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SUMMARY

This thesis describes an application of the techniques of modelling
and time-domain system identification to the processes of respiratory and
inert gas transport in the human body. In particular, attention has been
focussed on a new non - invasive method for measurement of the total bldod
flow through the lungs (the cardiac output in normal subjects). Determination
of this quantity provides important clinical information on the state of the cardio-
vascular system.

This work, being essentially multi'-disciplinary; has involved close
collaboration with medica.l personnell - in this case at the Centre. for Respiratory
Investigation, Glasgow Royal Infirmary. At this establishment much of the
development of the homogeneous gas exchange model and practical experimentation
have been carried out. The author has principally been concerned with the
identification and accuracy aspects of the method.

The starting point of the work involved the examination, in a general way,
of data obtained prior to the author's full involvement in the project, which had
produced results inferior in terms of reproducibility to that anticipated on the
basis of use of a mathematical technique (see Chapter 3).

At this stage, the author became coﬁvinced that the route to the solution_
of the troubles in the technique lay in viewing the problem as one in Statistical
Time-Domain Identification. This represented a radical change in approach to
the work since previously the model/data comparison and experimental design
had been conceived in an 'ad hoc' manner and the identifi ability and accuracy
implications poorly understood. Consequently, (in Chapter 4), the original
data was viewed in this new light and certain deficiencies of the estimation

method were made apparent by posing the problem in this probabilistic context.



(ii)
The analysis indicated that the cause of the disappointing results was the poor
information content of the data rather than the nature of the model itself, This
suggested that a better form of experiment be sought.  This necessitated
study of the area of optimal test signal design to maximise the amount of
information encumbent in the resultant data.

Utilising these concepts a new longer form of experiment, aimed at
having better properties in respect of cardiac output estimates, was evolved..
This work is reported in Chapter 7 where the results of a comprehensive set
of reproducibility studies to test the new form of experiment are also presented.
These results showed a marked improvement in the reproducibility of the
technique, as was exemplified by the fact that the average reproducibility of the
cardiac output estimates was 6.2% (4.6% if two rogue results are ignored), as
opposed to 12.2% for the earlier studies. What is éven more encouraging is
that this figure even stands comparison with the average reproducibility of the
earlier dye dilution estimates calculated at 6. 8% and much of the published results
for both invasive and non-invasive methods in the literature.

In Chapter 8 the scope of the work is extended somewhat and here
inhomogeneous gas transport models (a;;plicable to diseased lungs) are
considered. The concept of designing identification methods to optimally
discriminate between these models and homogeneous models is tentatively
introduced as a mechanism for quantitative diagnosis of lung dysfunction and
some prefatory simulation work in this vein presented. A technique crucial
to the mechanisation of the identification methods underlying much of the work
detailed in this thesis is that of FunctionMiniﬁisation. A large propoxrtion of
the time allocated for this Ph.D. project was spent on the investigation of

recent, numerically stable computer a;lgorithms for this purpose.



(iii)

Chapter 5 investigates the usefulness of generalised descent methods
in the context of the particular application for this project, whilst Chapter 6
is devoted specifically to methods for sums of squares problems. A technique
due to Gill and Murray (124) is shown to be superior to all others for estimating
the parameters of the lung model and thus this algorithm is used to generate the
results subsequently presented m the rest of the thesis.

When creating the software for the Function Minimisation, great care was
taken to configure it in a general manner. This philosophy thus led to the creation
of a flexible Function Minimisation package as a u'seful by-product of this work
ai:'very little extra programming effort. This the au&hor feels'constitutes.a
piece of software-which could be of general use in a wide number of different

applications. Details of this package are outlined in Appendix B.
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CHAPTER I

INTRODUCTION




1.1 General Introduction

This dissertation is an account of how a technique familiar to the
modern control engineer (i.e. System Identification) was applied to an unusual
problem - the indirect measurement of the parameters of the human respiratory
gas exchanging system. Of the parameters of this system, one in particular has
considerable clinical significance. That is the pulmonary blood flow parameter
which, in normal subjects, is synonymous with the cardiac output. Traditional
clinical methods of measuring this quantity in humans are invasive, which is
obviously undesirable.

The work described 1n this thesis in fact forms only part of a larger
project, which has been a basis for collaboration between the Control Group,

Department of Electronics and Electrical Engineering, University of Glasgow,
and the Centre for Respiratory Investigation, Glasgow Royal Infirmary. This
broader study is concerned with the investigation of dynamic mathematical
models in the context of respiratory medicine and their possible uses as
diagnostic aids. Conventional tests of pulmonary function (72) have been
based largely on mathematical descriptions of respiratory gas transport which
are valid only in the steady-state. Such conditions may be difficult to establish
in practice, particularly in ill, irregularly breathing subjects. Clearly,
dynamic models are necessary in such situations.

In the course of this broad investigation, a dynamic homogeneous
002 gas transport model has been developed and the concept of using this as
a tool to indirectly infer the numerical values of associated cardio-pulmonary
parameters of real subjects has evolved. This is the area of the overall
research work with which this thesis is principally concerned.

Prior to the involvement of the author in this project, some preliminary
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development work and identification experiments had been carried out to
validate the proposed new method with limited success (234,228). Although
the results were satisfactory as regards overall accuracy, in terms of
repeatability they were rather poor. Thus, this Ph.D. project was commissioned
to investigate i:he identification aspects of the technique in a more rigorous
way than done hitherto. The primary aim of the research was to uncover
mechanisms to increase the reproducibility of the cardiac output estimates
obtained from the non-invasive measurement method. The major part of this
thgsis serves to document the progress which has been made towards this end
by the au_tho;r over the last three years. -~ There isi alwaslrs' benefit to be gained,
however, from addressiﬁg the general rather than the specific where this can
be done. Thus, the purpose of this first chapter is to ocutline the ideas and
highlight the difficulties involved in modelling and identification of biological
systems generally, It also introduces some concepts upon which much of the ‘

work in succeeding chapters is based.

1.2 Mathematical Modelling of Biblogical Systems - Personal
Perspective

In science, the notion of modelling is one of central importance in
solving problems concerned with the real world. Indeed, this has been so
since the 16th century when Galileo, for the first time, answered questions
concerning reality by analysis of an abstraction of reality - a model. Prior
to this time, natural events ha.d been explained teleologically.

What precisely is a model ? For our purposes the definition in
Eykhoff (97) suffices. That is "a model is a representation of the essential
aspects of an existing system (or system to be constructed) which presents

knowledge of that system in usable form." It is interesting that explicit in this



-4 -

definition is the statement that the model is a representation of some aspect
of the system rather than the system as a whole, thus implying that no model
can hope to completely define any given system. This in turn implies that
the aspect of the system to be modelled is 'separable’ (168) from its causal
environment. In fact this latter conclusion is not trivial and it is one of the basic
axioms of modelling that this can be done.

At precisely what level of detail this conceptual line between model
and environment should be drawn is a difficult question. That is, although it
is desirable to use the model most isomorphic with the real system,: it is also
equally obvious that such a model will be inevitably more complex, and as a
consequence, pérhaps less cost beneficial than a less realistic but simpler model.
Thus, in practice, a balance has to be struck between the desirable isomorphism
of the model and the complexity of the model which can be handled. Such a

model is termed a parsimonious model (39).

Historically, the idea of a model differs in the quantitative sciences
as opposed to the more descriptive biological sciences; the level of abstraction
of reality being higher in the former than in the latter., For example, in
engineering use is commonly made of mathematical models whilst in medicine
conceptual or phenomenological models are most often encounteréd. This
imbalance has been partially corrected over the last twenty years, however,
with analytical description of biomedical sy.stems (and especially physiclogical
processes) becoming increasingly popular over this period. The prolifiration
of recent texts on the subject attests to this (142,210, 244).

Mathematical models of man-made systems are used for a wide

variety of purposes which can be broadly categorised as follows : -~
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i) to gain insight (48),

(ii) to forecast (39),

(iii) to control (10, 226),

@iv) to assist in taking decisions (37, 266).

In contrast to this, the purpose of the modelling exercise in the
biological field has tended to be less clearly defined. For many physiologists
and clinicians, struggling with differential and integral equations seems to have
become an end within itself. Take, for example, the mathematical modelling
activity in 1“.he study of respiratory control. Modelling of this particular
phyéiological system has attracted rimch attention ifi the literature ever since
the seminal paper of Gfodins et al (143) in 1954. The major Mction of the
models developed in this area so far (many of these are reviewed in (303) ),
seems to have been to provide a convenient, functional, systems summary of
current conventional wisdom. However, since all these models serve to do is
emphasise the sufficiency of one particular explanation, they thus contribute little
to furthering understanding of respiratory regulation and control, which surely
should be the main object of the modelling exercise in such work. It seems
obvious that only by promoting confrontation among competing models can real
insight be generated, yet only comparatively recently have such tactics been
employed in this area (275).

Generalising again, this preoccupation on the part of the bio~
mathematicians with modelling as a "raison d'etre" is an unfortunate aspect
of the biological systems literature and is perhaps a reflection of the relétive
infancy of the field. However, this represents a fairly trivial utilisation of the
power of simulation and it is time this tendency was outgrown. It is the tenet
of this study that only when attention is directed to really using these biological

process models for a clearly defined purpose will positive benefit be gained,



especially in the biomedical area.

In the opinion of the author there are three applications areas
particularly deserving of attention in the above respect.

(i) The use of mathematical models for indirect

measurement of physiological quantities.

(ii) The use of mathematical models for testing various
hypotheses concerning the true nature of a biological
system under test.

(iii) The use of mathematical models to aid control (i.e.
treai;men.t) of diseased biological systems.

In thié thesis attention is focussed on applications (i) and (ii) in the
specific context of the human respiratory gas transport system. To practising
clinicians, as opposed to researchers, however, application (iii) is likely that
of most interest in terms of the ultimate benefits they see accrueing.
Unfortunately, to date, reported instances of "closing of the biological loop™
have been few in number (262). This is largely attributable to the following.

In order to apply control synthesis techniques in the biomedical
area, numerical values of the system model parameters must be readily
available. These will be strongly subject dependent and hence it will be necessary
to measure them in each patient to whom it is intended to apply the eventual
control scheme. That is, indirect measurement of the model parameters will
be a necessary prerider to control. Therefore, ethically clinicians have been
unwilling to condone use of models for control whilst in their eyes credibility
has yet to be established for the use of mathematical models for indirect
measurement in this area. Thus, in the opinion of the author success in the

latter area is the basic building block on which success in the former will be

founded. This, in a sense, forms a further justification for the work to be
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subsequently described in this thesis.

1.3 System Identification in Biological Systems

This problem of indirect measurement of internal quantities in
mathematical models, as referred to in the previous section of this Chapter,
is also of considerable interest in engineering circles. Here a new discipline
has evolved which provides tools to allow this information to be extracted from
experimentally observed input-output data for the system under investigation.
This discipline is known as System Identification. -

As far as ';modern" control engineers are cpncerned, system
identification has its roots in the early analysis metfxods uged in "classical”
control theory to design control strategies from frequency response measure-
ments. However, the statistician might argue that, in the time-domain at least,
system identification can be looked upon as simply an extension of the regression
analysis techniques of statistical inference to admit the class of dynamic models.
Zadeh (306) defined identification as "the determination on the basis of input and
output, of a model within a specified class of models, to which the system under
test is equivalent"; equivalence being defined in the context of the particular
identification method being used.

In the time-domain, there are basically two approaches to the problem.
The choice of which to use in a given situation is directly dependent on the
ultimate use to which the model is intended to be put. In the first approach, no
prior system knowledge is assumed. This is the celebrated "black box" or
"total ignorance” identification problem (24). Here a model of quite general
structure is identified which defines an empirical relationship between the
observed system's inputs and oﬁtputs. This relationship may have no
physical significance other than that itA:Ais experimentally true. Such a model

is called a functional model (272) and may be perfectly satisfactory where only
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the external behaviour of the system under study (i.e. the input/output
behaviour) is of concern e.g. for control purposes. However, in the case where
the internal system interactions are of interest and/or there is a priori
structural knowledge, as in the application detailed in this thesis, such an
approach may not be appropriate. This later situation corresponds to the
so-called "grey-box" identification problem (24)., In this approach the structure
of the model is deduced from the application of basic physical laws (e.g.
Kirchoff's Laws, conservation of mass, etc.) and only the coefficients appearing
in the resultant ordinary or partial differential / difference équations remain
to be identiﬁ.ed. This type of mathematical model is variously termed a
structural (272) or mechanistic (39) model since the parameteré appearing in the
model equations generally have intrinsic physical significance.

Often in the literature the term "identification" has the connotation of
the investigator possessing no ; priori physical insight into the problem. Thus,

in the latter case discussed above, i.e. the "grey box" problem, which clearly

does not correspond to this, the usage parameter estimation is frequent, especially

to the statisticians who originated the term. In this thesis, however, engineering
loyalties will be upheld by taking the term identification to refer to both the "black”
and "grey" box problem and will frequently use the terms identification and
parameter estimation interchangably in the latter case.

As discussed in Section 1.2, although the use of mathematical models
is becoming widely accepted in the biological community, system identification
has had a less enthusiastic reception. Some reasons behind this scepticism
are as follows (27).
(i) There is an ingrained preference on the part of biological

investigators for measurements which are obtained directly

(i.e. in the laboratory) and a corresponding suspicion of those

deduced in a less tangible fashion.
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(ii) There is difficulty in applying identification techniques due to the
inherent variability and non-linearity of biological systems.

(iii) Homeostasis in living organisms makes separability (168) difficult
and hence inputs and outputs of biological systems are difficult to
isolate. This frequently leads to parameter estimates which are

not unique and therefore of dubious value.

Despite these barriers the battle for credibility for system identification
techniques applied to biological systems continues. Some applications reported
in the literature will now be reviewed.

Thé most widely used models of bioiogical 'systems make use of the
notion of a compartment. A compartment can be viewed as a horﬁogeneous
entity representing several elements of the one type of organism lumped together.
Systems which can be modelled in this compartmental or lumped parameter manner
are particularly suitable for the application of identification techniques since the
equations which result from this approach are ordinary rather than partial
differe1‘1tial equations, For this reason the various subsystems concerned with
mammalian respiration, which are of this typ_e, have attracted consi_derable
attention as regards identification. In (12 8, 129) an application of parameter
estimation to a non-linear lumped parameter model of pulmonary airway dynamics
is described and the clinical significance of this technique discussed in relation
to chronic obstructive airways disease. Similar work in this area is that of
Peslin et al (236) (who use a frequency-domain approach) and Feinberg and
Schoeffer (106). These latter authors also address the problem of Function
Minimisation _which is an important part of the Time-Domain System Identification
problem. This topic is also extensively discussed in Chapters 5 and 6 of this

thesis in connection with estimation of the parameters of the gas exchange model.
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The dicussion of identification techniques applied to lung gas exchange
models, which have been reported in the literature, is more properly reserved
to Chapter 3 of this thesis.

Stoll and Meditch (268) have applied a least squares identification
technique to the human respiratory control system itself. In the study of this
system (in humans at least) separability becomes a problem since the lung-trachea
gas transport system is interposed between the true input to the respiratory
control system (gas concentration in the lungs) and the only input which can be
ethically applied in practice (gas concentration at the mouth). Swaz-lson et al
(277, 278) have evolved a novel technique to circumvent this difficulty termed
‘ "dyné.mic end-tidal forcing". Basically this consists of using a'predictive type
of chamber gas concentration input to anticipate the lung-trachea dynamics and
manufacture the desired input response within the lungs themselves. This system
has been used in subsequent identification studies to give insight into the quantitative
aspects of the regulation of respiration (276, 279, 274, 29, 280, 296) and to identify
the site of action of drugs (169). The work of this group, and in particular
Swanson's thesis (272), represents an important contribution to the biological
identification literature since it emphasises for the first time in this area, the
importance of experiment design on the subsequent accuracy of identification (273)
and its role in model discrimination (275). Also, it is conspicuous in the field by
its use lak‘hrﬁj (29, 280, 296) of some fairly advanced time-domain system
identification methods. In this respect, this work has had a large effect on that
described in this present thesis.

Identification techniques.have also been applied to the study of the
mammalian muscle reflex control system (199, 202, 195, 196, 160). Most of
the applications of system identification techniques in biology, however, have

been in the area of tracer kinetics. (This latter term is a broad brush one to
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cover the investigation of the kinetics of such things as drugs, enzymes,
chemical reactions, pharmological agents, etc. "in vivo" by tracer techniques.)
Kinetic modelling, as such, is not new. Graphical methods, e.g. the "peeling”
method (259) have been used to fit exponential tracer test data to sums of
exponentials for some years now. In recent times more computing power has
been applied (180, 198) to make the process more efficient. However, these
methods are still eésentially "black-box". Under the influence of enginéers,’
modelling and identification procedures are beginning to be applied in this area,
which are based more on a priori knowledge rather than simply observat.:ional data.
This is especially trug in the contéct of .-rnetaboli'c syétems.' For example, Wilson
et al (298) and laterally Distefano et al (89) have considered the identification of a
compartmental model of thyroid hormone metabolism. Brown and Godfrey (49)
and Cobelli et al (66) have investigated bilirubin kinetics by identification methods.
This new approach leads to a better understanding of the underlying physiological
process and/or helps devise experimental conditions, which aid diagnosis of
diseased states (208, 211).

In such complicated metabolic models careful attention must be paid to
possible non-uniqueness of the resultant parameter estimates and, in fact, a
large part of the literature in this area addresses this very question. This
important topic will be more fully discussed in Chapter 4. The problems
associated with applying identification techniques to metabolic systems are
discussed in a more general sense by Carson and Finklestein (55) and more
recently, in the review by Carson et al (56). Further applications of system
identification to all the systems mentioned above, and in addition to the cardio-
vascular, nervous, visual and human operator systems, can be found in the

comprehensive survey papers by Bekey (25) and Bekey and Beneken (26).
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The majority of identification applications cited in the biological
literature so far have been off-line methods. In concluding this section it is
perhaps worth noting that, in the industrial process control field, over the last
decade the emphasis has gradually shifted away from the design philosophy of
off-line identification and subsequent fixed controller design, towards one of
simultaneous on-line identification and control. Attention has esﬁ:ecially been
focussed on the so~called "self-tuning regulator" (15, 64,293), a simplified
form of stochastic adaptive contr;)uer which ignores the comp-licating interaction
. betwéen identification and control (21). It is the opinion of the authoxr that the
biological area represents an ideal vehicle for application of these techniques
and, speculating into the future, believes that progress in this respect will

ultimately mirror that currently being made in industrial process control.

1.4 General Considerations in System Identification

As discussed in the previous section, most models of biological
systems utilise the concept of the compartment. Such compartmental systems
may be best represented mathematically in a state-space framework (95).
That is, an "n" compartment linear system could be represented by the set

of equations

dx
aE-=A1x(t)+Blu(t) 1.1
y(t)= C x () + D u(t) 1.2

where x is an "n" vector, typically representing the concentration of a
particular material in each of the "n" compartments, uan. "r" vector of

inputs input to the compartmentsand the matrices A 1 B, ,C,D constant

1
matrices, whose elements will be functions of the "physical" parameters 3

of the system of interest. In the discrete time case, this system can be

written as :
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x(k+1) = Ax®+Bu® 1.3

y (k) = Cx(®+Duk 1.4

where k=0, 1,2, ... etc., the matrices A , B being related to A 1’ B 1
by familiar equations (156).

As is well known in the systems literature, there is some redundancy
in these representations as regards input-output relations (95) and in fact the
coefficients of the matrix quadruple (A, B, C, D) can be parameterised in
terms-of the inherent "physiéal“ model parameters in many different ways. This
_can be advantégeous. That is, in many situations where the '"natural" param-
eterisation is not convenient for identification purposes it is frequently possible
to exploit this redundancy to obtain a better representation. For example, a
canonical form in the multi-input, single-output ;:ase for equations 1.3 / 1.4

with D = 0 is obtained by employing a suitable equivalence transformation so

that A becomes a matrix 05 companion form (156).

_,_ - r ]
x(k+ 1) - a, 1.. .. 0 bl'l o . bir
- O 1 X(k) b u(k)
) . 21 - -
E 3 » b¢ + ) ) :
“an-l - ¢ l -
-a 0 0~ > 0O b b
nl nr
- - —
1.5
v& = [1 -0 0 01 xE 1.6

By eliminating the state variable x we obtain the following input-output relation.

yk) = aly(k-l)+ .o an y(k-n) + b11 u, k-1)+ ... bnl L
u(k -m)+ .0 bir ur(k-l)+ L I I O 4 +bnr ur(k-n)

The equation can be written in slightly more compact form as
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B (z)

yk) = NG

u (k) 1.8

where z is the shift operator defined by
zx(k) = x(k+ 1) 1.9

and A a polynomial, B a polynomial matrix in this operator defined by

n n-1
z +a, z 4+ eeeeee an 1.10

A(z) 1

B(z) = [b,; -+ b7 S +[_bnl bnr__l 1.11

This representation is well -known to the industrial process control identification

commumuity (13). Its special structure is such that it is linear in its. parameters

,l.lb

(al,oo-an,b ﬁ,...bnl’... hnx

11 ). A model is characterised
as being linear in its parameters if the model output is a linear function of each

model parameter. That is the model can be written in the form

Y =XB 1.12
where the elements of the so-called sensitivity matrix X do not depend on
B (22). In identification use of a mathematical model which is linear in the
parameters leads to an estimation problem which admits a closed form solution.
On the other hand, use of a model Whié:h is non-linear in the parameters leéds
to a problem which can only be solved by iterative methods. This will be
further explained in Chapter 4. Suffice it to say, however, at the moment,
that the importance of using models linear in the parameters in time-domain
biological system identification, where this can be accomplished, cannot be
over~emphasised.

Having chosen a model structure whose parameters can be determined
from input-output relations, or in the terminology O_f (191) a class of models {M}
it then remains to find the pararnetersr of the model, that is one model in the

specified class {_ M} which fits the experimental data. The choice of a
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a criterion function by means of which the "goodness of fit" of the model
responses to the actual system responses can be evaluated is crucial in this
respect.

Ideally, a cost function would be some distance measure between the
parameter estimates § and the true parameter vector 8 . Of course, the
problem with this is the true parameter values are not known ; priori.
Therefore, it is more common for the comparisoq to be based on some distance
measure of the error between the system and model responses, e.g. the
output error (13) or some form of more generalised error dependent on both
input and output (13). The actual criterion function used can be chosen "ad h.oc"
as is done in Chapter 3 ‘of thié thesis. However, as we shall see in Chépter 4,
the criterion function used is implicitly related to tﬁe nature of the disturbances
corrupting the measurements and it is possible to gain some advantage by giving
a statistical interpretation ‘to a criterion., In fact, a major difficulty in
mathematical modelling of biological systems is how to handle uncertainty, i.e.
in many problems the characteristics of the disturbances can be as important
as the system dynamics. During the post-war development period control
engineers were beginning to be faced with similar problems in their field. For
example, the deterministic control theory of the period only took disturbances
into account in a heuristic manner and hence had difficulty in recognising the
explicit difference which exists between an open-loop control strategy and an
"equivalent" closed loop one. However, under the influence of such names
as Wrener and Kolmogorov, a new discipline was evolved to handle such problems;

stochastic control theory (9). Central to this new theory was the concept that

disturbances could be modelled as stochastic processes (9).
For most problems of scientific interest, it transpires that this

approach amounts to the disturbances being simulated as the output of a linear
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filter driven by white noise. In Chapter 4 of this thesis it will be shown how
such a functional "noise model" can be combined with the structural gas

exchange model derived from physical principles to give a better representation

of the biological system under study.
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CHAPTER 2

HOMOGENEQUS MODELS OF THE HUMAN
GAS TRANSPORT PROCESSES
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2.1 Introduction

External respiration is the carriage of respiratory gases: ( 02 , CO2 )
between the atmosphere and the tissues of the body. The need for such a
process arises from the nature of human metabolism.

Man requires energy whether at work, exercise, or even whilst asleep.
This energy is mainly derived from the oxidation of foodstuffs. Also, the main
end-product of this reaction is carbon dioxide. Thus, the tissues are continually
demanding oxygen and producing carbon dioxide.

This uptake and excretion will not be consﬁnt, but will vary with energy
.require;nents. Thus, there is a functional requirement for a regulatory mechanism
to maintain the levels of these gases in the tissues within reasonable limits for

homeostatic purposes. This regulatory mechanism is known as the respiratory

control system. It controls gas levels in the respiratory "plant” or controlled

system primarily by manipulating the ventilation of the lungs. As discussed in
the previous chapter, this system has already been subject to a great deal of
mathematical treatment. However, in this thesis the modelling effort will be
concerned, not with the cont;:ol system itself, but rather the controlled plant,
i.e. the human gas transport system.
Conceptually, the human gas transport system can be thought of as
being made up of two constituent parts.
(1) The system responsible for carriage of respiratory gases in the
air phase, i.e. that which transports gases from the external
environment to the alveolar membrane and vice versa.
2) The system responsible for carriage of respiratory gases in the

liquid phase, i.e. that which transports gases from the pulmonary

capillaries to the tissues and vice versa.
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Anatomically, sub system (1) consists of a series of bifurcating tubes, i.e.
beginning with the trachea (or windpipe), dividing into the two bronchi and '
each of these major airways diving 23 more times and eventually terminating
in tiny sacs called alveoli, where gas exchange takes place with the blood.
The earlier generation airways (i.e. the upper airways) do not take part in
gas exchange to any extent, although they are still ventilated. This
ventilated region constitutes "wasted ventilation" and for this reason this gas

volume is known as the "anatomical dead space”.

| In sub system (2) there is branching between the puimc;na:t_'y artery
and the pulmonary vein, eventually ter.niinating in the pulmonary capilla}'ries«
which are in direct contact with the alveol.i.

It is across this gas-blood interface (alveolar m.embrane - pulmonary
capillary wall) that gas exchange takes place. Despite the small éize of the
lungs, due to the bifurcating structure, the interface area is very large ( 70 -
100 m2 ), which facilitates efficient gas exchange. Although gas is transported
to the gas-blood interface mainly by convection (bulk flow) gas transfer across
this membrane itself takes place largely on the basis of partial pressure
gradients. Thus, pulmonary arterial (venous mixed) blood comes into the lungs
from the tissues high in CO, and low in O, . In contrast, alveolar air is nearer

2 2

the gas partial pressure levels of the external environment which is high in O2

and low in 002 . Therefore, due to the partial pressure gradient there is a net

transfer of 02 from the lungs to the blood and of CO, from the blood to the lungs.

2

Thus, the pulmonary venous (arterial) blood leaves the lungs high in O2 and low
in 002 and goes to the tissues where net gas transfer takes place in the opposite
direction to that in the lungs since here the partial pressure gradients are

reversed.
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In the human gas transport system four areas for modelling attention
will be identified, which will be pursued at various places in this chapter.
(1) Modelling of convective (perhaps diffusive) gas transport between

the external environment and the alveolar regions.

(2) Modelling of alveolar membrane/pulmonary capillary gas
exchange.
(3) Modelling of the relationship between partial pressure (gas tension)

and content in the blood in situations where this is not a porportional

relationship (i.e. the gas’es'ﬁsed do not obey Henry's Law ).

This will be especially important for the respiratéry gases O2 gnd-

CO2 » Which combine chemically with the blood.

{4) Modelling of the arterial blood to venous . blood "tissue loop" and
inherent transport delays.

Several simplifying assumptions are required to keep the analysis of these sui)-

systems within reasonable bounds. However, perhaps the most important

refers to modelling areé (2) and this will be discussed below.

To keep the order of the resultant differential equations involved low,
it is useful to assume that the lungs are'horhogeneous‘, i.e. all the alveoli on
the gas side and all the pulmonary capillaries on the blood side can each be
lumped into one structure (that is single numerical values can be assigned to
the partial pressures in all the alveoli and in all the pulmonary capillaries).
This assumption is perfectly adequate to describe normal lungs (and is almost
universal in classical respiratory physiology), but will have the effect of
invalidating the model in the presence of significant abnormalitiesor inhomogen-
eities such as exist in disease. Inhomogeneous models are discussed in

Chapter 8.
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2.2 Mathematical Concepts and Quantities in Human Gas Transport

Before going on to undertake modelling of human respiratory gas
exchange, familiarisation with the standard units and symbols used in this
area is necessary.

In the early days workers in gas exchange physiology were short on
ideals of interchange and co-ordination and the resultant mathematical
language used reflected this disharmony. However, the 1950 Atlantic City
. standardisation (232) introduced clarity into the field and has served to unify
- gas exchange modelling with respect to units and symiools until very recently.
This 1950 standard system of units and symbols is used in this thesis a;nd is
t-)utlined in Table 2.1 below. The basic concept behind the system of units
is that amount of gas, i.e. quantity of substance, be represented by a volume
expressed at a set condition of temperature and pressure - conventionally BTPS
®6dy Temperature and Pressure Saturated (with water vapour) ). Q[In 1971
Piiper et al (238) suggested the alternative concept where amount of gas was
expressed in moles. However, although this has certain advantages, it has not
as yet become universally popular with physiologists who still seem to prefer
the 1950 system. For this reason the "new" system has not been used in this
thesis._]

Concentration in the air phase in our system of units is represented
by the dimensionless quantity fractional concentration F (volume of gas species
under consideration/volume of gas medium). The relationship between
fractional concentration and partial pressure is described simply by Dalton's

Law, i.e.

P =F P 2.1
X X -

where Fx is fractional concentration of a gas species x , Px the partial
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Quantity Symbol Units

Partial Pressure P mm.Hg (Torr) or
kilopascal (KPa)

Volume of gas A" Litre (at BTPS)

(gas in air phase)

Fractional concentration F Dimensioniess

(gas in air phase)

Volume flow rate v Litre/min

Conc. of gas in liguid C ml.of gas at.S'II’D/

phase " 100 ml liquid.

Solubility in blood (for gases Vol. of gas at STPD/

which obey Henry's Law) o Vol. of liquid/

Bunsen solubility coefficient atmosphere of pressure.

Ostwald solubility coefficient a’ Vol. of gas at BTPD/Vol.

of liquid/atmosphere of

pressure
/

SUBSCRIPTS

_Upper Case Letters
(for gas phase)

Lower Case Letters
(for blood phase)

Inspired
Expired

Mean end expiratory

> mmo-

Alveolar

a

v

mixed venous

TABLE 2.1: Standard Symbols from Atlantic City Standardisation
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pressure and P the total gas pressure. Relationships concerning the carriage
of a gas in a liquid may be developed by invoking the concept of gas tension.
This is defined as that partial pressure of a gas species x in a gas mixture
which, if exposed to the liquid, would not result in any net exchange of x .
Thus, saying a gas and liquid mixture are equilibrated is synonymous with
saying the partial pressures of the component gas species are identical in the
gas and liquid media. The tension of a gas in a liquid, as defined above, is
related to concentration.

For gases which dissolve in the liquid, Henry's lgw tells us this
concentration‘- partial pressure relationship is a matter 61’ sirhple proport-
vionality. We shall call such gaées in the context on this thesis inert gases,
inert in the biclogical sense as ﬁrst defined by Kety (173). Since, in the 1950
system of umnits, quantity of gas in the liquid is expressed as a volume at STPD,
it is usual to use the Bunsen solubility coefficient as the constant of proportionality
in the linear concentration - partial pressure relationship. Thus, we have

a, Px
N 2.2
where C X is the concentration of gas species x in the liquid, Px its
paxtial pressure afx the value of the Bunsen solubility coefficient for x and
P the total pressure.

Sometimes, especially when equating uptake in the liquid phase with output
from the gas phase, it is more convenient with inert gases to use the Ostwald
solubility coefficient in equation 2.2, as this obviates manipulations involved
in considering volumes of gas in the air phase at BTPS and in the liquid phase

at STPD. For the important respiratory gases 02 and CO, unlike inert gases,

2

there is no simple relationship between tension and concentration in the liquid

phase, since these gases combine chemically with the blood and hence the resultant
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content - partial pressure relationships are non-linear. These nonlinearities

(i.e. Haldane effect for CO Bohr Shift for O2 )lead to an increase in

9
efficiency as regards gas exchange, but complicate mathematical treatment.
These two special cases will be treated in Section 2.3. Using the units and
symbols introduced abové, basic equations of gas exchange in the lung may be
derived by the simple application of the principle of conservation of mass.

For example, the uptake of a gas x from the external environment to the lung

may be derived as :

Vx = .VI .FIX - VE FEx : 2.3'
Uptake Amount Amount

(Vol. Inspired Expired

BTPS/

unit time)

In breathing normal respiratory gas mixtures V. does not normally equal

I
VE since more oxygen is taken up than CO2 produced. (i.e. the respiratory
V CO
gas exchange ratio ?762 < 1 ). An expression describing the uptake of

a gas x from the blood to the lungs may also be written as :

Vx = Q ( C‘.I'-X - Cax ) 2.4
Uptake Net transfer from

(Vol. blood

STPLY

unit time)

Equation 2.4 is known as the Fick equation and equating equations 2, 3 and 2.4 is
the basis of the various methods of measurement of cardiac output which will
be discussed iﬁ the succeeding chapter.

When equating gas uptake from the environment with transfer to the
blood, quantities in the above equations rnﬁst be expressed at the same

conditions of temperature and pressure and, therefore, use of a correction



- 95 -

factor is necessary, i.e.

Y o

A = k

x (STPD) Vs BTPS) 2.5

where k is the reduction factor from BTPS to STPD conditions given by

K = (B - 47) 273
B B * 310

2.6

B in this case being the barometric pressure in mm. Hg.

2.3 Concentration - Partial Pressure Relationship for O,

Oxygen is carried in blood mainly in chemical combination with a
substance called haemoglobin, a protein found in the red blood cells

- (erythrocytes) .

0 + Hb — Hb O , 2.7
2 -~ 2
Oxygen (reduced) Oxyhaemoglobin
haemoglobin

This is a reversible reaction. Just to what side this reaction is biased depends

mainly on the partial pressure of O, in the immediate environment, i.e. the

2

reaction is biased to the right hand side in alveolar regions (high PO2 ) to allow

uptake of O2 , but to the left in the tissues ( low PO2 ) to elicit unloading of O2

from oxyhaemoglobin.
The curve relating percentage saturation of the O2 carrying power of
haemoglobin (maximum O2 that can be carried by one gram of Hb is approximately

1.39ml ) to PO, is known as the oxyhaemoglobin dissociation cuxve. This has

2

the characteristic sigmoid shape which is shown in Fig. 2.1.
The reaction above is also dependent to a lesser extent on temperature,

acid~base status (pH) of the blood and 002 partial pressure ( the Bohr effect),
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The latter effect causes the Hb 02 dissociation curve to shift to the right with

increasing PC 02. This is advantageous, e.g. where an increase in 002

partial pressure locally during tissue activity would cause Hb O, to part more

2

readily with its O2 to the active tissues. A certain amount of 02 is also carried

in direct solution in plasma. This, however, is a lot less than that carried
combined with haemoglobin since the Bunsen solubility coefficient of oxygen
in blood plasma is small (oz()2 ~ 0.3x10 -4 ). Thus the concentration-

partial pressure relationship can be written in terms of these two distinct

components as follows :

_ a0
co, = f(PO2 ). = Cap. 8@2) + "—% . PO 2.8

2 100 760 2

where Cap is the product of oxygen capacity of haemoglobin at 100% saturation
(1.39 ml/g Hb ) and the blood Hb concentration ( g Hb/100 ml whole blood), S
is the percentage haemoglobin saturation as given by the Hb 02 dissociation
curve and Lley) the solubility of oxygen in blood plasma. The first term in the
above equation gives the amount of Oy in chemical combination and the
second the amount of O2 in physical solution. To use the above equation a
mathematical expression is also required to describe the dissociation curve

in a form for S above as a function of PO2 . Various empirical formulae
have been suggested, Visser et al (287) used.

] 2
S(PO,) = {1- e “‘XPOZ)} 2.9 -

This was based on the curve obtained by Dill and Forbes (85) from the data of

Bock et al (34); as is the modified formula of Murphy (212).

1.1
5@0, ) - {(1 .o~ 0-04PO2, \  -0.08 Poz)} 5.10

This data, however, was based on measurements from only one man.

Servinghaus (256) has obtained a curve which was averaged from data for ten
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adults. The form of dissociation curve eventually used in this thesis is that

of Kelman (170) which is based on that of Servinghaus. Kelman's equation is

2 3 4
C1 PO2 + C2 PO2 + C3 PO2 + C4 PO2
S(POZ) =

2
C5 +C36PO2 +C7P02 + C P023.+C

2.11
4
P02

8 9

where C1 , C

PEREEEE C_, are constants.

9
For the work described in this thesis this equation was rearranged in factorised

form (which is much more convenient for computation) as

seo. ) = 100[_'13021{1302 (PO, <PO,+a,y +a,) +a1§]
2 [FO, (PO, (PO, <PO, + a,7 +ag+agk+a,]

2.12

where a, » a2 y Seaen 3 a,7 are derived directly from Kelman's coefficients

and are : -
a, = -8.532229x10°, a, = 2.121401 x 103, ag = - 6.707399 x 10
a, = 9.339609x 10°,  ag=-3.134626 x 10%, a_ = 2.396167x 10%
ay = - 6.710441 x 10l .

The Kelman formula (170) was envisaged for given values of PCO 9 (40 mm. Hg),
blood pH (7.4) and body temperature ( 370 C ). Correction formulae for the
basic equation were given for other values of these various factors. For example,
if PCO, is not 40 mm Hg, then PO, in equation 2.12 is replaced by the following

expression
, [0.06 ( 1og 40 - log ¢CO, ) ]

PO2 = PO2 x 10 2.13

However, Ferguson (108) has shown that the effect of these correction factors,

even cumulatively, is small ( < 4%) over the PO, ranges of physiological

2
interest. Thus, these modifications will be ignored in the dynamic O2 gas

exchange model used in this thesis.
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2.4 Concentration - Partial Pressure Relationship for CO

Despite the fact the solubility of CO2 in blood is some twenty times
greater than O2 , C.‘O2 is, like O2 , transported in the blood in chemically
combined form. The bulk of it is carried as bicarbonate. The reaction is

summarised below.

C. a.

& -
e —_—
CO,+H,0 = H,CO, = H + HCO, 2.14

Although this reaction-can (and does) take place in plasma, it is chiefly
carried out in the red blood cells ( érythrocytes),'where the presence of the
. enzyme ,carbonic anhydrase {c.a.) catalyses the first step of the reactfon above.

A larée part of this bicarbonate formed in the erythrocytes then
dissolves back into the plasma in exchange for the shift of chloride ions in the
opposite direction, which maintain electrical neutrality. This reaction is
dependent on CO2 partial pressure and is conveniently driven to the right in
the tissues and to the left in t‘he alveoli.

Not all 002 is transported as bicarbonate; some is transported as
carbamino- bound 002 ; largely bound to haemoglobin, but also to a lesser
extent to plasma proteins.

CO,, transport is also dependent on the O

2 2
the state of oxygenation of Hb since this affects the 002 binding power of the

tension or more precisely,

blood, i.e. reduced Hb forms more carbamino ~ Hb than Hb O Thus, at

2.

a given PCO,, , fully oxygenated blood holds less CO2 than deoxygenated blood.

This effect, which thus serves to increase the efficiency of external respiration

in man, is known as the Haldane effect.

Modelling the relationship between C‘O2 concentration and tension in

blood has been approached from two different viewpoints. Kelman (171) has
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developed a description based on explicit mathematical consideration of the
underlying physico-chemical equations.

A more common approach, however, (90) is to fit empirical curves
to published data of experimentally derived concentration/tension relationships
on certain subjects.

Surprisingly, despite the biochemical complexity of 002 transport
in blood eluded to above, the relationship can be approximated linear over the

range of physiological interest (PCO2 : 30 - 60 mm Hg ) i.e. see Fig. 2.2.

C = a4+ bPCO :
- €O, 2 _ 2.15

L(STPD)/L mm He.
This relationship- has been used in man& simulations of carbon dioxide transport
(143, 282, 61, 303, 175, 185). Quantitatively, little cii.fference has been found
in the slope 'b' of the "002 dissociation curve" at different 02-1evels (in the
same subject). However, due to the Haldane effect, the intercepts "a" are
different for arterial and mixed venous blood, i.e. a 7 # a_ . Many
workers employing the representation given by equation 2.15 do not take the
Haldane effect into account in their simulations (i.e. they assume aF =a Y
e.g., (282), Many more do not take into account the known intersubject
variation in the slope 'b' of the dissociation curve, but assume a constant
value for all subjects, (143, 282, 61, 303). The cause of this subject to
subject variation in ‘b’ is related to the corresponding variation in Hb
concentration, e.g. it is well known that the slope of the dissociation curves
in polycythaemics is markedly greater than in anaemics.

This relationship can be modelled and the value of 'b' thus tailored

to the individual subjéct. Pack (22 §) based on an investigation by Peters et al
(237) recommended that the relationship between b’ and Hb concentration be

described as :
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i

b = 0.448 Hb. conc. + 6.3 2.16
L/L/mm Hg 30 x 100

where the Hb concentration is in units of grams per 100 ml whole blood

(gm%).

Thus, given the linearised 002 content/partial pressure relationship, the

Fick equation (equation 2. 4) can be written in texrms of CO,, tensions as :

2

Vv

a
2 CO2 CO2

a a
002 , CJO2

Qb(B; - B, )+ Qlagta,)

v "
Q [b(P— - P )+ A _—J 2.17
VCOZ aC02 INT

H

2

dissociation curve intercepts (taken as 0.0129 subsequently in this thesis).

where AINT is the difference between the mixed venous and arterial CO

\ ’
2.5 Homogeneous Lung Gas Exchange Model with Flow-Through

Representation of Ventilation

Equations describing the transient aspects of alveolar capillary
gas exchange (i. e. dynamic equations) can be derived by recognising that,
in the non-steady state, by conservation of mass the difference between the
net transfer of a gas species from the environment to the lungs (as given
by equation 2. 3) and the net transfer between the lung gas and the blood (as
given by equation 2.4) will represent the rate of change of the quantity of gas

in the lungs, i.e.

Rates of change of Net transfer Net transfer
amount of gas in the between ext. between pulmonary
lung environment capillary blood
-and lungs and lungs.

2.18
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Such a model was used in the classical respiratory control simulation of
Grodins et al (143) and has since been used extensively in this area.

To overcome difficulties with the time-~varying nature of ventilation
and motivated by the desire to obtain an analytical solution the Grodins model
utilised a conceptual "flow through" representation of ventilation, which
effectively ignored the events of the respiratory cycle. This is depicted in
Fig. 2.3.

Although Grodins original model (143) ignored the wasted ventilation

3 ]

in the upper airways (assumed zero.. deadspace, i.e. V A = VI ’ V Ap = VE )

this was accounted for in later work by using the Bohr equation, which

proportions the ventilation into the alveolar and dead space components.

L ] < L 4
i.e. VI = VAI+ VD = VAI+ f VD 2.19
similarly, 2 s o

VE = VA +VD = VAE+ f VD 2.20

[+

where V Ap is inspired alveolar ventilation, VD dead space ventilation,
L] s >
v AR expired alveolar ventilation, VI , VE inspired and expired minute
ventilation at the mouth, V_ = dead space value and f is breathing frequency.

D

~ Other assumptions inherent in the Grodins model were :

(1) the respiratory gas exchange ratio R is constémt and
unity (this means VAI = VAE =V )
2) the alveoli are assumed uniform (homogeneous) and of

dVa _
constant volume ( T = 0),
(3) gas tensions in the alveoli and arterial blood are in

continuous equilibrium (i.e. P A = Pa ).
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Thus, applying the concepts and quantities of Section 2.2 to equation 2.20
above, results in the following alveolar-capillary gas exchange equation for

a gas species x .

d - ° : 1
- (V, F, )=V F. -v, F + Q(C~ -kC ). =
dt A A‘X‘ i < AE % Vy a 'k

2.21

where i1<_ embodies the correction from STPD to BTPS (we are working at

STPP here) and is obtained from equation 2: 6. Using Dalton's Law and

assumption (1), equation 2.21 reduces to

» o

z— dPAx _ VAI PIX --VAEPAX
B-47) ° dt = (B -47) (B - 47)

+ Q(C~ =~ C_ ) 310 2.22
Vx

B
ay’ * (B-47) ° 273

Tidying up and employing the remaining assumptions results in

dPAX ]

VA o = VA (PI'X' - PA,X, ) + Q (C-‘-rx " f(PAX) ) . const. 2.23
760 x 310
here ¢ f = c—m—— = .
w ons 573 863 2.24

and f@® Ay ) is the content partial pressure relationship for the gas species x .
Particular choices for given gases were discussed in earlier sections.
Equation 2.23 is the basic dynamic equation of alveolar capillary gas

exchange and as pointed out earlier, because V, is assumed constant, may be

A
solved analytically., This may be done for various gases and/or physiological
conditions. C 5 may be regarded as constant (i.e. for short experiments less
than around 45 secs.) or may be obtained as a solution of one or more tissue
equations in longer experiments where recirculation has occurred. Aspects of

tissue store equations will be more extensively discussed in a later section of

this chapter.



- 36 -
If an insoluble gas is used, there will be no net transfer of this gas
species to the blood and the second term of the right hand side of equation
2.23 can be ignored. Alternatively, during breath-holding ':“7 is zero and

A

the first term on the right hand side of equation 2.23 can be ignored.

2.6 Homogeneous Lung Gas Exchange Model with Time-Varying
Representation of Ventilation

The "flow through" type of model discussed in the previous section
répreseﬁted a great alldvance over the tJ;':;tditiOI;al steady state models much
beloved by respiratory physiologists. However; in terms of a truly "physical"
description of respiratory gas transport, it is still conspicuous by its failure
to consider that which, even to the layman, would appear the most
distinguishing facet of the system, that is the time~varying nature of ventilation.

There are, of course, fairly sound reasons for this omission. The
complex process of gas transport in the airways can only really be properly
described by distributed models (58, 231). The mathematics and resultant
computation involved in this is rathex 6verbearing.

However, a more adequate structural representation of gas transport
in the upper airways than is furnished by the Grodins model is a necessary pre-
requisite for the use of this type of model in such applications as indirect
measurement in the individual subject. Fortunately, if one is willing to accept
a degree of flexibility, fairly tractible lumped parameter descriptions of upper
airways transport behaviour can be formed without recourse to a full distributed
solution. Motivated by such aspirations, Dr. Murray-Smith, Dr. Pack and
associates at the C.R.I. and in this University Department, viewed the pulmonary

component of this model in the form illustrated in Figure 2.4, i.e.
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@) conducting airways - A rigid "non-reacting” dead space
compartment in which no volume change can occur,

(ii) Alveoli - where volume change can occur.

(This of course is no more than the Bohr conceptualisation of lung structure).
They also postulated that gas washes in and out of the airways with a plane
front (i.e."plug flow" in the airways).

Such assumptions above would dictate that the inspired/expired gas
concentration profile would be of the square wave form. Although this may
seem on the surface a gross simplification of the true state qf nature, .it is
a matter of empirical fact that such a waveform can readily be discerned in
expired gas concentration records logged at the mouths of real subjects, e.g.
see Figure 2, 6(b). It is this factor which has encouraged subsequent
development of the model. In fact, many authors have attempted to incorporate
the cyclic nature of ventilation into equations of the typé 2.23 (e.g. 271, 302,
222),but only intheoretical studies ~ no attempt has been made to apply them to
measurement of physiological quantities.

Utilising the concepts detailed above, Pack and his associates (96,
214, 229) considered gas exchange in the respiratory cycle in terms of three

separate stages outlined below.

STAGE CONDITION
© t o
(S1) Inspiration of dead space V2 O and jV dae <V
I D
gas to alveoli t
(S2) Inspiration of atmospheric V> 0 and fva dt 3 vy
gas to alveoli tI
{S3) Expiration v< 0

where t = tI defines the start of inspiration.

The transfer of gas into and out of the lungs is different in all three of these

stages of the respiratory cycle. Applying the concept of conservation of mass
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over all three of these stages we arrive at the following equation analogous

to equation 2.18.

Rate of change of Transfer from Transfer for ext.
amount of gas in = dead space + environment
the lung (during stage 1) (during stage 2)
2.25
Transfer to dead Transfer from
+ space + blood
(during stage 3) (during all stages)

Mathematically this can be written

d . L4 - 1
dt(VAFA )—SIVFD +SZVFIX+S3VFA+Q(C\7 Ca). K 2.26
X X X X X
_d_ _ M . . o )
b (VAPA. )-81VPD +SZVPL +SSVPA‘ +Q(C‘7 f(PA ) ) const.
X X X X X X

2.27

where S 1= 1 only during the condition described for stage 1.above and 0
otherwise; similarly for 82 and S3 .

In the previous section V A was considered as fixed, however, in reality V A

will vary with time as follows :

N

VA=VA(t)=VA(0)+ JV d - JVOZ dac + ijOz de 2.28

(FRC)

Now, if the variation in V A due. to the difference in gas flux to and from the

blood-can be neglected, i.e. if respiratory exchange ratio is assumed equal to

one, the last two terms of this equation cancel out and we have

dVp >

VA = VA(0)+ Jth"—'—;? - =V 2.29
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and equation 2.27 becomes

P 2 *

A ) .
v,d ”x =S, V(P, -P, )+S,V(P. =P, )+Q(C- - f(P, ))const.
AT —= 1D, TAL 2 L A, v A

2.30
Note that V A in this equation in addition to being time-varying as defined by
equation 2.29, is an'equivalent lung volume since in addition to the volume
component of the gas species in lung gas, it will élso contain a component
from the gas dissolved in lung tissue (and assumed to be in equilibrium with
lung gas) expresse.ad as an equivalent additional volﬁme; see Pack(22§)for further

discussion. Now what of P ? Obviously,; since there is "plug flow" through

D
X _
the dead space, PD . should be a suitably time-delayed version of P A
; X X
Pb =P, (t-7T) 2.31
X X

This time delay will be flow dependent and defined by the following equation

t o t °
5 v | a = j | V| dt 2,32
tI N

However, this will be complex to simulate.

In earlier work Pack et al (229) assumed that P be set equal to

D.
X

P , Over stage 1, i.e. they assumed the first term on the right hand side
X

of equation 2. 30 is zero.
Note that with this formulation there is no need to actually measure
. expired flow since it does not appear in the alveolar-capillary gas exchange
equation. This was advantageous since there are difficulties in measuring
this quantity with a conventional pneumotachometer mainly associated with
the fact that expired gas is saturated with water vapour. However, more

recently at C,R.I. this advantage has been negated due to the availability of



- 41 =

a pneumotach specially designed to handle 'wet' gas (284). Thus, Gray (139)

has proposed the following formula for P

D (assumed constant over stage 1)

X
which utilises expired ventilation.
J
d
L VE P Ax t
X tI .
{( Vg dt
b .
where t, is such that. J; | VE | dt = VD 2,34 ‘
X
i.e. PD in the first dead space of inspiration is taken as the flow-weighted
X
mean of P '\ Over the last dead space of the previous inspiration,
X

In fact, it transpires this is similar to the expression developed by
Hlastala (154) except that the linear mixing term included by this author over
the inspired volume rangé from 50 ml less to 50 ml greater than the dead space
has been omitted.

Thus, to summarise,equation 2.30 can be most conveniently

written as follows :

VAdPA'x . P* R
" =SV(I )+Q(C; - f (P

. Tay 3 Ay

where S=1, V > 0, = 0 otherwise,

) const 2,35a

#*

PI : = PD (as given by eqgn. 2.33) if S1 =1
X X 2.35b
= PL if Sz =1
X

In this form the similarity with equation 2.27 can be more readily appreciated.

For carbon dioxide the above equation thus reduces to the following form
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v dPA .

sk »
A== =SV(P_-P, )+ Qb (P, - P, )+ AINT—] const  2.36

2.7 Modelling the Arterial - Mixed Venous Loop

As mentioned in section 2.4, transient changes in alveolar -capillary
gas levels will ultimately be reflected in mixed venous blood gas levels after
recirculation has occurred. Thusin this situation modelling of this arterial -
mixed venous loop is necessary. The rate of change of mixed venous gas
concentrations will he determined by the dynamics of the various tissue stores
in the l;ody (i.e. muscle, fai;, etc.) foa': the gas under consideration and on the
delays, arterial and venous ink;erent in‘the blood circulatory system. Of these
delays the axterial delay (T’a ) is approximately one order of magnitude less
than the venous delay (T s ) and is, therefore, usually neglected. Also, for

the respiratory gases O 9 and CO, arterialfvenous gas transfer will also be

2
affected by the relevant metabolic uptake/production of these gases in the tissues
themselves.,

The various tissue stores, therefore, can be considered as a lumped
parallel (or equivalenﬂy series) system of compartments each with a differing
time constant, depending on its relative perfusion, volume, metabolic uptake/
demand where appropriate and particular content-partial pressure relationship
for that particular tissue type and gas species under consideration. Such a
multi-compartmental modelling approach to tissue stores first appears to have
been proposed by Fahri and Rahn (101, 102). Mapleson (200) evolved a similar
parallel model, but his motivation was to consider the uptake of anaesthetic
agents. Mapleson's model and associated parameter values has since been
used and refined by himself and other authors (309, 310, 210). For any gas
T

species x (ignoring arterial circulatory delays, i.e. 2= 0) dynamic

equations for the ith parallel tissue compartment can be written based on
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conservation of mass as follows :

rate of change of metabolic
amount of gas in = input term - mnet transfer to lungs
tissue store (where appropriate)
2.37
i.e. mathematically
o C » - -
TC
= i = ;o= Qs -
VTC- d X Mlx QIX [ CTC- Ca ] 2.38
e dt Ix- X

where the subscript TC refers to a tissue compartment., If the compartments
are assumed to be arranged in parallel, as is customary, the mixed venous
concentration ( C e .Y will be equal to the perfusion weighted mean ( C,’I-,-c )

of the concentrations in the individual tissue compartments suitably delayed

by the venous circulatory time delay 'T: 5 i.e.

g{,(t) = c,f,-c(t-’t‘.r ) 2.39.
where — No. of compts.
— = ZA Q C .
Cre = 1 TG 2.40

No. of .compts.

&.

i=1
For experiments of relatively short duration (i.e. of the order of minutes)
for certain gas species such multi-compartment tissue representations may

be over-complex. In particular, there is evidence of this for CO_ where e.g.

