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sum.TAKy
The Control of DNA Syntheels In L Oells 

by J, Gordon Lindsay

Summary of the thoals presented for the doCToe of Pootor of 
Phllooophy. Unlveralty of Grlaê owt Ootober 1969»

Regenerating liver, rabbit Icidney cortex celle cultured 
in vitro and PHA--stimulated lymphocytes have been widely 
employed to study the sequence of metabolic events which is 
required for the onset of RKA synthesis and cell division 
when resting cells are stimulated to renewed proliferation*
A parallel resting cell system has been established with a 
permanent cell line by maintaining cultures of L 929 cells 
at high population density* Such a system is particularly 
suitable for study because of the ease of culture manipulations 
and the relatively high degree of synchrony obtained*

ReleaBed**stationary cells begin to synthesise DNA after 
a lag period of 14 hr* and by 20 hr* 70^ of the cells are in 
S phase* Increases in cell number are observed by 25 hr.
In contrast to primary resting systems no change in the rate 
of RITA synthesis is detected after release from stationary 
phase# RNA synthesis during the lag phase is required for 
subsequent M A  synthesis#
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•  2  * .

Changes in the activity of M A  polymerase in nuclear 
and supernatant fractions of L oells have been investigated 
follov;ing release from stationary phase and particularly 
during S phase# The results of previous investigators have 
been confirmed and extended#

Nuclear preparations of L 929 oells show a 2-5-*fold 
preference for native DNA primer while the supernatant DNA 
polymerase activity is correspondingly more active with 
denatured DNA# The general characteristics of the DNA 
polymerase(s) in these fractions have been investigated and 
methods for releasing the enzyme from isolated nuclei studied#

Preliminary purification of the enayme was undertaken 
although difficulties were encountered because of the small 
amounts of material available from tissue culture cells# A 
7-̂ 8-fold purification was achieved by pH 5 precipitation 
and Sephadex G200 chromatography and 95?S of the DNase activity 
removed as judged by the relative capacity of the fractions 
to hydrolyse native or heat-denatured-DNA to acid-soluble 
fragments# After purification DNA polymerase activity, primed 
by denatured DNA, was rapidly lost on freeao/thawing of ,the 
solution#

DNA polymerase activity in extracts of L 929 cells was 
found to be heterogeneous by fractionation on Sephadex G200, 
DEAE-cellulose and polyacrylamide gels# As similar results



M  ^ a»

have recently been reported for the rat liver enayme the 
possible signifioanoe of this result in relation to in vivo 
replication is considered# The nuclear location of a 
fraction of the DNA polymerase activity and its preference 
for native DNA primer makes it a possible candidate in this 
respect.

Sephadex-purifled nuclear and supernatant fractions 
have been used to synthesise DNA on their preferred 
primers and the characteristics of the DNA products examined. 
Both products were found to be resistant to degradation by 
exonuolease I suggesting that the newly-synthesised DNA was 
not present in a single-stranded form* Analysis of the DNA 
products on neutral and alkaline sucrose gradients reveals
that the DNA is not covalently attached to the DNA 
primer. Our findings on the characteristics of the DNA 
products are compared to previous data on the DNA products 
formed by the calf thymus and Escherichia coll DNA polymeraees
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ABBREVIATIONS

These are as laid down in the Bioohemical Journal 

Instructions to Authors (revised, I969) with the following 

additions:-

DNA polymerase 

Thymidine kinase 

Pancreatic DNase (DNase

I)
DNase 

poly dA

t
poly d(AT) 

poly dA : dî

poly dA^ : dT

poly d(ABu)

Deoxyrihonucleosidetriphosphate :

DNA nucleotidyltransferase, SC 2,7*7*7
I

ATP : thymidine 5 -phosphotransferase,

EG 2.7.1.21
Deoxyrihonucleate oligonucleotido- 

hydrolase, EG 5.1.4*5 
Deo xyrihonuclease

Single-stranded polymer containing 

dAJ.iP residues only

Double-stranded copolymer, each chain 

of which contains dAT.IP and dTîvîP residues 

Double-stranded polymer with one strand 

of poly dA and one of poly dT 

Triple-stranded polymer containing two 

strands of poly dA and one of poly dT 

Double-stranded copolymer, each chain 

of which contains dA?.IP and 5*bromodeoxy-

uridine 5 -monophosphate residues



poly dG : dC

tRNA 

BSA .

BSS

PPO

POPOP

TEÎ/ÎEI)

SSC

~ t h  SSC

PEA

MAK

*tris-sucrose, buffered 

sucrose 

5-component buffer

BHK 21 (CI3) oells

HE -2 oells P
RK cells

PPLO

Double-stranded polymer Y/ith one

strand of poly dG and one of poly dC

transfer RNA

Bovine serum albumin

Balanced salt solution

2,5“diphenyloxazole

1,4 di-2-(5-phenyl oxazolyl)-benzene 
» IN,N,N ,N -Tetramethylethylene-diamine 

Standard saline-citrate (0.I5 M-NaCl, 

0*015 M-sodium citrate, pH 7.0)

0.015 M-NaCI, 0.0015 M-sodium citrate, 
pH 7.0
parafluorophenylalanine 

Methylated albumin kieselguhr 

0.02 M-tris-HOl, pH 7*5 containing 

0.25 M-sucrose
0,02 M-tris-HCl, pH 7*5 containing

0.25 M-sucrose 1 mM-EDTA, O.I5 M-KOl 
and 5 #I-2-mercaptoethanol 

Baby hamster kidney cells, clone 15 

Human epitheliod carcinoma, no, 2 

Rabbit kidney cells 

Pleuropneumonia-like organisms



The terms DNase, endonuclease and exonuclease are used to 

describe uncharacterised activities in cell extracts which bring 

about degradation of added DNA.

Footnote - DNA primer

DNA polymerase activity in L cells functions in a manner 

which suggests that added DNA is a template for the enzĵ mie.

The term template is, however, very specific and implies that 

polymerisation is proceeding by specific base pairing with form

ation of new DNA strands complementary to the added DNA; it 

also implies the absence of non-specific addition to the termini 

of DNA chains. For this reason the more general term DNA 

primer has been noimially adopted in this context to mean simply 

an initiator of polymerisation without defining exactly the 

-type of polymerisation (non specific and/or template directed) 

which may be occurring.
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CHAPTER I - INTRODUCTION

1. TISSUS CULTURE.

1,1, Historical development

Tissue culture is a technique which has been increasingly 

employed in recent years in the study of a v/ide variety of bio

chemical problems. Isolated cell systems have proved particularly 

useful in the analysis of problems in carcinogenesis, viral reprod

uction, morphogenesis and cytogenetic variation and are now generally 

used as a basic research tool in many areas of biology and medicine.

Historically tissue culture developed as a natural extension 

to the techniques of embryology employed in the last century. An 

experiment by Harrison (1907) in which he explanted tissue from 
frog embryonic spinal chord into clots of frog lymph fluid and was 

subsequently able to show the development of nerve fibres in vitro 

is generally accepted as being the true beginning of tissue culture 

as we know it today.

Much of the pioneer investigation in this field was carried 

out by Carrel and his co-v/orkers (Carrel, I912, 1915n, b, 1924;

Carrel and Sbeling, 1922; Carrel and Baker, I926) who developed



rigorous aseptic techniques for cell cultivation and, by maintain

ing explants in plasma clots fortified with embryo extracts, were 

able to propagate cells for long periods of time. Indeed they 

were able to keep one strain of chick heart fibroblast cells in 

active proliferation for 54 years by these methods*

During this period most of the main animal cell types were 

cultured by a number of investigators (Fischer, 1950» 1946;

Murray and Kopech, 1955» Willmer, 1958, I960) and much insight 

was gained into cell morphology and the characteristics of isolated 

cell systems. Unfortunately, owing to the complexity and labour- 

iousness of the traditional techniques of tissue culture, it came 

to be regarded more as an art than a scientific tool and con

sequently made little impact on the scientific world over the 

next 50 years. In addition, the complexity of the media and the 

.difficulties of tissue manipulation made tissue culture unsuitable 

for quantitative analyses.

1.2. Modern techniques

The classical procedures of plasma clot cultures have now 

been superseded by the development of simpler systems for the 

serial propagation of mammalian cells. An important advance was 

made by Evans and Earle (4947) who found that, by growing a series
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of tissue culture explants of mouse cells on a solid substrate 

such' as glass or cellophane, a continuous monolayer of cells 

could be formed. These cells could than be scraped off, resus

pended, and used to inoculate fresh cultures of the same kind.

The advent of monolayer cultures allowed, for the first time, 

accurate determinations of cell number to be made and further 

permitted the setting up of duplicate plates for quantitative 

estimations.

Dulbecco (1952) and Moscona (1952) found that, by digest

ing fresh tissues with trypsin (EG 5.4,4.4) to form single cell 

suspensions, primary monolayer cultures could easily be established 

on glass surfaces. This technique T/as adapted by Scherer,

Syverton and Gey (1955) for the routine subculture of all cell 

lines and is now widely used in this capacity. Other proteo

lytic enẑ Tnes e.g. elastase (pancreopeptide.se E, EC 3*4.4.?) and 

collagenase (clostridiopeptidase A, EC 5*4.4.19) have proved 

effective in the dispersal of cells as have chelating agents 

such as citrate or EETA (Rinaldini, 1958; Paul, I960), This 

rapid evolution in technology greatly improved the usefulness 

of cell cultures as systems for experimental study. During this 

initial period methods for growing cells on defined or simplified 

media were developed as well as procedures for the cloning and 

long-term storage of cultures, thus bringing tissue culture on a 

par with microbiology.
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1,5, Cell nutritional requirements

Establishment of monolayer cultures made possible for the 

first time accurate analysis of the nutritional factors for a 

given cell type. The principal contribution in this field has 

been by Eagle and his collaborators in an outstanding series of 

papers (Eagle, 1955, a, b, c, d, 195&, b, i960 a, b; Eagle, 

Agranoff and Snell, I96O; Eagle, Barban, Levy and Schulze,

1958; Eagle, Freeman and Levy, 1958; Eagle, Oyama, Lev̂ ” and 

Freeman, 195&, 1957; Eagle, Oyama, Levy, Horton and Fleischman, 

1956; Eagle, Oyama and Fiez, I96O; Eagle and Fiez, I96O, I962; 

Eagle, Fiez and Fleischman, 1957; Eagle, Fiez and Oyama, I96I; 

Eagle, Washington, Levy and Cohen, I966). Their original 

observations were that primary cultures of established cell 

lines, for example, HeLa or L cells would grow on defined media 

containing the correct amounts of glucose, salts, amino acids 

and vitamins provided a small amount of dialysed serum was added. 

Since omission of a single essential nutrient caused cessation 

of growth and eventual death of the cells, it was possible to 

study the specific growth requirements of a given cell line.

Eagle has shown that strain L mouse cells require the 

presence of 15 amino acids for growth, namely Arg, His, Leu,

Isoleu, Tyr, G-lu, Met, Lys, Fhe, Gys, Yal, Trp and Thr. Most 

of these amino acids exhibit sharply defined optimal concentrations 

for growth and only the L-forms are effective (Eagle, 1955» si, b).
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The pattern of amino acid requirements has been foLind to be 

remarkably similar for a wide variety of cell lines. While 

there may be some variation in the concentrations required for 

maximum response the same 1$ amino acids are generally found to 

be essential for growth.

Initially some differences in amino acid requirements 

were noted. Cells of Walker rat carcinoma and rat leukaemia 

L-5178Y were reported to grow only on addition of L-asparagine 
to the culture (McCoy, Maxwell and Heuman, 195^î Haley, Fischer 

and Welch; I961). Similarly a strain of rabbit fibroblasts was 

shown to need serine for growth (Haff and Swim, 1957&). The 

requirements for certain metabolites e.g. serine,glutamine and 

asparagine have been found to be dependent on the population 

density of the culture (Sagle and Piez, I962; Eagle et al., 

1966). This situation arises because in dilute cultures meta

bolites, synthesised by the cells, are lost into the medium and 

become limiting- for growth. In this respect they resemble the 

"leaky" mutants of bacteria which exhibit changing nutritional 

requirements at different cell densities. Thus, in sparsely 

populated cultures, the cells often show increasing require

ments for accessory growth factors.

Failure to realise,this phenomenon resulted in initial 

difficulties in trying to establish colonies from the 

growth of single mammalian cells. L cells



were the first to be successfully cloned (Sanford, Earle and Likely, 

I94B). In this experiment individual cells were cultivated in 

capillary tubes embedded in plasma clots; thus nutrients leaking 

out of the cells were not diluted out and growth soon occurred 

although the cloning efficiencies obtained were low by modern 

standards.

Simpler methods of cloning are now commonly employed which 

have been adapted from the standard techniques of microbiology.

These involve establishing the cells in suitable media stiffened 

with agar or methyl cellulose which allow "conditioning" of the 

media in the micro-environment of the cell (Puok, Marcus and 

Cieciura, 195^; Wallace and Hanks, 1958; Sanders and Burford,

1964; Macpherson and Montagnier, 19&4; Stoker, O'Neill, Berryman 

and Waxman, I968).

The use of "feeder layers" as a means of improving colony 

formation has been especially studied by Puck and his colleagues 

(Puck and Marcus, 1955; Puck et al., 1956). This technique 

involves subjecting plates of cells to X-irradiation and using 

these as a base for the proliferation of a fev/ added viable cells. 

No requirement for "feeder layers" has been shown for permanent 

cell lines which will grow with high cloning efficiencies without 

previous conditioning of the media. This permits the isolation 

of specific mutants for genetic analysis, each one of which has 

arisen from a single cell.



As with the amino acids, Eagle and his workers have demon

strated specific vitamin requirements for the continued growth 

of cells cultured in vitro (Eagle, 1955^; Eagle et al., I960;

Swim and Parker, 1958%), For the majority of cell strains 8 

vitamins (pyridoxine, folic acid, choline, inositol, nicotin

amide, riboflavin, thiamin and pantothenic acid) are needed for 

normal growth to proceed. Again exclusion of any vitamin 

ultimately leads to cell death although deficiencies may not 

become apparent for several days until cell reserves are depleted. 

No requirements for the fat-soluble vitamins i.e. vitamins A, D,

E and K have ever been demonstrated in tissue culture populations. 

In cartilage organ cultures Fell, Dingle and Webb (1962) have 

shown a specific growth inhibition by vitamin A, This effect 

appears to be related to the release of proteolytic enzymes from 

the lysosomes of these cells.
4 A source of carbohydrate is also essential for the growth 
of all isolated cells and glucose, fructose and mannose can all 

be metabolised by chick heart cells or permanent cell strains 

(Chang and Geyer, 1957; Morgan and Morton, I96O; Eagle et al., 

1958). Other hexose sugars appear to be relatively inert al

though maltose is able to promote growth, apparently because it 

is hydrolysed by specific maltases present in the serum or the
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cells. Pentoses, §,p5.rt from rthose, which can he utilised by 

a number of human cell strains (Eagle et al., 1958) are not 

effective in promoting growth.

While the roles of carbohydrates, vitamins and amino 

acids in the normal propagation of cultured cells have been 

clearly established, lipids do not appear essential for the 

growth of most cell lines. Triglycerides and phospholipids can, 

however, be extensively incorporated into cells in dividing 

cultures. Specific effects of lipids on the growth of one 

or two cell lines have been noted. Neuman and .Tytell (1960c) 
observed that methyl oleate stimulated the growth of Walker 256 
carcinoma in serum-free media while an apparent requirement for 

albumin during clonal growth in Chinese hamster cells can be 

eliminated by linoleic acid (Ham, I965),
Although a number of isolated cell strains can nov/ be 

^cultivated in protein-free media, most cells also require the 

presence of added serum for normal growth in addition to the 

essential nutrients already discussed. The growth-stimulating 

properties of serum proteins have been the subject of considerable 

investigation but despite this, no single accepted role for 

proteins in cell nutrition has been elucidated. At the present 

time it is thought that serum fractions may serve as direct 

substrates, function in the attachment and spreading of cells,



act as carriers of essential nutrients or influence cell per

meability. Recent evidence is reviewed by Harris (1964).

1.4* Primary cultures and established cell strains

One of the principal aims of early investigators was the 

establishment of "pure" cell lines which could be propagated 

and studied as homogeneous cultures in the same manner as 

bacterial cells. The concept of homogeneous cell cultures was 

initially oversimplified before cloning procedures became avail* 

able, although cells of a single histotype e.g. iris epithelium 

had been isolated.

With modern techniques of cytological analysis it has 

become apparent that most strains which multiply in vitro 

indefinitely are in fact modified or variant forms of the 

original strain. They are very often markedly aneuploid and 

exhibit other chromosomal abnormalities. In addition, they*
develop distinct morphological patterns and have, in the case 

of human diploid cells,for instance, been shown to exhibit 

differences in the patterns of RNA synthesis from the original 

primary cell line (Levine, Burleigh, Boone and Sagle, I967)* 

After approximately 20 generations in culture, a new rapidly 

labelled RNA species appears (14-20S) and coincidently there is 

a marked decrease in the rate of synthesis of ribosomal RNA 

and rapidly labelled 35-453 RNA, RNA synthesis in early
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passage cells is also more readily inhibited by high population 

densities.

The early work of Carrel in which he maintained a line of 

chick heart fibroblasts by plasma culture for 34 years suggested 

that animal cells could proliferate for an indefinite period in 

vitro in an unmodified form. Carrel himself noted that these 

cells were morphologically similar from generation to generation.

In view of the fact that early cell lines were not subjected to 

the rigorous techniques of cytological analysis available today, 

it becomes difficult to accept that the original cell line was 

maintained unaltered throughout this period. Very often there 

is a great simplification in morphology following outgrowth of 

primary explants (Kutsky and Harris, 1957) and the cells assume 

the morphology of 3 general categories, fibroblasts, epithelial 
cells or leucocytes.

« Harris (1957) and Parker (I961) have further shown that
monolayer cultures obtained from explants of chick tissue cannot 

be cultivated indefinitely in culture. Using chick skeletal 

muscle, Harris (1957) found that, after an initial period of 

vigorous growth lasting many generations, every culture entered 

a static phase where there was little or no growth; this was 

followed by gradual deterioration of the culture and eventual 

cell death.
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The basis of these observations on the growth of primary 

cell populations is not well understood, although it is possible 

that death of a culture after a defined number of generationsj 

characteristic of the individual cell line,may be related to the 

problems of senesence in vivo. Occasionally, however, during 

degeneration of the culture, modified or variant forms appear 

which become established as permanent cell lines,

1.5* Specialised characteristics of cells in culture

The specialised characteristics of many animal cell types 

are often lOst once the cells become adapted to cultivation in 

artificial media. For instance, Ebner, Hageman and Larson 

(1961) have shown the loss of 3 specialised functions of bovine 

mammary cells after growing in primary monolayer cultures. The 

ability of the cells to produce lactose was lost within 24 hours, 

while UDP glucose 4-epinierase (SC 5.1,5*2) activity disappeared 
7-10 days after explantation. ^-lactoglobulin synthesis declined 

slowly and reached a basal level after 2 weeks in culture, Lieber- 

man and Ova (l958) examined enzyme patterns in rabbit kidney 

cortex cells in primary culture. Some, such as catalase (^2^2*
HgOg oxidoreductase, EC 1.11.1.6) and alkaline phosphatase 

(orthophosphoric monoester phospholydrolase, EC 3*l*5*l)> decreased 

rapidly after isolation of the cells. The levels of acid phos

phatase (orthophosphoric monoester phosphohydrolase, SC 3*1*5*2)
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a n d “glucuronidase (^-D-gluouronide glucuronohydrolase, EC 3*2,1.31), 

on the other hand, were unaltered while glucose-6-phosphcite dehydro

genase activity (D-glucose-ô-phosphatei NADP oxidoreductase,

EC 1,1,1.49) actually increased.
Other regressive changes may occur in isolated systems 

involving loss of responsiveness of target cells to hormones or 

the loss of ability of cells to produce specific products e,g. 

pigments or hormones. Reusser, Smith and Smith (1962) were un

able to detect somatotrophin synthesis in human anterior pituitary 

cells. Franks and Barton (I960) cultured mouse venal prostate 

as the intact organ. Marked morphological changes were observed in 

the outgrowing cell sheets which were unaffected by the addition 

of testosterone propionate to the medium. The same cells growing 

within the central mass, however, were markedly altered in appear- 

ânce by addition of the hormone. Similarly Abbot and Holtzer 

(1966) found that chondrocytes from embryonic chick vertebrae, 
grown as monodisperse oellsyrapidly ceased to make collagen or 

chondroitin sulphate and began to synthesise M A  and divide. On 

reaching a certain density the cells ceased to grow and resumed 

synthesis of collagen and chondroitin sulphate. The authors 

concluded that interaction between associated chondrocytes was 

important in maintaining the synthesis of the specific products



of these cells. Collagen synthesis in ^ ^ 6  mouse fibroblasts is 

also known to be greatly increased when the culture is at a high 

population density (Goldberg and Green, I967). Thus at present 

it is not clear to what extent in vitro studies on many cell types 

can be related to their specialised in vivo metabolism; nor do

we yet understand the importance of the environment for the

accurate mediation of hormone action on its target cells*

In summary, it thus seems that cell cultures^grown as 

monolayers or in dissociated cell systems^often go through a 

process of dedifferentiation. By this, it is not implied that 

the cells return to their original embryonic state but only that 

certain regressive changes occur within the cells resulting in 

a loss of specific features of that cell type. It may be that 

the eventual loss of the control systems required for normal 

replication is one aspect of this process. In many cases, 

'however, antigens, specific for the original organ, can be 

detected after many years in culture (Coombs, 1962; Stulberg, 

Simpson and Berman, I961),

1.6. Permanent cell lines

Cell lines which have been adapted to permanent passage

in culture are now commonplace. The first of these was strain 

L, from mouse subcutaneous tissue (Earle, 1945) which after treat

ment with 20-methylcholanthrene acquired neoplastic properties
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in vitro. Strain L was cloned by Sanford et al, (1948) and is 

now designated L 9^9 or NCTC 929 after the selected clone, HeLa 

cells are another familiar strain which originated from a cancer 

of the human cervix (Gey, Coffman and Kubicek, 1992). Like 

strain L, various sublines have arisen from the recloning of 

cell populations in different laboratories. Not all cell lines, 

hov/ever, have arisen from cancerous tissue or acquired neoplastic 

properties in vitro, many strains having arisen directly from 

primary cell cultures with no evidence of neoplastic conversion.

. In the United States an American Type Culture Cell Re

pository (12301 Parklavm Drive, Rockville Md.) has been established 
which supplies many cell lines of certified purity and free of 

pleuropneumonia-like organisms (PPLO), Full details on the 

history and general properties of each cell type are included.

In Great Britain the British Tissue Culture Association publishes
4
a list of all readily available cell strains and a list of mem

bers from whom they may be obtained.

1,7. Contamination of cultures

Apart from the problems associated with our lack of know

ledge on the nature of the changes occurring during establish

ment of a new cell line involving altered morphology, metabolism 

and chromosomal patterns, careful attention is needed on the 

presence of PPLO as contaminants in many cell lines.
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These organisms live intracellularly without killing the 

host cells. As they often cause only minimal abnormalities in 

cell morphology oz" growth rate, their presence may go undetected 

for long periods of time. PPLO have been reported to cause 

altered morphology in established monolayer cultures (Pollock, 

Treadwell and Kenny, I963) and can cause the breakdown of arginine 

in cell cultures (Schimke and Barile, I963)* In experiments 

involving incorporation of radioactive isotopes into grov/ing 

cells, the results may be meaningless if PPLO are present.

Organisms of the PPLO group resemble very closely the L 

forms of certain bacteria and there is disagreement about the 

distinction between them. Penicillin is thought to induce 

the formation of L forms in some bacteria (Barile, Malisia and 

Riggs, 1962) and it is found that freshly.'isolated cells are 
rarely contaminated with PPLO as are cultures maintained with 

no antibiotics. In some cases, PPLO can be eliminated by heat 

treatment (Hayflick, I96O), or kanamycin (Kenny, Pollock and 

Syverton, I96O) but cultivation without antibiotics is prefer
able (Cornell, I962), Techniques are now available for detect

ing PPLO in cell cultures (Pothblat and Morton, 1939» Barile, 

Maliaia and Riggs, I96I; Barile and Schimke, 1963; Paul, I96O) 

and all cells supplied commercially are routinely tested before 

dispatch.
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2. STUDIES ON ISOLATED CELL SYSTEMS

2.1, The cell cycle

Under most conditions DNA synthesis in bacteria is almost 

continuous during interphase (Abbo and Pardee, I96O; Schaechter, 

Bentzon and Maal^e, 1959) and it has been shown in Escherichia 

coli that completion of a round of DNA replication is a sufficient 

condition for the initiation of cell division (Helmstetter and 

Pierucci, I968), This situation does not hold for mammalian 

cells and it was initially shown by Howard and Pelc (1955), 

using radioactively-labelled DNA precursors, that DNA synthesis - 

took place during a discrete period of the replication cycle.

It is thus possible to divide the cycle arbitrarily into 4 phases: 
the period prior to DNA synthesis, S, the time of DNA repli

cation and Gg, the period before the brief event of mitosis, M. 

Pig,1.1 illustrates this diagrammatically and shows the times of4
each period for L $ 2 $  cells.

The duration of the phases of the cell cycle has now been 

measured for many cell types (Cleaver, I967) and certain general 
features have been noted.

(a) The length of the corresponding phases of the cell cycle 

vary with cell:type. Moreover, no phase of the cycle represents 

a constant proportion of the total cycle duration.
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(b) There is a greater range of variation for compared to S 

and (̂2 phases. In tissue culture, for instance, G^ can last 

between 1,5 60 hr S between 4*1 and 15,5 hr* and G^ from

1 to 7*5 hr. Corresponding in vivo studies, where the cells 

are not dividing at their maximal rate, have found that 0^ may 

range from 1 hr, to several days in length, while S and G^ have 

similar lengths to their in vitro values,

(c) No clear and consistent difference has been shown between 

- the phase durations in normal and malignant cells.

The relative constancy of S and G^ phases as compared to 

applies to a large number of cell types. The DNA content of 

most somatic cells corresponds to that of G^ cells and the stimulus 

to growth results, first in the initiation of DNA synthesis, which 

eventually leads to mitosis and cell division. Thus the control 

of growth may operate through the control of initiation of DNA 

replication (Baserga, I965).
2,2, Cell synchrony

Cell synchrony can be achieved by two basic procedures,

, induction or selection. Using the.former method, the cells are 

induced to grow in a synchronous manner by the influence of some 

external agent e.g. inhibitors, temperature shocks or nutritional 

limitations while, with selection synchrony, cells at a specific 

stage in the cycle are separated from the rest of the culture.
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Induction techniques are subject to the criticism that 

artificial methods using external agents may bring about distortions 

in the normal metabolic patterns of the cell, A limitation of 

selection synchrony is the relatively lev/ yields of cells which 

are obtained. The introduction of automated procedures for the 

efficient separation of cells at a given stage is, however, 

serving to alleviate this problem.

The first cells to be deliberately synchronised in culture 

were Chlorella (Tamiya, Iwamura, Shibata, Hase and Nihei, 1955)s 

Amoeba (James, 1954, 1959) and bacteria (Hotchkiss, 1954j îtaalpe 

and Lark, 1954, Earner and Cohen, 1955). Original attempts at 

synchrony were aimed at gaining further insight into the events 

required for cell division. The advent of radioactive precursors 

of DNA, RNA and proteins, however, allowed the study of specific 

*metabolic events at every stage of the cell cycle. For a review 

of present techniques in cell synchrony see Cameron and Padilla 

(i960).

One of the techniques commonly employed in tissue culture 

is the use of inhibitors of DNA synthesis. These include the 

folic acid analogues aminopterin and amethopterin, 5-fluorodeoxy= 

uridine, excess thymidine and hydroxyurea.
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Amethopterin has been utilised to synchronise HeLa cells 

at the beginning of S phase (Mueller, Kajiwara, Stubblefield and 

Rueckert, 1962; Stubblefield and Mueller, 1962; Mueller and 

Kajiwara, I965). These investigators have extensively studied 

chromosome labelling during DNA replication as well as the 

requirements for RNA and protein synthesis during this time for 

the normal completion of S phase and eventual cell division. 

