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CHAPTER 1

Plsamapmatumi - n S "

Introduction

1.1 The Statement of the Problem The knight's ftour problem may be

Saun

stated in various ways, according to the degree of difficulty ii is

degired should be oﬁercome; $he original intention in embarking on this
work was that of eﬂﬁﬁéﬁ@?iﬂg all the possible knight's tours on a standard
8 x 8 chessboard, A little later, when the magnitude of the problem

became fully apovarent, sights were dropped somewhat to the more realisgtic
objective of carrying out this enumeration on a 6 x 6 board (one hesitatss
to describe a 6 x 6 chessboard as realistic), Lt was hoped that as a result
of this, certain general properties of the knight's {tours considered as
whole class of objects might emerge, and hence lead to faster, more subtle
ways of finding tours on the larger board, DHut to envisage why this reductio
of scale ghould be necessary in ﬁhe firgt place we must aefine what we

mean by a knight's tour, and descrive the processes involved in finding

tours,



1.2, Legal Knight's Moves

Definition (We represent the chessboard as in figure 1.1,)

A legal knight's move on a chessboard (of side >3 units)

consists of increments Ox, Ay, in the xz-y coordinates of the

knight s.t. (j/\
5t S PR J
i
i
[Aw |+ Ayl =3, 41 : | |
. ! ) |
where .Ax,l.kfj, are integers, & |37 ;__-__-_ﬂ...-“.._._.;
| Ll | |
. 14+ 1
; 0L laxl ¢ 3 !
| I
0 < jayl< 3, 1 A
and furthermore, 0 3 + 4 : 5
Fig.‘l.‘

n=l2x+Ax 20
n-l 2 tﬁ*A% 20,

the board being of dimensions nin.




For an infinite chessboard, there are always 8 legal knight's

moves that can be made (see figure 1.2,) corresponding to the increments:-

_ ¥ Ayl
Ax=+1 Ay=-2 _ ? ¢
¥ 14 .
A%f+l ®
Ax
Ax= -1 Av-j‘-‘— -2 ) -1 1
A!j': 4_2‘ X - {1 @
Ax=+ 2 A(ﬁz -1 « 12« N
A 3 - + 1 ’ Figux‘@ 1029
Ax= -2 Ay= -1 Legal knight's moves
AN +1 ,-3

but in the more amenable finite cases, edge~-effects creep in, and the
number of legal moves/squa:re may vary between 2 (e.g. square(0 ,0) in
F:‘:.gure 1,1.) and 8, The presence or otherwise of an edge effect for a
square in any giv‘en position on a board of whatever (finite) size can
easily be caloulated, since we can &lways predict whether a move will

take the knight 'overboaxd!,
(e.g.) I’} \3‘;1 , =0 , then for mowe to be legal,

O_{Ax <3
-1 < AS < 3

which permits the 3 moves circled in Figure 1.2.



The full layout of the number of moves permitted for each aguare on a
6 x 6 board is as in Figure 1.3, and generalization to a 2n x 2n board

the reason for choosing an even-sided board will emerge later) shows that

No., of sguares from which 2 legal knight's moves can be made = 4
" " " " " | 5 " " " " oo "= 8
n n " " " 4 " " oo " " .= Bn=i2
oo 6 " % owm wwwmwo=gnaqf
- I R

« ¢« Total no, of legal knight's moves on 2n x 2n board

824+ 32n-48 + 48n-96+ 321‘12 -128n+ 128 = 32112 «48n +16

= 16 . (2n=1).(n~1),

ard the average number of legal knight's moves/square,

-3

Non
is given by ﬁgnz 4/h2.(2n~1).(n-1)

The value of § is asymptotic to 8 (Figure 1.4),and for a 6 x 6 board
(n=3) is40/9.



3 (4616 | 4|3

2 314413 |2

0 3 4 s &
Figu;‘]v:e 1.3 Z Figure 1.4 i
No. bf legal kanight's moves for
each sguare on 6 x 6
1.3 The knight's Tour :

/Definition: A knight's tour on a 2n x 2n chessboard is a sequence

of 4n* legal knight's moves (in no specified orientation) whereby
~ each sgquare is visited onee and only once, with the exception of
the(arbitrary) starting and finishing squares, which must be the

SalNe o

1.4 Graph and Tree Representations We can represent the legal moves
on the board by a linear graph, where the vertices denote squares,
and anedge corresponds to a legal knighh's move between the sguares

whose vertices it joinsj such a graph (hereafter referred to as the

eguivalent graph)has been dravm for a 4 x 4 board in Figure 1.5. When
the problem is presented in this form, the above definition is eguiv-

alent tos:

Definition: A knight!s tour on a 2nx Znchessboard is a segquence of

4n2 moves such that the corresponding seguence of edges on the esuiv-
P 8 i} g 4

alent graph form & Hamiltonlan cycle on that graph.



’ Nété that this definition, following Berge's definition of a cycle rather -
than that of Saaty and Busacker, implies no orientation as was mentioned
explicitly in the first variant. We &fine the tour this way deliberately,
Jbut arbitrarilys the question of whether a seguence of squares, and the
'seqLence formed from it by traversing it in reverse order (which we clearly
caﬁ:do, since the seguence of syuares is a closed loop) define two separate
tours or only one is a moot one, and the latter choice has been made.here.

/

E%ﬁ&%gléﬁ% graph for 4 %.4

Now that a knight's tour has been defined, it is apparent that, to find

all possible tours, we must test all sequences of sguares of length 36 to
see if they comply with the conditions of legality and non-repetitiveness,
It is axiomatic that if a string of sguares does not satisfy these rules,
then neither can any segquence formed by adding further squares to that
strings so we can order this test by building up longer and longer strings,
some of which may reach the length of 36 squares without violating the above
criberia = these are the knight's tours we seek - while others may terminate
after <36 moves due to violation of either condition. We are hence concern-
ed with exhauétively searching a tree-structure and extracting from it only

the branches of length 36.




Since, as we shall see, the mumber of branches rapidly becomes extremely -

large; with increasing board-size, i# is of paramount importance to

pruns abortive branches as eérly as possibles in fact, time is so crucial
when contemplating extension of a method to the full 8 x 8 board, that
the method must stand ox fall by its inherent speed,

1.5 Size of Tree-Search Figure 1,4 showed howlthe average mumber of

!
legal moves for each square increases with increasing board-size; this
1 .

ﬁi%ht be deemed a relatively insignificant effect until we qualify it

by the observation that the strings,; both knight's tours and abortive
attempbs, increase in length as the number of squares on the board, i.e,
the tree must be mearched to a much greater depth on a larger board, while
the mumber of choices at each level is also (slightly) greater, That

>

 is,

- 4n
Size of tree-search ()

1.6 Legal Tour Moves It will be convenient to meke the
Definition: A legal tourjmove (1.t.m,) is a legal knight!s move to a
square whose corresponding node in the search-~tree has no predecessor
the ssme as itself,

That is, for an l.k.m., to be an l.t.m., the non-repetitiveness

eriterion must be satisfied,




It will léter be seen that the method used ensuwves 'built-int
legality, so that only l.,k.m.'s are considered, and the %ree-search
is concentrated on the matter of finding l,t.m,'s, The generation of
#.k.m.'s by insexrting the definition into the program can easily be

effected, but consumes too much time,

.
{
i
/ * —

1.7 Boards of Different sizes In'1.3 the definition of a knight's toux

was restricted to a board of even sides (i,e., 4x 4, 6 x 6, 8 x 8 etc);
‘the reason for this will now be explained, as it is relevant to the choice

of a 6 x 6 board for testing reasons,

The result may be stated:s 'No chessboard of odd dimensions (the
board need not be squere) has a knight's tour (i,e, Hamiltonian cycle)

on it', This follows as a corollary to Komig!s theorem, which is stated

as follows:-

Konig's Theorem A graph contains no elementary cycles of odd'lengih if

and only if it is bichromatic,

A cycle is elementary if each vertex appearing in it occurs only

once, 80 that the knight!'s tour is an example of an elementary cycle,




Furthermore,; a chessboard of odd dimensions has an odd rumber of
squares, so that a Hamilitonian cycle on the graph of the board must
be of odd length, Finally, we note that a l.k.m, as defined in 1,2
ﬁakes the knight from a black to a white gquare, if the board is ¢ol-
éured in the usual mamner shown in Figure l,l, Considering now the
%ertices of the egquivalent graph to be coloured in the same fashion,
we deduce that eny iwo adjacent vertices of the graph are of opposite
célours and the graph is bichromatic, Hence, Konig!'s Theorem shows

{
there are no knight's tours on an odd-sided board,

f

We may add in passing that neither can the equivalent graph of
such a board possess any factors; a factor must consist of one or more
disjoint cycles, and in the latter case, since the sum of the lengbhs
of the disjoint parts is odd, the length of at least one individuel part
mist be odd, which contradicts the above result, We mention this here

as factor-seeking is one of the ways and means discussed in Chapter 2,

It was svated at the outset that the enumeration of knight's tours
on the 8 x 8 board seemed on preliminary investigation to be too large;

the question which.then arose was to what size the bosrd should be re.

duced still o pose an adequate test of the method,



Bf the above considerations, 5 x 5 and 7 x 7 could be discounted as

giving no kright’s Yours-in any case {although they might prove uzeful for
assessing the length in machine-time of the tree-~search), and as will

* be shown in Chapter 3, the 4lx 4 bvoerd yields no tours either, The

choice was thus resolved o searching on a 6 x 6 board,

1,7 Summary of Thesis Tﬁe literature is not very forthcoming on the
subject of computational algorithms for the total éolution.of the knight's
tour problem with the exceptionhof Duby's paper, and this paper, which
uses a method remarkably similar to that of Chapter 3, was only discowv-
ered after most of the development work described there had heen complet.
ed, and was referred to rather as a guide to expected speed than eny-
thing else; the published works mentioned in Appendix 3 have been sources
of 'non-ideas' on the whole, Graphical nomenclature is taken from Berge

(as is Fortet's method, 2.8) and tree.related terms from Scoins,

Chapter 2 is a review of the methods of solution which were aonsid-
ered, each method being surveyed as appropriate and discussed as to its
feasibility, Chapter 3 details the method used from its early develop-
meﬁt to its final form, and inoludes a number of flow charte; Chapter 4
shgws how this program was then used to analyse other tree-searching

methods and also the knight's tours themselves, particularly with ref-

erence to classifying them by their symmetry properties., Chapter 5
comments, in conclusion, on the resulits obtained, and assesses the potentlial

of methods not inwestigated-in Chapter 2,

10



Flow charts have been included in the text where it has been felid

that they could preclude the necessity for undue verboslty, but they

are not presented in full detail with coding, this latter being included
for reference in Appendix'l, "One knight's tour looks very much like
another's and certainly it would be pointless to include the output of
the whole collection, but certein tours, strings, and other results are
of special interest and have been gathered into Appendix 2., Appendix 3
contains the list of books an@ papers referred to within the text and

during its preparation,

The reader who wishes to avoid all details of the programming
could omit Chapter 3, but the nuxt chapter would induce back-references,

Sections 3.4, 3.6, and 3.8 cen be skipped without such consequences,

11



CHAPTER 2

A Review of Methods of Solution

2,1 Introduction There is a great diversity of methods by which this

problem could conceivably be tackled: quite.apart from the adoption
of differing programming tricks within a fixed theoretical frame-
work (as described at length in Chapter 2), there are theoretical
variants aplenty, some nﬁf even based on like disciplines, Graph
theory, and tree~searching, offer one approach we have already men-
tioned, but combinatorial considerations can be coupled with these
to give feasible methods, too. The inwestigatién of symmetry prop-
erties of knight's tours is certainly a means of reducing the burden
of counting tours, but is more a propexrty of knight's tours them.
selves, and is therefore not treated here tut deferred till Chapter
4, Dynemic programming is a technique designed specifically to
deal with multistage deciéion processes such as knight's tours, al-
thbugh serious difficulties seem to beset this methods and a simply
combinatorial idea based on a heuristic transformation might te

applied with some success,

12



Figure 2,1 indicates the ways and means considered:-

Knightt's Tour Problem

(dr1s PLth&E)

Tree-Searehlng Combinatorlal Graph Dynamic
Met ods theory Progﬁamm_nv

;

[Avv\..\c.hmow) |

\ i
Exhewstive D Yo -l S+ Cornenr - 4o~ Tramsformm- Eo\zﬁe.-— Forted's
Seorcla 'P(wwxﬁ fkﬂ\t‘ﬂ‘/\—l\r\ﬁ cormnass + et (g magqo.l Mehod

! Seatrclh M"l"'l" heumshic | I

| l | ! | |
| l P : l ] ;
‘ Figure 2,1

2.2_ Ixhaunstive Tree-Search This is the method which has been mentioned

in passing in 1.4, and which forms the bulk of the following discussion;
its development as a program is described in detail in the next chapter:
we only give the major features of the method here,

The bvasic schemé which is followed throughout is that at each
stage of a knight's tour, there are a number of possible l.k.m's open
‘to the knight; each of which must be tested in turn (some arbitrary

order being adopted for this) to choose only the l.t.m's, A diagram

will make the procedurd adopted clear:-

13



Figure 2.2 |
L]

Simple Tree-Search - o e o o= ow o= o LEVEl X

\\
Suppose the knight is moved from square x,to y initially, and we want to

choose the next move from the l.k.em's Z,y o o ¢ o o 32 These are scanned

X
in some order (the obvious way.in ascending mmerical order with z£ 2,4
....... <:zé) and the first l.t.m. encountered is chosen, i,e, if z,i8 not
a l.t.m, from y;, then z is tested and so on. Vhen a l.t.m, has been found,
then we conduct a similar search for l.t.m's at the level below 2z, On
the other hand, if none of tﬂe z's is a l.t.m,, the knight cannot move
from yg, so we must go back up the tree to level x, and try the next move
consequent to x, which is a l.t.m., y;, say.

By this simple procedure, we can execute an exhaustive left-to-xright,

“top—to-bottom, tyoyo! tree-search, and print out our path down the free
every tiﬁe a depth of 36 below the root is reached,

In 1.4, the convention was adopted of defining the tour in an undirecied

fashion; nevertheless, we introduce orientation considerations into the

problem as they afford an easy means of extracting 'clockwise! tours vwhich

we have defined to be the same as 'anti-clockwise'! ones.

14



‘ This extraction is very simply performed, We observe that the corner

squares are only doubly-connected so that there exists just one entrance
-and just one exit (see Figure 2.3) for such a square, If the tour is
commenced at square X and leaves via Y, it must return l’co X through Z,

and vice versa, We can make a complete tree-search for tours beginniag
Xy Ty o o o o 5 and in so doing we automatically find all the bours ending
e o o o 5 2y X5 these, when. traversed in the opposite direction give all
the tours beginning X, Z‘; e o oo gand ending . « » o ¥y X, and if we
reflect each one of these in the board's main diagonal, we. axrive back at
a set of tours starting X, ¥, . .“. and ending « « « o Z; X ~ cbviously

those we found at first, This set of transformations is shown in Figure

2.4,
—-— X X
Y
X \ -~
-~ hY 2 1
- T Z \ — y ;
Y [ moves; redirection ,
\ k
—_— ~ . # SOl - T
S x \\ 2'— -
Z reflection N \
' R ihisluidinry 12
} l I | \’ \\//
l [ | l AN - - ~ N
| . .
Fipgure 2,3 Corner Square Figure 2,4 Diagonal Reflection
Moves and Redirection



. Notice that no assumption of diagonal symmetry has been maﬁe here: the
processes of redirection and reflection of a knight!'s tour assure finding
a tour of the same orientation, but unless there is complete symmetry
about the uwixldiagﬁmalin tﬁe original tour, the new tour will be a
dEfferent one, We can see this by the following argument; let A be a
ﬁnight's tour, and let ‘and ™ respectively represéni the operations of

redirection and reflection., Clearly we have

/

At = A : ‘.
/ gA%%* = A - \%g
if (At)* = A - (il
| (Car)ye)e = ax
out ((ar)*)* = A1, by (i1)
o'- A' = A*

We have tacitlyassumed here the closure of the set of knight's tours
under the two operations,

This vesult simply states that if a knight's tour undergoes the op-
erations of wedirection and reflection and the result is the same knight's
tour, then the 35th square of the tour must be the rnirror-image of the
2nd square, the 34th the image of the 3rd,and so on.

. However, the original intention of réstricting;the tree-search
to & pextioular direction of four still holds good, for when ve consider
the knight's tours as a class, redirection and reflection will produce
the same‘ggggég but its members will be ordered differently to the way

theyappear in the tree-search;

16



So the undernoted convention is used: the board being numbered as
in Figure 2,5, the knight starts at square 1, and always leaves the
corner by square 9, re~enters it by square 14, This cuts the size

of the search immediately by 50 per cent,

112(314|5]|e
719 (9|10 |12
13|14 (151161713
19 (2021 ]22[23124
25(26 2728129 (30 Figure‘2.5 Board-Numbering
31132133 |3435]36
As we stated before, the chief task in attempting solution of the

knight's tour problem is to reduce the tree-gearch ag much as possible
by pruning unproductive branches as early as possible, The question
vhich then arises is how we recognise an unproductive branchj;. so far

we have not bettered the stipulation of the problem itself, i.e, that
if none of the legal successors to a node satisfies the nonvepetitivity
criterion, then the subiree rooted-at that node is unproductive., The
most powerful additional criterion yet found will now be described:
this is the basis of our method, and was found independentlys it has
‘previously appeared in an internsl rveport by J.J, Duby (q.v.). Various

weaker oriteria were also iuvestigated and will be discussed later.

17



2.,2,1 Lookahead for Dead-ends In general, when the knight is
situated at a square, it is faced with the option of meking one of
a mambexr of moveg (as many as T)3 in certain circumstances, however,

looking one move ahead reveals an untenable state of affairs which

can only be resolved by one particular choice qf move,

Although this method has been classified as a tree-search, a
digression into graphical terminology will be helpful here,

Consider the knight positioned at vertex ﬁ (Fignre 2,6), adjecant
to vertices Ly, My and N, If the knight moves to L then it has a
further choice of 4 moves (dotted) suosequentlys; from M it has a
choice of 3, and from N only one exit is open to-it. DMNow assume
we maka, the move XL, X will not now be visited again during the tour,
and hence we have effectively removed the edges XM, and XN, The
consequences of this are not serious for the vertex M which is still
connected to 3 other vertices, but N is now only Joined to P, so that
there is no way of leaving N having once made the move PN at some

later stage (note that we are obliged to visit N later in the tour),

N
N\

Figure 2,6

Lookahead

18



This condition has arisen because we have ignored a fundamental property
of knight's tours, viz., each vertex of the equivalent graph of a knight's
tour has a degree of 2, By moving to L, we have allowed the degree of
vertex‘N to become 1, thus precluding any possibility of reaching a
tour; similarly if we move to M, The knight at X has no option but to
go to N, and the lookahead technique which recognises situations of this
type can provide an'extremely powerful tool for fruning the search-tres,
Tts effect on the tree is shown in Figure 2,7, and it is plain that
the earlier in the search that the lookahead condition is fulfilled the
larger the subtree will be pruned,

these

subtroes
proned

Figure 2,7 Lookahead Pruning

For convenience in describing the program in the next chapter, two items
of nomenclature will be introduced here,

By a GOTO move, we will mean a legal tour move which is forced
by the presence of the above condition, i.e., one of the possidble sub-
sequent moves is to a doubly-comnected square,

By a TEST move we will mean any other legal move down the searche
tree,

Referring again to Figure 2.7, there are a number of other benefits

arising from the use of the c¢riterion,

19



In the normal way, had ouly L and M been pendant from X, then after

the subtree of L had been searched for tours, the search would have gone
up to X; down to M,and through all of M!'s subitree, In the presence of

N, however, the subtrees of L and M are pruned completely, and vhen N's
subtree has been exhaustively tried the level of X can be ignored, and
an immediate rise to the level of X's predecessor made before moving down
again, This process‘reduces to absurdity the trée~search on the 4 x 4
board (Figuce 1.5), for after the initial move 1——=7, the choice of
square 9, 14, or 16 is determined by 7-*“916 being a GOTO move, The
16—>10 is foiced, and then 10——>1 is also a COTO move, so that if no
dead ends axe to be left, the knight must return o square 1 in only

4 moves::it is thus impossible to get alknight's tour on a 4 x 4 board,

A more complex situation (but nevertheless one which does occur in prachice)
is when more than one of L, M, and N is doubly-connected, i.e. there are
2 or more GOTO moves from the square presently occupieds; in this event.
(Figure 2,8) choice of either M or N leads {to the other one being a
tdead-ond', and the choice of L leaves both M and N attainable from only
one vertex (P and Q respectively), There is no way of moving down the
tree here whilst still retaining the possibility of a knight?!s tour, so
we must backtrack to the level above X once more before resuming the

dowanward sesarch,

20



L M N
N
/ 1\

/1N

Double GOTO : P 8
N "\
Y / \
: !\ / \ :
GOTO nmoves can occur at any number of successive levels in the tree,

Figure 2,8

and particularly in the deeper levels it dis comﬁon to find 6 or 7
consecutive forced moves due to thinning of the graph by the edge-
removal technique mentioned &t the beginning of the subsection, This
of course implies that backtracking up several levels without need to
check downward branches will subsequently occur, and therefore a fast
backtrack on GOTO moves should be incorporated in the program,

We close this subsection with a summary in table form of the
action required at nodes ig.the tree with vaxrious numbers of GOTO moves,

both when moving up and when moving down the search-tree,

No, of GOTO moves Dovmn Up
0 Arvitrary choice of Try new TEST move downjp
TEST move if all already tried, up
one level

-1 : Porced choice of
GOTO move; ignore TEST | Go straight up one level
moves

>1 ‘ . T one level ' -

Table 2,1




2.2,2 Short Loops The concept of the short lodp as a criterion for

pruning branches is due solely to the choice of the corner square ag
the knightts starting point, We have seen that corner square 1 is
connected only to squares 9 and 14, the former teing used at the start
of the tour: the very simplé short loop criterion states that square
14 must not be reached before move 35, Otherwise one of two unaccept-
able alternatives may occuri- |

