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Abstract  
 
Cancer cells have been noted to have an altered metabolic phenotype for over 

ninety years. In the presence of oxygen, differentiated cells predominately 

utilise the tricarboxylic acid (TCA) cycle and oxidative phosphorylation to 

efficiently produce energy and the metabolites necessary for protein and lipid 

synthesis. However, in hypoxia, this process is altered and cells switch to a 

higher rate of glycolysis and lactate production to maintain their energy and 

metabolic needs. In cancer cells, glycolysis is maintained at a high rate, even in 

the presence of oxygen; a term described as “aerobic glycolysis”. Tumour cells 

are rapidly dividing and have a much greater need for anabolism compared to 

normal differentiated cells. Rapid glucose metabolism enables faster ATP 

production as well as a greater redistribution of carbons to nucleotide, protein, 

and fatty acid synthesis, thus maximising cell growth. Recently, other metabolic 

changes, driven by mutations in genes related to the TCA cycle, indicate an 

alternative role for metabolism in cancer, the “oncometabolite”. This is where a 

particular metabolite builds up within the cell and contributes to the 

tumorigenic process. One of these genes is isocitrate dehydrogenase (IDH) 

IDH is an enzyme that forms part of the tricarboxylic acid (TCA) cycle and 

converts isocitrate to α-ketoglutarate (α-KG). It exists in three isoforms; IDH1, 

IDH2 and IDH3 with the former present in the cytoplasm and the latter two in 

the mitochondria. Point mutations have been identified in the IDH1 and IDH2 

genes in glioma which result in a gain of function by converting α-KG to 2-

hydroxyglutarate (2HG), an oncometabolite. 2HG acts as a competitive inhibitor 

of the α-KG dependent dioxygenases, a superfamily of enzymes that are involved 

in numerous cellular processes such as DNA and histone demethylation. 

It was hypothesised that the IDH1 mutation would result in other metabolic 

changes in the cell other than 2HG production, and could potentially identify 

pathways which could be targeted for therapeutic treatment. In addition, 2HG 

can act as a potential competitive inhibitor of α-KG dependent dioxygenases, so 

it was hypothesised that there would be an effect on histone methylation. This 

may alter gene expression and provide a mechanism for tumourogenesis and 

potentially identify further therapeutic targets. 



 

Metabolic analysis of clinical tumour samples identified changes associated with 

the IDH1 mutation, which included a reduction in α-KG and an increase in GABA, 

in addition to the increase in 2HG. This was replicated in several cell models, 

where 13C labelled metabolomics was also used to identify a possible increase in 

metabolic flux from glutamate to GABA, as well as from α-KG to 2HG. This may 

provide a mechanism whereby the cell can bypass the IDH1 mutation as GABA 

can be metabolised to succinate in the mitochondria by GABA transaminase via 

the GABA shunt.  

JMJ histone demethylases are a subset of the α-KG dependent dioxygenases, and 

are involved in removing methyl groups from histone tails. Changes in histone 

methylation are associated with changes in gene expression depending on the 

site and extent of chemical modification. To identify whether the increase in 

2HG and fall in α-KG was associated with inhibition of histone demethylases a 

histone methylation screen was used. The IDH1 mutation was associated with an 

increase in methylation of H3K4, which is associated with gene activation. ChiP 

and RNA sequencing identified an increase in H3K4me3 at the transcription start 

site of the GABRB3 subunit, resulting in an increase in gene expression. The 

GABRB3 subunit forms part of the GABA-A receptor, a chloride channel, which on 

activation can reduce cell proliferation.  

The IDH1 mutation was associated with an increase in GABA and GABRB3 subunit 

of the GABA-A receptor. This raises the possibility of GABA transaminase as a 

potential therapeutic target. Inhibition of this enzyme could reduce GABA 

metabolism, potentially reducing any beneficial effect of the GABA shunt in IDH1 

mutant tumours, and increasing activation of the GABA-A receptor by increasing 

the concentration of GABA in the brain. This in turn may reduce cell 

proliferation, and could be achieved by using Vigabatrin, a GABA transaminase 

inhibitor licensed for use in epilepsy. 
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Chapter 1 Introduction 

1.1 Neurobiology 

1.1.1 Neurons 

The brain consists of two groups of cells; neurons and neuroglia. Neurons 

facilitate the transmission of information through electrical and chemical 

impulses. All neurons contain four distinct regions, each with their own unique 

function. These are the cell body, axon, axon terminal and the dendrites. The 

cell body is where all neuronal proteins and membranes are synthesised. 

Microtubules in axons facilitate the transport of these proteins to the axon 

terminal, and also the movement of damaged membranes and organelles back to 

the cell body. Each neuron has a single axon, which can extend along the whole 

length of the central nervous system. This region is where a specialised 

electrical impulse is transmitted, called the action potential. The action 

potential is propagated along the axon by a series of rapid depolarisation and 

repolarisation events across the plasma membrane [2]. The action potential 

travels from the cell body, down the axon, into small branches called axon 

terminals which form connections with other cells via synapses. Depending on 

the target cell, this may result in neuronal stimulation, muscle contraction, or 

hormone release. 

Dendrites are extensions from the neuronal cell body that form part of the 

synapse with axon terminals. The most common type of synapse is the chemical 

synapse. In this case, the axon terminal contains vesicles of neurotransmitters, 

such as glutamate and γ-aminobutyric acid (GABA). These are released into the 

synaptic cleft in response to an increase in cytosolic Ca2+ induced by the arrival 

of an action potential. The dendrites convert the chemical signal into electrical 

signals through neurotransmitter receptors on the post-synaptic membrane. 

These propagate back to the cell body producing a new action potential if the 

change in membrane potential is large enough. Neurons have numerous 

dendrites that can stretch for long distances, allowing them to receive signals 

from a large number of other neurons, producing a complex electrical circuit 

within the nervous system.  
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1.1.2 Neuroglia 

Over 150 years ago, Virchow created the term neuroglia to describe the cells 

that hold neurons together and create the structure of the brain [3]. Over the 

next 50 years these cells were further subdivided into astrocytes, 

oligodendrocytes, and microglia [4]. These cells were initially thought to have no 

other function than filling the space between neurons [5], but over the last 

century it has become increasingly evident that they possess more complex 

functions.  

1.1.2.1  Astrocytes 

The possibility of astrocytes providing a function other than scaffolding for 

neurons was first raised at the turn of the twentieth century by Carl Ludwig 

Schleich. He raised the concept of astrocytes modulating neuronal transmission 

through movement between nerve cells. We now know that astrocytes interact 

with neurons through the formation and maintenance of synapses, altering their 

potency and plasticity. They achieve this through the presence of numerous 

neurotransmitter receptors on their perisynaptic processes [6, 7]. This allows 

them to perceive synaptic transmission and respond by releasing 

neurotransmitters or altering neurotransmitter uptake, thus modulating the 

transmission dynamics in the synaptic cleft [8-10]. The type and number of these 

neurotransmitter receptors varies dependent on the neurons involved and the 

region of the brain. The complexity of the interaction between astrocytes and 

neurons is reflected in the number of connections between the two cell types. In 

rodents, every astrocyte is in contact with approximately 1 x 105 synapses, 

compared to approximately 2 x 106 synapses in a human brain [11]. This 

underlines the functional importance of astrocytes as cognitive complexity 

increases. 

Astrocytes are important in maintaining neuronal function. They have 

perivascular end-feet allowing for regulation of vascular tone and thus the 

supply of nutrients to cells. In addition, they regulate the extracellular space by 

controlling ion and water movement. Astrocytes may have a neuroprotective 

effect through modulating extracellular pH and by acting as a major source of 

anti-oxidants, such as glutathione [12]. Astrocytes also have intrinsic signalling 
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properties in the form of Ca2+ waves, which can spread between cells and 

correlates with the release of glutamate [13, 14]. This may be facilitated by 

gap-junctions between astrocytes, and also between astrocytes and 

oligodendrocytes, providing a potential alternative signalling network [15]. 

Finally, some astrocytes have been shown to differentiate into other neural cells 

such as neurons or microglia, raising the possibility of stem cell properties [16].  

1.1.2.2  Oligodendrocytes 

The two other cell types that make up the neuroglia are oligodendrocytes and 

microglia. Oligodendrocytes act in a similar way to Schwann cells in the 

peripheral nervous system. They facilitate neuronal impulses through the 

formation of a myelin sheath, which acts to electrically isolate axons. This 

allows for the salutatory propagation of action potentials. Like astrocytes, they 

also possess neurotransmitter receptors, which can sense neuronal activity. This 

is thought to control the extent of myelination and oligodendrocyte 

differentiation [17-19].  

1.1.2.3  Microglia 

Microglia act as the defence system of the brain, responding to infection and 

damage [20]. They are present throughout the parenchyma of the brain, with 

each cell responsible for its own specific domain. Microglia are activated in the 

presence of purines, chemokines, and glutamate. This results in the controlled 

phagocytosis of pathogens and cellular debris. They also act as antigen-

presenting cells, enabling a T-cell immune response. Conversely, neurons 

maintain the microglia “resting state” through the presence of immunoglobulins 

(CD200, CD47) on their cell surface and the release of neurotransmitters such as 

GABA. This enables tight regulation of microglial activity, preventing inadvertent 

damage to healthy structures [21]. 

1.2 Key metabolic pathways 

1.2.1 Tricarboxylic acid cycle 

The tricarboxylic acid cycle (TCA) is an essential pathway for cells in the 

metabolism of sugars, lipids and amino acids, as well as energy production 
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through oxidative phosphorylation. It begins with the condensation of acetyl-CoA 

with oxaloacetate, which forms citrate. This metabolite can be used as a 

precursor to lipid synthesis after exportation to the cytoplasm by the citrate 

transport protein, or it can be metabolised to isocitrate by aconitase. The first 

oxidative step of the TCA cycle then follows, with decarboxylation of isocitrate 

to α-ketoglutarate (α-KG) and the production of CO2. αKG dehydrogenase then 

converts  αKG to succinyl-CoA, which is further metabolised to succinate, with 

the release of another molecule of CO2. Succinate dehydrogenase then oxidises 

succinate to fumarate. This enzyme also forms complex II of the respiratory 

chain, feeding electrons into oxidative phosphorylation and the production of 

ATP. The hydration of the double bond in fumarate is catalysed by fumarate 

hydratase, producing malate. Finally, malate is oxidised to oxaloacetate by 

malate dehydrogenase, completing the TCA cycle pathway (Figure 1-1) [22]. 

All the oxidation reactions are couple to the reduction of either NAD+ or NADP+ 

to NADH or NADPH respectively. The only exception is the oxidation of succinate 

to fumarate, which is couple to the reduction of FAD+ to FADH2.  These in turn 

feed additional electrons to the electron transport chain, generating ATP. Many 

of these TCA metabolites are actively transported across the inner mitochondrial 

membrane and diffuse freely across the outer mitochondrial membrane, allowing 

for the production of amino acids and sugars. This generates pools of 

metabolites which are closely connected between the cytoplasm and the 

mitochondria, such that an increase in one pool is reflected by an increase in 

another [23]. 

One major mitochondrial transportation system is the malate/aspartate shuttle. 

This allows for the transportation across the inner mitochondrial membrane of 

NADH, generated from glycolysis, to the electron transport chain maximising ATP 

production. In addition it facilitates the movement of the key metabolites 

glutamate and α-KG between the mitochondria and the cytoplasm. It is 

composed of two sets of enzymes, which are located both in the mitochondria 

and the cytoplasm; malate dehydrogenase and aspartate aminotransferase. The 

process starts with cytoplasmic malate dehydrogenase catalysing the reaction of 

oxaloacetate and NADH to produce malate and NAD+, which can be reduced 

again by glycolysis. Malate is then transported into the mitochondria by the 
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malate-alpha-ketoglutarate antiporter (Slc25a11) while exporting αKG into the 

cytosol. Mitochondrial malate dehydrogenase then metabolises malate back into 

oxaloacetate releasing NADH. Mitochondrial aspartate aminotransferase then 

converts oxaloacetate to aspartate by utilising glutamate producing αKG. The 

glutamate-aspartate antiporter (Slc25a13) then exports aspartate while 

importing glutamate. Aspartate is then converted back to oxaloacetate in the 

cytoplasm by cytosolic aspartate aminotransferase. This process can work in 

both directions, transporting NADH, glutamate and α-KG across the 

mitochondrial membrane [24]. 

1.2.2 Glutamate – Glutamine – GABA cycle 

Astrocytes and neurons are closely connected metabolically through the 

glutamate-glutamine cycle [25]. This enables the metabolism of glutamate, the 

major excitatory neurotransmitter in the brain. Though the majority of 

tricarboxylic acid (TCA) cycle metabolites in neurons are derived from glucose, 

these cells also avidly take up glutamine from the synaptic space and convert it 

to glutamate using glutaminase. In turn, glutaminergic neurons release 

glutamate into the synaptic space, which results in activation of glutaminergic 

receptors on the post synaptic membrane, potentiating further 

neurotransmission. After their release, most of the neurotransmitter is taken up 

by astrocytes and converted back to glutamine [26, 27]. Glutamate accumulates 

in the astrocytic cytosol, where 85% is converted to glutamine by glutamine 

synthetase. The rest is oxidised in the TCA cycle after conversion to α-KG by 

glutamate dehydrogenase in the mitochondria [28]. 

Utilising a branch of glutamate metabolism called the GABA shunt, GABA can be 

metabolised via the glutamate-glutamine pathway. GABAergic neurons 

metabolise glutamate to GABA using glutamate decarboxylase (GAD). There are 

two GAD genes, GAD1 and GAD2, which encode the isoforms GAD65 and GAD67, 

respectively. The distribution of these enzymes differs throughout the brain, as 

well as within neuronal compartments, suggesting different functions for these 

isoforms. GAD65 is expressed mostly in the axon terminals, unlike GAD67 which 

is expressed mostly in the cell bodies, indicating that the former is more 

important in GABAergic neurotransmission.  After metabolism from glutamate, 

GABA is released into the synaptic space producing post-synaptic inhibition via 
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activation of GABA receptors. There are two major types of GABA receptor; 

GABA-A and GABA-B. The GABA-A receptor exists as a pentameric assembly 

which can be formed from a combination of 19 different subunits (α1-6, β1-3, 

γ1-3, ρ1-3, δ, ε, θ and π), most commonly consisting of two α, two β, and one γ 

subunit [29]. It functions as an ionotropic receptor which on activation by GABA 

alters the cell membrane potential via an influx of Cl- ions, hyperpolarising the 

cell and preventing action potential propagation [6, 30]. These differences in 

subunit composition are likely to alter the sensitivity of the receptor to GABA 

activation, as some subunits are specific to different regions of the brain and to 

different stages of development [31]. In contrast, the GABA-B receptor is a 

heterodimeric G-protein coupled receptor which is formed from three major 

subunits; GABAB1a, GABAB1b, and GABAB2. Activation of these receptors leads to an 

increase in intracellular Ca2+ concentration, most likely from intracellular Ca2+ 

stores [32]. This in turn is linked to the opening of K+ channels, hyperpolarising 

the cell and impairing action potential propagation [33, 34].  

Subsequently, most of the GABA released by neurons is taken up again by 

neurons for recycling or by astrocytes where it is metabolised [35]. In astrocytes 

it accumulates in the mitochondria, where it is transaminated to succinate semi-

aldehyde (SSA) by GABA transaminase (GABAT). α-KG acts as a donor for the 

amine group of GABA, reforming the GABA precursor, glutamate. SSA is then 

further oxidised to succinate by succininic semi-aldehyde dehydrogenase 

(SSADH), thus entering the TCA cycle [36, 37]. Both GABAT and SSADH are 

present in the brain only in the mitochondria, enhancing flux through the GABA 

shunt [36]. At this point the carbons derived from GABA may leave the TCA cycle 

as malate, where it is metabolised to pyruvate using the astrocyte specific 

cytosolic malic enzyme [38]. The pyruvate can then be completely oxidised after 

re-entering the TCA cycle. Alternatively, the carbons from GABA may continue 

through the TCA cycle to α-KG, where it is metabolised to glutamate and then 

glutamine. The glutamine is then released and taken up by neurons to complete 

the glutamate–glutamine cycle. GABA accounts for up to 20% of the flux through 

the glutamate–glutamine cycle [39] (Figure 1-1). 

The GABA shunt is a highly conserved evolutionary metabolic pathway and occurs 

in bacteria and plants as well as mammals [40-42]. This is possibly due to the 
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ability of the GABA shunt to provide an alternative mechanism for supplying 

carbon to the TCA cycle, especially in the presence of mitochondrial 

dysfunction. The GABA shunt has been shown to be activated in the presence of 

hypoxia and reperfusion injury after stroke [43, 44]. There is also evidence for 

altered function in epileptic seizures [45]. This has resulted in the targeting of 

GABAT in epilepsy, by irreversibly inhibiting this enzyme the concentration of 

GABA in the brain can be increased reducing the threshold for seizures. 

Vigabatrin is a drug that irreversibly inhibits GABAT and has been used to treat 

refractory paediatric epilepsy [46, 47]. Conversely, impairment of GABA 

metabolism is a feature of Alzheimer’s disease, though the connection with 

pathogenesis is not clear [48, 49]. These findings suggest that GABA metabolism 

may have an important role in maintaining the normal metabolic function of the 

human brain.  

It is not known, however, if GABA is synthesised from glutamate in the 

mitochondria or in the cytoplasm and then transported into the mitochondria for 

subsequent metabolism into TCA metabolites. The latter seems more likely as 

mitochondrial GABA carriers have been identified in plants and micro-organisms, 

though not in mammals to date [50].  The lack of an identifiable GABA carrier in 

mammals may be due to the ability of GABA to passively diffuse across the 

mitochondrial membrane [51]. Isolated rat brain mitochondria, where GABA 

metabolism was inhibited, showed uptake of GABA with non-saturable kinetics 

up to 18 mM, which is in excess of normal physiological conditions [52]. 

Therefore, it seems feasible that a mitochondrial carrier is not required. 
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Figure 1-1 Glutamate - glutamine - GABA pathway  
GABA and glutamate are released by neurons and taken up by astrocytes. Glutamate is 
metabolised to glutamine, while GABA enters the mitochondria where it is metabolised to succinate 
semi-aldehyde (SSA). SSA is metabolised to succinate which enters the TCA cycle. At this point it 
may leave the TCA cycle as malate, where it is metabolised to pyruvate, which can then be 
completely oxidised after re-entering the TCA cycle. Alternatively, the carbons from GABA may 
continue around the TCA cycle to α-KG, where it is metabolised to glutamate. Glutamate is then 
metabolised to glutamine, released and taken up by neurons. The larger arrows depict the direction 
of the major metabolic fluxes through this pathway. Key enzymes are depicted in red. 
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1.2.3 NAA and NAAG metabolism 

There are two abundant aspartate derived metabolites in the central nervous 

system; N-acetylaspartate (NAA) and N-acetylaspartylglutamate (NAAG), both of 

which are predominantly synthesised in neurons. The former is the second most 

abundant amino acid derivative in the brain, and acts as a major osmolyte as 

well as a source of acetate for myelin synthesis by oligodendrocytes [53]. The 

importance of NAA as a source of acetate is evident in Canavan disease, where a 

non-functioning mutation in the gene for aspartocylase, the enzyme responsible 

for the metabolism of NAA to aspartate and acetate, results in demyelination 

and premature death in childhood [54]. NAA may also act as an acetate source 

for histone acetylation, potentially regulating oligodendrocyte differentiation 

[55, 56]. It is also required for the synthesis of NAAG, which is the third most 

common neurotransmitter in the brain. It is released by neurons and selectively 

stimulates the metabotropic glutamate receptor 3, which modulates excitatory 

neurotransmission by downregulating glutamate release [57-59]. NAAG, as well 

as NAA, have been shown to promote cell growth and inhibit differentiation of 

glioma stem-like cells, possibly by also acting as a source of acetate [60].  

The metabolism of NAA and NAAG is unusual in that it requires the presence of 

three cell types, neurons, astrocytes, and oligodendrocytes. Typically, though 

not exclusively, NAA is synthesised in neurons by NAA synthase from acetyl-CoA 

and aspartate [61]. In some neurons, NAA is then converted into NAAG by NAAG 

synthase, using glutamate as a co-substrate [62]. NAA is primarily metabolised 

by oligodendrocytes to acetate and aspartate by aspartocylase [63]. The acetate 

can then be converted to acetyl-CoA for use in lipid synthesis, histone and 

protein acetylation and for use in the TCA cycle [64, 65]. The aspartate may be 

used for protein synthesis, or used to generate oxaloacetate for the TCA cycle 

[66]. NAAG is primarily metabolised on the surface of astrocytes by NAAG 

peptidase which catabolises NAAG to NAA and glutamate [67]. The glutamate 

can then be taken up by astrocytes, entering the glutamate-glutamine cycle 

[68]. NAA in turn is taken up by oligodendrocytes for further metabolism. 

Interestingly, the requirement for 3 cell types in the metabolism of NAA and 

NAAG indicates that these metabolites may have additional signalling functions 

that are yet to be determined [69]. 
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Figure 1-2 Metabolic pathways connecting neurons with glial cells. 
Neurons are connected metabolically to other glial cells by the glutamate-glutamine-GABA cycle 
and NAA/NAAG. Glutamate and GABA are released by neurons and taken up by astrocytes. They 
are then metabolised to glutamine, which is released and taken up by neurons for recycling. In 
addition, NAA is synthesised in neurons by NAA synthase from acetyl-CoA and aspartate. NAA is 
then converted into NAAG by NAAG synthase, using glutamate as a co-substrate. NAA is primarily 
metabolised by oligodendrocytes to acetate and aspartate by aspartocylase. The acetate can then 
be converted to acetyl-CoA for use in lipid synthesis, histone and protein acetylation and for use in 
the TCA cycle. The aspartate may be used for protein synthesis, or used to generate oxaloacetate 
for the TCA cycle. NAAG is primarily metabolised on the surface of astrocytes by NAAG peptidase 
which catabolises NAAG to NAA and glutamate. The glutamate can then be taken up by 
astrocytes, entering the glutamate-glutamine cycle. NAA in turn is taken up by oligodendrocytes for 
further metabolism. Key enzymes are depicted in red. 
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1.3 Glioma 

Gliomas are the commonest primary brain tumours, constituting 81% of brain and 

central nervous system malignancies [70]. Internationally, the age standardised 

rate (ASR) for incidence is 3.9 per 100,000 of population for all brain tumours. 

There is, however, a marked variation between countries, with a higher 

incidence in developed nations, potentially reflecting improved diagnosis (Figure 

1-2). This compares to an incidence ASR for other solid tumours such as prostate, 

lung, and colorectal of 30.7, 34.2 and 20.6 per 100,000 of the population, 

respectively [71]. Though the incidence of primary brain tumours is lower than 

other solid tumours, it confers a very poor prognosis, which is reflected in a 

similar mortality ASR of 3 per 100,000 of the population (Figure 1-3) when 

compared to prostate, lung, and colorectal cancer. Factors that are associated 

with an increased incidence in glioma include increasing age, male gender, and 

non-Hispanic race [72].  

Gliomas derive from two different cell types: oligodendrocytes and astrocytes. 

Gliomas are classified by the World Health Organisation (WHO) into four grades 

(I-IV). Increasing grade is associated with more aggressive cancer and worse 

prognosis. These tumours are described pathologically as an astrocytoma (WHO 

grade I-IV), oligodendroglioma (WHO grade I-III) or if they have features of both, 

an oligoastrocytoma (WHO grade II-III). Grade II tumours are classified as diffuse, 

while grade III are termed anaplastic. Finally, grade IV astrocytomas are also 

described as glioblastoma multiforme (GBM). Tumours which are WHO grade I-II 

are classed as low grade, while WHO grade III-IV are classed as high grade. The 

natural course for low grade tumours is to transform into high grade tumours 

after, on average, 4-5 years after diagnosis [73]. 

Astrocytomas are the most common glioma in adults, of which the majority 

constitute the highest and most aggressive form of the cancer, GBM (WHO grade 

IV). Less than 5% of these patients survive to 5 years from diagnosis. These 

tumours, as well as anaplastic astrocytomas (WHO grade III), are more common 

in the elderly with the highest incidence in the 75 – 85 year age group [74]. GBM 

can be divided into primary, if arising de novo, or secondary if arising as a result 

of transformation of a lower grade tumour (WHO grade II-III). Secondary tumours 

tend to occur in younger patients, with a median incidence age of 45 years 
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compared to 65 years for primary GBM [75]. Low grade glioma also occurs more 

commonly in younger patients, with the highest incidence in those aged 35 to 44 

years old [74]. WHO grade I gliomas occur almost exclusively in children and 

young adults, and generally require only surgical intervention with an excellent 

prognosis. When comparing different types of glioma, oligodendroglioma tends 

to convey a better prognosis compared to astrocytoma on a grade to grade basis 

[74]. 

 
Figure 1-3 Brain tumour incidence and mortality 
Age standardised incidence (blue) and mortality (red) rates of all brain tumours in the world, by 
country per 100,000 of the population (GLOBOCAN http://globocan.iarc.fr [76]) 

  

http://globocan.iarc.fr/
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1.3.1 Cell origin of glioma 

Gliomas were original thought to derive from normal brain glial cells as they 

shared numerous glial markers. This led to the assumption a century ago that 

astrocytomas were probably derived from astrocytes, and oligodendrogliomas 

from oligodendrocytes. However, more recently there has been emerging 

evidence that the cell of origin for these tumours is more complex, and several 

candidate cell types have been proposed. These include the astrocyte, neural 

stem cell (NSC), and the oligodendrocyte precursor cell (OPC). 

1.3.1.1  Astrocyte 

Astrocytes were initially thought to be the only dividing cells in the brain, which 

led them to become the first candidate for the glioma cell of origin [77]. The 

fact that GFAP was frequently detected in human glioma added weight to this 

hypothesis [78]. Astrocytes can de-differentiate to neural stem-like cells if 

exposed to transforming growth factor, and in turn can be induced to form high 

grade gliomas after irradiation in animal models [79]. A similar effect has also 

been shown when primary astrocytes, from new born Ink4a/Arf-/- mice, were 

cultured in media complimented with epidermal growth factor. These cells de-

differentiated after ten days, as evidenced by a loss of GFAP, and the gain of 

nestin and A2B5, which are progenitor cell markers [80].    

1.3.1.2  Neural stem cell 

NSCs were first identified in mice in the 1990s, and later shown to also occur in 

humans [81, 82]. They are found predominantly in the subventricular zone and 

the dentate gyrus of the hippocampus, of which the former has been shown to 

be involved in over 90% of tumours [83]. In addition, signalling pathways that are 

required for differentiation, self-renewal, and proliferation in NSCs also occur 

frequently in gliomas. One such pathway is the phosphatidyl inositol-3-kinase 

(PI3K)/mitogen-activated protein kinase (MAPK), which mediates cell 

proliferation and survival. Epidermal growth factor receptor (EGFR), a positive 

regulator, is amplified or mutated in 45% of GBM, while PTEN, a negative 

regulator is mutated or deleted in 36% of GBM [84]. 
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Additional evidence for NSCs as the glioma cell of origin comes from mouse 

models. Tumours induced by a germline mutation of p53 in combination with a 

conditional knock-out of Nf1 were initially located in the subventricular zone 

[85]. Also, high grade gliomas could be induced in SCID mice after implantation 

in the brain of NSC cultures, with a transduced EGFR mutation, grown from 

Ink4a/Arf-/- mice [86]. 

1.3.1.3  Oligodendrocyte precursor cell   

OPCs are another dividing cell population in the brain and give rise to 

oligodendrocytes. They also have a wide distribution in the brain and occur in 

the subventricular zone, which makes them another good candidate for the 

glioma cell of origin. Similarly to NSCs, signalling pathways that are important to 

oligodendrocyte development are also altered in glioma. A good example of this 

is the platelet derived growth factor receptor (PDGFR), which is an activator of 

the PI3K/MAPK pathway, and important in the migration and proliferation of 

OPCs. It has been shown to be overexpressed in a range of glioma types [87]. 

Further evidence has been obtained from mouse models. Tumours derived from 

an S100β-vErb transgenic mouse model have been shown to have an OPC origin, 

and NSCs with sporadic p53/Nf1 mutations only showed aberrant growth if they 

differentiated to OPCs, but not differentiation along other neural cell lineages 

[88, 89]. Conversely, gliomas could also be induced by in vitro transformation of 

OPCs through p53/Nf1 mutations [89].  

1.3.2 Genetic origins of glioma 

1.3.2.1  Common mutations in GBM 

Three common pathways are mutated in over 75% of GBMs [84]. One third of 

these tumours have a mutation in p53, a tumour suppressor gene that is involved 

in regulating DNA repair, cell cycling, and apoptosis. The same effect is also 

achieved in some tumours by amplification of MDM2 or MDM4 [90]. Alternatively, 

cell cycling can be affected directly through several mechanisms. This includes 

amplification of cyclins or cyclin dependent kinases, loss of the retinoblastoma 1 

gene, or mutation of the cell cycle inhibitors CDKN2A, CDKN2B, and CDKN2C 

[84]. These all act to impair cell cycle regulation, allowing cells with damaged 
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DNA to continue to proliferate. Lastly, changes in the phosphatidyl inositol-3-

kinase (PI3K)/mitogen-activated protein kinase (MAPK) pathway, which is 

involved in mediating cell proliferation and survival, commonly occur in GBM. 

This include amplification of the epidermal growth factor receptor (EGFR), 

platelet derived growth factor receptor (PDGFR) or MET gene. Mutations in EGFR 

also occur in 20-30% tumours [91]. Downstream activation of this pathway can 

also occur by mutation of the neurofibromatosis 1 gene (NF1), KRAS, or the gene 

for PI3K, PI3KCA. Deletion or mutation of PTEN, an inhibitor of PI3K, can also 

facilitate pathway activation [84]. Less common mechanisms include gene 

translocation and fusion. Fusion of EGFR with SEPT14 occurs in 4% of GBM, while 

fusion of EGFR with PSPH occurs in 2% [92]. Translocation can also occur rarely 

between the FGFR and TACC1 or TACC3 genes [93].  

1.3.2.2  Isocitrate dehydrogenase mutations  

Isocitrate dehydrogenase (IDH) is an important metabolic enzyme that converts 

isocitrate to α-KG. α-KG is important as a substrate in the tricarboxylic acid 

cycle and acts as an important co-substrate for many cellular enzymes. It exists 

as 3 isoforms (IDH1/2/3), with IDH1 present in the cytoplasm and IDH-2/3 in the 

mitochondria. Recently point mutations in the IDH1 and IDH-2 genes have been 

identified in gliomas using genomic mutational screening [94, 95]. Over 300 

gliomas of varying grades were analysed and showed the incidence in grade II 

and III gliomas ranged from 75-90% dependent on the pathological sub-type. 