2
Cherniack et al (60) and Longobardo et al (193) both found that experimental
changes in mixed venous blood cccurred more rapidly than the multi-
compértmental model based on a priorii physiological knowledge could predict.
Two hypotheses have been advanced to explain this 'fast' C!O2 tissue storage.
(1) The apparently small COq tisgue storage volume is due to the barrier

between intercellular and extra-cellular fluid being

diffusion limited ( Fowle and Campbell (117) ).
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2) Certain enzymes (primarily carbonic anhydrase) are necessary
for CO2 hydration (see section 2.4). These may not exist in
certain tissues, e.g. muscle. Thus, these tissues would
respond initially to raised 002 levels with an absorptive

capacity of CO_ identical to water (i.e. equivalent to a low

2

slope of CO,, dissociation curve). (Longobardo et al (193) ).

2

The weight of evidence tends to support the latter hypothesis (36, 37).
To circumvent the above difficulty in the model of the type given b}} equation

2,38, Longobardo et al (193) utilised the concept of an "effective tissue volume"

4VTC eff for CO; smaller than the apparent "physical” tissue volume and
defined as
Voceg = Ve + b (tissues) 2.41
& (blood)

to better expl;;xin their experimental observations. Such an idea was also taken
up by Pack et al (229) in their single tissue compartment CO2 model intended
for short duration experiments. This model also ignores for simplicity the
Venéus circulatory veneous delay (i.e. P 3= PTC ) and also analogous to their
alveolar ~capillary CIO2 equation (equation 2. 36),alveolar-arterial equilibrium

is assumed ( P

A= Pa ). Thus, the equation is

bV__ d Frc

% .
TC 5 = "QLb (Ppg =Py )+ AINT:! 2.42

Note the VTC is an effective tissue volume which means "b" on the right hand

side of this equation is the dissociation slope for CO, in the blood.

2
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2.8 Potential of the Homogeneous COy Model for use in Indirect
Measurement of Cardio~-Pulmonary Parameters

Based on ideas presented in previous sections of this chapter, a
parsimonious model of gas transport in the lungs and tissues is illustrated

schematically for the particular case of CO, in Figure 2.5. The associated

2
equations are given below :
dPa > . .
v, O =SV(PI-PA)+Q[b (Prg-Py)+ & | comst.  2.43
bV aFrc ..1:11"(;}[.}) (P -.P )+ A ] 2,44
TC . dt TC “ATTINT e

These equations are assumed to embody the physiological knowledge and
assumptions discussed earlier in this chapter.

Analogous equations to the above can be written for O2 and inert gases by
employing the appropriate concentration/partial pressure relationship for
these gases.

The behaviour of the CO2 model to controlled changes in input (PI )

may be conveniently investigated using digital simulation. The response of

the model to a unit step in P_ at 40 secs. is shown in Figure 2.6(a). In this

I

simulation, for lack of anything better, a sinusoidal representation of

ventilation is assumed.
®

i.e. V =YV sin27ft 2.45
max

where f is breathing frequency and Vmax the amplitude of the sinusoidal
®

is calculated from average minute ventilation Vav as

» <

max av ’

From the response characteristics in Fig. 2.6(a) we can see the model

behaves as a damped second order system, (i.e. in control terminology

a system with two real left hand plane poles). It is pertinent to ask if this
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behaviour is mimicked by the 'real’ system. Thus, for comparison, in

Figure 2.6(b) the P‘CO2 of a real subject in response to a similar stimulus

is shown as measured at the mouth, with the model response overlayed.
Althoughon first examinaton model and real subject responses appear

very different, it has to be borne in mind that the model is essentially

reflecting events in the lungs whilst the PCO, of the subject is measured at

2
the mouth. However, if we compare model and subject over the end-
expiratory region, where gas concentrations as measured at the mouth should
reﬂect alveolar gas lé,vels (at least for homogeneous lungs), it can be seen
that the two -responses are not entirely diss‘i.milar.

Although sinusoidal ventilation has beeﬁ used in' the simulation above,
in principle, there is no reason a subject's measured ventilation can't be used
to drive the model, which thus can then be subjected to an identical change in
controlled input, to that of the real system.

Intuitively then, under these conditions (if the model is a 'good'
representation of the real system structure) the only mechanism by which the
model output can be dissimilar to that of the system over the end- tidal
region is if the internal parameters (constants) are different from the
corresponding physioclogical quantities in the real system.

Therefore, as realised by Dr. Murray-Smith, Dr. Pack and co-
workers at C.R.I. and this Department, this suggests a means of indirectly
inferring the physiological quantities of the real system by manipulating the
model parameters until input/output correspondence of the model and real system is
achieved. Sucha technique is, of course, nothing more than Parameter Estimation much
used in an industrial control systems context and discussed with reference to

biological (biomedical systems) in Ct;apter 1.
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It is obvious that this exercise will only be meaningful if measurement
of these cardio-pulmonary parameters is particularly valuable. In fact,
there is considerable clinical interest in indirect measurement of one of these
particular parameters. That is, the parameter (.Q the pulmonary blood flow
rate or cardiac output in normal subjects. Traditional techniques for
measuring this are invasive and at the very least, involve some discomfort
to the patient and thus, accurate measurement methods would be advantageous.

It was this movitation to measure cardiac output which led to the
joint development of the parameter esti.mation technique by this Department
and C.R.I.

Attempting to elevate this technique from abstract concept to a useful
clinical tool has involved considerable effort with many problems to be overcome
(e.g. synchronisation for comparison purposes of model output (at alveolar
level) with system output (as measured at the mouth) ). This project has thus
consumed the attentions of a number of workers and the author is only the
latest of these.

In the next chapter, therefore, it is relevant to summarise the
status of this project around the time the author became involved and the
experimental set-up developed for the work, together with some preliminary

results.
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CHAPTER 3

NON-INVASIVE MEASUREMENT OF CARDIAC OUTPUT
USING A HOMOGENEQUS 002 GAS TRANSPORT MODEL
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3.1 Introduction

Most physicians would agree that the output of the heart (the cardiac
output in L./M ) could form a most important index of cardio-vascular function.
Such a measurement could be useful in patient monitoring (e.g. during cardio-
thoracic surgery or in intensive care) and also in numerous physiological
investigations. However, the most direct method of obtaining this quantity,

i.e. by surgical implantation of a flow meter in the pulmonary artery, is
obviousiy unethical in man. It has also been shown that, contrary to what one
' might( tﬁink, there is little correlation I;etwéen cardiac output and more easily
measured quantities such as pulse rate and blood pressure. Therefore,
recourse must be made to less direct techniques.

Many indirect methods of measuring cardiac output have been developed
over the years. As we shall see in the following section, however, most of
these have serious disadvantages and, therefore, despite their promise have
made little impact. Thus, a technique which overcomes these deficiencies would
have widespread applicability. It is hoped that the method based on the CO2
gas transport model, to be outlined in this chapter, will constitute such a
method. To be technically correct, our technique measures pulmonary
blood flow rather than cardiac output. Current physiological opinion, however,
suggests the difference between the two is trivial except in subjects where the
right to left shunt is several times higher than normal.

As noted in the previous chapter, the new technique was already under
active development prior to the im;'olvement of the author in the project. The
feasibility of making measurements of physiologically important variables by

the use of non-steady state techniques had become apparent at an early stage

(96,. 230). This, however, was followed by a long period of very slow
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progression towards a solution of the problems of produc;ing a practical tool,
(228, 234). This was still very much underway when the author became
associated with the work. Only around early 1977 had the model and the data
processing techniques reached such a stage of refinement as to allow the
method to be exploited in larger numbers of observations and to contemplate
comparison with another established technique.
This chapter details these validation studies in which the author
became involved in the initial stages of his work on the project. It is pertinent
_to point out that thesé experiments.were carried out before the inforrriétional ~
aspect of the problem (\.,vith which much of the rest of this thesis is conéerned)
had begun to be explored.
The computational and experimental bases of the model -based, non-
invasive measurement method will be discussed in Sections 3.3 and 3.4. In
the next section, however, a review of other methods of cardiac measurement

presently known is in oxrder to place the new one in perspective.

3.2 Methods of Cardiac Qutput Measurement

Almost all schemes for cardiac output measurement, which have been
developed over the years, are based in one way or another on an application
of the Fick dilution principle (equation 2.4) which was introduced in the previous

chapter,

v
X

(Cax - Ci‘rx )

Q = 3.1

-]

In this chapter Vx can be taken to mean the rate of uptake or removal of

any tracer x introduced at the lungs, and Cax and Cgz the corresponding
: X

resultant arterial and mixed venous tracer concentrations. This basic

relationship holds whether the reference substance be a gas, a dye of some
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kind, a radioactive isotope or a physical agent like heat.

Historically the most used clinical method for measuring cardiac
output has been the "Direct Fick'" method (148). In this method mixed venous
and arterial blood content (as required to solve equation 3. 1) are measured
directly from blood samples obtained by cardiac catheter. Oxygen is the
preferred reference gas.

Next in prominence are the so called indicator dilution methods. In
the dye dilution technique (194), a known quantity of dye is injected into a

central vein. This will eventua-liy appear in the arterial blood. At this
poiﬁt. thetime course of its concentration is continuously sampled t;) obtain a
clearance curve. Cardiac output is obtained by relating the amount of dye
injected to the area under the primary portion of the curve. This, in effect,

utilises the integral form of the Fick equation, i.e.

S ¢ S
Jew a

°
Q 3.2
m being the mass of dye injected and C(t) its down stream concentration.

The principle behind the thermal dilution technique (194) is similar
except thé indicator substance is a cold solution, the temperature clearance
curve for which is inferred by a thermistor placed at the end of a catheter
inserted in the pulmonary artery.

A serious drawback of the techniques discussed so far is, obviously,
that they require heart catheterisation and/oxr arterial puncture, That is they
are invasive. However, their main advantage is that they are generally more
accurate than the more bloodless methods so far devised. They, therefore,

remain the yardstick against which all new techniques must ultimately be judged.

Many non-invasive methods for measuring cardiac output have been
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proposed in the past. In fact, all the quantities in equation 3.2 can be easily
measured directly except C{,-X , the mixed venous concentration. It is in
estimating this quantity that the difference in the approaches lie. For GO2 ,
CV can be estimated by employing the lungs as a tonometer, i.e. by allowing
alveolar gas to equilibrate with mixed venous blood during a ventilatory

manoeuvre, In the so-called rebreathing methods P 002 is measured either

at points of actual equilibrium ( Collier's "plateau’ method (65,7, 165) ) or
extrapolated by the analysis of the rate of change of PCO2 (Defares' "exponential
éxtrapolation'; method (80, 164, 109) ) during the rebreathing manoeuvre.

C3%co o can also be inferred on the basis of analysis of alx're_olar gas at

different breath-holding times (107, 177) or on the basis of a single prolonged
expiration (175). For a useful review of these methods and further modifications
see (100).

Comparison of the Defares and Colliers methods has been carried out
recently by Godfrey and Wolfe (127). These authors conclude that the*'plateau”
method gives more reproducible results. The work of Franciosa et al (122)
a}so suggests this. As regards accuracy, both rebreathing methods have been
generally found to be less reproducible than the more direct cardiac output
estimation methods, especially at rest.(243). In fact, to quote the very recent paper

of Reybrouck et al (173), "At rest the validity of the CO, rebreathing method to

2

v
determine Q remains questionable".

Similar methods to the above, but based on O, analysis, were initially

2

proposed by Burwell and Robinson (54). More recently, these have been
taken up by Cerretelli et al (57). Serious problems with this class of methods

(associated with deriving C‘-’O under conditions where there may be a shift
2 .

in the O2 dissociation curve, e.g. during exercise) have been reported (99, 73).

Criticisms seem to have killed off further developments in this direction.
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Another class of methods involves the use of soluble, but
biologically inert gas (\a la Kety (173) ) as the reference substance in
equation 3.1. The rationale behind the use of such a gas is that during
initial uptake (i.e. before recirculation occurs), -the mixed venous
concentration will be zero, thus apparently considerably simplifying solution
of the Fick equation. In practice, however, another difficulty arises in that
it is now necessary to know the storage capacity of the tracer gas in the
lung tissue., One is faced with the dilemma of assuming a standard value of
this quantity for the gas in question ( e.g. see '(173) ), or further complicating
the experimental procedure, i. e.. using two additional-tracer gases (252) to
determine it.

The most extensively used gases in 'inert gas' methods have been
acetylene (144, 8) and nitrous oxide (23, 19, 308). More formal parameter -
estimation and system identification procedures have also been applied in
various ways to try to measure cardiac output.

In a non-invasive measurement scheme, Maloney and Bekey (197)
applied a discrete gradient parameter identification algorithm (24) to a (3‘02
gas exchange model, similar to the type discussed in Section 2.5 of Chapter
2. Only the cardiac output parameter was adjusted in this technique. The
other parameters inherent in the model were either inferred from published
figures in the literature, or estimated by other means. Despite this, excellent
results in terms of agreement with simultaneous dye-dilution measurements
have been reported with this technique during air breathing experiments with
dogs (197). However, a later publication (27) has cast severe doubts on the

credibility of this technique in that it has shown that the cardiac output estimates

obtained are heavily dependent on the choice of initial CO9 tissue partial pressure,
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a model parameter which is fixed in advance from the literature. In fact,
sensitivity studies showed that a 10% change in the assumed initial (302
tissue partial pressure produces approximately a 100% change in the cardiac
output estimates. It is evident from this analysis that the technique is
potentially inaccurate unless better \a priori estimates of initial tissue COZ
partial pressure are obtained, i.e. via venous blood samples. However,

under these conditions the technique will no longer be non-invasive.

Etsyon et al (96A) describe an estimation procedure utilising a model -
which is gssentially a m'odificgtion of tilat of Saidel et al (253). This is an
interestin;g study in that it addres.ses'the question of the éensitivity of tﬁe
estimates to experimental errors (both systematic and random). No experimental
results with the method are reported in this paper, however.

A combined OZ/COZ/ N2 model has been employed by Homer and
Denysyk (155) to estimate cardiac output during a 30 second rebreathing
manoeuvre in dogs. The criterion function used by these authors to determine
goodness of fit between model and data is the weighted sum of squares between
g ? PO2 and PN2. The authors

claim that such use of a multiple gas model greatly stabilises the numerical

model prediction and measurement of glveolar PCO

estimation problem. In fact (as we will show in Chapter 7 of this thesis), the

O2 and N2 portions of the model are largely redundant since the results will

be determined almost completely by the CO, component of the model. Homer

2
and Denysyk eliminate the model/data synchronisation problem, introduced
in Chapter 2, Section 2.8, by taking measurements endotracheally, i.e.
directly at the inlet to the alveoli. Thus, model and data can be compared
mozre directly., Note, however, that the technique rin this form cannot be

classed as non-invasive and as such, is not really suitable for human application.
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Methods based on inert gas models have also been used. Stout et al
(269) use a nitrous oxide model and report results which are in reasonabie
agreement (+ 20% ) with simultaneous cardiac output estimates obtained
using the "Direct Fick" method in experiments with five anaethetised dogs.
Zwart et al (309) obtain estimates of ventilation perfusion ratio by a frequency
response method applied to an inert. gas model. Halothane is the test gas in
this application. This is applied sinusoidally at a frequency arranged to be
high;ar than the assumed break point frequency of body gas uptake. The
authors show how this particular, choice of tracer agenténd forcing function
frequency helps reduce the effects of erroxrs in mixedvvenous blood gas
concentration on the resultant estimates.

Finally, some published results for some of the cardiac output
measurements techniques in terms of repeatability and comparability are
detailed in Tables 3.1 and 3.2. These will be referred back to at a later
stage in this thesis when we compare these figures with results obtained from

the method used in the present study.
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TABLE 3.1

REPRODUCIBILITY ACHIEVED BY VARIOUS Q

MEASUREMENT METHODS REPORTED IN THE LITERATURE

Investigation

Franciosa et al
(122)

Frarciosa et al
(122)

Ferguson et al
(109)

Ferguson et al
(109)

Becklakeet al
(23)

Ayotte et al
(19)

Homer and
Denysyk (155)

Method

Dye Dilution

Collier 002
rebreathing

Defares CO
rebreathing’

Defares CO
rebreathing

N, O
rgbreathing

N,O
re2breathing

0,,C0,, N

model 2

Experimental
_Detafls

Supine Rest
CHD/Hypertensives

Supine Rest
CHD/Hypertensives

Sitting rest
normal men

Sitting exercise
normal men

Sitting and treadmill
Adults

Rest / exercise
Adults

Rest/exercise/shock
dogs.

Coefficient
of Variation

6.5%
6';0%
13.3%
5.5,
8.5%
7.1%

15%
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TABLE 3.2

COMPARABILITY RESULTS OF VARIOUS Q MEASUREMENT

METHODS REPORTED IN THE LITERATURE

Investigation

Franciosa et al
(122)

Reybrbuck et al
(243)

Reybrouck et al
(243)

Ferguson et al
(109)

Ferguson et al
(109)

Ayotte et al
(19)

Becklake et al
(23)

Homer and
Denysyk
(155)

Methods
Compared

Dye dilution vs.
Collier CO

rebreathing

Direct Fick vs.
Defares CO
rebreathing

Direct Fick vs.
Defares CO
rebreathing

Dye dilution vs.
Defares CO
rebreathing

Dye dilution vs.

Defares CO
rebreathing

Dye dilution vs.

N,O
rgbreathing

Dye dilution vs.

N,O
rezbreathing

Dye dilution vs.

0., CO. ,N
2
mzodel 2

Experimental

Details Differences
Supine rest 25/29
CHD/Hyper- + 15%
tensives

Sitting/supine 13/25
Rest Hyper- + 10%
tensives

Exercise 30/34
Hypertensives + 10%
Sitting rest 8/12
normal men + 25%
Sitting exercise  36/37
normal men + 25%
Rest/exercise 34/36
Adults + 15%
Sitting and tread- 25/26
mill + 20%
Adults

Rest/exercise/ 27/36
shock + 20%
dogs.

0.93

0.65

0.96

0.94
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3.3 Using the CO, Gas Transport Model for Parameter Estimation
&

To use the 002 gas transport model developed in Chapter 2 for
parameter estimation, it is necessary to define a criterion of gooduess of fit
between the model and patient data and establish a mechanism whereby the
parameters of the model can be automatically adjusted to achieve a minimum of
this cri;te_rion. This latter aspect of the technique, i.e. that of f;mction mini-
misation, is discussed in Chapter 5 and Chapter 6. The question of model/data
comparison will be addressed in this section.

1 ;;vas pointéd out in passing in Chapter 2, Section 2. 8, that the'
model in its given form describes events happening in the lu1-1gs. However, if
the model -based estimation method is to be truly non-invasive (i.e. not like that
of Homer and Denysyk (155))then for comparison purposes the only measurements
we will have available will be those taken at the subjects lips.

The criterion function used in the earlier work of Pearsoﬁ (234) was
based on a sum of squares of the difference between model prediction and
measured PGO2 at the mouth during the end-expiratory phase of each breath.
This is the only breath phase over which model and data may be meaningfully

compared. The criterion function is of the form
1= = ®*co, §) - PCo, (i) 3.3

where P* 002 is the model prediction, P 002 the patient P 002 , 1 the number
of breaths in the experiment and m(i) the number of data samples in the end
tidal phase of the breath.

A problem with this criterign arises due to the fact that it is not

just comparing breath by breath changes in PCO, , but also changes in PCO

2’ 2
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within a breath. This leads to the estimation algorithm attempting to fit the
model to the slope in alveolar PCO2 which arises during expiration. In view
of the uncertainty as to the precise nature of the mechanism determining the

expired CO,, concentration profile, this criterion function was felt to be

2
inappropriate bearing in mind the simplicity of the model in this area.

The next step in the work was to overcome this objection by comparing

the model's performance with the average PCO

9 during the end-tidal paxt of the

breath, i.e.

n e omB - pdy o) pao_() | 2
.= 2 -2
J‘?EiZ?i‘ ) -Ei m) 54

Although this criterion is an improvement on equation 3. 3, it is still deficient
in the following. Firstly, it unduly weights the average for any breath-holding
'period occurring at the end of a breath. Secondly, it makes no allowance for the
fact that there is a time delay corresponding to the time taken for the gas to
traverse one deadspace, before events happening in the lungs can be observed
at the mouth, i.e. patient data at time x say should properly be compared with
model prediction at a time corresponding to one dead spéce transit time interval
before time x .

These considerations have led finally to the following criterion function
which is that used in the present work. In this mc;del and data are compared

on the basis of their flow-weighted means over their respective end-tidal regions

as follows : o
P*CO,1) V (1)

M2 .
=" V)
i= Ml

P*CO_ =

2 i=Ml 3-5
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D2 .
_ ===  PCO,{) V(i)
Pco, = C= 2 3.6
= V()
i=D
1
. n - - 2
J= = (P*co, - PCO,) 3.7
i=1 2 . 2

P * CO2 is the flow weighted mean of Fhe model prediction and 1?C02 the flow
weighted mean of the patient data. The delay within the dead space is allowed
for in the fo]lowiné manner. The model rec.og'nises the start of the end-tidal
period (M 1 ) as one dead space from the beginning of expiration, The end
point of the period ( M2 ) is defined as the point at which expired volume is
tidal volume minus dead space, i.e. one dead space from the end of expiration.
The patient data end-tidal period (D 1 ) is measured from tﬁe point where
expired volume becomes greater than twice the deadspace (to make certain
of being on the end-tidal 'plateau’ ). The end of the end-tidal period ( D2 )
is where the measured value of flow ( \./) falls below 0.1 L/S ox the change in
PCO2 between successive measurement samples becomes less than 1 mmHg.
This criterion function and these end-tidal pointers have been chosen,
in the light of accummulated experience, to cope with as many variations as
- possible in the breathing pattern of untrained subjects. It has proved to be
fairly successful in this respect.
The CO 9 gas transport model equations developed in Chapter 2
can be summarised as follows :

dPA

— = , ® oo o -
Vy 5 =SV PA)+Q[b(PTC PA)+AINT] const. 3.8
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dPrq N 7
bVoe 5 =M -Q [b(PTC-PA)—%A]NT‘} 3.9
1- it V>o0
S = 3.10

0 - otherwise
p* = | Bp - if Jv dt <V and ¥ 2> 0

PI -~ otherwise

3.11

In the above equations Q is the pulmonary blood flow or cardiac output,
-] :

M the rhetabolic CO,, production rate and v

9 the "effective" tissue volﬁme,

TC

(see equation 2.41). v A is the 002 lung volume which is made up of a time
varying component and fixed component (FRC) as defined by equation 2,29,
Recall that the FRC will in turn contain an additional volume contribution from
the gas dissolved in lung tissue. ‘b’ is the slope of the 002 dissociation curve
and is a function of the subjects measured Hb concentration as given by equation

2.16. A T is the difference between the mixed venous and arterial 002

IN
dissociation curve intercepts and const is a gas laws scaling factor (see

equation 2.24). P_* the model input, differs depending on the phase of the

I
breath. In the first phase of inspiration (i.e. whilst the inspired volume is

still less than the deadspace VD ) PI* is taken as the flow weighted mean of

the gas notionally remaining in the deadspace at the end of the previous
expiration. The formulae defining this are, equations 2. 33 and 2. 34 of Chapter 2.
The input the model 'sees' in the later part of inspiration (i.e. where the inspired
volume is greater than the dead space) has until recently been the instantaneous
inspired PCO2 as measured at the mouth (see 228). More recently, however, it

has been realised that this does not properly take account of the transport delay

through the dead space. For most breaths, where inspired PCO2 within a breath
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was constant, this inconsistency would not matter. However, during changes
in input (e.g. during a switch from breathing air to 7% CO2 ) this would result

in the model 'seeing’ the change in inspired PCO, before the actual lungs did.

2

The data processing programme PRODAT (see next section) was therefore

changed to 'retard' the PCO,_ data values by one dead space during this phase

2

of inspiration to circumvent this problem.
In summary, the above equations contain the following model

parameters. Firstly, those quantities entering directly into the above equations

i.e. Q, VA(O) s M, VTC and AINT .

equations implicitly , i.e. Hb the blood héemdglobin concentration, VD the

anatomical dead space volume and finally P A (O) and El" C(O) the initial partial

Secondly, thosé entering into the

pressures in the alveolar and tissue compartments respectively at time t = 0.
Values also have to be assigned to these latter quantities.

Of the above parameters A can be taken as fixed at 0.0129,

INT
Hb and VD can be measured by standard respiratory laboratory techniques,
and P A(O) can be measured directly from the experimental input/output data
used by the method.

In earlier work VTC was fixed \a priori at the large value

of 40 L. However, as the concept of the ‘fast CO2 tissue space’ (see Chapter 2,

section 2, 7) unfolded this was felt to be inappropriate and V,, ., was reintroduced

TC
as a parameter.

To calculate PTC(O) it is assumed that at time t = 0, the tissue

compartment is in a steady state, i.e.

d PTC

'at_ = 0 _ 3012



- 65 -

substituting equation 3. 12 in 3.9 therefore yields the following expression

for PTC (O)
_ M _ ANT
PrdO= PO *py > 3.13

In practice, however, due to the long time constant of the tissue compartment,

it has been found beneficial to use a longer term average of P A in equation 3.13.

for PTC (O) in order to avoid possible inaccuracies due to short term

fluctuations in P A Thus equation 3. 13 is replaced by

_ M ANT.
PTC(O) = PABAR + 5G B 3.14
where PABAR # PA(O) « This manner in which P, BAR and PA(O) are

deduced from the actual experimental data is discussed in the next section.
Thus, assuming an initial steady state in the tissue compartment a value can

a -
be assigned to PTC(O) iftM, Q, P A (O) and P are fixed. Although the

ABAR

assumption is relaxed in subsequent chapters, in this chapter we shall use

equation 3.14 to obtain P_,_(O) . The parameter estimation problem which

TC

o
remains, therefore, is to estimate the four parameters Q, V, , M and VTC .

Attempts to estimate additionally b and A consistently failed due to

INT

numerical difficulties in the function minimisation programmes. The precise
cause of this difficulty was not completely understood at this stage, although
it was felt to be inexorably tied up with non uniqueness of the extended parameter

-

set.
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3.4 Experimental Rig and Data Processing

The on-line data acquisition system which has been used in the
work described in this thesisis depicted diagrammatically in Figure 3.1.
Photographs of the actual apparatus itself are shown in Figure 3.2. The
author has not been directly concerned in the design and construction of this
system. Nevertheless, for continuity purposes it is worthwhile briefly to
summarise some aspects of the apparatus below. This system is described
in more detail in (228, 234).

The potential s:ubject, who is wearing noseclips, attaches himself
to the rig using a standard rubber mouthpiece and breathes th;r:oﬁgﬁ a small
dead space, low resistance, valve box. This valve box is such that it makes
the subject breathe in through one port and out through another. A two way
switch upstream from the valWe input port allows the operator to change the
subject's inspirate between room air and the stimulus mixture as dictated by
the particular respiratory experiment. This set up forms a 'closed system’
and enables the subject's ventilation and inspired and expired gas concentrations
to be measured using the appropriate transducers.

The inspired and e}:pired gas flow rates are measured ‘sepa:cately'
by means of pneumotéchometers, Until recently, expired flow has been
measured using an ordinary pneumotach (this was in fact the system used in
'the experiments to be described later in this chapter). The nominal flow
values so obtained are corrected in subsequent data processing to give
overall ventilation balance over the duration of the test. This method is not
particularly accurate, due to the possibility of water vapour in the expirate
condensing in the flowmeter and causing a drift in calibration during the test.
In later experiments, therefore, ( i.e. those described in Chapter 7 ) this

difficulty has been avoided by using a heated Fleish pneumotach to measure
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expired flow. A further recent improvement in the flow measurement has
taken the form of a modification to the computer data collection programme
to correct flow values for the differences in viscosity of the actual gas passing
through the pneumotach and that of the gas used to calibrate the device (284).

The voltage outputs from the two micromanometers associated with
the pneumotachometers are summed electronically using a small analogue
computer before being fed to the PDP 11/45 computer system through the A - D
interface.

Continuoﬁs measurements of a subject's gas concentration are made
using a respiratory mass spectrometer. In earlier experiments (i.e. those
described in this chapter) a Centronics MGA 7 type quadrupole device was used,
but more recently the new Centronics MGA 100 mass spectrometer has been
used (see photograph). The sampling probe for the mass spectrometer is
placed proximal to the subject's lips. There is thus a transport delay inherent
in this measurement equal to the time taken by the signal to travel the distance
along the sampling line between the probe and the mass spectrometer itself
(typically 100 - 200 ms). The measurement of respiratory flow is virtually
instantaneous by comparisoil. Therefore, it is necessary to delay the flow
signal to synchronise all the measured data. This is achieved by the data
collection software. As we have seen in Chapter 2, in the application of
dynamic models the partial pressure measurements for the gases being studied
are required at BTPS conditions. It would app‘ear simple to compute these
quantities from the gas partial pressures, as measured at the mouth (e.g.
me ), by also measuring water vapour pressure at the mouth ( Pm H2 0)

directly and using the following formula :
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_ (B -47)
PBTPSx = PIn . —-——-———(B_P H.0) ( mm Hg) 3.15
X m 2

However, due to certain technical difficulties (see Fowler (121) ) this method
is inaccurate.

In order to avert the problem with directly measuring water vapour,
a method described by Davies et al (79} is used. This necessitates measuring
the partial pressures of all the component gases in the total gas mixture to
_allow the fractional dry gas concentration of a particular gas under study to
be obtained.

Having obtained Fx thEI.l the required Px at conditions of f}ullA

saturation with water vapour is obtained using

Px = Fx (B - 47) ( mm Hg) 3.16

Thus, in summary we see that for the applications involving dynamic models
to be described in this chapter, it is necessary for the computer to acquire 5

P and P . It

channels of data via the A/D's viz flow, P o, ’ Og AR

Ng’P

now remains to describe the software steps involved in capturing this data and
producing from it a file in a suitable format for use in the parameter. estimation
techniques discussed in the previous section. This software system consists
of two parts :~ |
(1) the data logging programme
(2) the data processing programme.
The data logging programme which itself consists of four separate phases,
will be discussed first.
In the first phase of the programme, prior to any data logging, using
the keyboard an interactive dialog is set up between the computer and experimenter

which allows information relevant to the forthcoming experiment to be input.
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That is the datafile name, barometric pressure, temperature, mass
spectrometer delay, length of experiment and sampling frequency ( max 50Hz ).

The next phase of the programme is essentially a calibration phase.
In it the computer calculates the average voltage obtained over 500 scans of
each A/D input channel when first a zero gas (i.e. one containing no trace of
the gases under study - in this case Helium was used) and then a calibrate
mixture (i.e. certain preknown fractions of the gases under study) was being
sampled by the mass spectrometer., These averages allow the computer to
associate voltages obtained on a given A/D channel with a corresponding flow
or partial pressure in the subsequent experimental phase.

The third phasc; of the programme consists of data logging proper.
During this procedure, normalised sampled data is stored on a temporary
disc file at the rate and for the time specified in the earlier phase of the
programme. Provision is also made during this experimental phase for the
operator to communicate to the softwaré the sample number when the gas stimulus-
mixture is first switched in by pressing the < CR\_Z7 key on the keyboard at
this time. This information is required by the later data processing programme.
After the experiment is completed, the data residing in the temporary disc
file is converted to physiological units (ATPD values) and scaled into integer
form (to reduce storage requirements) for permanent storage on a file on
magnetic tape. At this stage all input channels are synchronised by correcting
for the mass spectrometer delay as discussed earlier. Also, an initial header
record is added to the permanent file containing details associated with the
stored data (e.g. barometric pressure, temperature, sampling rate, switch
sample, etc.). The data, as generated at this stage from the logging

programme, is liable to be noisy. That is, the flow signal will be corrupted



_72-

by mechanical valve flutter and the JPCO2 signal by cardiogenic oscillations,

both of which constitute, in this context, high frequency noise. It is also
inevitable that the subject (especially if unaccustomed to respiratory experiments)
will have coughed or swallowed at some stage in the experiment. These
responses represent departures from the normal breathing rhythm and thus,

if left unmodified, will cause complications in the interpretation of the data
record in the subse.quent analysis., Thus, the data output from the logging
programme requires further filtering and application specific processing,

to render it suitable for use with the CO model based parameter estimation |

2
software. This is done by the processing programme PRODAT.

In the first.part of PRODAT, both the flow and PCO,, channels are

2
filtered using a simple low pass filter (cut-off frequency one quarter of the
sampling frequency).

The sample numbers corresponding to the beginning and end of
inspiration/expiration for each breath are then identified. This is done using
a heuristic algorithm which searches initially for a threshold value (0.15 L/S)
in the flow signal and then backwards from this for the nearest preceeding
point at which a zero cross-over occurs. This obviates difficulties caused
by noise in the flow signal “'rhich would lead to spurious breaths being
recognised, if only zero crossovers themselves were identified.  This being
done, the inspired and expired volume of each breath are then computed.
At this stage the programme corrects for consecutive inspiration (expiration)
(usually a result of swallowing or coughing) by changing these to one inspiration
(expiration) with resultant volume equal to the sum of the two previous ones,
and renumbering all the breath nurnbérs appropriately. In this first part of the
programme it is also ensured that the 'standard experiment” which will ultimately

be presented to the estimation software, begins with a complete inspiratién and
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ends with a complete expiration. In the results presented in this chapter

this "standard experiment" is of 14 minutes duration and takes the form of

40 seconds of air breathing followed by 80 seconds breathing 5 - 7% CO2 .

In the second part of the programme, the quantities P A and

(0)

P ABAR are calculated, which are used in determining the model initial

conditions P AO)

formulae have been used for computing, these quantities in the past, the

and PTC(O) (see previous section). Although various

one used at present is as follows. is taken as the maximum end-tidal

Pa0)

PC}O2 value for the expiration preceeding the start of the standard experiment.

PABAR’ Pr)

in the calculation of PTC(O)(see equation 3. 14) is taken as the mean of the last

however, which represents a longer term average of for use
three samples at the end of expiration, additionally averaged over all the
breaths in the first air breathing phaseof the experiment. The rationale

" behind this is discussed in the previous section.

An estimate of the subject's anatomical dead space is required at

various stages in the analysis procedure (i.e. to retard the CO, channel by

2
one dead space, and to defi.ne'properly the model and data E/T regions).
Until recently, this has been obtained by a separate test involving a single

breath of O, and analysis of the resultant expired N

5 o curve (118). However,

more recently a side benefit of using improved hardware to measure expired
flow is that it makes it possible to calculate accurate anatomical dead space
measurements from the CO2 data during the initial air breathing phase of the
experiment., This obviously has the advantage of cutting out a step (which can
be time consuming and cumbersome) inthe experimental procedure. This
calculation is now done at this point in the PRODAT programme and this is
the value now used for Vy; in the subsequent analysis.

Next, a separate volume channel is created for use in the estimation
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software by integrating the flow channel using the trapezoidal rule and all
the data corrected to BTPS as required. After this, the CO2 channel is
retarded to correct for the buffering effect of the dead space as discussed
in the previous section and then the viscosity correction to the flow channel
is carried out.

Finally, the modified data in the header block is output to a new

file in a standard format, now ready for use with the parameter estimation

programmes.

3.5 Results of the Early Validation Studies

In early 1977 the non invasive cardiac output method was assessed
by carrying out repeated simultaneous measurements by this method and by a
dye-dilution method in a number of subjects at Glasgow Royal Infirmary.

These subjects were patients with hypertension but with otherwise normal
lung function. It was intended to make use of the cardiac output information
obtained from these patients in the management of their hypertension.

The standardised experimental procedure adopted in these studies
was as follows.

The subject had the venous and arterial catheters necessary for the
dye measurements inserted on arrival. The comparative measurements were
then carried out with the subject in.the supine position and at rest. After
insertion of the mouthpiece, three minutes were allowed for the subject to
calm down and for the breathing pattern to stabilise. The gas exchange
measurements were then started, the total duration of the data collection period
being two minutes: 40 secs. air breathing and 80 secs. breathing 5 or 7% CO2 .
The dye dilution measurement, which lasted about 30 secs. was started

simultaneously with the CO,_ breathing phase. A minimum of 10 minutes

2

was allowed between repeated gas exchange measurements to allow any possible
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effect of 002 on cardiac output to diminish (110,204b). Generally it was
aimed to collect four sets of comparative measurements per subject, but
due to experimental difficulties (invariably with the dye procedure | ) this
was not always possible. Measurement of the subject's anatomical dead
space (118) was either carried out on arrival or at the end of the series of
comparative measurements.

In total 51 pairs of simultaneous measurements were obtained from
a set of 16 patients. However, the function minimisation procedure failed to

- find a minimum in 3 séts of data, therefof.e, leaving oﬁly 48 vélid compai‘ative
results on which to base conclusions. The parameter values obtained f:fom the
model -based method and the corresponding dye-dilution results are detailed
in Table 3.3. From this it can be seen that the parameter values obtained
from the estimation procedure are physiologically meaningful.

The cardiac output estimates obtained from the model are in good
agreement with those obtained by the dye-dilution technique.

The estimates of metabolic production obtained by parameter
estimation also agreed closely with those obtained independently on the basis
of steady state analysis of overall gas uptake.

The estimates for tissue volume are of the correct order of
magnitude as compared to published data (117) and the values obtained can be
related to the extra cellular fluid 'fast space' for carbon dioxide (see Chapter
2, section 2.7).

The estimated carbon dioxide lung volumes obtained originally
appeared rather low when compared with the FRC's (Fixed Residual Capacity)
of the patients as measured by inert gas washout. This was rather worrying

for a time, since the estimated CO, lung volume is notionally an equivalent

2
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TABLE 3.3
VALIDATION RESULTS USING

4 PARAMETER MODEL

Subject Data file Q dye Q Va M Ve
] M E VALO41 5.96 6.45 1.85 0.265  7.18
Hb=14.15, FRC=4.29 3 5.60 6.29 1.92 0.262  11.8
4 5.10 5.87 1.62 0.213 7.7
1M S VALO51 6.57 6.84 2.54 0.300  13.1
5% GOy , Vpy=0.156 2 - 5.30 5.58 2.66 0.295  8.76
Hb=14.9, FRC=3.47 3 5.13 7.10 -3.05 0.33  10.1
IF : VALO72 5.03 6.80 1.36 0.244 . 4.87
5% COq, Vp=.076 4 4.99 6.50 1.39 0.218  4.04
Hb=13.5, FRC=3.18 :
]C. VALOS1 5.13 . 5.16 0.96 0.18  5.15
7/5% COg, VD =0. 139 4 5.63 5.94 2.34 0.208  6.66
Hb=14.65, FRC=2.66 5 5.37 5.97 0,98 0.207  4.94
KM© VALI101 9. 44 8.23 2.22 0.310  10.9
7% COs, Vp=0.178 2 9.55 7.66 1.58 0.277  7.23
Hb=14.55, FRC=2.78 3 8.54 7.40 1.92 0.276  8.35
4 8.43 7.38  1.91 0.328  10.4
JK VALI111 6.72 5.63 2.66 0.272  7.49
5% CO2, Vpy=0.176 2 5.57 5.44 2.26 0.277  10.2
Hb=15.7, FRC=3.29 3 6.11 7.79 2.39 0.302  9.11
4 5.93 8.58 1.40 0.258  6.02
RC VAL122 4.42 4.21 1.63 0.210  4.59
7% GOy, Vp =0.132 3 3.95 —
HB=13.35, FRC = 3.01 4 4,02 3.13 2.03 0.187  2.87
5 4,20 4.50 1.80 0.237  4.46
JA VAL141 6. 44 7.30 2.18 0.361  8.94
7% CO9, VD = 0. 139 2 5,98 6.34 1.42 0.266  6.83
Hb=15.45, FRG=2.60 3 7.00 —_—
4 6.55 5.86 1.84 0.264  5.38
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TABLE 3.3 continued ¢ev...

Subject Data file E} dye (i) VA M Voo
SD. VAL161 6.48 6.93 2.36 0.261 5.93
5% C0O2 , Vp=0.156 2 6.79 5,94 1.29 (.209 3.73
Hb=15.25, FRC=3.10 3 6.26 5.68 3.66 0.259 7.73
4 6.35 6.48 2,73 0.275 7.47
JS. | VAL172 8.29 5.13 1.68 0.242  2.31
5% CO9, Vp=0.171 3 7.85 6.71 3.43 0.288 6,62
Hb= 16._85, FRC=3.90 4 7.35 4,92 1.48 0.237 4.11
GM. VAL181 5.11 4:73 1.58 0.23¢  4.11
7% COg, VD=0.228 3 4.28 4,98 1.73 0.255 5.34
Hb=14.4, FRC=4,68 4 5.26 4.46 1.41 0,234 4.00
JE. VAL191 4,82 3.78 1.26 0.182 3.96
7% COq, Vp=0.159
Hb=14.25, FRC=4.29
CR. VAL203 7.87 6,40 1.65 0.259 5.10
7% CO2, Vp=0.178
Hb=15.65, FRC=3.19
DB. . VAL221 5.50 5.70 2.16 0.294 S.11
7%002 ’ VD=0. 143 2 5.20 5,78 2.03 0.263 6.08
Hb=15.85, FRC=3.08 3 5.30 5.94 1.81 0.255 5.53
4 5.70 5,76 1,86 0.247 5,24
DH. . VAL231 7.50 7.71  2.99 0.398 12.4
7% CO,, , Vp =0.137 2 6.30 6.64 1.82 0.212  5.69
Hb=14.3, FRC= 3 6.60 7.78 3.26 0.357 12.9
AR. VAL251 6.76 6.46 1.65 0.239 6.57
7% CO,,, Vp=0.171 2 5.90 6.19 1.45 0.211 4,92
Hb=15.2, FRC=2.56 3 5,75 4.79 1.57 0.236 5.73
4 5.74
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lung volume including also the equivalent of gas volume dissolved in lung
tissue, and therefore, should be greater than FRC. This worry was
cieared up, however, when it was realised that the FRC's had been measured
while sitting, whilst our measured CO ) lung volumes reflected results obtained
when the patients were supine. One would expect the lung volumes to be
different in these two positions as the ventilation flow distributions in the lung
are different in each case (294). Some experimentation quickly confirmed that
FRC's in a given subject are smaller in the supine position as opposed to the
sitting position, thus clearing up the anomély in the lung volume results. We
will now concentrate further on- the details of the comparative measurements
of cardiac output.

In Figure 3.3 the individual results, as obtained by the two different
methods, are plotted. These results are further summarised statistically
in Table 3.4. Figure 3.3 shows that most of our results (34/48) lie within
+ 20% of the dye-dilution values. This is about the same fractional success
rate as that reported by Homer and Denysyk (155) in the best previously
published study to estimate cardiac output by modelling techniques (27 out of
36). Recall, however, from the discussion in Section 3.2 that the technique
of Homer and Denysyk uses endo-tracheal sampling, i.e. it is invasive. It
1is, therefore, noteworthy that, in spite of the reduction in available information
which our non-invasive technique imposes, we have been able to obtain results
as good as those obtained using a similar but invasive technique.

Table 3.4 shows the average agreement between dye and computed
values is fairly good. The mean difference of the 48 pairs of values'is 9.02 L/M
(although the standard deviation of the mean differenceis 1.12L/M). However,
the "plum pudding" shape of Figure 3.3 shows there is considerable discrepancy

between computer-generated and dye results in some cases, This is also
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TABLE 3.4
STATISTICAL SUMMARY OF COMPARATIVE MEASUREMENTS OF
CARDIAC OUTPUT USING 4 PARAMETER MODEL

Files Corr. coeff. Reg.coeff. Intercept MeanDiff, S.D, Diff. p *

(comp-dye) (comp-dye)

L/M L/M
All (48) 0.59 0. 66 2.09 0. 02 1.12 NS
% 002(27) 0.86 .0.98 0. 36 0.24 0.80 < 0.2

* P values obtained from paired Student’'s t-test (two-tailed).
36/48 paired observations within+ 20 of line of identity.

mean reproducibility (dye) - 6.8%
mean reproducibility (all comp) - 10.6%
mean reproducibility ( 7% 002 ) - 9.7%
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reflected in the low correlation coefficients in Table 3.4.

Comparing our results with those published by other authors
for validation studies in resting subjects (see Table 3.2), we can see our
results are not as good as those of Franciosa et al (122) ( ™ = 0.97) using
the Indirect Fick. ' However, our results using 7% GO2 are better than those
recently reported by Reybrouck et al (243) who like Franciosa et al, also use
an Indirect Fick method.

In assessing the reproducibility of measurement of cardiac output
by our new non;invas_sive method, it must be said that the results are rather
| disappointing. Examination of.the results in Table 3; 3 gﬁows.tﬁat in a given
subject, our method gives a éreater spread of values than that of the dye~
dilution method. This spread is reflected in the average coefficients of
variation for the two methods: 6. 8% for dye dilution, 10.6% for our method,

overall, 9.7% for the 7% CO, experiments. (Coefficient of variation (CV) =

2

Standard deviation
mean

» the lower the CV, the better the reproducibility).
We can see how these results compare with those of other published
investigations at rest by examining Table 3.1. Here we see that although
our reproducibility results are better than those of Fefguson et (109) they
do not compare with those of Franciosa et al (122) using Indirect Fick (302
rebreathing or other published results for dye dilution at rest.

In conclusion, these valic}ation results would appear to indicate
that although the overall accuracy of the new computer-based cardiac output
method is quite good, in terms of variability it is necessary to improve the

technique in order to create a sufficiently attractive clinical tool. The

remainder of the work described in this thesis is directed towards this aim.
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CHAPTER 4

STATISTICAL SYSTEM IDENTIFICATION AND
ITS APPLICATION TO THE CARDIAC OUTPUT
MEASUREMENT TECHNIQUE -
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4.1 Introduction

In Chapter 1 of this thesis the topic of time domain system identification
was introduced. Chapter 3 may have tended to convey the idea that, once an

'ad hoc' criterion to define goodness of fit between model and data is proposed,
system identification reduces in essence to a problem of mechanistic function
minimisation. In fact, prior to the involvement of the author in the project,
the problem had been formulated precisely in this manner.

With the disappointing nature of the results detailed in Chapter 3, it
.became apparent that attacking things in'this way was not entirely appropriate.
As poiﬁted out in much of the literature, identification is essentially a statistical
procedure (43, 62, 63, 220).

Most criterion functions used for model system comparison are implicit
functions of the observations. These observations are corrupted by noise, which
is random in nature. This implies the estimates themselves will also be subject
to randomness in the sense that one set of measured data, under seemingly
identical experimental conditions, will be unlikely to produce the same estimate
as another data set. This necessitates a probabilistic analysis.

It transpires that the criterion suggested for model ~data comparison
in Chapter 3 can be given a useful statistical interpretation when viewed in
this light. By casting the problem in this probabilistic framework, important
questions can be posed which allow one to assess the adequacy of the estimated
model.

(1) How well defined are the parameters in parameter space ? (i.e. what

are their associated \’rariances ? Are they correlated 7))

@) What criterion function would allow us to produce the "best"” estimates ?

(In the sense of being unbiased and having smallest variance.)
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h)
(3) Do our a priori assumptions about model order appear to be
correct on the basis of the achieved fit ?

4) Could an experiment be devised which would allow us to produce

"better" estimates ?

It was felt the answers to the above questions and connected ones provided
the main key to understanding the relatively poor results presented in the
previous chapter and, in fact, the search for these answers formed the main
goal of the work described in this thesis. 'Questions 1 - 3 are investigated
in the succeeding sections of thig' chapter, ‘while Question 4 is discussed iﬁ
Chapter 7.' |

Once the answers to these questions have been found, this allows us
to re-examine the original assumptions inherent in thé model and the form of
experiment and suggest modifications where necessary. This approach views

the problem as an iterative procedure, rather than just a 'one-shot' process.

The new methodology is summarised in Figure 4.1,

4,2 Statistical Background

An estimator of an unknown parameter vector B is simply an
algorithm which takes measured data ( YD say ) and produces an estimate
A
B . An estimator, being a function of a random sample of measurements,
is a random variable. The estimate which results is a particular realisation
of this random variable.,

A

Clearly, a good estimatoxr should be such that it produces estimates S

'close’ to the true vector. 3 .  This leads to the concept of an unbiased

estimator. An estimator is said to be unbiased if

Fal
E(B)= B . 4.1
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A A
Here E(B) denotes the expected value of 8 . (A particular value of an
unbiased estimator is known as an unbiased estimate). The above property
may be true of the estimator for any number 'm' of observations or may be
true only in the limit as 'm’ tends to infinity. In the latter case, the estimator
is designated as being asymtotically unbiased. The covariance matrix of an

A
unbiased estimator B of the parameter vector B is

A . A Py T
cov (B)=E ] (B-B)(B-8) 4,2

. A
. The diagonal elements of cov ( f) represent the variances of the parameters

as calculated in the normél scalar case and the off-diagonal-eleméhts represent
the covariances between the respectivé parameters.

An obvious requirement for a 'best’ estimatoxr is that it should produce
unbiased estimates. In addition, it should produce a parameter estimate
covariance matrix which is smaller in some sense than that produced by other

unbiased estimators. Such an estimator is known as a minimum variance

unbiased estimator (MVUE).

It is not often feasible to establish the existence of such estimators.
In practice, it is usually enough to show that the estimator provides a covariance
matrix which approaches what can be shown to be the lower bound for all unbiased
estimators. This is given by the Cramer-~Rao inequality (261)

A
cov(B)} M(B)-l 4.3

where

M (B) = E{L'élogp-ﬁ;-"- (Y /8] [ yrog BER (v Bﬁ’r} 44

M (B) is known as Fishers Information Matrix. It can be thought of as
providing a measure of the amount of information about the parameter vector

B available in the observations. Y. The inverse of this is known as the

D L]

Cramer-Rao Lower Bound and an estimator which achieves this lower bound
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is said to be efficient.

Prob ( YD/ B ) in equation 4.4 is the conditional density function of

the actual observed data samples. This is calied the likelihood function

L{(Y,.B) = prob (Y /B) 4.5

An estimator which maximises this is célled a maximum likelihood estimator.
This is such that
SL (Yp» B)
dB

This is equivalent to

élog'?%(YD,B)= 0 4.7

since the logarithm function is monotonic. This latter c.riter ion is more
' frequently used since log L. is often much more convenient to compute than
L alone.
The ‘resultant estimate using this estimator can be thought of as that
which makes the data samples YD which actually_ occurred, most likely.
Unfortunately, Maximum Likelihood estimates are not in general unbiased.
However, they do possess certain desirable large sample properties under fairly
weak conditions (261). The maximum likelihood estimator is, therefore,. a

fairly attractive one provided the estimates can be computed.

4.3 The Least Squares Estimator

The parameter estimation problem can be formulated conceptually around
the process model in Figure 4.2 . It is required to estimate the values of the

unknown parameter vector 3 from discrete observations YDi of the model

output YMi which is corrupted by additive noise, e - Using the notation
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of regression analysis (93), we may write this model in the following vector -

matrix form.

where

YM=XB 4.9

YD isan mx1 vector made up of the 'm' discrete observations, YM the
vector of model outputs and e the vector of additive errors corresponding to

these. X is an mxn sensitivity matrix made up of the sensitivities of the

model 6utput at the 'm ' discrete time instants to the ' n ' model parameters,

i.e.
SYMI QYMl
aBq ' 3B~
X = ¥M, 4.10
S Moy
TEJ_ BT\
L -

For a model linear in the parameters (as discussed in Chapter 1) X is
independent of the parameter vector 8 in contrast to the case of a model
non-linear in the parameters where X contains elements dependent on 3 .
This has fundamental consequences in terms of the techniques used to compute

A
the parameter estimate. B as we shall see,

Note that the problem of estimating the parameters of the homogeneous
002 gas transport model described in the previous Chapter, can be interpreted
in the form of equations 4.8 and 4.9 by interpreting YDi and YMi as the

flow-weighted means of the data and model output respectively for each breath.

Thus, the 'ad hoc' criterion used for model/data comparison in the previous
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Chapter can be viewed as an algorithm for minimising the sum of squares of
the additive observation residuals, i.e.
m

Min. g V(B) _ E el or ele 4.11
W.r't. i:l 1

This criterion is in fact more widely known in a general context as the ordinary

least squares (OLS) criterion. The criterion has been given histo;‘ical
prominence due to its mathematical tractibility and the fact that its validity does
not depend on the nature of the additive noise statistics (as has been aptly
illustrated in the previous chapter).

For a model linear in the pa‘rameter‘s the solution to equafion 4.11 can.

be given analytically by the so-called normal equations, i.e.

A .
) LT LT
BLS = [X X‘l X YD 4.12
If the model is non-linear in the parameters, using this equation to compute
A
B LS is no longer applicable since X is a function of 8 . In this situation

the estimate must be computed iteratively using function minimisation methods.
This important problem is extensively discussed in Chapter 5 and 6. However,
it is important to note that in the non-linear case, equation 4.12 is a valid
A A

approximation for B8 provided this 8 is also used to compute X .

For theoretical examination of the properties of the OLS estimator
we must assume some statistical properties for the additive noise. The
following analysis, although only strictly valid for the case of a model linear

in the parameters, can be extended to the non-linear case with due caution.,

Assume firstly the noise is zero-mean, i.e.

E(e) =0 4.13

and, furthermore., that X is non-stochastic.

thako

Under these assumptions it can be shown the least squares estimator
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is unbiased. Taking expectations on both sides of equation 4. 12 and

applying 4.13 we get

A .
E(BLS)=E(B)+ E[(XTX)'l XT] Elge)] = f 4.14

The covariance matrix of the least squares estimator under these assumptions

is
PAN
cov(BLS)=E{([XTX -lee )([XT )Zl -1 XT e) T}

- [xTx] T xT N x [xTx]™ 415

N is defined as the covariance matrix of the additive noise.
N = E {e eT} 4,16

However, this does not provide the minimum variance estimator unless it is

also assumed the noise is uncorrelated and has constant variance 62 , l.e.
2
N=06"1 4,17

where I is the identity matrix. In this situation equation 4. 15 reduces to

A
COV(BLS)'=62 [XT X‘J "1 4.18

Fa)
which is the minimum covariance matrix of 8 .

