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Abstract 

Rett syndrome (RTT) is a rare paediatric disorder of females that leads to lifelong cognitive, 

motor, and respiratory impairment . In the vast majority of cases the disorder is caused by de 

novo mutations in the X-linked gene MECP2. There are currently no treatments, but genetic 

studies in mice have shown that the disease is reversible, even after the onset of symptoms. 

Since there remains a fundamental lack of knowledge about the downstream pathways 

involved in gene function, current therapeutic efforts are focused on targeting the disease at 

the gene level, mainly using viral based delivery of Mecp2 gene products. Recent work in 

mouse models has shown that exogenous delivery of a wild-type (WT) copy of the Mecp2 

gene can lead to significant improvements in RTT-like symptoms, but significant challenges 

remain, both in the delivery of gene constructs to target cells, and in maintaining gene 

transcription within physiological tolerance.  

The work in this thesis explores an alternative therapeutic approach, using newly developed 

genome editing technology. There were two major aims of this thesis. The first aim was to 

examine the role of the peripheral tissues in the development of the RTT phenotype. In order 

to develop correctly targeted therapies it is crucial to know what tissues are most relevant to 

disease development. It has been widely assumed that the major RTT symptoms can be 

explained solely by an absence of MeCP2 from cells in the nervous system. However, this 

was based on mouse studies in which only a few gross aspects of the disorder were examined. 

In this thesis a newly created peripheral knock-out (KO) mouse model, in which Mecp2 

transcription is silenced in peripheral tissues but selectively reactivated in the cells of the 

nervous system, was comprehensively phenotyped in order to determine the role of peripheral 

MeCP2 in RTT. The second major aim of this thesis was to develop a novel strategy for 

Mecp2 mutation repair, using recently developed genome editing tools. Based on the results 

from the peripheral KO phenotyping, this strategy was designed to overcome the particular 

challenges associated with genome editing in the nervous system, and involved the insertion 

of a therapeutic construct directly into a non-coding region of the Mecp2 gene using TALEN 

and CRISPR. This construct was designed to splice to upstream Mecp2 exons in order to 

replace downstream mutated exons in the final mRNA transcript.   

To generate the peripheral KO model (stop-cre), mice in which Mecp2 transcription was 

globally silenced by a cre-excisable stop cassette (stop-y) were crossed with a nestin-cre 

mouse line to selectively reactivate gene transcription in the nervous system. Southern blot 
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analysis of tissues showed reactivation in a large number of cells (91.9%) in whole brain 

samples. Reactivation was particularly high in the cerebellum which showed 96.4% 

efficiency. Robust silencing was shown in peripheral tissues with only very small levels of 

reactivation in liver (0.9%), spleen (0.5%), skeletal muscle (1.2%) and heart (7.4%). Higher 

levels were seen in lung (14.3%) and kidney (24.4%) tissue. Peripheral KO mice did not 

show the early death phenotype seen in global KO mice and showed only very subtle RTT 

symptoms when examined using a well-established RTT scoring system. These mice also did 

not display any of the gait, balance, or respiratory dysfunction typical of RTT mouse models. 

However, peripheral KO mice did show a reduction in activity levels and exercise capacity 

across a number of tests. In the open-field, spontaneous activity levels were significantly 

reduced compared with WT (total distance moved = 3523 cm ± 215 SEM vs 4242 cm ± 167 

in WT), on the accelerating rotarod, latency to fall was significantly reduced (168 s ± 14.9 vs 

243.5 s ± 11.5 in WT) and on an inclined accelerating treadmill, the time lasted before 

exhaustion was markedly reduced (8.7 min ± 1.6 vs 16.5 min ± 1.3 in WT). In addition, 

peripheral KO mice also displayed the biomechanical abnormalities of bone seen in global 

KO mice, including reduced cortical stiffness and hardness. 

The genome editing mutation repair strategy developed in this thesis required a non-coding 

target region free of repetitive sequence to be identified upstream of exons 3 and 4, where 

most of the disease causing mutations occur. A suitable 900 bp region of unique sequence 

was identified 1.6 – 0.7 kb upstream of the beginning of exon 3. To design TALEN pairs 

targeting this region, the Cornell University TALEN design tool was used to identify 100s of 

possible TALEN pairs, which were then filtered based on best practice-TALEN design and 

for the presence of unique restriction sites at the break site. Four pairs remained after filtering 

and these were assembled using a two stage cloning process based on the Golden Gate 

method. The efficiency of each pair was assessed using a restriction digest based assay and an 

online tool (TIDE) which relied on the decomposition of Sanger sequencing traces. The 

results showed a range of cutting efficiencies from 2.1% of cells (TALEN # 63) to 42.9% of 

cells (TALEN # 333). A CRISPR design tool was used to generate CRISPR guide target 

sequences. The four guides with the lowest predicted off-target effects were selected, 

synthesised as complementary oligonucleotides, and cloned upstream of a guide RNA 

scaffold in a CRISPR guide expression plasmid. Cutting efficiency was assessed using TIDE, 

and the results again showed a range of efficiencies from 60.4% (B52) to 22% (A65).  
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To assess if the best performing TALEN and CRISPR-Cas9 constructs could successfully 

target exogenous DNA into intron 2 of the Mecp2 gene, a repair construct was designed. This 

contained WT sequence for exons 3 and 4 of Mecp2 in a minigene format as well as 

appropriate splice elements and an mCherry fluorescent tag for easy detection. The repair 

construct was synthesised and cloned into a mammalian expression plasmid, with flanking 

regions, containing either TALEN or CRISPR target sites, inserted at either end of the 

construct. For unknown reasons the repair construct was toxic to bacterial cells when flanked 

by the CRISPR target sites and this version could therefore not be used for transfection 

experiments. The TALEN repair construct was transfected into cells along with TALEN pair 

# 333 and successful insertion was assessed using a PCR-based assay. Results showed that 

the repair construct was successfully inserted into non-coding genomic DNA in the correct 

location, and that a mutant version of the TALEN construct, designed to increase specificity, 

led to an increase in the levels of insertion in the correct orientation. To assess if this led to 

the production of corrected protein, cells were examined for mCherry protein expression 

using flow cytometry. Results showed that there was no significant increase in mCherry 

expression in transfected cells, suggesting the repair construct did not successfully splice to 

upstream Mecp2 exons.  

In summary, the results from this thesis show that RTT is primarily a disorder of the nervous 

system, and that this should therefore be the main target of new therapies. However, they also 

show that an absence of MeCP2 from the peripheral tissues leads to a markedly reduced 

exercise capacity, and is also likely to be the primary cause for the bone dysfunction seen in 

RTT patients and mouse models. In this thesis, a novel therapeutic strategy for RTT was 

developed using genome editing tools. A number of TALEN and CRISPR constructs were 

designed that could successfully target specific non-coding regions of the Mecp2 gene, and 

were shown to enable the insertion of an exogenous DNA repair construct into the genome. 

However, further flow cytometry analysis showed that this did not lead to the expected 

protein repair suggesting further work is required on the design of the repair construct to 

enable splicing to endogenous Mecp2 exons. Overall, the results show that genome editing 

has a potential role in the treatment of genetic disorders like RTT, but that further work is 

required to enable successful repair of disease causing mutations.   
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Chapter 1   

General introduction 

1.1 Overview 

Rett syndrome (RTT) is a rare paediatric disorder of females that leads to lifelong cognitive, 

motor, and respiratory impairment (Hagberg, 2002; Neul et al., 2010). In most cases the 

disorder is caused by de novo mutations in the X-linked gene MECP2 (Amir et al., 1999). 

There are currently no treatments, but genetic studies in mice have shown that the disease is 

reversible, even after the onset of symptoms (Guy et al., 2007; Robinson et al., 2012). More 

recent work has shown that exogenous delivery of a WT copy of the MECP2 gene can lead to 

significant improvements in RTT-like symptoms (Gadalla et al., 2012; Garg et al., 2013), but 

significant challenges remain, both in the delivery of gene constructs to target cells, and in 

maintaining gene transcription within physiological tolerance. The work in this thesis 

explores an alternative therapeutic approach, using newly developed genome editing 

technology such as CRISPR and TALEN. First, a newly created mouse model is used to 

investigate the organs crucial to the development of the RTT phenotype. This information is 

then used to develop a novel strategy for mutation repair, involving the insertion of a 

therapeutic construct directly into a non-coding region of the MECP2 gene.     

1.2 Clinical manifestations of RTT 

RTT is a relatively rare disorder, occurring in approximately 1 in 10,000 female live births 

(Neul et al., 2010). The syndrome first manifests as a developmental stagnation after 7 to 18 

months, with a failure to meet social and motor milestones, as well as marked microcephaly 

and growth delay (Hagberg et al., 1983; Hagberg, 2002). This is followed by a rapid 

regression, with a loss of any previously acquired motor and communication skills, and the 

replacement of purposeful hand movements with stereotypical behaviour such as clasping 

(Neul et al., 2010). In addition, there is the appearance of apraxia and an ataxic gait 

(Engerström, 1992). This regression is followed by a partial recovery and stationary phase 

which can last from years to decades (Hagberg, 2002). During this phase some locomotor 

ability is usually retained and communication skills are partially restored. Seizures are 

common during this period, but decrease in severity after 20 years of age (Steffenburg et al., 
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2001). Finally, there is a late motor deterioration phase, characterised by a cessation of 

ambulation, necessitating complete reliance on the use of a wheelchair (Hagberg, 2002; Roze 

et al., 2007).  

A recent study has shown that 70% of patients survive to at least 45 years of age, suggesting 

that survival into adulthood is common (Tarquinio et al., 2015). Of the patients who had died, 

the leading cause of death was cardiorespiratory failure, often due to lung infections. Other 

risk factors included low bodyweight and seizures. Autonomic dysfunction is common in 

RTT, including respiratory and gastro-intestinal dysfunction. Daytime breathing is 

characterised by episodic hyperventilation, breath-holding and apnoeas (Julu et al., 2001) 

which does not occur during sleep (Glaze et al., 1987; Marcus et al., 1994), while several 

reports also describe various digestive issues including swallowing dysfunction and GI 

dysmotility (Hagberg, 2002; Isaacs et al., 2003; Baikie et al., 2014). A majority of RTT 

patients also display a number of skeletal abnormalities including spinal deformities such as 

scoliosis, which may require surgical correction (Colvin et al., 2003; Kerr et al., 2003). Other 

abnormalities include hip deformations, early-onset osteoporosis, and a propensity to low-

impact fractures (Guidera et al., 1991; Zysman et al., 2006; Downs et al., 2008; Roende et al., 

2011). Over 80% of patients have sleep problems, including teeth grinding, night-time 

screaming and laughter, and daytime napping (Young et al., 2007; Wong et al., 2015). 

Studies also show a decrease in the proportion of sleep spent in the rapid eye movement stage 

(Glaze et al., 1987), as well as an increase in sleep-onset latency and the number of 

awakenings per night (McArthur and Budden, 1998). The communication impairments 

associated with RTT make the assessment of recurrent and chronic pain in RTT difficult. A 

recent study showed that a majority of patients experienced pain in the previous week that 

was both intense and long-lasting (Barney et al., 2015). The most common source was 

gastrointestinal pain, followed by musculoskeletal and seizure related pain. In addition to 

typical RTT, there are a number of recognised atypical forms in which some of the features 

associated with the disease are either attenuated or more pronounced (Neul et al., 2010).   

1.3 MECP2 and RTT 

Since RTT appeared to occur exclusively in females, it was hypothesised that the disorder 

must be X-linked dominant in origin (Hagberg et al., 1983). This was confirmed in 1999, 

when candidate region sequencing linked RTT to mutations in the X chromosome gene 

MECP2 (Amir et al., 1999). Since then it has been shown that over 95% of typical RTT 
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patients have MECP2 mutations (Neul et al., 2008). In the vast majority of cases these 

mutations are de novo (Girard et al., 2001) with a greater proportion occurring in the 

germline of the father (Wan et al., 1999; Trappe et al., 2001). As only female offspring 

inherit the male copy of the X chromosome this partially explains the strong female bias for 

the disorder. Rare cases of familial inheritance can occur due to skewing of X chromosome 

inactivation in the mother (Villard et al., 2000; Hoffbuhr et al., 2002). In these instances the 

mutant allele is preferentially silenced during X chromosome inactivation, leading to an 

asymptomatic carrier mother capable of passing the mutation on to offspring. This is 

responsible for the rare familial cases in which males inherit the mutant allele (Villard et al., 

2000; Zeev et al., 2002). Since males only have one copy of the X chromosome, this leads to 

extremely severe dysfunction due to a complete lack of functional protein in these patients. 

Most cases present with infantile encephalopathy and patients die within two years of birth 

(Villard et al., 2000; Trappe et al., 2001; Zeev et al., 2002; Moretti and Zoghbi, 2006).  

The presence of an MECP2 gene duplication in males presenting with intellectual disability 

(Van Esch et al., 2005) suggested that over-expression of the gene also leads to dysfunction. 

Now known as MECP2 duplication syndrome, this leads to a spectrum of clinical features 

including intellectual disability, autistic like communication impairment, recurrent infections, 

gait problems, and seizures (Van Esch et al., 2005; Lugtenberg et al., 2009; Ramocki et al., 

2009). Again the disorder is more severe in males, who inherit the duplication from a carrier 

mother (Van Esch et al., 2005). While females with highly skewed X chromosome 

inactivation of the mutant allele can be asymptomatic, those with lower skewing can present 

with a range of psychiatric conditions including anxiety, depression, and compulsions 

(Ramocki et al., 2009).  

1.4 MECP2 structure and DNA binding 

MeCP2 is an abundant nuclear protein, first discovered through its binding affinity for DNA 

at methylated cytosines in CpG dinucleotides (Lewis et al., 1992). It is concentrated in 

pericentromeric heterochromatin which contains a particularly high density of methylated 

cytosines. It is a member of a family of nuclear proteins, all of which contain a methyl-CpG 

binding domain (MBD) (Hendrich and Bird, 1998). MECP2 is expressed widely throughout 

the body, with particularly high levels seen in the nervous system (Shahbazian et al., 2002b; 

Zhou et al., 2006; Song et al., 2014). The gene contains four exons and has two common 

splice variants, MeCP2_e1 and MeCP2_e2, which encode proteins that differ only at their N-
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termini (Kriaucionis and Bird, 2004; Mnatzakanian et al., 2004). MeCP2_e1 has a 

translational start site in exon 1 and excludes exon 2 from the final protein, while MeCP2_e2 

uses a start site within exon 2. MeCP2_e1 is thought to be the most abundant form in the 

brain, where it accounts for over 90% of total MeCP2 (Kriaucionis and Bird, 2004; 

Mnatzakanian et al., 2004; Dragich et al., 2007). The importance of the MeCP2_e1 isoform is 

highlighted by the fact that while mutations in exon 1 have been discovered in RTT patients 

no such mutations have been seen for exon 2 (Mnatzakanian et al., 2004).  

MeCP2 contains a number of domains crucial for the function of the protein (Figure 1.1). An 

85 amino acid methyl-CpG binding domain (MBD) mediates binding of MeCP2 to 

methylated CpGs (Nan et al., 1993) and is responsible for the association with highly 

methylated heterochromatin (Nan et al., 1996). The importance of the MBD for DNA binding 

is made clear by the large scale redistribution of MeCP2 that occurs when the MBD is 

mutated (Baubec et al., 2013). As well as the known association with methylated CpG 

dinucleotides, recent evidence suggests that MeCP2 also binds with high affinity with 

methylated CpA (Chen et al., 2015; Gabel et al., 2015). Interestingly, CpA methylation is 

common in neurons (Lister et al., 2013; Guo et al., 2014) and levels begin to rise at a similar 

time-point as MeCP2 levels (Shahbazian et al., 2002b; Skene et al., 2010). Some evidence 

indicates that the MBD also interacts with 5-hydroxymethylcytosine (5hmC) containing DNA 

in vitro (Mellén et al., 2012; Spruijt et al., 2013), although other studies show that this is only 

true for CpA methylated DNA but not CpG (Gabel et al., 2015). 

 

Figure 1.1 – MeCP2 functional domains 

Diagram outlining the main functional regions of the MECP2 protein, including the methyl-

CpG domain (MBD), three AT-hooks (H1-H3), transcriptional repression domain (TRD), and 

the NCoR-SMRT interaction domain (NID). Highlighted in red below the domains are RTT 

causing missense mutations which mostly cluster in the MBD and NID (adapted from (Lyst 

and Bird, 2015).  

The protein also contains a 104 amino acid transcriptional repressor domain (TRD) that 

interacts with a number of histone deacytelase (HDAC) containing co-repressor complexes 

such as mSin3a (Nan et al., 1998) and NCoR/SMRT (Lyst et al., 2013), as well as 

transcription factor YB1 (Forlani et al., 2010). The association with NCoR/SMRT appears to 
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be particularly crucial for MeCP2 mediated repression, and mutations in the TRD region that 

interacts with this co-repressor complex lead to a severe phenotype in mice, although it is 

milder in human patients (Lyst et al., 2013).  

Several recent studies have suggested that not all DNA binding is mediated by the MBD, 

with a number of regions outside the MBD capable of independently binding DNA (Ghosh et 

al., 2010b). Several DNA-binding AT-hook motifs,  have been discovered in the gene, 

including a conserved AT-Hook 2 domain in the TRD that can bind DNA and influence the 

structure of surrounding chromatin (Baker et al., 2013). Mutations in this region strongly 

influence the onset and symptom severity in male patients, and in mice leads to a reduction in 

the binding of MeCP2 to DNA and a rapid onset phenotype and early death, similar to that 

seen in Mecp2-null mice. More recently, missense mutations in AT-hook domain 1 have been 

associated with intellectual disability in males (Bianciardi et al., 2015). 

1.5 MeCP2 function 

1.5.1 Repressor of methylated DNA 

MeCP2 was first characterised in 1992 by Bird and colleagues, and was described as a DNA 

binding protein with an affinity for DNA containing methyl-CpG dinculeotides (Lewis et al., 

1992). This affinity suggested that MeCP2 may have a role as a repressor of gene 

transcription, due to the known link between methylation and gene silencing (Bird, 2002). 

Later experiments in HeLa cell extracts showed that MeCP2, both in its native form and a 

recombinant version, specifically caused transcriptional repression of genes with methylated 

promoters but not of those with non-methylated promoters (Nan et al., 1997). In addition, the 

actual level of repression was found to be related to the density of methylation. These 

findings were confirmed in vivo in Drosophila, with MeCP2 causing transcriptional 

repression of genes with densely methylated promoters (Kudo, 1998). A series of deletion 

mutants showed that this repression was dependent on the MBD of the protein. A possible 

mechanism for repression was soon identified with the discovery of a transcriptional-

repression domain (TRD) in the protein which interacted with a corepressor complex 

composed of mSin3A, a transcriptional repressor, and histone deacetylases (HDAC) (Jones et 

al., 1998; Nan et al., 1998). HDACs are commonly found in corepressor complexes and cause 

compaction of chromatin structure leading to gene silencing (Delcuve et al., 2012). The 

importance of HDACs for MeCP2 mediated silencing was highlighted by the absence of 
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repression in the presence of HDAC inhibitors such as trichostatin A (Jones et al., 1998; Nan 

et al., 1998). Another study showed that when drugs were used to remove methylation from 

DNA it led to release of MeCP2, acetylation of histones in the promoter regions and a 

reactivation of repressed genes (El-Osta et al., 2002). The results from all of these studies 

suggested a model whereby MeCP2 could link the methylation state of a gene with control of 

gene transcription, through its interactions with corepressor complexes. Since then a number 

of other binding partners have been identified, including a number of corepressors like cSki 

(Kokura et al., 2001) and NCoR/SMRT (Lyst et al., 2013). The NCoR/SMRT co-repressor 

complex appears to have a particularly crucial role, and a recent study suggest that it is 

responsible for MeCP2 mediated repression (Lyst et al., 2013). Its importance is supported by 

the fact that a number of RTT-causing missense mutations in human patients are located in 

the NCoR/SMRT binding region. When one of the most common of these mutations was 

modelled in mice, the mice developed a severe RTT-like phenotype similar to KO models 

(Guy et al., 2001; Lyst et al., 2013). MeCP2 also has a role in the control of mobile genetic 

elements such as the retroviral-like L1 retrotransposons. In mice, transcription and 

retrotransposition of these L1 elements are increased in Mecp2 KO mice (Muotri et al., 2010; 

Skene et al., 2010). MeCP2 binds to the methylated 5’UTR of L1 elements and repression is 

relieved when methylation is removed. This is also seen in neuronal progenitor cells derived 

from RTT patient tissue (Muotri et al., 2010) suggesting a crucial role for MeCP2 in the 

control of mobile genetic elements and the maintenance of genome integrity.  

1.5.2 Repressor or activator? 

Since a number of studies pointed to MeCP2 as a mediator of gene silencing, it was naturally 

assumed that absence of the protein would lead to large increases in the mRNA levels of its 

target genes. However, initial gene expression studies failed to show any significant changes, 

even in the most symptomatic of mice (Tudor et al., 2002). Over the next few years, some 

studies did show expression changes in a small number of genes, such as those involved in 

the glucocorticoid stress response (Nuber et al., 2005) or in genes coding for subunits of a 

mitochondrial respiratory complex (Kriaucionis et al., 2006), but these relatively minor 

changes couldn’t explain the severe and wide-ranging phenotype seen in RTT patients. The 

picture became more complex when a number of large-scale gene expression studies 

suggested that, contrary to previous evidence, MeCP2 had a role as a transcriptional activator 

as well as of a repressor (Chahrour et al., 2008; Ben-Shachar et al., 2009). Using microarrays  

gene expression levels were examined in Mecp2 KO and overexpression models, focusing on 
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either the hypothalamus (Chahrour et al., 2008) or cerebellum (Ben-Shachar et al., 2009). 

Expression changes were seen in a large number of genes, although the amount of change 

was relatively subtle. Surprisingly however, the results showed that over 80% of affected 

genes appeared to be activated rather than repressed by MeCP2. Further support for this came 

from the fact that ChIP analysis showed MeCP2 was bound to several of the activated genes 

and interacted with CREB, a well-known activator of transcription (Chahrour et al., 2008). 

The role of MeCP2 as an activator of transcription was also supported by a study examining 

gene expression changes in an isogenic human embryonic stem cell model of RTT (Li et al., 

2013b). In contrast to previous expression studies, results were normalised to cell number 

rather than total RNA to account for global shifts in transcription levels that could be 

masking the effects of MeCP2 loss. Using this approach, a large scale reduction in 

transcription and protein synthesis was observed in cells obtained from RTT patients, 

suggesting that the primary role of MeCP2 is as an activator of transcription. However, it is 

not clear from this study whether this a primary consequence of MeCP2 loss or secondary to 

the loss of cell health that results from MeCP2 dysfunction. 

1.5.3 Control of long-gene expression 

The brain is composed of a large number of neuronal subtypes as well as large amounts of 

glia, which have been shown to express low levels of MeCP2 (Ballas et al., 2009). It is 

perhaps therefore not surprising that large scale changes in gene expression were not detected 

in initial whole-brain studies. A more recent study overcame this issue by analysing 

expression changes in selected neuronal sub-types (Sugino et al., 2014). In this case, large 

changes in gene expression were observed in KO mice. Interestingly, genes which were 

upregulated in the KO mice were strongly biased towards being long genes whereas this was 

not the case for those that were downregulated. This was supported by another study which 

also found an upregulation of long genes in the neurons of KO mice and a reciprocal down 

regulation in overexpression models (Gabel et al., 2015). Using tissue-specific expression 

analysis they also show that long genes are particularly associated with neuronal functions 

and are disproportionately expressed in brains compared to other tissues. An exciting finding 

in this study was that this repression is achieved by binding to methylated CA (mCA) sites, a 

type of methylation that accumulates during synaptogenesis and is the most dominant form of 

methylation in neurons (Lister et al., 2013), perhaps helping to explain the time-course of 

RTT development. The density of these sites increases as the gene length increases, thus 

explaining the specific repression of these genes (Gabel et al., 2015). In contrast to the strong 
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affinity binding for methylated CA sites, MeCP2 shows weak affinity for hydroxymethylated 

CG (hmCG) sites, the frequency of which increases significantly in neurons at the same time 

as that of mCA. hmCG is particularly associated with active genes (Mellén et al., 2012; Lister 

et al., 2013) suggesting a model whereby gene transcription levels are determined by the by 

the relative density of these forms of methylation. 

1.5.4 Global regulator of chromatin 

Other studies suggest a role for MeCP2 as a global regulator of chromatin structure rather 

than a gene specific controller of transcription. MeCP2 is extremely abundant in neurons with 

levels approaching that of histones and while it roughly tracks the density of methylation it 

also binds to non-methylated regions (Skene et al., 2010). Even in the absence of methylated 

DNA MeCP2 can form complexes with nucleosomes that lead to the compaction of 

chromatin in a manner similar to H1 (Georgel et al., 2003). Both in vitro and in vivo studies 

show that MeCP2 competes with histone H1 for binding sites (Nan et al., 1997; Ghosh et al., 

2010a) and that H1 levels are almost doubled in neurons from KO mice (Skene et al., 2010) 

suggesting that the competition between the two for binding sites may determine gene 

transcription levels.  

1.6 Animal Models 

1.6.1 RTT KO mouse models 

After the link between mutations in the MECP2 gene and RTT was discovered (Amir et al., 

1999), a number of KO mouse model were soon generated to enable further study of the 

pathogenesis of the disorder (Chen et al., 2001; Guy et al., 2001). One of the first models 

involved the deletion of all of exon 3 of the gene (Chen et al., 2001). Up until four weeks of 

age male KO mice did not differ significantly from WT, but then began to display slightly 

laboured breathing and subtle whole-body tremors. The phenotype continued to progress with 

marked hypoactivity and weight loss, and most mice died by about 10 weeks of age. This 

early death mirrors the lethality seen in human males born with severe MECP2 mutations, 

although in terms of developmental time it is significantly delayed. Female heterozygous KO 

mice, which were a mosaic of WT and KO cells due to random X chromosome inactivation, 

appeared normal up until about four months of age, after which they displayed hypoactivity, 

ataxia, and gait problems. Again, the delayed onset mirrors the situation in female RTT 
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patients, but as in the case with males it is much later in terms of developmental time point, 

as the mice are fully adult by this point.  

Another KO model involved the deletion of both exons 3 and 4 of the gene (Guy et al., 2001). 

Similar to the previous model, male KO mice appeared normal for the first 3-4 weeks before 

developing a severe phenotype including hypoactivity, breathing irregularity, gait 

abnormalities and hindlimb clasping, and died at around 8-10 weeks. Surprisingly, while 

mice showed severe weight loss on a C57BL/6 background the reverse was true when crossed 

to a 129 background, suggesting a modifier gene effect on the weight phenotype. Female 

mice developed normally until 3-4 months after which they began to display hindlimb 

clasping and hypoactivity. While about half of the mice showing strong RTT-like symptoms 

by nine months, including breathing dysfunction, many mice did not show any symptoms 

even by one year, suggesting a variable phenotype in females. 

1.6.2 RTT knock-in models 

In addition to full KO models, a number of knock-in mice, modelling some of the most 

common human RTT causing mutations, have been created. R168X is the most common 

RTT causing nonsense mutation and the second most common disease causing mutation 

overall. It is a truncating mutation that creates a premature stop codon downstream of the 

MBD but upstream of the TRD. KI male mice with this mutation show severe hypoactivity, 

gait impairment, weight loss and breathing irregularity by about 6 weeks of age and die 

between 12-14 weeks of age (Wegener et al., 2014), showing a similar patter to Mecp2-null 

mice (Chen et al., 2001; Guy et al., 2001). In contrast female mice show very little 

phenotype, with only rotarod defects at 9 months and some tremor and hindlimb clasping 

detected. However, when this mutation was modelled on a different background-strain, 

female KI mice showed reduced bodyweight and breathing abnormalities, highlighting the 

effect of background strain on phenotype, at least in females.  

About 10% of RTT cases are caused by mutations affecting amino acid T158, most 

commonly altering it to a methionine (T158M) or in some instances to an alanine (T158A). 

T158 is located within the MBD and is thought to be crucial in stabilising this region (Ho et 

al., 2008). When this mutation is modelled in KI mice, males develop a range of symptoms 

including hypoactivity, breathing irregularity, motor dysfunction, and impaired cognition 

from about four weeks of age (Goffin et al., 2012). The phenotype trajectory is milder than 

that of Mecp2-null mice (Guy et al., 2001) but by about 24 weeks of age 75% of mice are 
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dead. Females begin to develop a range of symptoms from about four months of age as 

determined by the widely used combined RTT scoring system (Guy et al., 2007; Gadalla et 

al., 2012; Robinson et al., 2012), although they weren’t extensively phenotyped. Analysis 

showed that the mutation lead to greatly decreased binding to methylated DNA, and by 90 

days there was a 60% decrease in protein levels suggesting a strong decrease in protein 

stability. 

About 5% of RTT cases are due to the mutation R306C, which causes disruption in a 

conserved region at the end of the TRD responsible for interacting with the NCoR/SMRT 

corepressor complex (Lyst et al., 2013). When this mutation was modelled in mice, male KI 

mice showed a severe phenotype similar to that seen in Mecp2-null mice, with roughly half of 

mice being dead by 19 weeks of age (Lyst et al., 2013). This may explain the surprisingly 

mild phenotype observed in mice engineered to be truncated at amino acid 308 (Shahbazian 

et al., 2002b), as the protein generated in these mice will still include this crucial 

NCoR/SMRT interaction domain. 

1.7 Reversibility 

1.7.1 Global MeCP2 restoration 

RTT was originally considered a prototypical neurodevelopmental disorder, whose known 

genetic cause could help to identify a common pathophysiology in these disorders (Neul and 

Zoghbi, 2004; Percy and Lane, 2005). This suggested that RTT patients may have irreversible 

dysfunction due to the absence of MeCP2 at a critical time-window. However, a number of 

animal studies have since revealed that rather than being essential for development MeCP2 is 

required for mature neuronal function (McGraw et al., 2011), and that restoration of gene 

expression, even after disease onset, can almost completely reverse symptoms (Guy et al., 

2007; Robinson et al., 2012).  

A landmark study by Guy and colleagues in 2007 investigated the reversibility of RTT using 

a conditional KO model. This functional KO model was generated by inserting a lox-stop 

cassette (Dragatsis and Zeitlin, 2001) into intron 2 of the Mecp2 gene (Guy et al., 2007). To 

enable conditional reactivation of gene transcription, a transgene containing Cre recombinase 

fused to a modified oestrogen receptor was combined with the Mecp2-stop allele. This fusion 

protein remained in the cytoplasm until activated by the oestrogen analogue Tamoxifen, after 
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which it translocated to the nucleus leading to cre-mediated deletion of the stop cassette. This 

extremely elegant system allowed reactivation of Mecp2 transcription at any time-point by 

repeated injections of tamoxifen. Crucially the gene would be under the control of its own 

promoter and at its endogenous location, leading to restoration of normal function. 

Phenotypically, this functional KO model was very similar to the previously described 

Mecp2-null mice (Chen et al., 2001; Guy et al., 2001), with male KO mice developing 

symptoms such as hypoactivity, irregular breathing, gait abnormalities, and clasping by 6 

weeks of age, and dying by about 11 weeks. Female KO mice developed symptoms such as 

abnormal gait, hypoactivity, irregular breathing and clasping between 4 to 12 months of age 

but had a similar life-span to WT. In contrast, male KO mice treated with Tamoxifen before 

the onset of symptom did not develop any observable RTT-like symptoms and had a similar 

lifespan to WT. Surprisingly, even after the development off RTT symptoms, treatment with 

Tamoxifen led to rescue of the RTT phenotype and a lifespan approaching that of WT. 

Similarly, adult female KO mice treated with Tamoxifen after symptom development showed 

almost complete phenotype reversal, including restoration of attenuated long-term 

potentiation levels to WT. High levels of reactivation was achieved in both males and 

females after repeated injections of Tamoxifen, leading to expression of the gene in about 

80% of cells. The very mild symptoms still observed in some males could perhaps be 

explained by the residual population of cells in which reactivation did not occur, or be due to 

some aspect of the disorder that leads to permanent dysfunction. This important study showed 

that the vast majority of the RTT phenotype can be rescued by delayed activation of the gene 

and suggested that the disorder did not lead to any irreparable damage. 

The results of the previous study convincingly showed that the major aspects of the RTT 

phenotype could be rescued by reactivation of Mecp2, however phenotyping of the mice was 

mostly based on observational scoring and it is possible that more subtle and pervasive 

symptoms were not rescued. To investigate this, a later study carried out a comprehensive 

phenotype analysis including brain morphology, breathing, and locomotor function 

(Robinson et al., 2012). Morphological analysis showed that untreated KO mice showed 

reduced cortical and white matter tract thickness, reduced soma size, reduced dendritic 

complexity and dendritic length, and a significant reduction in spine density. However, in 

mice treated with Tamoxifen after symptom development, these deficits were rescued to 

almost WT levels. A similar pattern was seen for a wide range of physiological and 

behavioural phenotypes, with treatment leading to the rescue of respiratory function, balance 
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and coordination, and muscle strength. However, some phenotypes did not reverse including 

impaired performance on the forced swim test and gait abnormalities. In this study 

reactivation of gene expression was achieved in about 70% of cells with Tamoxifen 

treatment. The failure of these motor defects to reverse after treatment could suggest a 

particular sensitivity of motor function to absence of MeCP2 in the 30% of cells in which 

gene expression was not reactivated, or could indicate irreversible damage. 

