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(i)

SUMMARY

This thesis  describes an application of the techniques of modelling 

and tim e-dom ain system  identification to the p ro cesses  of re sp ira to ry  and 

in e rt gas tran sp o rt in the human body. In p a rticu la r, attention has been 

focussed on a new non - invasive method for m easurem ent of the total blood 

flow through the lungs (the card iac output in norm al subjects). D eterm ination 

of this quantity provides im portant clinical inform ation on the state of the cardio - 

vascular system .

This work, being essentially  m ulti -d iscip linary , has involved close 

collaboration with m edical personnel - in th is case at the Centre for R espiratory  

Investigation, Glasgow Royal Infirm ary. At th is establishm ent much of the 

development of the homogeneous gas exchange model and p rac tica l experim entation 

have been c a rried  out. The author has principally  been concerned with the 

identification and accuracy  aspects of the method.

The starting  point of the work involved the exam ination, in a general way, 

of data obtained p r io r  to the author’s full involvement in the p ro jec t, which had 

produced re su lts  in ferio r in te rm s of reproducibility  to that anticipated on the 

b asis  of use of a m athem atical technique (see Chapter 3).

A t th is stage, the author becam e convinced that the route to the solution 

of the troubles in the technique lay in viewing the problem  as  one in S tatistical 

Tim e-Dom ain Identification. This rep resen ted  a rad ical change in approach to 

the work since previously the m odel/data com parison and experim ental design 

had been conceived in an 'ad  hoc’ m anner and the identifi ability and accuracy 

im plications poorly understood. Consequently, (in C hapter 4), the original 

data was viewed in  th is new light and certain  deficiencies of the estim ation 

method w ere made apparent by posing the problem  in th is probab ilistic  context.
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The analysis indicated that the cause of the disappointing re su lts  was the poor 

inform ation content of the data ra th e r than the nature of the model itse lf. This 

suggested that a b e tte r form  of experim ent be sought. This necessitated  

study of the a rea  of optimal te s t signal design to m axim ise the amount of 

inform ation encumbent in the resu ltan t data.

U tilising these concepts a new longer form  of experim ent, aimed at 

having b e tte r p ro p ertie s  in resp ec t of card iac output estim ates , was evolved.

This work is repo rted  in Chapter 7 where the resu lts  of a com prehensive se t 

of reproducibility  studies to te s t  the new form  of experim ent a re  also presented . 

These re su lts  showed a m arked improvement in the reproducibility  of the 

technique, as was exemplified by the fact that the average reproducibility  of the 

cardiac output estim ates was 6.2% (4.6% if two rogue re su lts  a re  ignored), as 

opposed to 12.2% fo r the e a r lie r  studies. What is  even m ore encouraging is 

that th is figure even stands com parison with the average reproducibility  of the 

e a r lie r  dye dilution estim ates calculated at 6. 8% and much of the published re su lts  

for both invasive and non-invasive methods in the lite ra tu re .

In Chapter 8 the scope of the work is extended somewhat and here 

inhomogeneous gas tran sp o rt models (applicable to d iseased lungs) a re  

considered. The concept of designing identification methods to optim ally 

d iscrim inate  between these m odels and homogeneous m odels is  tentatively 

introduced as  a m echanism  for quantitative diagnosis of lung dysfunction and 

some prefa to ry  sim ulation work in th is  vein p resented , A technique crucial 

to the m echanisation of the identification methods underlying much of the work 

detailed in th is  th esis  is that of Function M inim isation. A la rg e  proportion of 

the tim e allocated fo r th is  Ph.D . p ro jec t was spent on the investigation of 

recen t, num erically  stable com puter algorithm s for th is purpose.
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Chapter 5 investigates the usefulness of generalised  descent methods 

in  the context of the p a rticu la r application for this p ro jec t, w hilst Chapter 6 

is devoted specifically to methods for sum s of squares prob lem s. A technique 

due to Gill and M urray (124) is shown to be superior to a ll o thers for estim ating 

the p a ram ete rs  of the lung model and thus this algorithm  is  used to generate the 

re su lts  subsequently p resen ted  in the re s t  of the th esis .

When creating  the software for the Function M inim isation, g rea t care  was 

taken to configure it in a general m anner. This philosophy thus led to the creation  

of a flexible Function M inim isation package as a useful by-product of th is work 

at very  little  ex tra  program m ing effort. This the author fee ls  constitutes a 

piece of software which could be of general use in a wide num ber of different 

applications. D etails of th is package a re  outlined in Appendix B.
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CHAPTER I

INTRODUCTION
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1.1 General Introduction

This d isserta tion  is  an account of how a technique fam ilia r to the 

m odern control engineer ( i .e . System Identification) was applied to an unusual 

problem  - the indirect m easurem ent of the p a ram eters  of the human re sp ira to ry  

gas exchanging system . Of the p a ram ete rs  of this system , one in p a rticu la r has 

considerable clinical significance. That is  the pulm onary blood flow p aram eter 

which, in norm al subjects, is  synonymous with the cardiac output. Traditional 

clinical methods of m easuring  th is quantity in humans a re  invasive, which is  

obviously undesirable.

The work described in th is thesis  in fact form s only p a rt of a la rg e r 

p ro jec t, which has been a b asis  for collaboration between the Control Group, 

D epartm ent of E lectronics and E lectrical Engineering, U niversity of Glasgow, 

and the C entre for R esp ira to ry  Investigation, Glasgow Royal Infirm ary. This 

b roader study is  concerned with the investigation of dynamic m athem atical 

m odels in the context of re sp ira to ry  medicine and th e ir  possib le  uses as 

diagnostic a ids. Conventional te s ts  of pulmonary function (72) have been 

based la rgely  on m athem atical descriptions of re sp ira to ry  gas tran sp o rt which 

a re  valid only in the S teady-state. Such conditions may be difficult to estab lish  

in p rac tice , p a rticu la rly  in ill , irreg u la rly  breathing sub jects. C learly , 

dynamic models a re  necessa ry  in such situations.

In the course  of th is broad investigation, a dynamic homogeneous 

CO^ gas tran sp o rt model has been developed and the concept of using th is  as 

a tool to indirectly  infer the num erical values of associated  cardio-pulm onary 

p a ram ete rs  of rea l subjects has evolved. This Is the a rea  of the overall 

re sea rc h  work with which th is thesis  is principally  concerned.

P rio r to the involvement of the author in th is p ro jec t, some p re lim inary
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development work and identification experim  ents had been c a rr ie d  out to 

validate the proposed new method with lim ited  success (234,228), Although 

the re su lts  w ere satisfac to ry  as reg ard s  overall accuracy, in te rm s  of 

repeatability  they w ere ra th e r poor. Thus, this Ph.D . p ro jec t was commissioned 

to investigate the identification aspects of the technique in a m ore rigorous 

way than done hitherto . The p rim ary  aim  of the re sea rc h  was to uncover 

m echanism s to in crease  the reproducibility  of the card iac  output estim ates 

obtained from  the non-invasive m easurem ent method. The m ajo r p a rt of this 

thesis  se rves to  document the p ro g ress  which has been made tow ards this end 

by the author over the la s t th ree  y ears . ' There is  always benefit to be gained, 

however, from  addressing  the general ra th e r than the specific where th is can 

be done. Thus, the purpose of th is f ir s t  chapter is to outline the ideas and 

highlight the difficulties involved in modelling and identification of biological 

system s generally . It also introduces some concepts upon which much of the 

work in succeeding chapters is based.

1.2 M athem atical M odelling of Biological Systems - Personal
Perspective

In science, the notion of modelling is  one of cen tral im portance in 

solving problem s concerned with the re a l world. Indeed, th is has been so 

since the 16th century when G alileo, for the f ir s t  tim e, answ ered questions 

concerning rea lity  by analysis of an abstraction  of rea lity  - a m odel. P rio r 

to th is  tim e, natu ral events had been explained teleologically.

What p rec ise ly  is  a model ? For our purposes the definition in 

Eykhoff (97) suffices. That is  "a model is  a represen ta tion  of the essential 

aspects of an existing system  (or system  to be constructed) which p resen ts  

knowledge of that system  in usable form . " It is  in teresting  that explicit in this
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definition is  the statem ent that the model is a rep resen ta tion  of some aspect 

of the system  ra th e r than the system  as a whole, thus implying that no model 

can hope to com pletely define any given system . This in tu rn  im plies that 

the aspect of the system  to be modelled is  ’separable* (168) from  its  causal 

environm ent. In fact th is la tte r  conclusion is  not triv ia l and it is  one of the basic  

axioms of modelling that th is can be done.

At p rec ise ly  what level of detail th is conceptual line between model 

and environm ent should be drawn is  a difficult question. That is ,  although it 

is  desirab le  to use the model m ost isom orphic with the re a l system , it is  also 

equally obvious that such a model will be inevitably m ore complex, and as a 

consequence, perhaps le s s  cost beneficial than a le ss  re a lis tic  but sim pler model, 

Thus, in p rac tice , a balance has to be struck between the desirab le  isom orphism  

of the model and the complexity of the model which can be handled. Such a 

model is  term ed  a parsim onious model (39).

H isto rically , the idea of a model differs in the quantitative sciences 

as opposed to the m ore descrip tive biological sciences; the level of abstraction  

of rea lity  being higher in the fo rm er than in the la tte r . F o r exam ple, in 

engineering use is commonly made of m athem atical m odels w hilst in medicine 

conceptual o r  phenomenological m odels a re  m ost often encountered. This 

im balance has been p artia lly  co rrected  over the la s t twenty y e a rs , however, 

with analytical descrip tion of biom edical system s (and especially  physiological 

p ro cesses) becoming increasingly  popular over th is period . The proliferation 

of recent tex ts on the subject a tte s ts  to th is (142,210, 244).

M athem atical models of m an-m ade system s a re  used for a wide 

varie ty  of purposes which can be broadly categorised a s  follows : -
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(i) to gain insight (48),

(ii) to fo recast (39),

(iii) to control (10, 226),

(iv) to a s s is t  in taking decisions (37, 266).

In con trast to th is , the purpose of the m odelling ex erc ise  in the 

biological field has tended to be le ss  c learly  defined. F o r many physiologists 

and c lin ic ians, struggling with differential and integral equations seem s to have 

become an end within itse lf. Take, for example, the m athem atical modelling 

activity in the study of re sp ira to ry  control. Modelling of th is p a rticu la r 

physiological system  has a ttracted  much attention iii the lite ra tu re  ever since 

the sem inal paper of Grodins et al (143) in 1954. The m ajo r function of the 

models developed in th is  a rea  so fa r (many of these a re  reviewed in (303) ), 

seem s to have been to provide a convenient, functional, system s sum m ary of 

cu rren t conventional wisdom. However, since all these m odels serve  to do is  

em phasise the sufficiency of one p a rticu la r explanation, they thus contribute little  

to fu rthering  understanding of re sp ira to ry  regulation and contro l, which surely  

should be the m ain object of the modelling exercise  in such work. It seem s 

obvious that only by prom oting confrontation among competing m odels can rea l 

insight be generated , yet only com paratively recently  have such tac tics  been 

employed in  th is  a rea  (275).

G eneralising again, this preoccupation on the p a rt of the bio- 

m athem aticians with modelling as a "ra ison  d’e tre  " is  an unfortunate aspect 

of the biological system s lite ra tu re  and is  perhaps a reflection  of the re la tive 

infancy of the field. However, th is rep resen ts  a fa irly  tr iv ia l u tilisation of the 

power of sim ulation and it  is  tim e th is tendency was outgrown. It is  the tenet 

of this study that only when attention is  d irected  to rea lly  using these biological 

p rocess  m odels for a c learly  defined purpose will positive benefit be gained.
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especially in the biom edical a rea .

In the opinion of the author th e re  a re  th ree  applications a reas  

p a rticu la rly  deserving of attention in  the above resp ec t.

(i) The use of m athem atical models for indirect

m easurem ent of physiological quantities.

(ii) The use of m athem atical m odels fo r testing  various

hypotheses concerning the true  nature  of a biological 

system  under te s t.

(iii) The use of m athem atical models to aid control (i. e.

treatm ent) of d iseased  biological system s.

In th is th esis  attention is focussed on applications (i) and (ii) in the 

specific context of the human re sp ira to ry  gas tran sp o rt system . To p rac tising  

clin icians, as  opposed to re s e a rc h e rs , however, application (iii) is  likely that 

of m ost in te re st in te rm s  of the ultim ate benefits they see accrueing. 

Unfortunately, to date, reported  instances of "closing of the biological loop" 

have been few in num ber (262). This is  largely  attributable to the following.

In o rd e r to apply control synthesis techniques in the biom edical 

a re a , num erical values of the system  model p a ram ete rs  m ust be readily  

available. These w ül be strongly subject dependent and hence it will be necessa ry  

to m easure  them  in each patient to whom it is  intended to apply the eventual 

control schem e. That is , ind irect m easurem ent of the model p a ram ete rs  wiU. 

be a necessa ry  p re r id e r  to  control. T herefore , ethically clinicians have been 

unwilling to condone use of m odels for control w hilst in th e ir  eyes credibility  

has yet to be established for the use of m athem atical m odels for indirect 

m easurem ent in th is a re a . Thus, in the opinion of the author success in the 

la tte r  a rea  is  the basic  building block on which success in the fo rm er will be 

founded. T h is, in a sense, form s a fu rther justification for the work to be
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subsequently described in this th esis .

1.3 System Identification in Biological Systems

This problem  of ind irect m easurem ent of in ternal quantities in 

m athem atical m odels, as re fe rre d  to in the previous section of this C hapter, 

is  also of considerable in te re s t in engineering c irc le s . H ere a new discipline 

has evolved which provides tools to allow this inform ation to be extracted  from  

experim entally observed input-output data fo r the system  under investigation. 

This discipline is known as System Identification. •

As fa r  as  "m odern" control engineers a re  concerned, system  

identification has its  roots in the early  analysis methods used in "classica l"  

control theory to design control stra teg ies  from  frequency response m easu re ­

m ents. However, the s ta tistic ian  might argue that, in the tim e-dom ain a t le a s t, 

system  identification can be looked upon as  sim ply an extension of the reg ress io n  

analysis techniques of s ta tistica l inference to admit the c lass  of dynamic m odels. 

Zadeh (306) defined identification as "the determ ination on the b asis  of input and 

output, of a model within a specified c lass  of m odels, to which the system  under 

te s t is  equivalent"; equivalence being defined in the context of the p a rticu la r 

identification method being used.

hi the tim e-dom ain, there  a re  basically  two approaches to the problem . 

The choice of which to use in a given situation is d irectly  dependent on the 

ultim ate use to which the model is  intended to be put. hi the f ir s t  approach, no 

p r io r  system  knowledge is  assum ed. This is  the celebrated  "black box" o r 

"total ignorance" identification problem  (24). H ere a model of quite general 

s tru c tu re  is  identified which defines an em pirical relationship between the 

observed sy stem 's  inputs and outputs. This relationship m ay have no 

physical significance o ther than that it is  experim entally tru e . Such a model 

is  called a functional model (272) and may be perfectly  satisfacto ry  where only
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the  external behaviour of the system  under study (i, e. the input/output

behaviour) is  of concern e .g . fo r control purposes. However, in the case where

the in ternal system  interactions a re  of in te rest and /o r there  is a p rio r i

s truc tu ra l knowledge, as in the application detailed in th is  th e s is , such an

approach may not be appropria te . This la te r  situation corresponds to the

so-called  "grey-box" identification problem  (24). In th is  approach the struc tu re

of the model is  deduced from  the application of basic  physical laws (e. g.

K irchoff's Laws, conservation of m ass , e tc .)  and only the coefficients appearing

in the resu ltan t ord inary  o r pa rtia l differential /  difference equations rem ain

to be identified. This type of m athem atical model is variously  term ed a

s tru c tu ra l (272) o r m echanistic (39) model since the p a ram ete rs  appearing in the

model equations generally  have in trinsic  physical significance.

Often in the lite ra tu re  the te rm  "identification" has the connotation of
\

the investigator possessing  no a p r io r i physical insight into the problem . Thus, 

in the la t te r  case d iscussed above, i . e .  the "grey box" problem , which c learly  

does not correspond to th is , the usage pa ram ete r estim ation is frequent, especially  

to the s ta tistic ians who originated the te rm , hi th is th e s is , however, engineering 

loyalties will be upheld by taking the te rm  identification to re fe r  to both the "black" 

and "grey" box problem  and will frequently use the te rm s  identification and 

p aram ete r estim ation interchangably in the la tte r  case .

As d iscussed in Section 1 .2 , although the use of m athem atical m odels 

is  becoming widely accepted in the biological community, system  identification 

has had a le ss  enthusiastic reception. Some reasons behind th is scepticism  

a re  as follows (27).

(i) T here is  an ingrained preference on the p a rt of biological

investigators for m easurem ents which a re  obtained d irectly  

(i. e. in the laboratory) and a corresponding suspicion of those 

deduced in a le s s  tangible fashion.
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(ii) T here  is  difficulty in applying identification techniques due to the 

inherent variab ility  and non-linearity  of biological system s.

(iii) H om eostasis in living organism s m akes separability  (168) difficult 

and hence inputs and outputs of biological system s a re  difficult to 

iso la te . This frequently leads to pa ram ete r estim ates  which a re  

not unique and therefo re  of dubious value.

D espite these b a r r ie r s  the battle  for credib ility  fo r system  identification 

techniques applied to biological system s continues. Some applications reported  

in the lite ra tu re  will now be reviewed.

The m ost widely used models of biological system s make use of the 

notion of a com partm ent. A com partm ent can be viewed as  a homogeneous 

entity rep resen ting  severa l elem ents of the one type of organism  lumped together. 

System s which can be modelled in this com partm ental o r lumped p aram ete r m anner 

a re  p a rticu la rly  suitable for the application of identification techniques since the 

equations which re su lt from  th is approach a re  ordinary  ra th e r  than p artia l 

differential equations. F o r th is reason  the various subsystem s concerned with 

m am m alian re sp ira tio n , which a re  of th is  type, have a ttracted  considerable 

attention as  reg ard s  identification. In (128, 129) an application of p a ram eter 

estim ation to a non-linear lumped p aram eter model of pulm onary airw ay dynamics 

is  described and the clinical significance of this technique discussed in re la tion  

to chronic obstructive airw ays d isease. S im ilar work in  th is a rea  is  that of 

Peslin  et al (236) (who use a frequency-dom ain approach) and Feinberg and 

Schoeffer (106). These la tte r  authors also address the problem  of Function 

M inimisation which is an im portant p a rt of the Tim e-Dom ain System Identification 

problem . This topic is also extensively discussed in Chapters 5 and 6 of this 

thesis  in connection with estim ation of the p a ram ete rs  of the gas exchange model.
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The dicussion of identification techniques applied to lung gas exchange 

m odels, which have been reported  in the lite ra tu re , is  m ore p roperly  reserv ed  

to Chapter 3 of th is th esis .

Stoll and Meditch (268) have applied a le as t squares identification 

technique to the human re sp ira to ry  control system  itse lf. In the study of this 

system  (in humans a t least) separability  becom es a problem  since the lung-trachea 

gas tran sp o rt system  is  interposed between the tru e  input to the re sp ira to ry  

control system  (gas concentration in the lungs) and the only input which can be 

ethically applied in p rac tice  (gas concentration at the mouth). Swanson et al 

(277, 278) have evolved a novel technique to circum vent th is difficulty term ed 

"dynamic end-tidal forcing". Basically th is consists of using a predictive type 

of cham ber gas concentration input to anticipate the lung-trachea dynamics and 

m anufacture the desired  input response within the lungs them selves. This system  

has been used in subsequent identification studies to give insight into the quantitative 

aspects of the regulation of resp ira tio n  (276, 279, 274, 29, 280, 296) and to identify 

the s ite  of action of drugs (169). The work of th is group, and in p a rticu la r 

Swanson’s thesis  (272), rep resen ts  an im portant contribution to the biological 

identification lite ra tu re  since it em phasises fo r the f ir s t  tim e in th is a re a , the 

im portance of experim ent design on the subsequent accuracy of identification (273) 

and its  ro le  in model discrim ination (275). Also, it is  conspicuous in the field by 

its  use I (29, 280, 296) of some fa irly  advanced tim e-dom ain system

identification m ethods. In this respec t, th is work has had a la rg e  effect on that 

described in th is p resen t th esis .

Identification techniques have also been applied to the study of the 

m am m alian m uscle reflex  control system  (199, 202, 195, 196, 160). Most of 

the applications of system  identification techniques in biology, however, have 

been in the a rea  of tra c e r  k inetics. (This la tte r  te rm  is  a broad brush  one to
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cover the investigation of the kinetics of such things as d rugs, enzym es, 

chem ical reac tions, pharm ological agents, etc. "in vivo" by tra c e r  techniques.) 

Kinetic modelling, as such, is not new. Graphical m ethods, e .g . the "peeling" 

method (259) have been used to fit exponential tra c e r  te s t data to sums of 

exponentials fo r some years now. to recen t tim es m ore computing power has 

been applied (180, 198) to make the p rocess m ore efficient. However, these 

methods a re  s till essen tially  "black-box". Under the influence of engineers, 

modelling and identification procedures a re  beginning to be applied in th is a re a , 

which a re  based m ore on a p rio r i knowledge ra th e r than sim ply observational data. 

This is  especially  tru e  to the context of m etabolic system s. F or exam ple, Wilson 

et al (298) and la te ra lly  Distefano et al (89) have considered the identification of a 

com partm ental model of thyroid hormone m etabolism . Brown and Godfrey (49) 

and Cobelli et al (66) have investigated bilirubin  kinetics by identification m ethods. 

This new approach leads to a b e tte r understanding of the underlying physiological 

p ro cess  and /o r helps devise experim ental conditions, which aid diagnosis of 

diseased s ta tes  (208, 211).

to such com plicated m etabolic m odels careful attention m ust be paid to 

possible non-uniqueness of the resu ltan t pa ram ete r estim ates and, in fact, a 

la rg e  p a rt of the lite ra tu re  in th is a rea  addresses th is very  question. This 

im portant topic will be m ore fully d iscussed to Chapter 4. The problem s 

associated  with applying identification techniques to m etabolic system s a re  

discussed to a m ore general sense by C arson and F inklestein (55) and m ore 

recen tly , in the review  by C arson et al (56). F u rther applications of system  

identification to all the system s mentioned above, and in  addition to the card io - 

vascular, nervous, visual and human operator system s, can be found in the 

com prehensive survey papers by Bekey (25) and Bekey and Beneken (26).
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The m ajority  of identification applications cited in  the biological 

lite ra tu re  so fa r have been off-line m ethods. In concluding th is  section it is  

perhaps worth noting th a t, in the industrial p rocess control field , over the la s t 

decade the em phasis has gradually shifted away from  the design philosophy of 

off-line identification and subsequent fixed contro ller design, tow ards one of 

sim ultaneous on-line identification and control. Attention has especially  been 

focussed on the so -called  "self-tuning regulator" (15, 64,293), a sim plified 

form  of stochastic adaptive con tro ller which ignores the com plicating interaction 

between identification and control (21). It is  the opinion of the author that the 

biological a rea  rep resen ts  an ideal vehicle for application of these techniques 

and, speculating into the fu ture, believes that p ro g ress  in th is  resp ec t will 

ultim ately m ir ro r  that curren tly  being made in industrial p ro cess  control.

1.4 General Considerations in System Identification

As discussed in the previous section, m ost models of biological 

system s u tilise  the concept of the com partm ent. Such com partm ental system s 

may be best rep resen ted  m athem atically in a s ta te-space  fram ew ork (95).

That is ,  an "n" com partm ent lin ea r system  could be rep resen ted  by the set 

of equations 

dx
—  = A ^ X (t) + u (t) 1.1

y(t)=  C X (t) + D u  (t) 1.2

w here x is  an "n" v ec to r, typically representing  the concentration of a

p a rticu la r m ateria l in each of the "n" com partm ents, u an " r"  vector of

inputs inputto the com partm ents and the m atrices  A , B  ̂ , C , D constant 

m a tric e s , whose elem ents will be functions of the "physical" p a ram ete rs  /3 

of the system  of in te re s t. In the d iscre te  tim e case , th is  system  can be 

w ritten  as  :
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X (k + 1) = A X (k) + B u (k) 

y (k) = C X (k) + D u (k)

1.3

1.4

w here k = 0, 1 ,2 , . . .  e t c . , the m atrices A , B being re la ted  to A  ̂ , B  ̂

by fam iliar equations (156).

As is  well known in the system s lite ra tu re , there  is  some redundancy 

in these rep resen ta tions as reg a rd s  input-output re la tions (95) and in fact the 

coefficients of the m atrix  quadruple (A , B, C, D) can be param eterised  in 

te rm s  of the inherent "physical" model p a ram ete rs  in many different ways. This 

can be advantageous. That i s ,  in many situations where the "natural" p aram - 

e terisa tion  is  not convenient fo r identification purposes it is  frequently possible 

to exploit th is redundancy to obtain a b e tte r representation . For exam ple, a 

canonical form  in the m ulti-input, single-output case for equations 1 .3  /  1.4 

with D = 0 is  obtained by employing a suitable equivalence transform ation  so 

that A becom es a m atrix  o f  companion form  (156).

x (k+  1)
u(k)

— —
- a. 1 , 0 b j b.1
** 3L„ 0 1 0

x(k) 11 ir

2 21 •
> "

ty +
-a , 1n-1 '•
-a 0 0 - - 0 b , bn n l nr

— —

1.5

y(k) = f  1 0 0 0 3  x(k) 1.6

By elim inating the state  variab le x we obtain the following input-output rela tion .

y(k) = a^y(k-l)+ . .  a^y(k-n)+b^^ û  (k -1)+  . . .  b^  ̂

u(k -m )+  . . .  b.^ u^(k -1 )+  . . . . . .  + b ^  u^ ( k - n)
1.7

The equation can be w ritten  in slightly m ore compact form  as



- 1 4 -
B (2)

y (k )  = _  u ( k )  1 . 8

where z is  the shift opera to r defined by

z x(k) = X (k+ 1) 1 .9

and A a polynomial, B a polynomial m atrix  in this operator defined by

A (z) = z^+  a^ z^   ̂ + ...........  + a^ 1.10

B(z) = II^xx * ‘ * ^ I r T  ^ •** 11

This represen ta tion  is well-known to the industrial p ro cess  control identification

community (13). Its special s truc tu re  is  such that it is  lin ea r in its  p a ram ete rs

( a ,  , . . .  a ^  , b , . . .  b , . . . b  _ , . . .  b ). A model is  charac te rised  1 n 11 i r  n l n r

a s  being lin ea r in its p a ram ete rs  if the model output is  a lin ea r function of each 

model p a ram ete r. That is  the model can be w ritten  in the form

Y = X 13 1.12

w here the elem ents of the so-called  sensitiv ity  m atrix  X do not depend on 

]3 (22). In identification use of a m athem atical model which is lin ea r in the

p aram ete rs  leads to an estim ation problem  which adm its a closed form  solution. 

On the o ther hand, use of a model which is non-linear in the p a ram ete rs  leads 

to a problem  which can only be solved by iterative m ethods. This will be 

fu rther explained in  Chapter 4. Suffice it to say, however, a t the moment, 

that the im portance of using m odels lin ea r in the p a ram ete rs  in tim e-dom ain 

biological system  identification, where this can be accom plished, cannot be 

over-em phasised.

Having chosen a model struc tu re  whose p a ram ete rs  can be determ ined 

from  input-output re la tions, o r in the term inology of (191) a c lass  of models 

it then rem ains to find the p a ram ete rs  of the model, that is  one model in the 

specified c lass  ^ which fits  the experim ental data. The choice of a
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a c rite rio n  function by m eans of which the "goodness of fit", of the model 

responses to the actual system  responses can be evaluated is crucial in th is 

resp ec t.

Ideally, a cost function would be some distance m easu re  between the
A

p aram ete r estim ates j8 and the tru e  p a ram eter vector j3 . Of course, the
\

problem  with this is  the tru e  p a ram ete r values a re  not known a p rio r i.

T herefore , it is  m ore common for the com parison to be based on som e distance 

m easure  of the e r ro r  between the system  and model responses, e .g . the 

output e r ro r  (13) o r some form  of m ore generalised e r ro r  dependent on both 

input and output (13). The actual c rite rio n  function used can be chosen "ad hoc" 

as is  done in Chapter 3. of th is  th esis . However, as we shall see in Chapter 4, 

the c rite rio n  function used is im plicitly re la ted  to the nature of the disturbances 

corrupting the m easurem ents and it is  possib le to gain some advantage by giving 

a sta tistica l in terp re ta tion  to a c rite rio n . In fac t, a m ajor difficulty in 

m athem atical modelling of biological system s is how to handle uncertainty, i .e .  

in  many problem s the ch arac te ris tic s  of the disturbances can be as im portant 

a s  the system  dynam ics. During the post-w ar development period control 

engineers w ere beginning to be faced with s im ila r problem s in th e ir  field . For 

exam ple, the determ in istic  control theory of the period only took disturbances 

into account in a heuris tic  m anner and hence had difficulty in recognising the 

explicit difference which ex ists  between an open-loop control s tra tegy  and an 

"equivalent" closed loop one. However, under the influence of such nam es 

as W inner and Kolmogorov, a new discipline was evolved to handle such problem s; 

stochastic control theory (9). C entral to th is new theory was the concept that 

d isturbances could be modelled as stochastic p ro cesses  (9).

F or m ost problem s of scientific in te re s t, it tra n sp ire s  that this 

approach amounts to the d isturbances being sim ulated as  the output of a linear
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f ilte r  driven by white noise. In Chapter 4 of th is thesis  it w ill be shown how 

such a functional "noise model" can be combined with the s tru c tu ra l gas 

exchange model derived from  physical principles to give a b e tte r represen ta tion  

of the biological system  under study.
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CHAPTER 2

HOMOGENEOUS MODELS OF THE HUMAN 

GAS TRANSPORT PROCESSES
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2 .1  Introduction

External resp ira tio n  is the carriage  of re sp ira to ry  gases ( , CO^ )

between the atm osphere and the tissu es  of the body. The need for such a 

p ro cess  a r is e s  from  the nature of human m etabolism .

Man requ ires  energy whether a t work, exerc ise , o r even whilst asleep . 

This energy is m ainly derived from  the oxidation of foodstuffs. A lso, the main 

end-product of th is reaction  is carbon dioxide. Thus, the tissu es  a re  continually 

demanding oxygen and producing carbon dioxide.

This uptake and excretion will not be constant, but will vary  with energy 

requ irem en ts. Thus, there  is  a functional requirem ent for a regulatory  m echanism  

to m aintain the levels of these gases in the tissu es  within reasonable lim its  for 

hom eostatic purposes. This regulatory  m echanism is known as the re sp ira to ry  

control system . It controls gas levels in the re sp ira to ry  "plant" o r controlled 

system  p rim arily  by manipulating the ventilation of the lungs. As discussed in 

the previous chapter, th is system  has already been subject to a g rea t deal of 

m athem atical trea tm en t. However, in this thesis the modelling effort will be 

concerned, not with the control system  itse lf, but ra th e r the controlled plant, 

i .e .  the human gas transpo rt system .

Conceptually, the human gas transpo rt system  can be thought of as 

being made up of two constituent p a r ts .

(1) The system  responsible for carriage  of re sp ira to ry  gases in the 

a ir  phase , i. e. that which transports  gases from  the external 

environm ent to the a lveolar m em brane and vice v e rsa .

(2) The system  responsible fo r carriage  of re sp ira to ry  gases in the 

liquid phase, i . e .  that which transpo rts  gases from  the pulmonary 

cap illaries  to the tissu es  and vice v e rsa .
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Anatom ically, sub system  (1) consists of a se ries  of b ifurcating tubes, i .e .  

beginning with the trachea (or windpipe), dividing into the two bronchi and 

each of these m ajor airw ays diving 23 m ore tim es and eventually term inating 

in tiny sacs called a lveoli, where gas exchange takes place with the blood.

The e a r lie r  generation airw ays (i. e. the upper airw ays) do not take p a rt in 

gas exchange to any extent, although they a re  still ventilated. This 

ventilated region constitutes "wasted ventilation" and for th is reason  th is gas 

volume is known as the "anatom ical dead space".

In sub system  (2) th e re  is  branching between the pulm onary a rte ry  

and the pulm onary vein, eventually term inating in the pulm onary cap illaries 

which a re  in d irec t contact with the alveoli.

It is  a c ro ss  th is gas-blood in terface (alveolar m em brane - pulm onary

capillary  wall) that gas exchange takes place. Despite the sm all size  of the

lungs, due to the bifurcating s tru c tu re , the in terface a rea  is  ve:iy la rg e  ( 70 - 
2

100 m ), which fac ilita tes efficient gas exchange. Although gas is  transported  

to the gas-blood in terface m ainly by convection (bulk flow) gas tran sfe r ac ro ss  

th is  m em brane itse lf takes p lace largely  on the basis  of p a rtia l p re ssu re  

grad ien ts. Thus, pulm onary a r te r ia l (venous mixed) blood comes into the lungs 

from  the tissu es  high in CO^ and low in . In con trast, a lveo lar a ir  is  n ea re r 

the gas pa rtia l p re s su re  levels of the external environm ent which is  high in 

and low in CO^ . T herefore , due to the p a rtia l p re ssu re  gradient there  is a net 

tra n s fe r  of from  the lungs to the blood and of CO^ from  the blood to the lungs. 

Thus, the pulm onary venous (a rte ria l) blood leaves the lungs high in and low 

in CO^ and goes to the tissu es  w here net gas tran sfe r takes p lace in the opposite 

direction to that in the lungs since here  the partia l p re s su re  gradients a re  

rev ersed .
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In the human gas tran sp o rt system, four a reas  for modelling attention 

will be identified, which will be pursued at various p laces in th is chapter,

(1) Modelling of convective p e rh ap s  diffusive) gas tran sp o rt between 

the external environment and the alveolar reg ions,

(2) Modelling of a lveolar m em brane/pulm onary cap illary  gas 

exchange.

(3) Modelling of the relationship between p artia l p re s su re  (gas tension) 

and content in the blood in situations where th is is  not a porportional 

relationship  ( i .e . the gases used do not obey H enry 's Law ).

This will be especially  im portant for the re sp ira to ry  gases and

COg, which combine chem ically with the blood.

(4) Modelling of the a r te r ia l blood to venous . blood " tissue  loop" and 

inherent tran sp o rt delays.

Several simplifying assum ptions a re  required  to keep the analysis of these sub­

system s within reasonable bounds. However, perhaps the m ost im portant 

re fe rs  to m odelling a rea  (2) and th is will be discussed below.

To keep the o rd e r of the resu ltan t differential equations involved low, 

it is  useful to assum e that the lungs are'homogeneous*, i . e .  all the alveoli on 

the gas side and all the pulm onary cap illaries on the blood side can each be 

lumped into one s tru c tu re  (that is single num erical values can be assigned to 

the pa rtia l p re s su re s  in all the alveoli and in all the pulm onary cap illaries).

This assum ption is  perfectly  adequate to describe norm al lungs (and is  alm ost 

universal in c lassica l re sp ira to ry  physiology), but will have the effect of 

invalidating the model in the p resence  of significant abnorm alities o r inhomogen­

eities such as exist in d isease. Inhomogeneous models a re  discussed in 

Chapter 8.
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2 .2  M athem atical Concepts and Quantities in Human Gas T ransport

Before going on to undertake modelling of human re sp ira to ry  gas 

exchange, fam iliarisation  with the standard units and symbols used in th is 

a rea  is necessary .

In the early  days w orkers in gas exchange physiology w ere short on 

ideals of interchange and co-ordination and the resu ltan t m athem atical 

language used reflected th is disharm ony. However, the 1950 Atlantic City 

standardisation (232) introduced c larity  into the field and has served to unify 

gas exchange modelling with resp ec t to units and symbols until very  recen tly . 

This 1950 standard system  of units and symbols is  used in th is thesis  and is 

outlined in Table 2 .1  below. The basic  concept behind the system  of units 

is that amount of gas, i .e .  quantity of substance, be rep resen ted  by a volume 

expressed  at a se t condition of tem peratu re  and p re s su re  - conventionally BTPS

* i S f "

(Body Tem perature and P ressu re  Saturated (with w ater vapour) ). I In 1971 

P iiper e t al (238) suggested the a lternative concept where amount of gas was 

expressed  in m oles. However, although this has certa in  advantages, it has not 

as yet become universally  popular with physiologists who s till seem  to p re fe r 

the 1950 system . F or th is reason  the "new" system  has not been used in this 

th e sis .J

Concentration in the a ir  phase in our system  of units is  represen ted  

by the dim ensionless quantity fractional concentration F (volume of gas species 

under consideration/volum e of gas medium). The relationship between 

fractional concentration and p a rtia l p re ssu re  is  described sim ply by D alton's 

Law, i .e .

= _ 2 .1

where F^ is fractional concentration of a gas species x , P^ the p a rtia l
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Quantity Symbol Units

P artia l P ressu re P mm.Hg (T orr) o r 
kilopascal (KPa)

Volume of gas 
(gas in a ir  phase)

V L itre  (at BTPS)

Fractional concentration 
(gas in a ir  phase)

F D im ensionless

Volume flow ra te V L itre /m in

Cone, of gas in liquid 
phase

C m l. of gas at STPD/ 
100 m l liq u id ,

Solubility in blood (for gases 
which obey H enry’s Law) 
Bunsen solubility coefficient

a
Vol. of gas a t STPD/ 
Vol. of liqu id / 
atm osphere of p re s su re .

Ostwald solubility coefficient a  ^ Vol. of gas a t BTPD/Vol. 
of liqu id /atm osphere of 
p re ssu re  
Of '=  Of X 1.163

SUBSCRIPTS

Upper Case L e tte rs  
(for gas phase)

Lower Case L e tte rs  
(for blood phase)

I Inspired a a r te r ia l

E Expired V mixed venous

E Mean end expiratory

A A lveolar

TABLE 2 .1 :  Standard Symbols from  Atlantic City Standardisation
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p re s su re  and P the total gas p re s su re . Relationships concerning the carriage  

of a gas in a liquid may be developed by invoking the concept of gas tension.

This is defined as  that p a rtia l p re s su re  of a gas species x in a gas m ixture 

which, if exposed to the liquid, would not re su lt in any net exchange of x ,

Thus, saying a gas and liquid m ixture a re  equilibrated is  synonymous with 

saying the p a rtia l p re s su re s  of the component gas species a re  identical in  the 

gas and liquid m edia. The tension of a gas in a liquid, as defined above, is 

re la ted  to concentration.

F or gases which dissolve in the liquid, H enry’s law te lls  us this 

concentration - p a rtia l p re ssu re  relationship is a m atte r of sim ple p ro p o rt­

ionality. We shall call such gases in the context on th is  thesis  in e rt gases, 

in e rt in the biological sense as f ir s t  defined by Kety (173). Since, in the 1950 

system  of units, quantity of gas in the liquid is expressed  as a volume at STPD, 

it is  usual to use the Bunsen solubility coefficient as the constant of proportionality  

in the linear concentration - partia l p re ssu re  relationship . Thus, we have 

a  P
^  f -  2 .2

w here C is  the concentration of gas species x in the liquid, P its  

p a rtia l p re ssu re  the value of the Bunsen solubility coefficient for x and 

P the total p re ssu re .

Som etim es, especially  when equating uptake in the liquid phase with output 

from  the gas phase, it is  m ore convenient with inert gases to use the Ostwald 

solubility coefficient in equation 2 .2 , a s  th is obviates m anipulations involved 

m considering volumes of gas in the a ir  phase a t BTPS and in  the liquid phase 

at STPD. F o r the im portant re sp ira to ry  gases 0^ and CO^ unlike inert gases , 

th e re  is  no sim ple relationship between tension and concentration in the liquid 

phase, since these gases combine chem ically with the blood and hence the resu ltan t
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content - p a rtia l p re s su re  relationships a re  non-lin ear. These nonlinearities 

( i .e . Haldane effect for CO^ , Bohr Shift for ) lead to an increase  in 

efficiency as reg ard s  gas exchange, but complicate m athem atical trea tm en t. 

These two special cases will be trea ted  in Section 2 .3 . Using the units and 

symbols introduced above, basic  equations of gas exchange in the lung may be 

derived by the sim ple application of the principle of conservation of m ass .

F o r exam ple, the uptake of a gas x from  the external environment to the lung 

may be derived as :

\ \ 2 .3

Uptake Amount Amount
(Vol. Inspired Expired
BTPS/ 
unit tim e)

In breathing norm al re sp ira to ry  gas m ixtures Vj does not norm ally equal

Vg since m ore oxygen is  taken up than CO^ produced, (i. e. the re sp ira to ry
V CO2

gas exchange ra tio  <  1 ). An expression describ ing the uptake of

a gas x from  the blood to the lungs may also be w ritten  as :

# #
V = Q ( C -  - G ) 2 .4X ^  vx ax

Uptake Net tra n s fe r  from
(Vol. blood
STPD/ 
unit tim e)

Equation 2 .4  is known as the Fick equation and equating equations 2 .3  and 2 .4  is 

the b asis  of the various methods of m easurem ent of card iac output which will 

be d iscussed  in the succeeding chapter.

When equating gas uptake from  the environm ent with tran sfe r to the 

blood, quantities in the above equations m ust be expressed  a t the sam e 

conditions of tem perature  and p re ssu re  and, th e re fo re , use of a correction
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fac to r is n ecessa ry , 1. e.

,  »

\  (STPD) "  ^ \  (BTPS)

w here k is the reduction fac to r from  BTPS to STPD conditions given by 

B in th is  case  being the barom etric  p re ssu re  in m m . Hg.

2.3. Concentration. - P artia l P re ssu re  Relationship for

Oxygen is  c a rried  in blood mainly in chem ical combination with a 

substance called haemoglobin, a pro te in  found in the red  blood cells 

(G fiythrocytes).

+ Hb ; — ^  HbO^ . 2 .7

Oxygen (reduced) Oxyhaemoglobtn
haemoglobin

This is  a rev e rs ib le  reaction . Just to what side th is reaction  is  biased depends 

m ainly on the p a rtia l p re s su re  of O^ in the im m ediate environm ent, i . e. the 

reaction  is  b iased to the righ t hand side in alveolar regions (high PO^ ) to allow 

uptake of O^ , but to the left in the tissu es  ( low PO^ ) to  e lic it unloading of O^ 

from  oxyhaemoglobtn.

The curve re la ting  percentage saturation of the carry ing  power of 

haemoglobin (maximum that can be ca rried  by one gram  of Hb is  approxim ately 

1.39 ml ) to PO^ is known as  the oxyhaemoglobin dissociation curve. This has 

the ch a rac te ris tic  sigmoid shape which is  shown in Fig. 2 .1 .

The reaction  above is  also dependent to a le s s e r  extent on tem peratu re^  

acid-base status (pH) o f the blood and CO^ partia l p re s su re  ( the Bohr effect).
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The la tte r  effect causes the Hb dissociation curve to shift to the right with

increasing  PCO . This is advantageous, e .g . where an in crease  in CO

partia l p re ssu re  locally  during tissue  activity would cause HbO^ to p a rt m ore

readily  with its  to the active tissu es . A certain  amount of is  also carried

in d irec t solution in p lasm a. T h is, however, is  a lo t le s s  than that carried

combined with haemoglobin since the Bunsen solubility coefficient of oxygen

""4in blood plasm a is  sm all ( c h q ^  0 .3  x 10 ). Thus the concentration-

p a rtia l p re s su re  relationship can be w ritten  in te rm s  of these  two distinct 

components a s  follows :

CO2  = f ( P 0 2 ) . =  Cap. ^  . PO2  2 .8

where Cap is  the product of oxygen capacity of haemoglobin a t 100% saturation 

(1.39 m l/g  Hb ) and the blood Hb concentration ( g Hb/100 m l whole blood)^ S 

is the percentage haemoglobin saturation  as given by the Hb dissociation 

curve and the solubility of oxygen in blood p lasm a. The f ir s t  te rm  in the

above equation gives the amount of Og in chem ical combination and the 

second the amount of in physical solution. To use the above equation a 

m athem atical expression  is  also required  to describe the d issociation curve 

in a form  fo r S above as a function of FO^ . V arious em pirical form ulae 

have been suggested. V isse r e t al (287) used.

S(POg ) = .  g-  ( k x P 0 2  ) j  2 . 9 .

This was based on the curve obtained by Dill and F orbes (85) from  the data of 

Bock e t al (34); as  is  the modified form ula of Murphy (212).

1.1_ n A/i DOo -  n  n a  Dr»n l
SCPO  ̂ ) = ( 1 - e" ) ( 1 - e “ ) r 2 .10

This data, however, was based on m easurem ents from  only one man. 

Servinghaus (256) has obtained a curve which was averaged from  data for ten
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adults. The form  of d issociation curve eventually used in th is  thesis  is that 

of Kelman (170) which is based on that of Servinghaus. Kelm an’s equation is

C PO + C p o /  +  C p o /  +  G, p o /
S(PO ) = i ------------------ -2— i --------- 1 - 2 -  2.11

«5 + ^6 P°2 + C, PO2 + Cg P02« + Cg P o /

w here ......... ...  a re  constants.

F or the work described in this thesis th is equation was rea rran g ed  in factorised  

form  (which is  much m ore convenient fo r computation) as

2 ) -  [POg {P02<P02 < P 0 2 +  = 7 > + a ^ ) + a g ^ + a ^ ]  ^.12

where a^ , a ^ ...............   a^ a re  derived directly  from  Kelm an’s coefficients

and a re  : -

SL^ = - 8 .532229x 1 0 ^ ,  a^ =2.121401 x 10^ , a^ = - 6.707399 x 10^ 

a^ = 9.359609x 10^ ,  a^ = - 3.134626 x 10^, a^ = 2.396167 x 10^ ,

ay = - 6.710441 x 10^ .

The Kelman form ula (170) was envisaged for given values of PCO^ ( 40 m m . Hg), 

blood pH (7.4) and body tem perature  ( 37^ C ). C orrection form ulae for the 

basic  equation w ere given for o ther values of these various fac to rs . For exam ple, 

if PCO^ is  not 40 mm Hg, then PO^ in equation 2.12 is  replaced by the following 

expression

/  Co, 06 ( log 40 - log (PCO )1
PO^ = PO^ X 10 2.13

However, Ferguson (108) has shown that the effect of these  co rrection  fac to rs , 

even cum ulatively, is sm all ( <  4%) over the PÔ^ ranges of physiological 

in te re st. Thus, these modifications will be ignored in the dynamic gas 

exchange model used in th is  th e sis .
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2 ,4  Concentration - P artia l P re ssu re  Relationship for CO^

D espite the fact the solubility of CO^ in blood is some twenty tim es 

g re a te r  than 0^ , CO^ i s , like , transported  in  the blood in chem ically 

combined form . The bulk of it is  carried  as b icarbonate. The reaction  is

sum m arised below.

c. a* ^
CO2 + H2 o  H2 c o ^  H + h c o  ̂ 2 .1 4

Although th is reaction  can ( and does) take place in p lasm a, it is  chiefly 

ca rried  out in the red  blood cells  ( erythrocytes), w here the p resence  of the 

enzym e,carbonic an h y d ra se (c .a .)  catalyses the f ir s t  step of the reaction  above.

A la rg e  p a rt of th is bicarbonate formed in the ery throcytes then 

d issolves back into the plasm a in exchange for the shift of chloride ions in the 

opposite d irection , which m aintain e lec trica l neutra lity . This reaction  is  

dependent on CO2  p a rtia l p re ssu re  and is  conveniently driven to the righ t in 

the tissu es  and to the le ft in the alveoli.

Not all CO2  is  transported, as bicarbonate ; some is  transported  as 

carbam ino bound COg ; la rgely  bound to haemoglobin, but also to a le s s e r  

extent to p lasm a p ro te in s,

CO2  tran sp o rt is  also dependent on the tension o r  m ore p rec ise ly , 

the s ta te  of oxygenation of Hb since th is affects the CO2  binding power of the 

blood, i .e .  reduced Hb form s m ore carbamino - Hb than Hb Og • Thus, at 

a given PCO2  , fully oxygenated blood holds le ss  CO2  than deoxygenated blood. 

This effect, which thus serv es  to increase  the efficiency of external resp ira tion  

in m an, is known as the Haldane effect.

Modelling the relationship between CO2  concentration and tension in 

blood has been approached from  two different viewpoints. Kelman (171) has
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developed a descrip tion based on explicit m athem atical consideration of the 

underlying physico-chem ical equations.

A m ore common approach, however, (90) is  to fit em pirical curves 

to published data of experim entally derived concentration/tension relationships 

on certa in  subjects.

Surprisingly , despite the biochem ical complexity of GO^ tran sp o rt 

in blood eluded to above, the relationship can be approxim ated lin ea r over the 

range of physiological in te re st (PCO^ : 30 - 60 mm Hg ) i .e .  see Fig. 2 .2 .

C —̂  = a + b FCO_
2 ^ 2.15

L(STPD)/L mm Hg.

This relationship has been used in many sim ulations of carbon dioxide tran sp o rt

(143 , 282 , 61, 303, 175, 185). Quantitatively, little  difference has been found

in the slope 'b' of the "CO^ dissociation curve” at different levels (in the

sam e subject). However, due to the Haldane effect, the in tercep ts ”a" a re

different fo r a r te r ia l and mixed venous blood, i .e .  a _  ^ a . ManyV a ^

w orkers employing the represen ta tion  given by equation 2 .15  do not take the 

Haldane effect into account in th e ir sim ulations ( i . e .  they assum e a__ = a ),
V a

e .g . (282). Many m ore do not take into account the known in te r subject 

variation in the slope ’b ' of the dissociation curve, but assum e a constant 

value fo r a ll sub jects, (143 , 282 , 61, 303). The cause of th is subject to 

subject variation  in 'b ’ is re la ted  to the corresponding varia tion  in Hb 

concentration, e .g . it is  well known that the slope of the dissociation curves 

in polycythaem ics is m arkedly g rea te r than in anaemic s .

This relationship can be modelled and the value of *b' thus tailored 

to the individual subject. Pack (228) based on an investigation by P e ters  e t al 

(237) recom m ended that the relationship between 'b' and Hb concentration be 

described as :
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t

b = 0.448 Hb. cone. + 6 .3  2 .16
L /L /m m  Hg 30 x 100

w here the Hb concentration is  in units of grains p e r 100 ml whole blood 

(gm%).

Thus, given the lin ea rised  CO^ content/partial p re ssu re  relationship , the 

Fick equation (equation 2 .4 ) can be w ritten  in te rm s  of CO^ tensions as  :

^ 5 >
= Q b ( P -  - P ) + Q ( a -  - a ) 

CO2  . CO2  •

w here A is  the difference between the mixed venous and a r te r ia l GO_ 
INT 2

dissociation curve in tercepts (taken as 0.0129 subsequently in th is  thesis).

V /
2 .5  Homogeneous Lung Gas Exchange Model with Flow "Through 

R epresentation of Ventilation

Equations describ ing the transien t aspects of alveolar capillary  

gas exchange ( i .e . dynamic equations) can be derived by recognising that, 

in the non-steady s ta te , by conservation of m ass the difference between the 

net tra n s fe r  of a gas species from  the environment to the lungs (as given 

by equation 2 .3 ) and the net tra n s fe r  between the lung gas and the blood (as

given by equation 2 .4 ) will rep resen t the ra te  of change of the quantity of gas

in the lungs, i . e .

R ates of change of _ Net tra n s fe r  ^  Net tra n sfe r  
amount of gas in the between ext. between pulm onary 2 .18

lung environment capillary  blood
and lungs and lungs.



- 33 -

Such a model was used in the c lassica l re sp ira to ry  control sim ulation of 

Grodins et al (143) and has since been used extensively in this a re a .

To overcom e difficulties with the tim e-varying nature of ventilation 

and m otivated by the d esire  to obtain an analytical solution the Grodins model 

u tilised  a conceptual "flow through" represen tation  of ventilation, which 

effectively ignored the events of the re sp ira to ry  cycle. This is  depicted in 

F ig. 2 .3 .

Although Grodins orig inal model (143) ignored the w asted ventilation 

in the upper airw ays (assum ed zero  deadspace, i . e .  = Vj , = Vg, )

th is was accounted for in  la te r  work by using the Bohr equation, which 

proportions the ventilation into the a lveolar and dead space components.

= %  + '  2 .1 9

sim ila rly  « a\ 2 .2 0

O
w here V . is  inspired alveolar ventilation, dead space ventilation,
4  ̂ t  9

expired a lveolar ventilation, Vj , Vg inspired  and expired minute 

ventilation a t the mouth, = dead space value and f is  breathing frequency. 

O ther assum ptions inherent in the Grodins model w ere :

(1) the re sp ira to ry  gas exchange ra tio  R is constant and 

unity (this m eans V. = V. = V ),Aj Ag

(2) the alveoli a re  assum ed uniform (homogeneous) and of 

constant volume ( ^ . ^ l  -  0 ),

(3) gas tensions in the alveoli and a rte ria l blood a re  in

continuous equilibrium  ( i . e .  ).
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Thus, applying the concepts and quantities of Section 2 .2  to equation 2 .20  

above, re su lts  in the following a lveo lar-cap illa ry  gas exchange equation for 

a gas species x ,

2.21

w here ^  embodies the correction  from  STPD to BTPS (we a re  working at 

STPD here) and is  obtained from  equation 2; 6. Using Dalton’s Law and 

assum ption (1), equation 2.21 reduces to

‘""’Ax %  Va ^ P a X
(B-47) dt ( B - 47) (B - 47)

" B 310
Q (  ̂ • ^ 7 )  • 273" 2-22

Tidying up and employing the rem aining assum ptions re su lts  in /

( P i^  - Pa ^  ) + Q ( - f ( P A ^ )  ) .  const. 2.23
X

where const = = 863 2.24

and f(?A^ ) is the content partia l p re ssu re  relationship fo r the gas species x . 

P articu la r choices fo r given gases w ere discussed in e a r lie r  sections.

Equation 2.23 is  the basic  dynamic equation of alveolar capillary  gas 

exchange and as pointed out e a r lie r , because is  assum ed constant, may be 

solved analytically. This may be done for various gases an d /o r physiological 

conditions. C -  may be regarded as constant ( i .e . for short experim ents le ss  

than around 45 sec s . ) o r may be obtained as a solution of one o r m ore tissue  

equations in  longer experim ents where rec ircu lation  has occurred . A spects of 

tissu e  s to re  equations will be m ore extensively d iscussed in a la te r  section of 

th is  chapter.
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If an insoluble gas is  used, there  will be no net tra n s fe r  of this gas 

species to the blood and the second te rm  of the right hand side of equation 

2.23 can be ignored. A lternatively, during breath-holding is zero  and 

the f ir s t  te rm  on the right hand side of equation 2.23 can be ignored.

2 .6  Homogeneous Lung Gas Exchange Model with T im e-V arying
R epresentation of Ventilation

The "flow through" type of model discussed in the previous section 

rep resen ted  a g rea t advance over the traditional steady sta te  m odels much 

beloved by re sp ira to ry  physiologists. However; in te rm s  of a tru ly  "physical" 

descrip tion of re sp ira to ry  gas tran sp o rt, it is  s till conspicuous by its  failure 

to consider that which, even to the laym an, would appear the m ost 

distinguishing facet of the system , that is  the tim e-varying nature of ventilation.

There a re , of course, fa irly  sound reasons fo r th is  om ission. The 

complex p ro cess  of gas tran sp o rt in the airw ays can only rea lly  be p roperly  

described by d istributed m odels (58, 231). The m athem atics and resu ltan t 

computation involved in  th is is ra th e r overbearing.

