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Section 1: SUMMARY.



The primary aim of this research was to characterize recombinant cosmid 

clone pRMB2, and subclone the vir locus. Clone pRMB2 was identified from a 

gene library of Bordetella pertussis TAB I DNA in Escherichia coli, by its 

ability to restore a Vir+ phenotype to Vir- Tn5 mutant B,pertussis BP347 

(Brownlie et al., 1988).

Restriction analysis with EcoRI revealed that the genomic insert of 

pRMB2 contained six fragments, designated El (l.lkb), E2 (2.5kb), E3 

(2.7kb), E4 (4.7kb), E5 (5.1kb) and E6 (lO.Okb). Hybridisation with pRMB2 

and E3 probes showed that the Tn5 insertion in Vir- BP347 was located 

within an EcoRI fragment of 2.7kb. The inactivation of this region by Tn5 

indicated that it was essential to the vir region.

The E3 fragment of pRMB2 was subcloned in pLAFRl to give a construct 

designated pDM3. In-trans, pDM3 was unable to complement Vir- BP347, which 

implied that the 2.7kb EcoRI fragment contained insufficient sequence to 

encode an active vir locus. In a small percentage of BP347 (pDM3) 

transconjugants, homologous recombination had occurred in the vir region, 

such that a fully functional vir locus was restored to BP347 with an 

attendant gain of expression of virulence-associated determinants.

Clone pRMB2 was partially digested with Sau3A to generate random 

fragments of approximately 6kb. Ligation of these fragments into vector 

pRK310 yielded forty-eight recombinant clones, none of which contained 

sufficient sequence to complement Vir- BP347.

Hybridisation analysis of a series of restriction digests of pRMB2 with 

E3 identified three putative vir-containing fragments, which each consisted 

of pLAFRl vector and the terminal portions of the genomic insert of pRMB2. 

One of these fragments was ligated to give a construct designated pDMl 

which, in-trans, restored a Vir+ phenotype to Vir- BP347. Restriction



enzyme analysis of pDMl showed that the genomic insert comprised two non­

contiguous fragments of 3.9kb and S.Okb. The E3 fragment was contained 

within the latter, which demonstrated that this S.Okb region encoded a 

functional vir locus.

A restriction map was compiled for clone pRMB2, and comparison with a 

published map for the vir and fha region (Stibitz et al., 1988a) showed 

homology for a 15.2kb region (E3, E2 and E6) encoding vir and fhaB, but the 

remaining 10.9kb (E5, E4 and El) of pRMB2 showed a different restriction 

pattern. Hybridisation analysis confirmed that the genomic insert of pRMB2 

comprised two non-contiguous regions of TAB I genomic DNA. Clone pRMB2 was 

unable to complement BP353 (Fha-) which contained a Tn5 insertion in fhaA, 

just downstream of fhaB.

Hybridisation with pRMB2 and E3 probes was used to analyse regions 

homologous to vir in a number of strains of all four Bordetella species. 

These studies indicated that the vir locus was conserved in B.pertussis, 

B.parapertussis and B.bronchiseptica. However, the structure of the vir 

region in the latter two species differed from that of B.pertussis. 

Avirulent phase variant B.pertussis 11615 had a rearrangement in the vir 

region. B.avium chromosomal DNA also showed homology to the B.pertussis vir 

locus, but a markedly different hybridisation pattern was observed. This 

confirmed that B.avium was genetically divergent from the other Bordetella 

species. A slight variation in the hybridisation pattern was observed 

between virulent and avirulent B.avium strains.

In-trans the vir locus encoded by pDMl was able to restore a Vir+ 

phenotype to avirulent phase variant strains of B.pertussis and 

B.bronchiseptica. This indicated that phase variation in both these species 

had occurred as a result of genotypic changes in vir. However, expression



of virulence determinants in avirulent phase variant strains of

B.bronchiseptica was restored to only a low level by pDMl, which implied 

that the mechanisms of regulation of expression of virulence determinants 

were different for the two species.

The effect of multiple copies of vir in-trans in B.pertussis on the

response to modulators was investigated. Multiple copies of vir, in clones 

pRMB2 and pDMl, had no effect on the response to modulation by low

temperatures. Toharaa-derived strains, including BP347 (pRMB2) and BP347 

(pDMl) were resistant to modulation by nicotinic acid.

The ability of vir to trans-activate expression in E.coli of

B.pertussis virulence genes was investigated: no expression of fhaB, fim2,

fim3 or cya was detected.



Section 2: INTRODUCTION.



Section 2.1. THE GENUS BORDETELLA.

2.1.1. Classification.

Bordetella pertussis, B.parapertussis, B.bronchiseptica and, the newest 

accession, B.avium (Kersters et al., 1984) currently comprise the genus 

Bordetella. Further information on the genus and its species is given by 

Olson (1975), Linneman and Perry (1977), Goodnow (1980), Pittman and 

Wardlaw (1981), Switzer and Farrington (1981), Pittman (1984), Wardlaw 

(1988) and Wardlaw and Parton (1988a).

The pertussis bacillus was first isolated by Bordet and Gengou (1906). 

Originally, blood was considered necessary for its cultivation, and it was 

listed in the genus Haemophilus (Winslow et al., 1920; Bergey et al., 

1923). However, Fildes (1923) showed that by generic definition, the 

pertussis bacillus was excluded from the genus Haemophilus. Like pertussis, 

the parapertussis bacillus was initially placed in the genus Haemophilus 

(Bradford and Slavin, 1937; Eldering and Kendrick, 1937, 1938). When first 

isolated, B.bronchiseptica was thought to be the causal agent of canine 

distemper and it was identified as Bacillus bronchicanis (Ferry, 1911, 

1912). In the ensuing years, the bronchiseptica bacillus was placed in the 

genera Alcaligenes, Brucella and Haemophilus (Bergey et al., 1925; Topley 

and Wilson, 1929; Wilson and Miles, 1946; Haupt, cited by Pittman, 1974).

Classification of these three organisms in a new genus, Bordetella, was
th th

proposed by Moreno Lopez (1952), and accepted in the 7 and 8 editions 

of Bergey's Manual of Determinative Bacteriology (Pittman, 1957, 1974).

Proom (1955) found that their nutritional requirements were similar, but 

quite different from organisms of the genera Haemophilus or Brucella, which 

supported the view of Moreno Lopez that the three groups should be



classified in a separate genus.

2.1.2. Diseases caused by the bordetellae, and species specificity.

The bordetellae cause respiratory diseases with many similarities in

their respective hosts. Bordetellosis is characterized by a primary, 

localized infection of the ciliated tracheal epithelial cells. After an 

initial colonization of the ciliated respiratory tract epithelium, there 

follows a loss of ciliated cells, excessive mucus production, reduced 

weight gain of the host, and some form of cough or sneezing. Secondary 

infections are another common feature. The young of the host species are 

very susceptible to infection.

B,pertussis exhibits an exclusive species specificity, infecting only 

man, and is the aetiological agent of pertussis (whooping cough). 

B,parapertussis is the agent of parapertussis (a milder disease than 

pertussis) and was, until recently, regarded as a specifically human

parasite. However, the isolation of B,parapertussis from lambs has been 

reported (Chen et ai., cited by Parton, 1989). B.bronchiseptica parasitizes 

a broad spectrum of both domestic and wild animals e.g. pig, dog, cat,

rabbit, rat, horse, monkey, turkey, and occasionally ’ man (see Pittman and

Wardlaw, 1981). The diseases caused by B.bronchiseptica include atrophic 

rhinitis in swine (Switzer, 1966) and kennel cough in dogs (Wright et ai., 

1973; Thompson et ai., 1976). B.avium is the causal agent of turkey coryza 

or rhinotracheitis, and has been isolated from turkeys, chickens, ducks and 

geese (Kersters et ai., 1984).

Adherence interaction between bordetellae and ciliated respiratory 

epithelium is a central process in the pathogenesis of bordetellosis, and 

may offer an explanation for differences in species specificity of the



bordetellae. In vitro studies of the abilities of the bordetellae to adhere 

to various ciliated epithelial cells appear to parallel the species 

specificity of the natural infection (Tuomanen, 1988) . In a study of the 

adhesion of the mammalian bordetellae to human cilia, B.pertussis adhered 

best, and B.bronchiseptica adhered least well. B.bronchiseptica and, 

surprisingly, B.parapertussis adhered best to non-human mammalian cilia 

(Tuomanen et al., 1983). B.avium shows an adherence specificity for turkey 

cilia (Gray et al., 1983; Arp and Cheville, 1984).

2.1.3. Characteristics of the bordetellae.

The bordetellae are a group of Gram-negative, obligate bacterial

pathogens, with many features in common (see Table 2.1). More detailed 

information on certain characteristics of Bordetella species is given in 

Section 2.3. The bordetellae are unable to ferment carbohydrates. The

mammalian bordetellae at least, have a requirement for nicotinamide or 

nicotinic acid, cysteine and methionine (Hornibrook, 1940; Pittman, 1974). 

B.avium strains are reported to have a significantly different fatty acid 

composition from that of the other Bordetella species (Jackwood et al.,

1986). B.pertussis and B.parapertussis are non-motile species, whereas 

B.bronchiseptica and B.avium are motile.

Possession of certain virulence-associated determinants is shared by 

members of the genus Bordetella (see Table 2.1). For recent reviews on 

B.pertussis virulence factors, see Wardlaw and Parton (1983a), Weiss and

Hewlett (1986), Wardlaw and Parton (1988b), and Parton (1989).

The mammalian bordetellae possess a common heat-stable 'O' antigen, and 

various heat-labile 'K' antigens (agglutinogens, AGGs) (Andersen, 1953). 

These surface antigens elicit antibodies which can cause bacterial cell



Table 2.1.

Characteristics of the Bordetella species

Characteristic Bp Bpp Bb Ba

Bordet-Gengou agar
growth. No. of days
for colony appearance 3 ~ 6 2 - 3 1 - 2 1 - 2

citrate utilized - + + n.a.

urease produced - + + n.a.

peptone agar-browning - + - n.a.

motility — - + +

agglutinogens ; 
species specific

1 + n.a.

12 - - + n.a.

14 - + - n.a.

filamentous haemagglutinin + + + n.a.

pertussis toxin + - - -

adenylate cyclase + + + -

haemolysin + + + -

heat-labile toxin + + + 4-

tracheal cytotoxin + + + +

lipopolysaccharide endotoxin + + + +

modulation + + + + /-

phase variation ■f + + n.a.

G + C content of DMA
(mol %) 67. 7-68.0 68.1-69.0 68.2-69.5 61 - 6-62.6

n.a. = not available
Data obtained from Pittman (1974, 1984); Wardlaw and Parton (1988a).
Bp, B.pertussis; Bpp, B.parapertussis; Bb, B.bronchiseptica; Ba, B.avium.



agglutination, if the antigens are present in sufficient density for 

bivalent antibody to cross-link two bacteria. Agglutinogens 1, 14 and 12

are specific for B,pertussis, B.parapertussis and B.bronchiseptica 

respectively, and AGG 7 is common to at least the three mammalian species 

(Eldering et al., 1957). Kersters et al. (1984) reported that B.avium also 

possesses the common heat-stable 'O' antigen, and shares heat-labile AGGs 

with B.bronchiseptica. With antisera raised against B.pertussis AGG 2 and 

AGG 3 subunits, Mooi et al. (1987) detected serologically related 

polypeptides in the other Bordetella species, indicating that all four 

species possess common antigenic determinants on their fimbriae. 

Filamentous haemagglutinin (FHA), a potential adhesin, is present at least 

in the mammalian bordetellae.

All species of the genus Bordetella produce a similar, but not 

identical, range of toxins. B.pertussis is the only member of the genus to 

produce pertussis toxin (PT). The metabolic burden of synthesizing this 

protein could perhaps account for the slower growth rate of B.pertussis 

compared with other members of the genus. Adenylate cyclase (AC) activity 

is found only in B.pertussis, B.parapertussis and B.bronchiseptica. The 

three mammalian bordetellae also produce haemolysin (HLY), which is part of 

the AC toxin complex. Production of heat-labile toxin (HLT), tracheal 

cytotoxin (TCT) and lipopolysaccharide (LPS; endotoxin) is common to all 

four Bordetella species. This conservation suggests that HLT, TCT and LPS 

are important virulence factors in bordetellosis (Gentry-Weeks et al., 

1988; Cookson et al., 1989).

The phenomena of phenotypic modulation and phase variation are well 

documented for B.pertussis, and are reported in Section 2.4. Phenotypic 

modulation (Lacey, 1960; Pusztai and Joo, 1967) is due to reversible
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phenotypic changes in response to environmental signals such as

temperature, magnesium sulphate or nicotinic acid- Phase variation (Leslie

and Gardner, 1931) is due to genotypic changes. Both these processes give

rise to cells which no longer express virulence determinants.

B.parapertussis and B.bronchiseptica also exhibit phenotypic modulation and

phase variation (Ezzell et al., 1981a, b; Peppier and Schrumpf, 1984^Lax,

1985; Ishikawa and Isayama, 1986; Parton, 1988). It is not clear whether

B.avium undergoes the phenotypic modulation characteristic of the other

bordetellae. Gentry-Weeks et ai. (1988) reported that production of HLT in

B.avium was significantly decreased when grown in the presence of a high

concentration of MgSO , but only slightly decreased when grown in the
4

presence of a high concentration of nicotinic acid, and not altered by 

growth at low temperatures. However, Parton (1988) found that expression of 

HLT by B.avium was not affected by growth on high-nicotinic acid medium.

2.1.4. Genetic relatedness and evolution of the bordetellae.

Although the mammalian bordetellae are readily distinguishable by 

cultural characteristics and pathogenicity (Pittman, 1984), DNA-DNA and 

DNA-rRNA hybridisation analyses have indicated that the three species show 

a high degree of DMA homology, perhaps too high to justify their separate 

classification (Kloos et al., 1979, 1981; Kersters et al., 1984). Musser et 

al. (1986) analysed, by electrophoresis, allelic variation at structural 

genes encoding fifteen metabolic enzymes for sixty Bordetella strains. It 

was concluded that B.parapertussis and B.bronchiseptica share a very close 

genetic relationship, with B.pertussis showing only limited divergence. A 

further study of metabolic enzyme polymorphism in a large number of 

B.bronchiseptica isolates (Musser et al., 1987) showed that strains could



broadly be divided into five groups, each being mainly associated with a

different host species. From this study, Musser et al. (1987) proposed that 

B.bronchiseptica was probably ancestral to B.parapertussis and B.pertussis.

Investigations by Arico and Rappuoli (1987), and Marchitto et al. 

(1987a), surprisingly revealed that B.bronchiseptica and B.parapertussis 

contain structural genes for PT. However, due to mutations mainly in the

promoter region, these genes are not transcriptionally active in either of 

the two species (Arico and Rappuoli, 1987). Comparisons of the ptx gene 

promoter regions of various Bordetella strains with a published sequence 

for this region in B.pertussis strain 166 (Nicosia et al., 1986), showed 

that B.parapertussis and B.bronchiseptica have many common point mutations, 

suggesting that they may derive from a common ancestor (Arico et al., 

1987). In agreement with Musser et al. (1986), Arico et al. (1987) found 

that strains of B.pertussis were genotypically homogeneous and likely to 

derive from the same clone.

It has been proposed that B.parapertussis could represent a non- 

virulent form of B.pertussis (Granstrom and Askelof, 1982; Locht and Keith, 

1987) and, under certain conditions in vitro, one species converts to the 

other (Kumazawa and Yoshikawa, 1978; Mebel et al., 1985). However, genetic

studies have shown that the proposed conversion appears highly improbable

(Musser et al., 1986; Arico et al., 1987).

The standard challenge strain of B.pertussis, 18323 (Pittman, 1984), 

used in the intracerebral mouse protection test (ICMPT, Kendrick at al., 

1947) has been reported to be genetically closer to B.bronchiseptica and 

B.parapertussis, than to B.pertussis (Musser et al., 1986; Arico et al.,

1987). Some of the mutations common to B.bronchiseptica and B.parapertussis 

in the promoter region and structural gene for the SI subunit of PT, are
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also found in B.pertussis 18323 (Arico et al. 1987) . The SI subunit 

produced by strain 18323, and recombinant 81 subunits produced by 

B.parapertussis and B.bronchiseptica, are antigenically different from the 

same subunit produced by other B.pertussis strains (Perera et al., 1986; 

Arico et al., 1987) .

B.pertussis has been shown to carry a repeated DMA sequence, present in 

multiple copies in the genome (McPheat and McNally, 1987a). This sequence 

is specific to B.pertussis, and absent from the other Bordetella species 

(McPheat and McNally, 1987b). Sequence analysis of two copies of the

repeated unit showed that they were variants of an insertion sequence (IS)

element identified by McLafferty et al. (1988) (McPheat et al., 1989). A

repeated DNA unit specific for both B.pertussis and B.parapertussis has

also been found (McLafferty et al, 1988).

B.avium was found to be significantly genetically divergent from the 

other Bordetella species, sufficient to merit recognition as a seperate 

species (Kersters et al., 1984; Musser et al., 1986). Strains of B.avium

have a G + C mol percentage of 61.6- 62.6, whereas that for the other three 

Bordetella species lies within the range 67.7- 69.5 (Kersters et al.,

1984). Sequences homologous to the B.pertussis ptx and cya opérons were not 

identified in B.avium (Arico and Rappuoli, 1987; Brownlie et al., 1988).

The fact that certain characteristics, but not others, are shared among 

the four Bordetella species (e.g. see Table 2.1), together with the 

emergence of recent molecular data, could elucidate the pathways by which 

the species have evolved. Arico et al. (1987) used a computer analysis of 

nucleotide sequence data for PT, and proposed that a single ancestral 

strain evolving from B.pertussis generated first the B.pertussis strain 

18323, and then B.parapertussis and B.bronchiseptica. However, the presence
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of an IS element in B.pertussis which is not present in B.parapertussis or 

B.bronchiseptica (McPheat and McNally, 1987b) suggests that B.pertussis is 

not the main branch of evolution.

Wardlaw (1988) and Gross et al. (1989) have proposed schemes for 

pathways by which the genus Bordetella could have evolved; Figure 2.1 shows 

a possible phylogenetic tree of the genus, based on ideas from the 

aforementioned authors. Wardlaw (1988) and Gross et al. (1989) propose that 

the ancestral Bordetella strain was probably similar to present day 

B.bronchiseptica and, because of the distinctiveness of B.avium, there was 

probably early emergence of a line which lost AC expression and acquired an 

avian niche specialization. Alternatively, as proposed in Figure 2.1, the 

line leading to the mammalian bordetellae may have acquired the cya gene 

(perhaps by transposition from a eukaryotic source) after the divergence of 

B.avium.

Gross et al. (1989) propose that early on in the evolutionary process 

(after the divergence of B.avium) the ancestral Bordetella acquired 

transcriptionally silent ptx genes, and that later, a strain evolving 

towards B.pertussis acquired the ability to express PT, However, the fact 

that the mutations in B.parapertussis and B.bronchiseptica are concentrated 

within the promoter region (Arico et al., 1987) may suggest the action of a 

selective pressure against PT expression in these species. Therefore, as 

proposed in Figure 2.1, the ancestral Bordetella may have acquired a 

transcriptionally active ptx gene, and production of PT may then have been 

selectively eliminated. B.pertussis and B.parapertussis share a number of 

features, suggesting the emergence of a line leading towards these species. 

However, the presence of common mutations in the ptx region of 

B.parapertussis and B.bronchiseptica, suggests that these mutational events
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2 .1 .

Phylogenetic tree of the genus Bordetella.

Schematic representation of possible pathways by which modern Bordetella 

species have evolved from an ancestral strain. Based on ideas by Wardlaw 

(1988) and Gross et al. (1989) .
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occurred before the emergence of the line leading towards B.pertussis and 

B.parapertussis. B.pertussis may therefore have undergone a PT- 

transitional form, and later regained the ability to express PT through 

selection of promoter up mutations.

Section 2.2. PERTUSSIS.

2.2.1. The clinical disease.

Pertussis (whooping cough) is an acute respiratory disease of world­

wide distribution (see Fine, 1988) that affects mainly infants and young 

children. There are many descriptions of the classic disease (Lapin, 1943; 

Olson, 1975; Linnemann, 1979; Manclark and Cowell, 1984; Walker, 1988; 

Friedman, 1988).

The causative organism, B.pertussis, is transmitted from an infected 

person to a susceptible individual via respiratory droplets. The viable 

bacteria are inhaled, after which they presumably multiply on the 

respiratory tract mucosa. The incubation period can vary from 6 to 20 days 

(Lapin, 1943). Pertussis can be divided into three symptomatic stages: 

catarrhal, paroxysmal and convalescent. The catarrhal stage is often 

indistinguishable from that due to many other respiratory pathogens: 

symptoms resemble a common cold with rhinorrhoea, coryza, a mild cough, and 

occassionally a mild fever. After about 10 to 15 days, the severity and 

frequency of coughing episodes increases, which marks the onset of the 

paroxysmal stage (Olson, 1975). Fully developed paroxysms consist of groups 

of forceful coughs, leading to the eventual expectoration of tenacious 

mucus that has blocked the airway. The inspiration of air into the lungs

14



past a partially closed glottis results in the classical "whoop" associated 

with the disease (Olson, 1975; Manclark and Cowell, 1984). However, not all 

patients whoop, nor is there a whoop associated with every paroxysm (Wilson 

et al., 1965; Zoumboulakis et al., 1973). Vomiting and extreme exhaustion 

often follow a coughing episode. Many complications can occur during the 

paroxysmal stage, and of most concern are secondary infections, seizures, 

encephalopathy and death (Lapin, 1943; Olson, 1975; Linnemann, 1979; 

Manclark and Cowell, 1984). The convalescent stage is usually reached after 

about 4 weeks, although during this stage coughing paroxysms may occur 

sporadically, and secondary bacterial infections or other complications may 

arise (Olson, 1975; Miller and Fletcher, 1976; Linnemann, 1979).

There is evidence that if antibiotics are given during the first few 

days after exposure of a susceptible individual to B.pertussis, they may 

abort or shorten the duration of the disease (Linnemann et al., 1975).

B.pertussis is susceptible to erythromycin and, because it is safe in 

infants, this is usually the antibiotic of choice (Bass et al., 1969; Islur 

et al., 1975). However, once the disease is established, antibiotics are of 

limited value except perhaps in the treatment of secondary bacterial 

infections (MRC, 1953; Baraff at al., 1978).

B.pertussis is believed to have no natural resevoir other than an 

infected person with clinical or subclinical disease (Kendrick, 1975). 

Although pertussis is considered to be predominantly a childhood disease, 

adults may be infected at a much higher rate than previously realized 

(Linnemann and Nasenbeny, 1977), It was recently shown that one quarter of 

adults with persistent cough were infected with B.pertussis (Robertson et 

al., cited by Friedman, 1988). Adults with atypical disease may serve as a 

resevoir of infection (Linnemann, 1979).
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2.2.2. Pertussis vaccines.

Control of pertussis relies on vaccine prophylaxis. For information on 

pertussis vaccines, see reviews by Lapin (1943), Anderson (1976), Manclark 

(1976), Miller et al. (1982), Wardlaw and Parton (1983b), Manclark and 

Cowell (1984), Robinson et al. (1985a), Griffiths (1988a,b) and Robinson 

and Ashworth (1988).

Attempts to immunize against pertussis started soon after the first 

isolation of B.pertussis by Bordet and Gengou (1906). Madsen (1933) was the 

first to describe the protective efficacy of whole-cell pertussis vaccine, 

during a pertussis epidemic in the Faroe Islands. Sauer (1933, 1937)

obtained similar encouraging results. Clinical trials by Kendrick and 

Eldering (1936) demonstrated that pertussis vaccine protected against 

pertussis disease. Clinical trials in the 1940s and 1950s by the British 

Medical Research Council (MRC) validated the efficacy of pertussis 

vaccination, and demonstrated parallelism between the clinical efficacy and 

potency as measured by the ICMPT (MRC, 1951, 1956, 1959).

The whole-cell pertussis vaccines of today are produced from one or 

more strains of B.pertussis, killed and detoxified by various methods. They 

are normally combined with diphtheria and tetanus toxoids, and absorbed on 

an aluminium carrier (see Griffiths, 1988a). Procedures to standardize and 

control the manufacture of pertussis vaccine have been developed (recently 

reviewed by Cameron, 1988). The potency of pertussis vaccines is measured 

by the ICMPT (Kendrick et al., 1947), and toxicity is controlled by the

mouse weight-gain test (MWGT, Pittman and Cox, 1965). The bacterial content 

of pertussis vaccines is determined with an opacity standard developed by 

Perkins et al. (1973).

Pertussis vaccination is accompanied in many cases by adverse side
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effects, ranging from mild to moderate transient reactions, to more severe 

reactions of a neurological nature which have been cause for major concern 

(Barkin and Pichichero, 1979; Cody et al., 1981; Miller et al., 1981). The 

reactions to whole-cell pertussis vaccine have been reviewed recently by 

Ross (1988).

Fears of reported side-effects to pertussis vaccination in the mid- 

1970s led to a marked reduction in vaccine uptake in the U.K., and an 

attendant increase in the incidence of pertussis (Jenkinson, 1978; Pollard, 

1980; Griffith, 1981). Similarly, a dramatic increase in pertussis also 

occured in Japan and Sweden after cessation of whole-cell pertussis 

immunizations in these countries (Sato et al., 1984; Romanus et al., 1987). 

These incidents substantiated the importance and efficacy of pertussis 

vaccines.

In the last 30 years there has been a considerable effort to develop an 

improved acellular pertussis vaccine, of lower toxicity than whole-cell 

pertussis vaccines, and with improved efficacy in preventing infection (see 

Griffiths, 1988b; Robinson and Ashworth, 1988). Pillemer (1954) made the 

first acellular vaccine using extracts of sonicated B.pertussis cells 

adsorbed on human erythrocyte membranes. Pertussis toxin, FHA and AGGs are 

immunogenic in humans (Ashworth et al., 1983) and are the principle 

components considered for inclusion in pertussis acellular vaccines. Sato 

et al. (1984a) developed a component vaccine containing PT and FHA, which 

has been used for mass immunization in Japan since 1981. Two basic types of 

acellular vaccines are manufactured in Japan: a "Biken-type" which contains 

equal amounts of PT and FHA, and a "Takeda-type" which contains FHA, PT and 

AGG2 in the ratio 90:9:1. Vaccine trials have shown that these preparations 

are immunogenic and of low reactogenicity (see Griffiths, 1988b). Clinical
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trials of two acellular vaccines, a monocomponent detoxified PT vaccine and 

a two-component detoxified PT and FHA vaccine, have been held in Sweden 

(reviewed by Griffiths, 1988b). Results showed that the efficacies of the 

vaccines were lower than anticipated, but a follow-up study has suggested 

that these acellular vaccines may be as effective as whole-cell vaccines 

(Olin et al., 1989). A defined component vaccine, containing equal amounts 

of PT, FHA and AGGs (2 & 3), has been developed at CAMR (Robinson et al., 

1986). This vaccine has been tested in adult volunteers, and has been found 

to induce high antibody responses and to have low reactogenicity (see 

Robinson and Ashworth, 1988).

2.3. VIRULENCE-ASSOCIATED FACTORS PRODUCED BY B.PERTUSSIS.

With an ultimate aim of completely eradicating pertussis, development 

of a safe, efficacious vaccine relies increasingly on knowledge and 

understanding of individual bacterial components, their regulatory 

mechanisms, and modes of action in the pathogenesis of pertussis. During 

the last decade in particular, a voluminous literature has been produced on 

purification and molecular characterization of B.pertussis factors 

implicated in pathogenesis, as outlined in this Section.

Pertussis research is hampered by the lack of a suitable animal model 

which adequately mimics the disease process in humans. Much of the basic 

information about the pathogenesis of human pertussis has resulted from 

studies of mouse respiratory infection models. Animal models of pertussis 

have been reviewed recently by gato and Sato (1988).

B.pertussis is a fastidious, slow-growing bacterium, initially thought
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to have complex nutritional requirements. However studies have indicated 

that B.pertussis can grow in a relatively simple medium containing only a 

few amino acids, growth factors and salts (Hornibrook, 1939; Cohen and 

Wheeler, 1946; Jebb and Tomlinson, 1955; Stainer and Scholte, 1970). The 

sensitivity of B.pertussis to various inhibitors (see Rowatt, 1957a, b; 

Field and Parker, 1979a) adds to the difficulties of in vitro studies. 

However a major advancement in production of B.pertussis cultures is the 

finding by Imaizumi et al. (1983) that MeCD substantially promotes growth 

and PT production. The growth requirements of B.pertussis have been 

reviewed by Rowatt (1957b), Parker (1976) and Stainer (1988).

The use of purified B.pertussis components in both in vitro and in vivo 

systems allows characterization of their biological effects and speculation 

as to their possible roles in the pathogenesis of pertussis. Identification 

of antigens which induce a protective immune response should eventually 

lead to the isolation of peptides (or production of genetically-engineered 

or synthetic peptides) containing protective epitopes which could be 

included in future acellular vaccines of low toxicity.

Studies on the genetics of B.pertussis have greatly contributed to a 

better understanding of the mechanisms involved in pathogenesis of 

pertussis (as reviewed by Coote and Brownlie, 1988). A significant 

contribution to this area has been made by Weiss et al. (1983) who 

constructed a series of transposon TnS mutants of B.pertussis deficient in 

various putative virulence factors. A molecular approach to studying 

B.pertussis confers several advantages:

i) B.pertussis DNA sequences can be moved to another (less fastidious) 

organism

ii) structure and control of genes can be investigated
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iii) characterization of virulence factors can be simplified

iv) production of proteins in vitro can be increased

v) mutants can be constructed for evaluation of pathogenic effects and

development of attenuated strains.

The pathogenesis of pertussis has 4 main stages: i) attachment of the

bacteria to the respiratory tract, ii) growth of the organism and evasion 

of host defences which are directed at its elimination, iii) production of 

local disease effects and, iv) production of systemic disease by

dissemination of toxins. B.pertussis produces an elaboration of factors 

implicated in pathogenesis, and some have been ascribed a particular role. 

For example, AGGs and FHA are most likely involved in adhesion of bacteria 

to the respiratory epithelium; TCT and HLT may contribute to the disease by 

causing local tissue damage; AC may assist survival of the pathogen by

interfering with phagocyte function; PT may be largely responsible for the 

major systemic effects of pertussis. B.pertussis virulence factors have 

recently been reviewed by Wardlaw and Parton (1983a), Weiss and Hewlett

(1986), Wardlaw and Parton (1988b) and Parton (1989). Certain 

characteristics of B.pertussis virulence-associated determinants (listed 

alphabetically) are detailed below.

2.3.1. Adenylate cyclase / haemolysin.

The adenylate cyclase (AC) activity of B.pertussis exists in two forms: 

AC enzyme which possesses only enzymic AC activity, and AC toxin which has 

both enzymic activity and also the ability to enter mammalian cells and 

catalyze the formation of cyclic 3', 5' adenosine monophosphate (cAMP) from 

intracellular adenosine triphosphate (ATP). Production of haemolysin (HLY) 

is characteristic of virulent forms of B.pertussis (see Wardlaw and Parton,
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1983a; Weiss and Hewlett, 1986).

Enzymic AC activity was first detected in commercial pertussis vaccine

preparations by Wolff and Cook (1973). Hewlett and Wolff (1976) purified a

70 kD protein which possessed AC enzymic but no toxin activity, from the

culture supernate of exponentially growing B.pertussis. Adenylate cyclase

appears to be mainly extracytoplasmic in location (associated with either

the peripiasmic space or the extracellular surface of the cytoplasmic

membrane), with a soluble fraction comprising up to 20% of the total AC

activity being released into the culture medium (Hewlett et al., 1976).

B.pertussis AC exhibits the unusual feature of being activated, up to 1000-

fold, by the eukaryotic calcium-binding protein, calmodulin (CaM, Wolff et

al., 1980). Although CaM stimulation of mammalian AC absolutely requires
2+

Ca (Keller et al., cited by Masure et al., 1987), some authors have shown
2+

that AC activation by CaM is Ca -independent (Greenlee et al., 1982;

Kilhoffer et al., 1983). However, Hanski and Farfel (1985) reported that
2+

penetration of invasive AC absolutely requires Ca . Modulated and 

avirulent phase variant strains do not express AC (Parton and Durham, 1978; 

Hewlett at al., 1979; Wardlaw and Parton, 1979). The aforementioned 

properties of AC, plus the fact that it is produced by all mammalian 

Bordetella species (Endoh et al., 1980), strongly implicate AC as a toxin 

and virulence factor.

The toxic activity of AC was first detected by Confer and Eaton (1982). 

Using crude urea extracts of B.pertussis, these authors demonstrated that 

AC traverses the cell membranes of human polymorphonuclear leukocytes and 

macrophages, is activated by CaM, and elicits an accumulation of 

intracellular cAMP. The elevation of intracellular cAMP levels results in a 

concomitant inhibition of phagocyte functions, such as zymosan stimulated
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superoxide generation and the killing and ingestion of bacteria. These

activities suggest a role for AC in B.pertussis pathogenesis in assisting 

survival of the pathogen by impairing host phagocyte defence mechanisms. 

Elevated intracellular cAMP levels as a result of B.pertussis AC activity 

have also been demonstrated for a number of mammalian cell types, including 

human lymphocytes, 849 murine lymphoma cells, turkey erythrocytes and rat 

oocytes, but not for human erythrocytes (Hanski and Farfel, 1985). Shattuck 

and Storm (1985) used partially purified and highly active AC preparations 

to confirm that AC was the component being internalized by eukaryotic cells 

and eliciting an increase in cAMP levels.

Initial steps to purify B.pertussis AC from culture supernates or from 

bacterial cell surface extracts, reveal that AC exists under a number of 

molecular forms, ranging from 43kD to 700kD (see Hanski and Farfel, 1985;

Shattuck et al., 1985; Kessin and Franke, 1986; Ladant et al., 1986;

Friedman, 1987; Masure et al., 1987; Hewlett and Gordon, 1988). These

variations may be partly due to the different methods of isolation used,

and the sensitivity of AC to proteolysis. Rogel et al. (1988) found two 

forms of AC, a high (200kD) and a low (47kD) molecular weight species. 

Similarly, Masure and Storm (1989) purified proteins of 215kD and 45kD for 

AC. These authors propose that AC is synthesized as a precursor protein, 

and then proteolytically processed to the smaller form. Hewlett et al. 

(1985a) proposed that the AC toxin of B.pertussis consists of an 

enzymatically active (A) subunit and a receptor-binding (B) subunit, 

consistent with the A-B model for bacterial toxins.

The role of AC in B.pertussis pathogenesis was verified by Weiss et al. 

(1984) using a genetic approach. A series of Tn5 mutants constructed by 

Weiss et al. (1983) included several HLY deficient mutants which had
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different levels of AC activity e.g. significant AC enzymic activity could 

be detected in BP349 (Hly-), but no AC activity could be detected in BP348 

(Hly- Adc-), Transposon Tn5 is known to cause polar mutations (Berg et al., 

1980) and Weiss et al. (1983) suggested that the genes for AC and HLY were 

closely linked on the same operon, with the cya gene being located upstream 

of the bly gene. Several B.pertussis strains were tested for virulence in 

the infant mouse model: compared to wild-type B.pertussis strains, BP349

(Hly-) had reduced virulence and BP348 (Hly- Adc-) was avirulent (Weiss et 

al., 1984). These findings demonstrated that HLY may play a role in

B.pertussis pathogenesis, and that AC is an essential requirement for 

virulence of B.pertussis, at least in murine models.

Hewlett et al.(1985b) showed that extracts from wild-type B.pertussis 

strains, and from BP349 (Hly-) and BP357 (a Tn5 induced mutant deficient in 

PT production), were able to elicit a massive intracellular cAMP 

accumulation in S49 lymphoma cells. In contrast however, extracts from 

BP348 (Hly- Adc-) were without effect on cAMP levels in S49 lymphoma cells 

(Hewlett et al., 1985). These data verified that B.pertussis AC is the

component responsible for the large increase in intracellular cAMP levels 

seen in cells treated with B.pertussis extract.

Further weight was added to the importance of AC as a virulence factor 

by the finding that monoclonal Ab to AC was protective in an experimental 

mouse respiratory infection model (Brezin et al., 1987). Adenylate cyclase

is immunogenic in man: Farfel et al. (1990) have found that patients with

pertussis, or subjects that have received pertussis vaccine, produce a high 

titre of anti~B.pertussis AC antibodies.

Brownlie et al. (1986) reported the isolation of a clone (pRMBl), from 

a gene library of B.pertussis TAB I DMA, which was able to restore AC and
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HLY activities to BP348. Strain BP348 harbouring pRMBl overproduced both 

HLY and AC, and regained its virulence capacity in murine models (Brownlie 

et al., 1988). The Tn5 insertions in BP348 (Hly- Adc-) and BP349 (Hly-) 

were mapped to the same lOkb BamHI fragment (Brownlie at al., 1988).

Glaser et al. (1988a) used a recipient cya-defactive Escherichia coli

strain harbouring a plasmid which expressed high levels of a synthetic
cloned

calmodulin, to identify^#.pertussis DMR which could complement the cya 

defect. Molecular analysis of clones revealed a 5,2kb open reading frame 

(ORF), with the potential to encode a protein of 1706 amino acids, which 

was assigned to the B.pertussis cya gene (Glaser et al., 1988a).

Further studies by Glaser et al. (1988b) revealed that the 45kD 

secreted, calmodulin- rc£po/)Sive AC of B.pertussis is synthesized as a 1706 

amino acid bifunctional protein carrying both AC and HLY activities. These 

authors proposed the name 'cyclolysin' for the AC-HLY protein. Analysis of 

protein sequence data showed a significant degree of homology between the

carboxy-terminal part of the AC precursor, E.coli alpha-haemolysin, and

Pasteurella haemolytica leucotoxin (Glaser et al., 1988b). Sequence

analysis of a region downstream from the cya structural gene {cyaA) 

identified three ORFs: cyaB, cyaD and cyaE, coding for polypeptides of 712,

440 and 474 amino acid residues respectively. The gene products of cyaB and

cyaD share homology with the gene products of hlyB and hlyD, known to be 

necessary for the transport of HLY across the cell envelope in E.coli 

(Glaser et al., 1988b). These authors propose that cyaA, cyaB, cyaD and

cyaE are organized in a single operon, and that the gene products of cyaB, 

cyaD and cyaE are necessary for secretion of the AC-HLY bifunctional 

protein across the cell membrane.
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2-3.2. Agglutinogens.

A scheme for serotyping the genus Bordetella, based on the presence or 

absence of specific agglutinogens (AGGs) on the surface of the bacteria, 

was developed by Andersen (1953) and extended by Eldering et al. (1957). 

All strains of B.pertussis possess AGGs 1 and 7, and may also possess AGGs 

2 to 6 in various combinations. Preston et al. (1982) proposed that AGGs 1, 

2 and 3 are major, and AGGs 4, 5 and 6 are minor agglutinogens. Based on 

epidemiological data (Preston, 1963, 1965) the World Health Organization 

(WHO) recommended that whole-cell pertussis vaccines should include the 

three major AGGs, 1, 2 and 3 (WHO, 1979).