Kishimoto and Lieberman (1965), using aminopterin-synchronised 

L cells and rabbit kidney cortex cells cultured in vitro^have 

compared changes in the electrophoretic mobilities of the nuclear 

membranes during the cell cycle in these 2 systems. Aminopterin 

and 5-fluorodeoxyuridine have been employed in studies with L 

cells, examining the changes in the activity of DNA polymerase 

(deoxynucleoside triphosphate: DNA nucleotidyltransferase, EC

2.7.7,7) during S phase (Littlefield, McGovern and Margeson,

1963; Gold and Helleiner, I964; Adams and Lindsay, 1969)*

Bootsma, Budke and Vos (1964), investigating the potential 

of high levels of thymidine as a synchronising agent for a line 

of human kidney cells, found that 80-90^ of the cells were in S 

at 5 hr. after the release of inhibition. A..mitotic peak 

occurs*- at 8-10 hr. Moreover, microscopic observations and 

cloning studies indicated that no cytotoxic effects resulted from
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this procedure. The inhibitory action of thymidine on DNA syn

thesis was previously attributed to a blockage in the synthesis 

of dCTP (Xeros, I962). High levels of deoxyguanosine similarly 

prevent DNA replication (Kajiv/ara and Mueller, I962) and addition 

of deoxyadenosine to the culture relieves the inhibition.

The temporal relationship of DNA and histone biosynthesis 

has been investigated in thymidine-synchronised HeLa c&lls 

(Spalding, Kajiwara and Mueller, I966; Robbiqs and Borun, I967) 
and both groups conclude that a large fraction of basic nuclear 

proteins is synthesised during 3 phase. Simultaneous synthesis 

of histone and DNA is also reported in Tetrahymena Fyrifonnis 

(Hardin, Einem and Lindsay, I967) using cells synchronised by 

heat treatment (Scherbaum and Zeuthen, 1954-)*

Adams (1969&) has employed aminopterin and thymidine- 

synchronised L cells to examine the phosphorylation of exogen- 

‘ously supplied thymidine at different stages of the cell cycle. 

Evidence is presented to show that only cells in S and early 

phases carry out this process. It is believed that this effect

is due, in part, to increased levels of thymidine kinase (ATP;
/thymidine 5 -phosphotransferase, EC 2.7.1.21) during S phase, 

but primarily to a feedback mechanism whereby the &TTP which 

accumulates in early G^ inhibits this enzyme. Increased levels 

of thymidylate may also repress synthesis of thymidine kinase.
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In similar studies Adams (1969$ has examined the effect of 

endogenous pools of thymidylate on the apparent rate of DNA 

synthesis in L 929 cells. Cells synchronised with excess thymidine 

show a constant rate of DNA synthesis throughout S phase while 

aminopterin-synchronised cells have a slower initial rate of 

replication. A 2-5-fold increase in the rate of DNA synthesis 

after 2 hr. in S phase using aminopterin-synchronised HeLa cells 

has been previously reported (Mueller et.al., I962).

Hydroxyurea, an antineoplastic agent, inhibits DNA synthesis 

and cell division without affecting RNA or protein synthesis (Gale, 

1964; Young and Hodas, 1964; Yarbro, Kennedy and Barnum, 1965; 

Rosenkrans and Levy, I965). The drug inhibits the formation 

of deoxyribonucleoside diphosphates from the corresponding ribo- 

nucleoside diphosphates, a critical step in DNA synthesis (Tui'ner, 

Abrams and Lieberman, I966; Krakoff, Brown and Reichard, I968;
*
Elford, 1968), Its potential as a cell-synchronising agent has 

been investigated (Lindsay and Adams, I967).

Terasima and Tolmach (1965a) have developed a purely selec

tive procedure for obtaining metaphase cells and have shown that 

the lengths of the different phases of the cycle are not signi

ficantly altered compared to randomly-growing cultures. This



2 8
system has been employed to investigate changes in the sensitivity 

of HeLa and L cells to X-irradiation at various stages of the 

cycle (Terasima and Tolmach, 1965b, c; Djordjevio and Tolmach,

1967; Weiss and Tolmach, I967). Mitotic cell populations are 

relatively sensitive but early in the period they become more 

resistant to treatment. Progress through G^ phase is marked 

by an increasing sensitivity to X-irradiation which again decreases 

during the subsequent S(DNA-synthetic) phase. Thus the region 

of maximal interphase sensitivity has been identified at the G^

—> S transition. These results are consistent with other reports 

for a number of cell lines, employing various techniques for 

obtaining'synchronous populations (Sinclair and Morton, 1965;

Erikson and Szybalski, 1965).
Colchicine and coloemid. have been shown to be specific 

inhibitors of mitosis in mammalian cells (Puck and Steffen, I965).
Ï

The accumulation of metaphase cells in the presence of the drug 

has provided the basis for a technique designed to elucidate bio

chemical events occurring at specific stages in the replication 

cycle using randomly-growing cultures (Puck and Steffen, 1965;

Puck, Sanders and Petersen, I964). In addition, mitotic inhibitors 

are important where large amounts of chromosomes are required for 

in vitro studies (Maio and Schildkraut, I967; Mendelsohn, Moore
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and Salzman, I968), Unfortunately, under most conditions the 

effects of the drug are irreversible and it is therefore not 

suitable as a synchronising agent. In one case, however, 

Stubblefield and Murphree (I967) have been able to follow the 
activity of thymidine kinase through an entire division cycle 

using colcemid-synchronised Chinese hamster cells,

2.5. Resting systems

2.5.1. Regenerating liver

Cell strains in continuous culture are constantly moving,.

round the replication cycle. Most tièsues, on the other hand,

such as liver or kidney are not actively dividing and consequently

their mitotic index is extremely low. Furthermore, these tissues

contain only low levels of the enzymes involved in M A  synthesis

and are consequently considered not to be proceeding round the 
«cycle but to be in a resting or Go phase. After partial hepatec- 

tomy, in which the medium and left lateral lobes of the liver are 

removed, the remaining portion exhibits the phenomenon known as 

regeneration. Within 56 hr, of the operation a large increase 

in mitotic index is noted and the liver gradually increases 

in weight until at around 28 days it reaches its original size.



Investigators have closely studied the metabolic changes 

occurring immediately after operation with a view to establishing 

the sequence of events required for. the onset of DNA synthesis 

and cell division. Earlier workers had noted that extracts 

from regenerating liver contained all the enzymes required for 

the conversion of ribonucleosides and deoxyribonucleosides into 

RNA and DNA respectively (Mantsavinos and Canellakis, 1959Î 

Bollum and Potter, 1959; V/eissman, Smellie and Paul, I96O).

Evans, Holbrook and Irvin (1962), studying the timing of 

histone biosynthesis in regenerating rat liver, showed-that a 

peak of mitotic division occurred around 32 hr. after operation, 
while incorporation of labelled adenine into DNA was maximal 

at 26 hr. The initial event following partial hepatectomy 

appeared to be increased biosynthesis of RNA (Holbrook, Evans 

.and Irvin, I962). Fujioka, Koga and Lieberman (1965) found that 

the rate of incorporation of L ÇJ orotic acid into rat liver RI'ÎA 

begins to rise immediately, reaching a maximum at about twice 

the initial, rate about 3 hr. post-operatively. Enhancement 

of RNA synthesis is related to the amount of liver removed as \0-/o 
removal- causes little or no alteration in Rt'fA metabolism. Levels 

of p-fluorophenylalanine (FPA) and actinomycin D, which do not 

affect normal RNA turnover, prevent the rise in the rate of RNA
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synthesis although their effects are readily reversible. DNA 

synthesis is correspondingly delayed. No increase in the rate 

of DNA synthesis was detected by this group (Fujioka et al., 

1965) until 16 hr, after operation. Increases ($-10 fold) 

in the levels of thymidine kinase and DNA polymerase also 

occurred about the time of DNA synthesis (Bollum and Potter,

1959).
The RNA polymerase (nucleosidetriphosphate: RNA nucleo

tidyltransferase, ÉC 2.7.7*6) activity and the RNA content of 
isolated nuclei and nucleoli, are also elevated during regener

ation (Tsukada and Lieberman, 1965). A 2-fold increase in RNA 

polymerase activity occurs over the first 12 hr. No signifi

cant changes in the levels of other enzymes during this early 

phase have been described.

2.5.2, Rabbit kidney cortex cells cultured in vitro

Similar studies have been carried out on rabbit kidney 

cortex cells cultured in vitro (Lieberman and Ove, 1962; 

Lieberman, Abrams and Ove, I965; Lieberman, Abrams Hunt and 

Ove, 1965» Adams, Abrams and Lieberman, I965). These cells 

are not rapidly dividing in the rabbit but after removal and 

dispersal in culture, there is rapid growth after an initial 

lag period, DNA synthesis is not initiated until about 52 hr.



after removal but profound changes in RNA metabolism have been 

observed before this time.

A doubling in the rate of RIïA synthesis occurs between 

12 and 22 hr. after which RNA synthesis continues at its new 

high level. Addition of lov/ levels of actinomycin D or FPA 

before 12 hr; completely abolish this rise and also prevent 

subsequent initiation of,DNA synthesis. Normal RNA turnover 

continues at its initial rate in the presence of these inhibitors 

(Lieberman et al., I965). After 22 hr, the cells became 

increasingly resistant to the effects of FPA and actinomycin 

D. Zinc ions are also required during the period 12-22 hr. 

as these overcome inhibition caused by EDTA during this time. 

X-irradiation of the cells, however, prevents DNA synthesis if 

the cells are treated at any time up to the beginning of S phase. 

Thereafter they become relatively insensitive to its effects 

•(Lieberman et al., I965).

The activities of thymidine kinase and DNA polymerase 

again do not rise in this system until about the time of DNA 

synthesis. Other enzymes e.g. lactate dehydrogenase (L-lactate: 

NAD oxidoreductase. EC 1.1.1.27) and hexokinase (ATP: D- 
hexose 6-phospho-transferase. EC 2,7.l.l) begin to increase 

in specific activity immediately when the cells are cultured in 

vitro (Lieberman et al., I965),



2.3.5. The lymphocyte^phytohaemaerglutinin system 

A comparable system to come under intensive study in 

recent years is the Ijnmphocyte-phytohaemagglutinin system. Al

though lymphocytes from a wide variety of animal species such as 

human, monkey, rabbit and horse will not normally proliferate in 

vitro, addition of phytohaemagglutinin (PHA), an extract of the 

red kidney bean Phaseolus. vulgaris brings about a striking 

transformation; about 90yo of the cells in culture enlarge, event

ually synthesise PÏÏA and divide (Nowell, 1960). Early changes 

in the patterns of RNA and protein metabolism as well as in 

histone acétylation have been documented (Mueller and Mahieu, 

1966; Cooper and Rubin, 1965a, b, I966; Cooper, I968; Pogo, 

Allfrey and Mirsky, I966), Recently Loeb, Agarwal and Wood- 

side (1968) have shown that the PNA polymerase activity of 
human lymphocytes increases 50-100-fold in the presence of PHA. 

Maximal activity is detected on the third day after stimulation 

when DNA synthesis is also at a peak and there is a close correl

ation between the DNA polymerase activity of disrupted cell 

preparations and the ability of the cells to incorporate thy

midine into DNA.

lymphocytes in culture can respond to a variety of mito- 

genic agents although to varying extents. These include 

specific antigens (Dutton and Eady, 1964; Dutton and Bulman,



2 9

1964), streptolysins 0 and S-(Hirschhorn, Schreibman, Verbo and 

Gruskin, I964) and.various products of micro-organisms e.g. 

tetanus toxoid and polio virus (Elves, Roath and Israels, I965), 

yeast extract (Gandini and Gartler, I964) and endotoxins of Gram 

negative organisms (Oppenheim and Perry, 1965)» The mechanism 

of action of these agents and the nature and function of receptor 

sites on the lymphocytes are under active investigation but 

the picture to date is incomplete. - Several reviews on lympho

cyte stimulation have appeared in recent years (Robbins, 1964;

Meliman, 1965, Cooper and Arniel, 1965; Gowans, I966). A 

comprehensive survey on the whole field of lymphocyte metabolism 

is made by Ling (1966).

2.5.4* Importance of resting systems 

Resting systems (Gq) which can be stimulated to growth 

and cell division are important in allowing a close study of the 

sequence of events required for renewed proliferation. There 

is the added advantage that these systems exhibit a degree of 

natural synchrony, free from abnormalities of metabolism possibly 

arising through the use of artificial methods of synchronisation 

with established cell lines. Permanent strains also differ 

from resting systems in that the cells are continually progressing 

round the cycle and consequently never enter Gq phase. However,
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the high degrees of synchrony obtainable by artificial agents 

and the ease of manipulation of cell lines in culture makes them 

useful in defining the series of metabolic,events required for 

DNA replication and mitosis.

2.5.5. Differences between Gp and phase

The differences between G and G. are not well defined,o 1
Regenerating rat liver and primary rabbit kidney cortex cells

are sensitive to X-irradiation in that treatment of these cells

at any time before they enter S phase, results in marked inhibition 

of DNA synthesis (Kelly, 1957; Holmes and Mee, 1956? Lieberman 

et al., 1965). It is of interest that hydroxyurea-synchronised 

rabbit kidney cortex cells are no longer as sensitive to X-irradi- 

ation and consequently must have passed the radiation-sensitive 

event which occurs at the onset of S phase (Adams et al., I966).

In contrast the G^ to S transition by cells in continuous pro

liferation is more resistant to X-ray treatment (Adams, personal 

communication).

Analysis of cell proliferation after partial hepatectomy 

has led to the idea that the majority of cells are in a state of 

"no cell cycle" i.e. Gq until stimulated to divide (Lajtha, Oliver 

and Gurney, I962), Post and Hoffman (1965) have confirmed this 
model in rat liver, showing that there is a massive increase in
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the proportion of cells in DNA synthesis (the growth fraction) 

following partial hepatectomy.

Recently Brown (1968), however, using standard auto

radiographic procedures, concluded that hamster cheek pouch 

cells in vivo have a mean cell cycle time of I40 hr. with 

approximately of this time occupied by phase. The

growth fraction has also been shown to be equal to unity for 

the epithelial cells of rat oesophagus and mouse tongue (Deblond, 

Greulich and Pereira, I964) and hamster cheek pouch (Brown and 
Oliver, 1968).

Thus, the model of a variable growth fraction to account

for the entrance of Gq cells into the cycle after stimulation,

does not appear to be applicable to all tissues. It still

remains to be proved whether there is any absolute difference

between G^ and G^ cells in terms of their responses to external 
*

stimuli,

5. DNA REPLICATION

5.1. DNA synthesis in bacterial systems 

The twin-stranded helical structure for DNA proposed by 

Watson and Crick (1955) has revolutionised present-day research
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in molecular biology and provided the basis for many of the spec

tacular advances of the past 15 years. Indirectly, for instance, 

it has led to the development of cell-free protein synthesising 

systems (see Davidson, I969), elucidation of the genetic code 

(see Crick, I965; Woese, 196?) and the in vitr0 synthesis of 

biologically active DNA (Coulian, Kornberg and Sinsheimer, I967).

One of the most exciting aspects of the proposed DNA 

structure was that it immediately suggested a method for its own 

replication. Impressive support for this scheme was forth^ 

coming with the classical experiments of Messlson and Stahl (l958) 

who were able to show conclusively that replication of the Each. 

coli chromosome occurred in a semi-conservative manner, implying 

that strand separation took place during replication with sub

sequent distribution of one parent and one newly-synthesised 

strand to each daughter cell.

Autoradiographic studies of the replicating Esch. coli 

chromosome (Cairns, 1965a, b) showed the presence of Y-shaped 

replicating forks and confirmed that the process took place semi

conservative ly and unidirectionally. The average rate of repli

cation of each strand can be expressed as 12,5 nucleotide units 

per sec. per strand, assuming the average length of two nucleotide
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units to be 54 & ('iVatson and Crick, 1955)î AS the 2 parent strands 

remain attached to the starting point until replication is complete 

Cairns also postulated the presence of a swivel mechanism at this 

region to allow unwinding of the double-helical, circular DNA 

during DNA synthesis (Cairns, 1965b).
Several factors appear to be involved in the initiation 

of replication. Models of chromosome replication have postu

lated that separate processes are required in the attachment of 

the chromosome to the cell surface and in the initiation of 

replication (Jacob, Brenner and Cuzin, 1965; Lark, 1966), Use 

of inhibitors such as chloramphenicol and phenethyl alcohol 

combined with amino acid starvation supports the view that more 

than one process is required for initiation. Recently Lark and 

Renger (1969) have distinguished 5 physiological processes 

required for initiating DNA synthesis in Esch. coli. Rapidly- 

.growing bacteria are known to initiate new rounds of replication 

before the completion of previous rounds (Yoshikawa, O'Sullivan 

and Sueoka, I964; Maal/e and Kjeldgaard, I966; Helmstetter and 

Cooper, 1968; Bird and Lark, 1963).

5.2. In vivo studies on DNA replication in higher organisms

In higher organisms the problem is complicated by our lack 

of knowledge on the precise details of chromosome structure and
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the manner in which DNA is located within this unit. Although 

much is known about the chemical components of the chromosome 

only scant evidence is available on its structural organisation. 

Several models of chromosomal structure have been presented 

(Freese, 1958; Taylor, 1965; Du PraW, 1965*; Felling, I966) 
and the presence of a repeating structural unit has been suggested 

by Davies and Small (1968).
Chromosome replication in plants and animals has ' also 

been shown to take place via a semi-conservative mechanism 

(Forro and Wertheimer, I96O; Prescott and Bender, 1965; Sirrion, 

I96I; Taylor, Woods.and Hughes, 1957)• In addition, pulse- 

labelling techniques on cultures from human peripheral blood 

have shown that DNA synthesis is asynchronous in individual 

chromosomes and that sex chromosomes are unusual in terminating 

replication later than the others (Kukhegee and Sinha, I965;
4
Blanchi and Bianohi, 1965; ~Lima-de-Faria, I964). Painter 

(1961) has shown that while replication begins almost simul

taneously in HeLa cells, synthesis was terminated at times 

varying up to 2 hr.. amongst different chromosomes.

Using synchronised cultures of HeLa cells Stubblefield , 

and Mueller (1962) have obtained evidence for the non-random 

and localised nature of DNA replication in various chromosomes
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and shown that reproducible patterns of chromosome labelling 

occurred on segments of a particular chromosome. Pulse-treatment 

of these cells diming various periods of S’phase with ^-bromodeoxy- 

uridine showed that cells treated during the first 2 hr, were 

especially sensitive and rapidly became non-viable, suggesting 

that early-replicating DNA is that which is actively transcribed 

in the cell. There is now considerable evidence to suggest 

that late-labelled chromosomes contain the heterochromatin 

material of interphase nuclei (Liraa-de-Faria, 1959; Evans, 1964).

4, IN VITRO STUDIES ON DNA REPLICATION

4.1, Introduction

Kornberg, Lehman and Simms (1956) were the first to 

isolate an enzyme from Esch. coli capable of catalysing incor

poration of the 4 deoxyribonucleoside triphosphates into DNA
2+pin the presence of Mg and a DNA primer. Since then similar 

enzymes have been reported in a large number of bacterial, 

viral (Aposhian and Kornberg, 1962) and mammalian sources 

(Bollum and Potter, 1957).

4.2. DNA polymerase activity in vitro

4.2.1. Bacterial DNA polymerases

The most intensively studied DNA polymerase is the Esch. 

coli enzyme which has been investigated since 1956 mainly by
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Kornberg and his co-workers. Their investigations culminated 

Recently' with the'employment of this enzyme to synthesise bio

logically active DNA of the virus J2ÎX 174 (Goulian et al., I967).
The enzyme can catalyse the polymerisation of deoxy-

2+ribonucleoside triphosphates, in the presence of Mg and DNA 

primer, into acid-insoluble material with the stoichiometric 

release of PPi (Bessman, Lehman, Simms and Kornberg, 1958b), 
Either native or heat-denatured DNA will serve as primer^(Richard* 

son, Schildkraut, Aposhian and Kornberg, I964). Nearest neigh

bour frequency analysis of the product suggests that the enzyme, 

only incorporates by specific base pairing in a manner determined 

by the DNA template (losse, Kaiser and Kornberg, 1961); Esch. 

coli DNA polymerase is also active to some extent in the presence 

of Mn^^ ions but under these conditions will incorporate ribo- 

nucleoside triphosphates into DNA (Berg, Faucher and Chamberlain, 

1963). This property of the enzyme has been utilised in 

determining the structure of the DNA product (Richardson, Inman 

and Kornberg, I964).

The enzyme has now been purified to homogeneity and has 

been shown to consist of a single polypeptide chain of mol. wt. 

109,060, having an N terminal methionine residue and containing 

one SH group and one 8.8 .bond (Englund et al., I968), Physical
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and chemical studies on the homogeneous DNA polymerase have been 

recently carried out (Jovin, Englund and Bertsch, 1969î To vin, 

Englund and Kornberg, I969).
205Binding studies using the active Eg derivative of 

the purified enzyme have shown that there is only one DNA 

binding site per molecule as well as a single site for the 

deoxyribonucleoside triphosphates (Englund et al., I968; 

Englund, Huberman, Jovin and Kornberg, I969). The influence 

of DNA structure on the binding of the enzyme has also been 

investigated (Englund, Kelly and Kornberg, I969). With 

single-stranded jZÎX I74 DNA (l,7 ^ 10  ̂daltons) approximately 

20 molecules of enzyme are bound per molecule of DNA under 
conditions promoting maximum binding. No attachment of 

DNA polymerase to the circular duplex of plasmid DNA could 

be observed, however, unless the template was nicked either 

with DNase I (deoxyribonucleate oligonucleotidohydrolase, EC 

3.1.4.5) introducing -hydroxyl groups or miorococcal nuclease 

(eg 3.1.4.7) producing 3'-phosphate groups. In each case the 

number of enzyme molecules bound was very close to the number 

of nicks produced although only DNase I treatment converted 

plasmid DNA into an active template for the enzyme. Linear 

double-stranded DNA from T7 phage provided 2 enzyme binding
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sites per molecule indicating the Esch. coli DNA polymerase can 

bind at the ends of DNA duplexes»

Partial degradation of the double-stranded primer by an
I /endonuclease which produces 5 -hydroxyl ends converts the DNA

into an efficient template for the enzyme (Kornberg, 1957)• Poly 

d(AT) is also a most effective primer and, in the absence of added 

DNA, the enzyme will initiate de novo synthesis of poly 'd(AT) 

after a lag period of 2 - 5 hr. in the presence of the appropriate 

deoxyribonucleoside triphosphates (Schachman, Adler, Raiding,

Lehman and Kornberg, I96O). In this respect it is interesting- 

that Lezius, Hennig, Menzel and Metz (1967) have separated 2 DNA 
polymerases from Esch, coli differing only in their ability to 

initiate de novo synthesis of poly d (AT),

When the product of the Esch. coli DNA polymerase with 

native DNA as primer is examined by electron microscopy it is
4
found to have a highly branched structure (Schildkraut, Richard

son and Kornberg, I964). In addition an abnormal degree of 

renaturation occurs after treatments designed to bring about com

plete strand separation. It appears that this unusual "pleated" 

or hairpin structure of the DNA product can be explained by the 

failure of the enzyme in vitro to catalyse simultaneous repli

cation of both strands.

By contrast, if double-stranded DNA is treated with exo-
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nuclease III to produce a partially single-stranded molecule by 

the release of mononucleotides from the -hydroxyl ends of each 

chain, the Esch. coli enzyme can accurately repair the degraded 

DNA to form a product which is identical to the original DNA in 

denaturability, in appearance by electron microscopy and in bio

logical activity (Richardson et al,, I964).

The most critical test of fidelity of replication is to 

determine whether the enzyme can catalyse the synthesis of bio

logically active.DNA. This experiment has recently been per

formed using the infectious, circular, single-stranded DNA (+ 

strand) of bacteriophage 174 as template (Goulian et al.,
1967). In this manner they were able to synthesise the com

plementary (-) strand. Bromodeoxyuridine triphosphate was 

substituted for d-TTP in the assay, so that the newly-synthesised 

strand could be separated by CsCl centrifugation. This (-) strand 

.was fully infectious and could be utilised as template to form 

(+) strands with the same specific activity as the original 

0X  174 DNA, In both cases the enzyme polynucleotide ligase was 

required to link the ends of the DNA chain to form closed, 

infectious circles. Goulian (1968) has shown that the priming 

ability of circular 174 DNA is slow and uncertain unless a 
boiled extract from Esch. coli, which can be shown to contain
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oligonucleotides, is added. Thus there is still considerable 

doubt as to the ability of the Esch,coli polymerase to initiate 

de novo synthesis of M A  strands (Englund et al,, I968).

The purified Esch. coli M A  polymerase has a number of 

associated activities which remain in constant ratio to the 

polymerising -abilities of the enzyme throughout the purification 

(Englund et al,, I968). Thus the enzyme supports exchange of 

the p, groups of deoxyribonucleoside triphosphates with PPi 

and can also catalyse degradation of DNA by hydrolysis or pyro- 

phosphorolysis,

Pyrophosphate exchange is identical with the polymer

isation reaction in its requirements for a template strand, 

strict specificity in base pairing and a 3^-hydroxyl-terminated 
primer. In contrast to polymerisation, however, appreciable 

exchange is detected in the absence of a full complement of tri

phosphates (Deutscher and Kornberg, 1969a). During pyrpphos- 

phorolysis the enzyme catalyses an attack by PPi on the 3^- 
terminal nucleotide and progressively removes mononucleotides 

from the end of the DNA chain. Since the enzyme can bring 

about both synthesis and degradation of DNA from the 3^-hydroxyl 
end, it is capable of moving along the DNA in both directions.

The presence of exonuclease II activity in purified poly

merase preparations was shown by Lehman and Richardson (1964). 

This activity hydrolyses polydeoxyribonucleotides from the 5^



as well as the 3 -terminus (Klett, Cerami and Reich, I968;
Deutscher and Kornberg, 1969b). The rates of hydrolysis from 

either end are similar using native DNA as substrate. Beyers- 

mann and Schramm (1963), from kinetic data, have provided 

evidence foT' a common site for hydrolysis and pyrophosphoro- 

îysis.

Association of exonuclease activity with purified T4 
phage DNA polymerase (Goulian, Lucas and Kornberg, I968) and 

the DNA polymerases of herpes simplex virus (Paton and Morrison, 

1969) and Ehrlich ascites tumour cells (Roychoudhury and Bloch, 

1969) has also been noted. The relationship of the various 

activities of isolated DNA polymerases is clearly important to 

a proper understanding of the in vivo role of the enzymes. It 

is of interest, however, that the purified Bacillus subtilis DNA 

polymerase, which exhibits similar properties to the Esch. coli 

enzĵ me has no detectable associated nuclease activity (Okazaki 

and Kornberg, I964).

7/hile the Esch, coli DNA polymerase has been successfully 
employed in the production of infectious viral DNA, its in vitro 

characteristics do not serve to clarify its role in the semi-con

servative replication of the bacterial chromosome. Cairns (1563a) 

has shown that replication of the bacterial chromosome occurs by
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unidirectional, simultaneous synthesis of both D M  strands. The 

in vitro Esch. coli enzyme is, only capable of synthesising a
I Isingle DNA chain in the 5 “ 5 direction. Failure of the enzyme

to replicate double-stranded D M  in a semi-conservative manner

led to speculation that the enzymic activity concerned in in

vivo DNA synthesis remained undetected in cell extracts. Several

lines of evidence, however, no?/ argue against this point of view:
2+la) The mutagenic action of Mn and the altered specificity of

*

2+the Esch, coli D M  polymerase in the presence of Mn argues for 

the participation of the enzyme in the replication process 

(Berg et al., 1965).

(b) De V/aard, Paul and Lehman (I965) have shown that certain 

mutants of T4 and T5 phages which are defective in DNA synthesis 
also fail to induce normal DNA polymerases,

(c) Subsequent v/ork on temperature-sensitive T4 mutants has shown 

that the fidelity of replication is decreased in phages inducing 

DNA polymerase with altered characteristics (Speyer, I965). 

Evidence for participation by the enzyme in selecting the correct 

incoming deoxyribonucleoside triphosphate has also been obtained 

(Speyer, Karam and Denny, I966; Freese and Freese, 196?), A 

report that Cairns (unpublished results) has recently isolated

a mutant of Esch. coli which exhibits no DNA polymerase activity



4 S

in cell extracts awaits further clarification..

