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Abstract

This thesis addresses different aspects of numerical fracture mechanics and spline tech-
nology for analysis.
An energy-based arc-length control for physically non-linear problems is proposed. It
switches between an internal energy-based and a dissipation-based arc-length method.
The arc-length control allows to trace an equilibrium path with multiple snap-through
and / or snap-back phenomena and only requires two parameters.
Phase field models for brittle and cohesive fracture are numerically assessed. The im-
pact of different parameters and boundary conditions on the phase field model for brittle
fracture is investigated. It is demonstrated that Γ-convergence is not attained numerically
for the phase field model for brittle fracture and that the phase field model for cohesive
fracture does not pass a two-dimensional patch test when using an unstructured mesh.
The properties of the BÉZIER extraction operator for T-splines are exploited for the de-
termination of linear dependencies, partition of unity properties, nesting behaviour and
local refinement. Unstructured T-spline meshes with extraordinary points are modified
such that the blending functions fulfil the partition of unity property and possess a higher
continuity.
BÉZIER extraction for POWELL–SABIN B-splines is introduced. Different spline tech-
nologies are compared when solving KIRCHHOFF–LOVE plate theory on a disc with sim-
ply supported and clamped boundary conditions.
POWELL–SABIN B-splines are utilised for smeared and discrete approaches to fracture.
Due to the higher continuity of POWELL–SABIN B-splines, the implicit fourth order gra-
dient damage model for quasi-brittle materials can be solved and stresses can be computed
directly at the crack tip when considering the cohesive zone method.
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1 Introduction

The prediction of crack propagation and failure of materials is one of the big issues
engineering mechanics is currently dealing with. Fracture can be modelled by either
a discrete or a smeared approach utilising the finite element method. In the discrete
approach, the crack is modelled explicitly whereas in the smeared approach, the crack is
distributed over a damage zone with a finite width.
Re-meshing allows the mesh to follow the crack in the discrete approach as demonstrated
by INGRAFFEA, SWENSON and WAWRZYNEK [108, 121] for the theory of linear elastic
fracture mechanics (LEFM). LEFM can be used to describe crack phenomena in brittle
materials such as glass (GRIFFITH [45]), and ductile materials such as steel when
GRIFFITH’s theory is further modified, see IRWIN [53] and OROWAN [81]. GRIFFITH’s
fracture theory is based on energy rather than local stresses. However, LEFM is only
applicable when the plastic region at the crack tip is small. It is not suited to predict
failure in quasi-brittle materials such as concrete and rock which exhibit the formation of
micro-cracks ahead of the crack tip. Therefore, HILLERBORG et al. [50] added cohesive
zones in the vicinity of the crack tip for describing failure in quasi-brittle materials in
a finite element computation. Cohesive zone modelling represents an application of the
approach by BARENBLATT [5] and DUGDALE [38]. Yet, complications arise for discrete
fracture models when describing phenomena like crack branching or modelling curved
cracks in three dimensions.
This has motivated the use of smeared fracture approaches. They do not require
re-meshing which eases their implementation. Smeared approaches represent / ap-
proximate a crack by introducing a damage variable and can be straightforwardly
extended to three dimensions. However, damage approaches yield different solu-
tions upon mesh refinement as discussed by CRISFIELD [26], DE BORST [28] and
KUHL [62]. Thus, non-local damage approaches were developed by BAŽANT and
PIJAUDIER-CABOT [8, 87]. Non-local approaches introduce an additional parameter –
the length scale parameter. The implicit gradient damage model for quasi-brittle
materials by PEERLINGS et al. [82] allows for a more effective finite element solution
when introducing non-locality.
Closely related to the implicit gradient damage model is the phase field model for
brittle fracture which also introduces a length scale parameter, see BOURDIN et al. [17],
FRANCFORT & MARIGO [43] and MIEHE et al. [76]. While the implicit gradient damage
model for quasi-brittle materials requires an additional field problem for the non-local
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1 Introduction

equivalent strain, the phase field model for brittle fracture introduces an additional field
problem for the damage parameter.
Recently, VERHOOSEL & DE BORST [117] proposed a phase field model for cohesive
fracture. They introduced a second additional auxiliary field in the smeared crack zone
which describes the displacement jump.
However, issues were encountered for the phase field models for brittle and cohesive
fracture by MAY et al. [71] and VIGNOLLET et al. [118]. It was demonstrated by
MAY et al. [71] that Γ-convergence is not attained numerically for the phase field model
for brittle fracture and that the phase field model for cohesive fracture does not pass a
two-dimensional patch test for unstructured meshes.

Tracing an equilibrium path for discrete and smeared approaches to fracture often
requires an arc-length method due to the occurrence of snap-through and / or snap-back
phenomena. For these physically non-linear problems, the arc-length methods developed
by RIKS [90] and WEMPNER [123] may fail to converge due to strain localisation in
small zones, see CRISFIELD [26]. To overcome this, DE BORST [28] developed the
indirect displacement method. This method considers only degrees of freedom involved
in the failure zone and therefore requires an a priori knowledge of the expected failure
zone.
The fact that physically non-linear problems can involve a monotonically increasing
dissipation has been exploited by GUTIÉRREZ [49] and applied to the implicit gradient
damage model for quasi-brittle materials. VERHOOSEL et al. [114] further pursued
and enhanced the idea and applied it to plasticity models and geometrically non-linear
problems with damage.
MAY et al. [73] proposed an arc-length method which switches between controlling the
amount of internal and dissipated energy and hence, is completely energy-based. This
path-following method only requires two parameters for tracing an entire equilibrium
path and is especially useful when the equilibrium path exhibits several snap-through
and / or snap-back phenomena.

B-splines, Non-Uniform Rational B-Splines (NURBS) and T-splines have been exploited
for discrete and smeared approaches to fracture by VERHOOSEL et al. [115, 116]. The
concept of using functions that are used in Computer Aided Design (CAD) also for
the analysis was introduced by CIRAK et al. [24] and KAGAN et al. [55], and termed
later isogeometric analysis (IGA) by HUGHES et al. [52]. It is motivated from the time-
consuming mesh generation and geometric inaccuracy present in most of today’s analysis
tools. NURBS and T-splines meet a growing acceptance in the engineering community.
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1 Introduction

The technique of BÉZIER extraction by BORDEN et al. [13] and SCOTT et al. [94]
contributes considerably to this acceptance as it allows for an implementation that is
identical to that typically used in finite element codes. However, BUFFA et al. [20] raised
the concern that not all T-spline blending functions are linearly independent, which is
a necessary condition to perform the analysis. LI et al. [66] introduced a method to
determine whether the blending functions in a T-spline mesh are linearly independent –
and therefore analysis-suitable – or not. Later, SCOTT et al. [96] developed an algorithm
to refine analysis-suitable T-spline meshes.
While the approach in LI et al. [66] and SCOTT et al. [96] is based on the topology of
the T-spline mesh, MAY et al. [72] demonstrated that the BÉZIER extraction operator can
also be used to determine linear dependencies, partition of unity and nesting behaviour
of locally refined meshes. Moreover, the BÉZIER extraction operator of unstructured
T-splines with extraordinary points can be modified such that the resulting mesh fulfils the
partition of unity and is C1

A-continuous around an extraordinary point, cf. MAY et al. [74].

Another spline technology are the POWELL–SABIN [88] B-splines. Quadratic POW-
ELL–SABIN B-splines are based on a linear triangulation and C1

A-continuous in
the entire domain. Since they provide basis functions of higher continuity, they
can be applied to problems involving fourth order partial differential equations:
KIRCHHOFF–LOVE [60, 70] plate theory or the implicit fourth order gradient damage
model for quasi-brittle materials. POWELL–SABIN B-splines further allow a direct
computation of stresses at the crack tip for discrete fracture approaches as a result of
their C1

A-continuity, see also MAY et al. [75]. Since triangles are usually favoured for
discrete approaches due to their re-meshing flexibility, POWELL–SABIN B-splines are
also appealing for these kind of problems.

This thesis comprises different aspects related to numerical fracture mechanics and spline
technology for analysis. Each of the following chapters interacts to some extent with
the other chapters but can mostly be read independently. Chapter 2 introduces a new
arc-length method that utilises the rate of internal and dissipated energy. This chapter is
based on MAY et al. [73]. Chapter 3 is about phase field models for brittle and cohesive
fracture. It addresses the issues observed by MAY et al. [71] and VIGNOLLET et al. [118]:
Γ-convergence for the phase field model for brittle fracture and stress oscillations for the
phase field model for cohesive fracture. Chapter 4 shows how the BÉZIER extraction
operator for T-splines of arbitrary degree can be used for the determination of linear de-
pendencies, partition of unity property, nesting behaviour and local refinement as demon-
strated in MAY et al. [72]. Furthermore, unstructured T-spline meshes will be discussed
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and it will be explained how the BÉZIER extraction operator can be modified in order to
obtain blending functions that fulfil the partition of unity and are C1

A-continuous around
an extraordinary point, see also MAY et al. [74]. Chapter 5 introduces BÉZIER extraction
for POWELL–SABIN B-splines. Also, it compares different spline technologies and points
out their advantages and disadvantages when applied to KIRCHHOFF–LOVE plate theory
on a disc as shown in MAY et al. [74]. Chapter 6 focuses on POWELL–SABIN B-splines
for smeared and discrete approaches to fracture, cf. MAY et al. [75]. Due to the concerns
experienced in Chapter 3, POWELL–SABIN B-splines will not be utilised for a phase field
approach. Finally, Chapter 7 gives a concise summary of this thesis.

4



2 Energy-based arc-length control for
physically non-linear problems

This chapter focuses on the energy-based arc-length control for physically non-linear
problems proposed by MAY et al. [73]. It is based on the rate of internal and dissi-
pated energy and allows to trace an equilibrium path with multiple snap-through and / or
snap-back phenomena. After addressing briefly the need for an arc-length method, an arc-
length control which is based on the rate of dissipated and internal energy is introduced.
The dissipation-based arc-length control is derived from the second law of thermodynam-
ics whereas the internal energy-based arc-length control is derived from the time deriva-
tive of the energy density. The method is applied to a plate with an eccentric hole using the
phase field model for brittle fracture and to a perforated beam using interface elements
with decohesion. Index notation is adopted throughout with respect to a CARTESIAN

frame.

2.1 Necessity of an arc-length control

The state of a solid is governed by the equilibrium of external and internal forces

f int(u) = f ext, (2.1)

while the external force vector can be represented by a normalised load vector f̂ and the
loading parameter λ

f ext = λf̂ . (2.2)

As it will be shown next, neither a force nor a displacement control is in general suitable
for following the equilibrium path. During a force control, the loading parameter λ is
prescribed, while for a displacement control, the displacement u is prescribed for some
points of the solid. Fig. 2.1 gives a typical force-displacement curve which can occur
during loading.

Up to point A in Fig. 2.1(a) a monotonically increasing force control could be employed,

λ1 < λ2 < . . . < λk, (2.3)

whereas up to point B in Fig. 2.1(b) a monotonically increasing displacement control

5



2 Energy-based arc-length control for physically non-linear problems

A

u

f

0

λ1f̂

λ2f̂

λkf̂
A′

(a)

B

u

f

0 u1 u2 uk

B′

(b)

Fig. 2.1: (a) The force control is not able to capture the dashed equilibrium path between
the points A and A′ (snap-through). (b) The displacement control is unable to trace the
dashed equilibrium path between the points B and B′ (snap-back).

could be used,
u1 < u2 < . . . < uk. (2.4)

However, the monotonically increasing force control is not able to capture the snap-
through after the peak load at point A, while the monotonically increasing displacement
control is unable to capture the snap-back at point B.
Therefore, an arc-length control is necessary in order to properly trace the equilibrium
path during loading. An arc-length control adds to Eq. (2.1) an additional constraint equa-
tion ϕ=ϕ(u, λ), which ensures that the equilibrium path can be followed. By adding the
additional constraint equation, the following system of equations must be solved

H(u, λ) =

[
f int(u)− λf̂
ϕ(u, λ)

]
=

[
0

0

]
. (2.5)

Assuming that the solution in the k+1-th increment and i-th iteration is known for uik+1

and λik+1, Eq. (2.5) can be linearised using a TAYLOR series around uik+1, λik+1 as follows

H(u, λ) ≈H(uik+1, λ
i
k+1) + KT (uik+1, λ

i
k+1) ·

[
u− uik+1

λ− λik+1

]
= 0, (2.6)
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2 Energy-based arc-length control for physically non-linear problems

with the tangential stiffness matrix

KT (u, λ) =




∂f int(u)

∂u
−f̂

∂ϕ(u, λ)

∂u

∂ϕ(u, λ)

∂λ




=


K −f̂
vT w


 . (2.7)

The solution for ui+1
k+1, λi+1

k+1 in the k+1-th increment in the i+1-th iteration in Eq. (2.6),

H(ui+1
k+1, λ

i+1
k+1) = 0, (2.8)

can be obtained by solving

[
u

λ

]i+1

k+1

=

[
u

λ

]i

k+1

−K−1

T

∣∣∣∣
i

k+1

·
[
f int(u)− λf̂
ϕ(u, λ)

]i

k+1

. (2.9)

In order to save computational time for the solution of Eq. (2.9), the inverse of the tan-
gential stiffness matrix KT can be evaluated utilising the SHERMAN–MORRISON [101]
formula, see Appendix A.1.

2.2 Arc-length control based on the rate of dissipated energy

An arc-length function based on the rate of dissipated energy has been introduced for
damage models by GUTIÉRREZ [49]. The procedure uses a force control at the begin-
ning of the loading, and when the dissipated energy reaches a certain limit switches to
a dissipation-based arc-length control. The dissipation-based arc-length control is moti-
vated by the fact that during loading the amount of dissipated energy can only increase
monotonically. Therefore, by prescribing the amount of energy which should be dissi-
pated in each loading step, the equilibrium path can be traced.
The first law of thermodynamics gives a statement about the conservation of energy –
energy can neither be destroyed nor created. However, the first law of thermodynamics
does not give a statement about the dissipative nature of a process. The dissipative be-
haviour of a process can be described by the second law of thermodynamics. The second
law of thermodynamics reads in a local form for a constant temperature (see JIRÁSEK &
BAŽANT [54, Chapter 23]),

Ḋ = σij ε̇ij − ψ̇ ≥ 0, (2.10)

where Ḋ is the rate of dissipation and ψ the energy density that describes the energy
stored in the bulk of the solid per unit volume. It is now assumed that for the constitutive
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2 Energy-based arc-length control for physically non-linear problems

behaviour between the stress σij and the strain εij a damage law of the form

σij(εij, d) = g(d)Cijklεkl (2.11)

is used with the damage parameter d ∈ [0, 1] (0: undamaged state, 1: fully broken state),
the degradation function g(d), the infinitesimal strain tensor

εij =
1

2
(ui,j + uj,i) (2.12)

and the elasticity tensor equipped with the usual major and minor symmetries

Cijkl = Cjikl, Cijkl = Cijlk, Cijkl = Cklij . (2.13)

The energy density ψ reads

ψ(εij, d) =
1

2
σij(εij, d)εij , (2.14)

while

∂ψ

∂εkl
=

1

2

∂σij
∂εkl

εij +
1

2
σij

∂εij
∂εkl

=
1

2
g(d)Cijklεij +

1

2
g(d)Cijklεklδikδjl

= g(d)Cijklεij = g(d)Cklijεij = σkl. (2.15)

There are two ways of expressing the time derivative of the energy density ψ in Eq. (2.10).
The first option is to use the chain rule with Eq. (2.15)

ψ̇ =
∂ψ

∂εij
ε̇ij +

∂ψ

∂d
ḋ = σij ε̇ij +

∂ψ

∂d
ḋ, (2.16)

which yields for Eq. (2.10)

Ḋ = −∂ψ
∂d
ḋ ≥ 0. (2.17)

The second option is to apply the product rule

ψ̇ =
1

2
σ̇ijεij +

1

2
σij ε̇ij , (2.18)

which results for Eq. (2.10) in

Ḋ =
1

2
σij ε̇ij −

1

2
σ̇ijεij ≥ 0. (2.19)
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2 Energy-based arc-length control for physically non-linear problems

Assuming that there are no discontinuities in the solid, the global forms of Eq. (2.17) and
Eq. (2.19) can be written as

ĖD =

∫

Ω

Ḋ dV =

∫

Ω

1

2
σij ε̇ij −

1

2
σ̇ijεij dV =

∫

Ω

−∂ψ
∂d
ḋ dV, (2.20)

where ĖD is the rate of dissipated energy. It can be observed from Eq. (2.20) that ĖD
directly follows from the evolution of the damage variable d. The dissipated energy ED
increases monotonically since ĖD≥0 follows from ḋ≥0 and ∂ψ

∂d
≤0 in Eq. (2.20).

The second integral in Eq. (2.20) can be expressed in matrix-vector format with

ε = Bu, (2.21)

Eq. (2.1) and Eq. (2.2) as

ĖD =

∫

Ω

1

2
u̇TBTσ dV −

∫

Ω

1

2
uTBT σ̇ dV

=
1

2
u̇ f int(u)− 1

2
u ḟ int(u) =

1

2
u̇λf̂ − 1

2
uλ̇f̂ . (2.22)

Replacing ĖD in Eq. (2.22) with the rate of the path parameter τ̇D yields

1

2
(λu̇T − λ̇uT )f̂ − τ̇D = 0. (2.23)

Any time discretisation scheme would result in

1

2

(
λku

T
k+1 − λk+1u

T
k

)
f̂ −∆τD = 0, (2.24)

see Appendix A.2.2. The time discretisation of the last term in Eq. (2.20) is in general
not equal to Eq. (2.24), although the second and the third integral in Eq. (2.20) are equal
from a continuity perspective. Eq. (2.24) can now be used as the constraint equation in
Eq. (2.5) in the following form

ϕD(u, λ) =
1

2

(
λku

T − λuTk
)
f̂ −∆τD. (2.25)

The parameter ∆τD in Eq. (2.25) can be interpreted as the prescribed step size for each
increment – it prescribes the amount of energy which needs to be dissipated in one incre-
ment.

9



2 Energy-based arc-length control for physically non-linear problems

2.3 Arc-length control based on the rate of internal energy

Next, a new arc-length function will be introduced for the regime when the rate of dis-
sipated energy ĖD due to the evolution of the damage variable d is very small, e. g., at
the onset of loading. Assuming that there are no discontinuities in the solid, and using
Eqs. (2.1), (2.2) and (2.21), Eq. (2.18) can be written in the global form to yield the rate
of the internal energy U̇ in matrix-vector format

U̇ =

∫

Ω

ψ̇ dV =

∫

Ω

1

2
u̇TBTσ +

1

2
uTBT σ̇ dV

=
1

2
u̇Tf int(u) + uT ḟ int(u) =

1

2

(
u̇Tλ+ uT λ̇

)
f̂ . (2.26)

Replacing U̇ with the path parameter τ̇U in Eq. (2.19) and applying the midpoint rule (see
Appendix A.2.1) results in

1

2

(
λk+1u

T
k+1 − λkuTk

)
f̂ −∆τU = 0, (2.27)

which can now be used as a constraint equation in Eq. (2.5) as follows

ϕU(u, λ) =
1

2

(
λuT − λkuTk

)
f̂ −∆τU . (2.28)

The parameter ∆τU in Eq. (2.28) can be interpreted as the prescribed step size for an
increment – it prescribes the amount of internal energy which needs to be introduced into
the system in one increment.
In the first iteration (i=1) of the first increment (k=1)

∂ϕU(u, λ)

∂λ

∣∣∣∣
i=1

k=1

=
1

2
uT f̂

∣∣∣∣
i=1

k=1

=
1

2
u1

1
T
f̂ = 0, (2.29)

and Eq. (2.7) would result with u1
1 =u0 =0 in a singular matrix. Hence, in the first incre-

ment k=1 the following arc-length expression is used

ϕF1 (λ) = λ−∆τF1 ,
∂ϕF1 (λ)

∂λ

∣∣∣∣
k=1

= 1, (2.30)

which is equivalent to a force control. After the first increment, the solution for u1 and
λ1 is known. From the solution for u1 and λ1, the rate of the internal energy for the first
increment ∆τU1 can be evaluated using Eq. (2.28),

∆τU1 =
1

2

(
λ1u

T
1 − λ0u

T
0

)
f̂ =

1

2
λ1u

T
1 f̂ . (2.31)

10



2 Energy-based arc-length control for physically non-linear problems

∆τU1 from Eq. (2.31) can then be utilised in the following increments as the prescribed
step size. No adaptive step size scheme will be used for ∆τU1 .
Next to ∆τF1 , a ratio a needs to be defined. This parameter specifies when the arc-length
control has to switch from internal energy-based arc-length control to dissipation-based
arc-length control and is defined as

a =
∆τD

∆τU
. (2.32)

When the force-displacement curve exhibits a more brittle behaviour – i. e. little damage
occurs before the maximum peak force – a smaller value must be assigned to the para-
meter a. The simulation cannot switch to the dissipation-based arc-length control and will
not find an equilibrium at a snap-through / snap-back when the parameter a is too large. If
a is taken too small the simulation switches too early to the dissipation-based arc-length
control. In order to determine a, one can start a simulation assuming a large a. Then, a
value can be assigned to a that is smaller than the term ∆τD

∆τU
from the last increment where

an equilibrium could be found. The algorithm is summarised in Algorithm 2.1.

C

u

f

0

prescribed ∆τU =∆τU1
from C → D

∆τD>a∆τU1

D

∆τU >0

prescribed
∆τU =∆τU1

after GF

prescribed ∆τD=a∆τU1
from D → F;
∆τU <0

from E → FE

∆τF1 prescribed ∆τF1
gives ∆τU1

G
∆τU >∆τU1

Fig. 2.2: Path following technique using an arc-length control which is based on the rate
of internal energy U̇ and the rate of dissipated energy ĖD. Switch from rate of internal
energy-based arc-length control ϕU to dissipation-based arc-length control ϕD at point D;
switch from dissipation-based arc-length control ϕD to internal energy-based arc-length
control ϕU at point G.

11



2 Energy-based arc-length control for physically non-linear problems

k = 0;
InternalEnergyArclength=1;
Prescribe ∆τF1 and ratio a;
while k < kmax do

k = k + 1; i = 0; error = 1;
while error > errormax do

i = i+ 1;
if k = 1 then

ϕF
1 = λ1 −∆τF1 ;

else
if InternalEnergyArclength = 1 then

ϕU = 1
2

(
λik+1u

i T

k+1 − λkuT
k

)
f̂ −∆τU ;

else

ϕD = 1
2

(
λku

i T

k+1 − λik+1u
T
k

)
f̂ −∆τD;

end

end

// Solve for ui+1
k+1 and λi+1

k+1 using Eq. (2.9) and evaluate the error
error = error(ui+1

k+1, λ
i+1
k+1);

end
// Define the arc-length function for the next increment
if k = 1 then

∆τU1 = 1
2λ1u

T
1 f̂ ;

∆τU = ∆τU1 ;
else

if InternalEnergyArclength = 1 then

∆τD = 1
2

(
λku

T
k+1 − λk+1u

T
k

)
f̂ ;

if ∆τD > a∆τU1 then
// use now arc-length based on rate of dissipated energy
InternalEnergyArclength = 0;
InternalEnergyNegative = 0;
∆τD = a∆τU1 ;

end

else

∆τU = 1
2

(
λk+1u

T
k+1 − λkuT

k

)
f̂ ;

if ∆τU < 0 and InternalEnergyNegative = 0 then
InternalEnergyNegative = 1;

else if ∆τU > ∆τU1 and InternalEnergyNegative = 1 then
// use now arc-length based on rate of internal energy
InternalEnergyArclength = 1;
∆τU = ∆τU1 ;

end

end

end

end

Algorithm 2.1: Algorithm for the loading process for the arc-length control based
on the rate of internal energy U̇ and the rate of the dissipated energy ĖD.

A simulation starts with a prescribed step size ∆τF1 for the force, which gives after conver-
gence the step size ∆τU1 for the rate of internal energy at point C, cf. Fig. 2.2. ∆τU1 is then
used as the prescribed step size for the arc-length control ϕU based on the rate of internal
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2 Energy-based arc-length control for physically non-linear problems

energy from point C to D, ∆τU =∆τU1 . If, at the end of an increment, the incremental
dissipated energy times the ratio factor a is larger than the prescribed increment for the
internal energy, ∆τD>a∆τU =a∆τU1 (point D in Fig. 2.2), the loading process switches
from internal energy-based (ϕU ) to dissipation-based (ϕD) arc-length control with a pre-
scribed step size ∆τD=a∆τU1 . The increment in the internal energy becomes negative,
∆τU<0, between point E and F in Fig. 2.2. When the incremental internal energy ∆τU

becomes again larger than ∆τU1 (point G in Fig. 2.2), the loading process switches back
to an internal energy-based arc-length control ϕU with a prescribed step size ∆τU =∆τU1 .
The arc-length method requires two parameters: ∆τF1 and a.

2.4 Numerical examples

In this section, two numerical examples are considered which exhibit multiple
snap-through and / or snap-back phenomena.

2.4.1 Phase field model for brittle fracture

Consider the phase field problem for brittle fracture governed by the equations

σij,i = 0, (2.33)
Gc
2`

[d− 4`2d,ii] +
∂g

∂d
H = 0 (2.34)

and subject to the boundary conditions

σijnj = hi on ∂Ωh, ui = ūi on ∂Ωu, d,ini = 0 on ∂Ω, (2.35)

with the decomposition of the boundary ∂Ω into the parts ∂Ωh and ∂Ωu (∂Ωh ∩ ∂Ωu=∅,
∂Ωh ∪ ∂Ωu=∂Ω), the prescribed surface traction h, prescribed displacement ū and nor-
mal vector n on the boundary, see also Chapter 3 for more details. The stress tensor is
computed via

σij = g(d)Cijklεkl, (2.36)

with the degradation function

g(d) = (1− d)2. (2.37)

In Eq. (2.34), ` denotes the length scale parameter, Gc the critical energy release rate and
H the history field

H = maxψ, (2.38)
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2 Energy-based arc-length control for physically non-linear problems

which was introduced by MIEHE et al. [76] in order to ensure irreversibility of the phase
field variable d. The energy density ψ for the damaged solid is computed with

ψ = g(d)ψel, (2.39)

where ψel corresponds to the energy density of the undamaged solid

ψel =
1

2
λεel

iiε
el
jj + µεel

ijε
el
ij =

1

2
λεiiεjj + µεijεij , (2.40)

with the LAMÉ constants λ and µ. Energy is dissipated upon creating a new crack surface
area

ED =

∫

Ω

Gc dA, (2.41)

which becomes due to the smearing

ED =

∫

Ω

Gcγ` dV, (2.42)

with the crack surface density function

γ` =
1

4`

(
d2 + 4`2d,id,i

)
. (2.43)

Recalling Eq. (2.20) gives for the rate of dissipated energy

ĖD =

∫

Ω

−∂ψ
∂d
ḋ dV =

∫

Ω

Gcγ̇` dV, (2.44)

i. e. the energy which is dissipated in the bulk is equal to the energy dissipated upon
propagation of the smeared crack surface.
The phase field problem for brittle fracture is applied to the plate with an eccentric
hole in Fig. 2.3 which has been considered with different dimensions in LORENTZ

& BADEL [69]. The mesh consists of 9494 linear quads which gives the mesh
size h≈0.01 mm. Plane strain is assumed. The material parameters are taken as:
YOUNG’s modulus E=210 MPa, POISSON’s ratio ν=0.3, critical energy release rate
Gc=2.7 · 10−3 N/mm, and the length scale parameter is set to `=0.02 mm. The two pa-
rameters for the arc-length control are ∆τF1 =0.2 N and a=0.25. The force-displacement
curve and the development of the phase field variable d are depicted in Figs. 2.4 and 2.5.

14



2 Energy-based arc-length control for physically non-linear problems

0.5

0.5

λf̂

0.5

0.5

y

x

R
=
0.2

0.1

Fig. 2.3: Plate under tension with an eccentric hole, dimensions in mm.
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Fig. 2.4: Force-displacement curve for the plate under tension with an eccentric hole for
a mesh size h≈0.01 mm and a length scale parameter `=0.02 mm. Circles denote the
switch from internal energy to dissipation-based arc-length control, the triangle denotes
the switch from dissipation-based to internal energy-based arc-length control. Squares
correspond to the phase field distributions for d in Fig. 2.5.
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(a) (b) (c) (d)

0.25

0.5

0.75

d

0

1

Fig. 2.5: Propagation of the phase field variable d for the plate with an eccentric hole
under tension; plots correspond to the squares in Fig. 2.4.

2.4.2 Perforated beam with interface elements

As a second numerical example, the perforated beam shown in Fig. 2.6(a) is considered,
see also VERHOOSEL et al. [114].

y

x

λf̂

λf̂

1

3

Interface elements0.375

2

(a)

[[un]]

tn([[un]])

tult

Gc

0

kp

(b)

Fig. 2.6: (a) Set-up for the perforated beam, dimensions in mm. (b) Bi-linear cohesive
law for the interface elements. The shaded grey area is equivalent to the critical energy
release rate Gc.

The stress equilibrium
σij,i = 0 (2.45)

is subject to the boundary conditions

σijnj = hi on ∂Ωh, ui = ūi on ∂Ωu. (2.46)

The boundary ∂Ω is decomposed into the parts ∂Ωh and ∂Ωu (∂Ωh ∩ ∂Ωu=∅,
∂Ωh ∪ ∂Ωu=∂Ω); h is the prescribed surface traction, ū the prescribed displacement
and n the normal vector on the boundary. The bulk is assumed to be linearly elastic, i. e.
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no damage law is used
σij = Cijklεkl. (2.47)

Along the interface Γd the cohesive traction t is imposed, see also Section 6.2 for more
details. The cohesive traction t corresponds to the global coordinate system and is ob-
tained by transforming the cohesive traction td of the local coordinate system. td consists
of two components: one for the normal (tn) and one for the shear direction (ts). In the nor-
mal direction, the bi-linear cohesive law tn([[un]]) of Fig. 2.6(b) with the ultimate traction
tult =1 MPa, critical energy release rate Gc=2.5 · 10−3 N/mm and penetration stiffness
kp=104 MPa/mm is applied to the interface elements. [[un]] denotes the jump in the nor-
mal direction. In the shear direction, ts is set to zero. Due to the elastic bulk, energy is
dissipated only in the interface elements. The increment of dissipated energy ∆τD can be
derived by geometric considerations, see also Fig. 2.7(a)

∆τD = A− B− C− D =
1

2
(tnk[[un]]k+1 − tnk+1[[un]]k) . (2.48)

[[un]]

tn([[un]])

tult

0 [[un]]k [[un]]k+1

tnk

tnk+1

∆τD

A

B

C
D

k

k + 1

(a)

[[un]]

tn([[un]])

tult

0

k

k + 1

k + 1

(b)

Fig. 2.7: (a) The increment of dissipated energy ∆τD (shaded grey area) can be derived
from geometric considerations. (b) Both options for increment k+1 could follow incre-
ment k since they both yield a positive increment of dissipated energy ∆τD in Eq. (2.48).

Eq. (2.48) does not have a unique solution for increment k+1, see also Fig. 2.7(b). Still,
no problems were encountered for the numerical simulation, i. e. no undesired unloading
occurred.
The material parameters are taken as: YOUNG’s modulus E=100 MPa, POISSON’s ratio
ν=0.3 with a plane strain assumption. 15354 linear triangular elements are used and
along the interface a two-point NEWTON–COTES integration scheme is utilised in order
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to avoid stress oscillations along the interface, see SCHELLEKENS & DE BORST [91], and
further VIGNOLLET et al. [119] for a discussion on the integration of interface elements in
an isogeometric context. The two parameters for the arc-length control are ∆τF1 =0.025 N
and a=0.1. The resulting force-displacement curve is given in Fig. 2.8.
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Fig. 2.8: Force-displacement curve for the perforated beam; circles denote the switch
from internal energy to dissipation-based arc-length control, triangles denote the switch
from dissipation to internal energy-based arc-length control.
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3 Fracture models using phase field

The next section explains how a crack can be smeared by introducing a phase field vari-
able. Afterwards, the phase field models for brittle and cohesive fracture are studied.

3.1 Phase field expression of the crack

The basic idea of phase field models for fracture is to approximate a discrete crack Γ by a
smeared crack Γ`. The exponential function

d(x) = exp

(
−|x|

2`

)
, (3.1)

where ` denotes the length scale parameter, can be utilised for the approximated crack
surface in the one-dimensional case, see Fig. 3.1.

x

d(x)

0

1

(a)

x

d(x)

0

1

4ℓ

(b)

Fig. 3.1: (a) Sharp crack with d=1 at x=0 and d=0 otherwise, (b) smeared crack mod-
elled with the length scale parameter `.

