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Abstract 

    Semiconductor lasers with the combination of characteristics such as large output 

power, single mode operation and good beam quality are very often desired. The photonic 

crystal surface emitting laser (PCSEL) has shown significant promise and has received 

much attention with the purpose of achieving devices with the desired characteristics. The 

evaluation of the resonant modes of the structure is a primary requirement in modelling 

PCSELs. However, conventional techniques such as PWE, CMT and FDTD are either 

computationally very time consuming or mathematically rather intensive.      

The aim of this thesis is to develop a new model for evaluating resonance of 2-D 

photonic crystal, pertinent to the lasing mode of PCSEL. Such aim is achieved by first 

studying wave characteristics of 1-D periodic structure and understanding the eigenmode 

and eigenfunction of both infinite and finite periodic structure. It is shown that the 

eigenmode of the infinite periodic structure is the Bloch mode while the eigenmode of 

the finite periodic structure is represented by optical tunnelling type of solution. The 

solutions correspond to the characteristic impedance of the periodic structure. 

The concept of eigenmode of finite periodic structure is then used to establish the 2-

D model of photonic crystal. The essential underlying concept of the analysis procedure 

presented in this work is based on viewing the 2-D photonic crystal as a laterally periodic 

multilayer waveguide which is longitudinally segmented. Such model matches with 

conventional model favourably and proved to be versatile, efficient, fast (for 500×500 

periods takes ~7min using laptop: 2 core at 1.70 GHz, negligible memory usage. 

(Compare to FDTD for 20×20 periods takes 5h using supercomputer system: 12 core, 

24GB RAM). Thus, the model has the potential of generating more comprehensive 

models of photonic crystal based devices. 

Experimental work including fabrication, characterisation further proved the validity 

of the model. PCSEL with external reflection is experimental studied. It is shown that the 

lasing characteristics can be modified through introduced external reflection.  
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Chapter 1  

Introduction 

    With their robust, compact, light-weight and high efficiency advantages, 

semiconductor lasers have been extensively applied in nearly all aspects of modern 

society and their potential for application can hardly be overestimated [1]. Lasers are 

devices that amplify or generate coherent radiations. The name laser came from the action 

of light amplification by stimulated emission of radiation, or laser action. Here, ‘light’ is 

a rather broad concept. Actually, laser action can happen in a great range: from the very 

long infrared region [2], millimetre [3] or microwave [4], to visible light [5], ultraviolet 

[6] and even X-ray [7]. Although a variety of lasers are well studied and many of those 

sophisticated devices were developed as the mature of technology, ‘laser’ is still the 

subject of intensive research efforts.  

    Such efforts are driven by the desire for improving almost all aspects of the 

characteristics of lasers including high power combined with narrow beam divergence 

and monochromatic (narrow linewidth) output. Various device geometries and structures 

have been designed and developed over the years to achieve as many of these desired 

characteristics. Some very fundamental theoretical research is also driven by the desire 

of understanding the mechanisms to seek its ultimate limit of operation. Currently, one of 

very advanced topics is in the control of photon and electron states and their interactions 

using structures such as micro- or nano cavities, photonic crystal, or quantum wires and 

quantum dots. 

    The photonic crystal surface emitting laser (PCSELs) is one such device that has been 

investigated over the years with the purpose of using two-dimensional periodic structure 

to achieve single transverse mode operation over a large area while ensuring high power 

output in a narrow far-field beam[8]. Apart from the flourishing of the experimental 

works about PCSEL, the theoretical development has always been a daunting task since 

the existing modelling techniques, although producing very satisfactory results, have 

entailed very intensive and complicated theory and/or time-consuming computation. 

Hence, the motivation for the present effort has been to judiciously combine the physical 

features and concepts essential to the device with pertinent wave propagation properties 
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to develop a quasi-analytic model that yields acceptably satisfactory results with modest 

computational effort.  

1.1 What is Laser? 

So, what is a laser? As it is known that physical phenomenon at the quantum level are 

governed by the quantum laws which are described by Schrödinger and Hamiltonian 

formulations. It was Max Planck who first showed formally that a quantum description is 

the correct way to explain the anomalies arising in the classical description of heat 

radiation from ‘black-body’. A very direct and explicit application of the quantum 

phenomenon is the explanation by Einstein of the ‘photoelectric effect’. 

 

At quantum level, particles increase or decrease in energy by discrete amounts, with 

refer to Fig. 1.1. The electron can move from energy
1E to 2E if it receives energy

2 1E E E = − from some external source (e.g. a photon of energy 2 1h E E = − ). Such 

effect is known as photon absorption. The opposite phenomenon can also occur such that 

an electron sitting at higher energy level 2E can by itself fall down to lower energy level

1E and emit a photon with energy
2 1h E E = − . Such effect is known as spontaneous 

emission.  

However, most interestingly, Einstein showed that there is another kind of emission: 

stimulated emission. In this scenario, electrons from higher energy level 2E fall down to 

lower energy level 1E and emit a photon at frequency ( )2 1 /E E h = − , but very 

importantly, the difference between stimulated emission and spontaneous emission is that 

stimulated emission is triggered (initiated) by an input photon.  With spontaneous 

emission, all the transitions emit at same frequency ( )2 1 /E E h = − , but, in general, all 

other features such as phase, polarizations, direction of emissions are not the same. With 

 

Fig.1.1 Schematics of spontaneous emission, absorption and stimulated 

emission 
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stimulated emission, however, all the emitted photons have the same characteristics as 

the input photon. 

As mentioned, lasers are devices that amplify or generate coherent radiation and the 

coherent radiation requires stimulated emission. However, note that all three processes: 

absorption, spontaneous emission and stimulated emission happen at the same time, and, 

absorption and spontaneous emission are by far the dominant effect under normal 

circumstance. The stimulated emission is only larger when electron population in the 

‘upper’ energy level is larger, this is referred to as ‘inversion population’. The larger the 

inversion population, the stronger the stimulated emission. When nett stimulated emission 

is larger than zero, the material will have positive (optical) gain 0g  . Thus, optical gain 

is essentially a macroscopic representation of stimulated emission.  

 

Thus, as illustrated in Fig.1.2 the three essential elements of laser device are: (i) a gain 

medium which can be gas (He, Ne, etc.)  [9], solid state [10], or semiconductor [11]; (ii) 

a ‘pumping’ process to achieve inversion population (this can be done optically or 

electrically); (iii) importantly, to obtain sufficient amount of stimulated emission, the 

feedback element is required to allow radiation pass through gain medium more than once.  

1.2 Why Electromagnetic (EM) Theory Matters?  

Quite often, laser actions are described as Fig.1.1 in which billiard-ball-like photons 

travel through gain media. However, certain questions arise such as “where is the wave 

nature of light fit-in to the picture” and “where the coherency comes from”. The answer 

to the question requires an alternative representation of laser action. Actually, when light 

 

Fig.1.2 Schematic of typical laser structure 
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(electromagnetic wave) travel through such media, the group of atoms interact with the 

light in a way that the electric charges begin to oscillate in a coherent relationship as the 

driving electromagnetic field. Then each atom starts to re-radiate like an elemental dipole 

antenna. In stimulated emission, field emitted by such ‘antenna’ combines coherently and 

provide amplification[12]. 

 Einstein points out that stimulated emission rate is proportional to the photon density 

and also the number of atoms in the ‘excited’ state. The later requirement is met via 

inversion population. However, to achieve higher photon density, the light is ideally to 

be ‘confined’ in a small volume. Although by the good fortune of nature that typical 

optical gain materials of semiconductor have higher refractive indices in which the 

electromagnetic field tends to be localized (i.e. lateral confinement), simple layered 

planar structure is not a desirable design. Since not only the driving current tends to be 

large and results in an impractically high temperature generated by non-radiative 

transitions and free carrier (Ohmic) losses, large lateral dimension also leads to multi-

mode operation characteristics of laser which results in a highly non-uniform intensity 

distribution across the output beam and a very low coupling efficiency into fibre [13].  

 

Such problem is solved by introducing lateral confinement (ridge waveguide laser, 

buried heterostructure laser, etc; a schematic of ridge waveguide Fabry-Perot (FP) laser 

is shown in Fig.1.3) In this configuration, the waveguide optics in EM theory which is 

governed by the Maxwell’s equations and the laser theory start to merge and for typical 

device characteristics, quasi-classical EM wave analysis is valid with the quantum 

mechanics features of the optically active medium represented as macroscopic material 

parameters. 

 

Fig.1.3 Schematic of ridge waveguide FP laser. 
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Perhaps, the simplest type of laser is a gain media located between two parallel mirror 

facets. Such a laser is known as Fabry-Perot (FP) laser and in semiconductors the mirror 

facets are introduced by cleaving along the semiconductor crystalline structure. However, 

since the length of a typical FP laser device is large (usually hundreds of microns), the 

separation between FP resonance frequencies between two adjacent mode can be very 

small which leads to a narrow mode spacing and eventually undesirable multi-mode 

(multi-wavelength) operation. However, as is known in waveguide theory that mode with 

different frequency propagates at different phase velocity. Such effect is known as 

dispersion and will severely affects the optical signal in communication. Hence, 

considering about monochromacy requirement, the basic FP laser is not ideal for optical 

fibre communication. Moreover, the weaker transverse optical confinement than lateral 

dimension generates widely asymmetric diverging beams which requires complicated 

external optics for fibre coupling. 

One possible solution to overcome the multi-moding issue is to replace two mirror 

facets by two Bragg mirrors. A Bragg mirror is a periodic multilayer structure which is 

highly frequency (wavelength) selective. Such laser structure is call distributed Bragg 

reflector (DBR) laser, referring to Fig1.4a. The periodic corrugation can be also included 

in the gain region which is known as distributed feedback (DFB) laser, referring to 

Fig.1.4b. DFB laser gives even better single mode (wavelength) output property[14]. 

 

 

Fig.1.4 Schematics of a) DBR laser and b) DFB laser  
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Another approach for single mode emission is known as vertical cavity surface emitting 

laser (VCSEL) [15]. As illustrated in Fig.1.5, a typical VCSEL structure is a gain region 

sandwiched by two DBR mirror. Since the longitudinal dimension (vertical direction) of 

gain region is usually very small (in the range of nanometre), large mode spacing can be 

achieved, hence single longitudinal mode emission. The top and bottom DBR structure 

in VCSEL is not for mode selection, it is to provide high reflectivity for lasing condition. 

The transverse mode is controlled by the small lateral dimension. To maintain single 

transverse mode property, the transverse dimension of VCSEL is limited around 5μm 

diameter. Although VCSEL have advantages such as better beam shape, 2-D integration, 

the output power of VCSELs is limited to several milli-Watt due to small transverse 

dimension.  

Apart from above-mentioned laser structures, various other device geometries and 

structures have also been designed and developed over the years such as coupled parallel 

stripe contact, adiabatically tapered stripe contact, etc. to achieve as many of the desired 

laser characteristics. One promising solution is to use 2-D periodic structures. 

 

1.3 Photonic crystal surface emitting laser  

The fascinating features of wave propagation in periodic structures (media) have been 

investigated by Léon Brillouin, Felix Bloch, William Bragg, etc.; the theories have been 

applied to study sound, water, electromagnetic waves and, most famously, used to 

 

Fig.1.5 Schematic of VCSEL 
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develop and describe the properties of crystalline solids. In optics, the use of Bragg-

gratings in passive devices have been prevalent for nearly a century and in active devices, 

such as edge-emitting distributed Bragg mirror (DBR) and distributed feedback (DFB) 

lasers which have become ubiquitous since the 1980s. DBR and DFB lasers use the 

properties of periodic structures to realise, essentially, single wavelength operation. 

However, the edge-emitting output beams tend to be divergent. 

Meanwhile, one of the devices using periodic structure that has gained particular 

prominence in realizing desirable lasing characteristic is the photonic crystal surface 

emitting lasers (PCSELs).  The original idea of PCSEL is rather intuitive. The output 

power of conventional DFB laser can be improved by increasing transverse dimension of 

DFB which will, however, lead to lateral multi-moding. Thus, a periodicity is then 

introduced in transverse dimension as further mode selection and the result is effectively 

cross grating DFB [16] [17]. The vertical emitting nature is merely a result of the second 

order grating (referring to Fig.1.6).   

 

The name PCSEL does not come into picture until early 1990s when the concept of 

photonic crystal (which is actually brought up a long time ago) is utilized and opened up 

a completely new territory in semiconductor laser. Photonic crystal is essentially a media 

with periodic material distribution in one, two or even three dimensions. It is known that 

a crystal (e.g. semiconductor) is a periodic arrangement of atoms which presents a 

periodic potential for the electron waves. Such periodic potentials introduce certain 

energy regions within which the electron wave can/cannot propagates (i.e. passband and 

stopband). Similarly, in (dielectric) photonic crystal, the periodic ‘potentials’ due to the 

 

Fig.1.6 Schematic of cross-grating DFB 
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periodic arrangement of material introduce certain wavelength region within which the 

light can/cannot propagate.     

Although one dimensional periodic structures (or 1-D photonic crystal) have been 

studied as early as 1887 by Lord Rayleigh, serious consideration of 2-D or even 3-D 

photonic crystals did not appear until 1987 when such concept was brought up for 

studying inhibition of spontaneous emission [18] and photon localization [19]. 

Furthermore, with the introduction of the concept of photonic crystals, the theory of 

periodic structure has received very significant resurgence afterward and massive 

volumes of research have subsequently emerged in the study and application of photonic 

crystals in such diverse areas as photonic crystal fibres [20], photonic crystal waveguides 

and resonators [21] [22] and most relevant to this project: optical sources such as PCSELs. 

In order to understand the optical properties of photonic crystals and design the device 

based on the properties of photonic crystal, many modelling techniques have been 

developed and play an essential role in the study of this subject. Broadly speaking, the 

modelling of photonic crystal involves two categories. One emphasis is to obtain the 

eigenmodes of photonic crystal, including the dispersion relation of the Bloch modes 

(photonic band structure) and the defect state of the photonic crystal cavity, surface states, 

etc. The other emphasis is on the reflection or transmission properties of photonic crystal, 

e.g. how the light behaves when travelling through a photonic crystal. 

 Thus, several techniques have been developed and used for analysing (especially 

optical) waves in periodic structure exist in the published literature, but the three, plane 

wave expansion (PWE), coupled mode theory (CMT), and the purely numerical finite 

difference time domain (FDTD), are by far the most extensively used.  

Probably, FDTD is the most popular method among those techniques and widely used 

for studying EM wave propagating in photonic crystal since it can be applied to very 

complicated geometries while yielding accurate results. However, as a pure numerical 

method, FDTD requires considerable amount of computing time and resources which 

perhaps reduces its attraction. Moreover, the pure numerical process provides less 

physical insight which make FDTD a powerful tool for designing rather than 

understanding and analysing photonic crystal. 
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PWE, however, is based on expanding eigenmodes in photonic crystal as an orthogonal 

and complete set (plane waves), but the results (eigenmodes) are obtained effectively 

through the numerical process (solving the determinant of infinite matrix) hence also 

provides less physical feeling. Moreover, fundamental concept of PWE is based on 

Floquet theorem which can not apply to the photonic crystal with finite extent. Hence, 

PWE is a powerful tool in obtaining dispersion relation of eigenmodes and its frequency 

rather than designing particular photonic crystal related devices (especially with defect 

states). 

There are many analytical methods and CMT is the most popular one among those 

techniques. Undoubtably, CMT provides certain physical understanding of photonic 

crystal, however, the nature of CMT is built on expanding the fields and dielectric tensors 

as Fourier components and the actual boundary of photonic crystal is introduced via mode 

matching. The mathematics involved is very complicated and daunting for average user 

to approach. Moreover, such technique cannot really explain what is the eigenfunction 

and eigenmode of the photonic crystal with finite extent.  

As one of the applications using 2-D photonic crystal, PCSEL requires the above-

mentioned conventional modelling techniques which in turn limit the design and 

analysing process. In view of the above, it is felt that an alternative modelling approach 

is required for (2-D) photonic crystal especially with finite extent which can be applied 

to the relevant devices such as PCSELs. It is shown that such model is modest and fast 

while yields satisfactory results especially for analysing the 2-D resonance of PCSEL 

which corresponds to the laser mode.  

1.4 Thesis Outline  

The main emphasis and essential work of this PhD study is to build up a new model to 

elegantly and conveniently analyse the resonance in photonic crystals, especially in 

PCSEL. The study of wave propagation in periodic media is large undertaking subject. In 

this thesis, it is envisaged to cover as much as the aspect of this subject in a systematic 

way that enables a coherent understanding of the aspects pertinent and most relevant to 

the design of PCSEL devices.  

The layout of the thesis is as follow: 
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• Chapter 2 reviews some basic concepts of EM theory including Maxwell’s 

equations, plane wave propagation and reflection, Poynting vector, etc. Moreover, 

a transfer matrix technique is introduced as a powerful tool for modelling waves 

in multilayer media. Then an impedance representation of plane wave 

characteristics is developed based on matrix elements. Such representation 

provides more physical insight about the wave behaviour especially in multi-

layered media and will be used in the subsequent discussions.  

• To develop an alternative model requires comprehensive study of certain subjects 

in a wide range. Such a study has been one of the major tasks of this PhD project 

and is presented in Chapter 3. It will be shown that the modelling of waves in 

periodic structure is about finding the eigenmode. As for photonic crystal with 

infinite extent, such eigenmode (Bloch mode) is merely a solution of Hill’s 

equation which is effectively have been done in PWE and CMT. As for photonic 

crystal with finite extent, the sought about eigenmode is effectively matching the 

‘characteristics impedance’ of such structure by using excitation techniques and 

thus the linkage between the excitation problem and eigenvalue problem appears. 

Several numerical examples are given to support such concept.  

• The actual model for PCSEL is introduced in Chapter 4 with all ‘building blocks’ 

developed in chapter 2 and chapter 3. Such model is known as Modal Index 

Analysis (MIA) and can be applied to evaluate 2-D resonance of PCSEL in a 

rectangular geometry corresponding to the lasing mode. MIA method is then used 

to compared with other well-established modelling techniques by evaluating the 

resonances of PCSEL structures. It is shown that such new model is versatile, 

efficient and fast. Hence it is envisaged that the implementation of this method 

will enhance the potential to generate more comprehensive models of photonic 

crystal based devices, say, PCSELs, that include, for example, aspects of inversion 

population distribution and also time dependence while still retaining relatively 

modest demands on computational resources. The consistency and validity of 

MIA is also discussed in this chapter. 

• The fabrication and experiment of PCSEL to further prove the validity of the 

model constructs another part of this PhD study which is then presented in Chapter 

5. Basic experiments such as LIV characteristics of PCSEL and PCSEL with 

different termination boundary are also studied in this chapter. It is shown both 

experimentally and theoretically that the lasing characteristics can be modified 

through external reflection. 
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• Finally, the conclusion and future outlooks are presented in Chapter 6. 
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Chapter 2  

Optics of Homogeneous Isotropic Media 

Optics, is a well-established branch of physics and describes the phenomenon, 

propertie and behaviours of light. Perhaps, the development of this subject run through 

the history of mankind from 500 BC when ancient Greeks speculate the nature in a 

‘philosophical’ way. It was not until 1864 when James Clerk Maxwell demonstrated 

brilliantly by his field equations that the wave nature of light is fully understood. It 

appears that light is the oscillation of electric and magnetic field. However, in parallel 

with such development, there were other worrying concerns about the wave theory of 

light. In 1900, Planck first treat light as discrete packet, or ‘quanta’ to describe the particle 

nature of light. Einstein then immediately grasped the discovery and beautifully explained 

the photoelectric effect. Now, the wave-particle dualities of light are recognized: it 

appears either as particles or as waves, its entire true nature is somewhat beyond our 

modes of thought.  

Despite of the wave/particle duality of light, it is sufficient to consider light as an 

electromagnetic (EM) phenomenon from classic wave mechanics point of view 

throughout this thesis. Hence optics is simply a branch of electrodynamics. (For more 

detailed history of EM theory, refer to [1]) In fact, optics is treated as a separate subject 

simply because of its historical reason: optics is studied long before the establishment of 

EM theory which is robustly described by the most famous Maxwell’s equations.  

In the present chapter, we first familiarise the reader about the basic concepts that will 

be used in the later chapters. Plane wave propagation in isotropic homogeneous media is 

introduced as a simplest case and then Fresnel equations are used as the basis of 

describing wave behaviour in layered structures. One of the most fundamental issue in 

optics is the wave reflection and transmission at the dielectric discontinuity. In this 

chapter, we consider plane electromagnetic waves at plane boundary between two 

homogeneous isotropic media. A matrix technique for analysing wave propagating in the 

isotropic layered structure will also be introduced and will be used in the later chapters. 

Wave impedance concept is also introduced in the later part of this chapter. It provides 

an alternative way to describe and formulate wave reflection and transmission in the 
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media. By evaluation of wave impedance across any section, one could design optical 

“source” and “load” specifically in various applications [2].  

2.1 Maxwell’s Equations 

As an electromagnetic phenomenon, optics can be completely described by the most 

fundamental equations in electrodynamics: Maxwell’s equations, which are given as 

follow in commonly used MKS units [1,2]. (A more detailed explanation of Maxwell’s 

equation and vector relations can be found in Appendix A): 

 =D          (2.1) 

0 =B         (2.2) 

t


  = −


E

B
                     (2.3) 

t


  = +


H J

D
                       (2.4) 

In these equations, for any variable denoted by F  means a vector F  with implicit space 

r and time t dependence “~”: ( , )t=F F r . Where E  and H  are electric and magnetic 

field, D  is the electric displacement field and B is the magnetic flux density, J is the 

conduction current density and  is the electric charge density. Equations (2.1) and (2.2) 

are result from electric and magnetic Gauss’s law (Gauss’s flux theorem); they give the 

relationship of the net flux through any hypothetically closed surface with the net charge 

within the surface. Equation (2.3) is the result from Faraday’s law of induction: a 

changing magnetic field gives rise to an electric field. Maxwell added a new idea, 

equation (2.4), that a changing electric field also gives rise to a magnetic field, even in 

vacuum, thus establishing the interdependence of the electric and magnetic field. 

In addition to the Maxwell’s equation, there are certain parameters, permeability c  

and permittivity c , to describe material properties: 

0c =                                                      (2.5) 

                                               0c =                                                       (2.6) 

Where  is relative permeability and  is relative permittivity; 0 and 0 are 

permeability and permittivity in vacuum respectively. For nonmagnetic material, 1 = is 
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used throughout this thesis and the refractive index of the material is defined as

c c c c   = = . (refer to Appendix A) 

All electromagnetic problems require the solution of Maxwell’s equation, the 

appropriate source functions and boundary conditions specified for the problem. In this 

thesis, it will be assumed that in the region of interest, charge density is identically zero

0  (electrically neutral), and source current density is identically zero 0J (do not 

conduct any electric current).  

In general, the behavior of electromagnetic wave can be expressed by the superposition 

of wave with different frequencies via Fourier transform. It is often sufficient to solve 

Maxwell’s equation for harmonic time dependence. Wave with single frequency is called 

time-harmonic or monochromatic wave [3]. By assuming harmonic time dependence

exp( )j t , the Maxwell’s equations become: 

0 =E                                                                (2.7) 

0 =H                                                               (2.8) 

0j  = −E H                                                   (2.9) 

0 cj   =H E                                                (2.10) 

2.2 Waves Equations in Homogeneous Media 

All important features of the behaviour of light can be obtained by solving the 

Maxwell’s equations with different boundary conditions. Maxwell’s equations can be 

‘reduced’ correspondingly to specific application.  Here, we shall limit the discussion to 

few particular situations. For example, by rearranging equation (2.7) - (2.10), it is 

possible to get wave equations in Cartesian co-ordinates: 

2 2

0 0ck  + =E E                                                (2.11) 

2 2

0 0k  + =H H                                                (2.12) 

Where ( )2 2

0 0 0 02k     = =  and 0  is the wavelength in vacuum. Since for any vector 

in rectangular coordinate: 

( , , ) ( , , ) ( , , )x y zF x y z F x y z F x y z= + +x y zF u u u                     (2.13) 

Where, the vector F  represents either E or H which has three components and each 

component can vary in three directions. Hence, vector equations (2.11) and (2.12) can 
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produce six scalar wave equations. Which components, if any, will be identically zero 

depend on the particular problem.  

Another important quantity is the power flow density vector, also known as Poynting 

vector which is defined as S = E H . It is interpreted as the power density (power flux 

per unit area) with the unit of watts/metre2.  In many situations, it is more convenient to 

use time averaged Poynting vector and its real part (denoted by Re{} ) represents the 

physical power flow vector: 

1
Re{ }

2

= S E H                                            (2.14) 

The asterisk indicates the complex conjugation. The imaginary part of Poynting vector 

can be thought as reactive power. For detailed Poynting theorem and complex vector 

definition, refer to [4] and Appendix A.  

2.3 Plane Wave (PW) Propagation 

Due to the simplicity of plane wave solutions of Maxwell’s equations, it is important 

to start with plane wave solution as the elementary part of the electromagnetic problem. 

Moreover, classical theories of radiation, propagation and diffraction of electromagnetic 

waves can be illustrated as the spectrum of the plane wave. Plane wave is defined such 

that no field variation except the direction of propagation. With reference to equations 

(2.11), (2.12) and (2.13) , the wave equation for one of the non-zero component, e.g. 
yF

is: 

2 2 2
2

02 2 2
( , , ) 0yk F x y z

x y z


   
+ + + = 

   
                         (2.15) 

A separation of variable procedure yields a solution of the form: 

( ) ( )( , , ) j x y z j x y z

yF x y z Ae Be     − + + + + += +                        (2.16) 

Such that
2 2 2 2

0k   + + = . 

