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PREFACE

When a solid target, such as carbon or aluminium, is irradiated
with a laser beam some of the energy from the laser can be absorbed
by the target surface if the intensity of the radiation is high enough.
This absorbed energy vaporises and iopises the target in the region of
the focal spot, such that near the solid surface there are free electrons
and ions produced at very high temperatures. This collection of ijions
and electrons, whose dimensions are approximately those of the focal
spot of the laser radiation, constitutes a small high temperature high
density 'plasma' and this area of study is known as Laser Plasma
Interactions. The interest in this type of research has emerged through
the possibility of producing sources of highly stripped ions, X-rays
and the feasibility of X-ray lasing, and the recent importance of laser
fusion (the production of thermonuclear fusion by tﬁe laser irradiation
of light targets).

Because of the complexity of a complete description of the laser target
interaction, if dealt with analytically, computer 'codes' (large computer
programs) have been written recently to study the detailed interactions
of the various processes involved. Many of these codes are based on
degcribing the plasma iﬁ the Magnetohydrodynamic (MHD) approximation,

. which essentially treats the plasma as a conducting fluid and it is for
these codes that the present work is intended.

One aspect of the laser target interaction is concerned with the
atomic physics processes present in the plasma, This deals with the various
ioniéation and recombination processes and enables one to calculate
such quantities as the plasma (kinetic) pressure, the internal energy

(thermal plus ionisation) and the plasma radiation, and constitutes an
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atomic physics model of the plasma concerned. In general these models
are based on calculating the population densities or the fractional
population densities fz (where fz is the fraction of z times ionised
material) of the various ionisation stages, from which the macroscopic
variables describéd above may then be calculated. The fz are governed

by a 'rate' equation of the following form

= o f + g (L

where uz is known as the rate coefficient and gz is a function of the
other fractions present. This thesis describes a method of solving the
above type of equation, from which we develop a complete atomic physics
model intended to supplement an MHD description of the plasma in computer
codes.

‘"The main features of the model, to be developed, can be sunmarised
as follows. First of all, we include the explicit time depecdence of
the ionisation fractions as in the left hand side of equation (;). We
thus allow for the finite rates at which the atomic physics processes
occur in thé plasma. We solve only for the groun& state population
densities of the ionisation.stages thus neglecting completely the
populations of the excited states. Secondly, we consider only three
adjacent ionisation fractions, such that at any one time we have only
three coupled equations of the type (1) to solve. The rate coefficients
for these various iomnisation and recombination processes are assumed
known and accurate for the interactions concerned. Finally, the
method of solving the coupled equations of type (1) is based on taking
locally analytic solutions to the rate equations, from which we then
construct a complete atomic physics model to supplement an MHD description

of the laser target in computer codes.



CHAPTER 1

Exposition of the problem

An outline of the basic atomic physics theory will be
presented together with a discussion of the contemporary atomic

physics models for a plasma undergoing ionisation and recombination.

£~
¥



1.1 On the role of Computational Physics

It is now about 15 years since scientists first started solving

a,z,3) During this time, the

problems with the aid of computers.
resources of Theoretical Physics, Numerical Analysis, Computer Science
and Experimental Physics were being called upon continually and it
soon became apparent that the subject of 'Computat;onal Physics' was
emerging to form an academic discipline in its own right.

The impoxrtance of the subject cannot be underestimated. In
previcus years, throughout the science student's university training,
he was confined to problems of a rather special nature. In general,
they resulted from a study of idealised physical systems and are

called 'linear' problems.(4’5'6 )

These linear (or idealised) problems
have been studied for hundreds of years and as a result, they are very
well understood and form an important part of the science student's
education. After University, however, if the student went into
industry or into research in general, he found that the 'tools' with
which he had been equipped for the study of linear problems very little
use in tackling real situations. The methods of Computational Physics
now provide the student with an immediate and powerful . tool for
studying these real systems.

This is not to say that the study of linear syétems should be
abandoned with all effort devoted to the field of computational physics.
Indeed, since computer solutions can never be exact, their credibility
relies heavily on how well they compare with the few exact solutions
that are known from studying idealised systems. Rather, computational
physics should be seen in some ways as bridging the gap between the
linear theory and experiment. In order to gain an understanding of the
physical system, the strategy must be to approach the problem on a
united front, with a knowledge of linear problems, computational physics

and experimental physics at our disposal. The tactics will then be
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to continually reinforce the individual strengths of each of these methods

by their mutual interactions as seen in fig. 1.1
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Fig. 1.1 Strategy for the scientific understanding of
physical systems

From the physical System we can construct the linear theory governing
the system, the computer model representing the system, and the
“experiment to study the system. The linear thecory can be used to provide
checks for the computer model in a restricted set of circumstances. The
corputer model can then be tested against the experimental results and can
indicate what the experimentalist should be looking for. This being done,
the computer model may have to be modified (e.g. to improve the underlying
physics in the model). We then can recheck with linear theory and the cycle
starts again. In a few cases the linear theory can be compared directly
to the experimental results. In this way we hope to make progress. It
is hoped that the philosophy of fig. 1.1 is made apparent throughout this

work.
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This thesis is concerned with the development of a computer model
for studying the time-dependent atomic physics processes which occur when
a solid target is irradiated with high intensity laser radiatiogi’s’%%is
chapter describes the 'state of the art' at the present time.
Contemporary models for the same physical processes, i.e. ionisation
and recombination in a plasma, are discussed together with their weaknesses.
and advantages. In Chapter 2 we present the basic thecory upon which
the present model is based. It describes the method by which we follow
the time evolution of the ionisation fractions. In Chapter 3 we
show how the equation of state for the plasma can be found from a knowledge
of the ionisation fractions (i.e. we derive such things as internal energy,
pressure, specific heat and radiation loss). Chapter 4 describes the
computational details of the algorithm and the questions of accuracy,
stability etc. are examined. In Chapter 5 we give details of how the model
wes implemented into the two dimensionél laser target code CASTORclO)
together with some results.

il

1.2 Introduction and Motivation

With the development of high powered lasers and the current interest

in laser fusion(ll’ 12) (13, 14 )

and laser plasma interactions it is

of great interest to be able to estimate reliably the degree of ionisation
or the effective ion change< z> of the plasma. The ionisation may not
always be assumed instantaneous and complete - especially if some of the
heavier elements are being used as targets for the laser radiation.

In this case, the ionisation energy may form ah important part of the
equation of state. Additionally, to estimate the radiation loss accurately,
we must know the density of free electrons and the distribution of the

Lb)_

ionic states Once <z > is known, the thermodynamic properties

(eg. the internal enexrgy, pressure etc.) of the plasma can be determined.
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In general, however, the calculation of the effective charge involves the
solution of a fairly large system of coupled, non-linear, partial
differential equations. The method of solving the sysfem of equations,
in this thesis, will be the subject of Chapter 2. To avoid this
procedure, many workers have made basic assumptions in the physics involved
in order to obtain a simpler and hence solvable system of equations.
These agsumptionsg together with some models for the atomic physics
processés in the plasma will be discussed in section 1.35.

Recently a comprehensive list of the ionisation and recombination
rate coefficients as a function of electron density and temperature has
been published in tabular form, for the elemmnts in the periodic table

up to @rgon. Ge)

Fig. 1.2 shows the variation of the ionisation and
recombination rate coefficients for the different ion stages, as a

function of the electron temperature in carbon, and it is these coefficients
which will be used here. The details involved in the calculation of

these coefficients will not be mentioned as they are discussed in the
previous reference. It will be assumed in the thesis that the rate
coefficientstfor the various atomic proéesses are kﬁown, and accurate,

for the materials we are interested in.

Throughout thiswork most of the emphasis will be placed upon the

computational physics rather than the atomic physics aspects of the problem,

this reflecting the author's interest. The model was developed

concurrently with a two dimensional EKulerian laser-~target code which

required a rate equation solver package. The code was required to help
(14,17,18 )

investigéte experiments in progress at Culham Laboratory.
Because the model was to be developed for use in a computer code, this
imposed very severe restrictions on its design. It meant that the
algorithm had to bé very fast since the rate equations had to be solved
at each space-time point on a two-dimensional mesh. The problems of
speed of the calculation and the storage of the ionisation stage

Vector' are discussed in Chapter 4.
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Finally, it will be shown in Chapter 5 how the model, developed
in Chapter 2, can be used as a module or package for insertion into

computer codes in general. It can then form the basis of a model for

’

looking at the excited state population within each ionisation stage.

1.3 Atomic Physicg Theory for Hydrogenﬁg)

We begin our discussion of atomic physics theory by its application
to a very simple system. The discussion will be confined to the
excitation, ionisation, and the recombination of Hydrogen H with electrons e.
We denote neutral hydrogen by H and ionised hydrogen by H+ (hydrogen in
its neﬁtral state consists only of one proton and oﬁe electron).
We denote the principal quantum numbers of the discrete levels in
the hydrogen system by p, 4, ... and ¢ for the continuum, n(p), n(q)
will then represent the number densities of atoms in the levels indicated
and n(c) for the number of free electrons. Also, Q(H+) will represgent
the number of bare nuclei. We now define
a. S(p,c)* to be the rate coefficient for the process:-
Hép) + e a-H+ + e + e . (1.3.1)
i.§: the collisional ionisation of a hydrogen atom, s stecte P/ to
produce a hydrogen ion plus an.electron, by a free electron
b. S(p,qg) to be the rate coefficient for the process:-~
H{p) + e +H{(q) + e (1.3.2)
i.e. the collisional excitation of an electron in state p,
in a hydrogen atom to one in state ¢, by a free electron
c. pB(c,p) to be the rate coefficient for the process:-

H+ + e + e >H(p) + e (1.3.3)

i.e. the recombination of a free electron, by the above three
body process, with an ionised hydrogen atom to form a
hydrogen atom with its electron in the excited state p.
It should be noted that the three bodies are necessary in

order to conserve momentum and energy.

*The rate coefficient is defined such that n(c) n(p) S(p,c) is the number
of collisions of this type which occcur per cm3 per sec,.
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d., a(p) to be the rate coefficient for the process:-
B 4 e ~» H(p) + hv. (1.3.4)
i.e. the recombination of a free electron, by the above
process, with an ionised hydrogen atom to form a hydrogen
atom with its electron in the excited state p and the
emission of a photon (hv)
All of the rate coefficients in the above processes are functions of
electron temperature and density. The above processes hold for hydrogen
systems and have been the subject of much research, No more will be
said about these systems and we will now go on to study more complex
processes,

1.4 Atomic Phygics Theory for Many Electron Atoms(zo)

For non~hydrogenlike species, the problem becomes extremely complicated,
For many electron atoms there is more than one stage of ionisction possible
and the processes of section 1.3 must be considered in and betwgen the
various lonisation stages. In addition, they should be extended to
include mult;ply excited levels, autoionisation, dielectronic recombination
etc.

It should now be noted that the rate coefficieqts are additionally
functions of the particular stage of ionisation we are concerned with.
The use 6f the superscript on 8, i.e. s? (p,q) will indicate the level of
ionisation concerned. The letter A will be used instead of H to denote
the material concerned and Az(p) should be interpreted as the z-times

ionised atom of element A whose outer electron is in the excited state p.

Thus we define
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a. Sz(p,c) to be the rate coefficient for the process:-
A%() + e A% () + e+ e (1.4.1)
i.e. the collisional ionisation of a z-times ionised atom
of element A to produce a (z+l) times jionised atom of the sane
element plus an electron,auter erjjmﬂs U S&JE P chlﬂ«
b. Bz(p,q) to be the rate coefficient for the process:-
M%) +e+e> ATl + e (1.4.2)
i.e. the recombination of a free electron with a z-times
ionised atom of A whose oliter electron is in the state p,
to the (z-1) times ionised atom of A whose outer electron
is in state q.
c. az(p,q) to be the rate coefficient for the process:-
A%y + e » A% T @) + hy (1.4.3)
i.e. the recombination of a free electron with a z-times
ionised atom of A whose outer electron is in state (¢} to
produce a (z~1) times ionised atom of A plus a photon (hv).
It should be noticed that the processes of collisional excitation and
de—excitatioﬁ as discussed in section 1.3 have beenromitted in this section.
The reason for this is that we will be concerned only with processes which
change the population densities of the given ionisation stages and the
above processes only effect the internal gtructure within each given
ionisation stage.
Using the above notation, we now examine how these different
rate processes can cause changes in the population density of a given

ion stage nZ (= Z nz(p) where p indicates an excited state). Considering
P .
all the various processes in and around the ion stage z we are led to the

as)

differential equation
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on

Z - z R z-1
5 f L = g nn () 8 (p,c) + ) nn _(p) S “(p,c)

' 1
-1 L n2a e %@ + L] a2 ) B0,
qp 4P

41
~Ila n ® F@o + ] na @ e
g P ar

(1.4.4)
Notice that the term yf(nzg) is included to account for changes in nz
due to compression and advection of the fluid. The first two terms
on the right hand side of equation k1.4.4) represent collisional ionisation
from levels z and z-1; the next two terms represent three-body
recombinations with levels z and z+1l, and the last two terms represent
radiative recombination with the levels z and z+l. FEach of the above

terms can be written in the more general form

»

D) nenz(p) Az(p,q) _ (1.4.5)
P g

which in turn can be expressed as

n, ) o (® } A% (p,q) = n, ) n,® [}Z(éﬂ (1.4.8)
p q p T

where [Az(p):k'gives the coefficient for the rate process described by A,

between the levels p and any of q. Now since
n, <p@)> = é np) ¥ (p) (1.4.7)

where <§(p)> represents the averaged value of y(p) over all the states p,

we can rewrite equation (1.4.5) as
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nn < [a%@)] > (1.4.8)
e Z
T
where n_ = ) n_(p) (1.4.9)
4
or more simply as

nn <k (1.4.10)
e z

where <ﬁ1?>gives the rate coefficient summed over the levels p and q.

Using this notation, equation (1.4.4) can be rewritten as

i » =
—_—— = - h K )
5t +.y.(nzy) nenz<SL + nenz~1<S
2 2 - zZ+1
n’n_<g. A n2n_ <p 5> (1.4.11)
-n n < %>+ nn <o, Z+%>
e z e z+l

where the quantities in parenthesis aré now averaged rate coefficients
over the excited states. Although strictly speaking it is these averaged
rate coefficients we should use in our calculafions, in many caées they
are not avaiiable and one can only apprsximate their value. However, we
shall assume that these'quantities have been determined accurately by some

neans and proceed from there. In what follows we replace‘<A;%>by AZ

for convenience.

1.5 Some Contemporary Atomic Physics Models

In this section a brief survey of the better known atomic physics
models will be given together with their limitations as far as application
to the laser produced plasma is concerned. The models can be divided
basically into two groups - steady state and time dependent models - and
it is in this order they will be presented here. It will be shown later
that, in general, time dependent models must be used for studying laser-

plasma interactions.
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~
a. The Local Thermodynamic Eguilibrium (LTE) model(IO)

This model assumes that the population density distribution of the
electrons ig completely determined by particle collisions and that these
occur so rapidly that the distribution responds instantaneously to any
change in the plasma conditions. Thus each particle collision process
is accompanied by its inverse and these pairs of processes occur at
equal rates by the principle of detailed balancdqsq The elgctron
distriﬁution is thusAthat of a system in thermodynamic equilibrium and
is determined by the law of equipartition among the various energy levels,
thus needing no knowledge of the atomic cross sections of the various
processes. Hence if free electrons ave distributed among the energy
levels, according to statistical mechanics, their velocities have a
Maxwellian distribution. The pumber of electrons with speeds between

v and v + 8v is

me 3/5 mvz »
§ = -
n n 4w [ZHRT(J exXp { 2T, ] v~ Ov (1.5.1)

where ne igs the total density of free electrons, Te is the electron
temperature, me is the electron mass and k is Boltzmann's constant.
For the bound levels the distribution of the population densities is

given by the Boltzmann and Saha equations, i.e.

n(p) _ 0 X(p, Q)
n(q) w(q) exP [ kTe] (1.5.2)
3/2
n(z+l,g)n
e - w(Z'l-l,g) rZTkaTe X(z’g)
n(z,g) w(z,g) 2 | n? ] exp [Wk’l‘e ] (1.5.3)

where n(p), n(q),: n(z+1,g) and n(z,g) are the population densities of

the various levels designated by their quantum numbers p, g and g(the

ground level) and ionic chatpge z+l and z. The term w(z,p) is the
statistical weight of the designated level, X(p,q) is the energy difference
between the levels b and q and X(z,g) is the ionisatioh potential of the

ion of charge z in its ground level g. Thus the equations (1.5.1) - (1.5.3)

summarise the state of the electrons and completely define the LTE model.



13.
The LTE model can be shown to be valid provided the electron
density satisfies the relation

3 -3

12 3
D, 21.6 x 10 T~e x(p,) cm

where Té is expressed in eV. Thus we see that at low demnsity or high
temperatures or a mixture of both low density and high temperature the
LTE médel breaks down. It is therefore apparent that the LTE model is
of very limited use in the study of laser plasma interactions.