However, a m ore adequate s truc tu ra l rep resen ta tion  of gas tran sp o rt 

in the upper airw ays than is  furnished by the Grodins model is  a necessary  p r e ­

req u isite  fo r the use of th is type of model in such applications as indirect 

m easurem ent in the individual subject. Fortunately, if one is  willing to accept 

a degree of flexibility, fa irly  trac tib le  lumped p a ram ete r descrip tions of upper 

airways tran sp o rt behaviour can be form ed without reco u rse  to a full d istributed 

solution. Motivated by such asp ira tions. D r. M urray-Sm ith, D r. Pack and 

associates a t the C. R .L  and in th is U niversity D epartm ent, viewed the pulmonary 

component of th is model in the form  illu stra ted  in F igure 2 .4 ,  i .e .
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(i) conducting airw ays - A rigid "non-reacting" dead space

com partm ent in which no volume change can occur,

(ii) Alveoli - where volume change can occur.

(This of course is  no m ore than the Bohr conceptualisation of lung structu re). 

They also postulated that gas washes in and out of the airw ays with a plane 

front (i. e."plug flow" in the airw ays).

Such assum ptions above would dictate that the insp ired /expired  gas 

concentration profile  would be of the square wave form . Although th is may 

seem  on the surface a g ro ss  sim plification of the true  state  of nature , it is 

a m atte r of em pirical fact that such a waveform can read ily  be d iscerned in 

expired gas concentration reco rds logged at the mouths of re a l subjects, e .g . 

see  F igure 2 , 6(b). It is  th is factor which has encouraged subsequent 

development of the model. In fact, many authors have attem pted to incorporate

the cyclic nature of ventilation into equations of the type 2.23 (e .g . 271, 302,

222), but only in theoretical studies - no attem pt has been made to apply them  to 

m easurem ent of physiological quantities.

Utilising the concepts detailed above. Pack and his associates (96,

214, 229) considered gas exchange in  the re sp ira to ry  cycle in te rm s  of th ree  

separa te  stages outlined below.

STAGE CONDITION

V(51) Inspiration of dead space V ^  O and J  Vj dt <1
gas to alveoli tj

•  ^  *

(52) Inspiration of atm ospheric V ^  O and J*V dt ^
gas to alveoli tj

(S 3) Expiration V O

where t  = t^ defines the s ta r t  of inspiration.

The tra n s fe r  of gas into and out of the lungs is different in all th ree  of these 

stages of the re sp ira to ry  cycle. Applying the concept of conservation of m ass
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over a ll th ree  of these stages we a rriv e  a t the following equation analogous 

to equation 2 .18 .

Rate of change of 
amount of gas in 
the lung

T ran sfe r from  
dead space 
(during stage 1)

T ran sfe r for ext. 
+ environment

(during stage 2)

T ran sfe r to dead 
+ space

(during stage 3)

2.25
T ran sfe r from  
blood
(during all stages)

M athem atically th is  can be w ritten

= + S 3 V F  + Q ( C .  - C ^ ) .  -
X X X X X X

2.26

¥  ) = ^  “X X X X X X
2.27

w here S^ = l  only during the condition described fo r stage 1 above and 0 

otherw ise; s im ila rly  fo r and .

In the previous section was considered as fixed, however, in  rea lity  

will vary  with tim e as follows :

v«  = V j( t )  = V . , „ , +  J v  dt - j v g  dt + J \A ' A ' '  'A(O)

(FRC)

dt + V dt 
2 ^  02

2.28

Now, if the varia tion  in due to the difference in gas flux to and from  the 

blood-can be neglected, i . e .  if  re sp ira to ry  exchange ra tio  is  assum ed equal to 

one, the la s t two te rm s  of th is equation cancel out and we have

\  = ^A(0) + J v  dt ^
dt

V 2.29
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and equation 2.27 becom es

V d J ^ L = S ^ V ( P D  -P* ) + S 2 V(Pj  - P ,  ) + Q ( C -  - f ( P  ) ) c o n s t .
d t  X X X X X X

2.30

Note that in th is equation in addition to being tim e-vary ing  as defined by 

equation 2 .2 9 , is an 'equivalent lung volume since in addition to the volume 

component of the gas species in lung g as, it w ül also contain a component 

from  the gas dissolved in lung tissu e  (and assum ed to be in  equilibrium  with 

lung gas) expressed  as an equivalent additional volume; see Pack(228)for fu rther 

d iscussion . Now what of P^ ? Obviously; since th e re  is  "plug flow" through
X

the dead space, P̂  ̂ should be a suitably tim e-delayed version  of P^ .
X X

Pq  = P^ ( t  - I r  ) 2 .31
X X

This tim e delay will be flow dependent and defined by the following equation

J
t  * ^ t *

lv,| dt = I V„1 dt 2.32

However, th is wHl be complex to sim ulate.

In e a r lie r  work Pack e t al (229) assum ed that P ^  be set equal to
X

over stage 1, i . e .  they assum ed the f ir s t  te rm  on the right hand side
X

of equation 2. 30 is  zero .

Note that with this form ulation there  is no need to actually m easure  

expired flow since it does not appear in the a lveo lar-cap illa ry  gas exchange 

equation. This was advantageous since there  a re  difficulties in m easuring 

th is quantity with a conventional pneum otachom eter m ainly associated  with 

the fact that expired gas is  sa tu rated  with w ater vapour. However, m ore 

recen tly  a t G. R. I. th is advantage has been negated due to the availability of
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a pneumotach specially  designed to handle ’w et’ gas (284). Thus, Gray (139) 

has proposed the following form ula for P (assum ed constant over stage 1 )
X

which u tilises  expired ventilation.

f ï  .

iP =  —  2 .33
X t̂  .

Vg dtI
w here t^  is such that J  | Vg | dt = 2.34

&

i . e .  P^ in the f ir s t  dead space of inspiration is  taken as the flow-weighted
X

m ean of P ^  over the la s t dead space of the previous inspiration.

hi fact, it tra n sp ire s  th is is  s im ila r to the expression  developed by 

H lastala (154) except that the lin ea r mixing te rm  included by th is author over 

the insp ired  volume range from  50 m l le ss  to 50 ml g re a te r  than the dead space 

has been om itted.

Thus, to sum m arise,equation 2 .30  can be m ost conveniently 

w ritten  as follows :

* *
= S V ( ^  - P ) + Q ( G -  - f ( P  ) const 2.35a

X \
«

w here S = 1, V ^ O ,  = 0 o therw ise,

P, = Pp. (as given by eqn. 2 .33) if S = 1
X X 2 .35b

= \  if = 1

In th is  form  the s im ila rity  with equation 2.27 can be m ore readily  appreciated. 

For carbon dioxide the above equation thus reduces to the following form
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d P
= s ; ( p ; - P a ) + Q p b  ( P .  - p ^  ) + A JV. „    _ . _ .

const 2,36
INT-

2 .7  Modelling the A rte ria l - Mixed Venous Loop

A s mentioned in section 2 .4 ,  transien t changes in  a lveo lar-cap illa ry  

gas levels will ultim ately be reflected  in mixed venous blood gas levels a fte r 

rec ircu la tion  has occu rred . Thus in th is situation m odelling of this a r te r ia l - 

m ixed venous loop is  necessa ry . The ra te  of change of mixed venous gas 

concentrations will be determ ined by the dynamics of the various tissu e  s to res  

in the body ( i .e . m uscle, fa t, e tc .)  for the gas under consideration and on the 

delays, a r te r ia l and venous inherent in the blood c ircu lato ry  system . Of these 

delays the a r te r ia l delay (%^  ̂ ) is  approxim ately one o rd e r of magnitude le ss  

than the venous delay ( T  -  ) is ,  therefore , usually neglected. A lso, for 

the re sp ira to ry  gases O ^ and CO^ arterial/venous gas tra n s fe r  will also be 

affected by the re levan t m etabolic uptake/production of these gases in the tissu e s  

them selves.

The various tissu e  s to re s , therefo re , can be considered as a lumped 

para lle l (or equivalently se r ie s ) system  of com partm ents each with a differing 

tim e constant, depending on its  re la tive  perfusion, volum e, m etabolic uptake/ 

demand where appropriate  and p a rticu la r content-partial p re s su re  relationship 

fo r that p a rticu la r tissu e  type and gas species under consideration. Such a 

m ulti-com partm ental modelling approach to tissu e  s to re s  f i r s t  appears to have 

been proposed by F ah ri and Rahn (101, 102). M apleson (200) evolved a s im ila r 

p a ra lle l m odel, but his m otivation was to consider the uptake of anaesthetic 

agents. M apleson 's model and associated param ete r values has since been 

used and refined by him self and other, authors (309, 310, 210). F o r any gas 

species x (ignoring a r te r ia l c ircu lato ry  delays, i . e . f  ^ = 0 ) dynamic 

equations for the ith p a ra lle l tissu e  com partm ent can be w ritten  based on
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conservation of m ass as follows : 

ra te  of change of m etabolic
amount of gas in = input te rm  - net tra n s fe r  to lungs
tissu e  s to re  (where appropriate)

i . e .  m athem atically 

C

^ T G j  "  ^  ■ Q i x  [  * ^ T C j  ’  J^  dt ix- X J

2 .37

2.38

w here the subscrip t TG re fe rs  to a tissu e  com partm ent. If the com partm ents

a re  assum ed to be arranged in p a ra lle l, as  is  custom ary, the mixed venous

concentration ( G * .) will be equal to the perfusion weighted m ean ( G ^  ) v TG

of the concentrations in the individual tissu e  com partm ents suitably delayed 

by the venous c ircu lato ry  tim e delay ^ , i .e .

C - ( t )  = ( t - T r .  ) 2 .39 .

w here No. of com pts. 

^  °T G i^ f c  i = l  * ""1  2.40

No. of com pts.

Z  Qi
i = l

F o r experim ents of re la tive ly  short duration (i. e. of the o rd e r of m inutes) 

fo r certa in  gas species such m ulti-com partm ent tissue  rep resen ta tions may 

be over-com plex. In p a rtic u la r , th e re  is  evidence of th is fo r GO^ where e .g . 

Gherniack et al (60) and Longobardo et al (193) both found that experim ental 

changes in mixed venous blood occurred  m ore rapidly than the m u lti- 

com partm ental model based on'a p r io r i physiological knowledge could p red ic t. 

Two hypotheses have been advanced to explain th is  ’fa s t’ GO^ tissu e  sto rage.

(1) The apparently sm all GO2  tissue  storage volume is due to the b a r r ie r  

between in te rce llu la r and ex tra  -ce llu la r fluid being 

diffusion lim ited ( Fowle and Gampbell (117) ).
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(2) C ertain  enzymes (p rim arily  carbonic anhydrase) a re  necessary

for CO. hydration (see section 2 .4 ) .These may not ex ist in 

certa in  tis su e s , e .g . m uscle. Thus, these tissu es  would 

respond in itially  to ra ised  CO^ levels with an absorptive 

capacity of CO^ identical to w ater (i. e. equivalent to a low 

slope of COg dissociation curve). (Longobardo et al (193) ).

The weight of evidence tends to support the la tte r  hypothesis (36,37).

To circum vent the above difficulty in the model of the type given by equation 

2 .3 8 , Longobardo et a l (193) utilised  the concept of an "effective tissu e  volume* 

Vt c  for CO^ sm alle r than the apparent "physical" tissu e  volume and

defined as

Vt c  eff ^ ^T C  ' ^ (tissues) 2.41
b (blood)

to b e tte r explain th e ir  experim ental observations. Such an idea was also taken 

up by Pack et al (229) in th e ir  single tissue  com partm ent CO^ model intended 

fo r short duration experim ents. This model also ignores for sim plicity the 

venous c ircu lato ry  veneous delay ( i .e .  P ,  = ) and also  analogous to th e ir

a lveo lar-cap illa ry  CO^ equation (equation 2.36)^ a lv eo la r-a r te r ia l equilibrium  

is assum ed ( P ^  = P^ ). Thus, the equation is

.  M - Q [ b  ( r T C - ' A ’ *  * N t ]  ■

Note the is  an effective tissue  volume which m eans "b" on the right hand 

side of th is  equation is the dissociation slope for CO^ in the blood.
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2. 8 Potential of the Homogeneous COg Model for use in Indirect 
M easurem ent of Gardio-Pulmonary P aram eters

Based on ideas presented  in previous sections of th is chap ter, a

parsim onious model of gas tran sp o rt in the lungs and tis su es  is  illu stra ted

schem atically  for the p a rticu la r case of CO^ in F igure 2 .5 . The associated

equations a re  given below :

s v ( p ; - p ^ ) + q [ b  ( Pt c  ■ ^A > + ^ n t ]

'  r  1
^ ^ T C . - d F  ( ^ T C - ^ A )  + % T j

These equations a re  assum ed to embody the physiological knowledge and 

assum ptions discussed e a r lie r  in this chapter.

Analogous equations to the above can be w ritten fo r and in e rt gases by 

employing the appropriate concentration/partial p re ssu re  relationship for 

these gases .

The behaviour of the CO^ model to controlled changes in input (Pj ) 

may be conveniently investigated using digital sim ulation. The response of 

the model to a unit step in P  ̂ a t 40 secs , is  shown in F igure  2 . 6(a). In this 

sim ulation, fo r lack of anything b e tte r, a sinusoidal rep resen ta tion  of 

ventilation is  assum ed.
• O

i .e .  V = V sin  2 tt f t  2 .45max

where f is  breathing frequency and the amplitude of the sinusoidal
*

is  calculated from  average minute ventilation as

^  «
V = ttV 2.46max av

From  the response ch arac te ris tic s  in Fig. 2 .6(a) we can see the model 

behaves as a damped second o rd e r system , ( i .e . in control term inology 

a system  with two rea l left hand plane poles). It is  pertinen t to ask if th is
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behaviour is  m im icked by the ’re a l’ system . Thus, for com parison, in 

F igure 2.6(b) the PCO^ of a rea l subject in response to a s im ila r stim ulus 

is  shown as m easured  at the mouth, with the model response overlayed.

Although on fir St examinaton model and rea l subject responses appear 

very  different, it has to be borne in mind that the model is  essentially  

reflecting  events in the lungs w hilst the PCO^ of the subject is  m easured  at 

the mouth. However, if we com pare model and subject over the end- 

expiratory  region, w here gas concentrations as m easured at the mouth should 

reflec t a lveolar gas levels (at le a s t for homogeneous lungs), it can be seen 

that the two responses a re  not en tire ly  d issim ila r.

Although sinusoidal ventilation has been used in  the sim ulation above, 

in p rinc ip le , there  is  no reason  a subject’s m easured ventilation can’t  be used 

to drive the m odel, which thus can then be subjected to an identical change in 

controlled input, to tha t of the re a l system .

Intuitively then, under these conditions (if the model is  a ’good’ 

rep resen ta tion  of the rea l system  struc tu re) the only m echanism  by which the 

model output can be d iss im ila r to tha t of the system  over the end- tidal 

region is  if the in ternal p a ram ete rs  (constants) a re  d ifferent from  the 

corresponding physiological quantities in the rea l system .

T herefo re , as rea lised  by D r. M urray-Sm ith, D r. Pack and co- 

w orkers a t C, R. I, and this D epartm ent, th is suggests a m eans of indirectly  

in ferring  the physiological quantities of the rea l system  by manipulating the 

model p a ram ete rs  until input/output correspondence of the model and rea l system  is 

achieved. Such a technique is , of course, nothing m ore than P aram eter Estim ation much 

used in an industria l control system s context and discussed with refe rence  to 

biological (biomedical system s) in Chapter 1.
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It is  obvious that this exerc ise  will only be meaningful if m easurem ent 

of these cardio-pulm onary p a ram ete rs  is particu larly  valuable. In fact, 

th e re  is  considerable clinical in te re s t in indirect m easurem ent of one of these 

p a rticu la r p a ra m e te rs . That i s ,  the param eter Q the pulm onary blood flow 

ra te  o r card iac output in norm al subjects. T raditional techniques for 

m easuring th is a re  invasive and at the very  le a s t, involve som e discom fort 

to the patient and thus, accura te  m easurem ent methods would be advantageous.

It was th is  m ovitation to m easure  cardiac output which led to the 

joint development of the p a ram ete r estim ation technique by th is  Departm ent 

a n d C .R .L

Attem pting to elevate th is technique from  ab strac t concept to a useful 

clinical tool has involved considerable effort with many problem s to be overcom e 

(e .g . synchronisation fo r com parison purposes of model output (at a lveolar 

level) with system  output (as m easured  at the mouth) ). This p ro jec t has thus 

consumed the attentions of a num ber of w orkers and the author is  only the 

la te s t of these .

In the next chapter, therefo re , i t  is  relevant to sum m arise  the 

status of th is  p ro jec t around the tim e the author becam e involved and the 

experim ental set-up developed for the work, together with some pre lim inary  

re su lts .
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CHAPTER 3

NON-EWASIVE MEASUREMENT OF CARDIAC OUTPUT 

USING A HOMOGENEOUS C 0„ GAS TRANSPORT MODEL
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3.1 Introduction

Most physicians would agree that the output of the heart (the cardiac 

output in L/M  ) could form  a m ost im portant Index of ca r d io-vascular function. 

Such a m easurem ent could be useful in patient m onitoring (e .g . during card io - 

thoracic su rgery  o r  in intensive care) and also in num erous physiological 

Investigations. However, the m ost d irec t method of obtaining this quantity,

i .e .  by surg ical im plantation of a flow m eter in the pulm onary a r te ry , is 

obviously unethical in m an. It has also been shown that, contrary  to what one 

might think, there  is little  corre la tion  between card iac output and m ore easily  

m easured quantities such as pulse ra te  and blood p re s su re . T herefore , 

reco u rse  m ust be made to le s s  d irec t techniques.

Many indirect methods of m easuring cardiac output have been developed 

Over the y ea rs . As we shall see in the following section, however, m ost of 

these  have serious disadvantages and, therefo re , despite th e ir  prom ise have 

made little  im pact. Thus, a technique which overcom es these  deficiencies would 

have w idespread applicability. It is  hoped that the method based on the CO^ 

gas tran sp o rt m odel, to be outlined in this chapter, will constitute such a 

method. To be technically co rre c t, our technique m easures pulmonary 

blood flow ra th e r than cardiac output. C urrent physiological opinion, however, 

suggests the difference between the two is triv ia l except in subjects where the 

righ t to left shunt is several tim es higher than norm al.

As noted in the previous chapter, the new technique was already under 

active development p r io r  to the involvement of the author in the p ro jec t. The 

feasibility  of making m easurem ents of physiologically im portant variab les by 

the use of non-steady state  techniques had become apparent a t an early  stage 

(96y 230). T h is, however, was followed by a long period of very  slow
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p ro g ress io n  tow ards a solution of the problem s of produc^Lng a p rac tica l tool, 

(228, 234). This was s till very  much underway when the author becam e 

associated  with the work. Only around early  1977 had the model and the data 

p rocessing  techniques reached such a stage of refinem ent as  to allow the 

method to be exploited in  la rg e r  num bers of observations and to contem plate 

com parison with another established technique.

This chapter details these  validation studies in  which the author 

becam e involved in  the in itia l stages of h is work on the p ro jec t. It is  pertinen t 

to point out that these  experim ents w ere carried  out before  the inform ational 

aspect of the problem  (with which much of the re s t  of th is thesis  is  concerned) 

had begun to be explored.

The computational and experim ental bases of the  m odel-based, non- 

invasive m easurem ent method will be d iscussed in Sections 3 .3  and 3 .4 . In 

the next section, however, a review  of other methods of card iac  m easurem ent 

p resen tly  known is  in o rd er to place the new one in perspective .

3.2 Methods of C ardiac Output M easurem ent

A lm ost a ll schem es fo r cardiac output m easurem ent, which have been 

developed over the y e a rs , a re  based in one way o r another on an application 

of the Fick dilution princip le (equation 2 .4 ) which was introduced in the previous 

chap ter.

^  ^ <Ca^ -

o
In th is chapter can be taken to m ean the ra te  of uptake o r rem oval of 

any tra c e r  x introduced at the lungs, and and the corresponding 

resu ltan t a r te r ia l and mixed venous tra c e r  concentrations. This basic  

relationship  holds whether the reference  substance be a g a s , a dye of som e
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kind, a radioactive isotope o r a physical agent like heat.

H isto rically  the m ost used clinical method for m easuring  card iac  

output has been the "D irect F ick" method (148). In th is  method mixed venous 

and a r te r ia l blood content (as requ ired  to solve equation 3 .1) a re  m easured 

d irec tly  from  blood sam ples obtained by card iac  ca th e te r. Oxygen is  the 

p re fe rre d  re fe ren ce  g as.

Next in  prom inence a re  the so called indicator dilution m ethods. In 

the dye dilution technique (194), a known quantity of dye is  injected into a 

cen tral vein. This will eventually appear in the a r te r ia l blood. At th is  

point the tim e cou rse  of its  concentration is continuously sam pled to obtain a 

clearance curve. C ardiac output is obtained by re la ting  the amount of dye 

injected to the a rea  under the p rim ary  portion of the curve. T h is, in  effect, 

u tilises  the in tegral form  of the Fick equation, i .e .

Q =    3.2
J C(t) dt

m being the m ass of dye injected and C(t) its  down s tream  concentration.

The princip le  behind the therm al dilution technique (194) is  s im ila r 

except the indicator substance is  a cold solution, the tem pera tu re  c learance 

curve fo r which is  in ferred  by a th e rm isto r placed a t the end of a catheter 

in serted  in the pulm onary a r te ry .

A serious drawback of the techniques d iscussed so fa r  is ,  obviously, 

that they requ ire  h eart catheterisation  an d /o r a r te r ia l  puncture. That is they 

a re  invasive. However, th e ir  m ain advantage is  that they a re  generally  m ore 

accurate  than the m ore bloodless methods so fa r devised. They, therefo re , 

rem ain  the yardstick  against which a ll new techniques m ust u ltim ately be judged.

Many non-invasive m ethods for m easuring  card iac  output have been
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proposed in the p ast. In fact, all the quantities in equation 3.2 can be easily  

m easured d irectly  except , the mixed venous concentration. It is in

estim ating th is quantity that the difference in the approaches lie . For CO^ ,

C -  can be estim ated by employing the lungs as a tonom eter, i .e .  by allowing 

a lveolar gas to equilibrate with mixed venous blood during a ventilatory 

m anoeuvre. In the so-called  rebreath ing  methods P CO^ is  m easured  e ither 

a t points of actual equilibrium  ( C o llie r 's ’’plateau"m ethod (65,7,165) ) o r 

extrapolated by the analysis of the ra te  of change of PCO^ (D efares' "exponential 

extrapolation" method (80, 164, 109) ) during the rebreath ing  m anoeuvre.

C VCO2  also  be in ferred  on the basis  of analysis of alveo lar gas at 

different breath-holding tim es (107, 177) o r on the b asis  of a single prolonged 

expiration (175). F o r a useful review of these methods and fu rther modifications 

see (100).

Com parison of the D efares and C olliers methods has been ca rried  out 

recen tly  by Godfrey and Wolfe (127), These authors conclude that the ̂ ’plateau" 

method gives m ore reproducible re su lts . The work of F ranciosa  e t al (122) 

a lso  suggests th is . A s reg ard s  accuracy , both rebreath ing  methods have been 

generally  found to be le ss  reproducible than the m ore d irec t card iac  output 

estim ation m ethods, especially  a t r e s t  (243). In fact, to quote the very  recen t paper 

of Reybrouck et al (173), "At r e s t  the validity of the CO^ rebreath ing  method to
9

determ ine Q rem ains questionable".

S im ilar methods to the above, but based on analysis , w ere initially

proposed by Burwell and Robinson (54). M ore recen tly , these have been

taken up by C erre te lli et al (57), Serious problem s with th is  c lass  of methods

(associated with deriving C~ under conditions w here th e re  may be a shift
^2

in the dissociation curve, e .g .  during exercise) have been reported  (99, 73). 

C ritic ism s seem  to have killed off fu rther developments in th is d irection.
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Another c lass of methods involves the use of soluble, but 

biologically in e rt gas ( a  la Kety (173) )  as the reference  substance in 

equation 3 .1 . The rationale behind the use of such a gas is that during 

initial ip take  ( i .e . before rec ircu lation  occurs), -the mixed venous 

concentration will be zero , thus apparently considerably sim plifying solution 

of the Fick equation. In p rac tice , however, another difficulty a r is e s  in that 

it is  now necessa ry  to know the storage capacity of the t r a c e r  gas in the 

lung tissu e . One is  faced with the diLemma of assum ing a standard value of 

th is  quantity for the gas in  question ( e .g . see (173) ), o r  fu rth er com plicating 

the experim ental p rocedure, i . e .  using two additional t r a c e r  gases (252) to 

determ ine it .

The m ost extensively used gases in 'in e rt g as’ m ethods have been 

acetylene (144, 8) and n itrous oxide (23, 19, 308), M ore form al p a ram ete r 

estim ation and system  identification procedures have also been applied in 

various ways to try  to m easure  card iac  output.

In a non-invasive m easurem ent schem e, Maloney and Bekey (197) 

applied a d iscre te  gradient p a ram ete r identification algorithm  (24) to a CO^ 

gas exchange m odel, s im ila r to the type discussed in  Section 2 .5  of Chapter

2. Only the cardiac output pa ram ete r was adjusted in th is  technique. The 

o ther p a ram ete rs  inherent in the model w ere e ither in fe rred  from  published 

figures in the lite ra tu re , o r estim ated by other m eans. Despite th is , excellent 

re su lts  in te rm s  of agreem ent with sim ultaneous dye-dilution m easurem ents 

have been reported  with th is technique during a ir  breathing experim ents with 

dogs (197). However, a la te r  publication (27) has cast severe  doubts on the 

credibility  of th is technique in  that it  has shown that the card iac  output estim ates 

obtained a re  heavily dependent on the choice of initial CO2  tissu e  p a rtia l p re s su re ,
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a model p a ram ete r which is  fixed in advance from  the lite ra tu re . In fact, 

sensitiv ity  studies showed that a 1C% change in the assum ed in itial CO^ 

tissu e  p a rtia l p re ssu re  produces approxim ately a 100% change in the cardiac 

output e stim ates . It is  evident from  this analysis that the technique is 

potentially inaccurate unless b e tte r a p rio r i estim ates of in itia l tissu e  GO^ 

p a rtia l p re ssu re  a re  obtained, i . e .  via venous blood sam ples. However, 

under these  conditions the technique will no longer be non-invasive.

Etsyon et al (96A) describe  an estim ation procedure u tilising  a model 

which is  essen tially  a modification of that of Saidel et al (253). This is  an 

in teresting  study in  that it addresses the question of the sensitiv ity  of the 

estim ates to experim ental e r ro r s  (both system atic and random ). No experim ental 

re su lts  with the method a re  reported in this paper, however.

A combined O ^ / C O ^ /  N^ model has been employed by Homer and 

Denysyk (155) to estim ate card iac output during a 30 second rebreath ing  

manoeuvre in  dogs. The c rite rio n  function used by these authors to determ ine 

goodness of fit between model and data is  the weighted sum of squares between 

model prediction  and m easurem ent of alveolar PCO^ , PO^ and PN^. The authors 

claim  that such use of a m ultiple gas model g reatly  stab ilises  the num erical 

estim ation problem . In fact (as we will show in Chapter 7 of th is  th esis), the 

and N^ portions of the model a re  largely  redundant since the re su lts  will 

be determ ined alm ost completely by the CO^ component of the m odel. Homer 

and Denysyk elim inate the m odel/data synchronisation problem , introduced 

in Chapter 2 , Section 2. 8, by taking m easurem ents endotracheally, i .e .  

d irec tly  at the in let to the alveoli. Thus, model and data can be com pared 

m ore d irec tly . Note, however, that the technique in th is form  cannot be 

c lassed  as non-invasive and as such, is  not rea lly  suitable fo r human application.
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Methods based on in e rt gas m odels have also been used. Stout et al 

(269) use a nitrous oxide model and rep o rt re su lts  which a re  in  reasonable 

agreem ent (+ 2 0 % ) with sim ultaneous card iac output estim ates obtained 

using the "D irect Fick" method in experim ents with five anaethetised dogs. 

Zw art et al (309) obtain estim ates of ventilation perfusion ra tio  by a frequency 

response method applied to an in e rt gas m odel. Halothane is  the te s t gas in 

th is application. This is  applied sinusoidally at a frequency arranged to be 

higher than the assum ed break  point frequency of body gas uptake. The 

authors show how th is p a rticu la r choice of tra c e r  agent and forcing function 

frequency helps reduce the effects of e r ro rs  in mixed venous blood gas 

concentration on the resu ltan t estim ates.

F inally , some published re su lts  for som e of the card iac  output 

m easurem ents techniques in te rm s  of repeatability  and com parability  a re  

detailed in  Tables 3.1 and 3 .2 . These will be re fe rre d  back to  a t a la te r  

stage in th is th esis  when we com pare these figures with re su lts  obtained from  

the method used in the p resen t study.
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TABLE 3.1

REPRODUCIBILITY ACHIEVED BY VARIOUS Q 

MEASUREMENT METHODS REPORTED IN THE LITERATURE

Investigation Method
Experim ental

D etails
Coefficient 
of V ariation

Franciosa et al Dye Dilution 
(122)

Supine Rest 
CHD/Hypertensives

6.5%

Franciosa  et al 
(122)

C ollier CO^ 
rebreath ing

Supine R est 
CHD /Hyp ertens ive s

6.0%

Ferguson et al 
(109)

D efares CO  ̂
rebreathing^

Sitting re s t  
norm al men

13.3%

Ferguson et al 
(109)

D efares CO  ̂
rebreathing"^

Sitting exercise  
norm al men

5.5%

Becklakeet al 
(23)

N O
râ ïrea th in g

Sitting and treadm ill 
Adults

8.5%

Ayotte et al 
(19)

N O
ræ re a th in g

R est /  exercise  
Adults

7.1%

Hom er and 
Denysyk (155) model

R es t/ex e rc ise / shock 
d o g s ,

15%
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TABLE 3.2

COMPARABILITY RESULTS OF VARIOUS Q MEASUREMENT 

METHODS REPORTED IN THE LITERATURE

Investigation
Methods
Compared

Experim ental
D etails D ifferences

Franciosa et al 
(122)

Dye dilution vs. Supine re s t
C ollier CO^ 
rebreath ing

CHD/Hyper­
tensives

25/29
+ 15%

0.93

Reybrouck et al 
(243)

D irec t Fick vs. S itting /sip ine
D efares CO  ̂
rebreathing^

R est H yper­
tensives

13/25 
+ 10% 0.65

Reybrouck et al 
(243)

D irec t Fick v s . E xercise
D efares CO  ̂
rebreathing'^

Hypertensives
30/34 
+  10%

0.96

Ferguson et al 
(109)

Dye dilution vs. Sitting re s t
D efares CO  ̂
rebreathing''

norm al men
8/12  
+ 25%

Ferguson et al 
(109)

Dye dilution vs. Sitting exerc ise  36/37
D efares CO  ̂
rebreathing*^

norm al men + 25%

Ayotte e t al 
(19)

Dye dilution vs. R est/ex e rc ise  34/36
N O  Adults + 15%
rA )reathing

0.94

Becklake et al 
(23)

Dye dilution vs. Sitting and tre a d - 25/26 
N O  m ill +20%
r6 )rea th ing  Adults

Homer and 
Denysyk 

(155)

Dye dilution vs. R e s t/e x e rc ise / 27/36
O^ , CO^ , N^ shock
model dogs.

+ 20%
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3.3  Using the CO^ Gas T ransport Model for P aram eter Estim ation

To use the CO^ gas tran sp o rt model developed in C hapter 2 for 

p a ram ete r estim ation, it is  necessary  to define a c rite rio n  of goodness of fit 

between the model and patient data and estab lish  a m echanism  whereby the 

p a ram ete rs  of the model can be autom atically adjusted to achieve a minimum of 

th is c rite rio n . This la tte r  aspect of the technique, i . e .  that of function m in i­

m isation , is  d iscussed in Chapter 5 and Chapter 6. The question of m odel/data 

com parison will be addressed  in th is section.

It was pointed out in passing  in Chapter 2 , Section 2 .8 , that the 

model in i ts  given form  describes events happening in the lungs. However, if 

the m odel-based estim ation method is to be tru ly  non-invasive ( i .e . not like that 

of Hom er and Denysyk (I55))then for com parison purposes the only m easurem ents 

we will have available will be those taken at the subjects lip s .

The c rite rio n  function used in the e a r lie r  work of Pearson (234) was 

based on a sum of squares of the difference between model prediction and 

m easured  PCO^ at the mouth during the end-expiratory phase of each b rea th .

This is the only b rea th  phase over which model and data may be meaningfully 

com pared. The c rite rio n  function is  of the form

n m ( i)  «
^  (P * C 0 2  (I) -PCO (i)Y

j = l
3 .3

w here P*C02 is  the model prediction, PCO^ the patien t P CO^, n the number 

of b rea ths in the experim ent and m(i) the num ber of data sam ples in the end 

tidal phase of the b rea th .

A problem  with th is c rite rio n  a r is e s  due to the fact that it is  not 

ju s t com paring b rea th  by brea th  changes in PCO^ , but also changes in PCO^
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within a b rea th . This leads to the estim ation algorithm  attem pting to fit the 

model to the slope in alveolar PCO^ which a rise s  during expiration. In view 

of the uncertainty as  to the p rec ise  nature of the m echanism  determ ining the 

expired CO^ concentration p ro file , th is c rite rion  function was felt to be 

inappropriate bearing in mind the sim plicity of the model in th is a rea .

The next step in the work was to overcome th is  objection by com paring 

the m odel’s perform ance with the average PCO» during the end-tidal p a r t of the 

b rea th , i. e.

J
n r  m W p c o ^  PCOg(j)

i = 1 L  j = 1 , j = 1
3.4

Although th is  c rite rio n  is  an im provem ent on equation 3 .3 , it is  s till deficient 

in the following. F irs tly , it unduly weights the average fo r any breath-holding 

period  occurring  a t the end of a b rea th . Secondly, it m akes no allowance fo r the 

fact that there  is  a tim e delay corresponding to the tim e taken fo r the gas to 

tra v e rse  one deadspace, before events happening in the lungs can be observed 

at the mouth, i . e .  patient data at tim e x say should p roperly  be com pared with 

model prediction a t a tim e corresponding to one dead space tra n s it tim e in terval 

before tim e x .

These considerations have led finally to the following c rite rio n  function 

which is that used in  the p resen t work. In th is model and data a re  com pared 

on the b asis  of th e ir  flow-weighted m eans over th e ir  respective  end-tidal regions

as follows :
P*C02(i) V (i)

= i = M i ^ 2  

i=



- 62 -

° 2^  PCO (1) V(l)
PC 0„ = t_ _ i 3 .62 i= D  D .

1 S  V(i)
i = D,

n __
J = " g  ( P *G 0^ - P CO., ) 3 .7

1 = 1  ^ 2

P * CO is  the flow weighted m ean of the model prediction and P CO the flow 

weighted m ean of the patien t data- The delay within the dead space is allowed 

for in the following m anner. The model recognises the s ta r t  of the end-tidal 

period ( ) as one dead space from  the beginning of expiration. The end

point of the period  ( ) is  defined as the point a t which expired volume is

tidal volume minus dead space, i .e .  one dead space from  the end of expiration. 

The patient data end-tidal period ( ) is  m easured from  the point where

expired volume becom es g re a te r  than twice the deadspace (to make certain  

of being on the end-tidal 'p lateau ' ). The end of the end-tidal period ( )

is  where the m easured  value of flow (V)  falls below 0.1  L /S  o r the change in 

PCO^ between successive m easurem ent sam ples becom es le ss  than 1 mmHg.

This c rite rio n  function and these end-tidal po in ters have been ch osen , 

in the light of accum m ulated experience, to cope with as m any variations as 

possible in the breathing p a tte rn  of untrained subjects. It has proved to be 

fa irly  successful in th is  re sp ec t.

The CO^ gas tran sp o rt model equations developed in Chapter 2 

can be sum m arised as follows : 

d P

\  d T  - ^ A ) + Q [ b (  ^TC ■ > + ^IN T const. 3 .8
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S ==
1 - i f  V >  0

^ 0 - otherw ise

? *  -
P^ - If J v  dt <  Vq  and V >  0

3 .9

3.10

3.11

I
Pj - otherw ise

In the above equations Q is  the pulm onary blood ûow o r  card iac  output,
•e . _

M the m etabolic CO^ production ra te  and V ^ ^  the "effective" tissue  volume,

(see equation 2 .41). V^ is  the CO^ lung volume which is  made up of a tim e

varying component and fixed component (FRC) as defined by equation 2 .29 .

Recall that the FRC will in tu rn  contain an additional volume contribution from

the gas dissolved in lung tis su e . '  b is  the slope of the CO^ dissociation curve

and is  a function of the subjects m easured Hb concentration as given by equation

2 .1 6 . is  the difference between the mixed venous and a r te r ia l CO^

dissociation curve in tercep ts and const is  a gas laws scaling  facto r (see

equation 2 ,24). P^* the model input, differs depending on the phase of the

b rea th . In the f ir s t  phase of inspiration (i. e. whilst the insp ired  volume is

still le s s  than the deadspace V ^ ) Pj* is  taken as the flow weighted m ean of

the gas notionally rem aining in the deadspace at the end of the previous

expiration. The form ulae defining th is a re , equations 2 .33  and 2 .34  of Chapter 2.

The input the model 's e e s ' in the la te r  p a rt of inspiration ( i .e . where the inspired

volume is g re a te r  than the dead space) has until recently  been the instantaneous

inspired PCO^ as m easured  at the mouth (see 228). M ore recen tly , however, it

has been rea lised  that th is does not properly  take account of the tran sp o rt delay

through the dead space. F o r m ost b rea th s, where insp ired  PCO^ within a breath
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w as constant, th is  inconsistency would not m a tte r. However, during changes 

in input (e. g. during a switch from  breathing a ir  to 7% CO^ ) th is would re su lt 

in the model ’ seeing" the change in inspired  PCO^ before the actual lungs did. 

The data p rocessing  program m e PRODAT (see next section) was therefo re  

changed to 'r e ta rd ' the PCOg data values by one dead space during th is phase 

of insp iration  to circum vent this problem .

In sum m ary , the above equations contain the following model 

p a ra m e te rs . F irs tly , those quantities entering d irec tly  into the above equations 

i .e .  Q , V ^(0) , M , and . Secondly, those entering into the

equations im p lic itly , i . e. Hb the blood haemoglobin concentration, the 

anatom ical dead space volume and finally P^  (O) and the initial partia l

p re s su re s  in the alveolar and tissu e  com partm ents respectively  a t tim e t = 0. 

Values a lso  have to be assigned to these la tte r  quantities.

Of the above p a ram e te rs  A ^^^ can be taken as fixed a t 0.0129,

Hb and can be m easured  by standard  re sp ira to ry  labora to ry  techniques,

and P ^ (0 ) can be  m easured  d irectly  from  the experim ental input/output data 

used by the m ethod.

In e a r lie r  work V^Q was fixed a p rio r i a t the la rg e  value 

of 40 L . However, a s  the concept of the 'fa s t CO^ tis su e  space’ (see Chapter 2, 

section 2 .7 ) unfolded th is was felt to be inappropriate and was reintroduced 

as  a p a ram ete r.

To calculate P ^ ^ (0 ) it is  assum ed that a t tim e t  = 0, the tissu e  

com partm ent is  in a steady s ta te , i .e .

= 0 - 3.12
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substituting equation 3.12 in 3 .9  therefore  yields the following expression 

fo r (O)

Pt J G )=  P ^ ( 0 ) + K  -  ^  3.13

In p rac tice , however, due to the long tim e constant of the tissu e  com partm ent, 

it has been found beneficial to use a longer te rm  average of P ^  in  equation 3.13 

for P ^ ^  (O) in  o rd e r to avoid possib le inaccuracies due to short te rm  

fluctuations in P ^  . Thus equation 3.13 is replaced by

M -^INT.
Pt g (o ) = ^a BAR bQ “ b

w here P ^g^ j^  f  ^ * This m anner in which P ^ g ^ g  and P ^(0 ) a re

deduced from  the actual experim ental data is  d iscussed in the next section.

Thus, assum ing an initial steady sta te  in the tissu e  com partm ent a value can
* #

be assigned to PrpQ(^) if M, Q, P ^ (0 ) and P ^ ^ ^  a re  fixed. Although the

assum ption is  relaxed in subsequent chap ters , in th is  chapter we shall use

equation 3.14 to obtain P ^ ^ (0 )  . The p aram eter estim ation problem  which
* »

rem a in s , th e re fo re , is  to estim ate  the four p a ram ete rs  Q, , M and .

A ttem pts to estim ate  additionally b and A ^ ^  consistently  failed due to 

num erical difficulties in  the function m inim isation p rogram m es. The p rec ise  

cause of th is  difficulty was not completely understood a t th is  stage, although 

it was felt to be inexorably tied up with non uniqueness of the extended param ete r 

se t.
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3 .4  Experim ental Rig and Data Processing

The on-line data acquisition system  which has been used in the 

work described in th is  thesis  Is depicted diagram m atically  in F igure 3 .1 . 

Photographs of the actual apparatus itse lf a re  shown in F igure 3 .2 . The 

author has not been d irec tly  concerned in  the design and construction of th is 

system . N evertheless, fo r continuity purposes it is  worthwhile b rie fly  to 

sum m arise  some aspects of the apparatus below. This system  is  described 

in m ore detail in (228, 234).

The potential subject, who is  w earing noseclips, a ttaches him self 

to the r ig  using a standard  rubber mouthpiece and b rea thes through a sm all 

dead space, low re s is ta n c e , valve box. This valve box is  such that i t  m akes 

the subject breathe in through one p o rt and out through another. A two way 

switch upstream  from  the valKe input p o rt allows the opera to r to change the 

su b jec t's  in sp ira te  between room  a ir  and the stim ulus m ix ture  as dictated by 

the p a rtic u la r  re sp ira to ry  experim ent. This se t up form s a 'closed  system ’ 

and enables the sub jec t's  ventilation and inspired and expired gas concentrations 

to be m easured  using the appropriate  tran sd u cers .

The inspired  and expired gas flow ra te s  a re  m easured  separate ly  

by m eans of pneum otachom eters. Until recently , expired  flow has been 

m easured  using an o rd inary  pneumotach (this was in fact the system  used in 

the experim ents to be described la te r  in th is chapter). The nominal flow 

values so obtained a re  co rrec ted  in subsequent data p rocessing  to give 

overall ventilation balance over the duration of the te s t . This method is  not 

p a rticu la rly  accu ra te , due to the possib ility  of w ater vapour in the expirate 

condensing m the flow m eter and causing a drift in calib ration  during the te s t.

In la te r  experim ents, th e re fo re , ( i . e .  those described in Chapter 7 ) th is 

difficulty has been avoided by using a heated F le ish  pneumotach to m easure
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expired flow. A fu rther recen t im provem ent in the flow m easurem ent has 

taken the form  of a modification to the computer data collection program m e 

to co rrec t flow values for the differences in v iscosity  of the actual gas passing 

through the pneumotach and that of the gas used to calib rate  the device (2 84).

The voltage outputs from  the two m icrom anom eters associated  with 

the pneum otachom eters a re  summed electronically  using a sm all analogue 

com puter before being fed to the PDF 11/45 com puter system  through the A - D 

in terface.

Continuous m easurem ents of a subject's  gas concentration a re  made 

using a re sp ira to ry  m ass spectrom eter. In e a r lie r  experim ents ( i.e . those 

described in th is chapter) a Centronics MCA 7 type quadrupole device was used, 

but m ore recen tly  the new Centronics MCA 100 m ass spectrom eter has been 

used (see photograph). The sam pling probe for the m ass  spectrom eter is 

placed proxim al to the subject’s lip s . There is  thus a tran sp o rt delay inherent 

in th is m easurem ent equal to the tim e taken by the signal to trav e l the distance 

along the sam pling line between the probe and the m ass spectrom eter itse lf 

(typically 100 - 200 m s). The m easurem ent of re sp ira to ry  flow is  v irtually  

instantaneous by com parison. T herefore , it is  necessa ry  to delay the flow 

signal to synchronise all the m easured data. This is  achieved by the data 

collection softw are. A s we have seen in Chapter 2 , in the application of 

dynamic m odels the p a rtia l p re ssu re  m easurem ents for the gases being studied 

a re  requ ired  a t BTPS conditions. It would appear sim ple to compute these 

quantities from  the gas p a rtia l p re s su re s , as m easured a t the mouth (e .g .

P ^ ^  ), by also  m easuring  w ater vapour p re ssu re  a t the mouth ( P ^  O) 

d irec tly  and using the following form ula :
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"  %  ' ^ : r 4 , o )  3.15
X m J

However, due to certa in  technical difficulties (see Fow ler (121) ) th is method 

is inaccurate.

In o rd e r to av ert the problem  with d irectly  m easuring  w ater vapour, 

a method described by Davies e t a l (79) is used. This necessita tes  m easuring 

the p a rtia l p re s su re s  of all the component gases in the total gas m ixture to 

allow the fractional dry  gas concentration of a p a rticu la r gas under study to 

be obtained.

Having obtained then the required  at conditions of full

saturation  with w ater vapour is  obtained using

Px = Fx ( B - 47) ( mm Hg) 3.16

Thus, in sum m ary we see that for the applications involving dynamic models

to be described in th is chap ter, it is  necessary  for the com puter to acquire 5

channels of data via the A /D 's  viz flow, P ,, , P , P _ and P . ^ . ItJN2 CUg Og AK

now rem ains to describe the software steps involved in capturing th is  data and 

producing from  it  a file in a suitable form at for use in the p a ram ete r , estim ation 

techniques discussed  in the previous section. This softw are system  consists 

of two p a rts  ; -

(1) the data logging program m e

(2) the data processing  program m e.

The data logging program m e which itse lf consists of four separa te  phases, 

will be discussed f ir s t .

In the f ir s t  phase of the program m e, p r io r  to any data logging, using 

the keyboard an in teractive dialog is set up between the com puter and experim enter 

which allows inform ation relevant to the forthcoming experim ent to be input.
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That is  the datafile nam e, barom etric  p re ssu re , tem pera tu re , m ass 

spectrom eter delay, length of experim ent and sampling frequency (m ax 50Hz ).

The next phase of the program m e is essentially  a calibration phase.

In it the com puter calculates the average voltage obtained over 500 scans of 

each A/D iip u t channel when f ir s t  a zero  gas ( i .e . one containing no tra ce  of 

the gases under study - in th is  case Helium was used) and then a calibrate  

m ixture ( i .e . certa in  preknown fractions of the gases under study) was being 

sampled by the m ass  spectrom eter. These averages allow the com puter to 

associate  voltages obtained on a given A/D channel with a corresponding flow 

o r p a rtia l p re s su re  in the subsequent experim ental phase.

The th ird  phase of the program m e consists of data logging p ro p er. 

During th is p rocedure, norm alised sampled data is  stored on a tem porary  

disc file a t the ra te  and for the tim e specified in the e a r lie r  phase of the 

program m e. Provision is  also  made during th is experim ental phase for the 

opera to r to communicate to the software the sample number when the gas stim ulus 

m ixture is f ir s t  switched in by p ress in g  the K  CR*^ key on the keyboard at 

th is tim e. This inform ation is  required  by the la te r  data p rocessing  program m e. 

A fter the experim ent is  completed, the data resid ing  in the tem porary  disc 

file is  converted to physiological units (ATPD values) and scaled into integer 

form  ( to reduce sto rage requirem ents) for perm anent storage on a file on 

m agnetic tape. At th is  stage a ll input channels a re  synchronised by correcting  

fo r the m ass  spectrom eter delay as d iscussed e a r lie r . A lso , an initial header 

reco rd  is  added to the perm anent file containing details associated  with the 

sto red  data (e .g . barom etric  p re ssu re , tem peratu re , sam pling ra te , switch 

sam ple, e tc .) . The data, as generated a t th is stage from  the logging 

program m e, is  liable to be noisy. That is , the flow signal w ill be corrupted
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by m echanical valve flu tter and the PCO^ signal by cardiogenic oscillations, 

both of which constitu te, in th is  context, high frequency noise. It is  also 

inevitable that the subject (especially if unaccustomed to re sp ira to ry  experim ents) 

will have coughed o r swallowed at some stage in the experim ent. These 

responses rep re sen t departu res from  the norm al breath ing  rhythm  and thus, 

if le ft unmodified, will cause complications in the in terp re ta tion  of the data 

reco rd  in the subsequent analysis. Thus, the data output from  the logging 

program m e req u ire s  fu rth er filtering  and application specific p rocessing , 

to ren d er it  suitable fo r use with the CO^ model based p a ram e te r estim ation 

softw are. This is  done by the p rocessing  program m e PRODAT.

In the f ir s t  p a r t of PRODAT, both the flow and PCO^ channels a re  

filtered  using a sim ple low pass  f il te r  (cut-off frequency one qu arte r of the 

sam pling frequency).

The sam ple num bers corresponding to the beginning and end of 

insp ira tion /expira tion  for each b rea th  a re  then identified. This is  done using 

a heuris tic  algorithm  which searches initially for a threshold value (0.15 L/S) 

in the flow signal and then backw ards from  th is for the n ea res t preceeding 

point at which a zero  c ro ss-o v e r occu rs. This obviates difficulties caused 

by noise in the flow signal which would lead to spurious b rea th s  being 

recognised, if  only zero  c ro sso v ers  them selves w ere identified. This being 

done, the insp ired  and expired volume of each b rea th  a re  then computed.

At th is stage the program m e co rre c ts  fo r consecutive insp ira tion  (expiration) 

(usually a re su lt of swallowing o r conn ing) by changing these  to one inspiration 

(expiration) with resu ltan t volume equal to the sum of the two previous ones, 

and renum bering all the b rea th  num bers appropriately . In th is  f ir s t  p a r t of the 

p rogram m e it is  a lso  ensured that the "standard experim ent" which will ultim ately 

be p resen ted  to the estim ation softw are, begins with a com plete inspiration and
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ends with a com plete expiration. In the re su lts  presented  in th is chapter

th is "standard  experim ent" is  of i j  m inutes duration and takes the form  of 

40 seconds of a ir  breathing followed by 80 seconds breathing 5 -7 %  CO^ •

In the second p a rt of the program m e, the quantities and

^ABAR calculated, which a re  used in determ ining the model initial 

conditions and PTc (0 )  previous section). Although various

form ulae have been used for computing, these quantities in the p ast, the 

one used a t p resen t is  as follows. P^^g^ is  taken as the maximum end-tidal 

PCO^ value fo r the expiration preceeding the s ta r t  of the standard experim ent. 

^ABAR* » which rep resen ts  a longer te rm  average of ^^^q )

in the calculation of P'x’c (0 )(sc e  equation 3.14) is  taken as  the m ean of the la s t 

th ree  sam ples a t the end of expiration, additionally averaged over a ll the 

b rea th s in the f ir s t  a ir  breathing phase of the experim ent. The rationale 

behind th is is  d iscussed in the previous section.

An estim ate of the subject’s anatom ical dead space is  requ ired  at 

various stages in the analysis procedure (i. e. to re ta rd  the CO^ channel by 

one dead space, and to define p roperly  the model and data E /T  regions).

Until recen tly , th is has been obtained by a separate  te s t involving a single 

b rea th  of and analysis of the resu ltan t expired curve (118). However, 

m ore recently  a side benefit of using improved hardw are to m easure  expired 

flow is that it m akes i t  possib le  to calculate accurate  anatom ical dead space 

m easurem ents from  the CO^ data during the initial a ir  breathing phase of the 

experim ent. This obviously has the advantage of cutting out a step (which can 

be tim e consuming and cum bersom e in the experim ental p ro c e d u re . This 

calculation is now done at th is point in the PRODAT program m e and th is is 

the value now used fo r Vg in the subsequent analysis.

Next, a separate  volume channel is  created  for use in the estim ation
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software by in tegrating the flow channel using the trapezoidal ru le  and all 

the data co rrec ted  to BTPS as requ ired . A fter th is , the CO^ channel is  

re ta rd ed  to co rrec t for the buffering effect of the dead space as discussed 

in the previous section and then the v iscosity  correction  to the flow channel 

is  ca rried  out.

F inally , the modified data in the header block is  output to a new 

file in a standard fo rm at, now ready fo r use with the p a ram ete r estim ation 

p rogram m es.

3 .5  R esults of the E arly  Validation Studies

In ea rly  1977 the non invasive card iac output method was assessed  

by carry ing  out repeated  sim ultaneous m easurem ents by th is  method and by a 

dye-dilution method in a num ber of subjects at Glasgow Royal Infirm ary.

These subjects w ere patien ts with hypertension but with otherw ise norm al 

lung function. It was intended to make use of the card iac output inform ation 

obtained from  these patients in the management of th e ir  hypertension.

The standardised experim ental procedure adopted in  these studies 

was as follows.

The subject had the venous and a r te r ia l cathe te rs  necessa ry  for the 

dye m easurem ents inserted  on a rr iv a l. The com parative m easurem ents w ere 

then ca rried  out with the subject in the supine position and at re s t .  A fter 

insertion  of the m outhpiece, th ree  m inutes w ere allowed fo r the subject to 

calm  down and fo r the breathing pa tte rn  to s tab ilise . The gas exchange 

m easurem ents w ere then s ta rted , the total duration of the data collection period  

being two m inutes: 40 secs , a ir  breathing and 80 secs , b reath ing  5 o r 7% CO^ . 

The dye dilution m easurem ent, which lasted  about 30 sec s , was s tarted  

sim ultaneously with the CO^ breathing phase. A minimum of 10 m inutes 

was allowed between repeated gas exchange m easurem ents to allow any possible
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effect of CO^ on card iac  output to dim inish (110,204b), G enerally it was 

aim ed to collect four se ts  of com parative m easurem ents p e r  subject, but 

due to experim ental difficulties (invariably with the dye procedure I ) th is 

was not always possib le . M easurem ent of the sub jec t's  anatom ical dead 

space (118) was e ither ca rried  out on a rriv a l o r a t the end of the se r ie s  of 

com parative m easurem ents.

In to ta l 51 p a irs  of sim ultaneous m easurem ents w ere obtained from  

a set of 16 patien ts. However, the function m inim isation procedure failed to 

find a minimum in 3 se ts  of data, therefo re , leaving only 48 valid com parative 

re su lts  on which to base  conclusions. The p aram eter values obtained from  the 

m odel-based method and the corresponding dye-dilution re su lts  a re  detailed 

in  Table 3 .3 . F rom  this it can be seen that the p a ram ete r values obtained 

from  the estim ation procedure a re  physiologically meaningful.

The card iac  output estim ates obtained from  the model a re  in good 

agreem ent with those obtained by the dye-dilution technique.

The estim ates  of m etabolic production obtained by p aram ete r 

estim ation a lso  agreed closely with those obtained independently on the b asis  

of steady s ta te  analysis of overall gas uptake.

The estim ates  for tissu e  volume a re  of the c o rre c t o rd er of 

magnitude as com pared to published data (117) and the values obtained can be 

re la ted  to the ex tra  cellu lar fluid 'fa s t space' fo r carbon dioxide (see Chapter 

2 , section 2 .7 ).