As will be evident later, for the purpose of the work presented in this thesis, it will be 

sufficient to consider field variation only along two axes, x and z, so that: 

( ) ( )( , , ) ( , ) j x z j x z

y yF x y z F x z Ae Be   − + + += = +                  (2.17) 

Considering special case that plane wave is propagating in a homogeneous media along 

x axis, as illustrated in Fig. 2.3.1, where 2 2 2 2 0y z  =   = is satisfied. Thus, 
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2
2

2
( ) ( ) 0y yE x E x

x



+ =


                                         (2.18) 

2
2

2
( ) ( ) 0z zH x H x

x



+ =


                                        (2.19) 

where 2 2

0k = is satisfied and  is the permittivity of the media. Note that in general, 

could be complex. The plane wave solution of the wave equation of uniform media is the 

one dimensional plane wave, the following expression can be checked to satisfy the wave 

equations (2.18), (2.19): 

( ) ( ) ( )j x j x

y fy ryE x Ae Be E x E x − += + = +                          (2.20) 

( ) ( ) ( ) ( )j x j x

z fz rzH x Ae Be H x H x 



− += − = +                    (2.21) 

In above two equations, terms with ( ) j x

fF x e −= referred as forward travelling waves and 

terms with ( ) j x

rF x e += referred as reverse travelling waves. The ratio 0Z is defined as

0 ( ) ( ) ( ) ( )x fy fz ry rzZ E x H x E x H x  = = − =  and is known as characteristic 

impedance of the medium. Notice that the characteristic impedance of plane wave in 

vacuum (free space) is 377 . The reciprocal of 0Z is often referred to as the 

characteristic admittance of the medium. 

As stated above, in general, material permittivity and refractive index are complex 

quantities. (Valid for sinusoidal time dependency). The complex representation takes 

account of loss or gain in the medium. In semiconductor, optical gain ‘g’, unit of m-1, is 

a macroscopic representation of stimulated emission. The definition of ‘g’ and optical 

gain is given in Appendix A. There are three processes happen at the same time in 

 

Fig. 2.3.1 Plan wave propagating in homogeneous media. 
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semiconductor as mentioned in the introduction chapter: optical absorption, spontaneous 

emission and stimulated emission and the amount of each of the three is in general linked 

to the other two. Absorption and spontaneous emission are the dominant process under 

normal circumstance. It is when nett stimulated emission (stimulated emission-absorption) 

is larger than zero, which requires the ‘inversion population’, the material will have 

positive gain, g>0. In terms of optical power (Poynting vector), the optical gain can be 

understood schematically below: 

 

As shown in Fig.2.3.2, to relate ‘g’ to classic EM theory, optical gain is measured as 

plane wave in homogeneous medium. Note that in general, dielectric permittivity c is 

complex, i.e. c re imj  = − and similarly refractive index c re imj  = − . Thus, the wave 

vector also become complex: 

re imj  = −                                                (2.22) 

By rearranging equation (2.14), (2.20) and (2.21), the real part of Poynting vector which 

represent the actual energy flow is thus given by: 

22

0

Re ( ) im xreS A e




−
=                                       (2.23) 

which yields 02 2im img k = − = − . i.e. optical gain and loss can be represented by 

imaginary part of refractive index as defined above. 

2.4 Matrix Formulation for PW propagation in Layered Media 

Consider plane wave propagation in homogeneous isotropic media (with refractive 

index 
q ) over a distance L  from 0x to 0x L+ as shown in Fig. 2.4.1. From (2.20), it is 

 

Fig. 2.3.2 Schematic representation of optical gain 
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easily to write a field component ( )F x at 
0x x= into a matrix form. From equation (2.20) 

and (2.21), it follows that: 

0

0

0

0

( )

( )

q

q

j x

f

j x
r

F x Ae

F x Be





−  
=        

                                     (2.24) 

Similarly at 
0x x L= + : 

0

0

( )

0

( )
0

( )

( )

q

q

j x L

f

j x L
r

F x L Ae

F x L Be





− +

+

 + 
=     +   

                               (2.25) 

From equation (2.20) it yields: 

0 0 0

0 0 0

( ) ( )

( ) ( )

0

0

q q q q

q q q q

j x j L j x L j x L

j x j L j x L j x L

Ae e Ae Ae

Be e Be Be

   

   

− − + − +

− + +

      
= =      

      
      

P           (2.26) 

Matrix P is known as propagation matrix which describes wave propagating in the 

homogeneous material. 

 

Next, we consider dielectric discontinuity at 0x x L= +  from 
q to 

1q +
(Referring to 

figure 2.4.1). Wavevector in two regions can be written as 
, 1 0 , 1q q q qk + += . Two 

independent categories of field solutions, one with polarisation, ( ) 0y yTM E =  and the 

other ( ) 0y yTE H = can be sustained. Wave incident at discontinuity at an angle can 

also be written into the matrix form D (see Appendix B for more on the derivation of 

transfer matrix): 

1 1

( )

1 1

2 2

2 2

y

q q q q

q q

TM

q q q q

q q

   

 

   

 

+ +

+ +

+ − 
 
 

=
 − +
 
 
 

D                                        (2.27) 

 

Fig. 2.4.1 Plane wave propagation and reflection  
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1 1 1 1

1 1

( )

1 1 1 1

1 1

2 2

2 2

y

q q q q q q q q

q q q q

TE

q q q q q q q q

q q q q

       

   

       

   

+ + + +

+ +

+ + + +

+ +

+ − 
 
 

=
 − +
 
 
 

D                            (2.28) 

Thus, the field reflection and transmission coefficient (Fresnel equations) can be written 

as:  

( )

1

2

y

q

TM

q q

t


  +

=
+

                                                 (2.29) 

1

( )

1
y

q q

TM

q q

r
 

 

+

+

−
=

+
                                                 (2.30) 

1

( )

1 1

2

y

q q

TE

q q q q q

t
 

   

+

+ +

=
+

                                           (2.31) 

1 1

( )

1 1
y

q q q q

TE

q q q q

r
   

   

+ +

+ +

−
=

+
                                           (2.32) 

2.5 Transfer Matrix Method for Laser Modelling 

High speed optical communication requires laser with single mode operation 

(monochromatic), narrow linewidth and good output beam properties. Theoretical 

analysis of such single mode (i.e. longitudinal mode) behaviour is based on solving 1-D 

wave equations. In the case of Fabry-Perot (F-P) laser, the problem is straight forward. In 

DFB or DBR lasers, by assuming weak mode coupling (small perturbation), the problem 

leads to solving the coupled mode equations derived by Kogelnik and Shank in 1972 [5]. 

However, as the structure of laser become more complicated, especially due to the 

multiple reflection of the internal mirrors, analytical solutions for resonance frequency 

and threshold gain become almost impossible to find.   

Meanwhile, it is well known that transfer matrix method has been used for network 

theory in microwave engineering (two-port problem). Researchers found that lasers can 

be described by “transfer matrix”: assuming laser has finite numbers of elementary part 

and each part could be described by a two by two matrix. Such elementary part is 

conveniently chosen as semiconductor facets.  
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Instead of solving the resonance frequency analytically, the matrices are evaluated 

numerically. The advantage of this matrix method is numerous since rather than solving 

the coupled mode equations which requires weakly coupling assumption, the transfer 

matrix method gives exact solution. Moreover, numerical procedure is dramatically 

reduced especially when the structures become periodic. The detailed properties of 

periodic structure will be given in next chapter, here, two types of widely used laser 

structure are analysed as an illustration of such method for laser modelling. It shall be 

noticed here that the analysis of laser below is restricted in ‘optics’ aspect, i.e. any ‘carrier’ 

effect such as diffusion, spacial/spectral hole burning are not included and the optical gain 

is treated as imaginary part of refractive index as discussed before. 

 

F-P laser is one of the simplest laser structures which consists of an optically active 

medium sandwiched by two reflection mirrors. Fig. 2.5.1 illustrate a schematic of typical 

semiconductor F-P laser structure. Optically active region with higher refractive index is 

sandwiched by lower index semiconductors which provides effectively optical guiding 

structure in ‘y’ direction. Electrical pumping is through top and bottom metal contacts. 

The ‘rib’ structure is etched during fabrication process for efficient current injection and 

transverse optical guiding. In semiconductor laser, mirror facet is produced by cleaving 

semiconductor and is automatically formed by its crystalline structure. 

F-P laser structure can be simplified as a 3-layers media as shown in figure 2.5.2. For 

more realistic 3-D structure, effective index method [6] and Marcatili’s approximation [7] 

are usually used to convert material into effective indices and reduce the problem to 1-D 

case, e.g. a and b are the real part of the effective refractive index in each region. The 

length of laser cavity is 200 m . From the matrix elements (equation (2.26) and (2.27)) 

derived in section 2.4, we obtain the total transfer matrix M from region I to III (Fig. 2.5.2): 

 

Fig. 2.5.1 Schematic of typical semiconductor F-P laser.   
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I II II II III→ →=M D P D                                          (2.33) 

The field reflectance of such structure can be written as
21 11r = M M where

11M and
21M  

are two matrix elements. At lasing condition, the field reflection or transmission tends to 

infinite (oscillation condition) which gives
11 0=M . Generally speaking, 

11M is a complex 

number. It is very convenient to plot
11M value in a complex plane. As shown in Fig. 2.5.2. 

the net gain in region II is included as imaginary part of refractive index varying from

10 cm− to 133cm− . 

 

 

    When net gain value g is zero the locus of 11M rotates counter-clockwise in the complex 

plane around coordinate origin. As we increase the net gain value, the locus become 

smaller. At threshold, it become a straight line lies on the imaginary axis. As illustrated 

 

Figure 2.5.2 F-P laser cavity.   

 

Figure 2.5.3 The relationship between real and imaginary part of 

matrix element at lasing threshold of F-P laser   
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in the Fig.2.5.3, the threshold gain of such F-P laser device is about 133 cm− . Theoretically, 

the net threshold gain of F-P laser is 

1 2

1 1
ln

2
thg

L r r

 
=  

 
                                          (2.34) 

Where
1r and

2r are field reflectance of cavity mirror. In this device ( 200 m and field 

reflectance
1 2 0.55r r= =  ), the net threshold gain is 134.66thg cm−= . It fits the numerical 

result. After the threshold, the locus will orbit clockwise. It is not physical to have the 

gain value large than the threshold since in real device, the moment when laser reaches 

the threshold, lasing will clamp. 

Although being one of the earliest lasers, Fabry-Perot (FP) edge-emitting laser still 

remains widely used in many general purposes. However, the long cavity of FP laser leads 

to multi-wavelength emission (multi-moding) and thus is not desirable in optical 

communication. It is shown in Fig.2.5.4 that the mode spacing is about 1nm for typical 

FP laser ( 1 L  , where  is mode spacing and L is the cavity length).  

 

One possible solution to overcome this issue is to replace two mirror facets by two 

wavelength selection mirrors (Bragg gratings). A Bragg mirror is a periodic multilayer 

structure which is highly frequency (wavelength) selective. Such laser structure is known 

as distributed Bragg reflector (DBR) laser. The periodic corrugation can be also included 

 

Fig. 2.5.4 resonance spectrum of F-P cavity   

 



25 

 

 

in the gain region which is known as distributed feedback (DFB) laser. DFB laser gives 

even better single mode output property. 

Matrix method can be applied also in DFB laser modelling. Unlike F-P laser, DFB laser 

has active region with effectively periodic index distribution. Such structure is usually 

produced by semiconductor etching and regrowth. As shown in Fig. 2.5.5, Bragg grating 

designed above the active region leads to a periodically changing effective refractive 

index along z-axis.  

 

 

    Fig 2.5.6, shows a simplified DFB laser with 1-D periodic structure consists of complex 

index profile a and b and the dimension aL and bL along x direction. The periodicity is

a bL L = + . From the matrix formulation derived in section 2.4, the total transfer matrix

Tm for N period satisfy N

T =m M , where M is the transfer matrix for single period. 

Similarly, at lasing threshold, the reflection of entire periodic structure will become 

 

Figure 2.5.5 Schematic of typical semiconductor DFB laser.   

 

 

Fig. 2.5.6 Simplified DFB structure as 1-D grating with complex index profiles   
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infinite which means the matrix element
11M become zero. Generally speaking, 

11M is a 

complex number. It is very convenient to plot
11M value in a complex plane.  

Figure 2.5.7 shows an example of the real and imaginary part of
11M . The structure 

analyzed is DFB laser with symmetric terminating material/condition at lasing threshold. 

As it is shown, at threshold, the locus will pass through coordinate origin twice which 

indicating two lasing mode on each side of Bragg frequency. If we increase the gain 

further, we will find another root of
thg which satisfy

11 0=M . This is unphysical since the 

laser medium will be clamped when achieving threshold pumping. The difference 

between the lowest
thg and next higher

thg indicated the gain margin, it represents how 

stable the laser will be under modulation. 

Fig.2.5.8 shows a power transmission of such structure. As we can see, the Bragg 

wavelength is at1.5 m . When increasing the gain value, the wavelength at the edge of 

the band gap shoot up, which also indicates the double mode behavior. Such behavior is 

not favorable in real application. In practice, one lasing mode is designed to be suppressed 

through artificially created defects in the periodic structure [8], first order radiation loss 

[9], or gain grating DFB laser structure [10]. A detailed study of periodic structure is 

shown in chapter 3. 

 

 

Fig. 2.5.7 The relationship between real and imaginary part of matrix 

element at lasing threshold of DFB laser 
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The limitation of transfer matrix method is obvious: the theory is linear; hence it cannot 

explain the saturation behavior in amplifiers or oscillators. However, numerous results 

can be obtained from such technique: the device with multiple reflection mirror (either 

periodic or non-periodic) and the structure of cleaved coupled cavities can be analyzed 

essentially the same method as shown above. The carrier effect can be included separately: 

the refractive index and the gain are depending on photon energy.  

 

2.6 Concept of Wave Impedance 

In optics, quite often, the numerical calculation is inevitable for obtaining exact 

solutions. However, deep physical insight into underlying process is also (if not more) 

important for simplified analytical treatment of different problems. Wave impedance is 

one of the concepts providing such physical insight. Impedance is an intrinsic property of 

the media and can be treated as one absolute quantity applicable to any structure or 

components [11]. It represents the transmission and reflection at the interface between 

two adjacent media.  

 
Fig. 2.5.8 Power transmission spectrum of structure shown in Fig. 2.5.6 

with varying gain.  
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Previously, a transfer matrix method is developed to explain and analyze 

electromagnetic wave properties in layered media. It is also known that the transmission 

line method has been used to analyze the EM wave propagating in space. The next task 

is to introduce the concept of wave impedance and implant the impedance concept into 

the matrix method. From section 2.3, for plane wave propagating in homogeneous media, 

the wave impedance is defined as the ratio of tangential field components, i.e. 

0 T TZ E H= where
TE and

TH are the tangential field components of the electric and 

magnetic field referring to the interface. 

 

Here, we extend the definition of the impedance. The characteristic impedance of 0x 

semi-infinite region (referring to figure 2.4.1) is defined as  

0

f r

f r

E E
Z

H H
= = −                                               (2.35) 

The load impedance at 0x = is LZ which is defined as 

0

f r f r

L

f r f r

E E E E
Z Z

H H E E

+ +
= =

+ −
                                    (2.36) 

Note here,
LZ can represents not only single interface, but also complicated multilayer 

structure. Hence 

0

f rL

f r

E EZ

Z E E

+
=

−
                                                (2.37) 

For analysing wave propagation in a layered media, the exact value of 0Z and LZ are not 

of particular interest. It is 0LZ Z which gives our information of impedance matching and 

allow us to synthesize the phenomenon of EM wave in layered media. 

    We noticed that
fE and rE are given from matrix method. For wave propagating inside 

multilayer structure, the input and output have a simple relationship: 

, ,11 12

, ,21 21

f in f out

r in r out

E EM M

E EM M

    
=    
    

                                   (2.38) 

 
Fig. 2.6.1 Impedance concept of electromagnetic wave   
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Where
, 0r outE = simply means there is no signal back from the far end. So 

11 21

0 11 21

f rL

f r

E EZ M M

Z E E M M

+ +
= =

− −
                                 (2.39) 

Where
11M and

21M are two matrix elements of the transfer matrix for the entire multilayer 

structure which can be calculated quasi-numerically. In general,
0LZ Z is a complex 

number, we need to analyse both real and imaginary part separately. The advantage of 

this matrix method implantation is that it links the Fresnel equations with impedance 

representation through matrix elements with TE or TM polarization characteristics built 

in: 

0

0

L

L

Z Z
r

Z Z

−
=

+
                                                 (2.40) 

The advantage of applying impedance concept in optical wave characteristics of media is 

enormous. Since once the Fresnel reflection coefficient is obtained the effective 

impedance (characteristic impedance) can be determined from a simple relationship and 

vice versa if the effective impedance is known. Such technique has been adopted by many 

researchers in analysing metamaterial and is known as effective impedance method [12] 

[13] .   

2.7 Conclusions 

    This chapter has briefly reviewed the propagation and reflection of the plane wave in 

both passive and active homogeneous media. Some basic concept such as Poynting vector 

and optical gain are introduced and will be used in later part of the thesis. A transfer 

matrix method analysis of laser structure is also introduced. Such technique essentially 

treats the laser structure as different element part and can be represented as two by two 

matrix. Effective impedance concept is further introduced. Such concept provides a better 

physical insight of the wave behaviour in different media.  
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Chapter 3  

Optical Waves in Periodic Structure 

The properties of wave behaviour in homogeneous medium have been generally 

discussed in the preceding chapter. However, the media exhibits more complicated 

characteristics in real-life situation such as inhomogeneity or anisotropy. Several topics 

based on the application of those media has been developed and hence stimulated a 

variety of studies along those lines. One of the subjects is about wave behaviour in 

periodic structures.  

The propagation of wave in periodic structure has been studied intensively for more 

than a century since 1887, Lord Rayleigh brought up this problem for analysing waves in 

periodically stratified media. He recognized that the problem involves solving Mathieu 

and Hill’s differential equations [1]. (Actually, Mathieu and Hill’s equations have been 

studied long before Lord Rayleigh with other applications such as the vibration of string). 

Later in 1920s, Bloch generalized the result and obtained the solution, known as Bloch 

waves, formed the foundation theory of electron waves in crystalline solid [2]. For 

electron wave motion in periodic structure (potentials), the electron states fall into 

different ‘bands’ within which the wave can propagate ‘freely’ inside periodic structure. 

Such bands are separated by forbidden gaps which prohibits the free propagation of wave 

without attenuation.  

At the same time, there was strong interest in wave propagation in multilayer structures. 

In 1950s, Abele first discovered that finite periodic structure could be solved analytically 

[3]. Some interesting and detailed reviews could also be found in Brillouin’s book [4]. 

From 1950s to 1970s, the interest in periodic structure stimulated a range of detailed study, 

basically about slow-wave structure, especially in microwave engineering (helix [5], 

travelling wave antenna [6], etc.).  The technology progress also flourished in active 

material, famously DBR and DFB laser, which laid a solid foundation for optical 

communications, and such structure have now been widely used in various applications.  

    The actual concept of photonic crystal (PC) was then introduced in late 1980s [7], ever 

since 2-D and even 3-D periodic structure of dielectric media has been seriously studied. 

Although it is plausible to superficially regard 2-D photonic crystal just as well-known 
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one-dimensional Bragg grating merely with extra dimension in periodic, there is still a 

whole range of new phenomena to be discovered. Periodic structure in optics has strong 

analogy to the electrons in crystal. Just like real crystal, PC exhibits ‘stop-band’ and ‘pass-

band’ regions in frequency spectrum when light wave propagates in it. Such property is 

fascinating since by artificially arranging PC period and/or index profile, one could 

control the flow of light. Hence PC is also known as metamaterial. Such property also 

stimulated the birth of several novel concepts such as perfect lens [8], optical cloaking [9] 

[10], etc. As the developing of state-of-art technology, especially realizing 2-D photonic 

crystal nanofabrication on semiconductor, several devices such as photonic crystal 

waveguide [11], photonic crystal nano-cavity [12], photonic crystal laser [13], etc. has 

been studied enormously both experimentally and theoretically which made it one 

possibility of realizing photonic integrated circuits [14].  

In this chapter, the objective is to provide a physical insight and a quantitative 

description of wave propagation in one dimensional (1-D) periodic media which will form 

a solid building block for 2-D PC modelling developed in next chapter. Although 

sufficient mathematics is essential in understanding different subjects from a fundamental 

basis, we focus ourselves on the physical concept appeared in the theory of periodic 

system.  

Hence, the discussion is arranged as follow. The dispersion of this chapter can be 

separate into two parts: infinite periodic structure and finite periodic structure.  The first 

half of this chapter mainly deal with eigenfunction (Bloch mode) of periodic structure 

with infinite extent and it begins with introducing Mathieu’s equation and its classic 

solving technique known as Floquet-Bloch method which is particular suitable for 

numerical simulation. Such method is therefore often used in obtaining specific results 

rather than understanding general properties of wave behaviour in periodic media. 

Floquet-Bloch method also give rise to the plane wave expansion method in periodic 

system since Bloch mode in periodic potential can be written as plane wave multiplies a 

periodic function. The discussion continues by considering approximate analytical theory 

of coupled wave developed by Kogelnik [15] [16]. Such approximate method is valid for 

small refractive indices modulation depths.  

 In the later part of this chapter, the eigenmode and eigenfunctions of the finite (locally) 

periodic structure is discussed. Mostly importantly, for piece-wise constant medium, the 
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transfer matrix method is used, which simply consists of the derivation of a characteristic 

matrix of one period (unit cell). Such method is astonishingly useful for solving periodic 

structure with finite extent since Bloch’s theorem used in conventional techniques does 

not apply for finite periodic structure. Several applications using periodic structure are 

also reviewed in this chapter. 

3.1 Hill’s Equation and Floquet-Bloch Method 

1-D periodic structure, such as the widely used Bragg gratings, has been very well 

studied and severed for many applications in modern photonic devices, e.g. wavelength 

filter, laser and telecom systems. In general, 1-D periodic structure consists of medium 

with permittivity ( ) ( )x x = +  varies periodically (e.g. along x axis, referring to Fig. 

3.1.1). The period  is of the order of the wavelength of light, so that when light 

(monochromatic) propagates in such structure, although each discontinuity in periodic 

structure may has negligible reflection, the forward and backward propagating wave can 

add up in phase to have a dramatic effect such that high reflection or transmission can be 

produced. If the medium has gain or loss properties, the permittivity become complex:

r ij  = + , 1j = − . As discussed in chapter 2, the imaginary part, 
i , corresponds to 

the field intensity attenuation or amplification and usually, i r  . Hence the discussion 

begins by assuming 0i = .    

 

    With mathematics laxity, considering wave propagation in such unbound (the number 

of period is infinite) periodic medium with the period . For any arbitrary polarized field, 

the wave equation can be reduced form Maxwell’s equation, and takes the form:  

 

Fig. 3.1.1 Structure with one dimensional periodicity: is the 

period of the function ( )x  
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2
2

02
( ) ( ) ( ) 0

d
F x k x F x

d x
+ =                                       (3.1) 

Equation(3.1), which is homogeneous linear differential equation of second order with 

real periodic coefficient, is known as Hill’s equation. Since Hill’s equation is linear, the 

most general solution is a superposition of two linear independent special solutions.  

1 2( ) ( ) ( )F x AF x BF x= +                                           (3.2) 

A and B are arbitrary constants. For a periodic medium, according to Floquet’s theorem, 

it is possible to choose ( )F x in a convenient form.  

    In an infinite periodic structure, field at x and x +has no difference except a complex 

constant: 

( ) ( 2 ) ( 3 )
...

( ) ( ) ( 2 )

F x F x F x
C

F x F x F x

+ +  + 
= = = =

+ + 
                      (3.3) 

C is a complex number. Note here that the function ( )F x is not a periodic function. 

From above relation we obtain: 

( ) ( ) ( )BjmmF x m C F x e F x
− 

+  = =                          (3.4) 

B is a complex number. Considering a function: 

( ) ( )Bj x
G x e F x


=                                             (3.5) 

It can be proved that ( )G x is a periodic function with the period  , thus can be 

represented as a Fourier series: 

2

( )

mm j x

m

m

G x f e

 =+ −  
 

=−

=                                         (3.6) 

Hence: 

2

( ) ( )
B

B

mm j x
j x

m

m

F x G x e f e






 =+ − + −  

=−

= =                           (3.7) 

Define , 2B m BK m = +  and 2K =  . B is known as Bloch wavevector, which is a 

function of wavelength. The different components of ( )mF x is known as mth space 

harmonic of Bloch wave or Bloch mode. The value ,B mK represent the propagation 

properties of these space harmonic. Noting that single space harmonic cannot exist 

independently in general, these space harmonics are portions of total solutions. Generally 

speaking, all space harmonics are coupled together through periodic boundary condition, 

and together they make up the periodic wave. Unlike conventional wave phenomenon 

exists in elementary physics such as traveling wave and standing wave, periodic wave 
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shows a different wave motion for which the wavelength fall into different allowed ‘bands’ 

(continuous since the number of period is infinite) and separate by forbidden ‘gaps’ [17].  

    Equation (3.7) indicates that the Bloch wave is the product of the plane wave

exp( )m Bf j x− and a periodic function ( )exp 2j m x−     (with same period of the 

structure) and such idea forms the basis of plane wave expansion method. However, 

important to notice that
B is not conventional propagation constant and can be complex 

in general. If one only concentrate on  the real value of
B and plot  Re B against the 

corresponding wave frequency , it results the most commonly used photonic band 

structure in the study of periodic system. (More detailed explanation is shown in the later 

part of this chapter)    

    Since ( ) ( )x x = +  is a periodic function, it can be written as Fourier series: 

0

( ) ( ) exp( )
n

m

n

x x jnKx  
=

=

= +  = +                                (3.8) 

where m is the Fourier coefficient of the periodic function. Introducing (3.7) and (3.8) 

into (3.1), it yields: 

2

0

1
[ ( ) ] [exp( ) exp( )] exp[ ( ) ] 0

2

m n

m B n m B

m n

f mK k jnKx jnKx f j mK x  
=+ =+

=− =−

 
− + + − + + + = 

 
   

Which gives 

2

0

1
[ ( ) ] [ ] 0

2

n

n B n n m n m

n

f mK k f f 
=+

+ −

=−

− + + + =                          (3.9) 

 (3.9) represents an infinite set of equations.  

    In practice, higher order harmonics are discarded in numerical calculation so that a 

finite set of equations is obtained and the dispersion relation for
m can be solved 

accordingly. Such classic technique is known as Floquet-Bloch method [18]. Despite of 

the mathematical complexity of such method, the advantage is clear: it is particularly 

suitable for computer evaluation since the numerical calculation comes out directly from 

the formulation of the problem. Hence Floquet-Bloch method is main used in specific 

calculation such as photonic band structure, stability diagram, rather than obtaining 

general physical properties of wave transformation in 1-D media. 
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When the periodic function
2

0 ( )k x has only sinusoidal modulation, i.e. 

