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N K natural k iller
N RIg norm al rabbit immunoglobulins
N SIg norm al sheep immunoglobulins
NTA nitrilotriacetate
P probability  o f significance
p97 m elano-transferrin
PBS phosphate buffered saline
PDB phorbol dibutyrate
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PG  prostaglandin
PHA phytohaemagglutinin
p i  isoelectric point
PIH  pyridoxal isonicotinoyl hydrazone
PIP-PD E polyphosphoinositide phosphodiesterase
PKC protein  kinase C
PM A phorbol m yiistate acetate
PM SF . phenylm ethyl sulphonyl fluoride
R a-M L F t rabbit antim ouse liver ferritin
R a-M S F t rabbit antim ouse spleen ferritin
rpm  revolutions per m inute
RPM I R osw ell P ark  M em orial institu te  (m edium  num ber

1640)
S- Sepharose 4B coupled to-
S a -H T f sheep antihum an transferrin
sat. saturation
SD standard deviation from  the m ean
SDS sodium  dodecyl sulphate
T  X -100 Triton X  100 
TCA trichloroacetic acid
TEMED N ,N  5^’,N*-tetramethylethy lenediam ine
T f  transferrin
TfR  transferrin  receptor
T i antigen receptor
T yr tyrosine
UTR untranslated region
v/v volum e per volume
w /o w ithout
w/v w eight per volume
Â  Angstrom
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S U M M A R Y

It is w ell docum ented that iron deficiency affects the function of 

lym phocytes because this essen tia l elem ent is requ ired  by  these cells. 

H ow ever, the w ay that lym phocytes respond to h igh  levels o f iron is not 

fully  understood. R eports o f an increased  incidence o f infection and 

neoplasia am ong iron-overloaded patients m ight indicate that excess iron 

causes depression o f specific im m une responses in  these patients. The 

broad  ob jec tive  o f  these  study  w as therefo re  to  in v estig a te  how 

lym phocytes react to different degrees o f extracellular iron availability.

Iron uptake by proliferating m ouse lym phocytes from  transferrin 

(Tf) saturated to different degrees w ith  iron show ed a gradual increase at 

saturations below  com plete saturation of the pro tein . The uptake rose 

sharply w hen non-T f bound iron was present in  the m edium  and the ratio 

o f iron uptake to iron  available increased. The pro liferative capacity of 

these cells assayed alongside iron  uptake was low  at low  T f saturations 

and an increased  rate  o f transform ation  w as associated  w ith  increased 

percentage o f saturation o f T f w ith  iron. W hen saturation  exceeded the 

binding capacity o f the protein, proliferation decreased and at high levels 

o f iron  it w as reduced  below  con tro l level. F erric  n itrilo triaceta te  

(FeN T A ) w as found  to  donate  very  large  am ounts o f iron  to  cells 

com pared to T f bu t d id  no t prom ote pro liferation  and  w hen present in 

high am ounts caused inhibition. In contrast ferric pyridoxal isonicotinoyl 

hydrazone (FePIH ) w hich donated iron  to  cells at a  slightly  h igher rate 

than T f was found to support proliferation as efficiently  as Tf.

A  study  has been  m ade  o f  in tra ce llu la r  ev en ts  in  the iron
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m etabolism  o f proliferating m ouse lym phocytes to clarify the relationship 

betw een  iron  uptake and in tracellu lar iron m etabo lism  in  these cells 

cultured w ith  different iron carriers and to relate th is to their ability to 

prom ote proliferation. This involved iron chelation, im m unoprécipitation 

and u ltrafiltra tion . In  cells cu ltu red  w ith  FeN T A , iro n  w as found 

predom inantly  in  an insoluble non-Ferritin  (Ft) m acrom olecular form , 

w hile in  the cells cultured w ith FeT f or FePIH  the largest proportion of 

iron w as found  in  the in term ediate m olecular w eigh t fraction , w hich 

probably represents iron being used to form  enzym es. The cells showed 

no m arked increase in  synthesis o f F t irrespective o f the form  o f iron 

present. M ouse lym ph node cells were also found to contain endogenous 

Tf. Synthesis o f T f w as found in  in  vzvo-stimulated lym phocytes, and 

m acrophages w ere found to be the m ost active cells in  synthesising this 

protein.

C om parable studies o f the e ffec t o f d iffe ren t iron  carriers on 

cellu lar p ro lifera tion  w ere perform ed w ith hum an  lym phocytes and a 

related  cell line , the T -lym phoblasto id  C C R F-C E M  line. G enerally  

hum an lym phocytes gave sim ilar results to m ouse cells except w ith FePIH 

w hich was found to be less effective than w ith m ouse cells. In  addition, 

the presence o f non-T f bound iron in the form  o f FeN TA , bu t not FePIH, 

caused a decrease in  CD 4/CD 8 ratio , due m ain ly  to  depression  o f the 

proportion o f CD4+ cells. H ow ever unlike norm al cells CCRF-CEM  cells 

did  n o t show  any d ifference in  their p ro liferative activ ity  at different 

saturations o f T f and w ere able to achieve good proliferation  w hen high 

levels of non-T f bound iron in the form  of FeN TA  or FePIH  w as present 

in  the culture m edium . These cells were also found to have the abihty to 

m ake their ow n Tf.

Unlike Tf, Lf, the other m em ber o f the T f fam ily did not have any
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effect on proliferation o f stim ulated hum an lym phocytes w hether added in 

the (apo) or loaded from . H ow ever, in  the presence o f excess non-T f 

bound iron, apoL f increased the ability of these cells to proliferate.

T h e re fo re  th e  m a in  c o n c lu s io n  o f  th is  s tu d y  is  th a t  th e  

p re sen c e  o f  c o n ce n tra tio n s  o f  iro n  ab o v e  th e  lev e l th a t sa tu ra te s  a ll 

t r a n s fe r r in  p re s e n t  in  th e  m e d iu m  in h ib i ts  p r o l i f e r a t io n  o f  

ly m p h o c y te s , a n d  p re fe re n tia l ly  a ffe c ts  th e  h e lp e r  su b se ts . I t  

seem s lik e ly  th a t  so m e  m ec h an ism  fo r  u p tak e  o f  u n b o u n d  iro n  in to  

th ese  ce lls  m a y  e x is t re su ltin g  in  to x ic  co n seq u en ces.
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1 .1 .1  R ole  o f  iron in living organism s

Iron, is the second m ost com m on m etal in the earth 's crust and an 

invariable essen tia l constituent o f all living organism s w ith  possibly the 

exception o f the lactobacilli (Archibald, 1983).

L ike o th er tran sition  m etals, iron  is an im portan t b io lo g ica l 

cata lyst. B ecause  it  possesses unfilled  d  a tom ic orb ita ls, iron  has 

ox idation  sta tes vary ing  from  -2 to +6, but norm ally  it exists in  the 

equ ilib rium  be tw een  the +2 and +3 oxidation states, an equ ilib rium  

w hich  is very  sensitive  to both  ligation and pH  (H ider, 1984). T hese 

changes in  o x id a tio n  states invo lv ing  one e lec tro n  a llow  iro n  to  

coordinate  e lec tron  donors and play a crucial role in  m any b io log ical 

processes requiring oxidation and reduction.

T he th e rm o d y n am ica lly  stab le  state o f iron  is Fe^^, b u t at 

c o n c e n tra tio n s  g re a te r  th an  10'^^ M , w hich  is the  eq u ilib rium  

concentration  o f the ion at neutral pH, uncom plexed Fe^^ ions are very 

read ily  hyd ro lysed  and polym erised to form  essentially  insoluble ru st

like, ferric hydroxides and oxyhydroxide polym ers (M ay and W illiam s,

1980).

The evolu tion  o f organism s shows a long dependence on iron, and 

natu re  has developed  ra ther sophisticated iron chelating and transport 

system s to u tilize the m ineral as well as storage system s, though m any 

organism s are auxotrophic for Fe^^. M icroorganism s tend to u tilize sm all 

non-proteinaceous m olecules to ensure an adequate supply o f the m etal. 

B acteria have developed a very efficient apparatus fo r gaining access to



this elem ent, involving a group o f low m olecular w eight h igh  affinity 

chelating agents nam ed siderophores for sequestering and transporting 

iron  from  the surrounding  environm ent (N eilands, 1981). These are 

v ir tu a lly  fe rr ic  io n -sp e c if ic  lig an d s, and  u su a lly  ca tech o ls  or 

hydroxam ates. P lan ts a lso  syn thesise  and secrete  substances that 

augm ent iron  absorp tion  from  the ex ternal env ironm ent (F inch and 

Huebers, 1982),

In  m am m als, the  iron  b ind ing  functions are  m et by  m ore 

com plicated m olecules that form  reversible com plexes w ith  the m etal. 

T hese include a group o f very sim ilar iron-transport p ro teins called  

transferrins (Tfs) and two other proteins, ferritin  (Ft) and its lysosom al 

d eg rada tion  p ro d u ct haem osiderin  (H s), w hich  fu lfill the role  o f 

m ain tain ing  iron  in  an  available form , bu t w hich are essen tia lly  iron  

storage proteins. B eside the group o f iron transport and storage proteins, 

there are tw o o ther groups o f iron-containing proteins i.e. those w hich 

com plex  oxygen  and tran sp o rt it th roughou t the body , and  iron  

co n ta in in g  en zy m es. T here  are  da ta  show ing  the  ex is ten ce  o f 

siderophore-like low  m olecu lar w eight iron binding ligands w ith  high  

binding specificity fo r Fe^+ at neutral pH in mammaUan cells, w hich are 

preferentially  produced under conditions o f iron deprivation such as iron 

deficiency, anaem ia, or in pregnant w om en (Apte and Brow n, 1969), 

F em andez-P o l (1978) has iden tified  and partia lly  pu rified  a h igh ly  

specific iron-binding ligand from  a m utant o f SV-40 transform ed m ouse 

cells adapted to grow  in picolin ic  acid, w hich consists o f a peptide o f 

approxim ately 1.6 Kd.

In  a ll b io lo g ica l system s, iron  is a lw ays found  bound  to



com plexing agents. This is not only to perm it the use o f the elem ent in a 

w ide variety  o f m etabolic processes, bu t also to  p reven t its potentially 

de le terious e ffec t w hich  is exp ressed  in  the fo rm  o f  free  rad ical 

form ation. It is w ell know n that iron enhances the toxicity  o f oxygen free 

radicals (M cCord and Day, 1978; H alliwell, 1978). These free radicals 

are highly reactive and could be very harm ful to the host.

T here  is no  doubt tha t a lm ost all liv ing  ce lls , p rokaryotes, 

eukaryotes, aerobic, anaerobic, photosynthetic, and  nitrogen-fixing, 

cannot survive w ithout iron. Iron plays a crucial ro le  in  m odulating 

oxygen supply  and transport. M ost o f the p ro te ins responsib le  for 

oxygen binding (haem oglobin and m yoglobin) use iron  to enable them  to 

b ind  oxygen reversib ly , the few  exceptions be ing  found  in  certain  

m olluscs and arthropods, w hich use copper in haem ocyanin  as an oxygen 

carrier.

Iron  enables other haem -containing proteins to participate in several 

essentially biochem ical reactions w ith m olecular oxygen, such as transfer 

o f e lec tro n s in  ce llu la r  re sp ira tio n , the red u c tio n  o f  perox ides, 

oxygenation and hydrogenation  o f organic substances, as w ell as the 

tran sfe r o f  e lectrons be tw een  dehydrogenases and  various electron  

acceptors (G riffiths, 1987).

Iron is also present in a  num ber o f enzym es know n as iron-sulphur 

proteins, and through them  participates in a num ber o f redox reactions 

in v o lv e d  in  the  b io sy n th e s is  o f  s te ro id  h o rm o n es , o x ida tive  

phosphorylation  reactions, and in  non-redox reactions involved in the 

Krebs cycle and purine synthesis (Griffiths, 1987).



The process o f D N A  replication  depends on iron  through a non- 

haem  iron-containing enzym e, ribonucleotide reductase w hich catalyses 

the conversion o f ribonucleotides to deoxyribonucleotides, an essential 

step in D N A  synthesis (Reichard and Ehrenberg, 1983). Iron seem s not 

to participate as an electron carrier in the process o f D N A  synthesis, but 

helps to generate and stabilize the organic radical in term ediate  during 

catalysis (A tkin e t al., 1973), w hich is necessary fo r the activity  of the 

enzyme.

The to tal body iron content o f a m an of 70 Kg w eight is 

about 4 .2  g. H aem oglobin  norm ally  accounts fo r 74.3% , m yoglobin  

3.3% , hap tog lob in  and haem oglobin  0.2% , T f iron accounts for only 

0.07% , catalase 0.11% , cytochrom e C 0.08% , and the rem aining 16.4% 

is distributed betw een the proteins o f storage F t and H s (Beinert, 1973). 

This d istribu tion  o f  the  body  iron  rap id ly  changes in  pa tho log ica l 

disturbances such as iron deficiency and iron overload.

1.1.2 T h e  t r a n s f e r r in s :  g e n e r a l  p r o p e r t ie s ,
synthesis, and function

The transferrin  protein  fam ily consists o f a group o f evolutionarily 

and therefore structurally-related m etalloproteins, w hich are found only 

in the phylum  o f chordata. These are transferrin  (Tf), lactoferrin  (Lf), 

o v o tran sfe rrin  (o v o -T f), and  an o th e r one rec en tly  d isco v ered ; 

m elanotransferrin  (m elano-Tf). They are present and w idely distributed 

in num erous vertebrate  b io logical fluids (Feeney and K om atsu, 1966; 

A isen and Listow sky, 1980). They are m onom eric glycoproteins w hich



can reversibly b ind  tw o atom s o f per m olecule o f protein , so they 

m ay exist in the apo-, m ono-, and diferric forms.

P lasm a transferrin  carries iron and transports it from  the intestinal 

m ucosa  (site o f  absorp tion), the reticu loendo thelia l system  (site  o f 

erythrocyte catabolism ), and the liver parenchym al cells (site of storage) 

to  supply m ost body tissues w ith iron. The function o f the o ther related 

p ro tein  lac to ferrin  rem ains unclear, and there is little  ev idence o f an 

iron-transport ro le, but it m ay, like Tf, contribute to an tim icrob ial 

defences, O votransferrin  w as the first o f the group to be found in 1889 

(cited by W einberg, 1978) in eggwhite from which its nam e was derived.

1 . 1 . 2 . 1  T ransferrin

T he m ajo r c ircu la ting  iron  b ind ing  p ro te in  w as iso la ted  and 

characterised in 1946 by Schade and Caroline. The follow ing year, the 

pro tein  w as nam ed transferrin  and its physio logical im portance in the 

transport o f iron in  the circulation and also into the cell was confirm ed 

(Laurell and Ingelm an, 1947),

The to tal am ount o f T f in m an has been estim ated to be 

about 240 m g/K g body weight. The norm al blood concentration of T f is 

about 30 p-M, at an iron saturation o f about 30%, w ith ha lf life o f about 

8-10 days. The concentration o f T f  in the serum  was found to increase 

progressively  throughout fetal life from  about 0.4 m g/m l at 10-15 weeks 

gestation  to  levels g rea ter than that o f the m other n ear term  (M organ, 

1964; B aker and M organ, 1969; W ong and M organ, 1973). T f is 

found throughout the extracellular fluids, being equally  divided betw een 

the in tra- and  extravascular com partm ent. It has also been  identified  in



lym ph (von Ehrenstein, 1956), pleural, ascitic, oedem a (Bogdanikow a 

and G rabow ski, 1972), and cerebrospinal flu id  (Parker et al., 1963). 

T f is p resen t in  the m ilk  o f certain  anim als such as the ra t (M organ,

1981), rabbit (Suard et al., 1983), and m ouse (Lee et al., 1987), cow 

(Sanchez et al., 1988). It has been  reported that in  m ilk o f som e of 

these anim als T f predom inates, rather than L f (see below).

T f is synthesised m ainly in the liver (M organ and Peters, 1971; 

M orton and T avill, 1977; M cK night et al., 1980). T f  cD N A  from  a 

hum an liver library  has been identified, characterised, and the T f gene 

m apped on hum an chrom osom e 3 (Yang et al., 1984). In the fetus T f 

synthesis m ay occur in the yolk sac (Yeoh and M organ, 1974) and the 

lung (G itlin  and B iasucci, 1969) as w ell as in  the liver. The new ly 

synthesised T f in  the hepatocyte contains an additional leader sequence of 

som e 19-20 am m o acids, w hich is split by proteolysis p rior to secretion 

o f the protein (Thibodeau et al., 1978; Jeltsch and Cham bon, 1982). It 

seem s that this la tte r step is crucial in the synthetic  p rocess, since 

inhibition o f proteolysis prevents secretion (Schreiber et al., 1979). The 

final step in T f synthesis is glycosylation, w hich takes place in the rough 

endoplasm ic reticulum  and the G olgi system  while en route to be secreted 

before it enters circulation. O m ission o f this step seem s to have little 

effect on the secretion process (Schreiber et al., 1979). The rate o f T f 

synthesis by hum an Uver was determ ined to be 10.5% o f the plasm a pool 

per day (W ochner cr a/., 1968; K em of and Baker, 1980).

O ther nonhepatic ceU types have the ability to m ake Tf. Synthesis 

o f  the  p ro te in  in  ex trah ep a tic  sites p ro b ab ly  co n trib u tes  to  the 

requirem ents o f specific tissues, w hich are separated from  plasm a by



blood barriers that m ay prevent adequate T f from  being  supplied by the 

circulation , in  inflam m ation , and in  iron  overload  (B ow m an et aL, 

1988).

Ovary cells (Thorbecke et al., 1973), as w ell as testis Sertoh cells 

(Skinner and G risw old, 1980; 1982; Skinner et al., 1984) w hich are 

responsib le  fo r secre tion  o f m ost o f the flu id  com ponen ts o f the 

sem iniferous tubules, synthesise a  Tf-like protein in vitro  differing from 

serum  T f only in  the glycan com position. H ow ever it has been suggested 

that in vivo, Sertoli cells are not actively engaged in  the synthesis of 

testicular T f and that upon in vitro  culm ring Sertoli cells activate the Tf 

gene (Lee et al., 1986). In  chicken, T f is syn thesised  by the oviduct 

and  its tran scrip tion  is induced  by  oestrogens (L ee e t al., 1978). 

F ib rob lasts m ake T f (S te cher and T horbecke, 1967b), as also do 

m acrophages (S techer and T horbecke, 1967a; H auran i e t al., 1973), 

and the m uscle (Levin et al., 1984). T f m R N A  has been  found at low 

levels in rat placenta, spleen, kidney, m uscle, and heart (A ldred et al., 

1987). It has also been  found in  new born, but no t adult intestine (Levin 

e t a l., 1984). T f has b een  described  as a fe ta l g row th  fac to r in 

em bryonic induction (E kblom  et al., 1983). It has also been identified 

as a m ajor protein synthesised and secreted by the m am m ary epithelium  of 

certa in  an im als, w h ich  is id en tica l to the  co rre sp o n d in g  p lasm a 

hom ologue except fo r a low er content o f sialic acid (B aker et al., 1968; 

Lee et al., 1987). It has been  reported  that in  late  lac ta tion  rat m ilk 

contains as m uch  as 4-5 m g/m l Tf. The regulation  o f  its synthesis and 

secretion is distinct from  that o f o ther m ilk proteins (Lee e t al., 1987), 

and exercised at the m R N A  level. The central nervous system  has been 

found to  m ake T f (B loch et al., 1985; D ickson e t al., 1985). It has
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been  found  n o t only in oligoendrocytes and g lia l ce lls , bu t also in  

neurons and  endo thelia l cells (M pllgârd e t aL, 1987), and has been 

d escribed  as acting  as a neuro trophic  fac to r (B each  et a l., 1983). 

N evertheless, the am ount of T f synthesised by ex trahepatic  sites is far 

less than  that produced by the liver. Idzerda et a l (1986) m easured T f 

m R N A  lev e ls  in  various tissues o f no rm al ra ts and  found  6500 

m olecules/cell in  liver, com pared w ith 114 in testis, 83 in  brain, 11 in 

spleen , and 5 in  kidney.

As fa r as lym phocytes are concerned, early  studies have shown 

that hum an  lym ph nodes (Prunier et al., 1964) and lym phocytic  cell 

lines (S techer and Thorbecke, 1967b) m ake Tf, It has been  show n that 

there  is an association  of rad io labelled  im m unoreactive  T f  w ith cell 

extracts o f peripheral m ononuclear cells at periods o f bo th  pre- and post

activation, although the m olecular w eight was no t determ ined (Soltys and 

Brody, 1970). M ore precisely the release o f T f has been dem onstrated to 

be from  OKT8+ subpopulations o f T -lym phocytes (B roxm eyer et al.,

1983). In  co n tras t to B roxm eyer's  fin d in g s , a n o th e r group  has 

dem onstrated the transcription and synthesis o f T f  by T-lym phocytes and 

localised T f  m RN A  specifically in T4+ helper-inducer hum an lym phocyte 

subsets, w hereas no T f m RNA was detected in T8+ or in  B-cells (hum  et 

a l . ,  1985; 1986). In  p e rip h e ra l b lo o d  m o n o n u c le a r  ce lls ,

approxim ately  2-5%  were seen having silver grains denoting T f m RNA 

h yb rid iza tion  by using  in situ  hybrid ization , and a fte r T -cells w ere 

isolated  by rosette form ation with sheep red b lood cells, 10-20% o f the 

T -cells transcribed  T f m R N A  (Bow m an and Yang, 1987). C loned Tf- 

independent lym phom a cell lines have been isolated and reported also to



produce a Tf-like activity (M orrone et al., 1988).

Childhood, pregnancy, iron  deficiency anaem ia, oestrogen, and 

adm inistration  o f  som e stero id  horm ones (B ow m an et al., 1988) are 

fac to rs w h ich  increase  p lasm a T f  levels. In  the  live r, oestrogen  

stim ulates T f synthesis by increasing m R N A  transcrip tion (M cK night et 

al., 1980), T f  synthesis by the testis appears to  be  horm one control- 

independent (Perez-Infante et al., 1986). H ow ever o ther workers have 

show n that there is a regulation  by various horm ones, such as FSH, 

testosterone, and insulin  (Skinner and G risw old, 1982), and that this 

m odulation  o f the T f expression  is exerted  on  a transcrip tional level 

(H u g g en v ik  et al., 1987). Iron  defic iency  is an  o ther factor that 

increases p lasm a T f concentration. A n iron defic ien t d iet induces an 

increase o f 2-4-fold in  serum  T f as w ell as in  T f m R N A  synthesis in the 

liver (M cK night e t al., 1980). In  isolated liver nuclei o f rats raised on 

low  iron  diet, a  2.4-fold increase in  T f transcrip tion activ ity  was found 

but w ithout physiologic effect since serum  T f iron binding capacity was 

unchanged  (Idzerda et al., 1986). H ow ever, the T f  m R N A  content o f 

o ther T f synthesising tissues such as brain, testis, spleen, and kidney 

rem ained  unchanged  (Idzerda e t al., 1986). It has been  reported that 

iron overload had  no detectable effect on T f gene expression (Tuil et al.,

1985). H ow ever, recently  Lescoat et al (1989) have dem onstrated that 

iron  overload decreases T f secretion and postu lated  that this is exerted 

through a translational control of the protein.

V ery  little  is know n abou t the  p rec ise  m echan ism  or site of 

catabolism  under norm al conditions. A  proportion (10% ) o f breakdow n 

has been  found  to be hepatic  as suggested  by iso la ted  perfused  liver
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(H offenberg et al., 1970). The catabohc rate o f p lasm a T f is 6-14% /day 

o f  p la sm a  p o o l (M organ , 1983) w h ich  co rre sp o n d s c lo se ly  to  

determ inations o f the rate o f T f synthesis.

The m ain  function o f T f is to transport iron  from  sites o f storage, 

absorption, and erythroid catabolism  to specialized iron  requiring cells, 

m ainly erythroid precursors for haem oglobin synthesis, and specialized 

iron storage cells (hepatocytes), w hich incorporate  iron  in to  ferritin. 

The role o f T f  in  cellular uptake is described in  detail in  section 1,1.5.2.

T f also donates iron to actively proliferating cells from  different 

origins. A ctivated lym phocytes are an exam ple o f these cells. A lthough 

the am ount o f  iron taken  up by those cells is re la tive ly  sm all, this 

process p lays an im portant role in  cell transform ation and division. One 

o f the m ost crucial roles o f iron  as far as those cells are concerned is its 

a sso c ia tio n  w ith  rib o n u c leo tid e  red u c tase  (B ro w n  e t a l., 1969). 

H ow ever, o thers have  suggested  tha t the T f  g row th  fac to r effect is 

exerted through acting as an electron acceptor fo r a transm em brane redox 

system  involv ing  N A D  (Crane e t al., 1985; N avas e t al., 1986). Sun 

et a l (1987) have  rep o rted  th a t the  N A D H  red u c tase  functions in  

association w ith  the TfR , w here T f attains its effects through m odulation 

o f transm em brane potential differences. The ro le  o f  T f  in  lym phocyte 

proliferation is described in  detail in  section 1.2.3.

1 . 1 . 2 . 2  L actoferr in

Lf, w hich appears to be restricted to m am m als, is another m em ber 

o f the T f fam ily . It is a lso  called  lac to transferrin  by  analogy to its 

p lasm a hom ologue. L f was first found in its m ost abundant source, m ilk
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(M o n treu il et al., 1960). Subsequently , L f has been  found  in  m ost 

m am m alian secretions, including bronchial, nasal, salivary, lachrym al, 

genital, and gastro  in testinal secretions, as w ell as in  sw eat, tears, 

and pancreatic ju ice  (Figarella and Sarles, 1975; A isen  and  L istow sky 

1980), so it is constan tly  bath ing  m ucous m em branes w hich  are 

vulnerable to  infection. L f is also found in neutrophils (B aggiolin i et 

al., 1970), m ore precisely in the specific (secondary) granules (Cram er 

et al., 1985; E saguy  et al., 1989). D u rin g  d e g ra n u la tio n  o f 

neutrophils, L f is released not only to the phagocyte vacuole but also to 

extracellular m edium . In  hum an plasm a, it is present in  m inute amounts 

(Bennett and M ohla, 1976). Wlaether L f plays any significant role in tlie 

transport o f iron  is not known. If  it does, the pathw ay is probably from 

p lasm a to re ticu loendo thelia l cells (M organ, 1980). L f  is a m ajor 

constituent o f m ilk  and hum an colostrum  contains h igh  concentrations, 

up to 15 m g/m l. L f in  hum an m ilk  is less than 5%  saturated  w ith iron 

(Lonnerdal, 1985). L f was also found in  am niotic flu id  (N iem ela et al., 

1989). P lasm a concentration o f L f is only about 1 jag/ml (B ennett and 

M ohla, 1976). Sykes et al. (1982) found tha t the  serum  L f level is 

h igher in  pregnancy than  in  norm al adult wom en. L f escapes digestion 

and any detrim ental effect o f the low  pH , as judged  by the large am ount 

o f the so-called coprolactoferrin daily excretion in  faeces (5-35 m g) (Spik 

and M ontreuil, 1966; Spik et al., 1982),

Like Tf, genes coding fo r hum an L f are located on the long arm  of 

chrom osom e 3 (Teng et al., 1987), w hile m ouse L f  genes lie on band 

q21-25 o f  chrom osom e 9 (Yang et al., 1984). H um an L f shows 59 and 

49%  sequence hom ology w ith hum an T f and hen  o vo -T f respectively  

(M etz-B  o u tig u e , 1984). O n the o ther hand , L f  show s m arked
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differences from  T f in  antigenic determ inants, tryptic pep tide patterns, 

isoelectric point, the disposition and com position o f the carbohydrate 

m oieties (see section 1,1.3), and finally L f has a m uch h igher affinity  for 

Fe^+ than that o f T f (A isen and Leibman, 1972).

L f  is found  to ta lly  or partially  com plexed to 80%  o f  lysozym e 

present in  m ilk probably w ith a ratio of 2 m olecules o f lysozym e to one of 

L f and it  com plexes also w ith som e sialyted glycopeptides o f unknow n 

role (M ontreu il e t a l., 1985). It is also found to be associated  w ith 

secretory  IgA  (W atanabe et al., 1984) by ionic in teraction, and to an 

an titryp tic  fac to r (M ontreu il et al., 1985). It has also  been  observed 

that hum an L f binds to m urine m acrophages and the presence o f specific 

receptors has been  reported (van Snick and M asson, 1976; B irgens et 

al., 1983). The binding o f L f to adenocarcinom a cells (A m ouric et al.,

1984), to  lym phocy tic  cell lines (H ashizum e et al., 1983), and to 

hum an T-lym phocytes (M azurier et al., 1989) has also been reported.

T he m ajo r function  o f L f is thought to invo lve  bacterio sta tic  

activ ity  (O ram  and Reiter, 1968) by a  m echanism  o f iron  deprivation, 

and perhaps in  concert w ith  other com pounds such as sIgA  (O ram  and 

R eiter, 1968; B u llen  e t al., 1972; R ogers and Synge, 1978), or 

lysozym e (M ontreuil e t al., 1985), w hich represent a pow erful system  

for defence o f m ucosae. It has been suggested that in  the sm all intestine 

L f w ould facilitate iron absorption by donating iron to specific receptors 

at the brush border m em brane (Cox et al., 1979; M azurier et al., 1985; 

L onnerdal, 1985), although others propose an inhib itory  effect (Brock, 

1980). N evertheless, a specific LfR  was identified in  the m ouse sm all 

in testinal b rush-border m em brane (Hu et al., 1988), In  neutrophils L f
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m ay function  as a regu la to r o f  g ranu lopo isis (B roxm eyer, 1989; 

F letcher, 1989). It has been reported that L f  regulates the adhesion o f 

neutrophils during the inflam m atory response, by  prom oting aggregation 

and adherence o f those cells to endothelial cells (Oseas e t al., 1981). L f 

also enhances adherent natural k iller cell cytotoxicity , w hile inhibiting 

antibody dependent cellu lar cytotoxicity  (N ishiya and H orw itz, 1982). 

L f also suppresses antibody production (Duncan and M cA rthur, 1981) as 

w ell as inhibiting colony stim ulating factor (CSF) production (Broxm eyer 

et al., 1978) A ll these data suggest that L f m ay play a role in  regulation 

o f the im m une response. It has also been reported that L f m ay enhance 

ce ll p ro life ra tion  o f a hum an co lon  adenocarc inom a ce ll line in the 

p resence  o f  low concentra tions o f iron (A m ouric e t al., 1984), and 

stim u la tes p ro life ra tio n  o f ra t c ryp t cells (N icho ls et al., 1 9 8 7 ) . 

R ecen tly  M azurier et al., (1989) have repo rted  tha t PH  A -stim ulated  

hum an lym phocytes express specific surface receptors fo r Lf, and that 

the addition o f L f increased the proliferative activ ity  o f these cells in a 

s im ila r w ay to Tf. H ow ever, others c laim  th a t it suppresses T -cell 

p ro life ration  induced by m ixed lym phocyte cu ltu re  (M LC ) or (PHA) 

(S later and Fletcher, 1987), and that the m echanism s o f suppression 

involve the chelating property of L f (Richie et al., 1987).

1 -1 .3  Structure and iron b ind ing properties o f the 
tra n sferr in s

Transferrins evolved from  a sm aller ancestor som e 200-500 m ilhon 

years ago, w hich w as probably a polypeptide chain  one h a lf the size o f 

the contem porary  vertebrate pro tein  (W illiam s, 1982). This notion is
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supported by  the hom ology found in  the am ino acid  sequence o f the 

carb o x y l h a lv es o f  v e rteb ra te  T fs (M etz-B o u tig u e  et al., 1 9 8 4 ). 

Follow ing an intragenic duplication that produced the am plified  T f gene, 

the T f  m olecule gained an additional h a lf and another iron  binding site, 

and gave one chain  w ith  po ten tial hom ology be tw een  the tw o halves 

(M acG illivray et al., 1983; Park et al., 1985). A m ino acid sequencing 

and fragm entation, and X -ray diffraction studies, have concluded that 

Tfs are folded to form  tw o m ore or less independent g lobular lobes, each 

con ta in in g  one o f the iro n -b in d in g  sites at eq u iv a le n t loca tions 

(M acG illiv ray  et al., 1983; A nderson et al., 1987; 1989; Bailey et

al., 1988). T hey are connected  by a short a -h e l ix  consisting  o f 7 

residues in T f and 9 in  ovoTf. Each lobe contains tw o dom ains, w ith the 

iron binding site at the interface in highly hydrophilic environm ent.

Full leng th  cD N A s have been cloned for hum an and ra t serum  T f 

(Yang et al., 1984; U zan et al., 1984; L evin  et al., 1984), chicken 

ovo-T f (Je ltsch  and  C ham bon, 1982), and m elano -T f (Rose e t al.,

1986). H um an T f  cD N A  has an open fram e encoding a  pro tein  o f 679 

am ino acids plus the leading sequence o f 19 am ino acids w hich probably 

constitu tes a  signa l fo r p ro te in  secretion  since it  is n o t found  in  the 

m ature pro tein  (Y ang e t al., 1984; U zan e t al., 1984). A  hom ology of 

35-40%  was found betw een am ino acids 1-336 and 337-679 in  hum an Tf. 

The presence o f tw o lobes in  the T f m olecule w ith  th is h igh  degree of 

hom ology has been  dem onstrated by several techniques (W illiam s, 1975; 

B rock and A rzabe, 1976; Lineback-Zins and Brew , 1980; M acG illivray 

et al., 1983; A nderson  et al., 1987). The correspond ing  lobes in  L f 

com prise residues 1-332 and 342-686. M elano-T f has in  addition an extra



15

25 am ino acid  residues at the C-term inus. T his pep tide  has h ighly  

hydrophobic characteristics and is thought to act as a m em brane anchor. 

G reater hom ology has been found (46% ) betw een the tw o dom ains o f 

m elano-T f (Rose et al., 1986).

T he N -term inal lobe o f all the Tfs has been  found  to contain  6 

disulphide bridges, whereas the C-term inal lobe o f T f contains 13 against 

9 fo r L f and  10 fo r ovo-T f (M ontreuil et al., 1985). B eside th is 

d ifference in  the num ber, there are differences in the localization on 

each  lobe i.e. w hether they are local or w idely spaced. These bridges 

serve to stabilize the conform ation of the m olecule and m ake its structure 

com pact.

Tfs contain  approxim ately 6% carbohydrate. The attachm ent sites 

are w idely  d istribu ted  over the m olecule surface (B aker et al., 1987). 

H um an T f  and L f  contain two glycans o f the N -acetyllactosam inic type 

(Spik 1982; Spik et al., 1985), while ovo-T f contains only one glycan 

ch a in  (D o rlan d  e t a l., 1979; M ontreuil et al., 1985). T he tw o 

glycosylated sites o f T f are located in the C-term inal h a lf at residues 413 

and 611 (M acG illivray et al., 1983), w hile in  L f each site is present in 

each lobe o f the protein  (residues 137 and 478) (B aker et al., 1987). 

The only g lycan site o f ovo-T f is located in  the C -term inal part (residue 

473) (W illiam s et al., 1982; M etz B outigue et al., 1984). L ittle  is 

know n abou t the ro le  o f these glycan structures in  the physio log ical 

function o f the protein.

The sum m ation o f the polypeptide chain o f 679 am ino acid residues 

and the tw o N -linked com plex type glycan chains results in  a calculated 

m olecular w eight o f 79.570 D. H um an serum -Tf has an  isoelectric point
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(pi) ranging betw een 5.6-5.9 (Hovanessian and A w deh, 1976). L f has a 

m uch  h igher p i  ranging from  8.2-9.6 (K inkade e t a l., 1976). This is 

due to the presence only on L f o f a large num ber o f basic  residues at the 

surface of the m olecule (A nderson et al., 1989). O voT f has a p i sim ilar 

to that o f serum  T f (Bain and Deutsch, 1948).

Tfs have tw o specific sites fo r iron. T herefore, Tfs m ay exist in 

the apo-, m onoferric  (w ith e ither the N- o r C -term ina l b inding  site 

occupied), and diferric form . E arlier studies have show n that the sites 

are not equally populated. It has been show n that a t physio logical pH, 

there is a p referen tia l occupation  o f the N -te rm ina l dom ain  by iron 

(L eibm an and A isen, 1979). Z ak and A isen  (1986) have  found a 

considerable range in  the ratio  o f occupancies o f  N -term inal and C- 

term inal sites betw een 21 norm al hum an serum  specim ens w ith the N- 

terrninal site predom inantly  occupied in  m ost subjects. H ow ever, van 

E ijk  and van N oort (1986) dem onstrated that there is a  shift o f iron from  

the N - to the C -term inal binding site in  T f  o f stored  hum an serum , but 

not in com parable preparations of purified T f in  PBS. O n the other hand, 

it  has been  repo rted  th a t the  tw o sites are equally  popu la ted  in  the 

c irc u la tio n  (W illiam s and  M o re to n , 1980) b y  u s in g  u rea  gel 

electrophoresis techniques. A nother report based on  isoelectric focusing 

(lEF), has suggested that iron is random ly distributed, im plying that the 

tw o sites are equally  occupied w hatever the level o f  saturation  (Huebers 

et al., 1984). The d istribution o f iron donated to apo -T f is dependent 

on the nature o f the presenting chelate. W hen iron w as added to rabbit T f 

as a com plex w ith nitrilotriacetic acid (FeN TA ), the C -term inal binding 

site was occupied, w hereas iron added as ferric citrate  occupied the N-
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term inal site (H eaphy and W illiam s, 1982).

A po-T fs are colourless, bu t develop a red  b row n  co lour w ith 

m axim um  absorbance at 465-470 nm  as the iron is bound (Schlabach and 

Bates, 1975). A part from  iron, other cations can b ind  to  T fs, including 

copper, vanadium , chrom ium , alum inum , cobalt, gallium , m anganese, 

m agnesium , plutonium , indium , zinc, terbium , europium , platinum , 

am ericium , and curium  (review ed by H uebers and F inch, 1987). The 

b ind ing  o f iro n  to apo -T f leads to  con fo rm atio n a l changes in the 

m olecule, w hich becom es less susceptible to proteolytic degradation and 

dénaturation (M akey and Seal, 1976; H ovanessian and  Aw deh, 1976; 

Esparza and Brock, 1980). It has also been noticed that som e antigenic 

sites o f apo -T f becom e h idden  w hen iron  is bound  to  the  m olecule 

(Tengerdy et al., 1966).

The affinity  o f  iron binding by T f is m axim al under physiological 

conditions (M organ, 1981), the association constant fo r hum an T f being 

about 10^° M ‘  ̂ (A isen et al., 1978), and that fo r L f  som e 26 tim es 

greater (A isen and Leibm an, 1972). H ow ever, the affinity  decreases as 

the pH  is reduced. It is frequently  stated that iron  starts to dissociate 

from  the m olecule o f T f at pH  5-6, and is com pletely re leased  at pH  4.5 

(M organ, 1981), L acto ferrin  does no t release iro n  un less the pH  is 

reduced to about 2 (M asson and H erem ans, 1968). Iron  is also lost at 

h igh  pH , about 9-10 (Zapolski and Princiotto , 1980). H ow ever in  the 

presence o f com peting chelators this m ight vary considerably . The iron 

binding sites o f Tfs m ay differ in  their binding affinities. A t pH  6.7, the 

affinity o f the N -term inal site o f  the hum an T f for iron is less than 1/20 

that o f the C-terrninal site (Evans and W illiam s, 1978), but at pH  7.4 the
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affinity differs by a factor o f only 5 or 6.

The requirem ent for synergistic binding o f an anion fo r the binding 

o f each  iron  to  the m olecu le  is now  w ell e stab lished . T he recen t 

crystallographic structure analysis o f A nderson et a l (1989) favoured a 

carbonate to be the m ost likely anion involved in the binding o f iron.