The estim ated  carbon dioxide lung volumes obtained originally 

appeared ra th e r  low when com pared with the FRC’s (Fixed Residual Capacity) 

of the patients as m easured  by in e rt gas washout. This was ra th e r worrying 

for a tim e, since the estim ated CO^ lung volume is  notionally an equivalent
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TABLE 3 .3

VALIDATION RESULTS USING 

4  PARAMETER MODEL

Subject D ata file Q dye Q l A M Y i p

j m '̂e YAL041 5.96 6.45 1.85 0.265 7.18
7 %  CO2 , Vd = 0,83 2 6.18 6.36 1.73 0.237 9 .21
H b = l4 .l5 ,  FRG = 4 .29 3 5.60 6.29 1.92 0.262 11.8

4 5.10 5.87 1.62 0.213 7 . 7

JM ^C YAL051 6.57 6.84 2.54 0.300 13.1
5% C 0 2 ,V d  = 0.156 2 5.30 5.58 2 .66 0.295 8.76
H b = l4 .9 , FRC = 3.47 3 .5 .13 7.10 3.05 0.334 10.1

IF YAL072 5.03 6.89 1.36 0.244 • 4 .87
5% CO2 , Yd = .076 4 4. 99 6.50 1.39 0.218 4.04
H b= 13 .5 , FRC = 3.18

j c . VAL081 5.13 5.16 0.96 0.185 5.15
7/5% C 02, Yd  = 0.139 4 5.63 5.94 2.34 0.208 6.66
Hb = 14.65, FRC = 2 .66 5 5.37 5.97 0.98 0.207 4.94

KM^ YALlOl 9.44 8.23 2.22 0.310 10.9
7%C02, Yd  = 0.178 2 9.55 7.66 1.58 0.277 7.23
H b= 14.55 , FRC = 2 .78 3 8.54 7.40 1.92 0.276 8.35

4 8.43 7.38 1.91 0.328 10.4

JK Y A L lll 6.72 5.63 2.66 0.272 7.49
5% CO2 , Yd = 0.176 2 5.57 5.44 2 .26 0.277 10.2
Hb = l5 .7 ,  FRC = 3.29 3 6.11 7.79 2 .39 0.302 9.11

4 5.93 8.58 1.40 0.258 6.02

RC YAL122 4.42 4.21 1.63 0.210 4 .59
7 %  CO2 , Yd =0.132 3 3. 95 —

HB = 13.35, FRG = 3.01 4 4.02 3.13 2 .03 0.187 2.87
5 4 .20 4 .50 1.80 0.237 4.46

JA YAL141 6.44 7.30 2 .18 0.361 8.94
7% CO2,Y d  = 0.139 2 5.98 6.34 1.42 0.266 6. 83
Hb = l5 .4 5 , FRC = 2 .60 3 7.00 — -

4 6.55 5. 86 1.84 0.264 5.38
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TABLE 3 .3  continued

Subject Data file Q dye Q VA M ^T C

SD. VAL161 6,48 6.93 2.36 0.261 5.93
5%G02 , Vo = 0.156 2 6.79 5.94 1.29 0.209 3.73
Hb= 15.25, FR G =3.10 3 6.26 5.68 3.66 0.259 7.73

4 6.35 6.48 2 .73 0.275 7.47

js. VAL172 8.29 5.13 1.68 0.242 2.31
5% G 02,V d  = 0.171 3 7.85 6,71 3.43 0.288 6.62
H b = l6 . 85, FRG =3.90 4 7.35 4.92 1.48 0.237 4.11

GM. VAL181 5.11 4; 73 1.58 0.234 4.11
7%C02, Vd  = 0.228 3 4.28 4.98 1.73 0.255 5.34 .
Hb = l4 .4 ,  FRG = 4 .68 4 5.26 4.46 1.41 0,234 4 .00

JF .
7%G02, Vd  = 0. 159 
Hb = 14.25, FRG = 4 .29

VAL191 4.82 3.78 1.26 0.182 3.96

GR.
7%CO2,Vd  = 0.178 
Hb= 15.65, FRG = 3.19

VAL203 7.87 6.40 1.65 0,259 5.10

DB. VAL221 5,50 5.70 2.16 0.294 9.11
7% G02, Vd  = 0.143 2 5.20 5.78 2,03 0.263 6.08
Hb = l5 .8 5 , FRG = 3.08 3 5.30 5.94 1.81 0.255 5.53

4 5.70 5.76 1.86 0.247 5.24

DH. VAL231 7.50 7.71 2 .9 9 0.398 12.4
7% CO», %  =0.137 
H b = l4 .3 , FRG =

2 6.30 6.64 1.82 0,212 5.69
3 6.60 7.78 3.26 0.357 12.9

AR. VAL251 6.76 6.46 1.65 0.239 6.57
7%GO , Vd  = 0.171 
Hb = lS .2 , FRG = 2 .56

2 5-90 6.19 1.45 0.211 4.92
3
4

5.75
5.74

4 .79 1.57 0.236 5.73
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lung volume including also the equivalent of gas volume dissolved in lung 

tis su e , and th e re fo re , should be g rea te r than F RC. This w orry  was 

cleared  up, however, when it  was rea lised  that the FR C 's had been m easured 

while sitting , w hilst our m easured  CO^ lung volumes reflected  re su lts  obtained 

when the patients w ere supine. One would expect the lung volumes to be 

different in these two positions as the ventilation flow distributions in the lung 

a re  different in each case (294). Some experim entation quickly confirmed that 

FRC’s in  a given subject a re  sm aller in the supine position a s  opposed to the 

sitting position, thus c learing  up the anomaly in the lung volume re su lts . We 

will now concentrate fu rther on the details of the com parative m easurem ents 

of card iac  output.

In F igure  3 .3  the individual re su lts , as obtained by the two different 

m ethods, a re  plotted. These re su lts  a re  fu rther sum m arised sta tistica lly  

in Table 3 .4 . F igure 3 .3 shows that m ost of our re su lts  (34/48) lie  within 

+ 20% of the dye-dilution values. This is  about the sam e fractional success 

ra te  as that repo rted  by Hom er and Denysyk (155) in the b est previously 

published study to estim ate  card iac output by modelling techniques (27 out of 

36). R ecall, however, from  the discussion in Section 3.2 that the technique 

of Hom er and Denysyk uses endo-tracheal sam pling, i .e .  it is  invasive. It 

is ,  th e re fo re , noteworthy tha t, in spite of the reduction in available inform ation 

which our non-invasive technique im poses, we have been able to obtain re su lts  

as good as those obtained using a s im ila r but invasive technique.

Table 3 .4  shows the average agreem ent between dye and computed 

values is  fa irly  good. The m ean difference of the 48 p a irs  of values' is 0.02 L/M  

(although the standard  deviation of the mean difference is  1 .12L/M ). However, 

the "plum pudding" shape of F igure 3 .3  shows there  is considerable discrepancy 

between com puter-generated and dye re su lts  in som e c ase s . This is also
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RESULTS OBTAINED BY FITTING FOUR PARAMETER MODEL
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TABLE 3.4

STATISTICAL SUMMARY OF COMPARATIVE MEASUREMENTS OF 

CARDIAC OUTPUT USING 4 PARAMETER MODEL

F iles C o rr , coeff. Reg. coeff. Intercept M eanDiff. S .D . Diff.

(comp -dye) (comp -dye)
L/M  L/M

All (48) 0 .59  0.66 2 .09  0.02 1.12 NS

7% 00^(27) 0.86 .0.98 0.36 0.24 0.80 < 0 .2

* P values obtained from  paired  Student's t - te s t  (two-tailed).

36/48 paired  observations w ith in+20% of line of identity.

m ean reproducibility  (dye) - 6.8%

m ean reproducibility  (all comp) - 10.6%

m ean reproducibility  ( 7% CO^ ) - 9.7%
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reflected  in the low co rre la tion  coefficients in Table 3 .4 .

Com paring our re su lts  with those published by o ther authors 

for validation studies in re s tin g  subjects (see Table 3 .2 ), we can see  our 

re su lts  a re  not a s  good as  those of F ranciosa  et al (122) ( ^" = 0 .9 7 ) using 

the Indirect F ick . However, our re su lts  using 7% CO^ a re  b e tte r than those 

recen tly  rep o rted  by Reybrouck et al (243) who like F ranciosa  e t a l, also use 

an Indirect Fick method.

In a ssess in g  the reproducibility  of m easurem ent of card iac  output 

by our new non-invasive m ethod, it  m ust be said that the re su lts  a re  ra th e r  

disappointing. Exam ination of the re su lts  in Table 3 .3  shows that in a given 

subject, o u r method gives a g re a te r  spread  of values than that of the dye- 

dilution m ethod. This spread  is  reflec ted  in  the average coefficients of 

varia tion  fo r the two methods: 6. 8% fo r dye dilution, 10.6% fo r our method, 

o v era ll, 9.7% fo r the 7% CO^ experim ents. (Coefficient of varia tion  (CV) =

deviatm n low er the CV, the b e tte r the reproducibility),m ean c- j /

We can see how these re su lts  com pare with those of o ther published 

investigations a t r e s t  by examining Table 3 .1 . H ere we see that although 

our reproducibility  re su lts  a re  b e tte r than those of Ferguson et (109) they 

do not com pare with those of F ranciosa et al (122) using Indirect Fick CO^ 

réb reath ing  o r  o ther published re su lts  fo r dye dilution a t r e s t .

In conclusion, these validation re su lts  would appear to indicate 

tha t although the overall accuracy  of the new com puter-based card iac output 

method is  quite good, in te rm s  of variab ility  it is  n ecessa ry  to im prove the 

technique in o rd e r to c rea te  a sufficiently a ttrac tive  clin ical tool. The 

rem ainder of the work described  in th is  thesis is  d irec ted  tow ards th is  aim .
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CHAPTER 4

STATISTICAL SYSTEM IDENTEFICATION AND 

ITS APPLICATION TO THE CARDIAC OUTPUT 

MEASUREMENT TECHNIQUE '
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4 .1  Introduction

In Chapter 1 of th is thesis  the topic of tim e domain system  identification 

was introduced. Chapter 3 may have tended to convey the idea tha t, once an 

'ad  hoc' c rite rio n  to define goodness of fit between model and data is  proposed, 

system  identification reduces in  essence to a problem  of m echanistic function 

m inim isation. In fact, p r io r  to the involvement of the author in the p ro jec t, 

the problem  had been form ulated p rec ise ly  in th is m anner.

With the disappointing nature  of the re su lts  detailed in Chapter 3, it 

becam e apparent that attacking things in ’th is way was not en tire ly  appropriate .

A s pointed out in  much of the lite ra tu re , identification is  essen tially  a s ta tistica l 

procedure (43, 62, 63, 220).

Most c rite rio n  functions used for model system  com parison a re  im plicit 

functions of the observations. These observations a re  corrupted by noise, which 

is  random in na tu re . This im plies the estim ates them selves will also be subject 

to random ness in the sense that one set of m easured data, under seemingly 

identical experim ental conditions, will be unlikely to produce the sam e estim ate 

as another data se t. This necessita tes  a probabilistic  analysis .

It tra n sp ire s  that the c rite rio n  suggested for mo del-data com parison 

in Chapter 3 can be given a useful sta tistica l in terpreta tion  when viewed in 

th is  light. By casting the problem  in th is probabilistic  fram ew ork, im portant 

questions can be posed which allow one to a sse ss  the adequacy of the estim ated 

model.

(1) How well defined a re  the p a ram ete rs  in pa ram ete r space ? (i. e. what 

a re  th e ir  associated  variances ? A re  they co rre la ted  ? )

(2) What c rite rio n  function would allow us to produce the "best" estim ates ? 

(hi the sense of being unbiased and having sm allest variance . )
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(3) Do our a p r io r i assum ptions about model o rd er appear to be 

co rrec t on the b asis  of the achieved fit ?

(4) Could an experim ent be devised which would allow us to produce 

"better"  estim ates ?

It was felt the answ ers to the above questions and connected ones provided 

the m ain key to understanding the relatively  poor re su lts  p resented  in the 

previous chapter and, in fact, the search  for these answ ers form ed the m ain 

goal of the work described  in th is th esis . Questions 1 - 3  a re  investigated 

in the succeeding sections of th is chapter, while Question 4 is  discussed in 

Chapter 7.

Once the answ ers to these questions have been found, th is allows us 

to re-exam ine the original assum ptions inherent in the model and the form  of 

experim ent and suggest modifications where necessary . This approach views 

the problem  as an ite ra tive  p rocedure, ra th e r than ju st a ’one-shot’ p ro cess . 

The new methodology is  sum m arised in Figure 4 .1 .

4 .2  S tatistical Background

An estim ato r of an unknown param ete r vector jS is  simply an 

algorithm  which takes m easured data ( say ) and produces an estim ate
A
jS . An estim ato r, being a function of a random sam ple of m easurem ents, 

is  a random variab le . The estim ate which re su lts  is  a p a rticu la r rea lisa tion  

of this random variab le.
A

C learly , a good estim ato r should be such that it produces estim ates 

’c lose’ to the tru e  vector. j3 , This leads to the concept of an unbiased 

estim ato r. An estim ato r is said to be unbiased if

E ( /3 ) = j3 4 .1
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A A
H ere E( jS ) denotes the expected value of p . (A p a rticu la r value of an

unbiased estim ato r is known as an unbiased estim ate). The above property

may be tru e  of the estim ato r for any num ber 'm ' of observations o r may be

tru e  only in the lim it a s 'm ' tends to infinity. In the la tte r  case , the estim ator

is  designated as being asym totically  unbiased. The covariance m atrix  of an
A

unbiased estim ato r ]3 of the pa ram ete r vector j3 is

cov ( ^ ) = E - ^  ^ - 4.2

A
The diagonal elem ents of cov ( jS ) rep resen t the variances of the p a ram ete rs  

as calculated in the norm al sca la r case  and the off -diagonal elem ents rep resen t 

the covariances between the respective  p a ram ete rs .

An obvious requirem ent for a 'b es t' estim ato r is  that it should produce 

unbiased estim ates. In addition, it should produce a p a ram ete r estim ate 

covariance m atrix  which is sm aller in  some sense than that produced by other 

unbiased e stim ato rs . Such an estim ato r is known as a minimum variance 

unbiased estim ato r (MVUE).

It is  not often feasib le to estab lish  the existence of such estim ato rs.

In p rac tice , it  is  usually enough to show that the estim ato r provides a covariance 

m atrix  which approaches what can be shown to be the low er bound for all unbiased 

es tim ato rs . This is given by the C ram er-R ao inequality (261)

A

cov ( P )  ^  M ( A ) ‘  ̂ 4 .3

w here ^

M O )  = /  A ) ]  r  a log (Y q /  4 .4

M ( ]3 ) is  known as F ish ers  Inform ation M atrix. It can be thought of as 

providing a m easure  of the amount of inform ation about the p a ram ete r vector 

j3 available in the observations . The inverse  of th is is known as  the 

C ram er-R ao Lower Bound and an estim ato r which achieves th is lower bound
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is  said to be efficient.

Prob ( Yj^/ /3 ) in equation 4 .4  is the conditional density function of 

the actual observed data sam ples. This is called the likelihood function

L ( Y ^ , ^ = prob ( Y^ /  ^ ) 4 .5

An estim ato r which m axim ises th is is  called a maximum likelihood estim ato r. 

This is such that

^  L ( Yd  . P )
 ------- = 0  4 .6

This is  equivalent to

(Y d O )  .  0 4 .7

since the logarithm  function is monotonie. This la tte r  c rite rio n  is m ore 

frequently used since log L is  often much m ore convenient to compute than 

L alone.

The resu ltan t estim ate using th is estim ato r can be thought of as that 

which m akes the data sam ples Y_ which actually occu rred , m ost likely.

Unfortunately, Maximum Likelihood estim ates a re  not in general unbiased. 

However, they do po ssess  certa in  desirab le  la rge  sam ple p roperties  under fa irly  

weak conditions (261). The maximum likelihood estim ato r is ,  th e re fo re , a 

fa irly  a ttractive  one provided the estim ates can be computed.

4 .3  The L east Squares E stim ator

The p a ram ete r estim ation problem  can be form ulated conceptually around 

the p ro cess  model in Figure 4 .2  . It is  required  to estim ate  the values of the 

unknown param ete r vector ]3 from  d iscre te  observations Y^̂  ̂ of the model 

output Y ^^ which is  corrupted by additive noise, e^ . Using the notation
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of reg ress io n  analysis (93), we may w rite  th is model in the following vector 

m atrix  form .

where

4 .8

4 .9

is  an m x 1 vector made up of t h e ’m ' d iscre te  observations, Y ,, the D M

vector of model outputs and e the vecto r of additive e r ro rs  corresponding to 

th ese . X is  an m x n  sensitivity  m atrix  made up of the sensitiv ities of the 

model output a t the ’ m ’ d iscre te  tim e instants to the ' n ’ model p a ram ete rs ,

1 . e.

X

M,

-TV

Mm àY

T P ,
M,

T ;
m
n

4 .1 0

F or a model lin ea r in the p a ram ete rs  (as discussed in Chapter 1) X is

independent of the p a ram ete r vector ^ in contrast to the case of a model

non-linear in the p a ram ete rs  where X contains elem ents dependent on jS .

This has fundamental consequences in te rm s  of the techniques used to compute
A

the p aram ete r estim ate  ^ as  we shall see .

Note that the problem  of estim ating the p a ram ete rs  of the homogeneous 

CO^ gas tran sp o rt model described in the previous C hapter, can be in terpreted  

in the form  of equations 4, 8 and 4 .9  by in terpreting  Y^^ and Y^^. as the 

flow-weighted m eans of the data and model output respectively  for each brea th . 

Thus, the 'ad hoc’ c rite rio n  used for m odel/data com parison in the previous
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Chapter can be viewed as  an algorithm  for m inim ising the sum of squares of 

the additive observation re s id u a ls , i. e.

Min. ^
w . r . t .  p-rf 1

1 =  1

This c rite rio n  is  in fact m ore widely known in a general context as the ordinary  

le as t squares (OLS) c rite rio n . The c rite rion  has been given historical 

prom inence due to its  m athem atical trac tib ility  and the fact that its  validity does 

not depend on the nature of the additive noise s ta tis tic s  (as has been aptly 

illu stra ted  in  the previous chapter).

F o r a model lin ea r in the p a ram ete rs  the solution to equation 4.11 can 

be given analytically by the so-called  norm al equations, i, e.

^ L S  = 4.12

If the model is non-linear in the p a ram ete rs , using th is equation to compute 
A
j3 is  no longer applicable since X is  a function of 0 . In th is situationIjO

the estim ate  m ust be computed itera tively  using function m inim isation m ethods. 

This im portant problem  is  extensively discussed in Chapter 5 and 6. However, 

i t  is  im portant to note that in the non-linear case , equation 4.12 is a valid
A A

approxim ation for jS provided th is jS is also used to compute X

F or theore tical examination of the p roperties  of the OLS estim ato r 

we m ust assum e som e sta tistica l p roperties  for the additive noise. The 

following analysis , although only s tric tly  valid for the case  of a model linear 

in the p a ra m e te rs , can be extended to the non-linear case with due caution. 

A ssum e firs tly  the noise is zero -m ean , i .e .

E ( e ) = 0 4.13

and, fu rtherm ore , that X is  non-stochastic.

Under these assum ptions it can be shown^the le as t squares estim ato r
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is  unbiased. Taking expectations on both sides of equation 4.12 and

applying 4 .13  we get 

A

E(
1

E ( e ) = 2 4.14

The covariance m atrix  of the le a s t squares estim ato r under these  assum ptions

IS
A

cov(j3^g) = Ej([x^x) ■̂ x’̂ e )({x'  ̂ ^  x'̂

= [ x ^ x " ] '4  X ^  N X [ x ' ' - x ] " 4N X

N is defined as the covariance m atrix  of the additive noise. 

N = E

4.15

4.16

However, th is does not provide the minimum variance estim ato r unless it is

2also  assum ed the noise is  uncorrelated  and has constant variance G  , i .e .

N = I 4 .17

w here I is  the identity m atrix . In th is situation equation 4 .15  reduces to

cov ( i3 Ls ) = [ x -  x ]  ■' 4 .18

which is  the minimum covariance m atrix  of jS .

This inability to give minimum covariance estim ates in the presence  

of co rre la ted  observation e r ro r s  is  an im portant deficiency of the ord inary  

le a s t squares method. This problem  is fu rth er pursued in Section 4, where a 

method is p resen ted  which overcom es this difficulty.

If in addition to the assum ptions detailed above, the noise is  also 

assum ed to be governed by a Gaussian distribution of jo int probability
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prob (e , ]3 ) = ( 2 7T det N )  ̂ exp /  e N " ^ e J  
_ m

= ( 2 TTĜ  ) ^ exp ^ j  e ^  e j  4 .19

Then the ord inary  le as t squares estim ato r coincides in th is  case with the 

maximum likelihood estim ato r. The log likelihood function for equation 4 .19  

is given by

1 Tlog L = - m log 2 7T 6  - ^ — e e 4 .20

TThus, it is  evident that m inim ising e e^which is the le a s t squares criterion^

is equivalent to m axim ising the likelihood function.

Since the variance of the noise is seldom known a priori^a maximum

likelihood estim ate of this can also be obtained by differentiating equation 4 .20  
2

with resp ec t to <© . This gives

m l  T 
— 4"

G
transform ing we get

e = 0  4.21

^  4.22

It can be shown, however, that this estim ate is biased (158) and a b e tte r 

unbiased estim ate  is

6  ̂ "= ^  4.23

Thus an estim ate of the covariance m atrix  of the p a ram ete rs  based on the

2  vx 2

achieved fit is  given by equation 4 .18  with G replaced by G  as given by 

the above equation.
A

The inverse  of cov ( |3 ) describes an elliptical surface in p a ram ete r 

space, which is  equivalent to that of the c rite rion  function surface (as given by 

equation 4.11) to f ir s t  o rder in the region of the minim um . The eigenvectors
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Tof X X define the axes of th is ellip tical surface and the size  of its  sem i-

axes a re  inversely  proportional to the square root of the corresponding eigen­

values (see F ig . 4 .3 ).
A

From  the cov ( jS ) m atrix  approxim ate confidence se ts  fo r the

p a ram ete rs  may be constructed which describe plausible regions in which the

p a ram ete rs  can be expected to lie  to a given probability level (usually 95%),
2

F o r a value of Q  as  given by equation 4 .24 , it is  appropria te  to base the

confidence distances on the students t-d istribu tion  (126). This is  given for 

the .g . the i p a ram ete r •

^  A A " 1  -
^  i ±  G cov ( j3 )^.2 t  ( m - n ) 4.24

The students t d istribution is  tabulated for different levels of confidence 

as a function of degrees of freedom  m - n . In fac t, a t the 95% confidence 

level fo r m - n g re a te r  than about twenty the value of t  is  not g rea tly  different 

from  2 .0  and thus the above form ula approxim ately reduces to

« A i
+ 2 G cov ( jS „  )2 4.25

Note these confidence distances may be greatly  in e r ro r  fo r a model highly 

non-linear in the p a ram ete rs  since the confidence regions will be no longer 

approxim ately e llip tical in  th is case . Beck and Arnold ( (22) Ch. 7 ) advocate 

that a lternative confidence regions (which may be asym etrica l) based on the 

likelihood ra tio  be used in th is situation.

To consider the overall fit, a convenient sca la r m easu re  of the size 

of an ' n ' dim ensional ellipsoid is  its  volume, the square of which is 

proportional to the of cov ( jS ) (220),

vol a  det ( cov ( j3 ) ) 4 .26

Thus appropriate  95% confidence ellipsoids m ay b e  constructed  based on th is.
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4 .4  "Maximum Likelihood" E stim ator

When the fitting e r ro r s  (or in the term inology of reg ress io n  analysis 

the residuals) a re  co rre la ted , it has been shown in the previous section that 

the ord inary  le as t squares approach does not produce minimum variance and 

maximum likelihood estim ates.

Better estim ato rs  (in the sense of producing estim ates with sm aller 

variance) may be derived from  a knowledge of the p a ram ete rs  of the noise 

o r m ore p rec ise ly , its  covariance m atrix . Unfortunately th is  is not generally 

known'a p r io r i.

By u tilising a m ore general form  of noise model than that of ordinary  

le as t sq uares, the p a ram ete rs  of the noise model may then be estim ated 

in addition to the determ inistic  model p a ram ete rs  as p a rt of the overall 

estim ation p ro cess . The penalty that m ust be paid for this is ,  of course , the 

increased  dim ensionality of the problem . However, the resu ltan t "maximum 

likelihood" estim ator (11) yields minimum variance estim ates under le ss  

stringent s ta tistica l assum ptions on the noise than the ord inary  le as t squares 

method req u ires  to produce minimum variance estim ates . A suitable form  of 

model to use to rep resen t the co rre la ted  noise e is the following d iscre te  

tim e model.

[ l  + b z  ̂+ b„ z ^ + b z , 4 .27
e = ------- 1----------- f ----- ;---B ------  I t

 ̂ [ l + a ^ z  ^ + a ^ z ^ + a ^ z

where z denotes the shift o p era to r, o r z -tran sfo rm , and ^  is assum ed to 

be a sequence of uncorrelated  Gaussian random variab les . This is  known as 

an auto -reg re ss iv e  -m oving-average (ARMA) model. It can be shown to be a 

canonical form  fo r noise which is  stationary and p o ssesses  a rational spectra l 

density (9). In fact, a lm ost a ll p rac tica lly  obtained noise sequences can be 

adequately rep resen ted  in th is m anner. The coloured noise in equation 4 .27
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can be conceptually thought of as having been created  by passing  white noise 

through a lin ea r f ilte r . This form  of noise model was f ir s t  used in the 

engineering system  identification field for I/O identification by A strom  and 

Bohlin (11). However, it has also been extensively used in the sta tistica l 

analysis of tim e se r ie s  where there  was no explicit input, noteably by Box and 

Jenkins (39).

We will now consider the p roperties  of an estim ato r with 

the noise modelled in th is m anner. The difference between th is and the OLS 

estim ato r is shown in F ig . 4 .4 . In the following we will consider only the 

f ir s t  o rd er noise model for sim plicity , although the analysis can be triv ia lly  

generalised to noise models of any o rd e r.

The f ir s t  o rd er ARMA noise model is 

l  + b z '^  .

  , i t  4 .28
1 + a z ' l

th is gives the recu rsiv e  relationship for e^as

= - a  + b ^ ^ . l  4.29

this is  easily  transform ed to get ^   ̂ if e^ is known.

4 .30

Although equations 4 .29  and 4.30 a re  in a convenient form  for recu rsiv e  

computation, for the subsequent analysis it is  m ore convenient to adopt a 

m atrix  vector form ulation. The dependence of the ( m x 1 ) vector of corre la ted  

observations e on the vector of (assumed) white residuals C can be w ritten  as

e = Q i  4.31

where Q is  the m x m m atrix
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Q =

1

( b - a )

- a( b - a) (b - a )

0

4.32

m-2 
(-a) (b-a)

Note that Q is  unit low er trian g u la r. Thé inverse relationship  can be 

s im ila rly  w ritten  as

£  = Q  ̂ e 4 .33

"1w here Q , which is  also unit low er triangu lar, can be explicitly w ritten

as

1

( a - b) 1

- b ( a - b )  ( a - b )
4.34

(-  b)“ '2  (a - b)

Recall from  Section 4 .3 , Equation 4 .19  that if the fitting e r ro r s  e a re  

assum ed G aussian, although not necessarily  independent, th e ir  conditional p .d .f .

IS - m -m

prob ( e /  jS, N (a,b)) = (27r)  ^  (det N ) ^ exp ^  ^ e'^ N  ̂ - e j 4.35

The probability  has also to be w ritten  as conditional on the noise covariance N
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in the equation above since this is  also being explicitly considered as a 

p a ram ete r ( i. e. via a and b ) in this situation. The log likelihood function 

fo r this becom es

logL  O  , N ) = - S ' log ( 2  7T ) - S  log ( det N ) - i  e'^ n '^  e

4 .36

To obtain the maximum likelihood estim ate i t  is  necessa ry  to differentiate 

the above w rt the noise p a ram ete rs  as well as the determ in istic  model 

p a ram ete rs  sim ultaneously. However, as we shall see , the problem  is 

rendered  separable by the choice of the noise model s tru c tu re . F rom  equation

4.31 and the fact that is  assum ed to be an uncorrela ted  random  sequence

with covariance m atrix  given by equation 4 .17 , the covariance m atrix  of the 

additive fitting e r ro r s  becom es

= E  i Q iN = E  l e  = E ^  Q £  ( Q 1

= Q e [ i 1 ’A  Q 4 .37

also

det ( N ) = det ( Q ) det ( 4 .38

since the determ inant of a unit low er o r upper triangu lar m atrix  is unity.

It is  easily  seen  from  th is that the problem  of m axim ising the likelihood 

function with re sp ec t to the ( T& x T ) p a ram eter vector j3 and the noise 

p a ram ete rs  ( a ,  b") reduces to the following equivalent problem  of m inim ising 

a sum of sq uares.

V < e ,

w here we define an augmented ( ( n + 2 ) x l )  p a ram ete r vector 9 (which also
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includes the noise p a ram ete rs  by

4 .4 0

Although equation 4 .39  would appear to be analogous to the case of ordinary

le a s t sq uares, th is analogy is  not to ta l. A closed form  solution to equation 4 .39 ,

equivalent to equation 4 .1 2 , unfortunately does not ex ist ; even in the case  of a

p ro cess  model lin ea r in its  p a ram e te rs . This is due to the way the noise

p a ram ete rs  en ter into the equation. Thus, for th is technique the ite ra tive

function m inim isation techniques described in Chapters 5 and 6 a re  a necessity .

Following a s im ila r m athem atical argum ent to the ord inary  le a s t squares

2
case , an unbiased estim ate  of Q> is

m  - n

The covariance m atrix  of the estim ates fo r the maximum likelihood estim ato r

can be shown to be

^  2 r  T  1  -1
cov ( e ) = G Z Z 4.42

w here Z is a modified sensitiv ity  m atrix  of o rd er m x ( n-h 2 ) given by

Z =

à e , n+2

m m
a 8 n+2

4.43

Confidence se ts  fo r the individual p a ram ete rs  and overall confidence ellipsoids
A

can be constructed  from  cov (9 ) in a m anner analogous to that used in the 

ordinary  le a s t squares case  considered in Section 4 .3 .
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The m echanisation of the maximum likelihood estim ato r will be 

discussed in Chapter 6  w here it will be shown how the modified sensitiv ity  m atrix  

Z can be calculated with reduced overhead from  the p ro cess  model sensitivity  

m atrix  X and the fitting e r ro rs  e .

4 ,5  R etrospective T ests  on the Adequacy of F it of Estim ated Models

A fter an experim ent has been carried  out and a model estim ated , it is 

im portant to verify  the original s ta tis tica l assum ptions im plicit in the estim ation 

method used. If these a re  in e r ro r  the estim ates of the covariance m atrix  of 

the p a ra m e te rs , e tc . may no longer be valid. In som e situations the estim ates 

may be biased.

The p ro p e rtie s  of the estim ato rs  d iscussed in Sections 4 .3  and 4 .4  

depended crucially  on the independence of the appropriate  residual sequences, 

i . e .  e in the ord inary  le a s t squares case  and ^  in the maximum likelihood

case . These sequences should thus be examined closely a s  any s tru c tu re

o r dependence on the input displayed by them may suggest deficiencies in the 

m odel, o r perhaps the p resence  of unsuspected feedback, which can be a 

problem  in an identification context, particu la rly  where norm al operating 

reco rd s  a re  being used (147).

A useful p rocedure fo r testing  the independence of the residual sequence

is  to compute an estim ate  of its  se r ia l au tocorrelation , e. g.

1 m
' ^ £ { k ) U ^  +  ' ^ )  4 .44

k = l

for a reasonable num ber of delays ^  = 1 , 2 , 3 ,  e tc. Ideally if the residual 

sequence is  independent, i . e .  the residuals  a re  'w h ite ', then it should po ssess  

an im pulsive au tocorrelation  function (265, Ch. 5). That is  0 )
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should be zero . In rea lity , however, equation 4,44 is only an estim ate  over 

a finite data length, w hereas the tru e  autocorrelation im plies convolution over 

infinite data lengths. Hence, th is estim ate has an associated  variance. In 

Bendat and P ie r sol (30), the resu ltan t standard deviation of th is is  shown to be

^  4.45
ee

Note that for a few l a g s ^  only and a la rg e  num ber of observations ' m ' 

the above form ula fo r the variance of the norm alised autocorrelation function 

(which is  what we compute in p rac tice) reduces to

G - V  for m  > ">  tn o rm ^  ee 2  4 .46
^  and m >">  n

S im ilarly , c ro ss-co rre la tio n s  between the input and the residuals  may be 

carried  out to detect the  presence of feedback (35,62).

An a lternative  method for checking for the independence of the residual 

sequence is  examination of the "num ber of rim s". The num ber of runs is  the 

num ber of changes of sign of the residuals  plus one (e. g . in the sequence 

+ + - - 4 . - th e re  a re  four runs). For a sequence of m  independent 

random  v ariab les , the expected num ber of runs should be approxim ately equal 

to m /2  . A significance te s t for the independence of the residual sequence 

based on the num ber of runs is  given in D raper and Smith (93), Chapter 3.

In assess in g  the adequacy of the fitted model it is  also im portant to check if 

the fit of the model Is  significantly improved by adding ex tra  p a ra m ete rs , e .g . 

in the case of the homogeneous CO^ gas exchange model by going from  4 to 6  

p a ram ete rs .

The determ ination of the o rder of the model can in fact be approached
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as  a s ta tis tica l hypothesis testing p rob lem .

To te s t if the c rite rio n  function is significantly reduced when the num ber 

of p a ram ete rs  is  increased  from  n^ to n^ say, the following te s t quantity can be 

used (145)

, L v O n i )  - V ( g ^ ) ]  L m - n ^ l
f =      —  4 .47

If the residuals  a re  Gaussian (or in p rac tice  approxim ately so) th is te s t 

quantity f can be shown to be approxim ately F - d istributed  with (n^ - n^) 

and (m - n^ ) degrees of freedom . Thus, for a given significance level a  

(usually 5% ) the in c rease  in model p a ram ete rs  is  said to re su lt in a significant 

im provem ent if the corresponding te s t quantity f is  such that

f >  , m  - n2  ) 4 .48

where F^ _ ^  ( n^ - n^ , m n^ ) is found from  a table of the F distribution (59).

Aka ike (2) has proposed an a lternative  procedure fo r model o rd e r 

selection derived on inform ation theore tic  grounds. He form ulates the model 

o rd e r testing  procedure essen tially  as an estim ation problem . This has the 

advantage that the need for subjective judgem ent, i .e .  in selecting significance 

lev e ls , such as  requ ired  for the F - ra tio  te s t , is  elim inated. However, the 

method req u ire s  that an estim ate  of the likelihood function be explicitly 

computable. Akaike advocates choosing the model o rd e r such that the following 

inform ation c rite rio n  is  m inim ised.

A
AIC^ = - 2 1ogL ( i S ^ ) + 2 n 4.49

y\
w here L ( ) is  an estim ate  of the likelihood function based on 'n ' independently

A
adjusted p a ram ete rs . In te rm s  of V ( j3  ̂ ) (V  being given be e ither equation 

4 . 1 1  o r 4 .39), equation 4 .49  becom es
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[ l o g  ( ^  V ( g ^ )  +AIC^ = m 7 log ( —  V ( jS ^ ) + 1 \  + 2n 4 .50

Successful applications of the above c rite rio n  have been reported  (167, 223,

227). However, claim s that the orders testing procedure is  in fact truely  

"objective" have been disputed (263).

Another im portant consideration when assessing  adequacy of fit of an 

estim ated model is  that of stationarity  o r  tim e invariance of the p a ram eter 

estim ates . This can be checked by estim ating models in tu rn  over the f ir s t  

and second half of the data sequence and ensuring the estim ates a re  not 

significantly different from  those obtained from  fitting over the en tire  data 

sequence.

4 . 6  Identifiability Aspects

As discussed in Chapter 1 , the em phasis is usually slightly different 

in identification of biological as opposed to the industrial p ro cesses . In 

industrial p rocess identification the p rim ary  aim  is  to c rea te  models which 

accurately  m im ic the re a l system s observed external behaviour. In the b io ­

logical a re a , however, in addition to th is , the investigator is  likely to be 

concerned as to how the p a ram ete rs  of the derived m odels re la te  to physical 

quantities. In th is la tte r  situation, it is  obvious that th is will only be valid 

if the model is  configured in a m anner such that a ll its  in ternal p a ram ete rs  

of in te rest can be uniquely identified. M ore m athem atically , this requ ires  

that the mapping from  p aram ete r space to the input/output re la tion  should be 

injective. Such a model is  said to be identifiable.

Bellman and A strom  (28) f ir s t  explicitly form ulated and discussed this 

problem  in the context of biological com partm ental system s in 1970. They 

advocated c lassica l tra n s fe r  function theory as a suitable m echanism  to investigate 

th is . They showed that each coefficient of the resu ltan t tra n s fe r  function m atrix
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can be expressed  as a non-linear combination of the unknown p a ram ete rs  thus 

defining a se t of non-linear equations. Provided these have a unique solution, 

they, state  the model is  identifiable.

Applications of th is  s -domain approach to the identifiability of models 

of drug kinetics have been reported  by M ilanese and Molino (208,211).

M ore general identifiability re su lts  have been attem pted by Cobelli 

and Rom anin-Jacur (69,70,71) based on the analysis of the com partm ental 

diagram  ( i .e . the signal flow) and hence attem pting to avoid explicit calculation 

of the tra n s fe r  function m atrix  (and the m atrix  conversion problem s inherent in 

th is p rocedure). However, these re su lts  have aroused considerably controversy  

in the lite ra tu re  (81,82 , 87, 67, 307). This is concerned with w hether the re su lts  

of Cobelli and Rom anin-Jacur form  sufficient o r even necessa ry  conditions for 

identifiability, (81,82), and also with the nature of the relationship  of identifiability 

to the p ro p ertie s  of controllability  and observability  (95) put forw ard by these 

au thors.

M ore recen tly , Cobelli et al (6 8 ) have rev ised  th e ir  re su lts  and have 

shown conclusively the p ro p e rtie s  of input and output connectability (78) to be 

n ecessa ry  conditions fo r identifiability. However, in the general case a t le a s t, 

no sufficient conditions have as  yet been put forw ard in the lite ra tu re .

An algebraic identifiability c rite rio n  has been proposed by Grewal 

and C lover (141). This is based on the evaluation of the rank of the jacobian 

of the M arkov p a ram ete r m atrix  defined as :

H (|3)
C O )  B O ) 

C 0 )  A 0 )  BO) 
C O ) A^“ 0 iB O )

4.51

where j3 is  the p a ram ete r vector of dim ension 'n ’ and A , B, C a re  the usual
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m atrices obtained by configuring the system  in state  space form  (95). In 

the biom edical field th is technique has been applied to models of thyroid 

hormone m etabolism  (88,89).

So fa r  when discussing identifiability we have rea lly  been inferring  

what Bellman and A strom  (28) call global s tru c tu ra l identifiability. This 

depends only on the s tru c tu re  of the model and available input/output ports  

and not on the num erical values of the p a ram ete rs . However, th is is only rea lly  

one aspect of the problem  and as noted by Brown and Godfrey (49) there  ex ists  

fa r w ider im plications. That is ,  certa in  situations may a r is e  where although 

the model may be theoretically  identifiable in the sense discussed  above, 

p rac tica lly  due to e .g . poor experim ental design, o r inaccurate m easurem ents, 

one may be unable to reso lve these p a ram ete rs  uniquely. Brown and Godfrey
\ I

(49) coin the te rm  to re fe r  to this near o r pathological type of

identifiability.

One example of th is is  the following sim ple a lgebraic model

Ym = ( 1 0 +  u ) 4.52

F o r th is m odel, in the presence  of noise, both p a ram ete rs  can only be (easily) 

uniquely estim ated fo r la rg e  values of the input u . For | u | sm all only 

^ + 10 ^ 2  bG estim ated uniquely. Many o ther cases s im ila r to th is

can be cited. These may not be a t all obvious, especially  in the dynamic case 

w here it may not be possib le to manipulate the model equations so that groups 

of p a ram ete rs  appear together allowing potential unidentiflability to be deduced. 

The existence of some so rt of c r ite r ia  that could be applied to detect this 

re trospective ly  would obviously be a convenient tool in th is situation. In fact, 

it tran sp ire s  such c r ite r ia  can be derived from  consideration of the appropriate 

sensitivity  m atrices  ( X for OLS and Z for ML ), d iscussed  e a r lie r  in this
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chapter.

Beck and Arnold (22) show that the p a ram ete rs  can be estim ated if

the sensitiv ity  coefficients over the range of observations a re  not linearly

dependent. That is ,e .g . in the ordinary  leas t squares case , the m atrix  

1 TX X (which is proportional to the inverse of the p a ram ete r covariance
6

m atrix  G if the residuals  a re  white ) is  not rank deficient. In sim ple cases 

th is unidentifiability may be deduced from  examination of tim e plots of the 

sensitiv ities . However, it is difficult to detect com plicated interdependencies

in th is m anner. If an eigenvalue/eigenvector decomposition of G indicates

the eigenvalues a re  of g rea tly  differing m agnitudes, th is  suggests identifiability 

p rob lem s. A very  useful check on the correla tions between p articu la r 

p a irs  of p a ram ete rs  is  to compute the p a ram eter co rre la tion  m atrix  R 

defined as (2 2 0 ) :

1̂1 "     i  4 .53 ,

where C_ , C „ , C_ , e tc . a re  elem ents of the p a ram ete r covariance m atrix . 

Note that the diagonal te rm s  of the correla tion  m atrix  R will be unity and 

the off diagonal te rm s  such that

- 1  <  Ty ^  1 4.54

N ear unidentifiability is indicated by the modulus of one o r  m ore of the off- 

diagonal te rm s of R being n ear unity, i. e. the p a ram ete rs  in question a re  

highly co rre la ted . In p rac tice , estim ates for p a ram ete rs  i and j a re  suspect 

if (2 2 )

I r .  1 >  0.95 4.55
' ij '

Small off-diagonal elem ents of the R m atrix  indicate that the p a ram ete rs  a re  

essen tially  decoupled.
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4 .7  S tructu ral Identifiability of the Homogeneous CO2  Model

The s tru c tu ra l identifiability of the model may be approxim ately 

investigated by considering the constant ventilation version  of the model.

« O
S V = V effective = const. 4 .56

#
w here the value of V effective is taken from  the Bohr equation (Chapter 2, 

Section 2 .5 ),
#  ♦

i. e . V effective = ( Vj - f  Vp) ) 4 .57

By taking Laplace tran sfo rm s of the model equations 2 .43  and 2.44 and a fte r

some m anipulation, the model can be expressed  in the following form  :

a  S + a  a  S + a  a '

P .(S ) = 4 .  P /S ) + - f  2 + - J  4 .58

w here P^(S) is  the Laplace transfo rm  of the ’output', i . e .  a lveolar PCO^ 

and Pj(S) is  the Laplace tran sfo rm  of the 'input' viewed as insp ired  PCO^ . The 

se t of Laplace transfo rm  coefficients a re  functions of the p a ram ete rs  jS 

and a re  given by

«  •  —#

Q V eff const Qb ,

= P . , n \  " const M 4.63
V eff

Tn(0 )Q Q AiNT X const , const Q b P
“ 6  = ÿ ^ / A ( 0 ) + — -------  + —

O u  #  *

- con st M Q V eff ' const Q b 4.64
V eff Va  + Va
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“ 7 = 4 .6 5

The f ir s t  te rm  on the right-hand side of equation 4 .58  is  the dynamic te rm  due 

to the input and the second te rm  is  the initial condition response . This te rm  

is  non-existent if the model is  in itia lly  in a steady s ta te . The th ird  te rm  is  an 

offset te rm . This la tte r  te rm  is  expected due to the fact that there  is  non-zero 

output fo r zero  input ( i .e . under norm al a ir  breathing conditions P^CO^ = 40 mm Hg 

for Pj CO^ = 0 mm Hg ).

The dominant poles of the system  a re  given by the roo ts of the equation

S + = 0 4 . 6 6

F o r reasonable p a ram eter values ( Q = 5 L / M  , = 5 L ,  M = 0.2 L ,

Vrp = 5  ) th is gives two le ft half plane poles, i . e .
1 q  L

= - 5 .8  , Sg = - 0 .2  4 .67 .

This corresponds to tim e constants of approxim ately 10 secs and 5 m ins 

respective ly . The f ir s t  tim e constant rep resen ts  the re la tive ly  fast dynamics 

of the alveo lar com partm ent, while the second rep re sen ts  the re la tive ly  slow er 

tissu e  com partm ent dynam ics.

We will now consider the global identifiability aspects of th is model 

s tru c tu re , i .e .  assum ing a ’good* (informative) experim ent, how many 

p a ram e te rs  can be uniquely estim ated ?

It is  not easy to tackle th is problem  via the m ore  form al Grewal and 

Glover (141) approach because of difficulty in rep resen ting  the model in • 

standard lin ea r tim e invarian t, s ta te  space form . This is  en tire ly  due to the 

m anner in which M en ters  into the model equations. T herefo re , if we think 

of th is  as an input we can w rite  the model equations in standard  form . We 

explicitly consider, however, M as a p a ram ete r. We, th e re fo re , adopt
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the following m ore intuitive approach to the identifiability analysis.

In p rincip le , a ll the independent Laplace transfo rm  coefficients a  

in the Laplace transfo rm  represen tation  of the model (equation 4.58) a re  

determ inable from  input/output experim ents. Thus j the num ber of these 

coefficients im plicitly  defines an upper bound on the maximum num ber of 

in trin sic  model p a ram ete rs  which might be identifiable (6 8 );

Coefficients and essentially  contain the sam e inform ation since 

one is  a m ultiple of the o ther. Expressing the rem aiaing transfo rm  coefficients 

in te rm s of the in trin sic  model pa ram ete rs  re su lts  in the following equations

Va  = 4 .68

M = k^ 4 .69

Pa (0) = ''a  4 .70

b Q  = k^ 4.71

b V _  = k- 4.72
T q  5

A TNT
% 0 ) + —  = * ^ 6

Examination of the above equations show why attem pts to estim ate  b , the slope 

of the COg dissociation curve an d /o r Ajjs r̂p the in tercep t of the dissociation 

curve, m et with fa ilu re  in the previous chapter. Note how a change in b  in 

equations 4 .6 0  - 4 .64  can be exactly compensated fo r by a change in  Q, V
T-C

and P _  , thus giving the sam e se t of Laplace tran sfo rm  coefficients 

and, th e re fo re , the sam e model response. A lso, a change in A ^^p  can be 

com pensated for exactly by a change in in equation 4.64 thus again

yielding the sam e model output. Equations 4.68 - 4 .73 te ll u s , however, that 

if b and a re  known, then the model p a ram eterisa tion  in te rm s of

Q, , M , , P^(Q) is  unique.
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It m ust be em phasised that the above re su lts  yield only m inim al 

necessa ry  conditions fo r obtaining unique estim ates , i. e. under ideal 

experim ental conditions. It gives us no inform ation on the degree of identifiability. 

A s d iscussed  in  Section 4 .6 , th is  can only be in ferred  re tro spective ly .

4. 8  V alidation Data : Estim ation R esults for 4 , 6  and 8  P a ram eter Models 

The p a ram ete r estim ates obtained by fitting four p a ram ete r models 

( i .e . assum ing steady-sta te  initial conditions) to the validation data w ere given 

in the prev ious chapter and the physiological significance of these d iscussed .

In th is section we w ill a sse ss  the adequacy of these fitted  m odels and com pare 

them  with the re su lts  obtained by fitting a six p a ram ete r model (i. e. estim ating 

additionally the in itia l conditions P^^^^ and ^ ^ 0 (0 )  ̂ an eigjit p a ram ete r 

model (includes 2 additional noise p a ram ete rs  for the f ir s t  o rd e r ARMA model).

The estim ation  re su lts  fo r the 4 ,6  and 8  p a ram e te r m odels a re  detailed 

in Appendix A , together with th e ir  respective  variances as  calculated using the 

appropriate  form ulae derived e a r lie r  in th is chapter.

O riginally these estim ates w ere computed using the F ac to rised -Q u asi- 

Newton Methods d iscussed in Chapter 5. These techniques do not explicitly 

u tilise  sensitiv ity  inform ation. When using these techniques, it was therefo re  

necessa ry  to w rite  a separa te  program m e to compute the sensitiv ity  m atrix  

by finite d ifferences to allow the p a ram ete r estim ate variances to be calculated. 

L a te r , however, sums of squares w ere used which yielded the sensitiv ity  

m a tric e s  a s  p a r t of the function m inim isation p ro cess  thus allowing the 

p a ram ete r estim ates variances to be calculated d irec tly , (G enerally  the fits 

a re  very  good, i . e .  M .S-E  <  1 % of the m ean output value. )

These re su lts  serve  to indicate that the assum ption of steady state  

in itia l conditions (i. e . four p a ram ete r model) is not in fact c o rrec t in every
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data file as assum ed in previous work in th is p ro jec t (228, 234). Very 

frequently a six and even eight pa ram ete r model gives fa r  sm aller values 

of the c rite rio n  function V(j3). However, th e re  does not seem  to be any 'b es t' 

s tru c tu re  to assum e in the global sense (i. e. over all the validation data) 

since on some files increasing  the model o rder did not seem  to make a g rea t 

deal of difference.

No one model o rd er gives the b est agreem ent with the dye dilution 

estim ates e ither since the fourth o rd e r model gives the n eares t value 22/50 

tim es, the sixth o rd e r model .16/50 tim es and the eight o rd er model 13/35 tim es.

On a m ore form al level, the question of the m ost appropriate  model o rd e r was 

investigated using the s tru c tu re  testing  techniques of Section 4 .5 .

The te s t quantity defined by equation 4.47 was form ed for the increase  

in the num ber of p a ram ete rs  from  four to six and from  six to eight. This was 

then com pared with the appropriate  value from  the F distribution  to te s t if 

the o rd e r in crease  was significant at the 5% level. These re su lts  a re  given in 

Table 4 ,1 . These again confirm  that different model o rd e rs  would appear to be 

appropria te  on different data se ts . In testing  the in c rease  in o rd e r from  four to 

six p a ram ete rs  26/48 tim es the te s t indicated the in crease  in o rd er was 

significant (22/48 tim es not significant). As reg ard s  the in crease  in o rder 

from  6  to 8  p a ra m e te rs , th is  was significant 15/34 tim es . On four occasions 

the te s t indicated the in crease  in o rd e r 4 ■"> 6  was not significant, but 6 —> 8  

w as. In th is situation the eighth o rd e r model was chosen since the te s t of in crease  

in o rd er from  4 —̂  8  was computed and found to be significant. O verall, the 

frequency of chosen model o rd e rs  a re  sum m arised below.

51 data se ts  com pared

n = 4 - 17 data sets
n = 6  - 18 data se ts  '
n = 8  - 1 6  data se ts .
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Table 4 .1  F-RATIO TEST RESULTS
TO CHOOSE 'BEST MODEL

F ile N f(4->6) f(6 -»8 ) F(4->6) F( 6 -*8 ) Chosen
O rder

VAL041 64 1.766 1.634 1.598 2.343 0.631 3.15 3.15 4
2 46 4 , 6 6 6 4.570 4.273 0.420 1.321 3.23 3.23 4
3 45 3.816 2.658 1.899 9.495 7.394 3.23 3.23 8

4 40 3.538 2.399 C 8.071 - 3.32 - 6

VAL051 2 2 1.759 1.176 1.126 3.966 0.311 3.63 3.74 6

2 2 0 2 . 8 6 8 1.088 C 11.452 - 3.74 3.89 6

3 24 1.208 0.838 0.721 3.973 1.298 3.55 3.63 6

VAL072 28 1,671 1.599 1.124 0.495 4.226 3.44 3.49 8

3 ■ 28 ■ C G C - - . -
4 25 1.931 1.738 1.667 1.055 0.362 3.55 3.63 4

VAL081 27 2.560 1.188 1.070 12.126 1.048 3.44 3.49 6

4 2 0 1.488 0.949 C 3.975 3.74 - 6

5 2 2 1.553 1.080 , FM 3.503 - 3.63 - 4

VAL 101 31 2.855 1.549 0.997 10.539 6.367 3.34 3.40 8

2 30 2.728 1.689 1.576 7.382 0.789 3.40 3.44 6

3 31 3.400 2.992 C 1.704 “ 3.34 - 4
4 28 6.871 6.172 5.207 1.245 1.853 3.44 3.49 4

V A LU l 42 4.400 4.164 4.027 1 . 0 2 0 0.578 3.28 3.30 4
2 37 8.646 4.519 3.258 14.155 5.162 3.30 3.32 8

3 36 6.456 2.592 1.404 22.361 5.419 3.34 3.37 8

4 37 6 .355 2.325 1.727 26.867 5.020 3.30 3.32 8

VAL122 41 6.114 5.440 4.990 1.920 1.487 3.32 3.32 4
3 37 C 3.878 2.591 - 7.202 - 3.32 8

4 36 13.741 7.848 C 11.263 - - - 6

5 45 7.384 6.770 2.810 1.768 26.071 3.23 3.23 8

VAL141 30 2.939 2.414 2.154 2.609 1.327 3.40 3.44 4
2 27 1.767 1.296 1.071 3.816 1.996 3.44 3.49 6

3 30 C 2.966 2.359 - 2.830 3.40 3.44 6

4 29 3.153 2,473 2.042 3.162 2.216 3.40 3.44 4

VAL161 2 1 8.423 3.040 C 13.280 - 3.63 - 6

2 2 2 2.849 1.332 FM 9.111 - 3.63 - 6

3 2 1 6.800 6.446 FM 0.412 - 3.63 - 4
4 2 1 2.818 2.225 FM 1.998 - 3.63 - 4

cont'd.
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Table 4 .1  (cont'd )

F ile N f(4-»6) f(6 ^ 8 ) F(4^6) F( 6 -» 8 ) Chose]
o rd er

VAL 172 37 6.553 3.635 2.167 12.443 9.823 3.30 3.32 8

3 39 9.046 6.753 3.755 5.602 12.375 3.30 3.32 8

4 38 3.780 3.741 2.512 0.167 7.339 3.30 3.32 8

VAL 181 2 2 1.700 0.658 FM 1 2 . 6 6 8 - 3.63 - 6

3 24 3.346 1.392 FM 12.634 - 3.55 - 6

4 29 3.059 2.657 2.656 1.759 0.004 3.40 3.43 4

VAL 191 23 2.465 2.035 1.674 1.796 1.617 3.55 3.63 4

VAL 203 38 4.816 4.325 FM 1.816 3.32 - ' 4

VAL 221 49 4.709 4.105 1.287 3.163 44 . 8 8 6 3.23 3.23 8

2 50 3.667 3.479 2.286 1.189 10.959 3.23 3.23 8

3 53 7.477 4.420 3.228 16.253 8.308 3.23 3.23 8

4 51 3.781 2.925 1.532 6.584 19.549 3.23 3.23 8

VAL 231 31 5. 877 3.957 3.515 6.065 1.446 3.34 3.40 6

2 2 2 1.241 1.109 FM 0.952 - 3.63 - 4
3 25 2.715 1.924 FM 3.905 - 3.55 - 6

VAL 251 29 3.064 1.937 C 5.527 - 3.40 -
6

2 28 1.920 1.649 1.303 1.807 2,655 3.44 3.49 4
3 30 2.346 1.483 1.382 6.983 0.803 3.40 3.44 6

4 31 C C 2.983 - - - - 8

C denotes program m e crash .
FM denotes false minimum located.
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One featu re  of the re su lts  of Table 4 ,1  is that the c rite rio n  fo r model o rd e r 

is s ta tis tica lly  not very  "sh arp " , i .e .  very powerful. Because the value of 

the te s t quantity is so low, the re su lts  of the te s ts  depend greatly  on the value 

of significance level, i .e .  some re su lts  would be different at sm alle r 

'subjective* significance levels. The 'b es t' model o rd e rs  w ere also assessed  

using A kaike's 'objective ' method (see Section 4 .7 ). The re su lts  a re  given in 

Table 4 .2  w here the AIC (AkaikeInformation C riterion) is  computed for each 

model o rd e r using equation 4 .50 . Using A kaike's method p red ic ts  identical 

re su lts  to the F - te s t 39 out of 51 occasions. On the data files  w here the two 

methods d isagree (invariably  th is is where the F -test s ta tis tic  is fa irly  close 

to te s t value) ,  A kaike's method in this situation is seen to consistently p red ic t 

a higher o rd e r m odel. This was also noticeable with re su lts  reported  by 

A Strom and K allstrom  (14) in  identifying models of sh ip -s tee rin g  dynam ics.