1.7.2 Brain region specific MeCP2 restoration 

MeCP2 is widely expressed throughout the body, with significant levels of protein seen in 

heart, skeletal muscle, spleen, kidney, liver and lung tissue, but particularly high levels in the 

post-mitotic neurons of the nervous system (Shahbazian et al., 2002a; Zhou et al., 2006; Song 

et al., 2014). Several studies have shown that inactivation of Mecp2 in the nervous system 

only leads to a phenotype that is indistinguishable from mice in which the gene has been 

deleted globally (Chen et al., 2001; Guy et al., 2001), suggesting that restoration of gene 

expression in the nervous system only should be sufficient to completely reverse the disease. 

This is supported by a study in which Mecp2 was selectively expressed in post-mitotic 

neurons under the control of the tau promoter (Luikenhuis et al., 2004). Rescued mice 

showed a normalisation of bodyweight and lifespan, and activity levels indistinguishable 

from WT. However, only these gross markers of disease were examined, and it is possible 

that more subtle aspects of the disorder were not reversed. The effect of restoring MECP2 

expression in selected brain regions has also been examined using cell-specific mouse 

models. In males, transcription of an inducible Mecp2 transgene under the control of the 

CamKII promoter led to robust protein expression in both the cortex and hippocampus 

(Alvarez-Saavedra et al., 2007), areas thought to be involved in the RTT phenotype 

(Kaufmann et al., 1997; Dani et al., 2005; Asaka et al., 2006). Surprisingly however, this was 

not sufficient to prevent the onset of any of the RTT phenotype. Similarly, when expression 

was restricted to the cerebellum and striatum using the enolase promoter, no aspect of the 

RTT phenotype was impacted upon (Alvarez-Saavedra et al., 2007). These results suggest 

that either these are not critical brain regions for the expression of the RTT phenotype, or 

perhaps that the levels of gene transcription driven by these promoters does not adequately 

recapitulate the expression pattern seen under the endogenous Mecp2 promoter. Overall, 

these results suggests that the loss of Mecp2 from the brain plays a crucial role in the RTT 

phenotype, however future studies should comprehensively examine the full extent of disease 

reversal in brain specific rescues models.   
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1.7.3 Glia and microglia reversal 

Previous studies have shown that astrocytes with mutated Mecp2 could have a non-cell 

autonomous negative impact on the function and morphology of surrounding neurons (Ballas 

et al., 2009; Maezawa et al., 2009). To examine the role of astrocytes in RTT, a mouse model 

was generated which enabled delayed activation of Mecp2 in astrocytes only, using a 

tamoxifen inducible cre recombinase under the control of the human astrocytic fibrillary 

acidic protein (hGFAP) promoter (Lioy et al., 2011). In KO mice, tamoxifen treatment led to 

a partial restoration of activity levels, a normalisation of breathing, an increase in dendritic 

complexity, and a dramatically increased life span, with over 80% of mice still alive at 7.5 

months. To further investigate this an astrocyte specific KO mice model was generated. 

While mice showed normal activity levels, dendritic complexity, and lifespans, they did 

display weight loss, hindlimb clasping and breathing irregularity, suggesting that some 

aspects of the disorder are impacted by an absence of MeCP2 from glia, and that these cells 

have to be considered when targeting any future therapies.  

 To further examine the role of glia in RTT pathology, a recent study investigated the effect 

of restoring WT microglia to the brain of RTT KO mice (Derecki et al., 2012). To achieve 

this, the brains of KO mice were irradiated at the time of RTT symptom onset to destroy the 

resident brain microglia population. Mice were injected with bone marrow extracted from 

WT animals. Robust detection of a GFP reporter confirmed that this led to repopulation of the 

brain with WT microglia. Males treated with WT bone marrow showed a significantly 

increased lifespan (with some still alive at 48 weeks), as well as a normalisation of 

bodyweight, reduction in apnoeas and breathing irregularity, and improved activity levels 

compared to mice treated with KO bone marrow. Improvements were also seen in female 

mice, although improvements in breathing and motor function were very modest. This result 

was surprising and exciting, particularly as bone marrow transplantation is already a well-

established technique, so a multisite effort was made to replicate it (Wang et al., 2015). 

However, in contrast to the previous study, the results could not be replicated in any of the 

three RTT models tested. Replacement of mutant microglia with WT did not lead to any 

extension of lifespan or improvement in weight, apnoeas, activity levels, or gait. This study 

used much greater numbers and random assignment to treatment groups, and used mice from 

the same colony as the previous report, as well as two other RTT models, in three 

independent labs. In addition, when they used a cre line to specifically express Mecp2 in 

microglia developmentally there was no extension of lifespan and the phenotype was not 
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improved suggesting that the presence of WT microglia does not in fact ameliorate the RTT 

phenotype.  

1.8 Gene-based therapies 

The proven reversibility and monogenic nature of RTT (Guy et al., 2007; Robinson et al., 

2012) makes it an attractive target for gene based therapies, particularly since the previously 

described uncertainty over the functions and targets of MeCP2 makes it difficult to identify 

any downstream pathways that could be modified pharmacologically.   

1.8.1 Unsilencing the inactivated X chromosome 

In females, one copy of the X chromosome is randomly selected for silencing early in 

development during a process called X chromosome inactivation (XCI). This is thought to 

provide dosage compensation by preventing the overexpression of X-linked genes in females 

compared to males (Lyon, 1989). For this reason, RTT patients will have a mixture of cells, 

with some expressing the WT MECP2 allele and some the mutant copy. One possible 

approach to treating RTT would be to unsilence the inactivated chromosome in mutant cells, 

thus restoring WT MeCP2 protein levels in those cells.   

Loss of function mutations in the ubiquitin protein ligase E3A (UBE3A) gene causes the 

severe neurological disorder Angelman syndrome (Kishino et al., 1997). Disease causing 

mutations occur in the maternal allele because the gene is imprinted, with the paternal allele 

being permanently silenced by epigenetic mechanisms (Rougeulle et al., 1997). A recent 

study showed that topotecan, a topoisomerase II inhibitor approved for use in the treatment of 

certain cancers, could unsilence the paternal allele in a mouse model of Angelman, leading to 

elevated levels of UBE3A mRNA (Huang et al., 2012). While further work is needed to 

examine the off-target effects on gene expression and long-term efficacy, the demonstration 

that a well-established and chronically tolerated drug can lead to unsilencing of a target gene 

suggests that this kind of approach could be relevant for RTT. 

XCI relies on Xist, a non-coding RNA which coats the inactive chromosome and is essential 

for both initiation and maintenance of silencing (Kathrin Plath et al., 2002).  Xist KO mice do 

not carry out XCI and show embryonic lethality (Marahrens et al., 1997), suggesting that XCI 

is essential for viability, possibly due to a failure of dosage compensation. If correct, 

strategies aimed at unsilencing the X chromosome to restore MeCP2 levels would be 
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deleterious. However, a recent study employing an RNA screening strategy identified 13 

genes which prevented XCI when their transcription was blocked (Bhatnagar et al., 2014). 

Remarkably, a KO mouse model of one of these genes, STC1, displayed no abnormal 

phenotype, despite XCI not occurring in these mice. When gene expression was examined, no 

upregulation of X-linked gene expression was seen, suggesting the presence of other 

compensatory measures. However, when the gene was silenced in mouse fibroblasts using 

shRNA, there was a two-fold increase in mRNA levels, suggesting either that switching off 

the gene in mature animals leads to altered gene expression or that the compensatory effects 

take time to develop. Overall, the study provides evidence that inactivating genes involved in 

XCI, either pharmacologically or by gene therapy, could be a possible treatment strategy for 

RTT, although confirmation in human derived cells is essential to determine its clinical 

relevance.     

1.8.2 Gene therapy 

Since restoration of WT Mecp2 leads to a rescue of the RTT phenotype (Guy et al., 2007), 

one possible therapeutic strategy is to deliver exogenous WT copies of the gene to affected 

cells using viral vectors. Recent studies have shown that the severity of the RTT phenotype is 

determined by the proportion of cells expressing WT copies of Mecp2 (Robinson et al., 

2012), and that brain-wide protein expression is required for robust phenotype reversal 

(Alvarez-Saavedra et al., 2007; Guy et al., 2007). In addition, overexpression of MECP2, as 

seen in duplication patients as well as neuronal overexpression models, leads to a spectrum of 

motor and cognitive impairments (Luikenhuis et al., 2004; Van Esch et al., 2005; Lugtenberg 

et al., 2009; Ramocki et al., 2009). These studies suggest that effective gene therapy 

approaches will need to deliver WT copies of MECP2 to a large proportion of cells 

throughout the brain, and that transcription levels must be controlled to prevent toxicity. This 

is particularly challenging in RTT because random XCI means that half the cells already 

express WT levels of protein, and are thus particularly vulnerable to overexpression toxicity 

when transduced with an exogenous transgene. 

 The earliest gene therapy study for RTT used adenovirus to target a WT Mecp2 construct to 

the striatum of KO male mice (Kosai et al., 2005). Symptomatic animals injected with the 

virus showed a marked improvement in activity levels and motor coordination, showing as a 

proof of principal that exogenous delivery of functional copy of the gene could impact on the 

phenotype. In a later study, lentivirus was used to target an Mecp2 transgene to neurons in 
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culture (Rastegar et al., 2009), leading to a normalisation of dendritic arborisation. However, 

Gadalla and colleagues carried out the first comprehensive trial of gene therapy for RTT in a 

KO mouse model (Gadalla et al., 2012). As a delivery vector they used adeno-associated 

virus serotype 9 (AAV9). AAV vectors have a number of advantages including wide tropism, 

low immune response, stable transgene expression, and the ability to target both dividing and 

non-dividing cells (McCarty, 2008; Samulski and Muzyczka, 2014), but are limited by a 

cloning capacity of < 5 kb (Wu et al., 2010; Choi et al., 2014), making them unsuitable for 

the packaging of large constructs. The AAV9 serotype used in this study has a number of 

particular advantages including high levels of transgene expression, a rapid onset, high 

neuronal tropism, and the ability to cross the blood brain barrier, enabling IV viral delivery 

(Foust et al., 2008; Zincarelli et al., 2008; Duque et al., 2009). Direct brain injection of an 

Mecp2 construct, under the control of the chicken beta actin (CBA promoter), in neonatal 

male KO mice led to an almost doubling of lifespan, from a median of 9.3 to 16.6 weeks, 

with some mice surviving past 38 weeks. In addition, a number of phenotypes showed 

significant improvement as compared to GFP injected control, including activity levels and 

motor function. Transduction efficiencies ranged from about 5% in the striatum to almost 

40% in the hypothalamus. The markedly increased lifespan in some of the mice suggest that 

even relatively low levels of transduction can have a significant impact on phenotype. 

Symptomatic mice injected with the Mecp2 construct had a much more modest survival 

benefit, but this was due to an extremely low transduction efficiency in the brain (2-4% of 

neurons).  

Following on from this promising study, a later study tested a similar approach in a female 

heterozygous KO mouse model (Garg et al., 2013). Again, AAV9 was used to deliver an 

Mecp2 construct, this time under the control of the endogenous Mecp2 promoter.  In 

comparison to the previous study, robust brain transduction was achieved after systemic 

delivery, with efficiencies of 20-25% in the cortex, hippocampus, and brain stem. 

Transduction efficiency in the cerebellum was much lower however, with only 7% of cells 

transduced. KO mice before injection both showed a mild RTT phenotype as assessed by the 

commonly used RTT scoring system. Mice were then assessed weekly over a period of 25 

weeks. Mice that were injected with the Mecp2 construct showed a reversal of the phenotype 

over this period, and were almost indistinguishable from WT at the end of the study. In 

contrast, mice that were injected with control virus showed a steadily worsening phenotype 

and by the end of the study they showed a severe RTT phenotype. This was confirmed in a 
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series of behavioural tests which showed robust recovery in motor and cognitive function, 

although again breathing appeared to be more resistant to reversal.   

1.8.3 Problems associated with traditional gene therapy approaches 

While gene therapy has shown promise in the treatment of RTT, there are several 

disadvantages that could prevent it being a viable long-term option in human patients. 

Transgenes delivered using AAV vectors are usually maintained as an extra-chromosomal 

episome, rather than being integrated into the genome (Penaud-Budloo et al., 2008). This is 

advantageous as it prevents the insertional mutagenesis seen with randomly integrating viral 

vectors such as lentivirus, but it is unclear how long expression of the transgene will be 

maintained in this episomal state. In a primate study,  transgene mRNA was still detected six 

years after a single dose of AAV2 (Bankiewicz et al., 2006), and in a recent clinical trial 

using AAV8 transgene mRNA was still detected after two years (Nathwani et al., 2011). 

While this suggests that relatively long-term expression is achievable, it not currently known 

if AAV delivery will be capable of achieving life-long transgene expression in humans, 

which will be necessary for the treatment of RTT. In addition, repeated doses may not 

possible without immune system silencing, as patients have been shown to develop an 

immunological response after initial exposure to AAV particles (Mingozzi and High, 2013; 

Corti et al., 2014). The lack of integration also means that the transgene will not be replicated 

during cell division. In dividing cells such as glia, which have been shown to contribute to the 

RTT phenotype (Lioy et al., 2011), this means that the transgene will be quickly diluted in 

the cell population.  

Another crucial issue for RTT gene therapy approaches is the danger of overexpression 

toxicity. As has been previously described, duplication of the MECP2 gene leads to a severe 

neurological phenotype (Ramocki et al., 2010). Since roughly 50% of cells in RTT patients 

express the WT MECP2 allele, any WT cells receiving a copy of the transgene will 

overexpress MECP2. In addition, cells can receive multiple copies of the transgene thus 

exacerbating the toxicity. This is particularly problematic when the virus is delivered 

systemically, as the liver shows very high levels of transduction and transgene expression 

after intravenous injection of AAV9 (Gadalla et al., 2012). Since liver cells normally express 

MECP2 at a very low level (Shahbazian et al., 2002a; Zhou et al., 2006) this large increase in 

gene expression could be detrimental. At present there is no way to discriminate between WT 

and mutant cells with viral delivery vectors. 
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1.9 Genome Editing 

In the last few years a number of genome editing tools have emerged that have greatly 

enhanced our ability to make targeted sequence changes to the genome. These tools, such as 

zing-fingered nucleases (Urnov et al., 2010), transcription activator-like effector nucleases 

(TALENs) (Bogdanove and Voytas, 2011; Scharenberg et al., 2013), and clustered regularly 

interspaced short palindromic repeat (CRISPR)-associated nuclease Cas9 (Hsu et al., 2014), 

are all based on programmable nucleases that allow targeted double-stranded DNA breaks to 

be made at specific genomic locations. As the cell repairs these breaks various genetic 

changes can be introduced into the genome. The major advantage of these tools over current 

gene therapy strategies is that any changes made to the genome are permanent and thus 

passed on to daughter cells. Genome editing has revolutionised our ability to quickly and 

easily generate new animal models (Wang et al., 2013) and to probe gene function (Swiech et 

al., 2014) and has the potential to be a powerful therapeutic tool (Perez et al., 2008; Schwank 

et al., 2013; Wang et al., 2014a). A number of different programmable nucleases have been 

developed to enable genome editing, each with their own advantages and disadvantages.  

1.9.1 Zinc-finger nucleases (ZFN) 

 

 

Figure 1.2 – ZFN structure and function 

ZFNs are composed of a series of zinc-fingers (multi-coloured circles) arranged in a modular 

fashion to form an array which recognises a sequence of 9-18 bp. DNA cleavage is dependent 

on the dimerization of two FokI nuclease domains (large blue circle) and is achieved by the 

binding of two different ZFN monomers to targets on opposing DNA strands. 



35 

 

ZFNs were the first widely used genome editing tool (Kim et al., 1996; Bibikova et al., 2001) 

and have been used to modify genes in a wide array of organisms including bacteria, plants, 

and mammals such as mice and pigs (Urnov et al., 2010; Perez-Pinera et al., 2012). A ZFN is 

composed of two domains (Figure 1.2), a zinc-finger protein domain which is responsible for 

DNA targeting, and a FokI nuclease which cleaves DNA (Kim et al., 1996). Each individual 

zinc-finger recognises a specific 3 bp DNA sequence, and ZFNs are composed of a series of 

zinc-fingers arranged in a modular fashion to recognise a sequence of 9-18 bp (Wolfe et al., 

2000 p.200). DNA cleavage is dependent on the dimerization of two FokI nuclease domains 

(Bitinaite et al., 1998). This is achieved by the binding of two different ZFN monomers to 

targets on opposing DNA strands, with a 5-7 bp spacer region between each monomer. The 

requirement for dimerization enhances the specificity of ZFNs as it increases the length of the 

target site thus greatly reducing off-target activity. However, studies have shown that as well 

as forming heterodimers, ZFNs utilising the WT FokI protein can also form homodimers, 

leading to off-target toxicity (Kelly Beumer et al., 2006). To overcome this, two mutant 

variants of the FokI nuclease have been generated that only function when they bind as a 

heterodimer pair, greatly reducing the levels of off-target cleavage (Miller et al., 2007; 

Szczepek et al., 2007). While zinc finger domains for every possible 3bp sequence have been 

engineered (Mandell and Barbas, 2006; Kim et al., 2009), the binding and cleavage efficiency 

of ZFNs can be highly unpredictable, with some individual zinc fingers modules only binding 

reliably in certain sequence contexts (Carroll, 2012), resulting in an average of only one 

functional pair being obtained for roughly every 100 bp of genomic sequence (Kim et al., 

2009). In addition, the synthesis of reliable and functional ZFNs can be extremely 

challenging. Relatively simple modular approaches have been developed (Kim et al., 2010) 

but suffer from a low success rate (Ramirez et al., 2008; Kim et al., 2009). More robust 

methods have subsequently been developed but these can be labour intensive and require 

significant expertise (Maeder et al., 2008). However, several studies have recently reported 

methods to improve the ease and success rate of synthesis (Sander et al., 2011; Bhakta et al., 

2013).  
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1.9.2 Transcription activator-like effector nucleases (TALEN) 

 

 

Figure 1.3 – TALEN structure and function 

TALEN arms recognition sites are composed of a sequential array of 33-35 amino acid 

repeats (multi-coloured ellipses). DNA cleavage is dependent on the dimerization of two 

FokI nuclease domains (large purple circle) and is achieved by the binding of two different 

TALEN arms to targets on opposing DNA strands. 

 

Transcription activator-like effectors (TALEs) are naturally occurring bacterial proteins from 

the plant pathogen Xanthomonas (Bogdanove et al., 2010). They contain a highly specific 

DNA binding domain which allows them to bind target sequences in the plant cell nucleus 

and alter gene transcription levels. This domain is composed of a sequential array of 33-35 

amino acid repeats (Figure 1.3), each of which binds a single DNA base (Boch et al., 2009; 

Moscou and Bogdanove, 2009). The sequence of each repeat is almost identical except for 

amino acids 12 and 13, known as the repeat-variable diresidue (RVD), which are variable and 

determine the nucleotide specificity. Almost 20 different RVDs have been discovered but 

only four of these are widely used, each targeting a different DNA base (Moscou and 

Bogdanove, 2009). The discovery of this simple recognition code led to the rapid adoption of 

the TALE DNA binding domain as an alternative to the zinc-finger motifs used in ZFNs 

(Christian et al., 2010; Li et al., 2011b), with the targeting domain being fused to the FokI 

enzyme to create a highly programmable TALE nuclease (TALEN). TALENs have since 

been used to modify genes in a wide array of organisms including plants, viruses and 
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mammals (Joung and Sander, 2013; Sun and Zhao, 2013). Similar to ZFNs, DNA cleavage 

requires dimerization of two FokI nuclease domains (Joung and Sander, 2013), and this is 

achieved by the binding of two different TALEN arms to target sequences on opposing DNA 

strands, with cleavage occurring in a 15 bp spacer region between the two binding sites. The 

simple DNA recognition code makes it easy to design TALENs targeted to almost any DNA 

sequence giving them a significant advantage over ZFNs, particularly if highly specific 

targeting is required. However, homology between the amino acid repeats can make the 

synthesis of TALENs challenging, due to recombination within cells (Holkers et al., 2013). 

To overcome this, methods based on the ‘Golden Gate’ cloning system have been developed 

which allow the rapid assembly of TALEN arm constructs in as little as a week (Cermak et 

al., 2011).  

1.9.3 CRISPR-Cas9 

 

 

Figure 1.4 – CRISPR-Cas9 structure and function 

In the CRISPR-Cas9 system a guide RNA (blue) binds to a specific sequence in the genome 

(red) and guides the Cas9 nuclease protein (yellow) to the target site. The Cas9 enzyme then 

generates a double strand break within the target region.  

 

Perhaps the most promising of all the genome editing tools to emerge is the RNA-guided 

clustered, regularly interspaced, short palindromic repeat (CRISPR) type II system, which is 

likely to become the dominant tool of choice due to its efficiency, ease of synthesis, and 

ability to target multiple targets simultaneously (Prashant Mali et al., 2013; Sakuma et al., 
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2014). In bacteria, CRISPR along with its associated CRISPR-associated (Cas) proteins 

provides a form of adaptive immunity against invading viral DNA (Sorek et al., 2008; 

Philippe Horvath and Rodolphe Barrangou, 2010). A 20 bp fragment of the invading DNA, 

called a protospacer, is inserted into the bacterial genome to form a CRISPR. These are then 

transcribed and processed to produce a target specific CRISPR RNA (crRNA). Processing is 

dependent on a target-independent trans-activating crRNA (tracrRNA) which hybridises with 

the crRNA (Deltcheva et al., 2011). These hybridised RNAs then form a complex with the 

Cas9 nuclease (Martin Jinek et al., 2012), which is guided to a target DNA sequence by the 

20 bp protospacer portion of the crRNA (Figure 1.4). This leads to cleavage of the target 

DNA if the 20 bp target sequence is directly adjacent to a short protospacer adjacent motif 

(PAM), 5’-NGG in its canonical form, which is recognised by the Cas9 protein itself. After 

the discovery of this simple DNA targeting system it was quickly realised that it could be 

adapted for use as a powerful genome editing tool (Martin Jinek et al., 2012). To simplify the 

synthesis of custom target sequences a single guide RNA (sgRNA) was engineered that 

combined the crRNA and tracrRNA into a single RNA chimaera. The sgRNA is composed of 

a 20 bp sequence at the 5’-end that determines the target sequence and a hairpin structure at 

the 3’-end that binds with Cas9. This gives the CRISPR-Cas9 system a huge advantage over 

both TALENs and ZFNs as changing DNA targets is as simple as replacing the 20 bp 

sequence at the 5’-end, and does not require any complicated cloning or protein engineering. 

The target sequence can be easily synthesised as complementary oligonucleotides and cloned 

into a vector containing the rest of the sgRNA and the Cas9 protein in a single step. It is this 

simplicity that has led to the rapid adoption of CRISPR-Cas9 technology, with over 2000 

CRISPR papers published since 2013 alone. An additional advantage of this system is that 

multiple guide sequences can be cloned into a single vector allowing parallel editing of 

several target sites (Cong et al., 2013). This has been used to introduce mutations in up to five 

different genes in rat, mouse, and zebrafish simultaneously (Jao et al., 2013; Li et al., 2013a; 

Wang et al., 2013).  

1.9.4 DNA repair pathways  

Cells with double stranded breaks use two major pathways to repair damage. The choice of 

pathway is determined by cell cycle state and the presence of a homologous DNA repair 

template, such as a sister chromatid. Homologous recombination (HR) is a precise repair 

pathway that uses a donor template to produce high fidelity repair. The HR pathway can be 

utilised to introduce targeted sequence changes into the genome using an exogenous DNA 
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template with homology for the DNA break site (Bibikova et al., 2001; Krejci et al., 2012). If 

this exogenous template is used during HR repair, any base changes in the template will be 

incorporated into the genome. This allows for precise genetic changes to be made, including 

the repair of loss of function mutations (Figure 1.5-A). In contrast, the non-homologous end 

joining (NHEJ) pathway does not require a template but can repair the break by joining the 

two broken ends together. This usually leads to small deletions at the break site which can 

lead to loss of gene function (Lieber, 2010). This ability to precisely disrupt gene function 

has dramatically improved the ease and efficiency of generating animal models of disease 

(Yang, 2013; Wang et al., 2013).  

 

Figure 1.5 – Repair strategies using alternative DNA repair pathways 

Double stranded DNA breaks can be repaired using two major repair pathways, homologous 

recombination (HR) and non-homologous end joining (NHEJ), both of which can be utilised 

for genome editing. (A) In cells in which the HR pathways is active, mutated bases (red) can 

be replaced with WT bases (green) by recombination with an exogenously supplied repair 

construct containing homology to the target region. (B) In non-dividing cells, a WT copy of 

the mutated gene (green box) can be permanently ligated into a safe location in the genome 

using the NHEJ repair pathway, leading to a restoration of gene function.   

 

The NHEJ pathway is thought to be active throughout the cell cycle and is therefore suitable 

for targeting both dividing and non-dividing cells (Rothkamm et al., 2003; Sharma, 2007). In 
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contrast, the HR pathway is mostly limited to dividing cells, due to the requirement for a 

homologous repair template, and is not active in post-mitotic cells such as neurons (San 

Filippo et al., 2008; Jeppesen et al., 2011). This low level of HR makes precise genetic repair 

in these cell types particularly challenging and is a major impediment to the use of this 

technology for loss-off-function nervous system disorders like RTT. On possible solution is 

to ligate a therapeutic transgene into a defined genomic locus, such as previously identified 

“safe harbour” sites (Figure 1.5-B; Moehle et al., 2007; Barzel et al., 2015). These are sites 

in the genome that can be disrupted without causing any detectable negative phenotype. 

Several recent studies have shown that transgenes can be ligated into the genome using the 

highly active NHEJ pathway, and has been demonstrated using ZFNs, TALENs, and 

CRISPR-Cas9 (Maresca et al., 2013; Nakade et al., 2014). This has the advantage over 

traditional gene therapy in that it allows permanent integration of the transgene without the 

risk of insertional mutagenesis, but does not deal with the issue of overexpression toxicity in 

cells already expressing the WT allele that is particularly pertinent to RTT. Novel strategies 

are required to ensure cells only express one functional copy of the MECP2 gene. 

1.9.5 Ex vivo genome editing  

Currently, the most promising genome editing strategies involve ex-vivo manipulation of 

cells. In this strategy target cells are removed from the body, edited, and then transplanted 

back into the host. The advantage of ex vivo therapy is that much higher levels of editing can 

be achieved due to the availability of a number of efficient transfection systems including 

electroporation, lipid reagents, and viral vectors. The potential of this approach has been 

demonstrated for several disease including HIV and SCID (Perez et al., 2008; Genovese et 

al., 2014). The strategy for HIV is based on the fact that people with mutations in the viral 

co-receptor CCR5 show very high resistance to HIV infection (Liu et al., 1996). Individuals 

with this mutation appear otherwise completely healthy suggesting that introducing this 

mutation into the T-cells of affected HIV patients could be an effective treatment strategy. 

This is supported by the fact that a patient receiving a bone marrow transplant from 

individuals with this CCR5 mutation showed undetectable levels of virus and a cessation of 

the need for antiretroviral therapy (Hütter et al., 2009). Indeed, even 20 months after the 

transplant viral levels remained undetectable. Since finding immunologically matched CCR5 

mutant donors is not practical for the majority of HIV patients, genome editing provides an 

alternative approach. Several pre-clinical studies have shown that ZFNs can be used to induce 

loss-of-function mutations in the Ccr5 gene of HIV mouse models (Perez et al., 2008; Holt et 
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al., 2010; Maier et al., 2013). When these modified CD4+ T cells were transplanted back into 

mice they led to a reduction in viral load and improved T cell counts. In addition, 

successfully modified cells were positively selected for due to their HIV resistance allowing 

them to expand relative to unmodified cells. This strategy has now undergone several clinical 

trials including a completed Phase I/II study (Clinicaltrials.gov NCT 01252641) which 

assessed the safety and tolerability of the treatment. Promisingly, treatment led to a 

significant increase in T cell counts and edited cells showed a survival advantage over non-

modified cells (Tebas et al., 2014). A similar strategy has also been used for the correction of 

mutations in the IL2RG gene that cause the immunodeficiency disorder SCID-X1 (Genovese 

et al., 2014). Target haematopoietic stem cells from human donors were modified using ZFNs 

and transplanted into mice. Modified cells were successfully engrafted and showed 

multilineage differentiation. This suggests that this strategy could be appropriate for a wide 

range of immunodeficiency disorders. However, while ex vivo promising has great 

therapeutic potential for this type of disorder, it is mostly limited to diseases involving adult 

stem cell populations, as it requires cells to survive outside the body and be amenable to 

external manipulation and culturing, making it unsuitable for the majority of genetic 

disorders. 

1.9.6 In vivo genome editing  

For diseases involving cells unsuitable for ex vivo editing, or those involving multiple organs, 

it is necessary to edit cells directly in vivo. Similar to traditional gene therapy, this usually 

involves the delivery of genome editing constructs using viral vectors. This makes in vivo 

editing significantly more challenging than ex vivo approaches, as these viral vectors tend to 

be inefficient compared to the more robust ex vivo methods such as electroporation. For this 

reason, this approach has most successfully been demonstrated in diseases in which 

significant therapeutic effects can be achieved with low levels of gene restoration, or where 

edited cells have a significant survival advantage over non-edited cells (Li et al., 2011a; Yin 

et al., 2014). Patients with severe haemophilia B have levels of clotting factor IX that are less 

than 1% of normal. However, when levels are restored to only 5% of normal the disease 

becomes a much milder form, suggesting that a small increase in factor IX can have a large 

effect (High, 2002). In a recent study, the liver of a haemophilia B mouse model was targeted 

with a factor IX gene specific ZFN along with a repair donor template, using AAV2 (Li et al., 

2011a). This led to significant levels of repair construct insertion via the HR repair pathway, 

with circulating levels of factor IX increased to 3-7% of normal, and this was sufficient for a 
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normalisation of clotting times. In a more recent study, CRISPR-Cas9 was used to correct 

mutations in the Fah gene of a mouse model of hereditary tyrosinaemia (Yin et al., 2014). 

This gene codes for the final enzyme in the tyrosine catabolic pathway, and loss-of-function 

Fah mutations lead to the build-up of toxic metabolites and severe liver damage (Paulk et al., 

2010). In vivo delivery of Cas9, sgRNA, and an ssDNA repair template to the liver, using 

hydrodynamic injection, led to correction in about 1 in 250 cells (Yin et al., 2014). Despite 

the relative inefficiency of initial correction, when mouse livers from treated animals were 

examined 33 days after treatment there was a huge increase in the number of Fah+ cells, 

suggesting that corrected cells had a strong survival advantage compared to non-edited cells, 

allowing them to expand quickly as a proportion of the population due to positive selection. 

While these studies strongly suggest that in vivo genome editing is a viable strategy for 

treating genetic disorders, these particular diseases have features that make them easier to 

target, including their origin in dividing cells of the liver, which is particularly amenable to 

both viral and non-viral targeting, and the requirement for only low levels of repair to achieve 

significant disease reversal. Expanding this approach to treat diseases involving non-dividing 

cells in organs such as the brain will present a much greater challenge. 

1.9.7 Off-target effects  

In order for genome editing to become a viable clinical strategy for severe neurological 

disorders like RTT several challenges will have to be overcome, the most crucial of which is 

specificity. Nuclease induced genetic changes are permanent and therefore any off-target 

editing, particularly those leading to oncogenic mutations, could have devastating effects. As 

previously described, the specificity of ZFNs was greatly increased by the engineering of an 

obligate heterodimer version of the FokI nuclease which prevents the formation of unwanted 

homodimers and subsequent off-target cleavage (Miller et al., 2007; Szczepek et al., 2007). 

However, in a recent study using a newly developed in vitro analysis method, a ZFN pair 

targeting CCR5, which has been developed as an HIV therapy, identified 37 off-target 

cleavage sites, ten of which were shown to be actually modified when these sites were 

sequenced from ZFN transfected cultured human cells (Pattanayak et al., 2011). Another 

method, using the capture of integrase-defective lentiviral vectors at NHEJ induced DSBs, 

enabled an unbiased genome wide analysis of off-target cleavage and showed a number of 

non-overlapping off-target cleavages from the same ZFN pair in the same cell line (Gabriel et 

al., 2011). Crucially, these sites were not identified by the commonly used in silico prediction 

methods used to identify off-target activity, suggesting these do not have predictive utility.  
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In contrast, TALEN pairs targeting the same loci as a corresponding ZFN have been reported 

to have greatly reduced off-target activity (Mussolino et al., 2011). However, in a study 

examining the off-target effects of two TALEN pairs, 76 putative off-target sites were 

identified using in vitro selection, 16 of which showed off-target cleavage in a TALEN 

transfected human cell line when assessed by high-throughput sequencing (Guilinger et al., 

2014). These sites were modified in 0.03-2.3% of cells and were more prominent in TALENs 

with more repeats, which they suggest was due to excess binding energy. When they reduced 

this binding energy using amino acid substitution they showed a tenfold decrease in off-target 

effects. Interestingly, in vivo editing in mouse embryos using TALENs appears to show 

almost no off-target effects, with several different studies reporting no off-target cleavage in 

predicted off-target sites (Panda et al., 2013; Sung et al., 2013). This is likely due to the fact 

that in mouse embryos TALENs are delivered as short acting RNA molecules, whereas 

highly expressing and stable plasmid DNA is used in cell lines. This suggests that off-target 

cleavage could be greatly reduced through the use of short-acting nucleases and 

modifications to reduce excess binding energy.    