Ashworth and co-workers (1982) demonstrated that AGG 2 is a fimbrial

protein, with a subunit molecular weight of around 22kD. These authors 

observed by electron microscopy that antibody to purified AGG 2 labelled

fimbriae on serotype (ST) 1,2 organisms (Ashworth et al., 1982, 1985).

Serotype 2 fimbriae have also been purified by Zhang et al. (1985a) and 

Irons et al. (1985). Agglutinogen 3 has also been recognized as a fimbrial 

protein, with a slightly smaller molecular weight subunit than AGG 2 

(Ashworth et al., 1985; Irons et al., 1985; Fredriksen et al., 1988). The

fimbrial nature of AGG 3 is a controversial issue: Carter and Preston

(1984), Preston (1985) and Cowell et al. (1986) examined B.pertussis 

strains by electron microscopy and were unable to detect fimbriae on ST 1,3 

strains, although strains containing AGG 2 or AGG 6 were fimbriated. These 

contradictory results may be explained by the different serotyping systems 

used. Strains identified as containing AGG 3 by the Preston serotyping 

system (Preston et al., 1982) are also identified as containing AGG 6 when

the Eldering serotyping system (Eldering et al., 1957) is used (see Cowell

et al., 1987; Robinson et al., 1989).
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Cowell et al. {1986, 1987) purified fimbriae identified as AGG 6 on the 

basis of the agglutinating specificity of antisera raised against the 

purified protein. Antibodies to purified ST 2 and ST 6 fimbriae appeared to 

be monospecific based on agglutination tests of whole-cells, however a weak 

cross-reaction between ST 2 and ST 6 fimbriae was detected by ELISA (Cowell 

et al., 1987). Irons et al. (1985), Robinson et al. (1985) and Zhang et al. 

(1985b) have also suggested that B.pertussis fimbriae may contain cross­

reacting antigenic determinants. The ST 6 fimbriae purified by Cowell et 

al. (1986, 1987) and the ST 3 fimbriae purified by Irons et al. (1985) were 

both obtained from the same B.pertussis strain, and are therefore likely to 

be equivalent (Cowell et al., 1986, 1987). Subsequent mention of AGG 3 in

this thesis will refer to the fimbrial protein, as identified by the 

Preston serotyping system.

Ashworth et al. (1985) demonstrated the presence of both AGG 2 and AGG 

3 on the surface of individual B.pertussis cells, indicating that the two 

antigenically distinct fimbriae can be simultaneously expressed. The 

helical structure of B.pertussis fimbriae has been described by Steven et 

al. (1986).

Fimbriae of other bacterial pathogens are involved in adherence 

(Isaacson, 1985) and by analogy, the fimbriae of B.pertussis may play a 

role in pathogenesis by mediating attachment of the bacteria to the 

ciliated respiratory epithelium. Antibody to fimbriae could be protective 

by blocking the initiation of the disease process: Gorringe et al. (1985)

demonstrated that monoclonal antibodies to AGGs 2 and 3 inhibited binding 

of B.pertussis to Vero cells in a serotype specific manner. Robinson et al. 

(1985b) and Zhang et al. (1985b) found that mice immunized with purified 

fimbriae were protected against a subsequent aerosol challenge with
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virulent B.pertussis.

The biochemical nature of the other AGGs has yet to be determined. It 

has been proposed that the polysaccharide chain of lipooligosaccharide has 

properties similar to AGG 1 (Li et al., 1988; Robinson et al., 1989). It

has recently been suggested that AGGs 4, 5 and 6 may represent either minor 

epitopes associated with the main structural subunits or minor fimbrial 

proteins other than the repeating structural subunit (Robinson et al., 

1989).

The ST 2 fimbrial subunit gene {fim2) from B.pertussis has been cloned

(Livey et al., 1987). Analysis of the NH -terminal amino acid sequence of
2

purified ST 2 fimbriae from B.pertussis Tohama I enabled synthesis of an

oligonucleotide probe for use in identifying ST 2 clones from a gene

library of strain Wellcome 28 in pBR328. Nucleotide sequence analysis of

the fim2 gene revealed on ORF of 621 base pairs. Amino acids 27- 46 of the

protein deduced from the nucleotide sequence matched the first 20 amino

acids of the ST 2 fimbrial subunit determined by amino acid sequencing of

the purified protein, indicating that the ST 2 subunit contains a 26 amino

acid signal peptide. The molecular weight of the mature fimbrial subunit,

calculated from the deduced amino acid composition, is 19.2kD. A region of

homology to the -10 consensus sequence of E.coli promoters was identified,

but homology to the -35 consensus sequence was absent, a feature frequently

associated with promoters that are positively regulated. Livey et al.

(1987) also analysed and compared the NH -terminal amino acid sequences for
2

the ST 2 and ST 3 subunits, and reported about 80% homology between the

two, which agrees with findings by Cowell et al. (1987) and Mooi et al.

(1987). A lesser degree of homology was found between the NH -terminal
2

B.pertussis fimbrial subunits, and those of E.coli, Haemophilus influenzae
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and Proteus mirabilis (Livey et al., 1987; Mooi et al., 1987).

Mooi et al. (1987) hybridised a genomic blot of 5aJJ-digested

B.pertussis DNA, with a probe derived from the NH -terminal region of the
2

ST 2 fimbrial subunit. Three fragments were detected, suggesting the

presence of three fimbrial subunit genes.

Using oligonucleotide probes derived from amino acid sequences of

B.pertussis fimbrial subunits, Pedroni et al. (1988) identified a novel

gene, designated fimX. Nucleotide sequence analysis of fimX identified an

ORF of 628 base pairs. The deduced amino acid composition suggests that the

mature fimX gene product, which has a predicted molecular weight of 20kD,

is proceeded by a signal peptide. The deduced NH -terminal sequence of the
2

mature fimX gene product is similar, but not identical, to the amino acid 

sequences of the ST 2 and ST 3 fimbrial subunits (Pedroni et al., 1988). 

There is evidence to suggest that fimX represents a silent gene: no third

fimbrial subunit has been described for B.pertussis, and analysis of the 

promoter region has identified a deletion which would make expression of 

jfimX unlikely (Willems et al., 1990).

The ST3 fimbrial subunit gene (fimS) has been cloned and sequenced 

(Mooi et al., 1990). Comparison with the fim2 gene nucleotide sequence 

showed a conserved region (at position -20 to -50), upstream of the 

putative -10 box, which contained a stretch of 13- 15 C-residues. It was 

proposed that this C-rich region may be involved in serotype variation 

(Mooi et al,., 1990).

Novotny et al. (1985a) identified a protective 68kD antigen (P.68) 

associated with virulent strains of B.bronchiseptica. With a monoclonal 

antibody to P.68, a homologous 69kD outer membrane protein (P.69) was found 

in B.pertussis (Novotny et al., 1985b). Purified P.69 protects mice from a
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lethal ic B.pertussis challenge (Novotny et al,, 1985b). Brennan and co­

workers (1988) identified P.69 as an agglutinogen that reacts with the 

Eldering serotype 3 antiserum. The gene for P.69 has been cloned (Charles 

et al., 1989). Computer analysis of the DNA sequence revealed an ORF 

capable of encoding a protein of around 93kD (P.93). The first 34 residues 

of the deduced amino acid sequence of P.93 have the features of a bacterial 

signal peptide, and other cleavage sites may also be present within the 

P.93 molecule (Charles et al., 1989). The biochemical nature of P.69 

remains to be determined.

2.3.3. Filamentous haemagglutinin.

Keogh et al. (1947) first demonstrated that cultures of B.pertussis 

produce haemagglutinin, so named for its ability to agglutinate a variety 

of erythrocytes. B.pertussis produces three haemagglutinins: pertussis

toxin, filamentous haemagglutinin (FHA) and an ornithine-containing lipid 

(Arai and Sato, 1976; Kawai et al., 1982). The activity of FHA is 

characterized by its sensitivity to cholesterol inhibition (Sato et al.,

1983). By electron microscopy, FHA appears as fine filaments about 2nm in 

diameter and 40- lOOnm in length (Arai and Sato, 1976; Morse and Morse, 

1976). Originally it was thought that FHA was fimbrial in nature (Sato et 

al., 1979; Morse and Morse, 1976), but Ashworth et al. (1982) demonstrated 

that FHA is a non-fimbrial protein.

Several authors have reported the purification of FHA from either 

static liquid or agar cultures (Arai and Sato, 1976; Arai and Munoz, 1979a; 

Irons and MacLennan, 1979; Irons et al., 1983; Sato et al., 1983). When 

examined by SDS-PAGE, the purified FHA protein consists of a heterologous
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mixture of polypeptides, with molecular weights ranging from about 58 to 

220 kD (Irons and MacLennan, 1979; Robinson et al,, 1981; Irons et al.,

1983). In a study using monoclonal antibodies to FHA, and the protease 

inhibitor PMSF, Irons et al. (1983) suggested that many of the lower 

molecular weight polypeptides are degradation products of the 220kD 

polypeptide.

Studies using murine models have indicated that FHA is a protective

antigen (Robinson et al., 1981; Sato et al., 1979, 1981; Sato and Sato,

1984). Antibodies to FHA have been found to inhibit, or partially inhibit, 

adhesion of B.pertussis to various mammalian cells (Sato et al., 1981; 

Gorringe et al., 1985). The importance of FHA in mediating adherence to 

eukaryotic cells in vitro (Lenin et al., 1986; Urisu et al., 1986) suggests 

the role of adhesion for FHA in the pathogenesis of pertussis. B.pertussis 

Tn5 mutants BP353 (Fha-), BP354 (Fha-) and BP356 (Ptx-) showed a decreased 

ability to adhere to human ciliated cells in vitro (Tuomanen and Weiss,

1985). However the adherence ability of these mutants was restored by the 

addition of exogenous FHA or PT (Tuomanen et al., 1985). Both FHA and PT 

are secreted into the medium during growth of virulent B.pertussis (Arai 

and Munoz, 1979b) and these components can be recaptured either by 

B.pertussis or unrelated bacteria, and still function as adhesins

(Tuomanen, 1986) . A model has been proposed for the mechanism of adherence 

of B.pertussis to human cilia, in which FHA and PT are secreted from

virulent bacteria and each act as a bivalent bridge between the bacteria 

and one or more carbohydrate-containing receptors on the cilia of the 

respiratory epithelium (see Tuomanen, 1988).

There have been several reports on the cloning of the gene for FHA

(Reiser et al., 1985; Mattel et al., 1986; Brown and Parker, 1987; Stibitz
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et al., 1988; Reiman et al., 1989).

Reiser et al. (1985) and Mattel et al. (1986) constructed genomic 

libraries of B.pertussis DNA, cloned in the p-galactosidase gene of 

bacteriophage A gtll. Expression of immunologically-reactive fusion 

polypeptides in E.coli was detected using anti-FHA antiserum. 

Characterization of positive clones identified 0.7kb (Reiser et al., 1985) 

and 2.9kb (Mattel et al., 1986) regions of B.pertussis DNA containing 

coding sequence for a portion of FHA. Brown and Parker (1987) screened a 

genomic library of B.pertussis DNA cloned in the kanamycin resistance gene 

of cosmid pCP13, to identify clones expressing immunologically-reactive FHA 

(iFHA) in E.coli. The structural fha gene was mapped to a 6.5kb fragment, 

and its expression was under the control of the promoter of the kanamycin 

resistance gene of pCP13. The sizes of FHA polypeptides produced by E.coli 

were larger than those of B.pertussis, perhaps indicating that the E.coli 

product contains signal sequences which are removed by B.pertussis during 

secretion (Brown and Parker, 1987).

Using DNA probes constructed from chromosomal DNA surrounding the sites 

of Tn5 insertion in BP347 (Vir-) and BP353 (Fha-), Stibitz et al. (1988a) 

identified a cosmid clone (pUW21-26) which encompasses both the vir and fha 

loci. Stibitz et al. (1988a,b) further analysed pUW21-26 by Tn5 mutagenesis 

and identified three genetic loci for FHA: the structural gene (fhaB) and

two loci involved in FHA expression (fhaA and fhaC) . Analysis of the 

polypeptides encoded by a series of plasmids containing Tn5 mutations in 

the fhaB gene identified a putative ORF of approximately 6kb, with the 

capacity to encode a polypeptide of around 200kD. A lOkb EcoRI fragment 

adjacent to the vir locus encompasses the fhaB gene, which is transcribed 

in the opposite direction to vir. Tn5 insertions within the 4kb fhaA region
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of PÜW21-26 caused an overproduction of iFHA in E.coli. The Tn5 insertions 

in BP353 and BP354 were mapped to the fhaA locus (Stibitz et al., 1988a,b). 

BP353 and BP354 were initially characterized as Fha- (Weiss et al., 1983) 

but later shown to produce low levels of full-length FHA protein (Urisu et 

al., 1986; Brown and Parker, 1987). Putative roles for FhaA and FhaC in 

regulating the synthesis and export of FHA have been suggested (Stibitz et 

al., 1988a,b).

Reiman et al. (1989) analysed the nucleotide sequence of the lOkb EcoRI 

fragment encompassing fhaB and identified an ORF of at least 9783bp with 

coding capacity for a protein of around 332kD. Putative cleavage sites have 

been identified within the deduced amino acid sequence. Two ̂ tripeptide 

sequences containing arginine, glycine and aspartic acid, were identified 

as putative adherence factors: mutants deficient in this region were unable 

to bind to ciliated eukaryotic cells in vitro, strengthening the role for 

FHA in adherence.
RGD tripeptide sequences are normally involved in fibronectin binding.

2.3.4. Heat-labile toxin.

Heat-labile toxin (HLT) has recently been reviewed by Nakase and Endoh 

(1988). Production of HLT by B.pertussis was first reported by Bordet and 

Gengou (1909). Subcutaneous injection of HLT in mice causes dermonecrotic 

lesions, splenic atrophy, and is lethal at high doses (see Cowell et al., 

1979; Sekiya et al., 1982; Livey and Wardlaw, 1984). The toxic activity of 

HLT is destroyed by heating at 56®C for 10 min (Munoz, cited by Wardlaw and 

Parton, 1983a). Cowell et al. (1979) reported the cytoplasmic location of 

HLT, but Livey and Wardlaw (1984) suggested that HLT may also be partially 

exposed on the cell surface.
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HLT has been purified by Onoue et al, (1963), Nakase et al, (1969), and 

more recently by Livey and Wardlaw (1984), Nakase and Endoh (1985), Zhang 

and Sekura (cited by Nakase and Endoh, 1988) and Endoh et al, (1986); the 

latter four reports give molecular weights of 89, 102, 130 and 102 kD

respectively for the purified protein. Endoh et al, (1986) propose that the 

102kD HLT protein comprises two 30kD and two 20kD subunit polypeptides. 

Purified HLT damages cell membrane permeability and has a vasoconstrictive 

action on vascular smooth muscle (Endoh et al., 1988a, b). Nakase and Endoh

(1988) have recently reviewed HLT.

2.3.5. Lipopolysaccharide.

Like other Gram-negative bacteria, B.pertussis produces

lipopolysaccharide (LPS, endotoxin) which has a characteristic range of 

activities in being heat-stable, antigenic, pyrogenic and toxic: 

B.pertussis LPS however has several unusual biochemical and biological 

features (as reviewed by Chaby and Caroff, 1988).

Chemical analysis of B.pertussis LPS has revealed that it may be 

composed of two distinct lipids (lipid A and lipid X) and two different 

oligosaccharide chains (types I and II) (Ayme et al., 1980; Le Dur et al., 

1980; Moreau et al., 1984). B.pertussis has two immunologically distinct 

LPS types (Le Dur et al., 1980; Peppier, 1984). The two forms of LPS remain 

unchanged by phase variation and phenotypic modulation (Peppier and 

Schrumpf, 19844.

B.pertussis LPS differs from other Gram-negative LPSs in its unique 

ability to induce resistance to mouse adenovirus infection (Winters et al.,

1985).
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2.3.6. Pertussis toxin.

Pertussis toxin (PT) has probably been the most extensively studied 

component of B.pertussis: its production, purification, molecular

structure, enzymic activities and multiple biological effects in vitro and 

in experimental animals have recently been reviewed by Wardlaw and Parton 

(1983a), Sekura et al. (1985), Burns (1988), Furman et al. (1988), Irons 

and Gorringe (1988), Munoz (1988), Ui (1988), Gross et al. (1989) and 

Parton (1989).

Previous names for PT include histamine-sensitizing factor, 

lymphocytosis-promoting factor and islets-activating protein, referring to 

the diversity of its biological effects in experimental animals. Munoz and 

Bergman (1977) first proposed that these numerous biological effects were 

due to one component, pertussigen, subsequently designated pertussis toxin 

by Pittman (1979).

Pertussis toxin is a major virulence factor of B.pertussis and has been 

implicated as the component responsible for paroxysmal coughing in clinical 

pertussis (Pittman, 1979). A Tn5 mutant deficient in PT (BP357) had reduced

virulence in a murine model, confirming the importance of PT as a virulence

factor (Weiss et al., 1984) . Evidence for the role of PT in adherence has

also been provided (Gorringe et al., 1985; Tuomanen et al., 1985). Wardlaw

et al. (1976), Munoz et al. (1981), Sato et al. (1981; 1984a, b) and

Granstrom et al, (1985) are among authors who have shown that PT is a 

protective antigen, either in animal models or in humans.

Early work on the purification of PT includes that of Arai and Sato 

(1976) who reported that, by electron microscopy, PT appears as spherical 

particles approximately 6nm in diameter. Subsequent reports on purification 

of PT include Tamura et al. (1982), Sato et al. (1983) and Sekura et al.
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(1983). The toxin, which is released into the supernate by virulent 

B.pertussis, is a hexamer composed of five subunits, SI to S5, in a molar 

ratio of 1:1:1:2:1 (Tamura et al., 1982). Like diphtheria toxin, cholera 

toxin and E.coli heat-labile toxin, PT conforms to an A-B model (Gill, 

1978): the A (active) moiety is composed of enzymically active subunit SI,

and the B moiety comprises subunits 82 to S5, arranged in two heterodimers, 

(S2 + S4) and (S3 + 84), joined by 85 (Tamura et al., 1982). The B moiety 

mediates binding of receptors on the surface of eukaryotic cells, and 

translocation of the toxic A moiety across the target cell membrane (Tamura 

et al., 1983).

In the presence of NAD, the A moiety (SI) mediates ADP-ribosylation of

a family of GTP-binding membrane proteins (G-proteins) that regulate

enzymes involved in cellular metabolism, such as adenylate cyclase (AC),

phospholipase C and cyclic GMP-phosphodiesterase (Katada and Ui, 1982;

Katada et al., 1983; Hsia et al., 1984; Manning et al., 1984; Van Dop et

al., 1984; and others, as reviewed by Ui, 1988). Two G-proteins are

involved in the regulation of AC, G and G , which stimulate or inhibit AC
s i

respectively. Cholera toxin acts by ADP-ribosylating G , whereas G is the
s i

substrate for PT. The G protein receives signals from inhibitory receptors
i

(R ) which in turn receive messages from inhibitory hormones. Pertussis 
i

toxin acts by uncoupling G from R , and the resulting effect is that cells
i i

are unable to inhibit AC activity. A number of different cell types are 

affected by PT, and the ensuing effects are numerous, as reviewed by Burns

(1988) and Ui (1988). Locht et al. (1989) showed that when 81 was mutated 

at tryptophan and glutamic acid residues (positions 26 and 129 

respectively), the toxic activity of PT was abolished but the molecule 

retained its immunoprotective properties.
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Cloning of PT has been reported by Locht et al. (1986), Locht and Keith 

(1986) and Nicosia et al. (1986). Nucleotide sequence analysis identified 

several ORFs clustered within a 3kb region, which code for PT subunits in 

the order SI, S2, S4, S5 and S3 (Locht and Keith, 1986; Nicosia et al.,

1986) . The PT subunit genes have been designated ptxA (SI), ptxB (S2), ptxC 

(S3), ptxD (S4) and ptxE (S5) (Black and Falkow, 1987). The ptxD gene 

overlaps ptxB and ptxE (Nicosia et al., 1986). The gene coding for S5 was 

tentatively identified on the basis of amino acid composition (Nicosia et 

al., 1986) and later confirmed by immunological studies in which antisera 

raised against the cloned ptxE gene product recognized the native S5 

subunit (Nicosia et al., 1987). Each of the five subunit genes is preceeded 

by a sequence encoding a putative signal peptide, suggesting that the PT 

subunits are secreted individually into the periplasm, where the holotoxin 

is assembled (Locht and Keith, 1986; Nicosia et al., 1986). From the 

deduced amino acid sequences, the molecular weights of the mature peptides 

were calculated to be 26.0kD, 21.9kD, 21.9kD, 12-lkD and ll.OkD (Locht and 

Keith, 1986), or 26.2kD, 21.9kD, 21.9kD, 12.1kD and 10.9kD (Nicosia et al.,

1986), for subunits SI to S5 respectively.

Subunits S2 and S3 share 75% nucleotide sequence homology and 70% amino

acid homology, suggesting that they may have evolved by gene duplication 

(Locht and Keith, 1986; Nicosia et al., 1986). The two subunits are

immunologically cross-reactive (Nicosia et al., 1987). However despite a

high degree of homology, S2 and S3 cannot substitute for each other in the 

holotoxin (Tamura et al., 1982). Amino-terminal homology was found between 

the SI subunit of PT and the ADP-ribosyltransferase subunit A of cholera 

toxin (Locht and Keith, 1986; Nicosia et al., 1986).

Sequences homologous to the consensus -10 and -35 regions of E.coli
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promoters were identified only upstream of ptxA, indicating that the PT 

subunit genes are organized in a polycistronic operon. However, the

putative -10 and -35 regions for ptx are separated by 21bp, not 17bp as

required for efficient expression of E.coli promoters (Locht and Keith, 

1986; Nicosia et al., 1986). Nicosia and Rappuoli (1987) confirmed the 

location of the consensus -10 and -35 regions, and showed that

transcription of the ptx operon starts 7bp downstream of the -10 region. A 

rho-independent transcription terminator was identified at the 3' end of 

ptxC (Locht and Keith, 1986; Nicosia et al., 1986),

A sequence similar to the Shine-Dalgarno sequence of E.coli has been 

identified upstream of ptxA (Locht and Keith, 1986; Nicosia et al., 1986). 

Locht and Keith (1986) identified a similar putative translational sequence 

in front of the ptxD, ptxE and ptxC genes; Nicosia et al. (1986) identified 

a new consensus sequence in a position corresponding to that of a ribosome 

binding site, preceeding the ptxB, ptxD, ptxE and ptxC genes.

The Tn5 insertions in mutants BP356 (Ptx-) and BP357 (Ptx-) (Weiss et 

al., 1983) have been mapped to ptxC (Locht et al., 1986; Locht and Keith, 

1986; Nicosia et al., 1986). These mutants are unable to produce active PT 

in culture supernates (Weiss et al., 1983) however preliminary data 

indicates that subunits SI, 32, 84 and S5 can be detected in cells

(Marchitto et al., 1987b; Nicosia and Rappuoli, 1987), These data suggest 

that the S3 subunit is required for assembly and release of PT into the 

culture medium.

Black and Falkow (1987) used allelic exchange to introduce a number of 

defined mutations into the ptx region of B.pertussis. Examination of PT 

gene expression suggested that, i) an intact SI subunit gene is required 

for synthesis of S2 and S4, indicating that ptxA, ptxB and ptxD may form a
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single transcriptional unit, ii) mutations in ptx# adversely affect the 

synthesis or stability of SI, and iii) mutations in ptxD affect synthesis 

of S2.

2.3.7. Tracheal cytotoxin.

Tracheal cytotoxin (TCT) is the most recently identified toxin produced 

by B.pertussis (Goldman et al., 1982). Purified TCT causes ciliostasis and

specific damage to ciliated cells in hamster tracheal ring cultures, 

demonstrating a possible role for TCT in respiratory tract pathology 

(Goldman et al., 1982). Cultured hamster tracheal epithelial cells exposed 

to B.pertussis supernates show an inhibition of DNA synthesis, implying 

that TCT may have a toxic effect for the basal cells in the respiratory 

epithelium (Goldman, 1986).

Tracheal cytotoxin has been purified and characterized (Goldman et al., 

1982; Goldman and Herwaldt, 1985; Goldman, 1986). Diaminopimelic acid and 

muramic acid are constituents of bacterial peptidoglycan: these components

are also found in TCT, indicating that TCT is derived from peptidoglycan. 

Rosenthal et al. (1987) identified as TCT, soluble peptidoglycan fragments 

released by B.pertussis during broth culture. The structure of TCT suggests 

that it does not represent a peptidoglycan precursor form, but is likely to 

be released as a result of hydrolysis of peptidoglycan fragments from 

intact bacterial peptidoglycan (Rosenthal et al., 1987).

Production of TCT does not appear to be affected by phase variation 

(Goldman, 1986). Further information on TCT can be found in a review by 

Goldman (1988) .
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2.3.8. X-mode specific envelope polypeptides.

Analysis of B.pertussis cell envelope preparations by SDS-PAGE 

identified two major polypeptides associated with virulent (X-mode) strains 

(Parton and Wardlaw, 1975). These 28kD and 30kD X-mode specific envelope 

polypeptides (X-OMPs) were absent from profiles of phase IV B.pertussis 

strains, and strains which had been grown under modulating conditions 

(Parton and Wardlaw, 1975; Wardlaw et al,, 1976; Wardlaw and Parton, 1979). 

The X-OMPs as yet remain uncharacterized.

Section 2.4, REGULATION OF EXPRESSION OF VIRULENCE DETERMINANTS IN 

B.PERTUSSIS,

As described above, virulent B.pertussis strains produce multiple 

virulence determinants necessary for the organism to establish infection 

and produce disease effects. The expression of these virulent-phase genes 

is influenced by both phenotypic and genotypic changes, in processes called 

phenotypic modulation and phase variation respectively. In addition, 

B.pertussis strains can exhibit heterogeneity in serotype (serotype 

variation). These phenomena are described below, and have been reviewed by 

Robinson et al. (1986b) and Coote and Brownlie (1988) .

2.4.1. Phenotypic modulation.

In response to certain environmental stimuli, such as low temperature 

(<28°C) or high levels of certain salts or organic acids, B,pertussis 

strains exhibit a freely reversible, phenotypic change called phenotypic 

(or antigenic) modulation (Lacey, 1960; Pusztai and Joo, 1967). Growth of

39



B.pertussis on normal medium containing NaCl produces X-mode or virulent

cells, however growth with high levels of MgSO (or other inorganic or
4

organic salts, or low temperatures) gives rise to antigenically-distinct C- 

mode or avirulent cells (Lacey, 1960). An intermediate mode (I-mode) was 

also described by Lacey (1960), but this may have represented a population 

containing both X-mode and C-mode cells, rather than individual cells being 

I-mode (see Robinson et al., 1986tJ. Virulent properties can be readily

restored to modulated cells by culture on appropriate medium (Lacey, 1960).

A high concentration of nicotinic acid in the growth medium induces a 

similar phenotypic modulation (Pustzai and Joo, 1967) . In response to 

modulation signals, expression of certain genes is repressed. Virulence- 

associated factors lost during modulation include:-

AC (Parton and Durham, 1978; Hall et al., 1982; McPheat et al., 1983;

Brownlie et al., 1985a)

AGGs (Holt and Spasojevic, 1968; McPheat et al., 1983)

FHA (Lacey, 1960)

HLT (Livey et al., 1978; Idigbe et al., 1981)

HLY (Lacey, 1960)

PT (Wardlaw et al., 1976; Idigbe et al., 1981; Robinson et al., 1983;

Brownlie et al., 1985a)

X-OMPs (Wardlaw et al., 1976; Idigbe et al., 1981; Brownlie et al., 1985a).

Additional factors not expressed in C-mode cells include cytochrome

d (Dodrogosz et al., 1979; Ezzell et al., 1981b). Hydrophobicity of
629
B.pertussis cells is affected by modulation: X-mode cells are hydrophobic

whereas C-mode cells are hydrophilic (Robinson et al., 1983). Modulated

cells have a reduced adherence ability (Burns and Freer, 1982; Robinson et 

al., 1983; Gorringe et al., 1985; Redhead, 1985). For many bacterial
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species, virulent strains can be identified by their ability to absorb

certain dyes, such as Congo red (CR, Payne and Finkelstein, 1977). Parton

(1988) found that modulated B.pertussis cells exhibit a CR- phenotype,

whereas non-raodulated cells are CR+. Lacey (1960) described a group of

antigens which were expressed only in C-mode cells. Calderwood et al.

(1988) and Knapp and Mekalanos (1988) have identified a number of genes

whose expression is activated by modulators. Brownlie et ai. (1985a)
2 -

demonstrated that the SO anion was the important component of MgSO for
4 4

inducing modulation. Melton and Weiss (1989) examined the effect of a
2”

number of cations and anions on modulation, and found that only SO
4

anions eliminated transcription of virulence-associated genes.

MgSO -induced and nicotinic acid-induced modulation are distinct: the
4

latter gives a different serological response, and cells retain HLT

expression (Pusztai and Joo, 1967). McPheat et al. (1983) found that

nicotinic acid has a modulating effect on AGGs 2 and 3, but causes an

increase in production of AGG 1. Growth with high concentrations of

nicotinamide has no modulating effect on B.pertussis, suggesting that the

carboxyl group may be an important mediator of modulation (Wardlaw et al.,

1976). Schneider and Parker (1982) showed that modulation could be induced

by growth with two analogues of nicotinic acid, but not by growth with

nicotinic acid containing a modified carboxyl group. The fact that MgSO -
4

induced and nicotinic-acid induced modulation are distinct, suggests that 

they mediate their effect via different intermolecular interactions.

Brownlie et al. (1985a) studied the effect of several inorganic and 

organic salts on production of AC, PT and X-OMPs, and found that the loss 

of these three properties occurred concomitantly during modulation. This 

added weight to the hypothesis of Wardlaw and Parton (1979) that expression
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of virulence determinants in B.pertussis is controlled by a common 

regulatory mechanism.

Adenylate cyclase plays a role in the regulation of expression of 

certain proteins in prokaryotes, including virulence-associated proteins of 

E.coli (Eisenstein et al., 1981; Martinez-Cadena et al., 1981). By analogy, 

a putative regulatory role was postulated for B.pertussis AC (Parton and 

Durham, 1978; Hewlett et al., 1979; Wardlaw and Parton, 1979). This theory 

was negated by Brownlie et al. (1986b) who found that AC did not have a

causal effect in the loss of B.pertussis virulence factors, but that AC was

itself influenced by the same regulatory mechanism perturbed during 

modulation.

Generally, studies have indicated that the rate of loss of virulence

components during modulation correlates closely with the theoretical values

obtained, assuming complete repression of synthesis of these components on

exposure to the modulator (Hall et al., 1982; Robinson et al,, 1983;

Brownlie et al., 1985b). However studies by Idigbe et al. (1981) and

Robinson et al. (1983), on MgSO - and nicotinic acid-induced modulation
4

respectively, suggested that the loss of virulence components occurred at a

higher rate than could be accounted for by a simple growth-dilution effect.

These authors proposed that a selective-destruction of X-mode components

may occur during modulation. It is now known that modulation acts at the

transcriptional level (Gross and Rappuoli, 1989; Melton and Weiss, 1989).

Gross and Rappuoli (1989) studied the kinetics of the change in

transcription during modulation in B.pertussis. These authors found that

the addition of MgSO to the growth medium caused an immediate stopping of
4

the ptx operon, which resulted in the disappearance of raRNA from the cells 

within 10 minutes. However, resumption of transcription when cells were
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subsequently shifted to permissive conditions, was slow.

Phenotypic modulation also occurs in vivo (Lacey, 1960}. At the late 

stages of infection, modulation could confer several advantages:

i) evasion of the immune response

ii) conservation of metabolic energy (synthesis of virulence-associated

factors is no longer required)

iii) the change in hydrophobicity may assist expulsion of the organism, and

transfer to a new host.

2.4.2. Phase variation.

Phase variation was originally described by Leslie and Gardner (1931) 

as a progression of antigenic changes through four distinct phases, I, II, 

III and IV, which occurred when B.pertussis was repeatedly subcultured in 

vitro. Phases I and II were toxic to guinea-pigs whereas phases III and IV 

were not. However, Lawson (1939), Flosdorf et al. (1941) and Standfast 

(1951) proposed that phase variation was a more complex process, which 

involved many intermediate forms. In contrast to the view of Leslie and 

Gardner (1931) that the process of phase variation was an ordered step-wise 

process, Standfast (1951) proposed that many random changes occurred during 

phase variation. Phase variation may also occur in vivo: Kasuga et al.

(1954b) found that organisms isolated from patients in the early stages of 

infection were phase I, whereas those isolated in the later stages were 

avirulent phase variants. The change in antigenicity could therefore 

represent a defence mechanism for the organism to evade immune detection.

Although reference antisera is no longer available for identification 

of the phases described by Leslie and Gardner (1931), the terms phase I and
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phase IV are still used to describe virulent strains (which have the 

potential to synthesize virulence-associated factors) and avirulent strains 

(which are unable to express virulence-associated factors) respectively. 

Other terminology used to describe the phase change includes; phase I to 

phase III (Kasuga et al., 1954a), fresh isolate to degraded state (Parker,

1979) and domed/haemolytic to flat/non-haemolytic (Peppier, 1982).

Avirulent phase variant strains are deficient in several components,

including AC, AGGs, HLT, HLY, PT, certain outer membrane proteins and

cytochrome d (Wardlaw et al., 1976; Parton and Durham, 1978; Dobrogosz
629

et ai., 1979; Wardlaw and Parton, 1979; Ezzell et ai., 1981b; Peppier, 

1982). Avirulent strains have an increased resistance to certain inhibitory 

substances and a number of antibiotics (Parker, 1976; Dobrogosz et ai., 

1979; Bannatyne and Cheung, 1984; Peppier and Schrumpf, 1984a). The ability 

to grow on nutrient agar is characteristic of phase variant strains (Leslie 

and Gardner, 1931; Field and Parker, 1979b; Peppier and Schrumpf, 1984a). 

The colony morphology of phase variants is flat, whereas that of virulent 

strains is domed (Peppier, 1982). Phase variant B.pertussis strains are 

unable to bind Congo red (Parton, 1988). As yet there is no evidence for 

the existence of genes which are expressed only in avirulent phase variant 

strains.

Parker (1976, 1979) suggested that phase variation is a multi-step,

non-ordered process in which an accumulation of random mutations, selected 

by in vitro cultivation, finally leads to the avirulent phase. Goldman et 

al. (1984) selected B.pertussis phase variants by growth on Stainer and 

Scholte (SS) agar. Variants were screened for HLY, PT and FHA. Four 

different phenotypic classes were obtained; Hly+Ptx+Fha+ (7-11%), Hly- 

Ptx+Fha+ (17%), Hly-Ptx-Fha+ (5-11%) and Hly-Ptx-Fha- (65%). The
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identification of only four phenotypes out of eight possible permutations,

led Goldman et al. (1984) to propose that during phase variation, virulence

factors are lost in an ordered way.

Various workers have studied the frequency at which phase variation

occurs for B.pertussis. Peppier (1982) and Goldman et al. (1984) selected

phase variants by growth on SS-agar and observed a frequency of variation 
-6

of around 10 . Weiss and Falkow (1984) used growth on BG-agar containing

erythromycin to select Hly- colonies. These variants, which also lacked FHA
“ 3 -6

and PT, arose at a frequency of 10 to 10 , depending on the strain.

During continual subculture, Weiss and Falkow (1984) observed that 

spontaneous avirulent phase variants reverted back to virulent phase at a 

low frequency. The reversion may have been influenced by environmental 

factors present in certain batches of media. Weiss and Falkow (1984) 

demonstrated two complete cycles of phase variation, indicating that the 

process is a reversible single-step event. This eliminated the possibility 

that phase variation involved loss of a plasmid or prophage which encoded 

the virulent-phase genes.

2.4.3. Regulation by vir of expression of virulent-phase genes.

The simultaneous loss of virulence-associated factors during phenotypic 

modulation and phase variation led Wardlaw and Parton (1979) to hypothesize 

that a common regulatory mechanism controlled expression of virulent-phase 

genes in B.pertussis. Genetic evidence for this was provided by Weiss et 

al. (1983).

A vector system suitable for delivery of transposons into the 

B.pertussis chromosome has been described (Weiss and Falkow, 1983a). A
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chimeric plasmid, pUW964, containing broad host-range conjugation genes 

from RK2, a ColEl origin of replication, and Tn5, was constructed by Weiss 

et al. (1983). This "suicide" plasmid was transferred by conjugation from 

E.coli to B.pertussis BP338 (a nalidixic acid derivative of strain Tohama 

I). Due to the limited host-range for ColEl incompatibility group plasmids, 

pUW964 was unable to replicate in B.pertussis. Mutants containing a 

chromosomal Tn5 insertion were selected by kanamycin resistance conferred 

by Tn5, and screened for loss of virulence-associated factors (Weiss et 

al., 1983).

A Tn5 mutant was obtained (BP347) which was Hly-, and when further 

characterized was found to be deficient in PT, AC, FHA and HLT. A later 

study identified the Tn5 mutant BP359, which also had a pleiotropically- 

negative phenotype for expression of virulence-associated determinants 

(Weiss and Falkow, 1984). The Vir- phenotype of both mutants was due to a 

single Tn5 insertion in each case, which verified the hypothesis that a 

single genetic region is required for the expression of virulence- 

associated genes (Weiss and Falkow, 1984) .

The series of Tn5 mutants isolated by Weiss et al. (1983) included 

BP348 (Hly-Adc-), BP349 (Hly-), BP353 (Fha-), BP354 (Fha-), BP356 (Ptx-)

and BP357 (Ptx-). These mutants enabled the pathogenic effects of the 

individual factors to be evaluated, as described in Section 2.3. 

Hybridisation studies with a TnS-specific probe showed that each mutant 

contained only a single copy of Tn5, which mapped to a different EcoRI 

fragment for each class of mutant (Weiss et al., 1983). This provided

genetic evidence that the virulence genes (apart from hly and cya, as 

described in Section 2.3.1) were not physically linked. The possibility 

that virulence genes were arranged in a polycistronic operon with their
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expression being controlled by a single promoter was therefore eliminated.

Weiss and Falkow (1984) proposed a model for the co-ordinate regulation 

of virulence determinants in B.pertussis (see Figure 2.2). These authors 

proposed that a virulence regulatory locus, vir, which was inactivated by 

the Tn5 insertions in BP347 and BP359, encodes a trans-acting positive 

effector that positively induces the expression of virulent-phase genes. It 

was postulated that the effector could be the protein encoded by vir (Vir), 

or a product generated by the activity of Vir. In response to modulating 

conditions, or as a result of the genotypic changes produced by phase 

variation, the vir gene product would no longer be produced, and synthesis 

of virulence-associated factors would be repressed.

Regulation of virulence in B.pertussis fits into a common theme

described for other bacteria e.g. V.cholerae and E.coli, whereby the co­

ordinate transcriptional regulation of multiple virulence determinants is 

controlled by a central regulatory locus (see Calderwood et al., 1988). Not 

all B.pertussis virulence-associated factors are regulated by vir: neither

LPS nor TCT are affected by phase variation (Peppier, 1984; Goldman, 1986).

