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SUMMARY

Cancer is a disease characterised by disruption of apoptotic pathways and 

inappropriate expression of survival or proliferative signals. Despite its role as a 

major apoptotic pathway in T cells however, the role of Fas in lymphomagenesis is 

not clear. To investigate the role of Fas in MYC induced lymphomagenesis, animals 

harbouring a c-MYC transgene, with expression targeted to the T cell lineage, were 

placed on a Fas^' background. Loss of Fas did not alter the incidence, latency or 

phenotype of thymic lymphomas arising in these mice. In addition, the incidence 

and latency of lymphomas in Faŝ '̂ ' mice infected with MuLV was not significantly 

different from strain controlled mice. Further, the proportion of lymphomas with 

retroviral insertions at c~myc was not increased in Fas'^' mice. These results indicate 

that Fas does not act to restrict tumourigenesis, at least in the T cell lineage.

Previous studies have reported that MYC induced apoptosis can occur through Fas 

and p53 signalling pathways. However loss of Fas did not inhibit MYC induced 

apoptosis in normal or neoplastic T cells, indicating that MYC induced apoptosis can 

occur by a Fas independent pathway. Furthermore, MYC induced apoptosis could 

occur in the combined absenee of both Fas and p53 apoptotic pathways. Although 

loss of these two major apoptotic pathways did not prevent MYC induced apoptosis, 

protection from MYC induced apoptosis was observed with cell contact in some eell 

lines. This protection was shown to dependent on a PI3 kinase pathway. In addition, 

in cell lines that retained funetional p53, the PI3 kinase/Akt survival signal was 

shown to be critical for cell survival.

The response to T cell receptor activation in Faŝ '̂̂  thymocytes was also examined. 

In addition to lacking the ability to undergo activation induced cell death, a 

proliferative defect was revealed in Fas^' thymocytes, compared with control MRL 

thymocytes. This defect was rescued by co-stimulation of the cell surface marker 

CD28. The role of Fas:FasL interactions in tumourigenesis may depend on the cell 

types in which Fas and FasL are expressed. Signalling through Fas or FasL may be 

important in the transduction of proliferative signals in T cells, and this may explain 

why disabling the Fas pathway does not appear to influence T cell lymphomagenesis.
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CHAPTER 1 

INTRODUCTION

1.1 C a n c e r  a n d  G e n e t ic s

Cancer is the broad tenu for a group of diseases that are characterised by 

inappropriate and uncontrolled cell proliferation. In general, cancers are caused by 

clonal expansion of a single somatic cell in which deregulation of the mechanisms 

that control cell suiwival and proliferation has occuned. It is now widely recognised 

that disturbance of the cell cycle in tumour cells is triggered by a series of mutational 

events. There are several factors which may influence the process of transformation. 

Elements outwith the cell can affect the probability that mutational events will occur, 

for example enviromnental or lifestyle factors such as diet, hormones, radiation and 

carcinogens such as those found in cigarette smoke and asbestos (reviewed by 

Tominaga, 1999). By products of normal cellular metabolism such as free hydroxyl 

radicals derived fi'om oxidative respiration and lipid metabolism also constitute a 

possible tlireat to DNA integrity (Cadet et a l, 1997). In addition, some infectious 

pathogens have been causally related to cancers; in particular, human 

papillomavimses have been detected in virtually all ceiwical cancers (Walboomers et 

a l, 1999), and Epstein Barr virus has been linlced with B cell malignancies (reviewed 

by Oudejans et a l, 1997). Inside the cell, genetic abnonualities may occur as a result 

of failure to repair mistakes made during DNA replication (reviewed by 

Hoeijmakers, 2001). In some cases, predisposition to cancer may be a consequence 

of inherited mutations in genes which may influence cell survival and proliferation 

(reviewed by Ponder, 1990). Tumourigenesis is a multi-step process however, and 

further events are required in these susceptible individuals if transformation is to 

occur.

The genetic lesions which occur during transformation must convey on the cell the 

ability to override the normal controls on proliferation and survival. A model has 

recently been proposed by Hanahan and Weinberg describing six essential categories 

of genetic alteration which dictate progression towards malignancy (Hanahan &



Weinberg, 2000). In order to overcome the anti-cancer defence mechanisms present 

in all cells and tissues, cells must lose their dependence on normal growth signalling, 

while becoming insensitive to anti-growth signals. Cells which progress towards 

malignancy must also acquire genetic alterations which allow them to exceed their 

normally finite replicative potential. Since the rate of expansion of tumour cells 

depends not only on proliferation, but also on cell death, tumour cells must also 

develop the ability to evade signals to die. In addition, survival of a growing tumour 

requires angiogenesis to provide a sustained blood supply. Finally, to escape 

constraints on space and nutrients, it is advantageous for tumour cells to acquire the 

ability to invade and colonise new tissues, a process known as metastasis.

Although several mutagenic events occur during the process of transformation, in 

almost all cases, deregulation of proliferation and inhibition of death provide the 

foundation for clonal expansion. The genes whose alteration bring about the 

development of malignancy are broadly categorised as either oncogenes or tumour 

suppressor genes. Gain of function of an oncogene may contribute to tumour 

development by promoting cell gi'owth, proliferation or suiwival, while loss of 

function of a tumour suppressor gene is likely to contribute to malignancy by 

resulting in loss of the ability to suppress proliferation or promote cell death.

1.2 A p o p t o s is

Multi cellular organisms must have the ability to tightly control cell numbers, in order 

to maintain homeostasis. As well as having the capacity to divide, cells must also be 

able to mediate their own death, by a process known as apoptosis. This kind of 

programmed cell death, or apoptosis, occurs tliroughout development, and is essential 

for maintaining homeostasis in a number of cell systems, particularly the immune 

system (Osborne, 1996). Too much cell death however, may lead to developmental 

disorders or degenerative disorders such as Huntingdon’s disease (Portera-Cailliau et 

a l, 1995). Failure of apoptosis might result in autoimmune diseases (Strasser et a l, 

1991; Rieux-Laucat et a l, 1995) or cancer (reviewed by Kerr et a l, 1994).



The ability of a tumour cell population to expand depends not only on the rate at 

which those cells proliferate, but also on the rate of cell death. Under normal 

circumstances, stress signals in a cell, for example DNA damage, hypoxia, absence 

of survival factors, or abnormal proliferation as a result of oncogenic activation, lead 

to death of that cell by apoptosis (reviewed by Hoeijmakers, 2001). It is widely 

acknowledged however, that most, if not all cancers have evolved to evade apoptosis. 

Inability to induce apoptosis in response to oncogene-associated stress signals early 

during tumour development may be sufficient to allow progression of malignancy, 

while intact apoptotic pathways should facilitate clearance of cells undergoing early 

transformation events. This is undoubtedly an oversimplification of the complex 

interaction of events that ultimately result in neoplasia. High levels of apoptosis are 

not uncommon in end-stage malignant tumours (reviewed by Papac, 1998), and the 

likelihood is that tumours are composed of proliferating and apoptotic cells, the 

balance of which must shift towards proliferation to allow tumour outgrowth.

The morphological and molecular changes associated with apoptosis have now been 

extensively characterised. Electron microscopy has shown that apoptotic cells often 

undergo cytoplasmic shrinkage and plasma membrane blebbing (KeiT et a l, 1972). 

Their chromosomes rapidly condense and aggregate around the nuclear periphery, 

forming small apoptotic bodies (Kerr et a l, 1972; Wyllie et a l, 1980). More 

recently, swelling of the outer mitochondrial membrane and release of cytochrome c 

into the cytoplasm from the mitochondrial intermembrane space has also been 

reported (Kluck et a l, 1997; Vander et a l, 1997; Yang et a l, 1997a). In addition, 

intemucleosomal cleavage of the DNA occurs, generating a characteristic ladder of 

DNA fragments which can be used to identify apoptotic cells (Wyllie et a l, 1980). 

Disruption of the plasma membrane causing randomisation of phosphatidyl serine 

between the inner and outer leaflets of the membrane is another feature of apoptosis 

which can be used to detect apoptotic cells (Koopman et a l, 1994; Fadok & Henson,

1998).

The basic components of the apoptotic machineiy can be split into two broad 

categories, namely sensors and effectors. Sensors are responsible for monitoring the 

intracellular and extracellular environment for changes which affect the decision of



the cell to live or die. The sensors are then responsible for regulation of the effectors 

of cell death. Among the sensors of cell death are death receptors, which transmit a 

signal to the cell to die, when bound by death ligand. Examples of these death 

ligands are tumour necrosis factor (TNF), and other members of the TNF family. Fas 

ligand, and TNF related apoptosis inducing ligand (TRAIL). The p53 tumour 

suppressor protein is also capable of eliciting cell death by upregulating the pro- 

apoptotic molecule Bax which in turn stimulates the mitochondria to release 

cytoclirome c (Miyashita & Reed, 1995; Schuler et al,  2000).

Most effectors of apoptosis have downstream signals in common however, as they 

share as central executioners of the apoptotic pathway a group of cysteine proteases, 

collectively known as caspases (reviewed by Kidd, 1998). Ligation of death 

receptors, and/or cytochrome c release, activates a cascade of caspases which finally 

results in cleavage of cellular DNA and destruction of subcellular stmctures and 

organelles (reviewed by Hengartner, 2000). The idea that apoptosis may act as a 

natural bander to tumourigenesis was conceived when massive apoptosis was 

observed in the cells of rapidly growing hormone-dependent tumours, following 

honnone withdrawal (Kerr et al,  1972). It is thought that apoptosis must be blocked, 

or at least overcome, before oncogenic activation can lead to malignancy, and that 

some apoptotic sensors and effectors therefore act, at least in part, as tumour 

suppressors.

1.3 O n c o g e n e s

Oncogenes were originally discovered when studies of many tumour retroviruses 

revealed that specific genes were responsible for malignancy, hiitially, these genes 

were believed to be viral genes, until the first oncogene was cloned. Following 

cloning of Y-src, from the Rous sarcoma virus which affects chickens, it was 

discovered that a very close relative of y~src was present in noimal avian DNA 

(Stehelin et al,  1976). Further analysis in other species revealed that relatives of this 

gene are present in other vertebrates (Spector et al,  1978). These findings led to the 

conclusion that the retroviral genes which cause cells to be transfomied are in fact



derived from noimal cellular genes. These ‘normal’ genes became known as proto­

oncogenes; genes which could become oncogenes when deregulated by viral 

integration. The term proto-oncogene can refer to any gene which becomes 

oncogenic as a result of viral integration, or somatic mutation of the cellular DNA in 

uninfected cells. Most oncogenes typically act in a dominant manner, so mutation of 

one allele is usually sufficient to contribute to tumourigenesis.

Because oncogenes lead to malignancy in the cells in which they are expressed, they 

are generally derived from mutations which cause either amplification or deregulated 

expression of a gene encoding a protein that enhances cellular growth, proliferation, 

or cell survival. The most common proto-oncogenes are therefore those encoding 

growth factors or their receptors, intracellular signal transducers, or transcription 

factors. A typical example of a proto-oncogene is the c-MYC gene, which encodes a 

transcription factor involved in regulating cell proliferation (Dang et a l,  1999). 

Mutations resulting in overexpression of this gene have been found in many human 

and animal cancers (Nesbit et al, 1999).

1.4 T h e  c-M YC  O n c o g e n e

The c-MYC gene belongs to a family of genes, that also includes Y-MYC, N-M7C, B- 

myc and s-myc (Nau et al,  1985; Slamon et a l,  1986; Ingvarsson et al,  1988; 

Sugiyama et a l,  1989). Of these however, only c-MYC, L-MYC and N-M7C have 

been associated with malignancy (reviewed by DePinho et a l,  1991; Nesbit et al,

1999). The first of these oncogenes to be identified was c-MYC. In 1978, a retroviral 

oncogene, v-myc was identified in avian tumours (Duesberg et a l,  1977). 

Subsequent research showed that, in common with many oncogenes identified in 

retrovirally transformed cells, there was a cellular homologue of this gene, referred to 

as c-MYC (Sheiness et a l,  1980; Vennstrom et al, 1982). Since then, the c-MYC 

proto-oncogene has been shown to be deregulated in a wide range of human and 

animal malignancies (Spencer & Groudine, 1991; Dang et a l,  1999). Although 

identified as an oncogene however, it became clear that c-MYC was also vital for 

normal development, and for regulation of cell proliferation. Mice nullizygous for c-



myc cannot survive past embryonic day 10.5 (Davis et al,  1993). The reason for this 

may be that c~myc plays a pivotal role in cell proliferation. Highly elevated levels of 

c-MYC mRNA have been observed in lymphocytes in response to mitogenic 

stimulation (Kelly et al,  1983), and anti-c-MTC antibody has been shown to block 

DNA replication in HL-60 cells in vitro (Iguchi-Ariga et a l,  1987). In addition, 

inactivation of c-myc in fibroblast cell lines was shown to cause apparent constraint 

of the cell cycle, and accumulation of cells in G1 and G2M phases, in addition to a 

decreased rate of proliferation (Mateyak et al, 1997). Over the past decade research 

has predicted a role for c-MYC not only as a crucial regulator of proliferation, but 

also of differentiation, cellular metabolism, and apoptosis (reviewed by Dang et al,  

1999).

1.4.1 The c-MYC Gene and c-MYC Protein

The c-MYC gene is comprised of three exons located on chromosome 8q24 in 

humans (Neel et al,  1982). The major product of the c-MYC gene is C-MYC2, a 

641cDa polypeptide, translation of which is initiated at an AUG start codon on exon 2 

(Ramsay et a l,  1984). A second longer product, c-MYCl results fiom initiation of 

translation at a CUG codon on exon 1, 15 codons upstream of the major start site 

(Harm et a l,  1988). Both products are expressed in all normal cells examined so far, 

although the synthesis of these two proteins is differentially regulated, with C-MYC2 

transcripts accounting for 75-90% of the c-MYC mRNA (Harm & Eisenman, 1984). 

In noimal cells, expression of C-MYC2 is responsible for the majority of c-MYC 

activity in growing cells, however as the cells approach high density, synthesis of c- 

MYCl increases to levels equal or greater than those of c-MYC2 (Harm et a l,  1992).

The ratio of the two c-MYC proteins has been reported to be disrupted in several 

tumour cell types, either as a result of rearrangement of the c-MYC gene, by 

cliromosomal translocation, or mutation, or by increased synthesis of C-MYC2 in 

some tumour cells (Harm & Eisemuan, 1984; Hann et al,  1988). As yet the reason 

for this is unclear, although the two forms of the MYC protein are functionally 

distinct (Harm et a l,  1994). It has been reported that overexpression of c-MYCl but 

not C-MYC2 can inhibit cell giowth (Harm et al, 1994). hi tumours, deregulation of



c-MYC frequently occurs by separation of the c-MYC coding region from its 

regulatory elements, by translocation or proviral insertion for example. These 

rearrangements often bring about a loss of exon 1 sequences which are required for 

transcription of c-MYCl (Blackwood et al, 1994). It may be that, loss of c-MYCl, 

or an increase in the ratio of C-MYC2 protein has functional significance for cells 

undergoing malignant transformation, hi normal cells, expression of c-MYC is 

tightly controlled by the cellular environment (Kelly et a l,  1983), but it is possible 

that the ability of c-MYC to encode two functionally distinct proteins at specific 

stages of cell growth represents a further level of control over c-MYC function.

1.4.2 The c-MYC Protein and its Binding Partner MAX in the Control of 

Transcription

The c-MYC protein is the main member of the MYC family of bHLH/LZ proteins 

which regulate proliferation and apoptosis. Evidence so far suggests that c-MYC 

functions chiefly as a transcription factor to mediate its effects (Dang et a l,  1999). 

In common with the other MYC family members, c-MYC is comprised broadly of 

tliree sections, with the crucial regions required for its transcriptional activities 

located at its terminal domains.

Contained within the first 143 amino acids of the N teiminal domain is the 

transactivation domain required for transcriptional regulation (Kato et a l,  1990). 

The mechanism by which the N terminal domain activates transcription appears to be 

tlirough an N terminal interacting protein called TRRAP (for transformation/ 

transcription domain associated protein, McMahon et al, 1998), which is part of a 

complex containing histone acetyl transferases which have been implicated as 

transcriptional co-activators (Utley et al,  1998). The N terminal domain may have 

more than one function however, since a role for the N terminal domain of c-MYC in 

transcriptional repression has also been described (Lee et a l,  1996). Repression of 

growth arrest genes might be another way in which MYC mediates proliferation and 

transformation.



The C terminal domain contains a dimérisation domain consisting of a basic 

domain/helix-loop-helix/leucine zipper (bHLH/LZ) motif. The basic domain is 

responsible for direct contact with DNA through specific recognition of CACGTG 

sequences in the target genes (Blackwell et al, 1990; Prendergast & Ziff, 1991). c- 

MYC is unable to bind DNA alone however, and requires oligomerisation with a 

binding partner to bind DNA effectively (Kato et al, 1992). An HLH/LZ protein 

called MAX was identified as a binding partner for c-MYC in humans (Blackwood & 

Eisenman, 1991), and the murine homologue of MAX, known as myn, was shown to 

have the same function (Prendergast et a l,  1991).

Initially it was expected that MYC-MAX heterodimers bound to target DNA to 

activate transcription, and that MAX-MAX homodimers repressed the activity of 

MYC by competing with MYC-MAX heterodimers for DNA binding sites on target 

genes (Kato et a l,  1992). This theory was complicated somewhat by the discovery 

of a third family of proteins, the MAD proteins, which are also able to bind MAX 

(Ayer et a l,  1993). MAD-MAX heterodimers are also able to repress the 

transcriptional activity of MYC. This transcriptional silencing by MAD proteins has 

been attributed to their ability to recruit histone deacetylases tlirough their SID (Sin3- 

interacting domain) motif (Ayer et a l,  1995; Heinzel et a l,  1997). Histone 

deacetylation, which results in remodelling of the chiomatin into a closed 

confonnation, has been reported to be the major mechanism by which MAD proteins 

repress transcription (Sommer et a l,  1997). These results have led to formation of a 

model in which MYC activity is regulated by MAD proteins, due to the competition 

between MYC and MAD for binding with MAX (Baudino & Cleveland, 2001). The 

fact that there are at least 4 MAD family members and two other distantly related 

bHLH/LZ factors, mnt and mga, all of which effectively antagonise MYC function 

(Baudino & Cleveland, 2001), emphasises the importance of tight regulation of MYC 

to maintain nonnal cell function.

Transcriptional activation by c-MYC is central to its function. The understanding of 

exactly how this is achieved has been the subject of a great deal of research. A 

number of factors have now been reported to interact with c-MYC (reviewed by 

Sakamuro & Prendergast, 1999). Some of these may facilitate direct interaction of c-



MYC with the transcriptional machinery, for example the TATA-binding protein 

(Hateboer et a l,  1993; Maheswaran et a l,  1994; McEwan et a l,  1996). Whether or 

not each factor which binds c-MYC can regulate its transcriptional activity is not yet 

determined, since the mechanisms by which MYC can regulate transcription are still 

not clearly defined. One of these factors, TRRAP, is a likely candidate as a mediator 

of the transactivational properties of MYC. Binding to TRRAP has been reported to 

allow c-MYC to regulate transcription, at least in part, by regulation of histone 

acétylation (Cole & McMahon, 1999). The ability of MYC-MAX heterodimers to 

bind chromatin-bound target sites, in addition to free DNA, supports the hypothesis 

that MYC-MAX complexes can promote transcription through site-specific histone 

acétylation and contact with the basal transcriptional machinery (Wechsler et al,

1994). A number of c-MYC target genes have now been identified (Grandori & 

Eisenman, 1997), and analysis of these has been vital to gaining understanding of the 

mechanism by which c-MYC induces both malignant transformation and apoptosis.

1.4.3 c-MYC and Cell Cycle Regulation

The potency of c-MYC as an oncogene relies upon the fact that c-MYC is a powerful 

inducer of proliferation, through its ability to regulate the cell cycle. For many years 

studies have linked functional MYC expression to cell cycle progression. Ectopic 

expression of c-MYC has been reported to drive GO phase quiescent cells back into 

cycle (Eilers et a l,  1991), and over expression of c-MYC in cycling cells has been 

shown to shorten G1 phase and reduce growth requirements (Karn et a l,  1989). 

Expression of c-MYC appears to correlate closely with proliferation. In quiescent 

cells, c-myc expression is absent, but is rapidly induced following addition of growth 

factors (Dean et a l,  1986). Subsequent removal of growth factors results in 

immediate down-regulation of c-myc expression (Dean et a l,  1986). Inactivation of 

c-myc in rat fibroblast lines confirmed the importance of myc function in driving the 

cell cycle, since these cells exhibit significantly impaired giowth (Mateyak et a l,

1997). The profound influence that c-MYC has on the cell cycle has led to intensive 

studies into the mechanisms by which c-MYC interacts with the cell cycle 

machinery.



Regulation of the cell cycle by c-MYC has been attributed to its ability to transcribe a 

number of genes involved in cell cycle progression, for example the cyclins and the 

cyclin dependent kinases (cdks, Jansen-Durr et al, 1993; Daksis et a l,  1994; Barrett 

et al,  1995; Rudolph et a l,  1996; Perez-Roger et al, 1997). Quiescent cells differ 

from proliferating cells in that they do not transcribe those genes. The correlation 

between expression of MYC and cell cycle progression led to the hypothesis that c- 

MYC was able to initiate transcription of several of these genes (reviewed by Obaya 

et a l,  1999). The relationship between c-MYC and the cell cycle is complicated 

however. Control of the cell cycle by c-MYC has been limited mainly to progression 

from GO through to Gl/S phase. Overexpression of c-MYC shortens G1 phase (Kam 

et a l,  1989), and a requirement for c-myc to drive the GO-Gl/S transition has been 

reported in hepatocytes (Skouteris & Scliroder, 1996). Although cyclin D1 plays a 

major role in progression through G1 (Baldin et a l,  1993), and follows c-MYC 

expression, there are conflicting reports in the literature of the association between c- 

MYC and cyclin D1 expression, and more research is required to identify the role 

played by c-MYC in regulation of cyclin D1 and cyclin Dl-cdk4 complexes 

(reviewed by Obaya et a l,  1999). More conclusive evidence has come from studies 

of c-MYC regulation of the cyclin E-cdk2 complex, and cyclin A. Rapid induction 

of cyclin E-cdk2 activity, in response to activation of c-Myc has been reported 

(Steiner et a l , 1995), and inhibition of cdk2 has been shown to block all downstream 

responses to Myc in the cell cycle, including transcription of cyclin A (Rudolph et 

al, 1996). The evidence suggests that c-Myc activates cyclin E-cdk2 complex 

activity indirectly, particularly since expression of dominant negative c-myc induces 

arrest of the cell cycle, while the cells maintain high levels of cyclin E and cdk2 

(Bems et a l,  1997). One candidate for direct transcriptional activation by c-MYC is 

the cdc25A gene, which encodes a phosphatase that removes two inhibitory 

phosphate groups from cdk2 (Galaktionov et al, 1996; Pusch et a l,  1997). c-MYC 

also decreases the levels of the p27^'^^ cdk inliibitor (Perez-Roger et a l,  1997), and 

growth arrest of cells due to ectopic expression of p27^'^^ is repressed by 

overexpression of c-Myc (Steiner et al, 1995; Vlach et a l,  1996). These results 

suggest that c-Myc may also transcribe some protein involved in regulating the 

metabolism or degradation of p27^'^^, or inhibiting its binding to edk2 complexes. 

Recently activation of Myc was reported to induce expression of cyclin D2, through
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TRRAP recruitment and histone acétylation at the cyclin D2 promoter (Bouchard et 

al,  1999; Bouchard et a l,  2001). Sequestration and subsequent destruction of p27 at 

cyclin D2/cdk4 complexes has been implicated as another mechanism by which c- 

Myc can regulate cellular proliferation (Bouchard et a l,  1999). There is now a 

growing body of evidence that c-MYC regulation of the cell cycle can occur at 

multiple levels.

1.4.4 c-MYC and Apoptosis

The central role of c-MYC in the proliferation of nonnal cells has been clearly 

demonstrated in a number of studies (reviewed by Dang et a l,  1999; Obaya et al, 

1999). Over the past decade it has become apparent that c-MYC can also activate 

apoptosis. Constitutive expression of c-myc resulted in significant acceleration of 

apoptosis in 11-3 deprived murine 32D.3 myeloid cells which are 11-3 dependent 

(Askew et a l,  1991). Overexpression of c-MYC in serum deprived Rat-1 fibroblasts 

was also shown to induce dramatic apoptosis (Evan et a l,  1992). In both these 

studies apoptosis occurred in cells in all phases of the cell cycle, while c-MYC could 

still be seen to be stimulating cell cycle progression in other cells in the population 

which were not immediately apoptotic (Askew et al,  1991; Evan et a l,  1992). c- 

MYC was also reported to induce apoptosis in response to amino acid deprivation 

(Evan et a l,  1992), indicating that induction of apoptosis might be a result of 

conflicting growth and an*est signals. The machinery used by c-MYC to induce 

apoptosis has been the subject of controversy. Since there appears to be overlap in 

the regions of c-MYC required for induction of apoptosis, cell cycle progression and 

transformation, and as the transactivation and DNA binding domains are required for 

apoptosis, it has been suggested that c-MYC may affect the transcription of certain 

genes involved in apoptosis (Stone et al, 1987; Evan et a l,  1992).

Some investigators have suggested a requirement for wild-type p53 in c-Myc induced 

apoptosis (Hermeking & Eick, 1994; Wagner et a l,  1994), and elevated expression 

of p53 has been observed following ectopic c-MYC expression (Yu et al,  1997). 

Studies from other groups however, have reported p53 independent c-MYC induced 

apoptosis (Hsu et a l,  1995; Sakamuro et al,  1995; Blyth et a l,  2000). The Fas
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pathway has also been implicated in c-MYC induced apoptosis (Hueber et al,  1997), 

but a separate study indicated that the apoptosis mediated by c-MYC was 

independent of the Fas signalling pathway (Yeh et a l,  1998). The relationship 

between c~MYC and Fas will be discussed in more detail later in this chapter.

More recent research has suggested that the mechanism by which c-MYC induces 

apoptosis is more complex than originally supposed. c-MYC may be required for 

efficient response to a number of apoptotic stimuli, including hypoxia, glucose 

withdrawal, heat shock, DNA damage and cytotoxic therapy (Graeber et al,  1996; 

Jiang et a l,  1996; Li et a l,  1996; Rupnow et al,  1998; Shim et al,  1998) although 

apoptosis may still occur in response to these stimuli in the absence of elevated c- 

MYC. Juin et a l  (1999) have proposed that rather than having the ability to directly 

mediate cell death as a result of all these triggers, c-MYC can sensitise cells to a wide 

range of apoptotic stimuli by causing release of cytochrome a into the cytoplasm, the 

consequence of which will be dependent on other cellular signals. This hypothesis is 

supported by the results showing that c-Myc induced apoptosis is inhibited by ectopic 

expression of Bcl-2 (Bissonnette et a l,  1992; Fanidi et a l,  1992; Wagner et al, 

1993), since BcL2 has been reported to block apoptosis by inhibiting release of 

cytoclirome c from the mitochondria (Kluck et al,  1997; Yang et a l,  1997a). The 

co-operation between c-MYC and Bcl-2 in tumourigenesis (Strasser et a l,  1990a), 

adds weight to the theory that loss of apoptotic function may be important for the full 

oncogenic potency of c-MYC.

1.4.5 The c-MYC  Gene and Tumourigenesis

The c-MYC gene has been inextricably linked with proliferation and cell cycle 

control in all nonnal cells, and it is loss of this high level of control that explains why 

deregulated c-MYC expression has been detected in approximately one third of 

human cancers in many different cell types (Spencer & Groudine, 1991; Nesbit et al,  

1999). Amplification or overexpression of the human c-MYC gene has been detected 

in tumours of various origin, for example lung, colon, breast, cervical and ovarian 

carcinomas (Little et al,  1983; Escot et al,  1986; Erisman et a l,  1988; Munzel et al, 

1991; Pinion et a l,  1991; Augenlicht et al, 1997; Wang et a l,  1999b). Deregulation
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of c-MYC appears to be a fundamental event in the development of lymphoid 

neoplasia. Nearly all cases of Burkitt’s lymphoma for example, involve the 

translocation of a c-MYC allele to the regulatory elements of one of the three 

immunoglobulin chain genes on chromosomes 2, 14 or 22, which causes deregulation 

of c-MYC expression (Croce, 1993). Further, proviral integration at c-myc has been 

observed in approximately 45% of murine leukaemia virus induced T cell 

lymphomas (Selten et al, 1984), and transgenic animals that have deregulated c-myc 

expression develop tumours at an increased incidence (reviewed by Morgenbesser & 

DePinho, 1994; Pelengaris et al,  2000). These findings highlight the importance of 

the contribution made by c-MYC in the development and progression of cancer, 

particularly of lymphoid origin.

1.4.6 c-MYC Transgenic Mouse Models

The ability to target gene expression to specific tissues and cell lineages in transgenic 

mice, as well as the ability to regulate that expression, has made transgenic mice a 

valuable resource for studying oncogenic function, and the importance of different 

oncogenes in the process of tumourigenesis (reviewed by Macleod & Jacks, 1999). 

Expression of a putative oncogene can be activated in tissues of interest, at the 

appropriate time, and the resulting changes in phenotype used to understand the 

actions of that gene (reviewed by Macleod & Jacks, 1999). Oncogenic mouse 

models are important not only for advancing the understanding of oncogenic activity 

in vivo, but may also result in the generation of cell lines expressing particular 

oncogenes, which assist in vitro studies. In addition, collaborating tumourigenic 

events can be identified in transgenic mice already harbouring a constitutively 

activated oncogene, and synergy between different oncogenes can be examined by 

interbreeding of oncogenic transgenic mice (reviewed by Macleod & Jacks, 1999).

The c-MYC oncogene is among the best studied transgenic models of malignancy, 

and c-MYC overexpression has been targeted to particular tissues using transgenic 

constructs with different regulatory elements. CD2-MYCERJ^ mice for example 

express regulatable MYC in T cells (Blyth et a l,  2000). In this model, a transgenic 

construct of c-MYC, fused to the tamoxifen inducible oestrogen receptor, is placed
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under the control of a CD2 locus control region promoter which targets expression to 

the T cell lineage (Lang et al,  1988). Induction of the transgenic construct by 

tamoxifen led to an increased incidence and reduced latency of lymphoma 

development (Blyth et a l,  2000). Ep-M7C mice express the c-MYC oncogene under 

the control of an immmunoglobulin heavy chain enhancer, which targets expression 

to B cells (Langdon et al,  1986). Tetracycline inducible MYC transgenic mice also 

have targeted expression to B cells, through an Ep-M7C linked tetracycline 

activating protein (Felsher & Bishop, 1999). These mice developed haematopoietic 

tumours at a frequency of 100% when the transgene was active, however when the 

transgene was inactivated, tumour regression was observed in 90% of the animals 

(Felsher & Bishop, 1999). The potency of MYC as a major driving force behind 

haemopoietic malignancies has been demonstrated in these mice (Langdon et al,  

1986; Felsher & Bishop, 1999; Blyth et al,  2000). One advantage of inducible 

models, is the ability not only to regulate transgene expression in vivo, but also in 

explanted tumour cells in vitro.

Because cancer is a multi-stage process requiring a series of genetic events which 

may affect cell growth, proliferation, survival or death, it is important to understand 

which genetic lesions occur together during tumourigenesis, and in which order. 

There may be some genetic alterations which are functionally equivalent, and others 

which synergise strongly, and crossing of transgenic mouse models bearing different 

lesions associated with tumour progression allows improved understanding of these 

events. A number of strong collaborations between genetic lesions in tumourigenesis 

have been obseiwed using this approach. In MYC transgenic mouse models a number 

of collaborating oncogenes have been reported, hi Ep-MTC mice, acceleration has 

been observed following introduction of the ras oncogene (Langdon et al, 1989), the 

Bcl-2 oncogene (Vaux et a l,  1988), and thepim-\ oncogene (Verbeek et al,  1991). 

MYC transgenic models have also been crossed with mice lacking tumour suppressor 

genes, and in particular, there has been great interest in MYC  induced tumourigenesis 

on a Trp53 deficient background. Because of the ability of MYC to induce apoptosis 

as well as proliferation, the potential collaboration between deregulated MYC and 

loss of p53, which might mediate apoptosis, has been studied by a number of groups. 

Many studies have shown that overexpression of M7C and loss of p53 co-operate in
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tumourigenesis (Blyth et al,  1995; Elson et al, 1995; Hsu et a l,  1995). CD2-MYC 

mice null for Trp53 for example, develop thymic lymphoma at an increased 

incidence and decreased latency, compared to Trp53 heterozygous littennates (Blyth 

et al, 1995), while in Y\x-MYC animals, overexpression of c-MYC could collaborate 

with a heterozygous Trp53 mutation in B cell lymphomagenesis (Hsu et al, 1995). 

hivestigation of the levels of apoptosis in tumours arising in these models however, 

indicated that loss of p53, or loss of heterozygosity in Trp53 +/- tumours, did not 

inhibit the ability of MYC to induced apoptosis (Blyth et a l,  2000; Hsu et a l,  1995). 

These results suggested that in these tumours MYC did not require p53 to induce 

apoptosis, and rather, loss of Trp53 could collaborate with overexpression of MYC, 

because of enhanced cell cycle progression and proliferation in the absence of p53.

1.5 T u m o u r  S u p p r e s s o r  G e n e s

As the name suggests, a tumour suppressor gene is one whose normal function 

prevents tumour development (reviewed by Knudson, 1993). In eontrast to 

oncogenes, tumour suppressor genes encode proteins that limit the replicative 

potential of a cell, or induce cell death. Mutations in these genes that result in loss of 

function, contribute to the tumourigenic process. Function of the normal gene is 

generally dominant however, so unlike oncogenes, loss of function of both alleles of 

a tumour suppressor gene is usually required for tumourigenesis. This may occur as 

a result of two somatic mutations, or in individuals who have an inherited mutation 

in a single allele of a tumour suppressor gene, one somatic mutational event in the 

remaining wild-type allele. Individuals who harbour a germline mutation in a tumour 

suppressor gene carry an increased risk of cancer, due to the high probability of loss 

of function of the wild-type allele in at least one cell.

A number of familial cancer syndromes caused by germline mutations in tumour 

suppressor genes have been described in humans (reviewed by Tomlinson, 1997). 

For example, 90% of humans carrying a gennline mutation in the retinoblastoma 

susceptibility gene, RB-1, acquire a somatic mutation in the wild-type allele and 

develop retinoblastoma, while 15% also develop osteosarcomas (Hooper, 1998).
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Mutations at RB-1 have also been observed in a variety of spontaneously occurring 

human carcinomas (Knudson, 1993). An inherited predisposition to cancer is also 

observed in individuals affected by Li Fraumeni syndrome. These individuals 

develop diverse mesenchymal and epithelial neoplasms at multiple sites and this is 

due to a gennline mutation in the p53 tumour suppressor gene (Srivastava et al,

1990). Mutations in the p53 gene have been detected in over half of all human 

tumours, and inactivation of p53 is considered to be an important step in 

tumourigenesis (Hollstein et a l, 1991; Greenblatt et al, 1994; Hollstein et a l,  1994; 

Hollstein et al, 1996; Hainaut & Hollstein, 2000). This realisation has stimulated a 

great deal of research over the past decade, on the functions of p53 in human cancer.

1.5.1 The p53 Tumour Suppressor Gene and Protein

One of the first tumour suppressor genes to be identified was the p53 gene. Initially 

this was believed to be an oncogene due to the high levels of expression of the p53 

protein, (so called because of its apparent molecular weight of 53 kD), in transformed 

mouse cells, but not in normal mouse tissues (DeLeo et a l,  1979). At the same time, 

studies into the mechanism by which cells were transformed by the simian virus 40 

(SV40) -encoded large T antigen, revealed that a cellular protein of 53 kD bound to 

this viral protein, and was thought to mediate its transforming potential (Lane & 

Crawford, 1979; Linzer & Levine, 1979). Further work revealed that the highly 

expressed p53 found in many tumours (Crawford et a l,  1981; Rotter et a l,  1983) 

was actually mutated, and wild-type p53 could in fact inhibit transformation (Eliyahu 

et a l,  1989; Finlay et al, 1989). The definitive experiments demonstrating the role 

of p53 as a tumour suppressor gene were carried out in transgenic mice null for 

Trp53. Mutating the Trp53 gene in the germline of mice was found to predispose 

animals to cancer (Donehower et al,  1992; Jacks et a l,  1994; Purdie et al, 1994). 

Studies of human tumours showed that many harbour p53 gene mutations (Nigro et 

al,  1989; Hollstein et a l,  1991; Hollstein et a l,  1994; Hollstein et a l,  1996), These 

observations implicated the loss of p53 as a major factor in tumourigenesis.

The p53 protein is normally unstable and rapidly degraded, and is stabilised and thus 

activated only as the main cellular response to stress or damage (Hall et a l,  1996;
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Levine, 1997). Stressful stimuli, which include hypoxia, DNA damage, such as that 

caused by ionising radiation, changes in metabolism, heat shock and certain 

cytokines result in activation of the p53 protein (Kuerbitz et a l,  1992; Clarke et al, 

1993; Lowe et a l,  1993; Graeber et a l,  1996; Linke et al., 1996; Meek, 1999). 

Activated p53 is then responsible for initiating a series of events leading to either cell 

cycle arrest to allow repair to take place, or apoptosis, if the damage is excessive. 

Damaged cells pose a considerable threat to the organism, since they are more likely 

to harbour mutations which will eventually lead to malignancy. The p53 protein 

senses mutations and prevents the damaged cells from multiplying, thereby providing 

a critical brake on tumourigenesis. This perhaps explains why damage to the p53 

gene itself predisposes to tumour development, and why p53 mutations have been 

detected in 50-55% of human tumours (Hollstein et al, 1991; Hollstein et a l,  1994; 

Hollstein et a l,  1996). Malfunction of the p53 system may result in genomic 

instability, which then permits accumulation of the multiple mutations required for 

tumour development (Lengauer et al,  1998).

1.5.2 p53 Knockout Mouse Models

Donehower et al. (1992), developed the first reported Trp53 knockout mice, by 

substituting a neo cassette in place of parts of intron 4 and exon 5 of the Trp53 gene. 

Analysis of these mice, and the other strains of Trp53 null mice, generated broadly 

the same conclusions. Firstly, and perhaps surprisingly given p53’s role in regulation 

of the cell cycle, these mice were viable and appeared developmentally normal, 

indicating that p53 is not required for embryonic development (Donehower et al, 

1992; Jacks et al,  1994; Purdie et a l,  1994). These mice did however inherit a 

strong predisposition to cancer (Donehower et a l,  1992; Jacks et a l,  1994; Purdie et 

al,  1994). The mice of Donehower et al,, for example, developed tumours rapidly 

and at high frequency on a genetic background of 75% C57B16 and 25% 129/Sv. 

Seventy four percent of these Trp53 null mice developed tumours by 6 months of 

age, and one hundred percent by 10 months of age. The average latency of tumours 

was 4.5 months.
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This relatively long latency period gives credence to the hypothesis that cancer 

represents a multi-step process. It is apparent that several other genetic events are 

required before the onset of neoplasia in these mice. Further evidence for this comes 

from analysis of the tumour types in Trp53 null mice, since tumours arose in various 

different cell types. More than 70% of Trp53 null mice developed lymphomas, the 

majority of which were thymic lymphomas. Among the other tumours, 

haemangiosarcomas, undifferentiated sarcomas, osteosarcomas, testicular tumours, 

and a small number of carcinomas were detected. The results also confirmed the 

importance of the Trp53 tumour suppressor gene in multiple tissues in the mouse. 

Interestingly, the spectrum of tumours was altered in Trp53 heterozygotes. These 

mice perhaps expectedly, developed tumours with an increased latency compared 

with their Trp53 null counterparts (Donehower et al,  1992; Harvey et a l,  1993; 

Jacks et a l,  1994; Purdie et al, 1994), however tumours were predominantly 

sarcomas, and lymphomas were detected at the much lower frequency of 25%. This 

is likely to be a reflection on the increased latency of these tumours. The 

susceptibility of Trp53 null mice to thymic lymphomas in particular, has been 

attributed to the fact that thymocytes must undergo DNA rearrangements of the TCR 

loci during maturation. Given the importance of p53 in ensuring that only cells with 

‘normal’ DNA reanangements survive, it follows that aberrant DNA events during 

thymocyte development will persist in Trp53 null mice, and may lead to cancer, hi 

Trp53 heterozygous mice however, loss of heterozygosity must occur at the Trp53 

locus before p53 function is lost. The rapid growth of the T cell compartment, and 

the maturation of most T cells may have taken place before loss of heterozygosity 

occurs, making the T cell compartment less susceptible to tumours induced by Trp53 

loss in these mice. Recent studies however, have shown that p53 deficient mice 

which were unable to carry out V(D)J recombination of the TCR loci due to RAG 

(recombination-activating gene) deficiency still developed lymphomas at high 

frequency (Nacht & Jacks, 1998; Liao et al,  1998). These results suggest that 

development of lymphoma in p53 deficient mice is not dependent on aberrant DNA 

rearrangement during recombination events. The study of Trp53 null and 

heterozygous mice alone, or in crosses with other transgenic strains has contributed 

greatly to the knowledge of the function of p53 as a tumour suppressor (reviewed by 

Attardi & Jacks, 1999).
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1.5.3 Activation and Control of p53

The p53 protein is a transcription factor, and functions in part by enhancing 

transcription and expression of a number of cellular proteins involved in cell cycle 

control, DNA repair and apoptosis (Levine, 1997). It is this function of p53 that also 

enables it to regulate its own activity. In nonnal cells, the levels of p53 are subject to 

a negative feedback loop, and the amount of active p53 depends not on the rate at 

which it is synthesised, but on the rate at which it is degraded. Degradation of p53 

occurs by a process known as ubiquitin-mediated proteolysis (Huibregtse et ai,

1991). Through this process, the p53 protein becomes labelled with several copies of 

ubiquitin, a small peptide that acts as a recognition signal and enables the protein 

degradation machinery to recognise the protein to be degraded (Hershko & 

Ciechanover, 1998). Through its role as a transcription factor, p53 is able to control 

its own ubiquitination, by enhancing transcription of MDM2 (Barak et a l,  1993; Wu 

et a l,  1993), the enzyme chiefly responsible for labelling p53 with ubiquitin 

(Momand et a l,  2000). When p53 levels are high, MDM2 is expressed, binds to p53 

and stimulates ubiquitination which is followed by degradation. The levels of p53 

then fall, transcription of MDM2 is reduced, and p53 levels are allowed to rise again. 

This negative feedback system may explain why very high levels of p53 have been 

found in so many tumours (Hollstein et al, 1991; Hollstein et al,  1994; Hollstein et 

al, 1996). Mutations at p53 may result in expression of a product that can no longer 

control transcription and therefore has no method for autoregulation.

Activation of p53 occurs when p53 is stabilised, however the method of activation 

and stabilisation of p53 may depend on the trigger. Activation of p53 in response to 

oncogenic stress, for example, is controlled by a protein called p i 4̂ *̂  ̂(human)/ pl9^’̂  ̂

(mouse, Pomerantz et a l,  1998). Oncogenes such as MYC (Zindy et a l,  1998) and 

El A (de Stanchina et a l,  1998) have been shown to regulate p53 activity by 

stimulating AiT. Then Arf, itself a tumour suppressor protein, binds to MDM2 and 

sequesters it into the nucleolus, where it is prevented from binding to, and 

stimulating dégradation of p53 (Weber et a l,  1999). The p53 pathway invoked by 

DNA damage is activated in a different way. DNA damage is recognised by 

‘checkpoint’ proteins that cause the cell cycle to be delayed until the damage is
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repaired (reviewed by Carr, 2000). Here activation of p53 is dependent on two 

protein kinases, ATM, which is stimulated by double stranded DNA breaks, and 

Chk2 which is stimulated by ATM (reviewed by Meek, 1999). These kinases 

stabilise p53 by phosphorylating p53 protein at sites close to the MDM2 binding 

domain, thus blocking MDM2-p53 interactions (reviewed by Meek, 1999). Other 

forms of DNA damage may stabilise p53 in a similar way, but through different 

kinase pathways which are less well understood (reviewed by Meek, 1999; 

Vogelstein et a l,  2000). Following stabilisation, p53 is free to suppress cell growth, 

either by cell cycle arrest, or by apoptosis.

1.5.4 Mechanisms of p53 Action

Since the identification of p53 as a tumour suppressor gene, a number of 

physiological functions have been attributed to activated p53. Activation of p53 has 

been shown to affect cell cycle arrest, senescence, apoptosis, differentiation, and 

blood vessel fonuation (angiogenesis), and this is partly due to p53’s role as a 

transcription factor (reviewed by Levine, 1997; Steele et al,  1998; Dang et a l,  1999; 

Vogelstein et a l,  2000). Several target genes that are directly controlled by p53 have 

been implicated in mediating these biological effects (El-Deiiy, 1998).

In nearly all mammalian cells, activation of p53 results in cell cycle arrest. This is 

due mainly to a block in the G1 phase of the cell cycle, which is brought about by 

inhibition of various cyclin-dependent kinases (CDKs) by p21^^^’̂ ‘̂ ’̂ ^ a 

transcriptional target of p53 (El-Deiry et al, 1993). CDKs and the cyclins with 

which they function, are responsible for ensuring progression of the cell cycle from 

the G1 resting phase into the replicative S phase, and from G2 phase into mitosis. It 

is at these transitions, particularly at G l, that p53 activation of p21 has been reported 

to cause aiTest of the cell cycle (Harper et al, 1993; Deng et al,  1995; Waldman et 

al,  1995). Other cell cycle control genes which are regulated by p53, and may 

contribute to G2 arrest have also been reported (Hermeking et a l,  1997; Utrera et al, 

1998; Zhan et a l,  1998).
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In addition to its ability to inhibit cell cycle progression, an important role of p53 as a 

tumour suppressor, is to induce apoptosis in cells in which damage cannot be 

repaired (Symonds et al,  1994). Radiation induced DNA damage causes apoptosis 

in normal thymocytes for example, but not in p53 null thymocytes (Clarke et al, 

1993; Lowe et a l,  1993). There are many potential mechanisms by which p53 

mediates apoptosis (Bates & Vousden, 1999). One of the transcriptional targets of 

p53 for example is Bax, a pro-apoptotic member of the Bcl-2 family, that 

heterodimerises with Bcl-2 (Oltvai et al,  1993), and prevents Bcl-2 from blocking 

release of cytochrome c from the mitochondria (Rosse et a l,  1998). p53 has also 

been shown to induce transcription independent apoptosis in a number of systems, 

since p53 mediated apoptosis can occur in the absence of de novo protein synthesis 

(Caelles et al, 1994). It may be that p53 can induce transcription independent 

apoptosis by forming a complex with one of the cellular proteins with which it is 

reported to interact (reviewed by Levine, 1997). As yet however, there is no firm 

evidence of this.

Death receptors and their ligands have also been proposed as effectors of p53 

mediated apoptosis. Expression of the Fas receptor for example has been reported to 

be dependent on p53 regulation (Owen-Schaub et al,  1995). The relationship 

between p53 and the Fas pathway will be discussed in more detail later. Other 

putative death receptors appear to play a role in p53 induced apoptosis. Expression 

of one of the TRAIL receptors, named KILLER or DR5, appears to be increased 

following exposure to DNA damaging agents in Trp53 wild-type mice, indicating 

that KILLER may be involved in p53 dependent apoptosis (Wu et al,  1997). 

Further, inhibition of transcription in cells undergoing p53 dependent apoptosis 

blocked induction of KILLER, suggesting that KILLER is a transcriptional target of 

p53. There may be many other genes involved in the apoptotic function of p53. 

Indeed the effects of Fas, p21, Bax and MDM2 on p53 mediated apoptosis have been 

tested in vivo, and the results showed that no single target of p53 is required for 

apoptosis (Reinke & Lozano, 1997). There may be functional redundancy between 

the targets of p53. Research in this field is ongoing, not least because it is this 

feature of p53 which may be of most therapeutic value.
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There are other activities associated with p53 which may prevent tumour formation. 

As mentioned earlier, p53 loss may result in genomic instability, due to the 

persistence of cells with damaged DNA. p53 may also have a more direct role in 

maintaining genomic stability, by regulating the genes that are involved in DNA 

repair, for example GADD45 (Kastan et al,  1992, reviewed by Wahl et al, 1997). 

