either by leaching or metabolism.

2. The Molecular Requirements for Abscisic Acid Activity

The elongation growth of <u>Avena</u> coleoptile segments is inhibited by low concentrations of exogenously applied ABA. The question thus arises as to the mode of action of this inhibitor and one facet of this problem concerns the molecular requirements for the inhibition. One approach to this aspect is to study the activity of analogues of ABA and this has been made possible by the provision of ADA analogues by Hoffmann-La Roche.

The activity of 33 analogues was tested in the 24h <u>Avena</u> coleoptile straight growth assay, using analogue concentrations of 10^{-7} , 10^{-6} and 10^{-5} M with a distilled water control. The maximum concentration used was limited by the availability of the compounds and concentrations of less than 10^{-7} M were not tested because 10^{-8} M ABA does not produce significant inhibition. The significance levels of the inhibition induced are listed in Table 5.

Table 5. The Statistical Significance of the Inhibition of Elongation of

Avena Coleoptile Segments. Significance levels were determined using "Student's" t-test, testing the mean length at each concentration against the control used when testing each analogue. The data analysed are from experiments repeated on 3 occasions. 'P' indicates the promotion of elongation. Table 5.

an na stan stan	an na shekara ka na shekara ka na shekara ka shekara ka sa ana shekara ka	Concentration	of Cor	apound (M)	N YA - 294 - 1994 - 19
Compound	10 ⁻⁸	10 ^{~~7}	10 ⁻⁶	10 ⁻⁵	10-4
c,t-aba	ns	***	***	非 表表	索書会
t, t-ABA	NS	NS	***	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	() () () () () () () () () () () () () (
х		NS	NS	***	
II		ns	*	***	
III		***	***	***	
IV		***	***	***	, ****
V		***	***	***	
VI		NS	***	***	.1
VII	·	ns	NS	***	• .
VIII		MS	**	***	
IX		*	**	**	
x		NS	ns	***	· · · · · · · · · · · · · · · · · · ·
XI		NS	NS	***	
XII	,	NS	NS	ns	
XIII		NS	NS	NS	ан ай Эрс У Д
XIV	":	NS	NS	NS	بر محمد محمد م
xv	·	NS	NS	- · NS	
SVI		ns	ns	NS	
XVII		MS	NS	*	
XVIII		NS	NS	NS	· ~ ~
XIX	ж. •	NB	***	***	
XX		MS	***	***	
XXI		NS	***	***	
XXII	x	NS	***	***	x
XXIII		NS	NS	***	·
XXIV			**	***	· · · · ·
XXV	•	NS	***	***	×.
XXVI		ns	ns	NS	•
IIVXX	•	NS	NS	· · · · · · · · · · · · · · · · · · ·	
MENTE		NS	** (2)	NS ,	:
XXIX		NS	ns	NS	
XXX		NS	***	***	·
XXXI		NS	NS	*** (P)	:
XXXII		NS	NB	NS .	i. I
XXXIII		NS	ns	***	

While expounding these data two considerations were borne in mind. Firstly, that comparisons should ideally be made between compounds that differ in one molety only and that in cases in which there are additional structural differences these will qualify the conclusions. Secondly, comparisons should be made, directly or indirectly, relative to the inhibitory activity of either ABA or compounds with activity similar to that of ABA. Consequently, only specific compounds are referred to for each inference; however, if the structure-activity relations of another compound qualify the argument reference is always made to that compound.

Comparisons of compounds IV and V (Fig. 14b) with ABA (Fig. 14a) illustrate that the hydroxyl and carbonyl groups of ABA are unimportant for inhibitory activity. Both compounds lack these structures but at 10^{-6} M and 10^{-5} M possess activity similar to ABA at the same concentrations. The activity of V, compared with ABA, also indicates that the acid group of ABA may be replaced by an ethyl ester group without large reductions in activity at 10^{-6} M or 10^{-5} M, although V is much less active at 10^{-7} M than 10^{-7} M ABA. The ester itself may either be active or be hydrolysed to the acid in the plant tissue.

The much reduced activity of VI compared with V, and of VII compared with IV (Fig. 14b) suggests that the ring double bond is important for inhibition because both the compounds which exhibit reduced activity differ in structure from the compound with which their activity is compared only in the loss of the ring double bond. In both VI and VII, however, the ring double bond has been epoxidised and the reduction in activity may be due to addition of the epoxide residue rather than merely to loss of the double bond.

The importance of the ring double bond is also supported by the fact that both XXX and XXXIII (Fig. 15a) have reduced activity compared with V. Those compounds differ from V in both the loss of the ring double bond and the fact that the terminal molety is trans in XXX and XXXIII. The activity of XXXIII, however, is similar to that of VI and the structures of these Fig. 14 a-d. The inhibitory activity of c.t-ABA and of ABA analogues in the <u>Avona</u> colsoptile straight growth assay.

> The mean length of at least 30 segments from 3 experiments was calculated for each treatment.

Percentage inhibition was derived from -

Mean control increment - mean treatment increment, x 100 Hean control increment

Statistical analysis is presented in Table 5.

Concentration (M)

.

Fig. 15 a,b. The inhibitory activity of c,t-ABA and of ABA analogues in the Avena coleoptile straight growth assay.

> The mean length of at least 30 segments from 3 experiments was calculated for each treatment.

Parcentage inhibition was derived from:-

(mean control increment - mean treatment increment, x 100

Statistical analysis is presented in Table 5.

compounds differ only in the geometrical isomerism of the side chain; this difference would thus appear to be unimportant for inhibition. Consequently the reduced activity of both XXX and XXXIII, compared with V, may be attributed only to the loss of the ring double bond and not the differences in geometrical isomerism of the side chain. The ring double bond has been epoxidised in XXX and XXXIII but if the epoxide residue itself confers the loss in activity then the fact that the activity of XXX is similar to that of XXXIII suggests that the position of this residue may not be important, although XXX is slightly more active than XXXIII, particularly at 10⁻⁶M.

The lack of activity of XIV (Fig. 14a) compared with the partially active III (Fig. 14c) indicates that the presence of a double bond at C-1' in the ring does not confer activity, and thus that the position of the double bond at C-2' in the ring of ABA is important for inhibition. Unfortunately there are no additional compounds to support this inference.

Abscisic acid has an unsaturated functional group at C-1 in the side chain and the structure-activity relations of several analogues indicate that this group is important for inhibitory activity. In the abscisin alcohol (I) and abscisin hydrocarbon (II) (Fig. 148) C-1 is saturated and the reduced activity of these compounds at 10^{-6} and 10^{-5} M compared with ABA at the same concentrations indicates the importance of the unsaturated functional group at C-1. This inference is supported by the structure-activity relations of VIII, X, XI, XIX, XXI, XXII, XXIII, and XXIV (Figs. 14c and d, 15b). These compounds are also saturated at C-1; at 10^{-6} M they all possess activity which is markedly loss than 10^{-6} M ABA and at 10^{-5} M these compounds show a range of activity from 28t to 72t inhibition. This range of activity may reflect differences in penetration or breakdown of these long-chain compounds.

Compound III (Fig. 14d), which has an aldehyde group at C-1, and compound IX (Fig. 14d), which has an unsaturated linkage at C-1 to a nitrogen atom, have similar activity to ABA. Thus an unsaturated linkage of C-1 to a heteroatom may be the important feature of the terminal moiety, rather than

- 59

the complete carboxyl group, although the activity of an unsaturated linkage at C-1 to a carbon atom has not been tested. The activity of IX could, however, be the result of hydrolysis to the aldehyde of ABA within the plant tissue.

When both the ring double bond and the unsaturated functional group at C-1 are absent inhibitory activity is lost. This is best illustrated by the non-active compounds XIT, XIII and XVIII (Fig. 14a) whose structures lack these modeties. The additional lack of the hydroxyl and carbonyl modeties in these compounds is probably unimportant because the latter modeties are unimportant for inhibitory activity.

Inhibitory activity is also lost when there are changes in the carbon skeleton in the 2,4-pentadiene side chain even though one of the active moletics may be present. This is shown by the lack of activity of compounds XV, XVI andXVII (Fig. 14a) which all contain the ring double bond. The non-inhibitory compound XXXI (Fig. 15a) is particularly interesting because it possesses the unsaturated functional group at C-1 but because XXXI has a side chain with 9 carbon atoms this normally active molety is at a greater distance from the ring structure than in ABA. This fact indicates that the spatial arrangement of this active molety may be important for the inhibitory activity of ABA.

It is interesting to note that the presence of an inorganic atom within the molecule of an abscisic acid analogue interferes with the expected activity. Compound XXV, for example, possesses the structural features implicated for inhibitory activity but its activity (Fig. 15b) is reduced compared with that of IX, possibly due to the presence of a sulphur atom in the terminal group of the side chain. Similarly XXIII (Fig. 15b), which possesses a chloride atom, is the least active of those compounds which lack only the unsaturated functional group at C-1.

Compounds XXVI, XXVIII, XXIX and XXXII (Fig. 15a and b) are all nonactive, as would be expected since these compounds lack both the active moleties required for inhibition and have changes to the 2,4-pentadiene side chain of ABA. Compound XXVII (Fig. 15b) may be expected to have had some activity because it has the 2,4-pentadiene side chain and the ring double bond but this compound may not have been dissolved satisfactorily.

61

Thus, for inhibitory activity of ABA the complete carbon skeleton of the 2,4-pentadione side chain appears to be essential. Provided this is present there are two active moieties in the ABA molecule; these are the ring double bond and an unsaturated oxygen- or nitregen-containing functional group at C-1. In addition, there is some evidence that the spatial arrangements of these active moieties within the ABA molecule are important. At 10^{-6} M both moieties are required for inhibitory activity comparable to ABA at the same concentration, e.g. III, IV and V. At 10^{-5} M, however, there is considerable inhibition with only one moiety present, e.g. the ring double hond in I and II, or the unsaturated functional group at C-1 in VI and VII, although this inhibition is reduced in comparison with ABA at 10^{-5} M.

The geometrical isomerism of the 2,4-pentadiene side chain is also of interest. Compounds in which the terminal group is trans possess activity only slightly reduced in comparison with similar compounds with a cis terminal group. For example VI compared with XXXIII (Figs. 14b and 15a) and cis, trans-ABA compared with trans, trans-ABA (Fig. 16a and b). The trans, trans-ADA at 10^{-7} M does not produce significant inhibition over the control whereas this concentration of cis, trans-ADA does produce significant inhibition. Examination of the data expressed as a inhibition show s slightly less inhibition at each concentration with trans, trans-ABA than cis, trans-ABA although the inhibition produced by each compound is very similar at 10^{-4} M.

GLC was carried out to accertain the purity of these geometrical isomers of ABA (Fig. 17). Chromatography of the methylated stock cis, trans-ABA yields one peak whose rotention time is 11.70 minutes. The retention time of the octakosane standard is 10.35 minutes and the retention time for Me cis, trans-ABA relative to this standard is 1.132. Chromatography of the

62.

Fig. 17.

Gas chromatograms of methylated samples of abscisic acid. Samples were chromatographed at 200°C on a 5ff column of OV 210 using octokosane as a standard.

- A. C₂₈ and cis, trans-ABA.
- B. C₂₈ and trans, trans-ABA.
- C. Cis, trans-ABA after irradiation by UV light.

Pen	attributed to:-	Retention time	(mins.)	Retention time sample Retention time C ₂₈
А.	C ₂₈	10.35		
· · ·	o,t-ABA	11.70		1.132
B.	C ₂₃	10.35	nen Lan -	
	c,t-ABA	11.70		1.132
	t,t-ABA	17.56		1.697
c.	c,t-ABA	11.70	na balan ya kuta ya kut	1.132
· · · ·	t,t-ABA	17.08	n in the second seco	1.650
	n An an Argan an An An			
· · · · · · · · · · · · · · · · · · ·				

methylated stock trans, trans-ABA gives rise to two peaks whose retention times relative to C28 are 1.132 and 1.697 (Fig. 178). The first peak thus corresponds to Me cis, trans-ABA and the second is probably due to Me trans, Confirmation of the latter point is obtained by irradiating Me. trans-ABA. cis, trans-ABA with U.V. light, a process which results in a second peak with a retention time relative to C28 of 1.650 (Fig. 17C) . The conversion of Me cis, trans-ABA to a mixture of this and its 2-trans isomer is well documented (Moussexon-Canet et al., 1966; Lenton et al., 1970). Thus, as the irradiated Me cis.trans-ABA and the methylated stock of twans.trans-ABA both yield peaks with similar retention times relative to C28, these peaks can be attributed to the 2-trans isomer. The peak heights in the trans, trans-ABA are similar to each other, indicating approximately equal quantities of the two isomers.

The trans, trans-ABA stock thus consists of approximately equal quantities of the two geometrical isomers of ABA and has inhibitory activity only slightly reduced compared with pure cis, trans-ABA., This indicates that the trans, trans- component itself possesses considerable inhibitory activity. The effect of U.V. irradiation, however, is a complicating factor and GLC of the bloassay solutions is required before and after the bloassay before firm conclusions may be drawn.

The pH of ABA and its analogues at 10⁻⁵M varies between 5.0 and 6.9 (Table 3). It is improbable that these variations in pH contribute to the differences in activity of the analogues because differences in pH within this range have little effect on colcoptile elongation in a 24-h straight growth assay (Fig. 18). The effect of pH on growth is demonstrated with both citrate buffer (0.01M) and phosphate buffer (0.02M). These concentrations of buffers have an inhibitory effect compared with distilled water at the same pH.

The pH values quoted for the analogues are of solutions before use in

Fig. 18. The effect of the pH of the buffer solution on

elongation in the Avena coleoptile straight growth assay.

a) 0.01M Citrate buffer.

b) 0.02M Phosphate buffer.

The data are the mean from 3 experiments, employing 10 segments per treatment. pil values were determined before the straight growth assay.

The horizontal bar indicates the pil range of ADA analogues.

the bioassay (Table 3) and it is important to establish whether large changes in pH of the solutions during a bioassay are probable. The pH of IAA and ADA solutions in petri dishes decreases slightly during a 24-h period in the absence of coleoptile segments, though the pH does not decrease lower than 4.5 (Column A, Table 6). This increase in acidity could be due to the

66

Table 6. The pH of Hormone and Buffer Solutions.

The pH values quoted are of solutions in petri dishes (i) before and (ii) after a 24-h period. 0.02M phosphate buffer was used to buffer the hormone solutions. Similar pH values have been obtained in repeat experiments.

	A	-	B	- ·		¢	
Solution	No buf No segn (1)	fer ents (ii)	No bu: Segments (1)	fer present (11)	••••••••••••••••••••••••••••••••••••••	Buffer Segments (1)	present present (11)
IAA Ö	5.8	5.4	5.8	5.6		5.3	5.3
10 ⁷	5.9	5.5	5.8	5.6		6.3	5.3
10 ^{~6}	5.9	5.5	5.8	5.6		5.3	5.3
10 ⁻⁵	5.4	5.3	5.3	5.5		5.3	5.3
10 ⁻⁴	4.5	4.5	4.5	5.0	and the second second second second second	5.2	5.2
ABA O	5.8	5.4	5.8	5.6		5.4	5.4
10 ⁻⁷	5.9	5.8	5.9	5.7		5.4	5.4
.10 ^{~6}	5.9	5.7	5.9	5.7		5.4	5.4
10 ⁻⁵	5.9	5.5	5.9	5.7		5.4	5.4
10 ⁻⁴	4.5	4.5	4.5	5.4	- Differ (galages), (C. d Saine	5.2	5.2
	Segments g	resent (11)	No seg	ents (ii)	· .		
Phosphate	4.7	4.9	4.7	4.8			
Buffer	5.3	5.3	5.3	5.3		×	
12 ig 1,0 merila	6.0	6.0	6.0	6.0			
	7.0	6.9	7.0	6.9	۰ در	·. ·	•
	8.0	7.2	8.0	7.3			
Citrate	4.4	4.4	4.4	4.3			
Surrer 0.01M	5.2	5.2	5.2	5.1			
	5.9	5.8	5.9	5.8	1	· .	
	7.2	6.9	7.2	6.9	•	· _	

7.3

8.1

absorption of CO_2 from the air or to a component from the plastic petri dishes. The drop in pH is counteracted by the presence of coleoptiles during a 24-h period and, in fact, solutions originally at pH 4.5, e.g. 10^{-4} H IAA and 10^{-4} H ABA, undergo an increase in pH (Column B, Table 6). Thus, as only small changes in pH of IAA and ABA are observed over a 24-h period and these changes are reduced by the presence of coleoptile segments, it is probably unlikely that there are large changes in the pH of ABA analogue solutions during a bioassay.

The use of 0.02M phosphate buffer to buffer the IAA and ABA solutions is successful because no changes in pH of these buffered hormone solutions are observed after a 24-h straight growth assay (Column C, Table 6). In addition, the pH of the buffer solutions alone is similar before and after the bloassay although the pH of the solutions originally at pH 8.0 decreases slightly.

The slight changes in pH of the hormone solutions that are observed in the absence of buffer probably do not modify the activity of IAA or ABA because these hormones produce similar effects on segment elongation over the concentration range 10^{-7} to 10^{-4} M in the presence or absence of a phosphate buffer which maintains a constant pH (Fig. 19a and b). It is also interesting that although the 0.02M phosphate buffer is inhibitory in the absence of applied hormones it has a reduced effect in the presence of either ABA or IAA.

3. The Action of Abscisic Acid in the Presence of Indole-acetic Acid : The Straight Growth Assay

The inhibitory effect of ABA and promotory effect of IAA on <u>Avena</u> coleoptile elongation have already been demonstrated using the 24-h straight growth assay. In attempting to elucidate the rôle of ABA in regulating the growth of <u>Avena</u> coleoptiles the action of ABA in the presence of IAA was studied because endogenous growth may be controlled in part by the action of growth promoters and growth inhibitors. The straight growth assay was

initially employed.