The vir locus of B.pertussis has recently been cloned (Stibitz et al., 

1988a). Two recombinant cosmid clones (pUW21-2 and pUW21-26) were 

identified which encompassed both the vir and fha loci. Expression of iFHA 

was detected in E.coli containing pUW21-2 or pUW21-26, but not in E.coli 

containing cosmids encoding vir alone or fha alone, confirming the

requirement of vir for FHA expression. The synthesis of iFHA in E.coli was

repressed in response to modulation signals (Stibitz et al., 1988a).

Tn5 mutagenesis of pUW21-26 in E.coli defined a 5kb region for vir, 

close to the fhaB gene. This region was required for expression of iFHA, 

and encompassed the sites of Tn5 insertion in Vir- mutants BP347 and BP359.
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Figure 2.2.

Model for vir-regulated gene expression in B<,pertussis.

The schematic representation of the co-ordinate regulation of virulent- 

phase genes is based on information from Weiss and Falkow (1984) and Knapp 

and Mekalanos (1988).

Under normal conditions the virulence regulatory gene (vir) is transcribed 

and produces a trans-acting positive effector (Vir). Production of Vir 

induces expression (perhaps by binding to a promoter region and initiating 

transcription) of vijr-activated genes {vag- loci), and represses vir- 

repressed genes (vrgloci).

In response to modulating conditions, Vir is no longer produced: expression 

of vag-loci is repressed, and expression of vrgrloci is activated. The mod 

gene product could act as an environmental sensor which controls the 

expression of vir.

Similarly, as a result of mutations in the vir region, phase variant 

strains would no longer produce Vir, and vagr-loci would no longer be 

expressed.
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A Tn5 insertion between vir and fhaB did not abolish synthesis of iFHA, 

indicating that vir and fhaB represent separate transcriptional units 

(Stibitz et al., 1988a).

Knapp and Mekalanos (1988) used InphoA to generate gene fusions in 

B,pertussis strain 18323. The PhoA activity of secreted hybrid proteins was 

determined in the presence and absence of modulators. Two sets of genes 

were identified: vir-activated genes (va^ loci) whose expression requires

the vir locus, and vir-repressed genes [vrg loci) which are not expressed 

under normal growth conditions (see Figure 2.2). Growth in the presence of 

modulators represses expression of vag loci, and derepresses expression of 

vrg loci. When a vagiiHnphoA gene fusion was converted to a cat 

transcriptional fusion, CAT activity was reduced in response to modulators, 

suggesting that modulation occurs at the transcriptional level in 

B.pertussis. The functions of vrg genes are presently unknown.

Knapp and Mekalanos (1988) isolated spontaneous mutants which 

constitutively expressed vag loci, even in the presence of modulators. The 

mutated region was designated mod. These mod mutations also resulted in 

prevention of derepression of vrg loci by modulators. It was possible that 

the mod constitutive mutations represented a new class of mutations in vir. 

Characterization of one mod mutant showed that the mod and vir genes were 

closely linked, but distinct, when vir was defined as a 2.6kb EcoRI 

fragment. However, further analysis is necessary to determine the exact 

nature and location of these mod mutations in the vir region. Knapp and 

Mekalanos (1988) proposed that the vir and mod gene products interact at 

some level during the control of vir-regulated gene expression, and 

suggested that the mod gene product may act as an environmental sensor 

required for the expression of vir.
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Phase variation can be explained by loss of expression of vir {Weiss 

and Falkow, 1984). A Vir+ phenotype was restored to avirulent phase variant 

strains when the B.pertussis vir locus was provided in-trans (Brownlie et 

al., 1988; Stibitz et al., 1988a). This demonstrated that the genomic

change which occurred during phase variation was contained within vir. Phase 

variation in bacteria can be caused by DNA rearrangements. In Salmonella 

typhimurium, the expression of two types of flagellar antigen is controlled 

by a DNA rearrangement which involves inversion of a DNA sequence (Zeig et 

al., 1977). Similarly, pilus expression in Neisseria gonorrhoeas is also 

caused by a DNA rearrangement (Meyer et ai., 1982). Control of expression 

of vir by an invertible DNA sequence was proposed as a mechanism of phase 

variation in B.pertussis (Weiss and Falkow, 1984). Sequences homologous to 

the DNA inversion genes found in strains of E.coli and S. typhimurium have 

been detected in B.pertussis, suggesting that DNA rearrangement by a DNA 

invertase could represent one mechanism of phase variation in B.pertussis 

(Foxall et al., 1990).

Lax (1985) observed that the frequency of phase variation for 

Bordetella was similar to the frequency expected for the random mutation of 

a bacterial gene, and proposed that phase variation may result from a 

random mutation in the vir locus followed by in vitro selection of phase 

variants. Goldman et al. (1987) found that DNA from avirulent phase variant 

strains was resistant to digestion by certain restriction endonucleases, 

suggesting that a DNA modification, perhaps méthylation, was associated 

with phase change.

Stibitz et al. (1989) cloned the vir locus from a series of Vir+ and 

Vir- B.pertussis Tohama strains, derived one from the other by phase 

variation. The vir loci cloned from virulent phase strains were able to
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confer a Vir+ phenotype to avirulent phase variant strains, whereas the vir 

loci cloned from Vir- strains were unable to restore a Vir+ phenotype. By 

recombination between deletion derivatives of a vir+ allele and chromosomal 

vir- alleles in avirulent phase variant strains, the difference between the 

vir+ and vir- form of the vir locus was mapped to a 1.4kb Sail fragment. 

Preliminary sequence data of this region revealed a single frame-shift 

mutation. In one position, the virt form had a run of six G residues, 

whereas the vir- form had a run of seven Gs. These data suggested that, at 

least for strain Tohama, one mechanism of phase variation appears to be due 

to a frame-shift mutation within vir.

Nucleotide sequence analysis of the vir region has identified three 

tandemly arranged genes, and the predicted products of two of these genes 

share extensive homology with a family of two-component regulatory proteins 

(Arico et al., 1989). A number of studies have recently demonstrated that 

expression of vagr-loci is positively controlled at the level of 

transcription (Nicosia and Rappuoli, 1987; Knapp and Mekalanos, 1988; 

Melton and Weiss, 1989; Miller et al., 1989; Roy et al., 1989). One of the 

vir gene products is a transcriptional activator (Arico et al., 1989;

Miller et al., 1989; Roy et al., 1989, 1990). More detailed information on

the molecular analysis of vir is given in Section 5.1.6.

Analysis of the ptx promoter region has shown that in addition to the 

trans-acting factor encoded by vir, efficient transcription of the ptx 

operon requires a region of 170bp upstream of the transcriptional start 

site (Gross and Rappuoli, 1988). Within this region, in addition to the 

sequences homologous to the consensus -35 and -10 regions of E.coli 

promoters, at least two features are essential for ptx promoter activity: a 

21bp direct repeated sequence from position -157 to -117 (which may
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represent the binding site for the trans-acting factor), and a stretch of 4 

C-residues from position -34 to -31 (Gross and Rappuoli, 1988, 19‘f?SK A

similar stretch of C-residues is also found in the promoter regions of the 

fim genes (Livey et al., 1987; Mooi et al., 1990; Willems et al., 1990).

2.4.4. Serotype variation.

Like other vagr-loci, the B.pertussis fim2 and fim3 genes are positively

regulated by vir at the level of transcription, but in addition, expression

of these genes is controlled at an individual level in a process called

serotype variation, or fimbrial phase variation (Willems et al., 1990).

Stanbridge and Preston (1974a) serially subcultured single colonies of

defined serotype, and detected variants which had independently lost or

gained expression of the fimbrial AGGs 2 or 3, although AGG 1 (non-

fimbrial) was always expressed. A particular B.pertussis strain may produce

no fimbriae (ST 1), only one type of fimbriae (ST 1,2 or 1,3), or both
“3 -4

types of fimbriae (ST 1,2,3). A frequency of 10 to 10 has been reported 

for serotype variation (Stanbridge and Preston, 1974a). This phenomenon 

occurs in vivo in experimental animals (Stanbridge and Preston, 1974b; 

Preston and Stanbridge, 1976; Preston et al., 1980) and in the child

(Preston and Stanbridge, 1972). The serotype variation in B.pertussis may 

be analogous to the rapid changes in fimbriae which have been reported for 

E.coli (Frietag et al., 1985) and N.gonorrhoeae (Hagblom et ai., 1985). 

Coote and Brownlie (1988) suggested that serotype variation may assist the 

survival of the organism in hosts who lack immunity to the new variant. 

Foxall et al. (1990) suggested that DNA rearrangement by a DNA invertase 

could be involved in the mechanism of serotype conversion.
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The fim2 and fimJ gene promoter regions are well conserved and contain

a stretch of 13- 15 C-residues located just upstream of the putative -10

consensus region (Livey et al., 1987; Mooi et al., 1990). Analysis of this 

region has revealed that phase transitions between high and low levels of 

fim gene expression occur by insertions and deletions in the stretch of C- 

residues (Willems et al., 1990), These authors propose that these mutations 

affect transcription of the fim genes by varying the distance between the

binding site for an activator (possibly the vir gene product) and the - 10

box.

Section 2.5. EXPRESSION IN E. COLT OF VIRULENCE DETERMINANTS.

A number of studies have shown that genes from a variety of bacterial 

pathogens can be transcribed and translated in E.coli e.g.

Neisseria gonorrhoeae (Meyer et al., 1982)

Vibrio cholerae (Pearson and Mekalanos, 1982)

Treponema pallidum (Stamm et al., 1982)

Klebsiella pneumoniae (Purcell and Clegg, 1983)

Staphlococcus aureus (Sako et al., 1983)

Bacillus anthracis (Vodkin and Leppla, 1983)

Legionella pneumophila (Engleberg et al., 1984).

Initial attempts to detect expression in E.coli of B.pertussis 

virulence determinants, without the use of expression vectors, were 

unsuccessful (Shareck and Cameron, 1984; Brownlie et al., 1986; Locht and 

Keith, 1986; Nicosia et al., 1986). These findings can be partly explained 

by the fact that B.pertussis virulence determinants require the vir-encoded
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traijs-activator for expression. Shareck and Cameron (1984) reported the

cloning and expression in E.coli of two outer membrane proteins of 33kD and

30kD specific to B.pertussis. Brownlie et al. (1986) and Stibitz et al.
biosynthetic genes

(1988a) obtained expression in E.coli of several B.pertussis amino acidy^ 

These studies indicated that it was possible to obtain expression of some 

B.pertussis functions in E.coli.

Apart from the requirement for the vir-encoded trans-activator, there 

are several reasons which may explain why attempts to detect expression of 

PT in E.coli were unsuccessful (Locht and Keith, 1986; Nicosia et al., 

1986, 1987):

i) the distance between the -35 and -10 consensus promoter sequences

makes the ptx promoter inefficient in E.coli

ii) the putative binding sites are not optimal for translation in E.coli

iii) the codon usage does not resemble the codon usage of highly expressed 

genes in E.coli

iv) some of the signal peptides of the PT subunits contain cysteine

residues which may interfere with secretion and therefore cause a

transcriptional arrest

v) PT mRNA or subunit polypeptides may be unstable in E.coli.

Subunits of PT have been expressed in E.coli under the transcription 

and translation control of heterologous promoters (Barbieri et al., 198J; 

Locht et al., 1987; Nicosia et al., 1987; Burnette et al., 1988). These 

studies indicated that the different codon usage of the ptx genes did not 

prevent their transcription and translation in E.coli. Nicosia and Rappuoli 

(1987) cloned the ptx promoter into a plasmid containing the cat gene, in 

order to determine its activity in E.coli. The wild-type ptx promoter was 

only weakly active in E.coli, however when a stretch of four C-residues was
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deleted by site directed mutagenesis such that the ptx promoter contained 

optimal spacing of 17bp between the -35 and -10 regions, its activity was 

increased.

As well as PT subunit genes, other B.pertussis virulence genes which 

have been expressed in E.coli from heterologous promoters include fha 

(Reiser et al., 1985; Mattei et al., 1986), cya (Brownlie et al., 1988; 

Glaser et al., 1988a; Rogel et al., 1989) and fim2 (Walker et al., 1990).

Stibitz et al. (1988a) demonstrated that expression in E.coli of the 

B.pertussis fha gene could be activated by vir. Miller et al. (1989) 

constructed an E.coli strain which contained a single copy transcriptional 

fhaB:lacZYA fusion chromosomally integrated on a recombinant lambda phage. 

Introduction of a multi-copy plasmid encoding vir resulted in a several 

hundredfold increase in p-galactosidase activity when compared with the 

vector control. However, expression of a transcriptional ptxAiilacZYA 

fusion in E.coli was not affected by the vir locus in-trans, which implied 

that the B.pertussis ptx and fha genes differed in their requirements for 

transcription. The vir-mediated activation of fhaBi i lacZYA in E.coli was 

affected by the same environmental signals that modulate expression of 

virulence genes in B.pertussis (Miller et al., 1989).
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Section 2.6. TWO-COMPONENT REGULATORY SYSTEMS.

Bacteria monitor continuously the composition of their environment, and 

adapt to changes. In many bacterial species, a diverse number of chemical 

and physical stimuli elicit a wide range of adaptive responses, such as 

changes in gene expression, cell morphology or cell movement. Genetic 

studies have indicated that such adaptive responses are controlled by 

members of two homologous families of proteins: a sensor protein (or

histidine protein kinase) which acts as an environmental sensor that

transmits a signal to its cognate regulator protein which effects the

response (see Table 2.2). As described in Section 5.1.6, the B.pertussis 

vir ibvg) gene products share extensive homology with these two families of 

proteins (Arico et al., 1989). The signal-transduction systems described 

here have been reviewed by Ronson et al. (1987), Stock (1987), Kofoid and 

Parkinson (1988), Bourret et al. (1989), Miller et al. (1989b) and Stock et 

al. (1989). Phosphorylation of the response regulator appears to be an 

essential feature of the signal transduction mechanism (see Bourret et al., 

1989; Stock et al., 1989). Most of the regulator proteins act as positive 

regulators of transcription.

The sensor protein family share regions of conserved sequence of 

approximately 200 amino acids at their C-terminal end. Most members of the 

sensor class are transmembrane proteins with an N-terminal periplasmic 

domain which interacts with stimulatory ligands and transmembrane signals, 

and acts to control the kinase or phosphatase activities of its C-terminal 

conserved transmitter domain located in the cytoplasm. Hovever, some sensor 

proteins are completely cytoplasmic in location e.g. NRII (Ninfa et al., 

1986). The BvgC protein produced by B.pertussis (Arico et al., 1989) and
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sensor proteins such as VirA and CheA (see Stock et al., 1989) have 

additional sequences beyond the C-terminal conserved transmitter domain.

The regulator proteins share a conserved receiver domain of 

approximately 120 amino acids extending from the N-terminus, which acts as 

the receptor of signals. Within the N-terminal domain of the CheY response 

regulator, a phosphoaccepting active site has been identified (see Stock et 

al., 1989). The remainder of the regulator protein usually functions in DNA 

binding and interaction with RNA polymerase or its sigma factors. The 

family of regulator proteins can be subdivided into four classes, based on 

sequence similarities between their C-terminal domains (see Stock et al., 

1989) :

Class I:- Members of this group e.g. NRI, have been shown to activate 

transcription from promoters that are recognized by E RNA 

polymerase holoenzyme. The NRI protein contains a region 

thought to be involved in DNA binding at its extreme C- 

terminus.

Class II:- Examples of this group inclue PhoB, OmpR and VirG. These 

proteins function to activate transcription of a specific set 

of target genes at promoters that are thought to be recognized 

by the major form of RNA polymerase, corresponding to E in 

E.coli. Like class I regulators, the C-terminal domains bind to 

specific DNA sequences upstream from the regulated promoters. 

Class III:- This group includes UhpA and FixJ. These response regulators 

also function as transcriptional regulators, but their 

mechanisms of action are as yet unknown.
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Class IV:- This group includes the CheY and SpoOF proteins which consist 

of only the conserved N-terminal domain. In these response 

regulators, a direct role for the activated response regulator 

domain is indicated.

Although signal transduction systems have been designated "two- 

component", some of these systems contain additional components e.g. the 

Uhp system of E.coli (Weston and Kadner, 1988) and the Bvg system of 

B.pertussis (Arico et al., 1989) each contain three components. The ToxR 

system of V. cholerae is a mono-component analogue of the two-component 

system (Miller et al., 1987; Taylor et al., 1987). The toxE gene of 

V.cholerae coordinately controls cholera toxin, pilus and outer membrane 

expression. ToxR is a transmembrane protein, which has its transcriptional 

activation and DNA binding domains located in the N-terminal 

cytoplasmically located portion. The BvgC protein of B.pertussis also shows 

homology to both sensor and regulator proteins (Arico et al., 1989).

Recently it has been demonstrated that supercoiling of cellular DNA 

varies in response to environmental stresses(Ni Bhriain et ai^l989). These 

changes in DNA supercoiling appear to be responsible for regulating 

bacterial gene expression, and provide an underlying global regulatory 

network upon which more specific regulatory processes are superimposed. For 

example, regulation of expression of the ompC gene is mediated by two 

distinct mechanisms:- one involving the OmpR and EnvZ signal transduction 

system, and the other involving changes in DNA supercoling (Mi Bhriain et al., 

1989). These two regulatory systems interact to determine the efficiency of 

productive initiation of transcription by RNA polymerase (Ni Bhriain et al., 

1989).
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Section 2.7. OBJECT OF RESEARCH.

The main objectives of this research were;-

i) To characterize clone pRMB2, and subclone the vir locus.

ii) To determine whether the cloned B.pertussis vir locus in-trans would

restore a Vir+ phenotype to avirulent phase variant strains of 

B.pertussis and B.bronchiseptica.

iii) To determine the effect of multiple copies of vir in-trans in

B.pertussis on the response to modulators.

iv) To determine the ability of vir to trans-activate expression in

E.coli of B.pertussis virulence genes.

v) To analyse strains of B.parapertussis, B.bronchiseptica and B.avium

for regions homologous to vir.
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Section 3: MATERIALS AND METHODS.



Section 3.1. BACTERIOLOGICAL PROCEDURES.

3.1.1. Bacteria and plasmids.

The bacterial strains used in this study are listed in Tables 3.1 and

3.2; the plasmids used are listed in Table 3.3.

3.1.2. Growth of Bordetella.

For routine growth of Bordetella strains, Bordet-Gengou (BG) agar 

plates consisting of a layer of BG agar base (Gibco, BRL, Paisley, 

Scotland) overlayed with BG agar base containing 20% (v/v) defibrinated

horse blood (Gibco, BRL) were used (see Appendix 1). Where appropriate, 

tetracycline (Tc) was added for plasmid selection and maintenance. 

Bordetella transconjugants were selected on BG agar containing Tc, 

cephalexin plus phage T1 suspension. BG agar containing kanamycin (Km) was 

used for selection of Tn5. To study the effect of nicotinic acid on 

modulation, BG agar containing nicotinic acid was used. B.pertussis strains 

were normally grown for 3- 5 days at 35°C. To determine the effect of low

temperature on modulation, B.pertussis strains were grown for up to 7 days

at 25°C. B.bronchiseptica strains were grown for 1- 2 days at 35°C. All 

cultures were incubated in a moist atmosphere.

Congo red medium (Parton, 1988, see Appendix 1) was used to determine 

the ability of several B.pertussis strains to uptake Congo red. Antibiotics 

were added as required. Plates were incubated in a moist atmosphere at 35°C 

for up to 7 days.

For preparation of genomic DNA, Stainer and Scholte medium (SS medium) 

was used. This medium was the '16G + IP' medium originally described by 

Stainer and Scholte (1971). A loopful of growth from a BG agar culture was

61



B. pertussis

Table 3.1

Bordetella strains

Strain Characteristic(s) Source or reference

TAB I Virulent. Strain used for 
construction of the genomic 
library, from which clones 
pRMB2, pRMBl and p26 were 
isolated. %  ̂ 3 serotype.

Brownlie et al. (1985a)

BP347 Avirulent Tn5 mutant Weiss et al. (1983)

Tohama I Virulent. 1, 2 serotype. 
Ancestral strain of BP347.

Sato and Arai (1972)

L84 I Virulent. 1, 2 serotype. NCTC strain

L84 IV Avirulent NCTC strain

11615 Avirulent Parton (1988)

44122/7R

44122/7R(34)

Virulent Branefors (1964)

Avirulent, obtained by
repeated passage (34 times) J.G. Coote 
of strain 44122/7R.

BP353 FHA deficient Tn5 mutant Weiss et al. (1983)

Wellcome 28 Virulent. 1, 2, 3 serotype PHLS, CAMR

contd
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Table 3.1. (contd.)

Strain Characteristic(s) Source or reference

B. parapertussis 

59521 

10520

Virulent

Virulent

NCTC strain 

NCTC strain

B. bronchiseptica 

276 I 

FW5 I 

ASl III 

276 III 

FW5 III

B. avium

Virulent

Virulent

Avirulent

Avirulent

Avirulent

Lax (1985) 

Lax (1985) 

Lax (1985)

Lax (1985) 

Lax (1985)

4091 Virulent Rimler and Simmons (1983)

4148 Virulent Rimler and Simmons (1983)

GOBL 118 Virulent C. Gentry-Weeks

GOBL 124 Virulent C. Gentry-Weeks

GOBL 136 Virulent C. Gentry-Weeks

GOBL 141 Virulent C. Gentry-Weeks

GOBL 142A Virulent C. Gentry-Weeks

GOBL 110 Avirulent, B. avium-like C. Gentry-Weeks

GOBL 122 Avirulent, S. avium-like C. Gentry-Weeks
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Table 3,2

E. coli strains

Strain Genotype Source or reference

CAA8306 A cya Kiely and O'Gara (1983)

DHl supEA4 hsdRll recAl endkl 

gyrA96 thi-1 reJAl

Maniatis et al. (1982)

DH5 supE44 hsdRll recAl endkl 

gyrkSS thi-1 relkl

Hanahan (1986)

DH5a a 0 8OdJacZ aM15 derivative 

of DH5

Gibco, BRL

G806 A cya Garges and Adhya (1985)

HBIOI supE44 hsdS20 reckll aralA 

prok2 lacYl galK2 rpsh20 

xyl-S mtl-1

Maniatis et al. (1982)

JA221 hs(M* hsdR~ lacY JenB6 

AtrpE5 recAl

Clarke and Carbon (1978)

JM83 ara ^lac-pro strk thi 

08OdJacZ A.M15
Vieira and Messing (1982)
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Table 3.3

Plasmids

Plasmid Characteristic(s) Source or reference

pLAFRl Broad-host-range cosmid 
cloning vector. 21.6kb. TC

Friedman et al. (1982)

PRK2013 tra functions of RK2 cloned 
in ColEl. Kmr

Figurski and Helinski (1979)

PIC20H Cloning vector containing a 
polylinker specifying 17 
restriction sites in the p- 
galactosidase a-complementing 
gene fragment. 2.7kb. Apr.

Marsh et al. (1984)

pRK291 Broad-host-range cloning 
vector derived from RK2. Tc*

Ditta et al. (1985)

pRK310 Broad-host-range cloning 
vector derived from RK2. 
Contains a polylinker sequence 
in the (i-galactosidase a- 
complementing gene fragment. 
Tc*'.

Ditta et al. (1985)

pRMB2 Identified from a gene library 
of B. pertussis TABTDNA cloned 
in pLAFRI, by its ability to 
complement Vir~ B. pertussis 
BP347.

Brownlie et al. (1988)

pDM3 A pLAFRI derivative containing 
the 2.7kb EcoRI fragment (E3) 
of pRMB2.

this study

contd.
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Table 3.3. (contd.).

Plasmid Characteristic(s) Source or reference

PDM30 A pIC20H derivative containing 
the 2.7kb EcoRI fragment (E3) 
of pRMB2.

this study

pDMl A subclone constructed by 
digesting pRMB2 with BamHI, 
and ligating the largest 
fragment obtained (B6). 
Contains the vir locus.

this study

pDM62 A pIC20H derivative containing 
the 5.3kb BamHI to EcoRI 
fragment of pDMl.

this study

pDM623 A pIC20H derivative containing 
the S.Okb BamHI to EcoRI 
fragment of pDMl.

this study

pDM14 A pIC20H derivative containing 
the 3.9kb BamHI to EcoRI 
fragment of pDMl.

this study

PBR328

pIL22

Cloning vector. Ap*" Cm'" ■

A pBR328 derivative containing 
the B. pertussis serotype 2 
fimbrial subunit gene.

Soberon et al. (1980)

Livey et al. (1987)

p26 A pLAFRI derivative containing 
the B. pertussis AGG3 genetic 
determinant.

R. M. Brownlie

pRMBl A pLAFRI derivative containing 
the B. pertussis AC and HLY 
genetic determinants.

Brownlie et al. (1988) 

contd.
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Table 3.3. (contd.)

Plasmid Characteristic (s) Source or reference

pRMB3 A pIC20H derivative containing 
the lOkb BamHI fragment of 
pRMBl, cloned in the same 
orientation as the lac promoter.

Brownlie et al. (1988)

pRMB9 A pIC20H derivative containing 
the 3.0kb BamHI to EcoRI fragment 
of pRMBl, cloned in the same 
orientation as the lac promoter.

Brownlie et al. (1988)

pRMBll A pIC20H derivative containing 
the 6.0kb Clal fragment of 
pRMBl, cloned in the opposite 
orientation to the lac promoter.

R.M. Brownlie

PRMB12 A pIC20H derivative containing 
the G.Okb Clal fragment of 
pRMBl, cloned in the same 
orientation as the lac promoter.

R.M. Brownlie

pUC19 Used as a control plasmid to 
determine transformation 
efficiencies. Ap*'.

Gibco, BRL
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used to inoculate 50ml of SS medium contained in a 250ml dimpled flask. 

Flasks were shaken at 35®C for 48h in an orbital incubator.

Stocks of all Bordetella strains were stored at -70°C as cell 

suspensions in a 1ml solution of 1% casamino acids containing 15% glycerol 

(see Appendix 1). As required, frozen stocks were thawed and lOOpl of cell 

suspension was spread on BG agar.

All strains were regularly checked for purity by Gram stain.

3.1.3. Growth of E.coli.

E.coli strains were routinely grown on nutrient agar (Oxoid) plates, or 

with shaking in nutrient broth (Oxoid). For selection and maintenance of 

plasmids, antibiotics were added as required. All E.coli strains were grown 

at 37*C.

For selection of E.coli JM83 or DH5a strains harbouring plasmids 

containing the lac Z (a) peptide coding region, nutrient agar containing 

the appropriate antibiotic, plus 5- brorao- 4- chloro- 3- indolyl- p- D- 

galactopyranoside (X-gal) and isopropyl- p- D- thiogalactopyranoside 

(IPTG) was used. E.coli strains JM83 and DH5a synthesise an inactive C- 

terminal fragment of p-galactosidase, called an omega fragment. When such 

strains harbour alpha complementing vectors, the alpha and omega fragments 

form a complex that has p-galactosidase activity, and colonies appear blue 

on medium containing IPTG (which inactivates lac repressor and thus 

derepresses omega peptide synthesis) and X-gal, which is hydrolysed by p- 

galactosidase to the blue compound bromochloroindole. On nutrient agar 

containing X-gal and IPTG, recombinant clones can be easily identified as 

inactivation of the a peptide by cloned DNA yields a clearly discernible 

white colony.
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For preparation of competent E.coli cells, strains were grown in SOC 

medium (Hanahan, 1983, see Appendix 1).

For storage of E.coli strains, 10ml of nutrient broth was inoculated 

with a single colony from a nutrient agar culture, and incubated overnight. 

The culture 0.5ml was added to an equal volume of sterile glycerol. The 

resulting suspension was mixed and stored at -20°C. As required, nutrient 

agar plates were inoculated with a loopful of cell suspension.

All strains were regularly checked for purity by Gram stain.

3.1.4. Preparation of antibiotic solutions.

Stock solution

Tetracycline (Tc) 

Ampicillin (Ap) 

Kanamycin (Km) 

Cephalexin

Working concentration

lOpg / ml

lOOpg / ml

20pg / ml

50pg / ml

lOrag / ml 

25mg / ml 

20mg / ml 

5mg / ml

Antibiotics were purchased from Sigma Chemical Co., Poole, Dorset, England.

Tc was dissolved in methanol. All other antibiotics used were dissolved in

distilled water (d.H 0). All antibiotic stock solutions were sterilised by
2

membrane filtration using a Minisart NML filter unit of pore size 0.2pM 

(Sartorius). Stock solutions were stored at -20*C.

3.1.5. Preparation of nicotinic acid.

Nicotinic acid (Sigma) was prepared as a stock solution of 25mg/ml in

d.H 0, and sterilised by membrane filtration using a Minisart NML filter 
2

unit, of pore size 0.2pM (Sartorius). Freshly prepared stock solution was 

diluted in BG medium to give a working concentration of 500pg/ml.
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3.1.6. Preparation of X-gal and IPTG.

X-gal (Sigma) lOOmg was dissolved in 4ml of N, N- dimethylformamide

(Sigma) to give a stock solution of 25mg/ml. The stock solution was stored

at -20°C. The working concentration of X-gal was 50pg/ml.

IPTG (Sigma) was prepared as a 0.5M stock solution in d.H 0, sterilised
2

by membrane filtration using a Minisart NML filter of pore size 0.2pM 

(Sartorius), and stored at -20°C. The working concentration of IPTG was 

ImM.

3.1.7. Phage T1 suspension.

Phage T1 suspension was obtained from Dr. J. G. Coote, and contained 5 x
7

10 plaque forming units of T1 phage per ml. For selection of Bordetella 

transconjugants, phage T1 was used as an added selection against E.coli, 

Just prior to use, lOOpl of phage T1 suspension was spread on the surface 

of each BG agar plate, and allowed to dry at room temp for 6h.

Section 3.2. GENETIC MANIPULATIONS.

3.2.1. Preparation of genomic DNA.

B.pertussis chromosomal DNA was prepared using a modification of the 

method of Hull et al. (1981), as described by Brownlie et al. (1986).

DNA from B.pertussis strains L84 IV, 11615, 44122/7R and 44122/7R(34), 

and from B.parapertussis strains was obtained from Dr. J. G. Coote. DNA 

from B.bronchiseptica strains was obtained from M. J. Ward. DNA from 

B.avium strains 4091 and 4148 was obtained from D. MacGregor. DNA from all 

other B.avium strains was kindly supplied by Dr. C. R. Gentry-Weeks, 

Washington University, St. Louis, Missouri, USA.
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3.2.2. Large scale preparation of plasmid DNA.

The procedure outlined below is for a 500ml E.coli culture, but can be

either scaled up or down. It is based on the alkaline lysis procedure of

Birnboim and Doly (1979).

A single bacterial colony containing the plasmid of interest (or a 

loopful of -20°C stock) was used to inoculate 10ml of nutrient broth 

containing the appropriate antibiotic, and grown overnight at 37°C in an 

orbital shaker. Overnight culture 5ml was then transferred to 500ml

nutrient broth containing the appropriate antibiotic, and incubated for 36h 

at 37®C in an orbital shaker. Bacterial cells were harvested by

centrifugation at 9000 r.p.m. for 15 min at 4°C in a Sorvall GS-3 rotor. 

Cells were resuspended in 10ml of Solution I (50mM glucose, 25mM Tris-HCl 

(pH8.0), lOraM EDTA) containing 4mg/ml lysozyme (Sigma), and left at room 

temp for 5 rain to allow bacterial lysis. Freshly prepared Solution II (0.2N 

NaOH, 1% (w/v) SDS) 20ml was added, mixed gently, and incubated on ice for

10 min. The solution was then neutralised by addition of 15ml of ice-cold

Solution III (3M potassium acetate, pH5.0). The contents were mixed by

shaking the closed centrifuge bottle several times, and incubated on ice 

for 10 min. The bacterial lysate was centrifuged at 8000 r.p.m. for 20 min 

in a Sorvall GS-3 rotor, to precipitate genomic DNA. The supernate was 

filtered through tissue into a 250ml centrifuge bottle, and 0.6 volumes of 

isopropanol were added and mixed well. The mixture was kept at room temp 

for 10 min. Nucleic acids were recovered by centrifugation at 8000 r.p.m. 

for 15 min at room temp in a Sorvall GSA rotor. The supernate was 

discarded, and the pellet was gently washed with 70% (v/v) ethanol. The 

pellet of nucleic acid was dissolved in 10ml TE buffer (lOmM Tris-HCl 

(pH8.0), ImM EDTA) and transferred to a 50ml centrifuge tube. Ten
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millilitres of 1:1 (v/v) phenol:chloroform was added, and mixed to

emulsion. (Phenol was purchased from Rathburn Chemicals Ltd., Walkerburn, 

Scotland, and equilibrated as described by Maniatis et al., 1982.) The 

phases were separated by centrifugation at 5000 r.p.m. for 10 min in a 

Sorvall SS-34 rotor. The top, aqueous layer was removed and transferred to 

a clean tube. Ammonium acetate 5M 10ml was added and mixed thoroughly. The 

solution was incubated on ice for 15 min, then centrifuged at 10000 r.p.m. 

for 10 min at 4®C in a Sorvall SS-34 rotor. Isopropanol, 0.6 volume, was 

added to the supernate, mixed well, and incubated at room temp for 10 min. 

Nucleic acids were recovered by centrifugation at 10000 r.p.m. for 10 min 

at room temp in a Sorvall SS-34 rotor. The nucleic acid pellet was gently 

washed with 70% (v/v) ethanol, dried in a vacuum dessicator, redissolved in 

0.5ml of TE buffer containing 50pg/ml RNase A, and incubated overnight at 

37°C. (RNase A (Sigma) was prepared as a stock solution of lOmg/ml in lOmM 

Tris-HCl (pH7.5), 15mM NaCl, and heated to 100*C for 15 min to destroy 

DNase activity.) The mixture was extracted once with an equal volume of 

phenol, followed by one extraction with 1:1 (v/v) phenol:chloroform, and 

finally one extraction with chloroform alone. To precipitate the DNA, one 

tenth volume of 3M sodium acetate (pH5.2) and two volumes of ethanol were 

added (ethanol precipitation). The mixture was mixed by vortexing and 

incubated at ~20°C for 2h. Precipitated plasmid DNA was recovered by

centrifugation at 12000 r.p.m. for 15 min at room temp in a microfuge. The

supernate was removed. Ethanol 70% (v/v) 0.5ml was added and mixed by

vortexing. The mixture was centrifuged at 12000 r.p.m. in a microfuge. The

plasmid DNA pellet was vacuum dried, and finally dissolved in 0.5ml TE 

buffer and stored at -20°C.
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3.2.3. Small scale preparation of plasmid DNA.

The procedure outlined below is a modification of the method of 

Birnboim and Doly (1979). This method was used for plasmid analysis of 

E.coli transformant colonies.

Nutrient broth 10ml (containing the appropriate antibiotic(s)) was 

innoculated with a single E.coli colony, and incubated overnight at 37°C 

with shaking. Culture 1.5ml was transferred to a microfuge tube and cells 

were harvested by centrifugation at 12000 r.p.m. for 2 min in a microfuge. 

The cell pellet was resuspended in lOOpl of lysis solution (50mM glucose, 

25mM Tris-HCl (pH8.0), lOmM EDTA) containing 2mg/ml lysozyme. The 

suspension was mixed by vortexing, and kept at room temp for 2 min, to 

allow lysis. Freshly prepared Solution II (0.2N NaOH, 1% (w/v) SDS) 200pl 

was added. The contents were mixed by inverting the tube several times. The 

sample was incubated on ice for 5 min. Ice-cold Solution III (3M potassium 

acetate, pH5.0) 150pl was added, the contents of the tube were mixed by

inversion and incubated on ice for a further 3 min. Precipitated genomic 

DNA and proteins were removed by centrifugation at 12000 r.p.m. for 5 min 

in a microfuge. Supernate 400pl was transferred to a clean microfuge tube 

containing 0.25ml isopropanol, to precipitate the DNA. Contents were mixed 

by vortexing. The sample was centrifuged at 12000 r.p.m. for 5 min. The 

supernate was removed and the DNA pellet was resuspended by vortexing in 

0.5ml of 70% (v/v) ethanol. The sample was centrifuged at 12000 r.p.m. for 

5 min. The supernate was removed and the pellet of double stranded DNA was 

dried in a vacuum dessicator. The nucleic acids were dissolved in 50pl of 

TE buffer containing 50pg/ml RNase A, and incubated at 70°C for Ih. This 

incubation helps inactivate bacterial DNases which may contaminate the 

plasmid DNA isolated in this way, and the RNase A digests contaminating
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RNA. Diagnostic restriction endonuclease digestions were performed on lOpl 

aliquots of the crudely purified plasmid DNAs, The remainder of the plasmid 

preparation was stored at -20°C.

3.2.4. Determination of nucleic acid concentrations.

The nucleic acid concentrations of genomic DNA preparations and of 

large scale plasmid preparations, were measured spectrophotometrically by 

determining the absorbance of an aqueous solution at 260fl/n and using the 

convention that an absorbance of 1 unit is equivalent to a double stranded 

DNA concentration of 50pg/ml (Maniatis et al., 1982).

The nucleic acid concentrations of DNA fragments which had been 

purified from agarose gels were estimated by subjecting aliquots of an 

aqueous solution to electrophoresis, together with aliquots of lambda DNA 

(Gibco, BRL) of known concentration e.g. lOOng, 50ng and lOng.

3.2.5. Restriction endonuclease digestions.

BscI was purchased from NBL, Cramlington, Northumberland, England. All 

other restriction endonucleases were purchased from Gibco, BRL, Paisley, 

Scotland. Enzymes were used according to the manufacturers' instructions. 

For digestion of genomic DNA, 4mM spermidine (Sigma) was included in the 

reaction.

When only partial digestion by restriction endonucleases was required, 

a pilot digest was performed in a lOOpl reaction volume containing lOpg of 

DNA. The reaction was pre-equilibrated at 37°C for 5 min prior to the 

addition of restriction enzyme (0.5 units/pg DNA). Samples (lOpl) were 

removed from the digest at timed intervals after initiation of digestion, 

and immediately added to lOpl of 30mM EDTA (pH 8.0) on ice. To determine
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the period of incubation which resulted in the greatest proportion of 

fragments in the desired size range, samples were analysed by 

electrophoresis.

3.2.6. Agarose gel electrophoresis of DNA.

Agarose gel electrophoresis of DNA for either analytical or preparative

purposes was performed using flat bed apparatus (Pharmacia, LKB). Agarose

(Type II-A: Medium EEO, Sigma) was dissolved in the appropriate buffer (by

heating to lOO^C) to give a final concentration of 0.7%. When preparative

isolation of fragments was required, 1 x TAE buffer (0.04M Tris-acetate,

O.OOIM EDTA, pH8.0) was used. In all other instances, 0.5 x TBE buffer

(0.045M Tris-borate, O.OOIM EDTA, pH8.0) was used. The molten agarose was

cooled to 50*0 and poured into a horizontal gel mould (8cm x 10.5cm for

50ml of agarose, or 20cm x 20cm for 200ml of agarose), and allowed to

solidify with an appropriate comb in place. Once solidified, the gel was

submerged in the appropriate running buffer (1 x TAE or 0.5 x TBE) and DNA

solution containing 1/lOth volume of 10 x gel loading buffer (60% (w/v)

sucrose /0.1% (w/v) bromophenol blue, in H 0) loaded into the wells. To
2

give molecular weight standards, a sample of HindîII- or PstI- digested A

DNA was also loaded. (For molecular sizes of A DNA restriction fragments,

see Appendix 2.) Gels of 50ml volume were usually run at lOOV for 2h, and

gels of 200ml volume were usually run at 40V overnight. Following

electrophoresis, gels were soaked in ethidium bromide solution (0.5pg/ml)

for 15- 30 min, and excess ethidium bromide removed by soaking the gel in

d.H 0 for 10 min. DNA was then visualised by illumination with short wave 
2

ultra violet (u.v.) light, and photographed through a red filter using 

Polaroid type 667 or 665 film.
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When fragment isolation from low melting-point agarose gels was 

required, agarose (Type I: Low EEO, Sigma) was used. These gels were

prepared in a similar fashion, but were poured and subjected to

electrophoresis at 4°C.