A more likely possibility is that the enzyme or some part

of the replication machinery is damaged during isolation so

that the enzyme is unable to fulfil its proper catalytic

function in vitro. In this connection, the question of a multi-

unit structure for the enzyme has been raised, although the
%

results of Englund et a_l. (1968), showing the Esch. coli 

DNA polymerase to consist of a single polypeptide chain,would 

appear to preclude this idea. Cavalier! and Carroll (1968), 

however, have evidence that this enzyme exists as a multiple 

molecular species with mol. wts. of 120,000-140,000, 60,000-

78.000 and' 24,000-30,000 implying a tetramer-dimer-'inonomer 

relationship. Since the Kornberg enzyme has a mol. wt. of

109.000 a satisfactory explanation for these results has still 

to be obtained, Hori, Fujiki and Takagi (1966) have separated 

2 DNA polymerases from Alcaligenes faecalis which can be dis

tinguished by their differing preferences for native or heat- 

denatured DNA primer. The relationship of these activities

to DNA replication is as yet unknown.

Further evidence comes from the Kornberg group (Jovin ^  

al., 1969) who have shown that, under certain conditions, active



dimers of purified ,DNA polymerase can be formed containing one 

Hg atom; thus it may be that during purification there is break

down of a more complex replication unit which has the capacity 

to synthesise M A  in a semi-conservative fashion on a native 

template,

Isolation of the enzyme polynucleotide ligase from Esch. 

coli (Gellert, 1967; Olivera and Lehman, 1967a; Zimmerman, 

Little, Oshinsky and Gellert, I967; Gefter, Becker and Kurwitz, 

1967), phage-infected cells (Vfeiss and Richardson, 1967a; 

Cozzarelli, Melechen, Jovin and Kornberg, I967; Becker, Lyn, 

Gefter and Hurwitz, I967) and mammalian sources (Lindahl and 

Edelman, I968) has led to the extension of our ideas on possible 

mechanisms of DNA replication and these are discussed in section

5.1.

4*2.2 Mammalian DNA polymerases

Research into DNA polymerases of higher organisms has 

lagged behind studies in bacterial systems largely owing to 

difficulties in obtaining highly purified preparations. Englund 

et al. . (1968) have now been able to obtain 6OO mg, of Esch. 

coli enzyme, purified to homogeneity, starting from 90 Kg;, of 
cell paste.

The most extensively studied mammalian DNA polymerase to
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date is the calf thymus enzyme (Bollum, I960). It has been 

purified about 250-fold from crude extracts and exhibits the 

same general properties as the bacterial enzymes. Magnesium 

ions are essential for activity as are the 4 deoxyribonucleoside 

triphosphates and a DNA primer. From gel filtration studies 

the enzyme has a mol, wt, of 110,000 and is free of endonuclease 
activity as judged by prolonged incubation with biologically 

active DNA. Ultracentrifugation of the purified enzyme shows 

that the enzyme still only represents a small proportion of the 

total protein (Yoneda and Bollum, I965),

Heat-denatured DNA is a much better primer for the enzyme 

than double-stranded DNA and in nuclease-free fractions there is 

little or no activity with native primer. The product after 

l O O f o replication of added single-stranded DNA has been shown to 

be native DNA by IÆAK column chromatography and counter-current
*

distribution in aqueous polymer systems (Bollum, I963). With 

poly d A as primer, however, while the final product is found to 

be poly d A: d T, at intermediate stages in the replication process, 

material is formed which has a higher buoyant density than either 

poly d;A or poly d.A: d T in CsCl gradients, Bollum (1966) 

attributes this to the formation of a 3-stranded complex, poly 
-d Ag: a T,
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In recent years Bollum has been especially concerned in 

defining the template requirements of the calf thymus DNA poly

merase . (Bollum, 1966)0 Using synthetic homopolymers as tem

plates for the enzyme, it v/as found that these were essentially 

inactive unless a small amount of complementary oligodeoxy- 

ribonucleotide was added. Synthesis on poly dA, for instance, 

can be initiated by addition of hexathymidylate, d(pT)^, but

not by d.(pA)̂ . Self-initiation can take place after a lag 

period if the deoxyribonucleoside triphosphate complementary 

to the primer is present in the reaction mixture. In the 

presence of an initiating oligonucleotide the nev/ly-synthesised 

DNA plus initiator can be separated from the primer while in 

the absence of initiator the reaction is slower and the product 

is a "hairpin-like" structure with the new strand covalently 

bound to the primer DNa .
I

4*2,5. Other mammalian polymerases »

Many DNA polymerases have been detected in extracts of 

mammalian tissues and as might be expected their activities 

are often high in rapidly proliferating tissues. These enzymes, 

in general, exlUbit similar properties to the calf thymus 

enzyme. Amongst those sources investigated are ascites 

tumour cells (see Kéir, I965; Shepherd and Keir, I966), rat



thymus (Walv/ick and Main, 1962) and a number of other mammalian 
tissues including, mouse spleen, talker 256 carcinoma, rat 

spleen, kidney, brain, lung, testes, skeletal muscle and pan

creas, rabbit liver, bone marrow, thymus and spleen (Keir, I965). 

Activity has also been reported in various tissue culture lines, 

HeLa cells (Harford and Kornberg, 1958; Bach, 1962; Magee, 

1962), BHK 21. (CI3) cells (Keir and Gold, I963), HHp2 cells (Keir, 
Hay and Subak-Sharp©., I964), HK cells (Nohara and Kaplan, I963) 

and L cells (Littlefield et al.. 1965; Gold and Helleiner,

1964).
All these DNA polymerases resemble the calf thymus enzyme 

in being more active with heat-denatured DNA as primer. In 

view of the double-stranded helical structure of DNA in vivo, 

the relationship of these activities to in vivo replication 

*is not understood at present.

4*2.4# Mammalian DNA polymerases preferring native 

DNA primer

In recent years an increasing number of DNA polymerases 

have been reported in higher organisms which exhibit a marked 

preference for native DNA templates. Rat liver has received 

much of the attention in this respect. Mantsavinos and 

Munson (1966) partially purified an enzyme from soluble ex-
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tracts of regenerating rat liver which was more active with 

native DNA and resembled the Esch. coli enzyme in its capacity 

to utilise poly d(AT) as primer. Previously Hukundan, Devi 

and BarKar (I965) had measured the activity of rat liver DNA 

polymerase in crude extracts as a function of the age of the 

rat. Tne ratio of activity on native to denatured DNA fell 

markedly with increasing age while after partial hepatectomy 

there was a marked stimulation in activity primed by native 

DNA. De Recondo (I967) has observed a factor in supernatant 

extracts of rat liver which^when pre-incubated with native DNA, 

caused an 8-fold increase in the priming ability of the DNA 
with rat liver polymerase. On the basis of comparative 

experiments in which double-stranded DNA was treated with 

DNase I or DNase II (De Recondo, I966), she suggests that the 

* stimulating factor is not either of these endonucleases but may 

be similar to exonuolease III (Richardson, Schildkraut and Korn

berg, 1964). DNA polymerase has also been purified 200-fold 
from the non-histone component of rat liver nuclei (Patel, Howk and 

Wang, 1967) and has been shown to prefer native DNA. The 

properties of this enzyme appear similar to those of the enzyme 

isolated by Mantsavinos and Munson (I966).

A very active DNA polymerase has been isolated from the 

nuclei of developing sea urchin embryos (Loeb, Mazia and Ruby,
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1967)* The enzyme markedly prefers native DNA and exhibits a
2+Mg ‘ optimum of 16' mî'Æ compared to the values of 4 - 8 reported

for most of the DNA polymerases in higher organisms. Isolated

nuclei are active without exogenous primer but are stimulated

10-fold on the addition of native DNA. During early cleavage
—12divisions the DNA per nucleus (l,8 x 10 g. ) can double every 

12 - 15 min, at Ip^C in this system. At this stage all the 

DNA polymerase activity is located in the nucleus, Loeb 

(1969) has purified this activity 500-fold from isolated nuclei 

and shown the enzyme to have a mol. wt. of approximately 150,000, 

Bimie and Fox (1966) have compared nuclear and cytoplasmic 

extracts of mouse embryo cells and found differences in the
2+DNA polymerase activity of the 2 fractions with respect to Mg , 

2+Mn and pH optima and activity with double- and single-stranded

primers. V/hereas the cytoplasmic extract is stimulated both by 
‘ 2+native and denatured DNA, with Mg the nuclear extract is 

inhibited slightly by denatured DNA,

Recently partial purifications of DNA polymerase from 

rat liver mitochondria have been reported by 2 groups (Meyer 
and Simpson, I968; Kalf and Ch'ih, I968). The former group 

find that the crude enzyme has a 5"fold preference for denatured 
DNA but, after (NE^^̂ SÔ  ̂precipitation and DEAE-cellulose
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chromatography, it is equally active on double- or single-stranded 

DNA. Separation from the nuclear enzyme .is also effected at this 

stage. The mitochondrial polymerase is markedly stimulated (8- 
fold) by 60 #1 Kalf and Ch’ih (1968) have purified the
enzyme 22-fold from crude extracts and find that it is most active 
with native DNA. The remarkable feature of their data is that 

mitochondrial DNA polymerase is markedly more active with 

native, circular rat liver mitochondrial DNA than with double» 

stranded DNA from other sources. In this manner they have been 

able to achieve a 5*5"fc'ld net synthesis of product only pre
viously carried out using bacterial enzymes.

4.3* Localisation of mammalian DNA polymerasea in the 

cell

Early successes in the detection of DNA polymerase inI
eucaryotic cells overcame initial doubts concerning the presence 

of the enzyme in supernatant extracts of these cells. Some 

light was thrown on the problem by Canellskis and his colleagues 

(Krakow, Coutsogeorgopoulos and Canellakis, 1962; Krakow,

Kammen and Canellakis, I961) who found that calf thymus nuclei 

retained a much higher degree of activity if 3 niM-CaCl̂  was 

present in the homogenising medium. Calcium ions are known to 

be required for isolation of nuclei in a morphologically un

damaged state (Hogeboom, Schneider and Striebich, 1952), This
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initial observation was extended by Main and Cole (I964) by

measuring DNA polymerase activity after repeated extractionsof
2+rabbit thymus nuclei in the presence and absence of Ca 

These ions were found to greatly reduce the rate at which 

enzymic activity was lost from the nuclei.

As the problem appeared to be the leaching of enzyme, 

from the nucleus during isolation, extraction techniques were 

developed using non-aqueous solvents. Keir, Smellie and 

Siebert (1962) prepared nuclear and cytoplasmic powders from 

regenerating rat liver and showed that nuclear extracts contained 

substantial activity while cytoplasmic fractions had lower 

activity. Similar results were obtained by Behki and Schneider 

(1963) using non-aqueous preparations from regenerating rat liver 

and Novikoff hepatoma.

It now seems probable that the enzyme may exist as a
*
cytoplasmic or nuclear component depending on the mitotic index 

and rate of proliferation of the tissue concerned, Mazia and 

Hinegardner (1963) and Mazia (1965)7 for instance, have shown 

that DNA polymerase activity is high in sea urchin embryo nuclei 

during the early stages of cleavage division when cell multi

plication is rapid but that this activity decreases markedly 

by the time of gastrulation when the rate of new cell production 

is low.



s 2

Two reports have appeared attempting to correlate DNA 

polymerase levels in cytoplasmic and nuclear extracts of L 

cells during the DNA-synthetic (S) period (Gold and Helleiner, 

1964» Littlefield et al,, 1963). Both groups observe a 

slight drop in the activity of the supernatant enzyme during 

S which subsequently rises again at the cells finish replication 

and enter mitosis. A small increase in the activity of the 

"particulate" fraction is also detected during the S period. 

While these observations appear contradictory to the findings 

from regenerating liver (Bollum and Potter, 1959), rabbit 
kidney cortex cells (Adams et al., I965) and human lymphocytes 

(Loeb et al., I96S) where a generalised elevation in the levels 

of DNA polymerase occurs during S, it seems likely that the 

high degree of synchrony obtained with established cell lines 

allows observations on transient changes in enzymic activity 

not detectable in more asynchronous systems.

Recently Friedman and Mueller (I968) have described a 

nuclear preparation from HeLa cells which can incorporate 

deoxyribonucleoside triphosphates into DNA. The general 

properties of these nuclei are:

( a )  Synthesis occurs without addition of exogenous template and 

no increase in activity is observed on addition of native DNA.
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(b) Their activity closely follows the hîîA-synthetic capacity 

of intact cells in synchronised cultures,

(c) The product is DNase I sensitive and characteristic of 

replicating DNA as most of the product is found at the inter- 

phase during phenol extraction (Friedman and Mueller, 1969)*

It also behaves as HeLa cell DNA on sucrose or CsCl gradients,

(d) For maximal activity these nuclei require ATP, Na^ ions 

and a heat-labile factor from the cytoplasm which haj different 

properties to the DNA polymerase activity found in this fraction. 

Moreover, cytoplasmic extracts from S phase cells do not stimulate 

DNA synthesis in nuclei from randomly-growing cultures to any 

great extent, suggesting the presence of a controlling factor

in the nucleus,

5. THEORIES ON THE MECHANISM OF DNA REPLICATION

* Bacterial systems

A major discrepancy between in vivo and in vitro studies
on DNA replication is that the Bsch. coli enzyme is only capable

I iof initiating synthesis in the 5 * 5  direction whereas in vivo

evidence suggests that the 2 strands of the bacterial chromosome 
are replicated simultaneously from a single growing fork, A 

mechanistic difficulty arises, because of the anti-parallel



nature of the 2 DNA strands, in that a different reaction is 
required for the insertion of the incoming deoxyribonucleoside 

triphosphates onto the ends of growing DNA chains. On the one 

strand synthesis can proceed by addition of a deoxyribonucleo-
I Îside 5 -triphosphate to the 5 -hydroxyl terminus of the poly

nucleotide chain. Polymerisation on the complementary strand

requires the attack of the 3 -hydroxyl of incoming triphosphates 
*on the 5 -phosphate end of the DNA chain,

Canellakis, Kammen and Morales (iQof) have described an

enzyme from B. subtilis which can form thymidine 9 -triphosphate
from the corresponding diphosphate. This finding has led to

speculation that the deoxyribonuclecside 5 -triphosphates may
% Ibe involved as precursors in the replication of the 5 **5 

strand. No successful incorporation of these precursors into 

DNA has been reported to date. Moreover, there is evidence on 

the incorporation of Pi into DNA in Ssch, coli which suggests

that only the 5 -triphosphates function in this capacity (Price, 
Darmstadt, Hinds and Zamenhof, I967)#

The discovery of polynucleotide ligase in Esch. coli 

(Gellert, 196?; Clivera and Lehman, 1967a; Zimmerman et al.,

1967; Gefter et al., I967) has led to the development of fresh 

ideas on the problems of the replication process. Polynucleotide



D 5

ligase can repair single-stranded nicks in double-stranded DNA
' i tby joining a free 5 -phosphate terminal to an adjacent 5 -hydroxyl

S. Igroup to form a 5 -5 . phosphodiester bond. The enzyme has also

been detected after T4 and T7 infection of Esch. coli (v/eiss 
and Richardson, 1967a; Cbzzarelli et al., 1967; Becker et al»,

1967) and has been purified 2oo-fold from rabbit bone marrow
(Lindahl and Sdelman, I968). While the Esch. coli polynucleo-

+tide ligase requires NAD as co-factor, the others utilise ATP.

In all cases, however, an intermediate adenylate-enzyme complex 

is formed (Little, Zimmerman, Oshinsky and Gellert, I967; Weiss 

and Richardson, 1967b). Olivers, Hall and Lehman (1968) have 

also detected a DNA-adenylate intermediate using the Bsch. coli 

enzyme. It seems likely that DNA ligases have a role in DNA 

repair and recombination processes although no evidence is avail

able on this point at present.

These enzymes have recently been implicated in the mechanism 

of DNA replication (see Okazaki et al., I968; NewmaUcand Hanawalt, 

1968; Mitra, Reichard, Inman, Bertsch and Kornberg, 1967; Oishi,

1968). Short, single-stranded pieces of DNA have been found 

during in vivo replication in Esch. coli, B. subtilis and phage- 

infected cells. This nascent DNA is shown to sediment more 

slowly than bulk cell DNA in alkaline sucrose gradients and to
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be susceptible to the action of exonuclease I (Okazaki et al,,

1968). Moreover, this low mol. v/t, M A  accumulates in large 

amounts in Esch. coli infected with T4 mutants having a tem

perature-sensitive ligase.

On the basis of these findings Okazaki et al. (1966)

and Mitra et al. (I967) have suggested that while synthesis 
I Iof the 5 — >5 chain occurs as in vitro, short segments are syn-

( t
thesised on the opposite chain also in the 5 — >3 direction, 

which are subsequently joined to the remainder of the chromosome 

by polynucleotide ligase. One disadvantage of this mechanism 

is that it implies a requirement for multiple initiation during
I

replication of the 9 -phosphate strand. This has led Englund 

et al. (1968) to suggest a modified mechanism which involves

covalent extension of primer strands rather than fresh starts,
/ \ 1 1(a; replication would begin as usual on the 5 - 5 template

strand and at some point switch to the complementary strand and
f 1

continue reading in the 5 - 5 direction until this segment of

the M A  is copied.

(b) the V-shaped product could be cleaved by a specific endo

nuclease at its apex.

(c) DNA synthesis could then be re-initiated on the 3 -hydroxyl 

terminal created by the cleavage. By repetition of the above 

process, the complete chromosome could be replicated using poly-
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/nucleotide ligase to join up the short pieces along the 5 - 

parental chain.

In theory, such mechanisms, which postulate that native 

DNA is replicated in a discontinuous fashion,overcome many of 

the problems arising from apparent differences in in vitro and 

in vivo replication studies. Thus

(1) Cairns (1965a) observed that synthesis was uni-directional 

and occurred simultaneously on both strands of the Esch. coli 

chromosome but the degree of resolution from autoradiographs 

would not enable him to detect discontinuities in replication 

over short segments of DNA.

(2) These mechanisms overcome the difficulty that Esch. coli 

DNA polymerase only catalyses synthesis of a 5  ̂ •“ 5  ̂ strand and

(3) They provide an explanation for the greater than 200 mole
cules of enzyme present per cell which had previously led to 

speculation that the Esch.coli DNA polymerase was only involved 

in the repair of DNA.

The critical experiments have still to be performed, 

however, and the precise control which may be required for the 

operation of such a replication scheme may be difficult to 

achieve at present in in vitro systems.
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9.2, Replication mechanisms in higher organisms 

Whether the mechanisms of replication postulated in 

bacterial systems will be acceptable for mammalian cells is as 

yet a matter for speculation. As previously discussed our 

lack,of knowledge about the precise-organisation of M A  within 

the chromosome is as yet a great difficulty in this respect.

Tsukada, Moriyama,. Lynch and Lieberman (lg68) have 
detected polydeoxyribonucleotide intermediates during M A  

replication in regenerating rat liver. After pulse-labelling 

of the M A  this intermediate is present as a slowly sedimenting 

fraction in alkaline sucrose gradients. It differs from the 

corresponding bacterial intermediate in being resistant to 

the action of exonuclease I. This result has been criticised 

on the grounds that the separation between bulk cell M A  and 

^pulse-labelled M A  is due to an artefact in the measurement 

of the mol. wt, of pulse-labelled M A  (Lehmann and Orraerod,

1969)* However, short pieces of M A  have been detected during 

M A  synthesis in isolated HeLa cell nuclei (Kidwell and Mueller,

1969). Addition of a cytoplasmic fraction which stimulates the 

nuclei 3-4-fold also promotes formation of larger M A  units. 

Efforts to determine the mode of M Â  synthesis in 

chromosomes have largely been carried out by autoradiographic
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techniques. Gentle lysis of the cells has shown the M A  to be 

arranged in the form of long fibres. Sasaki and Norman (I966) 

have isolated fibres more than 2 cm. long from human lymphocytes 
while Cairns (I966) and Huberman and Riggs (I968) have detected 

fibres 9OO pm. and 1800 pm. long respectively in HeLa and Chinese 
hamster cells, From the results of pulse-labelling experiments 

Cairns (I966) reports that these fibres contain many separately- 

replicated, tandomly-joined sections. Huberman and Riggs (I968) 

have confirmed this result and also detect the presence of fork

like growing points as in the Esch. coll chromosome (Cairns,

1963a). Earlier ideas that these long strands of DNA are 

divided into segments joined by protein linkers (Taylor, 1958) 
nov; seem improbable (Taylor, I963) and has led to the hypo

thesis that most, if not all, chromosomes contain a single DNA 

molecule.

Estimations of the size of independently replicating 

sections (replicons) in mammalian cells suggest that these units 

are much smaller than the Esch, coli chromosome. By 5 -bromo- 
deoxyuridine labelling of the DNA in L-5178 Y mouse leukaemic 
cellSjOkada (1968) concludes that the upper limit is 3*4 % lo"̂  
daltons and that the number of replicons per cell lies between 

1.6 and 4-1 % 10 .̂ Electron microscopic studies show small
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circular DNA-containing structures in pig sperm and wheat geirni 

of similar size (Hotta and Bassel, I969). Cairns (I966) 

suggests the presence of more than 100 replicating units per 

cell in HeLa cells * a separate estimate by Painter, Germany and 

Rasmussen (1966) indicates a figure of 10  ̂- 10  ̂replicons per 

cell.

It is interesting that, despite the fact that mammalian 

replicating sections appear to be much smaller than bacterial 

chromosomes, the rate of bacterial DNA replication (50pmper min., 
Cairns, 1965a) is much faster than the rate of mammalian DNA 

replication. Cairns (1966), from autoradiography on HeLa 

cells, concludes that the rate.of DNA replication is less than 

0,5Pauper min. Similar measurements (Huberman and Riggs, I966) 

suggest replication rates from 0.5 - l.Zp^n.per min.

Thus it may be that during the course of evolution, 

higher organisms may have subdivided large DNA molecules into 

smaller units to allow more efficient replication and to allow 

limited transcription of a small number of active replicating 

units (Littau, Allfrey, Frenster and Mirsky, I964; Paul and 

Gilmour, I966), Perhaps also the necessity for synthesising 

and organising the many chromosomal components of mammalian 

cells requires a lower rate of DNA replication.
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CHAPTER II - LAT3RIALS AND L-IS-THODS 

lo MATERIALS

1.1, Chemicals

grade") was obtained from Mann Research 

Laboratories, I56, Liberty Street, Nev/ York and Cs^SO^ (optical 

grade) from the Harshaw Chemical Company, Cleveland, Ohio,

HyQo Super Cel was purchased from Koch-Light Laboratories, Coln- 

brook, Bucks. Other inorganic chemicals were, wherever possible, 

ANALAR grade or equivalent and normally obtained from B.B.H. Bio- 

chemicals, Poole, Dorset,

1.2. Organic chemicals

1.2.1, Polyacrylamide gel reagents

Acry1amide was purchased from Koch-Light Laboratories,
IColnbrook, Bucks., N N-Methylene-Bis-Aerylamide from the British 

Drug Houses Limited,. B.D.H. Laboratory Chemicals Division, Poole, 

Dorset, N, N, N , H -Tetramethylethylenediaraine (TSSD) from 

Eastman Organic Chemicals, Rochester 5, New York and riboflavin 

from Mann Research Laboratories, I56, Liberty Street, New York,

1.2.2, Buffers

Tris base ("Trisma") was purchased from the Sigma Chemical 

Company, 5,900 DeKalb Street, St. Louis, Mo, as was glycine and 
glycyl-glycine. These buffers were dissolved in distilled H^O
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and the pH of the solution adjusted with HCl or NaOH as required. 

Buffer stocks were.normally made up in 5 or 10 x concentrated 
solutions and the pH checked, and altered if necessary, after 

dilution.

1.2.3* Inhibitors 

Actinomycin D was the generous gift of Merck, Sharp and 

Dohme, Rahway, Ne?f Jersey. Hydroxyurea was purchased from the 

Nutritional Biochemicals Corporation, Cleveland, Ohio and colcemid 

from CIBA Laboratories Limited, Horsham, Sussex.

1.2.4* Dyes

Acridine orange was obtained from George T. Curr Limited, 

London, 3.Y.6., as were methyl green and naphthalene black. 
Bromophenol blue was the product of B.D.H. Laboratory Chemicals 

Division, Poole, Dorset,

1,2,5* Materials for autoradiography 

Nuclear track emulsion (type L d) was supplied by Ilford 

Limited, Ilford, Essex, as was the ID, 19 developer, Amfix was

obtained from May & Baker Limited, Dagenham.

1.5* Biochemicals

1,3*1* Nucleic acids and proteins 

Salmon testes DNA and Escherichia coli DNA were purchased
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from the Worthington Biochemical Corporation, Freehold, New 

Jersey, Poly d(AT) and poly dG ; dC were obtained from Miles 

Laboratories Inc., Elkhart, Indiana. The soluble PNA prepar

ation employed was from Esch.coli, strain K-12 as supplied by 

Calbiochem, 10 V/yndharn Place, London, V/,1, Cytochrome c was 

the product of the Sigma Chemical Company, 35CO DeKalb Street, 

St. Louis, Mo., and bovine serum albumin (BSA) of the Armour 

Pharmaceutical Company Limited, London.

1.3*2* Enzymes

Enzymes were obtained from the following suppliers 

spleen phosphodiesterase (orthophospboric diester phospho- 

hydi’olase,‘ EC 3*l*4.l), micrococcal nuclease, pancreatic DNase 

and pancreatic DNase (polyribonucleotide 2-oligonucleotide 

transferase (cyclising), EC 2.7*7*16) from the Worthington Bio

chemical Corporation, Freehold, New Jersey.

Esch. coli alkaline phosphatase from the Nutritional
I

Biochemicals Corporation, Cleveland, Ohio. Snake venom 3 - 

nucleotidase (3 -ribonucleotide phosphohydrolase, EC 3*1*3*3) 
from the Sigma Chemical Company, St. Louis, Ho.

Exonuclease 1 was prepared from ICO g , of Esch. coli 

strain B supplied by the Sigma Chemical Company, St. Louis, Mo. 

(see section 2.3-3*)*

1.3*3* DNA and Erl A precursors
I

Non-radioactive deoxyribonucleoside 3 -triphosphates were
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purchased from Calbiochem, Los Angeles, California and P-L

He-Mj dTTP andBiochemicsls, Milwaukee, Wisconsin. 

dCT? were the products of Schwarz Bioresearch Inc., Orangeburg,

New York and dTTP of the International Chemical and

Nuclear Corporation, City of Industry, California, 

thymidine and uridine were purchased from the Radio

chemical Centre, Amersham, England.

1.4' Biological Materials

L 929 mouse cells (Sanford et al., 1948) were maintained 

in minimal essential Eagle's medium (ME.M; see Paul, I960) supple

mented with 10^ (̂ ) calf serum in the absence of antibiotics.

Cells and culture media were supplied by Plow Laboratories Limited, 

Eeatherhouse Road, Irvine, Scotland. Cultures were routinely 

tested for contamination by PPLO,

1.5. Materials for chromatograchy

Whatman filter paper No. 1, 3 and DE 81 (DSAE-paper) 

were purchased from H. Reeve Angel and Company Limited, London 

as was the ion exchange cellulose, DE 52.

Sephadex G200 and blue dextran 2000 were supplied by Phar

macia Pine Chemicals, Uppsala, Sweden.

1.6. Materials for liquid scintillation counting

1, 4 di-2-(5-phenyl oxagolyl)-benzene, (POPOP), and 2, 5- 

diphenyl oxasole (PPO) were purchased from Koch-Light laboratories.
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Colnbrook, Bucks, and "Hyamine" Hydroxide, 1 M in methanol, 

from Nuclear Enterprises (G,B,) Limited,Edinburgh, Scotland.

2. METHODS

2.1. General techniques

2.1.1, Protein and DNA estimations

Protein was measured by the method, of Lowry, Rosebrough, 

Parr and Randall (l95l)* Standard curves were constructed in 

the presence and absence of KOI and 2-raercaptoethanol which were 

found to interfere with the assay. A standard solution of BSA 

(l mg, per ml.) was always measured as a control.

DNA was determined by the method of Burton (1956) or 

directly by ultraviolet absorption using the relationship that 

a solution of DNA at 42.5 per ml, has an ^2^0= 1,0.

