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The firet chapter of the precemt theaie glvee a 
detailed aoooimt of the aolar flare pheuamesimi from au 
ohservatioual ataudpoiut. Xn chapter 2 early maguetic 
theories of flare origiu are diacueaed.

The original %mrk iu the theais is contaiuad lu 
chapters 3 to 7, iu whioh two modes of field atmihllatiou 
appropriate to the ctirreut sheet mechanism originally 
proposed by Sweet are studied in quantitative detail.
The first of these modes Is referred to as Parker * s 
compressible mode $ but the treatment given in chapters 
k and 7 is an iudepeudeut one, developed prior to Parker’s 
publication, and differs considerably from Parker’s 
treatment in both its method and its conclusions. The 
second mod©, which la described In chapter 6$ arises from 
the fact that the treatment of chapter k indicates that- 
Parker’s mode is not definitive,

In chapters 8*#10 a detailed account and criticism 
is given of current flare meohaulsms, and in the final 
chapter some conclusions are stated.

Part of the work in this thesis was reported at the 
I,A*Uo Symposium Ho 22 on Solar and Stellar Magnetic 
Fields in 19^3> and will be published in the Proceedings 
of that Symposium#
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CHAPTEB I THE PHENOMENON

The purpose of this introductory chapter is to 
outline the observational features of solar flares*
This will provide a framework for the later discussion 
of flare theories* Observational investigations have 
followed two distinct lines of approach g on the one 
hand, statistical analyse© of extensive sample© of flare- 
patrol data have attempted to establish association© 
between the different processes involved in the complete 
flare phenomenon; on the other hand, much more detailed 
investigations have been made of particular events*
On account of the apparent individuality of solar flares 
much of the statistical work appears inconclusive. It 
is likely, therefore, that the determination of the 
physical processes involved will depend primarily on the 
greater detail provided by the second type of observation* 
For this reason, the present discussion will concentrate 
mainly on investigations that have been made of 
individual flares. To this extent the discussion will 
be incomplete; it will be further incomplete, since the 
volume of reported observational research enforces an 
eclectic approach* Nonetheless it is hoped to cover the 
observational features that have the most direct bearing 
on current flare theories*
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liika Gaul, the discussion is divided into three 
parts * In three sections, the optical, radio, and 
geophysical aspects of the phenomenon are separately 
discussed* The meaning of the first two of these 
headings is clear. Under the third heading it will be 
convenient to include, in addition to the discussion of 
ionospheric and geomagnetic disturbances, a description 
of other flare features which are not covered by the 
previous headings. Such features, which include the 
emission of solar ultraviolet, cosmic, and X-radiation, 
are important as the direct causes of the geophysical 
effects associated with flares*
(i) Optipal

Due to the world wide coverage of flare patrols, 
the majority of flare events are observed* During the 
X,G*T* the sun was under effective observation for more 
than 90^ of the time(^ , However, the data collected 
on the individual events observed is of a largely quali­
tative nature, and is frequently confined to an estimate 
of flare importance and duration*

The importance of a solar flare event is assigned 
primarily on the basis of flare area at the time of 
maximum intensity* The lower limit for a solar flare,



importance 1, is set at 100 millionths of the solar
(p\hemisphere^ • Flare-*like brightenings in llc< below

this limit are classified as subflares, though this
distinction is arbitrary. In fact, flare areas form
a continuous sequence, extending from the limit of
optical resolution up to areas of several thousand
millionths of the solar hemisphere* Before the
importance of a flare can be assigned, the measured
area must be corrected for fore-shortening* As a first
approximation a simple secant law gives good results,
for large flares at least, up to comparatively large

(3)central distances'^. This indicates that the extension 
in height of such flares is sma3,l in comparison with 
their horizontal dimensions* Flare importance is the 
most completely reported observational parameter, and 
often the only one in flare-patrol data. The measure 
of flare importance, whatever its value as a neat 
descriptive parameter for use in statistical class­
ification, can yield no physical insight into the flare 
process* For this, detailed spectroscopic investigation© 
of particular events are required* On the other hand, 
flare patrols that are photometrically standardized allow 
quantitative investigations of light-curves and of the 
development of flare areas'  ̂* Further the cinematograph



teoimlque, using high, time resolution, ha© made possible
the discovery of the fast, ahook*-̂ like phenomena,
dlscuesed by Athay and Moretom^ *

The aasoelation ,of solar flare© with aun-apots
has long been known*. In 1939 Giovanelli^ ̂  ̂ investigated
statiatioally the relationship of solar flare© to the
size, type, and developiiient of their associated spot
group* Hia résulta ■.showed that flare® most frequently
occur in the magnetically complex (3y and y type of spot
group# Further, he found tha|b flare occurrence is most
likely when the spot group is increasing in size#

it 7 ̂More recent].y, Howard' ' ̂ has pointed out that Giovanelli 
made no attempt to treat flares of different importance 
classes separately* Howard suggests that a decrease in 
size, or a rapid ageing of the spot group@ may be a 
characteristic ©f major cosmic ray flares, a character­
istic not shared by the more normal flare of leaser 
importance# While observational eyidence in support 
of Howard*© contention la, of necessity, slight, meaaure-'i
ment of the sun-spot areas for the few coemic-ray flares, 
for which Mount Wilson direct photographs were available, 
did -Show a consistent decrease*

Two im.portant features of solar flare© that must 
be accounted for in a complete theory are the rate of



development and the duration of the event# The two 
time-aca3.ee are quite different# The flare first
appears as a slow hrightemiug, which is followed by the
very sharp rise of the flash phase » Elliaon estimated.
the time-eoale of t.he flash phase as no more than two

(f 8 ̂to three minutes' The Hoc central Imtemslty and lino
width increase together at this stage, reaching maximum 
values of tip to three times the eontimuum, and up to 
20 A respeetivelyo After these maximum values have been 
attained, however $ the line width decreases more rapidly 
than the central intensity (Ellison^Swith^^^^)#
The development curve of Hoc line width is, therefore,
distinctly more peaked than that for the central intensity

{1 \of the line# Indeed Ellison' “  ̂has remarked that the 
duration of maximum line width ia probably only momentary, 
and is certainly less than 30 seconds; he laid great 
stress on this flash phase and considered it quite funda­
mental to the whole flare process#

Am extensive programme of flare photometry ha© been 
carried out by Dodson, Hedeman, and MeMatĥ ^̂ *̂  at the 
MoMath-lhilbert Observatory# Xn the course of this 
programme photometric light curves for lp4 flares and 
subflares were obtained# From am examination of these, 
it was claimed that flares exhibit three distinct 
preferred rates of rise, corresponding to an increase in
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hrlghtmeea of one magnitude in 4-5 minutes, in 10## 15 
minutes, and la 30-45 minutea respeetivoly# The first 
and fastest of these rates of rise was found to to© much 
the most frequent * This rate of rise o3,early 
eorresponds to the time-scale descritoeii toy #13.Ison as 
the flash phase# Nonetheless, Dodson et al found that 
some very large and bright flares reached .their maximum 
•..intensity at the second and considerably slower rate#
The third and slowest rate, however, was found to toe 
relatively rare* . While Dodson’s results are not 
incompatible with the very short rise .time found by 
Ellison, it is perhaps important to realise the existence 
of flares tfhose rlso to maximum is not particularly 
catastrophic.

The total duration of a flare is determined mainly 
toy the post-maximum decay* In the same invostigatioa, 
Dodson et al found a single preferred rate of decay, of 
one magnitude in a period of 1§- to 2 hours, Many flares, 
however, decay more rapidly* In all cases, however, the 
decay time of a flare is far greater than the time 
required to reach maximum intensity# Due to these 
slower rates of decay, the total duration of a flare can 
to© many hours * The duration is found to increase with 
flare-area and importance class* Xu particular, a large 
3̂' oosmic-X'ay flare cam have a duration of up to eight



h o u r s f r o m  am examinâticm of 4l class 3 
flares observed during the X.0.Y*, finds a mman duration 
of nearly 2-| hours, though the distribution is notioeably 
skew* Severny and Shapeshnikova' , however, have
claimed that flare durations as normally reported are 
subject to considerable observational uncertainty* They 
redefined the duration of a flare as the time interval 
during which the flare was at 50^ of its maximum intensity# 
With this revised definition they claim to have found a 
closer correlation between flare-area and duration*
Further the durations obtained are systematically reduced# 
Their sample of data, however, was of necessity small, 
since they had only 22 flares for which the necessary 
light curves were available# In Smith’s complete sample 
of I*G#y# flares, on the other hand, more than 4000 events 
were covered# It is clear that a detailed and extensive 
analysis of flare-patrol data of photometrically standard­
ized films will be necessary to determine any close 
relationship between flare-area and life-time*

The determination of the physical conditions within 
the flare region itself requires a detailed spectroscopic 
investigation of individual events * Flare emission 
spectra can be studied in the Balmer lines of hydrogen, 
the H- and K-line© of ionized calcium, the helium line, 
and in addition a large number of metal lines, which can



also appear ia emiseioit* ■ Most of the effort* however, 
has been ooneentrated on IW.» and much of tli© present 
diecusaion ooaoerps tirls particular line#

At the maximum phae© of a disc, flare the I-W 
profile Is usually asymmetrical, a fact first discovered 
by W.aldmel.er^# The red emission wing la - normally 
the stronger and the more extended# This asymmetry has 
been interpreted as a diffuse absorption feature due to 
a cloud of hyd rogen atoms ejected from the flare region 

t k a h n ^ ^  « A separate Investigation was 
undertaken by B v © s t k a ^ c a m e  to aim 1 %ar* 
though not identical* conclusions# Svcetka. found that
although at the time of maximum Intensity the asymmetry 
is usually positive* as found toy Waldmeier and Ellison, 
in the post-maximum period a negative asymmetry can 
develop. This Is most naturally interpreted as feeing 
due to the atosorbing material falling back into the flare 
region* Svestica found that the velooltiea involved were 
certainly less than 300 km#/sec* It must toe stressed 
that large velocities do not apply to the flare region 
itself, A disc flare shows virtually no transverse 
motion* and the centre of the B<x profile Is not 
significantly shifted* Thus the velocity of the 
absorbing cloud is indicated toy an asymmetry, and not toy 
a shift of the line centre * The atoeorptlon features



cor res ponding to aurgea and siiaiXar struoture© wliich 
accompany flares* on the other hand, often show up with 
large Doppler shifts • The Dop%)ler shifts of the flare 
emission region itself, however, are small, and the 
transverse motions are only of the order of two kilo- 
sîietrea per aeoond^^^^# .

The inter%)r0tation of the large widths of Hoc 
emission oba©rved in solar flares is at present 
uncertain# An explanation of thermal broadening must 
toe rejected, since it would require a temperature of 
the order of 10^ ^ K* Ellison and Hoyl©^^^^, therefore 
suggested that the widths are due to Stark broadening*
On the toasi© of a study of reported widths (often 
visually estimated) of 6lO flares, Goldberg, Dodson, and 
M i l l i e r ^ argued that the observed line widths could toe 
interpreted in terms of radiation damping* Conclusions 
based on such a crude statistical sample must toe 
uncertain, ho%fever; serious attempts at the interpretation 
of flare emission broadening must toe founded on profile 
determinations in well-observed events* Some invest­
igations along these lines will now toe described in some 
detail *

It is customary to proceed as followss lot x(x) 
too the observed intensity, and A) be the intensity of
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the photosphere# Them the emergent intensity oan be 
written as

1 ( X) . I.(A) (l-l)
where r is the total optical thickness of the flare 
region, and 8 is a mean source funetiom, S is given by

S = 7-— ^  Çe-̂ 'clr-' (1-2)
In general both r and S are functions of A # Most 
investigations have been concerned with the interpret­
ation of the far wings of the profile# ForT«i it ia 
assumed that B is independent of wavelength# Equation 
(l-l) can then be reduced to the form

T- = ~ (1-3)S I 0
where we are justified (in the wings) in replacing 
I^(X) by a constant I , equal to the intensity of the 
photospheric continuum# Under these assumptions it is 
seen that x is proportional to (X(X) - Z^) which is a 
directly observed quantity# For pure thermal broadening 
log will vary linearly with (ax)^, where /-̂X is the 
distance from the line centre# For broadening due to 
radiation damping or the Stark effect, on the other 
hand, log -r will vary linearly with log AX with slopes 
equal to -a and -2*5 respectively* The simplifying 
assumptions involved in equation (1-3)e therefore, allow
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a ready comparison of such physical intorprotatiosi© of 
the line width® with the observed profiles# In general 
the resulting fit is either unsatisfactory or mnhà^guouB •

Jefferies, Smith and made a detailed
investigation of the flare of B opt ember IB, 1.957 •

(24)Using the Universal spectrograph at Sacramento Peak " ,
they were able to cover the spectral region 3900-7200 A 
in a single exposure* Simultanaou® profiles of different 
limeS' were thus obtaimed. Jefferies and hi®'colleagues 
investigated the profile® of the first four lines of the 
Balmer series and of those helium lines that appeared in 
emission. Their findings were inconclusive * The 
Balmer profiles were not inconsistent with an inter­
pretation of Stark broadening# ■ However, an equally 
good fit corresponded to a linear relationship between 
logr and AX# This was interx>reted as widening due to 
macroscopic motions within the flare region with a non- 
Maxwellian velocity distribution of the form

H^) - 8 tr (1-4)
Here v is a characteristic velocity* The values of v_0 u
found for the Balmer lines were of the order of 300 
kiîï./ sec#

From a study of three flares Kazachevskaya and 
S e v e r n y ^ found that, except for the central cores,
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the profiles of the first five Balmer limes caul cl toe 
satiafactoriiy explatoed om a Stark liypotlioeis# Im a 
series of later ' papers, ■ however, this estimate-was 
revised to some extent#

Severmy Imd reported extensive spoetroseopic 
stmdles of fime-strueture , which he
referred to as comtimuoua grains .and momstaches * The 
size of these features is'of the order of 0*5 , so they 
earn only toe-■studied under conditions of excellent seeing < 
MoMath, Mohier and D o d s o n ^ h a v e  pointed out that the 
moustaches are- the-.same features as ' were studied toy 
Ellermam^^ called them '’'solar hydrogen toomtos’.
These inveetigators further shots?ed that the- moustaches 
are the spectrescopie equivalent of the ’petits points’ 
studied toy with a wide##toamd Hc< filter (> 1 A) *
The moustaches are simply very narrow emission wings, 
extending up to' 15 A on ei-tlier side of lines of the 
Balmer s-eries and some other Fraunhofer lines* As they 
are optically thin, comparatively low-level phenomena, 
they fade out near the line centre * According to 
Sevorny^^'^^ g their violet wings are in general brighter 
and broader than their rod wings ; occasionally only one 
wing of the moustache appears# Since the mcustachoa 
have the a-am© exteneion on metal lines {Qa%%& Mg, and



13

aoiîie F© limes) aa ob the Balmer aeries, Severny conclucies 
that the broadening must he due to maeresoepic motiena 
(turhulemee),

111 another p a p e r S e v e r n y  reported that, j
large flarea, under conditions of very good seeing, the
wide emission wings could he resolved into a cluster of

/ 31 )moustaches# In a later publication' * Severny suggests 
that the asymmetry of flare ©mission lines, originally 
reported by Blliaon^^"^^, Eiay be connected with the 
appearance of one-sided moustaches, which will in general 
be unresolved# It seems unlikely, however, that all flare 
asymmetry can be explained in this way# For Severny’s 
own shows that the asymmetry in the moustaches
should be in a sense opposite to that discussed by Ellison.

{ 311In the same paper'  ̂Severny has remarked that the 
position of the central core of the line emission does not 
always coincide with that of the far wings* This suggests 
different levels, even regions, of origin# Severny 
argued, therefore, that the profiles for flares of class 2 
or less, which in general do not possess very wide emission 
wings, are satisfactorily accounted for on a Stark 
hypothesia^^*^^ ♦ This same explanation is applied to the 
more central parts of the profiles occurx'ing in larger 
flares# ■ On the other hand, when equation (1-3) ia
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applied to the far wings of the emission profiles of 
these latter flares» the meat eatiafactory agreement is 
fourni by aaaumiiig a linear relationship between log r 
mmd (A\) * The far emission wings are interpreted, 
therefore » in teiras of Doppler broadening due to a 
Maxwellian distribution of velocities* The velocities 
are found to be of the order of Bo - 250 to*/sec*
The same velocities apply throughout the Balmer series* 
Although the velocity distribution is apparently 
Maxwellian, the Doppler broadening cannot be thermal in 
origin, but rather is due to macrosoopio motions*
This is shown by the fact that the widths of the H- and 
K-lineG of GaXX yield velocities of the same order as 
found for the Balmer ©cries# Xn this way, Severny 
finds a place for both the Stark effect and macroscopic 
motions in M b  interpretation of flare spectra*

A Stark interpretation can be tested by comparing 
the relative widths of lines of the Balmer series* 
Suemoto and have investigated two disc flares
in this way* In their investigation it was necessary 
to study higher members of the Balmer series, for which 
the effects of self-absorption in the line centre were 
not serious* Suemoto and Eiei found that, whereas the 
half-widths of lines in the series decreased from Hix
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down to thereafter they inoreaaed at a slew rate up
to which v;aa the last lime observed* This gradual
increase in width could toe satiafaotorily explained on 
the basis 'of the Stark offoot, ainee the Stark splitting 
of the energy levels increases with increasing quantum 
number* A similar investigation has been carried out 
toy Hirayama^^*^^, who obtained ©saentially the same 
results from a study of two limb flares*.

From thé discussion' above,""it is clear'that no 
single interpretation of flare emission profile© is 
entirely aatisfactory* Nonetheless, under differing 
circumstances, a place can toe found for interpretations 
in terms of both the Stark effect and macroscopic 
motion©« S e v e r n y h a s  put forwarcl an interesting 
suggestion that the shape of the lino profile in a 
flare and the predominant broadening mechanism depend 
critically on the orientation of the magnetic field in 
the flare region to the line of sight, Severny has 
argued that the magnetic pinch effect is the mechanism 
responsible'for flare generation, and that material 
will too ejected at high velocity along the magnetic 
field lines * If, then, the flare magnetic field 
configuration ia such that the line of sight is along 
the axis of the pinch then the macroscopic motions
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should be primarily responsible for the width of the 
emission line. If, however, the line of sight is 
across this axis, then the profile will be predom­
inantly Stark-broadened# Support was found for this 
interpretation in laboratory experiments at the Cx*imean 
Astrophysical Observatory# This suggestion of
Severny’s forms at present the only attempt to 
synthesize otherwise conflicting interpretations of 
flare emission profiles#

Once the bpqàdening mechanism has been determined, 
an estimate can be mad© of the physicc^l condition© 
within the flare# This is done by assigning a value to 
the mean source function S, defined in equation (I-2 ),
It is not intended to discuss these estimates in detail# 
They have been collected in tabular form by Smith and 
Smith The estimates of different investigators
vary considerably; typical values are given in equation
(1-5)5

H ::= 10^^ cm*"̂0
Ng » 10^^ ora"̂  (1-3)
T = 1 to 1.3 . 10 ° K.©

In these equations and T^ denote the electron
density, the number of hydrogen atoms per unit cross- 
section in the second quantum state, and the electron 
temperature respectively#
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Til© total energy involved in a flare event has 
been estimated in a number of ways* From a sequence 
of E(X speotroheliograms, Billinga and Roberts 
determined the isophotes of central Mc< emission for a 
class 2 flare* Estimating the effective lime-width, 
it was thorn possible to determ&me the total energy of 
the line emission* A smximmm rate of emission of 
10^^ ergs/see* was found# The total energy appearing 
in Bex was estimated at 3 * 10^^ wga* These estimates 
appear larger than those of moat other investigators#
The reason is that the photometric method systematically 
includes faint outlying areas that the visual observer 
would describe as bright plage #

Earlier Ellison^had investigated the Bex 
profiles of five flares, mostly of iiBportance 3 or 3^ # 
The equivalent widths of H<x were measured in a central 
position of each flare ; the total flare area was 
measured separately * Then# cm the assumption that the 
line profile was the same throughout the flare area# the
total rate of omission was calculated# The rates

Pfi P*7obtained varied from 1 #7 # 10"̂  to 1*1 • 10 crga/aec#
Ellison remarked that# on account of the assumptions
involved# those values should be considered as upper
limits # More recently Ellison^ has used these
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déterminations of émission to estimate the total flare 
energy* He ineluded in hia estimate n#t only the 
emission in Hoc and the other Balmer lines # hut also the
emission in linos of other elements in the visible
speotruiu These lines have h m m  catalogued by Severnyi 
StesheB'Ico, and ïCliokiovâ *̂̂  ̂ for the flare of August 17, 
1959-» They include over 400 metal lines, notably Fe 
and Fe^% which appear faintly in emission or have their 
absorption profiles partly filled la# Ellison’s final 
estimate for the total energy radiated in visible line 
emission in a 3"̂ flare was 5 • 10^^ ergs,

P a r k e r ^ h a s  given estimates for the total 
radiation of the 3̂  flare of February 23, 1956* Parker 
based his estimates on a report of this flare by Notuki*, 
llataaaka and Umno( , who found a central intensity in
H(?< of about three times the continuum# and a maximum
width of mere thorn IB A, the extent of the line shifter
of their speotrohelioscope.* From this data Parker 
estimates a rate of emission at flare maximum of 
6 • 10^^ ergs/s0c» which seems extraordinarily high.
This flare #hB also observed in white light# mid in the 
same paper Parker estimated the contribution of the flare 
continuum# For the total visible energy radiated by this

Aquite exceptional flare# Parker obtained a value of 2, 10 
ergs.
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There is gemeral them g that the eiter^
expended ia a flare is of the oẑ der of 10^^ er^e &
The volume of even the largest flares does not greatly 
ezeeed 10^^ If, therefore » the energy of the
artiptvloh la stored In sitiii am energy demaity of 10^ 
ergs is- required. It lias frequently been pointed
ont, o,.g, @ .Gold. and that snoh bu
energy density is far in emoesa of the .thermal energy 
clenalty of the -ohroînoaphere, whicih is no more than, a 
few. ergs per .em * Indeed the total thermal energy 
content of the whole ohromosphere and corona would he 
insufficient to supply an event as large.as that of 
Fehruary &3, 1956* If the .energy of the flare is 
stored in situ - and, since no inflow of material is 
ohserved, and -no change has ever heen reported in the 
photosphere below the flare, this is a reasonable 
assumption the only possible storage methanism Is the 
chromo spheric magnetic field. The energy density 
derived above would require a magnetic field of a few 
hundred gauss. • The energy density that has been 
derived here is probably a lowez* limit, since ̂ the energy 
may be dissipated in a smaller volume than we have 
allowed-# There is some indication of this in the fact 
that in its initial stages the flare appears to•have a
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filamentary struotwe, which later diffuses in the 
p e s t phase# Further evidence of fine , 
structure is provided by Severny'* e epeetrosoopio 
obeervatlene to which reference has already been 

» and by the work of Suemoto and 
If a flare ie to be interpreted as a dissipation 

of magnetic energy, it is clear that observâtlone of 
magnetic field changes in flare regions will bo of 
crucial importance.-» Sovemy^^^^ has reported that

flares tend first to appear at, *neutral points* 
of the magnetic field; (ii) a considerable field 
gradient at the neutral point Is necessary for the 
appearance of a flare; (ill) tlie magnetic field ia 
,considerably altered during the flare, which leads to 
a redistribution and, In some oases, to almost a 
destruction of the field near the neutral point *
These ooncluslon.a have been severely orltlcised, 
mainly due to Severny*$ identification of the neutral 
points* The obaervationB were made in the magnet»^ 
ically sensitive line A4B86 Fe# . The measurements refer 
only to the field * s longitudinal component * Severny 
p3.otted i a Oganes contours of this long! tudinal field; 
and from the shape of these contours he designated 
several points on the contour of ssero longitudinal



21

field às *neutral points*» While it is trivially 
obvious that any real neutzal point must lie on this 
particular contour, it is difficult to see how such 
neutral points, if they exist, can he identified from 
loaowledge of a single component of the field. Xn spite 
of this objection, Severny*s observations certainly 
suggest that flares begin on the apparent neutral line 
(of longitudinal field), and that flares zesult in a 
simplification of the magnetic field #

Severny*s claims have not been entirely confirjaed
Ihl)by other observers* Brussek'  ̂ reported that flares 

do indeed tend to start near the apparent neutral lines. 
He suggested, however, that since they fz'oquently recur 
in the same location, it is unlikely that the field can 
be significantly altered by the eruption* Howard and 
B a b c o c k ^ m a d e  scans of a flare region with the Mount 
Wilson magnetograph during the progress of a 3^ cosmic** 
ray flare. They found that the magnetic field pattern 
remained essentially unchanged throughout the entire 
development of the flare* Similar observations were 
undertaken by Mi chard, Mouradain, and who
measured the magnetic field during the course of a 
flare of importance 1^* Though changes in the magnetic 
field were observed, they did not coincide with the
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ooourrenee of the flare and seemed uticonneeted with it.
on the other hand, reported a sharp 

change in his meaaufement of the magnetic field during 
a 1*̂* flare. Coincident with the flare * s rise to peak 
intensity, there was a sharp decrease in field strength 
of l6$-* This was‘followed by an even sharper recovery 
in the flare*'® post#"maximum phase*

On the question of whether magnetic field changes 
are observed which can he connected with flares, the
evidence is, therefore, conflicting* Part of this

\conflict may have been resolved by recent work of Howard 
and Soverny^^^^K Most of the oh# ez vat ions described 
in the last two paragraphs refer to close examinations 
of the magnetic field at the site of the flare*s 
inception* Howard and Severny, on the other hand, 
examined scans of the magnetic field of the whole of 
the associated spot group * These scans were token at 
the Orimean Astrophysical 'Observatory and covered a 
period of four days, ■ The flare in question was the 
3"̂" cosmic^ray flare of July 16, 1959, the flare studied 
by Howard and Baboock^^^^. But, whereas the Mount 
Wilson scans were limited to measurements of fields less 
than kù gauss, the Crimean investigation had no slich 
restz^iotion and outlined more completely the general
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structure of the a un#* spot field* The Crimean worker a 
were unable to aean the sum #t the actual time of the
flare, via. H#T*, July 1 6 to 0 0 # 3 0  U*T., July 1 7 #
However, by comparing two aeana, taken at timea 
straddling the flare, Howard and Severny determined 
that eoiisiclarabie changes in the atrtiotur© and gradient* 
of the spot group*© mrngmetio field took place between 
1 5 . 0 0 H.T*, July 1 6 and 0 6 . 0 0 H.T., July 1?. It was 
estimated that between these timea there was a decrease
in energy of nearly h . 1 0 ^^ ergs in the langitndiiml
field*

it must fee emphasised that obeervation* of solar 
magnetic fields are made fey measuring the Keeman effect 
in loW"*level lines* The fields measured refer, therefore, 
to photoapherie levels^ mtû never to flare altitudes. 
Magnetic changea taking place in the flare region itself 
and, therefore, at ohromoapherio levels, are quite 
unobservable * Further the changes observed in the 
magnetic field at the position on the solar disc where 
the flare ooonra may be q%%it@ unooimeeted with the flare 
Itself. If, however, a flare results from a dissipation 
of magnetic energy, them this energy must be drawn from 
the magnetic field of the aaeociated spot group, Xt is 
to be expected# therefore, that observations of the type
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'by 'Howard and Sevemy should still reveal a 
reduotlam la the total magnotlo- energy of the spot group 
Im ooKmeetlorn'with flares. Clearly, however, 
unequlvoeal Identification of euoh large-©oale changea 
with particular flares earn only be expected in the ease 
of very Ihrge events, like that of July Id, 1959*
The oonneetion of ' the field changes, obeez^ved in 
Severny -̂8'.early work, with .particular flares is, then, 
pre.bably open to éom$ doubt $ On the other hand, the 
8 0 0 end main result of SeVerny * a original wozic has been 
generally confirmed, namely the first appearance of 
flares on the .longitudinal neutral line# 'This result 
coincides well with an oWervation of Ellison at 
that.in a complex aunapot group flares tend to align 
themaeivea along the dividing line of epota of opposite 
polarity.

The only obaervationa of transverse magnetic 
fields 0B the sun have been underta%%mi much more recently 
by 8everny(^^^) * Though such observations are still to 
some extent exploratory, they have already yielded 
several interesting résulta.- The configurations of the 
transverse fields of spot «^groups are found to be of a 
very complicated form and, in general, cannot be under*" 
stood in simple dipole terms, The most important of
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the peoullarltiea of the field are the points at which 
the gradients of the field are so sharp that Sevemy 
refers to a ♦coexistence* of fields in different 
directions at those points. Severny reports that it 
is at these points, rather than at the neutral points 
of the tz'ansvez’se field, that flares seem to occur. 
However, once again it must he rememherod that these 
observâtions refer to fields at photospheric levels, 
and it can only he deduced that flares tend to start at 
such points of magnetic complication if it is assumed that 
the photospheric field gives a real indication of the form 
of the field in the chromosphere# finally, it may foe of 
interest to note that Oopasuk et have found that
it is posaifole to predict the occurrence of flares from 
the form of the magnetic field, taking account of both 
the transverse and the longitudinal measurements. Xn 
ooneluaion, it appears that a correlation of flares with 
certain field configurations, judged subjectively, is 
eetafolished, but that quantitative changes in the field 
energy, in conjunction with flarea, can only foe deter-* 
mined in exceptional cases.

At present chzomesphez*ic fields, and, therefore, 
fields in the actual flaze regions cannot readily foe 
measured. Zirin and Sevezmy^^^^ have/ however,
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suocoeded in making longitudinal measurements in E p #

Their invoetigatiou© refer mainly to prominenoee,
Àm observation by Ellison, MoICeium and Reid^^^^ may 
give an iiid'ioatiosi &f magmotio field changea in the 
ohromosphere ooimoideut 'with great flares. These
workers reported two new features ; studying Cape 
heliograph films for the olaa© 3 flare of April 1, i960, 
they found that shortly after flare maximum an •expanding 
halo* seemed to develop round the flare filaments#
This feature was later named the flare nimbus # Within
the nimbus the ©hro:mospherio- striation pattern became 
blurred mid was- meplaced by the coaẑ se mottling typical 
of the quiet chromeaphere # Conditions of good seeing 
are required to observe the striation pattern the 
variations in this pattern are, therefore, loss frequently 
observed than the associated flare nimbus# hater a 
number of observations of these two features were 
zeported by the Dunsink workers(51* 30,00)  ̂ und by Smith

Iand Benton at Saos-waento Peak# The latter conaidered 
the two feature# closely connected #%d refer to an 
• obscur at ion of the striation pattern'* • They interpreted 
the phenomenon ae the result of mi expanding cloud of 
absorbing material ejected by the flare* They pointed 
to evidence for such clouds in the asymiiietry of the B<x
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profile, already disouBsod on page 8,
The two featurea described above have been 

observed only in conjunction with large flare events, 
usually accompanied by Typo IV radio bursts and cosmic 
ray effects* hike the Sacramento Peak workers, Ellison 
McKenna and at first interpreted the nimbus as
a uniform absorption cloud, which partially obscured the 
striation pattern below* They suggested, however, that 
the nimbus was not due to an expanding cloud of hydrogen 
atoms, since this could bo expected to be conspicuous due 
to Doppler shifts and irregularities in density, which 
were not observed# Instead they proposed that the cloud 
was the optical counterpart of the relativistio electrons, 
proposed by Boischot and Benisse^^^**^, to explain the Type 
XV emission* Xt was suggested that the increased 
absorption was due to the excitation of neutral hydrogen 
by collisions with the relativistic electrons at the 
chromosphoz'ic reflection points of the magnetic field.
The mechanism was not examined in any detail.

In a later paper, however, Bllison^^^^ remarked 
that subsequent photometric work by Hold had shown that 
the main effect responsible for the nimbus was a 
deduction in the brighter elements of the striation 
pattern, rather than any uniform absorption. Work by
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Stepanov^^^^ has indicated that weak chromcapherie 
magnetic fields are responsible for the alignment and 
increased luminosity of the Up< mottling that makes up 
the striation pattern. Ellison, therefore, concluded 
that it ia the destruction of these magnetic fields that 
results in the disappearance of the striation pattern and 
the associated phenomenon of the flare nimbus.