The high resolution o f the L f m olecule (3.2 Â ) o f A nderson et al 

(1987) and the m ore recent one (2.8 Â) (A nderson et al., 1989), and 

rabbit serum  T f (3.3 Â) of Bailey et a l (1988) have iden tified  the amino 

acid residues involved in  the binding o f iron and the anion. Each iron is 

coordinated by four pro tein  ligands, w hich is in  accordance w ith the 

earlier finding o f C hasteen (1983). A ccording to  B ailey  et al (1988) 

these consist o f phenolate oxygens o f tw o tyrosines 93 and 191 ( Tyr 447 

and 540 in  C -lobe), w hich is in  line w ith  w hat P ecoraro  et al. (1981) 

have reported; the im idazole n itrogen o f one histidine 252 (His 609 in  C- 

lobe), w hich w as also reported earlier (K rysteva e t al., 1975; Rogers 

e t at., 1977; Z w eier and A isen, 1977) and the carboxylate  oxygen of 

asparatate 61 (A sp 407 in  C -lobe) p lus a probable COg^' o r HCO^' anion 

bound to iron and to  an adjacent arginine side chain  121 (Arg 477) which 

is highly conserved am ong Tfs. This is in  contrast w ith  earlier w ork of 

C hasteen (1983) w ho reported that tw o histidines p lay  a role in  the iron 

binding site. The rem aining coordination site o f the iron  atom  is linked to 

a w ater m olecule.
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1 .1 .4  Iron -storage proteins

1 . 1 . 4 . 1  F erritin

A s w as m entioned above (see section 1.1.1), ionic iron is capable 

o f m ediating reduction o f oxygen, giving rise to  unstable interm ediates. 

T hese potentially  noxious com pounds are know n as free radicals w hich 

are highly reactive and could be very harm ful. T herefore, an elaborate 

system  o f segregation and storage o f iron is necessary  to prevent iron 

tox ic ity  and  a llow  re u tiliza tion  o f stored iro n  w hen  needed . This 

essen tia l task  is accom plished  by the storage iron  p ro te in  ferritin . 

H aem osideiin , its lysosom al degradation product, is also thought to play 

this role (see next section).

F t is an iron  storage protein used to m ain tain  iron in an  available 

non -tox ic  fo rm  w ith in  the cell. It is found  in  m ost ce ll types o f 

vertebrates, in  h igher plants, fungi, and bacteria  (Theil, 1987). The 

iron -free  p ro te in  apo-F t, w hich  has a m o lecu lar w e igh t o f  450 K d 

(H arrison e t al., 1967) is a roughly spherical coat w ith an outer diam eter 

o f about 125 Â, surrounding a core o f about 70-80  Â  across w hich 

h o u se s  iro n  a to m s as m ic ro c ry s ta l lin e  p o ly m e rs  o f  f e r r ic  

hydroxyphosphate  (Ford et al., 1984). The m olecule o f  F t consists o f 

24  subunits arranged  in  a form  that leaves 6 channels 3-4 A  w ide 

(H arrison e t al., 1980), through w hich iron can pass in to  and out o f the 

m olecule. T hese channels play a  crucial role in  the the iron  binding 

process w hich is helped by side chains o f am ino acid residues at the wall 

o f these channels. The central cavity can store up  to 4500  iron  atom s 

together w ith  variable amounts o f phosphate (M ann e t al., 1986).
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T he F t m olecu le  is m ade o f d ifferen t sorts o f  subunits. The 

isoferritins are hybrid  m olecules com posed o f vary ing  proportions of 

these different subunits. Three subunits have been  described  (review ed 

by A rosio, 1989). The light (L) subunit, is m ade o f 174 am ino acids, 

has a m olecular w eight o f 19 K d and a high p i, and is predom inant in 

iron  loaded tissues eg. the liver and spleen. The heavy (H) subunit, is 

m ore acidic than  the L  one, is m ade up o f 182 am ino acids and has a 

m olecular w eight o f 21 K d and a low er pi. It is predom inant in  iron poor 

tissues eg. heart, lym phoid cells, and m alignant cells. F inally  the G 

subunit (for glycosylated), w ith a m olecular w eight o f 24 Kd, has been 

isolated from  hum an serum  (Cragg et al., 1981), but sm all am ounts m ay 

also be present in  tissues. L-chains from  horse, rat, and hum an, share 

about 85% of sequence hom ology, while H- and L-chains d iffer by about 

45%  (C ostanzo  et a l., 1984; L eibo ld  et ah , 1984; B oyd  et al.,

1985).

F t is p resent in  serum  and can be used as a  c lin ica l indication o f 

iron  status (W orw ood, 1986). It is also found in  sm all am ounts in  m ilk 

(A rosio  e t a l., 1984). A du lt hum an heart, k idney , pancreas, and 

placental Fts as w ell as F t derived from  neoplasm s, contain  m ore acidic 

iso-Fts, w hich are rich  in  H -chains, than liver and spleen Fts, w hich are 

m ore basic and rich in L-chains (Drysdale, 1970).

In  hum ans, the H - and L-chains o f F t are derived from  m ultigene 

fam ilies. Southern b lo t analyses and chrom osom al in  situ  hybridization, 

indicate that there are about 15 H -chain Ft sequences and 5 L-chain F t 

sequences in  hum an  D N A  (C ragg et al., 1985; Ja in  e t al., 1985). 

These are found on at least 7 different chrom osom es fo r the F t H  genes
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and on 3 chrom osom es for the F t L genes (M cGill e t al., 1987).

B oth the channels and the core fulfill the role o f binding iron to the 

m olecule. W hen Fe '̂*' atom s are added to apo-F t they  m igrate  to the 

in terior by passing through the channels, probably aided by am ino acid 

side-chains at the surface of these channels. Once in, Fe^+ is oxidized to 

Fe^+ and polym erises to form  iron-core nucléation clusters (B akker and 

Boyer, 1986). The loss o f iron from  the core v ia  the channels requires 

reducing agents to form  ferrous iron such as dithionite or flavines (Funk 

et al., 1985) or free radicals (Thom as and Aust, 1986). Subsequently , 

the ferrous iron  leaves the F t core and m ust be com plexed by a suitable 

chelator such as ED TA  (B iem ond et al., 1988). H ow ever the nature of 

the  red u c in g  su b stan ce (s)  o r the  c h e la to r(s)  is u n k n o w n  under 

physio log ical conditions. R elease o f iron is also enhanced  at low pH 

(W att e t al., 1985). O n the other hand, others have suggested that the 

m echanism  by  w hich iron  is released from  Ft is through the constitutive 

degradation o f the protein  by  lysosom es (Roberts and Bom ford, 1988).

T he adm in istration  o f  a  varie ty  o f iron  com pounds to  anim als, 

results in  an increase in  the F t content o f m any tissues (H arrison et al.,

1980). O ther factors related  to  cell differentiation/proliferation regulate 

the  tran scrip tion  o f Ft. L ittle  is know n about the m o lecu la r basis 

underly ing  the re la tionsh ip  be tw een  ce llu la r tran sfo rm atio n  and Ft. 

L ym phoid cells contain different levels o f H and L  F t according to their 

lineage, proliferative status, and anatom ical site (D om er, et al., 1983; 

V ezzoni et al., 1986). Increased  F t synthesis has been  reported  to 

occur during cell d ifferentiation  (Fibach et al., 1985). Several studies 

have show n an association  betw een  the developm ent o f cancer and
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increased  serum  F t levels (M oroz et aL, 1984). This secreted protein 

m ay b ind  to subpopulations o f circulating lym phocytes and ultim ately 

affect their cell-m ediated im m unity (M oroz et al., 1977).

M echanism s o f regulation o f F t synthesis vary  depending on the 

cell type. In  cells in  w hich stored iron  is u sed  fo r in tracellu lar needs, 

such as p ro liferating  cells, there is a transcrip tional contro l w here the 

m echanism  o f regulation m ay depend on m RN A  concentration (Cairo et 

al. 1985). It has been  show n that there was an increase in the relative 

concentra tion  of m R N A  during the d ifferen tiation  process indicating 

either changes in  transcription to produce tlie appropriate Ft to m eet the 

needs o f each cell type or changes in m RN A  stability  (Theil, 1987). It 

has been  show n that the increased  F t m R N A  levels in  differentiating 

F riend cells arises from  increased  transcrip tion  ra th e r than  decreased 

m R N A  b reakdow n  (B eaum ont et al., 1987). Iro n  also  increases Ft 

transcrip tion  in  these non-specialized  iron storage cells. I t  has been  

show n that iron  adm inistration causes an increase in  transcrip tion o f F t L 

m RN A  (Cairo et al., 1986).

O n the  o th e r hand , in  sp ec ia lized  iro n  sto rage  ce lls  i.e . 

hepatocytes, the m echanism  o f regulation depends m ore on translational 

control. Iron  adm inistration  to  rats (K ohgo et a l., 1980; B om ford et 

a l.,  1981), and  to  ce ll cu ltures (G oto et a l., 1983; R ittling  and 

W oodw orth , 1984; R ogers and M unro, 1987) stim ula tes subunit 

synthesis by  an  ac tinom ycin -resistan t m echan ism  (Z ahringer et al., 

1976; D rysdale and M unro, 1966) involving m obilization  o f L  subunit 

m R N A s fro m  a c y to p la sm ic  p o o l o f  in a c tiv e  m essag es  on  to 

polyribosom es (A ziz and M unro, 1986; R ogers and M unro, 1987).
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Ferritin  genes for both H and L subunits have a h ighly conserved 28 base 

sequence in  their 5 untranslated region (5 U TR) that is essential for the 

tran sla tiona l regu la tion  o f the Ft L  (A ziz and M unro , 1987) and H 

m R N A s (H entze  e t aL, 1987) by iron. D eleting p a rt o f  the 5 U TR 

con ta in ing  the conserved  28 base sequence (A ziz and  M unro, 1987) 

elim inates the response to iron, suggesting that iron-sensitive factor(s) in 

the cytoplasm  m ay bind to this sequence and regulate the availability o f 

bo th  F t m essages fo r transla tion . L eibo ld  and  M unro  (1988) have 

identified an 87 K d cytoplasm ic protein interacting w ith RN A  sequence in 

5 U TR  of Ft H and L subunit m RNA, Sim ilar po ten tia l sequences are 

also p resent in the 3 ’ untranslated region o f the T fR  m R N A  (see below ). 

T he degree o f com plex form ation betw een m R N A  and the cytoplasm ic 

protein  has been show n to be affected by  treatm ent o f rats or cells w ith 

iron. This confirm s that intracellular iron levels regulate  F t synthesis by 

influencing the specific association o f this repressor p ro tein  to  the iron 

responsive elem ent (IRE) on the Ft H and L subunit m RN A ,

Inflam m ation can also increase Ft synthesis (K onijn  cf a /., 1981). 

C am pbell e t a l (1989) have reported that inflam m ation causes a shift o f 

Ft m R N A  to the polyribosom es in liver and spleen. A  possible role o f an 

in flam m ato ry  cy tok ine  i.e. tum our necrosis fac to r in  m odulating  Ft 

synthesis by inducing Ft gene expression has been  suggested  (Torti et 

al., 1988). M oreover R ogers (unpublished c ited  by  C am pbell et al., 

1989) has show n that exposure o f hepatom a cells to IL-1 for 12 h  shifts 

F t m R N A  to polyribosom es, suggesting that this cy tokine m ay be the 

m o d u la to r o f the  in flam m atory  reaction  by  w h ich  F t syn thesis is 

enhanced.



24

As far as lym phoid cells are concerned. Ft, o r a subpopulation of 

isoF ts, m ay p lay  a ro le  in  the regu la tion  o f the  ce llu la r grow th of 

lym phocytes and the im m une response (review ed by  B roxm eyer, 1989) 

as w ell as m ediating T -cell surveillance (D dm er et al., 1980), Synthesis 

o f F t by lym phocytes is increased by in vitro  cu ltu ring  irrespective  o f 

w hether a m itogen  is p resen t o f  n o t (P a ttanapanyasat e t al,, 1987; 

1988), suggesting  that a m echanism  fo r increasing  F t synthesis by 

activation m ay exist that is distinct from  iron stim ulation.

T he b io lo g ica l im portance  o f F t can  be sum m arized  by the 

foliow iag functions, though these functions m ay be related :

1) S torage o f  iron  in  specia lized  iron  sto rage  cells such as 

hepatocytes and m acrophages, fo r use by  o ther cells. These 

cells tend  to  contain  the largest am ount o f F t, and usually 

show  the largest increase in  Ft levels under conditions o f iron 

overload.

2) Storage o f iron fo r subsequent in tracellu lar m etabolic use (in 

cells that are undergoing pro liferation , d ifferentiation, and 

developm ent).

3) Storage o f iron  fo r detoxification (in iron  overload), w hich 

probably constitutes the m ost evident ro le  o f Ft.

1 .1 .4 .2  H aem osid er in

The other iron sequestering protein haem osiderin  is the m ajor iron 

storage protein in  iron overload. Hs is a purely lysosom al product which 

ultrastructurally resem bles Ft. The m ain difference betw een F t and H s is
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that the la tter is w ater insoluble, probably due to the lack  o f an intact 

protein  shell. The structure o f Hs is less w ell defined than  that of Ft. It 

consists o f iron  containing granules visible in  the electron  m icroscope as 

m assive aggregates o f electron dense particles o f irregular shape (Dickson 

et aL, 1988) resem b ling  F t iro n  cores. T hese  p a rtic le s  consist 

essentially  o f hydrated  polym eric ferric oxide w ith som e phosphate and 

peptide groups (W eir et al., 1984), It is generally assum ed that Hs is a 

degradation product o f F t follow ing its polym erization (Hoy and Jacobs,

1981). These polym ers m ay be incorporated to lysosom es and converted 

into Hs. On the o ther hand, others are still doubtfu l if  Hs is really a 

p roduct o f F t (S t P ierre et al., 1988; D ickson e t al., 1988), Iron is 

m uch less read ily  m obilised  from  Hs than from  Ft, and it is generally 

considered  to be  an unreactive form  o f storage iron , w hich  helps in 

reducing  unw an ted  release  o f  reactive  free  iron  in  iron -rich  tissues 

(O 'C onnell e t al., 1986a).

1 .1 .5  C ellu lar iron uptake: the tran sferrin  cycle

A  prim ary function o f T f is to donate iron to erythrocyte precursors 

in  the bone m arrow , w hich have a large requ irem ent fo r synthesis of 

haem oglobin . Iron  is also  requ ired  by non-ery th ro id  cells fo r m any 

m etabolic needs, though the am ounts needed are very  sm all com pared 

w ith erythroid cells.

1 . 1 . 5 . 1  S tru c tu re  a n d  r e g u la t io n  o f  th e  tra n sfe rr in  
receptor

Iron  up take  by ery th ro id  and non-ery thro id  cells is a m ultistep
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process. The chem ical properties o f iron, its extrem ely low  solubility m  

aqueous solution, and its high reactivity  in form ing o f  active oxygen 

species, dem and that in all steps o f its transport from  T f into the cell, it 

is bound to  a ligand- The initial step is the interaction and the attachm ent 

o f T f to a specific cell m em brane receptor (TfR), w hich  was first noted 

by Jandl e t a l (1959) on reticulocyte cell m em branes. Since then large 

num bers o f studies have been carried out exploring this field. It is now 

generally  agreed that iron is transported from  F eT f in to  the cell by a 

receptor m ediated system.

The T fR  is transm em brane glycoprotein (H am ilton, 1979) w ith a 

m o lecu la r w eigh t o f about 180 K d. The recep to r is know n to be 

com posed  o f tw o d isu lph ide-linked  subunits o f  ab o u t 90  K d each 

(S eligm an  et al., 1979; Enns and Sussm an, 1981a; 1981b). Each

subunit contains glycan chains, w hich account fo r about 5%  by  weight of 

the recep tor (Enns and Sussm an, 1981a), and are com posed o f sialic 

acid, N -acetyglucosam ine, galactose, and palm itic  acid  (O m ary and 

T row bridge, 1981). Each subunit can b ind  one T f  m olecu le . The 

structural features o f the T f m olecule w hich are involved in  its interaction 

w ith the receptor are still not known.

T he gene fo r the hum an T fR  has been  id en tified  and cloned 

(M cC lelland  et al., 1984). Using in situ  hybrid ization , it was shown 

that the gene is m apped on the long arm  o f chrom osom e 3 in  close 

proxim ity to T f and m elano-T f (p97) genes (Rabin et al., 1985). During 

its b iosyn thesis , the hum an TfR  undergoes ex tensive  m odifications. 

T hose m odifica tions include asparagine linked  g lycosy la tion , dim er 

fo rm ation , in tersubun it d isulphide bond  fo rm ation , acy lation  w ith
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palm itate, and phosphorylation. Exam ination o f the prom oter regions of 

T f genes and  T fR  genes ind icates som e sim ila rities in  o rien ta tion  

(Bow m an, et al., 1988).

T here is a  reverse correlation betw een recep tor num ber and iron 

supply in  cell culture (Rao et al., 1985; Taetle et al., 1985; W ard e t  

al., 1984). The level of intracellular iron regulates the expression o f the 

receptor, as the iron  chelating agent desferrioxam ine (D FO ) increased 

2.5-fold the in vitro  translation o f TfR  by polyadenylated m R N A  isolated 

from  K 562 erythroleukaem ic cells (Rao et al., 1985), w hile treatm ent 

w ith ferric am m onium  citrate and FeT f produced 25 and 50%  reductions, 

respectively. By using light m icroscopic and im m unochem ical m ethods 

(Sciot e t al., 1987) and  im m unoelectron m icroscopy  (de V os et al., 

1988), a d isappearance  o f  hepatic  T fR  expression  w as reported  in  

haem ochrom atosis w hen iron overload is severe. It has been show n that 

D FO  treatm ent o f K 562 cells causes an early increase o f  T fR  m RN A , 

w hile haem in  treatm ent has the opposite effect (L ouache e t al., 1985). 

The changes in  the level o f surface TfR are m ainly due to  m echanism s that 

affect T fR  m R N A  pool. It has been shown that the regulatory  dom ain is 

located in  the 3' untranslated region (3* UTR) (O w en and K uhn, 1987), 

w h ich  M illiner and  K iihn (1988) have dem onstra ted  reg u la tes  the 

ex p ress io n  o f  the  T fR  th rough  d ifferen tia l d eg rad a tio n  o f  m R N A  

according to cellu la r iron  needs. W hile treatm ent o f  cells w ith  D FO  

produces no  sign ifican t effect on TfR  gene tran scrip tion  n o r on the 

nuc lear p rocessing  o f prim ary  transcrip ts, cy top lasm ic  T fR  m R N A  

becom es 20-fo ld  m ore stable. Full induction o f T fR  m R N A  requires 

about 15 h. A fter the addition of iron salts, the T fR  m R N A  decays with 

a ha lf life o f 1.5 h. These observations suggest that one m echanism  for
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this regulation m ay be an iron-dependent control o f T fR  m R N A  stability.

Casey et a l (1988) have identified 5 potential stem -loop structures 

resem bling  the F t m R N A  iron  regulatory  elem ent (IR E) (see section 

1.1.4.1) on  the sequence o f the 3' un transla ted  reg ion  o f hum an TfR 

m R N A . W hen tw o o f  these  5 e lem ents w ere in se rted  in to  the 5’ 

untranslated region  o f an indicator gene transcript, they conferred iron 

regulation o f translation and confirm ed the im portance o f the IRE regions 

in  conferring the property o f iron regulation of m RN A . H ow ever, with 

the T fR  IR E in  this location (5*) they found that raising intracellular iron 

caused  increased  ind icator pro tein  synthesis and low ering intracellu lar 

iron caused  decreased ind icator pro tein  synthesis, a regulation  pattern 

opposite to that seen w ith the T fR  gene. These experim ent show ed that 

the IR E  location  w ith in  the  m R N A , i.e ., 5' o r 3% determ ined  the

pattern  o f this iron regulation. It has been show n that the effect o f iron 

on TfR  m R N A  is exerted through the binding o f a cytoplasm ic protein to 

the regulatory  region  o f T fR  m R N A , and binding  activ ity  is inversely 

correlated w ith the level o f intracellular iron (M illiner et al., 1989). They 

p roposed  th a t the stem -loop  is the substrate  o f an  R N A ase that is 

s terically  h indered  by  the  b ind ing  o f severa l iro n  regu la to ry  factor 

m olecules to the adjacent palindrom es. This cytoplasm ic protein  seems to 

be sim ilar to the one identified by Leibold and M unro (1988) w hich binds 

to the un translated  region  o f the F t m RN A  (see section  1.1.4.1). This 

IRE-binding protein  m ay therefore be involved in  regulation of expression 

o f m ore than one protein involved in  cellu lar iron m etabolism . Rouault 

et a l (1988) have reported that the 3’ regulatory region o f T fR  m RNA can 

com pete w ith the 5' F t m R N A  IR E fo r the in teraction  w ith IRE-binding
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protein, resu lting  in  opposing effects on the biosynthetic  rate o f Ft and 

the T fR . H ow ever, the m echanism  o f regulation  o f T fR  and F t may 

d iffer according to the cell type. In  hum an m acrophages, iron apparently 

causes an increase  in  bo th  TfR  m R N A  and F t synthesis. R ecently , 

N eupert et a l (1990) have isolated and purified the IR E-binding protein 

w hich binds to  specific palindrom ic elem ents in  the 5' and 3' untranslated 

sequences o f F t and TfR  m RN A  respectively and found it to  consist o f 

equim olar am ounts o f two proteins w ith m olecular w eights o f 95 

and 100 K d w hen analysed by SDS/PAGE.

T he pro liferative  status also regulates T fR  expression. A  highly 

pro liferative status o f cells is generally associated w ith a high density of 

the  T fR  (S u th erlan d  e t al., 1981). K ronke e t a l (1 9 8 5 ) rep o rted  

increased  T fR  transcrip tion  after activation o f peripheral T -cells w ith 

PH A  and phorbol m yristate acetate (PM A). It has been  show n that the 

factors tha t stim ulate  cell grow th increase the expression  on the cell 

surface o f T fR  (Lom bardi et al., 1989). They show ed 5-fold reduction in 

T fR  transcrip ts w ith in  24 h o f D M SO  treatm ent and these reductions 

proceeded loss o f surface-expressed TfR. It has been  reported that both 

the pro liferation  and iron dependent changes in T fR  m R N A  levels occur 

m a in ly  p o s t- tra n sc rip tio n a lly  (K iihn  e t al., 1989). Iron  level and 

proliferative status appear to act on different m echanism s, as deletion of 

sequences on the 3 noncoding region o f the cD N A  abolishes the iron 

dependent, bu t no t the p ro liferation  dependent regu la tion  (O w en and 

K iihn, 1987), It has been reported that activated  m ouse sp leen  cells 

show 50-fold increase in  TfR m RN A  w ithout any induction of T fR  gene 

transcrip tion.
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1 . 1 . 5 . 2  Cellular iron uptake from  transferrin

The uptake o f iron from  T f is not random . A ssociation constants 

fo r the binding o f T f to its receptor have been found in  the range 

o f 5 X lG^-2,3 X 10^ M ‘  ̂ depending on the tem perature, pH , type o f cell, 

and the degree o f saturation (H am ilton et al., 1979; Young and Aisen, 

1980; W ard  et al., 1982), It has been show n that there is a m arked 

preference o f receptors fo r diferric over m onoferric T f  (H uebers et al.,

1984). U sing the interaction of different form s o f ^^^I-labelled T f and 

rabbit reticulocytes Y oung et al (1984) have found that the association 

constant fo r receptor binding is 4,6 x 10^ M"^ fo r apoTf, 2.5 x 10^ 

fo r m onoferric  T f (C -term inal), 2.8 x 10^ M'^ fo r m onoferric  (N- 

term inal), and 1.1 x 10^ for diferric Tf. It therefore seem s to be that 

the am ount o f iron taken up depends on the num ber o f each m olecular 

species present.

T he e ffec t o f pH  on the b inding  o f apoT f and  d iferric  T f to 

reticu locy te  m em brane receptors was investigated  by  M organ (1983), 

w ho found that the binding of apoT f to the cell m em brane was o f high 

affin ity  below  pH  6,5, By contrast, diferric T f show ed h igh  binding 

betw een pH  7.0 and pH 8.0 with m uch w eaker binding below  pH  6,5.

The second step o f iron uptake is the in ternalization o f Tf, which 

is ach ieved  by the general process o f recep to r m ediated  endocytosis. 

W hether phosphorylation-déphosphorylation o f the recep tor m ay give a 

signal fo r in ternalization, and play a role in d irecting  recep tor traffic 

from  the surface on to the endosom e netw ork and back into the surface is 

a m atter o f  considerable controversy. It has been reported  that TfR  

undergoes protein kinase C-dependent phosphorylation and internalization
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in  response to treatm ent by phorbol diesters (Kohno e t al., 1985; M ay 

and Tyler, 1987; M ay et aL, 1986). FeT f has been found  to induce a 

10-fold increase in  the activity o f protein kinase C in  C C R F-C EM  cells 

probably  through increasing synthesis o f the enzym e, w hile  apoT f and 

iron  in  the form  o f  Fe-citrate or com plexes o f T f  w ith  several o ther 

m etals, d id  no t increase protein  kinase activity (Phillips e t al., 1987). 

H ow ever, gene transfection experim ents have failed to prove a role for 

recep to r phosphory la tion  in m ediating TfR  in te rnaliza tion  or cycling 

(R o th en b e rg e r  et al., 1987; Davis and M eisner, 1987; Z erial et al., 

1987; M cG raw  et al., 1987). Binding o f T f to its recep to r generates a 

lateral m obility  o f  TfR  com plex to achieve an area o f increased num bers 

o f ligand recep tor com plexes. H ow ever there is still a controversy over 

w h e th e r the  in te rn a liz a tio n  p ro cess  is sp o n tan eo u s and  occu rs 

independently  o f ligand binding (W atts, 1985) o r w hether it requires T f 

bound to the receptor to sw itch on the process (K lausner et al., 1984a). 

T he in te rn a liza tio n  process is achieved by a specific  m icrodom ain  

invagination o f the cell m em brane which is supported by  clathrin  to form  

coated-pits. L ittle is know n about the m echanism  by w hich  receptors are 

concen tra ted  selec tive ly  in  coated-pits p rio r to  in te rnaliza tion . The 

m echanism  m ight involve passive diffusion o f receptors in  the m em brane 

and the ir selective retention in coated-pits (H opkins, 1985), o r direct 

m ovem ent m ediated  by receptor-protein interactions. A lternatively, the 

aggregation o f receptors could induce the form ation o f coated-pits. The 

coated  pits are pulled  from  the cell surface into the cy top lasm  through 

assem bly o f  the clathrin  coats. The vacuoles generated rapidly  lose their 

clathrin , producing vesicles w hich associate and fuse generating the so- 

called  endosom es (W illingham  et al., 1984). In ternalization  is rapid
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and an energy requiring process (Karin and M intz, 1981).

T he m ild ly  acidic environm ent w ithin the endosom e o f pH  5-6.5 

(van R ensw oude e t al., 1982) protonates the anion (CO^^ or HCOg") in  

the binding site adjacent to the iron and provokes iron  release (Crichton,

1985). It has been  shown that m ethylam ine, am m onium  chloride, and 

chloroquine, w hich increase vesicular pH , decrease the release o f iron 

from  th e  p ro te in  to the  ce ll (M organ, 1981) w ith o u t inh ib iting  

in ternalization o f the Tf. O ther studies em ploying m utants o f CHO cells, 

w hich are defective in endosom al acidification, have dem onstrated that 

such  cells canno t rem ove iron from  in ternalized  T f  (K lausner et al., 

1984b).

L ittle  T f is degraded during the process o f iron delivery (Karin and 

M intz, 1981), and instead of becom ing separated apo-T f rem ains tightly 

coupled to the receptor inside the endocytic vesicle, escapes lysosom al 

degradation , and  returns in tact together w ith  its recep to r to the cell 

su rface  b y  an  u n id en tified  m echan ism  o f som e k in d  o f  reverse  

endocytosis w ith in  a m icrotubule-associated endosom e (W illingham  et 

a l., 1984; W illingham  and Pastan, 1985). A t the surface the apo-T f 

dissociates from  the receptor into the extracellular m ilieu, since the apo- 

T f-T fR  com plex is poorly stable at neutral pH. T he T f  is then available 

fo r m any p lasm a-to-cell cycles, as is indicated by its long plasm a half 

life (7-10 days) com pared w ith its passenger iron (1.5-2 h) (Katz, 1961).
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1 ,1 .6  M etabolism  and d istribution  o f  in tracellu lar  
iro n

L ittle  inform ation is available on the fate o f iron  w ithin the cell. 

O nce iron is released from  the T f inside the cell, the m etal undergoes a 

series o f  in tracellu lar transfers. In non-erythroid cells in tracellu lar iron 

exists in a  num ber o f form s that can be sum m arized as iron containing 

enzym e system s, stored iron (Ft and Hs), and a "labile pool".

The iron  released from  T f m ay initially  en ter lysosom es, and it 

then  som ehow  finds its way across the lysosom al m em brane. D espite 

these uncertain ties about the m ode o f transport o f iron  to the cytosol, 

transport o f iron  across b iological m em branes usually  involves a ferric- 

ferrous transition (Rom slo, 1980). Low m olecular w eight com plexes o f 

Fe^^ have been  postu lated  as the species w hich transport iron through 

m em branes (M ay and W illiams, 1980).

O nce in  the cytosol, iron passes to an unidentified  pool w hich is 

dialysable and available for binding by iron chelating agents. The precise 

iden tity  o f the ligands w hich bind the iron in this pool are not know n, 

b u t the m ultip lic ity  o f possible  reactions o f iron  w ith  low  m olecular 

w eight m olecules such as cysteine, glutathione, ascorbic acid, glucose, 

fruc to se , and  o ther m olecules such as A T P and o ther nucleo tides 

(Rom slo, 1980), has given rise to the concept o f an in tracellu lar transit 

pool, w hich constitutes a pivot of intracellular iron m etabolism  and may 

act as a p recursor fo r functional and storage com pounds (Lynch et al., 

1974). The idea o f a "labile pool" or "transit pool" has em erged from  

difficulties in  explaining intracellular iron m etabolism  w ithout postulating 

such an interm ediate pool (Jacobs et al., 1977) betw een the extracellular
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(transport) and in tracellu lar (storage iron and iron  contain ing  proteins) 

form s o f the m etal. In  reticulocytes, iron com plexes w ith  a m olecular 

w eight below  2000 d w ere detected  (Pollack  and  C am pana, 1981; 

B akkeren et al., 1985). In  m ature erythrocytes, G T P and A TP chelated 

iron w ere found in an am azing concentration o f up  to  100 pM  (Bartlett, 

1976). It has also been  show n that rat liver, k idney , heart, brain, 

spleen, and pig  brain , have sm all but significant am ounts o f iron in  a 

form  available to DFO (Linder et al., 1983).

In  re ticu lo cy tes , the bu lk  o f in trace llu la r iro n  is found  in  

haem oglobin . In  non-ery th ro id  cells the p ro po rtion  used  fo r haem  

synthesis is m uch  less, only 5% being found in  haem  com pounds in 

PH  A -stim ulated lym phocytes incubated with T f fo r 3 h  (Bom ford et al.,

1986). The m ajor proportion of the intracellular non-haem  iron is found 

in  F t and Hs. A fter 2 h  incubation of isolated rat hepatocytes w ith  ^^FeTf 

alm ost 70%  o f iron can be recovered in  F t (Y oung et al., 1985). The 

o ther po o l o f iron  consists o f iron  incorporated  in to  a  num ber o f non- 

haem  iron  pro te ins such  as e lectron  transport iron  su lphur p ro teins, 

oxygenases, aconitase, and ribonucleotide reductase.

Little is know n about the m echanism s by w hich intracellular iron is 

m obilised from  Ft. The presence of apoT f does not appear to be essential 

fo r the m obilization  o f iron from  m acrophages (Saito  e t al., 1986). It 

thus appears tha t the inverse  T f  cycle (D au try -V arsa t et al., 1983; 

K lausner et al., 1983) w ould probably not be appropriate to explain the 

m echanism  o f intracellular iron m obilization.
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1 .2 .1  The lym phocyte

T he function o f the im m une system  is to discrim inate betw een self 

and non-self, and m ount responses to rid the body o f potentially  life 

th rea ten ing  fo re ig n  o rgan ism s, eg. v iruses. In  h ig h er vertebrates 

adaptive im m une responses, i.e. responses w hich give rise to m em ory, 

are m ediated by lym phocytes. Tw o m ain fam ilies o f lym phocytes can be 

distinguished, B cells, and T-cells. The T-cells first differentiate into 

im m unocom petent cells by spending a training period  in the thym us, 

w hile B cells undergo their education in the bone m arrow  itself. These 

tw o in terac tive  subpopulations have m any characteristics in  com m on; 

m orphologically, in  their habitat, and in sharing a num ber o f cell surface 

m olecules. H ow ever they are d istinct from  each o ther in  their density, 

their e lec tropho re tic  m obility , the ir h a lf life, the ir m ig ra tion  after 

intravenous in jection, in  a  num ber o f cell surface m olecules expressed 

only on T  or B cells, and m ost im portantly in the m echanism s of their 

effector functions.

T he im m une response  occurs m ost e ffec tiv e ly  in  s truc tu red  

secondary lym phoid  tissue. These tissues becom e populated by  cells o f 

reticular origin and by  m acrophages and lym phocytes derived from  bone 

m arrow  stem  cells. T he lym ph nodes filter and screen lym ph flow ing 

from  the body  tissues w hile the spleen filters the blood. A ntigen  is 

presented  to lym phocytes by m acrophages and by specialized  antigen- 

presenting cells in  T- and B -cell areas w ithin the lym phoid  tissue. B- 

lym phocytes exhibit antigenic specificity. They proliferate in response to 

a particu lar antigen and differentiate into non-proliferating but antibody-
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secreting p lasm a cells. T-lym phocytes also exhibit antigenic specificity, 

and they  a lso  pro liferate  and differentiate in  the p resence o f antigen, 

re leas in g  su b stan ces ca lled  lym phokines, w h ich  have  im p o rtan t 

biological properties. W hile T-cells do not synthesise antibodies, they 

do fulfill m any other im m unologically im portant functions such as helping 

B-cells to synthesise antibodies, killing tum our cells, and regulating the 

im m une response.

1 .2 .2  T -L ym p h ocyte  in teraction  w ith  antigen  or  
m itogen: activation and proliferation

A ctivation o f T-cells involves a shift from  a quiescent cell, w hich is 

in  the Gq phase o f the cell cycle into G j and S phase, and the cycle then 

proceeds through the G 2 phase tow ards cell division. T -cell activation 

takes p lace in  sequential stages. Interaction o f the antigen or m itogen 

w ith its m em brane receptor is a crucial first step. U nder physio logical 

conditions, such ligand-receptor interaction occurs at the interface of the 

plasm a m em branes o f an antigen-specific T-cell and an antigen presenting 

cell (APC) or target cell. These ligand-receptor b inding events result in  

the transduction o f these events into in tracellular b iochem ical signals in 

the form  o f "second m essengers" which influence specific targeted genes, 

receptive to these signals, that can becom e transcrip tionally  active or 

inactive. The m anifestations of T-cell activation include the production of 

lym phokines, the appearance o f new cell surface proteins (w hich include 

grow th factor receptors), the acquisition o f cytolytic e ffecto r function, 

and as a consequence  o f the p roduction  o f grow th  fac to rs and the ir 

receptors, proliferation.
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A ctivation of the T-cell induced by an antigen on the surface o f an 

antigen presenting cell m ust involve an interaction w ith the T-cell antigen 

receptor (Ti). This is an  irnm unoglobulin-like heterodim er com posed of

a -  and p-chains w hich functions as a receptor fo r com bination of antigen 

and a m ajor h istocom patib ility  com plex (M H C )-encoded glycoprotein  

(D em bic  e t al., 1986; B jo rkm an  et al., 1987). A n a lte rna tive  

heterodim er TC R  containing tw o different chains i. e. y  and Ô has been 

iden tified  on the surface of a sm all fraction o f T -cells (C hien et al., 

1987). The T C R  is found on the surface o f the m ajority  o f  m ature T- 

lym phocytes (A paricio et al., 1989) and m ay exist as a  non-disulphide- 

linked heterodim er or as a single chain in non-covalent association w ith a 

T -cell specific m olecular com plex com posed o f at least 5 distinct chains, 

co llectively  term ed T3 or CD3 to form  the (T 3/T i or TC R ) com plex 

(B ren n er et al., 1985). T he function  o f the  T C R  is a  m atte r o f 

considerable speculation. A  suggested role is as an  in term ediary  that 

delivers transm em brane signals subsequent to antigen receptor occupancy. 

This is supported by  the findings that antibodies d irected  against CD3 

function as polyclonal agonists w hich are able to m im ic stim ulation with 

an tigen  lead ing  to  early  m an ifesta tion  o f ac tiva tion  (O 'F lynn  et al., 

1985; O ettegen  e t al., 1985), and  la te r to lym phok ine  production  

(C hang  et al., 1982; van  W auw e et al., 1984), ex p ress io n  o f 

lym phokine  recep to rs (M euer et al., 1984a; Schw ab et al., 1985; 

Tsoukas et al., 1985; L edbetter e t al., 1986), and pro liferation  (Van 

W auw e et al., 1980).

In  addition  to its role in  antigen-induced  T -ce ll activation, the 

T3/T i com plex appears to be im portant in the activation o f T-cells by the 

T -cell-specific m itogenic lectins PH  A  and C on A. B oth  lectins bind to
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large num bers o f T -cell surface glycoproteins (S itkovsky <3/., 1984), 

A lthough the cell surface m olecules responsible fo r the ability o f these 

lectins to stim ulate T-cells are still unknow n, studies w ith  solubilised 

cell surface proteins have dem onstrated that Con A can  bind to CD3 but 

not T i, w hereas PH  A can in teract w ith the T i he terod im er but not to 

iso lated  CD3 chains (Kanellopoulos et al., 1985). E vidence supporting 

the ro le  o f the T 3 /T i com plex  in  PH A - and C on A -induced  T -cell 

activation is the observation that Jurkat m utant cells w hich fail to express 

the T 3/T i com plex lose the capacity to produce IL-2 in  response to  either 

PH A  o r C on A (W eiss et al., 1984; W eiss and  S tobo , 1984). 

M oreover, reconstitution o f the T3/Ti expression in one o f these m utants 

by  transfec tion  resu lted  in  the resto ra tion  o f the  PH A  and Con A 

responsiveness of those cells (W eiss et al., 1986).

CD 2, the m olecule w hich functions as sheep erythrocyte-binding 

pro tein  on the surface of hum an T -cells and w hich  has as m any as 6 

d is tinc t ep itopes (M artin  et al., 1983; Y ang et a l., 1986) is also 

involved in the activation o f T -lym phocytes and thym ocytes, including 

those lacking T 3/T i antigen recep tor com plex (Sayre e t al., 1987). It 

has been  dem onstrated that certain  com binations o f oc-CD2 m onoclonal 

antibodies w ere m itogenic to T-cells, as m easured by  proliferation or IL- 

2 p roduction  (M euer et al., 1984b; B rottier et al., 1985). Individual 

a -C D 2  antibodies are insufficient in  inducing T -cell activation. O ther 

reports suggested that 0C-CD3 and oc-CD2 m A b can synergize in  inducing 

pro liferation  in  cultures prepared w ith h ighly  purified  T -cells (Yang et 

al., 1986).

A crucial num ber o f m itogen molecules m ust bind to the lym phocyte
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surface in  such a w ay as to  provide a su ffic ien t surface stim ulus. 

M aximum  com m itm ent o f lymphocytes to DNA synthesis requires some 18 

h exposu re  to m itogen  (W edner and Parker, 1976). F o llow ing  the 

binding, a  red istribu tion  o f the ligand-receptor com plex  occurs. This 

in teraction leads to rapid changes in the surface m em brane, and to "cap" 

form ation, as indicated by reacting lym phocytes with fluorescein-labelled 

Con A at 37° C (Rao, 1982).