There is also a reported role for p53 in inducing cellular senescence, and dominant 

mutant p53 has been shown to rescue human cells from senescence (Bond et al, 

1995). Finally, p53 has been reported to stimulate expression of genes that prevent 

angiogenesis, the growth of new blood vessels (El-Deiry, 1998). If a tumour is to 

grow to a size where the host organism is endangered, then a new blood supply must 

be encouraged to grow around, and into the tumour. Loss of p53 may therefore 

enable this to occur, thus highlighting the importance of p53 as a tumour suppressor 

with various means of action. Clinical research has sought to understand the 

importance of p53 as a prognostic indicator. In general, p53 mutations are associated 

with more aggressive, higher grade tumours, and can be correlated with reduced 

patient suiwival (Wallace-Brodeur & Lowe, 1999). These observations to some 

extent confirm p53 as a major tumour suppressor.

1.6 T h e  F a s /F a s L P a t h w a y

Among the main effectors of apoptosis are the death ligands and receptors. Fas and 

its ligand, FasL are important mediators of cell death, particularly in the immune 

system, and have been the subject of a great deal of research over the past few years. 

The question of whether or not this system has any role in prevention of 

tumourigenesis remains the, subject of much controversy.

1.6.1 A Novel Death Receptor

Fas (CD95/Apo-l) is a 45kD cell surface protein belonging to the tumour necrosis 

factor (TNF) / nerve gi'owth factor (NGF) receptor superfamily. Activation of Fas by 

crosslinking either with the natural ligand or the anti-Fas agonistic antibody leads to 

apoptotic cell death with characteristic morphological changes and DNA
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fragmentation (Trauth et al, 1989; Itoh et al, 1991).

The Fas antigen was identified in 1989 as a cell death signalling receptor (Trauth et 

al,  1989; Yonehara et a l,  1989), Two groups working independently had isolated 

mouse derived antibodies cytolytic for various human cell lines. These antibodies 

recognised novel cell surface proteins named Fas and Apo-1 (Trauth et al,  1989; 

Yonehara et al,  1989). The identity of these two receptors was subsequently 

established when their respective cDNAs were eloned (Itoh et a l,  1991; Oehm et al,  

1992).

The isolation and characterisation of human Fas cDNA from KT-3 lymphoma cells 

revealed a 325 amino acid protein consisting of a membrane spanning region in the 

middle of the molecule and a signal sequence at the cytoplasmic NH2 "terminus (Itoh 

et al,  1991). The structure indicated that Fas is a type I membrane protein belonging 

to the TNF/NGF receptor superfamily (Itoh et a l,  1991; Oehm et al,  1992; 

Watanabe-Fukunaga et al,  1992b). The members of this family all have relatively 

well conserved extracellular regions consisting of between two and six cysteine rich 

domains. In contrast, there is little similarity in the cytoplasmic region between 

various members except for the intracellular death domain shared by Fas and TNF- 

R1 (Itoh et a l,  1991; Oehm et al, 1992). The family includes Fas, two TNF-Rs 

(TNF-Rl and TNF-R2), the NGF receptor, CD40, CD27, CD80, the lymphotoxin p 

receptor and the TRAIL receptors (Nagata & Golstein, 1995). This list is not 

complete however; the family is still growing and will be discussed later.

The human Fas gene spans 12kb on the long arm of clrromosome 10 (hiazawa et al,

1992), while in the mouse, the gene is located on chromosome 19 and spans more 

than 70kb (Watanabe-Fukunaga et a l,  1992b). The receptor is ubiquitously 

expressed in various tissues of both lymphoid and non-lymphoid origin in mice, with 

abundant expression in thymus, liver, heart, lung, kidney and ovary (Watanabe- 

Fukunaga et a l,  1992b). High expression of Fas on murine hepatocytes was 

highlighted by the lethality of the anti-Fas antibody in mice, due to severe liver 

damage (Ogasawara et a l,  1993). Expression of Fas is also high in mature activated 

lymphocytes (Trauth et a l,  1989) and in virally transfonned lymphocytes (Falk et al.
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1992; Debatin et a l,  1994). Expression of Fas in human thymocytes is weak 

(Yonehara et a l,  1994) compared to the high levels of expression observed in almost 

all mouse thymocyte populations (Ogasawara et a l,  1995).

The apoptotic function of Fas was assessed in transformed murine lymphocytes 

transfected with human Fas. The constitutive expression of human Fas in these 

transfectants conferred sensitivity to anti-Fas antibody induced apoptosis (Itoh et al, 

1991; Oehm et al., 1992). As induction of cell death appeared to be the major 

outcome of receptor binding, Fas was described as a cell surface mediator of 

apoptosis. It was therefore important to understand how Fas was activated in cells, 

and under what physiological circumstances, since any cell expressing Fas could be 

susceptible to Fas-mediated apoptosis.

The structure of Fas led to the belief that it was a receptor for an unidentified 

cytokine. The finding that the CTL hybridoma, PC60-dl0S required the presence of 

Fas on target cells to induce cytotoxicity implied that these cells expressed a ligand 

that could induce death via Fas (Rouvier et a l,  1993). In 1994, Suda and Nagata 

constructed a soluble fusion protein consisting of the extracellular region of Fas and 

the Fc region of human IgGl, which they used to isolate and characterise the Fas 

ligand (Suda & Nagata, 1994). They identified and purified a 40kDa membrane 

glycoprotein which showed strong cytotoxic activity against Fas-expressing cells, 

indicating that FasL is a death factor (Suda & Nagata, 1994). Expression of 

recombinant FasL on the cell-surface was sufficient to induce apoptosis in Fas- 

bearing cells within a few hours (Suda et al, 1993).

The structure of FasL indicates a type II membrane protein with a hydrophobic 

membrane-spanning domain in the middle of the molecule, but no cytoplasmic NH2- 

terminus signal sequence (Suda et al, 1993). The FasL gene is located on 

chromosome 1 in both human and mouse (Lynch et a l,  1994; Takahashi et al, 

1994b), and shows similar organisation to other members of the TNF family. FasL is 

predominantly expressed in activated T-cells and natural killer (NK) cells, although 

abundant expression is also found in the tissues of the ‘immune privilege’ sites such 

as the eye and the testes (Suda et a l,  1993).
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1.6.2 Fas '̂' and Faŝ *̂̂  Mutations

Loss of function mutations in the Fas system have been important in determining the 

role of the Fas pathway in vivo. Two naturally occurring mutations exist in the 

mouse, in which expression of either the Fas receptor or its ligand is disturbed. The 

Faŝ '̂" (lymphoproliferation) mutation is an autosomal recessive mutation in the Fas 

gene (Watanabe-Fukunaga et a l,  1992a), caused by insertion of an early transposable 

element (ETn) into intron 2 (Lynch et a l,  1994). This causes premature termination 

of the Fas mRNA transcript and aben'ant splicing. In fact small inRNAs encoding 

exons 1 and 2 have been found in the thymus and liver of Fas^ '̂ mice. Inhibition of 

expression is not complete however, as full length Fas mRNA has also been detected 

at low levels in these tissues, indicating that Fas^' is a leaky mutation (Adachi et al,

1993). The Faŝ ^̂  ̂ (for generalised lymphoproliferative disease) mutation is an 

autosomal recessive mutation and is located near the C-tenuinus of the FasL coding 

region on mouse chromosome 1 (Takahashi et a l,  1994a). The Fas^^  ̂mutation is a T 

to C point mutation which results in an amino acid change from phenylalanine to 

leucine, and abolishes the ability of FasL to bind to Fas (Takahashi et a l,  1994a).

Although Faŝ '̂ ' and Faŝ "̂̂  mutations are non-allelic mutations, they show a similar 

phenotype (Cohen & Eisenberg, 1991). MRL mice homozygous for either mutation 

develop lymphadenopathy and splenomegaly and produce large quantities of IgG and 

IgM antibodies including anti-DNA antibody and rheumatoid factor autoantibody. 

At around five months of age, the mice die of nephritis or arteritis (Cohen & 

Eisenberg, 1991). Other strains of mice carrying Fas^ '̂ and Faŝ '̂̂  ̂mutations develop 

lymphadenopathy and splenomegaly, but not nephritis or arteritis (Izui et al, 1984). 

The full manifestation of the disease requires backgi'ound genes which are only 

present in the MRL strain (Wang et al,  1997), suggesting that Fas^ '̂ and Faŝ '̂̂  

mutations induce autoimmune disease which is enhanced in these animals by an 

underlying genetic susceptibility.

Another Fas^ '̂' mutation, known as Faŝ '̂ '"̂ ,̂ has been described (Watanabe-Fukunaga 

et a l,  1992a). The Faŝ '̂"'*̂  ̂ mice express full length Fas mRNA as abundantly as 

wild type mice do. The mRNA carries a T to A point mutation in the middle of the
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Fas cytoplasmic region however, resulting in the replacement of isoleucine with 

asparagine (Watanabe-Fukunaga et al,  1992a). This mutation occurs in the Fas 

death domain, and abolishes the ability of Fas to transduce the apoptotic signal into 

cells (Watanabe-Fukunaga et al, 1992a). Unlike the original Fas^ '̂ mutant, a 

heterozygous Fas^''^^ mutation results in a weak Ipr phenotype in mice that are also 

heterozygous for Faŝ "̂̂ , hence the name Fas^''^^ (for Ipr complementing gld, 

Matsuzawa et a l,  1990).

Fas null mice have also been generated, and these show more accelerated and 

pronounced lymphadenopathy and splenomegaly than Fas^ '̂ mice, as well as 

lymphocytic infiltration in the liver and lungs (Adachi et a l,  1996). The general 

phenotype of lymphoproliferative disease and autoimmunity is observed in these 

mice however. The human equivalent of Faŝ '̂ ' disease has now been described. 

Patients with ALPS (autoimmune lymphoproliferative syndrome) show phenotypes 

similar to those of Fas^' mice, and carry a heterozygous mutation in the Fas gene 

(Rieux-Laucat et a l,  1995).

The lymphocytes that accumulate in the lymph nodes and spleen of Fas^ '̂ and Faŝ '̂̂  

mice express the T-cell marker Thy-1 and the B cell marker B220. They express a 

rearranged T-cell receptor but not a rearranged IgG gene (Morse et al,  1982). The 

conclusion that it is T-cells that accumulate in Fas '̂" and Faŝ ^̂  ̂mice was confirmed 

by the observation that neonatal thymectomy prevents the accumulation of such 

lymphocytes (Steinberg et al,  1980). Unlike normal mature T-cells however, the 

lymphocytes that accumulate in Fas^' and Fas'̂ ^̂  mice do not express the CD4 and 

CD8 cell surface antigens, however the gene loci encoding them are demethylated, 

indicating that these genes have been expressed in the past (Landolfi et al, 1993). In 

addition, when mature single positive T-cells from young Faŝ '̂" mice were 

transplanted into wild type mice, these T-cells became double negative T-cells 

(Laouar & Ezine, 1994). The evidence suggests that the double negative T-cells that 

accumulate in Fas'^' and Fas^̂  ̂mice are derived from mature single positive cells by 

suppressing the expression of the CD4 or CD8 antigen. In parallel with 

accumulation of abnormal double negative T cells, the proportion of phenotypically 

normal T cells bearing CD4 or CDS progressively declines, until these cells may
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constitute less than 10% of the total population in the lymph nodes (Cohen & 

Eisenberg, 1991). As a result of the huge increase in total lymphocyte numbers in the 

mice however, overall numbers of single positive T cells in these animals are 

increased (Cohen & Eisenberg, 1991).

The accumulation of T-cells in these mice is a result of a breakdown in the apoptotic 

process that occurs during the normal maturation of T-cells. The Fas/FasL system 

has been implicated in this and other apoptotic processes employed by the immune 

system (Lynch et a l,  1995; Nagata, 1997).

1.6.3 Homeostatic Regulation of the Immune Response

T lymphocytes, the cells responsible for removing malignant and virally transformed 

cells, die at various stages during their development. Less than 5% of thymocytes 

survive during their development. Most immature T-cells are eliminated by positive 

or negative selection as a result of incorrect rearrangement of the T-cell receptor, 

failure to be recognised by the MHC complex, or self-reactivity. In the peripheral 

immune system, mature T-cells recognising self-antigens are also deleted. It is also 

necessary that in the periphery, elimination of lymphocytes occurs after they have 

been activated by antigen, to ensure that there is no accumulation of activated 

lymphocytes.

Thymic clonal deletion was originally considered to be apparently normal in Fas^̂ ' 

and Fas^̂  ̂mice (Singer & Abbas, 1994), even though normal thymocytes abundantly 

express Fas and are sensitive to Fas-mediated apoptosis. These results indicated that 

a Fas-mediated mechanism is unlikely to be involved in the thymic deletion process, 

although redundant mechanisms may be activated where the Fas system is disrupted. 

More recent research in neonatal thymocytes has highlighted a role for Fas in 

negative selection however (Kishimoto & Sprent, 1997; Kishimoto et a l,  1998). 

TCR activation induced apoptosis of semi-mature HSA'^‘ CD4 single positive 

thymocytes was revealed to be severely impaired in cells from Fas^ '̂ mice, compared 

with normal cells, implicating Fas in negative selection (Kishimoto & Sprent, 1997). 

Fas dependency however was shown to be relevant only with high doses of anti-TCR
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antibody (Kishimoto & Sprent, 1997). At low level stimulation, anti-TCR mediated 

apoptosis was not significantly reduced in Fas^ '̂ thymocytes. This phenotype was not 

obseiwed however in mature HSA'° CD4^CD8' thymocytes or in CD4 single positive 

peripheral T cells, in which AICD was Fas dependent. Further evidence for a role for 

Fas in negative selection was generated subsequently. Injection of the superantigen, 

staphylococcal enterotoxin B (SEB), induces thymic clonal deletion of normal cells 

at various concentrations, however in Faŝ '̂" thymocytes, deletion was only induced at 

low to moderate doses of antigen, but not at higher doses (Kishimoto et a l,  1998). 

These results suggested for the first time, that thymic clonal deletion might be Fas 

dependent at higher antigen levels. In contrast, most evidence suggests that 

peripheral clonal deletion and antigen activation induced death are impaired in Fas^ '̂ 

and Faŝ "̂̂  mice (Singer & Abbas, 1994).

Under nomial circumstances and during positive selection, when primary T-cells are 

activated by engagement of the T-cell receptor/CD3 complex either by immobilised 

anti-CD3 or by antigen presenting cells, they undergo proliferation and produce 

cytokines. It has been demonstrated that stimulating T-cells induces Fas ligand and 

upregulates Fas expression, and interfering with the Fas/FasL interaction inhibits 

apoptosis (Alderson et a l,  1995; Brunner et al,  1995; Dhein et a l,  1995; Ju et al, 

1995). In naïve T cells, protective mechanisms must be in place to prevent Fas 

induced apoptosis. Stimulation of previously activated T-cells however, induces 

apoptosis in those cells, a process known as activation induced cell death (Smith et 

al,  1989). This process can be induced in a single cell, indicating that it may be a 

cell autonomous process. AICD must be mediated at least in part, by the Fas/FasL 

system, with stimulation of T-cells leading to upregulation of Fas and FasL surface 

expression (Alderson et a l,  1995; Bmnner et al,  1995; Dhein et a l,  1995; Ju et al,

1995). FasL would then bind to its receptor on the same cell or on a neighbouring 

cell, thus triggering the intracellular death-signalling cascade. Susceptibility to AICD 

has been shown to correlate with cell surface FasL expression, with FasL dependent 

AICD largely restricted to the Thl T-cell subset (Oberg et a l,  1997). Mature T-cells 

from Fas^' or Fas^^  ̂mice do not die after activation, but instead accumulate in the 

lymph nodes and spleen (Russell et al, 1993; Gillette-Ferguson & Sidman, 1994). In 

addition, T-cells activated in the presence of Fas neutralising antibodies do not die
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(Brunner et a l,  1995; Dhein et al, 1995; Ju et a l,  1995). These results suggest the 

involvement of Fas in activation induced cell suicide, and consequently in down- 

regulation of the immune reaction.

Fas:FasL interactions are also reported to be involved in peripheral clonal deletion of 

T cells. The cells eliminated during peripheral clonal deletion are those which 

recognise self antigens expressed by interacting antigen presenting cells (Kabelitz et 

al, 1993). One study showed that when the superantigen, SEB, was injected into 

wild-type mice, mature T cells expressing a SEB reactive TCR chain proliferated, 

and then died by apoptosis. In Fas^' mice however, apoptosis of these cells was not 

observed, implicating Fas signalling in the clonal deletion of autoreactive T cells 

(Nishimura et a l,  1995). It is thought that the self peptide-MHC complex interacts 

with the TCR on autoreactive T cells, causing activation and expression of Fas and 

FasL, which then induce cell suicide, hi addition to autoreactive T cells. Fas 

deficient mice also accumulate B cells and therefore have elevated levels of 

autoantibodies (Giese & Davidson, 1994). As with T-cells, Fas may be involved in 

the deletion of activated B cells in the periphery. Transgenic expression of Fas in the 

T-cells of MRL-Fas^' mice has been shown to block lymphoproliferation but not 

autoimmune disease in these mice (Fukuyama et a l,  1998) suggesting that Fas 

signalling is also required for the killing of activated B cells. Activation of B cells 

sensitises them to Fas mediated apoptosis (Daniel & Krammer, 1994), although the 

precise mechanism and role of Fas in the elimination of B cells is not yet understood.

1.6.4 Fas and T Cell Proliferation

One function of Fas which complicates any study of its role in tumour suppression is 

its ability to transduce activation signals and stimulate cell proliferation under certain 

circumstances (Alderson et a l,  1993). Previously activated mature lymphocytes are 

killed by Fas ligation on repeated antigen activation by AICD (Brunner et al, 1995; 

Dhein et al, 1995; Ju et al, 1995). There is a growing bank of evidence however, 

which suggests that Fas ligation may stimulate activation and proliferation of T-cells. 

One of the first pieces of evidence for a role for Fas in proliferation of T-cells came 

from studies using mAbs against human Fas on purified human T-cells. One of these

29



antibodies when immobilised in culture wells along with CD3 (representing antigen 

activation) stimulated proliferation of human T lymphocytes (Alderson et al,  1993). 

This effect was largely interleukin 2 independent and due to a direct effect on the 

cells. Many other studies since then, focusing on the apoptotic function of Fas have 

generated results suggesting involvement of the Fas pathway in T-cell proliferation. 

Several independent gi'oups have reported that a dominant negative form of FADD, a 

Fas signalling molecule, can not only inliibit Fas mediated apoptosis, but can also 

impair mitogen induced and activation induced proliferation of T-cells, suggesting a 

link between apoptosis and proliferation in T cells (Newton et a l,  1998; Zhang et a l,  

1998; Zornig et a l,  1998; Strasser & Newton, 1999). The inliibition of proliferation 

is not due to impaired 11-2 (Newton et al,  1998; Zhang et a l,  1998; Zornig et a l,

1998), but has been proposed to be p53 dependent as DN-FADD shows no inhibitory 

effect on proliferation of Trp53-I- cells (Zornig et a l,  1998). It is possible that Fas 

signalling or FADD plays some role in inhibiting p53 mediated gi'owth arrest in 

normal cells, and thus allows proliferation to occur.

Another route by which proliferation may be induced is by reverse signalling through 

Fas ligand. FasL has been shown to positively regulate the proliferative capacity of a 

subset of T-cells which express it. Plate bound anti-FasL antibody is able to 

upregulate proliferation of FasL bearing cells undergoing sub-optimal anti-CD3 

stimulation, with the response limited to CD8’̂ T cells (Suzuki & Fink, 1998). 

Conversely, in CD4^ T cells, FasL is reported to transduce signals leading to cell 

cycle arrest and cell death (Desbarats et al,  1998). In CD4^ T-cells, FasL 

engagement prevented 11-2 secretion and proliferation, and blocking Fas:FasL 

interactions brought about an increase in proliferation. In CD8^ T-cells however, 

FasL engagement did not block cell cycle progression or proliferation (Desbarats et 

al,  1998). More recently Fas engagement in the presence of anti-CD3 antibody has 

been shown to induce apoptosis in naïve CD4^ T cells but to co-stimulate 

proliferation of memory CD4^ T cells (Desbarats et al,  1999). hi addition, CD28 co­

stimulation altered the response of naïve T cells allowing them to be co-stimulated by 

FasL engagement (Desbarats et al,  1998).

CD28 is an inducible T cell surface antigen that has been reported to provide a co-
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signal in addition to ligation of the T cell receptor/CD3 complex, when bound by its 

natural ligands, B7-1 or B7-2, or by antibody (Rudd, 1996). CD28 co-stimulation 

with CD3 crosslinking has been reported to augment deletion of double positive 

thymocytes (Aiusen & Ki'uisbeek, 1996; Punt et al,  1997), and also to enhance 

proliferation of CD3"  ̂ thymocytes during activation (Turka et al,  1990), an effect 

which is dependent on presence of the cytokine, 11-2. Enhancement of CD3 

stimulated T cell survival and proliferation by CD28 co-stimulation was found to be 

independent of Fas expression (Noel et al, 1996). This finding suggests that CD28 

CO-stimulation allows CD3 to signal through an alternative Fas independent pathway 

to promote activation induced proliferation. In addition, a4 and a5 integrins have 

been reported to co-stimulate CD3 dependent proliferation of fetal thymocytes 

(Halvorson et a l,  1998). The outcome of CD3 crosslinking will therefore depend 

very much on the population of stimulated T cells; their expression of surface 

markers and their stage of development, as will the requirement for Fas or FasL. The 

ability of Fas:FasL interactions to employ different signalling pathways in individual 

cell types indicates an important role for the Fas pathway in homeostatic regulation 

of the immune response.

1.6.5 The Role of Fas in T Cell Mediated Cytotoxicity

Positive and negative selection and apoptosis of previously activated T-cells occurs 

by default. In contrast, there are situations in the immune system where cells actively 

induce the death of other cells. An example of this is the induction of apoptosis in 

malignant or virally transformed cells by cytotoxic T lymphocytes (CTLs) or natural 

killer (NK) cells. This function of Fas makes it particularly relevant in cancer, and 

specifically leukaemia research.

The mechanisms involved in the lysis of foreign, or antigen expressing target cells by 

CTLs were under debate for some time since the known perforin-granzyme-based 

‘hole-punching’ mechanism did not account for all the situations in which CTL 

killing occurred (Lowin et al, 1994; Ebnet et al, 1995). The demonstration that 

FasL expressing activated T cells were able to lyse Fas positive cells suggested that 

the Fas pathway was an alternative mechanism for CTL mediated cytotoxicity

31



(Rouvier et a l,  1993). Evidence for this hypothesis was generated from studies of 

perforin knock-out mice (Kagi et al,  1994a). Although most CTL mediated 

cytotoxicity was abolished in these mice, the activity that remained appeared to be 

FasL dependent (Kagi et a l,  1994b). Furthermore, CTLs from these mice appeared 

to exhibit no cytotoxic activity towards cells lacking Fas (Lowin et al,  1994), 

implicating the perforin-granzyme and Fas/FasL pathways as the major mechanisms 

by which CTL killing occurs. Recently however, CTLs from mice deficient in both 

the perforin and Fas pathways have shown some residual, albeit delayed, cytotoxicity 

(Braun et a l,  1996) suggesting a role for yet another death factor, possibly TRAIL, in 

CTL killing. The Fas/FasL pathway has also been implicated in NK cell cytolysis of 

target cells (Arase et a l,  1995). Since some cancer cells, particularly in lymphoid 

tumours, express Fas, an obvious application of this system is the killing of tumour 

cells. It remains to be seen whether FasL has any therapeutic value for patients with 

Fas positive tumours. Systemic activation of Fas would cause widespread tissue 

damage, and an effective method of targeting FasL to the tumour directly has yet to 

be devised. The possible benefits have been demonstrated in mice however in which 

allogenic fibroblasts engineered to express surface FasL have been implanted with 

tumour cells and abolished the tumourigenicity of these cells (Drozdzik et a l,  1998).

1.6.6 Immune Privilege

There are some organs that are sites of immune privilege, such as the eye and testis 

(reviewed by Streilein, 1993). Although most organs can tolerate the non-specific 

damage caused by inflammatory responses associated with immune reactions, there 

are sites which cannot, and must have a mechanism by which they protect 

themselves. It was originally thought that inflammatory cells were prevented from 

entering these organs, however evidence now points to a situation in which activated 

cells can enter these organs but are immediately killed. This has been proposed to 

occur via the Fas pathway, with FasL expressed on the cells in these organs inducing 

apoptosis in the Fas-bearing invading inflammatory cells (Bellgrau et a l,  1995; 

Griffith et a l,  1995).

FasL has been found to be constitutively expressed in the iris, comeal epithelium and
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endothelium, and ciliary cells of the eye and in the Sertoli cells of the testis (Bellgrau 

et a l,  1995; Griffith et a l,  1995). Evidence for the theory of immune privilege in 

these sites has been generated in wild type and Fas^^  ̂mice. The eyes of wild-type 

mice were infected with virus, and as expected, very few inflammatory cells were 

detected associated with the retina. In contrast, when the eyes of Fas^^  ̂ mice were 

infected, massive infiltration was detected (Griffith et a l,  1995). Perhaps more 

interesting to researchers in the cancer field, was the observation that allogenic 

transplantation of these tissues from wild-type mice is tolerated, but allogenic 

transplant tissues from Fas^̂  ̂ mice are rejected (Bellgrau et al, 1995). A similar 

situation has been observed in some tumour cells which have become resistant to Fas 

mediated apoptosis and instead constitutively express FasL on their surface (Hahne et 

al, 1996; Strand et al, 1996). These cells can then induce apoptosis in Fas-bearing 

CTL and NK cells and evade destmction themselves. The relevance of this 

mechanism in cancer will be discussed in more detail later.

1.6.7 Signalling from Fas

The stimulation of many receptors by ligand binding leads to dimérisation of the 

receptor and activation of intrinsic catalytic domains. The intracellular region of Fas 

does not contain any known catalytic domains however, and dimérisation with a 

divalent anti-Fas monoclonal antibody is insufficient to mediate an apoptotic signal 

(Trauth et a l,  1989; Yonehara et a l,  1989). A region of homology of about 80 

amino acids, shared by the cytoplasmic domains of Fas and TNF-Rl suggested a 

common role for these domains in signalling, as so called ‘death domains’. 

Mutational analyses in Fas and TNF-Rl have confirmed that these regions are 

responsible for transduction of the cytotoxic signal from these receptors (Huang et 

al,  1996). In addition, tumour cells which express a truncated Fas molecule lacking 

the intracellular death domain have been shown to be resistant to apoptosis (Cascino 

et a l,  1996). In order for TNF-Rl to be activated, it must be trimerised (Baimer et 

al,  1993). The similarity between Fas and TNF-Rl led to the generation of a model 

whereby Fas was activated via trimérisation by a FasL homotrimer (Schneider et a l,  

1997a).
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The description of the trimérisation of Fas and the tendency of death domains to self 

aggregate led to the suggestion that transduction of the apoptotic signal was mediated 

by the trimerised death domains. Since Fas mediated apoptosis can occur in the 

presence of transcriptional inhibitors (Itoh et al, 1991) all the components required 

for this signal are already present in the cell. The first component involved in Fas 

signal transduction was identified using the yeast two-hybrid system with the 

intracellular region of Fas. A molecule containing a death domain at its C-terminus 

was identified using this system, and called FADD (for Fas-Associating protein with 

Death Domain), or MORT-1 (Boldin et al, 1995; Chinnaiyan et a l,  1995). Fas 

activation results in recruitment of FADD/MORT-1 which binds to Fas by 

interactions between the death domains (Kischkel et al, 1995). In addition to the 

death domain at its C-terminus, FADD/MORT-1 cames a region at the N-terminus 

which is responsible for transduction of the downstream signal. This region has been 

called the death effector domain (DED) (Chinnaiyan et al,  1995). N-terminal 

truncation of FADD/MORT-1 gives rise to a dominant negative derivative of FADD 

which can inhibit apoptosis initiated by Fas and other TNF-R family members which 

appear to share FADD as a common signal transducer (Chinnaiyan et a l,  1996).

To investigate the role of FADD in vivo, FADD deficient mice were generated (Yeh 

et al, 1998; Zhang et al,  1998), however unlike Fas null mice, FADD -/- embryos 

die in utero of cardiac failure and abdominal haemoiThage (Yeh et al, 1998) at 

between day 9 and day 11.5 of gestation, indicating that FADD is essential for 

embryonic development (Yeh et al, 1998; Zhang et al, 1998). FADD -/- chimeras 

were generated using FADD-/- ES cells on a background lacking the recombinant 

activating gene RAG-1. Since RAG-1 -/- mice are incapable of producing any B or 

T-cells, all the lymphocytes in these mice are derived from FADD-/- ES cells. Fas 

induced apoptosis was completely blocked in these cells (Zhang et a l,  1998), and in 

FADD deficient embryonic fibroblasts (Yeh et al, 1998). These results suggest that 

FADD is essential for Fas mediated apoptosis, however other putative Fas signalling 

pathways which are independent of FADD have been studied and will be discussed 

later, and other receptors may recruit FADD in signalling pathways.

In order to identify the signalling molecule downstream of FADD, the N-terminal
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DED domain was used as bait in the yeast two-hybrid system (Boldin et a l,  1996). 

At the same time, another group sequenced a novel component of the Fas signalling 

complex (Muzio et al,  1996), or DISC (for death inducing signalling complex). This 

55kDa molecule showed homology to both FADD and the ICE/CED 3 family of 

cysteine proteases, or caspases, and was termed FLICE (for FADD-like ICE), or 

MACH (for MORT-1 associated CED 3 homologue), although it is now more 

commonly known as caspase 8, a member of the caspase 3 subfamily (Alnemri et al, 

1996). Upon recruitment to FADD/MORT-1, the C-tenninal protease domain of 

caspase 8 is proteolytically self-activated by a two step mechanism which may only 

occur at the DISC. Initial cleavage results in a 43kDa and a 12kDa fragment. The 

FADD bound 43kDa fragment is subsequently cleaved and an 18kDa proteolytically 

active fragment is released (Medema et al, 1997). This protein is then able to cleave 

specific substrates as the first step in the proteolytic cascade leading to cell death (see 

Figure 1.1 A).

Overexpression of caspase 8 was found to induce apoptosis, which was blocked by 

some caspase family inhibitors (Muzio et al,  1996). Some general caspase inhibitors 

which were able to block Fas induced apoptosis however, were ineffective as 

inhibitors of caspase 8 activation (Medema et al, 1997). These results indicate that 

other downstream caspases are also required for Fas mediated apoptosis, and suggest 

that caspase 8 is active early in the signalling cascade. The role of caspase 8 in Fas 

apoptotic signalling was tested in a number of cell lines and in each, its recruitment 

to FADD was an essential step in death signalling (Medema et a l,  1997; Juo et al,

1998). Caspase inhibitors have also been shown to block Fas mediated apoptosis in 

T cells, confirming a role for caspase involvement in this pathway (Moreno et al,

1996), These results are similar to those found in FADD deficient cells, and suggest 

that caspase 8, like FADD is an essential component of the Fas signalling system.

Caspase 8 appears to be targeted by viruses seeking to avoid the host’s apoptotic 

response. Thome et a l  (1997) described a family of viral inhibitors of apoptosis 

which they called v-FLfPs (for viral FLICE Inhibitory Proteins) which are present in 

several gamma-herpesviruses and in the proliferative human molluxipoxvirus. v- 

FLIPs interact with FADD and inhibit recruitment and activation of caspase 8 thus
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protecting infected cells against Fas induced apoptosis (Thome et a l,  1997). Cellular 

homologues of these inhibitors have also been identified (Tschopp et a l,  1998). The 

importance of caspase 8 in cells was confirmed in studies of caspase 8 knockout mice 

(Varfolomeev et a l,  1998). Disruption of the caspase 8 gene results in death at day 

12.5 to 13.5 of gestation due to hyperaemia, cardiac abnormalities and erythrocytosis 

in the liver. Loss of this gene appears to result in congested accumulation of 

erythrocytes and dramatic depletion of the haemopoietic precursor pool 

(Varfolomeev et a l,  1998). This latter defect may be secondary to other 

abnormalities yet to be clarified in these mice. Predictably, in embryonic fibroblasts 

derived from these mice, cell death from Fas, the TNF receptors and DR3 was 

completely blocked, confirming previous results (Varfolomeev et a l,  1998).

Until recently, the DISC was believed to be made up of Fas, FADD and caspase 8 

alone, however a novel protein has recently been identified, which is reported to be a 

component of the DISC. FLASH (for FLICE-associated huge protein) was identified 

by using the yeast two-hybrid system with caspase 8 DED domains as bait (Imai et 

al, 1999). FLASH is reported to bind activated Fas as well as FADD and caspase 8, 

and is also able to self-associate. Transient expression of FLASH activates caspase 

8, and overexpression of a truncated form of FLASH blocks caspase 8 activation and 

Fas induced apoptosis (hnai et a l,  1999). Further studies of FLASH are necessary to 

confirm its presence in the DISC, and to assess its importance in signalling.

1.6.8 Two Fas Signalling Pathways

Recently the importance of mitochondria as regulators of apoptosis was recognised 

(Shimizu et a l,  1996; Kroemer et a l,  1997). Early after induction of apoptosis 

(Shimizu et a l,  1996), including induction by Fas, a drop in mitochondrial 

transmembrane potential (AYm) can be detected which may be due in part to the 

simultaneous opening of permeability transition (FT) pores (Zamzami et a l,  1996). 

Inactivation and release of cytochi'ome c from the mitochondria, into the cytoplasm, 

occurs in parallel with these events (Kiippner et al,  1996; Adachi et al, 1997), 

resulting in activation of caspase 9 which is activated when complexed with Apaf-1, 

and in turn activates caspase 3. All apoptogenic activities of mitochondria can be
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blocked by overexpression of Bcl-2 or B c 1 -x l  which act upstream of Apaf-1. Bcl-2 

and B c 1 - x l  are members of the Bel family. Members of this family have been shown 

to block cell death and protect cells from a wide variety of apoptotic cues (Yang & 

Korsmeyer, 1996). Bcl-2 family members have recently been reported to regulate the 

release of cytochrome c (Kluck et a l,  1997; Yang et a l,  1997a) by binding voltage 

dependent ion chamiels (VDACs) in the mitochondrial membrane (Shimizu et al,

1999).

The ability of Bcl-2 family members to inhibit Fas mediated apoptosis has been the 

subject of controversial discussion (reviewed by Peter & Krammer, 1998). Bcl-2 and 

Bcl-xL have been reported to inhibit Fas-mediated apoptosis in vitro and in vivo (Itoh 

et a l,  1993; Boise et a l,  1995: Rodriguez et al, 1996; Schneider et a l,  1997b). Fas 

mediated apoptosis was reported to be inhibited in murine cell lines overexpressing 

Bcl-2 (Itoh et a l,  1993) and completely blocked in mitochondrial DNA depleted 

HeLa cells which overexpress Bcl-2 (Asoh & Ohta, 1997). Recent work by 

Krammer and colleagues however, has resulted in the identification of two distinct 

cell types each using one of two different Fas signalling pathways: mitochondria 

independent and mitochondria dependent Fas mediated apoptosis, (Scaffidi et al, 

1998, see also Figure 1.1). Characterisation of a number of cell types has predicted 

that T cells are type I cells while B cells and hepatocytes are type II (Scaffidi et al, 

1998). In both type I and type II cells, Bcl-2 or Bcl-xL blocked all mitochondrial 

apoptogenic activity. In type I cells however, blocking mitochondrial apoptotic 

function by overexpression of Bcl-2 had no effect on activation of caspase 3 or 8, or 

on the sensitivity of these cells to Fas induced apoptosis. The DISC activated large 

amounts of caspase 8 within seconds and caspase 3 within 30 minutes in these cells 

(Scaffidi et a l,  1998). In type II cells apoptosis was dependent on activation of 

mitochondria, with overexpression of Bcl-2 resulting in complete blockage of 

caspase 8 and caspase 3 activation, and apoptosis (Scaffidi et a l,  1998). In type II 

cells DISC formation was strongly reduced and activation of caspase 8 and 3 was 

delayed for about one hour following loss of (Scaffidi et al,  1998), The 

mechanism for mitochondrial activation in type II cells is not yet clear. Since type II 

cells show only moderate DISC formation however, mitochondria may function as an 

amplifier of the Fas signal in these cells, activating caspase 8 and 3 via caspase 9.
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As mentioned previously however, there are proteins other than FADD which have 

been implicated in Fas signalling by direct interaction with Fas. These signalling 

pathways are independent of either the type I or type II classical death pathways. 

Yang and colleagues cloned and characterised a novel signalling protein which they 

called Daxx, which binds specifically to the Fas death domain but lacks a death 

domain of its own (Yang et a l,  1997b). Overexpression of Daxx enhances Fas- 

mediated apoptosis and leads to INK activation (Yang et a l,  1997b). This pathway 

acts co-operatively with the FADD pathway and is inhibitable by Bcl-2, indicating a 

FADD independent apoptotic pathway downstream of Fas (Yang et a l,  1997b). The 

finding that in certain cells, for example HeLa cells, the INK pathway is dispensable 

(Liu et a l,  1996; Yang et a l,  1997b), while other cells required the INK pathway for 

Fas induced apoptosis (Yang et al,  1997b) supports the involvement of Daxx and the 

INK pathway in cell type specific Fas mediated apoptosis. However, comparison of 

the speed of activation of Jun kinases in type 1 and type 11 cells revealed no 

differences (Cahill et a l,  1996), so it remains to be seen how relevant the Daxx/JNK 

pathway is in mitochondria dependent apoptosis.

Caspase 10 is another protein that has been reported to be directly activated by Fas 

(Fernandes-Alnemri et al,  1996), and is therefore a candidate for mitochondrial 

activation in type 11 cells. Scaffidi and colleagues however suggest that caspase 10 

cleavage occurs downstream of mitochondrial activation and is therefore unlikely to 

be responsible for triggering mitochondrial apoptotic activity (Scaffidi et a l,  1998). 

Ligation of Fas has also been shown to result in activation of an apoptotic Ras/MAP 

kinase signalling pathway via sphingomyelinase mediated ceramide generation 

(Gulbins et a l,  1995). More recently, triggering of this pathway has been 

demonstrated to be regulated by caspases, since caspase inhibitors were able to block 

utilisation of sphingomyelinase and ceramide release (Brenner et a l,  1998). Caspase 

inhibitors were also able to block all Fas induced death suggesting that the ceramide 

pathway acts downstream of caspase activation. It may be that the ceramide 

pathway, caspase 10 activation and the Daxx/JNK pathway contribute to the spread 

of the intracellular death signal, and act as a signal amplifier for cell types with low 

caspase activity. The perceived importance of caspase 10 in the Fas signalling 

system was recently heightened with the discovery that inherited mutations in
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caspase 10 are responsible for type II ALPS in humans, a condition similar to the 

classical disease associated with Fas mutations (Wang et a l,  1999a).

1.6.9 Fas:FasL Interactions in Tumourigenesis

The number of signalling systems that Fas can trigger underlines the importance of 

an intact Fas pathway. Unsuiprisingly therefore, deregulation of Fas has been 

implicated in several physiological abnormalities. While we know that loss of 

function can lead to autoimmunity and lymphoproliferation, the importance of a 

defective Fas pathway in tumourigenesis is less well understood and has been the 

subject of much debate. Much of the confusion stems from the fact that even if loss 

of Fas is shown to accelerate tumourigenesis, it may not be because Fas is a bone fide 

tumour suppressor but rather due to the creation of an immunocompromised 

environment in which tumours may develop more readily. A number of studies 

however, have proposed that loss of Fas predisposes toward cancer.

Much of the doubt surrounding the role of Fas as a tumour suppressor resulted from 

the lack of malignancies in Fas deficient mice. To address the question of whether 

this was due to regulation by T-cells, Peng and colleagues generated T-cell deficient 

mice on a Fas^ '̂ background. These mice spontaneously developed malignant B cell 

lymphomas with significant associated mortality, while the non-T cell deficient Faŝ '̂ '' 

mice and the Fas'^  ̂T cell deficient animals did not (Peng et a l,  1996). These results 

implicated Fas in the development of B cell lymphoma, while suggesting that T-cells 

are able to regulate B cell lymphomagenesis by a Fas independent mechanism. A 

report of outgrowth of monoclonal B cell populations in Fas deficient mice supported 

this theory (Davidson et a l,  1998). Although malignancies in Fas^ '̂ and Fas^̂  ̂mice 

had never previously been reported, Davidson and colleagues investigated the 

possibility that defective Fas-FasL interactions may lead to lymphoma later in life. 

They examined Faŝ '̂ '* and Fas^^  ̂ mice aged 6 to 15 months and found that a 

significant proportion had monoclonal B cell populations in spleen and lymph node, 

compared to none in the control groups (Davidson et a l,  1998). They also found that 

B cell populations from Fas^̂  ̂mice were transplantable into immunodeficient mice, 

where they grew and metastasised indicating the presence of malignant cells
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(Davidson et a l,  1998). These data support a role for the Fas pathway in preventing 

development of B cell neoplasia.

Downregulation of Fas has also been reported in human tumours. Mutations in the 

Fas gene have been reported in gastric cancer and in T cell lymphoma (Zoi-toli et al, 

2000; Park et a l,  2001). In contrast however, a recent study of human 

haematological malignancies reported that Fas and Fas pathway components were 

not the targets of mutation (Rozenfeld-Granot et al,  2001). Loss of FasL has also 

been described in murine tumours (Ouhtit et al, 2000), however a significant 

positive conelation between malignancy and FasL expression has been observed in 

studies in human breast and gastric tumours in which FasL expression has been 

correlated with metastatic potential, tumour size and malignancy (Mottolese et al, 

2000; Liu et al,  2001). The role of Fas:FasL interactions in human malignancy is 

still the subject of much debate.

If loss of Fas expression were a feature of tumour progression, it would be expected 

to allow acceleration of virally induced T cell lymphomagenesis. hi Fas^' mice 

however, Moloney murine leukaemia virus induced lymphomagenesis was not 

accelerated in comparison with control C57BL/6 mice, and pro viral insertion sites in 

Fas^ '̂ tumours were characteristic of wild type mice (Zornig et a l,  1995). If Fas 

represented a tumour suppressor, then it would be expected that genes that could act 

in synergy with loss of Fas, may represent preferential targets for pro viral insertion, 

and that reduced latency may be observed for these tumours. This was not the case 

however, providing evidence against a role for Fas in tumour suppression.

Other groups have explored whether lack of a functional Fas pathway could represent 

a step in the multi-stage process of tumourigenesis, by investigating acceleration of 

transgene induced tumourigenesis on a Fas deficient background. In some cases, no 

acceleration has been seen. In E\x-pim-l transgenic mice for example, which 

normally develop T-cell lymphoma with an incidence of about 10% and a latency 

period of 7-9 months, the Fas^ '̂ mutation does not predispose to tumourigenesis 

(Moroy et al., 1993). The lymphoproliferation associated with the homozygous 

Fas^'' mutation is accelerated however and this occurs through inhibition of apoptosis
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by Pim-1 overexpression. A similar acceleration of lymphoproliferative disease but 

not of lymphomagenesis was seen in Trp53 null mice on a Faŝ '̂ ' background 

(Cameron et al. unpublished results).

Loss of either Fas or p53 may be important in tumourigenesis, because of their ability 

to induce apoptosis. Loss of both pathways together may be synergistic events 

during tumourigenesis, if these are independent of each other. The relationship 

between the two pathways has been studied however, and there may be some 

functional overlap. The relationship between p53 and Fas/FasL is complex since two 

distinct pathways, one transcription dependent, the other transcription independent, 

have been proposed for the effect of p53 on Fas. There is evidence to suggest that 

p53 regulates the expression of Fas in human tumour cell lines; introduction of wild- 

type p53 into p53 null cells can enhance expression of the Fas gene, and this does not 

require de novo protein synthesis, suggesting direct regulation of the Fas gene 

(Owen-Schaub et a l,  1995). hi contrast Bennett and co-workers have described 

trafficking of Fas from the Golgi complex to the cell surface, and heightened 

sensitivity to Fas induced apoptosis on activation of regulatable p53 in human 

vascular smooth muscle cells (VSMCs, Bennett et al, 1998). In these experiments, 

no difference was seen in Fas or FasL mRNA expression after p53 activation, but 

surface Fas was transiently increased (Bennett et al,  1998). In a separate 

experiment, these authors also found that p53 induced apoptosis was reduced in 

Fas^' and Fas^^  ̂MEFs, compared with wild type MEFs (Bennett et a l,  1998). They 

suggest that tumour cells lacking functional p53 will evade apoptosis induced by both 

p53 transcriptional targets and by FasL, or, more simply, that p53 loss results in loss 

of not only p53 mediated apoptosis, but also a reduction in Fas induced apoptosis. A 

later study however showed that while p53 dependent DNA damage-induced 

apoptosis required caspase 3 activation, this was independent of Fas:FasL 

interactions (Fuchs et a l,  1997). To confuse the relationship between Fas and p53 

still further, while FADD-DN can inhibit activation induced proliferation in T cells 

from wild type mice it shows no inhibitory effect on proliferation of Trp5S null cells 

(Zornig et al,  1998). The reason for this has not been determined yet, but highlights 

a growth promoting role for TNF-R family members in addition to their apoptotic 

function, which may be mediated by inhibition of p53 dependent growth arrest.
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Similarly, conflicting results have been generated from studies of the relationship 

between Fas and Bcl-2 in tumourigenesis. Deregulation of Bcl-2 expression has been 

found in many human cancers (reviewed by Reed et a l,  1996), however 

overexpression of Bcl-2 alone is relatively benign in transgenic mouse models 

(McDonnell et a l,  1989, Strasser et a l,  1990a). When coupled to additional lesions 

however, such as overexpression of the oncogene c-MYC, deregulated expression of 

Bcl-2 can rapidly lead to transfoiTuation (Strasser et a l,  1990b). The question of 

whether or not Bcl-2 overexpression and loss of functional Fas are overlapping 

events in tumourigenesis, if Fas has a role in preventing tumourigenesis at all, has 

been investigated in a number of studies. On a Fas^ '̂ background, Ep,-Bcl-2 

transgenic mice showed no tumour formation but instead showed increased 

lymphoproliferation (Strasser et al,  1990a; Strasser et a l,  1995), suggesting a Bcl-2 

dependent mechanism for regulation of lymphocyte homeostasis in addition to the 

Fas-mediated pathway. These results would indicate that the two pathways (Fas loss 

and overexpression of Bcl-2) can work in an additive or complementary way to block 

cell death. This hypothesis is confirmed by studies using Bcl-2 transgenic mice with 

constitutive expression targeted to myeloid cells, hi these mice, loss of Fas led to 

development of acute myeloblastic leukaemia, which did not occur in either control 

group (Traver et a l,  1998). These findings again suggest a synergy between defects 

in Fas and overexpression of Bcl-2. It is likely that in this model, enhanced Bcl-2 

expression and loss of the Fas death pathway co-operate to facilitate survival of cells 

harbouring oncogenic mutations, which may otherwise be killed. Further, Bcl-2 

overexpressing T cells are sensitive to anti-Fas antibody induced apoptosis (Van 

Parijs et a l,  1998) indicating a Fas mediated apoptotic pathway insensitive to Bcl-2, 

which is likely to operate through type I signalling. The extent of overlap in function 

between Fas and Bcl-2 may depend on the apoptotic stimuli and on the cell type. 

This theory is supported by the work of Scaffidi et a l,  (1998) highlighting the 

existence of two distinct Fas signalling pathways in different cell types (Scaffidi et 

al,  1998).

There also seems to be some synergy between oncogenic Ras and loss of Fas, as H- 

Ras has been reported to dowmegulate the expression of Fas and inhibit FasL 

mediated apoptosis via activation of the PI3 kinase pathway (Peli et a l,  1999). It
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appears that Ras not only has the potential to promote proliferation, but also to 

inliibit FasL induced apoptosis. Ras has also been reported to inhibit c-MYC 

induced apoptosis tlu*ough triggering of PI3 kinase (Kauffinann-Zeh et a l,  1997), but 

no mechanism by which Ras may link MYC and Fas induced apoptosis has been 

established thus far.