These observations of changes in the chrome spheric 
striation pattern form the only indication of magnetic 
field changes in the chromosphere in association with 
flares. This evidence is at host circumatantial.
Even so, these observations do indicate important 
chromosphez’ic affoota. Many other atmospheric phenomena 
can accompany solar flares, notably surges, prominence 
activations, and loop prominences. All these features 
are quite distinct from the chromespheric flare itself, 
and a detailed discussion is not attempted here*
On the disc they appear in absorption, frequently with 
large Doppler shifts, which are noticeably absent in the 
emission of the flare region itself. On the whole, 
however, surges and related phenomena are more easily 
studied at the limb, where they appear in emission.
Indeed, at the limb, it is possible to mistake such 
forms of flare associated activity with the flare
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emission itself* For this reason, in the provioua 
disouseion 'attention has been confined in 'the main to 
disc-«flare 8,' since in-euch an event the recognition of 
a. flare is tinambignoua-. -

Tile present •diseusaion of the optical phenomenon 
will be Completed with an account of what have become 
known aa * homologous fiaree* * It has long been 
%*ecogni aed that - cez-̂ taim flares in the ©am© active region ' 
tend-to show Cleae similarities# ' For example., Dodson 
and found 'that over a period of -a few 'days
"flares» have 'appeaẑ ed not in approximately, but 
apparently in exactly ■the same small' pox*tion of the 
solar disk" * ' Ellison, HcEenna and found three
flares that not only oecwrad in the same position 
relative' to their smispot group* but further had similar 
shapes and similar forms of associated activity* For
example, a region' of plage, which had mo visible- 
connection with the flare* being 20^ distant in longitude, 
brightened ainmltaneously and in phase with the flare on 
all three occasions'* Hansen and Gordon^Investigated 
five limb events of October l3, 1 9#8 * There must be 
some doubt as to whether these features, which were - 
photographed on flare patrol films, were themselves 
flares m? fonms of associated activity# Certainly,
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however, the feature a were eoimected with flares# slnco 
each was aeseeiated with SOMA* , Those five limb events 
all shewed very etrlklmg similarity of form and develop­
ment, and are probably at present the beat example of 
homologous flare activity*

The ■ phenomenon of homologous flares i.s , an 
important one and should be eonaidered in flare theories. 
As P a r k e r ^ h a s -  put it, the observations suggest that 
"suoeeeding flares follow some blueprint", aharaoteristio 
of - their site, and that this blueprint is not destroyed 
by individual events*

(ii) Radio '
In the discussion up to this point it has been 

tacitly assumed that the Hf< observations reveal a 
fundamental aspect of the flare process, and that the 
seat of the eruption lies in the chromosphere, within 
the area of Hp<r emission# Other observational methods, 
however, reveal different aspects of the flare phenomenon, 
which may be no less fundamental# For example, the radio 
observations, which refez* mainly to coronal levels, 
provide a different insight into the flare sequence, 
Further they present some evidence, admittedly slight, 
that the seat of the flare instability is situated not 
in the chromosphere, but at some coronal height#
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A dlsousBlon of the z’adio data and its interpretation 
is now given.

Solar radio foursts have been more extensively 
studied at metro wavelengths than in the decimetre and 
microwave region. At the longer wavelength®# 
considerable insight into the physical processes involved 
haa been obtained by the technique of dynamic spectro­
scopy developed by Wild and his associates (Wild and 
McCready^^^^). Metre-wave bursts have, by this 
technique, been successfully classified into five 
distinct spectral types# Of these, Type X has only a 
very loose association with the flare process and need 
be discussed no further# All the remaining types, 
however, are closely connected with solar flares#

Type XXX (fast-drift bursts) are much the most 
common of flare-associated radio bursts. They are 
chaz'actezd^ed by an instantaneous band-width of about 
30 Mc/s which drifts rapidly from high to low 
frequencies# Xu view of the comparatively narrow 
bandwidth and the high frequency drift, it is generally 
accepted that Type XXX bursts originate in plasma 
oscillations at high coronal levels, excited by an 
outward moving disturbance# This interpretation ha® 
been confirmed by Wild, Sheridan and Meylan^^^^.
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Their observations of Type III bursts associated with 
lieb flares were made with a swept-freqqency inter- 
feroiîîOter# A systematic variation in the position of 
the source with frequency was found. ■“ Both the plasma
hypothesis and these interferometrio raeaauremeants 
indicate outward velocities of up to half the velocity 
of light. The plasma oscillâtioms are believed, 
therefore, to toe excited toy relativistic electroms 
ejected from the flare region.

Type 111 bursts tend to occur in groups with 
quasi-periodic spacing," the whole event lasting a few 
minutes. Giovauelll( has shown that such groups of 
Type 111 bursts occur simultaneously with the H<x flash 
phase. The complete radio event is conveniently 
divided into two distinct phases. The first radio 
phase (phase l) is coincident with the flash phase and 
consists at metre wavelengths of a group of Type 111 
bursts, follo’wod in the most complete form of the event 
toy Type V continuum. This Type V burst is best undor- 
atood as synchrotron radiation emitted toy the electrons 
that are responsible for the Type 111 plasma radiation. 
The later phase of the radio flare (phase 2 in the 
present nomenclature) is only observed in the larger 
events. In the case of small flares (class 1, i*),
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phase 1, deseribedi above, represents the complete radio 
acsoompariiment of the ez*uption. When tooth phases are 
present there ia generally a delay of some ten minutes 
separating the two phases. Phase 2 begins with a Type 
XX burst of about 13 minutes duration. Xn many cases 
this is the complète second phase. More rarely the 
Type XX burst is followed by an intense burst of Type XV 
continuum *

The Type XI burst has charactezistically a very 
narrow bandwidth, often only a few Mo/s. Its spectrum 
shews a ©low systematic drift, of the order of 1 Mc/s 
per second, from high to low fz*equencies. Further its 
spectral characteristics are frequently reflected in the 
emission of the second harmonic. The narrow bandwidth 
suggests that plasma radiation i's being observed, and 
the frequency drift must be interpreted as an outward 
movement of the initiating disturbance. This inter­
pretation has been verified by Weiss^^^^, who mad© 
observations similar to those of Wild̂ ,, Sheridan and 
Weylan^^^^. The interferometric moasurements of 
position, however, require electron densities greater 
by a factor of lO than those normally accepted for the 
qulot corona. Xn fact, the required densities are 
typical of those deduced optically by Mewkirk^^^^ for
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coronal streamers, It has been infez*r©d, thezefore^ 
that the 'dxsturtoami'oes ' responaibie tax* Type XX (and Type 
III) buz*ets tẑ avel outwàrde along coronal streamers.
The radial Veiooities required to aooouîit for the 
freqdenoy* ' drifts 'in Type XI buzz'sts are of the ordeẑ  of 
1000-1500 to/seo'# (Maxwell and Thompson^ . Such 
speeds az*e eomparable with the high velocity ÎW phenomena, 
disc'ov'ez’ed by Athay and Moreton^^^.

In view of these observational features, it is 
natural to interpret the Type XX burst as plasma radiation 
exOitod by the passage of a hydromagnetic shook through 
the corona* Further, as already mentioned, in the 
complete flare event a 'Type ' 311 burst 'follows the Type'XXX 
event by about ten'minutes. Xt is possible, therefoze, 
to assume a common origin for the ciisturbanoes responsible 
for the two types of touz*at, a common origin presumably at 
the site of the instability that initiates the Hex flash 
phase, fonder this assumption, Wild, Murray and 
have attempted to determine the height of this instability 
in the solar atmosphere* The following method was used*
A height-time diagram was drawn up for a compound Type 
XXX - Type XX event* An extrapolation was then made 
back in time to the point of intersection of the quasi- 
linear tracks of the two bursts in this diagram.
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This point indicated a time corresponding to the
beginning of the flash phase (or of the Type XII event), 
and a height in the aoXar atmosphere of 50,000 
Buell a height is well above the region #f IW flare 
emission, and the method would, therefore, suggest that 
the seat of the flare is not in the visible flare region. 
The llc< flare would then foe a aeccmdazy phenomenon* The 
extrapolation involved, however, is a very large one and 
must be subject to considerable error. The evidence 
taust not, therefore, be z’egarded as conclusive*

Xn about 20?o of cases the Type XX burst is followed 
by Type XV continuum* In general, Type XV buz^st© are 
restricted to the moat emergetic flare events. The 
term ♦Type XV* is used here im what is now its accepted 
sense - though perhaps this is not strictly accurate.
A Type IV burst is taken to mean asitv prolonged intense 
continuous radiation that follows a flare. The term 
was originally used by Boiechot^  ̂ to describe a 
particular kind of flare continuum at metre wavelengths, 
namely that from an outward moving source high in the 
corona. This burst will be denoted here by Typo XVm^. 
From interferometric measurements, Boisshot found 
velocities of the order of 1000 km/see. Ho interpreted
the Type XVma radiation, therefore, as synchrotz*on
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radiation from eleotrams trapped In mmgmetlc field© 
behind the shock front respameible for the Type XX 
burst# The motion of the source is a fumdasiiemtal 
feature of the type of radiation described by Boischot# 

This type of z'adiatlom represents only part of 
the post-flare continuum event# The continuum storm 
following a flare can last for many hours or even 
several clay a# The Type XVm burst, however, seldom
lasts longer than 1-2 hours # The meohanisms responsible 
for the complete Type XV radio ontburat are not cleaz'ly 
understood# Still, a second component, Type IVm^, ia 
now generally recognised at metre wavelengths# Unlike 
Boiechot’s Type XV, the source of this long-lived second 
component is found to be stationary# Furthez*, inter- 
ferometric measures of the heights of emission are not 
inconsistent with a plasma, rather than a synchrotron, 
hypothesis* There is no general agreement, however,

C 6s )on the mechanism involved# Takakura^ ^, for example,
has suggested a synchrotron mechanism to explain both
Type XVm and Type XVm. , though certain rather
restrictive as sumptions are z’equired in the latter case. 

i doDenisse^  ̂̂ , on the other hand, has developed a 
mechanism suggesting that the ©mission ia duo to plasma 
radiation initiated by magnetically trapped high-energy 
electrons#
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Of the flare asseolated bursts at metre wave- 
lengths g til© Type XV event is perhaps the least 
completely understood# Moreover, the atatiosiary Type 
IVm. resembles closely the continuum part of Type X 
etorme g and it is mot clear what dietimetiens there 
are, if any, betwoem ■ these two types of hurat# Type IV 
comtimuum ia by far the rarest of metre-wave bursts and 
is am indication of a very large and emergetic event #
Of all flare phenomena, this type is found to have the 
closest correlation with the more promounced geophyeioal 
effects of solar flares#

Microwave hursts, unlike their metre counterparts, 
have been hut slightly explored. The techniques of 
dynamic spectra, so effective at longer wavelengths, 
have only recently been extended beyond the metre-wave 
region# The technique was applied to parts of the 
microwave region by Maxwell, Swarup and T h o m p s o n ^ ,

/ 71 \and by Haddock'  ̂* Dynamic spectra have also been 
obtained in the decimetre region (300^950 Me/©) by Toung, 
Spencer, Moreten and R o b e r t s # These latter studies 
revealed two distinctive spectral features, namely fast- 
drift bursts and iiitormediate-clrift bursts # The fast- 
drift bursts appear im groups, and are simllax’ to metre 
Type XXX* Xn general, however, they do not appear at the



38

same time as the metre bursts, and. cannot be regarded 
as high frequency extensions of the latter* ICundu, 
Roberts, Spencer and lüilpe;r' have sho?m, by comparing 
metre and declmetie dynamic spectra, that, even '#hen 
decimetre fast-drift bursts and Type ■XXX bursts occur at 
the. same time, they must be regarded as distinct phenomena, 
The intermedlate-drift bursts have recently been studied 
by Thompson and Maxwell( , They find that these bursts
are rare outside the major eventa that exhibit -Typo X¥ 
continuum* It may be that these bursts, which, on a 
plasma hypothesis, require source motions of 100-4000 
k0i/secj are best interpreted as a fine structure in the . 
decimetre Type XV continuum#

Dynamic spectra taken in the microwave region do 
mot show the spectral fine structure found at lower 
frequencies# According to Kimdu and H a d d o c k ^ t h e  
spectra of miorowiwo bursts show only broad-band 
continuum* Further, since single frequency records 
taken at cm-wave1engths show the microwave bursts a© 
smooth uncompl.1 cated features, it ia z'eaaonable to 
attempt a. classification of microwave bursts from their 
appearance on these single frequency records, Several 
such classification© have been made and are at present 
in use* Her© a classification adapted from Mild, Smerd,
and is followed#
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(76)

is the "gradual buret", which Oevimgtcn'^  ̂ called the 
gradual rise and fall (GEF). This type of burst has a 
typical tlme-eeale of one hour, and Covington* e nomen­
clature doacribes appropriately the form of its intensity 
variation. From measurement a by Kiindn^^^^ of the source 
aise, a brightness temperature of 10 ̂ ^ li is deduced,
Xt i© likely, therefore, that this type of burst
originates in thermal emission in the high chromosphere »

( 76 JThe second type of burst discussed by;¥ild et al'' ' ̂
is the "impulsive burst"• This ia the most common type
of microwave activity, and has a typical lifetime of
about 5 minutes, Xn a flare, the impulsive burst tends 
to coincide with the Typo XXX bursts at metre ^̂ reivelengths. 
Xt is, therefore, a phase 1 phenomenon. For this x^eason, 
the impulsive hwc&t has been referred to as the microwave 
early burst (j#B), a term which will be used here, Xt 
must be stressed that dynamic spectra, taken in the 
Eiiorowav© region^ 75 e 73 ) ̂ do make it clear that the Type 
XXX bux'sta and the MEB are distinct phenomena. The
microwave apoetrum of the latter i© continuous,

has found eharactez^istic MBB source BiEr.es of 
1.0* - 1.6% These ai^ea imply brightness temperatures
in the range 10^ - 10^  ̂E, and, therefore, a non-thermal
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origin for the radiation# The mechanism® of synchrotron 
radiation aiid hr erne a trahluag have tooth been proposed, and 
It la possible that each is preaesut to some extent, 
Baohenburg and ¥al 1 :ls ̂ and Takakura^  ̂have
©atatoiiahec! the spectral dla tribut ion of the MEB by 
comparing records taken at different farequenclos. ' It was
fotmd that, while these toursts extend tip to the highest 
frequencies observed» there is a rather sharp low- 
frequency cut-off at about 1000 Me/s. This indicates 
that the source of the MEB is roatrloted to regions of 
chrosnoaphario density.

The final distinctive type of microwave burst 
recognised by Wild at is the Type l¥ĵ . bike the
Type X¥m burst, the microwave equivalent is characterised 
toy toroad-toand continuum emiasion, and is a phase 2 
phenomenon# Type X¥ microwave bursts, however, though 
rare in comparison with the MEB, are rather mère common 
than their metric counterparts # They can occur with 
quite low intensities, and only the more intense Type IVjvL 
burst is acoompemied toy Type IT metre radiation, While 
it ia certainly thought that Type XTin must be recognlaed 
as a distinct phenomenon from Type IVm, it is not clear 
at present whether this microwave Type XT contains more 
than one component. The mode of polarisation reverses
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between cm and dm wavelengths, tout this can toe explained 
without invoking distinct meetoanieme, Takalwra^  ̂ has
suggested that Type J¥^x originates in synohrotron 
radiation due to electrons aoceleratoci toy the Fermi 
mechanism.

Xn the most complete form of the radio flare, the 
first radio evidence is a slow increase of intensity in 
the microwave region, a GEF Imrst# This tourst appears 
before the Hck flash phase, tout not necessarily before 
the first slow toriglitening in . While such early Mor 
brightenings may toe recognised on flare patrol films 
after the event, however, they hardly give a clear 
indication of an incipient flare at the time# In this 
sense, the QMF Is the first indication of a flare#

The explosive phase of the flare sets in later 
with the HoC flash, which coincides with phase 1 of the 
radio flare * At the site of the flare instability, 
pulses of high velocity electrons are accelerated, and 
these are responsible for the Type XXX - Type V radiation# 
There is no evidence that protons are accelerated with 
these electrons # And the occurrence of Type XXI bursts 
in quite small events seems t© preclude proton 
acceleration# has suggeated, therefore, that
the Type XXX electrons are runaway electrons accelerated
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in the initial explosion. De has further
supposed that the Type IXT electrons are also responsible
for the HEB# and Anderson and Winckler̂ ^^^̂ ^
have shown that the MEB is precisely coincident with
hursts of high-energy X-rays (1-100 KeV). Further,
the profiles of the two bursts show decided similarity,

Xt has been suggested by de Jager, therefore, that
the primary flare explosion takes place at a certain low
height in the corona. Here pulses of electrons are
accelerated. Xn moving outwards through the cox'ona these
electrons cause the Type XII metre bursts # On the other
hand, in moving downwards they encounter Increased
densities and magnetic fields at chromospheric levels*
Here they are capable of generating the X-ray burst by
the bremastrahlung mechanism:, and the HEB either by the
same mechanism or toy synchrotron emission. Mild et

(85)on applying the theory of Ginzburg and %heleznyakov' '
to a large group of Type XXI bursts, have found that 
10̂ "̂  electrons require to he emitted with energies of 
the order of 100 KeW» Thus the pulses of electrons,
required for phase 1, need a total energy supply of

PS10" erg# *
has given a qualitative picture of the 

possible interrelation of the various features of the
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radio ©vont* The following summary include© many point© 
from this model# In the majority of flares phase 1 is 
the complete radio eventi in larger events, however, 
phase 2 follows at an inteival of about ten minutes at 
metre wavelengths, and almost at once in the Miiorowave 
region* The genez*al features of phase 2 may be inter­
preted as follows 3 - A hydr©magnetic shock emanates from 
the explosion responsible foz* the Ho< flash and the radio 
phase 1* This shock moves outward© with a velocity of 
about 1000 km/sec* On reaching the corona the shock 
initiates the plasma oscillations responsible for the 
Type XX burst. Behind the ©hock front a cloud of solar 
plasma is moving outwards dragging with it its associated 
magnetic field* Within this region electron© and 
probably protons are accelerated by the Fermi mechanism* 
The synchrotron emission of the former ia responsible for 
the Type XVm^ burst* The protons, on the other hand, 
having greater magnetic rigidity, can escape and arc 
recognised at the earth in rare cases as cosmic rays* 

Thaz'c is another possibility, however. The 
cosmic-ray protons may be accelerated at lower levels, 
perhaps in the flare region itself. In this case the 
Type XVjH. burst will be duo to synchrotz’on radiation 
from electrons accelerated by the same process*
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It lias already been mentioned that suggested
a plasma interpretation .for the Type barst* On
this, view5 the stationary Type Tfm is earnsed by plasma 
excitation' by eXectroiie being ’dumped* from weakening 
magnetic,traps.that have been carried far out into the 
corona.behind the Type X% shock front,

To account for the Type ' 'radiation^ Bolsohot
and Boniaso^^^^ postulated 10^^ 10^^ 'electrons with
energies of the order of 3 MeT ■ spiralling in’-a field of 
one gauss. The'total kinetic energy of the ■ electron 
cl-oud,wottld then,be of the = order of 10^^ ergs, It is 
clear» therefore » that the■energies required to initiate 
the Type IV continuum storm,-or indeed any of the radio 
bursts that accompany, flares, fall-far short of'the 
total flare energy emitted in the optical region,

Type IV bursts at all .frequ©ncie.s' have close 
eorralatioBs with the geophysical effects of flares, 
including cosmic^ray events and geomagnetic storms* 
Comment on this important point, however, must be 
deferred until later in the next section when' the 
relevant geophysical dat.a will, have been discussed*
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(iii) Oeopliysicai

For a flare to have any geophyeloal effect at all, 
it must be a comparatively large event. Only quite 
exoeptional flares produce the whole range of geophysical 
effects « namely cosmic-ray increases, ionospheric 
diaturbahces and magnetic storms. Oostalc ray events, 
in particular, are rare. Before the event of February 23, 
193^, only four cases had been recorded of flare- 
associated, cosmic-ray, ground level effects (Oh®).
Since that date, however, improved methods of detection 
and balloon or rocket-borne experiments have greatly 
increased the sensitivity of detection of such events *

The association of the sudden ionospheric 
distrurbance (SIp) with flares was first recognised by 
Dellinger^ B ? ) ̂ found that a solar flare could produce
a short-wave fadeout (SWF). Originally it was thought 
that S¥F was caused by increased D layer ionization 
resulting from an increase in L<x emission. For it was 
realised, correctly, that solar hex, radiation was 
responsible for the normal D layer* A review of all 
SID phenomena by Friedman and C h u b b h o w e v e r ,  showed 
that the great decrease in the height of the D layer, ae 
evidenced by the sudden phase anomaly (SFA) of VLF 
transmissions, required an impossibly large increase in
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Ïj(?< emlealom, Im fact 10 times the quiet ausi* It is 
now realised that the ionization reapomslble for the 
BXB is caused by X-ray emission in the_spectral region 
#f 1 2 A. This interpretation wae verified by the
earliest rocket expérimente, reported by Byram, Chubb 
and Frieclpaaa^^^^ I who found large changes in the soft 
X-ray in tensity, but no detectable change im , at 
the timie of flares*

. X-ray quanta of energies greater than 20 IteV 
(0*6 a ) penetrate the atmosphere to levels accessible 
to balloon observations * The less energetic part of 
the flare X-ray spectrum must, however, be studied by 
rocket or satellite observations* A detailed review 
of satellite X-ray measurements has been given recently 
by B''rledma%%^^ From these satellite observations it 
is clear that the %-zmdiation must be separated into 
more than one eoiBponent* For example, the results 
from the solar radiation satellite SHIXI indicate that, 
whereas X-rays in 'the region 2 - 8 A showed transient 
variation similar to the Hc< flare,_ X-rays in the region 
8 - 13 A could continue at an enhanced level long after 
the optical flare had disappeared* The longer wave­
length phenomenon is probably due to enhanced ©mission
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in the corona, possibly line emission - a sort of 
slowly varying' component#

The X-ray émission in the 2 - 8 A region, however, 
la very closely associated with the flare itself, and 
correlates well with SI0# Xt can be interpreted as 
thermal continmam# Beyond 20 Eo¥p on the other hand, 
the radiation is better fitted to non-thormal 
bremsstrahlnng (Kawabata^^^^)# The high energy elect- 
rona responsible for this X-racliation are assumed to 
initiate the Type IXX bursts (el© Jager^^*^^), and the 
MEB (Kundu^^”̂  ̂) # Solar X-ray spectroscopy is sti3.1 at 
an early stage, and observations till now have been 
limited by lack of spectral resolution* The interm 
pretations mentioned above must, therefore, be regarded 
as tentative #

ICreplin, Ohubb and F r i e d m a n , h a v e  described 
results obtained from the satellite BEX* This satellite, 
besides investigating solar %-raya tn the spectral region 
2 - 8 A, also monitored solar ho< radiation# The 
accuracy of the h(x measurements was not sufficient to 
detect any oertain change in the sun*e total flux.
An upper limit of 11?̂  was, however, set for any enhance­
ment of h(< above the level of the quiet sun* Using 
ultra-violet flux data of Dctwller, Garrett, Purcell and



48

Tousey^^^^, it is aeen that this upper limit corroaponds 
to a total rate of omissioii of approisiEiatoIy 2 • 10“ 
erga/sec# If, however, the radiation oorreapondiug 
to this upper limit were oonfiued to mi area of the size 
of the visible flare, them am increase by a factor of a 
thousand would be required* While tin© extent of L 
emission in flares is still vary uncertain, it does seem 
that this'radiation is not in any sense m predominant 
feature of the flare event *

Large flares are sometimes followed by the sudden 
coEBBienoement of a magnetic storm* The delay between the 
flare and the sudden commencement depencle on the size of 
the storm# and lies between 1-2 days* ' It is inferred, 
therefore, that a cloud of solar plasma is blown out at 
the time of the flare, and from the travel time a 
velocity of 1000-2000 km/sec is deduced* Xn view of 
these figures, it is tempting to identify the Type XX 
radio burst with the plasma stream* Work by 
shows, however, that Type XI bursts correlate well with 
sudden commencements if, and only if, they are acoom- 
panled by Type XV oomtinuum* On the other hand,
P a r k e r ^ has suggested that the magnetic storm may not 
be due to an ejection of plasma at the explosive phase 
of the flare. He argues that the storm Is caused by
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am ‘imtarplametlïfy blast wave generated by am expansion
of the mihameed corona over a longer period of time *
Further, Parker^  ̂has oaloulated the kinetic energy
of such a blast wave, assuming a^wliiiBo of 0®1 and
a density of 30 partieles/om^# His result give© a total

32energy of 2 # 10 ergs# Moreover,■the demsity he usee 
is rather lea a than that clecktoed by Blaokwell and 
Xngham^^^^ from zodlaoal light observations# Unless, 
therefore, the.blast wave is, for some reason, confined 
to a, comparatively narrow ©hoot near the eciuatorial
plmie# one must conolude that the energy involved in the 
plasma stream is at least as great aa that emitted by 
'the optiohl flare#

Solar oosmio-ray partiolea have only been detected 
at groimd level in very razm events# Such detection Is 
quite the most t,exceptional recognition of flare- 
aseciciated phenoEwma. Since I9 5 6 , however, the use of 
particle oounters and emulsions in balloons, or at ©till 
greater altitudes, In satellites, has greatly increased 
the detectability of lower energy solar oosmio-ray 
events# Further, these events cam be detected indirectly 
by polar cap absorption (P0A) of cosmic radio noise In 
the WIF region# With this Improved ©eneitivity of 
detection, it is now recognised that solar cosmic ray
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biirsts are not the rare pliemomemom that the aoarclty of 
0LE would indicate* Even so, any detection of coamio 
ray effects ia indicative of a large flare event #
Thompson aiicl Maxwell ( $ 99 ) ̂ for example, have not eel
that both direct and indirect detection of low-energy 
solar oeemie raya are well correlated with Type X¥ radio 
outbursts*

To produce an observable effect at ground level, 
particle energies - in excasa of 1 BaY are required* The 
most famoua event of this kind, that of February 23, 193 »̂ 
was studied by Meyer, Parlcer and Simpson^^^^^, They
found that the total kinetic energy of particles above 
2 BeV, emitted by'the flare, was not lees than 3 # 10^^ 
ergs. Xa a later paper, Parker^suggested that the
particle a are aoceleratecl by the Fermi meohaniam^  ̂ In 
the initial site of the flare* Aaauming a magnetic 
field of 300 gauss, Barker argued that the fluid motions
and magnetic ImhmBogemelties within the flare region 
would be suffi aient to ae'o el crate protons from the rami 
to relativlstic velocitiea Im about two minutes, A 
rather different non-statistloal laeohaniam haa been 
proposed by Severny and Shabanskii^^^^'^ *

Ail estimates of the total energy of solar aoamic 
ray bursts are uncertain owing to lack of knowledge of
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the low-energy spectrum* Xn the paper Just referred 
to, Parker calculated the spectrum for his mechanism and 
found that the turnover occurred at an energy of 450 MeV. 
For higher energies, the spectrum was an inverse fifth 
power law# This is in agreement with ofoaervation.
This result would suggest that the figure of 3 « 10‘̂  ̂
ergs, quoted above, is a fair estimate of the total 
energy of the cosmic ray burst# Xt should be noted, 
however, that there is no observational evidence to 
support the high energy turning point deduced by Parker.

Xn a recent review, Mall it son and Webber^ 
have tabulated data from satellite observations of gO 
major cosmic ray events that have occurred since 195^* 
They calculated the integrated intensity of particles 
with energies in excess of 30 Me¥ and 100 MeV. From 
these values it is readily seen that for large, but not 
exceptional, events the total energy in excess of 30 MeV 
is of the same order as Parker’s result. This suggests 
that Parker’s figure for the flare of February 23, 195^, 
may well be an underestimate# Some authors - e.g. 
Stepanyan and Vladimirskii ( )  - have argued that the 
energies involved in the cosmic ray b%%rst may be quite as
large as the value usually quoted for the optical event,

'HPnamely 2 # 10 ■ “ ergs.
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The correlation of cosmic-ray events with Type 
IV continuum liaa already been mentioned# Both at metre 
wavelmgthe and Im the microwave region this radiation 
is generally interpreted as synchrotron ra,diation# Xt 
is probable that the electrons responeible for this are 
accelerated by the same Fermi process a© the cosmic ray
protons. The complete Type XV burst la not at present
understood. It does appear, however, tJhat there is 
synchrotron radiation being emitted from two quite 
separate regions, The ' Type IVm burst is emitted from 
an outward moving, high in the corona. On the other 
hand, the Type is emitted from comparatively dense 
regions of high magnetic field in the low corona or
chromosphere * Xt is not clear which scntrce should b©
identified ee the cloud of accelerated counterparts of 
the comnic ray protons. It could even be that cosmic 
ray acceleration takes place independently in each 
region* For similarities have been found between the 
time variations of cosmic ray intensity and the 
intensity of Type %Ym (Bo is chat and ).
Mallitaon and Webber^^^^^, on the other hand, have found 
that the strength of a cosmic ray event is related 
specifically to the intensity of the microwave burst.
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The protons accelerated at the time of the flare 
will fee oonfined in the solar imguetto field* %m a 
typical coeiaio ray event, therefore, the onset of FCA 
is delayed for several hours, the time required for the 
cosmic ray particles to diffuse from the solar magnetic 
trap (stepanyan and Vladiinirskii^^^^^ ). Xn certain 
exceptional cases, however - particularly the large 
events in which a GLE is observed - the first particles 
reach the earth within minutes of the flash phase of the 
flfire* To account for these very short onset times, 
special magsietic configurations must fee specified In the 
earth-sun space. A number of authors - e.g. -
have suggested that the solar magnetic field Riay become 
drawn out from an active region to form a magnetic bottle 
in interplanetary space, the feet ot the Eiagnetio field 
limea remaining anchored on the solar surface♦ The 
Forbush docreaso in galactic cosmic radiation provides 
evidence for the existence of such field configurations 
at the earth, These configurations may fee û r m m  out fey
the interplanetary blast wave irresponsible for geomagnetic 
storms, which indeed are often accompanied ̂fey Forfeush 
decreases.

\



54

If a flare, situated in the active region at the 
neck of a magnetic hottle, accelerates cosmic ray 
particles, these particles iiiay escape from the stm, but 
they will be initially confined to those regions of inter­
planetary space to which the field of the active region 
extends. In general, such magnetic configurations will 
not engulf the earth; then the protons must have time to 
diffuse from the magnetic bottle before they cam produce 
any geophysical effect, usually PGA. In this way the 
onset times of several hours are again explained. In rare 
oases, however, the earth may be included in the fjeld 
configuration, and in this event solar protons have dix̂ ect 
access to the earth* The onset timie should be simply the 
travel time, and the cosmic ray burst should follow the 
accelerating flare by only a few minutes# The except­
ionally short onset times in some large events are, there­
fore, satisfactorily accounted for. Additional evidence 
in favour of this explanation is provided by the well- 
known ©ast-west asymmetry of flares producing GM&, and by 
the shorter onset times found for cosmic ray bursts 
associated with flares in the western hemisphere.