2

0 ( ) 2 cos( )k x p q x = − , where p, q and  are constant, the equation is known as Mathieu’ 

Equation: 

 

2

2
( ) [ 2 cos( )] ( ) 0

d
F x p q x F x

d x
+ − =                                (3.10) 

Due to the complexity of the Mathieu’s equation, they are not commonly discussed in 

many monographs. Although there are indeed many exceptions: [19], [20], [21], etc., the 

mathematical language contains in those references are somehow daunting for average 

users to understand.  

Thus, the objective here is, without going too much into mathematic details of solving 

Mathieu’s equation, to obtain the stability diagram using infinite matrix method, referring 

to Appendix C where the derivation of the infinite matrix is given. (another method by 

solving continuum fraction can be found in [21], [22] and [23]). The advantages of using 

matrix representation is that numerical calculation such as diagonalization, determinant 

calculation and matrix multiplication can be achieved using few commands in MATLAB.  

 

 

Fig. 3.1.2 Stability diagram of Mathieu’s equation. Shaded region is the unstable 

region corresponds to the unbound solution while white region corresponds to 

the bound solution. 
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Here the value 2 = is used as an example. Following the Floquet-Bloch method 

introduced previously and expand ( )F x into Fourier series, the infinite matrix of the 

Mathieu’s equation can be written as: 

( )

( )

( )

( )

2

2
2

1

2

0

2
1

2
2

4 0 0 0

2 0 0

00 0

0 0 2

0 0 0 4

B

B

B

B

B

q

q q

pq q

q q

q

 

 

 






−

−

+

+

  
   
 −  
   
 −  

     − =       +      +          

I  (3.11) 

where I is the identity matrix. Then the problem become det( ) 0p− =M I which is 

effectively the eigenvalue of the matrix M .  

In general, eigenvalue calculation is one of the most complicated computational 

mathematics problems. Here, rather than obtaining the entire solution, we focus on the 

special case that the real part of
B is zero, i.e. Re{ } 0B = , representing the boundary 

between the stable and unstable solution region. The definition of stable solution become 

clear in the following discussion. Then the relationship between p and q can be obtained 

accordingly and represented as blue lines in Fig 3.1.2. Such diagram is known as stability 

diagram.  

As shown in Fig 3.1.2, the shaded region is the unstable region where B is complex or 

real, corresponding to the ‘unbound’ solution that wave will attenuate inside periodic 

structure (stopband). The white region corresponds to the ‘bound’ solution where
B  is 

pure imaginary and wave propagates unattenuated inside periodic structure (passband). 

0q = axis represent continuous uniform medium with no periodic modulation.   

    In practice, there are two categories of (special) 1-D periodic structure that are analysed 

frequently: (1) a harmonically varying permittivity and (2) a piece-wise constant variation 

in ( )x . For piece-wise constant layered periodic media, there is transfer matrix method 

available for the analyse and will be discussed later in this chapter. Our first task is to 

introduce and review the coupled mode theory applied to harmonically stratified media. 
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3.2 Coupled Mode Theory 

Apart from classic Floquet-Bloch approach and solving the infinite matrix as shown 

previously, another approximate analytical method also widely used is known as coupled 

mode theory (CMT). CMT is based on perturbation method and is first used by Kogelnik 

when analysing light scattering by a thick hologram grating [15]. By assuming small 

refractive indices modulation amplitude and near the Bragg resonance frequency, the 

wave equation leads to two coupled equations. An example of sinusoidally stratified 

dielectric media analysed using CMT is shown below. Although sinusoidal varying media 

is barely used in real device application, the study of EM wave behaviour in such media 

is vital since the easier mathematical approach behind makes it an extremely powerful 

tool for understanding and synthesizing the wave mechanism in the periodic structure.    

As illustrated in Fig. 3.2.1. Assuming the inhomogeneous media with sinusoidal 

variation of refractive index and a plane wave along x direction interacts with the media. 

The period of such structure is  . The index profile is given by a periodic function 

conveniently written as
0( ) cos( )x Kx  = + , where 2K =  and is the amplitude of 

the index modulation. Although both 0 and are allowed to be complex as the media can 

be lossy/gain, we assume that there is no absorption/amplification presents so that
0 and

 are purely real. However, the solution technique is also valid for complex media.  

 

Define 0 0 0
2k c  = = , our CMT is based on scalar wave equation: 

2
2 2

02
( ) ( ) ( ) 0

d
F x k x F x

d x
+ =                                     (3.12) 

Assuming a general solution of (3.12) is a perturbation of the original equation 

2
2 2

0 02
( ) ( ) 0

d
F x k F x

d x
+ =                                       (3.13) 

 

Fig. 3.2.1 Periodically stratified media with index distribution 

of 0( ) cos( )x Kx  = + along x direction. 
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with the form of ( ) ( )exp( ) ( )exp( )F x A x j x B x j x = − + + implies that the amplitudes 

A(x) and B(x) depends on x, where
0 0k = .  After some algebra (detailed derivation is 

shown in Appendix D), applying widely used slowly varying envelope approximation 

and assuming 2 K  , equation(3.12) ended up with two coupled equations: 

( ) ( ) j xd
A x j B x e

d x

 + = −                                       (3.14) 

( ) ( ) j xd
B x j A x e

d x

 − = +                                       (3.15) 

where 2

0 0 2k   = is known as (complex) coupling coefficient of the grating and

2 K  = − is called (complex) detuning. Equations (3.14) and (3.15) are known as 

coupled mode equations. In this particular case, coupled mode equations represent the 

amplitude linkage between the forward and backward traveling waves (modes).  

    Although here coupled mode equations are obtained through sinusoidal index variation, 

the equation form can be applied to more general (but still have to be periodic) cases of 

( )x  [24]. The final solution is the linear combination of the two solutions: 

2 2
1 2( )

j x sx j x sx

A x C e C e
  

+ −

= +                                     (3.16) 

2 2
1 2( )

j x sx j x sx

B x D e D e
  

− + − −

= +                                  (3.17) 

Where 
1C , 2C  and 1D ,

2D are constants. The general solutions of (3.12) can be written as: 

2 2
2 22 2

2 2

1 1

( )

m m
j j x j j x

m m

m m

E x C e D e

   
 

   
       − − + + − +   

       
   

= =

= +              (3.18) 

Recall the definition of ,B mK and Bloch wavevector B  in section 3.1. In this particular 

case, ( )
22

, 2 2B mK j m  = −  +   and ( )
22 2B j  = −  . In general, B can be 

either real or imaginary which corresponds to the passband and stopband respectively.  

Quite often, the real and imaginary part of B  is plotted as a function of frequency. 

Such dispersion relation is known as (photonic) ‘band diagram’. For convenience, the 

Bloch wavevector is often plotted within the reduced Brillouin zone analogue to the well-

known semiconductor band structure. Here the first Brillouin zone is defined such that 

the value B satisfy  , 0B i i   ， where i denotes the direction in the reciprocal lattice. 
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e.g. ,B x , ,B y , ,B z , etc. , 0B i i  = is often referred to as ‘ ’ point. As shown in Fig. 3.2.2, 

for sinusoidal varying media, the red line and blue line represents the real and imaginary 

part of the Bloch wavevector respectively. When ,B i i  become pure imaginary, such 

wavelength corresponds to the ‘stopband’, within which the reflected wave can add up in 

phase to produce strong reflection (non-propagating). 

 

Previously, the solution of the coupled equation is found. However, we noticed that the 

solving of the problem does not necessarily require the implicitly assumed Floquet form. 

To understand the mathematics behind CMT better, we considering Mathieu equation 

introduced in previous section. It turns out that, when solving Mathieu equation, if only 

the zeroth and first order of Fourier components is considered, i.e. 

( )

2

0

2

1

0
2

B

B

q
p

q

 

 +

     
− =     +     

I                                    (3.19) 

the solution of such equation results in solving the determinant of the following matrix: 

( )

2

2
2

B

B

q

q





 
 
 + 

                                                  (3.20) 

which gives a quartic equation with one variable B . In general, quartic equation can have 

analytical solution but the expression can be rather complicated. Here, we took advantage 

of numerical software ‘Mathematica’ which yields: 

 

Fig. 3.2.2 1-D Photonic band structure corresponds to the structure shown in 

Fig 3.2.1 with index profile
0 2.05 = , 0.6 = , 0.401 m =   
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(1) 2

(2) 2

(3) 2

(4) 2

4 1 1

4 1 1

4 1 1

4 1 1

B

B

B

B

q p p

q p p

q p p

q p p









= − − − + + −

= − − + + −

= − − + + −

= − + + −

                                  (3.21) 

Such solutions corresponds to the four
B values obtained from equation (3.14) and (3.15). 

At this stage, it becomes clear that mathematically speaking, CMT is effectively very 

approximate solution to Mathieu equation with only zeroth and first order of Fourier 

component. 

Another interesting concept arises in periodic system is known as density of state 

(DOS). In photonic crystal, the calculation of DOS starts by first assuming the allowed 

‘states’(wavevectors
B ) between a certain range of states ( ),B B B  +  being uniform. 

Thus, the corresponding number of states that are contained within the frequency range

( )0 0 0,k k k+ is ( )0 0B k k   . Hence, the value
0B k  is known as the density of state 

in frequency space (k-space). 

 

We then apply differentiation on the B value derived using CMT, which yields: 

0 0

2 2
0

( ) / 2
Re

( / 2)

B
k Kd

dk K

 

 

 − + 
=  

− −  

                                    (3.22) 

The relationship between DOS and k vector is shown in Fig.3.2.3. 

 

Fig. 3.2.3 density of states calculated using CMT   
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It is shown in the figure that the DOS is maximum in the band edge and zero within 

the band gap. Such effect is significant in some device application such as DFB laser. As 

mentioned in previous chapter, unlike FP laser that two parallel mirrors are used for the 

feedback, the feedback for DFB laser happens continuously at each corrugation. The 

numerical results shown previously suggest that the lasing happens at the edge of the pass 

band. Thus, although the reflection is high within the stop-band, there is no allowed 

optical state. In general, the lasing cannot happen within the stop band of DFB structure 

and that makes DFB laser a ‘band-edge’ laser [25]. There is certain technique known as 

‘ 4  DFB laser’ which create ‘defect’ state within photonic forbidden gap. In that case, 

lasing will happen at the defect state rather than the band-edge. 

3.3 Transfer Matrix Method for Periodic Media 

Apart from periodic structure with harmonically varying index, another category of 

structure with piece-wise constant index profile has also been analysed intensively. When 

the piece-wise constant condition of the dielectric media is satisfied, there is another 

technique known as transfer matrix method (TMM) available for analysing such structure. 

It is well known that TMM has been used for network theory in microwave engineering. 

Meanwhile, researcher found that laser can be described by the product of different 

transfer matrix. The idea is to assume laser has finite numbers of elementary part. Each 

part could be described as a two by two matrix, the properties of the entire device is 

simply the multiplication of the transfer matrix.  

 

 

Fig. 3.3.1 Periodic media with piece-wise constant index profile. The 

excitation plane wave at angle θ is such that all electric fields are in x-z 

plane.   



44 

 

 

The advantage of such method is clear: unlike CMT, the weak coupling assumption is 

not necessarily required. Moreover, TMM is easy for numerical calculation. For periodic 

structure, the final result is effectively the Nth power of the matrix of single period. Gain 

and loss can be included through complex refractive indices. This matrix method also 

works for F-P laser, DBR laser and DFB lasers as shown in previous chapter. Hence, 

rather than obtaining numerical results, the main objective of this section is to study the 

periodic structure in a certain degree of mathematical detail to further understand the 

behaviour of electromagnetic wave in periodic structure.  

    As shown in Fig. 3.3.1, refractive index pattern ( , )x z is periodic along x direction and 

satisfy ( , ) ( ) ( )x z x x  = = + . The excitation is such that any non-zero field component 

satisfies 0y   . Two independent categories of field solutions, one with polarisation 

0y yTE E = and the other 0y yTM H = can be sustained. To be specific, ( , )F x z will 

be used to represent the non-zero y-directed field component. ( , )F x z satisfies wave 

equation: 

2 2
2 2

02 2
( , ) ( , ) 0

d d
k x z F x z

d x d z


 
+ + = 

 
                            (3.23) 

And thus, it is noticed that separation of variable ( , ) ( )exp( )F x z f x z= −  is applicable. 

In x direction, piece-wise constant condition is satisfied ( ) q qj x j x

q q qf x f e f e
 − ++ −= + where

0q qk = ,
qf
+ and

qf
− are decided by the interface condition. From section 2.4, the transfer 

matrix for a single period can be written as: 

 n

A B

C D

 
=  
 

M                                                      (3.24) 

Where  

( ) ( )
1 1 1 1

2 2

1 1( ) ( )

1 14 4

q q q q q q q qq q q qj L L j L L

q q q q

A e e
   

   

   
+ + + ++ ++ + + −

+ +

+ −
= −               (3.25) 

1 1 1 1

2 2 2 2

( ) ( )1 1

1 14 4

q q q q q q q qj L L j L Lq q q q

q q q q

B e e
      

   
+ + + ++ + + −+ +

+ +

− −
= − −                     (3.26) 

1 1 1 1

2 2 2 2

( ) ( )1 1

1 14 4

q q q q q q q qj L L j L Lq q q q

q q q q

C e e
      

   
+ + + +− − − ++ +

+ +

− −
= − −                     (3.27) 

( ) ( )
1 1 1 1

2 2

1 1( ) ( )

1 14 4

q q q q q q q qq q q qj L L j L L

q q q q

D e e
   

   

   
+ + + ++ +− − − +

+ +

− +
= − +            (3.28) 
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After certain amount of algebra, it can be proved that for periodic structure, the 

determinate of the matrix
nM , det( ) 1n AD BC= − =M . Hence matrix

nM is an 

unimodular matrix. If the structure is periodic with the periodicity N, then the following 

condition: 

1

1 2 3

1

N N

n n

N

ff

ff

++

−−

  
=  =   

   
M M M M M                               (3.29) 

is satisfied. Thus, input and output characteristics of the periodic structure with N periods 

can be expressed by Nth power of unimodular matrix. There are many ways to calculate 

Nth power of unimodular matrix existing in the literature. One widely used approach is 

using Chebyshev identity: 

1 2 1

1 1 2

N

N N NN

n

N N N

AU U BUA B

CU DU UC D

− − −

− − −

−  
= =   

−   
M                  (3.30) 

where  

sin( 1)

sin

B
N

B

N
U





+ 
=


                                             (3.31) 

is known as Chebyshev polynomial of the second kind. The detailed derivation can be 

found in Appendix E. 

 

As mentioned earlier in this chapter, in practical application, periodic structure can be 

used as filter, grating and high reflection mirror. All such application involves the study 

of the excitation in periodic structure, i.e. initial value problem. Meanwhile, TMM 

provides an easy approach of such problem. As derived from equation (3.29), the input 

and output of the periodic structure (with period N) is linked by the total transfer matrix

TM , satisfying: 

 

Fig. 3.3.2 Periodic structure along x-axis excited using plane wave with 

different angle θ. 3.13a = , 3.46b = , 105.5aL nm= , 180.75bL nm= .  
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1,1 1,21

T

2,1 2,21

M M
=

M M

NN N N

n

N N N

f f ff

f f ff

+ + ++

− − −−

        
= =        

        
M M                 (3.32) 

where 0Nf
− = since no field coming back from the terminal layer. The total field reflection 

r of such structure is thus given by: 

2 11

1 1 1

M

M

f
r

f

−

+
= = ，

，

                                            (3.33) 

Referring to Fig. 3.3.2, 3.13a = , 3.46b = , 105.5aL nm= , 180.75bL nm= . The 

number of period is N. The structure is excited such that the incident beam has fixed 

wavelength at
0 980nm =  while varying the incident angle which is linked to the 

effective indices via the following relationship: sineff b  = . Note here that varying 

incident angle and varying input wavelength
0 are the same since both changes the 

parameter known as ‘optical length’ effectively. 

 

Fig. 3.3.3 illustrates the power transmission spectrum when varying the number of 

period as 10N = , 30N =  and 100N = . Other parameter of the structure refers to Fig. 

3.3.2. It is shown that when increase the number of period, the resonance (transmission 

maximum) points become sharper and denser and then eventually forms a ‘continuum 

 

Fig. 3.3.3 Power transmission spectrum (blue lines) when varying the number of 

period as 10N = , 30N =  and 100N = . Note varying
eff corresponds different 

excitation angle. The regions with light red colour represent the optical stop-band.  
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band’ if the number of period become infinite. Such continuum bands, also known as 

passband, are separated by the forbidden gaps where the total reflection occurs (shown as 

red shades region in figure). Also, it can be seen qualitatively that the resonance points 

(transmission maxima) become denser near the forbidden gap, such phenomenon has 

strong analogy to that of electrons states in 1-D crystal lattice: density of state for is higher 

near the band edge. The DOS is higher near the band edge is also proved previously using 

CMT. 

 

    According to the Floquet theorem, for periodic structure, the solution of wave equation 

is a periodic function multiply a general complex: 

( , ) ( ) Bj xj z

BF x z f x e e
 −−=                                        (3.34) 

Where ( ) ( )B Bf x f x= +  and is the period. B  is called Bloch wave vector number as 

designed previously. We can easily find out: 

( )
( , ) ( ) ( , )B Bj x jj z

BF x z f x e e e F x z
  − + − −+ = + =              (3.35) 

Alternatively, in terms of TMM: 

 

Fig. 3.3.4 power reflectance spectrum with different number of period and 1-D photonic 

band structure obtained using TMM. Grey shaded region represents optical stopbands within 

which the Bloch wavevector become pure imaginary. 
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Thus, exp( )Bj+  is the eigenvalue of the ABCD matrix and the value of 
B is given by 

11
cos

2
B

A D
 − + 

=    
                                         (3.37) 

In general, as discussed in section 3.1,
B can be either real or imaginary and the 

quantity , 2B m BK m = +  represents the properties of the space harmonics. Similarly, 

the real and imaginary part of
B obtained using TMM can also be plotted over an 

appropriate range of wavelength which gives the photonic band structure as shown above 

with specific parameters as given in Fig.3.3.2. Note that only perpendicular excitation of 

plane wave is considered in this discussion. As shown in Fig.3.3.4, the reflection maxima 

become ‘flat’ over a range of wavelength known as stopbands as the number of period 

become larger. Within such forbidden gap the Bloch wave-vector become pure imaginary

B Bj =  and ,B mK become complex. 

 

Note that such complex ,B mK , leads to the decaying (envelope) of electrical field 

distribution of a Bloch wave within the stopband.  Although complex propagation 

constant usually leads to the dissipation of power, in this case, however, it does not 

 

Fig 3.3.5 field intensity (red line) within the periodic structure when the 

frequency lies inside stopband 
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necessarily require gain or loss in the media. In other words, just like in the cladding layer 

of the conventional waveguide, although the field decays, the real part of Poynting vector 

is zero. Such issue is not trivial, a simple proof can be found in Appendix F. In general, 

the real part of Poynting vector is zero within the stopband, hence under such condition 

the periodic media act as an inductor/capacitor in microwave circuit, i.e. the Poynting 

vector is pure imaginary energy is not dissipated/lose.  

Fig.3.3.5 illustrates the field intensity (red line) within the periodic structure when the 

frequency lies inside stopband. As it is shown, the field envelope decays as exp( )B x−

where
B is the Bloch wavevector as defined and x is the distance from the interface. Such 

effect is a result of the general form of Floquet-Bloch function and is explained below.  

Recall derived in section 3.1 where the general expression of Floquet-Bloch function 

is of the form of (3.7): 

2

( ) ( )
B

B

mm j x
j x

m

m

F x G x e f e






 =+ − + −  

=−

= =   

Where , 2B m BK m = +  is defined. When the frequency falls within the stop-band, the 

Bloch wavevector become pure imaginary B Bj = and thus, the function envelope 

decays as exp( )B x− along the periodic structure while remains varying periodically as

 . Such effect has been used a great range of application to provide confined 

electromagnetic field and several examples will be given in the next section. 

3.4 Eigenvalues in Periodic Structure 

Perhaps, one of the most important and crucial study in physics is the calculation of the 

eigenvalue and eigenfunctions. Especially in quantum and electromagnetic theories, 

understanding physical properties by evaluation of eigenvalue has been one of the most 

widely used approaches in theoretical analysis. However, the eigenvalue or 

eigenfunctions in periodic structure is not at all obvious. In infinite periodic structure, 

assuming all fields have harmonic time dependency, it is found that by rearranging 

Maxwell's equation, for example, (2.1.9) and (2.1.10), one could get the famous ‘master 

equation’: 
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                                 (3.38) 

define  ( )= 1 ( ) ( )    H r r H r , hence operator  = 1 ( )    r is performed 

on an eigenvector ( )H r  and ( )
2

c is a constant known as the eigenvalue of the problem, 

where is the frequency and c is the speed of light in vacuum.  For a given structure, 

( ) r , the objective is to find the mode solution ( )H r and its corresponding frequency . 

Such technique formed a basis of one modelling technique known as plane wave 

expansion (PWE).  

    For periodic structure, the procedure is first using Bloch theorem to expand function

( )H r and ( ) r into a set of plane wave (hence the name plane wave expansion), then 

perform operation on ( )H r , if ( )H r is allowed mode, the result will return to a constant 

value multiply its original function [26]. In practice, recall Floquet-Bloch method 

introduced in section 3.1, this is done by using finite number of the plane wave (depends 

on the accuracy requirement), and the solving involves matrix-diagonalization method 

[18]. PWE is very important and useful for obtaining band diagram. Such study is crucial 

in photonic crystal since it provides the knowledge of the photonic band-gap and the 

interpretation of resonance modes over a range of frequency. 

Despite of the success of PWE method in obtaining photonic band structure, however, 

it provides less physical insight and understanding of the wave propagating, coupling and 

scattering process inside photonic crystal. Another difficulty arises especially when the 

number of period become finite, since the Floquet theorem, which dramatically simplified 

the problem, does not apply to this situation.  

In this section, an alternative but much simpler and very illustrative approach based on 

excitation of the periodic structure and the concept of impedance matching is used for 

analysing several examples. It is shown that apart from exact numerical solutions, clear 

physical insight can be obtained and concepts such as cavity (defect) states in PC nano-

cavity laser, photonic crystal fibre and Tamm surface states in plasmonic based devices 

come out naturally. 
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3.4.1 General Concept of Waveguide 

 Perhaps one of the most important study of eigenvalue problem in E-M theory is about 

guided waves in different media. As is known, a large variety of physical environments 

exhibit wave phenomenon and often conditions exist naturally or can be engineered 

whereby these waves are preferentially directed (guided). These wave propagation forms 

are known as guided modes and the structure of those media that can support the modes 

are called waveguides. Although there are many forms of wave such as mechanic waves, 

water wave, acoustic wave and even quantum mechanics wave, the discussion is 

concentrated on the EM wave in this work. It dates back to as early as the end of 19th 

century when Lord Rayleigh publish the analysis of EM wave in dielectric filled 

conducting tube [27]. Later in 1910, guided waves in cylindrical dielectric guide (now 

known as optical fibre) was analysed by Hondros and Debye [28]. Since then, both 

theoretical and experimental work have been carried out extensively in guided EM wave 

which laid a solid foundation especially in practical communication elements. Guided 

wave optical devices such as optical fibre and semiconductor lasers have also been 

playing an important role in modern electrical engineering for the past few decades and 

the study are still revolutionizing the global industry. 

 

As shown in Fig.3.4.1, the simplest waveguide consists of two metal plates. Assuming 

EM wave propagation is along z direction, then the TEM-type propagating waves, similar 

to plane waves in unbounded homogenous media, can have fields with yE and xH . 

However, unlike in unbounded homogenous media, the other combination xE and yH

cannot be sustained. There are also other ‘modes’ composed of plane waves, at different 

angles to z-axis, bouncing off (reflected) from the bottom y d= − and top y d= + metal 

plates, can be considered as more complicated field distributions but propagating along 

the z-axis.  

 

Fig. 3.4.1 Schematic of metal slab waveguide 
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As illustrated in the Fig.3.4.1, generally speaking, sin( )y and cos( )y  type field 

variations along y-axis with exp( )j z−  variations exist where  and  have discrete 

values and relate via the dispersion characteristics of the modes. Such modes have two 

independent polarisations, ( ) 0z zTE E = and ( ) 0z zTM H = . Each mode has a cut-off 

condition, i.e., each mode has a cut-off frequency below which frequency the mode will 

not propagate. 

In practice, metal waveguides are widely used in microwave to millimetre (mm) wave 

application (frequency up to about 100GHz) above which the metal loss become 

significantly detrimental and the waveguide dimensions become impractical for mono-

mode operation. At higher frequencies, from 100GHz, and beyond and way in to the 

optical, ultraviolet (UV) frequencies (wavelengths), dielectric materials are the most 

efficient for waveguiding (most commonly known such as optical fibre [29]).  

The simplest geometry of the dielectric waveguide is the flat dielectric slab, similar to 

the two-parallel-plate metal waveguide discussed previously. As illustrated in Fig.3.4.2, 

the slab dielectric waveguide consists of a slab of dielectric of refractive index,
1 , 

occupying the region d y d−   + ; the region below( y d − ) and above( y d + ) have 

refractive index
1 with

1 2  .  

 

With this arrangement the EM signal is bound (largely confined) to the central slab 

dielectric region 1 .  In this case also the ‘mode’ may be viewed as composed of plane 

waves at angles to the z-axis ‘bouncing-off’ the top, y d= + and the bottom, y d= − , 

dielectric interfaces.  In fact, this ‘bouncing-off’ from the interfaces is due to total internal 

reflection (TIR) as defined by Snell’s Law. Remember that TIR can occur only when the 

wave is incident from the high refractive index region in to the low refractive index region. 

Hence the dielectric waveguide has a high refractive index ‘core’ surrounded by low 

 

Fig. 3.4.2 Schematic of dielectric slab waveguide 
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refractive index regions and the signal remains ‘trapped’ in the high refractive index, core 

region; thus, this structure constitutes a waveguide.   

The EM signal thus propagates along the z-axis while the fields are bound to the core 

region. But importantly, in principle, out to infinity along transverse axis finite fields exist 

even though energy does not flow out along the transverse axis for bound modes. Such 

waveguide is referred to as open waveguide. Moreover, because of being open 

waveguides, the rectangular slab does not admit separation of variables solution leading 

to considerable mathematical complexity in solving such structures. Hence, approximate 

analysis, such as the effective index method [30], Marcatili’s approximation [31], yield 

satisfactorily good results but extra care must always be taken to check validity. The 

simple derivation of the bound mode of dielectric waveguide and effective index method 

is given in many text books but briefly in Appendix G. 