T ransduction o f a  transm em brane signal to T-lym phocyte nuclei via 

the an tigen/m itogen receptors seem s to occur v ia a lim ited  num ber o f 

b iochem ical pathw ays u tilized  by a variety o f cell types, w hen they 

transit from  a  non-grow ing to  a grow ing phase. T he an tigen/m itogen 

recep to rs on  T -ce lls  are linked  to  a  po ly p h o sp h o in o sitid e -sp ec ific  

phosphod iesterase  (PPI-PD E ), such that liga tion  o f these  receptors 

p rovokes p o ly p h o sp h o in o sitid e  (PI) b reakdow n  and  fo rm atio n  o f 

hydrolytic products that function as cellular second m essengers (F ig .l) , 

T he p re c ise  n a tu re  and fu n c tio n s o f  the  m o le cu le (s )  co u p lin g  

antigen /m itogen  receptors on T -cells to the PPI-PD E  are still largely  

undefined. Inosito l 1,4,5-triphosphate (IP3), a w ater soluble com pound, 

and  1 ,2 -d ia c y l-g ly c e ro l (D G ) are re le a sed  fro m  h y d ro ly s is  o f  

phosphatidy l inosito l b iphosphate (PIP^) (Im boden and Stobo, 1985), 

w hich is found in  the cell m em brane in  m inute quantities. T hese two 

second m essengers trigger tw o parallel pathw ays that act in  concert to 

elicit a physiological response. The DG  translocates Ca^^ phospholipid- 

dependent protein kinase C (PKC) from  the cytosol to the cell m em brane 

and increases its activity  by  increasing its affinity for Ca '̂*’ (Im boden et 

al., 1985), w hereas IP 3 increases cytosolic free Ca^^ concentrations by
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causing  its re lease  from  in trace llu la r stores i.e . m ito ch o n d ria  and 

endoplasm ic reticu lum  (Berridge and Irvine, 1984) probably by binding 

to  specific  recep to rs w ith in  the endoplasm ic re ticu lum  (Streb et al.,

1983). C a lc ium  ions b ind  to  and thereby  ac tiva te  calm odu lin , a 

cy toplasm ic p ro te in  w hich, in the presence o f Ca^"^, can  activate  a 

variety  o f d ifferent enzym e pathw ays including Ca^^-dependent protein 

kinases (Cheung, 1980; M eans and Dedman, 1980; Berridge and Irvine,

1984). This is fo llow ed by  a prolonged phase o f Ca^^ influx through the 

p lasm a m em brane (June et al., 1986). The increase in Ca^^ causes the 

activation o f PK C w hich m ediates phosphorylation o f num erous proteins, 

yet unidentified. Calcium  ionophores and phorbol esters can m im ic parts 

o f the activation  process, w hereas neither agent alone is m itogenic. 

Phorbol ester can  b ind  and activate PKC w ithout noticeable changes in 

cy toso lic  free  Ca^^ c o n ce n tra tio n  (G e lfan d  e t a l., 1985). Ca^^ 

io n o p h o re  A 23187  in c reases  cy toso lic  free  Ca^^ in f lu x  w ith o u t 

influencing PK C  activ ity  (Tsein et al., 1982). The com bination o f Ca^^ 

ionophore and phorbol esters duplicate the role of D G  and IP 3 and display 

strong synergism  in  inducing the genes fo r c~fos, c~myc, IL-2, IL -2R  

and IFN -y, and in  inducing T-lym phocytes to pro liferate  (K um agai e t 

al., 1987, 1988).

As m entioned above, after antigen/m itogen interaction w ith resting 

T -ce lls  and  the  tran sd u c tio n  o f th is in te rac tio n  in to  in trace llu la r  

b iochem ical signals, these activation signals, in  turn, induce the de  

novo  e x p re s s io n  o f  certain  sets o f cellu lar genes requ ired  for T -cell 

proliferation. T hese include those encoding lym phokines such as IL-2 

and its h igh  affin ity  cellu lar receptor. The binding o f IL -2 to its high 

affinity receptors results in  their intem alization and increases their rate of
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rem oval from  the cell surface resulting in  a decrease o f the level o f those 

surface receptors which are replaced by low affinity receptors (D epper et 

al., 1985). The subsequent binding of IL-2 to these receptors results in 

a second w ave o f gene activation leading to m itogenesis (Robb et al., 

1984; S tem  and Sm ith, 1986).

One o f these genes activated as a result o f the binding o f IL-2 to its 

recep to r is the T fR  gene (N eckers and C ossm an, 1983). This is 

discussed in detail below.

1.2.3 The role o f  transferrin  in proliferation  and  
iron m etabolism  o f lym phocytes

The pro liferation  o f lym phocytes is a dynam ic process w hich is 

h igh ly  con tro lled  under norm al conditions by stim ulating , enhancing, 

and suppressing biom olecule-cell interactions. The iron  binding proteins 

are one group o f these m olecules.

The im portance o f iron-contain ing  T f fo r the transform ation  o f 

ly m p h o cy tes  is w ell e s tab lish ed  (T orm ey  e t a l., 1972; D illner- 

C entrelind  et al., 1979; Brock, 1981, A nderson ûîZ., 1982; B rock 

and M ainou-Fow ler, 1983; B rock e t al., 1986). T he need of these 

cells to acquire  iron is sufficien t to account fo r the T f  requirem ent, 

a lthough  it has been  proposed  that T f m ay fu lfill an additional role 

unrelated  to its iron-donating properties, i.e. its b inding  to its receptor 

generates a  p ro life ra tion  signal (B rock and M ainou  Fow ler, 1983; 

S e lig m an ,1 9 8 3 ). M anger e t a l (1986) h ave  p roduced  an a - T f R  

m onoclonal antibody recognising an epitope different from  the T f binding
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site w hich  stim ulates the p roduction  o f IL -2 by  H U T  78, a T -cell 

leukaem ic cell line, even in  Tf-free m edium . O thers have dem onstrated 

that T f  exercises its grow th fac to r effect through acting as an electron 

acceptor fo r a diferric T f reductase in cell m em branes independently  to 

donating iron  to  cells (N avas et al., 1986). H ow ever, B rock et al 

(1986) have dem onstrated that in lym phocyte cultures T f fulfills its role 

as a grow th factor exclusively as an iron donor.

As regards the question o f w hether T f is the obligatory iron donor 

to p ro liferating  lym phocytes, there are conflicting  and  contradictory  

reports. Som e authors have show n that the addition o f iron  w ithout T f 

can give good p ro liferation  and d ifferentiation  (R udland  et al., 1977; 

Tanno and T akishim a, 1982; T iteux et al., 1984). O n the other hand, 

others have reported that iron itse lf cannot support p ro liferation  (Phillips 

and Azari, 1975; Brock, 1981). It has been dem onstrated that T f could 

be replaced by the lipophilic chelator pyiidoxal ison ico tinoyl hydrazone 

(PIH ) w h ich  can  p rom ote  p ro life ra tio n  by donating  iro n  v ia  a Tf- 

independent route (Brock and Stevenson, 1987).

I t  is genera lly  ag reed  tha t D N A  syn thesis is the  m ain  event 

dependent upon  T f  in  lym phocyte function, though there m ay be other 

cellu lar m etabolic events that are also iron-dependent. Iron  uptake was 

show n to precede D N A  synthesis (Brock and R ankin, 1981), because o f 

the need  o f  p ro liferating  cells fo r iron fo r the p roduction  o f the iron 

containing enzym e ribonucleotide reductase, w hich is a rate lim iting step 

in  lym phocyte p ro liferation  (H offbrand et al., 1976; L eberm an et al., 

1984; K ay and B enzie, 1986). L ike o ther non-p ro life ra ting  cells, 

resting  lym phocytes express few  TfR s. L arrick  and  C ress w ell (1979)
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w ere the first to  show  that w hen hum an peripheral b lood lym phocytes 

were activated by m itogenic lectins such as PHA or Con A, TfR  becam e 

p rom inen tly  d isp layed  at ce ll surface. T his observation  has been  

confirm ed by  m any o ther investigators (G albraith et aL, 1980; Om ary 

et al., 1980; N eckers, 1984). T fR  expression is now recognised as one 

critical even t in  a com plex  program m e of gene activation  induced by 

m itogenic agents and  cu lm inating  in  p rogression  o f  resting Gq phase 

lym phocy tes th ro u g h  G^ and S phase o f the cell cycle  (see section 

1 . 1 .5 .1 ).

The role o f T fR  in  the iron m etabohsm  of proliferating cells is still 

no t clear, since despite com parable receptor num bers, iron uptake rates 

by  m itogen  stim u la ted  lym phocytes are low  com pared  to  ery th ro id  

precursors (B om ford  et al., 1983; B rock and M ainou-Fow ler, 1983; 

Y oung  and  B o m fo rd , 1984). It has been  su g g ested  th a t th is  

hyperexpression  o f  TfR s m ay perm it norm al im m une function  to  be 

m aintained  w hen T f  saturation is reduced eg. in  inflam m ation  o r iron 

deficiency. It has also been reported that the receptor density m ay vary 

w ith the grow th phase o f the cell (Larrick and C ressw ell 1979). L ittle 

b ind ing  o f  T f  occurs in  resting  lym phocytes (G albraith  et al., 1980; 

B rock and R ankin , 1981; K halfoun et al., 1986). This indicates that 

the cells regulate  their requirem ents fo r iron by  the expression  o f T fR  

(laco p e tta  e t al., 1982). Furtherm ore, in terference w ith  TfR s by 

specific antibodies can  affect the cell cycle and grow th (Trow bridge et 

a l., 1982). A nti-T fR  m A bs that b lock  binding  and  iron  up take in  

activated lym phocytes inhibited  proliferation, w hereas antibodies that 

b ind  to TfR  but do not b lock T f binding are w ithout effect (M endelsohn 

et al., 1983; B rock et a l., 1986; Taetle et al., 1986; K em p e t al..
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1987), S im ila rly  p ro life ra tion  o f m urine  lym phocy tes in  m edium  

containing FCS can be b locked by  addition  o f apo-m ouse T f, w hich 

presum ably binds to the m urine TfRs and prevents iron  uptake from  the 

bovine T f in the m edium , w hich has m uch low er binding  affinity to the 

m urine lym phocyte T fR  than m ouse T f (Brock et al., 1986). Treatm ent 

o f m ito g e n -s tim u la ted  ly m phocy tes  w ith  su b s tan ces  th a t in h ib it 

p ro life ra tion  such  as IFN-oc (B esancon et al., 1985), cyclosporine 

(Prince and John, 1986), or calcium  channel-blocking agents (Neckers 

et at., 1986), also reduce expression o f TfRs. T he availability  o f Tf- 

bound iron in  the ex tracellu lar m edium  also influences expression  of 

TfRs; the addition o f m icrobial iron chelators eg. D FO  or a high affinity 

iron  chelating  agen t such as p ico lin ic  ac id  (P e lo si et al., 1986), 

stim ulates the cells to increase the num ber o f TfR s. O n the other hand, 

if  the culture m edium  is supplem ented w ith additional iron  the num ber of 

TfRs decrease (W ard e t al., 1984).

As m entioned above T-lym phocyte proliferation is controlled by a 

series o f prem itotic signals generated by  in teraction o f grow th factors and 

their m em brane receptors. In  norm al T-cells, T fR  expression  is tightly 

regulated and linked to prior expression o f tissue specific grow th factor 

receptors and their in teraction  w ith  appropriate g row th  factors. It has 

been reported that TfR  expression in  PH A  or PH A /tetradecanoyl phorbol 

acetate-stim ulated cells is dependent on the in terac tion  o f IL -2  w ith its 

receptor (N eckers and Cossm an, 1983; K ronke et al., 1985). A  short 

period o f interaction o f lectin  w ith lym phocytes allow s activation o f the 

T fR  gene, even  in  the absence o f EL-2, a lthough  p roduction  o f IL-2 

greatly am plified TfR  expression (Pelosi-Testa e t al., 1988). This effect
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is exclusive to IL -2 since addition o f other recom binant cytokines did not 

induce T fR  expression. H ow ever, others have dem onstrated that this 

depends on the rou te  o f ac tiva tion  and have described  an IL -2- 

independent pathw ay for induction o f TfR m RN A  by stim ulating the cells 

w ith  a com bination  o f  phorbo l 12, 13 d ibu ty ra te /ionom ycin  (PD B) 

(K um agai, et al., 1988). In  this study accum ulation  o f T fR  m R N A  

occurred early  in PD B /ionom ycin-stim ulated T-ceUs ( 6  h) in  contrast to 

PH A-stim ulated T-cells in  which TfR m RNA reached a peak only between 

12-24 h. O ther studies have been trying to define a tem poral sequence of 

gene activation in  hum an T-cells stim ulated w ith PH A  and PM  A using 

nuclear transcrip tion (Kronke et al., 1985). These studies indicated that 

the  p ro to -o n c o g e n e  c -m y c  is ac tiva ted  rap id ly , reach ing  peak  

transcription w ithin 6-9 h. These findings are consistent w ith the earlier 

studies o f K elly  e t a l (1983) w ho show ed that c-m yc  ex p ress io n  is 

follow ed by IL -2R  and IFN -y transcription w hich peak at 9-15 h. IL-2 

gene transcription is also initiated early but does not reach m axim al levels 

until 24 h. T ranscrip tion o f  these four genes w as no t inhibited by the 

addition o f cyclohexim ide, ind icating  that gene expression  w as not 

dependent upon  the protein products o f the other genes. In contrast, the 

TfR  gene was not expressed until 24 h  after m itogen activation, and did 

no t reach  peak  levels un til 48 h (K ronke et al., 1985). A ddition  of 

cyclohexim ide at the initiation o f culture com pletely blocked TfR  gene 

transcrip tion, suggesting a dependence on proteins derived from  other 

genes.

T f is a lso  sy n th esised  in  the cou rse  o f  a c tiv a tio n  by  T- 

helper/inducer lym phocytes. T f synthesis by these cells appears to be 

part o f a norm al autocrine reaction in w hich grow th factors and their
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respective receptors act as prem itotic signals fo r D N A  synthesis that is 

fo llow ed by cell division and proliferation. It has been show n that the T f 

gene is expressed  at a specific stage during the prem itotic events of T- 

lym phocyte proliferation, by the T4^ "inducer" subset o f lym phocytes 

(Lum  et al., 1986), and that T f transcription is an interm ediate event in 

the IL-2 autocrine cycle, and occurs after IL-2 transcription and prior to 

expression o f the IL-2R  and TfR. The nature and orig in  o f T f synthesis 

by  lym phocytes as w ell as its im pact on the autocrine pathw ay of T- 

lym phocyte proliferation aw ait further study.

1 .2 .4  E ffect o f  iron deficiency and iron overload  
on lym phocyte function

B oth  iron  deficiency  and iron  excess have been  show n to a lter 

ce llu la r im m une and non-specific  defence  fu n c tio n s. It has been 

dem onstrated that w hen the iron saturation o f T f is very low, the rate of 

p ro liferation  o f m itogen  stim ulated lym phocytes is decreased  (Brock, 

1981; P h illip s and A zari, 1975). It has also  b een  show n th a t 

supplem entation o f lym phocyte cultures w ith serum  from  iron-deficient 

m ice does n o t perm it optim al p ro life ra tion  due to  the  reduced T f 

saturation (M ainou-Fow ler and Brock, 1985), Furtherm ore, It has been 

dem onstrated that splenic lym phocytes as w ell as purified  T- and B-cells 

from  iron deficient m ice show ed a depressed transform ation response to 

m itogens (K uvib id ila  et al., 1983) and decreased  cy to ly tic  activ ity  

(Baliga et al., 1981). The effect on cellu lar im m une function o f excess 

iron in vitro  has been studied by a num ber o f investigators. B ryan et al 

(1981) dem onstrated that high concentrations o f ferric citrate could inhibit
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a hum an m ixed lym phocyte reaction . Iron w as show n to act on the 

responder cells rather that the stim ulator cells, K eow n and D escam ps- 

Latscha (1983) reported that excess iron , in  a  variety o f different form s, 

could inhibit antigen-induced lym phocyte proliferation and cytotoxic T- 

lym phocyte (CTL) sensitization, but not CTL effector function. In their 

studies they used  varying concentrations o f ferric iron as ferric citrate, 

ferric nitrate, and also ferric chloride at pH  7,2 w here solubility m ay be 

a p rob lem . It has a lso  been  reported  that lym phocy tes from  iron  

overloaded rats showed a m arked reduction of proliferative capacity after 

a m itogenic stim ulus and a dram atic decrease o f their capacity to repair 

D NA dam age (Pietrangelo et aL, 1988).

C linical and  experim ental iron-overload are associated with a high 

incidence o f infection (W einberg, 1978; 1984) and neoplasia (Pow ell et 

a l., 1971). O ne possib le  reason  fo r th is assoc ia tion  is that iron- 

overload m ay interfere w ith norm al im m une surveillance. In clinical iron 

overload a sm all bu t significant am ount of iron is 'free' or non-T f bound. 

It has been  show n that in  iron  overload, non-T f bound iron can be 

p resen t (H ershko  et a l., 1978; B atey e t al., 1980). It has been  

dem onstrated that non-T f bound iron Fe^^ has an inhibitory effect on the 

generation  o f cy to tox ic  T -lym phocytes by  affecting  all the m ajor T- 

lym phocyte subsets. G ood et a l (1986) have found that Fe^"  ̂ reduced 

both the cloning efficiency o f hum an CD4+ precursor lym phocytes and the 

rate o f clone grow th o f the T -cells that did proliferate. The same group 

has fo und  th a t low  lev e ls  o f  exogenous Fe^ ^ s im ila r to those  

concentrations reported  in the non -T f bound fraction  o f the serum  o f 

patients w ith iron-overload, significantly reduced the generation of CTL
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by an effect on both regulatory lym phocytes and CTL-precursors.

Sp leen  cells from  iron-overloaded  anim als had  a lso  m arkedly  

reduced  ab ility  to  generate  a lio -specific  C T L, though  a frequency 

analysis o f CTL-precursors revealed that these sam e anim als had norm al 

num bers o f allo-specific C TL-precursors, suggesting that a regulatory 

cell defect was responsible for the reduced ability  to generate effector 

cells in  the m ixed  lym phocy te  cu ltu re  (G ood e t a l., 1987). Iron- 

overload can thus place a lim it on the num ber o f available T -helper cells 

in vivo  apparently  by a reduction in the num ber o f functional helper T- 

cells. B ryan  et a l (1986) found  th a t iron  (Fe^^) at ex trem ely  h igh  

concentrations suppressed expression o f the hum an T-cell CD4 m olecules, 

on m itogen activated cells. They show ed that this was a specific defect, 

since iron did no t a lter expression  o f other m arkers on activated cells, 

including CD 8 , la  and the therm ostable sheep red blood cell receptor.
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A IM S OF THESIS

A lthough iron  is needed by lym phocytes fo r their p roper function, 

the w ay tha t iro n  affects these cells is n o t fu lly  understood . One 

particu lar area in  w hich there is a lack o f know ledge is how  these cells 

respond to  different form s and levels o f iron, and how  this affects the 

w ay they handle iron. Therefore, the w ork presented  in  this thesis has 

attem pted  to investigate  uptake o f iron  by  m ouse lym ph  node cells 

donated in  d ifferent form s and am ounts, and relate  it to its effect on 

proliferation. It has also exam ined w here this iron is located  inside the 

cell by looking at the relative incorporation o f the m etal in to  different 

in tracellular com partm ents. One of the reasons for the conflicting results 

rep o rted  on  the  e ffec t o f n o n -T f b o und  iro n  on  p ro life ra tio n  o f 

lym phocytes cou ld  be that these cells have the ab ility  to  synthesise 

transferrin. Therefore the possibility  that m ouse lym ph node cells m ake 

T f was also investigated.

S im ilar studies have also been  perform ed on the effect o f iron on 

hum an cells in  order to see w hether these tw o species respond differently 

to different conditions o f iron. This has also included an  investigation of 

the effect o f L f  on lym phocyte proliferation. In  particu lar the role o f  L f 

in  prom oting proliferation of hum an lym phocytes by  sequestering excess 

iron  has been  investigated . N um erous studies have  dem onstra ted  a 

regulatory role in  the im m une response for Lf, bu t there are conflicting 

reports concerning w hether this pro tein  fulfills a sim ilar role to Tf. As 

m entioned in  the preceding  review  it is no t c lear w hich  hum an T-cell 

subsets are prim arily  affected by high levels o f iron. I t w as therefore
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decided to study the effect o f different form s and am ounts o f  iron on the 

expression  o f  T -cell m arkers to investigate  w he ther d ifferen t T -cell 

subsets respond in  different ways to iron in varying form s and amounts.

Finally, because it is often stated in  the literature that transform ed 

cells generally  have reduced needs fo r nu trien ts and  g row th  factors 

com pared w ith their norm al counterparts, a sim ilar study was carried out 

on the T -transform ed line C C R F-C EM  to exam ine w hether iron  was 

required in sim ilar amounts and forms.



CHRPTER TWO

THE EFFECT OF DIFFEHEHT LEVELS BHD
FGRms OF mon on muninE

LVmPHOCYTES
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2 . 1  I N T R O D U C T I O N

A n im m une response is a com plex process, involving activation and 

proliferation o f lym phocytes, and a com plex series o f cellu lar interactions 

betw een T- and B-lym phocytes and m onocytes, to produce antibodies and 

to recru it and activate  phagocytic and cytotoxic cells. A lthough direct 

in teractions are probably involved in such responses, soluble factors also 

p lay  an im portan t role. In  addition, other types o f factors have been 

show n to in teract w ith  these cells. One such group o f factors includes 

iron  and the m olecules that bind it, nam ely Tf, Lf, and Ft. The ability 

o f lym phocy tes to  p ro lifera te  is c losely  linked  w ith  iron , and both 

in ad eq u a te  and excessive  am ounts o f the  m eta l can  be deleterious 

(D allm an, 1987; G ood et al., 1988). Iron is an im portan t requirem ent 

for these m etabolically  active cells which undergo differentiation and cell 

division, it being needed in  particular fo r the synthesis o f iron containing 

proteins and enzym es involved in DNA synthesis.

T f-bound iron appears to be the form  in  w hich iron m ust be supplied 

(Brock, 1981; B rock  and M ainou-Fow ler, 1983; T aylor ef a/., 1987), 

It has been  dem onstrated  that the ability o f T f to prom ote lym phocyte 

p ro life ra tion  is c lo se ly  related to its ability to  donate iron  to the cells 

(B rock e t al., 1986), L ittle proliferation occurs w hen apo-T f is added. 

O ptim al transform ation occurs in  the presence o f T f w hich is betw een 30 

and 70%  saturated (Brock, 1981). There have been conflicting reports on 

w hether add ition  o f  iron  in  form s other than  T f leads to inh ib ition  or 

enhancem en t o f  the lym phocyte response to m itogens. W hile  som e
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reported that chelate iron cannot support proliferation (Phillips and Azari, 

1975; B rock, 1981; Toylor et aL, 1987) others have reported  good 

proliferation (Tanno and Takishim a, 1982). Therefore to investigate this 

m atter in m ore detail, the effect on m ouse lym phocyte proliferation of T f 

together w ith  tw o chelators, d ifferent in  their chem ical properties has 

been  in v es tig a ted . O ne is a low  a ffin ity  h y d ro p h ilic  ch e la to r, 

n itrilo triaceta te , w hich m aintains iron in  a soluble form , unlike iron 

salts, as it is less susceptible to hydrolysis (Bates and Schlabach, 1973). 

The second chelator, py iidoxal isonicotinoyl hydrazone, is lipophilic and 

un like  m any o ther chelato rs w as found  to be  able to donate iron to 

ery thro id  p recursors fo r use in  haem  synthesis (P onka e t al., 1982). 

M ouse lym ph node lym phocytes w ere chosen as an in vitro  assay system  

because they  are easily  obtainable, and the use o f cells from  an anim al 

m odel allow s variables w hich could com plicate the in terpretation of the 

results to be  elim inated as m ice are inbred and age sex etc. are m uch easier 

to control. Thus they respond m ore uniform ly than hum ans.

M uch o f  the know ledge o f  incorpora tion  o f iron  in to  different 

in tracellu lar iron com partm ents is derived from  studies o f erythroid cells. 

As far as lym phocytes are concerned this area o f iron m etabolism  is alm ost 

unexplored. T he few  studies w hich looked at this fie ld  in  cells o f the 

lym phom yeloid  series (B om ford et al., 1986; M attia e t al., 1986) have 

dem onstrated that the uptake o f iron by the cell is initially  to the non-Ft 

co m p artm en t, and  th is is fo llow ed  by a tim e-dependen t fractional 

accum ulation o f iron into F t w hich occurs gradually and increases over a 

2-5 h period. H ow ever in  these studies they cultured the cells fo r a very 

short tim e and looked at cellu lar distribution o f iron at an early time after 

iro n  adm in istra tion , and  there  are no data  concern ing  in trace llu lar
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d is trib u tio n  o f iro n  in  cu ltu res over a lo n g er p e rio d  up  till now . 

M oreover, in  the studies m entioned above, FeT f was the exclusive source 

o f iron. T herefore, the w ork  reported in this chap ter has attem pted to 

define m ore c losely  the effect o f d ifferent iron  form s on  lym phocyte 

tran sfo rm ation  in vitro  in  relation  to their iron  donating  ability. T h is 

involved the study of the ability o f proliferating lym phocytes to acquire 

iro n  from  T f and the tw o iron  chelates, i.e  F eN T A  and FePIH ; to 

investigate the action o f these chelating com pounds and the effect o f their 

iron  content on cellu lar proliferation, and to see w hether iron  taken up 

from  these chelates is handled differently from  iron acquired from  Tf. By 

looking  at the pa ttern  o f iron  and F t accum ulation  and  in trace llu lar 

pathw ays o f iron m etabolism , a clearer picture o f the effect o f these iron 

carriers on lym phocyte function could be drawn.

O ne o f the reasons fo r the conflicting  resu lts  d iscussed  above 

(section  1.2.3) concerning the ability  o f non T f-bound  iron  to prom ote 

lym phocyte transform ation, m ay be explained by the fact that lymphocytes 

can  them selves synthesise T f w hich then m ediates pro liferation . In  m an 

activated  CD4+ T-cells synthesise T f (Lum  et al., 1986), bu t in  m ouse 

and  ra t there  is so fa r  no  conv incing  ev idence  o f  T f  syn thesis by 

lym phocytes. T herefore, T f  synthesis in  the m ouse  lym ph node cells 

upon  activation w as investigated to confirm  that m ouse lym phocytes can 

synthesise T f as suggested by previous w ork w ith hum an cells (Soltys and 

B rody, 1970; N ishiya et al., 1980; B roxm eyer et al., 1983; Lum  et 

al., 1986).

In  sum m ary therefore, the w ork reported  in  th is chap ter aim s to 

investigate:
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1) U ptake o f iron  by the m ouse lym phocyte donated in different 

form s and am ounts in relation to its effect on transform ation.

2) Incorporation o f iron into different intracellular com partm ents.

3) The ability o f m ouse lym ph node cells to m ake Tf.
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2 . 2  M A T E R I A L S

2 .2 .1  A nim als

B alb /C  m ice o f e ither sex o f 16-40 w eeks o f  age w ere iised 

throughout, and obtained from  departmental anim al house stock.

2 .2 .2  R eagents

W hen necessary , m edia were prepared in  iron-free  apparatus i.e. 

p lastic  o r g lassw are rendered iron-free by acid  w ash ing  in  10% H C l 

overnight then rinsed in deionised distilled w ater three tim es.

2 . 2 . 2 . 1  P hosp hate  Buffered Saline (PBS)

This consisted  o f N aC l ( 8  g/1), K Cl (0.2 g/1), N a 2H P 0 4  (1.15 g/1) 

and  K H 2 P O 4  (0 .2  g/1) (A nalar grade, BD H  C hem icals L td, Poole, 

D orset, England). Solutions were made in deionised distilled  water, and 

w hen required, aliquots were sterilised by filtration, PB S was m ade low 

iron by adding 1% (w/v) NaHCOg.

2 . 2 . 2 . 2  H um an Serum  Album in (HSA) so lu tion

A  solution o f 1% (w/v) HSA (Behringwerke, W est G erm any) was 

prepared in  RPM I-1640 m edium  (w/o Hepes; Flow  L aboratories, Irvine, 

A yrshire, Scotland ), was sterilised by filtration and stored at 4^ C, The 

solution w as tested by radial im m unodiffusion assay (kindly done by D r 

S. M cG regor) and found not to contain any detectable Tf,
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2 . 2 . 2 . 3  C oncanavalin  A (Con A) so lu tion

A  stock solution o f Con A  (10 |Xg/ml; Sigm a, D orset, England) 

was prepared  in  low  iron PBS, sterilised by filtration , dispensed in 

100 111 aliquots, and stored at -20° C. Each aliquot w as used  once only.

2 . 2 . 2 . 4  Ferric  nitrilotriacetate (FeN TA )

T his w as prepared  using a  m olar ratio  o f 4:1 o f  N T  A to iron to 

ensure  the fo rm ation  o f  low  m olecu lar w eight ra th e r than  hydrated  

po lym eric  com plexes (Spiro et al., 1967). O ne vo lum e o f a freshly 

prepared  so lu tion  o f  FeCl^ (20 m M , BDH) was added drop w ise, w ith 

constan t stirring , to an equal volum e of N aN T A  (80 m M , pH  7.0; 

Sigm a) and the pH  adjusted to 5 w ith 1 M  N aO H  to prevent the NTA-free 

acid precipitating. The resulting concentration o f FeN T A  was 10 m M  (pH 

5 .0 ) .

2 . 2 . 2 . 5  F e r r i c  p y r id o x a l  i s o n i c o t i n o y l  h y d r a z o n e  
(F eP IH )

A  stock  so lu tion  o f 0.3 m g/m l o f PIH  (D r P. Ponka, M cG ill 

U niversity, Canada) was m ade in 5-10 m l deionised w ater, 50 p i of 1 N 

H Cl was added, and the solution was m ixed vigorously and left under the 

hot tap to aid dissolution of the chelator before being filter sterilized.

2 . 2 . 2 . 6  Standard Culture M edium

This w as prepared by supplem enting R PM I-1640 culture m edium  

(w/o H epes; Flow ) w ith 0.3 m g/m l L-glutam ine (BD H ), and 100 lU /m l 

pen ic illin  and  100 p g /m l streptom ycin (Flow ). F ina lly , 10% final 

concentration  o f fetal ca lf serum  (FCS) (Flow) w as added. F or serum
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free m edium , H SA  (1 m g/m l final concentration), 2-m ercaptoethanol (2- 

M e, final concentration 50 pM ; BDH ), and hum an T f  (Behringwerke) 

previously prepared in  PBS containing 1% (w/v) NaHCOg (A nalar grade, 

B D H ) to ensure iron removal^ usually 50 pg/m l, w ere added instead of 

FCS. D ifferent T f saturations w ith iron w ere achieved by  adding to T f 

solutions appropriate am ounts o f FeN TA , w hich is know n to m aintain 

iron in  the so lub ilised  form  and allow s it to be read ily  available for 

binding to T f (Bates and Schlabach, 1973).

2 .2 .2 .7  R e a g e n ts  fo r  a - n a p h t h y l  a c e t a t e  e s te r a s e
sta in in g

2 .2 .2 .7 .1  F i x a t i v e ,  T h is c o n s is te d  o f  fo rm o l ca lc iu m  

solution, pH  6.7, containing 10% (v/v) form aldehyde (BD H ) and 1% 

(w/v) CaClg in  distilled H^O.

2 .2 .2 .7 .2  P h o sp h a te  b u f fe r  (o ,o6  M , p H  5 ,0 ), This was 

p repared  by  m ix ing  98.5 m l o f KH^PO^ (9 .08  g/1) and  1.5 m l o f 

Na^HPO^ .2H^ O (11.88 gA). The buffer was sterilised by  autoclaving.

2 .2 .2 .7 .3  H e x a zo tiz e d  p a ra ro sa n ilin e .  T h is  so lu tion  was 

prepared by m ixing equal volum es o f tw o solutions w hich w ere prepared 

as follow s:

•Solution A  This w as a freshly prepared so lu tion  o f 4%  (w/v) 

NaNO^ (BDH).

•S o lu tio n  B  T h is  w as p rep a red  b y  d isso lv in g  1 g o f 

P a ra ro san ilin e  (W axes & G en era l L ab o ra to rie s  Supp lies, 

London, England) in  20 m l d istilled  H^O  to  w hich  5 m l of
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concentrated H Cl was added. The solution was gently warm ed 

to  d isso lve  the pararosan iline , a llow ed  to  stand  at room  

tem perature to cool, and finally  filtered. The filtrate was then 

stored in  the dark at 4° C.

2 , 2 , 2 . 7 , 4  oc-n aph th yl a c e ta te  e s te r a s e  s ta in .  T h i s  

consisted o f adding 2,4 m l o f hexazotized pararosaniline and 10 m g of a 

freshly prepared solution o f a-naph thy l acetate (Sigm a) in  0.4 m l acetone 

to 40 m l o f the phosphate buffer. Finally the pH  o f the com plete reagent 

was raised to 5.8 w ith 2N N aO H  before being filtered.

2 . 2 . 2 . 8  R e a g e n t s  f o r  P o l y  A c r y l a m i d e  G e l  

E lectrophoresis  for  ferritin

2 . 2 , 2 . 8 , 1  A cry la m id e  so lu tio n  (40% )

38.96 g Acrylam ide (BDH)

1.04 g Bisacrylam ide (BDH)

M ade up to 100 m l w ith H^O, filter sterilized, and kept in 

cold.

2 , 2 , 2 . 8 , 2 .  Sam ple bu ffer

50%  (v/v) Glycerol (BDH)

0.25 M  T ris-H Cl (pH  6 .8 ; B ohringer M annheim  Gm bH , 

W .Germany)

0.0125%  (w/v) Brom ophenol blue (BDH)

2 , 2 , 2 , 8 . 3  T ank bu ffer  

24 g Tris (Bohringer)

115.2 g Glycine (BDH)
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M ade up to 4 litre with H 2O

2 . 2 . 2 . 8 . 4  F ix e r

10% (v/v) TCA (BDH)

10% (v/v) Acetic acid (BDH)

30% (v/v) M ethanol (BDH)

2 . 2 . 2 . 8 . 5  P ro te in  sta in  

0 .25%  (w/v) Coomassie blue 

50%  (v/v) M ethanol

10% (v/v) Acetic acid

The solution was stirred overnight and filtered before use.

2 . 2 . 2 . 8 . 6  P erV s P russian  b lue rea g en t

8 % (w/v) Ferricyanide m ixed 1:1 w ith 8 % (v/v) concentrated 

H C l (both freshly prepared in  double distilled H^O).

2 . 2 . 2 . 8 . 7  D e sta in in g  so lu tion  

20%  (v/v) M ethanol

1 0 % (v/v)Acetic acid 

inH ^O

2 . 2 . 2 . 9  R eagent for im m unoprécip itation  o f  transferrin

2 .2 .2 .9 .1  3D  B u ffer

1% (v/v) Triton X-100 (BDH)

0,5%  (w/v) deoxychohc acid (BDH)

0.1%  (w/v) sodium dodecyl sulphate (SDS; BD H )

0.1 M  N aCl

10 m M  Na-phosphate buffer, pH  7.5
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1 m M  Na^EDTA (BDH)

The buffer solution was sterilized by filtration  and kept at 

room  tem perature.

2 . 2 . 2 . 1 0  R e a g e n t s  f o r  S D S -P o ly  a c r y la m id e  g e l  

e lectroph oresis  for transferrin

2 . 2 . 2 . 1 0 . 1  U rea b u ffer  

10% (w/v) SDS

8  M  Urea (BDH)

10 m M  Tris-H Cl, pH 7.0

The buffer solution was sterilized by autoclaving.

2 . 2 . 2 . 1 0 . 2  S am ple  b u ffer  

50%  (v/v) glycerol

0.25 M  Tris-H Cl, pH  6 . 8  

5% (w/v) SDS 

5% (v/v) p-m ercaptoethanol 

0.0125%  (w/v) brom ophenol blue

2 . 2 . 2 . 1 0 . 3  T an k  bu ffer  

24 g Tris

115.2 g glycine 

4 g SDS

M ade up to 4 litre w ith H^O.
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2 .3  M E T H O D S

2 .3 .1  P rep aration  o f  cell su sp en sion  and culture  
co n d itio n s

Cell suspensions were prepared from  peripheral (brachial, axillary, 

and inguinal) and m esenteric lym ph nodes o f the m ice. The lym ph nodes 

w ere rem oved from  freshly killed m ice under sterile conditions, and the 

cells w ere gen tly  teased  out in to  R P M I-1640  su p p lem en ted  w ith  

pen ic illin , strep tom ycin , and L -glu tam ine as described  in section  

2.2.2.6. The cell suspension was m ixed w ell, transferred  in to  a sterile 

p lastic  un iversal and left to  stand for 1 - 2  m in  fo r any tissue debris to 

settle out. The cell suspension was then carefully asp irated  into a clean 

plastic universal and the cells were washed tw ice at 160 g  fo r 2-3 m in in 

the culture m edium . The suspension contained 85-95%  viable cells as 

m easured  by eosin  exclusion. The cells w ere finally  suspended in  the 

culture m edium  at a concentration o f 2 x  10® v iab le  ceUs/m l. U nless 

otherw ise stated cells were cultured in  conical test tubes w ith  Con A  at 

the appropriate concentration. The cells w ere cu ltu red  at 37° C in  an 

atmosphere o f 5%  CO 2 » 95%  air for 48 h.

2 .3 .2  M easurem ent o f  p roliferation

C ell suspensions w ere prepared as described above. Proliferation 

responses were assayed by plating 1 0 0  p i aliquots o f the cells in a conical 

bottom ed m icrotitre culture plate (Steiilin) and pulsing w ith 1 pCi/weU of 

^H -thym idine (specific activ ity  52 C i/m m ol; R ad iochem ica l Centre,
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A m ersham , E ngland) fo r 4  h  before term inating the incubation  period. 

The cells w ere then  harvested on glass fibre m ats using  a  cell harvester 

(Skatron, L ierbyen, N orw ay), w hich w ere usually  le ft overnight on the 

bench to  dry. Ind iv idual d iscs, each  w ith contents o f a single w ell, 

w ere added to  2 m l o f  sc in tilla tion  flu id  (L K B , C roydon, Surrey, 

E ngland) and counted  fo r 5 m in  on a sc in tilla tion  coun ter (Packard, 

Pangboum e, Berkshire, England).

2 .3 .3  U p ta k e  o f  iron  by p r o life r a t in g  m ou se  
ly m p h o c y te s  c u ltu r e d  w ith  d if f e r e n t  
tran sferrin  satu ration s

Uptake o f iron was determ ined by incubating the lym ph node cells 

w hich w ere prepared as described in section 2.3.1 w ith  Con A  (1 pg/m l) 

in  serum  free m edium  and transferrin  at 50 p g /m l saturated  to  various 

degrees w ith  ^^Fe. T his la tte r  w as p repared  by  d ilu ting  ®^Fe-citrate 

(specific activity 11 pC i/pg  Fe; A m ersham ) w ith  FeN T A  as a source of 

co ld  iron. S uffic ien t iron  w as added to apo -T f to  g ive the required  

saturation at least 2 h  before the ferric T f  solutions w ere added to cultures 

(Zapolski and Princiotto , 1977), taking into account endogenous iron 

present in  the m edium  w hich is in  the average o f 5 ng /m l (Brock, 1981). 

A fter incubation  fo r 2 days in  iron-free plastic  con ical test tubes, the 

cells w ere spun dow n at 1200 rpm  fo r 3 m in  then  w ashed 3 tim es with 

H anks’s solution. To avoid problem s o f adsorption o f  isotope to culture 

tubes, cells w ere transferred  to new  tubes after suspension  in the third 

w ash so lu tion . R ad ioactiv ity  associated  w ith  supernatan t, w ashes, 

tubes, and the cells w as counted  in  a  gam m a coun ter (C om pugam m a 

1282, LKB W allac, C roydon, Surrey, England). To determ ine the
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degree of transform ation in  different samples, 0.5 m l was rem oved from  

each cell suspension, and then split into 4 x 100 p i aliquots in  a 96 well 

conical bottom ed plate. The cells were pulsed for 4 h  with 1 pC i/w ell of 

^H-thym idine, harvested, and counted for 5 min. The radioactive iron 

w as tested  and found  no t to in terfere w ith m easurem ent o f uptake of 

labelled thym idine.