A factorial experiment was designed with both ABA and TAA at concentrations of 10^{-8} , 10^{-7} , 10^{-6} , 10^{-5} and 10^{-4} M, in addition to a water control. This concentration range was chosen to include concentrations at which these hormones alone did not produce significant effects. Hence it was possible to investigate whether a hormone concentration which was nonactive alone produced an effect in the presence of a second hormone. An identical concentration range of both hormones enabled comparisons to be made between the activities of these growth substances at equimolar concentrations. The experiment was carried out on 3 occasions and the data from 2 experiments are presented (Exp. A: Fig. 20a; Exp. B: Fig. 20b). Experiment A had 3 replicates of 5 segments for each treatment and B had 2 replicates of 10 segments per treatment.

Comparison of the H_2O controls shows the variation between experiments but in each case the response pattern is similar. Coleoptile elongation is promoted by IAA alone and inhibited by ABA alone. The combination of these hormones shows that ADA is capable of inhibiting the promotion of growth which is induced by IAA alone; for example, with both hormones at 10^{-4} M growth is inhibited relative to the water control. The "Student's" t-test shows this to be significant in both experiments (P < 0.001). Thus, on a mole for mole basis AEA at 10^{-4} M is a more powerful inhibitor than IAA is a promoter. This is clearly seen by observing the effects of the hormones combined at equimolar concentrations (Figs. 20a and b; dotted lines).

The effect of ABA on coleoptile segment length is not the same at all IAA concentrations: the elongation inhibited by both 10^{-5} and 10^{-4} M ABA is greater at high IAA concentrations than at low IAA concentrations. Consequently the lines joining data for consecutive increasing IAA concentrations, at the various ABA concentrations, diverge. This is a preliminary indication of a statistical interaction between ABA and IAA. The analysis of variance confirms there is a statistical interaction of these data in experiments A and

Fig. 20. The activity of ABA, in the presence of IAA, in the Avena coleoptile straight growth assay.

"a) "Experiment A = 3 replicates of 5 sognents per treatment.

b) Experimont B : 2 replicates of 10 segments per treatment.

The data are presented as mean coleoptile segment length VS IAA concentration, at five ABA concentrations and in the absence of Aba. The dotted line in each graph joins those treatments in which equinolar

concentrations of both hormones are present.

Statistical Analysis. The t-test was used to test the difference in segment length between the treatments i

t value 7.224 EXO. E . E O/10-0 H TAN + 10 H ARA

е., З

Exp. B T 30/10 M TAN + 10 M TEN

3.705

For further analysis see Table 1

Significance

٠.

Item			149	P
IAA	- 5 , 1	44.036	8.807	77.254 ***
ABA	5	146.854	29.371	257.640 ***
Interaction	25	13.466	0.639	4.728
Error		8.193	0:114	
		5	· · · · ·	

(i) Experiment A. 6 concentrations TAA x 6 concentrations ANA.

(11) Exportment B. 6 concentrations IAA x 6 concentrations ABA.

# 2000-00							
Iten	N	SS	MS	P	and the second	P	
IAA	5	47.890	9.579	504.1	58 4	1 * 1	
ABA	. 5	55.318	11.064	582.3	18 4	1#1	
Interaction	25	9.294	0.372	19.5	78	i m i	
Brror	36	0.670	0.019			ana .	

(111) Experiment A. 5 concentrations IAA x 4 concentrations ABA. , ę́

. 3.

Ttem	N.	SS	145		F	P	4 (Art)
TAA	5	49.20	9.84	- - 	3.076	素素素	
ЛВА	14 3	40.37	13.46		6.292	***	
Interaction	15	5.15	0.34	5 00	2.179		
Error	48	7.49	0.156				

(iv) Experiment B. 6 concentrations IAA x 4 concentrations ABA.

Itom	N	88 . ")	MS .	urgana 🎽	P
TAA	5	51.107	10.221	393.115	
ABA	3	13.211	4.404	169.384	***
Interaction	15	1.107	0.074	2.846	
Brror	24	0.618	0.026		

÷.,

.

., 2

E (Table 7 (i) and (ii)). The analyses also show that the IAA and ABA offects are significant.

72

Examination of the data presented in these graphs (Eig. 20a and b) indicates that the effects of 10^{-8} , 10^{-7} and 10^{-6} M ADA are similar at nearly all IAA concentrations. It could be argued that a significant interaction component only develops in the presence of 10^{-5} and 10^{-4} M ADA. On the other hand, an analysis of variance in which the data for 10^{-5} and 10^{-4} M ADA are calited shows a significant interaction although the level of this significance is reduced (P < 0.05; Table 7 (iii) and (iv)). Thus it appears that the significance of the interaction term between ADA and TAA develops with increasing hormone concentration.

The interaction detected may be attributed to a combination of the nature of the assay system and the method of data presentation. Thus it is relevant to consider a different method of presentation of the data. In Fig. 21a and b the growth inhibited by ABA in the presence of IAA is calculated from the growth induced by IAA alone (i.e. growth induced by IAA minus growth induced by IAA and ABA). The lines in these graphs diverge and indicate a statistical interaction. The increased ABA inhibition at increasing IAA concentrations, however, may be a consequence of the greater potential for growth inhibition at higher IAA concentrations, i.e. there is more growth to be inhibited.

The data may be presented on a percentage inhibition basis by calculating the growth inhibited by ABA at each IAA concentration as a percentage of the growth promoted by the appropriate IAA concentration, i.e. * inhibition (Fig. 22a and b). A different response pattern is observed in that the lines are relatively parallel, particularly when comparing 10^{-5} and 10^{-4} H ABA with the zoro ABA control. The data from experiments A and B are shown to indicate variation between the experiments. The variation is greater than is observed in the primary data (Fig. 20a and b) because each * datum is dependent on two values, <u>viz</u>, the growth in ABA + IAA and the control growth in IAA alone. The activity of ABA, in the presence of IAA, in the Avena coleoptile straight growth assay a) Experiment A.

a) Experiment A. b) Experiment B.

inhibited (mm) <u>VS</u> IAA concentration, at five ABA concentrations and in the absence of BBA. The growth inhibited by ABA at each IAA concentration was darived from: mean control increment - mean transmission. The control for each IAA concentration was taken as that increment. The data are from the same experiments as in Fig. 20 a and b; Catz presented as the growth

.....

240.2. The detrivity of MaW, in the presence of MW, in the <u>Nome</u> colorphile straight growth.easer.
(a) Detrivant.
(b) Detrivant.
(c) Detrivant.
<p(

For example, the % inhibition by each of 6 ABA concentrations in the presence of 10⁻⁶M IAA is dependent on the growth in the presence of both hormones and the growth promoted by 10⁻⁶M IAA alone. Consequently, the errors within each emperiment are not independent and because the independence of errors is one of the assumptions of the analysis of variance this test is not appropriate unless the data are transformed.

These considerations question the relevance of analysing data for a statistical interaction and the meaning of this term is considered more fully in the Discussion. Examination of the primary data, however, is extremely useful to indicate the effects of ABA at different IAA concentrations. For more detailed considerations of these effects analysis in terms of enzyme kinetics and detailed time courses of growth have been carried out (Sections 5 and 6).

4. The Molecular Requirements for Abscisic Acid Activity in the Presence of Indole-acetic Acid: The Straight Growth Assay

Abscisic acid modifies the action of IAA in the <u>Avena</u> coleoptile straight growth assay and ABA has certain molecular requirements for inhibitory activity in the absence of applied IAA. The next problem investigated was whether the molecular requirements for the action of ABA in the presence of IAA are similar to those for ABA alone. The 14 ABA analogues initially available were tested in the presence of IAA in the <u>Avena</u> coleoptile straight growth assay. A factorial experimental design and the analysis of variance were again employed. The analysis of variance was considered to be of value in that it provided an objective test to aid comparisons of the analogues with ABA.

The experiments were designed such that IAA and each analogue were tested at concentrations of 10^{-7} , 10^{-6} and 10^{-5} H with a distilled water control. The analogue concentrations correspond to those employed when assaying the analogues alone. To compare the data obtained with the activity of ABA in

the presence of IAA the ARA/IAA factorial experiments (Section 3) were reanalysed with the analysis of variance selecting those concentrations used in this series of experiments (Table 6).

76

The data presented in Figs. 23, 24, 25 and Tables 9, 10, 11, represent in each instance the results obtained from one experiment; similar results were obtained when the experiments and analyses were repeated. In all cases the TAA effect is significant (P < 0.001), as in provious experiments. The activity of these analogues in modifying the action of TAA reflects the activity of the analogues when assayed alone.

Compounds III, IV, V and IX possess all the structural requirements implied for the inhibitory activity of ABA. The activity of these 4 compounds in modifying IAA action is similar to that of ABA (Fig. 23). The analysis of variance reveals a significant effect of these analogues and a significant interaction with IAA in all cases (Table 9). Similar significance levels were also found in the analysis of the activity of ABA in the presence of IAA, when both hormones were assayed at 0, 10^{-7} , 10^{-6} and 10^{-5} M (Table 8). At 10^{-5} M these analogues overcome the promotory effect of IAA at an equimolar concentration; indeed, compounds III and IV inhibit growth compared with the distilled water control (P < 0.001). Thus on a mole for mole basis at 10^{-5} M compounds IMI and IV are more powerful inhibitors than IAA is a promoter.

Compounds I, II, VIII and XXIV possess inhibitory activity when tested alone, though this is considerably less than that of ABA. This lower activity is accounted for by the lack of the unsaturated functional group at C-1 which is present in ADA. These compounds are all less effective inhibitors of IAA action than is ABA (Fig. 24). Alone, their activity is significant in the analysis of variance but no significant interactions with IAA are detected (Table 10). In addition, a 1:1 molar ratio of each analogue to IAA, with both compounds at 10^{-5} M, clearly results in growth promotion compared with the distilled water controls (P < 0.001).

Although XXV possesses the moleties implicated for inhibition when tested

Table 8. Analysis of Variance : ABA Experiments.

TAA and ABA at 0, 10-7, 10-6, 10-5M

(1) Experiment A.

Item	SS	NS	if	P
1AA 3 ~	19.54	6.51	69 .16 8	***
ADA 3	51.92	17.31	181.256	
Interaction 9	3.69	0.41	4.293	
Brror 32	3.058	0.096		

77

(11) Exportment B.

Ttom		SS .	NS			
INA.		20.13	6.71		279.583	***
мэл.		32.06	10.65		445.417	***
Interaction		3.84	0.43		17.917	***
Stror	1,6	0.383	0.02	24 [新碧··· 汉····		

Fig. 23. The activity of four ABA analogues, in the presence of

IAA, in the Avena coleoptile straight growth assay.

- a) Analogue III.
- b) Analogue IV.
- c) Analogue V.
- d) Analogue IX.

Analogue concentrations :---

0 10⁻⁻⁷M

10⁴⁴⁵M

The data are presented as mean coleoptile segment length VS IAA concentration, at 3 analogue concentrations

and in the absence of any Analogue. The data for each analogue are the mean from one experiment, employing 2 replicates of 10 segments per treatment. Similar results

were obtained in one repeat of these treatments.

Statistical Analysis. The t-test was used to test the difference in segment length between the water control in each experiment and the treatment with 10^{-5} M IAA + 10^{-5} M analogue.

Analogue	t va	lue	Significance	ي. بريو
	ing yan an ing a k i Kita kata kata kata kata kata kata kata k	9. / *1. 		1
IV STATE	6.4	75		ŕ.
	0.9	11	an an Angelan an Angelan Angelan an Angelan an Angelan Angelan an Angelan an A	
IX Sec.	1.1	39 👙 💡 🖗	NS	5

For further analysis see Table 9.

Table 9. Analysis of Variance.

(1) Analogue III.

-sea and constant is second with the second		•	and the second sec	مەربىيە ئېرىنى يېرىمى ئېرىنى	م برون برونتون موریک ماه می د
Item		SS.	85	E.	n and a second sec
ТЛА	3	23.870	7.957	568.357	**
XXX	3	20.958	6.986	499.000	
Interaction	√. 9	2.937	0.326	23.286	
Error	16	0.222	- 0. 014	upa	

(11) Analogue IV.

Iten		SS	MS	P.	ġ
TAA -	ંગ	12.349	4.116	457.333	***
ΔV	3	33.333	11.111	1234.556	***
Interaction	9 · · ·	2.978	0.331	36.778	***
Error	16	0.151	0.009	1895	5, 7, , 1944

s)

(iii) Analoque V.

NA IN IN INTE	an a	· · · ·		· · · · · · · · · · · · · · · · · · ·	가지 못 하다.
🔆 Itom 👘	N N T	88 *	MS	P	P
IAA	3	23.130	7.710	350.455	***
V	3 S	27.362	9.121	414.591	***
Interaction		2.729	0.303	13.773	***
Seror	16	0.361	0.022	••••	

(iv) Analogua IX.

Item	- 74	1 85 (***	145	p	
IAA	- 3 -	21.749	7.250	345.238	
IX	3.	26.173	8.724	415.423	
Interaction	9	1.686	0.187	8.905	
Error	16	0.338	0.021		

Fig. 24. The activity of four ABA analogues, in the presence of IAA, in the Avena coleoptile straight growth assay.

- a) Analogue I.
- b) Analogue II.
- c) Analogua VIII.
- d) Analogua MKIV.

Analogue concentrations:-

The data are presented as mean colcoptile segment length VS IAA concentration, at 3 analogue concentrations and in the absence of any analogue. The data for each analogue are the sean from one experiment, employing 2 replicates of 10 segments per treatment. Similar results were obtained in one repeat of these treatments.

Statistical Analysis. The t-test was used to test the difference in segment length between the water control in each experiment and the

treatment with 10 H IAA + 10 M analogue.

Analogi	18	, 김종왕 소리	t valu	8	Signi	ficance	т.).
I	· · · ·		10.93				2. • \$~,
II			10.21			(1997) - 1993 	
VIII			8.71		,		
XXIV			16.33				n tin n tin menžeti

For further analysis see Table 10.

Table 10. Analysis of Variance.

(1) Analogue I.

Ttem		55	MS		
IAA	in a sea an	29.585	9.862	328.733	1999 - 199
		4.896	1.632	54.400	***
Interaction	9	0.433	0.048	3.600	NS .
Error	16	0.473	0.030	್ಯ ಕಾರ್ಯ ಕಾರ್ಯ ಕ್ರಮ ಕಾರ್ಯಕ್ರಮ ಕ್ರಮ ಕಾರ್ಯಕ್ರಮ ಕ್ರಮ ಕಾರ್ಯಕ್ರಮ	NIT

81

(11) Analogue II.

	1 e [] 1 e			· · · · · · · · · · · · · · · · · · ·	
Iten	N	SS			P
Tha	.3	30.440	10.147	281.861	***
II	3	1.651	0.553	15.361	* 素素
Interaction	9	0.520	0.058	1.611	NS
Error	16	0.581	0.036		

(iii) Analogue VIII.

9, .		· · ·	* 4 ,			
	XLOR	17	6-2 (** 8-2 (** 8-2 (***	MS	5 *	P
· 	гла.	3	30.958	10.319	264.590	***
	/TTT	3	7.823	2.608	66.872	***
	Interaction	9	0.364	0.040	1.026	NS
. 1	irror	16	0.623	0.039	i in the second s	exp
-0		6-2- ²⁰⁰ 000/061910000000000000000000000000000000	The party region of the trade of the trade of the party of the party of the trade of the trade of the party of the party of the trade	ele lar e sus pa cies constantant persona la	a da da se	

(iv) Analogue XXIV.

,i	Iten		55 	MC		
,	IAA	3	28.496	9.499	339.250	र्रह्म है। इन्द्रे के क्रि
1	XXIV	3	6.063	2.021	72.179	***
	Interaction	9	0.413	0.046	1.643	N 9
•	Brror	16	0.449	0.028		₩ ₩ ₩

along it has reduced activity compared with ADA, the reduction in activity is explained by the presence of a sulphur atom within the molecule. This structural modification also reduces the activity of XXV in a factorial experiment with TAA (Fig. 25a). No significant interaction is recorded and in the presence of 10^{-5} M TAA and 10^{-5} M XXV there is promotion of growth compared with the control (Table 11(1)). Compound XXVIII is not active alone and in these experiments it has no effect on TAA-induced growth (Fig. 25b, Table 11(11)).

Thus the molecular requirements for ABA activity in the presence of TAA appear similar to those for the inhibitory activity of ABA alone. Structural modifications which reduce the inhibitory activity of an analogue when assayed alone also reduce the effectiveness of this analogue in inhibiting the promotory effects of TAA.

In contrast, the activities of analogues VI, XXIX, XXX and XXXIII, in the presence of TAA, are inconsistent with these inferences (Fig. 26). Compounds VI, XXX and XXXIII inhibit growth when tested alone but are less active than ABA; compound XXIX is inactive alone. In the presence of TAA, however, significant interactions are recorded in all cases (Table 12). These interactions are partially due to the unusual, but very variable, dosage-response patterns observed at increasing TAA concentration. Because of the variability obtained in repeat experiments further theoretical consideration is not given to the mode of action of these analogues.

5. The Action of Abscisic Acid in the Presence of Indole-acetic Acid : Enzyme Kinetics

Abscisic acid modifies the promotory effects of IAA in the <u>Avena</u> coleoptile assay and the analysis of variance indicates an interaction between these hormones. It was decided to investigate further the action of ABA in the presence of IAS using experiments which are amenable to analysis in terms of enzyme kinetics. The execution of this type of experiment was stimulated

Fig. 25. The activity of two ABA analogues, in the presence of IAA,

in the Avena coleoptile straight growth assay.

a) Analogue XXV.

b) Analogue XXVIII.

Analogue concentrations --

The data are presented as mean colcoptile segment length <u>VS</u> IAA concentration at 3 analogue concentrations and in the absence of any analogue. The data for both analogues are the mean from one experiment, employing 2 replicates of 10 segments per treatment. Similar results were obtained in one repeat of these treatments.

Statistical Analysis. The t-test was used to test the difference between the sequent length for the vater control and the treatment with 10^{-5} M IAA + 10^{-5} M analogue.