3.4.2 Waveguide Coupling and Periodic Waveguide 

In general, the requirement for waveguide is to guide the EM radiation along the 

guiding structure. That implies that the EM signal are more appreciable in the core region. 

However, as mentioned previously, although energy does not flow outside the core region, 

the field in principle can extend to infinite. Hence, when parallel waveguides are brought 

together, the phenomenon known as waveguide coupling occurs.  

 

 

Fig. 3.4.3. Identically coupled waveguide: with 9N = (nine identity coupled waveguides) 

is shown, the refractive index profiles are 3.2a = ; 3.5b = and the dimension is chosen 

as 0.156aL m= ; 0.143bL m= . 
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The analyse of the waveguide problem often requires numerical calculation since even 

for dielectric slab waveguide, the solution involves solving a transcendental equation. To 

analyse the waveguide coupling effect, the method often used is CMT. An example 

showing coupling of two waveguide using CMT is given in Appendix H. Apart from 

CMT, since the coupled waveguide often satisfy piecewise constant condition, the 

waveguide coupling problem can also be analysed using TMM.  

As illustrated in Fig.3.4.3, an example of periodic coupled waveguide with 9N = (nine 

identity coupled waveguides) is shown, the refractive index profiles are 3.2a = ; 3.5b =

and the dimension is chosen as 0.156aL m= ; 0.143bL m= . The eigenvalue solution is 

searched such that only conventional bound modes are considered at the wavelength

1 m = , implying zero field intensity at infinite. Effectively, from equation (3.32), by 

setting 1 0Nf f+ −= = (for confined mode field amplitudes must vanish at infinite) 

propagation constant corresponds to bound mode, in this particular case, is the solution 

of a transcendental equation: 

sin ( ) sin [( 1) ]
0

sin ( ) sin ( )

B B

B B

N N
A

 

 

 − 
− =

 
                                (3.39) 

where A is given in equation (3.25) and B  is given by equation (3.37). There are many 

computational techniques available for solving such equation numerically, e.g. bisection 

method [32], Newton’s method [33] and fixed-point method [32], etc.  

 

 

Fig.3.4.4 Bound mode profile of the coupled waveguide. (referring to Fig.3.4.4) 
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    Fig. 3.4.4 shows several examples of the bound mode profiles of such periodic coupled 

waveguides. Note that importantly, only for weak waveguide coupling, N identical 

coupled waveguides gives exact N modes. Such effect is also seen in quantum mechanics 

that N states given by N coupled system are due to the splitting of the N-folded degeneracy 

[34]. However, in general, N identical coupled waveguides do not necessary give N bound 

modes depends on the strength of the coupling. (e.g. in this case only four modes). The 

solution shows sine/cosine type of function within the higher index region while in lower 

index region, the solution types are sine/cosine hyperbolic.  

 

    Such eigenvalue problem can be also solved as initial value problem. It is known that 

conventional bound mode solution corresponds to the optical tunnelling solution [35]. 

Referring to Fig. 3.4.5, similar structure but with higher index region outside is excited 

at same wavelength 1 m = at different angles. Such process effectively varying
eff so 

that each region, 
0 effk = is satisfied. Power reflectance spectrum of such structure is 

shown in Fig.3.4.5a. Four red triangles are the conventional mode solutions obtained 

previously of the structure shown in Fig.3.4.3. It is shown that conventional mode type 

solution corresponds to the total transmittance (optical tunnelling) type of solution. This 

technique of finding periodic waveguide mode is illustrative since it connects the 

eigenvalue problem with the excitation problem. The concept of exciting the structure to 

find the eigenvalue problem can also be understood using the technique of impedance 

matching.  

 

 

Fig. 3.4.5. Identically coupled waveguide with an extra excitation layer. 9N =

(nine identity coupled waveguides) is shown, the refractive index profiles are

3.2a = ; 3.5b = and the dimension is chosen as 0.156aL m= ; 0.143bL m= . 
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Recall the wave impedance concept developed in previous chapter section 2.6, if the 

excitation plane wave is defined as ‘input’, the periodic structure is defined as ‘load’. 

Such excitation process is effectively searching for (matching) the ‘characteristic 

impedance’ of the ‘load’. Fig.3.4.6b shows both the real and imaginary part of the value

0LZ Z . It is known from microwave engineering that the impedance matching condition 

occurs when real part of
0LZ Z equals to one while imaginary part of

0LZ Z is zero. As 

illustrated in the figure, all conventional mode type of solution (or optical tunnelling 

solution) corresponds to the impedance matching solution. In other word, the excitation 

process is to match (find) the characteristic impedance of the periodic structure.   

 

However, apart from the conventional bound mode solution (red triangle in Fig.3.4.6a), 

there are also many other solutions which corresponds to the optical tunnelling solutions 

and the impedances matching solutions (as shown as black circles in Fig.3.4.6a). Such 

solutions, although within the continuum spectrum region (the field solution is sinusoidal 

everywhere), the energy is still bound within the guide. As shown in Fig.3.4.7, field 

distribution of such solution is plotted as examples. The solutions, exhibits localized 

 

Fig. 3.4.6. a) Power reflectance spectrum of the structure referred to Fig.3.4.5. The red 

triangle represents the conventional bound mode while the black circle represents the mode 

due to the optical tunnelling b) wave impedance representation of the optical tunnelling. 
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characteristics, is observed within continuum region. If such mode is ‘excited’ in the same 

periodic structure without the higher index terminal region, i.e. referring to Fig.3.4.3, the 

energy will remain bound in the waveguide without leaking. Such mode is often referred 

to as bound state in continuum (BIC) mode. The concept of BIC is brought up by Von 

Neumann and Wigner in 1929. It is not until recently that BIC has been observed in 

quantum system (1-D semiconductor superlattice) [36] and more recently in optics such 

as 1-D Bragg grating [37]. 

 

3.4.3 Bragg Reflection Waveguide 

 

 

Fig. 3.4.7 Mode profile of BIC mode: Solution within the continuum region while energy 

remain bounded rather than dissipated. 

 

 

Fig. 3.4.8 Schematic of Bragg reflection waveguide. 
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Conventional waveguide depends essentially on total internal reflection (TIR) or 

Snell’s law to achieve EM wave confinement, hence the core refractive index has to be 

larger to inhibit propagation of energy away along the transverse axis. However, as is 

already known, periodic structures can also inhibit propagation if appropriately designed 

structure dimensions and materials parameters are used at the appropriate frequencies; i.e. 

stop-bands and pass-bands of periodic structures have found extensive usage recently to 

achieve guiding characteristics that were hitherto not achievable. That is, the realm of 

Floquet-Bloch functions and Bragg grating phenomenon are being re-deployed to create 

what are now termed as photonic crystals to achieve waveguides such as photonic crystal 

optical fibre[38], resonators[39] etc that have hitherto been unachievable characteristics.  

 

The concept of photonic crystal waveguide is originated from the paper by Pochi Yeh 

where the Bragg reflection waveguide is introduced [40]. It is also suggested in their later 

publication that cylindrical Bragg waveguide constructed by high/low refractive indices 

arranged in a ring can support mode propagation in lower core region [41]. Later, a more 

sophisticated waveguide structure known as photonic crystal fibre is designed and 

fabricated by Philip Russell and University of Bath. A more comprehensive review about 

photonic crystal fibre can be found in [42] [43]. Basically, photonic crystal fibre supports 

the propagation of defect state. The detailed calculation is complicated but the idea and 

the concept is briefly illustrated as Bragg reflection waveguide as below. 

 

Fig. 3.4.9 Power transmission spectrum of Bragg reflection waveguide 
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 Considering 1-D periodic structure with defect in the middle. As illustrated in Fig.3.4.8. 

the refractive index profiles are 3.13a = ; 3.46b = and the dimension is chosen as

120aL nm= , 170bL nm= and 290cL nm= . The excitation is such that the wavelength of the 

plane wave is chosen at 980nm = with an angle of incident. Following similar technique 

developed previously, the transmission maximum is considered to be the eigenvalue of 

such problem. 

Fig.3.4.9 illustrates a power transmission spectrum of such structure. However, unlike 

the ‘perfect’ periodic structure which has a continuous stop-band, an extra ‘state’ appears 

within the forbidden gap corresponds to the so-called defect sates or cavity states. Such 

cavity state also shows ‘impedance matching condition’, i.e. the real part of
0LZ Z equals 

to one while imaginary part of
0LZ Z is zero, which is similar to the waveguide mode, 

BIC mode. Such numerical evidence is given in Fig. 3.4.10. 

 

Fig. 3.4.11 illustrates a mode profile of such defect state (cavity state). It is shown that 

although the core region has lower refractive index, the mode is still remain ‘bound’ along 

its transverse direction. However, unlike conventional waveguide which relies on total 

internal reflection, Bragg reflection waveguide or similarly photonic crystal waveguide 

relies on the stop-band properties of the periodic structure. Although theoretically, 

‘perfect’ bound defect mode can exist only when the periodic structure is semi-infinite, 

 

Fig. 3.4.10 Impedance matching representation of photonic crystal cavity state. 
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in practice, even 10 to 20 periods give sufficient low loss and can be used in various of 

applications. A further notice that the defect state can be made into lasers or resonators 

due to the high Q-factor, famously photonic crystal nano-cavity laser [44]. 

 

3.4.4 Surface State 

 

Apart from guiding the electromagnetic wave as Bragg reflection waveguide as 

mentioned in previous section, periodic structure can provide guiding effect along its 

truncating surface (referring to the structure illustrate in Fig.3.4.12). Such mode, or state, 

is often known as Tamm state [45]. Fig.3.4.13 illustrates two types of states for truncated 

periodic potential: one type surface states has Floquet-Bloch type of solution (within the 

passband) in the periodic potential and exponentially decayed type of solution outside the 

 

Fig. 3.4.11 Mode profile of cavity states: 10 period of grating is used in 

each side. 

 

 

Fig. 3.4.12 Schematic of structure that supporting surface state. 
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truncated structure (Fig.3.4.13b); while the other solution (Fig.3.4.13a), although the 

solution exponentially decayed outside the structure, the Floquet-Bloch solution within 

the periodic potential lies inside the ‘stopband’ which gives a decayed field envelope 

inside the structure. Researcher are more interested in state represented in Fig. 3.4.13a 

since the field is localized near the surface and thus provide a very special type of guiding 

structure. Such state also known as Tamm state, or optical Tamm states in optics, which 

is named after the Russian physicist Igor Tamm who predicted such state (electronic state) 

in 1933.  

 

    The identification of surface state can be achieved also using excitation method [46]. 

The technique is almost identical to the evaluation of the cavity state and hence will not 

be discussed again in this thesis. 

Another rather interesting phenomenon when considering surface states. Apart from 

the guiding structure mentioned previously, electromagnetic field can also exist in the 

interface between two media if the dielectric constants are of the opposite sign (e.g. metal 

and semiconductor). Such ‘mode’ (only a single TM mode exists in such given frequency) 

is also known as surface plasmon because the negative dielectric constant is a result from 

electron plasma in metal. The limitation of this single TM mode is removed if one media 

exhibit periodic index profile, e.g. Bragg grating in semiconductor. Such structure 

supports the mode known as Tamm plasmon. The excitation of the conventional surface 

state usually requires a prism and the conventional plasmonic mode can be only TM mode. 

 

Fig. 3.4.13 Two types of surface state. The surface boundary at x=0 
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Tamm plasmon, however, by combination of metal and DBR structure, can support TE 

and TM while easier to be excited.  

3.5 Conclusion 

Optical wave in periodic structure is undoubtably a broad subject area and has been 

studied for over a century. However, the theory of such topic has received very significant 

resurgence even recently when a great range of photonic device emerges especially the 

application of photonic crystal. To understand the behaviour of those advanced device 

and design for the next level of sophistication, it is necessary or even inevitable to study 

the wave characteristics in periodic structure from its fundamental basis.   

Such study is done as a part of this project and is reviewed in this chapter. Broadly 

speaking, the topic of wave mechanism in periodic structure is in general eigenvalue 

problems and can be grouped into two area: infinite periodicity and finite periodicity. The 

periodic structure with infinite extent is governed by the Hill’s equation (or Mathieu 

equation) which effectively gives rise to the PWE method. The eigenvalue is merely the 

Bloch wavevector results from its numerical process. CMT used in infinite periodic 

structure, however, is an approximate of PWE by discarding higher order Fourier 

components (plane wave components).  

The other group of study involves wave mechanism in finite periodic structure. Such 

topic is very complicated in general since the Floquet-Bloch solution, which dramatically 

simplified the calculation, does not apply anymore. However, when the linkage between 

the eigenvalue problem and the excitation problem is discovered, everything become 

clear: 

• Conventional coupled waveguide mode corresponds to the transmission 

maxima when exciting the structure from one end. Such process is effectively 

matching the characteristic impedance of the structure.  

• BIC mode can be discovered using excitation technique. Each BIC mode, 

although appears in the continuum spectrum region, is an eigenvalue solution 

and also corresponds to the characteristic impedance matching of such structure. 
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• The studied of cavity state and Tamm state involves investigating of the 

periodic structure with defect and can be also analysed using excitation and 

impedance matching techniques.  

    Such linkage investigated and summarized in this chapter forms a solid building block 

of the mode index analysis of 2-D photonic crystal which is developed in next chapter.   
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Chapter 4  

Evaluating Resonances in PCSEL Structures 

based on Modal Indices  

Wave propagation in periodic media has been studied for over a century [1] but the 

topic has received a significant resurgence in recent years with the introduction of the 

concept of PCs [2]. Large volumes of research publications have subsequently appeared 

in the study and application of PCs in such diverse areas as PC fibres [3, 4], PC planar 

waveguides and resonators [5, 6, 7] and optical sources such as PCSELs [8]. Thus, several 

techniques for analysing (specially optical) waves in periodic media exist in the published 

literature, but the three, plane wave expansion (PWE) [9], coupled mode theory (CMT) 

[10], and the purely numerical finite difference time domain ( FDTD ) [11], are by far the 

most extensively used.  

As introduced in the previous chapter, the PWE method is based on representing 

the field in the PC by a (complete) set of plane-waves (PWs) [12], while the effect of 

media periodicity is enforced by a Floquet-Bloch function representation. However, note 

that an infinitely large medium of unvarying periodicity is implicit in this formulation 

(i.e., an infinite number of identical periodic layers).  Consequently, with the PWE 

method, although very powerful in some aspect, it is not readily possible to analyse 

periodic media of finite extent (finite number of identical periodic layers).  Such 

limitations are removed if the CMT is used [13], and the basic concept of CMT is 

explained in previous chapter. However, the mathematical complexities involved are 

somewhat daunting for the average user and requires very considerable effort and time to 

implement. Apart from analytical method, there are also pure numerical method such as 

FDTD which may be used to solve for fields in almost any kind of structure [14]; typically, 

however, considerable computer resources are needed and significantly long computation 

times are required [15].  

In view of the above, there is a noticeable need to develop another technique to 

solve for fields in 2-D PCs – pertinent to PCSELs - which is relatively simple, easy to 

implement and requires modest resources and time while retaining a ‘physical feel’. Thus, 

this PhD work has been to develop a simple method to solve for resonances in 2-D 
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periodic structures and the emphasis is on the concepts and theory that is needed for this 

development. Such studies are presented in the previous chapter as the ‘building blocks’ 

for understanding wave propagation in periodic structure. 

This chapter presents a new method, mode index analysis (MIA), for evaluating the 

resonances, based essentially on the ‘building blocks’ developed in previous chapter such 

as transfer-matrix technique and wave propagation in multilayer medium, which is 

relatively easy to formulate, and has quite modest demands on computing requirements. 

Such a technique, particularly suited to rectangular geometry structures, has been 

developed and is described in this chapter. It is envisaged that the implementation of this 

method will enhance the potential to generate more comprehensive models of photonic-

crystal based devices. It is shown in the chapter that the method matches well with the 

existing modelling techniques. Details of modelling process, analysis of finite size PCs, 

with discussions on the consistency and validity of the model will also be presented in 

this chapter. 

4.1 Description of model: y-direction 

In this chapter, a rectangular co-ordinate system ( , , )x y z consistent with the 

rectangular device geometry is used throughout. As stated above, the objective is to 

develop a modelling technique that is easy to implement and use but which reliably yields 

the essential quantitative characteristics of PC structures, particularly relevant to PCSELs. 

However, for a 3-D dielectric system, in principle, all six field components , ,x y zE and , ,x y zH

exist and coupled together which is not separable. There are many approximate 

techniques for converting vertical dimension into an effective index distribution in x-z 

plane but briefly here.   

Since in actual PCSEL device, the vertical structure is multilayer slab achieved 

using semiconductor epitaxy. Here, considering multilayer slab with thickness qd and 

given refractive indices = ( ) ( )qy y  = where q is the layer number along y axis. As 

shown in Fig. 4.1.1. Next assume the transverse bound modes is supported by the slab 

along y axis and propagates in x-z plane. (e.g., suppose the propagation is along z axis). 

Further assume the structure along y axis ensures single bound mode 0 ,eff yk = , where 
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β is the propagation constant and ,eff y is the effective index of the mode (details on 

calculating bound mode for multilayer waveguide can be found in chapter 3 and 

Appendix G). The above assumptions are valid because in most of laser structure, 

typically PCSEL, active region has high refractive index and support a bound mode to 

produce high photon density which is crucial in stimulated emission. 

 

Note any structural variations along y direction (e.g. change in q or thickness qd in 

any layer q) changes β and hence changes ,eff y . In general, change in q or qd will produce 

change in ,eff y . i.e. assume that in general , , ( , )eff y eff y x z = . Hence, by using this method, 

y direction structure is taken account of and replaced by equivalent structure in x-z. i.e. 

, , ( , )eff y eff y x z = . 

Further assumption is that mode along y axis is not significantly affected due to 

physical structure ( ; , )y x z and ( , )qd x z . The assumption is valid since in PCSEL structure, 

photonic crystal has small index difference and act as perturbation. Thus, the problem is 

reduced to 2-D x-z plane with , , ( , )eff y eff y x z = known and corresponding x-z plane 

geometrical structure given. For simplicity, we use  , ( , ) ( , ) ,eff y eff a bx z x z   = = in the 

following discussion. 

 

Fig. 4.1.1 3-D schematic of PC structure. 
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4.2 Description of model: x-z plane 

As discussed in previous session, the 3-D PCSEL structure is approximately 

‘converted’ into 2-D periodic structure and the main emphasis is now in x-z plane. 

Referring to Fig.4.2.1 which gives a schematic representation of a planar periodic 

structure in the x-z plane defined by rectangular regions of widths
aw ,

bw and refractive 

index,
a surrounded by regions with refractive index

b ; the periodicities of the structure 

are
aL ,

bL . Although not essential to this method, for the purposes of this study the relative 

magnetic permeability 1 = , is assumed throughout, as is the case for most 

semiconductor material for optical devices, so that the relative electrical permittivity, 

2 =  is applicable.  

 

This refractive index pattern ( , )x z may be produced by actual, direct material 

growth and/or by some post growth fabrication process. For example, appropriate 

variation in the material composition of the vertical layers and/or thicknesses (y axis) is 

often used to produce a variation in the vertical guided mode that may then be considered 

as creating an effective-index pattern ( , )x z in the x-z plane [18] corresponding to that in 

Fig.4.2.1. (PCSEL fabrication technique will be discussed in next chapter) However, 

henceforth in this work, the study is restricted to a 2-D analysis (in the x-z plane); i.e., 

essentially ( , , ) ( , )x y z x z = and the excitation is such that any non-zero field 

component,. ˆ ˆ( , , ) ( , )F x y z F x z= [18], i.e., 0y   is applicable. 

 

Fig. 4.2.1 Schematic of PC structure. Nx and Nz are number of periods 

along x and z respectively. 
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Then, from Maxwell’s equations introduced in chapter 2, approximately, two 

independent categories of field solutions, one with polarisation , 𝑇𝐸𝑦 ⟹ 𝐸𝑦 = 0 and the 

other with 𝑇𝑀𝑦 ⟹ 𝐻𝑦 = 0 can be sustained [13, 16]. To be specific, ˆ ( , )F x z will be used 

to represent the non-zero y-directed field component. For application to PCSELs the TEy 

polarisation is important since the typical active-layer gain medium (quantum well or 

quantum dots) supports this polarisation; thus, Hy, Ex, Ez are the dominant non-zero field 

components in that case. 

In a region with 2( , ) ( , )x z x z = and for harmonic time dependent exp( )j t fields, 

the application of Maxwell’s equations and following the commonly accepted assumption

0E leads to the wave equation 

2 2
2 2

02 2
ˆ( , ) ( , ) 0k x z F x z

x z


  
+ + = 

  
                             (4.1) 

where ( )
22 2

0 0 0 02k     = = . The 2-D PC structure that is considered in this work is 

shown in Fig.4.2.1 where piece-wise constant, rectangular regions are assumed with 

abrupt transitions between regions with
a = and

b = ; this represents ( , )x z in 

equation.(4.1). The field distribution ˆ ( , )F x z for the resonant modes ( , ; integers)m n of this 

PC structure are considered to be of the form 

 , ,
ˆ ( , ) ( ) ; ( )m n m n m mF x z f x g z f x=                                 (4.2) 

corresponding to the resonant wavelength 𝜆0 𝑚,𝑛 . The notation  , ; ( )n m mg z f x simply 

emphasises the point that ˆ ( , )F x z is not separable and the solution
,n mg depends on the 

solution mf , which becomes clear in the detailed discussion below. Note that
,

ˆ ( , )m nF x z is, 

in general, a non-separable function but in the context of present typical device 

parameters such as dimensions, magnitudes of refractive index discontinuities, etc., it is 

justifiably acceptable to assume a separated-variables form for each resonant mode of the 

2D- PC.   

The essential underlying concept of the analysis procedure presented here is based 

on viewing the 2D-PC structure of Fig.4.2.1 as a laterally (say, along x) multilayer 

waveguide which is longitudinally (along z) segmented. Hence the required 2D field 

distributions are evaluated as modes propagating in multilayer waveguides with 

longitudinal discontinuities. 
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Thus, the procedure for obtaining
,

ˆ ( , )m nF x z , 
0 ,m n begins by first evaluating the 

modes of the longitudinally uniform (i.e., not segmented) multilayer waveguide, structure 

as shown in Fig.4.2.2 with ( )x x = corresponding to the pattern defined by Fig.4.2.1. 

The wave equation for the structure in Fig.4.2.2 is then 

2 2
2 2

02 2
( ) ( , ) 0xk x F x z

x z


  
+ + = 

  
                                 (4.3) 

Clearly, a separation of variables solution in this case is applicable with eigen-

mode/eigen-value solutions ( , )m mf  , similar to those for multilayer slab dielectric 

waveguides discussed in chapter 3: 

( , ) ( ) mj z

mF x z f x e
−

=                                               (4.4) 

satisfies equation (4.3). Full use is made of piecewise constant slab dielectric regions to 

generate a transfer matrix formulation, denoted MT, to numerically solve [17] for ( )mf x

and
m . The solving technique is introduced in chapter 3. 

Rather than solve for the modes in the periodic multilayer waveguide structure, 

Fig.4.2.2, directly as an eigenvalue problem, it is found to be more convenient and 

illustrative to treat it as an excitation problem. Such advantage is mentioned previously 

in chapter 3. It is important to recall that the eigen-mode of the finite 1-D periodic 

structure can be represented by the total transmittance solution of such a structure as 

discussed in previous chapter and also reference [18].  

 

 

Fig.4.2.2 Model description: (Refractive indices: a , b c d  = = ) Lateral modes 

propagating along the z-axis are computed for a relevant range of wavelengths.  
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As shown in Fig.4.2.2 a plane wave (PW) incident at an angle  excites 

corresponding PWs in the multilayer regions,
a ,

b such that 2 2 2 2

0a ak  + = and

2 2 2 2

0b bk  + = where  and  represent the x-directed and z-directed propagation 

constants in the corresponding regions. Applying the usual field matching conditions at 

the abrupt interfaces [19] between regions ‘a’ and ‘b’ yields the elements of the 2 x 2 

unimodular transfer matrix, m, for a typical unit cell [20].  

Further, and very importantly, the periodic nature of the multilayer medium is 

utilised to obtain a compact and very efficient formulation for the composite transfer 

matrix accounting for the corresponding number, N , of periodic layers [21]. Thus, the 

total transfer matrix is given by N

T =M m where m is the unimodular transfer matrix in a 

unit cell as already discussed in chapter 3: 

11 1 2 12 111 12

21 1 22 1 221 22

N

N N NN

T

N N N

m U U m Um m

m U m U Um m

− − −

− − −

−  
= = =   

−   
M m                  (4.5) 

11m ,
12m ,

21m and
22m are the matrix elements, and

NU are known as Chebyshev polynomials 

of the second kind: 

1 11 22

1 11 22

sin ( 1)cos ( )
2

sin cos ( )
2

N

m m
N

U
m m

−

−

+ 
+ 

 
=

+ 
 
 

                                      (4.6) 

There are many different methods to calculate power N of unimodular 2 2 matrix [51, 

93] which enables analysing a truncated periodic structure since, unlike infinite periodic 

structures, the Bloch theorem does not strictly apply in this situation [20][23]. This 

procedure is also beneficial since it provides for a significantly reduced computation time. 

The resonant mode for the entire multilayer (periodic) structure can be calculated from 

the total transfer matrix, which effectively is the solution of a transcendental equation:

11 1 2 1N Nm U U− −− = [25]. 

For a relevant range of wavelengths, transmission resonances for plane waves 

incident on the multilayer input at 0x = ,at incident angles, 0 2   , are used to 

identify the eigen-mode solutions [24]; the incident angles corresponding to transmission 

resonances provide the m and corresponding ( )mf x . An example of power transmittance 

through the 1-D periodic structure, Fig.4.2.1, with Nx = N = 30 is shown in Fig.4.2.3a; 

points a, b and c are given as examples of eigen mode solutions which corresponds to 1-
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D transmission resonances. The corresponding typical field distributions labelled as

( ) ( , , )mf x m a b c= are shown in Fig.4.2.3b.  

 

The modal propagation constant
m is often referred to as the modal effective index

,eff m and also gives the mode impedance; that is, for the next stage of the analysis, the 

composite multilayer structure along x-axis supporting mode ( )mf x can be replaced by

,eff m  (or by the corresponding modal impedance). 

