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SUNMARY

Onz of the requiremenis of ths leading edge éf a hypersonic
. AN

wing is that it should be able to withstand the extremely severe rates
of aerodynanic heating. By taking the thermal condgotion of the
material into consideration, the temperature at the nose of the wing
may be substantially modified as compared with the case where the
boundary layer heating is balanced by radiation alone. The present
investigation covering voth the two-dimensional and three-dimensional
wings shows that not only can the nose temperature be reduced by the
minclusion of the effecls of heat conduction within the material close
to the leading edge but also that the temverature distribution in the
leading edge region can be predicted quitie accurately.

Making certain simplifying assumptions,we formulate the steady
state heat transfer equaiions within a “conducting plate". The
laminar boundaxry layer heat transfer characteristlics at high speeds are
adopted here to describe the heating pheﬁomenon over a regién close 1o
the leading edge with finite rates of heat flux at the leading edge.
The effects of heat conduction are éignificant over lengths of the
orderf&he "conduction length" only; further dowmstream the temperatures
beipq quite close to the radiation eguilibrium value. This conduction
length is a function of parameters such as, the thermal conductivity
and the thickness of the material, the rates of heat flux and the
temperatures associated with it.

For the two-dimensional plates, we have obitained solutions of ths
non-linear heat conduction eauation by means of three independent

munerical methods with the help of a high speed digital comgputer. A




ix

family of bodies whose streamwise cross-section of the conducling
material varies trapeéoidally is studied in detail. For such a
distribution of the material, the nose thicknsss is shown to be the
most important factor in the determination of the femperature
distribution. The thesory ﬁas been extendéd:to three-dimensional
wings to include the effects of finite span and the angle of sweep of
the leading edge. The three-dimensional wings may be considered
gsimplified versions of a caret wing which belongs to the wave-rider
type of hypersonic wings. The merits of a uniformly rounded apsx
-of a swept wing (subject to a couple of restraints) are compared with
the results obtained for the sharp apex.

The two-dimensional thesory of conducting plates has been
satisfactorily verified by experiments which cover a sufficiently
widerrange of possibilities represented by some non-dimensicnal
parameter. The experim=sntal technique has also been appiied for
studies of leading edge heating problems on models the solutions of which
are difficult to obtain by numerical methods. In carrying out experi-
mental studies, development of certain instruments such as radiometers
and hsaters became necessary. Also, property data of the material

used for the modelg{had to be acquired by separate investigations.

A preliminary study has also been undertaken to investigate the
two-dimensional thermal stresses that may be induced by the actual
temperature distributions close to the leadinz edge. Thgrmal stability
of the leading edge region of plates tapered in thickness (streamwise)
is analysed with a view to relaté the onset of thermal buckling with

the aerodynamic heating, Since the temperature distribution near the



leading edge is closely connected with the heat conducting ability
of the material, thes criterion used in thermal buckling must be
dependent also on this ability of the material in removing heat from

the nose downstirean.



CHAPTER 1

1. Introduction

In high speed flight the aerodynamic heat transfef from the
boundary layer to an aircraft is an important faétor and has a profound
-influence on the design. In particular, the leading edge of a
hypersonic wing ié subjected to extremely high rates of heat transfer.
Regardless of the shape of the leading edge it must be able not only
to withstand the high temperatures associated with the aerodynamic heat

ﬂinput but also the thermal stresses induced by the variation of temper-
ature.

Hypersonic heat transfer was first encountered in vehicles re-
entering the earth's atmosphere. Such bodies undergo high rates of
deceleration for relatively short periods when the "windward" surfaces
are subjected to very severe heating. TUnless some means. of dissipating
the heat is provided, the body would simply "“burn-up".

There are at least two distinet ways in which orbital wvehicles
may be brought béck to earth; either by using a glider trajectory (in
which case the vehicle must provide aerodynamic 1ift) or on a balliétic
trajectory (where the vehicle has considerable aerodynamic drag but
hardly eny 1ift). The ballistic re-entering body is subjected to
eitremely high rates of heat transfer for short periods as compared
with the glider type of bodies which undergo lower rates of heat
transfer over much longer flight times. For a spacecraft returning

from orbit the total amount of heat generated per unit body mass is

2
roughly equal to Eﬁ_. X;_ where Cf is the average skin-friction
- C 2
D



coefficient, C. is the coefficient of total drag, and V is the initial

D
velocity of the vehiélé (reference 1). Straightaway it is evident
that in order to minimise the total heat input the ratio_E£ should be
minimised; +that is, the fraction of the total resistancetho motion
represented by friction drag should be minimised. ¥or a sphere this
ratio might be about 0.01 but for a flat plate at low angles of
incidenoe.it would be close to unity. A simple calculation (using
the relation Jjust . Quoted) shows that the total heat transferred to a
decelerating body re-entering the atmosphere at orbital speed can Qxceed
the heat capacity (including the heats of fusion and evaporation) of
most known materials if the body is streamlined.