The phase field variable d describes the phase field and varies between zero and one,
d ∈ [0, 1]. Herein, d=0 characterises the unbroken state of the material far away from the
crack while d=1 represents the fully broken material inside the crack. The differential
equation

d− 4`2d,xx = 0 (3.2)
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subject to the boundary conditions

d(0) = 1, (3.3)

d(±∞) = 0 (3.4)

has the solution in Eq. (3.1) for the one-dimensional case. This can be demonstrated by
applying to Eq. (3.2) the ansatz d=e−|λ||x| (which already satisfies the boundary condition
Eq. (3.4)), solving for λ and subsequently using for the resulting problem Eq. (3.3) to
determine the constant parameter.
The discrete crack surface Γ can now be expressed by the functional / potential Γ`

Γ =

∫

Γ

dA =

∫

Ω

1

4`

(
d2 + 4`2d,x

2
)

︸ ︷︷ ︸
γ`

dV = Γ`, (3.5)

with the crack surface density function γ`, see MIEHE et al. [77] for more details. Eq. (3.5)
is for the one-dimensional case an equality and not an approximation. From Eq. (3.5) it
can be observed that the crack surface Γ – a discontinuity – has been smeared over the
whole domain to yield the smeared crack surface Γ`.
Minimising the crack potential Γ` (see also REDDY [89, Chapter 4] for an extensive
overview of minimising functionals)

δΓ` =
∂Γ`
∂d

δd+
∂Γ`
∂d,x

δd,x = 0 (3.6)

yields the differential equation in Eq. (3.2) and the boundary condition Eq. (3.4). In the
subsequent sections, the boundary condition Eq. (3.3) will be enforced in the case of the
phase field model for brittle fracture by a driving force and in the case of the phase field
model for cohesive fracture by prescribing d=1 at nodes.
In the multi-dimensional case, the crack surface density function γ` can be extended as
follows

γ` =
1

4`

(
d2 + 4`2d,id,i

)
. (3.7)

In Eq. (3.7), index notation is adopted with respect to a CARTESIAN frame.

3.2 Phase field model for brittle fracture

FRANCFORT & MARIGO [43] suggested to model fracture by a variational approach
which minimises the energy of the bulk and the energy of the surface associated to the
crack. The variational approach in FRANCFORT & MARIGO [43] was motivated by the
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work of MUMFORD & SHAH [78] who introduced a potential for image segmentation.
AMBROSIO & TORTORELLI [2] approximated the MUMFORD-SHAH potential by ellip-
tic functionals using a control variable which ranges between zero and one. This idea of
introducing an additional scalar field – also called phase field since it varies between the
phases zero and one – was then adapted to fracture mechanics by BOURDIN et al. [17].
An auxiliary field (phase field) was introduced which smears the fracture energy over the
volume of the solid.
The model by BOURDIN et al. [17] has been commonly adopted by others, for in-
stance AMOR et al. [3], BORDEN et al. [14], KUHN & MÜLLER [63], LANCIONI &
ROYER-CARFAGNI [65] and MIEHE et al. [77], to name just a few, with slight modifi-
cations of the length scale parameter ` and the convention whether d=0 or d=1 defines
the fully broken state. Recently, BORDEN et al. [16] proposed a higher order phase field
model for brittle fracture exploiting the higher continuity of splines.
An important assumption in the phase field model for brittle fracture is that the smeared
potential Π` with the smeared crack surface Γ` Γ-converges to the discrete potential Π

with the discrete crack surface Γ for a vanishing length scale parameter `. Notice that
Π` → Π for ` → 0 implies that Γ` → Γ for ` → 0. CHAMBOLLE [22] proved that this
is the case for continuous media. BELLETTINI & COSCIA [11] considered the discretised
version Π`,h of Π` and showed that Π`,h Γ-converges to Π for ` → 0 under the condi-
tion that h� `, h denoting the mesh size. Nevertheless, the mathematical consideration
in BELLETTINI & COSCIA [11] has been done for image segmentation and not for the
phase field approach to brittle fracture. It will be demonstrated in this section that in the
context of the phase field model for brittle fracture, Γ-convergence is not attained numer-

ically, i. e. Π`,h does not Γ-converge to Π for `→ 0 and h�`, see also MAY et al. [71].
After introducing the continuum formulation and Γ-convergence for the phase field model
for brittle fracture in the next section, the finite element formulation will be derived. Then,
the impact of different factors and parameters will be examined by means of some numer-
ical examples.

3.2.1 Continuum formulation

In the following, the model by BOURDIN et al. [17] is briefly outlined. The potential for
a solid with a discrete crack reads

Π =

∫

Ω

ψel dV +

∫

Γ

Gc dA, (3.8)

where the first term denotes the elastic energy in the bulk and the second term the fracture
energy which is created / dissipated upon crack propagation. The elastic energy density
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ψel can be expressed by HOOKE’s law

ψel =
1

2
λεel

iiε
el
jj + µεel

ijε
el
ij =

1

2
λεiiεjj + µεijεij (3.9)

as a function of the infinitesimal strain tensor

εij =
1

2
(ui,j + uj,i) , (3.10)

with λ and µ the LAMÉ constants. In Eq. (3.10), ui denotes the displacement. Notice
that εel

ij = εij in Eq. (3.9). Gc denotes the critical energy release rate in Eq. (3.8), i. e.
the amount of energy needed to create a unit area of fracture surface. Using Eqs. (3.5)
and (3.7), the fracture energy necessary to create a diffusive crack can be expressed by

∫

Γ

Gc dA =

∫

Ω

Gcγ` dV. (3.11)

Plugging the smeared fracture energy Eq. (3.11) into Eq. (3.8) requires the introduction
of a link between the elastic energy density ψel and the phase field variable d. This link
is inspired by damage models where a degradation function g(d) reduces the stiffness of
the bulk of the solid. Due to the smearing, the elastic energy density ψel associated to
the undamaged solid needs to be replaced by the energy density ψ which corresponds to
the damaged solid. It is split into two parts – a damaged part ψd on which a degradation
function g(d) acts, and an intact part ψi

ψ(εij, d) = g(d)ψd(εij) + ψi(εij). (3.12)

This split is motivated by the observation that the tensile strain components contribute to
the damage process that results in fracture, while the compression strain components do
not. Various splits of the energy density ψ have been investigated by AMOR et al. [3].
The degradation function g(d) in Eq. (3.12) has to fulfil the following properties

• g(0)=1 since for d=0 no damage occurs;

• g(1)=0 since for d=1 the damaged part ψd has to vanish;

• g′(0) 6=0 since the damage has to be initiated at the onset;

• g′(1)=0 since the energy must converge to a finite value for the fully broken state.

For the degradation function g(d), use has often been made of the quadratic function

g(d) = (1− d)2. (3.13)
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BORDEN [15] has introduced a cubic degradation function,

g(d) = s
(
(1− d)3 − (1− d)2

)
+ 3(1− d)2 − 2(1− d)3, (3.14)

with the additional parameter s. Eq. (3.14) results in force-displacement curves which
better reflect the behaviour of brittle materials, as less damage occurs before reaching the
peak load, see also Section 3.2.3.
Notice that the crack in Eq. (3.11) has been smeared on purely mathematical grounds,
whereas the introduction of the degradation function g(d) in Eq. (3.12) is inspired by a
phenomenological concept that is commonly used in damage mechanics.
Substituting Eqs. (3.11), (3.12) and (3.13) into Eq. (3.8) yields the potential Π` for a solid
with a smeared crack

Π` =

∫

Ω

(
(1− d)2ψd + ψi

)
dV +

∫

Ω

Gcγ` dV. (3.15)

Γ-convergence (with ψd =ψel and ψi =0) is then defined such that the potential Π` with
the smeared crack Γ` in Eq. (3.15) converges to the potential Π with the discrete crack Γ

in Eq. (3.8) when `→ 0, i. e.

Π`

∣∣
`→0

=

(∫

Ω

(1− d)2ψel dV +

∫

Ω

Gcγ` dV

) ∣∣∣
`→0

=

∫

Ω

ψel dV +

∫

Γ

Gc dA = Π.

(3.16)
According to CHAMBOLLE [22], the potential

Π`(u`, d) =

∫

Ω

(
(1− d)2 + η

)
ψel(u`) dV +

∫

Ω

Gcγ`(d) dV, (3.17)

with the stabilisation parameter η, Γ-converges for η → 0 and `→ 0 (η�`) to

Π(u) =

∫

Ω

ψel(u) dV +

∫

Γ

Gc dA (3.18)

if the global minimisers u` of Π` converge to the global minimisers u of Π. Furthermore,
the Γ-convergence result of BELLETTINI & COSCIA [11] reads in the mechanical context:
the discretised version Π`,h of Π` with

Π`,h(u`,h, dh) =

∫

Ω

(
(1− dh

)2
+ η)ψel(u`,h) dV +

∫

Ω

Gcγ`(dh) dV (3.19)

Γ-converges to Π for η → 0, `→ 0 and h→ 0 (η�`, h�`). In the numerical examples
in Section 3.2.3, η=0 similar to BORDEN et al. [14].
According to BOURDIN et al. [19], a correction factor must be applied to the critical
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energy release rate Gc when it is compared with the critical energy release rate of the
discretised solid Gc,h as follows

Gc,h =

(
1 +

h

4`

)
Gc, (3.20)

i. e. the critical energy release rate Gc is amplified by a factor 1+ h
4`

. Hence, when in-
vestigating Γ-convergence in Section 3.2.3, the smeared crack Γ`,h in Eq. (3.5) needs
to be compared with

(
1+ h

4`

)
Γ when the correction factor is taken into account, see

also BORDEN et al. [16] where this correction has been considered in numerical stud-
ies of Γ-convergence for second and fourth-order phase field models. In that study,
Γ-convergence was obtained numerically for a prescribed displacement field. This is
different from MAY et al. [71] where the entire displacement field was not prescribed.
In practical computations, the restriction h�` can be difficult to fulfil, especially
since the length scale parameter ` already needs to be small in order to resolve the
crack properly. In numerical simulations the weaker condition h<l is usually adopted:
AMOR et al. [3], BOURDIN [18], BOURDIN et al. [19], BORDEN et al. [14, 16],
DEL PIERO et al. [31], KUHN & MÜLLER [63], MIEHE et al. [76].
For a given equilibrium configuration the variation of the potential Π` with the smeared
crack Γ` in Eq. (3.15) is required to be zero

δΠ` =
∂Π`

∂εij
δεij +

∂Π`

∂d
δd+

∂Π`

∂d,i
δd,i = 0. (3.21)

Since δΠ`=0 must hold for any δεij , δd and δd,i, this leads to the following system of
equations

σij,i = 0, (3.22)
Gc
2`

(d− 4`2d,ii) +
∂g

∂d
H = 0 (3.23)

subject to the boundary conditions

σijnj = hi on ∂Ωh, ui = ūi on ∂Ωu, d,ini = 0 on ∂Ω, (3.24)

with ∂Ωh ∩ ∂Ωu=∅, ∂Ωh ∪ ∂Ωu=∂Ω, the prescribed surface traction h, the prescribed
displacement ū and the normal vector n on the boundary. The stress tensor σij in
Eq. (3.22) is defined as

σij =
∂ψ

∂εij
= g(d)

∂ψd

∂εij
+
∂ψi

∂εij
. (3.25)
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The formulation by MIEHE et al. [76] has been applied to Eq. (3.23). H describes the
history field

H = maxψd, (3.26)

which ensures irreversibility since cracks can only grow (ḋ≥0). Alternatively, in KUHN

& MÜLLER [63], irreversibility has been enforced by setting d=1 when d approaches
one. The term ∂g

∂d
H in Eq. (3.23) can be interpreted as the driving force which drives the

damage evolution and ensures that d→ 1 for ψd →∞.
Multiplying the strong forms of Eqs. (3.22) and (3.23) by a test function δuj and δd,
integrating over the domain Ω and applying integration by parts results with GAUSS’
theorem in the weak forms

∫

Ω

δui,jσij dV =

∫

∂Ωh

δuihi dA,
∫

Ω

Gc
2`

(
δdd+ 4`2δd,id,i

)
+ δd

∂g

∂d
H dV = 0.

(3.27)

3.2.2 Finite element formulation

Discretising the domain Ω into E elements,

Ω =
E⋃

e=1

Ωe, (3.28)

and approximating the field variables and their derivatives,

ue = Nuu, δue = Nuδu, εe = Buu, δεe = Buδu, (3.29)

de = NT
d d, δde = NT

d δd, de,i = Bdd, δde,i = Bdδd, (3.30)

with

ue =

[
ue1

ue2

]
, δue =

[
δue1

δue2

]
, εe =



εe11

εe22

2εe12


 , δεe =



δεe11

δεe22

2δεe12


 ,

de,i =

[
de,1

de,2

]
, δde,i =

[
δde,1

δde,2

] (3.31)
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and

Nu =

[
N1 0 N2 0 . . .

0 N1 0 N2 . . .

]
, Bu =



N1,1 0 N2,1 0 . . .

0 N1,2 0 N2,2 . . .

N1,2 N1,1 N2,2 N2,1 . . .


 ,

NT
d =

[
N1 N2 . . .

]
, Bd =

[
N1,1 N2,1 . . .

N1,2 N2,2 . . .

] (3.32)

results in the following matrix-vector equation for Eq. (3.27)

δuT
∫

Ω

BT
u (gCd + Ci)Buu dV

︸ ︷︷ ︸
f int
u (d,u)

−δuT
∫

Γ

NT
uh dA

︸ ︷︷ ︸
f ext
u

= 0, (3.33)

δdT
∫

Ω

Gc
2`

(
N dN

T
d + 4`2BT

dBd

)
d+N d

∂g

∂d
H dV

︸ ︷︷ ︸
f int
d (d,u)

= 0, (3.34)

where Cd corresponds to the damaged part of the elasticity matrix, and Ci to the intact
part of the elasticity matrix. f int

u (d,u) is the internal force vector corresponding to the
mechanical field problem and f int

d (d,u) is the internal force vector related to the phase
field. Eqs. (3.33) and (3.34) are required to hold for any δu and δd. Setting h = 0 and
taking into account nodal forces yields for Eq. (3.33)

f int
u (d,u)− λf̂ = 0, (3.35)

with f̂ a normalised external force vector, and λ a loading parameter. In order to trace the
equilibrium path, the arc-length control method from Chapter 2 is utilised. Denoting the
arc-length function by ϕ, the following system of equations must be solved

H(d,u, λ) =




f int

d
(d,u)

f int

u
(d,u)− λf̂
ϕ(u, λ)


 =



0

0

0


 . (3.36)

Linearisation of Eq. (3.36) yields the solution at iteration i+1 in the increment k+1



d

u

λ




i+1

k+1

=



d

u

λ




i

k+1

−K−1

T

∣∣∣∣
i

k+1

·




f int

d
(d,u)

f int

u
(d,u)− λf̂
ϕ(u, λ)




i

k+1

, (3.37)
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with the tangential stiffness matrix

K
T

(d,u, λ) =




∂f int

d
(d,u)

∂d

∂f int

d
(d,u)

∂u
0

∂f int

u
(d,u)

∂d

∂f int

u
(d,u)

∂u
−f̂

0T
∂ϕ(u, λ)

∂u

∂ϕ(u, λ)

∂λ




. (3.38)

3.2.3 Numerical examples

This section studies the performance of the phase field model for brittle fracture using
a one-dimensional bar, see also MAY et al. [71] and VIGNOLLET et al. [118]. The fol-
lowing factors are considered: mesh convergence study, varying length scale parameter `,
different degradation function g(d) and monolithic vs. staggered approach. Then, it will
be demonstrated that Γ-convergence is not attained numerically for the one-dimensional
bar. Subsequently, the impact of different boundary conditions on the phase field model
for brittle fracture is addressed. Only linear interpolation functions for displacement and
phase field will be considered in this section.

3.2.3.1 One-dimensional bar with reduced thickness in the middle under tension

Consider the one-dimensional bar depicted in Fig. 3.2.

λf̂

A
A

2
A

L
3

L
3

L
3

x

Fig. 3.2: Bar with a reduced thickness in the middle subject to the load λf̂ applied to the
right edge.

The bar has a reduced cross-section in the middle and the load λf̂ is applied to the right
edge. The parameters are E=10 MPa for the YOUNG’s modulus, Gc=0.1 N/mm for the
critical energy release rate, L=1 mm for the length of the bar, A=1 mm2 and `= L

20

for the length scale parameter. The quadratic degradation function g(d)=(1− d)2 acts
directly on the YOUNG’s modulus E since ψd =E and ψi =0.
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Mesh size h
The force-displacement curves for different mesh sizes h are depicted in Fig. 3.3. The
parameters for the arc-length control in Chapter 2 are ∆τF1 =0.1 N and a=1. Here and
in the following, circles denote the arc-length control based on the rate of internal energy
while triangles denote the arc-length control based on the rate of dissipated energy.
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75 Elements, h = 0.0133 mm
150 Elements, h = 0.0067 mm
300 Elements, h = 0.0033 mm

Fig. 3.3: Force-displacement curves for different mesh sizes h with `=0.05 mm,
∆τF1 =0.1 N and a=1.

Length scale parameter `
The impact of a varying length scale parameter ` on the force-displacement curve is shown
in Fig. 3.4 for a constant mesh of 150 elements, h=0.0067 mm. The rule of thumb `>h
is respected in order to accurately approximate the crack topology MIEHE et al. [77]. The
parameters for the arc-length control are ∆τF1 =0.1 N and a=1.

A decreasing length scale parameter ` results in a higher peak force. Furthermore, a
smaller length scale parameter ` results in a more pronounced snap-back behaviour. BOR-
DEN et al. [14] mentioned that the length scale parameter ` may be interpreted as a mate-
rial parameter since it influences the critical stress. This makes it difficult to decide how
` should be treated for the phase field model for brittle fracture. On the one hand, the
length scale parameter ` has been originally introduced in Section 3.1 as a mathematical
approximation of the crack, but on the other hand, numerical experiments show that it
should be treated as a material parameter.
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Fig. 3.4: Force-displacement curves for different length scale parameters ` and a con-
stant mesh consisting of 150 elements, mesh size is h=0.0067 mm; arc-length control
parameters are ∆τF1 =0.1 N and a=1.

Degradation function g(d)

It appears from Figs. 3.3 and 3.4 that the phase field model for brittle fracture does not
exhibit brittle behaviour. It can be observed that the force-displacement curves depart
early from linearly elastic behaviour since at the onset of loading, the driving force term
∂g
∂d
H in Eq. (3.23) starts to grow. Hence, the phase field variable d and the degradation

function g(d) start to grow as well and reduce the stiffness of the bar. Therefore, the cubic
degradation function in Eq. (3.14) was proposed by BORDEN [15]. Its impact is studied
next. The force-displacement curves for the quadratic and cubic degradation function g(d)

are shown in Fig. 3.5 for a constant length scale parameter `=0.05 mm and a constant
mesh size of 150 elements, so that the mesh size is h=0.0067 mm.

The arc-length parameters are ∆τF1 =0.1 N, a=1 for the quadratic case and ∆τF1 =0.1 N,
a=0.5 for the cubic case. It can be observed that the additional parameter s influences the
behaviour of the force-displacement curve. Furthermore, the cubic degradation function
results in a more linear behaviour at the onset of loading, and the snap-back behaviour is
more pronounced.

Monolithic vs. staggered approach
As a next step, the importance of a monolithic solver is investigated. In MIEHE et al. [77]
a staggered approach has been used. The staggered approach solves the system of equa-
tions in Eqs. (3.33) and (3.34) in an alternate scheme. It does not invoke an iteration loop
between both field problems in each increment. Instead, in each increment two steps are

29



3 Fracture models using phase field

0 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16
0

0.2

0.4

0.6

0.8

1.0

1.2

Displacement u in mm

Fo
rc

e
F

in
N

Quadratic Cubic s = 1 · 100
Cubic s = 1 · 10−1 Cubic s = 1 · 10−2

Fig. 3.5: Comparison of the quadratic and the cubic degradation function g(d) for differ-
ent parameters s, a constant mesh size of 150 elements, mesh size is h=0.0067 mm and
a constant length scale parameter `=0.05 mm; parameters for the arc-length control are
∆τF1 =0.1 N, a=1 for the quadratic case and ∆τF1 =0.1 N, a=0.5 for the cubic case.

performed. In a first step, the state of the displacement field ui is frozen and Eq. (3.34)
is solved for the phase field d. In the second step, the state of d is frozen and Eq. (3.33)
is solved for the displacement field ui. Fig. 3.6 shows that the staggered approach is not
able to capture the snap-back behaviour.

The staggered approach is robust in the sense that a solution is always obtained, but this
solution does not necessarily represent an equilibrium state – a converged equilibrium
solution can be obtained only with a monolithic scheme, or a staggered scheme with an
iteration loop in each increment between both field problems.

Γ-convergence
Next, Γ-convergence will be checked numerically by examining the numerical final crack
surface Γ`,h of the one-dimensional bar. For the simulation, Γ`,h can be obtained by
calculating the discretised version of Eq. (3.5),

Γ`,h =

∫

Ω

1

4`

(
d2
h + 4`2dh,x

2
)

dV, (3.39)

when max dh>0.99. The error ΓE is defined as follows

ΓE =
|Γ`,h − Γ|

Γ
. (3.40)
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Fig. 3.6: Comparison of the staggered and monolithic approach for the length scale
parameter `=0.05 mm and a constant mesh consisting of 150 elements, mesh size is
h=0.0067 mm; for the monolithic approach, the arc-length parameters are ∆τF1 =0.1 N
and a=1.

When the correction factor in BOURDIN et al. [19] is taken into account, the error ΓE is
computed with

ΓE =
|Γ`,h −

(
1 + h

4`

)
Γ|(

1 + h
4`

)
Γ

. (3.41)

The theoretical final crack surface for the bar in Fig. 3.2 is Γ=A/2, which is equal to the
cross section of the segment in the centre of the bar.
Fig. 3.7 gives the convergence study of the final crack surface Γ`,h when using the
quadratic degradation function g(d) in Eq. (3.13) for different values of the length scale
parameter `. Three different mesh sizes h have been used.

Fig. 3.7 shows that all results for Γ`,h give a poor approximation of the theoretical final
crack surface Γ since Eq. (3.40) yields for the error ΓE>0.1. Below a certain value of
the ratio `/h, a further decrease of the ratio `/h results in an increase of the error ΓE.
Fig. 3.8 shows that this also holds when the correction factor in Eq. (3.41) proposed by
BOURDIN et al. [19] is taken into account.

The minimum in Figs. 3.7 and 3.8 occurs for the same values of the internal length scale
(`=0.05 mm). Also, it seems that there is a range for `/h for each discretisation for which
ΓE becomes minimal. Surprisingly, the error ΓE does not decrease for a fixed length scale
parameter ` upon mesh refinement.
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Fig. 3.7: Convergence study for the final crack surface Γ`,h for a one-dimensional bar.
The squares correspond to `=0.05 mm.
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Fig. 3.8: Convergence study for the final crack surface Γ`,h for a one-dimensional bar
taking into account the correction factor in Eq. (3.41) proposed by BOURDIN et al. [19].
The squares correspond to `=0.05 mm.

Fig. 3.9 shows the evolution of the phase field variable d during the loading process for
the mesh with 600 elements.

The distribution seems to reasonably match the theoretical profile when d=1 is prescribed
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Fig. 3.9: Evolution of the phase field variable d at various stages in the loading process
(dashed black). The solid black curve represents the distribution for d when d=1 is
prescribed in the centre of the bar. The mesh size is h=1.67 · 10−3 mm for 600 elements
and the length scale parameter is ` = 0.00625 mm.

in the centre of the bar. However, the phase field variable d is larger than the optimal
profile along the entire length of the bar.
The considered convergence study in Figs. 3.7 and 3.8 for the numerical final crack length
Γ`,h indicates that Γ`,h does not converge to the discrete crack surface Γ for `→ 0. Hence,
it can be concluded that for phase field model for brittle fracture Γ-convergence is not
attained,

Π`,h

∣∣
`→0
6= Π since Γ`,h

∣∣
`→0
6= Γ. (3.42)

In view of the results for the one-dimensional bar in this section, the phase field vari-
able d should rather be interpreted as a damage variable than a variable that represents a
smeared crack since Γ-convergence does not manifest numerically. Moreover, the degra-
dation function g(d) is motivated from damage mechanics and the differential equation
in Eq. (3.23) should be seen as an equation which describes the evolution of the damage
variable d.

3.2.3.2 Impact of the boundary conditions

Next, it will be demonstrated that the phase field model for brittle fracture can give dif-
ferent results depending on how the boundary conditions are imposed. Consider the plate
in Fig. 3.10 subject to a shear load. Notice that a shear load is obtained only under the
assumption of small deformations.
The bottom edge is fixed in the x-direction. All edges are fixed in the y-direction
– also the notch in order to prevent penetration. The material parameters are:
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Fig. 3.10: Plate under shear (for small deformations), dimensions in mm; the initial notch
is modelled as a discrete crack.

YOUNG’s modulus E=210 MPa, POISSON’s ratio ν=0.3 and critical energy release rate
Gc=2.7 · 10−3 N/mm. Plane strain is assumed. The arc-length parameters for the path
following technique in Chapter 2 are ∆τF1 =0.1 N and a=0.1. In order to account for
damage only in tension, the strain tensor ε will be decomposed into a positive and nega-
tive part as by MIEHE et al. [76],

ε = ε+ + ε−, (3.43)

with
ε+
ij = P+

ijklεkl, ε−ij = P−ijklεkl, (3.44)

where P+
ijkl and P−ijkl are two projection tensors. Due to the decomposition, ψd contains

contributions that stem from the positive / tensile strains

ψd =
1

2
λε+

iiε
+
jj + µε+

ijε
+
ij , (3.45)

and ψi contains those from the negative / compressive strains

ψi =
1

2
λε−iiε

−
jj + µε−ijε

−
ij . (3.46)

The notch is first modelled in a discrete sense, by applying the boundary conditions shown
in Fig. 3.10. The load λf̂ is applied at the top edge in the positive x-direction. The length
scale parameter is taken as `=0.01 mm and the mesh size h=0.01 mm for a mesh with
100×100 elements. The force-displacement curve and the evolution of the phase field
variable d are depicted in Fig. 3.11 and Fig. 3.12, respectively.
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Fig. 3.11: Force-displacement curve for the plate under shear (assuming small deforma-
tions) when the initial notch is modelled as a discrete crack; the mesh consists of 100×100
elements, so that the mesh size is h=0.01 mm; the length scale parameter is `=0.01 mm.
Squares correspond to the phase field distributions for d in Fig. 3.12.
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Fig. 3.12: Propagation of the variable d for the plate under shear (assuming small defor-
mations) when the initial notch is modelled as a discrete crack; plots correspond to the
squares in Fig. 3.11.

Next, the initial notch is introduced by prescribing d=1, cf. Fig. 3.13.

With this boundary condition, the force-displacement curve in Fig. 3.14 is obtained. The
corresponding patterns for the propagation of the phase field variable d are depicted in
Fig. 3.15, and are very different from those in Fig. 3.12 since the crack propagates along
the left top edge.

The boundary condition d=1 penalises only the positive / tensile part of the strain tensor
ε since in Eq. (3.45) ψd =ψd(ε+

ij). Assuming ψd =ψel and ψi =0 in the left part of the
plate yields different results, see the resulting force-displacement curve and the crack path
in Figs. 3.16 and 3.17 which are in better agreement with the results for the discrete notch.

However, a secondary crack starts to propagate at a certain stage in the loading process.
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Fig. 3.13: Plate under shear (for small deformations), dimensions in mm; the initial notch
is modelled with d=1.
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Fig. 3.14: Force-displacement curve for the plate under shear (assuming small deforma-
tions) when the initial notch modelled with d=1; the mesh consists of 100×100 elements,
so that the mesh size is h=0.01 mm; the length scale parameter is `=0.01 mm. Squares
correspond to the phase field distributions for d in Fig. 3.15.

Moreover, it is not clear where ψd =ψel and ψi =0 should be prescribed since the crack is
smeared and also extends into the right part of the plate.
A further calculation was carried out by prescribing d=0 along the top left edge as sug-
gested by AMOR et al. [3]. The resulting force-displacement curve and crack path are
again different from the case where the notch is modelled in a discrete sense, see Figs. 3.18
and 3.19.

As in the previous case, a secondary crack emerges. Apparently, the phase field model for

36



3 Fracture models using phase field

(a) (b) (c)

0.25

0.5

0.75

d

0

1

Fig. 3.15: Propagation of the variable d for the plate under shear (assuming small defor-
mations) when the initial notch is modelled with d=1; plots correspond to the squares in
Fig. 3.14.
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Fig. 3.16: Force-displacement curve for the plate under shear (assuming small deforma-
tions) when for the left half of the plate ψd =ψel is set. The mesh consists of 100×100
elements, so that the mesh size is h=0.01 mm; the length scale parameter is taken as
`=0.01 mm. Squares correspond to the phase field distributions for d in Fig. 3.17.

brittle fracture is sensitive to the applied boundary conditions.

3.3 Phase field model for cohesive fracture

A phase field model for cohesive fracture was introduced by VERHOOSEL & DE

BORST [117]. Apart from the phase field variable d, the introduction of a smeared jump
vi is necessary. Furthermore, the model requires an appropriate choice of the degree of
the basis functions, i. e. linear for phase field d and smeared jump vi, and cubic for dis-
placement field ui. Nevertheless, in the two-dimensional case, stress oscillations were
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Fig. 3.17: Propagation of the variable d for the plate under shear (assuming small defor-
mations); plots correspond to the squares in Fig. 3.16.
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Fig. 3.18: Force-displacement curve for the plate under shear (assuming small deforma-
tions) when for the top left edge of the plate d=0 is prescribed. The mesh consists of
100×100 elements, so that the mesh size is h=0.01 mm; the length scale parameter is
`=0.01 mm. Squares correspond to the phase field distributions for d in Fig. 3.19.
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Fig. 3.19: Propagation of the variable d for the plate under shear (assuming small defor-
mations). The plots correspond to the squares in Fig. 3.18.
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observed for unstructured meshes by VIGNOLLET et al. [118]. This issues was then fur-
ther pursued in MAY et al. [71] utilising a two-dimensional patch test for an unstructured
mesh.
In this section, the model and its limitations are considered. After introducing the con-
tinuum formulation and deriving the finite element formulation, numerical examples are
studied.

3.3.1 Continuum formulation

The following equation needs to be solved for the phase field problem

d− 4`2d,ii = 0 (3.47)

subject to the boundary conditions

d = 1 on Γ, d,ini = 0 on ∂Ω. (3.48)

This is different from the phase field model for brittle fracture in Section 3.2 where
the partial differential equations for mechanical and phase field problem are linked, see
Eqs. (3.22) and (3.23). Here, the phase field model for cohesive fracture is linked to the
mechanical field problem via a set of nodes on the discrete crack surface Γ for which d=1

is prescribed. Prescribing d= 1 at GAUSS points leads to d> 1 at the nodes as observed
by VIGNOLLET et al. [118].
In the following, the link between mechanical and phase field problem for the cohesive
case will be derived.
While for brittle fracture models the critical energy release rate Gc is instantly dissipated,
for cohesive models the energy release rate G is released gradually and governed by the
function

G = G([[ud]]). (3.49)

The energy release rate G depends on the crack opening in the local coordinate system
[[ud]] at the interface and is equal to the critical energy release rate Gc at full crack opening,
cf. Fig. 3.20(a).