21
b. The Steady-State Corona Model( )

This model has been in use fqr some time in the study of laser
produced plasmaé. Instead of each collision preocess being balanced by
its inverse collision process, this model assumes that the balance is
between collisional ionisation (and excitation) and radiative recombination.
Congider the processes of collisional ionisation and three-body
recombination which, because they are inverse processes, must take plabe
at equal rates in LTE (here N(z) is used instead of N,), i.e.

e + N(z) <> N(z+l) +e + e - (1.5.4)
Thus we see that the ionisation rate is-proportional to ne and the
recombination rate (three—body) is proportional to nj. Pogitive ions
may also recombine with electrons by a radiative process thus

e + A(z+l) =+ A(z) + hw (1.5.5)
where hv represents the radiated photon. The rate of this process is
proportional to ne, so that at sufficiently low densities this radiative
recombination process is more important than the three-body recombination.
Then the ionisation balance is between radiative recombination and
collisional ionisation. Such a plasma is called a Corona Model Plasma
and clearly it refers to plasmas of much lower densities than those
encountered in LTE .plasmas. The question of relaxation times for the
atomic processes is discﬁssed later and for the moment we assume that any
change in the plasma parameters takes place sufficiently slowly that the

plasma effectively remains in steady state. Again,as in the LTE model,
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it is assumed that the electrons have a Maxwellian distribution such
that equation (1.5.1) applies to the free electrons. It is not necessary
to make any specific assumptions about the velocity distribution of the
ions except that their mean energy should be of the same order or less than
that of the electrons otherwise ion-ion collisions may be important. It
is also assumed that most of the ions are in their ground states and hence
we can write down an equation exﬁressing the ionisation and recombination

balance, i.e.

nen(z,g) S(Te.z,g) = nen(Z+1,g) a(Te,Z+1.g) (1.5.6)
T +1
or n(z,g) - o e’” '€) (1.5.7)
n(z+l,g) S(Te,z,g) T

where S(Te,z,g) is the collisional ionisation coefficient and a(Te,z,g) is

the radiative recombination coefficient. The population densities of

the excited levels are determined by a balance between the rate of collisional
ewcitation from the ground leveiggalahced by the rate of spontaneous

radiative decay thus

n n(z,g) X(T_,e,p) = n(z,p) | A®,q)  (1.5.8)
a>p.

The corona model was developed for plasmas 6f very low electron density and
for atom densities sufficiently low to ensure that atom-atom collisions

' Q)

are negligible. To meet this requirement it can be shown . = that the

electron temperature must be greater than about 10K and that the electron

density must satisfy the inequality

1 3 2 -
n, < 5.6 x 108 (z+1)5 1 eh exp [1'162 ; 10" (z+1) cm 3

e
where z+1 is the nuclear charge of a hydrogen-like ion and Te is measured

(1.5.9)

in eV. Thus we see that the steady state corona model is basically a
high temperature-low demnsity model for plasmas and again, as such, is of

limited use for the laser produced plasma.
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22
c. The Hyman-Raizer Model( )

A particularly simple method of evaluating the degree of ionisation

of a high temperature, high Z plasma has been developed by Hyman on the

basis of earlier work by Raiszer. There he uses the standard corona-like
equations
T
Pan 50 (1.5.10)
nz a(Te,ne)
where n , n and S have previously been defined and o(T ,n ) is the
z+1 z e e
total recombination coefficient. It may be written more explicitly as
r
o = o (T + T .5.11
(T_,n,) (T +n_ B(T) (1.5.11)

where of is the radiative recombination coefficient and B is the
collisional three body coefficient. It is then assumed that nZ and
Xz (the ionisation potential) are continuous functions of the charge z.
Hence
- dn . :
n(z+1) = n(z) + A (hz = 1) (1.5.12)

Now substituting (1.5.12) into (1.5.10) gives
8

1 +'§; (ln n) = -E . . (1.5.13)
In general, n(z) is a fairly sharped peaked function, i.e. only a few
ionisation stages are significantly populated for a given electfon
temperature and density. At the peak of the distribution dn/dz = 0 so
that
S(T , ¥) = u(Te,ne,i) ' (1.5.14)
where i is an kffective ionisation potential' at the peak. This
expression can then be solved for i which in turn specifies< z>.
This model is very simple indeed, and would be computationally

quite efficient, but it is a steady-state model and as such is not of

much interest in laser plasma calculations.
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d. The Time Dependent Corona Model(ls)

This is the first of the time dependent atomic physics models we
mention. The only difference between the steady~state and the time-
dependent corona models is that we allow the population density of the

ground state of an ion to have a time dependence which can be written thus

dn (Z)g)

at = nen(z—l,g) S(T_,z-1,8) - nen(z,g) S(Te.z,g)

- nen(z,g) u(Te,z,g) + nen(z+1,g) a(Te,z+1,g) (1.5.15)

And a set of such equations represents the rates of change of the populations of
all the ions from z = 0 (neutral atoms) to z = Z (fully stripped). It can
also be shown that for any corona model plasma, the atomic relaxation

time T is given, to an order of magnitude, by the equation

1012

.5.1

n_ (1.5.16)
-3

where ne must be expressed in cm and T is given in seconds. If we

apply this equation to the laser produced plasma, although strictly
speaking the densgity is too high (ne n 1021 cm_s), we see that dnly for
timescales greater than about 1 nanosecond can we apply the steady-state
corona model.

e. The Collisional-Radiative Model (1%’

Because of the restrictions in the corona model, in the sense that
it cannot account for stepwise colligion processes, the Collisional-
Radiative (CR) model was developed. The basic differences between the
CR and the corona models is that in the CR model, account is taken of
electron collision processes causing transitions between upper levels
(including three body recombination). Thus ionisation is by electron
colligion from any bouﬁd level and is partially balanced by three bhody

recombination into any level, i.e.
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N(z,p) + e > N(z+l,g) + e + e (1.5.17)
where N(z,p) represents an atom or ion of charge z whose outer electron
is in the excited state p. Again the coefficients S andf are defined
such that the rate of the different processes are

a. ionisation n n(z,p) S(T ,=z,p)
¢ ¢ (1.5.18)
b. recomhination nen(z+1,g) B(Te,2+1,p)
Transitions between any pair of bound levels are induced by electron
_collision and can he represented by
N(z,p) + e -+ N(z,q) + e (1.5.19)
where the rate coefficient for the forward process is nen(z,p) X(Te,z,ptq).
Radiation is emitted when an electron in an upper bound level makes a
spontaneous transition to a lower level and when a free electron makes a
colligsionless transitiqn into a bound level i.e.
N(z,p) *» ©N(z,q) + hv

and ) (1.5.20)
N(z+1l,g) + e = N(z,p) + hv

where the rate for spontaneous decay is nen(z,p) A(z,p,q) and the rate
for radiative recombination is nen(z+1,g) u(Te,z+1,p). Further details
of this model may be found in the literature.

f. The Pert Model(zs)

A model proposed by Pert offers a simple analytic solution to the
rate equations under the asgumption that if we are considering the rate
of change of the fractional population density of a particular ion stage fi
then, provided we focus our attention only on the levels i and i+l we can
formulate the rate equation
df

i
dt

= S £, + n?pf
ne i1 * neB i+l

(1.5.21)
notice here that collisional ionisation from level i-1 and recombination
with level i are neglected. The basic assumption in the model is that the

population density of the ion stages 1is spread over only two iomisation

stages. Thus . together with equation (1.5.21) we have the constraint that
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fi + £ (1.5.22)

T vl
i+l total

and substituting for f,

el in equation (1.5.21) leads to the linear ordinafy

differential equation

~

dfi )
Fralal CHE P I AR (1.5.23)
which for constant coefficients has the solution
n - " n
e Bi+1 e ne(ﬁi Bi+1 ne)t Bi+1 e
S ST T "5,8,,m (P2
i i+l e : i i+l

and again from the knowledge of the fi's we can construct our macroscopic
variables, such as the mean ionisation level etc. It is clear from this
approach that we must have the electron dengity and the rate coefficients
gensibly constant over the duration we are applying equation (1.5.24).

1.6 BSome Agpects of Computational Solutions(24)

The staﬁdard approach to solving tﬁe coupled atomic physics MID
problem numerically has been by using explicit or implicit algorithms(l’ 2)
Both of these methods have severe drawbacks under certain conditions
encountered in the laser produced plasma situation. TUsging an explicit
algorithm it is necessary to restrict the timestep by the Courant-Freidrichs-
Levy (C-F-L) condition to avoid numerical instability. Our timestep is
then given by

At = min(T

T . .
atomic’ MHD) (1.6.1)



1g9.

where T and T

i represents the atomic physics timescales and MHD
atomic

MHD
timescales, characteristics of the problem concerned. However it can
-3
eagily happen that T . v 10 and thus we would have to follow
astly happ atomic D
the evolution of the system on an atomic physics timescale whereas the
interesting aspects occur on an MHD timescale. Hence we must look for

alternative algorithms.

The implicit algorithm on the other hand imposes no such restriction

on the timestep (other than that set by accuracy). It does, however,
have its own limitations. Consider the following simple rate equation
of
—-— = =8f .6.2
5t (1.6.2)

In finite difference form this becomes

fn+1 - fn n-+1 n
e = S (of + (1-0)f) (1.6.3)
where 0 measure the degree of implicitness. We take S constant for
simplicity and express (1.6.3) as
+1
£ 1 - At S (1-0) (1.6.4
fn 1 + At S (8) . e

From this equation we can now make various observations on the ratio of

%15 for various values of 6 and S.

It is clear that if 8 is large (i.e. the rates are large) fn+1 can
become zero or negative. In the latter case some cut-off would be

introduced (since one cannot have negative fractions) such that the

fraction would be replaced by zero as in Fig. 1.6.
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Effective computed solution

f ———— T U SOlUtion

interpolated value of f

tn TMHD

Fig. 1.6 Inaccuracies in ¥ arising from chooging too large
a timestep

If, for example, we now wish to know the average charge <z> over the
timestep we would interpolate between the two time levels n and n+l

at which the quantities are known and we would then use this interpolated
value of density to obtain <z >, From Fig. 1.6 this is obviousiy a very
poor evaluation of f at time n + % (c.f. true solution).

The method used in-this work will be to fit exponentials to the

solution. We can then average the exponential variation over the timestep
to obtain the average value of f. Thus since
fn-+n+1 - fn e—St _ (1.6.5)
hence o i P LD e LS (1.6.6)
T
and <e St o %- J D e 5t 4t
MHD ‘0
= (1, )"t (1-e STwmD) (1.6.7)



CHAPTER 2

"The Mathematical Model

The underlying theory forming the basis of the thesis is
developed in this chapter. It centres around finding 'locally'
analytic solutions to the rate equations (1.4.11) in terms of
eigenvalues and eigenvectors (section 2.3) and the method of
obtaining these eigenvalues and eigenvectors efficiently, is

discussed in detail.

e
N
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2.1 Basic assumptions

In section 1.4 it was stated that we would be using averaged rate
coefficients (averaged over the excited states). Since these are not
readily available, we use the rate coefficients for the ground state only,
for each ionisation stage. These coefficients do, however, allow for
stepwise collision processes, Thus it is apparent that we are neglecting
the calculation of the excited state populatiomns.

We also neglect completely, the problem of radiation transfer within
the plasma, thus assuming the plasma to bhe optically thin. It may be,
however, that for certain lines, especially resonance lines, account
should be taken of the changes in the populations of the ionisation stages
due to the reabsorption of radiatiom.

Our attention will be confined to subhydrodynamic timescales
(~n 0.1 naiicsecond for laser produced plasmas) such that the advection
term represented in the rate equation (1.4.4) by (E‘Y) can be neglected.

Later, it will be shown how this term can be included into the model.

2.2 The rate equations

As was pointed out in the previous chapter, for each ionisation stage
we have an equation of the following form

on

—Z V.nv) = + 8 n - (8 4R )nn + R
- Z—2Z z Z e 2

ot z-1 "e z-1 (2.2.1)

nn
z+l e z+1

where nz is the density, and v, is the velocity of the z times ionised
atoms at a given point. We can rewrite the above equation in terms of fZ,

the fractional population density of the z times ionised atoms where

n = £ n, (2.2.2)
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and n, is the total ion density. Now substituting (2.2.2) into the .
left hand side of equation (2.2.1) we obtain, after some rearranging

on,

of
i Z
+ U, — 4 £ .2,
fz vy v (niyz)] + ni [at + Yz' v z] (2.2.3)

At this point we assume VZ to be equal to the hydrodynamic flow velocity
v such that the first term of (2.2.3) goes to zero (i.e. equation of
continuity) and equation (2.2.1) becomesz, after dividing by ni

af

Z — —
o+ (X:j?fz = + S n f (SZ+RZ) nefz + R

ot z-1 e z-1 (2.2.4

z+lnefz+1

It is interesting to notice that in the equation there is no explicit
compressibility term, i.e. fz V.v, this term has been absorbed in the left
hand side of (2.2.3).

We now consider the ijions of an element having Z electrons in the neutral
state. Defining fz to be the fractional density of m-times ionised atoms,
th: rate of change of the {fz} due to ﬁollisional ionisation and recombination
(radiative three-body, etc.) leads to the system of equations (2.2.4)

which written explicitly for each ionisation stage gives

afo/at + (v. M fo = - Sonefo + Rlnefl
of /3t + (v.©) £, "= S f -~ (S;4RW F + Ron £,
1m 1t 1 1"t 11"t
t 1t 1" [} 11
8fz/gt @9 fz = +Sz~lnefz"1 (Sz+Rz)nefj * Rz+1nefz+1
_l_! 17" tr e 1"
af /at . £ = - 2.
z/ : + (v.V) . S, I, o Rn £, (2.2.5)

where SZ.is the collisional ionisation coefficient for state Z- Z+1 and
.'RZ is the total recombination coefficient for state Z - Z-1. The electromn
density is denoted by ne and we assume (for simplicity), that all the ion
stages have the same flow velocity v. Hence we see that (2.2.5) represents

a system of coupled, non-linear partial differential equations which we

have to solve for the ionisations fractiomns. In general, such a system
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of equations cannot be solved for ‘'analytically' and we must introduce
some simplifying assumptions in order to cobtain solutions, or else solve
the equations numerically. The approach in this work will be to use a

combination of these methods.

2.3 General Solution of the Rate Equations

Since we are confining ourselves to sub-hydrodynamic timescales the
advection term, represented by (v.V)f can be neglected. Hence, the

system of rate equations (2.2.5) reduces to the matrix equation

_gé = Af (2.3.1)
. where
f = [f£ |and A = - B
£ o |@and A n, [-8, +R,

fl +SO —(Sl+R1) +R2
£, 8, ~(8,7R,) 4R
£ (g 4
T +Sz-1 (SziRz) +Rz+1
£ ' -

%1 By g TSy TRy ) R,
£ -
|tz | B *Sg-1 Ry

(2.3.2)

Notice that the matrix é is tridiagonal and that equation (2.3.1) is

non-linear through the n, in matrix A since



Z
n == LZ Zf J n, = <. > n. (23.3)
e Z 1 i

wvhere ni is the total ion density and <2>, the mean ionisation level,

Congider, for a moment, the gimpler system coﬁtaining the following pair

of coupled linear equations.

Y1 = ayl + by2
s (2.3.4)
Vo T oyt Ay
These can be written as the matrix equation
¥ = BY (2.3.5)
y1 a b
. = B = S 1N
where X - and B c d (2.3.6)
2
To solve equation (2.3.5) we substitute the trial solution X = geat,
. . (5
which yields
AX e = By ot (2.3.7)
or .
BX = AX (2.3.8)

' }\ . “
Thus we see that for Xe t to be a solution of equation (2.3.5), A must be
an eigenvalue of g and X the corresponding eigenvector. Providing these
conditions are met, § e?\t is a solution to (2.3.5) and the general solutiocn

is given by a linear combination of the different solutions, i.e.

Alt Azt
Y = a1§1 e -+ a2§2 e (2.3.9)
since we have a gystem of linear equations of order two. In‘general, for
th . . . (3)
an N order system, the formal solution is given by
N At
i
= X .
Y = E a, X, e (2.3.10)
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where the 8y +.... 8 are arbitrary constants determined by the initial
N
conditions, since at t = 0 we have
N
y(0 - ) a.X, (2.3.11)
- i=1 7%

and this provides a system of algebraic equations which can be solved
for the a, - If the gi are orthogonal then the a, may be written down
immediately as

a = x0 .,y (2.3.12)
i -i - :

T
where Xi is the transpose of the vector §i'

Returning now to the solution of (2.3.1) we see that provided our
nmacroscopic variables (i.e. <z>, T, ni) do not change by too much (in the
computational solution we will choose a timestep which ensures this
condition) the matrix equation (2.3.1) becomes linear for the duration
of the timestep, and by analogy with the solution to equation (2.3.5) the

solution to (2.3.1) can be written as

.7 Mﬁ
T = _Z a, X, e (2.3.13)
1=0

.

of OY(IQY |
Notice that in (2.3.2) the matrix Ais square And,, but since we have the

constraint

£ o= 1 . (2.3.14)

we can eliminate one of the equations of (2.3.1) such that the matrix é
becomes square and of order Z. The xi and the Xi are the eigenvalues and
eigenvectors respectively of the matrix A and the ai‘s are constants

depending on the initial conditions. These constants can be obtained by

. . R . . . 0
knowing the fractional ionisation stage vector at time zero, i.e. f( )

such that
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£(0)

i=%
= ) a, X, (2.3.15)
j=1 1 -1

0

Thus knowing .f and the §i's, the ai's can be obtained quite simply
and by knowing in addition the %}s we can solve for f in (2.3.13).

The problem remainé, however, to find efficient methods to evaluate
the eigenvalues and eigenvectors of the matrix A. It can be seen from
(2.3.2) that the matrix é is tridiagonal and ‘gquasi-symmetric' (i.e. the
diagonal elements are real and the product of the off-diagonal elements
is greater than zero)ﬁZS)Because of this property the matrix A may be
transformed by means of a similafity transform to a symmetric tridiagonal

matrix. Thus if the elements of the tridiagonal matrix are

a, = o, a =

id i i,1i+1 Byt B+1,1 3 8,5 = 0 dhewis,

i+l i,J

then provided BiY i >0 1 =2, N - A may be transformed into a real
syumetric matrix by means of the similarity transformation with diagonal

matrix 2. I£f we define Q by the relations

= = g
d;l,l 1 di,i ('YZ'YB‘.... 'Yi/BZBS RN Bi)
then DY CD = T where T is tridiagonal and
i 5% ti,‘i+1 = Y, T B M)

Since the eigenvalues of a real symmetric matrix are real, and since
the eigenvalues of a matrix are unchanged under a similarity transformation,
we see that the eigenvalues of é in (2.3.2) are all real. Thus, solving
the time-dependent matrix rate equation (2.3.1) reduces to finding the
real eigenvalues and eigenvectors of the matrix é. Fast algorithms for
the type of system are well known and they could be implemented into a

(26)
general rate equation solver package. The author has tried this and found
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that these algorithms are not fast enough for use in computer codes.
We have to find a much gquicker way to evaluate the eigenvalues, eigenvectors

and initial value constants.