Upto now hypersonic heat transfer has been encountered iﬁ'ballistic
migsiles and space vehicles returning to earth. . In both cases a
ballistic re-entry is employed. Ablative heat shields are provided to
absorb the heat energy converted from the initial kinetic: energy of the
body. For these types of bodies, radiation cooling of the surface is
negligible compared with the heating rates being input.

.One can distinguish two extreme types of ballistic re-entry heads;
the low-drag (e.z. a blunted cone) and the high-drag head (e.g. a |

. hemispherical forebody). The high drég decelerates at a higher

altitude than the 1ow~drag head (reference 2). Because the high drag

C

head has a higher value of Ei , it undergoes a higher total input of
D

heat per unit mass than the low drag head, A high drag head also has
a lower velocity in the final part of the trajectory and has been
chogsen for the manned re-entry capsules. On the other hand, the low

drag-head because of its high terminal velocity, gives greater accuracy




e — e a——w ¢ T

(less influenced by winds) and has been adopted for long range missile

warheads. The average heat flux to the re-entry bodies is proportional

1 m °’r 7 ~
to* . == . = where m is the mass of the vehicle and 8 is the
2 S CD 2 A
total wetted area. For bodies of a given mass to wetted surface area

the heat flux (quantity of heat per unit area) increases as the ratio

Eg.increases i.e. a low drag head is subjected to a higher value of

C
éeerage heat flux as compared with the high drag head. Whereas if we

consider a particular type of head (e.g. the high drag head), then the
average heat flux value can be decreased by reducing the ratio of the
mass to the wetted surface area of the re-entering vehicle.

The present outlook envisages the design of spacecraft which are
capable of flying back to earth and landing like "conventional" aircraft.
One of the requirements dictated by economic factors is that the space
vehicle should be re-usable. One answer is to use lifting-body or
winged-body configurations. Howevexr, as we have seen above, as the
body is streamlined the total heat input to it is likely to be large.
On the other hand the effect of increasing the 1ift to drag ratio C% )
is td increase the time taken during the re-entry phase of the flight,

so that the average rate of heat transfer may not be unduly large and

. cooling By radiation presents a reasonable possibility.

For the streamlined bodies, protection of the internal structure
by heat sink and ablative cooling becomes impractical because of the
large mass needed. Both these forms of cooling are attractive only
where the structure is subjected to limited total heat transfer. In
the case of ballistic trajectories, once re-entry has been effected,

there is little control on the actual point of touchdown.




As the ratio (%) ig increased the'spaoecraft can glide down to any point
within a much larger area (the so-called "foot-print'").

In general, with an increassing nose radius of a wing the ratio of
1ift to drag (%) shows a decrease. If the wing is made sharper at the
leading edge, the problem of aerodynamic heating becomes one of the
spatial-distribution of heat input (as against the average rate of heat
transfer being excessive). In this context, one design philosophy has
been to utilise wing leading edges with large nose radii (of the order
of 1m., say). By maintaining a.small curvature of the surface a near

~uniform intensity of heat input is obtained for the leading edge, which
will in equilibrium be balanced by the amount of heat being radiated
away from the surface. It has been proposed to use such a wing for
booster vehicles which will assist in the take-off phase of spacecraft.
After separating from the main structure employed in the launching,
which by then has reached hypersonic mach numbers, the bodster vehicles
will fly back to land like conventicnal aircraft. - Using suitably
rounded leading edges, it is possible to maintain the equilibrium tem-
peratures to within an acceptable level. However, when this concep@

of designing a large nose radius so as to provide minimum energy

3

_transfer at hypersonic speeds‘ is used for vehicles re-entering the
atmosphere with orbital speeds, the equilibrium temperatures that can
be expected are still beyond the operating limit of present day high-
temperature superalloys.

Where long range hypersonic flight within the earth's atmosphere

is to be undertaken or a very large foot-print area is desired, the

range of the aircraft becomes of primary importance. Since the range



is proportional to %-it is obviocus that the (%) ratio must be maximised.
For hyperscnic mach numbers, one solution lies in the use of slender
wings and especially "sharp-edged" leading edges. In this context,

4,5

Nonweiler was the first to suggest the use of caret wings (also called
the waverider or inverted nyn). In general the heating problem with
sharp leading edges is one of overcoming the spatial distribution of
heat intensities, particularly the area close to the nose of the wing.
Theoretical as well ag experimental evidence gathered by various
researchers indicatés that the nose of a slender wing is subjected to

_extremely high rates of heat flux which decrease very rapidly with the
distance from the leading edge. Radiation still provides the bulk of
cooling of the leading edge but is found to be inadequate at the nose
wvhere the radiation equilibrium temperature can tend to the local ther-
mometer value (which is the adiabatic wall temperature). The magnitude
of the thermometer value at the nose can be of the order of several
thousand degrees which is clearly beyond the operating limit of most
refractory materials, |

One method of cooling that has been suggested is by internal
convection, and//or transpiration whereby the coolant is injected into

© the boundary layer. Both these proceéges require complex aﬁd expensive

manufacturing and f&brication techniques, heavy pumping gear necessary

to circulate the coolant and the eguipment required to ensure that the

operation of the system is fail-safe. Transpiratidn cooling necessitates
the carrying of a bulk of the coolant. On the other hand if the fuel

is used as the medium for convective cooling, it is limited to the

specific heat of the fuel. Vapourisation of the coolant is to be




avoided since it would require a much higher volume to bé pumped. Also
the fuel may become chemically unstable above a oértain limiting vaiue
of temperature.