Initial studies characterising the off-target activity of CRISPR-Cas9 showed that a large 

number of sgRNA showed high levels of off-target activity, with guides containing 

mismatches of up to 5 bp capable of causing off-target cleavage in a human cell line (Cradick 

et al., 2013; Fu et al., 2013). In some cases, off-target activity occurred at levels exceeding 

those of on-target activity. This suggested that CRISPR-Cas9 could be highly non-specific 

and that the off-target activity varied depending on the particular sequence being targeted. 

Other studies reported more modest off-target effects, but showed that specificity decreased 

with highly active guides and with increasing concentrations of sgRNA: Cas9 (Hsu et al., 

2013; Pattanayak et al., 2013). To try and reduce this off-target activity several strategies 

have been developed including the use of truncated guide sequences and modifications to the 

Cas9 enzyme (Fu et al., 2014; Shen et al., 2014). A recent study has shown that reducing the 

length of the complementary sgRNA region to 17-18 nt can reduce off-target cleavage by 

more than 5000-fold, without a substantial reduction in on-target activity (Fu et al., 2014). 

They hypothesised that by reducing the sgRNA-DNA interface, nucleotides at the 5’-end 

would not compensate for mismatches at other sites along the interface. To further increase 

specificity a modified nickase version of Cas9 has been engineered that converts it to a 

single-strand DNA cleaving enzyme (Shen et al., 2014). In order to induce a double strand 

break, a pair of nickase sgRNA-Cas9 constructs must generate two single stand nicks closely 
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adjacent to one another. The requirement for two different cas9 constructs to bind closely to 

one another greatly reduces off-target cleavage. In support of the effectiveness of these 

strategies, newly developed, highly sensitive, and unbiased methods, utilising next generation 

sequencing have shown that the use of truncated guides leads to substantially reduced off-

target effects, and that the use of nickase variants can effectively eliminate unwanted off-

target cleavage activity (Frock et al., 2015; Wang et al., 2015), suggesting that with careful 

guide design and the use of suitable Cas9 variants, CRISPR-Cas9 can enable highly precise 

genome editing.     

1.9.8 In vivo delivery  
Similar to gene therapy, the most promising method of delivery for genome editing tools is 

via viral vectors, in particular AAV. However, one major challenge for this approach is the 

limited packaging capacity of these vectors (Wu et al., 2010). In addition to delivering a 

programmable nuclease, precise modification also requires the delivery of a repair construct 

to act as a template for homologous mediated repair. ZFNs are relatively small and both arms 

of a ZFN pair can fit comfortably inside a single AAV vector. However, TALENs are 

significantly larger and each arm will need to be packaged inside a separate vector. This 

means that multiple plasmids will have to be delivered simultaneously to cells, significantly 

reducing the likely number of successfully edited cells. In the most commonly used CRISPR-

Cas9 system, derived from the Streptococcus pyogenes, the Cas9 coding sequence alone is > 

4 kb, and when combined with an average sized promoter and polyadenylation signal would 

exceed 5.3 kb of DNA (Fine et al., 2015), greater than the 4.8 kb packaging limit of AAV 

(Wu et al., 2010). Functional constructs can be produced containing minimal promoter and 

polyadenylation sequences (Swiech et al., 2014), but this puts severe limits on the choice of 

regulatory units and still requires the delivery of a second viral vector containing the sgRNA. 

One alternative is a trans-splice approach, in which the coding sequence of Cas9 is split 

across two vectors, with the two fragments being expressed separately in the cell and then 

spliced together to form a functional protein (Fine et al., 2015). However, this is at the 

expense of a three-fold decrease in activity. More promising is the use of an alternative 

version of Cas9 from another bacterial species. A very recent study has shown that Cas9 from 

Staphylococcus aureus is more than 1 kb shorter than that from Staphylococcus pyogenes, but 

is still capable of achieving high levels of cleavage (Ran et al., 2015). In addition, the sgRNA 

and Cas9 sequence can be combined in a single AAV vector, allowing for high efficiency 

transduction and editing.  
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As previously described, off-target activity can be reduced by the use of short-acting 

nucleases, such as delivery of components in the form of RNA, rather than the long-term 

protein expression provided by viral vectors (Panda et al., 2013; Sung et al., 2013). One 

approach is to limit transgene transcription using an inducible system such as doxycycline 

(Dow et al., 2015). However, a more attractive approach would be to deliver short-lived 

mRNA or protein products (Kormann et al., 2011; Zuris et al., 2015), which would allow 

much greater control over dosage. As yet, no plausible alternative to viral vectors has been 

developed for robust brain delivery, however a recent study has shown the potential of 

exosomes, endogenously derived nano-vesicles that can transport both RNA and proteins 

(Alvarez-Erviti et al., 2011). When these particles were fused with a neuron-specific peptide 

they were capable of producing widespread delivery of an siRNA molecule in the brain. This 

technology has the potential to replace viral vectors as the delivery method of choice and 

would greatly reduce the toxicity produced by off-target cleavage.     

1.10 Aims 

The overall aim of this thesis was to develop novel therapeutic strategies for the treatment of 

RTT based on conditional KO mouse models of the disorder which suggest that the disease is 

reversible even after the onset of symptoms (Guy et al., 2007; Robinson et al., 2012), and 

recent gene therapy studies demonstrating that significant phenotype rescue is achievable 

using viral-based delivery of WT copies of the gene to KO mice (Gadalla et al., 2012; Garg et 

al., 2013). In order to achieve the most effective therapeutic outcomes any therapies must be 

targeted to the most relevant tissues. With this in mind, the first part of this thesis focuses on 

the comprehensive phenotyping of a novel mouse model in which Mecp2 is selectively 

expressed in neurons and glia. This allows any peripheral contributions to the RTT phenotype 

to be identified and enable appropriately targeted therapies to be developed. The second part 

of the thesis focuses on the development of genome editing tools for repairing RTT causing 

mutations. These novel tools allow targeted changes to be made to the genomic DNA 

sequence and could help overcome some of the challenges associated with traditional gene 

therapy approaches such as overexpression toxicity and dilution of the transgene in dividing 

cells. In this thesis, a novel strategy was employed to ligate an Mecp2 repair construct into 

the non-coding regions of the Mecp2 gene in a mouse cell line, and these cells were then 

extensively examined for evidence of successful editing. It is hoped that these proof of 
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principle experiments will aid in the development of alternative therapeutic approaches for 

RTT.     
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Chapter 2  

Material and Methods 

2.1 Mouse model 

2.1.1 Generation of a peripheral KO mouse model 

A functionally null (KO) mouse, in which Mecp2 is silenced by a stop cassette targeted to the 

Mecp2 locus (Guy et al., 2007) , was crossed with a nestin-cre line (Tronche et al., 1999) to 

generate a ‘peripheral knockout’ (PKO) mice in which Mecp2 is selectively reactivated 

within neurons and glia of the nervous system. Male mice were used in all the experiments 

carried out in this thesis, and were kindly donated by Professor Adrian Brid (The University 

of Edinburgh).  

2.1.2 Maintenance of mouse colonies 

All mice were housed with their littermates and maintained on a 12 hour light/dark cycle, 

with access to food and water ad libitum. Experiments were carried out in accordance with 

the European Communities Council Directive (86/609/EEC) and a project licence with local 

ethical approval under the UK Animals (Scientific Procedures) Act (1986).   

2.2 Mouse phenotyping and behavioural analysis 

2.2.1 Weight measurement and phenotypic severity scoring 

Each week all mice were weighed and scored for symptoms using an observational scoring 

system developed specifically for Rett syndrome (Guy et al., 2001). Mice were scored for 

each of six symptoms (tremor, breathing, hind-limb clasping, gait, mobility, and overall 

general condition) related to the Rett phenotype and were given a score of either 0 (absent), 1 

(present), or 2 (severe). Individual symptom scores were then aggregated to give an overall 

symptom score. Scoring was carried out blind to genotype. 

2.2.2 Nest building 

Home cage nest quality was assessed using a previously described scoring system (Hess et 

al., 2008). Mice were individually caged overnight and supplied with 8 g of shredded 
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biodegradable paper strips as a nesting material, distributed evenly over cage floor. Next 

morning nest quality was assessed using a five point scoring system, which rated nests based 

on the formation of a central nest hollow with surrounding walls (Fig. 2.1). The lowest score 

of zero was given if the nesting material was undisturbed, and no signs of interaction or 

manipulation were seen. The maximum score of five was given when the mouse had 

constructed a fully formed nest, with walls completely enclosing a central hollow (Fig. 2.2). 

In order to assign a score, the lowest point of the nest was identified and scored (Fig. 2.1), 

with an additional 0.25 being added to the score for each quarter of the nest that had a higher 

wall. Scoring was carried out by two independent scorers blind to genotype. 

 

 

 

Figure 2.1 – Nesting scoring system 

Top and side view demonstrating how scores were assigned for the assessment of nesting 

behaviour. Scores were determined by the shape and height of the walls surrounding a central 

hollow, with each quarter of the nest contributing individually to the score (taken from Hess 

et al., 2008). 
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Figure 2.2 – Example nests 

Top and side view images of example nests and their corresponding scores (taken from Hess 

et al., 2008). 
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2.2.3 Whole-body plethysmography 

Respiratory function was assessed in conscious and unrestrained mice using whole body 

plethysmography (EMMS, Bordon, U.K.). Mice were placed inside a Plexiglas chamber and 

left for 20 minutes to become adapted to the environment, after which their breathing was 

monitored for 30 minutes. A continuous bias airflow supply allowed the animal to be kept in 

the chamber for extended periods of time. Pressure changes caused by alterations in the 

temperature and humidity of the air as it enters and leaves the subject’s lungs were detected 

by a pressure transducer. This analogue signal was amplified and converted to a digital 

display by the custom software to produce a waveform representing the breathing pattern of 

the animal. The waveform was then exported and analysed using pClamp 10.2 (Molecular 

Devices inc., California, USA). Respiratory waveforms were analysed for frequency, 

frequency variability and the presence of apnoeas (expiratory pauses lasting longer than three 

respiratory cycles). 

2.2.4 Open field 

Locomotor function and exploratory behaviour was investigated using an open-field test. 

Mice were placed in the centre of a 60 cm diameter circular arena and allowed to explore 

freely for 10 minutes. Experimenters left the room during testing sessions to prevent 

distraction of the mice. The arena was imaged with an overhead digital camera and the mouse 

was detected and tracked by background subtraction using Ethovision 3.1 tracking software 

(Noldus Inc, Leesburg, VA). This produced a digital track that was then analysed by the 

software and a number of movement related parameters including total distance moved and 

rearing were calculated. The test was carried out on two consecutive days and the mean result 

calculated. 

2.2.5 Gait analysis 

Gait analysis was carried out using the DigiGait imaging system (Mouse Specifics, Boston, 

MA). Digital videos were captured of the ventral surface of the mice as they ran at 15cm/s on 

a transparent motorised treadmill. To ensure mice remained within the viewing field of the 

camera they were contained within an open-bottomed Plexiglas chamber, with adjustable 

bumpers at either end to accommodate different sized mice. Videos captured by the camera 

were analysed with the supplied proprietary DigiGait software which produced values for a 

large number of gait characteristics. 
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2.2.6 Balance beam 

Mice were tested for balance and coordination by analysing the time taken to traverse a 50 

cm span of a two inclined wooden beams (11 cm, 5 cm). Three trials on each beam were 

carried out on two consecutive days and the results averaged. Animals that had not crossed 

the beam within one minute were given the maximum score of 60 seconds. 

2.2.7 Bone biomechanical tests 

Biomechanical testing of tibia and micro-hardness testing of polished femur was conducted 

as described previously (Kamal et al., 2015). Briefly, tibial shafts from each comparison 

group were scanned by micro-computed tomography (SKYSCAN®1172/A μCT Scanner, 

Bruker, Belgium) before being subjected to three point bending to test cortical bone. The tests 

were performed using a Zwick/Roell z2.0 testing machine (Leominster, UK) with a 100 N 

load cell with tibias placed between supports at 8 mm separation and load applied with a rate 

of 0.1 mm s−1 until fracture occurred. Data were analysed to determine values of stiffness, 

ultimate load and Young's modulus (Kamal et al., 2015). The material properties of bone 

were assessed by micro-indentation hardness test performed on transverse distal mid-shaft 

sections of polished femur. Micro-hardness testing was performed using a WilsonWolport 

Micro-Vickers 401MVA machine (UK), with an applied load of 25 g for 100 seconds. Each 

sample was tested at seven points and the Vickers pyramid hardness number (HV) calculated. 

2.2.8 Rotarod 

Motor learning and coordination was examined using a five-lane accelerating rotarod (Ugo 

Basile, Italy). During testing mice were placed on a rod which gradually accelerated from 1 

to 45 rpm over a period of five minutes. Mice were scored for how long they remained on the 

rod without falling or passively rotating. Three trials each on two consecutive days were 

carried out and the mean score of all trials was calculated for each mouse. 

2.2.9 Exercise tolerance 

The exercise capacity of mice was investigated using an accelerating elevated treadmill 

(Kemi et al., 2004). An electrified grid at the base of the treadmill, providing a mild electric 

shock when stood upon, acted as a deterrent to prevent mice stopping for motivational 

reasons, in order to ensure true exercise capacity was measured. Mice were placed on the 

treadmill at an initial speed of 10 cm/s and the speed was increased by 2 cm/s every two 

minutes until the animals was no longer able to cope with the speed and passively allowed 
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itself to be shocked on the grid without returning to the treadmill. At this point the trial was 

terminated and the time the mouse had lasted on the treadmill was noted. 

2.2.10 Blood biochemistry 

Animals were euthanised by CO2 inhalation and arterial blood samples acquired via terminal 

cardiac puncture. Samples were quickly transferred to lithium heparin-coated polypropylene 

tubes, to prevent clotting, and transported to a clinical pathology lab for biochemical analysis.   

2.3 General molecular biology 

2.3.1 Reagents 

Table 2.1 – General molecular biology reagents 

Reagent Supplier Catalogue # 

Maxima hotstart green PCR master mix 2X Life Technologies K1061 

Phusion high fidelity DNA polymerase New England Biolabs M0530S 

Gel loading dye, purple (6X) New England Biolabs B7024S 

Quick ligation kit New England Biolabs M2200S 

Quick-Load 100 bp Ladder New England Biolabs N0647S 

Quick-Load 1 KB Ladder New England Biolabs N0468S 

Deoxynucleotide (dNTP) solution mix New England Biolabs N0447S 

Subcloning efficiency DH5α  cells Life Technologies 18265-017 

QiaQuick PCR purification kit Qiagen 28104 

QiaPrep spin miniprep kit Qiagen 27104 

QiaQuick gel extraction kit Qiagen 28704 

Plasmid plus maxi kit Qiagen 12963 

PureLink genomic DNA mini kit Life Technologies K1820-00 

Ethidium bromide solution 10 mg/mL Sigma-Aldrich E1510-10ML 

Ampicillin sodium salt Sigma-Aldrich A0166-5G 

Kanamycin sulfate Life Technologies 11815-024 

Spectinomycin dihydrochloride Sigma-Aldrich S26447-100MG 

Chloramphenicol Sigma-Aldrich C0378 

Tissue culture flask 75 cm vented Corning 430641 

Tissue culture centrifuge tube (15 ml) Corning 430790 

2.0 ml Feel the Seal cryo-vial tubes Alpha Labs LW3534 

C-Chip disposable haemocytometer Labtech DHC-N01 

Trypan blue solution 0.4% Sigma-Aldrich T8154 

0.2 ml PCR tube, domed cap Starlab 11402-4300 
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2.3.2 Solutions 

Table 2.2 – General molecular biology solutions 

Solution Composition 

0.5 x TBE Running Buffer pH 8.3 

 
45 mM Tris base 
45 mM Boric ccid 

1 mM EDTA 
 

Luria-Bertani (LB) medium 

 
3% (w/v) Bacto-tryptone 

1% (w/v) Bacto-yeast extract 
1% (w/v) NaCl 

 
 

 

2.3.3 Protocols 

2.3.3.1 PCR primer design 

Primers were designed using PrimerQuest (https://eu.idtdna.com/Primerquest/Home/Index), 

an online tool for identifying suitable primers within a given target region. Optimum 

annealing temperature was set to 62°C with a minimum and maximum of 55 and 65°C 

respectively. Optimum primer length was set to 22 bp, with a minimum and maximum of 17 

and 30 bp respectively. If DNA generated by PCR was required for further downstream 

cloning, appropriate restriction sites were added to the 5’-ends of forward and reverse 

primers.  

2.3.3.2 Polymerase chain reaction (PCR) 

For standard reactions Maxima hotstart green mastermix was used. In experiments in which 

the amplified DNA was required for further downstream cloning, Phusion high fidelity 

polymerase was used. Reactions were set-up in 0.2 ml thin-walled tubes with components as 

described in Table 2.3 & 2.4. Reactions were run on a thermocycler (Applied Biosystems® 

Veriti® 96-well fast thermal cycler) and annealing temperature and extension time were 

adjusted based on primer properties and the length of DNA fragment to be amplified (Table 

2.5). Amplified DNA was purified from the PCR mixture using QIAquick PCR purification 

kit (Qiagen, USA) according to the manufacturer’s instructions. DNA was eluted into 30 μl 

of elution buffer. 

 

https://eu.idtdna.com/Primerquest/Home/Index
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Table 2.3 - Components of typical Maxima hotstart green PCR 

Component Concentration 

HotStart green PCR master mix 1X 

Forward primer 0.4 µM 

Reverse primer 0.4 µM 

Template DNA 10 ng (plasmid) or 25 ng (genomic) 

Water Make up to 50 µl 

 

Table 2.4 - Components of a typical Phusion high fidelity PCR 

Component Concentration 

5X Phusion HF buffer 1X 

10mM dNTPs 0.2 mM 

Forward primer 0.4 µM 

Reverse primer 0.4 µM 

Template DNA 10 ng (Plasmid) or 25 ng (Genomic) 

Water Make up to 50 µl 

 

Table 2.5 – Thermocycling conditions for standard PCR 

 Maxima hotstart Phusion  

Step Temp. oC Time Temp. oC Time Cycles 

Initial 

denaturation 
95 4 min 98 30 sec 1 

Denaturation 95 30 sec 98 10 sec 

35 
Annealing 

55-65 (primer 

dependent) 
30 sec 

55-65 (primer 

dependent) 
20 sec 

Extension 72 1 min/kb 72 30 sec/kb 

Final extension 72 10 min 72 10 min 1 

Hold 4 ∞ 4 ∞  

 

 

2.3.3.3 Measurement of DNA concentration  

The concentration of DNA samples was measured by UV absorbance at 260 nm using a 

Nanodrop 1000 (Thermo Fisher Scientific, USA). A blank measurement was first made using 
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Qiagen elution buffer. A 1 µl DNA sample was then loaded and measured. DNA purity was 

calculated using the ratio of 260 nm/280 nm absorbance with a ratio of 1.8 - 2.2 considered as 

an acceptable purity level. 

2.3.3.4 Restriction digest  

Restriction digests were used to generate sticky ends for ligations and to check for successful 

DNA insertions in cloning reactions. Reactions were prepared in 0.2 ml PCR tubes and 

incubated from 2 hours - overnight in a thermocycler set to 37°C. Table 2.6 shows 

components of a typical reaction. 

 

Table 2.6 - Components of a typical restriction digest 

Component Concentration 

Cut Smart buffer (10X) 1X 

DNA 1 µg 

Restriction enzyme 1 10 units 

Restriction enzyme 2 10 units 

Water Make up to 25 µl 

 

2.3.3.5 Agarose gel electrophoresis and gel extraction 

DNA samples were separated by size using agarose gel electrophoresis. Agarose solution was 

prepared at concentrations varying from 1-2%, depending on the size of fragments, in 0.5x 

TBE. The solution was heated until all the agarose had dissolved and then allowed to cool. 

Ethidium bromide DNA stain was then added to a final concentration of 200 µg/ml, and the 

solution was poured into a gel tray to set for 45 minutes. DNA samples were mixed with 

1/5th volume of gel loading dye and added to the wells. For PCR samples 5 µl of sample was 

loaded, and for digested DNA 25 µl of sample was loaded. In addition, 150 ng of a molecular 

weight ladder was also loaded onto each gel to allow band size to be determined by 

comparison against bands of known size. Voltage was set between 70 V – 120 V depending 

on the size of the gel. Gels were imaged using a UV transilluminator (UV-TM-40, Upland, 

USA) and pictures were taken with a digital camera (PC1192, Canon, Japan). If DNA was 

required for further use, the appropriate band was excised using a scalpel and purified from 

agarose using QIAquick gel extraction kit (Qiagen, USA), according to the manufacturer’s 

instructions. DNA was eluted in 30 μl of elution buffer. 
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2.3.3.6 Ligation 

DNA ligase was used to join together DNA inserts and vector backbones during cloning. 

Insert and vector were first digested with the same restriction enzymes to produce compatible 

sticky ends. A 3:1 insert:vector molar ratio was used at all times. For each reaction, 50 ng of 

digested vector was used along with an amount of insert DNA calculated by the formula: 

desired insert/vector molar ratio x mass of vector (ng) x ratio of insert to vector lengths. 

Components of a typical ligation reaction are shown in Table 2.7. Reactions were gently 

mixed and left at room temperature for half an hour after which they were either used directly 

for bacterial transformation or stored at -20°C for future use. 

Table 2.7 - Components of a typical ligation reaction 

Component Amount 

Vector DNA 50 ng 

Insert DNA Varies with size of insert 

Quick ligase buffer (2X) 10 µl 

Quick ligase enzyme 2000 units 

Water Make up to 20 µl 

 

2.3.3.7 Bacterial transformation 

Sub-cloning efficiency DH5α cells were removed from the -80°C freezer and thawed on ice. 

Either 2.5 µl of a ligation reaction or 10ng of plasmid DNA was added to the cells and mixed 

very gently by stirring with the pipette tip. Cells were incubated on ice for 30 minutes and 

then heat-shocked at 42°C for 20 seconds. Cells were then cooled on ice for two minutes, and 

950 µl of LB was added to the cells, before being transferred to a shaking incubator, set to 

37°C and 200 rpm, for one hour. For plasmid amplifications, 200 µl of this cell mixture was 

spread on an agar plate, containing appropriate antibiotics, using a sterile spreader. For 

ligation reactions, the cell suspension was concentrated before plating. Cells were centrifuged 

for two minutes at 10,000 g to pellet the bacteria, 800 µl of the supernatant was removed, and 

the pellet re-suspended. All of the ~200 µl cell suspension was then spread on the agar plate. 

Plates were incubated upside down overnight in a 37°C incubator. The next morning plates 

were wrapped in Parafilm and stored in a refrigerator. 
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2.3.3.8 Colony PCR 

Colony PCR was used to identify successful ligation reactions directly from colonies growing 

on an agar plate. Colonies were picked from agar plates with a 200 µl pipette tip. After 

picking, the tip was rubbed along the bottom of a PCR tube to provide a template for the 

PCR. The rest of the colony was pipetted into 3 ml of LB containing appropriate antibiotic. 

Standard Maxima hotstart green PCR components (Table 2.3) were added to the PCR tube 

along with appropriate primers and the reaction was run on a thermocycler using standard 

PCR conditions (Table 2.5). PCR products were resolved on an agarose gel to identify those 

which had the correct insert. Positive clones were then sub-cultured overnight in a 37°C 

shaking incubator for plasmid extraction the next day. 

2.3.3.9 Plasmid isolation 

Plasmid DNA was isolated from successfully transformed bacterial cells by miniprep. Single 

bacterial colonies were picked, using a sterile 200 µl pipette tip, and cultured overnight in 3 

ml of LB (with appropriate antibiotic) in a shaking incubator set to 37°C and 200 rpm. Next 

morning, the bacterial culture was centrifuged at 13,000 g for three minutes to pellet bacteria. 

Plasmid DNA was then isolated from pellets using QIAprep spin miniprep kit (Qiagen, USA) 

following the manufacturer’s instructions. DNA was eluted in 30 μl of elution buffer. 

2.3.3.10 Sequencing 

DNA inserts from cloning reactions were checked for correct orientation and absence of 

mutations by Sanger sequencing. Sequencing primers flanking the insert were designed using 

PrimerQuest (see 2.3.3.1). For larger inserts, internal primers were also designed to ensure 

complete sequence coverage. Sequencing reactions were carried out by Source Bioscience 

UK. For each sequencing reaction 500 ng of DNA and 16pmol of primer was required.  

Sequence traces were analysed using SnapGene software (GSL Biotech LLC, USA).  

2.3.3.11 Genomic DNA extraction 

Adherent cultured cells were trypsinised using trypsin EDTA 0.25% and centrifuged for 5 

minutes at 250 g. The supernatant was removed and the pellet was resuspended in 200 µl of 

DPBS. Genomic DNA was then extracted using the PureLink genomic DNA mini kit 

according to the manufacturer’s protocol. Extracted DNA was eluted in 50 µl of genomic 

elution buffer. 
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2.4 Cell culture 

2.4.1 Reagents 

Table 2.8 - Cell culture reagents 

Reagent Supplier Catalogue # 

Trypsin-EDTA 0.25% solution Sigma-Aldrich T4049-100 ml 

Dulbecco’s phosphate buffered saline (DBPS) Life Technologies 14190-144 

Trypan blue 0.4% solution Sigma-Aldrich T8154 

Filter unit 500 ml 0.22 µm polyethersulfone Merck Millipore SCGPU05RE 

GlutaMAX supplement Life Technologies 35050-038 

Penicillin-streptomycin 10K units / ml Life Technologies 15140-122 

Newborn calf serum, New Zealand origin Life Technologies 16010-159 

Advanced Dulbecco’s modified eagle’s medium /F12 Life Technologies 12634-010 

Dulbecco’s modified eagle’s medium Sigma-Aldrich 41965-039 

Foetal bovine serum heat inactivated Life Technologies 1018-157 

Dimethyl sulfoxide Sigma-Aldrich 472301-100 ml 

 

 

2.4.2 Cell culture media 

Table 2.9 - Composition of cell culture media 

Media Reagent Concentration 

P19 Growth (500 ml) 
 

Advanced Dulbecco’s modified eagle’s medium /F12 93% 

GlutaMAX supplement 1% 

Penicillin-streptomycin 10K units / ml 1% 

Newborn calf serum, New Zealand origin 5% 

Freezing (250 ml) 
 

Dulbecco’s modified eagle’s medium 39% 

Foetal bovine serum heat inactivated 50% 

Penicillin-streptomycin 10K units / ml 1% 

Dimethyl sulfoxide 10% 
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2.4.3 Cell maintenance 

2.4.3.1 Liquid nitrogen recovery 

Vials of P19 cells (kind gift from Katherine West lab) were stored long-term in liquid 

nitrogen. When required for experiments, cells were removed from storage and transferred to 

the lab on dry ice. They were quickly thawed for three minutes in a 37°C water bath and then 

transferred into a 75 cm2 cell culture flask containing 10 ml of pre-warmed P19 growth 

medium (Table 2.9). The flask was incubated at 37°C for four hours to allow the cells to 

attach, after which the growth media was removed and replaced with 10 ml of fresh media. 

2.4.3.2 Cell counting 

To determine cell density for plating and transfection reactions, cells were counted using a 

disposable haemocytometer. A 20 µl sample was taken from the cell suspension and mixed 

with 20 µl of 0.4% Trypan blue Solution. A 10 µl sample of this mixture was added to each 

chamber of the haemocytometer, and cells were counted using a light microscope with a 10x 

objective. Cell counts were made for five squares in each chamber and the mean result 

calculated. To calculate density per ml of cell suspension the following formula was used: 

Mean cell count x dilution factor x 10,000 

The dilution factor was two as the cell suspension was diluted 1:1 with Trypan blue. Each 

square counted had a volume of 100 nl and counts were therefore multiplied by 10,000 to 

produce a value per ml. 

2.4.3.3 Cell passage 

In order to keep the cells in the log-phase of growth and to prevent cell death, cells were 

passaged when 70-80% confluent. For passaging, growth medium was removed and cells 

were washed gently in 10 ml of DPBS. To detach the cells, 2 ml of trypsin solution was 

added and the flask was returned to the incubator for three minutes, and 8 ml of serum 

containing growth medium was added in order to inactivate the trypsin. Cells were pipetted 

up and down gently using a 10 ml pipette, to prevent clumping, and then 1 ml of this cell 

suspension was added to 10 ml of pre-warmed growth media in a fresh 75 cm2 culture flask, 

and the flask was returned to the incubator. 
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2.4.3.4 Freezing cells for long-term storage 

For long-term storage, cells were kept in freezing media (Table 2.9) in liquid nitrogen. Cells 

chosen for storage had been passaged as few times as possible. Growth medium was removed 

and the cells were washed gently with DPBS. Cells were then detached with trypsin, and 

growth medium was added to inactivate the enzyme. Cell density was first measured using a 

haemocytometer, and then cells were pelleted by centrifugation at 1500 g for five minutes at 

room temperature. The supernatant was removed and the pellet re-suspended in freezing 

medium to a density of 2 million cells per ml. The cell suspension was then added to 

cryovials, 1 ml per vial, and transferred quickly on dry ice to liquid nitrogen storage. 

2.4.4 Neon transfection 

Cells were transfected with DNA plasmids by electroporation using the Neon transfection 

system (Life Technologies, USA) according to the manufacturer’s protocol. Cells were first 

trypsinised and counted. For a 12-well plate, 200,000 cells per well were required. The 

appropriate amount of cell suspension was added to a 15 ml falcon tube and the cells were 

pelleted by centrifugation at 150 g for five minutes at room temperature. The supernatant was 

removed and the pellet re-suspended in the appropriate amount of buffer R (10 µl per 

200,000 cells). For each well, 10 µl of cell suspension was mixed with 500 ng of each 

plasmid to be transfected, and then taken up into the Neon pipette tip. The pipette tip was 

inserted into a Neon tube containing 3 ml of electrolyte buffer E, and the start button was 

pressed on the neon device to begin the electroporation. Once the process was complete, the 

pipette was removed from the Neon tube and the cells were pipetted into a well in a 12-well 

plate containing fresh growth media without any antibiotics. The plate was mixed gently and 

then returned to the incubator for 48 hours before being used for genomic DNA extraction or 

flow cytometry analysis. 
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2.5 TALEN construction 

2.5.1 Reagents 

Table 2.10 - Reagents specific for TALEN construction 

Reagent Supplier Catalogue # 

T4 DNA ligase New England Biolabs M0202S 

BsaI New England Biolabs R0535S 

Esp3I Life Technologies FD0454 

Plasmid-Safe ATP-dependent DNase Cambio E3101K 

ATP (10 mM) New England Biolabs 9804S 

X-Gal Life Technologies 15520-018 

Isopropyl-β-D-thiogalactoside (IPTG – 1 M) Roche Applied Science 10724815001 

 

2.5.2 Primers 

Table 2.11 – Primers used for TALEN pair construction and testing 

Primer Sequence 5’  3’ 

pCR8_F1 TTGATGCCTGGCAGTTCCCT 

pCR8_R1 CGAACCGAACAGGCTTATGT 

SeqTALEN_5-1 CATCGCGCAATGCACTGAC 

TAL_R2 GGCGACGAGGTGGTCGTTGG 

Mecp2_Int2_For TCTAGCTGCACAACCTTCCA 

Mecp2_Int_Rev GCTGCCTAGGGTTCCAGTAT 

 

2.5.3 Vectors 

Table 2.12 - Vectors used for TALEN pair construction 

Vector Name Source 

TALEN golden gate RVD plasmid kit Addgene Kit #1000000024 

pFUS_A Addgene Kit #1000000024 

pFUS_B Addgene Kit #1000000024 

pLR vectors Addgene Kit #1000000024 

pTALv2_FokIWT Adam West lab 

pTALv3-FokI-ELDS Adam West lab 

pTALv3-FokI-KKRS Adam West lab 
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2.5.4 Protocols 

TALEN constructs were assembled using the golden gate cloning method (Engler et al., 

2008, 2009). This allowed multiple plasmids to be combined in a defined order. Since 

TALEN construction involves mixing multiple plasmids together, a picking sheet was used to 

prevent confusion and errors. TALEN length varied from 17-20 RVDs in length. Assembling 

this number of fragments together in one step would be inefficient so a two-step process was 

used (Cermak et al., 2011). Five days were required for full TALEN assembly. 