2.4 Tn the Limit of No Recombination

Consider the case where recombination can be neglected (e.g. for
very early times in the ionisation of a plasma). This leads to replacing
ail thé Rs in the matrix é by =zero and at this point we see that the 7 +1
equations (2.3.1) are not linearly independent (since DET(é) = 0).
However, since we have the constraint Zfz = 1 we can neglecti the equation
for the last ion stage and the golution to equation (2.3.1) can now be

written as

Z-1 Ajt
£ = _Z a, X . e (2.4.1)
i=0
and
7-1
fz = 1 = .L fi (2.4.2)
=0
where
£f=[f [ana A=n |-8 B
- o = e o
fl +So —Sl
£2 +Sl ~S2
(2.4.3)
i +S | -8
J J=1
: - - ~8
fz1 S 21
L7 L _




29.
We now observe that the matrix A has many symmetry properties and by
inspection that the eigenvalues of é are now just its diagonal elements
and the components of the eigenvectors are just simple combinations of

these eigenvalues, i.e. the eigenvalues Ai of the matrix é are

Ao = ~neSO, Al = ﬁnesl’ .......... , M‘ = —neSi, ........ Az»l = —nesz__1

(2.4.4)

X, = )\1 x,=[ 0 X,=[ 0 ] .. .
0
PR 1 0
170
A A A .
0"1 1
- - — ! (2.4.5)
Q= P Aigd A
M2 Y
. (AgmAy) g2y AgmAy

Enough elements have been included in the eigenvectors to enable one to
see their general pattern, The compleﬁe set of eigenvectors is given in
Appendix 1. From equation (2.3.15) the general formula for the ai is

shown in Appendix 2 to be

N () e B T T B T

i i eo GO A G

— i=1,% (2.4.6)
k+1 Ak)

Hence we see that for sub-hydrodynamic timescales and in the limit Qfﬂm
recombination, we can avoid the time-consuming numerical evaluation of
the eigenvalues and eigenvectors which are now provided by expressions

(2.4.4) and (2.4.5).
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Computer results

Using the eigenvalues (2.4.4), the eigenvectors (2.4.5) and the
initial value constants (2.4.6), we are now in a position to do a calculation
for the ionisation fractions. One guestion of interest which arises
is how many ionisation stages must one follow in order to obtain
reasonably accurate evaluations of the mean ionigsation level and mean
square ionisation level. One might expect that instead of following
all seven ionisation stages of carbon, for example, some small subset of
this number may be sufficient.
Fig. 2.4.1 shows the results of a calculation based on all seven
ionisation stages of carbon being present. The temperature of the

L’l:me, (mm
electrons is allowed to vary linearly with,T_ = 10* K at a density of

0
n = 1021 em S, we neglect fractions whose presence is less than about
one per cent of.largest fraction present and consider the number of
fractions present as a function of timé. The resulits indicate that, as
far as ionisation is concerned, it should be quite sufficient to follow
only three ionisation fractions at any one time, instead of all seven
for carbon. The results also show that as the temperature variation
rises more steeply, instead of more ionisation fractions appearing, the
time axis just undergoes a 'translation'.

Allowing only three ionisation stages present at any one time,
another calculation was carried out on carbon which was heated
instantaneously to 5 x 1095 K. Under the assumptions of constant density
and temperature we can compare our results with the theoretical results.
Figure 2.4.2 shows the burn through of the ionisation stages to steady
state, as a function of time, The continuous curves represent the exact

solutions whereas the asterisks denote the results of the present model,

and as is seen we have very close agreement. The discrepancy at around
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2 x 10—135 arises due to the fact that the exact solutions show we have
Afour ionisation stages present, whereas our computer model only allows
for three at any one time. Thus we overestimate f£_ since we cannot allow

3

for f4 until fl dies away. It is interesting to note here that in this
extreme case in which an instantaneous temperature pulse 'ig applied

to the plasma, it takes 10 picoseconds to reach the steady state value

of f4 = 1.0. For a less severe temperature pulse and a higher degree of
ionisation, it would take longer to reach equilibrium thus showing that
on a picosecond timescale the fractional population densities of the
ionisation stages are strongly time-dependent.

In fig. 2.4.3 we show the complete burn through of the ionisation
stages in carbon using a temperature pulse~ising linearly in time, from
10% X to 10% X in 100 picoseconds. The curves represent a typical burn
through profile and in fig. 2.4.4 we plot the mean ionisation level
<Z> as a function of time for thisvsituation. The results aré shown by
the continuous curve, The broken curve gives the values of<= > as predicted
by the steady-state corona model (where <z> is a function of teﬁperature

only) and we notice a significant decrease in the estimate of the mean

ionisation level when using a time-dependent model.

2.5 An Example

Consider the expression for fhe solution vector f, i.e.
Ait
£ = g";fi X, e (2.5.1)

Now in the 1limit of no recombination, the Ai and Xi are the eigenvalues
and eigenvectors of the matrix é of (2.4.3). We see that the
eigenvalues of A are all negative and hence equation (2.5.1) is a sum of
decaying terms. It is interesting to consider a simple exampie to

enable us to see the meaning of (2.5.1) more clearly.
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Consider a system with only three ionisation stages and let fO,

b f., be the fractional population

1’ T2

matrix equation for the system is

]
+
e2]

I
w

where f is the derivative of £ with

has been dropped for clarity.

densities of these levels.

The

(2.5.1)

respect to time and ne (as in (2.4.3))

}fz = 1, the system can be reduced to

£ -s

(0] _ 0

fl +S0 —S1
and

I = l1-f -

2 0

1

Again, since we have the congtraint

(2.56.2)

(2.5.3)

By inspection, the eigenvalues, eigenvectors and initial value constants

of the ionisation matrix are given by

X -8

O,
= 1
-0
._SO
(5,5
ao = 1

a

1

1

1]

SO/(SO_SI)

where the initial value constants are calculated using the initial

diti £ = = £, = 0.
conditions 0 1 and fl fz 0

Substituting expressions (2.5.4) into (2.5.1) yields

£ = e_SOt
0

£ = _:EQ_ e—S
1 (SO—Sl)

£ = 1 - £ - f

(2.5.4)

(2.5.5)



We will now consider the solutions for very short times such that
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exp (-8t) v 1 - 8t, i.e.

fo = 1 —Sot
fl = +Sot

£ =

9 o

Thus we see that as f_ decreaseg initially,

counterbalance the decrease in f _,

(]

physically.

2.6

In the Limit of No Innisation

We can also consider the case where ionisation can be neglected

£

1

increases to exactly

(e.g. in an ionised plasma which is rapidly cooled).

and this is what we should expect

(2.5.86)

We then put the Sy

in the matrix A of (2.3.2) to zero and in this case, using the constraint

Zfz = 1, we neglect the equation for the ground state population density.

The solution to equation (2.3.1) can now be written as

Z ALt
2= ] a X e’
. i=1
and
j
£ = 1- T
0 g1 i

(2.6.1)

(2.6.2)

where the Xi and §i are the eigenvalues and eigenvectors of the matrix

é where
£o= [ ] and A =n_[ -R, 4R
£, -R, +R
£ -R, 4R
£,
j
£
|zl L

. +R

j+1

(2.6.3)
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Again, because of the many symmetry properties which the matrix é
now has, we see that by inspection the eigenvalues of é are just its diagonal
elements and the components of the eigenvectors are simple combinations
. :

)
of these eigenvalues, i.e. the eigenvalues Ai of the matrix A are now

given by
Al = —neRl, 12 = —neRz, ey ll = ~neR1, ceeey Aﬁf = —neRz
(2.6.4)
and the eigenvectors gi are given by
: — A - - A -
= [ 1] I e 27 @ ~)\2)::)\ a0 |
172 13 23 :
A
0 1 3
kznls
0 0 1 (2.6.5)
1" n 0
B n_- B " J B 1 J

Where enough elements have been included to enable one to see the general
pattern of the eigenvectors. The complete set of eigenvectors for the
'no ionisation' case are shown in Appendix 3, and the general formula

for the ai is shown in Appendix 4 to be

4
Y (O S S Pt Mg 2.6.6)
+ + K=i+1 & i }\K )()\i+1_}\K) T 0‘1(-1 Ao
i = =z -1, 0

Computer Results

In section 2.4 we compared the burn through of the ionisation stages
'in carbon as given by our computer model, against the exact solutions which
took into account all the ionisation stages. In those results, the
recombination terms were put to zero. In this section we wish again to
compare the computer model results against the exact results, but this

time in the case where the ionisation coefficients are put to zero.
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Using the expressions (2.6.4) - (2.6.6) we obtain the results

of figs. 2.6.1 and 2.6.2. Fig. 2.6.1 shows the exact resulis using

all the ionisation stages for a recombination only plasma. The
temperature and density were held constant at 10" K and 1021 cm_3
respectively and the initial condition used was that £ = 1. Fig. 2.6.2

6

shows the results of the computer model for this case and we notice some
gignificant differences. One thing we notice immediately from fig. 2.6.1

is that at around 10“11

s we havé six ionisation stages present and so

we cannot expect our computer model to represent this situation accurately
since there, account is taken of only three ionisation stages. The
computer model results are shown in fig. 2.6.2 and we immediately notice
the presence of a 'computational' ionigsation fraction denoted fc.

The reason for this is as follows, In section 2.7 it will be pointed out

that in a recombination plasma, we solve for fz and fz from which we

+1

can construct f =1~-£f - £ . Thus we see that knowine £ and £

z~1 z zt+l 6 5
we caln obtain f4. However as is seen from fig. 2.6.1 this 'f4' is actually
fl + fz + f3 + f4 and we denote this by fc in fig. 2.6.2. Thus we ohserve

that when a plasma is undergoing rapid recombination, the assumption of
there being only three ionisation stages present in the plasma at any one
time can lead to wrong results and so care must be taken as to how one

interprets these results.

2.7 Ionisation and Recombination I

Previously we have considered situations in which either ionisation
“or recombination could be neglected. This led to extremely simple and
computationally efficient solutions. Is it possible that the ideas
developed in the previous sections can be applied to the more general
problem.where neither ionisation nor recombination can be neglected?

It has been shown in section 2.4 that although there are many

ionisation levels in medium and high-# materials, it is sufficient to
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consider three ionisation levels only, at any one time. Hence if we inow
that the mean ionisation level at a point in the plasma is =z, then it is
sufficient to consider only the ionisation fractions fz—l' fz, fz+1'
The threc levels z~1l, z, z+l together with the various ionisation and
recombination processes and the governing matrix rate equation are shown
in fig, 2.7. 1,

Thus the various atomic physics processes we allow for in and between the
three levels shown are ionisation from levels z-1 and z and recombination
from level z+l and =z=. Notice that in order to have the constraint
sz = 1 we must neglect recombination from level z-1 and ionisation from
level z+l. The governing rate equations for these processes is shown
also in fig. 2.7.1,where the rate coefficients have been put in matrix
form and the ionisation fractions have been expressed in terms of an
jonisation stage vector. I{ should be noticed that since we have the
constraint Zfz = 1 we need solve fgr only two of the ionisation fractions,
the third being given immediately by this condition.

Consider now the matrix rate equation of fig. 2.7 written in explicit

differential form, i.e.

sz_l .

ot = -Sz—l fz~l +szz
sz
ot = _+Sz-lfz—1 —(Sz+Rz)fz irRz+1fz+1 (2.7.1)
of

z+1

ot B +Szfz Rz+1fz+1
We now invoke the constraint sz = 1, which in this case means

fz—l + fz + fz+1 = 1 (2.7.2)
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{. Z+1
Z+1
RZH

o ewres ey -——rn L — — s wea ceva acarem . emas

Sz.
f7.1 Al ¥ Z-1
T - | 1
T2 Nel ~SZ * Rz fz-1
%z = + Sz..j "(SZ'# RZ) + qu f’z
| f24 | I - +Sz “Rza| |fza

Fig. 2.7.1 The ionisation recombination processes between the
levels z-1, z and z+1, and the accompanying matrix
rate equation.
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At this point we substitute for fz+1’

from equation (2.7.2) into the

equation for fz in equations (2.7.1), which then becomes
sz
—_— = o+ f -(S +R )£ +R (1-f -f
ot *Sz—l z=-1 ( % z) Z ZéL z an)
or pE_
—l = - - £
at <sz—l"Rz+1)fz—l (Sz+Rz+Rz+1) % +Rz+1

And the system of equations (2.7.1) is replaced by

(2.7.3)

sz_l
ot = _Sz~1fz—1 +szz
afz (fgz
ot = (Sz—l—Rz+1)fz-1 —(Sz+Rz+1)fz +Rz+1
of
z+l
X = St Rprifzit

Again since we have the constraint (2.7.2) we need

equation (2.7.3). We choose to solve for fz—l
eqdations in the following form

9f

—= = Af +

at ==t &
and 3

= - - f

fz+1 1 T zm1
where
£= fz—l é - ne _Sz-l 0 -ﬁ

,fz (Sz—l_Rz+1) _(Sz+Rz+Rz+1)

We notice here that g (since fz) ig time-dependent
equations of (2.7.4) are exactly equivalent to the

of fig.2.7.1subject to the constraint of (2.7.2).

solve only two of the

and fz and rewrite the

(2.7.4)
=n R £
€l == (2.7.5)
R
z+1
and that together, the

matrix rate equation
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We now assume that the term szz in the vector g is constant or

unimportant, over the timestep we are considering, such that g is now

constant. The matrix equation of (2.7.4) can then be solved in the
following manner. Subgtituting the trial solution
At
f = Xe + b (2.7.6)

into the matrix equation of (2.7.4) gives

Kggkt = A( e)\t +b) + g ‘ (2.7.7)

and hence we see that (2.7.6) is a solution to (2.7.4) provided

Ab=-g and A and X are the eigenvalues and eigenvectors respectively,

of the matrix A. The general solution to (2.7.4) is then given by
2 ALt
£ = A gV oa x et (2.7.8)
= = 121 i -i

- where the ai are constants depending on the initial conditions, i.e.

£ o 47t g+ ) a X (2.7.9)

The terms in equation (2.7.8) written explicitly are

-

Al = —neSZ_l A 9 = —ne(SZ+RZ+Rz+1)
Z{l = 1 }_§2 = 0
Sz—l_ z+1
)\l_)‘,t 1
12
' 1))
R £ . .
a = f(O) z 2 a - f(O) a z=1 "=+l
-1 1 t__)t
1 2 Al 2 z‘ 1 Al lz
R f(0)
+-l R - 22 ( )
Al z+1 A i z-1 “z+l



-1 (0)
A'g = szz
1
>\l
e Bty
Al z+1 A

These terms are evaluated in Appendix 5,

z-1 R

1

and A' = —

(2.7.10)

We will now apply some gimple checks for which we already know the

regsults,

Check 1

Neglect the recombination coefficients

Putting the Rs in expression (2.7.10) to zero we see that

1 e =zl
5 511
Sz—l
A=Al
1 2
. (O
ay fz—l 1
and A g = 0
3
hence fz—l } 7
5 Sz«l
z Szﬂsz—l_
) Sz__1 0
82751 1

exp (—neS _

-n S
e z

—

exp (—neSZt)

since I

which is precisely the same result as in section 2.5.

(2.7.11)

(2.7.12)
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Check 2 The full solution for early times

In this cage we use the terms of (2.7.10) but with the initial

conditions
£ @
R
hence a = 1 and a = - + “Ei%
1 2 ‘&
and énlg = 0
Y (2.7.13)
%
and since the solution is
-1 2 Ait
T = -A g+ z a, X, e (2.7.14)
- IR = B
we have
_nesz~1t _ne<sz+Rz+Rz+1)t
i‘Z"]. 1 R 8 O e
_ + z+l | “z~l ozl
- 1 t .t
1 82-17Rpa Ao A 17 1
T ) !
2 NAg
0
R o (2.7.15)
74
%
or f - -neSZ_1
z—1
and < . e-neSz_lt . < . e—ne(Sz+RZ+RZ+1)t
" - z=1 " z+l R -1 Pz=1 zt1)
Pyt 1 vt
z N~ Ag Ay Ay )
R
+1
_ _;' (2.7.16)
2

We now apply the solution for very small times such that exp(-St) n 1 - St

and equate the terms dependent and independent of t.
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The terms independent of t can be written as

Sp-1 Rt Rl S 1R Rt 3
}\'—A' + A' - )\"‘}\' - )‘r - 0 (2.7.17)
102 2

as expected, and the terms dependent on to can be written as

-— t 1 1] [
S e | RedMRN D T L
Ai*ké 1 Ai—ké A=A z-1 "z+1 z+l T2

t 1
1 2
ﬁ,

By -2 = =X = n_S_ (2.7.18)

or X

as expected since for very early time no recombination can have taken

place from fz and fz and hence there should be no R terms in (2.7.18).

+1

Check 3 Neglect the ionisation coefficients

This can only be done forvery early times (such that féo) = 0) since

in a few of the terms we have a division by’li which is now zero.

From (2.7.10) we have

’Al = 0 ..Az = —ne(Rz+Rz+1)
)_(1 = 1 §2 = 0
* Rz+1_ ) 1
Rz+gz+1
a, = 1 a, = 0
Atg = 0
eS| (2.7.19
R +R -7.19)
z  z+l
hence
. _ e—ne(RZ+Rz+1)t
z—-1 1 Y
= - (2.7.20)
¥ ~Rz+1 Rz+1
z R +R R 4R
Z z+1__ z z+l
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('Y

i.e fz~1 = 1
(2.7.21)
£ = 0
z
which is correct, since for very early times fz and fz+1 = 0 and there

can be no fecoﬁbiﬁation from these levels.