3.2.7. Estimation of molecular size of DNA fragments.

To estimate the length of DNA fragments, a relationship has to be 

established between DNA length and electrophoretic mobility in agarose 

gels, for standard fragments. This relationship is then used to calculate 

the molecular size of unknown fragments from their mobilities.

For construction of restriction enzyme maps of clones pRMB2 and pDMl 

(Section 4.2.2), a modification of the method of Plikaytis et al. (1986),

(D. J. Platt, personal communication) was used for accurately estimating 

the molecular sizes of restriction fragments after electrophoresis. Band 

migration distances were measured from a photograph of the ethidium bromide 

stained gel using a soft laser scanning densitometer. J/indlll-digested A 

DNA, or the 11.5kb to 0.15kb fragments of FstJ-digested "A DNA were used as 

molecular weight standards. Data was fitted to a robust modified hyperbola 

based on the algorithm of Schaffer and Sederoff (1981). The modified BASIC 

program and use of an IBM PC were kindly provided by Dr. D. J . Platt, Dept, 

of Bacteriology, Glasgow Royal Infirmary, Glasgow.

A second method was used in some instances e.g. Section 4.3.1. The 

molecular sizes of restriction fragments were estimated from a graph of 

migration distance versus log DNA length, plotted for Hindlll-digested A 

DNA molecular weight standards.
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3.2.8. Isolation of DNA fragments from agarose gels.

Samples of DNA were mixed with l/lOth volume of 10 x gel loading 

buffer, and subjected to agarose gel electrophoresis using 1 x TAE buffer. 

After electrophoresis, gels were stained with ethidium bromide, and DNA was 

visualised in u.v. light. A slice of agarose containing the band of 

interest was cut out using a sharp scalpel. Three different methods were 

used to purify DNA fragments from agarose gel slices. The recovery of DNA 

was checked in each instance by subjecting an aliquot of the purified DNA 

fragments to agarose gel electrophoresis.

1) Recovery of DNA from low melting-point agarose.

Purification of DNA from low melting-point agarose was carried out

essentially as described by Maniatis et al, (1982). The gel slice

containing the band of interest was placed in a microfuge tube.

Approximately 5 volumes of buffer (20mM Tris-HCl (pH8.0), ImM EDTA) were

added and the sample incubated at 65°C for 5 min to melt the gel. The

solution was cooled to room temp, then extracted once with phenol, followed

by once with 1:1 (v/v) phenolrchloroform, and finally once with chloroform

alone. To precipitate the DNA, one tenth volume of 3M sodium acetate (pH

5.2) and 2 volumes of ethanol were added to the aqueous phase, mixed by

vortexing, and incubated at -20°C for 2h. DNA was then recovered by

centrifugation at 12000 r.p.m. for 15 min in a microfuge. The DNA pellet

was washed once with 70% (v/v) ethanol, vacuum dried, and redissolved in an

appropriate volume of d.H 0. This method was routinely used to prepare DNA
2

fragments for restriction endonuclease analysis, or for cloning.
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2) Recovery of DNA by centrifugation through cellulose acetate.

The agarose gel slice containing the band of interest was placed in a 

SPIN-X centrifuge filter unit (cellulose acetate membrane 0.45pm, Costar, 

Cambridge, Massachusetts) and centrifuged at 12000 r.p.m. for 15 min at 

room temp in a microfuge. The aqueous DNA solution was recovered and 

transferred to a clean microfuge tube. DNA was recovered by ethanol 

precipitation, and finally redissolved in an appropriate volume of TE 

buffer. This method was developed by Dr. A. Jenkins, and was used to 

prepare DNA fragments for oligo-labelling (Section 3.2.10).

3) Recovery of DNA by electroelution.

Isolation of DNA fragments from agarose using the SS-BIOTRAP apparatus

(Schleicher & Schuell) was tried as an alternative to fragment isolation

from low melting-point agarose. The SS-BIOTRAP apparatus was assembled and

used as recommended by the manufacturer. The agarose gel slice containing

the band of interest was placed in the elution chamber. A voltage of 150 V

was applied to the electrophoresis chamber for 3h, to elute the DNA from

the gel slice. The eluate was recovered and transferred to a microfuge

tube. DNA fragments were recovered by ethanol precipitation, and finally

redissolved in an appropriate volume of d.H 0. Fragments isolated by this
2

method were successfully used for cloning (see Section 4.7.3).

3.2.9. Southern blotting and hybridisation.

To give molecular weight standards, 7\ DNA was digested with Hindlll or
32

PstI, and labelled with P-dATP, essentially as described by Downing et 

al. (1979). Briefly, a reaction containing 7pl of digested A DNA

(approximately lOng), 26pl of d.H 0, lOpl of A buffer (mixture containing
2
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O.lmM each of dCTP, dGTP, dTTP), 5ul REact 2 buffer (50mM Tris-HCl pHS.O,
32

lOmM MgCl , 50mM NaCl, Gibco, BRL), Ipl a- P-dATP (lOpCi/pl, Amersham) and 
2

Ipl Klenow fragment of DNA polymerase I (Boehringer, Mannheim) was

incubated at room temp for 30 min.
32

A lOpl aliquot of P-dATP-labelled Hindlll- (or Pstl~) digested 7̂ DNA

was loaded on a gel, together with restriction endonuclease digested

genomic or plasmid DNA samples. (All samples contained a 1/lOth volume of

gel loading buffer.) Samples were subjected to electrophoresis through 0.7%

agarose, at 40V overnight in 0.5 x TBE buffer. After staining in 0.5pg/ml

ethidium bromide, the gel was photographed, and vacuum blotted using the

VacuGene Vacuum Blotting System (LKB 2016, Pharmacia LKB) exactly as

recommended by the manufacturer. Nitrocellulose membrane (Schleicher &

Schüéll) was routinely used for Southern blotting. However, as an

alternative, Hybond-N blotting membrane (Amersham) was used for Southern

blot analysis of 5.avium DNA (Section 4.3.2). Successful transfer was

confirmed by restaining the electroblotted gel in ethidium bromide

solution. After transfer, DNA was fixed to the nitrocellulose membrane by

baking in a vacuum oven at 80°C for 2h. The Hybond-N membrane was wrapped

in Saran wrap (Dow Chemical Company) and placed DNA-side down on a u.v.

transilluminator for 2 - 5  min to fix the DNA.

Each filter was sealed in a bag with 12ml of prehybridisation buffer

[2.5ml of 20 X SSC (3M NaCl, 0.3M Na citrate, pH7.0), 6.0ml of formamide
3

(purchased from Gibco, BRL, and deionised as described by Maniatis et a].,

1982), 1.2ml of 50 x Denhardt's reagent (1% (w/v) Ficoll (Sigma), 1% (w/v)

polyvinylpyrrolidone (Sigma), 1% (w/v) BSA (Gibco, BRL)), 0.25ml of 20%

(w/v) SDS, 0.2ml of lOmg/ml denatured salmon sperm DNA (prepared as

described by Maniatis et al., 1982) and d.H 0 to 12ml ] and submerged in a
2
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water bath at 42®C overnight. Following incubation, as much

prehybridisation buffer as possible was squeezed out of the bag. Oligo- 

labelled DNA 50pl was added to 12ml of hybridisation buffer (2.5ml of 20 x 

SSC, 6.0ml of deionised formamide, 1.2ml of 50 x Denhardt's solution,

0.25ml of 20% (w/v) SDS, 0.25ml of 0.5M EDTA (pHS.O) and d.H 0 to 12ml).
2

This mixture was then added to the filter. The bag was re-sealed and

submerged in a water bath at 42°C for a further 24h.

The filter was removed from the bag and immediately submerged in 200ml

of 2 X SSC, 0.1% (w/v) SDS and incubated at room temp for 30 min with

gentle agitation. The filter was then washed in 200ml of 1 x SSC, 0-1% 

(w/v) SDS in a water bath at 68°C for 2h with gentle agitation. Filters 

were wrapped in Saran wrap and exposed to X-ray film (X-OMAT-S, Kodak) at 

-70°C overnight, to obtain an autoradiographic image. The use of a Kodak 

X-ONAT film processor to develop autoradiographs was kindly provided by The 

Beatson Institute for Cancer Research, Bearsden, Glasgow.

Where it was necessary to rehybridise filters, residual radioactivity 

was removed by immersing the nitrocellulose membrane in 30mM NaOH for 5 

min, then briefly in 0.5M Tris-HCl (pH7.5), 1.5M NaCl, followed by

immersion in 0.1 x SSC, 0,1% (w/v) SDS for 5 min. Residual radioactivity 

was removed from Hybond-N nylon membrane (Amersham) following the 

manufacturer's instructions. Filters were exposed to autoradiography to 

confirm that residual radioactivity had been removed, then prehybridised as 

before.

3.2.10. Oligo-labelling of DNA.

A technique has been developed (Feinberg and Vogelstein, 1983 and 1984) 

for radiolabelling DNA restriction endonuclease fragments to high specific
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activity. Plasmid DNA (purified as described in Section 3.2.2) or DNA

restriction fragments (purified by centrifugation through a SPIN-X filter

unit) were radiolabelled as described by Feinberg and Vogelstein (1984).

DNA 40ng was brought to a volume of 34pl with d.H 0, denatured by boiling
2

in H 0 for 5 min and quenched on ice. Oligo-labelling buffer (obtained from 
2

M. Ward and prepared as described by Feinberg and Vogelstein, 1984) lOpl,
32

2pl of lOmg/ml BSA (Gibco, BRL), 2pl of a- P-dATP (lOpCi/pl, Amersham) and

2|j1 of Klenow fragment of DNA polymerase I (Boehringer, Mannheim) were

added. The reaction was mixed well, and incubated at room temp for 5h. The

reaction was boiled in H 0 for 5 min, quenched on ice, and immediately used
2

for Southern blot hybridisation.

3.2.11.Dephosphorylation of plasmid DNA.

In order to prevent vectors from self-ligating during cloning, the 5'

phosphate groups of linear double-stranded DNA were removed by treatment

with calf intestinal alkaline phosphatase (CIP, Boehringer, Mannheim).

Plasmid DNA lOpg was digested to completion with the appropriate

restriction endonuclease(s). For vectors cut with only one enzyme, the

digestion mixture was extracted once with phenol, once with 1:1 (v/v)

phenol:chloroforra, followed by once with chloroform alone. The aqueous

phase was ethanol precipitated, and the recovered DNA finally redissolved

in 180pl of d.H 0. For vectors cut with two different restriction enzymes, 
2

the digestion mixture was subjected to agarose gel electrophoresis. Vector

DNA was purified from the gel using the SS-BIOTRAP apparatus, and finally

redissolved in 180pl d.H 0.
2

Twenty microlitres of 10 x phosphatase buffer (lOOmM Tris-HCl (pH9.2), 

ImM EDTA) was added to the ISOpl of digested plasmid DNA. This mixture was
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divided in two. To one aliquot, Ipl {10 units) of CIP was added. To the

second aliquot, Ipl of d.H 0 was added (to give a non CIP-treated control).
2

The mixtures were incubated at 37°C for 30 min, then 70®C for 60 min (to

inactivate the enzyme). Samples were ethanol precipitated. Recovered vector

DNA samples were redissolved at the desired concentration in d.H 0. To
2

check DNA recovery, a small aliqout from each sample was analysed by 

agarose gel electrophoresis.

On occasion, as an alternative to the above procedure, vector DNA was 

dephosphorylated according to the protocol recommended by the manufacturers 

of CIP (Boehringer, Mannheim).

To test whether vector DNA had been dephosphorylated to a satisfactory 

extent, samples of ligated CIP-treated and non CIP-treated vector DNA were 

transformed into competent E.coli cells.

3.2,12. Ligation of DNA.

Ligations were performed at room temp for either 2h (for ligation of

overhanging ends) or overnight (blunt end ligations) in 20mM Tris-HCl

(pH7.6), lOmM MgCl , lOmM DTT, ImM ATP, 5% PEG 8000, using 1 unit of T4 DNA 
2

ligase (Boehringer, Mannheim).

Ligation reactions were done in volumes of lOpl. For ligation of DNA

fragments into vectors, reactions contained a molar excess of insert DNA.
5

(One kilobase pair of DNA is 6.49 x 10 daltons.)

3.2.13. Preparation of competent cells.

Transformation-competent E.coli cells were prepared using a 

modification of the method of Mandel and Higa (1970).

A single bacterial colony was used to inoculate 10ml of SOC medium
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(Hanahan, 1983, see Appendix 1) and grown overnight at 37°C with shaking.

The culture was diluted 1 in 100 in 50ml of SOC medium, and incubated as

above. The culture was grown to an OD of 0.2 or 0.5, for reef or rec-
550

strains respectively. The culture was chilled on ice for 10 min, then

bacterial cells were harvested by centrifugation at 5000 r.p.m. for 5 min

at 4°C in a Sorvall 88-34 rotor, resuspended in 25ml of chilled, sterile

50raM CaCl , incubated on ice for 15 min, then pelleted again and 
2

resuspended in one tenth of the original culture volume of chilled, sterile

50mM CaCl . Transformation-competent cells were stored at 4°C for 2h before 
2

use. Each batch of competent cells was usually transformed with Ing and 

lOng amounts of plasmid pUC19 DNA (Gibco, BRL) to allow the transformation 

efficiency (expressed as the number of transformants obtained per \ig of 

DNA) to be determined.

3.2.14. Transformation of competent cells.

The lOpl ligation reaction was placed on ice. Ice-cold TE buffer 40pl,

20|jl of ice-cold TCM buffer (lOOmM Tris-HCl (pH7.0), lOOmM MgCl , lOOmM
2

CaCl ) and 130pl of freshly prepared competent E.coli cells were added and 
2

mixed gently. This suspension was incubated on ice for 20 min, heat- 

shocked at 42°C for 1.5 min, then placed on ice for 2 min. One ml of SOC

medium was added, and the mixture shaken at 37°C for 60 min to allow

expression of the plasmid-encoded antibiotic resistance. The mixture was 

spun briefly in a microfuge (30 sec) and the cells resuspended in lOOpl SOC 

medium and plated onto nutrient agar plates containing the appropriate 

antibiotic (plus X-gal and IPTG if required).

For transformation of only a Ipl aliquot from a ligation reaction (or a 

Ipl aliquot of supercoiled plasmid DNA), 20pl of competent E.coli cells was
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added directly to the chilled Ipl sample. The sample was incubated on ice 

for 20 min, 42°C for 1.5 min, and on ice for 2 min. SOC medium 80pl was 

added, incubated at 37°C for Ih, and the whole sample was plated out on 

selective nutrient agar.

As a negative control, the appropriate selective nutrient agar plate 

was inoculated with competent E.coli cells. All plates were incubated at 

37°C overnight.

3.2.15. Conjugation of E.coli and Bordetella.

Broad host-range vectors pLAFRl and pRK310 are not self-transmissible, 

therefore a tri-parental mating system was used which included a helper 

plasmid pRK2013, which contains the RK2 tra genes cloned in ColEl (Figurski 

and Helinski, 1979).

Equal portions of fresh overnight cultures of the appropriate E.coli 

donor strain, and helper strain E.coli HBlOl (pRK2013) were mixed and 

diluted 1 in 10 in sterile saline. A BG agar plate supporting a 48h lawn 

culture of the appropriate B.pertussis recipient strain (or a 24h lawn 

culture of the appropriate B.bronchiseptica recipient strain) was gently 

flooded with approximately 3ml of the E.coli donor and helper strain 

mixture. The excess was removed, and the plate incubated at 35°C for either 

8h or overnight. A loopful of cells was transferred to 1ml of sterile 

saline, and lOOpl of the resulting suspension was plated out on selective 

BG agar containing Tc, cephalexin and phage Tl.

Where it was necessary to transfer a large number of clones by 

conjugation from E.coli to B.pertussis (e.g. Section 4.1.6), a microtitre 

tray system was used. A multi-point inoculator was used to inoculate fresh 

BG agar plates from lawn cultures of the B.pertussis recipient strain.
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Plates were incubated at 35®C for 48h. E.coli donor strains were inoculated 

into the wells of a Cooke microtitre tray containing 50pl per well of 

nutrient broth + Tc, and incubated at 37°C overnight. Fresh overnight 

culture of E.coli HBlOl (pRK2013) 50pl was added to each well. Using the 

multi-point inoculator, the E.coli donor and helper strain mixtures were 

added to the BG agar plates supporting "spots" of growth of the B.pertussis 

recipient strain, and incubated at 35°C overnight. Using the multi-point 

inoculator, cells were transferred to selective BG agar.

As controls, selective BG agar plates were inoculated with donor, 

helper and recipient strains. All plates were incubated at 35°C, in a moist 

atmosphere, for 2 - 5  days.

3.2.16. Conjugation of E.coli and E.coli.

A tri-parental mating system, which utilised the tra functions of 

helper plasmid pRK2013, was used to transfer clone pRMB2 from donor strain 

E.coli DHl (pRMB2) to recipient strain E.coli JA221 (pIL22) (Section

4.7.1) .

Aliquots 50pl from fresh overnight cultures of E.coli donor, helper and 

recipient strains were mixed and spread on the surface of a nutrient agar 

plate. The plate was incubated, surface uppermost, at 31°C for 5h. A 

loopful of cells was transferred to 1ml of sterile saline, and lOOpl of the 

resulting suspension was plated out on selective nutrient agar containing 

Ap plus Tc. As negative controls, donor, helper and recipient strains were 

plated out on selective nutrient agar. All plates were incubated at 37*C 

overnight.
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Section 3.3. MISCELLANEOUS MATERIALS AND METHODS.

3.3.1. Treatment of samples for SDS-PAGE.

For B.pertussis samples, cells were harvested from a 48h BG agar

culture into 1ml of physiological saline. For E.coli samples, cells were

harvested by centrifugation from a 50ml culture (in the exponential phase

of growth), and resuspended in 1ml of saline. Cells were washed once with

saline and resuspended to give an OD of 5.0 (about 2mg protein/ml).
660

Samples were mixed with an equal volume of solubilising buffer (125mM Tris- 

HCl (pH6.8), 4% (w/v) SDS, 20% (v/v) glycerol, 10% (v/v) (5-mercaptoethanol, 

0.002% (w/v) bromophenol blue) and heated to 100°C for 5 min prior to

loading on the gel.

3.3.2. SDS-PAGE (sodium dodecyl sulphate-polyacrylamide gel 

electrophoresis).

The method used was based on that of Laemmli (1970), using a 

discontinuous buffer system. Stacking and separating gels were prepared 

using a stock solution of 30% (w/v) acrylamide, 0.8% (w/v) N,N'- bis-

methlyene acrylamide, and contained 5% (w/v) and 11% (w/v) acrylamide

respectively. The gel was formed between two glass plates of 17cm x 19cm x 

0.3cm. Gels and electrophoresis buffer contained 0.1% (w/v) SDS.

Samples (30pl) were loaded onto the gel. To estimate molecular weights 

of separated polypeptides, a sample of molecular weight markers (SDS-6, 

Sigma) was loaded on one track of the gel. This contained a mixture of 

bovine serum albumin (66kD), egg albumin (45kD), pepsin (34.7kD), 

trypsinogen (24kD), (5-lactoglobulin (18.4kD) and lysozyme (14.3kD). 

Electrophoresis was performed at room temp at a constant current of 30mA
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until the dye front reached the bottom of the gel.

After electrophoresis, gels were stained overnight at room temp with 

Coomassie Blue stain (0.25% (w/v) Coomassie Blue R250 (BDH), 50% (v/v)

methanol, 10% (v/v) glacial acetic acid), then destained using several

changes of destaining solution (5% (v/v) methanol, 7.5% (v/v) glacial

acetic acid).

Where subsequent analysis of samples by iramunoblotting was required, 

duplicate samples were loaded on each half of the gel. Following 

electrophoresis, one half of the gel was treated with Coomassie Blue stain, 

and the other half was used for Western blotting.

3.3.3. Western blotting and immunological detection of proteins.

Western blotting was performed by the method of Towbin et al. (1979) 

using a "Transblot" transfer apparatus (Bio-rad). A sheet of nitrocellulose 

(Schleicher & Scheull) and two sheets of filter paper (3MM, Whatman) were 

cut to the same size as the SDS-polyacrylamide gel, and soaked in pre­

cooled transfer buffer (25mM Tris, 0.2M glycine, 20% (v/v) methanol,

pH8.3). The gel and the nitrocellulose membrane were "sandwiched" together 

between the two sheets of filter paper, and assembled in the "transblot" 

cassette. The cassette was then placed in the electrophoresis chamber 

containing pre-cooled transfer buffer, with the nitrocellulose facing the 

anode. Proteins were transferred at a power setting of 80mA overnight at 

room temp with a cooling system operating within the electrophoresis 

chamber. Successful transfer was confirmed by the absence of bands after 

staining the electroblotted gel in Coomassie Blue stain.

The nitrocellulose was immediately immersed in TTS buffer (20mK Tris, 

500mM NaCl, 1% (v/v) Tween-20 (Sigma), pH7.2) and incubated overnight at
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4°C. The filter was transferred to TBS buffer (20mM Tris, 500mM NaCl, 

pH7.2) containing 2% (v/v) inactivated horse serum (Sigma), and incubated 

at room temp for Ih with gentle agitation, then incubated for 90 min at 

room temp with a 1/100 dilution (in TBS buffer with 2% (v/v) inactivated

horse serum) of primary antibody i.e. "Preston 2" or "Preston 3" polyclonal

antisera (obtained from Dr. N. Preston) which were raised in rabbits and 

absorbed until monospecific for B.pertussis AGGs 2 and 3 respectively. The 

filter was washed in TTS buffer with 5 changes over a 30 min period,

incubated with a 1/500 dilution (in TBS buffer with 2% (v/v) inactivated
ĉtxb

horse serum) of^anti-rabbit IgG horse-radish peroxidase enzyme conjugate

(HRP, Scottish Antibody Production Unit, Carluke, UK) for 90 min, then

washed in TBS buffer with 5 changes over 30 min. The filter was then

incubated with substrate (one part of 3mg/ml HRP colour development

reagent, 4- chloro- 1- naphthol (Sigma), in methanol mixed with five parts

0.018% H O  in TBS immediately before use) for 30 min. The nitrocellulose 
2 2

filter was finally washed with d.H 0, air dried and stored.
2

3.3.4. ELISA (enzyme-linked immunosorbent assay).

Fresh overnight cultures of E.coli strains were diluted 1 in 100 in

50ml nutrient broth (containing the appropriate antibiotic(s)) and

incubated at 37°C with shaking until the exponential phase of growth was

reached. Cells were harvested by centrifugation, washed once in saline, and

resuspended to give an OD of 5.0, Cells were harvested from 48h BG agar
660

cultures of B.pertussis into 1ml of saline, washed and resuspended as 

above.

Samples of washed cells 200pl were applied, in duplicate, to separate 

wells of an assembled Bio-Dot apparatus (Bio-rad), and gentle suction was
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applied to filter the cells onto the nitrocellulose membrane (Schleicher & 

Schuell).

Filters were placed above a dish of chloroform for 10 min to lyse the

cells, and incubated at 4°C overnight in PBS (8.0 g/1 NaCl, 0.2 g/1 KCl,

1.15 g/1 Na HPO , 0.2 g/1 KH PO ) containing 5% (w/v) BSA. Filters were
2 4 2 4

washed at room temp in PBS, with 3 changes over a 45 min period, then

incubated for 2h with a 1/10 dilution (in PBS with 1% (w/v) BSA) of primary

antibody i.e. monoclonal antibody Ag2A (which was raised in mice against

purified inactive serotype 2 fimbriae, and kindly supplied by PHLS, CAMR )

or polyclonal "Preston 2" antibody. Filters were washed in PBS as before

then incubated for a further 2h with a 1/2000 dilution (in PBS with 1%

(w/v) BSA) of anti-mouse (for Ag2A antibody) or anti-rabbit (for "Preston

2" antibody) IgG horse-radish peroxidase enzyme conjugate (Scottish

Antibody Production Unit). Filters were again washed in PBS, then incubated

with substrate (2 mg/ml 3- amino- 9- ethylcarbazole (Sigma), 0.024% (v/v)

H O  in 50mM sodium acetate, pH 5.0) for 30 min. The reaction was
2 2
terminated after 30 min by placing the filters in d.H 0. Filters were air

2
dried and stored.

3.3.5. Assay for FHA.

FHA activity was assayed by the ability of bacterial cell samples to

agglutinate washed horse erythrocytes. Cells were harvested from either a

48h BG agar culture (for Bordetella) or from a nutrient broth culture in

the exponential phase of growth (for E.coli), washed once with PBS, and

resuspended in PBS to give an OD of 5.0 i.e. approximately 2mg protein
660

per ml. A 2ml sample of defibrinated horse blood (Gibco, BRL) was washed 

three times with PBS, the erythrocyte pellet being finally resuspended to
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give a 2% (v/v) suspension.

A series of two-fold dilutions for each test sample was set up in the 

wells of a round-bottomed Cooke microtitre tray. An equal volume (50pl) of 

erythrocyte suspension was added to each well and mixed. As negative 

controls, wells were set up which contained erythrocyte suspension plus PBS 

only. Haemagglutination was assessed after incubation at room temp for Ih.

3.3.6. Slide agglutination assay.

A slide agglutination assay was used to determine agglutinogen 1 (AGG 

1) and agglutinogen 2 (AGG 2) activity. Bacterial cells were harvested and 

resuspended in saline as described in Section 3.3.4. To act as a negative 

control, a drop of saline was placed at one end of a clean microscope 

slide. At the other end, a drop of antisera was placed i.e. "Preston 1" or 

"Preston 2" antisera (obtained from Dr. N. Preston) which were raised in 

rabbits and absorbed until monospecific for B.pertussis AGGs 1 and 2 

respectively. A drop of bacterial cell suspension was added to each, the 

slide was rocked gently, and agglutination assessed by comparing the test 

reaction with the negative control.

3.3.7. Assay for HLY.

Haemolysin activity was visualised after growth on BG agar.

3.3.8. Assay for HLT.

B.pertussis cells were harvested from 48h BG agar cultures into PBS, 

to a final concentration of 10 opacity units (OU) by comparison with the 

WHO 5th International Reference Preparation of Opacity (Perkins et al. 

1973). Assay for HLT was then kindly performed by Dr. R. Parton, as 

described by Parton (1988).
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3.3.9. Assay for FT.

B.pertussis suspensions were prepared to a concentration of 10 OU as 

described above, then heated to 56®C for 30 min to destroy heat-labile 

toxin. Assay for PT was then kindly performed by Dr. R. Parton, as 

described by Parton (1988).

3.3.10. Assay for X-OMPs.

To determine the presence of the X-mode specific envelope polypeptides 

of molecular weights 28 kD and 30 kD, whole cell B.pertussis samples were 

subjected to SDS-PAGE. Polypeptides were visualised by Coomassie Blue 

staining.

3.3.11. Assays for AC enzymic activity.

Microtitre trav assav for AC production.

AC production was assayed by the development of a blue colour from X-

gal in the wells of microtitre trays. This relies on expression of p-

galactosidase in E.coli G802 ( acya) which is dependent on cAMP produced by

exogenous AC (C. Duggleby, personal communication).

Bordetella cultures were harvested from BG agar, washed once in saline,

and resuspended to an OD of 5.0. Duplicate 8pl aliquots for each
660

Bordetella test sample were added to 50pl aliquots of a reaction mixture

(60mM Tris-HCl pH 8.0, lOmM MgCl , 5mM ATP, lOmM CaCl , 500 units per ml
2 2 

calmodulin (Sigma)) contained in the wells of a microtitre tray, mixed, and

incubated at 35°C for 3h. A test culture was prepared by inoculating fresh

nutrient broth containing IPTG (250pg/ml) and X-gal (250pg/ral) with a 1 in

100 dilution of a 6h culture of E.coli G802. Test culture 150gl was added

to each well, and the tray was incubated overnight at 35°C. Dark blue

cultures were recorded as positive.
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Assav for AC production using a cAMP assav kit.

The enzymic activity of B.pertussis AC in E.coli (Section 4.7.5) was 

measured in an assay which involved two steps: incubation of the sample

with ATP, the substrate from which the adenylate cyclase generates cAMP, 

and then measurement of the cAMP generated by a competetive binding assay 

involving radiolabelled cAMP.

E.coli cells were harvested from late exponential phase cultures, 

resuspended in 8M urea to a final concentration of 0.16g/ml, and sonicated 

three times for 30 sec using a Branson sonifier at maximal output. The 

protein concentration of each sample was determined by the method of 

Bradford (1976). Samples were diluted 200-fold in PBS.

To convert ATP to cAMP, a modification of the method described by

Brownlie et al. (1985a) was used. A reaction containing 120pl of 0.002M ATP

in 0.02M MgCl , 80pl of O.IM tricine (pH8.0), 40pl E.coli extract and 250 
2

units of calmodulin (Sigma), was set up for each E.coli sample. Reactions 

were mixed, incubated at 30°C for 15 min, then terminated by adding 480pl 

of 50mM Tris (pH7.5), 0.5M EDTA, and heating at 100°C for 5 min.

The cAMP content of samples, generated from the above reaction, was 

then assayed using a cAMP assay kit (Amersham). This assay is based on 

competition between unlabelled cAMP and a fixed quantity of tritium 

labelled cAMP for binding to a protein which has a high specificity and 

affinity for cAMP. The amount of labelled protein-cAMP complex formed is 

inversely related to the amount of unlabelled cAMP present in the assay 

sample. Measurement of the protein bound radioactivity enables the amount 

of unlabelled cAMP in the sample to be determined from a linear standard 

curve.
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Section 4: RESULTS.



Section 4.1. MOLECULAR ANALYSIS OF pRMB2 AND SUBCLONING OF THE VIR LOCUS.

4.1.1. Identification of the site of Tn5 insertion in BP347.

Clone pRMB2 was identified from a gene library of B.pertussis TAB I DNA 

by its ability to complement the Vir- mutation of Tn5 mutant BP347 

(Brownlie et al,, 1988). Hybridisation analysis was used to determine the 

region of clone pRMB2 showing homology to the site of Tn5 insertion in 

BP347, and thereby define the region essential to the vir locus. The gene 

library (in E.coli DHl) was constructed by cloning genomic DNA which had 

been partially digested with EcoRI, into the unique EcoRI site of cosmid 

vector pLAFRl (Brownlie et al., 1986). As Tn5 contains no EcoRI sites, this 

enzyme was chosen for preliminary analysis of pRMB2 and chromosomal DNA.

Plasmid DNA was prepared from E.coli DHl (pRMB2), and genomic DNA was 

prepared from B.pertussis strains L84 I, BP347, Tohama I (the parent strain 

of BP347) and TAB I (the strain used to construct the library). DNA samples 

were digested with EcoRI and subjected to electrophoresis. The gel was 

Southern blotted, and the filter was hybridised with a pRMB2 probe. The 

resulting autoradiograph is shown in Figure 4.1.

This showed that the genomic insert of pRMB2 consisted of six EcoRI 

fragments, which were designated El to E6 in order of ascending size. The 

sizes of the fragments were calculated to be l.lkb (El), 2.5kb (E2), 2.7kb

(E3), 4.7kb (E4), 5.1kb (E5) and lO.Okb (E6), giving a total insert size of 

26.1kb. (Details of these calculations are given in Section 4.2.2). EcoRI- 

digested DNA from B.pertussis strains L84 I, Tohama I and TAB I hybridised 

to fragments El to E6 of pRMB2. In strain BP347 the E3 band was missing and 

replaced by an 8.4kb fragment. This implicated the E3 fragment of pRMB2 as 

part, at least, of the virulence regulatory vir locus. In the BP347 sample.
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Figure 4.1.

Southern blot analysis of Zco^i-digested B.pertussis DNA probed with pRMB2.

Southern blot hybridisation was performed as described in Section 3.2.9. 

The probe was prepared by oligo-labelling purified pRMB2 DNA to high 

specific activity, by the method of Feinberg and Vogelstein (1984), as 

described in Section 3.2.10. On the left, El to E6 and pLAFRI, indicate the 

fragments comprising pRMB2. Numbers on the right refer to the fragment 

sizes (kb) of ^indlll-cleaved DNA. (Hybridisation to El in genomic DNA 

samples was more clearly seen on a longer exposure.)

Lane 1: pRMB2

Lane 2: B.pertussis L84 I

Lane 3: B.pertussis BP347

Lane 4: B.pertussis Tohama I

Lane 5: B.pertussis TAB I 
32

Lane 6: P-labelled HindIII-cleaveà “A DNA
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which contained an excess of DNA compared to the other samples, a faint 

high molecular weight band was also detected.

4.1.2. Subcloning E3 from pRMB2 into vector pLAFRI.

The E3 fragment of pRMB2 was subcloned in the broad host-range vector 

pLAFRI, to give a construct which could subsequently be transferred from 

E.coli to BP347 for complementation analysis.

Plasmid pLAFRI was digested with EcoRI and dephosphorylated using calf 

intestinal alkaline phosphatase (CIP), as described in Section 3.2.11. 

Plasmid pRMB2 was digested with EcoRI and subjected to electrophoresis 

through low melting-point agarose. E3 DNA was purified from a band excised 

from the gel. A ligation reaction containing lOOng of dephosphorylated 

pLAFRI EcoRI-cleaved DNA and lOOng of E3 fragment DNA was set up. The 

reaction contained a 10-fold molar excess of E3 fragment DNA. As controls, 

lOOng of dephosphorylated pLAFRI vector alone and lOOng of non-CIP treated 

pLAFRI vector alone were ligated. Following ligation at room temp for 2h, 

samples were transformed into freshly prepared E.coli JM83 cells. To check 

the transformation efficiency, Ing and lOng samples of pUC19 plasmid DNA 

(Gibco BRL) were also transformed. Following transformation, samples were 

spread on nutrient agar containing the appropriate antibiotic. Competent 

E.coli JM83 cells were spread on nutrient agar containing Tc and Ap to 

check sensitivity to these antibiotics. The number of transformants 

obtained is given in Table 4.1.

E.coli JM83 cells were unable to grow on nutrient agar containing Tc or

Ap so it was presumed that all colonies obtained were genuine

transformants. As Ing of pUC19 DNA gave 350 colonies, the transformation
5

efficiency was calculated to be approximately 3.5 x 10 transformants per
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Table 4.1

Transformation of E. coli JM83 to create pDM3

DNA sample ® Number of colonies obtained

1. lOOng E3 + lOOng dephosphorylated

pLAFRI 2

2. lOOng dephosphorylated pLAFRI 2

3. lOOng non-CIP treated pLAFRI 73

4. Ing pUC19 350

5. lOng pUC19 semi-confluent

a. Ligation samples (1, 2 and 3) lOpl and plasmid samples (4 and 5) Ipl 

were transformed with freshly-prepared competent E. coli JM83 cells, 

as described in Section 3.2.14.

b. Transformants were selected on nutrient agar containing Tc (for

pLAFRI and its derivatives) or Ap (for pUC19).
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pg of DNA. Two colonies were obtained from ligated dephosphorylated pLAFRI 

vector, which was considerably lower than the number obtained from ligated 

non-CIP treated vector (73). Only two transformants were obtained from the 

ligation mixture containing pLAFRI vector and the E3 fragment. Plasmid DNA 

was prepared from each of the two colonies, digested with EcoRI, and 

subjected to electrophoresis. Visualisation of the ethidium bromide stained 

gel in u.v. light showed that one sample consisted of pLAFRI vector alone, 

but the other consisted of pLAFRI vector plus the E3 fragment. The latter 

was designated pDM3.

4.1.3. Subcloning E3 from pRMB2 into vector pIC20H.

At this stage it was considered of interest to determine if the 2.7kb 

E3 fragment of pRMB2 could encode the product of the vir locus which would 

allow expression of virulence determinants not normally expressed in 

E.coli. For example, pRMBl contains the B.pertussis adenylate cyclase (AC) 

genetic determinant cloned in pLAFRI, but no AC is expressed in E.coli 

(Brownlie et al., 1988). To this end the E3 fragment was subcloned into the 

high copy-number plasmid vector pIC20H which would make it compatible with 

plasmids such as pRMBl.

Plasmid pIC20H was digested with EcoRI, and dephosphorylated. A 

ligation reaction containing lOng of dephosphorylated vector DNA and lOOng 

of E3 DNA (purified as in Section 4.1.2) was set up. The molar ratio of 

insert to vector DNA was 10 to 1. As controls, ligations were also set up 

using lOng of dephosphorylated pIC20H vector alone and lOng of non-CIP 

treated pIC20H vector alone. Ligations were incubated at room temp for 2h. 

An aliquot from each ligation reaction was transformed into freshly 

prepared E.coli JM83 cells. Samples containing Ing and lOng of supercoiled
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pIC20H plasmid DNA were also transformed to determine transformation 

efficiency. Transformation mixes were spread on nutrient agar supplemented 

with Ap, IPTG and X-gal. As a control, competent E.coli JM83 cells were 

also spread on a selection plate. The number of colonies obtained is shown 

in Table 4.2.

Plasmid pIC20H contains a polylinker, specifying 17 restriction sites, 

in the p-galactosidase a-complementing gene fragment. Recombinant clones 

can be easily identified, as insertion of DNA molecules into the polylinker 

region results in inactivation of p-galactosidase a-complementation, and 

colonies appear white on medium supplemented with IPTG plus X-gal.

As expected, E.coli JM83 was Ap sensitive. A Ing sample of pIC20H DNA
5

resulted in 410 colonies, giving a transformation efficiency of 4.1 x 10 

transformants per pg of DNA. Ligated, non-CIP treated, iTcoJ?J-cleaved pIC20H 

gave a 4-fold reduction in the number of colonies obtained per pg of DNA 

transformed when compared with supercoiled. pIC20H. Dephosphorylated vector 

gave only 2 colonies, whereas non-CIP treated vector gave 103 colonies.

Transformation of the E3 fragment ligated with dephosphorylated EcoRI- 

cleaved pIC20H vector, resulted in 10 white and 3 blue colonies. The blue 

colonies were presumed to contain re-circularised vector DNA. Plasmid DNA 

was prepared from each of the 10 white colonies. Since ^IC20H and the E3 

fragment are approximately the same size, digestion with EcoRI would result 

in a doublet band. Therefore, to identify clones containing insert, BamHI 

was chosen because preliminary analysis had shown that the E3 fragment did 

not contain any BamHI sites, but a unique BamHI site is present in the 

polylinker of pIC20H. Plasmid samples were digested with BamHI and 

subjected to electrophoresis- Examination of the ethidium bromide stained 

gel in u.v. light, showed that two samples contained a band of 2.7kb,
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Table 4.2.