The energy release rate G in Eq. (3.49) depends on the local crack opening in the normal
and shear direction. In Fig. 3.20(a), it is assumed that G depends only on the crack open-
ing in the normal direction, i. e. only mode I is considered.
The crack mouth opening [[ud]] in the local coordinate system is obtained by a transfor-

39



3 Fracture models using phase field

[[un]]

G([[un]])

0

Gc

(a)

[[un]]

tn([[un]])
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Fig. 3.20: (a) Energy release rate G([[un]]) and (b) normal traction tn([[un]]) in the cohesive
zone for the one-dimensional case. The shaded grey area is equivalent to the critical
energy release rate Gc.

mation of the global crack mouth opening [[u]] as follows

[[ud]] = Q[[u]], (3.50)

with the orthogonal rotation matrix Q, see also Section 6.2 for more details. The global
traction t in the cohesive zone is evaluated with the transformation

t = QT td, (3.51)

where td is the cohesive traction in the local coordinate system. Both, td and [[ud]], consist
of a normal and a shear component

td =

[
tn

ts

]
, [[ud]] =

[
[[un]]

[[us]]

]
. (3.52)

The local traction td in the cohesive zone is computed via

tdi([[udj]]) =
∂G([[udj]])

∂[[udi]]
, (3.53)

see Fig. 3.20(b).
In the phase field model for cohesive fracture, the crack is again smeared over the solid
by employing Eqs. (3.5) and (3.7)

∫

Γ

G([[ud]]) dA =

∫

Ω

G([[ud]])γ` dV. (3.54)

40



3 Fracture models using phase field

The smearing in Eq. (3.54) must not affect the term G([[ud]]) in the direction normal to the
crack since ∫

Γ

B dA =

∫

Ω

Bγ` dV (3.55)

must hold for any quantity B. The energy release rate G([[ud]]) and the local crack mouth
opening [[ud]] exist in the discrete case only at the crack surface Γ. In the smeared case,
G([[ud]]) and [[ud]] exist in the entire volume Ω while the value G([[ud]]) itself must not
change and has to remain constant in the direction normal to the crack. This can be
achieved by replacing the local discrete crack mouth opening [[ud]] with an auxiliary field
– the smeared local crack mouth opening vd which exists in the entire volume Ω – and
enforcing each component of the auxiliary field to remain constant in the direction normal
to the crack nd,

∂vd
∂nd

= vd,jndj = (vdi),j ndj =
∂vdi
∂xj

ndj = 0. (3.56)

The smeared local crack mouth opening vd is obtained from the smeared global crack
mouth opening v from the transformation (cf. Eq. (3.50))

vd = Qv. (3.57)

vd being constant in the direction normal to the crack implies that G(vd) is constant as
well. The final expression for Eq. (3.54) reads

∫

Γ

G([[ud]]) dA =

∫

Ω

G(vd)γ` dV subject to ∂vd

∂nd
= 0. (3.58)

For the brittle case (see Section 3.2), Gc is dissipated instantly and does not depend on
the crack mouth opening [[ud]]. Therefore, no auxiliary field vd can be introduced for the
phase field model for brittle fracture.
The phase field model for cohesive fracture assumes a split of the strain tensor into an
elastic component and a component that accounts for damage

εij = εel
ij + εd

ij . (3.59)

Hence, the elastic energy density is now expressed as

ψel = ψ =
1

2
λεel

iiε
el
jj + µεel

ijε
el
ij . (3.60)

Notice the differences between the phase field model for brittle and cohesive fracture.
For the phase field model for brittle fracture, ψel 6=ψ and εel

ij =εij (Eqs. (3.9) and (3.12)),
whereas for the phase field model for cohesive fracture ψel =ψ and εel

ij 6=εij (Eqs. (3.59)
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and (3.60)). The stress tensor σij is computed with

σij =
∂ψel

∂εel
ij

=
∂ψel

∂εkl

∂εkl
∂εel

ij

=
∂ψel

∂εkl

∂(εel
kl + εd

kl)

∂εel
ij

=
∂ψel

∂εkl
δkiδlj =

∂ψel

∂εij
, (3.61)

or alternatively
σij = Cijkl(εkl − εd

kl) = Cijklε
el
kl. (3.62)

The tensor εd
ij that accounts for damage can be derived from thermodynamical consider-

ations. The second law of thermodynamics gives (see JIRÁSEK & BAŽANT [54, Chap-
ter 23])

Ḋ = σij ε̇ij − ψ̇ = σij(ε̇
el
ij + ε̇d

ij)−
∂ψ

∂εel
ij

ε̇el
ij = σij(ε̇

el
ij + ε̇d

ij)− σij ε̇el
ij = σij ε̇

d
ij ≥ 0. (3.63)

The dissipation Ḋ for the smeared form in Eq. (3.58) can be evaluated explicitly in the
local coordinate system with

Ḋ =
d

dt

(
γ`(d)G(vdi)

)
= G ∂γ`

∂d
ḋ+ γ`

∂G(vdj)

∂vdi
v̇di = G ∂γ`

∂d
ḋ+ γ`tdiv̇di. (3.64)

The first term in Eq. (3.64) corresponds to the energy that is dissipated when advancing the
cohesive zone by ḋ. Assuming that the smeared local jump vdi is initially zero in the newly
created cohesive zone, the first term does not contribute to dissipation of energy since
G(0)=0, Fig. 3.20(a). The second term in Eq. (3.64) represents the energy dissipation as
the result of further crack opening by v̇di. Under these assumptions, the dissipation Ḋ in
Eq. (3.64) reads with the global quantities t and v exploiting Eqs. (3.51) and (3.57)

Ḋ = γ`t
T
d v̇d = γ`(Qt)

TQv̇ = γ`t
TQTQv̇ = γ`t

T v̇ = γ`tiv̇i. (3.65)

Equating Eq. (3.65) and Eq. (3.63),

γ`tiv̇i = σijγ`sym(v̇indj) = σij ε̇
d
ij , (3.66)

yields the contribution of the strain tensor εd
ij accounting for damage

εd
ij = γ`sym(vindj). (3.67)

It has been taken into account in Eq. (3.66) that the traction ti in the smeared crack zone
Γ` is also distributed over the solid and therefore ti=σijndj . The potential of the phase
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field model for cohesive fracture now reads

Π` =

∫

Ω

ψel + G(vi)γ` +
α

2

∥∥∥∥
∂vi
∂xj

ndj

∥∥∥∥
2

dV, (3.68)

where the last term has been introduced in order to enforce the smeared jump v to re-
main constant in the direction normal to the crack, cf. Eq. (3.56). Eq. (3.68) is written in
terms of the global smeared jump v. The local smeared jump vd can be evaluated util-
ising Eq. (3.57). Furthermore, v being constant in the normal direction implies that vd is
constant in the normal direction. The term γ` in Eq. (3.68) is computed from the solution
of the phase field in Eq. (3.47).
Minimising Π` yields

δΠ` =
∂Π`

∂εij
δεij +

∂Π`

∂vi
δvi +

∂Π`

∂
(
∂vi
∂xj
ndj

) δ

(
∂vi
∂xj

ndj

)

=
∂ψel

∂εij
δεij +

∂ψel

∂vi
δvi + γ`

∂G(vj)

∂vi
δvi +

∂Π`

∂
(
∂vi
∂xj
ndj

) δ

(
∂vi
∂xj

ndj

)
= 0, (3.69)

and the following equations result

σij,i = 0 in Ω, (3.70)

γ`[ti(vj)− σijndj] = α
∂2vi

∂xj∂xk
ndjndk in Γ` (3.71)

subject to the boundary conditions

σijnj = hi on ∂Ωh, ui = ūi on ∂Ωu,
∂vi
∂xj

ndj = 0 on ∂Γ`, (3.72)

while Γ` denotes the domain where the phase field variable d is larger than a small toler-
ance that truncates the support of the smeared crack. h is the prescribed surface traction,
ū the prescribed displacement and n the normal vector on the boundary. The boundary
∂Ω is decomposed into the parts ∂Ωh and ∂Ωu with ∂Ωh ∩ ∂Ωu=∅, ∂Ωh ∪ ∂Ωu=∂Ω.
Multiplying the strong forms of Eqs. (3.47), (3.70) and (3.71) by a test function δd, δuj
and δvi, integrating over the domain Ω and Γ`, applying integration by parts and GAUSS’
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theorem results in the following weak forms

∫

Ω

δdd+ 4`2δd,id,i dV = 0,
∫

Ω

δui,jσij dV =

∫

∂Ωh

δuihi dA,
∫

Γ`

γ`(δviti − δviσijndj) + α
∂vi
∂xj

nj
∂vi
∂xk

nk dV = 0.

(3.73)

3.3.2 Finite element formulation

Discretisation of the domain Ω into E elements,

Ω =
E⋃

e=1

Ωe, (3.74)

and approximation of the phase field d, displacement field ui and smeared global jump
field vi and their derivatives,

de = NT
d d, δde = NT

d δd, de,i = Bdd, δde,i = Bdδd, (3.75)

ue = Nuu, δue = Nuδu, εe = Buu, δεe = Buδu, (3.76)

ve = Nvv, δve = Nvδv, [sym(v ⊗ nd)]e = Bvv, (3.77)

[sym(δv ⊗ nd)]e = Bvδv,
[
∂v

∂nd

]e
= Gvv,

[
δ
∂v

∂nd

]e
= Gvδv, (3.78)

with

ue =

[
ue1

ue2

]
, δue =

[
δue1

δue2

]
, εe =



εe11

εe22

2εe12


 , δεe =



δεe11

δεe22

2δεe12


 ,

de,i =

[
de,1

de,2

]
, δde,i =

[
δde,1

δde,2

]
, ve =

[
ve1

ve2

]
, δve =

[
δve1

δve2

]
,

[sym(v ⊗ nd)]e =




v1nd1

v2nd2

v1nd2 + v2nd1


 , [sym(v ⊗ nd)]e =




δv1nd1

δv2nd2

δv1nd2 + δv2nd1


 ,

[
∂v

∂nd

]e
=

[
v1,1nd1 + v1,2nd2

v2,1nd1 + v2,2nd2

]
,
[
δ
∂v

∂nd

]e
=

[
δv1,1nd1 + δv1,2nd2

δv2,1nd1 + δv2,2nd2

]

(3.79)
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and

Nu =

[
N1 0 N2 0 . . .

0 N1 0 N2 . . .

]
, Bu =



N1,1 0 N2,1 0 . . .

0 N1,2 0 N2,2 . . .

N1,2 N1,1 N2,2 N2,1 . . .


 ,

NT
d =

[
N1 N2 . . .

]
, Bd =

[
N1,1 N2,1 . . .

N1,2 N2,2 . . .

]
,

Nv =

[
N1 0 N2 0 . . .

0 N1 0 N2 . . .

]
, Bv =



nd1N1 0 nd1N2 0 . . .

0 nd2N1 0 nd2N2 . . .

nd2N1 nd1N1 nd2N2 nd1N2 . . .


 ,

Gv =

[
nd1N1,1 + nd2N1,2 0 nd1N2,1 + nd2N2,2 0 . . .

0 nd1N1,1 + nd2N1,2 0 nd1N2,1 + nd2N2,2 . . .

]

(3.80)
results in the following matrix-vector equation for Eq. (3.73)

δdT
∫

Ω

(
N dN

T
d + 4`2BT

dBd

)
d dV

︸ ︷︷ ︸
f int

d
(d)

= 0, (3.81)

δuT
∫

Ω

BT
u (CBuu− γ`CBvv) dV

︸ ︷︷ ︸
f int
u (v,u)

−δuT
∫

Ω

NT
uh dA

︸ ︷︷ ︸
f ext
u

= 0, (3.82)

δvT
∫

Ω

−γ`BT
v (CBuu− γ`CBvv) + γ`N

T
v t+ αGT

vGvv dV

︸ ︷︷ ︸
f int
v (v,u)

= 0, (3.83)

with the elasticity matrix C. After solving Eq. (3.81) for arbitrary δd, γ` can be computed
for Eqs. (3.82) and (3.83). In the numerical cases studies of Section 3.3.3 it is sufficient
to perform a single loading step under displacement control. Hence, no arc-length control
is required. Considering that the system of Eqs. (3.82) and (3.83) must hold for any δu
and δv, and that the external forces vanish, h=0, yields

H(v,u) =

[
f int

v
(v,u)

f int

u
(v,u)

]
= 0. (3.84)

Linearisation of Eq. (3.84) yields the solution for iteration i+1

[
v

u

]i+1

=

[
v

u

]i
−K−1

T

∣∣∣∣
i

·
[
f int

v
(v,u)

f int

v
(v,u)

]i
, (3.85)
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with the tangential stiffness matrix

K
T

(v,u) =




∂f int

v
(v,u)

∂v

∂f int

v
(v,u)

∂u

∂f int

u
(v,u)

∂v

∂f int

u
(v,u)

∂u




. (3.86)

3.3.3 Numerical examples

This section shows that an appropriate selection of the polynomial degree of the basis
functions for displacement, smeared jump and phase field removes stress oscillations in
the one-dimensional case. It will also be demonstrated that stress oscillations still occur
for a two-dimensional unstructured mesh. Two possible causes for the stress oscillations
are given.

3.3.3.1 One-dimensional bar

Consider the one-dimensional bar with an elastic interface in Fig. 3.21.

ūx

L
2

L
2

G([[un]]) =
1
2
k[[un]]

2

x

Fig. 3.21: Bar with an elastic interface G= 1
2
k[[un]]= 1

2
kv2

n in the centre; with Eq. (3.53)
the cohesive traction becomes tn=k[[un]]=kvn.

First, the bar is modelled with one-dimensional elements. The YOUNG’s modulus is
E=10 MPa, the stiffness of the interface k=10 MPa/mm, the length L=1 mm and the
length scale parameter `=L/10. The penalty parameter is taken as α=1 MPa. d=1 is
prescribed at the elastic interface, i. e. at the node in the centre of the bar. The bar consists
of ten elements, i. e. five elements in each segment, so that the mesh size is h=0.1 mm.
The prescribed displacement at the right edge is ūx=0.1 mm.
Application of linear basis functions for the displacement ux, the smeared jump vx and
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the phase field d results in stress oscillations, Fig. 3.22(a), as was also observed by VER-
HOOSEL & DE BORST [117].
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Fig. 3.22: Stress distribution along the bar in Fig. 3.21 for (a) linear basis functions for ux,
vx, d and (b) cubic basis functions for ux and linear basis functions for vx, d; the dashed
lines mark element boundaries.

In one dimension, Eq. (3.59) can be rewritten using Eq. (3.5) as follows

εel
xx = εxx − εd

xx =
dux
dx
− γ`vx =

dux
dx
− 1

4`
(d2 + 4`2d,x

2)vx. (3.87)

Since vx is enforced to be constant, the strain εd
xx that accounts for damage has a quadratic

distribution when linear basis functions are used for d. Therefore, the total strain εxx must
have a quadratic distribution as well. This can be achieved when cubic basis functions are
used for the displacement ux. Fig. 3.22(b) shows that this is a successful remedy.

3.3.3.2 One-dimensional bar in a two-dimensional setting

Keeping the interpolation of the displacement of the third order while those for the
phase field and the crack opening remain linear, the bar is now reconsidered in a
two-dimensional setting with a POISSON’s ratio ν=0 and by prescribing that all shear
components of the smeared jump are zero, vs=vy=0, see Fig. 3.23.

A structured mesh with 10×10 elements is used. The width is c=1 mm and d=1 is
prescribed at all nodes for which x=L/2. The other parameters are the same as in the
purely one-dimensional case. Along the line y=0.51 mm the same results are obtained
for the stress distribution σxx as in case of the purely one-dimensional study, see Fig. 3.24.
No stress oscillations are observed.

As a next step, some nodes are slightly displaced, cf. Fig. 3.25(a). Now, stress oscillations
result along the line y=0.51 mm, see Fig. 3.25(b).

This is in agreement with the results obtained in VIGNOLLET et al. [118], where the use of
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Fig. 3.23: Bar from Fig. 3.21 in a two-dimensional setting with ν=0 and all vs=vy=0.
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Fig. 3.24: For the structured mesh in (a) no stress oscillations are observed along the line
y=0.51 mm in (b). Dashed lines correspond to element boundaries.

unstructured meshes for a peel test also resulted in stress oscillations. The present simula-
tion can be considered as a patch test since a homogeneous stress state should be obtained
when prescribing a uniform traction or displacement at the boundary, irrespective of the
mesh lay-out. Unfortunately, this is not obtained for the present three-field formulation of
the phase field model for cohesive fracture.

3.3.3.3 Causes for the stress oscillations

Next, two possible causes are given for the stress oscillations.

Contradiction in the continuum formulation
Consider the total strain εxx from Eq. (3.59) in a one-dimensional format

εxx =
dux
dx

= εel
xx + εd

xx =
duel

x

dx
+ γ`vx, (3.88)
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Fig. 3.25: For the unstructured mesh in (a) stress oscillations can be observed along the
line y=0.51 mm in (b). Dashed lines mark element boundaries.

x
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ṽx(x)

Fig. 3.26: Non-constant jump ṽx(x).

with the elastic displacement uel
x . Integrating Eq. (3.88) with a constant smeared jump in

the normal direction, ∂vx
∂x

=0, yields

ux(x) = uel
x (x) + vx

∫ x

−∞
γ`(x̃) dx̃

︸ ︷︷ ︸
ṽx(x)

. (3.89)

The integral in Eq. (3.89) can be interpreted as a smeared HEAVISIDE step function H
which is used in partition of unity approaches

ux(x) = uel
x (x) +Hvx(x). (3.90)
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3 Fracture models using phase field

It has been derived in Eq. (3.58) that the smeared jump field vx needs to be constant in
the direction normal to the crack in order to have a constant G(vx) in the normal crack
direction. However, when the second term ṽx in Eq. (3.89) is interpreted as the jump for
the smeared model, it is observed that this term is not constant in the normal direction to
the crack, see also Fig. 3.26. Hence, there are two different interpretations for the smeared
jump in the phase field model for cohesive fracture, vx and ṽx. Both interpretations cannot
hold simultaneously, and the phase field model for cohesive fracture seems to embody a
contradiction.

Different polynomial orders
Another explanation for the oscillations may be the different orders of polynomials for
the following terms. The distribution for the stress

σxx = Eεel
xx (3.91)

is quadratic when cubic basis functions are used for the displacement field ui and linear
basis functions for the smeared global jump vi and the phase field d in Eq. (3.87). Since
the cohesive traction tn in the normal direction is constant,

tn = k[[un]] = kvn, (3.92)

due to a constant vn, it may be that the different orders of approximation for tn (constant)
and for σxx (quadratic) in Eq. (3.71) contribute to stress oscillations.
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4 T-splines

NURBS are commonly used in CAD. Since NURBS have a tensor product structure,
refinement occurs globally. Furthermore, modelling watertight surfaces using NURBS
can be difficult, if not impossible for certain cases. Also, several NURBS-patches join
only with C0

A-continuity. T-splines, which can be seen as a generalisation of NURBS,
were introduced by SEDERBERG et al. [99, 100] and do not suffer from the limitations
that are inherent in NURBS. Local refinement is now possible and watertight surfaces can
be created. Moreover, T-splines allow for the reduction of superfluous control points and a
T-spline consists of a single patch. Use of T-spline blending functions as basis functions in
a finite element context has been proposed by BAZILEVS et al. [9] and DÖRFEL et al. [36].
SEDERBERG et al. [100] used the term blending instead of basis function since it was not
clear at that point whether T-spline blending functions are always linearly independent.
Later, BUFFA et al. [20] demonstrated that the T-spline blending functions can be linearly
dependent.
Using the BÉZIER extraction procedure introduced by SCOTT et al. [94], each blending
function can be defined in a normalised fashion by a linear combination of BERNSTEIN

polynomials. It was demonstrated by WANG et al. [120] that, if the BÉZIER extraction
operator over all elements for all anchors (i. e. the global BÉZIER extraction operator) is
linearly independent then the blending functions for all anchors are linearly independent
as well. The BÉZIER extraction operator further allows to check the partition of unity and
to refine T-splines locally, see MAY et al. [72].
Before discussing T-splines, the next section addresses the different definitions of the term
continuity in design and analysis. Afterwards, a brief overview on the construction of the
BÉZIER extraction operator for T-splines is given. Subsequently, linear independence
and the partition of unity property of T-spline meshes are examined utilising the BÉZIER

extraction operator. Then, a refinement method is proposed for T-spline meshes by adding
anchors while the BÉZIER extraction operator is used for the determination of the nesting
behaviour between two T-spline meshes. The capabilities of the method are demonstrated
for T-spline meshes of an even and of an odd polynomial degree. Thereafter, hierarchical
refinement for standard, semi-standard and non-standard T-spline meshes is introduced.
Further, unstructured T-spline meshes of quadratic and cubic degree will be considered.
It will be demonstrated how the BÉZIER extraction operator can be modified in order to
obtain T-spline meshes that fulfil the partition of unity and are C1

A-continuous around an
extraordinary point. Finally, analysis-suitable T-splines are discussed.
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4 T-splines

4.1 Continuity for design and analysis

In this section, the term continuity is elaborated from a design and from an analysis per-
spective.

4.1.1 Parametric continuity C
Consider the two curve segments S1(t1) and S2(t2) depending on the parametric coordi-
nates t1 and t2

S1(t1) = (1− t1)P 1 + t1P 2 0 ≤ t1 ≤ 1,

S2(t2) = (1− t2)P 2 + t2P 3 0 ≤ t2 ≤ 1,
(4.1)

with the coordinates of the control points in the physical domain x = (x, y)

P 1 = (1, 1), P 2 = (2, 2), P 3 = (3, 3). (4.2)

Both curves S1(t1) and S2(t2) are plotted in Fig. 4.1(a).
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Curve S1(t1) Curve S2(t2)

(a)
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Curve S̃1(t̃1) Curve S̃2(t̃2)

(b)

Fig. 4.1: Parametric curves in physical domain x=(x, y), (a) S1(t1) and S2(t2) are para-
metric C1-continuous at P 2; (b) S̃1(t̃1) and S̃2(t̃2) are geometric G1-continuous at their
joint P 2. The triangles mark isoparametric distances of ∆t1 =∆t2 =∆t̃1 =∆t̃2 =0.1.

Evaluating the first derivative with respect to the parametric coordinate yields for both
curves

∂S1(t1)

∂t1

∣∣∣∣
t1=1

=
∂S2(t2)

∂t2

∣∣∣∣
t2=0

= (1, 1). (4.3)

Both curves have the same first derivative at their joint; the parametric continuity of the
first derivative in Eq. (4.3) will be denoted as C1.
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4 T-splines

4.1.2 Geometric continuity G

As a next example, consider the two curve segments S̃1(t̃1) and S̃2(t̃2) depending on the
parametric coordinates t̃1 and t̃2 with

S̃1(t̃1) = (1− t̃1)P 1 + t̃1P 2 0 ≤ t̃1 ≤ 1,

S̃2(t̃2) = (1− 2t̃2)P 2 + 2t̃2P 3 0 ≤ t̃2 ≤
1

2
.

(4.4)

The first derivative with respect to the parametric coordinate reads for both curves

(1, 1) =
∂S̃1(t̃1)

∂t̃1

∣∣∣∣
t̃1=1

6= ∂S̃2(t̃2)

∂t̃2

∣∣∣∣
t̃2=0

= (2, 2). (4.5)

Hence, both curves are not C1-continuous. However, Fig. 4.1(b) reveals that both curves
still have a continuous geometry in the physical domain x. In order to account for this,
the term geometric continuity was introduced by BARSKY & DEROSE [6,7]. If two curve
segments satisfy the condition

∂S̃1(t̃1)

∂t̃1

∣∣∣∣
t̃1=1

= c
∂S̃2(t̃2)

∂t̃2

∣∣∣∣
t̃2=0

, (4.6)

with a scalar c > 0, then they are called geometric continuous with respect to the first
derivative. This continuity is denoted with G1. The step from Eq. (4.4) to Eq. (4.1) –
replacing t̃2 with t2

2
– is called reparameterisation. PETERS [84] pointed out that the

definitions for parametric and geometric continuity in Eqs. (4.3) and (4.6) may not be
clear for overlapping control points.

4.1.3 Continuity CA for analysis

Now, the term continuity is considered from an analysis perspective. Eq. (4.1) is
equivalent to the parameterisation

S̄(t) = N1(t)P 1 +N2(t)P 2 +N3(t)P 3, (4.7)

with 0≤ t≤2 and the LAGRANGIAN basis functions (see Fig. 4.2)

N1(t) =

{
1− t for 0 ≤ t ≤ 1

0 for 1 ≤ t ≤ 2
, N2(t) =

{
t for 0 ≤ t ≤ 1

2− t for 1 ≤ t ≤ 2
,

N3(t) =

{
0 for 0 ≤ t ≤ 1

t− 1 for 1 ≤ t ≤ 2
.

(4.8)
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Fig. 4.2: C0
A-continuous linear LAGRANGIAN basis functions.

The LAGRANGIAN basis functions in Eq. (4.8) have a continuity of C0
A. In order to dis-

tinguish between the parametric continuity C of the curve and the continuity CA of the
basis functions, the subscript A (for analysis) was added. It follows that the continuity
which is required for analysis needs to be distinguished from the parametric or geometric
continuity which is interesting from a designer’s point of view.

4.1.4 Geometric continuous basis functions

GROISSER & PETERS [46] showed that Gk-continuous basis functions are CkA-continuous.
This will be illustrated for the case (G1, C1

A) in one dimension. Consider the four basis
functions Ni




N1

N2

N3

N4




=




1 0 0 0 0 0

0 1 1
2

1
2

0 0

0 0 1
2

1
2

1 0

0 0 0 0 0 1







B1

B2

B3

B4

B5

B6




, (4.9)

with

B1(ξ1) = 1
4
(1− ξ1)2

B2(ξ1) = 1
2
(1− ξ2

1)

B3(ξ1) = 1
4
(1 + ξ1)2




− 1 ≤ ξ1 ≤ 1,

B4(ξ2) = 1
16

(2− ξ2)2

B5(ξ2) = 1
8
(4− ξ2

2)

B6(ξ2) = 1
16

(2 + ξ2)2




− 2 ≤ ξ2 ≤ 2.

(4.10)

The matrix in Eq. (4.9) contains the BÉZIER coefficients for the knot vector
Ξ={0, 0, 0, 1

2
, 1, 1, 1}. The following physical coordinate Pi=xi corresponds to each
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4 T-splines

basis function
P1 = 0, P2 = 1, P3 = 2, P4 = 3. (4.11)

The derivatives Ni,ξ1 and Ni,ξ2 with respect to the parameter coordinates ξ1 and ξ2 are
plotted in Fig. 4.3(a) over the physical domain x for all four basis functions.
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Fig. 4.3: (a) The derivatives (N2,ξ1 , N2,ξ2) and (N3,ξ1 , N3,ξ2) are discontinuous while
(b) the derivatives N2,x and N3,x are continuous: G1-continuous basis functions are also
C1

A-continuous.

It can be observed that (N2,ξ1 , N2,ξ2) and (N3,ξ1 , N3,ξ2) are discontinuous. However, since
the G1-continuity condition

∂Ni

∂ξ1

∣∣∣∣
ξ1=1

= 2
∂Ni

∂ξ2

∣∣∣∣
ξ2=−2

(4.12)

holds for all four basis function, they have to be C1
A-continuous: Fig. 4.3(b) shows

the derivatives Ni,x of all four basis functions with respect to the physical coordinate
x. All four derivatives Ni,x are now continuous. Thus, the four basis function Ni are
C1

A-continuous. The property that G1-continuous basis functions are C1
A-continuous is es-

pecially useful for connecting surfaces at an extraordinary point such that the basis func-
tions possess the required C1

A-continuity (see Section 4.7).
In sum, basis functions that fulfil a G1-constraint are C1

A-continuous and the geometry is
G1-continuous for any set of control points. If the basis functions are only C0

A-continuous
the geometry can still be G1-continuous by an appropriate choice of the location of the
coordinates in the physical domain. Such a (G1, C0

A)-construction can also be used for
solving fourth order partial differential equations when a rigid link between neighbour-
ing control points along the C0

A-continuity is introduced, see the bending strip method by
KIENDL et al. [58]. This rigid link transfers the G1-continuity from the coordinates to the
displacement degrees of freedom.
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4 T-splines

4.2 Defining T-splines

This section provides a brief overview of T-splines. For a more elaborate demonstration
of T-splines in a finite element environment reference is made to BAZILEVS et al. [9].
Index notation is adopted throughout with respect to a CARTESIAN frame.

4.2.1 Definition of the domains

In Fig. 4.4, the physical domain (x`), the parent domain (ξ̃`), the index domain (u`),
the parameter domain (ξu` ), and the sub-parameter domain (ξ`) are shown for T-splines.
Each element e can be mapped from the physical domain x` onto the parent domain
ξ̃` ∈ [−1, 1], where GAUSSIAN integration can be carried out. The sub-parameter domain
ξ` is obtained when only the unique values of the parameter domain ξu` are considered.

ξ̃2

ξ̃1

Element in parent domain

−1 1

−1

1

Physical domain

Index domain
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ξu2

7

6

5

4

3

2

1
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2 1 1

0
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0 1
2 1
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1
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Element boundaries
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Continuity reduction lines

Edges
Elements

Anchors
Continuity reduction lines

Edges
Elements

Element corners
Element boundaries

Fig. 4.4: Illustration of the physical domain (x`), the parent domain (ξ̃`), the index do-
main (u`), the parameter domain (ξu` ), and the sub-parameter domain (ξ`) for a quadratic
T-spline mesh.
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4 T-splines

4.2.2 Definition of the local knot vector

The index domain in Fig. 4.4 represents a tiling of a region in R2 while all edges of each
rectangle have a positive integer value. T-spline meshes of odd and of even polynomial
order have to be treated differently when defining the local knot vectors from the para-
meter domain. The local knot vectors are necessary for defining the blending functions,
see Section 4.2.3.
For a T-spline mesh of even degree p` in both directions, a so-called anchor – to which
a single multivariate blending function is attached – is placed in the centre of each rect-
angle, see the quadratic T-spline mesh in Fig. 4.5(a). A local knot vector for a T-spline
mesh of even degree is obtained from the parameter domain by – starting at the anchor –
marching horizontally (both left and right) and vertically (both up and down), until a
number of p`/2+1 edges are crossed in all four directions, thus giving a vector length
of p`+2. Every time an edge is crossed, the corresponding parameter value is added to
the local knot vector. If fewer than p`/2+1 edges are crossed, and there are no more
edges left to be crossed, the parameter value that has been added last is repeated until
p`/2+1 parameter values are added in this direction. For the blue anchor A sitting at
(3.5, 5.5) in the index domain in Fig. 4.5(a), the local knot vectors are ΞA

1 ={0, 1
2
, 1, 1}

and ΞA
2 ={1

3
, 2

3
, 1, 1}, respectively.

For a T-spline mesh of odd degree p` in both directions, anchors are located at the vertices
of the rectangles, see the cubic T-spline mesh in Fig. 4.5(b). In order to obtain the local
knot vector of an anchor, the parameter ξu` at the vertex is added to the local knot vectors
for each direction. Afterwards, marching (starting at the location of the anchor) horizon-
tally to the right and left, and vertically up and down, until (p`+1)/2 edges have been
crossed in all four directions, yields again a local knot vector of length p`+2. If there
are no more edges to be crossed, then the value of the last added parameter is repeated
until (p`+1)/2 values are added in this direction to the local knot vector. Consider, for
instance, the blue anchor B sitting at (2, 2) in the index domain for the cubic T-spline
mesh in Fig. 4.5(b). The local knot vectors are ΞB

1 ={0, 0, 0, 1, 1} and ΞB
2 ={0, 0, 0, 1

3
, 2

3
}.

4.2.3 Construction of the blending functions

Consider a T-spline mesh with n anchors. Each anchor i is equipped with a single mul-
tivariate blending function N i. Each multivariate blending function N i is defined in the
sub-parameter domain ξ` as follows

N i(ξ) =
d∏

`=1

N i
`(ξ`), (4.13)
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Fig. 4.5: Determination of the local knot vectors for a T-spline mesh of (a) even
(quadratic, p`=2) and (b) odd (cubic, p`=3) degree: every time an edge is crossed in
all four directions, the corresponding parameter value is added to the local knot vector.
(a) The local knot vectors for the blue anchor A are ΞA

1 ={ξ2
1 , ξ

3
1 , ξ

4
1 , ξ

5
1}={0, 1

2
, 1, 1} and

ΞA
2 ={ξ3

2 , ξ
5
2 , ξ

6
2 , ξ

7
2}={1

3
, 2

3
, 1, 1}, (b) The local knot vectors for the blue anchor B are

ΞB
1 ={ξ1

1 , ξ
1
1 , ξ

2
1 , ξ

4
1 , ξ

5
1}={0, 0, 0, 1, 1} and ΞB

2 ={ξ1
2 , ξ

1
2 , ξ

2
2 , ξ

3
2 , ξ

5
2}={0, 0, 0, 1

3
, 2

3
}.

with the univariate blending functions N i
` for each anchor i and the dimension d. The

univariate blending function N i
` of order p` for anchor i is given by

N i
`(ξ`) = N i

` 1,p`
(ξ`), (4.14)

where the N i
` a,p`

(with a=1 the single blending function for anchor i is obtained) can be
defined with the local knot vector Ξi

`={ξi` 1, ξ
i
` 2, . . . , ξ

i
` p`+2} of anchor i for p`=0 with

N i
` a,0(ξ`) =





1 if ξi` a ≤ ξ` < ξi` a+1

0 otherwise
. (4.15)

For p` ≥ 1 they are given by the COX - DE BOOR [25, 27] recursion formula

N i
` a,p`

(ξ`) =
ξ` − ξi` a

ξi` a+p`
− ξi` a

N i
` a,p`−1(ξ`) +

ξi` a+p`+1 − ξ`
ξi` a+p`+1 − ξi` a+1

N i
` a+1,p`−1(ξ`). (4.16)

Herein, only cases will be considered with an equal polynomial order p` in the ξ1-direction
and the ξ2-direction.