Having done these checks, especially the last one, we notice that in
a 'recombination only' plasma we cannot use the terms of (2.7.10), since
we havé the term l/Xi and Ai = 0. This can be avoided quite simply by
developing another set of terms, equivalent to (2.7.10) but found in the
following manner. Previously, in equations (2.7.1), we substituted for

the term R in the equation for fz using the constraint (2.7.2).

z+1fz}1
It would have been just as easy to substitute for the term Sz~1fz—1 in
the same equation and then proceeded to evaluate an equivalent set of
terms to (2.7.10). This is done in Appendix 6.

It should be remembered that the set of expressions (2.7.10) make up

the solution of (2.7.4) provided the term sz remains consgtant or unimportant

4]

over the timestep. Similarly, the alternative sclution developed in
Appendix 6 is valid provided the term S;fz remains“constant or unimportant
over the timestep. Hence in a plasma undergoing ionisation the former
solution is appropriate, and for a plasma undergoing recombination, we
should apply the latter solution, FTor a plasma in which some of the

time levels, as in fig. 2.7, are ionising and some recombining we are in

an approximate steady-state and either type of solution can be applied.

2.8 Jonisation and Recombination II

In section 2.8 we extended the ideas developed in sections 2.4 and
2.6 to include ionisation and recombination simultaneously. After some

manipulation, we showed that the eigenvalues of the matrix A were again
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just its diagonal elements and elements of the eigenvectors, just
simple combinations of these eigenvalues. We also introduced the
column vector g = (szz, Rz+1) and under the assumption of 8 being
constant over a timestep we obtained gimple algebraic. solutions to the
rate equations. The solutions obtained in this form could be checked
a) in the limit of no recombination b) in the limit of no ionisation,
and c¢) in the limit of very short times.

The approach of section 2.7 thus provided an easily understandable
picture of what was happening, i.e. one had a feel for the magnitudes of
the eigenvalues and the various guantities involved. The only problen
with that analysis was the justification of g and hence szz being
constant over one timestep. In this section we show that it is unnecessary
to make this assumption and we develop a mathematically more exact
(though physically less intuitive) set of solutions to the rate equétions.

We consider the set of equations (2.7.3) which we write

af
s T A+g
(2.8.1)
and _
: fz+1 = ol- fz fz—l
where now
E fz--~l 4 = Te —Sz-l +Rz E 7 T 0
. (2.8.2)
t (Sz~1_Rz+1) _(Sz+Rz+Rz+1) R+l

It should be noticed that the term szz has been removed from_g and
reinserted into é. We observe that, in contrast to sections 2.4 and
2.6, ingstead of the eigenvalues of A being the elements of its leading

diagonal, the eigenvalues are now modified with the inclusion of the term

RZ into the matrix.
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However, since the determinant of a matrix ie eﬁual to the product

of its eigenvalues, i.e.

Det A = T A (2.8.3)
= 1 1

we have from (2.8.2)

- - - = II A
1 G R R )~ R B R ) it
or
E ) + = I A
L L R ! (2.8.4)
i.e., the product of the eigenvalues is positive always. The eigenvalues
may be obtained from solving
bet A - k;) = 0 . (2.8.5)

which leads to the equation

2 : g i -
A4 NS48 R 4R ) +[S__ (8 4R 4R ) -R(S_ R =0

+1 1 "zl

and from the coefficient of A in equation (2.8.6) we see that the sum of
eigenvalues is negative and using (2.8.4) we ave led to the conclusion

that the eigenvalues are negative. To obtain these eigenvalues we must

solve (2.8.6) which leads to

0_ 40, . 0_40.2 B
i AJ+A) & /(Al A%+ 4R (S -R )

A (2.8.7)

* 2
where A; and K; are the diagonal elements of the matrix A. By putting
RZ to zero in this expression one obtains the results of sections 2.4
and 2.6. Notice that since we have proved the eigenvalues negative
definite, the discriminant of (2.8.7) must be greater than or equal to
zero, i.e.

(%1% L 4R (S ~R )3 0 | (2.8.8)
1 "2 z ' g-1 g+l 7 tee
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which one may find surprising since for low temperatures Rz+1 >> Szwl'
Having found the eigenvalues through equation (2.8.7) we now proceed to
calculate the eigenvectors of the matrix é corresponding to these

eigenvalues.

To find the eigenvectors we must solve

(A - A1) X = 0 (2.8.9)
denoting the elements of é by 311’ 312’ a21, a22 equation (2.8.9)
leads to coupled algebraeic equations
Y =
(al1 ) Xl + alzx2 0
(2.8.10)
. “A) x - =
851%1 + (3557R) Xy 0
where x_, x_ are the components of the eigenvector X, In direct analogy

1 2

with the eigenvectors of (2.7.11), we wish only to solve for the elements

x,. aof X1 and x

o of Xz, the other elements being identically equal to 1.

1
Thus for A = Al

X (a.. -~ A) -a

;3 = - AL @ _Zi , (2.8.11)
1 812 22 1

A=A
and for 9

x a ~(a ~ i)

Pl WL (2.8.12)
2 11 2 21

However, we must be extremely careful which of these formulae we

use to evaluate the eigenvector components. When a12 >+ 0 (i.e. RZ - 0)

%_+ a_, and Az »> g

11 and we see that some of the quantities in (2.8.11)

22

and (2.8.12) become indeterminate, which would computationally lead to

grossly inaccurate results. Hence we choose for A = Al = A+
Xz = -—azl/(azz - Al) (2.8.13)
and for A = AZ = A_

1 = —alz/(all—kz) - (2.8.14)

k)
|
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which in the 1limit of al2 = 0 leads to the eigenvectors of (2.7.11).

Written explicitly, the eigenvectors are given by

A= A A o= A
for 1 2
- . +R
Z
= 1 ] X, = =
-1 -2 251
Sz—lez+1 1
Y R +
1-4-Sz-xl>{z4lfiz+:EJ

To obtain the initial value constants we take the solution to

(2.8.1) at t = 0, i.e.

_ 4
f(o) = =A 1g + i a, X, (2.8.16)
= = = . i -i
i=1
- 1
where é g = Det A —(SZ+RZ+RZ+1) —RZ 0
(S -l“Rz+l) _Sznl Rz+1
- R
+1
= T,—Z)\—, z (2.8.17)
12 S -1

from which it can be shown that

X -
&

. .
_ [0 _ (0) 7l _ ]}/ )
8,2 {fz fZ"l XZ + Ti-x;’ [RZ XZ Sz—l (1 Xlxz) (2.8.18)

.(0) Rz+1Rz

al = i 71 I Ul W B a2x1
12
where x_ = SZ_l_RZ+1 and x. = __gg___
= - = 3
2 A1+SZ+RZ+RZ+1 1 2+Sz_1

To summarise, we note the advantages of the above analysis:-

1. The above formalism leads to a mathematically more exact set of
solutions to the rate equations.

2. Although we now have to solve an equation to determine the eigenvalues,
the programming of the above set of results is simpler than the results
of sections 2.7 since there we had two separate cases to consider, i.e.

Sz > RZ and Sz < Rz’ whereas now we have only one case.
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2.9 An Alternative Degcription via Laplace Transform Theory

We now present an alternative description of a plasma undergoing
ionisation and recombination in terms of Laplace transform theory, as
opposed to the eigenvalue-eigenvector approach used in the previous sections.
Again we will use the fact, pointed out in section 2.4, that we need

consider only three adjacent ionisation fractions around the mean ionisation

level, We rewrite the matrix rate equation of fig. 2.7 as
of ’ ‘
e (L +elDE . (2.9.1)
where
2= [z, lL=n[-s_, 0 o Tu=nfo +r o 7]
fz +Sz—l —(SZ+RZ) 0 0 0 +Rz+l
fz+1 o . +Sz —RZ+1 .10 0 0 J
.and ¢ is some ordering parameter. We now introduce the Laplace transfornﬁs)
ot f defined by.£ where
(o]
~ v o-pt
F = J e Pt £ at . (2.9.3)
0
Taking the Laplace transform of both sides df (2.9.1) gives
pt _.£(0) = (L +eWE
or
~ -1
£ = pi-5-ap @ £9 (2.9.4)
where gﬁo) is the initial value of the vector f. From equation (2.9.4)

we observe that we now have an algebraif, equation for £ and so to obtain
f(t) we need only find the inverse transformation of the right hand side of

(2.9.4).
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The expression [££ - g - eg] can be expanded thus,

it

br-n-cul* = [®I-wQ- el-wn (2.9.5)

where £ &\ be dropped for clarity since it is just-an ordering parameter,

Remembering that (é §)~1 = g"l é-1 we can express the right hand side of

(2.9.5) as

(I- ®I-L 1 ol -L) (2.9.6)

which can be expanded as, referring to (2.92.5)

- -1 -1 - - - ~1
GI-L- 1 = I+ (I-D T UGI-W T+ (I-D T kIl UGI-D o+ .
(2.9.7)
provided that the norm of (p;—g)—l g'is less than one, i.e.
-1
oIy~ ]| <2 (2.9.8)
Thus from eguation (2.9.4) we .can write
I = L 7 £(0 (p;—Ié)_l U wi-p O . L (2.9.9)

which represents a perturbation expansion for_i and we can include as many
(27)
terms as may be necessary. One sees that the zeroth order term containsg

no g and we should expect to obtain the same result of section 2.5 if we

]

put the R's in the matrix O to zero. Consider now, the zeroth order

term, i.e.

= pr-pt:® (2.9.10)

the matrix (pé—g)-l is shown in Appendix 7 to be

A 0 o |
PHS 1
Sz—l 1 0
Q
(p+uz_1)(p+SZ+Rz) (p+sZ+RZ)
Sz-—lSz Sz 1
(p+Sz_l)(p+Sz+RZ)(p+RZ+1) (p+Sz+RZ)(p+RZ+1) p+RZ+l
(2.9.11)

where the ne has been dropped for clarity.
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Now subsgtituting (2.9.11) into equation (2.9.10) and taking the inverse

Laplace transform element by element we obtain (see Appendix 7 on
partial fractions)
—-~n S t ]
() = |e e z-1 0 o EFO)
-n (S +R )t -n S t
[e e 7w, eul ] ~n_(S_+R )t
z~1 e e 'z =z 0
S -8 ~R
z—-1 "z =z
—ne(SZ+RZ)t —neSz_lt
S le - -n R t
o - e z+l
(8 +R 'R )
z 7 zt+l J
(2.9.12)
where -n 8 -n (8 +R )t
S e z-1 g e © Z 7
_ z-1 = 21"z
o - o ‘C"‘ { - -
(Sz—l &z Rz)()z“lle+1) ‘Sz+Rz Sz—l)(sz+Rz+Rz+1)
_neRz+1t
z—lSz ¢
* - TS = (2.9.13)
(Rz+1 Sz~l)(Rz+1 Sz Rz)

and the n has been reinserted into the exponentials.
expressions (2.7.10) and putting Ry

we are solving only for fz_

+1

Now taking the

to zero (in the eigenvalue approach,

and fi) we obtain

1
-n (S +R )t
THePz-1 0 e & % %
£(t) = 1 + Sz_1
S +EZ—SZ_l
z~1 1
S,R,7S, 0 (2.9.14)

since éblg

0 in this case.
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Now taking the case where ;FO) = [}, 0, @1 we can compare (2.9.12}

and (2.9.14)cover the initial timestep and we obtain identical results
as expected.

Although the eigenvalue-eigenvector and perturbation expansion methods
offer different approaches, it will be seen from the previous work that the

latter approach is less amenable for implementation into a computer program.

2,10 Timescale Necessary for Steady-State

In this section, a gimple prescription will be given to enable oﬁe
to determine whether or not steady state conditions have been reached
in the plasma. The assumptions on which the prescription is based are
such that the results are only valid to within an order of magnitude.
From the simple Bohr theory of the atom, we have that the energy of
an electron, wheose principal gquantum number is n, in a hydrogenic system

(28)
ig given by

2 L 2
- 27" e’ Z
E o7 2 ©(2.10.1)

where Z is the nuclear charge, h is Planck's constant, e is the electronic

charge and uis the reduced mass of the system given by

- ;M .
- (2.10.2)
where m ig the electronic mags and M is the nucleaxr mass. We will now

assume that equation (2.10.1) can be applied to many electron systems

such that the outer electron is im a ground state with n = 1

Thus equation (2.10.1) reduces to

E = 13.6 22 (eV) (2.10.3)
and we now interpret Z as being the charge as seen by the outér electron
and Esvits binding gnergijhich is dﬁkEmbw the electron temperature of
the plasma, i.e.

T, = 13.6 Z2 (eV) ) (2.10.4)
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£ 1S+ now provides a simpleﬁFEQﬁﬁbnSLi; between the temperature and the
mean jonisation level in a hydrogenic system. Thus knowing the electron
temperature we can find an approzximate steady-~state value for the mean
ionisation level, i.e.
T 2
<i>‘ " {15%6] (2.10.5)

Now look at the solution (2.4.1) to the rate equations, i.e.

£ = )] a X e (2.10.6)

t
and from this, we can find the equation for the j h ionisation fraction, i.e.

kit
ai Xi (J) e (2.10.7)

1o

,.b
]
I~

. .th .t . .
where Xi(J) denotes the j element of the i h eigenvector and j is

obtained from the nearegt integer to <2Z> in (2.10.5), i.e.

j = INT(<z>) © (2.10.8)
Notice that the»eigenvalues, eigenvectors and initial values constants
are evaluated at the temperature used in equation (2.10.5). By
differentiating equation (2.10.7) with respect of time and equating to
zero, we can find the time at which fj is at a maximum. But we also
know .~ from (2.10.5) that fj béing maximised corresponds approximately
to steady state conditions being reached, and so the time at which fj

is a maximum is also approximately the time it takes to achieve steady

state conditions. Denoting this time by TST we have
of . J AT
I . ; i ST -
o ‘2 a, X (e 0 ~ (2.10.9)

i=0
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It is now assumed that, due to the rapid variation of the exponential
terms in (2,10.9), we need only consider the last two terms in the

summation, i.e.

A oT ALT
) j-1"8T . j 8T
a, A, X, e + a A.X, e = 0 2.10.10
j-11 j-1%5-149) I R Ak ¢ )
and this can now be solved for TST by taking the logarithms of both terms
to obtain
A X, ()
1 J i

- - in - (2.10.11)

ST A, LTAL a, A, X,

( j=1 J) j-1t -1 J_1(3)

Equation (2.10.,11) can be further simplified by noting that

AL
o . -2
X () = 1, 8, () = i
J -1 j-2
where aj/aj_1 v 1 always (see appendix 8). Hence equation (2,9.11) becomes
1 -xL (A =A )
Jg=1 Jj-2 -
T = in . (2.10.12)
ST A ) A A
( j-1 J) Jj-1 "j-2

Notice that the .time TST will be considerably shorter than the actual time

to reach steady state since, in order to use expression (2.10.12) we have used a
constant temperature and density. Thus if we impose some high temperature

and high electron density on a plasma, then the burn through time will be
ccnsiderabty faster‘than in the case where temperature and density

increased linearly (say). Notice that instead of using (2.10.5) to obtain

an estimate of <z> knowing T, we use the results shown in fig. 2.10.1.

These results are based on a steady state coronal equilibrium and provide

(21

a much more accurate evaluation of the mean ionisation level.
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To summarise, we list thE~FTDCEdLW{E, _ to obtain TST:—

1. Taking some temperature of interest, apply fig. 2.10.to find the
mean ionisation level at that temperature. This assumes, of

course, we have a steady state coronal equilibrium.

2. Kneowing <z>, we then say that the plasma consists mostly of
J~times ionised material, i.e. fj v 1 where j = INT (<z>).

3. Knowing j we caﬁ then evaluate the eigenvalues in (2.10.12) from
knoﬁing the temperature and density. For most cases we can

neglect any recombination effects (for laser produced plasmas)

v T ).
and say that Aj—l nesj—l( e)
example:—~ We apply the above method to a plasma whose temperature is
. . 21 -3
50 eV and whose density is 10 cm o,

1. Using fig. 2.104<z> is found to be ~ 4

2. Using (2.10.8) j is evaluated as 4

3. For these values of temperature and density we have Aj = 2,179 x 107,
Ay =-7.629 x 101! and A g = 2.88 % 1012 and from (2.10.12)
T
we eva}uate ST to be ‘
-11
T v1.4x 10 s (2.10.13)

ST

which agrees well with fig. 2.4.2

2,11 The Iucorporation of Advection

In the previous sections we developed a model for solving the rate
equations provided the term (v.V)f, representing advection, could be
neglected, The model was based on finding the eigenvalues, eigenvectors

and initial value constants for a given matrix of rate coefficients.
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Is it possible that using this formalism we can in¢lude the advection
term without any loss of efficiency of that model?
\
We rewrite the system of rate equations (2.2,1) as

oy wonr = ap (2.11.1)
where, in this notation, £ represents a mathematical column vector

with components fo, fl’ e fu, e fz’ v is the physical velocity
vector and A denotes a Z x Z square matrix ((2.2.1) is a set of

Z+¥ equations but we can ignore the equation for the last ion stage since

g fz = 1).