There is an alternative solution for the aerodynamic heating of
"sharp-edged" leading edges where the materisl properties of the leading
edge are employed to reduce the maximum equilibrium tempergtures. In
this investigation we demonstrate how the mechanism of thermal conduction
(for reasonable values of conductivity) helps to redistribute the heat
transfer within the structure of the leading edge and thereby maintain
_the nose temperature to within an acceptable level for presently avail-
able heat-sustaining materials. Heat is conducted away from the nose
at the expense of heating regions further downstream. The surface
temperature everywhere is in equilibrium; the average rate of heat
input being equal to the quantity of heat being radiated away.

Steady state conditions at the surface can be expected to exist
when the hypersonic flight times exceed the time required to heat up the
struqture to the equilibrium value. This value of time would depend on
the heat capacity of the wing and the net heat input to the wing, which

in turn depends upon the time history of the flight. In the case of

" spacecraft re-entering the atmosphere, the duration of flight may well

be less than the time required for steady state conditions to be
egtablished. Since the nose region of a "sharp-~edged'" leading edge is
subjected to extremely high rates of heat transfer (fhe boundary layer
theory predicting an infinite rate), equilibrium conditions close to
the nose of such wings are likely to exist throughout the flight at

hypersonic speeds.



In principle, there should be no difficulty in applying
numerical processes to Ebtain solutions (with the help of a digital
computer) of the steady state temperature distributions within a conduct-
ing and radiating body subjected to aerodynamic heat transfer. However,
where the body is as complicated as an aircraft structure, and the
heating_is aerodynamicrin orgin, the problem can well be beyond the
reasonable capabilities of present day computers, unless some simplifying
assumptions are introduced in setting up the problem.

A‘simplified approach to the problem was first introduced by

6,7

Nonweiler in egtimating the leading edge temperatures by what may

be called "slide-rule" methods. The simplifying assumptions consisted
of idealising the leading edge section of the wing as a '"conducting
plate" whose thickness is small compared with the chordwise dimension
of length. With the possibility of sustained hypersonic flight, in the

foreseable future, other researcher88’9’10

have taken interest in this
problem. In particular, reference 10, describes, in detail, the
development of experimental apparatus to test the theory put forward by
Nonweiler and also presents preliminary results.

In the present investigation, a systematic study is undertaken

. into the role of heat conduction at thé leading edges subjected to
aerodyﬁamic heat transfer at hypersonic mach numbers. It is shown that
heat conduction within the body can play a predominant role in the
determination of the temperature distribution close to the leading edge.
Further dovnstream the temperature everywhere tends to the well-known

radiation equilibrium temperature (which has been computed in reference

11, for a range of mach numbers and altitudes for laminar as well as



turbulent boundary laye?s). We have developed numerical methods to
obtain solutions of the governing heat transfer eguations. The theory
of conducting plateslo’12 has been extended to include the effects of
finite span and sweepback. Wherever necessary the assumptions made in
the numerical solutions have been experimentally verified. The
calculated temperature &istributions are also used in the investigation
of the thermal stability of the leading edge.

Basically, we have in mind geometrically thin and "“sharp" edged
vings. More precisely we envisage a leading edge radius of lem. or so,

_rather than lm., which would be sufficient to alleviate the intense
heat transfer rates to the nose of the wing. The excessive heat input
at the leading edge is conducted within the body to regions further
downstream where the heat transfer is not quite so severe,

If the conducting material is excluded from the leading edge, the
problem becomes trivial and the radistion equilibrium or the "thermometer"
value at the leading edge is obtained which can be considerably higher
than that predicted in this study.

In chapter IT we discuss the factors that influence the aerodynamic
rates of heat transfer to the leading eﬁge from a hypersonic viscous

" boundary leyer. Since as we shall see later, we need only éolve the
equations over a sﬁért length from the nose of the wing, it is reasonable
to assume that the boundary layer will stay laminar over this region.

At hypersonic mach numbers, the heat transfer to slénder wings can be
predicted with reasonable accuracy by considering the case of a flat
plate. We outline how factors such as real gas effects, leading edge

bluntness, surface irregularities, wing incidence, pressure gradients



,and so on can be expected to affect the heat transfer distribﬁtion
close to the leading edge of a hypersonic wing.

In chapter TII we outline the_basic assumptions of the conducting
plate theory (which is discussed in greater detail in reference 12).
Theoretical solutions are presented in a‘parametric form for two-
dimensional ieading edges. Temperature distributions are calculated
numerically for thé aerodynamic heat transfer which is taken to vary as
xgﬁ.(x being measured from the leading edge). For such a variation of
heat transfer, the governing laws of similariiy can be derivediZ.