1Mallitson and W e b b e r have noted that the large 
cosmic ray events since 195^ have been restricted to 
flares in only a few active regions, each such region
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tending to produce several flares with cosmic ray OLE, 
Ellison, McKenna asKl have studied one such
active region in detail. â aeries of 3*̂ flares which 
'occurred in this region have been referred to as the 
/July 1961 event. The largest of these flares, that of 
July 12, was accompanied hy intense Type IV radiation 
at both metre and mierowavo wavelengths. Despite the 
magnitude of this event no cosmic rays wore detected at 
grouhd level, though the flare did give rise to PGA. 
Further, this flare was followed 2ĥ »9 later by a sudden 
commencement of geomagnetic activity, with a ©iiîmltanaous 
'Forbueh decrease in ooamio radiation* On July 18 and 
, Ĵ uly 20, two other flares occurred; though each was a 
3*1" event, the optical and radio data indicated that these
évents were smaller than that of %Tuly 12* In pEirticular,! '■
the Type IV bursts were significantly less intense.
Monethelesa each was followed within 33 minutes by a
/cosmip ray GLB. Xt is clear that these obaerva11onal

ifeature^ cam be satisfactorily explained on Gold’s 
magnetic bottle hypothesis. Xt may be assumed that the: ' -'i
flare df July 12 failed to produce a 0L® due to .the lack 
of a suitable interplanetary field oonfiguration $ The 
interplanetary blast wave of this event, however, set up 
such a configuration, and ground level detection of
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cosmic rays was, therefore, possible for the later and 
smaller events*

This concludes the description of the observational 
features of solar flares# A number of points that might 
be important to flare theories have been omitted from the 
discussion# For example, no account has been taken of 
the possible increase in the relative abundance of 
Deuterium in active regions (S e v e r n y G o l d b e r g ,
Wohler and M&ller^^^^^)# It Is felt that the result» 
of these measurements in can scarcely be considered 
conclusive. Such measurements are hampered by the 
proximity of J>o< to the hydrogen line, and more seriously 
by its coincidence with a variable telluric lino of water 
vapour# Obaorvationally, the question of nuclear 
reactions in flares must be left open*

In th# next chapter a discussion of theory 
requirements will be attempted in the light of the 
observational data that have been discussed here#
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cmPTER 2 THEORIES OF ORIGIN
(l) Introdmet t a m

The discussion of the provloue chapter indicates 
that the complete flare ovont must bo regarded as an 
eggrCgato of many diverse aalar and goophysloal features 
The total event ia soon to be far more comples than the 
11̂  phenomenon by which it m m  originally observed,
The phenomenon is but one aspect of the flare# and 
not neecjsaarily the predomiimemt one, Many of the 
observational foaturos and their interrelation are 
understood In a qualitative manner* The radio and 
geophyaice.il data are perhaps better understood than the 
optical phenomena; at least, there is more general 
agreement on their interpretation*

Other aspects of the flare event are understood 
rathe:? mere eomplotely, and quantitative theories have 
been developed that account for the essential features 
of the observations. For example, assuming the 
provision of 10^^ electrons in the 100 Ee? range, the
mechanism of Ginzburg and Zheleznytnkov^' satisfactorily 
account8 for the brevity, bandwidth, frequency drift, 
and harmonie structure of Type III radio bursts# All 
flare assodated features, whether understood at present
in a qualitative or quantitative manner, require for 
their i$iitio.tion an explosive primary event. The eoncorn
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of a theory of flare origin is the nature and the
development of this primary ©vent,

The fact that no photospheric change of any kind
has ever been observed at the bas© of a solar flare has
led to the belief that the source of flare energy is 
either ohromospheric or coronal* On the other hand, 
Severny’s d i s c o v e r y ^ o f  fine structure in the wings 
of flare emission, which he described as moustaches, 
must cast some doubt on this interpretation* For, if 
those particular moustaches are identified with Ellerman 
bombs, then they are low-level phenomena* This 
interpretation of the fine structure has not, however, 
been gonerally accepted#

Xf a chromaapheric or coronal origin of flare 
energy ia assumed, the insufficiency of thermal energy 
ill these regions of the atmosphere requires that the 
energy source be magnetic# Xt ia deduced, therefore, 
that the flare energy is drawn from the magnetic field 
in the general environs of the primary event# Most of 
the observed features of solar flares are regarded as 
secondary phenomena# The possible exception is the 
flare,

Gertainly llc < ©mission is virtually a sine qua non 
of any flare event# Again, estimates of the energy 
dissipated in this emission, 2 # 10 ergs in great flares,
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are large, larger than the usual estimates for all other 
assoolated features * As has already been mentioned, 
however, some authors( ^5) suggested that the
energy expanded in oosmio ray showers and the inter­
planetary blast wave may be as large as that emitted in 
the chromo spheric flare* The possibility exists, 
therefore, that the H<=< flare, like gther associated 
features, is a secondary phenomenon, and that the
primary event is unobserved#

176 )Some arguments^ ' have been advanced to suggest 
that the xjrimary event is sited in the corona* These 
arguments are, however, based on a crude interpretation 
of the radio data, and involve a large extrapolation of 
doubtful accuracy. The evidence is not conclusive, 
therefore, and observations do not specify a site for 
the primary event * The physical conditions at this 
site are, in effect^ quite unknoivn. They may correspond 
to chromo spheric, conditions or to conditions in the, 
probably disturbed, corona*

A theory of solar flares will generally 
concentrate on explaining the largest ©vents. Such 3"̂
flares involve energies of the order of 2 , 10^^ ergs,
Xn a magnetic explanation, the source of energy must 
ultimately lie in the magnetic field of the associated
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spot group. S w e e t e s t i m a t e d  the energy of the
potential field above the photosphere < : in a large spot

34group as Z * 10"̂  ergs, a figure a hundred times larger
than required for a 3 flare* He pointed out, however,
that as the potential field represents the configuration
of minimum energy, this energy ia not available to
supply the flare * %t is, therefore, the energy
involved in distortions of the sunspot potential field
at chrome spheric heights that must provide the flare
energy» Since at chromospheric and coronal levels,
above active regions, the magnetic preaauro far exceeds
the gas pressure, any distortion of the sunspot field
from potential form must be force-free.,

Bx’ieflyg two main requirements of a complete
magnetic flare theory may be stated as follows #
Firstly, It must provide a stable process of storing

32energy up to 2 # 10"̂  ergs in force-free fields at 
ohromospheric or coronal levels. The ultimate source 
of this energy is probably in photospheric motions.
At photoapheric levels the gas pressure is in excess of, 
or at least of the same order as, the magnetic pressure, 
and gas mmtions will be able to distort the field»
These motions of the feet of the magnetic field lines, 
anchored In the photosphere, will isiduoe force-free
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perturbations of the potential field at ohromoapherlc 
levels* The existence and stability of aueh force- 
free-configuration© form, therefore, the first require­
ments of a complete flare theory#

The second main requirement of a flare theory is 
the appearance of an instability In the field 
configuration * The development of this instability 
must proceed at a rate oammeiisurato with the time-scale 
of a flare. This time-scale ia usually identified 
with the flash phase of the IIcx flare, and may, there­
fore , bo taken a© about 200 seconds, The total 
duration of the flare is of course far longer, and may 
he regarded as the time of relaxation to normal 
chromoaphoric conditions. Other Interpretations have 
been offered of the decay phase of the flare, and these 
will be discussed later.

(ii ) Clasaioal Theories of Solaz' Flares

The fix'st magnetic theory of solar flares was 
proposed by Giovanelll* Subsequently this theory was 
severely criticised by C o w l i n g ^ o n  very fundaoiental 
grounds. Nonetheless the detailed nature of the theory 
merits serious discussion. This discussion will provide 
a context for later developments, and the criticism will 
illustrate some of the difficulties with which such
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theories must contend * Glovamelll ̂  ̂ attempted to
explain the sudden onset of* a flare by a discharge 
moohanlsm due to nmaway electrons* Xn separate 
p a p e r s ^ ^  he dealt with the discharge mechaîiism
itself, and the field configurations responsible for 
its inception*

A  detailed was made of the behaviour
of the oonduotivity of a highly ionized gaa under the 
influence of an applied electric field* For small 
applied fields the electron energies are limited by 
elastic, collisions with ions . The oollisional cross- 
section for this type of oolliaion decrease© with 
increasing electaron velocity» Under simple assumptions, 
and neglecting the velocity distribution; of the 
electrons, Giovanelli computed a critical field strength 
E 0 above which applied fields would produce a discharge. 
For field strengths E < @ elastic collisions limit the
electron energies. For fields B>E^, liowever, these 
collisions are ineffective in limiting the electron 
velocities, and runaway electrons are produced# Under 
conditions of complete ionization the velocities of the 
runaway electrons are limited only by the extent of the 
electric field. On the other hand » if the gas is only 
partially ionized, the presence of neutral atoms may
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place an effective upper limit on the electron 
velocities * Elastic collisions ’between electrons and 
neutral atoms will generally be unimportant, owing to 
the fact that the cross-section for this type of 
collision is small compared with that for collisions 
between electrons and ions. Xnolaatic collisions, 
however, may be important, effectively limiting the 
electron energies to values not far in excess of the 
excitation or ionization potentials* The presence of 
a magnetic field 'will ale© be effective in providing an 
upper limit to the electron energies *

As the applied electric field E is incj^eased to 
the critical value there is, then, on GiovanelXi’-s 
simplified theory a discontinuous increase in the 
electron drift velocity# This abrupt change can be 
interpreted as a change in the conductivity of the 
ionized gas# For hydrogen ions at a temperature of 
5750^ K# 01 o vane H i  computed the critical field as

“ 5 . 10"̂ '̂  0.S.U. (2-1)

%-!horo ïî  is tlae ion density. If w© take n^~
appropriate to the chromespheric level© of the optical . 
flare, the electric field required to initiate a 
discharge is 5 » lO"̂  ̂e.s.u* or about 1.5 • 10**̂
VOIts/cm*
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This, them, was Giavanelli’© discharge mechanism *
The second part of his theory Involved finding a
Bituatlon appropriate to the aolax’ atmoaphere that would

-3provide an electric field of at least 1.5 « 10 
volte/cm to drive the discharge# Before outlining 
01ovaneill’© investigations on this point, it will b© 
convenient to state the electromagnetic equations 
involved! these will be required throughout the present 
chapter. They are simply Maxwell’s equations and the 
conductivity equation, which, using Gaussian unite, may 
be written ae

curl ü  a (2-2)

ou.rl M. =  ^  ^  (2-3)

cr «I E V. A Æ   ;--- (2-4)

As is usual, the displacement current had been neglected 
in equation (2-2), and# for the moment, the Hall current 
term has been omitted from the oonductlvity equation*

As mentioned earlier, Giovanelli^^^ has shown from 
a statistical analysis that flares tend to occur when 
the spot area is changing most rapidly * Ho attempted, 
therefore, to explain the electric fields required for
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the discharge meohanism aa fields Induced hy the
developzaent of the amiapot^s magnetic field. Bow the
typical linear dimension, h say, of a amzapot la of

gthe order of 10 cm. Further the observed time-
scale of growth la about a week, 5 # 10 eeoonde.
Thi&. indicates a velocity of propagation of the field, 
u, where 1b.|^2 « 10 cm/sec* If the magnetic field,
H, of the spot la taken to be 500 gauee at chrome spheric 
levels, then an observer %irhoa© poaltlom 1© fixed 
relative to the solar surface will measure an electric 
field of 10**̂  volts/cm. Such a field appears more than 
is required to initiate the dischax»ge* However, the 
eleetrie field available to drive ourx’cnts ie not 
(m a Î!)/c as computod above, but the field measured by 
an observer moving with the fluid* That field is 
(m a H)/c , whex̂ e w ia the fluid velocity relative to the 
field lines*

The fièld strength available to drive the 
discharge will only be of order 10^^ volts/cm, if 
w Ue that is if the fluid velocity is zero, 
Giovanelli^^^"^), there foie, considered the propagation 
of the sunspot field in a static atzimsphere * From 
equations (2-2) to (2-4) the equation of magnetic 
diffusion is derived as
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9 H
«   V/A (2-5)

4 TT<r
This ©quation yields a time-soale T' for the growth of 
the sunspot field* given by

T" —  4 TT cr L^/o^ (2-6)
Xn the chromosphere the conductivity o- is of order 
10̂ *̂  e*B*u#î hence, as first shoxm by C o w l i n g ^ ^  * the 
time-Bcale of propagation of the sunspot field in a 
static atmosphere is about 300 years.

Oiovanelli noted, however, that the presence of a 
magnetic field decreased the conductivity in the 
direction perpendicular to the magnetic field| he 
concluded, therefore* that an increased rate of field 
propagation %fas possible# But the modified form of the 
conductivity is due to the inclusion of the Hall current 
term in the conductivity equation, (2-4)# The diffusion 
equation* (2-5), then becomes

^  c W J i A ü \  (2-7)dt Urrcr Une V ̂  J
where n is the electron density# Consider a static 
isothermal atmosphere of fully ionized hydrogen# Then, 
under a conservative field of force * - with potential 
function ,C\ say - , the final term on the right hand side
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of equation (2 -7 ) will vanish identically* For, if 
M is the mass of the hydrogen ion, the equation of 
motion can he written as

(curl HAÜ)/h C3 4 rrkT grad(log'n) f 4 rr M grad A. (2-8 )*

The diffusion equation, therefore, reduces to 
(2-5)# and the rate of field propagation is unaffected 
hy the modified conductivity* In point of factthe 
Hall current term can he neglected anyway in any quasi­
steady chromospheric problem involving sunspot fields, 
since the gas pressure cannot sustain iiiegnetic forces, 
and so J a H  ^ O, The assumption of a static 
atmosphere is, therefore, not only artificial, as 
Giovanelli admitted, it is also %/rong, since the process 
of static diffusion would involve magnetic forces that 
the chromospheric gas could not sustain. The sunspot 
field must be transported by material motions, and, in 
general, electric fields sufficient to drive Giovanelli’a 
discharge will not be induced »

Oowling^^^^^ had two main criticisms of the 
discharge theory, as proposed by G i o v a n e l l i T h e  first 
criticism ia similar to that just given, in that it 
questions the existence of the required electric fields. 
Cowling’s argument may be put as follows, The total
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32energy of a flaire le of order 2 # 3.0 ergs ; a typioeil
19 2flare area Is perhaps 4 * 10 em , and the dux^atlon 

of a large flare may b© g • 10^ seconds, or l|- hours.
From these values the rate O'f ©mission* I, may be 
©stimated as 1 ^ 1 0 ^  ergs sec*"̂ . How, in a
discharge theory, this rate of emission mm at be provided 
hy Joule dissipation of magnetic energy. If € ia the 
thickness of the flare region, then the total rate of 
dissipation will be of order j € / c r  per unit surface 
area.

In the solar atmosphere, the current density is
deteriiined* net by any applied electric field# but by 
the magnetic field configuration. To order of 
magnitude, equation (2#2) gives oll/hw-t , and the total 
rate of Joule heating will be e*̂ H /lôrrV*^. This must 
be equated to the observed rate of emission, to provide 
an equation for t , viz

.-L14̂€ c
(2-9)

9Substituting the values already given, I ^  10'̂  ergs 
S0c^^, cr .—  10^^ a.s.u-ft H 500 gauss -, it ia

1found that c-— 140 cm. Cowling regarded this extreme 
thinness of the flare region as unacceptable. The 
important point is,.however, that if the flare is 
interpreted as a discharge, this discharge must be very
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tîiin in 0BO directiont a feature Bot recegm^aed la 
Olovaaelll•s theory»

Oowliag'o OGCoad orltlolem concerned the nature 
of the die charge Iteclf * In Gioiranelli*'e theory the 
discharge ocoure du© to the onset of runaway electrons^ 
which is eciitivalont to a duclden inoreaae in the 
conductivity of the gas, In thia theory the electric 
field was treated as sui applied field* and consequently 
the auddan increase in the conductivity resulted in a
rapid increase in the current densitys and therefore in

2the Joule disaipatioîiÿ which was treated a© o-B per • 
unit volume * This point of view is, however* quit© 
wrong In the context of solar prohlems, Here j is

imm
determined by the magnetic field configuration through 
equation (Bmgg) and will be virtually unaffected by 
abrupt changes in the conductivity^ The only immediate 
effect of a sudden change in the conductivity will b© 
a reduction of the electric field, which is given by 
equation (2*4). This field is reduced, since it must 
provide effectively the same current for the larger 
conduotivityThe Joule dissipation, tfhich is always 
given by j /<r , if ill clearly be reduced by any increase 
in the oondiiotivity*
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The onset of runaway eloctrona would, thong 
inhibit rather than enhance the energy dissipation.
The sudden onset of a flare cannot* therefore* tee 
aoacmnted for toy this type of die charge « If runaway 
electrons are important in the dissipation process at 
ail* it is in limiting the rat© of conversion of 
magnetic energy into heat within the flare region* 
rather than in providing a mechanism to account for the 
flare * s explosive onset ̂

A rather different type of discharge theo-ry was 
put forward toy Here it is recognised that
under solar conditions the current density is determined 
toy the magnetic configuration. Cowling’s first 
criticism is, therefore* satisfactorily met^ Bungey’s 
discharge, which he defines simply as a region of very 
high current density, is due to the severe distortion 
of the lines of magnetic force at the neutral point of 
the field0 A current region la then formed that is 
very thin in one direction. Dungey’-s investigation is 
concerned with conditions at the neutral point that 
lead to the onset of sucli a discharget the autosequont 
toehaviour of the discharge was not coma id© red. Although 
several points in his analysis are open to criticism, 
Bungey^s work did give the first real insight into the
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nature of diecharges in the solar atmosphere and the 
x-’elevano© of neutral points.

The magnetic field near, the neutral point was 
examined by Dungey under the appi^oximation that the 
lines of force are froaen to the material* Under this
approximation equations ( )  to (2-4) can be reduced to
a single equation to give

^ W  ^  . (wcut ) jr - (v. p'H^ ) B ” (f^f) id (2*10)
*0 1-

Xn. the equation of motion the pressure tersii is neglected 
to yield

=  — (lT, ) IT 4- — -— - Caà/t L Ü  a H {2 * 1 1 )
^ 4rrf

And, finally, there is the continuity equation

^ IS- ^  p ci^ Z -t f (2-12)9 t
Hext- a frame of reference is chosen in which the 

neutral point is also a stagnation point, Them v 
H S5S 0 at this point and all terms in equations (2*10 ) 
and (2 *1 1 ) will vanish there * The neutral point is taken
as origin of a Cartesian system with co*ordinatea
Xi 1' i-i3. At the origin the derivatives )v./3x.
and "3H^/ ̂  X . are respectively denoted toy j, j * 
Then, using the duaimy suffix notation, the equation of 
continuity (2*12) becomes at the neutral point.
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—  ^KK (2*13)9 t
Siliilarly, if equations (2*10) and (2*11) are
differentiated partially with respect to each of the
Xg in turn and then applied at the neutral point, a set
of equations is derived, one for each of the v^ ̂ and

that are similar in fori» to equation (2*13). In
this way a ©at of aimultanaoua non*linear first*ord©r
ordinary differential equations is obtained in the

and # This set of equations can readily
be solved, given only the necessary starting values*

Having set up these equation© * Dungoy considered
the following example. Suppose that j is %ero at the**
neutral point, then n set of orthogonal principal axes 
can be chosen* so that all the vanish except the 
diagonal elements. This set of axes is taken as co* 
oz'dinate axes. Suppose, farther, that initially there 
is BO fluid velocity in the neighbourhood of the neutral 
point, then all the will be initially zero. Now a 
small perturbation is applied to a number of the velocity 
and field derivatives, and the differential equations 
referred to above are solved nuiaorioally. It was 
found that initially the perturbations grew exponentially, 
until the anti*symmetrie tozmm in the matrix j, which 
refer to the current density, became the same order as
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the (initially mam*zero) diagonal terms. Thereafter,
all term© grew and became infinité after a finite time#
Xt was ecmclmded that the current density at the
neutral point becomes Infinité after a time mot many

1time© larger than (4 rr ^ typical AliVen time
of the system,

Prom thia example, Dumgey drew the comcluaiom 
that the magnetic field at a neutral point is unstable,
and that am initial perturbation, however email* will 
grow to produce a discharge within a finite time, To 
examine thia conclusion, it 1$ intended to apply the 
mùXl^lcnomi theorem that the potential field Is the 
configuration of minimum energy* Consider a raagnotic 
field configuration, with a neutral point* that is 
bounded by a surface X , on which the normal component 
of H is specified* For this distribution of flux on

mm

X there is a unique potential field x^lthin I , which 
may be denoted by H , and which is supposed to possess
a neutral point within X , Let be the energy of 
this field, Next let 8 H be any perturbation on this 
field, which retains the flux distribution on X , 
where forces are applied to hold the magnetic field 
lines in position* Let S¥ be the energy increment of
the perturbed field f Sh # Finally, introduce theo «#*
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magnetos ta tlo potential for H , writing H grad c[> • 
How, OB applying the necosaary vector identity,

am exproaaiom for S'w ia obtained., namely

§ n S w  - f s y ^ a i /  t-2 f cUr(d) s h ) civ/
ainoe div Sh w 0* In this equation the volume 
integrals are token throughout the velmue emoloaed by 
the aurfaoe X * From 'Gauss’© theorem the equation earn 
be written

S W  " -h —  f (p S H , cl6 (2*14),8 n* J U- tt j 2
But since the flux on X Is oonserved the second term in 
equation (2*14) vanishes, and so Sw ^ 0* Hence the 
.potential field is the field of minimum energy and,
therefore, must be a configuration of stable equilibx’xum.

Since Ihmgey ’ a analysis would seem to indicate 
that this field H is unstable at the neutral point,
a dilemma is encountered, the resolution of which must 
be along the following lines.

Within the approximations of the method, namely 
assuming perfect conductivity and neglecting the gas 
pressure, Dimgey’g solution at the neutral point of the 
field :1bp in a sense, correct* These approximation© 
break doxm at the neutral point, however, and the 
solution may, therefore# be physically unrealistic.
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tTnder the approxlmatlone used, the only way la which 
OB0 part of the fluid can Influence another Is by
hydromagnetlc effect©, which will he propagated with 
tho.Alfven velocity* This velocity of propagation 
goes- to zero at the neutral point. As a oonsaquence, 
the domain of dependence of any surface, however near 
to tout not containimg'the neutral point, and on which 
the solution is for a finite time, does aiot Include
the neutral point itself. The neutral point is, 
therefore, am isolated point, a m i the solution obtained 
there will not toe relevant to the solution in the 
surrounding gas* On the other hand, when pressure and 
magnetic diffusion effects are included, the. solutlom 
at the neutral point will indeed toe influenced toy the 
solution at neightoouring points. However, additional 
boundary eonditio-ms are them neooaaary to obtain this 
solution; and one cannot proceed toy Dungey’e very neat 
method# Xn short, Bnngey^s method relies on the fact 
that the neutral point is isolated, a fact that Fitalce© 
the solution obtained toy thia method Inappropriate to 
the physical problem,

Xt must be concluded, therefore, that the neutral 
point is not unstable in any real sense. Xt is 
poe-sibl© that a perturbation given to a potential field 
may Initiate a discharge of the type envisaged toy JDungey.
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But the total energy dissipated in the discharge will be 
exactly equal to the perturbation energy and no more*
The energy of the potential field itself is unaacallable.

Dimgey attempted to show that the Inolualon of 
gas pressure would not inhibit the development of his 
discharge, arguing that the proasure gradient would 
reinforce the elactromagnetio forces. In investigating 
this point, he examined a two*dimeneional field 
configuration and proved that the condition of static 
equilibrium require© an infinite current density at an 
X*type neutral point*

This second conclusion of Dungey’e worZc can be 
stated as follows, An isolated two dimaneianal 
magnetic field configuration containing an X*typa neutral 
point cannot be in hydrostatic equilibrium, Bungay’s 
proof of this theorem depends, however, on an 
assumption, albeit an explicit one, that the lines of 
force touch at the neutral point. The case where the 
lines of force cut at a finite angle is excluded by 
means of a qualitative argument, This argument ie, 
however, misleading. In the present thesis, it is 
intended to demonstrate the existence of a two-dimensional 
isolated field which contains a neutral point and which 
is in equilibrium under hydrostatic pressure, Im this 
Context, by an isolated field is meant a magnetic



77

eonfiguratlon whose outer boundary is a oiosed line of 
foroe# An isolated equilibrium field may toe constructed 
as follows.

' It is possible to specify a two-dimensional field 
that is independent of the z-coordinate# and %/hose lines 
of force are parallel to the x-y plane, by a vector 
potential A « (o, o, A(x , y)), An equilibrium field
ifith ti;o 0-type neutral points and an X-type neutral
point on a line of symmetry may be constructed as folloim
Let the 0-type neutral points be the points O^ and at 
X s3i i a, y ca O, and tolie the X-typo neutral point as the
origin O. The type of field under discussion is
illustrated in Figure (2-1).

The equation of hydrostatic equilibrium ifill 
simply be

Ou/y-6 H A H - 4  TT |D (2-13 ).

Taking the curl of equation (2-I5 ), and substituting 
the vector potential A for the magnetic field, yields 
the equation

, A ) _ O  (2-16),
21,

which indicates that the condition of equilibrium is 
that the current density 9^A should be a function of A,
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As a simple example# consider the solution
V  /Q ~ \ ft (2 -1 7 )*

By separation of the variables, the general solution of 
equation (2-I7) can be expressed# in polar coordinates 
with origin O, as

A z ^  ftzf) Jan (Xr) (2 *1 8 ),n-0
where denotes the Bessel function of the first kind 
of order 2n* Xn equation (2-18) account has been taken 
of the fact that A is finite at the origin# and 
alloi^anc© has been made for the symmetry and single­
value requirements of the type of field# illustrated in 
Fig (2*1 ).

BOUNDARY A = A

gig (2-1 ) Equilibrium field with an X-type neutral point# bounded by the equipotential AssÂ #
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It is more convenient, hoifevar, to xmrh in 
bipolar coordinates, taking 0^, 0^ as the reference 
points of the coordinate system# Xf r^, r^ are the 
distances of a point from 0^, Op respectively, then a 
particular solution of equation (2*17) is

A = ( %» (X n) + ) (2-1 9).

Here is a constant. In this solution the origin is 
automatically a neutral point, Xt %*/ill be an X*type 
neutral point, and Op will be 0*type neutral points, 
if

\ = (2-20),2. d
where r is the first positive zero of J^(r). The field 
given by equation (2-19) then of the figure of eight 
form near the origin that is shown in Fig (Z*l),

The complete field given by equation (2-19) has, 
of course, a much more complicated structure than that 
indicated in the diagraMi. Xt possesses other neutral 
points, in addition to the three 0^, Op, and O under 
discussion# Xt is possible, hoimver, to construct a 
field of the simple type envisaged in the diagram, by the 
simple expedient of enclosing the field by a boundary 
that is a lime of force, A Aj,, as shown im Fig (2-1)# 
Hm»erleal computations can readily verify the existence 
of such a line of force#
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T W  exm&plo although rather
artificial# doee prove the existonce of leolatcd tim* 
dlmosisloaal fleWe which posaesa # montrai point a W  
a$*o In equilibria» wdĉ '' gam prosswe# The exlatemce 
of cmoh equlllhrlum flnlda may bo Important In 
Imvoetlgatlone of th© development of oortals typo# of 
laotablllty in the field,# m i  which some flare theories 
depend. There le» however, no reaaon %#y fields of 
the Isolated type should speelfloally he eonalderod In 
such prohlemo, A "field lAioh has a flu$R dlatrlWtlo%3 
BpeolflW on Its outer boundary eeoms more appropriate 
for #%e solar ehromoephero* For the $''ooto of euoh 
fields are expected to lie helo%f the photoepliere. In 
regions of high gme density, where the lines ef foroe 
will he firmly held t u  position* The movements of the 
field lime# at low levels, due to p&%otospherle mot lone, 
them exert perturbât lens on the ehmmospherlo field* 
BqulllWlum eomflguratloms mmitutuXug a neutral point, 
for fields of this type for whioli the magmetle flux is 
©peelfled m i  the Wumdary# obviously exist# The 
potomtial eomfiguratiom already oomsidored on p# 73 is 
erne very simple example#
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(ili) S-qbseauomt. Bevolpmmentb

has considered Bungey’s type of 
die charge from a more saitisfactory standpoint* He 
considered a two dimensional example in which the field 
lines were directed in the x-y plane and were independent 
of the z-eoordinate* The field examined lay above a 
line in the x-y plame on %v:hich the magnetic flux was 
specified* The t%fln bipolar system considered is 
ahoim, in Figure (2-2). A flux distribution has been 
specified on the line PQ, and it is assumed that the 
field above PQ is initially of potential form*

The t%fO current systems A and B responsible for 
the magnetic field are noif moved together* Xf infinite 
conductivity is assigned to the fluid, then the lines of 
force ifill move with the fluid during this displacement, 
and a new field configuration will be taken up. This 
new configuration will be referred to as the colliding 
field* In general# this field cannot be of potential 
form# and electric currents will be induced above PQ 
by the displacement.



82

P
BA

Fig. I. Potential fie ld  of two bipolar systems.

Fig (2-2 ) Tho potential field of two bipolar
syatema $ O  •

From an investigation of the field above PQ that 
’I0 indnoed by a displaoement of the current systems 
through a diatanoe of the same order as their initial 
separation, Sweet derived the following important result» 
He shmmd by a detailed and rigorous argument that, if 
hydrostatic equilibrium is to be possible in the 
colliding field configuration, then there is a point M 
above PQ at which the gas pressure is at least of order .

"/8 TT, where is a typical value,of the magnetic
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iBtensity in the initial potential field.
This result was next applied to the solar 

atmosphere. Since the magnetic pressure above a spot 
group will greatly exceed the ambient gas pressure of 
the chromo sphere or corona, Sweet argued that the large 
gas pressures required for equilibrium cannot be 
maintained by the ohrcamapharic gas* He concluded, 
therefore, that in general a non-fsingulas'̂  equilibrium 
configuration will not exist*

While this conclusion would seem a reasonable 
consequence of Sweet*s result, it requires further 
justification. For, although the gas pressure in the 
initial potential field will bo several orders of 
magnitude below the magnetic pressure, the displacement 
might conceivably Imduoo a gas pressure sufficient to 
sustain equilibrium. Certainly a suffieiontly high 
gas pressure, of order "/8 rr, may be produced by 
compression in the immediate neighbourhood of the neutral 
point* The condition of equilibrium in a two- 
dimensional field reqi&ires @ however, that the pressure 
be constant along a line of force. The region of high 
gas pressure must, therefore, extend far from the neutral 
point, and, although the linos of force have theix’ roots 
in the photosphere, it is difficult to see how the
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nocepsary presamre configuration ooiild exist at 
chromospheric levels.

A more rigorous treatment of this same question 
has been briefly reported hy Hie method
ma/y be cu?.tlined as follows.

A system is considered within a region D, bounded
by a closed surface S, tmder the assumption that the 
electrical conductivity is infinite. Then the equation 
of hydrostatic eqi^ilibriw Is simply equation (2-15)*
How suppose that arbitrary small displacements are
mad© to the fluid within D* Let the resulting 
perturbatIons on the pressure, density, and magnetic 
intonaity be Sp, Bj , and §H rospeotively* Then it 
can be shown that those perturbations are related to 
the‘displacement vector £ by the following first order 
oquatioBs

S|> = - dlv f ^ (2-21),

SH = cxm-L ( ̂  a H ) (2*-22) ,

Sp = c ̂  (2-23).

Her© equations (2^21) and (2-22) are respectively the 
conditions of oomtlnuity and perfect electrical 
ccmdiictivity* Equation (2^23) depends on the assumption 
that the gas behaves isotli©r*mally5 c is the local velocity 
of sound*
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Further, from equation (2-15)» the equilibrium 
oondition to first order ean be written as

4- TT ‘̂ cxJ. Sp = OUyy-L H A SjJ f Cv̂t SH A H ( 2—24 ) #
Substitution may now bo mad© for Sp , § ||, and 5p from

^  mm.

equations (2-21) to (2-23)§ equation (2-24) will then
yield a single partial differential equation for the
displacement q, namely##»

GWv i H A C-wr( C <f A H) + cXaw/ [  Câ L ( 4 a j  a H~ “ (2-2 5)*
+ A- TT C  ̂ cUiĴ  ^ = O

A solution for this seoond order equation is then sought 
within the region D, As a boundary condition the 
displacement vector q is specified on the bounding surfacemim

B.
Sweet examined equation (2-25) for a cylindrical

configuration, In which the field was independent of the 
%-ooordlnate# It wa,a found that a non-singular 
solution of aquation (2-25) under an arbitrary boundary 
displacememt does not, in general, exist* Further, it 
was Shown that a sufficient condition for this non- 
existence is that (n  ̂f Brrp}^^ should nowhere exceed a 
certain positive upper bound, which depends on the sisse 
of the region B under consideration. Hare dashes have 
been used to denote differentiation with respect t# a 
vector potential A of the form considered earlier in this
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Thus magnetic energy can be extracted from the system 
in a time-scale far shorter than the time of normal 
résistive diffusion. The main body of the present 
thesis is ooneerned with am iavostigation of the 
interpenetration and reooimeotien of the magnetic 
field lines in such regions of high current density* 
Separate investigations of this mechanism along similar 
lines have previously been made by Parker^ » 39 ) ̂ and
these will be discussed in the course of the work,
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OHiimm 3
SXMQVhm moNETOHYDROSTATIC OOHFiaHRATXONB

The general problem of the behaviour of a plasma 
under conditions of movement of flux systems cannot 
readily be studied in an exact manner. A two- 
dimensional system of a very simple nature will# 
therefore, be examined, since it lends itself to 
quantitative analysis. The magnetohydrostatics of the 
system is treated in detail in the present chapter, and 
this treatsîîont will provide ssero-order solutions that 
are required to solve the more general dynamical problem 
discussed in chapters 4 - 6.

(i) A Simple Two-Dimensional Model

Consider the field due to a system of two
identical line currents, each of strength 1^, acting
along the positive directions of the lines x % - a^,
y SÏ 0. Represent the magnetic field of this system by
the vector H c» (E_, îl_, O), and by the vector —“ X y
potential A » (o, 0, A). Then clearly E_, H_, and A —• X y
are all functions of x and y only, and it is possible 
to represent the field by a complex potential f(z), 

es X -t* iy), ifhere
f ( z )  3 ~ ( 2  lo /c  )  icry ( z"" -  ao )   ̂ )  .
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Hot© that A is tho real part of f(ss)# and so

A = - (2L/c) (3-2).
Them the magnetic imtemsity is given by 

f'tz) - - i H dc (3-3) >

which yields the result that

i Ho. + Hy = A i  ---2----  (3-4).
C (ẑ  -

The field of this system is illustrated in Figure (3^1) 
im tvhich the line currents are directed into the page, 
(i.e. 1^ < O). The lines of force illustrated are the 
equipo t ential a A « constant* and form the well-Xçnoimi 
set of Casainian ovale.

A finite boundary is now assigned to the system, 
and a finite thickness assigned to the wires * thus 
replacing the line currents by current cylinders of oquel 
current strength. The exterior boundary is taken to be 
the equipotential (as calculated from equation (3-2)), 
going through the point x ks O* y « The boundaries
of the wires will be taken, for convenience, to be the 
equipo t ential a through the points x -(a^ - b^) ,y » Og 
this step will involve no significant loss of generality. 
The system within these boundaries is, then, still 
represented by equations (3-1) to (3-4).
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Fig. (3-l) The potential field of two lino
ourrenta

Suppose now that is the magnetic flux (per 
unit £s-length) crossing tho x-axis between the neutral 
point and one of the current cylinders. Further, let 
Fj be the value of the flux that crosses the y-axis 
between the neutral point and the outer boundary at the 
point (O, . Then from equation (3-2) two relations
are obtained, namely
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F„ - I L
CXo’̂

(3-5).

1%' 2 L iV ■j- (K{
<Xn (3*6).