Analogue	نه در ۲	t valu	10	Sign	Lficance
	(1) (1)		- 1,94.22 7 8.34		
XXV		8.89			

For further analysis see Table 11.

Table 11. Analysis of Variance.

(1) Analogue XXV.

Item	N	ŚŚ	i ng	P	P
TAA		26.985	04995	121.554	
XXV		3.142	1.047	14.149	(1 m) 2 \$\$\$ 1 \$ \$
Interaction	9	0.662	0.074	1.000	NS
Error	16	1.178	0.074	- 4994) (
alout Landa and an example and which the property of the state of the	and a factor allowing states to the state state of a state of the states o	nar að spinskað fra Maistrik Maistrik Sandari var bið	La manifest d'ann an		un international and

ea.

(ii) Analogue XXVIII.

JAA 3 20.101 8.700 127.941 ***	
XXVIII 3 0.150 0.050 0.735 NS	t i
Interaction 9 0.284 0.036 0.529 NS	
Brror 16 1.085 0.068 -	•

Fig. 26. The activity of four ABA analogues, in the presence of IAA, in the <u>Avena</u> coleoptile straight growth assay.

- a) Analogue VI.
- b) Analogue XXIX.
- c) Analogue XXX.
- d) Analogue XXXIII.

Analogue concentrations -

0

The data are presented as noan coleoptile segment length VS IAA concentration at 3 analogue concentrations and in the absence of any analogue. The data are the mean of 1 experiment, employing

2 replicates of 10 segments per treatment.

Statistical Analysis : see Table 12.

(1) Analogue VI.

in de la com Nobel com

Q 1

Item N. SS	MS	p
1AA 3 17.721	5.907 6	56.333 ***
VI 3.951	1.983 2	20,333
Interaction 9 1.631	0.181	20.111 ***
Exror 16 0.152	0.009	

66

(ii) Analogue XXIX.

÷	Tium	N	SG.	$^{\sim}$ Mg $^{\sim}$		P
	Here the factor	43.	4.9 (1.154)	3 69A	110 300 T	**
		3 	44.4 12.643 A 12.49.04	- 2022 C	46 305 · · ·	ar a
	and a summer with a sum		- 6.010 6.000	a	845679400	
i N	MACCALEUS MACIA	1. 19 1	A-800	0.026		
1.11	Zila, J. S. M.		1.5 a 12 f2 f2	No VAR 1975 - 41		

(iii) Analogue XXX.

IAA 3 27.041 9.014 450.700 *** XXX 3 1.670 0.557 27.850 ***	
XXX 3 1.670 0.557 27.850 ***	ŧ
Interaction 9 1.115 0.124 6.200 **	
Error 16 0.327 0.020	

(iv) Analogua XXXIII.

;

×.,

Ttom	SS MS	P	n an tha	
1AA 3	13.895 4.632	149.	419 **	
XXNIII 3	2.852 0.951	30.	677 **	
Interaction 9	3.105 0.349	11.	129 **	
Error 16	0.502 0.033			

by the findings of Bonner and his colleagues (e.g. Bonner and Foster, 1955) who demonstrated that the kinetics of IAA-induced growth are, under certain conditions, identical to the kinetics of many enzyme reactions. In addition, it could be argued that the molecular requirements for ABA activity relate to the binding of ABA to an enzyme site, thus inhibiting both endogenous growth and the activity of applied IAA. The analysis may indicate whether ABA is acting via competitive or non-competitive inhibition (see Introduction).

87

In order to maintain the data amenable to enzymic analysis two prerequisites must be considered when designing these experiments. Firstly, the initial rate of the reaction must be determined. The velocity of an enzyme reaction decreases with time, due for example, to the products of the reaction inhibiting the enzyme. Hence it is necessary to establish the initial rate of the reaction before the factors contributing to the decrease in velocity have time to operate. Secondly, because in nearly all enzymic reactions a graph of initial rates <u>VS</u> substrate concentration yields a section of a restangular hyperbola then the IAA concentrations selected must be within the correct range to include points on the curve of this hyperbola.

The expaniments were carried out in the absence of either buffer or an external energy supply, such as sucrose, to avoid the complicating effects of - Under these conditions and at 25°C the response of these additives. coleoptile segments to 10⁻⁵N IAA, 10⁻⁵N ABA and distilled water was studied over an 8-h period (Fig. 27a and b). In the 3 treatments the initial rate of elongation, i.e. that estimated at 0.5h, is the highest; the rate subsequently declines and there are fluctuations in the growth rate. Indeed, the more pronounced fluctuations are observed in this experiment in which the rate is estimated over a 1-h period than in a previous experiment (Fig. 11b) in which the rate is estimated at 2h intervals. To establish the initial. rate of clongation of segments a 4-h time course, in which elongation was This provided 8 data for measured at 30-minute intervals, was carried out. each hormone treatment and enabled the initial rate of response to be calculated.

ଞ୍ଚଞ

To select the range of substrate concentrations required the data from a 24 h straight growth assay were replotted on a linear scale (Fig. 28). Although these data are not initial rates they indicate that concentrations of approximately 10^{-7} to 10^{-5} H TAA include the curve of the hyperbola. Eight concentrations were selected, $6 \ge 10^{-7}$, $8 \ge 10^{-7}$, $1 \ge 10^{-6}$, $3 \ge 10^{-6}$, $5 \ge 10^{-6}$, $7 \ge 10^{-6}$, $9 \ge 10^{-6}$ and $2 \ge 10^{-5}$ M. Thus, including the water control, there are 9 data contributing to each curve of initial rate at incroasing substrate concentrations. Three ASA concentrations were selected to produce a range of inhibition. When the final coleoptile segment lengths, after a 4 h incubation, are presented as a function of TAA concentration, it is apparent that the correct range of TAA concentrations has been selected to embrace the curve of the observed rectangular hyperbola (Fig. 29).

The large number of experimental treatments resulted in time courses for only half the matrix of hormone concentrations being carried out on one day. The matrix was completed over a similar time period on the following day and the complete experiment carried out 3 times. There were 5 segments in a patri dish for each treatment. The mean data are presented in Figs. 30, 31 and 32.

These time courses indicate a burst of growth during the first 30 minute period, possibly the result of endogenous IAA or the stimulating effect of cutting the segments; this is particularly obvious in the absence of IAA treatment (Fig. 30). There is a latent period before the inhibitory effect of ABA is apparent, that is dependent upon the concentration of both hormones. Consequently, the initial rates of elongation at each IAA concentration are similar for the 4 inhibitor concentrations employed and it is irrelevant to estimate these initial rates because the ABA activity is not yet evident. Instead, the initial rates of elongation were estimated over the period 2 to 4 h, on the assumption that the ABA-induced inhibition had begun. Nevertheless, a graph of these initial rates at each ABA concentration, as

Fig. 29. The effect of a range of concentrations of IAA, alone and in the presence of 3 concentrations of ABA, on the elongation of <u>Avena</u> coleoptile segments, after 4 h incubation at 25°C.

ABA concentrations:

1 : 0
2 :
$$10^{-7}$$
M
3 : 10^{-6} M
4 : 10^{-5} M

The curves were fitted by eye. The mean length of 15

segments from 3 experiments are presented for each

treatment.

Coleoptile segment length (mm)

:

Time courses of the effect of four concentrations of IAA on the elongation of <u>Avena</u> coleoptile segments at 25°C.

a) O TAA.

Fig.

30.

- b) 6 x 10⁻⁷ H IMA.
- c) $8 \times 10^{-7} M$ IAA.
- d) 1 x 10⁻⁶M IAA.

Each IAA concentration was tested alone, and in the presence of 3 concentrations of ABA.

The mean length of 15 segments from 3 experiments was calculated for each treatment.

Fig. 31. Time courses of the effect of four concentrations of

TAA on the elongation of <u>Avena</u> coleoptile segments at 25°C.

- a) 3 x 10⁻⁶H IAA.
- b) $5 \times 10^{-6} M$ IAA.
- c) 7 x 10⁻⁶M IAA.
- d) 9 x 10⁻⁶H IAA.

Each IAA concentration was tested alone, and in the presence of 3 concentrations of ABA.

0 ABA. 0 ABA. 10⁻⁷M ABA. 10⁻⁶M ABA. 10⁻⁵M ABA.

The mean length of 15 segments from 3 experiments was calculated for each treatment.

Fig. 32. Time course of the effect of 2×10^{-5} M IAA on the elongation of Avena coleoptile segments at 25°C.

The IAA was tested alone, and in the presence of 3 concentrations of ABA.

> 0 ABA. 10⁻⁷m ABA. 10⁻⁶m ABA. 10⁻⁵m ABA.

The mean length of 15 segments from 3 experiments was

calculated for each treatment.

a function of TAA concentration, does not reveal the anticipated hyperbola which is typical of an enzymic reaction (Fig. 33). The scatter of points is undoubtedly due partially to experimental variation. This suggestion is supported by the fact that the KDF 9 computer, which was used to estimate the initial rates, was unable to fit a polynomial equation to the time course data at some hormone concentrations. Indeed, in certain instances a negative initial rate is observed (fly sheet, Fig. 33). The scatter of points in this graph is probably also attributable to both the fact that ABA inhibition develops at different times with varying hormone concentrations and that growth is stimulated by IAA from 2h before the initial rates are calculated.

95

Because the graph of initial rates (B) <u>VS</u> TAA concentration (S) yields only a scatter of points the next stage in the analysis, i.e. a double reciprocal plot of 1 /B <u>VS</u> 1 /S, is not justified. This latter representation of the data may have indicated a competitive or non-competitive inhibition.

If this type of experiment were to be further employed the initial burst of growth after sectioning and the precise latent period for ABA inhibition at all concentrations should be considered. The experimental variation may be reduced if the complete range of treatments are carried out on one occasion. Moreover, it is necessary to measure accurately small differences in elongation and a more sensitive measuring system may be profitable.

6. The Continuous Monitoring of Elongation

The timing of a response is a fundamental aspect required for the understanding of the mode of action of an applied growth substance. Experiments using the shadowgraph technique have given an indication of a latent period for ABA action, but no latent period before IAA promotion of growth was apparent. A latent period of approximately 10 minutes for IAA activity, however, has been reported (e.g. Ray and Ruesink, 1962). In view of the Fig. 33. Initial rate of elongation of Avena coleoptile segments,

as a function of IAA concentration, at 3 ABA concentrations

and in the absence of ABA.

ABA concentrations:-

0 ABA. 10⁻⁷M ABA. 10⁻⁶M ABA. 10⁻⁵M ABA.

The initial rates were estimated from the time course data of Figs. 30, 31, and 32, beginning at time 2 h.

				ABA Concer	ntration (M)	and a stand of the
INA	Cond. (H)		•	1077	10 ⁻⁶	10 ⁻⁵
	0		-0.213	9.216	0.387	-0.168
6	× 10 ⁷⁷		0.343	0.436	0.106	-0.049
8	× 10 ⁻⁷	е	0.199	0.939	-0.136	0.245
1 - ¹²	× 10 ⁻⁶		0.832	0.152	0.345	0.190
3	× 10 ⁻⁶		0.368	0.324	0.303	0.149
5	× 10 ⁻⁶		-0.210	0.750	0.122	0.269
7	x 10 ⁻⁶		0.380	0.333	0.651	
(************ * 9	x 10	د می وارد از د می این از می از می میرد. د می این از می از می از می	0.296	0.837	0:309	
	× 10 ⁻⁵		0.66B	0.312	-0.019	

Initial rate of elongation (mm h 1)

fact that ABA modifies IAA-induced growth it is relevant to develop a technique to study the effect of ABA on both endogenous growth as well as on the initial response to IAA.

a. The Techniques. The first experiments in this series were conducted to evaluate 3 measuring techniques. Initially, a microscope technique was employed that was capable of detecting a growth rate of 1 μ m min.⁻¹ for a single segment. There were, however, several problems associated with this technique. These problems included difficulty in focusing on the elongating end of the segment, difficulty in securing one end of the segment, in addition to crooked growth of the segment resulting in lateral movement under the micrometer eyepiece. Furthermore, there was large variation in the initial growth of segments in water. This may have been due to variation in the pH of the H₂O in different experiments or due to biological variation between segments.

In an attempt to reduce the variation in growth a technique was tried in which the growth of a column of 19 segments was measured with a lever system and smoked kymograph drum. Mechanical problems were encountered with this technique because a long lever was required to provide sufficient magnification of growth.

Subsequently, the elongation of a column of segments was monitored with a linear transducer. The transducer magnified the elongation and thus a small, easily counterbalanced lever system could be developed. This technique was refined during experimentation and all the data presented in this section were obtained using the transducer technique.

b. The Incubation of Segments before Treatment. Slow steady growth of segments is required before the effects of applied growth substances can be monitored. Thus the growth of segments in buffer was investigated immediately after setting up the experiments.

When segments are placed in the apparatus and 0.01M phosphete buffor at

pH 7.0 and 25°C is introduced there is a high growth rate, typically of 3.0 to 4.0 µm min.⁻¹ per segment, though in some instances there was a period of slow growth while the pressure of the coleoptile segments on the lever developed (Fig. 34). The use of this buffer enabled comparisons with published data and it also adequately buffered the hormone solutions.

98

The growth rate is affected by pH. Using buffer at pH 7.0 the growth rate is typically reduced to $0.2 - 0.3 \ \mu m min.^{-1}$ per segment after 90 minutes whereas with buffers of pH 6 and 5.2 the growth rate is higher after a similar incubation time (Fig. 34). Consequently, a 100-minute incubation in phosphate buffer at pH 7.0 was routinely used at 25°C and growth recorded during this period before IAA treatment was begun at time zero. At 15°C and 20°C a longer incubation period was required to reduce the growth rate in buffer to a low level; a shorter incubation was adequate at higher temperatures.

The growth rate in buffer is at first unaffected by the replacement of the buffer solution at time zero but increases gradually after about 40 minutes (treatment 3, Fig. 46a and b).

c. The Response to Indole-acetic Acid. Prior to examining the effects of ADA on IAA-induced elongation it was necessary to investigate the characteristics of the response to IAA alone. The features of the response to 10^{-5} M IAA at 25°C and pH 7.0 have been demonstrated in experiments investigating the effect of temperature and IAA concentration on the IAA response (section 6d and c) as well as ABA effects (section 6f). These experiments show that 10^{-5} M IAA at 25°C and pH 7.0 stimulates growth with a latent period of approximately 11 minutes (Fig. 35; Fig. 46a and b, treatment 1) and a mean initial maximum rate of elongation of approximately 60 µm min.⁻¹ (Fig. 41) occurring 25 minutes after addition of IAA. The experiments in which growth was recorded for a 3-h period following the addition of IAA demonstrate a depression in rate after the initial maximum (Fig. 46b, treatment 1). A 24. A. Continuous the contrast of the a charged can of America contrast. Nation for a contrast of the a charged can of the a charged can of the a charged can obtain the form of the charged can be ch

Fig. 35. The effect of IAA concentration on the latent period for IAA-induced growth of <u>Avena</u> coleoptile segments at pH 7.0, and 25°C.

Each point is the mean of 5 replicates.

Statistical Analysis. The t-test was used to test the difference in latent period between the treatments indicated.

Item t value Significance

10⁻⁴N/10⁻³M

2.65

rate of growth similar to the initial maximum is then maintained until 120 minutes though fluctuations in rate are observed. During this 120 minutes a second maximum greater than the first may occur before the rate begins to decline. The mean data (Fig. 46b, treatment 1) illustrate this greater second maximum but it was not observed in all replicates of this experiment though they all show the fluctuating rate.

The initial maximum rate in separate experiments does not always occur at precisely the same time after addition of IAA. In the 5 replicates contributing to the mean data of treatment 1 in Fig. 46 the initial maximum occurs either 20 or 25 minutes after addition of IAA. Consequently, the mean value of this parameter was calculated from 5 replicates, rather than calculating the mean growth rate at a given time after IAA treatment was initiated.

Thus the IAA response under specific conditions illustrates two diagnostic parameters, <u>via</u>.: the latent period and initial maximum rate. Both parameters can be readily investigated with the transducer technique and experiments were carried out to investigate the effects of temperature and IAA concentration on these important features of the IAA response.

d. The Latent Period of the IAA response. Increasing the concentration of IAA over the range 10^{-7} M to 10^{-3} M at 25°C using solutions buffered with phosphate buffer at pH 7.0, reduces the latent period to 7.3 \pm 0.48 minutes at 10^{-3} M; raising the IAA concentration to 5 x 10^{-3} M does not further reduce the latent period (Fig. 35). Studies using 10^{-5} M IAA at pH 7.0 show that the latent period is reduced to a minimum of 8.7 \pm 0.43 minutes at 30°C when the temperature is increased in steps from 15°C to 30°C, but a further rise in temperature to 35°C extends the latent period (Fig. 36).

A combination of the conditions that individually produce minimum latent periods in these experiments, i.e. 10^{-3} M IAA and 30°C, does not reduce the latent period, but increases it (Fig. 37). Similarly, extending the temperature range above or below 25°C, using either 10^{-3} M IAA or 5 x 10^{-3} M

Fig. 36. The effect of temperature on the latent period for growth, induced by 10⁻⁵M IAA at pH 7.0, of <u>Avena</u> coleoptile segments.

Each point is the mean of 5 replicates.

Statistical Analysis. The t-test was used to test the difference in latent period between the treatments indicated.

Iten		t value	Significance	
25*C/30*C		4.745		, .
30*C/35*C	. 4	3.472		1. -
A	· · · · · ·	· 영향 영향 - 동법 전쟁 · ·		÷.,

Fig. 37. The effect of temperature on the latent period for growth, induced by 10^{-3} M TAA and 5 x 10^{-3} M TAA at pH 7.0

and 6.9 respectively, of Avena coleoptile segments.

Bach point is the mean of 5 replicates.

Statistical Analysis. The t-test was used to test the difference in latent periods between the treatments indicated.

Doctor Sector	 Item	·. *	t	value	Signifi	cance	
	 1.1				18 (A)		

10⁻³M INA 25°C/30°C 3.234

IAA, does not reduce the latent period beyond the minimum observed at 25°C.