Transformation of E, coli JM83 to create pDM30

DNA sample ® Number of colonies obtained ^

1. lOng E3 + Ing dephosphorylated

PIC20H lOW, 3B

2. Ing dephosphorylated pIC20H 2B

3. Ing non-CIP treated pIC20H 103B

4. Ing pIC20H 410B

5. lOng pIC20H semi-confluent B

a. Aliquots (1, 2 and 3} Ipl from ligated DNA samples and plasmid samples 

(4 and 5) Ipl were transformed with freshly-prepared competent E. coli 

JM83 cells, as described in Section 3.2.14.

b. Transformants were selected on nutrient agar containing Ap, IPTG and 

X-gal. 'W ' denotes white, and 'B' denotes blue colony colour.
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presumed to be linearised pIC20H vector, but the remaining eight samples

contained a band of 5.4kb, presumed to be pIC20H containing the E3

fragment. The orientation of the E3 fragment with respect to the lac 

promoter was not determined. This construct was designated pDM30.

4.1.4. Hybridisation of E3 to BP347 DNA.

When EcoRI-àigesteà DNA from BP347 was probed with pRMB2, the 2.7kb 

band was missing, and a larger band was present (Section 4.1.1). It was

presumed that this band was the 2.7kb EcoRI fragment containing a copy of

transposon Tn5. To determine if this was actually the case, EcoRI-digested 

DNA from pRMB2 and from B.pertussis strains L84 I, BP347, Tohama I and TAB 

I was Southern blotted, and hybridised with a pDM3 probe (Figure 4.2).

As expected, pDM3 hybridised to pLAFRl and the 2.7kb E3 fragment of 

jB’cro/?J-digested pRMB2. The pDM3 probe hybridised to a 2.7kb EcoRI fragment 

in DNA from B.pertussis strains L84 I, Tohama I and TAB I. With BP347 DNA, 

the E3 fragment of pDM3 hybridised to an 8.4kb fragment. This confirmed 

that the 8.4kb fragment of BP347 was the 2.7kb EcoRI fragment containing a 

copy of Tn5.

4.1.5. Complementation of BP347 by pDM3.

Clone pDM3 was transferred by conjugation from E.coli JM83 to 

B.pertussis BP347, using a tri-parental mating system which included a 

helper plasmid (pRK2013). Donor cultures of E.coli HBlOl (pLAFRI) and 

E.coli DHl (pRMB2) were included as negative and positive controls 

respectively. Conjugation mixes were incubated overnight at 35°C. The cells 

were then transferred to selective BG agar. Donor, helper and recipient 

strains used as controls were unable to grow on this selective medium.
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Figure 4.2.

Southern blot analysis of EcoRl-digested B,pertussis DNA probed with pDM3.

The blot was hybridised with oligo-labelled pDM3 plasmid. E3 and pLAFRI, 

indicate the fragments of pRMB2 to which pDM3 hybridised. Numbers on the 

right refer to the fragment sizes (kb) of /TindJJI-cleaved ADNA.

Lane 1: pRMB2

Lane 2: B.pertussis L84 I

Lane 3: B.pertussis BP347

Lane 4: B.pertussis Tohama I

Lane 5: B.pertussis TAB I 
32

Lane 6; P-labelled Hindlll-digested Tv DNA
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After incubation at 35°C for 3-4 days, all plates supported semi­

confluent growth of transconjugants. The morphology of transconjugant cells 

was checked by Gram staining and found to be like that of B,pertussis. As 

expected, BP347 (pLAFRI) transconjugant colonies were all non-haemolytic, 

and BP347 (pRMB2) transconjugants were all haemolytic. However, although 

the majority of BP347 (pDM3) colonies were non-haemolytic, approximately 1% 

of colonies showed haemolysis. Non-haemolytic BP347 (pDM3) transconjugants 

were designated BP347 (pDM3) H-, and haemolytic BP347 (pDM3) 

transconjugants were designated BP347 (pDM3) H+.

To establish if the above results were in fact typical, the conjugation 

experiment was repeated with E.coli JM83 (pDM3) donor cultures set up in 

duplicate. Conjugation mixes were incubated at 35°C for only 8h (instead of 

overnight, as above) before being transferred to selective BG agar.

As before, BP347 (pLAFRI) transconjugants were all non-haemolytic and 

BP347 (pRMB2) transconjugants all showed haemolysis. However, both BP347 

(pDM3) selective agar plates supported growth of only non-haemolytic 

colonies.

To determine whether pDM3 had restored expression of any other 

virulence-^associated factors to BP347, B.pertussis strains BP347, BP347

(pLAFRI), BP347 (pRMB2), BP347 (pDM3) H-, and BP347 (pDM3) H+ were assayed 

for production of AC and FHA. The phenotype of each strain was also 

examined on Congo red agar. Results are shown in Table 4.3.

B.pertussis strains BP347 and BP347 (pLAFRI) were negative, whereas 

BP347 (pRMB2) was positive for all activities tested. Non-haemolytic BP347 

(pDM3) H- was also negative for adenylate cyclase and filamentous 

haemagglutinating activities, and was unable to bind Congo red. Conversely, 

BP347 (pDM3) H+ was positive for expression of AC and FHA, and was able to
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Table 4.3.

Complementation of BP347 by pDM3

B. pertussis strain HLY AC

Phenotype®

FHA CR

BP347 - — - -

BP347 (pLAFRI) - — - -

BP347 (pRMB2) + + 4- +

BP347 (pDM3) H- “ - - -

BP347 (pDM3) H+ + + + +

a. HLY = haemolysin, AC = adenylate cyclase, FHA = filamentous 

haemagglutinin, CR = Congo red binding.
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bind Congo red.

Further analysis of BP347 (pDM3) H+ transconjugants is given in Section 

4.1.11, which indicates that they arose by homologous recombination in the 

vir region. On the assumption that the E3 fragment does not contain all of 

the vir locus, the ability of pDM30 (Section 4.1.3) to frans-activate the

cloned B.pertussis AC genetic determinant (pRMBl) in E.coli was not

investigated at this stage.

4.1.6. Subcloning and complementation analysis of Sau3A fragments of pRMB2.

Subclones containing an insert of approximately 6kb of DNA were 

constructed after partial digestion of pRMB2 with SauJA, and ligation of 

fragments into broad host-range vectors to enable their subsequent transfer 

to BP347.

Initially plasmid pRK291 was used as the cloning vector. This broad 

host-range plasmid is a derivative of pRK290 in which the Bglll site has

been converted to BamHI. Plasmid pRK291 was digested with BamHI and

dephosphorylated.

Insert DNA was prepared by partially digesting pRMB2 DNA with Sau3A. A 

pilot digest was performed as described in Section 3.2.5. Samples were 

removed after 2.5, 5, 7.5, 10 and 12.5 rain of incubation with the enzyme,

and analysed by electrophoresis. The ethidium bromide stained gel is shown 

in Figure 4.3. As the period of incubation lengthened, pRMB2 became 

progressively more digested.

The partial digest was then repeated using a 5 min incubation period, 

since this was shown by the pilot reaction to result in the largest 

proportion of fragments of around 6kb. The sample of pRMB2 DNA, partially 

digested with SauJA, was subjected to electrophoresis through low melting-
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Figure 4.3.

Electrophoresis of pRMB2 partially digested with Sau3A.

A pilot digest of pRMB2 with SauSA was performed as described in Section

3.2.5. Samples were removed at intervals after initiation of digestion, and 

analysed by electrophoresis {lanes 1 to 5). Fragments of around 6kb are 

contained within the portion of the gel between the horizontal lines.

The Sau3A digest of pRMB2 was repeated (using a 5 min incubation period), 

and lane 8 shows an aliquot of size-selected SauJA fragments after 

purification from low melting-point agarose. HindIII-digesteà > DNA was 

included on both gels to give molecular weight standards of 23.1kb, 9.4kb,

6.7kb, 4.4kb, 2.3kb, 2.0kb and 0.56kb.

Lane 1: 2.5 rain sample

Lane 2: 5 min sample

Lane 3; 7.5 min sample

Lane 4: 10 min sample

Lane 5: 12.5 min sample

Lanes 6 and 7: Molecular weight standards

Lane 8: purified SauJA fragments of pRMB2
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point agarose, and DNA was recovered from a gel slice cut to include 

fragments of around 6kb. Electrophoresis of a small aliquot of the purified 

DNA showed that the SauJA fragments ranged in size from approximately 6kb 

to 9kb (Figure 4.3).

Ba/njyi-cleaved dephosphorylated pRK291 vector lOOng and SauJA fragments 

lOOng were ligated together overnight, and transformed into competent 

E.coli JM83- Cells harbouring plasmid were selected on nutrient agar 

containing Tc. Eight colonies were obtained. However, JFcoifJ-digestion of 

plasmid DNA purified from these colonies showed that they all contained re­

circularised pRK291. Transformation efficiency was tested by transforming

E.coli JM83 with Ing pUC19 plasmid DNA (Gibco BRL) and calculated to be 5 x 
5

10 transformants per pg DNA.

Since cloning into pRK291 vector proved difficult, vector pRK310 was 

tried as an alternative. Plasmid pRK310 is also derived from pRK290, and 

contains a polylinker sequence on a lacZ (a) peptide coding region. This 

was advantageous in that it allowed immediate visual identification of 

recombinant clones as white colonies on medium containing IPTG plus X-gal, 

and also the restriction enzyme sites on either side of the BamHI site 

enabled insert DNA to be cut out of recombinant clones.

Plasmid pRK310 was digested with BamHI and dephosphorylated. To ensure 

that a sufficient number of recombinant clones would be obtained for the 

purpose of screening for an active vir locus, a number of ligation 

reactions containing various concentrations of dephosphorylated BamHI- 

cleaved pRK310 vector and purified SauJA fragments of pRMB2 were set up, as 

shown in Table 4.4. Each ligation reaction contained a molar excess of 

insert DNA. After ligation overnight, samples were transformed with 

freshly-prepared competent E.coli JM83 cells. As controls, E.coli JM83 was
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Table 4.4.

Transformation of E. coli JM83 to create pRK310 recombinant clones

DNA sample ® number of transformants obtained ^

1. 50 ng vector + 50 ng insert 6 W

2. 100 ng vector + 100 ng insert 9 W

3. 50 ng vector + 100 ng insert 2 W

4. 50 ng vector + 150 ng insert 4 W

6. 100 ng vector + 50 ng insert 19 W

6. 250 ng vector + 100 ng insert 8 ¥

7. 10 ng PRK310 15 B

8. 100 ng pRK310 approximately 200 B

9. 10 ng PIC20H semi-confluent B

b.

Ligation samples (1 to 6} 10 pi containing BamJil-digested pRK310 
vector and SauJa fragments of pRMB2 at various concentrations, and 
plasmid samples (7 to 9) 1 pi were transformed with competent E. coli 
JM83 cells as described in Section 3.2.14.

Transformants were selected on nutrient agar containing Tc, IPTG and 
X-gal (for pIC20H). 'W' denotes white, and 'B' denotes blue colony
colour.
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also transformed with lOng and lOOng of pRK310 plasmid, and lOng of pIC20H 

plasmid. Transformants were selected on nutrient agar supplemented with the 

appropriate antibiotic, IPTG and X-gal. The number of transformants 

obtained is given in Table 4.4.

Transformation with lOng of pRK310 resulted in 15 blue colonies, and

lOOng of pRK310 gave approximately 200 blue colonies. The transformation
3

efficiency was therefore 1.5 - 2,0 x 10 transformants per pg pRK310 DNA. 

However, transformation with lOng of pIC20H resulted in a semi-confluent 

lawn of blue colonies. Therefore, the transformation efficiency of pIC20H 

DNA was considerably higher than that of the larger plasmid pRKSlO. 

Transformation of E.coli JM83 with the ligation reactions resulted in a 

total of 48 white colonies (numbered 1 to 48) presumed to be recombinant 

clones.

To determine whether any of the pRK310 recombinant clones contained the 

vir locus, clones were transferred by conjugation to BP347. All 48 clones 

were inoculated, in duplicate, into the wells of two Cooke microtitre trays 

containing nutrient broth supplemented with Tc. E.coli DHl (pRMB2) and 

E.coli HBlOl (pRK310) donor cultures were also set up in duplicate to 

represent positive and negative controls respectively. Using a tri-parental 

mating system which included the use of a helper plasmid (pRK2013), 

conjugation was performed as described in Section 3.2.15, each conjugation 

mix being finally inoculated onto selective BG agar using the multi-point 

inoculator.

BP347 (pRMB2) transconjugants were haemolytic and BP347 (pRK310)

transconjugants were non-haemolytic. All BP347 transconjugants containing 

pRK310 recombinant clones were negative for haemolytic activity.

To calculate the average insert size of the pRK310 recombinant clones,
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plasmid DNA was prepared from six of them (numbers 1, 9, 17, 25, 33 and

41). The enzymes Hindlll and EcoRI were chosen for analysis of plasmid DNA. 

Restriction sites for these enzymes are located at the ends of the 

polylinker sequence, and would enable insert DNA to be cut out of 

recombinant clones. An additional EcoRI restriction site is contained 

within the pRK310 vector. DNA from pRKSlO recombinant clones and plasmid 

pRK310 was digested with both Hindlll and EcoRI and subjected to 

electrophoresis (Figure 4.4). Band migration distances were measured from a 

photograph of the ethidium bromide stained gel by automated densitometry 

and molecular sizes of fragments were estimated by the procedure of 

Plikaytis et al. (1986), as described in Section 3.2.7.

Digestion of pRK310 with both Hindlll and EcoRI resulted in production 

of two fragments of approximately ll.Okb and 9.4kb. As the BamHI site (into 

which the SauJA fragments of pRMB2 were cloned) is located within the 

polylinker, digestion of the recombinant clones yielded the two vector 

fragments plus insert DNA, The sizes of the inserts were determined as 

3.7kb (clone 1), 8.3kb (clone 9), 6.3kb (clone 17), 3.1kb (clone 25), 5.5kb 

(clone 33) and 5.5kb (clone 41). The average insert size for the six clones 

analysed was 5.4kb.

The cloning of SauJA fragments of pRMB2 into the broad host-range 

vectors, with subsequent transfer of recombinant clones to BP347, was a 

laborious procedure and a more direct method of obtaining a subclone of 

pRMB2 containing the vir locus was sought.
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Electrophoresis of pRK310 recombinant clones digested with both Hindlll and! 

EcoRI.

DNA from pRK310 recombinant clones and plasmid pRK310 was digested with 

both Hindlll and EcoRI, and subjected to electrophoresis. Band migration 

distances were measured from a photograph of the ethidium bromide stained 

gel using a soft laser-scanning densitometer, and molecular sizes (shown in 

brackets below) of fragments comprising pRK310 recombinant clones were 

estimated by a modification of the method of Plikaytis et ai. (1986) (see 

Section 3.2.7), using HindIII-digesteà "A DNA as molecular weight standards. 

A digitised version of the ethidium bromide stained gel is shown here.

Lane 1: clone 1 (ll.Okb, 9.4kb, 3.7kb)

Lane 2: clone 9 (ll.Okb, 9.4kb, 4.6kb, 3.7kb)

Lane 3: clone 17 (ll.Okb, 9.4kb, 6.3kb)

Lane 4: clone 25 (ll.Okb, 9.4kb, 3.1kb)

Lane 5: clone 33 (ll.Okb, 9.4kb, 5.5kb)

Lane 6: clone 41 (ll.Okb, 9.4kb, 3.3kb, 2.2kb)

Lane 7: PRK310' (ll.Okb, 9.4kb)
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4.1.7. Preliminary analysis of the location of E3 within pRMB2.

The E3 fragment, known to be essential to vir, was used to probe

various restriction digests of pRMB2 in order to identify a larger fragment

which might contain a functional vir locus.

The restriction enzymes chosen were BamHI, Bglll, PstI and Sad.

Plasmid pRMB2 was digested with each of these enzymes, and also with EcoRI 

as a control. Digested DNA was subjected to electrophoresis together with 

Bam^Z-digested pDM30 (Figure 4.5a). All pRMB2 digests showed fragments of 

greater than 2.7kb which could have contained a functional vir locus.

The gel was Southern blotted, and the filter was hybridised with a 

pDM30 probe (Figure 4.5b). Plasmid pDM30 hybridised to itself, and to the 

2.7kb EcoRI fragment of pRMB2, confirming that clone pDM30 contains the E3 

fragment. Plasmid pDM30 hybridised to a 2.8kb fragment, and also faintly to 

a larger fragment, in PstJ-digested pRMB2. In DNA samples digested with 

BamHI, Bglll and Sad, pDM30 hybridised to the largest fragment in each 

instance, consisting of pLAFRI vector DNA and the terminal portions of the 

genomic insert of pRMB2. Each of these three fragments potentially 

contained sufficient sequence to encode vir. The BamHI fragment was chosen 

for analysis.

4.1.8. Identification of the site of TnS insertion in BP347 with respect to 

BamHI fragments.

JJamATI-digested DNA from pRMB2 and B.pertussis strains L84 I, BP347, 

Tohama I and TAB I was Southern blotted. The filter was hybridised with 

oligo-labelled pRMB2 plasmid in order to determine the site of Tn5 

insertion in BP347 with respect to BamHI fragments (Figure 4.6a). Plasmid 

pRMB2 consisted of fragments of 1.4kb, 2.4kb, 2.7kb, 2.9kb, 4.8kb and a
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Figure 4.5.

Electrophoresis and Southern blot analysis of restriction digests of pRMB2.

Plasmid pRMB2 DNA which had been digested with various restriction enzymes 

was subjected to electrophoresis, together with BamKI-digested pDM30 DNA. 

The ethidium bromide stained gel is shown in {A) . The gel was Southern 

blotted and hybridised with oligo-labelled pDM30 plasmid (B). The 

corresponding bands to which pDM30 hybridised have been marked with an 

asterisk in (A) . The sizes (kb) of J?coJ?J-digested pRMB2 fragments are given 

on the left.

Lane 1: BamHI-digested pRMB2 

Lane 2: Bg-JJJ-digested pRMB2 

Lane 3: EcoRI-digested pRMB2 

Lane 4: Psfl-digested pRMB2 

Lane 5: BacJ-digested pRMB2 

Lane 6: BamHI-digested pDM30
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Figure 4.6.

Southern blot analysis of BamHI-digested B.pertussis DNA probed with pRMB2 

and E3.

The nitrocellulose filter was hybridised with oligo-labelled pRMB2 plasmid 

(A). Residual radioactivity was removed, as described in Section 3.2.9. 

The filter was rehybridised with a probe made by oligo-labelling E3 

fragment which had been purified from a gel by centrifugation through a 

SPIN-X filter unit (B). Numbers on the left refer to fragment sizes (kb) of 

Hindlll-cleaved A DNA. To the right of (A), numbers B1 to B6 indicate the 

fragments observed in pRMB2.

32
Lane 1: P-labelled Hindlll-cleaved 7\ DNA

Lane 2: B.pertussis L84 I

Lane 3: B.pertussis BP347

Lane 4: B.pertussis Tohama I

Lane 5: B.pertussis TAB I

Lane 6: pRMB2

113



2 3 4 5  6 2 3 4 5  6

23 1-  

94 -

6-7-

4^

I n
U

* # # #

86

85
't
#;

2-3-

20 -

82

81

056- —



large fragment consisting of pLAFRI vector and the terminal portions of the 

genomic insert. These fragments were designated B1 to B6 in order of 

ascending size. (Details of calculations of fragment sizes are given in 

Section 4.2.2).

The B1 to B5 fragments of the probe hybridised to corresponding 

fragments in BamBT-digested genomic DNA for all samples. In samples of 

B.pertussis strains L84 I, Tohama I and TAB I the B6 fragment of the probe 

hybridised to two BamHI genomic fragments, of approximately 12kb and 14kb. 

However, for strain BP347, the 14kb band was missing, and exhibited instead 

was a band of approximately 9kb. Since transposon Tn5 contains a BamHI 

site, this 9kb fragment was presumed to be a result of Tn5 insertion into 

the larger of the two genomic fragments showing homology to the BamHI to 

EcoRI ends of the genomic insert of pRMB2. Plasmid pRMB2 also hybridised 

weakly to a band of approximately 4.2kb in all B.pertussis samples.

The more specific E3 fragment of pRMB2 was then used as a probe. The 

filter was stripped to remove residual radioactivity, and rehybridised with 

oligo-labelled E3 fragment (Figure 4.6b). E3 hybridised to the B6 fragment 

of pRMB2, as previously described in Section 4.1.7. For B.pertussis strains 

L84 I, Tohama I and TAB I, E3 hybridised to the larger of the two BamHI 

fragments of genomic DNA which showed homology to the BamHI to EcoRI' ends 

of pRMB2. For BP347, E3 hybridised to the 9kb fragment. Since the E3 

fragment hybridised to the site of Tn5 insertion in BP347 (Section 4.1.4), 

these data implied that the larger of the two BamHI genomic fragments 

contained all, or part of, the vir locus.
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4.1.9. Construction of clone pDMl.

Since the E3 fragment alone was unable to complement the Vir- mutation 

of BP347 (Section 4.1.5), the B6 fragment of pRMB2 (shown by hybridisation 

studies to include E3, Sections 4.1.7 and 4.1.8) was isolated and ligated 

to give a construct which could subsequently be transferred to BP347.

Plasmid pRMB2 was digested with BamHI and subjected to electrophoresis

through low melting-point agarose. A band containing the B6 fragment was

excised. This fragment, consisting of pLAFRI and the BamHI to EcoRI

terminal portions of the genomic insert of pRMB2, was purified from the gel

slice. Fragment B6 lOOng was ligated at room temp overnight, and

transformed into competent E.coli JM83. Ing of ^UC19 was also transformed.

Transformants were selected on nutrient agar supplemented with the
5

appropriate antibiotic. The transformation efficiency was 5.7 x 10 

transformants per pg of pUC19 DNA. Sixteen colonies were obtained from 

transformation by ligated B6 DNA, six of which were used for preparation of 

plasmid DNA. Electrophoresis of BamHI-digested plasmid DNA showed that all 

six clones contained B6. This construct was designated pDMl.

Figure 4.7 shows electrophoresis of BcoBJ-digested pRMB2, pDMl, pDM3 

and pLAFRI, together with BamBi-digested pRMB2 and pDMl. Digestion of pRMB2 

with EcoRI produced fragments El to E6 plus pLAFRI vector. BamBT-digestion 

of pRMB2 produced six fragments (B1 to B6). BcoBJ-digestion of pDMl showed 

that it consisted of pLAFRI vector and 4 fragments, i.e. El, E2, E3 plus a 

fragment made by ligation of the two EcoRI to BamHI fragments of pRMB2. 

BamBX-digestion of pDMl produced the B6 fragment. BcoBl-digestion of pDM3 

produced pLAFRI plus the E3 fragment, and BcoBI-digestion of pLAFRI gave a 

single band.
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Figure 4.7.

Restriction enzyme profiles of clones pRMB2, pDMl and pDM3.

Ethidium bromide stained gel showing samples of . digested plasmid DNA. 

Samples of BcoBZ-digested pRMB2 and pDMl contain a band of l.lkb, which is 

barely visible in this photograph. Numbers on the right refer to the 

fragment sizes (kb) of BindJJJ-cleaved A DNA.

Lane 1: Bcoi?J-digested pRMB2

Lane 2: BamBJ-digested pRMB2

Lane 3: BcoBJ-digested pDMl

Lane 4: BamBJ-digested pDMl

Lane 5: BcoBI-digested pDM3

Lane 6: BcoBI-digested pLAFRI

Lane 7: HindIII-digesteà A DNA
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4.1.10. Complementation of BP347 by pDMl.

The ability of pDMl to complement the Vir- mutation of BP347 and

restore a virulent phenotype to the strain was investigated. Clone pDMl was 

transferred by conjugation from E.coli JM83 to BP347, using a tri-parental 

mating system. E.coli DHl {pRMB2) and E.coli HBlOl (pLAFRI) were included 

as positive and negative controls respectively. Conjugation mixes were

incubated at 35*C for 8h. Cells were then transferred to selective BG agar.

Donor, helper and recipient strains used as controls were unable to grow on 

selective BG agar. Following incubation at 35®C for 3 to 4 days, all plates 

supported semi-confluent growth of transconjugants. BP347 (pRMB2)

transconjugants were haemolytic and BP347 (pLAFRI) transconjugants were

non-haemolytic- All BP347 (pDMl) transconjugants were positive for

haemolytic activity.

To determine if pDMl restored the virulent phenotype to BP347, BP347

(pDMl) was also assayed for expression of AC, FHA, PT, HLT and X-OMPs. 

Included in the assays were B.pertussis strains Tohama I, TAB I and BP347 

(pRMB2) as positive controls, and strain BP347 as a negative control. All 

strains were grown on BG agar (Tc was included in the medium for growth of 

strains harbouring plasmids), and haemolytic activity was assessed prior to 

growth being harvested into PBS for assay of other virulence-associated 

factors. Results are summarized in Table 4.5.

Production of AC was assayed by the development of a blue colour from 

X-gal in the wells of a microtitre tray. This assay relies on expression of 

(i-galactosidase in E.coli G806 (A cya) which is dependent on cAMP produced

by B.pertussis AC. As a control, a reaction was set up to which no

B.pertussis sample was added. Also included in the assay was a sample of 

B.pertussis L84 I. Results are shown in Figure 4.8. A sample of cAMP was
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Table 4.5.

Complementation of BP347 by pDMl

B. pertussis strain HLY

Phenotype®

AC FHA PT HLT X-OMPs

Tohama I + + + + + +

TAB I + + + + + +

BP347 - - - - - -

BP347 (pRMB2) 4- + + + + +

BP347 (pDMl) + + + + + +

a. HLY = haemolysin. AC = adenylate cyclase. FHA = filamentous

haemagglutinin, PT = pertussis toxin, HLT = heat-labile toxin, 

X-OMPs = X-inode specific envelope polypeptides.
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Figure 4.8.

Assay for production of AC by B.pertussis BP347 (pDMl).

Production of AC was assayed by the development of a blue colour from X-gal 

in the wells of a microtitre tray, as described in Section 3.3.11. Samples 

were set up in triplicate (rows 1, 2 and 3). Numbers on the left refer to

row numbers. Row 4 contains a sample of cAMP, diluted 10-fold from lOmM to 

InM as indicated by the arrow.

A: control with no B.pertussis sample added

B: B.pertussis L84 I

C: B.pertussis Tohama I

D: B.pertussis TAB I

E: B.pertussis BP347

F: B,pertussis BP347 (pDMl)

G; B.pertusis BP347 (pRMB2)
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diluted 10-fold from lOmM to InM. A blue colour was detected at

concentrations of lOpM and above. Samples of B,pertussis strains L84 I,

Tohama I, TAB I, 347 (pRMB2) and 347 (pDMl) were positive for AC 

production, whereas strain BP347 was negative. There was no development of

blue colour in the reaction which did not contain a B.pertussis sample.

FHA production was measured by haemagglutination of washed horse 

erythrocytes (Figure 4.9). Haemagglutination was found in B.pertussis 

strains Tohama I, TAB I, 347 (pRMB2) and BP347 (pDMl), but not in strain 

BP347.

Production of HLT and PT was determined in mice. Apart from strain

BP347, all B.pertussis samples were positive for both HLT and PT

activities.

The B.pertussis whole-cell samples were examined using SDS-PAGE to

assay for the 28kD and 30kD X-OMPs (Figure 4.10). Only strain BP347 lacked 

the X-mode specific envelope polypeptide bands.

The restoration of expression of virulence-associated factors to BP347 

by clone pDMl implied that a functional vir locus was contained within 

pDMl.

4,1.11. Stability of BP347 transconjugants in the absence of tetracycline 

selection.

The work described in this section was performed to investigate whether 

expression of virulence-associated properties in BP347 transconjugants had 

been restored as a result of the plasmid encoded vir locus acting in-trans, 

or as a result of recombination events which had occurred between plasmid 

and chromosomal DNA.
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Figure 4.9.

Assay for production of FHA by B.pertussis BP347 (pDMl).

Production of FHA was assayed as described in Section 3.3.5. B.pertussis 

samples were serially diluted 2-fold from 50pg to 0.2pg protein per well 

(columns 2 to 10). As a control, column 11 contains PBS + erythrocytes.

Row B: B.pertussis Tohama I 

Row C: B.pertussis TAB I 

Row D: B.pertussis BP347 

Row E: B,pertussis BP347 (pDMl)

Row F: B.pertussis BP347 (pRMB2)
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Figure 4.10.

SDS-PAGE analysis of B.pertussis BP347 (pDMl).

Whole-cell samples were treated and subjected to electrophoresis as 

described in Sections 3.3.1 and 3.3.2. Protein bands were visualised by 

Coomassie Blue staining. Numbers on the left refer to the sizes (kD) of 

molecular weight markers. Arrows mark the positions of the 28kD and 30kD X- 

OMPs.

Lanes 1 & 7: Molecular weight markers (SDS-6, Sigma)

Lane 2: B.pertussis Tohama I 

Lane 3: B,pertussis TAB I 

Lane 4: B,pertussis BP347 

Lane 5: B.pertussis BP347 (pDMl)

Lane 6: B.pertussis BP347 (pRMB2)
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Fresh cultures of B.pertussis strains Tohama I, TAB I, BP347, BP347

(pRMB2), BP347 (pDMl) and BP347 (pDM3), H+ and H- (see Section 4.1.5) were

set up on BG agar (containing Tc for strains harbouring plasmids). From 

each culture, a single colony was inoculated into sterile saline. These 

single colony suspensions were used for two purposes.

i) To determine antibiotic sensitivity of each original colony, for

strains Tohama I, TAB I and BP347 an aliquot was spread on BG agar + Tc and

on BG agar + Km. For plasmid-carrying strains (known to be Tc resistant) an

aliquot was spread on BG agar + Tc + Km. Results are shown in Table 4.6.

B.pertussis strains Tohama I (the parent strain of BP347) and TAB I (the

strain used to construct the genomic library from which clone pRMB2 was

isolated) were sensitive to both Tc and Km. Strain BP347 was resistant to 
r

Km (Km ), as were BP347 transconjugant strains (transposon Tn5 encodes 
r s

Km ). Strain BP347 was sensitive to Tc (Tc ) but BP347 transconjugant 
r r

strains were Tc (plasmid pLAFRl confers Tc ).

ii) An aliquot from each of the single colony suspensions for B.pertussis 

strains BP347 (pRMB2), BP347 (pDMl), BP347 (pDM3) H+ and BP347 (pDM3) H-

was grown to single colonies on BG agar to determine plasmid stability in 

the absence of tetracycline selection. As controls, an aliquot from each 

single colony suspension was grown to single colonies on either BG agar 

(strains Tohama I, TAB I and BP347) or BG agar + Tc (plasmid-carrying 

strains). After incubation at 35°C for 3 - 4  days, haemolytic activity was 

assessed for each culture, and the estimated percentage of haemolytic / 

non-haemolytic colonies is shown in Table 4.6. Antibiotic sensitivities 

were then determined for representative colonies of each type from each 

culture plate (see Table 4.6).

Subculture of strains Tohama I, TAB I and BP347 on BG agar had no effect
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on haemolytic activity or antibiotic sensitivity. Similarly, when

subcultured on BG agar + Tc, haemolytic activity and antibiotic sensitivity 

of plasmid-carrying strains remained the same as for the original colony in 

each case.

When strains BP347 (pRMB2) and BP347 (pDMl) were subcultured on BG

agar, approximately 50% of colonies were positive and 50% were negative for
r

haemolytic activity. Both types were Km , indicating that they still
r

contained Tn5. Haemolytic colonies were Tc , presumably because these

colonies still retained plasmid DNA. However, non-haemolytic colonies were 
s r

Tc , implying that loss of haemolytic activity accompanied loss of Tc
*

(i.e. plasmid loss).

Strain BP347 (pDM3) H+ remained haemolytic when subcultured on BG agar.
s s

However, colonies were found to be both Tc and Km , implying that in the
r r

absence of Tc selection, plasmid (Tc ) and transposon Tn5 (Km ) had been

lost from this strain. These data implied that recombination had occurred

between the plasmid-encoded vir region of pDM3 and the Tn5-containing vir
r

locus of BP347. Strain BP347 (pDM3) H- lost Tc (presumably as a result of
r

loss of pDM3 plasmid) but remained Km when subcultured on BG agar.

These results showed that since loss of haemolytic activity was

associated with loss of plasmid, the vir locus of clones pRMB2 and pDMl was

acting in-trans to restore a virulent phenotype to BP347. Plasmid pDM3

acting in-trans did not contain sufficient DNA sequence to restore the

virulent phenotype to BP347 [BP347 (pDM3) H-]. However, where recombination 

events had occurred between plasmid and chromosomal DNA [BP347 (pDM3) H+], 

the virulent phenotype was restored.
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Section 4.2. RESTRICTION ENZYME MAPPING OF CLONES pDMl AND pRMB2.

4.2.1. Identification of EcoRI fragments of pRMB2 showing homology to pDMl.

Digestion of pDMl with EcoRI showed that the genomic insert consisted 

of fragments El, E2, E3 and a non-contiguous fragment formed by ligation of 

the two EcoRI to BamHI fragments of pRMB2 (Section 4.1.9). Hybridisation 

analysis was used to determine from which two EcoRI fragments of pRMB2, the 

non-contiguous fragment of pDMl was derived.

JFco/?I-digested samples of pRMB2 and pDMl (and also pDM3 and pLAFRI) 

were Southern blotted and hybridised with a pDMl probe (Figure 4.11). The 

probe hybridised to all of the fragments in the pDMl, pDM3 and pLAFRI 

samples. The El, E2, E3 and pLAFRI fragments of the probe hybridised to the 

homologous fragments of pRMB2, and the non-contiguous fragment of the probe 

hybridised to the E4 and E6 fragments of pRMB2. Therefore the two EcoRI to 

BamHI fragments which make up the non-contiguous fragment of pDMl, are 

contained within the E4 and E6 fragments of pRMB2. The non-contiguous EcoRI 

fragment of pDMl was designated E4::6.

4.2.2. Restriction enzyme analysis of pDMl and pRMB2 using single and 

double digests.

In order to define more clearly the regions of clones pDMl and pRMB2 

involved in regulation of expression of virulence-associated factors in 

B,pertussis, a restriction enzyme map was constructed for both clones.

From data accumulated in Section 4.1, restriction enzymes EcoRI and 

BamHI appeared to be a logical choice for use in mapping. EcoRI was chosen 

because the genomic insert of pRMB2 was cloned in the EcoRI site of pLAFRI, 

and also the E3 fragment was known to be part of the vir locus. BamHI was
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Figure 4.11.

Southern blot analysis of fkoAT-digested plasmid DNA probed with pDMl.

The blot was hybridised with radiolabelled pDMl plasmid. Numbers on the 

right refer to the fragment sizes (kb) of Ifindlll-digested DNA.

Lane 1; pRMB2

Lane 2: pDMl

Lane 3: pDM3

Lane 4: pLAFRI 
32

Lane 5: P-labelled HindIII-àigesteâ. 7̂ DNA
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chosen because this was the enzyme used in construction of pDMl. Since pDMl 

contains only one BamHI site, the use of a third enzyme was necessary to 

obtain a restriction map. Since pLAFRI contains two Bglll restriction 

sites, Bglll was the third enzyme chosen for mapping because it would 

enable orientation of fragments (with respect to pLAFRI vector) to be 

determined.

A series of single and double restriction digests using EcoRI, BamHI 

and Bglll was set up for pRMB2 and pDMl plasmids. Samples were subjected to 

electrophoresis together with several samples of Hindlll-digested and Pstl- 

digested > DNA (Figure 4.12).

Visual inspection of the gel gave an indication of which restriction 

enzyme site(s) were contained within each fragment. For example, digestion 

of pDMl with EcoRI gave genomic fragments El, E2, E3 and E4::6, but when 

pDMl was digested with both EcoRI and BamHI, the E4::6 fragment was no 

longer present. This confirmed that E4::6 contained a BamHI site. 

Similarly, E^o^J-digestion of pRMB2 gave genomic fragments El to E6. On 

first inspection, in the sample of pRMB2 digested with both EcoRI and 

BamHI, only the E5 and E6 fragments appeared to be missing. This implied 

that E5 and E6 both contained one or more BamHI restriction sites. However, 

E4 must contain at least one BamHI restriction site, since a BamHI to EcoRI 

fragment from E4 is contained within E4::6 (Section 4.--1). Closer 

inspection of the gel revealed that the band originally thought to be E4 

was in fact slightly larger, and must therefore have arisen as a result of 

digestion of either E5 or E6 with BamHI. Information about the restriction 

enzyme site(s) contained within each fragment, deduced from single and

double digests data, was therefore corroborated by one of two means, i)

single and double restriction digests were hybridised using individual
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Figure 4.12.

Electrophoresis of a series of single and double restriction enzyme digests 

of clones pRMB2 and pDMl.

Ethidium bromide stained gel showing a series of single and double digests 

of clones pRMB2 and pDMl, using the restriction enzymes BamHI, EcoRI and. 

Bglll. Clone pRMB2 digests are shown in {Fr) and pDMl digests are shown in 

(B). Numbers on the left refer to the fragment sizes (kb) of Hindlll- 

digested DNA. Samples of PstJ-digested DNA were also included as 

molecular weight standards. Some of the smaller fragments are barely 

visible in this photograph, however all fragment sizes are listed in Table 

4.7.

H: NindJII-digested /\ DNA 

P: PstJ-digested /\ DNA 

1: BamHI digest 

2: EcoRI digest 

3 : Bglll digest 

4: BamHI + EcoRI digest 

6: Bglll + EcoRI digest 

6: BamHI + Bglll digest
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fragments as probes, or ii) individual fragments were isolated and

restricted. To obtain a complete picture of the restriction enzyme sites 

contained within each fragment, the reader is advised to refer to Figure 

4,12 whilst analysing data presented below.

To construct restriction maps of pRMB2 and pDMl, it was necessary to 

determine molecular sizes of the fragments produced by the single and

double digest reactions. Band migration distances were measured from the

photograph shown in Figure 4.12 by automated densitometry. Using the 11.5kb

to 0.514kb fragments of PsfJ-digested 7̂ DNA as standards, molecular sizes 

of pRMB2 and pDMl restriction fragments were estimated (see Table 4.7), by 

a modification of the method of Plikaytis et al. (1986), as described in 

Section 3.2.7.

This enabled the size of the genomic insert to be determined for each 

clone, by addition of the sizes of individual EcoRI fragments. The El to E6 

fragments of pRMB2 were estimated to be l.lkb, 2.5kb, 2.7kb, 4.7kb, 5.1kb

and lO.Okb respectively, giving a total insert size of 26,lkb. The E4::6 

fragment of pDMl was estimated as 5.6kb, making a total insert size of 

11.9kb for clone pDMl. The sizes of restriction fragments shown in Table 

4.7 are used in the analysis of data presented below.

4.2.3. Construction of a restriction enzyme map of pDMl using hybridisation 

analysis.

To confirm information deduced from single and double digests data the 

series of digests of pDMl was probed with El, E2, E3 and E4::6, to 

determine which restriction fragments the individual EcoRI fragments 

hybridised to.

Single and double restriction digests using EcoRI, BamHI and Bglll were
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Table 4.7.