2 .3 .4  Iso la tion  o f ferritin

T his w as p repared  from  100 g o f m ouse livers fo llow ing the 

m ethod reported  by  L inder and M unro (1972) for preparation of hum an 

Ft, except that A c A -22 (LKB, Brom m a, Sweden) was used for the gel 

filtration step. T he tissue was m inced w ith scissors and a hom ogenate 

was m ade in  four volum es o f w ater using an M SE hom ogenizer (Crawley, 

Sussex , E n g lan d ). A ll m ateria ls w ere kep t in  an  ice  bath . The 

hom ogenate w as heated  to  70° C for 10 m ins then cooled on ice and 

centrifuged for 15 m in at 2000 g to rem ove heat-inactivated proteins. The 

pH  o f the supernatant w as adjusted to 4.8 w ith glacial acetic acid, left 

for 4 h, and a further precipitate rem oved by centrifugation. The pH  was 

adjusted to  7.2 w ith  1 M  K 2H PO 4 , solid am m onium  sulphate was added 

to give 50%  saturation and the solution was left overnight at 4° C. The 

precipitate  was rem oved  by centrifugation at 2 0 0 0  g, dissolved in  the 

m inim um  am ount o f  PBS, and dialysed against 6  changes o f the sam e 

buffer until the reaction  fo r sulphate w ith 1 % BaCl2 was negative. The 

sam ple was fractionated  by gel filtration on A cA  22 in a colum n 

(1.2 X 90 cm ) e lu ted  w ith  PBS, and 1.5 m l fractions collected. The 

tubes w ith  red colour, indicative o f Ft, were pooled and centrifuged at
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11 X 10"̂  g for 4 h  in an L2-65 Beckm an centrifuge to sedim ent the Ft. 

A fter red isso lv ing , p ro tein  conten t o f the ferritin  p repara tions was 

m easured by  the m ethod o f Low ry et al (1951) using B SA  (Sigm a) as a 

standard. F*urity w as checked by polyacrylam ide gel electrophoresis as 

described in the next section. M ouse spleen Ft was prepared  follow ing 

sim ilar procedure and was kindly provided by D r X. A lvarez-H em andez.

2 .3 .4 .1  A garose  P o lyacrylam ide gel e lec tro p h o resis  F or  

ferr itin

The LKB 2001 V ertical E lectrophoresis system  was used  w ith a 

non-denaturing gel consisting of 1% agarose and 4%  acrylam ide gel, and 

a 1.5 m m  spacer. The agarose solution was prepared  by  dissolving 

345 m g o f agarose (Sigm a) in 4.37 m l o f 1.5 M  T ris-H C l, pH  8 .8 , and

8.5 m l H^O, and b rough t to the bo il on a ho t p la te  stirrer. W hen 

dissolved, the agarose solution was put in a w ater ba th  at 50° C. The 

acrylam ide solution was prepared by m ixing 4.37 m l o f  40%  acrylam ide 

(see section 2.2 .2 .8 .1) w ith 4,37 m l 1.5 M  T ris-H C l, pH  8 .8 , and

8.5 m l H^O, and put in  the sam e water bath. W hen bo th  solutions were 

equ ilib ra ted  to tem perature , they w ere m ixed rap id ly  and 450 jxl o f 

am m onium  persu lphate  (BD H ) (freshly prepared) and  25 p.1 TEM ED  

(Sigm a) w ere added im m ediately. The m ixture was im m ediately poured 

into a p rew arm ed m ould  w ith the com b already inserted  in  it, using a 

prew arm ed glass pipette. The com b was extracted very carefully  after the 

gel had  so lid ified , and the resultant wells w ere then  filled  w ith  tank  

buffer (see section 2.2.2.8.3), The upper reservoir w as placed on top o f 

the gel and sufficient tank  buffer was added to cover the electrode wire.
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The tank w as filled  w ith the rem aining buffer, and the upper reservoir 

and gel w ere placed  in the tank. The sam ples w ere prepared  by adding 

the F t solution to the sam ple buffer (see section 2.2 .2 .8 .2). Tw o equal 

volum es o f  the  sam ples w ere loaded in to  tw o separa te  w ells each 

con tain ing  2 0  p.g o f the protein  using long narrow  round  p ipette  tips 

(B ioquone L td, Y orkshire, England). The gel w as run  at 40 m A  for 

approxim ately 6  h  w ith w ater cooling. The gel was then incubated for 1 h  

in  fixer so lu tion  (see section 2.2.2.8.4), and then  cu t in to  tw o halves 

each containing one sam ple, one being stained fo r pro tein  by incubation 

in Coom assie blue solution (see section 2.2.2.8 .5) fo r 1 h, and the other 

fo r iron  by  incubation  in  Perl's Prussian  b lue reagen t (see  section 

2 .2 .2 .8 .6 ) fo r 1 h. The gel stained for p ro tein  w as incubated  in  the 

destaining solution (see section 2 .2 .2 .8 .7) overnight on a  ro tary  shaker. 

B oth gels w ere dried by freeze drying using a dryer gel p late connected to 

a  freeze dryer m achine. One m ajor and tw o m inor bands w ere observed 

all o f w hich stained for iron as w ell as protein.

2 .3 .5  P reparation  o f  antibodies aga in st ferritin

T he inocu lum  w as prepared  by  em ulsify ing  com plete  Freund 's 

adjuvant (D ifco) and a solution o f M LFt (100 pg/m l) (1:1) to  give a final 

volum e o f  1 m l in  a  syringe o f the sam e capacity . To m ake a stable 

em ulsion the syringe was vibrated on a vortex for 2 0  m in  w ith  the plunger 

and needle secured w ith tape. The stabihty o f the em ulsion w as tested by 

allow ing a sm all drop to fall into a beaker o f w ater, and  the em ulsion 

was ju d g ed  ready  to be injected w hen the drop d id  n o t diffuse in the 

w ater. T he schem e o f im m unization o f rabbits consisted  o f  m ultip le
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subcu tanous inocu lations in various sites ( 1  m l vaccine pe r rabbit) 

follow ed by  10 days rest, and then a sim ilar repeat inoculation. A fter 

another 10 days a booster was given (50 pg  o f F t in  1 m l PBS). A fter a 

week, approxim ately 2 0  m l blood was collected from  the ear vein of each 

rabbit in to  a  glass universal and allowed to clot at room  tem perature. The 

serum  was then pooled, transferred to plastic conical-bottom ed test-tubes 

(S teiilin ) and centrifuged tw ice at 3000 rpm  fo r 5 m in  to  rem ove any 

erythrocytes. The antibody titre was checked by the ring precipitin test as 

follow s; a  sm all volum e o f Ft solution (10 pg /m l, 100 pg/m l, and 

1 m g/m l) was gently layered on top o f a sim ilar volum e o f  antiserum  in a 

D urham  tube. The form ation o f strong precip itin  bands w ith all three 

concentrations o f the protein  indicated a very good titre. The antisera 

w ere salt fractionated  w ith 33%  (w/v) (NH 4 )2 S 0 4  (3 tim es) (by adding 

saturated (NH 4 )2S0 4  solution, 50% o f the original antisera volum e). The 

IgG  fraction  w as dialysed against PBS to rem ove (NH 4 )2S 0 4  and stored 

in aliquots at -20° C.

2 .3 .6  A ffin ity  chrom atography

The follow ing Sepharose 4B affinity colum ns; Sepharose-norm al 

rabbit im m unoglobulins (S-N RIg), S epharose-rabb it-a -m ouse  liver Ft 

(S -R a -M L F t) , Sepharose-norm al sheep im m unog lobu lin s (S-N SIg) 

(N S Ig  w as pu rch ased  from  S ero tec), S ep h aro se-sh eep  a - h u m a n  

transferrin  (S-Soc-HTf) (S a -H T f was purchased from  Serotec), together 

w ith  S epharose-M L F t (fo r labelling  oc-MLFt w ith  see section

2.3.10), w ere prepared using sim ilar procedures. The required am ount 

o f freeze dried  C N B r-activated Sepharose 4B (Pharm acia L td, M ilton 

K eynes, England) was sw ollen in 1 m M  H Cl fo r 15 m in  then  washed 

w ith the sam e solution on a  sintered glass filter (200 m l/g  o f gel). The
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gel w as finally  w ashed and resuspended in the coupling buffer (0.1 M  

N a2C 0 3 , pH  7.0 containing 0.5 M  NaCl). The proteins to be conjugated 

were p rev iously  d ialysed  against the coupling buffer fo r 2  days, the 

concentration then adjusted to 5-10 m g/m l, as judged  by  spectroscopic 

absorption at 280 nm , and finally  they were m ixed w ith gel in a ratio o f 

2:1 (v/v). The m ixture was left rotating in an end-over-end m ixer for 2 h  

at room  tem perature, after w hich the supernatant was aspirated. Excess 

ligand was w ashed aw ay w ith coupling buffer on a glass filter and any 

rem aining active groups blocked by treatm ent w ith 2 volum es o f 1 M  

glycine fo r 2  h  at room  tem perature. The fina l p roduct was w ashed 

alterna te ly  w ith  3 cycles o f 0.1 M  sodium  acetate  b u ffe r (pH  4.0) 

containing 0.5 M  N aC l and the coupling buffer to  rem ove traces o f non- 

covalently adsorbed m aterials. The conjugates w ere stored at 4° C in  PBS 

containing 1% (w /v) B SA  and 0.02%  (w/v) sodium  azide. The binding 

capacity  o f S-Roc-M SFt and S-Soc-HTf were m easured  by  counting the 

rad ioactiv ity  o f a know n concentration o f ^^^I-Ft and  ^^®I-Tf solution 

before and after passing  each one through a colum n ( 1  m l syringe barrel) 

containing 50 p i  o f  the appropriate packed coupled gel. The capacity o f 

the affinity gel was found to be 5 and 7 pg /p l o f settled gel for 2 batches 

o f the S-Roc-MLFt, 4 .2  fo r S -R a-M S F t and 5.4 p g /p l o f settled gel fo r 

S -S a-H T f.

2 ,3 .7  Iron  uptake and intracellu lar d istribution  o f  
iro n  in p ro lifera tin g  m ou se ly m p h o cy tes  
cu ltu red  w ith  d ifferent carriers

In tracellu lar d istribution  o f iron was investigated in  proliferating 

lym phocytes that had been cultured with Con A  (1 pg/m l) in  serum -free
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m edium  containing different am ounts o f iron in  d ifferent form s. Three 

fo rm s o f  iro n  w ere  in v e s tig a te d , fe rr ic  tra n s fe r r in , fe rric  

n itrilo triace ta te , and ferric  pyridoxal ison ico tinoy l hydrazone. The 

transferrin  at 50 pg /m l w as used at tw o different saturations w ith iron, 

one low  (14% ) and the other high (71%). The other iron  binding agents 

were used  w ith iron  content equivalent to that o f the corresponding iron- 

containing T f  (10 and 50 ng /m l respectively). The follow ing protocol 

was adopted:

FeN T A  (1 m M ) w as m ixed  volum e to volum e w ith  ®^Fe-citrate 

(specific activity 1331 M B q/m g Fe) and this trace labelled  FeN TA  was 

either used as such or added to T f or PIH. The Fe:chelator ratio was kept 

constan t th roughou t a ll the experim ents (1:5 fo r F eN T A  and 1:2 fo r 

FePIH ). T he cells (2 x  10® viable cells/m l) w ere cu ltu red  in  plastic 

conical tes t tubes fo r 48 h, a fter w hich they were w ashed 3 times w ith 

H ank’s solution, then lysed by adding 1 m l o f 1% T riton  X -100 in  PBS 

containing 1 m M  desferrioxam ine (DFO) (CIBA Laboratories, Horsham , 

England) to the pellet o f cells. The addition o f D FO  at this stage, w hich 

reacts w ith  iron to form  a  highly stable com plex, w as intended to chelate 

any availab le  iron  at the m om ent o f cell lysis, hence  reducing  to 

m in im um  p o ten tia l m ov em en t o f lab ile  iro n  to  o th e r poo ls as a 

consequence o f cell disruption. The lysates w ere m ixed  vigorously and 

left fo r 5 m in before being centrifuged in  a m icrocentrifuge for 10 m in at 

1 0 0 0 0  rpm , and  the p recip ita tes, w hich consist o f inso lub le  cellu lar 

com ponents, after a fu rther w ashing w ith T riton X -100/PB S w ere kept 

fo r counting  rad ioactiv ity . T he w ash supernatants w ere added to the 

original T riton X -100/PBS lysate supernatants. T hese tw o together were 

passed through affinity colum ns. The affinity colum ns w ere m ade
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in  a 1 m l syringe barrel containing 50-75 |J,1 o f each  im m unoabsorbent 

gel. F ig . 2 show s a diagram  o f one colum n. The colum n contains two 

specific im m unoabsorbents (S -R a-M L F t and S -S a-H T f) together w ith 

tw o gels coupled to the im m unoglobulins o f the corresponding norm al 

sera to correct fo r non specific binding, i.e. S-N RIg and S-N SIg for S- 

R a-M L F t and S -S a-H T f respectively (see section 2.3.6). The colum ns 

w ere equilibrated  and elu ted  w ith  T riton  X -100/PB S, then the lysate 

supernatants w ere passed twice through each colum n to w ash out liquid in 

the dead  space. T he d ifferen t parts o f the co lum n  w ere carefully  

dism antled and radioactivity associated with each gel counted in a gamma 

counter. The filtrates from  the im m une absorbents w ere kept for further 

fractionation  in to  low (<10 K d) and high (>10 K d) m olecu lar w eight 

m a te r ia ls  u s in g  A m ic o n  u l tr a f i l t r a t io n  c e lls  (C e n tr ic o n  10 

M icroconcentrator; A m icon Co, Lexington, M ass., U SA) equipped with 

PM  10 m em branes. The A m icon cells were centrifuged in  a fixed angle 

ro tor centrifuge (Super M inor, M k2, M SE) at 1250 g fo r 90 min. The 

retentâtes w hich consist o f the high m olecular w eight fraction consist of 

®^Fe bound to  soluble proteins (other than F t o r Tf). This fraction was 

called the interm ediate m olecular w eight fraction-®^ Fe and it  probably  

consists m ain ly  o f iro n  in  enzym es and haem pro te in . T he filtrates 

containing low m olecular weight iron com pounds consist o f iron bound to 

DFO.

2 .3 .8  a -n a p h th y l  a c e ta te  e s t e r a s e  (A N A E )  
sta in in g

A  cell suspension o f lym ph node cells was prepared as described in 

section 2.3.1. A pproxim ately 6-7 x 10® in vivo  stim ulated  lym ph node
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S-RIg

S-R-oc-M LFt

S-SIg

S-S-oc-H Ft

Filter

Dead space

F ig u r e  2 D iag ram  o f  an  a ff in ity  c o lu m n  
u se d  in  f r a c t io n a t in g  ly s a te  
s u p e rn a ta n ts  f o r  in t r a c e l lu la r  
d is tr ib u tio n  o f  iron
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cells or lym phocyte depleted cells (see section 2.3.9) w ere deposited on 

clean glass slides in  a  Shandon cytocentiifuge at 1000 rpm  for 90 sec and 

then  a ir dried . P reparations w ere then fixed in fo rm ol calcium  (see 

section 2.2.2.7.1) a t 4° C for 10 m in  and washed in running tap  w ater for 

20 m in at room  tem perature. Finally the slides w ere incubated w ith the 

staining reagent (see section 2.2.2,7.4) for 90 m in at 37° C. The slides 

w ere then w ashed gently in running w ater for 1 0  m in, left to  dry at room  

tem perature, and then counterstained with 2% m ethyl green (Hopkins & 

W illiam s, Essex, England) for 20 sec. Finally the cells w ere rinsed in 

running w ater, com plete ly  air-dried , and m ounted w ith  H istom ount 

(N ational D iagnostics, Som erville, New Jersey, USA ). S lides w ere 

exam ined  using  a L eitz-W elzlar m icroscope (X  100). T -lym phocytes 

show  sm all redish brow n spots in their cytoplasm , and m onocytes and 

m acrophages are characterized by diffuse redish brow n staining m aterial 

th roughout the w hole cell, w hile B lym phocyte and nu ll cells do not 

stain .

2 .3 .9  Im m unoprécip itation  m ethod F or transferrin

T f synthesis w as assayed in  three systems:

1) N orm a l lym ph node cells: Lym ph node cells w ere obtained 

from  six m ice as described in  section 2.3.1. The cells w ere preincubated 

in 5 m l o f  T f-free m edium  consisting o f RPM I-1640 (w /o cysteine or 

cystine; Select-A m ine K it , G ibco Ltd, Paisley, Scotland) in  a conical 

test tube fo r 1 h  at 37° C in  an atm osphere of 5% CO^, 95%  air, to allow 

exocytosis o f any endogenous T f  to occur. Cells were then w ashed tw ice 

w ith PB S, resuspended in  2 m l o f RPM I-1640 (w /o cys) containing 

100 pC i o f ^^S-cysteine (specific activity 1021.8 Ci/mmol; D uPont NEN,
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D reireich, W . Germ any), and incubated at 37° C in  a CO^ incubator for 

5 h. T he cells and  supernatan t w ere separa ted , and  9 .4  p i  o f 

phenylm ethyl sulphonyl fluoride (PM SF; 0.21 M  in  dim ethylform am ide) 

and 3m l 3D buffer (see section 2.2.2.9.1) containing 14.4 p i  o f PM SF 

w ere added to supernatant and pellet o f cells respectively  to  give a final 

concentration o f 1 m M . B oth supernatant and cells w ere kept at -70° C 

until ready for use.

2) Con A  stim ulated lym ph node cells: The cells w ere cultured at

2 X 10® cells/m l in RPM I-1640 containing 10% FCS and 4 pg /m l Con A 

for 36 h. The cells were then harvested and treated  as described above 

for the non-stim ulated cells.

3) In  vivo stim ulated lym ph node cells: S ix m ice w ere inoculated 

in to  the footpad  w ith 50 p i  o f an em ulsion o f P B S/com plete  Freund's 

ad juvant (1:1). T hree w eeks later, the m ice w ere saerified  and the 

stim ulated popliteal nodes w ere rem oved. Cells w ere prepared  and then 

treated as described above fo r the non-stim ulated cells.

D etec tion  o f  T f synthesis in  adherent and  non-adheren t in vivo  

stim ulated lym ph node cells was also perform ed. A fter preparing the cell 

suspension, the in  vfvo-stimulated lym ph node cells w ere resuspended at

a concen tra tion  o f 5 x  10® cells/m l in  R PM I-1640 com plete  m edium  

(section 2.2.2.6) containing 10% FCS. The ce ll suspension  was placed 

in  a Falcon 100 x 5 m m  plastic Petri dish (5 m l/dish), and  incubated for 

1 h  at 37° C in  a CO 2 incubator. For adherent cells, 2 m l o f RPM I-1640 

(w/o cys) containing ^^S-cysteine was added receiving a to ta l o f 100 pCi. 

N on-adherent cells w ere treated as described above.
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A nother m ethodo log ical approach  was used  to  investigate  T f 

synthesis in  lym ph node m acrophages. This consists o f perform ing an 

im m unodepletion o f B and T-lym phocytes before doing the assay. The 

lym phocytes w ere elim inated by incubating the in vivo  stim ulated lym ph 

node cells (10? cells/m l) w ith a  cocktail o f 1:1000 dilu ted a -m o u se  IgG  

(Serotec, O xford, England), a 1:2000 diluted a -T h y  1 (Serotec), and a 

1:10 diluted low-Tox-M  rabbit serum  com plem ent (Cederlane Laboratories 

L td, O ntario , C anada) fo r 1 h  tw ice. At the end  o f  the incubation 

viability was determ ined using eosin exclusion and w as found to be 27- 

34% . T he A N A E stain  revealed  that the p roportion  o f m acrophages 

increased from  15% in non-depleted in v/v<9 -stim ulated lym ph node cells 

to  54%  in  lym phocyte depleted cells. The cells w ere w ashed 3 X  and 

co u n ted  b e fo re  being  endogenously  lab e lled  w ith  ^®S-cysteine as 

described  above. N on-depleted in vivo  stim ulated  m ouse lym ph node 

cells w ere also assayed as control. The same num ber o f viable cells o f 

both  group o f cells (depleted and non-depleted) w as assayed.

A fter incubating the cells w ith -cysteine, the supernatant was 

split in to  three 500 p i aliquots in  1.5 m l m icro vials. E ach aliquot was 

treated as follow s:

1) Test: To this sam ple 12 p i o f rabbit oc-mouse T f  (provided by

D r J.H , Brock) was added.

2) C om petition: To this sam ple 40 pg  o f m ouse T f (provided by

D r J.H. Brock) was added follow ed by 12 p i o f rabbit

cx-mouse Tf.

3) C o n tro l:  To this sam ple 8  p i  o f norm al rabb it serum  was

added.
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The sam ples w ere incubated for 1 h  at room  tem perature. IgGsorb 

(The Enzym e Center, M alden, M ass., USA) (100 p i o f 60 m g/m l in 3D 

buffer, freshly  prepared each tim e), protein A  coupled  to an insoluble 

base, was then added to all tubes. The tubes w ere left incubating on an 

end-over-end ro tator at room  tem perature for 1 h. The IgG sorb was spun 

dow n at 6500 rpm  on a m icrofuge for 15 sec. T he supernatants were 

discarded and the IgG sorb was washed 3 times w ith  750 p i o f 3D buffer 

fo r 15 sec at 6500 rpm  on the m icrofuge, ensuring that IgG sorb was well 

suspended betw een each wash. The washed IgG sorb was resuspended in 

70 p i o f u rea  buffer, and incubated at room  tem perature on an end-over- 

end ro tato r fo r 1 h. The tubes w ere then spun at full speed (13000 rpm) 

on the m icro fuge  fo r 5 m in. T he pellets w ere d iscarded  and the 

supernatants w ere kep t.fo r an SDS polyacrylam ide gel electrophoresis 

analysis.

2 . 3 . 9 . 1  S D S  P o ly a c r y la m id e  G el E le c tr o p h o r e s is  for 
transferrin

The standards fo r the electrophoresis analysis w ere p repared  in 

separate  m icrov ia ls and 40 p i o f urea bu ffer (see section  2.2 .2 .10.1) 

added to each one. The high m olecular w eight standard m ixture (Sigma) 

(20 p i) was used alongside unlabelled m ouse T f (10 pg ) and ^^^I-labelled 

hum an T f  (1000-3000 cpm ) (kindly supplied by  M iss N . M oughal) to 

assess the position  o f the T f band  on the gel and the  autoradiograph 

respectively . T o all tubes; sam ples, and standards, 17 p i  o f sam ple 

buffer (see section 2.2.2.10.2) w as added and m ixed w ell. T he cap of 

each tube was p ierced  w ith broad-gauge syringe needle  and the tubes
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heated in  boiling w ater for 5 m in

The LKB 2001 V ertical Electrophoresis System  was used  w ith 10% 

agarose gel and 1.5 m m  spacers.

The running gel was prepared as follows:

8.75 m l 40%  acrylam ide (see section 2.2.2.8.1)

8.75 m l 1.5 M  Tris-HCl, pH  8 . 8  

16.3 m l H^O

0.7 m l 10% (w/v) SDS

A fter m ixing  w ell, 450 p i of 10% (w/v) am m onium  persulphate 

(freshly prepared) and 25 p i TEM ED were added, m ixed by  inversion, 

and the gel so lu tion  p ipetted  in to  the gel fo rm er to  a m ark  m ade 

previously at ~1 cm  dow n from  the bottom  end o f the com b. A  few  m l of 

w ater-sa tu ra ted  bu tan o l w ere added to  rem ove bubbles and  ensure a 

straight surface. W hen the gel had solidified, the butanol was tipped out 

and the  rem ain ing  space w ashed tw ice w ith  w ater. E xcess w ater was 

rem oved w ith  a tissue. The stacking gel was prepared as follow s:

1 m l 40%  acrylam ide (see section 2.2.2.8.1)

1.25 m l 0.5 M  Tris-HCl, pH  6 . 8

7.5 m l H^O

100 p i 10% (w/v) SDS

A fter m ixing 100 p i  am m onium  persulphate and 10 p i  TEM ED  were 

added and after inserting the comb, the stacking gel w as poured. The 

com b w as ex tracted  very  carefully  after the gel had so lid ified . E qual 

volum es o f  each sam ple ( ~ 1 2 0  p i) were loaded by m aking up the volum e
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w ith  tank buffer (see section 2.2.2.10.3). A  constan t voltage giving a 

current o f 25 m A  w as applied until the dye entered the running gel, then 

the voltage was increased to give a current o f 45 m A . W hen front line of 

the dye was ~ 1  cm  from  the bottom  edge o f the gel, the electrophoresis 

w as stopped, the gel w as carefu lly  rem oved, the  stacking gel was 

scraped  off, and  the running  gel covered  w ith  f ix e r (see section

2.2.2.5.4) in a plastic  dish and incubated for 30 m in  un til the dye turned 

yellow . T he gel w as then  incubated  in  sta in  so lu tion  (see section

2 .2 .2 .8 .5 ) fo r 1 h, a fte r w h ich  i t  w as in cu b a ted  overn igh t w ith  

destaining so lu tion  (see section 2 .2 .2 .8 .7). The gel w as rinsed  tw ice 

w ith  w ater before being incubated w ith  enhancer (ENTRANCE, New  

England N uclear, Boston, M ass., U SA ) fo r 1 h. T he last incubation 

was done in  w ater fo r 30-60 m in until the gel was uniform ly opaque. The 

gel was carefully transferred to a  p iece o f blotting paper, p laced on a gel 

dryer plate, and covered w ith  cUng film . The plate w as connected to a 

vacuum  freezer-dryer for 4-6 h  to  dry. A utoradiography w as carried out 

using a K odak XAR-5 film  at -70° C fo r 3-7 days.

2 ,3 .1 0  L abellin g  o f  rabbit an tiferritin  w ith

A  so lid  phase  p rocedure  o f  lab e llin g  in  w h ich  the specific  

antibodies are bound to the antigen coupled to a  gel w as used to label the 

specific Rcc-MLFt IgG  w ith ^^ Î. This was achieved using the B olton and 

H un te r reag en t (A m ersham  In te rn a tio n a l p ic ., B uck ingham sh ire , 

England). The R a-M L F t was attached to a Sepharose-m ouse liver ferritin 

com plex (S-LFt) (see section 2.3.6) to protect its b inding  site, using the 

m ethod o f A lvarez-H em andez and Loria (1980) w ith som e m odifications
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as follow s:

A n excess o f R a-M L F t (0.5 m l) was passed several tim es through a 

sm all colum n containing 50 p i o f packed S-M LFt com plex. The S-M LFt- 

R -a -M L F t com plex was w ashed 5 times with 0.1 M  borate buffer pH  8.5 

and left w ith  m inim um  volum e of liquid. The dissolved ^^^I-Bolton and 

H unter reagent w as dried under a gentle stream  o f dry n itrogen gas (the 

n itrogen  w as passed  through a desiccant tube packed  w ith  C aC l2 and 

silica  gel in  o rder to rem ove any trace o f m oisture) in  a fum e hood at 

room  tem perature. The S -M L Ft-R -a-M L Ft was added to the dried 

B olton  and H unter reagent and the vial containing the reaction  m ixture 

agitated periodically  for 15 m in on ice. A fter reacting the m ixture w ith 

0.5 m l o f  0 .2  M  glycine in  0.1 M  borate buffer, pH  8.5 fo r 5 m in to  

b lock  rem aining reagent, the com plex was rem oved from  the vial and 

passed through a colum n o f Sephadex G25 (Pharm acia) in  a disposable 

10 m l plastic  pipette (Sterilin) to separate the ^^^I-labelled a -M L F t from  

the o ther lab e lled  products of the conjugation  reaction . O ne m l o f 

potassium  thiocyanate (3 M  in 0.1 M  borate buffer, pH  9.0) was added to 

the top o f the co lum n and elution was started after 5 m in  to  allow  the 

K SC N  to  en te r the gel bed  to release the protein  from  the antibody. 

E quilibration and elution were carried out with 0.05 M  phosphate buffer, 

pH  7.5 contain ing  0.25%  (w/v) gelatin to m inim ize the loss o f labelled 

protein by  adsorption. Fractions o f 1 m l were collected by hand and an 

aliquot o f each  w as counted. The presence o f SCN" was tested  w ith a 

drop o f  10% (w /v) FeClg w hich gives a dark red co lour. The h igh  

m olecular w eight fractions were pooled, dialysed against PBS to  rem ove 

S C N ', and stored at -20° C. S im ilar procedure was used  to label R(X- 

M SFt (the antibody was provided by D r X. A lvarez-H em andez).
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2 .3 .11  Im m u n o r a d io m e tr ic  a ssa y  fo r  fe r r it in  
(IRM A)

The assay fo r F t w as based  on a  tw o site-IR M A  (M iles et al.^ 

1974) w ith som e m odifications (A lvarez-H em andez et al., 1981), the 

princip le  o f w hich  is the  b ind ing  o f a co ld  an tibody  to a  surface, 

allowing the antigen to  react, and detecting how  m uch  is present by a 

second labelled antibody. This gives a direct dose-response curve.

Prelim inary experim ents show ed that a m ultiplate (cat N o 76-364- 

05, S-M RC-96 clear, U -shaped w ells-clear, L inbro chem ical Co., New 

Haven, Conn., USA ) absorbed m ore protein  than other kinds o f plastic 

plates.

2 .3 .1 1 .1  T itration  o f  first and second an tib od ies

The titration o f the first antibody was done by m aintaining constant 

the am ount o f the second antibody (4.5 x  10"̂  cpm /w ell) and using know n 

Ft concentrations. The titration o f the second antibody was carried out by 

m aintaining the first antibody constant. The aim  o f  these experim ents 

was to find  the low est concentration  giving a linear response w ith an 

adequate w orking range. Finally, conditions and the w orking protocol 

were chosen as follows:

Sam ples w ere prepared  by  lysing the cells by  freeze-thaw ing in 

PBS to release in tracellu lar Ft. A  1: 500 d ilu tion (50 p i) o f the first 

antibody m ade in  0.01 M  freshly-prepared sodium  carbonate buffer pH
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9.2, was incubated overnight to  allow adsorption to  the wells. Unbound 

antibody was rem oved by washing 3 tim es with 100 p i  o f PBS. The plate 

was then incubated fo r 4 h  w ith  100 p i  o f 0.5%  (w /v) B SA  (RIA  grade; 

Sigm a) in  PBS to prevent non-specific binding o f antigen or o f the second 

antibody. It has also been  show n that this im proves the linearity  o f the 

standard curve (A lvarez-H em andez et al., 1981). U nbound album in was 

rem o v ed  by  w ash in g  3 tim es w ith  100 p i  o f  P B S . D ifferen t 

concentrations o f standard ferritin (0-500 ng/m l) or the unknow n samples 

(50 p i) in  at least tw o d ifferen t d ilu tions, w ere incubated  overnight, 

each one in  quadm plicate. A ll samples were m ade in  PBS containing 1% 

BSA. U nbound antigen was rem oved by w ashing 3 tim es w ith  100 p i o f 

PBS. The p lates w ere incubated  overn igh t w ith  50 p i  o f  a d ilution 

containing approxim ately 4.5 - 5 x  lO'^ cpm  o f the labelled  R -a -M L F t. 

U nbound antibody was rem oved by w ashing w ith  100 p i  o f PBS. Finally 

the w ells w ere cut up  w ith  scissors and coun ted  in  a  gam m a 

counter fo r 5 m in.

2 .3 .1 2  E x p r e s s io n  o f  r e s u lt s  a n d  s ta t is t ic a l  
a n a ly sis

D ifferences betw een m ean values w ere analysed by  Student's f-test 

and  ju d g ed  sign ifican t w hen  P  values w ere less th an  0.05. Unless 

o therw ise  s ta te d  the  re su lts  a re  p re sen te d  as ty p ic a l in d iv id u a l 

experim ents representative o f a num ber o f separate experim ents w hich 

gave sim ilar results.
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2 .4  R E S U L T S

2 .4 .1  T itration  o f concanavalin  A concentrations

Lym ph node cell suspensions w ere prepared as described in  section 

2.3.1. The cells were cultured in  serum -free m edium  containing 50 pg/m l 

o f 75%  saturated Tf, serum -containing m edium , or serum -free m edium  

w ith  no  addition fo r 48 h  and proliferation responses w ere assayed as 

described in section 2.3.2. The concentration o f C on A  w hich induced 

optim um  transform ation differed from  one batch to another. A typical 

titration pattern  is show n in  F ig . 3. The concentrations o f Con A which 

induced m axim um  transform ation w ere 0.25 for cells cultured in serum- 

free m edia  and 2.25 p g /m l fo r serum  contain ing  m edium . A lthough 

m axim um  proliferation  in  cells cu ltured  in  serum  free  m edium  w ith or 

w ithout T f w as obtained at the sam e concentration o f the m itogen, the 

proliferative response o f  cells lacking T f was very  m uch  low er than when 

T f was present in  the culture m edium . A  new  batch  o f  the m itogen was 

required during the course o f this w ork. B efore u se  it w as titrated and 

gave 1 and 4 pg /m l for serum -free m edium  and serum  containing m edium  

respectively (not shown). Therefore, in  the subsequent experim ents the 

concentrations o f C on A  used  w ere 0.25 o r 1 p g /m l fo r serum -free 

cultures and 2.5 o r 4  pg /m l fo r serum -containing cu ltures.according  to 

the batch used.
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2 .4 .2  U p ta k e  o f  ir o n  a n d  th y m id in e  by  
p ro lifera tin g  m ouse ly m p h o cy tes  cu ltu red  
w ith  t r a n s f e r r in  a t  d i f f e r e n t  ir o n  
sa tu ration s

Cells w ere cu ltu red  w ith  C on A  (1 {_ig/ml) in  the  p resence o f 

different iron saturations o f T f ranging from  30%  to 120%  fo r 48 h, and 

the iron associated w ith the cells was m easured as described  in  section 

2.3.3. From  F ig . 4 it is seen that iron uptake increased  w ith  increasing 

T f saturation up to 90% with about 10% of iron being taken up. Beyond 

this level, w hen the am ount o f iron present added as FeN TA  exceeded the 

binding capacity of T f up to the equivalent o f 120% saturation, the iron 

uptake increased m ore rapidly w ith m ore than 15% o f  iron  present being 

taken up. To investigate  w hether iron  uptake from  h ig h er levels o f 

saturation occurred at the sam e rate o f increase o r i f  there is a  lim it at a 

certain  level above w hich the cells cannot taken  up  m ore  iron , a  new  

experim ent of iron  uptake w ith  h igher concentrations o f iron  up to the 

equivalent o f 240%  saturation o f T f w as perform ed. P ro lifera tion  was 

assayed in  para lle l as described  in  section 2,3.2. T he  results (F ig . 5) 

show  tha t iron  uptake increased  at about the sam e rate  up  to 1 2 0 % 

saturation, as found in the previous experim ent. W ith  a  further increase 

in  iron present in  the cell culture up  to the equivalent o f 180 and 240%  

saturation o f Tf, the rate of increase in  iron uptake rose  sharply w ith 35 

and 42%  of iron  being taken up respectively, ind icating  that this latter 

ex tracellu lar level o f iron (168 ng /m l Fe) did no t lead  to  cellu lar iron 

saturation . T he tw o graphs (F ig . 4  and 5) o f iro n  up take  versus T f 

saturation show that the proportion o f iron taken up to  iron  present in  the 

m edium  was roughly constant up to 45%  saturation o f  T f at 5.2-6.7%  o f
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iron present in  the m edium  being taken up. W hen this level o f saturation 

w as exceeded  up  to around the com plete saturation  leve l o f Tf, this 

p roportion m arkedly  increased. W ithin this range o f T f saturation (45%- 

90% ) th is p roportion  w as 10.3-11.5%  o f iron  p resen t in  the m edium  

being taken up. H ow ever, beyond the level o f com plete saturation o f the 

protein , th is p roportion  was directly proportional to the am ount o f iron 

present in  the m edium .

P ro life ra tio n , assayed  in  p ara lle l show ed th a t a t low er iron 

saturations (15-45% ), the proliferative response o f the lym phocytes was 

s ign ifican tly  low er than  w hen T f  was fully  satu rated  w ith  iron. An 

increase in  p ro liferation  was seen as the saturation w as increased up to 

about com plete  saturation. T hereafter, there was a sharp decline o f 

p ro liferation  once this saturation level was exceeded, and proliferation 

was reduced to  below  control level w hen the saturation o f T f exceeded 

200%,

The results obtained here at higher iron saturation o f T f (around the 

com plete  satu ration) d iffered  from  earlier findings (B rock, 1981) in 

w hich  it w as found  that optim al p ro lifera tion  occu rred  w ith  30-70%  

saturation  o f  Tf. In  view  o f this, a fu rther assay o f p ro liferation  was 

perfo rm ed  using  larger num bers o f d ifferen t concen tra tions o f iron 

ranging from  0 to  240%  saturation. The results (F ig . 6 ) w ere sim ilar to 

the previous experim ent (Fig, 5) with a proliferation peak  around 100% 

satu ration  o f T f  fo llow ed by a decrease. Iron free (apo-)T f w as also 

assayed  in  th is experim ent and found to  cause a sligh t but significant 

increase com pared  w ith cells incubated w ithout T f (P <0.001), perhaps 

due to  slight iron contam ination in the culture m edium .



87

Iron concentration (ng/ml)

21 31.5 42 52.5 63 73.5 84 105 126 140

E 35 - - O -  Thy. uptake 
□  N o  Tf  
H  N o  C on A30 -
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2 .4 .3  P ro lifera tio n  o f lym p h ocytes cu ltu red  w ith  
d ifferen t iron chelates

The effect o f two different forms o f iron on  proliferation o f Con A- 

stim ulated  lym ph  node cells was exam ined. The tw o chelators w ere 

FeN T A , the chela to r used to  load T f throughout a ll the experim ents 

w here F eT f w as used  and a lipophilic iron chelator FePIH , The cells 

w ere cultured  as described in  section 2,3.1 in the presence o f increasing 

F eN T A  concen tra tions. P ro lifera tion  was assessed  as described  in 

sec tion  2 .3 .2  to investiga te  w hether adding FeN T A  alone  inh ib ited  

pro liferation  in  the sam e way as it did w hen iron loaded T f  was present. 

F ig . 7, w h ich  show s thym idine uptake versus iron  co n ten t o f the 

m ed ium  ind ica tes that at very low iron  concentra tion  1 0  ng /m l, the 

chelato r FeN T A  did no t have any significant effect com pared  to  control 

cultures w ith  no  addition. A t higher iron concentrations a  progressive 

inhibitory effect w as seen, and at 60 ng/ml, proliferation was com pletely 

abolished.

F ig . 8  show s the effect o f FePIH  on lym phocyte  proU feration. 

T he  ra tio  o f  F e :P IH  w as kep t constan t at 1:2 th ro u g h o u t a ll the 

experim ents. In  contrast to FeNTA, FePIH  was effective in  prom oting 

p ro life ra tio n  o f  C on  A -s tim u la ted  m o u se  ly m p h o c y te s . A t low  

concentration o f iron (<40 ng/ml), the com plex FePIH w as no t effective, 

but w hen iron  concentration was increased in  the m edium  up to 

160 ng/m l, p ro liferation  increased and optim um  proliferation  occurred. 

T he p ro life ra tion  at this concentration was as good as tha t w ith  90%  

saturated  F e T f (63 ng/m l iron), w hich w as used as a positive control.
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H igher concentrations were inhibitory.