() if the move l4—>1 is made, the cycle from square 1 back 4o
square 1 has been accomplished in<36 moves, so not every square
on the board has been visited,

(v) if the move 14——>1 is not made, the knight cannot get back
to square 1 subsequently without visiting square 14 a second
vime,

Both these violate the rules of the knight!'s tour,

‘Square L4 may appear either as a TEST move or as a (GOTO move, In
the former instance, application of the criterion is equivalent to losé
of just one branch (and its conseguent subtree), but in the latter both
criteria can be combineds if I is square 14 in Figure 2,7, then choice
of L or M cannot produce any tours, as before, but now neither can choos-
iﬁg;N for the reasons just stated, Hence, the combination of a GOTO
and a short loop(mGQe at a particular level of the search give sufficient

reason to prune the branch at that level, and go one up.
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2.2.3% Ixtensions of the Short Loop Princinle Since we have shown

the necessity of leaving square 14 unused until the 3%5th move,

plainly we may extend this idea back and conclude that not all of
squares 3, 10, 22, 25 and 27 may be used before the 34th move and
even that not all of 2, 6, 7, 9, 11, 16, 18, 19, 21, 23, 26, 30, 31;
33, %5 can occuxr before the 3%3%rd, The likelihood of this ever in fact
happening must be regarded as extremely small; and in any case the
time consumed in applying the test will cerﬁaiﬁly not balance up the
time saved, The criterion grows weaker the further up the tree we
try to apply it, as the number of sguares all of which must not have
been visited increases vhilst the number of moves allotted is de-
creasing; it rapidly becomes a near certainty that not all the squares
stipulated will have,ﬁgﬁgé visited,

A similar approach is to build the tour from both ends which,
rather than testing whether all of a set of squares hac been used
before a certain stage, testé to see when one of that set remsins and
chooses that square as an end move, For example in conducting the
ordinary tree-gearch we have:

Oth,square s 1, .., 36th square=1

lst square is 9, 35¢h  square = 14

After several moves, squares 3, 10, 25 and 27 have been used,

e & 34th square = 22,
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This suffers from the same weakness as the other, however, and cennot
be considered a viable method, A much more potent !'two-way! construction

will be described in a later section of this chapter,

2.3 Dynamic Pruning Tree-Search The elements of a string of squares in

a tour may in certain.casesibe permuted (see 2.6). Again we take as
axiomatic the statement 'if the string of squares A, starting from the

/

r?ot of the tree, is unproductive of knightt's tours, then so will be any
string P, where Pep (), p (4) being the class of permutations of A, also
starting at the root, which are sequences of l,t.m's,

The procedure would consist of storing a table of unproductive strings
and comparing the string of moves being generated with this table, If
at any stage a matih is made‘(in the sense that the elements of the un-
prodﬁctive string and the current string are the ssme, though differently

ordered) then the current branch is abandoned, A new entry in the table

is made every time the current branch ceases its downward trend; the

" elements, starting right at the root of the branch with square 1, are

listed. The next step is to go up one level, then down one again, trying
the next consequent move, (and entering that entire branch in the table)

and so on until all the consequents at that level have been tried, where-

upon searching for productive routes goes up to the next level, and the
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entries just made are merged, the last element being obliterated
(Figure 2.9)s The idea is to reduce the length of entries in the table

as much as possible since
(a) the shorter a string, the more significant it is (see below);

(b) storage space is an important consideration particularly if the

method is to be extended to an 8 x 8 board,

By {2) we mean that if, for example, a string of 19 moves proves to be
unproductive, then, if some permutation of these moves later arises,
we can abort the branch at this point (i.e. effectively we prune the
subtree below the 20th node); how much bigeer, therefore, the subtree
we prune if a permutation of an uanproductive T-move string appears,

On the other hand, the number of permutations (which might be termed

the usefulness) on a string increases with increasing length of string,
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Merely from consideration of {he heavy, contimious amount of house-
keeping and the accompanying storage problsm, however, this approach
apparently has serious drawbacksj other criteria may provide more drastic
means of pruning, |

2.4 listing Half.tours and Matching ILet us next consider the problem

of growing two trees, each 18 moves long and matching branches of these
to form knight’s tours, The required condition is as follows:-

Suppose the operations “,'to retain their pfevious significance
and let SL,S}be’any strings of 18 l.,t.m's starting 1--9, Then SL(Sé*)'
is o knight's tour if §n§*={1}(considering S, 5* as sets of squares).
By juxtaposing S; and (S}*)' we mean the sequence S; followed by the
sequence (S&*) '

Now this approach, too, runs into complications because it must not
be assumed that for every S; there exists a unique S& so that Z-tours
can be cancelled in pairs off a list which is continnally decreasing in
length, We frequently find in the exhaustive top-down treeaseargh that
branches terminate at some depth greater than 18, yet short of a full
tour; the first 18 moves of such a brancgzgave no corresponding tail-end
to make a complete knight's tour, On the other hand; it is quite‘feas-
ible that an Sy exists for a half-tour 3{ , and that a permutation of
%he squares of S} of the type mentioned in the last paragraph and des-

ceribed in more detail in 2,6 exists so that there may be a clagss of

knight's tours S; (p(S&*))' all starting with the same half-tour,S(.
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The matching might be effected in a number of ways,the easiest con-

ceptually being that of having a list of 'heads' and a list of ttails?,

and each 'head' is compared with all the 'tails' for a match, After

this process is complete, only the 'head! can be removed, since any

'tails! matched with it mey also match anothex 'head', An attempt is

then made to match the next head and so on righf down the list of

2
theads' (see Figure §.10).

-~

Heahs

Tails

-etng|enfen i dhlcdine

] Heéﬂs

o e = iONA AT

Heads

-~ ——

Tails

(b)

()

1st

lst
2nd

2nd
3rd

'Head! matches Ll'tail!

'Head! is removed, and
matches no tails

'Head® remoﬁed, and
matches 3 tails, etc,

Fioure 2,10 Yatching of Half-tours
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The easiest way to compare two strings for common squares is to
represent the squares present in each in a %ﬁwbit boolean vector and
perform the logical operation 'and! on them: The result can readily be
checked to ensure that 1 is the only common square., But for output purposes
this is insufficient, and we also require a binary representation (for‘
compactness) of the actual ordering of thé squares in the half-tour;
for the 6 x 6 problem, 18 x 6 bits =3 48.bit words is adequate, A
complete specification of all 1l8-move strings froﬁ square 1 necessitates
either storing the mirror—imaéﬁs or forming them at match-time, In the
case of the boolean vectors; this is accomplished by using the logical
operation 7, while the binary representation of the move-ordering requires
a symmetiical mumbering of the board (Figure 2.11), and subtraction of
the specification from a word of the form (5353535353555553)g Fith suit-

able modification to allow for diagonal elements. Thus each half-tour

and its reflection needs 8 words to specify it completely,

Figoare 2,11 : Symmetric board-numbering

1 F g d 10 | 14

|2 |12 [ 134 ]15

35 | 31 3 116 | 1F | 13

4 13 2714 [ 19|20

33 129 126 |24 | 5| 21

32 129 |28 123 [ 22 ¢
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Whilst the tree-search for half-tours is significantly curtailed, the
additional procedure of matching half-tours in quite involved, and the
viability or otherwise of the method really depends on the mumber of
half-tours prodﬁégd and the consequent magnitude (both from the time and

space points of view) of the matching,

2,5 Corner-to-Corner Strings We have already made use of the parficular
property of the corner squares.that each has only one entrance and exit,
Their usefulness in this respect suggestt another way of dividing knight's
tours to use the symmetry of the board to a greater extent: we construct
the tour of 4 strings each of which joins one corner to another,

Now every tour passes through each corner once, and it is readily
apparent that these corners must be traversed in one or other of the ways
shown in Figure 2,12, The discussion of the symmetry of these types of
tours will appear in Chapter 4, but at present we are merely interested

in building up a tour from corner-to-corner strings, and this we zsee isg

- posgible either by combining 4 strings which go from one corner to an

adjacent corner, or by using 2 sirings of this type, and 2 which go from

one corner t& the diagonally opposite cormer, If the corners are num-

~ bered 1 ~—>4 clockwise from top left, the tour may be either of the forms

(i) 1-2-3~>4
(iig 1-»4-»3~>2
%iii 1-s3-»2->4
{iv) 13542
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| Figure 2,12 TUse of corner-to-corner
" . _ + strings to build up knightls

‘tours

Type I Type IT
We therefore mreed strings Jjoining each corner to every other and these can
be obtained from l-»2, 1-—=4,& 1—3 stringé by the operations of reflection

* and rotation, | |

Typically, the operation of building up & knigat's tour might consist
of referencing a list or 1->2 strings and manipulafing 4 of these until a
set be found having no non-corner squaresg in commén and also satisfying
the condition that the sum of the lengths-of the strings be 36 moves,
Alternatively, the manipulation could be carried out earlier to generate
23, 31, étc. and these stored with the 1-+2, 1—3, and 1-»4 strings
to be accessed when needed,

A hierarchy of vectors might be built up as in Figure 2,13 with the
lboolean;vectors of the last séction divided and sub~divided by initial
corner and final corner, and by length, and with each boolean vector point~
ing to (several) orderings of the squares within it listed in binary rep;

resentvation vectors as in 2.4,

Corner-to~Corner strings

Start corner & 13
finish corner
Binary representation of
square-orderings

Length

4 3
o Y.
— R
o AN ! ’3
Boolean vectors Voo T—= :
’ i
squares present !
(s P ) )
Figure 2,13 Hierarchy of wvectors in Corner-to-Cornsr

Matching Problem
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When 4 suitable vectors have been found by testing to the boolean vector
level of the tree, a mumber of tours may be generated by combining

the various orderings of these vectors, The obwvious difficulty with

the method is the gigantic creayisabional Problem of the .matching
Unless the number of strings tg be matched is relatively small, the
additional. variable introduced since 2,4 - length of string - threatens
to make the whole scheme totally unmanageable,

2.6 Transformations of Knight's Tours A knight?!s tour can be envisagad

as just a siring of numbers, each representing a sgquare visited, and as
such it might be subject to the opsration of permutation of its elemenis,
Clearly, if we generate all permutations of the numbers, we will gen-
erate all the knight's tours (and a great many %6-rumber strings vaich
are not tours besides), The question arises as to whether we can deviss
some operation which, when applied to a given knightt's tour, generates

a new knight's tour, application to which gives a new knight's tour, and
repeated application of which generates all the tours on the board.

2.,6,1, Quasifactors and Reversals One operation which generates a

ney tour from a given one is that of reversing a string within a tour
under special conditions which we will now specify.
If the squares A and B are separated by a knight's move,

we write AR B,




If a knight's tour contains 2 pairs of consecutive squares (the pairs
not themselves consecutive) iA,B} and {C,Di and ARC; BRD, then we

say that the tour has a guasifactor of degree 4, or a 4-quasifactor,

Our given tour is of the form ¢ o o ¢« AB 4 o o CD ¢ o & & 4 SO that
also ARB and CRD. Thus we have the situation of Figure 2,14 (a) of a
loop of moves between B and C which can be traversed in either direction
according as the pairs {A,Bz and ZC,D} or {A,G} and{B,D} are connected
up. The resulting new knight's FOUT 15 o o o » AC 4 o o « BD 4 o 4 & 5
 fhis is obtained by simply reversing the single string B... C,and

so we refer to it as a first-order reversal, There is only one type of

lst order reversal, that already specified, and it occurs when the tour
has a 4-quasifactor (the quasifactor itself is the graph showing the rel-

ationshipR on the set {4, B, C, D} - Figure 2,14 (b)).

3 3 B
D . N D A c
_*A/éf_* A >
C C
D
(2) Figure 2,14
Quasifactor of degree 4 (b)

These concepts can be extended to more complex situations; consider the
FPour ¢ o o AB o s o CD o o s o EF , . . . ¢ if a tour has three pairs of

consecutive moves (N.B, this implies R between the members of a pair) a,

b, ¢, and there exist three relationships :-
OC‘Q- . ¢ . ¢
ﬁ'@{@ DC,O(’EO.,IS'@ eb:b’caec.
¥R

3
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- then we say that the tour contains a quasifactor of degree 6 (6-quasifactor).

Figare 2,15 shows the relationshipo

a"\i

“l
!
(=4 ’ 3

Pl
Figore 2,15
6-quasifactor

Let us return to'the « o o AB 4 o o CD o o « EF . . . representation,
and see what possible string-permutations arise frbm this development,
remembering that not all permutations of“B; @, D and E are feasible due
to the linking of B and C and D and E by unspecified chains of moves,

The permissible variations are e
(8) « o0 oo AB oy v v o s CBu v vos oDF ouon.
() « v oo e AC e v oo aBDov o ...,
(c)
(@) ¢ s o0
(€) ¢ o o o s
) eev..

(&) o ¢« o o

BE.....DF;OOC.

L ]
[ ]
-
-
o
L ]

‘.OODEB.....CF.;.C.

EGQCQIOBF....'

B & B

e e o o e DBy s eeoeCF oo

B

.Q...DG..OCOBF...O.

On studying the R -relations these transformations require, (a), (D),
and (g) are found to be degenerate cases where the tour has only a.4-quas-

ifactor,
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.The relations for the other 4 cases are :-

(¢) 2Rc, DRw, BRE;
(¢) ARDp, cRF, BRE;
, () ARD, CRE, BRF;

| (£) BRD, cRF, AQE;
|

We now consider these transformations im terms of reversals, first
howing how (f) might be viewed (for clarity) as two consecutive reversals,

/The steps axre =

!
1.-000ABoo-oCDoo;oEFoc.o

2¢ 000 o AC ¢ 0o o e BD o ¢ 0o ¢« EF 0 o 0 &
N e

BQOOCQAE....DB.G.OCF...'

Notice, however, that we do not know that ARC or BRD, so that the
string at stage 2 is not a knightls tour, although the final result is.
It is therefore more in keeping with our original intention to consider

’ " the reversals as simultaneous, Transformations (c) and (e) are similar
to (f), and if we denote by [ ] the result of reversing a string, (c),
(e)y and (£) ave obtained £Xom o o o ¢« 4B 4 o o o CD o o o « EF 4 & 4 &

respectively by s

e) «[RIL ]S where «, 3, ¥y ond § represent
g o [aL respectively the strings
ol[[ﬁgb‘-}s /cooaA,BooooC;

D L ] . - ') E, and- F L ] Q [ ] [ ]
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In each of these, the opveration L ] appears twice, so we call them seeond-

order reéversals.(d) is a third-order reversal :-

«LLpIY1TS

The Juxtaposition of the symbols representing the strings is taken to

mean the concatenation of the strings themselves, Now it is quite ﬁeasiﬁle
to extend the scheme to higher degrees of quasifactors and orders of rev-
ersal, but it is dubious whether the inclusion of still more complex systems
of fl- relations would be of much value (the length of the tour obviously
sets a limit on this) and - i3 wéuld rapidly bscome very ccatly in tima,

More important is the deliberation of what scheme should be super-
imposed on these transformations and at this point we might envisage a
purely heuristic approach. A fairly naive heuvristic Was, in‘fact, adopted
just to give some idea of the speed and success at tour-finding of the
basic method, Two gtrategems were inherent in the program :-

1, To teke the 'least significant'! transformation,

2, To.take the simplest transformation,

By (1), we mean the reversal(s) nearest the end of the given tour was
chosen, the 1ldea being to resirict ghanges, as far as poasidle 4o the
lowex Eranches of the search-tree and so find knight's tours on neighbouring
branches, We can think of this transformation method as a way of missing
oﬁf completely all the abortive branches in the search-tree; our first ploy
ensures a Iyornier control'! on tour selection (see Figure 2,16), tending
to transform tourx to tourf rather than tour y .
Figure 2,16
Reversal Strategy
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The second: strategemmeans that if the given tour has both a 4 - and a
6-quasifactor, then the former will be chosen if significance of the
strings indicates no preference,

The heuristic was liﬁited t0 second-crder reversals and carried

a first-in first-out store of the four most recent tours to insure

é | .
' against short-term recurrences, Proneness to long-term cyclical trans-

‘iormations is a grave difficulty of the method as used, Conwersély,
fi is a fundamental advantage of the method that the tour-search is
;easily segmented, i.e, it can be stopped and restarted with only a min-
’imal amount of temporary storage between runs ('freezing‘). Only the
" last knight's tour found need be retained, whereas tree-searching methods
“demand some way of referencing the part of the tree so far not searched |
and this can involve a larég area of core being frozen and later !'revived!'
(é.v. sub).

We give below the flow charts for the entire transformation procedure,
for first-order reversals, and for second-order reversals, (Figures 2,17,
2,18, and 2,19), A FORTRAN version of this method and an ALGOL tree-
search (2.2) were approximately of the same speed, but the heuristic
program entered a cyélic transformation group of 3 tours after finding

17 tours, and self-aborted,

37



@)
!

READ IN KNIGHT'S

TouR(oR 0RTAIN

1€ o TREE-
SEARCH)

ouUtYuT
COMMENT

. ’ g ? y
/ @
. PeRfoRM AST.— | [PERFoRM 203~

A [ 0RDeR REVERSAL.] | ORDER REVERSAL

! (Fiq.2.18) 10 0B (Fiq-2.19) To 0B~ A
TAWN NEWY TouR, TAN NEW TouR
R

, > 3 ==
) OUTOUT NEVY TOuR

P ] Figure 2,18 (below)
M N OUTPYUT || 1st-order Reversal on
COMMENT
-tour ) [ . AB [ ] [ CD * (] 5‘
Figure 2,17 Transformation Heuristic @
Loog AT BT FIND a C IV RECOGNISE
« THE TOUR SURSEQ- s
NUMBER N bed yenr 10 AR s, [T PAVR <
TouR ARC AR

Y

Y

L NO SMALLER 20D
~ORDER REVERSAL.,
REJEQIE STR

| P c =4
1o g8 MEW TOuR




F'"OM

151“{'
ordsr
test START
4
RECOGNISE
PAIR
A
[
Kacoqm5€
SUBSEQUENT
PALRL
¢,
1S
?
%es .
1 |
I [
l RECOGNISE !
SUBSEQUENT |
I PALR |
I E;F |

wfpyS xﬁxé' «By &
—ao&.[{-"[b’]] § -%&[ﬁl[:xlg —ax[[p]b'] $

L

A4

Y
MH

A

I

PRINT

AT~ ORDER .

REvERSAL Figure 2,19 Second-order reversals
TouR on‘bour...AB...CD.-EF.a

CHOOSE 2Np.~CADER,
REVERSAL. AND

PRINT HEW TOUR
]

A

ol

9 | | .



2,7 Edge-Removal This ig, in a sense, anBmalgam of the methods already

described in 2.2 and 2,4, in that it includes a tree-search which can
absorb all the optimising features of 2,2 and also constructs its solutions
" both forwards and backwards,‘but it is essentially different in that it

is a factor~finding method,

E While the methods of tfee-search specificall& designed to find knightls
tours check for the previous occurrence of each chosen square,.the edge-
re%oval method is solely concerned with reducing the degree of eachivertex
of the equivalent graph to 2, which is the condition for a factor, though
not necessarily a Hamiltonian eycle; the graph in Figure 2,20, for instance
has a factory but no Hamiltonian cycle (We use the term factor rather then
semi-factor since although we have defined the tour to be un-oxientated,
it will be recalled that in practige, use was made of the symmetry of the

graph, and the end-result is directed, even if only inferentially),
e 33

Figure 2,20 >
Graph with factor

The method consists of choosing squares in much the same way as in
2.2,.but a record is kept of all edges which must be traversed in one dir-
ection or the other, and chains of these are built up as succeeding choices
of squares are made, Once a square has been visited, all edges incident
at that square's vertex on the graph, other than the entrance and exit

Al
edges, can be erased,
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This may render some other vertex doubly-commnected, and if this vertex

is 6n1y one edge removed from the end of a chain, its entrance and exit

edges {as they now must be) can be annexed to the chain, Further possib-

© 1lities are the Jjoining of two or more consecutive chains, and chains
building up backwards from the starting square, this being somewhat similax
fo the process of 2.4( It is found that after some 6 - 8 moves have been
choseny the act of removing edges has built up chains of forced moves to
the extent that all moves axe in fact constrained; at this juncture,

either

(a) a factor (or knight!'s tour, possibly) has been found
or (b) we have the equivalent of a double GOTO (3% chains joined at a
point) or failure to observe a GOTO (a dead-end),

iAn example of the procedure is shown in Figure 2,21, this particulaxr branch
of the search~tree requiring only 5 delibexate ch01ces before the 3 dis-

- joint cycles are found, The starting square is ringed., In each diagram
only the deletions of immediate consequence from the move just chosen are

" indicated (by dotted lines); the next diagram also omits any second, third-
.etc. order deletions, and includes chains (crossed lines) used in the path

taken (solid lines).
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It ﬁill be seen that after the choice of 4 moves, a 2-element
chain of forced moves already éxtends back from the starting square; after
5 moves have been picked this has risen to 6 moves in lengbth. The ex-
istence of disjoint cycles becomes apparent at this level, however, so
| the move denoted by the last solid line in (d) must be rejected, and
- an alternative tried,
P This example shows fhat, typically, only a.very curtailed tree-search
"is necessary with the edge~-removal method, but it also demonsirates
/kchiefly by the large number of deietions between (b) and (c)) the very

. complicated housekeeping necessary for a method where one move can have

such a profound effect on the state of the graph,

2,8 Fortet's Boolean Algebraic Method This method is described, with

an example, in Berge, so we will not describe it again here., It is

" pertinent to remaxk, however, that the size of the application in which
we are interested is a gpod deal larger than that of the example quoted,
and it is found that not all the connection veriables,>(§,can be express~
ed in terms of one indepe§dent auxiliary variable (k@,zg, orYgfor 4xd
problem); in fact, for the 4x4 board 8 independent'variables must be
sﬁecified,-and according to the different choices for the values of these

variables, we obtain the 256 factors on the 4x4 board's equivalent graph.