"__Certain similarity relations suggest how laboratory experiments in a
relatively low temperafure environment may be scaled up to provide infor-

)

mation of practical value, and vice versa. The use of the x * law
predicts an infinite rate of heat transfer at the nose of the wing.
Realistic forms of aerodynamic heating can be obtained by a simple
modification whereby the rates of heat transfer are taken to vary as
(x + xo)‘% (where x, is a small constant). The influence of the constant

- X, on the temperature distribution is invesﬁigated. In Chapter IV, by
using the specially designed reflector (reference 10), the radiation from
an electric filament is used to obtain heat distributions resembling
aerodynamic heating near the leading edge. By improving soﬁe of the

apparatus as well as experimental procedures, good agreement has been
obtained with the theéretical solutions (using the relation (x + Xo)d%
for the variation of ﬁeat transfer) over a range of'leading edge

geometries. It is also intended to use the reflector to investigate

certain conditions which would still be troublesome to study theoretically.

The two-dimensional leading edges are extended to three-dimensional
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wing shapes in Chapter V. Some of the results of Chapters I, IV and
V are also presented in reference 13, The effects of finite span and
sweepback are found to be slight, even at extreme angles of sweepback.
Two methods are used to demonstrate how to counteract the local rise
of temperature at the apex of a pointed swept wing. ¥herever necessary,
assumptions are made regarding the boundary layer heat transfer
consistent with the flow over a car2t wing (or the waverider), first
suggested by Nonweiler4’5 for hypersonic flight regimes. In Chapter
VI details are given of a heater capable of producing reasonable
variations of heat transfer over delta plan forms. Away from the
leading edge region, the heater is capable of providing higher gradients
of heat transfer than those predicted by thé x.% distribution, The
theory of conducting plates has been successfully applied to calculate
the temperature distribution under experimental simulation of aerodynamic
heat transfer.

The temperature distributions calculated in Chapter III are used
in the investigation of thermal stability of the leading edge in
Chapter VII, In particular we show the significance of the leading‘edge
thickness in the determination of the temperature distribution as well |
as of the onset of thermal buckling.

Finally, in éﬁapter VIII an overall discussion and conclusions

regarding the role of heat conduction at the leading edge of a

hypersonic wing are presented.



CHAPTER TI

2.1. Aerodynsmic heat transfer to hypersonic leading edges of

slender wings.

In order to determine .the role of heat conduction in the leading
edge region of a hypersonic wing, we need to express the variation of

aerodynamic heat input along the surfaces in a general form. In the

(1’7714’16)

present investigation we use a solution of the equations of

the classical laminar boundary layer theory as the bagis for defining
the variation of heat transfer. The heat transfer distribution is

expressed by the simple relation,

Q « 7 ' (2.1)

where x is the distance from the leading edge, measured along the surface,

The formulation of the relevant simplified boundary layer
equations from the more general Navier-Stokes equations requires the
following assumptions to be madé regarding the hypersonic Oﬂq,>>'1)
fluid.flow:

1. The gas in the boundary layer acts as a homogeneous medium.

2. Effects of finite relaxation time are ignored. '

3. The Reynolds number is large'compared with unity - implying

that the boundary layer thickness is very much smaller than
the length of the surface.

4. The flow in the boundary layer is laminar.

5. The pressure gradient along the surface is zero.

6. Low-density effects are negligible - which excludes the

consideration of slip velocity and temperature jump at the

surface.



. 1. ‘_The wall temperature is constant, or negligible compared
with the recovery temperature.
8. The flow is two-dimensional in character.
As a consequence of assumption 5, equation (2.1) is valid.for

unseparated boundary layers only.

2.2. Factors influencing the variation of heat itransfer.
L2 gl

We shall now examine more critically each of the assumptions, in

turn, which lead to the solution expréssed in equation (2.1).

_2.2.1., Realvgas effects.

Perhaps the most important factors to be teken into account when
considering flight at extreme mach numbers are the real gas effecis.
For increasing mach number, the recovery temperaturevﬁ}) of the
boundary layer goes up very roughly ashﬂi,. Even at relatively low
temperatures (arcund lOOOOJC) the vibrational modes of fréedom of
oxygen and nitrogen molecules ;re sufficiently excited to affect the
specific heats of air. At around My, =7when Tr is about 2OOOOK', oxygen
molecules in the air start to dissociate. Beyond Mg, = 10, correspopd—
ing to Tr:> 4000oj{, nitrogen molecules undergo dissociation. At
higher temperatures still (>'9000?_K) the oxygen atoms begin'to ionise,
followed by the io;isation of nitrogen molecules at even higher tem-
peratures. These chenical reactions within the boundary layexr reduce
the stegnation as well as the récovery temperature éonsiderably hecause
a ﬁart of the frictional energy goes into the breaking of molecular and

electron bonds. Under these conditions air no longer hehsves as a gss

made up of diatomic molecules and the transport properties of air




{viscosity, specific heats, conductivitf etc.) deviate substantially
.from.those assumed-for a perfect gas.

The relation expressed in equation (2.1) is still-ﬁalid for a
laminar dissociated boundary layer, provided that the gas can be
considered either,

a)_ as in themédynamic equilibrium, which will be so if
molecules dissocisate of the atoms recombine virtually instantaneously,
or, in general, reaction rates are infinitely fast;

or b) as in frozen equilibrium, which will be go if the gas phase
chemical reactions are extremely slow and the relaxation times are
consequently large compared with the fime spent by the particles inside
the boundary layer. Similar considerations apply also to the
equilibrium of vibrational excitation.