This inability to give minimum covariance estimates in the presence
of correlated observation errors is an important deficiency of the ordinary
least squares method. This problem is. further pursued in Section 4, where a
method is presented which overcomes this difficulty.

If in addition to the assumptions detailed above, the noise is also

assumed to be governed by a Gaussian distribution of joint probability
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-m
prob(e , B )= (27 detN) 2 exp{-% eT Nﬁleg
m

= (276%) 2 eXP%-%eT eYJ 4.19

Then the ordinary least squares estimator coincides in this case with the
maximum likelihood estimator. The log likelihood function for equation 4,19
is given by

T

log L = - mlog276 -3 e e 4,20

1
g2

Thus, it is evident that mim'fmising eT e ,which' is the least squares criterion,
is equivalent to maximising the likelihood function. .

Since the variance of the noise is seldom known 3 priori,a maximum
likelihood estimate of this can also be obtained by differentiating equation 4.20

with respect to & 2 . This gives

-+ ,%3 eTe =0 4.21
G

a8

transforming we get

Tl L Te 4.22

It can be shown, however, that this estimate is biased (158) and a better

unbiased estimate is

% = e e 4,23

Thus an estimate of the covariance matrix of the parameters based on the
achieved fit is given by equation 4. 18 with G 2 replaced by @ 2 as given by
the above equation.
A
The inverse of cov () describes an elliptical surface in parameter

space, which is equivalent to that of the criterion function surface (as given by

equation 4.11) to first order in the region of the minimum. The eigenvectors
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of X T X define the axes of this elliptical surface and the size of its semi-
axes are inversely proportional to the square root of the corresponding eigen-
values (see Fig, 4.3).
A

From the cov (B ) matrix approximate confidence sets for the
parameters may be constructed which describe plausible regions in which the
parameters can be expected to lie to a given probability level (usually 95%).
For a value of 32 as given by equation 4.24, it is appropriate to base the

confidence distances on the students t-distribution (126). This is given for

e.g. the ith paraméter
A A ] ‘1l . ’ . .
Bi—_t G cov (B )ﬁ2t(m-n) 4,24

The students -t distribution is tabulated for different levels of confidence
as a function of degrees of freedom m -n ., In fact, at the 95% confidence
level for m - n greater than about twenty the value of t is not greatly different

from 2.0 and thus the above formula approximately reduces to

j &

B. + 2 E, cov(gii) 4.25

Note these confidence distances may be greatly in error for a model highly
non-linear in the parameters since the confidence regions will be no longer
approximately elliptical in this case. Beck and Arnold ( (22) Ch. 7 ) advocate
that alternative confidence regions (which may be asymetrical) based on the
likelihood ratio be used in this situation.

To consider the overall fit, a convenient scalar measure of the size

t 1

of an 'n ' dimensional ellipsoid is its volume, the square of which is

PR 3
proportional to the @eiermman! of cov (8) (220),
A -
vol o det (cov(B ) ) 4,26

Thus appropriate 95% confidence ellipsoids may be constructed based on this.
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4.4 "Maximum Likelihood" Estimator

When the fitting errors (or in the terminology of regression analysis
the residuals) are correlated, it has been shown in the previous section that
the ordinary least squares approach does not produce mi_nimum variance and
maximum likelihood estimates.

Better estimators (in the sense of producing estimates with smaller
variance) may be derived from a knowledge of the parameters of the noise
or more precisely, its covariance matrix. Unfortunately this is not gfenerally
kno'wn\a priori.

By utilisiné a more general form of noise model than that of ordinary
least squares, the parameters of the noise model may then be estimated
in addition to the deterministic model parameters as part of the overall
estimation process. The penalty that must be paid for this is, of course, the
increased dimensionality of the problem. However, the resultant "maximum
likelihood" estimator (11) yields minimum variance estimates under less
stringent statistical assumptions on the noise than the ordinary least squares
method requires to produce minimum variance estimates. A suitable form of
model to use to represent the correlated noise e is the following discrete

‘time model.
Z -‘2 + bn z-n]

z 2 +anz"n]

E+blz'1+b 4.27

e= 2
t [1+alz-l+a

2
where z denotes the shift operator, or z~transform, and f is assumed to
be a sequence of uncorrelated Gaussian random variables. This is known as

an auto-regressive-moving-average (ARMA) model. It can be shown to be a

canonical form for noise which is stationary and possesses a rational spectral
density (9). In fact, almost all practically obtained noise sequences can be

adequately represented in this manner. The coloured noise in equation 4.27



- 06 -

can be conceptually thought of as having been created by passing white noise
through a linear filter. This form of noise model was first used in the
engineering system identification field for I/0 identification by Astrom and
Bohlin (11). However, it has also been extensively used in the statistical
analysis of time series where there was no explicit input, noteably by Box and
Jenkins (39).

We will now consider the properties of an estimator with
" the néise modelled in this ma;lner. The difference between this and the OLS
estimator is shown in Fig. 4.4. In the following we Willl consider only the
first érder nc;ise model for simplicity, although the analysis can be trivially
generalised to noise models of any order.

The first order ARMA noise model is

1+b z—l

¢ = Ze 4.28
-1
l+az

this gives the recursive relationship for e, as

e = -2 et_1+it+bz’t_l 4.29
this is easily transformed to get & ¢ if e, is known.
4. &ta et-lubft-l 4.30

Although equations 4.29 and 4.30 are in a convenient form for recursive
computation, for the subsequent analysis it is more convenient to adopt a
matrix vector formulation. The dependence of the (m x 1 ) vector of correlated

observations e on the vector of (assumed) white residuals £ can be written as

e = QfF _ 4,31

where Q isthe m x m matrix
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(b-a) 1
~a(b-a) (B-a) p

Q - ) s 4.32

m-2

(-a) (b-a) 1

e

Note that Q is unit lower triangular. Thé inverse relationship can be

similarly written as
£ = Q" e 4.33

where Qﬁl, which is also unit lower triangular, can be explicitly written

as -
1
(a -b) 4
" -b(a-b) (a-b) o
Q = . . 4.34
(-0)2 (5 -p) | 9
L N

Recall from Section 4.3, Equation 4. 19 that if the fitting errors e are
assumed Gaussian, although not necessarily independent, their conditional p.d.f.

is

-m -m ’ .
2 (detN)zexpz-%eTN-l-e} 4,35

prob (e /B, N (a,b)) = (2m)

The probability has also to be written as conditional on the noise covariance N
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i
in the equation above since this is also being explicitly considered as a
parameter ( i.e. via a and b ) in this situation. The log likelihood function

for this becomes

T

logL (B, N) = - 2 log (2 7) - = log(detN) -3} e N e

v |8

'y

4.36

To obtain the maximum likelihood estimate it is necessary to differentiate

the above wrt the noise parameters as well as the deterministic model
paraineters simultaneously. However, as we shall see, the problem is
rendered separable by the choice of the noise modei. structt;re. From equation
4.31 and the fact that 2. is assumed to be an uncorrelated random sequence
with covariance matrix given by equation 4. 17, the covariance matrix of the

additive fitting errors becomes

Elie eT} =E{Q£ (Q % )T} =E2QZZT QT]

Q E{iiT} QT = ?;2 Q QT . 4.37

N

also

det (N ) =G2 det( Q) det( Q) = &2 | 4.38

since the determinant of a unit lower or upper triangular matrix is.unity.

It is easily seen from this that the problem of maximising the likelihood
function with respect to the ( n* 1 ) parameter vector 3 and the noise
parameters (a, b) reduces to the following equivalent problem of minimising

a sum of squares.

min m 2 T
V(6)=-E 21 or 9% 4.39

W.r.t.® i= l

where we define an augmented ( (n-+ 2 ) x 1 ) parameter vector 8 (which also
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includes the noise parameters by

9 = a 4,40

Although equation 4. 39 would appear to be analogous to the case of ordinary
least squares, this analogy is not total. A closed form solution to equation 4. 39,
equivalent to equation 4.12, unfortunately does not exist; even in the case of a
process model linear in its parameters., This is due to the way the noise
parameters enter into the equation. Thus, for this technique the iterative
function minimisation techniques described-in Chapters 5 and' 6 are a necessity.
Followihg a similar mathematical argument to the ordiﬁary least squares

L2,
case, an unbiased estimate of &~ is

2. L 272 4.41

m-1n

The covariance matrix of the estimates for the maximum likelihood estimator

can be shown to be
A -~ 2 -
cov (8) = G [ ZT Z] ! 4,42

where Z is a modified sensitivity matrix of order m x ( n+ 2 ) given by

[ 3%, )4,
§91 3 9n+z
7 = * ' 4.43
A< 3m
. 391 ) éen—i—:?:
o

Confidence sets for the individual parameters and overall confidence ellipsoids

A
can be constructed from cov (8 ) in a manner analogous to that used in the

ordinary least squares case considered in Section 4. 3.
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The mechanisation of the maximum likelihood estimator will be
discussed in Chapter 6 where it will be shown how the modified sensitivity matrix
Z can be calculated with reduced overhead from the process model sensitivity

matrix X and the fitting errors e .

4.5 Retrospective Tests on the Adequacy of Fit of Estimated Models

After an experiment has been carried out and a model estimated, it is
important to verify the origiﬁal statistical assumptions implicit in the estimation
method used. If th'ése are iﬁ error the estimates of the c_ova.rianée matrix of
the parameteré, etc. may no longer be valid. In some sitL;ations the estimates
may be biased.

The properties of the estimatoré discussed in Sections 4. 3 and 4.4
depended crucially on the independence of the appropriate residual sequences,
i.e. e in the ordinary least squares case and 2 in the maximum likelihood
case. These sequences should thus be examined closely as any structure
or dependence on the input displayed by them may suggest deficiencies in the
model, or perhaps the presence of unsuspected feedback, which can be a
problem in an identification context, particularly where normal operating
records are being used (147).

A useful procedure for testing the independence of the residual sequence

is to compute an estimate of its serial autocorrelation, e.g.

A m-"C

‘ _ ._l_._ ~
G&.(t)- e— k‘%'i' Z(k)€(k+T) 4.44

for a reasonable number of delays T = 1,2, 3 ,l etc. Ideally if the residual
sequence is independent, i.e. the residuals are 'white', then it should possess

A
an impulsive autocorrelation function (265, Ch. 5). That is @ii (?f # 0)
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should be zero. In reality, however, equation 4,44 is only an estimate over
a finite data length, whereas the true autocorrelation implies convolution over

infinite data lengths. Hence, this estimate has an associated variance. In

Bendat andPiersol (30), the resultant standard deviation of this is shown to be

N
6 mee ('t)} - 1 1 m 4. 45
ﬁee ) (m-T)¥° m-n :

1 \]

Note that for a few la gs’t only and a large number of observations 'm
the above formula for the variance of the normalised autocorrelation function

(which is-what we compute in practice) reduges to

A ' -
G {_Q)ee(’t')})ﬁ, —1%— for m >> T 4.46
m

norm
and m>> n

Similarly, cross-correlations between the input and the residuals may be
carried out to detect the presence of feedback (35, 62).

An alternative method for cheéking for the independence of the residual
sequence is examination of the "number of runs". The number of runs is the‘
number of changes of sign of the residuals plus one (e.g. in the sequence
4+ + =« = 4+ = there are four runs). For a sequence of m independent
random variables, the expected number of runs should be approximately equal
to m/2 . A significance test for the independence of the residual sequence
based on the number of runs is given in Draper and Smith (93), Chapter 3.

In assessing the adequacy of the fitted model it is also important to check if
the fit of the model is significantly improved by adding extra parameters, e.g.

in the case of the homogeneous CO, gas exchange model by going from 4 to 6

2

parameters.

The determination of the order of the model can in fact be approached
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as a statistical hypothesis testing problem.
To test if the criterion function is significantly reduced when the number

of parameters is increased from n, to n_ say, the following test quantity can be

1 2
used (145)

] [v(By) -V (B,)) Lm-n)
Lveey,) 7 Cony-n)

f

If the residuals are Gaussian (or in practice approximately so) this test
quantity f can be shown to be approximately F - ,Qistributed with (n2 - n 1?
an.d {m - ‘nz ) degrées of free.dom. Thus, for e.z'given significance level ¢
(usually 5% ) the increase in model parameters is said to result in a significant

improvement if the corresponding test quantity f is such that

f >F~a(n

. -2,m-n2) 4.48

1

where F 1 -a {(n, - n, , m -1, ) is found from a table of the F distribution (59).

1
Akaike (2) has proposed an alternative procedure for model order
selection derived on information theoretic grounds. He formulates the model
order testing procedure essentially as an estimation problem. This has the
advantage that the need for subjective judgement, i.e. in selecting significance
levels, such as required for the F - ratio . test, is eliminated. However, the
method requires that an estimate of the likeliliood function be explicitly

computable. Akaike advocates choosing the model order such that the following

information criterion is minimised.
. -~
AIC11 = = 210gL(Bn)+2n 4,49

A
where L ( Bn ) is an estimate of the likelihood function based on 'n' independently

~
adjusted parameters. In terms of V ( Bn ) (V being given be either equation

4.11 or 4.39), equation 4.49 becomes
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AIC = {1 2—7,-V/B\)+ 1’} + 2 4,5
n = m (log O VIR, n +90

Successful applications of the above criterion have been reported (167, 223,
227). However, claims that the order: testing procedure is in fact truely
"objective" have been disputed (263).

Another important consideration when assessing adequacy of fit of an
estimated model is that of stationarity or time invariance of the parameter
estimates. This can be checked by est;imating models in turn over the first
and second half of the data sequenée and ensuring the estimates are not
sigﬁficantly different from those obtained from fitting over the entire data

sequence.

4,6  Identifiability Aspects

As discussed in Chapter 1, the emphasis is usually slightly different
in identification of biological as opposed to the industrial processes. In
industrial process identification the primary aim is to create models which
accurately mimic the real systems observed external behaviour. In the bio-
logical area, however‘, in addition tc; this, the investigator is likely to be
concerned as to how the paraméters of the derived models relate to physical
quantities.  In this latter situation, it is obvious that this wﬂl only be valid
if the model is configured in a manner such that all its iﬁternal parameters
of interest can be uniquely identified. More mathematically, this requires
that the .mapping from parameter space to the input/output relation should be
injective., Such a model is said to be identifiable.

| Bellman and Astrom (28) first explicitly formulated and discussed this
problem in the context of biclogical compartmental systems in 1970. They
advocated classical transfer function theory as a suitable mechanism to investigate

this. They showed that each coefficient of the resultant transfer function matrix
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can be expressed as a non-linear combination of the unknown parameters thus
defining a set of non-linear equations. Provided these have a unique solution,
they. state the model is identifiable.

Applications of this s-domain approach to the identifiability of models
of drug kinetics have been reported by Milanese and Molino (208,211).

More general identifiability results have been attempted by Cobelli
and Romanin-Jacur (69,70,71) based on the analysis of the compartmental
diagram (i.e. the signal flow) and hence attempting to avoi-d explicit calculation
of the transfer function matfbc (and the matrix conversion problems-inherent in
. this procedure). However, these results have aroused considerably controversy
in the literature (81,82, 87, 67, 307). This is concerned with whether the results
of Cobelli and Romanin-Jacur form sufficient or even necessary conditions for
identifiability, (81, 82), and also with the nature of the relationship of identifiability
to the properties of controllability and observability (95) put forward.by these
authors.

More recently, Cobelli et al (68) have revised their results and have
shown conclusively the properties of input and output connectability (78) to be
necessary conditions for identifiability. However, in the general case at least,
no sufficient conditions have as yet been put forward in the literature.

An algebraic identifiability criterion has been proposed by Grewal
and Glover (141). This is based on the evaluation of the rank of the jacobian

of the Markov parameter matrix defined as :

C® B®
H®E C® A®B BE 4.51
c® A@EBE)

where B is the parameter vector of dimension 'n' and A, B, C are the usual
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matrices obtained by configuring the system in state space form (95). In
the biomedical field this technique has been applied to models of thyroid
hormone metabolism (88, 89).

So far when discussing identifiability we have really been inferring
what Bellman and Astrom (28) call global structural identifiability. This
depends only on the structure of the model and available input/output ports
and not on the numerical values of the parameters. However, this is only really
one aspect of the problem and as noted by Brown and Godfrey (49) there exists
far wider implications. That 1is, certain sitﬁations may arise where although
the model ma.y be theoretically.identifiable in the sense discussed above,
practically due to e.g. poor experimental design, or inaccurate measurements,
one may be unable to resolve these parameters uniquely. Brown and Godfrey
(49) coin the term\ o\*z'\??‘”“""‘,m}.:j, to refer to this near or pathological type of
identifiability.

One example of this is the following simple algebraic model

Yy = B+ B, (10+ u) 4,52

For this model, in the presence of noise, both parameters can only be (easily)
uniquely estimated for large values of the input u. For | u | small only
B=z=8 Lt 10 32 can be estimated uniquely, Many other cases similar to this
can be cited. These may not be at all obvious, especially in the dynamic case
where it may not be possible to manipulate the model equations so that groups
of parameters appear together allowing potential unidentifiability to be deduced.
The existence of some sort of criteria that could be applied to detect this
retrospectively would obviously be a convenient tool in this situation. In fact,

it transpires such criteria can be derived from consideration of the appropriate

sensitivity matrices ( X for OLS and Z for ML ), discussed earlier in this
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chapter.

Beck and Arnold (22) show that the parameters can be estimated if
the sensitivity coefficients over the range of cbservations are not linearly
dependent. That is,e.g. in the ordinary least squares case, the matrix
6—1-2 XT X (which is proportional to the inverse of the parameter covariance
matrix C if the residuals are white) is not rank deficient. In simple cases
this unidentifiability may be deduced from examination of time plots of the
sensitivities. However, it is difficult to detect complicated interdependencies
in this manner. If an eigenvalué/ eigenvector decompos;tion of. C' indicateg
the eigenvalues are of greatly' differing magnitudes, 'this suggests identifiability
problems. A very useful. check on the correlations between particular

pairs of parameters is to compute the parameter correlation matrix R

defined as (220) :

C..

r1] 1
2
(Cy; Cyy)
where Cij , Cii ’ ij , etc. are elements of the parameter covariance matrix.
Note that the diagonal terms of the correlation matrix R will be unity and

the off diagonal terms such that

-1 £ r., &£ 1 ' 4.54
i

Near urﬁdentifia_bilitycis indicated by the modulus of one or more of the off-
diagonal terms of R being near unity, i.e. the parameters in question are
highly correlated. In practice, estimates for parameters i and j are suspect
if 22)

r..|] > 0.9 4.55
Ly

Small off-diagonal elements of the R matrix indicate that the parameters are

essentially decoupled.
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4.7 Structural Identifiability of the Homogeneous CO9 Model

The structural identifiability of the model may be approximately

investigated by considering the constant ventilation version of the model.
SV = V effective = const. 4.56
where the value of V effective is taken from the Bohr equation (Chapter 2,
Section 2.5),
- N >
i.e. V effective = (VI -fVp ) 4.57

By taking Laplace transforms of the model equations 2.43 and 2.44 and after

some manipulation, the model can be expressed in the following form :

a S+« . S+ o a '
P,S) = 5—=2 . P + v 2 4.58
S +a38+o<4 _S +oz38+ar4
where P A(S) is the Laplace transform of the 'output', i.e. alveolar PCO2

and PI(S) is the Laplace transform of the 'input’ viewed as inspired PC:O2 . The

set of Laplace transform coefficients a'k are functions of the parametersf3

and are given by

Qv eff ‘
@, = %——TV— 4.60
A "Tc
a3 _ % + Vveff + CO:;St Qb 4.61
’ T A A
O.’4 = %V—QVE 4.62
A 'TC
. =P - const M 4,63
5 A0) V eff ‘
‘ Q AINT x const constQb P
Q, = P, + - XCONSt  COMSLLD F4 oy
6 = Vr, A0 v, A C
- const M Q Veff ' const Qb 4.64
o + +

V eff VTC Va Va
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)
o, = M 4.65

The first term on the right-hand -side of equation 4,58 is the dynamic term due

to the input and the second term is the initial condition response. This term

is non-existent if the model is initially in a steady state. The third term is an

offset term. This latter term is expected due to the fact that there is non-zero

output for zero input (i.e. under normal air breathing conditions P, CO, = 40 mm Hg

A2

for P, 002 = 0 mm Hg ).

The dominant poles of the system are given by the roots of the equation

2 , »
ST+ @S+ a, =0 _ 4.66

For redsonable parameter values (Q=5L/M , VA = 5L, M = 021,

A% = SL ) this gives two left half plane poles, i.e.

T

Sl = = 5-8 ’ Sz = = 0.2 4‘ 670

This corresponds to time constants of approximately 10 secs and 5 mins
respectively. The first time constant represents the relatively fast dynamics
of the alveolar compartment, while the second represents the relatively slower
tissue compartment dynamics.

We will now consider the global identifiability aspects of this model
structure, i.e. assuming a 'good' (informative) experiment, how many
parameters can be uniquely estimated ?

It is not easy to tackle this problem via the more formal Grewal and
Glover (141) approach because of difficulty in representing the model in -
standard linear time invariant, state space form. This is entirely due to the
manner in which 1\‘/1 enters into the model equations. Therefore, if we think
of this as an input we can write the model equations in standard form. We

-]

explicitly consider, however, M as a parameter. We, therefore, adopt
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the following more intuitive approach to the identifiability analysis.

In principle, all the independent Laplace transform coefficients @
in the Laplace transform representation of the model (equation 4.58) are
determinable from input/output experiments. Thus, the number of these
coefficients implicitly defines an upper bound on the maximum number of
intrinsic model parameters which might be identifiable (68):

Coefficients , and o .y essentially c.:ontain the same information since

one is a multiple of the other. Expressing the remaining transform coefficients

in terms of the intrinsic model parameters results in the following equations

V, =k | ' | | 4.68
M = K, 4.69
Py = K 4.70
bQ = k, 4.71
bV = ki 4
Pr * —-E:-I- = k, 4.73

Examination of the above equations show why attempts to estimate b, the slope

of the CO2 dissociation curve and/or Ay the intercept of the dissociation

curve, met with failure in the previous chapter. Note how a change in b in

L

equations 4.60 - 4,64 can be exactly compensated for by a change in Q, VT
C

and P thus giving the same set of Laplace transform coefficients

T0) °

and, therefore, the same model response. Also, a change in AINT can be

compensated for exactly by a change in P in equation 4. 64 thus again

Te(0)
yielding the same model output. Equations 4.68 ~ 4.73 tell us, however, that

if b and AINT are known, then the model parameterisation in terms of

°

Q, Vy + M, Vo, Py is unique.
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It must be emphasised that the above results yield only minimal
necessary conditions for obtaining unique estimates, i.e. under ideal
experimental conditions. It gives us no information on the degree of identifiability.

As discussed in Section 4.6, this can only be inferred retrospectively.

4.8 Validation Data : Estimation Results for 4, 6 and 8 Parameter Models

The parameter estimates obtained by fitting four parameter models
(i.e. assuming steady-state initial conditions) to the validation data were given
in the previous chapter and the physiolpgical significance of these discussed.
In this section we will assess the adequacy of these fitted models and compare
them v;rith the résults obtained by fitting a six parametér model (i.e. estimating
additionally the initial conditions P

A(0)
model (includes 2 additional noiseparameters for the first order ARMA model).

and PTc ©) ) and an eight parameter

The estimation results for the 4,6 and 8 parameter models are detailed
in Appendix A, together with their respective variances as calculated using the
appropriate formulae derived earlier in this chaptex.

Originally these estimates were computed using the Factorised-Quasi-
Newton Methods discussed in Chapter 5. These techniques do not explicitly |
utilise semsitivity information. When using these techniques, it was therefore
necessary to write a separate programme to compute the sensitivity matrix
by finite differences to allow the parameter estimate variances to be c;,}.culated.
Later, however, sums of squares were used which yielded the sensitivity
matrices as part of the function minimisation process t;hus allowing the
parameter estimates variances to be calculated directly, (Generally the fits
are very good, i.e. M.S-E < 1% of the mean output value. )

These results serve to indicat;e that the assumption of steady state

initial conditions (i.e. four parameter model) is not in fact correct in every



- 112 -

data file as assumed in previous work in this project (228, 234). Very
frequently a six and even eight parameter model gives far smaller values

of the criterion function V(8). However, there does not seem to be any 'best’
structure to assume in the global sense (i.e. over all the validation data)
since on some files increasing the model order did not seem to make a great
deal of difference.

No one model order gives the best agreement with‘the dye dilution
estimates either since the fourth order model gives the nearest value 22/50
times, the sixth -order model.16/50 times and the eight‘orde.r model 13/35 times.
On a more formal level, the quest'ioﬁ of the most appropriate model order was
investigated using the structure testing techniques of Section 4.5.

The test quantity defined by equation 4.47 was formed for the increase
in the number of parameters from four to six and from six to eight. This was
then compared with the appropriate value from the F distribution to test if
the order increase was significant at the 5% level. These resuits are given in
Table 4. 1. These again confirm that different model orders would appear to be
appropriate on different data sets. In testing the increase in order from four to
six parameters 26/48 times the test indicated the increase in order was
significant (22/48 times not significant). As regards the increase in order
from 6 to 8 parameters, this was significant 15/34 times. On four occasions
the test indicated the increase in order 4 -2 6 was not -sigl;ificant, but 6—> 8
was. In this situation the eighth order model was chosen since the test of increase
in order from 4 —» 8 was computed and found to be significant. Overall, the
frequency of chosen model orders are summarised below.

51 data sets compared

n=4 - 17 data sets
n==0 - 18 data sets’
n= 8 - 16 data sets.
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Table 4.1 F-RATIO TEST RESULTS
TO CHOOSE 'BEST' MODEL

File N &e?2 5e2 we 2 f(4+6) f(6+8) F(4»6) F(6»8) Chosen
‘4 '6 '8 QOrder
VALO41 64 1.766 1.634 1.598 2.343 0.631 3.15  3.15 4
2 46 4.666 4.570 4.273 0.420 1.321 3.23  3.23 4
3 45 3.816 2.658 1.899 9.495 7.394 3.23  3.23 8
4 40 3.538 2.399 C 8.071 -  3.32 - 6
vV ALO51 22 1.759 1.176 1,126 3.966 0.311 3.63  3.74 6
2 20 2.868 1.088 C  11.452 -  3.74  3.89 6
3 24 1.208 0.838 0.721 3.973 1.298 3.55  3.63 6
VALO72 28 1,671 © 1.599 1,124  0.495 4.226 3.44  3.49 8
: 3 28 ¢ - C c - - - - -
4 25 1.931 1.738 1.667 1.055 0.362 8.55  3.63
VALOSL = 27 2.560 1.188 1.070 12.126 1.048 3.44  3.49 6
4 20 1.488 0.949 C 3.975 -  3.74 - 6
5 22 1.553 1.080 . FM  3.503 - 3.63 - 4
VAL 101 31 2.855 1.549 0.997 10.539 6.367 3.34  3.40 8
2 30 2.728 1.689 1.576 7.382 0.789 3.40  3.44 6
3 31 3.400 2.992 C 1.704 - 3.34 - 4
4 28 6.871 6.172 5.207 1.245 1.853 3.44  3.49 4
YAL111 42 4.400 4.164 4.027 1.020 0.578 3.28  3.30 4
2 37 8.646 4.519 3.258 14.155 5.162 3.30  3.32 8
3 36 6.456 - 2.592 1.404 22,361 5.419 3.34  3.37 8
4 37 6.355 2.325 1.727 26.867 5.020 3.30  3.32 8
VAL122 41 6.114 5.440 4.990 1.920 1.487 3.32  3.32 4
3 37 C 3.878 2.591 - 7.202 - 3.32 8
4 36 13.741  7.848 C  11.263 - - - 6
5 45 7.384 6,770 2.810 1.76826.071 3.23  3.23 8
VAL141 30 2.939 2.414 2.154 2.609 1.327 3.40  3.44 4
2 27 1.767 1.296 1.071 3.816 1.996 3.44  3.49 6
3 30 C 2.966  2.359 - 2,830 3.40  3.44 6
4 29 3.153 2.473 2.042 3.162 2.216 3,40  3.44 4
VAL161 21 8.423 3.040 C  13.280 -  3.63 - 6
2 22 2.849 1.332 FM 9.111 -  3.63 - 6
3 21 6.800 6.446 FM 0.412 -  3.63 - 4
4 21 2.818 2.225 FM 1.998 -  3.63 - 4
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Table 4.1 (cont'd.....)

C denotes programme crash.
FM denotesfalse minimum located.

File N . e, =e, f(4->6) £(628) F(4~6) F(6~8) Choser
14 16 18 order

VAL 172 37 6.553 3.635 2.167 12.443 9.823 3.30  3.32 8

3 39 9.046 6.753 3.755 5.602 12.375 3.30  3.32 8

4 38 3.780 3.741 2.512 0.167 7.339 3.30  3.32 8
VAL 181 22 1.700 0.658 FEM 12.668 - 3.63 - 6

3 24 3.346 1.392 FM 12.634 - 3.55 - 6

4 29 3.059 2.657 2,656 1.759 0.004  3.40 3.43 4
.VAL 191 23 2.465 2.035 1.674 1.796 1.617  3.55 3.63 4
VAL 203 38 4.816 4.325 FM 1.816 - 3.32 - 4
VAL 221 49 4.709 4.105. 1.287 3.163 44.886 3.23  3.23 8

2 50 3.667 3.479 2.286 1.18910.959  3.23 3.23 8

3 53 7.477 4.420 3.228  16.253 8.308 3.23 3.23 8

4 51 3.781 2.925 1.532 6.584 19.549  3.23 3.23 8
VAL 231 31 5.877 3.957 3.515 6.065 1.446  3.34 3.40 6

2 22 1.241 1.109 FM 0.952 - 3.63 - 4
VAL 251 29 3.064 1.937 C 5.527 - 3.40 - 6

2 28 1.920 1.649 1.303 1.807 2.655 3.44 3.49 4

3 30 2.346 1.483 1.382 6.983 0.803 3.40 3.44 6

4 31 C C 2.983 - - - - 8
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One feature of the results of Table 4.1 is that the criterion for model order

is statistically not very "sharp", i.e. very powerful. Because the value of

the test quantity is so low, the results of the tests depend greatly on the value
of significance level, i.e. some results would be different at sméller
'subjective’ significance levels. The 'best' model orders were also a&ssessed
using Akaike's 'objective' method (see Section 4.7). The results are given in
Table 4.2 where the AIC (AkaikeInformation Criterion) is computed for each
model order using equation 4.50. .Using Akaike's method predicts identical
results to the F- test 39 out of 51 occasions. On the data files where the two
methods disagree (invariably this is where the F-test statistic is fairly close
to test vaiue) » Akaike's method in this situation is seen to consistently predict
a higher order model. This was also noticeable with results reported by
Astrom and Kallstrom (14) in identifying models of ship ~steering dynamics.

It would also be interesting to assess how often the 'best' order as
chosen by the F-test c‘orresponds to that model order (4, 6 or 8) which gives
a value of cardiac output, which is nearest the dye-dilution value. In fact,
these correspond on only 17 .data sets, which unfortunately is not any better
for the results for any particular ﬁodel order given above.

It is difficult to assess if this is significant, however, since we are
comparing two quantities, both of which may have significant variances
associated with them. A direct pl;)t of the cardiac output estimates for the
'best;' model against the dye values is given in Figure 4.5. This shows 36/48
pairs of estimates within + 20%, which compares similarly with ‘37/ 51 for the
four parameter model (see Chapter 3). Table 4.3 gives a statistical summary
of these comparisons.

Before going on to consider the implications of the estimated parameter
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Table 4.2 AKAIKES INFORMATION CRITERION RESULTS
TO CHOOSE 'BEST' MODEL ORDER
: N ‘o 2 2 2 AIC c

File 5'.614 Eeié E‘eig 4 AIGg AICg  Chosen

VALO41 64 1.766 1.634 1.598 -40.18 -41.15 -38.58 6

2 46 4.666 4.570 4.273 33.26 36.30 37.20 4

3 45 3.816 2.658 1.899 24.646 12.37 1.241 8

4 40 3.538  2.399 C 24.48 1.294 - 6

VALO51 22 1.759 1.176 1.126 14.84  9.99  13.03 6

2 20 2.868 1.088 C 25.91 10,52 - 6

3 24 1.208 0.838 0.721  4.36 -0.418 -0.027 6

VALO72 28 1.671 1.599 1.124 8,52 11.29 5.417 8 .

3 28 C C C - - - -

| 4 25 1.931 1.738 1.667 14.913 16.28 19.24 4

. VALO8L 27 2.560 1.188 1.070 21.00  4.27  5.45 6

4 20 1.488  0.949 C 12.78  7.79 - 6

5 22 1.552 1.080 FM  12.10 8.112 - 6

VAL101 31 2.855 1.549 0.997 22,02  7.07 - 2.59 8

2 30 2.728 1.689 1.576 21.19 10.81 12.73 6

3 31 3.400 2.992 o 27.44 27.48 . - 4

4 28 6.871 6.172 5.207 48.11 49.10 48.34 4

VAL1l1l 42 4.400 4.164 4.027 32.41 34.09 36.69 4

2 37 8.646 4.519 3.258 59.19 39.19 31.08 8

3 36 6.456 2.592 1.404 48.28 19.43  1.35 8

4 37 6.355 2.325 1.727 47.80 14.59  7.60 8

VAL122 41 6.114 5.440 4.990 46.31 45.52 45,98 6

3 37 . C 3.878  2.591 - 33.53  22.60 8

4 36  13.741 7.848 c 75.47  59.31 - 6

5 45 7.384 6.770 2.810 54.35 54.44 18.86 8

VAL141 30 2.939 2.414 2.154 23.43 21.52 22.10 6

2 27 1.767 1.296 1.071 10.99  6.62  5.47. 8

3 30 C 2.966 2.359 . 27.70 24.83 8

4 29 3.153 2.473 2.042 25.93 22.89 21.34 8

VAL161 21 8.423 3,040 C 48.80 31.00 - 6

2 22 2.849 1.332 FM  25.45 12.73 - 6

3 21 6.800 6.446  FM  43.90 46.78 - 4

4 21 2.818 2.225 FM  25.41 24.44 - 6

VAL172 37 6.553 3.635 2.167 48.93 31.13 15.99 8

3 39 9.046 6.753 38.755 61.67 54.16  35.38 8

4 38 3.780 3.741 2.512 28.12 31.73  20.59 8
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N 2 2 B 2 AIC, AIC, AIC, Ch
File e, e, e : osen
E iy E ig ig 4 6 8 order
VAL181 22 1.700 0.658 FM  14.09 =2,79 - 6
3 24 3.346 1.392 FM  28.81 11.76 - 6
4 29 3.059 2.657 2.656 25.06 24.97 28.96 6
VAL191 23 2.465 2.035 1.674 21.89 21.48 20.99 8
VAL203 38  4.816 4.325 FM  37.33 37.24 - 6
VAL221 49 4.709 4.105 1.287 32.26 29.53 ~23.3 8
2 50 3.667 3.479 2.286 19.24 20.60  3.61 8
3 53 7.477 4.420 3.288 54,58 30.72 18.06 8
4 51 3.781 2.925 1.532 20.01 10.92 =-18.00 8
VAL231 31 5.877 3.957 3.515 44.41 36,14 36.47 6
2 22 1.241 1.109 FM 7.17  8.70 - 4
3 25 2.715 1.924 FM  23.43 18.82 - 6
VAL251 29 3.064 1.937 C 25.10 15.80 - 6
2 28 1.920 1.649 1.303 12.41 12.41  9.56 8
3 30 2,346 1.483 1.382 16.67 16.67  8.79 6
4 31 C C  2.983 - - 31.39 8

C denotes programme crash

FM denotes false minimum.
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Table 4.3 :  Statistical Summaxry of Comparative Measurements of

Cardiac Output Using 'Best' Model Results as QObtained

From F-ratio Test

Files Corr.Coeff. Reg.Coeff, Intercept MeanDiff, S.D. Diff. P *

(comp -dye) (comp-dye) B

L/M L/M
AlL(B1) 0. 62 " 0.64 0. 74 -0:15 1.11 NS
% CO,(29) 0.81 0. 84 1.08 0.10 0. 94 NS

* P values obtainedfrompaired Student's t-test (two -tailed),

37/51 pairedobservations within+ 20% of line of identity.

Mean reproducibility (dye) - 6. 8%
Mean reproducibility (all comp) - 12.2%.
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variances, the \a priori assumption of residuals being representative of

white noise must be checked. This is necessary to ensure that the use of
formulae derived earlier in this chapter, to calculate the parameter estimate
variances are approximately valid. As noted in Section 4.7, to test the
residuals for whiteness in practice one can only test if their (sample) auto-
covariance is zero for a number of lags. That is, check the number of points
outside the 26 ( 95% confidence) limits. Alternatively, the runs test (93) may
be used. For the 'best' model order as chosen by the F-ratio, these results
are summarised in Table 4.4. Note that in 28/49 cases the residuals for the
"best' model a're in fact uncorrelated.according to both tesfs as compared to
13/49 cases correlated. Only in eight instancges do the two sets conflict.
Thus, these results indicate that the assumption of white residuals is satisfied
in the majority of cases.

In fact, the auto-correlation functions of the residuals with increasing
model order can themselves be used to give an indicate of correct model order
since the residuals sequence will be correlated if the model order is chosen
too small (145).

Comnsider the fits for n = 4, 6, 8 for the files VAL041,PRO and VAL221.
PRO. The F-ratio test indicated a four parameter model to be appropriate
to fit data file VALO041, whilst an eight parameter model was appropriate
for file VAL221. The three sets of residual autocorrelations for n=4, 6 and 8
are plotted in Figure 4.6 for file VALO41 and Figure 4.7 for fileh VAL221. .
Note that for file VALO041, where a four parameter model was sufficient, the
A.C.F's. forn=4, 6, 8 are 'experimentally white' (i. e. no points outs-ide
the 95% confidence limits). This is to be compared wifh the results for file
VAL221 where, since an eight param_eter model is appropriate, we have
'non-experimentally white' auto-~correlation functions for n = 4 and n = 6.

Runs test results are {t = 1. 96).
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Table 4.4 : Testson Independence of Residuals for Chosen

'Best' Model by F-Ratio Test.

File Chosen Order No. of Runs No. of Points Correlated
Test value Outside 20 limit
(10 lags)
VALO41 4 0.639 g N,N
2 4 ~3.404 1- Y,Y
3 8 0.111 0 N,N
4 6 -0.097 0 N,N
VALO51 6 ~1.966 2 Y,Y
2 6 N.D1 - -
3 6 -1.461 0 N,N
VALO72 8 -0. 963 0 N,N
3 - -
4 4 N.D.. 2 Y
VALOQO81 6 ~0.729 0 N,N
’ 4 6 N.D. 0 N
5 4 N.D. 1 Y
VAL101 8 0.422 0 N,N
2 6 -0.908 0 N,N
3 4 -1.091 0 N,N
4 4 N.D. 0
VALI11l 4 -1.674 1 N,Y
2 8 -2.264 0 Y,N
3 8 0.247 0 N,N
4 8 -0.295 0 N,N
VAL122 4 -2.740 0 Y,.N
3 8 0.377 0 N,N
4 6 -4,137 2 Y,Y
5 8 -0. 450 0 N,N
VAL141 4 -3.450 2 Y,Y
2 6 -1.172 0 N,N
3 6 -3.159 1 Y,Y
4 4 -2. 644 1 Y,Y
VALI161 6 N.D. - -
2 6 N.D. 0 N
3 4 N.D. 1 Y
4 4 N.D, 1 Y
VAL172 8 0.672 0 N,N
3 8 1.344 0 N,N
4 8 ~1.480 1 N,Y
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Table 4.4. cont'devivveennenss

File Chosen Order No. of Runs No. of Points Correlated
Test value Outside 20 Limit
10 Lags)
VAL181 6 N.D. 0 N
3 6 1.507 0 . N
4 4 -0.372 2 N
VAL191 4 0.009 0 N
VAL203 4 -2.457 0 Y
VAL221 8 1.144 0 N
2 8 ~1.277 1 N -
3 8 -0.925 0 N
‘ 4 8 -0 216 0 "N
VAL231 -6 -2.554 1 Y
2 4 N.D. 0 N
3 6 -1.585 0 N
VAL251 6 ~-1.783 2 N
2 4 -2.489 1 Y
3 6 -2.360 1 Y
4 8 -0. 684 0 N

Note : N.D, denotes test not defined (to few data points)
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ACF OF RESIDUALS FOR F'I'IT TO FILE VALB41{ PRO.

NORMALISED ACF.

DELAY.
FOUR' PARAMETER MODEL .

NORMAILLISED ACF.

'DELAY.
SIX PARAMETER MODEL.

NORMALTISED ACF.

"DELAY,
EIGHT PARAMETER MODEL.

FIGURE 46




NORMALISED ACF.

NORMALISED ACF.

NORMALISED ACF.
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ACF OF RESIDUALS FOR FIT TO FILE VAL221{.PRO.

DELAY.
'FOUR PARAMETER MODEL..

DELAY,
SIX PARAMETER MODEL.

~DELAY.
EIGHT PARAMETER MODEL.

FIGURE 47




n=4 n=06 n=2_8
VALO41 0.638> 0.1347° | 0,134
VAL221 -5.374° -4.837° | 11148

which reinforces this.

A final point to be made about white residuals is as follows. For the

eight parameter model, in only about 3 out of the 51 data files were the

residuals correlated using the above tests. This tends to confirm the

assumption of the sufficiency of the first order ARMA model to represent

~ the errors in these validation experiments.

We will now discuss the degree of identifiability of the éstimated

models. A number of poiits become evident from a study of these results :

(1) In only about half of the data files are the dye-dilution estimates
within the 95% confidence limits of the 'best' computed Q estimates.
(2) Occasionally large variances occur with the estimates of M and

VTCin the six and eight parameter model case. e.g. VALOS84,
VAL163, VAL231. This would tend to suggest local unidentifiability
along these parameter directions for these files. To investigate
this the sensitivity coefficients for the four and six parameter
models were plotted for one of these files (VAL084) and another

file for which a six parameter model was appropriate (VAL141),

but in which local unidentifiability was not suspected. These

are illustrated in Figures 4.8 to 4.11. It is obvious from

Figure 4.9 that the sensitivity coefficients for M and'VTe for

file VAL084 in the six parameter case appear very near to being
linearly dependent. As mentioned in Section 4.6 this is a condition
for unidentifiability. To chec;k this further the parameter correlation

matrix R (see Section 4,.6) was calculated and is shown below :
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1
0. 840
0. 841
-0.552
-0.423

Va

1
0.999
-0.190
-0.712
M

O

1
-0. 191
-0.710

v
Te

1
-0.199

1]

PA0 Fre0)

.

Note the extremely large positive correlation between M and V'I’
: : C

(element 4,3 : 0,999 ) which indicates unidentifiability. This is to
be compared with the corresponding correlation matrix for file

VAL141 for which the correlation between M and VTC

large (0. 878), does not present unidentifiability problems

» although

3 : O
v, -0.241 -
M 0.574  0.440
v 0.267  0.528  0.878
Tc
PA0) 0.149 -0.052 0.306  O.354
Pryp 78l 0154 0904 0715 -0.483 1
Q Va M Ve Fa Froo

The unidentifiability of VALOQ84 is also reflected in the determinant

of the resultant parameter covariance matrix as compared to VAL141
for file VALO84 det {_ cov ( :é )} is 1.6x 104 while for file VAL141
| itis2.4x 10-10 . It should be recalled these determinants are

proportional to the volume of the respective confidence ellipsoids

for each fit (Section 4.3, equation 4.26).
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Further scrutiny of the parameter correlation matrices for
the six parameter fits for all the other data files indicated that

the M/VT correlation was large (> 0.9) in almost every case.
C

(3) Examination of the parameter correlation matrices and the
sensitivity curves for the six parameter fits indicates that a
L4
large negative correlation between Q and PTC ©) is also

prevalent (e.g. see the correlation matrices above). This factor

coupled with the extremely large sensitivity of P throughout

TC(0)
the duration of the experiment (bbservable from the sensitivity
curves), emphasises the inadvisability of assuming a steady-state

(four parameter) model in general for this data.

The identifiability observations above tend to suggest that the model
is over-parameterised. However, this coptradicts the F~ratio tests and also
the preceeding structural identifiability analysis does not give any reason to
suspect global unidentifiability between 1\.4 and VTC or C.} and P'I'C 0)° This
leads one, therefore to the inevitable conclusion that the unidentifiability is
due to the form of experiment being poor rather than the nature. of the model
itself. This hypothesis is further confirmed by examination of Table 4.5.
In this the actual sample variances and coefficients of variation are compared
with those predicted on the basis of achieved fit, using the formulae derived
earlier . The results are computed for the 'best' model as given by the F-ratio
test. (Note also that the sample variances for the initial condition parameters
P A(0) and PT {0) are not considered in this table since these are not expected
to be time~invariant.)

In about 10/14 data sets it is apparent that the observed (sample)

variances are considerably greater than those predicted on the basis of the
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Table 4.5 : VALIDATION DATA

Average Predicted Variances ('Best' Model via F-Test)
vs. Observed Sample Variances.

File Q Zé M VTC
VALQ41 predicted 0.3 0.13 0.065 4.13
actual 0.19 0.07 0.080 5.73
CV©%) 2.9(8.2) 3.7 2.57 4,52
VALOS  predicted 0. 36 0.28 large large
actual 0.0 0.25 large large
CV%) 1.5(13.9) 8.4 > 100 >100
VALO7  predicted 0.45 0.12 0.013 0.67
actual ~ 0.30. 0.11 0.029 1.06
CV®%) 4.4(0.08) 7.7 12,1 22.1
VALO8 predicted  0.37 0.40 large large
’ actual 0.67 1.50 large large
CV%) 10.9(4.6) 79.5 >100 >100
VAL10 predicted 0.44 0.18 0.06 2.8
actual 0.83 0.23 0.12 5.8
CV%) 10.5(6.6) 11.5 30.7 43.1
VAL1l  predicted 0.67 0.21 0.05 1.6
actual 1.06 0.71 0.04 1.9
CV%) 16.5(7.9) 37.5 16.7 33.1
VAL12  predicted 0.42 0.18 0.04 1.00
actual 1.21 0.25 0.06 1.96
CV®%) 29.3(5.1). 17.9 29.3 51.8
VAL14  predicted . 0.28 0.16 0.02 0.75
actual - 0.76 0.27 0.07 2,39
CV©%) 12.0(6.5) 14.6 21.6 33.4
VAL16  predicted 0.44 0.28 large large
actual 1.22 1.08 - large large
CV%) 17.8(3.6) 35.7 >100 >100
VALL17  predicted 0.85 0.28 0.10 4.6
actual 0.94 0.76 0.06 1.43
CV®%) 15, 3(6.0) 29.1 16.9 19.7
VAL18  predicted 0.25 0.12 0.009 0.37
actual 0.29 0.03 0.0125 1.17
CV%) 6.3(10.9) 1.7 5.7 30.6

cont'dse....



File

VAL22 predicted
actual

CV)

VAL23 predicted
actual

CV %)

VAL25 predicted
actual

CvV%)

Average
obsexrved

CV®%)
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Table 4.5: Cont'de.....

Q Va

0.49 0.14
1.03 0.15
16.5(4.1) 7.7

0.39 0.21
0. 86 0.83
11.9(9.1) 30.6
0.41 - 0.20
0.90 0.28

14.9(8.1) 20.9

12.2 % 21. %
(6. 8% dye)>)

Iz -

0.04
0. 05
19.2

- large

large
>100 -

0.02
0.03
12.5

ES
19.1% ©

2.13
2.22
33.9

large
large
>100
0. 89
1.83
31.3

*
34.3%

Notes : (1) Unidentifiable files are not included in this average.

(2) Figure in brackets in this colum denotes values obtained

from the dye-dilution experiments.
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estimation results so that the Cramer-Rao lower variance bound is not
achieved. However, the estimators used are asym ..totically efficient.
Therefore, one is forced to conclude that the form of test procedure used

is not good enough to enable this asym , tote to be reached.

4.9 Conclusions
On the basis of the above results it would séem that the deterministic
and noise model structures used represent reasomnably well the dynamics of
homoéeneous CO_2 gas transporf. However, .it is equally apparept that
further investigation into the informationa;l aspect of the problem is necessary.
What is really required is some form of test procedure which reduces
the correlation between (') and the other parameters (especially the initial

condition P ) and produces estimates with smaller variance. Techniques

TC(0)

for designing such an experiment will be discussed in Chapter 7.
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CHAPTER 5

GENERALISED DESCENT METHODS FOR

FUNCTION MINIMISATION
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5.1 Introduction

As we have seen in Chapter 4, an important sub-problem of
System Identification is that of Parameter Estimation. Central to the solution
of this latter problem is the technique of Function Minimisation which in this
context is concerned with finding the set of parameter values which minimise
some distance measure between model and data.

Function Minimisation methods for estimating the parameters of the

homogeneous CO,, gas transport model have already been described by Pearson

2
(234). However, the work at this stage was concerned with a three parameter

miodel ( é . I\./I ) and when the number of parameters was subsequently

Vacy
increased to four, five and then six parameters,' the techniques recommended
in (234) were found to be lacking. That is, they frequently failed to locate a
minimum and sometimes crashed altogether. The reason for failure of these
implementations was found to be almost entirely attributable to rounding error.

| Concurrently with the author becoming involved in this project, new,
numerically stable, Function Minimisation algorithms were beginning to appear
in the literature, following the publication of the work on this topic by Gill et al
(123, 125). These techniques were radically different from anything considered
by Pearson (234) and an investigation of these more recent and efficient téch.niques
was felt to be appfopriate in order to tackle the more complex six parameter 002
gas transport model. Consequently, software was written by the author to
implement these new techniques on the PDP11/45 computer and test these to
assess their suitability for our particular problem. During this phase of the
investigation it became apparent that this software, if configured in a sufficiently
general manner, would be useful, not 6nly in the context of the work described

in this thesis, but in other projects both at the Department of Electronics and

Electrical Engineering and at the Centre for Respiratory Investigation.
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From these ideas the concept of the Function Minimisation package
'MINPAK' was born. A brief overview of this will follow in Section 8 of this
chapter. (The package is described more extensively in Appendix B.) First,
a review of the theory of unconstrained Function Minimisation will be given
in order to describe the rationale behind the new rnumerically stable methods

and in particular, those utilised in the 'MINPAK' package.

5.2 Function Minimisation - Introductory Concepts
The first systematic techniques for the solution of Function
Minimisation problems go back a;s far as calculus. However, the arithmetic
complexity of all but the most simple problems has been such that only with
the coming of the era of the digital computer has their solution become feasible.
Minimisation problems can be split into two types :
@) unconstrained problems in which the parameters are free to
assume any values in parameter space,
(ii) const_:rained problems in which the parameters must lie in
an admissable region in parameter space, e.g. such that
certain functional relationships between the parameters
remain satisfied.
The problem encountered in the work detailed in this thesis falls (or can be
made to fall) into the former category. “

The unconstrained problem can be stated mathematically as

Find B : V (B) =“‘ffi:_t. V(B) 5.1
5t

. N
That is, find the local minimum B of a non-linear scalar function V(f3) of

an m' vector 8 . From the calculus, sufficient conditions for a solution of
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equation 5.1 are:

N

@) 11 g(B)Yt1r =0 5.2

(ii) B H ( E) BT 0 forall B 5.3

VY
where g (B ) isthe nx1 Jacobian gradient vector of 1st partial derivatives

Pa) ~
of V(8 ) with respect to B and H(B) is the ‘symmetric n x n Hessian matrix

of 2nd partial derivatives of V(8 ) with respect to /’3\ « Equation 5.2 implies that
the Euclidean norm of the Jacobian gradignt vectpr at the minimum be zero and
equation 5. 3 that the Hessia.ﬁ at the minimum be positive defihite.

For. most Function Minimisation probierns of interest (e.. g. model
fitting), a closed form solutit;n to the equation 5.1 is unavailable. Computer
algorithms to solve the general unconstrained problem are thus iterative. An
initial estimate B(O) of Ff is assumed and this is successively refined stage
by stage in some manner, which allows the sequence of estimates gen_erafed

{ B (k)} to converge to § . The minimum is deemed to have been located
when some pre-specified criterion of convergence is satisfied, e.g.
[V (B(k) y - v (kD )] or || 8® - BE V| is small. Obvicusly
the main factor characterising an algorithm is how the sequence of estimates
{ B(k)} is generated.
Nearly all the recent numerical algorithms to solve equation 5.1

have been what is termed descent methods : so called because they generate

successive estimates which satisfy the inequality.

v *T)y «y(g® ) 5.4

Methods which satisfy equation 5.4 are also said to be stable .  Inequality

5.4 can be satisfied by modifying 3 &) by the addition of a scalar muitiple

p(k)

of the vector (usually termed a search direction in parameter space)

which meets the condition
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g(k)T p(k) < 0 5.5

(k)

that is, for p satisfying inequality 5.5 and given a sufficiently small

scalar steplength a(k_) , it can be shown ( 300, Chapter 2 ) that

Such a direction of search satisfying inequality 5.5 is said to be downhill ,

Linear search algorithms have been developed to choose a

suitable steplength _oz(k.) + These will be discussed in the next section.

5.3 Linear Search Techniques

(k)

Clearly there are many o

(k)

obvious is to choose &

satisfying inequality 5.5. The most
such that it minimises V ( 8 ) along direction p(k) , Lo

in
r.t. o V(B(k)+ae p(k) ) 5.7

m
A0y (804 00

This was the method used in the earlier descent methods published in the

literature ( 77, 114, 116). As is the case for equation 5.1, no closed form

solution to equation 5.7 exists. However, a necessary condition is :
k k k k o

Although choosing o® such that equation 5.7 is satisfied at each stage
theoretically, guarantees convergence oflthe descent algorithm, investigators
found this to be computationally expensive. More recent numerical evidence
has shown this procedure to be neither necessary nor desirable (92, 125).