Secondary GBM had an incidence of 85%, indicating that these mutations seem to 

be important early events in the development of gliomas. The clinical 

significance of an IDH mutation is apparent in the differential survival in the two 

groups. For anaplastic astrocytoma, the median overall survival for patients with 

IDH mutation was 65 months compared to 20 months for patients with wild type 

gene. This improved prognosis was also observed in GBM, where patients with 

IDH mutant tumours have a median overall survival of 31 months compared to 15 

months for IDH wild-type tumours [95].  

The IDH mutation, especially in oligodendrogliomas, is often followed by loss of 

the p-arm of chromosome 1 and the q-arm of chromosome 19 [96]. The 

consequence of this is inactivation of one copy of the Capicua transcriptional 

repressor (CIC) gene and the FUSE binding protein 1 gene. Subsequent mutation 
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of the remaining genes occurs in most (52%) grade II, and almost all (84%) grade 

III oligodendrogliomas [97]. The mechanistic consequences of this are not fully 

understood, but the presence of this co-deletion has prognostic significance in 

all types of glioma. Loss of 1p 19q is associated with an improved response to 

therapy and an increased overall survival compared to patients that do not have 

the co-deletion [98].   

The IDH mutation is also associated with a hypermethylated genetic phenotype, 

with increased methylation at promoter sites resulting in gene silencing [99]. 

This is associated in particular with methylation of the promoter site for the 

enzyme, O6-methylguanine-DNA methyltransferase (MGMT). It is a DNA repair 

enzyme that is methylated in 36% of GBMs and 90% IDH mutant low grade 

tumours [100, 101] This has prognostic significance as it is predictive for 

improved response to chemotherapy and radiotherapy, which both act through 

DNA damage [102, 103].   

1.3.2.3  Gene expression classification 

It was first noted in the 1990’s that genetic differences were present between 

certain types of glioma. It was discovered that amplification of the EGFR and the 

mutation of p53 were mutually exclusive in GBM. The latter occurred 

predominantly in secondary GBM and low grade glioma, while the former 

occurred mostly in primary GBM [104]. This prompted efforts to try and identify 

more genetic differences between the tumour types. When primary GBMs were 

stratified on survival, it was noted that a proneural gene expression profile was 

associated with a better prognosis. Conversely, patients with a worse prognosis 

could be divided into mesenchymal and classical subgroups [105]. In addition, 

further analysis of the Cancer Genome Atlas Network identified a fourth subset; 

the neural group [106]. This has led to the development of a molecular 

classification of adult GBM into four categories; proneural, neural, 

mesenchymal, and classical.  Proneural is associated with alterations of PDGFRA 

with the TP53 and IDH1 mutation, neural with the expression of neuron markers 

such as NEFL, GABRA1, SYT1 and SLC12A5, mesenchymal with increased 

expression of genes in the tumour necrosis factor and NF-κB pathways, as well as 

mesenchymal markers such as CHI3L1 and MET, and classical with EGFR 

amplification and deletion of CDKN2A. The proneural subtype is associated with 
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secondary GBM and confers a better prognosis [106, 107]. In paediatric GBMs a 

further 2 subtypes have been identified, which correlate to histone H3.3 

mutations, at two critical sites; K27(M) and G34(R/V). These both correspond to 

separate genetic and epigenetic profiles, and have not been observed in adults 

[108]. These new classification of GBM will hopeful allow for the development of 

new and more specific treatments for patients. 

Low grade gliomas have also been further subdivided into three groups based on 

molecular markers; IDH wild-type, IDH mutant without 1p/19q co-deletion, and 

IDH mutant without 1p/19q co-deletion. This seems to form a better clinically 

predictive model than histological classification alone into astrocytoma or 

oligodendroglioma [109]. Low grade gliomas with an IDH mutation and 1p/19q 

co-deletion were associated with TERT activation, CIC and FUBP1 mutation, and 

activation of the PI3K pathway. Conversely, IDH mutation and no 1p/19q co-

deletion were associated with TP53 and ATRX mutations. IDH1 wild-type tumours 

were molecularly similar to GBM and are clinically more aggressive. The 

presence of IDH mutation and 1p/19q co-deletion is associated with the best 

prognosis and IDH wild-type with the worst [109].  

Anaplastic glioma can also be further sub-divided based on molecular markers 

that are independent of histology. This includes three groups; CIMP negative, 

non 1p 19q co-deleted CIMP positive, and 1p 19q co-deleted CIMP positive. This 

is helpful in management and determining prognosis as CIMP negative tumours 

behave like GBM, while the other two have a better prognosis and are more 

responsive to chemotherapy [110].  

1.3.3 Treatment 

1.3.3.1  Surgery 

In comparison to other solid tumours, treatment of glioma is relatively limited 

and has changed little in the last 30 years. The initial treatment for newly 

diagnosed gliomas is surgery. Maximal resection results in the best outcome for 

patients. In GBM, a retrospective study showed that overall survival was 

increased to 11.3 months for a complete resection compared to 6.6 months with 

diagnostic biopsy only. Even a partial resection conferred an improved survival 
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benefit of 4 months compared to biopsy [111]. The benefits of complete surgical 

resection also extend to grade III glioma [112]. In low grade tumours, which are 

slow growing and where survival can extent to many years, early maximal 

resection also seems to confer survival benefit [113]. In addition, there is also an 

improvement in symptoms such as epilepsy [114]. This has to be to be weighed 

against the potential neurological complications of surgery. To guide 

management, several prognostic scores have been developed where the 

presence of high risk factors, such as large tumour size and astrocytic histology, 

predispose to early surgical intervention [115]. This has driven research into 

improved surgical techniques. Recent advances have involved using 5-

aminolevulinic acid, a non-fluorescent prodrug that results in intracellular 

accumulation of fluorescent porphyrins, in high grade glioma cells. This allows 

for better visualisation of tumours intra-operatively resulting in a more complete 

resection [116].   

1.3.3.2  Radiotherapy 

Radiotherapy plays an important role in glioma management. In high grade 

astrocytoma, radiotherapy after surgery is associated with an improvement in 

overall survival. High dose irradiation of the brain post-operatively (>50 Gray), 

was associated with a doubling of survival compared to surgery alone [117, 118]. 

Escalating the radiotherapy dose to 60 Gray was shown to add an additional 2 

months survival benefit with no significant differences in toxicity [117]. This 

seemed to be the limit of increasing radiotherapy dose however, as trials 

investigating further dose escalation resulted in radionecrosis of the brain. In 

addition, viable tumour was observed at autopsy in areas receiving up to 80 

Gray, indicating no biological benefit from these higher doses [119].  

The benefit of radiotherapy in low grade glioma is less clear cut, with an 

improved progression free survival but not overall survival [120]. In this 

circumstance the benefits of radiotherapy have to be weighed against the 

detrimental long term cognitive effects of treatment [121]. In this situation, 

radiotherapy after surgery is often deferred until there is evidence of disease 

recurrence or progression. Radiotherapy can be used as first line therapy in 

patients who are not medically fit for surgery or for tumours that are not 

amenable to surgical resection. These tumours also respond better to lower 
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doses of radiotherapy, with 50.4 Gray giving the same survival outcome as 64.8 

Gray in a randomised phase III trial [122]. This lower dose radiotherapy regime is 

now the current standard of care. 

Improved imaging techniques such as computer tomography (CT) and magnetic 

resonance imaging (MRI) allowed for better targeting of radiotherapy. Changing 

from whole brain radiotherapy to radiation fields that incorporate the tumour 

only, maintained survival outcome with reduced treatment toxicity [123]. New 

imaging techniques may allow for further improvement in guiding radiotherapy 

planning. Magnetic resonance spectroscopy imaging (MRSI) identifies tumour 

from normal cells based on the levels of metabolites such as choline, N-

acetylaspartate, and lactate. This may allow for treatment of occult cancer and 

improved survival [124].  

1.3.3.3  Chemotherapy 

In the 1970s the first chemotherapy agent was used to treat glioma. It was a 

nitrosourea, called carmustine, and its cytotoxic effect was through DNA 

alkylation. Initial studies used this class of drug in the adjuvant setting after 

radiotherapy treatment. A meta-analysis showed a 10.1% improved overall 

survival in high grade gliomas at 1 year using this treatment combination. 

Interestingly, this effect was greater in anaplastic astrocytomas compared to the 

more aggressive glioblastoma multiforme [125]. This progressed to combination 

therapy in the 1990s with PCV (procarbizine, lomustine, and vincristine). Again, 

this combination showed an improved survival benefit when given after 

radiotherapy over single agent carmustine in anaplastic astrocytoma, but not the 

more aggressive glioblastoma. It doubled overall survival in anaplastic 

astrocytoma to 3 years [126]. Further progress in the chemotherapy treatment of 

glioma arose in the late 1990s with the development of temozolamide, a prodrug 

which can methylate the N-7 or O-6 positions of guanine residues on DNA 

resulting in tumour cell death. This had fewer side effects than previous 

chemotherapy regimens and also showed improved efficacy in conjunction with 

radiotherapy. Concurrent radiotherapy with temozolamide is associated with an 

improved overall survival, with a 2 year survival of 26.5% compared to 10.1% 

with RT alone. This treatment regime, with an additional 6 months of 

temazolamide after RT, now constitutes the gold-standard for initial 
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glioblastoma therapy [127]. Newer treatments developed in the last decade 

however have been disappointing. An example of this is Bevacizumab, an 

antibody that targets vascular endothelial growth factor (VEGF), acting as an 

angiogenesis inhibitor. It showed impressive results radiologically, but resulted 

in no survival benefit when used alone in recurrent GBM, or in combination with 

radiotherapy and temazolamide [128, 129]. Bevacucimab may however have a 

role in reducing cerebral oedema in re-irradiation therapy after tumour 

recurrence [130]. Targeting the VEGF receptor has also proved ineffective [131]. 

Researchers have also tried to target the EGFR and PDGF receptors, which are 

amplified in many GBM, using tyrosine kinase inhibitors. These agents have been 

well tolerated, but unfortunately have shown no efficacy even in combination 

with standard chemotherapy agents [132, 133]. Targeting downstream pathways 

such as mTOR have also failed to produce any meaningful results [134]. Novel 

use of older agents has however proved more successful, with the use of 

carmustine wafers to line the tumour bed after tumour resection. This can result 

in a survival benefit of up to 10% at 2 years in high grade glioma [135]. Low 

grade gliomas also show a response to the same chemotherapy agents as high 

grade glioma. Tumour response in both can be predicted by the use of molecular 

markers such as methylated MGMT and 1p 19q loss, which predict increased 

sensitivity to therapy.    

Treatment for glioma has advanced markedly in the last few years, but in 

relation to most other solid tumours the treatment options are still very limited. 

The prognosis remains poor, especially for high grade tumours, with the mean 

overall survival for GBM remaining less than 18 months. 

1.4 Cancer metabolism 

It has now been over ninety years since it was first observed that cancer cells 

have an altered metabolic phenotype [136].  In the presence of oxygen, 

differentiated cells predominately utilise the tricarboxylic acid (TCA) cycle and 

oxidative phosphorylation to efficiently produce energy and the metabolites 

necessary for protein and lipid synthesis. However, in hypoxia, this process is 

altered and cells switch to a higher rate of glycolysis and lactate production to 

maintain their energy and metabolic needs. In cancer cells, glycolysis is 

maintained at a high rate, even in the presence of oxygen; a term described as 
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“aerobic glycolysis”. This seems counterintuitive, as oxidative phosphorylation is 

much more efficient at energy production than glycolysis, producing 34 more 

units of ATP from the same molecule of glucose [137]. Tumour cells, however, 

are rapidly dividing and have a much greater need for anabolism compared to 

normal differentiated cells. Rapid glucose metabolism enables faster ATP 

production as well as a greater redistribution of carbons to nucleotide, protein, 

and fatty acid synthesis, thus maximising cell growth [138]. 18F-deoxyglucose 

positron emission tomography (FDG-PET) utilises this feature of cancer by 

allowing visualisation of glucose uptake in patients, and has become an 

important tool in cancer diagnosis as well as measuring treatment response 

[139]. It has been used to confirm the correlation between glucose metabolism 

and cell proliferation rate in some human tumours [140-142]. Rapid glucose 

metabolism can also occur in normal cells where there is a need for rapid growth 

and proliferation, such during an immune response, wound healing and in utero 

[143-145]. In cancer cells, however, aerobic glycolysis can be deregulated in 

part due to genetic mutations, such as in the PI3K/AKT and Myc pathway [138]. 

In addition, increased expression of the M2 isoform of pyruvate kinase (PKM2), a 

glycolytic enzyme has been identified in cancer, which enables cells to shift 

metabolic flux from ATP generation to anabolic processes [146]. 

Recently, other metabolic changes, driven by mutations in genes related to the 

TCA cycle, indicate an alternative role for so-called “oncometabolites” [147]. In 

this instance, a particular metabolite builds up within the cell and contributes to 

the tumorigenic process. Mutations in fumarate hydratase (FH) and succinate 

dehydrogenase (SDH) follow the classic Knudson “two hit” model, with loss of 

gene function and subsequent accumulation of the substrates fumarate and 

succinate, respectively. Conversely, a single allele mutation in isocitrate 

dehydrogenase (IDH) confers a gain of function, leading to production of an 

excess of a new metabolite, 2-hydroxyglutarate [147]. These oncometabolites 

seem to have a common tumorigenic mechanism, namely the competitive 

inhibition of a superfamily of enzymes, the α-ketoglutarate (α-KG) dependent 

dioxygenases. These are important modulators of both the oxygen sensing 

machinery and epigenome, providing another link between metabolic 

dysfunction and altered gene expression in cancer. 
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1.5 Regulation of the epigenome 

The epigenome consists of chemical changes that occur to DNA and histones 

without altering the DNA sequence. The structure of chromatin is important to 

understanding how the epigenome is regulated.  It is organised into a histone 

core around which approximately 147 base pairs of DNA are folded, called a 

nucleosome. Each histone core is comprised of eight subunits; two each of 

histones H2A, H2B, H3 and H4. These histone are small globular (10-20 kDa) 

proteins, except for their histone tail, which protrudes from the surface.  

Nucleosomes are connected together by other proteins such as the linker histone 

H1, which condenses the DNA allowing it to fit within the nucleus. Epigenetic 

changes that alter gene expression can occur at either the DNA or histone level 

through cytosine methylation of DNA or chemical modification of histone tails, 

respectively. In normal healthy cells, these processes are essential in activating 

and suppressing genes to maintain cell differentiation and respond to 

environmental change. 

1.2.4 DNA methylation 

It has been observed for a long time that cancer is associated with changes in 

DNA methylation [148]. This modulation is effected by DNA methyltransferases 

(DNMT) and ten-eleven-translocation methylcytosine dioxygenase (TET) which 

add and remove methyl groups at the fifth position of the cytosine pyrimidine, 

respectively. TET enzymes achieve this by oxidising (hydroxylating) methyl 

groups, resulting in their removal. In cancer, large areas of the genome are 

hypomethylated compared to normal cells, especially in gene poor regions. This 

is associated with chromatin changes leading to genomic instability [149]. 

However, other regions called CpG islands are associated with hypermethylation 

in cancer. These sequences are over 200 base pairs long, have over 50% GC 

content, and are found near promoter sites where they are associated with gene 

silencing [150]. Distinctive patterns of hypermethylated CpG islands have been 

identified in glioma and colorectal cancer called CpG island methylator 

phenotype (CIMP) [107, 151]. CpG methylation at gene promoter sites interferes 

with enhancer interaction and transcription factor binding, resulting in gene 

repression [152].  
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1.2.2.6  DNA methyltransferases 

DNMTs consist of two families of enzymes; DNMT1a and DNMT3. The former has a 

preference for hemi-methylated DNA and the latter consists of two enzymes, 

DNMT3a and DNMT3b, which are active on both unmethylated and hemi-

methylated DNA. The different specificities of these enzymes can be explained 

by the classical model of DNA methylation [153, 154]. De novo DNA methylation 

occurs on both DNA strands, whereas maintenance of DNA methylation would 

require methylation of the complimentary DNA strand after replication. For this 

reason it was proposed that DNMT1a is a maintenance enzyme, and DNMT3a and 

DNMT3b are involved in de novo DNA methylation. However, recently it has been 

shown that co-operation between DNMT3 and DNMT1a are required to maintain 

DNA methylation, especially at CpG rich elements [155, 156], indicating that 

DNA methylation is a complex process than previously thought. The importance 

of this collaboration is emphasised in mammalian development as knocking down 

of any of these enzymes is embryonically lethal in mice [157, 158].  

2.2.2.6  DNA demethylases 

Initially, DNA demethylation was thought to be a passive process, but enzymes 

were recently identified which could actively remove methyl groups from DNA. 

This process is achieved by the TET family of enzymes, which has three members 

(TET 1-3) [159, 160]. These proteins belong to the dioxygenase family of 

enzymes and oxidise the methyl group on the cytosine residue (5-mC), 

generating hydroxymethylcystosine (5-hmC) [161]. Subsequent oxidation 

reactions by TET enzymes produce 5-formylcytosine (5-fC) and 5-carboxycytosine 

(5-caC) [162, 163]. Decarboxylation of 5-caC to cytosine is not a function of TET, 

but maybe an addition function of DNMT3 enzymes, providing a link between 

DNA methylation and demethylation [164]. This has led to an alternative 

dynamic stochastic model which incorporates the newly discovered TET 

enzymes. This describes a methylation steady-state that is altered by local rates 

of both DNMTs and TET, and may also be altered by other epigenetic 

mechanisms such histone marks [165].  
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1.2.5 Histone modification 

Altering gene expression can also be achieved by changing chromatin structure 

through chemical modification of amino acid residues on histone tails. This 

changes the folding of DNA around the histone core, altering the extent to which 

the DNA is exposed to transcription factors and other proteins. This effect 

depends on the type, site, and extent of chemical modification and consists of a 

complex array of modifications. To date, there are twenty types of post-

translational histone modifications, of which the most common are acetylation 

and methylation, but also include ubiquitination, phosphorylation, ADP-

ribosylation, malonylation, hydroxylation, O-GlcNAcylation, and SUMOylation 

[166]. Acetylation on lysine residues are always associated with increased gene 

expression and is catalysed by histone acetyltransferases (HAT). Conversely, 

histone deacetylases (HDAC) remove the acetyl groups by hydroxylation. Histone 

methylation differs from acetylation in that more than one methyl group can be 

added to a single site and it can be associated with both activation and 

repression of genes. Up to three methyl groups can be added to lysine or 

arginine residues on histone tails, by a variety of histone methyltransferases 

(HMT), with different modifications potentially conferring different functions 

[167]. For example, methylation of H3K9 and H3K27 are associated with gene 

silencing, while methylation of H3K4 is associated with gene activation (H 

denotes histone subunit and K the lysine residue number) [168].  

Histone modification is a dynamic process, with the activity of histone 

demethylases (HDM) as important as HMTs. There are two distinct families of 

HDM, the lysine specific demethylase (LSD) and the jumonji-C demethylases 

(JMJ), which contain the catalytic JMJC domain. LSD depends on a flavin 

adenine dinucleotide (FAD) based reaction to remove methyl groups and has two 

family members, LSD1 and LSD2 [166]. Interestingly, they can only demethylate 

mono- or di-methylated amino acid residues at H3K4 and H4K9 [169, 170]. JMJ 

demethylases form a much larger family of enzymes, with eighteen members so 

far identified with histone demethylase activity towards H3K4, H3K9, H3K27, 

H3K36, and H4K20. They are further divided into sub-groups, which share 

substrate specificity, such as JMJD2A-D which demethylate H3K9 and H3K36, and 

JARID1A-D which demethylate H3K4 [171]. The JMJ demethylases belong to a 

superfamily of enzymes called the α-KG-dependent dioxygenases, which require 
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Fe(II) and α-KG as co-factors [172]. Binding to methylated histones is facilitated 

by other domains such as PHD, TUDOR, and ARID [173]. In the case of JMJD2A, 

TUDOR domains allow the enzyme to target H3K4 and H4K20 [174]. In addition, 

both JMJ histone demethylases and LSDs can form large protein complexes with 

other proteins involved in chromatin modification, such as HDAC, allowing 

multiple histone modifications to occur at the same time [171]. The importance 

of these enzymes is evident by the embryonically lethal effect of the knock 

down of the LSD1/2 genes [175, 176]. Knocking down individual JMJ 

demethylases has a more varied effect from no detectable phenotype to 

embryonic lethality, probably dependent on the redundancy caused by the 

overlap in activity of these enzymes [177, 178].  

1.2.6 Epigenetic modification in cancer 

Traditionally, cancer has been thought to be driven by the accumulation of 

genetic mutations resulting in aberrant protein expression [179]. More recently, 

changes in epigenetic mechanisms have been shown to be a contributory factor 

in tumourogenesis [150, 180]. Genes involved in regulating the cell cycle and 

DNA repair have been observed to be hypermethylated in cancer, such as 

BRCA1/2 and PTEN [181]. In addition, MGMT, a gene coding for a DNA repair 

enzyme which is rarely mutated, is commonly silenced in glioma by promoter 

hypermethylation [180]. This can be driven my mutations in genes that regulate 

the epigenome, linking both processes, though the exact mechanism of 

tumourogensis is not known in most cases [182] (Table 1-1).  

The most frequent gene mutated in cancer is TP53, followed by PIK3CA. 

However, this is closely followed by mutations in epigenetic regulatory genes 

[183]. Mutations in DNA methylation occur in both methyl transfer and 

demethylation genes. DNMT3A mutations occur frequently in AML [184]. DNMT3A 

plays an important role in cellular differentiation by silencing self-renewal genes 

in haematopoietic stem cells. Loss of function of DNMT3A therefore promotes 

tumourogenesis by preventing cellular differentiation [185, 186]. DNA 

methylation gene mutations also occur in solid tumours, with DNMT1 mutations 

occurring in colon cancer, and DNMT3B mutations in breast and lung [187, 188]. 

In addition to mutations in these enzymes there is also some evidence for 

overexpression of these genes in cancer, which may contribute to 
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hypermethylation phenotypes [189]. Conversely, mutations in TET proteins have 

also been identified in haematological malignancies, and seem to be mutually 

exclusive of IDH mutations [190, 191]. In addition, methyl-binding domain 

proteins (MBD), which may mediate transcription by binding to CpG sites, are 

found to be mutated in lung and breast cancer. 

Changes in histone modifications are also a common occurrence in cancer. 

Mutations in HAT genes occur in colon, lung and leukaemias, and chromosomal 

translocations in haematological cancers often involve these genes [192]. 

Overexpression of HDACs has been observed in several cancers, which is probably 

related to their silencing of tumour suppressor genes [193, 194]. However, there 

is also evidence that in some situations they may do the opposite, maintaining 

chromatin structure and preventing tumourogenesis [195]. In addition, germline 

mutations in HDACs have also been associated with increased risk of lung and 

breast cancer [194]. It therefore seems likely that loss or gain of function 

mutations in HDACs could contribute to tumourogenesis in different tissue types. 

Mutations in genes associated with histone methylation have also been identified 

in cancer. The MLL gene, which codes for a HMT, is a site of chromosome 

translocation which commonly occurs in AML [196]. The fusion proteins 

generated are associated with a poor prognosis and results in aberrant H3K4me3 

expression [197]. Mutations in MLL have also been identified in solid tumours, 

such as prostate and bladder [198, 199].  An increase in H3K27me3 has been 

observed in prostate breast and bladder cancer due to overexpression of EZH2, 

which may have a role in control of growth [200, 201]. Gain of function 

mutations in this same gene is also associated with poor prognosis in lymphoma 

[201]. In addition, another HMT, G9a, is mutated in several solid tumours 

including breast and ovary [202]. Mutations in both classes of histone 

demethylases have also been identified in cancer, with LSD1 mutations in 

prostate cancer, and KDM6A in brain, breast, bladder and lung cancer. The loss 

of function of the latter may enhance tumour cell proliferation [203].    
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DNA methylation 
Gene Function Tumour 
DNMT1 DNA methyltransferase colorectal, lung, pancreas, breast, gastric 

DNMT3A DNA methyltransferase AML 

DNMT3B DNA methyltransferase breast, lung 

TET1 5'methylcytosine hydrolase AML 

TET2 5'methylcytosine hydrolase AML, glioma 

MBD1/2 methyl binding protein breast, lung 

 

Histone modification 
Gene Function Tumour 
MLL1/2/3 Histone methyltransferase Bladder, AML, lymphoma, prostate 

G9a Histone methyltransferase Liver, breast, ovary, cervix 

EZH2 Histone methyltransferase Lymphoma, bladder, prostate , breast 

LSD1 Histone demethylase Prostate 

KDM6A Histone demethylase Bladder, breast , lung, colon, brain 

JARID1B/C Histone demethylase Breast, renal, testicular 

CREBBP Histone acetyltransferase Gastric, colon, ovary, lung 

PCAF Histone acetyltransferase Epithelial 

EP300 Histone deacetyltransferase Breast, pancreas, colon 

HDAC2 Histone deacetyltransferase Gastric, colon, endometrial 

HDAC5/7A Histone deacetyltransferase Colon, prostate, breast 

Table 1-1 Cancer mutations in genes involved in epigenetic modification. 
Table depicting mutations in different genes involved in DNA and histone modification that have 
been associated with cancer. Indicates the tumour types where each mutation has been identified 
[182]. Abbreviations: AML, acute myeloid leukaemia.  
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1.2.7 Targeting epigenetics in cancer 

These epigenetic changes have clinical significance with global changes in 

histone methylation and acetylation having important prognostic significance in 

colon, prostate and non-small cell lung cancer [204-206]. This has led to the 

development of drugs to target these epigenetic changes in cancer. The first 

successful targets were the DNMTs, with Decitabine and Azacitidine developed 

over 50 years ago. They were, however, limited to the treatment of 

myelodysplastic syndromes due to toxic side effects at high doses [207]. 

Vorinostat and Romidepsin are the only other drugs used in clinical practice, 

both of which inhibit HDACs and are used in the treatment of T-cell lymphoma, 

but again have issues of toxicity in other tumour types [208]. Targeting of HMTs 

has also not resulted in any clinical efficacy, which may be due to the broad 

activity and redundancy of these enzymes [209]. The difficulty in developing 

anti-cancer drugs targeting epigenetics may mean that greater clinical potential 

may be achieved by targeting some of the underlying metabolic causes.     

1.6 The metabolic mechanism of epigenetic modification 

Metabolism and epigenetics are linked through the processes of methyl and 

acetyl transfer, utilising s-adenylmethionine (SAM) and acetyl-CoA as substrates, 

respectively (Figure 1-4). SAM is generated from the coupled folate and 

methionine cycles, collectively called one carbon metabolism. This is also 

essential for the synthesis of nucleotides, protein, lipids, and glutathione, which 

maintains the redox state of the cell. For this reason, 1-carbon metabolism is 

often overactive in cancer [210], and is the reason why folate antagonists, such 

as methotrexate and pemetrexate, have proved to be successful in the clinic. 

Serine, glycine, methionine, and folic acid are important sources for one carbon 

metabolism and can be taken up by the cell. However, serine, glycine, and 

methionine can be synthesised de novo in the cell, which helps maintain one 

carbon metabolism when nutrients are scarce. Serine, which can be synthesised 

from 3-phosphoglycerate, an intermediate in glycolysis, donates a carbon to the 

folate cycle while producing glycine, and converting tetrahydrofolate (THF) to 

methylthetrahydrofolate (mTHF). In turn, glycine can also provide one carbon 

through the glycine cleavage system, producing mTHF. mTHF forms the link to 

the methionine cycle by providing the methyl group for betaine 
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hydroxymethylatransferase to catalyse the reaction of homocysteine to 

methionine. Methionine can in turn be utilised in protein and lipid synthesis or 

adenylated to SAM, the major methyl donor in the cell. SAM is then utilised by 

DNA and histone methyltransferases to methylate amino acid residues on DNA 

and histone tails, respectively. 

 
 

Figure 1-4 Methyl and acetyl transfer pathways 
The blue pathway depicts one carbon metabolism and its generation of SAM, which provides a 
methyl group for histone and DNA methylation. Imported folate is reduced to THF and 
subsequently methylated to mTHF by the conversion of serine to glycine and the glycine cleavage 
system. The folate cycle is coupled to the methionine cycle by mTHF, donating a carbon to 
homocysteine converting it to methionine. Adenylation of methionine produces SAM, which acts as 
a co-substrate for DNMT and HMT, allowing transfer of its methyl group to DNA and histone tails 
respectively.  The red pathway depicts acetyl transfer from acetyl-CoA. Acetyl-CoA which is 
derived from pyruvate, links glycolysis to the TCA cycle but is confined to the mitochondria. In the 
cytoplasm and nucleus, acetyl-CoA has to be derived by two alternative methods: firstly by ACLY, 
which utilises citrate from the mitochondrial TCA cycle, and secondly, ACSS2 which ligates acetate 
to CoA. Acetyl-CoA can then be utilised as a co-substrate by HAT, allowing transfer of the acetyl 
group to lysine residues on histone tails. Abbreviations: THF, tetrahydrofolate; mTHF, 
methyltetrahydrofolate; SAH, S-adenosylhomocysteine; SAM, S-adenosylmethionine; DNMT, DNA 
methyltransferase; HMT, histone methyltransferase; 3-PG, 3-phosphoglyceric acid; ACLY, ATP-
citrate lyase; ACSS2, acetyl-CoA synthetase short-chain family member 2; HAT, histone 
acetyltransferase (reproduced from [1]). 

 



44 
 
Acetylation of histones is dependent on the acetyl donor, acetyl-CoA. Acetyl-CoA 

is an important link between glycolysis and the TCA cycle in the mitochondria, 

and is catalysed by pyruvate dehydrogenase. In the cytoplasm and nucleus, 

however, acetyl-CoA production is dependent on two different enzymes: ATP-

citrate lyase (ACLY) and actyl-CoA synthetase short-chain family member 2 

(ACSS2) (Figure 1) [211]. ACLY produces actyl-CoA from citrate, while ACSS2 

ligates acetate to coenzyme A (CoA). Acetyl-CoA then acts as the acetyl donor 

for lysine acetylation on histone tails by HAT. While ACLY derives acetyl-CoA 

from the TCA cycle, ACSS2 is important as a scavenger of CoA from histone, 

protein, and lipid deacetylation reactions. Interestingly, it may also utilise 

exogenous acetate as a source of acetyl-CoA, especially during hypoxia [212, 

213].  