Day 1 

The first 10 RVDs were assembled in vector pFUS_A and the remaining RVDs were 

assembled in pFUS_B. During assembly RVD inserts replace the lac Z sequence in the 

plasmid which allows for blue/white screening (Fig. 2.3). Appropriate RVDs were picked for 

each position in the TALEN DNA binding domain. For example, if position one was RVD NI 

then plasmid pNI1 was added to the tube. If position three was RVD HD then plasmid pHD3 

was added. This ensured that the RVDs had the correct overhangs after digestion to allow 

them to be assembled in the correct order. The RVDs were mixed with the appropriate 

enzymes and pFUS vector as described (Table 2.13) in a 0.2 ml PCR tube. Both digestion 

and ligation occur within the same reaction.  

 

Table 2.13 - Components of TALEN golden gate # 1 reaction 

Component Concentration 

Appropriate RVDs depending on TALEN sequence 150 ng of each 

pFUS_A or pFUS_B 150 ng 

BsaI  10 units 

T4 DNA Ligase  1200 units 

10X T4 DNA Ligase Buffer 1X 

Water Make up to 20 µl 
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Figure 2.4 – pFUS plasmid map 

Plasmid map showing the generic features of the pFUS plasmid used to assemble RVDs on 

day 1. The lacZ-α sequence codes for β-galactosidase. Digestion with BsaI during RVD 

assembly removed this sequence, leading to colourless cells, allowing for screening of 

successful cloning. The plasmid also contains the resistance gene for the spectinomycin 

antibiotic and an origin of replication (ori).   

 

When all the components were assembled they were transferred to a thermocycler and the 

following programme was run: 

(5 minutes @ 37°C + 10 minutes @ 16°C) x 10 

                5 minutes @ 50°C 

                5 minutes @ 80°C 

In order to destroy unligated linear DNA fragments, incomplete products, and linearised 

vector, 1 µl of 10 mM ATP and 1 µl of Plasmid-Safe nuclease was then added to the tubes 

and samples were incubated at 37°C for 1 hour. DH5α cells were then transformed with 5 µl 

of each reaction, and 200 µl of the transformation mix was spread on 50 mg/ml 

spectinomycin agar plates containing 70 µl of 20 mg/ml X-gal and 70 µl of 0.1 M IPTG. This 
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allowed blue/white screening of successful reactions, with empty vectors producing blue 

colonies and vectors with inserts producing white colonies. 

Day 2 

Three white colonies were picked from each plate and checked for successful RVD insertion 

by colony PCR using standard PCR components and thermocycler conditions (see Table 2.3 

& 2.5). Primers pCR8_F1 and pCR8_R1 were used for the reaction, with an annealing 

temperature of 55°C and an extension time of 1 minute 45 seconds. Clones which had a PCR 

product of the correct size were cultured overnight in 3 ml of LB containing 50 mg/ml 

spectinomycin. 

Day 3 

Overnight bacterial cultures were pelleted by centrifugation at 13,000 g for three minutes, 

and plasmid DNA was extracted by miniprep. As an additional check, plasmid DNA was sent 

for overnight Sanger sequencing to confirm RVDs were inserted in the correct order and 

without mutations. 

To combine the two pFUS plasmids into the final full length TALEN construct, a second 

golden gate reaction was carried out. pFUS_A and pFUS_B were combined with a plasmid 

containing the final RVD, and a pTAL destination vector, coding for the FokI nuclease, along 

with appropriate enzymes (Table 2.14).  

 

Table 2.14 - Components of TALEN golden gate # 2 reaction 

Component Amount 

pFUSA 150 ng 

pFUSB 150 ng 

Appropriate pLR vector  (last RVD) 150 ng 

Destination vector 75 ng 

Esp3I 10 units 

T4 DNA ligase 800 Units 

10X T4 ligation buffer 1X 

Water Make up to 20 µl 
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There are five vectors coding for the final RVD, one for each of the five possible RVDs in a 

TALEN sequence. The destination pTAL plasmid (Fig. 2.4) chosen depended on whether the 

WT or obligate heterodimer mutant version of FokI nuclease was required.  

 

 

Figure 2.3 – pTAL_FokI plasmid map 

Plasmid map showing the features of the final destination pTAL_FokI plasmid. The final 

RVD assembly was cloned between the sequences coding for the TALE protein N-terminal 

(NT) and C-terminal (CT), using Esp3I, and replaced the chloramphenicol resistance gene 

(Chlor) and the ccdb gene (ccdb). The ccdb gene is lethal in standard E. coli cells and was 

used to select against products without an RVD insert. Downstream of the CT is the FokI 

nuclease sequence (FokI), the bovine growth hormone (bGH) poly(A) signal to terminate 

transcription, the ampicillin (Amp) resistance gene, and a bacterial origin of replication (ori). 

TALEN transcription was driven by the cytomegalovirus (CMV) promoter.   
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Reactions were set-up in a 0.2 ml PCR tube, transferred to a thermocycler, and the following 

programme was run: 

(5 minutes @ 37°C + 10 minutes @ 16°C) x 5 

              15 minutes @ 37°C 

              5 minutes @ 80°C 

DH5α competent cells were then transformed with 5 µl of this reaction product, and then 

plated on 50 mg/ml ampicillin plates containing X-gal and IPTG (see above). 

Day 4 

Two white colonies from each bacterial plate were picked with a 200 µl pipette tip and 

cultured overnight in 3 ml of LB containing 50 mg/ml ampicillin. 

Day 5 

Bacterial cultures were pelleted by centrifugation at 13,000 g for three minutes and plasmid 

DNA was isolated by miniprep. DNA concentration was measured by Nanodrop, and 500 ng 

of each plasmid was digested with SacI and XhoI and checked for correct sized inserts by 

agarose gel electrophoresis. Plasmids with correct digestion products were sent for Sanger 

sequencing using sequencing primers SeqTALEN 5-1 and TAL_R2, which confirmed RVDs 

were inserted in the correct order and without mutations. 
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2.6 Cloning of CRISPR-Cas9 constructs 

2.6.1 Reagents 

Table 2.15 - Reagents specific for cloning of CRISPR-Cas9 constructs 

Reagent Supplier Catalogue # 

FastDigest Bpil Life Technologies FD1014 

FastAP thermosensitive alkaline phosphatase Life Technologies EF0654 

T4 polynucleotide kinase (PNK) New England Biolabs M0236S 

 

2.6.2 Primers 

Table 2.16 - Primers for cloning target sequence into guide expression plasmid 

Primer Sequence 5’  3’ 

In2_7SK_g3LA64F CCTCGCACTGCCCCTCTGAGCTAC 

In2_7SK_g3LA64R AAACGTAGCTCAGAGGGGCAGTGC 

In2_hH1_g3RB86F TCCCACTGTGTCGCACTACAG 

In2_hH1_g3RB86R AAACCTGTAGTGCGACACAGT 

In2_hH1_g2LA65F TCCCAAGTAGCAGCTGCCTAT 

In2_hH1_g2LA65R AAACATAGGCAGCTGCTACTT 

In2_7SK_g2RB52F CCTCGTCTGGCCTGTAGCTCAGA 

In2_7SK_g2RB52R AAACTCTGAGCTACAGGCCAGAC 

T7F TAATACGACTCACTATAGG 

 

2.6.3 Vectors 

Table 2.17 – Plasmid vectors used for CRISPR construction 

Vector Name Source 

phH1-gRNA-1-2 Adam West lab 

h7SK-gRNA-2-2 Adam West lab 

pAC84-pCR8-dCas9 Addgene # 48218 

pX335-U6-Chimeric_BB-CBh-hSpCas9n(D10A) Addgene # 42335 
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2.6.4 Protocol 

For each CRISPR guide, a 20 bp guide sequence was synthesised as two complementary 

oligonucleotides (Table 2.16), annealed together, and then cloned into single guide 

expression plasmids cut with BbsI (Table 2.17). 

Design of oligonucleotides 

Some RNA Polymerase III promoters require a specific nucleotide to start transcription. The 

human 7SK promoter (h7SK) requires a G base to initiate RNA transcription, therefore 

guides beginning with a G base were cloned into h7SK_gRNA. Guides beginning with an A 

base were cloned into hH1_g-RNA plasmid. Guides beginning with T or C base had an extra 

G base added at the start of the guide sequence and were cloned into h7SK_gRNA. Extra 

bases were added to 5’ and 3’-ends of oligonucleotides as appropriate to make suitable 

overhangs for insertion into BbsI cut guide expression plasmids (Table 2.18).  

 

Table 2.18 - Overhang design for guide sequence oligonucleotides 

Expression 
Plasmid 

Oligo 
Overhang 
(+1 base) 

Protospacer 
(17-20 bases) 

Overhang 

h7SK_gRNA 
Forward 
Reverse 

5’ –CCTCG 
3’-C 

(N) bases 
(N) bases complement 

 
CAAA-5’ 

hH1_gRNA 
Forward 
Reverse 

5’-TCCCA 
3’-T 

(N) bases 
(N) complement 

 
CAAA-5’ 

 

Oligo annealing 

Single stranded forward and reverse complementary oligonucleotides were annealed together 

and phosphorylated for cloning into the expression plasmid. This formed a double stranded 

DNA molecule with overhangs matching those of the appropriate expression plasmid cut with 

BbsI. Oligonucleotides were mixed with the appropriate enzyme and buffers in a 0.2 ml PCR 

tube (Table 2.19), and annealed in a thermocycler using the following conditions: 

30 minutes @ 37oC 

5 minutes @ 95°C and then ramp down to 25°C at 5°C /min 
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Table 2.19 – Components of oligo annealing reaction 

Component Concentration 

Oligonucleotide 1 100 µM 

Oligonucleotide 2 100 µM 

10X T4 ligation buffer 1X 

T4 PNK 5 units 

ddH2O Make up to 20 µl 

 

Digestion of expression plasmid 

1 µg of appropriate single guide expression plasmid was digested with BbsI RE in 0.2 ml 

PCR tube (Table 2.20) and incubated in thermocycler at 37°C for two hours. Digestion 

products were then separated by DNA agarose electrophoresis, and the cut vector band was 

excised and purified using QIAquick gel extraction kit (see 2.3.3.5).  

 

Table 2.20 - Components of guide expression plasmid digest 

Component Concentration 

Guide expression plasmid 1 μg 

FastDigest BbsI 10 units 

Fast alkaline phosphatase (AP) 1 unit 

10X FastDigest buffer 1X 

ddH20 Make up to 20 µl 

 

Cloning of annealed oligonucleotides and expression plasmid 

To clone the annealed guide sequence into the expression plasmid, a ligation reaction was 

set-up in a 1.5 ml Eppendorf tube (Table 2.21) and incubated at room temperature for 10 

minutes. DH5α cells were then transformed with 2.5 µl of this reaction, and the cells were 

spread on 50 mg/ml ampicillin plates.  

 

 

 

 



70 

 

Table 2.21 - Components of ligation reaction for annealed oligos and expression plasmid 

Component Concentration / Amount 

BbsI digested plasmid 50 ng 

Annealed oligonucleotides  40 nM 

2X Quick ligation buffer 1X 

Quick ligase enzyme 2000 units 

ddH20 Make up to 11 µl 

2.7 Mecp2 repair and GFP reporter constructs 

2.7.1 Primers 

Table 2.22 - Primers for cloning and detecting genomic insertion 

Primer Sequence 5’  3’ 

Genomic_FOR AGAGGCCTGCATTCTTAACTAC 

Genomic_REV TTGGGTCACATGGGTCTTTAC 

C1 GACTCGAGCTTTACATAGAGCG 

C2 TCCCACAACGAGGACTACA 

TALEN_KI_FOR CGGAAGGCCGTCAAGG 

TALEN_KI_REV CCAGTCTGGCCTGTAGCTC 

CRISPR_KI_FOR CCAGAGGTCTCACATGCTGTG 

CRISPR_KI_REV GGTACCCACTTTCACAGAGAG 

HBB_Ex3_SA_FOR CTAGACTGACCTCTTCTCTTCCTCCCACAGGG 

HBB_Ex3_SA_REV AATTCCCTGTGGGAGGAAGAGAAGAGGTCAGT 

T7F TAATACGACTCACTATAGGG 

 

2.7.2 Vectors 

Table 2.23 – Plasmid vectors for repair construct cloning and flow cytometry analysis 

Vector Name Source 

pENTR-1A Addgene #17398 

Cellectis_4829 Cellectis (France) 

p-CMV-mCherry Joe Mountford lab 

pLenti-PGK-GFP Kind donation Kamal Gadalla 
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2.8 TIDE analysis of cutting efficiency 

An online tool called Tracking of indel decomposition (TIDE- http://tide.nki.nl/) was used to 

quantify cutting efficiency of TALEN and CRISPR constructs. Genomic DNA was extracted 

from cells transfected with constructs, as well as from untransfected controls, and PCR 

amplified using primers Mm_Mecp2_Int2_For and Mm_Mecp2_Int2_Rev. PCR products 

were then sent for Sanger sequence analysis. Sequence traces from control and transfected 

samples were uploaded onto the TIDE software, the TALEN or CRISPR target sequence was 

inputted and the software then automatically calculated cutting efficiency and characterised 

indel composition. 

2.9 ImageJ band intensity measurement 

ImageJ software (NIH, USA) was used to measure the band intensity of PCR products on 

agarose gels. Images files were opened and the “rectangular select” tool was used to select an 

area around the first gel band. This was marked as the first band by pressing CTRL + 1. The 

mouse cursor was used to drag the box to the next band which was then selected by pressing 

CTRL + 2. The box was dragged to each band in turn and the bands selected each time by 

pressing CTRL + 2. When the final band was selected CTRL + 3 was pressed, which 

displayed histograms representing the intensity of each selected band. For each histogram, the 

“draw line” button was selected and a line drawn across the histogram from where the curve 

begins to drop until where it levels out again. The “magic wand” button was then selected 

and an area inside the histogram was clicked using the left mouse button. This selected area 

then became highlighted in yellow and an intensity value appeared in a new “results” 

window. This process was repeated for each histogram until intensity values for all the 

selected bands was acquired. 

http://tide.nki.nl/
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Figure 2.4 – ImageJ band intensity measurement 

The intensity of DNA bands on agarose gels were measured using ImageJ. (A) Bands to be 

measured were selected using the “rectangular select” tool (blue and yellow numbered 

rectangles). (B) Histograms, representing the intensity of each band, were generated and the 

straight line tool was used to enclose the area of the peak. This enclosed area (inside yellow 

lines) was then selected using the “magic wand” tool and the area of the peak was measured. 

This measurement allowed the relative density of the peaks to be compared. (Diagram taken 

from (http://www.di.uq.edu.au/sparqimagejblots).   
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2.10 Flow cytometry 

Cells expressing GFP or mCherry were detected, and fluorescence levels quantified, by flow 

cytometry. To prepare cells for analysis, cells were trypsinised with 0.25% trypsin solution, 

centrifuged at 1500 g for 5 minutes, and then resuspended in PBS. For initial neon 

optimisation experiments (see Chapter 4), GFP fluorescence was detected using a blue 488 

nm laser and 530/30 nm emission filter on an Attune acoustic focusing cytometer (Applied 

Biosystems, USA). For knock-in detection (see Chapter 5), fluorescence was detected using 

a MACSQuant VYB flow cytometer (Miltenyibiotec, Germany). GFP was detected using a 

blue 488 nm laser with 525/50 nm filter and mCherry was detected using a yellow 561 nm 

laser with 615/20 nm filter. Enough cell solution was analysed until 30,000 viable cells were 

detected. To detect viable cells, a gate was drawn to exclude events with low forward and 

high side scatter. To eliminate false positive fluorescence detection, background fluorescence 

levels in cells was determined using untransfected control cells. Data was analysed using 

FlowJo software (FlowJo, LLC, USA).   
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Chapter 3  

Nervous system specific reactivation of Mecp2 

reveals peripheral phenotypes of Rett syndrome 

3.1 Introduction 

MeCP2 is expressed in most tissues of the body. An early study (Shahbazian et al., 2002a) 

quantifying MeCP2 protein levels using western blot, showed particularly high levels in the 

brain, lungs, and spleen, with moderate levels in the heart and kidney and barely detectable 

levels in the stomach, small intestine and liver. Another study (Zhou et al., 2006), again using 

western blot, showed MeCP2 present in all tissues looked at including testis, thymus, 

pancreas, and with higher levels in the small intestine than seen in the previous study. A more 

recent study (Song et al., 2014) comprehensively investigated tissue steady state protein 

levels of MeCP2 protein using immunostaining on tissue cryosections. In total they 

characterised 60 different cell types from 16 different tissues. MeCP2 protein expression was 

seen in the vast majority of cell types with high levels seen in brain, spleen, heart, skeletal 

muscle and, in contrast to earlier studies, liver. Although there are disagreements on the 

levels in particular tissues, it is clear from these studies that MeCP2 is expressed in a wide 

range of tissues throughout the body. 

Despite being an almost ubiquitously expressed protein, several studies have shown that mice 

in which Mecp2 is deleted only from the nervous system are indistinguishable from mice in 

which Mecp2 has been deleted globally (Chen et al., 2001; Guy et al., 2001). Mice in which 

exons 3 and 4 of Mecp2 were deleted specifically in neurons and glia using nestin-cre 

mediated excision (Guy et al., 2001) showed hypoactivity, abnormal gait, low weight and the 

early lethality seen in global KO mice. Similarly, mice in which exon 3 was deleted in 

neurons and glia (Chen et al., 2001) showed the reduced brain weight and early lethality seen 

in mice in which the exon was deleted globally.  

Results from these studies would suggest that the RTT phenotype can be attributed to the 

absence of functional MeCP2 from the neurons and glia only. However in both cases, a 

comprehensive phenotyping was not carried out, with only certain aspects of the phenotype 

examined such as gait, brain size, body-weight, and early lethality. In addition, the early 
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lethality of these mice means that any subtler phenotypes, or those that take longer to 

develop, could be masked in these animals. More recent animal studies have identified a 

number of novel phenotypes including cardiovascular abnormalities ((McCauley et al., 2011; 

Panighini et al., 2013), lung phenotypes (De Felice et al., 2010), bone and skeletal muscle 

abnormalities (O’Connor et al., 2009; Conti et al., 2015; Kamal et al., 2015) and altered 

cholesterol biosynthesis (Buchovecky et al., 2013; Segatto et al., 2014) which potentially 

have a peripheral component. 

3.2 Aims 

The overall aim of the work in this chapter was to comprehensively phenotype a novel male 

RTT mouse model in which Mecp2 was selectively expressed in neurons and glia of the CNS 

and PNS, but silenced in all other cell types, in order to investigate the peripheral 

contribution to the major RTT-like phenotypes, as well as to more recently identified and less 

well-studied aspects of the disorder. The objectives of this chapter were to: 

(1) To quantify MeCP2 levels in the novel mouse model, both in peripheral and neuronal 

tissues in order to assess the validity of the model 

 

(2) To determine the effect of nervous system-specific expression of MeCP2 on survival, 

weight and gross RTT-like symptoms 

 

(3) To carry out an extensive battery of behavioural, functional, and structural tests to 

identify novel peripheral phenotypes 
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3.3 Validation of the peripheral KO mouse model 

 

 

 

Figure 3.1 – Creation of peripheral KO mouse model 

Summary of the mouse models used in this study. (A) A global KO mouse Mecp2 stop/y 

(referred to as stop/y) was created by insertion of a Neo-stop cassette into intron 2 of the 

Mecp2 gene. Mecp2 was specifically reactivated in nervous system cells in peripheral KO 

mice Mecp2stop-cre/y (referred to as stop-cre) by excision of stop cassette in nestin expressing 

cells. Digestion with EcoRI and NcoI produces different sized products in the three models 

which can be detected by Southern blot. (B) Illustration of the MeCP2 protein expression 

pattern in mouse models, showing presence (blue) of MeCP2 in nervous system and absence 

(grey) from rest of body in stop-cre mice.  
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In order to investigate the role of central versus peripheral MeCP2 protein expression in RTT, 

a tissue-specific KO mouse model (stop-cre) was generated compared to a global KO model 

(stop/y), in which gene transcription is silenced by the insertion of a stop cassette into intron 

2 of the gene (Guy et al., 2007); Fig. 3.1-A), as well as WT mice. The stop cassette can be 

excised using cre-recombinase, allowing gene transcription to be reactivated. To generate a 

peripheral KO model, stop/y mice were crossed with mice that expressed cre under the 

control of the nestin promoter. In this line, Mecp2 is selectively activated in nestin-expressing 

cells of the CNS and PNS, including neurons and glia, and remains silenced in all other cell 

types (Fig. 3.1-B).   

To confirm that MeCP2 expression was indeed limited to cells of the nervous system, 

Southern blot analysis of a panel of tissues was conducted by Dr. Jacky Guy, Edinburgh 

University (Fig. 3.2). Genomic DNA was extracted from tissues and digested with EcoRI and 

NcoI. Southern blots were then probed with a fragment covering the coding region of exon 4. 

Distinct band sizes are produced depending on whether cells have WT MeCP2 expression 

(3.2 kb), a stop cassette present (5.1 kb), or a stop cassette excised by cre mediated 

recombination (4.3 kb; Fig. 3.1-A). The results showed that in stop-cre mice the stop cassette 

had been successfully excised in all brain tissue examined, as evidenced by the presence of 

4.3 kb bands on the blot (Fig. 3.2-A). Very faint bands at 5.1 kb in forebrain and 

midbrain/hind brain samples indicate a small proportion of cells in which the stop cassette 

was not removed. In contrast, when peripheral tissue was analysed, examples from lung and 

kidney tissue are shown (Fig. 3.2-A), strong bands at 5.1 kb were seen, indicating the 

presence of the stop cassette. Faint bands at 4.3 kb indicate a small proportion of cells in 

which stop cassette has been excised. When band intensities were quantified using ImageJ 

(Fig. 3.2-B), recombination frequency was shown to be extremely high in the brain, with 

91.9% efficiency in whole brain samples. Recombination was particularly high in the 

cerebellum which showed 96.4% efficiency. Robust silencing was shown in peripheral 

tissues with only very small levels of recombination in liver (0.9%), spleen (0.5%), skeletal 

muscle (1.2%) and heart (7.4%). Higher recombination levels were seen in lung (14.3%) and 

kidney (24.4%) tissue. To confirm the results seen in the Southern blot, tissue sections were 

prepared and immunolabelled with anti- MeCP2 antibody (Fig. 3.3). Results showed strong 

staining in brainstem as expected, and minimal staining in skeletal muscle and lung. Staining 

in cardiac tissue was slightly higher than expected from Southern blot data, but the reasons 

for this were not clear.     
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Figure 3.2 – Southern blot analysis reveals tissue specific Mecp2 reactivation 

Silencing in peripheral tissues confirmed by southern blot of restriction digested genomic 

DNA. (A) Representative blots from genomic DNA extracted from various tissues. DNA 

extracts probed with fragment covering the coding region of exon 4 of the Mecp2 gene. Black 

arrows indicate location of expected 3 bands: WT (3.2 kb), stop-cassette (5.1 kb), excised 

stop cassette (4.3 kb). (B) Plot of mean recombination frequency ± S.D in stop-cre mice (n = 

2-4 mice) as determined by band intensity on Southern blots. (Work carried out by Dr. Jacky 

Guy – Edinburgh University)  
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Figure 3.3 – Immunoblots confirm robust peripheral silencing 

Representative bright field images from stop-cre tissue sections showing anti-MeCP2 

peroxidase labelled nuclei (brown). Tissues shown are (i) skeletal muscle (ii) cardiac muscle 

(iii) lung and (iv) brainstem. Arrows indicate nuclei expressing MeCP2 in peripheral tissue. 

Scale bar is 20 µm. (Images taken by Dr. Noha Bahey – Glasgow University) 
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3.4 Absence of early lethality in peripheral KO mice 

Previous studies have shown that global KO of Mecp2 expression in male mice, using a stop 

cassette, leads to early lethality (Guy et al., 2007; Robinson et al., 2012). Similarly, in this 

study, stop/y mice showed decreased survival (median survival = 150 days) compared to both 

WT and stop-cre animals (p < 0.001; Fig. 3.4). In contrast, stop-cre animals did not show this 

early lethality, with all mice surviving until the end of the study.   

 

 

Figure 3.4 – Normal survival in peripheral KO mice 

Mice were monitored for early lethality. Results show percentage survival of WT (blue 

circle), stop-cre (green square) and stop/y (red triangle). Mice were monitored over the 

course of a 52 week study. Stop/y mice showed significantly decreased survival compared to 

both WT and stop-cre (p < 0.001; Kruskal-Wallis test and Dunn’s post hoc analysis). WT (n 

= 17); stop-cre (n = 7); stop/y (n = 8). ***p < 0.001.  
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3.5 Absence of RTT-like symptoms in peripheral KO mice 

To determine if peripheral KO mice developed any of the symptoms commonly associated 

with RTT mouse models, mice were monitored over a period of 52 weeks for gross 

symptoms of the disorder using a well-established severity scoring system (Guy et al., 2007; 

Daniel T. Lioy et al., 2011; Gadalla et al., 2012). In stop/y mice, symptoms became overt at 

10 weeks of age and increased over time until death (Fig. 3.5). At the time of behavioural 

testing (15 weeks; Fig. 3.7-3.12) stop/y mice differed from both WT and stop-cre (p < 0.001) 

but stop-cre mice did not differ from WT. However, when mice were scored at 52 weeks, 

stop-cre mice had developed some mild RTT-like symptoms, mostly related to hypoactivity, 

that were not seen in WT mice (aggregate score: WT = 0.3 ± 0.015; stop-cre = 1.5 ± 0.3; p < 

0.001).   

 

 

Figure 3.5 – Mild RTT-like symptoms displayed by stop-cre mice 

Mice were scored weekly for RTT-like symptoms. Results show mean composite score ± 

SEM of WT (blue circle), stop-cre (green square) and stop/y (red triangle). Mice were scored 

for the first 30 weeks and then again at 52 weeks. Groups were compared using Kruskal-

Wallis test and Dunn’s post hoc analysis at 15 weeks and Mann-Whitney U at 52 weeks. WT 

(n = 17); stop-cre (n = 7); stop/y (n = 8). ***p < 0.001 
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3.6 Peripheral KO mice show reduced bodyweight 

To assess bodyweight changes, animals were weighed weekly over the course of the study. 

Analysis of the results revealed no difference between the genotypes at time of behavioural 

testing (15 weeks), but by one year stop-cre mice showed a decreased bodyweight compared 

to WT mice (Fig 2C; mean bodyweight: WT = 38.5 ± 1; stop-Cre = 33 ± 2.3 g; p < 0.05). 

 

 

Figure 3.6 - Decreased bodyweight in peripheral KO mice 

Plot showing bodyweight changes over the course of the study. Results show mean 

bodyweight ± SEM of WT (blue circle), stop-cre (green square) and stop/y (red triangle). 

Also indicated is the time-point of behavioural testing ({). Mice were weighed for the first 30 

weeks and then again at 52 weeks. Groups were compared using one-way ANOVA with 

Tukey’s post hoc analysis at 15 weeks and two-tailed Student’s unpaired t-test at 52 weeks. 

WT (n = 17); stop-cre (n = 7); stop/y (n = 8). *p < 0.05 
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3.7 Peripheral KO mice show no changes in blood biochemistry 

In addition to gross symptoms and bodyweight, mice from each genotype were also 

examined for routine blood biochemistry (Table 3.1). Blood serum measures showed 

modest changes in a small number of markers in the stop/y group compared to WT. 

However, there were no significant differences between stop-cre and WT samples across all 

measures. 

 

Table 3.1. Blood biochemistry results 

  
  

Mean value ± S.E.M 
     WT                            Stop-cre                        Stop/y 

Sodium (mmol/l) 151.7 ± 0.64 153.4 ± 0.82 153.1 ± 1.80 
Potassium (mmol/l) 7.22 ± 0.22 7.83 ± 0.33 8.43 ± 1.01 
Sodium:potassium ratio 21.29 ± 0.70 20.86 ± 0.40 18.78 ± 2.04 
Chloride (mmol/l) 110.9 ± 0.45 109.4 ± 0.54 108.1 ± 1.25 * 
Calcium (mmol/l) 2.48 ± 0.02 2.49 ± 0.04 2.48 ± 0.07 
Phosphate (mmol/l) 2.64 ± 0.16 2.95 ± 0.10 3.81 ± 0.68 * 
Urea (mmol/l) 10.72 ± 0.58 10.8 ± 0.52 20.6 ± 9.40 
Creatinine (umol/l) 30.5 ± 0.90 31.55 ± 0.86 41.22 ± 13.11 
Cholesterol (mmol/l) 3.26 ± 0.09 3.65 ± 0.15 3.01 ± 0.23 
Triglyceride (mmol/l) 2.53 ± 0.27 2.54 ± 0.33 2.20 ± 0.25 
Total bilirubin (umol/l) 2.57 ± 0.31 4.55 ± 1.12 3.14 ± 0.67 
ALK phos (U/l) 245.9 ± 12.3 247 ± 28.89 297.4 ± 30.59 
AST (U/l) 127.3 ± 15.53 164 ± 55.85 201.7 ± 43.33 
ALT (U/l) 44.79 ± 7.27 44.67 ± 4.47 153 ± 73.11 
GGT (U/l) Not detectable Not detectable Not detectable 
Total protein (g/l) 53.64 ± 0.78 56.09 ± 1.16 58.11 ± 1.33 * 
Albumin (g/l) 29.79 ± 0.54 31.27 ± 0.45 33 ± 1.08 * 
Globulin (g/l) 23.86 ± 0.43 24.82 ± 0.80 25.11 ± 0.59 
Albumin: globulin ratio 1.25 ± 0.026 1.27 ± 0.03 1.32 ± 0.04 

Arterial blood was sampled at 15 weeks for biochemical analysis. Data show mean values ± 
SEM. Groups were compared using one-way ANOVA with Tukey’s post hoc analysis. Group 
sizes were WT = 14, stop-cre = 11, stop/y = 9. * p < 0.05 
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3.8 Peripheral KO mice show mild kidney pathology 

Mice were also examined for histopathological changes across a large panel of tissues and 

organs (Table 3.2). Tissue sections were H&E stained and examined, blind to genotype, by a 

qualified veterinary pathologist. This histopathological evaluation revealed no gross 

structural or histopathological changes for the majority of tissues examined. However, kidney 

sections from stop-cre and stop/y mice revealed mild to moderate vacuolation in renal tubule 

epithelium, potentially indicative of lipid accumulation. Moderate to diffuse vacuolation was 

also observed in liver but this was seen sporadically and across all genotypes. 

 

Table 3.2. Histopathological screening results 

            Wild Type 
    1           2              3           

Stop-cre 
     1             2              3                 

Stop/y 
    1              2              3                

Heart X X X X X X X X X 
Lungs X X X X X X X X X 
Liver X X   X X   X 
Salivary Glands X X X X X X X X X 
Mandibular Nodes X X X X X X X X X 
GI System X X X X X X X X X 
Pancreas X X X X X X X X X 
Kidneys X X X     X  
Adrenal Gland X X X X X X X X X 
Spleen X X X X X X X X X 
Skin Dorsal X X X X X X X X X 
Skin Inguinal X X X X X X X X X 
Thymus X X X X X X X X X 
Mesenteric Nodes X X X X X X X X X 
Femur & Knee Joint X X X X X X X X X 
Sternum X X X X X X X X X 
Cranium X X X X X X X X X 
Brain X X X X X X X X X 
Tail X X X X X X X X X 

H&E stained tissue sections for organs listed above were assessed for histopathological 
changes by a veterinary pathologist. 3 animals were examined per genotype. Results of 
analysis are indicated using key below. 
 X  No gross of histopathological changes observed  
 Moderate to diffuse coarse cytoplasmic clearing/vacuolation 

 Very mild vacuolation in the renal tubule epithelium 

Moderate vacuolation in the renal tubule epithelium 
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3.9 Peripheral KO mice show mild hypoactivity 

Decreased spontaneous activity is a commonly observed feature seen in RTT mouse models 

(Shahbazian et al., 2002b; Goffin et al., 2012; Lyst et al., 2013).  In order to assess activity 

levels, mice were monitored whilst ambulating freely in an open-field arena. Both stop-cre 

and stop/y mice showed a reduction in the total distance moved during the trial compared to 

WT mice (distance moved in 10 mins; WT = 4242 ± 167; stop-cre = 3523 ± 215; stop/y = 

2963 ± 230 cm; p < 0.05; Fig 3.7-A). The reduction was more pronounced in stop/y mice 

compared to stop-cre mice. Both stop-cre and stop/y mice also showed a reduction in the 

number of rearing instances (regarded as a measure of exploratory behaviour) compared to 

WT mice, although again the difference was more moderate in stop-cre mice compared to 

stop/y (rearing instances per session; WT = 35.00 ± 3.5; stop-cre = 22.36 ± 2.9; stop/y = 

15.00 ± 2.2; p < 0.05; Fig 3.7-B). 