Xn this system each wire is subjected by the 
magnetic field to an inward force* Xt is supposed, 
therefore $ that initially the two wires are held apart 
by an external force* This latter force is then 
relaxed slightly, allowing the currents to move together 
at a rate sufficiently slow to enable tho inertia of the 
system to be neglected* Lot it bo assumed, therefore, 
that at a subsequent time, the distance betwoen the two 
currents has become 2a, that their strengths hay© become 
X, and that the values of the two fluxes F^, F^ *, 
defined in tho previous paragraph, have become F and Ft 
respectively* Xn addition, it is assmned that the 
distance of the outer boundary is kept constant, and that 
the thiokmcBs of the current cylinders remains b^* As 
til© displacement talcos place the shapes of the boundaries 
are altered slightly so that they remain equipotontials. 
This is a convenient approximation to a system with rigid 
boundaries, and again will cause no essential loss of 
generality*
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Xf the medium within these boundaries is non- 
conducting* the field readjusts itself during the 
displacement * retaining potential form. Xt follows 
that the magnetic field may foe written as

i Hu = ^  - f   ̂ (3-7) .
(f c ^  >— d

From this equation the fluXes F and F* can be calculated. 
Then the condition of total flux conservation,

F + F ' = IL + Fj (3- 8) ,

will yield I as a function of a, for given values of 
a^, b^* and

If* however* tho medium is perfectly conducting 
the magnetic field moves with the material. Equation 
(3-8) is then supplemented by the additional flux
condition*

F = F„ (3-9) .

Now for a .potential field, the ratio of F to is a 
prescribed function (following from equation (3-7)) of 
tho diaplaooment (a^ - a). Thus the condition (3-9) 
indicates that"the field r^^hlting from a displacement 
of the kind described, in a perfectly conducting medium, 
can. under no circumstances be potential* and electric 
currents will bo induced by the displacement. The 
form of these currents, however, is not predetermined
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by tho aoparatioB a* but dopopds on the motion of tho 
lîiodltiMî during the dioplaoemont.

(li) Determination of tho Shoot Current Xnduoed by
Diaplaoementa of a Perfectly. Conducting Medium*

The work of S w e e t , to which reference was 
made in the last chapter, shows that a general 
displacement of the system described in section (i) 
will involve the production of a sheet current. Hero 
it is intended to consider on3.y the special limiting 
case of zero gas pressure. Since it has already been 
shown that the displaced field cannot be potential* it 
is at once clear that, in this limit* a sheet current 
will be induced by any displacement of the two current 
cylinders.

For equilibrium it will be necessary that the 
horent% force have no component along the current sheet. 
This requirement will be satisfactorily met if the 
magnetic field is parallel to the sheet current; that 
is, no magnetic flux crosses the sheet# How the 
conditions of symmetry require - in the limit of zero 
gas density - that the sheet current lie symmetrically 
along one of the coordinate axes# Xf it departed from 
these axes it would bo subjected to an unbalanced 
magnetic force# Xn fact, for the displacement described
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in section (i), a sheet cnrre%it will he induced along 
‘t h O ' ' ■ 'Suppose that it is of length 2L,

Fig (3^3 )* The field of two line currents and asheet current of length 23b

The prohlem is to find tho magnetic field duo to 
two lino currents at the points x i a| y cs O and a 
sheet current of length 2L, across which no flux passes* 
This magnetic configuration is illustrated in Figure 
(3**-2). By working in elliptical coordinates, it is 
possible to show that the general solution for this 
problem can be written as
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; H . ,  H, .  <="“ >•

To ramovo t W  infinities i.m tho mmgaetio intensity at 
tho points m *5; ï IL# it is nocorsoary to take 0.
As the strength of the two eurrent -oyliiiders ia knoim
to bo I» i'tt Xb also posDiblo to detomiime * TheJL
liiagaotie field resulting from the displaoemont iiu ttwn 
fomitl to he

cH*+ Hij. = A I ^  _ei±A)^ (3^11).C (.L'*- + cO') V

Xt ia important to note that iu both aquation 

(3*̂ 10) asi.d ‘îr is to be toterproted ae
# following the gemorally aeeepted 

oonvemtiome for the interpretation of noB«*iutegral powers 
iri the. theory of fhuetieua of the eompioas: variahle^^^^^. , 
Thia iatorpretatioB is neeeeaary to ensure that tho out 
Im the oempie% plsmo ooimeKWo %-;ith the shoot om:̂ t*ont« 

%î@93,*%̂g <%%&%&s%3;3Le3% 3L&%1&t%gp%*(&ikjLt)%& <>3? (9C|t&(&i;3Le*%
(3#.ll) will yioM the eemplex potential ̂ v&w

f  L" f  (C)'"L Z -  A (  L." ff (z)  ̂ _ -i-
Cl-'*- + Z  +- <s. ( L ’- A

AI«l éUvt»-' ^  (3-18),
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Xï'rom equations ( )  and (3-*i2) and two fluxes F and F* 
are 0bta.ined as fallows ?-*•

a’- ̂ ^  I___
c \C 4 L2 Lry(-

4* a
ci( f Cd- Ito)̂) ̂ — (l̂-f-f )̂  ( ft-- Itq ) \
CL c L"̂ + 6<\.- ^ C L̂ + (i) ̂ Î / (>13).

I -  \ 21 a
(%̂ + r 2 u (V L

, I (LU^j'i R. - 0. [ tiô - cY'- 
^  \ (r+A))^R» -+ cv ( R.’’ - e a

These results will now bo applied to a system whioh has 
no outer bomictory.

hot tend to Infinity; for large , equations 
>6) and (3-14) respectively yield

and

Fo'

I— t

C

41 a
L" + CL̂ SR

(3-15).

(3-16).

F and arey however, finite and Independent of
So, as CO , equation (3*#8), the eondition of
oonservatioB of total flux, shows that

4- L' T (3-17).



It will be convenient to reduce a, b^, and L to
dimensionless form; so put

a. y L 8 ° ^3.o OL 0 Ci t,

Then, with, these substitutions, and using equations 
(3-3)1 (3-13)» and (3-i?)# the second flux condition 

can fo© written ao

Uj C 2 e- B') , 2

( 1 * ri'i u . /x(y*(«-6rt:;‘-<x-*Yy(x-B)\

97

0-70-3 10P:05

Length of tho cur^̂ ent sheet induced by the 
displacement Of the current cylinders
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Iquation gives a relationship between the
dlmeaslohless values of b , and L# In particular, 
it enables the Value of h to bo determined for given 
values of a^, b^# and a, thus determining the length of 
the induced current sheet as a fmnctiom of the dis#, 
placement of the two current cylinders, Equation 
(3-19) may be solved numerically by a simple application 
of Newton••s method of successive approximation* Three 
solntiona are shown In Figure (3#3) as a graph of Y 
against X for three values of namely B « 0*05,
0*3, and 0*7*

As already mentioned, each current cylinder is 
in general subject to an inward magnetic force. The 
magnitude of this force, G say, can be evaluated by 
considering the magnetic stresses of one half plane upon 
the other* Since the integrated magnetic stress round 
the outer boundary goes to ^ero as this outer boundary 
goes to infinity # from (3#ll), II ^  4la/e(a^ for
large s # , It is clear that the attractive force G is 
simply

G . ^  / _ [' w; (3-8G).
4-tt V Jl Jo /

Substitution for g from equation (3-II), and integration 
of (3-EQ) then yields
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Q - i (3-21).
a L^)

It follows that equilibrium will be attained when the 
displacement has been allowed to proceed until L a a.
The required externally applied forces on the ciarrrent 
oylinders cam them be entirely relaxed*

Suppose that equilibrium is attained when 
a M a^* If the mediw is taken as strictly perfectly 
conducting, the system will remain indefinitely in 
this equilibrium configuration with I# a Q a_* If, 
on the other hand, very large but finite cemductivity 
:1b assigned to the medium, there must be a gradual 
lealcage of flux through the sheet current due to 
magnetic dlffusiom. The flux F* will increase at tho 
expense of the flux F between the current cylinders 
and the origin* The two current cylinders will 
continue to move together, and a and h will vary* The 
system will, however, retain its equilibrium 
configuration * The flux condition of equation (3*9) 
must, therefore, now be replaced by the condition of 
equilibrium, namely

L = «- (3-22).
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Tho other flux condition, equation (3-B), however, holds 
as before, and, therefore, equation (3-1?) which is 
based on this is still applicable. Due to (3-22), this 
equation can no%\7 be written in a simpler form, via

(2-23).

Making use of these two new conditions, the
0

expression for the flux F can, from equation (3-13), be 
written in a now form,

F = 111. S' [ jpo
CL

+ •Jz S'( ( I -t- ( 1 ” (rp/g. — \T2 ( 1 — iro /  cl)

( 1 + 0- + Vz ( I - U/^) (3-^4).

Taken together equations (3-3) and (3-̂ ^̂ ) then yield

F
2, Lcrtir - Aci <%

\Jz / -. /(\ JK i- \ Uy^(ci+ - w«-)/Jl
(3 -2 5 )

This last expression can be simplified in the 
case when the current cylinders are very thin, that is 
when b^/a «  1. Then neglecting terms of order (b^/a), 
equation (3-2 3 ) can be reduced to give the separation of
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the currents, a, as mi explicit function of the fluxes 
and of the initial parameters of the system, a and b^* 
This expression is fowid to be

~ __L_ Ly ._f2_ + x/2 U  ( I + Æ )  (3-26).tro vf2 Fo ^  2 k f

The above hydrostatic analysis \irill provide the 
jsero-order solution of the dynamical system to be 
considered in the next chapter. I Then the effects of 
finite conductivity are allowed, the current sheet must 
be replaced by a thin finite region of high current 
density. The field outside this region is described 
to z,ero order by equation ( 3-11 ). Equation (3-26) is 
also of importance, in that it can be used to relate 
the rate of magnetic diffusion in the current sheet to 
the rate of displacement of the two current cylinders.
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Fi^ (4**l) The fioI4 iw the region of high
Gurreat density

It wiiX be convenient to work in terms of three 
characteristic velocities, defined as follows

U".

Ho
(4- rr /o )

9 t _

r
Vz

(4-1),

(4-2),

p. being the moan molecular weight of the gas in units
of the mass of the hydrogen atom,
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and UT „ (4-3) ♦t) -
4- TT L

Then is tho Aifven. voXocity, and v̂ , essentially the 
sound velocity, in the ambient gas* Further, is the 
velocity of magnetic diffusion over a scale-length L*
Two modee of interpenetration are distinguished, the 
compressible and the incooiproBsible cases being treated 
separately.

The first of the order of magnitude aolutlone for 
q*aasi-6tationary conditions that follow is essentially 
that originally given by P a r k e r ' Parker has also 
developed a aemi-quantitative treatment of this mode( .  
In addition, he has included the effects of ambipolar 
diffus;Ion, which will not be considered at this stage* 
hater it is intended to follow a slightly different line 
of argument, based on a more direct formulation of the 
differential equations* In this way it may be possible 
to examine the significance of an undetermined parameter 
(<7<) that appears in Parker's work.

Consider now th«| system illustrated in Figuret,
(4-1), In the incompressible case, the density is y ^ 
throughout the current region, and the equation of 
continuity simply yields



105

or, I ^  LT<, L (4-4) f
The outflow velocity , or more oorreetly an upper 
limit for it, is obtained by equating the kinotio energy 
of the gao squeezed out along the layer with the magnetic 
energy convected into the layer* This gives

—  & u? ̂ tTo L (4-5) #2 S ir
From equations (4-4) and (4-5) it at one© follows that
Vĵ  ̂  v^, the Alfven velocity*

Finally, since v^ will simply be the velocity of
aiagnetic diffusion across the current thictooss ,

'Xit fellows that
c ̂X  (4—6)*

4- TT O- ^

Equations (4*4) and (4-6) are now sufficient to detes'mine
a solution for and ^ , In terms of tho characteristico
vaiocitioB this solution is

/ ^  L

' - -P

Equations (4-7) and (4-8) form the basis of the 
order of magnitude solution for this incompressible mode* 
From these two equations it is a simple matter to
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determirio th© magnitudes of the remaining physical 
variables* Sino© v^ >) v^ in most astrophysical 
problems, and particularly in the ohromospheric 
conditions relevant to solar flares, it is clear from 
equation (4-8) that this mechanism, even in this slow 
mode, allows a much faster rate of magnetic field 
annihilation than is possible with normal magnetic 
diffusion* The rate is enhanced by a factor of order

The incompressible mode, just considered* ifould 
^PPly the case whore the gas pressure is greater than 
the magnetic pressure, or at least comparable with it. 
Such conditions certainly exist on the sun, - in or 
below the photosphere. Of more interest to the solar 
flare problem, however, are typical chromo spheric or 
coronal conditions in which, at least above an active 
region, tho magnetic preseuro greatly exceeds the gas 
proseure. This implle© that 

2
Jlï »  /o (4,̂ ))
^ TT

and tho incompressible analysis will no longer be a good 
physi0al approxlmation.

Consider again the configuration represented in 
Figure (4-1)* The effects of compressibility will now 
be important * Only the simple case of isothermal
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compression will be treated here. It may be imagined 
that radiative losses keep the gas at some constant value 
of the temperature, - a fair assumption in viexf of the 
extreme thinness of the current sheet that is derived*
The high magnetic pressure on the sides of the current 
region compresses the gas in the interior to a very high 
density* The condition of pressure balance across the 
current region gives the result that

o pI'l Vg'" ̂  ~/8 TT , or equivalently

fi ^  (4-10),
where y, is a typical value of the gas density inside 
the current region* A further relation is obtained 
from the equation of continuity, namely

1̂ « cr, fot- (4-11).
If it is assumed that tho field in tho current 

region is of the form shown in Figure (4«1); to be more 
specific, if it is assumed that typically

Ha. ~  A  H y  (4-12),
where  ̂is the thickness of the current sheet, then the 
y-componente of the gas pressure gradient and of the
magnetic forces are of the same order, and work together
in expelling the gas from the current region* On the
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basis of this assiraptioM it is readily seen that

^  (4^13)

BO that tho ojectlon velocity is, from (4-10),
OBsentially the Alfvon velocity in the compressed gas # 
Noxf equations (4*10), (4-3.1), and (4*13)* together with 
equation (4*6), whioh still applies, are sufficient to 
derive the order of magnitude solution* This is 
found to he

'A . (4-14),
f\

\r„ ~  LT
•̂s j fl (4,15).

The main effect of compression is to a'educo the•j
thickness of the current region by a factor  ̂*
Tho diffusion of the magnetic field then takes place 
across tills reduced distance at a proportionately 
faster rate^

This order of magnitude solution, originally due
to Sweet, was first given in a paper by Hoyle and
%'fickramasingho(̂ ^ ^  who applied it to a coronal problem
tineonnectod,^with solar flares. Later it was independently

( 59 ideveloped in a semi-quantitative manner by Parker^  ̂ and 
applied to the f.laro problem* Parker-'e treatment, like 
hia treatment of the incompressible mode, contains an
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iuMetermincd parameter * ït is iriteacîed to show, however, 
that in thio caee.of eompreasibXe flow, this parameter is 
indeterminate, and that this fact lo indicative of the 
Qxlatence of a faster mode of interpenetration* The 
baeis of Parker's mode is essentially the aeswptlon 
oontainod in equation (4-12)} this assumption requires 
justification hy a coasistenoy argmaemt such as is 
attempted later in the present chapter* The assumption 
made in (4-12) about the size of determines the order 
of magnitude of the magnetic force ejccting material 
from the current region. The fluid motion will, 
however, itself effect the magnetic field* Xt is not 
valid, therefore, to impose a boundary condition on 
II based on the analysis of chapter 3* To do so would 
incorporate the assumption of equation (4-12) and make 
the problem definitive. Xt is necessary, rather,to 
examine the correctness of such an assumption by moans-''' 
of a strictly quantitative investigation of the motion 
in the interior of the current region*

(ii ) Ilydr yma^ne t i c... Eguati one

A quantita11 va treatment is now attempted of the 
two modes of interpenetration, discussed in order of 
magnitude in the last section. First of all the 
hydromagaetic equations are stated.
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These compris© first the el©c1;roraa0not.ic equations,
via

ciUr H  ~ O

c 9 e

(4*17),

( 4—3.8 ),

and i_ = E + _L ( z  A H) (4-19).

In equation (4-l6) normal practice has been followed in 
omitting the displacement current* In the conductivity 
equation (4-19) only oWic effects have been included; 
the Hall current term has been neglected.. Further, as 
already mentioned, the effects of ambipolar diffusion 
are mot included in this treatment*

. These electromagnetic equations will foe 
supplemented by the hydroclynatniio equations, namely

(4-20),
0 t

* IJ
- -fraj-p + ~ - = -  (4-21).

Notice that the effects of viscosity and gravity have 
both been omitted from the equation of motion, equation 

-21),
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Owing to the two-dimensional' form of the problem 
to he' considered, -it Is passible to malm a' considérable
aimplifleation of these equations. So let ue introduce
a vector 330tentiaX A, where

£  = ( O, O , ) (4-22),

In the sasoe way aa in Chapter 2 , section (ii). Then

H  - („.,3).9 a  /

Again, the two-dimensional form will allow one 
to write

j = ( 0, 0 , 1,)
(4-24).

1 = ( 0 , o, E^)

Equation (4-l6) can, therefore, be scajarized to give

jz = - ( c / 4 T r ) v ^ A  (4-35).

Further, aquation (4-3.7) can foe integrated to
yield

E. = ' 7  I t  * r ‘̂ 'I' (4.26).

and tho two-dimensional form requires that grad ^ bo a 
constant, independent of position. So put grad
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thon the valu© of will he determined by the choice 
of the zero for c)A/'c)t# The logical etep would be to 
take A constant on the boundaries of the flux systems, 
i.e. in the model of chapter 3, on the boundaries of 
the current cylinders. In this case, « O, It is 
more convenient, however, to define A so that throughout
the motion A % O at the neutral point. Then with this
definition, « E^(0 , O).

Using equations (4-25) and (4*26), the four 
electro-magnetic equations can bo reduced to the form#

3 A _  A H _ s i — = cE^ (4-27).
d t Jf cr

The above equation (4-27), together with (4*20) and
(4-21), are the equations that must be considered in the 
quantitative treatment of the interpenetration modes.

Before proceeding to the quantitative discussion, 
it might be profitable to pause a moment, in order to 
state the exact nature of the problem that is to be 
examined in the remainder of the chaptex'. The problem 
concerns the derivation of a solution, or at least the 
essential features of a solution, for the dynamics of 
the region of high current density that results from a 
breakdown of hydrostatic equilibrium due to the 
relative motions of two flux systems embedded in a gas
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of high conductivity. For simplicity, the flux système 
have been taken to be of the idealized two-dimensional 
fox*aiî of two infinite parallel current cylinders.

Divide the domain of hydrodynamioal flow into 
two regions as follows. Ilegion X is defined as the 
region of high Current density; the surrounding region 
of tho gas is termed region XX. As the conductivity
tends to infinity, region X shrinks into a sheet current, 
and conditions in region XX approach the magneto- 
Hydrostatic conditions. The solutions derived in 
chapter 3 from purely hydrostatic considerations are 
then applicable in this region. In particular, in 
region II the zero-order magnetic field is given by 
equation (3-II). Dynamically the zero-order solution 
for region II is simply v « 0. A zero-order solution 
does not exist in region I, since region I itself does 
not exist to zero-order.

A first order solution in region I is then sought,
by attempting a solution of the dynamical equations in this
region. The boundary conditions for these equations are
provided by the zero-order solution in region II. It is
here, then, that the analysis of chapter 3 is important.
As with the earlier order of magnitude considerations, so
in the quantitative discussions that follow, it will be
necessary to treat separately tho incompressible and the 
compressible cases.
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(ill) Incompreasible Mode,

Hydrostatic solutions wore obtained in chapter 3 
for the limiting case of zero gas pressure* In this 
case a single sheet current was obtained. The surrounding 
field was of potential form. Such analysis is directly 
applicable to the case where v̂.,, since the low gas
pressure will be unable to sustain a non-force-free field. 
This corresponds to the compressible case to be 
considered in the next section. In the case under 
consideration in the present section, the gas pressure 
must be at least of the same order as the magnetic 
pressure, if not larger, and the magnetic field need no 
longer be of potential form. Electric currents may be 
induced provided only that the resulting magnetic forces 
are balanced by a gradient in the gas pressure.

When the gas pressure has been included, therefore, 
the condition of hydrostatic equilibrium is given by 
equation (2-15)> or equivalently

^ ^ — (4—28).
c

On introducing the vector potential A from (4-23) and 
(4-25)f equation (4-28) can be written as

fr<^ p = - f r S  f) (4-29).
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From (4*29) it Iq clear that, the condition for 
magnetohydroetatio equilibrium is simply that tho 
current dcais:l.ty' and tho pressure bo functions of A, and 
60 are constant along a magnetic.• line of force* Xt 
foilowa from (4.*29) that

if- = -  (4 -30 ).
d h  A f  7T

The presence of gas pressure allows the 
possibility of a different typo of sheet current from 
that derived by ignoring pressure effects. Xn the 
earlier case a symmetrical displacement of the line 
currents produced a sheet current along a finite segment 
of one of the coordinate axes, No other type of sheet 
current was admissible, 1#en the influence of gas 
pressure is taken into account, however, the possibility 
that the sheet current has the fonu shown in Figure (4*2) 
must be considered.

Xn this case the magnetic field changes non* 
symmetrically across the sheet, the resulting change in 
magnetic pressure being balanced by a change in the gas 
pressure. Such a current sheet clearly cannot exist in 
the absence of gas pressure, and was not considered in 
chapter 3, Aa the gas pressure tends to zero, the 
strength of the curved part of the current sheet in
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Figaro (4-2) must etlso tend to o, while the strength
of that part lying along the coordinate axis will 
remain finite. Thus in the case of very low gas 
pressure one is again led to the type of sheet current 
considered in chapter

Fig (4*2) The field of two line currents and a sheet current following a closed line 
of force.

If and are the respective magnetic field 
strengths at a point on either side of this current sheet, 
then since it has already been seen that hydrostatic 
equilibrium requires that the gas pressure is constant on
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a line of force, .it io clear that

~ ^Tr(pi-p.) " constant (4*31) i

w h e r e  p p  aa?e t h e  values of the gas pressure o b  

either sxcle of the sheet.
tlion gas px’0£3̂ suro is Important, it is not clear 

whioh type of sheet current %flll be foOTod; it may well 
depend on the .nature of the displacement of tho flux 
systems. The rate of magnetic z*ecoimootion in the type 
of sheet current ahoxm la Figure (4*2) xnill in genera.!, 
bo sl0v/er than tho rate for tho typo illustrated in 
Figure (3**̂ )» since tho dynamical conditions that lead 
to enhanced imterpemotratiom are not present in the 
curved part of the current sheet, Tho intoz'ponotration 
across this part of the sheet reduces to virtually static 
diffusion. % e  thickness of this region adjusts itself 
so that the interpenetration through it keeps pace with 
that taking place in the straight part of the current 
sheet. Notice that the intwpenotration in the straight 
part of the omirent shoot will be slowed doim since the 
ejection of material will in part be opposed by the 
higher pressure p^ (Figure (4*2)), which is alxmys in 
excess of the pressure on the current region's sides. 
This may in part be compensated by the fact that the

, that would have been ejected from the current
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sheet along tho earn now flow out of tho omirent
shoot over an aẑ ea dis tribut od over the whole of the 
curved portion *

Tlie oxiatenco of current shoe ta of this typo baa 
bean examined by Hi a diaousaion ooncerned
a eomproaaible gas, though no aaaimiption was made that 
the gaa proaaura waa email. No treatment has yet been 
given for a etrictly incompresBible fluid. The 
present iacompreesible treatment is, however, only 
intended to represent the case where the magnetic 
pressure does not exceed tho gas pressure by a large 
factor. Xncompresaibility is essentially only an 
approximation to be applied xvithin region X} it is not 
to bo regarded in any sonse as a general feature of the- 
fluid, ¥ith this proviso, thon, with regard to tho 
meaning of incomprossibility# Sweet's writ may bo used, 
and tho formation of a sheet current after sufficient 
diotortion of the field may be assumed* Whether the 
induced sheet current will be of the 'straight* or of the 
'curved* type, iimstf hcxfever, remain uncertain.

To determine the boundary conditions on region Ï, 
it will bo assumed that a current shoot, has boon induced 
simply along the y*axis. Further, use is made of the 
field dez'ived in chaptez* 3 for this sheet current
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togmther witli tho two current cylinders. This is taken 
to represent the magnetic configuration in region IX to 
aero-order# and can# near the y-axis# he written as

7 Ho L (4-32).

Here is the field on the positive x-axis just outside 
the current region. This, then, will be the boundary 
condition on region I.

It is Important to remember that the field of 
equation (4-32) is the result of two assumptions made 
about the field in region XIj - firstly that the induced 
current sheet is of the •straight^ type, and secondly 
that the field in region IX is of potential form. 
Certainly such assumptions are consistent with the 
condition of hydrostatic equilibrium* Nonetheless the 
field in region IX depends on the displacement of the 
field lines from the initial configuration, and the 
condition of equilibrium is simply that of pressure 
balance, given by (4-30). We are, however, entitled 
to adopt an initial configuration that will reduce to a 
potential configuration on arrival at the sheet current 
situation, just described. Equation (4-3^) may then 
be taken for definiteness to provide boundary conditions 
on region I.
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In the inoomj>re3sibl0 casd tlio equation of 
continuity (4-20) reduces to

d w  <£ = 0  (4-33).

when stationary conditions ( 9 / c)t =  O) are assumed.
It is convenient, therefore, to introduce a stream 
function £ a (o, 0 , |#(x, y) ) so that

V- = cu^L d) = lié- , - , O  \ (4-34).
1 {2^^ d x  )

If now substitution is made for v and H in terms 
of their respective potential functions, then, again 
under steady conditions, the hydromagnetic equation 
(4-2?) can be rewritten as

i l A ^ )  _ _£i. =  C Eg (4-35).
dtxi^) U ttct

Further take the curl of the equation of motion, equation 
(4-21), to eliminate the pressure and the other gradient 
terms. Then this equation can, on introducing the two 
potential functions, be reduced to

21ÎlV>) = _yl_ (4-36).
() ( 9L,  ̂) ZpTT f )

The equations of the system are, therefore, 
reduced to the differential equations (4-35) and (4-3^)
in the two potential functions. In an appendix to his
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recent paper, Paa^ker' lias suggested that solutions
of ■ the form ■ >

V  ĉj; = f ( <j>)
' Mfl)

might be possible, on the grounds that equation (4*36) 
would then be automatically satisfied!. But it is easy 
to see that equations (4-37) impose on the solution 
conditions that arè not met in the problem at hand.
For the boundary of region X is defined by A w 0.
Tlie second of equations (4-37) requires this to be a 
line of force. Such a boundary is quite clearly not 
applicable to the type of current region under 
consideration, namely that corresponding to a straight 
current sheet, (Figure (3-^))* If the boundary were 
indeed a line of force, the current sheet would have to 
be of the curved type discussed earlier in this section, 
and shown in Figure (4-2). This type of current sheet 
would involve a rather different interpenetration 
mechanism to that envisaged by Parker and under 
discussion here.

Xt is clear, therefore, that a solution of the 
form of equation (4-37) that is relevant to the present 
problem cannot be found. Instead the equation of motion 
must be examined in more detail. In fact, the problem
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is not roadily treated im an exact manner. Nonetheless 
it i© intended to state the relevant equations for the 
salî:e of complet one as,

It will be more convenient to use the two 
components of the equation of motion directly, rather 
than to malce further use of equation (4-36). Consider, 
then, the x-component of the equation of motion (4-21). 
Since the velocity of inflow is small, this equation 
reduces to a static equation of pressure balance, vis

-L Ifl + _ L _  X7%A = O  (4-38).f 3 a  U-jr ̂ 9 a
Since the thickness of the current region is very 

small in comparison with its length, the following 
approximations are justified5

3" A

On substituting for from equation (4-39), equation
(4-38) can be integrated to yield

p = (4-4o),9 IT \ 3 % y

where F(y) is a function of y to be determined.
Now the boundary condition on the field in region I 

is, from equation (4-32),
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M  = - h . l
f  (4-41).

M  = O

Further, the gas pressure p must be constant on the
tboundary of the current region, since in region XX the 

pressure will be constant 'along a lino of force, due to 
the condition of hydrostatic equilibrium • Talc on with 
the thinness of the current region the condition (4-4l) 
shows that the boundary of region X is indeed a line of 
force to S5oro*order, - but not, of course, to higher 
orders. Moreover, since it has been assumed that the 
field in region IX is of potential form, the pressure 
will be constant along the boundary a fortiori. Lot p^, 
then, be the constant value of p on the boundary; using 
the condition (4-4l), it is now possible to solve for F(y) 
obtaining

The gas pressure is then known in terms of A from equation
(4—4o)*

Next, again substituting the potential functions 
for the magnetic field and the fluid volooity, the 
y-component of the equation of motion (4-21) can be written as
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1 ( 2 4 , ^ )  .  _ L 1 ^  + 3«_ (« .4 3 ),

where the symbol J denotes the Jaooblan operator, i.e.

a . ^ )

Thou, on using the approximations given, in equation 
(4-39), and substituting for p from equations (4-4o) and 
(4-42), this y-oomponent can be rewritten as

J h . l ± \ =  _L_ T / A , M \ +  ~ f \
\  I Urrf \ dx /  4  tt/ (

(4-44)

Further, by equation (4-39)# the conductivity equation 
(4-35) can be slightly simplified to give

T(fl, (J<) _ c' I1Ê- ^ cEo (4-45)4- TT tr

These last two equations, (4-44) and (4-45), must 
be solved for A and 0 within region X» The boundary of 
this region must be determined from the solutions Xt 
will be the curve on which 3 ̂ a/ 3 » 0. Denote this
curve by C* Then it will be sufficient to solve for fi 
and A in the first quadrant; that is, within the region 
bounded by the positive x- and y-axes and by the curve 
C. The boundary conditions on ft and A within this region 
will be as follows
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On X ta 0, = G

On y K3 O, - G)

0 « C  3^ = - (4.46).
aoc L ‘ + ÿ."

and 2i. = O

Xn equations (4-46), th© first two conditions are 
conditions of symmetry, and the third is singly equation 
(4-4l), The final condition is due to the fact that 
outside region X the fluid has not yet been 
accelerated and, there foie, as 0(v^)| inside region I, 
however, v^ « O(v^) and so v^. Thus on the
fooimdary, to a first approximation, v^ « O.

The solution of equations (4-44) and (4-45) with 
those boundary conditions will, of course, depend on the 
value of the constant Further, the shape of the
boundary will also depend on the value of this parameter. 
If non-eingular solutions with a closed boundary curve C 
exist only for a finite range of values of then an
upper limit for can clearly bo obtained. The 
interpenetration of the system will speed up until the 
upper bound is attained, and then will remain steady at 
this maximum rate of interpenetration, If, on the 
other hand, such non-singular solutions exist for all
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values of  ̂ this fact would be indicative of the 
exlateppe of a faster mode of interpenetration.

As this is essentially a jury problem, it ie not 
possible to derive, by any straightforward method, the 
main features of the solutions that would be necessary

(59)determine whether the mode ia definitive. Parker , 
in his a ami-quanti tative treatment of this mode, 
derived a solution along the x-axis. But this 
solution can shed no light at all on the question of 
the possible existence of an upper bound for 
Parker *'8 solution was not a solution of the two equations 
that are being considered here, the conductivity 
equation and the y-component of the equation of motion; - 
rather it was a solution of the conductivity equation and 
the equation of continuity, based on an empirical 
assumption. This assmuption, which was Justifiable 
only on an order of magnitude argument, was that on y % O

3 (XIf ^(p-f )
f

(4.47),

where ^  is a constant. In this way, Parker avoided 
solving the equation of motion, and determined his 
solution for v from only the conductivity equation.
It was then possible to detdrmino the value of in 
terms of ^  , This latter paroinoter, however, remains



127

undetermined and indeed quite arbitrary, as is the 
assumption (4-47) that introduced it. Moreover this 
assumption ignores the accelerating effect of the 
magnetic field# Clearly, then, Parker’s solution can 
give no further insight into the question of the 
definitiveness of this incompressible mode.

Parker’s derivation of a solution in the 
compressible case again follows the lines of argument 
described in the previous paragraph# In the next 
section it will be shown, however, that it is possible, 
at least in the compressible case, to obtain a solution 
along the x-axis without recourse to Parker’s arbitrary 
assumption# Further, it will be possible to 
investigate the question of whether the mode is 
definitive, a vital question omitted from consideration 
in Parker’s treatment.