Thus there is no evidence of an ismediate response of segments to IAA at pH 7.0 although these experiments subtrace those conditions of IAA concentration and temperature which were reported by Nissl and Zenk (1969) to induce rapid elongation with no observable latent period, i.e. 5×10^{-3} M IAA at 29°C. The immediate growth response described by these investigators, however, was obtained with 5×10^{-3} M TAA préferred in 0.01M NH₂FO₄.

104

In experiments using this solution an almost immediate response is observed, both at 30°C after protreatment in 0.01M KH_2PO_4 at pH 4.7 (Curve 1, Fig. 36) and at 25°C after protreatment in phosphate buffer at pH 7.0 (Curve 3, Fig. 38). Although the 0.01M KH_2PO_4 has a pH of 4.7, addition of 5 x 10⁻³M TAA reduces this pH to 3.5. Table 13 compares the pH values of a range of TAA concentrations in distilled water and in 0.01M KH_2PO_4 . These data show that 0.01M KH_2PO_4 is inadequate to buffer concentrations of TAA in excess of 10⁻⁴M. Thus it is possible that the almost immediate response observed may not be due solely to TAA.

Table 13.	pH of IAA Solutions.	Typical values	are quoted.	Similar pH
		۰.		
	readings have been obs	erved in at lea	st 2 separate	determination

[IAX]M	(a) in H ₂ 0	(b) in 0.01M	KH2P04	(c) in	0.01M pho	sphate buffer
0	6.3	4.7	2 · · · ·	•	7.0	
10 ⁻⁵	6.0	4.7	<i>r</i>		7.0	
10 ⁻⁴	4.5	4.5			7.0	
10 ⁻³	3.8	4.0	,		7.0	
5 x 10 ⁻³	3.4	3,5		•	6.9	($K_2^{HPO}_4$ only)

In view of the fact that an incubation of at least 3h was required to produce a slow steady growth rate using 0.01M KH_2PO_4 at pH 4.7, and because an immediate response with 5 x 10⁻³M IAA in 0.01M KH_2PO_4 was obtained after

The curves show the clongation of a column of 10 segments and each is the mean of 3 separate experiments 5 x 10. M IAA, at the time shown by the arrow (0 minutes). Cyanide treatment began at -15 minutes 10 1 h potassium cyanide (XCN), to treatments involving the lowering of the pH, or the addition of <u>Statistical Analysis.</u> The t-test was used to test the difference in clongation at 30 minutes between the The response of Avena colcoptile segments, in the presence (----) and absence (Significance NS t value 3.338 3.995 3.037 1.427 and was present throughout subsequent treatments. ••• treatments indicated. 1/3 5/6 3/4 22 Iten F1q. 38.

Elongation (mm)

105

•

a 100-minute pretreatment in phosphate buffer at pH 7.0, most subsequent experiments were carried out using the more convenient 100-minute incubation in buffer of pH 7.0.

A solution of pH 3.5 can induce an almost immediate promotion of growth in the absence of applied IAA. After a 100-minute incubation at 25°C in citrate buffer at pH 7.0, a citrate buffer of pH 3.5 at 25°C induces a high growth rate with a latent period of only 1 to 2 minutes (curve 7, Fig. 38).

The possibility that the immediate response to 5 x 10"3M IAA prefared with 0.01M KH_PO, involves an acid response has been further investigated The effect of 10"A KCN in phosphate buffer at pH using potassium oyanida. 7.0 was studied on segments growing at approximately 2.0 µm min. 1 per segment in this buffer; i.e. before a slow steady growth rate in buffer alone is The growth rate is reduced with a latent period for KCN action of achieved. less than 5 minutes (Fig. 39). There is no response of segments to 5 x 10⁻³M IAA at pH 7.0 in the presence of KCN after 15 minutes pretreatment in this The cyanide, however, does not irreversibly kill the segments inhibitor. because removal of the KCM after an exposure of 45 minutes results in a high growth rate within 2 to 3 minutes. In subsequent experiments using KCN the inhibitor was added 15 minutes before the low pN or IAA treatment was initiated and the cyanide was waintained in the solution during this treatment.

Fig. 38 shows the action of 5 \times 10⁻³TAA at pH 7.0 in the presence (Curve 6) and absence (Curve 5) of this cyanide treatment. Although the IAA alone promotes a high growth rate with a latent period of approximately 8 minutes the potassium cyanide completely abolishes this promotion of growth.

In contrast, potassium cyanide has a much loss marked effect on the growth induced by low pH. The latent period is not affected by 10^{-4} M KCN added 15 minutes before the introduction of citrate buffer at pH 3.5 and the total elongation after 30 minutes is only slightly reduced, though the reduction is significant (P < 0.05; Curve 8, Fig. 38). This cyanide tweatment does not abolish the response to 5 x 10^{-3} M TAA at pH 3.5 either at

and the p

												. .
1999		्रे २, ४२ हे • मुक्र, जी				에 가장하다. 같은 사람들은	an a	an strategie en Strategie an				
2 - 2 2 - 2 2 - 2		んざる		n an		o f the second						
		2 · · ·		· ·	1. N. 1. 2. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3.		fitter types of the Association	e starte	العلامي المالي المسلم المالي المالي المالي التي الحالي			-
			et en de la composition de la	0	54 - ⁵	R .			r ,			
			an a	ere a						an a	an a	
	p	2 - 1 - 1 2 - 1 - 1	· · · · ·	.								
		i the state	1. 1	- 	5	월 👘	and the state of the State of the state of the					
in d	, st		n de la composición de la composicinde la composición de la composición de la composición de la compos	арана 1917 - 1 - 1917				· , ·				
		n de la composition A constantes		B	. . .	ž	्र 1,2,31 जन्म इ.स. २ व्या - २ व्या -	•	n an tha an thair an t	1		
			· , ч	đ	i na terra de la composición de la comp El composición de la c	đ	Star i Adam Star i Adam	ng sa			•	
			· ·	t.	្តដ្ឋមន្ត្រ	0		5	م المراجع من المراجع ا مراجع المراجع ال	n in the second seco Second second	 	
				- E	×	a 1		· · · ·	en instruction Anna Angeloria			
	(e. ³ /		i In Ingli	- Q				ka ji Mari da ji				
1.1	1				Ă	6 . (* (*)	1					
	1 11	- 14 · ·	e 1	A	18 8 - 1	Ô	쉽			5- 5- 5- 5-		
a a construction of the second se		H H	yan ya a	Q	d	4 - 17	Č,					
à l				ିତ୍ର କୁ	5	5	3					
			~	r 4	- H	H	ee ee			n ^{da} ring dan se		
		100 100		HE K	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	🗶 ್ರ ಪ್ರಾಮಕ್ಕ	븅				State and a state of the state	
- 唐 王 李	5. 5.3 40	Ê.	ŕ.,	. 8	്റര്	O	4		· · · ·	• · · · · · · · · · · · · · · · · · · ·		
5.29		d.			en se		0 0			45	g ^a tric group and βroup to the second s	
		, X file	200	4 9		75 10	NA Second Second And Second Second	4				
空感	1 6 H	- C	* .	- 5 - 6	O N	.0	ä					
	1	10		4	H A H	4	H	f =	and a			
		5		Par Pa		D .						
		. 8	•		6 2					la a Arria. Ar an Arrian		
		M		મું નું	. A B		ä					
1 1 3 3 7 1 3 7 7 1 3 7		A		ភ្ល ជ	8.4	्रियः मध्यः म ्यस्थिति	G2		±			
- 2 F	يندڙ - پندڙ -	୍କୁ		ଁ ଟ୍ରାନ୍ ନ୍ର	96	អ្	ल् री	3				
		Ř		o J	H A	Ē	8			نې د. رون		
		Ř		a So	S S	ပ္ပြန္းသည္။	A A					
	1 1 4 1 4 4	a l	÷				H.	· · · · ·		and a second s		
and Stand		e e					8					
	÷.,	11	• •		B	^	18	· · ·	م کی و بر جزیر			
19 19 19 19 19 19 19 19 19 19 19 19 19 1		g		. <u>1</u>	1 1	ġ.	44 O	k e				
4		.	1114 1114 - 1129 1114 - 1129	A B	H.	a - 22	d. State					
가지 네 제	- × 5	1		a i	11 11		A (2)	24	100 A			
	s s €S _{T2} }.	ar l	·* ,	E S	ĕ	Q an	E.	•				
	* *	5	2				B					
	1. T.	g		8	0 H	8	1		· · · · · · · · · · · · · · · · · · ·	an a		
	E.			- " H		H .			· · · · · · · · · · · · · · · · · · ·	ante en esta		
	1.4.5 45 ²¹	SE .		O	-12	499 (1997) 1998 (1997)	1	•		and the second	i tyl star i sa	
라. (?) 15:43	· · · · · · · · · · · · · · · · · · ·	ğ	j.	2 S	ō.	Ĥ	10					
	n in styligen.	- 14 0-2		1 1	N.		ĝ	Ŧ			and a start of the second s Second second sec	
ある		.	aa in ka	و وأبروي شرو دي و التونية يويد	า ทารัฐการณู้จะไม่จะ เรื่องเป็นเป็นเป็นเป็นเป็นเป็นเป็นเป็นเป็นเป็น	and the second	i in Sila a se se se se	an a	ې پېرونې د د ا	Sund Survey a Survey and a survey	s. uti ozni	
Į.į		ő	1 F	రిష్టు గూర్జ్ కి			P				* · · · ·	
		្សា	- a				8			راني کې کې د. الانځېور کې امېرېدې ز		
		4 4 7	a la				a sa	5 . 			• •	
1.02 yr.	1		1	2		ية رقالية وت والمعطية إليه مع و ماكستان لعامرة الطوق ا	A				e b	
		5. 81 1	E4]		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		المعقوري معديات بالفرية: الأنواطية: أأثريت	an an ange er an Ange			· · · · · · · · · · · · · · · · · · ·	
Re		212 ⁵ - 4 # 1	· * .	; 			nn Mill. Mai					
1975 - 1975 1975 - 1975 1975 - 1975		33			2.90°		anaye ye. Alay sa					
6-53) :	4.4			s av			· · ·		ing the second			
	an Tha tu an c	뒤		a Agazar Angara Agazar Angara Agazar Angara	ti., ⁷⁸ x [*] ≵ [∞]				7		بر ۲۰۰۰ ۲۰۰۰ ۱۹۹۰ ۲۰۰۰	
		F4 1				n na star Na star	い 子 L SRL - H			en de la companya de National de la companya de la company		
e e Second	5		X					20.000				
금요			مار بر الآر ال مار الرائد المارية الرائد الرائد المارية الرائد المار الآرام الأرام المارية		に認識を			an Ngillia. Calada - S				
						같은 4~~ 수값입 다. ~ 가. 신것입	n (San Ala). E tale a Maria					

30°C after pretreatment in 0.01M KH_2PO_4 at pH 4.7 (Curve 2, Fig. 38) or at 25°C after pretreatment in phosphate buffer at pH 7.0 (Curve 4, Fig. 38). In both instances the response occurs in 2 minutes or less (Table 14); the total elongation after 30 minutes is not significantly affected in Curve 2 compared with Curve 1 (P > 0.2) and only slightly, though significantly, reduced in Curve 4 compared with Curve 3 (P < 0.05).

109

Five factors indicate that the almost immediate promotion of growth by 5×10^{-3} N IAA in 0.01M KH₂PO₄ is attributable to low pH:

(1) 5 x 10⁻³ M TAA in a solution of 0.01M KH₂PO₄ has a pH of 3.5.
(2) 0.01M citrate buffer at pH 3.5 induces an almost immediate promotion of growth.

(3) The guick growth promotion induced by 5 x 10^{-3} M IAA in 0.01M KH₂PO₄ is not abolished by treatment with KCN.

(4) A KCN treatment abolishes growth induced by 5×10^{-3} H IAA at pH 7.0 but does not annul the low pH response.

(5) The minimum latent period observed with 5 x 10^{-3} M IAA at pH 7.0 is greater than 7 minutes.

A slight discrepancy exists in the latent periods of these immediate responses: the latent period for the response to TAA at pH 3.5 is slightly less than that for citrate buffer at pH 3.5 which follows incubation of segments in citrate buffer of pH 7.0 (Table 14).

Table 14. Latent Periods (minutes).

The data presented are from individual experiments. Mean values are shown in brackets.

· · · · · · · · · · · · · · · · · · ·	•	
Solittion	~KCN	+XCN
A : 5 x 10 ⁻³ M IAA in 0.01M KH ₂ PO ₄ ; pH 3.5.		
(i) after incubation at pH 4.7	0; 2; 0; (0.67)	0; 0; 2; (0.67)
(ii) after incubation at pH 7.0	0; 1; 1; (0.67)	01 01 01 (0)
B : Low pH treatment after incubation in citrate buffer pH 7.0.	andre of general sector and general sector of the	
(i) Citrate buffer pH 3.5	2; 1.5; 1.5; (1.67)	2; 1.5; 1.5; (1.67)
(ii) Glycine-HCl buffer pH 3.5	0; 0.5; 0; (0.17)	

Nevertheless, glycine-HCl buffer at pH 3.5 induces a high growth rate with a latent period consistently less than 1 minute when this exposure to low pH follows incubation of segments in citrate buffer at pH 7.0. Hence the latent period for promotion of rapid growth by low pH may be affected not only by the pH but also by the constituents of the buffer before and during exposure to low pH.

e. The Rate of IAA-induced Elongation. The initial maximum rate of IAAinduced elongation is dependent upon both temperature and IAA concentration when using solutions prepared with 0.01M potassium phosphate buffer at pH 7.0. Using 10^{-5} M IAA the optimum temperature for a high growth rate is between 25 to 30°C (Fig. 40). The rate is greater at 30°C than at 25°C although the difference is not significant. A further increase in temperature beyond 30°C apparently exceeds the physiological optimum and a decrease in initial Fig. 40. The effect of temporature on the initial maximum growth

rate of <u>Avena</u> coleoptile segments, induced by 10⁻⁵M IAA

at pil 7.0.

Each point is the mean of five replicates; the rate of growth refers to a column of 10 segments.

Statistical Analysis. The t-test was used to test the difference in rate between the treatments indicated.

Iten	t value Significance	i Lali
		2 C
20°C/25°C		
25°C/30°C	1.148 NS	
		છે. ટ્ર. અંદ
		fanga 1997 - Angel 1997 - Angel

rate is observed.

The dosage-response curve at 25°C (Fig. 41) does not show the same optimum for a high initial rate as was observed for the minimum latent period (Fig. 35). TAA at 10^{-7} M promotes growth compared with the basal growth rate in buffer alone. The optimum concentration for a high initial growth rate is between 10^{-6} and 10^{-5} M TAA. The maximum rate is observed at 10^{-6} M though this is not significantly greater than that at 10^{-5} M. Increasing the concentration to 10^{-3} M gradually reduces the initial maximum rate. Three experiments using 5 x 10^{-3} M TAA show extremely variable results. The maximum initial rate, however, is in each case greater than the mean observed with 10^{-3} M and the mean maximum initial rate at 5 x 10^{-3} M is of similar magnitude to that observed with both 10^{-6} and 10^{-5} M TAA.

The temperature giving rise to the maximum initial growth rate is 30° C at 10^{-5} M TAA and at 10^{-9} M TAA the highest rate is also observed at this temperature (Fig. 42). On the other hand, at 5 x 10^{-3} M the mean growth rate is higher at 25°C than at 30°C though there is considerable variation within the data.

The dosage-response curve of the initial maximum rate of elongation at 25° C (Fig. 41), between 10^{-7} and 10^{-3} M TAA, rises to a maximum and then declines, as did the dosage-response curve of final segment length after a 24-h assay (Fig. 10). The curve of initial rates, however, is inconsistent with published data ostimated from initial rates (Nissl and Zenk, 1969; Cleland, 1972) in that sigmoid response curves were reported.

Both Nissl and Zenk (1969) and Cleland (1972) exposed seedlings to dim red light during development and their experiments were performed at pH 4.7. Consequently, further experiments were carried out to investigate the rôle of light and pH on the dosage-response curve.

In order to allow a variety of treatments to be examined quickly a modified straight growth assay was employed. The required number of segments were sectioned as in previous assays and incubated in buffer for 90 minutes. The effect of IAA concentration on the initial maximum growth rate of <u>Avena</u> coleoptile segments at pH 7.0, and 25°C.

Each point is the mean of 5 replicates, except that at 5×10^{-3} M IAA which is the mean of 3 replicates. The rate of growth refers to a column of 10 segments.

Statistical Analysis. The t-test was used to test the difference. in rates between the treatments indicated.

Item	an ing ta an ing ta	t value	Significance	
10 ⁻⁷ /10 ⁻⁶		5.482	* * *	1
10 ⁻⁶ /10 ⁻⁵	• •	0.958	NS	
10-5/10-4		3.096	*	
10 ⁻⁴ /10 ⁻³	·	0.683	NS	
10 ⁻³ /5 × 10	-3	1.687	NS	،

Fig. 41.

Fig. 42. The effect of temperature on the initial maximum growth rate of <u>Avena</u> colcoptile segments, induced by IAA.

Treatments:-

1 : 5 x 10⁻³H IAA, pH 6.9. Mean of 3 replicates. 2 : 10⁻³M IAA, pH 7.0. Hean of 5 replicates.

The rate of growth refers to a column of 10 segments.

Statistical Analysis. The t-test was used to test the difference in rate between the treatments indicated.