 

Figure 3.7 – Peripheral KO mice show reduced activity levels 

Spontaneous activity levels were assessed using the open-field test. Results show (A) total 

distance moved during the session and (B) number of rearing events per session. Results 

displayed as mean value ± SEM. Number of animals per group displayed in results columns. 

Mice tested between 14-16 weeks of age. Groups were compared using one-way ANOVA 

with Tukey’s post hoc comparisons. *p < 0.05, ***p < 0.001. No significant difference 

between stop-cre and stop/y mice. 

*** *** 
*** * 

* 
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3.10 Peripheral KO mice construct normal nests 

A number of factors may influence performance in the open field including motivational and 

cognitive factors, motor function and anxiety. In an attempt to discriminate between these 

factors, mice were scored for their nest-building behaviour, a test that can reveal brain-wide 

deficits, including motor defects (Deacon, 2006). In agreement with previous studies of 

Mecp2-null mice (Moretti et al., 2005), stop/y mice showed a profound reduction in nest-

building behaviour compared to WT (Fig. 3.8; nesting score; WT = 4 ± 0.4; stop-cre = 4.1 ± 

0.25; stop/y = 0.9 ± 0.15; p < 0.001). In contrast, stop-cre mice did not differ from WT in 

their ability to construct complex nest structures (p > 0.05). 

 

Figure 3.8 – Peripheral KO mice were capable of constructing high quality nests 

Nesting behaviour was assessed using a five-point scoring system. Results show mean 

nesting score ± SEM. The number of animals per group is displayed in the results columns. 

Mice were tested between 14-16 weeks of age. Groups were compared using one-way 

ANOVA with Tukey’s post hoc comparisons. ***p < 0.001 
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3.11 Peripheral KO mice do not show RTT-like gait defects 

Gait abnormalities are a characteristic feature of RTT mouse models and form part of the 

observational scoring system described previously. In order to comprehensively examine gait, 

mice were assessed using an elevated treadmill-based system. A previous study utilising this 

approach has shown stop/y mice to develop a number of gait disturbances that increase in 

severity as the disease progresses between four and ten weeks of age (Gadalla et al., 2014). 

To acquire data for this test, mice must be capable of moderate running (10 cm/s) on the 

treadmill for several seconds. It was found that at the time of testing in this current study (14-

16 weeks of age), the majority of symptomatic stop/y mice (8 of 10) were incapable of 

performing to criterion (Fig. 3.9A). As a result, only WT and stop-cre mice could be 

compared using this test. When tested, stop-cre mice showed no significant differences from 

WT across a wide range of gait parameters, including stride frequency (Fig. 3.9-B) and 

stance width (Fig 3.9-C).    
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Figure 3.9 – Majority of stop/y mice incapable of performing on treadmill test 

Mice were tested for their ability to run on a motorised treadmill at a speed of 10 cm/s. 

Results show (A) Proportion of mice capable of running on the treadmill for at least two 

seconds (B) stance width and (C) stride frequency. For B and C, results are mean value ± 

SEM and groups were compared using unpaired t-test. No significant difference seen 

between WT and stop-cre mice. Number of animals per group is displayed in the results 

columns. Mice were tested between 14-16 weeks of age. # Mice were not tested as they 

couldn’t meet performance criteria. 
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3.12 Peripheral KO mice show normal performance on       

balance beam                   

To further assess locomotor ability, balance was assessed in the mice using an inclined beam. 

Mice were tested using either a medium width (11 mm) or a more challenging narrow width 

(5 mm) beam. Compared to WT and stop-cre mice, stop/y mice showed a significant increase 

in the time taken to traverse both the medium (11 mm; WT = 1.9 ± 0.25; stop-cre = 2.5 ± 

0.44; stop/y = 9.1 ± 4 s; p < 0.05; Fig. 3.10-A) and narrow beam (5 mm; WT = 3.7 ± 0.3 s; 

stop-cre = 4.6 ± 0.8 s; stop/y = 20.6 ± 7.2 s; p < 0. 01; Fig. 3.10-B). In contrast, stop-cre mice 

did not differ significantly from WT animals on either beam. 

   

 

Figure 3.10 – Peripheral KO animals do not show impairment on balance beams  

Mice were tested for balance using an inclined balance beam test. Results show time taken to 

traverse a (A) medium or (B) narrow width beam. Data shows mean ± SEM. Number of 

animals per group is displayed in results columns. Mice tested between 14-16 weeks of age. 

Groups were compared using one-way ANOVA with Tukey’s post hoc comparisons. *p < 

0.05, ***p < 0.001. 
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3.13 Reduced rotarod performance in peripheral KO mice 

A more challenging test of balance and coordination is the rotarod test. Again, stop/y mice 

showed a significantly reduced performance compared to both WT and stop-cre mice (latency 

to fall; WT = 243.5 ± 11.5; stop-cre = 168 ± 14.9; stop/y = 91.5 ± 16.1 s; p < 0.001; Fig. 

3.11). However, stop-cre mice also showed a significantly reduced performance in 

comparison to WT mice, although this reduction was more moderate than that for stop/y 

mice. Although the rotarod is mostly commonly used to test balance and coordination, it also 

sensitive to endurance fatigue. This is because the rod accelerates over time, and 

consequently the longer the mouse lasts without falling, the more energetically demanding 

the task becomes. 

 

Figure 3.11 – Peripheral KO mice show reduced rotarod performance 

Mice were tested using an accelerating rotarod. Results show mean latency to fall ± SEM. 

Number of animals per group displayed in results columns. Mice tested between 14-16 weeks 

of age. Groups were compared using one-way ANOVA with Tukey’s post hoc comparisons. 

***p < 0.001. 
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3.14 Peripheral KO mice show reduced exercise capacity 

To investigate if stop-cre mice were indeed prone to exercise fatigue, they were tested on an 

accelerating inclined treadmill (Narkar et al., 2008). To ensure that mice performed to their 

genuine capacity, an electric grid was placed at the bottom of the treadmill. This grid 

administered a mild electric shock to the paws of mice who attempted to come off the 

treadmill. Although mild, this aversive stimulus motivated mice to carry out running on the 

treadmill until fatigued. This helped to remove motivational confounding factors. Stop/y mice 

showed a profoundly reduced capacity for exercise compared to WT and stop-cre animals 

(time lasted: WT = 16.5 ± 1.3; stop-cre = 8.7 ± 1.6; stop/y = 0.5 ± 0.2 min; p < 0.001; Fig. 

3.12). Interestingly, stop-cre mice also showed marked impairment, with an average 

reduction of 46% in time lasted on the treadmill compared to WT mice (p < 0.001). These 

results, in combination with those from the rotarod test suggest a significant impairment in 

exercise capability in peripheral KO mice.  

 

Figure 3.12 – Reduced exercise capacity in peripheral KO mice 

Exercise capacity was assessed using an elevated, accelerating treadmill. Results show mean 

time lasted on the treadmill ± SEM. Number of animals per group displayed in results 

columns. Mice tested between 14-16 weeks of age. Groups compared using one-way 

ANOVA with Tukey’s post hoc comparisons. ***p < 0.001.   
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3.15 Absence of RTT-like breathing phenotype in peripheral KO 

mice 

Respiratory dysfunction, including breath holding and apnoeas, is a hallmark feature of RTT 

in human patients (Elian and Rudolf, 1991; Marcus et al., 1994; Weese-Mayer et al., 2006) 

and is also seen in Mecp2 KO mouse models (Viemari et al., 2005; Ogier et al., 2007; 

Stettner et al., 2007). While these abnormalities are typically attributed to disturbed 

autonomic function, MeCP2 is highly abundant in lung tissue and pulmonary lesions have 

been observed in both RTT patients and mouse models (De Felice et al., 2010). This suggests 

that absence of MeCP2 from lung tissue could contribute to the respiratory phenotype. To 

investigate this further, we used plethysmography to assess breathing in our mice. 

Respiratory traces (Fig. 3.13-A) were analysed for breathing frequency and regularity, as 

well as for apnoeas. There was no difference in breathing frequency between the three 

genotypes (Fig. 3.13-B). Stop-cre mice showed a very regular breathing pattern (mean CV% 

= 26 ± 2; Fig 3.13-C) that did not differ from WT (mean CV% = 26 ± 1). In contrast, stop/y 

mice showed a highly irregular breathing pattern (mean CV% = 65 ± 9) compared to both 

WT and stop-cre mice (p < 0.001). A similar pattern was seen when traces were examined for 

the presence of apnoeas. Both WT and stop-cre mice showed very little occurrence of 

apnoeas during testing (apnoea number: WT = 0; stop-cre = 7 ± 4.61 / hr), while stop/y 

animals showed an extremely high incidence of such events (apnoea number: 501 ± 123.7 / 

hr) that differed significantly from both WT and stop-cre mice (p < 0.001). In addition to this 

functional testing, we also looked for the presence of pulmonary lesions. Lung tissue biopsies 

were taken (three per genotype) and sent to a veterinary pathologist for comprehensive 

histopathological examination. However, no abnormalities or pathological signs were seen in 

any of the genotypes (Table 3.2).   
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Figure 3.13 – Absence of respiratory dysfunction in peripheral KO mice 

Respiratory function assessed using whole-body plethysmography. Results show (A) 

representative respiratory traces from each genotype, (B) baseline breathing frequency, (C) 

breathing frequency variability (D) apnoea frequency. Arrows indicate occurrence of apnoeas 

in stop/y mice. Results for B, C & D show mean ± SEM.  Number of animals per group 

displayed in results columns. Mice tested between 14-16 weeks of age. Groups compared 

using one-way ANOVA with Tukey’s post hoc comparisons. ***p < 0.001.   
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3.16 Evidence of muscle pathology in peripheral KO mice 

Having assessed some of the core phenotypes that define RTT, peripheral tissue systems that 

have been previously shown to be altered in RTT were then examined. Recent reports suggest 

altered morphology of skeletal muscle in Mecp2 KO mice including reduced fibre diameter 

(Conti et al., 2015). Histological examination of gastrocnemius muscle showed a similar 

pattern of reduced fibre cross sectional area in stop/y mice compared to WT and stop-cre (p < 

0.05: Fig. 3.14-A&C). Sections were also stained for collagen and revealed evidence of 

fibrosis in some stop-cre and stop/y mice (Fig. 3.14. B&D), although the overall increased 

proportion of tissue section area showing picrosirius red staining did not achieve statistical 

significance from WT (p = 0.08 WT vs stop-cre; p = 0.07 WT vs stop/y). 

 

 

Figure 3.14 - No significant muscle abnormalities in peripheral KO mice  
Representative images of gastrocnemius muscle cross section stained with (A) haematoxylin 

and eosin (H&E) or (B) picrosirius red for collagen fibers. Black arrows indicate areas of 

concentrated collagen (fibrosis) (C) myofibre cross sectional area for each genotype 

calculated from H&E sections. (D) collagen fibre area % from each genotype calculated from 

PSR stained sections. Results show mean ± S.E.M. Each black circle represents mean value 

for an individual animal.  Animals per genotype are WT = 11, stop-cre = 9, and stop/y = 8. 

Groups were compared using one-way ANOVA and Tukey’s post hoc comparisons. *p < 0.05 
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3.17 Peripheral KO mice show RTT-like bone phenotypes 

RTT patients show a number of skeletal anomalies including spinal deformity, osteopenia, 

osteoporosis, and an increased vulnerability to low-impact fractures (Keret et al., 1988; 

Guidera et al., 1991; Leonard et al., 1999; Zysman et al., 2006; Downs et al., 2008; Percy et 

al., 2010). Studies in RTT KO mouse models have shown structural and functional defects in 

bone tissue (O’Connor et al., 2009; Kamal et al., 2015), but since these studies used global 

KO models it was not clear whether the defects were central or peripheral in origin. To 

answer this question we carried out biomechanical testing on long bone samples. Functional 

assessment of the maximum force that the tibial bones could resist revealed that both stop-cre 

and stop-y mice showed a reduced ultimate load compared to WT mice (ultimate load:  WT = 

15.83 ± 0.56, stop-cre = 13.93 ± 0.85, stop/y = 12.22 ± 0.67 N; p < 0.05; Fig. 3.15-A). A 

similar pattern was seen when tibia stiffness was assessed using a three-point bending test, 

with stop/y and stop-cre mice showing significantly reduced stiffness (tibia stiffness: WT = 

97.1 ± 4.0, stop-cre 73.31 ± 4.1, stop/y = 72.9 ± 6.4 N / mm; p < 0.01; Fig. 3.15-B). Further 

biomaterial testing revealed the same pattern in femur, with a reduction in cortical bone 

hardness in both stop-cre and stop/y mice compared to WT (cortical hardness: WT = 64.7 ± 

3.4; stop-cre = 47.0 ± 4.1, stop/y = 36.3 ± 4.9 HV; p < 0.05; Fig. 3.15-C). Across all these 

tests stop-cre mice did not differ significantly from stop/y mice.    
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Figure 3.15 – Peripheral KO mice show RTT-like bone phenotype 

The biomechanical properties of bone was assessed using functional tests. Results show (A) 

tibia ultimate load (B) tibia stiffness (C) cortical bone hardness in femur. Results displayed as 

mean value ± SEM.  Number of animals per group displayed in results columns. Mice tested 

between 14-16 weeks of age. Groups compared using one-way ANOVA with Tukey’s post 

hoc comparisons. *p < 0.05, **p < 0.01, ***p < 0.001. (Tests carried out by Dr. Bushra 

Kamal – Glasgow University).  
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3.18 Discussion 

Recent studies have shown that gene based therapies can deliver significant therapeutic 

benefits in RTT mouse models (Gadalla et al., 2012; Garg et al., 2013). In order to be as 

effective as possible it is crucial that therapies are targeted to the correct location. It is widely 

assumed that the RTT phenotype is due solely to an absence of MeCP2 from the brain. This 

is surprising since MeCP2 is thought to be widely expressed throughout the body, including 

high levels of protein in post-mitotic cells of the heart and lungs (Shahbazian et al., 2002b; 

Song et al., 2014). While it is clear that absence of MeCP2 from the brain only, leads to a 

severe phenotype, including the early death seen in male KO mice, these studies have not 

carried out a vigorous phenotyping and have relied on gross markers of disease such as 

reduced brain size and weight loss (Chen et al., 2001; Guy et al., 2001; Giacometti et al., 

2007). Thus the presence or absence of more subtle phenotypes has not been 

comprehensively examined. In addition, the severe phenotype trajectory and very early death 

seen in these models means that phenotypes which take longer to develop will not be 

detected. In order to systematically investigate the role of MeCP2 outside the nervous system, 

and to identify peripheral contributions to the RTT phenotype, a novel mouse model was 

generated (Dr. Jacky Guy, The University of Edinburgh), in which Mecp2 is selectively 

expressed in neurons and glia of the CNS and PNS, but silenced in peripheral tissues, and an 

extensive phenotyping of male mice was carried out. Results from this phenotyping revealed 

that the majority of the RTT-like phenotype can indeed be attributed to a loss of functional 

MeCP2 in the brain, but that an absence of MeCP2 from peripheral tissues leads to a 

markedly reduced exercise capacity and defective bone properties. 

The crucial role of the nervous system in RTT is shown by the lack of overt RTT-like 

symptoms in peripheral KO mice. There is a complete absence of the early lethality seen in 

male global KO mice (Chen et al., 2001; Guy et al., 2001). This is in agreement with a 

previous study that showed that deletion of Mecp2 from the nervous system only leads to 

reduced survival similar to that seen in global KO mice. Comparing mice using the well-

established observational scoring system revealed that stop-cre mice are almost 

indistinguishable from WT mice, although a mild hypoactivity can sometimes be detected. 

This is also observable when handing the stop-cre mice, as they appear much more passive 

and less active than WT. While no difference in bodyweight was observed in the first 30 

weeks of the study, after which all stop/y mice had died, when mice were weighed again at 

12 months there was a significant difference.  
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Further detailed phenotyping revealed that other major aspects of the RTT-like phenotype 

such as breathing abnormalities (Ogier et al., 2007; Voituron et al., 2009; Ramirez et al., 

2013), and balance and gait disturbances (Santos et al., 2010; Robinson et al., 2012; Gadalla 

et al., 2014) were not detected in peripheral KO mice. In this study we rigorously assessed 

gait using a treadmill-based approach. A wide range of parameters were assessed and stop-cre 

animals did not differ from WT in any of these. Previous work has shown that pronounced 

gait defects can be detected using this treadmill system and these defects become more severe 

as the overall phenotype progresses over time (Gadalla et al., 2014). Indeed, at the relatively 

late time-point used in this study our global KO mice were not even capable of being 

assessed using this test as they were incapable of running on the treadmill. With regards to 

breathing, RTT mouse models typically show highly disturbed breathing patterns, including 

irregular breathing frequency, interspersed with periods of apnoea, which are also seen in 

human RTT patients (Viemari et al., 2005; Neul et al., 2010). These disturbances can be 

rescued by global reactivation of Mecp2 expression in mice (Robinson et al., 2012) and are 

therefore a viable therapeutic target. A number of studies report disordered GABAergic and 

serotoninergic control of brain respiratory networks as the major cause of the disrupted 

breathing and apnoeas that characterise RTT in both patients and mouse models (Viemari et 

al., 2005; Abdala et al., 2010; Chao et al., 2010; Voituron and Hilaire, 2011). However, one 

study (Bissonnette and Knopp, 2006) has reported global KO of Mecp2 to cause increased 

incidences of apnoea in response to hypoxia induced hyperventilation, an effect that was not 

seen in nervous system-specific KO mice. Whilst such findings may suggest a non-neuronal 

element for MeCP2 in respiratory function, in the current study we did not specifically assess 

the response of mice to hypoxia. Instead, under baseline conditions, we observed a complete 

rescue of apnoeas and episodic breathing in stop-cre mice confirming that these characteristic 

RTT-like features, at least under resting conditions, are due to nervous system dysfunction. 

Previous reports in human patients have also suggested that global KO of Mecp2 leads to the 

presence of pulmonary lesions (De Felice et al., 2010), as detected by CT imaging. This was 

supported by a study in mice, which showed the presence of diffuse inflammatory infiltrates 

in about half of the Mecp2 KO mice examined (De Felice et al., 2014). We investigated this 

in our mice to see if this was due to absence of MeCP2 from lung tissue, or a secondary 

consequence of nervous system dysfunction. In contrast to these previous reports, no 

histopathological changes were seen in any of our mouse models, including the global KO 

stop/y mice. One reason for this could be that the stop/y mouse model is less severe than the 

null model used in the previous study (Robinson et al., 2012; De Felice et al., 2014). In 
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addition, only 50% of mice in the previous study showed the phenotype suggesting that this is 

a variable phenotype, possibly secondary to other dysfunction. 

The results of the histopathological and blood serum biochemical screens showed that there 

were few differences between genotypes confirming a lack of widespread and overt tissue 

pathology as a result of MeCP2 deficiency in peripheral tissues. The vast majority of organs 

showed no signs of gross structural or pathological changes with the exception of the kidney 

where there was some evidence of tubular epithelium vacuolation in both stop-cre and stop/y 

mice, a feature often associated with lipid accumulation and disordered lipid regulation 

(Sastre et al., 2013; Zhou et al., 2015). Previous observations in Mecp2 KO mice 

(Buchovecky et al., 2013) and in RTT patients (Segatto et al., 2014) have suggested that the 

absence of MeCP2 leads to altered cholesterol biosynthesis and an increase in serum 

cholesterol levels. There was no significant difference observed in serum cholesterol levels 

between genotypes in the current study. However, altered cholesterol metabolism is not seen 

in all lines of Mecp2 KO mice (Buchovecky et al., 2013), with hypomorphic KO mouse lines 

not showing this phenotype. Previous work using the stop/y mouse line (Robinson et al., 

2012) has shown that the mouse line is also hypomorphic, with background MeCP2 levels ~ 

2-4% of WT being expressed, which may explain the may explain the lack of a cholesterol 

phenotype in our mice. 

A particularly robust finding in this study was the marked reduction in exercise capacity and 

vulnerability to fatigue displayed by peripheral KO animals. Whilst levels of spontaneous 

activity in the open field test was only moderately reduced in comparison to WT, when 

animals were challenged by more intensive tasks (such as the elevated treadmill) the deficit 

was more pronounced, with an almost 50% decrease in performance compared to WT mice. 

This was less than the deficit seen in stop/y mice but nevertheless suggests an exercise 

fatigue phenotype that may be a true consequence of peripheral MeCP2 deficiency. Inertia 

and reluctance to movement is widely reported in Mecp2 KO mice (Guy et al., 2007) and 

could explain the fatigue phenotype. However, the use of aversive stimulation on the exercise 

treadmill is designed to negate against such confounding motivational differences between 

mice. The exact cause of the exercise fatigue is therefore difficult to assess. We consider it 

unlikely to be due to any overt cardiorespiratory dysfunction as stop-cre did not differ from 

WT when assessed for a range of cardiac (data not shown) and respiratory measures. 

However, these parameters were only tested under baseline conditions and it is possible that 

future studies assessing cardiac and respiratory responses under exercise conditions may 
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uncover peripheral MeCP2-mediated phenotypes which could contribute to the observed 

fatigue phenotype.  

Previous reports have shown altered mitochondrial ultrastructure and impaired mitochondrial 

function in skeletal muscle biopsies from RTT patients and in Mecp2 KO mice (Gold et al., 

2014). More recently, a study in mice demonstrated structural alterations in muscle fibre 

cross sectional area in global Mecp2 KO mice, but this effect was not seen when Mecp2 was 

selectively deleted in muscle tissue (Conti et al., 2015). The results of this study agree with 

these findings and suggest that these structural abnormalities disrupted nervous system 

function or aberrant skeletal innervation. We also looked for evidence of disorganisation and 

fibrosis in muscle tissue sections from mice in the current study by staining for collagen. 

While there was a clear trend towards increased collagen deposition in some mice in both 

stop-cre and stop/y cohorts but this did not reach statistical significance. While some 

individual mice showed 3-6 x average WT levels, others showed much lower levels, 

suggesting this is not a consistent phenotype, and may be secondary to other factors.        

It has been shown previously that global absence of MeCP2 in mice leads to impairments in 

the structural and biomechanical properties of bone, and that these defects can be reversed by 

global reactivation of Mecp2 expression (Hess et al., 2008; Goffin et al., 2012). This agrees 

with studies that show bone abnormalities, such as early osteoporosis and a vulnerability to 

low-energy fractures, in RTT patients (Guidera et al., 1991; Zysman et al., 2006; Downs et 

al., 2008). However, it was not possible to determine from these studies whether the primary 

cause of these defects was due to central or peripheral absence of MeCP2. Results from this 

study suggest that it is the absence from peripheral tissue that is primary cause of the 

dysfunction, as both stop-cre and stop/y mice show similar levels of dysfunction. This is 

important as it suggests that any therapies targeting this aspect of the RTT phenotype will 

need to be targeted outside the nervous system. 

A criticism that could be levelled at the approach taken in this study is that, because 100% 

cre-mediated reactivation was not achieved in the brain, some of the moderate phenotypes 

detected could be due to the effect of the small amount of nervous system cells not expressing 

functional MeCP2. Recombination levels achieved in this study were extremely high, with 

~90% of cells from whole-brain samples showing successful reactivation. However, previous 

studies  in which Mecp2 expression was reactivated globally, using a tamoxifen-cre strategy, 

achieved only 60-70% recombination in the nervous system (Robinson et al., 2012; Kamal et 
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al., 2015). Despite this lower efficiency, functional testing of these animals revealed a 

reversal of the majority of defects seen in KO animals, including full reversal of motor 

defects and bone abnormalities. In addition, in this study the overtly brain-specific measures 

such as balance and innate nest building behaviour in stop-cre mice were indistinguishable 

from WT measures. While nestin expression is mostly confined to the nervous system, 

expression has been detected in other organs, including kidney and pancreas (Delacour et al., 

2004; Sclafani et al., 2006; Bertelli et al., 2007). In this study, a relatively high level of 

recombination in the kidneys, and above background levels in the lungs were observed. Other 

tissues such as the heart, liver and skeletal muscle showed very little recombination showing 

that Mecp2 expression was very effectively silenced in these tissues. The combination of 

extremely high brain recombination levels coupled with robust peripheral silencing suggests 

that this is a valid model for examining the peripheral contribution to the RTT phenotype, and 

supports the interpretation that defects in phenotypes seen in the stop-cre mice are a 

consequence of the absence of MeCP2 in peripheral tissues. 

Overall, the results from this chapter show that the majority of the RTT phenotype is due to 

loss of functional MeCP2 from the brain, and that this should be the major focus for targeting 

therapies. However, the results also suggest that a subset of phenotypes may be peripheral in 

origin and benefit from systemic treatments. 
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Chapter 4   

Design and synthesis of CRISPR and TALEN 

constructs for targeting non-coding regions of 

Mecp2 

4.1 Introduction 

As discussed in Chapter 1, studies in mouse models of RTT have shown that the major 

symptoms of the disorder can be reversed, even after the onset of symptoms (Guy et al., 

2007; Robinson et al., 2012). This suggests that novel therapies designed to replace or repair 

the dysfunctional Mecp2 gene could be a potential treatment. Work in the previous chapter 

and other studies (Chen et al., 2001; Guy et al., 2001) has shown that it is the absence of 

functional MeCP2 from cells of the nervous system that is the cause of the majority of the 

RTT phenotype. This, combined with the fact that post-mitotic neurons have particularly high 

levels of MeCP2 (Shahbazian et al., 2002a), indicates that neurons should be the main target 

of any therapies. Since there is currently a lack of understanding of the downstream targets of 

MeCP2, the most attractive therapeutic strategy is to target the disorder at the gene level 

(Gadalla et al., 2011). 

New genome editing technologies developed in the last few years enable targeted DNA 

changes to be made (Zhang et al., 2011; Cong et al., 2013), and their potential as therapeutic 

tools has been demonstrated in several studies (Perez et al., 2008; Schwank et al., 2013; 

Wang et al., 2014a; Yin et al., 2014). Most studies using these tools for therapy seek to repair 

disease causing mutations, or confer protective mutations, via precise homologous 

recombination based editing (Perez et al., 2008; Schwank et al., 2013; Yin et al., 2014) 

TALEN or CRISPR constructs are used to make targeted cuts near mutated DNA, and during 

the repair process mutated DNA is replaced by WT DNA supplied by an exogenous repair 

template. However, this repair pathway is not active in post-mitotic cells such as neurons 

(San Filippo et al., 2008; Jeppesen et al., 2011). The predominant repair pathway in these 

cells is non-homogous end joining (NHEJ), a repair mechanism which usually leads to 

mutagenic changes due to small insertions or deletions (Lieber, 2010). Therefore, targeting 

mutated exonic DNA directly in neurons would only lead to further disturbance of the gene’s 
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coding sequence. This is particularly problematic in the RTT female mosaic brain, as 

mutagenic changes in cells expressing WT copies of the gene would lead to further 

exacerbation of the disease.  

A recent study by Maresca and colleagues suggests an alternative approach that may be more 

suitable for treating the nervous system (Maresca et al., 2013). The study showed that large 

DNA fragments can be inserted into precise genomic locations using TALENs, and that this 

insertion is dependent on the NHEJ pathway that predominates in neurons. The DNA to be 

inserted is flanked by the same TALEN-binding sequence as the genomic DNA target region, 

and delivered as an exogenous plasmid along with the TALEN arm coding constructs. Both 

the insert and genomic DNA are cut by the TALEN pair, and the insert can then be captured 

at the genomic break site, leading to incorporation of the sequence into the genome at the 

intended location. Modified versions of the FokI nuclease have been generated that only cut 

DNA when the two different TALEN arms of a pair function as a heterodimer, compared to 

the WT version in which two of the same arm can function as a homodimer (Michal 

Szczepek et al., 2007; Yannick Doyon et al., 2010). These obligate heterodimers lead to 

reduced off-target effects and toxicity compared to the WT version of the protein, although at 

the expense of reduced activity levels. Maresca and colleagues designed a strategy to exploit 

these obligate heterodimer mutants and ensure that DNA insertion occurs in the correct 

orientation. By careful design of the targeting sites on the exogenous plasmid, insertion in the 

correct orientation can prevent re-cutting by the TALEN pair but not when it is inserted in the 

reverse orientation. As of yet there is no equivalent CRISPR-Cas9 system for biasing 

insertion in the correct orientation, and it is therefore not clear if CRISPR-Cas9 based 

targeting is similarly capable of generating a significant amount of correct insertion.  

RTT-causing mutations occur in all three coding exons of the major brain isoform of MeCP2, 

but the most common disease causing mutations are clustered in the portions of exon 3 and 

exon 4 that code for the methyl-binding (MBD) and transcriptional repressor (TRD) domains 

of the protein (https://www.rettsyndrome.org/research/rettbase). Replacing the protein coding 

sequences of exon 3 and 4 in mutant cells with exogenously delivered WT copies is an 

attractive therapeutic strategy, suitable for a wide range of disease causing mutations. 

 

 



104 

 

To investigate if this could be achieved using genome editing tools, a novel strategy was 

developed to ligate an Mecp2 repair construct, containing a WT copy of the protein coding 

region of exon 3 and 4, upstream of the endogenous sequence of these exons. With the use of 

appropriate splice sites, this repair construct will be spliced to exon 1 of the gene during 

mRNA processing. A transcriptional terminator will stop transcription at the end of the repair 

construct sequence, thus excluding the endogenous exons 3 and 4 from the final mRNA 

transcript. If successful this will lead to the restoration of the WT coding sequence and the 

production of functional protein. The major advantage of this strategy over traditional gene 

therapy approaches is that gene transcription levels remain under the control of the 

endogenous promoter, and thus maintains normal spatial, temporal, and quantitative 

regulation.   

In this chapter the design, synthesis, and functional assaying of TALEN and CRISPR-Cas9 

constructs, capable of targeting appropriate non-coding regions of the Mecp2 gene, is 

described. In the next chapter, the most effective TALEN and CRISPR-Cas9 constructs will 

then be assessed for their ability to successfully target an Mecp2 repair construct into the 

target region. 

4.2 Aims 

The overall aim of the work presented in this chapter was to develop genome editing tools 

capable of making targeted DNA breaks in a non-coding region of the Mecp2 gene. These 

tools will then be used to investigate the therapeutic strategies described in chapter 5. The 

objectives for this chapter were to:  

 

(1)  Identify an intronic target region suitable for insertion of Mecp2 repair construct 

 

(2) Design and synthesise TALEN and CRISPR constructs that will target genomic DNA 

in the identified region  

 

(3) Assay cutting efficiency of all constructs to determine most effective constructs for 

future work    
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4.2 Identification of suitable target region for repair construct 

insertion 

The repair strategy employed here relies on inserting a DNA repair construct into a specific 

non-coding region of the Mecp2 gene. Since the majority of RTT causing mutations are in 

exons 3 and 4 of the gene (Fig. 4.1A) the intronic region upstream of these exons was 

targeted. Intron 2 of Mecp2 is extremely large (~60 kb) and contains a large fraction of 

repetitive DNA unsuitable for TALEN and CRISPR targeting, as it would lead to multiple 

sites being targeted. To locate a suitable target region in this intron, the University of 

California, Santa Cruz Genome Browser (https://genome.ucsc.edu), in combination with the 

repeat masker tool (http://www.repeatmasker.org/), was used to identify areas of the intron 

free of repetitive DNA sequences. An ~ 900 bp region of unique sequence was identified 1.6 

– 0.7 kb upstream of exon 3 (Fig. 4.1B).   

https://genome.ucsc.edu/
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4.3 Design of TALEN pairs 

The Cornell University TALEN design tool (https://tale-nt.cac.cornell.edu/node/add/talen) 

was used to identify 100s of TALEN pairings that could target sequences in the previously 

identified target region (see 4.2). The software parameters were set to only identify TALENs 

whose cutting efficiency would be easy to assay, by limiting the results to those in which a 

unique restriction enzyme (RE) was found in the spacer region between the binding sites of 

the two TALEN arms of a pair. In the absence of a homologous template, cells will mostly 

repair TALEN-induced double-stranded DNA breaks using the mutagenic NHEJ repair 

pathway. This leads to small insertions and deletions at the break site. Any RE recognition 

sites overlapping this area will therefore be destroyed during the repair process. This can be 

detected by PCR amplification of the target region followed by RE digestion of the PCR 

product, known as a restriction fragment length variations (RFLV) assay.  

Results from the software were exported to an Excel spreadsheet and furthered filtered to 

identify the pairings that could be assayed using REs available in our lab. Lastly, candidates 

were filtered to only include deigns with 15 bp or 16 bp spacer regions between TALEN 

recognition sites, and TALENs with large ratios of purine bases, as studies have found that 

these properties confer highest performance levels (Miller et al., 2011; Mussolino et al., 

2014). After filtering there were four TALEN pairings remaining for use in our target region 

(Fig. 4.2). PCR primers flanking the target region were then designed to enable selective 

amplification of the region for RFLV analysis. 

  

https://tale-nt.cac.cornell.edu/node/add/talen
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Figure 4.2 – DNA target sequence of selected TALEN pairings 

DNA sequence is intron 2 target region previously identified. Pink arrows at either end show 

the sequence of primers designed to PCR amplify the target region. Remaining coloured 

arrows show the target sequence of the four TALEN pairings that remained after filtering of 

the initial candidate list. Each pairing consists of a left and right targeting arm. 