Regulation of FasL expression has also been observed in T-cells overexpressing the 

AMLJ/Runxl/Cbfa2 gene (Fujii et a l,  1998), which is associated with human acute 

myeloid leukaemia. Overexpression of AML-1 induced resistance to anti-CD3 

induced apoptosis, and inliibited expression of FasL (Fujii et a l,  1998). Induction of 

FasL transcription was also found recently to be dependent on expression of the full- 

length product of a newly discovered gene called apoptosis linked gene 4 (ALG-4, 

(Lacana* & D'Adamio, 1999). Since FasL is subject to such strict regulation, it is 

possible that it may have roles other than as a ligand for the Fas receptor, and may be 

involved in some Fas independent systems.

1.6.10 Fas and its Relationship with c-MYC

c-MYC is an oncogene frequently mutated in human tumours (Marcu et a l,  1992) 

and as such has been the subject of a great deal of research. Constitutive expression 

of c-MYC in lymphoid cells predisposes to lymphomagenesis (Adams et a l,  1985). 

Deregulation of MYC  results in increased proliferation of cells through its activity as 

a transcription factor, but this proliferation is limited by MYC’s other function as an 

inducer of apoptosis (Askew et a l,  1991; Evan et al,  1992). In an environment of 

low serum concentration or hypoxia (Alarcon et al, 1996), MYC  upregulation results 

in apoptosis and this may restrain inappropriate cell growth. Delineation of the 

mechanisms used by MYC to induce apoptosis may be very important in establishing 

novel therapeutic targets.

The Fas pathway has been implicated in MYC induced apoptosis in some cell types 

(Hueber et a l,  1997), and a role for caspase 3 like proteases in c-MYC induced 

apoptosis has been demonstrated (Kagaya et a l,  1997), but the relationship between 

MYC and Fas has yet to be clearly established. Transgenic mice carrying the L-MTC
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gene under the control of the immunoglobulin enhancer element show elevated 

expression of L-MEC in B and T-cells, and develop predominantly T-cell lymphoma 

(Moroy et a l,  1990). These mice were crossed onto a Fas^' background and showed 

an accelerated rate of tumour formation of both B and T-cell origin (Zornig et al, 

1995).

Generation of a regulatable form of c-MYC, made by linking c-MYC to a mutated 

form of the oestrogen receptor element which responds to 4-hydroxy tamoxifen (4- 

OHT) treatment (Hueber et al,  1997), allowed examination of the role of Fas in c- 

MYC induced apoptosis. When cells stably expressing the c-MYC transgenic 

construct are treated with 4-OHT, they die by apoptosis (Hueber et a l,  1997). hi 

immortalised S3T3 fibroblasts, blocking Fas:FasL interactions, or use of DN-FADD 

leads to reduced and delayed MYC-induced apoptosis (Hueber et a l,  1997). In 

addition, in mouse embryo fibroblasts (MEFs) from Fas^' mice transiently 

transfected with the constmct, activation of c-MYC had no effect on the rate of 

apoptosis, while in wild type MEFs the rate of apoptosis increased (Hueber et al,

1997). One hypothesis states that c-MYC utilises the Fas pathway at least in part, by 

sensitising the cell to Fas mediated apoptosis at some point downstream of Fas 

ligation (Juin et al,  1999). Some evidence to support this theory is the lack of 

acceleration of FADD or pro-caspase 8 induced apoptosis by activated c-MYC in 

contrast to that nonnally seen in FasL induced apoptosis (Rohn et al,  1998). In 

addition, suppression of c-MYC induced apoptosis by insulin like growth factor, 

IGF-1, and by Bcl2, occurs downstream of Fas ligation (Hueber et a l,  1997; Rohn et 

al,  1998), and in cells expressing dominant negative FADD, c-MYC induced 

apoptosis is not inhibited (Yeh et a l,  1998).

Evidence from other groups suggests that MYC may collaborate with the Fas pathway 

tlirough regulation of FasL expression. While no changes in Fas expression have 

been seen after c-MYC activation, regulation of FasL expression by c-MYC remains a 

possibility. A fungal metabolite, FR901228 that was shown to inhibit c-myc 

expression in lymphoid cells, was found to specifically inhibit activation (anti-CD3) 

induced apoptosis independently of 11-2 (Wang et a l,  1998). This was shown to be a 

result of inhibition of FasL expression which was reversed by ectopic c-MYC
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expression, suggesting that inhibition of FasL is mediated through loss of c-myc 

(Wang et al,  1998), and conversely that MYC is influencing FasL expression.

Further to these results, work by Thomas Brunner and Douglas Green in recent years 

has identified a link between MYC and FasL expression. Where previously, TGF-p 

was shown to enhance resistance to Fas induced apoptosis in T cells by an unknown 

mechanism (Cerwenka et a l,  1996), they have demonstrated that TGF-p 1 inhibits 

activation (anti-CD3) induced apoptosis in human T-cells, by inhibition of FasL 

expression (Genestier et a l,  1999). Simultaneous inhibition of c-MYC expression 

was observed, and ectopic expression of c-MYC relieved the inhibition of FasL 

expression and of activation induced apoptosis (Genestier et a l,  1999). Recently, 

direct evidence of a regulatory role of c-Myc on transcription of FasL has been 

generated (Brunner et a l,  2000). Down regulation of c-myc, using anti-sense 

oligonucleotides blocked FasL mRNA expression in activated T cells (Brunner et al,

2000). Subsequently, a binding site for the myc-max heterodimer was discovered in 

the FasL promoter which, when mutated abolished the transcriptional response of 

FasL to c-MYC overexpression (Kasibhatla et a l,  2000). Further work is required 

however to determine the reasons for the ability of c-MYC to upregulate FasL, and 

the relevance of this relationship in tumourigenesis.

1.6.11 Immune Privilege in Tumours

A further complication for those studying the role of Fas as a possible tumour 

suppressor is the fact that tumours may be able to evade the immune response by 

making use of the Fas pathway themselves (Walker et al,  1998). In addition to 

down-regulation of the Fas receptor, it appears that in order to escape immune attack 

tumour cells can kill attacking lymphocytes by expression of FasL. In other words, 

tumours may become sites of immune privilege, similar to the eye. This has been 

demonstrated in co-culture experiments, in which tumour cells expressing FasL have 

killed Fas expressing Jurkat T lymphocytes (Strand et a l,  1996). For those tumours 

which have an intact Fas pathway but do not express FasL, another mechanism of 

immune evasion exists in the form of a decoy receptor, DcR3 (Pitti et a l,  1998). 

This is a soluble FasL receptor, which binds to FasL and restricts FasL mediated
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apoptosis. The gene for this receptor has been found amplified in lung and colon 

cancers (Ohshima et a l,  2000), and represents another mechanism which may 

contribute to immune evasion by certain tumours. The fact that discovery of this 

receptor was only relatively recent, also gives weight to the possibility that there may 

be more, as yet undiscovered receptors for FasL.

1.6.12 Functional Redundancy in the TNF Family

The Fas pathway may not be critical in preventing tumourigenesis, because of 

functional redundancy between itself and other members of the TNF receptor family. 

The family includes two TNF receptors (TNF-Rl and TNF-R2), the NGF receptor, 

CD40, CD27, CD30, the lymphotoxin-p receptor, RANK (receptor activator of NF-k 

B), DR-3, and the TRAIL (TNF related apoptosis inducing ligand / APO-2) receptors 

DR4, DR5, DcRl and DcR2. This is not a complete list however. The family is still 

growing and more members are likely to be added in the future.

Many of these receptors are known primarily as regulators of proliferation. 

Interaction of RANKL (TRANCE/OPGL) on dendritic cells with its receptor on T 

cells stimulates naïve T cell proliferation in a mixed lymphocyte reaction and 

increases survival of RANK^ T cells (Anderson et a l,  1997a). RANKL deficient 

mice exhibit defects in early differentiation of T and B lymphocytes and lack lymph 

nodes, indicating its importance as a regulator of lymphocyte development and 

organogenesis (Kong et a l,  1999).

CD40 is essential in activating antigen presenting cells (APCs) to process and present 

antigen effectively (Grewal & Flavell, 1998), and is required for the generation of 

CTLs (Bennett et a l,  1998; Ridge et a l,  1998; Schoenberger et a l ,  1998). Cross- 

linking of CD40 on APCs is thought to activate them by improving antigen 

processing, upregulating cytokine production and increasing expression of co­

stimulatory and adhesion molecules. When mice with lymphoma are treated with 

monoclonal activating anti-CD40 antibody there is a rapid cytotoxic T cell response 

resulting in a tenfold expansion of CD8^ T cells over 5 days which eradicates the 

tumour (French et a l,  1999). Conversely, antigen specific T cell priming fails to
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occur in mice lacking CD40L (Grewal et al, 1995).

Among TNF family members, FasL and TRAIL share the highest homology and the 

ability to induce apoptosis, raising the possibility of functional redundancy between 

the two ligands. In support of this theory, Mariani and colleagues have recently 

demonstrated that FasL resistant cells may be sensitive to TRAIL induced apoptosis 

(Mariani et al., 1997). Differential regulation of the two ligands has been shown on 

lymphoma cell lines with different cell types showing predominant expression of one 

or other ligand (Mariani & Krammer, 1998). The necessity for Fas to induce 

apoptosis in individual cell types may depend very much on the cell type and the 

relative abundance of these two ligands.
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CHAPTER 2 

MATERIALS & METHODS

2.1 A n im a ls

All animal work was carried out under Home Office regulations

2.1.1 Transgenic Mouse Stocks

The generation of CD2-MECER™ transgenic mice has been described previously 

(Blyth et al, 2000). A human c-MYC cDNA was fused to a mutated murine 

oestrogen receptor, which is responsive only to tamoxifen and not to oestradiol 

(Littlewood et a l,  1995), and cloned into the multiple cloning region of the CD2 

minigene vector VA hCD2 (Zhumabekov et al, 1995) in order to target the c-MYC 

gene to the T-cell lineage, as described in Blyth et al, (2000). This work was carried 

out by Dr. M, Stewart. The CD2-M7CER™ constmct was then microinjected into 

C57B1/6J X CBA/Ca F2 (B6/CBA) fertilised eggs according to standard protocols 

(Hogan et al,  1986) by Dr. E. Cameron and Mrs. M. Bell. Two transgenic lines were 

established, the CD2-M7CER™15 and the CD2-M7CER™2 lines. The CD2- 

M7CER™15 line (liereafter referred to as CD2-M7CER™) was selected for use in 

this study, except where stated otheiivise, and animals were maintained as 

heterozygotes on an indiscriminate B6/CBA background.

Fas^ '̂ mice deficient for a functional Fas gene were obtained from Harlan, UK, and 

maintained as homozygotes. These mice are derived firom a spontaneous congenic 

mutation in the Fas gene, originally found in MRL strain mice (Watanabe-Fukunaga 

et al,  1992). Control MRL mice were also supplied by Harlan, UK.

Mice deficient for a functional Trp53 tumour suppressor gene were derived using 

homologous recombination in murine ES cells by L. Donehower and co-workers 

(1992). Briefly, a null mutation with an inserted polU-neo expression cassette and a 

106bp deletion in exon 5 of the p53 gene was introduced into the germ line of 129/Sv
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ES cells. Chimaeric mice, generated by introducing the targeted ES cells into 

C57B1/6 blastocysts, were crossed onto a C57B1/6 background. The genetic 

background of the mice used in the studies described here were an indeterminate mix 

of C57B1/6, 129/Sv and NIH strains. The use of the p53-deficient mice (hereafter 

referred to as Trp53 null or Trp53'^') has been with the kind peimission of Dr. Larry 

Donehower.

2.1.2 In Vivo Induction of CD2-MFCER™ Transgene

To induce activity of the CD2-M7CER™ transgenic construct in vivo, animals 

carrying the CD2-MECER^'^ transgene were administered tamoxifen by continuous 

oral dosing in drinking water, made up every 7 days. Tamoxifen citrate (Sigma- 

Aldrich) was dissolved in absolute ethanol and made up in ultra-pure water, to a 

concentration of 100|LLg/ml in 1% ethanol. Control animals were treated with 1% 

ethanol in ultra-pure water.

2.1.3 Challenge of Mice with MoMuLV

MoMuLV clone lA  supernatant was isolated from virus infected 3T3 cells (a gift of 

Dr. A. Bems) during the log phase of growth and filter sterilised through a 0.45pm 

filter (Gelmain Sciences) to remove cell debris. Aliquots of 1ml of filtered 

supernatant were frozen at -70°C until required. Neonatal animals were inoculated 

intraperitoneally with 0.1ml of supernatant, estimated at 10"̂ -10̂  infectious units of 

virus, within 24 hours of birth, by Dr. K. Blyth.

2.1.4 Tumour Transplantation

Tumour cells were transplanted into Fas '̂ '̂, MRL and MF 1-nude host mice (Harlan, 

UK). Suspension tumour cells were prepared as described in 2.4.2. Cells were 

prepai'ed for transplantation by centrifugation at 1500rpm for 5 minutes, the 

supernatant removed, and the cells resuspended in RPMI, by Dr. Karen Blyth. 2 x 

10  ̂ tumour cells in 0.5ml volume were injected intraperitoneally into 6-8 week old 

Faŝ -̂ '' and MRL recipient mice by Dr. E. Cameron and Dr. K. Blyth. Frozen cells
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were thawed and then prepared as described above for transplant into nude mice. 2 x 

10  ̂ tumour cells in 0.5ml volume were injected intraperitoneally into 6-8 week old 

female nude mice, by Dr. K. Blytb.

2.1.5 Mouse Genotype Analysis

Positive CD2-MyCER^^ and Trp53 null transgenic animals were identified by 

screening tail DNA for the presence of the transgene/null mutation by Southern blot 

hybridisation. The status of the Fas gene was examined by PCR analysis of tail 

DNA.

Potential transgenic animals were weaned from the breeding stocks at 3-4 weeks of 

age and separated by sex. At 4-6 weeks of age, animals were anaesthetised by 

inhalation of fluotbane (Schering-Plough) anaesthetic vapour in oxygen gas, and a 1- 

2cm biopsy of tail taken. The tail wound was then cauterised. Animals were tagged 

by an ear nicking identification scheme and allowed to recover. DNA extraction and 

Southern blot analysis on the tail tissue was carried out as described in section 2.2.

2.1.6 Clinical Examination and Post-mortem Investigation

Experimental cohorts and breeding stocks of mice were maintained for defined 

periods of time and the health of animals checked at least three times weekly. The 

development of lymphoid neoplasia in the transgenic animals presented as cachexia 

and tachypnoea. The development of lymphoproliferative disorders in Faŝ '̂ '" animals 

presented as swellings at the sites of subcutaneous lymph nodes, and arteritis, 

characterised by skin abrasions. Sarcomas and carcinomas, which often developed in 

Trp53 null mice, presented as visible swellings, paresis or cachexia depending on the 

anatomical site of the tumour. Animals were humanely sacrificed by cervical 

dislocation when clinical signs first became evident.

Post-mortem was routinely undertaken immediately after euthanasia, or as near to the 

time of death as possible, and the pathology recorded. Particular attention was paid 

to the lymphoid organs, specifically the thymus, spleen, mesenteric and subcutaneous
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lymph nodes. Evidence of metastasis or lymphocytic infiltration to non-lymphoid 

organs was also noted. Tissues were frozen in cryotuhes (Gibco BRL) in liquid 

nitrogen (BOC) for Southern analysis; fixed in 10% neutral buffered fonnalin for 

histopathological examination; and placed in RPMI medium (Gibco BRL) for cell 

biology experiments.

2.2 S o u t h e r n  H y b r id i s a t io n  A n a ly s i s

2.2.1 Isolation of Genomic DNA from Mouse Tail Tissue

Fresh tail tissue was placed in an eppendorf tube and 0.5ml of lysis buffer (lOOmM 

Tris-HCl, pH 8.5; 5mM EDTA, pH 8.0 [both Sigma]; 0.2% SDS [BDH]; 200mM 

NaCl [Fisher]) added. Proteinase K (Invitrogen) was added to a final concentration 

of 0.5mg/ml, and the samples incubated at 55°C for approximately 16 hours. 

Samples were then centrifuged in a microfiige at 13,000rpm for 10 minutes to obtain 

a firm pellet. The supernatant was added to 0.5 ml isopropanol (BDH), in an 

eppendorf tube, and the tube inverted several times until precipitation was complete. 

DNA was removed by lifting the aggregated precipitate from solution and allowing 

excess isopropanol to evaporate. DNA was resuspended in lOOpl of ultra-pure water 

and left for several hours to dissolve.

hi order to clean the DNA for PCR analysis, samples were made up to 200pl in ultra- 

pure water, and an equal volume of phenolxhlorofonn (Sigma-Aldrich) added. 

Samples were centrifuged in a microfuge at 13,000ipm for 10 minutes, and the top 

layer carefully removed and transferred to a fresh eppendorf tube. Approximately 0.1 

X volume of 3M CHgCOONa (Fisher) and 2.5 x volume of ethanol (BDH) were 

added, and the DNA precipitated out by gentle inversion of the tube. The DNA was 

removed, and excess ethanol air dried, and then redissolved in 5Qp,l of ultra-pure 

water. DNA concentration was deteiinined by measuring the optical density of the

sample at 260nm, on a DU 640 spectrophotometer (Beckman). The DNA sample

was then stored at 4°C.
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2.2.2 Isolation of Genomic DNA from Mouse Tumour Tissue

Genomic DNA was isolated from mouse tumour tissue using the Nucleon^*^ II 

method (Scotlab Bioscience). Approximately lOOmg of frozen tissue was ground to 

a powder in liquid nitrogen (BOC) using a chilled mortar and pestle (BDH). The 

tissue was resuspended in 2ml of Reagent B (400mM Tris-HCL at pH 8.0, 60mM 

EDTA, 150mM NaCl and 1% SDS) in a 15ml centrifuge tube by vortexing briefly. 

RNAse (Sigma) was added to a final concentration of 400ng/ml, and the samples 

were incubated at 37°C for 30 minutes. Deproteinisation was carried out by adding 

500pl of Nucleon sodium perchlorate and rotaiy mixing for 15 minutes at room 

temperature. The sample was then incubated in a shaking water bath at 65°C for 25 

minutes. DNA was extracted by adding 2ml of chloroform (BDH), which had been 

stored at -20°C. The sample was rotary mixed for 10 minutes at room temperature 

and then centrifuged at 3200rpm for 1 minute. 300pl of Nucleon silica suspension 

was added and the sample centrifuged at 4300rpm for 3 minutes. The DNA phase 

above the Nucleon silica suspension layer was transferred to a clean 15ml centrifuge 

tube and centrifuged briefly at 4200rpm to pellet residual Nucleon silica. The 

supernatant was carefully decanted into a clean 15ml centrifuge tube and two equal 

volumes of cold ethanol, at 4°C, added. The tube was inverted gently to precipitate 

the DNA. The precipitated DNA was spooled out into a 1.5ml eppendorf tuhe and 

left to dry. The DNA was resuspended in 200 - 400pl of ultra pure water by leaving 

the sample overnight at room temperature. The DNA concentration was determined 

by measuring the optical density of the sample at 260nm, on a DU 640 

spectrophotometer (Beckman). The DNA sample was stored in an eppendorf tube at 

4°C.

2.2.3 Restriction Analysis of Genomic DNA

To detect the presence of the transgene, or the Trp53 null mutation, or to analyse the 

integiity of the endogenous myc gene, restriction analysis was carried out. DNA 

digestion with restriction enzymes, separation by agarose gel electrophoresis, transfer 

to Hybond™ N membranes (Amersham International pic.), hybridisation and
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washing of blots were all carried out as described in Sambrook et al,  (1989). 

Briefly, lOng of the sample to be tested was incubated with 3 units of restriction 

enzyme (all Gibco BRL), and digestion carried out at 37°C overnight. Bgl-TL 

restriction enzyme was used to generate fragments to identify the presence of the 

CD2-M7CER™ transgene, and Bam-R\ restriction enzyme was used to examine the 

Trp53 gene. Kpn-l was used to cut the endogenous myc gene, in order to analyse 

gene rearrangements.

5pi of 5 X TBE loading dye (50% glycerol [BDH], 50% TBE, and bromophenol blue 

[Sigma-Aldrich]) was added to restriction digested samples. DNA fragments were 

separated on a 0.8% agarose (Gibco BRL) gel overnight, in 1 x TBE buffer (108g 

Tris base, 55g Boric Acid, 40ml 0.5M EDTA [all Sigma], pH 8.0 in IL of de-ionised 

water) at 24V. DNA gels were subsequently stained with 50mg/L ethidium bromide 

(Sigma) in TBE buffer for 20 minutes, and destained with de-ionised water for 20 

minutes. Gels were viewed on an ultraviolet transilluminator (UVP) and 

photogi'aphed using an MWG-Biotech system to confirm the presence of DNA in the 

lanes.

The DNA was transferred to Hybond^^ N membrane (Amersham International pic.) 

in 10 X SSC (83.3g NaCl, 41.7g Citric Acid, in IL water) by the Southern Blotting 

technique, as described by Sambrook et al., 1989. DNA was immobilised to the 

nylon membrane by UV crosslinking using a UV Stratalinker XL1500 (Spectronics 

Corporation). Fragments of interest were detected by hybridisation with 

radiolabelled probes.

2.2.4 Radiolabelled Probes

CD2-M7CER™ transgene sequences were detected using a human c-MYC exon 3 

probe (1.38kb EcoR.l/Cla\ fragment made by Ms. J. Irvine). The 260bp Trp53 exon 

4 prohe was generated by Dr. E. Baxter, from a plasmid subclone pLTRp53cG 

(Eliyahu et a l,  1985) by polymerase chain reaction (PCR) using oligo primers 5’- 

CCA TCA CCT CAC TGC ATG G-3’ and 5’-CGT GCA CAT AAC AGA CTT 

GGC-3’. Rean'angements of the endogenous c-myc gene were detected using a prohe
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against exon 3 and part of exon 2 of murine myc (0.7kb PstVEcoRi fragment made by 

Mrs A. Terry).

Using a High Prime™ DNA labelling kit (Boehringer-Mannheim), c-MYC and Trp53 

fragments were radiolabelled by nick end labelling to generate dsDNA probes. 20ng 

of fragment was made to 11 pi with ultra pure water, boiled for 10 minutes and 

chilled on ice. 4pl of High Prime™ and 5pi of [a32P] dCTP (>3000 Ci/mmol, 

Amersham International pic) were added and incubated at 37°C. The labelled 

fragment was then eluted through a nick column (Pharmacia) with TE buffer (lOmM 

Tris, pH 8.0, ImM EDTA, pH 8.0 [Sigma]) and stored at -20°C for up to 2 weeks.

2.2.5 Hybridisation of DNA Blots

Before hybridisation, DNA blots were pre-incubated with 10-20ml of RapidHyh™ 

(Amersham hiternational) hybridisation solution in a roller bottle (Hybaid) at 65°C. 

Radiolabelled dsDNA probe was boiled for 5 minutes and chilled on ice prior to 

addition of 100~150pl to the pre-hybridised blots. 500pl of Genebloc (Immunogen 

International) was also added. The hlots were hybridised for 2-3 hours at 65°C using 

RapidHyh™ (Amersham International pic) hyhridisation solution as per supplier’s 

instructions. Blots were washed twice at 65°C with 2 x SSC; 0.1% SDS (Sigma) for 

15 minutes and twice at 65°C with 0.2 x SSC; 0.1% SDS for 15 minutes and set up 

for autoradiography with Hyperfilm^^-MP (Amersham hrtemational pic.).

2.3 P C R  A n a l y s is  o f  G e n o m ic  D N A  -  D e t e r m in a t io n  o f  F a s  S t a t u s

Polymerase Chain Reaction (PCR) was used to determine the genotype of Fas^' 

animals. Genomic DNA was isolated from mouse tail tissue as described in section 

2.2.1. Four primers were designed as shown in Figure 2.1. Amplification of 

genomic DNA was carried out in a 50pl reaction mix which consisted of 2ng DNA, 2 

units of Taq polymerase (Perkin Elmer), 200pM of each deoxynucleoside 

triphosphate in lOmM Tris/50mM KCl/1.5mM MgCh buffer. Either primers A and
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B, or C and D were added to a final concentration of 0.5fiM. Thermal cycling was 

performed on a Hybaid PCR Express, and conditions used were dénaturation at 94°C 

for 5 minutes followed by 35 cycles of 1 minute at 94°C, 1 minute at 55°C, and 1 

minute at 72°C, ending with a final extension phase of 7 minutes at 72°C and 4°C 

soak indefinitely. Primers A and B together detect the wild-type allele and primers C 

and D together detect the Faŝ '̂̂  mutation of the allele.

PCR products were subjected to gel electrophoresis on a 1.5% agarose (Gibco BRL) 

gel for 3 hours at lOOV in TBE buffer (108g Tris base, 55g Boric Acid, 40ml o.5M 

EDTA [all Sigma], pH 8.0 in IL de-ionised water). Gels were stained with ethidium 

bromide (Sigma) and photographed under ultraviolet transillumination (MWG 

Biotech system).

5’ —

n  n  A B n

5’

ETn

C D

wild-type 

  3’

Faŝ "

3’

Primer Design

A 5 ’ -GGT-TAC-AAA-AGG-TCA-CCC-AT- 3 ’

B 5 ’ -GGT-CAG-TGA-GTA-ATG-GGC-TC- 3 ’

C 5 ’ -CAC-TTT-ACT-CAT-TGA-CTT-AT- 3 ’

D 5 ’ -CGT-TGC-TCC-GAT-GTC-CGA-TA- 3 ’

Figure 2.1 PCR Probe Design for Faŝ '"̂  Diagnosis
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2.4  T is su e  C u l t u r e  T e c h n iq u e s

2.4.1 Media

Complete RPMI

Media was prepared using aseptic techniques. RPMI 1640 medium (Gibco BRL) 

was supplemented with 10% heat inactivated foetal calf serum, lOOU/ml penicillin, 

100p.g/ml streptomycin, 2mM L-glutamine (all from Gibco BRL) and 5 x lO'^M 2- 

mercaptoethanol (BDH).

Complete DMEM

Dulbecco’s Modified Eagle Medium (DMEM, Gibco BRL) was supplemented with 

10% heat inactivated foetal calf serum, lOOU/ml penicillin, lOOjug/ml streptomycin, 

2mM L-glutamine (all from Gibco BRL) and 5 x lO'^M 2-mercaptoethanol (BDH).

Cell Freeze Down Medium

10% dimethyl sulphoxide (Sigma-Aldrich) and 20% foetal calf serum (Gibco BRL) 

was made up in RPMI 1640 medium and filter sterilised tlirough a 0.45pm filter 

(Gelmain Sciences) in aseptic conditions.

2.4.2 Single Cell Tumour Preparation

Tumour/thymus tissue was disaggregated aseptically in complete RPMI medium 

using sterile scalpel blades (Fisher Scientific UK) in a 60mm tissue culture petri dish 

(Gibco BRL). Lymphocytes were isolated on a Ficoll-Paque (Phaimacia) density 

gradient at 3000rpm for 10 minutes in a 15ml centrifuge tube (Falcon). The 

inteiphase layer containing the live lymphocytes was washed in 10ml complete 

RPMI medium and centrifuged at 1500rpm for 5 minutes. The supernatant was 

discarded and the cells resuspended in 5-10ml of complete RPMI medium. A viable 

cell count was earned out by trypan blue (Gibco BRL) exclusion on a 

haemocytometer (Sigma-Aldrich).

Cells were frozen to -70°C in 1.5ml Nunc cryotuhes (Gibco BRL) at a concentration
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of 5-10 X 10  ̂cells/ml in freeze down medium, using isopropanol filled controlled 

rate freeze down tubs (Sigma-Aldrich) and stored in liquid nitrogen (BOC).

2.4.3 Establishment of Tumour Cell Lines

Tumour cells were prepared as in section 2.4.2. Cells at a concentration of 2.5 x 10  ̂

cells/ml in complete RPMI medium were cultured in 25cm^ or 80cm^ tissue culture 

flasks (Gibco BRL) at 37°C in an atmosphere of 5% CO2 in air. Cell cultures were 

passaged every 4-7 days into fresh medium and maintained at a density of 5 x 10  ̂- 5 

X 10*̂  cells/ml. Cell lines established for a time gieater than 6 months were frozen as 

described above.

2.4.4 Fibroblast Cell Culture

Mouse embryo fibroblasts (MEFs, prepared and supplied by Dr. M. Hu) and 

NIH/3T3 fibroblasts (ATCC) were cultured in complete DMEM in 25cm^ or 80cm^ 

tissue culture flasks (Gibco BRL) at 37°C in an atmosphere of 5% CO2 in air. Cell 

cultures were passaged every 5-7 days before cells became completely confluent. 

Culture medium was removed and discarded, and the cell layer briefly rinsed with 

Trypsin/EDTA solution (Gibco BRL). 1 - 3 ml of Trypsin/EDTA solution was added 

to the flask and the cells observed until the cell layer was dispersed (5 to 10 minutes). 

Cells were washed in 10ml complete DMEM medium and centrifuged at 1500rpm 

for 5 minutes. The supernatant was discarded and the cells resuspended in an 

appropriate volume of complete DMEM.

For co-culture experiments fibroblasts were detached from culture flasks as described 

above, and a viable cell count earned out by trypan blue (Gibco BRL) exclusion on a 

haemocytometer (Sigma-Aldrich). Fibroblasts were seeded in 24 well plates (Nunc) 

at a concentration of 1-2 x 10  ̂ cells/ml in 1.0ml complete DMEM, and incubated at 

37°C in an atmosphere of 5% CO2 in air. Following adhesion of the fibroblasts to 

the culture wells, the culture medium was removed, and suspension cells added at a 

concentration of 1.0 x 10*̂  cells/ml in complete RPMI medium.
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2.5  T  C e l l  A c t iv a t io n  A s sa y

Activation induced cell death was studied in vitro. This was stimulated by plate- 

bound anti-CD3 antibody (Phanningen). 96 well flat-bottomed plates (Nunc) were 

coated with anti-CD3 antibody or isotype matched control antibody (Pharmingen) as 

follows. Antibodies were prepared in an appropriate volume of sterile PBS (Gibco 

BRL) at a concentration of lOpg/ml. Each well was coated with 30|ul of antibody in 

PBS, and the plates were incubated at 37°C for 90 minutes. Antibody was poured 

out of the wells, and the excess removed by blotting with absorbent paper. The wells 

were washed 3 times with ice-cold PBS, and the excess PBS removed by blotting. 

Suspension cells at 1.5 x 10  ̂cells/ml were added into the antibody-coated wells.

2.6  C e l l  B io l o g y  E x p e r im e n t s

2.6 .1  In Vitro A p o p to sis  S tu d ies

MYC induced apoptosis was studied in CD2-M7CER™ cell lines. Activation of the 

transgene was induced by addition to the cell culture of 4-hydroxy-tamoxifen (RBI, 

Sigma-Aldrich). A stock solution of 4-hydroxy-tamoxifen was made up at O.lmM in 

ethanol. From this stock, 4-OHT was added to cell cultures to a final concentration 

of 250nM (Blyth et al, 2000) unless otherwise stated. Ethanol at equivalent volumes 

was added to controls. Table 2.1 shows the inhibitors and activators that were used 

to investigate related pathways during the project. Further details of these are given 

in the text.

Total cell numbers, and viability of cells in culture was usually assessed by trypan 

blue exclusion, in the first instance, using 0.4% trypan blue solution (Gibco BRL). 

Cell viability assays were earned out in 24 well or 96 well plates (Nunc) in complete 

RPMI medium with 1.0 x 10  ̂ cells/ml for established cell lines, or 2 x 10  ̂ cells/ml 

for primary tumour cells, and viable cell numbers determined at 24 hour intervals. 

All cultures were performed in triplicate or quadruplicate and viability curves were 

based on the average number of live cells expressed as a percentage of the average
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total. Statistical analysis was carried out using Students ^-test. P values quoted refer 

to results of Students ^-test unless otherwise stated. En'or bars on graphs refer to 

standard deviation unless otherwise stated.

Table 2.1 Regulators of M YC  Related Pathways

C lone/Product Nam e Concentration Supplier

anti“CD3e 145-2C11 lOgg/ml Pharmingen

anti-CD28 37.51 lOgg/mJ Pharmingen

aiiti-Fas Jo2 2ng/nil Pharmingen

anti-FasL MFL-3 2ng/ml Pharmingen

cyclosporin A - lOOng/ml Sigma-Aldrich

caspase 3 inhibitor Ac-DEVD-CHO lOpM Alexis Biochemicals

caspase 8 inhibitor Z-IETD-FMK lOpM TCS Biologicals

PI3 kinase inhibitor Ly294002 lOpM Sigma-Aldrich

2.6.2 Annexin V Staining

To confirm apoptosis in cell cultures, fluorescence conjugated Annexin V staining 

was determined using flow cytometry. Treatment with 10 pM dexamethasone 

(Sigma-Aldrich) was usually used as an internal control for induction of apoptosis.

Labelling solution was prepared by diluting 20pl Annexin-V-Fluos labelling reagent 

(Roche) in 1.0ml of incubation buffer (lOmM Hepes/NaOH, pH 7.4, 140mM NaCl, 

5mM C aC y. 10  ̂ cells were washed with sterile PBS (Gibco BRL), and centrifuged 

at ISOOrpm for 5 minutes. Supernatant was removed and discarded and the cell 

pellet resuspended in lOOpl of labelling solution. Cells were incubated at 4°C in 

darkness, for 15 minutes as per manufacturer’s instructions. Cells were transferred to 

sterile test tubes (Falcon) in 400pl of incubation buffer, and analysed on a Coulter 

Epics Elite using the manufacturers recommended protocol.
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2.6.3 [̂ H] Thymidine Incorporation

To detennine the proliferative index of activated suspension T cells, a [^H] thymidine 

incoi-poration assay was used. Cells were seeded in 96 well flat-bottomed plates 

(Nunc), at a concentration of 1.5 x 10  ̂ cells/ml, in a volume of 200pl complete 

RPMI. Cell cultures were incubated at 37°C in an atmosphere of 5% CO2 in air. 

After 48 hours, each well was pulsed with IpCi/ml per well of [^H] thymidine 

(Amersham) for 16 hours. The micro-plate with bonded filter (Packard) was rinsed 

once with water, and the samples transferred onto the filter using a cell harvester 

(Packard). Wells were then rinsed out 5 times with water, onto the filter, and the 

filter was dried (Ihour, 37°C). The underside of the filter was sealed, and 25pl of 

scintillation fluid (National Diagnostics) added onto each well. The top of the plate 

was then sealed, and the plate passed tlirough a plate reader (Packard) according to 

the manufacturer’s instmctions. Counts were performed in quadruplicate, and the 

results shown are based on an average of the results. Statistical analysis was carried 

out using Student’s t test, and en*or bars on graph refer to standard deviation.

2.7 IM MUNOPHENOTYPE ANALYSIS

Single cell lymphocyte suspensions were prepared as described in section 2.4.2 and 

washed in cold phosphate-buffered saline (PBS, Gibco BRL) containing 0.1% BSA 

(Sigma) and 0.01% sodium azide (BDH). Cells at 1-2 x 10*̂  per ml were centrifuged 

at 7000rpm in a microfuge for 3 minutes and the supernatant discarded. The cells 

were labelled by resuspending them with rat monoclonal anti-mouse antibody (Table 

2.2) for 30 minutes at 4°C. l-2|ug of antibody was used to label 1-2 x 10  ̂ cells. 

Samples were centrifuged at 7000rpm for 3 minutes and washed with 200pl of cold 

PBS/BSA/sodium azide, as described above. Two further rounds of this washing 

procedure were earned out. Cells were resuspended in 500pl of cold PBS, 

containing 0.1% BSA and 0.01% sodium azide, in sterile test tubes (Falcon) and 

analysed on a Coulter Epics Elite using the manufacturers recommended protocol. 

For each fluorochrome used, irrelevant isotype matched antibody controls were used
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to set a region to exclude backgi'ound staining. Fluorescence above this threshold 

was considered as positive fluorescence.

Table 2.2 Rat Monoclonal Antibodies to Mouse Surface Antigens

Antibody Clone Isotype Supplier

anti-mouse CD8a 
FITC conjugate

KT15 Rat Ig02a Serotec

anti-mouse CD4 
R-phycoerythiin conjugate

YTS191.1 Rat IgG2b Serotec

anti-mouse CD3 
Quantum Red conjugate

29B Rat IgG2b Sigma

anti-mouse CD45R  
FITC conjugate

RA3-6B2 Rat IgG2a Pharmingen/Sigma

2.8 W e s t e r n  I m m u n o b l o t t i n g

2.8.1 Preparation of Protein Extracts

Protein was extracted from approximately 1x10^  cells. Cells were washed in 1ml 

PBS (Gibco BRL), centrifuged at 1500rpm for 3 minutes, the supernatant removed 

and discarded, and the cells washed again. After the second wash, cells were 

resuspended in lOOql RIPA buffer (150mM NaCl [Fisher], 1.0% NP-40, 0.5% DOC 

[both Sigma], 0.1% SDS [BDH], 50mM Tris, pH8.0 [Sigma]) and 1:100 protease 

inhibitors (Sigma-Aldrich), and incubated on ice for 30-60 minutes. Samples were 

centrifuged at 14,000rpm for 5 minutes, at 4°C to remove debris. The supernatant 

was transferred to lOOpl of 2 x loading buffer (2% SDS [BDH], lOOmM 

dithiothreitol, 60mM Tris, pH6.8, 0.01% bromophenol blue [all Sigma]), and the 

protein extracts stored at -20°C.
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2.8.2 Separation of Proteins and Western Transfer

Samples were electrophoretically separated on denaturing SDS polyacrylamide 

(Biorad) gels in electrophoresis buffer (25mM Tris [Sigma], 250mM glycine 

[Fisher], pH 8.3, 0.1% SDS [BDH]) using the BioRad minigel system. Gels were run 

at 150V for 1 hour. Samples were then transferred to Immobilon polyvinylidene 

diflouride membranes (Millipore) preactivated in methanol (BDH). The Biorad 

minigel system was used, and transfer was earned out in transfer buffer (0.192M 

glycine, 25mM Tris) at lOOV for 45 minutes. Completion of transfer was assessed 

by prestained molecular weight markers (BioRad).

2.8.3 Detection of Proteins

Following transfer of proteins onto membrane, membranes were incubated in 

blocking buffer (1 x PBS, 0.1% Tween-20 [BDH] with 5% non-fat dry milk) for 1 

hour at room temperature. Membranes were then incubated with primary antibody 

(at the manufacturers recommended dilution) in 2ml blocking buffer with gentle 

agitation overnight at 4°C. For antibodies used, see Table 2.3. Membranes were 

then washed for 3 x 10 minutes with wash buffer (1 x PBS, 0.1% Tween-20), and 

then incubated with the appropriate HRP-conjugated secondary antibody (anti­

mouse, anti-rabbit or anti-goat, all from Sigma), at the recommended dilution in 

10ml blocking buffer, at room temperature for 1 hour. Membranes were washed 

again for 3 x 10 minutes. Detection of proteins was earned out by electrochemical 

luminescence (ECL), using the ECL-plus detection kit (Amersham) according to the 

manufacturer's instructions. Membranes were exposed to Hyperfrlm^^ (Amersham) 

and exposed for 10 -  60 seconds.

Table 2.3 Antibodies Used in Western Immunoblotting

A ntibody Clone Isotype Supplier

p53 (nomial and mutant) Pab 240 mouse IgG l i Santa-Cmz Biotechnology

(3-actin 1-19 goat IgG Santa-Cmz Biotechnology

phosphO“Akt (Ser 473) - rabbit IgG N ew  England Biolabs

Akt - rabbit IgG N ew  England Biolabs
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CHAPTER 3

M YC  INDUCED T CELL LYMPHOMAGENESIS IS NOT ACCELERATED 

IN FAS^' MICE

3.1 I n t r o d u c t i o n

3.1.1 The CD2-MTCER^^ Transgenic Mouse Model

The c-MYC transcription factor promotes cell cycle progression (reviewed by Evan 

et a l, 1994), and it is likely that this is the reason that the c-MYC oncogene is 

frequently mutated in human tumours (Spencer & Groudine, 1991). hi conditions in 

which growth is restricted however, overexpression of MYC may drive cells towards 

apoptosis rather than proliferation (Evan et a l, 1992), and it is this function of MYC 

which may act as a brake to tumour development. Recently, a role for the Fas 

pathway as a mediator of MYC induced apoptosis in fibroblasts was reported 

(Hueber et a l, 1997). To investigate the effects of the Fas pathway on MYC induced 

lymphoniagenesis, a CD2-MTCER^^ transgenic mouse model was studied. These 

mice express a hybrid protein of the human c-MYC oncogene under the control of a 

modified oestrogen receptor. The construct is inducible by the oestrogen 

agonist/antagonist 4-hydroxytamoxifen (4-OHT), but not by oestradiol (Littlewood et 

a l, 1995). Transgene expression is targeted to the T-cell lineage by the CD2 

dominant control region (Zhumabekov et a l, 1995). MYC activity can be modulated 

in CD2-M7CER™ mice by administration of tamoxifen in drinking water however 

there is some residual transgene activity without activation, and animals not treated 

with tamoxifen show a background tumour incidence of 23% by 300 days of age 

(Blyth et a l, 2000). Tumour incidence is significantly increased to 68% following 

tamoxifen treatment (Blyth et a l, 2000). Further, activation of the M7CER™ 

construct in thymocytes in vivo has been shown to induce both proliferation and 

apoptosis (Blyth et a l, 2000), suggesting that tamoxifen treatment results in 

activation of functional MYC in vivo.
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Transfomiation is a multi-step process however, and more than one mutation is 

required before tumourigenesis occurs. CDl-MYCEPJ^ transgenic animals develop 

tumours of a clonal nature with a relatively wide latency range (Blyth et a l , 2000), 

suggesting that additional genetic lesions are required for development and 

progression of transgene induced lymphomas. Events that collaborate with 

overexpression of c-MYC in the multi-step process of tumourigenesis may be studied 

by breeding these mice together with transgenic mice carrying other genetic lesions. 

Acceleration of tumourigenesis in these animals can then be monitored. Synergy 

between a number of different genes has been demonstrated in this way (reviewed by 

Macleod & Jacks, 1999). For example crossing Ep-M7C and Ep-Bcl-2 transgenic 

mice revealed synergy between MYC and Bcl-2 in promoting lymphomagenesis 

(Strasser et a l, 1990b). Studies of MYC transgenic mice on a Trp53 null background 

have also revealed a collaboration between deregulated MYC and loss of Trp53 

(Blyth et a l, 1995; Hsu et a l, 1995; Prasad et a l, 1997).

3.1.2 Relationship Between c-MYC and Fas in Lymphomagenesis

Genetic lesions that result in blockage of apoptosis have been shown to represent key 

events in multi-stage tumourigenesis. Since the ability of c-MYC to induce apoptosis 

as well as cellular proliferation may act to restrict tumour development, the loss of 

apoptotic pathways is particularly important in tumours with c-MYC involvement. A 

dependence on Fas in c-MYC mediated apoptosis has been shown recently in 

fibroblasts (Hueber et a l, 1997), and various studies have demonstrated loss of 

sensitivity to Fas induced apoptosis in tumour cells (Falk et a l, 1992; Shima et a l, 

1995). Evidence from other groups has shown that myc may collaborate with loss of 

the Fas pathway because of the ability of Myc to upregulate FasL expression 

(Cerwenka et a l, 1996; Wang et a l, 1998; Genestier et a l, 1999; Brunner et a l, 

2000). Despite this, Fas^ '̂ cells do not appear to be prone to transformation, and the 

role of the Fas pathway in tumourigenesis is not yet clear.
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3.1.3 Experimental Aims

The aim of this series of experiments was to investigate the relationship between loss 

of Fas and deregulation of c-MYC in T-cell lymphoma development using a 

transgenic mouse model. Mice which overexpressed a regulatable c-MYC gene and 

lacked a functional Fas pathway would provide a valuable model for studying the 

combined effects of these two genetic lesions in vivo. Because untreated CD2- 

MTCER^^ animals show a relatively low background tumour incidence, they are a 

useful model for studying acceleration of tumourigenesis. The aim of the first 

experiment was to investigate whether lymphomagenesis was accelerated in 

untreated CD2-MTCER^^ mice on a Fas^' background. It was also possible to 

activate the transgene in these mice, to investigate whether greater expression of 

MYC might collaborate with loss of Fas, since the level of MYC expression may 

affect the balance between induction of proliferation or apoptosis in the cells in 

which the transgene is expressed.

3.2 R e s u l t s

3.2.1 Generation of Experimental Animals

In order to investigate any collaboration in vivo between c-MYC overexpression and 

loss of the Fas pathway, CD2-M7CER™ transgenic mice on a Faŝ '̂" background 

were generated. To achieve this, CD2-M7CER^'^ mice were crossed with Fas^ '̂’ mice 

to generate CD2-M7CER™Fas^‘̂''̂ ‘ offspring. These animals were then backcrossed 

with Fas^ '̂ mice to generate a cohort consisting of 4 equally represented populations: 

CD2-M7CER'^^Fas^^'', CD2-M7CER'^^Fas^^'‘̂‘, Faŝ '̂' and Faŝ '̂'"' mice. DNA was 

extracted from tail biopsy sections for genotypic analysis. Presence of the MYC 

transgene was detected using a human c-MYC exon 3 probe against Bgl 2 fragments 

on Southern blots. PCR was used to detennine the Fas^'' status of the mice (see 

section 2.3 of Materials and Methods).
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3.2.2 Lymphomagenesis in CD2-MFCER '̂^Fas^ '̂  ̂Mice

CD2-M7ŒR^‘̂  mice homozygous for the Ipr mutation were generated in expected 

numbers as predicted by Mendelian genetics, signifying that these mice were viable, 

and that the combination of these two genetic lesions did not result in embryonic 

lethality. Further, these mice exhibited no obvious developmental abnomialities. 

Animals were not treated with tamoxifen, so there was only residual transgene 

activity in the mice in this cohort.

The numbers of animals in each cohort are shown in Table 3.1, and the overall 

survival of each group in Figure 3.1. It is important to note that lymphomagenesis in 

these mice is driven by deregulation of c-MYC activity, since 46 out of 63 (73%) 

CD2-M7CER™ animals developed thymic lymphoma by the age of 12 months, 

compared with 1 out of 63 (2%) non-transgenic littermate controls. The one incident 

of lymphomagenesis in a non-transgenic control was of longer latency, and likely to 

he an example of a spontaneous tumour in an older mouse.

Table 3.1 Lymphomagenesis and Lymphoproliferative Disease in CD2-

MFCER^^Fas^'" Mice

Genotype

No. o f  
Animals

Total

No. o f  
Animals

(%)
t l "

Latency 
(days) 
+/- S.D.

TL

No. o f  
Animals

(%)

Ipr^

Latency
(days)
+/-S.D.

Ipr

CD2-MFCER™Fas'^'' 39 26 (67%) 117 +/-29.0 13 (33%) 152+/- 45.6

CD2-MyŒR™Fas<^'^- 24 20 (83%) 118 +/-2V.6 0 -

Fas'^ 42 1 (2%) 326 41 (98%) 161 +/-54.V

Fas'̂ "̂ ' 21 0 - 0 -

thymic lymphoma t lymphoproliferative disease

Comparison of tumour-free survival between CD2-M7CER™ mice homozygous and 

heterozygous for the Fas^ '̂' mutation is complicated by the ongoing exit of mice from 

the cohort due to development of lymphadenopathy and autoimmune disease. There
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was however no significant difference in overall survival between CD2-MYCEPJ^ 

transgenic mice homozygous and heterozygous for the Fas^' mutation (Figure 3.1). 

Further, CD2-M7CER™ mice on a homozygous Fas^ '̂ backgiound did not develop 

lymphoma at a significantly higher incidence than those heterozygous for Fas^ '̂ . Of 

the CD2-M7CER™Fas^^'^‘ heterozygous animals, 20 from 24 (83%) developed 

thymic lymphoma, compared with 26 from 39 (67%) of the CD2-M7CER^^Fas^^'' 

homozygous animals. Neither was the latency of MYC induced tumours significantly 

altered by the Fas^ '̂ status of the animals. CD2-M7CER™ induced tumours had a 

latency of 117 days (+/- 29.0 days) in the CD2-M7CER™Fas^^' group compared to 

118 days (+/- 27.6 days) in CD2-M7CER™Fas^^'^' mice. The data also show that 

presence of the transgene does not significantly affect lymphoproliferative disease 

associated with the Fas^'' genotype, since the latency of development was not 

significantly different between transgenic and non-transgenic Faŝ '̂" mice. The results 

presented here suggest that the Fas pathway does not act to inhibit MYC induced 

lymphoma development or progression.