2.1.2. Isobutyrio acid paper chromatography*
The purity of deoxyribonucleoside triphosphate preparations 

was checked by chromatography on Whatman No. 1 filter paper using 

the conditions described by Keir and Smellie (1959)* The ascend

ing chromatogram was developed overnight in isobutyrio acid', 

ammonia (sp. gr. 0.88), 0.1 M-EDTA and H^O (lOO : 4*2 : 1.6 :

55*8, by vol.) as solvent. Rf values of the mono-, di- and tri

phosphates have been measured by Grav (1967).
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2.1.5* Measurements of radioactivity 

(a) material

This isotope 7/as prepared for counting by (l) precipi

tation of 0.05 ml. of DNA polymerase assay solution onto discs 

of Whatman No. 1 filter paper (2.5 cm. diam.) with 5̂  ̂(ç) tri

chloroacetic acid and BSA as co-precipitant, followed by 5 washes 

in (y) trichloracetic acid (15 ml. per disc), 2 washes in 

absolute ethanol and final drying in a small vol. of ether or 

(2) drying the. supernatant solution obtained by acid precipi

tation directly onto stainless steel planchettes, after neutral

isation with 7 M-KOH if necessary. Radioactivity was estimated 

on a Nuclear-Chicago gas-flow counter (98.?/̂  Helium and 1.5^ 

butane) with ,a background of 1-2 counts per min. (efficiency, 

approximately 5CÇp).

*(b) %  and material

DNA containing these isotopes was precipitated with 2 ml, 

of 5?̂  (y) trichloroacetic acid containing Hyflo Super Cel at 

20 g, per litre. A further 2 ml. of this solution was added to 

a Whatman No. 1 filter paper disc (2.5 cm, diam.) in a Millipore 

microanalysis filter holder (No. XX IOO25OO). Samples were 

then washed twice with 5 ml. of cold 5/̂  (™) trichloroacetic 

acid containing 0.05 M-Na^P^O^ by suspension and recentrifugation
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of the Bcid-insoluhle material at 800 g for 10 min. The 

acid“insoluhle suspension was transferred to the filter with 

washings using 5^ (̂ ) trichloroacetic acid, 0.05 M-Na^P^O^.

The pad of Hyflo Super Cel containing the dispersed precipi

tate was then washed with portions of the following;-

(i) 5 times with 10 ml. of 5^ (“ ) trichloroacetic acid con

taining 0.05 M-Na^PgO^.

(ii) 2 times with 10 ml, of absolute ethanol

(iii) 2 times with 2 ml. of ether

The DNA in the precipitate was dissolved by heatingMO.5 

ml. of 1 M.-"Hyamine" hydroxide solution for 20 min, at 60° in

a counting vial. After addition of 10 ml. of toluene-based

scintillator (o.5^ (̂ ) PPO and 0.0$^ (ç) POPOP), estimation of

the radioactivity in the doubly-labelled samples was performed

*with reference to standard counting efficiency curves using a

Nuclesr-Chicago (model 725) liquid scintillation spectrometer.
32Acid-soluble P counts could be detected independently of any 

counts present as described in the previous section (2.1.3-a.)

(c) material

(i) M A

DNA polymerase activity in cell extracts was routinely 

assayed by measuring the incorporation of dTTP into acid-

insoluble, alkali-stable material. Samples were prepared for 

counting exactly as described in section 2.1,3.b.,
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In vivo DNA synthesis was followed by estimating the in

corporation of Q hJ thymidine into acid-insoluble material In 

this case samples were transferred directly to Millipore filter 

holders without prior washing. 0.05 M-Na^O^P^ was also omitted 

from the washing solutions; otherwise the procedure 7/as identical 

to that already described (section 2,1.5. b).

(ii) _RNA

Incorporation of radioactivity into RiTA was carried out

using 5h uridine (see section 2,2.2,). Labelled RNA samples 

(l ml,) were incubated overnight at 57^ in 0,5 M-NaOH to.hydro

lyse the RNA, After cooling, 5 drops of 50̂ ' (” ) trichloroacetic 

acid were added to acidify the solution and the DNA was precipi

tated by addition of 2 ml. of cold 5̂ ' (~) trichloroacetic acid 

containing 20 g. per litre Hyflo Super Cel. The acid-insoluble 

material was removed by centrifugation at 800 g for 10 min. and 

an aliquot of the supernatant fraction measured for radioactivity 

in 10 ml, of dioxane-based scintillator (iCÿc (ç) naphthalene, 0.7^ 

(“ ) FPO and 0.05^ (” ) POPOP). Estimations were carried out on 

a Packard Tri-carb (model 4522) scintillation spectrometer with 

efficiencies of 15-20^.

2.2, Techniques associated with in vivo studies on L 929 

cells

2.2,1. Maintenance of cell cultures 

L 929 cells were routinely propagated as monolayer cultures
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in flat-sided Roux flasks or in rotating Winchester bottles.

Every 5-4 days the ’cells were harvested by trypsinisation, diluted 

in fresh medium to approximately 200,000 per ml. and inoculated 

into sterile bottles. If the cells were required for labelling 

experiments they were normally inoculated into 6 cm. plastic Petri 

dishes (5 ml, of cell suspension per dish). Petri dish cultures 

were incubated in an atmosphere of ^fo (~) CO^ in air.

2.2.2. Labelling of cells with DNA and RNA precursors 

Labelling of L 9^9 cells was carried out for various periods 

of time by addition t> the medium of 2^o. of the radioactive pre

cursors together with the appropriate ribo- or deoxyribonucleo

side at a final concentration of 5/U.M,

After labelling^ the cells were washed twice in warm, non

radioactive balanced salt solution (BSS: see Paul, I960) and

'the acid-soluble pool extracted by washing 4 times with 5 of 

5?̂  (ç) trichloroacetic acid. The cells were washed with 1 ml. 

of absolute ethanol and then dissolved in 0,5 ml. of O .5 M-NaOE.

The dissolved cell material was transferred with washings to a 

15 ml. glass, conical centrifuge tube. The final sample (l ml.) 

was assayed for radioactivity in DNA and/or RNA as previously 

described (section 2,1.5. 0, i and ii).



7 Ü

2,2.5. Autoradiography.

For autoradiography, the cells were labelled with 5 pc, 

of thymidine in the presence of 1 p.II non-radioactive

thymidine. After a 1 hr, incubation the cells were rapidly 

washed twice with 5 ml, of warm, non-radioactive BSS and fixed 

in 5 ml. of absolute alcohol: acetic acid (9 : 1, for I5 

min. The cells were then rinsed in this solution for a further 

minute and kept in 70/ (“ ) ethanol until required.

Immediately before use, the dishes wore left in running 

tap water for about 20 min, to remove water-soluble radioactivity 

from the cells. Nuclear track emulsion (type L 4) uas spread 

evenly over the dishes in a very thin layer. After drying, they 

were exposed for 7 days before development in ID, I9 developer for 2 

min., followed by 2 min. in a 1 in 5 dilution of Amfix. Dishes 

were immediately rinsed in tap water and stained in 0.1/ (™) aqueous 

methyl green. Microscopic examination showed background grains 

to be almost zero and nuclei with 2 grains or more over them were 

considered to be labelled. Counts were made from 2 fields on each 

dish and the average result for / nuclei labelled was calculated.

2.5. Techniques associated with studies of enz.\miic 

activity in L 9^9 cell extracts

2.5.1. Harvesting of cells and preparation of cell extract: 

For isolation of nuclei, 2-5 day old, rapidly growing cul

tures were normally used. The cells were scraped off into culture
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medium and centrifuged at 400 g for 10 min, at 5°, All sub

sequent operations during the isolation were carried out at 
0 '0-5 • To remove any remaining medium from the cell pellet

the cells were successively washed with 5 ml. portions of 0.9/

(^)NaCl and 0.02 M-tris-HCl, pH 7*5 containing 0.25 M-sucrose

(buffered sucrose) and centrifuged as before. Disruption of
7the cells, suspended at 1-2 x 10 per ml, in buffered sucrose, 

was carried out using a Potter-Slvehjem homogeniser (Teflon 

pestle, 0,508 in, diam*; tube, 2 ml, capacity; both obtained 

from Sireica, Jamaica, New York, U.S.A.; clearance between tube 

and pestle 0,004-0.006 in.).

The homogenate was centrifuged at 800 g for 10 min, and 

the supernatant fraction used as a source of soluble enzyme 

after spinning at 105,000 g for 60 min. (Spinco model L ultra- 

,centrifuge, rotor no, 40). Nuclei were washed twice more in 

the same vol. of buffered sucrose before final suspension in the 

same medium as a source of nuclear DNA polymerase. The integrity 

and purity of nuclei were checked by fluorescent microscopy after 

staining with 1/ (” ) acridine orange.

2.3*2, Disruption of nuclei

(a) Preparation of sonicated extracts of nuclei
n

Sonication of nuclear preparations (1-2 x 10 per ml.) in 

buffered sucrose was carried out in 4-6 ml. batches using a Dawe
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Soïiiprobe fitted with a brass sample holder. Treatment was for 

40 sec. at 5 amps (setting 6) in 2 x 20 sec. bursts. Sonicated 

extracts were observed by fluorescent microscopy to check that 

nuclear disruption was complete. After centrifugation of soni

cated preparations at 105,000 g for 45 min. the supernatant v/as 

retained as a source of nuclear enzyme.

(b) Preparation of KOI extracts of nuclei

This procedure was carried out essentially as described

by Patel et al. (1967). Nuclear preparations were suspended in

1.5 M“KG1 in a Waring blender (setting 5) to disperse the gela

tinous material. The solution was diluted to O.I5 M-KCl by the 

addition of 0.02 M-tris-HCl, pH 7*5 at which concentration. DNA 

and histones recombine and precipitate out. The insoluble material 

was pelleted by centrifugation at 800 g for 10 min. leaving the 

'non-histone material in the supernatant fraction. This fraction 

was retained as a source of DNA polymerase.

2.5,5" DNA preparations

(a) Isolation of [̂ p̂j DNA from Esch. coli

DNA from Esch. coli was routinely prepared in the

department using a modification of the method of Lehman (1960). 

Approximately 5 g* of cells, grown in 200 ml, of glycerol-lactate 

medium containing orthophosphate (0.2 pg. at 50 o. perpg.)
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were sedimented by centrifugation for 20 min. at 12,000 g  in 

the 6 X 250 ml. rotor of the M.S.E. 18 centrifuge. They were 

then washed in standard saiine-citrate (SSC: Ü.OI5 M-sodium

citrate, 0,15 M-NaCl, pH 7*0), recentrifuged and resuspended in 

100 ml, of SSC, 1 g. of sodium dodecyl sulphate was dissolved 

in the solution which was then incubated at 60° for 10 min, 

NaClO^ was added to 1 M and the DNA extracted with an equal vol.

NaClO^ was added to'1"M and the DNA extracted"with an equal vbl 

of chloroform-isoamyl alcohol (25 : 1» “ )• The interphase

of oblnrnfnT^ —isoamvl ad o.nhol._ (23 : 1 . . .Tb(=> intA^nhaaA

in

SSC and treating with sodium dodecyl sulphate and chloroform- 

isoamyl alcohol as previously. The process was repeated until 

a negligible interphase remained. The DNA was precipitated 

from the pooled top layers of each extraction by 2 vol. of 

absolute ethanol and redissolved in -^th SSC, Pancreatic 

ribonuclease v/as added at 20 pg. per ml, and the solution in-
*

cubated at 57^ for 30 min. The DNA was then extracted twice 

by addition of 1 vol. of ^Qffo (̂ ) redistilled phenol in SSC.

Two ethanol precipitations were performed and the DNA was dis

solved in 0.02 M-KCl and dialysed against 0,02 M-KCl for I6 hr. 

Acid-insoluble backgrounds were in the region of 2/.

(b) Dénaturation of DNA

DNA and commercially obtained salmon testes and
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Esch. coli DNA (dissolved in 0.05 M-KCl at 2 mg, per ml.) were 

heated at 100° for 10 min. and then rapidly cooled to 0° in ice 

water.

On occasions Esch. coli DNA was alkali-denatured. The 

DNA solution was made 0.5 M with respect to NaOH and left for 

10 min. at room temperature. The pH was readjusted to pH 7*5 

by addition of 1 N-HCl and a few drops of 0.8 M-tris-HCl, pH

7 ,5, This solution was then dialysed for 4 hr. against 100 

vol. of 0.05 M-KCl.

(c) Activation of DNA

■ Treatment of DNA with small amounts of pancreatic DNase 

increases the priming efficiency of the DNA in DNA polymerase 

assays. Activation of salmon testes DNA was carried out by a 

modification of the method of Aposhian and Kornberg (1962),

The DNA (2 mg.) was exposed to a variety of concentrations 

of pancreatic DNase (lOOpg. to 10  ̂pg. ) in a solution of 1 ml. 

containing O .5 mg. of BSA, 5 pmoles of MgCl^ and 50 H moles of 

tris-HGl, pH 7*5* After I5 min. at 57^» the DNA solutions were 

rapidly cooled and frozen for later use in DNA polymerase assays.

2.5.4* Enzyme assay procedures

(a) Assay of DNA polymerase activity

The basic assay system was that of Shepherd and Keir (1966).
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Nuclear and supernatant fractions containing DNA polymerase 

activity were incubated at 57° for 60 min. in a total vol. of 

0,25 ml* with 5p moles of tris-HCl buffer, pH 7.5, 1 H mole of 

MgClg, 15 pinoles of KOI, 0.1 p mole of HDTA, 1.5 p moles of

2-mercaptoethanol, 100 pg. of DNA and 50 rrp moles each of dATP,

aOTP, dCTP and [îie-h]j or dTTP, On occasions

dCTP was also employed. The reaction was terminated by the 

addition of 0.p5 ml. of 2 N-NaOH and samples were left over

night at 57*̂  before being prepared for radioactive counting as 

described in sections 2,1,5. a or o.

DNA polymerase activity is expressed as mp moles dTlvIP or 

dCTP incorporated into acid-insoluble, alkali-stable material 

per hr, per mg. of protein at 37°*

■(b) Assay of DNase activity

DNase activity in nuclear and supernatant preparations 

was estimated under DNA polymerase assay conditions by measure

ment of the degradation of native or heat-denatured DNA^radio

active DNAjto acid-soluble fragments.

The reaction vol., components and time of incubation were 

similar to that for DNA polymerase but the deoxyribonucleoside 

triphosphates were omitted. In addition 1C pg. of Esch. coli
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DNA was substituted for the DNA. primer used in polymerase

assays. ■ The incubation was terminated by cooling the reaction

mixture to 0° in iced water. 0.2 ml. of BSA at 10 pg, per ml.

and 0.6 ml, of 1 N-perchloric acid were then added. After 10

min, at 0° the assay tubes were centrifuged at 800 g for 10.
52min, and the P material in an aliquot of the supernatant frac

tion was measured as described in section

DNase activity was expressed as pg, of radioactive DNA 

rendered acid-soluble per hr,

(c) Assay of cytochrome oxidase

Cytochrome oxidase activity (cytochrome o : 0^ oxidoreduo- 

tase, EC l,9,5»l) was measured in nuclear fractions and cell • 

homogenates exactly as described by Gooperstein and Dszarow (l95l)* 

The activity of cytochrome oxidase was expressed as ^

*log (ferrocytochrcme c) per min, at room temperature.

(d) Assays of micrococcal nuclease, calf spleen phosuhodiester- 

ase and alkaline phosrhatase

12^0 DNA, synthesised by nuclear and supernatant extracts
I

of L 929 cells, was degraded to the 3 -monophosphates as reported 

by Josse and Swartz (1963), The conditions of assay of micrococcal 

nuclease and calf spleen phosphodiesterase were exactly as des

cribed in the above paper.



? 7

The assay for completeness of digestion of the radioactive

DNA employing Esch. coli alkaline phosphatase was also performed

according to the procedures layed down hy Josse and Swartz (1965).

2.3*5* Preparation of exonuclease I

(a) Purification

Exonuclease X was purified from sonicated extracts of Esch, 

coli, strain B a.s described by Lehman (1960). The purification 

(approximately 140»fold) involves a protamine sulphate precipi

tation and elution, an (NH.)_80. concentration and fractionation4 4
step followed by chromatography on a LEAE-cellulose column. The 

enzyme at this stage of the purification has only slight activity
I

on native DNA but attacks single-stranded DNA from the 3 -hydroxyl
t

end with the liberation of 5 -mononucleotides in a stepwise manner

until the terminal dinucleotide is reached,
*
(b) Assay of exonuclease I

The assay system is similar to that employed for measur

ing DNase activity in crude extracts and measures the conversion 

of DNA to acid-soluble fragments. The incubation mixture

was essentially as described by Lehman and Nussbaum (1964) and 

contains 20 moles of glycine buffer, pH 9.2, 2 moles of MgCl^, 

0*5 p. moles of 2-mercaptoethanol and 1-5 pg. of DNA. In

cubations were usually carried out in a vol. of O .3 ml. for I5
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min, at 37°î then 0.2 ml. of cold "carrier'' DNA was added (sal«

men testes DNA, 2 mg. per ml.) and 0.5 ml. of cold 0.35 N-perchloric

acid. After 5 min. at 0*̂ the resulting precipitate is pelleted

hy centrifugation at 12,000 g for 3 min. and a sample of the
52supernatant fraction measured for P acid-soluble material 

(section 2.1.3. )̂ •

(c) Characteristics of DEAE-cellulose fraction

To test that our purified preparation from Esch. coli 3 

(DEAH-cellulose fraction) had the properties associated with exo

nuclease I, its activity on native and heat-denatured Esch, coli 

DNA was compared under conditions in which the total DNA 

would not be rendered acid-soluble. Fig, 2.1. shows that a 20̂ 1 

degradation of native DNA occurs during the incubation while 60/b 

of the denatured DNA is rendered acid-soluble. Addition of 

^more enzyme at 60 min, results in a further 25/̂ breakdown of 

single-stranded DNA in the next 30 min. while no further hydro

lysis of native DNA takes place.

In Pig. 2,2. the capacity of exonuclease I to completely 

degrade single-stranded DNA is seen under conditions in which 

only a 20^ degradation of native DNA is observed.

(d) Cs^S(^ gradient analysis of Esch. coli DNA

The kinetics of hydrolysis of a fraction of the native



Time course of activity of exonuclease I (PKAE-oellulose fraction)

ative and heat-denatured Esch, coli DNA

A preparation of exonuclease I (see section 2.3.5* n) was 

assayed for activity on native and heat-denatured primer using 

the standard assay (see section 2.3*5* h). Enzymic activity 

is expressed as the fc DNA rendered acid-soluble in a given time# 

There were 5 M-g. of DNA (l,150 c.p.m. per }Jtg.) and 20 [rg, of

protein per assay.

O O denatured DNA rendered acid-soluhle

o——O native DNA rendered acid-soluhle
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Fie. 11.2.

Variation in activity of exonuclease I with protein concentration.

Using the standard assay varying amounts of exonuclease 

I (DSAE-cellulose fraction) v/ere added and tested for their 

activity on native or heat-denatured UNA (see Fig. 11.1 for

details). The specific activity of the DNA vms I56O c.p.m.

per H-g. (5 M-g. per assay).

denatured DNA rendered acid-soluble

0— ^  native DNA rendered acid-soluhle
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Fig.. 11. ̂ .

Analysis of Ssch. coli DNA on Cs^SO^ gradients.

Native and alkali-denatured (see section 2.5.5. D) Esch, 

coli non-radioactive and (^^pj DNA T/as subjected to analysis as 

described in section 2.5.6. g.

^ ®  ^260
O O  acid-precipitable l  ̂ pj DNA

(b) native• Esch. coli DNA

(a) alkali-denatured Esch. coli DNA

(c) - native + alkali-denatured Esch. coli DNA (equal amounts)

(d) native Esch. coli [̂ ~p) DNA
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M A  *by exonuclease I suggested that this activity might represent

the presence of single-stranded M A  fragments in the native Esch.

coli DNA preparation. Fig. 2,$, shov.’s the optical density

profiles of native and alkali-denatured Esch. coli DNA on Cs„SO.
52gradients spun to equilibrium. The P counts of our isolated 

DNA sample correspond closely to peaks of native Esch. coli DNA 

with less than 2fo of the total counts running in the region of 

single-stranded DNA. It may be, however, that the native DNA 

sample contains "frayed" ends and partially single-stranded 

regions which are susceptible to exonuclease I attack.

(e) The /presence of endonuclease I activity in exonuclease I 

preparations

Lehman and Nussbaum (1964) have purified exonuclease I 

(DEAE-cellulose fraction) a further 10»fold on hydroxylapatlte 

'columns and have shown that the enzyme now exhibits no significant 

activity for double-stranded DNA. This increased specificity 

is attributed to the removal of traces of endonuclease I activity 

during the final purification stage.

To examine whether the activity on native DNA in our pre

parations might be caused by endonuclease I contamination, the 

rate of hydrolysis of heat-denatured DNA was followed in the



Fig. 11,4.

The presence of endonuclease I activity in exonuclease I pre

parations.

Exonuclease I activity (DEAE-cellulose fraction) v/as 

assayed under routine conditions (see Fig. 11.l) in the presence 

of increasing amounts a commercial preparation of soluble ENA 

(see section 1,3.1.). There were 40 H-g. of protein per assay 

and of heat-denatured DNA (lOlO c.p.m. per H-g.),

Results are expressed as a percentage of the acid-soluble radio

activity in control assays containing no soluble RNA,

O— O °fo control activity
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presence of increasing amounts of a soluble BNA preparation from 

Esch. coli (see section l.^.l.). RNA, especially tRîTA is known 

to be a potent inhibitor of endonuclease I action (Lehman and 

Nussbaum, I964).

Indication of the presence of endonuclease I comes from 

the 30-49/̂  decrease in the rate of hydrolysis of DNA, even with 

only 0,1 |jLg. of soluble RNA present per assay. Similar results 

are reported by Lehman and Nussbaum (1964).

(f) DEAE-paper chromatography of the products of exonuclease I ■ 

digestion

The mode of action of the purified exonuclease I preparation 

was examined by LSAE-paper chromatography of the products of re

action.

High mol. wt. DNA and oligonucleotides of chain length
«
greater than 30 remain at the origin (Furlong, I966), Smaller 

oligonucleotides run with Rf values 0-0,2 while purine and pyri

midine nucleotides have Rf values 0.5 and 0.7 respectively 

(Morrison, J., Ph.D. Thesis, University of Glasgow, I967). There 

is also some broadening of the purine mononucleotide peak as there 

is a partial separation of dAMP and dGMP,

Fig. 2.5. shows that the purified enzyme is an exonuclease



DËAE-paper chromatography of the products of exonuclease I 

digestion.

DNAExonuclease I hydrolysis of heat-denatured 

was carried out as in Pig. 11 .1. and the products of digestion 

analysed by chromatography on DEAE-paper as described in section

2*5,6, d. There were 50 H-g* of protein and 5 H-g* of DNA (750
\ Ic.p.m, per p-g. j per assay. In some cases, 10 M-g, of 5 -

nucleotidase (see section 1,5.2.) vms added for a 15 min, incu

bation after exonuclease I treatment.

(a) unincubated sample

(b) 5 min. digestion with exonuclease I

(c) 20 min. digestion with exonuclease I

(d) 20 min, digestion with exonuclease I + further 15 min.
I

with 5 - nucleotidase
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as the primary products of reaction are purine and pyrimidine 

mononucleotides having Rf values of 0.54 and 0.74 respectively.

ITo endonuclease activity is observed by this method, although 

it should be remembered that the products of endonuclease action 

would be good substrates for exonuclease I.

Treatment of the products of enzymic hydrolysis with
. I
5 “nucleotidase converts the 2 peaks of radioactivity corres

ponding to purine and pyrimidine monophosphates to a single peak 

with Rf 0.8 which corresponds to inorganic phosphate. As exo

nuclease I degrades single-stranded DNA sequentially from the
I t

5 -hydroxyl terminus with the release of deoxyribonucleoside 5 - 

monophosphates, our enzymic preparation thus exhibits all the 

characteristics associated with.this enzyme. It should be 

noted that in these experiments the pyrimidine mononucleotide 

peak was broader than the purine mononucleotide peak, contrary 

*to that reported by Morrison. The presence of phosphatase 

activity in the exonuclease I preparation as reported by Lehman's 

group would 'account for this discrepancy,

2.5.0. Purification and fractionation procedures

(a) pH 5 precipitation

Sonicated nuclear and supernatant preparations were main

tained at 0-5^ and 0.1 N-acetic acid added dropwise with constant
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stirring. The pH of the solutions uss constantly monitored 

until pH 5 was reached. Solutions were kept at 0^ for 5 min. 

before centrifuging at 800 g for 10 min. at 0-$^. The 

resulting supernatant was discarded and the pellet redissolved 

in buffered sucrose and a few drops of 0.8 M-tris-HCl, pH 7*5 

added if required.

(b) Pel filtration on Sephadex G200

Sephadex 0200 was pre-swollen, equilibrated and packed 

into 24 X 1.4 cm. columns according to the supplier's instructions. 

Void volume determinations were carried out using blue dextran 

2000, The buffer employed was 0.02 M-tris-ECl, pH 7*5 con

taining 5 mM-2-mercaptoethanol. If fractionation of D M  poly

merase activity was required O.I5 M-KCl was included in the 

eluting buffer. Flow rates were 10-1$ ml, per hr. and 1.0-1.2 

ml. fractions were collected.

(c) DFAE-cellulose columns

The micro-granular DSAE-cellulose (DE 52) was prepared 

as indicated in the supplier’s instructions. The standard 

buffer was 0.02 M-tris-HGl, pH 7*5 containing 5 mM-2-mercapto- 

ethanol and gradient elution was performed using KOI solutions 

in standard buffer. Samples were applied to a 1 x I5 cm. 

column in standard buffer, the column washed with buffer to 

remove non-adsorbed material and elution commenced by applying
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a linear gradient of KCl (50 ml. of standard buffer in the mixing 

beaker and $0 ml. of buffer containing 0.55 H-KCl in the reser- 

voir beaker}. Sample vols, were approximately 1.5 ml. and 

flow rate was 10-15 ml. per hr.

(d) Chromatography on DEAE-paper

The products of exonuclease I and DNase action could be

applied directly onto sheets of DEAE-cellulose (DE 81), 28 x

11 cm. (Furlong, I966), 0.1 ml. samples were spotted 5 cm. from

the top of the chromatogram which was developed for 1-2 hr. in

the descending direction using 0*75 M-ammonium bicarbonate, pH

8,6, as solvent. After drying the chromatogram was cut into
52strips, 4 cm, in width, and scanned for P using the Nuclear- 

Chic ago Model III Actigraph, Kf values of the mono-, di- and 

-triphosphates are.described by Furlong (1966),

(e) Polyacrylamide gel electrophoresis

Tiie details of gel preparation and electrophoretic separ

ation and gel staining are exactly as described by Davis (1964). 

Electrophoresis was carried out at 5-8^ for 2-2^ hr, using brorao- 

phenol blue marker. The riboflavin-TEMED system was employed 

to promote polymerisation as it was thought that ammonium per

sulphate, a strong oxidising agent, would cause dénaturation of 

proteins.



s 9

After electrophoresis gels v/ere removed quickly and 

excess "buffer adsorbed on blotting paper. The gel was sliced 

into 4 mm. fractions with a razor blade by placing the gel 

between 2 steel combs held apart and perfectly aligned by 

means of a perspex block in. by f- in. by J- in* The cylin

drical sections obtained were again halved to give a final vol. 

of approximately 0.1 ml. and the gel slices immersed in DNA 

polymerase assay mixture at 0-5^ for 50 min. to allow time for 

diffusion. Samples were than incubated at 57*̂  for 60 min, 

in the usual manner. After incubation the gel slices were 

disrupted by homogenisation and the samples prepared for liquid 

scintillation counting as described in section 2.1.5. o,

(f) Nearest neighbour frecuency analysis

The distribution of dTMiP in the DNA product

was examined by the technique described by Josse and Swartz 

(1965), The following modifications were employed:-

(i) The deoxyribonucleoside 5 -monophosphates resulting 

fern the digestion of the DNA product were separated by high 

voltage electrophoresis on Nhatman 5 MM paper. The voltage 

was 5,000-4,000 (48-64 volts per cm.). Electrophoresis was 

carried out for 2-2-J- hr, in 0.05 M-ammonium formate, pH 5.5.

(ii) Radioactivity in the spots was determined by 

immersing each spot in 10 ml, of toluene-base scintillator 

(0,5!/̂ PRO and 0.05^ PCPOP) and counting in a Nuclear-Chicago
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liquid scintillation spectrometer. The areas between the 

spots and the area'corresponding to inorganic phosphate were 

counted and shown to contain negligible radioactivity.