It would also be in teresting  to a sse ss  how often the 'b es t' o rd er as 

chosen by the F -te s t corresponds to that model o rd e r (4, 6  o r 8 ) which gives 

a value of card iac  output, which is n ea res t the dye-dilution value. In fact, 

these  correspond on only 17 data se ts , which unfortunately is not any b e tte r 

fo r the re su lts  fo r any p a rticu la r model o rder given above.

It is  difficult to a sse ss  if th is is significant, however, since we a re  

com paring two quantities, both of which may have significant variances 

associated  with them . A d irec t plot of the card iac  output estim ates for the 

'best* model against the dye values is  given in F igure  4 .5 . This shows 36/48 

p a irs  of estim ates within + 20%, which com pares s im ila rly  with 37/51 for the 

four p a ram ete r model (see Chapter 3). Table 4 .3  gives a s ta tis tica l sum m ary 

of these com parisons.

Before going on to consider the im plications of the estim ated p aram ete r
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Table 4 .2  AKAIKES INFORMATION CRITERION RESULTS 

TO CHOOSE 'BEST’ MODEL ORDER

File N a : AIC.4 AIC.
6

AIC 3 Chosen
o rd er

VAL041 64 ’ 1.766 1.634 1.598 -40.18 -41.15 -38.58 6

2 46 4 . 6 6 6 4.570 4.273 33.26 36.30 37.20 4
3 45 3.816 2.658 1.899 24.646 12.37 1.241 8

4 40 3.538 2.399 C 24.48 1.294 - 6

VAL051 2 2 1.759 1.176 1.126 14.84 9.99 13.03 6

2 2 0 2 . 8 6 8 1.088 C 25.91 10.52 - 6

3 24 1.208 0. 838 0.721 4.36 -0.418 -0.027 6

VAL072 28 1.671 1.599 1.124 8.52 11.29 5.417 8  .
3 28 C C C - - -
4 25 1.931 1.738 1.667 14.913 16.28 19.24 4

VAL081 27 2.560 1.188 1.070 2 1 . 0 0 4 .27 5.45 6

4 2 0 1.488 0. 949 C 12.78 7.79 - 6

5 2 2 1.552 1.080 FM 1 2 . 1 0 8 . 1 1 2 - 6

VALlOl 31 2.855 1.549 0.997 2 2 . 0 2 7.07 - 2 .59 8

2 30 2.728 1.689 1.576 21.19 10.81 12.73 6

3 31 3.400 2.992 C 27.44 27.48 - 4
4 28 6.871 6.172 5.207 48.11 49.10 48.34 4

V A L lll 42 4.400 4.164 4.027 32.41 34.09 36.69 4
2 37 8.646 4.519 3.258 59.19 39.19 31.08 8

3 36 6.456 2.592 1.404 48.28 19.43 1.35 8

4 ■ 37 6.355 2.325 1.727 47.80 14.59 7.60 8

VAL1 2 2 41 6.114 5.440 4.990 46.31 45.52 45.98 6

3 37 C 3.878 2.591 - 33.53 22.60 8

4 36 13.741 7.848 C 75.47 59.31 - 6

5 45 7.384 6.770 2.810 54.35 54.44 18. 8 6 8

VAL141 30 2.939 2.414 2.154 23.43 21.52 2 2 . 1 0 6

2 27 1.767 1.296 1.071 10.99 6.62 5.47 8

3 30 C 2.966 2.359 - 27.70 24.83 8

4 29 3.153 2.473 2.042 25.93 22.89 21.34 8

VAL161 2 1 8.423 3.040 C 48. 80 31.00 - 6

2 2 2 2.849 1.332 FM 25.45 12.73 - 6

3 2 1 6.800 6.446 FM 43. 90 46.78 - 4
4 2 1 2.818 2.225 FM 25.41 24.44 - 6

VAL 172 37 6.553 3.635 2.167 48.93 31.13 15.99 8

3 39 9.046 6.753 3.755 61.67 54 . 1 6 35.38 8

4 38 3.780 3.741 2.512 28.12 31.73 20.59 8

cont'd.
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Table 4 .2  cont'd.

File N AIC AIC AIC. Chosen
o rd er

VAL181 2 2 1.700 0.658 FM 14.09 -2 .79 - 6

3 24 3.346 1.392 FM 28. 81 11.76 - 6

4 29 3.059 2.657 2.656 25.06 24.97 28. 96 6

VAL191 23 2.465 2.035 1.674 21.89 21.48 20. 99 8

VAL203 38 4.816 ' 4.325 FM 37.33 37.24 - 6

VAL221 49 4.709 4.105 1.287 32.26 29.53 -23.3 8

2 50 3.667 3.479 2.286 19.24 20.60 3.61 8

3 53 7.477 4.420 3.288 54.58 30.72 18.06 8

4 51 3.781 2.925 1.532 2 0 . 0 1 10.92 -18.00 8

VAL231 31 5.877 3.957 3.515 44.41 36.14 36.47 6

2 2 2 1.241 1.109 FM 7.17 8.70 - 4
3 25 2.715 1.924 FM 23.43 18.82 - 6

VAL251 29 3.064 1.937 C 25.10 15.80 - 6

2 28 1.920 1.649 1.303 12.41 12.41 9.56 8

3 30 2.346 1.483 1.382 16.67 16.67 8 .79 6

4 31 C C 2.983 - - 31.39 8

C denotes program m e c rash  

FM denotes fa lse  minimum.
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Table 4 .3  : S tatistical Summ ary of Comparative M easurem ents of

Cardiac Output Using 'Best* Model R esults as Obtained 

From  F -ratio  Test

F iles C orr. Coeff. Reg. Coeff, Intercept M eanP iff. S .D . Diff. P *
(comp-dye) (com p-dye)

L/M  L/M

All (51) 0.62 0,64 0.74 -0.15 1 . 1 1  NS

7% C0^(29) 0.81 0.84 1.08 0.10 0.94 NS

* P values obtainedfrom paired Student’s t - te s t  (two - tailed),

37/51 paired  observations within + 20% of line of identity.

Mean reproducibility  (dye) - 6 . 8 %

Mean reproducibility  (all comp) - 12.2%.
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\
variances, the a p rio r i assum ption of residuals being rep resen ta tive  of 

white noise m ust be checked. This is necessary  to ensure that the use of 

form ulae derived e a r lie r  in this chapter, to calculate the p a ram ete r estim ate 

variances a re  approxim ately valid. As noted in Section 4 .7 , to te s t the 

residuals  fo r w hiteness in p rac tice  one can only te s t if th e ir  (sample) auto- 

covariance is zero  for a num ber of lags. That is ,  check the num ber of points 

outside the 2C ( 95% confidence) lim its . A lternatively, the runs te s t (93) may 

be used. F or the 'best* model o rder as chosen by the F - ra tio , these re su lts  

a re  sum m arised in Table 4 .4 . Note that in 28/49 cases the residuals for the 

’best* model a re  in fact uncorrelated.according to both te s ts  a s  com pared to 

13/49 cases co rre la ted . Only in eight instances do the two se ts  conflict.

Thus, these re su lts  indicate that the assum ption of white residuals  is satisfied  

in the m ajority  of cases.

In fact, the au to -corre la tion  functions of the residuals  with increasing  

model o rd e r can them selves be used to give an indicate of co rrec t model o rd e r 

since the residuals  sequence will be correla ted  if the model o rd er is  chosen 

too sm all (145).

Consider the fits  for n = 4, 6 , 8  for the files VAL041^RO and VAL221. 

PRO. The F -ra tio  te s t indicated a four p a ram eter model to be appropriate 

to fit data file VAL041, w hilst an eight p a ram eter model was appropriate 

for file VAL221. The th ree  se ts  of residual autocorrelations for n = 4, 6  and 8  

a re  plotted in F igure 4 . 6  for file  VAL041 and Figure 4 .7  for file VAL221.

Note that fo r file VAL041, where a four p a ram eter model was sufficient, the 

A .C .F 's .  for n = 4, 6 , 8  a re  'experim entally white' ( i .e . no points outside 

the 95% confidence lim its). This is  to be com pared with the re su lts  for file 

VAL221 w here, since an eight p a ram ete r model is  appropria te , we have 

'non-experim entally white' au to -correla tion  functions for n = 4 and n = 6 .

Runs te s t re su lts  a re  / t  = 1. 96).
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Table 4 . 4 :  T ests  on Independence of Residuals for Chosen 

'Best* Model by F -Ratio T est.

F ile Chosen O rder No. of Runs No. of Points C orrelated
T est value Outside 2 G lim it

( 1 0  lags)

VAL041 4 0.639 0 N,N
2 4 -3.404 1 Y,Y
3 8 0 . 1 1 1 0 N,N
4 6 -0.097 0 N,N

VAL051 6 -1.966 2 Y,Y
2 6 N .D l - -
3 6 -1.461 0 N,N

VAL072* . 8  . -0.963 0 N,N
3 -
4 4 N.D.. 2 Y

VAL081 6 -0.729 0 N,N
4 6 N .D . 0 N
5 4 N.D. 1 Y

VAL 101 8 0.422 0 N,N
2 6 -0.908 0 N,N
3 4 -1.091 0 N,N
4 4 N .D . 0 N

V A L lll 4 -1.674 1 N,Y
2 8 -2.264 0 Y,N
3 8 0.247 0 N,N
4 8 -0.295 0 N,N

VAL 122 4 -2.740 0 Y,N
3 8 0.377 0 N,N
4 6 -4.137 2 Y,Y
5 8 -0.450 0 N,N

VAL141 4 -3.450 2 Y,Y
2 6 -1.172 0 N,N
3 6 -3.159 1 Y,Y
4 4 -2.644 1 Y,Y

VAL161 6 N.D. - -
2 6 N.D. 0 N
3 4 N.D. 1 Y
4 4 N.D. 1 Y

VAL172 8 0.672 0 N,N
3 8 1.344 0 N,N
4 8 -1.480 1 N,Y

cont’d.
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Table 4 .4 . cont'd.

F ile Chosen O rder No. of Runs 
T est value

No, of Points 
Outside 20‘L im it 

CIO Lags)

C orrelated

VAL 181 6 N.D. 0 N
3 6 1.507 0 . N
4 4 -0.372 2 N

VAL191 4 0.009 0 N

VAL203 4 -2.457 0 Y

VAL221 8 1.144 0 N
2 8 -1.277 1 N •
3 8 -0.925 • 0 N
4 8 - a  216 0 •N

VAL231 •6 ■ -2.554 1 Y
2 4 N.D. 0 N
3 6 -1.585 0 N

VAL251 6 -1.783 2 N
2 4 -2.489 1 Y
3 6 -2.360 1 Y
4 8 -0.684 0 N

Note N .D , denotes te s t not defined (to few data points)
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n = 4 n = 6 n = 8

VAL041 0.134^^ 0.134^®

V A L Q ll -5.374® -4. 837^ 1.114^®

which re in fo rces th is .

A final point to be made about white residuals is as  follows. F o r the 

eight p a ram ete r m odel, in only about 3 out of the 51 data files  w ere the 

res id u a ls  co rre la ted  using the above te s ts . This tends to confirm  the 

assum ption of the sufficiency of the f i r s t  o rd er ARMA model to rep re sen t 

the e r ro r s  in these validation experim ents.

We will now discuss the degree of identifiabUity of the estim ated 

m odels. A num ber of points become evident from  a study of these re su lts  :

(1) In only about half of the data files a re  the dye-dilution estim ates
#

within the 95% confidence lim its  of the ’b est' computed Q estim ates .

(2) Occasionally la rg e  variances occur with the estim ates of M and

in the six and eight p a ram ete r model case . e .g . VAL084,

VAL 163, VAL231. This would tend to suggest local unidentifiability 

along these p a ram ete r d irections for these file s . To investigate 

th is the sensitiv ity  coefficients fo r the four and six p a ram ete r 

m odels w ere plotted for one of these files (VAL084) and another 

file fo r which a six p a ram ete r model was appropriate  (VAL141), 

but in which local unidentifiability was not suspected. These 

a re  illu stra ted  in F igures 4 . 8  to 4 .11 . It is  obvious from  

F igure 4 .9  that the sensitivity  coefficients for M and ^ T q  

file VAL084 in the six p a ram ete r case  appear very  n ear to being 

linearly  dependent. As mentioned in Section 4 .6  th is  is  a condition 

for unidentifiability. To check th is fu rther the p a ram e te r co rre la tion  

m atrix  R (see Section 4 .6 ) was calculated and is shown below :
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FILE V A L 0 8 4 .PRO-SENSITIVITY FNS C N - 4 ^ .

§
oa

- a . 4Û02
B R E A T H  N O .  . 

S E N S I T I V I T Y  T O  C A R D I A C  O U T P U T .

0  . 2 3

- 0 . Q 8 3 0
B R E A T H  NO0 1 Q

S E N S I T I V I T Y  T O  L.UNQ V O L U M E  .

OQ

B R E A T H  N O . t 00
S E N S I T I V I T Y  T O  M E T A B O L I C  P R O P N

0 . 06S S

o

- 0 . 2 0 @@
B R E A T H  N O .0 I O

S E N S I T I V I T Y  T O  T I S S U E  V O L U M E

F I G U R E  4  8
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FILE VAL0S4 . PRO-.SENSITIVITY FNS CN«G)

§

0  . 3 3 7 S
] 9B R E A T H  N O .0

S E N S I T I V I T Y  T O  C A R D I A C  O U T P U T ■

S E N S I T I V I T Y  T O  L U N G  V O L U M E .

S E N S I T I V I T Y  T O  M E T A B O L I C  P R O P N .

S E N S I T I V I T Y  T O  T I S S U E  V O L U M E

S E N S I T I V I T Y  T O  I N I T I A L  L U N G  P C O g .

o
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I QB R E A T H  N O .0

B R E A T H  N O .0 ] Q

0 I 9B R E A T H  NO

0 . 5 3 G 5

CQ

0 B R E A T H  N O . 1 Q

0 .7 0 1 3

I

0 B R E A T H  N O . 1 9
S E N S I T I V I T Y  T O  I N I T I A L  T I S S U E  P C 0 2

F I GURE L 9
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K I L E  V A L  I 4 1  . P R O - S E N S I T I V I T Y  F N S  .

g

&

B R E A T H  N O . 
S E N S I T I V I T Y  T O  C A R D X A C  O U T P U T .

Q B R E A T H  N O .
S E N S I T I V I T Y  T O  U U N B  V O L U M E .

2 8 . 0 3  1 7

0 0

o

O B R E A T H  N O . 2 0

S E N S I T I V I T Y  T O  M E T A B O L I C  P R O P N

o

0  . 3 0 8 8
0 BREATH N O . 28

S E N S I T I V I T Y  T O  T I S S U E  V O L U M E .

F I G U R E  4 1 0
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F X U E  V A L  1 4 1  . P R O - S E N S X T I V I T Y  F N S  C N - G D

- Q . 1 8 0  1
2 90 B R E A T H  N O .

S Ë N 3 I T I V X T V  T O  C A R D I A C  O U T P U T .
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0 B R E A T H  N O .
S E N S I T I V I T Y  T O  T I S S U E  V O L U M E .
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2 9B R E A T H  NO0
S E N S I T I V I T Y  T O  I N I T I A L  L U N G  P C 0 2 .
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I

20B R E A T H  N O .0
S E N S I T I V I T Y  T O  I N I T I A L  T I S S U E  P C 0 2

F I G U R E  4 1 1
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Q

^A

1

0.371 1

0

M 0.584 0.840 1

^ T c
P

A(0)

0.581 0.841 0.999 1

0.090 -0.552 ”0.190 ”0.191 1

^Tc<0 ) -0.952 

Q

”0.423

^A

”0.712

M

”0.710 -0.199

^A(O) Tc(0 )

Note the extrem ely la rg e  positive correla tion  between M and 

(element 4 ,3  : 0.999 ) which indicates unidentifiability. This is  to 

be com pared with the corresponding corre la tion  m atrix  for file 

VAL 141 fo r which the corre la tion  between M and V „  , although 

la rg e  (0. 878), does not p resen t unidentifiability problem s

M

V
J c

’a (O)

’TrfO)

O
”0.241

0.574 0.440

0.267 0. 528 0.878

0.149 ”0.052 0.306 0.354

-0.781 ”0.154 “0.904 ”0.715

Q ^A M ^A(O) ^TcKO)

The unidentifiability of VAL084 is  also reflected  in  the determ inant

of the resu ltan t p a ram ete r covariance m atrix  as com pared to VAL 141

: for file VAL084 det ^  cov ( 3 is 1 .6  x 10^ while fo r file VAL 141 

”10it is  2 .4  X 10 . It should be recalled  these determ inants a re

proportional to the volume of the respective confidence ellipsoids 

for each fit (Section 4 .3 , equation 4.26).
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F u rth er scrutiny of the p a ram ete r corre la tion  m a trices  for 

the six p a ram ete r fits  for a ll the other data files indicated that 

the M /V ^ corre la tion  was la rg e  ( > 0 . 9 ) in alm ost every case.

(3) Examination of the p a ram ete r correlation  m atrices and the

sensitiv ity  curves for the six param eter fits  indicates that a
0

la rg e  negative co rre la tion  between Q and ^Iso

prevalent (e .g . see  the corre la tion  m atrices  above). This factor 

coupled with the extrem ely  la rg e  sensitivity  of throughout

the duration of the experim ent (observable from  the sensitivity  

curves), em phasises the inadvisability of assum ing a steady-sta te  

(four param ete r) model in general fo r this data.

The identifiability observations above tend to suggest that the model 

is over -pa ram eterised . However, th is contradicts the F -ratio  te s ts  and also

the proceeding stru c tu ra l identifiability analysis does not give any reason  to
# •

suspect global unidentifiability between M and o r  Q and This

leads one, therefo re  to the inevitable conclusion that the unidentifiability is 

due to the form  of experim ent being poor ra th e r than the nature of the model 

itse lf. This hypothesis is  fu rth er confirm ed by exam ination of Table 4 .5 .

In this the actual sample variances and coefficients of varia tion  a re  com pared 

with those predicted  on the b asis  of achieved fit, using the form ulae derived 

e a r l i e r . The re su lts  a re  computed for the 'b es t' model as given by the F -ratio  

te s t. (Note also that the sam ple variances for the in itia l condition p aram ete rs  

^A(O) ^Tc(0) considered in th is table since these a re  not expected

to be tim e-invarian t.)

In about 10/14 data se ts  it is  apparent that the observed (sample) 

variances a re  considerably g re a te r  than those predicted  on the b asis  of the
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Table 4 .5  : VALIDATION DATA

A verage Predicted V ariances ('Best’ Modal via F -T est) 
vs. Observed Sample V ariances.

File
2 ! a

M

VAL041 predicted 0 .3 0.13 0.065 4.13
actual 0.19 0.07 0.080 5.73
GV(%) 2 .9 (8 . 2 ) 3 .7 2.57 4.52

VAL05 predicted 0.36 0.28 large la rg e
actual 0 . 0 0.25 large large
GV<%) 1.5(13.9) 8.4 > 1 0 0 > 1 0 0

VAL07 pred icted 0.45 0 . 1 2 0.013 0.67
actual 0.30 0 . 1 1 0.029 1.06
GV(%) 4 .4(0 .08) 7 .7 1 2 . 1 2 2 . 1

VAL08 pred ic ted 0.37 0.40 large large
actual 0.67 1.50 large large
GV(%) 10.9(4.6) 79.5 > 1 0 0 > 1 0 0

VALIO pred icted 0.44 0.18 0.06 2 . 8

actual 0. 83 0.23 0 . 1 2 5 .8
GV(%) 10.5(6.6) 11.5 30.7 43.1

VALU pred ic ted 0.67 0 . 2 1 0.05 1 . 6

actual 1.06 0.71 0.04 1 .9
GV(7o) 16.5(7.9) 37.5 16.7 33.1

VAL 12 predicted 0.42 0.18 0.04 1 . 0 0

actual 1 . 2 1 0.25 0.06 1.96
GV(%) 29,3(5 .1) 17.9 29.3 51.8

VAL14 pred ic ted 0.28 0.16 . 0 . 0 2 0.75
actual 0.76 0.27 0.07 2 .39
g v (7o) 12.0(6.5) 14.6 2 1 . 6 33.4

VAL16 pred  icted 0.44 0.28 la rg e la rg e
actua l 1 . 2 2 1.08 la rg e la rge
GV(%) 17 .8 (3 .6 ) 35.7 > 1 0 0 > 1 0 0

VAL17 predicted 0.85 0.28 0 . 1 0 4 .6
actual 0.94 0.76 0.06 1.43
GV(7o) 15.3(6.0) 29.1 16.9 19.7

VAL18 predicted 0.25 0 . 1 2 0.009 0.37
actua l 0.29 0.03 0.0125 1.17
GV(%) 6.3(10.9) 1.7 5 .7 30.6

cont'd.
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Table 4 .5  : Cont'd,

C Y ( % ) (6 . 8 % dye).(2 )

F ile a Z a
M

VAL22 predicted 0.49 0.14 0.04 2.13
actual 1.03 0.15 0.05 2 . 2 2

CV(%) 16.5(4.1) 7 .7 19.2 33.9

VAL2 3 predicted 0.39 0 . 2 1 la rge la rge
actual 0 . 8 6 0. 83 la rg e la rge
CV(%) 11.9(9.1) 30.6 > 1 0 0 > 1 0 0

VAL25 predicted 0.41 0 . 2 0 ■ 0 . 0 2 0.89
actual 0.90 0.28 0.03 1.83
CV(%) 14.9(8.1) 20 .9 12.5 31.3

Average
* 1observed 1 2 . 2 % 21.9% 19.1% 34.3% *1

Notes : (1) Unidentifiable files a re  not included in this average.

(2) F igure in b rackets  in this colum denotes values obtained 
from  the dye-dilution experim ents.
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estim ation re su lts  so that the C ram er-R ao lower variance bound is not 

achieved. However, the estim ato rs  used a re  asym  .totically efficient. 

Therefore , one is  forced to conclude that the form  of te s t procedure used 

is  not good enough to enable th is asym   ̂ tote to be reached.

4 .9  Conclusions

On the b asis  of the above re su lts  it would seem  that the determ inistic  

and noise model s tru c tu res  used rep resen t reasonably well the dynamics of 

homogeneous CO^ gas tran sp o rt. However, it is  equally apparent that 

fu rth er investigation into the inform ational aspect of the problem  is  necessary .

What is  rea lly  required  is  some form  of te s t p rocedure  which reduces 

the co rre la tion  between Q and the o ther p a ram ete rs  (especially the initial 

condition ) and produces estim ates with sm aller variance . Techniques

fo r designing such an experim ent will be d iscussed in Chapter 7.
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CHAPTER 5

GENERALISED DESCENT METHODS FOR

FUNCTION MINIMISATION
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5 ,1_______ Introduction

As we have seen in Chapter 4, an im portant sub-problem  of 

System Identification is that of Param eter Estim ation. C entral to the solution 

of th is la tte r  problem  is the technique of Function M inim isation which in this 

context is concerned with finding the set of p a ram ete r values which m inim ise 

some distance m easure  between model and data.

Function M inim isation methods for estim ating the p a ram ete rs  of the 

homogeneous CO^ gas tran sp o rt model have already been described by Pearson 

(234). However, the work at this stage was concerned with a th ree  p a ram ete r 

iriodel ( Q , M ) and when the number of p a ram ete rs  was subsequently

increased  to four, five and then six p a ram ete rs , the techniques recom m ended 

in (234) w ere found to be lacking. That is , they frequently failed to locate a 

minimum and som etim es crashed  altogether. The reason  for failure of these 

im plem entations was found to be alm ost entirely  attributable to rounding e r ro r .

Concurrently with the author becoming involved in this p ro jec t, new, 

num erically  stab le, Function M inim isation algorithm s w ere beginning to appear 

in the lite ra tu re , following the publication of the work on th is topic by Gill et al 

(123, 125). These techniques w ere radically  different from  anything considered 

by Pearson (234) and an investigation of these m ore recen t and efficient techniques 

was felt to be appropriate in o rder to tackle the m ore complex six pa ram ete r CO^ 

gas tran sp o rt m odel. Consequently, software was w ritten  by the author to 

implement these new techniques on the PD P ll/45  com puter and te s t these to 

a sse ss  th e ir suitability for our p a rticu la r problem . During th is phase of the 

investigation it becam e apparent that this softw are, if configured in a sufficiently 

general m anner, would be useful, not only in the context of the work described 

in this th esis , but in other p ro jects  both at the D epartm ent of E lectronics and 

E lec trica l Engineering and at the Centre for R espiratory  Investigation.
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From  these ideas the concept of the Function M inim isation package 

'MINPAK' was born . A b rie f overview of this will follow in Section 8  of this 

chapter. (The package is described m ore extensively in Appendix B.) F ir s t ,  

a review  of the theory of unconstrained Function M inim isation will be given 

in o rd e r to describe  the rationale behind the new num erically  stable methods 

and in p a rticu la r, those u tilised in the 'MINPAK’ package.

5 .2 ______Function M inim isation - Introductory Concepts

The f ir s t system atic  techniques for the solution of Function 

M inim isation problem s go back as fa r as calculus. However, the arithm etic  

complexity of a ll but the m ost sim ple problem s has been such that only with 

the coming of the e ra  of the digital computer has th e ir  solution become feasible. 

M inim isation problem s can be split into two types :

(i) unconstrained problem s in which the p a ram ete rs  a re  free  to 

assum e any values in p a ram ete r space,

(ii) constrained problem s in which the p a ram ete rs  m ust lie  in 

an adm issable region in param eter space, e .g . such that 

certa in  functional relationships between the p a ram ete rs  

rem ain  satisfied .

The problem  encountered in the work detailed in this thesis fa lls (or can be 

made to fall) into the fo rm er category.

The unconstrained problem  can be stated m athem atically as 

Find 0 : V ( ^ )  = V O )  5 .1

A
That is , find the local minimum j3 of a non-linear sca la r  function V(j3 ) of 

an 'n ' vector j8  , F rom  the calculus, sufficient conditions for a solution of
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equation 5,1 a re  :

(i) 1  I g ( jS ) 1  1  = 0 5.2

(ii) P H ( I  ) |S’̂  0  for all J3 5 .3

where g ( j3 ) is  the n x 1 Jacobian gradient vector of 1st p a rtia l derivatives

of V( ) with respec t to j8  and H( jS ) is the sym m etric n x n H essian m atrix

of 2nd partia l derivatives of V( ^ ) with respec t to jS . Equation 5.2 im plies that

the Euclidean norm  of the Jacobian gradient vector a t the minimum be zero  and

equation 5 .3  that the H essian at the minimum be positive definite.

F o r m ost Function M inim isation problem s of in te re s t (e .g . model

fitting), a closed form  solution to the equation 5 .1 is unavailable. Computer

algorithm s to solve the general unconstrained problem  a re  thus ite ra tiv e . An 

(0) ^initial estim ate jS of jS is assum ed and this is  successively  refined stage 

by stage in some m anner, which allows the sequence of estim ates  generated 

? j3 i  to converge to jS , The minimum is deemed to have been located 

when some p re-specified  c rite rio n  of convergence is  sa tisfied , e .g .

^  V ( ) - V ( ^ ^  ) ]  o r 11 - j3^ is  sm all. Obviously

the main factor characterising  an algorithm  is how the sequence of estim ates 

is generated .

N early all the recent num erical algorithm s to solve equation 5 . 1  

have been what is term ed descent methods : so called because they generate 

successive estim ates which satisfy  the inequality.

V ( k  + 1 ) ) <  V ( ) 5 .4

Methods which satisfy  equation 5 .4  a re  also said to be stable . Inequality

(k)5 .4  can be satisfied  by modifying j3 by the addition of a sca la r multiple 

(k)of the vector p (usually term ed a search direction in p a ram ete r space) 

which m eets  the condition
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g(k)T p(k) 0  5 . 5

(k)that i s , fo r p satisfying inequality 5 ,5  and given a sufficiently sm all 

sca la r steplength  ̂ , it can be shown ( 300, Chapter 2 ) that

V ( | 8 ®  + ) 5 .6

Such a d irection of search  satisfying inequality 5 .5  is said to be downhill,

L inear search  algorithm s have been developed to choose a 

suitable steplength a  ■ . These will be discussed in the next section.

5 .3  L inear Search Techniques

Ck̂C learly  there  a re  many a  satisfying inequality 5 .5 . The m ost

(k) (k)obvious is  to choose or such that it m inim ises V ( j3 ) along direction p \  i .e .

: V ” r . t .  «  p<k) ) 5 .7

This was the method used in the e a r lie r  descent methods published in the 

lite ra tu re  ( 77, 114, 116). As is  the case for equation 5 .1 , no closed form  

solution to equation 5 .7  ex ists . However, a necessa ry  condition is :

g ( p(^^ ) p^^^ = 0  '  5 .8

Although choosing such that equation 5 .7  is satisfied  a t each stage 

theoretically , guarantees convergence of the descent algorithm , investigators 

found th is to be computationally expensive. M ore recen t num erical evidence 

has shown th is procedure to be neither necessary  nor desirab le  (92, 125).

All that is  requ ired  is to choose such that V ( ) is  sufficiently reduced

along p (^ )  a t each stage. Gill e t al (125) recom m end choosing such that
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^  is a sca la r p a ram ete r in the range [  0 , 1 ^  fixed in advance determ ining

the accuracy of the linear search . A sm all value of ^  will imply a high

accuracy lin ea r search  w hilst a la rg e r  value will imply a low accuracy linear 

search , Dixon (92) show that it is  necessary  to impose another condition on 

a  to render the resu ltan t algorithm  theoretically  convergent, namely that 

it should satisfy  : -

y ( k ) „ y ( k  + l)  >  -c /k )  ^g^^" p^^^ 5 . 1 0

(M is  a sm all positive sca la r ( 1 0  typically).

(k) (k)V arious techniques for successively  refining or along p (such that

equations 5 .7  o r 5 .9  and 5.10 a re  satisfied) have been suggested. The procedure

m ost generally  adopted is  to approxim ate V ( a  p ^ ^  ) ( called F(u) below)

by a polynomial of low o rd e r , usually degree two o r  th ree . These la tte r

approxim ations a re  known respectively  as quadratic and cubic interpolation.
y\

In quadratic interpolation, the stationary point a  of the second 

o rd e r polynomial passing through th ree  points is  given by : -

a = i  ( «2^ ■ “3̂  ̂ Pi<“ ) + ( %  - ) FgW + ( “ /  - °̂ 2 ) ^3 W

5.11
(u^ - i a )  + ( ) F^ (ô ) + ( - « 2  ) F g («?)

where a re  the steps along p^ at which the function is evaluated

and Fj, (u) , F 2 (^) and F^ { a )  a re  the respective function values.

hi cubic interpolation, two function values and two derivatives with 

resp ec t to a  a re  necessary  to define the stationary point. In th is case , a  is 

given ( assum ing <  a ^ )  h y
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( g2(«) + 7 + *  ̂ )

where 7  = J {  ' n ^  -  {  a  )  g^ ( a  )) 5 .13

3 ( F (a) - F  (œ)')
and '>) =  ( r ' -  a '  ) + S i ( “  )+  g2  <“ ) 5.14

This interpolating form ula was f ir s t  derived by Davidon (77). P ractically  

it is  usual to use the above interpolating form ulae ite ra tive ly . The function

A
is evaluated a t the new point a  , and in the next ite ra tion  (assum ing the 

convergence c r ite r ia  a re  not satisfied) the points corresponding to the lowest 

function values a re  used. It may tran sp ire  that the new se t of points no longer

bracket the minim um , ( i .e . extrapolation is required). H ere neither form ula

5.11 o r  form ulae 5 .12 , 5 .13 , 5.14 can be re lied  upon. In th is situation a 

lin ea r search  algorithm , to be re liab le , must be safeguarded to ensure an
A
a  is not predicted  fa r outside the region of valid approxim ation for the in te r ­

polating form ulae.

In p rac tice , the assum ption that the function F(û) is  unimodal is  also 

generally  invalid. (Non-unimodality is  not just lim ited  to pathological functions 

since analytically unimodal functions may be non-unimodal when represen ted  

computationally). It is  undesirable for algorithm s to fail in th is way and thus 

p rac tica l lin ea r search  algorithm s m ust have some provision to deal with such 

a possib ility . P rac tical considerations also m ean that an em pirical choice has 

to be made of the points at which the initial function (and derivative ) values 

necessary  to 'start-up* the algorithm  should be evaluated.

From  the above discussion it is evident that it is  necessary  to buüd 

various heuristic  devices around the interpolating form ulae 5 . 1 1  and 5 .12, 

5 .13 , 5.14 to c rea te  a re liab le , p rac tica l algorithm . However, it is
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inappropriate to d iscuss these in th is introductory trea tm en t. The p a rticu la r 

lin ea r search  algorithm  used in the MINPAK package is  described  in 

Appendix B .

5 .4  Introduction to Descent Methods

N early all the descent methods published in the lite ra tu re  a re  

based on the Taylor se r ie s  expansion of V ( j3 ) around the cu rren t point.

V (& ) = V (i3 + ^ j 3 )  '

= V ( g  ) +  g  ( g   ̂^  H ( |3 )

+ Higher o rd e r te rm s  in 3rd, 4th , e tc . derivatives 5.15

The te rm s  to the right of V(j3) on the righ t hand side of equation 5.15 may 

be looked on as a sca la r correction  to the function value a t j8  say, to yield
A

the function value a t the minimum jS . Descent methods which truncate this
rp

se rie s  a t the f ir s t  te rm  ( i .e .  g AjS ) a re  generally  known as  F ir s t  O rder

Methods. Those truncating the se r ie s  a t the second te rm  ( i .e .  ^ A  H(j3)A^ )

a re  known as Second O rder Methods . Methods utilising derivatives of o rd er

higher than two have not been used in prac tica l Function M inim isation techniques.

The basic  f ir s t  o rd er method is called the method of steepest descent.

(k)It calculates the search  direction p  ̂  ̂ using the negative of the gradient. 

p « .  -

Equation 5.16 rep re sen ts  a locally  optimal s tra tegy  re la tive  to the cu rren t 

approxim ation since this is  the direction in which V ( /3 ) d ecreases  m ost 

rapidly . However, in a global context, investigators have found th is method to
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be very inefficient in the region of the minimum.

Perform ance of the steepest descent algorithm  can be improved 

by suitably transform ing the pa ram ete rs  so that equal changes in the p a ram eters  

effect equal changes in V(/3). Such Param eter Scaling is usually re s tr ic ted  to 

lin ea r transform ations of the p a ram ete rs  of the form

^SC =  Dfi +  V 5.17

where D is a constant diagonal m atrix  and v a vector constant. The p rec ise  

nature of the sealing used in the MINPAK package will be discussed la te r .

The basic  second o rd e r method is known as the Newton-Ralphson or  

Newton m ethod. In this method successive search  d irections a re  generated 

using the following form ula.

5 .18

For a quadratic function the second o rd e r increm ent is exact since H does not 

depend on jS . T herefore , theoretically , the Newton method will m inim ise a 

quadratic function in one step . The ability of a m inim isation method to yield 

the minimum of an a rb itra ry  quadratic function in a finite num ber of steps * n ' 

is  known variously in the lite ra tu re  as quadratic convergence, quadratic 

term ination o r following F le tcher (1 1 1 ), Property Qn. Thus, according to 

F le tch e r’s term inology, the Newton method possesses  p roperty  Q l. For non­

quadratic functions the second o rder increm ent will not be exact, although as 

the minimum is neared and te rm s involving th ird  and higher o rd er derivatives 

become sm all, V(j3) for well-behaved functions will becom e m ore amenable to 

approximation by a 'quadratic model*.

There a re  two m ain disadvantages which have been levelled at the 

Newton method.
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(1) It req u ires  the H essian m atrix  to be known and inverted at

each iteration  - this can be a tim e consuming and frequently 

num erically  unstable p ro cess .

(ii) In o rd er for the Newton algorithm  to be stable (in the sense

defined by inequality 5 .4) it is necessary  that the H essian

m atrix  H be positive definite a t each iteration  - there  is no

guarantee this will be true  fo r a rb itra ry  general functions 

when H is evaluated a t a point other than the minimum .

Due to the above deficiencies the Newton method has nowadays been largely  

superceded by a method originally  due to Davidon (76) and since generalised  

into a c lass  of methods by Broyden (50), These methods a re  known as V ariable 

M etric o r Quasi-Newton methods and have been proved considerably superio r 

to all o ther general methods fo r unconstrained Function M inim isation. Since 

it is  a p a rticu la r implem entation of these methods which has been used in the 

MINPAK package, these methods will now be discussed in some detail.

5.5______ Quasi “Newton Methods

The requirem ent of the Newton algorithm  that the H essian be evaluated 

explicitly a t each itera tion  is obviously a hinderance in p rac tica l computational 

p roblem s. It would be fa r  m ore useful if an algorithm  could be found which, 

w hilst s till effectively utilising the p roperties  of the second o rd e r increm ent, 

did not requ ire  explicit second derivative inform ation. In addition, it is  also 

essential that such an algorithm  be stable.

The f ir s t  algorithm  fulfilling these requirem ents was that due to 

Davidon (76), but it awaited the definitive presentation  of F le tcher and Powell 

(114) before receiving w idespread recognition. F or th is reason  the algorithm
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is  generally  known as the Davidon - F letcher -Powell (DFP) method. This method, 

instead of explicitly evaluating and inverting the H essian a t each iteration  as in 

the Newton m ethod, adopts a stra tegy  of generating an approxim ation to the 

inverse H essian and successively  updating it over a num ber of iterations 

u tilising only gradient inform ation.

" 1The algorithm  is such that the approximation m atrix  S tends to H

at the minimum and p o ssesses  property  Qn. In addition F le tcher and Powell (114)

(0)show that, provided the initial approximation m atrix  S is  chosen positive

definite, theoretically  the method is unconditionally stable under exact linear

search  ( i .e . steplength chosen according to équation 5 ,7 ).

The ite ra tive  schem e for choosing search  vectors is

(k) (k) (k)

-pQN = ■ ® « 5-19

(k)S being the approximation to the inverse H essian at the kth iteration  

(compare with equation 5.18). Obviously the method is highly dependent on 

the algorithm  used to update S a t each itera tion . In the DFP algorithm  S 

is  updated at each stage by the addition of a correction  m atrix  of rank two.

5 .20

(k)w here G is  a specified m atrix  of rank two. It tra n sp ire s  that the DFP 

modification is not unique, as noticed by Broyden (50). In fac t, the DFP update

is  only one m em ber of a c lass of sym m etric updating form ulae which ensure

{k) *"X (k)that some p ro p ertie s  of S approxim ate those of H at each iteration

and exhibit p roperty  Qn with exact linear search . This c lass  of methods is

known as V ariable M etric o r m ore frequently Quasi-Newton methods (83). The

key unifying factor between these methods is that they satisfy  the following equation.
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_ jg( )̂ 5 .21

This form ula is re fe rre d  to as e ither the H ereditary  Property  (1) or the

Quasi-Newton Condition (213). For sm all 11 this form ula

can be in terpreted  as the backward finite difference form ula for H

along p^^^ , thus ensuring that a t le a s t along th is d irection, has

- 1  ( k + 1  )some s im ila rity  to H . This m akes the 'Quasi-Newton’ in terpreta tion

self evident.

F or the DFP method the correction  m atrix  C is computed as

follows

(k) , (k) (k)T g(k) (k) (k)T (k)T
C =     + ^ 2  5.22

DFP ^(k)T y(k) y(k)T g(k) y(k)

where b^^^ = - 13^^^ 5 .23

and ’ y(^^ = 5.24

The f ir s t  te rm  on the right-hand-side of equation 5.22 is that which ensures

“ 1that the generated sequence of approxim ation m atrices tends to H and the 

second te rm  is that which ensures stability .

The theory of the quadratic term ination p ro p ertie s  ( i .e . p roperty  

Qn) of the DFP update depends critica lly  on an exact lin ea r search  (114). As 

has been discussed in Section 5 .3 , exact linear search  is computationally 

expensive. Thus in the la te  1960's investigators (e .g . Broyden (51) ) began

to look around for an updating form ula which did not depend quite so critica lly  

on an exact linear search . This resu lted  in the following.
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(k) ^ - sO") ) ( bC") -  yO") 7

' ' ' ' '  " y(k )T  ( ^(k) .  g (k ) y(k) )

This update is known as the Rank-One update since the co rrection  to the 

approxim ating m atrix  is of single rank. Davidon (77) and M urtagh and 

Sargent (215) have constructed algorithm s based on equation 5 .25 . However, 

an unfortunate aspect of th is update is that stability  cannot be guaranteed.

In 1970, s till seeking an algorithm  le ss  sensitive to the accuracy 

of lin ea r search  than the DFP update, F letcher (112) proposed the following 

updating form ula.

^(k) _ - b » )  y W T s (k )  g(k) y(k),,(k)T
BFC3S b (k )T y (k )  y(k)T^^(k)

( k ) T g ( k )  (k) h ( k ) c ( k ) T
+  ( 1 +  ^  L  ^ ) _ _  5 .2 6

y(k)T ^(k) y(k)T ^(k)

The sam e updating form ula was also discovered a t the sam e tim e, independently,

by Broyden (52, 53), Goldfarb (130) and Sharnio (258). It is  thus known as

the Broyden "F letcher -Goldfarb -Shanno (BFGS) o r Complementary DFP update.

""XThe la tte r  te rm  stem s from  the property  of th is update that if H say is 

updated using the BFGS form ula, th is corresponds to using the DFP formula 

to update H itse lf . (This re su lt can be proved by applying the M atrix Inversion 

Lamma (300, Appendix F ) to equation 5.26 . ) Hence the DFP and BFGS updates 

may be considered duals in th is  sense.

Although the DFP and BFGS updates can be shown to be theoretically  

stable provided the in itial approxim ation m atrix  is  chosen positive definite, 

th is , as was found by investigators (e .g . (51) ), was not always borne out in 

p rac tice  due to rounding e r ro r .  This was in fact the problem  with e a r lie r
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applications of Qua si-Newton methods to the CO^ gas exchange model 

estim ation, as d iscussed in Section 5» 1.

V arious ’ad hoc' s tra teg ies  have been suggested to overcom e 

this problem ( 204a). However, these have been such that much good 

inform ation built up in the approxim ating m atrix  is lo s t along with the bad 

when the 'ad  hoc' adjustm ent to S is made.

The f ir s t  rea lly  efficient method suggested to overcom e the adverse 

affects of rounding e r ro r  was that of Gill et al ( 123, 125 ), as was re fe rre d  to 

in Section 1. This w ill, th e re fo re , be described in the succeeding section.

5 .6______ F actorised  Qua si-Newton Methods

Methods based on the approach outlined by Gill et al (123, 125) have 

come to be called F actorised  Qua si-Newton m ethods. In con trast to trad itional 

Quasi-Newton im plem entations these methods update a positive definite 

approxim ation to the H essian itse lf ra th e r than an approxim ation to the inverse

H essian. The search  direction is  then calculated by solving the set of linear

equations defined by

P q N = ■ 5-27

fk)B being the approxim ation to the H essian at the kth ite ra tion . Gill and

(k)M urray (123) show that B can be recu rred  in fac to rised  fo rm , i. e.

B<k) ,  ^(k) ^(k) ^ (k )T  5 .28

(k) (k)w here L , a unit lower triangu lar m atrix , and D , a diagonal m atrix

(k)a re  the Cholesky F ac to rs  (297). Given B in th is form , equation 5.27 can be 

quickly and efficiently solved for p^ '  using successive forw ard and backward
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substitution (297).

(k)The reason  for recu rrin g  B in factorised form  is  that one can

make use of the highly stable num erical methods based on triangu lar system s

to update the m atrix  fac to rs L and D • These methods can be made to

guarantee positive definiteness of the updated m atrix   ̂  ̂ , irrespective

of incurred  rounding e r ro r .  In addition, in the event of a n ear singular B' '  ,

th is positive definiteness is  maintained in a ’m inim al' m anner, i .e .  so that

(k)the le as t amount of inform ation built up in B from  previous ite ra tions is

lo s t.

By applying the M atrix Inversion Lemma (300, Appendix F ) to a
—j[

rank two o r rank one correction  for H (e .g . equations 5 .22 , 5.25 o r  5.26) 

it  can be shown (123) that the corresponding correction  fo r H can be w ritten  

in the form

g (k + 1) _ g(k) g(k)2_(k)T_^ ^(k) ^^(k)T 5 . 2 9

where the sca la rs  ît , ir and the vectors and w a re  chosen to

satisfy  the Quasi-Newton update being used. P articu la r values for the DFP,

RKl and BFGS updates a re  given in Appendix F.

Having expressed  the Quasi-Newton updating form ula in the form

(k)given by equation 5 .29 , the next requirem ent is  to be able to re c u r B in 

factorised  form  without explicitly carry ing  out a Cholesky Factorisation  at 

each stage. Gill and M urray, in th e ir original paper (123) give two methods 

of doing th is based on the addition of a sym m etric m atrix  of rank one. (It is 

thus n ecessary  to c a rry  out th e ir recommended procedures tw ice for Rank-Two 

Quasi-Newton updates). One of these m ethods, re fe rre d  to in (123) as Method 

A , will be outlined below since th is is  the one which has been implemented 

by the author in the MINPAK package.
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C onsider the update

/ T
B = B + d z z  5 .30

Twhere B is  available in facto rised  form  as L D L and it is  required  to
/

obtain the updated m atrix  B in the sam e form . A fter som e m anipulation, 

equation 5 .30  can be w ritten  as

B^= L D ^ A A D ^ L * ^  5.31

The idea underlying th is method is  now to successively  reduce the m atrix  A

to low er triangu lar form  by orthogonal triangular!sation  (297). This involves

successively post-m ultiplying A by a se ries  of elem entary  H erm etian m atrices

W such that we get

L = A W, W„  W , 5.321 2  n - 1

A
i n ’ n - 1 '  m ultiplications, where L is  low er trian g u la r. Thus we now have

/ 1 A A rr, 1  rp
B = L L L 5.33

it can be shown that

D ^ L  = L D ^ 5.34
f X  i  

where D = 5.35

y  is  also a diagonal m atrix . Combining equations 5 .33 , 534 and 5,35 we then

get

B = L L D  L L 5 .36

Since the product of two low er triangu lar m atrices is  also low er triangular the

/
required  updated triangu lar m atrix  L is obtained in .this .manner.
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5 .7  Modifications of Quasi-Newton Methods to Accept F inite
D ifference Gradient M odifications

So fa r  it has been assum ed that the analytical g rad ients a re  

explicitly available in Quasi-Newton m ethods. However, finite difference 

gradient approxim ations may also be used in Quasi -Newton algorithm s 

provided care  is  exercised  in exactly how this is  done (since as  the minimum 

is  approached II g  \ \  tends to zero  ).

The two m ost common finite difference form ulae used a re  forw ard 

differences and cen tral differences. In forw ard differences the i^^ elem ent of

the gradient vector is  approxim ated : -

^ V ( P )  V O + h ^ e . V  V ( P )

à Pi h.

The analagous expression fo r central differences is  : - 

à V ( ] 3 )  V ( i S + h .  e p  - V (j 8  - h. e. )
-----------  ft) ------------------------------------------

5.37

à P i 2  h.
5 .38

where e. is  the unit vector along the i^^ co -ordinate d irection  and h^ is  the 

sca la r pertu rbation  along th is direction. The f ir s t  form ula req u ires  le ss  

function evaluations w hilst the second is  m ore accura te .

The biggest dilemma in using finite difference gradient approxim ations 

lie s  in the choice of an appropriate  sca la r perturbation  p a ram ete r h. .

The analyst is  faced with the competing requirem ents of high accuracy and low 

cancellation e r ro r .  If K is too la rge  the truncation e r ro r  in the difference 

approxim ation is la rg e  and hence the gradient is  inaccurate. A lternatively, if

hĵ  is  made too sm all, the cancellation e r ro r  becom es la rg e  and the e r ro r  in

(k) (k)updating S ( o r B  ) becom es unacceptable.
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E arly  attem pts to u tilise  finite difference derivatives in Q uasi-

Newton methods exacerbated the tendencies of these algorithm s a t the tim e

(k)tow ards instability . Stewart (267) sought to overcom e th is  by choosing h 

( a vector of perturbations along each p aram eter direction) a t each stage to 

balance truncation e r ro r  against rounding e r ro r .  The algorithm  however is 

com plicated. Gill and M urray (123) argue against Stewart* s technique and show that 

m aintaining a constant perturbation  in the finite difference approxim ations a t 

each stage is  a m ore favourable stra tegy . Provided the problem  has been 

suitably scaled , they recom m end an h /  in the range

2  " 2 / 3 t < ÿ .  h. «  2 " 5.39

where 't ' is  the num ber of b inary  digits in the m antissa of the machine used.

- t / 2In the MINPAK package an h. equal to 2 is used.

5. 8 ______ The MINPAK Package for Unconstrained Function M inim isation
- Main F ea tu res and Organisation

This section describes the PDP-11 Interactive Package for 

unconstrained Function M inim isation, MINPAK, w ritten  by the author.

This software was w ritten  in response to the needs identified in the introductory 

section of th is chapter. These needs, it was fe lt, would be b est served by the 

c reation  of a package ra th e r than a 'one-o ff program m e.

The algorithm s inherent in this package a re  based on the 

F acto rised  Quasi-Newton algorithm s due to Gill et al (123, 125). A t the tim e 

these algorithm s w ere requ ired  fo r use in the p ro jec t described in th is th esis , 

a suitable softw are im plem entation of these was not read ily  available.

MINPAK has been w ritten  in m odular form . It is  m ainly F o rtran  

based and has been implemented to run in e ither single o r double precision
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on a DEC PDF 1 1  under both the RT-11 and RSX-llM  operating system s.

Although the package u tilises  highly sophisticated a lgorithm s, it has been 

w ritten  in such a m anner as to make it easily  usable by a re la tive  laym an 

in the a rea  of Function M inim isation algorithm s. In fac t, the only assum ptions 

made of prospective u se rs  a re  that they should be able to code a F o rtran  

subroutine to evaluate th e ir chosen function to be m inim ised fo r any set of 

input p a ram ete r values ]3 and compile th is under the host PDP-11 operating 

system . O ther system  tasks such as linking the compiled routine to the re s t  

of the package a re  m ade invisible to the u se r by the package 'ite ra tiv e  link ' 

which u tilises  the ind irec t command file facility  available under the DEC RT-11 

V ersion 3 and RSX-11 M operating system .

The package provides the interactive fram ew ork within which the 

u se rs  routine can be run. The u ser is thus freed from  the task  of w riting 

routines to input s ta rtin g  p aram ete r values, e t c . , and also routines to output 

the p ro g ress  of the m inim isation. Output is  available in  short p rin t o r 

optionally full p rin t diagnostic form at. The package allows the u se r the choice 

of th ree  Quasi-Newton updating form ulae - BFGS, RKl o r DFP. This is 

specified by the u se r during the in teractive link. The package a lso  provides 

a facility  whereby data may be p reprocessed  p rio r  to input to the m inim isation 

algorithm . It does th is  by allowing the insertion of a u se r specific data p r e ­

processing  routine into the created  program m e during the in teractive link. If 

this facility  is not requ ired , a dummy subroutine is inserted  into the program m e. 

This featu re  is useful fo r setting up u se r specific random  access  disc data file 

assignm ents, e tc, for use by the u se rs  function evaluation routine.

As mentioned in Section 5 .4 , rela tive  scaling of the p a ram ete rs  is 

a very im portant p rac tica l consideration in Function M inim isation problem s.
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In MINPAK, a form  of scaling known as  range-scaling  is used which is a 

special case of equation 5 .17. The scaled p a ram ete rs  a re  defined by : -

13 - j3 .
^  =  2 ^  5 .40

^ - 1 3  .
m a x  mm

where is  a vector of maximum p aram ete rs  likely to be encountered

and a vector of minimum p aram eter values. R ange-scaling has the

effect of norm alising the p a ram ete rs . Since in p rac tica l problem s il l-  

conditioning is m ostly due to certa in  p a ram ete rs  being vastly  different in 

m agnitude, th is form  of scaling is generally helpful, although b e tte r scaling 

can be obtained from  a knowledge of the diagonal elem ents of the H essian 

a t the minimum'.. R ange-scaling, however, has the advantage of being le ss  

complex, i. e . all it req u ires  of the u se r is  the minimum and maximum 

p a ram ete rs  likely to be encountered in o rd er to sca le  the problem  reasonably.

This concludes discussion on MINPAK in the m ain body of this 

th e sis . The package is  discussed in much m ore detail and an indication of 

its  perform ance on analytic te s t fm ctions is p resen ted , in Appendix B.

5 .9______ The GMOPT Program m e for Estim ating the P aram eters  of
The CO_ Gas Exchange Model

This section describes the key computational step in estim ating 

the p a ram ete rs  of the CO^ gas exchange model as described in Chapter 3  ̂ - 

the GMOPT program m e. GMOPT consists basically  of the MINPAK software 

together with application - specific routines w ritten  for function evaluation 

in the gas exchange model context.
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The data p rep rocessing  routine for GMOPT perform s application 

orientated  input and data file in itia lisation . It then reads in the f ir s t  data 

block of the file , which is a 'header' block containing inform ation passed by 

the program m e PRODAT (see Chapter 3, Section 4), into the appropriate  

FORTRAN COMMON region fo r la te r  use by the function evaluation routine. 

F inally , it c a r r ie s  out a pass  of the data p roper calculating four end-tidal 

m ark ers  for each b rea th  in the file , which a re  again sto red  in COMMON. 

These m ark e rs  a re  the sam ple num bers corresponding to the beginning and 

end of the model and data end-tidal regions over which m odel/data com parison 

is ca rried  out (see Chapter 3, Section 3). This is done at th is stage for 

efficiency purposes to avoid the unnecessary generation of th is inform ation 

a t each function evaluation.

Function evaluation itse lf, in the context of th is problem , is  much 

m ore com puter intensive than the triv ia l analytical example used to illu s tra te  

the MINPAK package in Appendix B. That is , it im plicitly involves solution of 

the model equations 3. 8  - 3.11 for the given set of p a ram ete rs  and using the 

tru e  m easured ventilation and PCO^ as stored on the patient data file a t each 

sam pling instant. These equations a re  solved by E u le r 's  method (num erical 

f ir s t  o rd e r integration) using an integration step of 0.033 secs . For an 

experim ent of two m inutes duration th is integration step corresponds to 3,600 

data points, which m eans the num erical difference equations m ust be updated 

correspondingly 3,600 tim es. These equations m ust, th e re fo re , be efficient 

and for th is reason , in the operational version of GMOPT, have been coded 

in PDP-11 A ssem bly Language,

M emory lim itations on the PDP-11/45 preclude all the data being 

perm anently core  residen t during the m inim isation p rocedure. Thus the
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model equations m ust be solved, and the calculation necessa ry  to effect the 

m odel/data com parison ca rried  out, for one block of data before the 

next can be read  in from  disc. This also adds to the tim e necessary  to 

complete a function evaluation since using FORTRAN level random access 

disc read  statem ents, the PDP- 1 1  C entral P rocesso r Unit (C .P .U . ) is  doing 

no useful work w hilst the reading operation is being c a rried  out. This situation 

can be overcom e by taking advantage of the pa ra lle l tra n s fe r  capabilities of 

the PDP-11 data bus. U tilising th is facility , machine language level 'double­

buffering' disc reading routines have been w ritten which allow the idle tim e 

of the C .P .U ., w hilst executing GMOPT, to be cut down.

The tim ings below for a function evaluation using one of the 

validation files gives some indication of the speed im provem ent effect from  

using machine language im plem entation of the tim e sensitive GMOPT program m e 

sections ;

Implementation Time for One Function Evaluation
(se c s .)

(i) ALL FORTRAN 9 .0

(ii) DOUBLE BUFFER READS +
MACHINE LANGUAGE 
IMPLEMENTATION OF 
MODEL EQUATIONS

F or the complete estim ation p rocess the tim e saving using the machine 

language routines will be between 5 and 15 m inutes.