We now ask what justification there was in dropping the advection
term v. VI, Strictly speaking we can only do this if we are solving the
rate equations in Lagrangian frame of reference, i.e. in a mesh that
is moving with the fluid. In that situation, the terms Q;/at and
v.Vf merge into the one term which we will denote by DIL/Dt and we can

' (29)
rewrite (2.11.1) in the Lagrangian formalism, i.e.

bf .
4 Dt éi

However, most 'real' codes in more than one dimension are 'Eularian', i.e.
the equations ﬁre solved on a mesh which is fixed in space, and under

this fo?malism the terms df/9t and y.yg’do not merge but remain separate.
Also we cannot evaluate the term y.Yﬁadirectly, since the ionisation stage
vector E is not stored explicitly (cf. Chapter 4). However we can put
the term into a more manageable form by making the following observations.,
Remembering that at any one time we are following only three ionisation
fractions evolving in time, it will be shown in Chapter 4 that simple
expressions can be obtained for the three fractions in terms of <z> and
<22>, the mean ionisational level and mean square ionisationél level

respectively.
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We will denote the three ionisation fractioms by £, ., £ , £,
-1 37 i+l

such that \

fiop = 0:5JGHD -0.5(2j+1)<z> + 0.5 <z2>

£ = - -1 42§ < - >

T, = 0.53j(j-1) ~0.5(2j-1) + 0.5 <z2>

j+1

where j = INT <z> (2.11.3)

Now taking the gradient of both sides and then the scalar product

with v gives

vV E ) = -0.5(2§+1)y.Y <z>+ 0.5 v.V<z?2>
vy £, = 2jy.Vez> - v.v<z®>
Y-y, = -0.52§-Dy.V <z> + 0.5y.7 <z 2> (2.11.4)

thus we have converted the expression containing a differential operator
on 5 to an expression containing a diffgrential operator on <é> and <z2>,
Since the terms <z> and <z2> are stored explicitly then the right hand
side of (2.11.4) can be evaluated quite simply. Denoting the term
y.Yfﬁ whose components are shown in (2.11.6), by h we can now write

equation (2.11.1) as

—SL - ‘ (2.11.5)
t =

fj +neSj_1 —ne(Sj+Rj) +neRj+1

ij+%~ ._- Y +nesj ~neRj+1-_

and we can solve (2.11.5) in the same manner as we solve equation (2.7.4)

or by some split step procedure.



CHAPTER 3

The Macroscopic Variables

Once the ionisation fractions present in the plasma
are known, the macroscopic variables such as pressutre, internal
energy, radiation loss etc., may be evaluated. This chapter

deals with how these quantities are obtained for a one component

plasma.

am
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3.1 Equation of State for a one component plasma

Having obtained the ionisation fractions present in the plasma,
as described in chapter 2, it is now possible to evaluate such guantities
as the plasma (kinetic) pressure, the internal (thermal plus ionisation)
energy, the radiation rates etc. Thus, in this section, we assume
the three ionisation fractions known, and procéed to calculate the

macrogcopic variables described above for a one component (e.g. carbon)

plasma. By definition, the mean ionisation level <z> is given by
z
max
<z> = ) zf (3.1.1)
Z
z=1

where fz is the fractional population density of the z-times ionised
material, and Zmax is the atomic number of the material. Since we

consider only three ionisation fractions, this definition reduces to

O+ 1
<g> = ) zf (3.1.2)
z=0=1 z ’
where oo = Int <z> and <gz* ig the mean ionisation level at the previous

timestep. Similarly, knowing the population distribution, the mean

square ionisation level <z?> ig evaluated as

o+l
<zg?> = ) zzfz (3.1.3)
Z=0—-1

Now with this knowledge of <z> and <zz>, and using the independent
variables ni, Ti and Te (the ion density and the ion and electron
temperatures respectively) the pressure and internal energy are derived

as follows. The electron density is given by

n, = <zg> n, (3.1.4)
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and the plasma pressure (i.e. ion plus electron kinetic pressures)

is given by

pr = nkT, + n kT
i 74 e e
which can be rewritten using (3.1.4) as
Te '
= 1 4+ <p> — kT 3.1.5
P [ Sy } ST ( )
i
where k is Boltzmann's constant. In the case where Te = Ti’ the
. T
coefficient of <u> i.e.<59 in expression (3.1.5), is simply put to 1.
i

Similarly, the thermal energy Eth is given by

3 3
4 = 5 N
Pth 5 nikli 5 nekTe

which again can be simplified using (3.1.4) to

Eth =

o e
[

. T
[1 + <z> ;i—-e— } n KT, (3.1.6)
i

It is important, at this point, to realise that in a partially ionised

pPlasma, the ionisation energy forms an important contribution to the

total internal energy. This ionisation energy is evaluated as
3 o1 ’
= i = < I > 1.
Eg n, ) E f ,> (3.1.7)
z=0-1

where Ez is the energy required to ionise an atom from the neutral state

to the z-times ionised state, thus

Z-1
E = Z X (3.1.8)

where Xz is the ionisation potential for state z (i.e. the energy required
to ionise from state z to =z+l). The total internal energy (thermal plus

ionisation) of the plasma is now obtained by adding (3.1.8) to (3.1.7) thus

- 3 ‘ Te <EZ>
T = | = <z > — =
Etdt . P [1 + <z Ti J+ kTi nikTi (3.1.9)
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where Etot represents the total energy of the plasma, as a function

of the independent variables n. Ti and Te and the dependent variables

<z> and <EZ>. Equations (3.1.4) through to (3.1.9) make up the 'equation'
of state for a partially ionised one component plasma. In the foregoing
analysis we have allowed for two separate températures as is ugual in

lagser plasma interactions, but this can be removed by simply putting

T
E?- = 1 in equations (3.1.5) and (3.1.9).
i

3.2 The radiation lossg from a one component plasma

In an ionised plasma, various radiation processes are pregsent and
they constitute an important part in the overall energy balance of the
system. The radiation processes we consider in this section are
Bremsstrahlung (free-free) radiation, fecombination (free~bound)
radiation and line (bound-bound) radiation, and the formulae used for
these quantities are those developed by previous authors.(so)
Bremsstrahlung radiatién:

For photon energies of the order kT, we can obtain an order of

magnitude estimate for the power density of Bremsstrahlung radiation Pf

f
due to elastic electron collisions with ions of density nz and charge
ze (where e is the electronic charge) using

kT o+l
64 (T 3 e 2
P o~ == w B - s
£~ 3 [5] Ba)) oy By I3 e L n, (8.2.1
H z=0-1
where ao is the Bohr radius, L% ] EH/E, b = h/2r where h is Planck's
constant, and EH is the ionisation energy of hydrogen. Now since
— > Z 2 _ 2 .
n = <%?>n, and z°n = < n, we can write (3.2.1) as
e 1 2 Z 1
1 1
64 |T kT |*
P22 73 (3) Ba)d wE, [—S| n2 <z><z2s (3.2.2)
o HH B i e

H
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Recombination Radiation:
To obtain an order of magnitude estimate of the recombination
radiation power density, we use the expression
1
E s I

x
~ 128 {m]® 3 i z
Pep ™ 73 Is] (@a )™ wy By KT_ e g z n tz (3.2.3)

where n is the guantum number of the level into which the electron is

recombining. Now since X 1/n3 is. approximately %%%lehere %ﬁj}is the
n
effective ground state of the atom or ion resulting from the recombination,

i.e.
4
%2 EH =
nmin“-\:‘ X (3.2.4)
z-1
the above expresgsion for be simplifies to
1 .
P 64 [w} kTe 3 o+l Xz 1
=~ 5 |3 3 . 2 |z
b 3 (8] (ua)® oy Ey |2 n_ ) =z = . (3.2.5)
H z=0~-1 e
or
L 1
64 [mw]* ' kT |*® 22X
Peb ¥ 3 (3] (ea)d w E el <p> —2TL, 2 © (3.2.6)
(o) H H EH kTe i R

N .

It should be noted that by comparing (3.2.2) with (3.2.6) we see that

P X

fb . -1
—— D ET (3.2.7)
Pff kTe

for a given ion stage z, and the number can be as large as 10, causing
recombination radiation to dominate. Only when the temperature is

higher than Xz_l/k do free—-free transitions dominate.
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Line Radiation:

The power density from line radiation is estimated from

1
% E U«+1 g z —Ef}.l
~ 2 ; A A >
PL ~ 81 Bao c EH T ne E nz z fnl exp wT (3.2.8)
- e z=qg-1 n e

where ¢ is the speed of light, ng is the ground state population density
of ions of charge =z, f:l is the oscillator strength for a ground state
transition to levél n with associated energy difference Ei. Under
the assumption that most of the radiation occurs in the resonance line,

we can omit the summation over the other excited states, accounting

- x z gr\-
for them by putting f21 n_ 0.5 nz, thus

1 7.
3 Eg | ° “Eay
3
~~ “ —_— <> < —— > 2.
PL'” 41 uao c EH kTe ni z exp kTe (3.2.9)

The value of E;l {the 1 refers to the ground state with guantum number
n) may be found in tables under the 'most important trangition'.
Altegnatively, it may be estimated from Bohr theory, i.e.

n_c?

Z 2 e (L _ 1 ' '
E,, (Bz) o [PJZ (N+1)2:[ (3.2.10)

kY

where mec2 is the electron rest energy.

It should be noted that for ions with one or more bound electrons,
line radiation dominates continuum (Bremsstrahlung plus recombination)
radiation and so a more accurate evaluation of continuum radiation than
the order of magnitude estimates provided by (3.2.2) and (3.2.6) is
unnecessary. When there are no bound electrens, i.e. completely
stripped ions present, there is no line radiation &mitted and equations
(3.2.2) and (3.2.6) are almost exact when one includes the appropriate

gaunt factors. The total continuum radiation power density is then

given by
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Pcont = P:ﬁf + be (3.2.11)
and substituting expressions (3.2.2) and (3.2.6) using X, = z’E,
we have, neglecting recombination into excited states,
1
6a [ ]% ; 'kTe 2 uii , 1, 22°%,, , )
b el o ©a ) wE | n 7 g o+ g n
£f kT T
cont 3 [} HH LFH € —a-1 o b, z
01‘ ' 2 At
1 1
5 kT 35 2z°%
64 |w|*® 3 e 2 2| 2 H 2
P ™ — |- (v} w e <z> +
cont ~ 3 {3] (ca )™ wfiy Ey A KT b
\

7/

where the g;} and g;; are the averaged freeffree and free-bound
factors for ions of charge =z.

The radiation rates described previously must have an upper limit,
namely the black body limit. Thus, whenever the radiation rates exceed
the black body radiation rate (as can easily happen in a low temperature
high density solid target) we put the radiation rate equal to thé
black~body rate. This rate is given by the Stefan-Boltzmann law

- L
PB aT

N .

(3.2.14)

where a = 5.67 x 10_8 watt/m2K4 is the Stefan Boltzmann -constant.
It may also be of interest to know the frequency distribution of
the energy radiation. This can, for example, tell us how much energy

is being radiated in the X- and UV-regimes. The frequency distribution

. (30)
of the energy radiated (continuum radiation) S(v) varies as

X /KT
Y o= 02 <p> |<g2> A i “« e
S{v)dy = ni Z Z T CB + 3/2 CR e
: Te Te

- T
e BV/ETe 4y (3.2.15)

where CB and CR are constants, Defining now a radiation temperature by

T = hv (3.2.16)
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we can replace (3.2.15) by

_Tr/T

n — -—14
Sy, = Poo7 o edTr (3.2.17)

c
e
from which we can construct the spectral energy disgtribution as a

function of the radiation temperature

o o} o
4 = > 2 d 7 3.2.1
E(Tr) J J J S(Tr Tm) Tr dr dz dt ( 8)
nee2
where Tm = hw_, w2 = pa—
1Y p oMe

A summary of the solution to the rate equations, evaluation of the

macroscopic parameters and radiation rates is given in fig. 3.2.1.

& N L.
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Time~dependent jonisation and recoishination

State of plasma described by ionization stage vector:

EAE I C SO STIE PR £,)

fj is the relative population density of the j times ionized stage:

ot
ot

Time-~dependence

I

.t (No hydrodynamics)

A contains coefficients for ionization and recombination rates.

7Z-1 ALt
Solution: £ = ) a, X, e  ,05t g6t (A constant)
— i -i =
i=0
Z
MHD coefficients: <z> = ) §f,
20 J
J
Z
<g2> = J  j? £,
§=0 !
Plasma Pressure: P = (1 + <z) nik'l‘e
X .
Internal Ene : E = 3 (1 + <=>) K + n, E
erna rgy: 5 z n, kT i &
Z-1
Jonisation Energy: EZ = Z Xj
j=0
n? <zZ>
Line Radiation: P e e <exp (-EZ_/KT )> ;
L Tz N1 e .
e
1 "ZZX
Continuum Radiation: P = n? <z> T ° |<z2> +(———§:l>
. c i e kT
e
kT
Frequency Distribution: 8(v) dv = n? <z> T C, +—0 C e dv
i T 2 B T3/2 R
e e

Fig. 3.2.1 A summary of the atomic physics model



CHAPTER 4

The Computational Details

The questions of computational stability and accuracy are dealt
with in this chapter. The method of storing the ionisation stage
vector is discussed also, together with the running times and storage

requirements of the computer program.
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4,1 The Accuracy of the Algorithm

In computational work, when a differential equation is replaced

by a difference equation, the question arises as to how accurate this
. . . . . . . (1,2 .

difference equation is to the original differential equation. In this
work difference eguations are not used to represent the true equation,
instead we use locally analytic solutions as described in Chapter 2
but the accuracy of this process can still be examined.

The exact differential equation representing the system is, as

shown in Chapter 2,
= = Af (4.1.1)

where the guantities have been defined previously. It was also shown that

the solution to (4.1.1) is

At
£ = a, X, e (4.1.2)
- 1 -1 .

again where all the quantities have been defined. Although (4.1.2) is

the solution as used in this work, we can formally define a solution to

(4.1.1) given by

At £(0) ‘ ' (4.1.3)

in direct analogy to the solution f = foeat of the simple equation

; ==

E S ,
or = of (4.1.3)

At
The quantity e= used in equation (4.1.3) is defined as

at)?
2

t
eé =1 + At + e . (4.1.4)

‘and using this definition one can clearly see that equation (4.1.3) is
the solution to (4.1.1). Using this solution we can now carry out the

accuracy analysis quite simply.
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Rewriting the solution to the rate equation (4.1.1) indicating
explicitly at what time levels the various quantities are known (4.1.3)

becones

£ = e= £ _ (4.1.5)

; n-1
where j? indicates the value of f at time level n, A" " indicates the

matrix of rate coefficients which have been evaluated at level n-1 and

n-1
At repregents the timestep from level n-1 to level n. ;P and eé At
can be expanded thus
n-1 =1
n n~1 3f At2 92f - :
= —= + T T N L1,
and
n-1
t Re] n-t
e 8o raaat o+ BAR®?2 +. ... (4.1.7)
Using (4.1.6) and (4.1.7) we have
n-1 n-1
AT A n-1 n-1 af At 32f
I - e= £ = [f F At Nt + 55 82 + ]
=l n-1 n

£ (@ + A" At + Bea R L T Y )

which can be simplified to

n-1
n-1 2 (o2 yn-1
n A" TAt n-1 af ., AtT et o
£ e= EY At[ Nt éﬁ} + =5 kg?f‘ é_% + ... (4.1.9)
or
n-~1 n-1 1 n-1
af _ L (e ATAT n-1) At (322 o )
[Bt éé] = 1t {j_ eF by ] + P ngf é % + ... (4.1.10)

Thus it is apparent that equation (4.1.5) representing the solution to
(4.1,1), is first order accurate in time. In section 2.7 the matrix rate

equation was of the form

Q2
h

£= = Af + g (4.1.11)

az

(24
il
1

as

i = oAt @@ é"]‘_g_) - é_l_g (4.1.12)

where the quantities have all been defined previously. Now rewriting
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(4.1.12) indicating explicitly at what time levels the various quantities

are known, we have by analogy with equation (4.1.5)

n-1 _ _ B ~ .
P - eé t QﬁQQ A lg)n 1 A 1 g)n 1 ) (4.1.13)

and carrying out the same accuracy analysis as for equation (4.1.5) we
again see that, as expected, equation (4.1.13) is first order accurate

in time.

4,2 Stability of the Algorithm

Together with the accuracy, we must also examine the stability
of the algorithm, When one uses a numerical algorithm to obtain a
solution to a differential equation, it has been found that small errors
introduced by round-off etc. can grow without bound and eventually swamp
the time solution. This phenomenon is referred to as'instability'
and can be examined in the following way. Starting with the exact

differential equation ap time level n-1, i.e.

of _
= n_ Af . (4.2.1)

i

d

o

1

(as described in Chapter 2) we assume the elements of the matrix neé to be

constant from time level n-1 to n and we write the solution as

n—lAt
n -1 _n-1 i
o= Yamx Te (4.2.2)
- 1 =i
i
. n n-1
for a timestep At = t =t . The eigenvalues etc. have all heen

evaluated at time level n-1 and are held constant at time value to time
level n. Formally we can also write the solution (4.2.2) in the following

“form

il

: (4.2.3)

An% Iat n-1
=e" e £

as discussed in section 4.1, and it is in this form that we carry out

the stability analysis. It should be remembered that since



= £ .2.
n n, z Z (4.2.4)

we can introduce the vector z = (1, 2, ... z, ...Z) such that we can

express the electron density n as

n = n, z.f ) (4.2.5)
e i=--

Substituting (4.2.5) into (4.2.3) we have

n gémlémlfml

I = e (4.2.6)

where the niAt has now been absorbed into the matrix A.
We now ask the guestion, suppose there is a small error € in f
at time level n~1, what error will this produce at time level n through‘
. . . n n-1
cur numerical algorithm (4.2.6)7 Denoting € and € as the errors

at time levels n and n-1 respectively, we have
fn—1+€n—1)én—l n-1 n-1

8 2. ( @t h (4.2.7)

@+ EH = e =T

After expanding equation (4.2.7) and using (4.2.6) we can obtain an

: n o, . .
expression for £ in the following form, i.e.

n-1 n-1 n-1 n-1 n-1 n-1
.E . . € -
e |EE A -1}f+e?§-é 25 & L 40
We now expand (4.2.8) retaining only the terms first order in<§P~ , i.e.
n-1.n-1 .
_En = E.En lén 1 fn + e*-'g é & 1 (4.2_9)

o e_z_.fnmlA {n-—l Y g etl ol n—l}

- = 1€ z.€ é £ (4.2.10)
Upon expansion, element by element, it can easily be shown that
-1 -1 n-1 -
2.8 A% £%7 = ap2e™ 7! where zf is the outer product defined by
zf = fl 2f1
£ of (4.2.11)
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in the case where f is the vector with components (fl,fz). Thus we
can write
e = G € (4.2.12)

where

o}
I
o]
[
i

(I +A zl ) (4.2.13)

now in the scalar case, equation (4.2.1) can be written as

3 o gr (4.2.14)

at )
(remember the eigenvalues of A are always negative) and the amplificatiom

matrix (4.2.12) becomes an amplification factor given by g where

g = e 2 (1 -~a) . (4.2.15)
and the condition that the algorithm is stable is | g € 1 thus since
|e”® (1 -a)| g 1 for o positive (4;2.16}

the algorithm for solving (4.2.13) is unconditionally stable. To extend
tois result to the vector equivalent of (4.2.13) implies we must show

that the modulus of thé largest eigenvalue of the matrix gn—l is less than
or equal to 1, The author has been unable to show this, but is satisfied
that it mus£ be so since no stability Qrobléms have benn encountered in

the running of the program.