All that is required is to choose oz(k) such that V ( B) is sufficiently reduced
(k) k)

along p at each stage. Gill et al (125) recommend choosing ¢ such that
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T T
Ig( g™, & p(k)) p(1<)( < =7 g(k) p(k)

’37 is a scalar parameter in the range [O, 1] fixed in advance determining
the accuracy of the linear search. A small value of 7) will imply a high
accuracy linear search whilst a larger value will imply a low accuracy linear

search. Dixon (92) show that it is necessary to impose another condition on

()

o'’ to render the resultant algorithm theoretically convergent, namely that

it should satisfy : =
T
k)" (k)

(k) “g P . 5.10

VI Lyt s,

(4 is a small positive scalar (= 10-4 typically).

(k) along p(k) (such that

Various techniques for successively refining o
equations 5.7 or 5.9 and 5.10 are satisfied) have been suggested. The procedure
most generally adopted is to approximate V ( B(k) +a p(k) ) ( called F(x) below)

by a polynomial of low order, usually degree two or three. These latter

approximations are known respectively as quadratic and cubic interpolation.

”~
In quadratic interpolation, the stationary point & of the second

order polynomial passing through three points is given by : -

a=3% (0122 - 032) Fl(a)+ (0132 -0112 ) Fz(a)+ (a12 -azz )F3 (@)

5.11
(oz1 -QS)Fl (a)+(az3 -ozl)F2 (oe?-i-(ozl -az)Fg(a')

(k)

where a e,

, @, are the steps along p at which the function is evaluated

3
and Fl (@) , Fz(az) and F3 () are the respective function values.
In cubic interpolation, two function values and two derivatives with
~
respect to « are necessary to define the stationary point. In this case, a is

given ( assuming @ < @, ) by:-
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(gy(@ +v+7M) }

17% ()@ -g @+27) >-12
where v = J("”)2 -gl (a) g, (a)) 5.13
3(F1 (@) 'Fz(“))
and M = W) +gl(a)+g2 (@) 5.14
2 1

This interpolating formula was first derived by Davidon - (77). Practically

ii; is usual to use the above interpolating formulae iteratively. The function
'is evaluated at the new point. @ , and in the next iteration (aésuming the
convergence criteria are not satisfied) the points corresponding to the lowest
function values are used. It may transpire that the new set of points no longer
bracket the minimum. (i.e. extrapolation is required). Here neither formula
5.11 or formulae 5.12, 5.13, 5.14 can be relied upon. In this situation a
linear search algorithm, to be reliable, must be safeguarded to ensure an

a is not predicted far outside the region of valid approximation for the inter-
polating formulae.

In practice, the assumption that the function F(@) is unimodal is also
generally invalid, (Non-unimodality is not just limited to pathological functions
since analytically unimodal functions may be non-unimodal when represented
computationally). It is undesirable for algorithms to fail in this way and thus
practical linear search algorithms must have some provision to deal with such
a possibility. Practical considerations also mean that an empirical choice has
to be made of the points at which the initial function (and derivative ) values
necessary to 'start-up' the algorithm should be evaluated.

From the above discussion it is evident that it is necessary to build
various heuristic devices around the interpolating formulae 5.11 and 5.12,

5.13, 5.14 to create a reliable, practical algorithm. However, it is



- 142 -

inappropriate to discuss these in this introductory treatment. The particular
linear search algorithm used in the MINPAK package is described in

Appendix B .

5.4 Introduction to Descent Methods

Nearly all the descent methods published in the literature are

based on the Taylor series expansion of V ( B ) around the current point.

v(B) = v(B+aB)

= V(B)+g(B) aB+rsapTu(pyapt

+ Higher order terms in 3xrd, 4th , etc. derivatives 5.15

The terms to the right of V(B) on the right hand side of equation 5.15 may

be looked on as a scalar correction to the function value at 3 say, to yield

the function value at the minimum § . Descent methods which truncate this
series at the first term ( i.e. gT A B) are generally known as First Order
Methods. Those truncating the series at the second term (i.e. 34 BTH(B)AB )
are known as Second Order Methods . Methods utilising derivatives of order

higher than two have not been used in practical Function Minimisation techniques.

The basic first order method is called the method of steepest descent.

It calculates the search direction p(k) using the negative of the gradient.
& _ &

Equation 5. 16 represents a locally optimal strategy relative to the current

approximation since this is the direction in which V ( 8 ) decreases most

rapidly. However, in a global context, investigators have found this method to
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be very inefficient in the region of the minimum.
Performance of the steepest descent algorithm can be improved
by suitably transforming the parameters so that equal changes in the parameters

effect equal changes in V(B). Such Parameter Scaling is usually restricted to

linear transformations of the parameters of the form

where D is a constant diagonal matrix and v a vector constant. The precise
nature of the s'éaling-u-sed in the MINPAK package will be discussed later.

The basic second order method is known as the Newton-Ralphson or

Newton method. In this method successive search directions are generated
using the following formula.

P = - w0 5.18

For a quadratic function the second order increment is exact since H does not
depend on B . Therefore, theoretically, the Newton method will minimise a
quadratic function in one step. The ability of a minimisation method to yield
the minimum of an a:;bitrary quadratic function in a finite number of steps 'n '

is known variously in the literature as quadratic convergence, quadratic

termination or following Fletcher (111), Property Qn. Thus, according to
Fletcher's terminology, the Newton method possesses property Ql. For non-
quadratic functions the second order increment will not be exact, although as
the minimum is neéred and terms involving third and higher order derivatives
become small, V(B) for well-behaved functions will become more amenable to
approximation by a 'quadratic model’.

There are two main disadvantages which have been levelled at the

Newton method.
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(1) It requires the Hessian matrix to be known and inverted at
each iteration - this can be a time consuming and frequently
numerically unstable process.

(ii) In order for the Newton algorithm to be stable (in the sense
defined by inequality 5.4) it is necessary that the Hessian
matrix H be positive definite at each iteration - there is no
guarantee this will be true for arbitrary general functions

when H is evaluated at a point other than the minimum,

Due to the a;bove' deficiencies the Newton method has nowadays been 1érgé1y
superceded by a method originally due to Davidon (76) and since generalised
into a class of methods by Broyden (50). These methods are known as Variable
Metric or Quasi-Newton methods and have been proved considefably superior
to all other general methods for unconstrained Function Minimisation. Since
it is a particular implementation of these methods which has been used in the

MINPAK package, these methods will now be discussed in some detail.

5.5 Quasi-Newton Methods

The requirement of the Newton algorithm that the Hessian be evaluated
explicitly at e.ach iteration is obviously a hinderance in practical computational
problems. It would be far more useful if an algorithm could be found which,
whilst still effectively utilising the properties of the second order increment,

did not require explicit second derivative information. In addition, it is also
essential that such an algorithm be stable. |

The first algorithm fulfilling these requirements was that due to
Davidon (76), but it awaited the defi1_1itive presentation of Fletcher and Powell

(114) before receiving widespread recognition. For this reason the algorithm
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is generally known as the Davidon - Fletcher -Powell (DFP) method. This method,

instead of explicitly evaluating and inverting the Hessian at each iteration as in

the Newton method, adopts a strategy of generating an approximation to the

inverse Hessian and successively updating it over a number of iterations
utilising only gradient information.
The algorithm is such that the approximation matrix S tends to Hnl
at the minimum and possesses property Qn. In addition Fletcher and Powell (114)
- show that, provided' the initial approximation matrix S(o) is chosen positive
' definite, .theorétically the method is unconditionally stai:le under exact linear |

(k)

search (i.e. si:eplength o

chosen according to equation 5.7).

The iterative scheme for choosing search vectors is

(k) k) (k)

Pon = "5 & 5.19

$®

being the approximation to the inverse Hessian at the kth iteration
(compare with equation 5.18). Obviously the method is highly dependent on
the algorithm used to update S at each iteration. In the DFP algorithm S(k)

is updated at each stage by the addition of a correction matrix of rank two.

k1) | ()

+ c® 5.20

(k)

where C is a specified matrix of rank two. It transpires that the DFP

modification is not unicjue, as noticed by Broyden (50). In fact, the DFP update
is only one member of a class of symmetric updating formulae which ensure

(k) -1(k)

that some properties of S approximate those of H at each iteration
and exhibit property Qn with exact linear search. This class of methods is

known as Variable Metric or more frequently Quasi-Newton methods (83). The

key unifying factor between these methods is that they satisfy the following equation.
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skt lerl) | 00y @(k’rl) - g% 5.21

This formula is referred to as either the Hereditary Propexrty (1) or the

Quasi-Newton Condition (213). For smail || B(k+ 1. B(k)l\ this formula
“1(k+1)

can be interpreted as the backward finite difference formula for H

() s+ g

along p , thus ensuring that at least along this direction,

some similarity to H-l (k+1) . This makes the 'Quasi-Newton’' interpretation
self evident.

For the DFP method the correction matrix C is computed as

follows

(k) &), (KT k) (k) (KT (k)T
c _ bbb 4 Sy Uys 5.922
DFP x0T y(1<) y(k)T g y(k)
where b(k) = B(k+ D B(k) 5.23
and ' y(k) - g(1<+1) _g(k) 5.94

The first term on the right-hand-side of equation 5.22 is that which ensures
that the generated sequence of approximation matrices tends to I—I“l and the
second term is that which ensures stability.

The theory of the quadratic termination properties (i.e. property
Qn) of the DFP update depends critically on an exact linear search (114). As
has been discussed in Section 5.3, exact linear search is computationally
expensive. Thus in the late 1960's investigators (e.g. Broyden (51) ) began
to look around for an updating formula which did not depend quite so critically

on an exact linear search. This resulted in the following.
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© 8 g0 0y 0 g0 T

C
RK1

5.25

This update is known as th'e Rank-One update since the correction to the
approximating matrix is of single rank. Davidon (77) and Murtagh and
Sargent (215) have constructed algorithms based on equation 5.25. However,
an unfortunate aspect of this update is that stability cannot be guaranteed.

In 1970, still seeking an algorithm less sensitive to the accuracy
of linear search than the DFP update, .Fletcﬁer (112) proposed ﬂle following

updating formula.

C(;%GS _ - plO )T (k) ) gk y(k) p®T
T eT® LT 00
&)T (k) _(k) k) k)T
+ (14 ¥ STV, pUST 5.26
ST L0 SIT 0

The same updating formula was also discovered at the same time, independently,
by Broyden (52, 53), Goldfarb (130) and Shanno (258). It is thus known as

the Broyden-~Fletcher -Goldfarb-Shanno (BFGS) or Complementary DFP update.

The latter term stems from the property of this update that if H-l say is
updated using the BFGS formula, this corresponds to using the DFP formula
to update H itself . (This result can be pkoved by applying the Matrix Inversion
Lamma (300, Appendix F ) to equation 5.26 . ) Hence the DFP and BFGS updates
may be considered duals in this sense.

Although the DFP and BFGS updates can be shown to be theoretically

0

stable provided the initial approximation matrix S is chosen positive definite,
this , as was found by investigators (e.g. (31) ), was not always borne out in

practice due to rounding erroxr. This was in fact the problem with earlier
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applications of Quasi-Newton methods to the (302 gas exchange model
estimation, as discussed in Section 5.1.

Various 'ad hoc' strategies have been suggested to overcome
this problem (204a). However, these have been such that much good
information built up in the approximating matrix is lost along with the bad
when the 'ad hoc' adjustment to S is made.

The first really efficient method suggested to overcome the adverse
affects of rounding error was that of Gill et al ( 123, 125 ), as was referred to

in Section 1. This will, therefore, be described in the succeeding section.

5.6 Factorised Quasi-Newton Methods

Methods based on the approach outlined by Gill et al (123, 125) have

come to be called Factorised Quasi-Newton methods. In contrast to traditional

Quasi-Newton implementations these methods update a positive definite
approximation to the Hessian itself rather than an approximation to the inverse
Hessian. The search direction is then calculated by solving the set of linear

equations defined by

& _ _ & !
B pQN = g 5.27

B(k) being the approximation to the Hessian at the kth iteration. Gill and

Murray (123) show that B(k) can be recurred in factorised form, i.e.

p®) - L& pld) [ET 5.28

(k)

where L(k) , a unit lower triangular matrix, and D

are the Cholesky Factors (297). Given B(k) in this form, equation 5,27 can be

(k)

, a diagonal matrix

quickly and efficiently solved for p uéing successive forward and backward
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substitution (297).
(k)

The reason for recurring B in factorised form is that one can
make use of the highly stable numerical methods based on triangular systems
to update the matrix factors L and D . These methods can be made to

guarantee positive definiteness of the updated matrix B(k+ L)

» lrrespective
of incurred rounding error. In addition, in the event of a near singular B(k) '
this positive definiteness is maintained in a 'minimal’' manner, i.e. so that
the least amount of information built up in B(k) from previous iterations is
lost. |

By ap‘)plying the Matrix In;version Lemma (300, Appendix F )toa
rank two or rank one correction for H-l (e.g. equations 5.22, 525 or 5.26)

it can be shown (123) that the corresponding correction for H can be written

in the form

DL 50 4 g SO0, 0 0T 5.29

(x)

where the scalars Wl » T, and the vectors z" ' and w &) are chosen to

2
satisfy tl_ae Quasi-Newton update being used. Particular values for the DFP,
RK; and BFGS updates are given in Appendix F.

Having expressed the Quasi-Newton updating formula in the form
given by equation 5.29, the next requirement is to be able to recur B(k) in
factorised form without explicitly carrying out a Cholesky Factorisation at
each stage. Gill and Murray, in their original paper (123) give two methods
of doing this based on the addition of a symmetric matrix of rank one. (It is
thus necessary to carxry out their recommended procedures twice for Rank-Two
Quasi-Newton updates). One of these methods, referred to in (123) as Method

A, will be outlined below since this is the one which has been implemented

by the author in the MINPAK package.
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Consider the update

7
B =B+ 6 2z% 5. 30

where B is available in factorised form as L D LT and it is required to
!
obtain the updated matrix B in the same form. After some manipulation,

equation 5.30 can be written as
4

1 1
B'=L DZaaD?LT 5.31

The idea underlying this method is now to successively reduce the matrix A
to lower triangular form by orthogonal friangula'risation (297). This involves
successively post-multiplying A by a series of elementary Hermetian matrices

W such that we get

N
L =AW1W2 es e Wn'l 5-32

Pal
in'n - 1' multiplications, where L is lower triangular. Thus we now have

7 lAanAa 1
B=LDLL pZLT 5.33
it can be shown that
A 1
D2, = LD ?Z2 5. 34
’ L 1
where D? = yD2 5.35

v is also a diagonal matrix. Combining equations 5.33, 534 and 5. 35 we then
get

fa "l '~
B=LILD LT LT 5.36

Since the product of two lower triangular matrices is also lower triangular the

. /
required updated triangular matrix L is obtained in.this manner.
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5.7 Modifications of Quasi-Newton Methods to Accept Finite
Difference Gradient Modifications

So far it has been assumed that the analytical gradients are
explicitly available in Quasi-Newton methods. However, finite difference
gradient approximations may also be used in Quasi-Newton algorithms
provided care is exercised in exactly how this is done (since as the minimum
is approached {l g |\ tends to zero ).

The two most common finite difference formulae used are fomard

differences and central differences. In forward diffe:ences the ith element of

the gradient vector is approximated : -

’AV(B) V(B+hie].)"V(B)

5.37
38, h,
The analagous expression for central differences is:-
3V (B) V(B+h e)-V(B-he)
- = 5.38
3B, 2h

where € is the unit vector along the ith co-ordinate direction and h i is the
scalar perturbation along this direction. The first formula requires less
function evaluations whilst the second is more accurate.

The biggest dilemma in using finite difference gradient approximations
lies in the choice of an appropriate scalar perturbation parameter hi .
The analyst is faced with the competing requirements of high accuracy and low
cancellation error. If hi is too large the truncation error in the difference
approximation is large and hence the gradient is inaccurate. Alternatively, if
hi is made too small, the cancellation error becomes large and the error in

updating S(k) (or B(k) ) becomes unacceptable.
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Early attempts to utilise finite difference derivatives in Quasi-
Newton methods exacerbated the tendencies of thesé algorithms at the timeu
towards instability. Stewart (267) sought to overcome this by choosing h(k)
( a vector of perturbations along each parameter direction) at each stage to
balance truncation error against rounding error. The algorithm however is
complicated. Gill and Murrf;ty (123) argueagainst Stewart' s technique and show that
maintaining a constant perturbation in the finite difference approximations at
each stage is a more favourable strategy. Provided the problem has been:
suitably scaled, they recommend an 'hi “in the r;a'nge |

~2/3¢ t/2

2 &% b K 2 5.39

where 't' is the number of binary digits in the mantissa of the machine used.

In the MINPAK package an hi equal to 2° t/2 is used.

5.8 The MINPAK Package for Unconstrained Function Minimisation
-~ Main Features and Organisation

This section describes the PDP-11 Interactive Package fo'r
unconstrained Function Minimisation, MINPAK, written by the author.
This software was written in response to the needs identified in the introductory
section of this chapter. These needs, it was felt, would be best served by the
creation of a package rather than a ‘one-off' programme.

The algorithms inherent in this package are based on the
Factorised Quasi-Newton algorithms due to Gill et al (123, 125). At the time
these algorithms were required for use in the project described in this thesis,
a suitable software implementation of these was not readily available.

MINPAK has been written in modular form. It is mainly Fortran

based and has been implemented to run in either single or double precision
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on a DEC PDP11 under both the RT-11 and RSX ~11M operating systems.
Although the package utilises highly sophisticated algorithms, it has been
written in such a manner as to make it easily usable by a relative layman

in the area of Function Minimisation algorithms. In fact, the only assumptions
made of prospective users are that they should be able to code a Fortran
subroutine to evaluate their chosen function to be minimised for any set of
input parameter values  and compile this under the host PDP-11 operating
system. Other system tasks such as linking the compiled routine to the rest
of fhe package are made invisible to the user by the package ‘iterative link’
which utilises the indirec;t commanq file facility available under‘the DEC RT-11
Version 3 and RSX ~11 M operating system.

The package provides the interactive framework within which the
users routine can be run. The user is thus freed from the task of writing
routiﬁes to input starting parameter values, etc., and also routines to output
the progress of the minimisation. Qutput is available in short print or
optionally fuil print‘ diagnostic format. The package allows the user the choice
of three Quasi-Newton updating formulae - BFGS, RK1 or DFP, This is
specified by the user during the interactive link. The package also provides
a facility whereby data may be preprocessed prior to input to. the minimisation
algorithm. It does this by allowing the insertion of a user specific data pre-
processing routine into the created programme during the interactive link. If
this facility is not required, a dummy subroutine is inserted into the programme.
This feature is useful for setting up user specific random access disc data file
assignments, etc. for use by the users function evaluation routine.

As mentioned in Section 5.4, relative scaling of the parameters is

a very important practical consideration in Function Minimisation problems.
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In MINPAK, a form of scaling known as range-scaling is used which is a
special case of equation 5.17. The scaled parameters are defined by : -
B-Bmm

Bsc = E————- 5.40

max -8 min

where Bmax is a vector of maximum parameters likely to be encountered
and B min & vector of minimum parameter values. Range-scaling has the
effect of normalising the parameters. Since in practical problems ill-
conditioning is mostly due to certain parameters being vastly different in
magnitude, this form of scaling is generally helpful, although better scaling
can be obtained from a knowledge of the diagonal elements of the Héssian
at the minimum. Range-scaling, however, has the advantage of being less
complex, i.e. all it requires of the user is the minimum and maximum
parameters likely to be encountered in order to scale the problem reasonably.
This concludes discussion on MINPAK in the main body of this
thesis. The package is discussed in much more detail and an indication of

its performance on analytic test functions is presented, in Appendix B.

5.9 The GMOPT Programme for Estimating the Parameters of
The (JO2 Gas Exchange Model

This section describes the key computational step in estimating
the parameters of the CO2 gas exchange model as described in Chapter 3. -
the GMOPT programme. GMOPT consists basically of the MINPAK software
together with application ~ specific routines written for function evaluation

in the gas exchange model context.
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The data preprocessing routine for GMOPT performs application
orientated input and data file initialisation. It then reads in the first data
block of the file, which is a 'header’ block containing information passed by
the programme PRODAT (see Chapter 3, Section 4), into the appropriate
FORTRAN COMMON region for later use by the function evaluation routine.
Finally, it carries out a pass of the data proper calculating four end-tidal
markers for each breath in the file, which are again stored in COMMON.
These markers are the sample numbers corresponding to the beginning and
'eildAof the model and data end-tidal regidns over Whiéh model/ data compaﬁson
is carried out (see Chapter 3, Section 3). This is done at this stage for
efficiency purposes to avoid the unnecessary generation of this information
at each function evaluation.

Function evaluation itself, in the context of this problem, is much
more computer intensive than the trivial analytical example used to illustrate
the MINPAK package in Appendix B. That is, it implicitly involves solution of
the model equations 3.8 - 3. 11 for the given set of parameters and using the
true measured ventilation and PCO2 as stored on the patient data file at each
sampling instant. These equations are solved by Euler's method (numerical
first order integration) using an integration step of 0.033 secs. For an
experiment of two minutes duration this integration step corresponds to 3,600
data points, which means the numerical difference equations must be updated
correspondingly 3,600 times. These equations must, therefore, be effiéient
and for this reason, in the operational version of GMOPT, have been coded
in PDP-11 Assembly Language.

Memory limitations on the PDP~11/45 preclude all the data being

permanently core resident during the minimisation procedure. Thus the
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model equations must be solved, and the calculation necessary to effect the
model/data comparison car'ried‘out, for one block of data before the
next can be read in from disc. This also adds to the time necessary to
complete a function evaluation since using FORTRAN level random access
disc read statements, the PDP-11 Central Processor Unit (C.P.U.) is doing
no useful work whilst the reading operation is being carried out. This situation
can be overcome by taking advantage of the parallel transfer 'capabilities of
the PDP-11 data bus. Utilising this facility, machine language level 'double-
buffefing; disc reading routines have been ;,vritten which allow the idle time
of the C.P.U,, whilst executing GMOPT, to be cut down.

The timings below for a function evaluation using one of the
validation files gives some indication of the speed improvement effect from
using machine language implementation of the time sensitive GMOPT programme

sections :

Implementation Time for One Function Evaluation
(secs.)
(i) ALL FORTRAN _ %.0
(ii) DOUBLE BUFFER READS +

MACHINE LANGUAGE
IMPLEMENTATION OF
MODEL EQUATIONS

5.8

For the complete estimation process the time saving using the machine
language routines will be between 5 and 15 minutes.

By numerical experiment it has been found the most efficient
value to use for the linear search termination criterion parameter 7) (see
equation 4, Appendix B ) is 0.2 , Similarly, 1.0 has been found to be the

best initial steplength to input to the linear search algorithm (see Appendix B.2).
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For range-scaling purposes reasonable physiological maximum and minimum
values of the parameters were chosen as in Table 5.1. Finally, a print out
from the minimisation procedure involving a four parameter model (for a
ninety second experiment data file ( RPO 141.PRO) is shown in Table 5.2.

This tells a typical tale in terms of the progress of the minimisation procedure
on the validation data.. The re'gion of the minimum in parameter space is
reached fairly quiqkly. After this, however, progress is slow and it can be
seen how quite large changes in the modei parameter values change the
criterion function very litﬁe, i.e. the hypersu:fface in parameter space is very
flat. This is symptomatic of these short experiment datasets and further
reinforces the contentions made in Chapter 4. Sections 8 and 9 concerning

the poor informational nature of such experiments and the need for a more

enlightened form of test signal in future trials.
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TABLE 5.1

RANGE-SCALING IN THE GMOPT PROGRAMME

Parametér ' Min.imum Value ‘ Miximum Value
Cardiac output (Q ) 2.0L/M 9.0L/M -
Lung volume (VA(O)) 1L 1L
Metabolic production ( I:/I ) 0. 1,L/M 0.5 L/M
Tissue volume (VT_C ) 1L 11L
Init?ir?iﬁ??eisure (P, ©) ) 20 mm.Hg 50 mm.Hg.
Initial Tissue 30 mm.Hg 60 mm. Hg.

partial pressure ( PTC ) )
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-CHAPTER 6

MINIMISATION METHODS FOR FUNCTIONS

INVOLVING SUMS OF SQUARES
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6.1 Introduction

In Chapter 5 generalised methods for Function Minimisation
were discussed and in particular, the application of the Quasi-Newton methods
for estimating the parameters of the 002 gas transport model. - Generalised
methods are characterised by the fact that they do not depend on structural
knowledge of the function being minimised and therefore are applicable, in
theory at least, to any form of problem. The reason for the use of such
methods in the cardiac output projec.t was primarily historical. In the earlier
period of tile research differing forms of function were used to indicate |
'gr')odness of fit' between model and data ( 2.34, Ch. 5) and use of generalised
methods was necessary to cope with this.
More recently, however, criterion functions used have tended to be
of the sums of squares form, i.e.
m
Ve = S (e (B) ) 6.1
i=1
In the literature specific function minimisation techniques have evolved to
solve problems of this form which fully exploit their speciél structure. These

are known as non-linear least squares methods.

In the context of the work described in this thesis, use of least
squares techniques have potentially two advantages over generalised methods : -
(1) Since use of non-linear least squares methods generally involves

explicit evaluation of the parameter sensitivity matrix X at

each stage, all the important diagnostic information on the

adequacy of fit of the estimated model ( see Chapter 4) is

available directly from the: results of the minimisation

process.
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2) They are apt to be faster (which is an important consideration
in view of the envisaged use of longer experiments (therefore
entailing longer data sets) in the cardiac output procedure

(see Chapter 7 ) ).

It was considerations such as these which led to the investigation and
implementation by the author of one particular non-linear least squares

method (124) for estimating the pararileters of the .002 gas transport model.
Theoretically, this method seems to overcome most of the tradiﬁonal problems
normally associated ;Nith earlier least squares techniques although itappears
largely untested on real data-fitting problems. Before discussing this method
however, it is appropriate to give a brief introduction to the non-linear least

squares function minimisation problem.

6.2 Non-Linear Least Squares Function Minimisation - Introductory

Concepts

For the special form of function given by equation 6. 1, the gradient
vector g () and the Hessian matrix H ( 8) can be written as :

2%XT (B)e(B) 6.2

g(B)
H(B)

2(XT(B)YX (B)+B(B)) 6.3

where X (B ) is the m x n Jacobian or sensitivity matrix, e () the vector

of residuals and

m

B(B) = == & (B)H(B) 6.4

i=1
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Hi (B) is the Hessian matrix of e (B).

Recall from Chapter 5 that in Newton's method for Function
Minimisation the search vector pN( B ) can be given by the solution of the
equation

= - g® 6.5

In a least squares context, this can be written (using equations 6.2 and 6.3 )

as

(xT® x©4p0hp = -xTO O 6.6

H(k) it is necessary to evaluate m x n 1lst partial derivatives

To compute
and in addition, mn(n+ 1) 2nd. partial derivatives. Therefore, in t.his
form, Newton's method for sums of squares is still computationally expensive;
However, 1f the problem is a data fitting pfoblem, as in our application, then
by implication, the residuals e should be small otherwise the solution is of
no value. Thus \| B\  will be small compared to \\ xT x i and

under such circumstances XT X appears an adeguate approximationto H.

This approximation forms the basis of the Gauss-Newton (Newton-Gauss,

Gauss or Quasi-Linearisation) method. In this method the search direction
pGN is calculated from the equation

(xTOx® ) p O xT6 6.7

For genuine 'small-residual' problems the Gauss-Newton method will
ultimately converge at the same rate as Newton's method despite the fact

it utilises only lst derivative information. In the true Gauss-Newton method,
the parameter vector is updated at e;ch iteration using a l;nit step in the

direction of search, i.e.
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plet D) _ g ) () 6.8

(k)

where « is 1. Such an increment, however, may predict a solution
outside the range of valid 1st order approximation. By choosing a stepsize
less than unit.y (either fixed in advance or calculated using a unidimensional
search algorithm such as those described in Section 3 of Chapter 5 ). The
domain of convergence may be increased (152).

.Allthough this 'damped least squares' method is more reliable
than the original Gauss-Newton'method, it still cannot be regarded as
sati:sfactory for realistic problems. For instance,» if at some iteration,'-the
sensitivitjé matrix X is‘ rank deficient, then H(k) v;ill be singular and

LY (k)

consequently p
k) (k
( )p( )

will be undefined. Alternatively p may well be defined

but g may be zero and thus a downhill step will be impossible. In

either event, the method would fail.
The latter situation, at least, may be avoided by determining a

direction of search which lies between péﬁ) and - g(k) (analagous to the

Quasi-Newton methods for generalised problems).

Such a strategy, in a least squares context, was proposed by

(k)

Levenberg (183). He advocated updating p using the equation

TO L ®, A®, ® _ _ TO ©

(X + I)p 6.9

where I is the identity. By choosing \ (k) small in the above equation

(k)

d (k)

tends to a step in the Gauss-Newton direction, whilst for large )\ (k) P
tends to a step in the direction of steepest descent. Thus in this scheme p'(k)
can always be made downhill bf choosing h(k) sufficiently large. Improvements
to the original Levenberg method ( 1483) have been proposed by Maraquandt (203)

and more recently by Fletcher (113) and Meyer and Roth (207).
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Computational experience with the non-linear least squares methods
discussed so far (and especially the later refined variants of Levenberg's
algorithm (183))have shown that if these methods are going to converge, they
will do so rapidly., However, they do rely heavily on the Gauss-Newton

TK) 5 &) e

approximation, i.e. the assumption that X is similar to . If

(k)

this is not so, i.e. either X is near singular or || e(k) | islarge, these
techniques may give negligible improvement in performance in comparison with
the generalised Function Minimisation methods discussed in Chapter 5.

In the cardiac output estimation data, it is not ingonceivable that
such a condition may arise and‘ it is necessary to be able to cater for this.- In
the context of leasi‘: squares Gauss-Newton algorithms what is required is ‘the
ability to incorporate second derivative information into the algorithm in the
least computationally expensive way (i.e. knowledge of the B matrix in equation
6.6) whilst retaining the basic Gauss-Newton structure where this is relevant.

Such a method has in fact recently been published in the literature (124) and

is discussed in the next section.

6.3 Gill and Murray's Non-Linear Least Squares Method

Gill and Murray's algorithm (124) is based on the singular value

decomposition of the sensitivity matrix X (297). This allows X to be
factorised in the form

X=USVT 6.10

U is an m X n matrix consisting of the first 'n' orthonormalised eigenvectors
of X XT (an m x m matrix ), V consists of the orthonormalised eigenvectors
of XT X and S is a diagnonal matrix consisting of the non-negative square

roots of the eigenvalues of XT X . These are called the singular values and
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can be arranged in descending order (i.e. S ;< 5; , i=1, n)
without loss of generality by appropriate row and column ordering of U
and V . Such an ordering is assumed here. Using this decomposition,

the Gauss-Newton direction can be computed as

-1..T

(The inversion of S is trivial since it is a diagonal matrix ). Alternatively,
the Newton step (corresponding to equation 6.6) can be computed by solving
the following éystem of equations. )

T T

(s2+viBV) z= -s Ul e 6.12

(z. in equation 6.12 is obtained via Cholesky factorisation (L DL T ) of
82 + VT BV followed by successive forward or backward substitution).
As the basis of a practical minimisation aigorithm for least squares problems
this scheme is unsatisfactory on two counts :
(1) 82 + VT B V will generally be ill -conditioned
hence causing numerical problems.
2) The scheme effectively ignores the least squares
structure of the problem.
However, suitably modified, equations 6.12 and 6. 13 provide the basis of a
radically new algorithm for non-linear least squares problems. An important
property of the new algorithm is that the Gauss-Newton direction PaN is
obtained as an intermediate product in the computation of PN which thus
provides a natural way in which the Gauss-Newton step may be 'enhanced’

if necessary.

The basic idea is to compute pN as a sum of two components :
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p.N = pl+ P'z 6.14

p 1 is calculated in the subspace spanned by the columns of V corresponding

to the larger singular values and Dy is calculated in the subspace corresponding
to the smaller ones. Since the singular values are assumed arranged in S

in descending order, this means partitioning S such that

S

2 diag (Sl’SZ’SS"""'Sr ) 6.15

5

diag (S S

r+1’ Sr+2,0.0.ooo n )‘

Gill a.-nd Mﬁrray (124) define 'r' as the gr'ade of the matrix X . This -
partitioning of S implies a corxespoﬁding partitioningof U and V .
Applying this partitioning to equations 6.12 and 6. 13 results in two coupled
systems of linear equations which must be solved iteratively. However,
utilising an approximation to this Gill and Murray (124) show that Py may be

calculated by solving the following set of equations.

P = -V, silurlre 6.17

& +Vy BV, y=-50Te-vTBp 6.18

p2 = sz 6.19

Pﬁ = Pl+ P2 6.20
T T

In contrast to (SZ+ V'BV), (822 + \}2 B V2 ) in equation 6.18 is

not ill-conditioned since, by implication it does not contain the larger singular
values of S . Equation 6. i8 can therefore be efficiently solved for y using
LDLT factorisation methods. ( Should ( s22 + V2T BV ) be indefinite,
modified Cholesky factorisation ( 123a) may be used ).

Note that in equation 6. 17 if the grade 'r' of V is equal to its

rank 'n' then P_ is synonymouswith the Gauss~Newton direction p as
1 GN
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defined in equation 6.11. When the grade of X is less than 'n' p 1 is termed
the graded Gauss-Newton direction. It can be thought of as the Gauss-Newton

direction in the space spanned by V. . By extending this argument p, can be

1
thought of as the correction to the graded G-N direction required to ensure
convergence where H is dissimilar to XTX . Thus by this mechanism,
second derivative information is incoxporated into the Gauss-Newton algorithm
where appropriate.

In the Gill ~Murray method (124) the Gauss-Newton step is used

(i.e. equation 6,17 which is equivalent to equation 6.11 far 'r' equal to 'n' )

until the progress of the algorithm falters. At this stage a corrected graded

Gauss-Newton step ( r less than n ) is taken.
The rules recommended by Gill and Murray for grade changing are
as follows :~
(1) The first-time the decrease in function valu;e falls below 1%
reduce the grade 'r' so that the condition numbers of S 1 a}1d
82 are approximately balanced.
2) ~After this, each time the decrease in function value falls
below 1% reduce the grade by 1.
3) Should the reduction in function value subsequently become

greater than 10% again, increase the grade to 'n’', i.e.

revert to the original G-N step.

For the Gill-Murray scheme, knowledge of the matrix B is required. If
second derivatives are available, these can be used explicitly. However,

in our partim’Jlar situation where formulating the gradients is costly enough
(since this involves the solution of a co-system of differential equations) this
approach is not viable. Thus second derivative information is obtained via

finite differences. This is best done in the context of this particular algorithm
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as follows : -

Defining an (n - r ) matrix Y as

v = v, 5% 6.21
andan (n -r)x (n -r ) matrix Q as
then equation 6. 18 can then be written as
2 T
(8, + Q)y = -8, Uy  e-¥Yp, 6.23

' Finite difference approximations to.Y gnd hence Q can be calculated by
differencing the sensitivity matrix X along the columns of V2 . Partitioning
V2 by columns (there will be n ~ r of these), and Y by rows, utilising the
first column of V2 (V 1 say ), a finite difference approximation to the ﬁrst
rowof Y (yl) is:

y1=V1TB(k)= POTL x (g®4 hvl)-X(B(k)] 6.24
h

where h is the interval for differencing and is chosen as discussed in
Section 7 of Chapter 5.

Since the grade 'r' of the sensitivity matrix X is rarely
significantly less than the rank of X, 'n', ( since it is generally equal to the
number of dominant singular values of S ), this implies that the (n -t )
gradient evaluations taken to compute Y and Q are generally few in number.

Software has been written by the author to implement the algorithm
outlined in principle above. This software is similar in spirit to the' MINPAK
package discussed in the previous chapter and in Appendix B, and has been
written in the same structured forrnflt. Collectively this software constitutes
the NLSPAK package, intended for non-linear least squares probiems, and is

described in detail in Appendix C.
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6.4 The NOLLS Programme for Estimating the Parameters of the CO
Gas Transport Model using the Non-Linear Least Squares Algorithm

The 'ad hoc' criterion suggested in Chapter 3 for model/data
comparison is effectively a least squares criterion, as discussed in Chapter 4,
and is thus amenable to minimisation by non-linear least squares methods.
This approach requires that the sensitivity matrix X be explicitly available.
Computing analytical sensitivity information involves the solution of an
additional cosystem of ' 1 ' differential/difference equations for each parameter
sensitivity sought in addition to the '1 ' model equations which it is already
necessary to solve in order to compute the mod‘ei output (281). Since in our
application we have two model 'state' équations, the solution of the complete
sensitivity cosystem for e.g. the six parameter model requires the numerical
solution of an extra twelve simultaneous difference equations. Fortunately,
the sets of sensitivity equations for the different parameters are of similar
form and differ only in the 'coupling term' through which each sensitivity
equation is dependent on the model state equations, there being no interaction

~among the sensitivity equations for the different parameters.

By differentiating the model equations 3. 8 and 3. 9 with respect to
a parameter ( B say ) sensitivity equations of the following form are obtained

(in both the 4,5 and 6 parameter case).

x*
PEERY N .;PI QPA . APTC ,}PA
Va g (38 =S5 "3 )Y (35 T3P )+C (B)
6.25
a ro . dPpo 3Py
bVoo & (y5) = - Qb (TB_'W)J’ C, (B) 6.26

where C 1 (B)and 02 (B ) are the coupling terms with the state equations
appropriate to the particular parameter 8 .

The full equations for each parameter Q, V A M, VTC , P AQQ)
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PTC ©) ( containing the specific coupling terms C 1 and C2 and the 11_11—t1»§11
conditions for the 4, 5 and 6 parameter model) are detailed in Appendix D.
Py ¥ ‘ *
The term BY: in equation 6.25 is analagous to the PI term

in the model state equation 3. 8 and takes a value dependent on the phase of
the breath ( see equation 3.11 ). Over the first deadspace of inspiration the
*»
term %%-[ takes the value of the flow-weighted mean of that particular
model sensitivity over the last deadspace of the previous expiration (analagously
to equation 2. 35a.)
| | These sensitivity equations are iﬁtegrated ﬁmnéf‘ically using Eulers
method as is done for the model equati;'ms ir; Chapter 5.
To compute the elements of the sensitivity matrix X we actually

require the sensitivities of the flow-weighted model output Ymi (= P O2

in equation 3.6). Therefore the elements of X must be calculated from
the point by point model sensitivities %lj--g; over the model end-tidal region
in a manner similar to equation 3.6. A listing of the 'RUN" subroutine which
mechanises the above calculations is given in Appendix G.

From this listing it is evident that the function evaluation routine
in NOLLS incurs substantially greater computational overhead than that for
the GMOPT programme. The times for a single execution of each routine
on a 2 minute file (using a 4 parameter model) are as follows : -

(1) GMOPT - 5.8 secs.

2) NOLLS =~ 28.1 secs.

However, it has to be remembered in the latter case, gradient information
is also being computed in the one pass of the data. Using equation C. 8,
which defines a fairer index of computational labour (300), we find that the

time taken for GMOPT to compute similar information to NOLLS would be
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29.0 secs. i.e. longer than NOLLS. Thus NOLLS is slightly more efficient
in this respect and could be made more so by programming the difference
equation solution code ( SUBROUTINE MODELL -See Appendix G ) in machine

language as is done for GMOPT.

6.5 Incorporation of Scaling and Simple Constraint Handling into
the NOLLS Programme

The use_' of range-scaling in the GMOPT programme, although
adequate, was not entirely satisfactéry. It was thus déci\de.d to further
investigate this scaling problem in the context of the non-linear least squares
algorithm to ascertain if any improvement could be affected.

On 'poor' data the condition number of the Hessian matrix H is

large and this tends to make the angle of descent 8 (i.e. the angle between

the search vector p and gradient vector g ) almost orthogonal. This
causes problems in descent algorithms. The aim of scaling therefore is to
reduce the condition number of H such that 8 becomes small.

In the non-linear least squares case, the condition number of H
is invariably réﬂected in that of XT X. This can be conveniently examined in
the case of the Gill-Murray algorithm (124) by examination of the singular
values S computed in the singular value decomposition of X sincethese
are the non-negative square roots of the eigen values of XT X .

For the case of a typical validation file ( VAL 252, TST) and a
four parameter model the unscaled condition number of XT X was found to
be greater than 109 , and the angle of descent 6 greater than 89. 5° . For
the same case using range scaling (with scaling factors as in Table 5. 1) the

corresponding condition number was only reduced to the order of 10° which is
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disappointing.

It transpires that a better form of parameter scaling may be
obtained for our particular problem by utilising the sensitivi;cy information
provided by the non-linear least squares algorithm. Since the Gauss-Newton

step is given by :«

-l .
p= - LxTx]| g 6.27

it is clear that the required diagonal.parameter transformation matrix X
(see equation 5. 17) should be such that it results in a diagonal transformation

-1
matrix Dl in [XT X] such that

[x* x] ; - p,[x"x] QN 6.28

Thus a diagonal matrix D 1 is required which is sufficiently similar to

XT X . A reasonable choice is to make D 1 equal to the diagonal elements

of XTX « The corresponding D which would result in such a Dl is

therefore defined by

(&2l

T
d = (-r;l-—) 6.29

where 'mﬂ' is the i, ith element of XTX and 'm’ is the number of
observations in the experiment. This scaling factor can be thought of as a
sort of'root mean square sensitivity’ for the whole experiment.

On the basis of examination of a large number of data sets, both
from the 2 min validation experiments and the longer form of experiments
to be discussed in Chapter 7, the scale factors chosen for NOLLS ( on the basis
of equation 6.29) were as shown in Table 6. 1.

Using this form of scaling the condition number of XT X for the
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TABLE 6.1

PARAMETER SCALING IN THE NOLLS PROGRAMME

Parameter

Cardiac Qutput ( (.Q )

Lung Volume (V A )

(0)

Metabolic Production { M )

Tissue Volume ( VTC )

Initial Alveolar

Partial Pressure ( P A(0) )

Initial Tissue
Partial Pressure (P

TC(0) ) ‘

Scaling Factor d,
A

0.5
0 33
0.05
0.1

0.1

0.1
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problem discussed earlier was reduced to of the order of 100 which was a
considerable improvement over the range scaling case.

During preliminaxry numerical experiments on the validation files
the least squares algorithm was found to fail frequently on ill-conditioned files
in early iterations. Closer investigations found this to be due to large step-
lengths being generated by the algorithm in these earlier iterations resulting in
steps into negative parameter space being attempted with subsequent floating
overflow in the 'RUN' routine. Rather than revert to é 'full ~blown’ Constrained
:Function Minilmisation solution, a simple conStrzﬁnt handling algorithm was
designed to overcome this problem resulting in only a small modificati;)n to
the 'SEARCH' algorithm.

The idea is that a positive lower bound (LB) on each of the model
parameters is specified . If at any time the steplength algorithm predicts a

(k)

step a ’ which would result in a parameter Bi being reduced below its

(k)

lower bound LBi , this situation is detected and the steplength « reduced

accordingly so that the parameter is set equal to its lower bound value.
LB, - B,

1

(k) = i 1 :
= > 0 | 6. 30

@ reduced

The whole parameter vector is then recalculated using this reduced steplength.

The procedure is repeated until the following inequality is satisfied.

Bi(k+1)>/ LB, i=1,2,8..cc.n 6.31

This modification to the linear search algorithm was found to be adequate for

constraining the problem in positive parameter space.
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6.6 Comparison of the Relative Efficiencies of the GMOPT and
NOLLS Programmes

Numerical experiments were undertaken to compare the performance
in speed terms on different data sets under varying conditions (i.e. different
number of parameters, experiment lengths, etc.) of GMOPT and NOLLS.
This was to discern the best method to recommend for routine use in connection
with the non-invasive cardiac output measurement technique at the Royal
Infirmary. .The results of these experiments are summarised in Table 6.2.

The timings for the GMOPT programme have been adjusi:ed to
allow for the fact that the local search algorithm undertaken at the end
merely conﬁr;rns the solution by subtracting the time taken to carry this out
from the total time.

From these results, even although comparison is a bit difficult
due to slightly different convergence criteria for the two algorithms it is
immediately apparent that the 'NOLLS' programme is vastly superior in
performance. Based on the limited number of results detailed in Table 6.2,
it wguld appear to be about twice as efficient.

This improvement is not due to the function evaluation routine
being effectively faster in the non-linear least squares case. In fact, the
results in Table 6.2 suggest that the average computation time per function
evaluation (i.e. total time divided by index of computation labour) is actually
less in the case of '"GMOPT'. This would seem to be contrary to the timing
comparisons presented in Section 4. However, this is only because these
latter results also include an element of the inter-iteration computation time
of the algorithm. This relatively larger inter-iteration computational burden

of the 'NOLLS"® programme is primarily due to the need to carry out a singular-
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value decomposition at each stage, which is computationally expensive.

The increase in efficiency of the 'NOLLS' programme is mainly--
due to the superior approximation to the Hessian matrix H generated by the
non-linear least squares algorithm over that of the Quasi-Newton algorithm.
This results in a faster rate of convergence e.g. see the appropriate
computer print-outs for the file RPO142.PRO for the NOLLS and GMOPT
algorithm in Tables 6.3 and 6. 4. o

This iinproved convergen;':e is perhaps better illustrated by
Figure 6.1 which shows how the c;iferion function is reduced as a fl;nctibn
of in.creasing index of 'computational labour for file RPO142.PRO for each
algorithm.

Thus in summary, the non-linear least square; algorithm is
recommended foxr routine use hereafter both on the basis of its increased
efficiency and the fact that it allows us to provide statistical information

about the paramter estimates so important to the model -fitting procedure

without further computation.

6.7 Formulation of the Maximum Likelihood Estimation Method
as a Sums of Squares Problem

In Chapter 4 it was mentioned that the maximum likelihood
estimation technique could also be interpreted as a sums of squares F.M.
problem. Hence this is also amenable to minimisation by the algorithms
discussed in this chapter. The resuitant programme is known as 'MAXL'.

Recall that in Chapter 4, in the maximum likelihood method,
the model/data errors (i.e. the deterministic prediction errors) e are

modelled in the form :
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' COMPARISON OF CONVERGENCE OF GMOPT

121

AND NOLLS FOR FOUR PARAMETER MIN-
IMISATION OF FILE RPO142-PRO.
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' GMOPT’

X
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e = L% - 6.32

where e = D 6.33

L is proportional to the 'square-root' of the covariance matrix of the
errors, i.e.

cov. (e) = N = 62L LY 6.34

and € is an assumed set of Gaussian i i d random variables.

In Chapter 4 it was shown that maximising the likelihood function
L 4( B) required knowledge of the elements of N . ‘These are generally .
unktiown & priori and hence must be estimated. However, due to the large
number of parameters in N ( which is an m x m matrix where m is
the number of observations) the resultant minimisation problem becomes
untenable in the general case.

By assuming a certain form of 'noise model' however (i.e. first
order auto-reggressive process) N is dependent on only two parameters
(a,b ) and is of a form which is extremely convenient for computational
purposes. Under these conditions maximising L (B, N) is equivalent to
minimising

T 6.35

L 2
V(B,ab)s =g " =2
i=1
which is in a sums of squares form.
2
Thus, rather than minimise &, e as in the ordinary least squares case,

we minimise E_E i 2 where from equation 6. 32

s - 1 6. 36

Due to the particular structure of L and L"1 in the first order ARMA

process case the residuals £ can be calculated recursively from the
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deterministic errors e

Z2,=¢-ae -bii_l 6. 37
which thus avoids calculation and storage of L"1 . The deterministic errors
can be recovered from the residuals similarly by the inverse relationship.

- The sensitivity matrix Z can also be calculated in a recursive manner.

It is given by
X { .
z=[%:'%j . 6.38

Z, being the sub-matrix of sensitivities of 2 with respect to the

determinstic model parameters and 22

the 'noise' parameters a andb . A typical term in Zl can be calculated

recursively from the model sensitivities in the ordinary least squares case,

the sensitivities with respect to

e.g.
VM Y Mi-1
S YA YA

From equation 6. 37 the sensitivities of the two noise model parameters are:

Ofi _ 2% _ 0 6.40
3a - S0 (3 = 9) .

Ly _ My _ 6.4
3p - F-p (3p = 0) -41

These make up the matrix Z2 .
Thus from the above it is apparent that although the number of parameters

in the minimisation problem is increased from a maximum of six in the

ordinary least squares case to eight in the '"MAXL' case, the resultant
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increase in computational labour will not be proportionately as great.
This is because it is not necessary to solve additional co-systems of
differential equations to calculate the noise sensitivities since calculating

- them involves only trivial analytic manipulation of already known quantities.
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CHAPTER 7

IMPROVED EXPERIMENTAL DESIGN AND NEW
RESULTS FOR THE NON-INVASIVE CARDIAC
OUTPUT MEASUREMENT METHOD,
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7.1 Introduction
In Chapter 4 of this thesis the estimates obtained from the

homogeneous CO,, identification procedure were analysed. From this

2
analysis the conclusion was reached that, although the cardiac output
estimates obtained from these validation experiments were competitive

with any similar technique that has hitherto appeared in the literature

(e.g. see Homer and Denysk (155) ), the form of test signal uséd ( 40 sec

air followed by 7/5% CO2 ) did not excite the system sufficiently for
identification purposes. In retrospect, this poor nature of the test signal

is hardly surprising éince most of the interest in the work had un.til then
centred on the data analysis. The informational asp;act of the problem

has hitherto been largely ignored except a posteriori (see Chapter 4).

Astrom and Bohlin (11) and Aoki and Staley (5) defined the condition
of 'persistent excitation' as being a necessary one for a test signal to possess
in order to produce consistent estimates. Conceptually all this means is that
the band width of the signal is such that it allows all the modes of the system
under test to be perturbed. Practically, however, it has been well know;l for
some time (187, 182, 216) that the choice of test signal has a significant
bearing on the results of an identification. This was first noticed in the
system identification field by Levin (184) in 1960 when he considered the
estimation of the impulse response of a discrete time linear single input
single output model corrupted by additive white measurement noise. “

- It has been shown that the use of optimal test signals allows the
achievable accuracy to be greatly increased as compared to arbitrary inputs
such as e.g. pseudo-random ~binary sequences ( PRBS) (43) v‘vhich are widely

used in the identification literature. This is because the optimal test signals
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allow the maximurﬁ amount of information to be extracted from the system
under scrutiny. This chapter describes the design of such test signals in
connection with estimating the parameters of the homogeneous CO2 model.
The aim in this is fo use these signals to produce a much more reproducible
non-invasive caradiac output estimation scheme. Also presented in this
chapter is a theoretical investigation carried out to determine the-type of
model (e.g. C.‘O2 s C:)Z, inert gas, etc.) which aII;)ws cardiac output to be best
estimated. This analysis was felt to be an essential preliminary to the
optimal test éigz_ml design for a given model. First, however , a brief

literature review is presented on optimal design and some theory necessary

for the work detailed later in the chapter is developed.
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7.2 Brief Review of Optimal Experiment Design

Optimal test signal design can be viewed as a sub-problem of the
wider problem of experiment design. In the static case (e.g. as applied
to design of linear and non-linear regression experiments) this problem has
been of great interest to statisticians for many years (39, 104), Only
comparatively recently has this mutual interest been exploited and any
significant cross-fertilisation taken place between the engineers and
statisticians (206).

In the dynamic system identificg_tion literature the experiment
design pi‘oblem has been approached 1n a number of different ways. In the
time domain lsynthesié, given that a scalar function which is -a measure of
the optimality of an experiment has been defined, the problem essentially
reduces to what is a two-point boundary value problem. This is equivalent
to the standard non-linear 6ptima1 control problem which is discussed in
many texts on modern control theory (95). Ah advantage of this approach
is that it is easily extended to take account of typical constraints which it may
be necessary to impose on the experiment in a real-life situation, e.g.
amplitude or power constraints on input, constraint on total experiment time,
maximum sampling rate, etc. This problem can, in principle, be solved
by the usual dynamic optimisation procedures (270). The time domain
optimal control approach has been used and refined in many ways by Goodwinﬂ
and his collaborators (133, 134, 135, 138) and Mehra (205, 206), In (135)
Goodwin, Murdoch and Payne discuss optimal test signal desién for the often
used single-input single-output (SISO) transfer function model of Astrom
and Bohlin (11) discussed in Chapter 1. In (134) Goodwin, Zarrop and Payne

consider the wider problem of coupled design of test signal, sampling interval
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and pre-sampling filter.

The optimal experiment problem has also been investigated in the
frequency domain. A procedure to compute the optimal input auto-correlation
function was developed by Goodwin and Payne (136). At about the same time,
Van Der Bos (285) gave a method for realising spécified A.C.F's. recursively
using a binary signal. These two procedures may thus be combined to form
a useful alternative to the time~domain optimal control approach discussed
above.

Mehra (205) proves the useful result that in the freguenéy domain,
the optimal test signa.l can be found to c;)néiét of a weighted sum of a finite
number of sinusoids. The significance of this result is that what is an infinite
dimensional problem in the time domain is reduced to only a finite dimensional
problem in the frequency domain and is consequently easier to solve. This
result is exploited in (219, 233) where the optimal sampling strategy for
system identification is considered in the frequency domain.

The approches discussed so far both in the time and frequency
domain have been statistical,in origin, i.e. the criteria of optimality used
have begn developed from statistical considerations. Many authors have
'adopted a more deterministic approach to the problem. Rault and his co-
‘workers emphasise the connection between sensitivity and the accuracy of
the estimates and discuss test signal design criteria based on sensitivity
considerations in both the time domain (242) and frequency domain (239).

In (241) Rault notes that many of these heuristic criteria can be given
statistical interpretations. Inoue et al (161) report further work based
on the sensitivity approach.

To avoid the complexity inherent in the full time domain optimal
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control approach Keviczky and Banyasz (174) outline a simpler sequential
approach potentially useful for on-line identification situations. This
method has also been derived on information theoretic grounds By Arimoto
and Kimura (6). They show that the procedure is optimal in a one step
ahead sense (i.e. it maximises the incremental increase in information
during the next measurement period). Note however that this does not
imply global optimality (i.e. optimality over the whole experiment period)
since the algorithm takes no account of future learning.
To date few practical appl'ications of the otpimal experiment design

. techniques have been réported in the engineering literature. Perhaps this is
due in no smaﬁ measure to the mathematical complexity of the techniques.
Among those which have are Goodwin {(134) - application to identification of
a steam generator) and Mehra ((205) - application to identification of the
parameters of aircraft dynamics). '

In the biomedical field applications are almost non-existent. This
is despite the obvious usefulness of these methods in an area where
identification rather than identification and control is usually the main objective.
A noteable exception in this respect is the work of Swanson (272, 273).
Swanson devotes almost all of Chapter 5 of his thesis (272) (which is concerned
with investigation of the respiratory control system as mentioned earlier) to
the optimal test signal design problem.