By num erical experim ent it has been found the m ost efficient 

value to use for the lin ea r search  term ination c rite rio n  p a ram ete r ‘’ 7  (see 

equation 4, Appendix B ) is  0 .2  . S im ilarly , 1 .0  has been found to be the 

best initial steplength to input to the lin ea r search  algorithm  (see Appendix B.2).
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F o r range-scaling  purposes reasonable physiological maximum and minimum 

values of the p a ram ete rs  w ere chosen as in Table 5 .1 . F inally , a p rin t out 

from  the m inim isation procedure involving a four p a ram ete r model (for a 

ninety second experim ent data file ( RPO 141.FRO) is  shown in Table 5 .2 .

This te lls  a typical ta le  in te rm s  of the p ro g ress  of the m inim isation procedure 

on the validation data. The region of the minimum in p a ram ete r space is 

reached fa irly  quickly. A fter th is , however, p ro g ress  is slow and i t  can be 

seen how quite la rg e  changes in the model param eter values change the 

c rite rio n  function very  l i tü e , i .e .  the hypersurface in p a ram ete r space is very  

fla t. This is  sym ptom atic of these short experim ent datasets  and fu rther 

re in fo rces the contentions made in Chapter 4. Sections 8  and 9 concerning 

the poor inform ational nature of such experim ents and the need fo r a m ore 

enlightened form  of te s t signal in future tr ia ls .
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TABLE 5 . 1

RANGE-SCALING IN THE GMOPT PROGRAMME

P aram eter M in imum Value Miiximum Value

C ardiac output ( Q )

Lung volume ( V^^^^ ) 

M etabolic production ( M )

T issue volume ( V ) 
i L*

Initial A lveolar
p a rtia l p re s su re  ( ^

Initial T issue
p artia l p re s su re  ( P

.2 .0 L /M  

1 L

0.1 L/M  

1 L

20 m m .H g 

30 m m .H g

9 .0  L /M  ■ 

11 L 

0 .5  L/M  

11 L

50 m m .H g. 

60 m m .H g.
TC(0)
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CHAPTER 6

MINIMISATION METHODS FOR FUNCTIONS

INVOLVING SUMS OF SQUARES
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6 .1 _______ Introduction

In Chapter 5 generalised  methods for Function M inim isation 

w ere discussed and in p a rticu la r, the application of the Quasi-Newton methods 

for estim ating the p a ram ete rs  of the CO^ gas tran sp o rt m odel. G eneralised 

methods a re  charac te rised  by the fact that they do not depend on stru c tu ra l 

knowledge of the function being m inim ised and therefo re  a re  applicable, in 

theory at le a s t, to any form  of problem . The reason  fo r the use of such 

methods in the cardiac output p ro jec t was p rim arily  h is to rica l. In the e a r lie r  

period of the re sea rc h  differing form s of function w ere used to indicate 

'goodness of f i t ’ between model and data ( 2 .34 , Ch. 5) and use of generalised  

methods was necessa ry  to cope with th is .

M ore recen tly , however, c rite rio n  functions used have tended to be 

of the sums of squares fo rm , i .e .

V(P) = ' 2  ( e O )  ) 6 .1
i = l

In the lite ra tu re  specific function m inim isation techniques have evolved to 

solve problem s of th is  form  which fully exploit th e ir  special s tru c tu re . These 

a re  known as non-linear le as t squares methods.

In the context of the work described in th is th e s is , use of le as t 

squares techniques have potentially two advantages over generalised  methods : ■

(1) Since use of non-linear leas t squares methods generally  involves

explicit evaluation of the pa ram ete r sensitiv ity  m atrix  X at 

each stage, all the im portant diagnostic inform ation on the 

adequacy of fit of the estim ated model ( see Chapter 4) is 

available d irectly  from  the re su lts  of the m inim isation 

p ro cess .
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(2 ) They a re  apt to be fa s te r  (which is an im portant consideration

in view of the envisaged use of longer experim ents (therefore 

entailing longer data se ts) in the cardiac output procedure 

(see Chapter 7 ) ).

It was considerations such as these which led to the investigation and 

implementation by the author of one p articu la r non-linear le a s t squares 

method (124) fo r estim ating the p a ram ete rs  of the CO^ gas tran sp o rt model. 

Theoretically , th is method seem s to overcom e m ost of the traditional problem s 

norm ally associated  with e a r lie r  le as t squares techniques although it appears 

la rgely  .untested on rea l data -fitting problem s. Before discussing this method 

however, it  is  appropriate to give a b rie f introduction to the non-linear le as t 

squares function m inim isation problem .

6.2 N on-L inear L east Squares Function M inim isation - Introductory
Concepts

For.the  special form  of function given by equation 6 .1 ,  the gradient 

vector g ( ) and the H essian m atrix  H ( j3 ) can be w ritten  as  :

g ( | 3 )  = 2 x ' ^ 0 ) e ( | 3 ) 6.2

H ( ^ )  = 2 ( X ' ^ ( P ) X  0 )  + B ( ^ )  ) 6 .3

where X ( j3 ) is  the m x n Jacobian o r sensitivity  m atrix , e ( jS ) the vector

of residuals  and

m
B ( ^ )  = ^  e ( ^ ) H  (jS) 6.4

1 = 1  '  '
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H . ( jS ) is  the H essian m atrix  of e  ̂ ( j3 ) .

Recall from  Chapter 5 that in Newton’s method fo r Function 

M inim isation the search  vector p ^ ( j3 ) can be given by the solution of the

equation

= - g ®  6 .5

In a le a s t squares context, th is can be w ritten (using equations 6,2 and 6 .3  )

as

(xT(fc) 6 . 6

(k)To compute H it is  necessary  to evaluate m x n 1st p a rtia l derivatives

and in addition, m n (n + 1  ) 2nd, pa rtia l derivatives. T herefo re , in this

form , Newton’s method for sum s of squares is  s till computationally expensive.

However, if the problem  is  a data fitting problem , as in  our application, then

by im plication, the residuals  e should be sm all otherw ise the solution is  of

no value. Thus U B \\ will be sm all compared to \\ X \ \  and

Tunder such circum stances X X appears an adequate approxim ation to H . 

This approxim ation form s the basis  of the Gauss-Newton (Newton-Gauss, 

Gauss o r  Q uasi-L inearisation) method. In this method the search  direction 

Pqj^ is  calculated from  the equation

( X ^ ®  X^’'^ ) e ®  6 .7

F o r genuine ’ sm all -residual ’ problem s the Gauss-Newton method will 

ultim ately converge a t the sam e ra te  as Newton's method despite the fact 

it  u tilises  only 1st derivative inform ation. In the tru e  Gauss-Newton method, 

the p a ram ete r vector is  updated at each itera tion  using a unit step in the 

d irection of sea rch , i .e .
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p (k + l)  ^ ^ ( k ) ^  ^(k)p.(k) 6 .8

(k)where or is 1 . Such an increm ent, however, may p red ic t a solution

outside the range of valid 1st o rd e r approximation. By choosing a stepsize

le s s  than unity (either fixed in advance o r calculated using a unidimensional

search  algorithm  such as  those described in Section 3 of Chapter 5 ), The

domain of convergence may be increased  (152).

Although this 'damped leas t squares ' method is  m ore re liab le

than the orig inal Gauss-Newton method, it s till cannot be regarded  as

satisfactory  for re a lis tic  problem s. For instance, if a t some ite ra tion , the

(k)sensitivity  m atrix  X is rank deficient, then H will be singular and

(k) (k)consequently p will be undefined. A lternatively p may well be defined

(k) (k)but g p may be zero  and thus a downhill step w ill be im possible. In

either event, the method would fail.

The la tte r  situation, a t le a s t, may be avoided by determ ining a

(k) (k)direction of search  which lie s  between p ^ ^  and - g (analagous to the

Quasi-Newton methods fo r generalised  problem s).

Such a s tra tegy , in a le a s t squares context, was proposed by

(k)Levenberg (183). He advocated updating p using the equation

( x T ( > ' ) x « +  6 .9

where I is  the identity. By choosing X sm all in the above equation

tends to a step in the Gauss-Newton direction, w hilst fo r la rg e  X p^^^

(k)tends to a step in the direction of steepest descent. Thus in th is schem e p

(k)can always be made downhill by choosing X sufficiently la rg e . Improvem ents 

to the original Levenberg method ( 183) have been proposed by M araquandt (203) 

and m ore recen tly  by F le tcher (113) and M eyer and Roth (207).
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Computational experience with the non-linear le a s t squares methods 

discussed so fa r  (and especially  the la te r  refined varian ts of Levenberg 's 

algorithm  (I83))have shown that if  these methods a re  going to converge, they 

w ill do so rapidly . However, they do re ly  heavily on the Gauss-Newton 

approxim ation, i .e .  the assum ption that is  s im ila r to H^^^ . If

th is is  not so , i .e .  e ither X^^^ is  near singular o r  \ \  e ^ ^ l ]  is  la rg e , these 

techniques may give negligible im provem ent in perform ance in com parison with 

the generalised  Function M inim isation methods discussed in Chapter 5.

In the card iac  output estim ation data, it is  not inconceivable that 

such a condition may a r ise  and it is  necessary  to be able to ca te r fo r th is . In 

the context of le a s t squares Gauss-Newton algorithm s what is requ ired  is the 

ability to incorporate second derivative information into the algorithm  in the 

le a s t computationally expensive way (i .e . knowledge of the B m atrix  in equation 

6 . 6 ) w hilst retain ing  the basic  Gauss-Newton s truc tu re  where this is  relevant. 

Such a method has in fact recen tly  been published in  the lite ra tu re  (124) and 

is  discussed in the next section.

6 .3  GUI and M urray 's  N on-Linear L east Squares Method

Gill and M u rray 's  algorithm  (124) is based on the singular value 

decomposition of the sensitiv ity  m atrix  X (297). This allows X to be 

factorised  in the form

X = U S 6.10

U is  an m X n m atrix  consisting of the f ir s t  'n ' orthonorm alised eigenvectors 

Tof X X ( an m  X m m atrix  ), V consists of the orthonorm alised eigenvectors 

Tof X X and S is  a diagnonal m atrix  consisting of the non-negative square

Troo ts of the eigenvalues of X X . These a re  called the singular values and
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can be arranged  in descending o rd e r ( i .e .  ^  S. , i = 1  , n ) 

without lo ss  of generality  by appropriate row and column ordering  of U 

and V . Such an ordering  is assum ed here . Using th is decomposition, 

the Gauss -Newton direction can be computed as

(The inversion of S is triv ia l since it is  a diagonal m atrix  ). A lternatively, 

the Newton step (corresponding to equation 6 . 6 ) can be computed by solving 

the following system  of equations, )

( B V ) z = - S e 6 .12

Pj^ = V z 6.13

T(z  in equation 6 .12 is obtained via Cholesky factorisation  ( L D L ) of 

2 TS + V B V followed by successive forward o r  backward substitution).

As the b asis  of a p rac tica l m inim isation algorithm  for le a s t squares problem s 

this schem e is unsatisfactory  on two counts :

( 1 ) 4 - B V will generally be ill-conditioned

hence causing num erical problem s.

(2) The schem e effectively ignores the le a s t squares 

s tru c tu re  of the problem .

However, suitably modified, equations 6 .12 and 6.13 provide the basis  of a 

rad ically  new algorithm  for non-linear leas t squares prob lem s. An im portant 

property  of the new algorithm  is that the Gauss -Newton d irection  p^^^ is 

obtained as an interm ediate product in the computation of p .^  which thus 

provides a natural way in which the Gauss-Newton step may be 'enhanced' 

if necessary .

The basic  idea is to compute p ^  as a sum of two components :
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Pn  = ^ 1 + ^ 2  G '14

is  calculated In the subspace spanned by the columns of V corresponding 

to the la rg e r  singular values and p^ is calculated in the sub space corresponding

to the sm aller ones. Since the singular values a re  assum ed arranged  in S

in descending o rd e r, th is m eans partitioning S such that

Sg = diag ( S^ , , Sg   ) 6.15

® 2  = . S^ + 2 .................. ) .

Gill and M urray (124) define *r* as the grade of the m atrix  X . This

partitioning of S im plies a  corresponding partitioning of U and V .

Applying th is partitioning to equations 6 .12 and 6.13 re su lts  in two coupled 

system s of lin ea r equations which m ust be solved ite ra tive ly . However, 

utilising an approxim ation to th is Gill and M urray (124) show that p^^ may be 

calculated by solving the following se t of equations.

e 6.17

+ V ®  V2 ) y = - v / B p i 6.18

Pg = Vg y 6 .19

P ^ = P l + P ^  6 . 2 0

In con trast to ( B V ) , ( B V« ) In equation 6.18 is

not ill-conditioned since, by im plication it does not contain the la rg e r  singular 

values of S . Equation 6,18 can therefore  be efficiently solved for y using 

L D factorisation  m ethods. ( Should ( B V ) be indefinite,

modified Cholesky fac to risa tio n  ( 123a) may be used ).

Note that in equation 6.17 if the grade ' r ' o f  V is equal to its 

rank  'n ' then is synonymous with the Gauss -Newton direction p ^ ^  as
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defined In equation 6 .11 . When the grade of X is le ss  than 'n* is  term ed

the graded Gauss-Newton d irection . It can be thought of as the Gauss-Newton

direction in the space spanned by . By extending th is argum ent Pg can be

th o u ^ t  of as the co rrection  to th e  graded G-N direction requ ired  to ensure

Tconvergence where H is  d issim ila r to X X . Thus by th is m echanism , 

second derivative inform ation i s  incorporated into the Gauss-Newton algorithm  

w here appropria te .

In the G ill-M urray method (124) the Gauss-Newton step is used 

( i .e . equation 6.17 which is  equivalent to equation 6 . 1 1  for ’r '  equal to 'n ' ) 

until the p ro g ress  of the algorithm  fa lte rs . At th is stage a co rrected  graded 

Gauss-Newton step ( r  le s s  than n ) is taken.

The ru les  recom m ended by Gill and M urray for grade changing a re  

as follows : -

(1) The f ir s t  -tim e the decrease  in function value fa lls  below 1%  

reduce the grade *r' so that the condition num bers of and 

Sg a re  approxim ately balanced.

(2 ) A fter th is , each tim e the decrease  in function value fa lls  

below 1 % reduce the grade by 1 .

(3) Should the reduction in function value subsequently become 

g re a te r  than 1 0 % again, increase  the grade to 'n ',  i . e .  

re v e rt to the original G-N step.

F or the G ill-M urray schem e, knowledge of the m atrix  B is requ ired . If 

second derivatives a re  available, these  can be used explicitly . However, 

in our p a rticu la r situation where form ulating the g radients is costly enough 

(since th is involves the solution of a co-system  of differential equations) th is 

approach is not viable. Thus second derivative inform ation is  obtained via 

fin ite  d ifferences. This is  b est done in the context of th is  p a rticu la r algorithm
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as follows : -

Defining an ( n - r  ) m atrix  Y as

Y = 6.21

and a n ( n - r ) x ( n - r )  m atrix  Q as

Q = Y Vg 6 . 2 2

then equation 6.18 can then be w ritten as

( S g ^ +  Q ) y  = - Sg  U g'^e - Y p ^  6.23

Finite difference approxim ations to Y and hence Q can be calculated by 

differencing the sensitiv ity  m atrix  X along the columns of . Fartitioniug 

Vg by columns (there w ül be n - r  of these), and Y by row s, utilising the 

f i r s t  column of say ), a finite difference approxim ation to the f ir s t

row of Y ( y^ ) is  :

y^ = B ^  f  X ( h ) - X ( i3< 0  6.24

h

where h is  the in terval for differencing and is chosen as d iscussed  in 

Section 7 of Chapter 5.

Since the grade ’r '  of the sensitivity  m atrix  X is  ra re ly  

significantly le ss  than the rank of X , 'n ',  ( since it  is  generally  equal to the 

num ber of dominant singular values of S ), th is im plies that the ( n - r  ) 

gradient evaluations taken to compute Y and Q a re  generally  few in num ber.

Software has been w ritten  by the author to im plem ent the algorithm  

outlined in principle above. This software is s im ila r in  sp ir it to the MINPAK 

package discussed in the previous chapter and in Appendix B, and has been 

w ritten in the sam e structu red  form at. Collectively th is softw are constitutes 

the NLSPAK package, intended fo r non-linear le a s t squares prob lem s, and is 

described in detail in Appendix C.
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6.4 The NOLLS Program m e for Estim ating the P aram eters  of the G0„
Gas T ransport Model using the N on-Linear L east Squares Algorithm

The 'ad hoc' c rite rio n  suggested in Chapter 3 fo r m odel/data 

com parison is effectively a le as t squares c rite rio n , as d iscussed in Chapter 4, 

and is thus amenable to m inim isation by non-linear le a s t squares methods.

This approach req u ires  that the sensitivity  m atrix  X be explicitly available. 

Computing analytical sensitiv ity  inform ation involves the solution of an 

additional co system  of ' 1  ' d ifferential/d ifference equations for each p a ram ete r 

sensitiv ity  sought in addition to the ' 1  ’ model equations which it is  already

necessa ry  to solve in o rd er to compute the model output (281). Since in our 

application we have two model 's ta te ' equations, the solution of the complete 

sensitiv ity  cosystem  for e .g . the six param eter model req u ire s  the num erical 

solution of an ex tra twelve simultaneous difference equations. Fortunately, 

the se ts  of sensitiv ity  equations fo r the different p a ram ete rs  a re  of s im ila r 

form  and differ only in the 'coupling te rm ' through which each sensitivity  

equation is dependent on the model state  equations, there  being no in teraction 

among the sensitivity  equations for the different p a ram ete rs .

By differentiating the model equations 3. 8  and 3 .9  with respec t to 

a pa ram ete r ( j3 say ) sensitivity equations of the following form  a re  obtained 

(in both the 4 ,5  and 6  p a ram ete r case).

d ^^A  * ^^A * ^^T C  ^^A
dt < T T )  - j j  ) + Q b ( - ^  -

6.25

^ ^ T C  = - Q b  ( - j J ? .  S O )  6.26

where Ĉ  ̂ ( ) and C^ ( jS ) a re  the coupling te rm s  with the state  equations

appropriate to the p a rticu la r p a ram ete r 3  .
• #

The full equations for each p aram ete r Q, , M , ,
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^TC(O) ( containing the specific coupling te rm s and and the initial 

conditions for the 4, 5 and 6  p a ram eter model) a re  detailed in Appendix D.

The te rm  -y g  in equation 6.25 is analagous to the te rm  

in the model state  equation 3. 8  and takes a value dependent on the phase of 

the b reath  ( see equation 3.11 ). Over the f ir s t  deadspace of inspiration the 

te rm  takes the value of the flow-weighted m ean of that p a rticu la r

model sensitiv ity  over the la s t deadspace of the previous expiration (analagously 

to equation 2 . 35a.)

These sensitiv ity  equations a re  integrated num erically  using E u lers 

method as is  done fo r the model equations in Chapter 5.

To compute the elem ents of the sensitivity  m atrix  X we actually 

requ ire  the sensitiv ities of the flow-weighted model output y^^  ( =  PCO^ 

in equation 3 . 6 ). T herefore the elem ents of X m ust be calculated from

è P ^ i
the point by point model sensitiv ities over the model end-tidal region

in a m anner s im ila r to equation 3 . 6 . A listing  of the 'RUN* subroutine which 

m echanises the above calculations is  given in Appendix G.

From  th is lis ting  it  is  evident that the function evaluation routine 

in NOLLS incurs substantially g re a te r  computational overhead than that for 

the GMOPT program m e. The tim es for a single execution of each routine 

on a 2 minute file (using a 4 pa ram ete r model) a re  a s  follows : -

(1) GMOPT - 5 . 8  secs .

(2) NOLLS - 28.1 secs.

However, it has to be rem em bered in the la tte r  case , gradient inform ation 

is also being computed in the one pass of the data. Using equation C. 8 , 

which defines a fa ire r  index of computational labour (300), we find that the 

tim e taken fo r GMOPT to compute s im ila r inform ation to NOLLS would be
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2 9. 0 secs . i .e .  longer than NOLLS. Thus NOLLS is  slightly m ore efficient 

in this resp ec t and could be made m ore so by program m ing the difference 

equation solution code ( SUBROUTINE MODELL-See Appendix G ) in machine 

language as is  done fo r GMOPT.

6.5 Incorporation of Scaling and Simple C onstraint Handling into
the NOLLS Program m e

The use of range-scaling  in the GMOPT program m e, although

adequate, was not en tire ly  satisfacto ry . It was thus decided to fu rther

investigate th is scaling problem  in the context of the non-linear le a s t squares

algorithm  to a sce rta in  if any improvement could be affected.

On ’poor' data the condition number of the H essian m atrix  H is

la rg e  and th is tends to make the angle of descent 9 ( i .e . the angle between

the search  vector p and gradient vector g ) a lm ost orthogonal. This

causes problem s in  descent algorithm s. The aim of scaling therefore  is  to

reduce the condition num ber of H such that 0 becom es sm all.

In the non-linear le as t squares case , the condition number of H

Tis  invariably reflected  in that of X X. This can be conveniently examined in

the case  of the G ill-M urray algorithm  (124) by examination of the singular

values S computed in  the singular value decomposition of X since th ese

Tare  the non-negative square roo ts of the eigen values of X X .

F o r the case  of a typical validation file  ( VAL 2 5 2 .TST) and a

Tfour p a ram ete r model the unsealed condition num ber of X X was found to
Q Q

be g rea te r than 10 , and the angle of descent 9 g rea te r than 89.5 . F or

the sam e case using range scaling (with scaling fac to rs  as in Table 5 .1) the 

corresponding  condition num ber was only reduced to the o rd e r of 1 0 ^ which is
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disappointing.

It tra n sp ire s  that a b e tte r form  of p a ram ete r scaling may be 

obtained for our p a rticu la r problem  by utilising the sensitiv ity  inform ation 

provided by the non-linear le a s t squares algorithm . Since the Gauss-Newton 

step is  given by : -

p = - g 6.27

it is  c lea r  that the requ ired  diagonal p a ram ete r transform ation  m atrix  X 

(see equation 5.17) should be such that it re su lts  in a diagonal transform ation

m atrix  in [  X ^  x ]  such that

-1 “1 
[  x ^  x ]  gg  = [  x"^ x j  — >  I 6 .28

Thus a diagonal m atrix  is  requ ired  which is  sufficiently s im ila r to 

TX X . A reasonable choice is  to make equal to the diagonal elem ents 

Tof X X . The corresponding D which would re su lt in such a is

therefo re  defined by

ni.. 1

d  = 6 .29

th Twhere *m„’ is  the i, i elem ent of X X and 'm ' is  the num ber of

observations in the experim ent. This scaling facto r can be thought of as a

so rt of’root m ean square sensitiv ity  ’ for the whole experim ent.

On the b asis  of examination of a la rg e  num ber of data s e ts , both

from  the 2  m in validation experim ents and the longer form  of experim ents

to be d iscussed  in Chapter 7, the scale fac to rs chosen fo r NOLLS ( on the basis

of equation 6,29) w ere a s  shown in Table 6 . 1 .

T
Using th is form  of scaling the condition num ber of X X for the
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TABLE 6 . 1

PARAMETER SCALING IN THE NOLLS PROGRAMME

P aram eter Scaling F actor

C ardiac Output ( Q ) 0 .5

Lung Volume ( V . ) 0.33
A ( U )

M etabolic Production ( M ) 0.05

T issue Volume ( V^^^ ) 0 .1

Initial A lveolar
P artial P re ssu re  ( P . , n \ )  0 .1A(0) '

Initial T issue
P artia l P re ssu re  ( PYC(O)  ̂ 0 .1
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problem  discussed e a r lie r  was reduced to of the o rder of 1 0 0  which was a

considerable im provem ent over the range scaling case .

During p re lim inary  num erical experim ents on the validation files

the le a s t squares algorithm  was found to fail frequently on ill-conditioned files

in early  ite ra tio n s . C loser investigations found th is to be due to la rg e  step-

lengths being generated by the algorithm  in these e a r lie r  ite ra tions resu lting  in

steps into negative p a ram ete r space being attem pted with subsequent floating

overflow in the 'RU N' routine. Rather than re v e rt to a 'full-blown' Constrained

Function M inim isation solution, a sim ple constraint handling algorithm  was

designed to overcom e th is problem  resulting  in only a sm all modification to

the 'SEARCH' algorithm .

The idea is  that a positive low er bound (LB) on each of the model

p a ram ete rs  is  specified . If at any tim e the steplength algorithm  p red ic ts  a 

(k)step o r  which would re su lt in a param eter jS. being reduced below its

(k)low er bound LB^ , th is situation is detected and the steplength œ  '  reduced

accordingly so that the p a ram ete r is  set equal to its  low er bound value.

(k) LB - ^
“  i .  = ■ /VI 6 .30reduced p.\k)

The whole p a ram ete r vector is  then recalculated using th is reduced steplength. 

The procedure is  repeated until the following inequality is  satisfied .

„ ( k + l ) ^  LB. 1 = 1 ,  2,  3 ........... n 6.31

This modification to the linear search  algorithm  was found to be adequate for 

constraining the problem  in positive param eter space.
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6 . 6 ______ Com parison of the Relative Efficiencies of the GMOPT and
NOLLS Program m es

N um erical experim ents w ere undertaken to com pare the perform ance 

in  speed te rm s  on different data se ts under varying conditions (i, e. different 

num ber of p a ra m e te rs , experim ent lengths, e tc .)  of GMOPT and NOLLS.

This was to d iscern  the b est method to recommend for routine use in connection 

with the non-invasive card iac  output m easurem ent technique a t the Royal 

Infirm ary . The re su lts  of these experim ents a re  sum m arised  in Table 6 .2 .

The tim ings fo r the GMOPT program m e have been adjusted to 

allow for the fact that the local search  algorithm  undertaken at the end 

m erely  confirm s the solution by subtracting the tim e taken to ca rry  th is out 

from  the total tim e.

From  these re su lts , even although com parison is  a b it difficult 

due to slightly different convergence c rite ria  for the two algorithm s it is 

im m ediately apparent that the 'NOLLS’ program m e is vastly  superio r in 

perform ance. Based on the lim ited number of re su lts  detailed in Table 6 .2 , 

it  would appear to be about twice as efficient.

This im provem ent is  not due to the function evaluation routine 

being effectively fa s te r  in the non-linear le a s t squares case . In fact, the 

re su lts  in  Table 6 .2  suggest that the average computation tim e p e r  function 

evaluation ( i .e . total tim e divided by index of computation labour) is  actually 

le s s  in the case of 'GMOPT'. This would seem  to be con trary  to the tim ing 

com parisons p resen ted  in  Section 4. However, th is is  only because these 

la tte r  re su lts  also include an elem ent of the in te r-ite ra tio n  computation tim e 

of the algorithm . This re la tively  la rg e r in te r-Ite ra tio n  computational burden 

of the 'NOLLS' program m e is p rim arily  due to the need to c a rry  out a singu lar-
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value decomposition at each stage, which is  computationally expensive.

The in crease  in efficiency of the 'NOLLS' p rogram m e is  mainly 

due to the superio r approxim ation to the H essian m atrix  H generated by the 

non-linear le a s t squares algorithm  over that of the Quasi-Newton algorithm . 

This re su lts  in a fa s te r  ra te  of convergence e. g. see the appropriate  

com puter p rin t-ou ts for the file RPC 142. PRO for the NOLLS and GMOPT 

algorithm  in Tables 6 .3  and 6 .4 .

This improved convergence is  perhaps b e tte r illu s tra ted  by 

Figure 6 .1  which shows how the c rite rio n  function is  reduced as a function 

of increasing index of computational labour for file RP0142.PR0 for each 

algorithm .

Thus in sum m ary, the non-linear le a s t squares algorithm  is 

recom m ended fo r routine use hereafter both on the b asis  of its  increased 

efficiency and the fact that it allows us to provide s ta tistica l inform ation 

about the p a ram ter estim ates so im portant to the model -fitting procedure 

without fu rther computation.

6 .7  Form ulation of the Maximum Likelihood E stim ation Method
as a Sums of Squares Problem

In Chapter 4 it was mentioned that the maximum likelihood 

estim ation technique could also be in terpreted  as  a sum s of squares F .M . 

problem . Hence th is is  also amenable to m inim isation by the algorithm s 

discussed in th is chapter. The resu ltan t program m e is  known as 'MAXL'.

Recall that in Chapter 4, in the maximum likelihood method, 

the m odel/data e r ro r s  (i. e. the determ inistic  prediction e r ro rs )  e a re  

modelled in the form  :
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e = L 'i 6 .32

w here e  = '  7 ^  6 . 3 3

L is  proportional to the 'sq u a re -ro o t’ of the covariance m atrix  of the 

e r ro r s ,  i .e .

cov. ( e ) = N = 6 ^ L 6 .34

and ^  is  an assum ed set of Gaussian i i d random v a r ia b le s ..

In Chapter 4 it was shown that m axim ising the likelihood function 

L ( jS ) requ ired  knowledge of the elem ents of N . These a re  generally  

unknown a p r io r i and hence m ust be estim ated. However, due to the large

num ber of p a ram ete rs  in N ( which is an m x m m atrix  where m is

the num ber of observations) the resu ltan t m inim isation problem  becom es 

untenable in the general case .

By assum ing a certa in  form  of 'noise m odel’ however ( i .e . f irs t 

o rd e r au to -regg ressive  p rocess) N is  dependent on only two p aram ete rs  

(a ,b  ) and is  of a form  which is  extrem ely convenient for computational 

purposes. Under these conditions m axim ising L ( 3 , N ) is  equivalent to 

m inim ising
m

V ( | S , a ,  b )  = 6.35
1 = 1

which is  in a sum s of squares form .

Thus, ra th e r  than m inim ise S  e.^ as in the ord inary  le as t squares case , 

we m inim ise ^ where from  equation 6 . 32

^  = L  ̂ e 6.36

“ 1Due to the p a rticu la r s tru c tu re  of L and L in the f ir s t  o rd e r ARMA 

p rocess case the residuals  ^  can be calculated recu rsiv e ly  from  the
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d e term in istic  e r ro r s  e

2  i  = 6.37

"1which thus avoids calculation and storage of L . The determ in istic  e r ro rs  

can be recovered  from  the residuals  sim ilarly  by the inverse  relationship .

The sensitiv ity  m atrix  Z can also be calculated in a recu rs iv e  m anner.

It is  given by

z = i : z / i  z ^ l . 6 .38

Z ̂  being the sub -m atrix  of sensitiv ities of ^  with re sp ec t to the 

determ instic  model p a ram ete rs  and Z^ the sensitiv ities  with re sp ec t to 

the ’noise* p a ram ete rs  a and b . A typical te rm  in Z^ can be calculated 

recu rsiv e ly  from  the model sensitiv ities in the ord inary  le a s t squares case , 

e .g .

M i-1
3. -

From  equation 6 .37 the sensitiv ities of the two noise model p a ram ete rs  are:

è £ i

l b  =  ^ l - D  (  T b  "  0  ) * '41

These m ake up the m atrix  Z^ •

Thus from  the above it is  apparent that although the num ber of p a ram ete rs  

in the m inim isation problem  is  increased  from  a maximum of six in the 

o rd inary  le a s t squares case  to eight in the ’MAXL’ case , the resu ltan t
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in c rease  in computational labour will not be proportionately as g rea t.

This is  because it is  not necessa ry  to solve additional co -system s of 

differential equations to calculate the noise sensitiv ities since calculating 

them  involves only triv ia l analytic manipulation of a lready  known quantities.
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CHAPTER 7

IMPROVED EXPERIMENTAL DESIGN AND NEW 

RESULTS FOR THE NON-INVASIVE CARDIAC 

OUTPUT MEASUREMENT METHOD
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7 .1  Introduction

In Chapter 4 of this thesis  the estim ates obtained from  the 

homogeneous CO^ identification procedure w ere analysed. F rom  this 

analysis the conclusion was reached that, although the card iac  output 

estim ates  obtained from  these validation experim ents w ere competitive 

with any s im ila r technique that has hitherto appeared in the lite ra tu re  

(e .g . see Homer and Denysk (155) ), the form of te s t signal used ( 40 sec 

a ir  followed by 7/5% CO^ ) did not excite the system  sufficiently for 

identification purposes. In re tro sp ec t, this poor nature of the te s t signal 

is  hardly su rp ris ing  since m ost of the in te rest in the work had until then 

centred on the data analysis . The inform ational aspect of the problem  

has hitherto  been largely  ignored except a p o s te rio ri (see Chapter 4).

A Strom and Bo hi in (11) and Aoki and Staley (5) defined the condition 

of 'p e rsis ten t excitation' as being a necessary  one for a te s t signal to possess 

in o rder to produce consistent estim ates. Conceptually all th is m eans is  that 

the band width of the signal is  such that it allows all the m odes of the system  

under te s t to be pertu rbed . P ractically , however, it has been well known fo r 

som e tim e (187, 182 , 216) that the choice of te s t signal has a significant 

bearing  on the re su lts  of an identification. This was f ir s t  noticed in the 

system  identification field by Levin (184) in 1960 when he considered the 

estim ation of the im pulse response of a d iscrete  tim e lin ea r single input 

single output model corrupted by additive white m easurem ent noise.

• It has been shown that the use of optimal te s t signals allows the 

achievable accuracy to be g rea tly  increased as com pared to a rb itra ry  inputs 

such as e .g . pseudo-random  -b in ary  sequences ( PRBS) (43) which a re  widely 

used in the identification lite ra tu re . This is  because the optim al te s t signals
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allow the maximum amount of inform ation to be ex tracted  from  the system  

under scru tiny . This chapter describes the design of such te s t signals in 

connection with estim ating the p a ram ete rs  of the homogeneous CO^ model. 

The aim  in th is is  to use these signals to produce a much m ore reproducible 

non-invasive caradiac  output estim ation schem e. Also presented  in this 

chapter is  a theoretical investigation carried  out to determ ine the type of 

model ( e .g . CO^ , O ,in e rt g as, e tc .)  which allows card iac  output to be best 

estim ated . This analysis was felt to be an essen tial p re lim inary  to the 

optim al te s t signal design fo r a given model. F ir s t ,  however, a b rie f 

lite ra tu re  review  is presented  on optimal design and some theory necessary  

fo r the work detailed la te r  in the chapter is  developed.



- 188 -

7,2 Brief Review of Optimal Experim ent Design

Optimal te s t signal design can be viewed as a sub-problem of the 

w ider problem  of experim ent design. In the static  case (e .g . as applied 

to design of lin ea r and non-linear reg ress io n  experim ents) th is  problem  has 

been of g rea t in te re s t to s ta tistic ians for many years  (39, 104). Only 

com paratively recently  has th is mutual in te rest been exploited and any 

significant c ro ss-fe rtilisa tio n  taken place between the engineers and 

s ta tistic ians (206).

In the dynamic system  identification lite ra tu re  the experim ent 

design problem  has been approached in a num ber of different ways. In the 

tim e domain syn thesis, given that a sca la r function which is a m easure  of 

the optim ality of an experim ent has been defined, the problem  essentially  

reduces to what is  a two-point boundary value problem . This is equivalent 

to the standard non-linear optimal control problem  which is  d iscussed in 

many texts on m odem  control theory (95). An advantage of th is approach 

is that it is easily  extended to take account of typical constrain ts which it may 

be n ecessary  to impose on the experim ent in a rea l-life  situation, e .g . 

amplitude o r  power constrain ts on input, constraint on total experim ent tim e, 

maximum sam pling ra te , e tc . This problem  can, in p rinc ip le , be solved 

by the usual dynamic optim isation procedures (270). The tim e domain 

optimal control approach has been used and refined in many ways by Goodwin 

and his co llaborators (133, 134, 135, 138) and M ehra (205, 206). In (135) 

Goodwin, Murdoch and Payne d iscuss optimal te s t signal design for the often 

used single-input single-output (SISO) tran sfe r function model of A strom  

and Bohlin (1 1 ) discussed in Chapter 1. In (134) Goodwin, Z arrop and Payne 

consider the w ider problem  of coupled design of te s t signal, sam pling in terval
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and p re-sam pling  f il te r .

The optimal experim ent problem  has also been investigated in the 

frequency domain. A procedure to compute the optim al input au to-corre la tion  

function was developed by Goodwin and Payne (136). At about the sam e tim e, 

Van D er Bos (285) gave a method for rea lising  specified A. C. F 's .  recu rsively  

using a b inary signal. These two procedures may thus be combined to form  

a useful alternative to the tim e-dom ain optimal control approach discussed 

above.

M ehra (205) proves the useful resu lt that in the frequency domain, 

the optim al te s t signal can be found to consist of a weighted sum of a finite 

num ber of sinusoids. The significance of this re su lt is  that what is  an infinite 

dim ensional problem  in the tim e domain is reduced to only a finite dimensional 

problem  in the frequency domain and is consequently e a s ie r  to solve. This 

re su lt is  exploited in (219, 233) where the optimal sam pling stra tegy  for 

system  identification is  considered in the frequency domain.

The approches discussed so far both in the tim e and frequency 

domain have been s ta tis tica l,in  orig in , i .e .  the c r ite r ia  of optim ality used 

have been developed from  sta tistica l considerations. Many authors have 

adopted a m ore determ in istic  approach to the problem . Rault and his co- 

w orkers em phasise the connection between sensitivity and the accuracy of 

the estim ates and discuss te s t  signal design c r ite r ia  based on sensitivity  

considerations in both the tim e domain (242) and frequency domain (239).

In (241) Rault notes that many of these heuristic  c r ite r ia  can be given 

s ta tistica l in terp re ta tions. Inoue et al (1 6 1 ) re p o r t fu rther work based 

on the sensitiv ity  approach.

To avoid the complexity inherent in the full tim e domain optimal
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control approach Kevlczkyand Banyasz (174) outline a sim p ler sequential 

approach potentially useful for on-line identification situations. This 

method has also been derived on inform ation theoretic  grounds by Arimoto 

and Kimura (6 ). They show that the procedure is  optim al in a one step 

ahead sense (i. e. it  m axim ises the increm ental increase  in inform ation 

during the next m easurem ent period). Note however that th is  does not 

imply global optim ality ( i .e . optim ality over the whole experim ent period) 

since the algorithm  takes no account of future learning.

To date few p rac tica l applications of the otpimal experim ent design 

techniques have been reported  in the engineering lite ra tu re . Perhaps th is is 

due in no sm all m easu re  to the m athem atical complexity of the techniques. 

Among those which have a re  Goodwin ((134) - application to identification of 

a steam  generator) and M ehra ((205)- application to identification of the 

p a ram ete rs  of a irc ra ft dynamics).

In the biom edical field applications a re  alm ost non-existent. This 

is  despite the obvious usefulness of these methods in an a re a  where 

identification ra th e r  than identification and control is  usually the m ain objective. 

A noteable exception in th is resp ec t is the work of Swanson (272, 273).

Swanson devotes alm ost all of Chapter 5 of his th esis  (272) (which is  concerned 

with investigation of the re sp ira to ry  control system  a s  mentioned e a r lie r )  to 

the optim al te s t signal design problem .

Finally , in concluding th is short review  section, it is  appropriate 

to draw  attention to the following two references as having made a significant 

contribution to the field. M ehra (206) reviewed the state  of the a r t in optimal 

experim ent design for system  identification in the special issu e  of I. E. E. E . 

T ransactions on Automatic Control dedicated to System Identification in 

Decem ber 1974. A lso, Chapter 6  of the recen t book by Goodwin and Payne (31) 

gives an excellent trea tm ent of the experim ent design problem .
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7. 3 C rite ria  of Optimality

The use of optim al experim ent design techniques presupposes that 

some quantifiable m easure  of the goodness of an experim ent is  available. In 

the previous section, th is  m easure  has been intuitively tied  VBp with notions 

re la ted  to , on the one hand, som e concept of m axim ising the inform ation 

content of the data, and on the other m axim ising the expected p rec ision  of the 

estim ates. In fact, it tran sp ire s  identical optimal experim ent design 

c r ite r ia  can be derived u tilising  e ither approach. However, the s ta tistica l 

approach is m ost commonly adopted.

A m easure  of the p rec ision  of a p a ram eter estim ate  is of course 

its  variance . This is  a function of both the experim ent design and the type of 

estim ation technique used. In the optim al experim ent design lite ra tu re  

it is  custom ary to assum e the estim ato r used is  efficient, so that the C ram er -  

Rao Lower Bound is  achieved. This is sensible since the optim al experim ent 

design can be synthesised independently of the estim ato r resu lting  in g rea te r 

sim plicity .

Thus, th is  approach leads to defining m easures of goodness based 

on the F ish e r Inform ation M atrix M of the following form

J = f ( M )  7.1

f denoting an appropriately  chosen function of M which is  necessa rily  sca la r .

Recall from  Chapter 4 that fo r a model non-linear in the p a rm e te rs , 

such as  is  considered in much of th is  th esis , M will be dependent on the actual 

num erical values of the p a ram e te rs . T hese, of course , will not be known 

a p r io r i. In p rac tice , the re fo re , the inform ation m atrix  M is  usually 

evaluated a t a rep resen ta tive  set of pa ram ete r values e .g .  an e a r lie r  estim ate
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if th is ex ists . Thus, it is  advisable to check the sensitiv ity  of the design 

to th is p a ram ete r choice once it  has been found. One design c rite rio n  

frequently used in the lite ra tu re  (135, 138, 205) is  the following : -

m in J = tra c e  (W  ) 7.2

where W is  an a rb itra r ily  chosen weighting m atrix  to account for the 

p a ram ete rs  having differing m agnitudes, e tc . This c rite rio n  can be thought 

of .as m inim ising the weighted m ean of the variance of the estim ates . With W = I 

th is c rite rio n  is  identical to F ederov 's  (104) A -optim al c rite rio n  discussed in 

the lite ra tu re . Goodwin and Payne (137) argue that equation 7.2 is  the 

natural c rite rio n  to adopt from  Bayesian considerations. If one considers a 

design c rite rio n  a s  being chosen as a r isk  function reflecting  the estim ated 

models intended use then Goodwin and Payne put forw ard heu ris tic  argum ents 

to show that m inim ising equation 7.2 is  equivalent to optim ising th is Risk 

function with W chosen suitably.

Some authors (5, 184) have advocated use of the following type of

c rite rio n ,

max J -  tra c e  ( W M )  7.3

Use of th is  c rite rio n  reduces the complexity of the design procedure since it 

allows lin ea r quadratic theory to be used to solve the resu ltan t optim al control 

problem . However, th is has been c ritic ised  by Goodwin and Payne (136) who 

show that the use of the above c rite rio n  can lead to the choice of experim ents 

for which M is  singular. Thus, the p a ram ete rs  will be unidentifiable which 

is c learly  undesirable. The optimal experim ent design c rite rio n  which is  

m ost often used is  the so-called  D -optim al (104) c rite rio n .

m in = det (  M  ̂ ^ 7 .4
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The idea for th is c rite rio n  was f ir s t  proposed in the s ta tis tica l lite ra tu re  

by Box and Lucas (40) in 1959. This c rite rion  can be in terp re ted  as that 

which m inim ises the volume of highest probability density region for the 

p a ram e te rs . Another in teresting  aspect of th is  c rite rio n  is  that unlike 

previous c rite ria  m entioned, it is  invariant under scaling of the p a ram e te rs . 

This c rite rio n  will be the one on which the work in the r e s t  of this Chapter is 

based.

Beck and Arnold (22) show the above c rite rio n  can be derived 

independently via inform ation theory , u tilising Shannon’s concept of a m easure  

of uncertainty (257). The sam e p a ra lle l is  drawn elsew here (137, 6 6 ).

The D-optim al c rite rio n  re su lts  in a te s t signal which im plicitly 

attem pts to d istribute inform ation equally on all the p a ra m e te rs . Suppose, 

however, we a re  in terested  in estim ating accurately  only a subset of these 

p a ram ete rs  (the f ir s t  i say ). The re s t  of the p a ram ete rs  perhaps, although 

necessa ry  fo r the estim ation, a re  rea lly  superfluous as fa r  as the investigator 

is  concerned. ( Note th is corresponds exactly to be situation with which we 

a re  dealing in the non-invasive card iac  output determ ination .) Under these 

conditions the experim ents m ust satisfy  different c r ite r ia  re la ted  only to the 

accuracy of those p a ram ete rs  of in te rest. H unter, Hill and Henson (159) 

thus advocate the following c rite rio n .

m in det M,.  ̂ 'j 7 .5
U t  XI

where M.. is  a subm atrix of the full inform ation m atrix  M which re fe rs  
1 1

to the i p a ram ete rs  of in te re s t. Federov (104) has called th is a truncated 

D-optim al design ( ) . Having introduced the D-optim al c rite rio n  we will

now derive what th is reduces to for the case of the two different types of 

estim ation e r ro r  s tru c tu re  considered in Chapter 4. That is  the ordinary



- 194 -

le a s t  squares (OLS) and au to -reg ress iv e  moving average (ARMA) noise models. 

Recall from  Chapter 4 that in  the OLS case

M  = [  x '’’ X  ]

and the D -optim al c rite rio n  thus is

7 .6

m in -  det 7 .7

X being the p a ram ete r sensitiv ity  m atrix , as in Chapter 4.

Suppose only * i ' of the *n' p a ram ete rs  need be estim ated accurate ly . If 

the sensitiv ity  m atrix  X is  partitioned as

X 7.8

w here X^ re fe rs  to the ’i ’ p a ram ete rs  of in te re st, then the truncated D -optim al

c rite rio n  can be w ritten  as

m in = det X ^ - X ^  X ^ ( X ^ X ^ ) - ^  x ^  x j
-1

7 .9

The inform ation m atrix  which re su lts  from  the use of the ARMA noise model 

is  of the following special form  (135)

M = M. O

o  ‘M_
I 2

7.10

where M^ is  the inform ation m atrix  of the determ in istic  model p a ram ete rs  

and Mg that of the noise model p a ram ete rs . M^ is  independent of the e r ro r  

as Mg is independent of the te s t signal (135). Thus, in th is situation optimal 

designs can only be synthesised to estim ate the determ instic  model p a ram eters , 

This is  done by replacing X in the c rite rio n  functions defined by equations 7 .7  

and 7 . 9  by the modified sensitivity  m atrix  for the determ instic  model
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p aram ete rs  in the ARMA noise case (see equations 6.38 and 6 ,39).

7.4 Optimal Experim ent Design fo r the Homogeneous GQ^ Model

We will now describe  investigations carried  out to determ ine the 

m ost suitable form  of te s t signal for estim ation of the p a ram ete rs  of the 

homogeneous COg model utilising the concepts outlined in the previous sections 

of th is  chapter.

It is  intuitively obvious that to obtain the m ost accurate  estim ates 

of the p a ram ete rs  we should like our te s t signal amplitude and our observation 

tim e as  la rg e  as possib le , i . e .  the optimal te s t signal design c r ite r ia  mentioned 

in the previous section (equations 7 .7  and 7. 9) can be driven to zero  by allowing 

both of these quantities to approach infinity. However, in th is application, 

a s  in many o ther biom edical applications, physiological and ethical fac to rs 

impose severe  constrain ts on the choice of te s t stim ulus that can be applied.

F o r exam ple, a frequent w orry  is  that the input disturbances may influence 

p a ram ete rs  and system  variab les through feedback m echanism s. In the re sp ira to ry  

system , ventilation is  the m ain controlled quantity, as mentioned in Chapter 2. 

However, in our application although ventilation is a component in our m odel, 

it is  m easured  and trea ted  as a known input disturbance. T hus, any change 

in ventilation due to feedback from  chem oreceptors o r  pulm onary recep to rs  can 

have no effect on the estim ation. Note that since ventilation is also under 

autonomous control, in theory th is  ra ise s  the question of using th is as an 

additional m anipulatable input to the model. This was ru led  out because of 

the d esire  to re ta in  the advantage the cu rren t form  of procedure  p o ssesses  

over routine pulm onary function te s ts . That is ,  of being able to free  the 

untrained subject from  the neccesity  to perform  com plicated ventilatory
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m anouevres. This aspect of the procedure was felt by the clinicians to be 

of g rea t benefit in a routine situation and far outweighs any advantages which 

might accrue from  including ventilation as a m anipulatable variab le  in the 

experim ental design.

It is  also  im portant to check that the choice of te s t signal

induces no varia tions in the p a ram ete rs  over the course of the experim ent.

The effect of b reathing CO on cardiac output has in fact been documented
Â

(110, 204b). On the b asis  of (llO)^Pack (228) concluded that the form  and 

duration of the experim ent used in the validation studies ( 7/5% COg for 2 

m ins) produces no significant changes in the homogeneous CO g model p a ram ete rs  

due to physiological control m echanism s. However, it has been im possible to 

check the effects of these  assum ptions s ta tistica lly  since unidentifiability 

problem s w ere encountered when it was attem pted to estim ate  m odels over 

only p a rtia l lengths of the validation data (e .g . the a ir  breathing p a rt) . This 

is  hardly su rp ris ing  given the conclusions of Chapter 4. There is  nothing, 

however, in the re su lts  p resented  in Chapter 4 to lead one to discount the 

assum ption of stationarity  of the estim ates . F o r longer form s of

experim ent the im plications a re  le ss  c lea r . Fishm an et al (110) reported

no change could be detected in cardiac output in norm al subjects afte r 15 to 20 

m inutes breathing e ither 5 %  o r 7 %  COg . M cGregor et al (204b) reported  

changes in card iac  output following 8.4% COg inhalation a fte r 2 m inutes.

However, checking stationarity  à  p o ste rio ri should p resen t no problem s 

in th is situation. Thus it was decided to adopt an em pirical approach to the 

design problem  in th is resp ec t. That is  in the f ir s t  instance in the design study 

it was decided to lim it the maximum concentration of COg to 7% and maximum 

experim ent duration to 10 m inutes. The la tte r  tim e was chosen since it was
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fe lt to be the maximum tim e fo r which it was felt a subject could reasonably 

to le ra te  COg breathing without any g rea t discom fort. However, it was 

recognised that this experim ent duration might have to be reduced if the 

resu ltan t estim ates w ere  found to be non-stationary o r  the experim ental 

p rocedure was in fact found to be too arduous. As it tran sp ired , both these 

reserva tions proved to be unnecessary . In p re lim inary  experim ents 

occasionally some subjects when breathing 7% COg elicited  too g rea t a
(jur\ o.

ventilation response and subsequently becam e i i due to the

increased  work in breathing through a mouthpiece. However, with these 

subjects the COg concentration was reduced to 5%.which they found perfectly  

acceptable. Thus, having constrained the prospective inspired  PCOg te s t 

stim uli in both amplitude and duration the problem  reduces to find the optimal 

tim e course  of the signal waveform within these boundaries. It would, therefo re , 

seem  possible to d irec tly  apply the elegant tim e-dom ain optim al control 

techniques in th is situation. This was in fact the orig inal intention. At th is 

stage, however, considerations a ro se  which seemed to indicate th is ju s t might 

not be en tire ly  appropria te . These w ere as follow s.

The f ir s t  concerns the cyclic nature of ventilation. Although the 

optimal control type techniques can be applied d irectly  to the ’flow through’ 

model (see Chapter 2), fo r the cyclic model the input is  not rea lly  defined 

during expiration. T hus, the state  of the input can only rea lly  change a t tim e 

instan ts during the insp ira to ry  period . This m ay not coincide with tim es 

dictated by the optimal sequence. Thus a ’b rea th  by b rea th ’ approach is  needed. 

The second consideration is  m ore p rac tica l and again inevitably is tied  up with 

the u ltim ate applicability of the technique. Although it is  conceivable that 

ultim ately the CO2  te s t signal will be computer generated, it is  fa r m ore likely .
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tha t in the foreseeable  fu ture it will be done, as at p re sen t, by manual 

switching of a valve. In a routine situation th is is  likely to be done by 

a physiological m easurem ent technician. It is , th e re fo re , desirab le  that 

the te s t signals should be sim ple to adm inister, e .g . square waves ra th e r 

than com plicated b inary  sequences.

In view of the above it was decided that use of the full optimal 

control approach was p rac tica lly  unjustifiable. A m ore lim ited  approach w as, 

th e re fo re , adopted and a square wave design sought, i . e .  the b e st on/off 

switching frequency which m inim ises the c rite ria  discussed in the previous 

section. ,

F o r this a general homogeneous COg gas tran sp o rt sim ulation 

program m e (LUNG 1 ) was w ritten  to allow the various c r ite r ia  of optim ality 

of an experim ent to be evaluated for a given set of model p a ram ete rs  and 

experim ental conditions. The sensitiv ity  coefficients necessa ry  to calculate 

the c r ite r ia  w ere obtained from  the model using finite d ifferences. A 

sinusoidal breathing p a tte rn  was assum ed in the absence of any o th e r 'a  p r io r i 

inform ation. Although Etsyon et al (97a) have proposed a m ore com plicated 

ventilation p ro file , the sinusoidal approximation is  felt to be adequate for 

our purposes and also has the advantage of being more, convenient m athem atically .

The amplitude of the sinusoidal breathing p a tte rn  can be ta ilored  

to achieve approxim ately the desired  average alveolar minute ventilation using 

the following equation :

7.11

The sim ulation program m e is quite general in that it allows o ther te s t signals 

e .g .  steps and general b inary  sequences to be investigated in addition to square 

w aves.
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The model conditions chosen as the basis  of the square wave

experim ent design investigations a re  detailed in Table 7 . 1 . The total num ber

of b rea ths in the experim ent was set at 150, Using LUNG 1  (and assum ing for

the moment a six p a ram ete r model) a m easure  of the inform ation content of

the experim ent was calculated ( i .e . a m easure  corresponding to the inverse

of equation 7 .7  o r 7 .9) for various (in teger) values of square wave input

period (in b rea th s). This was f ir s t  assum ing (a) a ll the p a ram ete rs  w ere of
«

equal im portance ( ) and then (b). only cardiac output ( Q ) was of

im portance. The re su lts  a re  plotted in F igure 7 .1 .

These re su lts  a re  in teresting  in that they indicate tha t extrem a of 

the two design c r ite r ia  do in fact ex ist over the range of input switching periods 

studied. It is  also apparent that the best design for d istribu ting  inform ation 

on a ll the p a ram ete rs  does not coincide with the b est design for the case where 

card iac  output is  the only p a ram ate r of im portance : in the fo rm er case the 

appropriate switching period is  60 b rea ths ( i . e .  4 m ins) w hilst in the

la tte r  case  it is  24 b rea ths ( 1 ^ m inutes). In the case of a four p a ram ete r 

COg model the re su lts  w ere found to be quantitively s im ila r.

To investigate the sensitiv ity  of the design to p a ram etric  and 

ventilatory varia tions, a modified version  of the lin ea r sea rch  procedure 

d iscussed in Chapter 5 and Appendix B was incorporated into the LUNG 1 

program m e. This allowed the procedure of determ ining the b est switching 

frequency to be autom ated. From  subsequent analysis it tran sp ired , 

su rp ris ing ly , that the design was quite robust. Over the range of model 

and ventilatory p a ram ete rs  encountered in re s tin g  conditions ( c. f . the 

validation data), the b est switching period fo r card iac  output estim ation was



- 200 -

(i)

(ii)

(iii)

Table 7 .1  : P r io r P aram eter Values Chosen As A Basis
for Optimal T est Signal Design Investigations

»
Q 5 l i tr e s  /  m in

y ^ (o ) - 5 li tre s

M . - 0 . 2  l i tre s  /  m in

VrpH " 5 l itre sTC
Pa <o) - Steady state  value

P tc < 0 ) - Steady state  value (see equation 3.13)

noise model p a ram ete rs  (where applicable)

a - 0 . 8

b - 0.05

constants

Hb 16.0 gm %

AINT 0.0129

Va  - 6  l i tre s  /  m in

Vd  - 0 . 2  l i tr e s

f 15 breaths /  m in.
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roughly In the range 70 - 150 seconds. However, it  may be n ecessary  to

re a s se s s  th is design for exercise  studies.
• •

The optim al designs for Q , , M and ( assum ing each

p a ram ete r in tu rn  is  the m ain one of im portance) a re  plotted in F igure 7 .2 .