4.3 Storage of the Ionisation Stage Vector

Consider, for a moizent, a two dimensional Eulgrian mesh containing
typically 20 x 40 grid points at each of which the MHD equations are
solved. In order to record the ionisation stages of aluminium (say),
which has fourteen on each of the grid points it would appear that we
would require a three dimensional array of dimensions 20 x 40 x 15

corresponding to 44.8 Kilobytes of storage within the computer. In
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practice, it is not ncessary to consider all the ionisation stages at any
one time and so the storage requirements are not as severe as stated
above. It does, however, still remain a problem.

An alternative approach is developed here, where the ionisation stages
are not stored explicitly (in the form of an a i b X ¢ matrix) but
implicitly through the averaged guantities <z> <z %> etc. The strength
of the method lies in the fact that only three ionisation stages are
being considered at any one time.

In Chapter 3, when evaluating the macroscopic quantities it was
necessary to derive

A
Enl

kT
e

<>, <z2>, <E > <z2XZ_l> and< exp > A (4.3.1)

where each of the quantities are defined by

zmax

2. z;fz = < 7>
z=0 ’
Zmax
z zzfz = < z2>
z=0
3
zZmax
X Ezfz = <E_>
z=0
zZmax
2 =<.2 >
z= Z z—lfz sz—l
Zmax ~EZ —Ez
Z exp ni £ = < ex ol > (4.3.2)
L KT 2 P KT .3,
z=0 e e
and we also have
Zmax
) £ = 1

z=0
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Now in our computer solution, each of the guantities in (4.3.1)
have to be stored at each point on the mesh. Since thesge quantities
" form the right hand sides of the set of equations (4.3.2) we can write

this set of eguations in the form

Af = b (4.3.3)
where A is a square matrix of order 6 whose elements are given by the
left hand sides of (4.3.2), and f contains any six adjacent fractions
from fo to fz. At this stage é and b are known and we can solve forlﬁ
i.e.

£ = é b (4.3.4)

since the quantities (4.3.1) are updated every timestep, we can by
applying (4.3.4) find the updated values of any six adjacent ionisation
stages. This is what is meant by the implicit storage of the ionisation
vector.

As is seen from (4.3.4), the process of updating the ionisation
fractions inv&lves a matrix inversion operation and since-this is to be
done at every space~time point it can be quite time consuming. We
really require some fast algorithm for inverting the matrix A which,
because of its lack of symmetry{ is not readily available, As it happens,
under certain assumptions the matrix é may be readily inverted. In
Chapter 2 it was shown that at an& instant it is sufficient to consider
only three ionisation stages. Reélising this, and ugsing the subset of

equations of (4.3.2)

zmax

) £o= 1

z=0

Zzmax

= <>

Z=0 zfz Z
Zmax

Y oz2f = <2 (4.3.5)

b4

z=0
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where all of the terms on the left hand side have been put to zero except
the three terms adjacent to and including the mean ionisation level, we

now find that the matrix A has very special properties. Again we have

the equation

Af = b
where
A = [1 1 1 £ = _fj_i] and b = [ 1 |
zj—l zj Zj+1 fj <z>
z§_1 z§ Z§+llj £ i_<z2> (4.3.6)

and j is the nearest integer to< =~,
The important difference now is that since we have restricted
ourselves to following three ionisation stages, the matrix A has many

symmetry properties. Since

.t = 8t
and 5
; 1 A - .
A = Dzé) (4.3.7)

where D(A) is the determinant of the matrix é and is known as a

25)

Vandermonde determinant because of its propertiesf One of these is that

D) = (z.-z,

j 3-—1)(

zj+1-zj_1)(zj+1*zj) (4.3.8)

which in the present situation is equal to 2 for 'all cases since

J
- = A - -— = . 104 il 3
zj zj_1 Zj+1 7j 1 and Zj+1 zj_1 2 The adjoint A of A is

(expregsed in terms of zj)



J - -
A = (z +1 -(2z +1) 1
= R @25
-2(z. (= ~1 4z, -2
4 it ( b ‘) j
z. (z~1) -(2z .-1) 1
J( J- J
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(4.3.9)

The solution vector f can now be expressed using (4.3.7)-(4.3.9)

£ =

0.

5

—zj(zj+1) ~(22,,+1) 1] [ 1
~2(z+1) (5,-1) 4z, -2 < z>
(z.-1 ~(2z -1 1 < z?

LZJ(ZJ ) (ZZJ ) 7

>

(4.3.10)

and it is now apparent that we have produced a general formula for the

different ion stages. Thus expanding (4.3.10) we have
£ = 0.5 z (z,+1) ~0.5(2z +L) <z> + 0.5 <z>

z Ja J

j-1
2

b i = ~(za.,+1)Y(z.~-1) + 2z, <z> -~ <g“>

zZ; F J A J ) J

J

£ = 0.5 z, (z,-1) -0.5(2z,-1) <z> + 0.5 <z2>

Zj+1 J 3 J

(4.3.11)

We have now completely overcome the problem of inverting the matrix

A by providing the simple expressions (4.3.11).

Consider now a simple example to check to,above result.

the

Ve take

fully ionised carbon for which we know there is only one ionisation stage

present,

i.e. £ . In this case <z> = 6 and <z%> = 3.

6.

into (4.3.11) we obtain

f5 = +21 -39 +18 = 0
fG = =35 +72 -36 = 1
£ = 415 -33 +18 = 0

Substituting

(4.3.12)
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which is correct. Thus we see that the above algorithm provides an
extremely efficient procedure for evaluating f overcoming completely the
problem of storing f explicitly. It should also be noticed that the
method relies on the determinant of é being a Vandermonde determinant,
and so we can only solve for three ionisation gtages. If we wanted
four fractions known at any instant then we would have to resort to the
matrix inversion procedure described earlier,

It should be noticed from (4.3.12) that since the carbon ig fully
ionised z =6, agd from (4.3.11) we evaluate f7 although this must
always be zero for carbon. It would have been more profitable had we

introduced a cut-off once we reached the fractions f Thus the

£ ,£ .
4’75’76
set of equations (4.3.11) apply provided we are not near the extremities
of =2 and we now develop an equivalent set of equations which apply in

these reygions.

Case 1: Almost FTully Yonised Material

Consider some material which is almost fully ionised (such that
only the last three ionisation fractions are present). If the atomic

number of the material is A then we have

+ (A-1)f + AE, = <z>

(A-2) f 1 A

A-2

o2 ¢ -2 oa A2 = <u2>
(A-2) fA—Z + (A-1) T + A fg Z

A-1

or written in matrix notation we have

1 1 1 4 g 1
A-2 -1 = <>

A A £, z (4.3.14)
(A-2)2  (A-1)?  AZ? £, <z2>
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which upon inverting gives

0.5 |A(A-1) - (2A-1) 1 1

= ~2A (A-2) 4(A~1) -2 <z> (4.3.15)

(A-1))A-2) -(2A-3) 1 <z 2>

or upon expanding (4.3.15)

T, , = O0.5A(A-1) -0.5(2A-1) <z> + 0.5 <z?>

- = - - - <g> - <gl>

fA-l A(A-2) + 2(A-1) <z z

£, = 0.5(A-1)(A-2) ~ 0.5(2A-3) + 0.5 <z?> (4.3.16)

Case 2: Almost neutral. material

In this case we examine material in the very early stages of
iouisation (such that only the firgt three ionisation stages are present).
Due to complications in evaluating the electron density for <z> <1,0
we neglect completely the population of the ground state and start with
the first ionisation stage, such that the fractions concerned are

bl f f3 where from (4.3.6) we have

1 T
fl + f2 + f3 = 1
£+ 28, + 82, = <z>
£+ 48, + 0f, = <z2> (4.3.17)

which can be expressed as the matrix equation

I 1 £ 1
1 2 3 fz - <z>
1 4 9 L, <z?> (4.3.18)
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which, solving for f gives

2] 0.5 [ & -5 1] 1
- - <
£, 6 8 2| 2>
f, 2 -3 1 <z?> (4.3.19)
L . B L. - .

and upon expanding gives

£, = 3 -2.5<z> +0.5 <z2>
£, =-3 44 <z> - <>
£, 0= 1 -1.5<z> + 0.5 <2> ' (4.3.20)

Thus the set of equations (4.3.11), (4.3.16) and (4.3.20) providesthe
éxpressions for evaluating the fractions once <z >and < z2> are known.
Equations (4.3.20) are applied when
1L <=z>g 2,5
Equations (4.3.16) are applied where
A-1.5 < <g> £A

and equations (4.3.11) are applied for any other values of <z>,

4.4 The Timestep Control

One of the problems of using packages with computer codes is in
setting up a reasonable timestep control. The analysis of Chapter 2 is
based on the assumption that the quantities ne and Te, the electron
density and temperature are approximately constant over the timestep
concerned. We mugt therefore reduce the timestep until these conditions
are met.

The timestep used to solve the rate equations of Chapter 2 will
be given by the external code. This timestep will be based on MHD
considerations and may allow too large a variationm in the mean jonisation
level <z > of the plasma. This difficulty is overcome by using the

following technique.
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n-I n-1% n-1 %%
AtmHD
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Fig. 4.4 Typical variations of temperature and
density as a function of time

Fig. 4.4 shows a typical variation of electrcn temperature and
density against time. In advancing the ionisation fractions from

time level n-1 to time level n using the timestep At (supplied by

MHD
external code) it was found (say) the Vériation in <z> was too large.
In solving the rate equations over a timestep At we must have At
such that

§<z> = <z - <>l ¢ g (4.4.1)
where AKT is v 0.2. If this conéition ig not met, then we reduce thé

timestep over which we solve the rate equations +to

AKT

At = AtMHD © S<g>

(4.4.2)

and continue to solve using a timestep At until we make up the full
timestep AtMHD' After each update of the fractions using timestep At,
we update the density and temperature (by linear interpolation) to

the new time levels n-1%, n-1%* etc. where
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n-1%% - p-1% = n-1% - n~1 = At (4.4.3)

In the present version of the program only the density ne is upaated
after each At - the temperature is held constant at TZ_'. It can
happen also that the variations in §<z> over one timestep are so large
that we terminate the program. In this case the only thing to be done,
is to reduce the timestep At

MHD

4.5 The Changeover Philosophy

One of the points concerning the numerical details, which as yet has
not been discussed, is when does one stop looking at the fractions

b i f ?
fj»l’ fj, fj+1 and proceed to evaluate j-2* fj-17 fj or fj, fj+1’ fj+1

In the results presented in this thesisg, this was determined by the value
of <z> the mean ionisation level. If, for example, <z> was equal to

3.2 the fractions we would concern ourselves with are fz, i_ and f4 and

3

this would be the case until <z*> reached 3.5 (if ionising) or 2.5
(if recombining) at cach of these latter <z> values one would switch

f_. Althoﬁgh this changeover

fz’ 3

to the fractions fS’ f4, f5 or fl,
philosophy works quite well and is very simple to apply, it can be

improved upon, In Chapter 2 it was shown that the system of equations

we concern ourgselves with is

sz—l
ot = z—lfz—l * Rziz
sz
at = +Sz-lfz—l - (Sz+Rz)fz * Rz+1fz+l
afz+1
= 48 £ - R £ (4.5.1)

at . 77 z+1" zZ4+1
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where the electron density ne has been absorbed in the rate coefficients
for simplicity. This, then, is the set of equations we choose to 'golve’
at any grid point whose mean ionisation level is <z>. It has the
properties that

afz—l sz afz+1
+ 5t +r9t = 0 (4.5.2)

at

which is consistent with the condition that

= ] .5.3
SRR S S 1 (4.5.3)

However, in equation (4.5.1) a certain amount of physics has been
neglected since we neglect recombination from level z-1l, i.e. the term
Rz—lfz~1 in the first equation of (4.5.1),and ionisation from level z+1,
i.e. the term Sz+1fz+1 in the last equation of (4.5.1). The important
point to notice is that since we are dealing with the level z-1, =z, z+1

both of these terms can be evaluated quite simply. Thus

together with the set of equations (4.5.1) we can also solve the

equations

of

3 7—2 _ . . .
ot B +Rz—lfz--l

and (4.5.4)
8 g

fz+2 = 48 £

dt z+1l Z+l

which have the solutions

z=2 ZRz—lfz—-l At

and (4.5.5)

2]
1

£ ~—-Z £ At
zZ+2 Sz+1 z+1
thus we can now check to see if £ > £ or if £ > f and if
z-2 z—1 Z-+2 z+1
this is so we can move on to the next set of fractions. This approach QSJA

avoid,) having to introduce arbitrary crossover points changing from

one set of fractions to the next. In equations (4.5.4) no other terms
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are introduced on the right hand side since this is quite consistent
with assumptions made earlier that only three ionisation stages are

~

involved at any one instant.

4.6 The Computer Program - TRIP

Based on the model developed in Chapters 2, 3 and 4, the computer
program TRIP (Time-dependent Recombination Ionisation Package) has been
writteﬁ for use in computer codes to follow the time dependent atomic
physics processes in the laser produced plasma.

The structure of TRIP is based on the Olympus system, as are

(32,33) .
the standards of documentation and the notation. This is to enable a
fast understanding of the program and to allbw for its efficient
implementation into computer codes already set up in different computers.
Standard fortran is used throughout.

The program TRIP consists »f two subroutines, subroutine DATSET
and subroutine TRIP. DATSET is an initialisation subruutine which is
called only once during the execution of the program. It basically
sets the tafget material, target specifications, r;ads in the rate
coefficients into two dimensional arrays for later access, and evaluates
certain other quantities required for the running of TRIP. TRIP is the
main calculation subroutiney to be called at every space time point on a
mesh which updates the fractions (and the macroscopic variables such as
<z, <z2> etc..).to the new time level.

In its present form, the program can do 100 timesteps at a
single grid point in I etu - 3.6 seconds of cpu time on an ICL 4/70
computer. Thus using the program in conjunction with an MHD code on a
20 x 40 mesh it would take ébout 8 etu's per timestep to update the
ionisation fraotiéns at every point on the mesh. This can, however, be

reduced considerably by only solving for the ionisation fractions at

points of interest (eg. around the critical density in a laser produced
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plasma). The storage requirement for the program neglecting data is

!

around 5 kilo bhytes.



CHAPTER 5

Implementation of the Model into Computer Codes

The details involved in implementing the program TRIP into computer
codes are examined in this chapter with specific reference to the Castor
‘code. The results thus obtained are discussed in detail witﬁ specific
reference to the macroscopic parameters such as the total radiation loss

and the plasma temperature.

.
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5.1 TRIP - A Time-dependent Recombination Tonisation Package

Combining the results of Chapters 2, 3 and 4, a time dependent
recombination ionisation package has been constructed. The package
is intended for use in computer codes in which a knowledge of time
dependent atomic physics processes is required. The package is designed
in such a manner that it will be called at every grid point of the region
under investigatioﬁ, to update the ionisation fractions from one time
level to the next. It can also be used to evaluate such quantities as
the radiation loss, the internal energy, the plasma pressure etc., at
the same grid points. The package can be used in the steady state limit
and the details of this are discussed briefly in section 5.6,

It is intended that TRIP will be published eventually in Computer
Physics Communications. It will be able to handleﬂany target material
up to Grgon in the periodic table (any element can be handle provided
the data on the rate coefficients is known, but in the version to be
published only data up to argon will be included). The rate coefficients
are evaluated at forty different temperatures between 5 x lOSK and
5 x 107K and at six densities from lold m_s'to 1030 m—s. The rate
coefficients used here.in tabular form are expected fo be more accurate
than those obtained using general formulae such as those given by
McWhirter.

The present chapter is concerned with the details of how TRIP can
be merged with a computer code - in this case CASTOR. We start by
giving some of the physics and numerical details of the CASTOR code and
then proceed to describe how TRIP can be combined with such a code. Ve
then describe in detail the results obtained and examine the differences
between time dependent and steady-state atomic physics models for full
scale laser target calculations. Finally we give brief details of how

the model can be extended to include calculations on the excited state
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state population densities and radiation reabsorption of the plasma.
The importance of these effects is discussed in connection with the study

of X-ray sources and X-ray lasers.

5.2 The Castor Code

Over the past few years workers at Culham Laboratory and at NRL Washington
have collaborated in developing a two-dimensional Eulerian, MHD, laser
target code CASTOR; This code has been constructed to help investigate
and understand the physics involved in laser target experiments in progress
at various laboratories.

Fig. 5.2.1 shows a typical laser target set up with tﬁe laser
radiation incident from the left of the target, The laser pulse is shown
as being Gaussian both in space and time but the code can handle any
realistically shaped pulse. We restrict our field of interest to an
éxisymmetric system around fhe Z axis, and therR~Z cylindrical regibn
around the eritical density describes the area covered by the Kulerian mesh.
It is assumed initially that there exigts a density gradient away from
the target surface. Thig has the advantage of overcoming the problem of
how the laser energy is absorbed initially by a solid target, and is
quite realistic since this density gradient could be created by a weak
laser prepulse. If desired, however, the code can account for
evanescent wave absorption. (34) The absorption of the laser energy
is mainly by inverse Bremsstrahlung but we can dump a fraction of the
remaining energy at the critical density to account for anomalous
absorption processes. (1 As the laser energy is absorbed around the
critical density, the plasma becomes hotter and expands forming a high
temperature low density corona. Behind the critical density energy is
" transferred from the high temperature regiom by heat diffuéion into the

nearly solid target. As this high density material becomes hotter, it

too starts to blow off causing a burn through of the target. The
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choice of target is limited by the atomic physics model of the plasma
being used. We can use an ideal gas equation of state, a corona model
or a time-dependent recombination ionisation model (described in this
thesisg) and due to limited data we are restricted to moderate ¥ targets.