Finally, in concluding this short review section, it is appropriate
to draw attention to the following two references as having made a significant
contribution to the field. Mehra (206) reviewed the state of the art in optimal
experiment design for system identification in the special issue of I.E.E.E.
Transactions on Automatic Control dedicated to System Identification in
December 1974. Also, Chapter 6 of the recent book by Goodwin and Payne (31)

gives an excellent treatment of the experiment design problem.
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7.3 Criteria of Optimality

The use of optimal experiment design techniques presupposes that
some quantifiable measure of the goodness of an experiment is available. In
the previous section, this measure has been intuitively tied up with notions
related to, on the one hand, some concept of maximising the information
content of the data, and on the other maximising the expected precision of the
estimates. In fact, it transpires identical optimal experiment design

_criteria can be derived .utilising either approach. However, the statistical
app'roa-ch is most commonly adopted.

A measure of the precision. of a parameter estimate is of cou'rse_
its variance. This is a function of both fl'le experiment design and the type of
estimation technique used. In the optimal experiment désign literature
it is customary to assume the estimator used is efficient, so that the Cramer-
Rao Lower Bound is achieved. This is sensible since the optimal experiment
design can be synthesised indepgndently of the estimator resulting in greater
simplicity.

Thus, this approach leads to defining measures of goodness based

on the Fisher Information Matrix M of the following form

J=£t(M) 7.1

£ dénoting an appropriately chosen function of M which is necessarily scalar.
Recall from Cﬁapter 4 that for a model non-linear in the parmeters,

such as is considered in much of this thesis, M will be dependent on the actual

numerical values of the parameters. These, of course, will ﬁot be known

2 priori. In practice, therefore, the information matrix M 1is usually

evaluated at a representative set of pérameter values e.g. an earlier estimate
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if this exists. Thus, it is advisable to check the sensitivity of the design
to this parameter choice once it has been found. One design criterion
frequently used in the literature (135, 138, 205) is the following : -

mm]—"-trace(Vl/}_v_fl) 7.2

where W is an arbitrarily chosen weighting matrix to account for the
parameters having differing magnitudes, etc. This criterion can be thought
of as minimising the weighted mean of the variance of the estimates. With W =1
this criterion is identical to Fede:;ov.}s (104). A -optimal criterion discussed in
the literature.  Goodwin and Payne (.1‘37) argue that equatibn 7.2 is the
natural criterion to adopt from Bayesian considerations. If one considers a
design criterion as being chosen as a risk function reflecting the estimated
models intended use then Goodwin and Payne put forward heuristic arguments
to show that minimising equation 7.2 is equivalent to optimising this Risk
function with W chosen suitably.

Some authors (5, 184) have advocated use of the following type of
criterion, |

max | = trace (W M) 7.3

Use of this criterion reduces the complexity of the design procedure since it
allows linear quadratic theory to be used to solve the resultant optimal control
problem. However, this has been criticised by Goodwin and Payne (136) who
show that the use of the above criterion can lead to the choice of experiments
for which M is singular. Thus, the parameters will be unidentifiable which
is clearly undesirable. The optimal experiment design criterion which is
most often used is the so~called D-optimal (104) criterion.

min J = det (M) _ 7.4
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The idea for this criterion was first proposed in the statistical literature

by Box and Lucas (40) in 1959. This criterion can be interpreted as that
which minimises the volurne of highest probability density region for the
parameters. Another interesting aspect of this criterion is that unlike
previous criteria mentioned, it is invariant under scaling of the parameters.
This criterion will be the one on which the work in the rest of this Chapter is
based.

Beck and Arnold (22) show the above criterion can be derived
: :independently via information theory, utilising Shann(:)n's concept of a measure
of uncertainty (257). The same parallel is drawn elsewhere (137, 66 );

The D-optimal criterion results in a test signal which implicitly
attempts to distribute information equally on all the parameters. Suppose,
however, we are interested in estimating accurately only a subset of these
parameters (the first i say ). The rest of the parameters perhaps, although
necessary for the estimation, are really superfluous as far as the investigator
is concerned., ( Note this corresponds exactly to be situation with which we
are dealing in the non-invasive cardiac output determination.) Under these
conditions the experiments must satisfy different criteria ;'elated only to the
accuracy of those parameters of interest. Hunter ,» Hill and Henson (159)

thus advocate the following criterion.
min ] det ( M, ') 7.5
Dt ii

where Mii is a submatrix of the full information matrix M which refers

to the i parameters of interest. Federov (104) has called this a truncated
D -optimal dgsign (D ¢ ) . Having introduced the D-optimal criterion we will
now derive what this reduces to for the case of the two different types of

estimation error structure considered in Chapter 4. That is the ordinary
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least squares (OLS) and auto-regressive moving average (ARMA) noise models.
Recall from Chapter 4 that in the OLS case
A
m=06%[xTx ] 7.6

and the D-optimal criterion thus is

min J = det {[XT x] '1} 7.7

X being the parameter sensitivity matrix, as in Chapter 4.
Suppose only 'i' of the 'n' parameters need be estimated accurately., If

the sensitivity matrix X is partitioned as
X = [ X, %, | _ 7.8

where Xl refers to the 'i' parameters of interest, then the truncated D-optimal

criterion can be written as
-1'
. - T T T -1 7T
mmJDt = detj[X7 X -X X, (X) X)X, x1] } 7.9

The information matrix which results from the use of the ARMA noise model
is of the following special form (135)

; 7.10

where Ml is the information matrix of the deterministic model parameters

and M2 that of the noise model parameters. M. is independent of the error

1
as M2 is independent of the test signal (135). Thus, in this situation optimal
designs can only be synthesised to estimate the determinstic model parameters.

This is done by replacing X in the criterion functions defined by equations 7.7

and 7.9 by the modified sensitivity matrix Z1 for the determinstic model
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parameters in the ARMA noise case (see equations 6. 38 and 6. 39).

7.4 Optimal Experiment Design for the Homogeneous CO 5 Model

We will now describe investigations carried out to determine the
most suitable form of test signal for estimation of the parameters of the
homogeneous CIO2 model utilising the concepts outlined in the previous sections
of this chapter.

It is intuitiv.ely obvious that to obtain the most accurate estimates
of the parameters we éhould like our test signal ampliigude and our observation

‘time as iarge as possible , i.e. the optimal test signal design criteria mentioned
in the previous section (equations 7.7 and 7.9) can be driven to zero by allowing
both of these quantities to approat;.h infinity. However, in this application,
as in many other biomedical applications, physiological and ethical factors
impose severe constraints on the choice of te_st stimulus that can be applied.
For example, a frequent worry is that the input disturbances may influence

parameters and system variables through feedback mechanisms. In the respiratory

system, ventilation is the main controlled quantity, as mentioned in Chapter 2.
However, in our application although ventilation is a component in our model,
it is measured and treated as a known input disturbance. Thus, any change

in ventilation due to feedback from c‘:hemoreceptor_s‘ or pulmonary receptors can
have no effect on the estimation. Note that since ventilation is also under.
autonomous control, in theory this raises the question of using this as an
additional manipulatable input to the model. This was ruled out because of
the desire to retain the advantage the current form of procedure possesses
over routine pulmonary function tests. That is, of being able to free the

untrained subject from the neccesity to perform complicated ventilatory
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manouevres. This aspect of the procedure was felt by the clinicians to be
of great benefit in a routine situation and far outweighs any advantages which
might accrue from including ventilation as a manipulatable variable in tl;e_ V
experimental design.

It is also important to check that the choice of test signal
induces no variations in the parameters‘ over the course of the experiment.

The effect of breathing CO,, on cardiac output has in fact been documented

2
(110, 204b). On the basis of (llO),Pack (228) concluded thatv the form and
duration of the experiment used in the validation studies ( 7/5% C:O2 for 2

mins) produces no significant changes in the homogeneous CO, model parameters

2
due to physiological control mechanisms. However, it has been impossible to
check the effects of these assumptions statistically since unidentifiability
problems were encountered when it was attempted to estimate models over

only partial lengths of the validation data (e.g. the air breathing part). This

is hardly surprising given the conclusions of Chapter 4. There is nothing,
however, in the results presented in Chapter 4 to lead one to discount the
assuﬁption of stationarity of the estimates, For longer forms of
experiment the implications are less clear. Fishman et al (110) repoxrted

no change could be detected in cardiac output in normal subjects after 15 to 20

minutes breathing either 5% or 7% CO McGregor et al (204b) reported

o
changes in cardiac output following 8.4% 002 inhalation after 2 minutes.
However, checking stationarity a posteriori should present no problems
in this situatic;n. Thus it was decided to adopt an empirical approach to the
design problem in this respect. That is in the first instance in the design study

it was decided to limit the maximum concentration of C‘O2 to 7% and maximum

experiment duration to 10 minutes. The latter time was chosen since it was
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felt to be the maximum time for which it was felt a subject could reasonably
tolerate 002 breathing without any great discomfort. However, it was
recognised that this experiment duration might have to be reduced if the
resultant estimates were found to be non-stationary or the experimental
procedure was in fact found to be too arduous. As it transpired, both these
reservations proved to be unnecessary. Inpreliminary experiments
_occasionally some subjects when breathing 7% CO2 elicited too great a
wnen brtable

ventilation response and subsequently became i Ar.ov=iny due to the

" . increased work in bre;ai:hing through a mo'ﬁthpiec.:e. However, with these

subjects the CO,, concentration was reduced to 5%.which they found pexrfectly

2
acceptable. Thus, having constrained the prospective inspired PCO, test

2
stimuli in both amplitude and duration the problem reduces to find the optimal
time course of the signal waveform within these boundaries. It would, therefore,
seem possible to directly apply the elegant time-domain optimal control
techniques in this situation. This was in fact the original intention. At this
stage, however, considerations arose which seemed to indicate this just might
not be entirely appropriate. These were as follows.,

The first concerns the cyclic nature of ventilation. Although the
optimal control type techniques can be applied directly to the 'flow through'
model (see Chapter 2), for the cyclic model the input is not really defined
during expiration. Thus, the state of the input can only really change at time
instants during the inspiratory period. This may not coincide with times
dictated by the optimal sequence., Thus a 'breath by breath' approach is needed.
The second consideration is more practical and again inevitably is tied up with

the ultimate applicability of the technique. Although it is conceivable that

ultimately the CO, test signal will be computer generated, it is far more likely,
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that in the foreseeable future it will be done, as at present, by manual
switching of a valve. In a routine situation this is likely to be done by
a physiological measurement technician., It is, therefore, desirable that
the test signals should be simple to administer, e.g. square waves rather
than complicated binary sequences.

In view of the above it was decided that use of the full optimal
control approach was practically unjustifiable. A more limited approach was,
therefore, adopted and a square wave design éought, i.e. the best on/off

switching frequeﬁcy which minimises the criteria discussed in the pre\'rious
section, , | |

For this a general homogeneous CO,, gas transport simulation

2

programme (LUNG 1 ) was written to allow the various criteria of optimality

of an experiment to be evaluated for a given set of model parameters and

experimental conditions. The sensitivity coefficients necessary to calculate

the criteria were obtained from the model using finite differences. A

sinusoidal breathing pattern was assumed in the absence of any other a priori

information. Although Etsyon et al (97a) have proposed a more complicated

ventilation profile, the sinusoidal approximation is felt to be adequate for

our purposes and also has the advantage of being more. convenient mathematically.
The amplitude of the sinusoidal breathing pattern can be tailored

to achieve approximately the desired average alveolar minute ventilation using

the following equation :

Vmax = W(VA+fVD) 7.11

The simulation programme is quite general in that it allows other test signals
e.g. steps and general binary sequences to be investigated in addition to square

waves.
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The model conditions chosen as the basis of the square \;vave
experiment design investigations are detailed in Table 7.1. The total number
of breaths in the experiment was set at 150, Using LUNG 1 (and assuming for
the moment a six parameter model) a measure of the information content of
the experiment was calculated (i.e. a measure corresponding to the inverse
of equation 7.7 or 7.9) for various (integer) values of square wave input
period (in breaths). This was first assuming (a) all the parameters were of
equal importance (]1 ) and then (b). only cardiac output ( (i) ) was of

importance. The results are plotted in Figure 7.1.

These results are interesting in that they indicate that extrema of
the two design criteria do in fact éxist over the range of input switching periods
studied. It is also apparent that the best design for distributing information
on all the parameters does not coincide with the best desig‘n for the case where
cardiac output is the only paramater of impoxtance : in the former case the
appropriate switching period is 60 breaths (i.e. &~ 4 mins) whilst in the
latter case it is 24 breaths ( 14 minutes). In the case of a four parameter
CO2 model the results were found to be quantitively similar,

To investigate the sensitivity of the design to parametric and
ventilatory variations, a modified version of the linear search procedure
discussed in Chapter 5 and Appendix B was incorporated into the LUNG 1
programmé. This allowed the procedure of determining the best switching
frequency to be automated. From subsequent analysis it transpired,
surprisingly, that fhe design was quite robust. Over the range of model
aﬁd ventilatory parameters encountered in résting conditions ( c.f, the

validation data), the best switching period for cardiac output estimation was



)

(i)
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Table 7.1 : Prior Parameter Values Chosen As A Basis
for Optimal Test Signal Design Investigations

determinstic model parameters

Q - 5litres / min

'\./ A(O) - 5 litres

M . - 0.2litres / min

V..~ - Slitres

P A(0) - Steady state value

PTC(O) - Steady state value (see equation 3.13)

noise mode]l parameters (where applicable)

a - -~0.8

b - =-0.05

constants

Hb - 16.0gm%

f‘IN’I‘ 0.0129

vV A 6 litres / min
VD - 0.2 litres

f - 15 breaths / min.
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roughly in the range 70 - 150 seconds. However, it may be necessary to

reassess this design for exercise studies.

The optimal designs for Q, V, , M and V ( assuming each

TC

parameter in turn is the main one of importance) are plotted in Fig'ure 7.2,

The measures of information content for the initial conditions P A(0) and

PTC ) were found to be frequency invariant, as one would intuitively expect,

and are therefore not shown in Figure 7.2.
From'Figure 7.2 it is apparent that a fast switching test signal
‘(high frequency) is appropriate for optimal estimation of lung volume V, ,

whilst a longer switching period is best for estimating M. and VTC . This

again is as expected since V A is associated with the faster alveolar time

[ ] -
constant whilst M and VTC are associated with the slower tissue dynamics.

In this respect, the best switching period for Q (which relates to the transfer

-

between the two compartments) can be thought of as a compromise.

In Table 7.2 the best square wave input (period 24 breaths) results
are compared with those obtained using less enlightened inputs. That is a
step ON at 1 min for 9 minutes and a 127 bit pseudo‘-random binary sequence
with a clock rate equal to one breath.

This latter form of test signal might perhaps have been chosen to
use in the first instance without attempting to take_ too much account of ‘a priori
stJ;'ucture. Implicitly this test signal attempts to evenly distribute the input
power over a broad frequency spectrum. This is a good general strategy.
However, if specific structural knowledge of the model is possessed a better
approach is to take advantage of this to design inputs which concentrate the
power at the frequencies important for that particular model. That this is

good sense is clearly illustrated in the results of Table 7.2.
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Table 7.2

Comparison of Optimality of Different

Input Sig@ls

Input Information Measure Information Measure
( Q onlyof (A1l model
importance) parameters of
importance )

STEPON . : 18

at 1 min 160.78 4.15x 10

for 9 mins

OPTIMAL

SQ WAVE 6 18

(period 24 99. 30 40,98 x 10

breaths)

127 BIT

PRBS 192.68 10.53 x 1018

(Cycle time
1 sample)
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Plots of the sensitivity functions for the step input and the square
wave input are given in Figures 7.3 and 7.4 respectively. These show that
* [ 3
for the step input the model is only sensitive to Q and V p Overa small part of - —

the total experiment, i.e. this form of input is not "persistently exciting".

On the other hand, for the square wave input the model exhibits distinct

éénsitivity to all the parameters throughout the whole experiment.

Earlier experiment design results also illustrate very well the
folly of basing truncated experiment design criteria on the diagonal ‘elements
of the information matrix rather than its inverse. (Tﬁis correépbnds to using
criteria of the form of equation 7.3.) For example, consider the following
criterion based on maximising the diagonal element of the information matrix
which is equivalent to the following:

I= E (W-:-l' ) 7.12
Q-

max i=1

YMi being the flow weighted mean of the model output at the ith breath.

On the surface this appears, in fact, a reasonable criterion to use to design
a good experiment for cardiac output estimation. However, this criter.ion
does not properly account for interactions among the parameters. This can
be seen from the results in Table 7.3 where the value of criterion is seen
to be maximised for long switching periods. )

Finally, the best design assuming an ARMA noise structure was
studied for the model conditions discussed earlier. The results are plotted

in Figure 7.5. These again show the best design is not greatly different from

that obtained in the least squares case.
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Table 7.3

Variation of Sum of Squared Model Sensitivities to Q

with CO_ Switching Period
A

Period (in brgaths) - % ( QYTL./Ij" )2
i=1 Q
12 898
16 1136
18 1257
20 1403
24 1608
28 1790
30 1856
34 2022
36 , ' 2005
40 2152
46 2208
54 2348
56 2359
60 2451
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7.5 Implications for Other Forms of Gas Transport Model

Before going on to implement the experiments designed in the previous

section for the homogeneous CO, model it was considered appropriate to

2

investigate other types of gas exchange model in which cardiac output also
appears as a parameter. Recall that such models describing oxygen and
inert gas transport were discussed in Chapter 2.

It was felt to be particularly relevant to investigate the suitability

of the oxygen model since O, concentration has already been recorded in the

2

earlier validation experiments. This thus raises the possibility of fitting a

coupled 002 --O2 model to this data.

From Chapter 2 the O, model equations similar to CO, are as

2 2
follows :-
VAdPA - .
5 UL * =P -
e SV(PI_ A)+Q(CTC CA)const 7.13
Vg dCr, .- .
at =-MD-Q(CTC-CA) 7.14

Note that in equation 7.14 the term M_, the metabolic demand, replaces

D

the metabolic production term .M present in the analogous 002 model equation.

C A is obtained from P A via the 02 dissociation curve which was discussed in

Chapter 2.
A simulation programme ( LUNG 2 ) was written to investigate the

potential of the O, model for cardiac output estimation. This was analogous

2
to that described for the (302 model in the previous section and also employed
a cyclic representation of ventilation.

Using this simulation the model was subjected to hypoxic steps and

square waves to determine the suitability of these test signals for estimating
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cardiac output.  The results obtained were very revealing. The sensitivity
plots obtained for the step and square wave inputs for the 6 parameter model
are given in Figures 7.6 and 7.7 respectively, Parameter values used
were similar to those chosen for the CO,_ model in Table 7. 1.

2

Notice that the form of sensitivity curve for cardiac output for
both the step and the square wave input are qualitatively similar. This is
in marked contrast to the analagous sensitivity curves for the CO,_, model

2
(see Figures 7.3 and 7.4 ). Note also for the O2 mo_del'that the sensitivities
for (i) ai.ld CTC(O) ap’pea-r_- to be Iinearljf depender%t. In fact, for all forms‘of
experiment the correlation coefficient between these two parameters was
found to be greater than 0.99. Thus, disappointingly the model is unidentifiable
along these parameter directions. This unidentifiability of the 02 model can

in fact be largely explained in terms of the sigmoid shape of the O2 dissociation
curve. The highly non-linear éhape of this curve although a positive benefit
in terms of increasing the efficiency of gas exchange is a barrier in terms
of accurate identification.

V Despite using quite large hypoxic steps, the forms of experiment
investigated above are still such that,in terms of alveolar gas levels, we are
still operating on the relatively flat upper portion of the curve, i.e. the

content-partial pressure relationship is given by : -

CA(PA) const = ¢ 7.15

By substituting this expression in the model equations 7.13 and 7.14, and

taking Laplace transforms, after some manipulation we arrive at the following.

. (b, S+ byUE) . (C, 5+ Cy) , 9 L
AS) T 2 2 S ’

S+al S+r=12 S_+a1S-1-a2
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The Laplace transform coefficients are given by

al = \97 + \.‘—]] 7.17
TC A
’ &
'V .

a, = — 7.18

2 VAVTC

b, = % 7.19
A

b‘2 = %Q-V 7.20
A TC

c = const Mp

1 PA(O) + — | 7.21

c = % const Q [‘CT ©) - ¢ const MD Q + v 7.92
A C * ! VTC VA

P +
2 TG A(0) V

! Recall from section 4 of Chgpter 4 that the above model is identifiable if the
set of equations 7.16 - 7.22 have a unique solution. However, it is immediately
seen from the above set of equations that any change in CTC(O) can be exactly

compensated for by a change in Q and V

ek This thus explains the identifiability

problem.
On this basis one is forced to conclude that there is little advantage

to be gained in using either an O, or coupled O, - C02 model in order to

2

estimate cardiac output since the O

2

9 model's informational properties are

SO poor.
A simulation programme ( LUNG 3 ) was also written based on the

equations for an inert gas transport model, i.e.

AA sy -p, )+ Q(P, -P,) 7.3
a 17FA7" %L Ve 7oA :

V.. dP

fe_To | ¢ Py -P 7.24
ax - Ta A) :
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/
o BL is the Ostwald solubility coefficient between blood and lungs as

defined in Table 2.1. As discussed in Chapter 2, an advantage of this
form of model is that the gas content ~ partial pressure relationship obeys
Henry's Law and is, therefore, linear. Also initial conditions in the two
compartments are generally known dpriori to be zero since normally a

gas is used which is not normally resident in the human body. Thus the above
model has only three unknown parameters since no m:etab'olic uptake or
production term exists for inert gases. No identifiability problems were
found to exist for the inerg gas model, which was’ encouraging. To compare
the'poten,tial of this fbi'm of model for cardiac output estimation as <;ppc;s,ed
to the Cbz ﬁodel, the value of the information measures obtained from this
model for differing solubility coefficients was compared with that obtained
from the same experiment using the CO2 model. The form of experiment

used was that which was shown to be optimal for the CO, model in a previous

2
section (i.e. switching period 24 breaths). The results are given in Table 7.4.
These indicate that a value of solubility coefficient in the range 2 —> 4 is
appropriate for estimating cardiac output.  Thus, since this corresponds

roughly to the effective solubility of 002 (i.e.~ bB ) there does not seem to

be any great benefit to be gained by using exotic inert gases.
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Table 7.4

Comparison of Information Criterion Indicating a Good
Experiment for Cardiac Output Estimation for Inert Gas
Models of Varying Solubility and CO2 and O, Model

2

Value of Bunsen In.‘formatiqn Measure

Solubility Coeff. for Q
0.006 ' : 0.037
0.47 S 104. 16
(Nitrous Oxide)

2.4 666.67
(Halothane)
=~ 3.7 625.03

(CO, model (4 PARS))

02 model ( 4 PARS) 4.00
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7.6 Reproducibility Results Using the Improved Form of Experiment

Having confirmed in the previous section that there is no great
advantage to be gained in respect of cardiac output estimation by using another
type of model, these alternative models can thus be justifiably dismissed
as regards this particular application and attention once again focussed on the
homogeneous 002 model.

In section 7.4 a form of experimenﬁ was designed to perturb this
model which,at least in theory, should result in a more reproducible technique
for cardiac output estimation thgn that previously obtained. In early 197'9
a series of trials were undertaken to test this theory. This section describes
the results., ‘

It was originally envisaged that these experiments would take the
form of a further set of validation studies (i.e. carrying out our method
simﬁltaneously with the dye technique). However, arranging this soxt of
experiment is a time-consuming process since obtaining subjects is difficult.
Also it is necessary to ensure attendance of skilled medical personnel to carry
out the potentially hazardous dilution experiments. Thus it was ultimately
decided a better strategy, for an initial trial phase, would be to concentrate
- on doing multiple measurements of the non-invasive technique by itself on
single subjects. Although this will not allow us to obtain any ideas of absolute
accuracy of the technique, it does allow reproducii)ility to be assessed which
is of prime concern. Since this strategy involves smaller overheads in
terms of personnel, more experiments can be carried out in a shorter time,
and it allows at least a first assessment of the worth of the new technique.

At the time of writing 20 sets of Reproducibility Studies have been

carried out on young, healthy volunteer subjects (both male and female) from
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the Centre of Respiratory Investigation, Glasgow Royal Infirmary and the
Department of Electronics and Electrical Engineering, University of Glasgow.
These studies consisted of a maximum of four runs on each experimental
subject, each carried out sequentially on the same afternoon. For ease of
implementation, the test signal used in all but one of the series of studies

consisted of 1 min alternating between air and 7/5% CO,_, . This period was

2
found to be convenient for manual operation of the gas valdes. Of the 20
datasets, '8 had to be discarded due to data sampling problems (teething
troubles with tﬁe new mass spectrométer and expired flowmeter) 1eaving
12 useful sets of data (47 individual estimation runs) to form a basis of
comparison with the earlier validation results,

The estimates and their respective variances obtained by fitting
six and eight parameter models to the data are given in Appendix E. Even
a brief glance at these results shows that the reproducibility of the estimates
have been tighter'ed up as compared to the validation data. This will be
discussed a little 1ater., however. The reproducibility of the maximum
likelihood results also tend to be better than the ordinary least squares -
estimates. This means the noise model is important for these experiments,
It is exceedingly difficult to place a physical interpretation on the noise model
but, intuitively, it is felt to be associated with the marked change in a
subject's ventilatory pattern which inevitably occurs over the course of an
experiment due to the hypercapnic stimulation of the respiratory controller.
As in Chapter 4, the most appropriate model order was tested for using the
F-ratio test and Akaikes method. These results are given in Table 7.5.
They show that in every case but one (REPO83 ) the increase in model order

from six to eight was significant at the 5% level, using the F-ratio test and
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Table 7.5

MODEL ORDER TESTS

Reproducibility Data
] 2 5.2 '
File N Ze. e, f6->8 TF6-»8 AIC. AIC Chosen
ié i8 6
QOrder
REPPI1 144  40.79 18,89 78.84 . 238.9  132.09 8,8
3 157 39.56 25.70 40.18 . 241.05 177.33 8,8
4 183 45.62 27.41 58.13 . 277.03 187.80 8,8
REP@21 167  38.44 11.50 186.23 . 240.53  43.00 8,8
" 2 200 60.05 28.45 106.62 . 338.85 193.44 8,8
4 163 55.66 15.55  199.90 299,35 95,49 8,8
5 189  70.46 19.40 238.19 . 361.77 122.00 8,8
REP@71 126 37.88 18.70 60.51 . 218.07 133.13 8,8
2 129 55.13 28,38 57.03 . 268.35 186,70 ..8,8
3 131  44.76 25.14 48.00 243,02 171.45 8,8
4 128  31.72 22.57 24,32 . 196.61 '157.05 8,8
REPG 81 128  15.67 11.92 18.88 . 106.35  75.34 8,8
2 135 19.10 15.36 15.46 . 131.04 105.62 8,8
3 145 33.64 F.M. - . 6

4 157 54.17 35.13 40.38

~-REPG@91 148 27.51 18.49 34.15
2 153 63.23 39.95 42,25
3 153 37.08 22.32 47.94
4 155 43.90 27.21 45.08

REP 111 136 71.16 55.70 17.76
2 146 57.02 38.33 33.64
3 148 80.34 56.76 29.08
4 142 64.85 33.17 35.64

REP 121 143 37.30 24.15 36.75
2 146 78.61 45.77 49.51
3 151 154.39 50.91 145.3
4 162 88.50 40.10 92.9%4

REP 141 135 35.81 23.42 33.59
2 147 27.75 16.50 47.38
3 160 43.56 23.34 65.84
4 167 33.55 22.36 39.78

REP 151 151 44.36 29.01 37.83
2 149 52.33 47.97 6.41
3 144 27.06 20.47 21.89
4 142 38.15 32.10 12.62

REP 181 144 34.03 19.83 48.69
2 171 41.30 23.00 64.84
3 158  48.18 21.11 96.17
4 154 42.64 15.69 125.39

290.40 226.41

182.90 128.09
310.92 244.67
229,26 155.60
256.26 186.12

309.79 280.48
288.99 234.99
341.51 294.09
303.61 212.41

225.57 167.41
335.87 260.89
443.80 280.27
373.71 249.47

215.89 162.57
184.02 111.59
257.81 161.98
217.81 154.05

255.48 195,35
278.86 269.89
179.85 143.66
228.28 207.76

212.85 139.08
254.23 160.44
272.65 146.27
251.19 101.23

.
v v v o

o 00 00 CO CO 00 00 00 o Q0 OO0 0 9000&00 O 0000 0 CO0o oo o
00 00 00 CO O 00 Co 0 ©0 00 0O 00O ©OoeOo CooCo o

.
v w v e
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.
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. .
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Table 7.5

MODEL ORDER TESTS

Reproducibility Data cont'de...eese
. 2 2
File N e ge, f6->8  F6=>8 AIC AIC Chosen
ie ig 6 8

order

REP191 142 24.41 12,95 59.29 3.0 164. 86 78. 85 8,8

2 147 37.26 20.09 59.40 3.0 227.33 140.53 8,8
3 161 50.52 - 21.09 106.75 3.0 282,21 145.56 ‘8,8 -

4 153 48.34 13.92 179.27 3.0 269, 83_ 83. 36 8,8

REP201 115 20.19 9.69 117.03 3.0 179,93 57,80 8,8

2 138 26.69 13.28 65.63 3.0 176, 82 84.50 8,8

3 118 12.25 8.02 29.00 3.0 79.52 33.53 8,8

4 143 20.69 12,02 48.68 3.0 141.29 67.63 8,8
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also resulted in a smaller value of Akaikes criterion. Notice that these
test results are more powerful statistically than those obtained in the
validation data. In fact, for the F-ratio test the increase in model order
was still significant in the same number of cases at the 1% significance
level.

These model order results are also confirmed by tests on the
independence of the residuals which are summarised in Table 7.6. For the
six parameter model the residuals in every case are correlated, both on
the basis of the test on the number of runs and on the numioer of points
outside the 2 6 limit. ﬂowever, for the eight parameter results only 2/47
results appear to be correlated on the basis of both of these tests. This
tends to suggest the eight parameter model is adequate. Typical fits
obtained using the six and eight parameter models on file REPO21 are shown
in Figures 7.8 and 7.9 respectively.

The new experiments were found to result in identifiability
of the model parameters being increased in comparison with the earlier
validation experiments, as was hoped for. For example, consider the
following typical parameter correlation matrix R obtained for the eight

parameter fit to file REPO21 which is shown below.

L ED
1 | noise model parameters
_0.53 1 o & “deterministic model parameters
-0, 027 —-0:_029—1 r - - - - - - 000
R = -0. 065 0.080 = -~0.43 1 Symmetric
0.047 0.031 | 0.036 0.067 1
-0.22 -0.070 ; -0.20 0.42 -0.017 R
0.013 -0.025 , 0.021 -0.15 -0.010 -0.018 1
0.057 +0.038 , -0.54 0.20 -0.20 -0.005 =0.31
L

1
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Table 7.6
Reproducibility Data
Tests On Independence of Residuals
6 PAR LEAST SQUARES SPARMAXIMUM LIKELIHOOD
No.of points No. ofpoints
outside 15 outside 16
FILE No.ofruns . limit for Corre=-| No.,of runs limit for Corre-
test value ACF lated test value ACFE lated
REPO11 | -4.900 10/30 Y -1. 874 7/30 N
31 -5.109 10/30 Y 0. 346 8/30 N
41 -6.498 . 10/30 Y -0.527° 5/30 N
REP@21 | -7.504 10/30 Y -0.151 . 5/30 N
2 -7.017 ’ 10/30 Y -0, 694 6/30 N
41 =-7.351 10/30 .Y .1,262 7/30 N
51 -9.321 . 10/30 Y =0.729 7/30 N
REPO711] -7.245 10/30 Y -0. 064 9/30 N
21 =-5.400 10/30 Y -0.587 7/30 N
3] -5.084 9/30 Y 0.375 9/30 N
41 -4,171 10/30 Y -0.619 8/30 N
REPO81{ -5.198 10/30 Y 0.278 8/30 N
2| -3.728 10/30 Y
3! -6.085 8/30 Y/N
41 -6.333 9/30 Y -1.526 5/30 N
REPO91 | -7.340 10/30 Y -1. 064 9/30 N
2} -7.534 10/30 Y -0. 969 4/30 N
3| -5.029 10/30 Y -0, 120 5/30 N
41 -6.210 : 10/30 Y -1.395 6/30 N
REP111 | -6.187 10 Y -4,537 7/30 N/Y
2 =5.054 10 Y 1.119 ~9/30 N
3| -6.515 : 10 Y -2,513 11/30 Y
41 =-5,800 10 Y -0.243 8/30 N
REP121 | =-5.692 10 Y 1.059 9/30 N
2] -7.282 10 Y ~1.546 12/30 Y/N
3| -6.203 10 Y 0. 654 3/30 N
41 -7.141 10 Y -1.017 3/30 N
REP141 | -6.059 10 Y ~2.418 5/30 Y/N
2| -6.277 10 Y -2.313 11/30 Y
31 -7.186 10 Y -1.664 4/30 N
41 -4,812 10 Y -1.951 8/30 N
REP151 | -6.585 10 Y ~1.496 3/30 N
2| -5.582 10 Y -2.925 6/30 Y/N
3| -3.260 9 Y -0.251 4/30 N
41 -2.777 10 Y -1.346 8/30 N
continued «.ov.0 -
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Table 7.6
Reproducibility Data

Tests on Independence of Residuals cont'dee.....

6 PAR LEAST SQUARES

8 PAR MAXIMUM LIKELIHOOD

No. of points No.ofpoints
FILE No.ofruns outside 1’6 Corre- | No.ofruns outside 16 Corre=~
test value limit for lated test value limit for lated
ACF ACF
REP181| -5.041 10/30 Y -0.983 2/30 N
2| -6.898 10/30 Y -0.920 6/30 N
3| -7.419 10/30 Y | -0.168 5/30 N
41 -7.326 10/30 Y 1.134 9/30 N
REP191| =-4.426 10/30 Y 0. 087 7/30 ‘N
2] -6.952 10/30 Y -1.146 7/30 N
31 ~7.725 10/30 Y -0. 316 6/30 N
41 -8.598 10/30 Y -1.207 9/30 N
REP201| -6.655 10/30 Y ~1.483 10/30 N
2| -6.750 10/30 Y 0.259 6/30 N
31 -4.900 10/30 - Y -1.504 10/30 N
41 -6,839 10/30 Y -0, 963 3/30 N
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FIT FOR FILE REPG21.PRO USING ‘NOLLS’.
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FIT FOR FILE REPB21 .PRO USING “MAXL‘.
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FIGURE 7-9
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Notice that the large 1\:11 / VTC interaction prevalent in the earlier
validation results has been reduced. Moxre importantly, the correlation
of (.) with the other model parameters, noteably the initial conditions P A (0)
and PTC(O) have also been markedly reduced. The noise model parameters
are again independent. of the deterministic model parameters as expected.

We will now discuss the reproducibility of the estimates in
comparison with that obtained from the validation data. This is, after all,
the matter of prime concern. . These results are given in Table 7.7.
Aithough these results indicate that the observed sample variances still:
cannot attain the Cram;er ~Rao lower bound fhey are still extremely encouraging
as they bear out the predicted increase in reproducibility of the non-invasive
cardiac output estimation technique by going to this new form of experiment.
Notice that the reproducibility of all the estimates has been markedly improved

in comparison with previous results (and that of M and V especially so).

Tg
The average reproducibility of (.2 from these studies was found to be 6.2%
Recall the average reproducibility of (.2 from the validation experiments
(from Chapter 4) was 12.2% and that from the dye dilution estimates them-
selves was only 6. 8%. Thus, on the basis of this comparison the ultimate
attractiveness of the new form of experiment begins to look very promising.

Notice from the 12 sets of results that the (.Q reproducibility
is frequently better than 5%. However, 2 sets of runs REPO8 and REP15
are rather disappointing and tend to mar the overall picture which is otherwise
much better. This tended to suggest that these particular results might be
a bit dubious in some way.

A significant factor concierning these 2 datasets is thaf they

were both carried out on the same (female) subject. (each on a different

afternoon). In addition, these were the only two sets of runs in which
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Table 7.7
Reproducibility Data

Average Predicted Variances vs Observed Sample Variances

DATASET Q VA M Vrg
REPGL predicted  0.21  0.10  4.4x 107 0.24
actual 0.15  0.08  7.7x10 0.28
CV @) 2.2 2.8 2.6 7.9
REPG2 predicted 0,26  0.13  5.6x 10, 0.30
actual 0.30  0.30  9.8x 10 0.55
CV @) 5.1 10.8 40 . 16.0
REPQ7 predicted  0.35 0.23 3.5 x 10:2 0.7
CVG) = 48  10.2 3.4 1.3
REPPE predicted  0.24 0,17  2.0x 100 0.65
actual 0.69 0,53  6.6x 10 0.48
Cv &%) 12.3  17.1 3.1 10.8
REPQY predicted  0.36  0.17  3.3x 10 0.22
actual 0.60  0.37  10.4x 10 0. 42
CV @) 0.2 11.3 5.1 15.8
REP11 predicted 0,30  0.18  3.5x 107 0.16
actual 0.25  0.19  14.9x 10 0. 34
CV @) 4.6 6.0 7.4 13.6
REPI2 predicted  0.35  0.16  4.5x 105 0.29
actual 0.16  0.33  12.5x 10 0.65
CV %) 2.3 10.4 5.1 19.4
REP14 predicted  0.16  0.09  1.8x 1o:§ 0.22
actual 0.22  0.24  7.5x10 0.24
CV @) 4.0 113 3.8 6.4
REP1S predicted 025 0,12  2.0x10 0.27
actual 1.08 0,58  7.6x 10 0.38
CV @) 16.4 16,7 3.6 9.2
REP18 predicted  0.31 011  4.0x 107 0.13
actual 0.37  0.43 14 x 10 0.15
REP19 predicted 0.45 0.18  4.3x 10:3 0.26
actual 0.31  0.28  6.1x10 0.26
CV %) 42 . 7.8 2.2 8.3
REP20 predicted  0.21  0.12  1.9x 10:3 0.36
actual 0.18  0.14  5.4x10 0. 34
cv &%) 3.2 5.6 3.1 8.5
Average

CV@%h) 6.2 10.1 4.1 11.1
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this particular subject participated.

Further scrutiny of these particular results yield a very
interesting trend. In both sets of files the estimate for the fifst run is quite
high and successive estimates into the afternoon are all successively smaller.
The chances of this being a purely random phenomenon are felt to be remote.
Rather if: is suspected that this is a true biological variation which is being
observed (i.e. this is a natural trait of the particular subject who was not in
a true basal state throughout the course of the runs). In retrospect, t_l"liS
-shows up a disadvantage 6f not havil}g carried out dye cross c.:oinparisoﬁs;
since this p‘k;enomenon could have been detected and hence confirmed by this
means.

One of the rogue datafiles REPO81 was further investigated by
way of some stationarity tests. The results obtained by carrying out separate
estimations over 0;6 mins and 4-10 mins of the experiment for this file and
two other files chosen at random from the restofthe files were compared.
These are presented rin'Table 7.8. This analysis also had the double
advantage of allowing the stationarity of the estimates in general to be checked
for the form of experiment used. (Recall in section 7.4 of this chapter

some worry was expressed in terms of such a long period of CO,_ breathing

2
increasing C.Q directly).

For the two files chosen at random, REPO11l and REP121 the
two sets of estimates argree reasonably well with each other and with the
estimates obtained from fitting over the whole file, (apart, of course, from
the estimates of P A(O) and PTC(O) which one would expect to be different).

The different estimates are certainly well within the 95% confidence distances

of each other. Stationarity can therefore safely be assumed in these cases
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and it is believed on this basis in the cases of most of the rest of the data
files. However, in contrast for the file REPO81 the estimates obtainéd
over each half of the data are quite different. That is, the estimate over
the first half of the data is markedly larger from that obtained over the
second. This therefore confirms earlier suspicions about non-stationarity
of the estimates obtained on this particular subject.

Further temporal convergence results have been obtained by
successively estimating models over 2, 4, 6, 8 and 10 minutes of the data
for file REPOS1 ar:d file REP121 for comparison. These are gi\.ren in Table
7.9. This shows estimates of (-Q over suc.cessive portions of file REPC 81
monotonically decrease whilts those over REP121 tend to a steady value.

The results in Table 7.9 for REP121 tend to suggest that 6 mins
is a long enough observation time for adequate estimation of 6 and perhaps
this should be‘ borne in mind for the future definitive validation experiments.

In conclusion, from the above discussion it is felt there are
reasonable grounds for the cardiac output reproducibilities for data sets
REPO8 and REP15 to be honourably discounted. On this basis, calculating
a value for the average reproducibility over the rest of the filesets results
in a value of 4.6%, that is, better than the reproducibility of the dye dilution

results from the validation data.
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CHAPTER §

DESIGN OF IDENTIFICATION EXPERIMENTS TO FACILITATE
DISCRIMINATION BETWEEN HOMOGENEOUS AND
INHOMOGENEQUS LUNG MODELS - A SIMULATION STUDY .
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8.1 Introduction

To the people of the world today, the crippling respiratory
disorders of tuberculosis and pneumonia are no longer the great dread they
once were to their predecessors of the later 19th and early 20th century.
Nevertheless, pulmonary diseases are still a major cause of adult morbidity.
The nature of the more common respiratory disorders are illustrated
schematically in Fig. 8.1 in relation to a single conducting airway with
terminating alveolus. |
Although the pathology of these diseases may all be different in
-terms of impairment of normal lung function, these disorders can be
conceptualised as resulting in two l;asic effects. These are the maldistribution
of ventilation with respect to perfusion (blood flow) in the lung and/or the
opposite. For example, in atelectasis, blood is perfusing alveolar regions
V\;hich are not being ventilated. This 'wasted blood flow' is known as 'venous
admixture' or 'shunt’. Alternatively, oedema results in ventilation being
supplied to a portion of the lung which is not being adequately perfused. This
is 'wasted ventilation' and constitutes a parallel or 'alveolar dead space' (75,
221). In fact, these inhomogeneities exist even in the normal subject, e.g.
the supraclavicar regions of the lung where the pressure in the pulmonary
arterioles is less than atmospheric resulting in collapse in this regi(;n; this
is in effect alveolar deadspace. Also, part of the bronchial flow together
with the venae cordis minimae of the left heart constitute a shunt. However,
. inevitably the effect of inhomogeneity is more pronounced in pathological
conditions.

It can be shown that the presence of significant degrees of venous

admixture or alveolar deadspace has a deleterious effect on the efficiency of gas
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transport in the lungs. (For a more detailed exposition of this see West
(294), Chapter 4.) This means that, in a resting state a chronic bronchitic
for example,- must expend more energy. to maintain adequate blood gas levels
than the equivalent person with normal lung function.

Most of these diseases are irreversible in thaf tissue once
destroyed cannot be restored. However, they can be arrested and the
symptoms at least temporarily relieved given an early diagnosis. Thus, in
this respect, a sensitive test of pulmonary function suitable for mass screening
purposes would l.ne an immensely useful clinical tool. Although radioactive
tracer experiments (20, 209, 295) have yielded very useful results on
distributioﬁs of ventilation and blood flow in the lungs, unfortunately they are
not entirely suitable for this purpose.

Thus, having identified the need for a simple technique for early
detection of lung inhomogeneity, this chapter explores one approach to this
problem via the use of mathematical models and identification techniques.

. In the discussion above we have implicitly inferred three types
of structure in the diseased lung (alveolar dead space, shunt and ideal gas
exchanging area). Therefore, parsimonious models of suc-h a lung must also
reflect these three basic facets. Thus, for this purpose an inhomogeneous
inert gas model is used,which is a variant of the form of dynamic models with
time-varying ventilation described in Chapter 2. The basis of such a model
is outlined by Pack (228) and is in fact a dynamic version of the classic steady
state model first suggested by Riley and Cournand (245, 246). It was decided
to use an inert gas model in this work to aleviate difficulties with the
mathematical complications of the 02 or 002 dissociation curves (see Chapter 2)

and subsequently simplifying the model by avoiding the need to include a

metabolic term in the equations.
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Although the model itself is not original, the idea behind its
utilisation in the proposed new test of pulmonary function is felt to be novel.
The new technique relies on using an extension of the design techniques
discussed in Chapter 7 to evolve dynamic experiments which resolve the
ambiguities between the homogeneous and inhomogeneous gas exchange
models. Thus, when each of these models are fitted in turn to the resultant
patient data from these experiments and a test of model structure (see’
Chapter 4) used to discern which model is appropriate to the current patient
data, this structure test will be rendered optimally powerful and hence hope-
fully very sensitive.

The method as well as being a test of model structure also
permits quantitive assessment of the degree of inhomogeneity in terms of
the volume of the alveolar deadspace.  However, care has to be taken as to
how this quantity is interpreted as it is concepfual rather than anything physical
(i. e. the lung is in reality a continuum of different compartments (alveoli)
with a corresponding continuous distribution of \./'/(5 ratios.) In comparison,
our model effectively assumes this structure to be lumped into three compart-
ments with \.f/(s ratios of 0, 1 and infinity. In clinical terms this is not
necessarily disadvantageous since the standard steady-state tests of pulmonary
index (e.g. (119) ) are equally conceptual. All it means is that a period of
assimilation with the neV\} technique will be necessary before it can be used

A‘ as an effective tool.

This ch.apter then describes a preliminary theoxetical
investigation of the feasibility of this new technique although, unfortunately,
time has not permitted any practical experiments to be carried out,

In Section 8.2 of this chaﬁter the published literature on mathe-

matical models describing inhomogeneous lungs and their application in
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quantitive assessment of lung disfunction is reviewed. In section 8.3

the inhomogeneous inert gas transport model is presented and the
identifiability aspects of this model are discussed in section 8.4. Section 8.5
introduces the necessary extensions of the theory of Chapter 7 to design
experiments for model structure discrimination. Finally, in section 8.6

this theory is utilised to design an experiment to discriminate between the
homogeneous and inhomogeneous model for a reasonable.‘a priori set of

parameters and the implications of this are discussed.

8.2 Inhomogeneous Gas Transport Models Review

Many types of models, both dynamic and steady-state have been
used to describe gas transport in the lungs in conditions of abnormality.
As briefly mentioned in the introduction, the first significant contribution to
modelling lung inhomogeneity was the work of Riley and Cournand (246)
(subsequently known as the 'Riley analysis’).

This analysis allowed percentage shunt or venous admixture

( Q shunt '/ Q total ) to be calculated from steady state measurements of

arterial and mean end-expiratory CO, partial pressures and percentage

2

alveolar deadspace (V ) to be calculated from steady-state

alv d / Vtzidal vol
measurements of end-expiratory, mixed veneous and arterial O2
concentrations.

Although the above analysis has been widely used Kelman (172)
has shown it to be sensitive to measurement errors. ( Many of these errors
can be traced to the deleterious assumptions about ventilation necessitated by

the steady-state analysis.)
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Although the three compartment concept of Riley and Cournand' .
is a parsimonious representation of the inhomogeneous lung, many workers
have sought a form of model corresponding more closely to the 'true state
of nature' (since in reality the lung corresponds to a continuum of compart-
ments). Thus, many workers have considered the lung as consisting of a
number of compartments in parallel (regional inhomogeneity e.g. (254) )
whilst others have proposed considering the lung as consisting of a number
of compartments in series (stratified inhomogeneity e.g. (260) ).

The 'correct' representation has iong been an issue of ﬁrime
contention in the literature.

Intuitivély, however, it is felt (on the basis of a conceptual
analogy with the case of electric circuits) that every parallel representation
will have a series equivalent and hence the above polarisation is um%gcessary
since one will be unable to differentiate between the competing representations
anyway.

Recently, Wagner and Evans (289) have shown, for the specific
case of two compartment steady state models, that where series gas exchange
occurs, equivalent parallel analysis is also possible. Thus, this tends to.
support to some extent the above hypothesis.

Most of the inhomogeneous modelling work has focussed on inert
gas models (perhaps because the subsequent analysis is simplified for cases
which obey Henry's Law). Farhi (98) derived formulae describing the
elimination of inert gas in an individual pulmonary unit in the steady state.
His analysis showed that the retention (the ratio of concentration in the arterial
blood to that in the mixed venous blood) and excretion (the ratio of concentration

in expired air to that in mixed venous blood) was dependent only on the ratio of

- -

ventilation to perfusion in the pulmonary unit (V / Q ) and the solubility of the
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inert gas used ( X ).

Based on this analysis Farhi and Yokoyama (103, 305) describe
a method for determining the \.7/(3 distribution in a two compartment model
using two inert gases and show that in such a technique the solubility of the
gases must be carefully chosen.

More recently, again using Farhi's equations (98), Wagner
and his associates (292) have described a more ambitious technique for
determining the \.7/(5 distribution in a fifty compartment mddel using six inert
- gases With.‘a carefully chosen range of solubﬁities. From the six values of
retention calculated fér each inert gas,. a non;lmear least squares function
minimisation method is used to estimate the fractional blood flow in each of the
fifty compartments. This method has been used by these workers to
investigate the change in ;//(':) distribution during 100% O2 breathing 1:19 normal
subjects (291) and also to investigate changes in the distribution in subjects
with chronic lung disease (290). However, the techn‘ique hg‘s aroused some
criticism in the literature (163, 225, 283, 288) since basically as formulated
it constitutes an undetermined mathematical problem. (i.e. since we have 50
parameters and only six measurements the resultént estimates will therefore
be non-unique.) Wagner et al (292), although aware of this limitation, in an
empirical study of their method were able to accurately recover various
artificial distributidns and this thus led them to conclude that although there
were an infinite number of recoverable solutions they were all in essence
very similar. Olszowka (225) has since shown the folly of this claiming
Wagner et al (292) were only able to recover the artificial distributions

because these coincided with the 'minimal length solutions' (149). In dynamic

inhomogencus models it is no longer appropriate to use ventilation-perfusion
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ratio ({7 /Q. ) as the basic variable underlying gas exchange in a functional
pulmonary unit as this is essentially a steady-state concept (255).
In this area most of the models have been developed to quantify
inert gas washout tests which have been used as an index of pulmonary

function for some years now (119). Therefore, in this situation it is necessary

to describe this essentially exponential process via some kind of rate-variable.

Although to a control engineer the use of time constant (i.e. time for the
process to reach 0. 693 of final value) is obvious in this context, in the
respiratory physiological literatu;e there has been a prolification of different
rate variables. In some work the exp;mential process is considered as a
function of breath number (e.g. rate variables alveolar dilution.ratio - see
Fowler et al (120 ), or specific tidal volume - Gomez (132) ), whilst in
others as a function of time (e.g. rate variables turnover fate - see Robertson
et al (247) or half-time Van Liew (286) ). However, the work of Rossing
(250) has resolved this ambiguity by showing most of these rate variables
can be equivalenced if both tidal volume and breathing frequency are constant
(which is the usual assumption in most of these analyses), Various forms
of distribution function can be used to combine any of the above representations
of individual pulmonaxry units into a description of the overall process taking
place in the lung (the units are usually thought of as being in parallel although
as discussed earlier, this is merely conceptual).

In the discrete weighting function approach the lung is viewed
as consisting of a finite number of compartments (most usually two). Into
this category, e.g. falls the work of Fowler et al (120) (2 compartments)
and Hashimoto et al (150) (6 compartments)., Mention should also be made of

the work of Briscoe, Cournand and associates (45) in terms of discrete
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compartment analysis. These workers have applied a two compartment
representation to the study of diseased lungs in actual subjects (44, 46).
Many workers have assumed a continuous distribution function, i.e. viewing
the lung as an infinite number of wash-out units.

In mathematical terms, the dependence of the wash-out response
Cﬁ (t) on the distribution function of lung clearance rate variables G (X )

can be written in the form

O
. i -\ :
Cz @ = ch(O) a>™ye " Fax 8.1

o

X\ being tﬁe clearance rate variable for a given functional unit. The aim
then is obviously t;: compute G ( PN ). )

To simplify the analysis the distribution function is sometimes
assigned a known analytical form, e.g. Rossing et al (251) assume a Gamma
distribution which reduces the subsequent estimation problem to finding the
three parameters of this distribution.

Nakamura et al (217) have attempted to estimate the distribution .
function G( X\ ) without recourse to assuming any specific analytical forrn;

Recognising expression 8.1 as describing a La‘tplace integral
they invert this numerically to obtain G(>\ ) via the Post-Widder equation
(236).

This approach has also been used by Okubo et al (224) in a clinical
evaiuation of the technique applied to differentiate between normal and abnormal
function with respect to patients with suspected obstructive lung disease and
Lenfant et al (181) in calculating the distribution function of pulmonary blood

flow. More recently, however, Peslin (236) has cast doubts on the fundamental

numerical aspects of the method.
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Finally, in a recent new approach Yamashimo et al (304)
administered a PRBS input of 100% O2 and cross-correlated this with the

end-expiratory N, concentration in order to estimate the impulse response

2

9 clearance. They show the first and second moments of the lung

of N
clearance distribution function G ( pN ) can then be computed by lst and 2nd.
order differentiation of the impulse response function at t = 0. Although
apparently open to the same criticisms as the technique_ of Nakamura et al

(217) these authors propose that their technique largely overcomes these

problems by working with impulsive as opposed to other forms of output.

8.3 The Dynamic, Inhomogeneous Inert Gas Model

Many of the p?cevious inhomogeneous lung models described
in Section 8.2, although more natural in terms of attempting to describe
the underlying gas exchange process, are not really suitable for identification
purposes due to their inherent redundancy.

Thus, recourse must be made to rhodels which, although more
conceptual, functionally describe the essential facets of the process and
also allow identification techniques to be applied.  This section develops
such a model. The identifiability implications of this will be investigated
in the succeeding section.