1.6.1 Oncometabolites and their effect on the epigenome 

Changes in metabolism have been shown over the last 15 years to affect the 

epigenome. Regulators of major metabolic pathways such as AKT and PKM2 have 

been shown to alter histone acetylation. Global levels of histone acetylation 

correlates with phosphorylation of AKT in prostate cancer and glioma. This is 

likely due to the effect AKT has on citrate metabolism, with activation of AKT 

phosphorylating ACLY, resulting in an increase in histone acetylation in vivo 

[214]. PKM2 has also been shown to increase histone acetylation at the promoter 

regions of c-MYC and CCND1 (cyclin D1), by phosphorylating histone H3. This 

prevents the binding of HDAC, promoting H3K9 acetylation at these promoter 

sites, activating transcription and promoting cell growth [215, 216]. Histone 

methylation levels can also be affected in cancer cells by the overexpression of 

N-methyltransferase. This enzyme is involved in the catabolism of SAM to 1-

methyl nicotinamide, which is highly stable and not utilised further by the cell. 

Overexpression of N-methyltransferase, results in a reduction in SAM with a 

corresponding decrease in histone methylation and an altered phenotype [217]. 

Mutations in metabolic genes can also promote epigenetic changes through a 

common mechanism, the accumulation of an “oncometabolite”. This acts as a 

competitive inhibitor of α-KG dependent dioxygenases, an ever-expanding 

superfamily of over 60 enzymes. Dioxygenases are involved in fatty acid 

metabolism, oxygen sensing, and collagen biosynthesis, as well as modulation of 
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the epigenome [172]. Chemically, they all share a common requirement for 

oxygen and α-KG as co-substrates. Hydroxylation of the primary substrate occurs 

in conjunction with the oxidative decarboxylation of α-KG to generate succinate 

and carbon dioxide (Figure 1-5).  

 
 

Figure 1-5 α-ketoglutarate (α-KG) dependent dioxygenases  
This superfamily of enzymes uses oxygen and α-KG as co-substrates resulting in the hydroxylation 
of the primary substrate and the decarboxylation of α-KG producing succinate and CO2. These 
enzymes can be inhibited by elevated levels of 2-hydroxyglutarate, succinate and fumarate. This 
may occur by competing with the co-substrate α-KG, or potentially by product inhibition in the case 
of succinate and fumarate (adapted from [1]). 

 

The first such effect was demonstrated for the loss of function of SDH in cancer. 

SDH loss was initially discovered in familial paraganglioma [218], but also occurs 

as spontaneous somatic mutations [219]. These tumours are of neuroendocrine 

origin and most commonly affect the carotid body, but can occur anywhere in 

the sympathetic and parasympathetic chain, as well as in the catecholamine-

secreting chromaffin cells in the adrenal gland where it is called 

phaechromocytoma. SDH is a TCA cycle enzyme and also forms complex II of the 

electron transport chain. It oxidises succinate to fumarate with the transfer of 

an electron to ubiquinone, contributing to ATP production. The enzyme consists 

of 4 subunits, each of which can be mutated and cause a loss of function [218, 

220-222].  
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Fumarate hydratase (FH) catalyses the next reaction in the TCA cycle: the 

hydration of fumarate to malate. It was also identified in a familial syndrome 

(Hereditary Leiomyomatosis and Renal Cell Cancer, HLRCC) resulting in smooth 

muscle tumours called leiomyomas and aggressive renal cell carcinomas [223]. 

They have subsequently been identified, like SDH mutations, in paragangliomas 

and phaechromocytomas [224]. In FH and SDH deficient tumours, there is the 

respective accumulation of fumarate or succinate, which confers a common 

function by competitively inhibiting α-KG dependent dioxygenases [225]. It 

seems likely that succinate and fumarate, which are structurally similar,  inhibit 

these enzymes through product inhibition, as the effect of both metabolites can 

be reversed by the addition of excess α-KG in vitro and in vivo [226] (Figure 1-6).  

 
Figure 1-6 The metabolic structure of oncometabolites  
Succinate, fumarate and 2-hydroxyglutarate (2HG) are closely linked both structurally and 
metabolically to α-ketoglutarate (α-KG). Succinate and fumarate differ from α-KG only by the 
presence of a hydroxyl group on C2 and the loss of C1.  In addition, succinate and fumarate differ 
only in the presence of an ethylenic bond, which may explain their similar tumorigenic effects. 2HG 
differs from α-KG and glutamate only in the presence of a hydroxyl group instead of a ketone or 
amine group, respectively. This explains how 2HG can competitively inhibit α-KG by occupying the 
same enzymatic binding site (reproduced from [1]).    

 

IDH is another TCA cycle related enzyme that has been implicated in 

tumorigenesis. Using genomic screening it was identified as a common mutation 

in gliomas as well as acute myeloid leukaemia (AML) [94, 95, 227]. Interestingly, 
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it is associated with a better prognosis in glioma, but a poorer prognosis in AML 

[228]. Subsequently, mutations have also been identified in other rare types of 

solid tumours, such as cholangiocarcinoma and chondrosarcoma [229, 230]. 

Isocitrate dehydrogenase exists as 3 isoforms (IDH1/2/3), with IDH1 present in 

the cytoplasm and IDH-2/3 in the mitochondria. IDH1 and 2 convert isocitrate to 

α-KG by oxidative decarboxylation with the production of NADPH from NADP+. 

IDH-3 is structurally different from the other two isoforms and utilises NAD+ to 

produce α-KG and NADH. It has not been found mutated in any cancer to date. 

The site of the mutation in IDH1/2 is at an equivalent arginine residue which is 

important to the active site for isocitrate binding [147]. There is an increased 

affinity instead for α-KG, and the mutated enzyme utilises NADPH in a partially 

reversed reaction to produce a new metabolite; 2-hydroxyglutarate (2HG) [147] 

(Figure 1-7). In gliomas, the arginine 132 (R132) is substituted for histidine 

(R132H) in 90% of IDH1 mutations, the rest consisting of arginine substituted 

with cysteine, serine, leucine or glycine. The corresponding arginine in the IDH2 

mutation is R172, which is substituted for lysine. In AML, the substitution of 

arginine at R140 for glutamine has also been identified [95]. 

The IDH1 isoform accounts for 65% of cellular NADPH, which is an essential 

cofactor for the synthesis of glutathione (GSH), the most abundant intracellular 

antioxidant [231]. GSSG, the oxidised form of glutathione is reduced by 

glutathione reductase to GSH utilising NADPH. In this respect, the activity of 

IDH1 is important in maintaining the redox state of the cell. The IDH1 mutation 

results in the consumption of NADPH as opposed to production by the wild-type 

enzyme. It has been shown that overexpression of this mutation results in a fall 

in intracellular NADPH and glutathione, with a corresponding increase in reactive 

oxygen species (ROS) [232]. ROS has been shown to induce apoptosis, cause cell 

cycle arrest and reduce cell proliferation [233, 234]. The generation of ROS 

during chemotherapy and radiotherapy, coupled with the reduced ability to 

generate glutathione in IDH mutant tumours may explain in part the improved 

prognosis compared to wild-type gliomas [235].  

Overexpression of IDH1 in cell lines has also been shown to result in other 

metabolic effects, which include a fall in α-KG and glutamate, as well as the 

increase in 2HG [236, 237]. This is presumably related to the increased 

consumption of α-KG by the IDH mutant enzyme. α-KG and glutamate are 
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structurally similar and are separated by a single metabolic reaction, via 

glutamate dehydrogenase, so are rapidly interchangeable. Glutamine is a major 

fuel for the cell and is metabolised to glutamate by glutaminase, so may provide 

a source of α-KG for the cell. This has led to a proposed model of glutamine 

addiction, as increased consumption of this metabolite may maintain α-KG levels 

in IDH mutant cells sufficiently to maintain cell growth [238]. However, 

inhibition of glutaminase in in vitro studies has only had a modest effect on IDH1 

mutant cell proliferation, indicating that other metabolic pathways may be 

compensating for the fall in α-KG [239]. Low grade gliomas, which are 

predominantly IDH1 mutant, also express the excitatory amino acid transporter 2 

(EAAT2), which is involved in the uptake of glutamate from the extracellular 

space [240, 241]. This raises the possibility that glutamate itself may be an 

important carbon source for α-KG production in IDH mutant tumours [242]. In 

addition, an IDH1 mutant oligodendroglioma xenograft model has been shown to 

maintain intracellular levels of α-KG compared to wild-type tumours, but with a 

marked increase in mitochondrial density and activity. This indicates another 

potential mechanism for maintaining α-KG production in IDH1 mutant cells, by 

increasing mitochondrial α-KG metabolism to compensate for a reduction in 

cytoplasmic production [243]. 

2HG is a five carbon dicarboxylic acid that is normally detectable in small 

amounts in the urine and amniotic fluid [244], but the exact physiological role of 

2HG, if any, is not known. 2HG is structurally very similar to α-KG and 

glutamate; the only difference being the presence of a hydroxyl group instead of 

a ketone or amine group, respectively (Figure 1-6). It is this similarity that 

results in the competitive inhibition of α-KG dependent dioxygenases by 2HG, as 

it occupies the same binding site as α-KG [245]. The IDH1/2 mutation is 

associated with a decrease in α-KG potentially enhancing the inhibitory effect of 

2HG on dioxygenases [236, 237]. 2HG occurs in two enantiomers, D-2HG and L-

2HG, which are metabolised by FAD-linked 2HG dehydrogenases specific to each.  

Elevated levels of 2HG have been detected in two rare autosomal recessive 

genetic diseases, D-2-hydroxyglutaric aciduria (D-2HGA) and L-2- hydroxyglutaric 

aciduria (L-2HGA), where a markedly elevated level of 2HG is detectable in the 

urine. These diseases are caused by mutations in 2-HG dehydrogenases, as 

opposed to IDH in glioma. Both genetic conditions develop different phenotypes, 
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with variable severity, independently of the amount of 2HG secreted. D2HGA 

can cause early onset epileptic encephalopathy, cardiomyopathy and dysmorphic 

facial features [246] while L2HGA causes a progressive neurodegenerative 

disorder, and can predispose to brain tumours [247].  

  

Figure 1-7 Isocitrate dehydrogenase mutation 
Isocitrate dehydrogenase exists as 3 isoforms (IDH1/2/3), with IDH1 present in the cytoplasm and 
IDH-2/3 in the mitochondria. IDH1 and 2 convert isocitrate to α-KG by oxidative decarboxylation 
with the production of NADPH from NADP+. IDH-3 is structurally different from the other two 
isoforms and utilises NAD+ to produce α-KG and NADH. An equivalent point mutation on an 
arginine residue in IDH1/2 can occur at the active site for isocitrate binding. This results is an 
increased affinity instead for α-KG, and the mutated enzyme utilises NADPH in a partially reversed 
reaction to produce a new metabolite; 2-hydroxyglutarate. 
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It has been hypothesised that 2HG is a by-product of other cellular processes, 

and the 2HG dehydrogenases maybe acting as a “metabolite repair mechanism” 

[248]. L-2HG seems to be formed by mitochondrial L-malate dehydrogenase 

[248] and D-2HG by hydroxyacid-oxoacid transhydrogenase [249], but both at a 

much slower rate than their respective primary products.  It is D-2HG that is 

produced by the IDH1/2 mutation.  

A subgroup of α-KG dependent dioxygenases implicated in tumorigenesis are the 

prolyl hydroxylases (PHD), which play an important role in the degradation of 

hypoxia inducible factor (HIF) in normoxic conditions. HIF activates a range of 

genes in response to low oxygen to increase glycolysis and angiogenesis. In the 

presence of oxygen, PHD hydroxylates prolyl groups on HIF allowing it to bind to 

the von Hippel-Lindau (VHL) protein which tags HIF for ubiquitylation and 

degradation in the proteasome [250].  FH and SDH mutations cause a 

“pseudohypoxic” phenotype through the inhibition of PHDs that stabilises HIF. 

This promotes a hypoxic response even in the presence of oxygen causing 

increased glycolysis and angiogenesis [226, 251]. The effect of 2HG on PHDs is 

less clear, with conflicting evidence of an inhibitory as well as activating effect 

[245, 252-254]. This indicates variations between oncometabolites in their 

affinity towards different members of the α-KG dependent dioxygenase family of 

enzymes. 

IDH, FH, and SDH mutations are associated with changes in DNA and histone 

methylation. A subset of gliomas has been identified that has a distinct pattern 

of CpG island hypermethylation (G-CIMP) [107], which has been replicated in 

mutant IDH1 overexpressed immortalised astrocytes, and a single copy IDH1 

mutant knock-in colorectal cell line [255, 256]. IDH mutations in 

cholangiocarcinoma also replicate this hypermethylation pattern [257]. This is 

also likely to extend to SDH mutations, with similar patterns of DNA methylation 

observed in mouse derived SDH deficient chromaffin cells [258].  The underlying 

mechanism for these changes seems to be inhibition of TET, an α-KG dependent 

dioxygenase, which exists in three isoforms (TET 1-3). They hydroxylate 5-

methylcytosine (5mC) to 5-hydroxymethylcytosine (5-hmC), allowing subsequent 

DNA demethylation. In human glioma tissue samples, levels of 5-hmC are 

markedly reduced in IDH mutant compared to IDH wild-type tumours [245].  In 

cell culture, this reduction in 5-hmC has been replicated by over expressing 
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mutant IDH1/2 in numerous cell lines including glioma, immortalised astrocytes 

and myeloblasts [190, 255]. The same effect has also been observed in FH and 

SDH mutant cell models [225]. Interestingly, in human AML samples, mutations 

in TET2 were found to be mutually exclusive to mutations in IDH, and produce 

similar DNA methylation patterns to IDH mutant AML [190]. Further genomic 

analysis of IDH1/2 mutant AML revealed increased methylation of promotor sites 

of genes associated with myeloid differentiation, producing a more stem-like 

phenotype [190]. Over-expression of IDH1, or exposure to exogenous cell 

permeable 2HG, was able to promote cytokine independence and block 

differentiation in a leukaemic cell line.  This could be replicated by knockdown 

of TET2, providing a potential link between 2HG, TET inhibition, and 

tumorigenesis [259].   

The jumonji-C (JMJ) histone demethylases are a sub group of histone 

demethylases that are members of the α-KG dependent dioxygenase family 

[172]. They initiate the first step in the removal of methyl groups by 

hydroxylation causing an increase or decrease in gene transcription dependent 

on the histone methylation site. JMJ histone demethylases are very sensitive to 

high levels of fumarate, succinate, and 2HG [260]. In the case of the IDH1/2 

mutation, increases in histone methylation have been observed in human glioma 

samples for H3K9 and H3K27, both gene repressive marks [245, 261]. 

Interestingly, the IDH1 mutation was strongly correlated with H3K9me3 in 

oligodendrogliomas, but not astrocytomas, which are two different subtypes of 

glioma [262]. This implies that there is a differential effect of 2HG on different 

tumours even in the same tissue type. Murine 3T3-L1 fibroblasts, which can be 

differentiated into adipocytes, were used to prove a link between the repressive 

histone methylation marks, H3K9me3 and H3K27me3, and cellular 

differentiation. Over-expression of mutant IDH1 was associated with impaired 

adipogenesis due to an increase in both H3K9me3 and H3K27me3 at promoter 

sites for transcription factors responsible for adipocyte differentiation. Similar 

changes in histone methylation marks and impaired differentiation were also 

seen in IDH1 overexpressed primary murine neurospheres [261]. Increases in 

H3K27me3 and H3K9me3 have also been observed in SDH and FH mutant tumours 

and cell models [225, 258]. Interestingly, increased levels of H3K9me3 occur 

prior to increases in DNA methylation when mutant IDH1 is introduced to 
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immortalised astrocytes [261]. These histone methylation changes may therefore 

account for some of the changes in DNA methylation patterns [263].  

1.6.2 Future therapies  

There is now increasing evidence that mutations in metabolic enzymes are in 

part responsible for the epigenetic changes in some cancers. At least in AML 

there is reasonable evidence to suggest that the IDH1 mutation alone may be 

sufficient to induce leukoneogenesis by inhibiting genes responsible for cell 

differentiation through DNA hypermethylation [259]. For other tumours it is less 

clear, but at least in glioma, the IDH mutation seems to be an early event that is 

maintained throughout tumour progression [95]. It is also becoming evident that 

the presence of oncometabolites in tumours is not confined to malignancies with 

TCA gene mutations. Elevated levels of 2HG, driven by myc activation, have 

been identified in breast cancer resulting in DNA hypermethylation [264]. 

Interestingly, 3-phosphoglycerate dehydrogenase, which is the enzyme 

responsible for the first step in serine biosynthesis from the glycolytic 

intermediate 3-phosphoglycerate, has recently been shown to convert α-KG  to 

2HG by utilising NADH [265]. This provides a possible link between increased 

myc-driven glycolysis and 2HG production in some breast cancers. It seems likely 

that other tumours may also be affected, and new oncometabolites may be 

identified in the future. In fact, an in silico systems approach using 1700 

genomes has already been used to identify potential new oncometabolites in a 

range of tumours [266]. 

The unique presence of 2HG in IDH1 mutant tumours raises the possibility of 

using non-invasive imaging techniques for diagnosis and monitoring of treatment 

response [267]. Magnetic resonance spectroscopy (MRS) allows for the 

measurement of metabolites within the brain using the same hydrogen protons 

used to make an anatomical image in magnetic resonance imaging (MRI), a 

widely used clinical technique. 2HG accumulates to a concentration of 5 to 35 

mM in IDH1 mutant tumours, while normal tissue only contains trace levels of 

the metabolite [147]. In addition, the only other cause of raised 2HG is D-2HGA 

and L-2HGA; both very rare genetic disorders which have very specific 

phenotypes. This indicates that 2HG could be an ideal biomarker using MRS. The 

only complication is that the MRS spectra of NAA and glutamate overlap that of 
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2HG and may give a false negative result in tumours with low levels of the 

metabolite [268]. Further validation of the technique is warranted, but it has 

great potential in clinical practice.  

The discovery of metabolic enzymes that can alter the epigenome has opened up 

a new exciting area for drug development. In only 5 years, IDH1 and IDH-2 small 

molecule inhibitors have been developed that are now entering clinical trials. 

AGI-5198, an IDH1 inhibitor, was tested in a heterozygous IDH1 mutant glioma 

cell line (TS603). It was able to reverse H3K9 trimethylation, promote cellular 

differentiation and delay growth, though interestingly it had no effect on DNA 

methylation [269]. Similarly, AGI-6780, a specific inhibitor of mutant IDH-2, 

induced leukaemic cell differentiation in primary human samples ex vivo [270]. 

Further investigation using a mutant IDH2 overexpressed leukaemic cell line 

showed reversal of both DNA and histone hypermethylation, inducing cell 

differentiation. Interestingly, histone methylation is rapidly reversed within 

days, while DNA methylation progressively changes over a period of weeks [271].  

This is likely due to the fact that DNA methylation is highly stable compared to 

histone methylation, and less easily reversed [263], which may explain the lack 

of change in DNA methylation in TS603, and the slow change in DNA methylation 

in the mutant IDH2 overexpressed cell line. In addition, the TS603 cell line has 

an endogenous IDH1 mutation, so the epigenetic changes are likely to be long-

standing and so maybe less easily reversed. This may explain the modest effect 

on cell growth of IDH1 inhibition in glioma pre-clinical models.   

It will be interesting to see if these new drugs are equally efficacious in 

different types of IDH mutated tumours. In glioma, the presence of an IDH1 

mutation is actually associated with a better prognosis compared to wild-type 

tumours. These tumours grow more slowly in vitro as well as in vivo [272]. The 

concern in glioma is that inhibiting 2HG production may potentiate tumour 

growth. Reduced expression of branch chain amino acid transferase 1 (BCAT1) in 

IDH1 mutated gliomas has been shown in part to be caused by hypermethylation 

of the BCAT1 promotor region. When BCAT1 is overexpressed in IDH1 mutant 

immortalised human astrocytes, some of the loss in cell proliferation is 

recovered [273]. This raises the concern that inhibition of the mutant IDH 

enzyme in glioma may increase cell proliferation, and further research is needed 

into the downstream effects of the IDH1 mutation. This is in direct contrast to 
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AML, where IDH mutations are associated with a worse prognosis and more 

aggressive disease, and where mutant IDH inhibitors may prove more beneficial.  
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1.7 Use of Stable Isotope Tracers 

The extraction of metabolites from cells and medium can give useful information 

about changes in total metabolite levels. However, to demonstrate changes in 

related metabolic pathways it is important to use stable isotope tracing. When 

investigating changes in glycolysis, glutaminolysis, and the TCA cycle, 13C6-

glucose and 13C5-glutamine are used as they are the major carbon sources for 

these pathways. 

13C stable isotopes tracers are non-radioactive compounds, where some or all of 

the 12C atoms have been replaced by 13C. Other atoms can also be replaced in 

this way such as 15N for 14N, an example of which is 15N-GABA which was used in 

this study. In this thesis all the 13C and 15N isotopes are fully labelled. The 

metabolism of 13C6-glucose and 13C5-glutamine can be followed by measuring 

isotopologues of downstream intracellular metabolites over time. Isotopologues 

are similar molecular entities that differ only in their mass due to a different 

isotopic composition (Figure 1-7).  

Steady state labelling was done by adding medium labelled with 13C6-glucose or 
13C5-glutamine for 24 hours. In this situation, intracellular metabolites and 

metabolic fluxes are assumed to be constant as the cells are in an exponential 

growth phase.  The contribution of labelled isotopologues for different 

metabolites can give an indication of qualitative changes in a particular 

pathway.  An example of this would be looking at changes in abundance of the 

M+3 malate isotopologue from 13C6-glucose, which would give an indication of 

relative differences in flux through pyruvate carboxylase. Dynamic labelling can 

give additional information on flux through a pathway by measuring how fast a 

labelled metabolite accumulates over time. The faster the labelled metabolite 

accumulates, the greater the flux to that metabolite from the labelled source. 

However, both methods cannot give absolute changes in flux as this would 

require complex computer modelling using data from labelling experiments, 

intracellular steady state concentration of each metabolite, and metabolite 

exchange between the medium and intracellular space.   
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Figure 1-8 Metabolism of 13C6-glucose and 13C5-glutamine 
Diagrams depicting how different isotopologues are generated from 13C6-glucose (A) and 13C5-
glutamine (B) as they are metabolised around the TCA cycle. 12C atoms are depicted in white and 
13C atoms in red. 
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Chapter 2 Materials and Methods 

2.1 Materials 

2.1.1  Reagents  

Reagent Supplier 

Acetone Fisher Scientific 

Acetonitrile (HPLC grade) VWR Chemicals 
 

Acrylamide solution-30% acrylamide,37.5:1 Severn Biotech Ltd 

Acrylamide solution-40% acrylamide,37.5:1 Bio-Rad 

Agarose Melford 

4-aminobutyric acid-1-13C ICON Isotopes 

4-aminobutyric acid-1-15N Sigma Aldrich 

Ammonium persulfate (APS) Fisher Scientific 

Ampicillin Sigma Aldrich 

Baclofen Sigma Aldrich 

Bicuculline methiodide Abcam 

BSA Calbiochem 

Dimethyl 2-oxoglutarate Sigma Aldrich 

Dimethyloxaloylglycine (DMOG) Sigma Aldrich 

Dimethyl Sulfoxide (DMSO TC-grade) Sigma Aldrich 

DH5α competent cells Invitrogen 

DMEM (21969-035) Invitrogen (GIBCO) 

Dynabeads M-280 sheep anti-mouse IgG Life Technologies 

Ethanol VWR Chemicals 
 

Ethidium Bromide Sigma Aldrich 

Ethylenediamine tetraacetic acid (EDTA) Sigma Aldrich 

Ethylene glycol tetraacetic acid (EGTA) Sigma Aldrich 

Fast SYBR® Green Master Mix Life Technologies 

FBS GE healthcare 
 Glutamine 

 
Invitrogen 

Glucose 13C Cambridge Isotope Laboratories 

Glutamine 13C Cambridge Isotope Laboratories 

Glycerol Amersham Biosciences 

G418S (Genetecin) Formedium 

HEPES Invitrogen 
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Igepal CA-630 Sigma Aldrich 

Methanol (General use) Sigma Aldrich 

Methanol (HLPC grade) VWR Chemicals 
 

Milk Marvel 

Muscimol Sigma Aldrich 

NaCI Fisher Scientific 
NaOH 
 

Fisher Scientific 

N-lauroylsarcosine Sigma Aldrich 

Paraformaldehyde (PFA) Electron Microscopy science 

Protease inhibitor cocktail solution Sigma Aldrich 

Puromycin Sigma Aldrich 

(R)-(-)-5-oxo-2-tetrahydrofurancarboxylic acid Sigma Aldrich 

Sodium deoxycholate Sigma Aldrich 

Sodium dodecyl sulphate (SDS) Fisher scientific 

SuperScript® VILO™ Master Mix Life Technologies 

Tetramethylethylenediamine (TEMED) Sigma Aldrich 

Triton X-100 Sigma Aldrich 

Trypsin (10x) Invitrogen 

Tween-20 Sigma Aldrich 

Vigabatrin Sigma Aldrich 

Table 2-1 Reagents 
 

2.1.2  Kits 

MODified histone peptide array, Histone purification mini kit (Active Motif) 

MinElute PCR purification kit, RNeasy mini kit, QIAshredder, Qiaquick gel 

extraction kit (Qiagen) 

Quibit RNA HS assay kit (Invitrogen) 

Ribo-Zero magnetic kit (Epicentre) 

Envision + system-HRP (DAB) (DAKO) 

RNA 6000 Nano kit (Agilent) 
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2.1.3  General buffers and solutions 

RIPA buffer: 50 mM Tris-HCl, 150 mM NaCl, 1% Triton x100, 1.0% NP-40, 0.1% 

SDS, 1:100 protease inhibitors cocktail, pH 8.0. 

Metabolomics extraction buffer: 50% HPLC grade methanol, 30% HPLC grade 

acetonitrile, 20% milliQ water.  

Phosphate buffered saline (PBS): 137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 2 

mM KH2PO4, pH 7.4. 

4 X ProtoGel resolving buffer (Geneflow): 1.5 M Tris-HCl, 0.4% SDS, pH 8.8. 

10% Acrylamide gel: 8 ml 4 X ProtoGel resolving buffer, 8 ml 40% 

acrylamide/bis, 16 ml H2O, 320 µl APS, 20 µl TEMED. 

15% Acrylamide gel: 8 ml 4 X ProtoGel resolving buffer, 12 ml 40% 

acrylamide/bis, 16 ml H2O, 320 µl APS, 20 µl TEMED. 

Stacking gel: 5.5 ml H2O, 1.3 ml acrylamide/bis, 1 ml 1 M Tris (pH 6.8), 80 µl 

10% SDS, 80 µl 10% APS, 12 µl TEMED. 

1X Blotting buffer: 25 mM Tris, 192 mM glycine, 0.01% SDS, pH 8.3.    

1X SDS-PAGE running buffer: 0.1% SDS, 192 mM glycine, 25 mM Tris-HCl pH 8.3 

LB-Broth: 10 g/l tryptone, 5 g/l yeast extract, 10 g/l NaCl.  

LB agar plates: LB medium, 15 g/l bacto agar.  

4 X Laemlli buffer:  0.25 M Tris-HCl (pH 6.8), 40% glycerol, 8% SDS, 0.04% 

bromophenol blue, 0.2 M DTT. 

Tris-acetate-EDTA 1X (TAE): 40 mM Tris, 20 mM acetic acid, 1 mM EDTA, pH 

8.0. 

PE: PBS, 0.01% EDTA.  
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Trypsin (1X): 10% 10 X trypsin, 90% PE.  

PBST: PBS, 0.05% Tween-20.  

Blocking buffer for western blot: 5% Milk in PBST. 

Standard medium: high glucose DMEM, 10% FBS, 2 mM glutamine. 

ChIP LB1: 50 mM Hepes-KOH (pH 7.5), 140 mM NaCl, 1 mM EDTA, 10% glycerol, 

0.5% Igepal CA-630, 0.25% Triton-X 100.   

ChIP LB2: 10 mM Tris-HCL (pH 8.0), 200 mM NaCl, 1 mM EDTA, 0.5 M EGTA.  

ChIP LB3: 10 mM Tris-HCL (pH 8.0), 100 mM NaCl, 1 mM EDTA, 0.5 mM EGTA, 

0.1% Na-Deoxycholate, 0.5% N-lauroylsarcosine.  

RIPA buffer used in ChIP: 50 mM Hepes-KOH (pH 7.5), 500 mM LiCl, 1 mM EDTA, 

1% Igepal CA-630, 0.7% Na-Deoxycholate. 

ChIP elution buffer: 50 mM Tris-HCl (pH 8.0), 10 mM EDTA, 1% SDS. 

TBS: 20 mM Tris-HCl (pH 7.6), 150 mM NaCl.  

TBST: TBS + 0.05% Tween-20. 

2.1.4 Plasmids 

Plasmid Supplier 

pcDNA 3.1(+) wild type IDH1 Dr Mark Cockerill (Manchester University) 

pcDNA 3.1(+) mutant IDH1 (R132H) Dr Mark Cockerill (Manchester University) 

pcDNA 3.1(+)  Invitrogen 

pLKO.1 Addgene 

pLKO.1 Scr Addgene 

Table 2-2 Plasmids 
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2.1.5 Antibodies 

Primary Antibody Concentration Supplier 

ABAT (ab108249) WB 1/1000 Abcam 

β-Actin (ab8226) WB 1/5000  Abcam 

GABAA Receptor β3 (ab98968) WB 1/500, IHC 1/500 Abcam 

H3K4me3 (9751S) IHC 1/250 Cell Signalling 

H3 (4499) IF 1/200 WB 1:2000 Cell Signalling 

H4 (ab10158) IF 1/200 WB 1:1000 Abcam 

H3K4me0 (CMA301) IF 1/1000 H. Kimura 

H3K4me1 (CMA302) IF 1/500 H. Kimura 

H3K4me2(CMA303) 

 

IF 1/1000 WB 1/1000 IHC 1/500 

 

 

H. Kimura 

H3K4me3 (27B7) ChIP 3 µg / Input WB 1:1000 H. Kimura 

H3K4me3 (9751) IHC 1/400 Cell signalling 

H3K27me0 (37B4) IF 1/500 H. Kimura 

H3K27me1 (CMA 321) IF 1/500 H. Kimura 

H3K27me2 (CMA322) IF 1/500 H. Kimura 

H3K27me3 (CMA323) IF 1/1000 H. Kimura 

H3K27ac (CMA309) IF 1/1000 H. Kimura 

H3K9me0 (1C6) IF 1/500 H. Kimura 

H3K9me1 (CMA316) IF 1/500 H. Kimura 

H3K9me2 (CMA317) IF 1/1000 H. Kimura 

H3K9me3 (CMA318) IF 1/1000 H. Kimura 

H3K9ac (CMA310) IF 1/1000 H. Kimura 

H3K36me1 (CMA 331) IF 1/500 H. Kimura 

H3K36me2 (CMA332) IF 1/500 H. Kimura 

H3K36me3 (CMA 333) IF 1/500 H. Kimura 

H4K20me1 (15F11) IF 1/500 H. Kimura 

H4K20me2 (2E2) IF 1/500 H. Kimura 

H4K20me3 (27F11) IF 1/500 H. Kimura 

H4K20ac (6D6) IF 1/500 H. Kimura 

HA-probe (sc-7392) 3 µg / ChIP input Santa Cruz 

IDH1 (sc-49996) WB 1/200 Santa Cruz 

Myc-tag (9B11) WB 1/1000 Cell Signalling 

β-Tubulin (T5201) WB 1:5000 Sigma Aldrich 

 

Table 2-3 Primary antibodies  
Antibodies for Western blot, immunohistochemistry, immunofluorescence and ChIP. 
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SecondaryAntibody Concentration Supplier 

AlexaFlouro 488  IF 1/1000 Invitrogen 

AlexaFlouro 555  IF 1/1000 Invitrogen 

IR Dye 800CW donkey anti-goat 1/15000 LI-COR 

IR Dye 800CW donkey anti-mouse 1/15000 LI-COR 

IR Dye 680CW donkey anti-rabbit 1/15000 LI-COR 

IR Dye 680CW donkey anti-mouse 1/15000 LI-COR 

IR Dye 680CW donkey anti-rabbit 1/15000 LI-COR 

Table 2-4 Secondary antibodies 
Antibodies for immunofluorescence and Western blot. 
 