4.2.4 Element definition

The red anchor A with index coordinates (3.5, 5.5) for the quadratic T-spline mesh in
Fig. 4.6(a) has the local knot vectors ΞA

1 ={ξ2
1 , ξ

3
1 , ξ

4
1 , ξ

5
1} and ΞA

2 ={ξ3
2 , ξ

5
2 , ξ

6
2 , ξ

7
2}. An-
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chor A has a non-zero blending function in the green parameter domain [ξ2
1 , ξ

5
1 ]×[ξ3

2 , ξ
7
2 ].

Within this domain, the net of red dashed lines depicted in Fig. 4.6(a) is obtained upon
drawing all the values contained in the local knot vectors ΞA

` . Along those lines, the
blending function of anchor A has a reduced continuity, which is indicated by a multi-
plicity larger than zero in the local knot vectors. If one of these lines is not already an
edge, this line is added to the T-spline mesh, see Fig. 4.6(b). The added line is called a
continuity reduction line. For T-splines, elements are defined by the union of all edges
and continuity reduction lines with non-zero parametric area in the parameter space ξu` ,
see also Fig. 4.5(a).
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Fig. 4.6: Continuity reduction lines: consider the red anchor A with index coordinates
(3.5, 5.5). (a) This anchor has a support (non-zero blending functions) in the green
shaded domain [ξ2

1 , ξ
5
1 ]×[ξ3

2 , ξ
7
2 ]. Drawing all the values contained in the local knot vec-

tors ΞA
1 ={ξ2

1 , ξ
3
1 , ξ

4
1 , ξ

5
1} and ΞA

2 ={ξ3
2 , ξ

5
2 , ξ

6
2 , ξ

7
2} gives the net of dashed red lines. (b) If

a red dashed line in (a) is not already an edge then it is added to the T-spline mesh.

4.3 BÉZIER extraction for T-splines

For details on the BÉZIER extraction method for T-splines, reference is made to
SCOTT et al. [94]. Here, a succinct summary on the calculation of the BÉZIER extraction
operator is given and the method is illustrated by means of an example.
Suppose that the domain is divided into e=1 . . . E elements. Then, the blending function
N i
e of anchor i over element e can be written as a linear combination of the BERNSTEIN

polynomials
N i
e(ξ) = Ci

e

T
Be(ξ), (4.17)
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where the (p`+1)2 bivariate BERNSTEIN polynomials Be for element e in the
two-dimensional case are expressed as follows

Be(ξ) =




B1
1 e(ξ1)B1

2 e(ξ2)
...

Bp`+1
1 e (ξ1)B1

2 e(ξ2)
...

Bp`+1
1 e (ξ1)Bp`+1

2 e (ξ2)




. (4.18)

The bivariate BERNSTEIN polynomials Be are equal for each element e in the parent
domain ξ̃`. A univariate blending functionN i

` e of anchor i over element e can be expressed
in terms of the univariate BERNSTEIN basis Ba

` e with

N i
` e(ξ`) =

[
Ci 1
` e . . . Ci p`+1

` e

]



B1
` e(ξ`)

...
Bp`+1
` e (ξ`)


 , (4.19)

where Ci a
` e are the coefficients for anchor i and element e corresponding to Ba

` e. The
a=1 . . . p`+1 univariate BERNSTEIN polynomials Ba

` of order p` are defined over the
interval ξ̃` ∈ [−1, 1] by

Ba
` (ξ̃`) =

1

2p`

(
p`

a− 1

)
(1− ξ̃`)p`−(a−1)(1 + ξ̃`)

a−1. (4.20)

The univariate BERNSTEIN polynomials Ba
` e are equal in the parent domain ξ̃` for each

element e in each direction. In Eq. (4.17),Ci
e is the BÉZIER extraction operator of anchor

i with support over element e

Ci
e =




Ci 1
1 eC

i 1
2 e

...
Ci p`+1

1 e Ci 1
2 e

...
Ci p`+1

1 e Ci p`+1
2 e




. (4.21)

In order to illustrate the notation, consider again the anchor A at (3.5, 5.5) in Fig. 4.5(a).
The local knot vectors are ΞA

1 ={0, 1
2
, 1, 1} and ΞA

2 ={1
3
, 2

3
, 1, 1} for the ξ1-direction and

the ξ2-direction, respectively. Next, the BÉZIER extraction operator over the element b
in Fig. 4.5(a) with range [3, 4]×[4, 5] in the index domain is evaluated for anchor A. The
range for the element b is [ξ3

1 , ξ
4
1 ]×[ξ4

2 , ξ
5
2 ] in the parameter domain and [1

2
, 1]×[1

3
, 2

3
] in
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the sub-parameter domain. In Fig. 4.7, the blending functions NA
` are shown for each

direction in the sub-parameter domain ξ`. The part of the blending functions NA
` which

has a support over element b with range [1
2
, 1]×[1

3
, 2

3
] in the sub-parameter domain ξ` –

i. e. NA
` b – has been plotted with a solid black line. Expressing the blending functions NA

` b

of anchor A with support over element b for each direction ξ` in terms of the BERNSTEIN

basis Ba
` b of element b, gives for the BÉZIER extraction operator in each direction

NA
1 b =

[
CA 1

1 b CA 2
1 b CA 3

1 b

]


B1

1 b

B2
1 b

B3
1 b


 =

[
1
2

1 0
]


B1

1 b

B2
1 b

B3
1 b


 , (4.22)

NA
2 b =

[
CA 1

2 b CA 2
2 b CA 3

2 b

]


B1

2 b

B2
2 b

B3
2 b


 =

[
0 0 1

2

]


B1

2 b

B2
2 b

B3
2 b


 . (4.23)
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Fig. 4.7: Illustration of the blending functions NA
` for anchor A and the BERNSTEIN

polynomials Ba
` b for element b in Fig. 4.5(a) over the sub-parameter domain in (a) the

ξ1-direction and (b) the ξ2-direction.

Now, using Eq. (4.21) and combining the unidirectional BÉZIER extraction operators de-
fined in Eqs. (4.22) and (4.23), the BÉZIER extraction operator CA

b for the anchor A with
support over element b, see Fig. 4.5(a), reads

CA
b =

[
0 0 0 0 0 0 1

4
1
2

0
]T

. (4.24)

If, for an anchor i, this procedure is applied to all elements E, then the BÉZIER extraction
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operator for anchor i is obtained

Ci =




Ci
1

...
Ci
E


 . (4.25)

The BÉZIER extraction operator for all n anchors is then given by

C =




C1T

...
CnT


 . (4.26)

C is called global BÉZIER extraction operator. Hence, the vector with all n blending
functions

N (ξ) =




N1(ξ)
...

Nn(ξ)


 (4.27)

can be written as
N (ξ) = CB(ξ), (4.28)

whereB is the vector which contains the elemental BERNSTEIN polynomialsBe

B(ξ) =




B1(ξ)
...

BE(ξ)


 . (4.29)

A single blending function N i can be expressed as

N i(ξ) = CiTB(ξ). (4.30)

The blending functionsN e with support in element e are determined by

N e(ξ) = CeBe(ξ), (4.31)

with the elemental BÉZIER extraction operator Ce.

4.4 Classification of T-splines

In this section, T-spline meshes are classified according to the linear dependencies exhib-
ited by their blending functions. The partition of unity property is also investigated. The
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classification methods in this section can be applied to T-spline meshes of arbitrary de-
gree, T-spline meshes with extraordinary points and three-dimensional T-spline meshes:
only the BÉZIER extraction operator is required.

4.4.1 Classification of T-splines according to the type of linear

dependence

In the following, the BÉZIER extraction operator is used to gather meshes into three cate-
gories based on the type of linear dependence of their blending functions:

• globally linearly independent,

• locally linearly independent with a non-square matrix Ce,

• locally linearly independent with a square matrix Ce.

4.4.1.1 Global linear independence

A T-spline mesh with n anchors has globally linearly independent blending functions if
and only if the solution for

n∑

i=1

αiN i(ξ) = 0 (4.32)

is αi=0 for i=1 . . . n. Recall, that each blending function N i of anchor i can be ex-
pressed using the BÉZIER extraction operator. Substituting Eq. (4.30) into Eq. (4.32)
leads to

n∑

i=1

αiCiTB(ξ) = 0. (4.33)

Since the BERNSTEIN polynomials in B are linearly independent, Eq. (4.33) can be re-
placed by

n∑

i=1

αiCiT = 0T , (4.34)

which is equivalent to

[
C1 . . . Cn

]



α1

...
αn


 =




0
...
0


 . (4.35)

Thus, using Eq. (4.26), Eq. (4.35) can be rewritten as

CTα = 0. (4.36)
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Since a T-spline mesh has globally linearly independent blending functions N i when the
only solution for Eq. (4.36) is αi=0 for i=1 . . . n, it follows directly from rank inspection
of the global BÉZIER extraction operator C in Eq. (4.36) whether the blending functions
N i of a T-spline mesh are globally linearly independent, cf. WANG et al. [120]. If the
global BÉZIER extraction operator C has full row rank, then the rank of C is equal to the
number of anchors n and consequently, the blending functions N i are globally linearly
independent. In sum, the condition for global linear independence is

rank(C) = n. (4.37)

The size of the global BÉZIER extraction operator is

size(C) = n×
(
E ·

d∏

`=1

p` + 1

)
. (4.38)

If a T-spline mesh is globally linearly dependent, GAUSSIAN elimination can transform
Eq. (4.36) into a characteristic shape – the row echelon form – and the dependencies
between anchors can be detected from the transformed system, see Fig. 4.8.
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(a) Globally linearly dependent cubic T-spline
mesh from BUFFA et al. [20], transforming
Eq. (4.36) into row echelon form yields the fol-
lowing linear dependencies between the anchors
A, B and C: −3NA(ξ) + 3NB(ξ) +NC(ξ) = 0.

1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

6

7

8

9

0 0 0 1
3

1
3

1
3

2
3 1 1 1

0

0

0

1
2

1
2

1
2

1

1

1

u1

u2

ξu1

ξu2

D
E F

Anchors
Continuity reduction lines

Edges
Elements

(b) Globally linearly dependent quartic T-spline
mesh, transforming Eq. (4.36) into row ech-
elon form yields the following linear depen-
dencies between the anchors D, E and F:
−3ND(ξ) + 2NE(ξ) +NF(ξ) = 0.

Fig. 4.8: Globally linearly dependent T-spline meshes (a) of cubic and (b) of quartic
polynomial degree.

A T-spline mesh with globally linearly dependent blending functions cannot be used for
analysis since in a finite element context, this results in a system of equations that cannot
be solved.
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4.4.1.2 Local linear independence

Repeating the procedure of the previous section at the elemental level, the condition for
local linear independence is

rank(Ce) = ne for e = 1 . . . E, (4.39)

with the elemental BÉZIER extraction operator Ce and the number of anchors ne with
support in element e. When Eq. (4.39) holds, the size of Ce is

size(Ce) = ne ×
(

d∏

`=1

p` + 1

)
. (4.40)

4.4.1.3 Local linear independence with a square matrix Ce

A subset of locally linearly independent T-spline meshes (i. e. when Eq. (4.39) holds) can
be defined when the following additional property is valid for each element e

rank(Ce) =
d∏

`=1

p` + 1 = ne for e = 1 . . . E. (4.41)

When Eq. (4.41) holds, the size of Ce is

size(Ce) =

(
d∏

`=1

p` + 1

)
×
(

d∏

`=1

p` + 1

)
. (4.42)

Eq. (4.41) implies Eq. (4.39). Also, Eq. (4.39) implies Eq. (4.37) – local linear indepen-
dence inherently results in global linear independence.
If a T-spline mesh is locally linearly dependent, then the non-zero coefficients αe are
obtained analogously to the global case by transforming

CT
eαe = 0 (4.43)

into row echelon form. In Fig. 4.9, examples are given for a locally linearly dependent
T-spline mesh, a T-spline mesh for which Eq. (4.39) holds and a T-spline mesh for which
Eq. (4.41) holds.

4.4.2 Partition of unity property for T-splines

This section addresses the partition of unity property of the blending functions N i and
of the rational blending functions Ri, respectively. It will be elaborated how T-spline
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(a) Locally linearly dependent T-spline mesh, ten
anchors (blue) have a support in element b (dashed
green); transforming Eq. (4.43) into row echelon
form yields the dependencies in element b be-
tween anchors G and H: 6NG(ξ)−NH(ξ) = 0.
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(b) Locally linearly independent T-spline mesh;
rank(Ce)=ne for element c; in element c (dashed
green) are only eight anchors (blue) with a sup-
port and therefore Ce is not a square matrix for
element c.
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(c) Locally linearly independent T-spline mesh;

rank(Ce)=
d∏

`=1

p`+1 for e=1 . . . E.

Fig. 4.9: Local dependencies in a quadratic T-spline mesh.

meshes can be classified as standard, semi-standard and non-standard using the BÉZIER

extraction operator. It will also be shown that an affine transformation exists only when
the partition of unity property is satisfied. However, the patch test is not automatically
satisfied if an affine transformation exists, see the example utilising POWELL–SABIN B-
splines in Section 5.2.3.
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4.4.2.1 Partition of unity property of the rational blending functions Ri

The multivariate rational T-spline blending function for an anchor i can be constructed as

Ri(ξ) =
wiN i(ξ)
n∑
j=1

wjN j(ξ)
, (4.44)

with the weight wi associated to anchor i. In view of Eq. (4.44), the rational blending
functions Ri always form a partition of unity (all Ri sum to one).

4.4.2.2 Partition of unity property of the blending functions N i

SEDERBERG et al. [100] classified T-spline meshes according to the partition of unity
property of the blending functions N i,

n∑

i=1

βiN i(ξ) = 1, (4.45)

into

• Standard T-spline meshes: all βi = 1,

• Semi-standard T-spline meshes: some βi 6= 1,

• Non-standard T-spline meshes: no solution for βi.

Only for standard T-spline meshes the blending functions N i and the rational blending
functions Ri satisfy the partition of unity property.

4.4.2.3 Partition of unity property of the blending functions N i using the BÉZIER

extraction operator

Next, it will be shown how the global BÉZIER extraction operator can be used to deter-
mine the partition of unity property of the blending functions N i. Rewriting Eq. (4.45)
using Eq. (4.30) yields

n∑

i=1

βiCiTB(ξ) = 1. (4.46)

Substituting Eqs. (4.25) and (4.29) into Eq. (4.46) and elaboration gives

(
β1C1

1

T
+ . . .+ βnCn

1
T
)

︸ ︷︷ ︸
γT

1

B1(ξ) + . . .+
(
β1C1

E

T
+ . . .+ βnCn

E
T
)

︸ ︷︷ ︸
γT
E

BE(ξ) = 1.

(4.47)
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The BERNSTEIN polynomials Be in Eq. (4.47) form a partition of unity if and only if
γ
e
=1 for each element e. This statement can be expressed in a matrix-vector format as




β1C1
1 + . . .+ βnCn

1
...

β1C1
E + . . .+ βnCn

E


 =




1
...
1


 , (4.48)

which is equivalent to

[
C1 . . . Cn

]



β1

...
βn


 = 1. (4.49)

Exploiting the global BÉZIER extraction operator C in Eq. (4.26) yields

CTβ = 1. (4.50)

The row echelon form of Eq. (4.50) then provides the means to assess whether a T-spline
mesh is standard, semi-standard or non-standard.
Figs. 4.10 and 4.11 show a set of T-spline meshes of quadratic and cubic degree and
their classification of linear dependence and of the partition of unity property according
to the previous definitions using the BÉZIER extraction operator. As can be observed
from Figs. 4.10 and 4.11, changing the knot intervals gives a different classification for
the T-spline mesh – (a), (c), (e) are standard T-spline meshes whereas (b), (d) and (f) are
non-standard or semi-standard T-spline meshes.

4.4.2.4 Affine transformation requires partition of unity

Any T-spline surface T in the physical domain (x`) can be expressed by the mapping from
the sub-parameter (ξ`) domain as follows

T (ξ) =
n∑

i=1

Ri(ξ)P i, (4.51)

where P i=(xi1, x
i
2)T are the control points associated to anchor i. Applying a transfor-

mation to the control points P i of the form

P i
T = AP i + b, (4.52)

with the transformation matrix A, the displacement vector b, and the control points P i
T

after transformation, results in an affine transformation since the rational blending func-
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(a) Standard, rank(Ce)=
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(b) Non-standard, rank(C)=n.
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(c) Standard, rank(Ce)=
d∏

`=1

p`+1 for

e=1 . . . E.
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(d) Non-standard, rank(Ce)=ne for e=1 . . . E.
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(e) Standard, rank(Ce)=
d∏

`=1

p`+1 for

e=1 . . . E.
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(f) Semi-standard, rank(C)=n.

Fig. 4.10: Classification of quadratic T-spline meshes according to the level of linear
independence and the partition of unity property. (a), (c) and (e) are standard T-spline
meshes, changing the knot intervals results in non-standard or semi-standard T-spline
meshes.
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(a) Standard, rank(Ce)=
d∏

`=1

p`+1 for

e=1 . . . E.
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(b) Non-standard, rank(C)=n.
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(c) Standard, rank(Ce)=
d∏

`=1

p`+1 for

e=1 . . . E.
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(d) Non-standard, rank(Ce)=ne for e=1 . . . E.
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(e) Standard, rank(Ce)=
d∏

`=1

p`+1 for

e=1 . . . E.
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(f) Semi-standard, rank(C)=n.

Fig. 4.11: Classification of cubic T-spline meshes according to the level of linear inde-
pendence and the partition of unity property. (a), (c) and (e) are standard T-spline meshes,
changing the knot intervals results in non-standard or semi-standard T-spline meshes.
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tions Ri in Eq. (4.51) form a partition of unity.
However, defining the T-spline in Eq. (4.51) with the blending functions N i instead of the
rational blending functions Ri yields an affine transformation only for standard T-spline
meshes. For semi-standard and non-standard T-spline meshes, the blending functions N i

do not possess the partition of unity property, see also Fig. 4.12 with a rigid body motion
applied to the control points of the anchors.

Initial
physical mesh

Transformed
physical mesh

Control points
Element boundaries

(a) Rational blending functions Ri.

Initial
physical mesh

Transformed
physical mesh

Control points
Element boundaries

(b) Blending functions N i.

Fig. 4.12: Applying a rigid body motion to the control points of the anchors results in an
affine transformation when the partition of unity property is fulfilled. (a) An affine trans-
formation for the semi-standard T-spline mesh in Fig. 4.11(f) is obtained for the rational
blending functions Ri; (b) using the blending functions N i instead of Ri in Eq. (4.51)
gives no affine transformation – the element boundaries are different – since the N i do
not form a partition of unity for semi-standard meshes.

4.5 Local refinement of T-splines by adding anchors

It will be demonstrated in this section how standard, semi-standard and non-standard
T-spline meshes of even and odd polynomial degree can be refined locally by adding an-
chors using information from the BÉZIER extraction operator. This refinement procedure
is applicable only to partition of meshes without extraordinary points. The local refine-
ment algorithm ensures that Ce is a square matrix for each element. This then also allows
for hierarchical refinement, see Section 4.6.
A requirement for the refinement algorithm is that the initial and the refined T-spline mesh
are nested – this condition will be defined in the following section, together with a method
to fulfil it using the BÉZIER extraction operator. Also, it will be shown how the location
of the control points in the refined T-spline mesh can be obtained. Afterwards, the algo-
rithm for the local refinement of T-splines will be explained by means of some examples:
after demonstrating the refinement of standard T-splines (Section 4.5.4, Appendix B.1.1),
it will be shown that also non-standard T-spline meshes can be refined locally by adding
anchors (Appendix B.1.2).
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Standard T-spline meshes do not necessarily have a square matrix Ce for each element
and global partition of unity does not imply local linear independence – this is not cor-
rectly addressed by MAY et al. [72]. For instance, unstructured T-spline meshes with
extraordinary points (see Section 4.7) can be standard and locally linearly dependent.
Furthermore, unstructured T-spline meshes that are standard can have a BÉZIER extrac-
tion operator that is not a square matrix for elements in the one-ring neighbourhood of an
extraordinary point.

4.5.1 Computation of the refinement matrix and nesting behaviour

A refinement matrix M of size n×nR gives the relation between the blending functions
NR of a refined mesh with nR anchors and the blending functions N of an initial mesh
which has n anchors

N (ξ) = M NR(ξ). (4.53)

Expressing the blending functions on both sides using the BERNSTEIN polynomials,
Eq. (4.28), results in

C BR(ξ) = M CRBR(ξ), (4.54)

while the blending functions N on the initial mesh must be defined in terms of the
elements of the refined mesh with the BERNSTEIN polynomials BR. The linear inde-
pendence of the BERNSTEIN polynomialsBR in Eq. (4.54) gives

C = M CR. (4.55)

The coefficients of a row of the refinement matrix M can be evaluated as follows. Ex-
panding Eq. (4.55) using Eq. (4.26) yields




C1T

...
CnT


 =




M 1T

...
MnT







C1
R

T

...
CnR
R

T


 . (4.56)

Applying the transpose to both sides results in

[
C1 . . . Cn

]
=
[
C1
R . . . CnR

R

] [
M 1 . . . Mn

]
, (4.57)

which allows to determine the rows M iT for i=1 . . . n of the refinement matrix M by
transforming the system

Ci = CR
TM i for i = 1 . . . n (4.58)
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into a row echelon form. In the case that there is no solution for M i of anchor i in
Eq. (4.58), the initial and the refined T-spline mesh are not nested, which means that it is
not possible to represent all blending functions N of the initial T-spline mesh as a linear
combination of the blending functionsNR of the refined T-spline mesh. One can resolve
this as will be explained in Section 4.5.4 (quadratic case, p`=2) and Appendix B.1.1
(cubic case, p`=3).
When nestedness is ensured and the initial mesh is standard, the refined T-spline mesh
can be only a standard or semi-standard T-spline mesh: knowing that the initial T-spline
mesh is standard and satisfies the partition of unity property in Eq. (4.45) (with all β=1)
and using the rowsM iT of the refinement matrix M from Eq. (4.58) results in

1 =
n∑

i=1

βiN i(ξ) =
n∑

i=1

βiM iTNR(ξ) =

nR∑

j=1

βjRN
j
R(ξ), (4.59)

where the coefficients βR are computed from

βR = MTβ. (4.60)

From Eq. (4.60), it can be concluded that there always exists a solution for the coeffi-
cients βR when nestedness is ensured (M exists) and when the initial mesh is standard.
Therefore, the refined T-spline mesh can be only a standard or semi-standard T-spline.

4.5.2 Determination of the coordinates for the anchors in the refined

T-spline mesh

In this section, it is assumed that the initial and the refined T-spline mesh are nested. It
will be demonstrated how the coordinates and weights of the anchors in a refined T-spline
mesh can be determined. The weighted (non-rational) surface of Eq. (4.51) reads (see
PIEGL & TILLER [86, Chapter 4])

T w(ξ) =
n∑

i=1

N i(ξ)P i
w, (4.61)

with the weighted control points

P i
w = (wixi1, w

ixi2, w
i)T . (4.62)
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The refined and the initial weighted curves – T wR and T w, respectively – are required to
represent the same geometry

T wR(ξ) = T w(ξ). (4.63)

Inserting Eq. (4.61) into the left- and right-hand side of Eq. (4.63) yields

nR∑

j=1

N j
R(ξ)P j

wR =
n∑

i=1

N i(ξ)P i
w. (4.64)

Using the BÉZIER extraction operator subsequently gives

nR∑

j=1

P j
wRC

j
R

T
BR(ξ) =

n∑

i=1

P i
wC

iTBR(ξ), (4.65)

or, since the BERNSTEIN polynomialsBR are linearly independent,

nR∑

j=1

P j
wRC

j
R

T
=

n∑

i=1

P i
wC

iT . (4.66)

Elaborating Eq. (4.66) results in

[
P 1
wR . . . P nR

wR

]



C1
R

T

...
CnR
R

T


 =

[
P 1
w . . . P n

w

]



C1T

...
CnT


 , (4.67)

or in the global form
C
R

TP
wR

= CTP
w

, (4.68)

with the matrices

P
wR

=




P 1
wR

T

...
P nR
wR

T


 , P

w
=




P 1
w

T

...
P n
w
T


 . (4.69)

Plugging Eq. (4.55) into Eq. (4.68) leads to

C
R

TP
wR

= C
R

TMTP
w

. (4.70)

Hence, the weighted control points P
wR

for the refined mesh follow from

P
wR

= MTP
w

. (4.71)
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4.5.3 The algorithm for local refinement of standard T-splines

The local refinement algorithm (see also Algorithm 4.1) for standard T-splines proceeds
as follows: after inserting new anchors into the T-spline mesh (refining), it is checked
whether each element has a BÉZIER extraction operator Ce that is a square matrix. If this
is not the case, Eq. (4.43) is transformed into row echelon form, and linear dependencies
can be detected and removed. Once the BÉZIER extraction operator is a square matrix in
each element, each row of the refinement matrix M in Eq. (4.58) is evaluated. Should
the blending functions of some anchors of the initial mesh not be nested in the refined
mesh, the mesh needs to be modified accordingly. Finally, when nestedness is satisfied,
Eq. (4.50) is assessed whether β=1 holds. If not, then the refined mesh is semi-standard
according to Eq. (4.60) and anchors are added to the mesh within the support of anchors
for which βi 6=1. Otherwise, the initial and the refined mesh are nested standard T-spline
meshes.

// Start with a standard T-spline mesh
// Number of refinement steps: N
for i = 1 : N do

RefinementSuccessful = 0;
while RefinementSuccessful = 0 do

// Check whether BÉZIER extraction operator is a square matrix in each element:

if size(Ce) 6=
(

d∏
`=1

p` + 1

)
×
(

d∏
`=1

p` + 1

)
for e = 1 . . . E then

// add additional anchors by inspecting the BÉZIER extraction operator in Eq. (4.43):
// (a) ensure that Ce is a square matrix
// (b) remove linear dependencies

else
// Check with Eq. (4.58) whether the initial and the refined mesh are nested:
if Refinement matrix M cannot be computed then

// add additional anchors by assessing the BÉZIER extraction operators of the initial
and the refined mesh: localise, which anchors are not nested in Eq. (4.58)

else
// Check whether T-spline mesh is standard by assessing Eq. (4.50):
if β 6= 1 then

// mesh is semi-standard according to Eq. (4.60)
// add anchors to the mesh within the support of the anchors i for which βi 6= 1

else
// Compute the weighted control points PwR of the refined mesh using
Eq. (4.71)
RefinementSuccessful = 1;

end

end

end

end

end

Algorithm 4.1: Local refinement algorithm based on the insertion of new anchors
for standard T-spline meshes.
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4.5.4 Local refinement of standard T-splines of even degree by adding

anchors

This section explains how standard T-spline meshes of even degree can be refined using
the BÉZIER extraction operator. In order to be able to implement the methods described
in the following, the local knot vectors for each anchor are required in the index (u`)
and sub-parameter (ξ`) domain – it is not sufficient to have only access to the BÉZIER

extraction operator.

4.5.4.1 Example 1: Ensuring that Ce is a square matrix and nestedness

Initial refinement
Consider the quadratic standard T-spline mesh in the index domain and the physical do-
main in Fig. 4.13.
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Fig. 4.13: Initial quadratic standard T-spline mesh in (a) the index domain and (b) the
physical domain.

It is refined by insertion of an anchor which results in the rectangle [ξ2
1 , ξ

4
1 ]×[ξ3

2 , ξ
5
2 ] being

split vertically, see Fig. 4.14(a).

Ensuring that Ce is a square matrix
The resulting mesh is locally linearly independent but non-standard, and Ce is not a square
matrix for all elements: for element b (bounded by a dashed green line), rank(Ce)=ne,
as there are only eight anchors (blue) with a support, ne=8, see Fig. 4.14(b). Hence,
additional anchors need to be inserted in order to obtain a square matrix Ce. Each local
knot vector of the blue anchors with support in element b in Fig. 4.14(b) contains the
sub-parameter values of the boundaries of element b – [0, 1

2
]×[1

3
, 2

3
] in the ξ1-direction and

the ξ2-direction, respectively, except for the anchors A and B in Fig. 4.15(a). The local
knot vectors of the anchors A and B in the ξ1-direction do not contain the sub-parameter
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Fig. 4.14: (a) Refined quadratic non-standard T-spline mesh of Fig. 4.13(a) in the index
domain. (b) The T-spline mesh is locally linearly independent – but as only eight anchors
(blue) have a support in element b (dashed green line), Ce is not a square matrix for
element b.

value ξ1 = 1
2
. Therefore, rectangle c needs to be split. This results in the standard T-spline

mesh in Fig. 4.15(b).
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Fig. 4.15: Procedure to obtain a square matrix Ce. (a) The local knot vectors of the
anchors A and B (blue) do not contain the sub-parameter value ξ1 = 1

2
, which is a boundary

of element b (dashed green). The local knot vectors of all other anchors with support in
element b (see Fig. 4.14(b)) contain the sub-parameter values 0, 1

2
in the ξ1-direction and

1
3
, 2

3
in the ξ2-direction – [0, 1

2
]×[1

3
, 2

3
] represents the boundary values of element b in the

sub-parameter domain. Hence, the rectangle c needs to be split so that the local knot
vectors of the anchors A and B also contain the knot ξ1 = 1

2
. (b) The resulting standard

mesh and the initial mesh in 4.13(a) are not nested.

Nestedness
The initial T-spline mesh in Fig. 4.13(a) and the refined mesh in Fig. 4.15(b) are not
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nested: the blending functions of anchors C, D and E (see mesh in Fig. 4.16) cannot
be expressed as a linear combination of the blending functions of the refined mesh in
Fig. 4.15(b). This can be identified by inspection of the row echelon form of Eq. (4.58)
for these anchors.
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ξu1
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d

E

D

C

Anchors initial mesh
Anchors initial mesh,

not nested
Anchors refined mesh

Edges initial mesh
Edges refined mesh
Common support

non-nested anchors

Fig. 4.16: Superposition of the initial T-spline mesh in the index domain from Fig. 4.13(a)
and the refined mesh in Fig. 4.15(b). Transforming Eq. (4.58) into row echelon form
gives no results for the anchors C, D and E (blue) since the meshes in Fig. 4.13(a) and
Fig. 4.15(b) are not nested. Edges and anchors from the refined mesh in Fig. 4.15(b),
which were added during refinement, are inserted in the initial mesh from Fig. 4.13(a)
and marked with green. Within the grey domain all three anchors C, D and E from the
initial mesh have a support, while the grey domain is bounded by the newly inserted green
edges. In this grey domain an additional anchor needs to be inserted, i. e. the dashed red
rectangle d needs to be subdivided, see Fig. 4.17.

Therefore, an additional anchor has to be inserted. The new edges and anchors of the
refined mesh in Fig. 4.15(b) are drawn in the initial mesh of Fig. 4.13(a) as illustrated
with solid green lines and green points in Fig. 4.16. The grey domain highlights the
common support of the three anchors C, D and E and is bounded by the new green edges.
Within the grey domain a new anchor needs to be inserted, i. e. the dashed red rectangle
d needs to be subdivided. The resulting refined mesh has now the sought properties: it is
standard and is nested with the initial (non-refined) mesh, i. e. the blending function N
of each anchor in Fig. 4.13(a) can be represented as a linear combination of the blending
functionsNR of the anchors in the refined mesh in Fig. 4.17(a).

Refined physical mesh
So far, refinement has been considered only in the index domain in order to obtain a stan-
dard and nested T-spline mesh. Next, the evaluation of the weighted control points in the
physical domain is addressed.
The location of the weighted control points for the refined mesh P wR is determined us-
ing Eq. (4.71). The physical mesh is shown in Fig. 4.17(b) which preserves the same
geometry as the physical mesh in Fig. 4.13(b). This can be observed by comparing for
instance the shape of the element boundaries of the initial and the refined physical mesh.
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Fig. 4.17: Refined quadratic T-spline mesh of Fig. 4.13 in (a) the index domain and (b) the
physical domain. This T-spline mesh is standard and nested with the initial T-spline mesh
in Fig. 4.13.

4.5.4.2 Example 2: Removing linear dependencies

Initial refinement
As a next example, the initial quadratic T-spline mesh in Fig. 4.13 is now refined as shown
in Fig. 4.18(a).
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(a) The T-spline mesh is locally linearly depen-
dent – the row echelon version of Eq. (4.43) gives
the dependencyNF(ξ)−NG(ξ) = 0 in element f.
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(b) Extension lines (solid blue) for the anchors F
and G intersect at the location of the green squares.
The rectangles g and h (dashed red line) contain
the green squares. Rectangle g cannot be further
subdivided. All options for subdividing rectangle
h are given in Fig. 4.19.