However, where the boundary layer fits neither of these two
descriptions but may be in a transient state of "non-equilibrium",
the relation (equation 2.1) deséiibing the heat transfer distribution
may be affected. The transient case may exist by either affecting the
external inviscid layer (via the»pressure gradient term) or by altering
the velocity digtribution within the boundary layer.

In general, where a digsociated béundary layer exists, a surface
non-catalytic to the process of récombination (which is exothermic)

could reduce the heat transfer to the surface 1’15.

2.2.2. A laminar boundary layer.

In this investigation we are, in general, interested only in
lengths of the surface which are so short (as we shall show later)

comvared with the lengths over which the flow is likely to be laminar

3
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that it is reasonable to assume that transition is absent. A
turbulent boundary 1ayér is normally associated with much higher rates

of heat transfer than the laminar boundary layer. It is, therefore,
desirable, where possible, to keep the flow 1aminar. The region of
transition from laminar to turbulent flow is expected to produce
another_maximum in the heat transfer distribution. Heat conduction
within the material may play a beneficial role in the determination of
the temperature distribution in this region. However, 1t is often
difficult to predict with any certsinty the location of the transition
region and hence there is a problem as to where to put the conducting
material.,

In almost all the research that has been done, the surface of the
flat plate is taken to be smooth or even highly polished. On the
other hand; when the heat balance equations are solved to provide a
measure of the leading edge temperature, an emissivity value as high as
0.8 might well be quoted. Such a hiéh value can only be achieved after
considerable oxidation or (say) sand-blasting of the metal surface.

It wéuld therefore be desirable to find out the effect of surface
roughness on the heat transfer. As for slow gspeed flow, surface
irreguiarities, and especially surface.roughness, tend to induce early
transition from a laminar to a turbulent boundary layer, which from
considerations of limiting the overall heat transfer should be avoided.
For rough surfaces, there is a great deal of scatter in the data
obtained (reference 17) and comparison with available theories becomes
very diffiecult. Particularly of interest would be to find out

vhether the surface treatments necessary to produce high values of
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emissivity are sufficient to induce transition close to the leading edge

for hypersonic flight at high altitudes.

2.2.% The effects of leading edge bluntness and pressure gradients

along the surface.

Wi

The relation expresseduin equation 2.1. (i.e. Q @ x ) is Strictlj

true oni& if the pressuré gradient is negligible and this can only be

expected for a-sharp—edged plane surface in hypersonic flow, and this

application has received considerable attention of many researchersl8_21.
However some blunting of the leading edge is not only inevitable but in

~fact essential (as we shall show later) in order to conduct heat away
from the nose of the wing. Hence, what can be said of the effects of
leading edge bluntness?

In addition to the self induced pressure field generated by the
boundary layer growth, s blunt leading edge gives rise to even greater
inviscid surface pressures. This inviscid pressure fielé is usually
dominant over the forward portion of the blunt body and determines the
initial growth of the boundary layer which in turn influences the heat
transfer variation close to the nose of the wing.

For a blunted plate or wedge, the shock structure at the leading

:edge is detached and stands off at some distanoe-forward of the leading
edge. The influence of leading edge blunting on the local heat trans-
fer at present. cannot be predicted with ease because of some of the
complicating factors such as shook'shape and detatchment distance.

ReferenceS'(22—24) present experimental data on the effects of

leading edge bluntness on the pressure as well as the heat transfer

rates. FEven a very slight blunting of the flat plate (compared with



a truly sharp leading edge) gives rise to a sfagnation region and
pfoduces finite rates of heat transfer at the nose of the wing.
Further blunting, although it may reduce the local heat transfer rate
to the leading edge, will also prodﬁce a substantial increase in the
average value of the heat flux to the region adjacent to the nose of

24

the wing. Experimental evidence also suggests that small and moderate
leading edge blunting delays transition from s laminar to a turbulent
boundary layer because of the introduction of favourable pressure
gfadients. One of the present difficulties resides in the inability of
the experimental technigues to record meaningful data very close to the
leading edge.

The shepe of the surface apart from giving rise to an inviscid
pressure field can also lead to viscous interaction between the houndery
layer and the shock structure which may produce furndamental changes in
the flow over the wing surface close to the leading edge.:. More then
one flow regime can exist close to the leading edge. The different

regimes are methematically defined by introducing the interaction

parameter, ¥ _ as 1

Xeg Yoo (5 (2.2)

- where the subscript e« refers to the free stream conditions and x the
distance along the body. C is the Chapman~Rubesin viscosity constant

given by M = CT. Summerising very briefly, we have

regime xm
weak interaction 0
strong interaction >
merged flow 0 (Mz)

kinetic flow >>0 (1‘-‘12)



The heat trensfer to a sharp flat plate has received considerable
attention in the wvarious regimes(IS—Ql). The relation Q ¢ x~%_is
strictly only wvalid in the weak interaction region, where a distinct
boundary layer (viscoué) can be differentiated from the inviscid flow
snd the boundary layer displécement thickness ig small compared with U
the normal distance of the shock wave from the surface. The analysis
of heat transfgr in the strong interaction region and the merged layer
regime is complicated because of the interaction between the viscous
and the inyiscid flow and in addition slip velocity and & temperature
Jump at the wall surface have to be taken into account.