2.1.6 Equipment 

7500 Fast Real-Time PCR System (Applied Biosystems) 

Odyssey CLx Infrared Imaging System (LI-COR Bioscience) 

Agarose gel caster and tanks (Biorad) 

SDS-PAGE mini-protean system (Biorad) 

Exactive™ Plus Orbitrap Mass Spectrometer (Thermo Scientific) 

CASY cell counter and analyser (Roche Applied Science)    

Tissuelyzer bead-mill (Qiagen) 

Agilent 2100 Bioanalyser 

Qubit 2.0 flourometer (Invitrogen) 

Bioruptor XL UCD-500 or Bioruptor Pico (Diagenode) 

IncuCyte (Essen Bioscience) 

SpectraMax Plus 384 spectrophotometer  (Molecular Devices) 
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2.2 Experimental procedures 

2.2.1 Metabolite extraction from clinical tumour samples  

Clinical samples from brain tumours were obtained from 15 patients at the time 

of surgery at the Haukeland Hospital in Bergen, Norway. Fully labelled 13C-

glucose was administered prior to the start of surgery. Intravenous 

administration took 15 minutes and blood samples were taken during the 

operation (Figure 2-1). The blood samples were divided into 100 µl aliquots in 

1.5 ml eppendorf tubes and stored at -80 ºC. 

 

Figure 2-1 Flow diagram of blood sample collection during tumour removal  
Samples were taken pre-13C glucose injection, just after injection, at time of tumour removal, and 
every 60 minutes commencing 2 hours after injection. 

 

The first 2 patients were given a 10 g 13C6-glucose infusion over 20 minutes; all 

subsequent patients were given 20 g 13C6-glucose. The surgeons stereotactically 

extracted roughly 200 mg tissue from the tumour core, contrast enhancing 

periphery, and non-enhancing oedema, if possible. After extraction, the samples 

were immediately snap-frozen in cryo-tubes. The tissues were further sub-

divided, during one cutting session on ice, to yield fragments of roughly 15 mg, 

which were stored a -80 ºC. The weight of all tissue sub-fragments was 

determined accurately before the metabolite extractions, and metabolite 

extracts were generated from 1 replicate per region if possible. Metabolite 

extraction was done at the NORLUX lab in Luxembourg and samples were 

processed and analysed at the CRUK Beatson Institute, Glasgow. Informed 

consent was obtained from all human subjects prior to the start of the study. 

The administration of heavy isotopes and the collection of the surgical tissue 
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material was approved by the regional ethical committee at Haukeland 

University hospital, Bergen, Norway (REK 2010/130-2). 

2.2.1.1  Extraction intracellular metabolites from brain tissue 

During metabolite extraction the tissue and metabolite extraction buffer was 

kept on dry ice. 250 µL of metabolomics extraction buffer was added per 10 mg 

of tissue after it was placed in a 2 ml Eppendorf tube. The brain tissue was 

homogenised by mechanical disruption in a bead-mill (Retsch MM400 or Qiagen 

Tissuelyzer) using 5 mm beads added to the tissue and metabolite extraction 

buffer. The samples were then shaken for 2 cycles of 2 minutes at a frequency 

of 20 Hz. The samples were then transferred to an Eppendorf thermomixer at 4 

ºC, vortexed at 1,400 rpm and spun down at 16,000 x g at 4 º C for 15 minutes. 

The supernatant was then removed and stored at -80 º C before analysis by liquid 

chromatography mass spectrometry (LC-MS). 

2.2.1.2  Blood metabolite extraction 

The blood samples were placed on dry ice and 300 µl of chilled metabolite 

extraction buffer (-20 °C) was added. As the blood thawed the samples were 

mixed by inverting the tube several times. The 1.5 ml tubes were placed in -20 

°C chilled racks of the tissuelyzer, and homogenised by mechanical disruption in 

a bead-mill (Retsch MM400 or Qiagen Tissuelyzer) without the addition of beads. 

The samples were shaken for 2 x 2 minutes at a frequency of 20 Hz. 

Subsequently the samples were shaken for 12 minutes in an Eppendorf 

thermomixer (1,400 rpm at 4 °C). The clear supernatant was removed after 

centrifugation at 16,000 x g at 4 °C for 15 minutes. The samples were stored at -

80 ºC before analysis by LC-MS. 

2.2.2  Propagation of cell lines 

2.2.2.1  MOG-GCCM 

The MOG-GCCM cell line was propagated in 15 cm plates using high glucose 

DMEM with supplemented 2 mM glutamine and 10% FBS (heat inactivated at 56 

°C for 45 minutes prior to use) in a humidified incubator at 37 °C and 5% CO2. 

Cells were routinely split 1:3 every 3-4 days using 1 x trypsin. 600 µg/ml 
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geneticin was used to supplement the medium for cells transfected with the 

empty vector (EV) or IDH1 mutant plasmids. The EV + 2HG cells were EV cells 

maintained for at least 15 passages in medium containing 30 mM cell permeable 

2HG-lactone [(R)-(-)-5-oxo-2-tetrahydrofurancarboxylic acid] unless otherwise 

stated. 

2.2.2.2  Immortalised normal human astrocytes 

The IDH1 wild-type and IDH1 mutant overexpressed immortalised astrocytes 

were kindly supplied by Sloan Kettering Institute for Cancer Research (SK2012-

113) and were propagated in the same way as MOG-GCCM but with 400 µg/ml of 

geneticin.  

2.2.2.3  NCH astrocytoma cell lines 

Permission to use the NCH astrocytoma cell lines was given by Christel Herold-

Mende, University of Heidelburg, and the cell lines were propagated at the 

NORLUX laboratories in Luxembourg. Five cell lines were used: two IDH1 wild-

type GBM (NCH644, NCH421k) and three high grade endogenous IDH1 mutant 

(NCH1681, NCH551b, NCH612). The IDH1 mutant cell lines were derived from a 

secondary GBM, grade III astrocytoma, and a grade III oligodendroglioma, 

respectively. Metabolite extraction and protein quantification were done at the 

NORLUX laboratories and the samples were run and analysed at the CRUK 

Beatson Institute, Glasgow. These cell lines were grown as spheroids in the 

following medium: 400 ml DMEM, 100 ml BIT100 growth medium, 10 ml Pen-

Strep, 17.5 mM glucose and 4 mM glutamax. 

2.2.3  Freezing and thawing cells 

The same procedure was used to freeze all cell stocks. Cells were detached using 

1 x trypsin and pelleted by centrifuging at 1,000 x g for 5 minutes. The pellet 

was then re-suspended in freezing media (90% FBS, 10% DMSO) to give 

approximately 1x106 cells/ml. 1 ml of the solution was then aliquoted into 

cryovials and placed into a polystyrene container at -80 °C overnight before 

transferring into a liquid nitrogen tank for long term storage. 
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The reviving of cell stocks required thawing of cells in a water bath at 37 °C 

before adding pre-warmed media and centrifuging at 1,000 x g for 5 minutes. 

The pelleting of the cells allowed for the removal of DMSO in the freezing 

media. Re-suspension of the pellet was done in fresh media and cells were 

transferred to a 10 cm plate for initial culturing. 

2.2.4  Transfection of cell lines 

Lipofectamine 2000 was used to transfect GCCM cells with EV and IDH1 mutant 

plasmids to produce stable cell clones. The procedure was as per manufacturer’s 

guidelines. In brief, 5 x 104 MOG-GCCM parental cells were seeded into a 24 well 

plate with 500 µl medium without antibiotics to achieve 95% confluence after 24 

hrs. For each well, 0.8 µg DNA was diluted in 50 µl Opti-MEM without serum. In 

addition, 2 µl Lipofectamine 2000 was diluted in a separate aliquot of 50 µl Opti-

MEM without serum and incubated for 5 minutes at room temperature. Both 

solutions were then mixed together gently and incubated for 20 minutes at room 

temperature to allow for adequate complex formation. This was then added to 

the well and mixed gently by rocking. After 48 hrs, the cells were trypsinised 

and transferred to a 10 cm plate. The medium was changed after 24 hrs and the 

selective agent genetecin (600 µg/ml) was added. After 4 weeks, clones were 

removed using trypsin soaked sterile cloning disks (Sigma Aldrich) and 

propagated separately. 

2.2.5  Cell proliferation assay 

MOG-GCCM cells were seeded in triplicate at a density of 1 x 104 cells per well in 

24 well plates. The next day, one plate was used to count cells at baseline. The 

medium was replaced in the remaining plates with 2.5 ml of standard medium. 

Plates were subsequently counted every 48 hrs for a minimum of 6 days. 

Counting was performed using a CASY cell counter and analyser (Roche Applied 

Science). Cell doubling time was calculated using exponential growth equation 

with least squares fit (Graphpad Prism software). 

2.2.6  Clonogenic assay 

MOG-GCCM cells were plated in triplicate at a density of 200 cells per well in a 6 

well plate. The medium was changed every 5 days and the experiment 
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terminated at 16 days by fixing the cells in 4% paraformaldehyde for 15 minutes. 

The immortalised astrocytes were plated at the same density but the 

experiment terminated after 12 days. 1 ml of 0.05% crystal violet solution was 

then added to the wells for 30 minutes to stain the cellular protein. The plates 

were scanned using Epson perfection 4870 photo scanner. Quantification was 

done by counting colonies using Image J.  

2.2.7 Metabolomics (Cell lines) 

2.2.7.1  Metabolite extraction  

MOG-GCCM: 2 x 105 cells were seeded per well of a 6-well plate, in triplicate. 

After 18 hrs the medium was replaced (1ml), and the metabolites extracted 24 

hrs later, unless stated otherwise. For labelled metabolomics, 12C-glucose or 12C- 

glutamine was replaced in the medium by 13C6-glucose or 13C5-glutamine at the 

same concentration. In the experiments involving 15N-GABA, this was added to 

the standard medium to a concentration of 500 µM. The cells were washed 3 

times with ice cold PBS, and all residual PBS carefully aspirated after the final 

wash. To each well, 500 µl of metabolite extraction buffer (-20 ºC) was added. 

The plates were rocked for 10 minutes and the extraction buffer transferred to a 

1.5 ml Eppendorf tube. After centrifuging at 4 ºC on full speed, the supernatant 

was removed and placed in glass HPLC vials and stored at -80 ºC until analysis by 

LC-MS. The 6-well plates were left to dry and protein was quantified by Lowry 

assay for each individual well. 

To extract metabolites from the medium, the cells were plated as above. An 

extra triplicate of cells was plated at the same time to allow for calculation of 

protein concentration at the start of the experiment. To act as a reference, and 

to incorporate the effects of evaporation on metabolite concentration over 

time, medium was added to an additional 3 wells without cells. After 42 hours, 

20 µl of medium was removed from each well and 980 µl of metabolite 

extraction medium (-20 ºC) added. The cells were shaken at 1400 rpm on a 

thermomixer at 4 ºC for 10 minutes. Subsequently, the samples were spun on a 

centrifuge at full speed at 4 ºC for 10 minutes and the supernatant transferred to 

glass HPLC vials and stored at -80 ºC. Normalisation was achieved using protein 

quantification using Lowry assay. To incorporate the effect of cellular 
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proliferation on metabolite consumption and secretion during the experiment, 

the average of the protein concentration from the end and the beginning of the 

experiment was used. 

Immortalised normal human astrocytes: Metabolite extraction for both 

intracellular and extracellular metabolomics was achieved by the same method 

for the MOG-GCCM cell line with a few alterations. The number of cells seeded 

was 4 x 105 for all experiments and medium was removed after 24 hrs for 

extracellular metabolomics.   

NCH cell lines: The cell lines were seeded in a 6-well plate. After 3 days growth 

in a 6 well plate format the spheroids were pipetted gently from the culture 

wells to 15ml tubes and centrifuged at 600 rpm to accelerate sedimentation. 

After this step, the medium was carefully aspirated (leaving 2-3 mm of medium 

above the pellet) and the spheroids were gently re-suspended in 1ml of medium. 

For labelled metabolomics, 12C-glucose or 12C-glutamine was replaced in the 

medium by 13C6-glucose or 13C5-glutamine at the same concentration. In the 

experiments involving 15N-GABA, this was added to the standard medium to a 

concentration of 500 µM. The cells were then incubated for 24 hrs at 37 °C. 

After this incubation, the spheroids were transferred to 15ml tubes and 

centrifuged at 600 rpm for 3 minutes at 4 °C. The culture supernatant was 

transferred in a fresh tube for exometabolomic analysis, as described for MOG-

GCCM above. The cell pellet was re-suspended in 0.9 ml of 0.9% NaCl solution at 

4 °C. The suspension was transferred into 2 ml tubes and centrifuged at 800 rpm 

for 5 min at 4 °C. The supernatant was carefully removed and 300 µl of 

metabolite extraction buffer added with a bead (5 mm diameter) to the pellet 

for homogenization in a beadmill (1.0 minutes setting 20 Hz). The suspension 

was incubated at 4 °C for 20 minutes on a thermomixer before the removal of 

the metal bead and centrifugation at 13000 rpm for 15 minutes at 4 °C. The 

metabolite extract was transferred to a fresh 1.5 ml tube on dry ice and stored 

at -80 °C until analysis by LC-MS. 

The cell pellet remaining after metabolite extraction was used to quantify the 

protein concentration. 200 µl of cell lysis buffer was added (30 mM Tris-HCl (pH 

8.5), 8 M urea, protease inhibitor and phosphatase inhibitor) and dissociated in a 

beadmill for 1 minutes at 20 Hz. Samples were then incubated on a thermomixer 
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for 20 minutes at 4 °C, metal beads were removed, and samples were 

centrifuged in an Eppendorf benchtop centrifuge at 13,000 rpm for 15 minutes at 

4 °C to obtain a clear protein solution. The protein concentrations of all 

replicates were determined using 2D-Quant kit (GE Healthcare) and used for 

normalization of the metabolite extracts. 

2.2.7.2  LC-MS 

Metabolites were separated by high performance liquid chromatography (HPLC) 

using a Sequant ZIC-pHILIC column (2.1 mm x 150 mm, 5 um polymeric beads, 

guard column Sequant Zic-pHILIC guard peek 2.1 mm x 20 mm, Millipore). The 

aqueous mobile phase solvent was 20 mM ammonium carbonate, adjusted to pH 

9.4 with 0.1% ammonium hydroxide solution (25%), while 100% acetonitrile was 

used in the organic mobile phase. Detection of metabolites was performed using 

mass spectrometry (MS) in a Thermo Scientific Exactive (or Q-Exactive for NCH 

cell lines) high-resolution mass spectrometer with electrospray ionization, 

examining metabolites in both positive and negative ion modes over the mass 

range of 75-1000 m/z. The flow rate used was 200 µl / minute and the column 

temperature was 45 °C. Prior to injection, samples were maintained at 4°C in a 

chilled autosampler. The run time was 22.2 minutes. A previously in-house 

developed compound database, using commercial standards, was used to 

identify the appropriate retention time and mass for the targeted metabolites of 

interest. The peak area of the extracted ion chromatogram at the appropriate 

retention was then determined and subsequently peak areas between different 

samples compared. Data analysis was done using either Thermo Scientific 

TraceFinder or Thermo Scientific LC Quan software. 

2.2.8  SDS-Page and Western Blot 

Protein was obtained from cell lines by lysis with RIPA buffer. In the case of 

MOG-GCCM, 2 x 105 cells were seeded in a 6 well plate, the medium changed 

after 18 hours, and the cells lysed a further 24 hrs later using 100 µl RIPA buffer. 

The same protocol was used for the immortalised astrocytes, except 4 x 105 

were seeded instead. The NCH cell lines were grown as spheroids for 3 days, 

centrifuged at 600 rpm, and the pellets lysed with 50 µl RIPA buffer. Samples 

were subsequently agitated using a thermomixer set at 1400 rpm at 4 °C for 30 
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minutes. This was followed by centrifugation at 12,000 rpm for 20 minutes at 4 

°C. Protein quantification was done by BCA assay and 30 µg of protein was 

separated by SDS-Page. Prior to resolving using SDS-PAGE, 4 x Laemlli loading 

buffer was added to each sample, vortexed, and then heated for 5 minutes at 95 

°C. 

Histone protein extraction was done using the Active Motif histone purification 

mini kit, which utilises a spin column system to specifically remove histones 

from cells. After extraction, histone precipitation was achieved by adding 

perchloric acid to a final concentration of 4% and incubating overnight at 4 °C. 

The following day, the samples were spun at maximum speed in a centrifuge at 4 

°C for 1 hour. Washing of the resultant pellet was done firstly with 4% perchloric 

acid, followed by acetone + 0.2% hydrochloric acid, and finally acetone. Each 

wash was done twice at 4 °C, with a 5 minutes maximum spin in a centrifuge 

after each wash. The pellet was finally air dried for 10-20 minutes and re-

suspended in 50 µl sterile water. Protein quantification was done by BCA assay. 

For SDS-PAGE, 10% or 15% polyacrylamide gels were used depending on the 

protein to be detected. After the gel was poured, a layer of water saturated 

butanol was added to maintain a level surface. After the gel had set, the 

remaining butanol was removed and the stacking gel poured on top. Wells were 

formed by inserting a 10 well gel comb. The comb was removed after setting of 

the stacking gel, and the gel transferred into the gel tank filled with 1 x SDS-

PAGE running buffer. 7 µl of molecular weight marker (Full range rainbow 

molecular weight marker, GE healthcare Life sciences) was added to one of the 

wells alongside the protein samples. Protein separation was achieved by running 

each gel at 180 Volt for 1 hour. 

Upon resolution by SDS-PAGE, proteins were transferred from the gel to a 

nitrocellulose membrane using the Biorad mini-protean apparatus, as per 

manufacturer’s instructions. In brief, the gel and membrane were sandwiched 

between blotting paper and sponge and clamped together tightly. The chamber 

was filled with 1x blotting buffer and a container of ice to keep the apparatus 

cool during blotting. Transfer was performed at 100 V for 1 hour. The 

membrane was incubated briefly in ponceau solution to determine if the 

transfer was successful, followed by incubation in blocking buffer for 1 hour. 
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The membrane was incubated with primary antibody diluted in blocking buffer 

overnight at 4 °C. The following day, the membrane was washed three times in 

TBST and then the appropriate Licor fluorescent secondary antibody in blocking 

buffer was added and membranes were incubated for 1 hour at room 

temperature. The membrane was then washed again three times in TBST and 

proteins were visualised using Odyssey CLx Infrared Imaging System. 

Quantification of the bands was done using Image Studio v2.0 (LI-COR 

Bioscience). 

 

2.2.9  Histone methylation screen 

To screen for changes in histone methylation, a protocol was devised using the 

Operetta high throughput microscopy system. 7 x 104 cells were plated per well, 

in the central 60 wells, in a 96 well plate. One clone, or the MOG-GCCM parental 

cell line, was used per 96 well plate., The medium was replaced (200 µl) 18 hrs 

after seeding and half the wells incubated with 2 mM Dimethyloxaloylglycine 

(DMOG), an inhibitor of JMJ demethylases to act as a positive control. After 24 

hours incubation the cells were washed once in PBS. The cells were fixed by 

adding 50 µl 4% paraformaldehyde to each well using a multi-dispenser pipette. 

After 15 minutes at room temperature the cells were washed in PBS 3 times (5 

minutes per wash on a gyro-rocker). The cells were blocked and lysed by adding 

50 µl of 5% BSA in PBS with 0.2% Triton X-100 for 5 minutes. After the cells were 

washed with PBS, 2 additional washes were done with PBST. Primary antibody 

was then added to each well after dilution in PBST (200 µl of 1:500 – 1:1000). 

The plate was left over night at 4 °C on a gyro-rocker in a box layered with wet 

tissue to prevent evaporation.  

The next morning the cells were washed 3 times in PBST. The secondary 

antibody (1:1000) and DAPI (1:2000) were diluted in PBST + 5% BSA, and 200 µl 

added to each well. After 1 hour the cell were washed a further 3 times in PBST 

with 200 µl PBST pipetted into each well after the final wash. The plates were 

then imaged on the Operetta system.  

The primary antibodies used were as follows: H3K4me0/1/2/3, 

H3K27me0/1/2/3/ac, H3K9me0/1/2/3/ac, H3K36me1/2/3, H3K36me1/2/3, 

H4K20me1/2/3/ac and H3K14ac. In addition, for each well a total H3 or H4 
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antibody derived from a different species was used as an internal control. 2 

different fluorescent secondary antibodies were used (488 and 555 nM) to allow 

for differentiation between histone methylation and total H3/4 sites. DAPI 

fluoresces at a third wavelength and was used to identify individual cells. The 

average fluorescence per cell per well was calculated, and the value for each 

histone methylation site was divided by the total H3 or H4 measurement as 

appropriate. The data was then normalised to the EV clone. An example 96 well 

plate is shown in Figure 2-2. 

 

Figure 2-2 Plating method for high throughput microscopy screening using the Operetta 
Cells were plated on a 96 well plate in triplicate for each methylation group of interest plus/minus 
DMOG, which acted as a positive control. To act as a negative control, an addition set of wells 
were used where only secondary antibody was added. Total H3 or H4 antibody was added to each 
well to act as an internal control. DAPI was used to identify the nucleus for fluorescence detection 
and cell counting. DMOG: Dimethyloxaloylglycine, EV: MOG-GCCM empty vector cells. 
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2.2.10 Immunohistochemistry  

Paraffin fixed tumour samples were kindly provided by the Haukeland Hospital in 

Bergen, Norway. Firstly, paraffin was removed from the slides by submerging in 

2 x 5 minutes in xylene, followed by 2 x 1 minutes in 100% ethanol, and finally 1 

minute in 70% ethanol. The slides were subsequently washed in running tap 

water for 5 minutes. Antigen retrieval was done using a microwave method. 600 

ml of water was placed in a pressure cooker, and 300 ml of antigen retrieval 

buffer into a slide holder. The pressure cooker, including the holder, was placed 

into a microwave with the lid loose and a weight placed on top. After 15 minutes 

on full power, ensuring the water was boiling, the slides were added and the lid 

locked. The microwave was placed on full power again for 2 minutes ensuring 

the pressure cooker valve was releasing steam. A further 9 minutes of heating at 

full power was done before the cooker was placed in a sink of cool water. The 

slides were then removed from the cooker and left to cool for 20 minutes. The 

slides were then washed for 2 x 5 minutes in TBST (all subsequent washes were 

for 5 minutes), and an area drawn around the tissue sections with a liquid 

repellent slide marker pen. Reagents and secondary antibodies from the Dako 

Envision + system-HRP (DAB) kit were used to stain the slides. This involved 

blocking endogenous peroxidase with hydrogen peroxide for 5 minutes, followed 

by 3 washes in TBST. The slides were then blocked using 5% BSA in TBST for 30 

minutes, and washed twice in TBST. Primary antibody was added and incubated 

overnight at 4 °C. The next day, after 3 washes in TBST, the appropriate 

EnVision secondary antibody was added for 30 minutes. After 3 further washes, 

DAB was added for 5 minutes, and the slides placed in deionised water to wash. 

Counter-staining, dehydration, and mounting of slides by cover slips were done 

by the Beaston Histology services. Images were obtained using an Olympus BX51 

microscope. The collection of human biopsy material was approved by the 

regional ethical committee at Haukeland University hospital, Bergen, Norway 

(REK 013.09).  

To quantify the staining for H3K4me2/3 and GABRB3, the slides were scanned 

and analysed using SlidePath Tissue Image Analysis 2.0 (Leica microsystems). To 

generate a histoscore the stained cells algorithm was used for H3K4me2/3 and 

the stained area algorithm was used for the GABA-A receptor β3 subunit.   
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2.2.11 Chromatin immunoprecipitation (ChIP) 

Chromatin pulled down by immunoprecipitation was used for ChiP Sequencing 

and ChIP-qPCR based on the procedure described by Schmidt and colleagues 

summarized below [274].  

2.2.11.1 Cross Linking Cells 

MOG-GCCM cells were plated at 1.5 x 106 cells in a 15 cm plate, for a total of 5 

plates per experimental group. An additional plate was used to calculate cell 

number, so cells could be divided into pellets of 10 million cells. 5 million cells 

were used for each pull down. The medium was changed the next day, and the 

cells cross-linked 48 hours later. Cross-linkage was achieved by initially pouring 

off the medium from each plate and replacing it with a solution of 15 ml serum-

free DMEM + 1ml 16% formaldehyde pre-warmed to room temperature. The 

plates were swirled briefly and left at room temperature for 9.5 minutes. The 

formaldehyde was quenched by adding 600 µl of 2.5 M glycine and mixed for 3 

minutes on a gyro-rocker. Cells were rinsed twice with ice-cold PBS, then 

scraped using a cell scraper in 8 ml ice-cold PBS and transferred to a 50 ml 

Falcon tube. This was then centrifuged at 4 ˚C for 4 minutes at 1300 rpm. The 

supernatant was then removed, and the pellet transferred to a 2 ml tube by 

gently pipetting with 1ml of ice-cold PBS. Further centrifugation was done at 4 

˚C for 3 minutes at 8,000 rpm and the supernatant was removed again. The 

pellets were subsequently snap frozen in liquid nitrogen and stored at -80 ˚C.  

2.2.11.2 Bead Preparation 

100 µl of magnetic Dynabeads was used for each ChIP pull down. The beads were 

washed using 1 ml of blocking solution and collected using a magnetic stand. The 

supernatant was removed and the wash repeated two more times. 3 µg of 

antibody was added to each aliquot of magnetic beads in a final volume of 250 

ml blocking solution. Two antibodies were used: H3K4me2, H3K4me3 (both IgG, 

anti-mouse) To act as a control, beads with no antibody were used in ChiP Seq, 

while an mouse IgG anti-haemaglutinin antibody was used for ChIP-qPCR. The 

solution was incubated overnight on a rotating platform at 4 °C.  The next 

morning, the magnetic beads were briefly spun down in a centrifuge and washed 

as described above to remove unbound antibody (3 times in 1 ml block solution). 
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Each antibody was pulled into one tube, re-suspended in buffer LB3 allowing 150 

µl to be aliquoted for each pull down.  

2.2.11.3 Sonication 

Each cell pellet was re-suspended in 1 ml of buffer LB1 in a 1.5 ml Eppendorf 

LoBind tube and kept on ice for 10 minutes. The solution was then spun at 2,000 

g for 5 minutes at 4 ˚C. The supernatant was removed and the pellet re-

suspended in 1 ml of buffer LB2, and kept on ice for a further 5 minutes. 

Centrifugation was repeated again at 2,000 g for 5 minutes at 4 ˚C. The 

supernatant was again removed and 300 µl buffer LB3 added, the pellet re-

suspended and transferred to a polystyrene sonication 1.5 ml tube. The cells 

were then sonicated on Bioruptor Pico for 4 cycles of 30 sec on and 90 sec off. 

Cells used for ChIP-qPCR were sonicated using a Bioruptor XL UCD-500 for 24 min 

of 30 sec on 30 sec off. 5 µl of the whole cell extract was retained to ensure 

adequate sonication for each sample. The whole cell extract was centrifuged on 

the maximum setting for 10 minutes at 4 ˚C. The supernatant was mixed with 15 

µl of Elution buffer and the crosslinks reversed by incubating at 65 °C overnight. 

The samples were then cooled down to room temperature before adding 20 μl of 

1x TE plus 0.8 μl of 1 mg/ml RNaseA and incubating at 37 °C for 30 minutes. 

Proteinase K was then added (0.8 µl of 10 mg/ml) and the samples further 

incubated at 55 °C for 2 hours. Purification and concentration of the samples 

was achieved using the MinElute PCR purification kit so each sample was eluted 

into 10 µl of elution buffer. DNA fragmentation was visualised by running on 1.5% 

agarose gel for 30 minutes at 100V and stain with Sybr safe at 1:10,000 for 30 

minutes. Adequate sonication was determined by identifying a smear limited to 

between 100 and 600 bp with a substantially reduced 2 kbp band. 

2.2.11.4 Chromatin immunoprecipitation 

The sonicated whole cell lysates were centrifuged at full speed for 10 minutes at 

4 ˚C. 10% Triton-100 was added to the supernatant to achieve a final 

concentration of 1%. 5% of the whole cell extract was retained for Input and 

stored at -20 ˚C. The supernatant (LB3) was removed from the beads using a 

magnetic stand and re-suspended with the whole cell extract and rotated 

overnight at 4 ˚C. The beads are then briefly spun for a second and placed on a 
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magnetic stand on ice, discarding the supernatant. 1 ml of RIPA Buffer was 

added to each tube and agitated gently for 3 minutes to re-suspend the beads. 

The tubes are replaced in the magnetic stand and the supernatant removed. This 

process is repeated for a total of 6 times. The samples were then washed once 

with 1 ml 1 x cold TBS and the supernatant removed. The tubes are spun at 960 

g for 3 minutes at 4 °C and any residual TBS buffer removed using a magnetic 

stand. 200 μl of Elution buffer was then added to each sample. The input whole 

cell extract is then thawed and elution buffer was added to a total volume of 

200 µl. Reverse crosslinking was achieved by incubating in a water bath at 65 °C 

overnight for both immunoprecipitate and input. The beads are re-suspended in 

the first 15 minutes with brief vortexing every five minutes. Each ChIP sample 

and input was vortexed and spun at 16,000 g for 1 minute. 180 μl of supernatant 

was added to a DNA LoBind tube containing 200 μl of 1x TE + 8 μl of 1 mg/ml 

RNaseA, mixed and incubated at 37 °C for 30 minutes. 8 µl of 20 mg/ml 

proteinase K was added to the samples and incubated in a water bath at 55 °C 

for 1-2 hours. After cooling down to room temperature, small column 

purification was done using the MinElute PCR purification Kit. Each sample is 

eluted using 60 µl. Input samples were diluted 1/5 to make a total dilution of 

1:100. 