The proposed inhomogeneous model, as mentioned earlier, was
inspired by the classical steady state model of Riley and Cournand (246) and
is outlined schematically in Fig. 8.2. From this diagram it is seen the
structure is basically that of the two compartment homogeneous - model

described in Chapter 2, but augmented with the addition of an alveolar dead~
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space compartment and a right to left shunt ( QS ) (about which no dynamics
are assumed).
Utilising the concepts and quantities of Chapter 2, the system of’

equations governing this system can be written as follows :

alveolar dead-~space compt.

v AD i lkyv(e- ) 8.2
Ap @ 17 Fap)
'ideal' compt.
dPy . <,
. % -
Vy 3= SKV(Pf -Py ) +k Qap (P -P,) 8.3

‘effective’ tissue compt.

dPTy 4
VTC el le(Pa-PTC) 8.4
where V A is the volume of the alveolar deadspace compartment, k the
D

fraction of total ventilation distributed to the ideal compartment, and kl

the fraction of bloodflow distributed to this same compartment (i.e.

-

- ° 7
Qtotal = kl Q +(1- lc1 ) QS ). %y 1s the Ostwald coefficient between

ideal

the lungs and blood. As before,. VTC is an effective tissue volume related

to the actual physical tissue volume by

!
» (blood -tissues)
N (lungs -blood)

Voo =V

actual

The remaining parameters are analogous to those defined in Chapter 2.

From the above equations it is evident the order of the model has been

increased by one from that of the homogeneous model.
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The assumptions inherent in the model are, where applicable,
those made for the cyclic homogeneous model discussed in Chapter 2, (e.g.
‘plug-flow' through non-reacting deadspace, no circulatory time delays,
etc.). However, several of these assumptions require modification to be
applicable to this latest structure. Due to the presence of the 'shunt’' we
can no longer assume equality ofarterial and alveolar partial pressures.

The new relationship between these quantities is given by : -

Py=k Pyt (1-k) Prg | : 8.6

". also, the mean end expiratory partial preésue is modified as follows : -

P-

- =LV [k Py+(1-k) By ]

Z Ve

8.7

;:vhere the summations are over the appropriate end-expiratory phase as
defined in Chapter 3.

The variations of the ideal and alveolar dead space compartment
volumes with time are taken to vary with their respective ventilations as

follows :

VA(O)+ ka dt 8.8

VAD(t)= VAD(0)+I(1 -X) V dt 8.9

v, ©

Assumptions also have to be made about the distribution of (series) dead
space gas re-inspired; thus again it is assumed dead space gas is
distributed to the two alveolar compartments in proportion to their
ventilation. If it is assumed gas flows through the dead space with no
mixing, then in phase one of the respirétory cycle (see Chapter 2) the gas

leaving the dead space and entering the alveolar compartments will be
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PL®) = kPA(t-”«:—)+(1-k)PAD(t~T) 8.10

where U is the flow dependent time delay defined as in the case of the
homogeneous model by equation 2. 32 in Chapter 2. However, due to the
fact that the above is difficult to simulate, the dead space partial pressure
over phase 1 of the respiratory cycle is taken as the constant value equal
to the flow weighted mean from the two alveolar compartments over the

last dead space of the previous expiration.

= (uf s . , :
P = J [ Vg (kB + (1 k).PAD).] dt L s
ty :
. tI y 4
where tx is given by fr,x 'VE' dt = VD 8.12

The inhomogeneous model as described above has thus six parameters
(Q,Vv,,Vv.,,V , k, k. ) since for inert gases the initial conditions
A’ T’ Ap 1

. N\
can (unlike in the case for O, and 002 ) be safely be assumed a priori to be

2
zero. It remains to investigate in this next section whether this constitutes

a unique parameterisation for identification purposes.

8.4 Identifiability of the Inhomogeneous Inert Gas Model

To investigate the identifiability of the inhomogeneous model
described in the previous section it is necessary to arrange the equations

in state-space format. Defining P, as state x_ , P, as state x, and
AD 1 A 2
PTC as state x3 the state-space matrices (A, B, C, D) based on

equations 8.2 to 8.4 are as follows : -
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A = al1 0 0 8.13
0 299 %93
0 432 433

The input matrix

B = b ' 8.14

for sampling at mouth measurement matrix C = ]__ € Sy "0 __‘ 8.15

and D=20 8.16

~(1-k)V

where a11 = VAD 8.17
a- ) -(kV+ XBLQ) 615

22 VA
a = ABL le 8.19

23 VA

K, Q
a32 = VT . , 8.20

C

-le
3.33 = v 8.21

Tg
b1 =(1-k)V - 8.22 ; b2 = kV - 8.23

= - - 8,2 H = - .

c1 (1 kl) 4 c, kl 8.25

as in previous identifiability studies on gas exchange models ( c.f. Chapter 4)
¢ ?
we assume constant ventilation, i.e. V = const.

Recall from state space theory the transfer function of this system is obtained

from the matrices (A, B, C, D) as follows : -
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6 =clsi-a]™B =cC adi(S1-4)B = N§)

det (SI-A) D(S) 8.26

Due to the arithmetic complexity there are advantages in calculating

adj (SI - A )and det (SI - A ) in terms of the state space parameters

etc. ) rather than the intrinsic model parameters (Q, V,, V A etc. ).
D

If this is done, after some arithmetic labour we obtain the following expressions

CTRATY)

for N(S) and D(S).

N(S) =a Sz+ @, S + a, , | 8.27
DE) = 83+a'482+a'58+a6 : 8,28
where al s saveas a'é are given by
al = C1b1+ c2b2 8.29
az = = Clbl(a22+a33)+ 02b2(a11+a33) 8.30
@3 = ¢ b (8y) 833785385 ) + Cybya,, ag, 8.31
@, = -( a11+a22+a33) 8.32
@ = @y 8yt 8y, 835t 8yp 833 7 2384y) 8.33
o = 8.34

6 = "2 (3 ag3taygag,)

Notice from the above equations that the parameterisation in texms of the
state space parameters is not unique since there are 9 state space parameters
and only 6 independent Laplace transform coefficients. However, by

aggregating the parameters

cl N bl’ C2’b2’ a23 and a32 as foﬂows -
clb1 = a | 8.35
Cy b2 = b 8.36
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we achieve a unique solution in terms of this parameterisation. This is
an example of how this sort of analysis can be useful in eliminating
redundancy in this form of compartmental model. Equations 8.29 - 8. 34

can be written in terms of the intrinsic model parameters as follows : -

2 L]

.1—(1-k) VK'Y 8. 38
Nark; Q@ % Q k, Q
-(1-1<)V[1§y BI\“,l + V ]+k Vv “Vk)v ‘17 8. 39
Am ,-A .TC . . AD _TC
g - kalQ_ gs [A-K)VK Q : ' ‘ .
g =(1l-k) V S +. k' V _—V_T 8.40
A'T Ap ' Tg
o ' kK Q  k Q
‘°‘4f‘g"i}'kl'V 'I'C\TV_ + BVl + %7 8. 41
AD A A To
b o kY [ELE ]
5V, VTC 8.42
(1-x)v [ kv 0 &1 Q
% v, | v, (V) 8.49
Ap A Te

It might appear at first sight that the model parameterisation could be
assumed unique since we have six model parameters and six equations.
However, closer scrutiny of the equations above reveals the parameters

kl and E} to be unidentifiable (i.e. only the product kl (.Q can be uniquely
estimated). Physically this means that neither the degree of shunt nor the
cardiac output can be identified from measurements at the mouth using this
model, but only the product k : (3 = é * which conceptually could be thought
of as a sort of'effective pulmonary blood flow' flowing through the 'ideal’
alveolar compartment. It is pertinent to enquire if the shunt and total

cardiac output can be decoupled under any circumstances. If it was possible
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to sample arterial gas tensions another transfer function could be obtained
relating this quantity to the inspired gas partial pressure. This is obtained
!

by substituting a different measurement matrix C into equation 8.26 to

obtain a different G(S).  This measurement matrix is given by

[
C a[ 0 ¢ ¢ ] 8. 44
where ‘
¢y =k 8.45
c, = (L-k) . 8. 46

are obtained from consideration of equation 8.6 earlier.  If this is done
although the denominator of the resultant transfer function is the same as
that for sampling at the mouth earlier we obtain a different numerator N (S)

given by

_ 2
N(S)-oz7S +0188+c29 8.47

where in terms of the state space parameters we have

0'7 = c3b2 8.48
ag = c4b2 ag, " (all+ a33) 8.49
@y = cgbya), a0 -a;) ¢ by ag, 8.50

Arterial sampling thus contributes three more independent equations to the
system to be solved in addition to the six given earlier, in terms of the

intrinsic model parameters these become

kK kV=a, 8.51
Q-kDkVkQ  (1-K)V _ kQ =ag 8.52
VTC Vap VTC
. . Y, . ° °
KKV (1-0V 3\ Q _ (-k) “,Z__ Kk Q = a 8.53
v v Va_ W
Ap T Ap VTq
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Inspection of these extra equations shows if they can be made available
they can thus allow us to decouple the parameters kl and é Unfortunately,
at the present moment in time, continuous measurement of Pa is beyond the
state of the art as far as mass spectrometry is concerned. Thus,
disappointingly we will be unable to use this model to decouple shunt and
cardiac output until this measurement becomes available, i.e. this leaves
us with a five per model W;ith kl ('2 reparamaterised as 22* = kl Q.
Having iJ:‘tvestigated the structural identifiability of the model, it is now
appropriate to explore the degree of identifiability of the model. This has
be-enl done using a simulation programme (-LUNG 4) analagous to those |
described for the homogeneous model in earlier chapters which assumes
sinusoidal ventilation.

The inhomogeneous model (assuming an inert gas with solubility
>‘,BL = 2,0 ) was driven by a square wave stimulus. Parameter

values and experimental conditions used were :

homogeneous model Q = 5SL/M; V, =3L; V_, =7.5L;
A Ta
inhomogeneous model Q = 5L/M ; VA = 1,5L; VAD =1.5L; k=0.5;
VTC = 7.5 L.

experimental conditions were : -
V = 8 L/M; VD’= 0.2 L; breathing freq. = 15 br/min :

no.of breaths = 130 ; CI (%)=T%; T/2 = 20 breaths.

The sensitivity functions corresponding to this input are shown in Fig. 8. 3.
Sensitivities to Q, V A VTC are similar to those of the homogeneous model.

It was found variation of the sensitivity function for flow fraction k was

highly dependent on the value of k used ; much more so than the other
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sensitivities. This is illustrated in Figure 8. 4.

Extensive simulation studies of this five parameter inhomogeneous
gas exchange model were conducted. From these it became apparent that
although the model was identifiable problems of determinancy (in the sense
defined by Brown and Godfrey (44) ) existed. For different sets of parameter
values and simulated experimental conditions large correlations between
various parameters were a frequent occurrence (often, but not always
between k, V A v Ap ) and the condition number of XT X (‘X being the .
sensitivity matrix) was consiste'ntly large, i._é. fc;r the experiment and

paramater values given above.-

2max xTyy < 5.3x%10° 8.54

min

Thus, on the basis of these observations it was decided to attempt to reduce
the ill -conditioned nature of the model by attempting to find some relationship
between the parameters which allows us to reduce their number ; the object
behind this to make thé model a better proposition for subsequent identification
studies.

One way in which this can be done is to assume ventilation is
distributed to the two alveolar compartments in propoxrtion to their respective

volumes, i.e.

A (1-k) ’
Ap

This allows reparamaterisation of k ( and (1-k) ) in terms of V A and V Ap e.g.

_ A
(VA-I- VAD)

K 8.56
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The number of parameters B in the model is thus reduced from five to

, VAD)T )« The above

- ¥
four by this mechamism. (8= (Q , V, , VT

assumption is not altogether unreasonable physiologically and in fact has
frequently been made by other workers in this area (150). With this re-
paramaterisation the set of non-linear equations (equations 8.38 - 8.43 )
defining the relationship between the coefficients of the model input/output

transfer function and its intrinsic parameters become :

2 2
LVa, =V ]

” @ _— 8.57
(VA+VAD‘)

'2 2 2 . 2 2 2 . -*

v [VAD + v, ] Qv [VAD+VA] v,“vQ
3 * 2 2 = %
(V,+V, ) v vV, +V, ) V.. (V. 4V, )

AT Ay T, A AL Tg AT AL
. ey . g ) 8.58
Q*V [VAD +V, ]
] 2 = as 8'59
(V,+V, )V
AT ) T
) P o~
2V \gr, @ Q
b -+ + —_— = o 8o60
(v,+v,) .V 4
AT YAg A T,
V2 2VQ VN, QF '
M g . 09 . L BL _, 861
vV +V,_ ) V.. (V. +V_ ) V, (V,+V,_ ) 5
A T, A" AL ACTAT YAl
.2 » .
v 2. &7 -« : 8.62
ANEA A 6
D C

- From consideration of these equations it does not appear as if the structural

identifiability is untowardly affected by the introduction of the modified model
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paramterisation. The new parameterisation, however, does explicitly

change, as would be expected, the form of the sensitivity functions for V A

and V A although the effect on the other sensitivity functions is minimal.
D

These are shown in Figure 8.5. The variation of the sensitivities functions

for Vv A and V A with distribution of ventilation to the two alveolar compart-
D

ments (i.e. with partitioning of a total conceptual lung volume between V A

and V Ap ) is shown in Figures 8.6 and 8.7. This shows the great dependence
of these senstivity functions ona .priori paramater values. By reducing the
number of parameters from five to four in the model, it W&Si found the ill~
conditionéd naturé of the sensitivity matrix was markedly reduced, i.e. for

the equivalent conditions defined for the five parameter model above the

condition number of XT X for the four parameter model was

PN
2max Ty y - 1.3x10% | 8. 63

\min

»

Thus the condition number is reduced by a factor of greater than ten by
postulating this new model structure. Functionally, therefore, provided
the assumptions are reasonable, this latter model represents a better

candidate for identification.

8.5 Experiment Design for Structure Discrimination - Theory

In the introductory section of this chapter it was mentioned that the
inhomogeneous gas transport model was to be used in a technique to
distinguish between normal and abnormal pulmonary function at a clinically

useful stage. Central to this is the concept of designing identification
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experiments to optimally discriminate in the presence of noise between the
homogeneous and inhomogeneous gas exchange models ; both of which are
competing to describe the underlying data generating mechanism in any
given patient. Having designed the identification experiment it is envisaged
some appropriate test of model structure is used to decide the appropriate
model. Such techniques may for example be those described in Chapter 4,
or the lik-elihood ratio test to be supsequently described.

The design of experiments for discriminating among alternative
‘model structures can b.e viewed as _;sln extension of the methods discussed
. in Chapter 7 concerned with the design of experiments for accurate par'ameter
estimation within a model of specified structure. The structure discrimination
problem is still in fact an active research area (predominantly in the
statistical literature (4, 17, 18, 105 ))and no unified theory yet exists .
Correspondingly reported applications are sparse with the work of Swanson
(275) in the respiratory control modeliing area and Koopmans (178) who
discusses the problem in relation to economic systems, being exceptions.

Theoretically, the largest barrier to progress lies in difficulty in
defining a meaningful criterion. A number of different criteria have been
proposed.

Lindley and Smith (186) presented a criterion based on Bayesian
7 principles; Box and Hill (38) proposed an information- theoretical approach
where the structural design problem is treated analogously to that of signal
discrimination in communication theory. In Beck and Arnold, Chapter 8 (22),
a deterministic approach to the problem is outlined. They derive different
criteria from sensitivity principles dependent on which competing model, if
any, is assumed 2 priori to be correct. As is shown by Atkinson (16),

under certain conditions such criteria can be given statistical interpretations.
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In the context of the present study we shall adopt a hypothesis
testing approach. As we shall see, such a formulation has, for our purposes,
certain advantages and leads to the derivation of a criterion with a more
satisfactory basis. The approach is basically that of Kabaila (166) as
described in (137). However, before developing the proposed discrimination
criterion it is necessary to review briefly the classical Neyman -Pearson
theory of hypothesis testing (218).

This theory is concerned -with two hypotheses; the first called the

nill hy.pothesis Ho, which is that of primary interest and the second the

complement of Ho which is termed the alternative hypothesis HA. A
statistical test of Ho against the alternative HA partitions the sample
space into a region of acceptance of Ho denoted by the set S and its
complementary region, a region of rejection of Ho which we will denote by S.

The latter is usually known as the critical region.

In such a test we could commit two types of errors.‘

Type I - Reject, H0 when it is in fact true - the probability of this
is given by @ = prob (S /Ho).

Type I - Accept Ho when it is in fact false - the probability

of this being B =prob (S /HA )=1 - prob (S / HA ).

The quantity o is called the significance level of the test and 1 - 8 the

power function of the test.

A test whose error probabilities & and 8 are as small as possible
is clearly desirable. However, equally clearly we cannot chose S in
such a way that each of these probabilities is simultaneously minimised.
This conflict is resolved by recognising in that many circumstances our

attitude to the hypotheses Ho and HA are different. We are often concerned

with the question as to whether there is suffici?nt evidence to reject Ho.
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In this respect a Type I error may be looked upon as more important than a
Type II. This was explicitly recognised by Neyman and Pearson who proposed
we should control the probability of a Type I error (i.e. fix @) then look for
a test for which a Type II error is minimised, (i.e. the power function ( 1 - 8)
is maximised). A test with useful properties in this respect is the Likelihood
Ratio test (261, Ch. 6/ 7‘ .) given as follows. Suppose the observations
come from one of a (broad) class of distributions and we want to test the
hypothesis Ho that they come from a distribution belonging to a particular
sub¥c1éss. To test this using the Likeliho.od Ratio test we form the I.-.ikélihood
ratio A (v ) by using as the numerator the maximum of Likelihood over the
broad class and as ghe denominator the maximum of the Likelihood over the
sub-class. Let @ be the pérameterisation of the general distribution and

let Qo be the M.LE, under Ho and s?)l the M. LE,under HA respectively.

max prob(y /¢, )
\ ) = ! : 8. 64

max prob (v /4, )

Clearxly the smaller ratio, the less inclined we are to accept the null
hypothesis Ho on the basis of the given data. The decision rule will be :

reject Ho if N> N o Where )\Q is determined so that

prob ( A> X ,/Ho ) = a 8.65

a being the significance level of the test. However, what of the probability
distribution of N ?  Say the data consists of identical, independeﬁrly
distributed observations and the null hypothesis is that there are 'r' locally
independent restrictions of the form —.

- L - .
B, - B, .o 8.66
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between the first 'r' parameters ( B 1 ) of the more general distribution

parameterisation (@ ), i.e. B l* is a fixed length vector and f3 1 is

given by

p = [ o 8]
QZ
: 8.67
2, -
o B
¢):c'+1 L2
L Q)n -

Under these assumptions it can be shown (261, Ch. 7) that 2 log h (y) is
distributed according to an 2 distribution on 'r' degrees of freedom, i.e.
2 log A (y) converges in law ( or probabilistically) to X (r). In this situation
the decision procedure given by equation 8.65 reduces to comparing
2 log X (y) with the value ka obtained from the cumulativex 2 (r)
distribution ( k o_,being such that 100 @ % of the distribution lies to the right
ofk_ ). We reject Ho if 2log X (y) > k .

Thus far we have been concerned only with the significance level
of the Likelihood Ratio test. To investigate the power of the test it is necessary
to consider what happens to the probability distribution of 2 log ( > (y) )
under a specific alternative hypothesis HA, e.g. that the 'true' value of Bl
is %& not 8 * .

Under this hypothesis (with the same conditions prevailing as in the
discussion above) it transpires that 2 log ) (y) is distributed according to a

non--cem:ral"x.2 distribution on 'r' degrees of freedom, i.e. 2 log PN (v)
’

converges in law to 7(. 2 ( s,h ), with the non-centrality parameter h given by
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- TRy [ - -1 ] -y .

h =(B, -B*) M'BlBl MBIBZM B,8, (B, -B*) 8.68
'){_a (s,h ) can be approximated for h large by a normal distribution with
mean h and variance 4 h whilst the’x 2 (r) distribution can be
asymtotically approximated as a sum of squares of 'r' independent zero mean,
unit variance normal variables. The probability density f;mctions for
2 log PN (v) under both Ho and HA are shown in Figure 8.8

Notice that thé area of the X 2 () to the left of kd correspon«:is ‘
to the significance level of the test and that of the ﬂ)(’z (x, ) to the
iéﬂ: of k  to the power of the test. 'Thus from this diag‘ramlwe reach the
conclusion that (}?or a fixed significance level a ) the power of the test is
related to the non-centraiity parameter h, i.e. the power of the test is
increased by making h large. This therefore allows us to make the important
connection between the ‘goodness’ of a structure discrimination test and the
form of experiment used since h is a function of the information matrix M
and hence of the experiment design.

Having justified the concept of maximising_the power of the test
via h, different experimental design criteria can be suggested based on this,
For example, a locally optimum criterion which maximises h for a specific
BA (so called T - optimum criterion) or a minimax criterion, both of which
are discussed by Atkinson and Federov (18). However, perhaps the most

useful is the D _ - optimal criterion (137 , Ch. 6) which is given by

-1
J = det | M M M 8.69
[ 8, B, 3132]

-M
6162 BIBZ

det [MBBK / det fM3232]
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Analagous to the D optimal and truncated D optimal design criteria for
accurate parameter estimation discussed in Chapter 7, this criterion is
invariant of scale changes in the parameters. Also in our application it has
advantages over the T optimum criterion in requiring less \a priori information
(i. e. the value of B N against which it is desired to discriminate; this is
generally unknown initially). Thus in the next section the DS optimal
criterion will be utilised in the context of gas exchange modelling to
investigate various structure discrimination experiments for differentiation_

between homogeneous and inhomogeneous models.

8.6 Experiment Design for Structure Discrimination Between the
Homogeneous and Inhomogeneous Inert Gas Models

This section is concerned with the design of identification experiments
to facilitate subsequent discrimination between data fits to homogeneous and
inhomogeneous lung models (inhomogeneity being taken as alveolar deadspace
in this application).

In section 8.5 the proposed approach to the structure discrimination
experiment design‘problem was outlined and an intuitively reasonable criterion
function for this purpése developed, based on hypothesis testing considerations.
It was also shown that in order to use the proposed approach, the theory makes
it necessary that the simpler of the two competing models can be expressed
as a special case of the more general model so that the zero null hypothesis
test can be suitably defined. Thus at this stage it is pert.inent to investigate
if our problem can be formulated in such a manner. In fact it canbe, as

~ we shall show, provided the inhomogeneous gas transport model is suitably

reparameterised.
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Recall from section 8. 3 the parameter vector for the five parameter

inhomogeneous model was : -
- § T
9 =‘_Q s VA F) VTC ? VAD ? k’] 8. 70

where these quantities are defined as earlier.

By employing the linear transformation

B =A@ +b 8.71
with b=[0000 117 | 8.72
and . ‘

A=1f0 o o 1 o] 8.73

' 0 0 0 0 -l

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

i i

This gives the reparameterised model vector B as
B=[V ,1-k'<3,V.V]T 8.74
Ap ? A’ T
Reparamterising the model in this way then allows us to use the hypothesis

testing approach discussed in section 8.5. Notice that with the model in

this form testing the null hypothesis Ho
Va
DY _
HO. Bl - {1 'k} - 0 . 8.75

is eqﬁivalent to testing the hypothesis that the homogeneous inert gas model
is preferred to the inhomogeneous one since under the restriction given by
equation 8.75 the inhomogeneous model and homogeneous model become
essentially the same.

The four parameter inhomogeneous model, with which we are

principally concerned in this section can be similarly reparameterised for
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use with the theory developed in section 8.5, i.e. by arranging 8 into the form

- * T
B = [VAD, Q. v, v | 8.76

then testing the hypothesis
Ho : B =[VA];\ - 0 8.77

allows us to ascertain if the homogeneous model is preferred to the
inhomogeneous model.

If it is assumed the measurement noise is white then the Ds optimal
criterioﬁ as given in equgtion 8.77 reduced in this particular application

to the following : -

T T -1 T

T
] = [x Xo =X @ Xp (X, Xp) X
s By TR B, "By TRy TRy B Xg, 8.78
with B‘l = VAD 8.79
Q
and B, = | Va 8. 80
2
Ve

Notice that this criterion could equally well be interpreted as a truncated

D optimal criterion (see Chapter 7) with V A the only parameter of interest
D

in the model.

In fact, it can be shown (18) that in this case, due to the fact Bl
is scalar, ali the different discrimination criteria based on hypothesis
testing mentioned in section 8.5 (i;e. T optimal, minimax, etc.) are essentially
equivalent and reduce to such a truncated D optimal criterion.

In order to investigate the best form of experiment to use for
structure discrimination, the simulation programme written for the
inhomogeneous model was extended to allow the DS criterion and related

quantities to be calculated for various sets of parameters and design strategies

[}
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of interest. The present experimental design study differs from that in
Chapter 7 since, in using an inert gas model, it has been implicitly assumed
that the solubility coefficient of the inert gas >\ is a design parameter at
our disposal and can be suitably chosen, in addition to the frequency of the
input square wave T » to enhance structure discrimination. That is in
this application the design space is two dimensional. It is apparent from
this that the design of the discrimination experiment could easily be tfeated
as a function minimisation problem and a soiution found using the generalised
~ function niinimisation package described in Abpendix B. However,}there are
difficulties in using the minimisation package ciirectly in this conteit, due to
the integer nature of the square wave period T (which must be a whole
number of breaths). This approach has therefore not been pursued. In
practice, only the variation of discrimination criterion in one dimension
(i. e. with one design parameter with the other fixed and vice versa) has been
investigated, w_hich is felt to be sufficient in this situation. In view of the
uncertainty as to exact model pai‘ameter values \a priori, or even which model
is the 'true' model, we are only really concerned with inferring the gross
nature of a good discrimination experiment rather than an 'optimal’ one.

The set of parameter values and constant experimental conditions

chosen for the design study were as follows : -

model parameters: Q= 5L/M; V

A=+2L;V =7¢5L:V =1 L.

TC D
const. experimental .
conditions : V=8L/M; VD

15 breaths/M; no. of breaths in expt. = 130 ; max. inspired gas input

= 0.2 L ; breathing frequency =

concentration = 7%.

This thus corresponds to a 13 minute experiment.

The variation of the Ds optimal criterion with square wave switching period
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i

is tabulated in Table 8.1 for fixed solubility coefficient ( N = 2,0). Thisis

illustrated graphically in Figure 8.9, The variation with T oftheD optimal

criterion and the Dt optimal criteria forQ; V A and VT are also tabulated
c

in Table 8.1 for comparison.

These results show an extretﬁum for the DS criterion does exist at
a switching period T of around 16 breaths which is similar to the 'best'
switching period for the D optimal criterion (which attempts to design
experiments which give a best fit to the model as a whole).

-Now consider the variation of the discriminating criterion with

sWitchﬁg period T for a lower solubility inert gas (‘>\ = 0,01). This is

tabulated, along with the other criteria mentioﬁed above in Table 8.2 and
plotted in Figure 8.10. It is immediately apparent from these latter resuits
that there is a large increase in the discriminating criterion at all &
using the 10\3ver, as opposed to the higher, solubility gas. From Figure 8.10
we also see that the 'optimal' switching period at this solubility is increased
to 26 breaths. This change in the 'best' T  at different X shows that
there is in fact some interaction between the experimental design parameters
although the magnitude of the chénge shows this coupling is not too great.

In Table 8.3 the variation of the DS criterion with >\ for T fixed
(at ‘T =40 breaths) is considered. This is also plotted in Figure 8.11.
These results tend to confirm the findings above that model discrimination
is markedly better using low solubility test gases. In fact, this correlates
with the published findings of Farhi and Yokohama (103) for steady state inert
gas Aelimi.nation. These authors showed low solubility gases were better for
detecting pulmonary units with high {T/Q ratio (i. e'. 'alveolar dead space like'
regions with which we are specifically concerned. in this application as

regards discrimination).
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Table 8,1

Variation of DS Optimal Criterion, D Optimal Criterion and Dt Optimal

Criteria (Assuming Q,V A and VTCRespectively Are Primary Parameters

of (Interest) with Inspired Gas Concentration Switching Period

( AN =2.0)
Switching D¢ Opt. | D¢ Opt. | Dg Opt. Dg Opt. D Opt.
Period () Critn. Critn, Critn. Critn. Critn.
(Breaths) Q) V) Vo)
4 41,5 | 52.5 | 17.8 | 138.7 | 2.1x10%-
60.7 | 60.9 | 20.9 | 186.6 4.3% 10°
8 88.2 70.0 | 25.7 | 239.8 8.4 x 10°
10 116.7 | 649 | 26.5 | 283.4 1.2 x 10°
16 180.6 | 55.6 | 27.3 | 332.2 2.1x 10°
18 187.9 | 52.3 | 26.5 326.2 2.2 % 10°
20 193.6 | 46.4 | 24.6 | 208.6 2.1x 10°
26 194.0 | 35.6 | 23.5 309.6 1.9% 10°
30 189.3 | 34.5 | 21.8 | 271.8 1.8x 10°
40 174.1 29.9 | 21.1 224.0 1.5 x 10°
50 127.0 | 21.8 | 20.5 193.1 1.4%10°
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Table 8.2

Variation of DS Optimal Criterion, D Optimal Criterion and Dt Optimal

Criteria (Assuming (.Q, Va and Vo Respectively are Primary Parameters
L&

of Interest) with Inspired Gas Switching Period

(A =0.01)
Swit:ching D¢ S)pt. Dy th. D¢ thj.. Dg Opt. D Opt.

I(')Be;:;:fh; ;I" )‘ (i{-‘Ql;n- C(:\J;ZI;. cz:/’ 1‘;;) Criterion | Criterion
4 0.019 | 237.0 | 0.013 | 324.3 1.87 x 10°
0.024 | 318.4 | 0.007 | 478.7 1.95 x 10°
8 0.026 | 388.6 | 0.011 | 722.3 4.53 x 102
10 0.033 | 496.3 | 0.011 | 901.4 7.73 % 10°
16 0.051 | 638.6 | 0.012 |1517.9 2.23% 10°
18 0.061 | 678.7 | 0.013 |1676.6 3.40 x 10°
20 0.065 | 807.1 | 0.017 |1574.6 5.36 x 10°
26 0.100 | 559.3 | 0.014 |2011.5 8.72 x 10°
30 0.109 | 558.2 | 0.013 |1859.9 1.11x 104
40 | o0.126 | 485.4 | 0.014 |1538.5 1.34 x 10
50 0.160 | 316.5 | 0.14 |1202.5 1.29% 10%
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Table 8.3

Variation of Dg Optimal Criterion, D Optimal Criterion and D, Optimal

Criteria (Assuming é, VA, VTcRespectively are Primary Parameters of

Interest) with Inert Gas Solubility Coefficient

(™ = 40 breaths)

Solubility | D, Opt. | D Opt.| DyOpt. | DgOpt. | D Opt.
(A) Critn. Critn. Critn. Criterion Criterion
@ | on | v
0.01 0.126 | 485.0 | 0.014 1537.6 1.34x 10
0.1 10.15 | 406.7 1.0 1350.6 6.60 x 10’
0.47 |101.6 223.2 | 10.3 809. 7 3,18 x 107
2.0 174.1 20.9 | 21.1 224.0 1.5x% 10°
3.0 42.8 1.1 | 20.2 99,0 4.5% 10°
" 4.0 13.6 5.5 21.0 34.9 1.8x 10°
5.0 6.8 3.8 | 24.9 16.1 9.6 x 10
7.0 4.8 3.7 | 45.5 9.6 6.1x 10
10.0 6.1 6.0 | 84.0 10,9 | 5.7x 10
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For good resolution among the two competing models, one would
intuitively expect the experimental conditions to be such that the difference
between the 'true’ model and the model against which we are trying to
discriminate should be as large as possible. It was therefore considered
important to investigate whether the form of experiments dictated by the Ds
optimal criterion possessed this kind of reaséuring characteristic. To
explore this possibility the output of the inhomogeneous model with parameters,
experimental conditions, etc. as given above, (i.e. in particulaa? it assumes
the alveolar regions ar;e split in a 2- L ideal compértment and 1L alveolar
deadspace compax:tment), was comﬁared with a homogenem‘ls model with a 3L

alveolar volume and otherwise similar parameters as to the homogeneous

modei.
The variation of the mean sum of squares of the resultant differences
NBR _
between the two models (i.e. E' (Vags ~ V. )2 ) for varying X (at
o1 M1 ‘M2
fixed T = 40 breaths) is NBR tabulated in Table 8. 4.

By comparing these results with those in Table 8.3 it is seen a large value
of the DS optimal criterion is in fact synonimous with a large output difference
between the two competing models. This is interesting since Beck and
Arnold (22) starting with a specific initial objective of designing experiments
which cause the outputs of the two models in question to be maximally
different, arrive at a model discrimination criterion similar to the DS
optimal criterion derived in Section 8.5 of this chapter on hypothesis testing
considerations.

In Figure 8. 12 the output of the homogeneous and inhomogeneous
models for the same inputs are shown superimposed, both for X =0.01

and A = 16.0. From this diagram the increase in difference in the model
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Table 8.4

Variation of Mean Sum of Square Difference Between Outputs of Homogeneous

and Inhomogeneous Model with Inert Gas Solubility Coefficient (T = 40 Breaths).

. 2' .
Solwbility | D (Y,, -Y. )
(N ) M, M,

NBR (mmHtg)

0.01 235, 8
0.1 227,2
0.47 195.8
2.0 114.8
3.0 85.2
4.0 65.3
5.0 50.5
7.0 32.1

10.0 17.6
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outputs using a low rather than high solubility gas can be clearly appreciated.

Notice that at N = 0.0l in the above the r.m.s. difference between the
models is of the order of 15 mm Hg. This is a large difference when
one considers that a good respiratory mass spectrometer is typically
accurate to around + 0.1 mm Hg.

To summarise then, the above studies, although merely prefatory,
have at the very least served to illustrate that the application of the techniques
outlined in this chapter to the early detection of ventilatory lung inhomogeneity
" is a fruitful avenue for further research - both theoretical and practical.

The most pressing need in this respect is'to carry out some real live
identification experiments based on the results of this preliminary simulation
study. These could easily be carried out using the models and software
already developed for use in the work described in this thesis and utilising
the experiment rig and on-line data acquisition system at the Centre for

Respiratory Investigation.



- 281 -

CHAPTER 9

CONCL USIONS
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This project arose as part of a continuing programme of research
being carried out by staff in the Control Group in the Department of
Electronics and Electrical Engineering at Glasgow University in conjunction
with medical and scientific personnel at the Centre for Respiratory
Investigation, Glasgow Royal Infirmary.

The unifying theme of this collaboration was the belief that current
methods of analysing respiratory function could be improved by more
enlightened mathematical treatment _of measured pulmonary data. Recent
adva'ﬁces in signal processing techniques land the availability of increasingly
low cost éomputiﬂg power have served to enhance this perspective.

One area of this research involved development of a new technique
for indirect measurement of cardio-pulmonary parameters using only
" measurements of gas concentrations and ventilatory flow rate at the mouth.
The clinicians had focussed on the measurement of cardiac output as being
of specific interest since traditional techniques of measuring this are
invasive and therefore involve some discomforture for the patients,

Prior to the involvement of the author in this project, a homogeneous
C.‘O2 gas transport model had been developed for use in this technique and
some preliminary validation experiments had been carried out with limited
success. That is, althoﬁgh the resultant measurements showed reasonable
mean agreement with results obtained using a more direct method (dye-
dilution) the reproducibility was inferior to that anticipatéd on the basis of
such a mathematical technique.

Thus, this Ph.D. project was commissioned to investigate in a more

rigourous way than done previously_, the parameter estimation aspects of
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the technique with the primary aim of uncovering mechanisms to increase
the reproducibility of the non-invasive measurement method.

In response to the question "Did the project fulfil the aims desired
of it at its inception ? " , the author is confident he can answer an unequivocal
"yes". The justification for this is the improved reproducibility of the model-
based cardiac output measurement technique resulting from using the new
form of test procedure derived from this project. Average reproducibility

. of the earlier validation studies was 12.2% for téle model -based techniciue

" and 6? 8% for the dye dilution technique. .. In contrast, the results obtained
from the later reproducibility studies using the new test are summarised in
Table 9. 1.

This table shows clearly the improvements obtained using the new
test procedure with the average reproducibility being 4.6% (if the 'rogue’
results for subject CN. are ignored). It transpires such a figure can in
fact be compared favourably with the results obtained at rest by any other
technique which has hitherto appeared in the literature (non-invasive or
invasive). This is illustrated in Table 9.2 where the results obtained by
the technique are compared with the relevant results extracted from Table
3.10f Chapter 3. These promising results positively encourage the hope
that the model -based cardiac output measurement method might eventually
aspire to the status of being a routine clinical tool. Before this happens,
however, further definitive validation studies are required to consolidate
the good reproducibility results. This is obviously the logical direction
for the work to progress in. Such a study is shortly to be undertaken at

C.R.I
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Table 9.1

Reproducibility Results Obtained From Series of
10 min. Cardiac Qutput Estimations Expts.

Subject Reproduc_ibilitL— % CO2 Reproducibility - 7% 002
(CV%) (CV%)
RB (M) REPQ2 REPQ@1
5. 1 % 2'2 %
RB (M) ' REPG7 - REP 12
4. 8 % . 2' 3 %
RMS C (F) REPQ9 REP 11
’ 10.2 % 4‘- 6 %
cM® s M) REP 19 REP 18
402 % 5'4 %
SN (F) REP 2 REP 14
3.2% 4.0%
L"—'\’\J
MEAN . 5.5 4.69 3.7%
CN (F) REPQS REP15
12.3% 16.4 %
\/‘V\_./

OVERALL MEAN 6.6 % 6.2 % 5.8%
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Table 9.2

Reproducibility Results Obtained From Various Cardiac
Output Measurement Techniques at Rest

Investigation

Franciosa et al
(122)

Franciosa et al
(122).

Ferguson et al
(109).

Glasgow University/
C L] R. I.

Method Coefficient of Variation
Dye Dilution 6.5 %
Collier CO,, re- 6.0%
breathing '
Defares CO, re- 13.3%
breathing . '
Parameter Estimation 4.6 %

based on CO_ Gas
Exchange Model.
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Further areas in which research outlined in this thesis could be
extended are discussed below.

Omne very obvious area is the application of identification methods
to inhomogeneous lung models as discussed in Chapter 8. Here much
experimental work remains to be done to ascertain if the structural model
discrimination technique suggested is sufficiently sensitive to i?orm the
basis of a routine test to differentiate between normal and diseased lungs
ata clinica].}y useful stage. Furthei' theoretical investigation could take
the form of looking at the sﬂitab‘ility of other forms of discrimination
criteria from that eventually used in Chapter 8. Fo.r exgmple, thg
information-theoretic approach (38). Whilst still discussing the prospects
in this area, it is also worth noting that recent advances in blood-gas
probes (33, 94 ) are such that in vivo blood gas analysis may soon be
within the state of the art. In fact; some tentative studies in this diréction
have already been reported in the physiological literatufe (204). The new
mass spectrometeﬁ: used at the C.R.I. for the work described in this thesis
(see Chapter 3) is capable of being used with such probes shoﬁld reliable
versions become commercially available.

The poséibility of being able to continuously measure mixed venous
and arterial gas partial pressures should make the investigation of lung
inhomogeneity by system identificatibn techniques an even more feasible
proposition. That is, the availability of such measurements should permit
perfusion orientated inhomogeneities to be quantified which would be hitherto
unidentifiable by measurements at the mouth only (see Chapter 8). Another
possibility for further work is developing a recursive identification scheme

for use with the homogeneous CO, model to allow cardiac output to be

2

tracked in a situation where it is time-varying. This would form a logical
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continuation of the off-line work described in this thesis and might find
applicability e.g. in physiological studies of cardiac out put dynamics
under exercise, etc.

Such work would probably be able to take advantage of recent big
advances in recursive identification algorithms (162, 264, 192) and of
improved tools for their analysis (188, 189). The impetus for this
advancement is the interest in stochastic adaptive controllers (299, 12)
in an industrial process context. The numerical methods community have
tended to view many of these recursive identification techniques with some
disdain (e.g. the Kalman filter) due to rumours of theil; poor numerical
properties (32). Thus, bearing in mind numerical experiences with the
off-line function minimisation methods in this thesis it would be advisable
to devote some attention to these aspects of the equivalent recursive methods.
Some work has been reported on the development of numerically stable
algorithms based on the advantageous properties of triangular systems
(31) which is worthy of attention in this respect.  The author envisages
an advantageous way of augmenting the recursive estimation technique
might be by cascading it with a one step ahead test signal design 'control
law' as depicted in Figure 9.1.

This would increase the 'learning rate' of the scheme over that
obtained utilising a test signal fixed in advance. Such sequential optimal
experimental design techniques were briefly introduced in Chapter 7 (6,
174). Two disadvantages of these methods for our envisaged application
are the following. 'The first is that the criteria are based on a model
linear in the parameters and the second is that they are based on the
assumption of all the parameters‘b;ing of interest for identification (i.e.

D optimal criterion). However, some preliminary studies by the author
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(not included in this thesis) have shown these can be successfully adapted
for models non-linear in the parameters and in conditions under which
only a subéet of the parameters are of specific interest, such as pertain
to this envisaged application.

Whilst discussing the potential of recursive cardiac output
estimation, it is appropriate to mention the work of Brovko et al (47) which
has only recently come to the attention of the author on this very topic.

The aﬁproach has been inspired by the work of Zwaxrt et' al (309)
and the model used is concomitant with that develc;ped by these authors. In
the fechnique, =the extended Kalman filter (3) as improved by Ljung (190)
is used as the estimator. The form of test signal is chosen ?fpriéri.
Preliminary results reported' (47) seem to be extremely encouraging although
the method requires more experimental validation before it can be assessed
accurately. ‘

Finally, yet another area into which the work could usefully
progress is the study of the respiratory control system via identification
techniques.. Work has already been undertaken in this area elsewhere (e.g.
that of Swanson (272) ). However, in much of this, despite complex mathematics,
e.g. in the description of the respiratory 'plant’, the controller itself has in
essence been represented by simple empirical steady state equations with
an output taken as minute ventilation. However, contemporary
physiologists are beginning to be of the opinion that assuming minute
ventilation as the output index of respiratory.controller behaviour is too
gross for the study of a system which is after all cyclic (74) and are
advocating attention should be focussed on the within breath ventilatory
controller manifestations. That is, those of the tidal volume/breath cycle

timing sequence generator.
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In an associated project in-collaboration with the Department of
Electronics and Electrical Engineering and C,R.I. Greer (140) has carried
out simulation work on models incorporating such mechanisms, although not
via statistical identification techniques. Thus it is felt a study of the
respiratory controller by applying estimation techniques to the models
developed by Greer would be an area ripe for further research.

In fact, in the data collected for use in this project (i.e. see Chaptex 7)
the inherent ventﬂatqry response to the hypercapnic stimulus inherent in
" these files couid conceivably have enough information éontent to permit
preliminary identification studies to be carried out witﬁout recourse to further
experimentation. It is perhaps appropriate to finish this chapter on thg
following note. It was mentioned in Chapter 1 of this thesis that there is
a great reluctance at present for clinicians to take the use of control
engineering techniques seriously in the context of practical biomedicine,

It is the author's hope that the work presented in this thesis will be seen
as lending further weight to the increasing body of evidence that

cjuantitative control methods have in fact a significant role to play in the

biomedical area.



1.

3.

4.

6.

9.

=291 -
REFERENCES

ADBY, P.R., M.A.H. Dempster, (1974).
Introduction to optimisation methods.

Chapman and Hall, London, England.

AKAIXE, H. (1974).
A new look at statistical model identification.

I.E.E.E. Transactions Automatic Control, 19: 716-723.

ANDERSON, B.D.O., J.B. Moore, (1979).
Optimal Filtering, Chapter 8.
Prentice-Hall, New Jersey, U.S.A.

ANDREWS, D.F. (1971).

Sequentially designed experiments for screening out bad models
with F-tests.

Biometrika. 58 : 427-432.

AOKI, M., R.M. Staley, (1969).
On input signal synthesis in parameter identification.
Automatica. 6 : 431-440.

ARIMOTO, S., H. Kimura, (1971).
Optimum input test signals for system identification - an
information - theoretic approach.

International Journal of Systems Science. 1: 279 - 290.

ASHTON, C.H., G.J.R. McHardy, (1963).
A rebreathing method for determining mixed venous PCJO2
during exercise.

Journal of Applied Physiology. 18 : 668 - 671.

ASMUSSEN, E., M. Neilsen, (1953).

The cardiac output in rest and work determined simultaneously by

the acetylene and dye dilution methods.

Acta Physiologica Scandanavia. 27 : 217 - 230.

ASTROM, K.]J., (1970).
Introduction to stochastic control theory.

Academic Press, New Yorkl U.S.A.



10.

11.

12.

! 13.

14.

15.

16.

17.

18.

19.

- 292 -

ASTROM, K.J., (1967).

Computer control of a paper machine - an application of linear
stochastic control theory.

I.B.M. Journal of Research and Development, 11: 389 - 405,

ASTROM, K.J., T. Bohlin, (1966).

Numerical identification of linear dynamic systems from normal
operating records. In Theory of self-adaptive control systems,
Hammond, P.H. (Editor), Plenum Press, New York, U.S.A.

ASTROM, K.J., U. Borisson, L. Ljung, B. Wittenmark, (1977).
Theory and applications of self-tuning regulators.
Automatica, 13 : 457 -~ 476.

ASTROM, K.]., P. Eykhbff, (1971).
System identification - a survey.

Automatica, 7: 123 - 162.

ASTROM, K.J., C.G. Kallstrom, (1976).
Identification of ship steering dynamics.

Automatica, 12 : 9-22.

ASTROM, K.]J., B. Wittenmark, (1973).
On self-tuning regulators.

Automatica, 9: 185-199.

ATKINSON, A.C., (1972).
Planning experiments to detect i.nadequaté regression models.

Biometrika, 59 : 275-293.

ATKINSON, A.C., D.R. Cox, (1974).
Planning experiments for discriminating between models.

Journal of Royal Statistical Society, B.36 : 321~348.

ATKINSON, A.C., V.V. Federov, (1975).
The design of experiments for discriminating between two rival
models.

Biometrika, 62 : 57-70.

AYOTTE, B., J. Seymour, M.B. Mcllroy, (1970).

A new method for measurement of cardiac output with nitrous oxide.

Journal of Applied Physiology. 28 : 863~866.



- 293 -

20. BALL, W.C., P.B. Stewart, G.S. Newsham, D.V. Bates, (1962).
Regional pulmonary function studied with xenon133 .

Journal of Clinical Investigation, 41 : 519-531.

21. BAR-SHALOM, Y., E. Tse, (1974).
Dual effect, certainty equivalence and separation in stochastic eontrol.

I.E.E.E. Transactions Automatic Control. 19 : 494-450.

22. BECK, J.V., K.J. Arnold, (1977).
Parameter estimation in engineering and science.
John Wiley, New York.

23. BECKLAKE, M.R., C.]J. Varvis, L.D, Pengally, S. Kem:ung,
M. McGregor, D.V. Bates, (1962). '
Measurement of pulmonary blood flow during exercise u_sing
nitrous oxide.

Journal of Applied Physiology. 17 : 579-586.

24. BEKEY, G.A. (1970).
System identification - an introduction and survey.

Simulation. 15 : 151-166.

25. BEKEY, G.A., (1973).
Parameter estimation in biological systems : a survey.
In preprints 3rd IFAC Symposium on Identification and System
 Parameter Estimation. Held, Delft, Holland,

26, BEKEY, G.A., J.E.W. Beneken, (1978).
Identification of biological systems : a survey.

Automatica. 14 : 41-47.

27. BEKEY, G.A., S.M. Yamashiro, (1976).
. Parameter estimation in mathematical models of biological
systems. In Advances in biomedical engineering,
Vol. 6, Academic Press, New York, U.S.A.

28. BELLMAN, R., K.]J. Astrom, (1970).
On structural identifiability.
Mathematical Biosciences. 7 : 329-339.



29,

30,

. 3l.

32.

33.

34.

35.

36.

37.

- 294 -

BELLVILLE, J.W., B.]. Whipp, R.D. Kaufman, G,D., Swanson,
K.A. Agleh, D.M. Wiberg, (1979).

Central and peripheral cheomoreflex loop gain in normal and
carotid body-resected subjects.

Journal of Applied Physiology, Respiratory, Environmental and
Exercise Physiology. 46 : 843-853.

BENDAT, J.C., A.C. Piersol,(1966).
Measurement and analysis of random data.

John Wiley, New York, U.S.A.

BIERMAN, G.]J., (1976).
Measurement updating using the U-D factorisation.
Automatica, 12 : 375-382.. '

BIERMAN, G.J., C.L. Thornton, (1977).
Numerical comparisons on Kalman filter algorithms : orbit
determination case study.

Automatica, 13: 23-25.

BLACKBURN, J.P., (1978).
What is new in blood gas analysis ?

British Journal of Anaesthesia. 50: 51-62.

BOCK, A.V., H. Field, G.S. Adair, (1924).
The oxygen and carbon dioxide dissociation curves of human blood.

Journal Biological Chemistry, 59: 353-377.

BOHLIN, T. (1978).
Maximum ~power validation of models without higher order fitting.

Automatica. 14 : 137-146.

BOOTH, A.D. (1957),
Numerical Methods.

Butterworths , London.

BOWEN, H.C., R.]J. Fenton, M.A.M. Rogers, R.D. Hurrion,
R.J.R. Secker, (1979).
Interactive computing as an aid to decision - makers.

In O.R.' 78, Halley, K.B. (Editor), North Holland.



- 295 -

38. BOX, G.E.P., W.J. Hill, (1967).
Discrimination among mechanistic models.

Technometrics, 9: 57-71.

39. BOX, G.E.P., G.M. Jenkins, (1970).
Time series analysis : forecasting and control.

Holden-Day, San Francisco.

40. BOX, G.E.P., H.L. Lucas, (1959).
Design of experiments in non-linear situations.

Biometrika. 46 : 77-90.

41. BOX, M.]J., D. Davies, W.H. Swann, (1969). -
Non-linear optimisation techniques.

I.C.T. Monograph No. 5, Oliver and Boyd, Edinburgh.

42. BRIGGS, P.A.N., D.W. Clarke, P.H. Hammond, (1968),
Introduction to statistical identification methods in control systems.

Control, March Issue.

43. BRIGGS, P.A.N., K.R. Godfrey, P.H. Hammond. (1967). .
Estimation of process dynamics characteristics by correlation
methods using pseudo-random test signals. In Preprints 1st IFAC
Symposium on Identification and Process Parameter Estimation.

‘Held at Prague, Czechoslavakia,

44, BRISCOE, W.A., E.M. Cree,]. Filler, J.E.H. Houssay,
A. Cournand, (1960).
Lung volume, alveolar ventilation and perfusion interrelationships
in chronic pulmonary emphysema.
Journal of Applied Physiology, 15: 785-795.

45, BRISCOE, W.A., A. Cournand, (1959).
Uneven ventilation of normal and diseased lungs studied by an
open-circuit method. '

Journal of Applied Physiology, 14 : 284-290.

46. BRISCOE, W.A., E.S. Nash, (1965).
The slow space in chronic obstructive pulmonary disease.

Arnals New York Academy of Science, 121 : 706-722.



47.

48.

49.

50.

51.

52.

53.

54.

- 29 -

BROVKO, O., D.M. Wiberg, L. Arena, J.W. Bellville, (1979).
The extended Kalman filter as a pulmonary blood flow estimator.
In Preprints 5th IFAC Symposium on Identification and system
parametexr estimation.

Held at Darmstadt, Federal Republic of Germany,

BROWN, J.C., E. Rose, (1976).
Hybrid simulation of thermal processes during sintering.

In Simulation of Systems, Dekker, L. (Editor), North Holland.

BROWN, R.F., K.R. Godfrey, (1978).
Problems of determinancy in compartmental modelling with

application to bilirubin Kinetics.

* Mathematical Biosciences. 40 : 205 -224.

BROYDEN, C.G. (1965).
A class of methods for solving non-linear equations.

Mathematics of Computation, 19: 577-584,

BROYDEN, C.G., (1967).
Quasi-Newton methods and their application to function minimisation.

Mathematics of Computation. 21 : 368-381.

BROYDEN, C.G. (1970).
The convergence of a class of double rank minimisation algorithms
part I : general considerations.

Journal of the Institute of Mathematics and its Applications. 6 : 66-90.

BROYDEN, C.G. (1970).

The convergence of a class of double rank minimisation algorithms

part II : the new algoxrithm,

Journal of the Institute of Mathematics and its Applications. 6 : 222-231.

BURWELL, C.S., G.C. Robinson, (1924).
A method for the determination of the amount of oxygen and carbon
dioxide in the mixed venous blood of man.

Journal of Clinical Investigation. 1: 47-63.



-297 -

55. CARSON, E.R., L. Finklestein, (1973).
Problems of identification in metabolic systems.
In Preprints 3rd IFAC Symposium on Identification and System

Parameter Estimation. Held Delft, Holland.

56. CARSON, E.R., C. Cobelli, L. Finklestein, (1979).
The identification of metabolic systems ; a review.
In Preprints 5th IFAC Symposium on Identification and System
Parameter Estimation. Held at Darmstadt, Federal Republic

of Germany.

57. CERRETELLI, P., J.C. Cruz, L.E. Farhi, H. Rahn. (1966).
Determination of mixed venous 02 and CO2 tensions and cardiac
output by a rebreathing method.

Repiration Physiolog.y. 1: 258-264.

58. CHANG, H.K., L.E. Farhi, (1973).
On mathematical analysis of gas transport in the lung.

Respiration Physiology. 18 : 370-385.

59 CHATFIELD, C. (1975).
Statistics for technology.
Chapman Hall, London, England.

60. CHERNIACK, N.S., G.S. Longobardo, I. Shaw, M. Heymann (1966).
Dynamics of carbon dioxide changes following an alteration in
ventilation.

Journal of Applied Physiology. 21 : 785~793.

61. CHILTON, A.B., R.W. Stacy, (1952).
A mathematical analysis of carbon dioxide respiration-in man.

Bulletin Mathematical Biophysics, 14 : 1-18.

62. CLARKE, D.W., (1974).
Identification package for a PDP-11 computer.
Oxford University Engineering Laboratory Report, No. 1113/74.