٦ د				Ita		ે સુવૃદ્ધો જેન્સ્ટ્રિટ	4		3. t	vali	10	S 1	mi	fic	anc	
Ĩ		5			(2) (2)						م برود می د مرکز می می د مرکز می می در می		, 			20
	10	•З ₋ н	IAZ	1.12	- 25	•c/3	0°C	• .	1	.207				NS		
				- 	51.000		4			n ya Nga n	م ب ^ر امی مربع					
¢.	در ديانوره		internet References References		30	•C/3	5*C		2	.968			ि ग [े] स प्रमु	۽ نڊ		
						3 nz 7			ali je se Nasra	، موجوع م بر قر						્રેટ
	5 🤉	c 1	D TN	I IA	A , 25	•C/3	O.C		្រា	.376				NS		$\frac{1}{2}$

The length of 10 segments was determined using the shadowgraph technique and the remaining segments were transferred to IAA treatments for 90 minutes, followed by shadowgraphing. The incubation in buffer allows the endogenous growth, possibly due to a growth stimulating effect of sectioning and to endogenous IAA, to decline to a slow steady rate. The 90-minute treatment was selected because continuous monitoring of segment elongation in 10^{-5} M IAA at 25°C and pH 7.0 shows that a growth rate similar to the initial maximum is maintained for 120 minutes. Hence, the total growth after 90 minutes should be indicative of the maximum initial rate and this treatment yields differences in length sufficiently large to be determined with the shadowgraph technique.

The treatments tested consisted of a 24-h exposure of seedlings to dim red light during the 3rd to 4th days of development and the use of phosphate buffer at pH 7.0 and citrate buffer at pH 4.7.

The red light exposure reduces the response of segments to TAA concentrations between 10^{-8} to 10^{-3} M, both at pH 7.0 and pH 4.7, compared with the elongation of dark grown segments under these conditions (Fig. 43). An exposure to dim red light has frequently been used in experiments investigating the response of <u>Avena</u> coleoptile segments to TAA and a pronounced response has been reported (e.g. Cleland, 1972). It is possible that the intensity or wavelength of the source employed in the experiments reported here differ from those of the light source used by Nissl and Zenk and by Cleland. In the absence of details of their lights no further experiments on this aspect were carried out.

The dosage-response curves of dark grown segments at both pH values illustrate an increase in elongation as the TAA concentration is raised. The response curves, however, level off and there is no significant increase in segment length when the TAA concentration is rai sed from either 10^{-6} to 10^{-3} M at pH 4.7 or 10^{-5} to 10^{-3} H at pH 7.0. Because this response pattern does not confirm that observed in experiments using the transducer technique

Fig. 43. The effect of IAA concentration on elongation of Avena

coleoptile segments at 25°C.

Treatmonts -

Segments were incubated in buffer for 90 minutes, then transferred to buffered IAA solutions for an additional 90 minutes, and segment lengths measured. The segments were floated on the solutions used. Each point is the mean length of 10 segments from 1 experiment.

Statistical Analysis. The t-test was used to test the difference in segment length between the treatments indicated.

Item t value Significance

Dark grown seedlings

이 이 같은 것 같은 것 같은 것 같은 것 같이 많이 있는 것 같이 있는 것 같이 많이 있는 것 같이 많이 있는 것 같이 많이 있는 것 같이 있는 것 같이 많이 있는 것 같이 있다.	- ション・ション てきこうかん とうてんべいがん とう
ALLIN A CAN HAA MAN	医骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨
AL DU LAV I TO ZIO	⇒★毎本はな きょう おおお 心気気気がする
그는 것은 방법을 얻는 것은 것같이 가지 않는 것이 같은 것이 없다.	방법 수 있는 것이 같은 것이 같이 가지 않는 것 같아.
	14 : 동양화 2011 - 11 : 문란 방송 입사와 이번 2011 : EU STOPPE
an Pratility 이 영화 이 가슴을 통해 가슴 수가로 주셨는 것이다.	and an an an an an ann an an an an an an an
e se entre exercise e LAV in 🖊 AV e la prime e	VJJAA SELETING NG
「「「「「「「「」」」」「「「」」」「「」」」「「」」」「「」」」」」	「家庭がないという」が、たちにより愛いてもい
したい 増払 読む 若しい しいしょう しんし 感知 いしょうい	- 希望的学习的学习,这些问题是我们的人们学习
수님의 문화학원들에서는 것 없는 것 이 것 같은 것 같은 것 같은 것	
역사의 제가 깨끗했는 것 가지는	
a shaaraa ahaa dhaha dhahamid da shiin dhaha	2017年1日本には、「「「日本の「法国国国」」
AC DA 4.7 S LU /LU	「ほうつうてい」 していたい しょうかい ひん
김희희 홍희 영화에 가지 않는 것 같은 것 같은 것 같이 많이 많다.	愛 何 新 じょう しょうせい ごうしょう
	같이 가슴에서 가슴을 가슴을 가슴을 가슴을 가져야 했다.
이 것입니? 신상 같은 이상 것은 가 입 것을 했다. " 않고? 서 ''' 생 가 있는 것이 ?	The second s
- 2011 MSR 등 소리에 2 10 - 동 / 10 - 61 - 455 - 5	・エンログゴ かどうぶつかん いたい れぬ だいがい
영화석한 것은 방법적 이 것은 것이라. 그 것은 것은 것은 것으로 가지요?	이 이 문화가 잘 했는지 않는 것이 가지 않는 것이 같다. 영화가 좋아하는 것이 많다.
	and the second

그는 것이 같이 다니 말을 생긴 것이라는 것 같아요.

(Fig. 41) the pill treatments were repeated using batches of 10 segments threaded on nylon line and immersed in 10 ml of solution in a petri dish. This treatment more closely resembles that of the experiments which allow elongation to be monitored continuously. The results obtained are variable and hence the data from the experiments repeated on 3 occasions are presented (Fig. 44 and 45).

At pH 7.0 the dosage-response curve (Fig. 44) is similar to that obtained with the transducer technique. The optimum response occurs between 10^{-6} and 10^{-5} M IAA, and raising the IAA concentration reduces the final segment length. At pH 4.7, however, a different response pattern, and more variable results, are obtained (Fig. 45). In all repeats of the experiment there is initially a peak between 10^{-7} to 10^{-5} M IAA followed by a reduced effect at 10^{-4} M IAA, though this reduction is not significant in experiment 3 in Fig. 45 (see fly sheet). In addition all replicates demonstrate that the elongation at 10^{-3} M exceeds that at 10^{-4} M, though again this is not significant in experiment 3.

In the absence of applied IAA the elongation occurring between the completion of the 90-minute incubation and the final determination of segment length a further 90 minutes later, is greater at pH 4.7 than 7.0. Indeed at pH 4.7 there is a significant difference between the segment lengths at these 2 times in 2 of the 3 experiments (Fig. 45) whereas there are no significant increases at pH 7.0 (Fig. 44).

f. The Response to Abscisic Acid. The shadowgraph technique indicated that there was a latent period for ABA action in the presence of IAA. Although this technique did not reveal a latent period for the IAA response the transducer technique demonstrated a latent period of approximately 10 minutes before IAA promotes elongation. It was decided, therefore, to use the transducer to accurately monitor the response of coleoptile segments to ABA and the effect of ADA on the IAA response.

All experiments were carried out at 25°C using solutions buffered to pH7.0 with phosphate buffer. A 3-h time course of the growth of segments in ig. 44. The effect of IAA concentration on elongation of <u>Avena</u> coleoptile segments at pH 7.0 in 0.01M phosphate buffer

at 25°C.

73

Groups of 10 segments were threaded on nylon line and immersed in buffer for 90 minutes, and then transferred to buffered IAA for an additional 90 minutes. 'D' refers to the segment lengths after the initial 90 minutes in buffer and the other points represent the final segment lengths at each IAA concentration. Each point is the mean length of 10 segments, and each line joining similar symbols represents one experiment.

Statistical Analysis. The t-test was used to test the difference in

segment length between the treatments indicated.

Iten t value Significance

a) To compare the segment lengths at the IAA concentration producing the peak response and the preceding concentration.

Exp. 1	10-5	/10 ⁻⁶		2.	742	
Exp. 2	10 ⁻⁵	/10 ⁻⁶	-	4.	851.	
Exp. 3	10-6	/10-7		6.	319	ansi Rafi
	a 1977 - 1978 Alian			1. A. A.		. Č.

b) To compare the segment lengths at the IAA concentrations producing the peak response and the subsequent minimum response.

Exp.	1	10 ⁻⁵	/10 ⁻³	3.	599
Exp.	2	10 ⁻⁵	/10 ⁻³	4.	508
Exp.	3	10 ⁻⁶	/10 ⁻⁴		139

ç

Fig. 45.

42

coleoptile segments at pH 4.7 in 0.01M citrate buffer at 25°C.

Groups of 10 segments were threaded on nylon line and immersed in buffer for 90 minutes, and then transferred to buffered IAA for an additional 90 minutes. 'B' refers to the segment lengths after the initial 90 minutes in buffer and the other points represent the final segment lengths at each IAA concentration. Each point is the mean length of 10 segments, and each line joining similar symbols represents one experiment.

Statistical Analysis. The t-test was used to test the difference in segment length between the treatments indicated.

Leen	t value	Significan	ne e e e
a) To compare sconent	lengths at the T	AA concentration	
producing the init	lal peak response	and the precedi:	ng
concentration.	에 가지 않는 것을 해야 하는 것을 가지. 이 것은 것은 것을 많은 것을 같은 것을 것을 수 있는 것을 것을 수 있는 것을 것을 수 있는 것을		••••••••••••••••••••••••••••••••••••••
Ezo. 1 107/10-8	5.052	1997年1997年1997年1997年1997年1997年1997年1997	· · · · · · · · · · · · · · · · · · ·
Exp. 2 10 /10 2	4.949	*** *	
Exp. 3 10 ⁻⁵ /10 ⁻⁰	2.204		
o) to compare segment	Lengths at the L	AR CONCENTRATION	
10 ⁻⁴ 4 IAA.	a Antonia (Constraint) Antonia (Constraint)		
1 10-7 / 10-4			an a
Emp. 2 10 5/10 4	2.150		
Exp. 3 10 ⁻⁵ /10 ⁻⁴	0.104		
: 알았다) 한 강리는 것을 가지지 않는다. 			
c) To compare the resp	ponsos at 10 🧠 an	d 10 M IAA.	
Bag. 1	2.991		
	2. 995 (c. 4)		. ³ 2.
	4.4420		
d) To compare the sem	ment lengths afte	r 90 minutes in	
buffer (B) and afte	er an additional	90 minutes in bu	ffer 👘 🕬
alone (O INA).			Maria de la composición de la composici Esta de la composición
(1) pH 7.0 Exp. 1	0.154	Jacob California (Maria)	data
5. 2 Start Step. 2	2,335		from
5xp. 3	1.524	No 11	rig.44
(11) pH 4.7 Exp. 1	3.984		e in internet. Second
·	5.383		
1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997	0.528	n an an an NS agus	

. .

both phosphate buffer (treatment 3, Fig. 46a and b) and in 10⁻⁵M IAA (treatment 1, Fig. 46a and b) has already been described.

Addition of 10^{-5} M ABA to segments in buffer, at time zero, does not initially affect the growth rate but suppresses the increase in rate observed in buffer (treatment 4, Fig. 46a and b), the effect being significant after 90 minutes (P < 0.05).

Simultaneous addition of 10^{-5} M ABA with 10^{-5} M IAA does not significantly alter the initial response to IAA (treatment 2, Fig. 46a and b); the latent period is unchanged and the maximum initial growth rate which occurs after 25 minutes is not significantly reduced (Fig. 49a and b). Hevertheless, a significant inhibitory effect of ABA develops after 30 minutes (P < 0.025, paired analysis) and the decline in rate continues to 45 minutes. A growth rate of approximately 3.5 μ m min.⁻¹ per segment is then maintained to 120 minutes after which a further decline takes place. After 150 minutes the growth rate is reduced to a level similar to that of segments maintained in buffer alone and subsequently is less than that of buffer treated segments.

ABA may be inhibiting this IAA-induced growth <u>via</u> an inhibition of IAA uptake into the cells. To yield the observed effects, however, it is probable that considerable inhibition of uptake would be required because a similar initial maximum rate is induced by both 10^{-5} M and 10^{-6} M IAA (Fig. 41). Nevertheless, this possible action of ABA was investigated using a 30-minute protreatment in 10^{-5} M IAA. For 20-30 minutes after this exposure to IAA the growth rate pattern in buffer (treatment 5, Fig. 47) is similar to that obtained with a continuous supply of IAA (treatment 1, Fig. 46), but subsequently the growth rate declines more rapidly. Addition of ADA after the IAA pretreatment (treatment 6, Fig. 47) accelerates the decline in growth rate and a significant inhibition is detected after 40 minutes. (P < 0.05, paired analysis.) Thus the time course of ADA-induced inhibition is similar in the presence and absence of an external supply of IAA. This aspect has 46. Continuous time courses of the response of <u>Avena</u> coleoptile segments.

Fig.

Incubation began at -100 minutos and the solutions were changed at 0 minutes. Elongation (a) refers to the mean elongation of the column of 10 segments calculated from experiments repeated on 5 occasions. Rate (b) refers to the rate of elongation of the column of segments calculated over 10 minute periods from mean elongation data. 'B' refers to 0.01H phosphate buffer, pH 7.0.

Statistical Analysis. The t-test was carried out on the mean elongation data to determine the time at which significant ABA-induced inhibition developed.

elanı ya yaşınış	Item		t value	Significance
(a)	Preatments 3/4	(t-test)		
. •	80 minutes		2.379	NS
	90 minutes		3.174	
	100 minutes		3.455	
(b)	Treatments 1/2	(paired t-tes	t.)	

25	minutes	1.930	NS STATES
30	minutes	3.565	
35	minutes	2.930 · · ·	

•

also been explored using radioactive hormonos (Section 7).

Because of the existence of a latent period before inhibition of TAAinduced growth by ABA it is relevant to investigate whether TAA can promote a high growth rate after a pretroatment in ABA. It was found that TAA at 10^{-5} M will promote the growth of colcoptile segments in the presence of 10^{-5} M ABA even after a 100-minute pretreatment in this concentration of the inhibitor, but the characteristics of the response to TAA are modified (treatment 8, Fig. 48). The latent period is significantly increased to 14.4 ± 0.8 minutes (P < 0.02) and the mean initial maximum growth rate is significantly reduced (P < 0.001), although the maximum still occurs after 25 minutes. The latent periods and initial maximum rates of elongation under the conditions studied are also presented in his_togram form (Fig. 49a and b).

Having studied the initiation of ABA inhibition the effects of discontinuing the supply of ABA were examined (Fig. 48). Segments were incubated in 10^{-5} M ABA for 100 minutes and then treated with 10^{-5} M TAA in the presence of ABA. After treatment for 20 minutes in both hormones the ADA supply was removed from the solution bathing one batch of segments. For 15 minutes thereafter the growth rate in TAA (treatment 7) is closely similar to that of segments provided with both hormones (treatment 8) but the growth rate in treatment 6 and a higher rate is maintained for 100 minutes. The differences are significant (P < 0.05, paired analysis) 80 minutes after the withdrawal of the ABA but the growth rate in treatment 7 never reaches a level comparable to that for IAA-induced growth in the absence of an ABA pretreatment (treatment 1, Fig. 46).

g. <u>Critical Examination of the Transducer Technique</u>. The use of this transducer technique allows continuous monitoring of the elongation of segments in solution. The latent period for a response and the rate of response can be accurately monitored. The use of metabolic inhibitors such

Continuous time courses of the response of Avena coleoptile segments

Incubation began at -100 minutes and the solutions were changed at the times indicated by the arrows.

The rate refers to the rate of elongation of the column of 10 segments calculated over 10-minute periods

from mean elongation data from 5 repeats of the treatments.

Statistical anivois: "The paired critest was carried out on the mana clongation data to determine the time after the

removel of IAL from the solution that a significant recovery developed.

Significance SE and a Lton Treatment 7/8:-

2.438 2.04 2.75 75 minutes after LAA removed

00 COT

as KCM, and sequential and simultaneous hormone treatments allows characteristics of the hormone activity to be elucidated. The variation between replicates for the latent period of a given response is small. Indeed, in the TAA response experiments using the plastic reservoir (apparatus I) and in studies of ABA action using a slightly modified apparatus (II and III) the mean latent periods for the promotion of elongation by 10^{-5} M TAA (25°C, pH 7.0) are 11.3 and 10.9 minutes, respectively. In addition, both forms of the apparatus can detect promotion of a high growth rate by low pH with a latent period of 1 to 2 minutes (Table 15).

Table 15. Latent periods (minutes).

Incubation solution : Phosphate buffer pH 7.0. Treatment solution : Citrate buffer pH 3.0.

The data are the values obtained in 2 replications of the experiment, carried out at 25°C.

Experiment No.	Apparatus I	Apparatus II
(i)	2.0	.2.0
(11)	1.0	1.0

Considerable variation is observed in the rate of the response. For example, the initial maximum rate of elongation in 10^{-5} M TAA, at 25°C and pH 7.0, studied using apparatus I, ranged from 54.0 to 74.4 µm min.⁻¹ per 10 segments, with a mean of 58.9 \pm 3.1 µm min.⁻¹ per 10 segments. Because of this variation the transducer technique, in its present state of refinement, is probably unsuitable for the application of enzyme kinetics to hormone studies. The variation observed may be due to the plant material or the experimental apparatus. The preparation of the colcoptile segments is probably not the source of the variation because in the ABA response experiments (apparatus II and III) greater case was taken in growing the material, e.g. using a precise scaling technique for the vermiculite, and choosing colcoptiles 15-25 mm in length. In the latter experiments the initial rate of elongation recorded in 10^{-5} M IAA (25°C, pH 7.0) is from 70.7 to 94.1 µm min.⁻¹ per 10 segments with a mean value of 76.7 [±] 5.0; this variation is similar to that previously described.

The mean initial rates observed under identical conditions of IAA concentration, pH and temperature are different in the 2 forms of the apparatus developed. The source of the differences has not been identified but may be due to one or more of the modifications in the latter apparatus. Because of these disparities it is necessary to make comparisons of the rates observed only between experiments carried out with one form of the apparatus, and if possible paired experiments with a treatment and control should be designed.