3.2.3 Pathology of Experimental Animals

Transgenic animals homozygous for the Ipr mutation developed either thymic 

lymphoma or lymphoproliferative disease whereas transgenic animals heterozygous 

for Ipr developed only thymic lymphomas, consistent with the targeting of the 

transgene to the T-cell compartment. Animals were monitored over a twelve-month 

period and sacrificed when clinical signs of neoplasia or lymphoproliferative disease 

were present. In the case of lymphoma, affected animals exhibited some or all of the 

following clinical signs: increased respiratory rate; cachexia; reduced movement and 

an abnormal high-stepping gait, indicative of a neoplastic mass in the thoracic cavity. 

Indicators of lymphoma in CD2-MrCER™Fas''" and CD2-MyCER™Fas''’' '‘ mice 

were similar. Moribund Fas'" mice affected by severe lymphadenopathy showed 

enlarged lymph nodes, and skin lesions and abrasions especially around the ears and 

neck, caused by pruritis.

Most of the CD2-M7CER™Fas^' mice which became ill and were sacrificed due to 

development of thymic lymphoma also showed clinical signs associated with the Ipr
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phenotype. Diagnosis of thymic lymphoma or lymphoproliferative disease was made 

on the basis of gross pathology at post-mortem. In mice in which a tumour had 

developed, the usual bi-lohed structure of the thymus was lost, and on most occasions 

the lymphoma filled the entire thoracic cavity. In some animals metastatic spread to 

lymph nodes was observed since some lymph nodes appeared slightly enlarged. In 

the cases of metastatic spread, enlargement of lymph nodes was non-uniform, for 

example, subcutaneous lymph nodes on one side of the animal only may be affected. 

In animals exhibiting severe symptoms associated with the Fas^' phenotype, all 

lymph nodes were abnonnally enlarged, and splenomegaly with an expanded white 

pulp was obseiwed. In some mice with advanced lymphoproliferative disease the 

kidneys were also enlarged and had a pale, mottled appearance, suggesting 

lymphocytic infiltration. In severe cases of lymphoproliferative disease, the thymus 

was slightly enlarged, but retained its bi-lobed structure.

3.2.4 The Remaining Wild Type Fas Allele is not a Target for Deletion in CD2- 

mice

hrvestigation of loss of heterozygosity is useful in studying collaboration between 

genetic lesions. If the Fas pathway has an essential role in c-MYC induced apoptosis 

in T cells, then it would follow that loss of the functional Fas pathway may be a 

critical step in MYC  induced lymphomagenesis. hi MYC induced tumours on a Fas^' 

heterozygous background, loss of heterozygosity at the Fas gene locus would 

represent a key event in tumourigenesis, and would be expected to occur frequently. 

To explore this concept in this system, tumours were taken fi-om CD2- 

M7CER™Fas^‘̂ ''̂ ' mice that developed thymic lymphomas. Tumour samples were 

snap frozen, and DNA was extracted. The integiity of the remaining wild type Fas 

allele was analysed using PCR (Figure 3.2). In all tumours examined an amplified 

fragment consistent with presence of the wild type Fas allele was still detected (7 

fi'om 7), although the presence of point mutations and deletions outside the amplified 

gene sequence cannot be excluded using this approach. The results are reinforced by 

in vitro assays of Fas function in explanted CD2-M7CER™Fas^^'"^' tumour cells, 

which are described in detail in Chapter 5. In combination these data support the 

evidence for a lack of synergy between MYC deregulation and loss of Fas.
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Figure 3.1 D isease Free Survival o f Untreated CD2-MFCER™Fas^^'^ M ice and Control 

Litter mates.

CD2-MFCER^^Fas^/"' mice (solid line, filled squares, n -39), CD2-A/rCER'^^Fas'^''^‘ mice (solid line, 

open triangles, n=24), Faŝ "̂ mice (broken line, filled squares, n=42), Faŝ '̂"̂ ' mice (broken line, open 

ti-iangles, n=21). These data represent overall survival. Deaths in the CD2-MyCER^^Fas^' group 

were due to either thymic lymphoma or severe lymphoproliferative disease.
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Figure 3.2 No Loss o f H eterozygosity at the Fas Locus in c-M YC  Induced Tum ours

PCR products run on Ethidium Bromide stained agarose gel. For each sample two PCR reactions were 

performed using primers against either wild type (lanes 1, 3, 5, 7, 9 & 11) or Fas'/"̂  sequence (lanes 2, 

4, 6, 8, 10 & 12). Lanes 1 & 2 show wild type control. Lanes 3 & 4 show Fas'/" control. PCR 

products from CD2-MFCER"^Fas'/'^ tumour samples are shown in lanes 5-12.
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3.2.5 The Phenotype of CD2-MTCER^^ Thymic Lymphomas was not Altered 

by the Faŝ '̂  Genotype

While there was no significant difference in the tumour incidence or latency between 

CD2-M7ŒR™ mice homozygous or heterozygous for Fas^', it was necessary to 

establish whether loss of the Fas pathway might alter the phenotype of MYC induced 

tumours, or affect the lineage of the cells which become transformed. As well as 

giving an indication of the cell lineage of lymphomas, investigation of the cell 

surface markers expressed on explanted tumour cells should give an indication of 

whether the phenotype of a tumour has been altered by the status of the Fas pathway. 

Transformed cells from CD2-M7CER™Fas''" and CD2-MTCER™Fas''"''‘ tumours 

were stained with fluorochrome-conjugated antibodies against CD3, CD4, CD8 and 

CD45R (B220), and analysed by flow cytometry to assess their phenotype. To 

exclude non-specific signal, cells were also labelled with isotype control antibodies 

conjugated to each fluorochrome. These are species and class-matched non-specific 

antibodies which should allow background fluorescence to be gated.

In all of the CD2-M7ŒR™Fas^^"'’ tumours tested, the majority of cells were of the 

CD4VCD8'^ phenotype (8/8) (Figure 3.3B), This phenotype did not appear to be 

altered by Ipr genotype, since all of the CD2-MTCER^^Fas^' tumours tested were 

also of the double positive phenotype (8/8) (Figure 3.3C). These results agree with 

previous extensive analyses of CD2-MTCER™ tumours in which all tumours tested 

belonged to the CD4VCD8’̂ phenotype (Blyth et al., 2000). In addition, all tumours 

tested for the T cell specific marker, CD3, were found to be of T cell origin, since all 

stained positive. The majority of cells from these tumours also stained negative for 

the B cell marker CD45R.

If the Ipr mutation was important in MYC induced lymphomagenesis it might be 

expected that tumours arising in CD2-MTCER™Fas^' animals would reflect the 

Fas^ '̂ genotype, however this is not the case. The phenotype of CD2-M7CER™ 

tumours was not altered by the Fas^ '̂ genotype. Although Fas^ '̂' animals have no 

functional Fas pathway and consequently have aberrant T cell homeostasis, there was 

no shift in the phenotype of cell types susceptible to CD2-M7CER™ induced
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tumourigenesis in these mice. A recognised diagnostic feature of Fas^ '̂ induced 

lymphadenopathy is an enlarged population of CD4-/CD8- double negative T cells, 

expressing the B cell marker CD45R/B220 in the lymph nodes of these mice. 

Despite the massive accumulation of abnormal T cells in the lymph nodes of Fas^ '̂ 

mice however, there is no evidence that this expanded population of cells is 

susceptible to transformation, since no tumours of this phenotype were observed. 

These results provide support for the evidence already presented that loss of the Fas 

pathway is not important in MYC induced lymphoma development or progression.

3.2.6 Induction of the Transgene by Administration of Tamoxifen in CD2- 

MTCER '̂^Fas^^" Mice

Previously it was found that although untreated CD2-MYCE9J^ animals show a 

background tumour incidence, the incidence of tumours in CD2-M7ŒR^''^ mice 

could be significantly increased by tamoxifen treatment (Blyth et a l, 2000). 

Tamoxifen activates the transgene by binding to and inducing the modified oestrogen 

receptor which is linked to human c-MYC gene. It was important to investigate the 

effects of transgene induction in Fas^' mice since activation of the transgene might 

shift the balance between the ability of c-MYC to induce proliferation or apoptosis. If 

increased transgene induction resulted in increased MYC induced apoptosis then loss 

of the Fas pathway might allow accelerated lymphomagenesis in CD2-MTCER™ 

animals. To assess the effects of inducing the transgene on a Fas^' background, a 

cohort of CD2-M7CER^'^Fas^^' mice were administered tamoxifen. As in the 

previous experiment, CD2-M7CER^^ mice were crossed with Fas^' mice to generate 

CD2-M7ŒR^'^Fas^^'^’ offspring. These animals were then backcrossed with Fas^ '̂ 

mice to generate 4 equal populations of mice which were homozygous or 

heterozygous for the Ipr mutation, with approximately half of each group cariying the 

transgene. Animals were genotyped as described previously in section 3.2.1. From 

one week of age these mice were treated continuously with tamoxifen, by oral dosing 

in drinking water. Since tamoxifen must be solubilised in ethanol before being added 

to drinking water, control mice were treated with ethanol in their drinking water. 

Optimal transgene induction in CD2-M7CER™ animals is achieved when treated
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with tamoxifen from birth (Blyth et al., 2000), however mice in this cohort were less 

tolerant to ethanol in drinking water, so treatment was started at one week of age.

As before, animals were monitored and sacrificed when clinical signs were present. 

Due to the intolerance of the animals to tamoxifen and ethanol treatment, which was 

characterised by cachexia and general malaise, the experiment was stopped at 8 

months. Clinical signs of thymic lymphoma and lymphoproliferation were similar to 

those seen in mice from the untreated CD2-M7CER^^Fas^' cohort, described in 

section 3.2.3. Diagnosis of thymic lymphoma or lymphoproliferative disease was 

made on the basis of gross pathology at post-mortem. In keeping with the previous 

experiment, transgenic animals homozygous for the Ipr mutation developed either 

thymic lymphoma or lymphoproliferative disease whereas transgenic mice animals 

heterozygous for Ipr developed only lymphomas. The gross pathology of lymphomas 

arising in these mice was more severe since in all of the CD2-M7CER™Fas^^' 

animals harbouring a lymphoma, the thymus was enlarged to such an extent that the 

tumour filled the entire thoracic cavity. In addition, fewer of the tamoxifen treated 

CD2-M7CER™Fas^‘''' mice had to he sacrificed due to lymphoproliferative disease in 

this experiment (1 from 12, Table 3.2), compared with untreated mice of the same 

genotype (13 from 39). This was presumably due to the reduced latency of 

lymphoma development in CD2-Af7CER™ mice treated with tamoxifen, which is 

discussed below.
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Table 3.2 Lymphomagenesis and Lymphoproliferative Disease in 

Tamoxifen Treated CD2-MTCER^^Fas^ ' Animals

G enotype No. of Animals

Total

No. of Animals

TL*

Average  
L atency (days)

+/- S.D.

N o. of Animals

Ipr^

Tam oxifen treated

CD2-MFCER'^'^Fas'/" 12 11 (92%) 94 +/- 39.5 1

CD2-MFCER'^'^Fas'/"'- 11 11 (100%) 86  +/- 8.9 0

Fas'/" 9 0 - 8

Fas'/"'- 16 0 - 0

Etlianol treated

CD2-M YCER™ ¥as’̂”' 8 6 (75%) 123 +/-5.0 2

CD2~MYŒ,R™Fas'^’'̂ ' 8 6 (75%) 125 +/-20.9 0

* thymic lymphoma 

 ̂ lymphoproliferative disease

3.2.7 Survival of CD2MFŒR^^Fas'^'^ mice on Tamoxifen TreatmentIpr

Previous results have shown that increased MYC activity in tamoxifen treated CD2- 

animals results in increased tumourigenesis. In this experiment the 

overall survival of CD2-M7ŒR™ mice administered tamoxifen from 7 days old 

was found to be significantly reduced compared to the same group of mice following 

treatment with ethanol (Figure 3.4B). Tumour incidence in the tamoxifen treated 

group of CD2-M7CER^^ mice was increased to 96% (22 from 23) by age 8 months, 

compared to 75% (12 from 16) of the ethanol treated group. Further, the average 

latency of tumours in this group was significantly reduced (90 +/- 28.3 days in 

tamoxifen treated CD2-M7CER™ animals, compared with 124 +/- 14.6 days in the 

ethanol treated control group, P<0.01). The figures for the ethanol treated CD2- 

M7CER™ animals are supported by the larger cohort of untreated CD2-M7CER^^ 

animals described in section 3.2.2, which develop thymic lymphoma with an overall 

incidence of 73%, and an average latency of 118 +/- 28.1 days. These data confirm 

that despite the observation that transgene activation is leaky and tumours develop in
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untreated CD2“M7CER^^ animals, transgene activity can be further enhanced by 

tamoxifen, and this increased activity is reflected by reduced tumour latency. 

Therefore levels of MYC activity correlate with tumour incidence and survival.

Although increased MYC activity may alter the kinetics of tumourigenesis in 

tamoxifen treated mice, absence of the Fas pathway still had no discernible effect on 

lymphoma development in these mice. While tamoxifen treatment resulted in 

significantly increased tumour incidence and reduced tumour latency in CD2- 

MTCER™ mice, there was no significant difference in overall survival between 

CD2-MYCER™¥as^^'' and CD2-M7CER™Fas^^''''“ mice following tamoxifen 

treatment (Figure 3.4A). Tumour incidence in CD2-MTCER™ mice was not 

significantly increased by the Fas^ '̂ genotype even following long-term transgene 

induction. The incidence of thymic lymphoma in CD2-M7CER™Fas^‘̂ '' mice was 11 

from 12 (92%), compared with 11 from 11 (100%) in CD2-MTCER™Fas^^'^' 

animals. Finally, the average latency of MYC induced tumours in tamoxifen treated 

animals was not significantly increased by the Fas^' status of the animals (94 4-/- 39.5 

days in CD2-MYCER™¥as'^^' mice compared with 86 +/- 8.9 days in the CD2- 

M7CER™Fas^^'^' group, P>0.1). These results confirm that the Fas pathway does not 

act to inliibit MYC induced lymphoma development or progression.
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Figure 3.3 Analysis by Flow Cytom etry o f Cell Surface Phenotype in CDZ-MFCER^^ Fas'^  ̂

Tumours.

CD4 and CD8 surface marker expression in CD2-A/KCER"^ induced thymic lymphomas. The 

majority o f  tumours tested o f both Fas'̂ " and Faŝ '"’'"' genotype were double positive for these markers. 

A, Control thymocytes B, Examples o f  thymic lymphoma cells from CD2-MFCER '̂^Fas^^"  ̂' mice. C, 

Examples o f  thymic lymphoma cells from CD2-A/FCER"'^Fas^^'  ̂mice.
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Figure 3.4 Disease Free Survival o f Tamoxifen Treated CD2-AfFCER™Fas^'^ Mice,

A, Disease free survival o f tamoxifen treated CD2-MTCER.^^Fas^'' mice. CD2-AfTŒR™Fas^'^'' mice 

(solid line, filled squares, n=12), CD2-MFŒR™Fas^^'’̂ ' mice (solid line, no symbols, n = l l) ,  Fas'’̂'" 

mice (broken line, filled squares, n=9), Faŝ '̂’̂ ' mice (broken line, no symbols, n=16). B, Disease free 

survival o f tamoxifen and ethanol treated CD2-mycER^^ mice. Tamoxifen treated CD2- 

A/yCER™Fas^^'’ (solid line, filled squares, n=12) and CD2-MyCZER '̂'̂ Faŝ "̂ '̂ mice (solid line, no 

symbols, n = ll);  Ethanol treated CD2-MFŒR™Fas^^'' (broken line, filled squares, n=8) and CD2- 

MFCER^^Fas' '̂^ '̂ mice (broken line, no symbols, n=8). These data represent overall survival. 

Tamoxifen treatment was given in drinking water continuously from 7 days o f age.
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3.2.8 M YC  Induced Lymphomagenesis is Affected by Background Strain

From the survival figures of both untreated and tamoxifen treated CD2-M7CER™ 

animals described in sections 3.2.2 and 3.2.7, it was noted that the average latency of 

tumours in CD2-MyCER™Fas''”' and CD2-MKCER™Fas''"''' mice was less than 

previously reported in CD2-MKCER™ mice (Blyth et a l, 2000). This data is shown 

in Table 3.3. One concern arising from these experiments therefore, was that 

although the Fas^ '̂’ mutation is recessive, Fas^ '̂ heterozygous mice might have some 

previously undescribed phenotype, possibly a reduction in levels of Fas, which could 

collaborate with overexpression of MYC in lymphomagenesis, or may compromise 

the immune system to allow lymphoma development. Another possible reason for 

the increased rate at which lymphomas develop in these animals is the difference in 

background mouse strain. Strain differences have already been reported to be 

important modifiers of cancer development (Festing, 1993). Since CD2-M7ŒR™ 

mice are on a mixed C57/CBA strain, whereas Faŝ ^̂ ' and Fas^̂ '̂ ‘ mice are MRL strain 

it was essential to investigate any possible influence strain may have on acceleration 

of tumourigenesis. CD2-M7CER™ mice were crossed with MRL mice to create 

CD2-M7CER™ transgenic mice which were 50% MRL strain (FI). These mice 

were then backcrossed onto MRL mice to generate transgenic mice which were 75% 

MRL strain (F2), and corresponded to the original experimental cohort of untreated 

CD2-M7CER™Fas^^'' mice and their CD2-M7CER' '̂^Fas^ '̂'^‘ littermate controls.

Animals were monitored for background tumour incidence and sacrificed when 

clinical signs were observed. Clinical signs were consistent with those seen in the 

untreated CD2-M7CER™Fas^^' and CD2-mycER™Fas^^'^' animals which developed 

thymic lymphoma, as described previously in section 3.2.3. In this experiment CD2- 

MYCER^^ mice developed thymic lymphomas exclusively, diagnosis made on the 

basis of gi'oss pathology at post mortem, while non-transgenic animals remained 

disease free for the duration of the experiment. The overall survival of CD2- 

M7CER^^ mice was significantly reduced by MRL background (Figure 3.5), and the 

incidence of thymic lymphoma was significantly increased (P<0.01). 80% (8 from 

10) F2 MRL mice developed thymic lymphoma by age 12 months, compared to 57% 

(26/46) of FI animals. Incidence in both cohorts is significantly increased compared
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to the incidence of 23% (20 from 88) in untreated CD2-M7CER™ (P<0.01, see 

Table 3.3 and Blyth et al., 2000). As shown in Figure 3.5, the latency of tumours in 

CD2-MYCERJ^ mice was also significantly affected by strain difference, 106 +/~

25.1 days in F] MRL mice compared to 137 +/- 30.0 days in Fi MRL mice (P<0.05). 

Together these data confirm that strain difference rather than the effect of Ipr 

heterozygosity is responsible for the high incidence of thymic lymphoma in these 

mice.

Table 3.3 Tumour Incidence in Cohorts of CD2-MTCER™ Animals

Incidence of TL

*CD2-A/TCER™ (unti'eated) 20/88 (23%)

‘CD2-M7CER™ (treated) 16/26 (62%)

CD2-MTCER™ x Fas''”' (untreated) 46/63 (73%)

CD2-MrCER™ X Fas''"' (treated) 22/23 (96%)

CD2-MyCER™ X MRL (FI) 27/47 (57%)

CD2-MLCER™ x MRL (F2) 8/10 (80%)

* Blyth et al., 2000
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Figure 3.5 Tum our Free Survival o f Untreated CD2-M TCER™  M ice on an M R L  Background.

CD2-MTCER™/75% MRL stiain mice (solid line, filled squares, n=10), CD2-M7CER'^^/50% MRL 

sti'ain mice (solid line, open tiiangles, n=47), 75% MRL strain mice (broken line, filled squares, 

n=20), 50% MRL strain mice (broken line, open triangles, n=49). These data represent overall 

survival.
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3.3  D is c u s s io n

3.3.1 No Synergy Between c-MYC and Loss of Fas in T Cell Lymphomagenesis

The ability of MYC to induce apoptosis in certain conditions, as well as proliferation, 

led to the hypothesis that apoptosis may act as a brake to MYC  mediated 

tumourigenesis. Genetic events that occur during tumourigenesis to block apoptotic 

pathways such as the Fas or p53 pathways, or to stimulate survival signals, for 

example Bcl-2, may be essential for MYC mediated oncogenesis. Fas signalling 

represents an important apoptotic pathway in T cells (Russell et a l, 1993; Alderson 

et a l, 1995; Brumier et a l, 1995; Dhein et a l, 1995; Ju et a l, 1995, reviewed by 

Nagata, 1997). T cell homeostasis achieved through down-regulation of the immune 

system by activation induced suicide of T cells, and deletion of autoreactive B and T 

cells, is dependent on Fas:FasL interactions (reviewed by Nagata, 1997). Since Fas 

signalling is clearly significant in T cell apoptosis, the possibility of synergy between 

deregulated MYC  and loss of Fas in T cell lymphomagenesis was explored.

The putative tumour restricting properties of Fas in c-MYC induced 

lymphomagenesis were investigated in an in vivo tumour model. Transgenic mice 

carrying the CD2-M7CER™ transgene and homozygous null for the Fas receptor 

were generated by crossing CD2-MTCER™ mice with Fas^ '̂” mice that lack 

functional Fas. CD2-M7CER^'^ animals are predisposed to development of T cell 

lymphoma (Blyth et a l, 2000). On a Faŝ '̂ '' background, the incidence of lymphoma 

development was not increased, and there was no difference in the latency of tumours 

compared with CD2-MFCER™ animals heterozygous for the Ipr mutation. It was 

concluded from these obseiwations that loss of Fas signalling and deregulation of 

MYC expression do not synergise in T cell lymphomagenesis. Conflicting results had 

been reported, of increased tumour formation in Eju-L-MTC mice on a Fas '̂" 

background (Zomig et a l,  1995). hi this study, l-MTC expression was targeted to B 

and T cells by the immunoglobulin enhancer element, Ep. On a Fas^ '̂ background, 

tumour incidence in these animals was increased, and latency was reduced (Zomig et 

a l, 1995). There maybe several reasons for the conflicting data. Tumours arising in 

Ep-MTC animals were of both B and T cell origin (Zomig et a l, 1995), whereas
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100% of tumours in CD2-MFCER^^ animals were T cell tumours. It may be that the 

importance of Fas mediated MYC induced apoptosis, or the loss of, in 

lymphomagenesis depends on the cell type in which MYC is deregulated. Further 

experiments, which will be described later, however, confirm the lack of synergy 

between deregulation of MFC and loss of Fas at least in our system.

3.3.2 Tumour Phenotype is Unaffected by Faŝ *̂  Genotype

Previous studies in CD2-MFCER™ mice have shown that even without transgene 

induction, these mice spontaneously develop tumours at a relatively low incidence, 

which can be increased with transgene induction (Blyth et al., 2000). Tumours were 

exclusively thymic lymphomas of moderate latency. These characteristics make the 

model ideal for studying MFC collaborating genes in vivo, hi this study, tumour 

incidence and latency were unaffected by Faŝ '̂" background and, synonymous with 

CD2“MFCER^^ animals, tumours in CD2-MFCER^'^Fas^^'' mice were exclusively 

thymic lymphomas. Lymphocytes with an abnormal CD4-/CD8- phenotype typically 

accumulate in the lymph nodes and spleen of Fas^ '̂ mice (Cohen & Eisenberg, 1991), 

and lymphadenopathy was observed in Faŝ '̂ ' animals in this study, irrespective of 

whether they carried the transgene or not. However, no cases of generalised 

multicentric lymphoma occurred despite the vastly expanded pool of T cells in the 

lymph nodes of these mice.

Further, the surface phenotype of CD2-MFCER™ induced thymic lymphomas was 

not altered by Ipr genotype. Analysis by flow cytometry revealed that all tumours, 

regardless of Ipr background expressed the T cell marker, CDS, but not CD45R, a B 

cell marker, indicating that all tumours were of T cell origin. The majority of 

tumours whether homozygous or heterozygous for the Fas^ '̂ mutation, were of the 

CD4^/CD8^ double positive phenotype. These results agree with previous, more 

extensive analysis of CD2-MFCER™ tumours which showed that the majority were 

of the CD4+/CD8+ double positive phenotype (Blyth et a l, 2000). This is in direct 

contrast to the population of cells which accumulate in the lymphoid organs of Fas^ '̂ 

mice. These cells express CD45R, and are double negative for CD4/8 (Morse et a l, 

1982; Budd et a l, 1992) however the results show that these abnormal cells do not
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appear to be susceptible to transformation. It is possible that the abnormal phenotype 

of these cells renders them incapable of proliferation, or at least confers a 

proliferative disadvantage on them. Although they lack a death pathway and may 

have an impaired apoptotic response to certain stimuli, these cells may also exhibit 

an impaired response to proliferative signals. Further, absence of Fas does not 

appear to affect the phenotype of cells in which transformation occurs. These 

obseiwations are consistent with the theory that the events leading to MYC  induced 

lymphomagenesis are not altered in Fas^' mice.

3.3.3 No Loss of Heterozygosity in CD2-MLCER™Fas^ '̂^ ‘̂ Mice

The littermate controls used in these experiments were heterozygous for the Fas '̂" 

mutation, and the possibility remained that although the mutation is recessive, Fas^ '̂’ 

heterozygosity might enhance MYC induced lymphomagenesis. If MYC  deregulation 

and loss of Fas really did represent synergistic events in lymphoma development, 

then deletion of the remaining wild-type Fas allele in Faŝ '̂̂ ‘ T cells may occur early 

during transformation, resulting in accelerated lymphomagenesis. For this reason, 

the integrity of the remaining wild type Fas allele in transgene positive Ipr 

heterozygotes was examined using a PCR based technique. No gross mutations were 

detected in any of the Fas^' heterozygous tumours tested. While this technique does 

not detect point mutations in the Fas gene, the results suggest that the remaining wild 

type Fas allele is not a target for mutation during MYC  induced lymphoma 

development. This provides further evidence that loss of Fas and MYC do not 

represent synergistic events in the process of lymphomagenesis. Absence of the Fas 

pathway does not accelerate MYC induced lymphomagenesis. Moreover, there is no 

pressure for MYC transformed cells to lose the Fas pathway. Studies of cell lines, 

which will be reported in Chapter 5, show that the Fas pathway is still functional in 

vitro in lymphoma cells from CD2-M7CER^'^Fas^^'^‘ mice, providing supporting 

evidence that loss of heterozygosity at the Fas locus does not occur in MYC induced 

tumours.
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3.3,4 CD2-MFCER^^ Transgene Activity Represents Driving Force Behind 

Tumourigenesis

In untreated CD2-M7CER™ animals, lymphomagenesis was not accelerated by loss 

of the Fas pathway. The possibility remains that following transgene induction, 

MYC induced apoptosis is enhanced, and loss of apoptotic signals such as the Fas 

pathway may be required to drive the cells towards proliferation, rather than death. 

To confirm that deregulated MYC and loss of Fas do not collaborate in the formation 

of T cell tumours, CD2-MFCER™Fas^' and their littermate controls were treated 

with tamoxifen from one week of age in order to achieve high activation of the 

transgenic construct. Although leaky, activity of the transgene is regulatable, and 

transgene activation results in an increased rate of tumour fonnation in transgenic 

mice (Blyth et a l, 2000). In this experiment, tumour development was significantly 

accelerated in CD2-MFCER™ animals treated with tamoxifen, compared to 

untreated CD2-MFCER™ animals, and tumours were of significantly reduced 

latency. On a Faŝ '̂" background, however, there was no further increase in 

tumourigenesis, and latency of tumours was unaffected. The CD4+/CD8+ double 

positive phenotype of tumours in tamoxifen treated CD2-M7CER^'^ animals was the 

same as that observed in untreated CD2-M7CER^^ mice. It is reasonable therefore, 

to conclude from these data that tumours arising in CD2-M7CER^'^ animals are 

induced by deregulated MYC expression, and that their development and progression 

are independent of Fas status.

Clearly, tumours in CD2-M7CER™ are driven by MYC overexpression. Loss of the 

Fas apoptotic pathway however has no effect on the incidence or latency of 

lymphomas in these mice. Further studies in CD2-M7CER^^ transgenic animals 

have revealed that not only does long term induction of the transgene increase tumour 

incidence, but short term transgene induction by 4-OHT injection results in both 

proliferation and apoptosis of non-transformed T cells in vivo (Blyth et a l, 2000). In 

addition, in tumour cells explanted from CD2-M7CER™ mice, MYC induced 

apoptosis can be stimulated by 4-OHT treatment (Blyth et a l, 2000, see also Chapter 

5). It appears therefore that the apoptotic function of MYC is not lost, but may be 

overcome during transfonnation. These results are supported by studies using an
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on/off conditional transgenic model which demonstrated the potency of MYC as an 

oncogene. In this model, MYC expression could be activated and inactivated using a 

transgene under tetracycline control (Felsher & Bishop, 1999). Sustained transgene 

expression led to tumour formation which could be reversed upon inactivation of the 

transgene (Felsher & Bishop, 1999). Further, apoptosis was obseiwed in regressing 

tumours, indicating that apoptotic pathways were still active in transformed cells. 

Although the ability of MYC to induce proliferation must undoubtedly counteract the 

induction of apoptosis during tumourigenesis, it appears that this does not happen 

through loss of apoptotic pathways. Rather MYC may rely on survival signals to 

overcome apoptosis in order for tumour outgrowth to occur.

3.3.5 Fas:FasL Interactions in Tumourigenesis

Although the Fas pathway does not appear to play an important role in restriction of 

MYC induced T cell lymphomagenesis at least in our system. Fas signalling may well 

be important in restricting tumour formation in other cell types. Zomig et al. found 

that loss of the Fas pathway caused an increased incidence of tumourigenesis in Ep- 

MYC transgenic mice in which expression of the transgene was targeted to B and T 

cells (Zomig et a l, 1995). Similar results have been generated in studies of Bcl-2 

transgenic mice. In Bcl-2 transgenic mice where expression is targeted to myeloid 

cells, loss of Fas led to development of acute myeloblastic leukaemia (Traver et a l, 

1998). In contrast, when expressed in lymphoid tissues, the Ep-Bcl-2 transgene 

collaborates with the Faŝ '̂ ' mutation to accelerate lymphoproliferative disease, but 

tumour incidence is not increased (Strasser et a l, 1995; Tamura et a l, 1996). The 

reasons for the differences between the results of Zornig et al. are not clear, however 

it is likely that Fas mediated apoptosis is of more importance in some cell types than 

in others. It is possible that Fas mediated apoptosis may be more strictly controlled 

in cells of lymphoid origin, but particularly T cells, since the pathway is cmcial for 

maintaining T cell homeostasis (Lynch et a l, 1995). It might be expected that loss of 

Fas would be particularly detrimental to T cells, however it is also possible that T 

cells may more able to deal with loss of the Fas pathway, because they may be able to 

recruit other pathways to mediate cell death which are not active in other cell types.



If this were the case, Fas signalling, or lack of, may not be involved in T cell 

lymphomagenesis.

In some other cases, a functional Fas pathway may certainly act to restrain tumour 

development. Spontaneous plasmacytoid tumours are reported to occur with a 

significantly higher incidence in older Faŝ '̂ '' and Faŝ ^̂  ̂ animals (lacking FasL) 

(Davidson et a l, 1998). 32% and 28%, of Fas^ '̂ and Fas^^  ̂ animals respectively, 

between 11 and 15 months of age, harboured B cell malignancies (Davidson et a l, 

1998). Parallel results have been shown in T cell deficient mice, which are more 

susceptible to B cell tumours when the Fas pathway is absent (Peng et a l, 1996). 

Mice lacking both ap and yô T cells on a Fas^ '̂ background developed B cell 

lymphoma at an incidence of 60-70% by 7 months, compared to -10% of T cell 

deficient. Fas positive animals (Peng et a l, 1996). And in Rag-1 null mice, which 

are T cell deficient, transgenic expression of DN-FADD resulted in thymic 

lymphoma in later life (>16 weeks), whereas no tumours were observed in Rag-1 

null, Faŝ '̂ '' animals (Newton et a l, 2000). It may be that the B cell tumours which 

are seen in T cell deficient Fas^ '̂ mice originate in a mature B cell population which 

is not present in Rag-1 null mice. Increased incidence of B cell lymphomagenesis 

has also been reported in cases of autoimmunity or immunosuppression in humans 

(Penn, 1986; Magrath et a l, 1992) suggesting that perhaps the deregulated immune 

system in Fas^' and Faŝ ^̂  ̂animals, rather than the lack of Fas mediated apoptosis per 

se, is responsible for increased tumourigenesis when Fas:FasL interactions are 

blocked.

Downregulation of Fas has been reported in various types of tumours, however, and a 

recent study in transfonned fibroblasts suggested that re-expression of Fas could 

increase the latency of tumour outgi'owth or abolish tumour development completely 

(Schi'oter et a l, 2000). In humans, mutations of the Fas gene have been reported in 

gastric cancer (Park et a l, 2001), and in aggressive types of cutaneous T cell 

lymphoma (Zoi-Toli et a l, 2000). In other conditions. Fas signalling may be 

irrelevant. A recent analysis of human haematological malignancies reported that 

Fas and Fas pathway components were not the targets of mutation (Rozenfeld-Granot 

et a l, 2001). If Fas pathway components were lost during tumourigenesis, it might
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be expected that the efficacy of cytotoxic anti-cancer therapies might be reduced in 

these tumours. Absence of Fas signalling however, has no effect on radiation and 

drug induced apoptosis in lymphocytes, although Bcl-2 is involved in regulation of 

apoptosis in these circumstances, and p53 is required (Villunger et a l, 1997; Newton 

& Strasser, 2000). Drug induced apoptosis in lymphocytes has recently been 

reported to be independent of signalling from any of the death receptors, but 

dependent on post-mitochondrial caspase 3 activation (Wieder et a l, 2001).

Deregulation of MYC and loss of Fas have been implicated as collaborating events 

because of the suggestion that Fas:FasL interactions were required for MYC induced 

apoptosis (Hueber et a l, 1997). However, Myc has been shown to interact with the 

Fas pathway through upregulation of FasL expression (Wang et a l, 1998; Genestier 

et a l, 1999; Brunner et a l, 2000; Kasibhatla et a l, 2000). If MYC required Fas to 

mediate apoptosis, it might be expected that Fas pathway components be 

downregulated in MYC induced tumours, but no reports exist of this.

FasL expression is frequently upregulated in tumours. Increased FasL expression has 

been coiTelated with increased tumour size and metastasis in cases of breast cancer 

(Mottolese et a l, 2000), and with malignancy and mitotic index in gastric smooth 

muscle tumours (Liu et a l, 2001). Further, upregulation of FasL on neoplastic cells 

in Hodgkin’s Lymphoma has been reported (Verbeke et a l, 2001). There may be 

several reasons why selection of FasL expressing cells occurs during tumourigenesis, 

the most likely being that FasL expressing cells may be better equipped to evade the 

immune response. Selection events during tumourigenesis appear to favour FasL 

expression. It is reasonable to speculate that MYC may upregulate FasL as a 

mechanism of immune evasion. If this is the case however, it seems unlikely that Fas 

signalling is a major mechanism for MYC induced apoptosis, since outgrowth of 

FasL bearing cells occurs. It is also possible that Fas:FasL induced apoptosis can be 

blocked in cells in which MYC is upregulated, by the upregulation of survival 

signals. The ability of FasL to confer immune privilege in tumours will be discussed 

further in Chapter 4.



3.3.6 Predisposition to M YC  Induced Tumours in MRL Strain Mice - 

Involvement of Modifier Genes

Although the absence of a functional Fas pathway did not influence MYC induced 

lymphomagenesis, tumour formation was significantly accelerated in MRL strain 

animals. CD2-M7CER^^ mice are generated on a C57/CBA background, but when 

crossed with MRL mice, the offspring carry 50% MRL genes. When these FI 

progeny are crossed again with MRL mice, the resulting F2 animals carry 75% MRL 

genes. The results presented here show that MYC induced tumourigenesis is 

significantly enhanced in F2 MRL animals in comparison to mice which are 50 % 

MRL strain. This acceleration is independent of Fas function, since MRL control 

animals are wild type for Fas and FasL. Clearly however, there are features in the 

genome of MRL mice which predispose towards cancer, or at least MYC induced 

tumourigenesis. The data provide compelling evidence of the importance of modifier 

genes in the formation of tumours.

The genetic background of an animal often influences the effect of oncogenic 

mutations. Investigation of over 430 different inbred laboratory mouse strains has 

identified 38 different strains with a predisposition to spontaneous tumour formation 

(Festing, 1993; Festing et a l, 1994), and studies on strain dependent phenotypes in 

transgenic mouse models of cancer have led to the identification of tumour modifier 

genes or loci (reviewed by Balmain & Nagase, 1998). Modifier genes are not 

oncogenes however. Rather they convey resistance or susceptibility to 

environmentally induced 'spontaneous' mutations in oncogenes or tumour suppressor 

genes, which then promote or support tumourigenesis by directly influencing cellular 

proliferation or survival (reviewed by Balmain & Nagase, 1998).

Modifier genes may control response to DNA damage or the metabolism of 

mutagenic agents that cause it. Alternatively they may influence later events in the 

process of tumourigenesis, such as tumour growth rate or vascularisation, or even 

metastasis (Lifsted et a l, 1998). An example of a tumour modifier gene is Mom-1. 

This was the first tumour modifier gene to be cloned, and was identified in Min mice, 

which develop intestinal and colonic adenomas, due to a mutation in the Ape gene
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(Moser et a l, 1990; Moser et a l, 1992; Su et a l, 1992). Tumour incidence varied 

significantly depending on the strain backgiound (Moser et a l, 1992). The locus 

responsible for this variation was identified and named Mom-1 for modifier o f Min-1 

(Dietrich et a l, 1993). Further analysis revealed this locus held the secreted 

phospholipase 2a (Pla2g2) gene, mutations in which predisposed to the Min mutation 

(MacPhee et a l, 1995). It has been suggested that this gene may reduce the 

incidence of intestinal tumours by preventing damage caused by dietary fatty acids.

From the results generated in the MRL strain, it seems that one or more tumour 

modifier genes exists in these mice, which may predispose to MYC induced 

oncogenesis. Several loci encoding candidate modifier genes which predispose to, or 

accelerate Ipr associated disease have already been identified in MRL mice (Wang et 

a l, 1997). MRL-Fas^^' mice develop lymphadenopathy and splenomegaly, and 

autoimmunity, and die of glomerulonepliritis or arthritis, however other strains of 

Faŝ '̂ ' mice develop lymphoproliferative disease, but not nephritis or arthritis. The 

functions of the modifier genes encoded in MRL mice are not yet known, although 

each has varying degrees of linkage to different symptoms of the disease (reviewed 

by Theofilopoulos & Kono, 1999). Although loss of Fas signalling in Fas^' mice is 

the essential mechanism underlying the Ipr phenotype, manifestation of this 

phenotype and the clinical picture is affected by genetic background.

To date, no tumour susceptibility loci have been identified in MRL animals; indeed 

no reports of predisposition to tumourigenesis in MRL animals exist. The search for 

modifier genes may be of assistance in future studies of oncogenic gene mutations, 

and in particular mimicking the effects of modifier genes may be useful in addition to 

the more traditional approaches to tumour therapy.
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CHAPTER 4

LYMPHOMAGENESIS IN FAŜ "̂ MICE INFECTED WITH MURINE 

LEUKAEMIA VIRUS

4.1 I n t r o d u c t io n

4.1.1 Murine Leukaemia Virus

Moloney Murine Leukaemia Vims (MoMuLV) is a slow transforming, replication 

competent retro vims, that induces murine lymphomagenesis when inoculated into 

newborn mice (reviewed by Fan, 1997). It induces typically T cell lymphomagenesis 

in 100% of infected animals, with a latency range of between three and nine months 

depending on background strain and viral titre (Asjo et al., 1981). Upon infection, 

viral DNA is randomly integrated into the DNA of the host cell, and may cause 

activation of genes, or their promoters, into which it is inserted. Tumourigenesis in 

MoMuLV infected mice depends on the eventual insertional activation of proto­

oncogenes by the virus, leading to deregulated cell proliferation and transfonnation. 

hr addition, cell survival may be permitted if tumour suppressor genes, and genes 

coding for components of apoptotic pathways become inactivated by retroviral 

insertion (Jalmer & Jaenisch, 1985; Ben-David et a i, 1990; Lander & Fan, 1997).

4.1.2 Retroviral Mutagenesis and Identification of Co-operating Oncogenes

Retroviral insertional mutagenesis has become a widely used strategy to identify 

genes involved in oncogenesis (reviewed by Jonkers & Bems, 1996). The first 

oncogene to be identified by this method was pim-L pim-1 was discovered as a 

region frequently rearranged in MuLV induced lymphomas (Cuypers et a i, 1984), 

and insertions at this site resulted in enhanced transcription of the pim-1 gene (Selten 

et a l, 1985). Further studies revealed that the gene encoded a serine threonine kinase 

(Selten et a l, 1986; Meeker et a l, 1987a; Meeker et a l, 1987b; Saris et a l, 1991), 

overexpression of which led to lymphomagenesis in pim-1 transgenic mice (van 

Lohuizen et a l, 1989). Several other genes have been identified as preferential
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targets for proviral integration, and subsequently as important mediators of 

transformation (reviewed by van Lohuizen & Bems, 1990; Jonkers & Bems, 1996). 

For example, frequent activation of o-myc and N-myc oncogenes by insertional 

mutagenesis in MuLV induced lymphomas underlines the role of these as powerful 

effectors of lymphomagenesis (Selten et a l, 1984; van Lohuizen et a l, 1989).

Synergy between oncogenes can also be uncovered using insertional mutagenesis in 

transgenic mouse models. For example, in pim-1 transgenic mice, in which MuLV 

infection results in significantly reduced latency of T cell lymphomagenesis, 

insertional activation of c-myc or N-m_yc was observed in 100% of lymphomas, 

suggesting strong collaboration between these two genes (van Lohuizen et a l, 1989). 

This was confirmed by studies crossing pim-1 and MYC transgenic mice, in which 

tumour development was significantly faster in double transgenic mice (Moroy et a l , 

1991). Genes other than pim-1, for example bmi-1, have also been identified as 

synergistic partners for c-MYC, by MuLV infection of Ep-M7C transgenic mice 

(Haupt et a l, 1991; van Lohuizen et a l, 1991). Many studies have shown that 

tumour development in certain oncogenic transgenic mouse models is greatly 

accelerated when animals are inoculated with MuLV neonatally (reviewed by Bems, 

1991). hi this way, genes that collaborate with the transgene can be identified, by 

identifying loci at which proviral insertion occurs more frequently than in non- 

transgenic littermate controls.

4.1.3 Experimental Aims

hi the previous chapter, studies of transgenic mice demonstrated that deregulated 

MYC and loss of Fas do not collaborate in T cell lymphomagenesis, at least in the 

CD2-M7CER^’̂  model, hi the following chapter, the possible role of Fas as a 

tumour suppressor was studied, by investigating whether Faŝ '̂ '" mice were more 

susceptible to MuLV induced tumourigenesis. The aim was also to prove that the 

lack of synergy observed in Chapter 3 was confirmed in a different model of 

lymphomagenesis, and not due to some idiosyncrasy of the previous model which 

may arise as an insertional effect of the transgene. If deregulation of c-myc and loss 

of Fas signalling represent synergistic events in lymphomagenesis, the frequency of
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proviral insertions at c-myc would be expected to be significantly increased in MuLV 

infected Fas^ '̂ mice.

4,2  R e s u l t s

4.2.1 MuLV Infection of Experimental Animals

To test the susceptibility of Fas^' animals to lymphomagenesis induced by MuLV, a 

cohort of 60 mice homozygous for the Fas^ '̂ mutation, and 60 strain-matched MRL 

mice were infected. Neonatal mice were inoculated intraperitoneally with MuLV 

within 24 hours of birth, and monitored over a twelve-month period. Animals were 

sacrificed when signs of tumour development became evident. Gross pathological 

examination revealed that the majority of animals in both groups developed thymic 

lymphoma with varied involvement of subcutaneous lymph nodes. A small number 

of animals in both gi'oups showed signs of more generalised multicentric lymphoma, 

with gross enlargement of the spleen, mesenteric and subcutaneous lymph nodes, 

some lymphocytic infiltration in the liver and kidneys, and involvement of the 

thymus to a much lesser extent than that seen in thymic lymphoma. A proportion of 

Fas^' mice showed clinical signs associated with the Ipr phenotype, as described in 

Chapter 3, in addition to lymphoma, while others developed severe lymphadenopathy 

and autoimmunity, and were sacrificed before any signs of tumour development 

appeared.

4.2.2 Survival of MuLV Infected Mice

As shown in Figure 4.1, disease free survival of MuLV infected Fas^' mice was 

unchanged compared to MRL control mice. Both MRL-Fas^' and their MRL control 

counterparts developed tumours, the latency of which were not significantly different. 

Between the ages of 60 and 150 days, 88% (53/60) of MRL-Fas^^' mice were found 

to develop tumours, compared to 80 % (48/60) of control MRL animals in the same 

period. The average latency of tumour development was also unaffected by Ipr status 

(95 days in Faŝ '̂" animals compared to 92 days in controls). These results are
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consistent with data from another laboratoiy (Zomig et a l, 1995), however the 

overall rate of tumour development is increased in this experiment, presumably due 

to strain differences, and variation in the number of viral units with which mice were 

inoculated.

4.2.3 c-myc is not a Preferential Target for Proviral Insertions in Faŝ '̂  Mice

Investigation of the possibility of proviral insertions or other rearrangements at the c- 

myc locus was carried out to compare insertion rates between MRL-Fas^' and MRL 

control animals, hi those animals in which thymic lymphoma had occurred, DNA 

was extracted from snap frozen tumour samples for further analysis. Rearrangements 

and insertions were detected by hybridisation analysis using a murine myc probe 

against Kpnl fragments of tumour DNAs (Figure 4.2). Of the non-thymic 

lymphomas, incidence in both cohorts was so low that no further analysis was carried 

out, however latency of these tumours was not significantly different between the two 

cohorts (108 +/- 22.9 days in Faŝ '̂" mice compared with 94 +/- 17.1 days in MRL 

control strain mice).

Rearrangements at the c-myc locus were observed in both mouse cohorts however the 

number of tumours containing insertions at c-myc in MRL-Fas^^' mice was not 

significantly increased compared to MRL controls (see Table 4.1). Of 53 Fas^ '̂' 

tumours tested, 10 were found to have insertions at c-myc compared to 15 from 42 

MRL control tumours tested. These data suggest that c-myc is not a preferential 

target for insertion in Fas^' tumours. In addition, there was no correlation between 

tumour latency and insertions at c-myc in either cohort. In Fas'^' animals, the average 

latency of MuLV induced tumours carrying insertions at c-myc was 103 days, equal 

to the latency of tumours in which no insertions were detected. Similarly, in control 

MRL mice, the average latency of tumours with and without c-myc insertions was 90 

and 95 days respectively (Table 4.1). These findings confirm the lack of synergy 

between deregulation of c-myc and loss of Fas in the development and progression of 

T cell lymphomas.
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Table 4.1 MuLV Infection of Fas '̂' and Control Mice - Tumour Latency 

and Rate of Insertion at c-myc

F r e q u e n c y  o f  c-myc I n s e r t io n s ^

MRL-Fas''’" mice 10/53*

MRL mice 15/42*

A v e r a g e  T u m o u r  L a t e n c y

Faŝ *̂" mice c-myc rean*anged 103 days

no reanangement at c-myc 103 days

MRL mice c-myc reaiTanged 90 days

no rearrangement at c-myc 95 days

t ;in thymic lymphomas for which DNA was available 

* the difference between the two cohorts is not statistically significant
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Figure 4.1 D isease Free Survival o f M uLV  Infected MRL-Fas^'^ and C ontrol M R L  M ice

Survival o f  MuLV infected Fas^' (solid line, filled tiiangles, n==60) and MRL contiol mice (broken 

line, open squares, n=49). Symbols represent animals harbouring tumours in which proviral insertion 

at c-myc had occuned. These data represent overall survival.
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Figure 4.2 H ybridisation Analysis o f Proviral Insertions at c-m yc in Fas''"̂  M ice

DNA from tumours that arose in M uLV infected Faŝ '"̂  and MRL animals was analysed by Southern 

blotting with a murine myc probe. This figure shows examples o f proviral integration, or lack of, at 

the c-myc locus in a series o f  M uLV induced lymphomas in the MRL cohort. Asterisks mark the 

positions o f  proviral integration sites. The upper band present in all lanes represents the germline c- 

myc gene.
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4.2.4 Establishment of Transplanted Tumours in Eas^' and Control MRL

Mice

Malignant or virally transformed cells express tumour or viral antigens bound to 

major histocompatibility complex (MHC) class I molecules on the cell surface 

(Vanky et a l,  1987; Rotzschke et a l, 1990; Horn et a l, 1991). This allows immune 

recognition of these transformed cells and a response is then elicited by cytotoxic T 

lymphocytes (CTLs) and natural killer (NK) cells (Vanky et a l, 1987; Rotzschke et 

al, 1990; Hom et a l, 1991). Fas:FasL interactions are known to be an important 

component of the CTL and NK cell mediated immune response (Rouvier et a l, 1993; 

Ju et a l, 1994; Kagi et a l, 1994b; Lowin et a l, 1994; Arase et a l, 1995; Oshimi et 

a l, 1996), and have been reported to have a role in clearance of tumour cells and 

virally infected cells (Zajac et a l, 1996; Komada et a l, 1997; Kashii et a l, 1999). In 

fact, expression of Fas on tumour cells has been shown to result in increased activity 

of anti-tumour CTLs and enhanced host survival (Bradley et a l, 1998). Because 

Fas^' mice do not express Fas on the surface of their cells, it might be expected that 

any tumour cells or virally infected cells would be protected to some degree from the 

CTL and NK cell mediated immune response, since they can no longer initiate 

apoptosis by Fas:FasL interactions. Therefore it is interesting that in Fas^ '̂ mice, 

MuLV induced lymphomagenesis is not accelerated compared to their control 

counterparts.