  

 

Fig.4.2.3 a) Transmission spectrum of periodic structure (referring to Fig. 2a, 30N = ,

286.25bL nm= , 116.5bw nm= , 3.13a = , 3.46b = .) b) Examples of eigen-mode solutions

( )mf x of 1-D periodic structure (Fig.4.2.2) 

 

Fig.4.2.4 Model description: The shaded area with dark blue region 

representing the multilayer waveguide in Fig.4.2.1 is replaced by a 

homogeneous medium of effective modal index
,eff m , thus resulting in a 1-D 

periodic grating along z with an unit cell composited of 
,eff m and b  
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The second stage of the analysis proceeds by now incorporating the discontinuities 

along the z-axis of the multilayer waveguide. Analysing waveguide discontinuities is, in 

general, a rather complicated problem [25], since all the modes of the structure are excited 

(even with a single mode incident) – that is, a separation of variables analysis is not 

strictly applicable; (note that equation (4.2) suggests that the general form of the solution 

is NOT of the separated variables form).  But in the present context of dimensions and 

magnitude of discontinuities it is justified to assume that only the same (single) mode as 

that incident exists throughout.  In that sense ( )mf x is the same in equation (4.2) and (4.4). 

This is done by representing the length along z of the multilayer waveguide region by the 

 

Fig.4.2.5 Flowchart of the modelling process 



77 

 

 

corresponding mode index,
,eff m , followed by the length of the discontinuity, gap region 

of index
b . This results in the 1-D multilayer structure (periodic grating) as shown in 

Fig.4.2.4.  

The resonances for this 1-D grating are now sought, over the same wavelength 

range as before, by considering the response to a perpendicularly incident plane wave; 

the transfer matrix method, as described previously with reference to Fig.4.2.2 is used 

also here to obtain the result. Thus, with reference to Fig.4.2.4, the field distribution along 

z at resonance,  , ; ( )n m mg z f x , is obtained and the final result, in effect, includes 

reasonably well the characteristics of the original 2-D periodic media (Fig.4.2.1). Hence 

the final 2-D field distributions at resonances, 𝜆0 𝑚,𝑛, are  , ,
ˆ ( , ) ( ) ; ( )m n m n m mF x z f x g z f x= . 

The flowchart of the modelling process is shown in Fig.4.2.5. The typical running time 

for the program depends on the wavelength step chosen. For example, using an ordinary 

laptop 2 core @ 1.70 GHz with negligible memory usage, for 500×500 periods it takes 

7min with wavelength step 0.2nm. 

The very important point to note is that this scheme for determining 2-D PC 

resonances is computationally extremely fast so that results for even a very fine 

subdivision of wavelengths and for 2-D structures with very large N (~106) can be 

generated in tens of minutes in a simple desktop computer. Hence a very detailed search 

of possible 2-D resonances becomes readily possible. Note, interestingly that there can 

be regions of wavelengths for which 2-D resonances do not occur even though many 

corresponding x-directed modes ( ),m mf x  exist; this region of wavelengths correspond 

to stop-bands in periodic structures. 

4.3 Results and discussions 

The mode index analysis (MIA) modelling method described above is applied to 

obtain numerical results for 2-D PC structures, Fig.4.2.1, with a bL L L= = , a bw w w= =  

and x zN N N= =  chosen for convenient comparison with results presented by other 

researchers (e.g., [26], [27]) and in the experimental work carried out in this project. In 

this model, as emphasised in previous section, the effect of vertical dimension is already 

considered and converted into 2-D effective index distribution and hence the main 

objective is to obtained 2-D x-z resonance. 
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Fig.4.3.1 shows the (final) 
yTE resonances of a finite 2-D periodic structure with

250N = , 3.13a = , 3.46b = , 286.25L nm= , 116.5w nm=  within the wavelength range, 

00.8 1.2m m    ; these values are chosen correspond to those used in [26] and also 

the fabricated devices discussed in next chapter.   

 

For each
0 the modes ( )mf x for the periodic waveguide structure, Fig.4.2.2, are 

obtained and the corresponding
,eff m are represented along one axis in Fig.4.3.1. Of these, 

the ones that also show unity transmission along z, Fig.4.2.4, are shown as red dots in 

Fig.4.3.1 and correspond to the sought resonances of the 2D PC, Fig.4.2.1. Note that such 

results shown in Fig.4.3.1 is merely an attempt to graphically represent the numerical 

search for the resonances (unity transmission) along the z-axis of the multilayer structure, 

Fig.4.2.4; those points thus correspond to the MIA generated resonances of the 2D-PC 

(since the ‘x-directed resonances’ are already ‘built-in’ by using the
,eff m corresponding 

to the m’th eigen-mode). Thus, each z-direction transmission maximum point in Fig.4.3.1 

corresponds to one excitation angle at which the propagation of excitation wave is 

allowed (allowed states).  

When N~106 is used, (i.e. ,representing N → ) , with the MIA method the 

wavelengths corresponding to the two points marked Mode 1 and Mode 2 in Fig.4.3.1 

match very closely with the wavelengths corresponding to the band edge Mode 1 and 

Mode 2 in Fig.4.3.2 which were computed using the PWE method for a 2-D PC structure 

with dimensions and refractive indices identical to that used to obtain the results in 

 

Fig.4.3.1 2-D resonances of PC calculated using MIA. (Band edge 

resonances: Mode 1 and Mode 2)  
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Fig.4.3.1. This demonstrates that the MIA method presented above yields reliable results. 

Lasing mode can be identified by introducing material gain as imaginary part of refractive 

index and searching for transmittance. Such technique has been discussed in chapter 2.  

 

 

 

Fig.4.3.2 Photonic band structure around   point calculated using PWE. 

(Band edge resonances: Mode 1 and Mode 2). Inserted figure shows the full 

band calculated using PWE.  

 

Fig.4.3.3 band edge resonance identified using active media 
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Further evidence of the validity of this new MIA method is seen from Fig.4.3.4 which 

shows the variation of the band edge resonance of 𝑇𝐸𝑦 polarization with the change in 

the filling-factor, 2 2w L [11]. Again, N~106 has been chosen in the MIA for compatible 

comparisons with the PWE results. The red dots and blue triangles are two band edge 

modes calculated using PWE, the black circles and green triangles are the corresponding 

modes calculated using MIA. It can be seen that the results from the two methods match 

extremely well over a very large range of filling-factors. This provides further proof that 

the MIA method yields very reliable results. Note that the main objective here is to 

identify the band edge resonance rather than comparing conventional dispersion curve 

(band structure) with the model directly since they are two different representations. As 

discussed in previous chapter, 1-D dispersion curve (band structure) represents the 

relationship of frequency ω (wavelength) vs. Bloch wavevector
B . in 2-D photonic 

crystal, the Bloch wavevector is in 2 directions, 
B x ， and 

B ，zwith period
xL and

zL . Thus, 

Γ point is defined as 0B x x B zL L = =， ，z , M point is defined as
B x x B zL L  = =， ，z , 

and X point means 0 ;B x x B zL L  = =， ，z . Considering the square lattice, all other 

possibilities are effectively included. So Γ-X or Γ-M simply represents different
B x ， and

B ，zvalue in the band diagram obtained using PWE.  

 

However, in MIA the 2-D resonances are represented using effective index along 

one direction with its relevant wavelength. In other word, conventional band structure 

expands the Floquet-Bloch function into PW with different angles (effectively), and 

 

Fig.4.3.4 Band edge resonances calculated with varying filling factor. 2 2w L  
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hence the Γ-X or Γ-M direction. While our model effectively expands the 2-D resonance 

into waveguide modes, and hence the effective indices.   

Further evidence regarding the validity of MIA method is shown in Fig.4.3.5 which 

shows the band edge resonance variation with the change of the refractive index 

difference. The black and red lines are calculated using PWE method, the green and blue 

triangles are calculated using MIA. It is shown that the results match well over a certain 

range of index difference. 

 

 

The finite size effect on the 2-D resonance of PCs has also been observed by this 

model. Shown in Fig.4.3.6, are the results for Mode 1 and Mode 2 (refer Fig.4.3.1 and 

Fig. 4.3.2) but now with a smaller N range of 20 1000→ . The dots and triangles are 

results from MIA while the dashed lines are results using the PWE method. Note that for 

N < 150 the MIA results deviate from the PWE since the latter method is valid for

N → .This illustrates the wide range of applicability of the MIA method and so it can 

be used, e.g., to better identify the lasing wavelength in PCSELs when N is small.    

 

Fig. 4.3.5 Band edge resonances calculated with varying a  
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Fig.4.3.7 is a MIA generated plot of ˆ ( , )F x z for the band-edge mode of a 2-D PC 

structure. The size of the PC region used in modelling is 70 70m m  with 286.25L nm= ,

116.5w nm= . This single lobed field distribution corresponding to the lasing mode 

matches well with that obtained by CMT[27]. A detail of the plot of ˆ ( , )F x z at the centre 

of the lobe (illustrated as black circle in Fig.4.3.7) using MIA is shown in Fig.4.3.8a and 

using PWE in Fig.4.3.8b. It is seen that the plots match very favourably.    

 

Fig.4.3.6 Finite size effect on band edge resonance.  

 

Fig.4.3.7 Plot of field distribution ˆ ( , )F x z for band-edge 

mode. 250x zN N= =  



83 

 

 

 

4.4 Perturbation theory representation of MIA 

As mentioned previously in section 4.2 that the essential underlying concept of MIA 

is based on viewing the 2D-PC structure of Fig.4.2.1 as a laterally (say, along x) 

multilayer waveguide which is longitudinally (along z) segmented, i.e. multilayer 

waveguides with longitudinal discontinuities. However, in general, waveguide 

discontinuity problem is a rather complicated since all modes (bound modes, continuum 

modes) are excited even with single mode excitation. In this section, with mathematic 

laxity, an attempt of using another representation based on perturbation theory is 

presented for easier understanding the modelling process.  

Suppose a 2-D dielectric permittivity variation ( , )x z can be written as the form of

( , ) ( ) ( , )x z x x z  = + . Note that in general, ( , )x z is not separable. First considering

( )x , in this case referring to Fig.4.2.2, a multilayer periodic waveguide coupled in x 

direction while guide the wave along z direction. The process continuous by next 

considering waveguide discontinuity along z direction and given by ( , )x z . The 

excitation is such that any non-zero field component ˆ ( , )F x z satisfy 0y   . 

The wave equation of un-perturbed waveguide is thus given by: 

 

2 2
2

02 2
( ) ( , ) 0k x F x z

x z


  
+ + = 

  
                                   (4.7) 

 

Fig.4.3.8 a) A detail of the plot of ˆ ( , )F x z at the centre of the lobe using MIA. b) A detail 

plot of ˆ ( , )F x z using PWE by assuming infinite number of periods ( N → ). 
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and the eigen mode of such waveguide is: 

( , ) ( ) mj z

m

m

F x z f x e
−

=                                          (4.8) 

where
m represents mode constants and can be calculated according to section 4.2. Next, 

for the perturbed waveguide, from the perturbation theory, the wave equation can be 

written as: 

2 2
2

02 2
( , ) ( , ) 0k x z F x z

x z


  
+ + = 

  
                             (4.9) 

Suppose, ( , )F x z can be written into a form based on unperturbed solution ( , )F x z , i.e. 

( , ) ( ) ( ) nj z

n n

n

F x z A z f x e
−

=                                      (4.10) 

Here, ( )nf x represents the unperturbed waveguide solution. 

From the above equations and apply slow varying envelop approximation, it yields: 

2

02 ( ) ( ) ( , ) ( ) ( )n mj z j z

n n m m

n m

j A z f x e k x z A z f x e
z

 − −
− = − 


          (4.11) 

Equation (4.11) means that in this waveguide discontinuity problem, at each corrugation, 

mode number n coupled into mode number m. As illustrated in Fig.4.4.1, in principle, 

waveguide discontinuity generates infinite number of modes (both bound mode and 

continuum to form a complete set). However, in MIA, such multimode generation is 

approximated by single (self-mode) conditions so that a simple modal index (mode 

impedance) analysis at discontinuities is used (as discussed in section 4.2).   

 

 

Fig.4.4.1 Schematic of waveguide discontinuity. In principle, all modes 

including bound mode and continuum modes exist 
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4.5 Near field to far field transformation: diffraction 

Diffraction is a very important feature of wave propagation. The idea is that for a beam 

with finite transverse dimension, it can be described as a superposition of plan waves. 

The general diffraction analysis is one of the most complicated theory in optics. In this 

section, we limit ourselves to the far-field limit of Fresnel diffraction (Fraunhofer 

diffraction). It is then shown that the near-field to far-field transformation is merely a 

Fourier transform.  

Considering in x-z plane, two homogeneous media with refractive indices
a and

b

respectively and with abrupt interface at 0z = (referring to Fig. 4.5.1). The excitation is 

such that 0y  , i.e. uniform along y-axis. Any field components ( , , ) ( , )F x y z F x z= is 

satisfied giving the wave equation: 

2 2
2 2

02 2
( , ) 0 ( , )q qk F x z q a b

x z


  
+ + = = 

  
                         (4.12) 

and the solution of the equation (4.12) is of the form: 

( )
( , ) ( , )q qj x z

qF x z Ae q a b
 − +

= =                                   (4.13) 

where
2 2 2 2

0 q q qk   = + , i.e.
2 2 2

0( )q q q q qk    = = − . 

 

 

Fig.4.5.1 interface of two media in x-z plane. 
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The beam in region ‘a’ can be expressed as a superposition of plane wave of different 

amplitude (with particular transverse component 
a ). Henceforth we shall define the 

beam in region ‘a’ as 

( )
( , ) ( ) a a

a

j x z

a aF x z A e
 



 − +
=                                        (4.14) 

or more general 

( )
( , ) ( ) a aj x z

a a aF x z d A e
   − +

=                                      (4.15) 

Thus, at z=0, equation (4.15) reduce to 

 ( , 0) ( ) ( ) aj x

a s a aF x z f x d A e
  −

= = =                                     (4.16) 

It is then recognized as a Fourier transform: 

1
( ) ( )

2
aj x

aA dx f x e



=                                             (4.17) 

    Therefore, for a given ‘source field’ ( )sf x , one can obtain the amplitude distribution 

by Fourier transform. Such amplitude distribution, also known as angular plane wave 

spectrum (plane wave at different angle and different amplitude), can be used to decide 

the beam divergency and far-field beam pattern.  

The simple diffraction analysis is then used in our model to obtain the far-field pattern 

and beam divergence. The source field is defined as ˆ ( , )F x z which is readily obtained using 

MIA. Following the concept of near-field to far-field transformation mentioned 

previously, a 2-D Fourier transform is performed to obtain the final field distribution. 

Note that such analysis is very approximate since rather than a diffraction analysis, we 

treat the problem as an emission problem. The vertical dimension is not considered at the 

first stage, instead, 2-D field distribution (defined near-field) is obtained using MIA and 

an emission analysis is carried out to obtain far-field distribution.  

As illustrated in Fig. 4.5.2, the modelling result of far-field pattern of such device is 

shown, such result matches favourably with the results obtained using other techniques 

[28]. The beam divergence is less than 1o.  (Device parameters refer to section 4.3) 
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4.6 Further modification and self-consistency of model 

As mentioned in the section 4.2, the MIA method is based on viewing the 2D-PC 

structure of Fig.4.2.2 as a laterally (say, along x) multilayer waveguide which is 

longitudinally (along z) segmented. Hence the 2D field distributions are evaluated as 

modes propagating in multilayer waveguides with longitudinal discontinuities. The 

process is first considering modes supported in the structure shown in Fig.4.2.2 propagate 

along the z-axis are computed by taking resonance tunnelling solution for a relevant range 

of wavelengths. The mode index is then used to construct finally the corresponding 

multilayer structure along the z-axis, Fig. 4.2.4. The second stage of the MIA method 

accounts for the longitudinal (multiple, periodic in this case) discontinuities in this 

multilayer waveguide: by considering it as a (single) mode effective-index (impedance) 

abruptly terminating on the homogeneous medium having refractive index b .   

 

Fig.4.5.2 Modelling result of Far-field pattern of PCSEL  
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In general, as mentioned previously, waveguide discontinuities excite all the modes of 

the structure. But in the present context of dimensions and magnitude of discontinuities 

it is justified to assume that multimode generation at discontinuities [29] is approximated 

by single (self-mode) conditions so that a simple modal index (mode impedance) analysis 

at discontinuities is used. 

 

However, importantly to notice that the (single) eigen-mode, ( )mf x , e.g. given in 

Fig.4.2.3b will spread in the homogeneous
b region of the discontinuity. Hence a further 

modification of MIA is achieved including mode spreading. As illustrated in Fig.4.6.1, 

consideration of diffraction of modes in to the homogenous region
b at the discontinuities 

provides a modified (effective) index for the homogenous regions. Thus, the refractive 

indices in segmented regions (as shown in Fig.4.6.1 with green arrows) are further 

modified accordingly into using in-plane diffraction.  

 

Fig.4.6.1 Model description with consideration of in-plane diffraction 
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Simple diffraction analysis is introduced in section 4.5 and same technique is used to 

analyse the eigen-mode solution ( )mf x behaviour in the homogenous region. An example 

is given considering three types of modes (referring to Fig.4.2.3b) is shown in Fig. 4.6.2. 

As mentioned previously, the eigen-mode solution ( )mf x can be described as a 

superposition of plane wave. Thus, in the homogeneous b region, ( )mf x will propagate as 

different plane waves at different angle (or effectively, transverse wavevector b ). The 

detailed and rigorous treatment of such effective media can be complicated. Hence the 

 

Fig.4.6.2 Examples of Eigen-mode profile and in-plane diffraction spectrum 

of transverse wavevector dependency. 
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approximation is such that only the ‘dominant’ plane wave component will be considered 

to modified the homogeneous media further. 

As illustrates in Fig.4.6.2. eigen-mode with conventional waveguide type of solution 

has a dominant transverse wavevector zero. i.e. such eigenmode will propagates almost 

perpendicularly without spreading in
b region. Hence for such mode, the refractive index 

remains unchanged. That is also the reason why MIA works even at very approximate 

condition when analysing PCSEL, since for PCSEL, the lasing mode is given by the 

‘fundamental mode’ of the coupled waveguide, i.e. type 1 ( )mf x  solution in Fig.4.6.2. 

This is also justified by the numerical results.  

However, as the order of mode become higher, the spreading phenomenon become 

significant and the
b region can no longer be simply treated as it was. Here, the new 

effective refractive index is modified into ,eff b accordingly based on the dominant plane 

wave component, 
2 2 2 2 2

0 0 ,b eff b bk k  = + . The effective of such modification is not significant 

in PCSEL modelling as mentioned previously, however, it further proves the validity and 

consistency of the model as shown in the following discussion. 

 

In principle, the solution to any physical situation does not depends on the solving 

technique. In other word, the result is independent of the chosen coordinate, mathematical 

technique used, or unit chosen, etc. as long as the physical condition is the same, it will 

return to the same results. In MIA, the structure in x-z plane is solved from x direction 

and then z-direction discontinuity. Although the square lattice is chosen in the analysis 

and x-z direction has identical profile, the consistency requirement of the physical 

condition requires the frequency of the highest order allowed mode in x-direction is the 

same as the lowest order allowed mode. 
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Fig.4.6.3 represents 2-D resonance results solved including and excluding in-plane 

diffraction. The structure which is still square photonic crystal with square lattice refers 

to as analysed in section 4.2 and section 4.3. The lowest order allowed mode at the band 

edge in x-direction is defined as mode A and mode B respectively and the highest order 

allowed mode at the band edge in x-direction is mode A’ and B’ (as illustrated in 

Fig.4.6.3). The consistency requirements suggest that if the model works perfectly, A and 

A’ (B and B’) should have same resonance wavelength.  

It is shown that with the in-plane diffraction considered, such result maintains better 

(the resonance wavelength of mode A’ and B’ calculated including in-plane diffraction 

converges to mode A and B better than the ones excluding in-plane diffraction) compared 

 

Fig.4.6.3 2-D resonance solutions solved using MIA a) without in-plane diffraction, 

and b) with in-plane diffraction  
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to the original method. Note that a difference still appears as expected due to the 

approximation nature of MIA.  

Moreover, since the structure is symmetric and the mode index is effectively sought 

over an entire angle of excitation (0o~90o). The results obtained should also shows 

symmetric pattern in the ‘mode index’ (angle of excitation) domain. Although as 

mentioned, the detailed comparison requires rigorous calculation, such effect can still be 

clearly seen in Fig. 4.6.3b with four forbidden gap regions lies symmetrically corresponds 

to the effective index domain. By comparing with Fig.4.6.3a, it further proves that the 

very basic concept of MIA model is correct and some limitations can be improved using 

in-plane diffraction or other more rigorous techniques. However, important to notice that 

the inclusion of the in-plane diffraction results in an increase in the computing time.   

 

Another potential application of MIA is the use for analysing photonic crystal with 

different number of period along x and z direction and/or the asymmetric shape of 

photonic crystal. As shown in Fig. 4.6.4, the dimensions and index profile is given as

3.13a = , 3.46b = , 227aL nm= , 295bL nm= , 170aw nm= , 224bw nm=  within the 

wavelength range
00.8 1.2m m    ; these values are purposely chosen arbitrarily to 

further test the consistency of MIA (rectangular lattice and rectangular atoms). The 

consistency requirements suggest that for such particular structure, the final resonance 

should not depend on whether solving x-direction or z-direction first. It is shown that the 

forbidden gap when solving x-direction first (Fig.4.6.5a) is between 950nm to 980nm 

while when solving z-direction first the forbidden gap is between 920nm to 960nm 

 

Fig. 4.6.4 Schematic of PC structure. With rectangular 

atoms and rectangular lattice  
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solving from z to x. The difference is 20nm out of 400nm scanning range. With such 

numerical experiment, it is justified that MIA has a potential to be applied to more 

complicated photonic crystal structure and still provides satisfactory results. 

 

 

 

 

 

Fig.4.6.5 2-D resonance solution for photonic crystal with rectangular geometry 

solved by MIA from a) x to z direction, b) z to x direction 
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4.7 Conclusions 

This chapter presents a novel, mode index analysis (MIA) method for solving the 

modes and resonances of 2-D PCs. The properties of wave propagation in multilayer 

periodic medium and transverse resonance concepts are utilised to generate a 

computational process that is quasi-analytic and hence considerably fast. The MIA is easy 

to implement and is shown here by comparisons with results from other well-established 

methods to yield very acceptable results for rectangular geometry structures. Several 

numerical experiments have been carried out to demonstrate the validity of the MIA 

model. In view of its convenience and speed of operation the MIA method is being 

developed further to enable more comprehensive modelling of active devices such as 

PCSELs to include, for example, spatial and temporal variation in optical gain and other 

PC configurations. The study of including in-plane diffraction further confirm the validity 

of MIA and the consistency of MIA is proved through several numerical experiments. It 

is shown in the next chapter that MIA also matches well with the experimental results and 

provides theoretical explanation and prediction.  
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Chapter 5  

Fabrication and Characterization of PCSEL 

Semiconductor fabrication is the process that transfer the design layout into device.  

The process involves multi-steps of photolithography and chemical processing of the 

semiconductor wafer (substrate). The steps, also known as planar processing, are aimed 

at fabricating LED, semiconductor laser, detectors on a single substrate and then 

subsequently separated into individual elements by cleaving. The key point of planar 

processing is viewing devices as 2-D projection which allows the transfer of the mask 

layout using series of lithography (to create pattern), oxidation (to create insulator) and 

metallization (to create conductor). Such processing strategy is also commonly used in 

industrial mass production. 

 To achieve the desirable operation characteristics, it is important to optimize the 

device design as well as the fabrication steps. However, because the range of 

semiconductor device is so large, it is difficult to introduce all different techniques that 

are needed. Hence, in this chapter, the main objective is to focus on one particular design 

(mesa) of all-semiconductor PCSEL device and its fabrication process.  Several standard 

characterisation techniques will also be introduced along with the experimental results. 

In the later part of the chapter, the effect of PCSEL with external reflector is 

experimentally studied and modelled using MIA method.  

5.1 Semiconductor growth and photonic crystal pattern 

Although not part of this PhD project, it is important to know the growth of 

semiconductor material and the patterning technique of photonic crystal in order to have 

a completely understanding of semiconductor fabrication technique. In this project, the 

semiconductor is grown in University of Sheffield and photonic crystal s pattern in 

University of Glasgow. In this section, two different growth techniques, molecular beam 

epitaxy (MBE) and metal-organic vapour phase epitaxy (MOVPE), are very briefly 

introduced. The photonic crystal is patterned using electron beam lithography and 

regrowth technique.  
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Broadly speaking, epitaxy refers to the method by which the crystal is grown layer by 

layer in special order. During the process, substrate wafer acts as “seed crystal” to 

establish a specific (crystal) growing orientation. The techniques such as MBE and 

MOVPE are most commonly used in single crystal layers growth.  

 

VPE technique has been discovered for more than a century and it has became an 

accepted production technique for novel electronic or photonic devices [1, 2]. VPE 

technique uses hot gas mixture precursors (often at atmosphere pressure) to transport 

molecules to the substrate surface. The precursors (hydrides or chlorides for delivering 

group V elements and metal alkyls for delivering group III elements) deliver reactants to 

the growing surface region which is heated in the furnace. The actual layout of the 

equipment can have different forms but the concept is schematically shown in Fig. 5.1.1. 

hot gas precursors (metal-organic vapour) are mixed and pass through furnace. Films of 

composition are gradually formed on the heated substrate surface. The modern MOVPE 

can achieve very accurate thickness and the epitaxy process can be extremely fast.  

 Unlike VPE, MBE is another epitaxy process which involves beams of atoms or 

molecules absorbed by crystal surface under ultrahigh vacuum [3]. Fig. 5.1.2 shows a 

schematic of the MBE machine. Basically, the process of MBE involves two steps. In the 

first step, molecules such as atomic Ga and As2 or As4 are evaporated or sublimated from 

solid materials. The solid materials are contained in the heated cell which is known as 

“Knudsen Cell”. “Knudsen Cell” is a crucible contains solid reactants and its operation is 

controlled by mechanical shutter whose reaction time is less than 0.3s (less than the time 

to grow one monolayer). After the sublimation, the molecules are collimated into beams 

and go directly to the substrate. The reaction chamber is connected to ion pump, closed 

cycle helium pump and titanium sublimation pump and the reaction takes place in 

ultrahigh vacuum (usually can be lower than 10-9 Pa).  