(iv) Parker’s Compressible Mode

The compressible case, which is more readily 
amenable to quantitative discussion, will now bo examined. 
This analysis is more directly applicable to the case 
of solar flares. For under chronic spheric or coronal 
conditions it is expected that the magnetic pressure 
will exceed the gas pressure by several orders of 
magnitude. At the outset, therefore, an assumption is
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inadio to tills of foot, requiring that in the ambient gas

(4-48),

where tlio notation of section (i) of the present chapter 
has been used. Thla condition implies that the 
magnetic field in the ambient gas where hydrostatic 
conditions prevail ia of a force-fâ 'ee form* In 
particular, if the field is of a two-dimensional type 
the field must also be potential#

Assuming, then, the simple two-dimensional model 
of two infinite current cylinders, the comments of the 
previous paragraph show that, in the ambient gas, the 
magnetic field %fill to a first approximation be of the 
form derived in chapter 3, and will be given by 
equation (3-II). Thus, on the boundary curve € of 
region I, one ia entirely justified in applying the 
boundary condition that ia given by equation (4-32), 
namely

H;. % O
u I f t ^ — 32),

where is again the y-component of the field at the 
point whore the boundary cuts the x-axis* Xt is 
important to note that equation (3-11) can only bo used



129

to laero-order, and no Icnowlodgo of the variation of 
along the boundary can be obtained. With this 
boundary condition a solution is now sought in region I..

In section (ii) of the present chapter the 
equations of the system wore reduced to the equations 
of continuity and motion, equations (4-20) and (4-21), 
together with the hydromagnetic equation (4-2?).
Writing

—— " — — —  +• IT. (4—49),
Ot ^

these equations can be expressed in scalar form as

M .  = C E „  + V ' / Q
Ofc

(4-50),

= ~ / ^ : ± ( L ^ p ) -, T J L  A A ]  (4-51),
Q  t :  \  2 r x . 4 TT y 'D /

= - j" cEUr J2: (4-53).
OL-

In equations (4-51) and (4-52) it has been assumed that 
the gas behaves isothermally under compression*

It is intended to transform the four physical 
equations (4-50) - (4-53) to dimensionless form. This
transformation is made in terms of fivd physical
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con© taut s ^ and , which have aaqreutlally
tho same moaning© aa In ©action (i) of this chapter,
The precise definition of these constants is made as 
foXlowss-

Choose an arbitrary -epoch, at which it ia 
intended to examine the solution of the system, as the 
time origin t =3 O, Let B- be the point at which theO
bomidary curve of region X cuts the positive x-axis.
Then the physical par'anieters H,, Po f cr , and v„ areO J fc)
respectively defined as the y-component of the magnetic
intensity, the gas density, the electrical conductivity,
and the local velocity of sound, all taken at the point

and at the time t % 0. Further, 2L is defined as
the greatest length (in the y-direction) of the current
region, again taken at this same epoch. The solution
is then sought that corresponds to the epoch t « 0,

The parameters , v^, and fi, can be assumed to
be independent of the particular epoch chosen in the
above definition, L and on the other hand, will beo
dependent on the separation of the two current cylinders, 
which will vary with the epoch chosen as the time origin.

In terms of these redefined physical parameters, 
the two typical velocities, v^ and v^ , are defined in 
the same way as in section (i), viz
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 ■- (^-1)'(4- TT j) ) /z

^0 -  (4-3).4 IT cr L
The transformation to dimensionless form will be based 
on Parker’s order of magnitude solution, equations 
(4-l4) - (4-15). For convenience, therefore, define '6 
and v^ in terms of the newly defined physical parameters 
in exactly the same way as in section (i), writing

cr,

Then, 'C and v^, now respectively a precisely defined 
length and velocity, are of the same order of magnitude 
as the thickness of the current sheet and the velocity 
of interpenetration.

Now transform to dimensionless variables as 
follows, putting
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L T- Eo ~ ^Hz' r]
c

I

ir/ (4-55)
/ w

IT = '̂. «% _Ü& u-„ = I 0 -11̂> wL

Xa these equations, is a dimensionless numerical 
parameter of order unity, assumed a priori to be 
independent of the physical parameters of the system# 
Essentially C is the dimensionless electric intensity. 
Xt is, however, convenient to include C in many of 
the transformation equations, since this will normalise 
the resulting differential equations and tend to 
algebraic simplification. The fact that Is of order 
unity must be verified by a consistency argument. This 

attempted below, and indeed this verification and 
the determination of are the main objects of the 
subsequent analysis.

Finally it is convenient to introduce two 
further dimensionless parameters, 6, and €2, , defined by
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c '/2

On applying the transformations (4-33), and on 
using the simplification afforded by equations (4-3^)# 
the physical equations of the system, (4-30) - (4-33)»
can be written in dimensionless form as follows $

1 : (
IX/ 3̂  ^ U. 3c< \

' I

\T I
' C *3̂  _ 

dr •a
(4-57).

9 (aT
H

i 3cv 4- fci I 0 (a -

* ( “Î It ( f  ) i- 3̂  ( «O'

fiCÂT 

•=  0
(4-58),

JÏ te) ^  te) ^
9

+ ̂  <xf A. I Jia.\ + li_i
'hr \ ÛTI C,

31) CD̂/ IT I ̂9

f i T  7

3,; d%‘

i _  9 V- _  Q (4-59).

2 u 
d i

$- 3 ilO
Po 9

(4-6o).
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The assumption has already been made that 
>) Vg. From equation (4-56) this implies that 6, «  i. 

Xt is less easy to see the order of magnitude of (=& . 
However# one may examine the order of for values of 
the physical parameters that are expected to occur in a 
solar fleire. Assuming chromoophoric conditions# take 
T —̂  10^ ^ K# cr ^  2 . 10^^ QpS.u # Observations of 
solar flares suggest that L -—  10^ 1cm and that 
j?o 2 o lO""̂  ̂gm/ciiî . Finally# energy considerations 
require that H 5^0 gauss»

With these values the three typical velocities 
involved in the definitions of c, and <=2. are approximately 
given by

~  3, 10  ̂ cm/sec
—  1*̂ V 10̂  cm/sec (4-6l).

Vp 4- . IG cm/sec

From these values it is readily calculated that
^  3 . and 9 » 10***̂ » Thus it is seen that#

at least under solar flare conditions# 6, <c l# ^z<.< 1.
Mow the dimensionless functions , cy , u ̂ , and 

u^ that are the solutions of equations (4-57) - (4-6o) 
will be functions of six variables, - the three 
dedimensionalized space and time coordinates | , and
T' , and the three dimensionless parameters , 6, , and
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(4-62).

<̂2 . Write, therefore,

I , 7 . T" . I”"», 6  ̂ )
a, = ax { \ (j , T-, Po, e,, fci )
U| —

- !Â L \, f), T, r« 6,J c-x )

Moif both (S| and ax’e small quantities* The order of
magnitude solutions, therefox’e, suggest that the 
dimena1onless variables in (4-62) arc expansible as 
shoivn below

( %  %  P o ) + ^  Z  <:% : te, n T  n,)t - o j i O t Jïj: P
I OÔ Co * ■

CC> =: L^o( T, Po) f Z  'Z r  T-, Po)
i-iO '
i j^o

OO C/> J - y

=  û ô ?4,T', ''■») :P ;ZI ’̂o)c-0 )-0
1(4—63 ) •

C>o <V> . .

(Art \Àno i\ ̂ ̂ yT, ̂ (?) y 2. Z  ^9 ‘i ̂ ^
* i - O ) - 0t j o

In equations (4-63) the functions o<o and ^ij etc. are 
simply the appropriate coefficients of poxmTB of 6, and 
62 in the Taylor expansions about the point e , - - O.
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Substitution of these expansions into the 
dimensionless equations (4-5?) -*• (4-60) will yield the 
following results, on equating the terms independent 
of (: I and 6 2 9

GTa  ̂I ^  ̂  ̂ — G) (4—64) ,

9 ĉ o ^ 9c?to ~ O  (4-65) 9
91 M

û o  ̂f W  uyo\ ^ J_ / 3Op  ̂9çyô \ “ O (4-66),
3̂ Vo;o / ao/ ITI 9^ 3̂  9 ^  /

D ̂1̂0 ,i_ 9 u ij c   (2) (4—6 7)*
3 f é  r)

Xt is intended to derive the essential features of the 
solution of these last four equations within region X, 
From symmetry considerations it will be sufficient to 
solve them in a single quadrant, that is in a domain,
D say, bounded by the positive x- and y-axes and the
boundary curve G of the region of high current density.

The following boundary conditions are available 
for the dimensionless vector potential ^  . By the 
symmetry of the magnetic configuration, it is necessary 
that

On 5 = ^ % O
(4-68).

On 7 ~ ^ I  ̂̂ 0 - G
d fj
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Further, la region XX the magnetie field is given by 
{4*32). The continuity of H aerooa the boundary of the 
current region yields the condition that

On C ^  (4-69),
d$ ] + f

when equation (4-32) is reduced to dimensionless form.
The condition on in equation (4-32) is automatically 
satisfied by the form of the dimensionless 
transformations (4-55)*

How# in region Xt octo 4= 0. Within this region,
therefore, equation (4-64) reduces to

'3 Vo _ I (4 - 7 0 ),
3 y

This indicates that to zero order the current density is 
constant throughout the region* Integration of 
equation (4-70) and application of the boundary 
conditions (4-68) yields withiEi region X :

qCc = f'o ( n ) - S /  Z

F.'(c) o

Here F^( ) is a function of vj still to be determined.
Further, the application of the external boundary 
condition (4-69) will yield an equation for the boundary 
curve C. This is found to be the oval, given by
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C( I + fY -h Y = ' (4-72).

Attention is next turned to the dimensionless 
gas density Oo * In region XX the gas density / - E)(fa)
Xt follows, then, from the form of the dimensionless
trana fo rmations that
On C Cuo = O  (4-73).
On substitution fov from (4-71), equation (4-65) can 
be ‘integx'atod directly to give

C&, + S"/2 =  1̂ ( 7)
whore Fĵ ( y ) is a function of only. F^( y ) can be 
determined by the external boundary condition (4-73)» 
since the equation for G is now known. Solving for
F^(^ ) then yields

Cw o =: (4—74)
2 L  (I + f Y

lOa region XI the gas has not yet been aoc©3,erated
, therefore, v - 0(v ) <f<* v„. Hence the continuityy o

of Vy across the boundary requires that, in region X,

O  on C,
CXo

Mow, since itself tends to zero on 0, this last 
equation will give the boundary conditions that
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0» G Cl y. c O  (4-75),

and _ q  (4-76)
3 S

A further botindaî y condition can be obtained from 
the continuity of mass fXoxv' across 0, In region XX 
hydrostatic conditions prevail; as shoxm in the last 
section, therefore, the gas density will be constant 
along' a line of force* To a first approxiaiation the 
boundary curve of region X is such a line of force, and, 
therefore# the gas density ia, to this order, constant 
along it, Xn dimensionless form this require© that in 
region XX the leading non-zero term in the expansion 
(4 .̂63) of the diwonsionless density ̂  be constant along 
the curve C. Xt is readily seen that this term is ^to* 
Further, from the definition of fo and the trans­
formation equations (4*55), it follows that
on C CCr,o = O  (4-77).
The above argument is hardly rigorous. Xt can be made 
so, however, by a straightforward but tedious examination 
of higher order terms of the dimensionless expansions 
(4*63).

Now, in 3?egion XX, the gas and current densities 
are zero, to zero ox’dex% that is
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<XSo
3 V

Tailing ©quation (4-57) to oxdor 6, , the following 
result, applicable to region XX, is obtained

ctr,o “ f (4*78).
as

Substitution can now b© made for from (4-69) *
Then, on using the results of equations (4-75) and 
(4-77), (4-78) will reduce to

u.. _ _ ' + f . (4*79).

This last result has been derived for region XX. The 
continuity of mass flow across the boundary of the 
current region requires that it should also hold in 
region X in the limit on C.

Putting u Ki (û  ̂ $ u # O), equation (4-67) can 
be written as

cCvur “ O
Xt is possible, therefore, to replace the two components 
of u by a stream function, writing
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u 9Q
(4-80).

%

This w i l l  allhw cçnaicîerahl# aimpiificatioii of tho 

rem&ajLnlng e tifi-© ra n tia i equation (4 *6 6 ) . 0pon 

substitution for ^ 0 from oquatian (4*74), and for 
trmu equation (4-71)» this last equation reduoea to tho 

form e

~̂  ( G l, 2(1 4. 7-)'  iQ_\ ^  l~̂ („) (4,81)
\ j “ 7̂  “ S Y I +  ̂ /

oyiuhol S ie now need to do.noto the two.*dimoiiaioriai 
v̂ aoobiari operator in # 0  (  ̂ ^ ) piano, m  that

T( 4).) = f)
d C-%, 7 )

The faaotion F^( ly ) that appears ie io a fmwPlon
of y oÈilywhio'h ie to foo 4otox*minod hy the solutiom of 
this difforontiaS. equation# The unlioown funotione 
F^C rj ) and  ̂) are related by the aquation

Fjn) _ J_ / J^} - 9") + Fo'(n)\ (4-8
r%" 1(1. f? j

Glearly, the equation (4*81) earn be writtorA as a 
partial differential equation in Q only, namely
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J / Q   2 ( I h yO---- O  (4-83).
J

As boiHidary conditions on this final differential 
equation, there are firstly the conditions of symmetry, 
that
o n  f  ™ O # Q «3 O

(4-84),
on y K: 0, Q S3 0

on choosing a suitable origin for Q* Further, there
are in addition the two conditions to be applied on the 
boundary curve 0. Those are given by equations(4-76) 
and (4-79). Upon transformation into expressions in 
terms of Q, these two equations will provide the boundary 
conditions that

on C ^ Q.. = O  (4-85)
■0 f

on C

The four conditions contained in equations (4-84) 
(4-86) may be expected, in general, to be sufficient to 
determine a unique solution for the third order partial 
differential equation (4-83). This is illustrated by 
the following argument. Consider the partial 
differential equation in its second order form, - that
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is équation (4-81)* Xt is then a quaal-linoar hyperbolic 
equation of the second order* Xt ia readily seen that 
on the S -axis the equation can be reduced to a second 
order non*llnoar ordinary differential equation in 
3 Q/ 9̂  , for which the boundary conditions# when applied 
on «S O, are sufficient. Xn point of fact, the 
solution on y =; 0 will be derived in tlio next chapter.
Thus the boundary conditions are sufficient to extend 
the solution to a neighbonrhood of  ̂ O, Special 
conditions apply on fj ^ O, since the differential 
equation (4-Bl) ia parabolic on that line. The more
general px’oblam of extending the solution at a point
away from the % -axis must next be considered.

Suppose, therefore, that the solution has been 
successfully derived from the % -axis up to the line 

- ^0 * Further, suppose is the value of Q at the 
point at which the line J/ - cuts the boundary
cux̂ vo* How, suppose that it is intended to extend the
solution up to  ̂^ y ô) , For convenience, call
the point (o, The charactoristica of the
diffextential equation (4*31) are the curves

9 33 constant
(4-87).Gc Ï-4 constant
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So from the first of conditions (4-84) it is soon that Q
is now known on two intersecting characteri«solution ) i
cj ~  Ço and Q = 0 C ()o ^  ^  ^  ^ i )  * I t  follows,
therefore, from the theory of partial differential equationsIt follows,
that a unique solution can foe ofotained for Q within the 
shaded area in Figure (4-3); that is, within the area 
hounded foy the two characteristics just mentioned, and 
the two characteristics of the opposite systems through 
the end points, and .

Clearly then to extend the solution to the region 
y, » ( Q I s negative), a further fooundary

condition on C will foe required. This is provided foy 
equation (4-83)* Finally, the last fooundary condition 
on C, equation (4-86), will foe necessary to eliminate 
the unknown function F^( y ) that occurs in equation (4-81).

From the afoove argument, it is reasonafole, 
therefore, to conclude that the conditions (4-84) - 
(4-86) will foe sufficient (and necessary) to determine a 
unique solution of the differential equation (4-83).
Let us postulate, therefore, the existence of such a 
solution, denoting it foy Q^( ?» , y ). Since the 
differential equation (4-83) and the fooundary conditions 
(4-84) - (4-86) are all independent of C , this solution 
must also foe independent of the value of . The 
solution Qq (  ̂» y ) will determine F^( y ) from equation



(4-81), and thé function ij) ) will also be independent 
of n, . The only effect of will be on the 
determination of » the dimensionless vector potential. 
Prom equations (4^82) and (4-71) one may readily obtain 
an expression for in terms of P^( y )* namely:

n. r (4-88)•

Q =

1

Q r Q,

Q known

?

Fig (4-3). Domain of dependence for
equation (4-81)#
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From the above considerations it i« clear that 
non-singular solutions exist for the hydromagnetic 
equations for all values of the parameter , provided 
only that a non^singular solution Q^( S i 9 ) exists for 
the differential equation (4-̂ 83) subject to its boundary 
conditions* Further, if a non-singular solution exists 
for one value of H , this solution will define  ̂  ̂ )
and hence determine solutions for every other value of C* 

It is seen, therefore, that this mode, as 
proposed by Parker is indeterminate* The reason for 
this indoterminaoy is that the behaviour, to a first 
approximation, of all the physical variables with the 
exception of is homogeneous in II * The x-component 
of the magnetic field increases monotonically with K , 
thus providing an increasing accelerating force that is 
responsible for the enhanced interpenetration* It may 
be oxpoctodf therefore» that the magnetic field will 
distort itself into configurations allowing faster and 
faster interpenetration, until the parameter I® is no 
longer of order unity, and terms neglected in this 
treatment become important, A possible faster mode 
tol;ing those features into account will foe considered in 
chapter 6,
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CHAPTER 3 
DISCUSSION OF THE SOLUTION FOR 

THE COMPRESSIBLE MODE

The argument just Considered shows conclusively 
that within the approximations of this mode, C possesses 
no upper bound* On the other hand, it will be possible 
to show that f2 is bounded below; the purpose of the 
present chapter is to determine this lower bound, and 
thus sot a lower limit to the rate of interpenetration 
of the colliding magnetic fields. To Investigate the 
significant aspects of the solutions for different 
values of 1% , it will be necessary only to determine 
the solution for D on the % -axis. The section
which follows will be concerned entirely with the 
derivation of this solution.

(i ) Solution. for ,.Q. on . the ■. i -Axis,

It will be convenient to consider the partial 
differential equation for Q derived in the last chapter 
in its second order form, equation (4-81), which is 
restated here for reference purposes as equation (5-l)»
viis

T l a , ^  p i  = F'aCgi (5-1). ̂ I 4-9‘f 3| /



TUo second coadition of equation (4-64), namoly the 
symmetry condition that the  ̂—axis is a stream-line, 
requiree that
on Ç - O  Q  3 O  ( 3-2 ) #

Substitution of this result into the differential 
equation (5-1) will, however, only yield

FaCo) - O (5-̂ 3),

It is clear, then, that the partial differential 
equation, as it stands, gives no information about the 
behaviour of 9 Q/3^ on the i-axis. Therefore, 
differentiate equation (5-**l) partially with respect to 

* On putting  ̂« O and applying equation (5-^)» 
an ordinary differential equation for  ̂Q./'dç on the 
^-axis is obtained with f as the independent variable.
It is convenient to write

Ttien this ordinary differential equation will become

o~ “ Û ■" (5-5)*

In this last equation dashes are used to denote 
differentiation with respect to J ,
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Equation (5*̂ 3), a second order ordinary 
differential equation, requires two boundary conditions 
to determine its solution. One of these is provided 
by equation (4-83) » By equation (3-̂ 2)̂  equation (4-8g), 
as it stands, is satisfied automatically on  ̂=s O. 
However, if the equation for the curve € is written as
S Î»  ̂)» then

d^a\ 9!û'l lis + (5-6)

The left hand side of equation (3-^) ie zero by the 
boundary condition (4-85)# and, on using equation (3-2), 
©equation (3-6) will reduce to the aondition that

1 ' °  =  °

Finally, by the definition of g(  ̂ ), this last
condition (3-7) becomes

^"(0 =  O  (5-8),

since the boundary outs the  ̂-axis at tho point (l, O).
The second boundary condition follows at once 

from the first condition of equation (4-84), namely the 
symmetry condition that the  ̂-axis is a streamline*
This condition is



150

The immediate problem involves the solution of 
the non-linear differential equation (5-5), with the 
two point boundary conditions, given in equations (5-8) 
and (5-9 )« This problem is considered in detail in 
Appendix (5-1)# where the complete solution of equation 
(5^5 ) has been obtained# Of particular interest is 
the value of g(  ̂) on the boundary curve C# For 
oonvenienoo, therefore# denote g(l) by the symbol •
Then# from the solutions that have been derived in 
Appendix (5-1)# one obtains the important numerical 
result that

■Ag = 0,5578 (5-10).

(±±) Betex'iiiinatloa off the Minimum VaJ.ue of 1% .

It is now possible to apply the results of the 
solution of equation (5-5) to the differential equation 
(5-1)w From the definition of g( i ), given in 
equation (5-4), it follows that

VFi'(o) / [ U  9/9=0 J (5-3.1 )
Î - I
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At the Oîid of chapter 4# four boundary conditions 
wore obtained for Q.$ they are given in equeitions (4-84) 
to (4-86)* Three of these conditions have already been 
applied in determining g(  ̂); the fourth condition, 
equation (4-86), is still free, however. Applying 
this condition on the I -axis readily yields the result 
that

(5-12).
2 Cj M=i/ ‘ 9=0

Substitution of this result into equation (5-H) will 
now allow a solution to be obtained for Fp^(o), viz

(5-13).
X o

From equation (5-10)# this can be written in numerical
form as

Fz'(o) = G • A- 2 «I (5-14).

The next step involves an examination of the 
behaviour of the magnetic field• Xt is convenient, 
therefor©, to restate the equation for the dimensionless 
vector potential c<̂  , that is equation (4-88), as follows

9
j

rjrtO do' +  -L 
' 2 (I + 9‘V‘

-4- - g' (5-15).
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Now by symmetry the origin nmat be a neutral point of the 
magnetic* field* This requires that both and
2cAo/d̂  are zero at the origin. It can be seen from 
equation (g-lg) that this eondition is automatically 
satisfied, since it has boon shown that (0) s?: 0.
There is, however, a further condition to be fulfilled; 
for not only must the origin foe a neutral point# it 
must in addition foe an X-type# not an 0-typo# neutral 
point* This is seen from the general topological form 
of the magnetic field# as introduced in chapter 3#
There is# therefore# the additional requirement that the 
linos of force through the origin foe real.

Expand "̂ 0 in a Taylor series about the origin* 
Then# in the neighbourhood of that point# the lines of 
force can# to first order# be written as

/ ^ 2 \ ̂ <7 -4- lAfi2\ ff' =r constant (5-16).
V f U

In equation (5-16) the suffix zero is used outside the 
brackets to indicate that the derivative in question is 
evaluated at the origin. The algebraic expressions 
for these derivatives can readily be obtained from 
equation (5-15)* The equation for the lines of force 
through the neutral point can then be written as
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r  ( 3- n"F^‘(o)) = o  (3-17).

Now those linos of force can only be real if the 
coefficients of and have opposite signs. Xt is,
therefore, required that

I I ' '  Fz'(o) 3 . 3 (5 -1 8 ) .

Now substitute for F^*(o) from equation (5-13); then 
the condition (3-18) will become

n >/ (5-1 9 ),

where P . is given by

^ (5-20),

On substitution of the result of equation (3-IO), the 
last result can be written in numerical form as

r̂ jv, =  o -  S 2 è s  (5-21).

(ill) Appiicatioi| to the Idealised model.

It is now intended to apply the results of the 
last t%fo sections to the idealized model developed in 
chapter 3* From the minimum value of p that has just 
been determined it will be possible to obtain a



154

maximum time of Imtorpenetratlom for the oollicling 
magnetic fields of the model*

Before making any detailed application of the 
numerical results to the model# it will be advisable, 
fox" the saice of clarity# to expand the definitions of 
acme of the quantities originally introduced in chapter 
3* Basically the model has the two-dimensional form 
of two infinite parallel current cylinders of radius 

The initial field ims assumed to be potential 
X'̂ ith a current separation of 2a^ * The two cmnrent 
cylinders were then allowed to approach each other under 
the influence of their mutual attraction* Xt was 
assumed that the two current cylinders approached each 
other sufficiently slowly to enable the inertia of the 
system to be neglected. Xt if as further assumed that 
during this approach phase no interpenetration takes 
place. This is effectively an assumption about the 
value of the electrical conductivity^ The consistency 
of these txm assumptions j^equiros juatifioation, xzhich 
can be provided by the détermination of the actual x*ate 
of interpametration that is considered in the subsequent 
quaai-atesidy phase of interpenetration. Consistency 
can be achieved# provided that the velocity of inter­
penetration eventually derived is aigniflcantly less 
than the Alfvon velocity.
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As tlie two c-urrent cylinders are allox^ed to 
approach each other, imder the assmnptlom of .infinite 
conductivity 9 a sheet cur.rent of length 2L if ill be 
formed* The formula re.tatl:ag L to the current 
separatlo53# 2a# is given in equations (3-18) and 
(3 -1 9 ). The magnetic field of the induced current 
sheet produces forces xvhlch oppose the approach of the 
two current cylindere. An equilibrium configuration
Is reached when h ks a*

The second phase mentioned earlier is concerned
with the interpenetra11on of the field through a series
of quas1-equi1ibriim^ configurations• Xt is to this
phase that the analysis of chapter 4 applies. It is
assuDmd that equilibrium is first attained xdien
a :a h ^ a.. * % e  value of a.. # in terms of a and b #* A 0 0
can bo obtained from the aolutions of equations (3-IB) 
and (3-19)• Once this equilibrium configurâtion has 
been attained the system Is loft to itself (the ap^ilied 
oxtornal forces %*equired for the approaching phase are 
now zero)# and interpenetration will talce place. Tlie 
system then remains in an equilibrium configuration 
xfith jL ra a# and the aeparation (sa) of the currant 
cylinders dearcasos as interpernetration takes place.

From equations (3-11) and (3#̂23) the field of 
this equilibrium configuration is
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i + Hu = ^  T i W r  (3-22)

where is the initial strength of each current 
cylinder* Now the parameter xfhich xfill have the 
meaning assigned to it in chapter 4# (page 130) will fo© 
a function of a. From equation (5-22) one can write

Hc(«-) = - AI® (5-2 3).
C CL

In chapter 3» an expression waa derived for the 
magnetic flux F during this second interpenetration 
phase; - here F is the flux crossing the x-axis between 
the neutral point and each of the current cylinders*
This expression, which is given in equation (3-25), 
determines F as a function of a, a^, and b^*
Considerable simplification was possible in the case 
where b^ <f< a, and attention will be confined to this 
particular case* With this assumption, equation (3-25) 
was reduced to equation (3-2 6), which, for convenience, 
is restated here, namely

Lrt. ~—  La-ry + sPz Utb ( I 4 JZ ) (5—24) *

Now, differentiating equation (5-24) with respect 
to t, it is possible to obtain a relation betxmen the 
rate of interpenetration, which is simply dF/dt, and the
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rate at which the two current cylinders are moving 
together* Xn fact# this relation is

J_ i i L  J- \ ^  (5 -2 5 ) .
CK d t  ^\.2 4o/ (Ur

As a first step in the interpretation of (5-25)# 
express F as the integral

f' Cl ̂ h'o

F -  ̂ i  O) ( U l  (5-26).

Then differentiate equation (5-26) totally with respect 
to t to obtain# since a is a function of t#

\ Cl— ll'(
iÜL =
dt

f cUc +  À ±  o )  (5 -2 7 ) .

Next one can apply Faraday » $ law to the integrand 
occurring in equation (5-2 7) and integrate to obtain 
the form

i l _  _ c [  o) - E o j  + A  |-|^(c,.G-.^0 ) (5 -2 8 ) ,

on using the definition of from chapter 4, viz

%  “ E^( O, 0) (5-29).
Finally, substitute for E( a - b , 0 ) from the

conductivity equation# remembering that to a first
approximation at this point ^ 0# and that
v^( a - b^, O ) ;= da/dt* Equation (5-28) will then
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reduce to

i £  = -  c E„ (5-30).
c(t
The ©Xoctric field is related to the 

dimonsienlesa parameter C by the transformation 
equations (4-55)* These give

E.  , sf- r. ( 5 _ w ) .

whore v_ is defined as o

^  (5-32).

Now the velocities that appear on the right hand side
of equation (5-32) depend upon the values of L
and. , all of xfhich xfill be functions of a* Lot
us, therefore, put v^ :n v^(a) *

Nox̂r it is intended to evaluate a time-scale T« for 
the interpenetration. So define this time-scalo by 
the equation

To = -  a, / /c U \ (5-33).

Then from equations (5-25), (5-30), and (5-3l), is 
given by

To (To(<̂0 Ho (at)
(5-34)
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Finally p ome may ouWtltuto for ? from equation 
(3^5)# Sittoe it ÜUO boon, aemumod that b <kr it
follows a fortiori that b < <  a # Bo nogiooting 
tormo of order (b_/a ) ia oquotion (3-5)# thia equation 
will yield ,

h = ^  -2A. C5-3.5).c. a Q

Ttea# uaiag the reauit# of (5-23) mû (S-35)# equation
(5-34) will roduoo to the oimpler form

ko —  --- — --- (g-36)#
v?2 n 0̂(0-.)

From the of the i^rovioua soetioa#. thia last
result om% el early ho written in tlio altoraativo form# 
that

To c  k^cxoc (5-97)$
whero kŷcLoc the timo-eealo of iiiterpoïiotratiaa»
Tliio ia defined by

Tm,^ ^  (5-3G)^
7% a-o(ôi)

xvhieh by equation ( 5-̂ 1 ) con be x̂ rittesa ûm siumeriool 

form fi&o

T ...... =  0.9SSÇ.-.... (3"P9),
 ̂o ( g 1)
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A maximusîi timo»*scal© of interpenetration is, therefore, 
unambiguously defined in terms of and # that is in 
terms of the physical parameters of the system.

The application of this result to chromesphorio 
conditions will be made in chapter 7*
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CHAPTER 6.

POSSIBLE ENHANCEMÎ.CNT OF PARKER.'* S COMPRESSIBLE MODE *

(i) General Description of a Possible Faster Mode»

It has been shown in chapter 4 (page l46) that a 
maximum, in contrast to a minimum, rate of inter­
penetration cannot foe determined for Parker* e mode? 
in other words this mode is not definitive* Since the 
existence of a lower bound for 1% has been established, 
this fact is indicative of the existence of a faster mod© 
of interpenetration*

The key to a possible faster mode is provided by 
the solution for the dimenaionleaa vector potential (Xo 
in the slow mode* From equation (4-88), this solution 
is

(6-1)
 ̂ 2 LTTlY)'

The form of this solution suggests that one should make 
the substitution

Pf = -r) + (6-2)
Substituting this into equations (4-57) to (4-59)» 

the dimensionless equations of the system can be written 
in the form

i I We JU  -h Wo I 1̂-r I M i  M 9 / cxy / ^
(6^3)

4- ,2 / Ug 4- Wo \ H- Wn ?ilÛT  ̂ M i  99 / C2f M 9

h h  I Q hi f Fo" II _ 6.6, 3 M  _ 6,6,V &r 9̂ 1
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J_ h L  + r.‘ is? t tpt 3̂ 1 ' 'ài "if3? a?

T & )  " “’f,fe^)j ‘ ''"'“H f )
Q  (6-4)

U f '3 Y j^ ' i _  )  /  uaY ^  _ L / Y ^ + .  3hl +  I F

+. -êî cr 1- ( \ + ÉLii / M  H n'ii* ,?Y'
1 ar V cr y-n 3t V cr y F7 \ 9̂ 9̂̂

(6-5)
 ̂ IT m  , r / m i T  \  ̂ o

9̂  99̂  /
The final ©quation, the dimcnsionXesB equation of 
continuity (4«6o) remains unchanged by the substitution 
and is '■i

2ys_ + ^  = - it Ih: (6-6)
2 i ? 9 17 0 T

An examination of these equations indicates that, 
as C increases, the first term in the  ̂* s previously 
neglected to become of order unity will be the terra 
( 6i n^/(2r) u^ 1)F/? Y in equation (6-3) * Therefore, put

 ̂o " (6-7)
where is a constant*o

A mode of interpenetration will now foe sought in 
which 0^ is independent of G, and <̂2, and in which the 
dittiensionless variables that have been introduced are 
of order unity within region I. As a further
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simplification. Introduce the dimensionless quantities 
X, , # defined by

K, == e,'"" £, (6-8)

since it has been èhown in chapter 4 that <c 1, (St,<< X# 
it folloxfs a fortiori from the definition (6-8) that 
X, «  1, << 1.

Now, substituting from equations (6-7) and (6-8), 
the equations (6-3) - (6-6) can be tidied up to give the 
dimensionless equations of the system in a form 
appropriate to further investigation of the faster mode * 
These equations become

—  ) 4-
9 / G-,

1 +  I f L * .K_f u. 9-'- 4- -,
d f cy d  y Cv ^ 3?

4- Kz if _ kT 1 /-I K, ki G-o 3" F
0r 6: ^ p

d cy 1 K' Xt 4, .1 /-Xk, Ki 3<»* 3‘F

9? 'd^ d p G-: 9? d f 3? 3 f

(6-9)

+u,2-f-i4.\+ !& A  / J4_\'•â Vco-; d r -3) 9r/ &. 2>r[^J

1v,y. X,' A  A"* + v.C/^£!:+
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lY " If - ^  It  ' o
Equations (6-9) to (6-12) are the complete

equations of the system in dimensionless form* It is
intended to treat them in a manner very similar to the
treatment of the equivalent equations, (4-57) - (4-6o),
in the slo%f mode* The limiting solution is sought as
X, and tend to zero » As before, the subscript zero
is Used to denote the values of the dimensionless
function® at a point on the G -axis, this time in theo
Xj space * On this axis the dimensionless
equations reduce to

\ 2]1_ (6-13) 
9 r  or, 0^

= 0  ( 6 ~ x h  )3̂
u

+ Aüî». = O  (6-16)
As equations (6-lg) - (6-l6), and the boundary conditions 
to be derived later, do not contain k explicitly, we may 
take all the dimensionless variables independent of k  .