Fig. 4.18: Refined (non-standard) quadratic T-spline mesh of Fig. 4.13(a) in the index
domain.

Removing linear dependencies
The T-spline mesh of Fig. 4.18(a) is non-standard using Eq. (4.50). Furthermore, the
BÉZIER extraction operator Ce is not a square matrix and does not have full row rank
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for element f. Transforming Eq. (4.43) into row echelon form yields the dependency
NF(ξ)−NG(ξ) = 0 in element f. In order to break this dependence, new anchors need
to be inserted. In the following, it will be shown how to identify potential locations for
these new anchors and how to select the ideal one.
Extension lines (solid blue) are drawn between the anchors F and G as depicted in
Fig. 4.18(b). These extension lines intersect at the location of the green squares. These
squares are located in the rectangles g and h (dashed red line). Rectangle g cannot be
further subdivided, but rectangle h can, as shown in Fig. 4.19.
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(a) Standard, not nested.
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(b) Standard, nested.
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(c) Standard, not nested.
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(d) Standard, nested.
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(e) Non-standard.
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(f) Non-standard.
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(g) Non-standard.

Fig. 4.19: All possible subdivisions for the rectangle h in Fig. 4.18(b): the dashed orange
lines indicate the new edges to be inserted, the orange points denote the locations of the
new anchors.

Table 4.1 gives a summary of the number of pairs of anchors with linearly dependent
blending functions, number of non-square matrices Ce, nestedness and number of addi-
tionally inserted anchors for the options in Fig. 4.19. This information can be used in
order to determine the best location and optimum number of additional anchors.

According to Fig. 4.19 and Table 4.1, only the options (b) and (d) are suitable for refine-
ment of the T-spline mesh in Fig. 4.13 since they are standard and nested with the initial
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Tab. 4.1: Summary of the number of pairs of anchors with linearly dependent blending
functions, number of non-square matrices Ce, nestedness and number of additionally
inserted anchors for the options in Fig. 4.19.

Figure 4.19(a) 4.19(b) 4.19(c) 4.19(d) 4.19(e) 4.19(f) 4.19(g)

Number of pairs of anchors
0 0 0 0 0 0 0with linearly dependent

blending functions
Number of non-square 0 0 0 0 1 2 2matrices Ce

Nestedness 7 3 7 3 7 7 7

Number of additional anchors 2 3 3 4 2 3 3

mesh. Regarding efficiency, the option which introduces the smallest amount of new an-
chors could be selected, i. e. option (b).
In case that no refinement option results in a standard and nested T-spline mesh, one can
select either the option with the smallest number of pairs of anchors with linearly depen-
dent blending functions or the option with the smallest number of non-square matrices
Ce and then continue with the next refinement step until a standard and nested mesh is
obtained, see Appendix B.1.3.

4.5.5 Summary for the local refinement of standard T-splines

The examples for the local refinement of standard T-spline meshes by adding anchors
demonstrate how to exploit the information from the BÉZIER extraction operator:

• enforce a square matrix Ce in each element:

– the BÉZIER extraction operator indicates, which element does not have
enough anchors with a support (Fig. 4.15(a));

– when there are local linear dependencies, the BÉZIER extraction operator
shows, where new anchors and edges need to be inserted (Fig. 4.18(b))

• pinpoint for which blending functions two T-spline meshes are not nested
(Fig. 4.16).

It was found that a square BÉZIER extraction operator Ce for each element and a com-
putable refinement matrix M in Eq. (4.58) resulted in a nested standard T-spline mesh.
It was not observed that this resulted in a nested semi-standard T-spline mesh. However,
should such a case arise, one can pinpoint for which anchors βiR 6=1 using Eq. (4.60) and
insert an additional anchor in the supported domain of these anchors.
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The local refinement of standard T-spline meshes of odd degree is treated in Ap-
pendix B.1.1. Furthermore, Appendix B.1.2 demonstrates that also non-standard T-splines
can be refined locally when nestedness exists.

4.6 Hierarchical refinement of T-splines using the

reconstruction operator

THOMAS et al. [110] introduced another refinement strategy based on the reconstruction
operator. Instead of adding new anchors to the mesh as was proposed in the previous
section, the method is based on the division of elements while an invertible elemental
BÉZIER extraction operator Ce is needed for the reconstruction operator. The hierarchical
refinement method by THOMAS et al. [110] has been applied to analysis-suitable T-splines
(see Section 4.8). Here, it will be demonstrated how the idea of this concept can also be
applied to standard, semi-standard and non-standard T-spline meshes.

4.6.1 Splitting elements

The hierarchical refinement algorithm based on the reconstruction operator requires that
Ce is a square matrix of full rank for the element e that is subdivided,

rank(Ce) =
d∏

`=1

p` + 1, (4.72)

since the reconstruction operator, defined as

Re = C−1
e , (4.73)

is needed. Therefore, for this hierarchical refinement algorithm the BÉZIER extraction
operator plays again a key role: when Eq. (4.72) is satisfied for element e, this element can
be refined hierarchically. Thus, this algorithm can be applied to standard, semi-standard
and non-standard T-spline meshes.
Consider an element with range [−1, 1] and suppose that it needs to be split in half: [−1, 0]

and [0, 1]. The first BERNSTEIN basis B1
1 with the knot vector {−1,−1,−1, 1} (black

curve) in Fig. 4.20 in the element [−1, 1] can be defined in the two sub-elements [−1, 0]

and [0, 1] as a linear combination of the BERNSTEIN polynomials in the two sub-elements:
the BERNSTEIN basis functions for the left part of the element with support in [−1, 0] are
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given by the local knot vectors

B1
1 l for {−1,−1,−1, 0}, B2

1 l for {−1,−1, 0, 0}, B3
1 l for {−1, 0, 0, 0}. (4.74)
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Fig. 4.20: The BERNSTEIN polynomial B1
1 with support over the element [−1, 1] can be

expressed in the sub-element el with range [−1, 0] as a linear combination of the BERN-
STEIN polynomials Ba

1 l: B
1
1(ξ1) = B1

1 l(ξ1) + 1
2
B2

1 l(ξ1) + 1
4
B3

1 l(ξ1).

The BERNSTEIN polynomial B1
1 in the left part of the element (solid black line) can now

be expressed as a linear combination of the BERNSTEIN polynomials Bi
1 l as follows

B1
1(ξ1) =

[
1 1

2
1
4

]


B1

1 l(ξ1)

B2
1 l(ξ1)

B3
1 l(ξ1)


 . (4.75)

The coefficients in Eq. (4.75) can either be obtained using the algorithm from
SCOTT et al. [94] for the knot vector {−1,−1,−1, 1} with an interior knot at ξ1 =0 or,
alternatively, using the relations in FAROUKI & NEFF [39]. Applying the same procedure
to B2

1 , B3
1 , and on the right part of the element (with the range [0, 1]) gives



B1

1(ξ1)

B2
1(ξ1)

B3
1(ξ1)




︸ ︷︷ ︸
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=
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︸ ︷︷ ︸
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1 l(ξ1)

B3
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
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︸ ︷︷ ︸
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+
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1
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1
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1


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︸ ︷︷ ︸
A1 r



B1

1 r(ξ1)

B2
1 r(ξ1)

B3
1 r(ξ1)




︸ ︷︷ ︸
B1 r(ξ1)

. (4.76)

Hence, the BERNSTEIN polynomials B1 over one element e with the span [−1, 1] can
be expressed as a linear combination of the BERNSTEIN polynomials B1 l and B1 r over
the two smaller elements el with the span [−1, 0] and er with the span [0, 1]. Extending
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Eq. (4.76) into more dimensions gives

B(ξ) = AlBl(ξ) + ArBr(ξ). (4.77)

Next, it is assumed that the BÉZIER extraction operator is known for the original, single
element Ce and for the two sub-elements Ce l and Ce r. Then, the weighted surface
T we(ξ) with the weighted control points P i

we can be expressed over element e using
Eq. (4.77)

T we(ξ) =
ne∑

i=1

Ci
e

T
B(ξ)P i

we =
ne∑

i=1

Ci
e

T (
AlBl(ξ) + ArBr(ξ)

)
P i
we. (4.78)

Alternatively, T we(ξ) can be written over the two sub-elements el and er as

T we(ξ) = T we l(ξ) +T we r(ξ) =

ne l∑

j=1

Cj
e l

T
Bl(ξ)P j

we l +
ne r∑

k=1

Ck
e r

T
Br(ξ)P k

we r, (4.79)

with the weighted control points P j
we l and P k

we r for element el and er, respectively.
Comparing Eq. (4.78) and Eq. (4.79) results in

ne∑

i=1

Ci
e

T
AlBl(ξ)P i

we =

ne l∑

j=1

Cj
e l

T
Bl(ξ)P j

we l, (4.80)

ne∑

i=1

Ci
e

T
ArBr(ξ)P i

we =
ne r∑

k=1

Ck
e r

T
Br(ξ)P k

we r, (4.81)

or in matrix form

Ce
TAlPwe

= Ce l
TP

we l
, (4.82)

Ce
TArPwe

= Ce r
TP

we r
. (4.83)

Hence, the weighted coordinates of the two sub-elements are obtained with the recon-
struction operator in Eq. (4.73) as

P
we l

= Re l
TCe

TAlPwe
, P

we r
= Re r

TCe
TArPwe

. (4.84)

4.6.2 Example

Consider the quadratic non-standard T-spline mesh of Fig. 4.21 which is globally linearly
independent but locally linearly dependent.

The dashed green element b is now divided vertically into two sub-element bl and br with
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Fig. 4.21: Non-standard, globally linearly independent T-spline mesh in the index do-
main (from Fig. 4.10(b)). Element b (dashed green line) with range [0, 1

2
]×[2

4
, 3

4
] is split

vertically into two sub-elements bl and br with range [0, 1
4
]×[2

4
, 3

4
] and [1

4
, 1

2
]×[2

4
, 3

4
],

respectively. Each local knot vector associated to a blue anchor (i. e. those hav-
ing a support in element b) needs to be modified. For instance, the anchor A with
ΞA

1 ={0, 0, 0, 1} becomes ΞA
1 l={0, 0, 0, 1

4
} in element bl and ΞA

1 r={0, 0, 1
4
, 1} in element

br. ΞA
1 ={0, 0, 0, 1} remains unchanged for the other elements. The modified local knot

vectors for the other blue anchors are given in Appendix B.2.

range [0, 1
4
]×[2

4
, 3

4
] and [1

4
, 1

2
]×[2

4
, 3

4
], i. e. the knot value ξ1 = 1

4
is inserted in element

b. Element b can be subdivided since Eq. (4.72) holds for it. In order to obtain the
weighted control points P

we l
and P

we r
in Eq. (4.84), the reconstruction operators Re l

and Re r, which follow from the BÉZIER extraction operators Ce l and Ce r, respectively,
are needed for element b. These BÉZIER extraction operators are based on the modified
local knot vectors of the sub-elements bl and br which are obtained as follows. Take from
each blue anchor i which has a support over element b in Fig. 4.21 the local knot vector
Ξi

1. Then insert into this local knot vector the knot value ξ1 = 1
4

and split the resulting
knot vector into two knot vectors of length p`+2, where one knot vector contains the first
p`+2 entries and the other one the last p`+2 entries. For instance, taking the anchor A
in Fig. 4.21 gives the local knot vector ΞA

1 ={0, 0, 0, 1}. The local knot vectors for the
elements bl and br are then ΞA

1 l={0, 0, 0, 1
4
} and ΞA

1 r={0, 0, 1
4
, 1}. The local knot vector

ΞA
1 is modified only in the elements bl and br, while for the other elements ΞA

1 remains
unchanged. The local knot vectors for the blue anchors in the sub-elements bl and br are
listed in Appendix B.2.
The initial non-standard T-spline mesh and the hierarchically refined non-standard
T-spline mesh in the physical domain are depicted in Fig. 4.22. Both physical meshes
represent the same geometry.
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Anchors
Element corners

Element boundaries

(a)

Initial anchors
Hierarchical anchors for bl
Hierarchical anchors for br

Element corners
Element boundaries

(b)

Fig. 4.22: (a) Initial and (b) hierarchically refined non-standard T-spline mesh from
Fig. 4.21 in the physical domain.

4.7 Unstructured quadratic T-splines

This section addresses unstructured T-spline meshes of quadratic degree – the cubic de-
gree is considered in Appendix B.3. An unstructured T-spline mesh contains points with
valence three or more than four. These points are called star, irregular or extraordinary
points. Without special treatment, these meshes are non-standard and only C0

A-continuous
around the extraordinary points. It will be demonstrated how these meshes can be manip-
ulated such that they are standard (blending functions N i fulfil the partition of unity) and
C1

A-continuous around the extraordinary points.
The technique presented here is very similar to the idea by SCOTT [95]. However, the
approach in SCOTT [95] does not fulfil the partition of unity for the blending function
N i in the one-ring neighbourhood elements of an extraordinary point. Herein, it will be
demonstrated how this deficiency can be repaired.

4.7.1 The unstructured T-spline mesh

Fig. 4.23 shows an unstructured quadratic T-spline mesh.

Extraordinary points are indicated by a red circle. Spoke edges are marked with green:
they touch an extraordinary point. In order to build the BÉZIER extraction operator for
each purple anchor that has a support in the light grey element g, the knot intervals of the
neighbouring rectangles (marked orange) for element g are required. Some anchors with
support in g do not require all their individual knot intervals in order to determine their
BÉZIER extraction operator in g. This construction cannot be applied to the blue elements
in the one-ring neighbourhood of the extraordinary points. These elements are called
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g

Anchors Edges Elements

Fig. 4.23: Example for an unstructured quadratic T-spline mesh. All non-zero knot in-
tervals are assumed to be uniform. The two extraordinary points of valence three and five
are marked with red. Spoke edges (green) touch an extraordinary point. Anchors with
support in element g (light grey) are marked violet. In order to determine the BÉZIER

extraction operator for these anchors in element g, the knot intervals of the neighbouring
rectangles of g are required. Some of the violet anchors do not need all of their individual
knot intervals. This technique is not applicable to the one-ring neighbourhood elements
(blue) of an extraordinary point. Generalised BÉZIER extraction must be applied to these
irregular elements.

irregular elements, whereas the other elements are regular elements. For the irregular
elements, generalised BÉZIER extraction will be utilised. Generalised BÉZIER extraction
defines the transpose of the BÉZIER extraction operator, CT

e .

4.7.2 Generalised BÉZIER extraction

Generalised BÉZIER extraction yields a relation between BÉZIER control points Q
e

and
the control points P e with support in element e

Q
e

= CT
e P e. (4.85)

Each quadratic element has nine BÉZIER control points – one face point Qf

5
, four edge

pointsQe

2
,Qe

4
,Qe

6
,Qe

8
and four vertex pointsQv

1
,Qv

3
,Qv

7
,Qv

9
as depicted in Fig. 4.24(a).

Herein, it is assumed that all non-zero knot intervals are uniform. The general case for
non-uniform knot-intervals is considered by SCOTT [95] for the cubic case.
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Fig. 4.24: (a) The nine BÉZIER control points Q
e

for a BÉZIER element. (b) The control
pointP A corresponds to the anchor in this element. (c) An edge BÉZIER control pointQe

is written in terms of neighbouring face BÉZIER control points Qf in Eq. (4.87). (d) A
vertex BÉZIER control point Qv is written in terms of neighbouring face BÉZIER control
pointsQf in Eq. (4.88).

The face pointQf

5
(cf. Fig. 4.24(b)) is determined as

Qf

5
= P A, (4.86)

where P A denotes the control point coordinates of anchor A. The edge vertex Qe in
Fig. 4.24(c) is computed with

Qe =
1

2
Qf

a
+

1

2
Qf

b
, (4.87)

and the vertex pointQv of Fig. 4.24(d) is obtained utilising

Qv =
K∑

k=1

1

4
Qf

k
, (4.88)

where it was assumed thatQv is the vertex of K elements.
After computing CT

e exploiting the generalised BÉZIER extraction for the one-ring neigh-
bourhood elements, the T-spline mesh is non-standard, i. e. the blending functions N
do not fulfil the partition of unity. Also, the BÉZIER extraction operators are non-square
matrices for the elements in the one-ring neighbourhood of an extraordinary point. Ce
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has full row rank for the one-ring neighbourhood elements of an extraordinary point with
valence three – the blending functions are locally linearly independent. For the one-ring
neighbourhood elements of an extraordinary point with valence five, Ce does not have
full row rank and therefore, the blending functions are locally linearly dependent. Along
spoke edges exists C0

A-continuity. Furthermore, the one-ring neighbourhood elements
of the extraordinary point (the irregular elements) are C1

A-continuous with the two-ring
neighbourhood elements of the extraordinary points. Next, it will be explained how to en-
force C1

A-continuity along spoke edges while preserving C1
A-continuity between the one-

and two-ring neighbourhood elements. Moreover, the partition of unity of the blending
functions N will be fulfilled.

4.7.3 Modifying the BÉZIER extraction operator

This section shows how to modify the coefficients of the BÉZIER extraction operator
Ce in the one-ring neighbourhood elements of an extraordinary point. In a first step,
the BÉZIER extraction operator Ce is elevated from degree two to degree four. This is
achieved by utilising the degree elevation matrix E2,4, cf. THOMAS et al. [110]. Degree
elevating Eq. (4.31) results in

N e = C2
eB

2
e = C2

eE
2,3B3

e = C2
eE

2,3E3,4B4
e = C2

eE
2,4B4

e = C4
eB

4
e, (4.89)

where the superscript was added in order to indicate the degree. It can be observed from
Eq. (4.89) that degree elevation does not change the blending functionsN e. Also, degree
elevation does not change local dependencies that may exist, i. e. the row rank of Ce is not
affected. After degree elevation, each blending function N with support over a BÉZIER

element in the one-ring neighbourhood has 25 BÉZIER coefficients cα,β (cf. Eq. (4.30)
and Fig. 4.25(a))

N(ξ) =
5∑

α=1

5∑

β=1

cα,βBα,β(ξ). (4.90)

Assume that a=1 . . . A blending functions Na have a support over at least two of the
b=1 . . . B one-ring neighbourhood elements and c=1 . . . C blending functionsN c have a
support in only one one-ring neighbourhood element. Now, the coefficients of the BÉZIER

extraction operator of all blending functions Na and N c have to be perturbed. The initial
coefficients of the BÉZIER extraction operator are denoted with ca,bα,β , cc,bα,β and the modified
coefficients with c̃a,bα,β , c̃c,bα,β . The following constrained linear least square problem needs
to be solved for each extraordinary point

min
c̃∈S
‖F c̃− f‖

2
, S =

{
c̃ | ‖G c̃− g‖

2
= min

}
, (4.91)
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c3,1 c3,2 c3,3 c3,4 c3,5

c4,1 c4,2 c4,3 c4,4 c4,5

c5,1 c5,2 c5,3 c5,4 c5,5

(a)

ck1,1 ck1,2 ck1,3 ck1,4 ck1,5
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ck−1
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3,2 ck−1

4,2 ck−1
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Nk−1(ξ, η)

Nk(ξ, η)

ξ

η

η

(b)

Fig. 4.25: (a) After degree elevation, a blending function with support in a one-ring
neighbourhood element has 25 BÉZIER coefficients cα,β in each one-ring neighbourhood
element. (b) BÉZIER coefficients along a spoke edge that are involved in the G1-continuity
constraint of Eq. (4.95).

with the fairing matrix F, the fairing vector f , the constraint matrix G and the constraint
vector g. The problem in Eq. (4.91) can be transformed into an unconstrained linear least
square problem as explained by BJÖRK [12, Chapter 5].
The following constraints are assembled in F and f in Eq. (4.91)

c̃a,bα,β − c̃a,bα,β+1 = ca,bα,β − ca,bα,β+1 for 1≤α≤5, 1≤β≤4, 1≤a≤A, 1≤b≤B,

c̃a,bα,β − c̃a,bα+1,β = ca,bα,β − ca,bα+1,β for 1≤α≤4, 1≤β≤5, 1≤a≤A, 1≤b≤B,

c̃c,bα,β − c̃c,bα+1,β = cc,bα,β − cc,bα+1,β for 1≤α≤5, 1≤β≤4, 1≤c≤C, 1≤b≤B,

c̃c,bα,β − c̃c,bα+1,β = cc,bα,β − cc,bα+1,β for 1≤α≤4, 1≤β≤5, 1≤c≤C, 1≤b≤B.

(4.92)

The fairing equations in Eq. (4.92) prevent oscillations between neighbouring coefficients
of the BÉZIER extraction operator when perturbing the coefficients cα,β .
Suppose that α=1, β=1 marks the BÉZIER control point at the extraordinary point, see
Fig. 4.25(a). In order to preserve C1

A-continuity between one- and two-ring neighbourhood
elements, the constraints

c̃a,bα,β = ca,bα,β for 1≤α≤5, 4≤β≤5, 1≤a≤A, 1≤b≤B,

c̃a,bα,β = ca,bα,β for 4≤α≤5, 2≤β≤3, 1≤a≤A, 1≤b≤B
(4.93)

are assembled in G and g in Eq. (4.91) for blending functions that are non-zero in at least

two one-ring neighbourhood elements. Blending functions that are non-zero in only one
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one-ring neighbourhood element are not allowed to change by enforcing

c̃c,bα,β = cc,bα,β for 1≤α≤5,1≤β≤5, 1≤c≤C, 1≤b≤B. (4.94)

In order to get C1
A-continuity along spoke edges (between one-ring neighbourhood

elements k−1 and k in Fig. 4.25(b)) for the blending function N that is non-zero in
at least two one-ring neighbourhood elements, the G1-continuity condition (see also DU

& SCHMITT [37] or FAUX & PRATT [40, Chapter 7] )

f(ξ) = r(ξ)
∂Nk−1(ξ, η)

∂η

∣∣∣∣
η=0

+ s(ξ)
∂Nk(ξ, η)

∂ξ

∣∣∣∣
η=0

+ t(ξ)
∂Nk(ξ, η)

∂η

∣∣∣∣
η=0

= r(ξ)Nk−1
,η (ξ) + s(ξ)Nk

,ξ(ξ) + t(ξ)Nk
,η(ξ) = 0 (4.95)

can be exploited since it was pointed out by GROISSER & PETERS [46] that this
G1-condition yields C1

A-continuous blending functions (see also Section 4.1.4).
In the following, the notation

p+1∑

i=1

ciB
p
i (ξ) = 〈c1, c2, . . . , cp+1〉p(ξ) (4.96)

will be used. The polynomials r(ξ), s(ξ) and t(ξ) in Eq. (4.95) are taken as

r(ξ) = 1, s(ξ) = 〈ζ, 0, 0〉2(ξ), t(ξ) = 1, (4.97)

where ζ is computed from

ζ = −2 cos(θ), θ =
2π

B
. (4.98)

The three individual terms in Eq. (4.95) result with Eqs. (4.96) and (4.97) in

r(ξ)Nk−1
,η (ξ) = 4〈c̃k−1

1,2 − c̃k1,1, c̃k−1
2,2 − c̃k1,2, c̃k−1

3,2 − c̃k1,3, c̃k−1
4,2 − c̃k1,4, c̃k−1

5,2 − c̃k1,5〉4(ξ), (4.99)

s(ξ)Nk
,ξ(ξ) = 〈ζ, 0, 0〉2(ξ)4〈c̃k1,2 − c̃k1,1, c̃k1,3 − c̃k1,2, c̃k1,4 − c̃k1,3, c̃k1,5 − c̃k1,4〉3(ξ), (4.100)

t(ξ)Nk
,η(ξ) = 4〈c̃k2,1 − c̃k1,1, c̃k2,2 − c̃k1,2, c̃k2,3 − c̃k1,3, c̃k2,4 − c̃k1,4, c̃k2,5 − c̃k1,5〉4(ξ). (4.101)

Since the term in Eq. (4.100) is quintic, Nk
,ξ needs to be degree reduced utilising the

transformation matrix D3,2 (see THOMAS et al. [110])

D3,2 =
(
E2,3

)T [
E2,3

(
E2,3

)T]−1

. (4.102)
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Degree reducing Nk
,ξ(ξ) in Eq. (4.100) results in

Nk
,ξ(ξ) = 4〈−19

20
c̃k1,1 +

16

20
c̃k1,2 +

6

20
c̃k1,3 −

4

20
c̃k1,4 +

1

20
c̃k1,5,

5

20
c̃k1,1 − c̃k1,2 + c̃k1,4 −

5

20
c̃k1,5,

− 1

20
c̃k1,1 +

4

20
c̃k1,2 −

6

20
c̃k1,3 −

16

20
c̃k1,4 +

19

20
c̃k1,5〉2(ξ), (4.103)

which gives for Eq. (4.100)

s(ξ)Nk
,ξ(ξ) = 4ζ〈−19

20
c̃k1,1 +

16

20
c̃k1,2 +

6

20
c̃k1,3 −

4

20
c̃k1,4 +

1

20
c̃k1,5,

5

40
c̃k1,1 −

1

2
c̃k1,2 +

1

2
c̃k1,4 −

5

40
c̃k1,5,

− 1

120
c̃k1,1 +

4

120
c̃k1,2 −

6

120
c̃k1,3 −

16

120
c̃k1,4 +

19

120
c̃k1,5, 0, 0〉4(ξ). (4.104)

In order to fulfil Eq. (4.95), the following terms must vanish exploiting Eqs. (4.99),
(4.101) and (4.104)

c̃k−1
1,2 − c̃k1,1 + ζ

(
−19

20
c̃k1,1 +

16

20
c̃k1,2 +

6

20
c̃k1,3 −

4

20
c̃k1,4 +

1

20
c̃k1,5

)
+ c̃k2,1 − c̃k1,1 = 0, (4.105)

4
(
c̃k−1

2,2 − c̃k1,2
)

+ ζ

(
1

2
c̃k1,1 − 2c̃k1,2 + 2c̃k1,4 −

1

2
c̃k1,5

)
+ 4

(
c̃k2,2 − c̃k1,2

)
= 0, (4.106)

4
(
c̃k−1

3,2 − c̃k1,3
)

+ ζ

(
− 1

30
c̃k1,1 +

4

30
c̃k1,2 −

6

30
c̃k1,3 −

16

30
c̃k1,4 +

19

30
c̃k1,5

)
+ 4

(
c̃k2,3 − c̃k1,3

)
= 0,

(4.107)

c̃k−1
4,2 − c̃k1,4 + c̃k2,4 − c̃k1,4 = 0, (4.108)

c̃k−1
5,2 − c̃k1,5 + c̃k2,5 − c̃k1,5 = 0. (4.109)

Moreover, the fourth derivative of f(ξ) has to vanish. This constraint results in

c̃k1,1 − 4c̃k1,2 + 6c̃k1,3 − 4c̃k1,4 + c̃k1,5 = 0. (4.110)

Eqs. (4.105) – (4.110) need to be assembled in G and g along all spoke edges for all
blending functions that are non-zero in at least two one-ring neighbourhood elements.
In order to fulfil the partition of unity, the following equation must be satisfied for all
blending function that are non-zero in at least one one-ring neighbourhood element

A∑

a=1

c̃a,bα,β +
C∑

c=1

c̃c,bα,β = 1

{
for 1 ≤ α ≤ 3, 1 ≤ β ≤ 3

in all one-ring neighbourhood elements b = 1 . . . B.
(4.111)
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Eq. (4.111) follows from Section 4.4.2.3. Computing the term

‖G c̃− g‖
2

(4.112)

after solving Eq. (4.91) yields zero within machine precision, i. e. all imposed constraints
are satisfied.
After solving the constrained linear least square problem in Eq. (4.91), the support of
the blending functions that are non-zero in two one-ring neighbourhood elements has
changed, see Fig. 4.26.

Anchors Edges Elements

(a)

Anchors Edges Elements

(b)

Fig. 4.26: Modifying the BÉZIER coefficients cα,β in the one-ring neighbourhood
elements of an extraordinary point (red) results in a modified support of blending func-
tions N that are non-zero in two one-ring neighbourhood elements after generalised
BÉZIER extraction: green marks the support of the two blue blending functions (a) before
and (b) after solving the constrained least square problem in Eq. (4.91).

Moreover, the BÉZIER extraction operators Ce for the one-ring neighbourhood elements
of an extraordinary point are still not square matrices, i. e. hierarchical refinement (Sec-
tion 4.6) or BÉZIER projection (THOMAS et al. [110]) are not applicable. For the one-
ring neighbourhood elements of the extraordinary point with valence three, the BÉZIER

extraction operator Ce has full row rank – the blending functions N are locally linearly
independent. The blending functions N are locally linearly dependent for the one-ring
neighbourhood elements of the extraordinary point with valence five since Ce does not
have full row rank.
Figs. 4.27 and 4.28 show a blending function N and its first derivatives N,x and N,y in
the physical domain before and after modifying the BÉZIER coefficients cα,β . It can be
seen that N,x and N,y are continuous after smoothing. Thus, the blending functions N are
C1

A-continuous.
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(a) N (b) N,x (c) N,y

(d) N (e) N,x (f) N,y

Fig. 4.27: Contour plots of a quadratic blending function N and its derivatives N,x, N,y in
the physical domain before (a)-(c) and after (d)-(f) smoothing. The blending function cor-
responds to an anchor that is located in the one-ring neighbourhood of the extraordinary
point of valence five.

4.8 Analysis-suitable T-splines

The blending functions of an analysis-suitable T-spline mesh fulfil the partition of unity.
Analysis-suitable T-splines have been defined by LI et al. [66]. In order to detect them, the
extended T-spline mesh was introduced, and a mesh was deemed analysis-suitable when
there are no two orthogonal T-node extensions which intersect in the extended T-spline
mesh. This definition holds for any knot interval and is of topological nature; it allows to
distinguish between analysis-suitable and non-analysis-suitable T-splines.
The approach presented in the previous sections is based on the BÉZIER extraction op-
erator. It is an algebraic viewpoint and allows the determination of linear dependencies
(see Section 4.4.1) and the classification of T-splines into standard, semi-standard and
non-standard with Eq. (4.50).
Fig. 4.29 reveals that a standard T-spline is not necessarily an analysis-suitable T-spline.
In Fig. 4.29, T-node extensions intersect in the extended T-spline mesh and the T-spline
meshes are therefore non-analysis-suitable. It was observed in Figs. 4.11(a), 4.11(c)
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(a) N (b) N,x (c) N,y

(d) N (e) N,x (f) N,y

Fig. 4.28: Contour plots of a quadratic blending function N and its derivatives N,x, N,y in
the physical domain before (a)-(c) and after (d)-(f) smoothing. The blending function cor-
responds to an anchor that is located in the two-ring neighbourhood of the extraordinary
point of valence five.

and 4.11(e) that the T-spline meshes in Fig. 4.29 are standard.
Notice that the term “analysis-suitable” might cause confusion. Analysis can also
be performed with non-analysis-suitable T-spline meshes. For instance, the unstruc-
tured T-spline meshes utilised by BAZILEVS et al. [10], CASQUERO et al. [21], DI-
MITRI et al. [34], DIMITRI [35], HSU et al. [51], KIENDL et al. [59], KOSTAS et al. [61],
SCOTT et al. [97, 98], SIMPSON et al. [103] and THOMAS & SCOTT [111] are
non-analysis-suitable T-spline meshes since the blending functions N i do not fulfil the
partition of unity in the one-ring neighbourhood elements of an extraordinary point (see
also Section 4.7 and Appendix B.3).
The requirements for a T-spline mesh to be suitable for analysis are

• the blending functions N i are globally linearly independent (Eq. (4.37) holds)

• the partition of unity property holds in order to satisfy the affine transformation.

The local / global linear independence of the blending functions N i results in the lo-
cal / global linear independence of the rational blending functions Ri. Hence, globally
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(a) T-node extensions for the T-spline mesh in
Fig. 4.11(a).
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(b) T-node extensions for the T-spline mesh in
Fig. 4.11(c).
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(c) T-node extensions for the T-spline mesh in
Fig. 4.11(e).