2 .4 .4  Iron uptake and its in tracellu lar distribution  
in proliferating m ouse lym p hocytes  cultured  
with different iron carriers

In  order to determ ine the fate o f the iron taken up  by proliferating 

lym phocytes from  different sources, uptake o f radioactive iron delivered 

by  FeTf, FeN TA , and FePIH  into the pro liferating  C on A -stim ulated 

lym phocy tes and  the subsequen t d istribu tion  o f  the  m eta l am ong 

intracellular iron com pounds was carried out. The cells w ere lysed in die 

presence of D FO  and fractions w ere separated as described  in  section 

2.3.7. In  the absence o f T f total uptake o f iron from  both  chelates at both 

concentrations o f iron tested was greater than the am ount o f iron taken up 

from  T f by the cells (F ig . 9). N evertheless iron  taken  up  from  FePIH , 

w as m u ch  lo w e r th an  th a t tak en  up from  F eN T A  a t b o th  iron  

concentrations tested. A t 10 ng/m l, iron taken up  by  cells from  FeN TA  

was som e 4 .5-fo ld  the am ount taken up  from  Tf, w hile  a t 50 ng/m l of 

iron, the am ount o f iron  taken  up  from  this chela te  w as 9 tim es the 

am ount taken up from  Tf, 40%  o f  iron present in the m edium  being taken 

up  by the cells in  the form er case. Iron donation to  the cells by  the other 

chelate FePIH , w as about 1.5-fold h igher than  the am ount o f iron  taken 

up from  T f at both concentrations tested.

Since there appeared to be differences in  iron delivery  by the three 

carriers to  cells, it was o f interest to determ ine the relative intracellular 

distribution o f iron  taken up from  these form s o f iron. This w as carried 

out as described in  section 2.3.7 w hich allow ed in trace llu lar iron to be
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assigned to  five different com partm ents consisting o f insoluble m aterials, 

iro n -b o u n d  F t, iro n -b o u n d  T f, iron  b o u n d  to  n o n -F t n o n -T f 

m acrom olecule soluble com pounds, and iron capable o f  being bound to 

DFO.

T he m ajor proportion o f iron taken up  from  the iron  chelate FeNTA 

was found  in  the  insoluble fraction w hich contains ce llu la r debris and 

p robab ly  haem osideiin . This was true at bo th  concen tra tions of iron 

tested  (F ig . 10 and 11). H ow ever, w hen T f w as p resen t this fraction 

represented  a m uch low er proportion com pared w ith cells cultured with 

FeN TA . T his w as also the case fo r cells cu ltu red  w ith  FePIH . This 

suggests that m uch  o f the iron taken up from  FeN T A  is no t used for 

cellu lar m etabolism . The chelatable fraction gave fairly sim ilar figures as 

fa r as F eT f and  FeN T A  are concerned. H ow ever, w ith  FePIH  the 

p ro p o rtio n  o f  th is frac tion  w as sligh tly  h ig h er com pared  w ith  the 

proportion  found w ith the two other carriers, at bo th  concentrations of 

iron . A s the  iro n  concen tra tion  in  the m ed ium  w as increased  the 

p roportion  o f the  low  m olecu lar w eight fraction  show ed a noticeable 

increase w ith  all carriers. However, in  absolute figures this fraction was 

m uch h igher w ith  FeN TA  com pared w ith the am ount found in this fraction 

w ith the tw o other carriers.

T he p roportion  o f interm ediate m olecular w eight-associated iron, 

defined  as soluble non-F t non-T f and non  chelatab le  fraction , w hich 

p ro b ab ly  re p re se n ts  iro n  be ing  in c o rp o ra te d  in to  enzym es and 

haem proteins, w as m uch larger in the cells cu ltured  w ith  T f com pared 

w ith  FeN TA , as it was also in  cells cultured w ith  FePIH , especially  at 

50 ng /m l iron. This indicates that these cells have an increased need for



94

80
Iron concentration = 10 ng/ml

60 -
«

«>
A
g 
0)
S  4 0 -
w
o
M M
f i

 ̂ 20  
«>
O

■  FeTf
■  FeNTA 
□  FePIH

Ft Fr Tf Fr I Fr IMW Fr
Intracellu lar fra c tio n

LMW Fr

F ig u r e  10 In tra c e llu la r  d is tr ib u tio n  o f  iro n  in  C o n  A - 
s tim u la ted  m ouse  ly m p h o c y tes  c u ltu re d  w ith  
d i f f e r e n t  iro n  c a r r ie rs  a t  1 0  n g /m l iro n  
(rep re sen ta tiv e  o f  4 separa te  e x p e rim e n ts)

Ft Fr: F e rritin  F rac tio n
Tf Fn T ran sfe rrin  F ra c tio n
I Fn Inso lub le  F raction
IMW Fr: In te rm e d ia te  M o le c u la r

W eig h t F raction  
LMW Fr: L o w  M o le c u la r  W e ig h t

F raction



95

&
s>
A

g

u
0 wM
01

80

60 -

40 -

Iron concentration = 50 ng/ml

3  20 
o>
Ü

■  FeTf
■  FeNTA. 
□  FePIH

0  +-
I

Ft Fr Tf Fr I Fr IMW Fr

Intracellular fraction
LMW Fr

F ig u r e  11 I n t r a c e l lu la r  d is t r ib u t io n  o f  i r o n  in  
C o n  A - s t im u la te d  m o u s e  ly m p h o c y te s  
c u ltu re d  w ith  d if fe re n t  i r o n  c a r r ie r s  a t  
50  n g /m l F e  ( re p re s e n ta t iv e  o f  4  se p ra te  
experim en ts)

F tPr: F e rritin  F ra c tio n
Tf Fr: T ran sfe rrin  F ra c tio n
I Fr: In so lu b le  F ra c tio n
IMWFr: In te rm e d ia te  M o le c u la r

W eig h t F rac tion  
LMWFr: L o w  M o le c u la r  W e ig h t

F rac tion



96

m etabolically  active iron. This was not due to the findings that these 

cells take less overall, as this fraction was greater in  absolute figures 

than w hen FeN TA  w as present.

T he ferritin  iron fraction form ed only a sm all proportion  w ith all 

iron carriers, particularly w ith the chelators.

Iron bound to T f was found in sm all am ounts in  the cells incubated 

w ith chelates in absence o f any exogenous Tf. This could be due to cross 

reaction betw een H T f and M T f w ith a -H T f w hich was used  to fractionate 

iron-bound Tf. This T f m ight be synthesised by p ro liferating  m ouse 

lym ph node cells as it has been  reported that hum an lym phocytes can 

syn thesise  T f  in  the course o f  activa tion  ( L um  et al., 1986). To 

investigate w hether such cross reaction did occur, 1 m g o f  ̂ ^Fe- labelled 

50%  satu rated  M T f w as p assed  th rough  tw o affin ity  colum ns, one 

containing 25 p i o f S -S a-H T f and the other colum n containing 25 p i o f 

S-N SIgs, to correct fo r non-specific binding. It was found that 60%  o f 

the radioactiv ity  was retained in  S -S -a -H T f (T ab le  1), w ith low non

specific  b inding  (3% ), w hich confirm s that there is a cross reaction 

betw een hum an and m ouse Tf.

In  view  o f these results, it was decided to investigate T f synthesis 

in m ouse lym ph node cells using an im m unoprécipitation method.

2 ,4 .5  D e t e c t io n  o f  T r a n s fe r r in  s y n th e s is  by  
stim ulated m ouse lymph node cells

In order to identify T f synthesis by lym ph node cells, the proteins 

secreted by the cell were endogenously labelled w ith ^^S-cysteine and a
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T a b le  1 B in d in g  o f  ^^Fe-m ouse t r a n s f e r r in  to  oc
h u m an  tran sfe rrin  a ffin ity  co lu m n

‘bindmg to affmity colamn (cpm x 10^)

column I column II

S-S-a-H T f Filtrate S -S Ig Filtrate

972 644 43 1443

S -S -a-H T f: Sepharose-sheep antihum an transferrin
S-S-Ig: Sepharose-sheep im m unoglobulins
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T f-im m im oprecipitation perform ed on the supernatant, w hich was then 

analysed in  an SD S-polyacrylam ide gel. T f synthesis was tested in  three 

system s; in  unstim ulated. Con A -stim ulated, and in  vzvo-stim ulated 

m ouse lym ph  node cells as described  in  section  2 .3 .9 . In  in vivo- 

stim ulated cells a  m ajor band o f im m unoreactive radiolabelled  m aterial 

sim ilar to m ouse T f was present w hich was barely detectable w hen excess 

cold T f was added to the supernatant before oc-mouse T f  in  a com petition 

test o r w hen  non-im m une serum  w as used  (F ig . 12). In  Con A- 

stim ulated cells, the supernatant show ed an extrem ely faint band, giving 

a suggestion that there is a less pronounced synthesis o f T f in those cells 

com pared  to the cells stim ulated in vivo. In  contrast, in  unstim ulated 

cells T f was no t produced in detectable am ounts as there was an equally 

faint band in all three lines.

L ym ph nodes contain together with lym phocytes, other cell types 

i.e . en d o th e lia l cells  and  m acrophages. T he num ber o f the latter 

increased sharply w ithin the node after in vivo  stim ulation as judged by 

A N A E staining (F ig . 13). Thus it is possible that the T f synthesis seen 

in in vivo  stim ulated lym ph node cells could com e from  cells other than 

lym phocytes. It was therefore necessary  to  investigate  T f synthesis in 

adherent and non-adherent lym ph node cells as described in  section 2.3.9. 

F ig . 14 show s that both groups o f cells synthesise T f upon stim ulation. 

T he band corresponding to T f synthesised by adherent cells (test line) 

w as s tro n g e r than  the one co rre sp o n d in g  to  T f  sy n th esised  by 

lym phocytes. This estim ate depends on the efficiency o f the separation 

step o f adherent and non-adherent cells. Therefore, to be m ore accurate, 

it w as decided  to  u se  a m ore specific  m ethod  co n sis tin g  o f an
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J

Unstim. In vivo Con A 
a b o a b c a b c Tf

Il6k>
97k>

66 kO

45 k >

e

»  #

30kt>

F ig u re  12 A utoradiography of ^^S-cysteine incorporated into 
transferrin  by unstim ulated. Con A -stim ulated and 
in v/v<9 -stim ulated lymph node cells

a: Test (4-rabbit oc-mouse transferrin)
b: C o m p e titio n  (4- m ouse transferrin  then

rabbit oc-mouse transferrin) 
c: Control (+ norm al rabbit serum )
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e e #
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F ig u re  13 In  v/vo-stim ulated lym ph node cells stained w ith oc- 
naphthyl acetate esterase satin. Cells indicated by one 
narrow  are negative  cells (B -lym phocy tes or nu ll 
cells), double arrow s point to T -lym phocy tes and 
triple arrows to m onocytes or m acrophages (X 1000).
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non-
adherent adherervt 

Tf 1 2 3 J  3

F ig u r e  14 A u to ra d io g ra p h y  o f  ^^S -cyste ine  in c o rp o ra te d  
in to  tra n s fe rr in  b y  a d h e ren t and  n o n -a d h e re n t in  
v/v6»-stim ulated lym ph node cells

1: Test (4-rabbit oc-m ouse tran sfe rr in )
2: C om petition  (4- m ouse  tran sfe rrin , 4- rab b it

oc-m ouse tran sfe rrin )
3: C o n tro l  (4- no rm al rab b it se rum )
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im m unodepletion  step o f lym phocytes before perform ing  the assay as 

described in section 2.3,9. The efficiency o f this m ethod w as checked by 

assessing the viability o f cells at the end o f the incubation period w ith the 

antibodies w hich dropped to around 34% . A N A E stain  o f depleted cells 

revealed  that the  p roportion  o f m acrophages rose  from  15% in  non

depleted  preparations to 54%  in  the depleted  cells. F ig . 15 show s a 

band  corresponding to T f appears in  the test line o f  the non-depleted 

lym ph node cells. H ow ever, lym phocyte depleted  cells show  a very 

m uch stronger band in  the test line. Since the sam e num ber o f cells was 

assayed in  bo th  cases, the less strong band seen in  the non-depleted 

lym ph node cells w ould correspond to T f synthesised by  the m acrophages 

diluted w ith lym phocytes in  the whole lym ph node cells. The conclusion 

is that m acrophages are responsib le  fo r T f syn thesis upon  in  vivo  

stim ulation o f the lym ph node.

2 .4 .6  In trace llu lar  ferritin  levels in  proliferating  
m ouse lym p hocytes  cu ltu red  w ith  d ifferent  
iron carriers

Turning back to iron incorporation into ferritin  w hich  was found to 

be very low  w ith  practically  no  increase w hen iron  w as increased  in  the 

m edium  (section 2.4.4), it was decided to investigate this m atter in m ore 

detail. F t synthesis is know n to be stim ulated  by iron  in  m ost tissues 

tested, especially in  liver. Therefore, it was o f in terest to determ ine the 

effect o f iron  on in trace llu la r levels o f F t in  lym phocy tes, and to 

investigate its accum ulation during C on A  stim ulation in  the presence of 

d ifferent carriers i.e. FeT f, FeN TA , and FePIH  at tw o d ifferent iron 

concentrations (10 and 50 ng/m l) using an IRM A.
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B&T
lymphocyte-  

depleted

non
depleted
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F ig u r e  15 A u to ra d io g ra p h y  o f  ^^S -cy ste in e  in c o rp o ra te d  
in to  tran sfe rrin  b y  B an d  T  ly m p h o cy te -d ep le ted  
an d  n o n -d ep le ted  in  v ivo -  s tim u la te d  lym ph  node 
cells

1: T est  (4-rabbit oc-m ouse tra n s fe rr in )
2: C om petition  (4-m ouse tran sfe rr in , 4- rab b it a -  

m o u se  tran sfe rrin )
3: C o n tro l (4- n o rm al rab b it se rum )
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The antibody w as labelled w ith the B olton and H unter reagent as 

described in  section 2 3 .1 0 . The a -M S F t was tested in  the IR M A  as 1®̂ 

and 2 ^^ antibody and found to be very w eak giving a low  dose response 

curve (F ig . 16). On the other hand, the a -M L F t gave a good dose 

response w ith  liver F t as standard (F ig . 17), hence it was decided to 

carry out the experim ents w ith only the MLFt-oe-MLFt, using a dilution 

o f 1:500 o f the antibody.

D uring  the optim ization  o f the m ethod the d ilu tion  o f the tw o 

antibodies was chosen on the basis o f finding the low est w orking range 

(F ig . 17). The assay did no t present the so called  hook  effect, w hich 

can give rise to  false low responses at high concentrations of the antigen, 

up  to at least 0.5 pg/m l. The sensitivity of the assay w as quite good, as 

low as 5 ng/m l.

C ellu lar F t content was generally low  w ith  all iron carriers, but 

w as slightly h igher in  the presence o f Tf, and low er in  the presence of 

FePIH  (T ab le  2). A t 50 ng/m l iron in the m edium , the cells show ed 

only a very m odest increase in  their in tracellu lar F t levels com pared to 

cells cultured w ith 1 0  ng/m l iron, w hich indicated that stim ulated m ouse 

lym phocytes do not show any m arked response to iron by increasing Ft 

synthesis.
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Figure 16  Im m u n o rad io m etric  a ssa y  s ta n d a rd  c u rv e s  
w ith  sp leen  F t- a -s p le e n  F t.
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T ab le  2 Intracellular ferritin levels in  Con A -stim ulated m ouse
lym phocytes cultured in the presence o f different iron 
carriers

Amnunt of iron added 
<ng/ml)

Form of iron Ferritin content 
(ng/10  ̂cells)

0 ----- 11.6 ± 3 .2 *

10 F eT f 16.6 ± 3 . 0
(= 14% Tfsat.) FeNTA 14.8 ± 2 . 5

FePIH BD

50 F eT f 24.9 ± 4 .8
(=71%Tfsat . ) FeNTA 19.6 ± 5 . 0

FePIH 13.3 ± 2 .6

* m ean of 4 separate experim ents ±  SD 
BD: Below Detection
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2 . 5  D I S C U S S I O N

M easurem ent o f  incorporation o f radiolabelled precursors, i.e. 

th y m id in e  in to  D N A  was u sed  th roughou t th is study  to  fo llow  

p ro life ra tio n . T herefo re , it w as o f prim e im portance  to  titra te  the 

m itogen. In  the absence o f C on A the proliferation response was very 

m uch  low er than  w hen it was present. H ow ever, there was still some 

incorpora tion  o f ^H-thym idine by  the cells. This m ight have been the 

resu lt o f  non -specific  stim ulation o f som e lym phocytes o r due to the 

presence o f  m esenteric lym ph node cells w hich often contain a  proportion 

o f cells that have been  antigenically  stim ulated in  vivo  p rio r to  being 

cultured. T he background stim ulation observed w as g reater w hen the 

cells w ere cultured in  serum -containing m edium  com pared to  cultures in 

serum  free-m edium . N evertheless, it was always very m uch  low er than 

the response  o f m itogen-contain ing  cultures. It w as also found that a 

h ig h e r co n cen tra tio n  o f  Con A was needed to  induce  an optim um  

proliferation  response in  serum -containing m edium  than w hen serum -free 

conditions w ere used. This was probably due to C on A  being bound to 

serum  proteins in  the m edium , causing a reduction in  the to tal num ber of 

m itogen m olecules available for activation of the cells.

2-5-1 U p t a k e  o f  ir o n  an d  t h y m id in e  by  
proliferating  m ouse lym phocytes cultured in 
th e  p r e s e n c e  o f  d i f f e r e n t  t r a n s f e r r in  
saturations

The uptake o f iron  by lym phocytes from  different iron saturations 

o f T f  show ed  a g radual increase at T f sa turations below  com plete
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saturation. H ow ever, w hen iron was added beyond the binding capacity 

o f T f, iron uptake increased dram atically. This suggests that uptake o f 

Tf-bound iron proceeds v ia  the process of Tf-TfR  endocytosis, and was 

controlled via T fR  expression, w hich is m odulated by the intracellular 

iron level rather than the rate o f cellular proliferation p e r  se  (Pelosi-Testa 

et al., 1988). H ow ever, in the presence o f excess free iron in the 

m edium  uptake rose sharply, suggesting that this uptake took place in  a 

non-specific uncontrolled m anner, resulting in an excessive accum ulation 

of the m etal inside the cell. The findings of this study agreed w ell w ith 

previous observations concerning other types o f cells w hich show ed that 

c u ltu red  C hang  ce lls  (B a iley -W o o d  et al., 1975), liv e r  slices, 

reticulocytes, and m acrophages (M organ, 1981) took up iron from  T f at 

rates w hich  depend on the percentage saturation. B elow  the com plete 

sa turation  o f  T f the iron  up take graphs (Fig. 4  and 5 ) revealed  tw o 

linear phases. The ratio o f iron taken up to the am ount o f iron present in 

the m edium  was constant up  to around half saturation o f T f (45% ), but 

w hen saturation exceeded this level, the proportion of iron uptake to iron 

availab le  increased . T his suggests that d iferric  T f  donates iron  to 

lym phocytes at a h igher rate than m onofen ic  Tf. The in itial step in  the 

uptake o f  iron  involves the binding  o f T f to specific cell m em brane 

receptors. T ransferrin iron exchange has been shown to involve a  random  

loading o f iron  binding sites, one iron atom  at a tim e (H uebers et al., 

1984). O n the other hand, the uptake o f the FeT f com plex by receptors 

on cell m em branes is no t random , there being m arked  preference of 

receptors fo r d iferric  over m o n o fen ic  Tf. It has been  show n in  rat 

hepatocytes (Y oung and Aisen, 1981) and in rabbit reticulocytes (Young 

et al., 1984), that the strength  o f interaction o f T f w ith  the receptor
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decreased from  diferric to apo-Tf. D iferric T f  w as a lso  found  to be a 

better donor fo r erythroid cells than m onofen ic  T f  (B row n et al., 1975; 

H ahn et al., 1975; Lane, 1973). H ow ever, V erhoef et a l (1978) have 

reported  that iron  uptake by rat bone m arrow  cells , fib rob lasts and 

lym phoblasts incubated for 3 h  was not influenced by  the degree o f iron 

saturation o f Tf. The reason for this discrepancy could be the short time 

o f incubation used in  this study w hich does no t allow  uptake to occur. 

B rock and R ankin  (1981) have show n that uptake o f iron  in  m itogen- 

stim ulated lym phocytes is insignificant up to 2 0  h , and that it occurs 

m ostly betw een 30 and 70 h incubation. The am ount o f iron  taken up 

from  T f therefore, depends on the num ber o f each form  o f the m olecule 

present in  the m edium , and because o f its low er affin ity , apo-T f does 

n o t com p e te  s ig n if ic a n tly  fo r  rec ep to rs . T hus th e  d eg ree  o f 

transform ation of lym phocytes in  m edium  containing partially  saturated T f 

w ill m ost likely  depend on the proportion o f the d ifferen t T f m olecular 

species present. H ence, this study, indicated that a t low  T f saturations 

there are no t enough iron loaded T f m olecules and the pro liferation  was 

low. A n increased rate o f transform ation is associated  w ith  an  increased 

percentage o f saturation o f T f  w ith iron, up to  the com plete saturation of 

T f  w here  op tim um  p ro life ra tio n  occurs. I t has b een  show n that 

pro liferation  o f m ouse lym phocytes w as low er in  m ed ia  supplem ented 

w ith serum  from  iron-deficient m ice than  w hen serum  from  norm al or 

iron-repleted  m ice w as used  (M ainou-Fow ler and B rock , 1985). The 

addition o f sufficient iron to bring the iron level o f the deficient serum  to 

that o f norm al serum  im proved its ability to prom ote proliferation.

The results o f this study suggest that the am ount o f iron  bound to 

T f m ay be im portant in determ ining the degree o f proliferation. This is in
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line w ith the suggestion that the grow th prom oting effect o f FeT f m ay be 

related to the delivery o f iron to a specific in tracellu lar site, w hich is 

probably related  to the iron-requiring enzym e ribonucleotide reductase 

(H offbrand et al,, 1976). It seems therefore, logical that w ith Con A- 

stim ulated m ouse lym phocytes, the higher the saturation o f T f w ith iron 

the better the in  vitro  proliferation. H ow ever the slight enhancem ent in 

pro liferation  seen w hen lym phocytes were cultured w ith  'iron-free T f  

com pared to control cultures with no addition m ight suggest that T f  alone 

m ay have an enhancing effect. The m ore likely explanation is that apo-Tf 

in  fact becom es slightly saturated w ith iron up to 8 % (Brock, 1981), due 

to endogenous iron contam ination of the culture medium.

In contrast, the addition of iron beyond the binding capacity o f T f 

produced the opposite  e ffec t on D N A  synthesis, i.e. increasing  iron 

levels result in  reduction  o f transform ation, indicating that there is no 

sim ple co rre la tion  betw een  external iron supply and  increased  D N A  

synthesis. T he presence o f T f m ight protect the cells from  the toxic 

effects o f iron, since non-T f bound iron added as FeN TA  either above 

saturation o f T f m olecules present in the m edium  or alone was found to be 

inhibitory to cell transform ation. This could be due to iron  in this form  

m ediating cytotoxicity as discussed below.

The results obtained in the present study at h igher iron saturations 

o f T f contradict previous findings which dem onstrated an optim um  effect 

o f T f around physiological saturation levels (30-70% ) w ith a falling off at 

h igher satu rations (B rock, 1981). The d iscrepancy  cou ld  lie  in  a 

m ethodological difference betw een the two systems. In  Brock's system , 

F eT f solutions w ere m ade up im m ediately before use, thus assum ing that
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com pletion o f iron binding occurred alm ost instantaneously . How ever, 

Z apolski and P rinciotto  (1977) m easured iron b ind ing  to  T f  by elution 

from  an anion  exchange resin  colum n and found  th a t com plete  iron 

binding to  T f is no t instantaneous, bu t requires up  to  1 h. Therefore, 

binding of iron to T f m ay not have reached com pletion, and thus, free 

iron m ay have existed in these solutions which w hen added to lym phocyte 

cultures m ight have been able to inhibit proliferation as discussed above, 

even if  unsaturated T f  was present in the cultures. It w as show n in the 

present study that iron in the form  o f FeN TA , w hich  was used to load 

Tf, is inhibitory to proliferating m ouse lym phocytes (see section 2.4,3). 

Aruom a and H alliw ell (1987) reported that iron-loaded T f  (Fe^Tf) showed 

no protective ability, but does not itself accelerate OH* production unless 

chelating agents are p resen t in  the reaction  m ix tu re , especially  if  the 

protein is incorrectly  loaded w ith  iron. O n the hand  in  a study reported 

by Sibille et al. (1987) using saturated T f loaded by  a  specific procedure 

(Bates and Schlabach 1973) w hich w as carefully freed  o f exogenous iron 

by  tw o cycle o f gel filtration they could not find any stim ulation o f OH* 

form ation  by iron  loaded T f  at pH  7.4. M oreover, G utteridge et al 

(1981) show ed  th a t T f  w as an in h ib ito r o f  iro n -d ep e n d en t lip id  

perox idation  at pH  7.4. A ll the experim ents in  th is w ork  used  FeT f 

solutions w hich had  been  allow ed at least 2 h  fo r b inding  to  occur. This 

d ifference in experim ental technique m ay, therefore , account fo r the 

difference in  the results betw een the tw o studies w hen  h igh  iron levels 

w ere used. Sim ilarly , B roxm eyer et a l (1983) have reported  that iron 

saturated  T f, but no t apoT f decreased  the p roduction  o f  granulocyte- 

m acrophage colony stim ulating factor (G M -CSF) by  PH A - or Con-A-
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stim ulated  hum an  lym phocytes. H ow ever these authors ach ieved  T f 

sa turation  by  add ition  o f excess o f iron salt fo llow ed  by rem oval o f 

unbound iron  by dialysis and passage through an iron exchange colunm . 

It is know n that great care has to be taken when iron is added to T f and it 

requires the presence o f an excess o f a  low  m olecular w eight chelator, 

such as citrate o r N T  A, to prevent hydrolysis, polym erization, and non

specific b ind ing  o f  iron (Bates and Schlabach, 1973). T herefore the 

inhib itory  e ffec t reported  by B roxm eyer’s group could  be due to non

specific iron bound  to the T f m olecules becom ing detached during the 

assay and acting as a catalyst fo r reactions w hich produce free oxygen 

radicals.

2.5 .2  T h e  e f fec t  o f  d ifferen t iron  c h e la te s  on  

m ouse lym phocyte proliferation

Lym phocytes m ay take up or respond to iron in  the m edium  in two 

different w ays. F irstly  they m ay take up iron physio logically  from  T f 

under the con tro l o f cell m etabolism  and specific receptors on the cell 

surface. Iron  taken  up in  this form  m ay be used im m ediately by the cell 

and  thus p e rm it an  increase  in  the cellu la r m etabo lic  response  to 

m itogens. T he o ther w ay is uncontrolled  non-specific  capture o f iron 

and/or transport across the cell surface. The results o f this study seem  to 

indicate that uptake of iron from  FeN TA  is probably an  exam ple o f the 

latter. The finding  that FeN TA  did not prom ote pro liferation  suggests 

that iron bound to N T  A was probably handled by cells in a w ay that failed 

to m ake the m etal available for m etabolic use. It has been  reported  that 

free iron leads to form ation o f polym eric com plexes (Spiro et al., 1967), 

It is possible  that this poly nuclear iron m ay bind non-specific ally to the
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p lasm a m em branes o f the cells and exert a tox ic  e ffec t as w ill be 

d iscussed in  the next section. N evertheless FeN TA , unlike iron salts is 

know n to be quite an efficient chelator in  m aintaining iron  soluble in  the 

extracellu lar m ilieu, but intracellularly the iron m ay polym erise and bind 

non-specifica lly  to  the m em brane, as w ill be d iscussed  in  the next 

section. The finding that as httle as 40 ng/m l iron o f FeN TA  significantly 

low ered the rate o f proliferation to below  control levels suggests that the 

lym phocyte is extrem ely sensitive to oxidative in jury . In  com parison, 

only w hen the concentration o f iron o f FeN TA  w as as h igh  as 10 pg/m l, 

w as the  g row th  rate  o f R L34 ra t liver cells cu ltu red  in serum -free 

conditions affected, while the corresponding of N T  A  alone gave the same 

grow th as that o f the control cells (Yam ada et al., 1987). M any in vivo 

and in vitro  experim en tal studies ex ist show ing that FeN T A -induced 

organ injury is related to lipid peroxidation. A  single injection of FeNTA 

w as su ffic ien t to produce som e hepatic  and pancreatic  in jury  and to 

initiate lip id  peroxidation in the hver (Y am anoi e t al., 1982). Fodor and 

M arx (1988) com pared ferrous-am m onium  sulphate, ferrous-ascorbate, 

ferric-citrate  and ferric-N TA , and show ed that FeN T A  w as by far the 

m ost effective  in  inducing lip id  peroxidation o f rabb it sm all intestinal 

m icrov illu s. T he sub ject o f free  radicals a ffec ting  lym phocytes is 

discussed m ore fully later (section 2.5.3)).

T he o ther iron  chelate FePIH  has been found  to  support good 

proliferation of Con A -stim ulated m ouse lym phocytes. This chelate was 

identified  by Ponka et al (1982) and unlike Fe-citrate and FeN TA  was 

found to  be able to donate iron to erythroid precursors fo r use in haem  

synthesis. In  the present study, it was found to be as effective as FeTf
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in  prom oting lym phocyte proliferation at iron concentrations ranging from 

40 to  160 ng/m l. These results are in agreem ents w ith  a report that 

FePIH  perm itted  grow th o f em bryonic kidney cells (L andschulz et al., 

1984) and that the response o f these cells was physio log ical since the 

cells in  the m odel system  used convert to ep ith e lia l cells and  form  

tubules. T he sam e group have show n that som e o ther low m olecular 

w eight iron  chelators such as Fe-acetate, FeNTA, Fe-ascorbate, and Fe- 

citrate, and unchelated ferrous sulphate could not support proliferation to 

the sam e extent as FePIH  and FeTf. The present study also confirm ed the 

findings o f B rock and Stevenson (1987) with m itogen-stim ulated m ouse 

lym phocytes cultured in vitro  w ith FePIH in the absence of Tf.

T he chem ical features o f the com plex FePIH  ind icate  that it is 

lipophilic, Landschulz and Ekblom  (1985) have found that FePIH  has an 

octanol/saline partition coefficient near 1. This suggests that it can easily 

and passively  enter and leave the phospholipid b ilayer o f the m em brane. 

The chela to r could  therefore bypass the TfR  and deliver iron directly 

th rough  the  lip id  bilayer. N evertheless, this cou ld  no t exp lain  why 

FePIH  is m ore effic ien t than FeN TA  in  prom oting p ro liferation  since 

FeN T A  w as found  to donate iron in tracellu larly  (B rock  and R ankin, 

1981). T he finding that levels of iron >160 ng/m l w ere inhibitory to the 

cells w hen  bound  to  PIH  suggests that a lthough  iron  bound to PIH  

bypasses the T fR  route, it is possib le  that its up take  is less w ell 

controlled than that o f Tf-bound iron and any excess over that needed for 

b iosynthetic processes becom es toxic for the cells. As w ill be discussed 

in  the next section, the pattern of intracellular iron distribution suggests 

that w hile both  chelators bypass the specific uptake m echanism  needed to 

acquire T f-bound iron, they take different routes once internalized.
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T he find ings tha t FePIH  is equ iva len t to  T f  fo r supporting  

proliferation o f the cells has some im portant im plications, as it provides 

another piece o f evidence to show that the grow th-prom oting activity of 

T f can  b e  accoun ted  fo r by its role in  p rov id ing  iro n  to  the cells. 

T herefore it seem s unlikely that T f could prom ote cell grow th through 

in te rac tion  w ith  its recep tor i.e. as a m echanism  fo r transduction  of 

grow th signals as has previously  been suggested  (B rock and M ainou- 

Fow ler, 1983). This conclusion is in agreem ent w ith the study o f Perez- 

Infante and M ather (1982) who clearly showed that T f  cannot stim ulate 

grow th in  the absence o f iron, since the effect o f  apo-T f on cell growth 

w as b locked  by a com plete rem oval o f contam inating iron  w ith DFO. 

Som e o ther iron  containing m olecules, such as F e-dex tran  m ay also 

rep lace  the  g row th  prom oting  e ffec t o f T f on  m itogen  stim ulated  

lym phocytes (Tanno et al., 1982), as do H b and haem  w ith 3T3 cells 

(Young et al., 1979).

2.5 .3  U ptake and in trace llu lar  h an d lin g  o f  iron  
f r o m  d i f f e r e n t  c a r r i e r s  b y  m o u s e  
lym phocytes

T he differences in the ability  o f the tw o chelators in prom oting 

p ro life ra tio n  com pared  w ith  T f, d iscussed  in  p rev io u s section , 

suggested  th a t there  m ight be d ifferences in  the m an n er o f iron 

acqu isition . To th is end, a set o f iron up take  experim ents were 

perform ed using FeTf, FeNTA, and FePIH

The am ount o f iron taken up from  FeN TA  w as found to be greater
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than from  F eT f or FePIH , especially  at 50 ng/m l iron w here a sharp 

increase in  iron uptake was seen. These results are in  accordance w ith  

the report that m ouse lym phocytes took up  iron m ore rapidly from  FeNTA 

and F e-c itra te  com plexes than from  T f (B rock and R ankin , 1981). 

Sim ilar findings have been reported with other cell types such as Chang 

liver cells (W hite and Jacobs, 1978), which were found to take up 30 

tim es m ore iron  w hen  FeN TA  is used as donor com pared  w ith  FeTf. 

H ow ever, T ay lo r et a l (1988) found that iron uptake from  ^^FeNTA 

added  d irec tly  to  cu ltu res o f m itogen-stim u lated  p e rip h e ra l b lood  

lym phocytes w as quantitatively very sim ilar to that from  ^^FeTf. T his 

contrast w ith  the results o f the present study is probably due to the fact 

that their cultures contained 5% serum, the T f o f w hich could  take up 

^^Fe in  situ  from  FeNTA.

As d iscussed  in  the previous section the explanation o f  the large 

difference in  iron  uptake betw een FeN TA  on one hand  and F eT f and 

FePIH  on the o ther is that iron taken up from  the form er is no t used for 

m etabolic needs, and its accum ulation is probably not controlled by any 

m echan ism , w hereas iron  acquired  from  F eT f is un d e r con tro l o f 

in tracellu lar m etabolism , as w ill be discussed later. As far as FePIH  is 

concerned, a lthough  it can pass through the plasm a m em brane easily, 

because o f its h igher affinity for the m etal the chelator w ould still be able 

to b ind  iron  in trace llu larly  and donate it to the cell at a slow er rate 

com patible w ith m etabolic needs. Indeed, Taylor et a l (1988) suggested 

that although iron  u tilization  is related to cellu lar activity , the uptake 

m echanism  is only  activated  w hen an increase in  iron m etabolism  has 

exhausted  in te rnal stores. H ow ever any control o f iron  uptake from  

FePIH  is ach ieved  by  an unknow n m eans other than T fR  expression.
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Pronase, w hich inhibits T f binding to cells probably  by  digesting TfRs 

has v irtually  no effect on the uptake o f FePIH  (P onka et al., 1979). 

O n the o ther hand, FeN T A  is less likely  to  be  able  to  traverse  the 

m em branes, as m entioned in the previous section. H ow ever, B rock and 

Rankin (1981) have dem onstrated that FeN TA  donates iron  intracellularly 

to  m itogen stim ulated  lym phocytes and the iron  m ay therefore rem ain 

trapped w ithin endocytic vesicles. It could also be that binding of iron to 

the m em branes occurs after entry  o f the chelator to the cell as w ill be 

discussed below .

A fter determ ining the differences in radioactive iron  delivery to the 

cell by the d ifferent carriers, the subsequent d istribu tion  o f the m etal 

am ong intracellular iron com pounds was carried out in  o rder to  determine 

the fate o f iron  taken up, and to in terpret the ir d ifferen tia l effect on 

pro lifera tion . T his w as carried  ou t by d isrup tion  o f  the  cells and 

study ing  the  cy to so lic  phase  u sin g  a ffin ity  ch ro m a to g rap h y  and 

u ltrafiltration .

A fter its entry to the cell the intracellu lar pathw ays o f iron are not 

w ell defined. A fter being released in to  the cell, iro n  finds its w ay to 

m ultip le  specific  sites. S ince transport o f uncom plexed  iron  is very 

unlikely , once iron  is inside the cell it is p resum ed  to  be bound by a 

carrier. Jacobs (1977) suggested the presence o f a  lab ile  unidentified  

low  m olecular w eight iron transit pool in  the cytosol w hich was available 

fo r b inding by  iron  chelating agents and w hich  m ain tained  a dynam ic 

equilibrium  w ith m any iron-requiring enzym es. Iron  chelators could in 

principle m odify iron m etabolic pathw ays by com peting w ith  o r adding to 

this ce llu la r iro n  pool. H ow ever, op in ions are  d iv id ed  about the
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existence o f such a pool. The identity o f the iron carrier m olecules in  this 

fraction  are still undefined . There are two possib ilities . O ne is that 

specific iron-transporting m olecules do not exist in  the cytosol and that 

the iron  is transported through a variety of iron-chelating am ino acids and 

salts (review ed by  Rom slo, 1980). The second possibility  is that there is 

a specific iron-binding and transporting factor w ith a very h igh  turnover, 

w hich  m akes i t  very  d ifficu lt to  detect (B akkeren  e t a l., 1985). 

Presum ably such species are required both w ithin the endosom e and in  the 

cytosol. T he m ovem ent o f iron through the labile pool is supposed to be 

linked  to  severa l fac to rs, such as m etabolic  u se  o f  iro n  fo r haem  

synthesis and o ther iron-containing enzym es (W rigglesw orth and Baum , 

1980; Schneider and E m i, 1981). The m etabolic state o f the cell would 

dictate the flux  o f iron from  this com m on pool. Incom ing iron w ould also 

contribute to the flux  in to  this pool, and it w ould be affected by  every 

intracellular event involving iron mobilization.

The fraction  chelatable by DFO, w hich probably  corresponds to 

th is poo l, w as found  to rep resen t a re la tively  sm all p ro p o rtio n  in 

lym phocytes cu ltu red  w ith  all carriers tested. T hese find ings are in 

agreem ent w ith  the report o f B om ford et a l (1986) that in  m itogen- 

stim ulated  hum an lym phocytes, the non-Ft non-haem  com partm ent is 

initially the largest and the m ost active for m aintenance o f  cell iron prior 

to incorporation in to  different com partm ents, but gradually  this fraction 

decreased and rem ained constant after 3 h (only 15% o f cellu lar iron). 

H ow ever, this com partm ent could also contain iron in non-haem  iron- 

containing enzym es, since in their study they did no t further fractionate 

this com partm ent. In the present study this low m olecular w eight fraction
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in  absolute figures was very m uch higher in cells cultured w ith FeNTA at 

50 ng/m l iron since these cells take m ore iron overall com pared to cells 

cultured w ith FeT f or FePIH . A bnorm al expansion o f the chelatable pool 

m ight be associated w ith  an increased  am ount o f toxic low m olecular 

w eight iron w hich m ay enhance free radical form ation and lead to cell 

injury as discussed below  in  the case o f cells cultured w ith FeNTA.

In cells cultured w ith FeN TA  iron was found predom inantly in  an 

insoluble non-F t m acrom olecular form  w hich probably contains m ostly 

cell m em branes, w hile in cells cu ltu red  w ith FeT f and FePIH , this 

fraction represents only a sm all proportion o f in tracellu lar iron. This is 

in  line w ith reports that the high proportion taken up form  FeNTA, but 

not iron originating from  T f was in  the pellet o f cells probably bound to 

the cell m em brane o f m ouse lym phocytes (Brock and R ankin, 1981). 

W hite and Jacobs (1978) have also shown that iron delivered from  FeNTA 

to Chang cells w as found largely in  the m em brane pellet and very little 

was in  the form  o f Ft. How ever, it has been reported that the m ajor part 

o f iron  donated by  FeN T A  to fetal ra t hepatocytes was present in the 

cytosol and not m em brane bound as reported w ith Chang cells (Lescoat et 

al., 1989), b u t they  suggested  that th is m ight be re la ted  to iron  

exchange betw een FeN TA  and T f resulting in part of the iron entering the 

cells in  a Tf-bound form.