From equation (6-l6) it is possible to introduce 
the stream function Q, defined by



3û
r  “ -  y T

Fur the a?, slnoo Xo and appear in the équations (6-13) 
to (6-16) only in derivative form, it will be convenient 
to write

-  a  >n)do<o a
(6-18)dE

d 9
Both k and f are then effectively climesisionloss components 
of the magnetic field. From now on, one aiay work in 
terms of these components rather than in terms of the 
associated potential functions.

As in the slow mode, there is a boundary condition 
on the magnetic field provided by the analysis of chapter 
3 , This condition is given by equation (4-32), which in 
the new dimensionless form reduces to

K  =  ^ ?  j  ^  ( 6 - 1 9 )I 4- 9^
at the boundaiy of the current region. If this 
boundary curve is again denoted by G, then equation 
(6-19) will define C,

Now equation (6-̂ l4) can be integrated directly to
give

cÂTo „ F, (,)) - ir/2
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The function  ̂) can fo© determined directly from 
equation (6-19), foy noting that on C = 0# Hence 
the result follows that

(6-30)(1+ 9’)’
The remaining two oquatlona, (6-13) and (6-I3 ), 

can, on applying the relations given in (6-1 7 ) and (6-18), 
be written as differential equations in Q and k. They are

Ik. _ I + H^) (6-31)
di G7o 9 ?

and T / q  _i_ —  i(o) ( I + K*)) (6-32) ̂ Cd 0 J
Xn equation (6-22), J denotes the Jacofoian operator with 
Î and as the independent variables*

The problem has, therefore, been reduced to two 
simultaneous partial differential equations with Q and k 
as the dependent variables; for <̂o can readily be 
eliminated by usihg equation (6-20). For the present, 
it is convenient to retain w; in equation (6-22), since 
substitution for it will merely complicate the algebra 
unnecessarily. For the same reason, there is no point 
in ! simplifying* the problem further foy the elimination 
of one of the dependent variables from equations (6-21) 
and (6-22), thus reducing the problem to a single partial 
differential equation. The function f( ) that appears
in those equations is a function of  ̂ only that must foe
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d©teraiint3d foy the solutioB of the two differential
equations.

The solutions for Q and k must foe obtained within 
a quadrant bounded foy the positive f- and ^-axes and foy 
the boundary curve C, given foy equation (6-lp). In 
this mode, unlike the slow mode considered in chapter 4, 
the boundary curve is not known and must foe determined 
step by step from the solution for k and equation (6-19)# 

The fooundary conditions on Q, can foe obtained by an 
argument almost completely identical with that used to 
determine the boundary conditions in the slow mode.
The resulting boundary conditions are, in fact, identical, 
and are, therefore, exactly those given in equations 
(4-84) to (4-86), namely 
on
on ^

= 0, Q 0
“ 0 , Q 0

3'Q 0on C 0 (6-23)

It

These conditions must foe supplemented foy a single
fooundary condition for k as demanded foy equation (6-21),
This is simply the condition of symmetry that
on  ̂ - o, k « 0  (6-24)
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Equation (6-22) is of the eaeno ordex* as the 
C3quivo.lent differential equation for Q, namely (4-Bl)^ 
in the slow mode; moreover, they are very similar in 
form, Each i® a quasi-Iinoar hypexholic equation of 
the second order involving a function of that requires 
determination stage by stag© as the solution Is developed* 
The Qiain differences betwoen the two equations, are, 
firstly, that in equation (6-22) Q is coupled with the 
function k, to which it is also related by the first 
order differential equation (6-21) - this evidently 
require® the single boundary condition supplied by 
equation (6-24) - and,, secondly, that - the boundary 
conditions for Q are specified, in equations (6-23)»
OB. a curve Ç that ia still to be determined* This 
second point does not, however, affect the boundary 
condition requirements in any way,, since examination 
of the characteristics on this curve shows that they 
are of the same form as those considered earlier; 
that is, the characteristics of equation (6-22), 
considered as a second order partial differential 
equation in Q, touch on the curve C* The arguments, 
therefore, that were used in chapter 4 to Juotify the 
number and form of the■boundary conditions on Q can be 
carried over to the present |>roblem with only minimal
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modifications.. . It is expected# therefore# that the 
problem as stated in equations (6-Jîl) to (6-#2t4) will be 
definitive for a ^iven value of

The most important difference between the two 
modes, however# is not a question of the application of 
the boundary conditions# but rather the fact that, in 
this fast mode, the parameter 0^ appear© explicitly in 
the differential equations * . In general, therefore, the 
solution for Q will depend on Xn the slow mode, ,
on the other hand, Q was independent of this parameter. , 

Xt should be noticed from equation (6-<«̂ l) that, 
for G - O# equation (6-Ĵ O) reduces to the form

or -9— , - ) (6-25)2 \ ( I 4- f )’
Xn this case, then, the boundary curve 0 Is identical 
with that obtained in the slow mode. , For this curve
is simply given by cs; «3 o. , Further, with == 0, the
differential equation for Q. will reduce to

which is identical in form with the equivalent equation.
^81), in the slow mode. Since the boundary conditions 

on Q .are lii any e v e n t  identical in the two modes, it is 
clear that in this special case the solution for Q ie the 
same as the equivalent function in the slow mode. This, 
indeed, wotild be expected.
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For a general value of however# the curve C 
will# as already mentioned# depend on the solutions for 
Q and h# and must foe determined from these solution»*.
So the shape of the boundary will itself depend on the 
value of Indeed# unlike the slow mode# in which
the shape of the boundary is always given by the same 
closed curve# namely the oval

I - \ = O (6-27)
it ■ is now possible that#' for certain values■ of G^# the 
boundary derived from the solutions may foe an open curve.. 
Before discussing further the shape of the boundary# it 
should he stressed that, should the boundary curve C 
splay out and become parallel to the ^-axis at any point# 
a singularity will be encountered at that point#- and it 
will foe impossible to proceed with the solution above 
that level.' Such a point will,’ therefore#- be i'eferred 
to ao the end-point of the boundary curve €.

There are five possibilities for the siting of 
such an end-point*' They are as followsî-

(i) The end-point is the point (O# l)# as in the slow 
mode ♦

(ii) The end-point is a finite point on the line  ̂ 1.
(iii) The end-point is a point at infinity on the line 

- 1.
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(iv) The end-point ia a finite point for which 9 C X*
(v) The end--point is a point at infinity for which the 

limiting value of as  ̂ ia leaa than 1 *
Of these five possibilities for the site of the end­
point only the first two will provide acceptable solution»* 

Xt is possible that these Considerations may 
provide a criterion to determine an upper bound for 
which would make this fast mode definitive*' For the 
mode will indeed be definitive if the conditions (i) and 
(ii), cited above # break down for sufficiently large G^* 
Such a possibility is entirely absent in the slow mode*'
A complete discussion of this point must# however»' await 
the complete evaluation of the solutions of Q and k, and 
thoir determination of the shape of the boundary curve*
Such complete solutions are not attempted in the present 
thesis.

(ii) Solutions on the 5 -Axis*

Although no attempt is made to det$m:ine complete 
collet ions of equations (6-ai) - (6-24) » the remainder of 
this chapter will examine some solutions of these 
equations on the ^-axis» in the hope that some insight 
may be given regarding the définitlvencss of the solution* 
Xn x>articular» the curvature of the boundary will be 
investigated at the point where it crosses the %-axis*
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From tSio ©ooond condition in equation (6-23), it
folio?/© that 3Q/dj (and ita 1 -dorivativos) are lyaro on 
the lino - 0 *. Equation (6-2 1 ) $ therefore. Integrates 
to give », on using .(6-24),,.

\<ii,0) = S (6.28)
Equation (6-20) can now be ?/rltten as

CT„ (f_ (?) = -̂  ( t - r) (6-29)
To obtain any significant information from the 

roïîialning equation (6-22) on© must first differentiate 
it partially with respect to . The results of 
equations (6-2 8 ) and (6-2 9 ) can then be substituted 
into the differentiated form of this equation. Xn 
addition, make a substitution analogous to that made in 
chapter 3, putting

> = ~ b b i T ( W > , . -
An ordinary differential equation'is thon obtained for 
g( 1 )f Vilrî*,

(I - r) ( = ( I - (6-31)
It If ill be immediately noticed that this equation 

Is identical ?;;ith tho equivalent equation# (5-3) » 
developed in chaptez* 5r And since# as elreatiy observed# 
the boundary condition© on Q are Identical in the two 
modes# the ©am© must be true for the solutions of the
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functions g(|)♦ The whole of the numerical analysis of 
chapter 5 may, therefore, be carzded over into the new 
mode, and the solutions for g(l) and h(S) are as 
tabulated in Appendix (5-s ). The i^anotion h( I ) is 
defined in the same manner us in Appendix namely

h(l) = g- (  ̂ (6-32)
Xn particular, the following result is obtained from the 
application of the analysis of chapter 5 s

(6-33)
on using the result given by equation (5"*l4) *-

The solutions for k and 0̂,/d̂  , therefore* are 
known on  ̂̂  O 0 and those may be uaed to examine the 
Gusrvatur© of the boitiidary at the point whore it outs 
the i -axis*. Xt will again b© coaveniont to represent 
the boundazyr curve 0 by the equation

i = (6-34)
Moreover, on the 1-axis, one may state at once that

ô(o) cs; 1
(6-35)

f 0* ( ̂ )  ̂ o
the latter condition must follow from symmetry# The 
curvatuz’e of the boundary is determined by the second 
dei'lvative of ?o { <) ) • This curvature will clearly be 
otitwards or inwards (i.©* away, from or towards the



0 -axis), acooï’dlng as f„"(0) Is greater or less than
s5ero*

Let us ?;rite the foeimdary condition on the 
magmatic field, .aquation (6-19)# in the form

!<(!., I)) = j ■ (6-36)

Now differentiate this equation twice totally with 
respect to  ̂ to obtain, on  ̂ « Q*

H
(I- of 
I +,)'

Tile other dlffez'entiated terras that have been omitted 
from the right hand side of equation (6-37) vanish due 
to the second condition of equation (6-35)#
Substitution can now be made fo'r 9 from equation
(6-28), £md if the n&OGOsaxy differentiation ia oarried 
out to evaluate the left hand aide for  ̂« O, equation 
(6-37) will take the foz’m

Horc the subscript ssoro has been used outaid© the 
brackets to indicate that the function Im question is 
evaluated at the point  ̂a 1 #  ̂sr. Oé

The final term on the right hand side of equation 
(6-38) must now b© evaluated* Differentiate equation 
(6-21) twice partially with respect to * On throwing

*-3 - (6-38)
lo
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away the terms that vanish on thé | «-axis for reasons 
of syrmuetzy, on© is left with the following equation 
on that line

Next substitut© for Ic on the ^-axis from equation (6-28)# 
Then the first term'on the right hand side vanishes* 
Further, sine© by equation (6-24) "k/3  ̂ = O at the
origin, equation (6-39) can be written in integral form
as

I K \ = 2 (j;- ÇLO)
d f h

( j  J f (6-4o)

Finally# .TObstltute for f*(o), %  { f # O), and
Q(^ , O) from equations (6-3 3 ), (6-2 9 ) and (6-3 0 )
respect1vely, to obtain

#). = - ^  ^
Hero J is the definite integral given by the equation

r I
T c(?

Thon fi'om equation (6-3Ê ) it follo?/s that

(6—42)

(■7 ^ 1  =  '  ( ^ - w )
Let be the va3-ue of that makes the right 

hand side of equation (6-43) Rsoro § that is define as
'] (6-44)
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Thoa G-, la  tîi©  v a ltto  tho pax*ariiotor G , ifS ilo îi £Îii?;id«si'î !?#
thosm BoXntXouo %-âmtm ourv© from the
I -axis (o > O^) from ttoao whose hotmdarlee curve ;ln 
(o. < # Xt la tmi0 aeca that for large O the
boumdarl^m will Iiave radically different ahapô î  from 
thame obtained for small vml^iùé of G @ which im the 
limit approach the eioaocl eval as feimil in the
mlow made * Am argument can be advanced te miggoat 
that» if this fast mode is definitive, and if, therofore,
G is restricted to a finite imngo of vmlmoa $ M u m  the 
maximum value of 0 will be l^aa tlian This argument,
however, ie mot complete mml must remain epeoulative until* 
the entire ©elutions of the problem arc obtained* Wono- 
thelosa, it io possible that G., may give an order of 
magnitude oatimnto of the maximum value of G , should 
this ï̂ iaximum ĉ xiat*

FiBally, fcr completeness, the valno of le 
clorivoda The i\motions g(0 cmd b(j') are tabulated 
with oeaeiderahle aocaraey in Appendix Thooo

vaXt̂ iee crm zeaadlly ho need in a nnmerloal Integratiom 
of equation ((U-̂ h's) to determine J# Ch/teg to tho fact 
that in Appendix ( 5**2 ) both gC!) and h(f) are tabulated 
at a falsely close interval in fact, an XritorvaX of 
0*01 - Simpson*0 rnlo provides a simple aiicl entirely
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adequate method of , Integrating., then# by
tiiie method it is found that J a 0,6951* TJaiag this 
value and that obtained fo3r* /io firom eqnatlom 
the result

^ 0,4651 (6-45)
is areadlly obtained fz'om equation (6-44), Lacking the 
final solutions one may tentatively regard this value as 
an order of magnitudo estimate for 0^ appropriate to the 
new mod©,
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CHAPTER 7 ,

THE PARÏŒR MODES UNDER SOLAR CONDITIONS

(l) Time-Scales

In previous chapters three distinct modes of 
interpenetration have been considered* These were 
Parker*a incompressible mode and the two compressible 
modes that were studied in detail in chapters 4 - 6 .
In testing the application of the mechanism to solar 
flares# it will be convenient to compare the rates of 
these thz*ee different modes of field annihilation*
For this purpose, Parker's incompressible mode, and the 
slow and the fast compressible modes will be referred to 
as the first, second and third modes respectively, and 
designated by the subscripts 1, 2, 3*

The velocity of interpenetration has already been 
estimated to order of magnitude for the first two modes * 
The formula© are given in eqitations (4-8) and (4-15) •
If it is assumed that the dimensionless parameter Q , 
used in the analysis of the fast mode, is of order unity, 
then the velocity of interpenetration for this mode can 
readily be evaluated from equations (6-7) and (4-56).
For convenience, let us restate the formulae for the 
velocity of interpenetration; they are
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u] ~  ( ur ujj ) ̂  (incompressible)
I

\jr̂ I ^  (Parker compressible)
(7-1)

(̂ p (fast compressible)

It will be noted that the three velocities of 
interpenetration are in geometrical progression, the 
common ratio being the fourth root of the compression 
factor (v^/vg)^# This central compression, which is 
the same in each of the compressible modes, is simply 
the compression required to provide a gas pressure along 
the neutral line sufficient to balance the external 
magnetic pressure. Its effect, in each compressible 
mode, is to decrease the thickness of the current sheet, 
thereby reducing the distance across which resistive 
diffusion must act. The essential difference between 
the two compressible modes lies in the velocity of 
ejection along the current sheet. In the slow 
compressible mode this is the sound velocity, i.e. the 
AIfvon velocity for the compressed gas* Xn the fast 
mode, however, the ejection velocity is the Alfven 
velocity calculated for the ambient gas* Xn the latter 
case more lines of force from the external field cross 
the current sheet * The rate of ejection is then not
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determined by the high density of the small amount of 
material in the current region, but rather by conditions
exterior to the pinch*

The total energy dissipated in the simple model
that has been discussed above will be of order

p 2/ B tt) L h^f where is the extension of the 
assumed two-dimensional system in ss-diroctlon# From 
the discussion of chapter I, it follows that, to account
for a large flare event, this energy must be of order

3210 orgo* This could be achieved with the following 
values

= 500 gauss
L . 10^ cm (7_a)
Lg « 10^®cm

which are not inconsistent with the expected chrome- 
spheric conditions* The magnetic intensity given is 
perhaps a slightly large, but not unreasonable, value 
for the field in the chromosphere above an active region. 
The choice of the relative sisses of h and is somewhat 
arbitrary. This particular choice is suggested by the 
observed filamentary structure in the early stages of the 
development of some flares* It may be significant that 
the values of h and that have been chosen correspond 
quite well with the half-widths and lengths that are
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typical of large flare filaments. Hence equations (7-2) 
provide reasonabl©- values foi* the parameters », - h and
that will supply sufficient energy for a large flare..

Xn equations (4-1) to (4-3) the chaz^acter 1 stic 
velocities y^, and v^ wore oxpz’esaecl in terms of five
physical parameters, namely L, cr,'T, and ./ Of 
these parameter's, cr will be a function of temperature. '
Xn a highly'ionised gas one may write with sufficient 
accuracy

cr ~  I ' 3 10^ -p 3/2 (7-3)
Fuz"ther, it will be convenient to work in terms of a 
particle density rather than the gas density fc «
Let denote the ambient particie density. Then, on 
using the values given in equations (?-S) and (7-3), 
the definitions of the characteristic velocities yield 
the following results:

u-̂ ~  I -1 . lo'" m ;'̂ "
U",J - (7-4)
u - o  ~  6  . 1 0 "  T

Nox# let TT denote the time-acale of intor*
penetration of the i-th mode, baaed on the valuea given 
in equation (7-2) * Then one can write with sufficient 
acetuiracy

1«   i « 1,2,3 (7-5)tr.
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Justification of this is provided by the analysis of 
chapter 5 section (iii)* From equations (7-1 ), (7-4) 
and (7-3 ) it follows that

T7 = 1-2 T'/'" N/'"
S -T—  I. 1  ̂ &

»  I ' 3  . 1 0  ^  N o  ( 7 .

1.5 . lo"'“ N,3/4.

From equations (7-6) it should be noted that the rat© of 
int e rp en e t rat ion of any of the modes will decrease with 
inc'reasing temperature or particle density.

It is of interest to examine the variations of 
the time-seal08 %#ith height in the chromospheze and low 
corona. A similar investigation has been made by Hoyle 
and Wickramasinghe^  ̂ of the variation in the high 
corona of the rate of interpenetration in the second of 
the modes under discussion here. In the solar 
atmosphere the temperature and pa% tide density gradients 
are in opposite directions, and whereas the decrease in 
density with height tends to allow faster rates of 
interpenetration, the increasing tempez^atur© tends to 
counteract any such increase. The timo-scalos for the 
three modes have been plotted in Figure (V-l), using 
equations (7-6)# The distribution of T and with 
height is taken frCm the composite model given by 
Allen^^^^^. The full details of this distribution



and tîxç reuniting: valides of the t . are given in 
Appendix (?-l)*
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Total Flare Duration

H E IG H T  ( t O ^ K M )C H ROMOSPHERIC

Fig' Plot of the tiMie^scales of the three modes of
field annihilation against chromgspheric 
height* (H, 300 gauss» L « 10 km) *' Q

From the graphs of Figure (7*̂ 1)» it ie seen at 
onoe that all three modes of interpenetration have 
aazlmum annihilation rates in the middle ehromosphere * 
The effect of the decrease of magnetic field strength 
with height» neglected In Figure (7-1)» is to inc%*eaoe 
the interpenetration time %̂ ith inereaoing height» but
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this will not destroy the feature of the mazlmua) Inter­
penetration rate' shown in the diagram*

The timo-scales of the three modes must be compared 
with the equivalent time-scaleo of solar flares* Xt has 
for many years been normal practice to attempt to identify 
the annihilâtion time with the duration of the flash 
phase* Certainly the flash phase is a predominant 
feature of the flar© event, and the aubsequent dooay 
could bo a relaxation process* has
criticlssed this interpretation on the grounds that this 
point of view requires that all the magnetic energy be 
dissixjateci into heat during the flash phase, and that 
all subsequent radiation is at the expense of this 
thermal energy store* He argues that if this were the 
case, the flare should be very hot at the time of maximum 
Intensity which would be followed by a gradual decrease 
in tomporaturo* 'Bleatzcon temperatures determined 
throughout the flare ax’o, however» comparatively constant* 
Went'isol maintained, therefore^ that the identification of 
the annihilation time with the flash phase was incon­
sistent with observation* Xt must he remeuiborod, 
however, that such electron temperatures are extremely 
uncertain* Hovertheless, there is oortainly a case for 
arguing that the relevant time-seals of the flare- to be
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compared with the rate of dissipatien of magnetic energy 
is not the flash phase font the total duration of the flare # 

For a '3-Î- flare, the mean total d u r a t i o n i s  
more than two hours. The flaah phase, on the other hand, 
lasts about five minutes* Xo Figitro (7-1) these time- 
scales have been indicated, and it is at once seen that 
'only the fastest mode can.give interpenetration times 
shorter than either of these two tima-^acales.

As pointed out In chapter 1, flare observations
indicate ambient particle densities in the flare region

11 3of order 10' particles per car, and températures of the
order of 10̂"' ^ K* Xt should pexhaps be noticed thsvl; a

11particle density of 10" particles per cubic cm corres­
ponds closely with the height at which the inter­
penetration rate is ti maximm’a. Xu fact, sutatltutiosi 
of the values just given into equations (7-6) yields

X
I

4-1 10^ sac (7-7)
T-J 2-7 10 sec

From these values, it is again clear that only the fast 
mode can give a timo of interpenetration appropriate to 
the solar flare problem* The shortest time-scale 
derived In equations (7-7), of about hour, is 
sufficiently rapid to account for the decay phase of a
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solar flare* An iaterponetration time of the order of 
the flare rise-time cannot be achieved by the present 
theory.

The results, thereof ore, are not %dwlly satis-
factory. The best that can be said ia that the fast
iiKid© cam aecotmt for the decay times of large flares
over a wide range of heights im the chromo sphere and low
corona* Ab it is intomded to eahow, however, this fast
mode requires rather special c,t remis tamo os that will not,
in general, be met in actual magnetic configurations.
Although the rates of interponotratioB do seem too alow
to account satisfactorily for solar flares, It should bo
pointed out that It has net been proved tXiat the-fast
mode is definitive; and the development of the form of
the current sheet, as the parameter Q is increased, iso
miiaiown* Tho fast mode ©hould, therefore, be regarded 
as a lower limit to the interpenetration rate, for the 
case where compressibility is important.

(ii) Effects of Ambipolar Diffusion

Gold and H o y l e have suggested that an enhanced 
dissipation of magnetic energy can be provided in the 
solar flare problem by the effects of ambipolar diffusion. 
P a r k e r ^ h a s  crlticissed this suggestion, however, 
pointing out that the compression of the gas will reduce
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such effects* This objection is most easily demonstrated 
in the following way*

bet n b© the ion density, and f the fraction of 
neutral atoms that are present in the gas, which, it is 
supposed, ia composed entirely of hydrogen* Let H be the 
total density of ion and neutral particles* Next let 

, V be the collision frequencies for the ions with 
neutral particles and electrons respectively; and let 
4aj , be the angular gyro-frtiquoncios of electrons and 
ions respectively, so that

U. = jàL , W, _ _ëJL (7 -8 )1Y\ c c
where m, are the electron and ion masses* Finally 
introduce the dimensionless parameters

K = —  K; = -r- (7-9)W Uj

Now following Cowling’s t r e a t m e n t ^ ^ , one may 
include the effects of ambipolar diffusion in the 
conductivity equation, writing it, with sufficient 
accuracy for conditions in the solar atmosphere, as
p u: A i l  _ ' n  A H ) A H (7-10)

c ” cr K.nec H
However, it should be noted that the conductivity cr can 
be written as

^ (7-11)m K UJ )<- H



188

Now in the two-^dimenaional model Ô* So it is
clear that the conductivity equation (7-IO) can be 
written as

E + - 2 —  = -$7 (7-12)
where cr is a modified oonduotivity* On using equations 
(7 -̂1 0) to (7-1^)» this modified conductivity will be 
given by

' '  ̂ I 14^  1 (7-13)<Kl<r ‘ ^ '̂i

In this problem, then ambipolar diffusion is 
equivalent to a reduction in the effective conductivity* 
P a r k e r ^ h a s  made clear the physical effects of 
ambipolar diffusion in the type of current region under 
discussion* The ambipolar diffusion cannot itself 
produce the actual reconnection of the lines of force; 
the flux linkages can only b© altered as a result of 
Joule dissipation# However, ambipolar diffusion allows 
the ionized component to drift through the neutral gas, 
and allow© the magnetic field which is frozen to this 
ionized component to proceed to configurations of lower 
ener̂ jy* Near the neutral line the lines of force pile 
up to produce a veiy steep field gradient. Thus a thin 
region of increased Joule dissipation is formed which 
produces the necessary reconnection of the magnetic field 
linos* The presence of ambipolar diffusion, therefore.
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enhanooe the rate of intexpenetratiaB by allowing the 
x’egion of ourrent density to eons trio t itoelf, s© reducing 
the distance over which resistive diffusion must operate* 
The total Joule dissipation, though confined to a nax*rower 
xegion, is increased, but the main dissipation process of 
raagnetie ©norgy is obtained from collisions of the 
ionized component with neutral particles occurring over 
a much wider area.

The reduction in the conductivity will be important
if

2 T I (7-14)JC K.
It will be convenient to denote the left hand side of 
this inequality by R. Now from equations (7*̂ i)» it is
seen that in all three modes the rate of interpenetration

Xis directly proportional to v^^ * The time-scales, then,
Xare directly proportional to cr ® * If ambipolar 

diffusion is important, and, therefore, R 1, then as a 
rough approximation, one may replace in the formulae 
for the timo<-scales of field annihilation by the modified 
form of the conductivity given in equation (7-1 3)•
Thus ambipolar diffusion has the effect of reducing the

4time-scale by a factor of order *
To estimate the significance of ambipolar diffusion, 

R must be computed* From equations (7-8), (7-9) and



190

(7-11) the result is obtained that

R  „ ^  ̂ —  (7-15)n nn ̂ V/̂

W rite  f 83 >̂0. /  N
(7-lé)

V'* ^  i

Here is the density of neutral atoms, is the 
ooliisional crosa^aeotlon for collisions between the ions 
and the neutral particles, aixd w^ is the ion thermal 
velocity* Then from equations (7-15) and (7-16), it 
follows that

'For the present purpose, only a rough order of 
magnitude value - of E is required* So lot us take,the 
following values of the physical parameters, which will 
be reasonably appropriate to the flare problem 

ÏÎ ~  . 500 gauss
<r ~  10^^ e.SfU*

10^ mil ©ec*^ (7-18)
N ~  10^^ osa"3

*-l6 PFinally take 10 cm" in what follows. With these
values equation (7-17) gives

R ^  1- 7 . 10'' <7-19)
n
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From this equation it must be concluded that, for values 
of the parameters given by equation (7-18), only a very 
small percentage of neutral atoms is required to make 
the effects of ambipolar diffusion rather important*

From equation (7-19) cue would expect a very 
significant enhancement of the annihilation rate under 
flare conditions. As Farkex' has pointed out, however, 
the result is illusory* bnder steady conditions, the 
appropriate value of the total particle density N in 
equation (7-17) is not that of the ambient gas, but 
rather that of the oomprasaed gas in the current region. 
For pressura balance it is necessary that

N / Ks ) No (7-20)
where' ia- specificaily the ambient particle density - 
as in the last section. Denote the value Of H resulting 
fro® this substitution by . Now, substituting for N 
and H in terms of the- oharacteristic velocities, and 
further putting *=» Vg, it is found that equation 
(7-1 7) will be replaced by

It is this equation, not (7-17)# which must be used to 
determine the value of H, on which any increase in the 
reconnection rate depends*
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Tho ©ffeota o f  ambipolar diffusion o n  either of
the two comproasibl© modes oonsiderecl in earlier ohaptor© 
can now be computed* Substitute into the values
of ^  and Vg from equations .(7^3) and (7-^)» which
are based on a 500 gamea magnetic field* Equation 
(7-2l) can then bo ■ written in numex*ical form as,

3“ 3 , 10  ̂ HiL (7-22).h
In Figi^r© (7^2 ) has been plotted as a

function of height in the solar atmosphere* As before, 
Allen’0 data has been used to give the temperature 
variation and the total particle density in the chromo­
sphere and low corona* la the upper half, allowance has 
been made for the fact that at higher levels ionization 
is cauGed primarily by electron collisions and 
rocombinations are radiative* A formula for the degree 
of ionization given by was used*..

While the values of shown in Figure (7-^) must 
be rather uncertain, they are sufficient to show that no 
largo increase can bo achieved in the interpenetration 
rate due to the effects of ambipolar diffusion. The 
high gao density in the pinch, necessary to balance the 
external magnetic pressure, chokes any relative motion 
between the ionized and neutral components of the gas#
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2

LOG H

O

2

Fip: $ ¥ariatioB of the paraBieter IL with
ohr#.m0 éphez'ic height #

(ill) Th© Bffeots of a ag^Pield#

The modela ooneidorecl np to this stage have been 
twe-cliriaeneionalg the magnetic field was independent of 
the s3-^coordinato and had no compnanent in thcis î2**div©ction< 
These assumptiens are, of coarse» qait© artificial, and 
one oatmpt oxpeot them to be eatisfiecl» in general » in 
the solar atmosphère. What is more important ie the 
fact that the second assumption affects significantly 
the 3rate of interpenetration derived*
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To tliia polmt, mippeae that in addition
to the oompononto of the field that lie in the % y 
plfmo (, there le a component in the iŝ d̂lreotion̂ , The 
two ooHiding field® are then not exactly antiparallel.
The nentral line in the two***dim0naional field Is now a 
line of force. Whorea® the y*component of tho field 
change© algn across the ahoet cnrrentp tho n*#component 
doe© not. Mow» in thO' two^^-dimonsional oaae» to achieve 
preeeuro halance in the ^^.direotion» a high gas preaenre 
was required along the centre of tlm current shoot.
In every mode this condition of pro®sure balano© was 
©spreeaod hy the x#.comp#nemt of the equation of motion. 
When a sn-field i® present# however» this si***component 1® 
not Rsero along the centre of the sheet current » and the 
compresaioai of the ga© need only he sufficient to comproas 
this component ©o that y 8 rr cam halanco the total
external magnetic pressure.. The component of the

2 oequation of motion», when v_ can ?3© written to
a first approximation as

(cu^L H A c O (7-33)
On neglecting tho component of the magnetic field» thla 
equation integrates to give

HJ Hz _ F(^) (7-24)
S TT
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If the s."component o f the field ia of tho same order in 
the ambient gas aa the componoBt lying-in the :k y 
piano, them only a moderato oomprceoion of the gas will 
bo required to provide the increase in the H -fieldÎS
neceasary 'to satisfy equation .