These ares-

-0
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lx4membered circuit 6x2-membered circuwiis 64

2X4 " H cireuits 4:{2 n B 1 1] 95
33(4 1] 3 29D 1 n n " 64
4:{4 ‘., il ) 16
8x2 " " 1 n 16
256

As there are no knight's tours amongst these, it seems plain éhat
the mumber of factors to be éorted in the 6x6 case will be very large,
The main difficulty in dimplementing Fortet's method seems to be the cholce
of value of the variable which will'mést simplify the system of equations,
an operation which the human eye finds nous oo difficult from lons exoer-
ience, but which demands'machine intelligence! nevertheless, notoriously
a tricky and often inefficient thing to program,

2,9 Dynamic Progcramming This method has been successfully applied by

Dantzig et al, Bellman, and others to Hamiltonian cirveuit problems of the
trgvellingysalesman type, where, however, there is a weighting of the

~ edges according to the distance along the edge (the problem being, briefly
.to find the Hamiltonien path or eircuit of shortest length passing throuzh
a specified set of cities); In the problem cousivered here we are hamp-
ered by a system where with few exceptions (such as GOTO moves) all the

edges are equally weighted;
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-1t is conceivable that a provabilistic weighting system 6ou1dhbe formulated
which would find all the knight's tours, but it has rather been the aim

in this work to confine ourselves to deterministic methods, The lack of

a deterministic return funciion which could be evaluated after the choice

of each square leads us to reject dynamic programming as a method of appfoach.

2,9.,1 The Varnsdorff Alcorithm This algorithm was devised as long ago

as 1823%; it does not pretend to infallibility, butAis a useful method of
finding a Hamiltonian path (N.B, not Qiréﬁit) on a graph, and may be stated
as follows:~

The l.,t.m, (next to be made) is selected which comnects with the
smallest muber of subsequent l.t.m's, provided this number is NON=-ZeX0,
If two l.,t.m's connect with an equal number of further moves, the tie may
i'be broken arbitrarily,

Pohl (q.v.) describes a method for breaking ties which has gg its
basis the maximisation of the numEer of connections towards the end of the
~todr, These algorithms in effect weight the alternative moves, or branches
of the search-tree, but in a probabilistic sense as mentioned in the last par-

agraph, The\ﬁaximisation of connections at the stage immediately follow-
ing (by minimising edge-removals at the present level) is not a sine qua

non of knight's tours, and while Pohl's generalised algorithm may be quite




adeguate to find a Hamiltonian path on a graph, many tours do, in fact,
contravene the rule, and this could not therefore be deemed a satisfactory

toptimal policy! of a dynamic programming technigue,




CHAPTER 3 ' ,

The Exhsustive Tree-Search with

vOne-Level Lookehead

3,1 Development AlL the early programs in the development of the method

were written in KDF9 ALGOL., The comparison of a working 6 x 6 ALGOL version
with the rates of tour-finding mentioned in Duby led to the rethiﬁking of
program struotﬁre and also conversion to FORTRAN wiéhin the Egdon system,
with considerable portions of the program (the tree-search particularly)
being converted to UCA3 assembly language; even this did not remove entirely
the considerable discrepancy between FORTRAN/UCAB on the KDF9 and FAP on

the 7094,

The very earliest attempt was to solve the & x 8 problem running an
ALGOL program through the Whetstone (fast translation, inefficient object
code) compiler, This producedtcopious diagnostic outyut designed to chart
thé progress of the tree-searcﬁ, including the chosen square, the tree-level
(invaluable when backtracking several levels), and the state of certain ver-
jables, The chief achievement of this program was that it led to a working
freensearch: it also exposed the folly of attempbting to solve the 8 x 8
problem with such puny weapons! That speed was of the essence was plain:
all subsequené ALQOL programs were compiled on the (slow translation, efficient

" object code) Kidsgrove compiler using the POST magnetic-tape based operating
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system: a 4 x 4 tree-search of this type took 2 mins, 50 secs, to conclude
(correctly) that no knight's tours existed,

At this stage, the one-level lookahead was introduced, and immediately
snowed its worth, taking zero time for the 4 x 4 board (shown to be trivial
ih 2.2,1), and 3 seconds in the abortive search on a 5 x 5 (see 1,7).
Extension to a 6 x 6 board demonstrated that the lookahead saved several
hgurs of machine-time merely by spotting a GOTO move at level 8} The
piogram,found 112 knight's tours in 2 60 mimte ruﬁ, and an estimate of
5q hours was put on the complete search,

! What has been described so far might be termed 'preliminary skirmishing':
at this point the method was established, and later development was at the
programming, rather than the tﬂeoretical_level, l.e, at the third level of
the tree in Figure 2,1, Thers are, basically, three types of progﬁams, which
we call first-, second-, and third-generation, Their characteristics are

laid out in Table 3,1,

' { Generation Tree-Search Driven by Written In
1 : Recursive Static 2-D condensed
connection matrix & ALGOL &
dynamic stack of degree
vectors FORTAN /UCA3
2-, Tterative ' As 1 ALGOL only
3 Iterative Dynamic 3~D stack ATLGOL &
of boolean connection FORTRAN/UCA3
matrices
Table 3.1
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The programs themselves will be -found in Appendix 1. Our purpose in
this chapter is-to flowchart the main feétures of each program, describe
fully their characteristics and show the advantages of each program over
the preceding generation, |

}e2 TFirst-Generation Programs The initial factor which influenced the

éecision to write the tree-search in recursive form was its repetitive
naturej fthe bYasic structure which is maintained throughout the search is
rgﬁarkably simple and is shovn in Figure 3.1, The stack of vectors, 'new-
dég' contains at each level in the tree the degrees of all the squares,

!
These two features will now be discussed more fully.

%4241 Recursive Structure The diagram in Figure 3.1 shows only the very

sinplest interpretation of the algorithm for choosing a sgquare. In practipe,
the housekeeping subsequeﬁf to the choice was not dons in two separate pieces
but in one integrated procedure, 'stepcount'y, this procedure actuvally in-
cremented the tree~lavel counter, 'reccount', when normal downward progress
was being made in the tree, The 'back 1 move! directive was maintained

- within the move~choosing procedure, 'nextstep'!, and the two procedures
'callgd one another recursively., The following points about backiracking
should perhaps be clarified; the mnotation WX, , STht1, etc, mean ''next-~

step! at level n', ''stepcount! at level n+1! and so onj '<—! means

'returns control to?!,'—>' means 'calls',

r
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(a) After the downward sequence

. GDTO
— N > QI -
ST, —= MK, ST, —> M _., . ®

¢ o o @ N:\-h_‘l

if there is no l,t.m. at level n+1l, the backtrack sequence is

X, 4 ST, =—— MK, < ST, ~— M, - @

and another square is chosen, the progression (1) being reasserted.

(b) After the downward sequence

TEST
e o 0 o WX —>ST , —>N TSI, —> ., - ®

is halted, the bvacktrack may follow the form
NX
148

+16—’_ ST"_"“—'—'—"‘ NX?\,. s o » Ll @

and another TEST move tried, or if no TEST moves remain, a sequence

analogous to (2) is pursued, These backtracks are shown dotted in Figure

3.2, and are in accordance with 2,2.1.

(¢) The sequence when a double GOTO is encountered is

' .G
—> ST —_— N e < ] ... -
SN 3 ST__, X, sT,_, NE 4+ G
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CHECK ALl
MoOVES FlRot
PRESENT FOSW.

CHOOSE 1ST. 5Q.
IN NUMERICAL,
oypeR (test®
MovE)

(a) Procedure 'Naxtste'?‘

BACK ONE
MOV E

A

CHOOSE NEXT

“TesT" MoveE

BACK oOwE
HOVE

v

)

Figure 3.2 Interrelationship of 'Nextstep' and

HouSEKEEPlNS

'Stepcount!

(b) Procedure 'Ste,pc.ou,n.{:‘
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3.2,2 The Degree Vectors These appear in the program as ‘origdeg'

(*ORIGinal DEGree!') and 'newdeg', the former being merely a list of degrees
of the wvarious vertices in the equivalent graph before any moves have been
made, Its elements have fhé values given by comparing Figures 1.5 and
2,11 {the symmetric board-numbering was used in the . carly stagés - see
342.6) 4 thése being read in at run-time, The arréy 'newdeg! was designed
to contain the degree of each vertex at each level in the tree, and was
based on a kind of dynamic stack principle; in practiée, the method of
upkeep was as follows, Consider the sequence of moves:

square ATSRE%C

level n-1 e nt1
The depth of recursion counter, 'reccount', is used as a pointer to index
'newdeg', as each move is made a new set of degrees, corresponding to the
edge-removal idea of 2,2,1, is calculated and entered in the area of the

array specified by the pointer ( Figure 3,3; ND, means 'new degrees fox

level n').
. reccount E i i
- — ND. _ MD g . MD,, .
=r-1 : n-1 n—" NDn, et ] —s §1I1;:+:
(a) Choose & (b) Choose B (¢) Choose G

Figure 3,3 Updating 'Newdeg! in Down-tree Search
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If C is a dead-end, the considerations of 3.2,1 show that we climb two

levels in the {ree before starting a downward seek again, viz,

TEST =D TEST 7 TEST >

square A

L 3 L] L] L

1evel n-1 n nt1 nt2

The now unwanted versions of ND, and ND,,q corresponding to the fruit-
less choicés of B and C are not erased: they are simply overwritten

Hy the new ND,, and ND 44 when D, E, etc, are picked, When backtracking,
the 'reccount' pointer has gone back to the level of ND,_.4 vwhich is
the last version of 'newdeg' it is still desired to retain; on resuming
the downwerd search, overwriting occurs automatically, with no call for
erasure Bf the unwanted vectors, Ixtending our notation slightly, we
represent by ND, (K) the vector 'newdeg' at level n corresponding to the
choice of square X at that level, Then the procedure just described will
be seen to be equivalent to a true pushdown store, whose contents in

the example cited are as in Figure 3.4,

_____ [Dnale)] e
’ ND it () ND . (BY ¥Dntq CC)
- NDn'ﬂ(A) —3ND , (B) —2NDnt(C) —2>IND,, (B) —SINDn-1(A) ~>IND. (D) —>RD_ 1 CE)
| Do (A) ND , (B) NDA-1(A) r NDpt (A) ND.. (D)
| [ NDn-q (R) { } ! ND,-4 (A}
l 1 T , i | '
[ r.. k ! |
i I | ' 1 |
l ' !
(o) Chroose (b) Clasose. Y Uouse () Bask to (2)Back ko G) Cheroie Cq} Clesose
A B C level n level n-1 , D £

Figure 3.4 Pushdomn Bquivalent of 'Hewdeg!

.

Stack
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342¢3 The Condensed Connection Matrix This is the array 'XX!' in the

program. To define it, we use the obdervation of 1.2 that no sguare has
a degree greater than 8 (irrespective of the board~size).

Definition The condensed connection matrix XX, associated with the egquiv-

alent graph of the knight's moves on a 2n x 2n chessboard, is a 4n2 x 8
matrix whose elements | | |

(XX)L} =k if i,k are connected vertices of the graph
subject to O < i< 4n2 ,» 1< 5 < 8, and (:Qc)L&( (m)i:k‘f* excepting
that if i is connected to p (< 8) vertices, then

(xx)L% = 0,
(p+t1< 4 < %)

'} The form of this matrix for the 6 x 6 board numbered according tdA
Tigure 217 is shovn in Figure %.5.

This is the most compact way of storing the original state of the
graph, without having recourse to assembly language, and was read in at
run~time, thus (with 'origdeg') completing the data for first and second
generation programs in ALGOL. 'Origdeg! was in fact used as an indexing

vector when reading in 'XX' (see program).




It should be stressed that 'XX' containg a complete specification
of every l,k,m, on the 6 x 6 board, and both first and second- ceneratiors
largely relied on 'XX' for the choice of an l,t.m., referring each time
to 'newdeg' to check if any of these were a GOTO move, It is this sense

that we say in Table 3.l that these programs are driven by 'XX! and 'newdeg'

'3.2.4 Exclusion of Short Loops This pruning aid, described in 2.2,2,

‘was incorporated into procedure 'nextstep', The two separate .exits to
fstepcount! necessitated two tests for short loops which were located

/88 shown in Figure 3,6, In the GOTO case, the order of testing for double
COTO and short loop is immaterial; it will be noticed here that the occur-

ence of a short loop and GOTO move together does indeed cause the seaxch

to go up one level as remarked in 2,2,2,

342¢5 The Solution Vector Called in first-generation progrems 'store-

path!, this 36-element vector is a pushdown list in the strict sense which
contains the l,t.m's chosen at any stage in the tree-search, There is

no overwriting of aboxrtive l,t.m's by newly-chosen ones: as soon as a move
has been fully investigated it is réplaced with a zero and the pointer
(treccount!) set one back; as a simple example, we show the change of

state of 'storepath' during the tree-search shown in Figure 2,9,
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16 27 34 0 0 0 0
14 19 24 29 34 36
14 18 21 20 25 29 31
18 25 27 0 "0 0 0
24 0 0 0 0 0 0
13 35 - 0 0 0 0 0
16 3 %6 0 0 0 o}
5 15 17 0 0 0 0
16 18 0 0 0 0 0
17 0 0 0 0 0 0
4 10 17 30 35 0 0
11 18 19 27 31 O 0
4 8 20 0 0 0 0
16 19 0 0 0 0
5 8 10 15 20 26 30
11 12 21 24 27 0 0
5 10 13 0 0 0 0
6 13 15 23 26 0 0
16 22 24 0 0 0
17 23 0 0 0 0 0
20 26 0 0 0 0
21 27 ' 29 0 0 0 0
6 17 20 28 30 0 0
5 30 33 0 0 0 0
19 22 31 52 34 0 0
5 13 17 23 28 33 35
27 32, 0 0 0 0 0
4 23 35 0 o 0 0
16 24 25 32 36 0 0
4 8 13 " 26 33 0 0
30 0 0 0 0 0
27 %1 0 0 0 0 0
3 26 28 0 0 0 0
12 27 29 0 0 0 0
8 30 ) 0 0 0 0

Figure 3.5 Condensed connection matrix for symmetrically

mumbered 6 x 6 board




" The

reason this method was adopted in the early programs was largely

for clarity of discrimination, but since the!reccount! pointer is always

kept on the last acceptable move (Y, , Z, 4 Y, 5 %, 5, ¥, , Z3, ¥,,X,

Y, successively above), these valid moves can be indexed with another

pointer whose upper bound is set at the present value of 'reocountt!, and

there is no risk of accessing aboriive moves, This technique is used
(=]

when seeking a TEST move, as all the (significant) entries in !'storepath!

wnder

must then be scanned to check that the squarchonsideration has not been

visited before (in the program, the second pointer, 'k! is incremented by

1 fror O to ‘reccount').
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Whan 'reccount'! reaches 35 and the correspeonding entry in 'storepatht?

has been made, the knight's tour is complete and can be printed out in
order of squeres used simply by the output of the solution vector, The
housekeeping for 'storepathlis carried out by procedure !stepcountt!, and
the last action ofAthisqsubroutine is to test the level counter 'reccount!
to see whether transfer of control should be made once more to 'nextstep',
or whether 35 moves‘(the 26th being a formality) have been and it is re-
quired to output the solution, Adding this information to Figure 3.2(b)

gives us Figure 3,73 PR stands for print routine.

3,2,6 Output Roubtine The knight's tours are printed out by the process
and in‘the form described briefly above in the procedure 'printroutet,
In the earlier versions of the program, symmetry about the board!s main
diagonal was taken into account by using the symmetric board-numbering of
Figure 2,11 and & simple arithmetic rule, viz.
if square no, < 6 print it in both unreflected and reflected tours
" n " >6 print it in the unreflected tour,

print (43-it) in the reflected tour,
This gave 2 tours each time the solution vector was filled, but‘later,

due to the disorder of the reflected tours (see 2,2) only the direct one

was printed,
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One other inclusion in 'printroute! was the call of procedure 'time?,
a short code procedure designed to hand back the run-~time to 'printroute!?,
and this could then be printed with each tour, This feature was found
particularly useful when'underfaking dissected step-timing, to be desw
cribed latex, )

Finally, the identifier !ccount' was used for the running total of
knight's tours, this being updated by one each time ‘'printroute! was
entered; at the completion of the tree-search, therefore, this counter

could be printed out as the total number of Hamiltonian circuits on the

graph of the 6 x 6 board,

34247 Updating the Degree Vectors This is the chief housckeeping task

of procedure 'stepcount' (the othérs being !reccount! and Ystorepath!
updates and checking for sdlutiono, and we now give a little more detall
of its implementation,

The first important note we make is that this activity isgbnlctly
confined to downward 'seeks! in the tree, according to the orgenization of
'newdeg! outlined in 3.2,2; further, for this purpose, no distinetion
is made between GOTO and TEST moves, One simple example will thus be
adequate, Reference to Figure 3,5 shows that square 7 is connectgd to

35 15, and 35, On the choice of square 7 at level n, therefore, 'step-

count! performs the following operations :
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BACK oNE

1)
MOVE u

(CL) ‘C{OTO‘ wove,

HOVSEXEEPING

CAHO0SE MNEXT

TEST MONE

(L) “TEST' move.

Figure 3.6 Short Ioop Tests
(detail of Figure 3.2)

Figure 3.7 Solution exit to Procedure

1Stepcount!
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(a) 'newdeg'Ln,7] becomes O

(b) tnewdegt[w,3]] becomes, if non-zero, 'newdeg! [ n-1,3] -1,
if zero, stays the same.

Similarly for 'newdeg' [n, 15] and 'newdeg! [n, 55]
(c) Tor all other k, 1< k< 36, 'newdeg' [n, k]= tnewdeg' [ n-1,k] .
Effectively, this has removed all the edges incident at square 7 thus
reducing its degree to 0, and the degrees of all squares formerly joined
to it by onej other squares are unaffecved, This iss slightly different
from what we have designated edgs—remo;al methods which leave wused squares
with a degree of 2, but only insofar as we can visualize here the edges
of the téur being rubbed out as scon as they are determined and the vert-
ices.entered in 'storepath! (a function discharged by 'stepcount! immed-

iately afterwards).,

This quite lengthy. section has described the main features of first-
generation programs and how they were used in the implementation of the
one~level lookahead tree-search, As should be obvious, we have been
primarily discussing the ALGOL version of the program, and indeed most
of the work done with the early programs was in ALCOL., The FORTRAN/UCA3
variant wag, to a great extent, a development program, as by the time
of its completion-2nd-gpneration ALGOL programs were operational, and the
possibility of the 3rd-generation concept of a dynamic conndction matrix

stack was under consideration,
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Suffice it i;o say that within the bounds of possibility, the FORTRAN/
UCA3 program was a straight translation from ALGOL, using exactly the
same methods applied to exactly the same theory; what will concern us
later (3.5) is the routine structure of this program, and its modification

to produce third-generation programs,

Before mentioning applications of the firsi-generation programs,
we remark that many of the features already explained carry over into

the second-generation programs and a few even into the third,

3.3 Applications of lst-Ceneration Programs The first use of the early

programs was optimization of the tree-search; clearly the most vital part
of the procedure; this was achieved by seeding the program liberally with
calls of the procedure 'time' (q.v., super) to glve a breakdown of the
comparative time consumptién by various parts of the program,

The most notable result to emerge was the length of time spent in 'newdeg!
updating, and this was consequently programmed more &fficiently; While
the sizes of the résults were not particularly significant due to 'time!
itself taking time, the comparison was useful in highlighting slower
parts of the tree-search and it also raised the suspicion as to the eff.

iciency of a recursive tree-search,

Other results were obtained through checks being made on 'newdeg!
after each move, and by keeping counts of 'reccount! and the number of

GOTO moves,
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It was thought possible that testing for GOTO moves might be unprofit-
able at certain 1évels in the tree (especially high up), and it was determ-
in%d to find the percentage of moves at each level which were GOTO's, This
was effected by keeping two yeotors of counters, '$tep' and 'gotostep'!, the
1a%ter sedt being adjusted at each passage through the first (GOTO move) exit
to fﬁextstep', and the former at both exits, The relevant counters of the
tw% sels were indexed as usual by 'reccount', so that if, for example, a
TEST move were made at level 17 then ‘step! [17] would be incremented
by 1, or if a G0TO move were made on move 22 both .'step! [22] and 'gotostep!

[221 would increase, Before close~down, the program printed out the pere~
centages : ‘'gotostep![i] x 100/'step! [i] s the results of a sample of
about 10% of the entire tree-search being as shown in Table 3.2, We can
see that (as expected) the high percentages are concentrated in the lowexr
branches of ther~8earch~tree where there are few squares to choose, anyway,
‘bﬁﬁ although the figures are only around 33% for the first 10 moves, these

are the GOTO moves really worth recognising, since this implies the pruning

of huge subtrees (see 2.2,1).

Move % | Move % | Move % | Move o | Move % Move | %
0 Il 33 13 58 19 37 25 62 31 93
0 8 34 | 14 36 20 | 47 26 | 36 32 | 100
14 9 54 15 41 21 43 27 53 33 | 100
31 10 36 | 16 36 22 | 44 28 | 66 34 | 100
54 11 33 17 38 23 53 29 49 35 11CC
31 |12 |31 |18 |42 | 24 |47 | 30 | 65

W AN -

Table>3..2 Ap pronimete ?e,rc_&mmyS oL GOTO waoves ok eack tree-level.
6% -



The other application of these programs was to count the number of
remaining edges on the equivalent graph at each level, and hence to work
out the average number remaining at each stagej further the maximum and
minimum number per level was recorded, Tsking the degree of a typical s@uare,
i, at levelnto be 52', we have the number of remeining edges is

En.: %ZL:‘S:- )
so that the average number of remaining edges at level n, over Jj, downwerd
seeks through the level is
En=1/25,). 2% ST,
n g

SL being a function of the previous moves. & cumulative totsl of B, 's
was kept for each n in a vector ssumnewdeg!, and after anam%itraryiym
seeks (j,Lbeing obtained from ’step{), the'ﬁk could be obtained by division,

The maxima and minima.