Three hypotheses can  be advanced here to explain the nature and 

origin o f the insoluble fraction. Firstly iron in  this fraction could simply 

consist o f iron trapped in  the m em brane. Secondly iron in  this fraction 

could be bound to Hs or H s-like m olecules resulting from  saturation and 

then degradation o f F t to  w hich it was initially  bound. Thirdly, iron is
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this fraction does no t all com e classically from  H s, bu t results from  the 

fo rm ation  o f po lym er com plexes w hich then b ind  to  the m em branes, 

especially w hen iron is taken up non-specifically.

In the case o f the first hypothesis, the h igh  proportion  o f iron in 

the insoluble fraction in cells cultured w ith FeN TA  could  be a result of 

iron  being trapped in the cytoplasm ic m em brane. Fe^+ can only rem ain 

soluble at neutral pH  by displacing w ater w ith ligands o f  strong chelating 

agents. The N TA iFe ratio 5:1 used throughout this study is supposed to 

be safe and p reven t po lynuclear com plex  fo rm ation  in  the m edium . 

H ow ever, M arx (1989) has reported that the m ononuclear iron form  o f 

Fe^+ only occurs w ith an excess of citrate to iron o f at least 500:1 and not 

20:1 as it  w as p rev iously  though t (B ates and  S ch labach , 1975). 

Therefore som e polym ers m ay also be present in  the system  used in  this 

study w hen FeN T A  w as used. E lectron  m icroscopic evidence for the 

p resence  o f e lectron-dense  m ateria ls on the su rface  o f lym phocytes 

incubated in the presence o f Fe-citrate have been  presented (N ishiya et 

al., 1980). Landschulz and E kblom  (1985) show ed that FeN TA  has a 

low  partition  coefficient betw een octanol and saline (<0 .0 1 ), im plying 

that iron associated w ith the cells probably consists o f  polynuclear iron 

bound non-specifically to the cell, and they concluded that FeNTA cannot 

traverse the lip id  bilayer. H ow ever, W hite and  Jacobs (1978) have 

show n that iron  in  the m em brane pellet o f C hang cells cu ltured  w ith 

FeN TA  was not rem oved by D FO, w hich suggests that the binding of 

iron  to the m em brane occurs a fte r en try  in to  the ce ll ra th e r than 

extracellularly, assum ing it is bound to  the m em brane. This finding does 

no t support the hypothesis that iron  uptake from  FeN T A  occurs by 

adsorption o f the chelate on the cell surface rather than intracellularly.
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W ith  reg a rd  to  the  second  h y p o th esis , it is know n tha t 

lym phocytes are no t specialised fo r iron storage the potential capacity o f 

these cells to synthesise F t to sequester iron  in  a harm less form  is not 

high (Sum m ers ef a/-, 1975; Lem a and Sarcione, 1981; Sum m ers and 

Jacobs, 1976; D om er et al., 1980; Pattanapany as at, 1988; 1989b,

and confirm ed in  this study, see section 2.4.6). As a consequence, the 

large am ount o f iron taken up from  FeN TA  w ould be quickly transported 

from  the lab ile  iron  poo l and load  the lim ited  am ount o f F t present, 

w hich w ould resu lt in  rapid Ft degradation and the generation of Hs. It 

is know n that the excessive loading of Ft is follow ed by  lysosom al uptake 

o f the m olecules and their subsequent degradation (Trum p et al., 1973; 

W eir e t al., 1985), w hich is generally  considered  to  be a relatively  

inactive form  o f storage iron (O 'C onnell et al., 1986a, 1986b). The 

polym erization o f F t m olecules in  solution has been recognized for some 

tim e, and N iitsu  and L istow sky (1973) have reported that this process 

preferentially  affects iron-rich m olecules, w ith the incorporation o f rich 

m olecu les in to  ly sosom es, deg radation  o f  the p ro te in  shell, and 

form ation o f Hs. Indeed, It has been show n that w hile F t is the m ajor 

iro n  p ro te in  p re sen t in  the  n o rm al live r, in  iro n  overload  H s 

predom inates (S elden  et al., 1980). Therefore, it m ight be assum ed 

that in  the present experim ents, this process is accelerated w hen cells are 

incubated w ith FeN TA  due to the high  level o f uptake. H ow ever even 

w hen the concentration o f FeN TA  in  the m edium  is low  (10 ng/m l) and 

the subsequent iron  uptake com parable to that from  T f at 50 ng/m l, the 

abnorm al distribution betw een cytosol and m em brane iron rem ains w ith a 

la rger accum ulation  in the latter. U ltrastructural studies o f liver in  

artificially  iron-loaded anim als (Trum p et al., 1973) or in hum an liver
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biopsy m ateria l (lancu  et aL, 1977) suggest that iron loading results in 

the accum ulation o f Ft in lysosom es at w hich sites it is converted to Hs. 

This is in  agreem ent w ith  other studies w ith liver and heart cells (lancu 

et al., 1987; Jacobs et al., 1978; L ink et al., 1985) w hich found that 

unlike the physiological uptake o f T f iron  w hich is prim arily  located to 

cytosol, low  m olecular w eight iron  com plexes, such as FeN TA  and Fe- 

am m onium  citrate are rapidly confined to siderosom es. This hypothesis 

could be valid  especially  in  cases o f physiological uptake of the m etal 

w hich im plies that excess internalized iron w ould pass through Ft before 

the form er is converted to Hs. H ow ever, in cases o f  non-physiological 

uptake it could be that Hs is not the only insoluble iron storage com pound 

and polym ers o f iron com plexes m ight also exist.

Turning to the th ird  hypothesis, it is possible that once inside the 

cell, FeN TA  m ight result in abnorm al intracellular iron processing due to 

dissociation of iron from  the carrier and release o f large quantities o f free 

iron. T his cou ld  saturate  a ll availab le  na tu ra l low  m o lecu la r m ass 

com pounds capable o f binding iron  inside the cytosol. This iron could 

accum ulate, po lym erise and precip ita te , leading to  subsequent non 

specific lysosom al incorporation o f som e o f these polym ers, adding to 

the to  iron in Hs derived from  Ft. Therefore the inso luble fraction o f 

these cells w ould in  fact consist o f  both free and lysosom al-bound iron 

po lym ers to g e th er w ith  H s. A lthough  there w as no  ev idence that 

po lym erization  occurs in  the cytosol, and FeN TA  is thought to  be an 

excellent chelator in m aintaining extracellular iron in  a soluble form , this 

m ight occur if  the chelate was subject to degradation by  the m etabolism  of 

the cells. The hypothesis that FeN TA  could be subject to degradation by
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the m etabolism  o f the cell is supported by the findings o f N akam oto et al 

(1986) who incubated Ehrlich ascites tum our cells w ith  FeN TA  and Fe- 

nitrilotri(^^C)acetate at N T A :Fe o f 5:1 and found tha t the in tracellu lar 

ratio  N T A :Fe decreased  as the ex tracellu lar concen tra tion  o f FeN TA  

increased reaching alm ost 1:1 a t an iron concentration o f 3.6 mM.

Thus the conclusion  is tha t the w ay the cells handle  iron m ay 

depend on the form  in  w hich it was supplied. I f  the second hypothesis is 

valid in the case o f cells cultured w ith FeTf, the third one is m ore likely 

to be true especially  in  the case o f cells cultured w ith  FeN TA , although 

the first hypothesis can not to be excluded in this case.

If  FeN TA  binds non-specifically to the m em brane and polynuclear 

iron com plexes w ere unable to cross the m em brane as discussed above 

they m ay exert their toxic effect at this site by providing active iron which 

m ay partic ipate  in  hydroxy l rad ical generation  w h ich  prom otes lip id  

peroxidation, leading to  cell dam age. This view  is in  accordance w ith 

the report o f Soyano et a t (1985) that the inhibitory effect o f  FeN TA  on 

lym phocyte p ro life ra tion  is due to  form ation  o f  iro n  polym ers w hich 

affect the m em brane o f these cells. Landschulz and E kblom  (1985) have 

also reported that the toxic effect o f FeN TA  on k idney  tubules is due to 

alteration o f their m em branes by  polynuclear iron.

If  FeN TA  was able to enter the cell as d iscussed  above, is it iron 

that is incorporated  in to  H s after F t degradation  fo llow ing  excessive 

up take  in to  the ce ll th a t is responsib le  fo r the in h ib ito ry  effect on 

lym phocyte p ro life ra tion , or is it fo rm ation  o f po lym eric  iron  after 

deg radation  o f the ch e la to r and  libe ra tion  o f  iro n  in side  the cell? 

A lternatively , tox ic ity  m igh t be a  function  o f  the  abnorm ally  large
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in term ediate poo l w hich in  absolute figures is very m uch  greater w hen 

cells were cultured w ith FeN TA  at 50 ng/ml.

W hen cells w ere exposed to a low er iron concentration (10 ng/m l) 

in the form  o f  FeN TA , toxicity did not occur (as judged  by ^H-thym idine 

uptake w hich  was sim ilar to control cultures) and the cells were probably 

able to sequester iron in Ft, with form ation o f Hs w hich also represented 

the m ajo r frac tion  o f cellu lar iron of these cells. H ow ever w hen cells 

w ere cu ltu red  w ith  50 ng /m l iron, this fraction represented  the sam e 

p ro p o rtio n  as w hen  cells w ere cu ltu red  w ith  1 0  ng /m l and  yet 

p ro life ra tion  w as reduced  as com pared w ith  control, suggesting that 

possib ly  there is polym eric iron in this fraction. I f  th is assum ption is 

true  m ost o f  iron  in  this fraction in cells cultured w ith  1 0  ng /m l iron 

w ould probably  be in  Hs and very little or none in  the fo rm  o f polym ers. 

A  close positive correlation has been shown betw een enhanced lysosom al 

fragility  and  liver H s content (Selden et aL, 1980). H s accum ulation 

w ith in  tissues cou ld  p rovoke lysosom al dam age by  increasing  lip id  

peroxidation  (Selden  et aL, 1980). H ow ever this does not necessarily  

im ply that H s is the cause o f cytotoxicity. On a un it iron  basis, Hs has 

been found  to  prom ote OH generation to a m uch sm aller extent than Ft, 

w hich suggests that iron in the form  o f Hs is far less active in  prom oting 

lip id  perox idation  (O 'C onnell et aL, 1985). M oreover, addition o f Hs 

to  norm al liver hom ogenates is incapable of prom oting lipid peroxidation 

(B acon e t aL, 1985), It could thus be argued that conversion o f Ft into 

Hs is biologically  advantageous, in that it would dim inish the occurrence 

o f oxygen-radical reactions in the presence of excess iron in the m edium . 

It is therefore  like ly  to be  that the iron deposits in the  cell represen t
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im m obilized m etabolically  inactive iron. Hence Hs form ation appears to 

be a protective m echanism  and overload of the interm ediate pool m ay be 

responsible for toxic deposition o f iron.

In conclusion, rather than being an instrum ent o f cellu lar dam age, 

the form ation o f Hs in response to iron loading m ay initially represent an 

im portant m echanism  protecting cellular organelles against iron toxicity. 

How ever, w ith increasing iron uptake this protective m echanism  m ay no 

longer be su fficien t and po lynuclear iron  form ed after degradation o f 

FeN TA  follow ing abnorm al saturation o f low m olecular iron com plexes in 

the in te rm ed ia te  po o l m ay  be responsib le  fo r its p a rtic ip a tio n  in  

peroxidation dam age.

W hat m akes FePIH  better than FeN TA  in this respect? PIH  has a 

very  h ig h  and  specific  a ffin ity  to  Fê *** e sp ec ia lly  a t n eu tra l pH  

(R ichardson  et al., 1989) Its chelating  efficiency on  a w eight-per- 

w eight basis is equal to or sligh tly  be tter than  D FO  (H ershko and 

W eatherall, 1988), and  since the la tte r is know n to  inh ib it iron- 

dependent OH production  (G utteridge et al., 1979; H alliw ell, 1985), 

at least under certa in  conditions (B raughler et al., 1988), this w ould 

suggest that FePIH  m ust be very efficient in preventing the reduction of 

Fe^^, and thus preventing it participating in radical form ation. This view 

is supported by the report o f M ello Filho et al (1984) w hich show ed that 

2 ,2’-b ipyrid ine, an iron chelator related  to PIH , prevents bo th  DN A 

dam age and the killing o f m ouse cells by H ^ 0 2  by  entering the cells and 

chelating  th e ir in trace llu la r iron. H ow ever, b ipyrid ine  is an Fe^"^ 

chelator and the m echanism  of action m ight be different.

The results o f size o f the interm ediate m olecular w eight fraction fit
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very w ell w ith  the results o f thym idine uptake. T his fraction, which 

represents iron incorporated into non-F t non-T f iron-containing proteins 

and thus reflects the m etabolic activity o f the cell, was found to  represent 

relatively  the largest proportion in  cells cultured w ith  F eT f or FePIH . 

Iron in  this fraction is bound to m any enzym es and coenzym es. Probably 

the m o st im p o rtan t o f a ll as fa r as these ce lls  a re  concerned  is 

ribonucleotide reductase (Brow n et al., 1969). The im portance of this 

enzym e in  D N A  synthesis was show n by B rockm an et al (1971) who 

reported im paired incorporation o f ^H-thymidine into DN A  by a leukaemic 

cell line w hen the cells were cultured in m edium  containing inhibitors o f 

the ribonucleotide reductase system . H ow ever, in cells cultured w ith 

FeN TA  this fraction represents a sm aller proportion.

T he finding  that the fractionation  profile o f iron  acquired  from  

FePIH  is sim ilar to that o f iron acquired from  F eT f indicates that the 

form er com plex m ight be capable o f donating its iron to the interm ediate 

low m ass com pound(s), in w hich iron is fed en route  to  functional iron- 

containing enzym es or the storage com pound Ft, at equal rate to FeTf. 

A lternatively, FePIH  m ight sim ply jum p this step and the actual com plex 

fu lfills this role. The last probability  is m ore likely  to be true since 

FePIH  can  pass directly to the cytosol (Landschulz and Ekblom , 1985) 

and its ability  to  bind iron m ore strongly than FeN TA  w ould enable it to 

d e liver its load  to the m itochondria  to jo in  the no rm al m etabolic  

pathw ays. T his m ight also  reflect the fact that one part o f  the PIH 

m olecule, pyridoxal, a form  o f v itam in  B^, is a natural b iological 

substance (Ponka et al., 1979). This sam e argum ent can be applied to 

explain the m eans by w hich FePIH donates iron to the cell, in w hich case
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one cannot exclude the possibility that PIH crosses b io logical m em branes 

using a transport system  fo r pyridoxine derivatives. H ow ever, Solom on 

(1982) dem onstrated that pyridoxal uptake by red cells w as not affected 

by A TP depletion or addition o f inhibitors o f anion transport channels. 

This seems to indicate that red  cell uptake o f pyridoxal is no t dependent 

upon a specific transport m echanism  and both pyridoxal and PIH  m ay just 

diffuse non-specifically  across the cell m em brane. O n the other hand, 

Ponka et al (1979) have reported that A TP seem s to be  required for iron 

m obilization from  reticulocytes by PIH, suggesting that the w hole chelate 

unlike its pyridoxal m oiety, m ay be taken by an active transport system.

It is w orth  noting  that w ith  a ll carriers the overa ll in tracellu lar 

d istribution o f iron  am ong different in tracellu lar com partm ent was not 

altered by changes in  the am ount o f iron available. T hese results are in  

agreem ent w ith the findings o f W hite and Jacobs (1978) w ith  Chang cells.

In  p rev ious reports using  cu ltu red  fib ro b lasts  (O ctave et al., 

1981), hum an  e ry th ro leukaem ic  cells  (K lausner e t al., 1983), or 

established liver cell lines such as Chang cells (W hite e t al., 1976), the 

m ajority  o f iro n  taken  up from  T f w as sequestered  in  Ft. In  sharp 

contrast, the F t-iron  frac tion  was by  far the low est in  a ll cultures o f 

lym phocytes. H ow ever at both concentrations tested  it w as slightly larger 

in  cells cultured w ith FeTf. U nder increased m etabolic  dem ands for iron 

the m ajo r source o f  iron  to be  used  w ould be that p resen t in  the low 

m olecu lar w eigh t fraction. In  view  o f these resu lts , w hich suggest a 

very lim ited ability  o f these cells to incorporate iron  in to  Ft, it was o f 

in terest to  investigate  F t accum ulation in response to  iron  presented  in 

different form s.
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T he IR M A  fo r m ouse  F t u sed  in  th is study  to  m easu re  the 

lym phocyte content o f F t detected predom inantly the L  type, since the 

antibody used  was an a -m o u se  liver Ft. A lthough there w as a relative 

difference in the level o f Ft in  proliferating m ouse lym phocytes cultured 

w ith  three d ifferen t iron  carriers w hen the iron  concen tra tion  in  the 

m edium  was increased , th is d ifference w as n o t ve ry  pronounced  in 

com parison  to  o ther ce ll types such  as m onocy tes (D o m er e t al., 

1983b). This suggests that there is a basal level o f F t w hich could not be 

greatly increased by the addition o f any form  o f iron  to  the incubation 

m edium . How ever, Jones et al (1983) have reported  that norm al hum an 

peripheral b lood lym phocytes contain a relatively h ig h  proportion  o f H 

subunits, and incubation o f these cells w ith iron increases preferentially 

the H  subunits (W orw ood et al., 1984). This cou ld  partly  explain  the 

relatively  low  F t content detected in these cells in  the p resent study. A  

low  increase in  L -rich F t in  response to iron has also  been  reported by 

o ther authors (Pattanapanyasat et al., 1988; Pattanapanyasat, 1989a). 

H ow ever, the control o f F t synthesis is m uch less w ell studied in  m ouse 

lym phocytes than  in  hum an lym phocytes, and it is n o t really  know n if  

m ouse F t behaves sim ilarly. N evertheless, since the cells in  the present 

work w ere incubated fo r a  relatively long period its w as m ore relevant to 

assess the L -rich ferritin  w hich unlike H -rich F t is m ore stable and better 

suited fo r long-term  iron  storage (D rysdale, 1988). T ogether w ith the 

proliferative activity o f the cells this can give a relative idea o f how  these 

cells are succeeding  as far as iron detox ification  is concerned . The 

results o f  the presen t study are in  agreem ent w ith  som e reports w hich 

show ed tha t add ition  o f  e ith e r iron  (Sum m ers e t a l., 1975) or iron 

saturated  T f  (Sum m ers and Jacobs, 1976), fa iled  to  induce hum an
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lym phocyte F t synthesis in vitro. These results are also in  accordance 

w ith the findings of Pattanapanyasat et al (1988) w hich show ed that there 

was a significant increase in  F t synthesis in  lym phocytes cultured  in the 

presence o f PH A  w hen com pared to non-stim ulated cells, and that the 

presence o f  FeN T A  m ade little  difference to the rate  o f  F t synthesis. 

Lem a and Sarcione (1981) have reported that adniinistration o f increasing 

am ounts o f iron to rats in vivo  induced both liver and  peripheral blood 

lym phocyte F t synthesis, but incubation of liver and  lym phocytes w ith 

increasing  concen tra tions o f iron  in vitro  s tim u la ted  liv e r bu t not 

lym phocy te  F t syn thesis . T hese data  sug g est th a t in d u c tio n  o f 

lym phocyte F t synthesis observed after iro n  ad m in istra tio n  in  vivo  

resulted from  secondary stim ulatory m echanism s ra ther than  to  iron p e r  

se. The results o f the intracellular F t content together w ith the results o f 

the intracellu lar d istribution o f iron lend support to the theory  o f M attia 

e t al (1986) w ho p roposed  that the  regu la tion  o f  in trace llu la r  iron  

distribution is dependent upon absolute F t levels and  is unaffected over a 

range o f am ounts o f iron delivered to the cells

The fact that proliferating m ouse lym phocytes cu ltu red  w ith both 

physio logical and non-physio log ical form s o f iron  show ed no  m arked 

increase in  synthesis o f F t could  be in terpreted as ind icative that these 

cells are directing m ost o f their iron either to a m etabolically  inert pool in 

the  case o f F eN T A  (w hich  fa iled  to  support p ro life ra tio n ) or in to  

enzym atic needs (in the case o f cells cultured w ith F eT f and  FePIH ) as 

judged  by  the in tracellu lar d istribution  o f iron  (see section  2 .4.4). In 

cells specialized for iron storage where the potential accum ulation o f  the 

m etal is high, iron  can  regulate  the synthesis o f F t by  transla tional
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contro l m echan ism s. It has been  generally considered  that the m ain 

function o f F t in  these cells is to store iron not im m ediately required for 

m etabolic activity and release it to m etabolic iron pools w hen required. It 

is w ell know n also that m ost ceUs and tissues, w hen loaded w ith iron, 

incorporate the m etal into Ft. Increased synthesis also occurred  during 

inflam m ation and during cell differentiation (Fibach et al., 1985). Since 

the m ain function o f  F t in  lym phocytes is storage of iron fo r intracellular 

use (house keeping) rather than for use by other cells the m echanism s o f 

regulation could  differ.

2 .5 .4  T ran sferrin  synthesis by m ouse lym ph node  
c e lls

It is w ell estab lished  that the m ajor site o f synthesis o f  T f  is the 

liver (M organ, 1981). N evertheless, extrahepatic sites o f T f synthesis 

m ay exist (section 1.1.2,1). In the course o f the present study the initial 

suggestion o f  T f synthesis by m ouse lym ph node cells cam e w hen T f was 

detected after chrom atographing the lysate o f cells cu ltu red  w ith  ^^Fe- 

labelled  chela to r in  the absence o f any exogenous T f. E arly  studies 

reported that the hum an  lym ph node (Prunier et al., 1964) m akes Tf, 

and it has also  been  reported  that hum an lym phocytes m ight have the 

capacity  to  secrete T f  (Soltys and Brody, 1970; N ishiya et al., 1980; 

B roxm eyer et al., 1983). This was confirm ed by the study o f Lum  e t 

a / . (1986) w ho  show ed  tha t activa ted  hum an h e lp e r T -lym phocy tes 

synthesise T f. T herefore , to investigate w hether this is also true for 

m ouse lym phocytes a  study o f T f synthesis by those cells was carried  

out.
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In th is study the m ouse lym ph node was found to  be one o f the 

extrahepatic  local sites o f T f synthesis. T f w as found  to  be actively 

synthesised by lym ph node cells upon in vivo im m unological stim ulation 

bu t no t by quiescen t cells. How ever, the present study has failed  to 

dem onstrate the synthesis o f the other sm aller T f-like m olecule (60 Kd) 

w hich was found to be synthesised by activated hum an lym phocytes (Lum 

et al., 1986). M oreover in vitro  Con A -stim ulated cells failed  also to 

show  an active synthesis o f the protein. A ll this m ig h t suggest that 

another type o f cell could  be responsible fo r T f synthesis w ith in  the 

lym ph node. Therefore, it was of interest to determ ine w hich particular 

cell populations w ithin the tissue are involved.

It has been know n for some time that m acrophages can synthesise 

T f (Phillips and T horbecke, 1966; H aurani et al, 1973). It has also 

been suggested that endogenous T f m ight act as a vehicle for the release 

o f iron  from  m acrophages (H aurani and Balias, 1984). T hese cells, 

which are in close contact with lymphocytes w ithin the node, were found 

to increase sharply after in vivo  stim ulation o f the node. A ll this m akes 

the m acrophage the m ost likely candidate. In subsequent experim ents it 

was confirm ed that these cells are responsible fo r T f  synthesis in  the 

stim ulated lym ph node. As m entioned earlier, the in itia l detection of 

new ly synthesised T f was in lysates of Con A stim ulated lym ph node cells 

cultured in  T f-free m edium  and was possible because o f its content o f 

radioactive iron. The reason for the failure o f the im m unoprécipitation 

m ethod to detect T f  synthesis in these cells m ight be explained  by the 

possibility that the detection by the radioactive iron content o f the protein 

is m ore sensitive  than  the autoradiography o f ^^^I-labelled T f. B ut
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w hether th is iron  w as incorporated  by T f m olecules endogenously  or 

occurs after lysing the cells is not known.

The m echanism  that regulates the expression o f the T f gene in  the 

lym ph node and the physiological role o f T f during the im m unological 

activation process are presently  unknown. It is possible that the T f  gene 

in  these  ce lls  is n o t exp ressed  in  the resting stage un d er no rm al 

conditions, and that in  the host im m une response the gene is sw itched on 

to provide a  source o f available iron in an autocrine/paracrine m anner to 

support localized  pro liferation  o f those rapidly dividing cells. This is in 

agreem ent w ith  finding  o f  V ostrejs et al (1988) w ho reported  that T f 

synthesis in  a  lung cancer cell line increased more than 1 0 -fold w hen cells 

entered active phases o f the cell cycle, a time w hen T f  and particularly  

iron is necessary fo r cell division to proceed.

The need  fo r a local supply o f T f to these cells m ay result from  the 

restric ted  env ironm en t w ith in  the lym ph node during im m unolog ical 

stim ulation, w hen  iron  is being w ithheld from  circu lation  (W einberg, 

1984). D uring  acu te  phase  reaction  such as bac teria l in fec tions or 

n eo p la s ia  th e  b o d y  responds w ith  a p ro tec tive  red u c tio n  in  the 

concen tra tion  o f  availab le  iron  resu lting  in a rap id  drop in  the iron  

sa tu ra tio n  o f  c irc u la tin g  T f  (Z arrab i et aL, 1977; L ee, 1982; 

F inkelstein  e t al., 1983), by m echanism (s) which are not fully  defined 

yet. M oreover, in  bo th  asep tic  and m icrob ia l in flam m atio n  T f  

concentration is reduced (K um ar et al., 1978). This is assum ed to be a 

characteristic o f the host defence m echanism  against m icrobial pathogens 

and neop lasia  (B allan tyne, 1984; H unter et a /., 1984), since under 

these conditions serum  iron  is less accessible to the pathogen. O n the
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other hand, under these conditions, shortages in iron supply could affect 

the p ro p er fu n c tio n  o f the  im m une cells w hich  are liab le  to  find  

them selves in a state o f suddenly increased activity caused for exam ple by 

invasion o f fo reign  organism s. This is especially true w ith in  lym phoid 

organs w here a  sudden increase in dem and for iron m ay not be m et fast 

enough resulting in  im paired im m une response. Cells o f the lym ph node 

w ould then  be better equipped if  they could acquire iron independently o f 

plasm a T f  by synthesising their ow n T f locally in  order to  proliferate and 

exert the ir e ffecto r functions. Therefore, m acrophages m ay serve as an 

interm ediary in  the transport o f iron to proliferating lym phocytes under 

certain  conditions. Specialized cellu lar proliferation in vivo  by  tissues 

that are not w ell vascularized m ight be lim ited by insufficient dehvery of 

T f-bound iron  from  plasm a. A  striking exam ple o f these tissues w hich is 

quite sim ilar in certain  aspects to the lym ph node, is the testis in which 

T f synthesis by  Serto li cells provides iron to proliferating sperm atocytes 

(S k inner e t al., 1980). The b rain , w hich is separa ted  from  blood 

stream  by  the  so -ca lled  b lood -b ra in  barrie r, has b een  show n to 

synthesise T f  (L ev in  e t  a l., 1984; A ldred  et al., 1987), w hich  

contributes to m aintaining hom eostasis in the extracellular environm ent of 

the brain.

Thus lym phocytes m ay be capable o f m odulating their ow n supply 

o f iron through influencing the regulation of m acrophage T f synthesis via 

lym phocy te-m acrophage  con tacts and/or d iffusib le  substances. By 

analogy to this. L e M agueresse et a l (1988) have found that rem oval o f 

germ  cells contam inating the Sertoli cell cultures resulted in a significant 

decrease in  T f secretion. This hypothesis awaits further investigation.
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3 . 1  I N T R O D U C T I O N

The preceding chapter reported evidence fo r the  im portance o f iron 

availab ility  on  the p ro liferation  o f m ouse lym phocytes in  response to 

m itogens and that iron  in  the form  o f FeNTA, bu t no t T f-o r PIH -bound 

iron had an inhibitory  effect. Iron bound to N T  A  w as probably  toxic to 

the cells. A lthough the use o f cells from  an anim al m odel has allow ed 

variables w hich could com plicate the interpretation o f the results such as 

infections, age and nutritional differences to be e lim inated , it was o f 

prim e im portance to perform  com parable studies on hum an lym phocytes. 

I f  the inh ib ito ry  e ffect o f  iron  under the cond itions repo rted  in  the 

previous chap ter w ith  m ouse cells is applicable to  hum an  lym phocytes, 

the im m unolog ical status o f hum ans m ay be seriously  im paired  under 

sim ilar conditions. It is thus intrinsically  m ore valuable to  study hum an 

lym phocytes w hich w ould also enable com parison to be  m ade w ith  clinical 

situations. T herefore one o f the aim s o f  the w ork p resented  in  the present 

chapter is to  determ ine to  w hat ex tent the findings w ith  the m ouse cells 

apply to  hum an cells, and to  investigate w hether the w ay cells from  these 

tw o species behave in  the presence of different levels and  form s o f iron is 

different. It is know n that these cells are exposed to  d ifferent conditions 

in vivo, as T f  saturation in  the plasm a o f m ice is h igher that in hum ans. 

In  vivo  sa tu ra tion  o f m ouse T f  w ith  iron  is 65-80%  (Puschm ann and 

G anzoni, 1977; K uvibidila et al., 1983) against about 30%  in  hum ans 

(M organ, 1981). Thus the form er m ay be expected to be better equipped 

than  the  la tte r  in  cop ing  w ith  excess iron. I t co u ld  th ere fo re  be 

hypo thesized  th a t the inhib itory  effect o f excess iron  w ould  be m ore
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pronounced  in  the hum an system . T he w ork repo rted  in  the  present 

ch ap ter is therefo re  an ex tension  o f these studies to  no rm al hum an 

lym phocytes, w hich  exam ines the effect o f d ifferen t form s o f  iron on 

lym phoblastic transform ation.

T he resu lts  repo rted  in the previous ch ap te r a lso  gave  som e 

ev idence that m ouse lym phocytes do not have a m ark ed  capacity  to 

synthesise Ft in  response to iron in the m edium . To investigate  w hether 

the  sam e is tru e  in  hum an  lym phocy tes. F t syn thesis  in  

p ro liferating  norm al hum an lym phocytes has been  investigated  in m ore 

detail, by looking at the effect o f a larger range o f iron concentrations on 

cellu lar F t content. The results reported w ith m ouse cells suggested that 

lym phocytes w ere unable to proliferate because they cou ld  no t efficiently 

handle excess iron  by increasing Ft synthesis as discussed above (section 

2 .5 .3 )..

S ev e ra l stud ies have  suggested  tha t b esid es  its  w ell know n 

an tim icrob ia l activ ity , L f posses several charac teristics w hich  could  

im plicate it as potential m odulator o f im m une cell function  (D uncan and 

M cA rthur, 1981; B rock, 1985). In this respect, th e  re lease  o f  this 

p ro te in  and  its local accum ulation  in  in flam m ation  a re  o f  particu lar 

relevance. T herefore  L f  m ight have a role in  con tro lling  lym phocyte 

pro liferation . I t w as also  hypothesized that L f cou ld  sequester excess 

iron in  the m edium  and could  prevent its toxic e ffect on  the cells, and 

hence  enab le  the  cells to p ro lifera te  w hen excess iro n  is p resen t. 

H ow ever no  definite p roo f for this is available. T herefore, in  this study 

L f w as tested  fo r its effect on hum an lym phocyte p ro liferative  response 

and in particu lar to address the question of w hether this pro tein  w hich has
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a m uch  h igher affin ity  constant fo r iron than  T f  (A isen  and Leibm an, 

1972) is capable o f overcom ing the inhibitory effect o f  excess iron w hen 

all the T f  p resent in  the m edium  is saturated. T he study w as perform ed 

on hum an  ra ther than  m ouse cells because it is qu ite  easy  to  prepare 

sufficient quantities o f hum an L f from  colostrum , w hereas m ouse L f is 

not readily available.

In  the previous sections (2.4.2 and 2.4.3) it w as show n that iron 

m odula tes p ro life ra tion  o f T -cells. T hese cells co n sis t o f  d ifferen t 

subsets exerting  d ifferen t functions in  the  p ro cess  o f  an  im m une 

response. T he results reported in  the previous chap ter o f  a poor in  vitro 

response o f lym phocytes to m itogen stim ulation in  the presence non Tf- 

bound iron  in  the form  o f FeN TA  suggests that im pairm ent m ay occur to 

the clonal expansion o f  these cells w hich is in  line w ith  previous reports 

(G ood e t al., 1986; 1987). D epression o f the specific im m une response 

in  iron  ov erlo ad  is less w ell docum ented  th an  in  iro n  defic iency , 

a lth o u g h  d is tu rb an ces have  b een  reported  in  iro n  overload -re la ted  

diseases (review ed by  de Sousa, 1989). H ow ever correlation  betw een T- 

ly m p h o cy te  su b se t abn o rm alitie s  and  iro n  lo ad in g  rem a in s  qu ite  

specu la tive . T here  is little  in fo rm ation  on  w h e th e r  d iffe ren t iron  

conditions can affect the ratio  o f  lym phocyte subsets in  vitro. Therefore, 

to  address th is question  and to  see w hether the  in h ib ito ry  effect on 

pro lifera tion  is ascribed  to action  on a ll T -cell subsets irrespective  o f 

surface pheno type, experim ents investigating  the  e ffe c t o f  d ifferent 

co n cen tra tio n s o f  iron  bound  to  chelates o r  T f  w ere  perfo rm ed  to 

investigate  w hich  subsets are altered by iron. T his w ould  fu rther our 

understanding o f the im m unological.regulatory properties o f  iron.
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It is w ell established that transform ed cells generally  require less 

serum  grow th factors than  norm al cells (D raser and  Irving, 1973). A  

non-Tf-m ediated pathw ay of iron incorporation has been  dem onstrated in 

m alignant cell-derived  lines in  culture (Taetle et al., 1985; B asset et 

at., 1986), suggesting  tha t neop lastic  cells m igh t have  d ifferen t 

m echanism s for regulating their requirem ents o f the m etal. Therefore the 

study perform ed on norm al hum an lym phocytes was extended to a  hum an 

leukaem ic cell line CC R F-C EM . This was carried  out to investigate 

w hether these cells, w hich have the property o f unrem itting proliferation, 

respond in  the sam e w ay to iron as their norm al hom ologue undergoing 

m itogen-stim ulation, w hich leads to term inal differentiation. In  addition, 

T f synthesis in C CRF-CEM  cells was investigated to  see w hether, as in  

the activated  norm al hum an T -lym phocytes (Lum  et al., 1986), the T f 

gene is expressed in  these cells. This could serve as an ex tra  m eans of 

acquisition  o f  the iron  that is needed by  these constan tly  transform ed 

cells. In  this respect, endogenous cellu lar production  o f T f  could serve 

in  an au tocrine  grow th  regu la to ry  capacity , and  u n co n tro lled  T f 

biosynthesis by these neoplastic  cells could be an im portant m echanism  

by w hich a neoplasm  m ight establish autonom ous proliferation, and some 

evidence for this has already been  presented  (K itada and H ays, 1985; 

M orrone et al., 1988).

In  sum m ary therefore, the w ork reported  in  th is chapter aim s to 

investigate:

1) T he e ffe c t o f  d iffe ren t fo rm s and  am oun ts  o f  iron  on 

transform ation o f hum an lym phocytes and the T -cell line CCRF- 

CEM  and com pare them  w ith the results ob tained  w ith  m ouse
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cells.

2) The effect o f iron on cellular Ft levels in  hum an lym phocytes in

relation to its effect on proliferation.

3) The effect o f the L f on lym phocyte proliferation.

4) T he e ffec t o f  d ifferen t form s and am ounts o f  iron on the

expression o f T-cell subset markers.

5) T f synthesis by CCRF-CEM  cells.
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3 .2  M E T H O D S

3 .2 .1  C e ll  c u ltu r e  c o n d i t io n s  o f  h u m a n  
m on on uclear cells

Peripheral blood was obtained from  healthy volunteers aged 19-48, 

collected into sterile plastic uni versais containing 50 lU /m l heparin (Leo 

laboratories L td, Princes R isborough, Bucks, U K ) and m ixed 1:1 with 

RPM I-1640 m edium . M ononuclear cells were isolated by  density gradient 

centrifugation through lym phocyte separation m edium  (Flow). The cells 

w ere w ashed tw ice w ith R PM I-1640 m edium , v iab ility  assessed using 

eosin exclusion, and finally resuspended in  com plete m edium  com posed 

o f R PM I-1640 supplem ented w ith  pen icillin-strep tom ycin  at 100 lU /m l 

and 100 pg /m l respectively, 0.3 m g/m l L -glutam ine, and H SA  at 

1 m g/m l. The cells were cultured at a  concentration o f 2  x  10^ cells/m l in 

plastic conical test tubes in the presence o f purified phytohaem agglutinin 

(W ellcom e, D artford, England) at appropriate concentrations. The cells 

w ere cultured at 37® C in  an atm osphere o f 5%  CO 2 , 95%  air fo r 72 h. 

P ro liferation  responses w ere assayed as described in  section  2.3.2 w ith 

m ouse cells.

3 .2 .2  In d irect im m u n oflu orescen ce

A fter term inating  the incubation  period , ce lls  w hich  had  been 

cultured as above w ere w ashed tw ice w ith PB S/FC S (5% ). Three tubes 

containing aliquots o f 5 x  10^ cells each were put on ice. The cells were



141

spun at 800 rpm  fo r 5 m in at 4° C, the supernatant aspirated, and cell 

pellets w ere left w ith as little liquid as possible. To each tube was added 

10 p.1 o f a 1:20 d ilu tion  in  PBS o f one o f the fo llow ing m onoclonal 

antibodies; a -C D 3 , a -C D 4 , and oc-CD8  (Serotec). The tubes were well 

m ixed on a vortex, and left incubating fo r 20 m in on ice. During the 

incubation  period  each  tube was vortexed  tw ice. T ubes w ere then 

centrifuged and cells w ere washed three tim es in  PBS/FCS to rem ove any 

unbound antibody. C ell pellets were left w ith as little liquid as possible 

and 20 p i o f a 1:32 diluted fluorescein isothiocyanate (PITC) conjugated 

F(ab ')2  fraction  rabb it-a-m ouse  im m unoglobulin (Serotec) was added to 

the cells w hich w ere again incubated on ice for 20 m in. Follow ing the 

second incubation period, the cells were washed as above and diluted to 

0.7 m l w ith  PBS/FCS. Cytopreparations were prepared by spinning 

100 p i o f each sam ple on to a m icroscope slide at 800 rpm  fo r 5 m in 

using  a S handon-E llio t cy tocentrifuge. T he slides w ere taken out, 

a llow ed  to  a ir dry  and  then  fixed  w ith  e th an o l/g lac ia l acetic  acid 

(95% /5% ) fo r 20 m in  at -20® C. Follow ing cell fixation, slides were 

w ashed by transferring them  into 3-4 changes o f fresh PBS. The slides 

w ere then m ounted in 90%  glycerol/10%  PBS containing 0.1%  sodium  

azide under a coverslip  and sealed w ith  na il varnish. The cells were 

ob serv ed  u n d e r o il im m ersio n  in  an O lym pus B H -2  fluo rescen t 

m icroscope, w hich allows the observation of cells by both  ultraviolet and 

phase contrast. This enables the fluorescent cells to be counted under UV 

light and the to tal m ononuclear cells under phase contrast. Four random  

fields w ere chosen, and 2CX)-280 cells were counted per slide.
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3 .2 .3  P reparation  o f lactoferrin

The isolation o f this protein  was perform ed follow ing the m ethod 

reported by Johansson (1969), with som e variations. H um an colostrum  

(30 m l) (kindly  p rov ided  by  staff o f the b reast m ilk  bank , Y orkhill 

H ospital, G lasgow , Scotland) was spun at 1250 g fo r 30 m in  at 4^ C. 

Fat and debris were discarded, and the aqueous layer w as collected. The 

defatted colostrum  was diluted w ith 4 volum es o f sterile saline. FeN TA  

(10 m M  stock solution) was added (30 p l/m l o f  o rig ina l volum e of 

colostrum ) w hich turned the colour of the colostrum  solution to red-pink. 