(g) GSgSO^ gradients

This technique was performed to check for the presence 

of single-stranded DNA in isolated Esch. coli DNA pre

parations. CSgSO^ gradients give better resolution of double- 

and single-stranded DNA species than do CsGl gradients (Szybalkski, 

1968). To 1-2 O.D, units of native or alkali-denatured Esch, 

coli DNA in l.p ml. of 0.05 M-hOl was added 0,7 ml. of a 

saturated Gs^SO^ solution and the initial density adjusted to 

1,42 gm. per cm^* Centrifugation of the Cs^SO^ solutions (under 

paraffin) was carried out in the Spinco S'J 50 rotor at 45,000 

'rev. per min. (l65,000 g) for IB hr. at 20^, The tubes were 

removed and 2-drop fractions collected by puncturing the bottom 

of the tube. The fractions were diluted with 0.5 ml. of H^O 

and or radioactivity measured (section 2.1.5, c).

(h) Neutral and alkaline sucrose gradients

This technique was performed to examine whether the 

newly-synthesised DNA formed by partially purified DNA poly

merase preparations from L 929 cells was covalently attached 

to the primer DNA,
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(i) Neutral sucrose gradients

0.15 ml. of [̂ h] DNA solution (assay mixture dialysed 

for 48 hr. against 4 % 100 vol, of 0.02 M-tris-HCl, pH 7*5 to 

remove deoxyribonucleoside triphosphates) was layered on top of 

a 5 ml, sucrose gradient (5-20̂ u sucrose in 1 M-NaCl, 1 mM-EDTA 

and 0,02 M-tris-HCl, pH 7.5) and centrifuged for 10 hr. at 24,000 

rev. per min, (44,000 g) at 4  ̂in a Spinco S'il 59L rotor. Two- 

drop fractions were collected, diluted to 0,5 ml. with distilled 

H^O, and assayed at and for radioactivity (section 2.1.5, a).

(ii) Alkaline sucrose gradients

The procedure was similar to that for neutral sucrose 

gradients with the following modifications :-
1*5 1(a) DNA was alkali-denatured before layering on the gradient.

(b) The gradient contained 0.1 îvI-NaOK,
*

(c) Centrifugation was for 16 hr. at 32,000 rev. per tain.
(84,000 g).



RESULTS
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CHAPTER III - RESULTS

1. STUDIES ON L 929 CELLS IN STATIONARY 'PHASE

1.1. Introduction

Regenerating liver (Fujioka et al., 19^3î Lieberman and 

Kane, I965), primary cultures of rabbit kidney cortex cells 

(Llebertnan et al., 19^3î Adams et al., I965) and the lympho- 

cyte>-PHA system (see %ihg, 1968) have been widely employed to 

Investigate the sequence of events during the transition from 

the resting (Cq) state to one of rapid cell proliferation. All 

3 systems suffer from several disadvantages.

(a) The degree of synchrony obtained in all cases is relatively 

poor.

(b) The work on regenerating liver is subject to variation be

tween animals. In addition, it is difficult to take accountI
of all the parameters in such a complex system. For instance, 

Bucher and Swaffield (1965), using starved rats, find that the 

UTP pool increases significantly after partial hepatectomy. If 

the rats are fed ad libitum, however, the 2-fold rise in the rate 

of ENA sythesis is accompanied by only a 20-5C^ increase in the 

specific activity of the uridylate pool (Ove, Adams, Abrams and 

Lieberman (1966).
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(c) Ail 5 systems require the use of difficult manipulations 

to make accurate quantitative analyses,

(d). RegeiHrating liver and kidney cortex cells contain a 

mixture of cell types which may respond differently to ex

ternal stimuli.

The present work has been concerned with establishing 

a parallel system, using cultures of L 9^9 cells with a view 

to elucidating some of the biochemical events required for 

the initiation of DNA replication and cell division. If "out 

of cycle" (G^) cells could be obtained in culture, ease of mani

pulation and the use of a more simplified system would enable 

more precise studies to be made during the changeover from G^ 

to S phase than those with whole animals or primary systems.

1.2, The rate of DNA synthesis in cultures of L 929 

cells at high population density

Weissman et al. (1960) have followed the induction of 

thymidine and dTÎ^ kinases (ATP: thymidinemonophosphate phos

photransferase, EC 2,7.4.0) in L cells which had been brought 

to resting phase by exhaustion of the medium. In order to

overcome the criticism that stationary cells, obtained by 

this procedure, cease, to synthesise DNA because of starvation or 

cytotoxic effects, fresh medium is substituted on every alternate 

day during the experiment. Pig. 111.1 shows the rate of DNA
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synthesis in L cells as a function of the age of the culture.

The rate.of DNA synthesis per cell on day 1 is low and there 

is little increase in cell number during this period. This 

Initial lag represents the time required for the cells to be

come adapted to their new environment (see Chapter 1, section 

1.5), Cell proliferation and the rate of DNA synthesis are 

at a maximum on day 5» after which there is a gradual decline 

in both these parameters as the cultures become more densely- 

populated. After 9 days, the rate of DNA synthesis is only 

of that observed during maximum growth, while no increase 

in cell number is observed after 7 days, by which time the cells 

have increased IZ-fold over the initial value.

Some stimulation (approximately 2-fold) in the rate of 

DNA synthesis is observed if the medium is replaced 6 hr, before 

labelling the cells with thymidine. This effect may be

caused by the presence of a number of growth-promoting factors 

in the serum (see Harris, I964) or by the removal of an inhibitor 

of cell multiplication. Bürk (1966) has described an inhibitor 

produced by BHK 21 (CI5) cells in culture which is not produced 

by a polyoma-transformed derivative, Py Y cells. Even in 

fresh medium, however, the capacity of stationary L 929 cultures 

to synthesise DNA is markedly reduced, being only 5-10^ of the 

values obtained during logarithmic growth, L 929 cells could 

be maintained for 20 days or more with little or no detachment



Fig. 111.1.

The rate of DNA synthesis in cultures of L 929 cells grov/n to 

high population density

Cultures of L 929 cells v/ere established at approximately 

100,000 cells per ml, in 2 o%,, flat-sided, glass medicine bottles 

(5 ml. per bottle). The medium was replaced every second day 

throughout the experiment. The rate of DNA synthesis during 

growth of the cultures v/as followed by pulse-labelling the cells 

for 60 min. with 2 pc. of thymidine (80 pc. per \i mole).

The final concentration of thymidine in the medium was 5 H-M and 

incorporation of radioactivity into DNA v/as determined as in 

Methods, section 2,1,5. c.i. Cell number was estimated by count

ing aliquots of the cell suspension on a Coulter counter, model D,

C- o  incorporation into DNA (24 hr. following medium

replacement)

O— — O incorporation into DNA (6 hr, following medium 

replacement) 

cell number
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of cells from the glass. A good recovery of cells occurs when 

they are eventually suhcultured in v;arin, fresh medium.

1.5, The release of L 9^9 cells from stationary phase

Ten day old cultures of stationary L 9^9 cells are har

vested hy trypsinisation and diluted in fresh medium to approxi

mately 200,000 cells per ml, A synchronised burst of D M  syn

thesis is observed after a lag period of 16 hr*. (Fig. 111.2),

During the period from 12-20 hr*, there is a 10=20-fold increase 

in the incorporation of thymidine into DKA with a peak at

around 20 hr., when ^Ofc of the population are in S phase, A 

second broader peak of Incorporation is detected at around 3 9 hr. 

after release.

Control cells, set up from rapidly growing cultures also 

exhibit some degree of synchrony. This suggests that the 

trypsinisation procedures or cooling of the cells during initia

tion of the cultures makes some contribution towards the syn

chronisation process. While the rate of DNA synthesis is initially 

quite high in control cells, there is a gradual decline with a 

minimum rate of DNA replication occurring at 8-10 hr*. Such 

results suggest that cells are prevented, at least temporarily, 

•from entering S phase. Newton and Wildy (1959) have shown that 

brief cooling of HeLa cells to 4  ̂for 60 min. delays their entiy



Fig. 111,2.

The release of L 929 cells from stationary phase,

Ten day old cultures of L 929^were diluted to approxi

mately 200,000 per ml. (5 ml. per dish). Control dishes were 

also set up from rapidly growing cultures. The rate of DNA syn

thesis at various times thereafter was estimated as described in 

the legend to Pig. 111,1, Specific activity of thymidine

was 1551^0, per p. mole. For autoradiography, the cells were 

labelled with 5 p-c. thymidine (355 p-o. per \x mole) for 60

min, and subsequently treated as described in Methods, section 

2,2,3.

' c>— o incorporation into DNA

o  O cells labelled
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into S phase.

1.4. Effect of colcèmid on the rate of SNA synthesis in

released-stationary L 929 cells

To examine whether the second broad peak of D M  synthesis

at around 39 hr.- is caused by cells re-entering S after one

replication cycle, the previous experiment is repeated in the 

presence of the mitotic inhibitor, cclcemid. Fig. 111.3 shows 

the rate of DNA synthesis and ^ S cells at various times after 

release from stationary phase. On this occasion colcemid at 

0.25 H-g. per ml, is added at zero time.

No second peak of DNA synthesis is observed by ^ 6 hr.

strongly suggesting that this secondary increase in the rate of 

DNA synthesis is due to cells entering S for a second round of 

replication. As a normal first peak of DNA synthesis is found
I

in the presence of the drug, it appears that the stationary cells

are initially in Gq or Ĝ  ̂phase and can therefore proceed nor

mally through the S and G^ periods before being blocked at mitosis.

The usual result of treatment with colcemid at O .25 p g. 

per is to promote the progressive appearance of large num

bers of metaphase-blocked cells (Puck and Steffen, I963)*

However, in our experiments with L cells, we have failed to observe



Fig. 111.3.
The effect of colcemid on the rate of DNA synthesis in released- 

stationary cells.

The procedure was identical to that used in Pig, 111,2, 

except that colcemid (0,25 [rg, por ml,) was added at zero time,

e-— Q incorporation into DNA in released-stationary

cells

-O o'o cells labelled
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an accumulation of cells in metaphase. On the other hand, after 

20 hr a significant proportion of the cells,treated with col

cemid, appear to he multi-nucleate, , Rao and Engelberg (I964) 

report that L cells, treated with colcemid, are only arrested at 

metaphase for 10-12 hr,. during which time they form multi-nucleate 

cells and subsequently re-enter interphase. The time scale of 

our experiments is not sufficiently long to detect any of these 

colcemid-blocked L cells should they eventually re-enter S phase.

1.5* The rates of RITA synthesis in L 9^9 cells released 

from stationary phase

The G-q-S phase transition in regenerating liver and PHA- 

stimulated lymphocytes is characterised by early increases in 

the rate of RNA synthesis (Fujioka et al., 196$; see Ling, I968), 

In rabbit kidney cortex cells a doubling in the rate of RNA syn-
*

thesis occurs between 12 and 22 hr* . after establishment in 

culture. These elevated rates of ENA synthesis are required 

for subsequent DNA replication and lo?/ levels of actinomycin D 

or FPA completely abolish this rise while not preventing the 

normal rates of RNA turnover (Lieberman et al., 196$).

Changes in the rate of ENA synthesis in L 929 cells are 

examined after release from stationary phase by pulse-labelling



The rate of RNA synthesis in cultures of L 929 cells released 

from stationary phase.

10 day old cultures of L 9^9 cells were subcultured 

into fresh medium as in Fig. 111.2, The cells were pulse- 

labelled for 60 min. at various times thereafter with l|j,c. 

of uridine (6? p. c. per \i mole) at a final concentration

of 5 pM. Incorporation of radioactivity into RNA was determined 

as described in Methods, section 2.1,$. c.ii,

0— 3 incorporation into RNA
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at various times with uridine. It can be seen that, in

contrast to the work on other resting cell systems, no marked 

changes in the rates of RNA synthesis, proceeding the onset of 

DNA synthesis, are observed after release from stationary phase 

(Fig, 111.4).

1.6. The rate of M A  synthesis in cultures of L 929 cells 

at high population density

The apparent constancy in the rate of RNA synthesis 

following subculture of stationary cells may reflect a high 

rate of RNA turnover in densely populated cultures. Alter

natively, a rapid increase in the rate of ENA synthesis in 

released-stationary cells may have escaped detection. To dis

tinguish between these 2 possibilities, the rate of RNA synthesis 

is measured in cultures grown to stationary phase (Fig. 111.5).

Only a slight drop (lO-2Q?o) in the rate of RÎJA synthesis 

in 10 day old cells is observed as compared to rapidly growing 

control cultures. After the third day the DNA-synthetic 

capacity of these cells declines rapidly. Levine et al, (1967) have 

shown that primary cultures of diploid human fibroblasts develop 

lasting changes in their patterns of RNA synthesis after 20 gen

erations in culture. In addition the rate of RNA synthesis in



Fig. 111.5,

The rate of RNA synthesis in cultures of L.Q29 cells a' 

population density.

L 929 cells were inoculated into flat-sided, 2 02. 

medicine bottles at approximately 100,000 per ml. and the rates 

of incorporation of uridine inloDNA and RNA during growth

to stationary phase determined as described in Fig, 111,1. and 

111.4» The medium v/as replaced on every second day during the 

course of the experiment,

^  ^ incorporation into RNA

C----O incorporation into DNA

A----Û cell number
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early passage cells is markedly inhibited in confluent cultures 

but this is not the case in late passage cultures. Thus the

possibility exists that the high rate of turnover in resting 

cultures of L 929 cells may represent a difference between per

manent cell lines and primary systems,

1*7• The effect of actinomycin D on RNA synthesis and

subsequent DNA synthesis in released-stationary cells 

Lieberman et al. (1963) can abolish the 2-5"fold rise in 

the rate of RNA synthesis which occurs between 12 and 22 hr;. in 

rabbit kidney cortex cells in vitro by the addition of low levels 

of actinomycin D (0.0075 per ml.) at any time up to 12 hr..

The original rate of RNA synthesis is maintained under these 

conditions but subsequent initiation of DNA synthesis is prevented. 

It is of interest to determine whether DNA synthesis can 

*be inhibited in released-stationary L cells by levels of actino

mycin D which have no effect on the rates of RNA synthesis. 

Accordingly, different concentrations of the drug are added at 

zero time along with uridine or [ thymidine and incor

poration into RNA or DNA estimated after labelling for 25 hr.

Fig, 111,6 shows that both DNA and RNA synthesis are 

completely inhibited by actinomycin D at 0.1 H-g. per ml. In



Fig:, 111.6.

The effect of aotinomycin D  on the rates of ENA synthesis and 

subsequent PITA synthesis in released-stationary cells »

Cultures of 10 day old stationary cells were established 

as in Pig. 111,2, and various concentrations of actinomycin D 

added at zero time as indicated. 2 p, c. of thymidine (l53

, per p, mole) or 1 p,c. of 6-^H uridine (67 p.c. per p. mole)

was also added at zero time and the incorporation into RNA or 

DNA after 25 hr. estimated as described in Methods, section

2,1.5, c,

(a) ©— incorporation into DNA

(b) O----O incorporation into PiîA

Results are expressed as yo of the incorporation into DNA 

or RÎ A in the absence of actinomycin D.
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contrast to the rahbit Iddney cortex and regenerating rat liver 

systems, no concentration of drug can be found ^hich prevents 

DNA replication without affecting the normal rates of RiTA turn

over in these cells.

Actinomycin D is known to be primarily an inhibitor of 

RNA synthesis. When added at zero time to released-stationary

cells, however, it is equally inhibitory to subsequent DNA synthe

sis indicating the RNA synthesis during the lag period is essential

for the initiation of DNA replication,

1.8, The effect of the time of actinomycin D addition 

on the subsequent rates of DNA and RNA synthesis 

The final stages of the lag period in rabbit kidney cortex 

cells cultured in vitro are characterised by an increasing resis

tance to the effects of actinomycin D and FPA on DNA synthesis,

.The effect of adding actinomycin D (O.ljig. per ml.) at various 

times during the lag period in L 9^9 cells is shown in Fig. 111,7.

DNA synthesis (as judged by thymidine incorporation

into DNA from 20-21 hr.) is completely abolished if the drug is 

added at any time before 12 hr. After this time, however, the 

cells become progressively more resistant to the drug. RNA 

synthesis is always greatly inhibited by the presence of actino

mycin D. Even O.lfrg. per ml. added at 20 hr,, along with



Fig. 111.7.

The effect of the time of addition of actinomycin D on the sub- 

sequent rates of DMA and Rî̂lA synthesis in released-stationary 

cells.

Actinomycin D (O.lfxg. per ml.) Y/as added to cultures 

at various times up to 20 hr, and the rates of RKA and DNA syn

thesis between 20 and 21 hr. determined by pulse-labelling as in 

Fig. 111.1. and 111,4,

(b)

incorporation into DNA

incorporation into RNA

Results are expressed as ^ of the incorporation into DNA 

or RNA in the absence of actinomycin D.
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uridine inhibits incorporation into RNA during the next hr. by 'JOfo, 
These results confirm the studies of Mueller and Kajiwara 

(1966) and support the conclusion that an actinomycin f-sensitive 

process, presumably RNA synthesis, is required at the onset of 

S phase for the cell to replicate its full complement of DNA.

Using the drug at 0.1 H-g. per ml. in synchronised HeLa cells 

the above authors have shown that only 5*^ of the DNA is re

plicated when the drug is present at the beginning of S but 

addition 2 hr. after reversal of the thymidine-less state per

mits the cells to synthesise a full complement of DNA. The 

increased resistance to the drug after 12 hr. in L 929 cells 

presumably reflects the number of cells which are entering S 

phase during this period.

1.9. Variations in the DNA polymerase activity of nuclear 

and sure mat ant fractions of L cells after release 

from stationary phase 

Resting tissues are characterised by having low activities 

of enzymes involved in nucleic acid biosynthesis. In regener

ating rat liver (Bollum and Potter, 1959)» rabbit kidney cortex 

cells cultured in vitro (Adams et al., I965) and PHA-stimulated 

human lymphocytes (Loeb et al., I968), increases in DNA poly

merase activity occur about the time of DNA replication. The

greater degree of synchrony obtained in our system enables a more 

precise correlation to be made between the levels of DNA poly-
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merase in released-stationary cells and the period of D M  syn

thesis.

Pigs. 111.8 and 111.9 show the results of such an experi

ment. A normal peak of DNA synthesis is observed at 18-19 hr# 

after release. The activity of DNA polymerase, primed with 

native or heat-denatured DNA, is followed in nuclear (Nl) and 

high speed supernatant (Sl) fractions of the cells . Preparation 

of these fractions and the importance of the physical state of 

the DNA primer has been previously described (Lindsay and Adams, 

1968). The nuclear fraction shows no large changes in activity 

with native DNA as primer during the experiment although a ^Ofo 
increase occurs between 10 and 1$ hr.. at about the onset of 

DNA synthesis. With denatured DNA primer, on the other hand, 

a 9-6"fold increase in activity is detected. The denatured DNA- 

primed activity of the nuclear fraction closely parallels the 

rate of DNA synthesis in the cells.

The most dramatic changes in DNA polymerase activity are 

noted in high speed supernatant extracts where by 22 hr.. a 10- 

20-fold rise in activity occurs when the primer is single-stranded 

DNA. In this case there is an initial increase in activity at 

the start of DNA synthesis. During the middle of the S period, 

however, no further changes take place, but as the cells begin
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Variations In the DNA polymerase activity of nuclear (Hi)

fractions of L cells after release from stationary nhase,

10 day old stationary cultures were established In 9 

cm, (10 ml. per dish) or 6 cm. Petri dishes (3 ml. per dish) at a 

concentration of 90C,C00 per ml. Actinomycin D (0.1 pg. per ml.) 

or hydroxyurea (2 rnM) was also added to some cultures after 11 hr.

DNA synthesis was followed as in Fig. 111,1. Nucleax (Nl) fractions 

were prepared as described in Methods, section 2,3.1* (see Fig, 111, 

10) and DNA polymerase activity was measured under standard assay 

conditions (Methods, 2.3.4. a) using native and heat-denatured DNA 

as primer. The specific activity of dTT? (2,3 f i c ,  per

assay) was O.Op pc, per p mole. DNA polymerase activity was ex

pressed as mp moles of [j<e-̂ ]̂  dTMP incorporated into alkali-stable, 

acid-insoluble material per mg. of protein per hr. at 37°.

(a) © incorporation of thymidine into DNA

incorporation into DNA in actinomycin D-treated cultures 

incorporation into DNA in hydroxyurea-treated cultures

(b) e— O  DNA polymerase activity of Nl nuclei with native

DNA primer

Û activity in actinomycin D-treated cultures 

A — —A .activity in hydroxyurea-treated cultures

(c) o O  DNA polymerase activity of Nl nuclei with denatured

DNA primer

6-"A activity in actinomycin D-treated cultures 

6— Û activity in hydroxyurea-treated cultures



1 C)
Fig. 111.8.

CD 02

«H S  O *
a.-P

<D02
gG)
B0
P.

1

>-H-P
§

|o.4
SoA
S

2010
Time (hr,)



Fig. 111.9.

Variation in the DNA polymerase activity of high speed super- 

natant (Sl) fractions after release of L 9^9 cells from station

ary phase.

For details of method, see Fig. 111.8. In this experi

ment Fig. 111.8a is included for purposes of comparison,

(a) o incorporation of thymidine into DNA

incorporation into DNA in actinomycin D- 

treated cultures

incorporation into DNA in hydroxyurea-treated 

cultures

(b) 0— 0 DNA polymerase activity of Sl fractions with

native DNA primer

A A activity in actinomycin D-treated cultures

A A activity in hydroxyurea-treated cultures

(c) 0— 0 DNA polymerase activity of Sl fractions with

denatured DNA primer

A 'A activity in actinomycin D-treated cultures

A— "A activity in hydroxyurea-treated cultures
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to lôave S this activity sharply increases once more. 3y 28 

hr., a $0/̂ increase in cell number has occurred and the levels 

of enzymic activity have declined. As in the nuclear fraction 

DÎTA polymerase activity in supernatant preparations, primed by 

native BNA, increases gradually (3,-4-fold) during the course of 

the experiment, No correlation between this activity and the 

rate of SNA synthesis in the culture is apparent.

The addition of actinomycin D (0,1 pg. per ml.) at 11 hr. 

causes an BO'fc reduction in the rate of DNA synthesis and also 

prevents the rise in KTA polymerase activity with either native 

or heat-denatured DNA, On the other hand, hydroxyurea (2 mil) 

completely inhibits DNA synthesis but does not abolish the in

crease in KTA polymerase activity in nuclear or supernatant 

preparations. This confirms the results of Adams et al.(I966)

.who show that DNA synthesis is not required to obtain increased 

■levels of DliA polymerase in cultured rabbit kidney cortex cells.

Previously 2 groups (Littlefield et al., 19^3» Gold and 

Helleiner, I064), studying the changes in LNA polymerase activity 

during S phase in 3-fluorodeoxyuridine-synchronised L cells, had 

detected a slight drop in activity in the supernatant fraction 

during this period. A corresponding increase in the activity 

of the particulate enzyme was also noted. Only activity primed
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by denatured DNA was detected in these earlier studies, Adams 

and Lindsay (19^9)» in a re^investigation of this problem, have 

confirmed and extended these original observations,

•2. DNA POLYMERASE ACTIVITY OF L 929 CELLS

2,1. General properties

2.1.1. Introduction

The discovery of substantial amoimts of DNA polymerase 

activity in the nuclei of L 929 cells is of considerable interest 

and has led us to carry out a more detailed investigation of the 

general properties of the enzyme. The intra-nuclear location 

of this activity and its preference for native DNA makes it a 

suitable candidate for a role in the in vivo replication process, 

perhaps corresponding to the "intact" form of DNA polymerase 

proposed by Keir (1965)' Previous studies on sea urchin embryos 

*(Loeb et al., I967) and normal rat liver (Patel et al.» 19&7) 

have also detected nuclear DNA polymerases showing a require

ment for native DNA,

2.1.2, Preparation of nuclear and supernatant fractions 

of L 929 cells

The isolation procedures employed and the characteristics 

of the DNA polymerase activity in crude extracts have been pre

viously described (Lindsay and Adams, I968), A fractionation 

diagram together with the enzymic activity associated with each



Preparation of nuclear and supernatant fractions of 

L 929 cells from a cell homogenate

1 1 -Î

Cells homogenised 
in tris-sucrose

4-00 g for 10 min.

L SI

105,000 g 
for 60 min.

(6O; 45)N1 - Resuspend in 
tris-sucrose

Pellet
(15; 5)

31 
(25; 50)

800 g  for 10 min.
. I

(45; 25) N2 « Resuspend in

L S2
tris-sucrose

800 g
for 10
min.

1
(55; 15) N3

L S3 Resuspend in 
tris-sucrose

Nl, N2 and N5 are successively washed nuclear fractions, 

Ij si, :L' S2 and L S3 and SI are low and high speed supernatant 

fractions obtained as shown. Figures in brackets (;) re

present the average activity in each fraction with native or 

denatured DNA expressed as fo of activity found in the bomo- 

genate.
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preparation is shovm in Fig. 111,10. It is of interest that 

nuclei are able to catalyse incorporation of the deoxyribonucleo- 

side triphosphates in the absence of added DNA although their 

activity is stimulated 5-10-fold by the addition of exogenous 

double-stranded primer.

2.1.5, Purity of the nuclear preparations 

The integrity and purity of the nuclei are routinely 

checked by fluorescence microscopy after staining with acridine 

orange. To test for the contamination of nuclear preparations 

(N5) by mitochondrial material, cytochrome oxidase activity 

is compared in cell homogenates and N5 nuclei by the method 

of Cooperstein and Lazarow (l95l)» Final nuclear preparations 

have in the region of 2^ of the cytochrome oxidase activity 

found in whole cell homogenates (Fig. lll.ll), while retaining 

2 0 ” 6ofc of the total DNA polymerase activity primed by native 

DNA.

2,1.4 . Time course of DNA nolymerase activity in 

nuclear and supernatant preparations 

Isolated nuclear (N5) and high speed supernatant (Sl) 

fractions of L 929 cells are assayed for DNA polymerase activity 

using either double- or single-stranded DNA as primer, DNA



Fig. 111,11.

Contamination of nuclear prenarationo (N5) by mitochondrial mat-■  I I I «  w #  ^  . ^ 1 #  ' #1 II I I  III ■ — ■ I M  k O . . ^  I w i  i -1 ■ ■  ■  ■ ! !  ,  ,, li i ii ■  i m  . . .  mm m nut ii • >i'm>

erial.

Cytochrome oxidase activity was compared in cell homo

genates and N5 nuclear fractions (see Fig, lll.io) using the 
standard assay procedure (Methods, section 2,5.4* c). Snzymic 

activity is expressed as A. log |ferrocytochrome ^  per min. at 

room temperature,

O — —0 activity in cell homogenate.

activity in N5 nuclear fraction
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Fig. 111.12,

The time course of DNA -polymerase activity in nuclear and suuer- 

natant preparations.

Isolated nuclear (Nj) and high speed supernatant (Sl) 

fractions (see Methods, section 2,3*1? Fig. lll.io) were assayed 
for activity with native and heat-denatured DMA as primer. The 

standard assay procedures were employed (Methods, section 2,3.4* a)* 

Both {%ïe-^^ dTTP (2.5 H-c. per assay; 0.05 p-C. pen̂ ’p. mole) and

&  dTTP (14.65 X 10^ c.p.m, per \i mole) were used on this

occasion although only the former was employed routinely. There

were ?2 p.g. of nuclear and I48 p.g. of supernatant protein per assay.

—0

00"“

activity of N3 nuclei with native DNA primer 

activity of N3 nuclei with denatured DNA primer 

activity of Sl fractions with native DNA primer 

activity of 51 fractions with denatured DNA 

primer

(a) and (h) [k b-^^ dTTP incorporation into DNA

(c) and (d) dTTP incorporation into DNA
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syntC?^3 d‘-TTP or into acid-insoluble material (Pig.

d‘.TTP or into acid-insoluble material (Pig.