Fig. 4.29: Extended T-spline meshes for Fig. 4.11(a), 4.11(c) and 4.11(e); these stan-
dard T-spline meshes are non-analysis-suitable according to LI et al. [66] since T-node
extensions intersect in the extended T-spline mesh.

linearly independent semi-standard and non-standard T-spline meshes which employ the
rational blending functions Ri in Eq. (4.44) can be used for analysis since the rational
blending functions Ri always form a partition of unity.
Furthermore, LI [67] concluded that the unstructured T-spline mesh in SCOTT et al. [97]
is an analysis-suitable T-spline. Unfortunately, LI [67] did not take into account that the
blending functions of an analysis-suitable T-spline also fulfil the partition of unity which
is not the case for the unstructured T-spline meshes in SCOTT et al. [97]. This shows that
it may not be possible to conclude from the topology of an unstructured T-spline mesh
whether it fulfils the partition of unity or not and that instead, the BÉZIER extraction
operator should be exploited.
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KIRCHHOFF–LOVE plate theory [60, 70] is suited for the analysis of thin plates, but re-
quires C1

A-continuous basis functions in finite element analyses. The subdivision surfaces
technique has been applied to KIRCHHOFF–LOVE shell elements by CIRAK et al. [24].
A NURBS-based formulation for KIRCHHOFF–LOVE shell elements was proposed by
KIENDL et al. [57]. Since multiple NURBS-patches are joined with C0

A-continuity, GUO

& RUESS [48] used NITSCHE’s method [80] for coupling NURBS-patches. Alternatively,
the bending strip method was developed by KIENDL et al. [58] which adds a penalty stiff-
ness between adjacent NURBS-patches. This approach requires a geometric continuity
G1 along the C0

A-continuity joints. Hence, the control points need to be positioned such
that a G1-continuity is obtained. Unfortunately, this (G1, C0

A)-construction has been ap-
plied only to two or four adjacent NURBS-patches – it has not been demonstrated how
to position the control points when three or more than four NURBS-patches meet at an
extraordinary point.
T-splines are an alternative to NURBS and consist of a single patch. It was further demon-
strated in Section 4.7 how to obtain C1

A-continuity around extraordinary points for unstruc-
tured quadratic T-splines by enforcing G1-continuous blending functions. This construc-
tion also fulfils the partition of unity of the blending functions.
While T-splines have a layout that is based on a quadrilateral structure, quadratic POW-
ELL–SABIN [88] B-splines are based on a linear triangulation. They likewise provide
basis functions that are C1

A-continuous across elements. POWELL–SABIN B-splines
have been cast in terms of BÉZIER ordinates by DIERCKX et al. [32] and DIER-
CKX [33] for an efficient calculation. POWELL–SABIN B-splines are not based on the
isogeometric concept as they only approximate the exact geometry. To address this is-
sue the NURBS-to-NURPS method was recently proposed by SPELEERS et al. [106]
which transforms a single NURBS-patch into Non-Uniform Rational POWELL–SABIN

B-splines (NURPS). The boundary of the NURBS-to-NURPS then exactly matches the
boundary of the NURBS-patch while the interior domain of the NURBS-to-NURPS
only approximates the NURBS-patch which is relevant for non-planar geometries.
POWELL–SABIN B-splines and NURBS-to-NURPS have been used for analysis by
STOGNER & CAREY [107] and SPELEERS et al. [104–106].
Currently, POWELL–SABIN B-splines cannot be obtained from arbitrary tetrahedral
meshes in the three-dimensional case since certain constraints with neighbouring tetra-
hedrons have to be fulfilled, see WORSEY & PIPER [124]. Hence, three-dimensional
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POWELL–SABIN B-splines are presently available only for structured meshes. Moreover,
there is still no “perfect” C1

A-continuous tetrahedron, i. e. a tetrahedron with low poly-
nomial degree, little splits and applicable to arbitrary meshes (see also the overview by
ALFELD & SOROKINA [1]).
The KIRCHHOFF–LOVE plate theory is introduced in the next section. Then, it will
be shown how BÉZIER extraction for POWELL–SABIN B-splines can be implemented,
thus making the method computationally efficient, similar to BÉZIER extraction for
NURBS and T-splines by BORDEN et al. [13] and SCOTT et al. [94]. The performance
of POWELL–SABIN B-splines is compared with NURBS, unstructured T-splines and
NURBS-to-NURPS when solving the KIRCHHOFF–LOVE plate with clamped and simply
supported boundary conditions. This study goes beyond the study by NGUYEN et al. [79],
which was for the POISSON equation, and hence only required C0

A-continuous basis func-
tions.

5.1 KIRCHHOFF–LOVE plate theory

The continuum and finite element formulation are derived for the KIRCHHOFF–LOVE

plate theory in this section.

5.1.1 Continuum formulation

The moment equilibrium for a plate reads (cf. GROSS et al. [47, Chapter 3])

mαβ,αβ = p0, (5.1)

with the force per unit area p0 and the bending moments

mαβ = −
∫ h/2

−h/2
σαβz dz. (5.2)

Greek indices take values one and two, a comma denotes differentiation, while h is the
thickness of the plate. σαβ is the stress, and HOOKE’s law for plane stress with the
YOUNG’s modulus E and POISSON’s ratio ν is used



σ11

σ22

σ12


 =

E

1− ν2




1 ν 0

ν 1 0

0 0 1−ν
2






ε11

ε22

2ε12


 , (5.3)
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since it is assumed that |σ33|, |σ13|, |σ23| � |σ11|, |σ22|, |σ12|. The non-zero strain compo-
nents are assumed as follows

ε11 = −z∂
2w

∂x2
, ε22 = −z∂

2w

∂y2
, 2ε12 = −2z

∂2w

∂x∂y
, (5.4)

with the deflection w(x, y). Plugging Eqs. (5.3) and (5.4) into Eq. (5.2) yields



m11

m22

m12




︸ ︷︷ ︸
m

=
Eh3

12(1− ν2)




1 ν 0

ν 1 0

0 0 1−ν
2




︸ ︷︷ ︸
D



κ11

κ22

2κ12




︸ ︷︷ ︸
κ

, (5.5)

with the elastic stiffness matrix D and the curvature

καβ = w,αβ . (5.6)

The bending moments are assembled in the vector m, while κ contains the curvatures.
Multiplying Eq. (5.1) by a test function δw, integrating over the domain Ω and twice by
parts results with GAUSS’ theorem in

∫

Ω

δw,αβmαβ dxdy+

∫

∂Ω

δwmαβ,αnβ dΓ−
∫

∂Ω

δw,βmαβnα dΓ =

∫

Ω

δwp0 dxdy, (5.7)

where n is the normal vector on the boundary. Boundary terms are neglected since no
moments or forces are imposed on ∂Ω in Section 5.4. Substitution of Eq. (5.6) into
Eq. (5.7), results int the weak form

∫

Ω

δκαβmαβ dxdy =

∫

Ω

δwp0 dxdy. (5.8)

Since second derivatives appear in this equation, C1
A-continuous functions (functions of

class H2) are necessary with square integrable second derivatives (cf. FISH & BE-
LYTSCHKO [42, Chapter 3]).

5.1.2 Finite element formulation

Discretisation of the domain Ω into E elements,

Ω =
E⋃

e=1

Ωe, (5.9)
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and approximation of the deflection w and its derivatives,

we = NTw, δwe = NT δw, κe = Bw, δκe = Bδw, (5.10)

where

NT =
[
N1 N2 . . .

]
, B =



N1,11 N2,11 . . .

N1,22 N2,22 . . .

2N1,12 2N2,12 . . .


 (5.11)

results with Eq. (5.5) in the following matrix-vector equation for Eq. (5.8)

∫

Ω

δκTDκ dxdy =

∫

Ω

δwTN p0 dxdy, (5.12)

which gives for arbitrary δw

∫

Ω

BTDB dxdy

︸ ︷︷ ︸
K

w =

∫

Ω

N p0 dxdy

︸ ︷︷ ︸
f

, (5.13)

with the stiffness matrix K and the force vector f .

5.2 BÉZIER extraction for quadratic POWELL–SABIN

B-splines

This section starts with a concise description of POWELL–SABIN B-splines, including
notions like POWELL–SABIN refinement, POWELL–SABIN points, and POWELL–SABIN

triangles. For an in-depth treatment reference is made to DIERCKX [33]. Then, BÉZIER

extraction for POWELL–SABIN B-splines is introduced, followed by a discussion on the
patch test for POWELL–SABIN B-splines.

5.2.1 Quadratic POWELL–SABIN B-splines

In order to obtain basis functions with C1
A-continuity for a triangulation T , some pre-

processing steps are necessary. Consider the parameter domain ξ=(ξ, η) for a triangu-
lation T (thick black lines) with e=1, . . . , E triangles and Nv vertices in Fig. 5.1(a). A
vertex k of the triangulation T has the coordinates V k=(ξk, ηk) in the parameter domain.
mk triangles are attached to vertex k and will be denoted as the molecule Ωk.

Each triangle e of the triangulation T has a barycentric coordinate system with
τ =(τ1, τ2, τ3), see Fig. 5.1(c). The points V 1, V 2, V 3, R12, R23, R31 and Z have
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Fig. 5.1: The (a) parameter and (b) physical domains, (ξ) and (x), respectively, for POW-
ELL–SABIN B-splines. (c) Each triangle e has a barycentric coordinate system τ and
(d) can further be subdivided into six mini-triangles with a barycentric coordinate sys-
tem τ̃ .

the following barycentric coordinates (τ1, τ2, τ3)

V 1 = (1, 0, 0), V 2 = (0, 1, 0), V 3 = (0, 0, 1),

R12 = (λ1, λ2, 0), R23 = (0, µ2, µ3), R31 = (ν1, 0, ν3), Z = (a, b, c).
(5.14)

Splitting each triangle e of the triangulation T in Fig. 5.1(a) into six mini-triangles
(n=1, . . . , 6) yields the POWELL–SABIN refinement T ∗ (thin black lines). Each
mini-triangle n has a barycentric coordinate system τ̃ =(τ̃1, τ̃2, τ̃3) and BÉZIER ordinates
br,s,t, cf. Fig. 5.1(d).
POWELL–SABIN points (denoted by green dots) are now defined for each vertex k of the
triangulation T in Fig. 5.1(a): they are the vertex k itself and the midpoints of all edges
of the POWELL–SABIN refinement T ∗ containing the vertex k. A POWELL–SABIN tri-
angle (shown in red), which contains all POWELL–SABIN points, is associated with each
vertex k. The POWELL–SABIN triangle needs to contain all POWELL–SABIN points in
order to get positive basis functions. Furthermore, the triangle needs to be small for a low
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condition number of the stiffness matrix K in Eq. (5.13). The POWELL–SABIN triangles
are chosen such that they share two edges with the convex hull of the POWELL–SABIN

points, see SPELEERS et al. [105] and VANRAES et al. [113]. In this way the solution of
the expensive optimisation algorithm in DIERCKX [33] is avoided.
Three (j=1, 2, 3) POWELL–SABIN B-splines N j

k(ξ) are associated to each vertex k, i. e.
one for each corner of the POWELL–SABIN triangle of vertex k, and have a support in the
molecule Ωk of V k. For an elaborate demonstration for the derivation of the calculation
of the POWELL–SABIN B-splines N j

k(ξ) reference is made to DIERCKX [33]. Here, only
a brief outline of the procedure is given.
A POWELL–SABIN B-spline N j

k(ξ) in the parameter domain ξ must be defined in each of
the mk triangles of the molecule Ωk of vertex k,

N j
k(ξ) = N j

k

(
ξ(τ )

)
=

mk∑

ek=1

N j,ek
k (τ ). (5.15)

Since each triangle of the molecule Ωk is split into six mini-triangles, the POWELL–SABIN

B-splines N j,ek
k (τ ) over a triangle ek can be written as

N j,ek
k (τ ) = N j,ek

k

(
τ (τ̃ )

)
=

6∑

n=1

N j,ek
k,n (τ̃ ). (5.16)

For clarity of notation, the indices ekn in N j,ek
k,n (τ̃ ) are omitted in the following.

5.2.2 BÉZIER extraction

The POWELL–SABIN B-splines over each mini-triangle, N j
k(τ̃ ) in Eq. (5.16), can be ex-

pressed using the BÉZIER ordinates br,s,t, see Fig. 5.1(d),

N j
k(τ̃ ) =

∑

r+s+t=2

br,s,tB
2
r,s,t(τ̃ ), (5.17)

where B2
r,s,t(τ̃ ) denote the BERNSTEIN polynomials of degree two

B2
r,s,t(τ̃ ) =

2!

r!s!t!
τ̃ r1 τ̃

s
2 τ̃

t
3. (5.18)

In order to determine the BÉZIER ordinates br,s,t in Eq. (5.17), the following properties
are assigned to the POWELL–SABIN B-splines: for any vertex l 6=k

N j
k(Vl) = 0,

∂

∂ξ
N j
k(Vl) = 0,

∂

∂η
N j
k(Vl) = 0, (5.19)
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and otherwise

N j
k(Vk) = αjk,

∂

∂ξ
N j
k(Vk) = βjk,

∂

∂η
N j
k(Vk) = γjk, (5.20)

with
3∑

j=1

αjk = 1,
3∑

j=1

βjk = 0,
3∑

j=1

γjk = 0. (5.21)

The corners of each POWELL–SABIN triangle (red in Fig. 5.1(a)) have the coordinates
Qj

k
=(ξjk, η

j
k), which gives the map from the mini-triangle domain τ̃ to the parameter

domain ξ for a surface Sξ(τ̃ ) as follows

Sξ(τ̃ ) =
Nv∑

k=1

3∑

j=1

N j
k(τ̃ )Qj

k
. (5.22)

For each vertex k with coordinates (ξk, ηk), the parameters αjk, β
j
k and γjk in Eq. (5.21) are

then obtained by solving



α1
k α2

k α3
k

β1
k β2

k β3
k

γ1
k γ2

k γ3
k






ξ1
k η1

k 1

ξ2
k η2

k 1

ξ3
k η3

k 1


 =



ξk ηk 1

1 0 0

0 1 0


 . (5.23)

This equation follows by combining Eqs. (5.20) – (5.22). Using Eqs. (5.14) and (5.23),
the BÉZIER ordinates br,s,t of the mini-triangles in Fig. 5.2 can be evaluated.
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Fig. 5.2: BÉZIER ordinates br,s,t for the six (n=1, . . . , 6) mini-triangles of the
POWELL–SABIN B-splines N j

1 (τ̃ ), N j
2 (τ̃ ) and N j

3 (τ̃ ).
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The BÉZIER ordinates corresponding to V1 are given by

Lj1 = αj1 +
1− λ1

2
β̄j1, L′

j
1 = αj1 +

(1− ν1)

2
γ̄j1, L̃j1 = αj1 +

b

2
β̄j1 +

c

2
γ̄j1, (5.24)

β̄j1 = βj1(ξ2 − ξ1) + γj1(η2 − η1), γ̄j1 = βj1(ξ3 − ξ1) + γj1(η3 − η1), (5.25)

while for V2 they read,

Lj2 = αj2 +
1− µ2

2
β̄j2, L′

j
2 = αj2 +

(1− λ2)

2
γ̄j2, L̃j2 = αj2 +

c

2
β̄j2 +

a

2
γ̄j2, (5.26)

β̄j2 = βj2(ξ3 − ξ2) + γj2(η3 − η2), γ̄j2 = βj2(ξ1 − ξ2) + γj2(η1 − η2), (5.27)

and for V3 they are

Lj3 = αj3 +
1− ν3

2
β̄j3, L′

j
3 = αj3 +

(1− µ3)

2
γ̄j3, L̃j3 = αj3 +

a

2
β̄j3 +

b

2
γ̄j3, (5.28)

β̄j3 = βj3(ξ1 − ξ3) + γj3(η1 − η3), γ̄j3 = βj3(ξ2 − ξ3) + γj3(η2 − η3). (5.29)

For example, the POWELL–SABIN B-splines N j
k(τ̃ ) in the mini-triangle n=3 of

Fig. 5.1(d) can be expressed as




N1
1 (τ̃ )

N2
1 (τ̃ )

N3
1 (τ̃ )

N1
2 (τ̃ )

N2
2 (τ̃ )

N3
2 (τ̃ )

N1
3 (τ̃ )

N2
3 (τ̃ )

N3
3 (τ̃ )




=




aL̃1
1 0 0 0 0 0

aL̃2
1 0 0 0 0 0

aL̃3
1 0 0 0 0 0

bL̃1
2 L̃1

2 µ2L̃
1
2 α1

2 L1
2 µ2L

1
2

bL̃2
2 L̃2

2 µ2L̃
2
2 α2

2 L2
2 µ2L

2
2

bL̃3
2 L̃3

2 µ2L̃
3
2 α3

2 L3
2 µ2L

3
2

cL̃1
3 0 µ3L̃

1
3 0 0 µ3L

′1
3

cL̃2
3 0 µ3L̃

2
3 0 0 µ3L

′2
3

cL̃3
3 0 µ3L̃

3
3 0 0 µ3L

′3
3







B2
200(τ̃ )

B2
110(τ̃ )

B2
101(τ̃ )

B2
020(τ̃ )

B2
011(τ̃ )

B2
002(τ̃ )




, (5.30)

or in matrix-vector format
N e

n(τ̃ ) = Ce
nB(τ̃ ), (5.31)

where the BÉZIER extraction operator Ce
n in Eq. (5.30) contains the BÉZIER ordinates

br,s,t for each POWELL–SABIN B-spline N j
k(τ̃ ) in the mini-triangle n=3 of triangle e

from Fig. 5.1(c),(d). Hence, it is possible to apply the BÉZIER extraction procedure
to POWELL–SABIN B-splines, in a fashion similar to NURBS and T-splines (see BOR-
DEN et al. [13], SCOTT et al. [94]).
Non-Uniform Rational POWELL–SABIN B-splines (NURPS) Rj

k(τ̃ ) can be computed as
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follows

Rj
k(τ̃ ) =

wjkN
j
k(τ̃ )

∑Nv

k̂=1

∑3
ĵ=1w

ĵ

k̂
N ĵ

k̂
(τ̃ )

, (5.32)

with wjk the weights associated to each corner Qj

k
of a POWELL–SABIN triangle. A

NURPS-surface S(τ̃ ) in the physical domain x can be expressed by a map from the
mini-triangle domain τ̃ with

S(τ̃ ) =
Nv∑

k=1

3∑

j=1

Rj
k(τ̃ )P j

k, (5.33)

where the control points P j
k correspond to eachQj

k
, see also Fig. 5.1(b). In matrix-vector

format, the NURPSRe
n for one mini-triangle n of triangle e is obtained from

Re
n(τ̃ ) = WeCe

n

B(τ̃ )

W be
n(τ̃ )

, (5.34)

with

W be
n(τ̃ ) = (wbe

n)
T
B(τ̃ ), wbe

n = (Ce
n)Twe, We = diag(we), (5.35)

where we is the vector containing the weights of triangle e. The derivatives with respect
to coordinates in the domain of the mini-triangle, τ̃ , read

∂Re
n(τ̃ )

∂τ̃i
= WeCe

n

∂

∂τ̃i

(
B(τ̃ )

W be
n(τ̃ )

)
= WeCe

n

(
1

W be
n(τ̃ )

∂B(τ̃ )

∂τ̃i
− ∂W be

n(τ̃ )

∂τ̃i

B(τ̃ )
(
W be

n(τ̃ )
)2

)
.

(5.36)

The derivatives in the physical domain x are subsequently obtained as

∂Re
n(τ̃ )

∂xei
=

2∑

j=1

∂Re
n(τ̃ )

∂τ̃j

∂τ̃j
∂xei

, (5.37)

where

∂τ̃j
∂xei

=




∂xe

∂τ̃1

∂xe

∂τ̃2

∂ye

∂τ̃1

∂ye

∂τ̃2




−1

= J−1, (5.38)

with the JACOBIAN matrix J of the geometry mapping. It was suggested by
SPELEERS et al. [104] to evaluate the integrals for each component of the stiffness matrix
in Eq. (5.13) analytically since the integral of a POWELL–SABIN B-spline N j

k(τ̃ ) over a
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mini-triangle n with area An can be computed as (cf. CHUI & LAI [23])

∫

Ωn

N j
k(τ̃ )dτ̃1dτ̃2 =

An
6

∑

r+s+t=2

br,s,t. (5.39)

Relations for the computation of the product of the derivatives of a POWELL–SABIN

B-spline can then be derived accordingly, see SPELEERS et al. [104]. However, this is
computationally more expensive than using the BÉZIER extraction procedure.

5.2.3 Patch test

Special care must be taken for the selection of the POWELL–SABIN triangles in order to
pass the patch test. For instance, consider the triangulation T in Figs. 5.3(a) and 5.3(b)
consisting of two elements.

Figs. 5.3(a) and 5.3(b) show two different options for the bottom left POWELL–SABIN

triangle. The bottom left POWELL–SABIN triangle in Fig. 5.3(b) is valid since it contains
all POWELL–SABIN points that correspond to the bottom left vertex. Both options yield
an affine transformation when applying the transformation from Eq. (4.52) to the control
pointsP i as depicted in Figs. 5.3(c) and 5.3(d) since the basis functions fulfil the partition
of unity.
The mesh in Fig. 5.3(a) also passes the patch test depicted in Fig. 5.4(a). Fig. 5.4(b) shows
the contour of the basis function for the red control point corresponding to the mesh in
Fig. 5.3(a). The basis function in Fig. 5.4(b) is zero along the left edge. Shifting the
corner of the bottom left POWELL–SABIN triangle as in Fig. 5.3(b) results in a different
basis function for the red control point in Fig. 5.4(c): the basis function is now non-zero
along the left edge. Furthermore, the mesh in Fig. 5.3(b) does not pass the patch test –
applying the boundary conditions in Fig. 5.4(a) does not result in a constant stress in the
x-direction.

5.3 The representation of a disc using NURBS, T-splines,

NURBS-to-NURPS and POWELL–SABIN B-splines

In Section 5.4, an analysis will be carried out for a KIRCHHOFF–LOVE plate with a cir-
cular geometry. Therefore, a number of representations for this geometry using NURBS,
unstructured T-splines, NURBS-to-NURPS and POWELL–SABIN B-splines are created.
The NURBS and NURBS-to-NURPS meshes capture the circular geometry of the disc
exactly while the unstructured T-spline and POWELL–SABIN B-spline mesh only approx-
imate the circle.
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Triangulation T PS refinement T ∗

PS points PS triangles

(a)

Triangulation T PS refinement T ∗

PS points PS triangles

(b)

Initial
physical mesh

Transformed
physical mesh

Control points
Element boundaries

(c)

Initial
physical mesh

Transformed
physical mesh

Control points
Element boundaries

(d)

Fig. 5.3: A triangulation T consisting of two elements with a different choice for the
bottom left POWELL–SABIN triangle in (a) and (b). Both options yield an affine transfor-
mation in (c) and (d) since the POWELL–SABIN B-splines form a partition of unity.

5.3.1 Representation of a disc using NURBS

5.3.1.1 Single patch

An area with a circular boundary can be created with a single quadratic NURBS-patch (or
one element) using nine control points, see Fig. 5.5(a). The isoparametric lines indicate
where singularities (i. e. the determinant of the JACOBIAN matrix J in Eq. (5.38) vanishes)
are introduced: at control points one, three, seven and nine, see also SCHMIDT et al. [93].
Uniform h-refinement will be applied for the convergence study in Section 5.4.
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ūx
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1

y

x

(a) (b) (c)

Fig. 5.4: (a) Patch test for the meshes in Figs. 5.3(a) and 5.3(b). (b) The mesh in Fig. 5.3(a)
passes the patch test – the basis function of the red control point is zero along the left edge.
(c) The mesh in Fig. 5.3(b) with the modified bottom left POWELL–SABIN triangle does
not pass the patch test – the red control point has a non-zero basis function along the left
edge due to the modified POWELL–SABIN triangle.
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Control points
Element boundaries
Isoparametric lines
C0
A-continuity lines

(b)

Fig. 5.5: Representation of a disc using NURBS with (a) one single quadratic
element / patch and (b) a polar parameterisation using four patches.

5.3.1.2 Polar parameterisation

Another possibility to construct a circle is a polar parameterisation that uses four
NURBS-patches and 27 control points, Fig. 5.5(b). This results in a singular / de-
generated point in the centre where the determinant of the JACOBIAN matrix J in
Eq. (5.38) vanishes. Also, four C0

A-continuity lines (orange) are introduced. As for the
single NURBS-patch from the previous section, uniform h-refinement will be applied
for the convergence study in Section 5.4. h-refinement does not change the number of
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C0
A-continuity lines.

Since Fig. 5.5(b) represents a (G1, C0
A)-construction, the bending strip method proposed

by KIENDL et al. [58] can be employed along the C0
A-continuity lines. The bending strip

method adds a stiffness matrix of the form

KBS =

∫

Ω

BTQTDBS QBw dxdy (5.40)

to Eq. (5.13) at the interfaces between patches. In Eq. (5.40),

DBS =
h3

12



EBS 0 0

0 0 0

0 0 0


 (5.41)

represents the penalty matrix with the penalty bending stiffness EBS and

Q =




n1 n2 0

−n2 n1 0

0 0 0


 (5.42)

is the orthogonal rotation matrix with the normal vector n of the bending strip. The
rotation matrix Q aligns the penalty matrix DBS with the bending direction.

5.3.2 Representation of a disc using unstructured T-splines

The approach from Section 4.7 generates C1
A-continuous blending functions that fulfil the

partition of unity for an unstructured quadratic T-spline mesh with extraordinary points.
The T-spline mesh for the circular disc is shown for the index domain in Fig. 5.6(a).

A circular geometry cannot be represented exactly without double knots, see PIEGL &
TILLER [85]. Hence, the unstructured quadratic T-spline mesh can only approximate the
circular geometry since it is C1

A-continuous in the entire domain. The nB control points
on the boundary P i

B are determined by solving

nB∑

i=1

N i(ξ̄k)P
i
B = SCircle(ξ̄k) for k=1 . . . nB. (5.43)

ξ̄ is the coordinate along the circle with 0≤ ξ̄≤360, and SCircle(ξ̄k) the curve representing
the circle. Along the boundary are nB elements. The centre of each boundary element is
located at

ξ̄k =
360

nB
k +

180

nB
for k=1 . . . nB. (5.44)
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Anchors Edges Elements

(a)

Control points
Element boundaries

(b)

Fig. 5.6: An unstructured quadratic T-spline mesh in (a) the index domain and (b) in
the physical domain. (a) Extraordinary points are marked red, spoke edges green and
one-ring neighbourhood elements of an extraordinary point blue. (b) The T-spline mesh
in the physical domain only approximates the circular boundary.

Plugging ξ̄k from Eq. (5.44) into Eq. (5.43) results in the following system




6
8

1
8

0 0 0 . . . 0 1
8

1
8

6
8

1
8

0 0 . . . 0 0

0 1
8

6
8

1
8

0 . . . 0 0
...

...
...

...
... . . . ...

...
1
8

0 0 0 0 . . . 1
8

6
8







P 1
B

T

P 2
B

T

P 3
B

T

...
P nB
B

T




=




STCircle(ξ̄1)

STCircle(ξ̄2)

STCircle(ξ̄3)
...

STCircle(ξ̄nB
)




, (5.45)

which can be solved for the control points on the boundary P i
B. The values in the matrix

of Eq. (5.45) result from



Nk−1(ξk)

Nk(ξk)

Nk+1(ξk)


 =




1
2

0 0
1
2

1 1
2

0 0 1
2






B1(ξk)

B2(ξk)

B3(ξk)


 =




1
2

0 0
1
2

1 1
2

0 0 1
2







1
4
2
4
1
4


 =




1
8
6
8
1
8


 . (5.46)

The location of the control points in the interior of the T-spline mesh in Fig. 5.6 is deter-
mined by solving the problem

∂

∂ξβ

(
∂xα
∂ξβ

+
∂xβ
∂ξα

)
= 0 (5.47)
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in the sub-parameter domain ξα, while the location of the control points on the boundary
P i
B of the disc is prescribed. The resulting T-spline mesh in the physical domain is

depicted in Fig. 5.6(b). Two T-spline meshes with a different refinement level are not
nested – for each refinement level, Eqs. (5.45) and (5.47) are solved for the determination
of the control points. As already discussed in Section 4.7, the BÉZIER extraction operators
Ce for the elements in the one-ring neighbourhood of an extraordinary point are not square
matrices. Hence, these elements cannot be refined hierarchically as in Section 4.6 and the
BÉZIER projection procedure by THOMAS et al. [110] cannot be applied since the inverse
of BÉZIER extraction operator – the reconstruction operator – is required.

5.3.3 Representation of a disc using the NURBS-to-NURPS

methodology

Next, the single NURBS-patch from Section 5.3.1.1 is transformed into a NURPS
mesh (NURBS-to-NURPS) following SPELEERS et al. [106]. The boundary of the
NURBS-to-NURPS matches exactly the boundary defined by the single NURBS-patch,
see Fig. 5.7. In order to represent the circular boundary exactly, the POWELL–SABIN

triangles that correspond to the corners ξ=(0, 0); (0, 1); (1, 0); (1, 1) in the parameter
domain need to be degenerated into a line in the physical domain x (dashed lines in
Fig. 5.7(c) and Fig. 5.7(d)). The NURBS-to-NURPS approach is based on a single
NURBS-patch, and a method for transforming multiple NURBS-patches into a NURPS
has so far not been proposed.

5.3.4 Representation of a disc using POWELL–SABIN B-splines

A linear C0
A-continuous finite element triangulation T can be transformed into a

C1
A-continuous POWELL–SABIN B-spline mesh T ∗. This corresponds to a NURPS

mesh with the location of the control points P j
i =Qj

i
and for all weights wji =1 in

Eq. (5.33), i. e. the parametric and the physical domains, ξ and x, respectively, are
identical. For this case, the circular boundary of the disc is only approximated. The
POWELL–SABIN triangles on the boundary are constrained in such a way that one corner
of the POWELL–SABIN triangle is always equivalent to the vertex coordinate, see Fig. 5.8.
Upon mesh refinement, the POWELL–SABIN triangles on the boundary progressively de-
teriorate into lines, see Fig. 5.8(b).
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Control points
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(c)

Control points
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(d)

Isoparametric lines NURBS
Isoparametric lines NURBS-to-NURPS

(e)

Isoparametric lines NURBS
Isoparametric lines NURBS-to-NURPS

(f)

Fig. 5.7: Generation of a NURBS-to-NURPS mesh from a single NURBS-patch. From
the left to the right column, the triangulation inside the NURBS-patch is refined. (a) and
(b) show the triangulation T and POWELL–SABIN refinement T ∗ in the parameter domain
ξ. (c) and (d) show the NURBS-to-NURPS mesh in the physical domain x; dashed
lines connect the control points of the corners of the POWELL–SABIN triangles. (e) and
(f) show isoparametric lines for the NURBS and the NURBS-to-NURPS meshes in the
physical domain x. Upon refinement, the NURBS-to-NURPS representation converges
to the NURBS parameterisation.
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Triangulation T PS refinement T ∗

PS points PS triangles

(a)

Triangulation T PS refinement T ∗

PS points PS triangles

(b)

Fig. 5.8: Approximation of a circle using POWELL–SABIN B-splines for two different
levels of refinement. The POWELL–SABIN triangles on the boundary are constrained in
such a way that one corner of each POWELL–SABIN triangle is equivalent to the vertex.

5.4 Numerical examples

In this section, the circular KIRCHHOFF–LOVE plate in Fig. 5.9 is considered for two
different boundary conditions: simply supported and clamped.

w
r

h

p0

a

(a)

w
r

h

p0

a

(b)

Fig. 5.9: Computational set-up for (a) the simply supported and (b) the clamped circular
disc.

The parameters are: YOUNG’s modulus E=2.1 · 105 MPa, POISSON’s ratio ν=0.3,
force per unit area p0 =0.16 MPa, radius a=250 mm and thickness h=10 mm.
The analytical solutions wex for both cases can be found in TIMOSHENKO &
WOINOWSKY-KRIEGER [112, Chapter 3]. In the following, the results for the single
NURBS-patch from Section 5.3.1.1 will be plotted in all convergence plots for compari-
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son. The L2 error norm is computed from

wL2 =

√∫
Ω

(w − wex)2 dxdy
√∫

Ω
w2

ex dxdy
. (5.48)

The convergence rate for the fourth order partial differential equation in Eq. (5.1) is equal
to two for quadratic basis functions (p=2) according to TAGLIABUE et al. [109],

wL2 ≤ Chmin(p+1,2p−2) = Ch2, (5.49)

with the mesh size h and a constant C. In order to transform Eq. (5.49) onto the degrees
of freedom (DOF), the relation

h =
p+ 1√

DOF
(5.50)

is used so that
wL2 ≤ C̃ DOF−1 (5.51)

is obtained. For the NURBS and T-spline meshes, the deflection w for the outer control
points is set to zero for the simply supported case, while the deflection w of the two
outer rows of control points is set to zero for the clamped case. For the POWELL–SABIN

B-splines and NURBS-to-NURPS, the deflection w of a control point associated to a
vertex on the boundary is set to zero for the simply supported case if αjk>0 holds in
Eq. (5.20a). For the clamped case, the deflection w of all three control points which are
associated to a vertex that lies on the boundary is set to zero.
Fig. 5.10 shows the error in the L2 error norm when the circle is represented with four
NURBS-patches and a polar parameterisation with a singular point in the centre as in
Section 5.3.1.2.