7. The Uptake of Radioactivity from 2-[10C]ABA and 1-14CIIAA

Previous experiments have shown that ABA inhibits TAA-induced growth with a latent pariod of 30 minutes, when using both hormones at 10^{-5} M. The uptake of radioactivity from 2-[¹⁴C]ABA was studied to investigate whether this latent period could be explained by the slow uptake of ABA. In addition, the effect of ABA on the uptake of radioactivity from 1-[¹⁴C]IAA has been examined to see whether ABA isoacting via a reduction in TAA uptake.

Studies of the uptake of radioactive compounds into segments are complicated by the adsorption of radioactivity on to the surface of the material, in addition to the problem of a possible substantial time requirement for the hormone to be transported to active sites or metabolised within the calls.

The efficiency of removal of surface held activity was examined using A the 60-minute incubation of threaded segments in 10⁻⁶M 2-[¹⁴C]ABA. Each of the

five 10 ml distilled water washings given to the segments removed radioactivity and successively smaller quantities of radioactivity were detected in consecutive washings (Fig. 50). The largest amounts of activity were removed by the first 3 aliquots and progressively smaller quantities of radioactivity were present in the 4th and 5th rinses. Consequently, segments were routinely given 3 x 10 ml distilled water rinses before radioactivity was assessed.

a. The Uptake of Radioactivity from $2-[^{14}C]ABA$. The uptake of radioactivity from $10^{-6}M \ 2-[^{14}C]ABA$ is similar in threaded and floating segments (Fig. 51a and b). In both cases there is substantial uptake of radioactivity during the first ten minutes. Furthermore, the results from both forms of the experiment indicate that the rate of uptake of radioactivity decreases during the incubation period, although this is less apparent in the threaded segments and the observation has not been established statistically. The uptake in threaded segments is generally greater than in those floating on the solution.

Decause an essentially similar pattern of uptake is observed with both forms of the apparatus, and because the floating treatment of segments requires less radioactive solution, subsequent experiments were carried out using floating segments.

Confirmation of the rapid uptake of ABA during the first 10 minutes was obtained using 10^{-5} M 2-[¹⁴C]ABA. The ABA concentration corresponds to that used in growth studies. For reasons of economy the radioactivity was diluted fivefold with non-radioactive ABA and therefore contained only twice the radioactivity of 10^{-6} M 2-[¹⁴C]ABA. The pattern of uptake of radioactivity from the 10^{-5} M 2-[¹⁴C]ABA is similar to that described for 10^{-6} M radioactive ABA and again there is no indication of a lag before uptake is detected (Fig. 52). Moreover, the radioactivity detected at each time is approximately twice that observed with the 10^{-6} M 2-[¹⁴C]ABA.

1.27

The radicactivity (cpm) in samples from consecutive 10 ml vanhes of segments which had been treated for

60 minutos in 10⁻⁶M 2-1¹⁴C]ABA at 25°C.

50.

Each point is the mean opn of 9 samples from 3 emperiments.

241 In the contrast of the update of functional first first of the observe of a stational state of the update stational state of the update state

Fig. 52. Time course of the uptake of radioactivity from 10⁻⁵M 2-[¹⁴C]AUA into 10 Avena colcoptile segments.

at 25°C and pH 7.0.

Each point is the mean of 9 samples from 3 experiments.

JJD

b. The Uptake of Radioactivity from $1-i^{14}$ CIIAA. The uptake of radioactivity from 10^{-5} M $1-i^{14}$ CJIAA was examined using floating coleoptile segments. A substantial uptake of radioactivity occurs during the first 10 minutes and uptake continues for a further 50 minutes (Fig. 53). The uptake is not significantly reduced in the presence of 10^{-5} M ABA, even after a 100-minute pretreatment in this growth inhibitor.

131

The experiment thus confirms the growth data and indicates that ABA is not acting directly on TAA uptake. The uptake of TAA may have been slightly greater than indicated by the uptake of radioactivity, due to the loss of 14 C as 14 CO₂ following decarboxylation of 1-[14 C]TAA. In addition, the observed data could have been obtained were ABA inhibiting uptake of TAA as well as reducing decarboxylation of the radioactive TAA in the cells. The conclusions of this experiment, however, are supported by the growth data. Fig. 53. Time courses of the uptake of radioactivity from 10^{-5} M $1-[^{14}C]$ TAA into 10 Avena coleoptile segments.

(a) in huffor.

(b) in 10 M ABA.

(c) in 10⁻⁵M ABA after a 100-minute pretreatment in 10⁻⁵M ABA.

Each point is the mean of 3 samples from 1 experiment. Similar results were obtained in 2 repeats of these treatments.

The rôle of abscisic acid in the regulation of cell elongation has been studied using coleoptile segments of Avena sativa. ABA at a concentration of 10 M inhibits the growth of these segments in distilled water, during a 24-h straight growth assay. This finding supports that of Wareing et al. (1968a), who observed an inhibitory effect of ABA over the concentration range 0.1 to 20 ppm (= 3.9 x 10⁻⁷ to 7.6 x 10⁻⁵M) when employing this assay. The inhibition of growth by abscisic acid has also been reported in wheat colcoptile segments (Taylor and Burden, 1972), oat mesocotyls (Milborrow, 1966) and other tissues (Addicott and Lyon, 1969). None of the ABA concentrations tested gives rise to a complete inhibition of elongation. Attention was drawn to the latter point by Taylor and Burden (1972), who suggested that this may be due to a lag before ABA inhibition begins, indeed, they noted that ABA did not produce any inhibitory effect for at least 60 minutes in the wheat coleoptile section assay. Experiments using Avena coleoptiles in the straight growth assay demonstrate a similar latent period for ABA-induced inhibition of the growth in distilled water. This latent period, however, will only partially account for the incomplete inhibition because growth does continue during the 24-h period in the presence of ABA, though at a rate which is reduced compared with the water treated segments. The nature of the latent period for ABA activity is further considered when discussing those experiments in which elongation was monitored continuously.

The inhibition induced by ABA over a 24-h period is overcome by transferring segments to IAA, thus indicating that ABA is not killing the segments. With an initial exposure to 10^{-4} M ABA, however, an inhibitory effect did persist even after transference to IAA and hence this concentration of inhibitor may be killing some of the cells. On the other hand, the latter result may indicate that the ABA has not been satisfactorily removed from the segments either by the washing treatment or metabolism. The fact that ABA- induced inhibition may be reversed by TAA has also been described by Taylor and Burden (1972) and they concluded that this differentiated between inhibitory action and phytotoxicity.

Analogues of abscisic acid have been tested in the Avena coleoptile straight growth assay and these experiments reveal certain molecular requirements for ABA activity. The structure-activity relations of compounds I to XXII have been described by McWha et al. (1973) both in the Avena assay and in the lettuce seed germination assay. The most important point to emerge from that investigation was that an absolute order of activity cannot be ascribed to ABA and its analogues. Analogues active in the inhibition of growth in the Avena assay can be guite inactive in a germination test and Rence it is important to look for the main differences between vice versa. the structural requirements reported for the inhibition of lettuce seed germination and those requirements deduced from the data presented here for the Avena assay, in addition to noting the structural requirements implicated by other authors using different assays and analogues.

The carbonyl and hydroxyl groups in the ring appear unnecessary for inhibitory activity in the <u>Avena</u> coleoptile bioassay and this inference is in general agreement with the structural requirements for the growth inhibition of the second leaf sheath of rice (Tamura and Nagao, 1969a, 1969c, 1970; Oritani and Yamashita, 1970a) and growth inhibition of embryonic axes of bean (Sondheimer and Walton, 1970) although the work of Sondheimer and Walton must be interpreted cautiously (see Introduction). Thus it is particularly interesting that McWha <u>et al.</u> (1973) observed that one or both of the hydroxyl group and carbonyl group are of considerable importance for the inhibition of lettuce germination.

The ring double bond is required for the full inhibitory activity of ABA in the <u>Avena</u> assay and this molety has been implicated as a requirement in other assays (Tamura and Nagao, 1969c, 1970; Oritani and Yamashita, 1970a; Sondheimer and Walton, 1970; McWha <u>et al.</u> (1973) although there are some inconsistencies in the literature. Epoxidation of the ethyl and methyl esters, for example, enhanced the activity of these analogues although it removed the ring double bond (Tamura and Nagao, 1969a). In the <u>Avena</u> assay epoxide compounds invariably possess little activity and this observation was also reported in the lattuce assay (McWha <u>et al.</u>, 1973). The compound xanthoxin lacked the ring double bond but had activity comparable to ABA in the cress seed germination and wheat coleoptile bioassays (Taylor and Burden, 1970b); the importance of this observation is increased as xanthoxin has been extracted from shoots of many species (see Introduction). Although this observation suggests the ring double bond is not a molecular requirement for the inhibitory activity of ABA in these systems the activity of xanthoxin may be explained in terms of its biological conversion to ABA in these tissues (Taylor and Burden, 1972).

735

With regard to the side chain, the complete 2,4-pentadiene residue is required for inhibitory activity in the <u>Avena</u> assay and this residue was also implicated as a molecular requirement for inhibition in other systems (Tamura and Nagao, 1970; Oritani and Yamashita, 1970a; Sondheimer and Walton, 1970). In the lettuce germination assay, however, NoWha <u>et al.</u> (1973) found that this residue may be altered and activity maintained provided the double bond at C-2 is retained. Furthermore, they reported that for the inhibition of lettuce seed germination the bond at C-4 does not require to be di-unsaturated. Indeed, one compound with a triple bond at C-4 (compound XVII) was more active than ABA; they suggested, therefore, that the spatial configuration of the atoms in this part of the side chain was not important for activity. In contrast, the data for the <u>Avena</u> assay indicate that the spatial arrangements of the ring double bond and the unsaturated functional group in the side chain are important for ABA activity.

The unsaturated functional group at C-1 appears to be a molecular requirement for ABA activity in the <u>Avena</u> system but there have been few reports published concerning the requirement of a specific terminal molety in other assays; although Tamura and Nagao (1969c) have suggested that the terminal molety should be carboxyl or carboalkoxyl and Oritani and Yamashita (1970a) included the acid group in their fundamental structure. McWha et al. (1973), in fact, reported that all the compounds tested that possessed the basic requirements for inhibitory activity in the lettuce assay were active regardless of the terminal molety, and many of these compounds were more active than ABA in this assay.

136

The trans, trans- analogues tested here have similar activity to the cis, trans- counterparts, yet other investigators have predominantly reported the t, t-isomers to be the least active (Tamura and Nagao, 1969a, 1970; Sondheimor and Walton, 1970). It is possible that the differences may reflect the interconversion of these isomers by U.V. light (e.g. Lenton et al. 1971). The latter point may also contribute to the conflicting reports concerning the activity of the geometrical isomers of ABA, because although U.V. light will convert t, t-ABA to an equilibrium mixture of the 2 isomers few authors have paid attention to this point. The varying activity of c.t- and t.t. ADA, however, may also be due to the different bioassays used and in this context it is interesting that the inference that these isomers have similar activity was drawn from experiments using the wheat coleoptile bioassay (Nitsch, 1967) and that this inference is consistent with data Nevertheless, it would be of relevance to observed for the Avena assay. pursue these experiments, possibly determining the geometrical structures of the isomers in solution before and after the bloassay and if possible

employing pure trans, trans-ABA.

Thus it is important to note that there are particular molecular requirements for the inhibitory activity of ABA in the <u>Avena</u> assay and that these requirements may be modified in different assay systems. Two active moleties, <u>viz</u>. the ring double bond and the unsaturated functional group at C-1, appear essential for complete inhibitory activity in the <u>Avena</u> system. The fact that the spatial arrangement of these moleties is important leads one to tentatively postulate that there may be two point attachment of ABA to an active site within the cell. Analogues with only one of these modeties, however, possess considerable inhibitory activity at 10^{-5} M, which in some instances is similar to that of 10^{-5} M ABA, and this tends to preclude the two point attachment from being the only mode of action of ABA in the inhibition of elongation of <u>Avena</u> coleoptile segments.

137

Certain qualifications must be applied to these conclusions which are based on the use of analogues; these qualifications, indeed, apply to the technique of employing analogues in determing the structure-activity relations of any compound. Firstly, no inferences may be drawn about those moieties which have not been altered in any of the analogues. For example, no evidence is presented on the importance of the ring or side chain methyl groups, or on the carbon skeleton of the ring in ABA. Secondly, the differences in activity of the various analogues may be due to differences in uptake or breakdown of the compounds by the tissue, rather than the activity of the molecules per so when they reach the site of action. In spite of these qualifications, most of the inferences made here are based on the structure-activity relations of several compounds and this factor strengthens these inferences.

Abscisic acid overcomes the promotory effects of IAA in the <u>Avena</u> straight growth assay and this basic finding is in agreement with that of Wareing <u>et</u> <u>al</u>. (1963a). The use of molar concentrations of each hormone also indicates that on a mole for mole basis ADA is a more powerful inhibitor than IAA is a promoter. Although Wareing <u>et al</u>. (1963a) quoted hormone concentrations in parts per million, these may be converted to molarities and the data then indicate that with equimolar concentrations of both hormones there is inhibition of growth relative to the water control.

Presentation of the data as segment length at varying hormone concentrations indicates a divergence of lines joining consecutive increasing IAA concentrations at the different ABA concentrations; furthermore, an analysis of variance indicates a statistical interaction of those data. This is contrary to the conclusions of Wareing <u>et al.</u> (1968a) who found no evidence of an interaction. The differences may be attributable to the fact that data for only one TAA concentration were presented by Wareing <u>et al.</u> (1968a), yet they indicated that various concentrations of both hormones in combination were also assayed and that the analysis of variance revealed no interaction. Alternatively, the differences may reflect the conditions under which the assays were carried out and unfortunately no details were provided.

138

The transformation of the data in this thesis to percentage inhibition , however, tends to reduce the divergence of the lines. Although the normal analysis of variance is not an appropriate analysis for these data, the percentage inhibition data do not lead one to suspect a statistical interaction. Because the transformation of data can alter the conclusions regarding the possible interaction of data it is advisable to adopt the suggestion of Milborrow (1970b) and not use the term "interaction" when attempting to elucidate physiological mechanisms. Indeed, the existence of a statistical interaction seems only to describe the data that are tested, and analysis of transformed data only characterises these transformed data.

Nevertheless, the technique of examining the effect of one hormone on the response of plant tissue to another hormone is of value and factorial experiments employing a range of concentrations of each hormone are probably the most suitable for growth studies. In addition, these experiments indicate that ABA counteracts the promotive effect of IAA and that the net offect on segment elongation is dependent upon the concentrations of the two hormones.

In an attempt to elucidate the mode of action of ABA inhibition of IAA activity, analyses in terms of enzyme kinetics were carried out. In particular it was hoped these studies would reveal whether ABA was acting <u>via</u> a computitive or a non-competitive inhibition of IAA action. The experiments were carried out in the absence of buffer or sucrose because complicating effects of these additives have been described (Marinos, 1957; Cleland, 1972). Under the conditions employed it is apparent that growth is not linear with time, and Marinos (1957) has pointed out that a linear response can only be realised under limited conditions. Hence, to apply enzyme-kinetic analysis detailed time courses were carried out and the initial rates of elongation estimated.

In spite of this attention to detail, the technique did not yield a decisive result and several factors appear to have contributed to the lack of success of this technique. For example, the latent period before ABA inhibition begins results in the initial rates of segment elongation, at each IAA concentration, being similar. When the rates are estimated from a given time after the addition of the hormones, however, the variability of the data and the fact that the precise latent period for ABA action depends on the concentrations of both IAA and ABA, obscures the analysis. Further exploitation of this type of analysis may be interesting but these types of consideration may be an oversimplification of the multi-enzyme plant cell (Marinos, 1957). Indeed, the technique of Rothwall and Wain (1964) has been applied in two similar cases and different conclusions reached. In a study of the affect of ABA extracted from lupin pods a purely non-competitive inhibition of IAA action in wheat coleoptiles was observed (Rothwell and Wain, 1964), yet using synthetic ABA a less precise result, described as "largely hon-competitive", was reported (Taylor and Burden, 1972). Thus, when applying ensyme-kinetics to the coleoptile-TAA system it seems that the basic premises (see Introduction), and pos_sibly the conclusions, can be insecure.

The investigation into the activity of 14 ABA analogues in combination with IAA indicates that these analogues will counteract the promotory effect of IAA. The analogues whose activity alone is similar to that of ABA alone, show effects in overcoming IAA action which are similar to those of ABA; and the analogues which are less active alone are less effective in overcoming TAA action. The structure-activity relations of 10 of the analogues indicate that the structural requirements for ABA action in overcoming the promotory effects of applied TAA are similar to the requirements of ABA when assayed alone. Thus it is possible to deduce that the mode of action of ABA is to reduce the effectiveness of endogenous TAA. This suggestion, however, must be regarded as speculative, particularly because the inference is based on experiments with only 10 analogues and because anomalous and variable results were obtained with 4 other analogues.

3.40

There are no previous reports that the molecular requirements for ABA activity alone are similar to those for ABA to counteract an IAA effect although some analogues have been shown to be active in the presence of other hormones. Xanthomin, for example, had similar activity to ABA in the wheat coleoptile bloassay in the presence and absence of applied IAA (Taylor and Burden, 1972). In addition, Koshimizu at al. (1966) have shown that the methyl ester of ABA inhibited the growth promoted by GA_3 in the rice second leaf sheath assay and a similar effect was shown for another ABA analogue which was active alone in this bloassay (Tamura and Nagao, 1969a).

Experiments using apparatus which is sufficiently sensitive to monitor minute by minute changes in the elongation of <u>Avena</u> coleoptile segments have demonstrated that both IAA and ABA exhibit rapid effects on elongation, i.e. latent periods less than 30 minutes (Penny <u>et al.</u>, 1972).

At pH 7.0, 10⁻⁵M IAA at 25°C promotes a high growth rate in approximately 11 minutes; this supports the finding of Ray and Ruesink (1962) and several other reports (Evans and Ray, 1969; Missl and Zenk, 1969). When the rate of elongation is present/as a function of time it is evident that the maximum initial rate occurs after 25 minutes, as reported by Rehm and Cline (1973), and is not established 3 minutes after the latent period as suggested by Evans and Ray (1969).