Figure 5.2.2 summarises the equations used in the CASTOR code.

These equations express conservation of massg, momentum, energy (internal),
. . . . . (1,2,3)

and magnetic flux and are written in conservative form.

It should be noted that since the system of figure 5.2.1 is axisymmetric,

the only magnetic field we can allow is in the O-direction. For further

information on this system of equations and the transport coefficients

L. (38)

the reader should consult Braginskii.

We now describe briefly how the equations of fig. 5.2.2 are solved
in finite_difference from. We split these equations and identify two
basic processes, i.e. those of advection and diffusion. The generalised

(36)

advection processes are carried out by using FCT (Flux Corrected

Transport) which has been developed to solve equations of the form

a .
' T%”f? +V.@Evy = V.6 + VI Q (5.2.1)

When the standard finite difference schemes, such as Lax-Wendroff

or Leapfrog schemes, are used to solve equation (5.2.1) in the presence
. . - (1

of large gradients in £, it is well known that large errors can
arise due to numerical diffusion and dispersion, The FCT algorithm has
been developed especially to handle shocks and situations in which large
gradients appear. The essence of the algorithm is that it estimates
the amount of numerical diffusion which has occurred over each timestep

and corrects for this by applying an antidiffusion stage. As for the

dispersion, non~physical maxima and minima are suppressed.
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In equation (5.2.1) we can obtain the equation of continuity by putting
the right hand side to zero and f equal to p(the density). We can obtain
the conservation of momentum by putting £ = pv, G=0, F=1 and H=p
(the pressure), and Q equal to the source terms. Similarly we can solve
the internal energy and magnetic field equation by adjusting the variables
£, G, H, and Q.

Along with.the FCT, we employ a second order accurate predictor-
corrector scheme to solve equation (5.2.1).

As far as the magnetic field and heat diffusion are concerned we have

to solve a generalised diffusion equation of the form

8f _ 19 |n2 9 a3
o = g [1 oy (D +S. (5.2.2)

where f represents the variable to be diffused over the spatial dimension
X, The true diffusion process occurs through all the space dimensions,
but we have used a split step process to break this up into a series of
37
one dimensional diffusion equations.
We space centre the right hand side of equation (5.2.2) at  the mesh

point j (our algorithm is then second order accurate in space) and rewrite

equation (5.2.2) as

. = Af, +Bf +C.f _ + D, 5.2.3
lj J J-1 J 3 J i+l J ¢ )

The time discretisation is done in the following manner

[fn+1_f ] n+1 n
—“EE”““‘j = B Ajfj—1+ijj+ijj+1+D;] '+(1—e) Ajfj-l+ijj+cjfj+1+D;]

| (5.2.4)
where O measures the degree of implicitness. For 6 = % the algorithm
(5.2.4) is also second order accurate in time. However, in the present
code we choose the fully implicit case with 6 = 1 but with the coefficients

A, B, C and D evaluated at level n, i.e. we are using backward substituted

coefficients, thus equation (5.2.4) becomes
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f
n _n+l 1 n n+1 n _ntl n i
- e £ + £ D, + — = 0 5.2.5
A5t {At Bj] T I A R I .25
which can be written in the form
Af = b (5.2.6)

and because A is tridiagonal, fast algorithms are available for evaluating

g, (D

To solve the equations of fig., 5.2.2 we use a split step method such
that all of these equations can be decomposed into the forms of egquations

(56.2.1) and (5.2.2) and solved as explained in the text.

5.3 Castor with TRIP

Figure 5.3.1 shows the time level diagram of CASTOR with TRiP and
describes how the main and auxiliary variables are advanced in time from
level n to level n+l. The main variaﬁles in the calculation are the
temperature, the magnetic field, the intemnal energy (thermal plus
ionisation), the fluid mass density, and the fluid momentum denéity.

We distinguish between the different phﬁsical effects in advancing from n
ton + 1 and so in the diagram we introduce a diffusion stage, an advection
stage, and an ionisation stage. The time level stfucture could be
sub~divided further since the diffusion and advection stages are split

into seParate one dimensional diffusion and advection problems.

The split-step procedure can be explained by a simple example.(37)

Consider the equation

e ; [ ] ; [ ]
= a o+ a (56.3.1)
at axl 1 axl axz ? 832
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which we rewrite as the pair of equations

1 Ju 3 { Bu]
. P L (5.3.2)
2 3t Bxl 1 Bxl

and
1 2Ju 9 [ u ] .
- T = T a, (5.3.3)
2 ati ax2 2 axz

And in advancing the calculation from t = nAt to t = (n+l) At it is

assumed that equation (5.3.2) holds from t = nAt to t=(n+;) At and equation
{5.3.3) holds from t = (n+3) At to t = (n+l) A%. Thus the discretised
left hand side of (5.3.2) is written

1

n-+3 n
uw ® - ou

5.3.4
At (5 )
and it should be noticed that although when solving_(5.3.2) we use the
full At, we are advancing the variable u only to time (n+%) At. Thus

although the timestep between . ‘the levels n, n%, n¥*¥* is At the

variables are not advanced in time through the full At.

5.4 Results

In the first set of results of using TRIP with CASTOR, we compared
the radiation losses as a function of the rate coefficients, It was
found that the absorbed laser energy profile was almost independent of
the value of the rate coefficients and since the reason for tliis is not
obvious we will explain it in more detail near the end of this section.
The total energy radiated against time for different sets of rate
coefficimnts is shown in fig, 5.4.1, The continuous curve shows the
radiation loss against time using Summers' rate coefficients whereas the
broken curves on either side give the radiation loss by decreasing and
increasing the rate coefficients by a factor three. We observe the
radiation loss to be not too sensitive to the rates of the atomic
processes. It is however rather surprising to see that by increasing

the rates the actual radiation loss decreases,
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Since the radiation rates of Chapter 3 are ali dependent on< z >
and <z2>, one would tend to imagine that if the rates increase (i.e.
<z>, <z2> increase) the radiation rates would also increase, This
gituation is made éven cléarer in fig. 5.4.2 where we compare the
radiation loss using a steady-state and the time dependent (TRIP) models.(38)
Using the time-dependent model we obtain lower values of <z> and-<z2>,
at a given time, and one would expect correspondingly lower radiation
rates. This however is not the case and the reason for this discrepancy
is explained as follows. For a plasma undergoing ionigation, it is

(30)

well known that the line radiation dominates the continuum radiation.

Now the line radiation, as given in Chapter 3, varies as

_EZ

<z ><exp E%l > (5.4.1)
e

iy

gl

)

(kTe)

and we now show that the line radiation is not dominated by Te or <z >
but by the exponential term. For a given internal energy the temperature

and the mean icnisation level are connected through the relationship

oy . B

3
= —— < > ' 0
E 5 (1 +<2>) nikr + Ezni (5.4.2)

where all the terms have been defined in Chapter 3. Thus for a given
" internal energy E a time-dependent model will give a lower value of <z>,
and hence a higher value of temperature than a steady state model would

predict, Thus we see that the term

E

NN
-

|

kT

[0]

in expression (56.4.1) will become smaller since the term E;l is a function

of <z»>, The variation of the line radiation factor {the experimental

expression in (5.4.1» as a function of Ezl/kTe is shown in Table 5.4.1.
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-
E kT 6 2
21/{ e 4
”E21 -3 -2 -1
exp T 2.4 x 10 1.8 x 10 1.4 x 10
e
Table 5.4.1, The strong variation of the line radiation factor against

changes in the temperature and mean ionisation level.

Thus we observe that if the gquantity EZl/kTe changes by a factor three,
the line radiation factor changes by about two orders of magnitude. Thus
it E:l/lcTe decreases by a factor 3 (typical when using a time dependent model)
the line radiation factor increases vastl& thus explaining the results
of figs, 5.4.1 and 5.4.2.

In figure 5.4.3 we show the temperature and mean ionigation level
profiles, taken at 0.5 nanoseconds, using a steady state and time
dependent atomic physics model, Now as stated earlier the ftotal absorbed
energy is approximately the same in both cases. Because of this and due
to the fact that the mean ionisation levels are considerably lower using
the timg dependent model, we should expect higher temperatures throughout
the entire plasma volume. Fig. 5.4.3 shows that this is the case only
beyond about 160 pym along the target axis. The reason the temperatures
are not higher in the lower density corona is due to very high line radiation
rates, as explained previously, in that region. It should be noted that

the absorption coefficient for inverse Bremsstrahlung varies approximately
as (39)
73

3/2
e

T
where z is the mean ionisation level of the radiating region. By
examination of figl 5.4.3 we observe that the absofption of energy by
this process throughout the plasma region is actually }ower using a time

dependent model. However, it should be remembered that the energy not
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absorbed by inverse Bremsstrahlung is, in the calcﬁlations presented here,
dumped = at the critical density. Thus we see that it is due to the
dominant energy absorption mechanism being dumping energy at the critical
density, which accounts for the absorbed laser energies being approximately
constant, as stated earlier.

To conclude, we compare the results of the time dependent atomic
physics model against various well known steady state models for a given

' (40)

set of experimental results. The experiment in guestion measures
the ratio of si# times ionised to five times ionised carbon at around
the critical density of a laser irradiated carbon target for very early
times in the plasma history. The actual time at which the calculations
were taken was estimated at around 10 picoseconds and experimental details
can be found in the literature. To simulate this expériment we switched
off the hydrodynamics and heat diffusion and raised the temperature
linearly, Ifrom 104K to wvarious values around 1OGK, in 10 picoseconds.

The results shown are in good agreement with experiment and as expected

differ greatly from steady state results.

5.5 Conclusions

In Chapter 1 we developed the atomic physics theory for Bydrogen
and many electron atoms, As far as the many electron systems were -
concerned we giiowed that if the excited states were neglected, the
problem became considerably simpler.

Next we described briefly various contemporary atomic physics models
ranging from the better known steady state.LTE and corona models to the
less well known time-dependent models. It was shown that the range

of applicability for most of the models was outside the parameter range
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of importance encountered in the laser produced plasma. It was also
demonstrated that when time dependent atomic physics equations were
solved by the standard explicit or implicit algorithms, severe problems
were encountered, such as the use of very small timesteps, or the loss
of accuracy encountered with large timesteps. The method of fitting
exponentials, as described in this thesis overcomesboth of these
difficulties.

Next we showed, in Chapter 2, that the rate equations governing the
various ionigation and recombination processes could be written as the

matrix egquation

aE _
5t Af (5.5.1?
if hydrodynamic motion is ignored. Because of the mature of the

ionisation recombination processes, the matrix A is tridiagonal with
many useful symmetry properties. It was then shown that through the
congtraint Zfz = 1 and under the assumption of there being only three

ionisation stages present, equation (56.5.1) can be rewritten as

; 9L ’ -
- = Bf + .5.2
9t 2t g . (5.5.2)
wvhere the matrix B is now lower triangular, To solve equation (5.5.2)

we choose a timestep such that the elements of B and g remain approximately
constant. It was shown that this timestep was controlled by variations
in <z>, the mean ionisation level. Equation (5.5.2) then reduces to a

linear ordinary differential equation whose solution can be written as

liAt

-1
£ = -B g+ gai X, e (5.5.3)

itee)
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where At is the timestep chosen above and the Ai’ X, and ai are the
eigenvalues, eigenvectors and initial congtants for the matrix E.

Because the matrix E is lower triangular, its eigenvalues can be written
down immediately as being just the diagonal elements énd the conponents

of the eigenvectors are just gimple combinations of these eigenvalues.

Time consuming iterative procedures for the evaluation of the Ai and gi

are. thereby avoided. We also developed a simple criterion for establishing
whether pr not it was necessary to use a time—dependent model,

Having solved for the ionisation fractions in Chapter 3 we proceeded
to evaluate some of the macroscopic plasma variables explicitly dependent
on the ionisation fractions. These included the mean ionisation level,
the mean square ionisation level, the plasma kinetic pressure and the
internal energy (thermal plus ionisation). To evaluate the radiation
loss from the plagma, we assumed it to be optically thin and divided
the radiation loss into.three basic types. These weré Bremsst?ahlung,
recombination and line radiation and the formulae for these expressions
were obtained from the literature. Due to the assumptions made in the
development of these expressions, they provided only order of magnitude
estimates for the radiation loss.

In Chapter 4 we looked at some of the computatiomnal aspects of
the algorithm developed in Chapter 2 for solving the rate equations.

We showed that the algorithm was essentially first order accurate in
time although the very close agreement obtained in Chapter 2 with known
analytic solutions seems to suggest that the coefficient of the At must
be quite small. We also tried to show the unconditional stability of
the algorithm, but could only dd this for the scalar equivalent of
equation (5.5.1): The results do however tend to indicate that the

algorithm is unconditionally stable.
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We also developed a method for the implicit storage of the ionisation
stage vector, i.e. the ionisation fractions are not stored explicitly. -
This centres around solving an equation of the form

VE = b (5.5.3)

for the ipnisation fractions f. The clumsy matrix inversion procedures
for solving this equation are aveided when one realises that the determinant
of ¥ is a Vandermonde determinant with very gpecial properties. Because

of this, simple expressions can be obtained foir the fractions depending on
only the mean ionisation level and mean square ionisation level.

In Chapter 5 we described TRIP (the Time-dependent Recombination
Ionigation Package) which congisted of the results.developed in Chapters
2,3 and 4. To use TRIP we described how the package was implemented into
the Castor code - a two dimensional Eulerian laser tavget MHD code. Ve
described in detail how the various processes of advection, diffusiocn and
ionisation merged with one anofher to form a complete and consistent model.
This being done, we compared the results from CASTOR usging a time dependent
atomic physics model (TRIP) and a stea@y étate atomic physics model
(the CORONA-model). Significant differences emerged not only in the
degree of ionisation of the plasma but also in the total radiation loss.
The radiation loss was found to be substantially higher than that given’
under steady state Corona equilibrium and this is attributed to a greatly
increased amounf of line radiation - as explained in detail in section 5.3.
It is expected that if account is taken of the reabsorption of the
line radiation, the emitted energy would instead go into thermal energy

resulting in very much higher temperatures.
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We conclude, therefore, by making the observations that for subnanosecond
timescales in the laser produced plasma, significant differences in the
macroscopic variables do appear when, instead of using equilibrium
jonisation recombination models, one takes into account the finite rates

at which the atomic physics processes occur,

5.6 Future Work
1. One of the fundamental assumptions in this thesis has been in
limiting our interest to only three ionisation fractions at any one
instant of time. It was shown that as far as ionisation is concerned
the agssumption is a good one, but when rapid recombination is taking
place one must exert great care in interpreting the results as shown
in section 2.6.
To overcome this difficulty one cuuld extend the model to handle
more than three ionisation stages. This, however, may prove vrather
difficult since the essénce of the method developed in Chapter 2 relies
heavily on the fact that we have only tpree fractions present. Thus
to extend the model in this way would destro& the many symmetry properties
realised earlier. It would also be less efficient to evaluate the
eigenvalues and'eigenvectors and thus increase the timestep per calculation,
Since the difficulty arises only in the final stages of the
recombination an alternative would be to use a steady state model in
this regime, and assume equilibrium conditions have been reached. Steady

state conditions are found simply by putting 3f/93t = 0 in equation (5.6.1)

at
ot

g

f =0 (56.6.1)
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(21
aid solving for f. This leads to the set of relations )
= SR 5.6.
szz Sz—l fz—l 15z Zmax (5.6.2)
which have the solutions
s
£ - [Sz~1 ] Sz—2 o £
z R Rz—~1 1-“'1 ©
Z Si—l )
= 1 — £ (5.6.3)
. R, o
i=1 i,

Ugsing the normalisation condition X fz = 1 we can obtain an expression
e .
for £ , i.e.
o

2 .
max % |8,
i-1
£ = 1+ ) | = (5.6.4)
1

from which we can construct any of the fZ through the relations (5.6.2).

2. In recent years much interest has been concentrated on the production
(41,42)

of X-ray lasers and X-ray sources. One mechanism for this is as

follows: In highly stripped medium =z targets such as Aluminium, the

recombining electrons can emit photons whose energy is of the order of

1 keV, i.e. these photons constitute X-rays. Under cevtain conditions,

the recombining electrons can cause a population inversion in the plasma
(43%

which can then lead to X-ray lasing action. o study this effect the

model developed in Chapter 2 can be extended to solve for the excited

state population densities of one or two highly stripped ions. In this

case we have an equation of the form

5; = §g (56.6.5)

where the vector g contains the population densities of the excited
states and the matrix X contains rate coefficients for various excitation

and de~excitation processes between the excited states. Here the

matrix X is general with no symmetry properties and hence there are no
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simple ways of constructing the eigenvalues and eigenvectors. However,
if we restrict our region of interest to around the focal spot and solve
equation (5.6.5) using standard techniques in this region only, the

increase in computer time will be minimal.

3. As explained earlier, the total radiation losses are evaluated by
gumnming the local radiation losses over the plasma volume. This was done
assuming the plasma to be optically thin to all radiation. However at

high densities self-absorption of the line radiation must be taken into

account in calculating the radiation loss, since this can be much smaller

. . N . . - (44)

than in the optically thin approximation.
When there is self-absorption present, the rate coefficients for

the ionisation stages must be modified to take into account the processes

of photoexcitation and stimulated emission between the excited states.