2.2.11.5 ChIP Sequencing 

ChIP Sequencing was kindly performed at the CRUK Institute, Cambridge. DNA 

was quantified using Qubit HS and library preparation was done by using 

NEBNext Ultra DNA Library Prep Kit for Illumina (E7370), and run on an Illumina 

sequencer.  

Analysis of the ChIP Sequencing data was done by Rafik Salama at CRUK 

Institute, Cambridge. For ChIP quantitative analysis, signal regions were first 

identified using both MACS and TPIC peak callers. 1 million random 2 Kb regions 

were then identified from the ENCODE Dnase II cluster to represent a sample 

from the background regions. The background signal was normalised using 

RPKM relying on the total count in the background regions.  

The counts in the signal along with the background were used to quantile 

normalise all the samples to a similar overall distribution. The last step was to 

normalise the background signal which is hypothesised to be of same mean 
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and variance. In doing so, the actual ChIP signal was also normalised. 

The mean signal across the 3 replicates was used to denote the 

expected signal of the peak in every condition. The log ratio was then 

calculated from those means. 

2.2.11.6 ChiP-qPCR 

GABRB3 Forward  5'-CCCAGTGTGAACGATCC-3' 
 

Eurofins Operon MG 

GABRB3 Reverse  5'-GTCTTAGGCGAATGTCGTAG-3' 
 

Eurofins Operon MG 

HK3 Forward 5'-CATCTAGGCCTACAACATCGAC-3' 

 

Eurofins Operon MG 

HK3 Reverse 5'-CATGGCTCACCTACAACTAGC-3' 

 

Eurofins Operon MG 

PGAM2 Forward 5'-TCACATAGTGTCTGCTGTGTAAA-3' 

 

Eurofins Operon MG 

PGAM2 Reverse 5'-GCAGGTTCAGCTCCATGAT-3' 

 

Eurofins Operon MG 

Table 2-5 DNA primer sequences for ChIP-qPCR 

To validate ChIP Sequencing, ChIP qPCR was done for the gene of interest, 

GABRB3, and as a negative control 2 genes were used that showed no increase in 

H3K4me3 at the transcription start site (HK3, PGAM2). Primer sequences were 

derived from the first 1 kb of the gene sequence (Table 3). A standard curve was 

done to ensure efficiency between 90 – 110%. For qPCR analyses, 0.5 μM primers, 

1 X Fast SYBR Green Master mix (AB, Life Technologies Corporation Carlsbad, 

California) and 3 μL of 1% input/ChIP extract were used. Real-time PCR was 

performed on the 7500 Fast Real-Time PCR System (Life Technologies 

Corporation Carlsbad, California) and the programme used was as follows: 20 

seconds at 95 °C followed by 40 cycles of 3 seconds at 95 °C and 30 seconds at 

60 °C. Finally the melting curve was performed to confirm the presence of single 

PCR products. Expression levels were calculated by the percentage input 

method. With this method, signals obtained from the ChIP are divided by signals 

obtained from an input sample. This input sample represents the amount of 

chromatin used in the ChIP. The input was adjusted to 100% by subtracting 6.644 

(log2 of 100) from the Ct value of the diluted input. The percentage input was 

then calculated using the following formula: 

100 ∗ 2^[𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖𝑖 − 𝐶𝐶(𝐼𝐼)] 
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2.2.12 Total mRNA isolation and qPCR 

Actin Forward 5'-TCCATCATGAAGTGTGACGT-3' Eurofins Operon MG 

Actin Reverse 5'-TACTCCTGCTTGCTGATCCAC-3' Eurofins Operon MG 

GABRB3 Forward 5'-CTGCGCCCAGAGTGTGAAC-3' Eurofins Operon MG 

GABRB3 Reverse 5'-GGGTCTTAGGCGAATGTCGT-3' Eurofins Operon MG 

Table 2-6 Primers used for qPCR 
 

mRNA was extracted for microarray analysis, RNA sequencing, and qPCR. 4 x 105 

MOG-GCCM cells were plated in a 3 cm plate and lysed in RLT buffer (Qiagen, 

West Sussex, UK) 24 hrs after seeding. Lysates were passed through QiaShredder 

columns (Qiagen, West Sussex, UK) and mRNA was isolated using the RNAeasy kit 

(Qiagen, West Sussex, UK). For microarray analysis, the samples were sent to the 

Patterson Institute for Cancer Research, and data analysis done by Gabriela 

Kalna at the CRUK Beatson Institute, Glasgow using R software. 

For RNA sequencing, rRNA was depleted from the samples by using the Ribo-Zero 

magnetic kit (Epicentre). Quality control both before and after rRNA depletion 

was done using the Agilent RNA 6000 Nano kit and Agilent 2100 Bioanalyser. 

Quantification was achieved using the Qubit RNA HS assay kit and the Qubit 2.0 

flourometer. The samples were run on the Illumina Next Gen Sequencer and 

analysis was done by Rafik Salama at the CRUK Institute, Cambridge. The 

RNASeq data was processed using 2 R packages, DESeq2 and EdgeR. The 

data was normalised by the two packages and then differential genes 

significance was calculated. The calculated p-values from the two packages 

were then combined using Fisher method and adjusted using FDR. 

For qPCR analyses 100 ng of mRNA was retro-transcribed into cDNA using 

SuperScript® VILO™ Master Mix as per manufacturer’s guidelines. A negative 

control was used with no RNA added. The samples were incubated for 10 

minutes at 25 °C, 60 minutes at 42 °C, and 85 °C for 5 minutes.  The qPCR 

reaction consisted of 0.5 μM primers, 1X Fast SYBR Green Master mix (AB, Life 

Technologies Corporation Carlsbad, California) and 1 μL of cDNA in a final 

volume of 20 µL. Real-time PCR was performed on the 7500 Fast Real-Time PCR 
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System (Life Technologies Corporation Carlsbad, California) and expression 

levels of the indicated genes were calculated using the ΔΔCt method, using actin 

as the internal control. The PCR program used was 20 seconds at 95 °C, followed 

by 40 cycles of 3 seconds at 95 °C and 30 seconds at 60 °C. After the reaction 

was completed, a melt curve was performed to confirm the presence of single 

PCR products. A standard curve was done to ensure reaction efficiency of 90-

110%. Analysis was done using 7500 software v2.0.5.  

2.2.13 Scratch Assay 

Cell migration was measured using a scratch assay on the IncuCyte imaging 

system (Essen Bioscience). 1 x 104 cells were seeded in a 96 well Essen Image 

lock plate. After 18 hours, medium was spiked with 0.5 mM GABA, 0.1 mM 

Bicuculline, or a combination of these compounds, as required. After 24 hours a 

scratch was produced using the 96 well Woundmaker (Essen Bioscience). The 

plate was then loaded into the IncuCyte, where it was kept at 37 °C and 5% CO2. 

Images were taken of each well every 2 hours over 24 hours. Cell migration was 

measured by changes in wound confluence using the Incucyte software.   

2.2.14 BCA protein assay 

Protein concentration was determined in cell lysates using a BCA protein assay. 

This was performed as per manufacturer’s instructions, with BSA standards used 

to generate a standard curve. Absorbance was measured for all samples and 

standards at 562 nm using the Molecular Devices SpectraMax Plus 384 

spectrophotometer and SoftmaxPro software. 

 

2.2.15 Lowry Assay 

Protein quantification in cell lines was determined after metabolite extraction 

using a Lowry assay. A series of protein standards, consisting of a known 

concentration of protein in a 6 well plate, were used to produce a standard 

curve. After metabolite extraction, the experimental plates were allowed to 

dry. 500 µl of solution A (1 part Sodium Docusate, 2 parts 5 M NaOH and 7 parts 

water) was added to each well and agitated for 1 hour. 5 ml of solution B (0.5 g 

ethylenediaminetetraacetic acid copper disodium salt, 40 g NaCO3, 8g NaOH in 2 

L of distilled water) was then added for 10 minutes. Finally 500 µl Folin and 
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Ciocalteu’s phenol reagent was added and the solution agitated for a further 1 

hour. Protein quantification was determined using a Perkin Elmer Lambda 25 

UV/VIS spectrometer at 750 nm and Perkin Elmer UV Winlab software. 

2.2.16 Statistical analysis and data processing 

For general statistical analyses, data were analysed and presented with 

Graphpad Prism 5.01 software (GraphPad Software Inc, CA, USA). The data 

(mean ± s.e.m.) are representative of 3 independent experiments, performed in 

technical triplicates, unless stated otherwise. Statistical significance was 

determined using 2-way ANOVA or student’s t-test.  
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Chapter 3 The metabolic effect of the IDH1 
mutation in glioma 

3.1 Introduction 

Brain tumours consist of a variety of histopathological diagnoses, of which 

glioma is the commonest. They are subdivided using the WHO classification into 

grades I to IV, with higher grades associated with more aggressive disease and 

poorer prognosis. The most common glioma in adults is GBM, a WHO grade IV 

tumour. GBM can be divided into two classes: primary GBM develops de novo, 

whereas secondary GBM arises as a result of transformation of a lower grade 

tumour. Currently, treatments for GBM are limited to combinations of surgery, 

chemotherapy and radiotherapy, with a median survival of 15 months [275]. 

Point mutations in the IDH1 and IDH2 genes have recently been identified in 

gliomas using genomic mutational screening. Over 90% of these mutations 

occurred in the IDH1 gene at R132. The rest occurred at R172 or R140 in the 

IDH2 gene [94, 95]. Up to 90% of WHO grade II, III and secondary GBM has the 

IDH1/2 mutation. This is in contrast to primary GBM which is 95% IDH wild-type 

[95].  

IDH enzymes form an important part of the TCA cycle. The TCA cycle provides 

energy through ATP production by oxidative phosphorylation, contributes to lipid 

metabolism through citrate synthesis and to protein synthesis through amino 

acid production. The IDH enzyme exists as 3 isoforms (IDH1/2/3), with IDH1 

present in the cytoplasm and IDH2/3 in the mitochondria. IDH1/2 catalyses the 

oxidative decarboxylation of isocitrate to produce α-ketoglutarate (α-KG) with 

the concurrent reduction of NAD(P)+ to NAD(P)H. IDH3 is structurally different 

from the other two isoforms and utilises NAD+ to produce α-KG and NADH. 

Interestingly, the IDH mutant enzyme does not possess the catalytic function of 

the wild type enzyme but rather uses α-KG to produce D-2-hydroxyglutate (2HG) 

[147]. 2HG has been implicated in tumourigenesis due to its structural similarity 

to α-KG. It can act as a competitive inhibitor of a superfamily of enzymes that 

rely on α-KG as a substrate, the α-KG dependent dioxygenases. These are 

important in a range of cellular processes, including epigenetic modification of 

DNA and histones, oxygen sensing and collagen formation [172].   
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The aim of the project was to identify whether the more commonly occurring 

IDH1 mutation, through the production of 2HG, is associated with changes in 

cellular metabolism.  

3.2 Results 

3.2.1 Identifying metabolic changes in clinical glioma samples 

To investigate the effects of the IDH1 mutation on cellular metabolism in vivo, 

human samples were obtained post-operatively from patients with brain 

tumours. This was kindly undertaken by Mr Morten Lund-Johansen at Haukeland 

University Hospital in Norway. Initially fifteen patients were recruited to the 

study; thirteen patients had primary brain tumours and two had brain metastasis 

from a lung primary. Six of the primary brain tumours were IDH1 mutant and 

consisted of one GBM, one anaplastic astrocytoma, two anaplastic 

oligoastrocytomas, and two diffuse astrocytomas. The remaining seven primary 

brain tumours were IDH1 wild-type. All were GBM with the exception of a single 

gliosarcoma, which is rare sub-type of GBM (Table 3-1).  

Pre-operative MRI imaging was used to aid stereotactic removal of tissue from 

the tumour core and periphery, as well as from the oedematous surrounding 

region. To investigate the metabolism of glucose within the tumour, 10-20g 13C6 

labelled glucose was given to the patient as a short 10-20 min infusion prior to 

the operation (Table 3-1). Additionally, blood samples were taken at regular 

intervals.   
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Patient Diagnosis IDH1 

mutant 
Gene Amplification 13C 

glucose 
1 Lung metastasis negative  10g 
2 GBM negative  10g 
3 GBM negative MYCN/PDGFRA/EGFR/MET 20g 
4 GBM negative PDGFRA/EGFR 20g 
5 Anaplastic 

oligoastrocytoma 
positive  20g 

6 GBM positive PDGFRA 20g 
7 GBM negative  20g 
8 GBM negative EGFR 20g 
9 Lung metastasis negative  20g 
10 gliosarcoma negative  20g 
11 Anaplastic 

astrocytoma 
positive CDK4 20g 

12 GBM negative  20g 
13 Anaplastic 

oligoastrocytoma 
positive  20g 

14 Diffuse 
astrocytoma 

positive MYCN 
 

20g 

15 Diffuse 
astrocytoma 

positive  20g 

 

Table 3-1 Tumour sample data 
Pathological diagnosis, IDH1 mutation status, gene amplification, and dose of 13C6 glucose given to 
patients recruited to the clinical glioma 13C glucose tracing study. 

 

3.2.1.1  Analysis of tumour samples showed metabolic differences 
compared to surrounding oedematous tissue 

Metabolites from the tumour core, periphery and oedematous tissue were 

analysed using LC-MS, after normalising to sample weight. Fifty-six specific 

metabolites were targeted from a database of metabolites verified at our 

metabolomics unit using known standards. The peaks were identified and 

checked using LCQuan software. For initial analysis, the isotopologues for each 

metabolite were summated to give a total peak area representative of the 

metabolic steady state levels in the tumours. These were then log2 transformed 

to improve normalisation of the data.  

Principle component analysis was done to identify variation within the metabolic 

data. It showed clustering of the oedematous samples from the rest of the 

tumour samples. However, there was no evidence of clustering between the 

periphery and core (Figure 3-1A). When analysing only the periphery and core 

samples from the primary brain tumours there was evidence of clustering of IDH1 
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wild-type from IDH1 mutant samples (Figure 3-1B). To determine the 

composition of the oedematous tissue it was examined microscopically by a 

pathologist. Only two samples had tumour tissue present, one was 90% normal 

brain tissue, the other 65% normal brain tissue (data not shown). The other 

samples consisted of normal brain tissue only.  

 
Figure 3-1 Principle component analysis of human brain tumour samples 
A. Core, periphery and oedematous samples from lung metastasis and primary brain tumours, 
either IDH1 wild-type or IDH1 mutant. B. Core and periphery samples only from IDH1 wild-type and 
IDH1 mutant primary brain tumours. Symbols represent as follows: Triangles the core tumour 
samples, squares the periphery tumour samples and circles the samples from the surrounding 
oedema. Black depicts the lung cancer brain metastasis, red the IDH1 mutant samples, blue the 
IDH1 wild-type samples.  
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To investigate which metabolites were contributing to the differences seen in 

the principle component analysis, hierarchical clustering of the metabolic data 

was performed using Pearson correlation. Again, the majority of the oedematous 

brain tissue samples clustered together but not the core and periphery tumour 

samples. Differences were evident between the tumour and the oedematous 

normal brain, with tumour having increased levels of amino acids but lower 

levels of neurotransmitters, such as GABA, NAA, NAAG, and glutamate (Figure 

3-2A). 

When comparing the fold difference in metabolites between core and peripheral 

tumour samples, no significant differences were found between any of the 

metabolites analysed (data not shown). Therefore, core and peripheral samples 

were combined for each tumour and analysed together. Primary tumour samples 

were also divided into IDH1 wild-type and IDH1 mutant. For the purposes of this 

thesis the two brain metastasis were excluded from the subsequent analysis. In 

addition the gliosarcoma, a very rare form of glioma, was removed as it contains 

sarcomatous elements. As such, it behaves very differently from other gliomas 

by metastasising to other sites in the body [276]. This left six IDH1 wild-type and 

six IDH1 mutant patient samples.  

Initially, IDH1 wild-type and IDH1 mutant samples were compared to the 

surrounding normal brain tissue. When comparing IDH1 wild-type tumours to 

normal brain, metabolic changes indicative of the need for tumours to increase 

their energy production and biomass for growth were observed. There was an 

increase in the level of essential amino acids histidine, leucine, isoleucine, 

lysine, valine and phenylanine, as well as the non-essential amino acids, 

asparagine, glycine, and proline. Glucose levels were increased, as well as α-KG, 

which is a TCA metabolite. There was also a marked increase in ornithine, which 

is generated in the urea cycle, allowing removal of excess nitrogen. Conversely, 

there was a reduction in neurotransmitters such as GABA, NAA and NAAG, and 

the amino acids from which they are synthesized, glutamate and aspartate 

(Figure 3-2B). 

IDH1 mutant tumours showed similar levels of metabolites as IDH1 wild-type 

tumours when compared to normal brain. The major exception, as expected, 

was the large increase in the metabolite 2HG, which is produced by the mutant 



86 
 
IDH1 enzyme. However, there was also an increase in the essential amino acid 

threonine as well as the non-essential amino-acids serine, glutamine and 

arginine. In addition, there was also a reduction in glutamate, and the glycolytic 

metabolites pyruvate and lactate (Figure 3-2C).   
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Figure 3-2 Metabolic differences between tumour core, periphery and oedema 
A. Heat map depicting hierarchical clustering of targeted metabolites using Pearson correlation. C 
represents tumour core, P represents tumour periphery and E represents surrounding oedema. B. 
Table depicting metabolites with at least 0.5 log2 fold change of metabolites between IDH1 wild-
type and oedematous brain. C. Table depicting metabolites with at least 0.5 log2 fold change of 
metabolites between IDH1 mutant and oedematous brain. Statistical analyses were performed 
using R statistical software.  
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3.2.1.2  IDH1 mutation is associated with changes in the TCA cycle 
and glutamate derived metabolites 

To identify any metabolic differences caused by the IDH1 mutation in gliomas, 

the samples of wild-type and mutant tumours were compared. Figure 3-3 depicts 

the steady state metabolites which have a fold change of at least log2 0.5. As 

expected the IDH1 tumours displayed higher levels of 2HG. In addition α-KG, 

which is converted to 2HG by the IDH1 mutant enzyme, was reduced in mutant 

tumours, but not other TCA metabolites. Glutamate was also reduced. 

Glutamate can be produced from α-KG by glutamate dehydrogenase, through 

transamination reactions, as well as from glutamine by glutaminase. Metabolites 

derived from glutamate were also altered. Ornithine and reduced glutathione 

(GSSG) were decreased. This was in contrast to GABA, the major inhibitory 

neurotransmitter in the brain, which was increased. Other neurotransmitters 

that were increased included N-acetyl-aspartate (NAA) and NAAG, though this 

was not significant (Figure 3-3, Figure 3-4, Figure 3-5) 

Changes were also evident in other metabolic pathways. In glycolysis, the IDH1 

mutation was associated with a decrease in steady state levels of pyruvate. In 

addition, a reduction was seen in the level of aspartate, which is derived from 

oxaloacetate, a TCA metabolite. Asparagine, a derivative of aspartate, was also 

reduced. Other metabolites that were increased included cystathionine, a 

precursor to cysteine that is generated from methionine and serine, and 

succinyladenosine, an intermediate in purine synthesis (Figure 3-3, Figure 3-4, 

Figure 3-5).   
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Figure 3-3 Metabolic differences between IDH1 mutant and IDH1 wild-type tumours  
A. Heat map depicting metabolites with a log2 fold change of greater or equal to 0.5 or -0.5 in IDH1 
mutant compared to IDH1 wild-type tumours. B. Table representing the same data with log2 fold 
change and associated p-values and adjusted p-values. Statistical analyses were performed using 
R statistical software. 
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Figure 3-4 Change in steady state metabolites derived from glycolysis and the TCA cycle 
between IDH1 mutant and IDH1 wild-type tumours 
Each point represents an average of core and peripheral tumour samples for one patient. Depicts 
mean +/- SD. * depicts a p value ≤ 0.05.  Statistical analyses were performed using Student’s t-
test. 
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Figure 3-5 Change in steady state metabolites derived from glutamate metabolism between 
IDH1 mutant and IDH1 wild-type tumours 
Each point represents an average of core and peripheral tumour samples for one patient. Depicts 
mean and SD. * depicts a p value ≤ 0.05.  Statistical analyses were performed using Student’s t-
test. 
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3.2.2 Identifying changes in metabolic flux in IDH1 mutated 
glioma 

Prior to tumour resection 13C6-glucose was administered intravenously to each 

patient. Analysis of carbon labelling patterns in the tumour samples gave an 

indication of metabolic flux through different pathways using glucose-derived 

carbon. Blood samples were also taken at regular intervals to determine the 

pharmacokinetics of the 13C6-glucose during the operation.  

3.2.2.1  Serum sample analysis showed variation in 13C6-glucose 
between patients at time of tumour extraction 

Serum blood samples taken from each patient were analysed using LC-MS. Four 

of the patients, unfortunately, did not have blood samples taken at the time of 

tumour extraction. In the patients with serum samples available, there was a 

rapid increase in labelled glucose in the serum after infusion, which gradually 

decreased over time. Unlabelled serum glucose levels fell after 13C6-glucose 

infusion, and gradually increased over time back to pre-infusion levels as the 
13C6-glucose was metabolised (Figure 3-6A). At the time of extraction, 13C6- 

glucose levels were still maintained to at least 35 % of total glucose measured, 

but in some patients were over 55% (Figure 3-6C). This may be related to the 

variability in time to tumour resection after 13C6-glucose infusion, which ranged 

from 15 to 90 minutes (Figure 3-6B). 13C3- lactate levels, giving an indication of 

the systemic metabolism of the infused 13C6-glucose, did not rise to above 20% of 

the total (Figure 3-6E). In addition, glucose can be metabolised to glutamine in 

other organs such as the liver, which can act as an alternative source of carbon 

for the TCA cycle in the brain. 13C5-glutamine did not exceed 4% of the total 

glutamine level in the serum, indicating that glucose was the only major source 

of 13C labelling of metabolites in the tumour (Figure 3-6D). Analysis of the 

tumour samples showed a large increase in 2HG in the IDH1 mutant tumours 

(Figure 3-4). However, the serum samples from IDH1 mutant and IDH1 wild-type 

tumours did not show any difference in 2HG levels (Figure 3-6F). 
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Figure 3-6 Analysis of metabolites from serum samples taken during surgery 
A. Pharmacokinetics of 13C6-glucose taken from 2 patients, in comparison to endogenous 12C-
glucose. Patient 3 is representative of an average surgical resection time. Patient 4 is 
representative of a long surgical resection time. Arrow depicts time of tumour extraction. B. Depicts 
time taken from completion of 13C6-glucose infusion to surgical resection. C, D, E. Depicts the % 
contribution of 13C labelled glucose, glutamine and lactate to total serum concentration at time of 
tumour extraction. Patients 1,2,5 and 9 did not have blood samples available from this time point. F 
Depicts the serum 2HG levels in patients with a primary brain tumour which is either IDH1 mutant 
or IDH1 wild-type.   
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3.2.2.2  IDH1 mutation may increase metabolic flux from glutamate 
to GABA as well as α-KG to 2HG 

To identify changes in metabolic flux through different pathways utilizing 

glucose carbons, isotopologues generated from 13C6-glucose were analysed in the 

tumour samples. As done previously, core and peripheral samples were averaged 

for each patient. 

There was marked variability in the serum concentrations of 13C6-glucose in the 

patients at the time of tumour extraction (Figure 3-6C). To reduce the effect of 

this variability, each metabolite of interest was normalized to fully labelled 

hexose-6-phophate (H6P). H6P is produced in the first step of glycolysis and 

forms a more consistent peak than glucose on LC-MS. It thus acts as a surrogate 

for glucose.  

In the glycolytic pathway, there was a reduction in the ratio of fully 13C6-labelled 

glyceraldehyde-6-phosphate from fully 13C6-labelled H6P in the IDH1 mutant 

compared to the IDH1 wild-type tumours. This was also a reduction in alanine 

and lactate though the latter was not significant. There was a greater reduction 

in the ratio of 13C2 labelled α-KG to fully labelled H6P in the IDH1 mutant 

tumours. In fact, the level of α-KG M+2 was undetectable in all the IDH1 mutant 

tumour samples. In contrast, the ratio of the downstream TCA metabolite 

malate M+2 to fully labelled H6P was unchanged between the IDH1 mutant and 

wild-type tumours. Interestingly, only 2 of the IDH1 mutant tumour samples 

showed an increase in ratio of 2HG+2 to fully labelled H6P compared to the IDH1 

wild-type tumours. The other four tumours, like α-KG, had undetectable levels 

of 2HG+2. This implies an increase in flux from α-KG to 2HG in at least two of 

the IDH1 mutant tumours. The ratio of labelled glutamate to labelled H6P was 

similar to what was observed for α-KG, with a reduction in the IDH1 mutant 

compared to IDH1 wild-type tumours. Conversely, GABA, which is derived from 

glutamate, showed an increased ratio in the IDH1 mutant tumour samples, 

indicating a possible increased flux from glutamate (Figure 3-7). 

Pyruvate carboxylase is highly expressed in astrocytes. It converts pyruvate to 

oxaloacetate, which can be utilised in the TCA cycle. Malate produced from 

oxaloacetate by malate dehydrogenase would generate malate M+3 from 13C6-
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glucose. To exclude the possibility that the reduction in M+2 metabolites in the 

TCA cycle in IDH1 mutant tumours was due to increased activity of pyruvate 

carboxylase a ratio of malate+3 to H6P+6 was calculated but showed no 

difference between the IDH1 mutant and IDH1 wild-type samples (Figure 3-7).  
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Figure 3-7 Ratio of labelled metabolites to fully labelled hexose-6-phosphate in IDH1 mutant 
compared to IDH1 wild-type tumours 
Each point represents an average of core and peripheral tumour samples for one patient. Depicts 
mean +/- SD. * depicts a p value ≤ 0.05. Statistical analyses were performed using Student’s t-test. 
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3.2.3 Metabolic effects of the IDH1 mutation in established cell 
lines  

To determine whether the metabolic effects observed in the IDH1 mutated 

tumours could be replicated in vitro, we used cell lines kindly provided by Prof 

Christel Herold-Mende from Heidelberg University. The cell lines were grown 

from human glial tumours. They retained their endogenous IDH1 wild-type or 

mutation status and were maintained in culture for at least 60 passages. They 

were grown as spheroids in the Norlux laboratory in Luxembourg by our 

collaborator Dr Fred Fack. Two of the cell lines were IDH1 wild-type GBM 

(NCH644, NCH421), while three cell lines were high grade IDH1 mutant gliomas 

(NCH1681, NCH551b, NCH612). 

In the following experiments, spheroids were plated and maintained for 3 days 

before the medium was replaced with either fully labelled 13C glucose or 13C 

glutamine and incubated for 24 hours before metabolite extraction. The 

experiments were performed in Luxembourg and the extracted metabolites were 

analysed using LC-MS at the CRUK Beatson Institute, Glasgow. The isotopologues 

for each metabolite were summated for each cell line to give a total steady 

state level. Changes in the levels of isotopologues for each metabolite between 

cell lines gave an indication of flux changes in metabolic pathways. 

3.2.3.1  The IDH1 mutation results in changes in total steady state 
levels of TCA and glutamate derived metabolites 

In the IDH1 mutant cell lines, 2HG levels were increased compared to the IDH1 

wild-type cell lines. The mutant cell line with the lowest level of 2HG (NCH551b) 

still showed a two-fold increase over the highest 2HG level observed in the IDH1 

wild-type cell line (NCH421), whereas the mutant cell line with the highest level 

of 2HG (NCH612) displayed a twenty-fold increase over the NCH421 cell line.   

The IDH1 mutation resulted in changes in intracellular metabolites derived from 

glycolysis with increased serine levels in all IDH1 mutant cell lines compared to 

IDH1 wild-type. Alanine also showed an increase in the two IDH1 mutant cell 

lines with the highest levels of 2HG (Figure 3-8). 
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The IDH1 mutant enzyme utilises α-KG to produce 2HG. The intracellular levels 

of α-KG were lower in the two IDH1 mutant cell lines with the highest levels of 

intracellular 2HG (NCH16821, NCH612). Citrate, a precursor metabolite in the 

TCA cycle, was also higher in these two cell lines compared to the IDH1 wild-

type GBM. Other TCA metabolites, such as succinate and malate, were not 

consistently different between the cell lines (Figure 3-8). However, aspartate, 

which is metabolised from oxaloacetate, was increased in the IDH1 cell line with 

the highest intracellular levels of 2HG (NCH612). Its derivative NAA was also 

increased when compared to the IDH1 wild-type cell lines (Figure 3-9). 

α-KG can also be metabolised rapidly from glutamate. The levels of glutamate 

were increased in the cell line with the highest levels of intracellular 2HG 

(NCH612). Its precursor metabolite, glutamine, was also increased in the two 

cell lines with the highest intracellular 2HG levels. GABA, another metabolite 

derived from glutamate, was increased over ten times in the IDH1 mutant 

NCH551b cell line compared to the IDH1 wild-type controls (Figure 3-9).   
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3.2.3.2  The IDH1 mutation is associated with an increased flux 
from glutamine to 2HG  

Comparing the relative contributions of different isotopologues generated from 
13C6 glucose or 13C5 glutamine between the different cell lines can give an 

indication of changes in flux through different metabolic pathways.  

Most of the contribution to the carbons in the TCA cycle in these cell lines comes 

from glutamine. When comparing glucose and glutamine labelled experiments 

there are more labelled isotopologues from glutamine than glucose. (Figure 3-8, 

Figure 3-9).  

The IDH1 mutation converts α-KG to 2HG. In both the glucose and glutamine 

labelled experiments there is increased contribution of labelled 2HG in the IDH1 

mutant compared to the IDH1 wild-type cell lines. With exception of α-KG, there 

was no difference in contribution from labelled glucose and glutamine in the 

TCA cycle, or for glutamate derived metabolites. This indicates an increased flux 

from α-KG to 2HG. In the IDH1 mutant cell lines, there is also more contribution 

from 13C5 glutamine than 13C6 glucose, indicating that most of the 2HG is derived 

from glutamine rather than glucose (Figure 3-8, Figure 3-9). 
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Figure 3-8 Metabolic isotopologues derived from glycolysis and the TCA cycle after the 
addition of 13C6 labelled glucose  
The first two cell lines depicted on the graph are IDH1 wild-type (WT) GBM (NCH644, NCH421), 
and the remaining three are high grade IDH1 mutant (Mut) glioma (NCH1681, NCH51b, NCH612). 
The different isotopologues are presented together for each metabolite in each cell line to depict 
total steady state metabolite levels. Results are from 2 independent experiments, mean +/- SEM. * 
depicts a p value ≤ 0.05 for total metabolite levels. Statistical analyses were performed using 2-way 
ANOVA.  
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Figure 3-9 Metabolic isotopologues derived from glutamate metabolism after the addition of 
13C5 labelled glutamine  
The first two cell lines depicted on the graph are IDH1 wild-type (WT) GBM (NCH644, NCH421), 
and the remaining three are high grade IDH1 mutant (Mut) glioma (NCH1681, NCH51b, NCH612). 
The different isotopologues are presented together for each metabolite in each cell line to depict 
total steady state metabolite levels. Results are from 2 independent experiments, mean +/- SEM. * 
depicts a p value ≤ 0.05 for total metabolite levels. Statistical analyses were performed using 2-way 
ANOVA.  
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3.3 Discussion 

Tumour samples from patients taken at the time of surgery were analysed to 

understand the metabolic changes that occur due to the IDH1 mutation. 