Estimation of the molecular sizes of fragments produced by a 
series of single and double restriction enzyme digests of 

clones pRMB2 and pDMl

Estimated molecular sizes (kb) of restriction fragments1

BamHI Bglll BamHI
+ + +

Clone BamHI EcoRI Bfflll EcoRI EcoRI Bglll

 ̂ (B6) * * * * *
4.8{B5) 10.0(E6) * (Bg5) 4.8 6.3 5.1
2.9(B4) 5.KE5) 8.6(Bg4) 2.8 D 5.1 3.7
2.7(B3) 4.7(E4) 1.7 D 2.7 D 3.7 2.9

pRMB2 2.4 (B2) 2.7(E3) 1.6 2.5 3.6 2.7
1.4(B1) 2.5(E2) 2.4 2.7 2.4

1.1(El) 1.9 2.3 1.7 T
1.4 1,7 1,6
1.1 1,2 1.4
1.0 1,1 1.1

0,55 D

* rk * * * *
5.6(E4::6) 6.8 2.8 D 4.5 5.1
2.7(E3) 1.7 D 2.7 2.7 1.7 T

pDMl 2.5(E2) 1.6 2.5 2.3 1.6
1.1 1.1 1.7

1.2
1.1
0.55 D

1. The molecular sizes of restriction fragments were estimated from the
photograph shown in Figure 4.12 by a modification of the jmethod of
Plikaytis et al. (1986), as described in Section 3.2-7.

* indicates a fragment of greater than lOkb

D indicates a doublet band

T indicates a triplet band

( ) indicate designations given to certain fragments
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set up for pDMl. Each sample was divided in two and loaded in the wells of 

two separate gels. After electrophoresis, gels were Southern blotted. One 

filter was hybridised with oligo-labelled El fragment, stripped to remove 

residual radioactivity, then rehybridised with oligo-labelled E4::6 

fragment (Figure 4.13). The second filter was hybridised, first with oligo- 

labelled E2 fragment, then with oligo-labelled E3 fragment (Figure 4.14).

The El probe hybridised to a doublet band of 0.55kb in pDMl digested 

with both Bglll and EcoRI. In BgJJJ-digested pDMl, El hybridised to a 1.7kb 

band. Since El contains a Bglll site, El must have hybridised to a doublet 

band of 1.7kb. In pDMl digested with both BamHI and Bglll, El hybridised to 

the same 1.7kb doublet band, indicating that this region does not contain a 

BamHI restriction site. The information deduced from these data is shown in 

Figure 4.15a.

The E4::6 probe hybridised to bands of 2.8kb and 5.6kb in pDMl 

digested with both BamHI and EcoRI. However, inspection of the original gel 

photograph showed that the E4::6 fragment had not been digested to 

completion by BamHI. The E4::6 probe hybridised to bands of 4.5kb and l.lkb 

in pDMl digested with both Bglll and EcoRI. In pDMl digested with both 

BamHI and Bglll, the E4::6 probe hybridised to bands of S.lkb and 1.7kb, 

the latter being a doublet band. These data were collated as shown in

Figure 4.15b.

The E2 probe hybridised to a band of 2.3kb in pDMl digested with both 

Bglll and EcoRI (hybridisation to the remaining 0.2kb of E2 was not 

detected). In BgiJJ-digested pDMl, the E2 probe hybridised to a 6.8kb 

fragment. In pDMl digested with both BamHI and Bglll, the E2 probe

hybridised to a band of 5.1kb. These data were assimilated as shown in

Figure 4.15c.
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Figure 4.13.

Southern blot analysis of a series of single and double restriction digests 

of pDMl probed with El and E4::6-

The nitrocellulose filter was hybridised with oligo-labelled El fragment 

(A), stripped to remove residual radioactivity, then rehybridised with 

oligo-labelled E4::6 fragment (B). Numbers on the left refer to the sizes

(kb) of the 14.1kb to 1.7kb

Lane 1: BamHI digest

Lane 2: EcoRI digest

Lane 3: Bglll digest

Lane 4: BamHI + EcoRI digest

Lane 5; Bglll + EcoRI digest

Lane 6: Bglll + BamHI digest
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Figure 4.14.

Southern blot analysis of a series of single and double restriction digest: 

of pDMl probed with E2 and E3.

Probes were prepared by oligo-labelling fragments which had been purified 

from a gel by centrifugation through a SPIN-X filter unit, and there was 

minor contamination of the E2 probe with E3 fragment, and vice versa. The 

nitrocellulose filter was hybridised with the E2 probe (A), stripped to 

remove residual radioactivity, then rehybridised with the E3 probe (B). 

Numbers on the left refer to the sizes of the 14.1kb to 1.7kb fragments of 

Pstl-digested 'X DNA.

Lane 1: BamHI digest

Lane 2: EcoRI digest

Lane 3: Bglll digest

Lane 4: BamHI + EcoRI digest

Lane 5: Bglll + EcoRI digest

Lane 6: BamHI + Bglll digest
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The E3 probe hybridised to a large fragment consisting of vector plus 

genomic DNA in samples of pDMl digested with Bglll and pDMl digested with 

both BamHI and Bglll. This positions E3 at the end of pLAFRl opposite to 

that containing the Bglll cos fragment, as shown in Figure 4.15d.

Compilation of all data enabled a complete restriction enzyme map of 

pDMl to be constructed (Figure 4-15e), with regard to EcoRI, BamHI and 

Bglll sites. The fragment sizes used in construction of the map were those 

given in Table 4.7. The restriction map shows that the genomic insert of 

pDMl consists of two non-contiguous fragments of 3.9kb and 8kb, the 2.7kb 

EcoRI fragment (which harboured the Tn5 insertion in BP347) being contained 

within the latter. Since pDMl was able to trans-complement BP347, it was 

deduced that the region essential for regulation of expression of virulence 

factors in B.pertussis is contained within the 8kb portion of pDMl.

4-2.4. Construction of a restriction enzyme map of pRMB2 using data 

obtained from restriction analysis of individual fragments.

The restriction map of pDMl was used as a basis for construction of a 

pRMB2 map. Samples of pRMB2 digested with EcoRI, BamHI and Bglll were 

subjected to electrophoresis through low melting-point agarose. Fragments 

E4 to E6, B1 to B5, and the 8.6kb and 12.4kb Bglll fragments (Bg4 and Bg5 

respectively), were purified from the gel and digested with the restriction 

enzymes EcoRI, BamHI and Bglll, Samples were subjected to electrophoresis, 

and the sizes of the restriction fragments were estimated as before (Table 

4.8) .

Since the E4 fragment contained a l.lkb Bglll to EcoRI restriction 

fragment, it was positioned next to El (see Figure 4.15e), enabling the 

EcoRI fragments of pRMB2 to be positioned in the following order, El, E4,
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Table 4.8.

Estimation of the molecular sizes of fragments produced by 

digestion of individual fragments of pRMB2

Estimated moelcular sizes (kb) of restriction fragments

pRMB2
fragment

EcoRI BamHI Bglll

E4 n.t. 1.9, 2.8 1.1, 3.6

E5 n.t. 1.0, 1.4, 2.7 5.1

E6 n.t. 2.4, 2.8, 4.8 3.7, 6.3

B1 1.4 n.t. 1.4

B2 2.4 n.t. 2.4

B3 2.7 n.t. 2.7

B4 1.0, 1.9 n.t. 2.9

B5 4.8 n. t - 1.1, 3.7

Bg4 2.3, 6.3 1.1, 2.4, 5.1 n.t.

Bg5 3.6, 3.7, 5-1 1.4, 1.7, 2.7 

2.9, 3.7

n.t.

1. Individual fragments of pRMB2 were digested with the restriction 
enzymes EcoRI, BamHI and Bglll. Samples were subjected to
electrophoresis, and the sizes of fragments produced were estimated 
from a photograph of the ethidium bromide stained gel by a 
modification of the method of Plikaytis et al. (1986), as described 
in Section 3.2.7.

n.t. = not tested.
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E6, E6, E2, E3.

A point worthy of note is that fragments E4, E5 and E6 contained one, 

two and two BamHI restriction sites respectively, but Bam/fl-digestion of 

pRMB2 produced six fragments. This implied that a BamHI site and EcoRI site 

were located very close together in pRMB2.

Assimilation of all restriction digest data enabled the construction of 

a restriction enzyme map of pRMB2 (Figure 4.16). Because the 1.4kb and 

2.7kb BamHI fragments (B1 and B3 respectively) did not contain either EcoRI 

or Bglll restriction sites, their orientation could not be determined from 

available data.

4.2.5. Comparison of the restriction map of pRMB2 with a recently published 

map of a region containing the B,pertussis vir and fba loci.

Stibitz et al. (1988a) published a restriction map of a clone (pUW21- 

26) which contained a region of the B.pertussis chromosome encompassing the 

vir and fha loci. Clone pUW21-26 was isolated from a gene library of

B.pertussis BP338 (a derivative of strain Tohama I) constructed by cloning 

genomic DNA which had been partially digested with Sau3A into cosraid vector 

pHC79 (Stibitz et al., 1988a). Comparison of the restriction map of pRMB2

with that of pUW21-26 shows homology for a 15.2kb region (E3, E2 and E6;

Figure 4.16), but the remaining 10.9kb of pRMB2 (E5, E4 and El; Figure

4.16) has a different restriction pattern.

The vir locus described by Stibitz et al. (1988) is contained within a 

large Clal fragment of approximately 22kb. Therefore, pRMB2 DNA was 

analysed to determine if it contained a homologous Clal fragment. 

Restriction analysis showed that pRMB2 plasmid DNA was not digested by 

either Clal or the isoschizomer Bscl.
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Figure 4.16.

Restriction map of pRMB2.

The bar above represents the region deleted after digestion of the cosmid 

with BamHI and religation to form pDMl. Designations El to E6 represent 

EcoRI fragments in order of increasing size. The arrow indicates the site 

of Tn5 insertion in BP347. The region essential for regulation of virulence 

factors in B.pertussis is contained within an 8kb region, as indicated by 

the bar below. Asterisks denote that the order of the 1.4kb and 2.7kb BamHI 

fragments was not determined.

E, EcoRI; B, BamHI; Bg, Bglll.
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Clal-digested genomic DNA from B.pertussis strains L84 I, BP347, Tohama 

I and TAB I was Southern blotted and hybridised using the E3 fragment of 

pRMB2 (which is part of the vir locus) as a probe (Figure 4.17). The E3 

probe hybridised to the fragment of approximately 22kb in all samples, 

except BP347 which contained Tn5 (there are no Clal restriction sites in 

transposon Tn5). There was no apparent difference in this region between 

the B.pertussis strains which were used to construct the genomic libraries 

from which clones pRMB2 and pUW21-26 were isolated i.e. strains TAB I and 

Tohama I respectively.

The gene library from which pRMB2 was isolated was constructed by 

cloning B.pertussis TAB I DNA which had been partially digested with EcoRI 

into cosmid vector pLAFRI (Brownlie et al., 1986). It was therefore 

possible that the genomic insert of pRMB2 was formed by ligation of two 

non-contiguous genomic fragments. To test this theory, BgrJJJ-digested DNA 

from plasmid pRMB2 and from B.pertussis strains L84 I, BP347, Tohama I and 

TAB I was Southern blotted and hybridised with a probe made from the 12,4kb 

Bglll (Bg5) fragment of pRMB2 (Figure 4.18). The Bg5 fragment was chosen 

as a probe because it spans the junction between the E5 and E6 fragments. 

The probe hybridised to the Bg5 fragment in the pRMB2 sample. However in 

genomic DNA samples, the Bg5 probe hybridised to two bands. This data 

supported the theory that the genomic insert of pRMB2 consists of two non­

contiguous fragments, of 15.2kb (E3, E2 and E6) and 10.9kb (E5, E4 and El). 

The 15.2kb fragment shows close homology to the restriction map of the vir 

locus published by Stibitz et al. (1988a).
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Figure 4.17.

Southern blot analysis of CJal-digested B.pertussis DNA probed with E3.

The nitrocellulose filter was hybridised with oligo-labelled E3 fragment 

Numbers on the left refer to fragment sizes (kb) of ^TindlJJ-digested 7i DNA,

32
Lane 1: P-labelled Hindlll-

Lane 2: B.pertussis L84 I

Lane 3: B.pertussis BP347

Lane 4: B.pertussis Tohama I

Lane 5: B.pertussis TAB I
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4.18.

Southern blot analysis of Bflrljj-digested B.pertussis DNA probed with Bg5.

The blot was hybridised using a probe made by oligo-labelling Bg5 fragment 

which had been purified from a gel by centrifugation through a SPIN-X 

filter unit. (There was minor contamination of the probe with pLAFRI vector 

and the Bg4 fragment.) The position of the Bg5 fragment is marked by the 

arrow to the right. The two arrows on the left mark the fragments to which 

Bg5 hybridised in genomic DNA samples. Numbers on the left refer to the 

sizes (kb) of /findJJJ-digested DNA molecular weight standards.

Lane 1: B.pertussis L84 I 

Lane 2: B.pertussis BP347 

Lane 3: B.pertussis Tohama I 

Lane 4: B.pertussis TAB I 

Lane 5: pRMB2
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Section 4.3. MOLECULAR ANALYSIS OF THE VIR REGION IN THE OTHER BORDETELLA 

SPECIES.

4.3.1. Identification of regions homologous to vir in the other Bordetella 

species.

Many of the virulence determinants produced by B.pertussis, such as AC, 

HLY and FHA, are also produced by virulent strains of B.parapertussis and 

B.bronchiseptica. Production of some virulence determinants e.g. HLT, is 

common to all four species of the genus. Since expression of virulence- 

associated factors in B.pertussis is regulated by the vir locus, it was of 

interest to determine if the other species in the genus contained an 

homologous region.

The functional vir locus of B.pertussis contained at least the E3 and 

E2 fragments, therefore EcoRI was chosen for preliminary hybridisation 

analysis. fcoRT-digested DNA from several strains of all species of 

Bordetella was subjected to electrophoresis, together with EcoRI-digested 

pRMB2 DNA. The gel was Southern blotted and hybridised with a pRMB2 probe 

{Figure 4.19).

Strains of B.pertussis, B.parapertussis and B.bronchiseptica showed a 

similar pattern of hybridisation. Apart from BP347 (Vir-) where E3 was

replaced by the larger Tn5-containing fragment, B.pertussis strain 11615,

an avirulent phase variant, seemed to lack E2 and instead exhibited a 

fragment of higher molecular weight which hybridised to the probe. However 

there were no detectable differences between jEcoifl-digested DNA from 

virulent (phase I) and avirulent (phase III and phase IV) strains of

B.pertussis L84 and B.bronchiseptica FV5. Similarly there was no detectable 

difference between EcoRI-digested DNA from B.pertussis strains 7R and 

7R(34), the latter strain being an avirulent derivative of strain 7R,
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Figure 4.19.

Southern blot analysis of TcoifJ-digested Bordetella DNA probed with pRMB2.

The blot was hybridised with oligo-labelled pRMB2 plasmid. El to E6 and 

pLAFRI (molecular sizes of l.lkb, 2.5kb, 2.7kb, 4.7kb, 5.1kb, lO.Okb and

21.6kb respectively) indicate the fragments observed in pRMB2. The arrow 

shows the position of a fragment in B.avium samples which hybridised 

faintly to pRMB2 (more clearly seen in Figure 4.22), but strongly to pDM30.

Lane 1: PRMB2

Lane 2: B.pertussis L84 I

Lane 3: B.pertussis L84 IV

Lane 4: B.pertussis BP347

Lane 5: B.pertussis 11615

Lane 6 : B,pertussis 44122/7R

Lane 7: B.pertussis 44122/7R(34)

Lane 8: B.parapertussis 59521

Lane 9: B.parapertussis 10520

Lane 10: B.bronchiseptica F¥5 I

Lane 11: B.bronchiseptica FW5 III

Lane 12: B.bronchiseptica 27 6 I

Lane 13: B.avium 4091

Lane 14: B.avium 4148
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obtained by repeated subculture. As well as fragments El to E6, all 

B.bronchiseptica samples exhibited an additional band of higher molecular 

weight when probed with pRMB2. A faint additional band was also exhibited 

in several of the B.pertussis and B.parapertussis samples. (The size of the 

additional higher molecular weight band was different for each of the three 

species). DNA from B.avium strains exhibited a markedly different 

hybridisation pattern to the other Bordetella species.

The filter was stripped to remove residual radioactivity, and 

rehybridised using the more specific E3 fragment as a probe (Figure 4.20). 

The E3 fragment hybridised to similar sized fragments in all samples except 

BP347, which contained Tn5, and the two B.avium samples. The band which 

hybridised in the B.avium samples with the E3 probe was present only as a 

faint band when samples were hybridised with pRMB2. In the B.pertussis 

7R(34) sample (which contained an excess of DNA compared to all other 

samples) the E3 probe also hybridised to the E5 fragment. The band 

exhibited in B.bronchiseptica samples appeared to be marginally larger than 

the equivalent band in samples of B.pertussis and B.parapertussis (this was 

also observed when the filter was hybridised with the pRMB2 probe),

The filter was stripped to remove residual radioactivity and 

rehybridised using a pLAFRI plasmid probe (results not shown), The probe 

hybridised to the pLAFRI band of A’coRJ-digested pRMB2 DNA. There was no 

hybridisation of pLAFRI to the genomic DNA samples.

To gain further information on the regions homologous to vir in the 

other Bordetella species, a second enzyme {BamHI) was used for 

hybridisation analysis. Bam#T-digested DNA from pRMB2 and from strains of 

all Bordetella species was subjected to electrophoresis in two separate 

gels, and Southern blotted. One filter was hybridised with a pRMB2 probe
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4.20,

Southern blot analysis of E'coRI-digested Bordetella DNA probed with pDM30.

The blot shown in Figure 4.19 was stripped to remove residual radioactivity 

and rehybridised with a pDM30 probe. For reference, the positions of the El 

to E6 and pLAFRI fragments of pRMB2 are also shown in this Figure (A).

Lane 1: pRMB2

Lane 2; B.pertussis L84 I

Lane 3: B.pertussis L84 IV

Lane 4: B.pertussis BP347

Lane 5: B.pertussis 11615

Lane 6; B.pertussis 44122/7R

Lane 7: B.pertussis 44122/7R(34)

Lane 8: B.parapertussis 59521

Lane 9: B.parapertussis 10520

Lane 10: B.bronchiseptica FW5 I

Lane 11: B.bronchiseptica FV5 III

Lane 12: B.bronchi septica 276 I

Lane 13: B.avium 4091

Lane 14: B.avium 4148
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and the other was hybridised with the more specific E3 probe (Figure 4.21).

Genomic DNA samples from strains of B.pertussis, B.parapertussis and 

B.bronchiseptica hybridised to fragments B1 to B5 of pRMB2. The BamHI to 

EcoRI terminal portions of the genomic insert of pRMB2 (which together with 

pLAFRI comprise B6) each hybridised to a large BamHI fragment of genomic 

DNA in samples from strains of B.pertussis, B.parapertussis and 

B.bronchiseptica. However the fragments exhibited in strains of B.pertussis 

were approximately 12kb and 14kb, but those exhibited in strains of 

B.parapertussis and B.bronchiseptica were approximately 6.5kb and 16kb. 

(The molecular sizes of fragments were estimated from a graph of migration 

distance against log DNA length, plotted for Hindlll-digested ?, DNA 

molecular weight standards). The pRMB2 probe also hybridised to an 

additional band in DNA samples from B.pertussis, B.parapertussis and 

B.bronchiseptica strains. This band differed in molecular size for the 

three species, being approximately 4.2kb, 6.4kb and 7.5kb for strains of

B.pertussis, B.parapertussis and B.bronchiseptica respectively. The pRMB2 

probe hybridised to only one band (of approximately 6.7kb) in the B.avium 

sample.

The E3 probe (which is part of the vir locus) hybridised to the 14kb 

band in B.pertussis DNA samples, and to the 16kb band in B.parapertussis 

and B.bronchiseptica samples. No hybridisation to the E3 probe was detected 

in the B.avium sample.

4.3.2. Further analysis of the region homologous to vir in B.avium strains.

Since the region showing homology to vir in DNA from B.avium strains 

4091 and 4148 was markedly different to that of the other Bordetella 

species, hybridisation analysis was extended to cover a larger number of
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Figure 4.21.

Southern blot analysis of BamNT-digested Bordetella DNA probed with pRMB2 

and pDM30.

The nitrocellulose filters were probed with pRMB2 (A) and pDM30 (B). 

Numbers between (A) and (B) refer to fragment sizes (kb) of Hindlll- 

digested DNA. B1 to B6 denote the fragments observed in BamAT-digested 

pRMB2 DNA.

Lane 1: B.pertussis L84 I

Lane 2: B.pertussis Tohama I

Lane 3: B.pertussis TAB I

Lane 4: B.parapertussis 59521

Lane 5: B.parapertussis 10520

Lane 6: B.bronchiseptica FW5 I

Lane 7: B.bronchiseptica FV5 III

Lane 8: B.bronchiseptica 276 I

Lane 9: B.avium 4091
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B.avium strains. DNA from several B.avium strains, and from two B.pertussis 

strains (for comparison) was digested with EcoRI. Samples were subjected to 

electrophoresis together with #co#T-digested pRMB2 DNA. The gel was 

Southern blotted onto Hybond N nylon membrane (Amersham) and hybridised 

with a pRMB2 probe (Figure 4.22A).

The pattern of hybridisation exhibited by B.avium strains was markedly 

different from that of the B.pertussis strains. Hybridisation of pRMB2 to 

B.pertussis strains has been reported previously (e.g. Section 4.3.1). 

Bands, of approximately 5.3kb and 17kb, and a faint band of 4.9kb were 

present in DNA samples from B.avium strains G0BL118, GOBL124, GOBL136, 

G0BL141, GOBL142A, 4091 and 4148. Two bands of approximately 5.2kb and 17kb 

were present in DNA samples from B.avium strains GOBLllO and GOBL122. 

Additional bands were also present in some of the B.avium samples.

The filter was stripped to remove residual radioactivity and 

rehybridised with a pLAFRI plasmid probe (Figure 4.22B). The pLAFRI probe 

hybridised to the pLAFRI fragment in fcoRT-digested pRNB2 DNA, and to the 

additional bands which were present in B.avium samples when probed with 

pRMB2.

Residual radioactivity was removed, and the filter was rehybridised 

with the more specific E3 fragment of pRMB2 as a probe (Figure 4.23). In 

B.pertussis samples, E3 hybridised to a 2.7kb fragment (strain L84 I) and 

to the Tn5-containing 8.4kb fragment (strain BP347). In samples from 

B.avium strains G0BL118, GOBL124, GOBL136, G0BL141, GOBL142A, 4091 and 

4148, the E3 probe hybridised to the 4.9kb band (this band was present only 

faintly when samples were hybridised with the pRMB2 probe). However in 

B.avium strains GOBLllO and GOBL122, the E3 probe hybridised to the 5.2kb 

fragment.
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Figure 4.22.

Southern blot analysis of ^coJ?J-digested B.avium DNA probed with pRMB2 and 

pLAFRI.

Southern blot hybridisation analysis was performed as described in Section

3.2.9, using Hybond-N nylon membrane (Amersham). The filter was hybridised

with a pRMB2 probe (A), stripped to remove residual radioactivity, and

rehybridised with a pLAFRI probe (B). The numbers between (A) and (B) refer

to fragment sizes (kb) of Hindlll-digested DNA. The bars to the left of

(A) mark the positions of the El to E6 and pLAFRI fragments of pRMB2.
32

Lane 1: P-labelled Hind

Lane 2: pRMB2

Lane 3: B.pertussis L84 I

Lane 4: B.pertussis BP347

Lane 5: B.avium G0BL118

Lane 6 : B.avium GOBL124

Lane 7; B.avium GOBL136

Lane 8: B.avium G0BL141

Lane 9: B.avium GOBL142A

Lane 10: B.avium GOBLllO

Lane 11: B.avium GOBL122

Lane 12: B.avium 4091

Lane 13: B.avium 4148
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Figure 4.23.

Southern blot analysis of Sco/?I~digested B.avium DNA probed with E3.

The blot shown in Figure 4.22 was stripped to remove residual 

radioactivity, and rehybridised with oligo-labelled E3 fragment. The probe 

may have been slightly contaminated with other pRMB2 fragments, which 

possibly accounts for faint hybridisation to the E4 fragment in B.pertussis 

samples, and the 17kb fragment in B.avium samples. Numbers on the left 

refer to fragment sizes (kb) of /findllJ-digested "A DNA.

32
Lane 1: P-labelled Hind

Lane 2: pRMB2

Lane 3: B.pertussis L84 I

Lane 4: B.pertussis BP347

Lane 5: B.avium G0BL118

Lane 6: B.avium GOBL124

Lane 7: B.avium GOBL136

Lane 8: B.avium G0BL141

Lane 9: B.avium GOBL142A

Lane 10 B.avium GOBLllO

Lane 11 B.avium GOBL122

Lane 12 B.avium 4091

Lane 13 B.avium 4148
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Hybridisation analysis showed that although structurally well conserved 

within the species, the region in B.avium samples which showed homology to 

the pRMB2 and E3 probes was markedly different from the other species of 

Bordetella.

Section 4.4. COMPLEMENTATION OF PHASE VARIANT BORDETELLA STRAINS BY pDMl.

4.4.1. Complementation of B.pertussis L84 IV by pDMl.

Expression of virulence determinants in B.pertussis is affected by a 

process called phase variation, a genotypic change in which avirulent

variants arise in the population upon repeated subculture in vitro.

Brownlie et al. (1988) showed that clone pRMB2 restored expression of 

virulence factors to B.pertussis L84 IV, and it was of interest to 

determine if the vir locus contained within pDMl could also trans­

complement the strain.

Clone pDMl was transferred by conjugation from E.coli JM83 to

B.pertussis L84 IV. Donor strain E.coli HBlOl (pLAFRI) was included as a

negative control. Conjugation mixes were incubated at 35°C for 8h. Cells 

were then transferred to selective BG agar. As controls, donor, helper and 

recipient strains were spread on selective BG agar. After incubation at 

35°C for 3 - 4  days, the B.pertussis L84 IV (pLAFRI) plate supported growth 

of several hundred non-haemolytic colonies. The B.pertussis L84 IV (pDMl) 

plate supported growth of 60 colonies, only 10% of which were haemolytic. 

The morphology of cells was checked by Gram staining and found to be like 

that of B.pertussis. Recipient strain L84 IV used as a control was able to 

grow on selective* BG agar, therefore the non-haemolytic colonies on the
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B.pertussis L84 IV (pDMl) plate (which were also negative for AC and FHA

activities) probably did not contain plasmid. The haemolytic colonies were 

presumed to contain pDMl plasmid.

To determine if expression of other virulence-associated factors had 

been restored, B.pertussis L84 IV (pDMl) was assayed for AC and FHA 

activities. B.pertussis L84 I was included as a positive control, and

B.pertussis strains L84 IV and L84 IV (pLAFRl) were included as negative

controls. Results are shown in Table 4.9. Clone pDMl (like pRMB2) restored 

expression of virulence determinants to B.pertussis L84 IV.

4.4.2. Complementation of phase III B.bronchiseptica strains by pDMl.

Hybridisation studies (Section 4.3.1) showed that B.bronchiseptica 

contained a region of DNA homologous to the vir locus of B.pertussis 

(however this region had a slightly different for the two

species). Presumably the vir locus of B.bronchiseptica controls expression 

of virulent phase genes, in a manner similar to that of B.pertussis. Clone 

pDMl was transferred to several phase III B.bronchiseptica strains to 

determine if the vir locus of B.pertussis could trans-complement the phase 

III B.bronchiseptica strains.

Using a tri-parental mating system which included the use of a helper 

plasmid (pRK2013), clone pDMl was transferred by conjugation from E.coli 

JM83 to B.bronchiseptica strains ASl III, FW5 III and 276 III. Donor 

culture E.coli HBlOl (pLAFRl) was also included as a negative control. 

Conjugation mixes were incubated at 35°C for 8h. Cells were then

transferred to selective BG agar. Donor, helper and recipient strains used 

as controls were unable to grow on selective BG agar. After incubation at 

35°C for 2 days, plates supported growth of several hundred colonies.
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Table 4.9.

Complementation of B, pertussis L84 IV by pDMl

Phenotype®

B. pertussis strain HLY AC FHA

L84 I

L84 IV

L84 IV (pLAFRI)

L84 IV (pDMl)

a. HLY = haemolysin, AC = adenylate cyclase, FHA = filamentous 

haemagglutinin.
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Transconjugant strains ASl III (pLAFRI), FV5 III (pLAFRI) and 276 III 

(pLAFRI) possessed a colonial morphology characteristic of phase III

B.bronchiseptica i.e. non-haemolytic, large, flat colonies. However, 

transconjugant strains ASl III (pDMl), FW5 III (pDMl) and 276 III (pDMl) 

possessed a small, domed colonial morphology characteristic of phase I 

B.bronchiseptica. The percentage of transconjugant colonies showing 

haemolysis varied for each of the three B.bronchiseptica strains, being 

100% for ASl III (pDMl), approximately 50% for FW5 III (pDMl) and

approximately 10% for 276 III (pDMl). When the conjugation experiment was 

repeated, transconjugant B.bronchiseptica strains ASl III (pDMl), FW5 III 

(pDMl) and 276 III (pDMl) again possessed a small, domed colonial 

morphology, but the percentage of haemolytic colonies ranged from 

approximately 5% to 20% for the three strains. When single haemolytic 

colonies of B.bronchiseptica ASl III {pDMl}, FW5 III (pDMl) and 276 III 

(pDMl) were subcultured to single colonies on BG agar + Tc, haemolytic 

activity could only be detected in approximately 75% of the colonies 

produced for each strain.

Single colonies from B.bronchiseptica ASl III (pLAFRI), FW5 III 

(pLAFRI), 276 III (pLAFRI) and ASl III (pDMl) transconjugant plates, two 

haemol^^ic colonies from the FW5 III (pDMl) transconjugant plate, and two 

haemolytic plus two non-haemolytic colonies from the 276 III (pDMl) 

transconjugant plate were grown for the purpose of assay for adenylate 

cyclase. Included in the assay were B.bronchiseptica strains ASl I, FW5 I 

and 276 I as positive controls, and strains ASl III, FW5 III and 276 III as 

negative controls. B.pertussis strains L84 I and BP347 were included as

additional positive and negative controls respectively. Production of AC

was assayed by the development of a blue colour from X-gal in the wells of
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a microtitre tray. Samples were set up in duplicate, and results are shown 

in Figure 4.24. B.bronchiseptica phase I strains were positive, and phase 

III strains were negative for AC activity. B.bronchiseptica transconjugant 

strains ASl III (pLAFRI), FW5 XII (pLAFRI) and 276 III (pLAFRI) were 

negative for AC activity. All B.bronchiseptica phase III transconjugant 

samples containing pDMl were positive for AC activity. Surprisingly, 

samples which were grown from the two non-haemolytic B.bronchiseptica 276 

III (pDMl) transconjugant colonies proved positive for AC activity.

Single haemolytic pDMl transconjugant colonies, and single non- 

haemolytic pLAFRI transconjugant colonies of B.bronchiseptica strains ASl 

III, FV5 III and 276 III were grown for the purpose of FHA assay. Included 

in the assays were B.bronchiseptica strains ASl III, FW5 III and 276 III as 

negative controls, and B.pertussis strains L84 I and BP347 as positive and 

negative controls respectively. Results for B.bronchiseptica ASl are shown 

in Figure 4.25. No haemagglutination was observed in B.bronchiseptica ASl 

III and ASl III (pLAFRI) samples. Haemagglutination was detected in 

B.bronchiseptica ASl (pDMl) samples. It would have been of interest to 

compare the haemagglutination titre of B.bronchiseptica strain ASl III 

(pDMl) with that of strain ASl I, regrettably the latter was not included 

in the assay. FHA assays for B.bronchiseptica FW5 and B.bronchiseptica 276 

gave similar results to B.bronchiseptica ASl.

These results implied that the B.pertussis vir locus contained in clone 

pDMl could restore expression of virulence-associated factors to avirulent 

phase III B.bronchiseptica strains.
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Figure 4.24.

Assay for production of AC by B.bronchiseptica phase III strains containing

pDMl.

Production of AC was assayed by the development of a blue colour from X-gal 

in the wells of a microtitre tray, as described in Section 3.3.11. Samples 

were set up in duplicate (rows B & C, rows D & E, and rows F & G), as 

indicated below. The wells marked by an asterisk in row A were controls to 

which no B.bronchiseptica sample was added. For reference, the haemolytic 

activity of each original colony is given in brackets below.

1. B.pertussis L84 I [H+]
2. B.pertussis BP347 [H-]
3. B.bronchiseptica ASl I [H+]
4. B.bronchiseptica ASl III [H-]
5. B.bronchiseptica ASl III (pLAFRI) [H-]
6. B.bronchiseptica ASl III (pDMl) [H+]

7. B.bronchiseptica 276 I [H+]
8. B.bronchiseptica 276 III [H-]
9. B.bronchiseptica 276 III (pLAFRI) [H-]
10. B.bronchiseptica 276 III (pDMl) [H-]
11. B.bronchiseptica 276 III (pDMl) [H-]
12. B.bronchiseptica 276 III (pDMl) [H+]
13. B.bronchiseptica 276 III (pDMl) [H+]
14- B.pertussis L84 I [H+]
15. B.pertussis BP347 [H-]

16. B.bronchiseptica FW5 I [H+]
17. B.bronchiseptica FW5 III [H-]
18. B.bronchiseptica FW5 III (pLAFRI) [H-]
19. B.bronchiseptica FW5 III (pDMl) [H+]
20. B.bronchiseptica FW5 III (pDMl) [H+]
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Section 4.5. MODULATION STUDIES.

4.5.1. The effect of environmental stimuli on BP347 (pRHB2) and BP347 

(pDMl).

Certain chemical and physical stimuli, including MgSO , nicotinic acid
4

and low temperatures (25°C), result in the concomitant loss of expression 

of virulence determinants in B.pertussis in a phenomenon called antigenic 

modulation. Production of virulence determinants in B.pertussis requires 

the central regulatory locus, vir, and it was hypothesised that the effect 

of the modulator on expression of virulence determinants would be mediated 

either directly or indirectly by vir. The work described in this Section 

was performed to determine if the vir locus contained in clones pRMB2 and 

pDMl would respond to environmental stimuli in a similar manner to a 

chromosomally encoded vir locus, and if the copy number of the clones 

(albeit low) would affect the response.

The effect of low temperature and nicotinic acid on expression of 

haemolysin was investigated. Cultures of B.pertussis strains BP347 (pRMB2) 

and BP347 (pDMl) were set up in duplicate on BG agar (+Tc). Also set up in 

duplicate on BG agar were cultures of B.pertussis phase I strains Tohama 

and L84 (as positive controls) and strain BP347. One set of cultures was 

incubated at 25°C and the other set was incubated as normal at 35°C. 

Cultures of all the above strains were also set up on BG agar (+/- Tc) 

containing 500pg/ml nicotinic acid, and incubated at 35°C. After incubation 

for 5 - 7  days, haemolytic activity was assessed for each culture. Results 

are shown in Table 4.10. Growth at low temperature resulted in loss of 

haemolytic activity in B.pertussis strains Tohama I, L84 I, BP347 (pRMB2) 

and BP347 (pDMl). There was no observable difference between strains with a
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Table 4.10.

Influence of low temperature and nicotinic acid on haemolytic 

activity in BP347 (pRMB2) and BP347 (pDMl).

B. pertussis strain

Haemolytic activity 

BG agar BG agar BG agar + nicotinic acid^ 

35°C 25*Ci 35*C

Tohama I 

L84 I 

BP347

BP347 (pRMB2) 

BP347 (pDMl)

1. The influence of low temperature on haemolytic activity was determined 

by incubating cultures at 25®C.

2. The influence of nicotinic acid on haemolytic activity was determined 

by growing strains on BG agar containing 500 pg/ml nicotinic acid.

Tc was included in the medium for growth of strains harbouring plasmids.
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chromosomally-encoded rir locus and strains with a plasmid encoded vir

locus. The fact that the vir locus contained in clones pRMB2 and pDMl was

present in several copies had no noticeable effect on the response to the

modulator. Growth in the presence of 500pg/ml nicotinic acid resulted in

loss of haemolytic activity in B.pertussis L84 I. B.pertussis strains BP347 

(pRMB2) and BP347 (pDMl) remained haemolytic in the presence of nicotinic 

acid. However B.pertussis Tohama I (the ancestral strain of BP347) also 

remained haemolytic, indicating perhaps that some B.pertussis strains may 

not modulate in the presence of nicotinic acid.

Section 4.6. ANALYSIS OF FHA ACTIVITY OF CLONE pRMB2.

4.6.1. Analysis of E.coli DHl (pRMB2) for FHA activity.

At the beginning of this project (1986), a personal communication from 

Dr. A. Weiss revealed that the B.pertussis vir and fha loci are located 

close together- Part of the initial research in this project was undertaken 

to determine if the fha locus was contained in the virulence regulatory 

clone pRMB2. As a preliminary investigation, a haemagglutination assay was 

conducted on E.coli DHl (pRMB2) to determine whether pRMB2 encoded a 

functional FHA. E.coli strains DHl and DHl (pLAFRI) were included in the 

assay as negative controls. Also included were B.pertussis strains Tohama 

I, TAB I (as positive controls) and BP347 (as a negative control). Results 

are shown in Table 4.11. No haeraagglutinating activity was detected in 

E.coli DHl (pRMB2). The limitations of this assay were realised, and 

results interpreted accordingly.
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Table 4.11.

Assay for production of FHA by E. coli DHl (pRMB2)

Sample Haemagglutinating activity

E. coli DHl (pRMB2)

E. coli DHl •

E. coli DHl (pLAFRI) 

B. pertussis Tohama I 

B. pertussis TAB I 

B. pertussis BP347

Production of FHA was assayed by haemagglutination of horse erythrocytes in 

the wells of a microtitre tray (as described in Section 3.3.5). Cell

suspensions were serially diluted twofold from 50 pg to 0.2 pg protein per 

well.
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4.6.2. Analysis of FHA activity in B.pertussis strains BP353 (pRMB2) and 

BP353 (pDMl).

Weiss et al. (1983) reported the isolation of B.pertussis BP353, a Tn5 

mutant deficient in FHA production. Complementation studies were performed 

to determine if pRMB2 (and subclone pDMl) contained all, or part of, the 

fha locus necessary to restore a functional FHA to BP353. Plasmids pRMB2, 

pDMl and pLAFRI were conjugally transferred from E.coli to B.pertussis 

BP353 using a tri-parental mating system. Conjugation mixes were incubated 

at 35*C overnight. Cells were then transferred to selective BG agar. After 

incubation at 35*C for 3 - 4 days, BP363 (pRMB2), BP353 (pDMl) and BP353

(pLAFRI) plates each supported growth of several hundred B.pertussis 

colonies. Donor, helper and recipient strains were shown to be unable to 

grow on selective BG agar, therefore all colonies obtained were presumed to 

have arisen as a result of plasmid acquisition.

FHA activity was assayed by haemagglutination of horse erythrocytes. 

The test included B.pertussis strains BP353 (pRMB2), BP353 (pDMl), BP353

(pLAFRI), BP353, L84 I and BP347 (the latter two strains were included as

known positive and negative controls respectively). Results are shown in 

Figure 4.26. No haemagglutinating activity was detected in B.pertussis 

BP353, or BP353 containing the cloning vector (pLAFRI). Clone pRMB2 and 

subclone pDMl did not restore any detectable FHA activity to BP353. This 

preliminary analysis implied that pRMB2 (and pDMl) lacked, at least, the 

region of the fha locus necessary to complement the Fha- mutation of BP353.
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Figure 4.26.