63. CLARKE, D.W. (1975).
Time-domain techniques of system identification.
Applications lecture No. 2. Presented at S. R.C. Vacation School

on Stochastic processes in control systems.
Held at Warwick, England.



64.

65.

66.

67.

68.

69.

70.

71.

72.

- 298 -

CLARKE, D.W., P.]J. Gawthrop, (1975).
Self-tuning controlier.

Proceedings I. E. E. (Control and Science), 122 : 929-934,

COLLIER, C.R., (1956).
Determination of mixed venous 002 tensions by rebreathing.

Journal of Applied Physiology, 9: 25-29,

COBELLI, C., M. Frezza, C. Timbelli, (1975).
Modelling, identification and parameter estimation of bilirubin
kinetics innormal, hemolytic and Gibert's states.

Computers and Biomedical Research..8: 522-537.

COBELLI, C., A. Lepschy,, G. Romanin-Jacur, (1978),
Cofnments on "On the relationship between sl‘:ructu.ral identifiai)ility
and controllability, observability properties".

I.E.E.E. Transactions Automatic Control. 23 : 965-966.

COBELLI, C., A. Lepschy, G. Romanin-Jacur, (1979).

‘Identifiability of compartmental systems and related structural

properties.

Mathematical Biosciences. 44 : 1-18.

COBELLI, C., G. Romanin-Jacur, (1975).
Structural identifiability of strongly connected biological
compartmental systems.

Medical and Biological Engineering, 13 : 831-838.

COBELLI, C., G. Romanin-jacur, (1976).

Identifiability of biological compartmental systems in a general
input-output configuration. |

Mathem atical Biosciences. 30: 139-151.

COBELLI, C., G. Romanin-Jacur, (1976).

Controllability, observability and structural identifiability of
multi-input, multi-output biological compartmental systems.
I.E.E.E. Transactions Biomedical Engineering. 23 : 93-100.

CROFTON, J., A. Douglas. (1969).

Respiratory diseases, Chapter 1.
Blackwell Scientific Publications, Oxford, England.



73.

74.

75,

76.

77.

78.

79.

80.

81.

- Determination of P\'r CoO

- 299 -

'CRUZ, J.C., H. Rahn, L.E. Farhi, (1969).

Mixed Venous POZ’ 'PCOZ, pH and cardiac output during
exercise in trained subjects.

Journal of Applied Physiology, 27 : 431-434.

CUNNINGHAM, J.C., E.S. Petersen, (1978).

The physiology of breathing.

Prolegomena, symposium on Modelling of a biological control
system : the regulation of breathing.

Held at Oxford University, Oxford, England.

CUMMING, G., S.G. Semple, (1973).
Disorders of the respiratory system.

Blackwell Scientific Publications, Oxford, England.

DAVIDSON, W.C., (1959).
Variable metric methods for minimisation.

A.E.C. (U.S.) Research and Development Report No. ANL 5990,

DAVIDSON, W.C.,(1968).
Variance algorithms for minimisation.

The Computer Journal, 10 : 406-410.

DAVIDSON, E.]J. (1977).
Connectability and structural controllability of composite systems.

Automatica. 13 : 109-123.

DAVIES, E.E., H.L. Hahn, S.G. Spiro, R.H.T. Edwaxds, (1974).
A new technique for recording respiratory transients at the
start of exercise.

Respiration Physiology. 20 : 69-79.

DEFARES, J.G. (1958). )

from the exponential CQ, rise during

2 2

rebreathing.
Journal of Applied Physiology. 13: 159-164.

DELFORGE, J. (1977). i
The problem of structural identifiability of a linear compartmental
system : solved or not ?

Mathematical Biosciences, 36 : 119-125.



82.

83.

84.

85.

86.

87.

88.

89.

90.

- 300 -

DELFORGE, J. (1978).

Comments on "Controllability, observability and structural
identiﬁabillity of multi-input, multi-output biological compart-
mental systems."

I.E.E.E. Transactions Biomedical Engineering. 25 : 400-402.

DENNIS, J.E., ]J.]J. More, (1977).
Quasi-Newton methods, motivation and theory.
S.I.A.M. Review. 19: 46-89.

DEUTSCH, R. (1965).
Estimation theory.

Prentice Hall, New Jersey, U.S.A., .

DILL, D.B., W.H. Forbes, (1941).
Respiratory and metabolic effects of hypothermia.

American Journal of Physiology. 132 : 685-697.

DISTEFANO, J.J. (1976).
Design of tracer experiments for unique identification of non-
linear physiological systems.

American Journal of Physiology. 230: 476-485.

DISTEFANO, J.J. (1977).

On the relationship between structural identifiability and
controllability, observability properties.

I.E.E.E. Transactions Automatic Control. 22 : 652.

DISTEFANO, J.J., F. Mori, (1977).

Parameter identifiability and experiment design: thyroid hormone
metabolism parameters.

American Journal of Physiology, Regulétory Integrative Comparative
Physiology. 2: 134-144.

DISTEFANO, J.J., K.C. Wilson, M. Jang, P.H. Mak, (1975).
Identification of the dynamics of thyroid hormone metabolism.

Automatica. 11: 149-159.

DITTMER, D.S., R.M. Grebe (Editors).
Handbook of respiration.

W.B. Saunders, Philadelphia, and London.



- 301 -

91. DIXON, L.C.W., (1972).
Non-linear optimisation.

English Universities Press, London, England.

92. DIXON, L.C.W., (1972).
The choice of stéplength, a crucial factor in the performance of
variable metric algorithms., In Numerical Methods for non-
linear Optimisation. Lootsma, F.A., (Editor).

Academic Press, London, England.

93. DRAPER, N.R., H. Smith, (1966).
Applied regression analysis.

John Wiley, New York, U.S.A.

94. . EINER-JENSEN, N. (1978).
- Blood-gas probes.
Presentation at Breathing Club meeting on Lung Ventilation and
Perfusion : study by mass spectrometry.

Held at Royal Society of Medicine, London, England.

95. ELGERD, O.I. (1966).
Control systems theory.

McGraw-Hill, Tokyo, Japan.

96. EMERY, B., A.l. Pack, (1971).
An experimentally verified model of the gas exchanging properties
of the lung. |
In I.E.E. Conference Publication, No. 79, Computers for analysis

and control in medical and biological research.

97. EYKHOFF, P., (1974).
System Identification.
John Wiley, New York, U.S.A.

97a. ETSYON, J., D. Chazan, M. Itzkovitz, S. Bursztein, (1975).
Estimation of cardiac output from respiratory data.
In Signal analysis and pattern recognition in biomedical engineering,
Inbar, C.F. (Editor).
John Wiley, New York, U.S.A.



98.

99.

100.

101.

102.

103.

104.

105.

106.

- 302 -

FARHI, L.E., (1967).
Elimination of inert gas by the lung.

Respiration Physiology. 3: 1-11.

FARHI, L.E., P. Haab. (1967).
Mixed venous blood gas tensions and cardiac output by "bloodless"
methods : recent developments and appraisal.

Respiration Physiology. 2 : 225-232.

FARHI, L.E., M.S. Nesarajah, A.]. Olszowka, L.A. Mwetctide

'~ A.K. Ellis, (1976).

Cardiac output determination by simple one-step rebreathing technique.

Respiration Physiology. 28: 141-159. .

FARHI, L.E., H. Rahn, (1955).
Gas stores in the body and the unsteady state.

Journal of Applied Physiology. "7 : 472-484.

FARHI, L.E., H. Rahn. (1960).
Dynamics of changes in carbon dioxide stores.

Anaethesiology. 21: 604-614,

FARHI, L.E., T. Yokoyama, (1967).
Effects of V A / 6 inequality on elimination of inert gases.

Respiration Physiology. 3: 12-20.

FEDEROV, V.V. (1972).
Theory of optimal experiments.

Academic Press, New York, U.S.A.

FEDEROV, V.V. (1971).

Asymtotically optimal designs of experiments for discriminating
between two rival models.

Theory of Probability and its Applications. 16 : 561-562. .

FEINBERG, P.N., J.D. Schoeffler, (1975).
Computer optimisation methods applied to medical diagnosis.

Computers in Biomedical Research. 5: 3-19.



107.

108.

109.

110.

111.

112,

113.

114.

115.

116.

- 303 -

FENN, W.O., P. Dejours, (1954).
Composition of alveolar air during breath-holding with and
without prior inhalation of oxygen and carbon dioxide.

Journal of Appiied Physiology. 7: 313-319.

FERGUSON, D.R. (1976).

Private communication.

FERGUSON, R.]J., J.A. Faulkner, S. Julius, J. Conway (1968).

Comparison of cardiac output determined by CO_ rebreathing and

2
dye «dilution methods.

Journal of Applied Physiology. 25: 450-454.

FISHMAN, A.P., H.W. Frits Jnr., A. Cournand, (1960).
Effects of breathing carbon dioxide upon the pulm'onarj circulation.
Circulation. 22 : 220 - 225.

FLETCHER, R. (1969).

A review of methods for unconstrained optimisation.
In Optimisation. Fletcher, R. (Editor).

Academic Press, New York, U.S.A.

FLETCHER, R. (1970).
A new approach to variable metric algorithms.

Computer Journal. 13: 317-322,

FLETCHER, R. (1971).

A modified Marquandt sub-routine for non-linear least squares.
United Kingdom Atomic Energy Authority Research Group
Report R-6799,

FLETCHER, R., M.].D. Powell, (1963).
A rapidly convergent descent method for-function minimisation.

Computer'Journal, 6: 163-168.

FLETCHER, R., M.J.D. Powell, (1974).
On the modification of LDLT factorisations.

Mathematics of Computation. 28: 1067-1087.

FLETCHER, R., C.M. Reeves, (1964).
Function minimisation by conjugate gradients.

Computer Journal, 7 : 149-154.



- 304 -

117. FOWLE, A.S.E., E.S.M. Campbell, (1964).
The immediate carbon dioxide storage capacity of man.

Clinical Science., 27 : 41-49,

118. FOWLER, W.S. (1948).
Lung function studies II. The respiratory dead space.
American Journal of Physiology. 154 : 405-416.

119. FOWLER, W.S. (1951).
Intrapulmonary distribution of inspired gas.
Physiological Review. 32: 1-20.

120. FOWLER, W.S., E.R. Cornish Jnr., S.S. Kety (1952).
Lung function studies VIII. Analysis of alveolar ventilation by

pulmonary N, clearance curves.

2
Journal of Clinical Investigation. 31: 40 -50.
121. FOWLER, K.T. (1969).
The respiratory mass spectrometer.

Physics in Medicine and Biology. 14 : 185-199.

122, FRANCIOSA, J.A., D.O. Ragan, S.]J. Rubenstone, (1976).
Validation of the 002 rebreathing method for measuring cardiac
output in patients with hypertension or heart failure,

Jourmal of Laboratory and Clinical Medicine. 88: 672-682.

123. GILL, P.E., W. Murray, (1972).
Quasi-Newton methods for unconstrained optimisation.

Journal of the Institute of Mathematics and its Applications. 9: 91-108.

123a. GILL, P.E., W. Murray. (1974).
Newton-type methods for unconstrained and linearly constrained
optimisation,

Mathematical Programming 7 : 311-350.

124, GILL, P.E., W. Murray, (1976).
Algorithms for the solution of the non-linear least-squares problem.
National Physical Laboratory Report. No. NAC 71.

125. GILL, P.E., W. Murray, R.A. Pitfield. (1972).
The implementation of two revised Quasi-Newton methods for
function minimisation,

National Physical Laboratory Report, No. NAC 11.



126.

127.

128,

129.

130

131.

132.

133.

134.

- 305 -

GODFREY, K.R. (1978).

Basic Statistical Theory.

Lecture No. 4. Presented at S.R. C. Vacation School on Stochastic
processes in control systems.

Held at Warwick University, Warwick, England.

GODFREY, S., E. Wolfe, (1972).

An evaluation of rebreathing methods for measuring mixed venous
PCO2 during exercise.

Clinical Science. 42 : 345-353.

GOLDEN, J.F. (1972).

Mathematical modelling of pulmonary airway dynamics.

Ph.D.'thesi‘s, Rice University, Houston, U.S.A.

GOLDEN, J.F., J.W. Clark, P.M. Stevens, (1973).
Mathematical modelling of pulmonary airway dynamics.

I.E.E. E. Transactions Biomedical Engineering, 22 : 397-404.

GOLDFARB, D. (1970).
A family of variable metric methods derived by variational means.

Mathematics of Computation. 24 : 23-26.

GOLDFARB, D. (1976). .
Factorised variable metric methods for unconstrained optimisation,

Mathematics of Computation. 30: 796-811.

GOMEZ, D.M. (1963).

A mathematical treatment of the distribution of tidal volume
throughout the lung.

Proceedings National Academy of Science. U.S.A. 49: 312-319,

GOODWIN, G.C. (1969).
Input synthesis for minimum covariance state and parameter
estimation.

Electronics Letters. 5: 539-540.

GOODWIN, G.C. (1971).
Optimal input signals for non-linear system identification.

Proceedings I.E.E. 118: 922-926.



- 306 -

135. GOODWIN, G.C., J.C. Murdoch, R.L. Payne, (1973).
Optimal test signal design for linear single input-single output
system identification.

International Journal of Control. 17: 45-55.

136. GOODWIN, G.C., R.L. Payne, (1973).
Design and characterisation of optimal test signals for linear
single input-single output parameter estimation.
In Preprints of 3rd IFAC Symposium on Identification and System
Parameter Estimation.

Held at Delft, Holland.

. 137.  GOODWIN, G.C., R.L. Payne, (1977).
Dynamic system identification : experiment design and data analysis.
Academic Press, New York, U.S.A. '

138. GOODWIN, G.C., M.B. Zarrop, R.L. Payne, (1974).
Coupled design of test signals, sampling intervals and filters for
system identification.

1.E.E.E. Transactions Automatic Control. 19: 748-752,

139. GRAY, W.M. (1978).

Private communication.

AY

140. GREER, W. (1978).
A simulation of the control of breathing in humans incorporating
a stfuctural model of the controller.

Ph.D. Thesis, University of Strathclyde, Glasgow, Scotland.

141. GREWAL, M.S., K. Glover. (1976).
Identifiability of linear and non-linear control systems.

I.E.E.E. Transactions Automatic Control. 21 : 833-837.

142, GRODINS, F.S. (1963)..
Control theory and biological systems.

Columbia University Press, New York, U.S.A.

143. GRODINS, F.S., J.S. Gray, K.R. Schroeder, A.L. Norris,
R.W. Jones, (1954). i
Respiratory responses to CO2 inhalation : a theoretical study of a
non-linear biological regulator.
Journal of Applied Physiology. 7: 283-308.



144.

145.

146.

147.

14 8.

149.

150.

- 307 -

GROLLMAN, A. (1929).
The determination of the cardiac output of man by the use of
acetylene.

American Journal of Physiology. 88: 432-445.

GUSTAVSSON, I. (1972).
Comparison of different methods for the identification of industrial
processes.

Automatica. 8: 127-142,

GUSTAVSSON, I. (1973).
Survey of applications of identification in chemical and physical

processes.’

- In Preprints 3rd IFAC Symposium on Identification.and System

Parameter Estimation.

Held at Delft, Holland.

GUSTAVSSON, I., L. Ljung, T. Soderstrom, (1976).
Identification of processes in closed loop - identifiability and
accuracy aspects.

In Preprints 4th IFAC Symposium on Identification and System
Parameter Estimation.

Held at Thlisi, U.S.S.R.

HAMILTON, W.F. (1962).

Measurement of cardiac output.

In Handbook of physiology, section 2 : circulation, Vol. L
Hamilton, W, F. , P. Dow, (Editors).

American Physiological Society, Washington, D.C., U.S.A.

HANSON, R.J. , C.L. Lawson, (1969).
Extensions and applications of the Hous.eholder algorithm
for solving linear least squares problems.

Mathematics of Computation. 23 : 787-812.

HASHIMOTO, T., A.C. Young, C.J. Martin, (1967).
Compartmental analysis of the distribution of gas in the lungs.
Journal of Applied Physiology. 23: 203-209.



151.

152.

153.

154.

155.

156.

157.

15 8.

- 308 -

HARRISON, P.J. (1965).
Short-term sales forecasting.

Applied Statistics. 14: 102,

HARTLEY, H.O., (1961).
The modified Gauss-Newton method for the fitting of

non-linear regression functions by least squares.

Technometrics. 3: 269-280.

HESTENES, M.R., E. Stiefel, (1952).

Methods of conjugate gradients for solving linear systems

-Journal Research N.B.S. 49: 409,

HLASTALA, M.P. (1972).
A model of fluctuating alveolar gas exchange during the
respiratory cycle.

Respiration Physiology. 15: 214-232.

HOMER, L.D., B. Denysyk. (1975).
Estimation of cardiac output by analysis of respiratory
gas exchange.

Journal of Applied Physiology. 39: 159-165.

HSIA, T.C. (1977).
System identification.

Lexington Books.

HUANG, H.Y. (1970).
Unified approach to quadratically convergent algorithms for
function minimisation.

Journal of Optimisation Theory and its Applications. 5: 405-423.

HUGHES, M.T.G. (1978).

Optimum estimation techniques.

Lecture No. 6, Presented at S.R.C. Vacation School on
Stochastic processes in control systems, held at Warwick

University, Warwick, England.



159.

160.

161.

162.

163.

164.

165.

166,

- 309 -

HUNTER, W.G., W.J. Hill, T.L. Henson, (1969).
Designing experiments for precise estimation of all or some
of the constants in a mechanistic model.

The Canadian Journal of Chemical Engineering. 47 : 76-80.

INBAR, G.F., T.C, Hsia, R.]J. Baskin, (1970).
Parameter identification analysis of muscle dynamics.

Mathematical Biosciences. 7: 61-79.

INOUE, K., K. Ogino, Y.Savargc (1970).

Sensitivity synthesis of optimal input for parameter
identification.

Iﬁ Prléprinfsl?.nd. IFAC Symposium on Identification and = -
Process Parameter estimai:ion. -

Held at Prague, Czechoslavakié.

ISERMANN, R., U. Bauer, W.Bamberger, P. Knepo,
H. Sieberg. (1974). .

Comparison of six on-line identification and parameter
estimation methods. .

Automatica, 10: 81-103.

JALIWALA, S.A., R.E. Mates, F.]J. Klocke. (1975).
An efficient optimisation technique for recovering ventilation
-perfusion distributions from inert gas data.

Journal of Clinical Investigation. 55: 188-192.

JENERUS, R., G. Lundin, D, Thompson. (1963).
Cardiac output in healthy subjects determined with a 002
rebreathing method.

Acta Physiologica Scandanavia. 59 : 300-399.

JONES, N.L., E.J.M. Campbell, G.T.R. McHardy,

B.E. Higgs, M. Clode. (1967). '

The estimation of carbon dioxide pressure of mixed venous
blood during exercise.

Clinical Science. 32 : 311-327,

KABAILA, P.V. (1978).
Ph.D. Thesis, University of Newcastle, New South Wales,

Australia.



- 310 -

167. KAJIYA, F., K. Kawagoe, S. Kodama, N. Hoki, M. Inoue,(1969).
A method of study of radioactive tracer kinetics.

I.E.E.E. Transactions Biomedical Engineering. 26 : 422-428.

168. KARPLUS, W.J. (1978).
The spectrum of mathematical modelling and systems
simulation.
In Simulation of Systems. Dekker, L. (Editor).
North Holland.

169. KAUFMAN, R.D,, K. Agleh, O. Brouko, J.W. Bellville, (1978).
Site of action of doxapram.
In Preprints of Symposium on Modelling of a biological control
system : the regulation of breathing. ' o
Held at Oxford University, Oxford, England.

170. KELMAN, G.R. (1966).
Digital computer subroutine for the conversion of oxygen
tension into saturation.

Journal of Applied Physiology. 21 1375-1376.

171. KELMAN, G.R. (1967).
V Digital computer procedure for conversion of PCO2 into
blood CO2 content,
Respiration Physiology. 3: 111-115.
172. KELMAN, G.R. (1972). .
Exrors in Riley anélysis.

British Journal Anaesthesia., 44 : 433-436.

173. = KETY, S.S. (1951).
The theory and applications of the exchange of inert gases
at the lungs and tissues.

Pharmacological Reviews. 3: 1- 41.

174. KEVICZKY, L., C.S. Banyasz. (1973).
.On input signal synthesis for linear discrete-time systems.
In Preprints 3rd IFAC Symposium on System Identification

and System Parameter Estimation.

Held at Delft, Holland.



- 311 -

175. KIM. T.S., H. Rahn, L.E. Farhi, (1972).
Estimation of true venous and arterial PC‘O2 by gas analysis
of a single breath.

Journal of Applied Physiology. 21 : 1338-1344.

176. KINNE, F. (1972).
Mass transfer in the human respiratory system.

Ph.D. Thesis, Iowa State University, lowa, U.S.A.

177. KNOWLES, J.H., W. Newman, W.QO. Fenn, (1960).
DeterminaFion of oxygenated mixed venous blood CO 9 tension
by a breath-holding method. ‘

Journal of Applied Physiology. 15: 225-228.°

178. KOOPMANS, T.C. (1949).
Identification problems in economic model construction.

Econometrika. 17: 627-634.

179. KULLBACK, S. (1959).
Information theory and statistics.

John Wiley, New York, U.S.A.

180. . LAM, C,F., A.P. Gross. (1979). .
Comparitive study of parameter estimation procedures in
enzymic kinetics.

Computers in Biomedical Research. 9: 145-153.

181. LENFANT, C., T, Okubo. (1968).
Distribution function of pulmonary blood flow and ventilation -
perfusion ratio in man.
Journal of Applied Physiology. 24 : 668«677.

182. LEVADI, V.S. (1966).
Design of input signals for parameter estimation.

I.E.E.E. Transactions Automatic Control. 11 : 205-211.

183. LEVENBERG, K. (1944).
A method for the solution of certain non-linear problems

in least squares.

Quarterly Journal of Applied Mathematics. 2 : 164-168.



- 312 -

184. LEVIN, M.]J. (1960).
Optimal estimation of impulse response in the presence of noise.

I.R.E. Transactions Circuit Theory. 7: 50-56.

185. LIN, K.H., G, Cumming. (1973).
A model of time-varying gas exchange in the human lung
during a respiratory cycle at rest.

Respiration Physiology. 17 : 93-112.

186. LINDLEY, D.V., A.F.M. Smith. (1972).
‘ Bayes estimates for the linear model. '

Journal Royal Statistical Society. B34: 1-41.

187.  Litman, S., W.H. Huggins. (1963).
' Growing exponentials as a probing signal for system
identification.

Proceedings I.E.E.E.. 51: 917-923.

188. LJUNG. L. (1974).
Convergence of recursive stochastic algorithms.
Lund Institute of Technology, Sweden, Division of Automatic
Control Report No. 7403. '

189. LJUNG, L. (1977).
Analysis of recursive stochastic algorithms.

I.E.E.E. Transactions Automatic Control. 22 : 551-575.

190. LJUNG, L. (1979).
Asymtotic behaviour of the extended Kalman filter as a
parameter estimator for linear systems.

I.E.E.E. Transactions Automatic Control. 24 : 36-50.

191. LJUNG, L., I. Gustavsson, T. Soderstrom. (1974).
Identification of lineaxr multi-variable systems operating
under linear feedback control.

I.E.E.E, Transactions Automatic Control. 19 : 836-840.

192. LJUNG, L., M. Mozrf, D. Falconer. (1978).

Fast calculation of gain matrices for recursive estimation
schemes.

International Journal of Contrel. 27 : 1-19.



193.

194.

195,

196.

197.

198.

199.

-200.

- 313 -

LONGOBARDOQ, G.S., N.S. Chemiack, I. Shaw. (1967).
Transients in carbon dioxide stores.

I.E.E.E. Transactions Biomedical Engineering., 14 : 182-191.

LOUGHMAN, J. (1973).
Cardiac output measurements by thermal dilution in
anaesthesia and intensive care.

Anaesthesia and Intensive Care. 1: 393-399,

MACLAINE, C.G. (1975).
An application of discrete models to the study of the
mammalian muscle spindie.

Ph.D. Thesis, University of Glasgow, Glasgow, Scotland.

MACLAINE, C.G., P.N. McWilliam, D.J. Murray-Smith,
J.R. Rosenberg. (1977).

A possible mode of action of static fusimotor axons as
revealed by system identification techniques.

Brain Research. 135: 351-357.

MALONEY, J., G.A. Bakey, (1976).
On-line estimation of cardiac output from respiratory
measurements using a gradient method.

Medical and Biological Engineering. 14 : 379-386.

MANCINI, P., A. Pilo, (1970).
A computer program for multi-exponential fitting by the
peeling method.

Computers and Biomedical Research. 3: 1-14.

MANNARD, A., R.B. Stein. (1973).
Determination of the frequency response of isometric soleus

muscle in the cat using random nerve stimulation.

Journal of Physiology. 229: 275-296.

MAPLESON, W.W. (1963).
An electric analogue for uptake and exchange of inert gases
and other agents.

Journal of Applied Physiology. 18: 197-204.



201.

202.

203.

204,

204a.

204b.

205.

206.

- 314 -

MAPLESON, W.W. (1973).

Circulation time models of the uptake of inhaled anaesthetics
and data for quantifying them.

British Journal of Anaesthesia. 45: 319-333.

MARMARELIS, P., K.I. Naka. (1974).
Identification of multi-input biological signals.

I. E.E.E. Transactions Biomedical Engineering., 21 : 88~101.

MARQUARDT, D.W. (1963).

An algorithm for least squares estimation of non-linear
parameters.

Journal of. éociety for Industrial and Applied Mathematics.
11: 431-444. -

MATALON, S.V., P.J. Maming, B.J. Berne, B.C. Eichorst,
C.E. Hunt, A.E. Seeds. (1978).

The effects of changes in maternal P and Pa on the

Cco

aO2 2

fetal Pa and Pa co. " invivo study.

Q
Respiration Physiolog%r. 32: 51-61.

McCORMICK, G.P., J.D. Pearson. (1970).

Variable metric methods and unconstrained optimisation.
In optimisation. Fletcher, R. (Editor). .

Academic Press, New York, U.S.A.

McGREGOR ,, M., R.E. Donovan, N.M. Anderson. (1962).
Influence of carbon dioxide and hyperventilation on cardiac

output in man.

Journal of Applied Physiology. 17: 933-937.

MEHRA, R.K. (1974).
Optimal inputs for system identification.

I.E. E.E. Transactions Automatic Control. 19: 192-200.

MEHRA, R.K. (1974).
Optimal input signals for parameter estimation in dynamic

systems - survey and new results.

I.E.E.E. Transactions. Automatic Control. 19 : 753~768.



207.

208.

209.

210.

211.

212.

213.

214.

- 315 -

MEYER, R.R., P.M. Roth. (1972).

Modified damped least squares : an algorithm for non-linear
estimation.

Journal of the Institute of Mathematics and its Applications.
9: 218-233.

MILANESE, M., G.P. Molino. (1975).
Structural identifiability of compartmental models and patho~
physiological information from the kinetics of drugs.

Mathematical Biosciences. 26: 175~190.

MILIC-EMILI, ].J., A.M. Henderson, M.B. Dolovich,
D. Trop, K. Kaneko. (1966).

‘ Regional distribution of inspired gas in the lung.

Journal of Applied Physiology. 21: 749-759.

MILLHORN, H.T. (1966).
The application of Control Theory to physiological systems.
W.B. Saunders Company, Philadelphia, U.S.A.

MOLINO, G.P., M. Milanese. (1975).
Structural analysis of compartmental models for the hepatic
kinetics of drugs.

Journal of Laboratory and Clinical Medicine. 85: 865-878.

"MURPHY, T.W. (1969).

Modelling of lung gas exchange - mathematical models of
the lung ; the Bohr model, static and dynamic approaches.
Mathematical Biosciences. 5: 427-447.

MURRAY, W. (1977).

Algorithms for static optir'nisation‘ I.

Lecture No. 3. S.R.C Vacation School on Systems moedelling
and optimisation.

Held at Cambridge University, Cambridge, England.

MURRAY-SMITH, D.]J., A.I Pack, (1977).

Techniques of computer simulation applied to respiratory
gas exchange.

In Non-invasive clinical measurements. Taylor, D.C.,

J- Whamonc‘, (Editors). Pitman Medical.



215.

216.

217,

218,

219.

220.

221.

222,

- 316 -

MURTAGH, B.A., R. W.H. Sargent, (1969).
A constrained minimisation method with quadratic convergence.
In Optimisation. Fletcher, R. (Editor).

Academic Press, New York, U.S.A.

NAHI, N.E., G.A. Napjus, (1971).

Design of optimal probing signals for vector parameter
estimation. )
In Preprints 1. E. E. E. Conference on Decision and control.

Held at Miami, Florida, U.S.A.

NAKAMURA, T., T..Takishima, T. Okubo, T. Sasaki,
H. Takahashi. (1966). '
Distribution function of the clearance time constant in lungs.

Journal of Applied Physiology. 21: 227-232.

NEYMAN, J., E.S., Pearson, (1928).

On the use and interpretation of certain test criteria for

the purposes of statistical inference.

Biometrika. -20A : 175-263. .

NG., T.S., G.C. Goodwin, (1976).
On optimal choice of sampling strategies for linear system
identification.

International Journal of Control. 23: 459-475.

NOTON, M. (1972)
Computer algorithms for model fitting.
In Chemical Engineers Symposium Series, No. 33.

Institute of Chemical Engineers, London, England.

NUNN, J.F. (1969).
Applied respiratory physiology.

Butterworths, London, England.

NYE, R.E. (1970).
Influence of the cyclical pattern of ventilatory flow on
pulmonary gas exchange.

Respiration Physiology. 10: 321-337.



223,

224,

225.

226. )

227.

228.

229.

230.

- 317 -

OHTSU, K., M. Horigome, G. Kitagawa, (1979).
A new ship’s auto-pilot design through a stochastic model.

Automatica. 15: 255-268.

OKUBO, T., C. Lenfant, (1968).

Distribution function of lung volume and ventilation
determined by lung N2 washout,

Journal of Applied Physiology. 24 : 658-667.

OLSZOWKA, A.J. (1975).

Can {YA/(.Q distribution in the lung be recovered from inert

gas retention data ?

Respiration Physiology. 25: 191-198.

OLSSON, G. (1973).

Modelling and identification of nuclear power reactor
dynamics from multi-variable experiments.

In Preprints 3rd. IFAC Symposium on Identification and
System Parameter Estimation.

Held at Delft, Holland.

O0OTOMO, T., T. Nakagawa, H. Akaike, (1972).
Statistical approach to computer control of a cement rotary
kiln.

Automatica, 8: 35-48.

PACK, A.I. (1976).
Mathematical models of lung function.

Ph.D. Thesis, University of Glasgow, Glasgow, Scotland.

PACK, A.Il., B. Emery, F. Moran, D.]J. Murray-Smith, (1974).
Computer models of gas exchange processes in pulmonary
ventilation.

In Ventilatory and phonatory control systems. Wyke, B. (Editor),

Oxford University Press, London, England.

PACK, A.I, D.J. Murray-Smith, . (1972).
Mathematical models and their applications in medicine.

Scottish Medical Journal. 17 : 401-409.



231.

232.

233.

234.

235

236.

237.

238.

- 318 -

PACK, A.I., W. Nixon, M. Hooper, J.C. Taylor, (1977).
A computational model of pulmonary gas transport incorporating
effective diffusion.

Respiration Physiology. 29: 101-124.

PAPPENHEIMER, J. et al. (1950).

Standardisation of definitions and symbols in respiratory
physiology. 4

Federation Proceedings. 9: 602-605.

PAYNE, R.L., G.C. Goodwin, M.B. Zarrop. (1975).
Frequency dome;in approach for designing sampling rates
for system identifiéation. .

Automatica, il’: 189-193.

PEARSON, K.G. (1975).
Parameter estimation techniques appliéd to a model of human
respiratory gas exchange processes. -

Ph.D. Thesis, University of Glasgow, Glasgow, Scotland.

PESLIN, R., S. Dawson, J. Mead. (1971).
Analysis of multi-component exponentiél curves by the
Post-Widders equation.

Journal of Applied Physiology, 30 : 462-472.

PESLIN, R., J. Papon, C. Duviver, J. Richalet, (1975).
Frequency response of the chest : modeliing and parameter
estimation.

Journal of Applied Physiology. 39 : 523-524.

PETERS, J.P., H.A. Bulger, A.]J. Eisenman, (1924).

Studies of the carbon dioxide absorption of human blood IV.
The relation of the haemoglobin content of the blood to the form
of the carbon dioxide absorption curve.

Journal of Biological Chemistry, 58: 747-768.

PIIPER, J., P. Dejours, P. Haab, H. Rahn. (1971).
Concepts and basic quantities in gas exchange physiology.

Respiration Physiology, 13: 293-304.



- 319 -

239. POULIQUEN, R., ]J. Estapa, J. Richalet, (1968).
Identification by frequency methods and sensitivity functions.
In Preprints 2nd. IFAC Symposium on System Sensitivity and

Adaptivity. Held at Dubrovnick, Yugoslavia.

240. POWE'LL, M.J.D., (1964).
An efficient method for finding the minimum of a function of
several variables without calculating derivatives.

Computer Journal, 7 : 155-162.

241. RAULT, A., (1973).
Identification applications to aeronautics.
In Preprints 3rd. IFAC Symposmm on Identification and :
System Parameter Estimation.
Held at Delft, Holland.

242, RAULT, A., R. Pouliquen, J. Richalet, (1969).
Sensibilizing input and identification.
In Preprints 4th IFAC Congress.
Held at Warsaw, Poland.

243. REYBROUCK, T., A. Amery, L. Billiet, R. Fagard, H.
H. Stijns, (1978).
Comparison of cardiac output determined by a carbon dioxide
-rebreathing and direct Fick method at rest and.during exercise.

Clinical Science and Molecular Medicine, .55 : 445-452,

244, RIGGS, D.S. (1970).
Control theory and physiological feedback mechanisms.
The Williams and Wilkins Company. Baltimore, U.S.A.

245. RILEY, R.L., A. Cournand. (1949).
'Ideal’ alveolar air and the analysis of ventilation-perfusion
relationships in the lungs.
Journal of Applied Physiology. 1: 825-847.

246. RILEY, R.L., A. Cournand. (1951).
Analysis of factors affecting partial pressures of oxygen
and carbon dioxide in gas and blood of lungs. : theory.

Journal of Applied Physiology. 4: 77-101.



247.

248.

249.

250.

251.

252.

253.

254.

- 320 -

ROBERTSON, J.S., W.E. Siri, H.B. Jones. (1950).

Lung ventilation patterns determined by analysis of nitrogen
elimination rates : use of the mass spectrometer as a
continuous gas analyser.

Journal of Clinical Investigation. 29 : 577-590.

ROCKAFELLAR, R. (1970).
Convex analysis.

Princeton University Press, New Jersey, U.S.A.

ROSENBROCK, H.H. (1960).

An automatic method for finding the greatest or least value

of a funcfion.

Computér Journal. 3: 175-184.

ROSSING, R.G. (1970).
A comparison of rate variables for the description of the
nitrogen washout curve. '

Mathematical Biosciences, 6 : 283-293.

ROSSING, R.G., M.B. Danford, E.L. Bell, R. Gracia, (1967).
Mathematical models for the analysis of the nitrogen washout
curve.

Report SAM-TR~67-100, USAF School of Aerospace Medicine

Brooks, Air Force Base, Texas, U.S.A.

SACKNER, M.A. , D. Greenletch, M.S. Heiman, S. Epstein,
N. Atkins, (1975).

Diffusing capacity, membrane diffusing capacity, capillary
blood volume, pulmonary tissue volume and cardiac output
measured by rebreathing technique.

American Review of Respiratory Disease. 111 : 157-165.

SAIDEI, G.M., T.C. Militano, EH Chester, (1972).
Mass balance model of pulmonary oxygen transport.

I.E.E.E. Transactions on Biomedical Engineering, 19 : 205-213.

SCRIMSHIRE, D.A., (1977).
Theoretical analysis of independent V and Q inequalities upon
pulmonary gas exchange.

Respiration Physiology. 29: 163-178.



255.

256.

257.

258.

259.

260,

261.

262.

263.

- 321 -

SCRIMSHIRE, D.A. (1978).

Personal communication.

SERVINGHAUS, J.W. (1966).
Blood-gas calculator.
Journal of Applied Physiology. 21 : 1108~1116.

SHANNON, C.E. (1948).
A mathematical theory of communication.

Bell System Technical Journal. 27 : 379-423 and 623-656.

SHANNO, D.F. (1970).
Conditioning of Quasi-Newton methods for function minimisation.

Mathématics of Computation. 24 : 647-657.

SHEPPARD, C.W. (1962).
Basic principles of the tracer method.
John Wiley, New York, U.S.A.

SIKEND, R.S., H. Magnusson, P. Scheid, J. Piiper, (1976).
Convective and diffusive gas mixing in human lungs : experiments
and model analysis. | ,

Journal of Applied Physiology. 36: 91-97.

SILVEY, S.D. (1975).
Statistical Inference.

Chapman,Hall, London, England.

SLATE, J.B., L.C. Sheppard, V.C. Rideout, E.H. Blackstone,
(1979).

A model for design of a blood pressure controller for hyper-
tensive patients.,

In Preprints 5th IFAC Symposium on Identification and System
Parameter Estimation.

Held at Darmstadt , Federal Republic of Germany.
SODERSTROM, T. (1977).

On model structure testing in system identification.

International Journal of Control. 26: 1-18.



264.

265.

266.

267.

268.

269.

270.

271,

272,

- 322 -

SODERSTROM, T., L. Ljung, I. Gustavsson, (1978).
A theoretical analysis of recursive identification methods.

Automatica. 14 : 231-244,

SPEEDY, G.B., R.F. Brown, G.,C. Goedwin, (1970).
Control theory : identification and optimal control.
Oliver and Boyd, Edinburgh, Scotland.

STEPHENSON, G.C. (1970).
A hierarchy of models for planning in a division of I.C. 1.

Operational Research Quarterly. 20 : 221-245.

STEWART, G.W. (1967).
A-modification of Davidsons minimisation method to accept
difference approximations to derivatives.

Journal of the Association for Computing Machinery., 14 : 72-83.

STOLL, P.]., J.S. Meditch, (1970).
Least squares estimation of respiratory system parameters.

Mathematical Biosciences. 8: 307-321.

STOUT, R.L., H.U. Wessel, M.H. Paul, (1975).
Pulmonary blood flow determined by continuous analysis of
pulmonary N2 O exchange.

Journal of Applied Physiology. 38: 913-918.

STOREY, C. (1977).

Methods for dynamic optimisation.

Lectures No. 5, 6. S.R.C. Vacation School on Systems
modelling and optimisation.

Held at Cambridge University, Cambridge, England.

SUWA, K., H.H. Benedixen, (1972).
Pulmonary gas transport in a tidally ventilated single alveolus
model.

Journal of Applied Physiology. 32 : 834-841.

SWANSON, G.D. (1972).
Dynamic end-tidal forcing in the study of the human

respiratory system.
Ph,D. Thesis, Stanford University, Stanford, U.S.A.



- 323 -

273. SWANSON, G.D. (1977).
Biological signal conditioning for system identification.
Proceedings, I.E.E.E. 65: 735-740.

274. SWANSON, G.D. (1977).
Evaluation of the Grodins respiratory model via dynamic
end-tidal forcing.
American Journal of Physiology, Regulatory Integrative
Comparative Physiology, 2 : 66-72.

275. SWANSON, G.D. (1978).
Input stimulus design for model discrimination in human
. respiratory contzol.
In Preprints Symposium on Modelling of a biological control
system : the regulation of breathing. |
Held at Oxford University, Oxford, England.

276. SWANSON, G.D., J.W. Bellville, (1974).
Hypoxic~hypercapnic interaction in human respiratory control.

Journal of Applied Physiology. 36 : 480-487.

277. SWANSON, G.D., J.W. Bellville, (1975).

Step changes in end-tidal CO, : methods and implications. ’

2
Journal of Applied Physiology, 39: 377-385.

278. SWANSON, G.D., T.M. Carpenter, D. E. Snider,
J. W. Bellville, (1971).
An on-line hybrid computing system for dynamic respiratory
respouse studies,

Computers and Biomedical Research. 4: 205-215.

279. SWANSON, G.D., D.S. Ward, J.W. Bellville, (1976).
Posthyperventilation isocapnic hyperpnea.
Journal of Applied Physiology, 40 : 392-396.

280. SWANSON, G.D., B.]. Whipp, R.D. Kaufman, K.A. Agleh,
B. Winter, J.W. Bellville, (1978).
Effect of hypercapnia on hypoxic ventilatory drive in normal
and carotid body-resected man.
Journal of Applied Physiology, Respiratory Environment
Exercise Physiology. 45: 971-977.



- 324 -

281. TOMOVIC, R. (1963).
Sensitivity analysis of dynamic systems.
McGraw-Hill, New York, U.S.A.

282. TRUEB, T.J., N.S. Cherniack, A.F. D'Souza,
A.P. Fishman, (1971).
A mathematical model of the controlled plant of the
respiratory system.

Biophysics Journal, 11 : 810-834.

283. TSAI, M.]J., R.L. Pimmel, P.A. Bromberg, R.B. McGee, (1977).
An evaluation of recovery of ventilation-perfusion ratios from
inert gés data.

Computers and Biomedical Research. 10: 101-112.

284, TUMEY, S.Z., W. Blumenfeld, (1973).
Heated Fleisch pneumotachometer : a calibration procedure.

Journal of Applied Physiology. 34 : 117-121,

285. VAN DER BOS, A. (1973).
Selection of periodic test signals for estimation of linear
system dynamics.
In Preprints 3rd. IFAC Symposium on Identification and System
Parameter Estimation.

Held at Delft, Holland.

286. VAN LIEW, H.D. (1967).
Graphic analysis of aggregates of linear and exponential processes.

Journal of Theoretical Biology. 16: 43-53.

287, VISSER, B.F., ]J.G. Defares, (1962).
Amnnels New York Academic of Science. 96 : 939-955 (Article 4).

288. WAGNER, P.D. (1975).
Letter to the editor,
Journal of Applied Physiology. 38: 950-953.

289. WAGNER, P.D., J.W. Evans (1977).
Conditions for equivalence of gas exchange in series and .

parallel models of the lung.
Respiration Physiology. 31 : 117-138.



290.

291.

292.

293.

294.

295.

296.

297.

- 325 -

WAGNER, P.D., J.W. Evans, J.B. West, (1975).
Analytically derived distributions of ventilation-perfusion
ratios in chronic lung disease.

Federation Proceedings. 34 : 451.

WAGNER, P.D., R.B. Laravuso, R.R. Uhl, J.B. West, (1974).
Continuous distributions of ventilation-perfusion ratios in
normal subjects breathing air and 100% 02 .

Journal of Clinical Investigation. 54 : 54-68.

WAGNER, P.D., H.A, Saltzmamn, J.B. West, (1974).
Measurement of continuous distributions of ventilation-perfusion

ratios : theory.

Journal of Applied Physiology, 36 : 588-5.'99..

. WELLSTEAD, P.E., P. Zanker, (1978).

The techniques of self-tuning.
University of Manchester Institute of Science and Technology,

Control Systems Centre Report, No. 432.

WEST, J.B. (1976).
Ventilation/blood flow and gas exchange.
Blackwell Scientific Publications, Oxford, England.

WEST, J.B., C.T. Dollery, (1960).

Distribution of blood flow - ventilation - perfusion ratio in the
lung measured with radioactive 002 .

Journal of Applied Physiology. 15: 405-410.

WIBERG, D.M., J.W. Bellville, O. Brovko, R. Maine,

T.C. Tai, (1979). _

Modelling and parameter identification of the human respiratory
system.,

In Proceedings 1978 I. E. E.E. Conference on Decision and
Control (including the 17th Symposium on Adaptive Processes @)
1313-1318, I.E.E.E., New York, U.S.A. '

WILKINSON, J.H., C. Reinch, (1971).
Linear algebra.

Springer-Verlag, Berlin and New York.



298.

299.

300.

301.

302.

303.

304.

305.

306.

- 326 -

WILSON, K.C., M. Jang, P.H, Mak, J.J. Distefano, (1973).
Identification of the dynamics of thyroid hormone binding,
distribution and disposal.

In Preprints 3rd IFAC Symposium on Identification and System
Parameter Estimation.

Held at Delit, Holland.

WITTENMARK, B. (1975).
Stochastic adaptive control methods : a survey.

International Journal of Control. 21 : 705-730.

WOLFE, P. (1978).

.Numerical methods for unconstrained optimisation,

Van Nostrand-Reinhold, San Francisco, U.S.A.

YAMAMOTO, W.S. (1960).°
Mathematical analysis of the time-course of alveolar CO2 .

Journal of Applied Physiology. 15: 215-219.

YAMAMOTO, W.S., T. Hori, (1971).
Phasic air movement model of respiratory reguiation of
carbon dioxide balance.

Computers and Biomedical Research. 3: 699 - 717.

YAMAMOTO, W.S., W.F. Raub. (1967).

Models of the regulation of external respiration in mammals :

‘problems and promises.

Computers and Biomedical Research. 1: 65-104.

YAMASHIRO, S. ,J. Maloney, J.A. Daubenspeck, S.K. Karuza, (1975).

~ Estimation of human lung clearance dynamics by pseudo-

random binary testing.

In Proceedings 8th Hawaii Conference on System Science: 169-170.

YOKOYAMA, T., L.E. Farhi, (1967).
Study of ventilation-perfusion ratio distribution in the
anaesthetized dog multiple inert gas washout.

Respiration Physiology. 3: 166-176.

ZADEH, L.A. (1962).
From circuit theory to system theory.
Proceedings, I.R.E. 50: 856-865.



307.

308.

309.

310.

i - 327 -

ZAZWORSKY, R.M., H.K. Knudsen, (1977).

Comments on "Controllability, observability and structural
identifiability of multi input and muiti output biological
compartmental systems".

I.E.E.E. Transactions Biomedical Engineering, 24 : 495-496.

ZEIDIFARD, E., S. Godfrey, E.E. Davies, (1976).
Estimation of cardiac output by an NZO rebreathing method
in adults and children.

Journal of Applied Physiology. 41 : 433-438.

ZWART, A., R.C. Seagrave, A, Van Dieren, (1976).
Ventilation-perfusion ratio obtained by a non-invasive frequency
response technique. ' -

Journal of Applied Physiology. 41 : 419-424.

ZWART, A., N, T, Smith, J.E.,W. Beneken, (1972).
Multiple model approach to uptake and distribution of
halothane : the use of an analog computer.

Computers and Biomedical Research. 5: 228-238.



- 328 -

APPENDICES




- 329 -
APPENDIX A

Al. VALIDATION DATA

Estimation Results

Four Parameters

o ° 2
FILE Q N M ‘VTC 3 €/
VALO41  6.45+ 0.12 1.85+ 0.07 0.265+ 0.0013 7.18+ 0.18 0.0276
2 6.36+ 0.06 1.73+ 0.12  0.237+ 0.0025 9.21+ 0.68 0.1010
3  6.29+ 0.23 1.92+ 0.11  0.262+ 0.0028 11.8+ 0.96 0.0848
4  5.87+0.24 1.62+ 0.14 0.213+ 0.0022 7,70+ 0,54 0.0885
VALO51  6.84+ 0.34 2.54+ 0.26 0.300+ 0.0036 13.1+ 1.97 0.0800
2  5.58+ 0.45 2.66+ 0.28 0.295+ 0.0050 8.76+ 1.37 0. 1430
3 7.10+0.27 3.05+0.19 0.334+ 0.0032 10.1+ 0.70 0.0504
VALO72  6.89+ 0.33 1,36+ 0.16  0.244+ 0.0020. 4.87+ 0.22 0.0597
3 — .
4  6.50+ 0.38 1.39+ 0.05 0.218+ 0.0020 4.04+ 0.24 0.0773
VALO8L  5.16+ 0.17 0.96+ 0.15 0.185+ 0.0026 5.15+ 0.37 . 0.0948
4  5.94+ 0.45 2.34+ 0,55 0.208+ 0.0034 6.66+ 1.01 0. 0744
5 5.97+ 0.26 0.98+ 0.19  0.207+ 0.0023 4.94+ 0.44 0.0706.
VAL101  8.23+ 0.32 2.22+ 0.16 0.310+ 0.0042 10.9+ 0.70 0.0921
2 7.66+ 0.35 1.58+ 0.19 0.277+ 0.0031 7.23+ 0.40 0. 0909
3 7.40+0.35 1.92+ 0.20 0.276+ 0.0039 8.35+ 0.50 0.1100
4 7.38+0.61 1.91+ 0.26  0.328+ 0.0095 10.4+ 1.01 0.2450
VAL11ll  5.63+ 0.34 2.66+ 0.22  0.272+ 0.0031  7.49+ 0.64 0.1050
2 5.44+ 0.39 2.26+ 0.33 0.277+ 0.0051 10.2+ 1.47 0.0959
3 7.79+0.56  2.39+0.32 0.302+ 0.0053 9.11+ 0.79 0.0881
4 858+0.76  1.40+ 0.38 0.258+ 0.0051 6.02+ 0.42 0.1720
VAL122  4.21+0.22 1.63+0.14 0.210+ 0.0031 4.59+ 0.29 0.1490
3 ——
4  3.13+ 0.49 2.03+ 0.33 0.187+ 0.0052 2.87+ 0.37 0.3820
5  4.50+ 0.19 1.80+ 0.10 0.237+ 0.0028 4.46+ 0.28 0.1640
VAL141  7.30+ 0.27 2.18+ 0.15 0.361+ 0.0037 8.94+ 0.51 0.0980
2 6.34+0.20 1.42+ 0.13  0.266+ 0.0025 6.83+ 0. 34 0.0654
3 . .
4 5.8 +0.30  1.84+0.17 0.264+0.0031 5.38+ 0.33 0.1090
VAL161  6.93+ 0.80 2.36+ 0.51  0.261+ 0.0069 5.93+ 1.04 0.4010
2 5.94+ 0.50 1.29+ 0.26  0.209+ 0.0029  3.73+ 0.34 0.1290
3 5.68+ 0.64 3.66+ 0.47 0.259+ 0.0066 7.73+ 2.03 0. 3240
4  6.48+ 0.46 2,73+ 0.29  0.275+ 0.0048 7.47+ 0.84 0.1340
VAL172  5.13+ 0.47 1.68+ 0,21 0.242+ 0.0025 2.31+0.18 0.1770
3  6.71+ 0.61 3.43+ 0.42 0.288+ 0.0035 6.62+ 1.13 0.2320
4 4.92+ 0.29 1,48+ 0:18 0.237+ 0.0024 4.11+ 0.29 0.0995

cont'd....
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APPENDIX A.1 Cont'd.......