D ry C M -Sephadex C50 (Pharm acia) (0.5 g) was added and the m ixture 

gently stirred fo r 1 h. A fter allow ing the gel, w hich turned to  a reddish 

colour, to settle, the supernatant was aspirated, and the gel was washed 

w ith  3 changes o f 50 m l o f saline w ith  5 m in  gentle stirring each tim e. 

The gel was then packed into a sm all colum n m ade from  a 20  m l syringe 

barrel w ith a M illipore prefilter in the bottom . T o elu te  contam inating 

proteins a reservoir o f 0.05 M  Tris H Cl, pH  8.0, w as connected and 

allow ed to run  through un til no fu rther p ro te in  e lu ted , as judged  by 

reading the optical density at 280 nm. The reservoir buffer was changed 

to 0.05 M  T ris/2 .0  M  N aCl, pH  8.0, to elute the L f and fractions 

o f 1.5 m l w ere collected. The optical densities at 280 and 470 nm  were 

m easured  (F ig . 18), and the L f peak  collected. T he figure show s that 

there w as a perfect m atch betw een the protein peak  fractions and the red 

colour indicative o f their iron content, dem onstrating a  good separation 

procedure. The fractions com prising the m ain peak w ere collected and the 

deep red  solution was then concentrated by  u ltrafiltra tion  and dialysed 

against 4 daily changes o f PBS, pH  7.2 at 4® C. T he solution w as then
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F ig u r e  18 O ptical densities o f  lactoferrin fractions at 4 7 0  and 
2 8 0  nm elu ted  from  a Sephadex C M  50  gel using  
0 .05  M  Tris, pH  8 .0  fo llo w ed  by 0 .05  M  T ris/2.0  
M  NaCl, pH  8.0.
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dialysed against 3 daily changes of H 2 O and freeze dried. To obtain apo- 

Lf, L f w as dissolved in  0.1 M  acetate, 0 .2  M  N a 2 HPO^ and 0.04 M 

E D TA  buffer (pH 4.0). The solution was dialysed overnight against the 

same buffer at 4° C. The ED TA  was rem oved by a  24 h  period  o f dialysis 

against PBS.

3 .2 .4  C ell line

C CRF-CEM  (Foley et al., 1965), a hum an T -leukaem ic cell line 

was routinely grow n in an atm osphere o f 95% air and 5%  CO 2 at 37° C in 

RPM I-1640 com plete m edium  (see section 2.2.2.6) containing 10% FCS. 

Cells were m aintained in  log-phase grow th at densities o f 0.3 to 

0.8 X 10^/m l by  replenishing the cultures by 5-fo ld  d ilu tions w ith fresh 

m edium  every three days. The cells w ere incubated  in itially  in  RPM I- 

1640 alone fo r 1 h , and  w ashed  tw ice, p rio r to  being  used  in  any 

experim ent. T his w as done to  allow  exocytosis o f  any endogenous T f 

from  the culture m edium  to occur, thus m inim izing interference.

3 .2 .5  D e te c t io n  o f  tr a n s fe r r in  sy n th e s is  by  

C C R F-C E M  cell line

C CRF-CEM  cells (4 x  10^) w ere taken  from  cu ltu res 24 h  after 

addition o f fresh m edium , w ashed 3 tim es in  PB S, and preincubated in 

R PM I-1640 (w /o Cys) fo r 90 m in before being incubated  w ith  100 pC i 

^^S-cysteme fo r 5 h. The im m unoprécipitation procedure w as carried out 

as described in  section 2.3.9 w ith the follow ing m odifications:

1) To test sam ples, 10 p i  o f sheep a -H T f (SA PU ) w as added.
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2) To com petition  sam ples, 30 pg o f H T f w as added follow ed by 

10 p i o f sheep a -H T f,

3) To control sam ples 8  p i o f norm al sheep serum  w as added.
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3 .3  R E S U L T S

3 -3 -1  T itration  o f p hytohaem agglu tin in

M ononuclear cells w ere prepared  as described  in  section  3.2.1, 

and cultured in  serum -free m edium  containing e ither 50  pg /m l o f 75% 

sa tu ra ted  tran sfe rrin  (serum -free) o r 10% FC S. A fte r  72 h the 

pro liferation  responses w ere assayed as described  in  section  2.3.2 for 

m ouse cells. T he optim um  concentrations w hich  induced  m axim um  

transform ation  w ere 1 and 5 p g /m l fo r cells cu ltu red  in  serum -free 

m edium  and serum -containing m edium  respectively (F ig . 19). The ratio 

o f the responses fo r cu ltu res in  serum -free  m ed ium  to  FCS is in 

accordance w ith previous findings w ith Con A  in the case  o f m ouse lym ph 

node cells (see section 2.4.1).

3 .3 .2  T he effect o f  iron  satu ration  o f  transferrin  
on hum an lym phocyte p ro liferation

The cells w ere cultured at 2 x  10®/m l in  the com plete  m edium  (see 

section 2 .2 .2 .6 ) in  the p resence o f  1 p g /m l PH A  and  increasing  iron  

saturation o f T f ranging  from  0-200%  at a  concen tra tion  o f  50 p g /m l. 

F ig . 20 show s the p ro life ra tion  o f  cells taken  fro m  th ree  d ifferen t 

ind iv iduals. A lthough  there w as a  considerab le  v a ria tio n  betw een  

ind iv iduals, the sam e pa ttern  o f p ro lifera tion  w as seen. A s the T f 

saturation increased there was an increase in  proliferation w hich reached a 

peak at around 100% iron saturation o f the protein. O nce this saturation 

level was exceeded, there was a  noticeable decline o f proliferation.
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F ig u re  19 T itra tion  o f response to phy tohaem agglu tin in  o f
hum an  lym phocytes. P o in ts and  v e rtica l bars 
represent m ean counts ±  SD (n = 4),
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F igu re 20 The effect of the degree o f transferrin  saturation w ith 
iro n  on p ro life ra tio n  o f  P H A -s tim u la te d  h u m an  
lym phocytes (the graph show s p ro life ra tion  o f cells 
taken from  three different donors). Points and vertical 
bars represent m ean counts ±  SD (n = 4).
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3 .3 .3  T he effect o f FeN TA  and FeP IH  on hum an  
lym p h ocyte  pro liferation

C ells w ere cultured at 2 x  10^ cells/m l in the com plete m edium  in 

the presence  o f  1 ixg/ml PH A  (see section 3,2.1). FeN TA  and FePIH  

were added to  the cultures at three different iron concentrations (10, 40, 

and 60 ng/m l). F eT f w as used as a positive con tro l w ith iron  content 

equivalent to  those o f the two chelators i.e. iron saturations o f 14, 56 

and 84% . As expected, F eT f showed an enhancem ent of proliferation as 

the iron content o f the protein increased up to 60 ng/m l, the equivalent of 

84%  sa tu ra tio n  (F ig . 21). T hough  FePIH  show ed  a s ig n ifican t 

enhancem ent as its iron  content increased, it was som ew hat less good 

than F eT f unlike the findings w ith m ouse lym ph node cells (see section 

2 .4.3). O n the o ther han d  FeN T A  w as not effective  a t p rom oting  

proliferation, and show ed an inhibitory effect as the iron concentration 

was increased  in  the culture m edium , com pared w ith con tro l cultures 

with no  addition(P<0.05 at 60 ng/m l iron).

3 .3 .4  T he effect o f  iron saturation  o f  tran sferrin  
on in tr a c e llu la r  ferr itin  o f  p r o lifera tin g  
hum an lym phocytes

The effect o f T f saturation w ith iron on intracellular F t levels was 

investigated. Cells w ere cultured in serum -free m edium  in the presence 

o f T f o f various iron  saturations fo r 72 h, w ashed tw ice in  PBS and 

re suspended at lOVml in  1 m l PBS containing 0,1%  BSA, 1 m M  PM SF 

and 0 .7  p.g/ml pepsta tin . L ysates were prepared by  three cycles o f
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F ig u re  21 T h e  e ffe c t o f  d iffe re n t iro n  c a rr ie rs  on 
p ro l if e ra t io n  o f  P H A -s tim u la te d  h u m an  
ly m p h o c y te s  ( re p re se n ta tiv e  o f  5 separate  
experim ents). The colum ns and the vertical 
bars represent mean counts ±  SD (n = 4). 
* P <0.005; ** P< 0.05  com pared  w ith control 
(no  ad d itio n ), t  P  <0.01; t t  P < 0 . 0  2 5  
com pared  w ith culture con ta in ing  equ iva len t 
am ount o f iron bound to Tf.
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freezing  and thaw ing. Ft levels in  lysates w ere determ ined  by  a 

radio im m unoassay  m ethod  using the  M agic^ F t R IA  k it (C iba) w hich 

m easures p redom inantly  L  type Ft (kindly perfo rm ed  by  the Dept, of 

B iochem istry, G artnaval G eneral Hospital, G lasgow ). The R IA  failed to 

detect any Ft in  lysates that w ere stored at -20 o r -70° C. This indicates 

that F t m ay lose its an tigenicity  upon storage at freezing  tem perature. 

T herefore, it w as decided to test the sam ples stra igh t after preparing 

them  or storing them  at 4° C overnight at the m ost if  necessary. Cellular 

F t con ten t increased  only slightly  w ith  increasing  ex trace llu la r iron 

concentration up  to the level o f com plete saturation o f T f w here optim um  

pro liferation  w as seen as judged  by ^H -thym idine up take  (T ab le  3), 

w hich suggests that there w as som e correlation  betw een  the degree of 

tran sfo rm ation  and  F t syn thesis. H ow ever, w h en  th is  leve l was 

exceeded there w as n o  increase in  in trace llu lar F t levels even  w hen 

ex trem ely  h igh  ex trace llu lar iron  concen tra tions w ere  p resen t in  the 

cultures. This m ight indicate that like proliferating m ouse lym phocytes, 

hum an lym phocytes have a lim ited ability to synthesise F t in  response to 

iron .

3 .3 .5  T h e  e f fe c t  o f  la c to fe r r in  on  h u m a n  
lym p h ocyte  p ro liferation

A poL f o r 90%  saturated  FeL f w ere added at 50 p g /m l to cells 

cultured in  serum -free m edium  (see section 2 .2 .2 .6 ) containing varying 

iron saturations o f Tf. The effect o f apoL f and 90% -saturated F eL f added 

alone was also included and contro l cultures w ere set up  w ith  cells in 

m edium  alone.
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T ab le  3 The effect o f transferrin saturation on intracellular ferritin
in proliferating hum an lymphocytes

Control
Transferrin saturation (96)

(N oT f) 0 30 90 200 3200

Fenitm
cells)^ 3 4 ± 8 4 3 ± 6 67 ±10 119±14 9 0 ± 9 106 ±15

uptake 3315 4603 8955 12588 7943 453
(cpm^lO^cells)! ± 275 ±508 ±796 ± 982 ±801 ± 34

* m ean o f triplicate experim ents ±  SD 
tm e a n  ±  SD (n — 4)
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Iron-loaded L f did not have any significant effect on proliferation 

w hen added alone com pared w ith control cultures w ith  no  addition (Fig.

22), w hich indicates that F eL f could  no t substitute fo r T f  in  prom oting 

lym phocyte proliferation. H ow ever, the iron-free fo rm  o f the protein 

caused  a sign ifican t decrease  o f  transfo rm ation  w hen  added  alone 

(F  < 0 .0 0 5 ) or to  cells cu ltu red  in  the p resence  o f  increasing  iron  

saturation o f Tf. A po-L f caused a  slight but significant decrease o f the 

proliferative response o f these cells up to the level o f 75%  iron saturation 

o f T f(F <0.025, P < 0 .0 5 , and P<0.025 w ith cultures contain ing  apoTf, 

15% and 75% saturated-T f respectively). O n the o ther hand, FeL f did 

not cause any significant change in  thym idine uptake w hen added to cells 

cultured in  the presence o f T f at any saturation level. H ow ever at m uch 

h igher iron concentra tion  (200% ), the presence o f  apo -L f in  cultures 

m arkedly restored blastogenesis. A t h igher concentration (600% ) L f lost 

its p ro tec tive  e ffec t as p ro life ra tio n  dropped  b e lo w  co n tro l levels. 

Finally, at extrem ely high iron concentration in  the m edium  (3200% ), all 

proliferation w as abolished.

3 .3 .6  T he e ffec t o f  la cto ferr in  on  in tra ce llu la r  
f e r r it in  le v e ls  o f  p r o life r a t in g  h u m an  
ly m p h o cy tes

In  view  o f the results o f the previous section it w as o f interest to 

investigate the effect o f L f on  in tracellu lar F t levels to  see w hether the 

possible sequestration o f iron from  the cells by L f  reduced  synthesis o f 

Ft. C ellu lar F t con ten t w as m easured  as described  in  section  3.3.4. 

T ab le  4  shows that w hile FeL f did no t have any effect on intracellular Ft 

levels, the iron -free  form  o f  the p ro te in  caused  a  sligh t decrease
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F ig u re  22 The effect o f lactoferrin  on pro liferation  o f PH A -
stim u la ted  hum an  lym phocytes cu ltu red  w ith or 
w ithou t transferrin  (representative o f 4 individual 
experim ents). C olum ns and vertical bars represent 
the m ean values ± SD (n = 4). * P < 0 .0 0 0 5 ;
** P  < 0 .005 ; *** P < 0 .0 2 5 ; **** P < 0 . 0 5
com pared with control (no addition)
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Table 4 T h e  e f fe c t  o f  la c to fe rr in  on  in tra c e llu la r  fe r r i t in  in
p ro life ra tin g  h u m an  lym phocy tes

C o n t r o l  
( N o  Tf ) A p  0 L f F e L f  (9 0 %  s a t . )

F e r r i t i n  
( ng  /10^ c e l l s ) * 4 5  ± 6 2 9  ± 4 4 0 ± 8

* m ean  o f  dup licates ±  S D
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com pared to control cultures w ith no addition

3 .3 .7  T he effect o f  iron satu ration  o f  transferrin  

on T -cell subsets

The follow ing subsets; CD3, CD4, and CDS w ere determ ined by 

an  in d irec t im m unofluo rescence  as described  in  section 3,2.2. The 

proportion o f CD3^ cells in  the cultures was not significantly affected by 

at any o f the iron concentrations tested (T ab le  5), N either apoT f nor a 

h igh  concentration  o f iron in  the m edium  (2 0 0 %) had any effect on the 

proportion o f  these cells in the cultures com pared to control cultures with 

no  addition . H ow ever, the h igh  level o f iron  (200%  T f saturation) 

decreased  the  ratio  o f CD 4/C D 8 by alm ost a half. This was due to a 

decrease in  the proportion o f CD4'*’ cells and a corresponding increase in 

the  p ercen tage  o f CDS^ cells com pared  to con tro l cu ltu res w ith  no 

addition. In contrast, low er T f saturations w ith iron and iron-free T f did 

no t show any effect on the CD4/CD8 ratio w hich rem ained constant as 

com pared  w ith  con tro l cu ltu res w ith  no  add ition . F inally  at 75% 

saturation o f  T f, the proportion o f CD4^ cells w as significantly  higher 

com pared to control cultures with no addition.

3 .3 .8  T he effect o f F eN T A  and F eP IH  on T -cell 
su bsets

The effect o f iron  in the form s o f FeN TA  and FePIH  and in the 

absence o f T f  on T -subset m arker expression w as investigated. A n iron 

concentration o f 50 ng/m l equivalent to T f saturated to 71%  was chosen.
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Table 5 T h e  e ffe c t o f  tran sfe rrin  sa tu ra tio n  o n  ex p re ss io n  
o f  C D 3 , C D 4 , C D 8 , b y  p ro life ra tin g  h u m an  
lym phocytes

CD3+ CD4+ CD 8 + C D 4  + /C D 8 +

N o add ition 64 .8± 5* 40.4+5 19.2+2 2 . 1

A p o T f 6 6 .2 + 6 43 .0+ 4 21 .1+ 3 2 . 0

F e T f (30% ) 71 .8± 5 51 .2+ 6 23 .3+ 3 2 . 2

F e T f (7 5 % ) 73 .0± 6 53 .2± 6  •• 23 .7+ 6 2 . 2

F e T f (200% ) 64 .1± 7 3 3 .3 + 3 " ''‘ 27 .9± 3* 1 . 1

* m e a n  o f  p e rc e n ta g e  o f  + v e  c e lls  ±  S D  (n  =  4 ) 
( r e p r e s e n ta t iv e  o f  3 s e p a ra te  e x p e r im e n ts ) . *P<0.01;
•*P<0.02; •••P < 0 .0 5  co m p ared  to  con tro l (no  ad d itio n ).
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and 71%  saturated T f w as also included as a positive control. As it  was 

seen in previous section w ith non-T f bound iron in the presence o f iron 

loaded Tf, iron  as FeN TA  low ered the ratio o f CD 4/CD 8 cells (T a b le  

6 ).This was the consequence o f a considerable decrease o f  the proportion 

of CD4^ cells and an  increase o f the percentage of CD 8 ^ cells com pared to 

control cu ltures w ith  no  addition. FePIH  did no t have any significant 

effect on the ratio  o f CD 4/CD 8 as com pared w ith control. On the other 

hand, the proportion  o f CD3^ cells in  the presence o f FeN T A  in  cultures 

was no t significantly  different from  those containing F eT f o r FePIH. The 

results ob ta ined  w ith  79%  saturated T f gave fairly  sim ilar resu lts as 

com pared to the previous experiment.

3 .3 .9  P ro lifera tio n  o f C E M  cells in th e p resence  
o f  d ifferen t iron saturations o f  transferrin

The cells w ere cultured in  conical test tubes at 5 x  10^ cells/m l in  

R PM I-1640 con ta in ing  1 m g/m l HSA in  the presence o f different iron 

saturations o f  T f ranging from  0 to 3200%  fo r 24 h . The degree of 

transfo rm ation  w as assessed  as described in  section 2 .3 .2  fo r norm al 

lym phocytes. F irst o f  a ll it  is o f in terest to notice the rela tively  h igh  

p ro liferative background  o f cells cu ltured  in  m edium  w ithout T f (F ig .

23). N evertheless the addition of apo-Tf caused a noticeable increase in 

the rate o f  proliferation. A t low er iron saturations o f T f proliferation o f 

CEM  occurred  at a lm ost the same rate w ith very little  variation  up to 

200% . In  the presence o f larger am ount o f iron up to 1200% , a gradual 

decrease in  proliferation occurred as the concentration o f  iron increased. 

N evertheless good pro lifera tion  was still m aintained even at this h igh  

level o f iron. O nly w hen this level was exceeded did p ro liferation  drop
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T a b le  6  T h e  e f fe c t  o f  F e - tra n s fe m n , F e N T A , a n d  F eP IH  on  
e x p re ss io n  o f  C D 3 , C D 4  a n d  C D 8  b y  p ro life ra tin g  
hum an  lym phocytes

C D 3^ C D 4^ CDS"^ CD4"^/CD8'^

N o  addition 6 8 .8 + 6 * 4 3 .4 + 4 20 .5+ 3 2 . 1

F e T f  (50  n g /m l Fe) 
( =71%  sat.)

71 .1+ 5 5 1 .3 + 5 " " 2 3 .2 + 4 2 . 2

F eN T A  (50ng/m l Fe) 6 6 .6 + 6 31 .2+ 4" 27 .9+ 3"" 1 . 1

FePIH  (50 ng/m l Fe) 6 8 .8 ± 8 47.4+3 22.7+4 2 . 1

* m ea n  o f  p e rc e n ta g e  o f  + v e  ce lls  ±  S D  (n  =  4 ) (rep re se n ta tiv e  o f  3 
se p a ra te  e x p erim en ts) . •/><0 .0 1 ; < 0 .0 2 ; •**P<0.05 ccom pared
to  c o n tro l w ith  (no  add ition ).
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F igu re  23 The effect o f transferrin  sa tu ration  on  C C R F-C EM  
c e l l  g ro w th  ( re p re s e n ta t iv e  o f  5 se p a ra te  
experim ents). C olum ns and vertica l bars represent 
m ean values ±  SD (n = 4).
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below  that o f the control w ithout Tf.

3 .3 .1 0  P ro liferation  o f C EM  cells in the presence  
of FeN TA  and FePIH

C ultu res con ta in ing  5 x 10^ ceUs/ml w ere set up in RPM I-1640 

con ta in ing  1 m g/m l H SA  in the presence o f FeN T A  and FePIH  w ith 

increasing iron concentrations ranging from  1 0  ng /m l to 1 pg /m l which is 

equ ivalen t to a range o f T f saturation  from  14 to  1429% . C ultures 

con tain ing  these iron  saturations o f T f w ere included. B oth  chelates 

prom oted good proliferation com pared to controls w ithout addition (Fig.

24). Indeed, there w as no significant difference betw een either chelates 

and FeT f in  supporting proliferation, indicating that the tw o chelates are 

equally  effective at prom oting proliferation o f C CRF-CEM  cells as FeTf. 

Surprisingly , the rate o f  proliferation did no t drop below  the control 

levels at high iron concentration, w hich indicates that these cells could 

hand le  very  large am ounts o f iron  in  both  p h y sio lo g ica l and non- 

physio log ical form s, perhaps due to a g reater ab ility  to increase Ft 

synthesis.

3 .3 .1 1  The effect o f iron saturation  o f  transferrin  
on in tr a c e llu la r  ferr itin  o f  C C R F -C E M  
c e lls

T he effect o f T f saturation w ith iron on in tracellu lar F t levels in 

C C R F-C EM  was exam ined to investigate w hether these cells are able to 

show  active response to iron by increasing F t synthesis. Cells were
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F ig u re  24 The effect o f d ifferent iron carriers on CCRF-
CEM  cell grow th (rep resen ta tive  o f 4 separate 
e x p e rim e n ts ) . C o lum ns and  v e rtica l bars 
represent the m ean values ±  SD (n = 4).
* F <0.005; ** F <0.01 com pared  w ith control 

(no addition).
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cu ltu red  in  se rum -free  m ed ium  in  the p resence  o f T f o f various 

saturations fo r 24 h. The Ft levels were assayed as described in section 

3.3.4 for norm al hum an lym phocytes. Surprisingly, Ft content o f cells 

(T ab le  7) o r at least L -rich  type F t content at all T f  saturations tested 

w as extrem ely  low  (in  the o rder o f  10-25 X  less com pared to  norm al 

hum an lym phocytes, see T ab le  3) and instead o f showing as expected a 

m arked increase  o f  in tracellu lar Ft content as iron concentration  was 

increased  in  the culture m edium  the cells did not show any increase 

whatsoever.

3 .3 .1 2  P ro liferation  o f  CEM  cells in the presence  
o f lacto ferrin

Cells w ere cultured at 5 x lO'  ̂ cells/m l in RPM I-1640 containing 1 

m g/m l H SA . A poL f or 90%  saturated L f (50 p,g/ml) were added either 

alone or to  cultures containing FeT f or FCS. As was found w ith norm al 

hum an lym phocytes apoL f and F eL f did no t have any effect on the 

proliferation o f CEM  cells w hen added alone (Fig. 25). A poL f was only 

inhibitory w hen added to cultures containing FeT f ranging from  0 to 75% 

saturation, w hile beyond this level o f saturation up to 2 0 0 % and w ith 

cultures containing FCS, it did no t have any effect. In contrast at higher 

iron  satu ration  (600% ), apoL f has a slight bu t significant restorative 

effects on the m odest inhibitory effect o f high iron concentration on the 

proliferation o f C CRF-CEM  cells(F<0.01).
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T a b le  7 T h e  e f fe c t  o f  tra n s fe r r in  sa tu ra tio n  o n  in tra c e llu la r  
fe rritin  in  C C R F -C E M  cells

Control
Transfeirin saturation (%)

(No TO 0 75 200 400 800

Feiritin 
(ng/lO® ceU sf 3.5 ±0 . 5 2.0 ±0 . 3 3.0 ±0. 1  4.5 ±0 . 6  4.2 ± 0 . 4 3.9 ±0 . 7

* m ean  o f  duplicates ±  S D
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Iron concentration (ng/ml)
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+ApoLf 
+FeLf
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F ig u re  25 E ffec t o f lac to ferrin  on grow th o f C C R F -C E M  cells 
cu ltu red  w ith or w ithout transferrin  (representative of 5  

se p a ra te  e x p e rim e n ts ) . C olum ns and vertica l bars 
represent the m ean values ± SD (n = 4). * F < 0 .001 ; ** 
F < 0 . 0 1  com pared with control (no addition).
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3 .3 .1 3  D etection  o f  transferrin  syn th esis by CEM  
c e l ls

C C R F-C E M  in  logarithm ic phase, i.e from  cu ltu res 24 h  after 

subcu ltu ring , w ere sub ject to  the im m unoprécip ita tion  m ethod  fo r 

detection o f  T f  synthesis as described in section 2.3.9. F ig . 26 clearly 

show s that these cells, w hich w ere cultured before the experim ent in 

se ru m -co n ta in in g  m ed ium , have the ability to synthesise Tf. The 

disappearance o f the band corresponding to T f w hen excess cold T f was 

added to the system  to com pete w ith the newly synthesised radiolabelled 

Tf, or w hen the an ti-serum  was om itted dem onstrate specificity  o f the 

assay
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F ig u r e  2 6  A u to ra d io g ra p h y  o f  -cy s te in e  in co rp o ra te d  
in to  tran sfe rrin  by  C C R F -C E M  cells

1 : T est (+  sheep  a -h u m a n  tran sfe rrin )
2; C om petition  (-H h u m an  tran sfe rrin ,

sheep oc-hum an tran sfe rrin )
3: C o n tro l (+  norm al sheep  serum )
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3 , 4  D I S C U S S I O N

T he w ork  repo rted  in  this chap ter has a ttem pted  to push  the 

investigation o f the action of iron on lym phocytes further on by looking 

a t its e ffe c t a t d iffe ren t levels and  form s on hum an  lym phocy te  

transfo rm ation  in  vitro  in  com parison to m ouse lym phocytes and a T- 

leukaem ic cell line, N on-T f bound iron in the form  of FeN TA  was shown 

to inhibit m urine lym phocyte transform ation, probably because o f the 

inability  o f these cells to respond to iron by increasing Ft synthesis. To 

confirm  and extend som e o f these effects seen on m ouse lym phocytes, 

and to estab lish  w hether these findings apply to the norm al hum an cells 

and their transfo rm ed  counterpart is one o f the aim s o f this chapter. It 

also attem pts to define m ore closely the d ifferential effect o f iron on 

d ifferen t T -ce ll subsets. The effect o f another re la ted  iron-b ind ing  

protein, Lf, was also investigated

3 .4 .1  T he effect o f  iron saturation  o f transferrin , 
F eN T A , and F eP IH  on p r o life r a tio n  o f  
hum an lym phocytes

T here was a considerable variation in the absolute figures o f the 

prohferative response betw een individuals. Despite this the same pattern 

o f p ro lifera tion  in  the p resence o f increased iron saturation  o f T f was 

obtained. V ariability  in  hum an lym phocyte responses to m itogens have 

been rep o rted  by  o ther investigators (Fan et al., 1977; Platz et al., 

1976), and  the  p resence  o f this variability  has becom e an accepted 

p roblem  in  the  c lin ica l evaluation  o f  hum an  lym phocy te  m itogen
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responses. As in  the case of m ouse lym ph node cells (section 2.4,2), the 

degree o f transform ation  o f hum an peripheral lym phocytes upon PH A  

stim ulation  cu ltu red  in  m edium  contain ing  apo -T f (in  p rac tice  6 - 8 % 

saturated) w as low er com pared w ith  the response o f the cells cultured in 

m edium  containing h igher iron  saturations o f T f, up  to  around 100% 

saturation . T hese resu lts confirm  the prev ious find ings w ith  m ouse 

lym ph node lym phocytes that one of the im portant factors in controlling 

the  p ro life ra tiv e  response  o f  lym phocytes in v itro  is the conten t o f 

transferrin-bound iron in  the culture medium .

A s fa r as the e ffec t o f  the chelato rs on  h u m an  lym phocy te  

proliferation is concerned, it was found that as w ith  m ouse lym phocytes, 

iro n -N T A  c a n n o t su b s titu te  fo r  iro n -T f and  a t re la tiv e ly  h ig h  

concentrations actually inhibits proliferation, but chelation w ith  PIH  was 

m ore effective. N evertheless, the results suggest tha t iron  taken up in 

this form  m ay be used  im m ediately by  the cell and perm it an increase in 

the cellu lar m etabolic response to m itogens. O verall, the findings w ith 

hum an lym phocytes w ere broadly  sim ilar to the one obtained using the 

m ouse system . H ow ever, the enhancing effect o f  bo th  F eT f and FePIH  

on hum an lym phocytes was less than the effect on m ouse cells. This was 

by alm ost a  th ird  (~600%  increase at optim um  saturation o f  T f com pared 

to  control w ith  m ouse cells against '-400%  w ith  hum an  cells). This is 

possibly due to the ability o f hum an (Lum  et al., 1986), b u t not m ouse 

lym phocytes to  m ake their ow n Tf, o r at least to the possib ility  that the 

form er could  be actively  engaged in  synthesising th is p ro te in  w hile the 

latter are less, as it is discussed in  section 2.5.4. T he sam e m ay be true 

in  the case  o f FePIH  w hich w as no t quite as effic ien t com pared  to  its
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effect on m ouse lym phocytes.

Surprisingly, hum an lym phocyte seem s to be m ore resistant to the 

inhibitory effect o f FeN TA  com pared to  m urine cells, know ing that the 

latter were taken from  the blood of these anim als w here iron saturation of 

the transferrin  is know n to be h igher com pared w ith  hum ans. W hile 

FeN TA  at 40 ng/m l iron did  not have any significant effect on hum an 

lym phocyte, this concen tra tion  low ered the p ro lifera tive  capacity  o f 

m ouse lym phocytes by 56%  as com pared to control. H ow ever, when this 

concentration w as increased to 60 ng/m l the proliferation o f both m ouse 

and hum an cells w as affected , bu t only by 46%  w ith  hum an cells 

com pared to 80%  in the m ouse one.

3 .4 .2  T h e e ffec t o f  iron  sa tu r a tio n  o f  T f  on  
in tra ce llu la r  ferritin  levels o f  p ro liferatin g  
hum an lym phocytes

Since lym phocy tes are no t specia lized  fo r  iro n  sto rage, the 

sequestration o f iron by  F t m ight serve a  detoxification function. Unlike 

o ther cell types, m ouse lym phocytes seem  generally  no t to  have any 

m arked increase in  in tracellu lar Ft levels in response to iron  presented in 

different form s (see section 2.4.6). To confirm  this finding and to extend 

it to  hum an  lym phocytes, it  w as decided  to investigate  th is in  m ore 

deta il. In  the  experim en ts w ith  m ouse  ce lls , ju s t  tw o  d ifferen t 

concentrations o f  iron w ere used fo r each form  o f iron. In  the present 

ch ap ter the  re la tio n sh ip  be tw een  iron  av a ilab ility  (in  the  fo rm  o f 

increasing iron saturation o f Tf) and cellular F t content was looked at.

F t synthesis by hum an lym phocytes cultured in  the presence o f T f
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increased only m odestly w ith increasing in tracellu lar iron  concentration. 

This confirm s previous evidence w ith m ouse lym phocytes that these cells 

have a lim ited capacity to synthesise F t in response to  iron. H ow ever in 

the  p resen t study there w as a  suggestion that on ly  T f  bound  iron  is 

capable of stim ulating F t synthesis since there w as an increase as the 

saturation o f T f present in  the culture m edium  increased up to around the 

com plete saturation o f T f present. Thereafter, w hen all T f present was 

loaded w ith iron, exposure o f proliferating lym phocytes to non-T f bound 

iron by  further increasing the iron concentration did no t show any further 

increase in F t levels. Therefore, iron in a "free" form  w as not able to 

stim ulate Ft synthesis in hum an lym phocytes. A lternatively, it could also 

be that F t synthesis was already m axim al w ith  100%  saturation o f Tf. 

These findings agree w ith the suggestion of Taylor e t a l (1987) that iron 

bound specifically  to T f  does stim ulate F t synthesis in  lym phocytes. 

Phillips and R utledge (1984) have also reported that F eT f increased Ft 

synthesis. Recently Pattanapanyasat (1989b) has reported that addition of 

increasing levels o f  FeN T A  to PH A -stim ulated lym phocytes caused an 

overall increase in  in tracellular F t levels. H ow ever in  this study the cells 

w ere cultured in  m edium  containing 10% FCS. The h igh  concentration o f 

partially saturated bovine T f in  the system  used is capable o f  binding iron 

from  FeN T A , resu lting  in  an increased  saturation  o f th is T f, w hich 

could explain the observed increase in cellular F t content. The increase 

o f F t levels seen in  the present study could be due to  the effect o f  iron on 

the rate o f F t catabolism . Pattanapanyasat e t a l (1988) have suggested 

that iron may decrease the rate o f catabohsm  thereby increasing cellular Ft 

content in  response to iron. It is w ell established that m onocytes show a 

h igher in tracellu lar F t concentration than lym phocytes, and that these
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cells exhibit an  increase in F t synthesis in  vitro in  response to iron in the 

cu ltu re  m ed iu m  (S um m ers e t al., 1975; D orner e t al., 1983b). 

T herefore, the increase in F t levels observed in  the p resent study could 

be due to the adherent cell population not being separated out.

The apparent insensitiv ity  o f lym phocytes to iron  presen t in  the 

m edium  w hen in  excess o f the binding capacity o f T f suggests that these 

cells have a different control m echanism  for Ft synthesis to other types of 

cells w hich are know n to respond to m uch h igher levels o f iron  bound to 

different carriers. It seem s possible that in lym phocytes the stim ulation 

o f F t synthesis by iron  is norm ally  at its m axim um  w hen a ll the iron 

present in  the m edium  saturated all the T f present, a fter w hich a balance 

betw een synthesis and degradation or conversion to Hs w ould result in  an 

equ ilib rium  being  a ttained . In  the in itia l p rocess o f  degradation  Ft 

p ro te in  loses its im m unoreactiv ity  (Jacobs e t al., 1978) and can  no 

longer be  m easured  by  the specific assay used  here. S tim ulation  o f 

lysosom al uptake by an increasing  F t load m ight resu lt in  a relatively 

short life o f an individual F t m olecule and could account fo r the decline in 

the in trace llu la r F t levels seen. W orw ood et a l (1984) show ed tha t 

peripheral b lood  m ononuclear cells cultured in  vitro  accum ulate Ft very 

rapidly, reaching a  plateau after 1 0  h  incubation, w ith little  or no further 

increase in  F t occurring after 20 h.

The proliferation results show a good correlation w ith  the F t levels 

up to around  the fu ll saturation  o f T f. A t th is p o in t the pro liferation  

response was at its m axim um . H ow ever at h igher iron  concentrations the 

p ro life ra tio n  response  d ropped  w hile  ce llu la r F t c o n te n t rem ained  

constant. This could be interpreted as dem onstrating the protective effect
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o f F t synthesis and the onset o f iron toxicity when it fails to m atch levels 

o f iron donated to  cells

3 .4 .3  T h e e ffe c t  o f  lacto ferrin  on p ro lifera tio n  
and  ferritin  levels o f hum an lym phocytes

Lf, another m em ber o f the T f fam ily is an im portant constituent of 

the secondary granules in  neutrophils. During an inflam m atory response 

L f is released from  lysosom es and is readily detectable in  inflam m atory 

flu ids (B ennett and  Skosey , 1977). Thus, L f m igh t m odulate  the 

cellular im m une events associated w ith inflamm atory responses.

Previous studies have dem onstrated a regulatory role for Lf. It has 

been  show n tha t hum an  L f binds to  m onocytes and m acrophages (van 

Snick and M asson, 1976; Bennett an d Davis, 1981; Goaveceta/,, 1985; 

Oria et al., 1988), and that the pro tein  was internalized and degraded by 

the cells w h ich  in co rp o ra ted  iron into F t (van Snick  e t at., 1977). 

Furtherm ore, it h as been  cla im ed  that a specific recep to r exists on 

m onocy tes (B irg en s e t al., 1983; B artal et al., 1987). L f has also 

been found to p lay  a  regulatory role in the im m une responses involving 

lym phocytes. T he prim ary  in vitro  antibody response o f m urine spleen 

cells to  T -d ep en d en t and  independent antigens is suppressed  in the 

presence o f L f (D uncan and M cArthur, 1981). R ecently, M azurier et al 

(1989) have show ed that L f binds to a specific receptor on lym phocytes, 

and that these recep to rs are only expressed on the surface o f actively 

p ro life ra ting  c e lls , and  unlike T f  receptors they  are n o t expressed  

intracellularly  in  resting cells. These claim s of the existence o f specific
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receptors for L f by these studies are open to doubt due to  the fact that L f 

is h igh ly  ca tio n ic  and b inds to a w ide range o f p ro te in s  and o ther 

m olecules (H ekm an, 1971),

There are conflicting reports concerning w hether L f can  support 

proliferation, n o t only in  studies dealing with different types o f cells but 

also am ong those w hich dealt exclusively with lym phocytes. In this work 

neither iron-free  n o r iron-loaded L f had any effect on PH A -stim ulated 

hum an lym phocytes as com pared to control cultures w ith  no addition, 

and was thus found  to be incapable o f exhibiting T f-like  activity  w hen 

added  a lone . P rev ious investigations have show n th a t co lo strum  

suppresses m itogen  and alloantigen-stim ulated lym phocyte proliferation 

(Crago et al., 1981; R ichie et al., 1981). It has been  reported  that L f 

released from  phagocytosing neutrophils inhibits transcrip tional activity 

in  m ixed lym phocyte culture and PH A -stim ulated hum an  lym phocytes 

(Slater and F letcher, 1987). O n the other hand, M azurier et a l (1989) 

have described  L f as a  grow th stim ulating factor fo r PH A -stim ulated  

lym phocytes. T hese latter findings m ust be taken very cautiously  since 

up till now  no evidence w hatsoever has been advanced to  dem onstrate an 

ability  o f L f  to donate  iron  to  lym phocytes, desp ite  th e ir c la im  that 

lym phocytes exhib it a  receptor fo r Lf, H ow ever as m entioned above the 

nature o f the binding sites fo r L f is still controversial and m any authors 

believed that they  encom pass a variety o f m olecular species (non-specific 

adsorptive endocy tosis) as was reported in the case  o f m acrophages 

(Regoeczi gf a /., 1985; M oguilevsky er a/,, 1985).

The effect o f L f on the proHferation of lym phocytes cultured in  the 

presence o f increasing  saturation of T f w ith iron  w as exam ined  to see
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w hether L f, w h ich  has a m uch  h ig h er a ffin ity  fo r  iro n  th an  T f 

(Bezkorovainy and Zschocke, 1974), could help in  restoring the ability 

o f lym phocytes to pro liferate  in  the presence o f excess non-T f bound 

iron.

F irst o f all it  is w orth  noting that apoL f sign ifican tly  inhibited  

proliferation of lym phocytes as com pared to control cultures w hen added 

a lo n e ( F < 0 .005). W hen  added  to  cu ltu res co n ta in in g  low er iron  

saturations o f T f (15-75% ) the iron-free form  o f the protein  was slightly 

inhibitory to proliferation o f cells. These results are in  accordance w ith 

the finding o f R ichie et a l (1987), w ho show ed that w hile iron-free L f 

inhibited proliferation o f m itogen-stim ulated hum an lym phocytes cultured 

in  serum  containing m edium , and o f m ixed lym phocyte cultures, iron- 

sa tu ra ted  L f  fa iled  to  in h ib it m itogen -induced  p ro life ra tio n . This 

suggests tha t the m echan ism  o f suppression  invo lves the chelating  

p roperty  o f L f. WTiat are the possib le  m echanism s invo lved  in this 

inhibitory activity? Is it by  m ere retention of the m etal a t the extracellular 

level or, know ing that som e reports have claim ed that lym phocyte exhibit 

specific  recep tors fo r the p ro te in  (M azurier et at., 1989) m igh t this 

involve interference w ith the intracellular iron pool?