1 (4™
Hn = maa:c (‘é‘;ét)
= min. (3%87)
n k"- L

were also stored in vectors, and the requisite members compared against

the current E, foxr every move,
Interest was focused initially on the L in order to see if the values

were ever suchh as to imply less than one remaining edge for each remaining

move, an obviously unsatisfactory situation..
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Figure %.8 shows, however, that this does not occur from which we may
conclude tﬁat the GOTO and nonrepetitivity criteria arelstronger than
that just explained. It ié, in fact, the GOTO lookahead which precludes
all possibility of the number of edges remaining/hove being less than
one, for if this were to occur, it would imply an unvisifed isolated
vertex, and this we have rendered impossible by the GOTO criterion (2.2.1).
The other interesting ohservétion we can make from Figure 3.8 is
that %E%? is negative for the small sample taken (about 3800 moves),
which suggests that edges are removed rapidly at first, butmawe algwly
in later moves., We mention this as it provides a direct contrast with
the policy of the Warnsdorff algorithm which attempts to remove as few
edges as possible in the eafly moves§ many actual tours depart censider-

: AE,
ably from this strategy, which would tend to produce :Gj?)().

3.4, Second-Ceneration Programg We have mentioned that firat-generation

step~timing programs seemed to indicate a considerable amount of time
being spent on stack maintenance due to the recursive structure employed,
and tests on a simple loop structure using control transfers were inaug-
urated. While these programs might not be considered sufficiently diff-
erent from the preceding ones to justify a separate 'generation'!, there
is within this swmall change the nub of the thinking which led to third-
generatién runs. These programs could not, therefore, pfoperly be des~
ignated 1 (a) or pre-33 they are a crucial ﬁupning point in the develop-

ment; 65




A feature of ALGOL is that variables used locally to a recursive
procedure are duplicated at each entry to the procedure, so that the
use of 'j!' at all levels as a marker to indicate the branches not yet
tried leads to no ambiguity so far as a recursive technique is con-
cerned., Fach level has a 'j' implicitly subscripted, i.e. local to
itself, thus ensuring that when & backtrack is made, the top version
" of 'yt is lost and that corresponding to the level of the tree nearer
the root again becomes available with its previous valuve inbtact;
thus the 'Jj's can be thought of as own’variables, the scope of which
are determined by the value of 'reccount'. The necessity for retain-
ing the couﬁter values is stressed by Figure 3.9. Writing subscripts
explicitly, to choose from level ™ a TBEST move to level (r+1), Iy,

is set to zero, and the squares tried in turn. If the first is chosen,

j. =1 The process is repeated at level (r+2)s If none of these
sguares is chosen, j,.,q having gone from O to 3%, is thrown away, and

we backbtrack one level. 4

— — — — Level v

o e e Level rt1

— e e = Level 2
Figure 3.9 level branch counters

At this juncture, it is vital to know which branch from level r we
have just ascended; this information is given by jf' The tree-search

now continues by putting jr = 2, and resuming dowvmward searching.
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Having emphasised the importance of having a unique branch counter
at every level, we must now heed the consequences of removing the afore-

said implicit subscripts imposed by recursive usage, Vhen we use our
'o—called iterative method, the instructions for choice of a TEST move
é&@gat the same block-level whatever the value of 'recgount'; indeed
;'reccount' is the only distinguishing attribute of a level in the iterative
ﬁ#eeusearch (see Appendix 1), and thus, since 'j'é for different levels

4re mnot protected by block structume, they must be explicitly subscripted
in the program, using the ubiquitous 'reccount! for an index marker; this
vector in 2nd-generation programs is called 'jj',

A similar argument applies to 'd' which represents the last square
chosen, In first-generation programs, 'd! is 'owned' by recursive pro-
éedure *nextstep', so a unique 'd' exists at any time for all the levels
up to the one currently occupied; for a second-generation program, however,
the last version only of !'d' can be accessed, all previous ones having
been overwritten., The effect of this backtracking is simply as follows
(implicit subscripts) :

At level 1r, first-generation has dq , dy , « & & ; Qeg s Gpcq s dr H
second-generation only has d ., Backtrack two levels: first-generation .

loses d . ,4, and *d' now refers now refers to d,.; as required; but for

For 2nd-generation, 'd' still means d_ which is the square after the one

currently occupied .
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Hence, in an iterative enviromment, 'd's must als§ be effectively
_subscripted; this was done, not literally by declaring an array of 'd's,
but by re-assigning a value to 'd! from the list of completed moves in
tatorepath',

A1l other major characteristics of the first-generation program
were fetained, particularly the !'driving forces! of 'XX' and 'newdeg!,
but the merging of procedures 'nextstep' and 'stépcount' into the main
stream of the program also préduced the need for another vector called
tlink', It will be recalled that in Figure 3.2 two exits to 'stepcount!
from 'nextstep! were possible, those corresponding to a choice of a GOTO
and a TEST movej; we have already shown the call for retention of counters
after choosing a TEST move in the inevitable event of backtracks: it is
Just as vital to ensure return to the right point in the coding for square-
choice when backtracking., In lst-generation programs, the use of recursive
procedures overcame any difficulty here, but the simple ‘'top-to-bottom?
ALGOL of the 2nd-generation required explicit markers to be set éfter each
choice of move indicating a TEST move or a GOTO; these markers were stored
in the boolean array 'link' and referenced by 'wreccount!.

To preserve similarity between the generations, the coding equiv-
alent to procedvres 'nextstep'! and ‘étepcount' was labelled WXST: and

§TCT: in generation 2; the structure of that section of these programs

correspending to Figure 3.2 is shown in Figure 3,10,
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Notice particularly that & simple and quick loop for GOTO back-

tracks is provided between the discrimination on 'link‘[:'reccount']

and label N as suggested by 2,2.1 (tlink? ['reccount'] is set true oxr
false according as the ('reccount')th, move is TEST or GOTO), We have
observed that replacing a recursive structure by an iterative one has

' occasioned the introduction of two new vectors "jj' and 'link! and extra
housekeepings this ﬁight be expected to nullifyito a great extent the
advantage of cubtting out repeated procedure calls, and in fact it was
found that an improvement in speed of only 6% resulted, The door to

the third-generation programs had been opened, though, but before des-
cribing this, we must first maeke mention of an important modification made

in late generation 2,

- 3.4.1 Graghic Outwut This title was coined for the knightt's tours

brinted out in board - rather than strip-form; examples appear in Appendix
2, The board is assumed numbered asymmetrically as in Figure 2.5, and

‘the numbers actually displayed are theé number of squares visited (includ-

ing the presently occupied oﬁe); this has the attraction of demonstrating
the sequence of knight's moves as they are followed on a chessboard, and

is therefore much clearer, It does, however, require an extra vector

"board' and additional housekeeping, but it is not used solely for out-

put,
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We find that there are basically two things we are interested in ab
any stage of the tour:-
(a) has a particular square been visited ?

(b) which was the last square visited ?

Question (b) can very readily be answered by looking at the last (sig-
nificant) element of 'storepath', but (2) would need a search of all its
significant elements, We can therefore find a use when seeking a PEST
move for a vector which contains in pogition i the integer p if square i
was the pth, To be visited and zero if the square is so far uantouched,
This is exactly what 'board' contains; and when a tour is found and all
%36 elements are filled, the vector can be printed out in 6-element chrips

[

to assume the appearance of a board,

3¢5 Third-Generation Programs The development of generation % happened

in two stages, the first attributable to generation 1, and the second to
‘gsneration 2. The first stage was the realization that if faster tour-
searches were to be achieved, the searching would have to be as far as
possible in assembly language, which to exclude the problems of recursive
Usercode or UCA3,- meant ALGOL/Usercode or FORTAN/UCA3, We chose the
latter in view of the availability of the much vaunted Egbran PORTRAN
compiler, and also because the FORTRAN routine structure, extended in

d a neat compartmentalization of languages

i

Egdon to UCA3 routines, offere

(and purposes).
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The second s tage came with the foundation of iterative methods:
these enabled a gigantic simplification of the program structure as
shown in Figure 3.11. In first-generation Egdon programs, the ALGOL
procedures 'nextstep! and 'stepcount! were written as recursive FORTRAN
subroutines 'NEXTEP' and 'STEPCT' calling one‘another; this, together
with 'reccount' updating, was their only putpose, however: they were
'shell! routines., Each included a call of a (noﬁ-recursive) UCA3 routine
containing a large quantity df coding and cerrying out the functions
of testing squares and housekeeping., For example, after choosing a
square, control would be returned from P4 to NEXTEP which would then
call STEPCT which would call P5 which would effect the housekeeping 3
iteration permitted. the compaction of P4 ‘and P5 into one piece of UCA3
coding without any need for FORTRAN as an intermediary.

Tew features of the original EGDON programs have been retained,
the structure having bveen greatly simplified, and the techniques being
the same as those of 1st-generation ALGOL programs, anyway. We will
omnit, therefore, discussion of the use of side~entries in P4 and V-store
preserﬁation buffers, and merely include a specimen program in Appendix
.1 for interest; perhaps it is worth remarking that the initialization
routines SETUP, P2, and P3, differ little from the preliminary statements
of the 1st-generation ALGOL programs, and indeed throughout the develop-
ment of the lookahead tree-search these overtures have consisted of the

operations of présetting counters, zeroing arrays, and setting up the
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zero level of the driving dynamic array, whether it be degree vector

. or connection matrix (see below), consequent to the choice of square 1

as starting position,
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Figure 3,11(b) shows the streamlined Egdon program of the third-

generation with initialization conducted by SETUP and all tree-search-

ing by P23 with a controlling main routine in FORTRAN and knight's tour
output (in graphic form) also in FORTRAW, We have shown how 2nd-generation
ideas led to the structure being recast in these terms; now we must

discuss in some depth the new programming tools utilised in generation 3,
and briefly describe the Egdon programming system where this has special

relevance to further events.

3,6, The Egdon System This is a comprehensive system for compiling

and running programs on the KDF9, using a disc unit as random-access
backing store (~ 4l 48-bit words of storage), The disc is divided into
two equal areas of ~2M words, one of which contains all the system's
files -~ system programs, iiﬁrary routines, user's programs, and data~
blocks - and the other is available fto the user as work-space for his
program (i.e. temporary storage only).

ALl peripheral operations are controlled by the.Director, a-mastexr
program which, in the simple Egdon 2 system, is permanently in core, but
which in the Egdon/COTAN (onyline) system is composed of segments some
of which may be written out to or called in from disc from time to time,

¥

Programming facilities consist of a FCRTRAN (II+ ) compiler end a

UCAZ assembler, and a program may consist of any combination of FORTPAN

or UCA3 main routine and an unspecified mumber of FORTRAN subroutines

(or funection subprograms) or UCA3 P- or L-routines,
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3,6,1 Intercommnication between FORTRAN and UCA3 In the Egdon system,

UCA3 and FORTAN routines can call each other with complete freedom, but

a UCA3 routine which calls or is called by a FORTRAN routine must observe
certain conventions, The link (the address to which the called routine
returns control when it has finished) is left in the top cell of the sub-
routine jump nesting-store (SJINS) by the calling routine, If the called
routine in turn calls other routines, the link is preserved in V¢ to
prevent the possibility of SJNS overflow, For the purposes of describing
transmission of arguments, thé Egdon programming mamual introduces the
term 'value'; where the 'value! of an argument is &n entry depends on
whether the called routine is a function subprogram ox a subroutine -
only the latter need concern us, and in this event, the address of the
tvalue! is left in the top cell of the nesting-store; what the 'value!

is depends on whether the argument is a variable or an array name: i

the létter'ease@ the 'value' is the address of the first elemeni of the
array, in the former, the 'value'! is merely the current mmerical value
of the variable, Thus a FORTRAN routine transmitting a vector J as an
argument to a UCA3 routine leaves in the top cell of the Hest (N1) the
address of J[1]. .
One of the feéiures of communication between routines in Bgdon is

that in some circumstances the 'value' is planted in own variables of

the called routine; in the case of a called UCA3 routine, this means
V-stores may be overwritten, and care has to be taken to declare a sufi-

icient number for this purpose.
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Ql and Q2 have also to be preserved in all routines, but any other
Q-store can be used as convenient, though it cannot be guaranteed that

they will be preserved by routines called by UCA3 routines,

3,6,2 Storage Layout As indicated in Figure 3.11 (a), the layout of

certain storage areas is effected by preliminary segments of coding,
prior to entering the program segment, The reservation of UCA3 storage
of W and TA-YZ stores has to be carried ocut firét by a separate ass-
embler called the Frontsheet assembleé; and PORTRAN (non-local) common
and public variables and arrays are then laid out at the top end of
core by a prelude segment which arranges this by allocating storage
space down the core (in successively lower addresses) and then filling
the space up the core, A map of this, together with explanations of the
uses of the common list and the common array area and the correspbnd-
ences between these and the Z-stores will be found in the Egdon mammal
(11), We give below (Table.3.5) a map of the common and public
storage areas for 3rd-generation programs, but a detailed explanation

will not be included,
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" PRELUDE FORTRAN (CHATIN UCA3

NAME SEGMENT ) NAME NAME
BA(INTARY) BA(KEEPP ) 71
BA(INTAR2 ) BA(BOARD) 22 \-Common
: List
BA(TNTAR3 ) BA(ORGD ) _ 7%
KT?OT X1T7roT . z4 ~-Pub}%gt
[ _ KEEPP(1) 767
- BOARD(36) 768 Common
- TssrT s ST TTTT ST T AI’I‘EL}[
BOARD(1) Z103 Ares
- - ORGD(%6) 2104

- ORGD(1) 21%9

Table 343 Storage Map of High~Address end of Core

(BA = 'base address!')
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The decision whether or not to place an array or varisble in
common or public storage was largely resolved by consideration of
whether the quantities in question were to be accessed both by FORTRAN
and UCA3 routines, when tﬁe Z~storage correspondences made addressing
a simple matter, The connection matrix stack (q.v.) was accessed solely
by UCA3 routines, in accordance with 3.5, and hence was placed in YA~
stores, while BOARD was used in the FORTRAN output routine, and élso

in P2 (Figure 3.1L(b)) so necessitating a common declaration.

3.7 The Dynamic Comnection Matrix In the first- and second-generation

_ programs, the combination of 'XX' and '"newdeg' meant that at any level
in the tree-search there were known the legal knight's moves from the
square occupied and the number of 1,t.m's from that square; there were
no means of obtaining promptly those l,k.m's which were also l.t.m's
- all had to be tested in the normal way ( 3.2), This was obviously,
wasting time by taking no accoﬁnt of the decreasing number of l.,t.m's
and the concept of a dynamic stack of connection matrices was initiated
to overcome this,

Basically, the idea is to update the connection matrix itself so
that a version exists for each level of thé tree above that occupied;

we use the nomenclature XX; for the connection matrix for level i, and

extend first the idea of a condensed comnection matrix ( 32.2,.3) to

dynamic stacks,
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Suppose XX, is an 8 x 36mx, (i.e. the transpose of that described in
3.2.3) with elements defined as before so that this matrix specifies
all the moves that can be made from every square, taking into account

those already visited. To form i 8-

(a) Choose a square j,
(b) The columd corresponding to j is set to zewo, i.e,

xx.m[ k,j ] = o," 1< k< 8
(¢). All references to j in other columns are removed and each

column nested up to leave no zero's in the middis,

This procedure leaves no trace of J at levels (L+ 1) and greater, i.e.
we have 'disconnected! thé Wertex from the equivalént graphs note,
though, that just as we did for 'newdeg' in 3.2.2, we 'throw away!'
connection matrices when backiracking, sé that 1f we revoke the choice
of square J, XX 44 will be lost and in XX; Jj will be an tavailable!
square again, PFigare 3%.12 shows -an sxample of updatiﬁg a

connection matrix in this way, which is analogous $o éhe transition from

Figure 3.4(2) to Figure 3.4(D).

The important feature of this method is that there does exist one

copy of the whole connection matrix associated with each move kept in

KEEPP ( ‘'storepath! of genmeration 1 and 2), That a method which

does not exhibit this technique can be implemented will now be shown,
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(D) XX, 44

Figare 3,12 Dynamic Stack Updating Technigue

3e7o1 Pushdown Vector Method This method is more economical in appear-

ance, but we shall see that it in fact compares uwnfavourably with the above,
The scheme is to consider each column of the connection mx. fhe top element
of a pushdown list of vectors; when the move is chosen, not the whole

matrix is updated, but only those columns which are to be altered (it will

be seen in Figure 3.12 that many columns are unchanged between (a) and (b)).

~Altered versions of columns are filed in the top cell of the appropriate

pushdown list, everything below being nested down one level, The depth
of each pushdown list will be determined by the maximum number of states
that a column can take, for a board of 6 squares a side this being 8,

The exact sequence followed is:-
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(i) Downward Move

(a) Choose move to square .
; (b) Zero in XX, (k,3), 1< k< 8, The former XX, is written
5( into XX, , XX, intc; XX3 4 and so on,
: i (¢) - The squares connected to J ave obtained from the new
XX, .
/ (d) Suppose these axe a4 4 o o o o 8, 3 then XX, (k, 2o )—
XX, (K, &g for 1< mg7 , 1<k< 8, 1Lagp. XX, (k, a%)
is given by (for every q): if 0K XX, (k, a¢ )< j, then
XX, (k,8q)=3%X, (k, ag )5 if XX, (k, aq )2 J, then

2, &k, a.‘b)m XX, (k+1,a,b);

(ii) Backirack

(2) Find previous square, k, from KEEPP.

() Pop-up this list in the array by overwriting XX, (m, k)
with XX, (m,k), 1< £<7, 1¢m<8, The vector XX 4 (m, k)
is filled with zeroes,

(c¢) xx, (m,Xk) now contains the mumbers &, « « + « » &, Of
‘those squares which were connected to Jj, so we can pop-

up the lists XX(m, 84)s 1£a<p,in the manner of (b),
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To imagine the process described above working in practice,
consider the matrix of Figure 3.12(a) to be XX, before choosing squere
8, and assume this to be -the first square chosen; by convention, then,
the matrices XX, y XXg3 5 o o » » 5 XXy are zero, Figure 3.,12(b) shows
XX, after 8 is chosen, and XX, consists of 8,13, 0,0 in column 4; 4,
12, 15, 0 in column 8; 8, 10, 16, 0 in column 12; 5, 8, 11, O in column

15, with zeros-elsewhere, and XX; 5, » « o + , XXg still untouched,

The feature of the method is that the current state of the conn-
ection matrix is always held in the same addresses, so that addressing
for testing moves is extremely easy; updating, being piecemeal, is
kept to a minimum, The_disa&vantaggs are that there exists only ons
complete connection matrii at any time - that for the current level -
and this implies updating both when moving down and backiracking; up-

dating is also more complicated than for the former method.

3,742 Bit-Matrix Representation The dynsmic stack method requires 4n?

levels in the stack for a 2n x 2n board, which means 128n* words for
the whole array., If n=3 (6 x 6), the storage required is some 10X of
" core, but for n=4, 32K are needed, and thus the available core-spaca

of KDF9 would be exceeded,

81




An alternative representation is to store the array in effectively
boolean form with the position in the computer 'word' the significant
attribute; for the 6 x 6 board, the arrangement we use is as followsie
XD is declered as a 36 x 36 array, one dimension giving 36 levels (or
layers), one dimension 36 connectors, and 36 biﬁ-positions in each word
(Dg-35) giving the 36 connectees, Then

XD (i,3), D, = 1 4if square Jj is comnected to square

(k+ 1) at level i and

= ¢ otherwise (1< i, j £ 365 0< k< 35),

This definition is specially designed to take advantage of the instruction
set of TUCA3 and réduces considerably the problem of addressing a partic-
ular word in the array. For an 8 x 8 board, this advantage would not

be apﬁlicable since there are 64 possible connectees, and this needs

2 KDF9 words which are best kept in consecutive addresses; the consecutive

sddressing instruction of UCA3 could not then be used (as it was in the

6 x 6 case) for fast construction of level i+1 from level i in the stack.

To describe the transformation to be executed at update-time in

.the dynamic stack case we must emphasise the following nomenclature

which is crucial to an understanding of the process :-
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'"Word! has its usualsigniflicenes, 1o8s 1 48=51% KDF9 words
By 'the array! we mean XD, i.e. 36 words x %6 words 2..dimensional array
in the ordinary sense, By 'matrix' we mean a 2-dimensional array in

the umsual sense that rows ave indexed by specifying particular words;

but columns are indexed by specifying bits within these words; each of

these 36 words x 36 bits matrices is a complete connection matrix,

An illustrativearslogy is that of & square mail-sorting frame, sunk
into a wall so that we see it as a two-dimensional entity, but whose
pilgeon-holes have depths furthermore some particulamignificance is
attached to the distance from the front of the pigeon-hole that a letter
is ;f.'iied. Returning to the updating procedure on the connection matrix
in the dynamic stack case, we choose a square (k<+1), at level i, say,
then, following precedent, we want to remove all mention of (k+1) from
" the (1+ 1)th, connection matrix. All squares comnected to (k+1) have.

L's in the relevant bits of XD (i,k+1) so this word must be zeroed

(By logicdl Yand' with a zero word); and all squares to which (k+ 1)

is connected {note the distinction) have a 1 in bit Dy, of the relevant
words of row i of XD, i.e. XD (i, a,_.b) so we must perform a logical

$and' between these rows of bits and a word whichrig all l's apart from D, .

In practice, since no other words in this row of the array have a 1
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in Dk , e can perform the same operation on them, so that we actually

program the transformation as i~

k
o
101 _
XD (i) and 0 Pt Xp(i-+1),
: 000000('43-1)
81

(XD (i) being shorthand for XD (i,J), 1L J<36). The operation is

carried out word by word, i.e.

XD (i,1) and 1, 4. o101, ...