Xn the general casct therefore, where tho field 
has a significasit z-component, high cowipro£5sion ie 
proven ted by the presence of this component,' and the 
rate of interpenetration ‘is eerrospondingly reduoocl#
Tho system belmvé-s, therefĉ ro, a® in the imcomipreà'sible 
mode, and, as Figure indieatea, throughent the
solar atumsphere this mode is quite inadequate to 
a c c o u n t  for the features of solar flares#

A complete treatment of tho case where a 8"*field 
is pro sent would be extremely involved# For all the 
difficulties encounter eel in the two «̂ dim%cme i onal 
incompresraibXe mode in chapter’ h are present, and, in 
additionI the situation is complicated by gas motions 
induced in tho direction which cannot be ignored#
1b deriving the order of magnitudes solution, however, 
it is noted that the aamo équations are valid as for the
incomp3:’es5ible ot̂ se, namoly (4-4), (4-5) and (4-6) # 
Oonseqnently the order of magnitude solution la Identical 
with that of tho incompreaslblo mode and is, therefore 
given by
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Xt might at first appear that the z-field*a
inhibition of the compression of the gas miglit allow 
ambipolar diffusion offoots to he significant. As 
equation (7-23) shows, however, the field must be force- 
free in the x-direction, and, ' therefore, the antbipolar 
diffusion term in equation (7-10), which would otherwise 
be dominant, is zero to first order* But the field 
need 'not be completely force-free* and so aŝ ibipolar 
diffusioa'ii'might still be important. ' Xn the equation 
of motion the magnetic force term must bo as largo as 
tho preaouro gradient, a W  this could still bo sufficient 
to make the ambipolar diffusion term significant in the 
coBcluotivity equation* Further and mox’o detailed 
invo8tigatiens of the effecta of ambipolar diffusion 
in this connection are rqquirod before any definite 
conclusions can be reached * Xt is quite certain,
howove:r, that the ambipolar diffusion term does net have 
the demainance that would be suggested by equations 
(7-17) and (7-19)*
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CBAPTEH 8 

THE S'BvmmY'^mmzEh ^chamism

The oomploxity of the problem has prevented 
anything other than a steady two-dimensional analysis 
of the process of the dissipation of magnetic energy.
Ill the work of Parker, in the present anaiyaia, and in 
the work of Petschok to be discussed later* time- 
independent configurations have been examined in two 
dimensions. and 8overny^-^^\ on the other
hand, have argued that the collapse 'resulting from an 
instability in the magnetic configuration near a neutral 
point does not load to tho setting up of a steady state# 
Severny has, therefore, considered a time-dependent 
system# Tho model adopted was one*dimohsional# The
argument in a crude fo%m, is that a# the collapse
proceeds tho magnetic field and the gas density are built 
up at the same rate. However, the magnetic pressure 
which is responsible for the compression increaoes as the 
square of the field, while the gas pressure is 
proportional t© , and in all caeos y < 2* Hence the
magnetic forces causing the collapse are built up more
rapidly than the pressure forces reacting against it#
As Syrovatskii^ ̂ ^  has pointed out in a criticism of 
Severny’s work, however, considerable care is required
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in applying this kind of argument, In the disoussiosn 
of Severny * 8 meohamism^ » 126 ) f^xxoimp it is
intended to point out the restrictive conditions under 
which Severny*s analysis may be applied*

hot us consider the magnetic field configuration 
lirh ic h  i s  r e p r e s e n te d  b y

H (O, n(Xf t),
jf \ )H<G, t) 0

So the field is directed everywhere in tho y-dlrection
and depends only on the x-coordinate * Moreover, the 
plm-ae x %= 0 ia a natitral plane# For simplicity, 
symmetry is assumed about this plane g then the 
dlscuBsion may bo confined to the field on on© side of it# 

It will be convenient to use the Lagrangian form 
of the fluid equations, so put

X = X (%, t) (8-2)
where x Is the coordinate of a fluid particle whose 
coordinate was initially %, Hence

x(X, 0) = X (8-3)
Finally, suppose that, at time t 3̂ o, the field, the
density, and tho pressure distributions are respectively 
given by

H « H^(X)
/ = (X) (8-4)
P = Pg(x)
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Xn tills simple one-dimensional case, the equation 
of motion :ln l âgrangiasa form can bo written as

+P') (8-5)
dt̂  c)3C I, Btt /

The equation for tho conservation of mass becomes
f dx - d>lK (8-6)

Substituting' from this equation Into (8-3) will yield a 
simpler form of the equation of motion, viz.#

f . #  = - U t  * ')
Next perfect conductivity is aeaumed? the 

condition for the- resulting conservation of magnetic flux 
cam be written as

H dx ^ - H m  (8-8)Q  ̂ -
Finally if radiative and other energy losses are 
neglectedB there is the adiabatic equation, viz.

p Pg (8-9)
From equations (8-8)(8-9) and (8-6), the 

variables H and F may be eliminated from the equation of 
motion, x^oplacing them with the initial distributions,

and F^. Equation (8-7) then becomes

f. 3% = - ^at--" 9x SitV W  bxi
(8-10)

Up to this point, with the phyaioal aasumptione made, the 
treatment has been exact. Equation (8-10) is, therefore, 
the complete differential equation of the ayetern#
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Xt shç'ald be mated iti paaslmg ■- that.it ie.a non-linear 
partial, differential equation of the aeeomd order, and, 
therefore p; of a rather complicated nature. Ita solution
for Xf when the initial distributions fo , H , and F are 
Gpecified, requires a single extermal botmdary condition. 
Tho initial botmdary condition on k Is given by equation 
(8-3).

To simplify the problem, Severny^^  ̂ considered 
the caae of homologous or what he tesr-med ’ au tome dal ’ 
compression. He assumed that the forEi of tho material 
diatribution was independent o.f time, and that » therefore, 
tho solution of equation (8-10) had the simple separable 
form

X “ a(t) K (8-11)a(0) w 1

With this sub fs 11 tut lorn a very considerable simplification 
of the equation of motion is possible. Equation (8-10) 
reduces to the form

— oHo'" 1 S*„'f* .I'Wl'iF8TT aV
(8-12)

Suppose now that the system was initially : 
equilibrium, then one can write

b J~/8v  ■!• = P„ (8-1 3)
where is a constant - in fact» the initial value of 
the gas pressure on the neutral plane.



Now let X be the initial half-width of the transition o
region of the magnetlo field# Substitute for in 
equation (8-12) using the equilibrium condition (8-13) #' 
and integrate the srqsulting eqaatioh with respect to X 
from -X k; 0 to X #- The foH^cwing equation is them
obtained

dV - Q / A. I \
2? ~ [oy ~ (8~14)

where Q is given by
Q = [P„-P(Xo)] / (8-15)

Equation (S*l4) is essentially the equation
studied and solved by Severny# Since y < 2 - and of 
necessity Q ̂  0 - it is clear from this equation that a 
coo'ipreasion once started will proceed at an ever 
increasing rate* From this, Severny deduced that the 
equilibrium configuration of a magnetic field with a 
neutral plane is unstable# He concluded further that 
a coRïpressiong once it has begun, will proceed to an 
indéfinito extent, since equation (B-l4) indicates that 
there can be no equilibrium configuration other than 
a 1, and this, it is claimed, is unstable#

Severny argued, therefore, that tho coiiîpreaaion 
proceecis until shocks are developed, which eventually 
stop the compression, and load to an impulsive heating 
of the gas# The collapse towards tlie neutral surface 
waa identified with tho flash phase of. the flare #



xt proceeda at approximately the Alfvem velocity, t-jhlcli 
ocalo' short ono%%gh to accoimt' for tho flax^o’s auddoa even for a small field {— 3Û gauss) will provide a time-
scale' short ono%%gh to accoimt' for the flax^o’s sudden
riee to maximum* This •instability*' of the field,
them, and the consequent collapse are the basis of
Severny*© theo;ry of flares and of the theory of the
acceleration of charged particloB that ho developed ■
w i t l i  S h a b a n s k l l ^ ♦ -127 ) ^

Sevex*al oritlclsma can. be made of the theo5^%
For the present, attention will be concentrated on tho 
restrictions that are imposed by Severny* s U'pproxlmation 
of automodal ‘ compression# Even if the asatimption of 
equation (8-11) ia. made, it should b© remembered that 
the equation' of motion must still be examined in the 
fora of equation (8-12), and not simply in its Integrated 
form (8-l4). Substituting the equilibrium condition, 
equation (8-13), it la possible to %frite (8-12) in the
form

(iv “ ^ )  f? " /!x Ix
Mow by the definition of equation (B-ll), the left hasid 
side of this equation is a function of t only, the right 
hand aide a function only of Xt follows that, in
addition to equation (8-l4), it is also required that

i i L  +  Q f . x  = o  (8 - 1 7 )dx
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Thus f OX’ Stôvomy • a automodal oomprooslon to 
operate» the initial distributions and fo must satisfy 
the differential equatioxà (6-17),. A apeclal olaae of 
equilibrium eomflguratio# is, therefore » required for 
Severny*a aamlyads to ba legitimate* Further, the 
aondrltion (8-17), though neeeseary, ia mot sufficient 
for the oompresslan to be of the uniform typo specified 
by equation (8-11). The solution of the general tovm. 

of tho differential 'equation of the eyetea, namely ' 
equation (8-10'), requires two' boundax’y eonclltiona for a 
mil quo sototion. Flx'Stl'y there is the initial condition
which ia simply x X, or im Seveimy’s case a(o) - 1, aad 
soeoncliy there io' the ex to m a l  boundary eondition which, 
it may be supposed, is applied on the plane X k®
Such a eoudltiou wlli be of th© form

'o*

3c(Xq, t) « t ( t ) (8*18)
For the ccmpresalom to hé of tho automodal forra con- 
sidered by Severny, f(t) must clearly, for solf-cmieistency, 
be of the form

f(t) a(t) (8*19)©
whex'̂ e a(t) is the aolutiea of the differential equation

Equation (8-19) is the boundary ooaidition that 
corresponds, not to the free collapse of the field, but
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rather to a forced compression# From equations (8-6) 
and (8-11), it is seen that the pressure that must foe 
applied on the external boundary, X « X # in order to 
sustain the automodal compression, is given foy

From this equation it is clear that the automodal 
compression will only proceed to an indefinite extent 
if the externally applied pressure is increased without 
limit#

The principal criticism, then, of Severny*s work 
is similar to that made of Dungey* s discharge theory 
in chapter 2 (page ? 6 ), If a perturbation is made on the 
type of one-dimensional magnetic field with a neutral 
plane under consideration here, then the energy available 
to distort the magnetic configuration is precisely the 
perturbation energy and no more# The illusion of a free 
collapse of the field is created by forcing the boundary 
conditions, and the existence of an instability, in any 
real sense, has not been demonstrated#

To summarize, by his assumption of a uniform 
compression of the type given in equation (8-11),
Severny claimed to give an example of a collapse of the 
magnetic field towards a neutral plane that would result 
in shock phenomena and a consequent sever© heating of

,4
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the flare region. On the basis of this example, he drew 
rather general oonolnsions about the stability of such 
magnetic configurations. As the present analysis has 
shown, however, only a special class of initial 
equilibrium configurations can lead to such automodal 
compression under any external boundary conditions.
Again, granted that such an initial configuration is 
attainable in practice, internal consistency requires 
that the external boundary condition bo of the form of 
equation (8-20). The physical interpretation of such 
a boundary condition must be that the compression is of 
a special and forced type, and that the initial equilibrium 
configuration was such as to allow the compression to 
remain uniform. These considerations greatly reduce 
the generality of Severny’s analysis, and any conclusion 
about the stability of the field resulting from it must 
be disregarded.

A theory similar to that of Severny has been 
developed vary recently by Wentzel^^^^^. Again a uni- 
dimensional time-dependent system was considered. In 
addition to the field components as represented by 
equation (8-1), however, Wentzel included a component 
in the z-direotion that was initially uniform. The 
direction of the magnetic vector, therefore, instead of 
reversing across the transition region, is turned through
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au angle of tt* - 20 inhere o < 0 < ^/Zf the size of 9 
depending on the relative strength» of the y- and 
z-component». The neutral plane is then replaced by
a plane of minimum resultant field strength and, 
therefore, of minimum magnetic pressure.

Wentzel considered the collapse of the magnetic 
field towards this surface. In treating the dynamics, 
only the magnetic forces were considered; the effects 
of gas pressure wore neglected. This is no doubt a 
reasonable approximation, since at the chromospheric 
levels at which flares occur, it is expected that the 
magnetic forces will be dominant. Thus the forces that 
react against the collapse and ultimately halt it are 
the magnetic forces built up by the compression of the
constant z-field. Wentzel carried out an extensive

/ ' numerical analysis of this type of collapse and of the
resulting shock formation. A number of initial magnetic

■i 'configurations were examined, and the effects of varying 
i#he ahgle of inclination 0 were also computed. The
situations initially assumed, however, did not correspond

,1.
!to eijiuilibrium configurations. Such a theory, therefore,

I j- 'meSrely describes the behaviour of a system after ani
iniEî'tability has fully developed, and thus has no bearing

i 'on the circumstances giving rise to the flare.
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Probably ¥entzoi*'s work is qmntitativoly tho
most detailed that has been attempted in comaeqtion
with solar flares. Hoference has already been made

/ loi;. \to his contention^  ̂ that the flash %3haee correspond» 
to the time of onset of tho first visible effects of an 
initial instability, and that the %)ropor timo-ocale for 
identification with the rate of magnetic energy■ 
dissipation ia the total duration of the flare* On this 
point of view, th^ actual rate of optical emission iai, the 
flare will correspond to the rate of magnetic energy 
dissipation.

Veaitzel proposed that the collapse towards the 
surface of minimum field strength leads to aai onset of 
turbulence, if the velocity of collapse exceeds a 
certain arbitrary fraction of the local Alfven velocity. 
He supposed that this turbulence persists throughout the 
flare, and that the emission of tho optical flare is due 
to Jdule dissipation of magnetic energy in the turbulent 
field of flow. He pointê Jl to Observations by Buomoto 
and of the premaxima spectra of two small flares.
These authors found that tho electron denaitioe derived 
from a Stark interpretation could only be x’eoonciled 
with the election densities derived from the line 
intensities if tho total omission depth was as small as
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dissipation is confined to the bomMary layers of the 
tm'bi^lent eddies * The thioknoss of these layers is 
determined by the skin-depth through which the field 
can diffuse while the eddies are in contact* ■ From, 
order of magnitude calculations Weatzol comciuded that 
hie interpretation of the optical flare as'Joule 
dissipation in a turbulent region was in accord with 
these observations* Xt must be reraombered,' however, 
that a thickness of 10 to is also 'consistent with the 
release of the whole of the magnetic energy in the flash 
phase by the current sheet mechanism*'

Although there is some obsexvatimml justification, 
therefore,' for this important aspect of Wonted’a theory, 
it is felt that the identification of tho magnetic -' 
dissipation time-scala with the total flare duration Is 
somewhat arbitrary* Further, despite the detailed 
nature of his analysis of the collapee, Wentz el could 
only justify the onset of turbulence by a qualitative 
argument. The required turbulence is mo more tZ?.an 
hypothetical. Finally, as mentioned previously, the 
Initial configurations that are studied in the-numerical 
analysis are non-equilibrium oonfigurations *
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OaneoquOTtly both the nature and the existence of the 
field imatability are in this theory, usilike that of 
Sovorny, ■completely Ignored *
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CHAPTER 9

FKTSOIÎEE’S mCHANISM

The slowness of the interpenetration rate In the 
Parker current sheet mechanism prompted further attempts
to show how this mechanism might foe speeded up* It was

1129 )suggested foy Jaggi' ^' that the type of resistive 
instability examined by Furth, Killeen and Rosenfoluth(̂ ) 
might develop in a current sheet of the kind that has been 
under discussion* This development would lead to a 
shortening of the scale length h  and a corresponding 
enhancement of the interpenetration rate* The work of 
Furth, Killeen and Resenfoluth, however, is not of direct 
application to the solar flare problem, and Jaggi’s 
analysis fails to give a clear estimate of what the revised 
interpenetration rate ought to foe* A more satisfactory 
approach has been developed foy Petschek^^^^^, who 
examined the effects of wave propagation on the inter­
penetration rate* Owing to the existence of a small 
component of the magnetic field perpendicular to the sheet 
current, it is possible that at a certain distance from 
the neutral point the velocity of propagation of Alfven 
waves across the sheet may exceed the diffusion velocity* 
Wav© propagation will then predominate over the diffusion 
mechanism, and the current sheet can bifurcate, leading to
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a significant shortening* of its effective length* An
enhanced rate o'f interpenetration can thus be obtained. 
The discussion of flare mechanisms will be concluded 
with a fairly detailed account of Petsohek’s woi’k*
The account mainly concerns his adaptation of Parker’s 
incompressible mode,

Petschek considered a two-dimensional system 
involving the collision of two regions of constant but 
oppositely directed magnetic field, Xf these magnetic 
fields are H « (o,' ^ O), one may assume a field of
flow given by v - (fv^, O, O) to apply outside the 
transition region of high current density* Here vQ
will be a constant* The assumed field of flow will foe 
consistent with the condition required for a steady 
state, namely curl g =; 0* These two fields are taken 
as the zero order field#, and perturbations will be 
caused on them by the presence of an interpenetration 
region of finite dimensions, Petsohok showed that in 
addition to the type of current sheet that has already 
been considered, which lies wholly along the y-axis, 
another rather different type is possible, at least over 
part of the range of y . This arrangement consists of 
two separate sheet currents each inclined at a small 
angle ±p to the y-axis* Between the two sheet© the



field is zero in the y-direction, that is the field ia 
effectively perpendicular to the sheets* This type of 
field ia ahowi in Figgure (9-I).

Xt will be convenient to refer to the region 
between the two sheet currents as region A, and to the 
exterior region as region B* The regions have been 
appropriately labelled in Figure (9“'l)* Petschek 
derived a very neat solution for this configuration, 
X'jhich is ©elf-consistent for small p , and which in each 
region is independent of x and y. The magnetic field 
of this solution is illustrated in Figure (9-l); the 
details of the solution are given in Table (9-I).
Xn this table the signs of the various terms are those 
appropriate to the first quadrant# Further, from the 
Hankine-Hugoniot conditions at the shook faces together 
with tho equation of continuity in region A, it can be 
shown that the angle of inclination P of the current 
sheets to the y-axie is independent of y and is given by

'i / ir.o (9-1)
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B B

Field due to two slaeet our rente each making; an an^le P with the y-«axis*

Physical Variable Region A Region B
Gas density fi A
Fluid velocity (x^comp*) 0 “
Fluid velocity (y-comp*) 0
Magnetic field (x-comp.) V*o/^A ^V*o/^A
Magnetic field (y-“Comp*) .0 -, »o

. Gas pressure ?o •*•
Petschek’e solution for regions A B,
for a small inclination p
t. * 0 ►
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The magiietia configuration illustrated in Figure 
(p-l) is not physically realistic as it stands». It 
involves a sheet current along tho x-̂ axie, along which 
there %muld he am mideaired comi>onont of the Lorents 
force*. This sîieot cur3:"0nt arises because the region of 
wav© propagation has been assumed to extend right to the 
origin# At an X*»type neutral pointp however, the trans­
verse field must go smoothly to ssero# In a neighbour­
hood of the neutral point* then, the two sheet currents 
must coalesce to form a single shoot current of finite 
lengtha Xn this region interpenetration is du© to 
resistive diffusion, while at a greater distance up the 
y-axis the transverse field builds up and wave 
propagation becomes the dominant mechanism* At such 
distancés the field will indeed bo of the form ©!?.©tm in 
Figure (9-1)» while near tho origin the field corresponds 
to that of a single diffusion region with an X-type 
neutral point, similar to that illustrated in Figure 
( )  * The complete magnetic configuration ia 
illustrated in Figure (9-2)#



315

2L
DIFFUSION PEG ION

Fig C9-2 ). Complete magnotic configuration for tho
interpenetration region*

any value of the interpenetration velocity v^ *
The solution in table (9-I) can be satisfied by

This
value depends essentially on the nature'of the complete 
system, Incliiding the central diffusion sheet* To 
obtain this complete solution, one must fit the solution 
given in Table (9-1) to a region of normal resistive 
diffusion of length L* say. From the analysis of the 
isioorapressible mode, .considered earlier, It follows that

V  —  (v„* (9-3)o
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Here is the common interpenetration velocity of the
diffusion and of the wave dominated region* Xn equation 
(9-2 ) Vjj* ia the diffusion velocity across a distance L*,
visa#

^0 ■--- — (9-3)A - TTO" L
Xfg as before, the diffusion velocity across tho total 
scale-length h is denoted by then from equations
9-2 ) and (9-3)

(9-4)
\ 1— /

Equation indicates that as is increased the
length of the diffusion region is shortened in order to 
accommodate this increased rate of interpenetration*

The next point considered by PotscXiek was the 
determination of a value for L*, and hence a
maximum isitcrpenetratioB rate* Now in the external 
field of flow it is poaaiblo t© write the fluid velocity 
and the magnetic field as

V  ^ " ^ 0 ( 1  + m  )

m  =■ ( 1  •*• &  )

Xn equations (9-3) i and are rospactivoly unit vectors 
in tho X- and y-directians* The vectors u and h 
represent the perturbations on the fluid velocity and 
the magnetic field duo to the presence of a finit© 
interpenetration region* As O, the moduli of
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the véotors u and h will also tend to # Petsolxek
used the aondition that |h | be of order unity as a 
criterion to determine the maximum interpenetration

Fetschek assumed that the perturbation field h 
was of potential form in tho external region* Though 
this aaammptiom :1s certainly arbitrary, lie showed that 
xrXtU it internal consistoncy could foe maintained. Now 
the thiclmess o£ the whole of region A is small compared 
with the extent of the external field.of flow; so, in 
discussing the exterior region, one may to a first 
approxtoatrlon regard the analysis of region A as 
providing’ boundary conditions on the y-axia» The 
8oltit:lon in Table (9-1) then pprovides the normal component 
©f h on this line ; this component is given by

\1 ^  ̂< L = l!k

-L' ^ > L k,. = - ^  (9-6)

Ivl\ < L' = 2 ^  J c
 ̂ ITfl L'

The last condition In (9-6) has boon taken simply a.e an 
approximation forr h^ over the boundary of the diffusion 
region* The precise value taken over this region Is  ̂
probably not important*
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From equations (9-6) and the assumption of a 
potential field, h le determined uniquely in the external 
region* Petechek found that the modultis of h had its 
greatest value at the point where the x-axis meets the 
boundary of the interpenetration region* At this point

IVll -  %  Uyl2z-\ (9-7)
TT /

Taking \U\ - 0(l) at this point, and ueing equations
(9-^) and (9-?)» ha determined as follows îmax

-  \êov. Vr Y  ' (9-8 )

Fetschek extended his analysis to the compressible 
case* The effects of oompreasifoility do not significant­
ly alter.the form of the magnetic field or the general 
configuration of the field of fluid motion* I'̂ usrther, 
the interpenetration x'ate is unchanged to order of 
Bimgnitude* Xt is important to note that a significant 
difference between the Fetechok and Parker oompressiblo 
modes, which both correspond to tho situation whore

/ B r r y y  is that in Fetschok’s analysis there is no 
great eompresaion in region A* The effects of compression, 
however, will probably still be important in tho diffusion 
region of length .

While considerable refinement Is still required in 
the analysis, in particular, in tho relationship and fit
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tween the retiens of wave propagation and diffaoioe, 
Petsohek* 8 work does bear out the coneiusion that the 
Parker modes are not definitive* althoitg’h it iimat be 
realized that there is still no clear proof of 
definitivenes© even in this mode. A considerable 
enhancement of the interpenetration rate is* howeves:’* 
clearly possible* Further* no artificial assumption 
about the exact alignment of the colliding magnetic 
fields is required* since the result of equation (9^8) 
is largely independent of compressibility* Moreover* 
the result is almost independent of the conductivity 
which appears only logarithmically* and so the result 
cannot be affected significantly by any heating of the 
gas*

One final point should perhaps bo made* The 
seal© length h used in the analysis of both Parker and 
Potschok is arbitrary* The importance of the work in 
chapter 3 of the present treatment is that it relates 
this parameter to th© displacement of flux systems in a 
perfectly conducting medium#

In conclusion* the mechanism will be applied to 
the flare problem in the same manner as the other modes * 
Assuming* therefore* a 300 gauss magnetic field and a 
seal ©^length of 10*̂  cm* the values given in equation
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(7'̂ h) may be used and The minimum timo-
scsal© for interpoBotratlon is then given numerically by

_  2.| . I O'^ |< N (9-9)
Where K = 10,3 + (3/2) lag T - (l/2) log W (9“10)

The vailles of the minimum, tirae^soale derived 
from t/iie application of those two equations have been 
plotted in Figm?e (9"*3)*, Allen*0 v a l u e s h a v e  
again been used for the chromoBpliorle temperature and 
density distributions* The full details of the 
numerical values on which Figure (9*̂ 3) is based are 
tabulated in Appendix (9*̂1) -* The time-*scales 
appropriate to the tota.l flaz*© duration ( ~ 2  hours) 
and the flash phase ( ^  5 minutes) have both been marked 
in Figure (9-3)» Since the time*-scale of Interpene** 
tration depends mainly on the gas density and is 
virtually independent of temperature* there is a steady 
decrease in its minimum value with, increasing chremo-- 
spheric height * From Figure (9*3) it is at once clear 
that Fet»schek^s mode can account for. the rapidity of 
the rise to flare luaKimum for any chrome spheric height 
above about 3000 km» _ In fact* the ;lnt©rpan©tration 
time is of the same order as the flash phase duration* 
or even shorter* for particle densities leas than 
4 • 10 '’*■ particles .per cm* *
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LOG
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CHAPTER 10.

GENERAL REQUIREMENTS OF A FLARE THEORY

The essential requirements of a complete theory 
of solar flares may be summarised under the following 
four main headings %

(1) Energy Storage Mechanism.
(2 ) Breakdown Mechanism.
(3) singular Magnetic Oonfigurations*
(4) Dissipation Mechanism.
The energy storage mechanism must be capable of 

storing up to 2 . 10^^ ergs at chromo spheric or coronal 
heights in the solar atmosphere. This energy must be 
stored in force^free perturbations of the potential 
field of the associated active region* The energy of 
the potential field itself is not available to supply 
the flare.

A breakdown mechanism must be provided to account 
for the explosive onset of the flare. Two types of 
instability have been considered in this connection^ 
namely a dynamical instability, and what we shall term 
a macroscopic resistive instability.

In the limit of infinite conductivity the magnetic 
field must be capable of giving rise to singular
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configurations. The need for such configurations is 
obvious in the current sheet mechanisms of Parker and 
Petschek, but singular configurations are also required 
in the alternative theories of Severny and Wentgsel.

The essential differences between the two alter­
native types of theory that have been discussed lie in 
their respective accounts of dissipation mechanism.
Here the main problem has been to find means by which 
the magnetic energy can be converted into heat 
sufficiently rapidly to account for the flare. There 
is not, however, complete agreement as to whether the 
dissipation time should be identified with the flash 
phase or with the total flare duration.

In the course of the present chapter, it is 
intended to discuss the extent to which specific 
theories that have been put forward successfully 
meet the above four requirements.

(i) Introduction

Borne of the requirements of a flare theory have 
been described by Gold and H o y l e a s  followss 
"(a) magnetic field configurations must be found which 
are usually stable and which can store energy with a 
density a hundred times greater than in any other form; 
(b) a rather rare situation must occasionally arise
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that Xeada to an instability in the magnetic field 
configuration, and to the dissipation of this energy 
as heat and mass motion." Up to this point the present
discussion has been largely confined to mechanisms 
concerned in the actual dissipation process. To place 
such mechanisms in a context relevant to the flare 
problem, it is necessary to supply both a storage and 
a triggering mechanism. The first of these require-** 
mente will receive a full discussion in the second and 
third sections of this chapter; in the present section 
it is intended to say a brief word of introduction about 
possible triggering mechanisms.

Gold and Hoyle have pointed but that the 
instability responsible for sotting off the flare need 
not require an external triggering mechanism. A break­
down might occur in the process of energy storage, and 
a dynamical instability might develop, when the stored 
energy exceeded a certain critical value. The authors, 
however, could find no firm justification for this 
cosiclusion, and, therefore, proposed that the triggering 
mechanism was in fact external and not directly connected 
with the storage process. Nevertheless the idea of a 
dynamical instability io certainly very attractive, and 
could provide a satisfactory initiatory device for the
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diséipative mechanisms that have been considered in 
earlier chapters.-.

Certainly to initiate the collapse described in 
the theories of Severny and Wentiael, a dynamical 
instability is required. A complete theory would 
:tovolve an investigation into the possibilities of 
such an instability and its development from stable 
equilibrium configurations. A dynamical instability
is undoubtedly the most plausible suggestion to account 
for tho sudden onset of a flare; further# it would be 
equally applicable to the initiation of the steady 
conditions of current-sheet mechanisms. No significant 
work has been done, however, on the question of the 
exiBtenoe or development of à dynamical instability in 
connection with solar flares. While other possibil- 
itiofô do exist that can lead to the steady conditions 
of the current-sheet mechanism, it would seem that the 
type of collapso envisaged by Severny and Wentzel can 
only be started by a dynamical instability.

Even if a dynamical instability were to occur in 
the ohromospheric magnetic field, this would be followed 
by a flare only if the field collapsed to a singular 
currentsheet configuration. Those configurations are 
an essential feature of all four dissipation mechanisms
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that have been dieoussed (Parker# Sevemy# Wentz el and
Péteehék). 'Magnetic flelda must, bo found# therefore# 
which# in the limit of infinite conductivity# are 
capable under displacement of giving rise to singular 
configurations* It is iu attempting to meet this 
requiretnent that investi gâtions of magnotio fields 
with neutral points have been important.

(ii) The Hole of Neutral Points and the Acceleration
of Ghara^od Partial00-*

Sweot^^^"^^ has examined the topology of an 
idealised sunspot field at ehromospheric levels.* His 
discussion is based on the assumption that ainiapots 
arise when flux tubes that would normally lie at a 
lower level protrude through the photosphere and emerge 
into chromospheric regions* The field examined was 
that of a complex spot group# consisting of two simpler 
bipolar groups* The boundary of tîie field may be 
mapped on to a plana Z « which is referred to as the 
photosphere* The field of interest them lies above 
Z # and the magnetic flux crosses Z in four regions 
A# B, C# D# as shown in Figure (lO-l).
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Typical connectivity of a complex spotgrot# in the solar'surface,f ( 1̂ 2.)

If - there Is any flux sharing between the two 
bipolar groups# the connectivity of the field In E. 
requires the existence of two neutral points’ ’and 
Np in that plane * From Figure ( 10-̂ 1 ) it Is clear that 
the linos of force through these neutral points divide 
the plane Z into four distinct areas* Xn fact the 
field above ^ can bo divided into four distinct 
topological regions, of which thé four areas in E are
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referred to as Ï# XX, XIX, and XV; the flux from AX 
recroGses E at BX., ' that entering at AIX reorossos at 
DXX, ate. The four regions above E are separated by
four si^rfaoes which are generated by systems of lines 
of force through one of the neutral paints* For 
examplet regions- X and XX will be separated by the 
lines of force that go through the boundary eur'Ve 
separating AX and AXX; all these lines ©f force go 
to' the ne%%tral point * The four separating surfaces 
so defined have- a common intex^seotion above % , which 
is a line of force joining 'the neutral points and Np.

Sweet pointed eut that the topology just described 
ie renlevant whoa any two flU3£ tu?)$s, or, for that matter, 
any two distinct sections of the same flux tube interaect*

Xt was assumed that the magnetic field above 1 
was initially of potential form* The effect of moving 
the photoBphoric roots of the field was thon considered* 
When this occurs without magnetic reconnection, the 
field can, in general, no longer be potential, and 
elootrie currents are induced* Sweet proved the 
important theorem that if any current flows at a 
deformation type neutral point that is not on a neutral 
line, then hydrcatatic equilibrium is impossible at that
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point ♦ Xn the prcmf of the theorem the effects of ^as 
preesttro mtd. gravity were lacXndod, assuming an iso^ 
thermal atmoephere*

The thoorom would Imply that hydrostatic 
equilibrium must break down aa soon as an̂/' di apl a cement 
is mad© of the component flujc systems of the model, 
since such diaplacoments must Induce currents. Xt was 
not proved, however, that these currents must flow at 
the neutral points g only a qualitative argument could 
be given to justify this assumption. If the inter»* 
pretation is correct, then any motion of the component 
spots will lead to asi immediate breaZidown of hydrostatic 
equilibrium, and enerĝ f' cannot foo gradually stored for a 
sudden release, at least in this typo of magnetic 
configuration# Interpénétration will proceed as soon 
as there is any relative motion of the component spots* 

Sweet nc3:t showed that the voltage drop along the 
line of force joining the two neutral points and 
is equal to « (i/o) times the rate of reconnection of 
Kiaĝ itotio flwc# If the recoimoction rate can be made 
sufficiently rapid to allow the field to maintain nearly 
potential form, then to order of magnitude the voltage,
V say, will be given by
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where E and E are respectively a typical magnetic 
intensity and ecalculength of tho field# and v ic the 
relative velocity of the eunepot components# Now this 
voltage will be available to accelerate particles, since 
it ie determined from the electric field as measured by 
an observer moving with the fluid#. From the work'of 
Meyer, Parker, ànd S i m p s o n ^ p a r t i c l e s  up ' to 10 Be¥ 
were accelerated in the flare of February 2 3, X95^*
To account for such exceptional particles* veXooitios of 
the sunspot components of thé group ' would have to be of 
the order of 10^ cm/aec on any reasonable estimate for 
the values of H mid L# On tho othcî? hand, it must be 
pointed out that direct acceleration'by the large scale 
electric field'is not the only conceivable way in which 
particlos could be accelerated# ' Tho alternative 
theories of and Severny and ■
have already been mentioned*

Velocities as largo as 10 km/see could not bo 
expected frmii the gonorally observed motion© of sunspots

has cited an example, however, in which tho 
diaplacemonta of the components of a spot group* as 
measured before and after a solar flare, roqttiared a 
velocity of at least 10̂  em/seo for their explanation#
On this interpretation, largo voltages could result
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from otmapot mot,ions,
( 991,,, ,haa, argil0cl that this induced voltage

camièt a,o cel orate cosmic ray particle© * since the 
accelo,ration, requiros that thé particles achieve rimaway 
energies# .By a orade argument# he estimate© that 
runaway particles , .oansiet, occur#. since by his compiitatiana 
the alectrous have drift velocities that are conaidorably 
lose them their thermal velocities, These compiitationa, 
however, apply to Farkeri® compres5il>lo mode of imter^ 
penetration* This, made ha© beam shown not to bo 
definitive, and If the intearpenetx’atioB takes place with 
a rate that ia appropriate to l̂ etschek̂ ŝ analysis,, the 
electric■field will be oignifloantly eidumced. Further* 
if the two colliding field© are,not exactly antiparallol, 
tho rosiduai field inhibit© tho comprossion, and tho 
lower gas density in the interpénétration rog.ien reduces 
the critical field required for runaway electrons*. If 
the optimum conditions of Petsehok*© motW arc taken, not' 
only the electrons but also the psrotons will bo able to 
achieve vunmmy energies#

Sweet•© topology of the sunspot field, and the 
suggestion tha-t sunspot motions are responsible fo.r the 
magnetic roconneotlon would seem to be ima'ble to account 
for noxvaaj, flares. For the conclusions about the
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breakdown of hydrostatic equilibrium at the neutral 

point rule out a gradual storage of energy in 
preparation for a catastrophic release. The sudden-* 

ness of flare onset cannot* therefore* be explained. 