111,12). The nuclei are more active when the primer is native 

D M  while high speed supernatant extracts prefer single-stranded 

DNA, In general, the DNA polymerase activity of nuclei is 

2-5^fol& higher when the primer is native DNA while the super

natant shows an equivalent preference for denatured primer. In 

all cases, using crude preparations, the reaction is linear with 

time for at least 60 min. at 37^*

2,1,3* The DNA polymerase activity of nuclear and 

supernatant preparations of L 929 cells as 

a function of protein concentration 

Enzymic activity is found to be directly proportional to 

protein concentration up to at least I30 \xg, nuclear protein and 

160 |ag, supernatant protein in a total reaction vol. of 0.25 ml.
»
(Pig, 111,15), Normally experiments are performed using between 

80 and I50 pg. protein per assay. On occasions, when larger 

amounts of protein are used, the linearity is tested by assay

ing at several protein concentrations,

2.1.6, The effect of pE on the activity of DNA poly

merase in nuclear and supernatant extracts of 

L 929 cells

Nuclear and supematf-nt fractions respond similarly to



Pig, 111,13,

Variation in DNA polymerase activity of nuclear and super- 

natant fractions of L 929 cells with nrotein concentration,.

The standard assay v/as employed and various amounts 

of N3 or Sl fractions added as indicated opposite (see Fig, 

111.12),

(a) <5--- Q  activity of NJ nuclei with native DNA primer

activity with denatured DNA primer

(b) ^___Q activity of Sl fractions with native DNA

primer

O—-....-.O activity with denatured DNA primer
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Pic. 111,13.
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Fig. 111.14>

The effect of pH on the activity of DMA colymerase in nuclear 

and supernatant fractions of L 929 cells.

and Sl fractions v/ere isolated in the usual manner 

except that 0.02 M-tris-HCl, pH 7*5 v/as omitted. The standard 

assay v/as employed (see Fig, 111.12) and 5 H-moles of tris buffer 

at various pH’s added per assay as shown opposite. There were 

84 H'g. of nuclear and 1^2p g. of supernatant protein present per 

assay.

(a) O  Q  activity of nuclei with native DNA primer

O — —O activity with denatured DNA primer

(t) e O activity of Sl fractions with native DNA primer

 '*o activity with denatured DNA primer
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2
changes in the pH of the assay mixture. Both preparations are

active in the pH range 7.0 - ^.0 and exhibit identical optima

at pH 7*5 - 8.0. Changes in pH do not alter the relative

ability of either fraction to utilise native or heat-denatured

primer (Pig. 111.14)* Birnie and Fox (l$66), in a study of

DHA polymerase in crude nuclear and supernatant extracts of

primary mouse embryo cells, find significant differences between
2+the 2 preparations. Both preparations are more active with Mn

2+ 2+ than with Mg . However, with Mg , nuclear extracts are more

active at pH 7*5 than 6.5 while the reverse is true for the

supernatant extract.

2.1.7. The effect of 

Magnesium ions are essential for DNA polymerase activity. 

The optimal concentration with either native or heat-denatured
2 I

primer is 6-8 mM-Mg (Fig. III.I5). This value is identical 

to that obtained for L cell DNA polymerase by Gold and Helleiner

(1964) who, however, only detected activity with denatured BHA.
2+Ho second peak of activity at higher Mg concentrations corres

ponding to the "intact" form of the enzyme suggested by Keir

(1965) could be observed. In this connection, it is of interest

that several DHA polymerases, found to prefer native DNA, have
2+rather higher Mg optima than those reported here e.g. rat liver



Comparison of the effect of on the BNA polymerase activity

of nuclear and supernatant fractions of L

and Sl fractions were assayed for activity under
/ \ 2 +  standard conditions (Fig, 111.12). The Mg concentration was

varied as indicated opposite. There were 124 H- g* of nuclear

and 154 of supernatant protein per assay.

(a) O— — O activity of N5 nuclei with native BNA primer

O o activity with denatured BNA primer

(b) c-— activity of Sl fractions with native BNA 

primer

o— activity with denatured BNA primer
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nuclear enzyme (lO ïïîM) and sea urchin nuclear enzyme (l6 mM),

2.1.8. The effect of

Potassium ions are found to have a stimulatory effect on 

L cell DNA polymerase activity* Both fractions are increased 

approximately 2-fold in activity hy 60 (Fig. lll.io).

Similar results have been obtained for the calf thymus enzyme 

(Keir, 19^5) and the Landschütz ascites tumour enzyme (Keir ana 

Shepherd, 19^5)• Recently Kalf and Ch'ih (19^9) have shown 

that the nuclear enzyme from rat liver is stimulated 2-fold by 

60 mM-K*** while the mitochondrial enzyme, which also utilises 

native DNA is increased 7 -fold under equivalent conditions.

2.1.9. Homopolymer formation

To eliminate the possibility that the acid-insoluble 

material forming under DNA polymerase assay conditions may be 

largely homopolymer, the distribution of d TTP in the

DNA product is investigated using the partial nearest neighbour 

frequency analysis technique of Josse and Swartz (1965). It

is found that d TTP is incorporated extensively next

to all 4 bases in the DNA product (Table III.I7), indicating 

that, under these conditions, little if any, homopolymer synthesis 

is occurring.



Fig. 111.16.

Comparison of the effect of K on the DNA polymerase activity 

of nuclear and supernatant fractions of L 9^9 cells.

K3 &nd Sl fractions were assayed- under standard con

ditions (sea Fig. 111.12), The concentration was varied 

as indicated opposite. There were 70 pg, of nuclear and 158 

p g. of supernatant protein per assay.

(a)

(t)

O--- Q activity of N5 nuclei with native DMA

primer

Cy---O  activity with denatured DMA primer

(s  g activity of Sl fractions with native DNA

primer

O— -O activity with denatured DMA primer
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2.1.10 End terminal addition activity

In common v.dth other nuclear preparations (Patel et al., 

1967? Smith and Keir, I963; Keir and Smith, I963), nuclear 

DNA polymerase, primed hy native DNA, exhibits a high degree 

of activity in the absence of one or more deoxyribonuoleoside 

triphosphates. Using native DNA as primer, incorporation of 

[^hJ dTTP in the presence of dTTP alone is, 4^^ of that obtained 

in the complete assay diile vdth dTTP, dATP and dOTP present 

incorporation is 80^ of the control values. The supernatant 

fraction, primed by denatured DNA, has of the control 

activity with dTTP present, rising to 59/-̂ when only dCTP is 

omitted from the assay (Pig. 111,18).

The extent of end terminal addition activity is markedly 

reduced in partially purified DNA polymerase preparations 

•(Sephadex fraction, see section 2.5.l). In addition, little or 

no incorporation of P hJ dCTP is detected using poly d(AT) as 

primer but with [i'h } dTTP as precursor, poly c1(AT) is found to 

be a more efficient primer than native salmon testes DNA (Pig. 

111,16). Poly dG : dC is a relatively poor primer for the 

enzyme. Such results indicate that, under complete assay con

ditions, incorporation into the DNA product is governed by the 

nucleotide sequence of the DNA primer i.e. replicative synthesis 

is occurring.



Fig. 111.18. (a)

The presence of end terminal addition activity in crude and 

Sephadex-purified (see Table 111.28) nuclear and supernatant 

fractions of L 9^9 cells,

Samples were incubated with their preferred DNA 

primer in complete assay mixture or in the absence of one or 

more deoxyribonuoleoside triphosphates as indicated opposite; 

otherwise routine assay conditions were employed (Fig. 111.12),

(i)
(ii)

nuclear fractions with native DNA primer 

supernatant fractions with denatured DNA 

primer

1.
2,

5-

crude enzyme fractions 

Sephadex-purified fraction

DNA polymerase activity in complete assay 

activity with dGTP, dATP and dTTP 

activity with dTTP alone

Results are expressed as fc of DNA polymerase activity 

under complete assay conditions.
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' Fia- 111.16. M

The TDriïïiinp; efficiencies of noly d(AT) end noly dO: dC compared 

to native salmon testes M A ,

A Sephadez-purified nuclear fraction (see Table 111,28) 

was tested for its ability to utilise various primers in DNA 

polymerase assâ -̂ . Assays were performed under standard con

ditions except that only 1 pg. of DNA primer was added. DNA
3 ~polymerase activity was measured by the incorporation of [Jile- 

dTTP or dCTP (both 2,5 Jic, per assay: 0,05 pc. perirp mole)

into acid-insoluble material as described in Fig, 111.12. There 

were 120 pg. of protein per assay,

1. DNA polymerase activity on salmon testes DNA with dTTP

as precursor

2. no DNA primer added

3* activity on poly d(AT) with dTTP as precursor

4- activity with dCTP as precursor

5. activity on poly dO : dC with dTTP as precursor

6. activity with dCTP as precursor

Results are expressed as fc of DNA polymerase activity 

obtained in 1,
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2.1.11 The effect of DNA concentration and sonication 

■of BNA on the activity of DNA polymerase in 

nuclear and supernatant extracts of L 929 cells

The effect of increasing DNA concentration on the activity
»of the crude enzyme fractions is tested using native and heat- 

denatured DNA. In each case saturation occurs at around 50 [rg.

DNA per assay (Fig. 111.19). Sonication ofthe DNA decreases the 

maximum velocity of the reaction with both native and denatured 

primers.

Degradation of DNA molecules by sonic waves occurs by 

double-strand scissions leaving the double-helical structure in

tact (Doty, McGill and Rice, 1958). Freifelder and Davison (1962) 

have shown that this is a non-random process and that sonication 

proceeds by means of shearing which results preferentially in 

Successive halving of the polymer. The lowered maximum velo

city on sonicated DNA may be due to the production of 5'-phosphate 

termini during degradation, which do not support DNA polymerase 

activity (section 2.5).

2.1.12 The effect of having double- and single-stranded 

primer in the same assay

Fig, 111.20 shows the effect of adding increasing amounts 

of native and heat-denatured DNA to nuclear and high speed super-



The effect of M A  concentration and sonication of DNA on the 

activity of DNA polymerase.

N5 and SI fractions were incubated under standard con

ditions (Fig. 111.12) with varying amounts of native or heat- 

denatured primer. Sheared DNA ,7as prepared by sonicating 5 mlo 

of salmon testes DNA (2 mg. per ml.) for 30 sec. at full power 

using a Dawe soniprobe. There were 74 pg. of nuclear and 110 

jjg, of supernatant protein per assay,

(a) o -— O  DNA polymerase activity in N$ nuclei (native

DNA primer)

 o activity in N3 nuclei (sonicated, native DNA

primer)

(b) f> DNA polymerase activity in SI fractions

(denatured DNA primer)

0— 0 activity in SI fractions (sonicated, denatured 

DNA primer)
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Fig. 111.20,

The effect of having double- and single-stranded SHA primer 

in the same assay.

ÎT3 snd SI fractions were incubated with fixed amounts 

of their preferred primer (60 jJ-g. per assay) in the presence 

of increasing amounts of heat-denatured and native DNA res

pectively. Routine assay procedures were otherwise employed 

(Fig. 111.12), There were 128 p-g. of nuclear and I78 pg, of 

supernatant protein per assay,

(a) C----O DNA polymerase activity of N3 nuclei (native

DNA primer)

O o activity of N3 nuclei (native + denatured

DNA primer)

A--- A activity of N3 nuclei (denatured DNA primer)

(b) Q-- Q DNA polymerase activity of SI fractions (de

natured DNA primer)

0--- O activity of SI fractions (native + denatured

DNA primer)

activity of SI fractions (native DNA primer)
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natant fractions respectively in the presence of saturating 

amounts of preferred DNA primer. Addition of small amounts 

of denatured DNA to nuclear preparations markedly inhibits their 

activity on native primer. In contrast, the addition of native 

DNA to supernatant fractions does not alter their activity v/ith 

denatured DNA.

Multiple binding of Escherichia coll DNA polymerase 

to single-stranded DNA occurs while,on linear DNA duplexes, 

binding is limited to nicks and the ends of DNA chains (Eng- 

lund et al., I968). A similar situation may exist with ensymic 

preparations from L 529 cells although the possibility 

that there is more than one enzymic species which bind pre

ferentially to denatured DNA cannot be excluded,

2.1.15, Stability of DNA polymerase activity in 

L 929 cells

The storage characteristics of the enzyme in crude ex

tracts as well as those of partially purified preparations are 

investigated (Fig. 111.21), Crude extracts loose 30-100;c of 

their activity with native or denatured DNA after 8 days storage 

at 0-5^, In contrast to the Landschütz ascites tumour DNA 

polymerase (Keir and Shepherd, I965) addition of EDTA or 2- 

mercapto-ethanol does not help to protect the enz;yïne but denatur* 

ation is markedly inhibited by the presence of DNA (Adams and



Fig. 111.21.

Stability of DNA polymerase in crude extracts of L 929 cells,

N5 and SI fractions were isolated by the normal pro

cedures in buffered sucrose or in 5 component buffer. Samples 

were stored at 0-5^and their activity with native or heat- 

denatured DNA as primer measured at various times thereafter 

under routine assay conditions. There were 84 and 92 pg. of 

nuclear and 125 and 140 g, of supernatant protein respectively 

present per assay.

(a) c O activity of nuclear DNA polymerase stored in

buffered sucrose (native DNA primer)

A--- Û activity stored in 5-oomponent buffer.

(b) ^ ^  activity of 51 fraction stored in buffered

sucrose (denatured DNA primer)

A ^  activity stored in 5-component buffer.
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Lindsay, unpublished results). An initial stimulation of 

activity is also observed during storage at The cause

of this activation has not been investigated.

Crude or partially purified preparations can be stored 

for a minimum of 6-9 months at -70  ̂without loss of activity 

although freeze/thawing may cause some inactivation (section 

2.5.1). Storage in glycerol containing 0.02 M-tris-HCl, 

pH 7*5 and 5 mM-2-mercapto-ethanol has also proved satisfactory. 

No significant loss of activity occurs after 2-3 months at -20^.

2.2. DNase activity in nuclear and supernatant fractions 

of L 929 cells 

The primer , specificity of DNA polymerases is known to 

be influenced to some extent by contaminating nucleases. Thus 

Shepherd and Keir (1965) observe that the ability of the Land- 

‘schlltz ascites tumour enzyme to accept native DNA decreases 

during the purification procedure. In contrast the crude DNA 

polymerase from rat liver mitochondria exhibits a S'-fold pre

ference for denatured DNA in crude extracts but is equally able 

to accept native primer after partial purification (Meyer and 

Simpson, I968).

Measurement of the nuclease activity in nuclear and super

natant extracts is followed by the hydrolysis of DNA



Fig. 111.22.

DNase activity of nuclear and supernatant fractions of L 929 cells 

N3 and 81 fractions were incubated with 10 M-g. of native

or denatured Esch. coli DNA (950 c.p.m. perjJLg.) under 

standard assay conditions (see Methods, section 2,3*4* b), There 

were 105 pg* of nuclear and 152 pg. of supernatant protein per

assay. Activity is expressed as pg. of DNA rendered

acid-soluble per mg. of protein at 37^*

DNase activity on native DNA 

0— 0 activity on heat-denatured DNA

(a) ' N3 nuclear fraction

(b) SI supernatant fraction
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(native or denatured)c In both fractions activity on denatured 

DNA is 5"4“f’oId greater than on native primer (Fig. 111,22). 

Partial purification of these extracts (7=8-fold), removes 959̂  

of this nuclease activity, without affecting the primer specifi

cities of the two preparations. Moreover, additive results are 

obtained on combination of crude nuclear and supernatant extracts, 

indicating the absence of any factor which could affect the 

relative priming abilities of the 2 enzymes.

2.$. The effect of modifying the DNA primer by DNase 

I treatment

To examine the ability of a characterised endonuclease to 

alter the capacity of L 9^9 cell DNA polymerase to utilise native 

or denatured DNA, these primers are treated with minute amounts 

of DNase I. Such treatment greatly improves the efficiency of 

native DNA as primer for L 9^9 nuclear extracts using limiting 

concentrations of DNA. Similar treatment of heat-denatured 

DNA, however, does not significantly enhance its priming effic

iency for high speed supernatant fractions (Fig. 111.2$), This 

result probably reflects the ability of pancreatic DNase to 

degrade native DNA more rapidly than denatured DNA, Modifi

cation of either primer with micrococcal nuclease^



Fig, 111.23.

The effect of modifying the DNA primer with pancreatic DNase,

Native and heat-denetured DNA was pretreated with 

pancreatic DNase (Methods, section 2,3.3- c) and used as 

primer in DNA polymerase assays. Only 5 H-g. of DNA were 

added per assay; otherwise routine assay conditions were em

ployed (Fig, 111,12), There were 9^ H-g* of nuclear and IO6 |ig. 

of supernatant protein per assay.

0— 0' DNA polymerase activity of N$ nuclei (native

DNA primer)

O  " 'O activity of 31 fractions (denatured DNA 

primer)
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which produces 3 -phosphate termini^inhibits DNA polymerase action.

Thus, in contrast to the majority of DNA polymerases from 

mammalian sources, the L 929 nuclear enzyme resembles the Esch. 

coli enzyme in its ability to utilise poly d(AT) and.in its 

preference for "activated" native DNA primer. Such an experi

ment also clearly demonstrates that contaminating nuclease 

activity may alter the relative capacity of DNA polymerase to 

use native or heat-denatured DNA,under conditions when DNA is 

rate limiting.

2.4. Location of enzymic activity in the nuclear fraction 

and procedures for release of the enzyme

2.4.1, Effect of various isolation treatments and 

washing procedures on the DNA polymerase 

activity of L 929 cell nuclei 

' Nuclei are isolated in 0,02 M-tris-HCl, pH 7*3 containing

0,23 M-su.crose (buffered sucrose) in the presence of Câ **" and 

in 0.02 M-tris-HCl, pH 7*3 containing 0,23 M-sucrose,,0,02 M- 

EDTA, 3 mM-2-mercapto-ethanol and 0,13 M-KCl (3-component buffer). 

Calcium and control nuclei are dialysed 2 x 2 hr, against 100 

vols,' buffered sucrose before assay, A comparison of the 

activity of N1 and N3 nuclei isolated in tris-sucrose solutions 

or in 3-component buffer shows that addition of O.I3 M-KGl,

3 mH-2-mercapto-ethanol and 1 mM-EDTA to the medium does not



prevent loss of activity during washing (Table 111,24). 'The

activity of Ca nuclei is low, apparently caused by the extreme

sensitivity of the enzyme to dialysis. However, nuclei isolated
2+in the absence of Ca loose of their activity during 2

washes (n 1 - N$). Little or no difference is observed between
2*hN1 and N3 nuclei isolated in Ca -containing media with respect

2+tc their ability to use native DNA. The presence of Ca

does not prevent loss of activity towards heat-denatured DNA,
2+In all caseS)whether Ca is present or not, there is a relatively 

greater loss of activity, primed by denatured DNA, resulting in 

an increase in the ratio of activity on native to denatured DNA 

from N1 to NJ.

Table 111.25 shows a similar experiment in which nuclei

(N3) are prepared by isolating and washing in buffered sucrose

^containing 5 In this case, however, the nuclei are

finally resuspended in buffered sucrose only. The presence of 
2+Ca again largely presents the loss of activity with native

2-fDNA during washing, Ca nuclei, however, are less active than

control nuclei isolated in tris-sucrose solutions. This may
2+reflect the presence of traces of Ca which are not removed 

before suspension of the nuclei in tris-sucrose alone. Washing
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of nuclei in the absence of (N1 ---> IJ3 ) generally ‘

results in a 20-60% loss of activity with native DNA primer 

and is paralleled by the loss of protein from the nucleai' 

fraction. - .

2.4.2. Location of the nuclear enzymic activity 

and the DNA product during assay 

It is of interest to determine whether the DNA polymer

ase of activity of L 929-cell nuclei remains in the nucleus 

under normal polymerase assay conditions. Accordingly N2 

nuclei are incubated for various times in the presence of com

plete assay mixture minus [̂ h ] dTTP* Nuclei are removed by 

lov7 speed centrifugation and the DNA polymerase activity in the 

supernatant fraction end resuspended nuclei is assayed.

Fig, 111,26 indicates that even at zero time of the 

activity of N2 nuclei with native DNA primer is now present 

in the supernatant fraction and little further loss occurs by , 

pre-incubâtion of the nuclei at 37^* Similarly 90/o of the 

DNA product is located in the supernatant, almost negligible 

activity being associated with the pelleted nuclei (Fig. 111.26) 

The ready extractability of the enzyme from N2 nuclei in assay 

mixtures has been attributed to the presence of exogenous DNA, 

Recently Adams and Lindsay (unpublished results) have employed



Fig, 111,26.

Location of the nuclear DNA polymerase activity and DNA product 

during assay.

2 ml, of nuclei (N2) were suspended in complete assay 

mixture (5 ml,), minus dTTP and incubated for various

periods of time at 57^ as shown. Samples (0,7 ml.) were with

drawn at intervals, rapidly cooled and centrifuged at 800 g for 

10 min. at 0-$^. Supernatant solutions were decanted off and 

retained. Pelleted nuclei were resuspended at their original 

concentration in buffered sucrose. DNA polymerase activity in 

the supernatant fraction and resuspended nuclei v/as assayed in 

the normal manner (Fig. 111.12). Incubation period was 30 

min. Results are expressed as fs of total activity and protein 

present in the supernatant fraction.

N2 nuclei (l ml.) were also suspended in complete 

assay mixture (1.5 ml.) and incubated at 37^ under standard con

ditions .

Samples (O.p ml.) were withdrawn at intervals and the 

supernatant fraction and pelleted nuclei assayed for the presence 

of I^hJ  DNA product (see insert),

C  O activity on native DNA primer

O-— O activity on denatured DNA primer

^ protein
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the washing of L 9^9 nuclei with solutions of salmon testes DNA 

to obtain a differential extraction of the enzyme resulting in 

a 2-$-fold purification*

2.4.5» Release of the DNA polymerase activity from 

L 929 nuclei

Sonication of nuclei^ according to the method of Fi'enster, 

Ailfrey and Mirsky (1965)̂ brings about release of the nuclear 

DNA polymerase activity into the supernatant fraction after 

centrifugation of the sonicated nuclei at 105>000g for 60 min. 

Using calf thymus lymphocyte nuclei these workers are able to 

remove up to 8O/0 of the nuclear DNA in the condensed hetero

chromatin fraction by centrifugation at l,000g for 10 min. but, 

in our hands, of the nuclear DNA remains in the supernatant. 

fraction after centrifugation at 105,000g for 45 min,. Maxi

mum recovery of enzymtc activity (approximately is achieved

by sonication for 20-90 sec*, after which time activity begins 

to decline, presumably owing to dénaturation of the enzyme (Fig. 

111,27). As in the earlier washing experiments (section 2.4.I) 

nuclear activity with denatured DNA is found to be less firmly 

associated with the nuclear fraction. In view of the marked 

preference of DNA polymerase activity in supernatant extracts 

for single-stranded DNA, the corresponding activity in nuclear 

fractions may represent cytoplasmic contamination of the nuclei.



Fig. 111.27.

The release of DNA polymerase activity from L 929 cell nuclei.

N5 nuclei were disrupted for various periods of time by 

sonication (Methods, section 2,3.2. a). Sonicated extracts 

were centrifuged at 105,000 g in the no. 40 rotor of a Spinco 

model L ultracentrifuge for min, (0-4^). Sonicated extracts 

and N3 nuclei were assayed for activity using the routine pro

cedure (Fig. 111.12),

O" O DNA polymerase activity with native DNA primer

DNA polymerase activity with denatured DNA

primer

protein
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Satisfactory extraction of the DNA polymerase activity 

from nuclei is achieved using the technique of Patel et al. 

(1967). Nuclei are disrupted in 1.5 M-KCl and the solution 

is subsequently diluted to O.I5 M, At this ionic strength 

DNA and histones recombine and precipitate out leaving chromo

somal "acidic proteins" in solution. By this method we have 

been able to obtain 50-7^^ recoveries of the ensymic activity 

from L 929 nuclei and remove 98^ of the nuclear DNA,

2*5" Preliminary purification and fractionation of the 

DNA polymerase activities in nuclear and super

natant extracts of L 929 cells

2.5.1. Purification procedures 

targe scale purification of the DNA polymerase activity 

in L 929 cells is difficult owing to the small amounts of 

.material available from tissue culture cells, A 7-8-fold 

purification is achieved, however, by pH 5 precipitation and 

gel filtration on Sephadex G200. In buffer of low ionic 

strength the DNA polymerase activity in sonicated nuclear and 

supernatant extracts is eluted at or near the void volume on 

G200 and 80-100^ recoveries of the enzyme are routinely achieved 

after these 2 purification steps (Table 111.28).

The Sephadex-purified enzyme contains less than 5^ of
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the nuclease activity of crude cell extracts as judged by the 

relative ability of the 2 fractions to degrade double- or 

single-stranded Eschi coli I5NA to acid-soluble fragments.

As Furlong (1966) has shown that oligonucleotides longer than 

7"9 "units, are trichloracetic acid-precipitable, the amount of 

DNA rendered acid-soluble is chiefly a reflection of the exo- 

nuclease activity of the preparations. Using a similar pro- . 

cedure in the purification of UNA polymerase activity from Land- 

schlitz ascites tumour cells Keir (1965) has sho’wn that pH 5 

precipitation removes the bulk of the DNase I activity and a 

partial separation of DNA polymerase and the remaining nuclease 

activity is obtained on Sephadex GI50 columns.

On several occasions when Sephadex G200 fractions of 

L 929 cell extracts are frozen before assay, low recovery of 

^activity primed by denatured DNA is obtained. A typical example 

is shown in Table 111.28. The crude nuclear enzyme, originally 

exhibiting a 2-fold preference for native DNA, is 9 times more 

active with this primer after 2 freeze/thaws. Similarly the 

ratio of activity on native and denatured primer of the super- 

natant enzyme rises from ̂  to^ during the purification.

Confirmation of this result is obtained when Sephadex*



Fig. 111.29,

The effect of freeze/thawing on the ability of L 929 cell M A  

polymerase to utilise native or heat-denatured DNA as primer.

A 4 ml* sample of a Sephadex-purified supernatant fraction 

(1.2 mg. per ml.) was subjected to freeze/thawing. The sample 

was frozen at -20^ and rapidly thawed by vigorously shaking in 

a water bath at 3 1 ^ » 0.6 ml, aliquots were removed and maintained

at 0-3^ until required. The DNA polymerase activity of the 

various fractions was assayed in the usual manner (Fig. 111.12).

o ^ ratio of DNA polymerase activity on native and 

heat-denatured DNA.
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purified enzyme, is subjected to slow freeze/thawing. . Rapid in

activation of activity with denatured DNA is again observed (Pig, 

111,29)0 This effect has been repeatedly detected in partially 

purified preparations although the degree of inactivation is 

rather variable,

2.5*2, Time course and DNA concentration dependence 

of DNA polymerase activity using Sephadex- 

purified nuclear and supernatant fractions 

To obtain the most suitable conditions for maximal re

plication of the DNA primers, the time course and the effect of 

DNA concentration on the DNA polymerase activity of Sephadex- 

purified extracts is examined. Pig. 111,50 shows that incor

poration of PhJ dTTP into acid-insoluble material is linear in 

both cases for 5-4 hr. at 57^* With the native DNA-primed 

'enzymê  activity is still detected between 7 înd 8 hr. . No 

breakdown of the newly-synthesised DNA is observed after 9 hr. 

incubation.

As with crude extracts, DNA ceases to become rate-limiting 

at about 50 per assay (Pig. 111,51)* Contamination of 

Sephadex-purified fractions with DNA leads to some activity in 

the absence of added primer. DSAE-cellulose fractions, which 

contain little or no DNA, show a complete dependence on exogenous 

primer.



Fig. 111,50.

Time course of DNA polymerase activity in Sephadex-purified 

nuclear and supernatant extracts.

Partially purified nuclear and supernatant extracts 

were incubated under standard assay conditions (Fig. 111.12) 

for various times as indicated opposite. There were 120 pg. 

of nuclear and 150 pg. of supernatant protein per assay,

Q © DNA polymerase activity with native DNA

primer

activity with denatured DNA primer
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Fig. 111.31.

DNA concentration curves using Sechadex-purifiei nuclear 

and supernatant fractions and a DFAF-celluloce column 

fraction (see Fig. 111,34).

These preparations v̂ ere assayed with different con

centrations of native and heat-denatured DNA primers under 

stantard conditions (Fig, 111.12), There were 120 H-g, of 

Sephadex-purified nuclear and IpO |ig. of supernatant pro

tein per assay. 110 t-ig, of DEAE-cellulose fraction were 

added per assay.