This method of data presentation also reveals a depression in growth rate after the initial maximum has been reached and subsequent fluctuations in rate; in some experiments a second maximum in rate, which is greater than the initial maximum; is observed. Although similar growth patterns have been reported by Penny et al. (1972) for hupin hypocotyl segments and for corn coleoptile segments by dela Fuente and Leopold (1970), data from experiments with <u>Avena</u> coleoptile segments have previously been presented as elongation <u>VS</u> time and have indicated a steady IAA-induced growth rate (Evans and Ray, 1969; Nissl and Zenk, 1969).

The effects of temperature, pH, and TAA concentration on the latent period and rate of the response to TAA are important because they provide information on the mechanism of TAA action. Although the experiments on TAA were intended to form only the basis from which ABA effects could be studied, they have received considerable attention because they indicate that a re-appraisal of some published data is required.

The important point to emerge from the effect of TAA concentration on the rate of elongation, as measured with the transducer technique, is that at pH 7.0 and 25°C a response curve which is roughly bell-shaped is observed between 10⁻⁷ to 10⁻³M TAA. This response pattern is confirmed in experiments in which the growth of threaded, floating segments was determined after a 90-minute incubation period. The initial rates show the same trend in response to increasing IAA concentration as did the final segment lengths after a 24-h straight growth assay, i.e. the rate is less than maximal at the highest TAA concentration, although the maximum response is observed at different IAA concentrations. This finding is different from the signoid dosage-response curve that has been described at pH 4.7 (Niscl and Zenk, Hence, it seems probable that the pH of the IAA 1969, Cloland, 1972). solution affects the shape of the dosage-response curve, in addition to the factors such as the incubation time and presence of sucrose in the incubation medium as suggested by Cleland (1972). At pH 4.7, using threaded floating segments in experiments in which the elongation is determined after 90 minutes treatment the dosage-response curve more closely resembles the

sigmoid-shape that has been reported at pH 4.7 (Nissl and Zenk, 1969; Cleland, 1972) than the bell-shape reported here at pH 7.0; yet extremely variable results are observed and they must be interpreted cautiously. Furthermore, in the presence and absence of applied IAA there is more growth at pH 4.7 than at pH 7.0. This may indicate that the lower pH is closer to the optimum for both endogenous and IAA-induced growth or that at pH 4.7 an acid-growth mechanism is involved. This is an important point because many published experiments examining IAA effects have been carried out at pH 4.7; this problem certainly merits further investigations.

1.82

Two additional observations are apparent from these experiments on the dosage-response curves of initial rates. Firstly, the red light treatment employed almost completely abolishes the response to IAA. . This experiment, however, has not been repeated and there are no precise details of the wavelength or intensity of the light source used. Nevertheless, these experiments warrant further attention because an exposure of growing seedlings to red light has frequently been reported in the literature and a pronounced IAA effect observed (e.g. Cleland, 1972). Secondly, the dosage-response pattern at 25°C and pH 7.0 differs in threaded, floating segments and in nonthreading segments in which part of the first leaf is present. In threaded segments 10⁻³M TAA promotes less growth than 10⁻⁴M or 10⁻⁵M TAA, yet in nonthreaded segments a similar effect is observed with these 3 IAA concen-This may be due to the fact that in threaded segments in which trations. the first leaf is removed, the inner surface of the coleoptile is moistened and there is a greater area for the uptake of hormones, thus a supra-optimal TAA concentration is more easily attained in these experiments. This suggestion is supported by the fact that there was greater uptake of 2-[14C]ABA in threaded vertically-held segments than in floating segments. Hence, experiments in which the growth rate of threaded segments is measured with the transducer technique should be interpreted with care when high IAA concentrations, e.g. 10⁻³M, are used.

At pH 7.0 TAA concentration and temperature also affect the duration of the latent period for TAA-induced growth of <u>Avena</u> colcoptile segments. The reduction in latent period with increasing temperature has providely been reported (Ray and Ruesink, 1962; Evans and Ray, 1969; Hissl and Zenk, 1969).

Conflicting evidence, however, has been reported concerning the effect of IAA concentration on the latent period. With <u>Avena</u> colcoptile segments Ray and Ruesink (1962) and Evans and Ray (1969) found that two concentrations of IAA induced growth with similar latent periods, while Missl and Zenk (1969) observed a dependence of latent period on IAA concentration over the range 10^{-10} M to 10^{-3} M at 21° C and pH 4.7. In addition, Durand and Zenk (1970) have reported a decrease in the latent period in Zea colcoptile segments with increasing IAA concentrations at pH 6.3 and 21° C. The data presented have show that the latent period for IAA-induced growth at pH 7.0 is shortened by increasing IAA concentration but that the latent period at this pH always exceeds 7 minutes.

The observed offects of IAA concentration and temperature on the latent period may be explained in terms of a lag time for IAA uptake and transport. to sites of action but with a decreased sensitivity of material to IAA occurring at high temperatures. Thus, at 25°C increasing the concentration of TAA produces a minimum latent period at a concentration of 10 M. In addition, raising the temperature decreases the latent period with the minimum value occurring at 30°C for 10 5M TAA, and at 25°C for both 10-3M and 5 x 10 M TAA. The reduction in sensitivity of material at hightemperatures is evident from the fact that the latent period for the response to 10""H TAA is increased when the temperature is raised from 30°C to 35°C. and using both 10"3H and 5 x 10" M IAN the latent periods are lengthened when the temperature is raised from 25°C to 30°C. Furthemore, the initial rate of elongation is decreased when the temperature is raised from 30°C to 35°C with both 10⁻⁵ M and 10⁻³ M IAA, and with 5 x 10⁻³ M IAA a slower initial maximum rate is achieved at 30°C than at 25°C.

An almost immediate promotion of elongation is observed with 5×10^{-3} M IAA prepared in 0.01M KH₂PO₄, as used by Nissl and Zenk (1969), who specified that the pH of this solution was 4.7. In contrast, the data presented here show that this solution has a pH of 3.5. Since a buffer of pH 3.5 will promote elongation in coleoptile segments almost immediately in the absence of applied IAA, the low pH may give rise to the immediate increase in growth rate on exposure of the segments to 5×10^{-3} M IAA in KH₂PO₄ at pH 3.5, rather than solely the presence of the IAA.

144

The differential effects of cyanide on IAA-induced and low-pH-induced growth support this suggestion. Treatment with 10^{-4} M KCN abolishes the response to 5 x 10^{-3} M IAA in phosphate buffer at pH 7.0, confirming the findings of Ray and Ruesink (1962) who reported that within 5 minutes this concentration of KCN completely inhibits growth induced by 3 µg ml⁻¹IAA. The potassium cyanide treatment, however, does not affect the latent period for low-pH-induced growth and only slightly inhibits the rate of elongation. Thus it is of particular importance that exposure to potassium cyanide does not affect the latent period for the promotion of growth by 5 x 10^{-3} M IAA in 0.01M KH₂PO₄, the pH of which is 3.5, and only slightly reduces the total elongation after 30 minutes. These data thus led one to the conclusion that the almost immediate promotion of coleoptile segment growth by 5 x 10^{-3} M IAA in 0.01N KH₂PO₄ is attributable to the change in pH rather than to the presence of IAA.

If protein synthesis were involved in the initial response of coleoptile segments to IAA, then a rapid change in the pattern of synthesis would be required to account for the rapid increase in growth rate. The evidence presented here indicates that this change in synthesis would need to occur within 7.3 minutes under certain conditions. Although there have been some reports of a stimulation of RNA synthesis in <u>Avens</u> coleoptile segments within 10 minutes (Masuda and Kamisaka, 1969) other accounts have indicated a lag of at least one hour (Trewavas, 1968); the differences observed may be due to difficulties involved in the estimation of changes in protein synthesis over short time periods, and indeed the problems involved in these techniques have been discussed by Trewavas (1968). Thus, on the basis of the present evidence concerning the timing of the effect of IAA on growth and on protein synthesis, one cannot conclude categorically whether the initial elongation response of <u>Avena</u> coleoptile segments involves the promotion of protein synthesis.

145

Another approach to the problem is the use of inhibitors of protein synthesis, but again conflicting evidence, that was cited in the Introduction, has been reported. This approach also leaves open the possibility that a promotion of protein synthesis is involved in the initial mechanism of TAA action.

The argument of Nissl and Zenk (1969), however, that ENA synthesis is not involved because an immediate IAA effect can be detected, seems untenable. The results presented here strongly suggest that a low-pH-induced response was involved in the immediate response to IAA described by Nissl and Zenk (1969). Nevertheless, these authors specified that their solutions were at pH 4.7 and they also used a different experimental procedure; for example they incubated the colcoptile segments in buffer contained in a shaking flask. Therefore, the differences between their results and those reported here may reflect differences in experimental methods. On the other hand, at pH 7.0 a latent period exceeding 7 minutes was always observed before IAA induces rapid growth in Avena colcoptile segments.

The accurate monitoring of the elongation of coleoptile segments has also shown that ABA produces a rapid inhibition of IAA-induced elongation. Simultaneous application of ABA and IAA does not significantly change the latent period or the initial maximum rate of response to IAA alone but a significant inhibitory effect of ABA develops after 30 minutes. A similar time lag has been reported in experiments using a midcourse addition of 10^{-5} M ABA to material pretreated with IAA and a more rapid inhibition has been observed with higher ABA concentrations (Zenk, 1970; Rehm and Cline, 1973). In addition, a 5-minute lag for the inhibition of growth of intact eviolated pea seedlings treated with 10⁻⁵M ABA has been reported (Warner and Leopold, 1971). With a 100-minute pretreatment in ABA the data presented here show that the IAA response, in the continued presence of ABA, is modified, the initial maximum rate being reduced and the latent period lengthened. Although the increase in the latent period is small it is statistically significant. While Rehm and Cline (1973) reported a reduction in the IAA-induced growth rate after a 30- or 60-minute pretreatment with 10⁻⁴M ABA they found no appreciable effect of ABA on the latent period.

There is also a rapid reduction in the inhibition of IAA-induced growth following removal of ABA, but the rate of elongation never recovers to that observed in the absence of ABA pretreatment.

The lag before ADA-induced inhibition is detectable cannot be attributed to slow uptake of ADA because uptake of radioactivity from 2-[¹⁴C]ADA takes place during the first 10 minutes treatment. There may, however, be a substantial time requirement for ADA to be transported to active sites or metabolised within the cell. Furthermore, the inhibition of IAA-induced growth by ADA cannot be ascribed to an inhibition of IAA uptake into the segments because ADA does not reduce uptake of radioactivity from $1-[^{14}C]IAA$, even after a 100-minute pretreatment in ADA. Further evidence that ADA is not acting directly on IAA uptake is provided by the fact that the latent period for growth inhibition by ADA, following removal of the IAA supply, is similar to that obtained when segments are treated continuously in both hormones.

It is thus possible that if ABA were to control endogenous growth a rapid inhibition of growth could be achieved. ABA levels have been shown to increase at times of water stress (Wright, 1969; Most, 1971) and hence this inhibitor could regulate growth at these times by reducing IAA action. In order to suggest an endogenous regulatory rôle for ABA it is necessary to demonstrate the existence of this compound in the tissue and to observe changes in the levels of ABA and correlate these changes with alterations in growth rate; yet even this does not establish a cause and effect between ABA levels and a reduction in growth unless the changes in ABA levels are shown to precede the inhibition of growth.

The use of a linear displacement transducer has been successful for the accurate monitoring of elongation growth. The variation in the rates observed may be reduced if the position of the transducer on the lev_er was more precisely determined. An apparatus in which this is achieved has been designed and built (Plate 4). In this apparatus the lever-pivot and transducer are supported on the same frame and can be accurately moved relative to each other because the boss supporting the transducer is on a screw thread. The fact that the lever, transducer and reservoir are supported on the same frame reduces the size of the apparatus but the segments in the reservoir can still be re-positioned relative to the transducer because the reservoir is held on a brass back-plate that can move in teflon bearings.

Closer attention to the weight acting downwards on the segments may also reduce the variation observed in the rates of growth. Although the counterbalance weight was in a fixed position frictional forces could alter the weight on the coleoptiles. In this context, a position sensing transducer, as used by Rohm and Cline (1973) may prove useful because an accessory lever system is not required.

All the experiments described in this thesis have been carried out with excised colcoptile segments. These are mechanically easier to handle than whole seedlings and were initially selected to allow the analogues of abscisic acid to be assayed. The use of segments also simplifies the interprotation of the data because the source of endogenous IAA in the intact seedling, the tip of the colcoptile, has been removed. Furthermore, the influence of the rest of the seedling has been removed and the complexity of the whole plant system would make interpretation of the data more difficult. Plate 4. Apparatus for the continuous monitoring of elongation

of coleoptile segments in solution.

The brace frame provides a fixed support for the

transducer and lover-plvot. The glass reservoir is held on a brass back-plate which can nove in teflor hearings

and can thus be easily positioned relative to the

transducer and lover.

It is difficult, however, to extrapolate the results of experiments with excised tissues to whole plants and it is necessary to correlate changes in ondegenous levels of ABA with alterations in growth rate before a natural rôle for ABA in the regulation of cell elongation can be proved.

BIBLIOGRAPHY

- Addicott, F.T., Carns, H.R., Lyon, J.L., Smith, O.E., McMeans, J.L. : On the physiology of abscisins. In : Régulateurs naturels de la croissance végétale, 687-703, ed. J.P. Nitsch, Paris (1964).
- Addicott, F.T., Carns, H.R., Cornforth, J.W., Lyon, J.L., Milborrow, B.V., Ohkuma, K., Ryback, G., Smith, O.E., Thiessen, W.E., Wareing, P.F. : Abscisic acid : a proposal for the redesignation of abscisin II (dormin). In : Biochemistry and physiology of plant growth substances, 1527-1529, eds. F. Wightman and G. Setterfield, Ottawa, Runge Press (1968).

- Addicott, F.T., Lyon, J.L. : Physiology of abscisic acid and related substances. Ann. Rev. Plant Physiol. 20, 139-164 (1969).
- Asmundson, C.M., Ingersoll, R., Smith, O.E., Kumamoto, J. : Cis, trans-α ionylideneacetic acid : a possible biosynthetic precursor to abscisic acid. Abstr. 155th Nat. Meet. Amer. Chem. Soc., Div. of Agric. and Food Chem., p.15, San Francisco (1968).
- Avery, G.S., Burkholder, P.R. : Polarized growth and cell studies on the <u>Avena</u> coleoptile, phytohormone test object. Bull. Torr. Bot. Club, 63, 1-15 (1936).
- Bailey, N.T.J.: Statistical methods in biology. The English Universities Press Ltd. (1959).
- Barkley, G.M., Evans, M.L. : Timing of the auxin response in etiolated pea stem sections. Plant Physiol. 45, 143-147 (1970).
- Bennet-Clark, T.A., Kefford, N.P. : The extension growth-time relationship for <u>Avena</u> coleoptile sections. J. exp. Bot. 5, 293-304 (1954).
- Bonner, J. : The action of the plant growth hormone. J. gen. Physiol., 17, 63-76 (1933).
- Bonner, J., Foster, R.J. : The growth-time relationship of the auxin-induced growth in Avena coleoptile sections. J. exp. Bot. 6, 293-302 (1955).
- Bonner, J., Foster, R.J. : The kinetics of auxin-induced growth. In : The chemistry and mode of action of plant growth substances, 295-309, Eds. Wain and Wightman (1956).
- Burden, R.S., Firn, R.D., Hiron, R.W.P., Taylor, H.F., Wright, S.T.C. : Induction of plant growth inhibitor xanthoxin in seedlings by red light. Nature (Lond.) 234, 95-96 (1971).
- Burden, R.S., Taylor, H.F. : The structure and chemical transformations of xanthoxin. Tetrahedron Lett. <u>47</u>, 4071-4074 (1970).
- Cahn, R.S. : An introduction to the sequence rule. J. Chem. Education 41, 116,125 (1964).
- Cahn, R.S., Ingold, C.K., Prelog, V. : Specification of molecular chirality. Agnew. Chem. Internat. Edit. 5, 385-415 (1966).
Capon, B. : Personal communication. Dep_artment of Chemistry, University of Glasgow (1972).

- Chrispeels, M.J., Varner, J.E. : Hormonal control of enzyme synthesis : on the mode of action of gibberellic acid and abscisin in aleurone layers of barley. Plant Physiol. 42, 1008-1016 (1967).
- Cleland, R. : Protein synthesis and wall extensibility in the Avena coleoptile. Planta (Berl.) 95, 218-226-(1970).
- Cleland, R. : Instability of the growth-limiting proteins of the <u>Avena</u> coleoptile and their pool size in relation to auxin. Planta (Berl.) 99, 1-11 (1971).
- Cleland, R. : The dosage response curve for auxin-induced cell elongation : a revaluation. Planta (Berl.) 104, 1-9 (1972).
- Conn, E.E., Stumpf, P.K. : Outlines of biochemistry. J. Wiley & Sons, Inc., New York (1963).
- Cornforth, J.W., Draber, W., Milborrow, B.V., Ryback, G. : Absolute stereochemistry of (+) abscisin II. Chem. Commun. 3, 114-116 (1967).
- Cornforth, J.W., Milborrow, B.V., Ryback, G., Wareing, P.F. : Identity of sycamore "dormin" with abscisin II. Nature (Lond.) 205, 1269-1270 (1965a).
- Cornforth, J.W., Milborrow, B.V., Ryback, G. : Synthesis of (-) abscisin II. Nature (Lond.) 205, 715 (1965b).
- Cornforth, J.W., Milborrow, B.V., Ryback, G. : Identification and estimation of (+) abscisin II ("dormin") in plant extracts by spectropolarimetry. Nature (Lond.) <u>210</u>, 627-628 (1966a).
- Cornforth, J.W., Milborrow, B.V., Ryback, G., Rothwell, K., Wain, R.L. : Identification of the yellow lupin growth inhibitor as (+)-abscisin II ((+)-dormin). Nature (Lond.) 211, 742-743 (1966b).
- Cummins, W.R., Sondheimer, E. : Activity of the asymmetric isomers of abscisic acid in a rapid bioassay. Planta (Berl.) 111, 365-369 (1973).
- Darwin, C., Darwin, F. : The power of movement in plants. D. Appleton-Contury Company, Inc., New York (1881).
- Dey, B., Sircar, S.M. : The presence of an abscisic acid-like factor in non-viable rice seeds. Physiol. Plant. 21, 1054-1059 (1968).
- Dixon, M., Webb, E.C. : Enzymes. Longmans, Green & Co. Ltd., London (1958).
- Drury, R.E. : Interaction of plant hormones. Science 164, 564-565 (1969).
- Drury, R.E. : Interaction of plant hormones : abscisic acid and gibberellic acids. Science <u>168</u>, 877 (1970).
- Durand, H., Zenk, M.H. : Initial kinetics of auxin-induced cell elongation in coleoptiles. In : Plant Growth Substances, Ed. D.J. Carr (1970).
- Eagles, C.F., Wareing, P.F. : Dormancy regulators in woody plants. Experimental induction of dormancy in <u>Betula pubescens</u>. Nature (Lond.) 199, 874-6 (1963).