The rate coefficient for photoexcitation is (45)
0, 7
B' . d .6.
qp~J ¢v Pv Y ' (5.6.6)
O <
where .
] -1 u_\)o.2
P = = (Av)yexp| - (5.6.7)
v Q A v
T

is the Doppler spectral function, qu is the Einstein absorption
coefficient, Avo is the e_l width of the Doppler broadened absorption
profile for the line centred at the frequency vo, and pv is the radiation
spectral energy density. We can evaluate the rate coefficients for the
transportation of individual lines by replacing (5.6.6) by

-1
(Av ) (5.6.8)
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With the above processes included, the rate at which the excited

state population density n(p) changes due to radiative processes is

given by
pv o .
dnp) - _lp .3 —2 rla +B Y% |n 5
= - - .6.9
at ap ap Vv n(p) -~ b (q) ( )
D /ﬁAvD

+ (collision terms)

where Aép is the stimulated emission coefficient.
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APPENDICES

The eigenvectors for the ionisation only case

General expression for the ai in the limit of no
‘recombination

The eigenvectors for the recombination only case

General expression for the a, in the limit of no
ionisation

Evaluation of terms used in section 2.7

An alternative representation of the terms (2.7.10)

Partial fractions for the matrix elements in section 2.9

Numerical details for the exact solutions of figs.
2.4.2 and 2.6.2.

Simpie checks for the equations developed in

cection 2.8
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APPENDIX 2

General expression for ai in the limit of no recombination:~

Consider expression (2.4.1) at time zero,

0)

where f{

is the ionisation stage vector f at time zero.

i.e.

(A.2.1)

Using the

eigenvectdrs of appendix 1 we can expand (A.2.1) as

£

- (0)
Ty

(0)
fZ

!

(0}

)

a
o

1

o
’\1— >‘2
Mo

Ry Oy )

+a 0

1

Now evaluating each row separately we have

(0
To

(0
f1

(0)
fZ

(0)
f3

etec.,

[s]

3

a

20

0
O(Nf%) oAy

CLox\0>\1

S Oy

Qoo M e

+

Gal
(g~ W)

O O Ol Op i) Uiy

+

Qe

a

2

'I-az

3 i 1
0 +a3 0 '
i
o 0
(A.2.2)
1 0
LI
1
)
(A.2.3)

Azl

<X;:§;) + 8,

and the remaining terms can be obtained from appendix 1. By

rearranging the expressions (A.2.3) we can write
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- (0
a, - = fO
. IENION %0do
1 ! N
(A.2.4)
. N () Qodo N a]_\l ,

2 2T O Gl T Ot

RO 2ho M e ) 2 N b _ fgzg_
3 7B NN Oy~ hg? O™ N Oo M) Qg™ Og™)g?

and the remaining terms can be derived from the previous expressions.
It is now apparent that the expressions (A.2.4) can be written more

concisely in the general form

£(0) i aKkK>K+1 ..... A1

a = .
i t =0 N Oy M) oo Oxr1™ N

i=1,2 (A.2.5)
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Appendix 4

General expression for ai in the limit of no ionisation

Consider expression (2.6.1) at time zero, i.e.

again where f

Z ’
) _
£ = _Z a, X (A.4.1)
i=1
() is the ionisation stage vector I at time zero. Using

the eigenvectors of Appendix 3 we can expand (A.4.1) as

T hea

£(0)

Now evaluate
Appendix 3.

o _
ts 6

oy _
s 5

)
f4 4

NON

1 1

T
|

1

each row separately starting at f6

"2 |
2 Oy i)

+a

+a

I AV,
3 (/\1'/\3)()‘2"/\3)'

A3

(0

M)

5 (g g ¢

3\4' )\5)

[ Yo )8 da ]
4 Oy Ogm M) Ogmhg)

ha)a

M=) Orgm )

+a

(A.4.2)

and looking at

(A.4.3)
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etc. and the remaining terms can be simply derived. By rearranging

the expressions (A.4.3) we can write

("))
8g = Tg
- 20 _6_

(A.4.4)

L0 \s)e

= L s
4 4 5 Ol )y 6 Oy e Oy \g?
£(0) 4 \a)s \a )5 )8

- a

a = e - a - a
3 3 4 (g iy 5 Oyl Oumdg® 8 Ogmhe? Oy Je? Gs™As?

and the remaining terms can be derived from the previous expressions.

We can now express the relations (A.4.4) more concisely in the general form

Z
(0) A Ay eyt il L=,

. . - >—1 “1-1
. + e=irt Oy MO N Ok nax

(A.4.5)
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APPENDIX 5

Evaluation of the terms used in section 2.7

Consider the matrix é = ne hsz—l 0
(A.5.1)
(Sz~lnnz+1) - (Sz+Rz+Rz+1) ’
L
by inspection, one can see immediately that the eigenvalues and
eigenvectors of this matrix are given by
>\1 = -nesz—l . >\2 = —ne(sz+Rz+Rz+1)
= = | 0
§1 §2 P 0
(A.5.2)
1
l
f =
wvhere X )/ne
It can also be shown quite simply that
é“l = ;. __l/S \ 0
= n z—1
e
(A.5.3)
T -1
1 1
L Nk SRRt
Si -
ince 1 0 -s 0
S z-1
z-1
-(8__.-R_)
z-1 z+1 -1
; S -R ~-(8 +R +R )
\NtoAT - P
L ) )2 SZ+RZ+RZ+1 z—1 z+l z =z %+l
=27y = 1 0
0 1 (A.5.4)

as expected. And so thg ig given by

—_
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—

-1 0 R £
z=-1
—5, R, ~1 .
1 T N
)1)2 quRZ+RZ+1 z+1
5 L |

———

We now evaluate the initial value constants ai,

using the equation (2.7.9), i.e.

0 _

z

which written more explicitly is given by

(0) = ' - o7
fz—l a1 1 +a2' 0 i
! S B
£(0 z~1 'zl 1 1
“ L >‘1"’:\2 i iy
hence f(o) = a ~ R f<0)
z—1 1 Z Z
Al
S -
0) z-1 " z+l 1
fz = ay Ni- T+ a, =Y
172
R f(0)
- ((4)) v oz
or a; = 21 -
1
¢ ) R z=1 i+l
2, Iz a1

J

and these are evaluated

(A.5.6)

R f(O) —_
z %z
M
2
v | R 1 Gs__ ,'a
2 ( z+1 )d z~1 z+l
(A.5.7)
R f
R . - ~32 (S _-R )
! z+1 ’1 z—1 Tz+l
(A.5.8)
\
R £
1 < Z 7
I (R i ( -R )
] N t -
Ao\ =zl N z-1 z+;>
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APPENDIX 6
An alternative representation of the terms (2.7.10$

Consider the equations (2.7.1)

¥

dt = ”Sz—lfz—l * szz

ot

3t = +Sz—lfz-—l —(Sz+Rz)fz * Rz+1fz+1 (4.6.1)

s _ ot n

ot 7z z z+1" z+1
in section 2.7 we substituted for the term R7+1fz+1 in the equation for
fz wsing the constant fz = 1, In this section we will alternatively
substitute for Sz—lfz~1 in the same equation

i.e Sz_lfz_l = Sz_l(l - fz - fz+1) (A.6.2)
and so the equations (A.6.1) may be written as

) fz-'-l

Jdt B z—lfz—l +szz

EES , .

= o= - T - .6,

ot +Sz—-l s —l+sz+Rz) Z * (Rz+1 z—l)fz+1 (4.6.3)

‘.a_.f_z_*'_l:. - +S £ - R

Jt z = z+l Tzl

Now using the constraint (2.7.2) we need solve only two of the equations

(A.6.3). In this case we choose to solve for fz and fz+l and we rewrite

the equations in the following form

TR

and ) : (A.6.4)



125.

where

- T a s 5 e=nls
£ = £ A n, (Sz-l+sz+Rz) + (Rz+1 Szwl)' g=n_ (8 ;
z+1 0 . -Rz+1 Szle

(A.6.5)

We now assume that the term SzfZ in the vector g is constant or
unimportant, over the timestep we are considering, such that g is now
constant. As in section 2.7 the solution to the matrix equation in

(A.6.4) is given by

Mt

2
£= -Ag+ > a X e | (A.6.6)

where the ai are constants depending on the initial conditions, i.e.

£0) -é"1§>+ J. a, X (A.6.7)

The terms in (A.6.6) can be written as

>1 = "ne(sz~l+sz+ﬁz) >2 = wneRz+1
- . SZ"'}.—R:..'{‘;]
1 1 X2 = Y
- Mg
0 1
_ (R .- )
o, - f;o) -, ( z)}u I %§_<§ - 721710 o (0)
2 1 >2 Z o Z
(0
- f(0) Szf-z
. ]
2 241 %2
-1 1 (Rz+1 z l) (0)|l
é g = S?. sz—l )‘ Szfz '
1 2
(A.6.8)
7 Z
N

o—}

These results will now be checked for three very simple cases
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Check 1 Neglect the recombination coefficients

This can only be done for very early times (such that f;O) = 0)
since we divide by Xé (zero in this case) in some of the terms. The
expressions of (A.6.8) in this case reduce to

Mo s, s Ny = 0
e~ 'S
z—1
X, = 1 X, =
2 29 !
! 1.
0 1
S
z~1 ) -
a, = ; a = 0 since f = 0
1 M 2
0
s
-1 z-1
A'g = '
1
0 (A.6.9)
and so
_ Sz—l —ne(SZ 1+$Z)t Sz
f ¥ tle N
1 1
= - (A.6.10)
£ )
z+1 _ O__J

for small times exp (St) ~ 1 + St hence

Sz-l' Sz
£ = : (1 - n (S +S )t) - <7
z Xl e z-1l 'z )1
or £ = n 8 t
z e z~1
f = 0

zt+l

which is as expected, and in agreement with the results of section 2.5.
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Check 2 Neglect the ionisation coefficients

This is a trivial check since gl.: az = 0 in this case and
B
-1 : . s
A "g = 0 and so the vector f = Z o remains unchanged again as
- £
z+1}
expected.

Check 3 The full solution for early times

The terms (A.6.8) in this case reduce to

>1 - _ne(sz—1+sz+Rz) >2 - _neRz+1
s _-rR
§l = 1 X? = _E"% ?*1!
, ‘ N2 ‘
0 ’ :
Lo : 1 ’J
S
= &1 - RN {°) BN D
al N a2 0 since £ = 0
1
A 0 |
-g -
- -1
A 1 - z‘
M
(A.6.11)
0]
- =
and the solution is given by
- Sp-1 - Wt 51
fz }\| . 1 i e N
1 l 1
: =
z+1 0 0 (A.6.12)
which for small times such that exp (St) ~ 1+8t gives
fZ = neSZ_1 t
fz+1 = 0 (A.6.13)

as expected.
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APPENDIX 7

Bartial fractions for the matrix elemmnts in section 2.9

-

. 1
First, the matrix (pi-L) must be evaluated:-

(pil-L) can be written as

(pI-L) = p+8
- +8 +
s D+ R

-8 R
% P z+l

and since DET(p;—%) = TT‘)& we have
i

DEl(pg-é) = (p+Sz_l)(p+SZ+Rz)(p+RZ )

+1

and by definition

1 1 T
(piI-L) ~ DET(pI-L) ®I-1,

A

T
where (pg—g)co

(»i-L)

— s

hence (pl-L) 1 is given by

(A.7.1)

A.7.2)

(A.7.3)

is the transposed matrix whose elements are thetfactors of

-1 ! ]

(pI-L) = s L 0 0

z~1 :
S
z-1 1 o
(1)+Sx_l> (13"‘SZ+RZ) p+S, +R_
S

z-1 =z SZ 1

w(p+sz—l)(p+sz+Rz)(P+Rz+1) (p+SZ+RZ)(p+RZ+1) p+Rz+l“

(A.7.4)
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We are now required to find the inverse Laplacé transform of each
of the elements in the above matrix. The inverse transforms of the
diagonal elements are simply

-S t -(S +R )t -R t
V-4 Z
e , e ) e

To find the inverse transforms of the remaining elements we must

first of all find their partial fractions. We do the calculation for one
element only and quote the results for the remaining elements. €onsider
5
G(p) z~1
vy = = a (A.7.5)
-+ +S +R
H(p) (p+S, ) (p+8_+R )

the denominator has two distinct linear factors (p+SZ_1) and (p+sz+Rz)

corresponding to the roots

= (8
P, (S_+R_)

and from the theory of partial fractions

A A .
1 2
y(p) = —o— + = (A.7.6)
p+SZ“1 p+SZa-RZ .
G(-8 ) .
- . zm=1 - -1
where Al = 0 (-8 ) (SZ+RZ Sz~l)
z-1
G(=(S_+R )) 1
wmd Ay T wee ) T GerS Y
DA/
g S (S4R -8 )1 8 (S 4R -8 y 7t
hence z—1 - z-~1""z @& =2-1 - v—-1""2 'z " z~1
(p+Sz_l)(p+$z+Rz) p+SZ_1 p+SZ+RZ
and similarly
-1 -1
S S (S +R -R ) S .(8 +R -R )
z = - "z 7z Z z+1 + Z z =z zt+l (A.7.8)
(p+SZ+RZ)(p+RZ+1) (p+SZ+RZ) (p+Rz+ﬁ
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-1 -1
Sz—lSz = g g (Sz-l—SZ*Rz) (Sz~1_Rz+1)
(p+Sz_1) (p-rSZ+RZ) (p+RZ+1) z-1 "z (p-|~SZ"1)
-1 -1 -1 -1
. (SZ+RZ_Sz—1) (SZ+RZ+RZ+1) + (Rz+1_sz—l) (Rz+1_Sz-Rz)
(p+Sz+RZ) (D+Rz+1)

(A.7.9)

el
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APPENDIX 8
Numerical details for the exact solutions of figs. 2.4.2 and 2.6.2

In this section we give the numerical details for the evaluation
of the ionisation fractions in an ionising and recombining plasma, under the
assumptions of constant density and tenmperature. The results are shown
in figs. 2.4.2 and 2.6.2.

In fig. 2.4.2 we assume the temperature to rise instantaneously

. P .-
to 5 x 105K and we hold the electron density constant at 10 1 cm 3.

Using the initial condition f(o) = (0, 1, 0, 0, 0, 0) we follow the

burn through of the ionisation stage the steady state value T 1.0.

4:_"

The actual numerical details are shown in Table A.8.1.

In fig., 2.6.2 we allow the plasma to undergo rapid recombination

0
(0 = (0, 0, 0, 0, 0, 1). The teuperature

from the starting condition f
. . 4 21 -3 .
and density are held fixed at 10 K and 10 cm respectively and the

numerical details are shown in Table A.8.2.
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APPENDIX 9

Simple checks for the equations developed in section 2.8

By analogy with the checks made in section 2.7 the equations

developed can be checked in the following three regimes.

a. Ionisation dominates recombination

In this case we can put all the recombination terms in the matrix

é of (2.8.2) to =zero.

the eigenvalues etc.

1 = bnesz—l }2 =
S X =
A'e = 0
-5
a = 1 a = o (since
1 2 g -
z  =z-1

' and

and from these guantities we

3

can be written down as

can construct the

£ 1 i _nesz-l z—-1
1 . -
SZ SZ__1
£ Sz—l__
2 S
z+Sz—}#

which agrees with (2.7.12).

=]

b= O DO

solution vector

l_,\

From the analysis carried out in section 2.8,

(A.9.1)
as

-n S t
e z
e

(A.9.2)
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b. Recombination dominates Ionisation

Here we put all the lonisation texms in the matrix é of (2.8.2) to

ZeXYo.,

expression (2.8.7) quite simply as

Again we can write down the eigenvalues which are obtained from

= N R = -n R
xl Pe'z >2 RS ]
and from these we can construct the eigenvectors etc. as
i R
5
S | 2 =lR
z+1
L—lf_ 1
— - -
A = |-
l— 0 o
0 0
+R i . = =
. _ Rz+1 i el since fl 2 0
R R -R
1 2 gl 2 R R fg =1 (A.9.3)
and again we can construct the s~lution vector as
- = - -n R ¢ ~ -R 7] -n R t
e z 2 e z+l
fl R 1 e B e
_ _z+l _ztl zetl
Rz_Rz+1 R HRz+1
£ -
T _.lkﬁ 1 ~
+ 1 '
0. (A.2.4)

For small A\t we can expand the exponential terms in (A.9.4) and retain
only the terms up to first order in At. The terms independent of At

cancel since

Rz+1 Rz+1 ~ Rz = -1
R -Rz+1 Rz"Rz+1 Rz+1
R .
and z+l o+ ztl = 0 (A.9.5)
R ~-R R -R
z ozl z z+l
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thus
R R -R
z+1 z+1 z
£, = e =0 R At + T - -nR 4t = 0
1 RZ Rz+1 e z R’Z RZrl-l RZ+1 e z+l
and
Rz+1 | Rz+J
= "R - _ " C Ta . ™ = R 9.6.
£, R n s R ¢ T nelerAt n_ z+1At (A.9.6.)
z z+l z =ztl

which is the expected result.

C. The case where S = R
z-1 z+1

This is a special case which reduced the matrix é of (2.8.2) to

upper triangular form and so the eigenvalues are just the diagonal elements

of A, hence

e z-1 - —ne(sz+Rz+Rz+l)
— —~~Rz
205 L % s R
Z VA
0 1
RZ 3
-1 1
ey
2
Sz~1
R S since f(0)=f(0)=0
a - z+1 a - Z 3
~(S +R +R
2 (S 4R 4R ) L S, s :I:']fo) =1 (A.9.7)
Thus we can now construct the solution vector as follows
_ - 4 -n S & -R —ne(sz+Rz+Rz+1) t
P [ 1 e €271 z e
1 I t
_ Sz__ ‘ ) Rz+1 S +R
S +R S +R +R
7 I Zz Z z Z Z+l
2_, 0_ 1
R
1 Z
c‘ <
(Uz+Rz+Rz+1) ]
z~1 _

(A.9.8)



137.

AMt
Now expanding e A ~ 1 + AAt we see that the terms independent

of Nt cancel (remembering that S, = RZ+1) and for the At terms we have

-1
Sz Rz+1Rz
f1 = SR .»nesz_lAt + IR .—ne(SZ+RZ+RZ+1)At + 1
Z Z z 2 =zl Z 7
or
£,o= 1- nesz—l'ét

and similarly

£, = S, At | (A.9.9)

which are the expected results.
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