Assay for production of FHA by B.pertussis strains BP353 (pRMB2) and BP353

(pDMl).

FHA production was assayed as described in Section 3.3.5. Cell suspensions 

were serially diluted 2-fold from 50pg to 0.2pg protein per well (columns 2 

to 10). As a control, column 11 contains PBS + erythrocytes.

Row B: B.pertussis L84 I

Row C: B.pertussis BP353 (pRMB2)

Row D: B.pertussis BP353 (pDMl)

Row E: B.pertussis BP353 (pLAFRI)

Row F: B.pertussis BP353

Row G: B.pertussis BP347
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Section 4.7. ACTIVITY OF VIR IN E.COLI.

4.7,1. Transfer of pRMB2 to E.coli JA221 (pIL22) and analysis of AGG2 

activity by slide agglutination.

Using an oligonucleotide probe complementary to the beginning of the 

gene encoding the serotype 2 (ST2) fimbrial subunit of B.pertussis Tohama 

I, Livey et al. (1987) identified a clone (pIL22) from a gene library of

B.pertussis Wellcome 28 DNA cloned in pBR328. The aim of this work was to

determine if the ST2 fimbrial subunit gene [fim2) was expressed in E.coli 

containing both pIL22 and the vir locus.

Several hundred colonies were obtained on selective agar (nutrient agar

+ Ap + Tc) when clone pRMB2 was conjugally transferred from E.coli DHl to

E.coli JA221 (pIL22) using a tri-parental mating system which included the 

use of a helper plasmid (pRK2013). Donor, helper and recipient E.coli 

strains used as controls were unable to grow on selective agar, indicating 

that the colonies obtained contained both pIL22 and pRMB2. Plasmid DNA was 

prepared from two of the E.coli JA221 (pIL22, pRMB2) transconjugant

colonies, digested with EcoRI, and subjected to electrophoresis together 

with duplicate samples of EcoRI- digested pIL22 and pRMB2 DNA (Figure 

4.27). Inspection of the gel confirmed that E.coli JA221 (pIL22, pRMB2)

colonies contained both plasmids. (pIL22 does not contain any EcoRI 

restriction sites.)

In order to determine whether the plasmid encoded vir locus of pRMB2 

regulated expression of agglutinogens, a series of slide agglutination 

tests using polyclonal antisera "Preston 1" and "Preston 2" was performed 

for B.pertussis strains BP347 (pRMB2), Tohama I and BP347 (see Table 4.12). 

B.pertussis Tohama I (the ancestral strain of BP347) was positive, and
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Figure 4.27.

Electrophoresis of fcoKT-digested plasmid DNA from E.coli JA221 (pIL22,

pRMB2).

Ethidium bromide stained gel showing E’coifl-digested plasmid DNA from two 

E.coli JA221 (pIL22, pRMB2) transconjugant colonies and duplicate samples 

of jEcoi?I-digested pRMB2 and pIL22 DNA. Numbers on the right refer to the 

sizes (kb) of /findJJI-digested 7̂ DNA.

Lanes 1 & 2: pRMB2

Lanes 3 & 4: pIL22

Lanes 5 & 6: plasmid DNA from E.coli JA221 (pIL22, pRMB2)

Lane 7: /findJII-digested "A DNA
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Table 4.12.

Assay for agglutingen production by slide agglutination

Sample

agglutination 

"Preston 1" "Preston 2"

B. pertussis Tohama I

B. pertussis BP347

B. pertussis BP347 (pRMB2)

B. pertussis BP363

E. coli JA221 (pIL22, pRMB2) n.t

E. coli JA221 (pIL22) n. t

E. coli DHl (pRMB2) n. t

Slide agglutination tests were performed as described in Section 3.3.6, 

using polyclonal antisera "Preston 1" and "Preston 2" to detect AGGl and 

AGG2 activity respectively.

n.t. = not tested
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BP347 was negative for production of AGGl and AGG2. Expression of AGGl, but 

not AGG2, was detected in BP347 (pRMB2). However slide agglutination 

analysis showed that BP353, an FHA deficient Tn5 mutant created at the same 

time as BP347, was also positive for AGGl but negative for AGG2 activity 

(see Table 4.12). Since the fim2 gene in pIL22 was derived from strain

Wellcome 28 which expressed this AGG, it was presumed that pRMB2 would

trans-activate the fim2 gene encoded by pIL22.

A slide agglutination assay was performed to determine whether pRMB2 

could trans-activate the cloned B.pertussis fim2 gene in E.coli, and

produce mature fimbrial proteins (see Table 4.12). No agglutination 

reaction with polyclonal "Preston 2" antiserum was detected in control 

strains JA221 (pIL22) and DHl (pRMB2), or in the test strain JA221 (pIL22, 

pRMB2).

4.7.2. Analysis of AGG2 expression in E.coli JA221 (pIL22, pRMB2) by ELISA 

and immunoblotting.

The ability of pRMB2 to trans-activate the cloned ST2 fimbrial subunit 

gene in E.coli JA221 (pIL22, pRMB2) was determined by an enzyme-linked 

immunosorbent assay (ELISA) using lysed whole cell samples on

nitrocellulose membrane, as described in Section 3.3.4. B.pertussis Tohama 

I was included as a positive control, and E.coli strains JA221 (pIL22) and 

DHl (pRMB2) were included as negative controls. Two primary antibodies were 

used for immunological detection of AGG 2: monoclonal antibody (MAb) Ag2A

and polyclonal antibody "Preston 2". Results are shown in Table 4.13. 

Production of AGG2 was detected only in the B.pertussis Tohama I sample, 

when MAb Ag2A was used. "Preston 2" antiserum gave a strong positive 

reaction with the B.pertussis Tohama I sample, and also a positive reaction
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Table 4.13.

Analysis of AGG2 expression in E. coli JA221 (pIL22, pRMB2) 

by enzyme-linked immunosorbent assay (ELISA).

Sample

antibody 

Ag2A "Preston 2"

B. pertussis Tohama I + +

E. coli JA221 (pIL22, pRMB2)

E. coli JA221 (pIL22)

E. coli DHl (pRMB2)

ELISA was performed using lysed whole cell samples on nitrocellulose, as 

described in Section 3.3.4. Monoclonal antibody Ag2A and polyclonal 

"Preston 2" were used as primary antibodies and binding was detected using 

anti-mouse or anti-rabbit IgG horse-radish peroxidase conjugate 

respectively, and substrate 3-amino-9-ethylcarbazole.

The degree of colour development was scored as follows : 

negative 

+ positive

++ strongly positive
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with all three E.coli samples.

Expression of the B.pertussis fim2 gene in E.coli JA221 (pIL22, pRMB2) 

was also assayed by immunoblotting. Figure 4.28 shows protein profiles 

obtained when whole cell samples of B.pertussis Tohama I and E.coli strains 

JA221 (pIL22, pRMB2), JA221 (pIL22) and DHl (pRMB2) were subjected to SDS- 

PAGE. The protein profile of E.coli JA221 (pIL22, pRMB2) was examined for 

the presence of any additional band which may have been due to expression 

of the ST2 fimbrial subunit. No discernible difference was observed between 

the protein profiles of E.coli strains JA221 (pIL22, pRMB2) and JA221 

(pIL22). However both these strains exhibited a prominent band not present 

in the E.coli DHl (pRMB2) sample-

Samples were again subjected to SDS-PAGE, and the gel was immunoblotted 

onto nitrocellulose. The blot was incubated with "Preston 2" antiserum. 

Binding of antibody to the nitrocellulose was detected using anti-rabbit 

IgG horse-radish peroxidase conjugate and 4-chloronaphthol reagent. The 

resulting blot is shown in Figure 4.29. The mature AGG2 subunit is reported 

to have an SDS-PAGE value of 22.5kD (Irons et al., 1985). The major band 

detected in the B.pertussis Tohama I sample was presumed to be the 22.5kD 

AGG2 subunit, however several other bands were also detected. From the 

deduced amino acid composition, Livey et al. (1987) calculated the 

molecular weight of the mature ST2 fimbrial subunit to be 19.2kD. There was 

no evidence of expression of the ST2 fimbrial subunit in the E.coli sample 

containing both pIL22 and pRMB2 clones. A band of approximately 35kD was 

detected in all three E.coli samples.
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Figure 4.28.

SDS-PAGE analysis of E.coli JA221 (pIL22, pRMB2).

Whole-cell samples were treated and subjected to electrophoresis as 

described in Sections 3.3.1 and 3.3.2. Protein bands were visualised by 

Coomassie Blue staining. Numbers on the left refer to the sizes (kD) of 

molecular weight markers.

Lane 1: Molecular weight markers (SDS

Lane 2: E.coli JA221 (pIL22, pRMB2)

Lane 3: E.coli JA221 (pIL22)

Lane 4: E.coli DHl (pRMB2)

Lane 5: B.pertussis Tohama I
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Figure 4.29.

Immunoblot analysis of E.coli JA221 (pIL22, pRMB2) using "Preston 2"

antiserum.

After SDS-PAGE, samples were immunoblotted as described in Section 3.3.3. 

The filter was incubated with "Preston 2" antiserum, and antibody binding 

was detected using anti-rabbit IgG horse-radish peroxidase conjugate and 4- 

chloronaphthol reagent. The arrow marks the position of the major band 

{presumed to be the AGG2 subunit) observed in the B.pertussis Tohama I 

sample. Numbers on the left refer to the sizes (kD) of molecular weight 

markers (SDS-6H, Sigma).

Lane 1: E.coli JA221 (pIL22, pRMB2)

Lane 2: E.coli JA221 (pIL22)

Lane 3: E.coli DHl (pRMB2)

Lane 4: B.pertussis Tohama I
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4-7-3. Construction of pDMl subclones and their transfer to E,coli DHl

(p26).

A clone (p26) containing the AGG3 genetic determinant was identified

from a gene library of B.pertussis TAB I DNA (R. Brownlie, personal 

communication)- Clone p26 has been shown to express AGG3 in B,pertussis, 

and is dependent on a functional vir locus for expression (D. MacGregor, 

personal communication). The aim of this work was to determine if AGG3 was 

expressed in E.coli containing both p26 and the vir locus.

Clone p26 is a pLAFRl derivative, and it was therefore necessary to 

subclone the vir locus into a plasmid which would make it compatible- The 

restriction map of pDMl (Section 4.2.3) shows that the region essential for 

regulation of expression of virulence factors in B.pertussis is contained 

within an 8kb fragment. A cloning experiment was performed to obtain a 

subclone of pDMl containing the Bkb BamHI to EcoRI fragment in vector

PIC20H.

Plasmid pIC20H was digested with both EcoRI and BamHI and subjected to 

electrophoresis. Vector DNA was purified from the gel using the SS-BIOTRAP 

apparatus, and dephosphorylated. For preparation of insert DNA, pDMl was 

first digested to completion with BamHI, phenol extracted and ethanol 

precipitated. Recovered #am#T-digested pDMl DNA was then partially digested 

with EcoRI, using conditions which had previously been found to generate a 

significant proportion of fragments in the Skb range. The sample was

subjected to electrophoresis and, using the SS-BIOTRAP apparatus, DNA was 

recovered from a gel slice cut to include fragments of around 8kb.

Dephosphorylated vector lOng and insert DNA lOOng were ligated together for 

2h and transformed into freshly prepared E.coli DH5a cells. As controls, 

lOng of ligated, dephosphorylated vector DNA, and samples containing Ing
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and lOng of pIC20H plasmid DNA were also transformed. Transformants were 

selected on nutrient agar containing Ap + IPTG + X-gal.

The lOng sample of pIC20H DNA resulted in semi-confluent growth of blue

colonies and the Ing sample resulted in 354 blue colonies, giving a
5

transformation efficiency of approximately 3.5 x 10 transformants per pg 

DNA. As expected, no colonies were obtained for dephosphorylated vector 

DNA. Transformation of purified pDMl fragments ligated with vector DNA 

resulted in 41 white colonies, presumed to contain recombinant DNA. Plasmid 

DNA was prepared from 20 white colonies, linearised by BamHI digestion, and 

analysed by electrophoresis. Eighteen samples contained a band of 8kb, one 

sample contained a band of lO.Vkb, and the remaining sample contained a 

band of 6.6kb. These three clone types were designated pDM62, pDM623 and 

pDM14 respectively. Since pIC20H vector is 2.7kb, the sizes of the genomic 

inserts were calculated to be 5.3kb (pDM62), 8kb (pDM623) and 3.9kb 

(pDM14). Figure 4.30 shows the restriction profiles obtained when clones 

pDM62, pDM623 and pDM14 were digested with BamHI and EcoRI. This enabled 

the region of pDMl contained within each clone to be determined, as shown 

in Figure 4.31. Clone pDM623 contains the region essential for regulation 

of expression of virulence factors in B.pertussis.

To determine if pDM623 would allow expression of the AGG3 genetic 

determinant in E.coli, competent E.coli DHl (p26) cells were transformed 

with a lOng sample of pDM623 plasmid. Samples lOng of plasmids pDM30 and 

pDM62 (both of which contain a part of the vir locus) were also 

transformed. Transformants were selected on nutrient agar containing Tc + 

Ap. Transformation by all three plasmids resulted in semi-confluent growth. 

E.coli DHl (p26) was unable to grow on selective agar, therefore all 

colonies obtained were presumed to have arisen as a result of acquisition
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Figure 4.30.

Restriction enzyme profiles of pDMl subclones.

Ethidium bromide stained gel showing samples of clones pDM62, pDM623 and 

pDM14 digested with BamHI and EcoRI. Samples of pIC20H and pDM30 digested 

with BamHI and EcoRI were included for reference. Numbers on the right 

refer to the sizes (kb) of HindIII-àigesteà. DNA.

Lane 1: BamJîI-digested pIC20H 

Lane 2: 5am^J-digested pDM30 

Lane 3: BamHI-àigesteô. pDM14 

Lane 4: 5am^J-digested pDM62 

Lane 5: 5aj»/fJ-digested pDM623 

Lane 6: EcoRI-digested pIC20H 

Lane 7: E’coifJ-digested pDM30 

Lane 8: J?co/fJ-digested pDM14 

Lane 9: E’coJ?I-digested pDM62 

Lane 10: Ecoiîl-digested pDM623 

Lane 11: Hindlll-digested DNA 

Lane 12: PstJ-digested 'À DNA
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Figure 4.31.

Restriction map of various subclones of pDMl.

The thick bar represents the genomic insert of pDMl. Subclones pDM62, 

pDM623 and pDM14 were constructed by cloning BamHI to EcoRI fragments of 

pDMl into pIC20H. The arrows indicate the direction of transcription for 

the lac promoter of pIC20H. For reference, pDM30 (the E3 fragment cloned in 

pIC20H) is also shown. The direction of transcription was not determined 

for pDM30.

E, EcoRI; B, BamHI.
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of the vir subclones. Plasmid DNA was prepared from two colonies picked 

from each plate, digested with BamHI and subjected to electrophoresis 

together with BamffJ-digested samples of each plasmid i.e. p26, pDM30, pDM62 

and pDM623. The ethidium bromide stained gel is shown in Figure 4.32. This 

confirmed that E.coli DHl (p26) transformant colonies contained the 

appropriate vir subclone.

4.7.4. Analysis of expression of the AGG3 genetic determinant in E.coli by 

immunoblotting.

Figure 4.33 shows the protein profiles obtained when whole cell samples 

of B.pertussis Wellcome 28 (serotype 1,2,3), E.coli DHl (p26), E.coli DHl 

(p26, pDM30), E.coli mi (p26, pDM62) and E.coli mi (p26, pDM623) were

subjected to SDS-PAGE. No additional band which may have been due to 

expression of the AGG3 genetic determinant was detected when the protein 

profile of E.coli DHl (p26, pDM623) was compared with the negative control, 

E.coli DHl (p26).

Samples were again subjected to SDS-PAGE, and the gel was 

immunoblotted onto nitrocellulose. The filter was incubated with polyclonal 

"Preston 3" antiserum. Antibody binding was detected using anti-rabbit IgG 

horse-radish peroxidase conjugate and 4-chloronaphthol reagent. Inspection 

of the resulting blot (not presented) showed that two bands were present in 

the 20- 25kb region in the positive control sample, B.pertussis Wellcome 

28, which produces AGG3. No binding of antibody was detected in any of the 

E.coli samples.
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Figure 4.32.

Electrophoresis of Bam/TJ-digested plasmid DNA from E.coli DHl (p26) 

containing various vir subclones.

Ethidium bromide stained gel showing Ham#Z-digested plasmid DNA from two 

E.coli DHl (p26, pDM30), two E.coli DHl (p26, pDM62) and two E.coli DHl 

(p26, pDM623) transformant colonies together with aamFZ-digested DNA from

p26, pDM30, pDM62 and pDM623 plasmids. Numbers on the left refer to the 

sizes (kb) of Hindlll-digested 7\ DNA fragments.

Lane 1: Hindlll-digested DNA 

Lane 2: Pstl-digested > DNA

Lanes 3 & 4: Baraffl-digested plasmid DNA from E.coli DHl (p26, pDM30)

Lanes 5 & 6: BamNJ-digested plasmid DNA from E.coli DHl (p26, pDM62)

Lanes 7 & 8: Bam/rj-digested plasmid DNA from E.coli DHl(p26, pDM623)

Lane 9: BamBJ-digested p26

Lanes 10 & 11: BamBJ-digested pDM30

Lanes 12 & 13: BamBJ-digested pDM62

Lane 14: BamBJ-digested pDM623 (a very faint band of 10.7kb)
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Figure 4.33.

SDS-PAGE analysis of E.coli DHl (p26) containing various vir subclones.

Whole-cell samples were treated and subjected to electrophoresis as

described in Sections 3.3.1 and 3.3.2. Protein bands were visualised by

Coomassie Blue staining. Numbers on the right refer to the sizes (kD) of

molecular weight markers.

Lane 1: B.pertussis Wellcome 28

Lane 2: E.coli DHl (p26)

Lane 3: E.coli DHl (p26, pDM30)

Lane 4: E.coli DHl (p26. pDM62)

Lane 5: E.coli DHl (p26, pDM623)

Lane 6: Molecular weight markers
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4.7.5. Analysis of expression of the AC genetic determinant in E.coli.

Brownlie et al. (1986) isolated a clone (pRMBl) containing the AC and

HLY genetic determinants, from a gene library of B.pertussis DNA cloned in 

pLAFRl. However, neither AC or HLY activities were expressed in E.coli 

harbouring pRMBl (Brownlie et al., 1988). As this may have been due to the 

requirement for vir, the aim of this work was to analyse AC activity in a 

Acya strain of E.coli, CAA8306, containing compatible plasmid clones of the 

AC genetic determinant and the vir locus.

Figure 4.34 shows a restriction map of pRMBl and its various subclones. 

Expression of the cya gene from the lac promoter contained in pIC20H was

detected from clones pRMB3 and pRMB9 contained in E.coli CAA8306 (Brownlie 

et al., 1988). Clones pRMBll and pRMB12 contain a Skb Clal fragment from 

pRMBl cloned in opposite orientations in vector pIC20H. AC activity was 

detected in E.coli CAA8306 harbouring pRMB12, but not pRMBll, suggesting 

that AC activity was only detected when the cya gene was expressed from the 

lac promoter of pIC20H (R. Brownlie, personal communication). However, 

preliminary data suggested that AC activity (which was calmodulin 

responsive) could be detected in E.coli CAA8306 harbouring pRMBll when the 

vir locus was provided in-trans (R. Brownlie, personal communication). To 

follow up and extend this line of investigation, E.coli CAA8306 was 

transformed with various combinations of plasmids containing the cya gene 

and vir.

Competent E.coli CAA8306 cells were first transformed with lOng samples

of the broad host-range plasmids i.e. pRMB2, pDMl and, as a negative

control, pLAFRl. Transformants were selected on nutrient agar containing

Tc. Less than 10 colonies were obtained from each transformation. Since
s

E.coli CAA8306 was Tc , all colonies were presumed to contain the
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Figure 4.34.

Restriction map of pRMBl and its various subclones.

The thick bar represents the genomic insert of pRMBl, which contains the 

B.pertussis AC and HLY genetic determinants cloned in pLAFRl. The direction 

of transcription of the AC/HLY operon, as shown here, is from right to 

left. The hatched area represents the length of the protein coding region. 

Subclones were constructed in vector pIC20H, and the arrows indicate the 

direction of transcription from the lac promoter of pIC20H. Data shown here 

was obtained from R. Brownlie (personal communication) and Rogel et al. 

(1989) .

E, EcoRI; B, BamHI; G, Clal.
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appropriate plasmid.

Competent E.coli CAA8306 (pRMB2), E.coli CAA8306 (pDMl) and E.coli 

CAA8306 (pLAFRl) cells were then separately transformed with lOng samples 

of plasmids pRMBll and pRMB12. Several hundred transformants, selected on 

nutrient agar containing Tc plus Ap, were obtained in each case.

Competent cells of E.coli CAA8306 (pRMBl) were prepared. These cells 

were transformed with lOng samples of pDM623 (which contains the vir 

locus), pDM62 and pDM30 (which each contain a part of the vir locus) and 

pDM14 (as a negative control). Several hundred transformant colonies, 

selected on nutrient agar containing Tc plus Ap, were obtained in each 

instance.

To create the appropriate control strains, competent E.coli CAA8306 

cells were transformed with lOng samples of pDM623, pDM62, pDM30, pDM14, 

pRMBll and pRMB12. Several hundred colonies, selected on nutrient agar 

containing Ap, were obtained from transformation with all plasmids except 

pDM14 (different DNA preparations of pDM14 were used to transform E.coli 

CAA8306 (pRMBl) and E.coli CAA8306).

Although antibiotic resistance of E.coli CAA8306 transformant colonies 

suggested that they contained the appropriate plasmid(s), plasmid DNA was 

prepared from several colonies selected from each transformant plate, and 

analysed. Figure 4.35 shows representative samples of undigested and BamHl- 

digested plasmid DNA after electrophoresis. The yield of DNA for the low 

copy-number plasmids (pRMBl, pRMB2, pDMl and pLAFRl) was extremely low, and 

was best visualised in undigested samples from E.coli CAA8306 harbouring 

only these plasmids (i.e. the strains which were used for subsequent 

transformation by the pIC20H clones). The yield of DNA for the high copy- 

number pIC20H clones was high, and the presence of the correct pIC20H clone
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Figure 4.35.

Electrophoresis of undigested and BamHI-digested plasmid DNA from E.coli 

CAA8306 containing various cya and vir clones.

Ethidium bromide stained gels showing undigested and BamBT-digested plasmid 

DNA from a variety of E.coli CAA8306 transformant colonies and from E.coli 

CAA8306 (pRMBl), E.coli CAA8306 (pIC20H), E.coli CAA8306 (pRMB3) and E.coli 

CAA8306 (pRMB9). (A) contains undigested and (B) contains BamBI-digested

samples. (Plasmid preparations shown here were not RNase-treated.} Numbers

on the left refer to the sizes (kb) of BindlJI-digested 7k

H: Hindlll-digested "A DNA 11: pRMBl, pDM62

P: Pstl-digested TV DNA 12: pRMBl, PDM623

1: pRMBl 13: pRMBl, pDM14

2: pLAFRl 14: pLAFRl, pRMBll

3: pDMl 15: pLAFRl, PRMB12

4: pRMB2 16: pDMl, pRMBll

5: pRMBll 17: pDMl, pRMB12

6 : pRMB12 18: pRMB2, pRMBll

7; pDM30 19: pRMB2, PRMB12

8: pDM62 20: pIC20H

9: pDM623 21: pRMB3

10: pRMBl, pDM30 22: pRMB9
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was confirmed in each instance.

In a preliminary analysis, AC activity in E.coli CAA8306 harbouring the 

B.pertussis cya gene and vir locus cloned in compatible plasmids {pRMBl and 

pDM623 respectively) was determined. Samples of E.coli CAA8306 harbouring 

both pRMBl and pDM62, pDM30 or pDM14 were included in the assay, together 

with E.coli CAA8306 harbouring only pDM623, pDM62 or pDM30 as negative 

controls. To minimize the loss of cultures during transportation, two 

cultures of each strain were sent to Dr. E. Hanski at The Weizmann 

Institute of Science, Israel, for analysis of AC activity (Table 4.14). 

Results were somewhat surprising, as the level of AC activity for the two 

cultures widely differed in each case e.g. the values obtained for E.coli 

CAA8306 (pDM30) were 29.03 and 0.54 nmol cAMP per min per mg protein. The 

cultures used for the assay were grown from two separate colonies selected 

from each transformation plate, and one would not have expected to find a 

difference between the individual colonies. (Plasmid analysis confirmed 

that cultures contained the appropriate plasmid(s).) The two cultures of 

E.coli CAA8306 harbouring both pRMBl and pDM623 (the latter contains the 

whole vir locus) produced values of 12.76 and 56.87 nmol cAMP per min per 

mg protein, which appeared to be slightly higher than values obtained for 

the other strains. However, as this assay did not contain any known 

positive and negative controls, the enzymic activity of B.pertussis AC in 

E.coli was measured for a more extensive range of samples.

The ability of various vir clones to trans-activate the AC genetic 

determinant of clones pRMBl, pRMBll and pRMBl2 in E.coli CAA8306 was 

investigated. The assay involved two steps: incubation of the sample with

ATP, the substrate from which the adenylate cyclase generates cAMP, and 

then measurement of the cAMP generated with a cAMP assay kit (Amersham, see
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Table 4.14.

Adenylate cyclase enzymic activity 

harbouring pRMBl plus various

in E. coli CAA8306 

vir subclones

Enzymic activity

nmol cAMP per min per mg protein
plasmid(s) culture a culture b

pDM30 29.03 0.54

pDM62 0.67 0.54

pDM623 1.68 0.16

pRMBl, pDM14 9.05 1.28

pRMBl, PDM30 22.92 0.65

pRMBl, pDM62 2.94 0.05

pRMBl, PDM623 12.76 56.87

Data was obtained from Dr. E. Hanski. The assay was performed in the 
presence of calmodulin, as described by Brownlie et al. (1988).

The two cultures (a and b) used for each strain were grown from separate 
transformant colonies.
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Section 3.1.11). E.coli CAA8306 (pRMB3) and E.coli CAA8306 (pRMB9) were 

included in the assay as known positive controls. Samples of E.coli CAA8306 

harbouring single plasmids i.e. vectors, vir clones or cya clones were also 

included in the assay. Each sample was assayed in duplicate, and the two 

values obtained in each case were very similar. Results are shown in Table 

4.15.

Positive control samples, E.coli CAA8306 (pRMB3) and E.coli CAA8306 

(pRMB9) had an enzymic activity higher than the uppermost limit of cAMP per 

assay tube detectable by the cAMP assay kit i.e. greater than 16 picomoles 

cAMP per incubation tube. AC enzymic activity was detected in samples 

harbouring pRMBll and pRMB12, however the level of activity was 

considerably lower than for the positive control samples. The presence of 

the vir locus in-trans had no marked effect on AC activity in E.coli.
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Table 4.15

Adenylate cyclase enzymic activity in E. coli CAA8306 containing
various AC and vir clones

Enzymic activity

Plasmid(s) Characteristics
pmol cAMP per min 
per incubation tube

nmol cAMP per min 
per mg protein

pLAFRl Broad-host-range cloning
vector compatible with 0.1
PIC20H.

pRWBl A pLAFRl derivative containing
the B. pertussis AC 0.3
genetic determinant.

pRMB2 A pLAFRl derivative containing
the B. pertussis vir locus. • 0.1

pDMl A subclone of pRMB2 containing
the B. pertussis vir locus. 0.0

pIC20H A high copy-number cloning vector
compatible with pLAFRl. 0.2

pRMBll A pIC20H derivative containing
the 6kb Clal fragment of
pRMBl cloned in the opposite 0.3
orientation to the lac promoter.

pRMB12 A pIC20H derivative containing
the 6kb Clal fragment of pRMBl 1.9
cloned in the same orientation 
as the lac promoter.

pDM30 A pIC20H derivative containing
the 2.7kb EcoRI fragment (E3) 0.0
of pDMl (contains part of the vir 
locus).

pDM62 A pIC20H derivative containing
the 5.3kb BamHI to EcoRI fragment 0.0
of pDMl (contains part of the vir 
locus).

pDM623 A pIC20H derivative containing the
Skb BamHI to EcoRI fragment of 0.0
pDMl (contains the vir locus).

5.7

9.5

4.4

0 . 0

8.1

10.6

62.2

0.0

0 . 0

0.0

contd.
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Table 4.15. (contd.)

Enzymic activity

pmol
Plasmid(s) Characteristics per

cAMP per min 
incubation tube

nmol
per

cAMP per min 
mg protein

pDM14 A pIC20H derivative containing 
the 3.9kb BamHI to EcoRI 
fragment of pDMl (negative 
control).

n.a. n.a.

pRMB3 A pIC20H derivative containing 
the lOkb BamHI fragment of 
pRMBl cloned in the same 
orientation as the lac promoter.

>16.0 >290.9

pRMB9 A pIC20H derivative containing 
the 3kb BamHI to EcoRI fragment 
of pRMBl cloned in the same 
orientation as the lac promoter.

>16.0 >290.9

pRMBl, pDM30 0.3 8.9

pRMBl, PDM62 0.1 3.2

pRMBl, PDM623 0.2 4.5

pRMBl, pDM14 0.1 3.3

pLAFRl, pRMBll 1.7 38.0

pLAFRl, PRMB12 1.4 55.9

pDMl, pRMBll 1.1 48.5

pDMl, PRMB12 1.3 57.3

pRMB2, pRMBll 0.8 75.6

pRMB2, PRMB12 0.5 16.2

The assay was performed as described in Section 3.1.11. Samples were 
incubated with ATP and, using a cAMP assay kit (Amersham), the cAMP 
generated was determined from a calibration curve for the assay of cAMP in 
the range 0.2 to 16 pmoles per incubation tube. Each sample was assayed 
in duplicate, and the average is shown. Protein concentration was 
determined by the method of Bradford (1976).

n.a. = not available.
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Section 5: DISCUSSION,



Section 5.1. MOLECULAR ANALYSIS OF VIR.

5.1.1. Hybridisation analysis of BP347 DNA.

Since pRMB2 was able to restore a Vir+ phenotype to B.pertussis BP347, 

it was presumed that pRMB2 contained a region of DNA homologous to that 

which was inactivated by the TnS insertion in BP347 (Brownlie et al.,

1988). Restriction analysis of pRMB2 with EcoRI revealed that the genomic 

insert was 21.6kb, and consisted of six fragments, designated El (l.lkb), 

E2 (2.5kb), E3 (2.7kb), E4 (4.7kb), E5 (5.1kb) and E6 (lO.Okb).

Genomic DNA from B.pertussis strains L84 I, Tohama I and TAB I 

hybridised to fragments El to E6 of pRMB2 (Section 4.1.1). There was no 

detectable difference in the vir region of these three phase I strains. 

Hybridisation analysis of EboBT-digested BP347 DNA using pRMB2 as a probe 

showed that the 2.7kb fragment was missing, and exhibited instead was a 

fragment of 8.4kb, which was presumed to contain a copy of Tn5 (5.7kb). A 

high molecular weight fragment in the BP347 sample also hybridised to the 

pRMB2 probe. This band was of lower intensity than the other bands detected 

in the sample, which implied that it had arisen as a result of the probe 

hybridising weakly to a region elsewhere in the B.pertussis chromosome. The 

excess of DNA in the BP347 sample probably accounted for its detection in

only this sample. When the E3 fragment of pRMB2 was used as a probe

(Section 4.1.4), it hybridised to the 8.4kb fragment in the sample of 

EcoBJ-digested BP347 DNA, confirming that the Tn5 insertion in BP347 was 

located in a 2.7kb EcoRI fragment. The inactivation of this region by Tn5

implied that it was essential to the vir locus.

The site of TnS insertion in BP347 was also determined with respect to 

BamHI fragments (Section 4.1.8). SamEJ-digestion of pRMB2 produced six
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fragments: B1 (1.4kb), B2 (2.4kb), B3 (2.7kb), B4 (2.9kb), B5 (4.8kb) and

B6 (a 33.5kb fragment consisting of pLAFRl vector and the end portions of 

the genomic insert of pRMB2).

B.pertussis strains L84 I, Tohama I and TAB I showed identical patterns 

of hybridisation: pRMB2 hybridised to genomic BamHI fragments corresponding 

to B1 to B5, and also to fragments of approximately 12kb and 14kb. The 

latter two bands represented BamHI fragments of genomic DNA to which the 

BamHI to EcoRI terminal portions of the genomic insert of pRMB2 hybridised. 

These bands were both less intense than expected, which suggested that the 

high molecular weight DNA had not been transferred efficiently during the 

Southern blotting procedure. A band of 4.2kb was also present in all 

samples. The intensity of this band suggested that it was due to 

hybridisation of pRMB2 to a homologous region elsewhere in the chromosome, 

substantiating earlier findings. In BP347 DNA, the 14kb BamHI fragment was 

missing. Since Tn5 contains a BamHI site, its insertion should produce two 

new BamHI fragments. Only one band (of around 9kb) was detected, indicating 

that the two fragments produced were of equal size.

Hybridisation studies using the E3 fragment as a probe confirmed that 

the Tn5 insertion in BP347 was located in a 14kb BamHI fragment. 

Hybridisation data implied that the E3 fragment was located at, or near, 

one of the ends of the genomic insert of pRMB2. The subcloning of vir from 

pRMB2 is discussed below, however an alternative strategy would have been 

to isolate fragments of around 14kb from BamHI-digested B.pertussis DNA, 

and clone them in a broad host-range vector. Clones could then have been 

transferred to Vir- BP347 for complementation analysis. The insertion of 

Tn5 into a 2.7kb EcoRI fragment and a 14kb BamHI fragment in strain BP347 

was later verified by comparison with a restriction map of the vir region
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published by Stibitz et al. (1988a).

5.1.2. Subcloning and complementation analysis of E3.

The E3 fragment of pRMB2 was subcloned in the broad host-range vector 

pLAFRl, and also in the high copy-number vector pIC20H. In each instance, 

ligation reactions contained a 10-fold molar excess of insert DNA, to 

favour intermolecular ligation at the expense of intramolecular ligation. 

To minimize self-ligation of iTcoi?!-digested vector DNA, the 5' phosphate 

groups were removed by treatment with CIP. Comparison of ligated, non-CIP 

treated vector DNA with ligated, dephosphorylated vector DNA showed that 

the yield of transformation for the latter was reduced by 97.3% for pLAFRI, 

and 98.1% for pIC20H, indicating that the CIP treatment had been highly 

effective in both cases. #co#T-digestion of pIC20H, followed by religation, 

decreased the yield of transformation to 25%, compared to supercoiled

pIC20H DNA. This value was lower than the expected value of >40%, based on 

data from Boehringer Mannheim (the manufacturers of T4 DNA ligase) for 

pBR322. Although antibiotic resistance of transformant colonies implied 

that they contained plasmid DNA, restriction analysis was used to confirm 

the presence of the correct recombinant clone in each case. Clones derived

from pLAFRI and pIC20H were designated pDM3 and pDM30 respectively.

Since insertion of Tn5 into the 2.7kb EcoRI fragment of BP347 resulted 

in loss of expression of virulence factors, clone pDM3 was transferred by 

conjugation from E.coli to BP347, to determine whether the E3 fragment 

would contain sufficient sequence to restore a Vir+ phenotype to the

strain. Virulence-associated factors lost by insertional inactivation of 

vir in BP347 included HLY. Therefore visualisation of haemolytic activity 

of transconjugant colonies on EG agar provided a convenient means of
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determining whether the virulent phenotype had been restored. Results from

a preliminary experiment, in which conjugation mixes were incubated

overnight before selection, showed that pDM3 conferred an Hly+ phenotype to

only 1% of BP347 (pDM3) colonies. In a follow up experiment, in which

conjugation mixes were incubated for only 8h before selection, all

transconjugant colonies containing pDM3 were Hly-. BP347 (pDM3) H+ strains

had also regained other properties associated with virulence, such as AC,

FHA and the ability to uptake CR. In contrast, BP347 (pDM3) H- strains were

negative for these properties. It was concluded that the 2.7kb EcoRI

fragment of pDM3 did not contain all of the essential vir region necessary

for expression of virulence-associated factors in B.pertussis.

The fact that only a small percentage of BP347 (pDM3) H+

transconjugants was obtained, suggested that they had arisen not as a

result of pDM3 acting in-trans, but as a result of recombination in the vir

region. The likelihood of homologous recombination occurring may have been

increased by the longer incubation period of the conjugation mixes before

selection. When a single BP347 (pDM3) H+ colony was subcultured in the
s

absence of Tc selection, the colonies produced were Tc (pLAFRI confers 
r s r

Tc ) and Km (Tn5 confers Km ), but retained a Vir+ phenotype. This

confirmed that homologous recombination had occurred in this strain such

that the copy of Tn5 was then contained within plasmid pDM3, and a fully

functional vir locus was restored to BP347 with an attendant gain of

expression of virulence-associated factors. In contrast, subculture of

BP347 (pDM3) H- in the absence of Tc selection produced colonies which had 
s r

lost plasmid (Tc ) but retained Tn5 (Km }. This indicated that no

homologous recombination had occurred, and confirmed that pDM3 acting in-

trans was unable to restore a Vir+ phenotype to BP347.
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5-1.3. Subcloning and complementation analysis of randomly-generated 

fragments of pRMB2.

The 2.7kb EcoRI fragment did not contain the entire vir sequence,

therefore larger fragments of approximately 

6kb, which would hopefully encompass the vir locus, were selected for 

subcloning. The restriction enzyme SauJA, which has a 4bp recognition site, 

was used to partially digest pRMB2 DNA to generate a series of random 

fragments.

No recombinant clones were detected when size-selected SauJA fragments 

were cloned in the BamHI site of the broad host-range vector pRK291. The 

lack of recombinant clones could have been due to any one (or combination) 

of the multitude of factors governing the processes of ligation and 

transformation.

The fact that transformation frequencies with larger plasmids are 

dramatically reduced (Hanahan, 1983) may have been a contributory factor.

Factors affecting the in v}tro ligation of vector and donor DNAs to form 

chimeric DNA molecules include: the molar ratio of vector to insert DNA,

the concentration of DNA in the reaction mixture and the concentration of 

DNA ends in the reaction mixture (see Maniatis et al., 1982). 

Transformation of E.coli by plasmid DNA involves three stages: binding of

DNA to the outside of the cell, transport of DNA across the cell envelope 

and establishment of the transforming DNA as a replicon itself, or by 

recombination with a resident replicon. A number of parameters influence 

the transformation process, such as competence of cells and concentration 

of DNA (reviewed by Saunders and Saunders, 1988).
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The randomly-generated SauJA fragments of pRMB2 were subcloned into 

broad host-range vector pRK310. A number of ligation reactions, which 

contained various ratios of vector to insert DNA, were set up to determine 

empirically the optimal conditions for formation of hybrid DNA molecules. 

Transformation by all ligation mixtures yielded recombinant colonies, 

easily discernible as white, on medium containing IPTG and X-gal, The 

ligation mixture containing lOOng of vector DNA and 50ng of insert DNA 

produced the highest number of recombinant molecules, and was therefore 

presumed to represent the optimal conditions out of those tested. 