T T T T Sy

KD(i,k-P—l)_?gl_@_O.......o..O

XD (i+1,1)

XD (i+1,2)

XD (i+1, k+1)

XD (i,k+2)and 1 & o o « 201, o o o 1, etc,

Note that D36-48 of every word in the originé.l connection matrix is

set to zero so that the 'and' operation has no effect on them, The

pushdown vector method can similarly be applied to a similar boolean

mafrix, but rather than vectors of words being pushdown lists, here vectors

of bits i.e, individual words are the stacks, the method being analogous

to the above except that XD (i) is updated piecemeal as before and thus

only 8 levels (1< i £ 8) are needed, We see that the 1pit-by-bit!

representation forms a compact method of storing all the fdriving' mech-

anism required for the tree~-search - for a 6 x 6 board 1296 words are
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3192
useds: an 8 x 8 would need 8892, Comparative tests of the pushdown vector

(288 and 1024 respectively) and dynamic stack techniques showed the latter
%o be faster, and this was the updating scheme thereafter adopted in gen-
eration 3 programs,

The author feels that some of the concepts of this section are hard
enough to visualize, let alone explain, and therefore an ALGOL version of
of the tree-search with specimen results has been included in Appendix 1
in the hope that this may at least clarify any obscure points raised in
the text, The program uses the full 3.dimensional axray (called 'XX') of

3¢Ty but adds the refinement that when square J is chosen at level i,
row J of XX; is zeroed, and then the square's mumber in the order of moves
(i.es (i41)) is entered in the first element of the row, This conserves
space by using paxrt of 'XX' in place of 'board!, and the complete tour can
be p.’-r‘inted in exactly the fashion of 3.4,1,

3.8 IORTRAN Identifiers The limitation of a length of 6 characters on

FORTRAN identifiers meant alterations were nscessary to generation 2 programs
which only had the generous Kidsgrove ALGOL requirements to meet, The
, significance of the initial character in determining in FORTRAN integer

and non-integer variable types has caused one or two radical changes, but

largely, ALGOL identifiers have merely been contracted %o within the 6

character limit,
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ORGD replaces 'origdeg' but rather than containing the degrees of all

the squares before even the choice of square 1 as its predecessor did,

ORGD has the ‘bit-by;bit’ connection matrix for the initial state, these

36 rows of 26 bits each being read in in.octal form. in the main routine,
KEEPP is the exact equivalent of 'storepath!, KTTOT of *ccount' ( 3.2.6),
and BOARD of 'board's the storage limit of these arrays is shown in

Table 3,3, Subroutine PRINKT corresponds closely with the ALGOL procedure
tprintroute', P2 combines the.functions of 'nextstep! and 'stepcount!,

and the initialization described in comment at the head of PL was explained

in 3.5,

3.9 Speed of 3rd-CGeneration Programs The type of output produced by

Frd-generation programs is shown in Appendix 2, the actual process of
printing tours proving time-consuming and slowing the rate of tour-

discovery to around 4 tours/second., A version of the program intended
onl%?énnmerate the tours found 9862 (in agreement with Duby's results)

at an average rate of very nearly 8 tours/second, (run—time of 20mirutes

42 seconds).
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Duby { 4) claims a program speed some 10 times faster than this
(partly or wholly éttributable to the 7094/KDF9 machine-speed factor),
and still finds the 8 x 8 search a: @iscouraging propesition,maint-
aining that there may be 6ver lOG knight's tours on a standard chessboard,
In view of the statement that the 75,000 tours found all had the first

35 moves in oommon,'it seems in order to suggesf a total more of the

scale of 1016: Whatever the final total might Ee, our very crude estimate
of the size of tree-search indicates that the 8 x 8 search will be much
larger, probably, without the aid of better pruning algorithms, too

large ever to be solved in a single run of a program; one might hope,
hovever, thaf a. combination of faster machines and a segmented tree-
search such as that outlined in Chapter 4 will eventually lead to a
solution of the knight's tour problem on the standard chessboard, Some
of the methods of Chapter 2 could very well, as we indicate in the

Conclusion, prove more fruitful in payment for greater attention than

it has been possible to accord them in the duration of this work,

In summary, we have traced in this chapter the detailed develop-
ment of the implementation of the one-~level lookahead tree-search,
beginning with the recursiwve ALGOL programs driven by a static condensed

connection matrix and dynamic stack of degree vectors and printing

87




solutions in strip-format; we finished by describing the heavily
assembly-language-oriented FORTRAN/UCA3 programs with graphic output
and dynamic connection matrix stack in bit form activating the tree~

search, In the course of this development the speed of the search

was improved by a factor of about 150 (the improvement due to the intro-
duction of the one-level lookahead in the first place is not readily

calculable but must be much greater -~ 3,1),
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CHAFTER 4

Extensions & Results

4,1 Introduction At the end of the last chapter, we stated the result

‘Wh#Ch was the primary tserget of this work, i.,e., the number of Hamiltonian
cyfles or knight's tours on a 6 x 6 chessboard is 9862, This is a result
which brings with it the unyieluing intractibility that the wuthor has

foﬁnd to characterize this problem throughout: ;he smallest set of solutions
fozyamy'size of board contains 9862 members, The discovery of sigmificant
préperties smongst a set of such magnitude immediately raised a patiern
reéogmition problem of vast dimensions: how do we classify the tours ¢

Hoﬁ do-other tree~searcning methods sbtand comparison with the one we have
used ? We give an account in this chapter of methods utilising variations

of the basic generation 3 proéram already described { 3,7-8) which try

to give some idea of the answers to these guestions,

4,2 (Classification by Corner-Order We investigatdd in 2,5 the feasibility
éf matching 4 strings each of which included as initial and terminal square
one of the 4 corners of the board, Now a relatively minor alteration was
made fo the basic tree-searching program to cause output at the first corner
reached as well as reversing the level pointer in this event; the average

depth of search was considerably reduced, and corner-to-corner strings
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found soue 4 times Iagter than knignt's tours. The total rmumber of
strings found was 4471 enoughvto make the prospect of the matching
process very unattractive, The study of the symmetry of tours can be
aijroached from the angle of these corner-to-corper strings, however, and

this in turn gives a broad classification of the tours,
i

i

|
4,2,1 We make the following

/ Definitions A C-square is a corner—square; and an N-square 1is
square separated by 1 l.,k.m, from a C-square, Thus for the asymmetric
board-numbering of Figure 2,5,, the C-squeres are 1,6,31,36 (called here-
after corners 1,2,4, and % respectively) and the N-squares are 9,10, 14,
17, 20, 23, 27 and 28, We say that each C-square has 2 N-gquares esgsociated
with it, and that relative to another C-square one of these is the inferior

and one the superior N-square,

If a, b are 2 C-squares then the superior N-square associated wiith a

relative to b,(s(a,b)),is that N-square associated with a which lies on the
opposite side of the board diagonal through Ffrom. b Similarly the in-
ferior N-gduare,(i{a,b)),lies on the same side of tne diagonal as a,

Figure 2,5 shows that the superior N-squares and inferior N-squares for

each pair of cornerg are as in Table'401; note -that this concept does




-not apply to diagonally opposite Cwsquares,

Now let us suppose that the 3 Cwsquares a,, &, ,&a, are visited
.in that order: we concentrate on the corner 8, o If a, and al,and

a, and a, are not diagonally opposite corners, then if the order of

| treversing a,iss(a,,a,),2,,s (a, , a5 ) we say the knight's
tour has a loop at a, , and if the order is ila, 5y a4), a, s i(a, 4 a;)
we say it has a cusp. These terms are illustrated in Figure 4.1, where

Iwe show a cusp at al and a loop at a3,

/

That is, if a C-square a, bounded by 2 strings of l.t.m's joining
it to 2 (distinot) diagonally opposite C-.squares is traversed via 2
superior N-squares, then there is a loop at aj if it is traversed via
2 inferior N-squares there is a cusp at a, If a is joined to two C-squares
not diagonally opposite, then a is diagonally opposite to one of these
squares, so the respective requirements for a loop and a cusp are 1

superior N-squere, and 1l inferior N-squere,

A diagonal C-string is a string of l.t.m's joining two diagonally

opposite C~squaress; an adjacent C-string is any other string of l,t.m's

Joining 2 C-squares,
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a b SchJb) L(a,b)
1 2 14 9
1 4 9 14
2 1 17 10
5 2 | 3 |10 |17
| 31 2 |28 | 23
., Table 4.1 3 4 2.3 28
(a @nd b are corner nos, ‘_ggj_;_ 4 1 27 | 20
4 3 12 | 2ar
' square nos,)
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In 2,5 we discussed two orders of tours traversing corners and
we can now define them specifically using the nomenclature we have Just

introduced.

DLfinition A Type T knight's tour is one which consists of two diagonal
i

g%strings and two adjacent C-strings.

A Type II knight's tour is one which consists of four adjacent C-strings.

!

/

/ These two varieties of tours are shown schematically in Figure 4.2.;
f
it should be remembered that long interwoven strings of moves separate

the C-squares, and these diasgrams merely indicate which corner is joined

to which, without even indicating whether loops or cusps exist.

40,2,2 Further Clagsification We can now meke use of the wvarying ways

of traversing a particular corner to subdivide the two classes so far

introduced: all the possibilities sre shown in Figure 4,3,

Type I ' Type 1II

Figure 4.2 Xnight's Tour Classification
| 93




We have not yet introduced any considerations of symmetry into
the tours themselves «~ this subject is dealt with in the next section,
It is evident however, on inspeeting the diagrams of Figure 4.3 that

several configurations have an inherent syﬁlmetry attached: why only

some of these are realised in practice is our next topic,

XXMXM

NO 1.00f$S WO LOOPS
OMNE LOOP THREE LO0OFPS 4 1_o0PS
NO LOOPS ONE LoO? 3 LOOPS 4 L.ooPS

~ [T

TWO LOOPS
I‘:Lgl:ca 4.2 Subclassification by Loops
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4.3 Symmetry of Knishit's Tours The symmetry properties we are going

to discuss are a property of the knight's tour's relationship with the
chessboara, and, as is usual with this kind of discussion, there are
two viewpoints we may take, We shall imagine the tour to be a fixed
framework of moves, the numbers of the squares associated with these moves
being determined by the orientaﬁion of the chessboard relative to this
move~framework, Alternatively, we could have specified the board as being
fixed and the framework reoriegtable. When we refer in the succeeding
paragraphs to equality (' = ") between stringﬁ, we are conceptually div-
orcing the patterns of moves from the board, i.,e, dissociating them from
dhy numbering system, and superimposing them one on another, Two strings
indistinguishable under these circumstances satisfy the equivalence rel-
ation '= ', In the study of symmetries we are interested in 8 orient-
ations of the board as follows:-

(0) its initial state

(ex) rotation about en axis through one pair of diagonally épposite

éhsquares

(@) rotation about an axis at 90 to this in the plane of the board
(5) rotation about an axis through the mid—pbints of one pair of

opposite sides

: o
(§) wrotation about an axis at 90 to ¢ ¥ ) in the plane of the board

( £) rotation through 90°about an exis perpendicular to the board
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(Y]) rotation through 180%about an axis perpendicular to the board
(§) =zotation through 270° about an axis perpendicular to the board,
This set of transfomations of a knight's tour forms a group under the
operation 'f!' representing 'followed by's the zero element is O, and
each transformation, apa:c't.i‘rom £x f 4 is its own inverse; the trans--
formations O, & , Nendy forn 2 subgrouys |

Given a knight's tour at random, it may on application of the 8
transformations yleld 8 distinet knight!'s tours; we say that such a

tour is non-gymmetric, Some tours yield only 4 distinct transformations

and some 2: we call these 2-and 4-symmetric respectively, There now
follow some results on the symmetry of knight's tours; we use the symbol
® to.denote the operation of reflection in a diagonal as in 2,2,, and

A,B,C,D are corner-to-corner strings. By reflection symmetry we mean

any of the transformations «,f, ¥ ,® produce the same effect as 0; by

rotational symmetry we mean that one or more of €y 1 ,9 produces the same

effect as 0, The board is assumed even-sided,

Lemma 4,1 DNo corner~to-corner string between adjacent corners of the
board.is syinmetric about the mid-point of the side of the board joining
the two C-squares,

Proof Consider, for example, corners 1l and 2 with x-coordinates O and

5 If a move is made from 1 with Ax= Ax, , then the mirror image move

from 2 must be made also with Ax = -Ax, ., The corner squares were orig-

inally 5 squaxres apart, and the separation of the two ends of the strings

being constructed from the C-squares is now 5—2Ax1.




After n moves have been made from 1, and the corresponding reflected

moves made from 2, the separation is

n
5 =22, Ax,,
=1 .
which is always odd., Since the separation is never zero, the strings

can never meet -~ hence the result,

Lemma 4,2 Any string of l.k.m's joining adjacent C-squares has an odd
rumber of moves, and any string joining diagonally opposite C-squares
an even number of moves,

LR, sn fodh; opprdlhe ey 4o fle chovt holds.
Proof Suppose ke conveTse of She dirst part tov b trwe, Let the

mumber of moves in the string with

41 be w

n

Oy =41 be wn Ay

Ay = — 1 be w

w1 7
Ax = -1 be n_, 3

Ax =42 be n, ;3 Ay=+2 b wm,,

DAy =2 ~2 be n s Ay = —2 be W,
Let the total number of moves be 2p, and the board -size be 29X 2q.

Then obvicusly

ngt b, = b e, = 20 (1)
Also we have le[= 2q -1, ,Ay! =0 (or vice versa) for an adjacent

C-string.
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Now

Ayl|=0 = ~m_ ~-2m -2m
] 3' -q +2 -2 -{2)

‘&xl=2cb— 1= n+1—n_1+2n+;_ -2n

g

-2

and substituting into these equations from (1), we get

2m+1+3m+2‘ -m_, =2p

2n 430, -n_ =2 (p+q) - 1

I'rom these results we deduce that

my, - m_, is even,, .

20 By have the same parity.

.

Similerly, 3n+2‘ -n_, s oddys o n,, and n_lhave opposite lpamty,
But n+1+n_1=m+l+m__2_ ‘
- = e
Il_{_z"'l’l_l Hl+1 i m_1

So nyy and n_ must have the same parity, and m +

; and m_, must ham? opposite

parity., Therefore
n,, +:’r_1+n+l-{-nhz consists of 3% odds-+1l even or 3 evens -1
1
odd, either of which gives an odd result, in contradiction with (M) ;
similarly for the m's,

By an analogous argument, we can show that the supposition of the
converse of the second part of the lemma leads to a contradiction also

8o the lemma 1s proved,
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Theorem 4,% There are no S-gymmetric knight's tours,

Proof Clearly Type I are inherently not completely symmetrics an 8-
symmetric knight!s tour would have to be Type II, consisting of 4 identical
ad jacent C-stPings to satisfy rotational symmetry; the C-strings would
also need to be symmetrical about the mid-point to comply with reflection
symmetry requirementsi.c, A=B=C=D; A¥=A in Figure 4.2), But we have
shown this t0 be impossible in Lemma 4.1, Hence there are no 8-symmetric

knight's tours,

Theorem 4.4 No Type I knight's tour hag rotational symmetry,

Proof Suppose a Type I tour does have rotational symmetry, then it is
plain from Figure 4.2 that this must be a 2-fold symmetry with A=C, B=D,
Therefore A-+B must be 18 moves, yet Lemma 4.2 shows that A-+B is inesc-
apably odd, so that even 2-fold rotational symmetry of Type I tours is im-

possible,

Theorem 4,5 No Type I knight's tour has reflection symmetry.

i,e, ALl Type I tours are non-symmetric,
Lemma 4,1 shows that no symmetrics can arise out of the transformations
Y end 8 above, Consideration of Figare 4,2 also shows that « and 8 applied

to the gereral Type II tour produces distinct knight's tours unless we
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have either A=B*, C=D* or A=D*, B=(C%.

Theorem 4.6 No Type II knight's tour has reflection symmetry.

'§£99£' In the foregoing remarks we have shown the sufficiency of proving
the tour in Figure 4.4 cannot exist. Consider the board showvn in 4.5.,
and let us try to construct the knight's tour shown in the second diagram
of Wigure 4.4. Now the squares X and Y must be used once and only once
each, If X 'is in string A and is reached in x moves, and corner 2 is
reached in n moves, then ¥¥ must be reached in n+(n-x)=2n-x moves; but
X#=X, s0 thé square X is used twice. Whether X or Y is used in A or B

it must also occur in A* or B¥, or vice versa, so these two squares are
either used twice or not at all, and thus this sequence of sirings is not
é\. knight's tour. An ident}ical argunent exis‘ts for the left diagram

of Pigure 4.4, relating to the use of squares W and Z., Hence we have

the desired result, . 1 2.
A - A
A* B 3 A% W
2 2 Y | £
Figure 4.4 Hypothetical Reflection-
Symmetric Type II Touxr A} 3

Figure 4.5
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Note that we have also eliminated the particular case of Figure 4.4
where A=B, Thus we conclude from the above theorems that only Type II
tours show any symmetry, and this is at most 4-fold symmetry of the rot-
ational type.

These theoretical considerations lead us to expect that the total
number of Type:I\toufs,nI;, will be divisible by 8 and the number of
Type II's,ng, divisible (only possibiy) by 2, In fact the former number
ils only diyisible by 4, since our earlier freedom of orientation leads
us here into ambiguity: the transformations 0,64, + « & + 48 generate
from each knight's tour 8 tours no one of which may be generated from
any other tour (unless it ﬁe one of the other 7) since the transformations
form a group, and consequently we should be able to choose %hitours %hioh
will generate all the np Type I tours (it is clear that Type I tours
generate Type I, and Type IT generate Type IT, no cross-generation being
feasible), We will now prove, however, that the transformations described
always generate 4 clockwise and 4 anti-clockwise tours, Since we have
denied the separate identity of tours starting L —=14, it is apparent

that gn tours must be chosen from which to generate all Type I tours.
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Theorem 4,7 The eight transformations on a knight's tour always produce

4 clockwise and 4 anti-clockwise tours,

Proof TFigure 4.6 shows the results of applying the operation 'f! to
pairs of transformations, From this we see that if, for the purposes
of the w@ment, we term O a zero rotation, then any reflection trans-
formation can be accomplished‘ by & rotation transformation followed by

the specific reflection o, We have
% =04

R=nfe

Y =0§ e

g S=cfe

The effect of e« is To reverse the sense of the tour, so that if the
untransformed tour O began 1—9, o is a tour beginning 1—>14 (and thus un-
acceptable), Whatever the orientations o6f the tours obtained by the
single transformations €, N L& 8, those gbt by the double transformations .

S ’ '6 ,5 respectively will be opposite, So there are equal rumbers of

clockwise and anti-clockwise circuits: 4 of each,
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' Table 4,6 Table of Effect of Successive Reflections and Rotations

on knight's tours

%nI is thus an integer, and the number of Type I tours is

divisible by 4., A minor alteration to the tree-searching routine of
the basic generation 3 program was made to count Type I tours, this
consisting of a check on the order of traversing C~squares;y Type II
tours alwaxé pass through exactly one C-square pafors Teaching corner

whereas this square is always the lst or 3rd,

C-square on & Type I

itinerary. The result obtained for the Type I and II counts (these

two figures were achieved from two separate runs, not by subtracting

either from 9862) were :-

Type I
Type 11

3752 tours
6110 ‘tours
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We see our supposition that n  might only be divisible by 2 is in
fact correcty but in the light of Theorem 4.7., it is worth reflecting

that the reason for this is not the reaction of 4-fold symmetry on groups
of 8 transformations, The fact that we do not admit 4 out of these 8
night cause us to revise our ideas and expect rather n, to be odd, but
%e have also to bear in mind the essential asymmétry of each adjacent
C-string in the 4.symmetric Type II tours, For these tours (shown in
F#gure 4,7) there is an isomorph geuprlsing fonw-alrror=inags stvings

80 that A-symmetric (and 2-symmetric) tours naturally occur in pairs

and ﬁm:is thus even.

A

(i)

Figure 4,7 The 2 Structures of 4-Symmetric Type IT Tours and their

Isomorphs

ther refinement to the tree-searching routine enabled the actual
munber of 2- and 4-symmetric knight's tours to be determined, and repre-
sentative examples of the various loop/eump conbinationy pexsissidble ars

displayed in Appendix 2,
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Figure 4.8 shows a 2-symmeiric arrangement which has 2 loops and no counfer-
part amongst the A-symmetric tours, The search for symmetric tours was
programmed particularly efficiently by making use of the 'skew-symmetry!
(i.e. the tequality' in the sense of 4.3 of the first and second strings
to the third and fourth strings) inberent in them, A test was made after
18/moves to see if any square waspresent with its skew-image (in the centre

/
/
of the board)s if soy the string found was rejected and the level counter

.

reduced by l; if not, a complete gymmétric tour could be formed by conse
tructing a second half-tour of gkew-images of the squares already used,
The asymmetyic board-numbering of Figure 205 made this easy to program,

a rough translation of the UCA3 actvally employed being:~

for itv = 2 step 1 until 35 do begin

if board (i)= 0 or board (i)>19 then goto I else

_if board (37-1) # 0 then goto uptree else board (37-1) : = 18+ _
' board(i)

-

I: :
ends
printroute (board);, etco
It was found that the total number of 2-symmetric Type II tours was 68,

and the number of degymmetric tours was 1O,




Figure 4.8 2.Loop 2nSymmetric Tour with Isomorph

4.4 Results Appertaining to Other Tree-Search Methods Back at the

beginning of 4.2 we copdemasd the corner-to-corner tree-search with
qétcﬁing because the size of the matching (and formation of reflected
st?ings) appeared foo grest, It is perhaps worthvhile to show how these
’corner-toucorner strings are distributed according to length. (Table 4.2)
.80 that an idea of the number of combinations of 4-gtrings whose lengths
total %6 moves may be formed; this exposition was defefred peﬁding the
proof of Lemmsa 4.2,

The rumber of half-tours could easily be found,'also oy a2 simple
ad justment to the ordinary generation 3 tree-search routine calling only
for curtailment after 18 moves rather than 36 moves, A trial run showed
that the frequency of half-tours (unlike that of C-strings) was greater
than whole tours, so that the overall saving of time on the tree~search
phése was unlikely to be much better then 254, The remaining 5 mimtes
or so of machine time (see 3,9) would hardly be adequate to invert and
mateh in excess of 10,000 half-tours,; and we conclﬁde that tree-segment-

ation of this type does not compare favourably with a straightforward
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tree~search through 4n ‘1 (for a 2n x 2n board) stratification levels,

Adjacent C -Stt"u\gs

Diagomal C-skrings

Lengbiv Nuwwaber L&h(‘j’tl’\. Muwsaba
1 0 2 0
3 2 4 0
5 3 6 13
7 40 8 44
9 12.0 10 107

" 256 12 188
13 474 14 239
15 G214 16 349
17 516 1% 380
19 324 20 218
21 2.20 22 4G
23 140 24 yA
25 GO 26 Q
L7 12 2% 0
29 0 30 0]
31 0 32 0
33 o 34 0o
35 0 26 0Q

Table 4,2 Variation of Frequency of C-strings with Length
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4,5 Time-Segmentation of the Jmaslsval ITnoinhesd In 2.6.1, and 3.9

we introduced the idea of time-segnentation of the tree-search, and
briefly discussed the amount of intermediate storage that mighat be
needed, We now probe thig epproach in more detail, particﬁlarly with
reference to the implementation effected by the author using the COTAN
on~line system in conjunction with the Egdon operating system.. The
program was, in essence, a modified generation 3 program, developed

itself using the on~-line facility, and is included in Appendix 1.