The m easu res  of inform ation content for the initial conditions P. and

P _ w ere found to be frequency invariant, as one would intuitively expect, 
1 C(U)

and a re  therefo re  not shown in F igure 7 .2 .

F rom  Figure 7.2 it is  apparent that a fast switching te s t signal

(high frequency) is appropriate  for optimal estim ation of lung volume ,

w hilst a longer switching period is  b est for estim ating M. and . This

again is a s  expected since is  associated with the fa s te r  a lveolar tim e
#

constant w hilst M and a re  associated  with the slow er tissu e  dynam ics.

In th is re sp ec t, the b est switching period fo r Q (which re la te s  to the tra n s fe r

between the two com partm ents) can be thought of as a com prom ise.

In Table 7 .2  the b est square wave input (period 24 b reaths) re su lts

a re  com pared with those obtained using le ss  enlightened inputs. That is  a

step ON at 1 m in fo r 9 m inutes and a 127 bit pseudo-random  binary  sequence

with a clock ra te  equal to one brea th .

This la tte r  form  of te s t signal might perhaps have been chosen to
\

use in the f ir s t  instance without attem pting to take too much account of a p rio r i 

s tru c tu re . Im plicitly th is  te s t signal attem pts to evenly d istribu te  the input 

power over a broad  frequency spectrum . This is  a good general stra tegy . 

However, if specific s tru c tu ra l knowledge of the model is  possessed  a b e tte r 

approach is to take advantage of th is to design inputs which concentrate the 

power a t the frequencies im portant for that p a rticu la r m odel. That th is is 

good sense is  c learly  illu stra ted  in the re su lts  of Table 7 .2 .



- 203

I
n z
u

( N

8

Q CLjJ
t—
I— 1

Œ
l_J

> “

<

CL
O

œ
L U
H -
LU
z
< c
o c

g
L U

Cd

u o

o
L U
L/)

§
0 0

L U
OC

=D
O
00

oô
<
L U

L 3
Z

Z )
LO
00
<

g

g

< 3-

i
CK

X
/ \

Q,
j
/

,C5

\ /
/

•b

/ +  ^  X  D O /

"  <  /x \  y

v <  □
/ 0 \ x  \  o

o  ^  ^

\

(v

9- =►
V

Y  P 
«  J  

°  j

k - f

[S4!ufi X Je J4 iq jv ]
■4 U 3 4 U 0 3  u o } 4 e u j J 0 4 u i

s

o

o
\ o

■ O
O

^  O J 
CL

eu

^ 3  g  

eu 3
m  Èo  Z3

m  c r  
00

r <

LU
OC
ZD
L3

f
L L .



- 204 -

Table 7 .2

Com parison of Optimality of D ifferent 
Input Signals

Input Inform ation M easure 
( Q only of 

im portance)

Inform ation M easure 
(A ll model 

p a ram ete rs  of 
im portance 1

STEPON 
at 1  m in 
for 9 m ins

160.78 4.15 X lO^G

OPTIMAL 
SQ WAVE 
(period 24 
breaths)

699.30 40.98X  lO^G

127 BIT 
PRBS
(Cycle tim e 
1  sample)

192.68 1 0 .5 3 x 1 0 ^ ^
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Plots of the sensitiv ity  functions for the step input and the square

wave input a re  given in F igures 7 .3  and 7 .4 respectively . These show that
*

for the step input the model is  only sensitive to Q and over a sm all p a r t of 

the total experim ent, i .e .  th is form of input is not "persis ten tly  exciting".

On the o ther hand, for the square wave input the model exhibits distinct 

sensitiv ity  to a ll the p a ram ete rs  throughout the whole experim ent.

E a rlie r  experim ent design re su lts  also illu s tra te  very  well the 

folly of basing  truncated experim ent design c rite ria  on the diagonal elem ents 

of the inform ation m atrix  ra th e r than its  inverse. (This corresponds to using 

c r ite r ia  of the form  of equation 7 .3 .)  F or example, consider the following 

c rite rio n  based on m axim ising the diagonal elem ent of the inform ation m atrix  

which is  equivalent to the following:

J =  S  f  7.12
max i = 1 o Q V

^ M i the flow weighted m ean of the model output a t the i^^ b rea th .

On the surface th is appears, in fact, a reasonable c rite rio n  to use to design 

a good experim ent for card iac output estim ation. However, th is c rite rio n  

does not p roperly  account for interactions among the p a ra m e te rs . This can 

be seen from  the re su lts  in  Table 7 .3  w here the value of c rite rio n  is  seen 

to be m axim ised for long switching periods.

F inally , the b est design assum ing an ARMA noise s tru c tu re  was 

studied for the model conditions discussed e a r lie r . The re su lts  a re  plotted 

in F igure  7 .5 . These again show the best design is  not g reatly  different from  

that obtained in the le a s t squares case.
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C02 MODEL-SENSZTXVITY FNS FOR SQ WAVE Z N P U T .
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Table 7 .3

V ariation of Sum of Squared Model Sensitivities to Q 

with CO^ Switching Period

Period (in b rea ths) M 2
1?  1  à q

1 2 898

16 1136

18 1257

2 0 1403

24 1608

28 1790

30 1856

34 2 0 2 2

36 2005

40 2152

46 2208

54 2348

56 2359

60 2451



- 209 -

Ü J

8
LU
0 0

o

g
Û C
<
q :
LUso
*—4
LU

LD

2 :

8
I/O
<

o r
LU
CL

«4^

=  1  c § - ^

/

/

/
\ °  

\
\

TDeu

1 il I
f

/

/
/

/
/  a

/
/

/
□ /  
ç f

/

\

à  o

/

\

é O \

% \  Oo  X

□  N
X
o  \

g

o
OO

o

oso

T D
O

g
CL

eu
>  „  
ro 00

S
eu Æ)

un
r - -

L U
CL
CD

m  o  3  m  CT 
OO

o<N

L L

[•S4!un XjeJ4iqjv]
4 U 3 4 U 0 3  u o i 4 e u j J 0 4 u i



- 210 -

7.5  Im plications fo r O ther Form s of Gas T ransport Model

Before going on to im plem ent the experim ents designed in the previous 

section fo r the homogeneous CO^ model it was considered appropriate  to 

investigate o ther types of gas exchange model in which card iac  output also 

appears as a p a ram ete r. Recall that such models describ ing oxygen and 

inert gas tran sp o rt w ere d iscussed in Chapter 2.

It was felt to be p articu la rly  relevant to investigate the suitability 

of the oxygen model since concentration has already been recorded  in the 

e a r lie r  validation experim ents. This thus ra ise s  the possib ility  of fitting a 

coupled CO^ - Og model to th is  data.

F rom  Chapter 2 the model equations s im ila r to CO^ a re  as

follows

V . d P
= S V ( P * . - P ^ ) + Q ( C ^ ^ - C ^ ) c o n s t  7.13

V _ d  C T T q

= - - Q ( C _ - C , ) 7.14dt D ^  ' T c  A

Note that in equation 7.14 the te rm  the m etabolic demand, rep laces

the m etabolic production te rm  ,M p resen t in the analogous CO^ model equation.

C A is  obtained from  P via the 0_ dissociation curve which was discussed in 
A  A  Æ

Chapter 2 .

A sim ulation program m e ( LUNG 2 ) was w ritten  to investigate the 

potential of the model for card iac output estim ation. This was analogous 

to that described for the CO^ model in the previous section and also employed 

a cyclic rep resen ta tion  of ventilation.

Using th is sim ulation the model was subjected to hypoxic steps and 

square waves to determ ine the suitability of these te s t signals for estim ating
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card iac output. The re su lts  obtained w ere very revealing. The sensitivity

plots obtained for the step and square wave inputs for the 6  p a ram ete r model

a re  given in F igures 7 . 6  and 7 .7  respectively . P aram eter values used

w ere s im ila r to those chosen fo r the CO^ model in Table 7 .1 .

Notice that the form  of sensitivity  curve for card iac output for

both'the step and the square wave input a re  qualitatively s im ila r. This is

in m arked contrast to the analagous sensitivity  curves for the CO^ model

(see F igures 7 .3  and 7 .4 ). Note also for the model that the sensitiv ities

fo r Q and be linearly  dependent. In fact, for all form s of

experim ent the co rre la tion  coefficient between these two p a ram ete rs  was

found to be g re a te r  than 0 .99. Thus, disappointingly the model is  unidentifiable

along these p a ram ete r d irections. This unidentifiability of the model can

in fact be large ly  explained in te rm s of the sigmoid shape of the d issociation

curve. The highly non-linear shape of th is curve although a positive benefit

in te rm s of increasing  the efficiency of gas exchange is  a b a r r ie r  in te rm s

of accurate identification.

Despite using quite la rge  hypoxic s teps, the fo rm s of experim ent

investigated above a re  s till such that^in te rm s of alveolar gas lev e ls , we a re

still operating on the re la tive ly  flat upper portion of the curve, i .e .  the

content-partial p re ssu re  relationship is  given by : -

G (P  ) const = c 7.15
A  A

By substituting th is expression in the model equations 7.13 and 7 .14 , and

taking Laplace tran sfo rm s, afte r some manipulation we a rr iv e  at the following.

(b .  S + bAU(S) f C  S + C - )  d
P ./g .  = 4 -------------------- + ~ i ---------  + - é  7 .16S +a, S+a S +a S+a

1 2  i  2
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The Laplace transfo rm  coefficients a re  given by

= UI
VQ

b = I  7.19
A

V Ô
“a ■ \

■ ' * «  *

“ a ■ ^  K » ' ■ ' ] *  U 7.22

Recall from  section 4  of Chap te r  4 that the above model is  identifiable if the 

set of equations 7.16 - 7.22 have a unique solution. However, it is  im m ediately 

seen from  the above set of equations that any change in (0 ) can be exactly 

compensated for by a change in Q and . This thus explains the identifLability 

problem .

On this b asis  one is  forced to conclude that th e re  is  little  advantage 

to be gained in using e ither an o r coupled 0 ^ “ CO^ model in o rd e r to 

estim ate  cardiac output since the m odel’s inform ational p roperties  a re  

so poor.

A sim ulation program m e ( LUNG 3 ) was also w ritten  based on the 

equations for an inert gas tran sp o rt m odel, i .e .

Va< 1 P a  . .

dt “bL 7-23

v™ d P
T c  “ "

- ^ = - Q ( P t  - P a ) 7.24
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is  the Ostwald solubility coefficient between blood and lungs as 

defined in Table 2 .1 . As discussed in Chapter 2 , an advantage of this 

form  of model is  that the gas content - p a rtia l p re ssu re  relationship obeys 

H enry 's Law and is ,  th e re fo re , lin ea r. Also initial conditions in the two 

com partm ents a re  generally  known a p r io r i to be zero  since norm ally a 

gas is  used which is  not norm ally residen t in the human body. Thus the above 

model has only th ree  unknown p a ram ete rs  since no m etabolic uptake o r 

production te rm  ex ists for in e rt gases. No identiflability problem s w ere 

found to ex ist for the in e rt gas m odel, which was encouraging. To com pare 

the potential of th is  form  of model for cardiac output estim ation as opposed 

to the c b ^  m odel, the value of the inform ation m easures obtained from  th is 

model fo r differing solubility coefficients was com pared with that obtained 

from  the sam e experim ent using the CO^ model. The form  of experim ent 

used was that which was shown to be optimal for the CO^ model in a previous 

section ( i .e . switching period 24 b rea ths). The re su lts  a re  given in Table 7 .4 . 

These indicate that a value of solubility coefficient in the range 2 —> 4 is 

appropriate  fo r estim ating card iac output. T hus, since th is  corresponds 

roughly to the effective solubility of CO^ (i. e.% bB ) th e re  does not seem to 

be any g rea t benefit to be gained by using exotic in e rt gases.
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Table 7.4

Com parison of Inform ation C riterion  Indicating a Good 
Experim ent for Cardiac Output Estim ation for Inert Gas 
Models of Varying Solubility and C 0„ and 0 „ Model

Value of Bunsen 
Solubility Coeff.

Information M easure 
for Q

0.006 0.037

0.47  
(Nitrous Oxide)

104.16

2 .4
(Halothane)

666.67

3 .7
(COg model (4 PARS))

625.03

0 ^  model ( 4 PARS) 4.00
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7. 6  Reproducibility Results Using the Improved Form  of Experim ent

Having confirmed in the previous section that th e re  is no g rea t 

advantage to be gained in respec t of cardiac output estim ation by using another 

type of m odel, these a lternative models can thus be justifiably  d ism issed 

as reg ard s  th is  p a rticu la r application and attention once again focussed on the 

homogeneous CO^ model.

In section 7 .4  a form  of experim ent was designed to pertu rb  th is  

model which^at le a s t in theory , should resu lt in a m ore reproducible technique 

for card iac  output estim ation than that previously obtained. In early  1979 

a se r ie s  of tr ia ls  w ere undertaken to te s t th is theory. This section describes 

the re su lts .

It was originally  envisaged that these experim ents would take the 

form  of a fu rth er se t of validation studies (i. e. carry ing  out our method 

sim ultaneously with the dye technique). However, a rranging  th is so rt of 

experim ent is a tim e-consum ing p ro cess  since obtaining subjects is  difficult. 

Also it is  necessary  to ensure  attendance of skilled m edical personnel to c a rry  

out the potentially hazardous dilution experim ents. Thus it was ultim ately 

decided a b e tte r  stra tegy , for an initial tr ia l  phase, would be to concentrate 

on doing m ultiple m easurem ents of the non-invasive technique by itse lf on 

single subjects. Although th is will not allow us to obtain any ideas of absolute 

accuracy of the technique, it does allow reproducibility to be assessed  which 

is of p rim e concern. Since th is strategy involves sm alle r overheads in 

te rm s  of personnel, m ore experim ents can be ca rried  out in a sh o rte r tim e, 

and it allows a t le as t a f ir s t  assessm en t of the worth of the new technique.

At the tim e of w riting 20 se ts  of Reproducibility Studies have been 

ca rried  out on young, healthy volunteer subjects (both m ale and female) from
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the Centre of R esp irato ry  Investigation, Glasgow Royal Infirm ary  and the 

D epartm ent of E lectronics and E lec trica l Engineering, University of Glasgow* 

These studies consisted of a maximum of four runs on each experim ental 

subject, each ca rried  out sequentially on the sam e afternoon. F o r ease of 

im plem entation, the te s t signal used in a ll but one of the s e r ie s  of studies 

consisted of 1  m in a lternating  between a ir  and 7/5% CO^ • This period  was 

found to be convenient for manual operation of the gas values. Of the 20 

da tase ts, 8  had to be discarded due to data sampling problem s (teething 

troubles with the new m ass spectrom eter and expired flowm eter) leaving 

12 useful se ts  of data (47" individual estim ation runs) to form  a b asis  of 

com parison with the e a r lie r  validation re su lts .

The estim ates and th e ir  respective variances obtained by fitting 

six and eight p a ram ete r models to the data a re  given in Appendix E. Even 

a b rie f  glance at these re su lts  shows that the reproducibility  of the estim ates 

have been tighteried up as com pared to the validation data. This will be 

d iscussed a little  la te r ,  however. The reproducibility of the maximum 

likelihood re su lts  also tend to be b e tte r than the o rd inary  le a s t squares 

estim ates . This m eans the noise model is im portant for these experim ents.

It is  exceedingly difficult to place a physical in terpreta tion  on the noise model 

but, intuitively, it is  felt to be associated  with the m arked change in a 

sub jec t's  ventilatory  pa tte rn  which inevitably occurs over the course of an 

experim ent due to the hypercapnie stim ulation of the re sp ira to ry  con tro ller. 

As in Chapter 4, the m ost appropriate model o rd e r was tested  for using the 

F -ra tio  te s t and Aka ikes method. These re su lts  a re  given in Table 7 ,5 .

They show that in  every case but one (REPO83 ) the increase  in model o rd e r 

from  six to eight was significant a t the 5%, level, using the F -ratio  te s t and
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Table 7.5

MODEL ORDER TESTS 

Reproducibility Data

File N f 6 - » 8 F 6 - ^ 8  AIC^ 
0

AIC 3 Chosen
O rder

R EPpll 144 40.79 18. 89 78., 84 3 .0 238.9 132.09 8 , 8

3 157 39.56 25.70 40.18 3.0 241.05 177.33 8 , 8

4 183 45.62 27.41 58.13 3 .0 277.03 187.80 8 , 8

REPÇ21 167 38.44 11.50 186.23 3 .0 240.53 43.00 8 , 8

2 2 0 0 60.05 28.45 106.62 3 .0 338.85 193.44 8 , 8

4 163 55,66 15.55 199.90 3 .0 299.35 95.49 8 , 8

5 189 70.46 19.40 238.19 3 .0 361.77 1 2 2 . 0 0 8 , 8

REPÇ71 126 37. 8 8 18.70 60.51 3 .0 218.07 133.13 8 , 8

2 129 55.13 28.38 57.03 3.0 268.35 186.70 .. 8 , 8

3 131 44.76 . 25.14 48.00 3 .0 ■ 243.02 171.45 8 , 8

4 128 31.72 22.57 24.32 3 .0 196.61 157.05 . 8 , 8

REP# 81 128 15.67 11.92 18. 8 8 3.0 106.35 75.34 8 , 8

2 135 19.10 15.36 15.46 3 .0 131.04 105.62 8 , 8

3 145 33.64 F .M . - 3 .0
4 157 54.17 35.13 40.38 3 .0 290.40 226.41 8 , 8

.. REP# 91 148 27.51 18.49 34.15 3.0 182.90 128.09 8 , 8

2 153 63.23 39.95 42.25 3 .0 310.92 244.67 8 , 8

3 153 37.08 22.32 47.94 3.0 229.26 155.60 8 , 8

4" 155 43.90 27.21 45.08 3 .0 256,26 186.12 8 , 8

REP 111 136 71.16 55.70 17.76 3 .0 309.79 280.48 8 , 8

2 146 57.02 38.33 33.64 3 .0 288.99 234.99 8 , 8

3 148 80.34 56.76 29.08 3.0 341.51 294.09 8 , 8

4 142 64.85 33.17 35.64 3 .0 303.61 212.41 8 , 8

REP 121 143 37.30 24.15 36.75 3 .0 225.57 167.41 8 , 8

2 146 78.61 45.77 49.51 3 .0 335.87 260.89 8 , 8

3 151 154.39 50. 91 145.3 3.0 443.80 280.27 8 , 8

4 162 88.50 40.10 92.94 3.0 373.71 249.47 8 , 8

REP 141 135 35.81 23.42 33.59 3.0 215.89 162.57 8 , 8

2 147 27.75 16.50 47.38 3.0 184.02 111.59 8 , 8

3 160 43.56 23.34 65.84 3.0 257.81 161.98 8 , 8

4 167 33.55 22.36 39.78 3.0 217.81 154.05 8 , 8

REP 151 151 44.36 29.01 37. 83 3 .0 255.48 195.35 8 , 8

2 149 52.33 47.97 6.41 3.0 278.86 269. 89 8 , 8

3 144 27.06 20.47 21.89 3.0 179.85 143.66 8 , 8

4 142 38.15 32.10 12.62 3 .0 228.28 207.76 8 , 8

REP 181 144 34.03 19. 83 48.69 3.0 212.85 139.08 8 , 8

2 171 41.30 23.00 64.84 3.0 254.23 160.44 8 , 8

3 158 48.18 2 1 . 1 1 96.17 3.0 272.65 146.27 8 , 8

4 154 42.64 15.69 125:39 3 .0 251.19 

continued .

101.23 8 , 8
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Table 7.5

MODEL ORDER TESTS

Reproducibility Data cont'd.

F ile N f 6 - » 8 F 6 - ^ A ie ,
6

AlCg Chosen
ord er

REP191 142 24.41 12.95 59.29 3.0 164.86 78. 85 8 , 8

2 147 37.26 20.09 59.40 3.0 227.33 140.53 8 , 8

3 161 50.52 21.09 106.75 ■ 3 .0 282.21 145.56 8 , 8  •
4 153 48.34 13.92 179.27 3 .0 269.83 83.36 8 , 8

REP201 115 20.19 9.69 117.03 3 .0 179.93 57.80 8 , 8

2 138 26.69 13.28 65.63 3.0 176.82 84.50 8 , 8

3 118 12.25 8 . 0 2 29.00 3 .0 79.52 33.53 8 , 8

4 143 20.69 1 2 . 0 2 48.68 3.0 141.29 67.63 8 , 8
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also  resu lted  in a sm alle r value of Akaikes c rite rio n . Notice that these 

te s t re su lts  a re  m ore powerful s ta tistica lly  than those obtained in the 

validation data. In fac t, fo r the F -ra tio  te s t the in c rease  in model o rd er 

was s till significant in the sam e num ber of cases a t the 1 % significance 

level.

These model o rd e r re su lts  a re  also confirm ed by te s ts  on the 

independence of the res id u als  which a re  sum m arised in Table 7 . 6 . For the 

six p a ram ete r model the residuals in every  case a re  co rre la ted , both on 

the b asis  of the te s t  on the num ber of runs and on the num ber of points 

outside the 2 6 “ lim it. However, for the eig^t p a ram ete r re su lts  only 2/47 

re su lts  appear to be co rre la ted  on the b asis  of both of these  te s ts . This 

tends to suggest the eig^t p a ram ete r model is adequate. Typical fits  

obtained using the six and eight p a ram ete r m odels on file  REP021 a re  shown 

in F igures 7. 8  and 7 .9  respectively .

The new experim ents w ere found to re su lt in identifiability 

of the model p a ram ete rs  being increased in com parison with the e a r lie r  

validation experim ents, as was hoped fo r. F or exam ple, consider the 

following typical p a ram ete r co rre la tion  m atrix  R obtained for the eig^it 

p a ram ete r fit to file REP021 which is  shown below.

R =

1

1 ^

noise model p a ram ete rs

0.53 1 determ in istic  model p a ram ete rs
-0.027 -0.029 1 1

-0.065 0.080 -0.43 1 Sym m etric
0.047 0.031 1 0.036 0.067 1

- 0 . 2 2 -0.070 i - 0 . 2 0 0.42 -0.017 1
0.013 -0.025 1 0 . 0 2 1 -0.15 - 0 . 0 1 0  -0.018 1

0.057 +0.038 , -0.54 0 . 2 0 -0 .20  -0.005 -0.31



-222 -

Table 7 . 6  

Reproducibility Data

T ests  On Independence of Residuals

6  PAR LEAST SQUARES 8  PAR MAXIMUM LIKELIHOOD

FILE N o.o fruns

No. of points 
outside lé  
lim it for C o rre ­ N o.o fruns

No. of points 
outside 16 
lim it for C o rre ­

te s t value A OF lated te s t value ACF lated

REPOll -4.900 10/30 Y -1.874 7/30 N
3 -5.109 10/30 Y 0.346 8/30 N
4 -6.498 . 10/30 Y -0.527 ' 5/30 N

REP#21 -7.504. 10/30 Y -0.151 .5 /3 0 N
2 -7.017 10/30 ■ Y -0.694 6/30 N
4 -7.351 10/30 . Y .1.262 7/30 N
5 -9.321 10/30 Y -0.729 7/30 N

REP071 -7.245 10/30 Y -0.064 9/30 N
2 -5 .400 10/30 Y -0.587 7/30 N
3 -5.084 9/30 Y 0.375 9/30 N
4 -4.171 10/30 Y -0.619 8/30 N

REPO 81 -5.198 10/30 Y 0.278 8/30 N
2

3
4

-3.728 
-6.085 
- 6 .333

10/30
8/30
9/30

Y
Y/N
Y -1.526 5/30 N

REPO 91 -7.340 10/30 Y -1.064 9/30 N
2 -7.534 10/30 Y -0.969 4/30 N
3 -5.029 10/30 Y - 0 . 1 2 0 5/30 N
4 - 6 . 2 1 0 10/30 Y -1.395 6/30 N

REFILL -6.187 1 0 Y -4.537 7/30 N/Y
2 -5.054 1 0 Y 1.119 9/30 N
3 -6.515 1 0 Y -2.513 11/30 Y
4 -5. 800 1 0 Y -0.243 8/30 N

REP121 -5.692 1 0 Y 1.059 9/30 N
2 -7.282 1 0 Y -1.546 12/30 Y/N
3 -6.203 1 0

y 0.654 3/30 N
4 -7.141 1 0 Y -1.017 3/30 N

REP141 -6.059 1 0 Y -2.418 5/30 Y/N
2 -6.277 1 0 Y -2.313 11/30 Y
3 -7.186 1 0 Y -1.664 4/30 N
4 -4. 812 1 0 Y -1.951 8/30 N

REP151 -6.585 1 0 Y -1.496 3/30 N
2 -5.582 1 0 Y -2.925 6/30 Y/N
3 -3.260 9 Y -0.251 4/30 N
4 -2.777 1 0 Y -1.346 8/30 N

con tinued ....................
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Table 7 . 6  

Reproducibility Data 

T ests  on Xndependence of R esiduals cont'd.

6  PAR LEAST SQUARES 8  PAR MAXIMUM LIKELIHOOD

No. of points No. of points
FILE No. of runs outside l 2 C o rre ­ N o .o fru n s outside 1 @ C o rre ­

te s t value lim it fo r 
ACF

lated te s t value lim it fo r 
ACF

lated

REPI 81 -5.041 10/30 Y -0.983 2/30 N
2 , -6.898 10/30 • Y -0. 920 6/30 N
3 -7.419 10/30 Y -0.168 5/30 N
4 -7.326 10/30 Y 1.134 9/30 N

REP191 -4.426 10/30 Y 0.087 7/30 N
2 -6.952 10/30 Y -1.146 7/30 N
3 -7.725 10/30 Y -0.316 6/30 N
4 -8.598 10/30 Y -1.207 9/30 N

REP201 -6.655 10/30 Y -1.483 10/30 N
2 -6 .750 10/30 Y 0.259 6/30 N
3 -4. 900 10/30 ' Y -1.504 10/30 N
4 -6.839 10/30 Y -0.963 3/30 N



- 224 -

FIT FOR FILE REP021.PRO USING 'NOLLS'

45.5687

CD

32.t 463
166BREATH NO.0

MEAN E / 1 MODEL OUTPUT.

45.9254

32.2963
BREATH NO. 1660

MEAN E /1 SYSTEM OUTPUT

1 .6035

1.1708
0 166BREATH NO.

ERRORC MODEL-DATA ).

-0.4819
166DELAY.0

AUTO-CORRELATION OF RESIDUALS

F I G U R E  7 6
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FIT FOR FILE REP021.PRO USING 'MAXL'

45.4834

32.0784
166BREATH NO.0

MEAN E/T MODEL OUTPUT.

1.6303

.2822
BREATH NO.0 166

DETERMINISTIC ERROR

0.7302

0.76
BREATH NO.0 166
RESIDUALS.

0 166DELAY.
AUTO-CORRELATION OF RESIDUALS

FI GURE 7*9
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Notice that the la rg e  M /  interaction prevalent in the e a r lie r  

validation re su lts  has been reduced. M ore im portantly, the corre la tion  

of Q with the other model p a ram ete rs , noteably the initial conditions P^(0) 

and P™ (0) have also been m arkedly reduced. The noise model p a ram ete rs  

a re  again independent, of the determ in istic  model p a ram ete rs  as expected.

We will now discuss the reproducibility of the estim ates in 

com parison with that obtained from  the validation data. This is ,  a fter a ll, 

the m atte r of p rim e concern. These re su lts  a re  given in Table 7 .7 .

Although these re su lts  indicate that the observed sam ple variances s till 

cannot attain  the C ram er-R ao low er bound they a re  s till extrem ely encouraging 

as  they b ea r out the p redicted  in c rease  in reproducibility  of the non-invasive 

card iac  output estim ation technique by going to th is new form  of experim ent. 

Notice that the reproducibility  of a ll the estim ates has been m arkedly improved 

in com parison with previous re su lts  (and that of M and especially  so).

The average reproducibility  of Q from  these studies was found to be 6.2% 

Recall the average reproducibility  of Q from  the validation experim ents 

(from Chapter 4) was 12.2% and that from  the dye dilution estim ates them ­

selves was only 6 . 8 %. Thus, on the basis  of this com parison the ultim ate 

a ttrac tiveness of the new form  of experim ent begins to look very  prom ising. 

Notice from  the 12 se ts  of resu lts  that the Q reproducibility  

is frequently b e tte r than 5%, However, 2 se ts  of runs REPO 8  and REP 15 

a re  ra th e r disappointing and tend to m ar the overall p ic tu re  which is  otherw ise 

much b e tte r. This tended to suggest that these p a rticu la r re su lts  might be 

a b it dubious in som e way.

A significant facto r concerning these 2  da tase ts  is  that they 

w ere both carried  out on the sam e (female) subject, (each on a different 

afternoon). In addition, these w ere the only two se ts  of runs in which
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Table 7 .7  

Reproducibility Data 

A verage Predicted V ariances vs Observed Sample V ariances

DATASET Q VA M V t c

REPÇfl predicted 0 . 2 1 0 . 1 0 4 . 4 x 10:3 0.24
actual 0.15 0.08 7.7  X 10 0.28
CV (%) 2 . 2 2 . 8 2 . 6 7 .9

REPÇf2 predicted 0.26 0.13 5.6  X 10 q 0.30
actual 0.30 0.30 9 . 8 x  10 0.55
CV (%) 5.1 1 0 , 8 4 .0 16.0

REPÇ7 predicted 0.35 0.23 3.5 X 10"3 0 .7
actual 0.30 0.35 8 . 2 .x lO"^ • 0.5
CV <%) 4 .8 1 0 . 2 3.4

-3
11.3

REPpS predicted 0.24 0.17 2 . Ox 1 0  q 0.65
actual 0.69 0,53 6 . 6 x 1 0 0.48
CV (%) 12.3 17.1 3.1

-3
1 0 . 8

REPÇ9 predicted 0.36 0.17 3 .3  X 10 ^ 0 . 2 2

actual 0.60 0.37 10.4 X 10 0.42
CV <%) 1 0 . 2 11.3 5.1 15.8

R E P U predicted 0.30 0.18 3 . 5 x 1 0 ' ^ 0.16
actual 0.25 0.19 14.9 X 10 0.34
CV(%) 4.6 6 . 0 7.4 13.6

REP 12 predicted 0.35 0.16 4 .5  X 1 0  ^ 0.29
actual 0.16 0.33 12.5 X lO"^ 0.65
CV (%) 2 .3 10.4 5 .1 19.4

REP14 predicted 0.16 0.09 1 . 8 x 1 0 " q 0 . 2 2

actual 0 . 2 2 0.24 7 .5 X lO"^ 0.24

REP 15

CV (%) 4 ,0 11.3 3 .8
•*3

6.4

predicted 0.25 0 . 1 2 2 . 0 x 1 0  q 0.27
actual 1.08 0.58 7 . 6 x  10 0.38
CV (%) 16.4 16.7 3.6 9.2

REP 18 pred icted 0.31 0 . 1 1 4 .0X 10"3 0.13
actual 0.37 0.43 14 X 10"3 0.15
CV (%) 5 .4 1 2 . 1 5.2

~3
6 .3

REP 19 predicted 0.45 0.18 4 .3  X 10 :: 0.26
actual 0.31 0.28 6.1 X 10 0,26
CV (%) 4.2 7 .8 2 . 2 8.3

REP2S3 predicted 0 . 2 1 0 . 1 2 1 . 9 x 0.36
actual 0.18 0.14 5 .4  X 10 0.34
CV (%) 

Average

3.2 5 . 6 3.1 8 .5

CV<%) 6 . 2 1 0 . 1 - 4 .1 1 1 . 1
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th is  p a rticu la r subject partic ipated .

F u rth er scrutiny of these p a rticu la r re su lts  yield a very  

in teresting  trend . In both se ts  of files the estim ate for the f ir s t  run  is  quite 

h i ^  and successive estim ates into the afternoon a re  all successively  sm alle r. 

The chances of th is  being a purely  random  phenomenon a re  felt to be rem ote. 

R ather it is  suspected that th is is  a tru e  biological varia tion  which is being 

observed (i. e. th is  is  a natural t r a i t  of the p a rticu la r subject who was not in 

a tru e  basal state  throughout the course of the runs). In re tro sp e c t, this 

shows up a disadvantage of not having carried  out dye c ro ss  com parisons 

since th is phenomenon could have been detected and hence confirmed by th is 

m eans.

One of the rogue datafiles REPO81 was fu rth er investigated by 

way of some stationarity  te s ts . The re su lts  obtained by carry ing  out separa te  

estim ations over 0-6 m ins and 4-10 m ins of the experim ent for th is  file and 

two o ther files chosen at random from  the re s t  of the files  w ere com pared. 

These a re  presented  in Table 7. 8 . This analysis also had the double 

advantage of allowing the stationarity  of the estim ates in  general to be checked 

fo r the form  of experim ent used. (Recall in section 7 .4  of th is  c h u te r  

some w orry  was expressed  in te rm s  of such a long period of CO^ breathing 

increasing  Q directly).

F o r the two files chosen at random , REPO ll and REP 121 the 

two se ts  of estim ates a rg ree  reasonably well with each other and with the 

estim ates obtained from  fitting over the whole file , (apart, of cou rse , from

the estim ates of P . (0) and Prp (0) which one would expect to be different).A

The different estim ates a re  certain ly  well within the 95% confidence distances 

of each o ther. Stationarity can therefore  safely be assum ed in these cases
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and i t  is  believed on th is  b asis  in the cases of m ost of the re s t  of the data 

files . However, in con trast fo r the file REP081 the estim ates obtained 

over each half of the data a re  quite different. That is , the estim ate  over 

the f ir s t  half of the data is  m arkedly la rg e r from  that obtained over the 

second. This therefo re  confirm s e a r lie r  suspicions about non-stationarity  

of the estim ates obtained on th is p a rticu la r subject.

F u rth er tem poral convergence re su lts  have been obtained by 

successively  estim ating models over 2, 4, 6  , 8  and 10 m inutes of the data 

fo r file REPO81 and file  REP 121 fo r com parison. These a re  given in Table 

7. 9. This shows estim ates of Q over successive portions of file REPO 81 

monotonically decrease  whilts those over REP 121 tend to a steady value.

The re su lts  in Table 7 .9  for REP121 tend to suggest that 6  mins 

is a long enough observation tim e for adequate estim ation of Q and perhaps 

th is should be borne in mind fo r the future definitive validation experim ents.

In conclusion, from  the above discussion it is  felt there  a re  

reasonable grounds for the card iac  output reproducib ilities for data se ts  

REPOS and REP15 to be honourably discounted. On th is  b a s is , o scu la tin g  

a value for the average reproducibility  over the r e s t  of the filese ts  re su lts  

in a value of 4 . 6 %, that is ,  b e tte r than the reproducibility  of the dye dilution 

re su lts  from  the validation data.
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CHAPTER 8

DESIGN OF IDENTIFICATION EXPERIMENTS TO FACILITATE 

■ d is c r im in a t io n  BETWEEN HOMOGENEOUS AND 

INHOMOGENEOUS LUNG MODELS - A SIMULATION STUDY .



- 233 -

8 .1________ Introduction

To the people of the world today, the crippling re sp ira to ry  

d iso rders  of tuberculosis and pneumonia a re  no longer the g rea t dread they 

once w ere to th e ir  p red ecesso rs  of the la te r  19th and early  20th century. 

N evertheless, pulm onary d iseases a re  still a m ajor cause of adult m orbidity. 

The nature of the m ore common re sp ira to ry  d iso rders  a re  illu stra ted  

schem atically in F ig . 8 . 1  in re la tion  to a single conducting airw ay with 

term inating  alveolus.

Although the pathology of these d iseases may a ll be different in 

term 's of im pairm ent of norm al lung function, these d iso rd e rs  can be 

conceptualised as resu lting  in two basic  effects. These a re  the m aldistribution 

of ventilation with resp ec t to perfusion (blood flow) in the lung and /o r the 

opposite. F or exam ple, in a te lec ta s is , blood is perfusing alveolar regions 

which a re  not being ventilated. This 'wasted blood flow' is  known as 'venous 

adm ixture ' o r 'shunt*. A lternatively, oedema re su lts  in ventilation being 

supplied to a portion of the lung which is  not being adequately perfused, This 

is 'wasted ventilation ' and constitutes a para lle l o r  'a lveo lar dead space' (75, 

221). In fact, these  inhomogeneities exist even in the norm al sub jec t, e .g . 

the s tp ra c la v ic a r regions of the lung where the p re s su re  in the pulmonary 

a rte rio le s  is  le s s  than atm ospheric resu lting  in collapse in th is  region; th is 

is in effect alveolar deadspace. A lso, p a rt of the bronchial flow together 

with the venae cordis m inim ae of the left heart constitute a shunt. However, 

inevitably the effect of inhomogeneity is  m ore pronounced in pathological 

conditions.

It can be shown that the p resence of significant degrees of venous 

adm ixture o r alveolar deadspace has a deleterious effect on the efficiency of gas
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tran sp o rt in the lungs. (For a m ore detailed exposition of th is  see West 

(294), Chapter 4.) This m eans that, in a resting  state  a chronic bronchitic 

for exam ple, m ust expend m ore energy to m aintain adequate blood gas levels 

than the equivalent person  with norm al lung function.

M ost of these d iseases a re  irrev e rs ib le  in that tissu e  once

destroyed cannot be re s to red . However, they can be a rre s te d  and the

symptoms at le a s t tem porarily  relieved given an early  diagnosis. Thus, in

th is re sp ec t, a sensitive te s t of pulm onary function suitable for m ass  screening

purposes would be an im m ensely useful clinical tool. Although radioactive
* ■ • •

tra c e r  experim ents (20, 209, 295) have yielded very  useful re su lts  on 

distributions of ventilation and blood flow in the lungs, unfortunately they a re  

not en tire ly  suitable fo r th is purpose.

Thus, having identified the need for a sim ple technique for early  

detection of lung inhomogeneity, th is  chapter explores one approach to this 

problem  via the use of m athem atical models and identification techniques.

In the discussion above we have im plicitly in ferred  th ree  types 

of s tru c tu re  in the d iseased lung (alveolar dead space, shunt and ideal gas 

exchanging a rea ). T herefore , parsim onious models of such a lung m ust also 

re flec t these th ree  basic  facets. Thus, for th is purpose an inhomogeneous 

in e rt gas model is  used,w hich is a varian t of the form  of dynamic models with 

tim e-vary ing  ventilation described in Chapter 2. The b asis  of such a model 

is outlined by Pack (228) and is in fact a dynamic version  of the c lassic  steady 

state  model f ir s t  suggested by Riley and Cournand (245, 246), It was decided 

to use an in e rt gas model in th is  work to aleviate difficulties with the 

m athem atical com plications of the o r CO^ dissociation curves (see Chapter 2) 

and subsequently simplifying the model by avoiding the need to include a 

m etabolic te rm  in the equations.
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Although the model itse lf is not orig inal, the idea behind its 

u tilisation in the proposed new te s t of pulmonary function is felt to be novel.

The new technique re lie s  on using an extension of the design techniques 

d iscussed in Chapter 7 to evolve dynamic experim ents which reso lve the 

am biguities between the homogeneous and inhomogeneous gas exchange 

m odels. Thus, when each of these models a re  fitted in tu rn  to the resu ltan t 

patient data from  these experim ents and a te st of model s tru c tu re  (see 

Chapter 4) used to d iscern  which model is  appropriate  to the cu rren t patient 

data, th is  s tru c tu re  te s t will be rendered optim ally powerful and hence hope­

fully very  sensitive.

The method as well as being a te st of model s tru c tu re  also 

p e rm its  quantitive assessm en t of the degree of inhomogeneity in te rm s of 

the volume of the a lveolar deadspace. • However, care  has to be taken as to 

how this quantity is in terpre ted  as  it is  conceptual ra th e r  than anything physical 

(i. e. the lung is in re a lity  a continuum of different com partm ents (alveoli) 

with a corresponding continuous distribution of V/Q ra tio s .) In com parison,

our model effectively assum es th is struc tu re  to be lumped into th ree  com part- 
• <»

m ents with V/Q ra tio s  of 0, 1  and infinity. In clinical te rm s  th is is  not 

n ecessa rily  disadvantageous since the standard steady-sta te  te s ts  of pulm onary 

index (e .g . (119) ) a re  equally conceptual. All it m eans is  that a period  of 

assim ilation  with the new technique will be n ecessary  before it can be used 

as an effective tool.

This chapter then describes a p re lim inary  theoretical 

investigation of the feasibility  of th is new technique although, unfortunately, 

tim e has not perm itted  any p rac tica l experim ents to be ca rried  out.

In Section 8.2 of th is chapter the published lite ra tu re  on m athe­

m atical m odels describing inhomogeneous lungs and th e ir  application in
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quantitive assessm en t of lung disfunction is reviewed. In section 8 .3  

the inhomogeneous in e rt gas tran sp o rt model is  p resented  and the 

identifiability asp ec ts  of this model a re  discussed in section 8 .4 . Section 8.5 

introduces the necessa ry  extensions of the theory of Chapter 7 to design 

experim ents fo r model s tru c tu re  discrim ination. F inally , in section 8 . 6  

th is  theory  is u tilised  to design an experim ent to d iscrim inate  between the 

homogeneous and inhomogeneous model for a reasonable a p r io r i se t of 

p a ram ete rs  and the im plications of th is a re  discussed.

8.2________ Inhomogeneous Gag T ransport Models Review

Many types of m odels, both dynamic and steady-sta te  have been

used to describe gas tran sp o rt in the lungs in conditions of abnorm ality.

As brie fly  mentioned in the introduction, the f ir s t  significant contribution to

m odelling lung inhomogeneity was the work of Riley and Cournand (246)

(subsequently known as the ’Riley analysis’).

This analysis allowed percentage shunt o r venous adm ixture

( Q shunt /  Q total ) to be calculated from  steady state  m easurem ents of

a r te r ia l and m ean end-expiratory  CO^ p artia l p re s su re s  and percentage

alveolar deadspace ( V , , /  V . ,  , , ) to be calculated from  steady-sta te^ alv d tidal vol

m easurem ents of end-expiratory , mixed veneous and a r te r ia l 

concentrations.

Although the above analysis has been widely used Kelman (172) 

has shown it to be sensitive to m easurem ent e r ro r s .  ( Many of these e r ro r s  

can be traced  to the deleterious assum ptions about ventilation necessitated  by 

the s teady-sta te  an aly sis .)
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Although the th ree  com partm ent concept of Riley and Cournand ■ 

is  a parsim onious rep resen ta tion  of the inhomogeneous lung, many w orkers 

have sought a form  of model corresponding m ore closely to the 'tru e  s ta te  

of na tu re ' (since in  rea lity  the lung corresponds to a continuum of com part­

m ents). Thus, many w orkers have considered the lung as consisting of a 

num ber of com partm ents in p a ra lle l (regional inhomogeneity e .g . (254) ) 

w hilst o thers  have proposed considering the lung as consisting of a num ber 

of com partm ents in se r ie s  (stra tified  inhomogeneity e .g . (260) ).

The 'c o r re c t ' rep resen ta tion  has long been an issue  of p rim e 

contention in the lite ra tu re .

Intuitively, however, it  is  felt (on the b a sis  of a conceptual 

analogy with the case of e lec tric  c ircu its) that every p a ra lle l represen ta tion  

will have a s e r ie s  equivalent and hence the above po larisa tion  is  unnecessary  

since one will be unable to differentiate between the competing represen ta tions 

anyway.

Recently, W agner and Evans (289) have shown, fo r the specific 

case  of two com partm ent steady state  m odels, that w here se r ie s  gas exchange 

o ccu rs, equivalent pa ra lle l analysis is  also possib le . Thus, th is tends to 

support to some extent the above hypothesis.

M ost of the inhomogeneous modelling work has focussed on inert

gas m odels (perhaps because the subsequent analysis is sim plified fo r cases

which obey H enry 's Law). F arh i (98) derived form ulae describ ing  the

elim ination of inert gas in an individual pulm onary unit in the steady sta te .

His analysis showed that the reten tion  (the ra tio  of concentration in the a r te r ia l

blood to that in the mixed venous blood) and excretion (the ra tio  of concentration

in expired a ir  to that in mixed venous blood) was dependent only on the ra tio  of
•  «

ventilation to perfusion in the pulm onary unit ( V /  Q ) and the solubility of the
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inert gas used ( ^  ) .

Based on th is analysis Farh i and Yokoyama (103, 305) describe 

a method fo r determ ining the V/Q distribution in a two com partm ent model 

using two in e rt gases and show that in such a technique the solubility of the 

gases m ust be carefully  chosen.

M ore recen tly , again using F a rh i's  equations (98), Wagner 

and his associates (292) have described a m ore am bitious technique for 

determ ining the V/Q distribution in a fifty com partm ent model using six inert 

gases with a carefully  chosen range of solubilities. F rom  the six values of 

re ten tion  calculated for each inert gas, a non-linear le a s t squares function 

m inim isation method is used to estim ate the fractional blood flow in each of the 

fifty com partm ents. This method has been used by these w orkers to 

investigate the change in V/Q d istribution during 100% breathing in norm al 

subjects (291) and also  to investigate changes in the d istribution in subjects 

with chronic lung d isease  (290). However, the technique has aroused some 

c ritic ism  in the lite ra tu re  (163, 225, 283, 288) since basically  as form ulated 

it constitutes an undeterm ined m athem atical problem , ( i .e . since we have 50 

pa ram ete rs  and only six m easurem ents the resu ltan t estim ates will therefo re  

be non-unique.) W agner e t al (292), although aware of th is lim itation, in an 

em pirical study of th e ir method w ere able to accurately  recover various 

a rtific ia l distributions and th is  thus led them to conclude that although there  

w ere an infinite num ber of recoverable solutions they w ere all in essence 

very  s im ila r. Olszowka (225) has since shown the folly of th is  claiming 

Wagner et al (292) w ere only able to recover the a rtific ia l d istributions 

because these coincided with the 'm inim al length solutions’ (149). In dynamic 

inhomogenous models it is  no longer appropriate to use ventilation-perfusion
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ra tio  (V/Q ) as the basic  variab le underlying gas exchange in a functional 

pulm onary unit as th is  is  essentially  a steady-sta te  concept (255).

In th is a rea  m ost of the m odels have been developed to quantify 

in e rt gas washout te s ts  which have been used as an index of pulm onary 

function for some y ears  now (119). T herefore , in th is situation it is  necessary  

to describe th is  essen tially  exponential p rocess via som e kind of ra te -v a riab le . 

Although to a control engineer the use of tim e constant (i. e. tim e for the 

p rocess to reach  0.693 of final value) is obvious in th is  context, in the 

re sp ira to ry  physiological lite ra tu re  there  has been a prolification of different 

ra te  variab les . In some work the exponential p rocess  is  considered as a 

function of b rea th  num ber (e .g . ra te  variab les alveolar dilution ra tio  - see 

Fow ler et al (120 ), o r specific tidal volume - Gomez (132) ), w hilst in 

o thers as a function of tim e (e .g . ra te  variab les turnover ra te  - see Robertson 

et al (247) o r half-tim e Van Liew (286) ). However, the work of Rossing 

(250) has resolved th is ambiguity by showing m ost of these ra te  variab les 

can be equivalenced if both tidal volume and breathing frequency a re  constant 

(which is  the usual assum ption in m ost of these analyses). V arious form s 

of distribution function can be used to combine any of the above represen tations 

of individual pulm onary units into a description of the overall p ro cess  taking 

place in the lung (the units a re  usually thought of as being in pa ra lle l although 

as discussed e a r lie r , th is is  m erely  conceptual).

In the d isc re te  weighting function approach the lung is viewed 

as  consisting of a finite num ber of com partm ents (most usually two). Into 

th is category, e .g . fa lls  the work of Fowler et al (120) (2 com partm ents) 

and Hashimoto et al (150) ( 6  com partm ents). Mention should also be made of 

the work of B riscoe, Cournand and associates (45) in te rm s  of d iscre te
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com partm ent analysis. These w orkers have applied a two com partm ent 

rep resen ta tion  to the study of d iseased lungs in actual subjects (44, 46). 

Many w orkers have assum ed a continuous distribution function, i .e .  viewing 

the lung as an infinite num ber of wash-out units.

In m athem atical te rm s , the dependence of the wash-out response 

C * (t) on the d istribution function of lung clearance ra te  variab les G ( X )

can be w ritten  in the form
/^oO

G £ (t) = C ^( 0 ) G (X ),e“ ^^ dX 8.1
o

X being the clearance ra te  variable fo r a given functional unit. The aim  

then is obviously to compute G ( X ).

To sim plify the analysis the distribution function is som etim es 

assigned a known analytical form , e .g . Rossing et al (251) assum e a Gamma 

distribution which reduces the subsequent estim ation problem  to finding the 

th ree  p a ram ete rs  of th is distribution.

Nakamura et al (217) have attem pted to estim ate  the distribution 

function G( X ) without recou rse  to assum ing any specific analytical form .

Recognising expression 8 .1  as describing a Laplace integral 

they invert th is  num erically  to obtain G(X ) via the Post-W idder equation 

(236).

This approach has also been used by Okubo et al (224) in  a clinical 

evaluation of the technique applied to differentiate between norm al and abnorm al 

function with resp ec t to patients with suspected obstructive lung d isease and 

Lenfant et al (181) in calculating the distribution function of pulm onary blood 

flow. M ore recen tly , however, Peslin  (236) has cast doubts on the fundamental 

num erical aspects of the method.
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Finally , in a recen t new approach Yamashimo et al (304) 

adm inistered a PRBS input of 100% and c ro ss-co rre la ted  th is with the 

end-exp ira  to r  y concentration in o rd e r to estim ate the im pulse response 

of c learance. They show the f ir s t  and second m om ents of the lung 

clearance distribution function G ( X ) can then be computed by 1st and 2nd. 

o rd e r differentiation of the im pulse response function a t t  = 0. Although 

apparently open to the sam e critic ism s as the technique of Nakamura et al 

(217) these authors propose that th e ir  technique largely  overcom es these 

problem s by working with im pulsive as opposed to o ther form s of output.

8 .3 ________The Dynamic, Inhomogeneous Inert Gas Model

Many of the previous inhomogeneous lung m odels described 

in Section 8 .2 , although m ore natural in te rm s of attem pting to describe 

the underlying gas exchange p ro cess , a re  not rea lly  suitable for identification 

purposes due to th e ir inherent redundancy.

Thus, reco u rse  m ust be made to m odels which, although m ore 

conceptual, functionally describe  the essential facets of the p ro cess  and . 

a lso allow identification techniques to be applied. This section develops 

such a model. The identifiabüity im plications of th is will be investigated 

in the succeeding section.

The proposed inhomogeneous model, as mentioned e a r lie r , was 

inspired by the c lassica l steady state  model of Riley and Cournand (246) and 

is  outlined schem atically  in F ig. 8 .2 . From  this diagram  it is  seen the 

s truc tu re  is  basically  that of the two com partm ent homogeneous model 

described in Chapter 2, but augmented with the addition of an a lveolar dead-
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space com partm ent and a righ t to left shunt ( Qg ) (about which no dynamics 

a re  assum ed).

U tilising the concepts and quantities of Chapter 2 , the system  of 

equations governing th is system  can be w ritten as follows :

a lveolar deaÜ-space compt.

dPAo
%  I T  = S ( l - k ) V ( P -  8 . 2

’ideal' compt.

'effective ' tissue  compt. 

d PTc  .
%  I T "  Q

w here is the volume of the alveolar deadspace com partm ent, k the

fraction  of to tal ventilation distributed to the ideal com partm ent, and

the fraction  of bloodflow distributed tb this same com partm ent (i. e .
* •  /

^ to ta l ” ^1 ^ idea l  ̂  ̂ - k^ ) is  the Ostwald coefficient between

the lungs and blood. As before , is  an effective tissu e  volume re la ted

to the actual physical tissu e  volume by

I
^  (blood-tissues)

T c ~  actual ^  X  (lungs-blood)

The rem aining p a ram ete rs  a re  analogous to those defined in Chapter 2. 

From  the above equations it is  evident the o rd e r of the model has been 

increased  by one from  that of the homogeneous model.
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The assum ptions inherent in the model a re , w here applicable, 

those made fo r the cyclic homogeneous model discussed in Chapter 2, (e. g. 

'plug-flow ' through non-reacting  deadspace, no c ircu lato ry  tim e delays, 

e tc .) .  However, several of these assum ptions requ ire  m odification to be 

applicable to th is  la te s t s tru c tu re . Due to the p resence  of the 'shunt' we 

can no longer assum e equality of a r te r ia l and a lveolar p a rtia l p re s su re s .

The new relationship between these quantities is  given by : -

a lso , the m ean end 'expiratory  pa rtia l p ressue  is modified a s  follows : -

P f P ^ + d - k )  Pa q I  8 .7

w here the sum m ations a re  over the appropriate end-expiratory  phase as 

defined in Chapter 3.

The varia tions of the ideal and alveolar dead space com partm ent 

volumes with tim e a re  taken to vary  with th e ir respective  ventilations as 

follows :

^A < ‘) = ^A ( 0 )+

'■d' '  -AqCO)
V . (t)=  V , + J ( 1  - k ) V d t  8.9

Assum ptions also have to be made about the d istribution of (se ries) dead 

space gas re - in sp ire d ; thus again it is  assum ed dead space gas is  

d istributed to the two alveo lar com partm ents in proportion to th e ir 

ventilation. If it  is  assum ed gas flows through the dead space with no 

mixing, then in phase one of the re sp ira to ry  cycle (see Chapter 2) the gas 

leaving the dead space and entering the alveolar com partm ents w ill be
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P p(t) = k P ^  ( t - Tr ) +  (1 - k ) P  ( t - T  ) 3.10

w here HZ is  the flow dependent tim e delay defined a s  in the case  of the 

homogeneous model by equation 2.32 in Chapter 2 . However, due to the 

fact that the above is  difficult to sim ulate, the dead space pa rtia l p re ssu re  

over phase 1  of the re sp ira to ry  cycle is taken as the constant value equal 

to the flow weighted m ean from  the two alveolar com partm ents over the 

la s t deadspace of the previous expiration.

8-11

&

where t^  is  given by J  j Vg | dt = 8 . 1 2

The inhomogeneous model as described above has thus six p a ram ete rs

( Q, V . , , V . , k , k ) since for inert gases the in itial conditions .
A . 1 13

can (unlike in the case  for and CO^ ) be safely be assum ed a p r io r i to be 

zero . It rem ains to investigate in th is next section whether this constitutes 

a unique p a ram eterisa tion  fo r identification purposes.

8.4 Identifiability of the Inhomogeneous Inert Gas Model

To investigate the identifiability of the inhomogeneous model

described in the previous section it is  necessary  to a rrange the equations

in s ta te-space  form at. Defining P. as state  x , P. as sta te  x„ and
1  A Z

P as state  x the s ta te-space  m a trices  ( A, B, C, D ) based on 
I c  d

equations 8.2 to 8,4 a re  as follows : -
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A = 11

The input m atrix  

B =

0

22

32

23

33 J

8.13

8.14

for sam pling a t mouth m easurem ent m atrix  C ~ T c.^ ' 0 

D = 0and

where 11

22

23

32

33

- ( 1 - k )  V 

^ Ad  

- ( k V +  Xg j ^Q)

X BL ^  Q 
V.

V,

- k ^ Q

8.15

8.16

8.17

8.18

8.19

8.20 

8.21

= ( l “ k ) V 

= ( 1 - k  ̂ )

8.22

8.24

8.23

8.25

as in previous identifiability studies on gas exchange m odels ( c .f .  Chapter 4) 

we assum e constant ventilation, i. e . V = const.