 

4.4 TALEN synthesis 

In this study we used the TALEN assembly method developed by Voytas and colleagues 

(Cermak et al., 2011), which utilises the golden gate method of cloning (Engler et al., 2008, 

2009). This cloning method uses type IIS restriction enzymes. These enzymes cleave DNA 

outside of their recognition site leading to the creation of unique 4 bp overhangs, which are 

determined by the sequence surrounding the recognition site. Using this method, multiple 

fragments of DNA can be ligated together in a precise order in a single reaction.  

TALEN assembly is a two-stage process. The first stage involves the assembly of DNA 

targeting repeat modules into ordered arrays (Fig. 4.3A-B). 
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Figure 4.3 – Cloning strategy for TALEN arm synthesis 

Flow diagram outlining steps involved in cloning each individual TALEN arm. (A) Plasmids 

containing repeat modules and pFUS backbone plasmids were digested with BsaI and ligated 

together to form intermediate array plasmids. (B) Intermediate array plasmids and pTAL 

backbone plasmid were then digested with Esp3I and ligated together to form. (C) final 

TALEN arm construct. Removal of LacZ coding sequence (blue box) during cloning allowed 

blue/white screening. Final RVD array was cloned between the sequence for the N-terminal 

(TAL-N’) and C-terminal (TAL-C’) of the TALE protein. Coloured boxes with 4 bp 

sequences indicate the overhangs created by BsaI or Esp3I digestion. Plasmids contained 

antibiotic resistance genes (white box) for spectinomycin, tetracycline, or ampicillin.   

 

 



110 

 

The four TALEN pairs identified by the design software had target sites ranging from 17 to 

20 bp. Since the efficiency of Golden Gate Cloning decreases as the number of DNA 

fragments increases, the TALE repeat modules were first assembled into two intermediate 

arrays, each containing a maximum of ten repeats. The first intermediate array (pFUS_A) 

always contained ten repeats and the number in the second (pFUS_B) varied depending on 

the length of recognition sequence for each arm.  

In total, eight individual TALEN arms had to be synthesised, a left and right arm for each of 

the four TALEN pairs. For each arm, the appropriate repeat module plasmids along with a 

pFUS_A or pFUS_B destination plasmid were put together in a single reaction tube, digested 

with BsaI, and fragments were ligated together to form the intermediate arrays. Reactions 

were transformed into DH5α cells and plated on spectinomycin-containing agar plates. 

Correct assembly involved removal of the LacZ sequence from pFUS_A and pFUS_B 

plasmids, allowing blue/white screening of cells. White colonies were picked, cultured 

overnight, and plasmid DNA was extracted by mini-prep. To confirm correct assembly, 

plasmid DNA was digested with AflII and XbaI, to cut out the array of fused repeat modules, 

and digest products were separated by agarose gel electrophoresis. Correct array fragments 

were sized ~60 bp + 100 bp for each repeat module in the array. Digestion products from all 

reactions, except one, showed the expected band sizes, confirming correct assembly of the 

intermediate arrays (Fig. 4.4). TAL-B333L was a failed digestion. A correct sized fragment 

was confirmed on repeat digestion. To confirm that all repeats were assembled in the correct 

order and without mutations, sequencing primers were designed (pCR8_F1 and pCR8_R1) 

flanking the region containing the repeat array. All pFUS_A and pFUS_B plasmids were then 

sent, along with sequencing primers, for Sanger sequence analysis. Sequencing results 

confirmed that all arrays were correctly assembled and free of mutations. 
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Figure 4.4 – Restriction digest confirmation of correct array assembly                      

Plasmid DNA was digested with AfIII and XbaI and separated by agarose gel electrophoresis. 

The large fragment in each lane is vector backbone. The smaller fragment is a repeat array 

whose size varies depending on the number of repeats. Expected sizes: All TAL-A arrays = 

1060 bp (10 repeats); TAL-B276, TAL-B416R, TAL-63 = 960 bp (9 repeats); TAL-B333 = 

860 bp (8 repeats); TAL-B416L = 660 bp (6 repeats). Numbers above bands indicate number 

of repeats for each arm. Ladder was NEB 1 KB Quick.    

 

In the second stage of the assembly process (Fig. 4.3B-C) pFUS_A and pFUS_B plasmids 

for each TALEN arm were combined into a plasmid backbone containing the C’ and N’ 

regions of the TALE protein as well as the FokI nuclease sequence. In this study two versions 

of the FokI nuclease were used. As well as the WT version, a modified version was used in 

which the FokI nuclease has been modified to ensure that DNA cutting only occurs when a 

left arm and right arm come together to form a heterodimer. In order to compare cutting 

efficiency between these two versions, all 8 TALEN arms were assembled into two different 

plasmid backbones, containing either the WT (pTALv2_FokIWT) or the obligate heterodimer 

mutant FokI (pTALv3-FokI-ELDS for left arm and pTALv3-FokI-KKRS for the right arm). 
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For each arm, the appropriate pFUS_A and pFUS_B array plasmids from stage one were 

mixed in a single tube along with a backbone plasmid containing either WT or obligate 

heterodimer FokI. Plasmids were digested with Esp3I and the fragments ligated together to 

form the final TALEN arms (Table 4.1).  

Table 4.1 – RVD sequence and FokI type for individual TALEN arms 

Arm name Pair Target Sequence FokI type 

pTAL-WT276L 

276 

TTCTTCTCTTAGTTTTAGACC 
WT 

pTAL-Het276L Obligate het. 

pTAL-WT276R 
TAAGGAAGGTTTGGAAAGAAG 

WT 

pTAL-Het276R Obligate het. 

pTAL-WT333L 

333 

TCTGGCCTGTAGCTCAGAGG 
WT 

pTAL-Het333L Obligate het. 

pTAL-WT333R 
TTTCTCTGACTAGAATCTGG 

WT 

pTAL-Het333R Obligate het. 

pTAL-WT416L 

416 

TATTTCTGTCTACAAGAA 
WT 

pTAL-Het416L Obligate het. 

pTAL-WT416R 
TAGCAACTACCATATCCAAGG 

WT 

pTAL-Het416R Obligate het. 

pTAL-WT63L 

63 

TTTATGCCTTGGTTGTTAGAT 
WT 

pTAL-Het63L Obligate het. 

pTAL-WT63R 
TATAAACTATATGAGCAAAGG 

WT 

pTAL-Het63R Obligate het. 

 

Reactions were transformed into Dh5α cells and plated on ampicillin containing agar plates. 

Blue/white screening was again used to identify correct clones and white colonies were 

picked, cultured overnight, and plasmid DNA extracted by mini-prep. To confirm correct 

assembly, plasmid DNA was digested with SacI and XhoI to cut out the full array of fused 

repeat modules, and digest products were separated by agarose gel electrophoresis. Correct 

array fragment band sizes were ~930 bp + 100 bp for each repeat module in the array. 

Digestions from all 16 reactions showed the expected product, confirming correct assembly 

of final TALEN arm constructs (Fig. 4.6). A representative final TALEN construct plasmid 

map is shown in Fig. 4.7. 
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Figure 4.6 - Restriction digest confirmation of correct final TALEN arm assembly 

Plasmid DNA was digested with XhoI and SacI, to cut out full array of fused repeat modules 

and restriction fragments were separated by agarose gel electrophoresis. Large fragment in 

each lane is vector backbone. Smaller fragment is repeat array, size varies depending on the 

number of repeats. Expected sizes: pTAL-276, pTAL416R and pTAL-63 = 2960 bp (20 

repeats); TAL-333 = 2960 bp (19 repeats); TAL-416L = 2760 bp (17 repeats). Ladder was 

NEB 1 KB Quick.    
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Figure 4.7 – Representative plasmid map of final TALEN construct 

Plasmid map showing standard features of a final TALEN arm construct. Transcription is 

driven by a cytomegalovirus (CMV) promoter. A simian virus 40 nuclear localisation signal 

(SV40 NLS) ensures TALEN protein is targeted to the nucleus. The DNA binding domain is 

cloned between the N-teminal (TAL NT) and C-terminal (TAL CT) of the TALE protein, and 

the sequence for the FokI nuclease is directly downstream of the TAL CT. Transcription is 

terminated by the bovine growth hormone (bGH) poly (A) signal. The ampicillin resistance 

gene (AmpR) allows for antibiotic selection of the plasmid and the bacterial origin of 

replication (ori) enables replication of the plasmid in bacterial hosts. 

4.5 Optimisation of electroporation parameters 

To test the ability of our TALENs to make targeted DNA cuts we tested them on P19 cells, a 

well-established male embryonic carcinoma cell line (McBurney and Rogers, 1982). In order 

to cut DNA, plasmids coding for both TALEN arms of a pair needed to be present in the 

same cell. To achieve as high a transfection efficiency as possible we used the Neon 

electroporation device, which has been shown to achieve high levels of transfection in 

multiple mouse cell lines (Abolhassani et al., 2010; Hsu and Meng, 2010).  

Optimum Neon parameters such as pulse voltage (v), pulse width (ms), and pulse number 

have to be empirically determined for each individual cell line. Recommended settings 
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specific for P19 cells, as well as those for mouse embryonic stem cells (mESCs) were 

obtained from the Life Technologies Neon website 

(http://www.lifetechnologies.com/uk/en/home/life-science/cell-

culture/transfection/transfection---selection-misc/neon-transfection-system/neon-protocols-

cell-line-data.html (Table 4.1). 

 

Table 4.2- Electroporation parameters used for optimisation 

Recommended cell type 
Pulse voltage 

(V) 

Pulse width 

(ms) 

Pulse 

number 

P19 1275 30 1 

Mouse embryonic stem 

cells (mESC) 
1400 10 3 

  

To determine if either of these settings produced high transfection efficiency in P19 cells a 

GFP reporter plasmid was used (KpLenti-PGK-GFP). Since cells need to be transfected with 

two different TALEN arm plasmids for cutting, this reporter was transfected along with a 

single TALEN arm, in order to ensure the settings were optimal for a double plasmid 

transfection. For each transfection 400,000 cells were electroporated with a total of 4 µg of 

DNA, 2 µg of each plasmid, using either P19 or mESC settings. Transfected cells were then 

plated into a well in a 6-well dishes and incubated for 48 hours.  

Transfection efficiency was assessed using an Attune flow cytometer (Life Technologies, 

USA). Forward and side scatter plots from untransfected P19 cells were used to create gates 

to identify the population of live cells (R2), and a further gate was set to identify cells within 

this live population that expressed GFP above the background levels seen in control cells 

(R4). Cells in this second population were those successfully transfected with the GFP 

reporter plasmid. Cells transfected using the recommended P19 cell settings had 37% of cells 

identified as live and 59.5% of these live cells identified as GFP positive. In comparison cells 

transfected with mESC settings had 60% of cells identified as live and 83.7% of these live 

cells identified as GFP positive (Fig. 4.8). As the mESC settings produced lower cell death 

and extremely high transfection efficiency we used these settings for all subsequent P19 

transfections.   

http://www.lifetechnologies.com/uk/en/home/life-science/cell-culture/transfection/transfection---selection-misc/neon-transfection-system/neon-protocols-cell-line-data.html
http://www.lifetechnologies.com/uk/en/home/life-science/cell-culture/transfection/transfection---selection-misc/neon-transfection-system/neon-protocols-cell-line-data.html
http://www.lifetechnologies.com/uk/en/home/life-science/cell-culture/transfection/transfection---selection-misc/neon-transfection-system/neon-protocols-cell-line-data.html
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Figure 4.8 – Optimisation of Neon electroporation parameters 

GFP protein levels and cell death for either (A) P19 (1275(v), 30(ms), one pulse) or (B) 

mouse embryonic stem cell (ESC; 1400(V), 10(ms), 3pulses) recommended settings were 

assayed using Attune Flow Cytometry. Gates were drawn to identify both live and GFP 

positive (+ve) cells. Left panels show histogram of forward scatter (FSC-A) versus side 

scatter (SSC-A) used to identify live cells (purple rhombus). The percentage of cells gated as 

live is shown in each panel. Right panels show histogram plotting GFP fluorescence intensity 

versus percent of max (a normalised representation of the number of events) in the live 

population. Results from WT (dark purple) and transfected cells (light purple) are shown 

superimposed over each other. The percentage of GFP positive cells (green shaded area) are 

shown in each panel.   
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4.6 Testing TALEN cutting efficiency 

Once optimal transfection conditions were determined, all 4 TALEN pairs were assessed for 

their ability to make targeted double stranded breaks as outlined in Fig. 4.9.  

 

 

 

Figure 4.9 – Outline of procedure for testing cutting efficiency of TALEN pairs 
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P19 cells were cultured and then transfected with TALEN pair plasmids. After 48 hours, 

genomic DNA was extracted from these cells and the TALEN target region was amplified 

using intron 2 specific primers (Mm_Mecp2_In2_For1 and Mm_Mcp2_In2_Rev1; Table 

2.11). This PCR product was then used to quantify cutting efficiency for each TALEN pair, 

using the RFLV assay described previously. Small insertions and deletions, introduced during 

NHEJ repair of DNA breaks, lead to destruction of the unique RE recognition site contained 

in the spacer region between the two TALEN arm binding sites. For each TALEN pair 

transfection, the PCR product was digested with the appropriate RE, and the resulting 

digestion fragments were separated via agarose gel electrophoresis (Fig. 4.10). Successful 

cutting was indicated by the appearance of unique bands in digestion products from DNA 

extracted from TALEN pair transfected cells, compared to DNA from untransfected controls. 

The intensity of these unique bands gave an indication of the efficiency of cutting. 

Successful cutting with TALEN pair # 276, leads to destruction of a PvuII RE recognition 

site, and the appearance of a new band at 953 bp on the agarose gel. Results from the RFLV 

assay (Fig. 4.10-A) showed that no band of this size was present, either with the WT or 

mutant version of FokI, indicating that no cutting had occurred. Cutting with TALEN pair # 

416 leads to the appearance of a new band at 650 bp. RFLV results (Fig. 4.10-B) showed 

faint bands of this size on the gel, with a stronger intensity band for WT FokI. Cutting with 

TALEN pair # 333 leads to the appearance of a new band at 494 bp. In contrast to results 

from the previous two pairs, results from this RFLV (Fig. 4.10-C) showed the presence of 

very intense bands of this size, indicating efficient cutting by this TALEN pair. Cutting with 

TALEN pair # 63 leads to the appearance of a new band at 388 bp. RFLV results for this pair 

(Fig, 4.10-D) showed no evidence of cutting.  
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Figure 4.10 – Agarose gel of RFLP digestion products 

Gel image of digestion products of RFLV assay from cells transfected with (A) TALEN #276 

(B) TALEN #416 (C) TALEN #333 or TALEN #63 as indicated. For each TALEN pair 

either the WT or the obligate heterodimer mutant (Het) version of the FokI nuclease was 

used. Each digestion product was run alongside uncut samples of the same PCR product. In 

addition cut and uncut products from cells not transfected with any TALEN pairs are shown. 

Black arrows indicate the size of unique band expected in cut samples successfully cut with 

TALENs. Black circle highlights intense bands of expected size in digested samples from 

TALEN #333 transfected cells, indicating high cutting efficiency in this pair. 
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Although RFLV analysis allows the relative cutting efficiency of different TALEN pairs to 

be assessed, it is limited by the fact that it relies on a suitable RE recognition site to be 

directly overlapping the TALEN cut site, otherwise it may not be sensitive to very small 

insertions or deletions that do not disturb the recognition site. In addition, it may not always 

be possible to find a suitable unique recognition site anywhere within the spacer region. 

Recently, a new method for quantifying cutting events has been developed (Brinkman et al., 

2014). This method, called tracking indels by decomposition (TIDE), relies on Sanger 

sequencing of the PCR products from transfected and non-transfected cells. The resulting 

sequencing traces are then analysed using an online software tool (http://tide.nki.nl/). Since 

repair of TALEN induced DNA breaks is error prone, PCR products from TALEN 

transfected cells are a heterogeneous mixture of indels, leading to a composite sequence 

trace. The TIDE tool decomposes this composite trace via multivariate non-negative linear 

modelling, and uses the control sequence from untransfected controls to model the type and 

proportion of indels. This enables both the cutting efficiency of TALENs or CRISPRs, and 

the nature of the indels produced, to be determined. 

To tests this new tool, genomic DNA was extracted from each of the TALEN pair cells, as 

well as from untransfected control cells, and the intron 2 target region was PCR amplified 

using flanking primers (Mm_Mecp2_In2_For1 and Mm_Mcp2_In2_Rev1). These PCR 

products were then sent for Sanger sequencing and the resulting sequence traces analysed 

using the TIDE tool (Fig. 4.11). Results of TIDE analysis were in agreement with those from 

the RFLV assays. For WT FokI versions, TALEN #333 showed the highest cutting efficiency 

(42.9%) and #416 the second highest (19.6%). TALEN #276 and #63 showed low cutting 

(8% and 2.1% respectively). As expected, use of the mutant obligate heterodimer FokI 

nuclease led to reduced cutting efficiency with TALEN #333 reduced to 20.8% and #416 

dramatically reduced to 2.9%.  Since TIDE analysis proved to be quick, quantitative, and was 

in agreement with the results from the RFLV assays, it was used instead of the RFLV assay 

for the subsequent CRISPR Cas-9 experiments described in this chapter.    

 

 

 

 

http://tide.nki.nl/
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Figure 4.11 – TIDE analysis of TALEN pair # 333 cutting efficiency 

Cutting efficiency of TALEN pairs was quantified using TIDE analysis. (A) Sequence traces 

from untransfected (top trace) and WT TALEN # 333 transfected (bottom trace) P19 cells. 

Dashed black line indicates the expected break site. Breakdown of sequence before the 

expected cut site in WT TALEN # 333 indicates the presence of small deletions in the 

genomic sequence introduced after the repair of TALEN-mediated DNA breaks (B) 

Visualization of aberrant sequence signal between control (black) and transfected sample 

(green). Also shown is expected cut site (blue dashed line). (C) Representative image of WT 

pair # 333 indel spectrum and total cutting efficiency %. Goodness of fit assessed by R2 

calculation. The P-value associated with the estimated abundance of each indel was 

calculated using a t-test of the variance-covariance matric of the standard errors. (D) Graphs 

of estimated cutting efficiency for TALEN pairs as determined by the software. Results show 

mean ± SEM of two replicates.  

4.7 Design of CRISPR-Cas9 constructs 
 

Results from the initial TALEN experiments showed that TALEN pairs could be designed to 

efficiently induce targeted double-stranded DNA breaks in the Mecp2 target region. 

However, the TALEN pairs were very time consuming to synthesise, and cutting was 

extremely variable between the different pairs. To determine if the CRISP-Cas9 system could 

be used to more efficiently target the same region, a set of CRISPR-Cas9 single guide 

constructs was synthesised and assayed. Since TALEN pair #333 showed much greater 

cutting efficiency than the other three pairs, we focused our CRISPR-Cas9 designs on the 

small region surrounding the #333 target site. A CRISPR design tool (http://crispr.mit.edu) 

was used to generate CRISPR guide target sequences. This tool has the advantage of 

identifying likely off-target binding sites, and to score potential guides by the inverse 

likelihood of off-target binding. The higher the score, the lower the predicted off-target levels 

by the software. The top four scoring single guide target sequences were selected (Figure 

4.12). 

 

http://crispr.mit.edu/
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Figure 4.12 – DNA target sequence of selected TALEN pairings 

DNA sequence of intron 2 target region. Pink arrows at either end show the sequence of PCR 

primers designed to amplify the target region. Remaining coloured arrows show the target 

sequence of the four top scoring CRISPR guides. Red underlined sequence shows the target 

sequence for the arms of TALEN pair # 333.  
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4.8 Synthesis of CRISPR guides 
 

The selected guide target sequences were then synthesised as two complementary 

oligonucleotides, annealed together, and cloned upstream of the gRNA scaffold in a CRISPR 

guide expression plasmid (Fig. 4.13).   

 

 

Figure 4.13 – Outline of cloning strategy of guide sequence into expression plasmid 

Guide target sequences were synthesised as complementary oligonucleotides, annealed 

together, and ligated into a BbsI cut expression plasmid upstream of tracrRNA scaffold to 

form the guide RNA (gRNA). Extra bases (yellow and purple) were added to 5’-ends of 

oligonucleotides to create matching overhangs to BbsI cut plasmid. Transcription of the 

gRNA was driven by the RNA polymerase III promoter human H1 (green arrow). The 

plasmid also contained the ampicillin resistance gene (white box). 
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Transcription of the guide is driven by an RNA polymerase III promoter. Oligonucleotides 

were synthesised so that when annealed they would have overhangs complementary to those 

generated by BbsI digestion of the expression plasmid. This allowed easy cloning of the 

guide sequence into the plasmid. Successful cloning of guide sequences was confirmed by 

Sanger sequence analysis (Fig. 4.14). 

 

 

Figure 4.14 – Sequence confirmation of guide sequence cloning into expression plasmid 

Shows extract of sequence traces from expression plasmids confirming successful cloning of 

CRISPR guide target sequences (A) A64 (B) A65 (C) B52 (D) B86, upstream of the gRNA 

tracrRNA scaffold. Guide target sequence is highlighted 20 bp section. For each guide the 

nucleotide sequence extracted from sequencing traces (bottom two strands) is compared 

against the expected final nucleotide sequence (top two strands). All expression plasmids 

showed an exact match between the two, confirming successful cloning. Chromatograms are 

shown below sequence data. 
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4.9 Testing of CRISPR cutting efficiency 
 

Cutting efficiency for each of the four selected guides was tested by a process similar to that 

described previously for TALENs (Fig 4.9). Successful cutting requires a cell to be 

transfected with the guide plasmid as well as a separate plasmid expressing the Cas9 nuclease 

(Fig 4.15).  

 

 

 

Figure 4.15 – Map of Cas9 expressing plasmid 

Plasmid map showing features of the Cas9 expression plasmid. Transcription of WT Cas9 

and EGFP was driven by the CMV early enhancer/chicken β actin (CAG) promoter. A 

Thoseaasigna virus 2A peptide (T2A) sequence between the Cas9 and GFP sequence caused 

the ribosome to skip the synthesis of the peptide bond at the C-terminus of the 2A peptide, 

leading to cleavage of the downstream GFP peptide. The SV40 nuclear localisation signal 

(NLS) ensured that the Cas9 nuclease was targeted to its site of action in the nucleus. Other 

features include a bacterial origin of replication (ori) and the spectinomycin antibiotic 

resistance gene (SmR).  
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This Cas9-expressing plasmid also expresses GFP, under the control of the same CAG 

promoter that drives transcription of the Cas9 gene, enabling transfection efficiency to be 

easily assessed. The T2A sequence inserted between Cas9 and EGFP allowed the proteins to 

be expressed as two separate peptides, which prevented the potential detrimental effects of 

GFP on Cas9 function that could occur if they were made as a fusion protein.    

For each CRISPR guide to be tested, P19 cells were transfected with equimolar amount of 

guide and Cas9 plasmids and incubated for 48 hours. Genomic DNA was extracted and the 

target region was PCR amplified using flanking primers (Mm_Mecp2_In2_For1 and 

Mm_Mcp2_In2_Rev1). The PCR product was then sent for Sanger sequence analysis and the 

resulting sequencing traces were used to quantify cutting efficiency using TIDE analysis. 

TIDE analysis results (Fig. 4.16) showed that all CRISPR guides were capable of significant 

cutting, with some guides showing extremely high efficiency. Guides B52 and B86 showed 

the highest efficiency (60.4% and 46.8% respectively) and both performed better than the 

best performing TALEN pair. Guides A64 and A65 showed lower efficiency (34.5% and 

22% respectively) but these still performed better than the other three TALEN pairs.  

 

 

Figure 4.16 – Cutting efficiency of CRISPR guides 

Graph summarising the cutting efficiency of the top four selected CRISPR guides as 

determined by TIDE analysis. Results show mean ± SEM of two replicates. 
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4.10 Discussion 

Ligation of a repair construct into non-coding regions of the Mecp2 gene represents a novel 

therapeutic strategy for RTT. In order to test the potential of this approach, TALEN and 

CRISPR-Cas9 constructs capable of targeting non-coding regions of Mecp2 are required. 

Since the majority of RTT causing mutations are located in the protein coding regions of 

exons 3 and 4, replacing these two exons could provide an attractive single therapeutic 

strategy for a majority of patients. Attention was therefore focused on the large intron 

upstream of these exons. In this chapter, a number of CRISPR-Cas9 constructs targeted at 

this intron were designed, synthesised, and tested for their ability to induce double-strand 

DNA breaks. The results showed that several TALEN and CRISPR designs were capable of 

making targeted breaks at a high level of efficiency.  

In order to find a suitable target region, the sequence of Mecp2 intron 2 was examined using 

the genome browser tool. It was important to avoid regions with a high density of repetitive 

DNA, as it is essential that the TALEN or CRISPR-Cas9 constructs have a unique target site. 

On examination, the intron contained large stretches of highly repetitive DNA, but a suitable 

region of roughly 1 kb was identified slightly upstream of endogenous exon 3. Genome 

browser data also showed that there was a number of single nucleotide polymorphisms 

known in this region, which could affect the design of the TALEN and CRISPR target 

sequences, but sequence analysis on genomic DNA extracted from the P19 cells to be used in 

these experiments confirmed that the sequence in this region matched the reference sequence. 

Overall these results suggested that this stretch of DNA would be a suitable target region for 

insertion of the repair construct. 

One disadvantage of using TALEN constructs is that they are much more difficult to 

synthesise than CRISPR. This is because the DNA binding domain is composed of an array 

of repeating protein domains (Boch et al., 2009; Moscou and Bogdanove, 2009). The 

different repeat domains differ by only two amino acids meaning that the coding sequence is 

highly repetitive, and unsuitable for DNA synthesis (Deng et al., 2012; Mak et al., 2012). In 

this study, a Golden Gate cloning approach was used based on a previously published method 

(Cermak et al., 2011). This allowed a large numbers of repetitive DNA fragments to be 

ligated efficiently in a single reaction. The number of repeats in the four TALEN pairs 

designed for this study ranged from 16-19. As this was too many to ligate together in one 

reaction they were synthesised as two intermediate fragments which were then ligated 
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together into a final expression plasmid. Using this strategy, it is possible to efficiently 

synthesise TALEN arm plasmids in as short as five days. However, in this study 16 different 

TALEN arms were required and the cloning took significantly longer, mainly due to several 

reactions failing during the first attempt. There was also an initial expense with this approach, 

as it required purchasing a kit containing over 80 different plasmids, as well as various 

different enzymes. In addition, it was necessary to make high quality plasmid preps of all the 

plasmids in the kit to make them suitable for use in the protocol, which took a significant 

amount of time. In contrast to the multi-step process required for TALEN constructs, 

CRISPR-Cas9 constructs can be cloned very easily and quickly. Target sequences were 

simply synthesised as two complementary oligonucleotides, annealed together, and cloned 

into an expression plasmid, and could be generated in as little as three days at little cost. This 

offered a huge advantage over TALEN in terms of cost, time, and simplicity of design and 

synthesis.   

Once the TALEN and CRISPR-Cas9 constructs had been synthesised they were tested for 

cutting efficiency in P19 cells. Although neurons will be the ultimate target cell, they are 

more difficult to culture and to transfect with plasmids, usually requiring the use of viral 

vectors for high level transfection (Karra and Dahm, 2010). Since this study involved the 

testing of 8 different TALEN constructs as well as four CRISPR constructs, it was not 

feasible to do the initial screening assay in neurons. For both TALEN and CRISPR 

approaches, successful cutting relied on a cell receiving copies of two different plasmids. 

Using standard transfection methods this would have led to low numbers of cells being 

transfected, making it difficult to assay the different constructs quickly and effectively. In 

contrast, the Neon electroporation device enabled very high rates of transfection in P19 cells. 

Using optimised parameters, transfection rates of over 80% were achieved, providing a robust 

screening platform for identifying the most effective TALEN and CRISPR constructs. One 

disadvantage to this approach was the cost of transfections, approximately £5 per well. This 

was due to the expense of the neon pipette tips which are not reusable. 

Initially, cutting efficiency was measured using a restriction digest based approach. Insertions 

and deletions introduced during NHEJ repair of DNA breaks led to destruction of restriction 

enzyme recognition sequences in TALEN and CRISPR target sites. PCR amplification across 

the target region, and digestion of the resulting product with the appropriate restriction 

enzyme, generated digestion fragments which could be separated on an agarose gel. The 
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appearance of a unique band in transfected cells compared with untransfected cells was an 

indication that cutting had occurred. However, this approach had several disadvantages. First, 

it relied on finding a unique restriction site within the TALEN or CRISPR target site. To 

ensure that these sites were present, the initial TALEN designs in this study were filtered for 

the presence of a unique restriction site in the target region. Whilst this ensured the TALENs 

were suitable for restriction analysis, it meant that potentially more efficient TALENs may 

have been discarded as they didn’t meet this criteria. Second, it was expensive, as a different 

restriction enzyme needed to be purchased for each TALEN or CRISPR-Cas9 construct. 

Third, it was time consuming to carry out the restriction digests and run the agarose gels. 

Recently, an alternative approach, called TIDE analysis, has been developed, which enables 

the cutting efficiency of TALEN and CRISPR constructs to be quickly and easily assessed 

(Brinkman et al., 2014). In this approach PCR products spanning the target region are sent for 

sequence analysis, and specialised software (http://tide.nki.nl/) uses the sequence traces 

produced to calculate cutting efficiency. Crucially, this method is quantitative and does not 

rely on there being a unique restriction enzyme site located in the target region, so it was 

suitable for all TALEN and CRISPR constructs. In addition it was also cheaper and required 

less hands on bench-time. To validate the approach for use in this study, TALEN constructs 

were first assessed using the standard restriction digest method and then then assessed using 

TIDE analysis. The TIDE results showed the same pattern as those from the restriction digest 

method, showing that this new method is suitable for the assessment of cutting efficiency. 

Since the TIDE approach was cheaper and quicker, it was used for all future constructs. 

When assessed by both restriction digest and TIDE analysis, the cutting efficiency of the 

different TALEN pairs varied dramatically, suggesting that the ability of TALENs to cut is 

heavily dependent on the particular sequence targeted. Two of the pairs (# 63 and # 276) 

showed extremely low cutting efficiency, while a third (# 416) showed only moderate 

activity. However, TALEN # 333 did show robust cutting. One important question to be 

answered answer in this study was the effect on cutting efficiency of using the obligate 

heterodimer mutant version of the FokI nuclease instead of the WT version. This mutated 

version is designed to increase the specificity of targeting, by ensuring that cutting only 

occurs when a left and right arm dimerise to form a heterodimer, in comparison with the WT 

version which is also capable of forming homodimers (Michal Szczepek et al., 2007; Yannick 

Doyon et al., 2010). This forced heterodimerisation is also a crucial feature in ensuring that 

the repair construct is ligated into the genome in the correct orientation (Maresca et al., 

http://tide.nki.nl/
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2013). In contrast, WT FokI nuclease is capable of forming homodimers as well as 

heterodimers. This can lead to off-target cutting and substantial toxicity (Kelly Beumer et al., 

2006). However, this increased specificity comes at the expense of a substantial reduction in 

cutting efficiency in the mutated version, although recent modifications have improved 

efficiency significantly (Yannick Doyon et al., 2010). In this study, the use of the obligate 

heterodimer FokI mutant led to a large decrease in cutting efficiency. For example, the best 

performing TALEN (#333) showed a ~50% decrease in efficiency compared to the WT 

version, and other pairs showed an even greater fall in efficiency. However, this needs to be 

weighed against the substantial increase in specificity which will be crucial when thinking 

about therapies, as well as the potential for controlling the orientation of the insertion.   

CRISPR technology, which was only developed in the last few years (Martin Jinek et al., 

2012), is becoming the genome editing tool of choice due to a combination of low cost, high 

efficiency and easy synthesis (Prashant Mali et al., 2013; Sakuma et al., 2014). In this study, 

all four of the CRISPR guides designed led to robust cutting. The best performing guide, 

B52, led to over 60% of cells being cut in the target region. This figure is in fact likely to 

underestimate the actual efficiency, as not all cells will have been successfully transfected 

with both plasmids, suggesting that CRISPR is capable of achieving extremely high cutting 

efficiency. It also suggest that when targeting the same region CRISPR-Cas9 constructs will 

lead to substantially higher levels of cutting than TALENs, perhaps indicating that they are 

less affected by the particular sequence that they are targeting. However, despite this 

advantage in efficiency, there is as yet no equivalent of the obligate heterodimer mutant for 

the Cas9 enzyme. This means that there is no way to bias insertion towards the correct 

orientation, and that insert will be vulnerable to re-cutting and excision. This will be explored 

in the next chapter.   