For this (G1, C0
A)-construction, the bending strip method has been applied along the

C0
A-continuity lines for different values of the penalty stiffness EBS . The results do not

converge well for the finer meshes. Moreover, the value of the penalty stiffness EBS for
which the lowest error wL2 is obtained, is different for both boundary conditions.
Fig. 5.11 gives the results upon mesh refinement for the unstructured T-spline mesh from
Section 5.3.2, again together with the results that stem from the single NURBS-patch for
comparison.

In contrast to the previous (G1, C0
A)-construction using the bending strip method, a con-

stant convergence rate is observed for the simply supported and clamped case for the
unstructured T-spline mesh. The error wL2 for the unstructured T-spline mesh is larger
than the error wL2 for the single NURBS-patch. A convergence study was also carried out
for an unstructured T-spline mesh without the G1-construction that yields C1

A-continuous

114



5 POWELL–SABIN B-splines

100 101 102 103 104 105
10−6

10−5

10−4

10−3

10−2

10−1

100

1

1

DOF

w
L

2
fo

rs
im

pl
y

su
pp

or
te

d
ca

se

One NURBS-patch Polar EBS = 106 MPa
Polar EBS = 107 MPa Polar EBS = 108 MPa

(a)

100 101 102 103 104 105
10−4

10−3

10−2

10−1

100

1

1

DOF

w
L

2
fo

rc
la

m
pe

d
ca

se

One NURBS-patch Polar EBS = 106 MPa
Polar EBS = 107 MPa Polar EBS = 108 MPa

(b)

Fig. 5.10: Convergence plots for the single NURBS-patch and for the polar NURBS
parameterisation using four NURBS-patches for (a) the simply supported and (b) the
clamped boundary conditions.
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Fig. 5.11: Convergence plots for the single NURBS-patch and the unstructured T-spline
mesh for (a) the simply supported and (b) the clamped boundary conditions.

blending functions for the one-ring neighbourhood elements, i. e. a T-spline mesh that is
only C0

A-continuous along spoke edges and non-standard. This T-spline mesh gives almost
identical results for the error wL2 and the results are not plotted in Fig. 5.11 since they are
not distinguishable from the error for standard T-spline meshes with C1

A-continuity along
spoke edges.
Finally, the results for the NURBS-to-NURPS configuration and for the POWELL–SABIN

B-spline computations are given in Fig. 5.12.

Unexpectedly, the POWELL–SABIN B-spline mesh, which only approximates the
geometry, gives the lowest error wL2 in case of the simply supported boundary condi-
tions – even lower than the single NURBS-patch. This is not the case for the clamped
boundary conditions, but also then the POWELL–SABIN B-spline mesh gives results that
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Fig. 5.12: Convergence plots for the single NURBS-patch, the NURBS-to-NURPS ap-
proach and the POWELL–SABIN B-splines for (a) the simply supported and (b) the
clamped boundary conditions.

are superior to those from the NURBS-to-NURPS approach. A possible explanation is
that the effect of the distorted elements (degenerated POWELL–SABIN triangles), which
are introduced by the NURBS-to-NURPS approach, is not compensated by the improved
(exact) representation of the boundary.
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6 POWELL–SABIN B-splines for smeared
and discrete fracture approaches

In the following, the implicit fourth order gradient damage model for quasi-brittle mate-
rials exploiting the higher continuity of POWELL–SABIN B-splines is considered. Af-
terwards, POWELL–SABIN B-splines are applied to discrete fracture while cohesive
elements are inserted along the crack.
Throughout, index notation is adopted with respect to a CARTESIAN frame.

6.1 Implicit higher order gradient damage model

NURBS and T-splines have been utilised for the implicit higher order gradient damage
model by VERHOOSEL et al. [115]. Herein, it will be demonstrated how POWELL–SABIN

B-splines can be applied to these kind of problems. They are C1
A-continuous for any trian-

gulation and therefore do not require any user intervention when generating the meshes.
Next, the continuum and numerical formulation for the implicit higher order gradient
damage model is introduced. Thereafter, two numerical examples are considered, in-
cluding the advantages of POWELL–SABIN B-splines compared to NURBS and T-splines
regarding the discretisation.

6.1.1 Continuum formulation

The implicit higher order gradient damage model requires the solution of two coupled
field problems. The first field problem to be solved is the stress equilibrium

σij,i = 0 (6.1)

subject to the boundary conditions

σijnj = hi on ∂Ωh, ui = ūi on ∂Ωu, (6.2)

with the decomposition of the boundary ∂Ω into the parts ∂Ωh and ∂Ωu (∂Ωh ∩ ∂Ωu=∅,
∂Ωh ∪ ∂Ωu=∂Ω), the prescribed surface traction h, prescribed displacement ū and nor-
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mal vector n on the boundary. In Eq. (6.1), σ is the stress tensor

σij = (1− ω)Cijklεkl, (6.3)

with the elasticity tensor C of the undamaged material, the infinitesimal strain tensor

εij =
1

2
(ui,j + uj,i) , (6.4)

where u is the displacement, and ω ∈ [0, 1] the scalar damage parameter (ω=0 un-
damaged, ω=1 fully broken). The damage ω is related to the monotonically in-
creasing history parameter κ, ω=ω(κ). In order to ensure that κ can only grow, the
KARUSH–KUHN–TUCKER [56, 64] conditions

f ≤ 0, κ̇ ≥ 0, κ̇f = 0 (6.5)

need to be satisfied. Monotonicity of κ involves monotonicity of ω. The loading function

f = η̄ − κ (6.6)

will be used where η̄ is the non-local equivalent strain. The non-local equivalent strain
η̄ was introduced in PEERLINGS et al. [82] since strain softening in conventional con-
tinuum damage models does not result in a unique solution upon mesh refinement. In the
following, a brief outline of introducing non-locality into the model is given.
The non-local equivalent strain η̄ is defined as the volume average of the local equivalent
strain η

η̄(x) =

∫

Ω

g(x, x̃)η(x̃)dx̃
∫

Ω

g(x, x̃)dx̃
, (6.7)

with the weighting function

g(x, x̃) = exp

(
−‖x− x̃‖

2
2

2l2c

)
, (6.8)
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where lc is the length scale parameter. Expressing the local equivalent strain η(x̃) by a
TAYLOR series around the point x̃=x gives

η(x̃) = η(x) + η,̃i|x(x̃i − xi) +
1

2
η,̃ij̃|x(x̃i − xi)(x̃j − xj)+

1

6
η,̃ij̃k̃|x(x̃i − xi)(x̃j − xj)(x̃k − xk)+

1

24
η,̃ij̃k̃l̃|x(x̃i − xi)(x̃j − xj)(x̃k − xk)(x̃l − xl) + . . . , (6.9)

which results for the non-local equivalent strain η̄ with Eq. (6.7) in

η̄(x) = η(x) +
l2c
2
η,̃ĩi(x) +

l4c
8
η,̃ĩij̃j̃(x) + . . . . (6.10)

Eq. (6.10) contains the derivatives with respect to the coordinate system x̃, and x is the
location of a certain point. Since the point x takes all values in x̃, i. e. x and x̃ are
equivalent, Eq. (6.10) can be written as

η̄(x) = η(x) +
l2c
2
η,ii(x) +

l4c
8
η,iijj(x) + . . . . (6.11)

Eq. (6.11) represents the explicit gradient damage formulation. The implicit formulation
can be obtained as follows. Differentiating Eq. (6.11) twice and multiplying by l2c

2
results

in
l2c
2
η̄,ii =

l2c
2
η,ii +

l4c
4
η,iijj +

l6c
16
η,iijjkk + . . . , (6.12)

while differentiating Eq. (6.11) four times and multiplying by l2c
8

gives

l4c
8
η̄,iijj =

l4c
8
η,iijj +

l6c
16
η,iijjkk +

l8c
64
η,iijjkkll + . . . . (6.13)

Subtracting and adding Eqs. (6.12) and (6.13) from Eq. (6.11) yields

η̄ − l2c
2
η̄,ii +

l4c
8
η̄,iijj = η +

l8c
64
η,iijjkkll + . . . . (6.14)

Neglecting higher order terms in Eq. (6.14) results in a fourth order partial differential
equation for the non-local equivalent strain η̄

η̄ − l2c
2
η̄,ii +

l4c
8
η̄,iijj = η, (6.15)

which has to be solved together with Eq. (6.1). The boundary conditions

η̄,ini = 0, η̄,ijni = 0, η̄,ijjni = 0 (6.16)
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are imposed since it was observed by VERHOOSEL et al. [115] that ignoring the boundary
terms has a minor effect on the results. Still, it is not clear how to interpret the boundary
conditions physically. Multiplying Eq. (6.1) by a test function δuj , Eq. (6.15) by a test
function δη̄ and integrating over the domain Ω results after integration by parts, GAUSS’
theorem and the boundary conditions in Eqs. (6.2) and (6.16) in

∫

Ω

δui,jσij dV =

∫

∂Ωh

δuihi dA,
∫

Ω

δη̄η̄ +
l2c
2
δη̄,iη̄,i +

l4c
8
δη̄,ij η̄,ij dV =

∫

Ω

δη̄η dV.
(6.17)

6.1.2 Finite element formulation

Discretisation of the domain Ω into E elements,

Ω =
E⋃

e=1

Ωe, (6.18)

and approximation of the displacement ui, the non-local strain η̄ and their derivatives,

ue = Nuu, δue = Nuδu, εe = Bu u, δεe = Buδu,

η̄e = NT
η̄ η̄, δη̄e = NT

η̄ δη̄, η̄e
,i

= Bη̄ η̄, δη̄e
,i

= Bη̄δη̄,

η̄e
,ij

= Bη̄η̄ η̄, δη̄e
,ij

= Bη̄η̄δη̄,

(6.19)

with

ue =

[
ue1

ue2

]
, δue =

[
δue1

δue2

]
, εe =



εe11

εe22

2εe12


 , δεe =



δεe11

δεe22

2δεe12


 ,

η̄e
,i

=

[
η̄e,1

η̄e,2

]
, δη̄e

,i
=

[
δη̄e,1

δη̄e,2

]
, η̄e

,ij
=




η̄e,11

η̄e,22√
2η̄e,12


 , δη̄e

,ij
=




δη̄e,11

δη̄e,22√
2δη̄e,12




(6.20)
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and

Nu =

[
N1 0 N2 0 . . .

0 N1 0 N2 . . .

]
, Bu =



N1,1 0 N2,1 0 . . .

0 N1,2 0 N2,2 . . .

N1,2 N1,1 N2,2 N2,1 . . .


 ,

NT
η̄ =

[
N1 N2 . . .

]
, Bη̄ =

[
N1,1 N2,1 . . .

N1,2 N2,2 . . .

]
, Bη̄η̄ =




N1,11 N2,11 . . .

N1,22 N2,22 . . .√
2N1,12

√
2N2,12 . . .




(6.21)
gives the following matrix-vector notation for Eq. (6.17)

δuT
∫

Ω

BT
u (1− ω)CBu dVu

︸ ︷︷ ︸
f int

u
(η̄,u)

−δuT
∫

∂Ωh

NT
uh dA

︸ ︷︷ ︸
f ext

u

= 0,

δη̄T
(∫

Ω

N η̄N
T
η̄ +

l2c
2
BT
η̄Bη̄ +

l4c
8
BT
η̄η̄Bη̄η̄ dVη̄ −

∫

Ω

N η̄η dV

︸ ︷︷ ︸
f int

η̄
(η̄,u)

)
= 0.

(6.22)

Setting h=0, using arbitrary δu, δη̄ and taking into account nodal forces λf̂ yields the
following system of equations to be solved

H(η̄,u, λ) =




f int

η̄
(η̄,u)

f int

u
(η̄,u)− λf̂
ϕ(u, λ)


 =



0

0

0


 , (6.23)

where λ is the loading parameter, f̂ the normalised load vector and ϕ an arc-length func-
tion. Here, the arc-length function based on the rates of internal U̇ and dissipated energy
ĖD from Chapter 2 is exploited. Linearisation of Eq. (6.23) yields the solution for the
i+1-th iteration in the k+1-th increment for η̄i+1

k+1
, ui+1

k+1 and λi+1
k+1



η̄

u

λ




i+1

k+1

=



η̄

u

λ




i

k+1

−K−1

T

∣∣∣∣
i

k+1

·




f int

η̄
(η̄,u)

f int

u
(η̄,u)− λf̂
ϕ(u, λ)




i

k+1

, (6.24)
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with the tangential stiffness matrix

K
T

(η̄,u, λ) =




∂f int

η̄
(η̄,u)

∂η̄

∂f int

η̄
(η̄,u)

∂u
0

∂f int

u
(η̄,u)

∂η̄

∂f int

u
(η̄,u)

∂u
−f̂

0T
∂ϕ(u, λ)

∂u

∂ϕ(u, λ)

∂λ




. (6.25)

6.1.3 Numerical examples

In this section, POWELL–SABIN B-splines are used for the L-shaped specimen considered
by VERHOOSEL et al. [115]. Afterwards, POWELL–SABIN B-splines are utilised for a
single-edge notched beam (SENB) subject to an antisymmetric four-point shear loading.

6.1.3.1 L-shaped specimen

The set-up for the L-shaped specimen is given in Fig. 6.1. Parameters and coefficients are
taken in accordance with VERHOOSEL et al. [115].

250

y

x

250

ū

ū

25
0

25
0

Platen

Platen

thickness t = 200

Fig. 6.1: Set-up for the L-shaped specimen, dimensions in mm.

The L-shaped sample has been discretised using NURBS, T-splines and POWELL–SABIN

B-splines. A C1
A-continuous NURBS mesh is depicted in Fig. 6.2. This mesh contains

two pairs of overlapping control points which results in a vanishing determinant of the
JACOBIAN matrix Jij = ∂xi

∂ξ̃j
. It has been demonstrated by LIPTON et al. [68] that these

discretisations can still be robust. However, when several NURBS-patches are used, then
they join with C0

A-continuity.
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12
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6=9
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4=7 5

321

Control points
Element boundaries

Fig. 6.2: Quadratic C1
A-continuous NURBS mesh for the knot vectors Ξ = {0, 0, 0, 1, 1, 1}

andH = {0, 0, 0, 1
2
, 1, 1, 1}.

In order to obtain for an L-shaped geometry C1
A-continuity everywhere using T-splines,

the mesh depicted in Fig. 6.3 can be used. Utilising the BÉZIER extraction operator as
in Chapter 4 yields that the T-spline mesh is standard, i. e all blending functions sum to
one. Furthermore, the BÉZIER extraction operator is a square matrix in each element.
The blue marked corner in Fig. 6.3(b) is not interpolatory, i. e. there is no control point.
Modelling the L-shaped geometry with an interpolatory control point would introduce a
C0

A-continuity into the mesh.
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Elements
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Control points
Element boundaries

(b)

Fig. 6.3: Quadratic C1
A-continuous T-spline mesh for the L-shaped geometry in (a) the

index (u`) and parameter (ξu` ) domain and (b) the physical (x`) domain.

Alternatively, Fig. 6.4 shows the POWELL–SABIN B-spline mesh that can be obtained
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directly from an existing triangulation T , see also Chapter 5 for an introduction into
POWELL–SABIN B-splines.

Triangulation T PS refinement T ∗

PS points PS triangles

Fig. 6.4: Triangulation T (thick black lines), POWELL–SABIN refinement T ∗ (thin
black lines), POWELL–SABIN points (green) and POWELL–SABIN triangles (red) for an
L-shaped geometry.

Here and in the following, the POWELL–SABIN triangles on the boundary are constrained
as follows: for an angle of γ<180◦ two edges of the POWELL–SABIN triangle lie on the
boundary; for an angle of γ=180◦, one edge of the POWELL–SABIN triangle lies on the
boundary, see also Fig. 6.4. γ refers to the angle at which two boundary edges intersect
at a boundary vertex. No restriction is imposed on the POWELL–SABIN triangles on an
internal discontinuity (see Section 6.2).
The linear constraints along the platens in Fig. 6.1 are imposed using a master-slave rela-
tion as follows (see also Fig. 6.5 for the bottom platen).

Let uA and uB be the displacement at the left and right corner of the bottom platen with
coordinates xA and xB, respectively. A and B are the master control points. Then, for any
slave control point S with coordinates xS along the edge, its displacement uS is set to

uS =

(
1− xS − xA

xB − xA

)
uA +

xS − xA

xB − xA
uB. (6.26)

This master-slave relation needs to be incorporated into Eq. (6.24) as described by FE-
LIPPA [41, Chapter 8]. Eq. (6.26) follows from the intercept theorem

uS − uA

xS − xA
=
uB − uA

xB − xA
. (6.27)
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Platen

Triangulation T PS refinement T ∗

PS triangles Master
Slave

A
ū

B
y

x

Fig. 6.5: Linear constraints along the bottom platen in Fig. 6.1 with POWELL–SABIN

B-splines.

The following parameters are used: YOUNG’s modulus E=10 · 103 MPa, POISSON’s
ratio ν=0.2 and length scale lc=5

√
2 mm. Plane stress is assumed. The thickness of the

specimen is taken as t=200 mm.
The modified VON MISES local equivalent strain defined by DE VREE et al. [30]

η(ε) =
k − 1

2k(1− 2ν)
I1(ε) +

1

2k

√(
k − 1

1− 2ν
I1(ε)

)2

+
12k

(1 + ν)2
J2(ε), (6.28)

with the first invariant of the strain tensor,

I1(ε) = εkk, (6.29)

and the second invariant of the deviatoric strain tensor,

J2(ε) =
1

2
εijεij −

1

6
I1(ε)2, (6.30)

is used. In Eq. (6.28), k=10 in order to account for different strengths in compression
and tension. The following damage law from GEERS et al. [44]

ω(κ) =





0 κ ≤ κ0

1− κ0

κ

(
1− α + α exp

(
β(κ0 − κ)

))
κ > κ0

, (6.31)

with κ0 =4 · 10−4, α=0.98 and β = 80 is utilised. A displacement control is applied
to the left corner of the bottom platen and the bottom corner of the left platen with an
increment of ∆ū=0.05 mm. The meshes for the POWELL–SABIN B-splines are refined
uniformly. Fig. 6.6 shows the force-displacement curves for four different mesh sizes.
The legend entry displays the number of degrees of freedom (DOF).
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Fig. 6.6: Force-displacement curves for the L-shaped sample using the implicit fourth
order gradient damage model for four different mesh sizes.

Fig. 6.7 shows the contours for the damage field ω and the first principal stress σ1 for the
mesh with 20322 DOF at a displacement of ū=1.9 mm.
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0.4

0.6

0.8
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0

2.76

(b)

Fig. 6.7: L-shaped sample in the deformed configuration at a displacement of ū=1.9 mm
for the mesh with 20322 DOF. Displacements are amplified by a factor of 20. Contours
for (a) damage field ω and (b) first principal stress field σ1.

A comparison of the force-displacement curve for the mesh with 20322 DOF when solv-
ing the second order and fourth order gradient damage formulation is depicted in Fig. 6.8.

6.1.3.2 Single-edge notched beam

As a second example, the SENB is considered. The parameters and coefficients are taken
from GUTIÉRREZ [49]. The geometry and the boundary conditions are given in Fig. 6.9.
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Fig. 6.8: Force-displacement curves for the L-shaped sample using second and fourth
order formulations for the mesh with 20322 DOF.

thickness t = 100y
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80

18020 20180
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Fig. 6.9: Set-up for the SENB, dimensions in mm.

The two platens at the top and at the bottom are not modelled explicitly in the fi-
nite element model. Instead, they are incorporated by means of linear constraints with
a master-slave dependency as in the previous section. For the platen at the top (see
Fig. 6.10(a)), the displacement of the orange control points (circles) is set to zero. The
master control point C is marked blue. The displacement of the slave control points
(green) is set to

uS =

(
1− xS − xC

xD − xC

)
uC. (6.32)

At the vertex D (which is not a control point) the displacement is zero.
At the bottom platen (cf. Fig. 6.10(b)), f̂ jk =αjk is imposed for the two orange control
points (circles). The orange control points correspond to the vertex G marked with an
orange square. Since one edge of the POWELL–SABIN triangle for vertex G lies on the
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boundary, αjk=0 for the third control point. This yields with Eq. (5.21a) the required
prescribed load for the bottom platen. Furthermore, the relation

uS =

(
1− xS − xE

xF − xE

)
uE +

xS − xE

xF − xE
uF (6.33)

is incorporated into Eq. (6.24) where S are the slave control points (green) and E and F
are the master control points (blue).

Triangulation T

Platen

PS refinement T ∗

PS triangles u = 0

C

Master Slave

D

(a)

Platen

Triangulation T PS refinement T ∗

PS triangles f̂ j
k = αj

k

Master Slave

F

GE

λf̂ j
k λf̂ j

k

(b)

Fig. 6.10: Applying the linear constraints along the platens in Fig. 6.9 to the control
points. Control points are indicated by circles, vertices by squares.

For the fixed boundary condition at the top right, the displacement in the vertical direction
of the two control points (marked orange) in Fig. 6.11(a) is set to zero. The boundary con-
dition at the bottom left is imposed by setting f̂ jk =αjk for the two control points (orange)
in Fig. 6.11(b).

Triangulation T PS refinement T ∗

PS triangles uy = 0
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k
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1
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(b)

Fig. 6.11: Applying the boundary conditions in Fig. 6.9 to the control points.

The material parameters of the concrete are: YOUNG’s modulus E=35 · 103 MPa and
POISSON’s ratio ν=0.2 under a plane stress assumption. The thickness of the specimen
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is taken as t=100 mm. The length scale parameter is set to lc=
√

2 mm2. Again, the
modified VON MISES local equivalent strain from Eq. (6.28) and the damage law from
Eq. (6.31) with the parameters k=10, κ0 =6 · 10−5, α=0.96 and β=100 are used. In
order to trace the equilibrium path, the arc-length method from Chapter 2 is employed
with the parameters ∆τ=8 kN and a=0.25.
The meshes are refined uniformly. Fig. 6.12 shows the force-displacement curves. The
crack mouth sliding displacement (CMSD, difference in vertical displacement between
the right and left notch tips) is plotted along the x-axis and the force P = 11

10
λ is plotted

along the y-axis.
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Fig. 6.12: Force-displacement curves for the SENB with the implicit fourth order gradient
damage model for three different mesh sizes.

Fig. 6.13(a) shows for the SENB with 74448 DOF at a CMSD of 0.04 mm the damage
field ω and stress field σxx, respectively. For coarser meshes (less than 19044 DOF), the
SENB may fail due to the damage zone which starts to grow at the bottom left edge while
the damage zone at the notch does not propagate. Hence, fine meshes are required in
order to obtain results that are in agreement with the experiments by SCHLANGEN [92].

6.2 Cohesive zone modelling

In the following, the continuum and numerical formulation for a discrete approach to
fracture adding cohesive elements along the crack path are derived. Then, the re-meshing
algorithm is explained. As a numerical example, the SENB is considered again. After
demonstrating the approach with POWELL–SABIN B-splines, the approach using struc-
tured T-splines for cohesive zone modelling is discussed.
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Fig. 6.13: SENB in the deformed configuration at a CMSD of 0.04 mm for the mesh with
74448 DOF. Displacements are amplified by a factor of 200. Contours for (a) damage
field ω and (b) stress field σxx.

6.2.1 Continuum formulation

For the cohesive zone modelling, the stress equilibrium

σij,i = 0 (6.34)

subject to the boundary conditions

σijnj = hi on ∂Ωh, ui = ūi on ∂Ωu (6.35)

needs to be solved. The boundary ∂Ω is decomposed into the parts ∂Ωh and ∂Ωu

(∂Ωh ∩ ∂Ωu=∅, ∂Ωh ∪ ∂Ωu=∂Ω), see Fig. 6.14(a). In Eq. (6.35), h and ū are the pre-
scribed surface traction and prescribed displacement, respectively. n is the normal vector
on the boundary ∂Ωh.

A discontinuity Γd is present within the domain Ω. It consists of two overlapping bound-
aries, Γ+

d and Γ−d see Fig. 6.14(b). Along each boundary Γ+
d and Γ−d

σijn
+
j = t+i on Γ+

d , σijn
−
j = t−i on Γ−d (6.36)

are imposed. t+ and t− are the tractions in the cohesive zone on the positive and negative
side, respectively. n+ and n− are the normal vectors on Γ+

d and Γ−d . Setting

ti = t−i = σijn
−
j (6.37)

results in
t+i = σijn

+
j = −σijn−j = −ti. (6.38)

In contrast to Eq. (6.3) for the damage model, the stress tensor σ in Eq. (6.34) does not
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y

x

Γd

Ω

∂Ωu

u= ū

∂Ωh

h

(a) (b)

Γ+
d

Γ−
d

n−
n+

Fig. 6.14: (a) Domain Ω with internal discontinuity Γd and decomposition of the boundary
∂Ω into ∂Ωh and ∂Ωu. (b) Discontinuity Γd with overlapping positive and negative side
Γ+
d and Γ−d , respectively.

depend on a damage parameter and is computed with

σij = Cijklεkl, (6.39)

where ε is the infinitesimal strain tensor

εij =
1

2
(ui,j + uj,i) . (6.40)

Multiplying Eq. (6.34) by a test function δuj and integrating over the domain Ω yields
after integration by parts, use of GAUSS’ theorem and Eqs. (6.35) – (6.38)

∫

Ω

δui,jσij dV +

∫

Γ+
d

δu+
i ti dA−

∫

Γ−
d

δu−i ti dA =

∫

∂Ωh

δuihi dA. (6.41)

Since ∫

Γ+
d

. . . dA =

∫

Γ−
d

. . . dA =

∫

Γd

. . . dA, (6.42)

Eq. (6.41) can be written with the crack opening [[ui]]=u+
i −u−i as

∫

Ω

δui,jσij dV +

∫

Γd

δ[[ui]]ti dA =

∫

∂Ωh

δuihi dA. (6.43)
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6.2.2 Finite element formulation

Discretisation of the domain Ω into E elements,

Ω =
E⋃

e=1

Ωe, (6.44)

and approximation of the the displacement ui and its derivatives,

ue = Nuu, δue = Nuδu, εe = Bu u, δεe = Buδu, (6.45)

with

ue =

[
ue1

ue2

]
, δue =

[
δue1

δue2

]
, εe =



εe11

εe22

2εe12


 , δεe =



δεe11

δεe22

2δεe12


 (6.46)

and

Nu =

[
N1 0 N2 0 . . .

0 N1 0 N2 . . .

]
, Bu =



N1,1 0 N2,1 0 . . .

0 N1,2 0 N2,2 . . .

N1,2 N1,1 N2,2 N2,1 . . .


 (6.47)

results in the matrix-vector notation for Eq. (6.43)

δuT
(∫

Ω

BT
uCBu dVu+

∫

Γd

(N+
u
T −N−u

T
)t dA

)

︸ ︷︷ ︸
f int

u
(u)

−δuT
∫

∂Ωh

NT
uh dA

︸ ︷︷ ︸
f ext

u

= 0. (6.48)

The traction t in the global coordinate system can be obtained from the local traction td
with

t = QT td, (6.49)

where Q is the orthogonal rotation matrix,

Q = Q− =

[
n−x n−y

−n−y n−x

]
, (6.50)

and n− the normal vector from the minus side of the internal discontinuity, Γ−d , see
Fig. 6.14(b). td itself depends on the crack opening [[ud]] in the local coordinate sys-
tem of the discontinuity Γd, td=td([[ud]]). The local jump [[ud]] can be evaluated from the
transformation

[[ud]] = Q[[u]]. (6.51)
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The vectors for the local traction td and local jump [[ud]] consist of a normal and shear
component

td =

[
tn

ts

]
, [[ud]] =

[
[[un]]

[[us]]

]
. (6.52)

The BÉZIER ordinates of the BÉZIER extraction operator in Eq. (5.31) that are required to
compute the matrices N+

u and N−u in Eq. (6.48) are different on both sides of the internal
discontinuity Γd. This stems from the fact that pairs of POWELL–SABIN triangles on
either side of Γd are in general not symmetric, see also Fig. 6.15.

Fig. 6.15: Pairs of POWELL–SABIN triangles (red) along the discontinuity Γd (thick black
line) are not symmetric. This results in different BÉZIER ordinates for the BÉZIER ex-
traction operator and in different basis functions N+

u and N−u on both sides.

With h=0, arbitrary δu and nodal forces λf̂ for Eq. (6.48), the following system of
equations needs to be solved

H(u, λ) =

[
f int

u
(u)− λf̂
ϕ(u, λ)

]
= 0, (6.53)

where λ is the loading parameter, f̂ the normalised load vector and ϕ an arc-length func-
tion. Linearisation of Eq. (6.53) yields the solution for the i+1-th iteration in the k+1-th
increment for ui+1

k+1 and λi+1
k+1

[
u

λ

]i+1

k+1

=

[
u

λ

]i

k+1

−K−1

T

∣∣∣∣
i

k+1

·
[
f int

u
(u)− λf̂
ϕ(u, λ)

]i

k+1

, (6.54)
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with the tangential stiffness matrix

K
T

(u, λ) =




∂f int

u
(u)

∂u
−f̂

∂ϕ(u)

∂u

∂ϕ(u, λ)

∂λ




. (6.55)

Different from Section 6.1, a dissipation-based arc-length method for ϕ is not used. Since
the crack does not grow in each increment, new cohesive elements are not inserted in
each step. Therefore, the amount of energy that can be dissipated is different depend-
ing on whether a new cohesive element has been added or not. Thus, an arc-length
method which controls the crack mouth sliding displacement (CMSD) is exploited, see
also DE BORST [28]. However, the arc-length method employed here is slightly different
from DE BORST [28]. The constraint

uR
k − uL

k = k∆ūCMSD (6.56)

is enforced, where uR
k is the displacement on the right and uL

k the displacement on the left
tip of the notch (see Fig. 6.9) in the k-th increment and ∆ūCMSD the prescribed CMSD.
In the k+1-th increment,

uR
k+1 − uL

k+1 = (k + 1)∆ūCMSD (6.57)

needs to be fulfilled. Subtracting Eq. (6.56) from Eq. (6.57) results in

uR
k+1 − uR

k − (uL
k+1 − uL

k ) = (k + 1− k)∆ūCMSD, (6.58)

∆uR −∆uL = ∆ūCMSD, (6.59)

so that the following arc-length method has to be satisfied in each increment

ϕ(uk+1) = ∆uR −∆uL −∆ūCMSD. (6.60)

Since ϕ depends only on the displacement vector u in Eq. (6.60), the term ∂ϕ(u,λ)
∂λ

be-
comes zero in Eq. (6.55). This would result in a singular tangential stiffness matrix K

T
.

Therefore, Eq. (6.54) cannot be used to solve the problem. However, the linearised form
of Eq. (6.53) can be solved for ui+1

k+1 and λi+1
k+1 in a staggered manner according to DE
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BORST et al. [29, Chapter 4]. In a first step,

δui+1
k+1

I
=

(
∂f int

u
(u)

∂u

∣∣∣∣
i

k+1

)−1

· f̂ , (6.61)

δui+1
k+1

II
=

(
∂f int

u
(u)

∂u

∣∣∣∣
i

k+1

)−1

·
(
λik+1f̂ − f int

u
(uik+1)

)
(6.62)

are solved. Then,

δλi+1
k+1 =

−ϕ− ∂ϕ

∂u
δui+1

k+1

II

∂ϕ

∂u
δui+1

k+1

I
+
∂ϕ

∂λ

, (6.63)

δui+1
k+1 = δλi+1

k+1δu
i+1
k+1

I
+ δui+1

k+1

II (6.64)

are computed which finally results in

ui+1
k+1 = uik+1 + δui+1

k+1, (6.65)

λi+1
k+1 = λik+1 + δλi+1

k+1. (6.66)

6.2.3 Re-meshing

After finding an equilibrium in increment k+1 for Eq. (6.53), the first principal stress
σ1 at the crack tip (black vertex in Fig. 6.16) is evaluated. Due to the C1

A-continuity of
the POWELL–SABIN B-splines, σ1 can be computed directly at the vertex. When the
first principal stress exceeds the critical stress tult, the vector normal to the first principal
stress direction is computed. The location, where this vector intersects an element edge
is highlighted red in Fig. 6.16. This marks the location of the new crack tip. As a next
step, elements in the neighbourhood of the new crack tip have to be re-meshed while
the positions of the vertices along the crack path and the new crack tip are held fixed.
Also, vertices on and outside the blue polygon in Fig. 6.16 are not allowed to move and
re-meshing is applied within the blue polygon. For local re-meshing, the approach by
PERSSON & STRANG [83] is used which interprets the mesh as a truss structure and finds
an equilibrium such that forces at the vertices become zero.