In addition o leading edge bluntness, surface irregularities can
be expected to exist on full-scale vehicleg because of manufacturing
methbds, load deformations and/or thermal conditions. Reference (25)
provides experimental results of an investigation into the heat trans-
fer and pressure distribﬁtions due to sinusoidel distortions on a
flat plate at Mgy= 20 in helium. In.the region of surface distortions,
the values of the local rates of heat transfer were found to oscillate
from maximum to minimum as a result of the wavy surface which causes
boundary layer separation and attachment. The maximum heating raté
occurs just ahead of the peak of the ﬁfotruberances and can be over
twice the local flat plate value for'zero incidence and considerably
higher at even moderate angles of incidence. The heat transfer level
returns to the undisturbed flat plate value within a short distance

downstream of the distorted section.

2.2.4 Low-density effects.

Whereas a decresse in atmospheric density produces a reduction in
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the average value of heat transfer to the surface, at very high

altitudes low-density effects start to play an increasingly important

role.,

Low atmospheric density enhances the effects of some of the

other factors discussed in this chapter, as for example.

a)

viscous interactions effects predominate in hypersonic flight at
extreme altitudes because of the small Reynolds Number (wvide
equation 2.2);

not only dces the dissociation of oxygen and nitrogen molecules
start at lower temperatures (élthough this in itself is not expected
to influence the variation of heat transfer), but what may be
significant is that for decreasing density of air, the relaxation
times of these chemical reactions decreascs;

delays transition from a laminar to a turbulent boundary layer;

the boundary layer thickens considerably and the iocal displacement
thickness may no longer be negligible compared with the measure of
distance from the leading edge; |

when the magnitude of the mean free path of the molecules within
the boundary lsyer becomes comparable to, say, the leading edge
radius, the gas can no longer be congidered to be a homogensous
medium, When ﬁhe mean free path is greater than the béundary
layer thickneéé, slip velocity and a temperature jump at the wall
surface has to be taken intc consideration. At extremely high
altitudes and Mach numbers, the kinetic theoryvof gases predicts
the heat transfer to the leading edge of a wing in the free-
molecular regime as having a finite value (as sgainst the oredict-

ions of equation 2.1).
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It is believed that in the context of re-entry wvehicles, the
surface pressures are such as not to introduce slip effects. In the
derivation of equation (2.1), a temperature jump at the wall is irrele-

vant because a constant. wall temperature is assumed in the analysis.

2.2.5 Constant wall tenwerature. -

In calculating the heat transfer from the boundary layer to the
wall, the efféct of the variation of the wall temperature on the rate
of the local heat transfer ié usually neglected. This assumption can
be justified only if the wall temperature is much lower than the
- recovery temperature, Tr’ Since the quantity of heat transferred to
“the wall depends upon the tempera%ure difference between the actual
vall temperature and the recovery temnerature, a cooling of the wall
should give a higher rate of heat input. However, the primaxry effect
of cooling16 is to thin the boundary layer and hence to reduce the
induced pressure. The skin friction and heat transfer fates are thereby
reduced because of the effect of the decreased wail temperature on the

coefficient of viscosity.

2.2.6 Three-dimensional effects.

Most of the research effort, as y;t, has been put into the study
of two—dimensionailflow and the more difficult three-dimensional
problem has not had its fair share of attention. More experimental as
well as theoretical investigations would be very welcome indeed. In
reference (26) en attempt is made to solve the boundary layer equations
for a finite plate with a sherp leading edge.

Where the wing has high incidence, sweep and leading edge bluntness,
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three-dimensional effects become important, Especially if the swept
leading edge is blunt, the fluid exhibits the tendency to drift along

the leading edge, so complicating the study of the boundary layer heating
at the leading edge. Pressure and heat transfer measurements on a 700
sweep delta wing are given in reference (27). The models had
cylindrical leading edges. For zero incidence and low sngles of
attack, the maximum heat transfer occurs zlong the leading edge and the
magnitude is independent of the distance from the apex of the delta.-

For higher values of incidence the rate of heat transfer along the
_leading edge decreases appreciably with the distance from the apex.

At low incidence both a spherical as well as a pointed nose yield similar

results.

uy

2.3 Reasons for modifyins the relation Qox ~

We have briefly wmentioned how the heat transfer to tbe area close
to the leading edge of slender hypersonic wings is governed by many
factors. From the present knowledge of hypersonié flow it is
virtually impossible to include the effects of the variations in heat
transfer introduced by all these parameters when estimating the heat’
transfer‘distribution to a realistic wing. Furthermore, such an
expression.would be applicable to a.particular wing only.