 

Fig. 5.1.1 Schematic of VPE process 
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The comparison of the advantages of both techniques is difficult, for each has its 

strengths and weaknesses. MBE, as it is operated under ultrahigh vacuum, is carried out 

a very slow growth rate. However, the controllable ultra-high vacuum (UHV) 

environment enables MBE a special in-situ diagnostic technique known as reflection high 

energy electron diffraction (RHEED) system (as shown in Fig. 5.1.2). On the other hand, 

(MO) VPE uses gaseous compound to deliver material to the substrate hence a higher 

growth rate but only optical techniques can be used in diagnose during growth. In this 

project, the sample is prepared using MOVPE and the photonic crystal is patterned using 

e-beam lithography and semiconductor regrowth technique.  

 

Devices were grown by MOVPE on GaAs substrates. As shown in Fig.5.1.3, initial 

growth consists of 1.5μm n-type Al0.4Ga0.6As lower cladding layer, 3 quantum well active 

region (8nm In0.2Ga0.8As QWs’ separated by 20nm GaAs layers), a 40nm p-type 

In0.48Ga0.52 etch stop layer, and a 150 In0.48Ga0.52P layer. (layer forms the PC region in the 

following steps). Such structure is shown in Fig. 5.1.3 a).  

The InGaP layer is patterned using electron beam lithography, where by circular holes 

are patterned into a SiO2 hard mask. The pattern is transferred into the InGaP with a CH4 

/H2/O2 reactive ion etch (referring to Fig. 5.1.2 b). The complete PC area consists of 

 

Fig. 5.1.2 Schematic of MBE machine 
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150μm × 150μm square area where the PC consists of circles with a PC lattice constant 

of the 295 ± 1.1 nm and the ratio between the diameter of the air holes and the lattice 

constant is chosen such that a 0.5 filling factor is achieved. The SEM image of the 

patterned photonic crystal array is shown in Fig. 5.1.4a and Fig. 5.1.4b) 

 

  

After etching, the wafer is cleaned before regrowth.  The process of this stage is first 

cleaning the sample using Soxhlet extractor with acetone for 2 hours before oxidation. 

Ozone is then used for 10 mins to form an oxidation layer contains contaminations and 

such layer will finally be removed completely by 1% HF acid strip for 40s. Nomarski 

 

Fig. 5.1.3 Photonic crystal pattern, lithography and regrowth 

 

 

Fig. 5.1.4 a) and b) are SEM image of PC pattern. Nomarski microscope image of PC 

area before clean c) and after clean d) 
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microscopy shows same photonic crystal pattern area before and after cleaning in Fig. 

5.1.4c.and Fig. 5.1.4d respectively. It is shown in the figure that such clean can effectively 

remove most of the contaminations and improve the surface morphology.  

 After the cleaning, the wafer is placed back to the MOVPE reactor chamber. An 

overgrowth consisting of GaAs (to infill the holes and form the PC), a 1.5 μm p-type 

Al0.4Ga0.6As upper cladding layer, and finally a 400 nm p+ GaAs capping layer (referring 

to Fig. 5.1.3c). The growth parameters for this structure have been optimized and 

published elsewhere [4].  

5.2 PCSEL fabrication as mesa diode 

PCSEL fabrication is merely a mesa diode which is a very basic semiconductor device 

structure. The fabrication process begins by first cleaving a quarter out of the original full 

wafer using a diamond tipped hand-scribe tool. Then, the inspection of the sample under 

the optical microscope is necessary for checking the visible growth defect and the dirt 

area. The cleaning process start by first put the sample in n-butyl acetate then ultrasonic 

bath clean for 5 mins. Cotton bud can be used in this step to remove any visible particles 

on the sample. Then the sample is rinsed in acetone with 5 mins ultrasonic cleaning in 

acetone bath. The final stage is to rinse the sample with isopropyl alcohol (IPA) and then 

5 mins ultrasonic clean in IPA bath. The sample is rinsed with reverse osmosis (R.O.) 

water before blown dry with a nitrogen gun. The last two steps can be repeated until all 

visible dirt is removed (checking under microscope). 

Once the surface is cleaned, the next step of the fabrication is to create the mesa 

structure (the process referring to Fig.5.2.1). Cleaned sample is then placed in 180oC 

chamber for prebaking. Such step, also known as dehydration baking, is to remove any 

of the cleaning solvents left on the sample. On top of the sample, a photoresist named 

S1818 is deposited and spun at 4000 rpm for 30 seconds on the spinner (referring to Fig. 

5.2.1a). Such process forms a thin layer of photoresist whose thickness is depend on the 

recipe and spinning time, in this case, the thickness is 1.8μm. It is then followed by using 

cotton bud dipped with acetone to clean the backside of the sample. Such step is necessary 

since the backside of the sample is usually contaminated with photoresist and it makes 

the sample slightly tilted during the photolithography process. After the cleaning, a 120s 

hotplate baking at 115 oC is performed for stiffen the photoresist on the surface.  
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During the spinning process, quite often, the photoresist tends to be thicker at the edge 

of the sample. Hence, a thickness non-uniformity, known as edge bead, will be created 

across the sample. Such area has to be removed before the UV exposure in the 

photolithography process.  After remove the edge bead, the sample is then placed under 

the mask aligner for the photolithography process.  

 

It is important to note that the sample should be brought as close to the mask as possible 

(‘hard contact on’) since when UV light pass through different media (mask and air), the 

refraction will affect the final pattern. The UV exposure time is set to be 14s in this 

experiment and the sample is then developed using MIF319 for 80s. The photoresist 

exposed to UV light will be dissolved in the MIF319 in this process and a microscope 

check is necessary before mesa etch to ensure the remaining photoresist pattern is sharp 

and clear (referring to Fig.5.2.1c). It shall be noticed that the exposure time and 

developing time should be chosen carefully since any undeveloped or overdeveloped 

sample will have distorted pattern profile. 

There are two ways, dry etching or wet etching, to create mesa structure. Method 

chosen depends on the specific process: dry etching is uniform and can be controlled 

precisely, while wet etching is relatively fast. In the experiment, the mesa structure is 

created using Inductively Coupled Plasma dry etching and the etch depth is 400nm to 

remove heavily doped p-region (p+ region) for better current injection (referring to 

Fig.5.2.1d). Thickness can be check during process or using surface profilometer 

 

Fig. 5.2.1 mesa etch (shallow) etch process 
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afterwards. After etched into desirable depth, the remaining photoresist is cleaned using 

acetone ultrasonic bath and IPA. Then, the sample is given a 1 min oxygen plasma ash to 

remove all remaining photoresist (referring to Fig.5.2.1e). 

 

After the mesa structure, the next stage of fabrication is to deposit the n-contact (back 

contact). Hence, the back side rather than the top side need to be cleaned very carefully 

following the cleaning steps mentioned before. There are many recipes for different 

contact, in this experiment, we use Ni (5nm), Au (90nm), Ge (10nm), Ni (35nm), Au 

(200nm) for n-contact. Thickness can be controlled precisely using modern metallization 

machines. The reason for n-contact metallization before other steps is because such step 

needs annealing and the structure such as dielectric is sensitive to rapid temperature 

change. The rapid thermal annealing (RTA) at 400oC for 30s is performed after 

metallization. Such process makes the deposited metal diffuse and forms better Ohmic 

contact. The device after n-contact metallization is shown in Fig. 5.2.2a). 

Next step of fabrication is to deposit dielectric as insulator (referring to Fig. 5.2.2 b). 

The recipe is chosen such that a 350nm Si3N4 is deposited. Note that to ensure better 

insulation, a minimum thickness of 80nm dielectric should be satisfied. Then same 

photolithography process is carried out to pattern the etching window for top contact 

(referring to Fig. 5.2.3a). The sample with developed photoresist is then place in the dry 

etching chamber. CHF3:O2=50sccm : 5sccm is used to etch the Si3N4 for 4’30”. Note that 

in this step, the dielectric must be etched completely. Any remaining dielectric will result 

in open circuit after the p-contact metallization. After the etching, the remaining 

photoresist is cleaned using acetone ultrasonic bath and IPA. Then, the sample is given a 

1 min oxygen plasma ash to remove all remaining photoresist. (referring to Fig.5.2.3e) 

 

Fig. 5.2.2 n-contact metallization and dielectric deposition. 
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      Top contact, or p-contact is chosen to be Ti (20nm), Pt (10nm) and Au (200nm). In 

this process, the metal lift-off should be done in 50oC acetone for 5mins and then IPA 

clean.  Note that for this recipe, the RTA is not required. In general, the recipe contains 

Ti do not require RTA since the annealing process will degrade the performance of the 

 
Fig. 5.2.3 dielectric etching to create p-contact window 

 

 

Fig. 5.2.4 p-contact metallization and lift-off. 
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Ti contained contact according to the previous experience. Finally, a bond-pad using Ti 

(20nm) and Au (200nm) is deposited for easier probe and bonding. The device sketch 

with bond pad is shown in Fig 5.2.5. Now the device fabrication is done and ready for 

characterisation. 

 

 

5.3 Lasing characteristic of PCSEL 

After the fabrication and thinning, the PCSEL sample is cleaved out of the wafer and 

bond on a ceramic tail for further characterization. Note that in some other temperature 

sensitive device application, the wafer should be thinned (usually less than 100μm). 

However, in this project, the measurement is carried out in room temperature with active 

cooling system, thermoelectric cooler (TEC), at 25oC. The temperature dependency of 

the lasing characteristic is not the main objective of this project and has been investigated 

by previous researchers. The laser is operated under continuum wave (CW) room 

temperature (referring to Fig. 5.3.1), the device threshold is 112 mA (J = 1.43 kA · cm-2). 

 

Fig. 5.2.5 Device schematics after fabrication 

 

 

Fig. 5.2.6 SEM image of device 
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Fig. 5.3.1 LI characteristic of PCSEL at room temperature under CW condition. 

 

 
a) 

 
b) 

Fig. 5.3.2 a) EL spectrum of PCSEL below threshold b) Photonic band 

structure 
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At room temperature CW condition, the spectrum first is taken below threshold. It is 

shown in Fig.5.3.2 that the three peaks (A, B and C) below threshold, corresponds to the 

three points at Gamma point in photonic band structure shown below as suggested by 

other study [5]. Such experimental result matches with modelling prediction that just like 

DFB laser, PCSEL is band edge laser. Fig.5.3.3 illustrates the spectrum of such device 

above threshold. It is shown that above threshold, one of the three peaks (can depends on 

the shape of PC, and gain spectrum, in this case is mode C) will finally lase.  

 

 

5.4 Investigation of PCSEL with external reflection 

In this section, the PCSEL with external reflection introduced by cleaving along the 

edge of photonic crystal region has been investigated. Similar fabrication process as 

mentioned before is done during this experiment. The 3-D schematic of experimental 

process is illustrated in Fig. 5.4.1. Three categories of experimental were carried out for 

PCSEL with no external reflection (Fig.5.4.1a), and with single cleave at one edge 

(Fig.5.4.1b), and with double cleave perpendicularly at the edge (Fig.5.4.1b). The 

cleaving is done under microscope to ensure the number of periods is not affected during 

the process.  

 

Fig. 5.3.3 EL spectrum of PCSEL above threshold 
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Fig.5.4.2 shows the CW room-temperature LI of the virgin (black square) PCSEL 

device, with 1 (red circle), and 2 (blue triangle) cleaves. The device with no cleave has a 

threshold current of 112mA (J = 1.43 kA · cm-2). A reduction of lasing threshold from the 

original 112mA to 88 mA (J = 1.12 kA · cm-2) can be observed when a single cleave in 

introduced to the PCSEL. Such effect is effectively due to the increasing of the optical 

pass length, since when introducing cleaving to the edge, the ending (truncating) material 

changes from passive (lossy) to air which gives approximately 32% power reflection. The 

effect also indicating that at this particular number of period (N=500), there is still a 

certainly amount of light leaks outside of the photonic crystal area. 

Such effect is also investigated theoretically. Important to notice that although the PC 

shape used in theoretical analysis is square, it can still represent the nature of PCSEL with 

circular ‘atom’ since the lasing characteristic of PCSEL is largely depends on the 

periodicity while the ‘local’ geometry will mainly have an effect on the local field 

 

Fig. 5.4.1 Schematic of PCSEL with a) no cleave, b) single cleave and c) double cleave  

 

Fig. 5.4.2 LI characteristics of PCSEL with no cleave (black square), 

single cleave (red circle) and double cleave (blue triangle) 
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distribution which affects vertical emission power. As shown in Fig.5.4.3, MIA model 

developed in previous chapter is used for analysing PCSEL with external reflection. At 

the particular number of period used in the experiment, the external reflection introduced 

results in a reduction of lasing threshold. However, as the number of period increases, 

such effect become less strong (the threshold difference is smaller) since the most of the 

field is confined inside the photonic crystal region, i.e. the periodic structure has a 

dominant effect while the truncating structure act merely as a perturbation.  

 

The introduction of a second cleave (referring to Fig.5.4.1) does not reduce the 

threshold further (referring to the experimental result in Fig.5.4.2 and modelling results 

 
a) 

 
b) 

Fig. 5.4.3 a) MIA modelling result of threshold gain of PCSEL with and 

without single or double external reflection b) the effect of FP cavity and 

the effect of photonic crystal 
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in Fig. 5.4.3a). Indicating that the lasing mode selection is done by introducing external 

feedback to one side of the device. Such effect, also indicating that PCSEL operates as 

two orthogonal placed DFB lasers as predicted very early by other researchers [6]. In 

other word, the lasing effect is dominated by the direct coupling of the forward and 

backward traveling wave (referring to mode ‘a’ in chapter 4, Fig.4.2.3b).  Higher order 

terms will affect the behaviour but the effect is not dominant. Such experiment, in return, 

proves the validity of the approximate method MIA we developed. With additional 

feedback (one and 2 cleaves) an increased slope efficiency is also observed. Fig.5.4.3 

shows the effect of FP cavity compared to the photonic crystal. It is shown that when the 

periodic is small, the photonic crystal act as perturbation and the resonances are depend 

on the cleaved facets. 

 

Fig.5.4.4 shows the experimental results of far-field pattern at I=1.1Ith for a PCSEL 

with no cleave (a), one cleave (b), and two cleaves (c). As shown in the figure, for the 

virgin device, the far field pattern is shown to be symmetric with a divergence of ∼1.2°. 

In general, typical edge emitting laser has an elliptical far field beam pattern with 40o in 

 

Fig. 5.4.4 Experimental results of far-field pattern at I=1.1Ith for a PCSEL with a) no 

cleave, b) one cleave, and c) two cleaves. 
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vertical direction while 20o at horizontal direction. VCSEL however, usually has a far 

field beam divergence around 10o. PCSEL, with large in-plane area, has a very narrow 

beam divergence of 1o which makes it one very promising laser device. 

With the addition of a single cleaved facet along the edge of the photonic crystal area, 

as shown in the figure, the far field pattern of the device becomes asymmetric with 

divergence ∼4° for the 90° (perpendicular to cleave) direction and∼1° for the 0° (parallel 

to cleave) direction. The addition of feedback clearly modifies the field distribution (near 

field) within the device and eventually affects the far-field pattern. The addition of a 

second cleave results in a divergence of 0.8-1° indicating lasing is now taking place over 

a larger area of the PCSEL as compared to the virgin device. 

 

To understand the experimental results obtained previously, MIA method is again used 

to investigate the effect of external reflection on the field distribution of PSCEL. Note 

that because of the MIA developed is an approximate modelling technique and also in 

practice laser characteristics are dynamic effect and exhibits rather complicated features 

such as carrier diffusion and spectral and spatial hole burning. Hence the mode cannot 

explain all detailed feature of PCSEL.  

 

Fig. 5.4.5 Modelling results using MIA of far-field pattern for the lasing mode of PCSEL 

with a) no cleave, b) one cleave, and c) two cleaves. 
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However, the modelling results suggests some interesting phenomenon. The modelling 

results of far-field distribution is shown in Fig.5.4.5. The double-lobe pattern differs from 

experimental results is merely due to the instrumental limit. It is shown in the figure that 

 

Fig. 5.4.6 EL experimental results of PCSEL with varying CW injection current. a) 

no cleave, b) one cleave, and c) two cleaves. 
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the cleave introduced along the edge can leads to an increasing of beam divergence along 

one direction. When the second cleave is introduced, the lasing mode (frequency) also 

changes, which eventually leads to a reduction of far field divergence. The wavelength 

change is difficult to observe during experimental test since the photonic band gap for 

all-semiconductor PCSEL is rather small due to the small index difference. Further 

experiment shows the CW room temperature EL spectra of the PCSEL device with no 

cleave (blue), 1 cleave (red), and 2 cleaves (black) as illustrated in Fig.5.4.6. The 

spectrum is plotted as varying injection current from 100mA to 200mA and the red-shift 

of wavelength is due to the heating. The original device exhibits dual-mode lasing 

characteristics and such effect can be eliminated through external feedback as justified in 

Fig.5.4.6 that single mode lasing is maintained over all measured injection current up to 

200 mA (2.55 kA · cm-2). At 150mA injection current, the spectrum is investigated further.  

As shown in Fig.5.4.7, the original device shows dual-peak nature with peaks at 963 

and 963.5 nm; the introduced one cleave reduce the spectra to a single lasing peak at 

963.75 nm and when a second cleave is introduced the peak wavelength increases to 

964.2nm. Although the second shift might due to the heat, such effect is noticed from the 

study of DFB laser that a shift in wavelength is an expected effect of lateral feedback [7].  

 

 

 

Fig. 5.4.7 CW room temperature EL spectra at 150mA for PCSEL device 

with no clave (black), 1 cleave (blue), and 2 cleaves (red). 
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5.5 PCSEL area scaling and in-plane feedback 

 

The design of a semiconductor laser depends on its specific application. Broadly 

speaking, high power, narrow beam and monochromatic light are three highly desirable 

characteristics of semiconductor laser. It is known that large active area VCSEL devices 

lead to multi-transverse mode emission.  Due to the 2-D feedback in transverse directions, 

PCSELs can support large-scale single-mode emission.  

However, the transverse dimension needs to be large enough to provide sufficient 

feedback for a reasonable threshold (300-500 periods in a typical PCSEL device). The 

large lateral dimension of the PCSEL enables power scaling, and diffraction limited 

divergence, but limits use in applications that require high speed modulation due to the 

high mode volume and parasitic capacitance of the junction.  Thus, a simulation-based 

study to explore the opportunities to reduce the scale of the PCSEL, incorporating 

different boundary conditions is timely.  It has been discussed in the previous section that 

compared with conventional technique such as PWE, finite size effects can be readily 

obtained from the MIA method.  

The threshold margin is defined as the difference in gain between the resonance mode 

with lowest threshold gain and the mode with next lowest threshold gain. The gain margin 

is important because it represents how stable the lasing will be under high speed 

modulation. Fig. 10 plots the gain margin as a function of PC period for R=70% with 

 

Fig. 5.5.1 Threshold gain margin with different number of 

period 
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phase =7π/8. This preliminary modelling result shows that the threshold gain margin can 

be increased through the reduction of the photonic crystal area, whilst incorporating in-

plane external feedback with this reflectivity and phase. For device operation, it is ideal 

to have large threshold margin for stable lasing operation, especially under high speed 

modulation. We note that the reduction of PCSEL area results in an increase of the gain 

margin. 

 

 

 

Fig. 5.5.2 Threshold gain margin with different number of period and 

different external reflectance strength. The reflectance value represents 

field reflection and the feedback is at four sides of PC region. 

 

Fig. 5.5.3 Band edge resonances calculated with varying filling 

factor. Band edge resonances calculated with varying a  
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Fig. 5.5.2 shows the lasing threshold of the modelled PCSEL as a function of number 

of photonic crystal period. The external reflection is place along four edges of the PC 

region with the field reflectance varying from 30% to 90%. It is noticed that a reduction 

of PC period results in an increasing of the lasing threshold due to the smaller in-plane 

feedback and the leakage of power to the unpumped non-PC regions. It is also noticed 

that such a drawback can be removed through adding external in-plane feedback to 

increase the Q factor. In practice, the external feedback can be added through specifically 

designed high reflectors such as a Bragg grating, or first order PCs.  

Fig.5.5.3 shows the phase effect of the external reflection at 70% of field reflectivity, 

the threshold gain of PCSEL is plotted as a function of reflection phase variation with 

different period (red circle, N=200, black square, N=180). For the band edge resonance 

(lasing mode), the threshold gain varies as the phase shift is varied from 0 to 2π, the 

threshold gain reaches a minimum at 7π/8 and a maximum at 3π/2. As may be expected, 

reflection phase of in-plane feedback plays an important role in determining the 

increasing or decreasing of lasing threshold. It also suggests that threshold gain can be 

optimized with suitable facet phase reflectivity.  

 

Fig. 5.5.4 illustrates for 70% of reflectivity, the band edge resonance modes of PCSEL, 

plotted as a function of reflection phase. It is shown from the model that although lasing 

still occurs at two band-edge, the lasing mode change while varying the reflection phase. 

 

Fig. 5.5.4 Lasing wavelength for PCSEL with varying phase of external 

reflection 
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This effect can be further investigated to control the lasing mode of a PCSEL through 

external in-plane feedback.  

 

The study of PCSEL threshold gain with external feedback indicates the possibility of 

device geometry with small PC active region. As shown in Fig. 5.5.5, an example of the 

threshold gain of a PCSEL is plotted as a function of number of period at 0 (black square) 

and 90% reflection with reflection phase at 0 (red circle) and π (blue triangle). It is shown 

that with appropriate reflection strength and phase, the PCSEL may be shrank down to 

20×20 period with a reasonable threshold gain of 50cm-1.  

 

 

 

 

 

 

 

Fig. 5.5.5 Threshold gain of PCSEL with different number of period and different 

external in-plane phase reflectivity 
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5.6 Conclusion 

In this chapter, the patterning and regrowth technique of PC is reviewed. The PC is 

patterned using e-beam lithography and the regrowth is done through MOVPE. After PC 

patterning, the wafer is fabricated into lasing with mesa structure. A detailed explanation 

of fabrication process and its effect is given in the chapter. Thickness of the dielectrics 

and depth of p+ etching need to be carefully designed to achieve optimized lasing 

characteristics. 

The sample is characterized after fabrication. It is shown that the PCSEL is a band-

edge laser as predicted by the model. The LIV results show that the PCSEL can achieve 

single mode operation and the far-field pattern of PCSEL shows that the beam divergence 

of PCSEL is about 1o. 

PCSEL with external reflection is also studied both experimentally and theoretically in 

this chapter. Experimental results show that lasing threshold, lasing mode and far-field 

beam divergence can be controlled through external reflection. Theoretical modelling 

also suggests the different reflectivity as well as phase effect on the lasing mode and 

threshold. It is envisaged that such method could be used in the future in achieving lasing 

mode control of PCSEL. It is shown that by carefully designing external reflector, the 

dimension of the PCSEL can be shrink down and the lasing characteristic such as 

threshold, frequency and mode shape can be controlled accordingly. 
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Chapter 6  

Conclusions and Future works 

6.1 Conclusion 

    Wave propagation in periodic media have been investigated by researchers for over a 

century. In optics the use of (periodic) Bragg-gratings have been prevalent in both passive 

and active devices such as DBR and DFB lasers. Recently in photonics, two and three 

dimensional (2-D, 3-D) periodic structures, referred to as photonic crystals, have been 

studied intensively resulting in the realisation of devices with remarkable characteristics. 

The photonic-crystal-surface-emitting-laser (PCSEL) is one such device with very 

desirable output characteristics. It utilises large optically active, 2-D periodically 

‘sculpted’ surface, to achieve single wavelength operation combined with high power 

output in a uniformly narrow far-field beam. 

To model PCSEL, a fundamental requirement is to evaluate the optical field resonances 

in the structure that identify the ‘lasing mode’. Several modelling techniques widely used 

are plane wave expansion (PWE), coupled mode theory (CMT) and finite difference time 

domain technique. However, the first two require very considerable mathematical effort 

and the third is computationally extensive and time consuming. 

In this work, an essentially analytical model for evaluating 2-D resonance of photonic 

crystal pertinent to PCSEL is presented. A systematic study begins by first considering 

eigenmode and eigenfunctions of 1-D periodic structure. Broadly speaking, the study of 

wave behaviour within periodic structure can be divided into two categories: infinite 

periodic structure and finite periodic structure. The eigenvalue of the infinite periodic 

structure is defined by the famous Mathieu and Hill’s equation and the result is known as 

Bloch wavevector. PWE is most widely used in calculating the dispersion relation of 

Bloch wavevector and frequency. It gives the photonic band structure which is essential 

in photonic crystal design and understanding.  

Despite of the success in PWE, the limitation is clear: the theory is based on Floquet-

Bloch method and cannot be applied to finite periodic structure. It is then found that the 

eigenvalue of the periodic structure with finite extent corresponds to the transmission 
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maxima of such structure when the structure is excited externally. The process is 

effectively finding the characteristic impedance of the periodic structure. Several 

examples are given such as modes in periodic waveguide, BIC mode, Bragg reflection 

waveguide and Tamm state to further illustrate and validate such concept and the solving 

technique is used as building block to further develop the 2-D model. 

The MIA model begins by first considering a rectangular co-ordinate system ( , , )x y z  

consistent with the rectangular device geometry. The pertinent planar periodic structure 

is in the x-z plane and the y dimension is multilayer structure. The main objective of this 

work is to consider 2-D resonance and thus the y direction effect is built in through 

effective index distribution in the x-z plane ( , )x z . The analysis essentially treats 2-D 

index distribution as coupled waveguide in x direction with z-dimension corrugation. It 

proceeds by first assuming uniformity along z-axis, results in a modified periodic 

multilayer structure ( )x . Modes propagating along the z-axis in this structure are 

computed by taking resonance tunnelling solution for a relevant range of wavelengths 

based on the discussion previously. Such modes correspond to the 1-D resonance solution 

and is then used to construct the corresponding effective multilayer periodic structure 

along the z-axis.  

Several numerical comparisons are carried out between conventional modelling 

techniques and MIA. It is shown that the MIA matches favourably with both numerical 

results obtained using conventional methods and experimental results. Moreover, the 

effect of finite size can be obtained through MIA. Further investigation involves including 

in-plane diffraction to modified the effective structure obtained previously. It is shown 

that the consistency can be better preserved when the in-plane diffraction is included.  