After re-meshing, the new POWELL–SABIN triangles have to be determined locally and
Eq. (6.53) has to be solved again for increment k+1 with the extended crack. When
solving Eq. (6.53) for increment k+1, the displacement vector ũk for increment k on the
updated mesh is required. The vector ũk can be obtained by solving locally the following
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(a) (b)

Fig. 6.16: Mesh in the deformed configuration (a) before and (b) after re-meshing. The
black circle marks the old crack tip where the critical stress tult is exceeded. The red
circle shows the location of the new crack tip. Within the blue polygon, a local re-meshing
procedure is applied. Vertices along the existing crack path, the new crack tip and vertices
on and outside the blue polygon are held fixed.

problem in the re-meshed domain

min

(
1

2

∫

Ω

‖Ñuũk −Nuuk‖
2

2
dV

)
, (6.67)

where Ñu contains the basis functions on the updated mesh. Eq. (6.67) results in the
following system ∫

Ω

ÑT
u Ñuũk dV =

∫

Ω

ÑuNuuk dV, (6.68)

which can be solved directly for ũk.

6.2.4 Single-edge notched beam

As a numerical example for cohesive zone modelling, the SENB from Section 6.1.3.2
is re-considered. Parameters and coefficients are taken from VERHOOSEL et al. [116].
The material parameters are: YOUNG’s modulus E=35 · 103 MPa and POISSON’s ra-
tio ν=0.2 with a plane stress assumption. The concrete is modelled linearly elastic.
The thickness of the beam is t=100 mm and the value of the critical stress is set to
tult =2.8 MPa. For the local traction td, the relations from WELLS & SLUYS [122] are
used. The cohesive law (see Fig. 6.17) for the normal direction reads

tn = tultexp

(
−tult

Gc
κ

)
, (6.69)
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where the history parameter κ is determined by the loading function

f = [[un]]− κ, (6.70)

and evolves according to the KARUSH–KUHN–TUCKER conditions in Eq. (6.5). The
critical energy release rate and penetration stiffness are taken as Gc=0.1 N/mm and
kp=104 MPa/mm, respectively.

[[un]]

tn([[un]])

0

Gc

tult

kp

Fig. 6.17: Cohesive traction law tn([[un]]) in the normal direction. The branch represents
unloading for the case [[un]]<κ. The shaded grey area is equivalent to the critical energy
release rate Gc. The assumption that tn([[un]]) is a material law is not always correct since
tn([[un]]) also depends on the specimen size, see ANDERSON [4, Chapter 6].

In the shear direction,
ts = dint[[us]] (6.71)

is utilised, with the initial shear stiffness dint =1 MPa/mm. At the onset of the simulation,
∆ūCMSD =1.5 · 10−3 mm. Fig. 6.18 shows the resulting force-displacement curves for the
SENB for six different mesh sizes. The mesh is refined uniformly. Along the x-axis, the
CMSD is plotted, while the y-axis shows the reaction force P = 11

10
λ. The legend entry

gives the number of DOF at the beginning and at the end of the simulation.

Fig. 6.19 shows the final crack paths for six different mesh sizes.

In Fig. 6.20, the contour plot for the stress field σxx at a CMSD of 0.04 mm for the mesh
with 49632 – 49860 DOF is depicted. The mesh size is equivalent to the one using the
implicit fourth order gradient damage model with 74448 DOF in Fig. 6.13.

Finally, Fig. 6.21 gives an overlap of the initial and final mesh with 744 and 768 DOF,
respectively.

The discrete approach with cohesive zones along the crack path requires less degrees of
freedom than the implicit fourth order gradient damage model for numerical results that
are in good agreement with the experiments carried out by SCHLANGEN [92]. Also, since
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Fig. 6.18: Force-displacement curves for the SENB with cohesive zone modelling for six
different mesh sizes.

744 – 768 DOF 1056 – 1086 DOF
1674 – 1710 DOF 3486 – 3540 DOF

12696 – 12804 DOF 49632 – 49860 DOF

Fig. 6.19: Final crack paths for six different mesh sizes.

derivatives of second order are required for the implicit fourth order gradient damage
model, the computation of the tangential stiffness matrix and force vector is more expen-
sive. Nevertheless, implementation is easier for the implicit fourth order gradient damage
model since no re-meshing is necessary.

6.2.5 Structured T-splines for the single-edge notched beam

Structured T-splines have already been used for cohesive zone modelling for the SENB
by VERHOOSEL et al. [116]. Fig. 6.22(a) shows the initial structured T-spline mesh. In
order to determine the position of the control points, Eq. (5.47) has to be solved, while
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1 2

σxx in MPa

0 2.75

Fig. 6.20: Stress field σxx for the SENB in the deformed configuration at a CMSD of
0.04 mm for the mesh with 49632 – 49860 DOF. Displacements are amplified by a factor
of 200. The mesh size is equivalent to the one showing the results for the implicit fourth
order gradient damage model in Fig. 6.13.

Initial mesh Final mesh Crack path

Fig. 6.21: Comparison of the initial (744 DOF) and the final mesh (768 DOF).

the location of some control points has to be prescribed, for instance control points on the
boundary. It can be observed from Fig. 6.22 that apart from the position of the control
points on the boundary also the position of the blue control points in the interior has
to be prescribed. Furthermore, the blue control points have to be positioned such that
the initial mesh has to be aligned with the final crack path (red). Then, elements can
be split vertically. Not prescribing the location of the blue control points results in the
mesh in Fig. 6.22(b) after solving Eq. (5.47). It can be seen that this would result in
inverted elements around the notch. Since the final crack path is not always known a
priori, structured T-splines may not be ideal for modelling discrete fracture. Furthermore,
the continuity across elements sharing one edge that touches the crack tip is only C0

A, so
that stresses are discontinuous and need to be evaluated and weighted at the integration
points in the vicinity of the crack tip in order to determine when the critical stress tult is
reached. This is similar to LAGRANGIAN basis functions.
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Control points
Final crack path

Element boundaries

(a)

Control points
Final crack path

Element boundaries

(b)

Fig. 6.22: Cohesive zone modelling using structured T-splines. (a) T-spline mesh from
VERHOOSEL et al. [116] when the location of the blue control points is prescribed.
(b) Not prescribing the location of the blue control points results in inverted elements
around the notch.
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7 Summary

In the present thesis, an energy-based arc-length method has been proposed which is espe-
cially useful for tracing an equilibrium path with multiple snap-through and / or snap-back
phenomena for physically non-linear problems. It switches between internal energy-based
and dissipation-based arc-length control. The arc-length method has been applied to in-
terface elements with a cohesive traction law, the phase field model for brittle fracture and
the implicit higher order gradient damage model for quasi-brittle materials.
Concerns were raised about the phase field models for brittle and cohesive fracture. While
the phase field model for cohesive fracture does not pass a two-dimensional patch test for
an unstructured mesh, Γ-convergence is not attained numerically for the phase field model
for brittle fracture using a one-dimensional bar. It was concluded that since the smeared
numerical final crack surface Γ`,h does not converge to the discrete crack surface Γ for a
vanishing length scale parameter ` and a mesh size h� `, the smeared numerical poten-
tial Π`,h cannot converge to the discrete potential Π either. Moreover, it was demonstrated
that the phase field model for brittle fracture is sensitive to the imposed boundary condi-
tions. These issues must be further improved.
The BÉZIER extraction operator has been exploited for the determination of linear
dependencies in T-spline meshes and classification of T-spline meshes into standard,
semi-standard and non-standard. The BÉZIER extraction operator was further used for
refining T-spline meshes by adding anchors, such that the initial and the refined T-spline
mesh are nested. Furthermore, it has been demonstrated that hierarchical refinement of
standard, semi-standard and non-standard T-spline meshes using the reconstruction oper-
ator basically also involves the BÉZIER extraction operator since the reconstruction oper-
ator is its inverse. It has been explained how to modify the BÉZIER extraction operator
for quadratic and cubic unstructured T-spline meshes with extraordinary points such that
the resulting T-spline mesh is standard and C1

A-continuous around the extraordinary point.
Extending these methodologies to the three-dimensional case leaves room for future re-
search.
BÉZIER extraction for POWELL–SABIN B-splines has been introduced for an efficient
computation. POWELL–SABIN B-splines have been utilised for smeared and discrete
fracture approaches. Unfortunately, POWELL–SABIN B-splines are not based on the iso-
geometric concept since they only approximate the exact geometry. However, they pro-
vide basis functions which are C1

A-continuous in the entire domain. This allows a direct
computation of stresses at the crack tip for discrete fracture approaches which eases the
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7 Summary

implementation. Also, POWELL–SABIN B-splines gave lower errors than unstructured
T-splines or multiple NURBS-patches for solving the KIRCHHOFF–LOVE plate with sim-
ply supported and clamped boundary conditions. Although there has been a lot of research
in extending POWELL–SABIN B-splines to the three-dimensional case in the past years,
there still exists no solution for unstructured meshes. However, this would contribute to a
wider acceptance of this element technology.
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A.1 SHERMAN–MORRISON formula

The inverse of the matrix in Eq. (2.7)

KT =


K −f̂
vT w


 (A.1)

can be obtained as follows. Rewriting Eq. (A.1) gives

KT =


K 0

0T 1


− x1y

T
1 − x2y

T
2 = A−A1︸ ︷︷ ︸

B

−A2 (A.2)

with

x1 =

[
f̂

0

]
, yT1 =

[
0T 1

]
→ x1y

T
1 =


 0 f̂

0T 0


 , (A.3)

x2 =

[
0

−1

]
, yT2 =

[
vT w − 1

]
→ x2y

T
2 =


 0 0

−vT 1− w


 . (A.4)

Application of the SHERMAN–MORRISON [101] formula yields the following expres-
sions

KT
−1 =

(
B−A2

)−1
=
(
B− x2y

T
2

)−1
= B−1 +

B−1x2y
T
2 B
−1

1− yT2 B−1x2

, (A.5)

B−1 =
(
A−A1

)−1
=
(
A− x1y

T
1

)−1
= A−1 +

A−1x1y
T
1 A
−1

1− yT1 A−1x1

, (A.6)
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while the terms in Eq. (A.6) can be expressed as

A−1 =


K

−1 0

0T 1


 , A−1x1 =

[
K−1f̂

0

]
, yT1 A

−1 =
[
0T 1

]
, (A.7)

A−1x1y
T
1 A
−1 =


 0 K−1f̂

0T 0


 , yT1 A

−1x1 = 0, (A.8)

B−1 =


K

−1 0

0T 1


+


 0 K−1f̂

0T 0


 (A.9)

and in Eq. (A.5) as

B−1x2 =

[
−K−1f̂

−1

]
, yT

2
B−1 =

[
vTK−1 vTK−1f̂ + w − 1

]
, (A.10)

B−1x2y
T
2 B
−1 =


−K

−1f̂vTK−1 −K−1f̂vTK−1f̂ − wK−1f̂ + K−1f̂

−vTK−1 −vTK−1f̂ − w + 1


 , (A.11)

yT2 B
−1x2 = −vTK−1f̂ − w + 1. (A.12)

With

q = K−1f̂ and q =
q(vTq + w)

vTq + w
=
qvTq + wq

vTq + w
(A.13)

Eq. (A.1) becomes

KT
−1 =


K

−1 0

0T 1


+


 0 q

0T 0


+


−qv

TK−1 −qvTq − wq + q

−vTK−1 −vTq − w + 1




vTq + w
(A.14)

=


K

−1 0

0T 1


+


 0 qvTq + wq

0T 0


+


−qv

TK−1 −qvTq − wq + q

−vTK−1 −vTq − w + 1




vTq + w

(A.15)

=


K

−1 0

0T 1


+

1

vTq + w


−qv

TK−1 q

−vTK−1 −vTq − w + 1


 . (A.16)
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A.2 Time discretisation scheme for the arc-length control

For the initial-value problem with t ∈ [0, T ]

ẋ(t) = f
(
x(t)

)
(A.17)

x(0) = xk (A.18)

the generalised midpoint rule is defined as follows (see SIMO & HUGHES [102, Chap-
ter 1])

f(xk+θ) =
xk+1 − xk

∆t
, xk+θ = θxk+1 + (1− θ)xk, θ ∈ [0, 1] (A.19)

with θ=0 for forward EULER, θ= 1
2

for midpoint rule and θ=1 for backward EULER.
xk+1 and xk denote in Eq. (A.19) the solution for the variable x at time increment k+1

and k, respectively.

A.2.1 Time discretisation for the rate of internal energy

Applying the time discretisation scheme in Eq. (A.19) to Eq. (2.26)

1

2

(
u̇Tλ+ uT λ̇

)
f̂ − τ̇U = 0 (A.20)

gives

1

2

((
θλk+1 + (1− θ)λk

)uTk+1 − uTk
∆t

+
λk+1 − λk

∆t

(
θuTk+1 + (1− θ)uTk

))
f̂ − τUk+1 − τUk

∆t

=
1

2

(
2θ
λk+1u

T
k+1

∆t
+ (1− 2θ)

λk+1u
T
k

∆t

+ (1− 2θ)
λku

T
k+1

∆t
+ (2θ − 2)

λku
T
k

∆t

)
f̂ − ∆τU

∆t
= 0. (A.21)

Using the midpoint rule with θ= 1
2

in Eq. (A.21) yields the arc-length function ϕU

ϕU(uk+1, λk+1) =
1

2

(
λk+1u

T
k+1 − λkuTk

)
f̂ −∆τU . (A.22)
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A.2.2 Time discretisation for the rate of dissipated energy

Starting with the constraint equation from Eq. (2.23)

1

2
(λu̇T − λ̇uT )f̂ − τ̇D = 0 (A.23)

and application of Eq. (A.19) gives

1

2

((
θλk+1 + (1− θ)λk

)uTk+1 − uTk
∆t

− λk+1 − λk
∆t

(
θuTk+1 + (1− θ)uTk

))
f̂ − τDk+1 − τDk

∆t

=
1

2

(
λku

T
k+1

∆t
− λk+1u

T
k

∆t

)
f̂ − ∆τD

∆t
= 0. (A.24)

Therefore, the arc-length function ϕD for any time discretisation scheme can be written
as

ϕD(uk+1, λk+1) =
1

2

(
λku

T
k+1 − λk+1u

T
k

)
f̂ −∆τD. (A.25)
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B.1 Local refinement of T-splines by adding anchors

This section demonstrates local refinement by adding anchors for standard T-spline
meshes of odd degree and non-standard T-splines. Moreover, a strategy for finding the
optimum number of additionally inserted anchors will be suggested.

B.1.1 Local refinement of standard T-splines of odd degree by adding

anchors

Herein, it is explained how standard T-spline meshes of odd degree can be refined lo-
cally by adding anchors while the information from the BÉZIER extraction operator is
exploited.

B.1.1.1 Example 1: Ensuring that Ce is a square matrix and nestedness

Initial refinement
Consider the cubic standard T-spline mesh depicted in Fig. B.1 which is refined as in
Fig. B.2(a).
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Fig. B.1: Initial cubic standard T-spline mesh in (a) the index domain and (b) the physical
domain.

Ensuring that Ce is a square matrix
The mesh in Fig. B.2(a) is locally linearly independent, but non-standard and Ce is not a
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Fig. B.2: (a) Refined cubic non-standard T-spline mesh of Fig. B.1(a) in the index domain;
(b) the T-spline mesh is locally linearly independent, but in element b (dashed green line)
are only fifteen anchors (blue) with a support and therefore Ce is not a square matrix for
this element.

square matrix for all elements: rank(Ce)=ne in element b as there are only fifteen an-
chors (blue) with a support, Fig. B.2(b). Hence, an additional anchor needs to be inserted.
Each local knot vector of the blue anchors in Fig. B.2(b) contains the sub-parameter val-
ues of the boundaries of element b – [0, 1

2
]×[1

3
, 2

3
] in the ξ1-direction and the ξ2-direction,

respectively – except for the anchors A and B in Fig. B.3(a). The local knot vectors of
the anchors A and B in the ξ1-direction do not contain the sub-parameter value ξ1 = 1

2
.

Therefore, an additional anchor needs to be inserted at the location of the red point c.
This results in the standard mesh in Fig. B.3(b).

Nestedness
Unfortunately, the initial mesh in Fig. B.1(a) and the refined mesh in Fig. B.3(b) are not
nested. Transforming Eq. (4.58) into row echelon form gives no solution for the anchors
C, D, E and F in the initial mesh, see Fig. B.4, i. e. the blending functions associated to
these anchors in the initial T-spline mesh cannot be represented as a linear combination
of the blending functions of the refined T-spline mesh in Fig. B.3(b).

Therefore, an additional anchor has to be inserted. The new edges and anchors of the
refined T-spline mesh of Fig. B.3(b) are drawn in the initial T-spline mesh of Fig. B.1(a)
as illustrated with solid green lines and points in Fig. B.4. Then, the domain where all
four anchors C, D, E and F have a common support is drawn while this domain needs to be
cut by the green edge. This domain is indicated by a grey colour. It can be observed that
within the grey domain no anchor is sitting at the location of the red point d. Therefore,
the red point d represents the location of an anchor which has to be inserted into the
T-spline mesh. The resulting T-spline mesh is depicted in Fig. B.5(a). This T-spline mesh
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Fig. B.3: Determination of the location of a new anchor when Ce is not a square matrix
for a cubic T-spline mesh. (a) The local knot vectors in the ξ1-direction of the blue anchors
A and B do not contain the sub-parameter value ξ1 = 1

2
, which is a boundary of element b

(dashed green). Therefore, an anchor is required at the location of the red point c. (b) The
resulting standard T-spline mesh. This T-spline mesh and the initial T-spline mesh in
B.1(a) are not nested.
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Fig. B.4: Superposition of the initial T-spline mesh in the index domain from Fig. B.1(a)
and the refined mesh in Fig. B.3(b). The row echelon form of Eq. (4.58) gives no re-
sults for the anchors C, D, E and F (blue) and therefore, the meshes in Fig. B.1(a) and
Fig. B.3(b) are not nested. Edges and anchors from the refined mesh in Fig. B.3(b), which
were added during refinement, are inserted in the initial mesh from Fig. B.1 and marked
with green. In the grey domain all four anchors C, D, E and F have a common support,
while the grey domain is bounded by the newly inserted green edges. Within the grey
domain, no anchor is at the position of the red point d. In order to obtain a refined mesh
which is standard and nested with the initial mesh in Fig. B.1, the anchor d needs to be
inserted into the mesh of Fig. B.3(b), see also Fig. B.5.

is standard. Furthermore, the initial T-spline mesh in Fig. B.1(a) and the refined T-spline
mesh in Fig. B.5(a) are nested.

Refined physical mesh
After obtaining a standard and nested T-spline mesh in the index domain, the computation
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of the physical mesh can be considered. The location of the weighted control points
for the refined mesh P wR can be determined using Eq. (4.71). The physical mesh after
refinement is shown in Fig. B.5(b) which represents the same geometry as the physical
mesh in Fig. B.1(b).
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Fig. B.5: Refined cubic T-spline mesh of Fig. B.1 in (a) the index domain and (b) the
physical domain. This T-spline mesh is standard and nested with the initial T-spline mesh
of Fig. B.1.

B.1.1.2 Example 2: Removing linear dependencies

Initial refinement
As a next example, the initial cubic standard T-spline mesh in Fig. B.1 is refined as shown
in Fig. B.6(a).

Removing linear dependencies
The T-spline mesh in Fig. B.6(a) is non-standard exploiting Eq. (4.50). Ce is not a square
matrix and does not have full row rank in element f. The row echelon version of Eq. (4.43)
yields the dependency −2NG(ξ) + 2NH(ξ) + 3N J(ξ) = 0 in element f. Therefore, an
additional anchor needs to be inserted. This will be done in a manner similar to Sec-
tion 4.5.4: extension lines (solid blue) are drawn between the anchors with locally linearly
dependent blending functions G, H and J, Fig. B.6(b). The intersections of the extension
lines are marked with the red squares. These squares denote possible positions for a new
anchor if there does not already exist one. It can be observed from Fig. B.6(b) that only
the intersection at the red square g is a candidate for a new anchor. However, the T-spline
mesh with a new anchor in Fig. B.7 is still locally linearly dependent and semi-standard,
so that more anchors and edges need to be inserted by applying the aforementioned meth-
ods until a standard and nested T-spline mesh is obtained.
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(a) The T-spline mesh is locally lin-
early dependent – the row echelon form
of Eq. (4.43) results in the dependency
−2NG(ξ) + 2NH(ξ) + 3N J(ξ) = 0 in element f
(dashed green).
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(b) Illustration for the determination of the loca-
tion of new anchors. Extension lines (solid blue)
for the anchors with locally linearly dependent
blending functions G, H and J are drawn. The
extension lines intersect at the location of the red
squares g, h and i. Only the square g represents a
location for a new anchor (see Fig. B.7) since at h
and i anchors are already located.

Fig. B.6: Refined (non-standard) cubic T-spline mesh of Fig. B.1(a) in the index domain.
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Fig. B.7: Refined cubic T-spline mesh of Fig. B.6(a). This T-spline mesh is semi-standard.

B.1.1.3 Example 3: Non-standard T-spline fulfils necessary condition for standard
T-splines

In the examples considered so far, enforcing the BÉZIER extraction operator Ce to be a
square matrix resulted in a standard T-spline mesh. However, this is not always the case
as presented in Fig. B.8(b).

Both T-spline meshes in Fig. B.8 are locally linearly independent with a square matrix
Ce for each element. The initial T-spline mesh, Fig. B.8(a), is standard, while the refined
T-spline mesh, Fig. B.8(b), is non-standard. Recall, that a standard and a non-standard
T-spline mesh cannot be nested according to Eq. (4.60). Evaluating the refinement ma-
trix in Eq. (4.58) gives no solution for the anchor K in Fig. B.9(a). Applying the same
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(a) Standard, rank(Ce)=
d∏

`=1

p`+1 for

e=1 . . . E.
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e=1 . . . E.

Fig. B.8: (a) Initial standard T-spline mesh and (b) refined non-standard T-spline mesh.
The BÉZIER extraction operator Ce is a square matrix of full rank in each element for
both meshes, but the T-spline meshes are not nested as shown in Fig. B.9(a).

procedure as previously explained (see also Fig. B.4) gives the possible locations for new
anchors (red) as depicted in Fig. B.9(a).
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Fig. B.9: (a) Superposition of the initial T-spline mesh from Fig. B.8(a) and the newly
inserted edges and anchors (green) from the refined T-spline mesh in Fig. B.8(b). The
blending function of anchor K in the initial T-spline mesh cannot be represented as a
linear combination of the blending functions of the refined T-spline mesh, i. e. both
T-spline meshes are not nested since the row echelon form of Eq. (4.58) gives no result
for anchor K. The support of anchor K – bounded by the new green edges and anchors –
is depicted with a grey domain. Within the grey domain, new anchors can be inserted at
the location of the red points in order to obtain a standard and nested T-spline mesh. For
instance, inserting the red anchor j would result in a standard and nested T-spline mesh as
presented in (b).
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B.1.2 Local refinement of non-standard T-splines by adding anchors

In the previous examples in Section 4.5.4 and Appendix B.1.1, it was demonstrated how
to refine a standard T-spline mesh and obtain a standard mesh based on Algorithm 4.1.
This section gives an example that non-standard meshes can also be refined locally by
adding anchors – the only requirement is that the initial and the refined mesh are nested.
Fig. B.10 shows the initial non-standard and Fig. B.11 the refined semi-standard quadratic
T-spline mesh in the index and physical domain, respectively. Both meshes are nested,
which allows the calculation of the weighted control points P

wR
in Eq. (4.71).
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Fig. B.10: Initial (non-standard) quadratic T-spline mesh in (a) the index domain and
(b) the physical domain.
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Fig. B.11: Refined (semi-standard) quadratic T-spline mesh of Fig. B.10 in (a) the index
domain and (b) the physical domain.
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B.1.3 Obtaining the optimised number of additionally inserted anchors

Consider the initial (standard) and refined (non-standard) T-spline mesh in Fig. B.12.
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Fig. B.12: (a) Initial standard and (b) refined non-standard T-spline mesh in the index
domain.

Fig. B.13 shows all the options where additional anchors can be inserted by applying the
routines from Section 4.5.4, while due to symmetry, only the options for the lower part of
Fig. B.12(b) are considered.
Table B.1 gives the number of pairs of anchors with linearly dependent blending func-
tions, number of non-square matrices Ce, nestedness and number of additionally inserted
anchors for the options in Fig. B.13.

Tab. B.1: Summary of the number of pairs of anchors with linearly dependent blending
functions, number of non-square matrices Ce, nestedness and number of additionally
inserted anchors for the options in Fig. B.13.

Figure B.13(a) B.13(b) B.13(c) B.13(d) B.13(e) B.13(f) B.13(g) B.13(h) B.13(i)

Number of pairs of

5 5 6 6 5 6 5 6 6anchors with linearly
dependent blending

functions
Number of non-square 8 8 8 8 6 6 6 6 6matrices Ce

Nestedness 7 7 7 7 7 7 7 7 7

Number of additional 2 2 2 2 3 3 3 3 4anchors

According to Table B.1, the optimum option would be either Fig. B.13(e) or Fig. B.13(g)
since they yield the smallest number of pairs of anchors with linearly dependent blending
functions and number of non-square matrices Ce. After inserting the additional anchors,
again, the rectangles to be subdivided are determined for the updated mesh and the opti-
mum option is selected. This procedure needs to be repeated until a standard and nested
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Fig. B.13: All possible subdivisions for Fig. B.12(b): the dashed orange lines indicate the
new edges to be inserted, the orange points denote the locations of the new anchors.

T-spline mesh is obtained, see for example Fig. B.14 after six iterations.
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Fig. B.14: Standard and nested T-spline mesh after inserting additional anchors in six
iterations into the refined T-spline mesh of Fig. B.12(b).
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B.2 Modified local knot vectors for the hierarchical

refinement

Table B.2 gives the local knot vector in element b and in the sub-elements bl and br for
each of the blue anchors in Fig. 4.21.

Tab. B.2: Local knot vectors Ξ1 for the blue anchors in Fig. 4.21 in element b and in the
sub-elements bl and br.

Coordinates in Local knot Local knot Local knot
index domain vector vector in bl vector in br

(1.5, 2.5) {0, 0, 0, 1} {0, 0, 0, 1
4
} {0, 0, 1

4
, 1}

(3, 2.5) {0, 0, 1, 1} {0, 0, 1
4
, 1} {0, 1

4
, 1, 1}

(1.5, 4) {0, 0, 0, 1} {0, 0, 0, 1
4
} {0, 0, 1

4
, 1}

(3, 4) {0, 0, 1, 1} {0, 0, 1
4
, 1} {0, 1

4
, 1, 1}

(4.5, 3.5) {0, 1, 1, 1} {0, 1
4
, 1, 1} {1

4
, 1, 1, 1}

(4.5, 4.5) {0, 1, 1, 1} {0, 1
4
, 1, 1} {1

4
, 1, 1, 1}

(1.5, 5.5) {0, 0, 0, 1
2
} {0, 0, 0, 1

4
} {0, 0, 1

4
, 1

2
}

(2.5, 5.5) {0, 0, 1
2
, 1} {0, 0, 1

4
, 1

2
} {0, 1

4
, 1

2
, 1}

(3.5, 5.5) {0, 1
2
, 1, 1} {0, 1

4
, 1

2
, 1} {1

4
, 1

2
, 1, 1}

B.3 Unstructured cubic T-splines

This section gives an outline how an unstructured cubic T-spline mesh can be created
that is C1

A-continuous along spoke edges and between one- and two-ring neighbourhood
elements, C2

A-continuous everywhere else and that fulfils the partition of unity of the
blending functions N .

B.3.1 The unstructured T-spline mesh

For cubic T-splines, the orange marked knot intervals in the neighbourhood of the light
grey element h in Fig. B.15 are necessary for the determination of the BÉZIER extraction
operator of each violet anchor with support in h. As for the quadratic case, some anchors
with support in element h do not require all their individual knot intervals in order to
determine their BÉZIER extraction operator in h.

This method is not applicable to the blue elements in the two-ring neighbourhood of an
extraordinary point – these elements are irregular. Generalised BÉZIER extraction must
be applied to these elements as explained for arbitrary knot intervals by SCOTT [95].
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h

Anchors Edges Elements

Fig. B.15: Example for an unstructured cubic T-spline mesh. All non-zero knot intervals
are assumed to be uniform. The two extraordinary points of valence three and five are
marked with red. Spoke edges (green) touch an extraordinary point. The purple anchors
have a support in the light grey element h. In order to determine the BÉZIER extraction
operator of these anchors in element h, the knot intervals of the two neighbouring rows
of rectangles of element h are required (marked orange). Some anchors do not need all
of their individual knot intervals. This construction cannot be applied to the two-ring
neighbourhood elements (blue) of an extraordinary point. Generalised BÉZIER extraction
must be applied to these irregular elements.

After generalised BÉZIER extraction, the continuity along the one- and two-ring neigh-
bourhood elements is C2

A. C0
A-continuity exists along spoke edges and the T-spline mesh

is non-standard – the partition of unity is not fulfilled. The BÉZIER extraction opera-
tors Ce are non-square matrices for the elements in the one-ring neighbourhood of an
extraordinary point. The blending functions N in the one-ring neighbourhood elements
of an extraordinary point with valence three are locally linearly independent since Ce has
full row rank. For the one-ring neighbourhood elements of the extraordinary point with
valence five, Ce does not have full row rank. Hence, the blending functions are locally
linearly dependent.

B.3.2 Modifying the BÉZIER extraction operator

Modifying the BÉZIER extraction operator for the cubic case is similar to the quadratic
case in Section 4.7. The BÉZIER extraction operators Ce in the one-ring neighbourhood
elements are elevated to degree four according to

N e = C3
eB

3
e = C3

eE
3,4B4

e = C3
eE

3,4B4
e = C4

eB
4
e. (B.1)
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For the cubic case, only the coefficients cα,β of the blending functions that are non-
zero in at least two one-ring neighbourhood elements are modified. Assuming that
a=1 . . . A blending function have a support in at least two of b=1 . . . B one-ring neigh-
bourhood elements, the fairing equations for the constrained linear least square problem
in Eq. (4.91) read as follows

c̃a,bα,β − c̃a,bα,β+1 = ca,bα,β − ca,bα,β+1 for 1≤α≤5, 1≤β≤4, 1≤a≤A, 1≤b≤B,

c̃a,bα,β − c̃a,bα+1,β = ca,bα,β − ca,bα+1,β for 1≤α≤4, 1≤β≤5, 1≤a≤A, 1≤b≤B.
(B.2)

When perturbing the BÉZIER coefficients cα,β , C1
A-continuity will be enforced along one-

and two-ring neighbourhood elements and along spoke edges. The following constraints
need to be assembled in G and g for blending functions that are non-zero in at least two

one-ring neighbourhood elements: Eqs. (4.93) and (4.105) – (4.110). Furthermore, for
blending functions that have support in only two one-ring neighbourhood elements, the
constraint

c̃a,bα,β = 0 for 1≤α≤3, 1≤β≤3 (B.3)

is enforced in one-ring neighbourhood elements where they do not have a support. In
order to fulfil the partition of unity,

A∑

a=1

c̃a,bα,β = 1

{
for 1 ≤ α ≤ 3, 1 ≤ β ≤ 3

in all one-ring neighbourhood elements b = 1 . . . B
(B.4)

needs to be taken into account. Computing the term in Eq. (4.112) after solving Eq. (4.91)
yields zero within machine precision for the unstructured cubic T-spline mesh, i. e. all im-
posed constraints are satisfied.
For the cubic case, no change in support of an anchor is observed for the valences three
and five after modifying the BÉZIER coefficients cα,β . The BÉZIER extraction operator
Ce for the elements in the one-ring neighbourhood of an extraordinary point is still a
non-square matrix. Thus, hierarchical refinement (Section 4.6) and BÉZIER projection
(THOMAS et al. [110]) cannot be applied to these elements. The BÉZIER extraction oper-
ator Ce has full row rank in all elements of Fig. B.15 after solving Eq. (4.91). Hence, the
blending functions N are locally linearly independent. Recall, that the blending functions
N are locally linearly dependent in the one-ring neighbourhood elements of an extraordi-
nary point with valence five for the quadratic case.
Fig. B.16 shows the contour plot for a blending function N and its derivatives N,x and
N,y before and after smoothing. The blending function corresponds to an anchor that is
equivalent to the extraordinary point of valence five.
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(a) N (b) N,x (c) N,y

(d) N (e) N,x (f) N,y

Fig. B.16: Contour plots of a cubic blending function N and its derivatives N,x, N,y in
the physical domain before (a)-(c) and after (d)-(f) smoothing. The blending function
corresponds to an anchor that is equivalent to the extraordinary point of valence five.
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