The work in this chapter has shown that specific non-coding regions of the Mecp2 gene can 

be successfully targeted by both TALEN and CRISPR constructs and that robust cutting can 

be achieved. The best performing TALEN (#333) and CRISPR (B52 and B86) constructs 

achieved particularly high efficiency and were therefore used for the work described in the 

next chapter.   
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Chapter 5   

Targeting a repair constructs into intron 2 of 

the Mecp2 gene 

5.1 Introduction 

While genome editing tools show great promise in tackling human disease (Schwank et al., 

2013; Mussolino et al., 2014; Wang et al., 2014a, 2014b; Smith et al., 2015), they have so far 

not been utilised in the treatment of nervous system disorders. As described previously (see 

section 4.1), RTT  presents many challenges for this type of approach, the most significant of 

which is the low levels of activity in neurons of the precise homologous recombination (HR) 

repair pathway (San Filippo et al., 2008; Jeppesen et al., 2011). The reliance on the 

mutagenic non-homologous end joining (NHEJ) pathway in these cells means that any 

attempts to directly modify mutations in coding regions of the gene is likely to lead to further 

damage rather than repair.  

To overcome this issue, a novel strategy to repair RTT causing mutations was developed 

based on the approach of Maresca and colleagues (Maresca et al., 2013), who showed that 

exogenous DNA could be efficiently inserted into the genome at TALEN induced DNA 

break sites. Building on this insight we designed an Mecp2 repair construct that could be 

ligated into non-coding regions of the Mecp2 gene to replace downstream mutated DNA (Fig. 

5.1). In this approach, WT copies of Mecp2 exons 3 and 4, the site of the vast majority of 

RTT causing mutations, are ligated into intron 2 of the gene, upstream of the equivalent 

endogenous exons. By including suitable splice acceptor sites and transcription terminators 

these inserted exons should splice to upstream exons and replace the downstream endogenous 

exons in the final transcript. If successful, this approach would provide a single strategy for 

the repair of most RTT causing mutations. To be successful the repair construct must contain 

the 3’-splice acceptor elements necessary for splicing to upstream exons 1 and 2. These 

include an almost invariant AG dinucleotide sequence at the end of the intron, known as the 

3’-splice acceptor site, and an upstream branch point that includes an adenine base (Black, 

2003; Faustino and Cooper, 2003). In vertebrates, the branch point sequence is partially 

conserved and is located 10-50 bp upstream of the 3’-splice site (Green, 1991; Gao et al., 

2008).  
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Figure 5.1 – Outline of intron 2 repair strategy 

Summary diagram outlining the genome editing repair strategy for RTT. To aid clarity 

components are not drawn to scale. (A) Mecp2 gene diagram showing exons (yellow boxes) 

and introns (black horizontal lines) and site of most common RTT causing mutations (red 

areas). White arrowhead indicates TALEN and CRISPR target site for repair construct 

insertion. (B) Diagram of the basic components of the repair construct. (C) Mecp2 gene 

diagram after successful insertion of repair construct into the target site. Splice signal (blue 

box) will cause exon 2 to splice to the beginning of the repair construct (black diagonal lines) 

and transcription stop signal (purple box) will prevent endogenous downstream exons being 

included in final transcript. (D) Final protein encoded by endogenous exons 1 and 2 and 

coding region of repair construct, including WT copies of exons 3 and 4.  
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The importance of the branch point is illustrated by a study that showed that mutations in this 

region lead to a dramatic reduction in splicing efficiency (Reed and Maniatis, 1988). In 

addition, vertebrate genes often contain a 10-20 bp polypyrimidine tract that is located 

between the 3’-splice site and the branch point (Ruskin 1988). This suggests that the last 50 

bp of intron 2 should contain all the elements necessary for splicing of the repair construct to 

upstream exons.   

The ligation repair approach has two major obstacles that prevent efficient insertion of a 

repair construct. First, if the orientation of the repair construct cannot be controlled then 50% 

of the insertions will be in the reverse orientation. Second, since ligation of the insert into the 

genome can reconstitute the TALEN or CRISPR binding sites, the insert could be repeatedly 

cut back out and re-ligated, leading to DNA loss. To overcome these obstacles, Maresca and 

colleagues developed a TALEN based strategy that would promote insertion in the correct 

orientation and prevent the knocked-in repair construct from being retargeted for cutting. 

Crucial to this strategy was the use of the obligate heterodimer version of the FokI nuclease, 

which only functions when a left arm and right arm come together to form a dimer (Michal 

Szczepek et al., 2007; Yannick Doyon et al., 2010). It works by inverting the TALEN arm 

recognition sites in the repair construct, such that they are in the opposite orientation from the 

genomic target sites (Fig. 5.2-A&B). This means that when the repair construct is ligated into 

the genome in the correct orientation, the original TALEN target sites are not reconstituted 

and the insert is not vulnerable to re-cutting (Fig 5.2-C). In comparison, when insertion is in 

the reverse orientation, the TALEN target sites are reconstituted and can be re-cut from the 

genome (Fig. 5.2-D). This combination strongly biases insertion in the correct orientation. As 

of yet, no comparable strategy has been developed for CRISPR-Cas9 mediated insertion. 

 

 

 

 

 

    



135 

 

 

 

Figure 5.2 –Strategy for ensuring correctly orientated insertion of the repair construct 

Summary diagram outlining the modified TALEN approach for biasing insertion of the repair 

construct in the correct orientation. (A) Partial Mecp2 gene diagram showing TALEN arm 

target sites (blue arrow = left arm, white arrow = right arm) upstream of exon 3 (yellow box). 

(B) Inverted TALEN target sites flank either end of the repair construct (yellow box). (C) 

Insertion of the repair construct in the correct orientation leads to two left arm target sites at 

the 5’-end and two right arm sites at the 3’-end. These combinations will not be cut by 

obligate heterodimer FokI. (D) Insertion in reverse orientation leads to left and right arm 

target sites at either end, leaving the insert vulnerable to being re-cut by FokI nuclease. 
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5.2 Aims 

The results from the previous chapter (Chapter 4) showed that several TALEN and CRISPR-

Cas9 constructs were capable of selectively targeting and cutting a specific region of Mecp2 

intron 2. In this chapter, these constructs were then tested for their ability to mediate the 

insertion of an Mecp2 repair construct upstream of exons 3 and 4 of the gene. The objectives 

of this chapter were to: 

(1) To design and synthesise an Mecp2 repair construct capable of repairing 

mutations in exons 3 and 4 of the gene 

 

(2) To test the ability of TALEN and CRISPR-Cas9 constructs developed in Chapter 

4 to mediate insertion of the repair construct into the genome 

 

(3) To assess if the inserted construct is capable of producing repaired MeCP2 protein 
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5.3 Design of the repair construct 

To assess if the best performing TALEN and CRISPR-Cas9 constructs (see Chapter 4) could 

successfully target exogenous DNA into intron 2 of the Mecp2 gene, a repair construct was 

designed (Fig. 5.3).  

 

 

Figure 5.3 – Components of the Mecp2 repair construct 

Detailed diagram showing the components of the Mecp2 repair construct (components are 

drawn to scale). The construct contained WT copies of exons 3 and 4 of Mecp2 (yellow 

boxes) and was flanked at either end by TALEN or CRISPR target sites (brown boxes). 

Upstream of the exons was the last 50 bp of intron 2 of Mecp2 containg the 3’-splice acceptor 

elements of intron 2 (green box). A Thoseaasigna virus 2A sequence (T2A - blue box) was 

inserted between exon 4 and mCherry (red box). Downstream of the mCherry sequence was 

the first 33 bp of the Mecp2 3’UTR (pink box) the endogenous distal polyadenylation signal 

of the Mecp2 gene, with surrounding sequence (grey box). 

 

This construct contained WT sequence for exons 3 and 4 of Mecp2 in a minigene format. If 

successfully integrated into Mecp2 intron 2, these WT exons would replace the endogenous 

versions, and thus any RTT-causing mutations in these regions would be bypassed. The 

coding sequence of mCherry fluorescent protein was then cloned downstream of these exons 

to enable easy detection of protein expression from the repair construct after insertion. Since 

it was not clear if directly fusing a reporter to the MeCP2 protein would perturb normal 

function, a Thoseaasigna virus 2A (T2A) sequence was inserted between Mecp2 exon 4 and 

the mCherry sequence. This sequence leads to ribosomal skipping during protein synthesis 

(Daniels et al., 2014) and enables mCherry to be synthesised as a separate protein, but still 

under the control of the same Mecp2 promoter and thus expressed at the same levels as the 

Mecp2 transcript. The last 50 bp of Mecp2 intron 2 was cloned directly upstream of exon 3. 

As described previously, this region was predicted to contain all of the elements necessary for 

splicing to upstream exons (Green, 1991; Gao et al., 2008). At the 3’-end of the construct was 
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the sequence for the distal part of the Mecp2 3’UTR, including the polyadenylation signal 

necessary for terminating transcription and preventing downstream exons from being 

included in the final Mecp2 transcript. This was crucial, as the mCherry sequence contained a 

stop codon, which would be recognised as aberrant by the nonsense mediated decay system if 

the transcript contained further downstream exons (Chang et al., 2007). This would lead to 

mRNA degradation and prevent protein expression. Finally, to enable the repair construct to 

be cut simultaneously with the genomic target DNA, the construct was flanked at either end 

with target sites for either TALEN # 333 or CRISPR B52 and B86, the best performing 

constructs as described in the previous chapter. Crucially, the construct did not contain a 

mammalian promoter or an in-frame start codon. This ensured that the protein coding regions 

of the repair construct could only be expressed if the construct was ligated into the genome, 

and correctly spliced to endogenous exons. 

5.4 Synthesis of the repair construct 

Since the repair construct contained multiple different components, it was decided to get the 

construct commercially synthesised (GeneArt, Life Technologies). The construct was 

delivered as a plasmid in the pMA-RQ GeneArt backbone and contained the repair construct 

sequence as well as the elements necessary for replication and antibiotic selection, but did not 

include a mammalian promoter sequence (Fig. 5.4). Initially, it was hoped that this plasmid 

could be used directly to test for TALEN mediated insertion. However, large scale plasmid 

DNA preps produced extremely low yields, suggesting that the insert was toxic when 

expressed in bacteria. Examination of the plasmid sequence showed that it contained the 

promoter from the T7 bacteriophage, which is capable of driving high transcription rates in E. 

coli cells. In order to prepare a suitable yield of high quality plasmid DNA, primers were 

designed to PCR amplify the repair construct for subsequent cloning into an alternative 

plasmid, which did not have a bacterial promoter.   
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Figure 5.4 – Map of GeneArt Mecp2 repair construct 

Mecp2 repair plasmid synthesised by GeneArt (Life Technologies). Repair construct 

sequence (purple box) was flanked at either end by target sites for TALEN #333 (grey boxes) 

in pMA-RQ abckbone. Green arrows show primers for PCR amplification of construct for 

downstream cloning. Col_E1 origin (orange arrow) is a bacterial origin of replication and 

antibiotic selection was via the ampicillin resistance gene (AmpR – yellow arrow). The T7 

promoter (white arrow) was upstream of the repair construct.  

  

5.5 Cloning of TALEN repair construct 

The commercially synthesised repair construct was designed to be flanked by target sites for 

TALEN # 333. PCR primers TALEN_KI_FOR and TALEN_KI_REV, containing SalI and 

NotI primer tails respectively, were used to amplify the entire repair construct sequence, for 

subsequent cloning into plasmid pENTR-1A (Fig. 5.5). This plasmid was chosen as it 

contained no bacterial promoter, and in addition strong transcriptional terminators were 

present upstream of the repair construct insertion site, ensuring that there was no residual 

transcription due to the upstream kanamycin promoter, thus preventing any bacterial toxicity.  
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Figure 5.5 – Map of the final TALEN repair plasmid 

Final TALEN repair plasmid. Shows main components of the TALEN construct (previously 

described) cloned between SalI and NotI restriction sites. Plasmid replication was enabled by 

bacterial origin of replication (ori – yellow arrow). Bacterial selection was via the kanamycin 

resistance gene (KanR – green arrow). E. coli rrnb transcriptional terminators T1 and T2 

(white boxes) ensured that there was no background transcription of the repair construct.  

 

To identify successfully cloned plasmids, several bacterial colonies were picked and cultured 

overnight. Plasmid DNA was then extracted by mini-prep, digested with SalI and NotI, and 

the products separated by agarose gel electrophoresis, to identify any positive clones (Fig. 

5.6). Four of the five clones tested showed the correct insert size and this was confirmed by 

sequence analysis. A large scale plasmid DNA prep of one of the successful clones produced 

a high yield of high-quality DNA, consistent with the previous poor yield being due to 

bacterial toxicity. 
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Figure 5.6 – Restriction digest analysis of cloning of TALEN repair construct 

Plasmid DNA was digested with SalI and NotI and separated by agarose gel electrophoresis. 

Successful cloning was indicated for clones 1-4 by the presence of a 2882 bp band (black 

circle). Clone 5 was unsuccessful as indicated by the presence of the vector band (2268 bp) 

only. The control lane was cut pENTR-1A plasmid only. Ladder was NEB 1 KB Quick.    

 

5.6 Cloning of CRISPR repair construct 
To generate a repair construct flanked by target sites for CRISPR B52 and B86, a two-step 

cloning process was carried out. Due to restriction site incompatibility with the previously 

used pENTR-1A plasmid, an alternative plasmid (Cellectis-4829) with features similar to 

pENTR-1A was chosen for cloning. For the CRISPR target site, a 400 bp region containing 

CRISPR 52 and B86 recognition sites, as well as surrounding sequence, was identified. A 

DNA insert, consisting of two copies of the target region as well as strong transcriptional 

terminators, was synthesised commercially (Integrated DNA technologies), with the insert 

flanked by KpnI and PacI restriction sites. XbaI and EagI sites were synthesised between the 

two target region copies to allow future cloning of the repair construct sequence (Fig. 5.7). 
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Figure 5.7 – Map of CRISPR-target region construct 

Intermediate construct containing two copies of the 400 bp intron 2 CRISPR target region 

(orange boxes) cloned between KpnI and PacI restriction sites. EagI and XbaI sites between 

the two copies of the target region allowed for future cloning of the repair construct betrween 

the two regions. Pink arrows show the location of the CRISPR guide B52 and B86 target 

sites. Plasmid also contained E. coli transcriptional terminators T1 and T2 (white boxes), a 

bacterial origin of replication (ori – yellow arrow) and the ampicillin resistance gene (AmpR 

– green arrow).  

 

The DNA construct and the Cellectis_4829 plasmid were both digested with KpnI and PacI, 

and the resulting products were ligated, transformed into DH5α cells, and plated on 

ampicillin-containing agar plates. Several colonies were picked, cultured overnight, and 

plasmid DNA was extracted by mini-prep. Plasmid DNA from each colony was then digested 

with KpnI and PacI, and the products separated by agarose gel electrophoresis to identify any 

clone containing the correct insert. All clones tested contained the correct sized insert. 

To create the final CRISPR repair construct (Fig. 5.8), the repair construct fragment was first 

PCR amplified from the GeneArt plasmid (Fig. 5.4) using primers CRISPR_KI_FOR and 

CRISPR_KI_REV, which contained XbaI and EagI tails respectively.  
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Figure 5.8 – Map of final CRISPR repair construct 

Final CRISPR repair plasmid map. The main components of the CRISPR construct 

(previously described) are cloned between XbaI and EagI restriction sites and flanked by the 

CRISPR target region (orange box). Plasmid replication is enabled by the bacterial origin of 

replication (ori – yellow arrow) and bacterial selection is via the ampicillin resistance gene 

(AmpR – green arrow). E. coli rrnb transcriptional terminators T1 and T2 (white boxes) 

ensured that there was no transcription of the repair construct.  

 

The resulting PCR product and CRISPR target-region plasmid (Fig. 5.7) were then digested 

with XbaI and EagI, ligated, transformed into DH5α cells, and plated on ampicillin-

containing agar plates. Several colonies were picked and cultured overnight, and plasmid 

DNA was extracted by mini-prep. Plasmid DNA was then digested with XbaI and and PacI 

and the products separated by agarose gel electrophoresis, to identify any clone containing 

the correct repair construct insert (Fig 5.9). Three of the five clones showed the expected 

digestion product. However, despite being contained in a plasmid without a bacterial 

promoter large scale plasmid DNA preps still produced extremely low yields that were 

unsuitable for transfection. Time restraints meant that it was not possible to further 

investigate this failure, so the TALEN # 333 approach was utilised in later experiments. 
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Figure 5.9 – Restriction digest analysis of cloning of CRISPR repair construct 

Plasmid DNA was digested with XbaI and PacI and separated by agarose gel electrophoresis. 

Successful cloning was indicated for clones 3-5 by the presence of a 3413 bp band (black 

circle). Clones 1 and 2 did not contain the correct insert as indicated by the presence of the 

vector band (2285 bp) only, although the band in clone 2 ran slightly slower than other vector 

bands for unknown reasons. The control lane was cut CRISPR target region plasmid (Fig. 

5.7) only. Ladder was NEB 1 KB Quick.    

 

5.7 Design of PCR system for detecting successful repair 

construct insertion 

In order to detect insertion of the repair construct into the Mecp2 intron 2 target site, a PCR 

assay was designed (Fig. 5.10). The primers consisted of two genomic primers flanking the 

target site (Genomic_FOR and Genomic_REV) as well as two partially nested insert specific 

primers (C1 and C2). This combination of primers allowed both successful insertion and the 

orientation of the insert to be detected.   
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Figure 5.10 – PCR detection of repair construct insertion 

Diagram outlining PCR-based system for detecting intron 2 insertion events. The design of 

the primers allowed the orientation of the repair construct insertion to be determined. (A) 

Correct insertion of the construct should produce a PCR product only with a combination of 

the reverse flanking genomic primer (Genomic_REV) and either of the two insert specific 

primers (C1 & C2). (B) Insertion of the construct in the reverse orientation should produce a 

PCR product only with a combination of the forward flanking genomic primer (Genomic 

_FOR) and either of the two insert specific primers (C1 & C2).  

 

5.8 Repair construct successfully inserted into target site using 

TALEN # 333 

To test if TALEN # 333 could facilitate the insertion of the repair construct into the intron 2 

target region, an easy to transfect embryonic carcinoma cell line, P19 cells, were co-

transfected with 500 ng each of both TALEN arms and the TALEN repair construct (TALEN 

arm:repair construct molar ratio of 1:1.5). Cells were incubated for 48 hours and genomic 

DNA was extracted. The genomic DNA from each transfection was then assessed for 
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insertion using the PCR assay described above (Fig. 5.10). PCR products from this assay 

were separated on an agarose gel. (Fig. 5.11).        

 

   

Figure 5.11 – PCR analysis shows TALEN # 333 mediated repair construct insertion 

Genomic DNA was extracted from both transfected and untransfected cells, and assessed for 

successful repair construct insertion using PCR. Agarose gel shows resulting PCR products 

from untransfected cells (left), WT #333 + repair construct transfected cells (middle), and 

obligate heterodimer #333 + repair construct transfected cells (right). Presence of 830 bp and 

920 bp bands in REV + C1 and REV + C2 lanes respectively (black circles) indicates 

insertion of the repair construct in the correct orientation. 960 bp and 1050 bp bands in FOR 

+ C1 and FOR + C2 lanes respectively (black arrows) indicates insertion of repair construct 

in the wrong orientation. Bands of unexpected size (white arrowheads). Ladder is NEB Quick 

100 bp and 1 kb.   

 

The presence of PCR products of the expected size suggested that both TALEN # 333 

constructs, containing either the WT or obligate heterodimer version of FOKI, were capable 

of mediating insertion. However, while the WT version led to insertion in both the correct 

and reverse orientation, the obligate heterodimer version was strongly biased towards 

insertion in the correct orientation only. In addition, the WT version also led to the insertion 

of various truncated PCR products in both orientations, while the obligate heterodimer did 

not.  

P19 cells were transfected with varying concentrations of repair construct and TALEN arm 

plasmids to assess the effect on efficiency of insertion. Since results from the previous 

experiment showed that the obligate heterodimer version of TALEN # 333 led to the repair 

construct being inserted preferentially in the correct orientation, it was decided to focus on 
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this version for the following experiments. Cells were transfected with 3.5 µg DNA, with an 

insert: TALEN arm molar ratio of 3:1, 1:1, or 1:3, and incubated for 48 hours. Genomic DNA 

was then extracted from the cells and assessed for insertion using the PCR assay.     

 

 

Figure 5.12 – Effect of plasmid concentration on repair construct insertion efficiency 

Genomic DNA was extracted from both transfected and untransfected cells, and assessed for 

successful repair construct insertion using PCR. Agarose gel shows PCR products from 

transfections of various concentrations of insert and obligate heterodimer TALEN # 333 

plasmid including; high insert (2 µg) / low TALEN arm (750 ng each); medium insert (1.5 

µg) / medium TALEN arm (1 µg); low insert (1 µg) / high TALEN arm (1.25 µg); as well as 

insert only (no TALEN plasmid) and WT non-transfected controls. Also included is a no 

template negative PCR control. Molar insert:TALEN arm ratios are shown above the lane 

labels. Highlighted are PCR products indicating repair construct insertion in correct (black 

circles) or reverse (black arrows) orientation. Bands of unexpected size (white arrowheads) 

indicate insertion of truncated versions of the repair construct. Ladder is NEB Quick 100 bp. 

M insert / M TALEN transfection was repeated, as first one was suspected to have failed due 

to an air bubble in the Neon pipette during electroporation. 

 

The assay results showed that all ratios of insert: TALEN arm produced strong bands of the 

expected size in the REV + C2 reactions, indicating insertion in the correct orientation (Fig. 

5.12). However, in contrast to the previous experiment (Fig. 5.11) bands were also produced 

from the FOR + C2 reactions, indicating some insertion in the reverse orientation. There was 

not a linear relationship between TALEN concentration and insertion efficiency, with the 

medium TALEN concentration producing the highest amount of total insertion compared to 

the low and high concentrations as determined by the measurement of band intensity using 

ImageJ (intensity value; low TALEN = 9680; med TALEN = 13,405; high TALEN = 11,433; 

Fig. 5.13). However, the combination of a high TALEN concentration and low repair 
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construct concentration did lead to the highest level of overall insertion in the correct 

orientation (intensity value; low TALEN = 6315; med TALEN = 8361; high TALEN = 9332) 

as well as a greater proportion of the total repair construct insertions being correctly 

orientated (proportion; low = 65%; med = 62%; high = 82%) .     

 

Figure 5.13 – Effect of insert:TALEN arm ratio on genomic insertion efficiency 

Repair construct insertion was assessed using a PCR assay (see Fig. 5.13). The band intensity 

of PCR products was measured using ImageJ in order to quantify relative insertion efficiency. 

Columns show the intensity value of the PCR product band for each insert:TALEN arm ratio. 

Black columns show the intensity value for products in correct orientation (Rev + C2) while 

white columns show value for those in reverse orientation (For + C2).  

 

To examine the relationship between insertion rates and cutting efficiency, genomic DNA 

from each of the different insert:TALEN ratios was assessed by TIDE analysis (Fig. 5.14). 

As expected, cutting efficiency increased as the concentration of TALEN increased, ranging 

from 5% efficiency for the lowest concentration to 19.5% for the highest.  
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Figure 5.14 – TALEN cutting efficiency increases with increasing plasmid concentration 

TALEN cutting efficiency for three different TALEN arm plasmid concentrations (see 

Figure 5.13) was estimated by TIDE analysis. Columns show mean % cutting efficiency ± 

SEM for two replicates of either low (500 ng – black box), medium (1 µg – grey box), or 

high (1.5 µg) plasmid amount.    

 

5.9 Repair construct insertion with TALEN # 333 does not lead to 

protein expression 

The previous experiments showed that obligate heterodimer TALEN # 333 was capable of 

mediating insertion of the repair construct into intron 2 of the Mecp2 gene. To determine if 

this insertion led to subsequent protein expression, flow cytometry was used to quantify the 

number of cells expressing the mCherry tag. Since the repair construct plasmid contains no 

promoter of its own, the mCherry fluorescent reporter could only be expressed if the repair 

construct was successfully spliced to exons 1 and 2 of Mecp2. 

P19 cells were first transfected with a total of 3.5 µg DNA, with insert: TALEN arm ratios of 

3:1, 1:1, or 1:3, as previously described (see Fig. 5.12). As a positive control, cells were 

transfected with 500 ng of an mCherry expressing plasmid (p-CMV-mCherry). This allowed 

the transfection efficiency to be measured, and also enabled the flow cytometry laser settings 

to be optimised for mCherry detection. To control for any background transcription from the 

repair construct, cells were also transfected with 500 ng of repair construct only. Forward and 
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side scatter plots from untransfected P19 cells were used to exclude debris and cell 

aggregates, and to identify a population of viable cells to be used for fluorescence analysis. A 

polygon gate was drawn around this population (Fig. 5.15) and this gate was used for all 

TALEN # 333 transfection experiments. 

      

 

 

Figure 5.15 – Gating of live cells allowed debris and aggregates to be excluded 

Flow cytometry forward versus side scatter intensity plots from untransfected P19 cells. The 

plot was used to exclude cell debris and aggregates, and to identify a population of viable 

cells (large black polygon) to be used for fluorescence analysis. This ‘viable cells’ gate was 

used for all future FACS experiments involving P19 cells. Value within viable gate indicates 

% of total cells contained within this region. 

 

Untransfected P19 cells were also used to determine the cellular background auto-

fluorescence levels. Fluorescence intensity was measured using a yellow 561 nm laser with a 

615/20 nm filter, which is optimised for mCherry detection. Intensity levels plotted on a 

histogram, allowing two gates to be created which split cells into mCherry positive and 

mCherry negative populations (Fig. 5.16-A), with any cells expressing mCherry fluorescence 
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levels above the background levels seen in untransfected cells being classed as mCherry 

positive. Cells from all transfections were then assessed and gated using the same settings. 

Results from the control transfections showed that transfection with the mCherry positive 

control plasmid (Fig. 5.16-B) led to a large proportion of cells expressing mCherry protein 

(86.4% of cells positive). This confirmed that the transfection efficiency was high and that 

the laser settings used were suitable for detecting mCherry protein expression. In contrast, 

transfection with the TALEN repair construct (Fig. 5.16-C) led to only a tiny proportion of 

cells expressing mCherry (0.31% of cells positive), showing that there was no endogenous 

expression of mCherry from the repair construct plasmid. Surprisingly, transfection of the 

repair construct along with either of the three insert:TALEN arm ratios (Fig. 5.16-D-F) also 

led to only a tiny proportion of cells expressing mCherry (% of cells mCherry positive; 3:1= 

0.35%; 1:1 = 0.42%; 1:3 = 0.39%), and these reactions did not differ significantly from the 

repair plasmid only transfection, or from each other (p < 0.05; Fig. 5.17). This suggests that 

insertion of the repair construct into intron 2 of the Mecp2 gene did not lead to subsequent 

expression of repaired MeCP2 protein.     
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Figure 5.16 – Flow cytometry analysis of TALEN and repair construct transfected cells 

Representative histograms of mCherry protein expression as determined by flow cytometry. 

Shows results from viable population of (A) WT non-transfected cells (B) mCherry positive 

control plasmid (C) repair construct only (D) high insert (2 µg) / low TALEN arm (500 ng 

each) (E) medium insert (1.5 µg) / medium TALEN arm (1 µg) (F) low insert (750 ng) / high 

TALEN arm (1.5 µg). x-axis shows mCherry fluorescence intensity and the y-axis shows the 

number of cells. Non-transfected cells (A) were used to generate gates for determining cell 

populations positive and negative for mCherry expression (horizontal black lines). The % 

value of each population, as a proportion of the total viable cell population, is shown in top 

left and right of each histogram.   
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Figure 5.17 – No mCherry protein expression after TALEN and repair construct 

transfection 

Summary of flow cytometry data from TALEN and repair construct transfected P19 cells. 

Results show the mean % of mCherry positive cells ± SEM from the total viable cell 

population of three replicates for a variety of insert: TALEN ratios, as well as controls (see 

Fig. 5.16). Groups were compared using one-way ANOVA. ns = non-significant. 

5.10 Construction of a GFP reporter construct 

The previous experiments showed that while TALEN # 333 enabled insertion of the repair 

construct into the genome, this was not sufficient to produce detectable protein expression. 

Previous work using anti-MeCP2 antibodies has shown that undifferentiated P19 cells 

express detectable levels of MeCP2 protein when assessed by western blot (Hwang et al., 

2007). It was therefore hypothesised that the lack of protein expression in the current 

experiment was due to a failure of correct splicing, rather than an inability of the Mecp2 

promoter to drive transcription in P19 cells. The repair construct used in the previous 

experiments contained the last 50 bp of intron 2 of the Mecp2 gene, the region in which the 

3’-elements vital for splicing are normally found (Green, 1991; Gao et al., 2008). However, 

the precise location of splice elements has not been determined for intron 2 of Mecp2. To 
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determine if the failure of protein expression was due to a lack of a functional splice acceptor 

site in the repair construct, a simple GFP reporter construct was designed (Fig. 5.18).   

 

 

Figure 5.18 – Splice acceptor GFP reporter construct 

Diagram showing the components of the GFP reporter construct (components are drawn to 

scale). The construct contains eGFP (green box) to allow insertion to be detected by flow 

cytometry. Upstream of the eGFP is a splice acceptor (yellow box), composed of either the 

last 70 bp of Mecp2 intron 2 or the exon 3 β-globin acceptor site (HBB SA), while 

downstream is the bovine growth hormone polyadenylation sequence (bGHpA – grey box) to 

terminate transcription. The construct is flanked at either end by the target site for TALEN # 

333 (blue boxes). 

 

The reporter contained the coding sequence of eGFP, cloned upstream of the bovine groth 

hormone poladenylation sequence. Upstream of eGFP, the last 50 bp of Mecp2 intron 2, as 

previously used in the repair construct, or the previously established β-globin exon 3 splice 

acceptor (HBB SA), was cloned. The HBB SA sequence has previously been used to 

successfully induce splicing of a construct inserted into the AAV 1 sage locus (Hockemeyer 

et al., 2009). The construct was flanked at either end by target sites for TALEN # 333 to 

enable insertion into the genome. To speed up the cloning process, the reporter was 

synthesised commercially (GeneArt, Life Technologies). This synthesised version contained 

the last 50 bp of Mecp2 intron 2 and was cloned into the GeneArt pMH-RQ backbone, which 

did not contain a mammalian promoter. To generate a plasmid containing the alternative HBB 

SA sequence (Fig. 5.19), the HBB SA sequence was first synthesised as two complementary 

oligonucleotides. These oligonucleotides were synthesised so that when annealed they 

formed overhangs complementary to those generated by XbaI and EcoRI digestion of the 

reporter plasmid.  
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Figure 5.19 – Plasmid map of final HBB Ex3 SA reporter plasmid 

Map showing main components of the final HBB ex3 SA GFP reporter plasmid. The β-globin 

Exon 3 splice acceptor (HBB ex3 SA) was cloned between XbaI and EcoRI restriction sites. 

Downstream is the EGFP coding sequence (green arrow) and the bovine growth hormone 

polyadenylation site (grey box) to terminate transcription. The reporter construct is flanked 

by target sites for TALEN # 333 arms (blue arrows). Plasmid replication is enabled by 

bacterial origin of replication (ori – yellow arrow) and bacterial selection is via the 

kanamycin resistance gene (KanR – purple arrow). 

 

The annealed oligos and digested plasmid were then ligated together, transformed into DH5𝛼 

E. coli cells, and plated on kanamycin-containing agar plates. Three colonies were picked and 

cultured overnight, and plasmid DNA was extracted by mini-prep. Successful insertion of the 

HBB SA sequence was confirmed by Sanger sequence analysis of plasmid DNA. All three 

clones showed the correct insert (Fig. 5.20).  
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Figure 5.20 – Sequence confirmation of HBB ex3 SA into GFP reporter 

Partial sequence traces confirming successful cloning of the β-globin exon 3 splice acceptor 

(HBB ex3 SA) into the GFP reporter construct. Plasmid DNA from 3 clones was assessed and 

all showed the correct insert (blue highlighted sequence). (A)  Double stranded sequence of 

intended final product. Shows HBB ex3 SA (grey box) cloned between XbaI and EcoRI 

restriction sites. Also shown are upstream TALEN target site (dark green box) and 

downstream eGFP (light green box). (B) Sequencing data for three clones. For each clone the 

bottom row shows the sequencing chromatogram and the top row shows the DNA sequence 

generated from the chromatogram. The T7F primer was used in all sequencing reactions.  

 

P19 cells were transfected with a total of 3.5 µg DNA, 1 µg of the reporter plasmid and 1.25 

µg of each TALEN # 333 arm. As a positive control, cells were transfected with 500 ng of an 

eGFP expressing plasmid (pLenti-PGK-GFP). This allowed the transfection efficiency to be 

measured, and also enabled the flow cytometry laser settings to be optimised for eGFP 

detection. To control for any background transcription from the reporter constructs, cells 

were also transfected with 500 ng of each of the reporter construct only, without any TALEN 

arm constructs. Background GFP fluorescence intensity was measured using a blue 488 nm 

laser with 525/50 nm filter, which is optimised for eGFP detection. Intensity levels were then 

plotted as a histogram, allowing two gates to be created which split cells into GFP-positive 

and GFP-negative populations (Fig. 5.21-A), with any cells expressing GFP fluorescence 

levels above background being classed as GFP positive. Cells from all transfection reactions 

were then assessed and gated using the same settings. 