Recall from  sta te  space theory the tran sfe r function of th is system  is  obtained 

from  the m a trices  (A , B, C, D ) as follows : -
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G(S) = c C s I - a ] ' ^ B  = C  adi ( S I - A ) B = N(S) „ , ,
d e t ( S I - A )  D(S)

Due to the arithm etic  complexity th e re  a re  advantages in calculating

ad] (S I - A ) and det (S I - A ) in te rm s  of the state space p a ram ete rs

( a . , a e tc .)  ra th e r  than the in trin sic  model p a ram ete rs  ( Q, V* > V e tc .) .  
11 22 A Aj-̂

If th is is  done, a fte r some arithm etic  labour we obtain the following expressions 

fo r N(S) and D(S),

N(S) = S + or̂  S + «g 8.27

D(S) = S ^ + O f g S + a ,

w here a re  given by

8.28

“ l  = ‘= X ^ + ‘= 2 ^  8.29

“2 ”  ’ "̂ 1  ̂ ^22'"' ^33 *^2'^2  ̂ ^33  ̂ 8-30

“3 ~ *̂ 1  ̂ ®22 ^33 ’ ®23 ^32  ̂ ‘̂ 2 ^2 ̂ 11 ®33 8- 31

“4 = ■< ^ l + ® 2 2 + ^ 3 3 > 8.32

“5 ■ ®22 ■*" ®11 ^33'*' ®22 ®33 '  ^23 ®32  ̂ 8 '3 3

“ 6 = ‘ ^ 1  < ^22 ^33 ■ “23 “32 ) 8 .34

Notice from  the above equations that the param eterisa tion  in te rm s  of the 

sta te  space p a ram ete rs  is  not unique since there  a re  9 sta te  space p a ram ete rs  

and only 6  independent Laplace transfo rm  coefficients. However, by 

aggregating the p a ram ete rs

' 1  ) ^2 >̂ 2 * ^23 ^32 follows — :

c b^ = a 8.35

Cg b^ = b 8.36

®23®32 " 8 .37
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we achieve a unique solution in te rm s of th is  p a ram eterisa tion . This is 

an example of how th is so rt of analysis can be useful in elim inating 

redundancy in th is form  of com partm ental model. Equations 8*29 - 8 .34  

can be w ritten  in te rm s  of the in trin sic  model p a ram ete rs  as follows : -

= ( 1  - k)^ V +  k^ V 8.38

\  ' 'T c - '
,  . f k V k  Q -) f(l - k ) V . k  Q-)

vL v-v: J+ k
A  T c ^  A j 3  T c  j

k V [ '̂ 1 ^ 1

Aj3  L a  (

It m ight appear a t f i r s t  sight that the model p a ram eterisa tion  could be 

assum ed unique since we have six model p a ram ete rs  and six equations.

However, c lo se r scrutiny of the equations above reveals  the p a ram ete rs
% «

k^ and Q to be unidentifiable (i. e . only the product k^ Q can be uniquely

estim ated). Physically th is m eans that neither the degree of shunt nor the

card iac output can be identified from  m easurem ents a t the mouth using th is
•  *

m odel, but only the product k^ Q = Q * which conceptually could be thought 

of as a so rt o f  effective pulm onary blood flow' flowing through the 'ideal' 

alveolar com partm ent. It is  pertinent to enquire if the shunt and total 

card iac output can be decotpled under any circum stances. If it was possible
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to sam ple a r te r ia l gas tensions another tran sfe r function could be obtained

relating  th is quantity to the inspired gas partia l p re s su re . This is obtained
/

by substituting a different m easurem ent m atrix  C into equation 8 . ^ 6  to 

obtain a different G(S). This m easurem ent m atrix  is  given by

c '  = [  0 Cg ]  8.44

w here
c = k, 8.453 1

C4  = (1 - k f  ) . 8.46

a re  obtained from  consideration of equation 8 . 6  e a r l ie r .  If th is  is  done

although the denom inator of the resu ltan t tran sfe r function is  the sam e as

that for sampling at the mouth e a r lie r  we obtain a different num erator N (S) 

given by

N( S) = + Qg S + a  8.47

where in te rm s  of the state  space p a ram eters  we have

“7 = ‘= a ’̂ 2 8 .48

“ s ^ ^̂ 4 ^ 2  ®32 '  8.49

“ 9  = " 3 ‘̂ 2 ^ 1 ^ 3 3 ’ “ l l  ‘=4'^2®32 8.50

A rte ria l sam pling thus contributes th ree  m ore independent equations to the 

system  to be solved in addition to the six given e a r lie r , in te rm s  of the 

in trin sic  model p a ram ete rs  these become

kĵ  k V = 8.51

(1 - k p  k V k i  ,Q ^  ( 1 - k ) V ^  k^ Q = £ïg 

^ T c  %  ^ T c

8.52

k^kV (1  - k) V Q ^ ( l - k ^ k V  k ^ Q = «g

%  %  X

= 8,53
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Inspection of these extra  equations shows if they can be made available 

they can thus allow us to decouple the p a ram ete rs  and Q. Unfortunately, 

at the p resen t moment in tim e, continuous m easurem ent of is  beyond the 

state of the a r t  as fa r  as m ass spectrom etry  is concerned. Thus, 

disappointingly we will be unable to use this model to decouple shunt and 

cardiac output until th is m easurem ent becom es available, i. e. th is leaves 

us with a f ive p e r model with k^Q reparam aterised  as Q* = k^ Q .

Having investigated the s tru c tu ra l identifiability of the m odel, it is  now 

appropriate  to explore the degree of identifiability of the m odel. This has 

been done using a sim ulation program m e ( LUNG 4) analagous to those 

described for the homogeneous model in e a r lie r  chapters which assum es 

sinusoidal ventilation.

The inhomogeneous model (assum ing an in e rt gas with solubility 

\  = 2 . 0 )  was driven by a square wave stim ulus. Param eterBJ-i

values and experim ental conditions used w ere :

homogeneous model Q = 5L/M ; V. = 3 L ; Y  = 7 .5  L ;
A  Lq

inhomogeneous model Q = 5L/ M ; V. = 1 .5L ; V. = 1.5JL ; k = 0 .5  ;
A  A p )

= 7 .5  L.

experim ental conditions w ere : - 
«
V = 8  L/M ; = 0.2 L; breathing freq . = 15 b r /m in  : 

no. of b rea ths = 130 ; C ^ { %  ) =  7 %  ; *^/2 = 20 b rea th s.

The sensitiv ity  functions corresponding to th is input a re  shown in Fig. 8 .3 . 

Sensitivities to Q, a re  s im ila r to those of the homogeneous model.

It was found variation of the sensitivity function for flow fraction  k was 

highly dependent on the value of k used ; much m ore so than the other
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sensitiv ities . This is illu stra ted  in F igure 8.4 .

Extensive sim ulation studies of this five p a ram ete r inhomogeneous

gas exchange model w ere conducted. From  these it becam e apparent that

although the model was identifiable problem s of determ inancy (in the sense

defined by Brown and Godfrey (44) ) existed. For different se ts  of p a ram ete r

values and sim ulated experim ental conditions la rge  corre la tions between

various p a ram ete rs  w ere a frequent occurrence (often, but not always

Tbetween k, ) and the condition number of X X ( X being the ,

sensitiv ity  m atrix) was consistently la rg e , i . e .  for the experim ent and 

param ate r values given above . •

"^max = 5 .3  X 10^ 8.54
\ min

Thus, on the basis  of these observations it was decided to attem pt to reduce 

the ill -conditioned nature  of the model by attem pting to find som e relationship 

between the p a ram ete rs  which allows us to reduce th e ir num ber ; the object 

behind th is to make the model a b e tte r proposition for subsequent identification 

s tu d ie s .

One way in which th is can be done is to assum e ventilation is 

d istributed to the two alveolar com partm ents in proportion to th e ir  respective 

volum es, i .e .

%  ■ ( R )

This allows rep aram ate risa tio n  of k ( and (1-k) ) in te rm s  of and e .g . 

V ,
k = , 7 ^ .  „  8.56
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t

The nimiber of p a ram e te rs  jS in the model is  thus reduced from  five to

. # T
four by th is m echam ism . ( p  -  ( q  » ). The above

assum ption is not altogether unreasonable physiologically and in fact has 

frequently been m ade by other w orkers in this a rea  (150). With th is r e ­

p aram aterisa tion  the set of non-linear equations (equations 8.38 - 8.43 )

defining the relationship  between the coefficients of the model input/output 

tran sfe r function and its  in trin sic  p a ram ete rs  become :

I V  =
= O'. 8.57

^  = O'. 8.59

-  ,  1 1 2 '  8.61

From  consideration of these equations it does not appear as if the s truc tu ra l 

identifiability is untowardly affected by the introduction of the modified model
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p aram terisa tion . The new param eterisa tion , however, does explicitly

change, as would be expected, the form  of the sensitiv ity  functions for

and V. although the effect on the other sensitivity functions is m inim al.
Ad

These a re  shown in F igure 8 .5 . The variation of the sensitiv ities functions

for V . and V . with d istribution of ventilation to the two alveolar com part-A Ad

m ents ( i .e . with partitioning of a to tal conceptual lung volume between

and V ,) is  shown in F igures 8 . 6  and 8 .7 . This shows the g rea t dependence

of these senstivity  functions on a p r io r i pa ram ate r values. By reducing the

num ber of p a ram ete rs  from  five to four in the m odel, it  was found the il l-

conditioned nature of the sensitiv ity  m atrix  was m arkedly reduced, i .e .  for

the equivalent conditions defined for the five p a ram ete r model above the

Tcondition num ber of X X fo r the four param eter model was

^ m ax  ) = 1 . 3 x 1 0 ^ , 8.63
mm

Thus the condition num ber is reduced by a factor of g re a te r  than ten by 

postulating th is  new model s tru c tu re . Functionally, th e re fo re , provided 

the assum ptions a re  reasonable, th is la tte r  model rep resen ts  a b e tte r 

candidate for identification.

8 .5  Experim ent Design for S tructure D iscrim ination - Theory

In the introductory section of th is chapter it was mentioned that the 

inhomogeneous gas tran sp o rt model was to be used In a technique to 

distinguish between norm al and abnorm al pulmonary function a t a clinically 

useful stage. Central to th is is the concept of designing identification
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experim ents to optim ally discrim inate in the presence  of noise between the 

homogeneous and inhomogeneous gas exchange models ; both of which a re  

competing to describe  the underlying data generating m echanism  in any 

given patient. Having designed the identification experim ent it is  envisaged 

some appropriate te s t of model struc tu re  is used to decide the appropriate 

model. Such techniques may for example be those described in Chapter 4, 

o r  the likelihood ra tio  te s t to be sujpsequently described.

The design of experim ents for d iscrim inating among alternative 

model s tru c tu res  can be viewed as an extension of the methods discussed 

in Chapter 7 concerned with the design of experim ents fo r accura te  p a ram eter 

estim ation within a model of specified s tru c tu re . The s tru c tu re  discrim ination 

problem  is  s till in fact an active re sea rc h  a rea  (predominantly in the 

s ta tis tica l lite ra tu re  (4, 17, 18, 105 ))and no unified theory yet ex ists . 

Correspondingly reported  applications a re  sparse  with the work of Swanson 

(275) in the re sp ira to ry  control modelling a rea  and Koopmans (178) who 

d iscusses the problem  in re la tion  to economic system s, being exceptions.

T heoretically , the la rg e s t b a r r ie r  to p ro g ress  lie s  in  difficulty in 

defining a meaningful c rite rio n . A num ber of different c r ite r ia  have been 

proposed.

Lindley and Smith (186) p resented  a c rite rio n  based on Bayesian 

p rinc ip les . Box and Hill (38) proposed an inform ation- theoretical approach 

where the s tru c tu ra l design problem  is trea ted  analogously to that of signal 

discrim ination in communication theory. In Beck and A rnold, Chapter 8  (22), 

a determ inistic  approach to the problem  is  outlined. They derive  different 

c r ite ria  from  sensitivity  p rincip les dependent on which competing model, if 

any, is  assum ed a p rio r i to be c o rrec t. As is shown by Atkinson (16), 

under certa in  conditions such c r ite r ia  can be given s ta tis tica l in terp re ta tions.
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In the context of the p resen t study we shall adopt a hypothesis 

testing  approach. As we shall see , such a form ulation has, for our purposes, 

certa in  advantages and leads to the derivation of a c rite rio n  with a m ore 

satisfactory  b a s is . The approach is  basically  that of Kabaila (1 6 6 ) as 

described in (137). However, before developing the proposed discrim ination 

c rite rio n  it  is  necessa ry  to review  briefly  the c lassica l Neyman.-Pearson 

theory of hypothesis testing  (218).

This theory is concerned -with two hypotheses; the f ir s t  called the 

null hypothesis Ho, which is that of p rim ary  in te re st and the second the 

complement of Ho which is  term ed the alternative hypothesis HA. A 

s ta tistica l te s t  of Ho against the a lternative HA partitions the sam ple 

space into a region of acceptance of Ho denoted by the se t S and its  

com plem entary region, a region of re jection  of Ho which we will denote by S. 

The la tte r  is usually known as the c ritica l reg ion .

In such a te s t we could commit two types of e r ro r s .

Type I - Reject. H^ when it is  in fact true  - the probability  of this 

is given by « = prob ( S /  Ho ).

Type II - A ccept Ho when it is  in fact false - the probability 

of th is being jS = prob ( S /  HA ) = 1  - prob ( S /  H A ).

The quantity a  is  called the significance level of the te s t and 1  - jS the 

power function of the te s t.

A te s t whose e r ro r  probabilities a  and jS a re  as sm all as  possible 

is c learly  desirab le . However, equally c learly  we cannot chose S in 

such a way that each of these probabilities is sim ultaneously m inim ised.

This conflict is  resolved by recognising in that many circum stances our 

attitude to the hypotheses Ho and HA a re  different. We a re  often concerned 

with the question as to whether there  is sufficient evidence to re je c t Ho.
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In th is re sp ec t a Type I e r ro r  may be looked upon as m ore im portant than a 

Type n . This was explicitly recognised by Neyman and Pearson  who proposed 

we should control the probability  of a Type I e r ro r  (i. e . fix or ) then look for 

a te s t fo r which a Type II e r ro r  is m inim ised, (i. e. the power function ( 1  - )3) 

is  m axim ised). A te s t  with useful p ro p ertie s  in this re sp ec t is  the Likelihood 

Ratio te s t (261, Ch. 6 /  7 .)  given as follows. Suppose the observations 

come from  one of a (broad) c lass  of distributions and we want to te s t the 

hypothesis Ho that they come from  a distribution belonging to a particu la r 

su b -c lass . To te s t th is  using the Likelihood Ratio te s t we form  the Likelihood 

ra tio  X (y ) by using as the num erator the maximum of Likelihood over the 

broad c lass  and as the denominator the maximum of the Likelihood over the 

su b -c lass . L et p  be the param eterisa tion  of the general distribution and 

le t P ^  be the M.LJE. under Ho and p ^  the M.L^E^under HA respectively .

max prob(y/jzJj^ )
X =   8 . 64

max prob ( y / 0 ^ )

C learly  the sm aller ra tio , the le ss  inclined we a re  to accept the null

hypothesis Ho on the basis of the given data. The decision ru le  will be :

re je c t Ho if X > \  w here \  is  determ ined so that
a  a

prob ( X > X ^ / H o )  = n 8 * 65

a  being the significance level of the te s t. However, what of the probability 

distribution of X  7  gay the data consists of identical, independently 

d istributed observations and the null hypothesis is  that th e re  a re  ' r '  locally 

independent re s tr ic tio n s  of the form  —

= o  8.66
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betw een the f ir s t  *r’ p a ram ete rs  ( ) of the m ore general d istribution

p aram eterisa tion  ( 0  ) , i. e. jS is  a fixed length vector and jS^ is 

given by

0 .

%

0r  4- 1

0n

P .

P .

8 . 67

Under these  assum ptions it can be shown (261, Ch. 7) that 2 log X (y) is  

distributed according to a ^  ^ distribution on ’r ’ degrees of freedom , i .e .

2 log X (y) converges in law ( o r  probabilistically) to X  (r). In this situation 

the decision procedure given by equation 8.65 reduces to com paring 

2  log X (y) with the value obtained from  the cum ulative OC ^ (r) 

distribution ( k ^  being such that 1 0 0  a  % of the distribution lie s  to the righ t 

of k^ ). We re je c t Ho if 2 log \  (y) >  k^ .

Thus fa r we have been concerned only with the significance level 

of the Likelihood Ratio te s t . To investigate the power of the te s t  it is  necessary  

to consider what happens to the probability distribution of 2  log ( X (y) ) 

under a specific a lternative hypothesis HA, e .g . that the ’true* value of ]3̂  

is  not j3 * .

Under th is  hypothesis (with the sam e conditions prevailing as  in the

discussion above) it transpires that 2 log X (y) is distributed according to a

non-central'X? distribution on *r* degrees of freedom, i .e .  2 log X (y)
/

converges in law to ^ ( s , h ) , with the non-centrality  p a ram ete r h given by
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( |3 ^  - g * )T  8 . 6 8

_ , a
)C  (s ,h  ) can be approxim ated fo r h la rg e  by a norm al distribution with

m ean h and variance 4 h w hilst t h e ^  ^ (r) distribution can be

asym totically approxim ated as a sum of squares o f ' r '  independent zero  m ean,

unit variance norm al va riab les . The probability density functions for

2 log \  (y) under both Ho and HA a re  shown in F igure 8 . 8

Notice that the a rea  of the ^  ^ (r) to the  left of corresponds

' 2

to the significance level of the te s t and that of the )C  (r , h ) to the

le ft of to the power of the te s t . Thus from  th is diagram  we reach  the

conclusion that (for a fixed significance level a  ) the power of the te s t is

re la ted  to the non-centrality  p a ram ete r h, i .e .  the p o v e r of the te s t is

increased  by making h la rg e . This therefo re  allows us to make the im portant

connection between the 'goodness' of a struc tu re  d iscrim ination te s t and the

form  of experim ent used since h i s  a function of the inform ation m atrix  M

and hence of the experim ent design.

Having justified  the concept of m axim ising the power of the te s t

via h , different experim ental design c rite ria  can be suggested based on th is .

F or exam ple, a locally optimum c rite rio n  which m axim ises h for a specific

jS (so called T - optimum criterion) o r a minimax c rite rio n , both of which 
A

a re  d iscussed by Atkinson and Federov (18). However, perhaps the m ost 

useful is  the - optimal c rite rio n  (137 , Ch. 6 ) which is given by

= det M

= det [ M g g l  /d e tT M p
2 2
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P R O B A B I L I T Y  D I S T R I B U T I O N  FOR 2 L 0 G ( X ( y ) )

Under  H

a

J Q

2 l ogWy) )

/ / / a r e a - s i g n i f i c a n c e  level of f e s f .  
W  p o w e r  of  f e s f .

F I G U R E  8 - 8
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Analagous to the D optim al and truncated D optimal design c r ite r ia  for 

accurate  p a ram ete r estim ation discussed in Chapter 7, th is  c rite rio n  is 

invariant of scale  changes in the p a ram ete rs . Also in our application it has 

advantages over the T optimum crite rio n  in requiring  le ss  a p rio r i inform ation 

(i. e. the value of jS^ against which it is  desired  to d iscrim inate; th is is  

generally  unknown initially). Thus in the next section the optimal 

c rite rio n  w ill be u tilised in the context of gas exchange m odelling to 

investigate various s tru c tu re  discrim ination experim ents for differentiation 

between homogeneous and inhomogeneous m odels.

8 . 6  Experim ent Design for S tructure D iscrim ination Between the
Homogeneous and Inhomogeneous Inert Gas Models

This section is  concerned with the design of identification experim ents 

to facilita te  subsequent discrim ination between data fits  to homogeneous and 

inhomogeneous lung models (inhomogeneity being taken as alveolar deadspace 

in th is application).

In section 8 .5  the proposed approach to the s tru c tu re  discrim ination 

experim ent design problem  was outlined and an intuitively reasonable c rite rio n  

function fo r th is purpose developed, based on hypothesis testing  considerations. 

It was also shown that in o rd e r to use the proposed approach, the theory  m akes 

it necessa ry  that the sim pler of the two competing m odels can be expressed 

a s  a special case of the m ore general model so that the zero  null hypothesis 

te s t can be suitably defined. Thus a t th is stage it is pertinen t to investigate 

if our problem  can be form ulated in such a m anner. In fact it can b e , as 

we shall show, provided the inhomogeneous gas tran sp o rt model is  suitably 

rep a ram ete rised .
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Recall from  section 8 .3  the p a ram ete r vector fo r the five p a ram eter 

inhomogeneous model was : -

T
9 = I q > V ^ - V t ^  >

where these quantities a re  defined as e a r lie r . 

By employing the lin ea r transform ation  

^ = A 0 + b

with b = 1

and 
A =

0 0 0 r r

0 0 0 1 0

0 0 0 0 -1

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

8 . 70

8.71

8.72

8.73

This gives the rep aram ete rised  model v ec to r jS as

p 1 - k ,  a .  v ^ ,  v j " " 8 .7 4

R eparam terising  the model in th is way then allows us to use the hypothesis 

testing  approach discussed in section 8 .5 . Notice that with the model in 

th is  form  testing  the null hypothesis Ho

H o: =
^A d  
1  - k 0 8.75

is  equivalent to testing  the hypothesis that the homogeneous in e rt gas model 

is p re fe rre d  to the inhomogeneous one since under the re s tr ic tio n  given by 

equation 8 .75 the inhomogeneous model and homogeneous model become 

essentially  the sam e.

The four p a ram ete r inhomogeneous m odel, with which we are 

principally  concerned in th is section can be sim ila rly  rep a ram ete rised  for
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use with the theory  developed in section 8 ,5 , i .e .  by arrang ing  jS into the form  

D

then testing  the hypothesis

8.76

Ho : = £ v g  = 0 8.77

allows us to asce rta in  if the homogeneous model is p re fe rre d  to the 

inhomogeneous model.

If it is  assum ed the m easurem ent noise is white then the optim al 

c rite rio n  as given in equation 8.77 reduced in th is  p a rtic u la r  application 

to the following : -

J. 78

with j3 -  V

and j3„ =

•

Q
Va
V,T C

8.79

8.80

Notice that th is c rite rio n  could equally well be in terp re ted  as a truncated

D optimal c rite rio n  (see Chapter 7) with V. the only p a ram ete r of in te re st
D

in the m odel.

In fact, it can be shown (18) that in th is case , due to the fact 

is  sca la r , all the different discrim ination c r ite r ia  based on hypothesis 

testing  mentioned in section 8.5 ( i .e . T optim al, m inim ax, e tc .)  a re  essentially  

equivalent and reduce to such a truncated D optimal c rite rio n .

In o rd e r to investigate the b est form  of experim ent to use for 

s truc tu re  discrim ination, the sim ulation program m e w ritten  for the 

inhomogeneous model was extended to allow the c rite rio n  and re la ted

quantities to be calculated for various sets  of p a ram ete rs  and design s tra teg ies
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of in te re s t. The p resen t experim ental design study d iffers from  that in 

Chapter 7 since, in using an inert gas model, it has been im plicitly assum ed 

that the solubility coefficient of the in e rt gas ^  is  a design p a ram ete r at 

our disposal and can be suitably chosen, in addition to the frequency of the 

input square wave ^  , to enhance s tru c tu re  discrim ination. That is in 

th is application the design space is two dim ensional. It is  apparent from  

this that the design of the discrim ination experim ent could easily  be trea ted  

as a function m inim isation problem  and a solution found using the generalised 

function m inim isation package described in Appendix B . However, there  a re  

difficulties in using the m inim isation package directly  in th is  context, due to 

the in teger natu re  of the square wave period ^  (which m ust be a whole 

num ber of b rea ths). This approach has therefore not been pursued. In 

p rac tice , only the variation  of d iscrim ination c rite rio n  in one dimension 

(i. e. with one design p a ram ete r with the other fixed and vice v e rsa) has been 

investigated, which is  felt to be sufficient in th is situation. In view of the 

uncertainty as to exact model p a ram ete r values a p r io r i ,  o r even which model 

is the 'true* m odel, we a re  only rea lly  concerned with in ferring  the g ross 

nature of a good discrim ination experim ent ra th e r than an 'optimal* one.

The set of pa ram ete r values and constant experim ental conditions 

chosen fo r the design study w ere as follows : -

model p a ram ete rs  : Q = 5 L/M  ; V = + 2L; = 7 .5  L ‘, V = 1 L .

const, experim ental .
conditions : V = 8  L/M  ; = 0.2 L ; breathing frequency =

15 breaths/M ; no. of b rea ths in expt. = 130 ; max. insp ired  gas input 

concentration = 7%.

This thus corresponds to a 13 minute experim ent.

The varia tion  of the optimal c rite rio n  with square wave switching period
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is  tabulated in Table 8 .1  for fixed solubility coefficient ( ^  = 2 .0 ) . This is  

illu stra ted  graphically  in F igure 8 .9 . The variation  with ^  of the D optimal

c rite rio n  and the D optimal c rite r ia  for Q î V . and V a re  also tabulated t  A

in Table 8 , 1  fo r com parison.

These re su lts  show an extrem um  fo r the D c rite rio n  does exist ats

a switching period TT of around 1 6  b rea ths which is  s im ila r to the 'b est'

switching period fo r the D optimal c rite rio n  (which attem pts to  design

experim ents which give a best fit to the model as  a whole).

Now consider the variation of the discrim inating c rite rio n  with

switching period ^  for a low er solubility inert gas ( X  = 0 . 0 1 ). This is

tabulated, along with the o ther c r ite r ia  mentioned above in Table 8 .2  and

plotted in F igure 8 .10 . It is  im m ediately apparent from  these la tte r  re su lts

that there  is  a la rg e  increase  In the discrim inating c rite rio n  at a ll ^

using the low er, as opposed to the h igher, solubility gas. F rom  Figure 8 .10

we also see that the 'optimal* switching period at th is  solubility is increased

to 26 b rea th s. This change in the 'best ' at different X  shows that

there  is in fact som e in teraction between the experim ental design p aram ete rs

although the magnitude of the change shows th is coupling is  not too g rea t.

In Table 8 .3  the varia tion  of the D crite rio n  with X fo r ^  fixeds

(at ^  = 40  brea ths) is considered. This is  also plotted in F igure 8 . 1 1 .

These re su lts  tend to confirm  the findings above that model d iscrim ination

is  m arkedly b e tte r using low solubility te s t gases. In fact, th is co rre la tes

with the published findings of F arh i and Yokohama (103) fo r steady state  inert

gas elim ination. These authors showed low solubility gases w ere b e tte r for
* •

detecting pulm onary units with high V/Q ratio  ( i .e . 'a lveo lar dead space like  ' 

regions with which we a re  specifically concerned in th is  application as 

reg a rd s  discrim ination).
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Table 8 .1

V ariation of D_ Optimal C riterion , D Optimal C riterion  and Optimal

C rite ria  (Assuming Q, and Vr̂ Respectively A re P rim ary  P aram eters  

of (Interest) with Inspired Gas Concentration Switching Period

( X  = 2 . 0 )

Switching 
Period ( T  ) 
(Breaths)

Dt Opt. 
C ritn ,
(Q)

Dt Opt. 
C ritn .

Dt Opt. 
C ritn . 
(Vt c )

Dg Opt. 
C ritn .

D Opt. 
C ritn .

4 41.5 52.5 17.8 138.7 2 . 1 X 1 0 ^

6 60.7 60.9 20.9 186.6 4 .3 x  10^

8 8 8 . 2 70.0 25.7 239.8 8.4 X 10^

1 0 116.7 64.9 26.5 283.4 1.2 X 10^

16 180.6 55.6 27.3 332.2 2 . 1 X 1 0 ^

18 187.9 52.3 26.5 326.2 2 .2  X 10*

2 0 193.6 46.4 24.6 208.6 2 . 1 X 1 0 *

26 194.0 35 . 6 23.5 309.6 1 .9 x  1 0 *

30 189.3 34.5 2 1 . 8 271.8 1 . 8 x 1 0 *

40 174.1 29 .9 2 1 . 1 224.0 1 .5 X 1 0 ^

50 127.0 2 1 . 8 20.5 193.1 1.4 x 10*
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Table 8.2

V ariation of Optimal C rite rion , D Optimal C riterion  and Optimal 

C rite ria  (Assuming Q, Va and Vg^^Respectively a re  P rim ary  P aram eters  

of In terest) with Inspired Gas Switching Period

( A = 0.01)

Switching 
Period ( T  ) 
(Breaths)

Dt Opt. 
• C ritn .

(Q)

Dt Opt. 
C ritn . 
(VA)

Dt Opt. 
C ritn. 
<Vt c )

Dg Opt. 

C riterion

D O pt.

C riterion

4 0.019 237.0 0.013 324.3 1.87X  1 0 ^

6 0.024 318.4 0.007 478.7 1 .9 5 x  1 0 %

8 0.026 388.6 0 . 0 1 1 722.3 4 .5 3 X 10^

1 0 0.033 496.3 0 . 0 1 1 901.4 7.73X  10^

16 0.051 638.6 0 . 0 1 2 1517.9 2 .2 3 X 1 0 ^

18 0.061 678.7 0.013 1676.6 3.40X  10^

2 0 0.065 807.1 0.017 1574.6 5.36X  10^

26 0 . 1 0 0 559.3 0.014 2011.5 8.72 X 10^

30 0.109 558.2 0.013 1859.9 l . l l x  1 0 ^

40 0.126 485.4 0.014 1538.5 1.34 X 10^

50 0 . 1 6 0 316.5 0.14 1202.5 1 .2 9 X 1 0 ^
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Table 8 .3

V aiiation  of Dp Optimal C riterion , P  Optimal C riterion  and D*. Optimal 

C rite ria  (Assuming Q, VA, V ^R espectively  a re  P rim ary  P aram eters  of 

In terest) with Inert Gas Solubility Coefficient

( V  = 4 0  breaths)

Solubility
( X )

Dj. Opt. 
C ritn .
(Q>

D|. Opt.
C ritn.
(VA)

Dt Opt. 
C ritn.
(Vt c )

Dg Opt.
C riterion

D Opt. 
C riterion

0.01 0.126 485.0 0.014 1537.6 4
1.34X  10

0.1 10.15 406.7 1.0 1350.6 6.60  X 10^

0.47 101.6 223.2 10.3 809.7 3.18X  10^

2 .0 174.1 29.9 21.1 224.0 1 .5 X 10^

3 .0 42.8 11.1 20.2 99.0 4 . 5 X 10^

‘ 4 .0 13.6 5 .5 21 .0 34.9 1.8 x  10^

5 .0 6 .8 3.8 24 .9 16.1 9.6 X 10^

7 .0 4 .8 . 3 .7 45.5 9.6 6.1  X 10^

10.0 6.1 6 .0 84.0 10.9 5 .7 x  10^
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F o r good resolution among the two competing m odels, one would 

intuitively expect the experim ental conditions to be such that the difference 

between the 'tru e ' model and the model against which we a re  try ing to 

d iscrim inate  should be as la rg e  as possib le . It was th e re fo re  considered 

im portant to investigate whether the form  of experim ents dictated by the 

optim al c rite rio n  possessed  th is kind of reassu rin g  ch arac te ris tic . To 

explore th is possib ility  the output of the inhomogeneous model with p a ram ete rs , 

experim ental conditions, e tc . as given above, ( i.e . in p a rtic u la r  it assum es 

the a lveo lar regions a re  sp lit in a 2 L ideal com partm ent and IL  alveolar 

deadspace com partm ent), was com pared with a homogeneous model with a 3L 

alveolar volume and otherw ise s im ila r p a ram ete rs  as to the homogeneous 

model.

The varia tion  of the m ean sum of squares of the resu ltan t differences 
NBR 2

between the two m odels ( i .e . ( y ^ ^  - yj^ 2  ̂ ) varying \  (at
i=  1  --------

fixed T Z  = 40  brea ths) is tabulated in Table 8 .4 .

By comparing these  re su lts  with those in Table 8 .3  it is  seen a la rge  value 

of the optim al c rite rio n  is in fact synonimous with a la rg e  output difference 

between the two competing m odels. This is  in teresting  since Beck and 

A rnold (22) starting  with a specific initial objective of designing experim ents 

which cause the outputs of the two m odels in question to be m axim ally 

d ifferent, a rr iv e  a t a model d iscrim ination c rite rio n  s im ila r to the Ds

optimal c rite rio n  derived in Section 8 .5  of th is chapter on hypothesis testing  

considerations.

In F igure 8.12 the output of the homogeneous and inhomogeneous 

models for the sam e inputs a re  shown superim posed, both for X = 0 . 0 1  

and X = 16.0. From  th is diagram  the increase  in difference in the model
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Table 8,4

V ariation of M ean Sum of Square D ifference Between Outputs of Homogeneous 

and Inhomogeneous Model with Inert Gas Solubility Coefficient ( % = 4 0  B reaths).

Solubility 
( / \  )

^ ^ (m m H g )

0 . 0 1 235.8

0 . 1 227.2

0.47 195.8

2 . 0 114.8

3 .0 85.2

4 .0 65.3

5 .0 50.5

7 .0 32.1

1 0 . 0 17.6
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outputs using a low ra th e r than high solubility gas can be c learly  appreciated. 

Notice that a t X  = 0 . 0 1  in the above the r .m . s .  difference between the

m odels is of the o rd e r of 15 mm Hg. This is a la rg e  difference when 

one considers that a good re sp ira to ry  m ass spectrom eter is typically 

accurate  to around + 0.1 mm Hg.

To sum m arise  then, the above studies, although m erely  p refa to ry , 

have a t the very  le a s t served to illu s tra te  that the application of the techniques 

outlined in th is chapter to the early  detection of ventilatory lung inhomogeneity 

is a fruitful avenue for fu rther re sea rc h  - both theoretical and p rac tica l.

The m ost p re ss in g  need in th is respec t is to c a rry  out som e re a l live 

identification experim ents based on the re su lts  of th is p re lim inary  sim ulation 

study. These could easily  be ca rried  out using the m odels and software 

a lready developed for use in the work described in th is  th esis  and utilising 

the experim ent r ig  and on-line data acquisition system  at the C entre for 

R esp irato ry  Investigation.
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CHAPTER 9

CONCLUSIONS
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This p ro jec t a ro se  as p a rt of a continuing program m e of re sea rc h  

being c a rried  out by staff in the Control Group in the D epartm ent of 

E lectron ics and E lec trica l Engineering at Glasgow U niversity in conjunction 

with m edical and scientific personnel at the Centre fo r R esp irato ry  

Investigation, Glasgow Royal Infirm ary.

The unifying them e of th is  collaboration was the belief that cu rren t 

methods of analysing re sp ira to ry  function could be im proved by m ore 

enlightened m athem atical trea tm en t of m easured pulm onary data. Recent 

advances in signal p rocessing  techniques and the availability  of increasingly 

low cost computing power have served  to enhance th is perspec tive .

One a rea  of th is  re se a rc h  involved development of a new technique 

fo r ind irec t m easurem ent of cardio-pulm onary p a ram e te rs  using only 

m easurem ents of gas concentrations and ventilatory flow ra te  a t the mouth. 

The clinicians had focussed on the m easurem ent of card iac  output a s  being 

of specific in te re s t since trad itional techniques of m easuring  th is  a re  

invasive and therefo re  involve some discom forture fo r the patien ts.

P rio r to the involvement of the author in th is p ro jec t, a homogeneous 

CO^ gas tran sp o rt model had been developed for use in th is technique and 

som e p re lim inary  validation experim ents had been c a rr ie d  out with lim ited 

success . That is ,  although the resu ltan t m easurem ents showed reasonable 

m ean agreem ent with re su lts  obtained using a m ore d irec t method (dye- 

dilutlon) the reproducibility  was in ferio r to that anticipated on the b asis  of 

such a m athem atical technique.

Thus, th is  Ph.D . p ro jec t was commissioned to investigate in a m ore 

rigourous way than done previously , the p a ram ete r estim ation  aspects of
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the  technique with the p rim ary  aim  of uncovering m echanism s to increase  

the reproducibility  of the non-invasive m easurem ent method.

In response to the question "Did the p ro jec t fulfil the aim s desired  

of it at its  inception ? " , the author is confident he can answ er an unequivocal 

"yes" . The justification  fo r th is  is  the improved reproducibility  of the model - 

based card iac output m easurem ent technique resu lting  from  using the new 

form  of te s t procedure derived from  this p ro jec t. A verage reproducibility  

of the e a r lie r  validation studies was 1 2 . 2 % for the m odel-based technique 

and 6 . 8 % for the dye dilution technique. In con trast, the re su lts  obtained 

from  the la te r  reproducibility  studies using the new te s t a re  sum m arised in 

Table 9 .1 .

This table shows c learly  the im provem ents obtained using the new 

te s t procedure with the average reproducibility being 4.6% (if the 'rogue' 

re su lts  for subject CN. a re  ignored). It tran sp ire s  such a figure can in 

fact be com pared favourably with the re su lts  obtained at re s t  by any other 

technique which has hitherto appeared in the lite ra tu re  (non-invasive o r 

invasive). This is illu stra ted  in Table 9.2 where the re su lts  obtained by 

the technique a re  com pared with the relevant re su lts  ex tracted  from  Table 

3.1 of Chapter 3. These prom ising resu lts  positively encourage the hope 

that the m odel-based card iac output m easurem ent method might eventually 

asp ire  to the status of being a routine clinical tool. Before th is happens, 

however, fu rth er definitive validation studies a re  required  to consolidate 

the good reproducibility  re su lts . This is  obviously the logical direction 

for the work to p ro g ress  in. Such a study is shortly  to be undertaken at 

C .R .I .
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Table 9 . 1

Reproducibility R esults Obtained From  S eries of 
10 m in. C ardiac Output Estim ations Expt s .

Subject Reproducibility - 5% CO, 

(GV % )

Reproducibility - 7% CO, 

(C V %  )

RB (M)

RB (M)

R C (F)

C S (M)

SN (F)

REPÇ2
5 .1 %

REPÇf?
4 .8 %

REPQ(9
10. 2 %

REP 19 
4 .2%

REP 2Çf 
3 .2%

R EPgi
2.2%

REP 12 
2 .3%

REP 1 1  

4 .6 %

REP 18 
5 .4 %

REP 14
4 .0 %

MEAN 

CN (F)

5 .5%

REPÇfS
12.3%

4 .6% 3.7%

REP15 
16.4 %

OVERALL MEAN 6. 6 % 6. 2 % 5 .8 %
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Table 9.2

Reproducibility R esults Obtained From  V arious C ardiac 
 Output M easurem ent Techniques a t Rest_________

Investigat ion Method Coefficient of V ariation

Franciosa  et al 
(122)

F ranciosa et al 
( 122).

Ferguson et al 
(109)

Glasgow U niversity / 
C .R . I .

Dye Dilution

C ollier CO^ r e -  
breathing

D efares CO^ r e -  
breathing

Param eter Estim ation 
based on CO^ Gas 
Exchange Model.

6 .5%

6.0%

13.3%

4 .6 %
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F u rth er a re a s  in which re sea rch  outlined in th is  th esis  could be 

extended a re  d iscussed below.

One very  obvious a rea  is  the application of identification methods 

to inhomogeneous lung m odels as d iscussed in Chapter 8 . H ere  much 

experim ental work rem ains to be done to asce rta in  if the s tru c tu ra l model 

discrim ination technique suggested is  sufficiently sensitive  to form  the 

b asis  of a routine te s t to differentiate between norm al and diseased lungs 

a t a clinically useful stage. F u rther theoretical investigation could take 

the form  of looking at the suitability of other form s of d iscrim ination 

c r ite r ia  from  that eventually used in Chapter 8 . F o r exam ple, the ■ 

inform ation -theoretic  approach (38). Whilst s till d iscussing  the p rospects 

in th is a re a , it is  a lso  worth noting that recent advances in blood-gas 

probes (33, 94 ) a re  such that in vivo blood gas analysis m ay soon be 

within the s ta te  of the a r t . In fact, some tentative studies in th is  d irection 

have already  been reported  in the physiological lite ra tu re  (204). The new 

m ass spectrom eter used at the C .R . I .  fo r the work described in th is thesis  

(see Chapter 3) is  capable of being used with such probes should re liab le  

versions becom e com m ercially  available.

The possib ility  of being able to continuously m easure  mixed venous 

and a r te r ia l  gas p a rtia l p re ssu re s  should make the investigation of lung 

inhomogeneity by system  identification techniques an even m ore feasible 

proposition. That is ,  the availability of such m easurem ents should perm it 

perfusion orien tated  inhomogeneities to be quantified which would be hitherto 

unidentifiable by m easurem ents a t the mouth only (see Chapter 8 ). Another 

possib ility  fo r fu rther work is developing a recu rs iv e  identification schem e 

for use with the homogeneous CO^ model to allow card iac  output to be 

tracked in a situation where it is  tim e-varying. This would form  a logical
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continuation of the off-line work described in th is th esis  and might find 

applicability e .g . in physiological studies of card iac out put dynamics 

under ex erc ise , e tc .

Such work would probably be able to take advantage of recen t big 

advances in recu rsiv e  identification algorithm s (162 , 264, 192) and of 

improved tools fo r th e ir  analysis (188, 189). The im petus fo r th is 

advancement is  the in te rest in stochastic adaptive con tro lle rs  (299, 1 2 ) 

in an industrial p ro cess  context. The num erical methods community have 

tended to view many of these recu rsiv e  identification techniques with some 

disdain (e. g. the Kalman filte r) due to rum ours of th e ir  poor num erical 

p ro p ertie s  (32). Thus, bearing  in mind num erical experiences with the 

off-line function m inim isation methods in this thesis it would be advisable 

to devote som e attention to these aspects of the equivalent recu rsiv e  m ethods. 

Some work has been reported  on the development of num erically  stable 

algorithm s based on the advantageous p roperties  of triangu lar system s 

(31) which is worthy of attention in th is resp ec t. The author envisages 

an advantageous way of augmenting the recu rsive  estim ation technique 

might be by cascading it with a one step ahead te s t signal design ’control 

law ’ as depicted in F igure 9 .1 .

This would increase  the ’learning ra te ’ of the scheme over that 

obtained u tilising a te s t signal fixed in advance. Such sequential optim al 

experim ental design techniques w ere briefly  introduced in Chapter 7 (6 ,

174). Two disadvantages of these methods for our envisaged application 

a re  the following. The f ir s t  is  that the c rite ria  a re  based on a model 

lin ea r in the p a ram ete rs  and the second is that they a re  based on the 

assum ption of a ll the p a ram ete rs  being of in te rest for identification (i, e.

D optim al c rite rion ). However, some p re lim inary  studies by the author
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(not included in th is thesis) have shown these can be successfully  adapted 

for models non-linear in the p a ram ete rs  and in conditions under which 

only a subset of the p a ram ete rs  a re  of specific in te re s t, such as perta in  

to this envisaged application.

W hilst d iscussing the potential of recu rsiv e  card iac  output 

estim ation, it is  appropriate to mention the work of Brovko et al (47) which 

has only recen tly  come to the attention of the author on th is very topic.

The approach has been inspired by the work of Zw art et al (309) 

and the model used is  concomitant with that developed by these au tho rs . In 

the technique, the extended Kalman filte r  (3) as improved by Ljung (190) 

is used as the estim ato r. The form  of te st signal is chosen a p r io r i.

P relim inary  re su lts  reported  (47) seem  to be extrem ely encouraging although 

the method req u ires  m ore experim ental validation before it can be assessed  

accurately .

F inally , yet another a rea  into which the work could usefully 

p ro g ress  is the study of the re sp ira to ry  control system  via identification 

techniques. Work has a lready been undertaken in this a rea  elsew here (e .g . 

that of Swanson (272) ). However, in much of th is , despite complex m athem atics, 

e .g . in the descrip tion of the re sp ira to ry  'p lan t', the con tro ller itse lf has in 

essence been represen ted  by sim ple em pirical steady sta te  equations with 

an output taken as  minute ventilation. However, contem porary 

physiologists a re  beginning to be of the opinion that assum ing minute 

ventilation as the output index of re sp ira to ry  contro ller behaviour is too 

g ross for the study of a system  which is  a fte r all cyclic (74) and a re  

advocating attention should be focussed on the within b rea th  ventilatory 

con tro ller m anifestations. That is , those of the tidal volum e/breath  cycle 

tim ing sequence generato r.
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In an associated  p ro jec t in collaboration with the D epartm ent of 

E lectronics and E lec trica l Engineering and C ,R . I. G reer (140) has ca rried  

out sim ulation work on m odels incorporating such m echanism s, although not 

via s ta tis tica l identification techniques. Thus it is  felt a study of the 

re sp ira to ry  con tro ller by applying estim ation techniques to the models 

developed by G reer would be an a rea  ripe  for fu rther re se a rc h .

In fac t, in the data collected fo r use in th is  p ro jec t ( i .e . see Chapter 7) 

the inherent ventilatory response to the hypercapnie stim ulus inherent in 

these  files could conceivably have enough inform ation content to perm it 

p relim inary  identification studies to be ca rried  out without reco u rse  to fu rther 

experim entation. It is  perhaps appropriate to finish th is  chapter on the 

following note. It was mentioned in Chapter 1 of th is  thesis  that there  is  

a g rea t reluctance a t p resen t fo r clinicians to take the use of control 

engineering techniques seriously  in the context of p rac tica l biom edicine.

It is  the au thor's  hope that the work presented in this th esis  will be seen 

as lending fu rth er weight to the increasing  body of evidence that 

quantitative control methods have in fact a significant ro le  to play in the 

biomedical a re a .
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APPENDIX A

A l. VALIDATION DATA 

Estim ation Results 

Four Param eters

FILE
«
Q

c
M VTC

VAL041 6 .4 5 + 0 .1 2 1 .8 5 +  0.07 0.265+  0.0013 7 .1 8 +  0.18 0.0276
2 6.36 + 0.06 1 .7 3 +  0.12 0.237 + 0.0025 9 .2 1 +  0.68 0.1010
3 6 .2 9 + 0 .2 3 1.92 4 0.11 0 .262+  0.0028 1 1 .8 + 0 .9 6 0.0848
4 5.87  + 0.24 1 .6 2 + 0 .1 4 ,0 .213+  0.0022 7 .7 0 + 0 .5 4 0.0885

VAL051 6. 84 + 0.34 2 .5 4 + 0 .2 6 0.300 + 0.0036 1 3 .1 +  1.97 0.0800
2 5 .5 8 +  0.45 2.66  + 0.28 0 .295+  0.0050 8 .76+  1.37 0.1430
3 7 .1 0 + 0 .2 7 3 .0 5 + 0 .1 9 0.334 + 0.0032 1 0 .1 + 0 .7 0 0.0504

VAL072
Q

6 .8 9 +  0.33 1 .3 6 + 0 .1 6 0 .244+  0.0020 . 4 .8 7 + 0 .2 2 0.0597
o
4 6.50 + 0.38 1 .3 9 + 0 .0 5 0.2 1 8 + 0.0020 4 .0 4 + 0 .2 4 0.0773

VAL081 5 .1 6 +  0.17 0. 96 + 0.15 0 .185+  0.0026 5 .1 5 + 0 .3 7 - 0.0948
4 5 .9 4 +  0.45 2 .3 4 +  0.55 0 .208+  0.0034 6 .6 6 +  1.01 0.0744
5 5 .9 7 + 0 .2 6 0 ,9 8 + 0 .1 9 0 .207+  0.0023 4.94 +  0.44 0.0706-

VALlOl 8 .2 3 +  0.32 2 .2 2 +  0.16 0 .310+  0.0042 1 0 .9 + 0 .7 0 0.0921
2 7 .6 6 '+ 0 .3 5 1 .58+  0.19 0 .277+  0.0031 7 .2 3 + 0 .4 0 0.0909
3 7 .4 0 +  0.35 1 ,9 2 + 0 .2 0 0 .276+  0.0039 8 ,3 5 + 0 .5 0 0.1100
4 7 .3 8 + 0 .6 1 1 .9 1 + 0 .2 6 0.328 + 0.0095 1 0 .4 + 1 .0 1 0.2450

V A L lll 5 .6 3 + 0 .3 4 2.66  + 0.22 0.272 + 0.0031 7 .4 9 + 0 .6 4 0.1050
2 5 .4 4 +  0 .39 2 .2 6 + 0 .3 3 0 .277+  0.0051 1 0 .2 + 1 .4 7 0.0959
3 7 .7 9 + 0 .5 6 2 .3 9 +  0.32 0 .302+  0.0053 9 .1 1 + 0 .7 9 0.0881
4 8 .5 8 +  0.76 1 .4 0 + 0 .3 8 0 .258+  0.0051 6 .0 2 + 0 .4 2 0.1720

VAL122 4 .2 1 + 0 .2 2 1 .6 3 + 0 .1 4 0 .210+  0.0031 4 .5 9 + 0 .2 9 0.1490
3
4 3 .1 3 +  0.49 2 .0 3 + 0 .3 3 0 .187+  0.0052 2 .8 7 +  0.37 0.3820
5 4 .5 0 + 0 .1 9 1 .8 0 + 0 .1 0 0 .237+  0.0028 4 .4 6 + 0 .2 8 0.1640

VAL141 7 .3 0 + 0 .2 7 2 .1 8 + 0 .1 5 0 .361+  0.0037 8 .9 4 + 0 .5 1 0.0980
2
Q

6 .3 4 + 0 .2 0 1 .4 2 + 0 .1 3 0 .266+  0.0025 6. 83 + 0.34 0.0654
O
4 5 .8 6 +  0. 30' 1 .8 4 + 0 .1 7 0 .264+  0.0031 5 .3 8 +  0.33 0.1090

VAL161 6 .9 3 +  0. 80 2 .3 6 +  0.51 0 .261+  0.0069 5 .9 3 +  1.04 0.4010
2 5 .9 4 + 0 .5 0 1 .2 9 + 0 .2 6 0 .209+  0.0029 3 .7 3 + 0 .3 4 0.1290
3 5 .6 8 +  0.64 3 .6 6 +  0.47 0 .259+  0.0066 7 .7 3 + 2 .0 3 0.3240
4 6 .4 8 + 0 .4 6 2 .7 3 + 0 .2 9 0 .275+  0.0048 7 .4 7 + 0 . 84 0.1340

VAL172 5 .1 3 +  0.47 1 .6 8 +  0.21 0 .242+  0.0025 2 .3 1 +  0.18 0.1770
3 6 .7 1 +  0.61 3 .4 3 + 0 .4 2 0 .288+  0.0035 6 .6 2 +  1.13 0.2320
4 4 .9 2 +  0.29 1.48 + Oï 18 0.237 + 0.0024 4 .1 1 +  0.29 0.0995

cont'd.
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APPENDIX A . l  Cont’d,

File Q M VTC

VAL181
3

4 .7 3 +  0.31 
4 .9 8 + 0 .3 2  
4 .46  + 0.27

1.58 + 0.13 
1 .7 3 + 0 .1 8  
1 .4 1 + 0 .1 4

0.234+  0.0035 
0 .255+  0.0043 
0 .234+  0.0028

4 .1 1 +  0.27 
5 .3 4 +  0.37 
4 .0 0 + 0 .2 3

0.0773 
0.1390 
0.1050

VAL191 3 .7 8 + 0 .1 8 1 .2 6 + 0 .1 3 0 .182+  0.0023 3 .9 6 + 0 .3 1 0.1070

VAL203 6 .4 0 + 0 .3 9 1 .6 5 + 0 .1 9 0.259+  0.0035 5 .1 0 + 0 .2 7 0.1270

VAL221
2
3
4

5 .7 0 +  0.19 
5 .7 8 + 0 .2 1  
5 ,9 4 +  0.31 
5 .7 6 + 0i22

2 .1 6 +  0.12 
2 .0 3 + 0 .1 2  
1 .8 1 +  0.17 
1 .8 6 + 0 .1 1

0 .294+  0.0027 
0 .263+  0.0022 
0.255 + 0.0029 
0.247 + 0.0020

9 .1 1 +  0.61 
6 .0 8 + 0 .2 7  
5 .5 3 +  0.27 
5 .2 4 + 0 .2 2

0.0961
0.0733
0.1410
0.0741

VAL231 ■ 
2 
3

7 .7 1 + 0 .3 8  
6. 64+  0. 35 
7 .7 8 + 0 .3 5

2 .9 9 + 0 .2 4
1 .8 2 + 0 .1 3
3 .2 6 + 0 .2 3

0 .398+  0.0066 
0 .212+  0.0032 
0 .357+  0.0052

12 .4 +  1.06 
5 .6 9 +  0.30 
1 2 .9 + 1 .0 8

p . 1900 
0.0564 
0.1090

VAL251
2
3

6 .4 6 + 0 .5 0  
6 .1 9 +  0.40 
4 .7 9 + 0 .2 3

1 .6 5 + 0 .2 8
1 .4 5 + 0 .2 2
1 .5 7 + 0 .1 3

0 .239+  0.0040 
0 .211+  0.0024 
0 .236+  0.0027

6 .5 7 + 0 .4 7
4 .9 2 + 0 .2 4
5 .7 3 + 0 .3 3

0.1060 
0.0686 
0.0782

4
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A. 3 VALIDATION DATA 

Estim ation Results 

Eight P aram eters

File Q ^A M ^T C ^A(O) ^TG(0] b E ®i/m

VAL041 ' 6.29 1.79 0.246 6,28 26.6 35,3 0.736 0.808 0.0250
(0.15) (0.08) (0.0088) (0,44) (0.27) (0.37) (0.38) (1.40)

2 6.40 1.72 0.234 8.87 30.7 36.6 -0.312 -0.011 0.0929
(0.48) (0.16) (0.034) (2.09) (0.64) (1.01) (0.667) (0.64)

3 6.80 1.88 0.318 14.3 29.7 33.9 -0.429 0.201 0.0422

4

(0.72) (0.15) (0.118) (6.73) (0.41) (1.43) (0.31) (0.32)

VAL051 6.75 2.68 0.396 21 .8 32.8 36.1 0.34 0.79 0.0512

2
(0,55) (0.52) (0.26) (21.2) (0.8) (1,63) (0.75) (0.77)

3 7.19 2 .69 0.313 9.04 • 28.6 34.2 -0.153 0.293 0.030
(0.43) (0,25) (0.039) (1.83) (0.64) (1.07) (0.64) (0.67)

VAL072 6.92 1.55 0.259 5.54 37.1 41 .9 -0.06 0.576 0.042

3
(0.53) (0.19) (0.024) (1.04) (1.23) (1.09) (0.37) (0.44)

4 5.68 1.85 0.218 3.97 34.8 45 .0 0.463 0.916 0.0667
(0.53) (0.21) (0.015) (0.79) (1.07) (1.43) (0.61) (0.69)

VAL081 5.64 1.01 0.254 7.53 37.6 40.4 0.372 0.687 0.043
2
4
5

(0.20) (0.13) (0.024) (1.11) (1.12) (0.57) (0.68) (0.71)

VALlOl 9.16 2 .36 0.550 21.6 37.0 39.7 0.189 0,911 0.0322
(0.43) (0.08) (0.130) (6.07) (0.50) (0,61) (0,29) (0.37)

VAL102 7.85 2.16 0,425 15.3 38.6 39.1 0.821 1.08 0.0525

3
(0.43) (0.24) (0.11) (4.97) (0.48) (0.64) (0.79) (0.81)

4 7.68 2.39 0,602 21.2 36.8 39.4 -0.104 0.758 0.186
(1.67) (0.63) (0.95) (37,8) (1.02) (2.98) (0.33) (0.43)

V A L lll 5 .74 2.76 0,306 9,46 39.9 45.7 0.152 0,363 0.0959
(0.42) (0.33) (0,06) (3.85) (0.49) (0.96) (0. 83) (0.83)

2 5 .48 1.95 0.226 6.57 38.9 46 ,0 -0.675 -0.04 0.0881
(0.84) (0.31) 0.06 (3.77) (0.7) (2.41) (0,25) (0.31)

3 7.16 2.02 0.230 6.16 39.7 42.5 -0.435 0,504 0.039
(0.81) (0.16) (0.03) (1.58) (0.75) (1.51) (0.21) (0,28)

4 7.58 0.941 0.178 3,05 39.3 43 .7 -0.175 0.494 0.0476
(0,67) (0.13) (0.09) (0,431) (1.15) (1.00) (0.27) (0.33)

VAL122 4.23 1.53 0.215 4.65 33.0 41.2 -0.683 -0.444 0,122
(0.36) (0.81) (0,038) (1.28) (0.78) (1.38) (0.56) (0.6)

3 4.13 1.17 0.208 4,31 35.3 42,0 -0.567 0.256 0,070
(0.50) (0.14) (0.047) (1.61) (0.58) (1.63) (0.22) (0.29)

5 5.53 1.61 0.268 5.30 38.3 40.3 -0, 886 -0.04 0.0624
(0.46) (0.12) (0.053) (1,98) (0.45) (1.14) (0.11) (0.2)

continued . . . .
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A. 3 continued

F ile
0
Q ^A

»
M ^TG ^A(O) ^TG(O) a b 1

VAL141 7.41 1.93 0.302 7.07 34.8 43 .0 0.05 0.377 0.0718
(0.34) (0.20) (0.03) (0.99) (0. 82) (1.03) (0.75) (0.75)

2 6.81 1.75 0.387 11.0 36.0 41.2 -0.269 0.343 0.0397
(0.45) (0.21) (0.091) (3.30) (0.64) (1.03) (0.44) (0.55)

3 5.76 1.88 0.231 4.92 38.0 44.6 “0.-444 - 0.138- -0 .0786 —
(0.59) (0.23) (0.04) (1.46) (1.13) (1.99) (0.48) (0.46)

4 5.82 1.96 0.282 5.95 37.1 43.1 -0.171 0.356 0.0704
(0.47) (0.24) (0:04 (1.31) (0.63) (1.25) (0.44) (0.5)

VAL224 6.02 2 .09 0.312 7.61 37.3 40 .9 -0.533 0.306 0.030
(0.38) (0.14) (0.042) (1.64) (0.31) (0.78) (0.16) (0.22)

VAL231 8.20 3.35 0. 817 29.2 33.2 37.2 0.524 0.790 0 .1 Î3

2
3

(0.44) (0.31) (0.370) (15.3) (0.743) (0.903) (0.75) (0.81)

VAL251 — )
2 6.40 1.45 0.226 5.61 40.8 43 .0 0.026 0.555 0.0466

(0.57) (0.33) (0.027) (1.07) (1.02) (0.96) (0.47) (0.58)

3 - 4.75 1.48 0.214 4.95 38.0 45.7 -0.198 0.411 0.0461 -

(0.40) (0.14) (0.031) (1.20) (0.52) (1.43) (0.41) (0.42)
4 6.15 0 .9 0.205 4.40 38.7 43.9 -0.187 -0.331 0.0962

(0.52) (0.2) (0.019) (0.74) (1.23) (1.05) (1.66) (1.59)
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APPENDIX B 

THE MINPAK PACKAGE

B. 1______O verall Package Specifics

The MINPAK package for unconstrained Function M inim isation is 

overviewed in Section 8 of Chapter 5. This appendix d iscusses specifics.