Experimental work is also presented in the thesis to further proof the validity of the 

model. The all-semiconductor PCSEL device is fabricated during the project with the 

measurement of the LIV characteristics. PCSEL with external reflector is also 

experimentally studied. It is shown that the artificially induced external reflector could 

leads to a reduction of the threshold. In plane field distribution and the far-field pattern 

can be changed through such external reflection. 
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6.2 Future work 

The theoretical work carried out so far has demonstrated a significant potential of MIA 

method. During the study, several topics could be investigated further and even become 

individual projects. 

In chapter 3, it is shown that the eigenvalue of infinite periodic structure can be 

expressed as superposition of Bloch modes. It is proved by other researcher that the Bloch 

mode are complete. However, such issue is not trivial at all since the solution involves 

non-Hermitian problem. The study of completeness an orthogonality of Bloch mode is 

certainly one of the most important aspect of future study. Moreover, even the 

completeness of the Bloch mode has been demonstrated by other researchers, the 

eigenmode of the finite periodic structure is barely considered. The eigenmodes we 

obtained here corresponds to the optical tunnelling or impedance matching conditions. 

However, are those ‘modes’ complete and orthogonal are still not clear even in the exist 

published literature. But such study is essential in understanding wave behaviour in 

periodic structure as well as the design of more advanced modelling techniques.  

In chapter 3 there is also one peculiar type of mode exist in periodic structure, BIC 

mode. Such mode exists in the continuum spectrum region but the energy is well confined 

in the waveguide. To the best of our knowledge, such mode is only been experimental 

observed very recently but no design has been done explicitly on the relevant device based 

on BIC. The modelling technique shown are rather mathematically complicated. However, 

this work provides an alternative representation and has the potential to understand such 

effect better for designing more optical devices based on BIC. 

Undoubtably, devices based on Tamm state or Tamm plasmon become one of the most 

widely studied area recently because it opens up the possibility of enhancing or directing 

the emission. The concepts developed in chapter 3 can be applied in analysing such 

subject, e.g. do all Bragg structures support surface mode states? are Bragg modes and 

surface-state modes Orthogonal? etc. All such study could be done through a deeper 

understanding of wave behaviours in finite periodic structure.  

Chapter 4 presents a new model, MIA, for analysing 2-D resonance of photonic crystal 

corresponds to the lasing modes of PCSEL. However, the model does not include carrier 
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aspects. However, such effect could be included through the spatial and temporal 

variation in optical gain. Other PC configurations such as asymmetries could be included 

in MIA.  

The external reflection also leads to a change of the in-plane field distribution of lasing 

mode. As shown in Fig.6.6, the preliminary modelling results shows that when an external 

reflection is introduced (shown as red line) along one side of PCSEL, the in-plane field 

will move accordingly. It is believed that through dynamically changing external reflector, 

the lasing mode as well as the beam shape can be modified and tailored accordingly.  

 

 

 

 

  

 

Fig. 6.6 In-plane field distribution changes introduced by external reflection 
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Enough of Science. Up! up! my Friend, and quit your books: 

 

And medicine, law, business, engineering, 

these are noble pursuits and necessary to sustain life. 

But poetry, beauty, romance, love, 

these are what we stay alive for. 

                                                 ----- Dead Poets Society 
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Appendix A 

Vector Operators and Maxwell’s Equation 

 

In general, electric and magnetic fields are vectors (direction components). As for any 

vector, we have: 

( , , , ) ( , , , ) ( , , , )x y zF x y z t F x y z t F x y z t= + +
x y z

F u u u                 (A.1) 

This condition is in Cartesian coordinates (Other coordinates: Cylindrical, spherical, etc. 

may also be used). In equation (A.1), 
xF , 

yF and
zF are magnitude of the vector in x, y, z 

direction respectively and
x

u ,
yu , 

z
u are the unit vector along each axis. Note that 

importantly, in equation (A.1), that F is a vector but the components
xF , 

yF and
zF are 

scalar. 

Further, in general, each of these components can be a function of space and time. The 

squiggle “~” denotes implicit time dependence. And in that case, the compact notation 

for the vector field is given in equation (A.1). Most frequently, the time dependence can 

be given as a separated variable and can be written in vector form as: 

( , , ) ( )x y z h t=F F                                                   (A.2) 

In almost all situation, a harmonic time dependence is used, that is ( ) exp( )h t j t= and 

hence: 

Electric field: Volts mE  

Magnetic field: Amperes mH  

Electric permittivity of vacuum 12

0 8.854 10 Farads m −=  .  

r relative electrical permittivity of medium. 

Magnetic permeability of vacuum. 7

0 4 10 Henry m  −=  . 

r relative magnetic permeability of medium. 

Electric displacement:
0 r c  =D = E E  

Magnetic flux (Density):
0 r c  =B = H H  

Ampère’s Law: relates total electric current to magnetic field. 

Faraday’s Law: relates time change of magnetic flux to electric field. 
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( , , ) ( ) ( , , ) j tx y z h t x y z e = =F F F                                   (A.3) 

is used throughout. vector differential operators are defined before further derivation. 

Gradient,  , operates only on scalar functions. Suppose a scalar function

( , , , )x y z t = . The gradient of such function is defined as: 

x y z
 

   
 = + + 

   
x y zu u u                                  (A.4) 

Hence the gradient operator results in a vector.  

    Divergence,  , operates on a vector function ( , , , )x y z t=F F and is defined as: 

x y z

x y z

  
 = + +

  
F F F F                                    (A.5) 

and hence the divergence operator results in a scalar. 

Curl,  , operates on a vector function ( , , , )x y z t=F F and is defined as: 

( ) ( ) ( )

x y z

z y z x y x

x y z

F F F

F F F F F F
y z x z x y

  
 =

  

     
= − − − + −

     

x y z

x y z

u u u

F

u u u

(A.6) 

and hence the curl operator results in a vector. 

Some higher order vector differential operators is also required in EM theory. From 

equation (A.4), (A.5) and (A.6), it can be proved that: 

2 2 2

2 2 2
( )

x y z
 

   
  = + + 

   
                                (A.7) 

is a scalar and: 

( ) 0                                                  (A.8) 

is valid for all . We further define 2( ) ( )    −F F F . And hence: 

2 ( ) ( )−   − F F F                                    (A.9) 

the operator
2 is called Laplace operator or Laplacian. In rectangular coordinate, the 

Laplacian is defined as: 
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2 2 2
2

2 2 2x y z

   
 = + + 

   
F F                                    (A.10) 

    Next, we return to the set of Maxwell’s equation introduced in chapter 2: 

 =D ρ  (Gauss/Coulomb)                                    (A.11) 

0 =B  (Gauss)                                           (A.12) 

t


  = −


E

B
 (Faraday)                                    (A.13) 

t


  = +


H J

D
 (Ampere)                                  (A.14) 

    Now consider harmonic time dependence so that all fields take on the form of (A.2) 

and (A.3). Then, noting that all the vector differential operator are partial derivatives only 

in space variables ( , , )x y z . Thus, all of Maxwell’s equations become: 

0

( , , )
( , , )

r

x y z
x y z

 
 =

ρ
E                                        (A.15) 

( , , ) 0x y z =H                                              (A.16) 

0( , , ) ( , , )rx y z j x y z   = −E H                              (A.17) 

0( , , ) ( , , ) ( , , ) ( , , )s rx y z x y z x y z j x y z    = + +H J E E            (A.18) 

The above equations are known as Maxwell’s equations for harmonic time dependence. 

Now, take the equation (A.18): 

0

0

0

0

( , , ) ( , , ) ( , , ) ( , , )

( , , ) ( , , )

( , , ) ( , , )

s r

s r

s c

x y z x y z x y z j x y z

x y z j x y z
j

x y z j x y z

  


 



 

  = + +

 
= + + 

 

= +

H J E E

J E

J E

          (A.19) 

Where the complex number 0 0c r r r ij j j        = + = − = −  

In general, c r ij  = − for the media is explicitly specified. This can be obtained from 

experiments or from fundamental solid-state (semiconductor) theory. Therefore, 

henceforth the Maxwell’s equation will be written as: 

0

( , , )
( , , )

r

x y z
x y z

 
 =

ρ
E                                      (A.20) 
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( , , ) 0x y z =H                                            (A.21) 

0( , , ) ( , , )rx y z j x y z   = −E H                             (A.22) 

0( , , ) ( , , ) ( , , )s cx y z x y z j x y z   = +H J E                     (A.23) 

All electromagnetic problems require the solution of Maxwell’s equation, the 

appropriate source functions and boundary conditions specified for the problem. In most 

situations in this thesis, it will be assumed that in the region of interest, charge density is 

identically zero, ( , , ) 0x y z ρ . And source current density is identically zero,

( , , ) 0s x y z J . Since for any vector function 0( )  F , if ( , , ) 0s x y z J , it gives: 

  0( , , ) ( , , ) 0cx y z j x y z    =  =H E                   (A.24) 

This is consistent with the equation ( , , ) 0x y z =E if ( , , ) 0x y z ρ . 

Similarly, from   0( , , ) 0 ( , , ) 0rx y z j x y z    = −  =E H which is consistent 

with (A.21). Note that Maxwell’s equations in form of equation (A.20) to(A.23) must 

be put as differential equation of a single dependent function, E or H  before it can be 

solved as follow.  

From equation (A.23) with ( , , ) 0s x y z J and from the vector differential operator 

relations 2( ) ( )    −F F F , we could obtain: 

2 2

0 0k  + =H H                                               (A.25) 

where ( )2 2

0 0 0 02k     = = . Similar process starting with equation (A.22) yields: 

2 2

0 0ck  + =E E                                              (A.26) 

Equation (A.25) and (A.26) are referred to as vector wave equation for harmonic time 

dependent electromagnetic field. In rectangular coordinates, 6 field components
, ,x y zE and 

, ,x y zH can exist in general and appropriate boundary conditions may further apply for the 

particular problem. The velocity of light in the vacuum is defined as
0 01c  = and 

velocity of light in the homogeneous media is 1 c c cv c  = = where
c is the refractive 

index of the media and for non-magnetic material 1 = giving
c c = . 
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As shown in Chapter 2, the Poynting vector is defined as S = E H and in general, 

c c = is a complex number
c r ij  = + . For plane wave propagates along x direction, 

the time averaged Poynting vector is: 

*

*

1
Re{ } Re{ 0 0 }

2
0 0

x y z

y

z

u u u

E

H

 =S = E H                          (A.27) 

Thus, from equations (2.20) and (2.21) 

0 0

0

2 ( ) ( )

2 2

1
Re{ }

2

r i r i

i

x y z

jk j x jk j x

k x

E H

A e

A e

   











− + + −

=

=

=

S

                    (A.28) 

The quantity 
02 ik  is defined as optical gain

02 ig k = and thus, optical gain can be 

represented by the imaginary part of the refractive index. 
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Appendix B 

EM Waves in Layered Media: A Transfer 

Matrix Representation 

 

In this section, a matrix formulation waves in layered media is developed. As shown 

in Fig.B1. Define region q as
1q qx x x +  and the incident angle is . The excitation is 

such that non-zero field components xE , zE and
yH exist, i.e. ( )

y
TE polarization and

2 0y  .
yH component must satisfy wave equation given by: 

2 2
2 2

02 2
( , ) 0q yk H x z

x z


  
+ + = 

  
                                   (B.1) 

A separation of variable form of solution is applicable and yields: 

( , ) ( ) qj z

yH x z f x e
−

=                                              (B.2) 

The boundary condition decides that
q = is satisfied in each layer q. Define in each 

region q  

( ) exp( ) exp( )q q q qf x A j x B j x = − + +                             (B.3) 

Thus, from equation (B.1), (B.2) and (B.3) it yields 2 2 2 2

0q qk  + = satisfied in each 

homogeneous region q.  

From the Maxwell’s equation: 

 

Fig. B1. Schematic of 1-D multilayer structure. 
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0 q

x y z

j
x y z

H H H

 
  

 = =
  

x y z
u u u

H E                                 (B.4) 

Which gives 

exp( ) exp( ) j z

qy q q q qH A j x B j x e   − = − + +                            (B.5) 

0

exp( ) exp( )
q j z

qz q q q q

q

E A j x B j x e 


 
 

− = − − + +                   (B.6) 

The local thickness is defined as
qs x x= − for convenience and 0 qs s  .The main 

objective is to consider x-direction and z-direction propagation is not of particular interest. 

Hence, equation (B.5) and (B.6) can be written as (in region q): 

exp( ) exp( )q qqy q qh A j s B j s = − + +                              (B.7) 

0

exp( ) exp( )
q

q qqz q q

q

e A j s B j s


 
 

 = − − + +
 

                     (B.8) 

and in region q+1 

1 11 1 1exp( ) exp( )q qq y q qh A j s B j s + ++ + += − + +                      (B.9) 

1
1 11 1 1

0 1

exp( ) exp( )
q

q qq z q q

q

e A j s B j s


 
 

+
+ ++ + +

+

 = − − + +
 

         (B.10) 

Next, the interface condition is applied as 
1 (0) ( )q z qz qe e s+ = and

1 (0) ( )q z qz qh h s+ = which 

yields: 

1 1 exp( ) exp( )q q q qq q q qA B A j s B j s + ++ = − + +             (B.11) 

1
1 1

0 1

exp( ) exp( )
q

q q q qq q q q

q

A B A j s B j s


 
 

+
+ +

+

 − = − − +
 

       (B.12) 

Equation (B.11) and (B.12) are considered and gives: 

1 1 1 1
1 1

1 1

exp( ) exp( )
2 2

q q q q q q q q
q q qq q q q

q q q q

A j s A j s B
       

 
   

+ + + +
+ +

+ +

+ −
= + + +     (B.13) 

1 1 1 1
1 1

1 1

exp( ) exp( )
2 2

q q q q q q q q
q q qq q q q

q q q q

B j s A j s B
       

 
   

+ + + +
+ +

+ +

− +
= − + −     (B.14) 

which can be written into a matrix form: 

1

1

[ ]
q q

q

q q

A A
m

B B

+

+

   
=   

      

                                                 (B.15) 
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where 

1 1

(1,1)

1

exp( )
2

q q q q

q q

q q

m j s
   


 

+ +

+

+
= +                                 (B.16) 

1 1

(1,2)

1

exp( )
2

q q q q

q q

q q

m j s
   


 

+ +

+

−
= +                                (B.17) 

1 1

(2,1)

1

exp( )
2

q q q q

q q

q q

m j s
   


 

+ +

+

−
= −                                (B.18) 

1 1

(2,2)

1

exp( )
2

q q q q

q q

q q

m j s
   


 

+ +

+

+
= −                               (B.19) 

In thesis chapter 2, a propagation matrix and a transfer matrix formulation in introduced. 

Here I use an alternative approach to derive it. The advantage of such derivation is that 

in numerical simulation, it is the thickness s rather than the actual x location is provided. 

The expression is found to be better for numerical approach in the study.  

When the structure become periodic, the transfer matrix for a single periodic is 

important and is given by 
1[ ] [ ][ ]q qm m +=m . After the considerable amount of algebra, the 

reader could obtain the matrix components: 

( ) ( )
1 1 1 1

2 2

1 1 1 1( ) ( )

(1,1)

1 1 1 14 4

q q q q q q q qq q q q q q q qj s s j s s

q q q q q q q q

e e
   

       

       
+ + + ++ + + ++ + + −

+ + + +

+ −
= −m  

( ) ( ) ( ) ( )
1 1 1 1

2 2 2 2

1 1 1 1( ) ( )

(1,2)

1 1 1 14 4

q q q q q q q qq q q q q q q qj s s j s s

q q q q q q q q

e e
   

       

       
+ + + ++ + + ++ + + −

+ + + +

− −
= − −m  

( ) ( ) ( ) ( )
1 1 1 1

2 2 2 2

1 1 1 1( ) ( )

(2,1)

1 1 1 14 4

q q q q q q q qq q q q q q q qj s s j s s

q q q q q q q q

e e
   

       

       
+ + + ++ + + +− − − +

+ + + +

− −
= − −m  

( ) ( )
1 1 1 1

2 2

1 1 1 1( ) ( )

(2,2)

1 1 1 14 4

q q q q q q q qq q q q q q q qj s s j s s

q q q q q q q q

e e
   

       

       
+ + + ++ + + +− − − +

+ + + +

− +
= − +m  

Note that the above solution is obtained by considering excitation of ( )
y

TE , another 

polarization also exist with non-zero field components xH , zH and
yE , i.e. ( )

y
TM

polarization. The derivation is same as ( )
y

TE hence only the result will be given: 

( ) ( )
1 1 1 1

2 2

1 1( ) ( )

(1,1)

1 14 4

q q q q q q q qq q q qj s s j s s

q q q q

e e
   

   

   
+ + + ++ ++ + + −

+ +

+ −
= −m  
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1 1 1 1

2 2 2 2

( ) ( )1 1

(1,2)

1 14 4

q q q q q q q qj s s j s sq q q q

q q q q

e e
      

   
+ + + ++ + + −+ +

+ +

− −
= − −m  

1 1 1 1

2 2 2 2

( ) ( )1 1

(2,1)

1 14 4

q q q q q q q qj s s j s sq q q q

q q q q

e e
      

   
+ + + +− − − ++ +

+ +

− −
= − −m  

( ) ( )
1 1 1 1

2 2

1 1( ) ( )

(2,2)

1 14 4

q q q q q q q qq q q qj s s j s s

q q q q

e e
   

   

   
+ + + ++ +− − − +

+ +

− +
= − +m  

    One very important issue comes up when doing numerical modelling. As shown 

previously, for the matrix element of ( )
y

TE polarization, the dielectric constant difference 

will further affect the actual value of the matrix elements than ( )
y

TM . When considering 

actual problem, whether the terminal layer and the starter layer is the same will affect the 

final result and as a result, the power transmittance CAN NOT simply write into the 

square of the field transmittance.  
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The solution to the Mathieu’s Equation 

 

Considering 1-D periodic stratified media with dielectric constant profile ( )x as shown 

in Fig.C.1. The medium is considered to be infinite at all direction (with 1-D in periodic). 

The study of wave properties within such structure were concerned with the solution to 

the Mathieu and Hill’s equation. The general solution to the Mathieu and Hill’s equation 

is very complicated. Here, the derivation of the infinite matrix involves solving Mathieu’s 

equation is shown. 

The Mathieu’s equation is a second order homogeneous linear differential equation of 

the form: 

2

2
( ) [ 2 cos(2 )] ( ) 0

d
F x p q x F x

d x
+ − =                                (C.1) 

According to the Floquet theorem, there always exist one solution: 

( ) ( )Bj x
F x e f x


=                                                (C.2) 

where ( )f x is a periodic function. Note that in general, the B can be both plus or minus 

representing waves travelling in x direction. However, only plus sign is necessary to be 

retained here in order to determine the eigen mode of the given geometry. Thus, the 

periodic function is expanded as Fourier series given by: 

2( ) j mx

m

m

f x e
+

=−

=                                               (C.3) 

From equation (C.1) (C.2) and (C.3), it yields: 

 

Fig. C.1 Structure with one dimensional periodicity: is the period 

of the function ( )x  
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2
(2 ) (2 )

2
[ 2 cos(2 )] 0B Bj m x j m x

m m

m m

d
e p q x e

d x

  
+ +

+ +

=− =−

+ − =   

 

(2 ) (2 ) (2 )2(2 ) 2 cos(2 ) 0B B Bj m x j m x j m x

B m m m

m m m

m e p e q x e     
+ + +

+ + +

=− =− =−

− + + − =    

The term cos(2 )x can be written as 

2 21
cos(2 ) ( )

2

jx jxx e e−= +  

Thus, it yields 

    2( 1) 2( 1)(2 )2(2 ) 0B BB
j m x j m xj m x

B m m

m m

p m e q e e
   

+ +
+ + − ++

=− =−

 − + − + =          (C.4) 

Equation (C.4) should be satisfied for all x and thus the equation reduced to: 

2

1 1(2 ) ( ) 0B m m mm p q   + −
 + − + + =                            (C.5) 

Equation (C.5) represents a set of equations and can be written into a matrix form: 

( )

( )

( )

( )

2

2
2

1

2

0

2
1

2
2

4 0 0 0

2 0 0

00 0

0 0 2

0 0 0 4

B

B

B

B

B

q

q q

pq q

q q

q

 

 

 






−

−

+

+

  
   
 −  
   
 −  

     − =       +      +          

I       (C.6) 

Where I is the identity matrix.  

Thus, the solution of the equation (C.6) can be obtained through calculating the 

determinate of the matrix: 

det( ) 0p− =M I                                                   (C.7) 

Where matrix M is the tridiagonal matrix in equation(C.6) 

 

 

 

 

Appendix D 
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Coupled Mode Theory in Sinusoidally 

Stratified media 

 

As illustrated in Fig.D.1. Assuming the inhomogeneous media with sinusoidal 

variation of refractive index and a plane wave along x direction interacts with the media. 

The period of such structure is  . The index profile is given by a periodic function 

conveniently written as 0( ) cos( )x Kx  = + , where 2K =  and is the amplitude of 

the index modulation 0  . Thus: 

2 2 2 2 2

0 0 0 0( ) cos ( ) 2 cos( ) +2 cos( )x Kx Kx Kx       = + +         (D.1) 

    Define 0 0 0
2k c  = = , our CMT is based on scalar wave equation: 

2
2 2

02
( ) ( ) ( ) 0

d
F x k x F x

d x
+ =                                     (D.2) 

Assuming a general solution of (3.12) is a perturbation of the original equation 

2
2 2

0 02
( ) ( ) 0

d
F x k F x

d x
+ =                                       (D.3) 

with the form of: 

( ) ( )exp( ) ( )exp( )F x A x j x B x j x = − + +                      (D.4) 

implies that the amplitudes A(x) and B(x) depends on x, where
0 0k = .  Thus, 

2 2
2

2 2

2
2

2

( )= ( ) 2 ( ) ( )

( ) 2 ( ) ( )

j x j x j x

j x j x j x

d d d
F x A x e j A x e A x e

d x d x d x

d d
B x e j B x e B x e

d x d x

  

  

 

 

− − −

+ + −

− −

+ + −

               (D.5) 

   Equation (D.1) to (D.5) yields: 

 

Fig. D.1 Periodically stratified media with index distribution 

of 0( ) cos( )x Kx  = + along x direction. 
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2

2

2

2

2

0 0

( ) 2 ( )

( ) 2 ( )

2 cos( )[ ( ) ( ) ] 0

j x j x

j x j x

j x j x

d d
A x e j A x e

d x d x

d d
B x e j B x e

d x d x

k Kx A x e B x e

 

 

 





 

− −

+ +

− +

−

+ +

+ + =

                     (D.6) 

applying widely used slowly varying envelope approximation, i.e.: 

2

2

2

2

( ) ( )

( ) ( )

d d
A x A x

d x d x

d d
B x B x

d x d x





                                          (D.7) 

Equation (D.6) reduces to: 

2

0 0

2 ( ) 2 ( )

2 cos( )[ ( ) ( ) ] 0

j x j x

j x j x

d d
j A x e j B x e

d x d x

k Kx A x e B x e

 

 

 

 

− +

− +

− +

+ + =

                         (D.8) 

Multiplyexp( )j x− on both side of (D.8) and since ( )cos( ) 2jKx jKxKx e e− += + , it yields: 

( )2

0 0

2 ( ) 2 ( )

[ ( ) ( ) ] 0

j x j x

jKx jKx j x j x

d d
j A x e j B x e

d x d x

k e e A x e B x e

 

 

 

 

− +

− + − +

− +

+ + + =

                 (D.9) 

Further approximation assuming 2 K  , which implies that the wavelength is near the 

Bragg resonance. Thus, equation (D.9) ended up with equation: 

(2 )

0 02 ( ) ( ) j K xd
j B x k A x e

d x

   − −=                                  (D.10) 

If we multiply exp( )j x+ on both side of (D.8) and follow the same process, the equation 

ended up with: 

(2 )

0 02 ( ) ( ) j K xd
j A x k B x e

d x

   + −=                                  (D.11) 

Equation (D.10) and (D.11) are two coupled equations and can be write into a more 

compact form: 

( ) ( ) j xd
A x j B x e

dx

 + = −                                      (D.12) 

( ) ( ) j xd
B x j A x e

dx

 − =                                        (D.13) 

where 2

0 0 2k   = is known as (complex) coupling coefficient of the grating and

2 K  = − is called complex detuning. 



139 

 

 

From the two coupled equations, it can be obtained: 

2 2
1 2( )

j x sx j x sx

A x C e C e
  

+ −

= +                                 (D.14) 

2 2
1 2( )

j x sx j x sx

B x D e D e
  

− + − −

= +                             (D.15) 

where 2 24 2s  = − + . Thus, the general solution is: The general solutions can be 

written as: 

2 2
2 22 2

2 2

1 1

( )

m m
j j x j j x

m m

m m

E x C e D e

   
 

   
       − − + + − +   

       
   

= =

= +   

 

 

 

 

 

 

 

 

 

Appendix E 

Chebyshev Identity and Power N of 
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Unimodular Matrix 

    According to the Floquet theorem, in an infinite periodic structure with period L, field 

at x and x L+  has no difference except a complex constant. Hence the Bloch wave 

satisfies the following eigenvalue problem: 

j Le− =mΨ Ψ                                                 (E.1) 

whereΨ is the eigen-vector (normalized) of the matrix m whose eigenvalue is exp( )j L−  . 

m is the unit-cell translation matrix
11 12 21 22( , , , )m m m m and the power N of such translation 

matrix is given by equation: 

11 1 2 12 111 12

21 1 22 1 221 22

N

N N NN

T

N N N

m U U m Um m

m U m U Um m

− − −

− − −

−  
= = =   

−   
M m          (E.2) 

where
NU is known as Chebyshev polynomials of the second kind. In this section, a simple 

proof is given as follow.  

    Equation (E.1) gives: 

det( ) 0j Le− − =m I                                          (E.3) 

or equivalently: 

2

11 22 11 22

1 1
( ) ( ) 1

2 4

j Le m m m m  = +  + −                          (E.4) 

Without loss of generality, the eigen-vectorΨ is often normalized to unit length and gives: 

12

2 2

12 1,1

11

2 2

12 1,1

( )

( )

j L

j L

j L

m

m e m

e m

m e m





 
+



− − 



 

 
 

+ −   
= =   

−   
 + − 

Ψ                               (E.5) 

 

    Suppose m is diagonalizable, chosen P such that 

0

0

j L

j L

e

e

+ 

− 

 
=  
 

-1
P mP                                            (E.6) 

Then 

( )
0

0

jN L
N

N

jN L

e

e

+ 

− 

 
= = 
 

-1 -1
P mP P m P                           (E.7) 

Hence 
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10 0

0 0

jN L jN L

N

jN L jN L

e e

e e

+  + 

−

−  − 

   
= =   
   

m P P                     (E.8) 

i.e. the Nth power of the transformed matrix is equal to the transform of the Nth power of 

the matrix.  