(a) O—— 0

•Q' '■'O

DNA polymerase activity with 

native DNA primer (Sephadex 

nuclear fraction) 

activity with denatured DNA 

primer (Sephadex supernatant 

fraction)

DNA polymerase activity with 

native DNA primer (DSAE-cellu- 

lose fraction) 

activity with denatured DNA 

primer (DSAS-cellulose fraction)
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20 5• 5• The apparent heterogeneity of M A  polymerase

activity in L cells 

The differing primer requirements of the nuclear and 

supernatant M A  polymerase activities in L 9^9 cells leads us 

to consider the possibility that there may be more than one 

species of enzyme present in these extracts. Previously 2 

M A  polymerases, having differing priming capacities and 

separable on DSAE-oellulose chromatography, had been reported 

in Alcaligenes faecalis.. Until recently no similar activities 

in a single organism had been detected in mammalian tissues.

Two groups of workers (Bellair, 1968; Iwamura, Ono and Morris, 

1968) have now reported that normal rat liver M A  polymerase 

is heterogeneous on Sephadex G200 columns,

2,5.4* Fractionation of DNA polymerase activity from 

sonicated nuclear and high speed supernatant 

extracts of L 929 cells 

The elution profile of a mixture of high speed supernatant 

and sonicated nuclear extracts is affected by the ionic strength 

of the eluting buffer (Fig. 111.52)» If extracts are run in 

0.02 M-tris-HCl, pH 7*5 containing 5 mM-2-mercaptoethanol, all 

the DNA polymerase activity is eluted at the void volume directly 

coincident with the main protein peak. In these conditions a



Fractionation of M A polymerase activity in extracts of L 9^9 

cells on Sep}î .9x C-200 columns,

Sephadex G200 gel filtration was carried out as des

cribed in Methods, section 2.5.6, b.

(a) a combined extract of sonicated nuclei (see Methods,

2,3,2, a) and SI fraction (2 ml.) was run in 0,02 M- 

tris-HCl, pH 7*5 containing 5 DiM-2-msrcaptoebhanol.

(b) a similar preparation was subjected to fractionation.

On this occasion the eluting buffer also contained

0.15 M-KCl, DNA polymerase assays were performed using 

the standard assay,

O o DNA polymerase activity with native DNA primer

O O activity with denatured DNA primer

^ protein concentration

DNA concentration
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purification of the enzyme(s) is achieved with 80-1005̂  

recovery of activity. If similar runs are carried out using 

buffer containing 0.15 M-KCl, a pronounced trailing in the 

peak of activity with native M A  is observed. ■ There' is no

change in the elution profile of the DNA polymerase activity

primed by heat-denatured DNA.

2.5*5* Fractionation of DNA polymerase activity from

KOI extracts' of nuclei and high speed surer-

natant extracts of L 929 cells 

Contaminating DNA in sonicated nuclear extracts is eluted 

at the void volume on Sephadex G200 (Fig. 111,52). To examine 

the possibility that binding of DNA polymerase to DNA is pre

venting a possible separation, nuclear extracts containing low 

amounts of contaminating DNA are prepared as described by Patel 

*et al, (1967)* The patterns of elution of individual and com

bined nuclear and supernatant extracts are illustrated in Fig@ 

111.55* Two peaks of activity with native DNA are observed in 

mixed preparations. Peak I elutes at the void volume along with 

all the activity primed by denatured DNA while peak II is slightly 

retarded on the column although not completely separated from 

peak I, Running of nuclear extracts indicates that peak II



Fig. 111,33..

Fraoticnation of DNA polymerase activity in extracts of L 929 

cells by gel filtration on Sephadex G200.

KCl extracts of nuclei (Methods, section 2.5.2, b) and 

SI fractions were prepared in the normal manner and fractionated 

on G200 columns as follows:-

(a) 2 ml. of combined KCl nuclear and SI extract

(b) 2 ml, of KCl extract alone

(c) 2 ml, of SI fraction alone

The eluting buffer, in all cases, was 0.02 M-tris-HCl, pH 7*5 con

taining 5 mM-2-mercaptoethsnol and 0,15 M-KGl,' DNA polymerase 

activity was measured by the standard procedures.

^ — Q DNA polymerase activity with native DNA primer

O— -o activity with denatured DNA primer

protein concentration
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activity is exclusively associated with the nuclear fraction.

In supernatant preparations activity with either primer elutes 

together at or near the void vclums (peak l).

It was thought possible that extraction of the nuclei 

in 1.5 M-KCl had caused the partial dissociation of an enzyme 

complex resulting in the appearance of 2 active sub-unit 

fractions of different mol, wts. Gel filtration of nuclear 

extracts in 1 M-KCl, however, does not alter the relative 

activities of the 2 peaks.

2.5.6. DSAS-cellulose chromatography and rolyacryl-

amide gel electrophoresis of sonicated nuclear 

and supernatant extracts of L 929 cells 

To obtain further evidence on the heterogeneity of the 

DNA polymerase activity in L 9^9 cells, nuclear and supernatant 

preparations are subjected to fractionation by ion exchange on 

DSAE-oellulose and electrophoresis on polyacrylamide gels.

On DEAE-cellulose chromatography, eluting with a 0-0.35 

M-KCl gradient, the bulk of the DNA polymerase activity comes out 

in 0.11 M-KCl; two smaller peaks of activity, markedly prefer- 

ing native DNA are also detected (Fig. 111.34;. The first is 

not adsorbed to the column and is eluted in the washing buffer 

while a second, more active fraction appears at 0,03 M-KCl. The



Fig. 111.34.

DEAE-cellulose chromatography of DNA polymerase in extracts of

10 ml. of combined sonicated nuclear and SI fraction 

(1.5 mg, per ml.) were adsorbed onto a 1 x 15 cm, DEAS-cellulose 

column in 0.02 M-tris-KCl, pH 7*5 containing 5 mIf-2-mercapto- 

ethanol. Elution v/as performed as described in Methods, section

2.3.6, c. Samples were assayed for DNA polymerase using the

routine assay (see Pig. 111.12) although fractions were not cor

rected for the changing KCl concentration.

Q.— — O DÎTA polymerase activity with native DNA primer

O  O  activity with denatured DNA primer

Ù  A protein concentration

DNA concentration
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Fig.. ..Ill,

Polyacrylamide gel electrophoresis of nuclear and supernatant 

■extracts of L Q29 cells.

100-200 [J.g, of sonicated nuclear' or SI extracts were 

layered onto polyacrylamide gels, subjected to electrophoresis, 

and assayed for DNA polymerase using the normal assay mixture (Fig. 

111,12) as described in Methods, section 2,3,6. e.

0— 0 DNA polymerase activity with native DNA primer

O o * activity with denatured DNA primer
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activities in control samples. In view of these difficulties 

fractionation of M A  polymerase activities by this method is not 

extensively employed. There exists the possibility that minor 

peaks of enzymic activity are obscured by the high blank values.

3. CHARACTERISATION OF THE M A  PROMPTS OF SEPIUI)SX-.PUHIFIKD 

NUCLEAR AÎ H SHPBRNATANT DNA PQLYIdERASE ACTIVITIES USING 

NATIVE AND HEAT-DMATURED DNA AS PRBÎER

5.1* Introduction

In mammalian systems only the product of the calf thymus , 

DNA polymerase has been extensively investigated (Bollum, I966), 

This enzyme requires single-stranded DNA as primer and will 

catalyse synthesis of native DNA in the presence of initiating 

oligonucleotides. If no initiator is present the product is 

a "hairpin-like" structure in which the newly-synthesised strand 

is covalently bonded to the primer DNA, The Esch. coli 

enzyme is similarly able to catalyse repair synthesis of native 

DNA partially degraded by exonuclease III (Richardson et al., 

1964) and can form the complementary (-) strand using 0 K  174 DNA 

(+ strand) as template (Goulian et al., I967)* The product 

of replication on native DNA is highly branched, however, and 

has anomalous physical properties (Schildkraut et al., I964).

The finding of DNA polymerases having different primer



specificities in L 9^9 cells has prompted us to investigate some 

of the characteristics of the DNA products formed by these enzymes 

on native and alkali-denatured templates,

3*2. Susceptibility of the DhA products to the action 

of exonuclease I 

$.2.1, The DNA product of the nartially purified Land- 

schUtz ascites tumour enzyme 

To examine the M A  products of L 929 cell M A  polymerase

activities' M A  is synthesised using Sephadex-purified nuclear

and supernatant fractions with native or alkali-denatured Esch,

Goli M A  as primer, . Incubations are carried out for 3 hr,. 

at 37^ and the reaction is terminated by the addition of 0.1 îT-NaCH 

to adjust the pH to 9*2 ready for use in the assay of exonuclease

I. In all cases the amount of M A  synthesised represents only 

3"T^ of the original primer MA,

The validity of the method is initially tested using a 

purified, Mase free, ascites tumour DNA polymerase (Adams, C.J,, 

I9Ô9, M.Sc. Thesis, University of Glasgow) which displays similar 

characteristics to the Bollum enzyme and has an absolute require

ment for denatured DNA primer. The DNA product of this

enzyme is shown to be resistant to attack by exonuclease I 

while DNA (heat-denatured) added as control is rapidly



Fig. 111.36

Susceptibility of the DNA product formed by LandschÜ':z ascites 

tumour DNA polymerase to hydrolysis by exonuclease I.

Piy DNA was synthesised by using a modification of the con

ventional assay procedure (see Fig. 111.12; scaled up 10 fold) and 

a DNase free preparation of LandschUtz ascites DNA polymerase.

The incubation period was 3 hr. and 100 pg, of alkali-denatured 

Es ch. coli DNA was used as primer, T/o replication of the added 

DNA v/as achieved. The reaction v;as terminated by altering the 

pH of the assay mixture to 9.2 with 0.1 M-NaOH. 0,1 ml, samples

containing 3 H-g* of DNA were withdrawn and tested for their

susceptibility to exonuclease action as described in Methods,

section 2.3.5. b. 2 [rg, of alkali-denatured Ssch. coli 

DNA were also present as a control.

32

(a) ©---o acid precipitable u HJ DNA

O  O  acid precipitable DNA

* TO(b) o---© acid soluble P counts
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rendered acid-soluble (Fig. 111.56). Acid precipitable and 
52 ̂:P counts are measured simultaneously on a Nuclear Chicago

scintillation counter. The release of P radioactivity into 

the acid— soluble fraction is also followed using a Nuclear 

Chicago gas flow counter. . Although only 7?̂  replication of the 

primer is achieved using single-stranded DNA template, the 

product is not susceptible to exonuclease I. A partially 

double-stranded structure as proposed under the Bollum replication 

scheme would exhibit this property.

5.2.2, DNA product of the supernatant enz.-̂nne from 

L 929 cells

A similar experiment is performed on the DNA product of 

the partially purified supernatant enzyme using alkali-denatured 

Esch. coli DNA as primer. As previously found for the ascites 

*tumour enzyme, no degradation of the DNA product occurs

although single-stranded DNA present in the assay is

extensively degraded (Fig. 111.37)*

5.2.5. DNA product of the nuclear enzyme from D 929 

cells

The product formed by the nuclear enzyme utilising native 

DNA as primer is also tested in this system (Fig* 111.58), An



Fig. 111.37.

D̂NA product formed by the Sephadex-purified supernatant DNA 

polymerase from L cells.

îy DNA was synthesised and tested for its susceptibility 

to exonuclease I action as in Pig. 111.56. (f/c replication of the 

alkali-denatured primer DNA v/as achieved.

(a) O O acid precipitable

0— 0 acid precipitable

_̂ hJ bna 
32 DKA

(b) 52
0 — 0 acid soluble P counts
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Fip:, 111.38,

M A  product of the Senhadex-purified nuclear DNA rclymerase from

L cells.

With native DNA as primer 4^ replication v/as achieved 

using the techniques employed in previous experiments. The 

susceptibility of the product to hydrolysis by exonuclease I 

was tested as in Pig. 111.$6.

(a) o -- O  acid precipitable , , DNA
j---

O O. DNA control (exonuclease 1 omitted)

(b) 0__ 0 acid precipitable
52^ ^  acid soluble P counts

DNA control (exonuclease I omitted)

DNA
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Fig. 111.39.

D M  product of the Sephadex-purified nuclear DNA polyrrterp.se from 

VL cells.

The previous experiment ?/as repeated after exhaustive 

dialysis of the DNA product (dialysed for 4^hr. against 4 x

100 vol. of 0.02 M-tris-HCl, pH 7*5) to remove deoxyribonucleo- 

side triphosphates, DNA polymerase activity in the exonuclease 

I preparation ’;?as measured under standard assay conditions.

The incubation period was $0 min.

(a) e-— o acid precipitable DNA

C— O acid precipitable DNA

(b) 32acid soluble P counts
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increase in acid-precipitable DNA of over control

values is noted during the course of the incubation while de

natured Esoh. coli DNA is rendered acid-soluble as

before. As the counts in controls, incubated in the

absence of exonuclease I, do not rise it seems that this 

effect does not reflect the presence of residual L 929 cell 

DNA polymerase activity. Moreover, L cell DNA polymerase is 

inactive at pH 9.2. Slight contamination of the exonuclease I 

preparation with Esch. coli DNA polymerase is found to be the 

cause of this problem. This activity is eq̂ ually effective on ■ 

native or heat-denatured primer (insert, Fig. 111,59)•

To overcome the criticism that degradation of the DNA 

product ma'y be obPOured due to simultaneous synthesis by the 

contaminating DNA polymerase activity, the DNA product is ex

haustively dialysed to remove deoxyribonucleoside triphosphates. 

Treatment of the dialysed preparation with exonuclease I shows 

that the product synthesised on native DNA is also resistant 

to hydrolysis by this enzyme (Fig. 111.59)• The product of 

the Esch. coli enzyme on native DNA templates is similarly 

resistant to exonuclease I (Schildkraut et al., 19^4).

5 .2 .4 . Susceptibility of the DNA products to exo

nuclease I after alk&line-denaturation 

After alkali-denaturation of the DNA products of nuclear



Fig. 111.40.

Susceptibility of the DNA products to exonuclease I after alkali-V
dénaturation.

The DNA products, synthesised by Sephadex-purified nuclear 

and supernatant extracts of L cells were alkali-denatured as des

cribed in Methods, section 2,5.5* b. Their susceptibility to 

degradation by exonuclease I was assayed as described in the legend

to Fig. 111.36.

O -— 0 acid-precipitable % DNA

0 - - - 0  DNA control (exonuclease I omitted)

(a) DNA product of the nuclear DNA polymerase

(b) DNA product of the supernatant DNA polymerase



r; Oil

Fig. 111.40.
100

iH

Pi

100

•HPj■Hü<DP
?*
•Hücd

I
I 20

Time of incubation (min.)



and supernatant fractions, both products become susceptible 

to exonuclease I attack (Fig, 111,40). This eliminates the 

possibility that exonuclease I is inhibited from acting on

the native DNA products because the newly^synthesised DNA is
/ /5 -phosphate rather than 5 -hydroxyl terminated. A situation

where the 3^“hydroxyl groups are occupied by DNA polymerase 

molecules which prevent hydrolysis of the DNA products cannot 

be ruled out.
3

3.2.5, Comparison of the rate of release of H and ... 
32P counts from the DNA products

As the extent of replication achieved in all experiments

is only in the order of yfo of the added primer, an experiment

is designed to test for the location of the newly-synthesised

DNA with respect to the DNA primer, DNA is syn-

thesised using limiting amounts of native or single-stranded Zsoh,

coli DNA as primer, the products denatured by alkali
3 52treatment and the kinetics of release of H and P counts

followed during degradation by exonuclease I, In both cases
3 32H counts are released 2-3 times more rapidly than P counts

from the DNA product (Fig. III.41), indicating that the newly-

synthesised DNA is situated towards the 5 -termini of the primer

molecules.



Pig, 111.4 1»

5 32Comparison of the rates of release of H and P counts from 

the DNA nroducts.

Sephadex-purified nuclear and supernatant fractions 

were used to form [̂ Î | DNA product from their preferred DNA

primer as in the legend to Pig. 111.36. The extent of re

plication was 3 p-nd 4^ respectively. On this occasion Ssch.

coli DNA was used As primer. The products were alkali-
3 52denatured and the relative rates of release of H and P counts 

into acid-soluble material determined during hydrolysis hy exo

nuclease I.

(a) ' © Q  DNA product of nuclear DNA polymerase

(b) o — — O  DNA product of supernatant DNA polymerase
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Theoretically, if the I M A  is present at the 3^"

termini of the DNA,strands, it should be released before any 
32P counts are rendered acid-soluble. Hov/eyer, Okazaki et al.

(19Ô8) have shown in studies to determine the direction of

synthesis of short, single-stranded DNA intermediates that the

size of the terminal label should be very small (less than ifo

of the total length of the DNA chain) in order to obtain clear-

cut kinetics. This phenomenon may reflect asynchrony of action

by.exonuclease III and DNA polymerase during degradation and

repair synthesis of the original native DNA.

A further possibility is that contaminating endonuclease

activity may influence the kinetics of release. Exonuclease I

(DKAS-cellulose fraction) is known to contain endonuclease I

activity but the presence of sHNA in the assay inhibits its

•action (Chapter 2, section 2.3.5. e).

A similar situation may prevail if the newly-synthesised

DNA is not covalently attached to the DNA primer. In this case
5 32the rates of release of H and P would depend on the relative 

lengths of the primer and the newly-synthesised DNA strands.

3.3. Analysis of the DNA products on sucrose gradients

3.3.1. Introduction 

A partially-degraded DNA, prepared by limit digestion with
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exonuclease III, can be restored to its original double-stranded 

structure by Esch. coli DNA polymerase (Richardson et al., I964). 

The newly-synthesised DNA is covalently attached to the primer. 

DNA synthesis which follows the repair phase produces a structure, 

in which the newly-replicated DNA is not covalently attached to 

primer and which exhibits a highly-branched appearance in the 

electron microscope. Studies by Wake and Baldwin (1962) show 

that poly d-(A Bu) produced in the replication of poly . & (AT) is 

physically separable from the original primer.

Sucrose gradient analysis of the product of L 929 nuclear 

DNA polymerase on native templates is undertaken to observe 

whether a similar situation exists in these cells. The product 

of the supernatant enzyme, using denatured DNA, is also examined 

for comparison with previous data obtained with the calf thymus 

.enzyme (Bollum, 1966).

3.3.2. Neutral and alkaline sucrose gradients 

The DNA products of the Sephadex-purified nuclear and 

supernatant enzymes using their preferred primer are examined 

by high speed centrifugation in 3“2C^ sucrose gradients accord

ing to the method of Oishi (1968). In both cases the counts 

are found directly under the optical density peak (Fig. 111,42).



Fig. 111.42.

Neutral sucrose gradient analysis of the DNA nroducts of

Sephadex-purified nuclear and supernatant L cell DNA roly- 

merases.

The products were synthesised as in Fig. 111. 36 

except that 6C0 pg. of heat-denatured DNA primer was 

added per assay. 0.15 ml. of the above solutions 

(dialysed for 48 hr. against 4 % 100 vol. of 0,02 Iv:- 

tris-HCl, pH 7.5) were layered on top of 5”2Cfv sucrose 

gradients (5 ml., containing 0.02 N-tris-HCl, pK 7*5»

1 M-NaCl and 1 mll-FDTA) and centrifuged for 10 hr. at 

24,000 rev, per min. (44,000 g) in the Sw 39b rotor of 

a Spinco model L ultracentrifuge at 0-4^. Two-drop 

fractions were collected and analysed as decribed in 

Methods, section 2.1.3. b.

O O ^260

If hJ DMAacid precipitable | H| DNA

(a) DNA product of nuclear DNA polymerase

(b) DNA product of supernatant DNA polymerase
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Alkaline sucrose gradient analysis of the DNA products of 

Sephadex-nuriiied nuclear end supernatant L cell SNA poly

merases .

A sample of unincuba.ted Ssch, coli DNA '.vas also used 

as control. The procedure was similar to that employed 

in the previous experiment with the following modifications

(i) DNA samples were alkali-denatured before gradient 

analysis

(if) gradient contained 0.1 M-NaOH

(iii) centrifugation v/as for 16 hr, at $2,000 rev. per 

min, (84,000 g)

c— O ^260 product

A— 6 ^260 ofydncubated DNA

0-'-*0 acid precipitable P hJ DNA

(a) DNA product of nuclear DNA polymerase

(b) DNA product of supernatant DNA polymerase
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With alkaline sucrose gradients5 however, the bulk of the radio

activity sediments more slowly than the optical density profile, 

suggesting that the product of synthesis is not covalently 

attached to the primer DNA (Fig. 111.45)•

Separation of the newly-synthesised DNA on single-stranded 

DNA is not surprising as the Sephadex-purified enzyme is known 

to contain contaminating oligonucleotide material (section 2.5-40* 

In the case of native primed synthesis similar results are obtained 

to those on the Esch,coli enzyme. It thus seems unlikely that 

the activity on native templates is due to repair synthesis of 

single-stranded regions in the native DNA molecule. Preferential 

cleavage of the newly-synthesised DNA by contaminating endonuclease 

cannot be excluded in this case,

5.5.5* Sucrose gradient analysis of DNA products
I

formed using L cell DNA polymerase (PSAE- 

cellulose column fraction)

Incubation of the DNA primer with Sephadex-purified DNA 

polymerase under polymerase assay conditions appears to cause 

little or no decrease in the mol, wt. of the DNA as judged by its 

position in sucrose gradients compared to a control DNA sample. 

Using a DEAE-oellulose fraction, however, extensive degradation



Fi^. 111.44.

Alkaline sucrose gradient analysis of the D̂ >A products formed by 

L cell D M  polymerase ÇDEAE-cellulose fraction),

0 DNA was synthesised as in Fig. 111.^6 on both native 

and alkali-denatured DNA primers. Gradients were performed as 

described in the legend to Fig. 111,45*

0-— O ^260 product

^ ^  ^260 unincubated DHA

acid precipitable DNA

(a) DNA product using native DNA primer

(b) DNA product using denatured DNA primer
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of the primer DNA is seen to occur although separation of the 

newly-synthesised DNA from the original native or alkali- 

denatured DNA primer is again evident (Fig. 111.44)* It 

appears,therefore, that purification of the enzyme by pH 5 

precipitation and gel filtration on Sephadex G200 gives a 

preparation which is relatively endonuclease free as found 

previously for the LandsohUtz ascites tumour DNA polymerase 

(Keir, I965).



DISCUSSION
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CHAPTER 4. DISCUSSION

1. INTRODUCTION

The purpose of this section is to discuss various aspects 

, of the processes involved in initiation and control of DNA syn« 

thesis with special reference to resting cell systems. Our ' 

findings on the changes of activity and apparent heterogeneity 

of DNA polymerase in L 929 cells are also reviewed in relation 

to our present ideas on the mechanism of DNA replication and 

our knowledge of the in vivo process.

1.1. Comparison of stationary L 929 cultures with primary 

resting cell systems 

The original aim of this work was to establish a suit

able system in tissue culture, as a parallel to the regenerating 

^liver system, in which to define more closely the sequence of 

metabolic events required for eventual DNA synthesis in cells 

stimulated to renewed proliferation. Consequently several of 

the major features of resting L 929 cell populations were estab

lished.

(a) Stationary L 929 cultures have a greatly reduced capacity 

to synthesise DNA in comparison to rapidly dividing cells,

(b) Stationary populations, subcultured in fresh medium, begin 

to enter S phase after a lag phase of l6 hr. The degree of
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synchrony obtained (approximately lOfo) is comparable to that 

obtained with chemically-synchronised cultures.

(c) A high rate of RNA turnover is found in resting cells and 

no elevation in the rate of RNA synthesis occurs in released- 

stationary cells.

(d) RNA .synthesis during the lag period is required for 

eventual DNA synthesis,

(e) Stationary cells have low DNA polymerase activity, primed 

by denatured DNA. Increases in these activities in nuclear 

and supernatant fractions are observed about the time of DNA 

synthesis.

(f) The amounts of nuclear, native DNA-primed activity are 

similar to those found in rapidly-growing cultures.

In several respects, therefore, stationary cultures of 

L 929 cells resemble the primary cell systems. However, im

portant differences are also noted especially in relation to 

the rates of RNA synthesis during the lag period (c) and the 

levels of DNA polymerase activity (f) in stationary populations.

1,2. RNA synthesis during the lag period 

Although actinomycin D is primarily an inhibitor of DNA- 

dependent RNA synthesis, addition of low concentrations during 

early lag phase in regenerating liver or rabbit kidney cortex 

cells in vitro inhibits DNA synthesis while allowing normal Rl̂ A
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turnover. This apparent contradiction is explained by the 

observation that actinomycin D prevents the rise in the rate 

of RNA synthesis which appears essential for subsequent DNA 

replication. In both cases once the new elevated rates of 

RNA synthesis are established, the cells become increasingly 

resistant to the effects of actinomycin D.

The effectiveness of the antibiotic in suppressing

changes in RNA metabolism, without apparently affecting, 

normal RNA turnover, suggests that certain genetic sites, at 

least some of which are required for eventual DNA synthesis, 

are exceptionally sensitive to the drug. Thus, it may be that

induction of new species of messenger RNA molecules is this

actinomycin D-sensitive process. Church and McCarthy (1967a, b), 

rising DNA-RNA hybridisation techniques, have detected changes 

in the types of RNA formed during regeneration in mouse liver.

In contrast released-stationary L 929 cells show no 

increase in the rate of RNA synthesis during the lag phase. 

Moreover, no concentration of actinomycin D can be found which 

abolishes DNA synthesis while allowing continuation of the 

original rate of RNA turnover. However, RNA synthesis at this 

period is still required for the entry of cells into S phase.
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Addition of actinomycin D also suppresses the rise in DNA 

polymerase activity in these cells which takes place about the 

time of DNA synthesis. Thus in stationary L 929 cultures, the 

induction of new RNA species required for DNA replication, may 

not be uniquely sensitive to the effects of the antibiotic#

High rates of RNA turnover have also been found in late 

passage confluent cultures of human diploid cells (more than 

20 generations old). RNA synthesis in early passage cells, 

however, is markedly inhibited (> 9^/0 in high density populations 

(Levine et al., 19&7)# This phenomenon may reflect, therefore,' 

a basic difference between cells in continuous culture and primary 

cell systems.

Contradictory results, however, have been reported for 

3T3 mouse fibroblasts in culture which, under normal conditions, 

cease growing at low cell densities and are thought to be 

extremely sensitive to contact inhibition (Todaro, Lazar, and 

Green, 1965). After dilution of the cells in fresh medium there 

is a 10-fold rise in the rate of RNA synthesis within 30 min., 

followed at 2 hr* by increased protein synthesis. A small 

fraction of the cells divide some 28 hr* later. The sequence 

of events suggests that regulation of RNA synthesis is the 

means by which contact inhibition controls cell division. Evi

dence is presented by Holley and Kiernan C1968), however.
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to show that exhaustion of essential growth factor(s) in the 

serum is responsible for the cessation of growth in confluent 

3T3 mouse fibroblast cultures#

The differing results obtained may reflect the differing 

requirements of primary and established cell systems for growth- 

stimulating serum fractions. No primary cell systems have yet 

been observed to grow in protein-free synthetic media (Levintov/ 

and Eagle, I961). Indeed some of these grow very poorly on 

synthetic media supplemented with serum protein alone and are 

markedly stimulated by extracts from adult or embryonic tissues* 

Moreover, Short, Zemel, Kanta and lieberman (1969) have recently 

been able to enhance the rate of DNA synthesis in normal rat 

liver by the injection of bovine serum fractions (ill and IV,

P'-globulins and ot*-globulins, Cohn et al,, 1946). The 

^stimulus for cell division after partial hepatectomy is known 

to be carried in the circulating blood (Modten and Bucher, 196?î 

Lieberman, I969).