With the aim of investigating further the role of FasiFasL interactions in tumour 

establishment, tumours arising in MuLV infected Fas^ '̂ and MRL control mice were 

transplanted to Fas^ '̂ and MRL hosts. Thirty lymphomas selected hom each of the 

Fas^' and control MRL virally infected cohorts were explanted. Cells were prepared 

from disaggi'egated tumours, and 2 x 1 0 ^  cells from each tumour in 500pl volume 

were transplanted intraperitoneally into an age-matched Fas^'' and MRL host, as 

shown in Figure 4.3.
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Figure 4.3 Transplantation o f M uLV  Transform ed Cells into Fas''" and M R L C ontrol M ice

Animals were monitored over a 100-day period, and sacrificed when clinical signs 

were present. Those mice in which tumours established, displayed enlarged 

abdomens, consistent with intraperitoneal transplantation of tumour cells. In all these 

mice diagnosis was made on the basis of gross pathology at post mortem. Every 

affected animal presented with a mass in the abdominal cavity, either as an 

abnormally enlarged mesenteric lymph node, or as a separate tumour mass. In some 

cases involvement of the other lymphoid organs was observed.

4.2.5 Host and Tumour Factors are Involved in Establishment of 

Transplanted Tumours

Nearly all Faŝ ''̂ ' tumours grew rapidly in Fas^'' hosts (93%), whereas only 7% of 

MRL tumours established in MRL hosts. In addition, only 21% of MRL hosts 

transplanted with Fas^' transformed cells succumbed to tumours. The results for this 

experiment are shown in Table 4.2. These results are not complicated by incidence 

of lymphoproliferative disease because although most Faŝ ''" animals that did not 

harbour tumours developed lymphoproliferative disease, tumours established long 

before any signs of lymphoproliferation (Figure 4,4), which normally arise at around 

5 months of age. Initially these results would suggest that immunosurveillance was
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minimal in Fas^ '̂ mice, and that in MRL mice, there was a strong immune response 

to transplanted tumours cells. However, only 10% of MRL tumours grew when 

transplanted into Faŝ '̂̂  hosts, suggesting that there is still an effective immune 

response in these animals. Neither are these differences due to histocompatibility 

based rejection, as these were allogenic transplants. Moreover, MRL animals reject 

MRL tumours to the same extent, hi view of the fact that even in MRL hosts, Fas^ '̂ 

tumour establishment appeared higher compared to growth of MRL tumours, it may 

be that tumour specific factors are involved to a greater extent, than host factors.

Table 4.2 Establishment of Transplanted Fas '̂' and MRL Control Tumours

Faŝ '̂" tumour MRL tumour

Fas^' hostMRL host MRL host

26/28 6/28 3/30 2/29Tumour

Establishment
(93%) (21%) (10%) (7%)

* Animals succumbing to unrelated illness or as a result o f intolerance to the transplantation 

procedure are not included in these figures.
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4.2.6 Establishment of Transplanted Tumours in Athymic Mice

To investigate why so many tumours fail to establish in these experiments, selected 

tumours of both genotype were transplanted into athymic nude mice. These mice 

have a defect which results in hairlessness and failure of the thymus to develop, and 

consequently are incapable of producing mature T cells (Pantelouris, 1968). The 

defect is caused by a mutation in the gene encoding a member of the winged-helix 

family of transcription factors named winged-helix nude (whn, Nehls et a i, 1994). 

This mutation results in the expression of a truncated protein which lacks the DNA 

binding domain and is presumably unable to regulate transcription of other genes 

involved in development (Nehls et a l, 1994; reviewed by Reth, 1995). The absence 

of mature T cells in these mice gives rise to an inability to reject allogenic 

transplants, and a decreased response to T dependent antigens, although these 

animals are not especially susceptible to spontaneous tumourigenesis (Sharkey & 

Fogh, 1979). These animals were housed in a class II isolator unit.

Eight tumours from each of the original MuLV infected Fas^' and MRL cohorts were 

selected and matched with respect to latency in the original host, and presence or 

absence of proviral integration at c-myc. Tumour cells (2 x 10^) were transplanted 

intraperitoneally into individual age matched nude mice, which were then monitored 

over a four-week period. Animals were sacrificed when clinical signs were apparent. 

Since these host mice lack mature T cells, the hypothesis was that tumours would not 

be rejected because of expression of tumour or virus specific antigen on the surface 

of transplanted cells, thereby revealing any disparity in ability to survive between 

tumour genotypes.

A summary of the results of this experiment is shown in Table 4.3. Transplanted 

lymphoma cells from both cohorts established rapidly in nude mice, and there was no 

significant difference in incidence or latency between Faŝ '̂ ' and MRL tumours. The 

latency of tumour development was not significantly altered by the integrity of the c- 

myc gene in either the Faŝ '̂* or MRL transplanted lymphomas. The experimental 

cohort was small however, and it is difficult to draw reliable conclusions from these 

figures. Although there was no significant difference in the survival of Fas^̂ ''
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tumours, with an intact or rearranged c-myc gene, it was not possible to confirm that 

no synergy exists between myc and loss of Fas. The fact that all transplanted tumours 

were so readily established means the question of whether loss of the Fas pathway in 

transformed cells allows increased tumour suiwival remains unanswered, although 

host factors would appear to play a role in tumour cell clearance. Possible models to 

explain these results will be discussed later.

Table 4.3 Establishment of Faŝ '̂  and Control MRL Tumours in 

Athymic Hosts

Host Tumour Incidence Mean
Latency

S.D.

NuNu Fas'" 100% (8/8) 19 days +/- 4.9
insertion at c-myc 16 days +/-2.9
no rean'angement 21 days +/-5.0

NuNu MRL 100% (8/8) 20 days +/- 6.5

insertion at c-myc 23 days +/- 7.8

no rearrangement 19 days +/- 5.9
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4.3 D is c u s s io n

4.3.1 No Acceleration of Lymphomagenesis in MuLV Infected Fas '̂' Mice

As Chapter 3 demonstrated, no acceleration of c-MYC induced T cell 

lymphomagenesis was obseiwed on a Fas" '̂ background. MuLV infection of Fas^' 

mice has revealed that neither is there collaboration between viral infection and loss 

of Fas. MuLV infected Fas^ '̂ mice developed lymphoma at the same rate as control 

MRL counterparts, despite the lack of functional Fas. This is in agreement with other 

reports which showed that lymphomagenesis was not accelerated in Fas^ '̂ mice 

compared to infected control animals (Zomig et aZ., 1995),

Recent studies have attempted to elucidate the role of Fas and FasL in MuLV 

induced tumours (Choe et a l, 1998; Bonzon & Fan, 2000), MuLV induced 

lymphomagenesis involves both early and late events. Preneoplastic changes occur 

in infected mice, one of which is thymic atrophy due to enhanced thymocyte 

apoptosis (Bonzon & Fan, 1999). Fas has been implicated in this enhanced apoptosis 

since MuLV infected cells show elevated expression of cell surface Fas (Choe et a l, 

1998; Bonzon & Fan, 2000). If these cells remained susceptible to Fas induced 

apoptosis, this would limit the capacity for tumourigenesis. In order for MuLV 

infected cells to suiwive, and for outgiowth of tumour cells to occur, it is therefore 

reasonable to suggest that MuLV may ultimately confer on infected cells, the ability 

to overcome Fas induced apoptosis. It is possible that MuLV infection and proviral 

integration could affect either downstream effectors of apoptotic pathways, or may 

upregulate survival pathways. If MuLV is able to induce events that cause the Fas 

pathway to be blocked or inhibited, then that may explain why tumour latency is not 

significantly greater in MRL mice compared to Fas^' animals. The results also argue 

against a role for Fas as a bona fide tumour suppressor gene, since they highlight the 

lack of collaboration between loss of Fas, and other oncogenic mutations. MuLV 

infection has been successfully used as a method for identifying collaborating genes 

in transgenic mice (reviewed by Bems et a l, 1991). If proviral insertions arose in 

Fas^ '̂ cells to deregulate oncogenes which could collaborate with loss of Fas, then it 

would be expected that lymphomagenesis would be accelerated in these mice. There
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was however, no acceleration of tumourigenesis in Fas^ '̂ animals compared to 

control MRL animals. Results in Chapter 3 demonstrated that loss of Fas and 

deregulation of c-MYC were not synergistic events in lymphomagenesis. The results 

in this chapter extend those results and suggest that Fas is not a tumour suppressor, 

and loss of Fas does not confer susceptibility to tumours.

These findings are somewhat surprising given that Fas^' mice have an impaired 

immune system. Antigen responsiveness has been studied in control MRL and Fas^' 

mice, and shown to be defective in Fas^' responding T cells, compared to control 

cells (Fischbach, 1984). hi addition. Fas has been shown to be involved in mediating 

cytotoxicity of CTLs and NR cells (Kagi et a l, 1994b; Lowin et a l, 1994; Arase et 

a l, 1995; Braun et a l, 1996). These findings would suggest that the immune system 

in Fas^^ animals might be less efficient in the response to viral infection than that of 

control animals. It is probable that the response to MuLV infection of T cells is 

mediated by CTLs and NR cells, and that T lymphoma cells might express tumour 

and viral specific antigens which make them susceptible to CTL and NR cell killing. 

Yet virally induced tumourigenesis is not accelerated in Fas^ '̂ mice which lack the 

Fas pathway. It is likely then that other apoptotic mechanisms can be recruited in Fas 

deficient mice, to mediate clearance of virally transfoimed cells.

4.3.2 c-myc is not a Preferential Target for Proviral Insertion in Fas '̂' Mice

Insertional activation events are essential for MuLV induction of tumour formation. 

Activation and overexpression of proto-oncogenes leads to uncontrolled proliferation 

and transformation of host T cells but apoptotic pathways may also need to be 

blocked to allow suiwival of transfonned cells. Insertions at c-myc are frequently 

observed in MuLV induced lymphomas (Selten et a l, 1984; van Lohuizen et a l, 

1989). If a functional Fas pathway was capable of restricting myds role in 

oncogenesis, then the proportion of MuLV induced lymphomas arising in Fas^ '̂ 

animals expected to contain proviral integrations at c-myc would be higher still. This 

phenomenon has been seen in previous studies in which animals transgenic for a myc 

collaborating gene have been infected with MuLV. In Y.\x-pim-\ transgenic animals
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infected with MuLV for example, all tumours have insertions at either c-myc or at N- 

myc (van Lohuizen et a l, 1989). hi Fas^' mice however, myc did not represent a 

preferential target for proviral mutagenic insertion.

The results of the transgenic studies in Chapter 3 showed that cells with sustained c~ 

MYC expression are not more susceptible to lymphomagenesis in the absence of Fas. 

The lack of collaboration between MYC and loss of Fas in CD2-M7CER^^Fas^^' 

transgenic mice was confirmed in MuLV infected Fas^ '̂ and control mice. There was 

no difference in survival between the infected Fas^' and control cohorts, and c-myc 

did not represent a preferential target for proviral insertion in Faŝ '̂ ' mice. More 

importantly perhaps, even in tumours arising in Faŝ '̂ '' mice, in which MuLV 

integration had deregulated myc, the latency of those tumours was not significantly 

altered compared to either Fas^ '̂ tumours in which c-myc was not reaiTanged, or to 

MRL tumours regardless of the status of c-myc. These results clearly show that in 

this system at least, loss of Fas and deregulation of c-myc do not represent synergistic 

events in lymphomagenesis. This finding is in contrast to the results of Zornig et al, 

(1995), who reported acceleration of tumourigenesis in Eg-L-MTC mice on a Fas^ '̂ 

background, although no acceleration of MuLV induced tumourigenesis in Fas^ '̂ 

animals. The reason for this difference is unclear, but may reflect the existence of 

more than one physiological outcome of Fas ligation, which may be tissue and 

context dependent. The Fas pathway may be a critical mediator of apoptosis in one 

cell lineage, but have some functional redundancy in other cell types. For example 

other TNF family members might be recruited in T cells in the absence of the Fas 

pathway, hi addition, Fas:FasL interactions may not always result in death of the 

tumour cell, depending on the cell type and the levels of expression (see Chapters 7 

& 8).

4.3.3 Tumour and Host Factors are Involved in Survival of Faŝ ^̂*" or Control 

Tumour Transplants

Transplantation studies of MuLV transformed Fas^ '̂ or MRL control cells, into Fas^ '̂ 

or MRL hosts, was carried out to determine the importance of Fas:FasL interactions 

in preventing tumour establishment. Lack of Fas on tumour cells occurring in Fas^ '̂
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animals may protect the tumour cells from FasL mediated killing by cytotoxic T cells 

or NK cells. However Fas^ '̂ animals may also be susceptible to increased tumour 

incidence because they may be generally immunocompromised (Fischbach, 1984). 

The transplantation experiments were carried out to investigate these possibilities, 

and the consequences of loss of Fas on tumour cells, and also in the host. The 

results generated however were complex (see Figure 4.5), and open to several 

different interpretations.

Fas'" tumour MRL tumour
e '

Fas'" host MRL host Fas host MRL host

93% 21% 10% 7%

Figure 4.5 Survival o f M uLV  Transform ed Cells Transplanted into Fas^'' and M R L  Hosts

Firstly it was noted that the survival of Fas^ '̂ tumours in Fas^' hosts was greatly 

enhanced compared to establislnnent of MRL tumours in MRL hosts (93% compared 

to 7%). This could be explained either by the lack of Fas on the tumour cells from 

Fas^ '̂ animals, which may render them resistant to clearance by CTLs and NK cells 

(Rouvier et a l, 1993; Kagi et a l, 1994b; Lowin et a l, 1994), or because Fas^ '̂ hosts 

could be generally immunocompromised (Fischbach, 1984). It may be that clearance 

of transplanted MRL tumour cells in MRL hosts occurs by a specific T cell response 

to viral and tumour antigens which is mediated by FasiFasL interactions, and/or that 

the immune system and immune suiweillance in MRL animals is much more efficient 

compared to that of Fas^ '̂ animals.

The results of transplantation of Fas^' tumours into Fas^' or control MRL hosts, 

suggested that the latter explanation might be more likely, since the rate of 

establislnnent for Faŝ '̂ ' tumours was 93% in Faŝ '̂ '' hosts and only 21 % in MRL 

mice. The clearance of Faŝ '̂" tumours in MRL mice cannot be mediated by the Fas 

pathway however, since the tumours lack functional Fas. Instead, the immune
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system in MRL mice must induce death of tumour cells through a Fas independent 

pathway. These results suggest that Faŝ '̂ ' animals have generally poor immune 

function, since they are unable to clear tumours as well as the MRL strain controls. 

If this is the reason for the high establishment rate of tumours in Fas^' mice however, 

it leaves the question why virally or transgene induced tumours do not arise in Faŝ '̂ ' 

mice with greater frequency, and reduced latency. There may be another reason that 

explains why MRL mice are better able to clear Fas^ '̂ tumours than are Fas^ '̂ hosts. 

Although these mice are strain matched, it may be that Fas^ '̂' tumours are not truly 

histocompatible with MRL hosts, and are recognised as foreign and therefore killed 

more easily in MRL animals than in like hosts. The 100% establislnnent rate of 

tumours transplanted into nude athymic mice also suggests that host environment and 

efficacy of immune surveillance must be critical in controlling the events leading to 

tumourigenesis and tumour cell survival.

From comparison of other data from the transplantation studies, it appears that host- 

independent factors associated with the tumour are also important in establishment or 

clearance of the tumour. Fas^' tumours appear to survive better in MRL hosts than 

can MRL tumours. When Fas^ '̂ tumours and MRL tumours were transplanted into 

MRL hosts, only 7% of MRL tumours survived, while 21% of the Faŝ '̂" tumours 

established. These results suggest that the lack of Fas expression on the surface of 

the Fas^ '̂' tumours renders them more resistant to immune attack. From these data, it 

appears that survival of transplanted tumours is enhanced when the Fas pathway is 

absent. This is not completely unexpected; Faŝ '̂" tumours do lack a major death 

pathway used by CTLs and NK cells in tumour cell clearance (Rouvier et a l, 1993; 

Kagi et a l, 1994b; Lowin et a l, 1994).

Thus far, the results seem to suggest that tumour establishment in Fas^ '̂ mice would 

be affected by both lack of Fas expression on tumour cells, and by an innate immune 

deficiency in Faŝ '̂ ' mice. Comparison of another set of transplants complicate the 

conclusions drawn so far however. The rate of establishment of MRL tumours was 

not significantly different in MRL hosts compared to Faŝ '̂" hosts (7% compared to 

10%). These results would argue against a general immunodeficiency in Fas^' 

animals, in terms of tumour immunity, since there was no significant difference
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between these mice and control MRL mice in response to MRL tumours. It may be 

that in this situation, there is a lack of histocompatibility between the Faŝ '̂" hosts and 

MRL tumours, which results in enhanced clearance of the MRL tumours. It is also 

possible that Fas^' mice are more effective at destroying MRL tumours, because 

FasL is expressed at higher levels in these mice (Chu et a t, 1995; Watanabe et a l, 

1995), and Fas expressing tumours might be more susceptible to immune attack in 

these mice. Both of these factors may counteract an hmate immunodeficiency in 

Faŝ '̂" mice.

The results have shown that Fas^ '̂ tumours have a growth advantage when 

transplanted. Another reason for the increased survival of Fas^ '̂ tumours in like 

hosts, compared to MRL hosts might be the immune deficiency associated with the 

Faŝ ^̂ ' host. However, the gi'owth of MRL tumours in Fas^ '̂ hosts appears to be 

reduced somewhat compared to Fas^ '̂ tumours in MRL hosts (10% compared to 

21%). Since these results can be neither fully explained by the level of immune 

surveillance in the host, or by the presence or absence of Fas on the tumour cells, it is 

necessary to consider other factors which may also affect tumour establishment. 

From these results it appears that Fas^ '̂ hosts may have some advantage over MRL 

animals in certain circumstances, at least in terms of tumour clearance.

One explanation for this may be that tumours act as sites of immune privilege to 

evade the immune response. High levels of FasL have been demonstrated on a 

number of malignancies of both haematopoietic (Ohshima et a l, 1997; Perzova & 

Lougliran, 1997; Villunger et a l, 1997; Xerri et a l, 1997; Mariani & Krammer, 

1998) and non-haematopoietic origin (Hahne et a l, 1996; O’Connell et a l, 1996; 

Strand et a l, 1996; Niehans et a l, 1997; Saas et a l, 1997; Shiraki et a l, 1997). It 

has been proposed that reminiscent of sites of immune privilege such as the eye and 

testis (Griffith et a l, 1995), FasL expression on tumour cells could allow them to 

evade immune attack by inducing apoptosis of invading Fas-bearing CTLs (Greil et 

a l, 1998; Gastman et a l, 2000; Zeytun et a l, 2000). Recently, MuLV infected cells 

were shown to evade immune attack by expression of FasL and engagement of Fas 

on the surface of antiviral T cells (Rich & Green, 1999).
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In cells, FasL expression is significantly higher than in control cells (Chu et a i, 

1995; Watanabe et a l, 1995) and when transplanted into control mice, Fas^̂ ' tumour 

cells may grow well and escape immune attack by inducing apoptosis in invading 

Fas-bearing CTLs. Although cells from MRL animals may express less surface FasL 

than those from Fas^̂ ' animals, they should also have the ability to induce apoptosis 

by ligation of Fas on invading CTLs. In Fas'^" hosts however, a tumour could express 

very high levels of FasL, but would be unable to counterattack infiltrating 

lymphocytes, which would express no surface Fas receptor (see Figure 4.6). This 

suggests that effectively, immune privilege does not exist in Faŝ "̂ mice, and allows 

speculation that at least some tumour types may have a growth disadvantage in Faŝ '̂̂  

mice. This was demonstrated in Fas^̂ ' mice in which a delay in growth of a 

melanoma was observed (Hahne et a i, 1996).

M RL tumour in host Fas'̂ "" tumour in M RL host

Fas Ligand

Death by Fas 
engagement

CTL

Figure 4.6 Tum our Rejection in Fas'̂ '̂  M ice?

If the Faŝ '̂̂  background were to offer enhanced ability to reject some tumours, 

through the lack of Fas on invading immune cells, it would clearly depend on the 

context of FasL expression in the tumour, and on the tumour cell type. Although in 

the past, studies of FasL expression on tumour cells have focused on the possible role 

of Fas:FasL interactions in restricting tumour development (Ouhtit et al., 2000),

1 1 0



more recent studies on immune privilege have re-evaluated the consequences of FasL 

expression on tumours since greater defence from immune attack has been observed 

in some models as a result of increased surface FasL (reviewed by Walker et a l, 

1998; O'Connell et a l, 1999; Restifo, 2000). This may be due to the reported reverse 

signalling through FasL, which is believed to augment proliferation of FasL 

expressing cells under certain circumstances (Suzuki & Fink, 1998). Whatever the 

reason, the conditions governing whether FasL expression confers immune privilege 

or enhanced tumour growth are not yet clear. When immune privilege as a method of 

tumour escape is fully understood, further insight may be gained into why c-MYC and 

MuLV induced T cell lymphomagenesis are not accelerated in Fas^ '̂ mice.
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CHAPTER 5

FAS INDEPENDENT APOPTOSIS IN CD2-MTCER™ T CELLS

5.1 I n t r o d u c t io n

5.1.1 The CD2-MTCER™ Transgene In Vitro

CD2-M7ŒR™ transgenic mice provide a valuable model for the study of MYC 

induced lymphomagenesis in vivo, The capacity of the transgene to be induced in 

vitro is also important for studying the effects of MYC upregulation. Activation of 

MYC has been demonstrated in explanted thymocytes from transgenic mice. 

Although normal thymocytes die within 3-5 days in culture, treatment of explanted 

CD2-MYCER™ thymocytes with 4-OHT results in significantly increased cell death 

compared to untreated transgenic thymocytes, and also compared to treated controls 

(Blyth et a i, 2000). This feature of the transgene makes it possible to study 

individual pathways in c-MYC induced apoptosis. It should be possible to block 

distinct death signals, and investigate the effects on MYC induced apoptosis.

Despite their transfonned status, MYC activity can still be regulated with 4-OHT 

treatment in CD2-M7CER™ tumour cells (Blyth et a l, 2000). Treatment of CD2- 

M 7Œ R™  T lymphoma cells with 4-OHT in vitro has been previously shown to 

induce significantly increased apoptosis (Blyth et a l, 2000). Analysis of explanted 

CD2-M7CER™ lymphoma cells can reveal whether or not the apoptotic function of 

MYC has been lost during the process of tumourigenesis and may offer elucidation 

of the mechanisms involved in MYC induced apoptosis.

5.1.2 The Role of Fas Signalling in MYC Induced Apoptosis

hi common with other oncogenes, c~MYC is capable of mediating cell proliferation, 

or cell death by apoptosis. The ability of MYC to induce apoptosis may act as a 

brake to tumourigenesis, and genetic events that prevent apoptosis would represent
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significant events in tumour development or progression. Studies have shown that in 

immortalised fibroblast lines, and in mouse embryo fibroblasts c-MYC induced 

apoptosis is mediated by, and dependent on Fas:FasL interactions (Hueber et a l, 

1997). Further, induction of caspase 3 like activity, which is part of the Fas 

signalling pathway, has been detected and shown to be essential in MYC induced 

apoptosis in fibroblasts (Kagaya et a l, 1997). Recently, the assertion that Fas was 

necessary for MYC induced apoptosis has been tempered, with the hypothesis that 

MYC may induce apoptosis through release of cytochrome c, which is independent 

of Fas signalling (Juin et a l, 1999). It has been suggested instead that MYC may act 

by sensitising cells to death induced by Fas ligation (Prendergast, 1999).

Although the in vivo studies have shown no role for the Fas pathway in MYC 

induced lymphomagenesis, in vitro studies of apoptosis in CD2-M7CER™Fas^^' and 

CD2-M7CER^^Fas^''^' cells were earned out, to ascertain whether or not Fas 

signalling was required for MYC to induce apoptosis in T cells, and to establish if the 

apoptotic function of MYC was susceptible to loss during lymphomagenesis.

5.1.3 Experimental Aims

The aim of the following experiments was firstly to examine whether or not Fas was 

required for MYC to induce apoptosis in T cells, by upregulating MYC in non­

transformed cells from CD2-M7CER^^Fas^'^' mice. It was also necessary to 

detennine if the ability of MYC to effect apoptosis was retained during 

transfoi*mation, in CD2-M7CER^^ lymphoma cells on both a Fas^ '̂ and Fas '̂^" 

background.

5.2 R e s u l t s

5.2.1 MYC Induced Apoptosis in Non-Transformed CD2-M7C7ER™Fas^ '̂  ̂

Thymocytes

For the purpose of investigating the role of Fas in c-MYC induced apoptosis, 

thymocytes from CD2~M YCE^^ mice, homozygous or heterozygous for the Ipr
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mutation, were studied in vitro. CD2-M7CER^''^Fas^^'^’ mice were crossed with 

Faŝ '̂" animals to generate offspring which were CD2-M7CER^^Fas^^'', CD2- 

M7CER™Fas^'^"'', Faŝ '̂ ' or Faŝ '̂"̂ '. Healthy littennate animals were sacrificed at 3 

weeks old and their thymii removed. Thymocyte suspension cultures were prepared 

for each thymus and cultured in vitro in quadruplicate, with 4-OHT to induce the 

CD2-M7CER^'^ transgene, or with ethanol control. Cells were cultured in RPMI 

medium as described in Chapter 2. Thymocytes were cultured alone, and no 

stimulatoiy or survival factors were added. Cell viability in these cultures was 

assessed by a live/dead trypan blue exclusion assay, and expressed as a percentage of 

the number of live cells over the total cell number.

Although normal thymocytes do not suiwive for long in culture without survival 

factors, and there is a high level of background death, a significant increase in cell 

death was seen in 4-OHT treated CD2-M7ŒR™ thymocytes compared to 4-OHT 

treated non-transgenic controls (Figure 5.1 A, P<0.01), and compared to ethanol 

treated CD2-M7CER™ thymocytes (Figure 5.1 A, P<0.01), after 24 hours. There 

was a slight but significant difference in background death between ethanol treated 

CD2-M7ŒR™ and non-transgenic thymocytes (P<0.05). This may be due to some 

residual transgene activity in these cells, due to the leaky nature of the transgenic 

construct.

Background death of CD2-M7CER™Fas^^'^' thymocytes was however significantly 

increased compared to CD2-M7CER™Fas^‘̂ ' cells (Figure 5.IB, P<0.01). The reason 

for this is not clear. It is possible however that there is some in vivo selection event 

which results in suiwival of CD2-Af7CER™Fas^^' thymocytes that are more resistant 

to apoptosis following explantation, or that the ability to undergo apoptosis generally 

is reduced in Fas^' thymocytes. Enhanced MYC activity may result in selection of 

Fas^ '̂ thymocytes which are less anergic, and better able to sui*vive in vitro. More 

important however, was the observation that significant induction of death was still 

observed following 4-OHT treatment in CD2-M7CER^'^Fas^^'' thymocytes, despite 

the lack of Fas signalling (P<0.01). There was no significant difference in the rate of 

cell death between 4-OHT treated CD2-M7CER™ transgenic thymocytes on a Fas^' 

homozygous or heterozygous background after 24 hours (Figure 5.IB). Average
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induction of death in 4-OHT treated CD2-M7CER^'^Fas^' thymocytes was 4.9% 

compared to 4.6% in heterozygote controls. These studies show that MYC induced 

apoptosis can occur in healthy thymocytes independently of Fas. Neither is the level 

of MYC induced apoptosis in T cells diminished by lack of Fas signalling.

5.2.2 Explanted CD2-MyCER™Fas^^' Tumour Cells Retain the Ability to 

Undergo MYC Induced Apoptosis

The results in the previous section demonstrate that MYC activity can be regulated in 

non-transformed CD2-M7CER™ cells in vitro. During transformation however, 

cells may come under pressure to lose apoptotic pathways in order to survive. 

Despite their transfonned status however, MYC activity can still be regulated with 4- 

OHT treatment in explanted CD2-M7CER™ tumour cells (Blyth et a l, 2000). This 

feature of the transgenic model allowed investigation of MYC induced apoptosis in 

neoplastic CD2-M7CER^'^ cells in the presence or absence of a functional Fas 

pathway.

A series of 6 of each CD2-M7ŒR™ lymphoma cell cultures homozygous or 

heterozygous for the Faŝ '̂ '' mutation, were incubated with or without 4-OHT, and cell 

viability measured at 24 hour intervals by the trypan blue exclusion assay. Significant 

induction of apoptosis was obseiwed in all CD2-M7CER^'^Fas^' tumour cell 

cultures, and the mean induction of death in these tumours was not significantly 

different from that observed in CD 2-M YCE^^  tumours heterozygous for the Fas^ '̂ 

mutation: 25.9 +/- 13.0% in CD2-M7CER™Fas^^' tumour cells compared to 33.2 +/- 

19.9% in CD2-M7CER™Fas^'^' cells after 48 hours 4-OHT treatment. Figure 5.2 

shows representative survival curves of CD2-M7CER^^Fas^^^' tumour cells. Control 

CD2-M7CER™Fas^^'^' tumour cells are shown in Figure 5.3. In all CD2-M7CER™ 

cell cultures tested, significant apoptosis was induced when treated with 4-OHT 

(Figures 5.2, 5.3). Induction of death was due to activation of the CD2-M7CER™ 

transgene, since 4-OHT treatment does not affect the survival of cells not carrying 

the transgene (Cameron et a l, 2000). These results indicate that the ability of MYC 

to induce apoptosis is not eliminated during transformation.

115



MYC induced apoptosis was not blocked in Fas'^' cells indicating that at least in T 

lymphoma cells, Fas was not required for MYC induced apoptosis in vitro. T 

lymphoma cell lines were established successfully from CD2-M7CER™Fas^' mice 

and cultured with 4-OFlT. Significant induction of apoptosis was observed in all cell 

lines tested (3/3, P<0.01), even after extended passage. A representative cell line is 

shown in Figure 5.2F. Apoptosis following 4-OHT treatment of these cell lines was 

confirmed using Aimexin V staining and flow cytometric analysis (Figure 5.4). 

Together these data demonstrate that MYC induced apoptosis can occur 

independently of Fas in these cell lines, and that loss of Fas does not predispose cells 

to loss of MYC induced apoptosis in the long teim.

5.2.3 M YC  Induced Tumours Have an Intact Fas Signalling Pathway

The results presented so far indicate that loss of the Fas pathway does not accelerate 

MYC induced T cell lymphomagenesis, and that the Fas pathway is not required for 

MYC induced apoptosis. It is possible however that the Fas pathway plays some role 

in MYC induced apoptosis in T cells, and selection events during tumourigenesis 

may result in loss of the Fas pathway, particularly in cells heterozygous for the Fas^ '̂ 

mutation, if  Fas is an important mediator of MYC induced apoptosis. For this reason 

it was important to investigate the integrity of the Fas pathway in normal 

untransformed thymocytes and in tumours induced by the CD2-M7ŒR^'^ transgene. 

The efficacy and specificity of the agonistic anti-Fas antibody, Jo2, were confirmed 

in untransfoiTned thymocytes from control and Fas^ '̂ animals. Treatment with Jo2 

antibody resulted in significantly increased cell death in control thymocytes (Figure 

5.5A, P<0.01), but had no effect on Fas^ '̂ thymocytes (Figure 5.5B). Cell viability 

was assessed by trypan blue exclusion.

Transfonned cells fr'om CD2-M7CER^'^ tumours homozygous or heterozygous for 

the Ipr mutation were explanted and incubated in the presence of Jo2. Treatment 

with Jo2 antibody resulted in significantly increased cell death in all CD2-M7CER™ 

Ipr heterozygous cultures tested (6 from 6). Mean induction of death in these cells 48 

hours after treatment with anti-Fas antibody ranged from 8.0 +/- 4.7% to 47.6 +/- 

0.7%. A representative survival curve is shown in Figure 5.5C. The anti-Fas
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antibody did not significantly increase cell death in any of the cultures from CD2- 

tumours arising in Faŝ '̂ '" animals however, confirming the lack of a 

functional Fas pathway in these cells. A representative survival curve is shown in 

Figure 5.5D. These findings indicate that at least in the CD2-M7CER™Fas^^'^' 

tumours tested, the Fas pathway was intact and there had been no selection for events 

that blocked Fas induced death. These data confirm the results of earlier experiments 

which showed no loss of heterozygosity at the Fas locus in MYC  induced tumours. 

Further, the data indicate that the Fas pathway is not functional in Fas^ '̂ cells, at least 

at the level of our detection,

5.2.4 MYC Activation Does Not Sensitise Faŝ '̂' Cells to Fas Mediated 

Apoptosis

Juin et al (1999) have discussed the possibility that MYC activation leads to cells 

becoming sensitised to apoptosis induced by Fas and p53 through triggering of 

cytochrome c release into the cytosol. Since the Ipr mutation is leaky, Fas^ '̂ cells are 

not completely lacking in surface Fas, although functional Fas is below detectable 

levels in these cells (Watanabe-Fukunaga et a l, 1992a). To exclude the possibility 

that increased levels of MYC could sensitise Fas^' cells to Fas induced apoptosis, 

CD2-M7CER™Fas^' T lymphoma cells were cultured with 4-OHT and the agonistic 

anti-Fas antibody, Jo2. If MYC were able to sensitise Fas^ '̂ cells to apoptosis 

induced by Fas, it would be expected that Jo2 would induce death of cells in which 

MYC was upregulated. Figure 5.6A shows that Jo2 has no effect on the survival of 

primary CD2-M7CER™Fas^^' lymphoma cells. This survival curve is representative 

of another 5 primary CD2-M7CER™Fas^^ tumours. Figure 5.6B shows a 

representative survival curve of an established cell line. Similar results were 

obtained for 3 cell lines in total. The results show that even following MYC 

upregulation, the negligible activity of the Fas pathway in Fas^ '̂ cells is not sufficient 

to be sensitised to induce apoptosis by upregulated MYC.
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5.2.5 Modulation of MYC Activity in Lymphoma Cells from Tamoxifen 

Treated Mice

Results shown so far have indicated that MYC induced apoptosis is not abrogated 

during spontaneous tumourigenesis in untreated CD2-M7CER^^ mice, and that it 

can occur in the absence of a functional Fas pathway. As discussed in Chapter 3, 

activation of the transgene in CD2-M7CER™ mice treated with tamoxifen results in 

increased tumour incidence, and reduced latency. It was necessary to investigate 

whether or not it was possible to induce the transgenic construct further in vitro, by 

addition of 4-OHT, and upregulate MYC in transformed cells from these animals. 

Further, it was necessary to establish whether MYC could still induce apoptosis in 

these cells independently of the Fas pathway. It may be that when MYC activity is 

upregulated in vivo, stimulation of apoptosis is also entranced, and thus there is more 

pressure to lose apoptotic pathways so that proliferation exceeds cell death.

Tumour cells were explanted fr om these mice for the purpose of investigating MYC 

induced apoptosis in vitro. Analysis of a series of 5 tumours showed that MYC 

activity could still be induced in explanted tumour cells from CD2-M7CER™ 

animals in which transgene activation had already occurred, and that MYC induced 

apoptosis was not blocked in Faŝ '̂" cells. Figure 5.7 shows significant induction of 

apoptosis in cultures from four tumours arising in tamoxifen treated CD2- 

M7CER™Fas^^' mice. The range of induction of cell death in CD2-Af7CER™Fas^‘̂'̂  

tumours 72 hours following in vitro 4-OHT treatment was 12.2 +/- 9.1 %. This was 

significantly reduced compared with 4-OHT treated tumours from untreated mice of 

the same genotype (P<0.01), and this is likely to be due to the transgene being 

previously activated. Nevertheless significant induction of death was observed in all 

tumours tested. In addition, significant induction of cell death was observed by 

trypan blue exclusion and Annexin staining in a cell line that was established from a 

CD2-M7CER^^Fas^^' tumour (ERLPTW 32, shown in Figure 5.4). These results 

show that although tumourigenesis was accelerated in these mice, the apoptotic 

function of MYC remained intact, and confirm the lack of requirement for the Fas 

pathway in MYC induced apoptosis.
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CD2-A/KŒR^'^ 

(F as '/"  &  Fas'/" ' )
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(F as '/"  &  Fas'/" ' )

B

e

CD2-yV/FCER^^Fas^^'' CD2-A/KCER^'^Fas^/’'' ‘̂

Figure 5.1 In Vitro Survival o f 4-O H T Treated CD2-MFCER^^^ Thym ocytes

A, Explanted thymocytes from CD2-A/ECER"^' and non-transgenic control mice and B, Explanted 

thymocytes from CD2-MXCER^'^Fas'/" and CD2-MECER' '̂ Fas'/"̂ '̂ mice were cultured with (black 

bars) and without (grey bars) the addition o f  4-OHT, and viability assessed by trypan blue exclusion. 

Results show live:dead counts as a percentage o f live over total, performed in quadruplicate at 24 

hours following incubation with 4-OHT. Results represent an average o f  eight CD2-Af)^ŒR'^’ mice 

(4 Fas''" and 4 Fas''" ') and four non-transgenic controls.
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Figure 5.2 In Vitro Survival o f 4-O H T Treated CD2-MFCER^^Fas'^'^ T Cell Lym phom a Cells

A-E, Survival curves o f  primary tumour cells, and F, an established cell line from CD2- 

MXCER^^/Fas^^'' animals. Cells were cultured with (solid line, filled circles) or without (broken line, 

open circles) 4-OHT, and viability assessed by trypan blue exclusion. Results show live:dead counts 

performed in quadruplicate as percentage live over total cells, at the time-points indicated. Similar 

results were obtained for a total o f  6 tumours and 3 cell lines.
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Figure 5.3 In Vitro Survival o f 4-O H T Treated C D 2-M TCER™ Faŝ ^̂  T Cell Lym phom a Cells

A-E, Survival curves o f  primary tumour cells, and F, an established cell line from CD2- 

MhCER^^Fas '̂ '̂ '̂ animals. Cells were cultured with (solid line, filled circles) or without (broken line, 

open circles) 4-OHT, and viability assessed by trypan blue exclusion. Results show live:dead counts 

performed in quadruplicate as percentage live over total cells, at the time-points indicated. Similar 

results were obtained for a total o f 6 tumours and 1 cell line.
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Figure 5.4 A nalysis by Annexin V  Staining o f M YC Induced A poptosis in CD2-M FCER^^ Cell 

Lines

A, Induction o f  MYC induced death by 4-OHT in 3 CD2-MTCER^'^Fas''" cell lines. Cell death 

scored by positive Annexin V  staining cells. Cells were stained after 48 hours incubation with 4-OHT.

B, Control unresponsive cell line (ERP15 122 cells which have lost response to 4-OHT) following 4- 

OHT treatment. C, Cells stained after 48 hours incubation with dexamethasone, as a positive control.
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Figure 5.5 V iability o f Explanted CD2-M FCER™  lym phom a C ells Follow ing Anti-Fas 

Treatm ent

In vitro culture o f  A, control thymocytes, B, Fas'̂ '̂ thymocytes, C, CD2-MFCER^^Fas '̂^"'' ‘̂ lymphoma 

cells and D, CD2-V/'FŒR^^Fas^‘''’'' lymphoma cells. Cells were tieated with Jo2 antibody (2ng/ml) 

(solid line, filled circles), or with isotype control (broken line, open circles), and viability was assessed 

by trypan blue exclusion. Results show live:dead counts expressed as a percentage o f live over total, 

performed in quadmplicate at the indicated time-points. Similar results were obtained for at least six 

other primary tumours o f  each genotype.
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Figure 5.6 V iability o f CD2-MFCER™Fas'^'^ Lym phom a Cells Follow ing M Y C  Induction and 

A nti-Fas Treatm ent

A, CD2-Af7CER™Fas^‘̂"' lymphoma cells and B, CD2-AfyCER™Fas^^^' lymphoma cell line, incubated 

in the presence (solid line) or absence (broken line) o f  4-OHT, and with Jo2 treatment (filled circles), 

or isotype control antibody (open triangles). Results show live:dead counts performed in 

quadmplicate, expressed as percentage live over total, at the indicated time points. Analysis o f  cell 

viability is based on tiypan blue exclusion.
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Figure 5.7 V iability o f CDZ-MFCER^'^’Faŝ '"̂  Lymphom a Cells Explanted from  Tam oxifen  

Treated Anim als

A series o f  lymphoma cells explanted from tamoxifen treated CD2-A/LŒR^'^Fas^^"^ animals were 

incubated in the presence (filled bars), or absence (shaded bars) o f  4-OHT. Results show live:dead 

counts expressed as a percentage o f  live over total, performed in quadruplicate after 72 hours 

incubation with 4-OHT. Cell viability was assessed by trypan blue exclusion.
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5.3 D is c u s s io n

5.3.1 The Apoptotic Function of MYC is Not Abrogated During 

Tumourigenesis

A major area of investigation of the c-MYC oncogene is the importance of its 

apoptotic function in tumourigenesis. It has been suggested that the ability of MYC 

to induce apoptosis may represent a block in tumour development or progression. 

Selection may occur for genetic events that help premalignant or malignant cells 

escape the apoptosis associated with deregulated MYC. However, in this study and 

previously (Blyth et a l, 2000), transfonned cells from tumours arising in CD2- 

MYCER^'^ animals remained highly sensitive to MYC induced apoptosis in vitro, 

indicating that the apoptotic machinery engaged by c-MYC remains intact in these 

tumours. These results demonstrate that elimination of apoptotic mechanisms 

associated with MYC is not an essential step in the multi-stage process of 

tumourigenesis. Rather, partial suppression of apoptotic pathways, or upregulation 

of survival signals may be required in order that MYC induced proliferation 

outweighs apoptosis during transformation. Nevertheless, apoptosis is still an active 

process in MYC induced tumours. Analysis of tumours arising in CD2-M7CER™ 

mice showed that elevated MYC activity resulted in increased apoptosis in vivo 

(Blyth et a l, 2000), and previous work in B cell lymphomas arising in E//-M7C 

transgenic mice showed that areas of extensive in vivo apoptosis coiTespond with 

increased levels of MYC expression (Prasad et a l, 1997) supports this observation.

It is important however that if malignant transformation is to occur, the balance 

between the growth promoting and apoptotic functions of MYC must favour 

proliferation. The results in this chapter suggest that in T cells at least, this balance is 

not achieved by complete inactivation of apoptotic pathways, although certainly 

apoptotic pathways are likely to be inhibited. One possible way in which 

overexpressed MYC may drive cells into cycle rather than inducing apoptosis is 

through collaboration with survival signals. Cooperation in tumourigenesis between 

c-MYC and Bcl-2 has already been described (Strasser et a l, 1990b). 

Overexpression of Bcl-2 family members does not block MYC induced apoptosis but
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significantly delays commitment to undergo apoptosis (McCarthy et a i, 1997; Trudel 

et a l, 1997; Tsuneoka & Mekada, 2000). It is conceivable that in surviving cells 

where apoptosis is delayed, other genetic lesions will occur which favour 

proliferation over apoptosis. Ras for instance is analogous with Bcl-2, in that it has 

been reported to collaborate with MYC by increasing cell survival (Kauffmann-Zeh et 

a l, 1997). Ras has been reported to suppress MYC induced apoptosis by activation 

of the PI3 kinase/Akt survival pathway (Kauffinann-Zeh et a l, 1997). Other genes 

which co-operate with MYC during tumourigenesis may have the same properties. 

Loss of the p53 pathway for example results in significantly accelerated 

lymphomagenesis in CD2-MYC animals (Blyth et a l, 1995) however p53 is not 

required for c-MYC induced apoptosis (Hsu et a l, 1995; Blyth et a l,  2000). Loss of 

the p53 pathway may therefore be more important in MYC induced tumourigenesis 

because of the role of p53 in maintaining genomic stability and inhibition of the cell 

cycle. There may be no requirement for MYC to lose its apoptotic function during 

tumourigenesis, if the survival of cells undergoing transformation is increased and 

proliferation occurs unchecked. The mechanisms controlling this are not yet fully 

understood.

5.3.2 Fas is Not Required for MYC Induced Apoptosis in T Cells

A number of studies have previously shown that expression of FasL in T cells may be 

regulated by Myc (Wang et a l, 1998; Genestier et a l, 1999; B minier et a l, 2000). 

Recently, a binding element for Myc has been identified in the promoter region of 

FasL, indicating a defined role for Myc in transcription of the FasL gene (Kasibhatla 

et a l, 2000). Previously it had been shown that MYC induced apoptosis in 

fibroblasts was dependent on the presence of a functional Fas pathway (Hueber et a l,

1997). The results of the transgenic studies described in preceding chapters however 

showed that MYC induced T cell lymphomagenesis was not accelerated when the Fas 

pathway was absent, and there was no oncogenic collaboration between deregulated 

MYC and loss of Fas in vivo. If the Fas pathway were important for MYC to induce 

apoptosis then it would be expected that loss of this pathway in MYC expressing cells 

would shift the balance towards proliferation rather than death, and facilitate tumour 

outgrowth. Since lymphoma incidence in CD2-MYCER™ animals was not increased

127



by loss of Fas, it seemed unlikely that Fas was necessary for MYC induced apoptosis 

in T cells. This hypothesis was supported by evidence from apoptotic staining of 

CD2-MYC tumours, which revealed no significant difference in the levels of in vivo 

apoptosis in animals homozygous or heterozygous for the Fas^'' mutation (Cameron 

et a l, 2000).

CD2-M7CFR^^ thymocytes were used to formally investigate the relationship 

between Fas signalling and MYC induced apoptosis in vitro. An apoptotic response 

was obseiwed in cells in which MYC activity was upregulated, and this response was 

not blocked by the absence of Fas. It is clear that Fas is not required for MYC 

induced apoptosis in untransformed T cells. This is in contrast to the findings of 

Hueber et al. (1997), who showed that Fas^ '̂ MEFs were resistant to c-MYC induced 

apoptosis. That study also showed that MYC induced apoptosis was abrogated in 

immortalised Swiss 3T3 fibroblasts when the Fas pathway was blocked or absent 

(Hueber et a l, 1997). Investigation of MYC induced apoptosis in explanted tumour 

cells and eell lines from CD2-MFCER^'^Fas^' animals however, demonstrated a Fas 

independent mechanism for MYC induced apoptosis in transformed T cells. It may 

be that there is a fundamental difference between MYC induced apoptosis in T cells 

and fibroblasts. In all T lymphoma cell cultures tested, upregulation of MYC under 

conditions of full serum, led to increased cell death. In contrast, MYC induced 

apoptosis in fibroblasts occurs only in conditions of serum deprivation (Evan et al., 

1992), highlighting another difference between the two cell types. It is likely that 

there is significant variation in the survival signals which are active in thymocytes 

and fibroblasts. Activation of MYC in fibroblasts may result in less apoptosis than in 

thymocytes generally, because of higher levels of survival signalling. It may be that 

cell death in thymocytes is subject to less constraints, because apoptosis of 

thymocytes is required tlnoughout T cell development, and in down regulation of the 

immune response. It is also possible that the stimulus for apoptosis affects the 

pathways recruited by MYC.