4e5e) The COTAN 2 On-Line System COTAN 2 is a multi-access on~lins

system for a XKDF9 computer connected to a small PDP8 machine which scts

as a multiplexor for a number of teletype terminals, The system provides
the user with a set of commands which enable him to manipulate and edit
files, and initiate standard Egdon jobs in the remote (short runs, high
priority) or background (long runs, standard priority) streams, Facilities
also exist within the Igdon system for writing areas of core to the on-

line file section of the disc.

Programs and data for the on-line system are stored permanently
on the disc, and the uwser may amend, compile and run any of his program
files by means of the commands at his disposal. A file consists of
two consecutive blovks in the block substitution area of the disec, the

first of which contains system housekeeping information, and the second

being the user's date: this may be accessed by using the appropriate
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command together with the block-name and 'key! of the file, and facilities
similarly exist for preserving altered files and deletbing uwnwanted
ones, Loading of a new file mey be done either by direct input at

the teletype conscle or (useful for large progrems) by supplying bthe

two blocks on cards for a disc update run, Once the file on the disc
is loaded, it can be altered or merely executed as a program (after dev-

elorment) as often as required,

/

’

4o5.2, Modifications to Generation 3 Programs The underlying strategy
used in the time~segmentation program was to split the tree-search into
" a number of (}gﬁ$ necesserily equél) bime-2llsss each of which would
be compatible with program time-limits impcsed by the operating require-
ments of the installation., TFor a 6 x 6 board, this segrentation was
artificial since the entire tree-search could be completed within the
specified time, but the program nevertheless showed the feasibility of
extending the method to an 8 x 8 board, Iuitially, data were read in
as for an ordinary run, but after the time elapsed had approachad a pre-
set time-limit to within a specific tolerance, all intermediate inform-
ation, i.,e, connection matrix stack, solution veétors, branch counters,

was written into an on-line disc_file especially created Xor the purpose,
H
Other information to be retained in a separate file were the knight:g

tours and run-time running totals go +that these counts could be rTe-
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initiated on resumption of the tree-search., In order to restart
after 'freeze'; one item in the DATA section of the program file

~ (the value of the variable MODE) had to be altered, using a suitable

on~line command, before injecting the Jjob once more into the back-
é ground stwream; this change waused the action of the program to be
to obtain its data from the two disc-~files rather than from the DATA
/section9 after which it continved with the tree-seawch at the point
/ (in time) of 'freeze!, The time-check was carried out just after
printing each solution to standsrdise the prooédure of resumption
by ensuring that the level in the tree-search would always be 36 on
such an occasion, Time-~checking was again used in the continuation
segment to determine vhethexr the (new) intermediate data would need
writing back to disc before another 'freeze'!, If so, another continuation
segment could later cérry on the tree-search; otherwlse the tree-search
was termipated in the ordinary way after which the normal eﬁdmof—job
condition of a standard generation 3 program ensued, Any number of
continuation segments might be needed, but only the first one necess-
ifated changing HODE; Figure 4,8 shows how time-segmentation requires
two modes: (i) initial, where deta is stored in the program file, and
(1i) continuation (including terminal), where data is stored in another

on-line file,
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Figure 4,8 Tree~Search Time-Segmentation

The purpose of MODE having been described; the next new variable to bs

introduced is RUSRUN which is the running-total of the program run-time,
This was saved between segments, and on resumption was added to the

current segment run-time to give the 'time so far! printed out with

each knight's tour, When a continuation segment tree~search was halted
prior to writing information to a disc-file, the value of RUNRUN was
updated by adding to its current value the total Tun~time for the
present segment. Finally, TIMELT is the elapsed-time fime—limit which
is also supplied to the system through a COTAN command at run-time;

the program must conform to this time-limit and write'data to disec
before the system throws it off -~ hence the need for the program to

have a copy of the time-limit,
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KTTOT, RUNRUN, and MODE are all public variables since other FORTRAN
routinesfuse them; TIMELT was declared as a common variable so that

it should be accessible to the tree-search routine P2 via Z-addresses,

Minor improvements in the coding of P2 are discernible, but the
chief alteration was in the layout of the arrays ORGD, BOARD, XD,
KEEPP, and JJ. ORGD was omitted completely, and a suitably adjusted
initial connection matrix read directly into level 1 of the XD stack,
Instead afké@phmg XD in Yiesborss snd J7 in ARezdoras,; JJ,; XD, BOARD
and KEEPP were all declared as common arrays so that they would occupy
ca.conbinuous series of blocks of Z-stores and might therefore be transferred
to and from disc in a single transfer, At 'freeze', the repositories

for various gquantities were az follcwgi-

Arrays JJ, XD, BOARD, KEEPP in TFile DATA02/DS
Variables KTTOT, RUNRUN in Tile DATAO%/DS

The fact that TIMELT was not preserved between segments means

that a variable time-limit could be applied,

The new routine P3 contains the read from/write to disc.file

instructions. The job 'opens' the on-line Ffile by making an exit to
the Director program ( oUT 120 ) which returns to the program the size

of the file and the address of its first sector,
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The routine then sets up transfers in 40-word sectors (%o avoid watching

for the end of a track) and lets Director initiate these transfers, The

main (direct) entry is for reading from DATAO2/DS and DATAO3/DS into core:
|

the side entry is for writing from core out to the disc-files.

‘The interface between P2 and P3 is organised as shown in Figurs 4.9,
Not vthat P3 is always side-endered from P2: reading into core from disc is
only initiated by mainlrouhine which explains the FORTRAN entry-name RESUME
of!PB; note also that P2 is always side-entered from P3: the main entry

to P2 is only used in an initial segment when P1 calls P2,

In the event of only one segment being necessary, termination is via
P1 and main routine which calls EXIT in the normal fashion., Termination of
a continuation segment is ordinarily by OUT 100 in P3 (normal UCA3 end-of-
job command), but if the continuation segment #m gquestion happens to be the
final one, return is made from P2 to P3 and thence to main routine for
library subroutine EXIT to terminate the job.

In view of the comparatively slow output routine PRINKT, it was thought
that better results might-be obtained by incorporating the peripheral Bhrauns-
fer instructions explicitly within P2. The resulting block of coding was
some %0 48~bit words long (dus to producing output in format) and was sub-

stituted in place of the JSF1 instruction.
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Two 24.word areas of W-stores were used for the dovhlo~buffered output,
and 36 YA-stores for intermediate storage of the elements of BOARD
after conversion to character form, The use of double-buffered output

roduces speeds of printing in excess of 5 knight's tours per second,
& &an D

In this chapter, we have discussed the use éf modified and extend-
ed versions of the basic 3rd-generation.tree-searching program for ass-
egsing some of the other tree~search methods of Chapter 2 and also how
the tree-search with one-level lookahead may be ‘'frozen! to permit time-
segmentation and hence make searches too large for a single run a viable
proposition, The major topic of the chapter was the application of the

i knight's tour enumerator to a novel classification of the set of tourss;
a mumoer of results about the symmeiry of tours in connection with this

classification were proved,
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CHAETER 5§

Conclusion

5.1 Appreisal of Methods In a number of instances, the methods

described in Chapter 2 were judged on their merits at the time, while

evaluation of other techniques received mention in Chapters 3 and 4.
Our purpose in the present section is to correlate all the previous
findings, and try to conclude from them the best averues into which

future research might be directed.

The one-level lookahead tree~search procedure developed in Chapter

% ig clearly at the limit of its applicability with a 6 x 6 board and

even the time-gegmentation of Chapter 4 is reall& only avoiding the issue:
for an 8 x 8 board an exhaustive tree-search is impracticable unless

better pruning criteris are to hand, The gize of the solution set for

the 6 x 6 boaid makes the discovery of properties of tours which might

be used ag criteria (sine qua non) a difficult ons, The symmetry properties
discussed in 4.3 give us a clagsification of a kind, but this doss ot
redeem the method of 2,5 from the extremely unwieldly matching problem,
and.the matching of half-tours does not inspire much optimism in this as

a viable method either., Dynamic programming suffers from the lack of a

deterministic weighting function to resolve the optimal policy problem (279)
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and'provision of such a function would seem to imply again a greater
understanding of knight's tours' properties, This general dearth of
properties is the obstacle which must be surmounted before any of the
éabove techniques can be considered applicable other than to restricted
‘p:oblems. Other questiong which are also relevant here are: does the
ﬁresence of knight's tours on a bcard of dimensions 2n x 2n imply tours

/
'on boards 2(n+1i) x (2n-3), vhere i, j ave positive integers 2 And does

there in fact exist some formula whence the rnumber of tours on a board

- of given dimongions may be calculated?

Two methods,; however, have been degcribed which require little
or no Further knowledgs of tours, and which might prove reasonably succ-

essfuls the methods of heuristic transformations and edge-removal,
.

5.2 Future Development of Technidgues The method of 2,6 was only

implemented for one reversal-finding rule - in fact a particularly
simple one, There are obvious possibilities for extensions directed
towards escape from cyclic situations (which would presumably necessitate
larger 'memories' then the four-tour FIFO store-experimented with) by
maintaining a list of occurrences of choices of transformations, Ve

may swmise nalvely that if a cycle of tours is found, new tours may

be generated by returning to the last tour for which a choice of trans-

formations existed (obitained from the list) and making a different choice,
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c

Figure 5.1 Cycles of Heuristic Transformations

Figure 5,1 shows a choice being made at A and a cvele of fours
B~—>(C—>B; on noting the cycle, the choice list is invokedﬁband the
right-hand branch from A is tried (A is now removed from the list as
all paths from it have been tested). This to$ leads to a cycle D—=E-~—=D,
so the choice list must be consulted again to find the choice that

occurred before A (i.e, higher up the tree),

Different ways of indexing elements of a tour inevitably basically
change the transformation, and the stratagem of 2,6 of choosing the
tleast significant! transformation is only one of a great number of
alternativess for instance, one might determine to select the shortest
transformation (in the sense of transforming the shortest string of

" knight's tour elements) vwhatever position in the tour it occupied,

Firally, as we pointed out, there is nothing to prevent the inclusion

of third - and even higher~order reversals,




The edge-~removal method of 2,7 is clearly worthy of further in-

vestigation since it drastlcally reduces tree~searching, The chief

difficulty Yo be overcome is that of organising the very complex house-

keeping attached o a method where one move generates tremendous alt-

i

ergtions to the connection matrix as well as extending the chains of
forced moves, A feasible approach might use the same bagic tree-
§earching algorithm and employ the boolean connection matrix stack

/

in bit-form described in 3.7, ' It is clear, however, that, since

at anytime we wish %o know not only if an edge is present or not but

. also i1f the corresponding move is forced, a purely binary representation

of the matrix is wn unsatisfactory information storage mediuns a
solution to thigs problem would be to maintain two stacks, one exactly
as in 3.?, and the other containing merely details of the chains of
forced moves, It would be necesszary to store for each squars in a
chain its two neighbours in the chain; o squars at the end of a

chain would have one reighbour only ~ the space thus left might

be used for a merker (-1, say) since end-of-chain squares should be
quickly detectable to aid Joining two chains, Thus the chain of squares
2%, 36, 28 might be stored as :

 row 23 -1, 26

row 28 ~Lly 36

ToW %6 23, 28



By keeping a dynsmic stack of these chain records, we retain the
advantage of this technique of being able to 'discard'! a level of the
stack if at any time a move is rejected, later overwriting it as occasion
?emands. The depth of the stack necessary ié a matter for some conjecture,
gut this could be determined by experiment; 10 levels would probably
ﬁe ample, When a move is ﬁade, cross~references'must be made between
t?e two stacks to effect the consequent updating, The type of cross-
#;ference involved would consist of removing edges in the current conn-
éotion matrix (on stack Ay say) and checking to see if any vertex had
newly become doubly-connected; the two squares joined to this vertex
'Would then be referenced in stack B (the chain lists)'s top cell to
determine if either (or both) were at the end of an existing chain, If
so, stack B would have to be updated to include a new member of $he chais
and stack A altered to allow for edge-removals at the join of the two

chains as shown diagrammatically in Figuxre 5.2,

\ N ’ A
N N/ ~ o~
G—f—— ‘ro-——-—c—-‘—{a - O < > - (4 L o e =0
new t existin composite chain C3
chain chain
"C2L  squareA c1 N.B. edges ab A removed,

() o

Figore 5,2 Coalescence of Chains
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The difficulty of ordering the maintenance of the stacks might

4

best be resolved by meking distance (from the mode just moved +to) the
determining factor, matrix entries for the nearest nodes being carried
out first, chain updates for these nodes following, then oonsequeﬁt
edge-removals for nodes 2 edges distant from the move-node, then mare
chain-concatenisisn, and so on until every chain square (barring chain-

ends) is doubly-connected and no doubly-gonnected square is not a choin-

square,

If the updating procsdure produces no inconsistencies (such as
trying to chain squares to the middle of an existing chein) then the
move is to be congidered wviable, and the tree-search progresses to the

next lowest level, otherwise it goes up one level,

Once a solution had been found, it would be necessary to ensure
that it was a knight's tour, and not merely a factor, The actual test
employed would depend largely on the storage format of the solution,
but would basically rest on ensuring that no square was used twice ox

not at all in the golution vector vefore- printing it out,
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APPENDIX 1

6 programs have been included as desoriﬁed below, The ALGOL
programs are intended to specify completely, together with the degcrip-
tion of Chapler 3, the meitnod used and its development, Whe FORTRAN/
UCA3 programs are included more for completeness! sake, as tuey are

" not annotated sufficiently to be easily understood,

Program | Type
DD17 ALY lst, generation(recursive) ALGOL,
DDL74AS-~ 2nd, generation(iterative) ALGOL with

graphic output,
DD174AV-~ | ’ 3rd, gpneration(iterative) ALGOL

with 3-D condensed connection matrix

stack,
COMMONSTOURS 1st, generation(recursive) FORTRAN/
| A3,
NONRECURSKT | 3rd, generation FORTRAN/UCA3,

SEGSEARCH Time-segmented 3rd, generation.



DD174AMOUKPL+30 10095 1RST 3
hegin MihrarvAO,Ab,A123

dntessr L, 01,02;h,1:xccountsreccount jraal, kKlokin g
intecar arvay XX[1:8,1:36],storepath,origdeg[0:35

1:3643

hroggdure nextsvep;

begln inbeser a,J,k,d;
:mstorepath[reccountj;

LoxJs=lfreccount=1thenalsslstanlintilide,

bezin iXX[j,dlA0shena=XX[J,dlalss zoboH;

linewdeg[raccount,a j=1than

begin ifrsccount3handXX{1,al=15hen soboN;

Lorks=J+latanlunbllSde

LEXX[kod =0thean, 5010

G: write text(70, GOTO*SQUARE]) ;

write(70,f1,a) s

stepcount(ai'

newline(70,1) 3

g£oLoN 3

ends

ends

H: forj:=Tstenluntdlldo

Deein a:=XX[],d] 3 |

write text(70,]TEST*SQUARE]) ;

erte(703f1935;

Lra#0ghan,

besin forks=0gtanligbilreccountdy LLstorepathl

Lfreccount<3handXX{1,a l=1then

beglin write text(70, [ FORCED*LOOP]) s

gotol.3

end s

stepcouns{a)

end,

else,

bagln newline(70,1) 3

£9CON 3

end s

L: newline(70,1)3

end s

N: storepath[reccount]:=03

reccount i=reccount~1; '

write text(70,]PRESENT*VALUE*QF*RECCQUNT*IS]) ;

write(70,£1,reccount)

newline(70,1) 3

write text(70, [ TIME*SO*FAR*]) 3

wrlite (70,2, time=klokin) 3

end of procedure nextstep;

procedure stepcount(B) 3

Tern ren (a e B

lnteserB;

e

begin inbteger l.mon;}

k]=athe

jgnewdeg[o

Galse ifnewdeglreccount,XX{k,d]l]=1then

Sl g

n 20%;

Pnhe A

=

:353

2oL

Sl

L 3




reccecount s=reccountti s

wrlte text(T70,1[365]STEP]) ;
write{70,71,raccount) ;

newline{70,1) 3

write text(70, [TTME*SO*FAR*]) s

wrlte (70, £2,time=klokin) ;

mi=reccounte1;
forl:=Igtenluntil3bdonewdeg | reccount, 1] i=newdeglm,1];
newdeg{raccount,B] =03
Forls=1gtenluntil8do

hezlin ma=XX[1,Bl3

1Em#Othenn s=newdeg [ reccount,mlelse 2LoP;
1in#Othennewdeg[reccount,m] t=n=13

end; _

write text(70,[STATE*QF*NEWDEG]) ;
Lom:=1gtenluntll36dowrite (70, fynewdegreccount ml) 3
newline(70,1) 3 :
write text(70, [ TIME*SO*FPAR*]) 3
write(70,02,time=klokin) ;
storepath[rececount] :=B;
LEirzccount{35Lhan nextstepaslse

besin printroute(storepath) §
storepathlreccount] =03
reccounte=raccount=13

gnds

gnd of procedure stepcount;

read procsdurs times

KDF9 3/0/0/05

SET330UT ;SET23 3 FLOATS

LXITs

[ rheshiod

ALGOL: S
nrocedure printroute(A);
yalueAsinbeser arravAs

beglin Anteger p,qj

p:=A{35]3

write text(70, [KNIGHTS*TOUR[cl]);
cecounti=ccount1}
forq:=0gtenhmtill3ido

begin write(70,f,Alal) 3

write text(?OsLJi);

end s

write(709f9p33
newline(70,1);
write text(70,[TIME*SO*FAR*]) ;

write (70,2, time~klokin) j

end of procedure printroute}

comment, this program prints out all the knlghts tours on a 6X6
chessboardes The recursive tree=-search ls llbverally sprinkled wiil
time~checks to furnish some ldea of the relative times spent on

different parts of the program}
open(20) sopan(70) 3




wrlite text(70,[D*I+W*STONE]e JKNIGHTS #*TOURS#ON #64BY*6#BOARD[3c 11!
forne=1gtenhuntil3tda

begin origdeglh-1]s=xs=read(20} ;

storepathin=1]:=03

Lorl:=1gtanhuntiixdoxX[i,h] 2=read(20) ;
Lforli=x+1gtenlintllBdodX[i,n] :=03

end;

1fread(20)7#999then, gohoMs

commant this resads In the condensed connectlon matrix XX and the
vector contalning the dsgrees of all the squares;
£1i=format(ndal) sfi=rfomat([ndl) ;f2:=rormat([nadsddd.dddeccel) ;
klokins=time}

storepath[0] s=reccounti=1;

newdeg[0,1]:=13

Lorl:=Cgtenluntilicdonewdeg[0s1] s=origdeg[i-1];
newdegl[0, 12] =53 '

ccount =03

storepathfreccaunt]z%XX[131];

forl:=1gtenluatll36d0

begin ALl=XX[1, 1]then newdeglreccount,1]:=0;

else

bagin ALLF 1then,

Lorn:=1gtephuntll8do

LEXX [, 1 1=XX{ 1, 1 Jthen

begin newdegl[reccount,i]i=newdeg[0,1]=13

£0L0MM 3§

enas

newdeg[raccountgi]:mnewdeg[ogllg

ends

MM ¢

end;

nextsteps

newline(70,1)3

write texnt(70, [TOTAL*NQ.*OF*KNIGHTS*TOURSHEQUALS®*]) 3
write(70,£1,ccount) 3

goboend |

M: write text(70,]INCORRECT#*DATAL) ;

end: close(70)sclose(20);

end->
> .