However* such a model could well account without 

modification for the more gradual plage brightenings * 

of which flares are probably extreme examples 

distinguished by the violence of their onset*

(iii) The Gold and Hoyle Storage Mechaniem.

A separate topology of a ohromospheric magnetic 

field has bean considered by Gold and H o y l e #

Though it differs considerably in its externals from 

Sweet * 8 model * in its topological essentials it is 

almost identical* The Gold and Hoyle model is* 

however* more general in that the number of neutral 

points is not restricted to two.
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VxH VxH

A tube ot tiio typeoousldered by Gold and H o y l e , I^o)

Gold aud Hoyle examined ;ln coneiderable detail 
tile field of a twieted flux tubo of the kind Illustrated 
in Figure At ohromospheric heights the field
.ill the tube must bo foreo^nfree * They identified such 
bmidlas of twisted lines of foroe with ohromospheric 
filamentsÿ claiming that flares are frequently aligned 
with pre*̂ 03:1 sting filamentary structures. Thus Gold 
and Hoyle*e theory is concerned with 8mal,t*̂ acale fields 
rather than with the complete sunapot magnotic conflg** 
uratlon.
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The tubes of force may emerge twisted from the 
photosphere* or, aXternatively, they may become twisted 
into their force^free configurations in the chromosphere 
due to photospheric twisting motions at their roots*
In either event, such tubes of force provide isolated 
magnetic systems that, unlike a potential field, can 
store energy at chromo spheric levels*

Fig ( 10^3) * Gras3*»"section of the colliding fieldsprior to any r©connection*

In their theory, Gold and Hoyle considered two 
such flux systems# Since the systems are isolated.



initially they will exert no forces on each other#
Tho authors supposed that two such systerns come into 
contact by chance along part of their length at 
chromospheric levels# When they first come into 
contact a oross**section of the colliding fields v;ill 
appear as shown in Figure (lO*3), and normal diffusion 
will take place across the boundary of contact* Due to 
this diffusion, the outer lines of force are reconnected 
and, after a short while, the cross*section of tho field 
will appear as in Figure (10*4)• Now, due to tho 
initial reconnection, the systems are no longer isolated* 
The lines of force enclosing the two systems will exert 
forces that draw the two systems closer together*
Non*singular hydrostatic equilibrium will ceaso to be 
possible and a narrow collision layer will bo set up#
The interpenetration will proceed at an ever increasing 
rate in this collision layer in which the steady 
conditions of the current shoot mechanism, aa analysed 
by Parker, Fetschek and others, will apply# The 
interpenetration rate will be determined by the velocity 
at which the two flux systems are being drawn together* 
This rate will ultimately be limited to the maximum rate 
of interpenetration possible in Petschek’s mode*

Two important features are found, therefore, in the 
tlieory proposed by Gold and Hoyle* First they have
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indicated a method by which the flare energy may be 
stored at ohromo'spheric levels, and secondly they have 
provided a triggering mecliani sm* The first two of the
rec|airéments stated at the beginning of the present 
chapter are, therefore, succèssfnlly met in this theory* 
Further, in their triggering mechanism, Gold and Hoyle 
have indicated another tyx̂ e of field instability which 
might be appropriate in place of a dynamical instability* 
This will be referred to here as a macroscopic resistive 
instability* Xt may be defined as follows*

Eis-iiSzM Cross*^seetion of tho colliding fields following some reconnection*
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Suppose that an initially stable equilibrium 
configitratlon ia gradually altered, possibly due to the 
gradual storage of additional magnetic energy, until a 
orltioal stag© is reached, at whicb. under a further 
perturbation a non-* singular equilibrium configurât ion 
cannot be found without some recoimcotion of the 3,ines ■ 
of force* . Xn. the limit of perfect conductivity,a 
current sheet is then induced* . Xf finite conductivity 
is allowed, however, hydrostatic equilibrium breaks dotm, 
and a thin region of high current density is sot up in 
which realstiVO diffusion is operative. The resulting 
interpenetration introduces new magnetic forces that 
dccroaao tho stobillty of the configuratioB* The
length of the Current sheet required for equilibrium is 
incroaaed,. thereby increasing the extent of the diffusion* 
As a result, interpenetration will take place at an 
increasing rate until a now non-singular equilibrium 
configuration becomes possible* This is a slight 
generalisation of Gold and Hoyle’s type of instability ; 
their’s is the particular case where the initial con*-* 
figuration is not one of stable but one of neutral 
e q u i l i b r i u m *
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CimPTEH 3.1*

SmiMARY AND CONCLUSIONS

Early magiiotio theories of solar flares were 
criticised by C o w l i n g ^ o n  the grounds that if the 
flare heating is due to Joule dissipation of magnetic 
energy, then the thickness of the current cannot exceed 
a few metres* This conclusion follows directly from 
energy considerations and a simple application of 
Ampere’s law. This criticism has been satisfactorily 
met in all later theories* Dungey^^^^^ pointed out 
that, since under solar conditions the current density 
is determined primarily by the magnetic field con­
figuration, a solar discharge must be very thin in one 
direction.

Xt is possible to state this requirement of the 
extreme narrowness of the current region in a more 
elegant manner* Xn any flare theory, the assumed 
magnetic field must be capable of giving rise under 
displacement to singular configurations, when the 
resistivity of the gas la neglected* This requirement 
has led to the close investigation of fields with

(113)neutral points by Dungey , Sweet^ and others.
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Given such a magnetic configuration, a complete 
flare theory must provide an instability to account for 
tho sudden onset of a solar flare. Tho most attractive 
suggestion would be a dynamical instability in which an 
initial non»^singular stable aquilibrium configuration 
becomes unstable * If no other non-singular config­
uration of stable equi1ibrium exists into which the 
system can move without reconnection of the lines of 
force I the system must collapse to a singulaar equi­
librium configuration* The collapse would then be 
accompanied by the formation of a sheet current.
Though the idea of a dynamical instability is clearly 
tempting, no significant work has been done to date on 
the existence of such an instability appropriate to the 
force-free conditions of chromospherio fields.

Two separate approaches are possible In the treat­
ment of singular fields which might be caused by the 
collapse, and in dealing with the resulting dissipation 
of magnetic energy. on the one hand, S e v e r n y ^ a n d  
Wentssel^^^^^ have treated the problem in a time-dependent, 
but unidimensionalI manner. They argue that a steady 
state is not reached as a result of the colla%)se* 
According to Severny, shook phenomena dissipate the 
energy of the field, leading to an impulsive heating
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of the gaa to a temperature of several million degrees. 
This provides a thermal energy store which the flare 
dissipates over the period of a few hours, ¥ent£5o3,,
however, considers that the energy of the oollaps© goes 
into turbulent motions. This turbulence then provides 
a store of energy that is gradually dissipated over the 
whole duration of the flare by Joule heating taking place 
at the boundaries of the turbulent eddies*

The alternative approach has been to assume that 
steady conditions are set up in a singular equilibrium 
configuration. Work along these lines has been 
published by S w e e t ^  p a r k e r »59) ̂ and F o t s o h e k ^  
When allowance is mad© for finite resistivity, conditions 
of hydrostatic equilibrium cannot hold t^ithin the current 
sheet, which is now 'replaced by a finite region of high 
current density. The colliding fields collapse at a 
rat© determined by the rate of magnetic diffusion in the 
pinch. Four modes of Interpenetratioii have been 
considered in the present treatment, Xn general, the 
interpenetration rate detfarmined im these modes falls far 
short of what ie required in the solar flare problem,
Under optimum conditions, the * fast’ mode of chapter 6 
can account, however, for the decay phase of a flare.
But tho irate of interpenetration derived in this mode
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dépends critically on some artificial features of the 
two-dimensional model that was■assumed, since if the 
colliding fields are not exactly antiparallel, the 
intex‘pen©tration rate is much reduced#

The most relevant application of the current-sheet 
mechanissu to the flare problem is provided by Petsohek’s 
analysis♦ This mode of interpenetration is sufficiently 
rapid to account for, not only the decay phase, but also 
the f3.aeh phase of a 3.arge flare under a variety of 
ohromoapheric and coronal conditions * Further» no 
artificial assumption about the alignment of the colliding 
É'ields Is necessary, since compressibility is not an 
important feature of this theory# Petschok’s work is, 
without doubt, the most successful attempt, to date, at 
a aolar flare interpenetration mechanism# It is 
possible that other modes of Interpenetration may have 
relevance in rather different solar contexts#

■ The current sheet mechanism could arise from a 
variety of causes# Firstly, it could bo set off by a 
dynamical instability resulting from the twisting of 
chroKio spheric fields fey photo spheric motions. Secondly, 
it could arise, althougli not for flares, from ccntinuoue 
movements of tho photaspheric roots of the ehromospheric 
field, as for example in the relative motions within a
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complex spot group* Thirdly, and this is the least 
speculative altox^native, the mechanism could follow 
from a macroscopic resistive instability of the type 
examined by Gold and H o y l e a n d  possibly of an even 
BIO re general type *

In til© case of the dynamical instability it is 
likely that, when the steady conditions arise, the 
interpenetration will proceed at the rate appropriate 
to Fetschek*B mode* This corresponds to a collapse of 
the colliding fields at near tho Alfven velocity*
On the other hand, if the intorpenotz'ation is caused by 
continuous photosphex*ic motions, then in the absence of 
a storage mechanism, the rate and mode of this inter- 
•penetration will be determined by the velocities involved 
in the photosiîheric motions themselves* Finally, if the 
process arises from a macroscopic resistive instability, 
thon the rate of interpenetration will be continuously 
accelerated* The mode of reconnection will proceed 
from the slow mode, through the faster mode analysed in 
chapter 6, ultimately reaching the Fetschek mode in ifhioh 
an upper limit is finally encountered

The Petschek mode can eiccount, therefore, for tho 
rapidity of the solar flare flash* Further, it Is 
likely that a wider class of plage bx'ighteningo can also
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be oxplaiRod by tlio current sheet mechmilsm. The 
oritlcisM ha© been inade by Wemt©el( however, that 
such a theory Is ia conflict with the observation of 
homolegouB fXax*e©, since the required recoonection of 
the .line© of force would significantly a3.ter the ma-gnotic 
configuration, and presumably, thareforo, the appearance 
of subsequent flares of the homologo-ua group# Models 
could b© suggested, :ao doubt, in which this criticism 
would not apply. For examp .le» the Idea of a dynami cal 
instability occurring in a single flux tube is tempting.
A single imltlally untwisted fj.u% tube could become 
twisted by photo©phex’ic motions as in the Gold and Hoyle 
models should, then, a dyimmical instability develop, 
the tube wi3J, buck3,e and the resulting interpenetration 
will leave the tube again in an untwisted state similar 
to its Initial configuration. The process could, 
therefore, be repeated in its essentials* However, at 
present, such model© are only speculative*

This critic lam by HentsieX has usually been regarded 
as rather serious § but it should be pointed out that 
only a few cases of ho!îî0logO.us flares have been observed, 
and that the interpretation of some of these is open to 
doubt * Tho moat striking oxamp.le of a homologous group 
of flares, that observed hy Hansen and Gordon^ ', Biay*
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in fact g have been rathe)? a homoiogou© ^roup ot 
phenomena aeeociatect with a eerie© of flares that wore 
uno'beervod duo to their proximity to the solar limb#
For it is' difficult to distinguish limb flaẑ es, such as 
those Mamson and Gordon were attempting to observe, from 
surges and other flaro-'*iiko phenomena. There is no 
doubt, however, that homologous activity of some kind 
was observed in this ease, But it should bo pointed out 
that the field annihilation required for a flare will 
not ipso facto, ^ireelude such activity, provided the 
reconnection Is confined to small scale features, as 
Gold mid Hoyle have suggested* For there is then no 
reason to expect that the general 8uns%)Dt configuration 
would be altered by the flare. And It is the more 
general features of the field that dotormine the form of 
flare-associatad phenoamma. Finally, if the groaa 
features of the sunspot field are altered, this must 
occur in only quit© exceptional 3-t events, While suoh 
flares are îmown to occur in groups in particular" active 
regions. Individual flares of the gx^oups show consider-^ 
able dissimilarities, and are certainly aiot homologous. 

Most theories of solar flares have attempted to 
explain, the optical event * This is probably the best 
procedure, since the optical activity is usually the



most obvious and probably the most emerge tie feature*. 
Borne authors have suggested, however,, that the optical 
flare Is a seaomdary pheuomeuon*. has put
forward the lutereatlmg suggestion that the type of 
event cousequerit on the collapse of the magnetic field 
depends om the height of this collapse in the solar 
atmosphex*©, and on the corresponding electron density* 
Xf the collapse occtrrs at lower dxro mo spheric levels, 
the' rata of emission, which depends o:a the oloctron 
density, is sufficient to radiate away the energy of 
the JonXe dissipation* Xf, however, the collapse 
occurs at higher levels and, thex"efore, In regions of 
lower electron density, the energy of the magnetic 
dissipation cannot be radiated off with sufficient 
rapidity, and heating develops#' WontiseX suggests 
that the event does not then become visible, bo.t that 
associated phenomena such as radio burete.and particle 
acceleration may occur*

While Went2;el * 8 - suggestion is of interoet, the 
optical, event is, nonetheless, the moat frequent, 
generally the most oonsplci^ious, and probably the most 
energetic feature of the complete solar flare event. 
TXnere is no clear evidence for doubting its fundamental 
nature. Certainly, on occasions, associated events,
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particularly Type XXX radio bursts^ do ocqur without 
clear evidence of an optical flare* but suck esîîoeptxaiml 
cases could well be due to observational selection*
Radio bursts at Eiotro wavelengths can be mucui mo3?e 
imambiguously recorded than the optical flare * Further, 
Type XXI burs te., in .particular, are found to occur even 
ifith veiry minor flares and sub-dltarea* It would be 
rash, therefore, to conclitde that such events can 
definitely occur without any optical counterpart#
For the demarcation between small flares and unolass*- 
if led minor jolage brightening^ is not clear* The 
optical count erpaxrt could well be unidentified * In 
view of these remarks, the Identification of the optical 
flare witXi the primary event is quite reasonable, and any 
suggestion that it Is a secondary phenoxiîonon is at vcay 
best con J ectitrai »

To conclude, the ebsqrvatlonally re corded features 
of solar flares provide a very detailed baokgro’und for 
flare theories. To date, no theory has attempted to 
account for more than a few of these observed features»
By contrast with the obaorvational position, little 
progress has beoxi made in developing a satisfactory 
theory ot solar flares * It cm% be said, hoimvcr, that
current sheet miechEmisms In the form first proposed by
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Sweet can be applied, particularly im view of recent 
develoîsments h y Pctschok, In a manner to aoeotmt for 
some salient featuressj in particular, the energy supply, 
and t'kio brief time— soo.le. Further, the mechanism can 
describe, though at present only qualitatively, the 
acceleration of cosmic-ray particles, and the production 
of runaway electrons, neoecsary for many aseociatod 
radio phenomena., Finally, the mcchaniam may be applied 
in particular to systems with the Gold and Hoylo 
topology, which pB.n provide a eatisfaetory etarage 
meohanicm and triggering device# To this ejKtent, at 
loaet, some progress has been made #
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APPENDIX 5T% SOLUTION FOR g( ̂

For convoniencQ# the differential equation (5-5) 
and its two boundary oonditione# (5-8) and (5-9)* are 
restated here as follows t

- j, y  )  ̂ f f  — (5-1-1),
(o) == o  (5-1-2 ),

y( i) —  ^  (5-1-3).
These throe equations oompletely define the problem, 
and determine a unique solution for g( f ) which must be 
evaluated by numerical methods *

The problem is complicated by the fact that the 
differential equation has two singular points# which are
the points  ̂a 1 and \ « 0# the points at which the
boundary conditions are imposed* In view of the 
difficulties of fitting numerical solutions to the 
series expansions that are necessary in the neighbourhood 
of these singular points* it was decided not to use a 
purely iterative method* Instead* a sequence of 
solutions is obtained* all of which satisfy the condition 
of equation (5-1-^)* A single infinity of such 
solutions exists* each solution being specified by a 
value of the parameter K, to be Introduced below^ The
numerical integration involved in determining these
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solutioHs earn them proceed cm a step-»liy«*step basis# 
and the .Rmnge-ICutta method of intégration is used*
For each of those solutiomB# the value of cam be
obtained, amd by oomparlmg two or more ouch solutioma, 
a better valu© of the starting parameter K oan be 
determined* In this way, the required solution for 
which g"(l) c 0 can be successively (and rapidly) 
approached*

To apply the Runge-Kutta method of integration, 
the differential equation (5-1-1) must first be 
expressed as two first order ordinary differential 
equations. Write, therefore,

k ( ̂  ~ ^  ̂) j, ' ( ( 3-1-4 ) •

Equation (3-1-1) can then be expressed as

V  = k
Y

■ , . ^

Further, it is readily seen that the boundary conditions,
(3-1-2) and (3-1-3), now become 

g(0) = O, (5-1-6).h ‘(l) a O,

Since  ̂w 0 is a singular point, it Is
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.impossible te start the numerical integration from 
this point. A series expansion must* therefore# be 
obtained for g( 5 ) h( f ) for a neighbourhood of 
this pointq From equations (5-1-5)? the required 
aeries expansions are found to be

(i) = I

+

+

f ( l-K10
Si.
15

630 4“ /-i

+ 3 1/2
70

\70
3o4g 
If 0 2 f

l< -

l<

l< +

loi \1 e 
U S  I j

IS 6-1 
330VS

6S2i\ 
23IS 2S- )

+ 70 3675-
l< 771 7S‘0 /< f 4-1 8Z6AI

o ( T ) (5-1-7),
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hU) =

iSZ Lj I

J_£2_
75- K

1702 \ 
\[7sj

4" 64
C3 + ( S O

70 35075/

. / i i  l<^ + 68072 |( +  ^~7I6-22 \ Uj,
V 1102.5 I 10 7 6 2 5  /

3kOiC |<
3675

g7f 422 ^ \Q3^2I&3 \ ^7
3,8 5^75  ̂ \(>2oCi^o )J

. ( S') (5—1—8)«

nor© K ;la the parameter mentioned above.
To examine the general nature of the solutions 

of equations (5*-l-5)» several solutions were obtained 
using the series (5-1-7) and (5-1-8) to initiate each 
solution, and thus automa11cally satisfying the first 
of the boundary conditions given by equation (5-I-6 ). 
Solutions were obtained for three values of l£, namely 
ÎC E3 - 1# 0, and + 2, and those throe solutions are 
illustrated in Figure (5-1-1)*
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0-5

Figure Graph of three solutions I ) #
satisfying the condition g(o) « 0#

Up to the point f » 0.1, the solutions wore 
obtained directly from equations (5^1-?) and (^-1-8)* 
Beyond this point the solutions were determined by 
numerical integration on a hand-calculator* The method 
used was two-stage Runge#,Kutta, with an interval 
SI « 0,02# The integration formula was as follows :- 
if the equations
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S* » p C i » ©» h ) ,
(5 -1 -9 )il* = q( ? » e» lî).

are used to represent the two differential equations 
of ( 5-1 *• 5) » then the two-otage Integra11 on formula is

(5-1-XO),

where the suffire zero ha© been used to indicate that the 
relevant function is evaluated at the point ? - »

Xn deriving the ©olutions, the effect of the 
singular point, \ - 1* was ignored, This is a feasible 
approximation5 since no groat accuracy is required from 
those solutions, and the Hmige-Kutta. integration can bo 
extended up to the aingular point@ but^ of course, not 
beyond it» The doBiinant error a in the solution© are 
due to rounding errors which build up till the accuracy 
of the solution at  ̂= 1 Is only about 1 In the second
decimal place» Nonetheless, the results are sufficient 
to indicate the general behaviour of solutions with 
variation in the initial parameter K (Figure (5--i-l))*

The solution of equation (;5-l-5) that is 
ultimately required must, in addition, satisfy the 
condition h*(l) :ra 0» Denote by E the value of E
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corresponding to this required solution» Then 
inspection of the results of the preliminary integration 
indicates that, to a first crude approximation.

Ko —  - O. 75" (5-1.-11)»

As the next stage of approximation, two further 
solutions were obtained corresponding to K « - 0,73» 
and E w ^ O.70# These solutions were calculated on
the •Dettce* electi'onic computer of the Glasgow
University Computing Laboratory, The method used in
this computation was essentially the same as that"
outlined above, except that the more usual four-atage
Rungo-*Kutta method Of integration was used (a 1)* In

Athis way, an accuracy of one part in 10 was obtained 
in these two machined solutions.

Due to the improved accuracy of those solutions, 
the difficulties involved in determining the solutions 
near the singular point 1=^1 by the Runge-Kutta method 
become significant* Xt is necessary, therefore, to 
examine more closely the nature of solutions of the 
differential equations (3-1-5) in the neighbourhood of 
this point. Selecting the non-singular solution, this 
can be expanded In a Taylor series about the point I - 1. 
The expansions can be written as
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— A + + fr---1'̂  - (S f  ̂A. + 1'̂’’ (S ? ) "*
21 8 A'

+  ̂ o (  (s f ) ^ )  .

u i  + 5 0  =  r + (2 + 4^1 +

+ (lt± . 4 O ( ( 5 ? ) 0  (5 -1 -1 3 ) .
Ux" 6x0 ^

v/hero ^  / (S-l-l^O*
Ju. = h' ( 0

To use those series effectively, terms are 
required which are orders of magnitude higher than 
those included in equations (g-l##12) and (5-l-̂ 1 3)*
The complexity of the algebra involved in deriving the 
coefficients of these terms, however, makes their 
inclusion impracticable. Still their affect may be 
estimated as follows* Xt can foe seen from equatibnss 
(3-1-6) and (5#l-l4) that for the solution u3-timat©ly 
required ca 0, Noting this simplification, it is 
possible to derive series expansions that would apply 
to this particular solution. Further, It is possible 
to obtain these series to considerably higher powers
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of 5f than those appearing in equations (5*1-12) and 
(5-1-1 3) without recourse to excessively complicated 
algebra. The resulting series are

^ U  4X «IX"

+ ,_L3_ (§f)'" + 0 ((.Sf)®') (5-1-15),2lo\̂

k ( I + 5$) = 2 + (S f)’ 4.
V FX"

■ * ^  (Ml- . 0 ( 0 ! ) ' )

The last two equations cannot be applied directly, 
since the solutions that have been obtained numerically 
are determined by their starting conditions at 1 = 0 ,  
(i.e. the value of K)* In general, it is not expected 
that k'(0 will be zero in these solutions* Moreover, 
although these solutions are good approximations to the 
required solution, and, therefore, will be small, it 
is, nonetheless, essential that the actual value of 
(VL, be taken into account. Still it is reasonable to 
neglect the effect of the non-zero value of in the 
higher order terms and to extend the series expansions 
of equations (5-1-12) and (5-1-13) with higher order 
terms derived from equations (5-1-15) and (5-1-16)* In 
this way, composite series are derived, viz
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(i + S1)= X + + A+r 15̂1" + + I

2 X 6 X S X ̂

COX’ n ’ 2I0X’ (5-1-17)

Vi(l+6?)= ^ + ̂ 4-^ j(5f)% 1̂ +/8^+

Consider again the two machined solutions 
obtained for K # - 0*70, and K » - 0*75* As already 
indicated, the integration near  ̂ » 1 is unsatisfactory. 
The Runge-Kutta solutions is, therefore, rejected in the 
neighbourhood of f » 1, and instead, the machined 
solution and the series solution given in equations 
(5-1-1 7) and (5-1-1 8) are matched at the point | w 0.90.
Xt is then possible to obtain the values of and ^ by 
an iterative process. Clearly, for a particular 
solution, these values depend only on K. Write therefore,

X = X ( K)
M- I K )

(5*1-19).
r

When the matching process has been carried out the 
following results are obtained ;
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X ( -  0 .7 0 )  o 0.5640
X ( -  0 . 7 5 )  = 0 .5 4 9 4 , (5-1-20).

jw.(- 0 . 7 0 )  = -0 .0 3 2 6 ,

/«.(- 0 . 7 5 )  « +0.0427

The results of equations (5-1-20) indicate that 
the two solutions obtained on Deuce successfully 
straddle the required solution. Now let 7\o be the 
value of g(l) corresponding to this required solution, 
then, from the definition of K^, it follows that

X(K ) B
(5*1-2 1).

M(Kg) = 0,

Finally, one can obtain a more accurate approximation to 
by an inverse linear interpolation for (k ) based on 

the results of equations (5-l-^0)$ in this way a second 
approximation is obtained, viz

-  - 0, 7214 (5-1-2 2),

A final approximation to the required solution 
was obtained using more elaborate programme techniques# 
This solution was obtained on the IBM »Stretch* electronic 
computer of the Ü#ÏC,A#E#A, at Aldormaston# The essence 
of the programme is as follows : using the result of
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equation (3-1*22), it was decided to determine two 
solutions of equations (3-1-3) based on the value»
K k3 ## 0*720, K « * 0 .723. The method of integration 
was once again four*»tage Runge-Kutta, but this time 
with an interval of 0.005, Those two solutions were 
matched to the series solutions of equations (5-1-17) 
and (5-1-18) at the point i a 0 ,9 0, thus providing two 
new values of ^(k). Then an inverse interpolation 
for 1̂  yields a fresh value K^, which was printed out, 
and found to be

« * 0.721032 (5-1*2 3).

This value of is sufficiently exact to malco 
further approximations unnecessary. A final solution 
was, therefore, computed for this value of ÏC, The 
complete solution for both g( | ) and h( | ) is given in 
tabular form in Appendix (5-2), for | » 0 up to 
I w 1.1. Xn the interval f O to 0,1, the solution 
is obtained from the series in equations (5-1-7) and 
(5-1-8 ); for the intervals J a 0,1 to 0*9 the solutions 
were determined by the Rungo*Kutta process; and for the 
interval j «1 0*9 to 1.1, the series solutions in 
equations (5-1-17) and (5-1*18) were used, the values 
of X and being obtained from the matching process,
A check on the precision of the value of chosen is
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provided by the value of determined in this way; it 
is found that %: 0( 5 • 10*^), indicating a very high 
degree of precision.

From this last result it is possible to estimate 
the accuracy of this final approximation as of the 
order of 1 in the sixth decimal place. Such an accuracy 
ia more than sufficient for the immediate purpose of 
determining a lower bound for C, . The solutions of 
g( 5 ) and h( S ) must, however, be the basis of any 
attempt at a complete solution of the partial differential 
equation (5-l), and for this purpose the additional 
accuracy could be useful. For the present, the complete 
solution of g(5 ) and h ( & ) is not required, only the 
value of g(l), which has been represented by the symbol 
-A„, From the solutions in Appendix (5-2) one obtains 
the important numerical result that

a 0.557753 (5-1-24).

Reference
Al. e.g. Modern Computing Methods, edit. B.T.Goodwin, 

National Physical Laboratory, Notes on Applied 
Science No 16, 2nd edit.s HMSO (lp6l).
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APPENDIX 5-2 TUB NUMERIOAL SOLUTION OP 
EQUATIONS (5 -1 -5 ) AND (5-1-6).

s e(S) h(S) 1 g (I) ii(l)

0.00 0.000000 O.OOOOOO
0,01 0.010001 0.010003 0.16 0.159527 0.156733
0.02 0.020005 0.020016 0.17 0.169332 0.165687
0.03 0.030012 0.030039 0,18 0.179095 0.17444a
6.04 0.040022 0*040068 0,19 0.188811 0.188979
0.05 0.050035 0.050096 0,20 0.198476 0.191288
0.06 0.060046 0.060113 0,21 0.208085 0.199333
0.07 0.070056 0,070109 0,82 0.217633 0.207113
0.08 0 ,08006l 0,080070 0,83 0.227116 0 .214606
0,09 0,090057 0.089984 0,84 0.236530 0.221796
0,10 0.100043 0.099835 0,25 0.245869 0.228663

0.11 0.110015 0.109609 0,86 0.855129 0,235200
0.12 0.119968 0.119290 0.27 0.264305 0,241384
Oil3 0.129900 0.128859 0.28 0.273393 0.247204
o.i4 0.139807 0.138302 0.29 0.282388 0,252647
0.15 0,149684 0.147599 0.30 0.291285 0.257701
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1 b U ) h(? ) e (§ ) 4 (g )

0.31 0,300080 0,262353 0,51 0.448497 0.264076
0.32 O .3O8769 0.266595 0.52 0.454301 0,259793
0 .3 3 0.317347 0.270416 0.53 0.459934 0.255163
0 .34 0.325810 0.273809 0,54 0.465396 0.250205
0 .35 0.334153 0.276766 0.55 0.470686 0.244933

0,36 0.342374 0.279882 0.56 0,475803 0.239367

0.37 0.350467 0,281352 0.57 0,480748 0.233524

0 .38 0,358428 0.282974 0.58 0.485518 0,227423
0.39 0,366255 0.284144 0,59 O.490116 0,221084

0 ,40 0,373943 0.284863 0.60 0.494540 0.214527
o . 4 l 0,381490 0.285131 0.61 0 . 49879a 0.207773
0 ,42 0.388891 0.284950 0.62 0,502871 0.200843

0 .43 0.396143 0.284323 0.63 O .50678O 0.193758

0 ,44 0.403244 0.283255 0 .64 O .5105I 8 0,186539

0 .45 0,410191 O .28I 752 0,65 0 , 514088 0.179209
0 .46 0,416981 0.279821 0.66 0.517491 0,171789
0 .47 0.423611 0.277470 0.67 0,520728 0.164301

0 .48 O.430O8O G.274708 0.68 0.523802 0.156766
0.49 0.436386 0.271543 0.69 0.526715 0,149207
0.50 0,442525 0.267999 0.70 0.529468 0,141645
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% e(0 4 (? ) S B<%) h(S)

0,71 0,532066 0,134100 0,91 0,556911 0,015436
0,72 0.334510

•1
0,126595 0,92 0,557159 0,012268

0.73 0,536804 0 ,11914b 0.93 0,557354 0,009447
0.74 0,538950 0.111782 0,94 0.557500 0.006979
0.75 0,540953 0.104314 0 .95 0.557606 p ,004873

0.76 0,542816 0,097364 0.96 0,557677 0.003135
0.77 0,544542 0.090352 0.97 0,537721 0.001773

0.78 0.546136 0,083494 0.98 0.537743 0.000792

0.79 0.547601 O.0768O8 0.99 0,357751 p.000199
0 .80 0,548942 0,070311 1.00 0,357753 O.OOOOOO
0.81 0.350164 0.064020 1.01 0.557754 p .000201

0.82 0.551271 0.057948 1.02 0.557762 0.000808

0 .83 0,552368 0.052112 1 .03 0.557785 0.001827

0 .84 0,553160 0.046526 1,04 0.557830 0.003265
0.85 0.533952 0.041202 1,05 0.557905 0.005127
0 .86 0.554649 0.036153 1 .06 0.558017 0.007421
0 .87 0.555257 0.031392 1,07 0.558174 0.010155
0,88 0.555782 0.026929 1.08 0.558383 0.013335
0.89 0.556228 0.022775 1,09 0.558654 0.016970
0.90 0.556603 0.018941 1.10 0,558993 0.021070
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APPENDIX 7-1. DATA FOR FIGURE (7-1).

10 km). log T log N logT; log n log Ts

0 3.65 15.9 6.80 6,73 6 ,65
0.2 3.67 15.3 6,67 6.45 6.22
0.5 3.69 14,5 6.48 6,07 5.65
1 3.72 13.6 6.28 5.65 5.01
2 3,77 12.6 6.08 5.20 4,32
3 3.80 11,9 5.92 4.88 3.84
4 3.87 11.3 5.82 4.65 3.47
5 4,10 10,7 5,84 4.58 3.31
6 4,48 10.2 6.00 4,71 3.41
7 4.88 9.8 6,20 4.91 3.61
8 5.20 9.4 6,34 5^03 3.71
10 5.60 8.9 6.52 5.18 3.84
15 6,00 8.5 6.72 5.38 4.04
20 6,00 8,4 6.69 5.33 3.96
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APPENDIX 9-1* DATA FOR FIGURE (9-3)>

10^ km) log T log N K log K log 1

0 3.65 15.9 7.79 0,89 4 «16
0.2 3,67 15.3 8 # 2 0.91 3.88

' 0*5 3.69 14,5 8*55 0.93 3.50
’ i 3.72 13.6 9.04 0.96 3.08
2 3.77 12.6 9.62 0.98 2.60
3 3.80 11.9 10,01 1,00 2.27
4 3.87 11.3 10.42 1,02 1.99
5 4,10 10.7 11,06 1.04 1.71
6 4,48 10.2 11,88 1.07 1,49
7 4.88 9.8 12.68 1.10 1.32
8 5.20 9.4 13.36 1.13 1.15

10 5,60 8.9 14.21 1.15 0.92
15 6.00 8.5 15.01 1.18 0.75