Certainly MYC does appear to be able to regulate Fas:FasL interactions. There is 

strong evidence to suggest that Myc upregulates transcription of FasL in T cells 

(Wang et a l, 1998; Genestier et a l, 1999; Brunner et a l, 2000; Kasibhatla et a l,
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2000), and this suggests a role for Fas signalling in MYC induced apoptosis in 

certain circumstances. There is still no conclusive evidence to directly link MYC and 

the Fas receptor or signalling molecules downstream of Fas. F ADD is one of those 

downstream components of the Fas pathway (Chinnaiyan et a l, 1995). Dominant 

negative F ADD is reported to block MYC induced apoptosis in some cell types 

(Hueber et a l, 1997; Juin et a l, 1999), however a study using F ADD knockout cells 

concluded that MYC induced apoptosis was independent of the Fas pathway (Yeh et 

a l, 1998). Yet recently, c-MYC activation was reported to act upstream of FADD to 

induce apoptosis (Rolin et a l, 1998). Addition of soluble FasL or expression of a 

FADD construct induced significant cell death in fibroblasts, but activation of c- 

MYC in these cells was only able to entrance apoptosis induced by FasL (Rohn et a l,

1998).

Further, although MYC is alleged to sensitise cells to apoptosis by inducing 

cytoclirome a release, the release of cytochrome c does not require Fas signalling 

(Juin et a l, 1999). Fas may simply be more effective at inducing apoptosis once the 

cytochrome c apoptotic cascade has already activated caspase 3. A recent study 

found that cleavage of the anti-apoptotic factor Bad, by caspase 3, resulted in 

increased cytotoxicity and acceleration of Fas dependent apoptosis, which would 

result in positive feedback to maintain the caspase cascade (Condorelli et a l, 2001). 

Other apoptotic signals may be amplified in the same way, making the Fas pathway 

functionally redundant in some cell types depending on the situation. In addition, the 

MYC interacting protein Bin-1 has been shown to mediate MYC induced apoptosis 

tlrrough a caspase independent mechanism in a range of human tumour cells (Elliott 

et a l, 2000). These studies confiim that the apoptotic function of MYC is mediated 

through several different pathways. The importance of Fas and FasL to MYC 

induced apoptosis will also be context dependent.

5.3.3 The Fas Pathway is Not a Target for Mutation During Tumourigenesis

The results in this chapter indicate that there is no loss of Fas signalling in CD2- 

MYCEBJ^ induced T lymphoma cells during transformation. Certain studies have 

however predicted a role for Fas signalling in tumourigenesis (Peng et a l, 1996;
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Davidson et a l, 1998; Newton et a l, 2000), and in tumour cell clearance (Scliroter et 

a l, 2000). It is possible that some other genetic events occur in these cells which 

repress apoptotic signalling from Fas and allow proliferation to exceed cell death in 

vivo. For example, overexpression of DcR3, a decoy receptor for FasL which has 

been detected in several types of tumour (Pitti et a l, 1998; Bai et a l, 2000; Ohshima 

et a l , 2000), or activation of ERK/MAPK which has recently been shown to override 

apoptotic signalling from Fas and other death receptors (Tran et a l, 2001).

Another possible explanation for the lack of targeting of the Fas pathway in CD2- 

MYCERJ^ tumours is that FasL rather than the Fas receptor or any downstream 

component has been the target of mutagenesis. While there was no loss of 

heterozygosity at the Fas locus of any of the CD2-MFCER^'^Fas^'tumours tested, 

and the anti-Fas antibody could induce apoptosis in all of the primary cell cultures 

tested, loss of FasL in these tumours could not be ruled out. Although MYC induced 

apoptosis can and does occur independently of Fas in CD2-MTŒR™ tumour cells, 

it is still conceivable that Fas:FasL interactions have some role to play in MYC 

induced apoptosis, and loss of FasL could occur. The consequences of FasL 

expression on tumours however, appears to be context dependent. Loss of FasL has 

been described in tumours before (Ouhtit et a l, 2000), however a significant 

correlation between malignancy and FasL expression has been observed in other 

studies in which FasL expression on breast and gastric tumour cells has been 

correlated with metastatic potential, tumour size and malignancy (Mottolese et a l, 

2000; Liu et a l, 2001). This may be due to FasL expression conferring immune 

privilege on tumour cells, although in some cell types this might be offset by the 

ability of FasL to induce apoptosis. Induction of FasL expression has been shown in 

leukaemic T cells following treatment with UV irradiation or cytotoxic drugs, and 

apoptosis in these cells was reported to be dependent on FasiFasL interactions 

(Friesen et a l, 1996; Kasibhatla et a l, 1998). Another study showed that cytotoxic 

drug induced apoptosis was Fas independent in T-acute lymphatic leukaemia CEM 

cells, although an increase in FasL expression was observed following treatment 

(Villunger et a l, 1997). These results were extended by a study showing that 

apoptosis induced by chemotherapeutic dmgs was unaffected in T cells which either 

lacked Fas or expressed dominant negative FADD (Newton & Strasser, 2000).

130



Similar findings were generated in B cells (Wieder et a l, 2001). Finally, since FasL 

expression by tumours may well represent a means of immune evasion, it is 

conceivable that to block Fas mediated apoptosis, Fas or its downstream tai'gets may 

be more frequent targets for mutagenesis than FasL. In these experiments however, 

the Fas pathway remained intact in all CD2-M7CER^'^Fas^'^'^' tumours tested.

The consequences of Fas ligation may be conditional. Two distinct cell types have 

already been described which use different pathways downstream of Fas. In type I 

cells, for example most T cells, DISC formation and activation of caspases 8 and 3 is 

rapid and marked, whereas in type II cells such as B cells and hepatocytes, DISC 

formation is strongly reduced and caspase activation occurs only after loss of 

mitochondrial membrane potential (Scaffidi et a l, 1998). Overexpression of Bcl-2 

blocks caspase activation and apoptosis in type II cells, but has no effect on caspase 

activation in type I cells (Scaffidi et a l, 1998). The functional significance of Fas 

signalling to a cell may therefore depend on which pathway is activated. Further, 

recent reports have intimated a role for FasiFasL interactions in proliferation in T 

cells (Alderson et a l, 1993; Newton et a l, 1998; Suzuki & Fink, 1998; Zhang et a l, 

1998; Zomig et a l, 1998; Strasser & Newton, 1999). This aspect of Fas:FasL 

signalling will be discussed in Chapter 8. Nevertheless, if Fas and its ligand are 

capable of transducing a proliferative signal, that would have significant bearing on 

its ability to suppress tumourigenesis through its apoptotic function.
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CHAPTER 6

MFC INDUCED APOPTOSIS IN THE COMBINED ABSENCE OF BOTH 

FAS AND P53 PATHWAYS

6.1 I n t r o d u c t i o n

6.1.1 The Role of p53 in M YC  Induced Apoptosis

Mutations which cause deregulation of c-MYC and loss of p53 are among the most 

common genetic lesions identified in tumours, and are frequently found together in a 

number of tumour types (Fanell et a l, 1991; Gaidano et a l, 1991; Smith et a l, 1993; 

Farrugia et a l, 1994; Inagaki et a l, 1994). Deregulation of c-MYC and loss of p53 

have been shown to represent synergistic events in T cell lymphomagenesis (Blyth et 

a l, 1995; Elson et a l, 1995). The role of p53 in apoptosis induced by many stimuli 

has been well documented, however its role in c-MYC induced apoptosis is still 

unclear. Some studies have proposed that p53 is required for c-MYC induced 

apoptosis (HeiTneking & Eick, 1994; Wagner et a l, 1994), while others have argued 

against dependence on p53 (Hsu et a l, 1995; Sakamuro et a l, 1995; Amanullah et 

a l, 2000; Blyth et a l, 2000). In T cell lymphomas induced by the CD2-M7CER™ 

transgene in Trp53 null mice, MYC induced apoptosis can occur, indicating that in T 

cells at least, MYC induced apoptosis can be p53 independent (Blyth et a l, 2000). 

To date, the potential of MYC induced apoptosis in the absence of functional p53 

and Fas pathways has not been detennined.

6.1.2 The Relationship Between Fas and p53

Several groups have examined the relationship between Fas and p53 signalling. 

Because p53 is a transcription factor, the possibility that p53 might upregulate 

transcription of Fas or FasL as part of its apoptotic function has been explored. An 

initial study implicated the Fas receptor gene as a transcriptional target gene of p53 in 

a variety of human cancer cell lines (Owen-Schaub et a l, 1995), while a later study
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argued that p53 transiently increased surface Fas expression in human vascular 

smooth muscle cells by promoting transport of Fas from the Golgi complex to the 

cell surface (Bennett et a l, 1998). Later reports however have suggested that Fas and 

p53 function independently to induce apoptosis. High levels of Fas mediated 

apoptosis have been found in human leukaemic B and T cells which express mutant 

p53 (Zhou et a l, 1998), and conversely, levels of p53 induced apoptosis in 

thymocytes from gld mice, lacking FasL are apparently normal (O'Connor et a l, 

2000). Most of the recent evidence indicates that Fas and p53 represent independent 

apoptotic pathways.

6.1,3 Experimental Aims

In order for deregulation of MYC to result in tumourigenesis, additional genetic 

events must occur before cells beeome transformed. The ability of MYC to induce 

apoptosis in addition to proliferation suggests that events that resulted in abrogation 

of apoptotic function would be strongly selected for. The results presented thus far 

indicate that MYC induced apoptosis is independent of Fas signalling. Previous 

studies have also revealed that MYC induced apoptosis can occur in the absence of 

functional p53 at least in epithelial and T cell systems (Hsu et a l, 1995; Sakamuro et 

a l, 1995; Blyth et a l, 2000). What is not clear to date is whether MYC can induce 

apoptosis when both these death pathways are lost. The aims of these experiments 

were to investigate whether MYC induced apoptosis was dependent on one or other 

of these major death pathways, and if not, to explore how apoptosis was mediated in 

the absence of these signals.

6.2 R e s u l t s

6.2.1 Crossing of CD2-MyCER™Fas*" Animals onto a TrpS3 Nuil 

Background

The results described so far show that the Fas pathway is not required for MYC 

induced apoptosis in T cells. These are reminiscent of previous studies which have

133



shown that MYC induced apoptosis is not dependent on the presence of functional 

p53 (Hsu et ah, 1995; Sakamuro et a l, 1995; Blyth et a l, 2000). To establish 

whether either the Fas or p53 death signals were indispensable for MYC induced 

apoptosis when the other was absent, breeding was co-ordinated to generate CD2- 

MTCER^^ animals which were homozygous for the Fas^ '̂ mutation and Trp53 null. 

A summary of the breeding is shown in Table 6.1. In the event of one or other of 

these pathways being essential for MYC induced apoptosis, it might be expected that 

CD2-M7CER^'^Fas^^'/7>p55 null mice would have a very short lifespan, or that the 

combination of genotypes might even result in embryonic lethality. This has been 

previously reported in mice which carried both the Ep-M7C and Y.\x~pim-1 oncogenic 

transgenes, and which developed pre-B cell leukaemia in utero (Verbeek et a l, 

1991). To take account of this possibility, the number of pups in each litter were 

monitored daily, and any offspring lost during the neonatal period were genotyped. 

Animals were monitored over a twelve-month period, and sacrificed when clinical 

signs became apparent. As in previous cohorts, animals developed thymic lymphoma 

and/or lymphoproliferative disorders associated with the Fas^ '̂ genotype. 

Additionally, mice null for the Trp53 gene, but not carrying the CD2-MYŒ YJ^ 

transgene, developed a variety of tumour types of both haemopoietic (including 

thymic lymphoma) and non-haemopoietic origin.

6.2.2 Failure to Generate CD2-MFCER™15 Animals on a Trp53 Null 

Background

As Table 6.1 shows, the expected proportion of CD2-M7CER™ offspring in the F3 

generation that were homozygous for the Fas^ '̂ mutation and null for Trp53 was 25% 

(or 6/7 from 26). No animals of this genotype were ever generated however. 

Although the absence of these mice may suggest embryonic lethality, litter sizes were 

apparently noimal, and an unexpected pattern was also observed with other 

genotypes. CD2-MECER™-/-Fas^'^'/Dy55+/- animals should have accounted for 

25% of the F3 offspring generated, however no mice with this genotype were 

evident. Further examination of the pattern of genotypes throughout the breeding 

revealed that all Trp53 null mice were negative for the CD2-M7CER^''^ transgene, 

and all CD2-M7CER^^+/+ animals generated were wild-type for Trp53. The results
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suggested genetic linkage between the CD2-M7CER™ transgene and the wild-type 

Trp53 allele. It would appear that the transgene inserted into or close to the Trp53 

allele during creation of this CD2-M7CER™ line, or that at some stage of the 

breeding programme, recombination events have resulted in the transgene being 

linked to the Trp53 allele. Further attempts by others to generate CD2-M7ŒR™ 

mice on a Trp53 null background reinforced this theory. Only 5 mice of this 

genotype were generated in a cohort of 207 animals in which 25% were expected to 

be positive for the CD2-M7CER™ transgene and null for Trp53 (Blyth et a l, 

unpublished results).

6.2.3 Evidence that MYC May Induce Apoptosis in the Absence of Both 

Pathways

Although no CD2-M7CER™Fas^^V7)y?53-/- animals were bom, 20 CD2- 

M7CER™Fas^'^77>jt?55+/- mice were generated. 10 of these developed 

lymphoproliferative disease with an average latency of 100 (+/- 21.6) days, while 10 

developed thymic lymphoma with an average latency of 103 (+/- 12.6) days. This 

latency was not significantly different from the latency of tumours in untreated CD2- 

M7CER™Fas^^' animals. To investigate the status of the remaining wild-type Trp53 

allele in thymic lymphomas in these mice, DNA was prepared from frozen tumour 

samples and Southern hybridisation analysis performed. The remaining wild-type 

Trp53 allele was of significant interest in these mice, because if one or other of the 

Fas and p53 death pathways is required for MYC induced apoptosis there would be a 

considerable growth advantage for cells that lose both pathways. It was also of 

interest because if there was selective advantage for cells to lose Trp53, then the 

transgene might also be lost, depending on how closely linlced these two were. For 

that reason, Southern hybridisation analysis was also carried out to verify the 

presence of the transgene in those tumours tested, hi 7 out of 7 tumours tested 

however, Trp53 heterozygosity was maintained at least by this analysis, and not 

unexpectedly, the transgene remained present and intact in all 7 tumours (Figure 6.1).

This analysis does not account for point mutations that may inactivate Trp53, 

However attempts to establish cell lines from these tumours were without success.
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and if p53 function had been lost in these tumours, it would be expected that cell 

lines could be easily established. It has been observed previously that CD2-M7C 

tumour cells have a poor rate of establishment, but on a Trp53 null background 

nearly all CD2-MYC tumour cells established as a cell lines (Blyth et a l, 1995). 

Primary cells from one of these tumours were cultured in vitro, and despite the high 

background rate of death, significantly increased cell death was induced following 

treatment with 4-OHT (?<0.01 at 48 hours) indicating that MYC induced apoptosis 

was not lost during tumourigenesis. Although, complete loss of the wild-type Trp53 

allele in these tumours is unlikely to be selected for, given that the linkage to the 

transgene may also mean that the transgene would be lost, it might be expected that 

point mutations would occur to inactivate Trp53 in these tumours. The failure to 

establish any cell lines from these tumours, hints that selection for loss of both Fas 

and Trp53 may not occur during MYC induced lymphomagenesis, suggesting perhaps 

that MYC may induce apoptosis through other signals as well.

6.2.4 Generation of CD2-MyCER^'^Fas^" Animals on a TrpSS Null 

Background (CD2-MFCER™2 transgene)

Because of the failure to generate CD2-M7CER™Fas^^'7Jrp55-/- animals in the 

previous breeding programme, a new programme was set up using a different CD2- 

M7CER^'^ transgenic line. The new line of CD2-M7CER™ animals were known to 

have lower transgene copy number (Blyth et a l, 2000). It was expected however that 

in the absence of p53, and on MRL strain, a proportion of these mice would develop 

thymic lymphoma, since MYC induced lymphomagenesis is accelerated on a Trp53 

null background (Blyth et a l, 1995), and in MRL strain animals (previously 

described in Chapter 3). As usual, animals were monitored over a twelve-month 

period, and sacrificed when clinical signs were present. Transgenic animals 

homozygous for the Fas^ '̂ mutation developed either thymic lymphoma or 

lymphoproliferative disease, whereas animals heterozygous for Ipr developed only 

thymic lymphoma. On a Trp53 null background, mice developed a range of tumour 

types in addition to thymic lymphoma or lymphoproliferative disease.
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6.2.5 Lymphomagenesis in CD2-MFCER™2Fas^^77>/i55-/- Mice

CD2-M7CER™2 mice homozygous for the Ipr mutation and null for Trp53 were 

generated in expected numbers (Table 6.2A), indicating that these mice were viable 

and the combination of these genetic lesions was not lethal prenatally. There were no 

obvious developmental abnormalities in these mice, however it was noted that in 

Fas^^77>/?55-/- mice, independent of whether they carried the transgene, there was a 

general trend of accelerated lymphadenopathy. These results extend earlier findings 

that the onset of lymphoproliferative disease in Fas^ '̂ animals is significantly 

accelerated by the Trp53 null genotype (Johnston et al,, unpublished results). At 

post-mortem, the pathological signs of lymphadenopathy and splenomegaly appeared 

more severe in these mice, suggesting that lymphadenop athy may be accelerated in 

these animals but other clinical symptoms associated with autoimmunity, such as 

pruritis, may not be affected by the Trp53 genotype. Acceleration of 

lymphoproliferation was also previously reported in pim-1 transgenic mice on an 

Fas^ '̂ background (Moroy et a l, 1993).

The number of mice of each genotype, and the incidence of thymic lymphoma, 

lymphadenopathy or other tumour type is shown in Table 6.2B. The results of this 

experiment were inconclusive since the ongoing removal of mice from the cohort due 

to development of lymphadenopathy caused the incidence of thymic lymphomas in 

these mice to be very low. Additionally, only mice null for Trp53 ever developed 

thymic lymphoma over the course of this experiment. Without induction, transgene 

expression was not high enough to induce spontaneous lymphoma, at least in this 

small cohort. Therefore it was not possible to detect significant differences in 

tumour ineidence and latency between CD2-M7CER™Fas^'' mice null or 

heterozygous for Trp53, although trends can be observed from this cohort.
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Table 6.1 CD2-MTCER^“ l5  x Fax*"" x TrpSS Null Cross

MFCER™+/- Trp53+t^ X il/FCER™-/- Fas''”' Trp53-t-

F I O ffspring Expected Actual

m y œ r J^+ i- Fas'/"' Trp53+I- 1/2 4/9

Fas'/" Trp53+l- '/2 5/9

m f c e r '*’'^+/- Faŝ '̂ Trp53+I- X M Y C E R ™ + /~ Fas'''" Trp53+f-

F2 O ffspring

M rCER™ +/+ Fas'/" Trp53+I+ V16 2/11

m f c e r ' '̂^+/+ Fas'/" Trp53+I- 7 k5 0

M7CER’̂ ''̂ +/+ Fas'/" Trp53-I- V,6 0

MrCER™ +/- Fas'/" Trp53^!+ 7,6 0

MYCEVC^+I- Fas'/" Trp53+I- 7,6 4/11

MYŒRJ^+I- Fas'/" Trp53-I- 7,6 0

MYŒSC^-I- Fas'/" Trp53v!+ 7,6 0

MYCE9J^-I- Fas'/" Trp53+I- 7,6 0

m y c e y C^-i- Fas'/" Trp53-/~ 7,6 5/11

M F C E R ^ ^ F /- Faŝ '̂ Trp53+I- X M F C E R ™ -/- Fas'/”' Trp53-I-

F3 O ffspring

m y c e y C^-^i- Fas'/" T}p53+I- % 12/26

M YŒ RJ^v!̂ Fas'/" Trp53-f- % 0

M YCE^^-I- Fas'/" Trp53+I- 1/4 0

MYCEÿJ^-l- Fas'/" Trp53-I- % 14/26
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Table 6.2A CD2-MTCER™2 x Fas'''" x Tr/)55 Null CrossIpr

MTCER™2+/- Fas'"'"" Trp53M+ X MTCER^^2-/- Fas''"' Trp53-I-

FI Offspring Expected Actual

M7CER'^^2+/- Fas'/"'- Trp53+I- '/2 6/8

MYCEYC^I-I- Fas'/"'- Trp53+I- '/2 2/8

MTCER^'"2+/- Fas'""'- Trp53+I- X MFCER™2-/- Fas''” Trp53-l-

F2 Offspring

MFCER’̂ '^2+/- Fas'/"'- Trp53+I- 's 9/66

MFCER''''^2-A Fas'/"'- Trp53+I- '8 4/66

MFCER''''^2+/- Fas'/" Trp53+I- '8 8/66

MFCER'''^2-/- Fas'/" Trp53+!- /g 8/66

AfyŒR''''^2+/- Fas'/"'- Trp53-I- /g 8/66

MYCER™2-/~ Fas'/"'- Trp53-/- '8 11/66

MFCER'''"^2-i-/- Fas'/" Trp53-I- 8/66

M7CER''’̂ 2-/- Fas'/" Trp53-I- h 10/66

MTCER™2+/- Fas''”' Trp53-I- X MYCER™ 2-/- Fas'"" Trp53-I-

F3 Offspring

M YCER™ 2+/- Fas'/" TrpS3-/- 1/2 8/18

MYCEYC^2-I- Fas'/" Trp53-/~ '/2 10/18
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Table 6.2B Incidence of Lymphoma in CD2-MTCER^“ 2Fas''’7r»-/)53-/- Mice

genotype total

animals

T.L

cause o f  death

Ipr tumour/

lymphoma*

latency range o f  

thymic 

lymphoma

Cm-MYCEBJ^2Vd.d‘”'̂ - Trp53+I- 16 0 1 2

CD2-MyCER™2Fas'/" Trp53vj- 10 0 9 0

CD2-MFCER™2Fas'/"'' Trp53-I- 11 5 0 4 75-209 days

CD2-MFCER^^2Fas'/" Trp53-I- 16 1 11 4 164 days

Fas'/"''- Trp53+I- 5 0 0 1

Fas'/" Trp53+I- 13 0 13 0

Fas'/"'- Trp53-I- 13 3 0 6 106-220 days

Fas'/" T}p53-I- 20 2 16 1 84-129 days

* other than thymic lymphoma

Lymphomagenesis did occur in mice homozygous and heterozygous for the Fas'"" 

mutation, allowing comparison of the kinetics of lymphomagenesis between these 

two groups, hi CD2-M7CER™Fas'""'7J>7753-/- mice, the incidence of thymic 

lymphoma was 45% (5 from 11) compared to 6% (1 from 16) in the CD2- 

M7CER^'^Fas'"72>p5J-/- group. These results are somewhat misleading however, 

since many of the mice in the latter group had to be sacrificed due to development of 

lymphadenopathy. The latency of tumour development was not accelerated in CD2- 

M7CER™Fas''’7rjp53-/- mice compared to CD2-MTCER™Fas''’''''7rrp53-/- 

animals. The average latency of tumours in the Ipr heterozygous group was 132 

days, and the only CD2-M7ŒR^''^Fas'""/7>/?55-/- tumour to develop had a latency of 

164 days. Although results cannot be based on one tumour, it is reasonable to 

suggest that latency was not increased in this gioup. The average lifespan of CD2- 

M7ŒR™Fas'"7T>/?55-/- mice sacrificed due to development of lymphadenopathy 

was 139 days. If lymphomagenesis was accelerated in these mice, then it might be 

expected that a greater proportion of the cohort could develop thymic lymphoma with 

a reduced latency, before developing lymphoproliferative disease.
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6.2.6 Loss of p53 in CD2-MFCER^'^Fas'"" Cell Lines

The ultimate goal of the previous experiments was to generate CD2-MFCER™ cell 

lines which lacked both Fas and p53 apoptotic pathways by genotype. These efforts 

were hindered for a number of reasons. Using these cell lines it would have been 

possible to investigate whether MYC induced apoptosis could still occur in the 

absence of these two pathways. We have noticed however, that establishment of 

explanted tumour cells in long term culture is con*elated with loss of p53 function. 

For the puipose of exploring MYC induced apoptosis in the absence of both Fas and 

p53 pathways, CD2-M7CER™15Fas''"' and CD2-MYCE!C^\5ITrp53-l- cell lines 

were studied since there may be selective pressure for cell lines to lose death 

pathways in order to suiwive in vitro (Cheng & Haas, 1990; Mazars et a l, 1992).

A number of cell lines were tested for their response to y-irradiation with the aim of 

assessing the integrity of their p53 pathway. Although this assay is not conclusive, a 

significant increase in the level of apoptosis in an exposed cell line indicates the 

presence of a functional p53 pathway, and conversely, unaltered levels of apoptosis 

strongly suggest loss of functional p53 (Lowe et a l, 1993). Figure 6.2 shows the 

panel of cell lines that were irradiated. Following irradiation, iiradiated and 

untreated cells were stained with Annexin V and the percentage of positive staining 

apoptotic cells analysed by flow cytometry (Figures 6.2 & 6.3).

Out of thi'ee CD2-MFCER™Fas'"' cell lines tested in this way, both ERLPTW 32 

and ER15LP 101 showed no increase in cell death following irradiation, strongly 

suggesting that functional p53 had been lost in these lines. The third CD2- 

MFCER^'^Fas'"' line, ER15LP 308 retained its response to irradiation, implying that 

p53 was still functional in these cells. Significantly increased cell death was also 

seen in ER15LP 52, a Fas'"" heterozygous cell line which had shown an apoptotic 

response to irradiation previously, and which was included as a positive control for 

functional p53. A CD2-MYCERj^lTrp53-l- cell line, ERP15 122, was also included 

as a negative control, and as expected there was no increase in cell death following 

inadiation of this cell line, confirming the absence of p53. Representative examples 

of the flow cytometric analysis of these cell lines are shown in Figure 6.3, together
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with dexamethasone treated cells which act as a positive control for staining of 

apoptotic cells.

To confirm that wild-type p53 function was lost in these cells, immunoblotting 

analysis was carried out. Protein extracts were prepared from cell lines before and 

after irradiation, and separated by SDS-polyacrylamide gel electrophoresis. Proteins 

were transferred to nylon membranes by Western transfer and detected by incubation 

with antibodies, followed by electro-chemical luminescence. Figure 6.4A shows 

detection of p53 protein in these irradiated cell lines. Detection of actin is shown to 

control for any inconsistency of gel loading (Figure 6.4B).

Since p53 promotes the transcription of its own negative regulator, MDM2, 

mutations which cause p53 function to be lost actually result in increased cellular 

levels of the mutant protein, since negative regulation no longer occurs. The anti-p53 

antibody used in these experiments is designed to detect both normal and mutant p53, 

so if p53 function has been lost by mutation in any of these cell lines, high levels of 

expression may be observed by this method. If the protein is not functional then no 

difference should be observed between p53 levels in inndiated and uniiradiated cells, 

since the mutant p53 should no longer be able to initiate negative feedback on p53 

expression. The results acquired parallel those obtained from studies of apoptosis in 

these cell lines following irradiation. ERLPTW 32 cells which were not induced to 

die by inadiation show high expression of p53 by Western analysis, before and after 

irradiation, while in ER15LP 101 cells p53 protein was not detected in either 

irradiated or uninadiated cells. ER15LP 308 cells however, which showed increased 

death following irradiation, expressed low levels of p53 before irradiation, which 

increased following irradiation suggesting the presence of functional p53 which is 

activated in response to DNA damage. The data available make it reasonable to 

conclude that p53 function has been abrogated in the two CD2-M7CER^^Fas'"" cell 

lines, ERLPTW 32 and ER15LP 101.
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CD2-/;/ycER^^ -
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CD2-/hvcER^^ -

B

Figure 6.1 A nalysis o f Trp53 and Transgene Status in CD2-A/FCER"'Vas'/’7 T’r/75i+ /-  Tum ours

A, Southern hybridisation analysis was carried out to investigate the status o f  the remaining Trp53 

wild-type allele in tumours from CD2-MXCER'^'^Fas'/'77/'p5j+/- mice The figure shows analysis o f  7 

tumours, and Trp53 controls as indicated. B, Southern hybridisation analysis was also used to 

identify presence o f  the CD2-MFCER"'^ transgene in these tumours. Again 7 tumours are shown, and 

controls for the transgene as indicated.

143



c
* c

c/3
C
%(Ucc
<
(U
>

c /5o
Ou

ERLPTW 32 ER15LP 101 ER15LP308 ER15LP52 ERP15 122

wycFas'"" /wycFas'"" mycFas'"' wycFas'""'’ /Mycp53-/-

Figure 6.2 Response to Irradiation in C D 2-4/FC ER  Cell Lines

CD2-M TŒ R"^ cell lines were stained with Annexin V antibody before and after exposure to y- 

radiation. Cells were exposed to 5 Grays y-irradiation from a Cobalt source. Positive staining cells 

were scored as apoptotic. Figure shows five cell lines tested before irradiation (grey bars) and after 

(black bars), with genotypes indicated. (MFC = CD2-MFCER^'^’ l5). Figure 6.3 shows flow cytometry 

profiles.
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u n in a d ia ted iiTadiated

A

ERLPTW 32

ER15LP 101

ER15LP 308

B

ERP15 122 
{Trp53-/~ negative 
control)

untreated +  dexamethasone

"L.  L,

ERTW 46  
positive control

Figure 6.3 Analysis by Annexin V  Staining and Flow  C ytom etry o f A poptosis in Irradiated  

CD2-M FCER^^ Cell L ines

A , Profile o f  induction o f  apoptosis before and after y-irradiation in CD2-MFŒR™Fas'/" cell lines. 

Cell death scored by positive Annexin V  staining cells. B, Control Trp53-I- cell line before and after 

irradiation. C, Positive control for Annexin staining. CD2-MFCER™ 15 tumour cell line (ERTW 46) 

following 24-hour incubation with dexamethasone.
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Figure 6.4 Detection o f p53 in CDZ-MFCER^^ ISFas'/"  ̂Cell Lines by Im m unoblotting

A, Detection o f  p53 protein in the cell lines indicated, before and after y-irradiation. Antibody against 

normal and mutant p53 was used for detection. B, Detection o f  actin protein in the cell lines indicated 

(U = y-unirradiated, I = y-irradiated). Cells were exposed to 5 Grays y-irradiation from a Cobalt 

source.
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6.2.7 MYC Induced Apoptosis in CD2-MFCER™Fas'''" Cell Lines in which 

Functional p53 is Lost

For practical puiposes these cell lines (ERLPTW 32 and ER15LP 101) were taken to 

represent CD2-M7CER™Fas'"'/rrp5i-/- cells, and were used to investigate MYC 

induced apoptosis in the absence of functional Fas and p53 pathways. Both cell lines 

were cultured with and without 4-OHT in vitro, and cell viability assessed after 48 

hours, by trypan blue exclusion (Figure 6,5). Induction of MYC activity elicited a 

significant increase in cell death in both these cell lines indicating that the apoptotic 

function of MYC was not blocked. These data argue strongly, that MYC is able to 

induce apoptosis in the absence of both Fas and p53.

6.2.8 Fas Induced Apoptosis in CDl-MYCRR^^ITrpSS-l- Cell Lines in which 

MYC’s Apoptotic Function is Lost

Indirect evidence to suggest that MYC may use other pathways to mediate its 

apoptotic function was generated from a CD2-M7CER™ cell line null for Trp53, It 

was noted that after prolonged time in culture, a small number of CD2-M7CER™ 

cell lines lost their apoptotic response to 4-OHT treatment. This was not unexpected 

since there is constant selective pressure in vitro for cells to lose apoptotic signals. In 

one such cell line, ERP15 122, which was Trp53 null by genotype, MYC’s apoptotic 

function was lost over a period of time in culture, and subsequently, a second sub­

clone of this cell line also became resistant to MYC induced apoptosis in culture 

(Figure 6.6A). If the Fas pathway was important in mediating MYC induced 

apoptosis, it might be expected that in cell lines in which the apoptotic function of 

MYC was lost this may be due to loss of Fas. Both of these ‘new’ 4-OHT resistant 

cell lines were cultured in the presence of Jo2 antibody or with isotype control 

antibody. Viability was assessed 48 hours after addition of antibody (Figure 6.6B). 

hr both lines, significantly increased death was seen in response to Jo2, indicating 

that the Fas pathway was still intact in these cells. Despite selective pressure to block 

apoptosis in these cells, and the absence of p53, the Fas pathway was not a target for 

loss. These findings support the results of earlier in vitro experiments which have 

shown that MYC does not depend on Fas and p53 alone to induce apoptosis. The
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results suggest that MYC may induce apoptosis by a Fas and p53 independent 

mechanism, and it may be this pathway which is lost in cell lines which no longer 

undergo MYC induced apoptosis.

6.2.9 Protection of a CD2-ii/FCER™Fas''’' Cell Line from MYC Induced

Apoptosis by a-FasL Antibody

Further studies were performed in vitro on CD2-M7CER^'^Fas'"' cell lines lacking 

p53 function to determine what pathway MYC may be activating or sensitising these 

cells to, in the absence of Fas and p53. Cells were cultured in vitro in the presence of 

4-OHT, and the effects of different apoptotic inhibitors were tested. In the first 

instance ER15LP 101 cells, which are CD2-M7CER™Fas'"' cells lacking functional 

p53, were cultured with 4-OHT in the presence of inhibitors of caspase 8 and 3. 

Both of these caspases are involved in apoptotic pathways, however caspase 8 

activity has only been reported in death induced by TNF-R family members, while 

caspase 3 activity is more widespread and occurs downstream of the so-called 

‘initiator’ caspases like caspase 8. Cells were also incubated with the anti-FasL 

antibody, MFL-3, primarily to test whether FasL has any function in these cells, 

despite the absence of Fas, either through activation of unlmown death receptors, or 

by reverse signalling in the cells which express it. Cells were cultured for 72 hours, 

and the viability of those cells assessed by trypan blue exclusion.

In this cell line, caspase 8 inliibitor did not allow significantly increased survival 

following MYC induction, while caspase 3 inliibitor offered slight but significant 

protection from MYC induced apoptosis compared to control untreated cells, P<0.05 

(Figure 6.7). The graph shows however that the level of background death was also 

slightly reduced in cells treated with caspase 3 inhibitor (P<0.05) compared with 

untreated cells, indicating that the protective effects of this inliibitor may not be 

specific to MYC induced apoptosis. Further, there was no significant difference 

between the protection against MYC induced apoptosis offered by inhibition of 

caspase 3 or of caspase 8. Intriguingly however, although increased MYC activity 

could still induce considerable apoptosis, cells treated with the anti-FasL antibody.
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MFL-3 showed a small but significant level of protection compared to cells treated 

with isotype-matched control antibody (P<0.01).

Because of the leaky nature of the Ipr mutation, it was necessary to exclude the 

possibility that the effect of the anti-FasL antibody on this cell line was merely due to 

very low levels of surface Fas, although the anti-Fas antibody, Jo2 had previously 

been shown to have no effect on this cell line (see Figure 5.6A). Cells were 

incubated in the presence or absence of anti-FasL antibody again, and MYC activity 

induced by addition of 4-OHT. On this occasion however, Jo2 was included at high 

concentration (lOng/ml) to replace blocked FasL, and activate any Fas receptor on 

the surface of these cells. Figure 6.8 shows that Jo2 neither induced death, nor 

blocked the protection afforded by the anti-FasL antibody on this cell line. There 

was significantly increased survival in cells treated with either anti-FasL alone 

(P<0.05), or with anti-FasL and excess Jo2 (P<0.01), compared with isotype control 

antibody treated cells. These data suggest that the effect of the anti-FasL antibody is 

independent of Fas.

To confirm that the anti-FasL antibody was in fact mediating its effect directly 

through FasL, cells were treated with cyclosporin A, and their viability assessed 

following MYC upregulation. Cyclosporin A (CsA) has been reported to inhibit 

transcription of FasL but not Fas, while having no effect on Fas signalling (Brunner 

et a l, 1996). When treated with CsA, these cells were protected from MYC induced 

apoptosis at a level comparable to that seen with anti-FasL antibody, P<0.01 (Figure 

6.9). This finding implies that the protection afforded by anti-FasL is due to a direct 

effect on FasL, which is Fas independent. It was not possible to say whether this is 

due to a block in an apoptotic interaction between FasL and an unknown receptor, or 

whether anti-FasL antibody is having a direct effect on FasL, since reverse signalling 

tlu'ough FasL has been reported previously (Suzuki & Fink, 1998; Suzuki et a l, 

2000).

In order to investigate further the apoptotic pathway affected by anti-FasL, cells were 

incubated with or without caspase inhibitors in the presence or absence of anti-FasL. 

Viability was assessed following MYC upregulation. Figure 6.10 shows that anti-
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FasL had a significant (P<0.01) protective effect against MYC induced apoptosis, as 

seen in previous experiments. When the cells were treated with anti-FasL along with 

caspase 8 inliibitor, the level of apoptosis induced by MYC was significantly reduced 

still further (P<0.05) suggesting that whichever pathway anti-FasL inhibits, it is not 

dependent on caspase 8, although the levels to which caspase inhibitors and anti- 

FasL inhibit apoptosis may affect the results. In contrast however, inhibiting caspase 

3 in the presence of anti-FasL had no additive effect, indicating that these pathways 

do overlap (Figure 6.10). The data suggest that anti-FasL is inhibiting an apoptotic 

signal rather than stimulating proliferation through FasL, and that caspase 3 is 

involved in this pathway.

The consequences of incubation with anti-FasL antibody have been tested in 5 other 

cell lines, including CD2-M7CER™Fas'"' lines, however this protective effect in 

response to MYC upregulation has not been seen in any other cell line tested so far. 

A representative cell line is shown in Figure 6.11 A. One explanation for this may be 

that in other cell lines this is a death pathway that is masked by other more 

fundamental pathways, and is only revealed in this cell line because of the lack of 

functional Fas and p53 signalling. Anti-FasL treatment had no protective effect 

against MYC induced apoptosis in ERLPTW 32 cells however, although they also 

lack functional Fas and p53 (Figure 6.1 IB), suggesting that this may be an over­

simplification. Analysis of other death receptors in this cell line may be necessary to 

elucidate the mechanism by which anti-FasL protects against MYC induced 

apoptosis.
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Figure 6.5 Viability of CDl-MFCER^'^’lSFas '̂"  ̂Cell Lines Following 4-O H T Treatm ent

CD2-A/KCER^'^ cell lines were incubated with (filled bars) or without (shaded bars) the addition o f 4- 

OHT and viability was assessed after 48 hours by trypan blue exclusion. Results show the average o f  

live:dead counts performed in quadruplicate expressed as a percentage o f  live over total. The cell line 

genotype and p53 status are indicated.
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Figure 6.6 V iability of a 4-O H T Resistant C D 2-A /F Œ R  ITrp53-l- Cell Line Following Anti- 

Fas Treatm ent

A, A CD2-MYCER^^/Trp53-/- cell line (ERP15 122) before and after resistance to 4-OHT was 

incubated with (black bars) or without (dark-grey bars) the addition o f  4-OHT, or B, with Jo2 (mid­

grey bars) or isotype control antibody (light grey bars). Viability was assessed after 48 hours by 

trypan blue exclusion. Results show the average o f  live:dead counts performed in quadruplicate, 

expressed as a percentage o f  live over total.
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isotype control anti-FasL casp 8  inhibitor ca sp 3  inhibitor

Figure 6.7 V iability o f 4-O H T Treated CD2-MFCER^ F̂aŝ '̂̂  Cells Follow ing Treatm ent with 

A nti-FasL Antibody and Caspase Inhibitors

ER15LP 101 cells were cultured in the presence (filled bars) or absence (shaded bars) o f  4-OHT and 

treated with anti-FasL antibody or inhibitors o f  caspases 8 and 3. Results shown represent live:dead 

counts performed in quadruplicate, expressed as a percentage o f live over total. Viability was assessed 

after 72 hours by trypan blue exclusion. Significant protection against MYC induced apoptosis was 

observed with anti-FasL treatment (P<0.01), and caspase 3 inhibitor (P<0.05).
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Figure 6.8 Viability o f 4-O H T Treated ER15LP 101 Cells Following Incubation with Anti-FasL  

and A nti-Fas Antibodies

ER15LP 101 cells were incubated in the presence (filled bars) or absence (shaded bars) o f 4-OHT, and 

treated with anti-FasL +/- Jo2 antibody, or with isotype control antibody as indicated. Results show  

liveidead counts performed in quadruplicate, expressed as a percentage o f  live over total. Viability 

was assessed by trypan blue exclusion after 72 hours. Significant protection against MYC induced 

apoptosis was observed with anti-FasL treatment, with (P<0.01), or without addition o f  Jo2 (P<0.05).
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Figure 6.9 Viability o f 4-O H T Treated CD2-MFCER^^'Fas^^^ Cells Following Incubation with 

Cyclosporin A

ER15LP 101 cells were incubated in the presence (filled bars) or absence (shaded bars) o f  4-OHT, and 

treated with anti-FasL, cyclosporin A or isotype control as indicated. Results o f  liveidead counts 

performed in quadruplicate are shown, expressed as a percentage o f  live over total. Viability was 

assessed after 72 hours culture, by trypan blue exclusion. Significant protection against MYC induced 

apoptosis was observed with anti-FasL treatment and cyclosporin A (P<0.01).
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Figure 6.10 V iability of CD2-M FCER' 'Fas'̂ '̂  Cells Following Treatm ent with Anti-FasL and 

Caspase Inhibitors

ER15LP 101 cells were cultured in the presence (filled bars) or absence (shaded bars) o f 4-OHT, and 

treated with anti-FasL or isotype control with or without inhibitors o f  caspase 8 and 3 as indicated. 

Results shown represent liveidead counts performed in quadruplicate after 72 hours expressed as 

percentage live over total. Viability was assessed by trypan blue exclusion. Significant protection 

against MYC induced apoptosis was observed with anti-FasL treatment and caspase 3 inhibitor, 

(P<0.01), and addition o f  caspase 8 inhibitor significantly increased anti-FasL mediated protection 

from MYC induced apoptosis (P<0.05).
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Figure 6.11 V iability o f CD2-M FCER Cells Following Treatm ent with 4-O H T and Anti-FasL

A, ERP15 92 {Cm-MYCE9J^\5ITrp53-l-) cells and B, ERLPTW 32 (CD2-A/KŒ R™ 15Fas'^  

cells were treated with anti-FasL in the presence (black bars) or absence (grey bars) o f  4-OHT. 

Results shown represent averages o f  liveidead counts performed in quadruplicate expressed as a 

percentage o f  live over total. Viability was assessed after 72 hours culture by trypan blue exclusion.
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6.3 D i s c u s s i o n

6.3.1 MYC Induced Apoptosis in the Absence of Both Fas and p53 Signalling

It has previously been reported elsewhere that MYC induced apoptosis requires 

functional Fas or p53 pathways, in certain cell types (Wang et a l, 1993a; Hemieking 

& Eick, 1994; Hueber et a i, 1997). Certainly strong evidence exists to indicate that 

MYC is able to utilise both of these pathways to induce apoptosis. Other evidence 

suggests however, that neither pathway is essential for MYC induced apoptosis. 

MYC induced apoptosis has been demonstrated on a Trp53 null background, 

indicating that p53 is dispensable for MYC induced apoptosis (Hsu et a l, 1995; 

Sakamuro et a l, 1995; Blyth et a l, 2000). Similarly, the data in Chapter 5 suggest 

that MYC induced apoptosis occurs in the absence of Fas. The finding in this 

chapter that MYC induced apoptosis can occur in the absence of both pathways 

suggests the presence of additional mechanisms which mediate the apoptotic function 

of MYC.

In tumours arising in CD2-M7CER™Fas^^' animals heterozygous for Trp53, it 

appears that the remaining wild-type Trp53 allele was not a target for mutagenesis 

during lymphoma development or progression, since no loss of heterozygosity was 

obseiwed at the Trp53 locus in tumours arising in these mice. In these circumstances 

however, this is perhaps not unexpected, since the transgene and the wild-type Trp53 

allele are linked, and thus to lose Trp53, tumours may also have to lose the transgene. 

Felsher and Bishop (1999) have previously shown that tumours driven by 

upregulation of a MYC transgene regress following inactivation of the transgene. 

Nevertheless it might be expected that there could be selection for transformed cells 

that had developed a mechanism to lose the wild-type p53 allele without loss of the 

transgene, however this did not occur. Further, the failure of cells explanted from 

these tumours to establish in culture suggests that perhaps p53 function may be 

maintained in these cells. Sequence analysis of the tumour DNA however would be 

required to test exhaustively the integrity of the remaining wild-type p53 allele.
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The possibility of functional overlap between the Fas and p53 pathways has been 

suggested since p53 has been reported to upregulate surface Fas expression both by 

transcriptional activation (Owen-Schaub et a i, 1995), and by transport of Fas from 

cytoplasmic stores to the cell surface (Bennett et a l, 1998). Further, protection from 

Fas mediated apoptosis in tumour cell lines in which p53 was inactivated has been 

reported (Maecker et a l, 2000). However, later studies in human cancer cells 

showed that while p53 may initiate death partially through Fas signalling, it is also 

able to mediate apoptosis through alternative signalling pathways (Fukazawa et a l, 

1999; Hara et a l, 2000).

Comparison of lymphomagenesis in CD2-MFCER^'^ transgenic animals either 

heterozygous or null for either Fas or Trp53 was essential to investigate the 

importance of these two apoptotic effectors. Although useful data generated in vitro 

from the CD2-M7CER2^^ model was limited, the survival of mice in this cohort was 

very infoimative. The incidence of thymic lymphoma was not increased in untreated 

CD2-M7CER™Fas^^'/rrp55-/- mice compared to the same mice heterozygous for the 

Fas^ '̂ mutation, hi addition, the latency of thymic lymphoma was not significantly 

altered by the status of the Fas gene in CD2-M7CER™ animals null for Trp53. 

Although the number of thymic lymphomas in this cohort is small, the results imply 

that even when p53 is absent, loss of Fas does not accelerate MYC induced 

lymphomagenesis.

Perhaps the most convincing results to suggest that MYC induced apoptosis can 

occur independently of Fas and p53 are those generated in tumour cell lines from 

CD2-MFCER™Fas^' mice. Although these mice were genotypically wild-type for 

Trp53, loss of functional p53 has been demonstrated in two CD2-M7CER™Fas^^' 

cell lines. Loss of p53 was not surprising since the selective advantage for cell lines 

to lose p53 function in culture is high (Cheng & Haas, 1990; Mazars et a l, 1992). 

Crucially, MYC upregulation in these cell lines still resulted in significantly 

increased apoptosis. This finding suggests that MYC induced apoptosis can occur in 

the absence of both Fas and p53 pathways, and implies that additional mechanisms 

exist by which MYC can mediate its apoptotic function.
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If the ability of MYC to induce cell death in vitro represents a survival disadvantage, 

it might be selected against. Indeed this does occur, however it is not accompanied 

by loss of the Fas pathway. In a CD2-M7CER™ cell line, null for Trp53, the ability 

of MYC to induce apoptosis was lost over a period of time in culture, but the Fas 

apoptotic pathway remained intact. The suggestion is that selection has occurred 

against some other apoptotic mechanism that may mediate MYC induced apoptosis. 

This hypothesis is supported by studies in another CD2-M7CER™ cell line which is 

heterozygous for the Ipr mutation and has retained functional p53, but which became 

resistant to MYC induced apoptosis. It seems likely that some unknown apoptotic 

pathway has been targeted for mutation in these cells, either during transformation or 

in vitro culture, because some genetic event during transfoimation has shifted the 

balance in these cells to favour proliferation.

The results presented here are perhaps not surprising given the recent assertion that 

MYC induces apoptosis by sensitising cells to signalling tlirough death pathways by 

inducing cytochrome c release from the mitochondria (Juin et a l, 1999). Indeed 

neither Fas nor p53 signalling were required for MYC mediated cytochrome c release 

however cytochrome c release was required for MYC induced apoptosis (Juin et a i,

1999). If MYC does act initially through the mitochondrial apoptotic pathway to 

simply sensitise cells to apoptotic signals, then many other pathways in addition to 

Fas and p53 could be influenced by deregulated MYC expression. The reliance on 

any particular apoptotic pathway is likely to vary between cell type.