Transformation efficiency for supercoiled DNA was considerably reduced 

(perhaps by as much as 1000-fold) for pRK310 compared with pIC20H, 

confirming the inverse relationship between plasmid size and transformation 

efficiency.

None of the 48 recombinant clones tested was able to restore an Hly+ 

phenotype to Vir- BP347, which implied that none of the SauJA fragments 

cloned contained sufficient sequence to encode an active vir locus. Six 

recombinant plasmids were digested with both EcoRI and Hindlll and analysed 

by gel electrophoresis. No fragment of 2.7kb was detected, indicating that 

none of the recombinant clones examined contained an insert which 

encompassed the 2.7kb E3 fragment which is essential to vir. Analysis of 

the purified size-selected SauJA fragments used for ligation, showed that 

they ranged in size from 5kb to 9kb. However, the average insert size of 

recombinant clones was only 5.4kb, suggesting that there had been bias 

towards the formation of transformants containing smaller recombinant 

plasmids.
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5.1.4. Construction and complementation analysis of pDMl.

As a more direct approach, hybridisation analysis was used to identify 

putative vir-containing fragments of pRMB2. At this stage in the study, the 

location of the E3 fragment within the 26-lkb insert of pRMB2 was unknown, 

therefore a series of restriction enzyme digests of pRMB2 was hybridised 

with E3 in order to identify fragments which would encompass the essential 

E3 region, and would be large enough to potentially encode an active vir 

locus.

BamHI, Bglll and Sad digests each contained a large fragment, which 

consisted of pLAFRI and the terminal portions of the genomic insert of 

pRMB2, which hybridised to E3. This was consistent with hybridisation data 

which had indicated that E3 was located in one of the end regions of the 

genomic insert of pRMB2. The identification of these three large fragments 

was fortunate in that isolation and ligation of the fragments would result 

in pLAFRI clones which could be readily transferred to BP347 for 

complementation analysis. The BamHI fragment (designated B6) was chosen 

because on visual examination of an ethidium bromide stained gel it 

appeared larger than the Bglll and S a d  fragments, and was therefore more 

likely to contain an active vir locus.

The B6 fragment, which consisted of pLAFRI vector plus BamHI to EcoRI 

end portions of the pRMB2 genomic insert, was ligated to give a clone 

designated pDMl. When transferred by conjugation from E.coli to BP347, pDMl 

restored expression of virulence-associated determinants such as HLY, AC, 

FHA, PT, HLT and X-OMPs. This dem<^trated that pDMl encoded the vir locus. 

When single colonies of BP347 (pRMB2) and BP347 (pDMl) were subcultured in 

the absence of Tc selection, data obtained indicated that loss of plasmid 

was accompanied by loss of the virulent phenotype, confirming that the vir
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locus encoded by these clones was acting in-trans to restore expression of 

virulence-associated genes to BP347.

Transposon Tn5 was used to generate a series of Vir- mutants in 

B.pertussis Wellcome 28 (M. Ward, personal communication). The vir region 

of nine of these mutants was analysed: only two contained a Tn5 insertion

(in the 2.5kb EcoRI fragment), two contained a rearrangement (either 

inversion or deletion) and five showed no obvious change and may have 

represented avirulent phase variant strains which had arisen as a result of 

a spontaneous frame-shift mutation in vir, similar to that described by 

Stibitz et al. (1989). Clone pDMl was able to restore a Vir+ phenotype to 

all nine Vir- strains (M. Ward, personal communication). These data 

substantiated the fact that pDMl encoded the essential virulence region. 

The fact that the vir locus of pDHl was derived from strain TAB I, and its

product was able to confer a virulent phenotype to Vir- mutants derived

from strains Tohama I and Wellcome 28, implied that these phase I strains

contained a . vir locus.

5.1.5. Restriction enzyme mapping of the vir region.

Digestion of pDMl with EcoRI produced four genomic fragments: El, E2,

E3 and an hybrid fragment formed by ligation of two BamHI to EcoRI

fragments. Hybridisation of JEcoRI-digested pRMB2 DNA with a pDMl probe 

showed that the non-contiguous EcoRI fragment of pDMl was derived from the 

E4 and E6 fragments of pRMB2. This fragment was therefore designated E4::6.

Restriction maps were compiled for clones pDMl and pRMB2, for the 

enzymes EcoRI, BamHI and Bglll. Clone pDMl contained two non-contiguous 

genomic DNA fragments of 3.9kb and S.Okb. The fact that the.latter fragment 

contained E3, indicated that a functional vir locus was encoded within this
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S.Okb region.

For comparison of a restriction map of pRMB2 with a published map of a 

clone (pUW21-26) containing the B.pertussis vir and fha loci (Stibitz et 

al., 1988a), see Figure 5.1. The two EcoRI fragments, E2 and E3, contained 

within the vir locus of pRMB2 appear to be of similar size to those 

described by Stibitz et al. (1988a). However, a small 0.3kb EcoRI fragment, 

which together with the two larger EcoRI fragments made up the vir locus 

described by Stibitz et al. (1988a), was not present in pRMB2 and did not 

appear to be necessary for complementation of BP347. Stibitz et al. (1988a) 

reported that the fha locus mapped close to the vir locus. Comparison of 

the restriction map of pRMB2 with that of clone pUW21-26 shows an 

homologous 15.2kb region encoding vir and the fhaB gene (E3, E2 and E6), 

but the remaining 10.9kb of pRMB2 (E5, E4 and El) has a different 

restriction pattern. The map of pUW21~26 shows restriction sites for Clal. 

However no restriction sites for this enzyme were found in clone pRMB2, 

confirming that the two clones contain a non-homologous region.

Hybridisation studies using the E3 fragment of pRMB2 as a probe showed

a 22kb Clal fragment for B.pertussis strains L84 I, Tohama I and TAB I, and

a slightly larger fragment (due to Tn5 insertion) for BP347. The

possibility that the differences in the restriction maps of clones pRMB2

and pUW21“26 had arisen as a result,of differences in the original strains

used to construct the genomic libraries (TAB I and Tohama I respectively)

was therefore eliminated. The 2.7kb EcoRI fragment was

contained within BamHI and Clal fragments of approximately 14kb and 22kb
which was in agreement with 

respectively in strain TAB ^ the map of the vir region

presented by Stibitz et al. (1988a)̂  mpliGx) ' that the genomic

insert of clone pRMB2 comprised a non-contiguous region of TAB I DNA. This
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Figure 5.1.

Restriction maps of the vir regions of clones pRMB2 and pUV21-26.

The restriction map of clone pRMB2 is compared with a recently published 

map of a clone, pUW21~26, which encompasses the B.pertussis vir and fha 

loci {Stibitz at al., 1988a).

The hatched area of pRMB2 represents the S.Okb region which is also 

contained in pDMl, and encodes the vir locus. Asterisks denote the 2.7kb 

EcoRI fragment which contains the site of Tn5 insertion in BP347. The 

shaded bar represents the region of homology between the two maps.

Stibitz et al. (1988a) used transposon mutagenesis of clone pUW21-26 to 

define the vir locus, the structural gene for FHA {fhaB) and genes that are 

possibly required for the synthesis and export of FHA {fhaA and fhaO- The 

direction of transcription has been determined for fha (Stibitz et al., 

1988a) and vir (Arico et al., 1989), as indicated by arrows.

E, EcoRI', B, BamHI; C, Clal.
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was confirmed by hybridisation analysis which showed that the Bg5 fragment 

of pRMB2 (which spans the junction between the regions showing homology and 

non-homology to pUW21-26) hybridised to two fragments of genomic DNA in 

B.pertussis strains L84 I, BP347, Tohama I and TAB I.

Complementation studies with Tn5 mutant BP353 (Fha-) provided further

evidence that pRMB2 shared homology with pUW21-26 only for the region up to 

and including the fhaB gene. The Tn5 insertion in BP353 was contained 

within the fhaA gene (Stibitz et al., 1988a). Clone pRMB2 was unable to

restore FHA activity to strain BP353, confirming that it did not encode the 

sequence necessary to complement the Fha- mutation (i.e. the fhaA gene).

5.1.6. Nucleotide sequence analysis of vir: homology with bacterial sensory 

transduction systems.

The nucleotide sequence of the vir locus, which was renamed bvg for

Bordetella virulence gene, has recently been determined (Arico et al.,

1989). Three ORFs were identified: bvgA, bvgB and bvgC, predicted to encode 

proteins of 23kD, 30kD and 102kD respectively. A series of non-polar 

insertion mutations generated in the bvg operon indicated that all three 

genes ibvgABC) were required for expression of virulence genes in 

B.pertussis (Arico et al., 1989).

Analysis of the deduced amino acid sequence identified a putative N- 

terminal signal peptide in BvgB, and a putative transmembrane region in 

BvgC. This suggested that BvgB was located in the periplasmic space and 

BvgC traversed the cytoplasmic membrane (Arico et al., 1989). The predicted 

gene products of bvgA and bvgC shared extensive homology with several two- 

component regulatory systems present in pathogenic and non-pathogenic 

bacteria (Arico et al., 1989). As described in Section 2.6, these systems
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consist of a sensor protein which responds to environmental stimuli and 

transduces signals to its cognate regulator protein, which in turn effects 

the response. These effector functions usually involve transcriptional 

regulation or some other cellular function. The family of sensor proteins 

share an homologous C-terminal transmitter domain, and the family of 

regulator proteins share an homologous N-terminal receiver domain (reviewed 

by Stock et al., 1989).

The B.pertussis system consisted of three components, one of which 

(BvgB) showed no homology to sensor or regulator proteins (Arico et al.,

1989). A similar three component system has been described for the uptake 

of hexose phosphates in E.coli (Weston and Kadner, 1988). The predicted 

BvgC polypeptide was unusual: the central portion shared homology with a

family of transmitter domains (with the region extending towards the N-

terminus sharing extensive homology with the FixL and VirA sensor proteins) 

however, the C-terminus of BvgC shared homology with receiver domains 

(Arico et al., 1989). The N-terminus of the predicted BvgA protein shared 

homology with receiver domains. The predicted C-terminal sequence of BvgA 

indicated that it belonged to the same subclass of response regulators as 

FixJ and UhpA, suggesting a similar role for BvgA as a transcriptional 

activator.

Arico et al. (1989) proposed a model for the mechanism of interaction 

of the bvg gene products (see Figure 5.2). Under normal conditions, the 

transmitter domain of BvgC activates BvgA by phosphorylation of the N~

terminal receiver domain. The phosphorylated BvgA protein effects its 

response by activating transcription of virulence genes. BvgB may exert its

effect by interacting directly with the N-terminus of BvgC, or by

inactivating an inhibitor of BvgC. The effect of modulators could be
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Figure 5.2.

Model for the mechanism of interaction of the bvg gene products.

This model is adapted from Arico et al. (1989). Nucleotide sequence

analysis of the vir (bvg) region encompassing the 2.5kb and 2.7kb EcoRI

fragments (E2 and E3 respectively), identified three tandemly arranged

genes, bvgA, bvgB and bvgC. The predicted bvgA and bvgC gene products share

extensive homology with a family of two-component regulatory proteins.

In this model, the transmitter domain of BvgC activates (by

phosphorylation) the N-terminal receiver domain of BvgA, which effects its

response as a transcriptional activator of B.pertussis virulence genes. The

inhibitory effect of modulators, such as MgSO and nicotinic acid, could be
4

mediated by an interaction with BvgB and / or the N-terminus of BvgC in the 

periplasm. The C-terminal receiver domain of BvgC may act by regulating the 

activity of the transmitter domain, or may play a similar role to BvgA in 

DNA binding and transcriptional activation.

T, transmitter domain; R, receiver domain.

om, outer membrane; p, periplasm; im, inner membrane.
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mediated by an interaction with BvgB and / or BvgC. The role of an 

additional receiver domain at the C-terminus of BvgC is presently unknown. 

Arico et ai. (1989) propose that it may be involved in regulating the 

activity of the transmitter domain of BvgC, or may play a role in DNA 

binding and transcriptional activation, similar to BvgA.

Other studies have shown that regulation of expression of B.pertussis 

genes occurs at the level of transcription: Nicosia and Rappuoli (1987),

Knapp and Mekalanos (1988), Melton and Weiss (1989), Miller et al. (1989) 

and Roy et al. (1989, 1990).

Nicosia and Rappuoli (1987) found that Vir- BP347 did not produce 

detectable levels of PT mRNA, which indicated that a functional vir {bvg)

gene was necessary for transcriptional activation of the ptx operon. Roy et 

al. (1989) constructed a B.pertussis strain which contained a chromosomal 

in-frame deletion mutation in bvgA. This strain (BP3703) was Vir-, which 

indicated that bvgA was required for the expression of virulence 

determinants in B.pertussis. A virulent phenotype was restored to BP3703 

when the wild-type bvgA gene was provided in-trans in clone pCR436. However 

this clone was unable to confer a Vir+ phenotype to Vir- mutant BP359 which 

contained a Tn5 insertion in bvgA. This suggested that the Tn5 insertion in 

BP359 had a polar effect on expression of bvgB and bvgC, and confirmed 

findings by Arico et al. (1989) that all three bvg genes were necessary for 

expression of virulence-associated factors in B.pertussis (Roy et al.,

1989). Strains of BP3703 {AbvgA) which contained CAT fusions to the

promoter region of fhaB and ptx were constructed. Transcription of both 

fhaB and ptx in BP3703 was significantly reduced which confirmed that BvgA 

was necessary for transcriptional activation of virulence-associated genes 

in B.pertussis (Roy et al., 1989). These authors also demonstrated that
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transcriptional activation of the B.pertussis fhaB gene in E.coli could be

achieved by overexpression of bvgA alone, which confirmed that bvgA encoded

a transcriptional activator.

Roy et al. (1990) examined the transcriptional regulation of the bvgABC

operon, and found that it was autogenously activated. Primer extension

analysis was used to map transcriptional initiation sites upstream of bvgA.

Two promoters were identified: a positively autoregulated bvg promoter
PI

located 90bp upstream of bvgA and a bvg promoter located 141bp upstream
P2

of bvgA. These authors proposed a model for the transcriptional

regulation of the bvg operon: under normal conditions the bvg promoter is
PI

activated by BvgA in conjunction with RNA polymerase, and transcription

initiation from the bvg promoter is repressed. Modulators may exert their
P2

effect by producing an inactive form of BvgA that no longer functions as a

transcriptional activator, which results in a loss of bvg promoter
PI

activity. Under modulating conditions the bvg promoter would be
P2

derepressed, which would result in a low level of expression of the bvg 

operon (Roy et al., 1990).

The mod mutations described by Knapp and Mekalanos (1988) which 

resulted in constitutive expression of virulence determinants in 

B.pertussis may have been located in the bvgA gene.
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Section 5.2. REGIONS HOMOLOGOUS TO M i  M  THE OTHER BORDETELLA SPECIES.

Hybridisation analysis showed that the vir locus was strongly conserved 

in B.pertussis, B.parapertussis and B.broncbiseptica, however although 

B.avium chromosomal DNA showed homology to the vir locus, a markedly 

different restriction pattern was observed for the homologous fragments.

5.2.1. The vir region of the mammalian Bordetella species.

When pRMB2, and the more specific E3 fragment, were used as probes 

against JFcoifl-digested Bordetella DNA, B.pertussis, B.parapertussis and 

B.broDchiseptica showed similar patterns of hybridisation. This provided 

evidence that the latter two species contained a structural gene for vir.

No detectable physical difference, such as inversion or deletion, was 

found with JFcoRI-digested DNA from virulent and avirulent phase variant 

strains of both B.pertussis {strains 44122/7R and L84) and B.broncbiseptica 

(strain FW5) when probed with pRMB2 or pDM30. This is consistent with 

another report which showed that phase variation in one series of avirulent 

variants of B.pertussis strain Tohama arose by spontaneous frame-shift

mutations within the 2.7kb EcoRI region of the vir locus (Stibitz et al., 

1989). However with phase variant 11615, the 2.5kb EcoRI fragment, which is 

also part of the vir locus, was replaced by a higher molecular weight band. 

The avirulent phenotype of this strain may have arisen as a result of an 

insertion into, or rearrangement of, this region. This might suggest that 

not all phase variants necessarily arise by spontaneous frame-shift

mutations.

When pRMB2 was used as a probe against Ecoifl-digested genomic DNA,

additional high molecular weight bands were detected, which differed in
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size for each of the three species. Similarly, with BamHI-digested genomic 

DNA, additional bands of 4.2kb, 6.4kb and 7.5kb were detected in samples of 

B.pertussis, B.parapertussis and B.bronchiseptica respectively. The most 

likely explanation is that these additional bands, which were not detected 

with the vir-specific E3 probe, had arisen as a result of hybridisation of 

pRMB2 to a region elsewhere in the Bordetella chromosome. The possibility 

that these additional bands represented homologous plasmid DNA sequences 

was ruled out: they were not detected on hybridisation with a pLAFRI probe.

The E3 probe hybridised to a similar 2.7kb fragment in samples of 

jEco/fJ-digested B.pertussis and B.parapertussis DNA. However, the homologous 

band exhibited in samples of B.broncbiseptica DNA was marginally larger. 

This was more obvious when digested genomic DNA was probed with E3:

the band detected in samples of B.pertussis was 14kb, whereas samples of 

B.parapertussis and B.broncbiseptica exhibited bands of 16kb. This implied 

that the structure of the vir region in the latter two species differed 

from that of B.pertussis. A recent report by Monack et al. (1989b) has also 

indicated that the vir loci of B.pertussis and B.broncbiseptica are 

structurally different. These authors, in agreement with this study, showed 

that the 2.5kb and 2.7kb EcoRI fragments of the two loci appeared to be 

similar. However, a number of restriction fragment length polymorphisms 

were found between the flanking regions of the B.pertussis and 

B.broncbiseptica vir loci (Monack et al., 1989b). A restriction map of the 

vir region in B.broncbiseptica showed that the vir locus was contained in a 

23.5kb BamHI fragment (Monack et al., 1989). From hybridisation data, this

BamHI fragment for B.broncbiseptica strains FW5, ASl and 276 was estimated 

to be only 16kb. However since this size (16kb) was calculated from a graph 

of migration distance plotted against molecular size of lambda DNA markers,
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it may have been an underestimation of the actual size.

When BamlTI-digested genomic DNA was probed with pRMB2, the end regions 

of the genomic insert of pRMB2 hybridised to genomic fragments of 12kb and 

14kb for samples of B.pertussis, but fragments of 6.5kb and 16kb for 

samples of B.parapertussis and B.broncbiseptica. This finding agrees with 

other work which has shown that B.parapertussis and B.broncbiseptica share 

a very close genetic relationship with B.pertussis showing only limited 

divergence (Musser et al., 1986; Arico and Rappuoli, 1987; Gross et al.,

1989) .

Recent studies have shown that the vir loci of B.parapertussis and 

B.broncbiseptica were able to transr-activate the ptx operon, which 

indicated that the vir locus contained in both species was functional 

(Gross and Rappuoli, 1988; Lee et al., 1989; Monack et al., 1989a).

5.2.2. Homology to vir in B.avium strains.

J?coi?X-digested DNA from B. avium strains showed a markedly different 

hybridisation pattern to the other Bordetella species. Hybridisation of DNA 

from virulent B.avium strains with pRMB2 produced bands of 17kb, 5.3kb and

a faint band of 4.9kb; E3 hybridised only to the 4.9kb fragment. The lower 

intensity of the 4.9kb band in the virulent B.avium samples, compared to 

homologous bands in the B.pertussis samples, suggested that the 4.9kb EcoRI 

fragment in virulent B.avium strains shared only partial sequence homology 

with E3. Additional bands present in some of the samples when pRMB2 was 

used as a probe also hybridised to a pLAFRI probe, which indicated that 

these strains probably contained plasmids with sequences homologous to 

pLAFRI.

Avirulent B.avium strains (GOBLllO and GOBL122) produced a slightly
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different hybridisation pattern. The pRMB2 probe hybridised to genomic 

EcoRI fragments of 17kb and 5.2kb; E3 hybridised to the 5.2kb fragment. As 

it was not known whether these avirulent B.avium strains were derived from 

virulent strains, it was not possible to correlate the physical changes 

with phenotypic changes. Strains GOBLllO and GOBL122 were described as

"B.avium-like", and may have been assigned to the species on the basis of

phenotypic characteristics. The differences in hybridisation patterns may 

therefore be associated with a divergence of strains GOBLllO and GOBL122 

from typical B.avium strains. Additional information is required before any 

conclusions can be drawn from the differences observed between the virulent 

and avirulent strains analysed.

Only one B,avium strain (4091) was further analysed with BamHI: with

pRMB2 as a probe a single band was detected, which confirmed the 

distinctiveness of B.avium from the other Bordetella species. No

hybridisation to the E3 probe was detected in the BamBJ-digested B.avium

sample, however since the E3 probe only produced a faint band in EcoRI- 

digested samples, perhaps a longer exposure to autoradiograpy would have 

been necessary to detect hybridisation.

The distinctiveness of B.avium from the other Bordetella species was

not entirely unexpected. Other studies have also indicated that B.avium

does not share a close genetic relationship with the other Bordetella

species (Kersters et al., 1984; Musser et al., 1986; see also Section

2.1.4). Gentry-Weeks et al. (1988) provided preliminary evidence that in

response to MgSO , B.avium undergoes the phenotypic modulation
4

characteristic of the other bordetellae, indicating that B.avium may have a 

functionally similar vir locus. B.avium produces the fewest virulence- 

associated factors and, as suggested by Wardlaw and Parton (1988a), may not
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therefore suffer any major disadvantage by their constitutive expression 

under all growth conditions. Further studies are necessary to establish if 

B.avium has a functional vir locus. It would be of interest to clone and 

characterize the sequences of B.avium DNA showing homology to the 

B.pertussis vir probes, to determine whether they could encode a similar 

functional vir locus.

Section 5.3. COMPLEMENTATION OF AVIRULENT PHASE VARIANT STRAINS.

5.3.1. Complementation of an avirulent phase variant B.pertussis strain.

In-trans, the vir locus encoded by pDMl was able to restore expression 

of virulence factors to B.pertussis L84 IV. This was consistent with a 

report by Brownlie et al. (1988) which indicated that pRMB2 was able to 

trans-complement the strain. These findings confirmed that loss of 

expression of virulence determinants in the phase IV strain had arisen as a 

result of mutational events in the vir locus. Hybridisation studies 

indicated that there was no detectable physical change in the vir region of 

strain L84 IV, which suggested that the avirulent phenotype of this strain 

may have arisen by a spontaneous frame-shift mutation similar to that 

described by Stibitz et al. (1989). The mutation described by these authors 

was contained in a 1.4kb Sail fragment, and the E3 fragment in clones pDMl 

and pRMB2 encompassed this region.
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5,3.2, Complementation of avirulent phase variants of B.broncbiseptica.

Hybridisation studies demonstrated that B.broncbiseptica contained a 

vir region homologous to that in B.pertussis. The expression of virulence 

determinants in B.broncbiseptica is affected by phase variation (Lax, 1985) 

and it was of interest to determine whether avirulent phase variant strains 

of B.broncbiseptica also arose as a result of genotypic changes in vir.

Clone pDMl restored a Vir+ colonial morphology (i.e. small, domed) to 

B.broncbiseptica strains ASl III, FW5 III and 276 III, whereas 

transconjugants containing the control plasmid (pLAFRI) retained a Vir- 

colonial morphology (i.e. large, flat). This demonstrated that phase 

variation in B.broncbiseptica also occurs as a result of mutations in vir.

Since a comparison of phase I with phase III B.broncbiseptica FW5 DNA 

revealed no detectable physical alterations in the vir region (Section 

4.3.1), the avirulent phenotype of this strain imay have, arisen as a result 

of a frame-shift mutation similar to that described by Stibitz et al. 

(1989) for B.pertussis. The vir regions of B.broncbiseptica strains ASl III 

and 276 III were not investigated. In a recent study, Monack et al. (1989b) 

examined the vir regions of fifteen avirulent phase variant 

B.broncbiseptica strains: nine contained no obvious physical change and may 

have arisen as a result of a single frame-shift mutation, however the 

remaining six strains contained deletions (ranging in size from 50bp to 

500bp). These findings supported hybridisation data which indicated that 

the avirulent phase variant B.pertussis strain 11615 had arisen as a result 

of a rearrangement in vir. Therefore it appears that the genomic changes in 

vir that give rise to avirulent phase variants, can occur by a variety of 

mechanisms in both B.pertussis and B.bronchiseptica.

The B.pertussis vir locus encoded by pDMl restored a Vir+ colonial
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morphology to the three Vir- phase variant B.broncbiseptica strains, which

demonstrated that the vir loci from the two species function in a similar
VoriobLsL-

manner. However, haemolysin activity was detected in a^percentage of

the phase III B.broncbiseptica pDMl transconjugants. This suggested that 

perhaps the B.pertussis vir gene product was only weakly active in 

B.broncbiseptica, such that only a low level of expression of virulence 

determinants was restored. This hypothesis was substantiated by the finding 

that both the Hly+ and Hly- pDNl transconjugant colonies were positive in â  

qualitative AC assay, which indicated that expression of AC had been 

restored to all the pDMl tranconjugants. It would have been of interest to 

determine the AC activity quantitatively, and compare the levels between 

phase I strains, phase III strains and phase III (pDMl) transconjugant 

strains. FHA activity was also restored to the three B.broncbiseptica phase 

III strains by pDMl. However, the haemagglutination titres for the 

B.broncbiseptica phase III (pDMl) strains were much lower than those for 

B.pertussis phase I strains. Since the corresponding B.broncbiseptica phase 

I strains were not included in these assays, no definite conclusions could 

be drawn. However, these preliminary experiments suggested that expression 

of FHA in B.broncbiseptica phase III strains was also restored to only a 

low level by pDMl.

The above findings agreed with work by Monack et al. (1989b) which 

showed that the B.pertussis vir locus could fraas-complement Vir- phase 

variant B.broncbiseptica strains, but produced lower levels of HLY 

expression. However, these authors also observed a similar effect when the

B.broncbiseptica vir locus was provided in-trans in both Vir+ and Vir-

B.broncbiseptica strains. Monack et al. (1989b) suggested that the lower 

levels of vir-mediated activity in these strains resulted from a copy
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number effect, and proposed that multiple copies of vir in B.broncbiseptica 

resulted in increased levels of vir-encoded polypeptides which caused 

decreased levels of transcriptional activation of the vir operon i.e. 

sensitive autoregulation. Thus the mechanisms of regulation of expression 

of virulence determinants in the two species may be different.

Since the B.broncbiseptica vir locus is physically different from that 

of B.pertussis, and appears to be regulated in a different manner, it would 

be of interest to clone and perform extensive molecular and genetic 

analysis of the B.broncbiseptica vir locus, to elucidate the mechanisms of 

its transcriptional activation. Examination of the vir region of avirulent 

phase variant B.broncbiseptica strains should provide further information 

on the molecular mechanisms of phase variation in B.broncbiseptica.

Section 5.4. THE EFFECT OF MULTIPLE COPIES OF flB ON THE RESPONSE TO 

MODULATORS.

In response to modulators, expression of multiple virulence 

determinants in B.pertussis is concomitantly lost in an effect mediated by 

vir. Vector pLAFRI has a copy-number of 4 to 5 in E.coli (Friedman et al., 

1982), and it was of interest to determine whether the presence of multiple 

copies in-trans of the cloned vir locus in B.pertussis would affect the 

response to modulators.

Expression of HLY was lost from B.pertussis strains L84 I, Tohama I, 

BP347 (pRMB2) and BP347 (pDMl) when grown at low temperature. Therefore the 

multiple copies of vir present in the latter two strains had no detectable 

effect on the overall response. Melton and Weiss (1989) examined the levels
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of transcription of vXr-regulated genes in B.pertussis at various 

temperatures, and found a direct relationship between temperature and 

levels of mRNA. However, the levels of transcription were also reduced at 

low temperatures for non-vir-regulated genes, which suggested that the low 

level of expression of virulence genes at low temperatures was 

coincidental, and not directly mediated by vir.

In response to nicotinic acid, HLY activity was lost from B.pertussis 

strain L84 I, but not from strains Tohama I, BP347 (pRMB2) and BP347

(pDMl). The observation that some B.pertussis strains appear to be less 

responsive than others to modulation by nicotinic acid has also been 

reported by McPheat et al. (1983), Armstrong and Parker (1986) and Melton 

and Weiss (1989).

Although BP347 was derived from strain Tohama, the vir locus encoded by

clones pRMB2 and pDMl was from strain TAB, which responds to modulation by

nicotinic acid (Brownlie et al., 1985a). These findings suggested that the 

lack of response of some strains to nicoti^7/c acid modulation was probably 

not associated with the vir gene product. Perhaps some strains have

structurally different outer membranes which renders them resistant to

penetration by nicotinic acid.

Melton and Weiss (1989) demonstrated that modulation by MgSO
4

eliminated transcription of vir-regulated genes, and reduced transcription 

of vir itself, which suggested that global regulation of expression of 

virulence genes was obtained by modifying expression of vir. These findings

were consistent with the possible mechanisms of vir regulation presented by 

Arico et al. (1989) and Roy et al. (1990), as described in Section 5.1.6. 

In view of these findings, it would be of interest to determine in a

qualitative assay whether multiple copies of vir in-trans in clones pDMl
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and pRMB2 had any effect on MgSO -induced modulation in B.pertussis.
4

Section 5.5. EXPRESSION IN E.COLI OF 7JB-REGULATED B.PERTUSSIS GENES.

5.5.1. Expression in E.coli of FHA.

At this stage in the study the restriction map of pRMB2 had not been 

determined, therefore a haemagglutination assay was performed on E.coli DHl 

(pRMB2) to provide preliminary information as to whether the genomic insert 

of pRMB2 encompassed both the vir and fha loci. No haemagglutinating 

activity was detected, which implied that FHA was not present on the

bacterial cell surface.

Stibitz et al. (1988a) assayed production of B.pertussis FHA in E.coli 

by colony blots with anti-FHA antiserum. Cosmid clones containing vir and 

the entire fha region (e.g. pUW21~26) directed the production of a

substance which was immunologically cross-reactive to FHA. However, cosmids

containing the fha region alone did not produce iFHA. These studies

demonstrated that vir could be expressed in E.coli without the use of a 

heterologous promoter, and confirmed the dependence on vir for expression 

of FHA in E.coli. Further analysis showed that inactivation by Tn-

mutagenesis of fhaA in pUW21-26 caused an apparent overproduction of FHA in 

E.coli (Stibitz et al., 1988a). A role was proposed for fhaA in being

involved in the association of FHA with the bacterial cell surface, and the 

assay used by these authors to detect FHA in E.coli measured production of 

extracellular FHA, which would not have been affected by inactivation of 

fhaA. Inactivation by Tn-mutagenesis of the fhaC region of clone pUW21-26 

eliminated the detection of iFHA in E.coli, which implied that fhaC was
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required for the proper export of FHA to the outside of the cell (Stibitz 

et al,, 1988a).

Comparison of the restriction map of pRMB2 with that of clone pUW21-26 

(see Section 5.1.5.) showed that pRMB2 contained the vir (fragments E2 and 

E3) and fhaB (fragment E6) genes, but not the fhaA and fhaC genes.

Therefore although pRMB2 contained the necessary sequence to induce

expression of fhaB, the FHA protein would not have been exported to the

outside of the cell and assembled by E.coli due to the lack of the fhaC and

fhaA genes respectively. Perhaps immunologically-reactive FHA polypeptides 

would have been detected in a cell lysate of E.coli DHl (pRMB2). It would 

be of interest to perform Northern blot analysis of E.coli DHl (pRMB2) with 

vjz~-specific and fhaB specific probes to determine whether the two loci are 

transcribed by E.coli.

5,5.2. Expression in E.coli of AGGs 2 and 3.

Since Vir- BP347 was derived from strain Tohama (ST 1,2), a preliminary 

analysis was performed to determine whether pRMB2 could restore expression 

of these AGGs to BP347. Expression of the non-fimbrial AGG 1, but not the 

fimbrial AGG 2, was restored to BP347 by pRMB2. However, further analysis 

indicated that the Tn5 mutant BP353, which was generated at the same time 

as BP347, was negative for AGG 2 expression. This implied that the Tohama- 

derived strain, BP338, which was used to create these Tn mutants (Weiss et 

al., 1983) had undergone serotype variation, such that even in the presence 

of vir production of serotype 2 fimbriae was not detected. The fijn2 gene 

encoded by pIL22 was derived from strain Wellcome 28 (ST 1,2,3) (Livey at 

ai., 1987) and was therefore presumed to contain a functional fim2 gene.

The ability of the vir locus encoded by pRMB2 to frrans-activate the
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fim2 gene cloned in a compatible plasmid in E.coli, was assayed by slide 

agglutination with "Preston 2" antiserum. No agglutinating activity was 

detected. This was not entirely unexpected, since a positive reaction would 

have required that the ST2 subunit was secreted by E.coli, and assembled on 

the cell surface in the proper conformation, and in sufficient density for 

bivalent antibody to cross-link two bacteria.

Using lysed whole-cell samples, production of the ST2 fimbrial subunit 

in E.coli JA221 (pIL22, pRMB2) was assayed by ELISA. An immunoreactive 

product was detected with polyclonal "Preston 2" antiserum, but not with 

monoclonal Ag2A antiserum. However, the fact that the E.coli negative 

control strains JA221 (pRMB2) and JA221 (pDMl) also reacted positively with 

the "Preston 2" antiserum implied that an antigen other than the ST2 

fimbrial subunit was being detected in all three E.coli samples.

When the SDS-PAGE protein profile of E.coli JA221 (pIL22, pRMB2) was 

compared with profiles of the control E.coli strains containing pIL22 alone 

or pRMB2 alone, no additional polypeptide which may have been due to 

production of the ST2 fimbrial subunit was detected. A prominent 

polypeptide which was present in samples of E.coli strains JA221 (pIL22,

pRMB2) and JA221 (pIL22) was presumed to be encoded by vector pBR328.

Immunoblot analysis with "Preston 2" antiserum failed to detect 

production of the ST2 fimbrial subunit protein, or precursor protein, in 

the E.coli strain which contained both the vir and fim2 clones. In all 

three E.coli samples an immunoreactive polypeptide of 35kD was detected, 

which confirmed the ELISA cross-reactivity of "Preston 2" antiserum with 

proteins native to E.coli.

Assuming that the vir locus encoded by pRMB2 was functional in E.coli, 

there are several reasons which may explain why immunoreactive ST2 fimbrial
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subunits were not detected in E.coli JA221 (pIL22, pRMB2). For example, the 

mRNA or polypeptides produced may have been unstable, or the polypeptides 

may have been produced with a different conformation to the wild-type ST2 

fimbrial subunits.

Walker et al. (1990) obtained a high level of expression in E.coli of 

the B.pertussis ST2 fimbrial subunit from a subclone of pIL22. Expression 

of the fim2 gene was under the control of lambda promoters and an E.coli 

translational initiation region. Expression of fim2 was best detected in 

Ion protease and heat shock protein deficient E.coli strains. Although the 

ST2 fimbrial subunit was transported across the inner membrane, no fimbriae 

were detected on the surface of the E.coli cells, which suggested that the 

assembly in E.coli of native ST2 fimbriae may require additional components 

(Walker et al., 1990).

Northern blot analysis of E.coli containing pIL22 and pRMB2, with a 

fim2 specific probe would provide valuable information as to whether the 

fim2 gene is trans-activated by vir.

Three pIC20H derived subclones of pDMl (pDM623, pDM30 and pDM62) were 

introduced into E.coli DHl containing the fimJ gene (encoded by p26). 

Production of the ST3 fimbrial subunit in these three E.coli strains was 

assayed by immunoblotting with "Preston 3" antiserum. No immunologically 

reactive polypeptides were detected. Clone pDM623 contained the entire 

bvgABC region (fragments E2 and E3) plus the 2.8kb BatnHI to EcoRI fragment 

upstream of E2. Miller et al. (1989) demonstrated that the entire bvg 

operon was required for trans-activation in E.coli of the fhaB gene, 

therefore clone pDM623 would have been the most likely to have induced 

expression of the fim3 gene. Clone pDM30 contained only the 3' portion of 

the bvgC gene (fragment E3), and would not have been able to trans-activate
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transcription of fimJ. Clone pDM62 contained bvgA, bvgB and the 5’ region 

of bvgC (fragment E2) plus the 2.8kb BamHI to EcoRI fragment upstream of 

E2.

The genomic inserts of clones pDM62 and pDM623 were cloned in pIC20H in 

the same orientation as the lac promoter. In these clones, it is possible 

that the bvgA gene was overexpressed, although the 2.8kb region between the 

vector promoter and the start of the bvgA gene may have prevented this. Roy 

et al. (1989) demonstrated that overexpression of bvgA alone was sufficient 

to trans-activate fhaB in E.coli. If BvgA was overproduced in E.coli 

strains containing pDM62 or pDM623, it was apparently insufficient to 

trans-activate fimS, as determined by immunoblot analysis. Northern blot 

analysis would provide further information as to whether fim3 is trans­

activated by vir in E.coli.

It would be of interest to clone the E2 fragment (which contains bvgA) 

and the E2 plus E3 fragments {bvgABO into vector pIC20H, to determine vir 

activity in E.coli under the transcriptional control of the lac promoter.

5.5.3. Expression in E.coli of B.pertussis AC.

Introduction of vir ±n-trans into E.coli CAA8306 harbouring the cloned

B.pertussis cya gene had no marked effect on expression of AC enzymic 

activity. Both pLAFRl-derived and pIC20H-derived vir clones failed to 

activate production of AC,

In agreement with work by Brownlie et al. (1988) and Rogel et al. 

(1989), calmodulin-responsive AC enzymic activity was produced from clones 

pRMB3 and pRMB9, which both contained the B.pertussis cya gene under the 

transcriptional control of the lac promoter of vector pIC20H. These 

findings indicated that it was possible to express AC enzymic activity in
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E.coli. Clone pRMB12 also contained the cya gene cloned in pIC20H in the 

same orientation as the lac promoter, but did not produce significant 

levels of AC enzymic activity in E.coli CAA8306. This may have been because 

the genomic insert of pRMB12 contained sequence 5' to the start of the 

protein coding region (see Figure 4.34).

In conclusion, the cloned vir locus in-trans in E.coli was unable to 

induce expression of the B.pertussis fhaB, fim2, fim3 and cya genes. It is 

now known that vir activates expression of virulence genes at the level of 

transcription, therefore Northern blot analysis with virulence-gene 

specific probes would confirm whether any of the aforementioned genes are 

trans-activated by vir in E.coli.

Miller et al. (1989) and Roy et al. (1990) were unable to detect vijr- 

dependent expression of ptx in E.coli. The failure to detect in E.coli vir- 

dependent trans-activation of B.pertussis virulence genes other than fha, 

suggests that the regulatory mechanism for fha differs from that of the 

other B.pertussis vir^regulated genes. In addition to vir, perhaps other 

factors are required for transcriptional activation in E.coli of virulence 

genes such as ptx, cya and fim. Genetic analysis of the promoter regions of 

these genes is necessary to determine the cis-acting domains required for 

transcriptional activation.

Roy et al. (1990) suggested that due to the close proximity of the fhaB 

and bvgA promoter regions, the bvgABC operon may have originally evolved to 

regulate expression of the fha gene. Other virulence genes may later have 

found it advantageous to integrate trans-activation by vir into their cis- 

acting mechanisms for transcription.
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