Surrounding oedematous tissue was used as a control, which histologically 

contained mostly normal brain tissue. Two of the oedematous samples contained 

tumour (40% and 10%), which may have reduced the observed differences 

between the tumour and oedema samples. Both IDH1 mutant and IDH1 wild-type 

tumours showed metabolic changes which would be expected in a growing 

tumour, such as increases in amino acids required for protein synthesis and 

higher levels of glucose compared to normal brain. The IDH1 mutation results in 

the production of 2HG from α-KG. Unsurprisingly, the IDH1 mutant tumours 

showed a large increase in 2HG production compared to the surrounding normal 

brain. Conversely, both IDH1 wild-type and IDH1 mutant tumour samples had 

reduced levels of neurotransmitters, such as GABA, NAA, NAAG and glutamate. 

This is consistent with the lack of neuronal tissue in the tumours, which is the 

main source of these neurotransmitters. In addition, the high levels of 2HG 

produced by the IDH1 mutant tumours did not result in an increase in serum 

plasma levels compared to the wild-type controls. Though there is a high 

concentration of 2HG within the tumour, 2HG secreted into the extracellular 

space is probably negligible compared to the total volume of the circulation. The 

metabolite could also be rapidly metabolised by other tissues, such as the liver, 

if it entered the blood. This suggests that 2HG does not have a systemic effect, 

and serum 2HG measurements would not be an effective biomarker for 

monitoring disease.  

When comparing IDH1 wild-type and IDH1 mutant primary brain tumours, there 

was again a marked increase in levels of 2HG in the mutant tumour. The 

substrate for the IDH1 mutant enzyme, α-KG, was reduced in the IDH1 mutant 

tumours, as were closely associated metabolites such as glutamate. Notably, 

there was a reduced contribution of labelling from glucose for α-KG in the IDH1 

mutant samples compared to the wild-type. Interestingly, only 2 of the IDH1 

mutant samples showed an increase in 2HG labelling from glucose compared to 

wild-type. This may be due to a technical issue with the LC-MS.  We were not 

able to detect α-KG M+2, which may be explained by the low sensitivity to 

detect the levels of this isotopologue in these samples. This may also have been 
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the case for 2HG, explaining why only two of the tumours show increased flux 

from α-KG. Alternatively, as the IDH1 mutant enzyme is cytoplasmic it raises the 

possibility that 2HG production may be more dependent on other carbon 

sources, such as glutamine, rather than glucose in IDH1 mutant tumours, or that 

the turnover of 2HG is slow due to the high concentration of the metabolite in 

the cell. Also of note was the increased labelling contribution from glucose of 

GABA. The precursor to GABA is glutamate, which showed a decrease in labelling 

from glucose. This implies that there may be an increased flux from glutamate 

to GABA in the IDH1 mutant tumours compared to the IDH1 wild-type.  

13C glucose was given as a bolus which resulted in a marked increase in plasma 

glucose levels. The effect on metabolic rates of glucose compared to other 

carbon sources in the human brain in this situation is not known. However, an 

increase in plasma glucose has been shown to cause a corresponding increase in 

glucose phosphorylation in anaesthetised rats [277]. It could therefore be 

assumed that the increase in plasma glucose could result in an increase in 

glucose metabolism in the cell, altering the metabolic state of the tumour cells. 

This may overestimate the effect of glucose on TCA, NAA and GABA metabolism. 

In addition, the time taken to resect each tumour varied between patients, so 

the plasma level of 13C glucose would differ in patients at the time of tumour 

extraction, potentially affecting the results. An infusion of 13C glucose was 

considered as it would have given a more physiological and consistent plasma 13C 

glucose level, but was not possible for practical reasons and cost.  

The clinical study was limited due the small number of patients involved. There 

were only six IDH1 wild-type and six IDH1 mutant tumours. Also, while all the 

IDH1 wild-type tumours were GBM, the IDH1 mutant tumours were of various 

grades and histological types. There was only one IDH1 mutant GBM, 2 low grade 

diffuse astrocytomas, one high grade anaplastic astrocytoma, and two high grade 

anaplastic oligoastrocytomas. Unfortunately, this is due to the fact that IDH1 

mutant tumours are common in WHO grade II to III tumours but rare in WHO 

grade IV GBM. The opposite is true for IDH1 wild-type tumours which are 

common in GBM but not in other lower grades of glioma. It raises the possibility 

that some of the metabolic changes we observed, such as lower levels of lactate 

and pyruvate, may be related to differences in tumour grade and histological 

sub-type rather than IDH1 mutant status. Low grade glial tumours grow over a 
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period of years, and these metabolic differences may in part be a reflection of 

lower metabolic activity compared to high grade rapidly growing GBM.    

To try and replicate these results, established cell lines which retained their 

IDH1 mutant status were used. This included three IDH1 mutant high grade 

gliomas which were compared to two IDH1 wild-type GBM. To try and replicate 

in vivo conditions they were grown as spheroids and incubated with 13C6-glucose 

or 13C5-glutamine to give additional information on metabolic flux. In common 

with the in vivo tumour samples, there was an increase in 2HG and fall in α-KG 

in the IDH1 mutant samples. One of the IDH1 mutant cell lines also showed a 

marked increase in GABA. This was only present in one of the cell lines, which 

may reflect adaptation of the other IDH1 mutant cell lines to the medium, 

reducing the need for GABA metabolism, or that this effect is only observed in 

some IDH1 mutant tumours, as the cell lines were derived from different WHO 

grades of tumour. In addition, increased contribution of labelling from both 13C6-

glucose and 13C5-glutamine in 2HG was observed, with a reduction in contribution 

for α-KG in the IDH1 mutant compared to IDH1 wild-type tumours. This also 

implies increased flux from α-KG to 2HG in the IDH1 mutant cell lines. Similarly 

to the in vivo tumour samples, only very low levels of α-KG M+2 could be 

detected in all the cell lines. Conversely, using 13C5-glutamine labelling, the 

majority of the intracellular isotopologues of α-KG in the cell lines were 

labelled, indicating that most of the carbon contribution is from glutamine, 

which may explain the low levels of α-KG M+2 in the clinical samples.  

There were discrepancies, however, between the data from the clinical samples 

and the cell lines. The IDH1 mutant cell lines, compared to the wild-type 

controls, had increased levels of citrate, acetyl-CoA, alanine, glutamine and 

glutamate, which was not evident from the clinical samples. This may be a 

consequence of the medium in which the cell lines were grown, which have 

much higher levels of glucose and glutamine then occur in vivo. This may result 

in increased consumption of these metabolites resulting in observed differences 

in glycolysis and glutamine metabolism which may not be physiologically 

relevant.  

In summary, both the in vivo and cell line data suggests that in IDH1 mutant 

cells there is an increased metabolic flux towards 2HG from α-KG. This may in 
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turn have an effect on decreasing other metabolites associated with α-KG such 

as glutamate. In addition, there may be an increased flux from glutamate to 

GABA, increasing intracellular GABA levels as well as depleting glutamate. The 

decrease in α-KG, coupled with the increase in 2HG, raised the interesting 

possibility of the inhibition of α-KG dependent dioxygenases. These enzymes 

form a superfamily that is important in many cellular functions such as 

epigenetic modulation of DNA and histones, and oxygen sensing. Other enzymes, 

such as transaminases, are also dependent on α-KG as a co-substrate. Inhibition 

of these enzymes may also explain some of the other metabolic changes 

observed, such as the increase in GABA. Unfortunately, the endogenous IDH1 

mutant cell lines were slow and problematic to grow in culture, so in order to 

investigate the metabolic, cellular, and epigenetic consequences of this 

increased 2HG/α-KG ratio we developed our own cell model by overexpressing 

an IDH1 mutant gene in an anaplastic astrocytoma cell line, as well as using an 

IDH1 wild-type and mutant overexpressed immortalised astrocyte cell line
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Chapter 4 Investigating the metabolic effect of 
the IDH1 mutation in vitro  

4.1 Introduction 

In the previous chapter metabolic changes, caused by the IDH1 mutation, were 

reported in clinical glioma samples. In addition to the increase in 2HG, there 

was also a fall in α-KG and glutamate. Conversely, there was an increase in the 

level of the glutamate derived metabolite, GABA, which is the most common 

neuroinhibitor in the brain. This effect was also observed in cell lines with an 

endogenous IDH1 mutation. 13C6 labelled glucose was administered to the 

patients prior to surgical excision of the tumour. The isotopologues generated 

from the metabolism of 13C6 labelled glucose suggested an increased flux from α-

KG to 2HG, and also from glutamate to GABA. Increased flux from α-KG to 2HG 

was observed with 13C6 labelled glucose and 13C5 labelled glutamine when 

comparing endogenous IDH1 mutant cell lines to IDH1 wild-type controls.  

Endogenous IDH1 mutant cell lines are difficult to grow in culture, due to slow 

proliferation and loss of the IDH1 mutation over time. Currently, there is only 

one published glioma cell line, an anaplastic oligodendroglioma, with an 

endogenous IDH1 mutation [269]. Therefore, to further investigate the metabolic 

effects of the IDH1 mutation a cell model was developed using an anaplastic 

astrocytoma cell line.   

4.2 Results 

4.2.1 Developing a cell model 

An anaplastic astrocytoma cell line MOG-GCCM, which is associated with p53 and 

MAPK pathway mutations, was used to develop a cell model. This is a type of 

glioma that has a high incidence of IDH1 mutation in vivo. This cell line is IDH1 

wild-type, so the commonest IDH1 mutation was overexpressed using a pcDNA 

3.1(+) plasmid with an IDH1 mutant R132H myc-tagged gene insert. 

Simultaneously,  a separate population of cells from the same cell line was 

transfected with an empty vector (EV). This, in addition to the MOG-GCCM 

parental cell line (PCL), was used as a control (Figure 4-1A). 
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The transfected cells were kept as pools to maintain the genetic diversity of the 

cell line. Initially the IDH1 mutant pool had 2HG levels which were one hundred 

times the level of the EV control, while it was also noted that the IDH1 mutant 

pool exhibited slower cell proliferation, as the doubling time was ten hours 

longer than the EV control. Over time, the level of 2HG in the IDH1 mutant pool 

fell. At twenty passages,  the level of intracellular 2HG was the same as the EV 

control. The IDH1 pool also displayed an increase in cell proliferation (Figure 

4-1B). Immunofluorescence staining,  with an antibody that detects both IDH1 

wild-type and mutant protein, showed a sub-population of cells in the IDH1 

mutant pool with high levels of IDH1 protein which was assumed to be IDH1 

mutant, which did not occur in the EV pool. This additional flourescence was due 

to the over-expression of the IDH1 mutant protein and this decreased over time 

in conjunction with the fall in intracellular 2HG (Figure 4-1C).  
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Figure 4-1 Developing a cell model 
A. Western blot depicting protein expression of IDH1 in MOG-GCCM pools overexpressed with 
either a IDH1 R132H mutant  plasmid (Mut) or empty vector (EV) plasmid. The IDH1 mutant gene 
was myc-tagged. PCL represents the MOG-GCCM parental cell line. Actin was used as an internal 
control. B. Ratio of 2HG in the IDH1 mutant pool compared to the EV pool over time. The effect on 
cell proliferation, depicted as cell doubling time, for the IDH1 mutant pool compared to the EV pool 
over time. C. Immunoflourescence microscopy images depicting non-specific IDH1 protein 
expression in IDH1 mutant pool and EV pool at 5 passages and 15 passages. 



109 
 
This led to the hypothesis that 2HG was responsible for decreased cell 

proliferation. This resulted in a loss of cells overexpressing mutant IDH1 from 

the cell pool, as cells with high levels of 2HG were outgrown. As 2HG is not cell 

permeable, exogenous 2HG-lactone was used in all future cell culture 

experiments, as it can easily cross the cell membrane. The lactone structure can 

spontaneously hydrolyses in water or it can be cleaved after it enters the cell by 

naturally occurring esterase [278]. After the addition of 2HG-lactone to the 

medium, high levels of intracellular 2HG-lactone and 2HG were observed (data 

not shown). The hypothesis that 2HG was responsible for decreased cell 

proliferation was tested and confirmed by the addition of exogenous 2HG-

lactone to MOG-GCCM and LN18, a glioblastoma cell line established from an 

IDH1 wild-type tumour. Increasing concentrations of 2HG-lactone from 10 mM to 

30 mM resulted in a dose dependent reduction in cell proliferation, confirming 

the negative effect of 2HG on cell growth (Figure 4-2D).  

Clones were developed to decrease the possibility of 2HG loss after 

overexpression of the IDH1 mutation in the previously described pool format. 

These consisted of one EV clone and three IDH1 mutant clones with varying 

levels of expression: low, medium and high (MC3, MC10 and MC9 respectively, 

Figure 4-2A). Overexpression of IDH1 wild-type resulted in an increase in α-KG 

(data not shown), potentially affecting metabolism, α-KG-dependent 

dioxygenase activity and the epigenome, so were not used [255]. To identify 

whether the effect of the IDH1 mutation on cell proliferation was related to the 

production of 2HG an additional experimental group was added.This involved 

propagating the EV clone continuously in medium containing 30 mM 2HG-lactone 

for at least fifteen passages (EV + 2HG). This corresponded to an intracellullar 

2HG level which was equivalent to the highest IDH1 mutant expression clone, 

MC9. In addition, the MOG-GCCM PCL was used as an additional control (Figure 

4-2B). MC9 and MC10, which both exhibited the highest intracellular 

concentrations of 2HG, also showed increased cell doubling times when 

compared to the controls, confirming the inhibitory effect of 2HG on cell 

proliferation (Figure 4-2C).  
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Figure 4-2 The effect of 2HG on cell proliferation 
 A. The Western blot depicts IDH1, and myc-tag protein expression in the MOG-GCCM PCL, EV 
and IDH1 mutant clones (MC3, MC9 and MC10). β-tubulin was used as an internal control. B. 
Intracellular levels of 2HG in the  MOG-GCCM PCL, EV, EV + 2HG, and IDH1 mutant clones. C. 
Cell doubling time for IDH1 mutant clones, EV + 2HG, and EV and MOG-GCCM PCL controls. D. 
Cell proliferation assay depicting effect on cell growth of increasing concentrations of 2HG-lactone 
(2HG) in MOG-GCCM and LN18 cell lines. B + C depicts at least 3 independent experiments with 
mean +/- SEM. D depicts single cell proliferation experiment with mean +/- SD showing the effect 
of 2HG-lactone on MOG-GCCM and LN18 cell lines. * represents a p-value ≤0.05. Data were 
analysed using 2-way ANOVA. 
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4.2.1.1  The IDH1 mutation is associated with changes in mRNA 
expression 

Affymetrix microarray experiments were performed to determine differences in 

gene expression between two of the IDH1 mutant clones (MC3 and MC9), EV + 

2HG and the EV and MOG-GCCM PCL controls. The two IDH1 mutant clones were 

chosen to determine differences that occur both at high and low levels of 

intracellular 2HG. EV and MOG-GCCM PCL had a similar gene expression profile 

indicating that the EV was a good representation of the original MOG-GCCM PCL. 

However, differences were evident between the controls and the IDH1 mutant 

clones and EV + 2HG. MC3 and EV + 2HG had similar gene expression profiles, but 

the largest differences in gene expression were observed between the controls 

and the MC9 clone (Figure 4-3A). 

The EV control was compared to the EV + 2HG and MC9 clone using Ingenuity 

Pathway Analysis. This identified the gene interaction pathways for the genes 

that were significantly different between the control and EV + 2HG or MC9. 

There were differences in pathways associated with cell proliferation and 

growth, and the cell cycle, consistent with the previously described experiments 

on cell growth (Figure 4-3B). 

The top 50 genes upregulated in EV + 2HG and MC9 with the highest fold change 

included genes specific to neural function. Examples are KAL1, which is involved 

in cell adhesion and migration, UNC5C and ENAH, which are involved in axon 

guidance, and ZC4H2 and HEY1, which are involved in neurogenesis. GABRQ, a 

subunit of the GABAA receptor present on both astrocytes and neurons, was also 

upregulated. In addition, this group also included ALDOC and GPAM, which are 

genes involved in lipid metabolism. Several genes from the G-antigen family 

were also increased (GAGE12F, GAGE5, GAGE2E, GAGE8, GAGE10). These are 

normally expressed in normal testis, but have been associated with tumour 

growth and metastasis in some cancers [279] (Table 4-1). The top genes 

downregulated in EV + 2HG and MC9, compared to the EV, are shown in table 

4-2. 
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Figure 4-3 Changes in gene expression caused by the IDH1 mutation  
A. Heatmap comparing genes differentially expressed in the EV compared to the MOG-GCCM 
PCL, IDH1 mutant clones (MC3 and MC9) or EV + 2HG. B. Ingenuity pathway analysis of genes 
represented in A. comparing EV to MC9 or EV + 2HG 
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Table 4-1 Genes upregulated in mRNA anaylsis 
Top 50 genes  upregulated both in the IDH1 mutant clone (MC9) and EV + 2HG compared to the 
EV. Includes genes with at least 1.5 fold change and a q-value ≤ 0.05. 
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Table 4-2 Genes downregulated in mRNA anaylsis 

Top genes  downregulated both in the IDH1 mutant clone (MC9) and EV + 2HG compared to the 
EV. Includes genes with at least 1.5 fold change and a q-value ≤ 0.05. 
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4.2.2  Metabolic changes caused by the IDH1 mutation 

4.2.2.1  Overexpression of the IDH1 mutation is associated with 
changes in the TCA cycle and glutamate derived 
metabolites 

To characterise the metabolic differences in IDH1 mutant clones compared to 

the controls, intracellular metabolites were extracted after propagation for 24 

hours in fresh medium to generate data on steady state metabolomics. IDH1 

wild-type and IDH1 R132H mutant overexpressed immortalised astrocytes 

(SK2012-113) were used to identify whether these effects could also occur in 

non-malignant cells. Metabolites were also extracted after 24 hours of cell 

propagation in fresh medium. 

In the TCA cycle, there was a fall in α-KG levels in MC9 and MC10 compared to 

the controls. This was replicated in the EV + 2HG experimental group. Other TCA 

metabolites, such as succinate, malate, and citrate were also decreased in these 

clones. Again, this effect was repeated in the EV + 2HG group with the exception 

of succinate. The clone with the lowest intracellular levels of 2HG, MC3, had 

decreased levels of citrate and malate when compared to the controls (Figure 

4-4). The IDH1 mutant astrocytes displayed an increase in intracellular 2HG and 

a reduction in α-KG and the downstream TCA metabolite succinate compared to 

IDH1 wild-type cells. Conversely, IDH1 mutant astrocytes had a small increase in 

intracellular levels of malate and citrate (Figure 4-5). 
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Figure 4-4 The metabolic effect of the IDH1 mutation on glycolysis and the TCA cycle in 
MOG-GCCM clones  
IDH1 R132H overexpressed mutant clones are depicted in red (MC3, MC9, MC10), EV + 2HG is 
depicted in orange, and the controls in grey (EV and MOG-GCCM PCL). Data depicted as mean 
+/- SEM for 5 independent experiments. * represents a p-value ≤0.05. Data were analysed using 2-
way ANOVA. 
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Figure 4-5 The metabolic effect of the IDH1 mutation on glycolysis and the TCA cycle in 
immortalised human astrocytes 
IDH1 R132H overexpressed mutant pool is depicted in red and the IDH1 wild-type pool is depicted 
in blue. Data are displayed as mean +/- SEM for 3 independent experiments. * represents a p-
value ≤ 0.05. Data were analysed using 2-way ANOVA.  
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Intracellular glutamate was decreased in two of the IDH1 mutant clones, MC3 

and MC9, and EV + 2HG, when compared to controls. GSH, a glutamate derived 

metabolite, was also decreased in all the IDH1 mutant clones as well as EV + 

2HG. Conversely, other glutamate derived metabolites were increased. This 

included GABA and NAA in all the IDH1 mutant clones while in MC3 and MC10, 

NAAG was also increased. Both NAA and NAAG were increased in EV + 2HG when 

compared to MOG-GCCM PCL and EV (Figure 4-6).   

In the IDH1 mutant astrocytes, there was also a reduction in glutamate 

compared to wild-type cells. Metabolites derived from glutamate were also 

affected. When compared to the IDH1 wild-type astrocytes, there was a 

reduction in GSH and proline but an increase in NAAG in the IDH1 mutant cells. 

NAAG is produced from NAA as well as glutamate, and NAA, as well as its 

precursor aspartate, were increased in the IDH1 mutant astrocytes (Figure 4-7). 

A summary of the steady state metabolic changes caused by the IDH1 mutation 

or the addition of 2HG is depicted table 4-3. 
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Figure 4-6 The metabolic effect of the IDH1 mutation on glutamate and its derivatives in 
MOG-CCM clones  
The IDH1 R132H overexpressed mutant clones are depicted in red (MC3, MC9, MC10), EV + 2HG 
is depicted in orange, and the controls in grey (EV and MOG-GCCM PCL). Data depicted as mean 
+/- SEM for 5 independent experiments. * represents a p-value ≤0.05. Data were analysed using 2-
way ANOVA.  
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Figure 4-7 The metabolic effect of the IDH1 mutation on glutamate and its derivatives in 
immortalised human astrocytes 
IDH1 R132H overexpressed mutant pool is depicted in red and the IDH1 wild-type pool is depicted 
in blue. Data are displayed as mean +/- SEM for 3 independent experiments. * represents a p-
value ≤ 0.05. Data were analysed using 2-way ANOVA. 
 

Metabolite 
MOG-GCCM Astrocytes 

EV + 2HG MC3 MC9 MC10 Mutant 
2HG ↑ ↑ ↑ ↑ ↑ 
α-KG  ↓ ↔ ↓ ↓ ↓ 

citrate ↓ ↓ ↓ ↓ ↑ 
succinate ↔ ↔ ↓ ↓ ↓ 
malate ↓ ↓ ↓ ↓ ↑ 

glutamate ↓ ↓ ↓ ↔ ↓ 
NAA ↑ ↑ ↑ ↑ ↑ 

NAAG ↑ ↑ ↑ ↑ ↑ 
GSH ↓ ↓ ↓ ↓ ↓ 

GABA ↔ ↑ ↑ ↑ ↔ 

Table 4-3 Steady state metabolic changes caused by the IDH1 mutation 
Changes in steady state metabolites compared to controls caused by the addition of 2HG 
(EV+2HG), and overexpression of the IDH1 mutation in MOG-GCCM (MC3,MC9,MC10) and 
immortalised astrocyte cell lines (Mutant). 
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To determine if these intracellular metabolic changes were the result of 

differences in metabolite consumption and secretion, medium was collected 

from the MOG-GCCM cells and astrocytes and compared to medium incubated 

without cells. 

2HG was secreted from the IDH1 mutant MOG-GCCM clones. The highest level of 

2HG secretion in MOG-GCCM cells was from the MC9 clone, which had the 

highest levels of intracellular 2HG. There was no difference in glucose 

consumption or lactate secretion between the experimental groups. Glutamine 

consumption was, however, slightly increased in MC3, MC9 and EV + 2HG 

compared to the controls. In addition, there was a small increase in glutamate 

secretion in MC9 and EV + 2HG (Figure 4-8A). 

In the immortalised astrocytes, there was secretion of 2HG by the IDH1 mutant 

cells. There was no other difference in metabolite exchange between the 

mutant and wild-type cells, except for a small increase in lactate production in 

the IDH1 mutant astrocytes (Figure 4-8B). 

The lack of major changes in exometabolomics indicates that intracellular 

changes in metabolites associated with glucose and glutamine were not due to 

exometabolomic differences between the cells. The secretion of 2HG into the 

medium by the IDH1 mutant cells indicates that 2HG secretion is an adaptive 

mechanism for removal of this metabolite from the cell. 
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Figure 4-8 Exometabolomics of MOG-GCCM cell and immortalised astrocytes 
A. MOG-GCCM and B. immortalised astrocytes. IDH1 mutant clones and astrocytes are 
represented in red, MOG-GCCM PCL and EV controls are represented in grey, and IDH1 wild-type 
astrocytes are represented in blue.  EV + 2HG is represented in orange. Positive values on the y-
axis represent metabolite secretion while negative values represent consumption. Data depicted as 
mean +/- SEM for 3 independent experiments. * represents a p-value ≤ 0.05. Data were analysed 
using 2-way ANOVA. 
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4.2.2.2  IDH1 mutation is associated with changes in metabolic 
flux in the TCA cycle and glutamine metabolism 

To determine changes in metabolic flux through the TCA cycle and glutamate 

metabolism, MOG-GCCM cells and the astrocytes were incubated in 13C6-glucose 

or 13C5-glutamine for 24 hours. Intracellular metabolites were measured using 

LC-MS and normalised to cellular protein.  

In the majority of metabolites there was no difference in contribution from 

labelled glucose and glutamine in glycolysis and the TCA cycle. However, in 

MOG-GCCM cells there was decreased labelling contribution from both 13C6-

glucose and 13C5-glutamine in α-KG and succinate, compared to the EV and MOG-

GCCM PCL controls (Figure 4-9, Figure 4-11). The IDH1 mutant astrocytes also 

had a decreased contribution from both 13C6-glucose and 13C5-glutamine in α-KG 

compared to the wild type (Figure 4-10, Figure 4-12). In both cell lines, there 

was increased labelling of 2HG from both 13C6-glucose and 13C5-glutamine in the 

IDH1 mutant cells (Figure 4-9,Figure 4-10). This was in contrast to glutamate 

which was the same in the IDH1 wild-type and mutant cells. The results suggest 

an increase in flux from α-KG to 2HG, resulting in a decrease in succinate and 

potentially other metabolites in the TCA cycle. 

In both cell lines there was a similar contribution from 13C5-glutamine to 

metabolites derived from glutamate, including GABA. As with the NCH cell lines 

in the previous chapter, most of the contribution to the carbons in the TCA cycle 

came from glutamine. In the IDH1 mutant cell lines, most of the 2HG was also 

derived from glutamine (Figure 4-11, Figure 4-12). 
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Figure 4-9 Steady state 13C6-glucose labelled metabolomics for glycolysis and the TCA cycle 
in MOG-GCCM cells 
The different isotopologues generated for each metabolite are presented as different colours which 
correspond to the legend in the figure. Single experiment depicting mean +/-SD. 
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Figure 4-10 Steady state 13C6-glucose labelled metabolomics for glycolysis and the TCA 
cycle in immortalised astrocytes 
The different isotopologues generated for each metabolite are presented as different colours which 
correspond to the legend in the figure. Single experiment depicting mean +/-SD.  
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Figure 4-11 Steady state 13C5-glutamine labelled metabolomics for glutamate metabolism 
and the TCA cycle in MOG-GCCM cells 
The different isotopologues generated for each metabolite are presented as different colours which 
correspond to the legend in the figure. Single experiment depicting mean +/-SD. 
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Figure 4-12 Steady state 13C5-glutamine labelled metabolomics for glutamate metabolism 
and the TCA cycle in immortalised astrocytes 
The different isotopologues generated for each metabolite are presented as different colours which 
correspond to the legend in the figure. Single experiment depicting mean +/-SD.  
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To confirm the effects observed with steady state labelling, dynamic labelling 

with 13C6-glucose or 13C5-glutamine was done using several time points for the 

MOG-GCCM clones and the immortalised astrocytes. 

In the MOG-GCCM clones, there was an increased accumulation of labelled H6P, 

serine, and alanine in the MC9 clone compared to the EV after incubation with 
13C6-glucose. There were no differences between EV and MC9 for other 

metabolites related to glycolysis such as lactate and acetyl-CoA, indicating a 

possible increase in flux from glucose to serine and alanine (Figure 4-13). 

However, in the immortalised astrocytes, there was no difference in the 

accumulation of labelled metabolites from 13C6-glucose in glycolysis or its 

associated metabolic pathways (Figure 4-14). 

In the TCA cycle, there was decreased accumulation of labelled isotopologues 

for α-KG, succinate, and malate from both 13C6-glucose and 13C5-glutamine in the 

MC9 compared to EV. (Figure 4-13, Figure 4-15). In the astrocytes, there was a 

decreased accumulation of labelled α-KG and succinate from both 13C6-glucose 

and 13C5-glutamine in the IDH1 mutant compared to the IDH1 wild-type cells. 

There was no difference between the cell lines for the other TCA intermediates. 

2HG displayed increased accumulation of labelled isotopologues from both 13C6-

glucose and 13C5-glutamine in the IDH1 mutant astrocytes and MC9 compared to 

the wild-type controls (Figure 4-13, Figure 4-14, Figure 4-15, Figure 4-16), 

indicating an increased flux in both cell lines from α-KG to 2HG, caused by the 

IDH1 mutation, with a consequent reduction in downstream metabolites in the 

TCA cycle. 
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Figure 4-13 Accumulation in MOG-GCCM cells of labelled isotopologues from 13C6-glucose 
in the TCA cycle and glycolysis 
The red line represents the IDH1 mutant MC9 clone, while the blue line represents the empty 
vector (EV) control. Single experiment depicting mean +/-SD. 
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Figure 4-14 Accumulation in astrocytes of labelled isotopologues in the TCA cycle and 
glycolysis after incubation with 13C6-glucose 
The red line represents the IDH1 mutant astrocytes, while the blue line represents the IDH1 wild-
type  controls. Single experiment depicting mean +/-SD. 
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In the MOG-GCCM, differences between MC9 and EV were also observed in 13C5-

glutamine metabolism. There was decreased accumulation of the glutamate 

derivative GSH, in the IDH1 mutant MC9 clone compared to EV. Conversely, 

there was an increase in accumulation of labelled GABA in the MC9 clone. In 

addition, there was a reduction in the accumulation of aspartate, but an 

increase in NAA in the MC9 clone compared to the EV control (Figure 4-15). 

In the astrocytes, no differences were observed in the accumulation of labelled 

glutamate, GSH, proline and ornithine from 13C5-glutamine. Conversely, there 

was increased accumulation of labelled GABA, aspartate, and its derivative NAA 

in the IDH1 mutant compared to IDH1 wild-type astrocytes (Figure 4-16). This 

indicates in both cell models a potential increase in flux from glutamate to 

GABA, and NAA from aspartate and malate. Changes observed in metabolic flux 

caused by the IDH1 mutation is summarised in table 4-4. 