If the ability of MYC to induce cytochrome c release does indeed sensitise cells to 

multiple death pathways, it is reasonable to speculate that in order for cells to be 

driven to proliferate during the process of tumourigenesis, complementary genetic 

lesions are more likely to upregulate survival signals rather than block death 

pathways. Presumably activation of a survival signal upstream of cytochrome c 

release would be more efficient than abrogation of several apoptotic pathways 

activated by MYC. Members of the Bcl-2 family are prime candidates for the role of 

allowing growth and survival of cells transformed by deregulation of MYC. Bcl-2 is 

able to prevent apoptosis induced by a variety of stimuli (Merry & Korsmeyer, 1997), 

and a number of studies have shown that Bcl-2 can inliibit MYC induced apoptosis
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(Bissoiinette et a l, 1992; Fanidi et a l, 1992; Wagner et a l, 1993). Further, c-myc 

and Bcl-2 have been shown to act synergistically to induce lymphomagenesis in vivo 

(Strasser et a l, 1990b), and in CD2-M7CER™ cell lines, Bcl-2 has been shown to 

block MYC induced apoptosis (Blyth et a l, 2000). The theory that Bcl-2 may block 

the ability of MYC to sensitise cells to apoptosis is supported by reports suggesting 

that the prevention of apoptosis by Bcl-2 occurs by blocking cytochrome c release 

(Kluck et a l, 1997; Yang et a l, 1997a; Brustugun et a l, 1998; Shimizu et a l, 1999). 

Bcl-2 has been implicated in protection from p53 mediated apoptosis in lymphoma 

cells both in vitro and in vivo (Wang et a l, 1993b; Marin et a l, 1994). The role of 

Bcl-2 family members in Fas mediated apoptosis has been the subject of more 

controversy. While reports have been made of Bcl-2 family members' ability to 

prevent Fas mediated cell death (Itoh et a l, 1993; Rodriguez et a l, 1996; Schneider 

et a l, 1997b; Peter et a l, 1997), conflicting results from other groups have shown 

that Fas induced apoptosis is not blocked by Bcl-2 family members (Memon et a l, 

1995; Strasser et a l, 1995; Huang et a l, 1999). Recent studies however have 

described amplification of Fas mediated apoptosis by caspase 8 and 3 mediated 

cleavage of the pro-apoptotic Bcl-2 family member Bid, which in turn promotes 

cytochrome c release from the mitochondria and further caspase activation (Li et a l, 

1998; Bossy-Wetzel & Green, 1999). If Bcl-2 becomes deregulated in tumours in 

which Fas:FasL interactions play a considerable role in mediating cell death, then it 

is possible to speculate that even though Fas signalling is likely to induce some 

death, this will not be amplified and proliferation of cells will outweigh loss by 

apoptosis. Other apoptotic pathways may be subject to the same regulation.

Although apoptosis may be inhibited in tumour cells in vivo in order for proliferation 

to outweigh death, MYC induced apoptosis was clearly observed in CD2- 

M7ŒR™Fas^^' tumour cells lacking functional p53 in vitro. A possible explanation 

for this is that levels of apoptosis are increased in vitro due to the lack of signals 

which activate survival pathways in vivo. This will be discussed further in Chapter 7. 

It is clear however that apoptosis can still be induced by MYC in these cells, 

indicating the presence of an intact death pathway independent of Fas or p53.
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The data presented here is mirrored by a study of v-Jun induced apoptosis in 

fibroblasts. v-Jun is similar to c-MYC in that it is an oncogene able to promote cell- 

cycle progi'ession and apoptosis in serum deprivation (Bossy-Wetzel et a l, 1997). 

The study showed that v-Jun induced apoptosis and cytochrome c release from the 

mitochondria occur simultaneously. Release of cytoclnome c could be blocked by 

overexpression of Bcl-2, but not by inhibition of the Fas or p53 pathways (MacLaren 

et a l, 2000).

6.3,2 Possible Mechanisms for MYC Induced Apoptosis in the Absence of Fas 

and p53 Signalling

As discussed in Chapter 1, Fas belongs to the tumour necrosis factor receptor (TNF- 

R) superfamily, many of whose members also possess the ability to induce apoptosis 

of the cell in which they are expressed. Receptors are stimulated by members of the 

TNF family, the most closely related members of which, in terms of homology are 

FasL and TRAIL (for TNF-Related Apoptosis Inducing Ligand). The ability of 

TRAIL to inliibit tumour growth in vivo has already been demonstrated (Walczak et 

a l, 1999). In contrast with FasL, TRAIL has two putative death receptors, DR4 and 

DR5 (or Killer), binding of which leads to the activation of apoptosis through a 

caspase cascade (Ogasawara et a l, 1993; Mariani et a l, 1997; Griffith & Lynch, 

1998). TRAIL does activate a pathway distinct from that initiated by the Fas receptor 

however, since cells resistant to FasL mediated apoptosis may still show sensitivity 

to TRAIL (Mariani et a l, 1997), and TRAIL induced apoptosis is independent of 

F ADD (Marsters et a l, 1996a). Further, FasL and TRAIL have been detected 

together on the surface of many tumour cell lines (Mariani & Krammer, 1998), 

suggesting that there is no functional redundancy between these two death pathways.

It is possible that TRAIL plays some role in MYC induced apoptosis independent of 

the Fas pathway. In fact, the TRAIL death pathway may be particularly important in 

Bcl-2 overexpressing tumour cells, since it has been reported that although TRAIL 

initiates a death signal that involves mitochondrial apoptogenic activity to some 

degree, Bcl-2 is unable to block TRAIL induced apoptosis in transformed T cells 

(Keogh et a l, 2000). The signals which regulate expression and activity of TRAIL
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and its receptors are unknown as yet. It is possible to speculate however that if MYC 

can sensitise cells to death by cytochrome c release, then it may also sensitise cells to 

the effects of the TRAIL apoptotic pathway. If cells overexpressed Bcl-2, then while 

most apoptosis induced by MYC would be inliibited (Bissonnette et al., 1992; Fanidi 

et a l, 1992), the TRAIL death pathway could become particularly significant.

Certainly there are other death signals tlirough which MYC might mediate apoptosis. 

Apoptosis induced by engagement of other TNF family members has also been 

described, but less is known of these pathways. Apoptosis through two novel death 

receptors of the TNF family, THANK and DR6 has recently been described (Pan et 

a l, 1998; Mukhopadhyay et a l, 1999). Further investigation of these signals will 

obviously be required, however it is feasible that apoptosis induced by MYC could 

activate or amplify any of these pathways.

So far, the research on MYC and loss of p53 in tumourigenesis has focused on the 

apoptosis induced by the p53 protein. The collaboration between deregulation of 

MYC and loss of p53 does not appear to be due to a dependence on p53 for MYC 

induced apoptosis however, since MYC induced apoptosis can occur in the absence 

of p53 (Hsu et a l, 1995; Sakamuro et a l, 1995; Amanullah et a l,  2000; Blyth et a l,

2000). It may be that the loss of other tumour suppressor functions of p53 are 

responsible for the acceleration of tumourigenesis in Trp53 deficient MYC transgenic 

mice. Another possibility is that p53 interacting proteins may have some ability to 

regulate apoptosis in cells lacking p53. A recent study in fact showed that 

transfection of MDM2, the protein responsible for degradation of p53, into p53 

deficient human thyroid carcinoma cells can induce apoptosis (Dilla et a l, 2000).

There is also a possibility that members of a recently described family of p53 related 

genes have an apoptotic function independent of p53. The two other members of this 

family identified so far, p63 and p73 share substantial sequence homology with p53 

and when overexpressed can transcriptionally activate p53 responsive target genes 

and induce apoptosis (Jost et a l, 1997; Osada et a l, 1998; Yang et a l, 1998). There 

are fundamental differences between family members however, for instance p73 is 

not induced by DNA damage (Kaghad et a l, 1997), and while both p63 and p73 have
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important roles during development, mice deficient in either of these proteins show 

no elevation in spontaneous tumourigenesis (Mills et a l, 1999; Yang et a l, 1999; 

Yang et a l, 2000), Nevertheless, studies of the mechanisms which regulate these 

two genes, and of the functions unique to each protein are still ongoing. Either of 

these proteins may have the potential to mediate MYC induced apoptosis in the 

absence of functional p53. There may be many more as yet undiscovered apoptotic 

pathways which could be targets for regulation by MYC.

6.3.3 Engagement of FasL Protects from MYC Induced Apoptosis

During investigation of MYC induced apoptosis in CD2-M7CER™ cell lines in the 

absence of Fas and p53, increased survival in response to MYC upregulation was 

observed when anti-FasL antibody was included in culture. Although this effect was 

modest, and only observed in one cell line, it was significant and reproducible. There 

are a number of possible explanations for this result, and it is possible that whatever 

the pathway engaged or blocked by anti-FasL, its effect is only uncovered in this cell 

line because of the lack of death induced by either Fas or p53.

There are two possible distinct mechanisms by which anti-FasL antibody may act in 

lymphoma cells in vitro. Firstly, the antibody may block interactions between FasL 

and a death receptor. This death receptor is unlikely to be the Fas receptor since the 

anti-Fas antibody, Jo2 had no effect on MYC induced apoptosis in the same cell line. 

Thus if anti-FasL protects cells from MYC induced apoptosis by an antagonistic 

mechanism, then these results suggest the existence of a novel death receptor for 

FasL, or at least an additional function of a previously described death receptor.

It is possible that the death receptors preference for their ‘own’ ligand may not be as 

specific as previously thought. For example, a novel TNF related death ligand 

(TRDL-1) has been reported to be able to signal through the Fas receptor (Kelly et 

a l, 2000). If, as these results suggest, Fas induced apoptosis can be triggered 

independently of its ligand, then it is not inconceivable that upregulation of FasL has 

effects that are distinct from its role in stimulating its receptor. It also appears from 

recent studies that a domain exists in members of the TNF-R superfamily that allows
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receptor trimérisation and activation which is ligand independent (Chan et a l, 2000; 

Siegel et a l, 2000). In fact induction of Fas ligand independent, Fas dependent 

apoptosis was obseiwed in human colon cancer cell lines in response to treatment 

with camptothecin, a chemotherapeutic agent (Shao et a l, 2001).

Another interesting feature of the apoptotic members of the TNF-R superfamily, is 

the recent discovery of autoamplification of death receptor induced apoptosis by 

enhanced transcription of death ligands on receptor ligation (HeiT et a l, 2000). 

Ligation of the Fas receptor for example induced expression not only of FasL, but 

also of TRAIL and TNF-a. Similarly, enhanced transcription of all three death 

inducing ligands was observed following ligation of either TRAIL or TNF (Herr et 

a l, 2000). Given the homology and this level of 'cross-talk' between receptors of the 

TNF-R family, it is possible that FasL may interact with related death receptors other 

than Fas, and similarly other death inducing ligands may act on different receptors. 

Already TRAIL has been reported to interact with two death receptors (Pan et a l, 

1997a; 1997b; Walczak et a l, 1997), and two decoy receptors (Degli-Esposti et a l, 

1997a; 1997b; Marsters et a l, 1997b), and only recently a decoy receptor for FasL 

was identified in human tumours (Pitti et a l, 1998; Ohshima et a l, 2000). The 

presence of further receptors for FasL cannot be ruled out, and future investigation 

into the other TNF-R family death receptors in ER15LP 101 cells would be valuable.

The other mechanism by which anti-FasL may protect from MYC induced apoptosis, 

or more accurately, may increase survival in response to MYC upregulation, is by 

initiating a proliferative or survival signal through FasL. Since cyclosporin A 

treatment, which inliibits FasL expression, had a protective effect on ER15LP 101 

cells however, it seems improbable that FasL delivers a proliferative signal at least in 

this cell line. Nevertheless, FasL has recently been implicated in proliferation of 

CD8  ̂ T cells (Suzuki & Fink, 1998). This study described a role for FasL as a 

signalling receptor. Proliferation assays using either Fas '̂ '̂, Faŝ ^̂  ̂or wild-type CTL 

cell lines demonstrated that CTLs lacking FasL had a diminished capacity for 

proliferation following sup-optimal activation. This was not as a result of lacking 

Fas:FasL interactions, since no such proliferative defect was observed in Ipr cell lines 

(Suzuki & Fink, 1998). A proliferative signal mediated by reverse signalling through
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FasL could explain the increased survival of this CD2-M7CER^’'^Fas^ '̂ cell line in 

response to MYC upregulation when anti-FasL is present, although the results of 

treatment with cyclosporin A make this unlikely. Presumably this effect would only 

be evident when FasL becomes upregulated following MYC induction, in the 

absence of Fas receptor. In that case the reverse signal tlirough FasL would to some 

extent counter-balance the apoptotic signal. The possibility of further involvement of 

the FasiFasL system in the capacity of T cells to proliferate will be discussed in 

greater detail in Chapter 8.
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CHAPTER 7

PROTECTION FROM M YC  INDUCED APOPTOSIS MEDIATED BY 

CELL CONTACT

7.1 I n t r o d u c t i o n

7.1.1 Detachment Induced Apoptosis ("Anoikis")

Apoptosis can occur not only as a result of cellular damage or as a mechanism to 

maintain homeostasis. In many cell types loss of attachment to, or contact with the 

extracellular matrix (ECM) induces apoptosis. This has been variously called 

detachment-induced apoptosis, anchorage-related apoptosis or "anoikis" (Greek for 

homelessness). Anoikis was first observed in epithelial and endothelial cells that 

were experimentally dissociated from the extracellular matrix (Meredith et a l, 1993; 

Frisch & Francis, 1994). Apoptosis was induced in cells by disruption of the 

interactions between these cells and the extracellular matrix, and in epithelial cells, 

this death was blocked by overexpression of Bcl-2 (Frisch & Francis, 1994). Among 

the signals implicated in contact mediated protection from apoptosis are hyaluronic 

acid (HA), a principal component of the extracellular matrix, and its receptor the 

CD44 cell surface antigen (Ayroldi et a l, 1995). A great deal of research has also 

focused on various members of the integrin family (reviewed by Frisch & Ruoslahti, 

1997; Giancotti & Ruoslahti, 1999), and a number of pathways initiated by PI3 

kinase activation (Ki'asilnikov, 1999). These are discussed in more detail below.

In normal tissues detachment-induced apoptosis should prevent the establishment of 

cells in inappropriate locations, that have lost contact with the matrix. It may also 

play a role in the involution of tissues such as the mammary gland (Boudreau et a l ,

1995). In transformed cells apoptosis may be regulated by the level of integrins and 

other matrix adhesion molecules and receptors, and their associated signalling 

molecules. Changes in celhcell contact or cell:matrix contact in neoplastic cells 

might be important because of the possibility that they may allow contact-
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independent growth and/or metastasis. Recent reports have suggested that in order 

for transformed cells to survive in vivo and in vitro, they must overcome anchorage 

dependence by constitutively activating certain survival signals, or by suppressing 

apoptotic signals (Frisch & Francis, 1994; Sethi et a l, 1999). Tumour cells which 

are able to upregulate certain integrins for example may be able to evade apoptosis 

(reviewed by Frisch & Ruoslahti, 1997).

Focal adhesion kinase (FAK) appears to play a major role as a mediator of protection 

from detachment induced apoptosis. Upon integrin mediated cell-matrix attaclrment, 

FAK becomes autophosphorylated and thus activated to initiate a survival signalling 

cascade (or cascades, Schlaepfer et a l, 1994). This role of FAK in anoikis has been 

clearly established. Blocking the expression of FAK was shown to induce apoptosis 

in human tumour cell lines (Xu et a l, 1996). Further, cells in which FAK is 

constitutively activated are protected significantly from anoikis, and conversely 

inactivation of FAK in the same cells causes apoptosis (Frisch et a l, 1996b). Cells 

carrying constitutively active FAK exhibited anchorage independent growth, and 

formed tumours in nude mice (Frisch et a l, 1996b), emphasising the importance of 

this phenomenon in tumourigenesis.

The signalling cascades downstream of FAK activation are complicated and still not 

fully understood. One candidate for mediating protection from apoptosis is 

phosphotidylinositidol 3-kinase (PI3K), which binds to FAK and also activates the 

survival factor protein kinase B/Akt (Chen & Guan, 1994; Khwaja et a l, 1997; King 

et a l, 1997). Akt has already been shown to have an anti-apoptotic function in 

another system. MYC overexpression in fibroblasts cultured in conditions of low 

serum induces apoptosis which is blocked by Akt (Kauffmann-Zeh et a l, 1997; Rohn 

et a l, 1998). Significantly, in the same cells which were shown to be protected from 

anoikis by constitutive expression of FAK, introduction of either activated PI3K or 

Akt mediated protection from anoikis (Kliwaja et a l, 1997). Akt protects from 

apoptosis at least in part by phosphorylating and thus inactivating Bad and caspase 9 

(Datta et a l, 1997), which are involved in apoptotic signalling, however the 

downstream pathways from Akt itself are not yet fully defined (reviewed by Coffer et 

a l, 1998, Datta et a l, 1999).
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The PI3K/Akt pathway is not the only survival pathway involved in protection of 

detached cells. Alternative routes have been proposed, and it now seems likely that 

anoikis is controlled in an integrin-specific manner. Under disparate circumstances, 

attachment to the ECM through a particular integrin may be necessary for survival. 

Binding of the aS pi integrin to fibronectin for example, induces expression of Bcl-2, 

which subsequently protects from environmental stresses (Zhang et a l, 1995). 

Furthermore, in cells lacking a5 p i, overexpression of Bcl-2 blocked apoptosis 

(Zhang et a l, 1995). On endothelial cells, the avP3 integrin promotes survival by 

suppression of the p53 response and activation of NF-kB and Bcl-2 (Stromblad et a l,

1996). hi turn Bcl-2 may suppress the activation of caspases and of the MEKK7JNK 

pathway which induces apoptosis in response to stress. There is some evidence to 

support the involvement of this pathway since JNK activity was recently found to be 

rapidly induced in detached epithelial cells (Frisch et a l, 1996a). In the future, 

comparison of the expression and activity of various integrin types and other 

adhesion molecules in a variety of cancer types may aid our understanding of both 

anoikis and metastasis.

Several studies have demonstrated a role for integrin signalling in co-stimulation and 

activation of T cells, hi particular, engagement of P1 family integrins on the surface 

of activated T cells has been shown to increase proliferation of these cells, at the 

same time FAK activation has been observed (Matsuyama et a l, 1989; Dang et a l, 

1990; Finlcelstein et a l, 1997). More recently, signalling thiough integrins has been 

implicated in modulation of T cell apoptosis, either by providing a survival signal or 

by inducing a death signal. Co-stimulation of integrin a4p i with T cell receptor 

engagement blocks dexamethasaone induced apoptosis in human thymocytes 

(Zaitseva et a l, 1998), while a5 p l integrin has been reported to mediate protection 

of CD8  ̂T cells against TGF-p induced apoptosis (Rich et a l, 1996). Since AICD in 

T cells is dependent on Fas:FasL interactions, it is unsurprising that several studies 

have shown involvement of Fas pathway components in integrin mediated protection 

from apoptosis. In Jurkat T cells engagement of a2p 1 integrin by collagen type I or 

with agonistic antibodies was shown to inhibit AICD with a concomitant reduction in 

FasL mRNA expression (Aoudjit & Vuori, 2000). Protection was specific to

169



apoptosis induced by TCR stimulation. Fas-mediated and cycloheximide-mediated 

apoptosis were not affected by engagement of a2p l. Moreover, inhibition of FasL 

expression and of AICD required FAK, since a dominant negative form of FAK 

blocked the effects of integrin ligation when overexpressed (Aoudjit & Vuori, 2000).

Downstream targets of Fas have also been implicated in detachment induced 

apoptosis recently (Rytomaa et a l, 1999). Anoikis was blocked in several 

untransformed epithelial cell lines by expression of DN-FADD, although blocking 

ligation of Fas itself did not affect anoikis, suggesting activation of the Fas pathway 

at least in this system is not ligand dependent. Caspase 8 was strongly activated 

following loss of contact of cells with the matrix., and appeared to be the initiating 

event leading to apoptosis. Overexpression of Bcl-2 protected cells from apoptosis 

following detachment, and also inhibited the activation of caspase 8, suggesting the 

possible existence of a positive feedback loop (Rytomaa et a l, 1999). There may be 

many other pathways responsible for both induction of apoptosis in response to 

detaclrment, or for suiwival mediated by cell contact or attachment. The dependence 

on cell contact in MYC  induced tumours has not been examined so far, but may be 

significant given the need for tumour cells to overcome MYC induced apoptosis

7.1.2 Experimental Aims

Throughout the course of working on the CD2-M7CER™ model, a number of 

observations led to the formulation of a hypothesis that cell contact could protect 

tumour cells against MYC induced apoptosis. Firstly, it was suspected that the 

likelihood of CD2-Af7CER^^ tumours establishing as cell lines appeared to be 

enhanced when adherent cells were present in the initial culture, although no formal 

data were collected. Secondly, it was apparent that in some established 

C D IM Y C E ^^  tumour cell lines, cell contact in culture is maximised, since cells 

often appear to gather in clusters in culture, or become ‘clumpy’. Further, the 

appearance of this phenotype coincided with the development of resistance to MYC 

induced apoptosis in a small number of cell lines (Blyth and Morton, unpublished 

observations). Since some CD 2-M YCE^^  cell lines appeared to retain at least a 

partial dependence on cell interactions in order to survive in vitro, these lines may
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provide an understanding of the mechanism behind cell contact mediated protection 

from apoptosis, and may lead to a better idea of which apoptotic pathways are 

triggered when these survival signals are lost.

The initial aim of the following experiments was to investigate the observation that 

CD2-M7CER™ cell lines may be protected from MYC induced apoptosis by cell 

contact in culture. To generate evidence to support these observations, it was 

necessaiy to assess the level of protection offered by cell contact, and to investigate 

whether overall cell suiwival was increased, or if MYC induced apoptosis specifically 

was inhibited when adherent cells were present in culture. Finally, a possible 

mechanism responsible for providing contact mediated protection was examined.

7.2 R e s u l t s

7.2.1 Survival of CD2-MFCER^'^ Cell Lines is Increased when Cultured with 

Adherent Cells

During efforts to establish CD2-M7ŒR™ thymic lymphoma cell lines, it was noted 

that the chances of long-term survival of a cell line appeared to be increased when 

adherent cells were included in culture. Normally, the preparation of lymphoma cell 

lines included a Ficoll® density gradient to achieve pure lymphocyte cell suspensions, 

however occasionally a few cells of different origin, possibly thymic stromal cells, 

escaped this selection process. The impression that inclusion of these cells might 

enhance long-term survival of thymic lymphoma cells in culture was purely 

speculative; no data was collected on the successful establishment of cell lines with 

and without significant contamination of adherent cells, and this may vary between 

tumour cells of different genotype. Neither do we know whether the number of 

adherent cells that escape the screening process during preparation of suspension cell 

cultures is random, or is due to increased dependence of the tumour on those cells in 

vivo. However the observation did lead us to consider whether cell contact may be 

important for the suiwival of these tumour cells.
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Once cell lines became well established on a supporting layer of adherent cells, it 

became possible to establish separate cultures purely of transformed lymphocytes. 

To assess whether a supporting layer of adherent cells had a general protective effect 

on tumour cells, or whether protection was specific against MYC induced apoptosis, 

two such CD2-M7CER^^ cell lines grown with and without the support of adherent 

cells were studied. The genotype of these and other cell lines discussed in this 

chapter is given in Table 7.1. CoiTesponding cell lines remaining in culture with 

adherent cells, or approximately 6 weeks following separation, were incubated in the 

presence of 4-OHT, and their viability monitored at 24 hour intervals over a 96 hour 

period. Viability was assessed by trypan blue exclusion.

Figure 7.1 shows the survival curves of these two cell lines, ER15LP 52 and ER15LP 

101. Treatment with 4-OHT resulted in significantly increased cell death in the cell 

lines tested at every time point Ifom 48 hours (P<0.01), consistent with previous 

results in CD2-M7CER™ cell lines. In the same two cell lines cultured with the 

support of adherent cells however, significant although not complete protection from 

MYC induced apoptosis was observed at every time point from 48 hours (P<0.01). 

In cultures of ER15LP 101 cells, adherent cells also had a general protective effect 

against background death (Figure 7.IB). The results suggest that the survival of 

lymphoma cell lines cultured with supporting adherent cells was increased at least in 

part, as a result of partial protection from MYC induced apoptosis.

Table 7.1 Genotypes of Cell Lines

Cell Line Mouse Genotype Events / / I  Vitro
ER15LP 52 CD2-M7CER™Fas'/’'̂ - p53 retained
ER15LP 101 CD2-M7CER™Fas^ '̂' funetional p53 loss
ER15LP308 CD2-M7CER™Fas'/" p53 retained

ERLPTW 32 tCD2-M7CER™Fas^^" functional p53 loss
ERP15 122 sensitive Cm-MYŒMy^lTrp53-l-
ERP15 122 resistant Cm-MYCEK™ITrp53-l- loss of MIA*
ERTW 46 tCD2-M7CERTM functional p53 loss

I  these cell lines were generated from animals administered tamoxifen as described in Chapter 3. 

*MYC induced apoptosis
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7.2.2 Mediation of Protection is a General Feature of Fibroblasts

Although the protection confeiTcd on cell lines by incubation with adherent cells was 

potentially very interesting, it was necessary to confirm that this was a general feature 

of fibroblasts, and not some effect provided solely by these uncharacterised adherent 

cells isolated fi*om tumours. Mouse embryo fibroblasts (MEFs) or NIH/3T3 

fibroblasts were added to 24 well plates, and allowed to adhere over a sixteen hour 

period. ER15LP 52 cells were added to plates with or without fibroblasts, and 

incubated in the presence or absence of 4-OHT. The viability of lymphoma cells was 

assessed by trypan blue exclusion after 48 hours in culture. Results are shown in 

Figure 7.2. Significant levels of apoptosis in lymphoma cells incubated alone, were 

induced following treatment with 4-OHT (P<0.01). MYC induced apoptosis was 

reduced however when the same cell lines were cultured in the presence of MEFs or 

NIH/3T3 cells. Both MEFs and NIH/3T3 cells offered significant protection against 

MYC induced apoptosis (P<0.01). In fact NIH/3T3 fibroblasts offered complete 

protection from MYC induced apoptosis in this experiment, while 4-OHT could still 

induce significant apoptosis in ER15LP 52 cells on supporting MEFs (P<0.05). 

Induction of MYC induced apoptosis in the control cells in Figure 7.2A was also 

significantly higher than in control cells in Figure 7.2B (P<0.01). Further, significant 

protection of ER15LP 52 cells from background death, was observed when cultured 

on MEFs (P<0.01). The reasons for the differences between the two experiments, in 

death induction following 4-OHT treatment, and in rate of background death, is 

likely to be due to differences in the viability of the cell line at the 0 hour time-point. 

Although all cell concentrations in short-term cultures are initially the same, the 

confluence of the cultures from which the cells are taken can affect their kinetics in 

short-term cultures. This is not unexpected, as it is possible that survival factors may 

become limiting in culture, and affect the viability of the cells in these cultures. The 

kinetics of cell growth may also be affected by the level of contact with the other 

cells in culture. It is clear from the results however, that protection from MYC 

induced apoptosis in this CD2-M7CER^'^ cell line is mediated by cell contact 

provided by a fibroblast layer, and is not specific to the cell type of the supporting 

layer. Further experiments later in this chapter (shown in Figure 7.5) show that 

fibroblast mediated protection occurs in 3 other cell lines.
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7.2.3 Protection Is Mediated by Cell Contact

Initial observations on cell lines in culture suggested that protection from MYC 

induced apoptosis was dependent on cell contact. Firstly, explanted lymphoma cells 

in culture adhered to available adherent cells if any were present following cell 

preparation. Figure 7.3A shows an example of a cell line which established on a 

supporting fibroblast layer. In addition, in some cell lines cell contact is clearly 

maximised, as the cells adhere to each other and become ‘clumpy’. Figure 7.3B 

shows an example of a clumpy cell line. It was shown that after serial passaging, 

some CD2-M7CER™ cell lines can specifically lose susceptibility to MYC induced 

apoptosis. On 5 out of 7 occasions, this altered response to MYC upregulation 

coincided with an apparent change in the appearance of the culture, due to cells 

becoming clumpy (Blyth and Morton, unpublished observations). The loss of MYC 

induced apoptosis in one such cell line, ERP15 122, is shown in Figure 6.6A. The 

hypothesis arising from these observations was that cell contact appeared to be one 

mechanism for escaping MYC induced apoptosis. Nonetheless it was important to 

establish whether direct cell contact was responsible for the increased survival of 

cells cultured with fibroblasts, since survival may be mediated by a soluble growth 

factor or cytokine released by the fibroblasts.

To investigate which of these theories was accurate, MEFs were cultured as before in 

a 24 well plate, and when the cells reached near confluence, the medium was 

harvested. This medium was then filtered to remove any suspended fibroblasts. 

ER15LP 52 cells which were known to be protected from MYC induced apoptosis by 

culture with fibroblasts were grown in unconditioned or conditioned medium, in the 

presence or absence of 4-OHT. Viability of cells was assessed after 48 hours 

incubation, by trypan blue exclusion. Although activation of MYC resulted in 

significant induction of cell death in both conditioned (P<0.01), and unconditioned 

medium (P<0.01), there was no significant difference in the levels of apoptosis 

between the two growth conditions (Figure 7.4A). These data suggest that protection 

from MYC induced apoptosis is not mediated by soluble growth factors given off by 

the fibroblasts.
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Although conditioned medium offered no protection from MYC induced apoptosis in 

the previous experiment, it was not yet possible to rule out protection mediated by 

soluble factors. In order to investigate if the continued production of putative anti- 

apoptotic factors was protecting the cells from MYC induced apoptosis, a similar 

experiment was performed using a co-culture system. This system allowed both 

lymphoma cells and fibroblasts to be cultured in the same wells of a 24 well plate, 

but separated by a membrane insert that prevented cell contact but allowed diffusion 

of soluble factors. ER15LP 52 cells were incubated alone, in direct contact with a 

supporting layer of MEFs, or separated from MEFs by membrane inserts. The 

viability of the suspension cells was assessed by trypan blue exclusion 48 hours 

following 4-OHT treatment to induce MYC upregulation. Again significant levels of 

apoptosis were induced following 4-OHT treatment of controls (where no MEFs 

were present, P<0.01), however a layer of supporting MEFs offered almost complete 

protection from MYC induced apoptosis (Figure 7.4B). Treatment with 4-OHT did 

not result in significant induction of death in the ER15LP 52 cells when cultured on 

MEFs. This protective effect was abolished when contact with the MEFs was 

blocked. In these cultures significant induction of death occurred following MYC 

upregulation (P<0.01), and there was no significant difference between induction of 

death in these cultures, and in ERl 5LP 52 cells cultured alone. The results confirm 

that protection is indeed mediated by cell contact, and not by soluble factors released 

by the fibroblasts.

7.2.4 Cell Contact Mediated Protection is Dependent on PI3 Kinase

Recent studies have suggested that MYC induced apoptosis might be suppressed by 

signalling tlirough the survival kinase Akt, which is itself activated by PI3 kinase 

(Kauffmann-Zeh et a l,  1997; Rohn et a l,  1998). It was therefore of interest to 

investigate whether the PI3 kinase pathway might protect CD2-M7CER™ cell lines 

against apoptosis following MYC upregulation. Further, a number of reports have 

highlighted a protective effect of cell contact on tumour cells (Xu et a l,  1996; Sethi 

et a l,  1999), and one report of particular relevance to these results suggested that 

Integrin Linked Kinase (ILK), a molecule that can mediate the effects of cell
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adhesion tlirough its interaction with integrin subunits, may act as an effector for PI3 

kinase activation of Alct (Delcommenne et al, 1998).

Experiments were set up to assess whether the protection from MYC induced 

apoptosis by contact with fibroblasts seen in some CD2-M7CER™ cell lines was 

dependent on PI3 kinase signalling. Initially, 3 CD2-M7CER™ cell lines; ER15LP 

101; ERP15 122; and ERTW 46, which were known to be protected from MYC 

induced apoptosis by cell contact, were cultured with and without NIH/3T3 cells in 

the presence or absence of the PI3 kinase specific inhibitor, LY294002 (Vlahos et aL, 

1994). MYC activity was upregulated by addition of 4-OHT, and cell viability was 

assessed after 72 hours by trypan blue exclusion. As observed previously, 4-OHT 

treatment resulted in significantly increased cell death in each cell line (P<0.01 for 

each line), and contact with fibroblasts offered significant protection from MYC 

induced apoptosis in the cell lines tested (ERTW 46 and ER15LP 101, P<0.01, 

ERP15 122, P<0.05). However in all these cell lines (3 from 3), fibroblast mediated 

protection was significantly reduced, indeed completely abrogated, when LY294002 

was present in culture (P<0.01, Figure 7.5). Contact with fibroblasts offered no 

significant protection against MYC induced apoptosis in these lines, when LY294002 

was included in culture. It is reasonable to suggest therefore, that inhibition of the 

PI3 kinase pathway blocks protection conferred by cell contact, at least in these cell 

lines, and suggest that the protective effect of contact is mediated through the PI3 

kinase pathway.

Not all CD2-MFŒR™ cell lines demonstrated the same effect with LY294002. In 

some cell lines unprotected by cell contact, LY294002 had no significant effect, 

however in two further cell lines, ER15LP 52 and ER15LP 308, it was found that 

LY294002 was lethal to the cells. The results of these experiments are shown in 

Figure 7.6. This effect was independent of the ability of fibroblasts to confer 

protection on the cells, since one of these cell lines was protected against MYC 

induced apoptosis by cell contact (P<0.05, Figure 7.6A), and the other was not 

(Figure 7.6B). The data suggest that in these cell lines PI3 kinase activates some 

pathway that is essential for survival of the cells. The reason for this effect in some 

cell lines but not others is not clear, however, the two cell lines in which LY294002
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initiated rapid cell death share one property. Both of these cell lines were shown to 

have functional p53, by response to inadiation, whereas the cell lines in which 

inhibition of PI3 kinase is not lethal, but rather blocks contact mediated protection, 

have lost p53 function by the same criteria. It may be that cells in which p53 is still 

functionally active rely more heavily on certain sui*vival signals which may be 

mediated by the PI3 kinase pathway. Since PI3 kinase has multiple functions, it is 

also possible that PI3 kinase direetly blocks p53 induced apoptosis, and hence in cells 

with functional p53, inhibition of PI3 kinase activity would result in rapid cell death. 

In cells lacking p53, PI3 kinase may simply mediate certain survival signals, such as 

those engaged during cell contact.

7.2.5 Levels of Phosphorylated Akt in CD2-AfFCER^^ Cell Lines Protected by 

Cell Contact

One of the pathways activated by PI3 kinase, the Akt survival pathway (King et aL, 

1997), has previously been shown to play a role in protection from anoikis (Khwaja 

et aL, 1997). To investigate whether PI3 kinase was acting through the Akt pathway 

in the cell lines in which inhibition of PI3 kinase activity blocked cell eontact 

mediated protection, levels of phosphorylated (active) Akt were determined by 

immunoblotting. CD2-MTCER^'^ cells which were protected against MYC induced 

apoptosis by cell contact, and in which protection was abolished by PI3 kinase 

inhibitor were studied. Protein extracts were prepared from these cells 18 hours 

following incubation in the presence or absence of 4-OHT, with or without 

LY294002, and cultured with or without supporting fibroblasts. Levels of 

phosphoiylated Akt and P-actin were detected by immunoblotting (see Chapter 2). 

Figure 7.7A shows the results obtained in ER15LP 101 cells. It might be expected 

that if PI3 kinase were acting through Akt, then phosphorylated Akt levels would be 

increased in 4-OHT treated cells on supporting fibroblasts, compared to 4-OHT 

treated cells cultured alone. It would also be expected that addition of LY294002 

would result in a decrease in the levels of phosphorylated Akt. Any differences in 

the levels of phosphorylated Akt in ER15LP 101 cells following these treatments did 

not appear to be of great magnitude however. Results from one other eell line 

protected from MYC induced apoptosis by cell contact, showed similarly low levels

177



of phosphorylated Akt. These early results although not conclusive would indicate 

that Akt does not play a major role in the protection of these cells from MYC 

induced apoptosis.

7.2.6 Increased Levels of Phosphorylated Akt in CD2-iVfLŒR™ Cell Lines in 

which PI3 Kinase Inhibition is Lethal

It was also necessary to determine the levels of phosphoiylated Akt in the two cell 

lines, ER15LP 52 and ER15LP 308, in which PI3 kinase inhibition was lethal. Both 

of these cell lines express functional p53, and a recent report has suggested that the 

PI3 kinase/Akt pathway promotes translocation of MDM2 to the nucleus and 

subsequent degradation of p53 (Mayo & Domier, 2001). If this was the case, then it 

might be expected that when PI3 kinase is inliibited in these cells there would be an 

increase in active p53, which would explain the rapid induction of cell death. Levels 

of phosphorylated Akt in untreated ER15LP 52 and ER15LP 308 were compared to 

control cell lines studied, in which LY294002 was not toxic (ER15LP 101 and 

ERP15 122), by immunoblotting. Detection of P-actin was also earned out to control 

for differences in loading. The results presented in Figure 7.7B show that levels of 

phosphorylated Akt in these two untreated cell lines in which inhibition of PI3 kinase 

was lethal, are markedly increased compared to the two control cell lines in which 

PI3 kinase inliibitor had no effect except to abrogate contact mediated protection 

from 4-OHT. The data suggest that in cell lines in which functional p53 is retained, 

constitutive activation of the PI3 kinase/Akt survival pathway may be critical for 

survival, at least in vitro.
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Figure 7.1 V iability o f Explanted CD2-M FCER™  Cell Lines G row ing W ith or W ithout 

Supporting A dherent Cells

CD2-M YCE^^  cell lines, A, ER15LP 52 and B, ER15LP 101, were grown with supporting adherent 

cells (triangles) or separated from those adherent cells (circles) were incubated in the presence (solid  

lines, filled symbols) or absence (broken lines, open symbols) o f 4-OHT. Viability was assessed at the 

indicated time points by trypan blue exclusion. Results shown are based on live:dead counts 

performed in quadruplicate and expressed as percentage live over total.
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Figure 7.2 V iability o f an Explanted C D 2-4/FC ER  Cell Line (ER 15LP 52) on M EFs or 

NIH/3T3 Cells

A, ERI5LP 52 cells were cultured with or without a supporting layer o f  MEFs, or B, with or without 

supporting NIH/3T3 cells. Cells were incubated in the presence (black bars) or absence (grey bars) o f  

4-OHT. Representative results are shown here. Viability o f  CD2-MFCER"'^ (ERI5LP 52) cells was 

assessed following 48 hours in culture, by trypan blue exclusion. Results shown are based on 

live:dead counts performed in quadruplicate, expressed as a percentage o f  live over total.
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Figure 7.3 Photoiiiicrographs ol ('l)2-/V/}'('KR ('cil Lines

A, Pliotoniiciographs show a ('n2-A/}'CLR"^' ccll line, ERI5! P 101, with siippoiling adherent cells 

carried through IVoni initial suspension cell preparation. B, ('D2-A/>TT.R’ '̂ cell line, ERTW 46, with 

'clumpy' phenotype. Cells shown arc untreated cells in unconditioned medium.
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Figure 7.4 V iability of CD2-A/FCER (ER15LP 52) Cells in C onditioned M edium  or in 

Contact with Fibroblasts

A, ER15LP 52 cells were cultured in unconditioned or conditioned medium (described in section 

7.2.3), as indicated, and treated with (solid bars) or without (shaded bars) 4-OHT. B, ER15LP 52 

cells were incubated with or without MEFs, in contact or not as indicated, using the co-culture system  

described in section 7.2.3. Cells were treated with (solid bars) or without (shaded bars) 4-OHT. 

Viability was assessed following 48 hours in culture. Results shown are based on live:dead counts 

performed in quadruplicate, expressed as a percentage live over total.
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Figure 7.5 Viability o f Explanted CD2-A/FCER Cell Lines G rowing W ith or W ithout 

Supporting Adherent Cells Following Inhibition of PI3 Kinase

CD2-A/FŒR"^' cells, A, ERTW 46, B, ERP15 122, and C, ER15LP 101 were grown with or without 

supporting fibroblasts. Cells were treated with (black bars) or without (grey bars) 4-OHT, in the 

presence or absence o f  PI3 kinase inhibitor (LY294002, lOpM) as indicated. Viability was assessed 

after 72 hours in culture by trypan blue exclusion. Results shown are based on live:dead counts 

performed in quadruplicate, expressed as percentage live over total. Cell contact offered significant 

protection against MYC induced apoptosis in ERTW 46, ER15LP 101 (P<0.01) and ERP15 122 

(P<0.05) cell lines.

183



100 -,

LY 294002

NIH/3T3S

B

£

100

80

60

*5
g  40

20  -

0

L Y 294002

N1H/3T3S

4"--

%

Figure 7.6 Viability o f Explanted CD2-A/FCER Cell Lines G rowing W ith or W ithout 

Supporting Adherent Cells Following Inhibition o f PI3 Kinase

A, ER15LP 52 (cell contact protected) and B, ER15LP 308 (unprotected) cell lines were grown with 

or without supporting fibroblasts. Cells were treated with (filled bars) or without (shaded bars) 4- 

OHT, in the presence or absence o f  P13 kinase inhibitor (LY294002, lOpM) as indicated. Viability 

was assessed after 72 hours in culture by trypan blue exclusion. Results shown are based on liveidead 

counts performed in quadruplicate, expressed as percentage live over total.
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Figure 7.7 Detection of Phosphorylated Akt in CD2-M FCER Cell Lines by Im m unoblotting

A, Levels o f  phosphorylated Akt were examined in ER15LP 101 cells, (which are protected from 

MYC induced apoptosis by cell contact), 18 hours following treatment with 4-OHT or ethanol, with or 

without PI3 kinase inhibitor, in the presence or absence o f  NIH/3T3 cells, as indicated. Detection o f  

P-actin is also shown. B, Levels o f  phosphorylated Akt in untreated CD2-A/FCER"^ cell lines were 

detected by immunoblotting. Differences in loading were controlled for by detection o f P-actin.
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7.3 D is c u s s io n

7.3.1 Cell Contact Increases Survival of Transformed T Cells In Vitro

During in vitro studies of transformed CD2-M7CER™ eells, a number of 

observations led to speculation that cell contact could protect T lymphoma cells 

against MYC induced apoptosis. Namely, that the likelihood of a cell line 

establishing when eultured on supporting adherent cells appeared to be increased, and 

that there was some correlation between resistance to MYC induced apoptosis, and 

dumpiness of a cell line. It is possible that this phenomenon is particularly observed 

in CD2-MTCER^^ cells lines, because of the reported ability of MYC to sensitise 

cells to a number of death pathways (Juin et a l,  1999). Perhaps in MYC 

overexpressing cells, additional mechanisms are required to protect those cells from 

background death, enhanced by deregulation of MYC. A number of experiments 

were carried out to test this hypothesis. CD2-MYCEK^^ cell lines that had been 

established with a supporting layer of undefined adherent cells had increased survival 

in response to MYC upregulation when the adherent cells were present. This 

protective effect was shown to be a general feature of fibroblasts that was mediated 

by eell contact and not by soluble survival factors released by the fibroblasts, as 

demonstrated in the co-culture system.

These results are supported by data from other studies which also suggest that cell 

contact may protect T cells from apoptosis induced by certain stimuli. During early 

thymocyte development, before positive and negative selection occur, interaction 

with fibroblasts in the thymic stroma is essential for the development of certain 

stages of T cell precursors, and this dependency is mediated by contact through 

integrins and other adhesion molecules (Anderson et al, 1997b). Experiments have 

also been described in which co-culture of mature aetivated T lymphocytes with 

fibroblasts prolonged the suiwival of activated T lymphocytes in the absence of 

mitogenic signals (Scott et a l,  1990; Gombert et al, 1996).

The results described in this chapter are reminiscent of the phenomenon of anoikis 

which was first described as apoptosis induced by the disruption of interactions
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between the extracellular matrix and normal epithelial cells (Friseh & Francis, 1994). 

The same study however showed that anoikis was abrogated when epithelial cells 

were transformed with a number of oncogenes and suggested that anchorage 

independence could accompany transformation (Frisch & Francis, 1994). If complete 

anchorage independence occurred in all tumours however, cell contact might not be 

expected to enhance survival of transformed cells. Nevertheless protection from 

apoptosis by cell contact has been observed in tumour cells in other systems, as well 

as in CD2-M7CER™ cell lines. A study of small cell lung cancer (SCLC) showed 

that extracellular matrix surrounds these tumours at both primaiy and secondary sites, 

hivestigation of chemotherapy induced apoptosis in these cells in vivo demonstrated 

an integrin mediated proteetion from apoptosis, and the authors also reported 

enhanced survival of these cells in vitro when cultured on a feeder layer of fibroblasts 

(Sethi et aL, 1999). It is likely that the way in which tumours evade anoikis will 

affect the tumour cells ability to be rescued from apoptosis by cell contact. For 

example some tumour cells may evade anoikis by specific upregulation of adhesion 

molecules or their downstream targets, while other tumours may have upregulated 

more general survival pathways, and may yet be subject to protection from apoptosis 

by cell contact, while still able to survive detachment.

7.3.2 Mechanisms by which Cell Contact Protects Against MYC Induced 

Apoptosis

Many apoptotic pathways have been implicated in detachment induced apoptosis, and 

consequently inliibition of those pathways should confer protection on the cells. 

From the experiments carried out on CD2-M7CER^'^ cell lines however, it appears 

that PI3 kinase plays a major role in the protection/survival signal stimulated by cell 

contact. This conclusion is dependent on the specificity of LY294002 as an inhibitor 

of PI3 kinase. The use of LY294002 as a recognised specific inhibitor of PI3 kinase 

is widespread thi'oughout the literature however, and only one case of non-specificity 

has been reported, expressly inliibition of nitric oxide production in murine astrocytes 

in vitro (Jung et aL, 1999). PI3 kinase itself is involved in many different signalling 

pathways but its anti-apoptotic function is reported to be mediated by the survival 

kinase Akt (or Protein Kinase B, Franlce et aL, 1995). Akt itself is able to enhance
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survival of cells in which it is activated, by inhibiting a number of apoptotic signals 

(reviewed by Coffer et a l,  1998; Datta et a l,  1999; Kandel & Hay, 1999) including 

caspase 9 activity (Cardone et a l,  1998), the pro-apoptotic Bcl-2 family member Bad 

(Datta et a l,  1997; del Peso et a l,  1997), and glycogen synthase kinase 3 (GSK-3, 

Pap & Cooper, 1998). NF-kB activity has also been reported to be induced by 

activated Akt (Kane et a l,  1999), and subsequently shown to suppress TNF induced 

apoptosis (Burow et a l,  2000).

Signalling tlirough the PI3 kinase/Akt pathway has been previously reported to 

protect fibroblasts from MYC induced apoptosis (Kauffinann-Zeh et a l,  1997) and it 

seems likely that the protection conferred on CD2-M7CER™ cells by cell eontact is 

mediated through the same pathway. There are a number of ways in which cell 

contact might allow increased survival of T lymphoma cells in response to MYC 

upregulation. The most likely of these are the pathways controlled by members of 

the integrin family, whieh are reported to be of particular importance in anchorage 

dependence in tumour cells (reviewed by Giancotti & Ruoslahti, et a l,  1999). In 

turn, integrin signalling may be transduced by two major signalling kinases; focal 

adhesion kinase (FAK) which has been implicated in integrin signalling, and 

inhibition of which induces loss of attachment and apoptosis in a variety of human 

tumour cell lines (Xu et a l,  1996), and integrin linked kinase (ILK), overexpression 

of which allows anchorage independent growth and survival of epithelial cells 

(Radeva et a l,  1997). Both of have been shown to activate the PI3 kinase/Akt 

survival pathway under certain circumstances (Delcommenne et a l,  1998; Almeida 

et a l,  2000). hi CD2-M7ŒR^“ cell lines however, examination of the levels of 

phosphorylated Akt could not conclusively show that this pathway was responsible 

for contact mediated protection. Early results suggest that, at least in this system, the 

Akt pathway does not play a major role in cell contact mediated protection from 

MYC induced apoptosis.