Established cell lines, on the other hand, can be pro

pagated in the complete absence of serum proteins (Rappaport, 

Poole, Bishop and Rappaport, I960), Viral-transformed cells 

and late passage human diploid cells also show a reduced require

ment for serum proteins to allow normal cell growth (Holley and
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Kiernan, 1968; Levine et al., I967), Thus the regulation of

RNA synthesis, DNA replication and cell division in resting 

systems appears to he intimately related to the presence of 

stimulatory factors in the serum proteins. Further analysis 

is necessary to understand the manner in which these factors 

are utilised by the cell and solve the problem as to why 

established cell lines appear to show a reduced requirement for 

these proteins. Present evidence favours the interpretation 

that tissue proteins inhibit or compensate for metabolite loss 

in primary cell systems which are not yet well adapted to 

proliferation in vitro. However, the exact mechanism remains 

to be determined and awaits a more complete knowledge of the 

whole field of growth-promoting effects by serum proteins (see 

Harris, I964)'

1.5. DNA polymerase activity in released-stationary L 929 

cells

Stationary cells were also remarkable in retaining high 

activities of nuclear DNA polymerase, primed by native DNA^while 

the supernatant denatured DNA-primed activity was only 5?̂  of 

that found in rapidly-dividing cultures. The increase in 

activity in released-stationary cells and the changes in aminopterin-
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or thymidine-synchronised cells apart from being due to de novo 

synthesis of the enzyme may be influenced by a number of other 

factors. Evidence for and against the role of these factors 

in determining the activity of DNA polymerase in crude extracts 

will now be discussed.

(a) External agents

(i) removal of an inhibitor

(ii) appearance of an activator

(b} Alteration of enzymic structure or association with other 

cellular components

(i) changes in tertiary or quaternary structure

(ii) masking of enzymic activity when in association with 

particulate cell components e.g. nuclear membrane

(c) Influence of nuclease activity

(i) modification of the DNA primer

(ii) degradation of the DNA product

The activation of existing DNA polymerase molecules by 

the presence of an activator or removal of an inhibitor appears 

to be ruled out by the requirement for RNA synthesis unless the 

activator is a protein which has to be synthesised de novo. This 

possibility is difficult to eliminate as such a regulatory process 

would.be susceptible to the same inhibitors as enzyme synthesis.
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Mixing experiments, however, fail to provide evidence for any

stimulation caused by the presence of such a protein*

Similar reasoning tends to eliminate increases in activity

brought about by alterations in the tertiary or quaternary

structure of previously-formed enzyme (b, i)* Experiments

in which nuclear and supernatant extracts from cells in S phase

were combined with similar preparations from stationary cells,

in general gave super-additive results, although no greater than

a 2-fold stimulation was observed. At first sight, this data

appears to favour either a, i or a, ii; it is possible, however,

that such effects may be explained in terms of a changing nuclease

content in rapidly-grovvdng cells (c, i or c, ii).

On the question of the masking of enaymtc activity (b, ii),

there is acme evidence to suggest that DNA polymerase is less

active in in vitro assays when it is present in a particulate 
*

fraction, A corollary of the investigations of Littlefield ^  

al* (1963) on the changes of DNA polymerase activity in L cells

during S phase is that the enzyme is only ^ t h  as active when
2.

bound in particulate material*

In our nuclear preparations from L 929 cells, release of 

the enzyme into the high speed supernatant by sonication or 

extraction in 1*3 M-KCl gave 50-80^ recoveries of the activity
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measured in intact nuclei. Such results do not support the 

view that DNA polymerase is less active in a particulate state. 

Moreover, Adams and Lindsay (unpublished results) have recently 

shown that DNA facilitates the extraction of the enzyme from 

intact nuclei and that a large proportion of the activity of 

intact nuclei is released into the supernatant fraction on 

suspension of the nuclei in assay mixture.

Contaminating nucleases may influence the apparent 

activity of DNA polymerase by modification of the DNA primer 

(c,i) or hydrolysis of the DNA product to acid-soluble frag

ments (c, ii).

Exonuclease action

Furlong (1966) has shown that polydeoxyribonucleotides 

of chain length 7-9 units or greater are trichloroacetic acid- 

precipitable. Consequently measurement of the acid-soluble 

material formed from DNA gives predominantly an estimate

of the exonuclease activity of the preparation. In nuclear 

and supernatant fractions of L 9^9 cells, single-stranded DNA 

is preferentially rendered acid-soluble. Little or no release 

of acid-soluble material from native DNA occurs using these 

preparations. The differing primer requirements of nuclear 

and supernatant fractions in DNA polymerase assays would suggest
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that there is no significant degradation of the DNA product. In 

support of this view, the products of L 9^9 cell DNA polymerase 

have been shown to be resistant to the action of exonuclease I 

(i.e. are not single-stranded) and would therefore be less sus

ceptible to hydrolysis by exonucleases. In addition, partially- 

purified enzyme preparations, from which 90-95/̂ of the contam

inating exonuclease activity has been removed, exhibit similar 

primer specificities to the crude extracts.

Endonuclease action

Pretreatment of native DNA with pancreatic DNase markedly 

increases its effectiveness as a primer for nuclear extracts of 

L 929 cells when the primer is the limiting factor. With excess 

primer no increase in activity is observed. All assays were 

performed using saturating levels of DNA to prevent endonuclease 

«action providing more initiation sites for the enzyme.

Measurement of DNase activity in aminopterin-, thymidine- 

synchronised and released-stationary cells has indicated that no 

significant variation in these activities occurs during S phase 

using either native of heat-denatured DNA as substrate. Mixing 

experiments, however, give evidence of some degree of activation 

(2-fold) of DNA polymerase,“ The cause of this activation is 

not clear at present. A similar effect has been observed after
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infection of BïîK 21 (C 1$) cells by herpes simplex virus (Morrison, 

Ph.D. Thesis, University of Glasgow, I967),.

The above author has also shown that the main products of 

hydrolysis of native DNA by extracts of HEp-2 and BHK

21 (C 15) cells are oligonucleotides. We have confirmed this 

result in L 9^9 cells and shô /m that the Sephadex-purified 

enzyme is relatively free of endonuclease activity compared to 

crude extracts and to enzyme purified on DEAE-cellulose. Such 

preparations exhibit similar primer requirements to crude enzymic 

fractions,

Although there is no doubt that a variety of factors may
/

influence the activity of DNA polymerase, there is no evidence 

to attribute the large changes of activity observed in synchronised 

cell populations to the operation of any of the above-mentioned 

«processes. The results are most consistent with the view that 

de novo synthesis of DNA polymerase occurs about the time of DNA 

synthesis. Direct evidence for de novo formation will require 

purification of the enzyme to homogeneity in order to demonstrate 

its time of synthesis by pulse-labelling techniques.

1.4# Tlie relevance of changes in DNA polymerase activity 

during S nhase to the control of DNA replication

Evidence has accumulated in recent years for the presence 

of DNA polymerase in both nuclear and cytoplasmic fractions of 

rapidly-growing cells. Such results have suggested the possibility
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of a multi-xmit structure for the enzyme, the native form of which 

is present in the nucleus dm'ing M A  replication. Several 

models for the structure of M A  polymerase as well as for the 

unwinding of the M A  helix have been proposed (Atwood, I96O;

Fong, 1964; Sibatani and Hiai, I964).

Recently Erhan (1968) has proposed a scheme incorporating 

many of the ideas of previous investigators. It is suggested 

that the key for the commencement of M A  synthesis is the form

ation of an initiator or "wedge" protein which is the last 

component of the replication complex to be synthesised during 

phase. . This protein would be responsible for locating the 

initiation site on the chromosome and initiating the unwinding 

of the M A  helix. After attachment of the initiator, the 

active subunits of DNA polymerase, formed previously in the 

cytoplasm, are added to complete the replication complex. When 

DNA synthesis is terminated, the complex dissociates and the 

enzymic subunits diffuse out into the cytoplasm where they are 

active on denatured DNA as primer using conventional assay pro

cedures.

Evidence to support the above scheme

(a) Both nuclear and cytoplasmic extracts of mammalian cells

contain DNA polymerase activity when the nuclei are isolated
2+in non-aqueous media or in the presence of Ca to prevent loss
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of activity,

(b) The M A  polymerase activities of nuclear and supernatant 

fractions in mouse embryo and L 929 cells have differing pri

mer requirements,

(c) During early cleavage division in sea urchin embryos, 

when DNA synthesis is extremely rapid, all the D M  polymerase 

activity is located in the nucleus.

(d) BHK 21 (C 13) cells, after infection with herpes simplex 

virus, show a è O O f o increase in the DNA polymerase activity of 

the nuclear fraction, the site of viral replication,

(e) In synchronised L cells, a marked decrease in the activity 

of the supernatant enzyme is observed during S phase while an 

increase in the activity of the nuclear fraction is also noted 

at this time.

.Situation in L 929 cells

DNA polymerase activity, primed by native DNA, is high 

even in 10 day old stationary cultures of L 929 cells. Under 

these conditions the bulk of detectable enzymic activity is in 

the nucleus as the levels of incorporation in cytoplasmic ex

tracts with denatured DNA primer are only 3-10^ of the specific 

activity found in randomly-growing cultures. The presence of 

normal amounts of native DNA-primed DNA polymerase in stationary 

cells does not support the concept that the "intact" enzyme is
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only situated in the nucleus during DNA replication. In 

the model of Sibatani and Hiai (I964) 2 forms of the enzyine 

are postulated to carry out replication of the DNA duplex in 

a co-ordinated fashion. The DNA strands of non-replicating 

chromosomes are bridged at the origin by a DNA polymerase 

molecule of either form which serves as the starting point for 

DNA synthesis.

Both the native and denatured DNA-primed enzymes have 

similar stability as judged by heat inactivation studies 

(Adams and Lindsay, unpublished results) and are markedly 

stabilised by the presence of DNA. It may be that the intra

nuclear location of the enzyme, primed by native DNA^and its 

possible attachment to the nuclear DNA confers great stability 

on the in vivo activity. Patel et al. (1967) have found a 

.similar enzyme in the non-histone fraction of normal rat liver 

nuclei which exhibits a requirement for native DNA and we have 

confirmed this result.

The time course of events following partial hepatectomy 

and the release of stationary L 9^9 cells is very similar. In 

cultured mouse cells major increases in the activity of DNA 

polymerase with denatured DNA primer occur during this period 

of rapid growth. Recently Iwamura ,et .al. (1968)
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have shown that DNA polymerase activity in regenerating rat liver 

primed by single-stranded DNA, closely parallels the in vivo 

rate of DNA synthesis. The opposite result to this v/as ob

tained by Mukundan et al,(1963) who observed an increased 

activity with double-stranded primer in rat liver after partial 

hepatectomy. The reason for this discrepancy is not known at 

present.

As the activity of the native DNA-primed enzyme does not 

alter markedly in either regenerating liver or L 9^9 cells in 

response to increased DNA synthesis, this might argue against 

its participation in the in vivo process; however, its location 

in the nucleus, the site of DNA replication^and its preference 

for double-stranded DNA makes it a likely candidate for this 

role. Thus its constant activity during S phase may represent 

a balance between the breakdown of used enzyme and its replace-
I

ment with newly-synthesised enzyme. The decrease in super

natant activity during DNA synthesis may reflect an increased 

demand by the nucleus for a reserve of enzyme. Indeed S phase 

nuclei are found to exhibit higher DNA polymerase activity with 

denatured DNA as primer. The mode of binding of this activity 

to the nucleus and its cytoplasmic origin have not been proved.

It is tempting to speculate at this stage, in agreement 

with the model of Erhan (1968), that the active subunits of DNA
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polymerase are formed in the cytoplasm (where-.the preferred primer 

is single-stranded DNA) and are subsequently transported to the 

nucleus where they function as a precursor of the native DNA- 

primed enzyme. This may then represent the intact.DNA-synthesising 

complex.

In; stationary cell experiments, a fall in the supernatant 

activity was not observed during S phase although no further in

crease occurred at this time. While this difference might be 

explained in terms of the different techniques employed to pb'tain 

synchronous cultures, it seems likely that this discrepancy is à 

reflection of the better synchrony obtained using aminopterin^or 

thymidine-blocked cells, thus allowing greater definition of the 

transient changes in the levels of the enzyme during S phase.

Using chemically-synchronised cells, addition of puro- 

mycin (25 pg. per ml.) at the time of reversal does not prevent
%

the fall in the activity of the supernatant fraction. The activity 

does not fall to zero, however, as might be expected if the super

natant were the source of DNA polymerase required for DNA syn

thesis* Adams and Lindsay (unpublished results) have also shown 

that puromycin is equally inhibitory to DNA synthesis when added 

at the beginning of S. Thus the impairment of DNA synthesis may 

prevent the normal uptake of enzyme into the nucleus at this time.
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The equivocal results of this experiment do not permit us to define 

the supernatant enzyme as the source of the increased levels of 

nuclear activity with denatured DNA during S phase.

Addition of puromycin 2 hr. after the beginning of S also 

inhibits the subsequent rise in the. activity of supernatant enzyme 

as the rate of DNA synthesis declines. Hence, it appears that 

this rise represents de novo synthesis of DNA polymerase during 

the latter half of S phase, although the possibility that dis

sociation of a replication complex and transport of the enzyme 

subunits requires the aid of a puromycin-sensitive event cannot 

be excluded.

Conclusions

In most cell types, micro-organisms as well as mammalian 

systems, variations in the activity of thymidine kinase, DNA 

polymerase and a host of other enzymes ai'e closely linked with 

events in the life cycle of the organism. On the basis of the 

findings presented in this section and elsewhere it is clear 

that a close temporal relationship exists between the formation 

of enzymes involved in DNA synthesis and the period of DNA 

replication. The mere fact that these events take place at 

closely related times does not prove that one exercises control
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o v e r  the other. Indeed it is known that increases of activity 

of DNA polymerase bccur in the absence of DNA synthesis.

On the other hand, it seems likely that the initiation 

and control of DNA replication is dependent on a whole series of 

factors apart from the activity of the enzymes which are concerned 

in its synthesis. To quote Stone and Prescott (I965) ''The 

appearance of these enzymes^required for the synthesis of DNA^ 

only at the beginning of S serves as an example of the type of 

controlled derepression which must be operating in continuous 

sequence to maintain the orderly progress of biosynthetic events 

which make up the cell life cycle,"

1.5• The apparent heterogeneity of DNA polymerase activity 

in L cell extracts 

The above proposed multi-unit structure for DNA polymerase 

. implies the existence of more than one enzymic species which has 

catalytic activity. The DNA polymerase activity in extracts of 

L 929 cells was submitted to fractionation by several methods.

Of these, gel filtration on Sephadex 0260 was the most extensively 

studied; the enzyme was also found to be heterogeneous by DEAE- 

cellulose chromatography and polyacrylamide gel electrophoresis. 

Several possibilities will now be considered concerning the signi

ficance of these separations.
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cell DNA polymers.se

(a) Differential binding of DNA polymerase to contaminating 

DNA fragments.

(b) Differential binding to proteins or nuclear material e.g. 

nuclear membrane.

(c) Contamination by mitochondrial DNA polymerase,

(d) Contamination by end terminal addition enzymes,

(e) Effects of nuclease activity,

(a) As KOI extracts of nuclei gave better resolution of the 

enzymic activities on Sephadex G200 than extracts prepared by 

sonication, it v/as thought that this difference might be attribut

able to the higher DNA content of the sonicated preparations.

In support of this idea, omission of KOI from the column buffer 

* caused all the enzymic activity in sonicated extracts to be 

eluted at the void volume along with the contaminating DNA,

In conditions of low ionic, strength a large fraction of the 

ascites tumour DNA polymerase is bound to DNA but in the presence 

of 0.15 M-KCl no association with DNA is detectable on sucrose 

gradients (Adams, C.J., M.Sc. Thesis, University of Glasgow, I969). 

These results are in agreement with those of Kornbergfs group who 

find that the binding of Escherichia coli DNA polymerase to
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Further analysis of sonicated preparations from L 9^9 cells 

on Sepharose 4B columns (exclusion limit, 3 % 10^) gave only one 

peak of enzymic activity in-fractions 38-45' As the bulk of 

the DNA present eluted at the void volume (fraction 17)j there 

was no evidence for the formation of a DNA-DNA polymerase com

plex in the presence of 0.15 M-KCl. Thus, while there is no 

doubt that the enzyme can bind to DNA in solutions of low ionic 

strength, our data would suggest that the presence of DNA is 

not influencing the pattern of elution under the conditions 

employed.

(b) The better resolution of activity obtained using KCl ex

tracts of nuclei compared to sonicated preparations may also 

be explained in terms of the different procedures used for
É

extraction of the enzyme. The relative difficulty of extraction 

of the native DNA-primed activity from L 9^9 cell nuclei implies 

its close association with other cell components e.g. the nuclear 

membrane. Treatment of the nuclei with 1.5 M-KCl may bring 

about release of the enzyme from its binding site or complex in 

the nucleus while sonication of nuclei produces fragments of 

various sizes without causing efficient breakdown of the bound 

DNA polymerase complex.



^ 23 I' S)

The presence of 2 peaks of activity ?àth native KTA on 

Sephadex G200 after KCl extraction of nuclei may also represent 

the incomplete dissociation of the enzyme from its binding with 

other nuclear components. This argument is weakened because 

the elation patterns were unaltered when the nuclear extracts 

were run in 1 M-KGl. The possibility still exists, therefore, 

that peak II is a subunit of peak I which is normally present 

in the cell, and has a functioned role in BNA replication,

(c) Although the rat liver mitochondrial DNA polymerase has 

recently been partially purified and shown to prefer native DNA 

primer, it seems improbable that the activity in either peak I 

or peak II could be caused by the presence of a similar enzyme 

in extracts of L 929 cells.

(i) Contamination of the nuclear fraction by mitochondrial
«

material has been found to be extremely low.

(ii) The reported activities for the mitochondrial enzyme

in crude extracts are much lower than for the corresponding nuclear 

D N A  polymerase,

(iii) The rat liver mitochondrial D N A  polymerase is un

usual in being markedly stimulated (8-fold) by the presence of 

K**”. The nuclear enzyme from L 929 cells resembles the rat liver 

nuclear D N A  polymerase activity which is only enhanced 2-fold by 

optimal concentrations of K ,
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(d) Yoneda and Bollum (19^5) have separated the calf thymus 

DNA polymerase from a terminal addition, enzyme on Sephadex GI50 

and shown the latter activity is of lower mol. V7t, This raises 

the possibility that peak II may represent contaminating end 

term’inal addition activity in L 9^9 cell extracts. Several 

lines of evidence, however, weaken this point of view:-

(i) Other terminal addition enzymes investigated (Krakow 

et al., 1962; Yoneda and Solium, I969; Keir and Smith, 19^3; 

Wang, 1968; and Rothschild, Halpern and Smith, I968) are found 

to require heat-denatured DNA as primer while pealt II is only 

active with native DNA,

(ii) The firm association of peak II activity with the 

nuclear fraction agreesvath the results of Rothschild et al. 

(1968) who find the nuclear fraction of Walker 256 carcinoma 

cells contains mainly replicative activity while most of the
*

end terminal addition enzyme is located in the supernatant 

fraction.

(ii) Two other groups of investigators (Bellair, I968; 

Iwamui'a et al., I966) have recently achieved similar separations 

of DNA polymerase activity from normal rat liver. The latter 

workers were also unable to detect any peak II activity in ex

tracts of calf thymus cells which contain the end terminal 

addition enzyme.
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(e) Influence of nuclease activity

It is quite conceivable that endo- or exonuolease activity 

in our preparations may.influence the activity as well as the pre

ference for DNA primer of the enzyme by modification of the primer 

DNA. However, experiments in which fractions containing peaks 

of activity with double- or single-stranded DNA were combined 

with, other fractions from the same column did not provide evidence 

for the presence of external agents which could alter the primer 

specificity or the activity of the purified enzyme(s). In 

addition, no correlation between the distribution of nuclease 

and DNA polymerase on the columns v/as observed.

Conclusions

The available evidence thus points to the possibility of 

a multi-unit structure for DNA polymerase in rat liver and L 929 

cells. It remains to be proved, however, if these activities 

represent individual enzymic species each having a special func

tion in the replication process. Recently One and Umehara (1968) 

have reported the resolution of peak I in rat liver into two 

active fractions on phosphocellulose columns, Roth these 

peaks are more active on single-stranded DNA but one peak appears 

to be located only in the nucleus. In peak I from L 929 cells 

we have been able to show that the activity, primed by denatured
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DNA, is more sensitive to freeze/thawing than the native-DNA 

primed activity. No further fractionation of peak I has yet 

been achieved. Alternatively these individual species may 

represent artefacts of isolation formed by the breakdown of a 

supra-molecular, DNA-synthesising unit. ;

1.3. Possible mechanisms of DNA replication 

The inability of in vitro DNA polymerases to replicate 

native DNA has led to the development of several hypotheses in 

an attempt to overcome the problem.

(a) The finding in Bacillus subtilis of an enzyme fraction which
I

catalysed the formation of deoxythymidine 5 -triphosphate from -
!

deoxythymidine 3 -monophosphate caused speculation on the pos-
I

sible role of the 3 -triphosphates as precursors in replication.
t

No reports on the successful incorporation of 3 -triphosphates 

into DNA have appeared to date.

(b) Recent evidence implies that the process of DNA replication 

in bacteria takes place in a discontinuous manner as short, 

single-stranded pieces have been detected after pulse-labelling 

of growing cells. Hypotheses invoking the involvement of poly

nucleotide ligase in joining these DNA segments to the main body 

of the chromosome have been proposed (Okazaki et al., I968;

Mitra et al., I967). These theories suggest that both DNA
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...strands are synthesised in the 5 -3 direction and the former 

group have shown this to be the case. Such a process would, 

of course, nicely bridge the gap between in vivo evidence on 

DNA replication in bacteria and the in vitro characteristics 

of DNA polymerase.

Although polynucleotide ligase activity has also been 

detected in mammalian cells, no substantial evidence is avail

able to suggest that discontinuous DNA replication occurs in 

higher organisms. Short-stranded intermediates have been 

found during DNA synthesis in regenerating liver. However, these 

DNA segments are resistant to exonuclease I attack. These 

results have been criticised on the grounds that pulse-labelled 

DNA will always appear to have a lower mol. wt, than fully- 

labelled DNA when shearing produces a population of DNA mole

cules of different lengths. Furthermore high resolution 

electron microscopy of replicating DNA from L-5T78Y murine 

lymphoma cells has revealed the presence of characteristic branch 

points. No localised strand separation or other structural alter

ation was discernible at these points (Coleman and Okada, I968).

(c) The failure of isolated DNA polymerases to catalyse simult

aneous synthesis of both DNA strands-may reflect the disruption
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of the structural organisation of the replication complex during 

isolation such that its components are still able to fulfil some 

aspects of their in vivo function. A parallel situation exists 

in mitochondria where electron transport particles can be dis

sociated into 4 active complexes which can be reconstituted to 

carry out the complete processes of oxidative phosphorylation.

Proof of such a concept requires the purification and 

characterisation of the various activities fractionated on 

Sephadex 0200 as it is important to establish whether these 

represent separate species of enzyme or whether they are com

ponents of a partially-dissociated multi-enzyme system, each 

concerned with a particular aspect of the replication process*

The high mol, wt* of the DNA polymerase activity (it elutes 

ahead of apoferritin, mol. wt, 4^0»000, Gaba and Adams unpub

lished results) and the similar responses of the two activities 

to changes in the assay conditions suggest that they may be part 

of a single DÎTA-synthesising unit. Preliminary attempts at 

interconverting these activities by treatment with urea, guani

dinium chloride, amylase and phospholipases have been unsucoes- 

ful*

Apart from maintaining the structural integrity of the 

replicating enzyme system, it is probable that the organisation 

of the genetic material v/ithin the nuclear mass in bacteria or
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the chromosomal framework in eucaryotic cells is important in 

the unwinding of the double helix, in the process of replication 

and in the eventual segregation of the 2 daughter molecules.

In bacterial systems the ensyne system responsible for 

replication is attached to a point on the inside of the cell 

membrane and the mode of replication appears to be semi-conservative 

(see Ganesan, I968). Moreover, nascent DNA also appears to be 

bound to the cell membrane (Ganesan and Lederberg, 19^5) as 

proposed by Jacob.et al. (1963). Lark et al. (1967) have also 

shown that the replicating Esch. coll chromosome is attached to' 

the cell membrane and suggests that this mechanism is required 

in the ordered segregation of the 2 daughter chromosomes. It 

is difficult to envisage that all these elements of control are 

retained in in vitro systems.

The DNA in mammalian cells is reported to be attached to«
many points on the interior of the nuclear membrane (Du Praw,

1965) although it has not yet been possible to identify the sites 

of replication with any specific location within the nucleus. 

Friedman and Mueller (1968) have observed that nascent DNA from 

HeLa cells appears at the interface during phenol extraction 

and attribute this anomaly to the presence of a cellular com

ponent, containing lipo-polysacchride material^at or near the
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site of replication. Recently Comings- and Kakefuda (1968), in 

a heteroploid line of hnman amnion cells, have observed by electron 

microscope studies, that in short pulse-labelling of the cells
r? "Iwith I thymidine at the beginning of S, all the grains are 

located in the area of the nuclear membrane.

Duplication of its genetic material is probably, therefore, 

the most complex biosynthetic function that the cell has to fulfil. 

Thus it is conceivable that simultaneous replication of both 

strands of the DNA duplex cannot be achieved in vitro because 

of loss of organisation in the DNA-synthesising complex itself 

or in the accessory mechanisms required for the unwinding of the 

helix and sepamtion of the newly-formed strands.

The theories of discontinuous DNA replication would also 

appear to demand a high degree of organisation for the machinery 

of the replication process, involving DNA polymerase, polynucleo

tide ligase and a specific endonuclease. With the discovery of 

the heterogeneity of DNA polymerase activity in mammalian cells, 

having different locations in the cell and with different pri

me r specificities, the most promising approach for the present 

seems to be in the study and characterisation of these species 

with the eventual aim of relating their activities to the over

all mechanism Of DNA synthesis.
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SIDIAARY

The Control of DNA Synthesis in L Cells 

by J. Gordon Lindsay

Summary of the thesis presented for the degree of Doctor of 

Philosophy, University of Glasgow, October 19o9*

Regenerating liver,'rabbit kidney cortex cells cultured 

in vitro and PHA-stimulated lymphocytes have been widely 

employed to study the sequence of metabolic events which is 

required for the onset of DNA synthesis and cell division when 

resting cells are stimulated to renewed proliferation. A 

parallel resting cell system has been established with a per

manent cell line by maintaining cultures of L 929 cells at 

high population density. Such a system is particularly 

suitable for study because of the ease of culture manipulations 

and the relatively high degree of s^mchrony obtained.

Released-stationary cells begin to synthesise DNA after 

a lag period of I4 hr. and by 20 hr. "jofo of the cells are in- 

S phase. Increases in cell number are observed by 25 hr.

In contrast to primary resting systems no change in the rate
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of RNA synthesis is detected after release from stationary phase. 

RNA synthesis during the lag phase is required for subsequent 

DNA synthesis.

Changes in the activity of DNA polymerase in nuclear and 

supernatant fractions of L cells have been investigated ; follow

ing release from stationary phase and particularly during S 

phase. The results of previous investigators have been con

firmed and extended.

Nuclear preparations of L 9^9 cells show a 2-5-fold pre

ference for native DNA primer while the supernatant DNA polymerase 

activity is correspondingly more active with denatured DNA, The 

general characteristics of the DNA polymerase(s) in these fractions 

have been investigated and methods for releasing the enzyme 

from isolated nuclei studied.

Preliminary purification of the enzyme was undertaken 

although difficulties were encountered because of the small 

amounts of material available from tissue culture cells, A 

7-8-fold purification was achieved by pH 5 precipitation and 

Sephadex G200 chromatography and 95/̂  of the DNase activity re

moved as judged by the relative capacity of the fractions to 

hydrolyse native or heat-denatured DNA to acid-soluble fragments. 

After purification DNA polymerase activity, primed by denatured
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DNA, was rapidly lost on freeze/thawing of the solution.

DNA polymerase activity in extracts of L 9^9 cells was 

found to be heterogeneous by fractionation on Sephadex G200, 

DEAE-cellulose and polyacrylamide gels. As similar results 

have recently been reported for the rat liver enzyme the 

possible significance of this result in relation to in vivo 

replication is considered. The nuclear location of a fraction 

of the DNA polymerase activity and its preference for native 

DNA primer makes it a possible candidate in this respect.

Sephadex-purifled nuclear and supernatant fractions 

have been used to synthesise DNA on̂  their preferred

primers and the characteristics of the DNA products examined. 

Both products were found to be resistant to degradation by 

exonuclease I suggesting that the newly-synthesised DNA was 

jnot present in a single-stranded form. Analysis of the DNA 

products on neutral and alkaline sucrose gradients reveals 

that the DNA is not covalently attached to the DNA primer.

Our findings on the characteristics of the DNA products are 

compared to previous data on the DNA products formed by the 

calf thymus and Escherichia coli DNA polymerases.
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