Metabolic flux 
MOG-GCCM Astrocytes 

MC9 Mutant 

Glucose to succinate ↓ ↓ 

Glutamine to succinate ↓ ↓ 

Glucose to 2HG ↑ ↑ 

Glutamine to 2HG ↑ ↑ 

Glucose to NAA ↑ ↑ 

Glutamine to NAA ↑ ↑ 

Glucose to GABA ↑ ↑ 

Glutamine to GABA ↑ ↑ 

Table 4-4 Changes in metabolic flux caused by the IDH1 mutation. 
Table depicts changes in metabolic flux caused by the IDH1 mutation, from glutamine or glucose, 
when compared to controls. 
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Figure 4-15 Accumulation in MOG-GCCM of labelled isotopologues from 13C5-glutamine of 
metabolites in the TCA cycle and glutamate metabolism 
The red line represents the IDH1 mutant MC9 clone, while the blue line represents the empty 
vector (EV) control. Single experiment depicting mean +/-SD.  
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Figure 4-16 Accumulation in astrocytes of labelled isotopologues in the TCA cycle and 
glutamate metabolism after incubation with 13C5-glutamine 
The red line represents the IDH1 mutant astrocytes, while the blue line represents the IDH1 wild-
type controls. Single experiment depicting mean +/-SD. 
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4.2.2.3  The IDH1 mutation is associated with an increase in GABA 
uptake 

GABA is also taken up by astrocytes as part of the glutamine-glutamate-GABA 

cycle. This allows for the metabolism of GABA, after release by neurons, to 

glutamine. This is then released by astrocytes, taken up by neurons, and 

recycled back into neurotransmitters. The potential increase in metabolic flux 

from glutamine and glucose to GABA in the IDH1 mutant cell lines could indicate 

a potential benefit of GABA metabolism in these cells. This could also indicate a 

potential role also for exogenous GABA as a carbon source. To further 

investigate the role of GABA in the IDH1 mutant cell lines, 0.5 mM 15N-GABA was 

added to the medium of EV, EV + 2HG, and MC9 MOG-GCCM cells and the 

immortalised astrocytes. The uptake of 15N-GABA was assessed by determining 

the level of intracellular 15N-GABA over time. 

There was an increase in uptake of 15N-GABA in the MC9 clone and EV + 2HG 

compared to the EV control. This was replicated in the immortalised astrocytes, 

where the IDH1 mutant cells showed faster accumulation of intracellular 15N-

GABA than the wild-type cells. In addition, the accumulation of 15N-GABA was 

associated with a fall in intracellular serine in both the MOG-GCCM cells and the 

immortalised astrocytes (Figure 4-17A,B). 

To investigate whether the fall in serine observed was due to the stimulation of 

GABA receptors, medium containing either 0.5 mM 15N-GABA, 0.1 mM Muscimol 

(GABAA receptor agonist) or Baclofen (GABAB receptor agonist) was added to the 

EV and MC9 clones for 24 hours. 13C6-glucose was also added to the medium to 

evaluate changes in endogenous serine synthesis. The addition of 0.5 mM 15N-

GABA resulted in a reduction in unlabelled levels of intracellular serine only, 

indicating that the reduction in serine was from an exogenous source. This was 

not observed with the addition of either Muscimol or Baclofen indicating that 

this effect was not GABA receptor mediated (Figure 4-17C). 
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Figure 4-17 GABA and serine uptake in MOG-GCCM and astrocytes 
A. Intracellular level of 15N-GABA over time after incubation with DMEM plus 0.5 mM 15N-GABA in 
both MOG-GCCM cells and immortalised astrocytes. B. Intracellular levels of serine after 
incubation with DMEM plus 0.5 mM 15N-GABA in both MOG-GCCM cells and immortalised 
astrocytes. C. Intracellular levels of serine after incubation with 13C6-glucose and either 0.5 mM 
GABA, 0.1 mM Muscimol (GABAA receptor agonist), or 0.1 mM Baclofen (GABAB receptor agonist) 
for 24 hours. In the MOG-GCCM cells, EV is depicted in blue, EV + 2HG depicted in orange, and 
MC9 depicted in red. The IDH1 wild-type astrocytes are depicted in blue and the IDH1 mutant 
astrocytes in red. Single experiment depicting mean +/-SD. 
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4.2.2.4  The IDH1 mutation does not inhibit GABA transaminase 

The increased uptake of GABA, coupled with the potential increase in flux from 

glutamine to GABA in IDH1 mutant cells, led to the hypothesis that GABA may be 

an important source of succinate in the TCA cycle either exogenously or via the 

GABA shunt. GABA is metabolised in the mitochondria via GABA transaminase 

(GABA-T), utilising α-KG as a co-substrate, to SSA with glutamate as a co-

product. SSA can then be further metabolised to succinate. In turn, succinate 

can enter the TCA cycle, bypassing α-KG and its metabolism to 2HG. As 2HG can 

act as a competitive inhibitor of α-KG, an alternative hypothesis is that the 

increase in steady state intracellular GABA is due to inhibition of GABA-T. 

Unfortunately, 13C tracing is not useful in determining whether there is increased 

flux through the GABA shunt, as the same carbon is lost in the production of 

succinate via the TCA cycle as it is via the GABA shunt. To confirm increased flux 

through GABA-T an alternative method was devised, by following the metabolism 

of exogenous 15N-GABA to 15N-glutamate as an indication of the flux through the 

GABA-T enzyme. 

To determine the flux through this pathway, 0.5 mM 15N-GABA was added to the 

medium of MOG-GCCM and astrocytes for 24 hours. Unfortunately, 15N-glutamate 

could not be detected above its natural abundance level in this cell model.  

Instead, the NCH cell lines cultured as spheroids, as previously described in 

chapter 3, were used. Two of these cell lines had endogenous IDH1 mutations 

(NCH551b, NCH612) while two were IDH1 wild-type (NCH 644, NCH421k). After 

incubation with 15N-GABA, the IDH1 wild-type cell lines had higher levels of 

intracellular 15N-GABA compared to the IDH1 mutant cell lines. In the IDH1 wild-

type cell lines, labelled GABA constituted over 90% of the intracellular GABA. In 

the IDH1 mutant cell lines, endogenous unlabelled GABA constituted a higher 

percentage of total GABA compared to the labelled metabolite. This indicated 

maintenance of endogenous production even in the presence of high levels of 

exogenous 15N-GABA (Figure 4-18A). However, there was no change in 

intracellular succinate levels after the addition of 15N-GABA or Vigabatrin (Figure 

4-18C). This may be due to the small peak area observed for succinate on LC-MS, 

making it difficult to identify differences between experimental groups.  
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Consumption of 15N-GABA varied between the different cell lines (Figure 4-18B). 

To account for this, a ratio of 15N-glutamate to 15N-GABA was used to determine 

flux through GABA-T. The 15N-glutamate/15N-GABA ratio was highest in the IDH 

wild-type NCH412k and the IDH1 mutant NCH612 cell lines. The 15N-

glutamate/15N-GABA ratio was decreased with the addition of 200 µM Vigabatrin, 

a specific GABA transaminase inhibitor, indicating that this enzyme is 

responsible for the observed effect in these cell lines (Figure 4-18D). 

Alanine and aspartate are formed from transamination reactions that utilise 

glutamate as a source of nitrogen.  The ratio of 15N-labelled alanine and 

aspartate to 15N-GABA was increased in the IDH1 mutant NCH612 compared to 

the wild-type cell lines. The other IDH1 mutant cell line, NCH551b, had a similar 

ratio to the wild-type cell lines of 15N-labelled alanine and aspartate to 15N-

GABA. This indicates that 2HG does not inhibit GABA-T and in the NCH612 cell 

line could indicate an increased flux through the GABA transaminase enzyme 

(Figure 4-18E,F). 
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Figure 4-18 GABA metabolism in NCH cell lines 
A. Intracellular levels of labelled and unlabelled GABA after incubation with 0.5 mM 15N-GABA for 
24 hours. B. Consumption of 15N GABA in NCH cell lines from the same experiment. C Ratio of 
15N-glutamate, 15N-alanine, 15N-aspartate, and 15N-serine to 15N-GABA. IDH1 wild-type cell lines 
depicted in white, IDH1 mutant cell lines depicted in red. Single experiment depicting mean +/-SD. 
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Glial tumours are typically resistant to radiotherapy and chemotherapy, and will 

recur after treatment. This often occurs in the irradiated regions of the tumour, 

and is thought to relate to the presence of a small number of individual cells 

that have survived treatment and have maintained an ability to reproduce. To 

replicate this environment, we used clonogenic assays to determine the effect of 

the IDH1 mutation on cell survival and proliferation in the MOG-GCCM cells and 

immortalised astrocytes. This involved the plating of several hundred cells and 

measuring the number of colonies produced over a set period of time. Cells that 

have managed to divide over 50 times are usually large enough to be counted as 

a colony. The addition of different agents to the colony assay determines their 

effect on cell survival as well as the ability to maintain proliferation. In the 

MOG-GCCM cells, the MOG-GCCM PCL grew numerous colonies of varing sizes. 

The clones had decreased clonogenicity compared to the MOG-GCCM PCL, with 

the EV producing the least number of colonies. In the immortalised astrocytes, 

the IDH1 mutant astrocytes exhibited decreased clonogenicity compared to the 

IDH1 wild-type cells (Figure 4-19). 

The addition of 0.5 mM GABA, 0.2 mM Vigabatrin, or both, to the immortalised 

astrocytes had no effect on clonogenicity (Figure 4-20). In the MOG-GCCM EV and 

MC9 clones, the addition of 0.5 mM GABA also had no effect, but the addition of 

0.2 mM Vigabatrin decreased the clonogenicity of both. This was reversed by the 

addition of 0.5 mM GABA in the MC9 clone (Figure 4-21).  
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Figure 4-19 Clonogenic assay  
A. Clonogenic assay of MOG-GCCM cells. B. Clonogenic assay of IDH1 wild-type and IDH1 
mutant astrocytes.  Representative of 2 independent experiments. 
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Figure 4-20 Effect on clonogenicity of GABA and Vigabatrin in astrocytes 
Clonogenic assay of immortalised astrocytes with overexpressed IDH1 wild-type (WT) or IDH1 
mutant (Mut) genes, incubated with 0.5 mM GABA, 0.2 mM Vigabatrin, or both. Representative of 2 
independent experiments.  
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Figure 4-21 Effect on clonogenicity of GABA and Vigabatrin in MOG-GCCM cells 
A. Clonogenic assay of MOG-GCCM empty vector (EV) or IDH1 mutant clone (MC9), incubated 
with 0.5 mM GABA, 0.2 mM Vigabatrin, or both. B. Quantification of 2 independent clonogenic 
experiments.  
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4.3 Discussion 

To investigate the metabolic changes caused by the IDH1 mutation, a cell model 

was developed by overexpressing the IDH1 mutation in an anaplastic 

astrocytoma cell line, MOG-GCCM. The loss of intracellular 2HG from the IDH1 

mutant overexpressed pools, and the increase in cell proliferation, led to the 

hypothesis that 2HG was responsible for decreased cell growth. As 2HG is not 

cell permeable, this hypothesis was tested and confirmed by the addition of 

exogenous cell permeable 2HG-lactone to MOG-GCCM and LN18, a glioblastoma 

cell line. In both cases, a dose dependent decrease in cell proliferation could be 

observed with increasing concentrations of exogenous 2HG-lactone. MOG-GCCM 

clones were developed to decrease the possibility of intracellular 2HG loss over 

time. The clones with the highest levels of intracellular 2HG were also 

associated with longer doubling times. The EV control was compared to the EV + 

2HG and MC9 clone using Ingenuity Pathway Analysis. There were differences in 

pathways associated with cell proliferation and growth, and the cell cycle, 

consistent with changes in cell growth. This may explain the clinical pattern of 

the disease with an increase in overall survival associated with the IDH1 

mutation [95].  

Gene expression data using Affymetrix microarray showed similar expression 

profiles between the two controls, indicating that the EV was a good 

representation of the original MOG-GCCM PCL. The biggest differences in gene 

expression were seen between the MC9 clone and the controls. The EV + 2HG 

had similar intracellular levels of 2HG as the MC9 clone, but had a similar gene 

expression profile as MC3, the clone with lowest intracellular levels of 2HG. This 

indicates that factors other than intracellular 2HG level, such as α-KG level, may 

have contributed to the differences in gene expression profile observed in this 

experiment. Overexpression of the IDH1 mutation has been shown to cause 

epigenetic changes by increasing histone and DNA methylation over time [245]. 

It may be that the genetic variability observed is also in part a result of the 

increased number of passages of the IDH1 mutant clones compared to the EV + 

2HG. 

The IDH1 mutation resulted in changes in steady state levels of TCA cycle 

intermediates. There was a reduction in intracellular malate and citrate for all 
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IDH1 mutant clones and EV + 2HG. In addition, the two IDH1 mutant clones with 

the highest levels of intracellular 2HG, and EV + 2HG, had decreased levels of α-

KG and succinate. In the immortalised astrocytes there was a reduction in 

intracellular α-KG and succinate in the IDH1 mutant compared to the IDH1 wild-

type cells. Steady state and dynamic labelling from 13C-glucose and 13C-

glutamine confirmed an increased flux from α-KG to 2HG in both cell models, 

resulting in a reduction in other TCA intermediates. However, the reduction in 

TCA metabolites does not seem to be solely due to the activity of the IDH1 

mutant enzyme. The addition of 2HG to EV caused a reduction in α-KG, though 

not to the same extent as the MC9 and MC10 clones. This raises the possibility 

that other metabolic processes are affected by 2HG which results in reduced 

steady state levels of TCA metabolites. Conversely, the MOG-GCCM cell model 

showed a possible mechanism for increasing α-KG levels in the cell. Dynamic 

labelling of MC9 using 13C-glucose showed an increase in accumulation of alanine 

and serine compared to the EV. Synthesis of these metabolites requires a 

transamination step, which utilises glutamate to produce α-KG as a co-substrate. 

The increased flux through these pathways may be a mechanism whereby the 

IDH1 mutant cell can replace the α-KG lost to 2HG production.  

In both the MOG-GCCM and astrocyte cell models, the IDH1 mutant cells had 

lower intracellular levels of glutamate, when compared to controls.  GSH, a 

glutamate derived metabolite, was also decreased. Steady state and dynamic 

labelling indicated that this decrease in GSH is due to the decreased 

intracellular levels of glutamate. GSH is the most common antioxidant in the 

cell, and decreased levels of GSH are associated with increased levels of 

reactive oxygen species (ROS). Increases in ROS are associated with cell cycle 

arrest and decreased cell proliferation [233]. Decreased GSH has been shown to 

inhibit cell proliferation in an IDH1 overexpressed GBM cell line because of 

increased ROS, and may provide an explanation for the decreased cell 

proliferation caused by 2HG in MOG-GCCM [232].  

Conversely, the glutamate derived metabolite NAAG, and its precursor NAA, 

were increased. The same metabolic changes were also observed in EV + 2HG. 

Dynamic labelling suggested that the increase in NAA was due to an increased 

flux from malate and aspartate. NAA, after glutamate, is the most abundant 
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amino acid derivative in the brain and is synthesised mostly by neurons. It is also 

the most abundant source of acetate in the brain and is required for the 

production of NAAG. Both NAA and NAAG can act as neurotransmitters activating 

metabotropic glutamate receptors. Interestingly, NAAG is metabolised almost 

exclusively by astrocytes to NAA, which in turn is metabolised back to glutamine 

by oligodendrocytes and released into the extracellular space for neuronal 

uptake [69]. These two metabolites may have a role in tumorigenesis as they 

have been shown to replicate a feature of IDH1 mutant cells, namely the 

prevention of cellular differentiation, and may help to promote cell growth [60, 

261].  

GABA, another glutamate derived neurotransmitter, was also increased in the 

IDH1 mutant clones in the MOG-GCCM model. Dynamic labelling from 13C5-

glutamine in the IDH1 mutant MOG-GCCM and immortalised astrocytes indicated 

a possible increased flux from glutamate. IDH1 mutant cells, and EV + 2HG, also 

showed increased uptake of 15N-GABA when compared to wild-type controls. 

Interestingly, there was also an associated fall in intracellular serine levels, and 

decreased serine uptake from the medium, which was not a GABA receptor 

associated effect. However, these experiments were only done once, though in 

two different models, so would need to be repeated to confirm these 

observations. GABA has been implicated in mitochondrial nucleoside salvage, 

which may decrease the need for nucleotide synthesis by serine via one-carbon 

metabolism [280]. This may account for the reduction in serine uptake causing a 

fall in intracellular serine as GABA levels increase. 

The increased uptake of GABA, coupled with the increase in flux from glutamine 

to GABA in IDH1 mutant cells, led to the hypothesis that GABA may be an 

important source of succinate in the TCA cycle. GABA-T is an α-KG dependent 

enzyme, so the increase in GABA could be due to inhibition of this enzyme. The 

metabolism of 15N-GABA to 15N-glutamate in the NCH cell lines was used as a 

measure of flux through GABA-T. There was no inhibition of GABA-T by 2HG but 

potentially an increased flux from GABA to succinate in one of the IDH1 mutant 

cell lines. This may provide a mechanism for the cell to bypass α-KG in the TCA 

cycle. Though GABA-T utilises α-KG as a co-substrate to produce SSA and 

glutamate, the glutamate produced could be utilised in the production of 

alanine, aspartate and serine producing α-KG, potentially preventing an overall 
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net loss of α-KG in the cell. The increased uptake of GABA in the MOG-GCCM and 

immortalised astrocytes raises the possibility of GABA as an alternative carbon 

source for the TCA cycle which could maintain production of TCA intermediates 

such as malate and citrate.  

Unfortunately, there was no benefit to the addition of GABA to colony formation 

in the IDH1 mutant astrocytes and MOG-GCCM compared to the IDH1 wild-type 

cells. However, in the MOG-GCCM cells there was a reduction in colony 

formation after the addition of Vigabatrin in the IDH1 wild-type EV and IDH 

mutant MC9 clones. This was rescued with the addition of GABA in the MC9 cells. 

It may indicate that in this cell line, GABA transaminase is important for cell 

proliferation and survival, but is not specific to the IDH1 mutation. Alternatively 

it may be an off target toxic effect of the drug in this cell line. However, 

investigating the effect on cell proliferation in NCH cell lines would give a better 

indication of the importance of the GABA shunt, as the activity of GABA 

transaminase in the cell lines was measurable unlike the MOG-GCCM and 

astrocyte cell models.  

There were limitations of the MOG-GCCM and astrocytoma cell models used, 

principally that they were developed using overexpression of an IDH1 mutant 

vector. This does not accurately reflect the physiological expression of the 

protein in tumour cells, where there is one IDH1 mutant allele and one IDH1 

wild-type allele. The majority of the IDH1 mutant protein forms a complex with 

the IDH1 wild-type protein and this may not have been the case in the cell 

models depending on the expression levels of wild-type and mutant proteins 

[281]. This in turn may have effects on the production of metabolites such as α-

KG and 2HG, altering the potential effects on α-KG dependent dioxygenases and 

gene expression. An example of this is that the IDH1 mutation is associated with 

downregulation of branch chain aminotransferase (BCAT) in vivo [273], but there 

was no observed change in leucine, isoleucine and valine in these cell models 

(data not shown) which would be expected if there was a loss of this enzyme. As 

this could potentially affect glutamate and α-KG synthesis, it may have had an 

indirect effect on the glutamine-glutamate-GABA cycle. However, many other 

metabolic changes were consistent in these cell models with the IDH1 mutant 

endogenous cell lines, when compared to controls, indicating that they were 

able to replicate many of the changes present in endogenous IDH1 mutant cell 
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lines. The latter cell lines were difficult to grow in culture so the MOG-GCCM 

and astrocyte cell lines were reasonable alternatives to investigate the effects 

of the IDH1 mutation on metabolomics and gene expression. 

There were also limitations to the metabolic analysis of the cell lines. 

Intracellular compartments exist within the cell in the form of organelles such as 

mitochondria and peroxisomes, and can result in metabolic processes which are 

separate from the rest of the cell. Most metabolites are present in more than 

one compartment, and the concentrations of these metabolites may change 

separately in one compartment compared to another under different cellular 

stresses. Unfortunately, with current techniques only the average metabolite 

level and labelling pattern can be measured within the cell [282]. This raises the 

possibility that the changes observed in α-KG and GABA may only occur in one 

compartment. In the case of α-KG this could have implications on enzymes which 

are restricted to certain compartments such as TET and histone demethylases. 

However, as these metabolites can be transferred between compartments it 

seems likely that a change in one compartment is reflected in another [24, 51]. 

This could potentially be investigated further in the future, if a method to 

extract metabolites successfully from organelles is developed. 

In summary, the IDH1 mutation results in an increased flux from α-KG to 2HG, 

and potentially from glutamate to GABA and aspartate to NAA. This increase in 

GABA is not the result of inhibition of GABA transaminase by 2HG, but 

potentially due to increased flux through the GABA shunt. The most striking 

metabolic change, however, is the increase in the 2HG/ α-KG ratio in the IDH1 

mutant cells. This could potentially have an effect on α-KG-dependent 

dioxygeneses, which have a role in DNA and histone methylation.  
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Chapter 5 Epigenetic changes associated with 
the IDH1 mutation 

5.1 Introduction 

The epigenome consists of a range of alterations that change gene expression 

without affecting the DNA sequence. Several components of the chromatin 

structure can be modulated to alter gene expression. This includes DNA and 

histones, around which the DNA is folded to form a nucleosome. Histones are 

comprised of eight subunits; two each of H2A, H2B, H3 and H4. Modulation of 

gene expression can occur epigenetically by chemical modification at the DNA 

nucleotide level or on histone tails. DNA modification occurs through 

methylation of cytosine residues, while histone tails can undergo several 

modification processes which include methylation and acetylation. DNA 

methylation results in gene suppression, while histone tail modification can 

result in either gene activation or repression depending on the site and chemical 

modification. These processes are important in healthy tissues to maintain 

cellular differentiation and adapt to environmental change.  

In the previous chapter, the IDH1 mutation was associated with an increase in 

intracellular 2HG and a fall in intracellular α-KG. 2HG has been shown to act as a 

competitive inhibitor of α-KG dependent dioxygenases. These include enzymes 

involved in modulation of DNA and histone methylation. To identify specific 

changes related to 2HG inhibition of histone methylation in particular, a histone 

methylation screen was devised using the MOG-GCCM cell line discussed in the 

previous chapter.   

5.2 Results 

5.2.1  Increased 2HG/α-KG ratio with IDH1 mutation 

The IDH1 mutation was associated with increases in intracellular 2HG and a fall 

in α-KG, its precursor metabolite. 2HG can act as a competitive inhibitor of α-KG 

dependent enzymes, which include dioxygenases and transaminases. The fall in 

α-KG associated with 2HG production would potentially exacerbate the inhibitory 

effect of 2HG on these enzymes. The 2HG/α-KG ratio in the clinical samples 
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ranged from 50 to almost 600 in the IDH1 mutant tumours. In comparison the 

IDH1 wild-type tumours had a 2HG/α-KG ratio that was close to zero. A similar 

effect was seen in the endogenous IDH1 mutant NCH cell lines, with a 2HG/α-KG 

ratio up to 600. The IDH1 mutant over-expressed cell lines also had increased 

2HG/α-KG ratios. In the MOG-GCCM IDH1 mutant clones, the 2HG/α-KG ratio 

went up to 200, and up to 50 in the IDH1 mutant astrocytes (Figure 5-1A).  

5.2.2  The IDH1 mutation is associated with changes in histone 
methylation 

The α-KG dependent dioxygenases are a family of enzymes which rely on α-KG as 

a co-substrate. Prolyl hydroxylases (PHD) are a subgroup of α-KG dependent 

dioxygenases that have been implicated in tumorigenesis. They play an 

important role in the degradation of hypoxia inducible factor (HIF) in normoxic 

conditions. HIF activates a range of genes in response to low oxygen to increase 

glycolysis and angiogenesis. In the presence of oxygen, PHD hydroxylates prolyl 

groups on HIF allowing it to bind to the von Hippel-Lindau (VHL) protein which 

tags HIF for ubiquitination and degradation in the proteasome. HIF can be 

stabilised by inhibition of PHDs, which occurs in tumours with other TCA 

metabolite mutations, namely succinate dehydrogenase and fumarate hydratase. 

To investigate whether this same effect occurs in IDH1 mutant tumours, protein 

was extracted from the MOG-GCCM cells and levels of HIF-1α were determined. 

To act as a positive control, the EV was incubated in either 2 mM 

dimethyloxaloylglycine (DMOG), an α-KG dependent dioxygenase inhibitor, or 

0.1% oxygen for 24 hrs. The IDH1 mutant clones, and EV + 2HG, did not show any 

increase in HIF-1α expression compared to the EV and PCL controls, indicating 

that 2HG doesn’t inhibit PHDs (Figure 5-1B).    
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Figure 5-1 The effect of the IDH1 mutation on  the 2HG/α-KG ratio and HIF1α expression 
A. 2HG/α-KG ratio for the MOG-GCCM cell lines, immortalised astrocytes, NCH cell lines and 
clinical tumour samples. The IDH1 mutant samples are depicted in red and the EV + 2HG in 
orange. B. Western blott depicting protein expression of hypoxia inducible factor 1α (HIF1α) in 
MOG-GCCM cells. 2 mM dimethyloxaloylglycine (DMOG) and incubation in 0.1% oxygen were 
used as positive controls. Β-tubulin was used as an internal control.  
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Histone JMJ demethylases are another sub-group of the α-KG dependent 

dioxygenases, which are involved in the removal of methyl groups from histone 

tails. The number and site of these methyl groups determines whether it leads 

to gene activation or suppression. To determine whether there was any change 

in histone methylation with the IDH1 mutation, a histone methylation screen was 

devised using immunofluorescence and a high throughput microscopy screening 

method. This involved using antibodies obtained from Dr H. Kimura, University of 

Osaka, for different histone methylation sites with either a total H3 or H4 

antibody as an internal control. Ratios of the fluorescence of the histone 

methylation sites with total H3 or H4 was used to compare the IDH1 mutant 

clones with the IDH1 wild-type controls. Cells were also incubated in 2 mM 

DMOG for 24 hrs to act as a positive control. 

The histone methylation screen showed an increase in H3K4me2, H3K4me3, 

H4K20me2, H4K20me3, and H3K27me3 in the IDH1 mutant clones and EV + 2HG, 

compared to the EV and MOG-GCCM PCL controls. Other histone methylation 

sites screened, such as H3K36 and H3K9, showed no difference between the IDH1 

mutant clones and the IDH1 wild-type controls (Figure 5-2, Figure 5-3). Of these 

histone methylation sites, H3K4 methylation, a marker associated with gene 

activation, had the most consistent dose response when related to the 

intracellular levels of 2HG of the different IDH1 mutant clones and EV + 2HG.  To 

confirm the specificity of H3K4me2 and H3K4me3 a MODified histone peptide 

array was used (Active Motif). Both antibodies had a specificity factor of over 

20, compared to a specificity factor of less than 4 for other histone methylation 

sites (Figure 5-4). 
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Figure 5-2 Histone methylation screen for H3K27, H3K36 and H4K20 
 A immunoflourescence screen was used to detect histone methylation and acetylation levels at 
H3K27 (A), H3K36 (B), and H4K20 (C) in MOG-GCCM cells. Comparison of different experimental 
goups was done by producing a ratio of the histone methylation site to the appropriate total histone 
(H3 or H4). EV and PCL controls are represented in grey. The IDH1 mutant clones are represented 
in red, and EV + 2HG is represented in orange. EV + 2 mM dimethyloxaloylglycine (DMOG), a 
jumonji histone demethylase inhibitor, is represented in green. Single experiment depicting mean 
+/- SD.  
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Figure 5-3 Histone methylation screen for H3K4 and H4K9 
A immunoflourescence (IF) screen was used to detect histone methylation and acetylation levels at 
H3K4 (A) and H4K9 (B) in MOG-GCCM cells. Comparison of different experimental goups was 
done by producing a ratio of the histone methylation site to the appropriate total histone (H3 or H4). 
The EV and PCL controls are represented in grey. The IDH1 mutant clones are represented in red, 
and EV + 2HG is represented in orange. EV + 2 mM dimethyloxaloylglycine (DMOG) is 
represented in green. Single experiment depicting mean +/- SD. (C) Example of images obtained 
using IF screen.  



154 
 

 

Figure 5-4 MODified histone peptide arrays 
MODified histone peptide arrays (Active Motif) were used to determine the specificity of antibodies 
used to detect H3K4me3 and H3K4me2. Specificity factor was determined using software provided 
with the product. 
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5.2.3  IDH1 mutation is associated with an increase in H3K4 
methylation 

To validate the histone methylation screen, histones were extracted from the 

NCH cell lines, MOG-GCCM cells and the immortalised astrocytes. When 

compared to IDH1 wild-type cell lines, H3K4me3 was increased in the IDH1 

mutant NCH cell line with the highest 2HG/α-KG ratio (NCH612). This was not the 

case in the other two endogenous IDH1 mutant cell lines, which may indicate 

that a minimal 2HG/α-KG ratio is required to increase H3K4 methylation, or that 

this change in histone methylation mark not be present in all IDH1 mutant 

tumours. However, the MOG-GCCM IDH1 mutant clones and EV + 2HG also had 

increased presentation of H3K4me2 and H3K4me3 compared to the EV and PCL 

controls. A similar effect was seen in the immortalised astrocytes with increased 

expression of H3K4me3 in the IDH1 mutant compared to the IDH1 wild-type cells 

(Figure 5-5 A,B,C). 



156 
 

 
Figure 5-5 H3K4me2 and H3K4me3 presentation in cell lines 
Western blot depicting H3K4me2 and H3K4me3 presentation in A. MOG-GCCM PCL, EV, EV 
propagated in 30 mM 2HG-lactone (2HG), and IDH1 mutant clones (MC3, MC9, MC10) B. 
immortalised IDH1 wild-type (WT) and IDH1 mutant (MT) astrocytes and C. endogenous IDH1 wild-
type (644, 421k) and endogenous IDH1 mutant (1681, 551b, 612) cell lines. EV + 2 mM 
dimethyloxaloylglycine (DMOG), a JMJ histone demethylase inhibitor, was used as a positive 
control. Graphs depict quantification of Western blot from 3 independent experiments (A + B) or a 
single experiment (C). Data were analyzed using Students t-test. * depicts p ≤ 0.05.   
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To identify whether this change in histone methylation also occurred in vivo, ten 

IDH1 wild-type and ten IDH1 mutant glioblastoma tumours were stained for 

H3K4me2 and H3K4me3 expression. To quantify the staining for H3K4me2/3, the 

slides were scanned and analysed using SlidePath Tissue Image Analysis 2.0 

(Leica microsystems). To generate a histoscore the stained cells algorithm was 

used on the whole section for each slide. An increase in both H3K4me2 and 

H3K4me3 was seen in IDH1 mutant compared to IDH1 wild-type tumours (Figure 

5-6D,E). 