A po-L f could com pete w ith T f in  the m edium  fo r iron, resulting in 

the  d ep riv a tio n  o f ce lls  o f  iro n  and  thus p rev en tin g  them  from  

p ro life ra tin g . B y rem oval o f iro n  from  T f  in  the  e x trace llu la r  

environm ent, L f  m akes iron unavailable, and it is no t likely  to deliver 

iron to these cells as discussed above. One could  also speculate that L f 

com petes for the in tracellu lar iron o f these cells. L f  m ight be able to 

enter the cell and com pete for iron, and having bound this iron, there are
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tw o possibilities. If  the protein has the ability to cross the cell m em brane 

to the extracellu lar environm ent, it could shift iron from  the intra- to the 

extracellular m ilieu, o r alternatively it  could accum ulate w ithin the cell as 

an inactive  form  o f  iron . In  bo th  cases, ap o -L f w ould  m ake iron 

unavailab le  to  the cells ra ther than  preventing  its up take . It is also 

possible that the inhibitory effect o f L f is a result o f  the com bination of 

both m echanism s.

To confirm  this view  it was o f interest to exam ine the effect of L f 

on the in tracellu lar iron reserves o f tlie cells i.e  its e ffect on cellular Ft 

levels. A po-L f w as found to decrease in tracellu lar F t levels com pared 

w ith the control, w hile 90% -saturated FeL f had no effect. The effect o f 

L f on in tracellu lar F t levels is analogous to the effect o f  iron  chelates on 

F t synthesis. Sum m ers et a l (1975) observed that chelation  o f  iron w ith 

D FO  m arkedly reduced lym phocyte F t synthesis in vitro, and suggested 

that m echanism s m aintaining norm al basal levels o f cellu lar F t synthesis 

are iron-dependent. H ow ever, this seem s to be in  opposition  to the 

earlie r find ings (see previous section  3.3.4) that excess iron  failed  to 

stim u la te  m ore  F t syn thesis. I t cou ld  be th a t u n d e r no rm al iron  

conditions the response is m axim al, and that the presence o f a chelator 

causes a  decrease in F t synthesis w hile addition o f iron  increases it.

O n the other hand, in  cultures containing T f  a t a  h igher degree of 

saturation (200%  saturation) the inhibitory  effect o f  non -T f bound iron 

was reversed by  the presence o f apo-L f in  the culture m edium , where it 

was m arkedly stim ulatory. In  sharp contrast, the iron-loaded form  o f the 

protein had  no  effect w hatsoever on lym phocyte proliferation either when 

added alone o r w hen added to lym phocytes cultu red  in  the presence of
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varying saturations o f T f  w ith  iron. In  the p resence  o f non-T f bound 

iron, apoLf, probably  binds this excess and neutra lizes its toxic effect 

on cells, resulting in  restoration o f cell proliferation. Indeed, Am bruso 

and Johnston (1981) showed that iron-poor L f (apparently  no t com pletely 

depleted o f iron) inhibited hydroxyl radical production. Sim ilarly, using 

lipid peroxidation as an indicator o f hydroxyl radical activity, Gutteridge 

et a l (1981) show ed that partia lly  saturated L f  (20% ) has antioxidant 

properties in that it can inhibit the catalytic action o f iron salts, but iron 

saturated L f had no effect. A ll this suggests that one o f the functions of 

unsaturated  L f  w hich never occurs com pletely  sa tu rated  under norm al 

physiological conditions is to dam pen these potentially  toxic reactions.

The above results are com parable to the w ell established function of 

L f in hum an m ilk  as an inhibitor o f bacterial grow th by  chelating iron and 

p reven ting  its  availab ility  to  m icroorgan ism s (B u llen  et aL, 1972; 

A rnold  et al., 1977; B ullen , 1987). H ow ever ano th er possib ility  is 

tha t the inh ib ito ry  effect o f apoL f on lym phocyte p ro life ra tion  could 

involve m ore than one m echanism . L f  m ay possess o ther non-iron related 

intrinsic properties w hich in  turn cause other b io logical effects that could 

a ffect lym phocyte  p ro life ra tion  ind irectly . A m ong  these  effects are 

inhibition o f colony stim ulating activity (CSA) production, w hich results 

in  decreased release o f  cytokine(s) from  m onocytes w hich are responsible 

fo r trig g erin g  o th er ce lls  such  as T -lym phocy tes to  re lease  o ther 

stim u la ting  fac to rs (B roxm eyer et al., 1976, 1978; B agby et al.,

1981, 1983). This suggests that L f  m ight m ed ia te  its effect through

suppression  o f  IL-1 p ro d u ctio n  (Sm ith  et al., 1980; Z ucali et al., 

1987; 1989), w hich has num erous im m unological activ ities, including 

triggering the release of the T-cell growth factor IL-2 from  T-lym phocytes
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(D inarello, 1984). S later and Fletcher (1987) have also reported that L f 

inhibits urid ine uptake in  allogenic m ixed lym phocyte  reactions, by 

suppressing the production and release o f a soluble fac to r subsequently 

identified as IL-2 (Slater and Fletcher, 1987).

In  sum m ary at very high iron saturation o f  T f, the presence o f 

apo-L f in  the m edium  contributed to avoiding the deleterious effect o f 

non-T f bound iron on proliferation probably by sequestering the m etal, 

resulting in prevention o f the decline of proliferation seen w hen high 

levels o f iron w ere present. A t the sam e tim e the excess iron loaded L f 

and thus prevented there being any inhibitory effect o f iron-free Lf, either 

on lym phocytes directly or on other accessory cells.

3 -4 .4  T he effect o f  iron satu ration  o f  transferrin , 
FeN T A  and FePIH  on the exp ression  o f T- 
cell surface m arkers

In  the previous experim ents it was show n that excess iron in the 

p resen ce  o r the  absence  o f  iron -loaded  T f  a ffec ts  T -lym phocy te  

transfo rm ation  in vitro. It m ight be possible that iron  also affects the 

im m une response by altering the relative populations o f T -lym phocyte 

populations and subpopulations.

To exam ine this aspect o f im m unoregulatory  properties o f iron, 

evaluation o f its effect on the expression of lym phoid surface m arkers on 

actively dividing lym phocytes was carried out. H um an lym phocytes were 

chosen to perform  this study because of the availability o f the m onoclonal 

antibodies to the w ell know n different subset m arkers o f these cells. The 

pheno typ ic  study reported  in  the p resen t study, revealed  that iron
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in terferes w ith  expression  o f tw o cell surface antigens required  for cell 

activation i.e CD 4 and CD8. The presence o f iron no t bound to T f caused 

a decrease in CD4/CD8 ratio, due m ainly to depression o f the proportion 

o f CD4+ cells and a slight increase in the proportion o f C D 8^ cells. The 

same findings w ere seen w hen cells were exposed to iron  in  the form  of 

FeN TA  and in  the absence o f Tf. How ever, unlike FeN TA , iron in  the 

form  o f FePIH  did  not low er the CD 4/CD 8 ratio. T hese findings are 

relevant to the results o f the effect o f iron on transform ation. A  likely 

exp lana tion  o f  the overa ll decrease  in  T -lym phocy te  p ro life ra tion  

fo llow ing po lyclonal stim ulation w hen cells w ere exposed  to non-T f 

bound iron  in  the form  o f FeN TA  (see section 3 .3 .3) is that this iron 

affects the clonal expansion o f CD4+ cells w hich m ay be m ore vulnerable 

to  the oxidative stress o f  iron resulting in  oxidative in jury  to these cells. 

A llan  e t al. (1986) have dem onstrated  that T -lym phocy tes are m ore 

susceptib le to  oxidant induced killing  than non-T -cells. T herefore the 

num ber o f the daughter cells generated in  these cultures at the end of the 

incubation period  w ould  be less than in  cultures w here cells w ere exposed 

to T f-bound iron  or FePIH . These results are in agreem ent w ith  findings 

o f G ood et a l (1986) w ho reported that Fe '̂*' reduced  bo th  the cloning 

efficiency o f hum an  CD4+ precursor lym phocytes and the rate o f clone 

grow th o f the T-cells that did proliferate. A m ong T-subsets, B ryan et al

(1986) have show n a selective effect o f high concentrations o f chelatable 

iron  on CD 4^ cells, consisting o f a decrease in  the p roportion  o f this 

subpopulation. It has also been  reported that few er he lper precursors 

w ere p resen t in  the spleen o f iron-loaded m ice (D ialynas et al., 1983). 

On the other hand, Carvalho and de Sousa (1988) w ere not able to show 

any alteration o f CD3, CD4, CD8, G D I, CD22, CDIO, and H LA -D R 

surface m arkers by iron, and the only m olecule that w as found to be
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affected w as the CD2. The discrepancy with this study could lie in  the 

d iffe ren ce  o f  the  sta te  o f cells stud ied  since they  assessed  n o n 

proliferating cells.

O ne e x p la n a tio n  o f  th e  d iffe re n tia l e ffe c t o f  h ig h  iro n  

concentrations on T -cell subsets is that it m ay be that in  these conditions 

CD4+ cells accum ulate iron intracellularly  m ore rapidly  than the CD8^ 

cells w ith  toxic consequences. A lternatively, the cells m ay take up the 

iron at an equal rate, but the CD8 cells m ay be able to process this iron 

m ore effic ien tly , thus preventing accum ulation o f excess iron. It has 

been  reported  tha t am ong T -subsets, helper cells m ay  be rela tive ly  

sensitive to oxidant injury and that in  the presence o f D FO  injury did not 

occur and proliferation was enhanced (Sagone et al., 1984).

3 .4 .5  P ro lifer a tio n  o f  C C R F -C E M  ce lls  in the  
p resen ce o f  tran sferrin , F eN T A , F eP IH , 
and  lactoferrin

A m ong the m any differences betw een norm al and transform ed cells 

as studied in  ce ll cu lture are their requirem ent fo r serum  in prom oting  

grow th and their response to serum  growth factors. M any transform ed 

cells have less need  fo r serum  fo r optim al grow th than  un transform ed 

cells (S p o m  and  T odoro , 1980). A n autocrine  g row th  regu la tion  

hypo thesis w h ich  proposes that m alignant cells p roduce  and secrete 

horm one-like substances that induce further autonom ous pro liferation , 

has b een  p o stu la ted  as a possib le  m echanism  lead ing  to m alignan t 

transform ation and w as studied in  several tum our cell system s (Todaro et 

al., 1976). Som e transform ed cells which proliferate in  defined serum -
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free m edia  do no t require T f (Fem andez-Pol, 1978; Z w iller et al., 

1982; B asse t et al., 1986; T aetle  e t al., 1985), I t  is therefo re  

possib le  tha t som e transform ed cells m ust be  ab le  to  regu late  iron  

acquisition by  a m echanism  different from  Tf-m ediated uptake. Therefore 

it  was o f interest to look at the differences in the capacity  o f CCRF-CEM  

cells, a  T -leukaem ic cell line to u tilize iron  in  d ifferen t form s and to 

in v e s tig a te  w h e th e r  th ese  ce lls  b eh av e  d if fe re n tly  fro m  th e ir  

untransform ed counterparts.

U n like  m ouse  and n o rm al hum an  ly m p h o cy tes  in  w h ich  

p ro liferation  in  the presence o f T f was found  to be a  function  o f the 

bound iron up  to 100% saturation o f Tf, C CRF-CEM  cells did not show 

any difference in  their proliferative rate at different saturations o f T f up 

to 100% saturation . M oreover, at h igher levels o f  iron  (100-600%  

saturation), w hen non-T f bound iron was present in the culture m edium , 

CCRF-CEM  cells w ere able to achieve good pro liferation  in  contrast to 

norm al m ouse and hum an lym phocytes. The sam e w as true w ith  the 

che la te  F eN T A  w h ich  u n lik e  n o rm al ly m phocy tes  h ad  the  sam e 

stim ulatory effect on  pro liferation  as Tf. A s w ith  norm al lym phocytes 

FePIH  w as e ffic ien t in  supporting pro lifera tion  o f  C C R F-C E M  cells. 

These results are in  agreem ent w ith the findings m en tioned  above that 

som e iron-contain ing  com pounds w ere able to stim ulate the grow th of 

several transform ed cell lines other than  by the T fR  cycle by  using haem  

or haem in  (W ard e t al., 1984), soluble iron  salts (R udolph  et al., 

1985), or chelators (Taetle et al., 1985). Iron-b ind ing  pro teins have 

been identified in the m em brane o f neoplastic and neoplasm a-derived cell 

lines. The p97 m olecule, a glycoprotein found in m elanom a cells which 

has a h igh  degree o f hom ology w ith  T f cou ld  be an  exam ple o f a
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m em brane-located  iron binding protein  that could  participate  in  such a 

m echanism  (Brow n et al., 1982).

The finding that FeN TA  was able to allow  proliferation  o f CCRF- 

CEM  cells m ight also be exp lained  by the possib ility  that these cells 

synthesise T f, in  line w ith the idea that iron from  synthetic chelates is 

taken by the cells after exchange w ith cell associated T f (H em m apardh 

and  M organ, 1974). FeN T A  has been  show n to de liver iron  into 

hepatom a cells, and it is know n that FeNTA loads apoT f quite efficiently 

(Bates and Schlabach, 1973) and that contam inating exogenous T f can 

affect any experim ent studying iron uptake (Brock, 1989). Perhaps the 

grow th  stim ula tion  o f hepatom a cells seen w ith  F eN T A  w hich  was 

m entioned  above is due to th is loading o f apoT f, a p ro te in  w hich 

hepatocytes synthesise and secrete. In  the present study, this suggestion 

is supported by  the h igh  proliferative background o f  C C R F-C EM  cells 

cu ltu red  in  the m ed ium  alone, suggesting that these  cells are very 

efficient in  taking advantage o f the unavoidable iron contam ination o f the 

m edia and using it, perhaps by  secreting their ow n T f. This hypothesis 

supports the find ing  tha t b lockade o f  T fR  o f  these  very  sam e cells 

(CCRF-CEM ) by the m onoclonal antibody 42/6 inhibited  cell grow th and 

that the addition o f ferric  com plexes or ferrous sulphate to cultures did 

n o t overcom e the inh ib ito ry  effects o f the an tibody  (T row bridge and 

L opez, 1982). H ow ever a  fu rther report by  the  sam e group provided 

evidence that the addition o f soluble iron in the form  o f FeN T A  results in 

partial reversal o f  inhibition o f cell grow th induced by  42/6 antibody in 

PH A -stim ulated lym phocytes (M endelsohn et al., 1983).

To check this hypothesis T f synthesis by these cells was exam ined.
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The present study clearly dem onstrated the synthesis o f T f by the CCRF- 

CEM  cell line. The T f produced m ay act as an au tocrine prom oter of 

cellu lar p ro liferation  in  a sim ilar fashion  to  a num ber o f  other grow th 

factors synthesised by m alignant cells (C am ey et al., 1985), H ow ever 

one m ay w onder about the necessity o f T f synthesis as a  requirem ent for 

proliferation o f these cells, w hich had been cultured routinely in  serum- 

containing m edium  for several m onths before perform ing the study. It 

could be that unlike unstim ulated lym phocytes (see section 2.5.4), the T f 

gene in  these  cells is constan tly  sw itched  on  as they are constantly  

dividing. The gene could be sw itched on  as a preventive m easure in  case 

o f shortages in  the iron supply since w ithholding iron is a characteristic 

o f host de fence  m echan ism s aga in st neop lasia  (W einberg , 1984; 

Letendre, 1985). The same thing applies to cells reaching high densities 

in cultures w here availability o f  iron becom es a lim iting factor. Synthesis 

of T f w ould  enable them  to continue to grow  under these conditions. 

K itada and Hays (1985) have described two cloned m urine m ahgnant T- 

lym phom a cell lines w hich grew  in serum -free m edium  w ithout added Tf. 

These cells produced a T f-like  activ ity  essential fo r cell proliferation. 

A nother T f-like  grow th fac to r produced by lym phom a cells has been 

reported  by  M orrone et a l (1988). T h is fac to r supported  autocrine 

grow th o f these cells, but inhibited norm al T -lym phocyte proliferation, 

in  effect serv ing  to p rov ide a substan tia l g row th  advantage for the 

m alignant cells. In all the studies m entioned above, T f  synthesised by 

the cells has m arked functional and b iochem ical sim ilarities to native 

serum  Tf.

If  the am ount o f T f synthesised by these cells w as sufficient to
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bind  the large am ount o f FeN TA  added to the culture m edium  and perm it 

grow th under those conditions, then it m ust also be sufficient to b ind the 

trace am ounts o f endogenous contam inating iron p resen t in  the m edium . 

In  this case addition o f apoT f should not m ake any difference. H ow ever 

addition o f apoT f caused considerable increase in the rate o f proliferation. 

It seem s therefore that loading o f iron from  FeN TA  is possible only for 

cells w ith an abundant endogenous T f production su fficien t to chelate 

m ost o f the iron  bound to NTA. H ence the existence o f an alternative 

pathw ay for FeN TA  acquisition by these cells, as w ell as that o f the TfR 

pathw ay seem s to  be quite likely. M ouse leukaem ic cells exhibit a Tf- 

independent iron transport system , w hich appears to be involved in  the 

ability o f these cells to take up chelate iron and use it to prom ote DN A 

synthesis and cell grow th (Taetle et al., 1985). This suggests that this 

uptake m ust occur through a regulatory transport system  and not by m ere 

diffusion o f the chelator. The finding o f a siderophore-like grow th factor 

secreted by SV -40-transform ed 3T3 m ouse cells provides evidence for the 

existence o f a specific low m olecular w eight transport system  for iron and 

o ther trace m etals (Fem andez-Pol, 1978). This fac to r w as show n to 

induce D N A  synthesis and proliferation o f the cells.

The finding that these cells m anaged to grow  at h igh  levels o f iron 

com pared to the ir norm al counterpart could suggest the hypothesis that 

unlike norm al lym phocytes, these cells have the ab ility  to  synthesise 

increasing am ounts o f F t in response to non-T f bound iron. H ow ever this 

hypothesis could not be substantiated since C C RF-CEM  cells were found 

to have extrem ely low  in tracellu lar F t levels com pared  to their norm al 

counterpart. The reason o f this difference could lie in  the differences in 

the deg ree  o f p ro life ra tio n . It is w ell k now n  th a t iro n  in  these
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proliferating  cells is m ain ly  needed  for the function ing  o f the enzym e 

ribonucleotide reductase. Therefore, the am ount o f  iron  used  by the cell 

w ill be proportional to the uptake o f thym idine w hich directly  m easures 

D N A  synthesis, and since the proliferative activity  o f CCRF-CEM  cells 

was m uch h igher than that o f PH  A- stimulated norm al lym phocytes (~12X 

at optim um  proliferation  on a cell to cell basis; see sections 3.3.2 and 

3 .3.9), it is likely then that the form er were able to use larger amounts o f 

iron  to susta in  this h igh  b lastogénie  activ ity . T he in trace llu lar low  

m olecu lar w eight iron  poo l w hich is supposed to be the p recursor o f 

in co rp o ra tio n  in to  F t (Jacobs, 1977) and w h ich  co u ld  m ed iate  

cytotoxicity is probably very lim ited. This could explain  w hy these cells 

w ere no t synthesising as m uch Ft as their norm al counterpart and could 

also account fo r the resistance o f these cells to the oxidative injury in  the 

presence o f h igh  iron concentration unlike norm al lym phocytes. It could 

also be that these cells synthesise m ainly H -rich F t w hich  could  no t be 

de tec ted  by  the  assay  u sed  in  th is study. I t h as b een  show n that 

transform ed cells synthesise  H -rich  F t p redom inan tly  (D ôm er e t al., 

1983a). This type o f F t has been  show n to uptake iron  m ore readily than 

L -rich  F t at pH  7.0 (L evi et al., 1989), p ro b ab ly  because  o f  the 

presence o f a ferroxidase site on the H-chain.

As w ith  norm al proliferating T-lym phocytes, L f  w as found no t to 

have any effect on the grow th o f C C R F-C EM  cells w hen added alone 

w hether it  w as "iron-free" o r iron-loaded. H ow ever, H ashizum e et 

£z/.(1983) have reported  that several hum an, but no t m ouse B and T-cell 

lines proliferated in  serum -free m edium  supplem ented w ith Lf. H ow ever 

in  their study, B -cell lines generally grew better than  T -cell lines, and
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they found that grow th o f CCRF-CEM  cells in  L f m edium  w as only 20% 

over that found  in  serum -containing m edium . T his figure  represents 

nearly the proliferative background o f these cells cultured in  the m edium  

alone, found in  the present study.

O n the  o ther hand , C C R F-C E M  cells u n lik e  th e ir norm al 

counterparts w ere found  to be able to p ro liferate  in  the presence of 

FeN TA . This could also be explained by the possib ility  that these cells 

m ay synthesis abundant am ounts o f their ow n T f (see below ) or m ore 

likely could be due to a low -affinity iron-uptake system  not involving T f 

w hich m ight operate in these cells as has been reported previously (Basset 

et al,, 1986).
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G E N E R A L  D IS C U S S IO N

T he w ork  repo rted  in  this thesis has a ttem pted  to define m ore 

closely  the ro le  o f iron in the proliferation o f lym phocytes in  vitro  w ith 

particu la r reference  to  the in tracellu lar b iochem ical events occurring 

fo llo w in g  its  u p tak e . Few  have  looked  a t iro n  m e tab o lism  in 

lym phocytes, despite its im portance in  understanding how  lym phocytes 

react to different degrees o f extracellular iron availability. This study has 

dem onstrated  that the availability  o f T f-bound iron  in  the extracellu lar 

m edium  and in  particular the degree o f T f saturation has a critical effect 

on lym phocyte proliferation in  response to m itogens. Iron  donated in 

th is fo rm  w as used  by  the cell and perm itted  an  increase  in  cellu lar 

m etabolism  as the largest proportion o f iron  donated to the cell in  this 

form  was found in  a subcellular fraction probably consisting  o f enzym es 

and haem -containing proteins. However, w hen cells w ere cultured in the 

presence o f  high concentrations o f iron (beyond the level that saturates all 

T f p resen t in  the m edium ) p ro life ra tion  w as in h ib ited  p robably  by 

affecting preferably  the helper subsets, suggesting that som e m echanism  

m ay exist fo r the uptake o f the unbound iron into these cells, resulting in 

tox ic  consequences. S ince cells cu ltu red  in  the  p resen ce  o f 100% 

sa tu ra ted  T f  ex h ib it op tim um  transfo rm ation , th is ru les out the 

p o ss ib ility  th a t the  in h ib ito ry  e ffec t o f  iron  seen  at those  h igh  

concentrations is a result o f excess accum ulation o f iron taken up from  

rapid ly  endocytosed  diferric T f as previously  suggested  (B rock 1981). 

O n the o ther hand, the effect o f non-T f bound iron in the form  o f FeNTA 

was clearly neutralized by the presence o f apoL f in the m edium .
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It is w ell know n that iron enhances the form ation o f toxic oxygen 

free radicals (B iem ond et al., 1988). The occurrence o f dam age due to 

oxygen free rad icals depends on the balance betw een  the  am ount o f 

rad icals w hich are form ed and the am ount o f p ro tec tion  at the sam e 

location . T he genera tion  o f  these  toxic oxygen  in te rm ed ia tes , in 

particular hydroxyl radicals responsible for the peroxidation o f m em brane 

lipids m ight decrease in  the presence o f iron binding pro teins because 

catalytically  active coordination sites o f the m etal dim inish. Plasm a T f 

has considerable reserves for coping w ith increasing am ounts o f incom ing 

iron, b u t these m ay be exceeded  in  certain  pa tho log ica l conditions. 

C ultures contain ing  the FeN T A  com plex in  the p resen t study perhaps 

p ro v id e  a sy stem  co m parab le  to  the  n o n -sp ec ific  iro n  found  in  

thalassaem ic sera. In  severe iron-overloaded haem ochrom atotic patients, 

T f is com pletely saturated and as a result an abnorm al serum  iron fraction 

appears as low  m olecu lar w eight iron, w hich  has been  reported  to be 

present, loosely bound to a variety o f serum  pro tein  such as album in or 

non-specifica lly  bound  to T f  itse lf  (rev iew ed by  H ershko  and  Peto, 

1987). Iron  in  the c ircu la tion  in  excess o f  that requ ired  to  saturate 

available T f  is associated w ith increased susceptibility to infection. This 

is no t only  due to  the fac t that such iron com plexes are m ore readily 

available to m icrobial-iron  scavenging m echanism s than  T f-bound iron 

(W einberg, 1978), bu t also to the possibility that this iron m ight interact 

w ith im m une cells and affect their function. Because lym phocytes appear 

to lack the buffering effect o f increased F t synthesis against the excessive 

entrance o f iron  in to  the cell as d iscussed  in  section  3 .4 .2 , they are 

particularly  vulnerable to iron-dependent oxidative injury. As m entioned 

above the p resence  o f  non-T f-bound iron, bu t no t iron-satu ra ted  Tf,
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tends to  decrease the response o f m ouse and h um an  lym phocytes to 

m itogens. S im ilarly  a decreased response o f lym phocytes to  PH A  and 

C on A  was reported in  thalassaem ia patients w ith very h igh  iron levels 

(M unn et al,, 1981; D w yer et al., 1987). L ym phocytes in  liver, a 

tissue recognised fo r its high iron content, have been reported to respond 

poorly  in  the m ixed lym phocyte reaction (M ukhopadhyay et al., 1978). 

This observation raises the possib ility  that in vivo  iron can also cause 

inhibition o f lym phocyte responses under norm al conditions. A ll this is 

in  ag reem ent w ith  the find ings o f K rau t and S agone (1981) w ho 

dem onstrated that oxidant injury to lym phocytes im pairs bo th  m em brane 

and cellular function such as their ability to form  E-rosettes and im paired 

cap form ation after binding o f Con A  as w ell as im paired  transform ation 

and cytotoxic capacity.

Iro n  load ing  can  p lace a lim it on the deg ree  o f  ac tiva tion  o f 

lym phocytes apparently  by reduction o f functional h e lper T  cells. The 

CD4+ subset p lays a crucial role in the in itial stages o f developm ent o f 

im m une responses. They are particularly  im portant in  regulating either 

directly or indirectly the functional activity o f various other im m une cells, 

in c lu d in g  B lym phocy tes, m ono cy tes /m acro p h ag es , cy to tox ic  T 

lym phocytes, and natural k iller cells. Therefore, the quantitative defect 

o f these vitally  im portant cells and the subsequent functional defect that 

this m ight cause in  specific im m une surveillance is o f  great physiological 

im portance and m ay lead to im m unosuppression. T hus, the decrease in 

the ratio  o f CD 4/CD 8 seen w hen high levels o f iron  w ere present in  the 

culture m edium  suggests that this could be a handicap to the infected host 

as the decrease in  proliferating cells, especially  h e lper cells, could not 

h e lp  to  com bat the e ffec t o f the increased  free  iro n  ava ilab le  to
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m icroorganism s. This is particularly relevant to iron overloaded patients 

in  w hom  in c re a sed  su scep tib ility  to in fec tio n  has b een  repo rted  

( id io p a th ic  h a e m o c h ro m a to s is  o r t r a n s fu s io n a l iro n -o v e r lo a d  

th a lassaem ia) (W einberg , 1978). As m any as 12% o f  id iopath ic  

haem ochrom ato tic  patients w ere reported to die w ith pneum onia, and 

severe b ac te ria l in fections are an im portant cause o f  m orb id ity  and 

m ortality  in  thalassaem ia m ajor (Hershko et al., 1988). C ell m ediated 

im m unity  appears to be particularly im paired in uraem ic subjects who 

have rece iv ed  p rev ious b lood  transfusions (W atson  et al., 1 9 7 9 ), 

A llo g ra ft su rv iv a l fo llow ing  renal tran sp lan ta tio n  is s ig n ifican tly  

p ro lo n g ed  in  such  subjects (V incent! et al., 1978; W atson  et al., 

1979). The degree o f im provem ent o f kidney survival has been directly 

related  to  num ber o f transfusions received (Opelz and Persijin , 1981), 

w hich  illu stra te s  the suppressed  status o f their im m une system  and 

su p p o rts  de S o u sa 's  v iew  th a t th is is due to  an  iro n -re la te d  

im m unosuppression  (de Sousa, 1983). H ow ever, o ther authors have 

reported  that this is not ju s t due to iron overload (W oodruff and van 

Rood, 1983).

T he findings reported in this study are in line w ith m any clinical 

investigations carried  out on iron-overload related disease. K apadia et al 

(1980) reported a decrease in num ber o f T -helper cells and concom itant 

increase  in  B -cells associated  w ith iron overload. A bnorm ally  low 

num bers and functionally  defective CD4+ cells have been  reported in 

thalassaem ia in term edia (G uglielm o et al., 1984), and in  thalassaem ia 

m ajor (G rady et al., 1985; D w yer et al., 1987; Pardalos et al., 1987). 

In beta-thalassaem ic children w ith very high transferrin  saturation, the
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ratio o f CD 4/CD 8 was low com pared to control, this decrease being due 

prim arily  to  a reduction  o f CD4+ cells and partly  to an increase o f the 

C D 8+ cells (Pardalos et al., 1987). S im ilar findings as fa r  as T -cell 

subpopulations are concerned have also been reported by  others in  beta- 

th a lassem ia  p a tien ts  (N eri et al., 1984, K essler et al., 1983). In 

thalassaem ia m ajo r the im paired production o f im m unoglobulins by B- 

cells w as attributed  to a defective T-helper cell population and no t to the 

n on-T -cell p o p u la tio n  (N ualart e t al., 1987). Iron overload  has also 

been reported  to influence the expansion of the C D 8+ cell population in  

vivo. In  patien ts w ith  thalassaem ia m ajor, w hether splenectom ized or 

not, an increase in the num bers o f CD8+ cells has been reported (Grady 

et al., 1987). O ther ind irect ev idence in  favou r o f iron  overload  

influencing expansion  o f the CD8+ cell population in vivo  com es from  

the observation  o f  a  negative correlation betw een the am ount o f  DFO  

received and  the num bers of CD8+ cells present in  thalassaem ic patients 

(D w yer et al., 1987).

The reduction  in the num ber o f cells that are proliferating m ay be 

due to e ith e r ce ll death  (cyto toxicity) as d iscussed  above o r to  an 

im pairm ent o f proliferative capacity (suppression), or a  com bination  o f 

both. The catalytic effect of ionic iron upon Hpid peroxidation could lead 

to alteration o f the cell m em brane and subsequently to cell death. It could 

also resu lt in  the  genera tion  o f suppressor fac to rs, w h ich  inh ib it 

lym phocyte pro liferation  and m ay trigger the generation o f antigen-non- 

specific suppressor cells (F ischer et al., 1980). C onversely, the free 

oxygen rad ical species generated by iron m ight in teract w ith  suppressor 

cells to produce inhibitory  factors. An exam ple w ould be the interaction 

o f these  h ig h ly  reac tive  species w ith arach idonic  acid  m etabo lism
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resu lting  in  p rostag landin  synthesis w hich is know n to m odify  T -cell 

functions and in particular to activate suppressor m echanism s (H em ler et 

al., 1979; D inare llo  et al., 1983). T his cou ld  exp la in  the slight 

increase in  the proportion o f the C D 8+ subset w hen cells w here exposed 

to non-T f bound iron in  the form  o f FeN TA , A ll this points to  specific 

resp o n ses o f  T -ce ll subsets to  changes in  the  ex tra ce llu la r  iron  

concentration. H ow ever the m echanism (s) w hereby iron  seems to have a 

selective influence on T-populations rem ain unclear.

In  inflam m atory diseases local accum ulation o f  iron occurs and m ay 

cause dam aging free radical reactions (B lake e t al., 1983) w hich m ay 

sim ilarly  affect the im m une system . Indeed uptake o f ionic iron as the 

chelate  F eN T A  by rabb it synovial fib rob lasts w as accom panied  by 

increased production o f latent collagenase and prostaglandin  G 2 (Okazaki 

et al., 1981). A ddition  o f D FO  prevents the w hole  process. O n the 

other hand, the com bination o f the decrease in T  helper/inducer cells and 

in c rease  in  the T  supp resso r/cy to tox ic  cells m ay  be a p ro tec tive  

m echanism  as part o f the norm al accelerated acute phase response may be 

avoided. H ow ever, prolonged depression of T  cell im m une response 

could be a  handicap  to the host against m icrobial invaders and m ay also 

be a m ajor factor in  the developm ent o f m alignancies as discussed above.

L f can  p reven t poten tially  toxic effects o f iro n  as a  result o f its 

ab ility  to  dam pen  tissue-dam ag ing  free  rad ic a l reac tions. W hen 

neutrophils phagocytose bacteria, particles, or im m une com plexes, they 

show  a rap id  burst o f  oxygen uptake associated w ith  the production of 

oxygen derived species such as superoxide O2 " and  hydrogen  peroxide 

H 2 O 2 (Babior, 1978). In  the presence of trace am ounts o f iron, O 2" and
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H 2 Q 2 react together to  form  the hydroxyl radical O H ‘ w hich  participates 

in  the bacterial killing  m echanism  but can also attack and  dam age alm ost 

a ll b io log ica l m olecu les and induce lip id  pero x id a tio n  (review ed by 

H alliw ell, 1989; H ershko, 1989). In  contrast to T f, L f can bind iron 

tightly  at acid  pH  values and thus can function  w ell in  tissue sites in 

w hich the pH  has been low ered by m icrobial and leucocytic m etabolism . 

W hen re leased  in to  the phagocytic  vacuole, L f can  be expected  to 

sequester any free iron  and thus lim it the dam age caused  to surrounding 

tissues. It m igh t therefo re  be possib le  th a t secre tio n  o f L f from  

neutrophils in  large am ounts during phagocytosis m igh t be a m echanism  

by w hich surrounding tissues are protected against oxidative injury. This 

view  is consistent w ith  the report that iron-free o r partially  saturated L f 

inh ib its  lip id  p e ro x id a tio n  (G utteridge  et al., 1981; S ib ille  et al., 

1987). This cou ld  be particularly  im portant during inflam m ation, since 

synovial flu id  from  patients w ith  inflam m atory disease contains free iron 

and  la rg e  num b ers  o f  p h ag o cy tic  ce lls  in filtra tin g  at the site  o f 

inflam m ation  (W ong e t al., 1981; G utteridge e t al., 1981), a t w hich 

radicals have been  im plicated in  the pathogenesis o f inflam m ation (Sacks 

et al., 1978). L f is found extracellularly at sites o f inflam m ation and Its 

leve ls  have  b e en  rep o rted  to  co rre la te  d irec tly  w ith  the  degree o f 

inflam m ation o f rheum atoid jo in ts (Bennett and Skosey, 1977). There is 

little  da ta  about iron  saturation  o f L f  in  neu troph il granules, bu t it is 

usually  considered  to  be  iron  free (van Snick  et al., 1974; B ullen , 

1981).

D uring an inflam m atory response there m ust be  a  balance betw een 

inducing  fac to rs such  as endo tox ins and o ther in fec tiv e  agents or
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com plem ent breakdow n products, w hich provide a positive  stim ulus to 

m ononuclear cells, and negative regulation factors. L f  could  be one of 

the latter. A  possible ex tracellu lar role could  be a ttribu ted  to  L f w hen 

neutrophils are activated, as it could provide a negative feedback control 

o f lym phocyte grow th possibly by depriving them  o f iron  in  the m edium , 

w hich is in  keeping w ith other evidence that L f inhibits T -cell function 

(Bagby e t al., 1981) and antibody production (D uncan and M cA rthur, 

1981). L f could  be particu larly  im portant in  neu tra liz ing  the harm ful 

effect o f local iron excess in inflam m ation as d iscussed above. On the 

other hand, iron overloaded patients could be facing a double problem ; 

iron  availab ility  to invading m icroorganism s from  one side, and the 

inefficiency o f the protective effect o f L f w hich under these conditions 

becam e saturated w ith iron. In  these cases, L f m ight obtain  iron from  

the iron rich  m ilieu, w hich contains fully saturated T f  and low  m olecular 

w eigh iron  com pounds. In addition pinocytosed T f  w hich in  contrast to 

L f m ight also release bound iron readily as the pH  drops to  levels easily 

achieved in  the phagocytic vacuole (Lestas, 1976) cou ld  also contribute 

to loading L f w ith  iron w ithin the phagocytic vacuole o f  neutrophils.

M any areas o f research  in this field  still n eed  to be  exam ined, 

including w hether L f is in ternalized and cycled through cells, and i f  so 

w hether it  cycles w ith T f o r by  a d ifferent route. It w ould  also be of 

in terest to  exam ine the effect o f L f on iron uptake by  cells. The recent 

finding  o f  F urm ansk i et a l (1989) o f  the ex istence  o f  severa l isoLfs 

e x ertin g  d iffe re n t fu n c tio n s  m ig h t open  an  e x c itin g  c h a p te r  in  

understanding the various and com plicated functions o f this protein  and 

could lead the way to m any interesting investigations.
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T he w ork  p resen ted  here  has tried  to  e stab lish  the e ffect of 

d ifferent form s and levels o f iron on m ouse and hum an cells in vitro. It 

w ould  be o f in terest to extend this w ork to an in vivo  system  using an 

experim ental anim al m odel which could probably provide a m ore complete 

p icture o f the effect o f different levels o f iron  on lym phocytes and the 

im m une system  as a  w hole, and also a m ore adequate explanation of 

these effects.

T he p resen t study show ed that the lym ph  node  m acrophages, 

w hich  increased  in  num ber upon  im m unological activa tion  have the 

capacity  to  synthesise Tf. This T f could augm ent the iron supply o f 

rapidly  pro liferating  lym phocytes. For locally-synthesised  T f to be o f 

benefit in  im m unological activation it w ould probably  need  to contain 

iron. A lthough hepatic  T f  is generally  thought to  be  synthesised and 

released  in  the iron-free form  (H em m apardh and M organ, 1974) it has 

been hypothesized that iron released from  m acrophages is transported by 

T f o f endogenous origin (H aurani and Balias, 1984), and it is therefore 

o f particu lar in terest that iron released by m acrophages is increased by 

treatm ent in  vivo  w ith  Cory neb acterium  p arvum  (A lvarez-H em andez et 

al., 1986) o r in vitro  w ith  y -IFN  (T aetle  an d  H o n ey se tt, 1988). 

T herefore in  the future it w ould be o f  prim e im portance to investigate 

w hether T f synthesised by m acrophages contains iron  and to establish 

w h e th e r T f  sy n th esised  by these  cells can  en h an ce  lym phocy te  

pro liferation  w hich w ould open an area o f possib le  im m unoregulatory 

activity. This w ould in turn fundam entally affect w ider issues such as the 

co n tro v e rs ia l question  o f w hether iron  defic ien cy  a ffec ts  im m une 

function, and  w hether iron  depletion is beneficial to im m une function 

and resistance to infection. Further studies are also necessary in order to
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exam ine the e ffect o f various agent that w ould affect T f synthesis by 

these cells. Conversely, CCRF-CEM , a T-leukaem ic cell line has been 

found to produce Tf. These findings support the hypothesis (Fem andez- 

Pol, 1983) that grow th m odulating factors like siderophore-like grow th 

factors and T f-hke activity synthesised and secreted by som e transform ed 

cells m ay enable tum our cells to take advantage o f  local conditions, and 

decrease  th e ir  dependence  on serum  factors (T f in  this case), and 

com pete w ith norm al cells fo r specific trace m etal ions. M oreover the 

findings o f th is study  suggests that these cells, unlike the ir norm al 

counterparts exhib it T f-independent iron transport w hich appears to be 

involved in the ability  o f these cells to take up iron in a variety o f form s 

and to use it e ffic ien tly  fo r cell growth. R ecently , S turrock, e t al., 

1990) have dem onstrated that uptake of non-T f bound iron by HeLa cells 

from  various chelates was Tf-independent. This iron w as used by the 

cells as m ost o f  it was recovered in haem  and Ft. T hese findings lend 

som e ind irec t support to  the frequent reports that pa tien ts w ith iron  

overload-re la ted  d iseases are vulnerable to developm ent o f  neoplasia  

(reviewed by W einberg, 1985), as non Tf-bound iron probably exists in 

these patients.
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