In this respect, the solutions obtained .for the problem of aero-
dynamic heating are only as general as the expression used to describe
the variation of heat transfer, The relation quoted in equation (2.1)
which is thet Q & x“%A ig the most widely quoted variation of heat

transfer over a wide range of laminsr hypersonic boundary layers.



3y

The relation @ & x presents an undesirable numerical difficuléy
arising from its singularity as x->0. In practice, as we have seen,
an infinite rate of heat transfer cannot occur, It would, indeed
appear from the published literature that, at the nose of the wing, the
heat transfer rate might typically be (say) ten times higher than the
value further downstream, A still more powerfﬁl and equally general
methodmis the?efore to assume that Q varies as (x-+ xo)“% where X is

a constant. This relation enables us to set up realistic rates of

heat transfer at the nose while elsewhere the variation of heat trans-
1l

fer is essentially proportiocnal to x 2 .



CHAPTER TTT

Two-Cimensionsl heat conduction in leading edge heating.
£2

3.1 Introduction

Two-dimensional ﬁheory'and results are presented as a separate
entity because they can be applied to a wide range of wing configurations.
For example, we shall later show that for three-dimensional wings (apart
perhaps for the regions close to centre-section and the wing tips) a
very large proportion of the leading edge can he considered as if it

__were two-dimensional.

In this chapter we undertale a systematic study into the problem

of two—dimensionai leading edge heating. Solutions of the heat con-~
duction equation have already been published in reports by Nonweiler,

2 -
(12,13) for @ & x =, In the following sections an

Wong and Aggarwal
outline is provided of the contents of these reports. te shall also
generalise the results for the heat transfer distributions like

(x + xo)ﬁ%, where X, is & small constént, the nose of the wing being
subjected to finite rates of heat transfer. Details are given of the

numerical methods developed which are capable of handling variable

material properties.

%.2. Theory of conducting plates.

In general, the aircraft wing structure is fairly 6omplex.
Before formulating the heat transfer eguations to such a structure,
there is a need 1o idealize the leading edge section by some simple
configurations which can be studied anslytically. In particular, our

aim is to invegtigate the role played by thermal conduction in the
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problem of leading edge heating. For this reason it is convenient to
regard the leading edge.region as what we shall term "a conducting
plate". | Such an idealization of the leading edge allows us to derive
guite general results which can provide reasonable estimates of the
temperature distributions that can be expected to exist close to the
nose of-hypersonic wings. For thin wings it is reasonable to assume
that the vortion adjacent to the leading edge has small surface slope.
The basic mathematical assumption is that the thickness of the
conducting plate is venishingly small. Ifk is the thermal conductivity
_of the material and t the thickness, then the product kt remains finite
whilé the ratio i"é 0. A detailed discussion of the assumption is
provided in references (12) and (13). One of the important implications
of this assumption is that within the body heat trensfer normal to the
surface can be ignored. Hence the dimensionality of the equation is

reduced by one.

%.2.1. Derivation of heat conduction equation.

For a hypersonic leading edge (two dimensional) subjected to

aerodynamic heating, the various modeg of heat transfer can be claggified

as follows:

1. Convective heat transfer from the boundary layer Q = f£(x).
2. Heat flux radiated away from the body - €(TT4. where € is the
coefficient of emissivity and 0 the Stefan-Boltzmenn constant,
%. Heat transferred inside the body by thermal conductivity of the
meterial, (k, say).
We adopt an axes system whose origin is taken at the nosge of the wing

with x measured in the chordwise direction, y in the spanwise direction
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-and z normal to the plane of the wing. Consider the heat transfer to
and from an element situated at some plane x » constant, and of length

dx and unit span. Let t be the thickness of the material at this

plane.
Q,ds, B €|O‘T4asi
/—W—m—\\
/ '
dx
—kt OT ¢ . kt(‘i”»}-g]_'_ )
OX > OX o dx]

For a geometricaii& thih leading edge it is reasonable to assume
that the elements of surface area shown in the appended sketch are
such that dsl:i ds2 = dx. 1 where we consider unit span. This
assumption is wvalid where dx%>dzz= dtz,-in other words the two surfaces
" are inclined at small angles to the x - axis.  The subscripts 1 and 2

refer to the top and hottom surfeces respectively.

For equilibrium,we get

L 3T 4 4
-kt Foo k(T + o .d%ﬂ + Qldx -+ dex - €1O'T dx - €T dx = O

i d aT 4
ices 5o (kt.-g;{*) = (€, +€) T - (9, + Q2)



Denoting by € the sum of the emissivities of the two surfaces end by

Q the total convective heat into the two surfaces, we‘get

%; (xt —g—-T}E) - corr - ¢ (3.1)

In deriving equation (3.1) we have asgsumed equilibrium conditions
i.e. the teﬁperature digtribution is independent of the time history of
flight.,~ Strictly speaking, equilibrium temperatures at the surface
are likely to exist when the hypersonic flight time exceeds the time
required to heat up the wing structure to the steady state value.
However, for "sharp-edged" leading edges of slender wings the aerodynamic

_rates of heat transfer are extremely severe close to the nose of the
wing. In this region the wing also has a very limited thermal capacity.
Therefore the regioﬁé close to the nose of the wing can be expected to
be under the influence of steady state temperature distributions for
practically the entire duration of hypersonic flight.