Results from the control transfections showed that transfection with the GFP positive control 

plasmid (Fig. 5.21-B) led to a large proportion of GFP expressing cells (63.9% of cells 

positive). This confirmed that the transfection efficiency for the reactions was high and that 

the laser settings used were suitable for detecting GFP protein expression. Surprisingly 
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however, transfection with either the Mecp2 intron 2 or the HBB SA reporter construct only 

(Fig. 5.21-C&D) also led to a large proportion of cells expressing GFP protein (76.8% and 

75.6% of cells positive respectively) as did transfection of the Mecp2 intron 2 reporter 

construct along with a single TALEN left arm (84.4% of cells positive; Fig. 5.21-E). 

Similarly, transfection of either reporter construct along with both TALEN # 333 arms led to 

a large proportion of GFP positive cells (64% for intron 2 Mecp2 SA and 73.4% for HBB SA; 

Fig. 5.21-F&G).  

One-way ANOVA analysis showed that the proportion of GFP positive cells in these 

reactions did not differ significantly from the reporter plasmid only transfection, or from each 

other (p < 0.05; Fig. 5.22). Overall, these results suggest that for unknown reasons, GFP is 

being expressed from the reporter plasmid, independently of the presence of a known 

mammalian promoter. For this reason, the results from these experiments could not be used to 

assess the effect of altering the splice acceptor site on protein expression levels.  
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Figure 5.21 – Flow cytometry analysis of GFP reporter construct transfected cells 

Representative histograms of GFP protein expression as determined by flow cytometry. 

Shows results from viable cells of (A) WT non-transfected cells, (B) GFP positive control, 

(C) Mecp2 SA reporter plasmid, (D) HBB ex3 SA reporter plasmid, (E) TALEN # 333 left 

arm + Mecp2 SA reporter, (F) TALEN # 333 left and right arm + Mecp2 SA reporter, (G) 

TALEN # 333 left and right arm + HBB SA reporter. x-axis shows GFP fluorescence 

intensity and the y-axis shows the number of cells. Non-transfected cells (A) were used to 

identify sub-populations positive and negative for GFP expression (horizontal black lines). 

The % value of each population as a proportion of the total viable cell population examined is 

shown in the top left and right of each histogram.   

 

 

 

Figure 5.22 – High background GFP protein expression from reporter construct 

Summary of flow cytometry results from GFP reporter construct transfections. Results show 

mean ± SEM of GFP-positive cells of three replicates from the total viable cell population for 

the groups previously described (see Fig 5.21). Groups compared using one-way ANOVA. ns 

= non-significant. 
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5.11 Discussion 

Insertion of a repair construct into non-coding regions of a gene, using TALEN or CRISPR-

Cas9, represents a novel strategy for overcoming some of the obstacles involved in 

developing genome-editing based therapies for nervous system disorders. In this chapter 

previously validated TALEN constructs (Chapter 4) were used to insert a repair construct 

into intron 2 of the Mecp2 gene. Results showed that co-transfection of cells with the TALEN 

arms and a repair construct led to efficient insertion of the repair sequence into the genome. 

However, further protein expression analysis revealed that successful insertion of the repair 

construct using TALEN did not lead to subsequent expression of repaired MeCP2 protein, 

perhaps indicating a failure of the repair construct to splice to endogenous exons.  

An unexpected difficulty that arose during the cloning of the repair construct was the 

extremely low yield obtained when preparing plasmid stocks. Plasmids have a metabolic cost 

for their host cells, both from the increase in the amount of DNA to be copied during cell 

division, as well as the production of large amounts of recombinant protein (Corchero and 

Villaverde, 1998; Summers, 1998). This metabolic cost is increased if the plasmid encodes a 

protein which is toxic to bacterial cells, leading to a decrease in the growth rate of cells 

containing the plasmid and a subsequent overtake of the culture by plasmid free cells. Several 

studies have used E. coli cells to express and purify recombinant MeCP2 protein (Nan et al., 

1993; Klose and Bird, 2004; Laget et al., 2010), but in each of these cases gene transcription 

was controlled by an inducible promoter, meaning that the culture could first be allowed to 

grow to a high density before transcription, thus mitigating the effects of any toxicity. In this 

study, Mecp2 transcription was driven by the T7 bacteriphage promoter in bacterial cells. 

Overnight cultures showed very little growth suggesting high toxicity of the insert. In order to 

reduce the cells metabolic load the culture temperature was lowered to 300C, which increased 

the culture density by a significant amount but still did not lead to sufficient plasmid yields. 

Since our target cells were mammalian, it was unnecessary to have any bacterial transcription 

of the repair construct. The repair construct was therefore sub-cloned into alternative plasmid 

vectors that did not contain a bacterial promoter. Two versions of the repair construct were 

cloned. One, in which the repair sequence was flanked by TALEN # 333 target sites, and 

another in which it was flanked by 400 bp of sequence containing target sites for CRISPR 

B52 and B86. This time high yields were obtained for the TALEN repair construct, 

supporting the hypothesis that transcription of the repair construct was toxic in bacteria. In 

contrast, bacterial growth and plasmid yield was still extremely poor from cells transformed 
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with the CRISPR repair construct, even when multiple cultures were combined in an attempt 

to increase the yield. It is possible this was due to the presence of inverted terminal repeats of 

the CRISPR target regions. Since the TALEN construct was producing suitable yields it was 

decided to focus on this strategy.  

By careful design of primers for the PCR assay, the successful insertion of the repair 

construct could be easily detected. Two flanking genomic primers were chosen as well as two 

specific to the insert. By having flanking primers at either end, the orientation of the insertion 

could also be determined. This revealed that, as expected, the obligate heterodimer version of 

the FokI nuclease lead to a strong bias for insertion in the correct orientation. As previously 

described, this is because the TALEN target sites are not reconstituted after correct insertion 

(Maresca et al., 2013) but instead the inserted DNA is flanked at either end by homozygous 

sites, either two sequential left arm or right arm target sequences. Since the obligate 

heterodimer FokI requires both a left and right arm sequence in close approximation, the 

insert can no longer be cut by the enzyme and remains permanently ligated into the genome. 

In contrast, the WT version of the enzyme did not lead to a greater proportion of correct 

insertion. This is because the WT version of FokI can also function as a homodimer, meaning 

that sequential left arm or right arm target sites are still vulnerable to re-cutting. While the 

results of the PCR assay strongly suggest that the repair construct was successfully inserted, 

it will be necessary to confirm this by Sanger sequencing of the PCR products. In addition, 

this will also allow the nature of the 5’ and 3’-junctions to be characterised to assess the 

precision of the insertion. In the WT FokI reactions a variety of smaller than expected PCR 

products also appeared on the gel. Since these did not appear in the obligate heterodimer 

reactions, it is possible that repeated rounds of ligation and re-cutting leads to truncation of 

the insert. However, since primers C1 and C2 bind to overlapping regions, it would be 

expected that the same additional PCR products would appear in both reactions. However, 

different products appeared in each of the PCR reactions. In future experiments these 

products should be characterised by Sanger sequencing in order to determine their nature. 

Overall, the results suggest that heterodimer FokI nuclease promotes the permanent ligation 

of the repair construct into the genome in the correct orientation, and that this benefit 

outweighs the significantly higher cutting activity seen in the WT version.  

To examine the effect of altering the relative amounts of TALEN arms and repair construct 

transfected into cells, a variety of ratios were tested. Surprisingly, even at low TALEN arm 

concentrations, with a cutting efficiency of only 5%, a significant amount of insertion was 
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detected by the PCR assay. This was perhaps helped by the large molar excess of repair 

construct plasmid (3:1) in this reaction. Increasing the amount of each TALEN arm DNA in 

the reaction by a third led to a 200% increase in cutting efficiency but led to only a modest 

38% increase in the frequency of repair construct insertion. In this reaction, the amount of 

repair construct plasmid was reduced suggesting that the availability of the repair construct is 

a significant rate-limiting step for insertion. A further increase in the TALEN concentration 

by a third led only to a 33% increase in cutting efficiency and a modest 12% increase in the 

insertion rate, suggesting that cutting efficiency does not scale linearly with increasing 

amounts of TALEN arm plasmid, but reaches a plateau which will likely vary depending on 

the TALEN sequence. Since there is a limited amount of DNA that can be inserted into a cell 

during transfection without causing toxicity, it is important to have TALEN arm : repair 

construct ratios that are optimised for maximum insertion, with the need for large amounts of 

repair plasmid to be balanced with the need to have sufficient levels of TALEN cutting. This 

is difficult to achieve with a TALEN construct with only modest activity levels, as large 

amounts of plasmid are needed to achieve adequate cutting. The development of improved 

versions of the obligate heterodimer FokI nuclease, with activity levels closer to those of the 

WT version, would aid future efforts.  

To determine if repair construct insertion led to subsequent protein expression, flow 

cytometry was used to detect the mChery fluorescent tag. In addition to being extremely 

sensitive, it allowed the number of cells expressing the repair construct to be precisely 

quantified. The repair construct itself did not contain a mammalian promoter, so mCherry 

protein translation would only occur if the plasmid was cut, ligated into the genome, and 

spliced to upstream exons of the Mecp2 gene. As expected, transfection with the repair 

construct only did not lead to cells expressing mCherry. Surprisingly, when the cells were co-

transfected with both obligate heterodimer TALEN arms and the repair construct, there was 

no significant increase in the number of cells expressing mCherry. Since the previous 

experiments showed that a combination of TALEN and repair construct could lead to 

insertion of the repair construct into intron 2 of Mecp2, it was hypothesised that the absence 

of protein expression may due to a failure of the repair construct to splice to the upstream 

Mecp2 exons. For the splice acceptor it was decided to use the last 50 bp of the intron, which 

normally contain all the required splice acceptor elements (Reed and Maniatis, 1988; Gao et 

al., 2008). To test if the failure of protein expression was due to this region not being 

sufficient for splicing, a GFP reporter construct was made using either this sequence or a 
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previously validated splice acceptor region the β-globin gene (Hockemeyer et al., 2009). 

Once again the reporter plasmid did not contain a mammalian promoter, so GFP protein 

translation should only have occurred if the reporter was inserted into the genome and spliced 

to upstream exons. Similar to the previous experiments, control cells were transfected with 

the reporter construct only to ensure there was no background transcription of the reporter 

construct. Strangely, transfection with this construct led to GFP protein expression in the 

majority of cells (>75%), even greater than transfection with the positive control in which 

GFP is in a plasmid containing the PGK promoter. The reasons for this are unclear. The 

initial reporter construct, containing the Mecp2 intron 2 splice acceptor sequence, was 

synthesised commercially by GeneArt and sub-cloned into a standard promoterless vector. 

The Mecp2 intron 2 sequence was then subsequently replaced by the β-globin sequence, but 

the construct remained within the same vector. The plasmid sequence was confirmed by 

Sanger sequence analysis before the plasmid was shipped, which confirmed that no 

mammalian promoter was present. The high levels of background protein expression of the 

reporter construct rendered it unsuitable for determining if modifying the splice acceptor 

sequence led to subsequent repair reporter construct protein expression. Since no logical 

explanation could be found for the protein translation of the GFP reporter without genomic 

insertion, the reporter construct would need to be resynthesized into a different plasmid to 

test if there was an unknown issue with the original plasmid. Unfortunately, these 

experiments were carried out at the end of the available time for the project, and so it was not 

possible to further investigate this issue. Another possible reason for the lack of protein 

expression could be low levels of transcription driven by the Mecp2 promoter in our P19 

cells. Previous studies have shown that P19 cells express detectable levels of MeCP2, even in 

their undifferentiated state (Hwang et al., 2007), suggesting these cells would be suitable for 

detecting repaired protein. However, future experiments would test this directly in our own 

batch of cells, both at the transcript levels using RT-qPCR, as well as at the protein level 

using western blot, to confirm that these cells do indeed express MeCP2 protein.      

 The Mecp2 intron 2 is an extremely large intron (> 42,000 bp) which presents particular 

challenges for the splicing machinery due to the distance between splice donor and acceptor 

sites. One study suggests that in order to reduce this distance, repetitive elements such as 

SINEs and LINEs can form stems which enable intronic RNA to fold and reduce the distance 

between the donor and acceptor sites (Shepard et al., 2009). Another study provided evidence 

that large introns may in fact be spliced out in stages, with intermediate recursive splice sites 
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across the intron being used (Kelly et al., 2015). These studies make it clear that the precise 

mechanisms by which large introns are spliced has not been determined. This makes it more 

difficult to rationally design a construct for insertion into intron 2 of Mecp2 that will be 

efficiently spliced to upstream exons. It is possible that even with all the required splicing 

elements being present in the repair construct, splicing failed because the unique mechanisms 

used in splicing a large intron meant that this was not sufficient to out-compete the 

endogenous splice site. For example, if the intron RNA does indeed fold in on itself, in order 

to bring together distant splice donor and acceptor sites, the repair construct splice sequences 

may not be optimally located in the loop structure to attract the splicing machinery. Perhaps 

future studies could focus on smaller introns like intron 1 and 3, were standard splicing 

mechanisms will apply, meaning that the splice elements closest to the 5’-donor site will be 

preferentially utilised. 

Overall, the results from this chapter suggest that TALEN constructs can be used to ligate an 

exogenous repair construct into specific non-coding regions of the Mecp2 gene. They also 

confirm that, as described previously (Maresca et al., 2013), the obligate heterodimer FokI 

nuclease can be used to bias the orientation of insertion by preventing correctly orientated 

DNA from being subsequently re-cut from the genome. The results also show that the current 

design of the repair construct did not enable the exogenous DNA to be spliced to upstream 

exons, and thus be subsequently expressed. It could not be determined from these 

experiments whether this was due to an issue with the splice acceptor sequences chosen for 

the repair construct, or if it was due to complications caused by the unique splicing 

mechanisms employed for large introns. Future experiments would focus on, first, 

troubleshooting the GFP reporter construct issues so that alternative splice site sequences 

could be rapidly tested. Second, PCR and Sanger sequencing would be used to characterise 

genomic/repair construct boundaries to check for DNA loss from the repair construct during 

insertion. Third, RT-qPCR would be employed to determine if the repair construct is being 

incorporated into the final mRNA transcript. Fourth, target sites in smaller Mecp2 intron 

would be identified to test if the failure of splicing was due to problems associated with 

targeting a large intron.   
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Chapter 6 

General Discussion 

6.1 Introduction 

RTT is an extremely severe and life-long disorder but studies in mice have given hope that 

the disease could be reversible in patients, even in adulthood (Guy et al., 2007; Robinson et 

al., 2012). This has led to a huge effort to try and develop novel therapies, but this has been 

hampered by a fundamental lack of knowledge about the downstream pathways involved in 

the gene function, making it extremely difficult to identify drug targets that could help 

ameliorate the disease. For this reason, recent efforts have focused on targeting the disease at 

the gene level, mainly using viral based delivery of Mecp2 gene products (Gadalla et al., 

2012; Garg et al., 2013). While this has shown some potential, there remain several 

outstanding issues, including the dangers of overexpression toxicity, due to a lack of 

endogenous control mechanisms in the transgene constructs, and the fact that current viral 

delivery vectors such as AAV do not lead to permanent insertion into the genome. This 

means that in dividing cells like glia, which have been shown to be relevant for the RTT 

phenotype (Lioy et al., 2011), the transgene is quickly diluted in the population as it is not 

copied along with chromosomal DNA during cell division.  

Also relevant for the development of RTT therapies is the question of what tissues are 

responsible for the phenotype. It has been widely assumed in the field that the RTT 

phenotype can be explained solely by an absence of MeCP2 from cells in the nervous system 

(Chen et al., 2001; Guy et al., 2001; Giacometti et al., 2007). This was based on the evidence 

from several mouse models which showed that specific deletion of Mecp2 from neurons and 

astrocytes leads to the development of a severe RTT-like phenotype and lethality that 

appeared indistinguishable from global KO mouse models. On this basis it was argued that 

RTT was a nervous system specific disorder. However, RTT is a disorder with a wide range 

of phenotypes in multiple organs in the body. A major weakness of these studies was that the 

phenotyping carried out was limited to only a few aspects of the disorder such as lifespan, 

bodyweight, and activity levels and did not assess aspects of the disorder with a plausible 

peripheral component such as cardiac and respiratory dysfunction, bone and muscle 

abnormalities, and gait. It is therefore possible that some RTT phenotypes could be treated by 
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targeting relevant peripheral tissues, which is appealing due to the greater accessibility of the 

these tissues compared to the isolated nervous system.  

Based on this there was two major aims of this thesis. First, to comprehensively examine the 

role of the peripheral tissues in the development of the RTT phenotype, and second, to utilise 

genome editing tools such as TALEN and CRISPR-Cas9 to develop an alternative, gene-

based, RTT therapy.    

6.2 Major findings and conclusions 

6.2.1 Peripheral contribution to RTT 

6.2.1.1 Findings 

In order to examine the role of peripheral MeCP2, a novel mouse model was used, in which 

MeCP2 was selectively expressed in neurons and astrocytes of the nervous system, thus 

creating a functional peripheral KO mouse. As expected from previous studies of neuron 

specific KO mice (Chen et al., 2001; Guy et al., 2001), mice expressing MeCP2 exclusively 

in the nervous system did not show the early lethality seen in global KO mice, and showed 

only extremely mild RTT-like symptoms when assessed by a well-established scoring 

system, even after one year of age. This mild score was usually due to the hypoactivity 

observed in these mice, which was apparent even by casual observation when handling the 

mice. More detailed phenotyping confirmed these reduced activity levels, with the mice 

showing moderately reduced spontaneous activity levels in the open field and impaired 

activity on an accelerating rotarod, which is sensitive to endurance fatigue as well as to 

balance issues. When the mice were more severely challenged on an elevated accelerating 

treadmill a markedly reduced exercise capacity was observed, with an almost 50% reduction 

in performance compared to WT. The reason for this reduced activity and exercise capacity is 

unclear and these mice did not differ from WT in the other major RTT-like phenotypes 

including breathing, gait, balance, and cardiac function. To investigate a possible role for 

muscle dysfunction in the locomotor phenotype, structural analysis of skeletal muscle was 

carried out and revealed some evidence of muscle fibrosis, however this was variable and 

only seen in about half the mice, meaning that the results did not quite reach overall 

significance. The most striking result of this study was that the bone abnormalities previously 

described for global KO models (Kamal et al., 2015) were also seen in the peripheral KO 
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mice, and in fact no significant difference was seen between peripheral and global KO mice, 

suggesting this is an exclusively peripheral phenotype.   

6.2.1.2 Significance 

The work presented in this thesis is the first time that a comprehensive phenotyping has been 

carried out to examine the role of MeCP2 outside of the nervous system, and answers several 

important questions regarding the role of MeCP2 throughout the body and the appropriate 

target cells for therapies. First, it confirms that most of the major aspects of the disorder are 

due to the absence of MeCP2 from the nervous system. While, several previous studies have 

suggested this (Chen et al., 2001; Guy et al., 2001; Giacometti et al., 2007), these 

assumptions were based on very superficial phenotyping of neuron-specific KO animals. This 

study is the first to examine the role of the nervous system in breathing, cardiac function, 

bone abnormalities, gait, exercise capacity, balance and blood biochemistry. In addition, it 

provides the first comprehensive pathological screening of multiple tissue systems, carried 

out by a qualified veterinary pathologist, which conclusively demonstrates that a loss of 

functional MeCP2 does not lead to any major structural or pathological abnormalities in any 

of the tissues tested. The results strongly suggest that therapies targeting the nervous system 

will lead to the reversal of most of the major RTT phenotypes and should therefore be the 

main focus of any future therapeutic strategies. A surprising finding of this study was the 

marked decrease in exercise capacity seen in the peripheral KO mice. Since RTT patients are 

usually confined to wheelchairs, this is not an aspect of the disorder that would be considered 

clinically relevant and has therefore not been investigated before. However, this fatigue could 

become more relevant when seen in the context of disease reversal. It suggests that even if a 

treatment led to a full recovery of MeCP2 protein expression in the brain, patients would still 

display a strongly reduced ability to carry out exercise. Whether this would actually manifest 

in human patients is not clear from this study, and its importance is therefore difficult to 

assess. Since the animals in this study were assessed at 15 weeks, the equivalent of a young 

adult in humans, it is possible that this phenotype could progress over time to become more 

significantly debilitating. Another novel and significant finding from this study was that the 

bone abnormalities previously described in RTT mice (Kamal et al., 2015) are likely to be 

caused exclusively by an absence of MeCP2 from peripheral tissues. RTT patients suffer 

from a number of skeletal abnormalities, including early osteoporosis, spinal deformities that 

have to be corrected by surgery, and a preponderance of low-impact fractures (Keret et al., 

1988; Guidera et al., 1991; Zysman et al., 2006; Downs et al., 2008; Percy et al., 2010), and 
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the results of this study suggest that therapies will need to be targeted to peripheral tissues to 

impact on this phenotype. This is important as peripheral organs are more accessible to 

therapies than the highly protected environment of the nervous system. 

6.2.1.3 Caveats and technical considerations 

The cre-based strategy employed to generate a functional peripheral KO mouse achieved very 

high levels of reactivation in the nervous system and very low levels in the peripheral tissues. 

However, it cannot be discounted that a lack of MeCP2 in 10% of neurons and astrocytes 

could have a mild impact on some of the phenotypes seen in the peripheral KO mouse. An 

argument against this is that presumably brain-specific measures such as balance and nest 

building behaviour are indistinguishable from WT in these mice. Additionally, previous 

global reactivation mice studies have achieved only 60-70% reactivation in the brain and yet 

show an almost complete reversal of phenotypes including motor defects (Robinson et al., 

2012). Due to the severity of the stop/y mice phenotype at the 15 week time-point chosen for 

behavioural studies, it was not possible to assess gait in these mice using the motorised 

treadmill system. This meant that no global KO data was available to use as a comparison for 

WT and peripheral KO data. This was unfortunate; however, a previous study has shown that 

even at 10 weeks these animals show significantly impaired gait across a number of 

parameters compared to WT (Gadalla et al., 2014). The fact that peripheral KO mice, even at 

a later time-point, show no evidence of any gait impairment, strongly suggests that gait 

dysfunction is primarily related to nervous system dysfunction. 

6.2.1.4 Future experiments 

Following on from the work described in this study, a number of follow-up experiments 

should be carried out to further build on these results. First, to further assess the validity of 

the functional peripheral KO model it would be useful to carry out long-term potentiation 

experiments. As previously described, the evidence suggest that a reactivation level of 90% 

in the brain is sufficient to restore normal brain function, but this could be more convincingly 

demonstrated by electrophysiological assessment. Second, while the results clearly 

demonstrate that the bone abnormalities seen in RTT mice models are due to a peripheral 

absence of MeCP2, it is not possible to determine if the primary locus of dysfunction is in the 

bone tissue itself. To investigate this, a bone specific KO mouse should be generated and 

assessed using the same functional tests used in this study. Third, while there was some 

evidence of muscle pathology in peripheral KO animals, this phenotype was variable and 
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consequently the result did not reach statistical significance when these mice were compared 

with WT. However, it is plausible that this is a progressive phenotype and that peripheral KO 

mice would show a more severe pathology if assessed at a later time-point. Therefore, this 

experiment should be repeated over a longer period of time, perhaps 6 months and then one 

year, to look for evidence of this.        

6.2.2 Genome editing as a treatment for RTT 

6.2.2.1 Findings 

The previously described challenges involved in developing a traditional gene therapy 

treatment for RTT demonstrates the need for an alternative approach. In this thesis, a novel 

strategy using newly developed genome editing tools was tested in a proof-of-principle study. 

Genome editing relies on DNA repair pathways to introduce genetic changes, with the HR 

pathway, which is only active in dividing cells, enabling precise mutation repair, while the 

NHEJ pathway, which is highly active in all cells, can be used to ligate repair constructs into 

precise target locations. Since other work in this thesis clearly demonstrated that the nervous 

system should be the primary target of any RTT therapies, it was decided to develop a 

strategy suitable for post-mitotic neurons. This involved ligating a promoterless repair 

construct into intron 2 of the Mecp2 gene and providing suitable sites to enable splicing of the 

construct to endogenous upstream exons. Initial work focused on generating TALEN and 

CRISPR constructs capable of targeting intron 2 and stimulating ligation of the repair 

construct. Several TALEN pairs and CRISPR-Cas9 constructs were designed, synthesised, 

and then assayed for cutting efficiency. The cutting efficiency of individual TALEN pairs 

was highly variable, with two of the four pairs showing very little activity and one showing 

only moderate activity. One highly efficient TALEN pair was found that induced double 

stranded breaks in over 40% of cells using the WT version of the FOK1 nuclease, however 

this cutting activity was significantly reduced when using the obligate heterodimer version of 

the enzyme. In contrast, all four of the CRISPR-Cas9 constructs used showed significant 

cutting efficiency, with the best performing guide inducing DNA breaks in over 60% of cells, 

and the worst performer still cutting in over 20% of cells. The best performing TALEN and 

CRISPR-Cas9 constructs were then used to try and stimulate the ligation of a repair construct 

into intron 2 of the Mecp2 gene, in a mouse cell line. This repair construct contained the WT 

coding sequence of exons 3 and 4 of the gene, the site of the majority of RTT-causing 

mutations, as well as a fluorescent reporter, an acceptor splice site, and an appropriate 
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transcriptional terminator. The hypothesis was that, once ligated into the genome, this repair 

construct would splice to the upstream endogenous exons 1 and 2 and thus replace the 

downstream mutated exons in the final mRNA transcript. When cells were transfected with 

the best performing TALEN pair and a repair construct with suitable target sites, robust 

insertion of the DNA insert was seen in the correct genomic location, as determined by a 

PCR based assay. Despite the decreased cutting efficiency in the obligate heterodimer version 

of the FokI nuclease, this version led to a greater proportion of correctly orientated repair 

construct insertion, probably because the repair construct is vulnerable to being re-cut from 

the genome when using the WT version of FokI. However, when cells were then examined 

for protein expression of the repair construct, no expression was detected. This suggested that 

the inserted repair construct was not splicing correctly to the upstream endogenous exons and 

thus wasn’t being incorporated into the final mRNA transcript. To determine if this was the 

case a GFP reported construct was engineered, containing either the last 50 bp of Mecp2 

intron 2, assumed to contain a splice acceptor site, or the HBB Ex3 Splice acceptor site, 

which has previously been shown to facilitate splicing of an exogenous construct ligated into 

the genome (Hockemeyer et al., 2009). Unfortunately, this reporter plasmid showed 

extremely high levels of background GFP protein expression, despite containing no 

mammalian promoter, which prevented its use for further experiments. 

6.2.2.2 Significance 

The work presented in this thesis is the first attempt to develop a genome editing based 

strategy for the treatment of a neurological disorder like RTT. Of particular significance is 

the development of a novel strategy for editing that overcomes the challenges involved in 

targeting post-mitotic cells like neurons, especially the low levels of HR repair seen in these 

cell types. The work described here shows at a proof-of-principle level, that genome editing 

tools such as TALEN and CRISPR can be used to insert a repair construct precisely into a 

non-coding region of the Mecp2 gene and could thus provide an alternative therapeutic 

approach. Crucially, this strategy overcomes several challenges to gene-based treatments for 

RTT. First, ligation of the repair construct relies on the NHEJ pathway rather than the HR 

pathway. This is essential for any editing approach whose primary target is post-mitotic 

neurons. Second, the strategy is applicable to almost any RTT causing mutation. HR based 

editing approaches rely on targeting and repairing specific disease-causing mutations. 

However, by replacing both exon 3 and exon 4 of the Mecp2 gene with WT copies, this 

approach could be a broad-based treatment for RTT. Third, standard gene therapy approaches 



171 

 

are hampered by the danger of overexpression toxicity. This is a particular problem for RTT 

patients as Mecp2 duplication has been shown to lead to significant pathology (Van Esch et 

al., 2005). However, by ligating a repair construct into the Mecp2 locus and splicing to 

upstream exons, gene transcription remains under the control of the endogenous promoter, 

thus recapitulating normal expression patterns. Last, since roughly half of the cells in RTT 

patients express the WT allele, and it is currently not possible to specifically target mutant 

cells only, it is essential that any strategy does not damage the normal function of these cells. 

By targeting only non-coding regions of the gene, this strategy ensures that failed insertions, 

or mutagenic changes introduced by double strand break repair, does not lead to disruption of 

WT protein function. Overall, these features make this approach extremely attractive for the 

treatment of both RTT and other genetic disorders of the nervous system. 

6.2.2.3 Caveats and technical considerations 

There were several technical challenges that impacted on the development of this strategy. 

First, there was significant difficulty in the cloning of the Mecp2 repair construct. The repair 

construct was synthesised commercially and, unexpectedly, plasmids containing the coding 

sequence of exon 3 and 4 caused toxicity when transformed into bacterial cells, to the extent 

that it was not possible to culture bacteria adequately to obtain sufficient quantities of 

plasmid DNA for cell transfections. Various attempts were made to mitigate this, including 

culturing at lower temperatures to lower the metabolic burden, but these were not successful. 

Sequence analysis of the plasmid revealed the presence of an unexpected bacterial promoter. 

Since bacterial transcription of the construct was not required, the repair construct, flanked by 

either TALEN or CRISPR target sites, was transferred to a promoterless plasmid. This 

prevented toxicity in the repair construct flanked by the TALEN target sites, but not for the 

CRISPR target site flanked version. Due to time constraints it was decided that the next 

experiments would therefore be carried out using the TALEN repair construct only.  

A second cloning issue was encountered when attempting to engineer the GFP reporter 

construct to test the function of the splice acceptor sites. The reporter was designed such that 

GFP protein translation would only occur if the reporter was successfully inserted into intron 

2 of Mecp2 and correctly spliced to upstream exons. For this reason the plasmid did not 

contain any mammalian promoter, to prevent plasmid transcription of the GFP. Despite this, 

extremely large background levels of GFP protein was seen in all control transfections, 

including those in which the reporter construct was transfected without the presence of the 
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TALEN arms. Since this prevented the repair construct from being inserted into the target 

region, it is not clear what caused protein expression in these cases. It was not possible to 

further investigate this as it occurred at the end of the time available for the thesis. 

Another major issue that occurred was the failure of the repair construct to lead to protein 

expression. It was suspected that this was due to the inability of the construct to correctly 

splice to upstream exons. Since the last 50 bp of an intron usually contains the necessary 

splicing elements (Reed and Maniatis, 1988; Gao et al., 2008), it was decided to use the last 

50 bp of Mecp2 intron 2 as the repair construct splice acceptor. When this failed it was 

decided to use a simple GFP reporter to test the effectiveness of alternative splice sites, 

however this was hampered by the issues encountered with the reporter, as previously 

described. Further reading into the mechanisms involved in the splicing of large introns 

indicated that it was more complex than initially thought and that alternative strategies may 

be required. 

6.2.2.4 Future experiments 

The work described in this thesis is only the initial step in the development of this editing 

strategy for RTT and number of future experiments will be required to make further progress. 

The most obvious next steps would be to characterise and quantify the repair construct 

insertion, and then to determine the cause of the lack of protein expression. First, PCR and 

Sanger sequencing should be used to characterise genomic/repair construct boundaries. It is 

possible that DNA loss at the junction sites could occur during the ligation process, and this 

could lead to an impairment of splicing or transcription termination. Second, qRT-PCR 

should be employed to determine if the repair construct is being incorporated into the final 

mRNA transcript. This would enable the frequency of the incorporation of the repair 

construct into the mRNA to be quantified and reveal if the repair construct is being 

successfully spliced to endogenous exons. Third, the GFP reporter construct for testing splice 

acceptor sites could be sub-cloned into a different plasmid to try and prevent the high 

background protein levels seen in this plasmid, including the removal of the methionine start 

codon from the coding sequence. Successful cloning of this plasmid would allow the effect of 

different splice sites to be quickly and easily assessed. Last, since the splicing of large introns 

is complex and not well understood, target sites in the much smaller intron 3 of Mecp2 could 

be identified and the appropriate TALEN arms generated, in order to determine if successful 

splicing occurs in this simpler intron. 



173 

 

6.3 Summary 

The aim of this thesis was to comprehensively determine the crucial regions responsible for 

the RTT phenotype, and then to use this information to design therapies suitable for these 

regions. Phenotyping of a novel mouse model, in which Mecp2 was selectively reactivated in 

neurons and astrocytes, revealed that the majority of the RTT phenotype is due to a loss of 

functional MeCP2 from the nervous system, but that some disease aspects such as bone 

abnormalities and reduced exercise capacity have a large peripheral component. Using this 

information a novel genome editing based strategy was developed, specifically designed to 

utilise repair mechanisms known to be active in post-mitotic neurons. A series of genome 

editing tools capable of targeting non-coding regions of the Mecp2 gene were then 

engineered and enabled the ligation of a DNA repair construct into the genome. This suggests 

that genome editing could be a viable strategy for tackling RTT. Future studies will further 

develop this strategy, including the reengineering of the construct to enable splicing to 

endogenous Mecp2 exons.   
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