Data:=

23123313

4393163273343
8373931431932432935343363
83123143183213223253293313
h316518525527;

2519;24§

3333733353

4;1&516531;36;
h323533153173

33123163183
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DD 174ASOOKPL-+30 10095 1RST->
hesgin MibrarvA0, A, A123
Antazan a,d,f01,02)h,1,
intezar array XA[1:8,1
1:36f;jj[?s34]3boardt1 ;
i

kolomonX,ccount, reccovnt §
,storepathy,origdeg[0:35],newdeg{0:35,

ink[1:34]1;

5?5
gm
=
5—.’
S,
=
E—"o
o’
[y
-l
O
O
(=t
(D
1]
-~
4
A
2
bedran &

real procsdure times
KDF9 3/0/0/03
SET330UT 3SET23 3FLOAT
EXELS

ALGOLS

AN

procadure printroute(A)

Sl A T,

valusAsintazer arravAs

o

Wrlte text(709ﬁﬁNIGHTS*TDURLle);

ccount:=ccount--13 _

forg:=1gtanluntll36do

heginwrite(70,81,A0q) 3

LLa=q+6x6hannewline (70, 1) 3

ends

wrlte text(70,[TIME*SO*FAR*]) ;

wrlte (70,2, tine=klokin) 3

end of procedure printroute}

comment, thils program prints out all the knights tours on a 6x%6

chessboard. The iterative treee-search 1s liberally sprinkled

wlth tilme-checks to furnish a comparison between thls and a
recurslive method. Speeding up s further effected by use of ths

array BOARD which deplcts graphlcally which square is visited or

which move and facilitates checking whether a squaire has besen

visited beforae;

open(20) jopen(70) 3

write text(70,ld*I*W*STONE[c |KNIGHTS *TOURS#*ON*6*BY*6*BOARDS 3¢ 11)

Lorh:=1gtephnill36do

heginorigdegh-1]t=x:=read(20) ;

board{h]:=storepath{h=1]:=03

fort:=l1ghenhmbllxdoxX {1, h] :=read(20) ;

ey

foris=x+1gtepluntll8doXX{i,h] =03

engd s
1Lread(20)£9995han, gotoM;
comment, this reads in the condensed connectlion matrix XX and the
vectbor contalning the degrees of all the squares;

close(20)

Pr=format(Indl) 3£1:=format( [ndal) ;£2:=rormat( [nddsdddedddecel) 3
klokini=time; :

storepath[0]:=board[1] :=reccounti=1}

newdeg [0, 1] =13

forl:=2stenluntil3bdonewdeg[0,1] i=orlgdeg[i-1]3
newdegl0,9]:=53

cecount =03 .

storepathlreceount] :=xX{1,11;

board[XX[1,1]]:=2;




forl:=1gkanihmill36do

hesin Lf=XX[1, 1lthean newdsglreccount,1] :=0glas
begln LLiF# 1hneq -
Lorh:=1gtanlimtil8do

LEXX [h, L 1=XX[1, T lkhan

begin newdeglreccount, 1] s=newdegl0,1]-1;
2oL 3

end.s

newdeg[reccount,i] :=newdegl0,1];

ends

MMs

ends

NXST:d:=storepath[reccount]y

ford s=ifreccount=1%hanlelselshenhuntil8do

bealn 10XX[J,a1#08hena=XX{J,d]else gotoH};

L newdeglreccount,al=14haen :

beain itreccount<3landXX[1,al=1then gokoN;
forke=J+latenluntilido

LEXX [k,d]=08hen gotobalse ifnewdeglreccount,XX[k,dll=1%han zohol
G: write text(70,]G0T0*SQUARE]) 3

write(709f13a}3

link[reccount ] :=falsss
£0LoSTCT

ands

ens.s

H: jjlrsccount]s=1;
I: a:=XX[jjlreccount],dl;
write text??O [TEST*SQUARE]) 3

| wrlte(T70,£1,a)3
LEp#0fhen
bealn, ifpoardlal#Othan gatols
LfreccountBlangXX {1 al=1they
begin write text(70, [FORCED*LOOP]) ;
gotol:;
end.s
Link[reccount] i=true;s
£90505TCT;
end,
eles soboN;3
L newline( 0,1)3
J3[reccount :mjjfreccount]+1;
133 [reccount]{B8Lhen gokols
N3 newline(70,1);
storepathlreccount]:=board[d]:=0;
reccounti=raccount=13
wrlte bext (70, [TIMEXSO*FAR*]) ;
wrlte (70,82, time-klokin) 3
LLreccount=0then goboFelss gotoF;
STCT: reccounti=reccountv+1;
write textg703LL36sJSTEPi);
wrlte(70,f1,réccount) 3
newline(7091); '
write text(70,[TIME*SO*FAR*]) ;




write btext(70,[TIME#SO*FAR®]) 3

write(70,£2, tima=klokin) 3
ms=reccount-=13 ]
forl:=istenluntil3bdonewdeg [ reccount, 1] s=newdegim,1] 3
newdeg{ raccount,al =03

Loxrl:=1gtanlimbllddo
begin me=XX[1,al3
LImA0then n:=mevdeg{reccount,mlelse goboP;
Lin#0thennewdeg[reccount ,m] s=ne1}

P: : :

end;

wrlte text(70,[STATE*CF+*NEWDEG]) 3
forn:=Tgbenlimbll36donrite (70, £ynewdeg [ reccount,m]) 3
newline(70,1)3
write text(T70, [TIME*SO*FAR*])
write(70,£2,tlme~klokin) 3
storepathl[reccount]i=a3}
boarﬁ%a]:mr%ccount+1;
LLreccount{35than gokoNXSTelse
beginprintroute(board) ;
storepath{reccount] t=boardlal =0}
receounti=raccount=13
end s
F: d:=storepath[reccount]

LElink [regoount Jthen gobol glse goLoN;
E: newlina(70,1)3
write text{70,[TOTAL*NO,*0F*KNIGHTS#*TOURS *EQUALS**]) 3
wrdte(70,£1,ceount) 3
£0%50 endj
M: write text(70, [ INCORRECT*DATAL) ;
close(20);
end: close(70);
->
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DD 174AVOOKP5+30 10095 1RST 3

hagla lihrary AO,A6,A123

ANLBEEr asb,dhd, U, 01,12, h L, ] oksmax,cecount  receount

intecer arpayAX[1:8,1:36,0:35] storepathl{0:35],33[1:34];

real klokinjhoolean gates

real, nrocsdurs timas

KDFE9, 3/0/0/03

SET33;0UT s SET23 3 FLOAT S

EXLT3

ALGOLS

progedurs printroute(A);

Integer army Aj

wrlte tex’c('?OQE,J{NIGHTS':*‘TDUR,[Q‘LD 3

ccounts=ccount+13

Forq:=1gtenluntll36dg

hegin write(70,£1,A[1,9,35]);

LLa=q+Ox6then, newline(70,2) 3

ends .

wrlte text(70,[TIME*SO*FAR*])

write (70,2, time~klokin) 3

angd of’ procedure printroute;

comngnt this program prints out all the knights tours on a 6xb6
chessboard. The lterative tree-search is liberally sprinklsd

with time-checks to furmish a comparison betwesn this and a
recursive method. All record of the past and present state of

the beard is maintained in a dynamle stack of connectlon

matrices, the 3=dimensicnal array X¥. There 1s no nesed for
orligdeg, newdeg, o» board;

open{20) sopan(70) 3

wrlte text(70,ID*I*W*STONE e |KNIGHTS*TOURS*ON*6*BY*6%BOARD[ 3¢ 11) ;

Lorn:=1stanluntil36do

bealn xi=read(20) 3

storepatnih-1]:=03

forl:=1gtenuntllxdoXX[L,h,0] s=read(20) 3

~Lorli=x-+1shenluntil8doXX{i,h,0] =03

ends y

LLread(20)7#999thsn. goLoM;

comment this reads in the condensed connectlon matrix XX[0] and
the vector contalining the degrees of all the squares;
close(20) 3

f:=fox=matf Inddl) ;f1:=fomat([ndddl) ;£2:=rormat( [nddsddd.dddcecc]) 3
Klokinsi=time;

storepath[0]:=13

a=XY[1,1,0];

fori:=1stenluntll7doXX[1,a,0] :=XX[1+1,a,01;

XX[8,a,0}:=0}

XX[?Q 130] :7-'1;

forl:=Lgtenluntil8doXX[i1,1,0] =0}

reccounti=ccountci=03}

storapath[reccount]:=a;

20toSTCTs

L hetorsyy




NXST: d:=storepath{reccount]:
gates=truas

Lopie=1,1+Tunllel<9anaXX [1,d,mlF0dg,
LEXXI3, XX [15d,mlom]#*0%hen

elsg AL gatebhan

hesin a=KX[l,dml3

gates=L{alsas-

end

alsa zZohoN;

1L nobgatebhan

esln ifreccount3land a=14than
pesin write text(70,l (s FORCED*LO0OP])
EOLON3

ends
J3lreccount]e=
write text(70
write(70,f,a)
£950X3

ends

33 [reccount] =13

T: as=XX[jjlreccount],d,m]l;

write text(70,  TEST*SQUAREL)
write(T70,F,a)}

Lf, a=Ofhen, gohoN3
ifreccount<{34andxX[1,a,m]=1then
begin write text(70,l[s]1FORCED*LOOPL) 3
gatol3

ends

X: goboSTCT3

L: newlina(70,1);

J5[reccount :xjgfraccount]+1;

1033 [rececount 1{Bthean, gobols

N: newlina(70,1)3
storepath{reccount] 1=03
reccounti=reccount-13

m:=raccount=1j;

Cwrite text(70,[TIME*SO*FAR*]) s

wrlte (70,02, time-klokin) 3
ifreccount=0fhen gotobalss LoLoF;
STCT: reccounts=reccount-t1;

write text(70,][36s1STEP])

write (70,7, raccount) 3

newline(70,1);

write text(70,[TIME*SO*FAR*]);
write(70,£2,tine~-klokin) ;
me:=reccounit=13 .

03 |
» JGOTO*SQUARE]) ;
5

® o -
» ==

- forli=1,1+1yhllel<9and XX [1,a,n]40d0
hezin Di=Xalila.nl s

~ & —al -

- y
vV s £ 0“1'.":‘1;



-

4L k=afhen

besin Ford=2atenhinbil8ioxX{jsa, reccount] :=03
XX 1sasreccount | t=raccouni+ 3

BoLoV 3

ends

LE kFbthen

bealn forjs=1gtenluntll8doXX{jk,recoount] e=XX[J,k,m];
5050V 3 :

eng

hegin Lorji=lgtenluntilido

pezin dbe=XX[Jsboml 3

§X§[ng9recccunt]:m&ﬂbb<ath@nbbelsexx[j+1gbgm];

' @@%@ 3
5XX{E$b9reccount]:=Og_
ends

ends

1L k<365hen
forks=k+1ghenluntll36do

LE k=alhan,

begin fori=2gtap hmntilBdo

XXlisasreccount =03
XX[1,a,reccount § i=rsccount+13}

g—? n@iggr

celse Port:i=lgtepiuntilSdoXX{iskyreccount] s=XX[1,k,ml;

wrlte text{70, STATE*CF*XXlcll);
Lord:=1gtenluntildde

besin forj:=lstenluntil3bdowrite(T70, £, XX[1,J,reccount]) 3
nevwline(70,1) 3 .

engs

write text(70, [TIME*SO*FAR*])

write (70,72, time<klokin) 3
sborepath[reccount]=as
ifreccount{35Lhen gokoNXSTelse

begin printroute(XX) ;
storepath{reccount ] =0}
reccounti=reccount=13

g%m >

F: d:=storepath[reccount];

1.£33 [reccount ]=0then, sotoNalse sotols
B newline€7091)5

wrlte text(T70, J; TOTAL"‘*NO@“""DF“’"‘KNIGHTS”‘”TOURS"“‘EQUALS“"*‘*J,) 3
wrlte(70,f1,ccount) 3

goboend;

M: write text ( ’TOQLINCGRRECT%DATAL) 3
c¢lose(20) ;

end: close(70);

end->

-

Datat= As for program DDI174AS00csesa 0




*XEQ .
*FRONTSHEET
P COMMONSTOURS ,
YA1296,
END,
*PRE LUDE
*FORTRAN “
DIMENSION INTART (36),INTAR2(36,8),INTARS (36)
COMMON INTAR1 ,INTAR2, INTARS3
PUBLIC KITOT .
CALL BOCAF(I)
INTART=T«3
INTAR2=INTAR1 -36*8
INTAR3=INTAR2~36
CALL BCCAS (INTAR3)
CALL PREGUT (1)
END
¥CHAIN 1
*FCORTRAN
/| INTEGER XX,0RGD
COMMON KEEPP,XX,0RGD
PUBLIC KTTOT
DIMENSION KEEPP(36),XX (36,8),RGD (36)
. PRINT 3
3  FCRMAT(20HMAIN RCOUTINE ENTERED)
READ 1, (CRGD(I),I=1,36)
1 TORMAT (3612)
DO 5 I=1,36
KEEPP(I)=0
J=0RGD (I)
READ 2, (XX (I,K),K=1,J)
2 FORMAT(30Z)
J=dJ +1
DO 4 ¥K=J,8
L XX (I,K)=0
CONTINUE
READ 6,T
FORVMAT (I3)
IF (I~999)10,7,10
KTTOT=0
CALL SETUP
CALL RECURSIVE NEXTEP(1)
GOro 9
O  PRINT 8
8 FMRMT(14HDATA INCCRRECT)
9 CALL EXIT
END
*FCRTRAN
RECURSIVE SUBROUTINE NEXTEP(KTREC)
KA=KTREC
CALL SQTEST(KA)
11 I (KA)10,8,9
8 CALL RECURSIVE STEPCT (KTREC)
KA=KTREC

-3

1



CALL LOOP(KA)
GoTo 11
9 CALL RECURSIVE STEFCT (KTREC)
KA=KTREC
CALL RUBST (KA)
Goro 11
10  KTREC=KTREC -1
RETURN
END
*FORTRAN :
| RECURSIVE SUBROUTINE STEPCT (KB)
KB=KB+1 '
KC=KB
CALL UPDATE (KC)
S IF(KC)13,12,13
12  CALL RECURSIVE NEXTEP(KB)
- Qoro 14
13 KB=KB-1
14 |/ RETURN
! END
*PORTRAN -
SUBRQUTINE PRINKT
COMMON KD
PUBLIC KTTOT
DIMENSION KD (36)
PRINT 1, (XD (I),I=1,36)
1 FORMAT (1HO,3613)
KTT OT=KTTOL -+
PRINT 2,KTTOT
2  FORMAT (12HKNIGHTS TOUR,I5)
RETURN
END
*PORTRAN
SUBROUTINE PRINTT (TIME)
PRINT 1,TIME
1 FRMAT(1THTIME SO FAR,F8.3)
RETURN
END
*USERC (DE »
C THIS IS AN (RGANISING ROUTINE
ENTRYNAMES
SETUP *
ROQUT INE
P1,V3*
ol, =Vvi1, Q2, =V2,
SET 122, 0UT', SET 23, FLOAT,
=V3, (STORES STARTING TIME)
‘ J3P2, JSP3,
C SEE RESPECTIVE P-ROUTINES FCOR THEIR PURPCSE
vl, =Q1, Ve, =Q2,
EXIT 1,
END,




*USERCODE - ’
C THIS ROUTINE SETS UP THE FIRST ROJ O NEWDEG AND ESTABLISHES
C SQUARE 1 AS THE STARTING SQUARE

ROUL INE
P2,V3*
V2~1, V3=036/36/AYAl,
ve, Z1, =M, -ﬂ@Nl(STSST@mH@HW)TDT)

V3, :Q1: 2'3: =RMz,
*,1, MOMQQ,,=PDM1®, *, J1CINZS,
3, V2, =YAl, SET 5, =YA397,
C NEUDEG(O) SET UP
| EXIT 1,
" END,
*USERC(DE
C A ROUT'INE WHICH MAKES THE SPECIAL FIRST MOVE AND UPDATES
C NEWDEG AND STOREPATH ACCCRDINGLY
ROUTINE
/ P3,v8*
[ Vo=36, V3=AYAl,
/ V6—Q36/1/O V7~®8/36/O Va=12,
V8, Z1, =RM5, M+I6,
: =MOM6Q,
C FIRST MOVE TQ SQUARE 12
V6, =Q1, (OUT“R LOOP COUNTER )
V3, =RM3, Z2, =M5,
1, DC1, M+IT, V7, =Q2, M, MOM6, J2NE,
C TEST IF 1~xx(1,1)
ERASE, ZERQ, =YA398, M+I3, J7,
C NEWDEG(1,%¢(1,13) SET TO O
2, vePL, _ DUP =M2,
DUP, V2, vﬁﬂED CDVT, =M, J5=Z,(TEST IF I IS 1)
*,3, M6M2®,'V8 oy Th=z =7, J3C2NZS,

J5,
4, MLBO, V2P2, -, =MIM3,
C SETS NEWDEG(1,T)=NEWDEG(0,T)~1

T,
5, MIBQ, =M,
7, M-13, JICINZ,
C NEWDEG(1) FORMED FROM NEWDEG (O)
EXIT 1,
END,
*USERC (DE

C THTS RQUTINE PERFORMS THE LOOKAHEAD AND TESTS VIABIE SQUARES
C TO SEE IF THEY HAVE AIREADY BEEN VISTTED
ENTRYNAMES
SQTEST,RUBST , LOOP*
ROUTINE
PL4,V83,RE1,R12%
V&ﬂ,V&%6,W%EW,V%@,VH#M%Q
Ql, Q2, =V2, =V1,
DUP =VQ, va,
mowg, =V3, (KTREC STCRED IN V3)



71, =18,

V3, Vi, =, J1=Z,

V7, =RC3, J2,(SETS COUNTER FOR OULER LOOP)
V7, =RC3, [4+I3, DC3, (SPECIAL CASE)

V3, =ML, MWL, =MU, (STCREPATH (KTREC) IN M)
Z2, Vi, ., =Mi2, v10o, =M1,

M3, V5, MULID, CONT, M4, +, =5,

M 215, DUP, =M5, (A IN M5), J&2Z,

Vs, M5, V4, DUP, V3, +,

PERM, -, CAB, MULID, CONT, +, =I5,

Mitms, v, J7NE, ERASE,

C TEST IF NEWDEZG(KTREC,A) IS 1

3

b,

V3, SET 34, ~, J3=%,

MioMs, Vi, ~, J1L=Z,

v7, DUP, M3, V4, +, DUP, CAB, J5=,

V5, XD, CONT, Mi, +, =RMO, ~

V5, =I6, -, =C1,(COUNTER SET FCR INNER LOOP)
Ml 2M6Q, DUP, =V8, J6=Z, (XX (D,K) IN V8)

V3, V4, DUP, PERM, =, .

V5, XD, CQIT, V3, CAB, DUP,

PERM; +, CAB, +, =M7,

M7, -, J14=7

C TEST IF NEVDEG(XTREC,XX (D,X)) IS 1

5
6,

61,

DC1, JUCTNZ (IMNER LOOP), J6,
ERASE, ERASE, ERASE,

M5, =V81, (A IN V81)

V1, =Q1: Ve, =02,

Vg, =M9, VI, =MOM9, EXIT 1,
o1, =V1, a2, =Ve,

DUP, =VQg, =M2, MOM2,

=V3, (KTREC I V3)

J1h,

C DO STERCT THEMN JUMP QUL OF LOOP

s
3,
10,

ERASE, DC3, M+I3, J21C3NZ, (QUTER LOOP)

V7, =RBC3, (COUNTER SET FOR OUTER LOOP)

M3, V5, MULTD, CONT, MY, +, =I5,

Mi2M5, DUP, =V81 (A IN V31), Jii=Z,

v3, V&, +, =RC6, (COUNTER F(R SHORT INNER LOOP)

*,9, MBMOQ, V81, *, -, J13=Z, JOCONZS,
C TEST IF STCREPATH (K) EQUAILS A

1,

12,

—
L

A T P

V3, SET 34, -, JI1@EZ,

vat, =11, momit, vh, -, J13=%Z,
V3, =M2, 03, =V11M2(PRESERVES COUNT DURING STERCT),
M, =VLhEM2, V1, =Q1, V2, =Q2,
V9, =M9, ZERQ, =MOM9, EXIT 1,
a1, =v1, 92, =V2,

DUP, =V9, =I2, MOM2,

=V3, (KTREC IN V3)

V3, =2, 22, Vi, -, =M2,
vVitie, =03, vhele, =i, 21, =M3,
DC3, M+I3, J1CC3NZ, (OUTER LOOP)
V3, =M3, ZERO, Z1, =18, =M3M3,



V1, V2, =2, =01,
Vo, =19, Vi, WEQG, =MOMG, EXTT 1,
END ,
*USERC ODE,
C THIS ROUTTNE UPDATES MEWDEG ACCORDING TO MOVE FOUMD BY SQTEST
ENTRYNAINES
UPDATE *
FLIST PRINKT,PRINTT *
ROUTINE
P5, V5
Qi) =v1, g2, =ve,
DUP, =V, ~r1 MOMI
v1olu VﬂPu +, =13,
s

=V3, (KC IN V3)

V5P, DUP 04 =Th
QLTUQ6 VJ,
]NW,PEG,NGL =M,

M6

5,1, o, =13M60, *
JICLNZS, (SETS NEWDEG (KC, L)=NEWDEG (M, L))
V5PL, v81bu,‘vﬂPh
- XD CONT, V3, +, =M,
HR%-JPM-%HELWWEGMCA)O)
22, VLUPL, «, =M, V81PL, =16,
V?Pa ~Co, V5P4, =I6,

2, muMoQ
DUP, Jh=Z,(TEST IF M IS 0)
VLPL, DUP, PERM, -, V5PL, ¥D, CONT,
V3, -1—, ~l ,

! M3Mt, DUP, J3=Z, (TEST IF N IS O)
REV, «, =M3M, J5,(UPDATES NEWDEG)

3, ERASE,

L, ERASE,
5, J2CHNZ,
21, =Mb,

v81p4 V3, =5, =MSM5, (A IN STOREPATH (XC))
V3, SET 35, -, JOGEZ,
vl, =01, va =02,
vu NA ZbRD HM0N4 EXIT 1,

6, Vi1, =01, Va2, _np
LINK, vo

ﬁwma PRINKT AND OUTPUT STCREPATH)
SWT 122_ ouUT, SET 23, FLOAT,
V6P, I, =V2, SETAV2, JSF2,
C ENTER PRINTT AMD OQUFPUT THE TIME TAKEN

VO, =LINK, Q1, Q2, =V2, =V1,
V3, =i, ZERQ, 21, =W, =M2Mi,
vl, =01, V2, =02,
v& rﬂ= VLPL, =MOME, BEXIT 1,
END

ol E E Lhe3hh3zob66b366Lb6L33060468304066
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# Y
#FRONTSHEET
P NONRECURSKT,
YA1296, YB3,
END,
#*PRELUDE
*FPORTRAN
DIMENSION INTART(36),INTAR2(36),INTAR3(36)
COMMON INTART?, INTAR2,INTAR3
+ PUBLIC XTTOT ‘ -
CALL BOCAF(I)
INTAR}=I-36
INTAR2=INTAR] -36
INTAR3=INTAR2-36
CALL BOCAS(INTAR3)
'CALL PREOUT(1)
END ,
*CHAIN 1
*FORTRAN
INTEGER ORGD,BOARD
COMMON KEEPP,BOARD,ORGD
PUBLIC KT9GT
DIMENSTION BOARD(36) ,0RGD(36) ,KEEPP(36)
READ 2, (ORGD(I) ,T=1,36)
2 TFORMAT(B16,0)
DO 3 I=1,36
KEEPPEI;mO
'3 BOARD(I)=0
READ 4,T
4 FORMAT(I3)
IF(I-999)6,5,6
5  KTT0T=0
CALL SETUP
GOTO 8
6 PRINT 7
"7 FORMAT(14HDATA INCORRECT)
8  CALL EXIT
END
*FORTRAN
SUBROUTINE PRINKT(TIME)
COMMON KA,KB
PUBLIC KTTOT
DIMENSTION KA(36),KB(36)
KTTOT=KTT07"+1
PRINT 1,KTTCT
1 FORMAT(13HOKNIGHTS TOUR,I5)
PRINT 2, (KB(I),I=1,36)
2  FORMAT(6I5//)
PRINT 3,TIME
3  TFORMAT({11HTIME SO FAR,;F8.3)