- Evans, M.L., Hokanson, R. : Timing of the responses of coleoptiles to the application and withdrawal of various auxins. Planta (Berl.) 85, 85-95 (1969).
- Evans, M.L., Ray, P.M. : Timing of the auxin response in coleoptiles and its implications regarding auxin action. J. gen. Physiol. 53, 1-20 (1969).

- Firn, R.D., Burden, R.S., Taylor, H.F.: The detection and estimation of the growth inhibitor xenthoxin in plants. Planta (Berl.) 102, 115-126 (1972).
- Fisher, R.A., Yates, F. : Statistical tables. Oliver and Boyd, Edinburgh (1963).
- Fitting, H.; Weitere entwicklungsphysiologische Untersuchungen an Orchideenblüten. Zeitschr. Bot., 2, 225-267 (1910).
- Foster, R.J., McRae, D.H., Bonner, J. : Auxin-induced growth inhibition, a natural consequence of two point attachment. Proc. nat. Acad. Sci., Wash. 30, 1014 (1952).
- dela Fuente, R.K., Leopold, A.C. : Time course of auxin stimulations of growth. Plant Physiol. 46, 186-189 (1970).
- Good, J.E.G. : Studies on the possible mode of action of dormin (abscisin-II). Ph.D. Thesis, University of Wales (1967).
- Gordon, S.A., Dobra, W.A. : Elongation responses of the oat shoot to blue light, as measured by capacitance auxanometry . Plant Physiol. 50, 738-742 (1972).
- Greenwood, M.S., Shaw, S., Hillman, J.R., Ritchie, A., Wilkins, M.B. : Identification of auxin from Zea coleoptile tips by mass spectrometry. Planta (Berl.) 108, 179-183 (1972).
- Hemberg, T. : Interaction of kinetin and abscisic acid in the Avena straight-growth test. Physiol. Plant. 26, 108-109 (1972).
- Hemberg, T., Larsson, U. : Interaction of kinetin and indoleacetic acid in the Avena straight-growth test. Physiol. Plant. 26, 104-107 (1972).
- Henri, V.C.R., Acad. Sci. Paris 135, 916 (1902) Quoted in : Enzymes. Dixon, M., Webb, B.C., Longmans, Green & Co. Ltd., London (1958).
- Housley, S., Bentley, J.A., Bickle, A.S. : Studies on plant growth hormones. III. Application of enzyme reaction kinetics to cell elongation in the Avena coleoptile. J. exp. Bot. 5, 373-388 (1954).
- Hsaio, T.C., Acevedo, E., Henderson, D.W. : Maire leaf elongation : continuous measurements and close dependence on plant water status. Science 168, 590-591 (1970).
- Jones, R.J., Mansfield, T.A. : Antitranspirant activity of the methyl and phenyl estors of abscisic acid. Nature (Lond.) 231, 331-332 (1971).
- Key, J.L. : Hormones and nucleic acid metabolism. Ann. Rev. Plant. Physiol. 20, 449-474 (1969).

- Kögl, F., Haagen Smit, A.J., Ersleben, H. : Über ein neues Auxin (Heteroauxin) aus Harn. XI Mitt. Hoppe-Segl. Zeit. physiol. Chem. 220, 90-103 (1934).
- Koshimizu, K., Fukui, H., Mitsui, T., Ogawa, Y.: Identity of lupin inhibitor with abscisin II and its biological activity on growth of rice meedlings. Agr. Biol. Chem., 30, 941-943 (1966).
- Laibach, F., Koramann, P. : Eur methodik der wuchsstoffversuche. Planta (Berl.) 19, 482-484 (1933).
- Lenton, J.R., Perry, V.M., Saunders, P.F.: The identification and quantitative analysis of abscisic acid in plant extracts by gas-liquid chromatography. Planta (Berl.) 96, 271-280 (1971).
- Lineweaver, H., Burk, D.J. : The determination of enzyme dissociation constants. J. Amer. Chem. Soc. 56, 658 (1934).
- Lui, W.C., Carns, H.R. : Isolation of abscisin, an abscission accelerating substance. Science 134, 384-385 (1961).
- Marinos, N.G., Responses of Avena coleoptile sections to high concentrations of auxin. Austral. J. Biol. Sci. 10, 147-163 (1957).
- Masuda, Y., Kamisaka, S. : Rapid stimulation of RNA biosynthosis by auxin. Plant Cell Physiol. 10, 79-86 (1969).
- McRae, D.H., Bonner, J. : Diortho-substituted phenoxyacetic acids as antiauxins. Plant Physiol. 27, 834-837 (1952).
- McRae, D.H., Foster, R.J., Bonner, J. : Kinetics of auxin interaction. Plant Physiol. 28, 343-355 (1953).
- McWha, J.A., Philipson, J.J., Hillman, J.R., Wilkins, M.B. : Molecular requirements/abscisic acid activity in two bioassay systems. Planta (Berl.) 109, 327-336 (1973).
- Michaelis, L., Menton, M.L., Biochen. Z. <u>49</u>, 333 (1913). Quoted in : Enzymes. Dixon, M., Webb, E.C. : Longmans, Green & Co. Ltd., London (1958).
- Milborrow, B.V. : The effects of synthetic dl-dormin (abscisin II) on the growth of the oat mesocotyl. Planta (Berl.) 70, 155-171 (1966).
- Milborrow, B.V. : Identification and measurement of (+)-abscisic acid in plants. In : Biochemistry and physiology of plant growth substances, p. 1531-1545, eds. F. Wightman and G. Settorfield, Ottawa, Rungo Press (1968).
- Milborrow, B.V. : The metabolism of abscisic acid. J. exp. Bot. 21, 17-29 (1970a).
- Milborrow, B.V. : Interaction of plant hormones : abscisic acid and gibberellic acids. Science 168, 875-877 (1970b).
- Most, B.H. : Abscisic acid in immature spical tissue of sugar cane and in leaves of plants subjected to drought. Planta (Berl.) 101, 67-75 (1971).

Mousseron-Canet, M., Mani, J.-C., Dalle, J.-F., Olivá, J.-L.: Photoxydation sensibilisée de quelques composés apparantés à la déhydro-β-ionone, synthèse de l'ester méthylique de la (-) abscisine. Bull. Soc. chim. Fr. 4, 3874-3878 (1966).

- Nissl, D., Zonk, M.M. : Evidence against induction of protein synthesis during auxin-induced initial elongation of <u>Avena</u> coleoptiles. Planta (Berl.) 89, 323-341 (1969).
- Nitsch, J.P., Ann. N.Y. Acad. Sci. 144, Art. 1, ed. Fredrick, J.F., 279-294 (1967). Quoted in : Introduction to the biochemistry and physiology of plant growth hormones, p. 36, Philips, I.D.J.; McGraw-Hill, London (1971).
- Ohkuma, K. : Synthesis of some analogues of abscisin-II. Agr. Biol. Chem. 29, 962-964 (1965).
- Ohkuma, K. : Synthesis of some analogues of abscisin II. Agr. Biol. Chem. 30, 434-437 (1966).
- Ohkuma, K., Addicott, F.T., Smith, O.E., Thiessen, W.E. : The structure of abscisin II. Tetrahedron Lett. 29, 2529-2535 (1965).
- Ohkuma, K., Lyon, J.L., Addicott, F.T., Smith, O.E. : Abscisin II, an abscission-accelerating substance from young cotton fruit. Science 142, 1592-1593 (1963).
- Oritani, T., Yamashita, K. : Studies on abscisic acid. Part I. Syntheses of keto-ionylideneacetic acids. Agr. Biol. Chem., 34, 108-114 (1970a).
- Oritani, T., Yamashita, K. : Studies on abscisic acid. Part II. The oxidation products of methyl a and β cyclocitrylidens-acetates and methyl a-cyclogeranate. Agr. Biol. Chem. 34, 198-203 (1970b).
- Oritani, T., Yamashita, K. : Studies on abscisic acid. Part III. Syntheses of compounds structurally related to a-ionylideneacetic acids. Agr. Diol. Chem. 34, 830-837 (1970c).
- Oritani, T., Yamashita, K. : Studies on abscisic acid. Part IV. Syntheses of compounds structurally related to abscisic acid. Agr. Biol. Chem. 34, 1184-1190 (1970d).
- Oritani, T., Yamashita, K. : Studies on abscisic acid. Part V. The epoxidation products of methyl dehydro- β -ionylideneacetates. Agr. Biol. Chem. 34, 1821-1825 (1970e).
- Oritani, T., Vamashita, K., Meguro, H. : Absolute storeochemistry of analogs of optical active a-ionylideneacetic acids. Agr. Biol. Chem. 36, 365-868 (1972).
- Paál, A. : Uber phototropische Reizleitung. Jahrb. Wiss. Bot., <u>58</u>, 406-458 (1918).
- Penny, P., Penny, D., Marshal, D., Heyes, J.K. : Early responses of excised stem segments to auxins. J. exp. Bot. 23, 23-36 (1972).
- Pope, D., Black, M. : The effect of indole-3-acetic acid on coleoptile extension growth in the absence of protein synthesis. Planta (Berl.) 102, 26-36 (1972).

Popoff, I.C., Sachs, R.M., Gibbs, J.B.: Structures related to abscisic acid and their effect on plant growth. J. Agr. Food Chem. 20, 665-667 (1972).

- Porter, W.L., Thimann, K.V. : Molecular requirements for auxin action. I. Balogenated indoles and indoleacetic acid. Phytochem. 4, 229-243 (1965).
- Ray, P.M., Ruesink, A.W. : Kinetic experiments on the nature of the growth mechanism in oat coleoptile cells. Develop. Biol. 4, 377-397 (1962).
- Rayle, D.L., Cleland, R. : Enhancement of wall loosening and elongation by acid solutions. Plant Physiol. 46, 250-253 (1970).
- Rayle, D.L., Cleland, R. : The in-vitro acid-growth response : relation to in-vivo growth responses and auxin action. Planta (Berl.) 104, 282-296 (1972).
- Rehm, M.M., Cline, M.G. : Rapid growth inhibition of Avena coleoptile segments by abscisic acid. Plant Physiol. 51, 93-96 (1973).
- Robinson, P.M., Wareing, P.F. : Chemical nature and biological properties of the inhibitor varying with photoperi od in sycamore (Acer pseudoplatanus). Physiol. Plant. 17, 314-323 (1964).
- Rothwell, K., Main, R.L. : Studies on a growth inhibitor in yellow lupin (Lupinus lutous L.). In : Régulateurs naturels de la croissance végétale 363-375, ed. J.P. Nitsch, Paris (1964).
- Ryback, G. : Revision of the absolute stereochemistry of (+)-abscisic acid. J.C.S. Chem. Comm., 1190-1191 (1972).
- Saunders, P.F., Poulson, R.H. : Biochemical studies on the possible mode of action of abscisic acid : an apparent allosteric inhibition of invertage activity. In : Biochemistry and physiology of plant growth substances, p. 1581-1591; eds. F. Wightman and G. Setterfield, Ottawa, Runge Press (1968).
- Sondheimer, E., Galson, E.C., Chang, Y.P., Walton, D.C. : Asymmetry, its importance to the action and metabolism of abscisic acid. Science 174, 829-831 (1971).
- Sondheimer, E., Walton, D.C. : Structure activity correlations with compounds related to abscisic acid. Plant Physiol. 45, 244-248 (1970).
- Snow, R. : On the nature of correlative inhibition. New Phytol. 36, 283-300 (1937).
- Stevenick, R.F.M. van : Factors affecting the abscission of reproductive organs of yellow lupins (Lupinus Luteus L.). Endogenous growth substances in virus-infected and healthy plants and their effects on abscission. J. exp. Bot. 10, 367-76 (1959).
- Tamura, S., Nagao, M. : 5-(1,2-epoxy-2,6,6-trimethyl-1-cyclohexenyl)-3-methyl cis, trans-2,4-pentadienoic acid and its esters : new plant growth inhibitors structurally related to abscisic acid. Planta (Berl.) 65, 209-212 (1969a).
- Tamura, S., Nagao, M. : Syntheses of novel plant growth inhibitors structurally related to abscisic acid. Agr. Biol. Chem. 33, 296-298 (1969b).

Stamura, S., Nagao, M. : Syntheses and biological activities of 5-(1-hydroxy-2,6,6-trimethyl-2-cyclohexen-1-yl)-3-methyl-cis,trans-2,4pentadionoic ester and some other abscisic acid analogues. Agr. Biol. Chem., 33, 1357-1360 (1969c).

- Tamura, S., Nagao, M. : Syntheses and biological activities of new plant growth inhibitors structurally related to abscisic acid. Part I. Agr. Biol. Chem., <u>34</u>, 1393-1401 (1970).
- Taylor, H.E., Burden, R.S. : Xanthoxin, a new naturally occurring plant growth inhibitor. Nature (Lond.) 227, 302-304 (1970a).
- Taylor, H.F., Burden, R.S. : Identification of plant growth inhibitors produced by photolysis of violaxanthin. Phytochem., 9, 2217-2223 (1970b).
- Taylor, H.F., Burden, R.S. : Xanthoxin, a recently discovered plant growth inhibitor. Proc. R. Soc. Lond. B. <u>180</u>, 317-346 (1972).
- Taylor, H.F., Smith, T.A.: Production of plant growth inhibitors from xanthophylls. A possible source of dormin. Nature (Lond.) 215, 1513-1514 (1967).
- Thomas, T.H., Wareing, P.F., Robinson, P.M. : Action of the sycamore "dormin" as a gibberellin antagonist. Nature (Lond.) 205, 1269-1272 (1965).
- Trewavas, A.J. : Relationship between plant growth hormones and nucleic acid metabolism. In / Progress in phytochemistry: eds. L. Reinhold, Y. Liwschitz, Vol. 1, 113-160. New York : Interscience (1968).
- Wareing, P.F., Eagles, C.F., Robinson, P.M. : Natural inhibitors as dormancy agents. In : Régulateurs naturels de la croissance végétale, 377-386, ed. J.P. Mitsch, Paris (1964).
- Wareing, P.F., Good, J., Potter, H., Pearson, A. : Preliminary studies on the mode of action of abscisic acid. In : Plant growth regulators. S.C.I. Monograph 31, 191-207 (1968a).
- Wareing, P.F., Good, J., Manuel, J. : Some possible physiological roles of abscisic acid. In : Biochemistry and physiology of plant growth substances, p. 1561-1579; eds. F. Wightman and G. Setterfield, Ottawa, Runge Press (1968b).
- Wareing, P.F., Ryback, G. : Abscisic acid : a newly discovered growth regulating substance in plants. Endeavor XXIX, 84-88 (1970).
- Warner, H.L., Leopold, A.C. : Timing of growth regulator responses in peas. Biochem. Biophys. Res. Commun. 44, 989-994 (1971).
- Wentworth, W.E. : Rigorous least squares adjustment. Application to some non-linear equations. I. J. Chem. Education 42, 96-103 (1965a).
- Nentworth, W.E. : Rigorous least squares adjustment. Application to some non-linear equations. II. J. Chem. Education 42, 162-167 (1965b).
- Wright, S.T.C. : An increase in the "inhibitor- β " content of detached wheat leaves following a period of wilting. Planta (Berl.) 86, 10-20 (1969).
- Zenk, M.H. : Phytohormone und genaktivität. Ber. Dtsh. Bot. Ges. 83, 325-344 (1970).

Abbreviations

157

ABA Abscisic acid

A.E.S. (ratio) Automatic external standardization

B Initial reaction rate (enzyme kinetics) or buffer solution
C Column items (analysis of variance)

Ét.

MO

Foot

Methy1

s.e. Standard error

Degrees of freedom

Ci M⁻¹ Curies per mole

cpm Counts per minute

C₂₈ Octokosane

o,t-(or Z,E-) Cis,trans-

•C Degrees Centigrade

dpm Disintegrations per minute

E Error (analysis of variance)

Ï

K

F Variance ratio (analysis of variance)

Fig(s) Figure(s)

h Hour (s)

Interaction (analysis of variance)

IAA Indole acetic acid

Ohms $\times 10^3$

Km Michaelis constant (enzyme kinetics)

log. Logarithmic

15. Pound weight

M Molar

mg Milligram(#)

Hy Micro-grams(s)

min. or mins. Minute(s)

ml Millilitre(s)

mm Millimetre (s)

ms Mean square (analysis of variance) P Probability

pers.com. Personal communication

ppm Parts per million

Row items (analysis of variance)

Substrate (enzyme kinetics)

SS Sum of squares (analysis of variance)

t,t-(or E,B-) trans, trans-

µm Micron

R

S

uCi mg Micro-curies per milligram

U.V. Ultra-violet

V Initial reaction velocity (enzyme kinetics)

V Maximum reaction velocity (enzyme kinetics)

VS Versus i.e. plotted against