The main program m e in the package is in m odularised form  and 

consists of five subroutines called sequentially. Its s tru c tu re  is  illu stra ted  in 

F igure B. 1 where an indication is also given as to how the u se r-w ritten  routines 

a re  incorporated into the package. The five main subroutines in MINPAK are  

as follows : -

(1) CONSOL - The m ain dialogue routine. It allows the u ser to

input the num ber of p a ram ete rs  (maximum of nine), starting

p a ra m e te rs , value of convergence c rite rio n , e tc .

(2) PREPRS - The optional u ser-w ritten  data p rep rocessing  routine 

d iscussed in Section 8 of Chapter 5. If used, th is should be in 

the F o rtran  form  illu stra ted  in Figure B . l .

(3) INIT - This routine c a r r ie s  out system  specific in itia lisa tion , 

sca les the p a ram ete rs  and calculates an initial function value.

(4) OPTMSE - The m ain function m inim isation routine. This is

discussed m ore fully in Section B .2.

(5) CLRUP - The final term ination routine.

Both OPTMSE and INIT use the u se r w ritten  function evaluation routine which 

should be of the F o rtran  form at given in Figure B . l ,  i . e .  have two argum ents 

PAR and F . The f irs t argum ent is an a rra y  used to pass the vector of cu rren t 

pa ram ete rs  (maximum perm issab le  dimension of nine) and the second a rea l 

variab le in which the u ser-w ritten  routine should re tu rn  the function value
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U ser defined 
updating formula 
(BFGS, DFP o r RKl)'

PREPRS

CLRUP

CONSOL

OPTMSE

INIT

Use w ritten  o r  dummy 
data p re -p ro cessin g  

routine 
(SUBROUTINE PREPRS)

U ser w ritten  
function evaluation 

routine 
(SUBROUTINE RUN 
(PAR,F) )

FIGURE B .l  - STRUCTURE OF MINPAK
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corresponding to the p a ram ete rs  input. Since p a ram ete rs  a re  scaled in INIT,

it is helpful for the f ir s t  line of RUN to call the utility  routine DSCLE which

will descale the p a ram ete rs  for use by the routine, (by carry ing  out the inverse

process  to equation 5.38). A skeleton RUN routine thus looks as follows : -

SUBROUTINE RUN (PAR, F )

DIMENSION PAR (9), PARI(9)

GALL DSCLE (PAR, PAR)

( u se r w ritten function 

S evaluation code

RETURN

END .

B.2______ Main Software Implementation of the F acto rised  Quasi-Newton

Algorithm

This section d iscusses the subroutine OPTMSE which im plem ents the

F actorised  Quasi-Newton procedure and thus is the m ain core  of the package.

Although OPTMSE differs depending on the choice of updating form ula being

used ^F G S , DFP, o r RKl ), the algorithm  can be basically  represen ted  by the

procedure detailed in Table B . l .  V arious steps in th is req u ire  elucidation.

In the package, gradients a re  derived num erically. The logic in steps (2), (3),

(4), (5) and (8) ensures that a switch is made from  forw ard to the m ore accurate

central differences when difficulty is being encountered with the fo rm er.

Following Gill et al (125), the interval used for differencing 'h ' is  2 , 't*

being the num ber of binary  digits in the m antissa of the machine used (which

hence gives ’h' fo r the P D P ll/45  version  as 2 .4  x 10’^ (single p rec ision  version) 

-8and 1.5 X 10 (double p rec ision  version ) ).



- 338 - 

TABLE B .l

FACTORISED QUASI-NEWTON ALGORITHM

(1) In itialise  L^^^ and D^^^ (equation 5.28) for steepest descent step , 

se t 1 FLAG = 0 corresponding to gradients calculated by forward 

d ifferences.

(2) Check that I FLAG = f i .  I f  IFLAG does not = ^ go to step (2).

(3) IFLAG = ^ , . . calculate gradients by forw ard differences

(equation 5 .37), use GRAD.

(4) 1 FLAG = 1 . . calculate gradients by central differences

(equation 5.38) use GRAD.

(5) Is the norm  of the gradient sm all ? ( i .e . |) g^^ l j  2  <  y  ) if it

is  and we a re  only using forw ard differences re tu rn  to step (4) to

compute a m ore accurate gradient using cen tral d ifferences.
(k)(6) Solve equation 5.27 to compute direction of search  p using 

f ir s t  forw ard then backw ards substitution.

(7) Conduct lin ea r search  along p ^^  using SEARCH which finds the
(k) fklf ir s t  A along p such that the function value is  sufficiently 

decreased  using safeguarded quadratic interpolation (Chapter 5, 

Section 3).

(8) Is the achieved step sm all ? ( i .e . is  | |  p^^Ml 2  cn ) .

If it i s ,  and we a re  only using forward differences, abandon th is 

search  direction and go back to step (4), to recom pute the gradient 

using a cen tral difference approximation.

(9) Check for convergence to a stationary point (equations B. 1 and B.2).

If the p rocess has not converged go to step (12).

(10) C arry  out local exploratory search  to detect if a fa lse  minimum

has been achieved.

(11). Check if a low er function value VO) has been attained using the local

search . If it has not, accept th is estim ate as the minimum and 

re tu rn  to m ain p rogram . If it has, go to step (14).

(12) Set up sca le rs  tt , , and vectors w and z (see equations in

Chapter 5, Section 5 ) to update approxim ate H essian  using either 

BFGS, DFP o r RKl as appropriate.

(13) Update triangu lar fac to rs L and D using 'UPDATE’ (see Chapter 

5, Section 6).

cont’d.
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TABLE B .l  continued

(14) Update p a ram ete r estim ates and gradient vector if FULL PRINT 

output all the details of cu rren t iteration .

(15) Go to step (2).
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In step (7) of the algorithm  the lin ea r search  routine SEARCH is  

called. This is  based on quadratic interpolation, (equation 5 .11), but 

p o ssesses  the necessary  ’bells  and w histles' to render it robust. To safeguard
/N

equation 5.11 a predicted  step ( ex say ) is only accepted if  it lie s  within an 

extrapolation bound (12 3) defined e .g . in the case of forw ards extrapolation by :

EB = 4 ( ) + ^ 3  B . l

see  F igure B .2(a).

SEARCH also  m akes a lim ited attem pt to handle non-unim odality (see F igures

B.2(b) and B.2(c) ). In this situation a new point is  taken by bisection, 

according to the following ru les  :

" n e w "  if  F(oi2 ) >  F(0fg) >  F(a^ ) B.2

see F igure B.2(b).

^NEW "  ̂^2 ^̂ 3 otherw ise B. 3

see F igure B.2(c).

The procedure to generate  the in itia l interpolating points is  illu stra ted  in 

Figure B.2(d). An initial steplength STEP is  input by the u se r in routine 

CONSOL (usually in the range 0.1 <  STEP <  2 . 0 ) .  If th is initial step fails 

to reduce the function value along the search  direction, it is  successively  

reduced by a factor of ten until a downhill step is achieved. The th ird  in te r­

polating point is then tw ice th is initial downhill step . The convergence c rite rio n  

fo r the lin ea r search  is  equation 5 .10 in addition to the equation below (which 

is analagous to equation 5 .9  in the situation where analytic gradients a re  not 

used).

-  B .4
( V((3® ) - V ( p ®  )
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(k)A local minimum along the cu rren t search  direction p is said to have 

been located when
_L

( o?3 - «1 ) II p^^^ 11 < 0 . 1 x 2  B. 5

In step (9) of the algorithm  we check for convergence, the c r ite r ia  used a re  : 

| | j g ( k + l ) „  |3(k)j| ^  2 ^  II THRES B.6

and ^  (THRES)3 B.7

THRES is a convergence factor input by the u ser in CONSOL and is  usually 

-6 ■of the o rd e r of 10

Following apparent term ination of the basic  iteration  causes a local search  

procedure (due to Rosenbrock (249) ) to be activated in step (11), The purpose 

of th is is  to confirm  the solution found by the Q uasi- Newton procedure and 

provide an a lternative  course of action if, for some reason , a non-stationary 

point has been located.

B.___________ 3_MINPAK Perform ance in M inimising an Analytic T est Function

This section details the procedure involved in actually using the 

MINPAK package - in th is case  to m inim ise an analytic te s t function. The 

p a rticu la r function used form s a nasty banana shaped valley in two dimensions 

and is  known as R osenbrock's Parabolic Valley (249). The equation defining 

th is is

V ( | 3 )  = lOOOSj (1  B .8

The minimum of th is function is at the point [ ^ 1 ,  1 ^  . S tarting off at

[  - 1 .2 , 0*5 fo rces the m inim isation method used to negotiate the curve 

in the valley, a particu larly  stiff te s t of Quasi-Newton algorithm s since new
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sea rch  d irec tions mtist be generated frequently .

A double p rec ision  F o rtran  subroutine coding of equation B. 8 is 

given below :

C FILE 1 RUND002. FTN CRAB : 03-FEB-731
C TEST PROGRAMME NO. 2 FOR OPTIMISATION PACKAGE. 
C*** DOUBLE PRECISION VERSION.
C SUBROUTINE RUN(PAR,F )IMPLICIT REAL*8 (A-H,0-Z)

DIMENSION PAR1C9),PAR<9)
COMMON ITER

CC*** UPDATE ITERATION COUNT.
c  - ■ITER=:ITERtl
C
C*** DESCALE THE PARAMETERS,
C ■ CALL DSCLE(PAR,PARI>
CCX(**̂  EVALUATE FUNCTION.
C

R1=PAR1( 1 )*PAR1( 1 >-PARl( 2 )R2=( 1. D0-PARK !))*( 1. D0-PARK 1 ) )
F=100.D0*R1*R1+R2

C RETURN
END

A fter com pilation of the above routine using the PDP-11 F o rtran  com piler, a 

load p rogram m e is  then created  by invoking the ind irec t command file  fo r the 

double p rec ision  version  of the package, MIND. This in itia tes the following 

dialogue (system  prom pts underlined).

0MIND>* LOAD PROGRAMME NAME ? CSlt ROSMIN >* MINIMISATION METHOD (BFG5>DFP>RKl) ? CS1Î BFGS
£RE-“PROCESSING RQUTINE_(IF NONE DUMPRSD) ? CS1 î DUMPRSD 

>* FUNCTION EVALUATION ROUTINE ? CS3Î RUND002
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Having completed the above in teraction with the u se r the ind irec t command 

file  goes on to c rea te  a runnable u se r program m e, called in  th is case  ROSMIN. 

A sam ple run  of ROSMIN is  shown below (system  prom pts again underlined).

MINIMISATION PACKAGE VERSION 2

OPTIMISATION OF (80 CHARS)
Z R0SENBR0CK'S(1960) PARABOLIC VALLEY.NOPAR (ID ? 2
INIT PAR(l) ? -1.2
INIT PAR(2) ? 1.0
NEED TO SCALE PARS <Y OR N> ? NTHRES ? O.lE-05
CONVERGENCE FACTOR FOR LINEAR SEARCH ? 0.1
INITIAL STEP FOR LINEAR SEARCH ? 1.0EULL PRINT <Y OR N> ? N

The output lis tin g  produced from  th is run  is shown in Table B .2 . From  this

It is  seen the algorithm  successfully  reaches the minimum to the desired

accuracy  in  177 function evaluations. The local search  p rocedure  takes 9

function evaluations a t the end to confirm  the solution. The ' *=^FGS’ identifier

denotes that the BFGS update has been used throughout (the iden tifier '♦♦♦LOG*

is  used if a local search  is  used a t any interm ediate stage of the algorithm .)

A m ore com prehensive assessm en t of the package perform ance on

th is  function using different iqadating algorithm s, initial s t ^  lengths, STEP,

and lin ea r search  term ination  c r i te r ia , SIGMA in equation B.4) is detailed

in Table B .3. Although the final num ber of function evaluations (Np ) and

final num ber of ite ra tions ( N j j  ) to achieve the minimum to the desired

accuracy (THRES = 1 0 )  is given, the num ber of function evaluations required

“10to reduce V ( ) below 10 is used as a fa ire r  bench m ark  for the different

algorithm s. From  Table B. 3 it can be seen overall MINPAK perform ance
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com pares favourably with the re su lts  of Gill et a l 's  coding (125) and S tew art’s 

algorithm  (267).

The re su lts  also confirm  a num ber of unsubstantiated points made 

in Chapter 5 regard ing  e .g . the inadvisability of high accuracy  lin ea r search  

in Quasi-Newton algorithm s, the sensitivity  of certa in  updating form ulae (e .g . 

DFP) to the value of lin ea r search  term ination c rite rio n  SIGMA used etc.
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TABLE B.2 - LISTING FROM PROGRAMME ROSMIN

MINIMISATION PACKAGE VERSION 2

PROBLEM î ROSENBROCK'S (1960) PARABOLIC VALLEY.

NO OF PARAMETERS = 2.
THRESHOLD = O.lOOOOD-05
CONVERGENCE FACTOR FOR LINEAR SEARCH = O.lOOOOD+00 
INITIAL STEP FOR LINEAR SEARCH = O.lCiOOOD+01

PAR(l) PAR<2) F(ERR) NO ITER
SCLNGÎ
MAXPAR
MINPAR

1.00000
0.000000

1 . 0 0 0 0 0
0.000000

***INI -1.200 1.000 24.20 1.000
**BFGS -1.033 1.068 4.135 9.000**BFGS -0.9563 0.8835 3.923 14.00
**BFGS -0.8478 0.6670 3.683 19.00
**BFGS**BFGS 30 loo
**BFGS “0.3860 0.1153 2.034 36.00**BFGS -0.2791 0.3042E"“01 1.862 41.00**BFGS 0.1700 -0.2588E-“02 0.7881 51.00
**BFGS 0.1550 0.1937E-“01 0.7162 57.00
**BFGS 0.3080 0.7279E-“01 0.5276 66.00**BFGS 0.4276 0.1528 0.4176 72.00
**BFGS 0.4851 0.2471 0.2791 77.00
**BFGS 0.5818 0.3292 0.1836 83.00**BFGS 0.6285 0.3776 0.1686 90.00
**BFGS 0.8092 0.6396 0.5956E-01 96.00
**BFGS 0.8006 0.6398 0.3990E-01 103.0**BFGS 0.8891 0.7837 0.1698E-01 110.0
**BFGS 0.9802 0.9593 0.6177E-03 116.0**BFGS 0.9788 > 0.9577 0.4573E-03 122.0**BFGS 0.9993 0.9983 0.1333E-04 129.0
**BFGS 0.9993 0.9985 0.5408E-06 134.0
**BFGS 1.000 1.000 0.2136E-10 139.0**BFGS 1.000 1.000 0.1047E-10 147.0
**BFGS 1.000 1.000 0.2138E-11 154.0**BFGS 1.000 1.000 0.2794E-20 161.0**BFGS 1.000 1.000 0.2060E-26 168.0

OPTIMUM PARAMETERS Î- 
1 . 0 0 0NUMBER OF ITERATIONS 1 . 0 0 0177 0 .2 0 6 0 E -2 6
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APPENDIX G 

THE NLSPAK PACKAGE

C. 1_____ O verall Package Specifics

Like the MINPAK package described in the previous Appendix, 

NLSPAK is F o rtran -b ased  and runs under the DEC RSX -llM  and RT-11 

operating system s. However, due to m em ory lim itations on the PDP-11/45, 

NLSPAK, unlike MINPAK, is only available in single p rec ision . The package 

c a te rs  for data lengths of up to 250 points. Due to its  s ize , MINPAK is heavily 

overlaid (Overlaying is  a facility  on the PDP-11 allowing segm entation of a load 

program  so that the whole program  need not be sim ultaneously m em ory- 

res id en t, thus allowing execution of a program  which otherw ise would not fit 

into the available m em ory). This overlay s tru c tu re  is  effectively transparen t 

to the u se r a t ru n -tim e , but it in c reases program m e execution tim e. This 

tim e in c rease  is  m inim ised in  NLSPAK by judicious arrangem ent of the o v e r­

lay segm ents.

The la rg e  size  of the  NLSPAK load program m e is  not p rim arily  

due to the la rg e  num ber of instructions in the package, but ra th e r to the la rge  

amount of a rra y  storage which is requ ired  ( 9K words fo r the sensitiv ity  

m atrix  X, the vector of residuals  e and the perturbed  values requ ired  when 

calculating 2nd. derivative finite difference inform ation. This is  la rg e  in 

proportion to the to tal m em ory available to the program m e (23K - RT - 11,

32K - R SX -llM  ) ).

Although overlaying m akes the resu ltan t link p rocedure for the 

package re la tively  com plicated, as in the case fo r MINPAK, th is is  made 

inivisible to the u se r by using an indirect command file to c a rry  this out 

in teractively . The outline s tru c tu re  of the package is basically  the sam e as
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fo r MINPAK (see F igure B. 1). However, there is no choice of m inim isation 

algorithm  in th is case .

A lso, the u s e r 's  function evaluation routine 'RUN' m ust supply 1st 

derivative inform ation in the form  of the sensitivity  m atrix  X . This routine 

should, th e re fo re , have the following form at.

SUBROUTEsfE RUN (PAR, E , X , F , M, N )

DIMENSION PAR(N), E(M), X(M,N), F(M).

r  *u ser-w ritten  code to re tu rn  residuals E ,

4 sensitiv ity  m atrix  X and sum of squared 

. e r ro r s  F as a function of the p a ram ete rs  PAR.

RETURN

END

It can be seen that w riting a 'RUN' routine for NLSPAK involves considerably 

m ore program m ing effort on the p a rt of the u se r than w riting  the corresponding 

routine fo r MINPAK. NLSPAK is  therefore  le ss  a ttractive  in th is sense. 

However, use can be made of this cheap residual and sensitiv ity  inform ation 

in data-fitting  applications to a sse ss  adequacy of fit. In NLSPAK, the 'CLRUP' 

routine is used to compute diagnostic information derived from  X and e.

It optionally computes the m ean and variance of the re s id u a ls , the covariance 

m atrix  of the p a ram e te rs , the p a ram ete r corre la tion  m atrix , the 95% 

confidence lim its  fo r each estim ated p aram ete r and the volume of the 95% 

confidence ellipsoid in p a ram eter space (see Chapter 4 for d iscussion of 

these quantities). It also gives a graphical output (print-plot) of the vector 

of residuals  and its  au to-corre la tion  function on the line p r in te r .
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TABLE C .l

NON-LINEAR LEAST SQUARES ALGORITHM

(1) Set up flags, Initial variab les and set initial grade of the sensitivity  

m atrix  X ' r  ' = ’n’ the number of p a ram e te rs .

(2) Use ’RUN’ to get initial m x n sensitivity m atrix  X, vector of 

e r ro r s  e and sum of squares V ( j3 ) .

(3) Calculate initial gradient vector g^ ^  ̂ ( i .e . using equation 6.2 

g = 2 X ^ e ).

(4) Compute singular value decomposition of sensitiv ity  m atrix
TX = U S V  ( see equation 6.10) using ’SVD’.

(5) If th is is  the f ir s t  ite ra tion  of the algorithm  go to step (9) to 

take full Gauss-Newton step.

(6) Fix the grade ’r ’ of X based on the re la tive  function decrem ent 

achieved in the previous iteration  using ’IGRADE’.

(7) Compute e* = u"^ e

(8) If the grade ’r ’ is zero  go to step (11) ( i .e . there  is  no p^^^ 

component here in equation 6.20).

(9) Compute Gauss-Newton direction in space spanned by the column

by column partition  of V corresponding to the grade ’r ’ calculated
—1in (6), i .e .  use p^^^ = - 8^ e^  (this is equivalent to

equation 6.17 with e *  = U^^ e .1

(10) If grade ’r ’ = ’n ’ the num ber of p a ram ete rs  go to step ( I5 ) ,( i .e . 

th e re  is no p . component here in equation 6 .20  ).

T  (k)(11) Approxim ate second derivative dependent m atrix  Y = B 

by finite differences as described in section 6 .3  , use routine 

'HESS’.
2

(12) Form  s tr ic t low er triangle  of A = ( S^ H- Y ) (see equation 6.18) 

and pack row by row in a linear a rra y  fo r use  by the modified 

Cholisky Factorisation  algorithm . Form  vector b = - S^ e^* - Yp 

corresponding to the right "hand side of equation 6 .18 .
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Table C. 1 continued

(13) Use the modified Cholesky factorisation  algorithm  (routine 

'MDCHOL' ) to compute Cholesky facto rs of A above.

(14) Solve resu ltan t lin ea r equation set A y = b w here the Cholesky 

fac to rs  of A have been computed in (13) above, by f ir s t  forward 

and then backwards substitution. Use routine ’LINSOL’.

Com puter p ... = V„ y ( see equation 6.19).
\2,) z

(k)(15) Compute resu ltan t search  direction p = p -I- p
(1) (2 )

(equation 6.20).

(16) Compute ||p^^^|| , II and p^^^l if

^ ^  ^  è  where é  is a sm all sca la r . Set grade ' r '  = *n'
llgll Ip II
the num ber of p a ram ete rs .

(17) Output cu rren t p a ram ete rs , gradients sum s of squares, etc.

(k)(18) Conduct lin ea r search  to find a suitable steplength o r   ̂ which 

sufficiently reduces V ( jS ) along p . Use routine SEARCH 

(also uses INTER?, EVAL, SCNVGD).

(19) Check fo r convergence of algorithm  (use routine CNVGD).

(20) If convergence c rite ria  in (19) a re  not satisfied  update p a ram ete rs  

and gradient and go to step (4).

(21) Return.
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C .2______ Main Software Im plem entation of the N on-L inear L east

Squares A lgorithm

The m ain core  of the NLSPAK package is the im plem entation of 

Gill and M u rray 's  N on-L inear L east Squares algorithm  (124) which is  

contained in the subroutine 'OPTMSE'. The calculation steps constituting 

'OPTMSE' a re  detailed in Table G. 1. Some of these steps will be fu rther 

explained below.

Step (16) of the algorithm  is  a check to ensure  that the approxim ation 

to the H essian  m atrix  obtained is  not indefinite. ' The sea rch  direction m ust be 

recom puted with grade ' r '  equal to zero  if this is  suspected. This is  because 

the modified Cholesky Facto risa tion  (123a) m ust be calculated in the space 

spanned by all the columns of V to allow it to shift a ll the negative eigen­

values of X + B (see equation 6 .6) to m aintain positive-defin iteness.

In step (18) the lin ea r search  problem  is solved, using a safeguarded 

cubic interpolation algorithm  (since gradient inform ation is  assum ed available 

here). Only two points a re  needed for interpolation in th is  case (see Section 3 

in C hapter 5) and form ulae 5 .12 , 5 .13, and 5.14 a re  used to compute the 

stationary  point. F o r extrapolation purposes these  form ulae can be sa fe ­

guarded by placing bounds on the predicted  steplength in  a m anner s im ila r 

to that d iscussed fo r quadratic extrapolation in Appendix B. Equations 5 .9  

and 5 .10  a re  used as a b asis  for term ination of the lin ea r sea rch . Good 

choices of the lin e a r search  term ination  c rite rio n  ^  and the initial steplength

in th is algorithm  a re  0 .9  and 1 .0  respectively  (124). This choice im plies

(k)that a single step along the search  direction p^ is  nearly  always accepted 

provided the sum of squares V ( jS ) is sufficiently reduced.

The c r ite r ia  used in step (19) to check for final convergence of the

algorithm  a re  as follows : -
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and

and

^(k) ||p(k)|| ^  (TORES) (1+  )

IV  ^  TOREs"
( 1 + V (|3(k) )

-6 2 (1  + v O ^ b  )

o r - t

II <  V ( Ÿ  2

o r

V ( |8

C . l

C .2

C .3

C .4

C .5

As in Appendix B, THRES is  the convergence factor input by the u se r in 

'CONSOL' a n d 't '  is  the length of the binary m antissa of the computer used 

(t = 24 is appropriate  for single p recision  computation on the PDF 11/45).

C.______________ 3_NLSPAK Perform ance on M inimising an Analytic T est Function

We will now illu s tra te  the use of NLSPAK by m inim ising the 

sam e analytic te s t function (Rosenbrock's parabolic valley (249) ) as was 

used to te s t the F acto rised  Quasi-Newton M inimisation algorithm  in Appendix B, 

The te s t function (defined by equation B. 8), can be in terp re ted  as  a 

sum of squares (m  = 2 , n = 2 ) b y  defining e as

= [  10(132 (1 - ) ]

The sensitiv ity  m atrix  X is  readily  calculated as : -

C .6

X (j8)

-  20

- 1

10

C .7
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The 'RUN' subroutine fo r th is  function is shown below.

C
■ FILE Î ROSRUN. FTN ( RAB : 26-JAN-78 )

C LEAST SQUARES VERSION OF ROSENBROCK" S TEST FN,
C

SUBROUTINE RUNCPAR,F,RJ,FX, lU, IV)
DIMENSION PAR< 6 >, F( lU >, RJ< lÛ  IV >
COMMON ITER,NOPAR,NPTS
NPTS-2
ITER==ITER:\1
F( 1 )-10, m ( PARC 2 '-PARC 1 ):i<PAR( 1 > ) 
F( 2 )-l. 0-PAR< 1 )FX”F( 1 );KF( 1. )4 F( 2 )>KFC 2 ) - 
RJ< X, i >̂ -20, 0îXPAR< 1.)
RJC 1, 2 >=̂ 10, 0 .....

-RJC 2 , 1 ) = - l  .0  '
RJC 2, 2 )-0. 0
RETURN ■ ̂
END

Once compiled th is  routine can be linked into the package using an ind irec t 

command file  in a s im ila r way to that described for MINPAK in Appendix B.

The re su lts  obtained using NLSPAK on Rosenbrock* s function 

fo r differing in itial steplengths (STEP) and lin ea r sea rch  term ination  c r ite r ia  

(SIGMA) a re  sum m arised  in  Table C .2 . From  this it is  seen the best 

perform ance is  achieved with the values of the lin ea r sea rch  p a ram e te rs  se t 

to  those recom m ended in  the previous section of th is  Appendix.

To com pare the re su lts  in Table C .2 on a fa ir  b a sis  with those 

obtained using the F ac to rised  Quasi-Newton algorithm  we define an index 

of computational labour (300) fo r the non-linear le as t squares algorithm  as

n = n .+  n n  C. 8
c f  g

where *n ’̂ is  the num ber of function evaluations, 'n* the num ber of p a ram ete rs
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and ’ n^ ' the num ber of gradient evaluations. Thus fo r th is  problem  it is 

seen that one call to 'RUN’ using the non-linear le a s t squares algorithm  is  

equivalent to th ree  using the F acto rised  Quasi-Newton algorithm .

Comparing the two se ts  of re su lts  in th is m anner (again see Table C .2) 

it  is  evident tha the non-linear le a s t squares algorithm  is  m arkedly superio r 

to the F ac to rised  Quasi-Newton algorithm  on th is p a rtic u la r  problem  (despite 

the disadvantages of being implemented only in single p rec ision ).
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STEP SIGMA Nf ^q (V(|3)-:10"10
^ IT ^ F

(Final)Nc

0.1 0 .0 918 2754 20 936

0.1 0.1 34 102 18 51

0.1 0.3 34 102 . 18 52

0.1 0 .9 110 330 110 140

1.0 0 .0 945 2835 19 946

1.0 0.1 44 132 15 45

1 .0 0 .3 36 108 14 37

1.0 0 .9 33 99 13 35

2 .0 0 .0 854 2562 25 855

2 .0 0 .1 . 55 165 16 56

2 .0 0 ,5 45 135 15 51

2 .0 0 .9 44 132 15 45

BEST

(Least Squares (N^ ) 99

F acto rised  Quasi Newton 139

TABLE C .2 : NON-LINEAR LEAST SQUARES PACKAGE

PERFORMANCE ON ROSENBROCK* S FUNCTION
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APPENDIX D

œ U PLIN G  TERMS AND INITIAL CONDITIONS FOR THE 

CQ„ GAS TRANSPORT MODEL SENSITIVITY EQUATIONS

(A)._____ Four P aram eter Model

(i) Coupling T erm s

C i ( Q )  = f  b ( PrpQ " ) + ^ in t I D .l

S ( Q )  = - b ( " ^A  ̂ ’ ^IN T D .2

C l  (Va ) = ■ h  ( " l * - ^ A ) - V / [ b g - T C -A A

=
0 D .4

C^ (M) 0 D .5

C^ (M) = 1 D .6

Gi (Vt c ) 0 D .7

S ^^T C ^ " b v ^ ^ ^  [  ^ ^ T C  ■ ^A^ ^IN t I ^

(ii) Initial Conditions

/m “ assum ed value ( see Chapter 3 ) D. 9
A ( U )

M AiNT
^TC(O) "  ^ABAR bQ '  “ b equation 3.14) D. 10

= 0  D . l l

= V

= 0 D .13
à Va

= 0  D .14
^ A



à ? A(0) _
m
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0 D .15

^^TC(0)  ̂ D .16
m  bQ

TG
<\Vt c

D .17

D .18

(B).______ Five P aram eter Model

(i) Coupling T erm s

Additional coiçiling te rm s  ex tra  to those detailed above a re  : -

C ^ ( P a (0 )) = 0 D .19

C 2< P a (o) )  = 0 D .20

(ii) Initial Conditions

Initial conditions for all the p a ram ete rs  a re  the sam e as for the 

four p a ram ete r case , except for the following : -

^A(O) "  ^A(O)

— L  1 D,22
^^A(0)

^^TC(0)

)^A (0 )

= 1 D .23
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(C).______Six P aram eter Model

(x) Coupling T erm s

Additional coupling te rm s  ex tra  to those detailed above a re  : -

8 < ^ T C ( 0 ) ) = °

S ^ ^ T C (O )^  ^

(ii) Initial Conditions

Initial conditions for a ll the model p a ram ete rs  a re  the sam e as for 

the five p a ram ete r case , except for the following : -

^TC(O) ^ ^TC(O)

•  •

^^TC(0)

àP

= 0 D .28

0 D .29
^^A (0)

= 0 D .30
^ TC(0)

1 D.31
^  TC(0)

I
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E2 : REPRODUCIBILITY DATA

Estim ation R esults - Eight P aram eters

File Q M ^T C ^A(O) ^TC(O) ^ b g
2

®i/m

REPOll 7.11 2.92 0,276 3.86 3,89 45.1 0.95 0.36 0.131
(0.2) (0.091) (0,0075) (0.28) (0,61) (0. 86) (0,054) (0.10)

3 6.83 2 .76 0.275 3.32 38.2 43,5 -0 ,68 -0.10 0.164
(0,21) (0.11) (0,003) (0 .2 ) (0,75) (0,69) (0.11) (0.14)

4 7.07 2.84 0,288 3.46 37,4 43,1 -0.81 -0.25 0.150
(0.22) (0.10) (0,0034) (0.24) (0.6) (0.71) (0,09) (0.17)

REP021 5.74 3.18 0.251 3.92 38,2 46. i -0 .93 -0.32 .0.069
(0.21) (0.10) (0.0028) (0.34) (0.45) (0.75) (0,05) (0.09)

2 6.15 2.76 0.234 2,91 37.6 44,8 -0.96 -0.51 0.142
. (0.29) (0.13) (0,0043) (0,23) (0.61) (0,96) (0,05) (0.09)

4 6,49 2 .70 0.229 3.86 38.5 43,9 -0 .98 -0.32 0.095
(0,27) (0.17) (0,010) (0.36) (0,54) (0, 89) (0,03) (0.09)

5 6.11 2.46 0.242 2.98 37,1 42 ,0 -0.94 -0.31 0.103
(0.31) (0.12) (0.004) (0.25) (0.54) (0.96) (0.04) (0.09)

REP071 6.46 3,37 0.241 4.36 37.5 44.3 -0 .7 0.08 0 .148
(0.41) (0.24) (0,0021) (0,56) (0,67) (0.9) (0.09) (0,13)

2 6.29 3.95 0.229 4.59 40.9 47.6 -0. 92 -0.34 0.220
(0.43) (0.25) (0.005) (0.8) (0.76) (1.25) (0.07) (0.11)

3 6.58 3.11 0.241 4.09 44.6 46 .8 -0 .88 -0.32 0.192
(0,39) (0.20) (0,0036) (0.53) (0.98) (1.06) (0.08) (0.12)

4 5.89 3.39 0.249 5.30 41.7 48 .9 -0 .79 -0.36 0.176
(0.27) (0.21) (0,0026) (0.78) (0.73) (0.77) (0.15) (0.17)

REP081 6.43 3.62 0.213 4.47 35.4 41.2 -0.546 -0.049 0.093
(0.23) (0.14) (0.0016) (0,32) (0.39) (0.47) (0.16) (0 .18)

2 5.97 3.51 0.217 4.22 33.9 38.7 -0.747 -0.418 0.114
(0.27) (0.17) (0.002) (0.67) (0.42) (0.31) (0.11) (0.12)

3 5.25 2 .37 0.205 4.11 37.0 40.3 0.135 0.210 0.232
, (0.28) (0.19) (0.0022) (0.94) (0.65) (0.72) (0.11) (0.21)

4 4 .90 3.03 0.203 5.10 36.0 41,6 -0.588 0.02 0.224
(0.25) (0.20) (0.0029) (0.95) (0. 87) (0.80) (0.11) (0,14)

REP091 5.36 3.72 0.221 3.19 32.1 37,4 -0,45 0.19 0.125
(0.24) (0.16) (0.0019) (0.18) (0.54) (0.76) (0.12) (0.15)

2 5.68 3.36 0.199 2.38 32.1 36.4 -0. 81 -0.28 0.261
(0.47) (0.20) (0.0027) (0.24) (0.78 (1.35) (0.11) (0.13)

3 6,72 2.83 0.202 2.27 33.2 33.7 -0. 87 -0.33 0.146
(0,44) (0.15) (0.0034) (0.16) (0.78) (1,03) (0.08) (0.12)

4 5.65 3.17 0.200 2.81 33,9 34.7 -0 .90 -0.33 0.176
(0,36) (0.16) (0,0042) (0.27) (0,73) (1,18) (0.07) (0.11)

R E P lll 5.81 2.99 0.213 2.47 35.9 38.4 -0 .67 -0.26 0.410
(0,37) (0.19) (0.0039) (0.15) (1.28) (1.25) (0.17) (0.19)

continued
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E .2  continued

File Q M V
TC ^A(O) ^TC(O) a b E ®i/m

REP112 5.22 3.36 0.219 2.99 36.1 37.1 -0 .45 0.193 0.263
(0.22) (0.14) (0.003) (0.18) (0. 88) (0. 95) (0.12) (0.15)

3 5.44 3.43 0.192 2.32 35.0 37.7 “0.66 -0.167 0.384
(0.36) (0.18) (0.0039) (0.15) (1.12) (1.33) (0.13) (0.16)

4 5.38 3.20 0.189 2.23 30.9 36.3 -0.75^ -0.07 0.234
(0.30) (0.12) (0.0035) (0.15) (0.92) (1.30) (0.09) (0.12)

REP121 6.56 2.70 0.240 4.10 44.0 46 .7 -0 .90 -0.47 0.16V
(0.21) (0.11) (0.004) (0.28) (0. 84) (0.76) (0.1) (0.13)

2 6.76 3.19 0.239 2 .60 40.4 48.4 -0.68 0.04 0.314
(0.43) (0.17) (0.003) (0.20) (1.03) (1.25) (0.1) (0.13)

3 6.58 3.44 0.225 3.05 39.7 42 .7 -0.91 -0.2 0.337
(0.43) (0.16) (0.0065) (0.36) (0.95) (1.61) (0.05) (0.1)

4 6.89 3.34 0.255 3.56 39.8 44 .8 -0. 82 -0.11 0.248
(0.35) (0.14) (0.0043) (0.34) (0.78) (1.09) (0.07) (0.11)

REP141 5.72 2 .09 0.206 3.90 40.6 44.2 ' -0.623 -0.03 •0.173
(0.17) (0.10) (0.0016) (0.22) (1.01) (0.68) (0.12) (0.15)

2 5.21 2.37 0.190 3.82 38.8 4 6 .8 -0.625 0.06 0.112
(0.14) (0.09) (0.0015) (0.24) (0.73) (0.57) (0.11) (0.13)

3 5.49 2 .20 0.197 3.42 39.J2 43.6 -0.644 0.03 0.146
(0.18) (0.08) (0.0023) (0.21) (0.68) (0.67) (0.09) (0.12)

4 5.61 1.80 0.205 3.96 39.7 4 6 .7 -0.495 0.13 0.134
(0.22) (0.08) (0.0014) (0.19) (0.77) (0.45) (0.12) (0.14)

REP151 8.26 2 .40 0.216 4.70 39.6 40.6 -0. 897 -0.998 0.192
(0.30) (0.13) (0.0046) (0.33) (1.66) (0.73) (0.11) (0.13)

2 6.32 3.41 0.224 3.86 37.9 43.6 -0.585 -0.293 0 .322
(0.24) (0.15) (0.0018) (0.23) (1.03) (0.73) (0.24) (0.25)

3 6.13 3.60 0.208 4.04 37.5 42.1 -0. 815 -0.429 0 . 142
(0.18) (0.10) (0.0023) (0.25) (0.56) (0.58) (0,14) (0.16)

4 5.89 3.21 0.208 3.96 38.9 42.2 -0.761 -0.439 0.226
(0.19) (0.11) (0.0025) (0.27) (0. 87) (0.66) (0.19) (0.20)

REP181 6.50 4.12 0.255 2.52 33.3 40.2 -0.732 -0.07 0.138
(0.31) (0.14) (0.0025) (0.14) (0.69) (1.05) (0.10) (0.13)

2 7.33 3.13 0.284 2.58 35.2 36.4 -0.622 0.147 0.135
(0.27) (0.1) (0.0036) (0. 95) (0.75) (0.84) (0.09) (0.11)

3 7.24 3.34 0.286 2 .70 34.7 36.5 -0.856 -0.07 0.134
(0.33) (0.11) (0.0049) (0.17) (0.62) (1.08) (0.06) (0.1)

4 6 .89 3.50 0.271 2.32 34.1 39.1 -8.22 -0.114 0.182
(0.31) (0.10) (0.0049) (0.12) (0.57) (1.07) (0.06) (0.1)

REP191 7.73 3.58 0.280 3.48 35.6 41.4 -0.849 -0.225 0.0912
(0.42) (0.19) (0.0031) (0.26) (0.58) (0.84) (0.08) (0.12)

2 7.27 3.52 0.268 2.85 36.4 39.6 -0.785 -0.134 0.137
(0.49) (0.21) (0.0033) (0.20) (0.69) (1.00) (0.09) (0.12)

3 7.04 3.42 0.279 3.23 34.9 37.6 -0.876 -0.15 0.131
(0.45) (0.175) (0.0045) (0.31) (0.68) (1.00) (0.06) (0.10)

4 7.57 4.06 0.281 3.10 34.6 40.4 -0.933 -0.09 0.091
(0.43) (0.162) (0.0063) (0.26) (0.46) (1.11) (0.05) (0.09)

con tinued .........
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E .2  Continued "

F ile Q M V
TG

P
A(0) ^TC(O) a b g

REP201 5.87 2.76 0.184 4.54 37.0 42.3 -0.863 -0.267 0.084
(0.24) (0.13) (0.0021) (0.46) (0.51) (0.63) (0.09) (0.13)

2 5 ,46 2.49 0.171 3.84 38,9 42.1 “0.868 -0.279 0.096
(0.23) (0.12) (0.0021) (0.42) (0.56) (0.68) (0.08) (0.12)

3 5.64 2 .49 0.179 3.99 39.0 42 .3 -0. 871 -0.371 0.068
(0.18) (0,11) (0.0018) (0.28) (0.55) (0.52) (0.11) (0.15)

4 5.52 2.45 0.176 3.79 38.5 41.5 -0.828 -0.319 0.084
(0.2) (0.11) (Ô.0017) (0.30) (0.47) (0.54) (0.10) (0.14)

I
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APPENDIX F

FORMULA FOR tt, , 7t„ , z and w for the DFP, RKl and
 — — - ................ i  1  ........
BFGS FACTORISED QUASI-NEWTON UPDATES.

(i) BFGS UPDATE

-- (F .l )

ijW  = g(k) (F .2 )

= > ) ^ .  (^ -3 )

'̂ 1 (kjr (k) (F .4)
P 2

(ii) DFP UPDATE

= { i S  - l ) g ^ K  (F .5)

g(k) (F .6 )

-1 = ^  (F . 7)

Tg = - € .  (F . 8)

(iü) RKl UPDATE

2<k) ^ g(k+  1 )^  ( - 1 )  g(k) ( F .9)

= 0 (F . 10)

^ a ®  (F . 11)

^ 2 = 0  (F . 12)

^  (F . 13)

g ( k + l ) T p ( k ) . ( , ( k ) + i ) g ( k ) T p ( k )



- 366 -

C
C***
c * * *
c * * *
c* * *
c
c * * *
c* * *
c* * *
c* * *
c* * *
c%**
c

APPENDIX G

FILE Î NLSRUN.FOR (RT-11 RAG : 26-FEG-79)
RUN MODULE FOR USE WITH NLLS> GOES IN OVERLAY TWO (0VLIB2). 
FAST VERSION WHICH USES DOUBLE BUFFERING MACROS TO 
SPEED UP I/O.
HOMOGENEOUS CQ2 GAS TRANSPORT MODEL.
''RUN'' SUBROUTINE FOR USE WITH GILL-MURRAY NON LINEAR 
LEAST SQUARES PROGRAMME.
USES EXPLICIT GRADIENT INFORMATION SO THAT SENSITIVITY 
CO-SYSTEM MUST ALSO BE EVALUATED.WORKS WITH FOUR,FIVE,
OR SIX PARAMETER MODEL.
SUBROUTINE RUN(PAR,F,RJ,FX,lU, IV >

C
C***

C

c
c * * *
c * * *
c

DIMENSION PARC IV ), F( lU ), RJC lU, IV ), PARK 6 SENPIC 6 ), SENPAC 6 ),1 SSUMVDC 6 ), SUMSENC 6 ), SMEANC 6 ), SENPTC 6 ), NK 3, 80 ), N2< 3, 80 ) 
COMMON ITER,NOPAR,NPTS 
COMMON /BUFFER/ DBUFFC 512)'
COMMON /UNITS/ INN,TOUT COMMON /3CLING/ SCPARC6,2)
COMMON /BLOCK0/ DELT,TOTSAM,NOBLKS,NOSMRC, NCHSTRCOMMON /MODEL/ VDM, PAIN, SB, AINTVEVET, NETDC 4, 250 ),.PABAR, PT0S3.
REAL MP
INTEGER TOTSAM,DBUFFEQUIVALENCE ( NK 1, 1 ), DBUFFC 1)),C N2C 1,1), DBUFFC 257 ) ) 
EQUIVALENCE C QDOT, PARK 1 ) ), C VA, PARK 2)), C MP, PARK 3 ) ),
1 C VTi PARIC 4)),C PA0, PARK 5 ) ), C PT0, PARIC 6 ) )

CONVERT L/M QUANTITIES TO L/S AND GET CORRECT I.C'S FOR 
GIVEN MODEL ORDER. UPDATE ITERATION COUNT,
ITER=ITER+1
CALL DSCLEC PAR,PARI>
QDOT=QDOT/60.0
MP=MP/60.0
PA0M=PAINIFC NOPAR.EQ.5.0R,NOPAR.EQ.6 )PA0M=PA0 

■ PDIFF=MP/CQDOT*SG)-AINT/SB 
PT0SS=PA0M+PDIFF IFCNOPAR.EQ.4 )PT0M=PABAR+PDIFF 
IFCNOPAR.EQ.5 )PT0M=PA0+PDIFF 
IFCNOPAR.EQ.6)PT0M=PT0
WORK OUT I.C'S FOR SENSITIVITY CO-SYSTEM DEPENDING ON 
GIVEN MODEL ORDER.
DO 1 1=1,NOPAR 
SENPAC I)=0.0 SENPTC I )=0. 0 
IF(N0PAR.EQ.6)G0T0 3 
SENPTC 3 )=1. 0/C SB&QDOT )SENPTC 1 )= -l. 0%MP*SENPTC 3 )/QDOT IFCNOPAR.EQ. 5 )GOTO 2 
GOTO 4
SENPAC 5 )=1, 0 GOTO 4
SENPAC 5 )=1. 0



Appendix G cont'd.

C
C***
C***
C

C

c
10

20

21

L,
C#**
C

30
C
C***

c

26

27
C
C***
C***

SENPTC 6 ) = 1 . 0

INITIALISE FLAGS, INTERMEDIATE STORAGE AREAS ETC.
READ IN FIRST BUFFER OF DATA.'
CALL TRREAO 
SUMF1=0.0 
SUMMOD=0.0 
DO 5 1=1,NOPAR 
SUMSENC I )=0. QSMEANC I )=SENPAC I) '
SSUMVDC I)=0. 0
SUMF2=0.0 .
SUMDAT=0.0 
FX=0. 0 
SUMVD=0.0 SUMFVD=0.0 
PAMEAN=PA0M •
NOSAM=0 
NPTS=0 
IBLK=0 
JBR=1 •
NOW READ IN AND OPERATE ON RELAVENT BLOCK OF DATA DEPENDING 
UN WHETHER IT IS ODD OR EVEN.
IELK=IBLK+1 
CALL TRREAD DO 100 1=1,NOSMRC N0SAM=N0SAM+1
IFCMODC IBLK,2).NE.0)GOTO 21 
FLOW=FLOATC NIC 1, I ))/300O.0 
PCQ2=FLQATC NIC 2,I ) )/400.0 
VOL=FLOATC NIC 3, I ) V5B00. 0 GOTO 22
FLOW=FLOATCN2C1, I ) )/3000.0 
PC02=FL0ATC N2C 2,I > )/400,0 
VDL=FLOATC N2C 3, I ) )/5000.0 
CONTINUE .
GET CORRECT VA FOR CURRENT TIDAL VOL.
IFC VOL >30,25,30VA0=VA
VA=VA0+VOL
GET CORRECT INSPIRED PC02 AND ASSOCIATED SENSITIVITIES DEPENDING ON PHASE OF BREATH.
DO 26 J=l,NOPAR SENPIC J >=0.0
IFCVOL.GT. VDM.OR.FLOW.LE.0,0>GOTO 31PC02=PAMEANDO 27 J=l,NOPAR
SENPIC J )=SMEANC J )
CALL MODEL SUBROUTINE WHICH UPDATE MODEL AND SENSITIVITY 
COSYSTEM USING EULER.



c31 CALL MODELLCQOOT,VA,MP,VT,FLOW,PC02, SENPI,VOL,PAQM,PTQM,
1 SENPA,SENPT )

C IF(NOSAM.LT.NETDC1,JBR))GOTO 40 
IFC NOSAM.GT.NETDC 2,JBR ) )60T0 32

C
C*** MODEL E/T REGION - UPDATE FLOWS AND FLOW WEIGHTED MEANS.
C SUMMOD=SUMMOD+PAOM#FLOW 

DO 41 J=l,NOPAR 
41 SUMSENC J )=SÜMSENC J* )+SENPAC J )#FLOW

SUMF1=SUMF1+FLOW 
GOTO 33

C
C**& LAST DEADSPACE OF EXPIRATION. UPDATE FLOW WEIGHTED MEANS TOUSE AS INPUTS FOR FIRST DEADSPACE OF PRECEDING INSPIRATION.
C
32. SUMVD=SUMVD+PA0M*FLOW

DO 43 J=l,NOPAR ' .
43 SSUMVDC J )=SSUMVDC J )+SENPA( J )*FLOW

SUMFVD=SUMFVD+FLOW 
C . •:
33 IFC NOSAM.LT.NETDC 3,JBR))GQTO 40
34 IFC NOSAM. GT. NETDC 4, JBR ) )GOTO 36 
C
C*** DATA E/T REGION - UPDATE FLOW WEIGHTED SENSITIVITIES AND FLOW, 
C SUMDAT=SUMDAT+PC02*FL0W

SUMF2=SUMF2+FL0W
GOTO 40

C
C*** END OF BREATH. UPDATE PER BREATH INFORMATION CI.E. MEAN 
C*** MODEL AND DATA. PCÜ2,ERROR , ASSOCIATED SENSITIVITIES 
C*** CNÜTE THESE ARE SCALED!!». >, AND MEAN PIC02 AND SENSITIVITIES
C*** FOR FIRST BREATH. FINALLY RESET STORES FOR F/W MEANS.
C*** DON'T BOTHER IF BAD BREATH CI.E. VOL < VD ),
C36. IFCSUMF1.EQ.Q,0.OR.SUMF2.EQ.0.0>GGTO 33,

NPTS=NPTS+1
F< NPTS )=SUMM0D/SUMF1”SUMDAT/3UMF2 
FX=FX+FCNPTS)*FCNPTS )
00 39 J=l,NOPAR
RJC NPTS, J )=SCPARC J, 1 )*SUMSENC J )/SUMFl 
IFC J. EG, 1. OR. J, EQ. 3 )RJC NPTS, J )=RJC NPTS, J )/60.0 

39 CONTINUE
38 JBR=JBR+1IFC VOL. GT.-VDM )GOTO 46
C

PAMEAN=SUMVD/SUMFVD DO 45 J=l,NOPAR
45 SMEANCJ)=SSUMVD(J)/SUMFVD46 CONTINUEDO 47 J=l.NOPAR 

SSUMVDC J)=0. 0
47 SUMSENC J)=0,0 SUMF1=0.0 

SUMF2=0.0
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SUMFVD=0.0 
SUMMOO=0.0 SUMDAT=0.0 
SUMVD=0.0

C40 CONTINUEIF(NOSAM.EQ.TOTSAM)GOTO 150 
100 CONTINUE 

GOTO 10
CC*** REWIND DATA FILE AND OUTPUT FX TO TERMINAL.
C
150 CALL TRRWND D RFX=FX/FLOAT< NPTS)D WRITEClOUT,1000 )ITER, RFX
D1000 FORMATC/IXK ITER = ',13,' RFX = ',615.6)

RETURN
END

CC*** MODEL SUBROUTINE FOR USE WITH "  NL3RUN" .
HOMOGENEOUS C02 MODEL.

C*** MODEL EQNS AND ASSOCIATED SENSITIVITY COSYSTEM UPDATED C*** USING EULER. RAB... 13-FEB-79..
C . . . .

■ SUBROUTINE MODELLCQDOT,VA,MP,VT,FLOW,PC02,SENPI,VOL,PA0M, 1 PT0M,SENPA,SENPT)
C DIMENSION SENPIC 6 ), SENPAC 6 ), SENPTC 6 ), DSENPAC 6 ), DSENPTC 6 )

COMMON ITER,NOPAR
COMMON /BLQCK0/ DELT
COMMON /MODEL/ VDM,PAIN, SB, AINJ
REAL MPDATA CÜNST/S63.004/

CC*** SOLVE MODEL EQNS FIRST.
C THIN61=QD0T*CSB*CPT0M-PA0M HAINT )

THIN62=0.0IFC FLOW. GT.0.0)THING2=FLOW*CPCO2-PA0M)
DELTPA=C THIN61*C0NST+THING2)/VA 
DELTPT=CMP-THINGl)/C SB*VT>PA0M=PA0M+DELTPA*DELT
PT0M=PT0M+DELTPT*DELT

CC*** GENERATION OF SENSITIVITY COSYSTEM.
C*** COMPUTE COUPLING TERMS FIRST.
C DSENPAC1 )=THING1*C0NST/QD0T

DSENPTC1 )=-l.0*THIN61/QDOT
DSENPAC2 )=C-1.0*THING1*CONST-IHING2)/VADSENPTC2 )=0.0
DSENPAC 3 )=0.0
DSENPTC 3)= 1. 0
DSENPAC 4 )=0. 0
DSENPTC 4 )=C THINGl -MP )/VT
IFC NOPAR.EQ.4 )GQTO 10
DSENPAC 5 )=0. 0
DSENPTC 5 )=0. 0
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IFCNOPAR.EQ. 5 )GOTO 10 
DSENPAC 6)=0.0 
DSENPTC 6 )=0.0

CC*** NOW COMPUTE DECOUPLED TERMS.
C*%* SOLVE TOTAL SENSITIVITY COSYSTEM BY ADDING IN COUPLING
C*** TERMS CALCULATED ABOVE.
C10 DO 20 1=1,NOPAR

THING1=QD0T*SB*CSENPTCI )-SENPACI))THING2=0. 0
■ IFC FLOW.GT.0.0 )THING2=FL0W%(SENPICI)-SENPACI)>
DSENPACI>=C DSENPACI )+THINGl*C0NST+THING2)/VA DSENPTC I )=C DSENPTC I )-THINGl )/C SB&VT )
SENPAC I )=SENPAC I )+DSENPAC I )*DELT

20 SENPTC I >=S£NPTC I )+DSENPTC I )*DELT
C RETURN

END

vr