 
Figure 5-6 H3K4me2 and H3K4me3 presentation in clinical samples 
Immunohistochemistry for presentation of H3K4me2 (D) and H3K4me3 (E) in 10 IDH1 wild-type 
(WT) and IDH1 mutant (Mut) glioblastoma samples. Graphs depict quantification of these samples 
by generating a histoscore using Leica SlidePathTissue Analysis 2.0. Data were analyzed using 
Students t-test. * depicts p ≤ 0.05.   
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5.2.4  ChIP sequencing shows an increase in peaks for H3K4me2 
and H3K4me3 caused by the IDH1 mutation. 

H3K4me2 and H3K4me3 are associated with increases in gene expression. 

Chromatin immunoprecipitation sequencing (ChIP Seq) was used to identify the 

genes with an increase in these histone marks. Specific antibodies were used to 

extract chromatin bound to H3K4me2 and H3K4me3 which was then precipitated 

and sequenced against the human genome to identify genes that were associated 

with this histone methylation site. ChIP sequencing was used to investigate the 

effects of increased methylation of H3K4 in the MOG-GCCM EV, EV + 2HG, and 

MC9 clones.  

Analysis of the ChIP Seq data showed that there were more peaks from H3K4me2 

than H3K4me3. In addition, the EV + 2HG, and MC9 cells had more peaks of 

H3K4me2 and H3K4me3 than the EV control (Figure 5-7A). When the H3K4me2 

and H3K4me3 peaks were compared, there was almost a complete overlap 

between these histone methylation states in all three groups (Figure 5-7B). 

Peaks were then analysed to determine their position relative to the 

transcription start site (TSS). The peak distribution for H3K4me3 was 

predominantly around the TSS, but for H3K4me2 this was spread across the gene 

region, with most of the peaks away from the TSS (Figure 5-8A, B).     
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Figure 5-7 Venn diagrams depicting ChIP Seq peaks associated with either H3K4me2 or 
H3K4me3 
A. Diagram representing distribution of peaks between EV, EV + 2HG, and MC9. B. Distribution of 
peaks between H3K4me2 and H3K4me3 for EV, EV + 2HG, and MC9. 2HG, and IDH1 mutant 
clone by MC9. 
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Figure 5-8 All ChIP Seq peaks 
Graphs depict the proportion of peaks present within a specified distance from the transcription 
start site (TSS) for A. H3K4me2 and B. H3K4me3 in EV and IDH1 mutant MC9 clone. 
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Peaks that were new to the EV + 2HG or MC9 cells compared to the EV control 

were further examined. There were more new peaks in the MC9, compared to 

the EV + 2HG cells. The majority of new peaks for H3K4me2 and H3K4me3 were 

situated over 50 kbps from the TSS for both EV + 2HG, and MC9. However, a 

bigger proportion of new peaks were associated with the TSS for H3K4me3 

compared to H3K4me2 (Figure 5-9A,B).  

Focusing on H3K4me3, there was a strong correlation between peaks around the 

TSS that were significantly different from the EV for EV + 2HG compared to MC9. 

This corresponds to an increase in reads for H3K4me3 around the TSS for MC9 

and EV + 2HG (Figure 5-9C,D). The top 50 genes that had increased reads for 

H3K4me3 at the TSS, common to EV + 2HG and MC9 compared to EV, are 

depicted in Table 5-1.    
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Figure 5-9 New Chip Seq peaks 
Graphs depicting the proportion of new peaks present within a specified distance from the 
transcription start site (TSS) for A. H3K4me2 and B. H3K4me3 in EV + 2HG and IDH1 mutant MC9 
clone when compared to the EV control. C. Graph depicting the correlation between ChIP peaks of 
EV + 2HG and MC9 when compared to the EV. D. Comparison of ChIP Seq peak locations relative 
to the nearest transcription start site for EV, EV + 2HG and MC9.   
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Table 5-1 Genes associated with changes in ChIP Seq 
Top 50 genes with increased H3K4me3 over the TSS common to EV + 2HG and MC9 compared to 
EV with log2 fold change ≥ 0.5 and adjusted p value ≤ 0.05.  



164 
 

5.2.5  Increased abundance of H3K4me3 is associated with 
increased expression of GABRB3  

To obtain additional information on gene expression for the EV, EV + 2HG, and 

MC9 cells, RNA was extracted and sequenced using an Illumina next generation 

sequencer. Differential expression was calculated for EV + 2HG and MC9 

compared to EV.  

The MC9 clone and EV + 2HG had different gene expression profiles compared to 

the EV control. There were both increases and decreases in gene expression in a 

large number of genes for the EV + 2HG and MC9 clone compared to EV, with the 

biggest changes seen in the MC9 clone (Figure 5-10A). When these differences in 

gene expression were compared between the EV + 2HG and MC9, there was a 

strong correlation between these two experimental groups (Figure 5-10B). A 

heatmap generated from the genes that were significantly different between the 

EV + 2HG or MC9 when compared to the EV, which showed a similar pattern 

between the EV + 2HG and MC9 (Figure 5-10C). 

The top 50 upregulated genes with the highest fold change common to EV + 2HG 

and MC9, compared to the EV, included ZC4H2 and EFNB3 which are involved in 

neurogenesis and brain development, respectively. In addition, there were 

upregulated genes, such as CACNA1G and CACNA2D3, which encode calcium 

channel subunits involved in neurotransmitter release. ALDF3A1, a gene involved 

in neurotransmitter metabolism was also increased in the EV + 2HG and MC9 

when compared to the EV. Finally, there was an increase in the GABRB3 gene, 

which is a subunit of the GABA-A receptor and involved in GABA signalling in the 

brain (Table 5-2).  
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Figure 5-10 RNA Seq data  
A. MA plot of gene expression versus their log2 fold change for either EV + 2HG or IDH1 mutant 
MC9 clone compared to the EV control. Each dot represents a single gene. Red dots depict genes 
with adjusted p value ≤ 0.05, while grey dots represent genes with an adjusted p value > 0.05. B. 
Graph depicting the correlation between differential gene expression of EV + 2HG and MC9 when 
compared to the EV. C. Heatmap of the genes represented in A with a statistically significant 
difference between the EV + 2HG or MC9 compared to the EV control. 
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Table 5-2 Changes in gene expression from RNA Seq 
Top 50 genes with increased expression common to EV + 2HG and MC9 compared to EV with 
adjusted p value ≤ 0.05  
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To identify genes associated with changes in H3K4me3 in the EV + 2HG and MC9 

cells versus the EV, the RNA seq and ChIP seq data were analysed together. 

Genes with significant differential expression (q value ≤ 0.001) in the RNA Seq 

were used for further analysis. Promoters (First TSS +/- 5kb) of differentially 

expressed genes that were common across EV + 2HG and MC9 were used to check 

the K4Me3 change across samples. 

The top 20 genes associated with an increase in H3K4me3 and gene expression 

for both EV + 2HG and MC9 compared to EV are shown in Table 5-3. This included 

the androgen receptor (AR), which regulates gene transcription; BRSK2 which 

plays a role in axonogenesis and the cell cycle; LAMB4 which is involved in the 

PI3K-Akt signaling pathway; and PEG3 which mediates the neuronal death 

pathway activated by DNA damage. However, one of these genes was GABRB3, a 

subunit of the GABA-A receptor. This receptor is activated by GABA, which was 

increased intracellularly in the in vivo and in vitro metabolomic data described 

in the previous two chapters. Therefore, the GABRB3 subunit and its interaction 

with GABA was investigated further and validated. The other targets have not 

yet been validated.   
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Table 5-3 Genes with increased expression and H3K4me3 presentation 
Top 20 genes with increased H3K4me3 over the TSS  and increased gene expression common to 
EV + 2HG and MC9 compared to EV with log2 fold change ≥ 0.5 and adjusted p value ≤ 0.001. 
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Differences in the expression of the GABRB3 subunit in MC9 and EV + 2HG, 

compared to the EV, were validated using qPCR. The expression of GABRB3 was 

three times higher in the EV + 2HG, and eight times higher in the MC9 clone 

compared to the EV control. Validation of the ChIP Seq data for the same gene 

was done using ChIP qPCR. This showed a % input that was double in the EV + 

2HG and four times higher in the MC9 clone compared to the empty vector 

control (Figure 5-11).  

RNA seq and Affymetrix microarray analysis showed that other subunits of the 

GABA-A receptor were also upregulated in the EV + 2HG and MC9 clone 

compared to the EV control. In both methods, there was an increase in gene 

expression for GABRA3, GABRE, and GABRQ (Table 5-4).   
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Figure 5-11 Validation of ChIP and RNA Seq data using qPCR 
A. mRNA GABRB3 expression in the EV, EV+2HG, and IDH1 mutant MC9 clone. Depicts 3 
independent expreiments showing mean +/- SEM.  B. Depicts ChIP peaks across the GABRB3 
gene. The arrow represents the position of the transcription start site (TSS). C. ChIP qPCR for the 
GABRB3 gene using pull down for H3K4me3. Haemaglutinin (HA) antibody was used as a 
negative control. Two other genes (HK3 and PGAM2) with no change in H3K4me3 peaks on ChIP 
Seq between the EV + 2HG and MC9 clone compared to the EV were used as additional controls. 
Data were analysed using 2-way ANOVA. * depicts p ≤ 0.01 compared to EV (H3K4me3).   
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Table 5-4 Changes in GABA-A subunits caused by the IDH1 mutation 
A. mRNA epression data from Affymetrix microarray depicting fold change (FC) of the IDH1 mutant 
MC9 clone, and EV + 2HG compared to the EV control for subunits of the GABA-A receptor. B. 
mRNA epression data from RNA sequencing depicting FC of at least 1.5 for the MC9 or EV + 2HG 
cells compared to the EV control. 
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To determine whether the changes in GABA-A receptor subunit gene expression 

occurred in vivo, datasets from Oncomine and the Cancer Genome Atlas (TCGA) 

were analyzed. In the Oncomine dataset, gene expression for GABRB3 was 

increased in primary gliomas that are associated with a high incidence of the 

IDH1 mutation, namely astrocytoma, oligoastrocytoma, and oligodendroglioma. 

Conversely, GBM, which is associated with a low incidence of the IDH1 mutation, 

had a reduced expression of the GABRB3 gene (Figure 5-12A). Using TCGA, and 

focusing on low grade gliomas, there was an increase in both GABRA3 and 

GABRB3 in IDH mutant compared to IDH wild-type tumours. Conversely, there 

was a decrease in gene expression of several other GABA-A receptor subunits 

including GABRA2/3, GABRG3, and GABRQ (Figure 5-12B,C).  
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Figure 5-12 Datamining GABRB3 expression from patient samples  
A. mRNA  expression of GABAB3 in different types of primary brain tumour. Tumours in red are 
gliomas with a high incidence of IDH1 mutation, while tumours in blue are gliomas with a low 
incidence of IDH1 mutation. Analysis was done using the Oncomine data base [283]. B. mRNA  
expression of GABAB3 in cohort of low grade glioma generated by the TCGA Research Network: 
http://cancergenome.nih.gov/. Statistical analysis was done using Students t-test. ** represents a p 
value ≤ 0.01. C mRNA expression of different subunits that can constitute the GABA-A receptor 
using the same TCGA database as B.  
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To confirm whether these differences in mRNA GABRB3 expression between IDH 

mutant and IDH wild-type tumours resulted in changes in protein expression in 

vivo, parrafin embedded tumour samples were stained for the presence of the 

GABRB3 protein using a commercial antibody [284]. 10 IDH1 wild-type and 10 

IDH1 mutant tumour samples were used. To quantify the staining for GABRB3, 

the slides were scanned and analysed using SlidePath Tissue Image Analysis 2.0 

(Leica microsystems). To generate a histoscore, the stained area algorithm was 

used across the whole section of each slide for the GABA-A receptor β3 subunit. 

There was a trend towards an increase in GABRB3 in the IDH1 mutant tumours 

but this was not significant (Figure 5-13).  

 
Figure 5-13 GABRB3 expression of clinical GBM samples 
Immunohistochemistry for expression of GABAB3 in 10 IDH1 wild-type (WT) and 10 IDH1 mutant 
(Mut) glioblastoma samples. Representative images of two WT and two Mut samples. Graph 
depicts quantification of these samples through generation of a histoscore using Leica 
SlidePathTissue Analysis 2.0. Data were analysed using Students t-test.  
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To assess whether upregulation of GABRB3 had an effect on cell proliferation 

and survival, clonogenic assays were carried out comparing the EV control and 

the MC9 and MC10 IDH1 mutant clones. A GABA-A receptor inhibitor, Bicuculline, 

in the presence or absence of 0.5 mM GABA, was added to medium. The addition 

of the GABA-A receptor inhibitor resulted in a 50% reduction in colonies forming 

for EV and the IDH1 mutant clones. This effect was not reversed by the addition 

of GABA (Figure-5-14). 

To assess whether upregulation of the GABRB3 resulted in changes in cell 

migration, a scratch assay was used. The reduction in the scratch over 24 hours 

was measured at hourly intervals using an Incucyte live cell imaging system. 

There was no difference in cell migration between the PCL, EV and IDH1 mutant 

MC9 and MC10 clones. There was no effect on cell migration with the addition of 

Bicuculline or GABA (Figure 5-15).  
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Figure-5-14 Effect of GABA and GABA-A receptor inhibition on clonogenicity 
Clonogenic assay of empty vector (EV) or IDH1 mutant MC9 clone, incubated with 0.1 mM 
Bicuculline (Bic) or 0.1 mM Bic with 0.5 mM GABA. B. Quantification of 3 independent experiments 
described in A. Statistical analysis was done using 2-way ANOVA. * depicts p ≤ 0.01 
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Figure 5-15 Effect of GABA and GABA-A receptor inhibition on cell migration 
Scratch assay depicting the% of area filled over 24 hours. A. depicts scratch assay comparing the 
MOG-GCCM parental cell line (PCL), empty vector (EV), and IDH1 mutant clones MC9 and MC10. 
B. depicts scratch assay after the addition of 0.5 mM GABA, 0.1 mM  Bicuculline (Bic) or both (0.1 
mM Bic + GABA). Data from single experiment representative of two independent experiments. 
Mean +/- SD.  
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5.3 Discussion 

The IDH1 mutation was associated with an increase in intracellular 2HG and a 

fall in α-KG. This increase in the 2HG/ α-KG ratio was observed in several cell 

models as well as clinical tumour samples. This large difference in the 

intracellular 2HG/ α-KG ratio led to the hypothesis that the IDH1 mutation, 

through the production of 2HG, could result in the inhibition of α-KG-dependent 

dioxygenases. No effect was observed on PHDs, but there was an increase in 

histone methylation at some sites on the histone tail. This included H3K4, H3K27 

and H4K20, whereas other sites were unaffected. There are numerous JMJ 

histone demethylases which can demethylate several sites on the histone tail 

[172]. The variable effect on histone methylation sites and the lack of effect on 

PHDs by the IDH1 mutation indicates that not all α-KG-dependent dioxygenases 

are sensitive to inhibition by 2HG. Another group has also shown different 

effects on histone methylation in oligondendrogliomas, with an increase in H3K9 

methylation [261]. This was not observed in our histone methylation screen on 

an astrocytoma derived cell line and could indicate that the effects of 2HG may 

be tissue dependent, as well as enzyme specific. 

H3K4 methylation is associated with gene activation. The IDH1 mutation resulted 

in an increase in both H3K4me2 and H3K4me3 across several cell models and in 

GBM tumour samples. ChIP sequencing of H3K4me2 and H3K4me3 in the MOG-

GCCM clones showed an increase in peaks in the IDH1 mutant MC9 clone and EV + 

2HG compared to the EV control. This confirmed the effect of 2HG on reducing 

histone demethylation in these cells at this particular site on the histone tail. In 

addition, the increase in H3K4me3 was associated with the TSS indicating that 

these changes could have an effect on gene expression. The H3K4me2 peaks 

however appeared mostly away from the TSS, which indicates that they may 

have indirect effects on gene expression. These areas may correspond to regions 

of non-coding RNA, which may affect gene expression by influencing mRNA 

translation.   

RNA sequencing was performed to assess gene expression in the IDH1 mutant 

MC9 clone, EV and EV + 2HG cells. When compared to the EV control, the EV + 

2HG and MC9 cells had similar changes in gene expression. When these changes 

in gene expression were aligned to changes in H3K4me3 peaks at the TSS there 
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was an associated increase in GABRB3, a subunit of the ionotropic GABA-A 

receptor, which on activation allows for the flow of chloride ions into the cell 

altering the cell membrane potential. This in turn activates neighbouring 

calcium channels increasing calcium influx which seems to have a negative 

effect on cell proliferation [30, 285]. 

The GABA-A receptor can be formed from a combination of nineteen different 

subunits. Microarray and RNA seq also showed an increase in GABRA3, GABRE, 

and GABRQ, in the MC9 and EV + 2HG cells. However, this didn’t correspond to 

changes in H3K4me3, indicating that the increase in gene expression occurred by 

a mechanism other than hypermethylation of H3K4. H3K27me3 and H4K20me3 

were also increased in the IDH1 mutant clones and EV + 2HG, but these are 

associated with gene repression. It is therefore likely that some of the increases 

in gene activation may be due to changes in histone methylation at sites not 

covered by the histone methylation screen, or by other mechanisms of gene 

regulation. 

Data-mining was carried out to identify whether the IDH1 mutation was 

associated with changes in GABA-A receptor subunits in vivo. The GABRB3 and 

GABRA3 were increased in IDH mutant low grade glioma, but not GABRE or 

GABRQ. In fact these latter two genes were decreased in the IDH mutant low 

grade tumours, which was the opposite of what was observed in the microarray 

and RNA Seq data in the MOG-GCCM cell model. Other GABA-A receptor subunits 

were also reduced such as GABRA2 and GABRA5. This discrepancy may relate to 

the differing timescale of epigenetic change caused by the IDH1 mutation. 

Histone methylation changes seem to occur prior to DNA methylation, which is 

increased by the inhibitory effect of 2HG on TET2 enzyme [190, 255]. Our cell 

model was not propagated for more than thirty passages, so additional 

epigenetic changes caused by the IDH1 mutation may not have developed. The 

delayed increase in DNA methylation, which acts as a gene repressor, may be 

the reason why some of the GABA-A receptor subunits had reduced gene 

expression in vivo, but not in the MOG-GCCM cell model. 

Unfortunately, GABRB3 protein changes in IDH1 mutant GBM tumour samples did 

not replicate the gene expression data. This discrepancy may reflect the small 

number of clinical samples that were used compared to the number of samples 
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in the TCGA and Oncomine datasets. However, inhibition of the GABA-A receptor 

did not have a specific effect on the IDH1 mutant clones on clonogenicity or cell 

migration when compared to the EV control. This may relate to issues with 

glioma cell lines in culture. Patch-clamping is a technique that can be used to 

measure the change in potential across the cell membrane after activation of 

the GABA-A receptor by GABA. The activity of the GABA-A receptor across a 

range of glioma cell lines has been measured but no functional activity could be 

detected. The same effect was also observed in GBM, but not low grade glioma 

tissue samples which had active GABA-A receptors. This suggests a possible 

downregulation of the receptor in culture and GBM which may explain why no 

significant differences were seen in GABRB3 protein expression between the 

IDH1 wild-type and mutant GBM tumour samples [286]. This would also make it 

difficult to interpret knockdown experiments if there were no functioning GABA-

A receptors in cell culture.    
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Chapter 6 Conclusions 

As described in the previous chapters, the IDH1 mutation leads to production of 

the “oncometabolite” 2HG from α-KG. Mass spectrometry analysis of clinical 

samples identified changes in intracellular metabolites in patients bearing IDH1 

mutated tumours compared to wild-type tumours, which was confirmed in cell 

models. Besides the increase in 2HG, a decrease in α-KG, glutamate, and the 

glutamate derived metabolite GSH was observed. Conversely, there was an 

increase in GABA, NAA, and NAAG. This was due to an increased flux from α-KG 

to 2HG, and potentially from malate to NAA and NAAG, and from glutamate to 

GABA. The metabolic changes caused by the IDH1 mutation led to an increase in 

the 2HG/α-KG ratio, which resulted in increases in histone methylation, 

specifically at H3K4. H3K4me3 acts as a transcription activator and was shown to 

increase expression of GABRB3, a GABA-A receptor subunit. 

The suggestion of an increased flux from glutamate to GABA generated the 

hypothesis that the fall in α-KG due to the IDH mutation may be driving an 

increased flux through the GABA shunt. In addition, the IDH1 mutation was 

associated with an increase in GABA uptake compared to wild-type controls, 

suggesting a benefit from GABA metabolism in IDH1 mutant cells. Increased 

GABA uptake and metabolism may compensate for the loss of α-KG to 2HG by 

providing additional carbon to the TCA cycle through the production of 

succinate. However, the addition of GABA to the MOG-GCCM and immortalised 

astrocytes did not result in any effect on clonogenicity, and Vigabatrin only had 

a modest effect. This may reflect the limitations of the cell models that were 

used. In vivo, astrocytes are essential to the glutamine-glutamate-GABA pathway 

and normally take up the neurotransmitters glutamate and GABA, metabolise 

them to glutamine, and secrete them for neuronal uptake and recycling. The 

MOG-GCCM and immortalised astrocytes both consumed glutamine and secreted 

glutamate, opposite of what is observed in vivo. This could be a consequence of 

the culture conditions, as these cells have been propagated in medium high in 

glutamine and without GABA. It would be interesting to see if this effect could 

be reversed in medium with low glutamine and high glutamate and GABA, and 

whether this has an effect on clonogenicity in the presence of Vigabatrin. 

Alternatively, the effect of Vigabatrin could be assessed by propagating IDH1 

mutant cell lines in co-culture with GABA secreting neurons.  
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The large increase in the 2HG/α-KG ratio led to the investigation of how this 

may affect α-KG-dependent dioxygenases, in particular JMJ histone 

demethylases. A histone methylation screen was developed which identified an 

increase in histone methylation status of several histone methylation marks, 

which included H3K4 and H3K27. However, this screen was limited to five 

histone methylation sites, whereas over 50 histone methylation sites have been 

identified across all four histone proteins to date [287]. An alternative method 

of proteomic analysis using mass spectrometry could be used to increase the 

scope and range of this screen to potentially identify other histone methylation 

sites which are altered by the IDH1 mutation and may change gene expression. 

Mass spectrometry would be able to identify differences in histone mass caused 

by histone chemical modifications. This technique has the advantage of 

detecting numerous modifications at the same time as well as being more 

sensitive in detecting different degrees of methylation at the same site. It also 

has the ability to accurately quantify changes and identify new sites of histone 

methylation [287].  

Using ChIP and RNA sequencing, increases in H3K4me3 around the TSS were 

associated with an increase in expression of the GABRB3 subunit, which forms 

part of the GABA-A receptor. This receptor exists as a pentameric assembly 

which can be formed from a combination of 19 different subunits (α1-6, β1-3, 

γ1-3, ρ1-3, δ, ε, θ and π), most commonly consisting of two α, two β, and one γ 

subunit [29]. The GABA-A receptor functions as an ionotropic receptor which on 

activation by GABA alters the cell membrane potential via an influx of Cl- ions 

[6, 30]. These differences in subunit composition are likely to alter the 

sensitivity of the receptor to GABA activation, as some subunits are specific to 

different regions of the brain and to different stages of development [31]. For 

example, the α3 and β3 subunits, which were increased in EV + 2HG and MC9 cell 

lines and were found to be increased in glioma patient samples based on data-

mining of the TCGA database (chapter 5), are predominantly expressed in the 

fetal brain and decline after birth [288]. Identifying whether the changes 

observed in IDH1 mutant cells could result in altered functionality could be 

achieved by patch clamping. With this technique, the change in voltage across 

the cell membrane can be measured. The addition of GABA to patch clamped 

cells from the MOG-GCCM, immortalised astrocytes, and NCH cell lines could 
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determine whether the IDH1 mutation results in an increased 

electrophysiological response to GABA via the GABA-A receptor, either through 

an increased number of receptors or increased sensitivity due to altered subunit 

composition. Using patch-clamping, functional GABA-A receptors have been 

identified on grade II and III gliomas, but not GBM [289]. GBM are predominately 

IDH1/2 wild-type and more aggressive than lower grade predominantly IDH1/2 

mutant tumours, suggesting that there may be a growth inhibitory effect of the 

GABA-A receptor in these cells. An inhibitory growth effect of the GABA-A 

receptor has been shown in astrocytic stem cells and glioma cells that have been 

cultured in the presence of GABA secreting neuronal cells [285]. In addition, 

glioma cells only expressed functional GABA-A receptors when in contact with 

neurons and not with other glial cells [290]. In fact, increases in a specific 

microRNA, miR-155, in both primary and secondary GBM has been shown to 

inhibit the GABRA1 protein resulting in an increase in cell proliferation [291]. A 

similar effect has also been observed in medulloblastoma, a brain tumour more 

common in children, where cancer cell survival was decreased by a potent 

GABRA5 protein agonist [292]. In addition, suppression of GABRB3 protein 

expression by RNA interference has been shown to increase cell proliferation in 

embryonic stem cells [293]. This suggests that the GABA-A receptor acts as a 

negative feedback growth mechanism and may provide an explanation as to why 

IDH1 mutant gliomas have a slower growth rate than wild-type tumours. 

However, neurons have also been shown to promote high grade glioma growth 

through the secretion of neuroligin-3 which induces PI3K-mTOR signalling [294]. 

This indicates that neurons may have a variable complex effect on glioma growth 

and may depend on the neuron and tumour sub-type. 

GABA can also activate another type of receptor called the GABA-B receptor. 

These are heterodimeric G-protein coupled receptors which are formed from 

three major subunits; GABAB1a, GABAB1b, and GABAB2. Activation of these 

receptors leads to an increase in intracellular Ca2+ concentration, most likely 

from intracellular Ca2+ stores [32]. Like GABA-A receptors, activation of GABA-B 

receptors by GABA results in a reduction in cell proliferation [295, 296]. 

However, only 10% of astrocytes respond to GABA-B receptor stimulation, 

compared to over 70% of astrocytes to GABA-A receptor stimulation [32]. This 

suggests that the GABA-A receptor may play a more dominant role in these cells.  
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The increase in intracellular GABA observed in vitro and in vivo caused by the 

IDH1 mutation raises the possibility of autocrine and paracrine activation of the 

GABA-A receptor in IDH1 mutant tumours. Astrocytes are classically associated 

with the uptake of GABA from neurons, which they then metabolise to glutamine 

for secretion. However, astrocytes have also been shown to secrete GABA de 

novo, activating neighbouring GABA-A receptors [297]. This suggests the 

possibility that glioma cells are also able to activate GABA-A receptors in a 

paracrine or autocrine fashion. Through this mechanism, cancer cells that are 

not at the periphery of the tumour and may not be exposed to GABA derived 

from neurons may be affected by endogenously produced GABA.  

The increase in GABA metabolism and the increase in expression of some 

subunits of the GABA-A receptor may provide a potential target for therapy. A 

potential increase in flux through GABA-T was identified in one of the IDH1 

mutant NCH cell lines compared to the wild-type controls. An increased flux 

through this pathway may benefit the IDH1 mutant cells by bypassing the IDH1 

mutation. Vigabatrin, a GABA transaminase inhibitor, is currently an off patent 

licensed drug for the treatment of juvenile epilepsy. It works by increasing the 

concentration of GABA in the brain, thereby utilising the neuroinhibitory effect 

of the metabolite to increase the threshold for seizures. Vigabatrin could have a 

negative effect on cell proliferation in IDH1 mutant tumours by both disrupting 

the catabolism of GABA, and by increasing the GABA concentration in the brain 

enhancing the negative proliferative effect of the GABA-A receptor. The best 

way to determine efficacy would be an in vivo model. This could be achieved by 

using an orthotopic mouse model using the IDH1 wild-type and mutant NCH cell 

lines to assess the effect of Vigabatrin on tumour growth. It would also be 

interesting to determine whether these same effects occurred with the IDH2 

mutation. This enzyme is mitochondrial so it may be more dependent on GABA 

metabolism to generate succinate and maintain TCA metabolites. 

In summary, the IDH1 mutation results in an increase in 2HG production 

consuming α-KG. There is a corresponding reduction in TCA metabolites and 

glutamate, but an increase in NAA, NAAG and GABA, the latter possibly due to an 

increase in flux through the GABA shunt. In addition, IDH1 mutant cells may 

utilise exogenous GABA as an alternative source of carbon for the TCA cycle. The 

increase in the 2HG/α-KG ratio results in the inhibition of JMJ histone 
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demethylases causing an increase in H3K4 methylation. An increase in H3K4me3 

around the TSS of GABRB3, a subunit of the GABA-A receptor, results in 

increased gene expression. This in conjunction with an increased expression of 

other GABA-A receptor subunits (observed in the TCGA dataset and MOG-GCCM 

cells, chapter 5) could result in an increase in functional receptors on the cell 

surface. Activation of the GABA-A receptor could result from exogenous GABA 

derived from neurons, or endogenous GABA acting in a paracrine or autocrine 

fashion. GABA transaminase may be a potential therapeutic target as inhibition 

of the enzyme would reduce flux through the GABA shunt, reduce GABA as a 

carbon source for the TCA cycle, and increase the concentration of GABA in the 

brain increasing activation of the GABA-A receptor. All these effects may result 

in a reduction in cell proliferation and could be tested in an orthotopic mouse 

model by using Vigabatrin, a specific GABA transaminase inhibitor licensed for 

use in epilepsy (Figure 6-1).  
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Figure 6-1 Hypothetical model depicting the possible consequences of the metabolic and 
genetic changes caused by the IDH1 mutation 
The IDH1 mutation results in an increase in 2HG production consuming α-KG. There is a 
corresponding fall in TCA metabolites and glutamate, an increase NAA and NAAG, and an rise in 
GABA, possibly due to an increased flux through the GABA shunt. In addition, exogenous GABA 
may also be utilised as an alternative source of carbon for the TCA cycle. The increase in the 
2HG/α-KG ratio results in the inhibition of JMJ histone demethylases causing an increase in H3K4 
methylation. An increase in H3K4me3 around the TSS of GABRB3, a subunit of the GABA-A 
receptor, results in increased gene expression. This could result in an increase in GABA-A 
receptors which could be activated either in an autocrine or paracrine fashion or by exogenous 
GABA. GABA-A receptor activation is associated with a decrease in cell proliferation so inhibition of 
GABA-T by Vigabatrin could potentiate this effect by increasing GABA concentration in the brain 
and reducing the ability of IDH1 mutant cells to metabolise GABA. 
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