7.3.3 Mechanism of Protection May Vary Between Individual Tumours

It may be that the mechanism of protection depends on the genetic lesions which 

have arisen during tumourigenesis. Both TNF-R family members and p53 have been
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reported to be influenced by integrin signalling. Ilic et al. (1998) studied the 

dependence of endothelial cells and fibroblasts on survival signals transmitted 

through integrins and focal adhesion kinase (FAK), and showed that these were 

transduced by FAK through a p53 dependent pathway. Further, when p53 was 

inactivated in these cells, they became anchorage independent and no longer relied on 

signalling through FAK for survival (Ilic et al,  1998). Activation of Akt in these 

cells however did not prevent apoptosis induced by the inhibition of FAK, suggesting 

that loss of FAK/p53 mediated apoptosis does not operate through the PI3K/Akt 

survival pathway. A recent study in carcinoma cells did suggest that p53 and Akt 

had overlapping roles in an integrin suiwival pathway. Specifically, the a6p4 

integrin was reported to activate the Akt survival signal in p53 defieient carcinoma 

cells, but in carcinoma cells that expressed wild-type p53, integiin a6p4 stimulation 

inhibited this survival pathway by inducing p53 dependent cleavage of Akt 

(Bachelder et al,  1999). This data might partly explain why cell death was induced 

so rapidly by inhibition of PI3 kinase in those CD2-M7CER^'^ cell lines which 

retained functional p53. It is therefore possible that functional p53 may reduce the 

survival of CD2-M7CER™ cells in vitro, by cleaving Akt and partially inhibiting the 

PI3 kinase/Akt survival pathway. If PI3 kinase is inhibited in these cells, then cell 

death may be rapid once no more Akt can be activated by PI3 kinase. It is also 

possible that in MYC overexpressing cells in which p53 function is retained, survival 

pathways mediated by PI3 kinase are required to suppress p53 induced apoptosis, and 

so death is rapidly induced when these survival pathways are inhibited. This 

hypothesis is supported by a recent study which showed that PI3 kinase could signal 

through Akt to promote translocation of MDM2 to the nucleus where it would effect 

ubiquitination and degradation of p53 (Mayo & Donner, 2001). Detection of 

phosphorylated Akt in protein extracts from ER15LP 52 and ER15LP 308 cells 

without treatment confmned that levels of activated Akt were clearly higher than in 

the untreated cell lines which lacked functional p53 and in which PI3 kinase 

inliibition was not lethal. Since three cell lines lacking functional p53 exhibited the 

ability to be protected from MYC induced apoptosis by cell contact, the results do 

clearly suggest that in these cells at least, anoikis can be p53 independent.
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During efforts to establish CD2-M7CER™ cell lines homozygous for the Fas^' 

mutation it was observed that these lines were susceptible to detachment induced 

death, and that suiwival of these lines was increased by cell contact, implying that 

Fas:FasL interactions were not involved in anoikis. Fas signalling has also been 

described as a target for inhibition by cell contact however, although presumably not 

in cells in whieh this pathway is lost. Engagement of another member of the integrin 

family, a2j31, has been reported to protect T cells from activation induced cell death 

by inhibiting FasL expression via activation of FAK (Aoudjit & Vuori, 2000). The 

involvement of F ADD in promoting anoikis has been described in epithelial cells and 

in MDCK cells, since dominant negative F ADD was reported to block anoikis in 

these cells (Frisch, 1999; Rytomaa et a l,  1999), and more recently, matrix 

attachment was reported to regulate expression levels of Fas and FasL in endothelial 

cells, and detachment was shown to induce FasiFasL interaction, F ADD recruitment 

and activation of caspase 8 (Aoudjit & Vuori, 2001). This study also showed that 

although anoikis could be blocked in these cells by activation of the PI3 kinase/Akt 

pathway, this suiwival effect was not mediated through regulation of expression of 

Fas or its ligand (Aoudjit & Vuori, 2001). Other studies have demonstrated a linlc 

between the Fas pathway and P13 kinase. Ras activation of the PI3 kinase/Akt 

survival pathway for example has been reported to mediate survival by 

downregulation of Fas expression in fibroblasts and epithelial cells (Peli et a l,  1999).

There may be many other death and survival pathways regulated by cell contact. 

Recent research in mammary carcinoma cells showed that TRAIL may be involved in 

anoikis, since expression of TRAIL and susceptibility to TRAIL induced apoptosis 

were suppressed in anchored cells compared to unattached cells (Goldberg et a l,  

2001). The tumour suppressor protein PTEN has also been linked with both anoikis 

and the PI3/Akt survival pathway. PTEN was shown to induce anoikis in breast 

cancer cells (Lu et a l,  1999), and a number of studies have reported that Akt is 

negatively regulated by PTEN (Haas-Kogan et al, 1998; Stambolic et al, 1998; 

Dahia et a l,  1999; Tamura et a l,  1999).

In the CD2-MYCEK™ eell lines that were tested for response to cell contact mediated 

protection and inhibition of PI3 kinase, a variety of results were generated. In the
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cell lines which were protected by contact with fibroblasts, inhibition of PI3 kinase 

resulted in loss of that protection, suggesting that at least in MYC induced T cell 

tumours, contact mediated protection from MYC induced apoptosis was dependent 

on signalling through PI3 kinase. It is not clear yet how that signalling progressed in 

these cells, and whether the survival signals were the same in each case. It is 

apparent however that some cell lines are more sensitive to inhibition of PI3 kinase 

activity than others, and that may be dependent on which apoptotic pathways are 

functional, and on the extent that upregulation of survival signalling contributed to 

transfonnation in those cells. For instance, cell lines in which p53 function was still 

detected were highly sensitive to PI3 kinase inhibition, suggesting that viability of 

these cells may be highly dependent on overexpression of sui*vival signalling 

pathways. It is also clear that some cell lines may have become anchorage 

independent either in vivo, or during establishment in vitro, since a basal layer of 

fibroblasts confers no protection from MYC induced apoptosis on these cells. These 

cells may have lost anchorage dependent apoptotic pathways during tumourigenesis, 

or have deregulated expression of survival signals downstream of PI3 kinase. In 

tumours which remain anchorage dependent, cell contact in vivo must confer a 

considerable growth advantage. The results suggest that the potential of cell death 

and survival pathways differs between individual tumours, and emphasise that 

tumourigenesis is a multi-step process. Even in tumours of the same cell type, 

induced by the same MYC  transgene, there may be many different genetic lesions 

selected for mutagenesis during the progression towards malignancy.
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CHAPTER 8

ACTIVATION INDUCED PROLIFERATION IS DIMINISHED IN T CELLS

FROM FAS '̂" MICE

8.1 I n t r o d u c t io n

8.1.1  T Cell Receptor Activation and the Role of Fas Signalling

Activation induced cell death has been described in detail in Chapter 1. In order for 

homeostasis to be maintained within the T cell compartment, antigenic activation 

tlirough the T cell receptor (TCR) must first result in proliferation and expansion of 

the T cell population, and also in deletion of previously activated cells to prevent 

accumulation of these cells in the organs of the lymphoid system (reviewed by 

Kabelitz et a l,  1993). A number of groups have demonstrated that activation 

induced death of T cells is dependent on Fas:FasL signalling (Alderson et al, 1995; 

Brunner et a l,  1995; Dhein et al, 1995; Ju et al, 1995). It seems likely therefore 

that the apoptotic response to TCR activation may be defective in thymocytes from 

Fas '̂  ̂mice compared with cells from control mice. What is less clear however is 

whether the non-apoptotic response of T cells to activation is altered by the loss of 

Fas signalling, and whether thymocytes from Fas^' mice are otherwise normal in 

their response to activation.

8 .1 .2  Anti-CD3 Antibodies Simulate T Cell Receptor Activation In  Vitro

The TCR complex eonsists of a heterodimer of alpha and beta transmembrane 

polypeptide chains which each have constant and variable domains, associated with 

the invariant CD3 complex. The TCR allows recognition of specific antigen, while 

the CD3 complex signals to the cell that antigen binding has occurred. Engagement 

of the CD3 complex on immature mouse thymocytes, with antibodies to CD3 was 

shown to result in death of the treated cells through an endogenous apoptotic 

pathway (Smith et a l,  1989). These findings suggested that cross linking of CD3 on
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T cells with anti-CD3 antibodies mimicked the effect of antigenic activation of the 

TCR complex. Antibodies against CD3 are now widely accepted to reproduce the 

effects of TCR activation.

8.1.3 Experimental Aims

The experiments described in this chapter were carried out to investigate the 

consequences of TCR activation in thymocytes explanted from healthy control and 

Fas^ '̂ mice. Since activation can lead to both proliferation and cell death, it may 

have consequences for the development and progression of T cell lymphoma. It was 

therefore necessary to examine whether activation induced cell death was defective in 

Fas^ '̂ thymocytes in this system. It might be expected that lack of activation induced 

cell death would result in increased incidence or reduced latency of T cell 

lymphomas in Fas^' animals. The results presented in Chapters 3 and 4 show that 

this was not the case, at least in this model. Therefore it was also important to 

examine the non-apoptotic response in Fas^ '̂' thymocytes, compared to those from 

control mice, since studies have suggested that eell death may not be the only 

consequence of T cell activation (Malissen & Schmitt-Verhulst, 1993). If there was a 

defect in the proliferative response to activation in Faŝ '̂" T cells, then this eould 

affect lymphoma development in these animals. Finally, it was also of interest to 

assess whether there was any correlation between cell surface markers and response 

to activation since response to activation may also vary between cells of different 

developmental stage and cell surface phenotype.

8.2 R e s u l t s

8.2.1 T Cell Activation Results in Cell Death and Proliferation

The Fas signalling pathway has been widely reported as an important mediator of 

activation induced cell death in T cells (Alderson et al,  1995; Brunner et a l,  1995; 

Dhein et a l,  1995; Ju et a l,  1995). Activation induced cell death can be studied in 

vitro using plate bound anti-CD3 antibodies which cross-link the CD3 co-receptor,
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and represent activation through the TCR, or antigen induced activation. This 

method was used to study defects in activation induced cell death in Faŝ '̂ ' cells.

To investigate differences in the level of activation induced cell death in Fas^ '̂ T cells 

it was first necessary to investigate the effects of CD3 crosslinking in normal healthy 

T cells. Healthy control MRL strain mice were sacrificed at 3 -8  weeks of age, and 

their thymii removed. Single cell suspensions of thymocytes were prepared, and 

these were incubated on anti-CD3 antibody, or isotype-matched control antibody 

coated 96-well plates. The preparation of these plates is described in section 2.5. 

Cell viability was assessed at 24 hour intervals over a 144 hour period, by the trypan 

blue exclusion method. During the initial 72 hours in culture, cell viability was 

assessed every 12 hours, to obseiwe at what time-point death induction by CD3 

crosslinking was most significant. Figure 8.1 A shows pooled results of 3 identical 

experiments.

Under these conditions of T cell activation, control thymocytes undergo significantly 

accelerated cell death for 48 hours following CD3 crosslinking, compared to those 

incubated with iso type-matched control antibody (P<0.01 at every time point 

between 12 hours and 48 hours). The most significant induction of death in anti- 

CD3 treated cells, compared with the background death of isotype matched control 

treated thymocytes occurred at 36 hours. Induction of cell death in these cells 

appears to be maximal at around 48 hours in culture following crosslinking. The 

figure shows that after 48 hours, the pereentage of viable T cells starts to increase, 

and continues to increase until at least 144 hours following CD3 stimulation. In 

contrast, thymocytes treated with isotype matched control antibody continue to lose 

viability. There was significantly increased viability in the anti-CD3 treated 

thymocytes, compared to the isotype-matched control treated thymocytes at every 

time point from 60 hours until 144 hours after CD3 erosslinking (P<0.01).

From studying thymocyte viability alone, it was not possible to say whether the 

increased viability observed in anti-CD3 treated thymocytes after 60 hours in culture 

was due to proliferation of live cells, or loss of dead cells from the eulture. From 

studying the total live cell numbers however, it appears that the increased survival is
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as a result of induction of proliferation in these cells. Figure 8. IB shows the pooled 

results of tliree identical experiments. For the first 60 hours following CD3 

erosslinking, the number of live cells in culture decreases, after which time, the total 

number of live cells starts to increase and after 144 hours exceed the number of live 

T cells originally set up in culture. This is in contrast to the isotype-matched control 

antibody treated cultures, in which the number of live eells continues to diminish 

over the experimental period. These results indicate that the increased viability of 

anti-CD3 stimulated thymocytes after the initial induction of death is due to 

proliferation.

8.2.2 Loss of Fas Signalling Results in Loss of Activation Induced Cell Death 

and Proliferation

Studies have shown that erosslinking of CD3 induces apoptosis in T cells by 

upregulation of Fas and FasL expression (Alderson et a l,  1995; Brunner et al,  1995; 

Dhein et al,  1995; Ju et a l,  1995). It follows then, that in Faŝ '̂ '* thymocytes, where 

the Fas pathway is abrogated, CD3 erosslinking should fail to stimulate apoptosis. 

Thymocytes from age, strain and sex-matched 3-6 week old control and Fas^ '̂ mice 

were incubated with plate-bound anti-CD3 antibody and their viability determined 

over a period of 144 hours.

As seen in previous experiments, treatment of control thymocytes with plate-bound 

anti-CD3 antibody resulted in enhanced cell death in the first 48 hours in culture, and 

then increased cell survival and total live eell numbers from 72 hours following 

treatment. Representative survival curves for (A) control MRL and (C) Faŝ '̂" 

thymocytes, and curves for total live cell number for (B) MRL and (D) Fas^ '̂ 

thymocytes, are shown in Figure 8.2. The results were reproducible in 6 similar 

experiments. As the literature suggests, treatment with anti-CD3 antibody failed to 

induce apoptosis in Faŝ '̂ '' thymocytes (Russell et al,  1993). These findings suggest 

that Fas signalling is required for activation induced cell death of T cells. This result 

is not surprising given the reported simultaneous upregulation of Fas and FasL and 

induction of cell death in response to anti-CD3 stimulation (Alderson et a l,  1995; 

Brunner et a l,  1995; Dhein et al,  1995; Ju et al, 1995). Interestingly however, the
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proliferation induced by CD3 erosslinking in control thymocytes was also blocked in 

Fas'^' thymocytes, as the total number of live cells steadily declined. Although Fas^' 

thymocytes were not susceptible to activation induced cell death, and despite the fact 

that Fas^ '̂ T cells accumulate in vivo (Cohen & Eisenberg, 1991), there was no 

detectable increase in viability or number of live Fas^' cells following CD3 

erosslinking. Further, isotype-matched control antibody treated Faŝ '̂" thymocytes did 

appear to have diminished suiwival in vitro compared to eontrol MRL thymocytes. 

This was in line with observations made in other experiments during the course of 

this study, in which the background death of explanted Faŝ '̂ '" cells appeared to be 

higher compared to control cells.

8.2.3 Enhanced Survival of Normal T Cells in Response to CD3 Crosslinking 

is Due to Increased Proliferation

The most likely explanation for the increase in cell viability and live cell number of 

control MRL thymocytes following treatment with anti-CD3, was proliferation, thus 

indicating a proliferative defect in Fas^ '̂ thymocytes. To confirm this hypothesis, 

proliferation assays were carried out on these cells. Thymocytes were explanted from 

age-matched 3-6 week-old control C57/CBA and MRL strain mice, which is the 

control strain for Fas^' mice, from Fas^' mice, and from Bcl-2 transgenic mice 

(generously donated by Prof. S.J. Korsmeyer). Fas^ '̂ mice have been described in 

detail previously. The Bcl-2 transgenic mice harbour a human Bcl-2 transgene on the 

Ick promoter, which targets expression to the T cell lineage (Linette et al, 1995). 

Bcl-2 transgenic thymocytes were included to determine whether activation would 

induce a different response in these cells, sinee they overexpress a survival factor, in 

contrast to Fas^ '̂ cells which lack a death pathway. Thymocytes were incubated in 

96 well plates coated with either anti-CD3 antibody or with isotype-matched control 

antibody. Following 72 hours in culture, a [^H] thymidine incorporation proliferation 

assay was carried out. This assay depends on the uptake of thymidine into dividing 

cells during DNA replication. Cells which are proliferating should accumulate [^H] 

thymidine, and the radioisotope can then be detected by scintillation counting.
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The results of this experiment are shown in Figure 8.3. As predicted from the results 

generated in previous experiments, CD3 erosslinking on control C57/CBA and MRL 

thymocytes results in significantly increased proliferation after 72 hours in culture, 

compared to isotype-matched control antibody treated cells in which proliferation is 

negligible (p<0.01). In contrast, induction of proliferation in response to anti-CD3 

activation of Fas^ '̂ thymocytes was very low, and significantly impaired compared to 

both C57/CBA and MRL control thymocytes (P<0.05). It seemed reasonable to 

conclude from these studies that activation induced cell death and proliferation could 

be induced in normal thymocytes by CD3 stimulation in vitro. Not only was 

activation induced cell death blocked in Fas^' thymocytes however, these thymocytes 

also exhibited a proliferative defect in response to CD3 erosslinking. The data also 

suggest that Bcl-2 transgenic thymocytes have reduced proliferation in response to 

CD3 erosslinking, compared with control C57/CBA and MRL thymocytes, although 

in this case the difference was not significant. This is in keeping with previous 

reports of impaired proliferation in Bcl-2 overexpressing cells (Grierson et al, 1995). 

The proliferative defect in these eells however was not nearly as striking as that 

observed in Fas^' thymocytes. These data may have implications for the low tumour 

fi'equency in Fas^' animals. If Fas:FasL interactions contribute to the anti-CD3 

mediated proliferative response, then perhaps any loss of cell death in Faŝ '̂ ' cells 

could be compensated by loss of cell activation.

8.2.4 CD3 and CD28 Co-Stimulation Relieved Block in Activation Induced 

Cell Death and Proliferation in Faŝ *" Thymocytes

Although results obtained from studies of anti-CD3 activation have been infonnative, 

CD3 erosslinking alone does not promote full aetivation of T cells. Co-stimulatory 

signals or otber mitogenic stimuli are required for full activation (Chambers & 

Allison, 1997). One such co-stimulatory signal is ligation of the surface molecule 

CD28 (Turka et al, 1990), described in more detail in Chapter 1. Co-stimulation 

with plate-bound antibodies to CD3 and to CD28 has been reported to be essential 

for full T cell activation (Jenkins, 1994). With this in mind, experiments were set up 

to investigate the effects of CD3 and CD28 co-stimulation on activation of T cells 

from control and Fas^' mice. Antibodies to CD3 and/or CD28 or their isotype-
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matched control antibodies were bound to flat-bottomed 96 well plates as before, and 

thymocytes explanted from either control MRL or Fas^ '̂ mice were cultured on these 

over a 144 hour period. The viability and total number of live cells was assessed at 

24 hour inteiwals by trypan blue exclusion.

In keeping with previous results, anti-CD3 antibody alone resulted in increased cell 

death and subsequent proliferation in eontrol thymocytes, while having no effect on 

the viability of Fas^ '̂ thymocytes. Figure 8.4 shows the results of these experiments. 

Crosslinking with anti-CD28 antibody alone had no significant effect on the viability 

of thymocytes from either control or Faŝ '̂" mice. In contrast to CD3 erosslinking 

alone however, stimulation of both CD3 and CD28 together resulted in rapid and 

significantly increased cell death in both control and Fas^' thymocytes. Figure 8.4 

shows that this cell death was significantly increased compared to both isotype- 

matched control and anti-CD3 treated thymocytes after 24 hours, in both MRL 

(P<0.01) and Fas^ '̂ cultures (P<0.05). Further, following this initial induction of 

death, proliferation assessed by live cell number, was observed in both eontrol MRL 

and Fas^ '̂ thymocyte cultures stimulated with anti-CD3 and anti-CD28 together. The 

total number of live Fas^' cells 144 hours following CD3/CD28 erosslinking 

together, was significantly increased compared to both anti-CD3 treated and isotype- 

matehed control antibody treated cells (P<0.01), (Figure 8.4D). There was no 

difference in viability or live eell number of control MRL thymocytes at 144 hours 

between anti-CD3/CD28 and anti-CD3 treated cells. The percentage of live cells in 

anti-CD3/CD28 co-stimulated cultures started to increase more rapidly however 

(after 48 hours) than in anti-CD3 stimulated cultures, as shown in Figure 8.4B. The 

graphs also show that anti-CD3 mediated activation induced cell death, and 

proliferation, appear to occur faster in MRL thymocytes than in the previous 

experiment (see Figure 8.2). In addition, by 144 hours following incubation with 

anti-CD3, the viability and live cell total of the anti-CD3 and anti-CD3/CD28 treated 

MRL cells, appear to level out. It seems that the initial response to activation is 

elevated compared to the previous experiment, and that background death is 

decreased, but that by 144 hours, the proliferative response is weakened. It was also 

obseiwed that by 144 hours, the total number of live anti-CD3 stimulated Fas^ '̂ 

thymocytes was slightly increased eompared with isotype matched control antibody
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treated cells. The reason for this observation is not clear, but is consistent with the 

decreased background death in this experiment compared with the previous 

experiment. Perhaps, a small population of Fas^ '̂ thymocytes that showed a limited 

response to anti-CD3 activation suiwived the initial stages of eulture in this 

experiment. Nevertheless, the proliferative defect in Fas^' thymocytes in response to 

CD3 erosslinking was still clearly observed. The kinetics of activation induced cell 

death and proliferation may vary slightly between each experiment, however the 

trend is unchanged. The results suggest that CD3/CD28 erosslinking activates other 

pathways in addition to the Fas pathway to induce cell death in thymocytes, and also 

that proliferation can be induced tlnough different mechanisms depending on the 

initial activational stimuli. Co-stimulation of CD28 may allow CD3 signalling to 

recruit more efficient. Fas independent pathways.

8.2.5 Phenotype of Thymocyte Populations Following CD3 Crosslinking

During T cell development, cells are defined by their expression of either the CD4 or 

CDS co-receptor moleeules (reviewed by Ellmeier et al,  1999). Immature progenitor 

T cells bearing neither surface marker, give rise to progenitor double positive T cells 

which express both CD4 and CDS. 95% of these double positive thymocytes die in 

the thymus through neglect (reviewed by Cresswell, 1998). Differentiation to mature 

single positive thymocytes occurs through positive selection of cells that express 

TCRs with appropriate affinity for MHC/peptide complexes. CD4 single positive 

thymocytes express TCRs specific for MHC class II, and CDS single positive 

thymocytes express TCRs specific for MHC class I.

A number of recent studies have implied that the response of both immature and 

mature T cells to CD3 erosslinking or activation thiough the TCR might differ 

between cells of different surface phenotype (Basson et a l,  1998; Veiga-Femandes et 

al,  2000). In addition, further studies of Fas:FasL interactions have highlighted 

possible differenees between cell types in their response to anti-CD3 treatment. 

Proliferation of T lymphocytes from Fas^^  ̂ mice whieh lack functional FasL, in 

response to anti-CD3 treatment was shown to be depressed compared to those from 

control mice, and this was shown to be a result of depressed proliferation of CDS
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single positive T cells (Suzuki & Fink, 1998). To investigate this idea further in 

connection with the results presented so far, cultures were set up of explanted control 

thymocytes in anti-CD3 or isotype control antibody coated 96 well plates. The cells 

from replicate cultures were pooled at the 0 hour, 48 hour, 72 hour and 144 hour time 

points in order to perform cell surface analysis. Cells were labelled with antibodies 

to CD3, CD4 and CD8, or with isotype-matched control antibodies and analysed by 

flow cytometry.

The results of the analysis of CD4 and CD8 profile are shown in Figure 8.5A. The 

data show that the CD4/CD8 surface phenotype of control thymocytes changes over 

the 144 hour period in culture with anti-CD3 stimulation. The percentage of 

CD4/CD8 double positive thymocytes in the total population decreases over the 

course of the experiment from 84% to 49%, while the percentage of CDS single 

positive thymocytes increases from 3% to 40%. Conversely, the proportions of CD4 

single positive thymocytes and double negative thymocytes remain relatively 

constant throughout the time in culture. There are a number of possible explanations 

for this phenomenon. As in the thymus during T cell development (reviewed by 

Ellmeier et a l, 1999), double positive cells may differentiate in vitro. The growing 

CD8 single positive population may arise from downregulation of CD4 on double 

positive thymocytes, thereby accounting for the decrease in the fraetion of double 

positive cells in the total population. What is not clear however, is why the relative 

level of CD4 single positive cells does not increase. This may be explained by 

differential responses between CD4 and CD8 single positive cells to activation. It is 

possible that CD4 thymocytes are not as susceptible to activation induced 

proliferation as CD8 single positive thymocytes, and therefore the CD8 population 

proliferates, at the expense of the CD4 single positive population. It is also feasible 

that CD4 positive cells are more likely than CD8 single positive thymocytes to die in 

response to activation, and therefore unable to expand as a population, at least in 

vitro. Undoubtedly the explanation for this phenomenon may be a combination of a 

number of theories. It is entirely reasonable to suggest that the same population of 

thymocytes may be acutely sensitive to activation induced cell death and 

proliferation. The signals determining the decision to die or proliferate in cells of 

similar phenotype are likely to be more complex.
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Figure 8.5B shows the relative percentages of CD3 positive cells, as a fraction of the 

total population, and as a fraction of the live population, as estimated by forward 

scatter. Over 144 hours in culture, the proportion of thymocytes bearing CD3 was 

slightly reduced, from 96 to 86%, however in the live population, the fraction of CD3 

positive cells decreased from 96% to 65%. Again, there may be a number of 

explanations for this trend. One possible explanation may be that in this system, 

surviving or proliferating cells have downregulated surface CD3 as a survival 

measure. It is also conceivable that cells with low surface CD3 expression are 

preferentially selected for survival and proliferation, while high CD3 expression 

marks thymocytes for activation induced cell death. More subtle analysis of the level 

of CD3 expression on these thymocytes would be required to determine the reason 

for these results.
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Figure 8.1 V iability and Proliferation o f Control Thym ocytes at 12 H our Intervals Over 144 

H ours Follow ing CD3 Crosslinking

Thymocytes explanted fi'om control mice were incubated in anti-CD3 (solid line, filled circles) or 

isotype-matched control antibody coated 96-well plates (broken line, open circles). Antibody was 

used at 10 pg/ml and cells were cultured at 1.5 x 10  ̂ cells/ml in flat-bottomed wells. Viability was 

assessed every 12 hours over a 72 hour period, and thereafter at the time points indieated. Results 

represent live:dead eounts performed in triplicate, expressed as A, percentage live over total cells, and 

B, total live cell number. Results represent the average o f  pooled data from 3 experiments. Error 

bars show standard errors.
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Figure 8.2 V iability o f C ontrol M R L and Fas^'' Thym ocytes Follow ing CD3 Crosslinking

Thymocytes explanted from conti'ol mice (A  and B) or Faŝ '̂ "' mice (C and D) were incubated in anti- 

CD3 (solid line, filled circles) or isotype-matched control antibody (broken line, open circles) coated 

96-well plates. Antibody was used at 10 pg/ml and cells were cultured at 1.5 x 10  ̂ cells/ml in flat- 

bottomed wells. Viability and total live cell number was assessed over a 144 hour period. Results in 

A and C represent live:dead counts, expressed as percentage live over total, perfonned in triplicate. B 

and D show total number o f  live cells, as an average o f  triplicate results.

203



12 -

10  -

I

• =  6

X
rn

2 -

0 -J

a -C D 3

IgG

1
C 5 7 /C B A

+

+

MRL

+

Fas'^' Bcl-2

+ +

+  +

Figure 8.3 Proliferation o f Control and Faŝ *̂̂  Thym octyes Following CD3 Crosslinking

Thymocytes explanted from C57/CBA, MRL, Fas'̂ " and BcI-2 transgenic mice were incubated at 1.5 x 

10̂ ’ cells/ml in anti-CD3 (lOpg/ml, grey bars) or isotype-matched control antibody (black bars) coated 

96 well flat-bottomed plates, as indicated. Following 72 hours incubation, cells were pulsed with [^H] 

thymidine. Proliferation o f  cells was measured by incorporation o f  [^H] thymidine over a 16 hour 

period, and recorded release o f  radioactive counts from each cell culture. Results show mean o f  

counts performed in quadruplicate.
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Figure 8.4 V iability  o f C ontrol and Fas '̂  ̂ Thym ocytes O ver 144 H ours Follow ing CD3/CD28  

Crosslinking

Thymocytes explanted from control mice (A  and B) or Fas^' mice (C and D ) were incubated in anti- 

CD3 (solid line, filled circles), anti-CD28 (broken line, open circles), both anti-CD3 and anti-CD28 

(solid line, open circles) or isotype control antibody (broken line, closed circles) coated 96-well plates. 

Antibodies were used at 10 |ig/ml and cells were cultured at 1.5 x 10  ̂ cells/m l in flat-bottomed wells. 

Viability (A  and C) was assessed at 24 hours intervals over a 144 hour period. Results represent 

liverdead counts, perfoiTued in triplicate, expressed as an average percentage o f  live over total. B and 

D show curves for total cell numbers, as an average o f  tiiplicate results.
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Figure 8.5 Phenotype o f CD3 Stim ulated Control M RL Thym ocytes

Thymocyte populations over a course o f  time following CD3 crosslinking. A, shows CD4/CD8 
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negative (light grey) thymocytes as a percentage o f  the total cell population. B, shows CD3 positive 

cells as percentage o f  the total population (grey bars), or o f  the live cell population (black bars).
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8.3 D is c u s s io n

8.3.1 Deficiency in Activation Induced Cell Death in Faŝ '̂  T cells

The results generated from investigation of activation induced cell death in control 

and Fas^ '̂ thymocytes demonstrated that thymocytes lacking the Fas pathway were 

defective in their apoptotic response to activation, or at least to stimulation by CD3 

crosslinking. These studies were carried out on thymocytes from young disease-free 

animals. The results are consistent however, with other reports of anti-CD3 induced 

cell death being defective in splenocytes from Faŝ ^̂ '’ mice (Russell et a l, 1993), and 

of lack of response to TCR stimulation in the abnormal T cell population in the 

periphery of Fas^ '̂ mice (Sy et a l, 1988). The results also fit in with previous reports 

of activation induced cell death being mediated by FasiFasL interactions (Ramsdell et 

al, 1994; Alderson et a l, 1995; Brunner et a l, 1995; Dhein et a l, 1995; Ju et a l, 

1995). Further studies have described the upregulation of Fas and FasL, and 

subsequent cell death following TCR activation (Bmnner et a l, 1996; Latinis et a l, 

1997; Oberg et a l, 1997), and also activation of the Fas pathway caspases 8 and 3 

(Jiang et a l, 1999). Although other apoptotic molecules, most recently that 

transcribed by the p53 related gene, p73, have been implicated in TCR mediated 

apoptosis (hwin et a l, 2000; Lissy et a l, 2000), no evidence of a Fas independent 

pathway was observed in the above studies.

8.3.2 Faŝ '̂  T Cells are Deficient in T Cell Receptor Activation Induced 

Proliferation

The results of investigating TCR activation in control and Fas^ '̂ T cells not only 

demonstrated the lack of activation induced cell death when the Fas pathway is 

absent but also highlighted a potential role for Fas:FasL interactions in activation 

induced proliferation, suggesting that Fas may not simply signal through a death 

pathway. Following an initial induction of death in control thymocytes, TCR 

activation was also shown to induce proliferation, however neither increased death 

nor proliferation were observed in Fas^' thymocytes. The result highlighted a 

proliferative defect in response to activation by CD3 crosslinking in thymocytes
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lacking functional Fas. The explanation for this is not clear. No previous reports 

have been made of a defect in activation induced proliferation in thymocytes from 

young Fas^ '̂' animals, however evidence presented in other reports has implied 

involvement of Fas:FasL interactions in the proliferation of T cells.

Although the T cells which accumulate in older Fas^' mice are of abnormal 

phenotype (Morse et a l, 1982), and are functionally vei*y limited in response to 

antigenic stimulation (Davignon et a l, 1985, reviewed by Altman, 1994), this does 

not explain the abeirant response to CD3 crosslinking that was observed in the 

experiments carried out in this chapter, since the thymocytes were explanted from 

young Fas^ '̂ animals before the emergence of a large population of phenotypically 

abnormal cells. The data here show a proliferative defect in response to CD3 

crosslinking in thymocytes from young ‘healthy’ Fas^ '̂ animals. These results are 

supported by an earlier investigation into mitogenic stimulation of splenocytes from 

Fas^' mice, which showed a decreased proliferative response even in young mice, 

which became more pronounced in ageing mice (Froidevaux et a l, 1991).

A role for Fas in activation induced proliferation is also supported by a study of 

antibodies against Fas, which demonstrated that an immobilised anti-Fas antibody, 

rather than inducing apoptosis was able to co-stimulate anti-CD3 antibody mediated 

proliferation of human T cells in vitro (Alderson et a l, 1993). Additional evidence 

that Fas may act as a co-stimulatory receptor was generated in an in vivo study which 

showed that during thymocyte development, the Fas^ '̂’ mutation caused a decrease in 

the number of CD4/CD8 double positive cells in the thymus, and in total thymic 

cellularity, and suggested that Fas signalling was involved in the generation and 

positive selection of CD4/CD8 T cells (Kurasawa et a l, 2000). Furthermore, recent 

studies have suggested a role for caspases in T cell proliferation. Kennedy et a l

(1999) reported that caspase 8 activation, possibly via TCR mediated upregulation of 

FasL, was required for T cell proliferation. Caspase 8 was cleaved rapidly after CD3 

crosslinking of Jurkat T cells, and inliibition of caspase 8 activation caused a block in 

CD3 induced proliferation (Kennedy et a l, 1999). The study also showed that 

soluble FasL was able to augment CD3 induced proliferation of human T cells 

(Kennedy et a l , 1999).
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Further evidence associating Fas’.FasL interactions with T cell proliferation was 

found in studies of mice deficient in F ADD. In common with our system, activation 

induced proliferation in vitro was shown to be impaired in F ADD null T cells (Zhang 

et a l, 1998), and in T cells expressing a dominant negative F ADD (Newton et a l, 

1998; Strasser & Newton, 1999). Thymocytes from FADD-DN transgenic mice were 

also found to have impaired proliferation in vivo, and activation induced proliferation 

of these cells in vitro was inhibited in a p53 dependent manner (Zomig et a l, 1998). 

If the block in activation induced proliferation in Fas^ '̂ mice is dependent on p53, 

this might explain why in Fas^ '̂ mice null for Trp53, lymphoproliferation appears to 

be enhanced and accelerated, compared to that obseiwed in Faŝ '̂ ' mice wild type for 

Trp53 (see Chapter 6, Cameron et a l, unpublished).

The involvement of Fas signalling in proliferation has been observed in systems other 

than activated T cells. Interestingly, although Fas specific antibodies are normally 

lethal in mice due to induction of hepatic failure, following partial hepatectomy in 

mice, anti-Fas stimulation accelerated regeneration of the liver. Further, liver 

regeneration was delayed in Faŝ '̂" mice suggesting that Fas engagement may promote 

proliferation of hepatocytes (Desbarats & Newell, 2000). Fas signalling has also 

been implicated in proliferation of fibroblasts. Aggai*wal et a l  (1995) demonstrated 

that engagement of the Fas receptor on human diploid fibroblasts resulted in 

proliferation of those cells in a dose dependent manner (Aggarwal et a l, 1995). A 

later study demonstrated that the anti-Fas antibody could induce either proliferation 

or cell death of human dermal fibroblasts, depending on the level of surface Fas 

expression (Freiberg et a l, 1997). These results were again reinforced by studies in 

F ADD deficient cells. Fibroblasts expressing dominant negative F ADD also showed 

a decreased proliferative capacity, suggesting that this property of Fas signalling is 

not restricted to T cells (Hueber et a l, 2000).

Finally, Fas has been implicated as a growth promoter in some tumour cells. In one 

study investigating the possibility of exploiting anti-Fas antibodies as anti-tumour 

therapies, growth of a mitogen activated B cell tumour cell line was reported to be 

significantly enhanced by treatment with anti-Fas antibody (Owen-Schaub et a l, 

1993). Further, a study characterising two T cell hybridomas generated from Fas^'
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mice showed that in addition to lacking the potential to undergo activation induced 

cell death in response to anti-CD3 activation, cells from one of these lines were also 

temporarily growth arrested at the border between G1 and S phase, although the 

block was overcome in some cells which eventually proliferated (Cui et a l, 1996). 

As well as reinforcing the results in this chapter, these data may also explain why 

establishment of lymphoma cell lines homozygous for the Fas^ '̂ mutation was so 

unsuccessful.

8.3.3 Mechanisms by Which Fas: FasL Interactions May Influence 

Proliferation

Although the results shown in this chapter demonstrate a role for Fas:FasL 

interactions in T cell proliferation, they do not illustrate how these molecules might 

regulate proliferation. The fact that CD8+ single positive thymocytes appear to be 

most susceptible to activation provides a clue as to how Fas:FasL interactions may 

function. A recent study reported data concerning the reverse signalling capacity of 

FasL in CD8+ cytotoxic T lymphocytes (Suzuki & Fink, 1998). In that report, 

murine CTL lines lacking FasL were shown to have diminished proliferation in 

response to antigenic activation, however CD4+ cells had a normal proliferative 

response (Suzuki & Fink, 1998). Further, blocking Fas:FasL interactions also caused 

a diminished proliferative response to antigenic stimulation in CTLs, while 

stimulating FasL on CTLs using plate-bound Fas-Ig was able to co-stimulate sub- 

optimal anti-CD3 activated proliferation (Suzuki & Fink, 1998). These results 

suggest that Fas may be the stimulatory ligand which induces a proliferative signal 

tlirough FasL.

It is reasonable to speculate that in the experiments carried out in this chapter, 

activation achieved through CD3 crosslinking was sub-optimal, and that may explain 

why proliferation was not induced in thymocytes in which FasL ligation could not 

occur. Some evidence to support these data has been generated in mice expressing a 

T cell specific dominant negative TGF-p receptor (Lucas et a l, 2000). These mice 

develop a CD8+ T cell lymphoproliferative disorder, which is due to increased 

proliferation of CD8 single positive T cells, and not resistance to activation induced
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cell death as in Fas^ '̂ mice (Lucas et a l, 2000). This study is particularly significant 

in light of the fact that TGF-p is reported to inhibit FasL expression (Genestier et a l, 

1999), suggesting that in mice lacking TGF-p function, there may be enhanced levels 

of FasL. These results add to the evidence which indicates that CD8+ T cells are 

particularly susceptible to proliferation through FasL stimulation, hi contrast, a 

separate study showed that engagement of FasL on CD4+ single positive cells led to 

cell cycle aiTest and death (Desbarats et a l, 1998). From the experiments carried out 

in this chapter, activation had no visible effect on the CD4+ single positive 

population, but these cells may have been arrested. Nevertheless it is apparent that 

CD8+ single positive cells were highly responsive to CD3 cross linking when 

Fas:FasL interactions were possible, while there was no detectable response to CD3 

crosslinking in any Fas^' T cells. There is no clear-cut reason for the difference in 

response to activation between CD4 and CD8 single positive T cells, but it may be 

linked to the relative balance between TCR stimulation and other signals, and the 

role these signals play in regulating differentiation to the CD4 or CDS lineages.

8.3.4 CD3 and CD28 Co-Stimulation Relieves Block in Activation Induced Cell 

Death and Proliferation in Fas '̂' T Cells

CD28 has been described as a co-stimulatory receptor for TCR/CD3 mediated events 

(Turka et a l, 1990). Reports have suggested that anti-CD3 treatment alone provides 

sub-optimal activation. Both CD28 and FasL ligation have now been shown to 

mediate a co-stimulatory signal which can augment the response of cells to CD3 

ligation in certain circumstances (Clements et a l, 1993; Suzuki & Fink, 1998). The 

results in the first part of this chapter show that while anti-CD3 treatment alone 

induces cell death followed by proliferation in control MRL cells, Faŝ '̂ ' thymocytes 

are umesponsive to anti-CD3 treatment. Following CD3 and CD28 co-stimulation 

however, cell death and proliferation were observed in both control MRL, and Fas^ '̂ 

thymocytes. CD28 co-stimulation allowed full activation of cell death and then 

proliferation in Fas^' cells, albeit delayed compared to control cells. The data 

presented in this chapter is supported by another study which investigated activation 

of the abnormal CD4/CD8 double negative peripheral T cell population in Fas^' mice 

(Clements et a l, 1993). This study reported the ability of CD28 to co-stimulate CD3
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activated proliferation in these abnormal Fas^̂ '' CD4/CD8 double negative T cells 

which were otherwise uni'esponsive to activation (Clements et a i, 1993).

It is not clear how CD28 ligation can bypass the requirement for Fas:FasL 

interactions in activation induced proliferation. It seems reasonable to speculate 

however that Fas is required for activation induced cell death and proliferation, as 

stimulated by CD3 crosslinking, and that CD28 co-stimulation allows activation 

signalling to occur through an alternative, Fas independent pathway. Nevertheless, 

there are other more complex explanations which must be considered.

A number of reports have suggested a link between FasL and CD28. One study in 

peripheral blood T cells (PBTCs) and bone marrow T cells (BMTCs) demonstrated 

that CD3/CD28 co-stimulation resulted in induction of FasL (Sato et a l, 1999). 

Further, co-stimulation through CD28 was reported to be necessary for maximal 

induction of the FasL gene in response to CD3 crosslinking (Norian et a l, 2000). It 

appears that signalling through CD28 can induce FasL expression. A conflicting 

study reported that CD28 signalling alone induced FasL expression and cell death in 

T cell hybridoma cells, but in combination with CD3 crosslinking, CD28 stimulation 

prevented FasL expression, upregulated Bc1-Xl, and caused activation induced 

apoptosis to be downregulated (Collette et a l, 1998). This is in contrast to the results 

obtained in our system, since CD28 stimulation alone had no effect on either control 

or Fas^ '̂’ cells, while CD3/CD28 co-stimulation resulted in increased activation 

induced cell death. Regulation of FasL by CD3/CD28 co-stimulation may depend on 

the cell type and the surrounding enviromnent however. It is also difficult to explain 

how CD28 dependent upregulation of FasL might effect a stimulatory signal in Faŝ '̂" 

T cells. Previous results using the anti-FasL antibody which are described in Chapter 

6, have indicated that FasL may have Fas independent functions, so it is possible that 

reverse signalling through FasL may occur in the absence of Fas, and that ligation of 

CD28 may facilitate this event.

There is a possibility that CD28 co-stimulation can be replaced by other signalling 

pathways. For example the results presented here suggest that Fas:FasL signalling 

may be able to co-stimulate anti-CD3 activated T cell proliferation. This may happen
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either by signalling through Fas, or by reverse signalling of Fas on FasL. The 

downstream targets of CD28 might provide clues as to how co-stimulation is effected 

(reviewed by Rudd, 1996). One target for activation upon ligation of CD28 is the PI3 

kinase/Akt pathway (Parry et a l, 1997). In fact, Akt may substitute for CD28 co­

stimulation under certain conditions (Kane et a l, 2001). This result is supported by 

the finding that ligation of a4 and a5 integrins, on the surface of fetal thymocytes 

was able to co-stimulate anti-CD3 activated proliferation (Halvorson et a l, 1998). 

This is relevant, since integrin signalling is known to stimulate PI3 kinase (Shimizu 

& Hunt, 1996). High expression of a4 and a5 integrins has been reported on 

CD4/CD8 double negative T cells (Halvorson & Coligan, 1995). Since the elevated 

population of abnormal T cells in older Fas^' mice consists predominantly of 

CD4/CD8 double negative T cells, then these data might help to explain why the 

protective effects of cell contact were particularly highlighted in Fas '̂" tumour cell 

lines (see Chapter 7). It could be hypothesised that Fas^ '̂ cells have a growth 

disadvantage in vitro due to a failure in activation induced proliferation. This may be 

overcome however, by integrin mediated stimulation of the PI3K/Akt survival signal 

which can overcome the requirement for CD28 co-stimulation in Fas^ '̂ cells.
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FUTURE WORK

The results described here demonstrate that loss of Fas signalling does not represent 

a synergistic event in either c-MYC or MuLV induced T cell lymphomagenesis. This 

is despite the fact that Fas signalling is a major pathway involved in CTL and NK 

cell mediated immune defence. It might be expected that loss of Fas signalling 

would promote lymphomagenesis however this is not the case. There may be a 

number of reasons why the lack of functional Fas in Fas^' animals does not act to 

restrict lymphoma development, and future work should concentrate on elucidating 

these mechanisms.

Ligation of Fas by FasL might not always result in death of malignant or virally 

transfoimed cells expressing Fas on their surface. Results from other groups and 

from transplantation experiments described here have suggested that FasL on the 

surface of tumour cells might confer immune privilege on those cells. Tumours 

arising in Faŝ ^̂ ' mice may not be as capable of protecting themselves from immune 

attack, since infiltrating host T cells do not express Fas. Consequently rejection of 

tumours in mice lacking Fas might be increased. Conesponding transplantation 

experiments carried out in Fas^ '̂’ and Faŝ ^̂  ̂ mice, whose cells lack FasL, may help 

determine the importance of Fas and FasL expression on tumours and on host T cells, 

in the process of tumourigenesis. For example, if FasL expression on tumour cells 

entranced survival of the tumour, then we might expect Faŝ "̂̂  tumours to have a 

considerable growth advantage in control MRL or in Faŝ ^̂  ̂ mice, compared with 

Fas^ '̂ hosts, hr addition, it would be infonnative to study surface FasL expression on 

tumours and relate FasL expression to tumour latency.

An obvious explanation for that lack of collaboration between deregulated MYC and 

loss of Fas in T cells, is that MYC does not require the Fas pathway to mediate 

apoptosis. Results presented here suggest that MYC induced apoptosis can occur in 

the absence of both Fas and functional p53. Future experiments will continue to 

examiire MYC induced apoptosis in the absence of Fas and p53, and to elucidate the 

alternative mechanisms by which MYC can induce apoptosis when Fas and p53 are 

lost. It may be that MYC can simply sensitise cells to apoptosis mediated by other
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signals, or can induce a third, Fas and p53 independent apoptotic pathway. Further 

work should investigate MYC induced apoptosis in the absence of other candidate 

apoptotic signals, for example, those mediated by members of the TNF receptor 

family. In addition, it is important to understand how MYC may amplify apoptotic 

signals. Studies of the mitochondrial apoptotic cascade and cytoclirome c release 

following MYC upregulation will be essential to achieve this.

It may be that genetic events which result in upregulation of survival signals, rather 

than loss of apoptotic pathways are more important in MYC  induced tumourigenesis. 

Cell contact was shown to enhance survival of some cell lines in response to MYC 

upregulation, in a PI3 kinase dependent manner. Future work may investigate the 

pathways downstream of PI3 kinase in these cell lines, with the expectation that 

these signals may be the target of mutagenic events during MYC induced

tumourigenesis. Future work may also examine the roles played by the major 

adhesion molecules and the pathways stimulated by them, in contact mediated 

protection from apoptosis. Preliminary research has been carried out, into various 

integrin pathways and CD44 signalling and their effect, if any, on MYC induced 

apoptosis.

In addition to upregulation of suiwival signals, genetic events that result in promotion 

of cell proliferation represent an important event in tumourigenesis. T cell receptor 

activation induced proliferation was shown to be limited in thymocytes from Fas^ '̂ 

mice, suggesting that Fas:FasL interactions may have a role in promoting

proliferation in certain contexts. This may explain why tumourigenesis is not

accelerated in Fas^' mice. Future work will investigate the mechanisms by which

Fas‘.FasL interactions might stimulate, or co-stimulate proliferation. Comparison of 

activation of thymocytes from Faŝ '̂ '" and Fas^^  ̂ in mixed culture may be useful, to 

detennine whether Fas signals through FasL or vice-versa to promote proliferation. 

It will also be necessary to examine the effectors downstream of Fas:FasL 

interactions, and of CD28 stimulation, and consider how these two stimuli might be 

functionally analogous.

It has been hypothesised that the block in activation induced proliferation in Fas^ '̂ 

cells might be dependent on p53 and this may explain why lymphoproliferative
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symptoms are increased in Fas^ '̂ mice on a Trp53 null background. Additional 

experiments are required to examine the response to activation in cells from Fas^' 

mice null for p53, in order to confirm or disprove this hypothesis. It will be 

necessary to carry out cell cycle analysis on explanted T cells from Faŝ '̂* animals 

compared to control strain animals, to explore any differences in proliferation of T 

cells in vivo in Fas^ '̂ animals compared to control strain animals. Finally, analysis of 

the response to activation of tumour cells from Fas^' mice compared to tumour cells 

from control strain MRL mice should also be carried out. This should increase our 

understanding of the proliferative defect in Faŝ -̂ ' T cells, and help determine the 

importance of activation induced proliferation, or lack of, in the development and 

progression of lymphoma.
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