RETURN
END
*USERCODE
C THIS IS AN ORGANISING AND INITIALISING ROUTINE
ENTRYNAMES
SETUP#*
ROUTINE
P1,V5%
V3=Q36/36/AYAT, V5=Q1296/1/AYAL,
"Ql, =V, Q2, =Va, '
SET 1, 21, =M1, DUP, =MOMI1,(SETS KEEPP(0) TO 1)
72, =Mi, =MOMI1,(SETS BOARD(1) 70 1)
V5, =Ql,
%*,1, ZERD, =MOMIQ, *, J1CINZS,(ZEROS DYNAMIC XD)
SET 122, 0OUT, SET 23, FLOAT, :
=Vl (STORES STARTING TIME)
V3, =Q1, Z3, =RM2,
#,2, MOM2Q, =MOMIQ, *, J2CINZS,
ZERD, DUP, =YAl, NOT, NEG,
SHC=1, NOT, YA289, AND, =YA289,(XD(0) SET UP)
SET 9, Z1, =RMi, M+I1,
=MOM1 , (PIRST MOVE TO SQUARE 9)
Vi, =Q1, V2, =Q2,
JSP2,{UPDATES XD AND EFFECTS TREE~SEARCH)
EXIT 1,
END,
*USERCODE
¢ THIS ROUTINE CONDUCTS THE TREE-SEARCH FOR KNIGHTS TOURS
FLIST PRINKT*
ROUTINE
P2,V7*
V3=36, V5=Q36,/36/0,
Ql, =Vi, Q2, =V2,
Z1, =RM1, M+IT, MOM1,(UPDATE XD FOR MOVE TO 9)
, ZERO, =RM1,{(COUNT IS 0O), DUP, J14,
100, 21, =42, M2il,(D)
DUP, =M7, NEG, NQOT,
V3, DUP, PERM, XD, CONT, =M5,(ROV MODIFIER FOR D)
SETAYAC, M1, +, =M3,(LEVEL -1 BA)
=C2, (SHC COUNTER)
M3M5, .
7ERO, =YBOM1,(TEST~CELL FOR GOTO MOVE)
1, J2C2Z, ZEROQ, SHLD1, DC2, J1=Z,(TEST FOR NONZERO BITS)
V3, DUP, C2, NOT, NEG, =-, XD, CONT, =Mi,
M3MAN, BITS, NEG, NOT, JINEZ,(TEST IF SQ.SINGLY CONNECTED)
YBOM1, J7NEZ,
C2, NOT, =YBOMi,(NOT INDICATES GOTO)
J1CeNzZ, (GOTO MOVE TESTING LOOP) ’
2, YBOM1, DUP, J3=Z,(N0 GOTO)



NOT, SET 22, -, JONEZ,
M1, SET 34, -, J7LTZ,(TEST I'OR FORCED LOOP)
I8, (JUMP 7O UPDATE XD)
3, ERASE, V3, =C2,(BRANCH COUNTER FOR LEVELgs ERASE,
M35, (SQUARES CONNECTED T0 PRESENT POSN,
L, J7027, ZERO, SHLD1, DC2, Ji=Z,{FIND NONZERDO BITS AGAIN)
C2, SET 22, =, J5NEZ,
M1, SET 34, -, J5GEZ,(TEST FOR FORCED LOGP)
JL4, (REJECT IF PRESENT)
5, -C2, =YBOMI,(NO NOT INDICATES TEST MOVE)
J8, (JUMP TO UPDATE XD)
7. ERASE, ZERO, DUP, =M2M1,(ZEROS LAST EL.OF KEEPP)
Z2, NEG, NOT, =MG,
=M6MT , (ZEROS CORRESP,.EL.OF BOARD)
M-I1,(UP ONE LEVEL)
"M2M1, =7, (REDEFINES D)
M1, DUP, JTINEZ,
J13=7,
8, ERASE, V3, YBOMI, DUP,
JoaTz, NAT,
9, =, {(CHOSEN SQUARE A), DUP,
T4y, =V7,
M+I1, (DOWN ONE LEVEL)®
Mil, =V6,
DUP, NEG, NQT, DUPD,
V3, XD, CONT, =M2,(ROW MODIFIER)
CAB, NBEG, =C2,(SHIFY CYCLIC MODIFIER)
SETAYAO, V6, DUP, =RMi,(RESTORE LEVEL COUNTER)
+, =113, (STACK LEVEL BAS
ZERQ, NOT, NEG, SHCC2, NOT,(MASK)
=Q4, V5, =05, .
¥,10,M3M5, Q4, *, AND, =M3M5QN, J10C5NZS,(ZEROS COL.A OF XD)
ZERO, =M3M2N,(ZEROS ROW A OI' XD)
Z1, =12, =M2M1, (UPDATES KEEPP)
72, =M6, =MT,
M1, NOT, NEG, =I6MT7,(UPDATES BOARD)
Mi, SET 35, ~, J100LTZ,(JUMP TO CHOQSE NEXT SQUARE)
ZERO, =M2Mi,(ZEROS LAST EL.CF KEEPP) - ‘
LINK, =V0, Vi, =Q1, V2, =42,
SET 122, 0UT, SET 23, FLOAT,
V4P, -, =Vi, SETAVL,
JSF1, (PRINT KT AMD TIME TAKEN)
Ql, =V, Q2, =V2, VO, =LINK,
z2, =M2, V7, NEG, NOT, =M3,
ZERQ, =MM2113,(ZERCS CORRESP.EL.OF BOARD)
V6, MEG, NOT, =RMl,(UP OQUE LEVEL)
71, =12, Meut, =M7, Ji2,
ERASE,
YBOMY, DUP,
J7LTZ, (QUICK BACKTRACK FOR GOTO AT LEVEL -1)

L)
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DUPy, V3, DUP, CAB, =,
=02, ( RESTORES COUNTER FOR TEST S4.LOOP)
M2t ; NEG, N0T, XD, CONT, =Mb, :
SETAYAO, Wl, -, =M3,
M3M5, ZERQ,
SHLDC2, (RESTORES NONZERQ BIT-SEARCH AT LEVEL -1)
ERASE, RBEV, =C2, J4,(RESUME TEST SQ.LOOP AT LEVEL -1)
13, Vi, =4l, V2, =2, EXIT 1,
END,
HFDATA
Q000200000000000
000L500000000000
00L2240000000000
0021 120000000000
0010050000000000
QOOLO20000000000
10001 02000000000
0 LO0045000000000
0200422100000000
210021 1200600000
1 000100500000000
OLO0OLO200000000
2010001020000000
5004000450000000
244200422 000000
12210021 12000000
051 0001005000000
0204000402000000
002010001 0200000
0050040004500000
0024420042240000
0012210021 120000,
000510001 0050000
0002040004020000
0000201000TO0000
Q0005004000 40000
0000244200420000
0000122710021 0000
0000051 0V0TOCO00
0000020400040000
000000201 000NN
0000005004000000
0000002442000000
0000001221 000000
0O000VO5T VOCOVO0
00C0QOO2040LO000
999
®EIDIOB



*XEQ

*FRONTSHEET

P SEGSEARCH,

W1 599
END

*PRELUDE
*FORTRAN

DIMENSTIN INTAR1E36gyINTAR2(36)SINTAR3(36,36)

DIMENSTON INTARL (34
COMMON INTARY , INTAR2 , INTARS , INTARL , TIMELT
PUBLIC MODE,RUNRUN,KTTOT
CtLL BOCAF(I)

INTAR} =13
INTAR2=INTARY 36
INTAR3=INTAR2-1 296
INTARU=TNTAR3-34

CALL BOCAS({INTARL)

READ 1,TIMELT,MIDE
FORMAT (F8.3/17)

CALL PREOUT(1)

END

*CHATN 1
*FORTRAN

un

W O~1 O\

INTEGER BOARD,XD

COMMON KEEPP ,BOARD,XD,JJ

PUBLIC MODE,RUNRUN ,KTTOT

DIMENS TON BDARD(362QJJ(3A)3KEEPP(36)
DIMENSION XD(36,36

IF (MODE. NE.0)9

RUNRUN=0. 0

CALL ZERO

REZD 2, (XD(1,I),I=1,36)
FORMAT(B16.0}

DO 3 I=1,36

KEEPP%I;mO
BOARD{ I )=0
READ L,T
FOHMATEI§1
IF(1=999)6,5,6

KTTOT==0

CiLL SETUP

GOTO 8

PRINT 7

FORMAT (1 4HDATA INCORRECT)
CALL EXIT

CALL RESUME

GOTO 8

END



*FORTRAN
SUBROUTINE PRINKT(TIME)
COMMON KA,KB
PUBLIC KTTQT
DIMENSION KA(36),KB(36)
KTTOT=KTTGT-+1
PRINT 1,KTTOT
1 FDRMAT(?B&O{NIGHTS TOUR, I5)
PRINT 2 (KB(I) T=1,36)
2" FORMAT(6I5/
PRINT 3,TIME
3 FDRMAT(i?HTIME SO FAR,F8,3)
RETURN
END
*FORTRAN
SUBROUTINE TRACE}
PRINT 1
1 FORMAT( 10HP1 ENTERED)
RETURN
END
#*FORTRAN
SUBROUTINE TRACEZ2
PRINT 1
1 FORMAT(10HP2 ENTERED)
RETURN
END
#*FORTRAN
SUBROUTINE TRACE3
PRINT 1
1 FORMAT(10HP3 ENTERED)
RETURN
END
*FORTRAN
SUBROUTINE TRACE.L
PRINT 1
1 FORMAT(13HP3 SIDENTERED)
RETURN
END
*USERCODE
C THIS IS AN ORGANISING AND INITIALISING ROUTINE
ENTRYNAMES
SETUP, ZERO*
FLIST TRACE?*
RDUTINE
SVU, RIT*
v3 Q36/36/AYA1
JSFi, Ql, =Vi, Q2, =V2,
SET 1, Z1, =Mi, DUP, amowa » (SETS KEEPP(0) TO 1)
22, =M1, =MOMI1(SETS BOARD(i) 0 1), J2,



11, Q1, =Vi, 02, =2,
SET 12956, =RC1, Z3, =M1,
¥ .1, ZERD, =MOM1Q, *, JiCINZ3, (ZERDS DYNAMIC XD)
Vi, =Q1, V2, =2, BEXIT 1,
2, SET 122, JUT, SET 23, FLOAT,
=Vl , (STORES STARTING TINE)
7ERD, 73, =M2, =MOoM2,
SET 288, =HI2, SET-2,
SHC-1, MOMP, AND, =MOM2,(XD(0) SET UP)
SET 9, Z1, =RM], M+I1, ‘
=MOM] , (FIRST MOVE TO SQUARE 9)
V1, =01, V2, =02,
JSP2, (UPDATES XD AND EFFECTS TREE-SEARCH)
EXIT 1,
END,
*USERCODE :
C THIS ROUTINE CONDUCTS THE TREE-SEARCH FOR KNIGHTS TOURS
FLIST PRINKT,TRACE2% :
ROUTINE
P2,V9,R101*
V3=36, V5=035/36/0, V8=F10.0,
V6=Q1,/r78/478,
JSF2, 1, =V1, 02, =V2,
v6, SET 110, OUT,
73, NEG, NOT, =V9,
71, =8M1, MOMiIN, (UPDATE XD FOR MOVE TO 9)
MOTOQ1, (COUNT IS 0), J14,
100, M2M1, (D)
DUP, =M7, NEG, NOT,
V3, DUP, PERM, XD, CONT, =M5,(ROW MODIFIER FOR D)
M1TOR3, V9, =+M3,(LEVEL -1 BA)
=02, (SHC COUNTER)
M3M5, ZERD, =MBM1, (TEST-CELL FOR GOTO MOVE)
1, J2C27Z, ZERD, SHLD1, DC2, Ji=Z,(TEST FOR NONZERD BITS)
V3, DUP, C2, NOT, NEG, -, XD, CONT, =Mi,
M3MAN, DUP, DUP, NEG, NEV, AND,
JINEZ, (TEST IF SQ.SINGLY -CONNECTED)
MeM1, JTNEZ,
C2, NOT, =MSM1,(NOT INDICATES GOTO)
J1C2NZ, (GOT) SNUARE TESTING LOOP)
2, MOM1, DUP, J3=Z,(NO GOTO)
NOT, SET 22, -, JBNEZ,
M1, SET 34, -, J7LTZ,(TEST FOR FORCED LODP)
J8, (JUMP TO UPDATE ¥D)
3, ERASE, V3, =C2(BR/NCH COUNTER FOR LEVEL), ERASE,
M3M5, (SQUARES CONNECTED TO PRESENT PUSN.5
4, J7CPZ, ZERO, SHLD}, DC2, JU=7Z,(FIND NONZERD BITS AGAIN)
C2, SET 22, ~, J5NEZ,
M1, SET 34, -, J5GEZ,(TEST FOR FORCED LOOP)



5,

14,

JU, (REJECT IF PRESENT)

C2, =M8M1, (N0 NOT INDICATES TEST MOVE)
J8, (JUMP T2 UPDATE XD)

ERASE, ZERO, DUP, =M2il],(ZEROS LAST EL.OF KEEPP)
72, NEG, NOD, =M5,

=MBM7 , (ZERJS CORRESP.EL.OF BDARD)
M~T1,(UFP ONE LEVEL)

MoM1 , =M7, (REDEFINES D)

M1, DUP, J11NEZ,

J13=%,

FRASE, V3, ME8M1, DUP,

JoGT7Z, NIT,

-, (CHOSEN SQUARE 4)

DUP, =VT,

M+I7(DOWN ONE LEVEL), M1, =V6,
DUP, DUPD, NEG, NOT,

V3, XD, CONT, =M2,(ROW MODIFIER
NEG, =C2, (SHIFT CYCLIC MODIFIER
V9, V6: +, =M3,

V5, =R5, Z4, NEG, NOT, =M3,
SET-2, SHCC2, (MASK)

DUP, =R4, M3M5, AND,

*,10,=M3W50N, M3M5, 04, %, AND, J10C5NZS,

=M3MEQN, (ZEROS COL.A OF XD)

ZERD, =M3MoN, (ZEROS ROW A OF ¥D)

71, =M2, =M2M1, (UPDATES KEEPP)

72, NEG, NOT, =116, =M7,

M1, NOT, NEG, =MEMT7,(UPDATES BOARD)

Mi, SET 35, =, J100LTZ,{JUMP TO CHOUSE NEXT SQUARE)
7ERD, =M2M1, (ZEROS LAST EL.OF KEEPP)

LINK, =V0, Vi, =Q1, V2, =02,

SET j22, DUT, SET 23, FLOAT,

ViPY, -F, 27, +F, =YL, SETAVL

IS, (PRINT KT AND TIME TAKRE)

Q1, =V1, 02, =V2, Vo, =LINK,

SET 128, OUT, SET 23, FLOAT,

z5, ~F, V8, SIGNF, J102L7Z,(TEST IF TIME UP)
SET 122, 0OUT, SET 23, FLOAT,

ViP1, ~F, 77, +F, =27,(UPDATE RUNRUN)

V1, =Q1, V2, =02, J1P3,(JUMP TO FREEZE ROUTINE)

101, JSF2, o1, =V1, Q2, =V2,

SET 35, =M1, 73, NEG, NOT, =VO,
vé, SET 110, OUT,
SET 13, =V7, M1, =76,

102, 72, NEG, NIT, =M6, V7, =M3,

11,

7ZERD, =6M3,(ZERDS CORRESP.EL.OJF BOARD)

V6, NEG, NOT, =RM{,(UP ONE LEVEL)

71, =M2, M2oM1, =M7, Z4, NEG, NOT, =M8, J12,
ER SE,



12, M8ul, DUP,
JT71TZ, (QUICK BACKTRACK FCR GOTQ AT IEVEL -1)
DUP, V3, DUP, CAB,; ~, =C2,(RESTCRES COUNTER FOR TEST SQ.LOOP)
M2Ml , NEG, NOT, XD, CONT, =M5,
MITOR3, V9, =+M3,
M3M5, ZERO, SHIDC2, (RES
ERASE, REV, =C2, J4,(RE
13, V1, =91, V2, =Q2, EXIT
END, :
*USERC (DE
C THIS ROUIMINE INITIALISES THE ARRAYS FOR TREE -SEARCHING
C FROM FREEZE AND FREEZES THEM BEFORE RUN ENDS
ENTRYNAMES _
RES UME *
FLIST TRACE3,TRACEL *
ROUTINE
P3,V12,R1 *
V3=Q0/AWO/AW159, V5=PDS010095, Vé=Q0/AZ8/AZT,
Vi=PDSDATAO2, VT7=PDSDATAO3, ‘
V8=PFIIE T0OO, VO=P SMALL , VI0=Q0/0/1,
V11=00/AV8/AV 9, V12=01/AW0O/AW3 9,
JSF1, SETARL, =Z10, J2,
1, JSF2, SETAR5, =210,
2, Q15 "‘:VTJ Q2, =V2,
z1, SET 35, +,(TOP ADDR.T(O BE TRANSFERRED)
Z4, (BOTTOM ADDR. ), DUP, DUP, =M,
PERM, -, {AREA OF CCRE TO BE READ/WRITTEN)
seT Lo, DUP, DUP, =11, =12,
DIVI, ZERO, SIGN, +,
=C1, (SECTOR COUNT), SET 39, -+,
=M2, (TOP ADDR.FCR SINGIE TRANSFER)
V3, Vi, V5, SET 130, OUT, (OPEN FILE DATAO2)
ct, -, J98L1Z, (CHECK ON FIIE-SIZE)
=79, DC1, M~I1,(ADJUST TRANSFER COUNTER)
79, MOMIQ, BRASE, Z10, =LINK, EXIT,
M16, =RI3, JUHICINZ, SETARS, =210,
Jo,
ST 1, =C3, M, =I3, J6CINZ, SETARQ, =Z10,
M2T0R3 , (A-STCRE FOR DISC TRANSFER)
Q3, SET 106, QUT, (TRANSFER 1 SECTMR)
Z9, NOT, NEG, =29, (ADJUST SECTCR ADDRESS)
M+I2, (ADDR., LIMITS FOR NEXT TRANSFER)
J3C1NZ, (KEEPP,BOARD , XD, JJ TO/FROM DISC), M+I1,
Z10, =LINK, EXIT,
7, SET 105, ©UT,
~ v3, V7, V5, SET 130, OUT, (OPEN FIIE DATAO3)
: ERASE, Z10, =LINK, EXIT,
8, M, DUP, NOT, NEG, =M3, =I3,
Z9, Q3, SETARV1, =210, J7,

TCRES NONZERQ BIT-SEARCH AT IEVEL =1)
?U?@ TEST S§.L0O0OP AT IEVEL ~1)

3
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s

SET 40, =RC2,

*,10,ZERO, =WOM2Q, %, J1CC1NZS,

11,

12;

98,
99,

*DATA

MoMl , =WO, MOMIN, =W, zg, via, SWTAR12 =710,
J73(SP“CIAI,THAND TER OF THO EXTRA WORDS S
V6, SET 106, 0OUl', (KI'TOT,RUNRUN)

SET 122, QUr, SET 23, TLOAT,

=VU4PT, (SLDBES STARTING TTME)

vi, ~Q1 Ve, =Q2, JS101P2,

SET 112, our, :

EXIT 1,

78, =WO, Z7, =W1, (KI'TOT,RUNRUN)

viz, SET 105, OUT, J99,

vio, V11, SET 104, 0OUT,

SET 112, OUT,

END,

600 000

0

Lor 1]

[rest of data as for pmoaranthNRECURSWT]
¥END JOB



APPEDIK 2

The first piece of output is a sample from the program

DDL7AAN-~ of Appendix 1l; it shows how the diagnostic output is

used to check the validity of the path chosen through the tree and

he program, the

jalso compare the time taken in varioug parts of +

!
! : .
'second 2nd third sheets are from DD174AVw.., the former showing

K

the updating of the comnection matrix stack XX(see 0.85), and the
-latter the graphic output incorporated from 2nd. generavion onwvards,
ﬁote the tautomatic' choice of an umised square at each step(ef.the
flst. output page) produced by updating the connection matrix rather
than the degree vectors. The 4th. page shows graphic output of a
3rd, generation FORTRAN/ﬁCAB program to print out all the 2~ and

4-symmetric tours on a 6x6 board(see Chapter 4). Diegnostics have

been omitted and only the tours themselves shown,
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'"EST SQUARE i

‘EST SQUARE 4
IME SO0 FAR
TATE OF MEWDEG

“IME S0 FAR

'EST SQUARE ]2
'EST SQUARE 14
'"IME $0 FAR

{TATE OF NEWDEG
‘IME S0 FAR

'EST SQUARE 3
"THME 80 FAR

i{TATE OF NEWDEG
‘IME S0 FAR

'EST SQUARE 7
"IME S0 FAR

\TATE OF NEwDEG
"IME SO FAR

PEST SQUARE 23
TEST SQUARE 12
‘IME SO FAR

STATE OF NEWDEG
YIME §0 FAR

;070 SQUARE 1§
IME 80 FAR

YTATE OF NEWDEG
PIME $0 FAR

FEST SQUARE 13
TEST SQUARE 17
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