    The matrix P that can transform m into a diagonal matrix can be constructed by the 

eigenvectors of m, given by: 

1 1

( )

 

    

+ +

− + −

− −+ − + −
+ −+ − − +

 
=  

−  
P                               (E.9) 

1

( )

 

    

− +

− −

− ++ − + −
+ ++ − − +

 −
=  

−−  
P                            (E.10) 

    From (E.5), (E.8), (E.9), (E.10) and carrying out matrix multiplication: 

11 12

21 22

sin sin( 1) sin

sin sin

sin sin sin( 1)

sin sin

N

m N L N L m N L

L L

m N L m N L N L

L L

 − −   
  

=  
  − −  

 
  

m             (E.11) 

And from (E.4): 

11 22

1
cos ( )

2
L m m = +                                         (E.12) 

Hence  

1

11 22

1
cos ( )

2
L m m−  

 = + 
 

                                      (E.13) 

    In mathematics, polynomial with the form of 

sin ( 1)

sin
N

N
U





+
=  

is known as Chebyshev polynomials of the second kind. Hence the Nth power of the 

unimodular matrix is given by: 

11 1 2 12 1

21 1 22 1 2

N N NN

N N N

m U U m U

m U m U U

− − −

− − −

− 
=  

− 
m  
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Poynting Vector Within the Stopband of the 

Periodic Structure 

The objective of this section is to investigate the Poynting vector within periodic 

structure. Considering 1-D periodic structure along z direction as shown below in Fig. 

F.1:  

 

For the sake of argument, the structure is semi-infinite. 

As it is already obtained from the numerical calculation (referring to Fig. 3.3.5 in 

chapter 3), the field distribution ( )yE z of a Bloch wave is evanescent within the ‘stopband’ 

region of this periodic media. However, this evanescent ‘Bloch wave’ doesn’t require 

lossy media. The proof and analytical explanation is given as follow. 

In a lossless periodic media, considering field component ( )yE z and ( )xH z . The 

relationship is given by Maxwell’s equations: 

0j  = −E H                                                   (F.1) 

It is already known that in each region q, 1,2,3......q =  

( ) q qj z j z

y f rE z E e E e
 − +

= +                                             (F.2) 

where
fE and rE are given by the matrix relationship and satisfied the interface condition. 

The magnetic field satisfy: 

 

Fig F.1 Schematic of semi-infinite periodic structure 
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( ) q qj z j zq

x f rH z E e E e
 



− + = +
 

                                    (F.3) 

From (F.2) and (F.3), the z component of Poynting vector is given by 

 
2 2*1

Re
2 2

q

z y z f rS E H E E



 = = −
  

                               (F.4) 

where ‘*’ denoted complex conjugate.  

    Next, before further derivation, some properties of the transfer matrix have to be used. 

As shown in Chapter 3, the transfer matrix relationship is given by: 

f fjK

r r

E EA B
e

E EC D

    
=    

     
                                      (F.5) 

where A, B, C and D are matrix elements, exp( )jK is the eigenvalue of such transfer 

matrix where is the single period dimension. K represents the Bloch wavevector and in 

general can be complex (stop-band) or pure real (pass-band). 

Another property of the transfer matrix is that, 
*C B= and *D A= . It is proved that the 

matrix is an unimodular matrix: 

det 1
A B

C D

 
= 

 
                                            (F.6) 

Thus: 

* * 1AD BC AA BB− = − =                                     (F.7) 

From equation (F.5) and (F.7), it yields: 

* *
0

jK
f

jK
r

EA e B

EB A e





 −  
=   

−   
                              (F.8) 

Thus: 

* *
det 0

jK

jK

A e B

B A e





 −
= 

− 
                                (F.9) 

Which yields: 

 ( ) 0jK

f rA e E BE− + =                                    (F.10) 

Thus: 

( )jK

r f

e A
E E

B

 −
=                                            (F.11) 

From equation (F.4) and (F.11) 
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 
22 2 2*1

Re
2

jK

z y z f rS E H E E B e A  =  −  − −
      

               (F.12) 

To investigate the Poynting vector within stop band, we first consider Bloch wave 

vector. Since K is in general a complex number within the stop-band, more importantly,

K is of the form of: 

i

m
K jK


= +


                                           (F.13) 

where 1,2,3......m = and
iK is the imaginary part of K . Such results can be obtained 

through CMT or matrix method and is shown in other part of this thesis. 

    From Chapter 3, it is obtained that 

1
cos( ) ( )

2
K A D = +                                      (F.14) 

Thus: 

*jK jKe e A A − + = +                                      (F.15) 

From equation (F.13) and (F.15), it yields: 

* ( 1) ( )i iK KmA A e e
 − 

+ = − +                               (F.16) 

From (F.7) and(F.12), it yields: 

2 22 * 1jK jK

zS B e A AA e A   − − = − − −
  

                      (F.17) 

From (F.13) and (F.17): 

( 1)
i

i

m
j jK

KjK me A e A e A

 
+   −   − = − = − −                        (F.18) 

 

( )
*

*( 1) iKjK me A e A
−  − = − −                                   (F.19) 

From equation (F.12), (F.18) and (F.19): 

2
*

* *

2*

1

1 [( 1) ][( 1) ]

( 1) ( ) 1

i i

i i

jK

z

K Km m

K Km

S AA e A

AA e A e A

e A A e



−  − 

−  − 

 − − −

= − − − − − −

= − + − −

                    (F.20) 

From equation (F.16) and (F.20): 

2*

22

( 1) ( ) 1

( 1) ( ) 1

0

i i

i i i i

K Km

z

K K K Km

S e A A e

e e e e

−  − 

−   −  − 

 − + − −

= − + − −

=
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Hence, the real part of the Poynting vector within the stop-band is zero. Although K is 

complex, it is NOT lossy.  

Q.E.D. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



146 

 

 

Appendix G 

Dielectric Slab Waveguide 

The simplest geometry of the dielectric waveguide is the flat dielectric slab, similar to 

the two-parallel-plate metal waveguide discussed previously. As illustrated in Fig.G.1, 

the slab dielectric waveguide consists of a slab of dielectric of refractive index,
1 , 

occupying the region d y d−   + ; the region below( y d − ) and above( y d + ) have 

refractive index
2 with

1 2  .  

 

For the sake of argument, assuming the waveguide is symmetric and the wave is 

propagating along the z direction. The relationship / 0x   is satisfied due to the 

geometry considered in this case. Thus, the wave equation for the tangential field is given 

by: 

2 2
2 2

02 2
( , ) 0q xk E y z

y z


  
+ + = 

  
                                     (G.1) 

where 1,2q = . Clearly, separation of variable is satisfied in this case: 

( , ) ( ) j z

x xE y z E y e −=                                                (G.2) 

where  is the same in both region 1 and 2.  

    In region 1, define 

2 2 2 2

0 1k p − =                                                      (G.3) 

In region 2, define 

2 2 2 2

0 2k h − =                                                      (G.4) 

 

Fig G.1 Schematic of slab dielectric waveguide 
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Note that there is also continuum mode exist in this situation, the discussion here focuses 

on the conventional bound mode, i.e. field will decay to zero at   

For y d +  

2 2;hy hy

x z

h
E A e H A e

j

− −= =                                     (G.5) 

For y d −  

2 2;hy hy

x z

h
E D e H D e

j
= = −                                   (G.6) 

For d y d−   +  

1 1 1 1cos sin ; ( sin cos )x z

p
E B py A py H B py A py

j
= + = −          (G.7) 

Thus, at y d=  , the tangential field must be continuous, which yields: 

1 1 1 1( sin cos ) cos sin
p

B pd A pd B pd A pd
h

− = +                     (G.8) 

and 

1 1 1 1( sin cos ) cos sin
p

B pd A pd B pd A pd
h

+ = −                     (G.9) 

Equation (G.8) and (G.9) yields: 

1 1sin cos
p

B pd B pd
h

=                                    (G.10) 

1 1cos sin
p

A pd A pd
h

− =                                    (G.11) 

Note that very importantly, 
1B and

1A cannot be simply eliminated since the term
1 sinB py

and 1 cosA py are independent which gives two independent type of solutions (conditions). 

For symmetric case, i.e. considering 1 0A = , from equation (G.10), it yields:  

tanp pd h=                                              (G.12) 

Also, it is defined that 2 2 2 2

0 1k p − = and 2 2 2 2

0 2k h − = , thus: 

2 2 2 2 2 2 2 2

0 1 2( )k d p d h d − = +                               (G.13) 

From equation (G.12) 

2 2 2 2 2tanp d pd d h=                                      (G.14) 

 

Define two new variables: u hd= and v pd= , thus equation (G.14) become: 
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2 2 2tanv v u=                                                      (G.15) 

where the variablesu hd= and v pd= are linked through: 

2 2 2 2 2 2

0 1 2( )v u k d  + = −                                            (G.16) 

     Now, to obtain the mode solution, equation (G.15) need to be solved numerically or 

graphically (no analytical solution).  

 

As shown in Fig G.2.  the plot of 
2 2 2v u = + (circle with a radius of  )and the plot of 

2 2 2tanv v v+ is plotted. The solution is the intersect points. Similarly, for anti-symmetric 

solution, i.e. 
1 0B = . Equation (G.15) become 

2 2 2cotv v u= . 

 

 

  

 

Fig G.2 Schematic of slab dielectric waveguide 
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Appendix H 

Waveguide Coupling: A Coupled Mode 

Approach 

 

In this section, we consider the coupling between two parallel waveguides that are 

separated with a finite distance. The coupling occurs when the overlap of the mode from 

two waveguides present. Before the derivation, let’s define the permittivity distribution 

of the composited waveguide to be: 

, core A

( ) , core B

, elsewhere

A

B

C

x



 






= 



                                           (H.1) 

Further define: 

, core A
( )

0, elsewhere

A C

A x
 


−

 = 


                                        (H.2) 

, core B
( )

0, elsewhere

B C

B x
 


−

 = 


                                        (H.3) 

( ) Cx =                                                                 (H.4) 

The permittivity profile of the composited waveguide is thus: 

( ) ( ) ( ) ( )A Bx x x x   = +  +                                      (H.5) 

 A schematic of simple ( )x distribution illustrated in Fig.H.1. It is assumed in this 

discussion that in each waveguide, only fundamental mode is supported. Thus, from 

waveguide A, it yields: 

 

Fig H.1 Schematic of two coupled waveguides 
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 
2 2

2

02 2
( ) ( ) ( , ) 0A Ak x x F x z

x z
 

  
+ + +  = 

  
                      (H.6) 

where 

0( , ) ( ) Aj z

A AF x z A f x e
−

=                                        (H.7) 

Similarly, from waveguide B: 

 
2 2

2

02 2
( ) ( ) ( , ) 0B Bk x x F x z

x z
 

  
+ + +  = 

  
                      (H.8) 

where 

0( , ) ( ) Bj z

B BF x z B f x e
−

=                                      (H.9) 

The mode of the two coupled waveguides ( , )CF x z  can be written as the superposition of 

the two individual waveguides with some perturbation, i.e. perturbation approximation: 

( , ) ( ) ( ) ( ) ( )A Bj z j z

C A BF x z A z f x e B z f x e
 − −

= +                     (H.10) 

Satisfied the wave equation: 

 
2 2

2

02 2
( ) ( ) ( ) ( , ) 0B B Ck x x x F x z

x z
  

  
+ + +  +  = 

  
         (H.11) 

The next problem is to solve ( )A z and ( )B z . We substitute equation (H.10) into 

equation (H.11), and from (H.6) to (H.9), use the assumption of slow varying envelope 

approximation: 

2

2

2

2

( ) ( )

( ) ( )

A

B

d d
A z A z

d z d z

d d
B z B z

d z d z





                                   (H.12) 

It yields: 

2 2

0 0

2 ( ) 2 ( )

( ) ( ) ( ) ( ) 0

A B

A B

j z j z

A B

j z j z

A B

d d
j A z e j B z e

d z d z

k x A z e k x B z e

 

 

 

 

− −

− −

− −

+  +  =

                (H.13) 

  To obtain ( )A z and ( )B z , we multiply both side of (H.13) with 
*

( )Af x and integrated 

over x to get the equation only in z. Similar process is done by multiplying  
*

( )Bf x . After 

some algebra, it yields: 

( )( ) ( ) ( )B Aj z

AB AA

d
A z j B z e j A z

dz

  + −= − −                (H.14) 
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( )( ) ( ) ( )A Bj z

BA BB

d
B z j A z e j B z

dz

  − −= − −                (H.15) 

where: 

 
*

( ) ( ) ( )AB A A BC f x x f x dx 
+

−
=                         (H.16) 

 
*

( ) ( ) ( )BA B B AC f x x f x dx 
+

−
=                         (H.17) 

 
*

( ) ( ) ( )AA A A AC f x x f x dx 
+

−
=                         (H.18) 

 
*

( ) ( ) ( )BB B B BC f x x f x dx 
+

−
=                         (H.19) 

AB and
BA are the coupling coefficient between two separate waveguides. 

AA and
BB

represents the change in propagation of ‘self-guide’ due to the perturbation of the other 

guide. Note that in general, equation (H.14) and (H.15) has another term represents the 

overlap between two waveguide modes, however, in this discuss, the analysis is based on 

weak coupling, i.e. 

   
* *

( ) ( ) ( ) ( )A B A Af x f x dx f x f x dx
+ +

− −   

Thus, the overlap term is neglected.  

    The waveguide coupling solved using coupled mode method is rather mathematically 

complicated. However, if the waveguides satisfy piece-wise constant condition, the 

solution of the coupled waveguide mode can be obtained through transfer matrix method 

as discussed in chapter 3.  
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Appendix I 

MATLAB Code for 1-D Periodic Structure 

%  INITIAL VALUE PROBLEM, 1-D PERIODIC STRUCTURE, TE POLARIZATION 

 

 

%  INITIALIZE MATLAB 

close all; 

clc; 

clear all; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% DASHBOARD 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

n_1R=3.5;            % refractive index for region 1 

n_2R=3.2;            % refractive index for region 2 

n_fR=3.5; 

L_1=0.1429;          % Thickness of region 1 

L_2=0.1563;          % Thickness of region 2 

  

N=100;              % Number of Period 

alpha=0.00;           % Net gain 

lambda=1; 

n_eff=0:0.0001:3.5; 

q=1; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% BUILD UNIT CELL 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

for i=1:length(n_eff); 

    k_0=2*pi/lambda; 

    n_I=alpha*lambda/(2*pi); 

    n_1=n_1R+j*n_I; 

    n_2=n_2R+j*n_I; 

    n_f=n_fR+j*n_I; 

    epsilon_1=n_1^2; 

    epsilon_2=n_2^2; 

    epsilon_f=n_f^2; 

    kappa_1=sqrt(k_0^2*(n_1)^2-k_0^2*(n_eff(i))^2); 

    kappa_2=sqrt(k_0^2*(n_2)^2-k_0^2*(n_eff(i))^2); 

    kappa_f=sqrt(k_0^2*(n_f)^2-k_0^2*(n_eff(i))^2); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% BUILD MATRIX 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

D_1=[(epsilon_2*kappa_1+epsilon_1*kappa_2)/(2*epsilon_2*kappa_1), 

 (epsilon_2*kappa_1-epsilon_1*kappa_2)/(2*epsilon_2*kappa_1);... 

         (epsilon_2*kappa_1-epsilon_1*kappa_2)/(2*epsilon_2*kappa_1), 

         (epsilon_2*kappa_1+epsilon_1*kappa_2)/(2*epsilon_2*kappa_1),]; 

P_2=[exp(j*kappa_2*L_2),0;... 

         0,exp(-j*kappa_2*L_2)]; 

D_2=[(epsilon_1*kappa_2+epsilon_2*kappa_1)/(2*epsilon_1*kappa_2), 

  (epsilon_1*kappa_2-epsilon_2*kappa_1)/(2*epsilon_1*kappa_2);... 

         (epsilon_1*kappa_2-epsilon_2*kappa_1)/(2*epsilon_1*kappa_2), 

         (epsilon_1*kappa_2+epsilon_2*kappa_1)/(2*epsilon_1*kappa_2),]; 

 P_1=[exp(j*kappa_1*L_1),0;... 

         0,exp(-j*kappa_1*L_1)]; 

 D_f=[(epsilon_2*kappa_1+epsilon_1*kappa_f)/(2*epsilon_2*kappa_1), 

  (epsilon_2*kappa_1-epsilon_1*kappa_f)/(2*epsilon_2*kappa_1);... 

         (epsilon_2*kappa_1-epsilon_1*kappa_f)/(2*epsilon_2*kappa_1), 

         (epsilon_2*kappa_1+epsilon_1*kappa_f)/(2*epsilon_2*kappa_1),];    



153 

 

 

    Y=D_1*P_2*D_2*P_1; 

A=Y^N*D_f; 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% CHEBYSHEV METHOD 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

   % K(q)=(1/(L_1+L_2))*acos((1/2)*(Y(1,1)+Y(2,2))); 

   % U_N(q)=(sin((N+1)*K(q)*(L_1+L_2)))/(sin(K(q)*(L_1+L_2))); 

   % U_N_1(q)=(sin((N)*K(q)*(L_1+L_2)))/(sin(K(q)*(L_1+L_2))); 

   % U_N_2(q)=(sin((N-1)*K(q)*(L_1+L_2)))/(sin(K(q)*(L_1+L_2))); 

   % A_11(q)=Y(1,1)*U_N_1(q)-U_N_2(q); 

   % A_12(q)=Y(1,2)*U_N_1(q); 

   % A_21(q)=Y(2,1)*U_N_1(q); 

   % A_22(q)=Y(2,2)*U_N_1(q)-U_N_2(q); 

    B_11(q)=A(1,1); 

    B_12(q)=A(1,2); 

    B_21(q)=A(2,1); 

    B_22(q)=A(2,2); 

    Z_load_over_z0(q)=(A(1,1)+A(2,1))/(A(1,1)-A(2,1)); 

    ref(q)=(abs(A(2,1)/A(1,1)))^2; 

    trans(q)=abs(1/A(1,1)); 

    q=q+1; 

end 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% OUTOUT 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

 

%plot(n_eff,real(Z_load_over_z0),'b'); 

%hold on 

%plot(n_eff,imag(Z_load_over_z0),'r'); 

plot(n_eff,ref,'b') 

%plot(n_eff,trans,'b') 

%plot(real(B_11),imag(B_11),'r') 

%location=find(ref<0.9); 

%ref=ref(location); 

%n_eff=n_eff(location); 

%Location=find(diff(sign(diff(ref)))==2)+1; 

%N_new=n_eff(Location); 
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Appendix J 

MATLAB Code Example for 2-D PC 

%  2-D PC, TE POLARIZATION, SQUARE CASE 

 

%  INITIALIZE MATLAB 

 

close all; 

clc; 

clear all; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% DASHBOARD 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

n_a=3.3776;                   % refractive index of first 

n_1=3.2953;                   % refractive index for region 1 

n_2=3.3776;                   % refractive index for region 2 

n_f=3.3776;                   % refractive index for last region 

L_a=2;                       % Thickness of first region 

L_1=0.059;                   % Thickness of region 1 

L_2=0.236;                   % Thickness of region 2 

L_f=2;                       % Thickness of first region 

N=5000000;                   % Number of Period of Bragg region 

lambda=0.8:0.0002:1.2; 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%DESIGN ENTIRE LOOP 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

for t=1:length(lambda); 

    beta=2*pi*0/lambda(t):0.01:2*pi*3.3776/lambda(t); 

    k_0=2*pi/lambda(t); 

    alpha=0; 

    N_I=alpha*lambda(t)/(2*pi); 

q=1; 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%SOLVE X DIRECTION 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

for i=1:length(beta); 

    kappa_1=sqrt(k_0^2*(n_1)^2-beta(i)^2); 

    kappa_2=sqrt(k_0^2*(n_2)^2-beta(i)^2); 

    kappa_a=sqrt(k_0^2*(n_a)^2-beta(i)^2); 

kappa_f=sqrt(k_0^2*(n_f)^2-beta(i)^2); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%BUILD SINGLE CELL MATRIX 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    D_a2=[(kappa_a+kappa_2)/(2*kappa_a),(kappa_a-kappa_2)/(2*kappa_a);... 

         (kappa_a-kappa_2)/(2*kappa_a),(kappa_a+kappa_2)/(2*kappa_a),]; 

    P_a=[exp(1j*kappa_2*L_a),0;... 

         0,exp(-1j*kappa_2*L_a)]; 

    D_21=[(kappa_2+kappa_1)/(2*kappa_2),(kappa_2-kappa_1)/(2*kappa_2);... 

         (kappa_2-kappa_1)/(2*kappa_2),(kappa_2+kappa_1)/(2*kappa_2),];  

    P_1=[exp(1j*kappa_1*L_1),0;... 

         0,exp(-1j*kappa_1*L_1)]; 

    D_12=[(kappa_1+kappa_2)/(2*kappa_1),(kappa_1-kappa_2)/(2*kappa_1);... 

         (kappa_1-kappa_2)/(2*kappa_1),(kappa_1+kappa_2)/(2*kappa_1),]; 

    P_2=[exp(1j*kappa_2*L_2),0;... 
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         0,exp(-1j*kappa_2*L_2)]; 

    P_f=[exp(1j*kappa_2*L_f),0;... 

         0,exp(-1j*kappa_2*L_f)]; 

    D_f=[(kappa_2+kappa_f)/(2*kappa_2),(kappa_2-kappa_f)/(2*kappa_2);... 

         (kappa_2-kappa_f)/(2*kappa_2),(kappa_2+kappa_f)/(2*kappa_2),]; 

A=D_a2*P_a*(D_21*P_1*D_12*P_2)^N*P_f*D_f; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%CHEBYSHEV METHOD 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

   % K(q)=(1/(L_1+L_2))*acos((1/2)*(Y(1,1)+Y(2,2))); 

   % U_N(q)=(sin((N+1)*K(q)*(L_1+L_2)))/(sin(K(q)*(L_1+L_2))); 

   % U_N_1(q)=(sin((N)*K(q)*(L_1+L_2)))/(sin(K(q)*(L_1+L_2))); 

   % U_N_2(q)=(sin((N-1)*K(q)*(L_1+L_2)))/(sin(K(q)*(L_1+L_2))); 

   % A_11(q)=Y(1,1)*U_N_1(q)-U_N_2(q); 

   % A_12(q)=Y(1,2)*U_N_1(q); 

   % A_21(q)=Y(2,1)*U_N_1(q); 

   % A_22(q)=Y(2,2)*U_N_1(q)-U_N_2(q); 

   B_11(q)=A(1,1); 

   B_12(q)=A(1,2); 

   B_21(q)=A(2,1); 

   B_22(q)=A(2,2); 

    q=q+1; 

end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%SEARCH SOLUTION FOR TRANS. EQUATION 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

ref=(abs(B_21./B_11)).^2; 

%plot(n_eff,real(Z_load_over_z0),'b'); 

hold on 

%plot(n_eff,imag(Z_load_over_z0),'r'); 

n_eff=beta/k_0; 

%plot(n_eff,ref,'k') 

%plot(real(B_11),imag(B_11),'r') 

location=find(ref<0.9); 

ref=ref(location); 

n_eff=n_eff(location); 

Location=find(diff(sign(diff(ref)))==2)+1; 

N_eff=n_eff(Location); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%SOLVE Z DIRECTION 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

q=1; 

%L_1=0.1055; 

%L_1=0.1165; 

%L_2=0.16975; 

%L_2=0.18075;  

for k=1:length(N_eff); 

    N_2=N_eff(k)+1j*N_I; 

    beta_2=k_0*(N_2); 

    N_1=3.2953+1j*N_I; 

    beta_1=k_0*(N_1); 

    D_1z=[(N_2+N_1)/(2*N_2),(N_2-N_1)/(2*N_2);... 

         (N_2-N_1)/(2*N_2),(N_2+N_1)/(2*N_2),]; 

    P_2z=[exp(1j*beta_2*L_2),0;... 

         0,exp(-1j*beta_2*L_2)]; 

    D_2z=[(N_1+N_2)/(2*N_1),(N_1-N_2)/(2*N_1);... 

         (N_1-N_2)/(2*N_1),(N_1+N_2)/(2*N_1),]; 

    P_1z=[exp(1j*beta_1*L_1),0;... 

         0,exp(-1j*beta_1*L_1)]; 

    Y_z=D_1z*P_1z*D_2z*P_2z; 

A_z=Y_z^N; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%CHEBYSHEV METHOD 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

   % K(q)=(1/(L_1+L_2))*acos((1/2)*(Y(1,1)+Y(2,2))); 

   % U_N(q)=(sin((N+1)*K(q)*(L_1+L_2)))/(sin(K(q)*(L_1+L_2))); 

   % U_N_1(q)=(sin((N)*K(q)*(L_1+L_2)))/(sin(K(q)*(L_1+L_2))); 

   % U_N_2(q)=(sin((N-1)*K(q)*(L_1+L_2)))/(sin(K(q)*(L_1+L_2))); 

   % A_11(q)=Y(1,1)*U_N_1(q)-U_N_2(q); 

   % A_12(q)=Y(1,2)*U_N_1(q); 

   % A_21(q)=Y(2,1)*U_N_1(q); 

   % A_22(q)=Y(2,2)*U_N_1(q)-U_N_2(q); 

   % B_11_z(k)=A_z(1,1); 

   % B_12_z(k)=A_z(1,2); 

   % B_21_z(k)=A_z(2,1); 

   % B_22_z(k)=A_z(2,2); 

   ref(k)=(abs(A_z(2,1)/A_z(1,1)))^2; 

   T(k)=1-ref(k); 

   k=k+1; 

end 

Trans=T'; 

Neff=N_eff'; 

LL=lambda(t)*ones(1,length(T)); 

ZZ(t)={[Trans,Neff]}; 

%plot3(LL,Neff,abs(T),'b'); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%ONE LOOP FINISH AND OUTPUT 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

plot3(LL,Neff,T,'k.','MarkerSize',0.5); 

  

hold on 

  

clear Trans; 

clear Neff; 

clear T; 

clear N_eff 

clear n_eff; 

clear beta; 

clear Beta; 

clear Location; 

clear location; 

clear ref; 

t=t+1; 

end 

view(3) 
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