File C Vv ° v ge 2
Q A M TC i/m
VAL181  4.73+0.31  1.58+0.13 0.234+0.0035 4.11+0.27  0.0773
3 4.98%¥0.32  1.73%0.18 0.255%0.0043 5.34%0.37  0.1390
4~ 4.46%0.27 1417 0.14 0.234%0.0028 4.00% 0.23 -0.1050
VAL191  3.78+0.18  1.26+0.13 0.182+0.0023 3.96+0.31  0.1070
VAL203 6.40-1; 0. 39 1.65 t0.19 0.259-1;0. 0035 5. 10t0.27 0.1270
VAL221  5.70+0.19  2.16+0.12  0.294+0.0027 9.11+ 0.61  0.0961
2 5. 7_8-*__-_0-21 2.03t0. 12 0.263-};0. 0022 6.08-}_—_0.27 0.0733
3 5.94Y0.31  1.81%0.17 0.255% 0.0029 5.53%0.27  0.1410
4 5.76+0.22  1.86%0.11 0.247+0,0020 5.24+0.22  0.074l
VAL23L . 7.71+0.38  2.99+ 0.24 0.398+ 0.0066 12.4+1.06  0.1900
2 6.'64-_1; 0. 35 1,82 + 0.13 0.212 + 0.0032 5. 69-_t 0. 30 0. 0564
3 7.78-!_-_ 0.35 3.26-*_-0-23 0.357-];0.0052 l2.9-|_-_1.08 0.1090
VAL251 6.46-1—_0. 50 1. 65-1-_ 0.28 0.239-]; 0.0040 6. 57-j_-_ 0.47 0.1060
2 6.19%0.40  1.45+0.22 0.211%0.0024 4.92+0.24  0.0686
3 4.79t0.23 1.57-_}:0. 13 0.236-];0. 0027 5.73-1_—_0. 33 0.0782
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A.3 VALIDATION DATA

Estimation Results

Eight Parameters

o - 2
File Q Vy M Voo Py Pre) 2 b & el
VALO41 ° 6.29 1.79 0.246 6.28 26.6 35.3 0.736 0.808 0.0250

(0.15) (0.08) (0.0088) (0.44) (0.27) (0.37) (0.38) (1.40)
2 6. 40 1. 72 0-234 8- 87 30.7 3606 -0- 312 -0- 011 00 0929
(0.48) (0.16) (0.034) (2.09) (0.64) (1.01) (0.667)(0.64)
3 6.80 1.88 0.318 14.3 297 33.9 -0.429 0.201  0,0422
(0.72) (0.15) (0.118) (6.73) (0.41) (1.43) (0.31) (0.32)
4 —_—
VALOS1  6.75 2.68 0.39%6 21.8 32.8 36,1 0.3¢4 0.79  0.0512
(0.55) (0.52) (0.26) (21.2).(0.8) (1.63) (0.75) (0.77)
2 - ,
3 7.19 2.69 0.313 9.04 .28.6 34.2 -0.153 0,293 -0.030
(0.43) (0.25) (0.039) (1.83) (0.64) (1.07) (0.64) (0.67). ‘
VALO72  6.92 1.55 0.259 5,54 37.1 41.9 -0.06 0.576 0,042
- (0.53) (0.19) (0.024) (1.04) (1.23) (1.09) (0.37) (0.44)
3 R
4 5,68 1.8 0.218 3.97 34.8 45.0 0,463 0.916 0.0667
(0.53) (0.21) (0.015) (0.79) (1.07) (1.43) (0.61) (0.69)
VAL0O8T 5.64 1.01 0.254 7.53 37.6 40.4 0.372 0.687 0.043
2  (0.20) (0.13) (0.024) (1.11) (1.12) (0.57) (0.68) (0.71)
s — :
5 —
VAL101 9.16 2.36 0.550 21.6 37.0 39,7 0.189 0.911 0.0322
(0.43) (0.08) (0.130) (6.07) (0.50) (0.61) (0.29) (0.37)
VAL102 7.85 2.16 0.425 15.3 38,6 39,1 0.81 1.08  0.0525
(0.43) (0.24) (0.11) (4.97) (0.48) (0.64) (0.79) (0.81)
3 - .
4 7.68 2,39 0.602 21,2 36,8 39.4 -0.104 0.758 0.186
(1.67) (0.63) (0.95) (37.8) (1.02) (2.98) (0.33) (0.43)
VAL11l 5.74 2.76 0,306 9.46 39.9 45.7 0.152 0,363 0,0959
(0.42) (0.33) (0.06) (3.85) (0.49) (0.96) (0.83) (0.83)
2  5.48 1.95 0.226 6.57 38.9 46.0 -0.675 -0.04  0.0881
(0.84) (0.31) 0.06  (3.77) (0.7) (2.41) (0.25) (0.31)
3 7.16 2.02 0.230 6.16 39,7 42.5 -0.435 0.504 0.039
(0.81) (0.16) (0.03) (1.58) (0.75) (1.51) (0.21) (0.28)
4 7.58 0.941 0.178 3.05 39.3 43.7 =-0.175 0.494 0.0476
(0.67) (0.13) (0.09) (0.431)(1.15) (1.00) (0.27) (0.33)
VAL122  4.23 1.53 0.215 4,65 33.0 41.2 -0.683 -0.444 0,122
(0.36) (0.81) (0.038) (1.28) (0.78) (1.38) (0.56) (0.6)
3 4. 13 l. 17 0. 208 4. 3]. 35. 3 420 0 -O- 567 00 256 Oo 070
(0.50) (0.14) (0.047) (1.61) (0.58) (1.63) (0.22) (0.29)
4 —
5 5,53 1,61 0.268 5.30 38,3 40.3 -0.886 -0.04  0.0624
(0.46) (0.12) (0.053) (1.98) (0.45) (1l.14) (0.11) (0.2)

continued eesse
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A.3 continued «.vvoveene

Q [ ] ‘ — 2
File Q Vv, M Vrg Pyq) Frgey @ b Zel,
VAL141  7.41 1.93 0.302 7.07 34.8 43.0 0.05 0.377 0.0718
(0.34) (0.20) (0.03) (0.99) (0.82) (1.03) (0.75) (0.75)
2 6.81 1.75 0.387 11.0 36.0 4.2 -0.260 0.343  0.0397
(0.45) (0.21) (0.091) (3.30) (0.64) (1.03) (0.44) (0.55)
'3 5.76 1.88 0.231 4.92 38.0 44.6 -0.444_0.138 .0.0786 . |
(0.59) (0.23) (0.04) (1.46) (1.13) (1.99) (0.48) (0.46)
4 5.82 1.96 0.282 5.95 37.1 43.1 -0.171 0.356 0.0704
(0.47) (0.24) (0:04  (1.31) (0.63) (1.25) (0.44) (0.5)
VAL224 . 6.02 2.09 0.312 7.61 37.3 40.9 -0.533 0.306 0.030
© (0.38) (0.14) (0.042) (1.64) (0.31) (0.78) (0.16).(0.22)
VAL231 820 3.35 0.817 29.2 33.2 37.2 0.524° 0,790 0.1i3
(0.44) (0.31) (0.370) (15.3) (0.743)(0.903)(0.75) (0.81)
2 ——
3 e
VAL251 — )
2 6.40 1.45 0.226 5.61 40.8 43.0 0.026 0.555 0.0466
(0.57) (0.33) (0.027) (1.07) (1.02) (0.96) (0.47) (0.58)
3. 4.75 1.48 0.214 4.95 38.0 45.7 -0.198 0.411 - 0.0461
(0.40) (0.14) (0.031) (1.20) (0.52) (1.43) (0.41) (0.42)
4 6.15 0.9 0.205 4.40 38.7 43.9 -0.187 -0.331  0.0962
7 (0.52) (0.2) (0.019) (0.74) (1.66) (1.59)

(1.23) (1.05)
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APPENDIX B

THE MINPAK PACKAGE

B.1 QOverall Package Specifics

The MINPAK package for unconstrained Function Minimisation is
overviewed in Section 8 of Chapter 5. This appendix discusses specifics.
The main programme in the package is in modularised form and
consists of five subroutines called sequentially. Its structure is illustrated in
Figure B. 1 where an indication is also given as to how the user -written routines
are incorporated int‘o the package. The five main subroutines in MINPAK are
as follows : -
(1) CONSOL - The main dialogue routine. It allows tﬁe user to
input the number of parameﬁers (maximum of nine), starting
parameters, va_lue of convergence criterion, etc.
(2) PREPRS - The optional user-written data preprocessing routine
discussed in Section 8 of Chapter 5. If used, this should be in
the Fortran form illustrated in Figure B.1.
(3 INIT - This routine carries out syétem specific initialisation,
scales the parameters and calculates an initial function value.
4) | OPTMSE - The main function minimisation routine. This is
discussed more fully in Section B.2.

(5) CLRUP - The final termination routine.

Both OPTMSE and INIT use the user written function evaluation routine which
should'be of the Fortran format given in Figure B.1, i.e. have two arguments
PAR' and F. The first argument is an array used to pass the vector of current
parameters (maximum permissable dimension of nine) and the second a real

variable in which the user -written routine should return the function value
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CONSOL
y
Use written or dummy
/ data pre-processing
PREPRS AN routine
(SUBROUTINE PREPRS)
INIT
User written
function evaluation
‘ routine
b4 (SUBROUTINE RUN
User defined . (PAR, F) )
updating formula E OPTMSE
BFGS, DFP or RK1)
Y
CLRUP

FIGURE B.1 - STRUCTURE OF MINPAK
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corresponding to the parameters input. Since parameters are scaled in INIT,
it is helpful for thé first line of RUN to call the utility routine DSCLE which
will descale the parameters for use by the routine, (by carrying out the inverse
process to equation 5.38). A skeleton RUN routine thus looks as follows : -

SUBROUTINE RUN (PAR, F)

DIMENSION PAR (9), PAR1(9)

CALL DSCLE (PAR, PAR)
user wri’tten function

evaluation code

RETURN
END

B.2 Main Software Implementation of the Factorised Quasi-Newton
Algorithm |
This section discusses the subroutine OPTMSE which implements tﬁe
Factorised Quasi-Newton procedure andthus is the main core of the package.
Although OPTMSE differs depending on the choice of updating formula being
used BFGS, DFP, or RK1 ), the algorithm can be basically represented by the
procedure detailed in Table B.1. Various steps in this require elucidation.
In the package, gradients are derived numerically. The logic in steps (2), (3),
(4), (5) and (8)ensuresthat a switch is made from forward to the more accurate
central differences when difficulty is being encountered with the former.
Following Gill et al (125), the i;lterval used for differencing 'h' is 2-% , 't
bei_ng the numbef of binéry digits in the mantissa of the machine used (which

hence gives 'h' for the PDP11/45 version as 2.4 x 10'4 (single precision version)

and 1.5 x 10”8 (double precision version ) ).
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TABLE B. 1
FACTORISED QUASI-NEWTON ALGORITHM

1) Initialise L(O) and D(O) (equation 5.28) for steepest descent step,
set IFLAG = ¢ corresponding to gradients calculated by forward
differences.

) Check that IFLAG = ¢g. If IFLAG does not = ¢ go to step (2).

3) IFLAG=¢, . . calculate gradients by forward differences
(equation 5.37), use GRAD.

(4) IFLAG=1 .. calculate gradients by central differences
(equation 5. 38) use GRAD.

(3) ~ Is the norm of the gradient small ? (i.e. |} g(k)u. 24 y )y if it

is and we are only using forward differences return to step (4)-to

compute a more accurate gradient using central differences.

(6) " Solve equation 5.27 to compute direction of search p(k) using
first forward then backwards substitution.

(7) Conduct linear search along p(k) using SEARCH which finds the
first a(k) along p(k) such that the function value is sufficiently

decreased using safeguarded quadratic interpolation (Chapter 5,
Section 3).

(8) Is the achieved step small 7 (i.e. is o I p(k) il 2< @)
If it is, and we are only using forward differences, abandon this
search direction and go back to step (4)-to recompute the gradient
using a central difference approximation. |

(9) Check for convergence to a stationary point (equations B.1 and B.2).
If the process has not converged go to step (12).

(10) Carry out local exploratory search to detect if a false minimum
has been achieved. -

(11). Check if a lower function value V(B) has been attained using the local
search, If it has not, accept this estimate as the minimum and
return to main program. If it has, go to step (14).

(12) Set up scalers 7, Ty » and vectors w and z (see equations in
Chapter 5, Section 5 ) to update approximate Hessian using either
BFGS, DFP or RK1 as appropriate.

(13) Update triangular factors I:. and D using 'UPDATE' (see Chapter

5, Section 6).

cont'de....
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TABLE B.1 continued ........

(14) Update parameter estimates and gradient vector if FULL PRINT
output all the details of current iteration.

(15) Go to step (2).
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In step (7) of the algorithm the linear search routine SEARCH is
called. This is based on quadratic interpolation, (equation 5.11), but
possesses the necessary 'bells and whistles' to render it robust. To safeguard
equation 5. 11 a predicted step ( 3 say ) is only accepted if it lies within an
extrapolationbound (12 3) defined e.g. in the case of forwards extrapolation by :

EB=4(0:3-af2)+a' B.1

3

see Figure B.2(a).
SEARCH also makes a limited attempt to handle non-unimodality (see Figures
B.2(b) and B.2(c) ). In this situation a new point is taken by bisection,
according to the following rule.s : |

YNEW S (a1+ a, Y/ 2 if F(cv2 ) > F(a3) > F(a; ) B.2

see Figure B.2(b).

NEW = (012 +a, )/2 otherwise B.3

see Figure B.2(c).
The procedure to generate the initial interpolating points is illustrated in
Figure B.2(d). An initial steplength STEP is input by the user in routine
CONSOL (usually in the range 0,1 < STEP<. 2.0 ). If this initial step fails
to reduce the function value along the search direction, it is successively
reduced by a factor of ten until a downhill step is achieved. The third inter-
polating point is then twice this initial downhill step. The convergence criterion
for the linear search is equation 5. 10 in addition to the equation below (which

is analagous to equation 5.9 in the situation where analytic gradients are not

used).

1v(E9 430 - y( g4 o8 0

<n B. 4
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(k)

A local minimum along the current search direction p is said to have

been located when

(ag-a) 1 p@I < o.1x2 B.S

pojer

In step (9) of the algorithm we check for convergence, the criteria used are:
-t
N &+ _ gy < 22 %+ Yy TurEs  B.6

1
Ilg(k+ Dl

and | € (THRESP B.7

THRES is a convergeﬁce factor input by th¢ user in CONSOL and is usually

'~ of the order of 10-6 . ' | |
following apparent termination of the basic iteration causeé a local search
procedure (due .to Rosenbrock (249) ) to be activated in step (11). The purpose
of this is to confirm the' solution found by the Quasi- Newton procedure and
provide an alternative course of action if, for some reason, a non-stationary

point has been located.

B.3 MINPAK Performance in Minimising an Analytic Test Function

This section details the procedure involved in actually using the
MINPAK package - in this case to minimise an analytic test function. The
particular function used forms a nasty banana shaped valley in two dimensions
and is known as Rosenbrock's Parabolic Valley (249). The equation defining
this is

2.2 2

V(B) = 100(B, ~B " )Y+ (1-B)) B. 8

The minimum of this function is at the point [ 1, 1) . Starting off at

[ - 1.2, 0] forces the minimisation method used to negotiate the curve

in the valley, a particularly stiff test of Quasi-Newton algorithms since new
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" search directions must be generated frequently .
A double precision Fortran subroutine coding of equation B. 8 is

given below :

Chkk¥ FILE @ RUMDEDD2,FTM [CRaE @ 83-FEER-7313

Ckuk  TEST PROGEAMME NO, 2 FOR OFTIMISATION FACKABE.
Cxxx DOUBLE FPRECISION VERSION.

C
SUBROUTINE RUNCFAR, F)
IMFLICIT REALXS (A-H,0-Z)
DIMENSTION PARLI(? ) FAR( D)
COMMON ITER

c _

CXkX UFDATE ITERATION COUNT.

c - - .
ITER=ITER+1

c

CHRAkX  DESCALE THE FARAMETERS.

c . ,
CAaLl. DSCLEC(FaR, FARL)Y

c -

CkAk¥ EVALUATE FUNCTION.

6o
R1=FARL( 1 )XFARL( 1 =FaR1(2)
FR2=¢ 1, DB-FARL( 1)1, DB~FARL(1))
F=108. DOXR1LRXR1+R2

C
RETURN
END

After compilation of the above routine using the PDP-11 Fortran compiler, a
load programme is then created by invoking the indirect command file for the
double precision version of the package, MIND. This initiates the following

dialogue (system prompts underlined).

EMIND

=¥ LOAD FROGRAMME NAME ? [S1! ROSMIN

X MINIMISATION METHOR (RFGS,DFFPyRKL) ? [81! BFGS

E."f* FRE-ERQCESSING ROUTINE (IF NONE_DUMFRSED 7 £57: DUMFRSD
% FUNCTION EVALUATION ROUTINE ? [S1: RUNDOOZ
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i

Having completed the above interaction with the user the indirect command
file goes on to create a runnable user programme, called in this case ROSMIN.

A sample run of ROSMIN is shown below (system prompts again underlined).

MINIMISATION FACKAGE VERSION 2

TS s TP et BT TR ST TS PS PP AR WS N Sete e Sy e SE S48 Smb St et Sot Socw Sl Sl Save anes sems S

QFTIMISATION OF (80 CHARS)

? ROSENEROCK‘8(1940) FARAROLIC VALLEY.
NOFAR (It1) ? 2

INIT PARCLY P -1.2

INIT FARC2) ? 1.0

NEED TO SCALE PARS <Y OR N» ? N

T 0+1E-05 .
CONVERGENCE FACTOR FOR LINEAR SEARCH 7 0.1
© INITIAL STEF N T 1.0

FULL PRINT Y OR N> ? N

.

The output listing produced from this run is shown in Table B.2. From this

it is seen the algorithm successfully reaches the minimum to the desired
accuracy in 177 function evaluations. The local search procedure takes 9
function evaluations at the end to confirm the solution. The ' **BFGS’ identifier
denotes that the BFGS update has been used throughout (the identifier '***LOC’
is used if a local search is used at any intermediate stage of the algorithm.)

A more comprehensive assessment of the package performance on
this function using differeht ixpdating algorithms, initial step lengths, STEP,
and linear search termination criteria, SIGMA (<7} in equation B.4) is ;ietailed
in Table B.3. Although the final number of function evaluations (Ng ) and
final number of iterations ( Ny ) to achieve the minimum to the desired
accuracy (THRES = 10_6 ) is given, the number of function evaluations required'
to reduce V () below 10-10 is used as a fairer bench mark for the different

algorithms. From Table B.3 it can be seen overall MINPAK performance
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compares favourably with the results of Gill et al's coding (125) and Stewart's
algorithm (267).
The results also confirm a number of unsubstantiated points made

in Chapter 5 regarding e.g. the inadvisability of high accuracy linear search

in Quasi-Newton algorithms, the sensitivity of certain updating formulae (e.g.

DFP) to the value of linear search termination criterion SIGMA used etc.
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TABLE B.2 - LISTING FROM PROGRAMME ROSMIN

MINIMISATION FPACKAGE VERSION 2

ek ki ot e e Y S8 PR PYVS b YR SR T PV S S A A S N Sy S SN A Gt et MO0 Sttt

FROBLEM 3

-ROSENBROCN’S (19460) FARABOLIC VALLEY.

NO OF FPARAMETERS =

THRESHOLD

CONVERGENCE FACTOR FOR LINEAR SEARCH =

il

0.10000D-0%

INITIAL STEP FOR LINEAR SEARCH =

SCLNG?

MAXFPAR
MINPAR

KKXINI
XXEFGS
*¥RBFGS
XXKBFGS
XXBFGS
XXBFGS
XXBFGS
X¥BFGS
XXBFGS
XXBFGS
XXBFGS
XXBFGS
XXBFGS
XXkBFGS
XXBFGS
XXBFGS
¥XRBRFGS
XXBFGS
XXBFGS
¥XBFGS
XXKBFGS
*¥XRFGS
*¥XBFGS
¥XBFGS
X¥BFGS
XXKBFGS
XKBFGS

FARCL)

1.,00000
0.000000

.

"‘1 0200
-1,033
~0.92563
-¢.8478

— L
~§.8282
~0.,3860
=0.2791
0.1700
0.1550
0.3080
0.4276
0.48351
0.5818
0.6285
0.8092
0.8006
0.8891
0.7802
0.9788
0.9993
0.2993
1.000
1.000
1.000
1.000
1.000

OFTIMUM FARAMETERS

NUMBER OF ITERATIONS

1.000

FAR(2)

1.00000
0.+000000

1.000

1.068
0.8835

0.6670
2m44
8:933¢
0.1153
0,3042E~01

~Q.,2588E~02

0.+.1937E~-01
0.7279E~01
0.1528
0.2471
0.3292
0.3776
0.63%96
0.6398
0.7837
0.95%93
0.9377
0.9983
0.9985
1.000
1.000
1.000
1.000
1.000

1,000

177

0.2060E-26

04100000400
0.1000004+01
F(ERR) NO ITER
24,20 1.000
4,135 2,000
3.923 14,00
3,683 19.00
2,970 24,00
2,460 30.60
2,034 34,00
1.862 41,00
0.7881 51,00
0.,7162 57.00
0.5276 46,00
0.,4176 72.00
0.2791 7700
0.1836 83,00
0.1486 - 920.00
0.5956E-01 946,00
0.3990E-01 103.0
0.1698E-01 110.0
0.4177E~03 116.0
0.,4573E-03 122.,0
0.,1333E-04 129.0
0.5408E-06 134.,0
0.2134E-10 139,0
0.1047E-10 147.,0
0.2138E-11 154,0
0.2794E~20 161.0
0.2060E-26 168.0
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APPENDIX C
THE NLSPAK PACKAGE -

C.1 Overall Package Specifics

Like the MINPAK package described in the previous Appendix,
NLSPAK is Fortran-based and runs under the DEC RSX-11M and RT-11
operating systems. However, due to memory limitations on the PDP~11/45,
NLSPAK, unlike MINPAK, is only available in single precision. The package
- catex}s for data lengths of up to 250 points. Due to its size,:MINPA—KA is‘ heavily
overlaid (Overlaying is a facility on the; PDP-11 allowing segmentation of a load
program so that the whole program need not be simultaneously memory-
resident, thus allowing execution of a program which otherwise would not fit
into the available memory). This overlay structure is effectively transparent
to the —usér at run-time, but it increases programme execution time. This
time increase is minimised in NLSPAK by judicious arrangement of the over-
lay segments.

The large size of the NLSPAK load programme is not primarily
due to the large number of instructions in the package, but rathgr to the large
amount of array storage which is required ( 9K words for the sensitivity
matrix X, the vector of residuals e and the perturbed values required when
calculating 2nd. derivative finite difference information. This is large in
proportion to the total memory available to the programme (23K - RT - 11,
32K - RSX-11M ) ).

Although overlaying makes the resultant link procedure for the
package relatively complicated, as in the case for MINPAK, this is made
inivisible to the user by using an indirect command file to carry this out

interactively. The outline structure of the package is basically the same as
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for MINPAK (see Figure B.1). However, there is no choice of minimisation
algorithm in this case.

Also, the user's function evaluation routine 'RUN' must supply lst
derivative information in the form of the sensitivity matrix X . This routine
should, therefore, have the following format.

SUBROUTINE RUN (PAR, E, X, F, M, N)

DIMENSION PAR(N), E(M), X(M,N), F(M).

user-written code to return residuals E,
sensitivity matrix X and sum of squared

errors F as a function of the parameters PAR.

*

RETURN
END

It can be seen that writing a ’RUN' routine for NLSPAK involves considerably
more programming eifort on the part of the user than writing the correspoﬁding
routine for MINPAK. NLSPAK is therefore less attractive in this sense.
However, u.se can be made of this cheap residual and sensitivity information
in data-fitting applications to assess adequacy of fit. In NLSPAK, the 'CLRUP'
routine is u'sed to compute diagnostic information derived from X and e.
It optionally computes the mean and variance of the residuals, the covariance
matrix of the parameters, the parameter correlatibn matrix, the 95%
confidence limits for each estimated parameter and the volume of the 95%
confidence ellipsoid in parameter space (see Chapter 4 for discussion of
these quantities). It also gives a graphical output (print-plot) of the veqtor

<

of residuals and its auto-correlation function on the line printer.

8 s 8 pe e Py e mee e g b



)
)
(3
4)
_ (5)
(6)

(7)
(8)

)

(10)

(11)

(12)
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TABLE C.1
NON-LINEAR LEAST SQUARES ALGORITHM

Set up flags, initial variables and set initial grade of the sensitivity

A} t

matrix X r' = 'n' the number of parameters.

Use 'RUN' to get initial m x n sensitivity matrix X, vector of

errors e and sum of squares V ().

(

Calculate initial gradient vector g 0) (i.e. using equation 6.2

T

g=2X"¢e ).

Compute singular value decomposition of sensitivity matrix

X =US VT ( see equation 6.10) using 'SVD',

If this is the first iteration of the algorithm go to step (-9) to "
take full Gauss-Newton step.

Fix the grade 'r' of X based on the relative function decrement
achieved in the previous iteration using 'IGRADE’.

Compute e* = UT e

If the grade 'r' is zero go to step (11) (i.e. there is no p(l)

component here in equation 6.20).

Compute Gauss-Newton direction in space spanned by the column
by column partition of V corresponding to the grade 'r' calculated

in (6), i.e. use p(l) = -V S-1 e, (this is equivalent to

171
equation 6.17 with e} = UlT e.)

If grade 'r' = 'n' the number of parameters go to step (15),(i.e.
there isno p @) component here in equation 6.20 ).

T LK)
2 B
by finite differences as described in section 6.3, use routine

'HESS'.

Approximate second derivative dependent matrix' Y =V

Form strict lower triangle of A = ( 822 +Y Vzl ) (see equation 6.18)

and pack row by row in a linear array for use by the modified

Cholisky Factorisation algorithm. Form vectorb =-S5 e * -Y¥YDp

272

(1

corresponding to the right-hand side of equation 6.18.
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Table C.1 continued «......

13) Use the modified Cholesky factorisation algorithm (routine
'MDCHOL" ) to compute Cholesky factors of A above.

(14) Solve resultant linear equation set A y = b where the Cholesky
factors of A have been computed in (13) above, by first forward
and then backwards substitution. Use routine 'LINSOL’,

Computer p @) = V2 y ( see equation 6.19).

(15) Compute resultant search direction p & _ p (l)+ P @)
(equation 6.20).
' k k T (&), .
a6y  compute 1™y , Ng®™ i ana  )1g®T p® e
Lot o :
B P .2 where é is a small scalar., Set grade 'r'='n'
legh Inll ' '

the number of parameters.

17) Output current parameters, gradients sums of squares, etc.
(18) Conduct linear search to find a suitable steplength cif(k) which
(k)

sufficiently reduces V ( 8) along p . Use routine SEARCH
(also uses INTERP, EVAL, SCNVGD).

(19) Check for convergence of algorithm (use routine CNVGD).

(20) If convergence criteria in (19) are not satisfied update parameters

and gradient and go to step (4).

(21) Return.




- 352 -

C.2 Main Software Implementation of the Non-Linear Least

Squares Algorithm

The main core of the NLSPAK package is the implementation of
Gill and Murray's Non-Linear Least Squares algorithm (124) which is
contained in the subroutine 'OPTMSE'. The calculation steps constituting
'OPTMSE" are detailed in Table C.1. Some of these steps will be further
explained below.

Step (16) of the algorithm is a check to ensure that the approximation
to the Hessian matri;: obtained is not indefinite,’ Thg search direction must be
redomputéd with-gréde 'r' eqﬁal to zero if this is susp'ected. This is because
the modified Cholesky Factorisation (123a) must be calculated in the space
spanned by all the columns of V to allow it to shift all the negative eigen-
values of XT X + B (see equation 6.6) to maintain positive-definiteness.

In step (18) the linear search problem is solved, using a safeguarded
cubic interpolation algorithm (since gradient information is assumed available
here). Only two points are needed for interpolation in this case (see Section 3
in Chapter 5) and formulae 5.12, 5.13, and 5.14 are used to compute the
stationary point. For extrapolation purposes these formulae can be safe-
guarded by placing bounds on the predicted steplength in a manner similar
to that discussed for quadratic extrapolation in Appendix B. Equations 5.9
and 5. 10 are used as' a basis for termination of the linear search. Good
choices of the linear search termination criterion 7} and the initial steplength
in this algorithm are 0.9 and 1.0 fespectively (124). This choice implies

(k)

that a single step along the search direction p is nearly always accepted
provided the sum of squares V () is sufficiently reduced.

The criteria used in step (19) to check for final convergence of the

algorithm are as follows : -
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& ™Y < (trres) @+ 1880 C.1
and lv (8% -v (g% yy < THRES? c.o
(1+V (BK))
t
hen 2 % (1+vs®y) c.3
orxr “‘E
and 1e®n < v(g®) 2 ° C.4
oxr
v(g®y < 7% ' C.5

As in Appendix B, THRES is the convergenée factor input by the user in
'CONSOL' and 't' is the length of the binary mantissa of the computer used

(t = 24 is appropriate for single precision computation on the PDP 11/435).

C.3 NLSPAK Performance on Minimising an Analytic Test Function

We will now illustrate the use of NLSPAK by minimising the

same analytic test function (Rosenbrock's parabolic valley (249) ) as was

used to test the Factorised Quasi-Newton Minimisation algorithm in Appendix B.
The test function (defined by equation B. 8), can be interpreted as a

sum of squares (m = 2, n =2 ) by defining e as
e(B) = [10(82-61)2 (1-»81)] C.6

The sensitivity matrix X is readily calculated as : -

- 20 Bl 10

X(B) = C.7
-1 0
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The 'RUN’ subroutine for this function is shown below.

kR FTLE 3 ROBRUN,FTN (AR Dde-TaM-78 )
C

DRKK LEaST BEUSRES RS TON '7!“' FOSEMEROCHK S TEST P,

SUBRDUTTMNE RN PR, F, RT, FX 1Y, TV
DIMENSION FalR{ & FOTWU L RIE IU, TV
COMMON TTER, SOPaR, MFETS

M TG
ITER=ITER+1 A o
FOL =@, BROPaRe D -PaR L RRPARC L )

Fi2ml, @-FaR L) B

CFMeF L VKEC L R IR 2 ) : :
CRJCL, 4 -2, @RFARC LY - L s e L T B
O RJCOL, 21,0 S - ‘ -
T EeRTE2, L =1, 8@ D TTRARY e
CRJCR, 2 e,

U RETURN
_END

Once compiled this routine can be linked into the package using an indirect
command file in a similar wa}; to that described for MINPAK in Appendix B.
The results obtained using NLSPAK on Rosenbrock's function
for differing initial steplengths (STEP) and linear search termination criteria
(SIGMA) are summarised in Table C.2. From this it is seen the best
performance is acbieved with the values of the linear search parameters set
to those recommended in the previous section of this Appendix.
To compare the results in Table C.2 on a fair basis with those
obtained using the Factorised Quasi-Newton algorithm we define an index
of computational labour (300) for the non-linear least squares algorithm as

n =1n.+nn C.8
c f g

where 'n f' is the number of function evaluations, 'n' the number of parameters
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and ' ng ' the number of gradient evaluations. Thus for this problem it is
seen that one call to 'RUN" using the non-linear least squares algorithm is
equivalent to three using the Factorised Quasi-Newton algorithm.

Comparing the two sets of results in this manner (again see Table C.2)

it is evident tha the non-linear least squares algorithm is markedly superior

to the Factorised Quasi-Newton algorithm on this particular problem (despite

the disadvantages of being implemented only in single precision).
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<10-10
STEP SIGMA NF, G(V(B) 10 NIT NF
t,5 Nc » (Final)

0.1 0.0 918 2754 20 936
0.1 0.1 34 . 102 18 51
0.1 0.9 '110 330 110 140
1.0 0.0 945 2835 19 %946
1.0 0.1 44 132 15 45
1.0 0.3 36 108 14 37
1.0 0.9 33 99 13 35
2.0 0.0 854 2562 25 855
2.0 0.1 . 55 165 16 56
2.0 0.5 45 135 15 51
2.0 0.9 44 132 15 45
BEST

(Least Squares (Nc ) 929

Factorised Quasi Newton 139

TABLE C.2 : NON-LINEAR LEAST SQUARES PACKAGE
PERFORMANCE ON ROSENBROCK'S FUNCTION
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APPENDIX D

COUPLING TERMS AND INITIAL CONDITIONS FOR THE
CO, GAS TRANSPORT MODEL SENSITIVITY EQUATIONS

2

(A). Four Parameter Model
(1) Coupling Terms
Cl(Q) =.[‘b(PTC~PA)+AINT const D.1
Cz(Q) = -b_(PTC-PA)-AINT D.2-
c,(V)‘=-Y (P’“'P)'9 [b(P.-P)+A const. D.3
1VA VAZI AVA2 TC ~ AT AINT - P
l’J2 (VA) = 0 D.4
Cl ™M = 0 D.5
02 M) = 1 D.6
Cl(VTC) = 0 D.7
_ .M Q .
CoVrd v 2% gy 2 [b@ro PO+ A ] D.8
TC TC
(ii) Initial Conditions
P A(0) = assumed valuie ( see Ehapter 3) D.9
_ M INT ,
PTC(O) = PABAR + bQ 5 (see equation 3.14) D.10
)P
(0
Yrgy WM
. - _'42 Do 12
3Q bQ
\P
20 0 D.13
QVA
P
TTC-(-) = 0 D. 14



- 358 -

hYy
—A—QI(O) = o0 D.15
Frogy - 1 D.16
M bQ
QP
ﬁ-ﬁo) = 0 D.17
TC o

3P
_X_’_\}"_C_’ = 0 D.18
< TC

B). Five Parameter Model

(i) Coupling Terms

Additional coupling terms extra to those detailed above are : -

Cl (PA(O)) =0 | D.19
02 (PA(O)) =0 D.20
(ii) Initial Conditions

Initial conditions for all the parameters are the same as for the
four parameter case, except for the following : -

D.21.

P = Fa@
P
APA(O% 1 D.22
35 (0)
3fre@ _ |

D.23
JF A(0)
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Q). Six Parameter Model

(i) Coupling Terms

Additional coupling terms extra to those detailed above are ;-

Cl (PTC(O) ) =0 D.24
02 (PTC(O) ) 0 . D.25
(ii) Initial Conditions

" Initial conditions for all the mbdelparameters are the same as for )
the five parameter case, except for the following : -

P D.26

TCO) = FTCo)

P
;TQT—C(O) = 0 D.27
3100 _

«28
M .

o

3Prc() _
350

0 D.29

$Fa0)

= 0 D. 30
J PTG(O)

%P1 _
321000

D.31

[
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REPRODUCIBILITY DATA

Estimation Results - Eight Parameters

continued +.400044

: pa N 2
File Q VA M VTC PA(O) PTC ©0) a b = ei/m
REPO11 7.11 2,92 0.276 3.86 3.89 45.1 0.95 0.36 0.131

0.2) (0.091) (0.0075) (0.28) (0.61) (0.86) (0.054) (0.10)
3 6.83 2.76 0.275 3.32 38.2 43.5 -0.68 -0.10 0.164
(0.21) (0.11) (0.003) (0.2) (0.75) (0.69) (0.11) (0.14)
4 7.07 2,84 0.288 3.46 37.4 43.1 -0.81 -0.25 0.150
(0.22) (0.10) (0.0034) (0.24) (0.6) (0.71) (0.09) (0.17)
REP021 5.74 3.18 0.251 3.92 . 38.2 46.1 =-0.93 -0.32 0.069
‘ (0.21) (0.10) (0.0028) (0.34) (0.45) (0.75) (0.05) (0.09)
2 6. 15 2.76 0.234 2,91 37.6 44.8 -0.96 -0.51 0.142
. (0.29) (0.13) (0.0043) (0.23) (0.61) (0.96) (0.05) (0.09)
4 6.49 2.70 0.229 3.8 38.5 43.9 -0.98 -0.32 0.095"
~ (0.27) (0.17) (0.010) (0.36) (0.54) (0.89) (0.03) (0.09)
5 6.11 2.46 0.242 2.98 37.1 42.0 -0.94 -0.31 0.103
(0.31) (0.12) (0.004) (0.25) (0.54) (0.96) (0.04) (0.09)
REP071 6.46 3.37 0.241 4.36 37.5 44.3 -0.7 0.08 0.148
(0.41) (0.24) (0.0021) (0.56) (0.67) (0.9) (0.09) (0.13)
2 6.29 3.95 0.229 4,59 40.9 47.6 -0.92 -0.34 0.220
(0.43) (0.25) (0.005) (0.8) (0.76) (1.25) (0.07) (0.11)
3 6.58 3.11 0.241 4.09 44.6 46.8 -0.88 -0.32 0.19
(0.39) (0.20) (0.0036) (0.53) (0.98) (1.06) (0.08) (0.12)
4 5.89 3.39 ‘0.249 5.30 41.7 48.9 -0.79 -0.36 0.176
(0.27) (0.21) (0.0026) (0.78) (0.73) (0.77) (0.15) (0.17)
REPO81 6.43 3.62 0.213 4.47 35.4 41.2 -0.546 -0.049 0..093
(0.23) (0.14) (0.0016) (0.32) (0.39) (0.47) (0.16) (0.18)
2 5.97 3.51 0.217 4.22 33,9 38.7 -0.747 -0.418 0.114
0.27) (0.17) (0.002) (0.67) (0.42) (0.31) (0.11) (0.12)
3 5.25 2.37 0.205 4.11 37.0 40.3 0.135 0.210 0.232
(0.28) (0.19) (0.0022) (0.94) (0.65) (0.72) (0.11) (0.21)
4 4.90 3.03 0.203 5.10 36.0 41.6 -0.588 0.02 0,224
(0.25) (0.20) (0.0029) (0.95) (0.87) (0.80) (0.11) (0.14)
REP091 5.36 3.72 0.221 3.19 32.1 37.4 -0.45 0.19 0.125
(0.24) (0.16) (0.0019) (0.18) (0.54) (0.76) (0.12) (0.15)
2 5.68 3.36 0.199 2.38 32.1 36.4 -0.81 -0.28 0.261
(0.47) (0.20) (0.0027) (0.24) (0.78 (1.35) (0.11) (0.13)
3 6.72 2,83 0.202 2.27 33.2 33.7 -0.87 -0.33 0.146
(0.44) (0.15) (0.0034) (0.16) (0.78) (1.03) (0.08) (0.12)
4 5.65 3.17 0.200 2.81 33.9 34.7 -0.90 -0.33 0.176
(0.36) (0.16) (0.0042) (0.27) (0.73) (1.18) (0.07) (0.11)
REP111 5.81 2.99 0.213 2.47 35.9 38.4 -0.67 -0.26 0.410
(0.37) (0.19) (0.0039) (0.15) (1.28) (1.25) (0.17) (0.19)
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E.2 continued +..eeenuse
- . 3
File Q Va M Ve a0 Prco) @ b Be
REP112 5.22  3.36  0.219 2.99 36,1 37.1 -0.45  0.193 0.263
0.22) (0.14) (0.003) (0.18) (0.88) (0.95) (0.12) (0.15)
3 5.44  3.43  0.192 2.32 35.0 37.7 -0.66 -0.167 0.384
(0.36) (0.18) (0.0039) (0.15) (1.12) (1.33) (0.13) (0.16)
4 5.38  3.20 0.189  2.23 30.9 36.3 -0.75- <-0.07 - 0.234 | -
(0.30) (0.12) (0.0035) (0.15) (0.92) (1.30) (0.09) (0.12)
REP121 6.56  2.70  0.240 4.10 44.0 46.7 -0.90 -0.47 0.169
0.21)  (0.11) (0.004) (0.28) (0.84) (0.76) (0.1)  (0.13)
2 6.76  3.19  0.239 2.60 40.4 48.4 -0.68  0.04 0.314
(0.43) (0.17) (0.003) (0.20) (1.03) (1.25) (0.1)  (0.13)
3 6.58  3.44  0.225 8.05 39.7 42.7 -0.91 0.2  0.337
(0.43)° (0.16) (0.0065) (0.36) (0.95) (1.61) (0.05) (0.1)
4 6.89  3.3¢  0.255 3.56 39.8 44.8 -0.82 ~0.11 0.248
(035 (0.14) (0.0043) (0.34) (0.78) (1.09) (0.07) (0.11) )
REP141 5.72  2.09  0.206 3.90 40,6 44.2 -0.623 -0.03 0,173
(0.17) (0.10) (0.0016) (0.22) (1.01) (0.68) (0.12) (0.15) -
2 5.21 2.37 0.190 3.82 38.8 46.8 -0.625 0.06 0.112
(0.14) (0.09) (0.0015) (0.24) (0.73) (0.57) (0.11) (0.13)
3 5.49  2.20  0.197 3.42 39.2 43.6 -0.644 0.03 0.146
0.18) (0.08) (0.0023) (0.21) (0.68) (0.67) (0.09) (0.12)
4 5.61 1.80  0.205 3.96 39.7 46.7 -0.495 0.13 0.134
(0.22) (0.08) (0.0014) (0.19) (0.77) (0.45) (0.12) (0. 14)
REP151 8.26  2.40  0.216 4.70 39.6 40.6 -0.897 -0.998 0.192
(0.30) (0.13) (0.0046) (0.33) (1.66) (0.73) (0.11) (0.13)
2 6.32  3.41  0.224 3.86 37.9 43.6 -0.585 -0.293 0.32%
(0.24) (0.15) (0.0018) (0.23) (1.03) (0.73) (0.24) (0.25)
3 6.13  3.60  0.208 4.04 37.5 42.1 -0.815 ~-0.429 O.14
(0.18) (0.10) (0.0023) (0.25) (0.56) (0.58) (0.14) (0. 16)
4 5.89  3.21  0.208 3.96 38.9 42.2 -0.761 -0.439 0.226
. (0.19) (0.11) (0.0025) (0.27) (0.87) (0.66) (0.19) (0.20)
REP181 6.50 4.12  0.255 2.52 33.3 40.2 -0.732 -0.07 0.138

(0.31) (0.14) (0.0025) (0.14) (0.69) (1.05) (0.10) (0.13)

2 7.33  3.13  0.284 2.58 35.2 36.4 -0.622 0.147 0.135
(0.27) (0.1)  (0.0036) (0.95) (0.75) (0.84) (0.09) (0.11)

3 7.24  3.34 0.286 2.70 34.7 36.5 -0.856 -0.07 0.134
(0.33) (0.11) (0.0049) (0.17) (0.62) (1.08) (0.06) (0.1)

4 6.89  3.50 0.271 2.32 34.1 39.1 -8.22 -0.114 0.182
(0.31) ~ (0.10) (0.0049) (0.12) (0.57) (1.07) (0.06) (0.1)

REP191 7.73  3.58  0.280 3.48 35.6 41.4 -0.849 -0.225 0.0912
(0.42) (0.19) (0.0031) (0.26) (0.58) (0.84) (0.08) (0.12)

2 7.27  8.52  0.268 2.85 36.4 89.6 -0.785 -0.134 0.137
(0.49) (0.21) (0.0033) (0.20) (0.69) (1.00) (0.09) (0.12)

3 7.04  3.42  0.279 3.23 34.9 37.6 -0.876 -0.15 0.131
(0.45) (0.175) (0.0045) (0.31) (0.68) (1.00) (0.06) (0.10)

4 7.57  4.06  0.281 3,10 34.6 40.4 -0.933 -0.09 0.091
(0.43) (0.162) (0.0063) (0.26) (0.46) (1.11) (0.05) (0.09)

continued +..c..
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0.11)

(D 0017) (0.30) (0.47) (0.54)

(0. 14)

E.2 Continued "..o0e0ee. .e
) : - 2
File Q v, M A PA(O) PTC(O) a b Eei/m
REP201 5.87 2.76  0.184 4,54 37.0 42.3 -0.863 -0.267 0.084
(0.24) (0.13) (0.0021) (0.46) (0.51) (0.63) (0.09) (0.13) -
2 5.46  2.49  0.171 3.84 38.9 42.1 -0.868 -0.279 0.096
(0.23) (0.12) (0.0021) (0.42) (0.56) (0.68) (0.08) (0.12)
3 5.64 2.49  0.179 3.99 39.0 42.3 -0.871 -0.371 0.068
(0.18) (0.11) (0.0018) (0.28) (0.55) (0.52) (0.11) (0.15)
4 .5.52 2.45 0.176 3,79 38.5 41.5 -0.828 -0.319 0.084
(0.2) (0. 10)
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APPENDIX F
" FORMULA FOR T, 2 M, , 2 and w for the DEP, RK1 and
BEGS FACTORISED QUASI-NEWTON UPDATES.

() BFGS UPDATE
z(k).-- y(k) BT
w(k) - g(k) (F.2)
1
T, T T (F.3)
1 a(k) S
= F.4
T W ® : (F.4)
p & '
(i) ADFP UPDATE
w(k)= g(k) (F.6)
R S
™= ig (F.7)
T, = -Z (F.8)
(iii) RK1 UPDATE
2 &) _ g(1<+1) (a (k)_l) g(k) (F.9)
W& - o | (F. 10)
ro= L | _
1T T W E.11)
T, = 0 " (F.12)
Note : - é - y(k) T p(k) (B 13)
s o (F. 14)
LR DT ) )y (9T ()
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APPEND]X G

FILE @ NLSRUN,FOR (RT-11 RAB | 286~FEE~79) ;

RUN MODULE FOR USE WITH NLLS., GDES IN OQUVERLAY TWO (OVLIEZ2),
FAST VERSION WHICH USES DOUEBLE EBUFFERING M&ACROS T0

SFEED UF I/0.

HOMUGENEQUS COR GAS TRANSFORT MODEL.

O RUNY Y SUEBROUTINE FOR USE WITH GILL-MURRAY NON LINEAR
LEAST SQUARES FROGRAMME.

USES EXFLICIT GRADIENT INFORMATION S0 THAT SENSITIVITY
CO-SYSTEM MUST ALSO BE EVALUATED. WORKS WITH FOUR, FIVE,
OR SIX FARAMETER MODEL.

SUBROUTINE RUNCFAR, F, RT, FX, TU, TVU)

DIMENSION FARCIV), FCIU L RICIU, IV ), FARLOS 1) SENFI(S ), SENFAC S ),
1 S8UMVDC &), &UMQEN(u),mﬁEﬂN(b)aaENFT(é),NL(o;S@) N”(j 86 )
COMMON ITTER. NOFAKR, NFTS

COMMON /EUFFER/ DEUFF(S12)

COMMON /UNITS/Z INN, IOUT

COMMON /SCLING/ SCFAR(6.2) ' '

COMMON /BILOCKE/ DELT, TOTSANM, NOBLKS, NDSnnC,NCHaTn

COMMON /MODEL/ VDM, FAIN. SE, AINT,EVET, NLTD\@ahq@) FADRAR, FTBSES.
REAL MF

INTEGER TOTSAM, DEUFF

EQUIVALENCE (N1( 1, 1) DBUFFCL) ) (N2C1, 1), DEUFF(2S7 )
EQUIVALENCE (QDOT, FARL( 1) (VA FARL(2) ), (MF, FARL(3)),

1 VT, PARLCA) ), (Fa8, FARLOS) 1 (PTA, FARLIS ) )

CONVERT L/M RUANTITIES TO L/78 AND GET CORRECT I.C’S FOR
GIVEN MODEL ORDER., UFDATE TITERATION COUNT.

ITER=ITER+1

Call. DSCLE( FAR, FARL )

GDOT=RD0T/ 68, 8 :
MFP=MF/58. 8

FAaBM=FHAIN

IFCNOPAR, EQ. 5. OR, NOFAR, ER. 6 )FAEM=FAGD

- POIFF=MF/(ADOTKSE -AINT/SE

FTBS8S=FABM+FDIFF

IFCNOFAR, EQ, 4 )P TAM=FARAR+FDIFF
IF{ NOFAR, EQ. S5IFT@M=FAB+FDIFF |
IF(NOPAR. EQ. $ PTOM=FTQ

WORK DUT I,.C’S FOR SENSITIVITY CO-SYSTEM OEFEMDIMNG ON
GIVEN MODEL ORDER. '

DO 1 I=1,NOFAR
SENFA( I )=, 8

SENFT(I)=3.0
IF(NOFPAR, ER, 606070 3
SENFT(3 )=1.8/( SEXQDOT)
SENFTC 1 )=-1, BXMFXRSENFT( 3 ) /RDAT
JIFONOPAR, ER, 3)80TO 2

GaTo 4

SENFA( S5 1=1.8

G0TO 4

SENFA(T=1.0 -



CXRXRXK
EXKKXK
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C.
CRRXK
CX¥X
C

1a

26

27

CREX
CRXKX
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Appendix G cont'd......
SENFPT( 6 )=1.8@

INITIALISE FLAGS, INTERMEDIATE STORABE AREAS ETC,
READ IN FIRST BUFFER OF DATA.’

CALL TRREAD

SUMF1=@. 8

SUMMOD=8. 8

DO 5 I=1,NOFAR

SUMSENC T )=, @

SMEANC T I=SENFA( 1) , . -
SSUMVDC I )=@. @

SUMFZ=6, @ y
SUMDAT=0, @ 2
FX=8, @ )

SUNVD=0. 8

SUMFVD=0., @

 PAMEAN=FAGM

NOSAM=0
NFTS=@
IELK=08
JER=1 "

NOW READ IN AND OFERATE ON RELAVENT BLOCK OF DATA DEFENDING
ON WHETHER IT I8 0ODD QR EVEN. . .

IELK=TELK+1

CALL TRREAD

DO 188 I=1, NOSMRC
NOSAM=NOSAM+1
IFCMODC TELK, 2 ). NE, 8)60T0 21
FLOW=FLOAT( N1¢ 1, 1))/3000. 0
FCO2=FLOAT(NLC 2, 1))/488.
VOL=FLOAT( N1¢( 3, I))/5806.0
BOTO 22 :
FLOW=FLOAT( N2C 1, 1))/30006, 8
PCO2=FLOAT(N2( 2, I ))/400. 0
VOL=FLOAT(NZ( 3, 1) )/5000. 8
CONTINUE

BET CORRECT VA FOR CURRENT TIDaAL vOL.

IFCVOL )3, 25, 39
vag=ua
Va=Uag+VoL.,

GET CORRECT TNSFIRED FCO2 AND ASSOCIATED SENSITIVITIES
DEFPENDING ON PHASE QF BREATH. )

DO 26 JI=1, NOFAR

SENFI(T)=6.0

IF(V0OL. BT, VDM, OR. FILLOW, LE, 8.8 )60T0 31t
FCO2=FAMEAN

DO 27 J=1, NOFAR

SENFI(J )=SMEANC J)

CAaLL MODEL SUBROUTINE WHICH UFDATE MODEL AMD SENSITIVITY
COBYSTEM USING EULER,



cC-
31

c

CxxK

41

CRKXK
CRRXK
-
32.

43
33
34

CRxXK

CKKXK
CHXKXK
CRKK
Cx¥xX
CXKXK

34,

32
38

a5

4é

a7

e - —Appendix-G-contdereeere -

CaLL MODELLCQDRAT, VA, MF, VT, FLOW, FCO2, SENF T, VOL, FagK, ¢ TaM,
1 SENFA, BENFT)

IF(NOSAM, LT. NETDC L, JER ) ¥BOTO 44
IFCNOSAM. BT . NETDC 2, JER ) BQOTO 32

MODEL E/T REGION — UFDATE FLOWS AND FLOW WEIBHTED MEAMS,

SUMMOD=3SUMMOD+Fa@MRF1_0W

DO 41 J=1, NOFAR o
SUMSENC J =SUMSEN( J 1+ B8ENPAC T 2TL0W : .
SUMF 1=8SUMF 1+FLOW -

60TO 33

LAST DEACSFACE OF EXFIRATION., UFDATE FLOW WEIBHTED ﬁEﬁNS 0
USE AS INFUTS FOR FIRST DEADBFACE OF FRECEDING INSFIRATION.

. SUMVD=SUMUD+FA@MKFLLOW
- DO 43 J=1,NOFAR

SHUMVDC T )= SSUWUD(J)*ﬁENFA(J:*rLUN
SUMFVD=8UMFVD+FL.OW

IFCNOSAM, LT, NETIX 3, JER ) )GOTO 90
IF( NOSAM, GT. NETDC 4, JER > )GOTO 36

RATA E/T7 REBION - UFDATE FLOW WEIGHTED SENSITIVITIES aNd FLiW.

SUMDAT=SUMDAT+FCO2%FLOW
SUMF2=85UMIF2+FLOW
G070 48

CEND OF BREATH. UFDATE FER BREATH IMFORMATION (I.E, MEAN
MODEL AND DATA. FCOZ, ERROR » ABHBOCIATED SENSITIUITILS

(NOTE THESE ARE SCﬁLED!!!); AND MEAN FICOZ AND SENSITIVITIES
FOR FIRST EREATH., FINALLY RESET STORES FOR F/W MEANS.

DON' T BOTHER IF &aD BREATH (I.E. VOL < WD),

IFCSUMFL. EQ. @, @, OR, SUMF2. EQ. 3, 8 )60Td 33 .
NFTS=NFTS+1 ‘
FCNPTS =8UMMOD /SUMF L-SUMDAT /SUMF2

FXX=FX+F{NFTS JXF{NFTS)

DO 39 J=1, NOFaR :

RJCNFTS, ITH)=8CPARC T, 1 IXSUMSEN, J )/SUMF 1

IF(TWEQ, 1.OR.J,ERQ, 3 RJINFTS, JI=RI(NFTS, T ) /48,9
CONTINUE

JER=JER+1,

IFCVOL, BT, ~VDMOIGOTO 46

FAMEAN=SUMVD /SUMFVD

DO 435 J=1, NOFAR

SMEANC J )=38UMVDC J )/ 8UNMFUD
CONTINUE

DO 47 J=1, NOFaR
S8UMVDI T )=8. 8
SUMSEN( J )=8. 8

SUMF1=0.0 ,
SUMFZ=1.3 -
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186

CxxK

158

Di16E6

CHRXX
CRXX
TXKK
CRXEX

WIS

Appendix G cont'd........

SUMFVD=@. @
SUMMOD=@. 8
SUMDAT=8. 8
sUMVD=3. 8

CONTINUE
IF(NOSAM, EQ. TOTSAM)BOTO 136
CONTINUE

c0TO 189

REWIND wAaTa FILE aND CUTFUT FX TO TERMINAL,

CALL TRRWND

RFX=FX/FLOAT(NFTS)

WRITEC I0UT, 198@ ) ITER, RFX

FORMAT( /71X, ITER = 7, I3, RFX = *,615.6)
RETURN .

END

MODEL SUERQUTINE FOR USE WITH 7 NLSRUN 7
HUMOGENEOWS CO2 MODEL. - '

MODEL EGNS AND- ASSOCIATED SENSITIVITY COSYSTEM UFDATED
USING EULER. RAE. .. 13~FEEB-77..

- QUEROUTINE MODELLC RDOT, Vé, MF» UT, FLOW, FCO2, SENFI, VOL, FaaM,

CXAK

CXEXK
CXRXK¥K

FTaM, SENFA, SENFT)

DIMENSION SENFIC6) SENFACS ), SENFT(S ), DSENFACS ), u“"NPT(oJ
COMMON ITER. NOFAR

COMMON /ELOCK®/ DELT

COMMON /MODEL/ VDM, FAIN, SE, AINT

REAL MF

DATA CUNST/863. 604/

SOLVE MUDEL EQNS FIRST,

THING1=RDOTX( SEX( FTAM~FABM )+AINT )
THING2=0, 0

IF(FLOW, BT. 8. @)THING2=FLOWX({ FCO2-FaaM )
DELTFA=({ THING1XCONST+THING2 )/VA
DELTET=(MP-THINGL )/{ SEXRVT }
FABM=FABM+DELTFAXDELT
FTOM=FTOM+DELTFTARDELT

GENERATION OF SENSITIVITY COSYSTEM,
COMFUTE COUFLING TERMS FIRST,.

- DSENFAC L )=THINGLRCONST/R00OT -

DSENFT( 1 )=~1, BXTHING1/RDOT

DSENFA( 2 )=( -1, B*THINBI*CDNSTMTHINB”)/UA
DSENFT(2)=0.0

DSENFAC S =0, 0

DSENFT( 3)=1.80

OSENFA( 4 )=0.08

DSENFT( 4 )=({ THINGL~MF »/VT

IFCNOFAR, ER, 468070 18
DSENFA( 5=, 0
DSENFT( S 1=0.0



CXXkX
CxKX
CHEKXK

18

- 370 -
"7 Appendix G cont'd......
IF¢ NOF'AR, ER. 5)G0T0 16
DSENFAC & )=0. 0
DSENFT( & )=8. B

NOW COMPUTE DECOUFLED TERMS.
SULVE TOTAL SENSITIVITY COSYSTEM EY ADDING IN COUFLING
TERMS CALCULATED AROVE.

DO 28 I=1, NOFAR
THING1=QDOTXSEX({ SENFT( I )-SENFA(I )

THING2=8, 8

IF(FLOW. BT. 8, @ )THING2=FLOWX( SENFIC T )-SENFACT 3 )
DSENFA( I y=( DSENFA( I )+ THINGLIXCONST+THING2 )/VA
OSENFPT( I)=( DSENFTC I )~THINGL )/ ( SEXVT )

SENFAC TH=8ENFA( I »+DSENFAC L )XDELT

SENFTC I)=8SENFT( I )+DBENFT( I JRDELT

RETURN

-END
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