Before a numerical solution of equation (%.1) is attémpted, some
of the factors that affect both the method of solution and the solution
itself need mentioning. In general, the thermal conductivity of the
material plays a dominant role in the determination of the temperatu;e
distribution where the rate of heat transfer to the body is varying

" substantially. In hypersonic flow, the maximum heaﬁ.transfér occurs
at the nose (X= O)_éf the body end thereafter decreases very rapidly ig
the streamvise direction. If the conduction of heat within the body is
lgnored (i.e. a non-conducting plate) the radiationAequilibrium
temperature would become equal to the local thermometer value. At the
nose the thermomster value cen exceed the operating limits Of most

materials and be geveral times higher than the temperatures further
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dowmstream. In this context, it has been shown in references (12,13)
that over some length (1, say) thermal conduction can be expected to
play a predominant role in mcderating the temperature distributions.

This length 1 will be referred to as the "conduction" length.

3;2.2. Non—dimensionalisin; of the heat conduction equation.

Hefé again we use the notation which has been introduced in
reference (12);. In the physical problem, the length 1 may be substan-
tially less than that length of surface subjected to heating. Since
1t 1s only over lengths of the order of 1 that longitudinal conduction
“is important, it is convenient to regard the conducting plate as of
bounded extent. If we denote such a "closed" length by L, then we

seek a solution of equation (3.1) in terms of the independent variable

X
).
In particular we write
X T € Q
X==, =2, = — , a=g5 (3.2)
b L €, L
where the subscript L refers to the values at x = L, T, is the value of

L

the radiation equilibrivm temperature at x = L, which is
1
7. - (‘3@,)4 (3.3)
L €ﬁr
k t

- We also place K = - (3.4)

t
m m

where the subscript m refers to the mean values.

We can now define 1 mathematically as

k t T %
1 (SR (3.5)
L

In addition we define

kt

- 3\ 2
(chrQL) .L

. 142
(i.e.T= Cx K)  (3.8)
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With the notation just described in equations (%.2) - (3.6)'the
heat conduction equation (3.1) can now be expressed in a non-

dimengsional form as
d 18
4Ty - ept-q (3.7)

quatian (3.7) yields the two well known but trivial solutions

in the two extremes. For example, as T (X)-— O.

ay L
O = (D= (3.8)
i.e. the temperature everywhere tends to the radiation equilibrium
value. The other extreme T (X)—>0 gives rise to the solution
o\ 1
6 - I",gi : . (3.9)
JredX
(=]
which is a constant temperature throughout corresponding to a plate
of "infinite conductivity'.
But in general we shall be interested in values of T ,of unit order.
We seek solutions of equation (3.7) subject to the boundary con-
ditions that there is no longitudinal heat conduction at the nose
(X = 0) and at the rear edge (X = 1). They take the form

48
T3 = 0 st X=0,1 - (3.10)

1t can be shown that the solution is unaffected if the heat
transfer from the ends (X = 0,1) i.e.'T'%gf#O, but is small in magnitude
compared with the heat transfer from the two surfaces. For a detailed

discussion, -the reader is referred to reference (12).

ks

3.5, Solution for O varying as x

For the purpose of this investigation, we have supposed that the
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aerodynamic heat transfer is proportional to x <. Therefore we
may write

(3.11)

o™

wvhere the constant HO can. be related to the flight regime.

Substituting equation (3.11) into (3.7) gives

d 48y _ o4 4 '

Solutions of equation (5.12) with k end € assumed constants axe

presented in a parametric form in figures 1 - 10 of reference (12)
_for families of five plate geometries together with the gimilarity

relations tha£ exist. In particular one relation definesg the cﬁoice
of material properties in scaled laboratory experiments which can only
be cérried out in low temperature environments.

There are many ways of interpreting these results. The
importance of conducting.material near the nose of the 1eéding edge
is best illustrated perhaps by means of the specific example that was
considered in reference (12). Yor a given heat input, the amount of
optimum material for each of the five shapes was calculated to give &
prescribed nose temperature. The resqlts are reproduced inlfigure
3.3.1. At the top is the particulsr distribution of thickness that
gives the minimum ﬁose temperature for a specified heat input and of
course requires the minimum amount of conducting material. The second
shape has a linear temperature gradient and compares favourably with
the optimal thickness distribution. The "efficiency" of the first two
shapes arises from a rounded nose coupled with the tapering off of the

material towards the rear. On the other hand, the parabolic and the
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OFTIMAL DISTRIBUTION

UNIFORM TEMPERATURE GRADIENT
7270 A= |08
UNIFORM THICKNESS

7.7 A=l-45

PARABOLA A =2-35

WEDGE A

8

6-9

Figure 3.3.1 Optimised shapes providing the same nose temperature

(thcikness and length scales common but undefined).
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wedge thickness distributions may be desirable from aerodynamic
considerat;ons but reqﬁire respectively as much as 2.35 and 6.9 times
the conducting material as the first shape.

It is important_to realise that the various thickness distribut-
ions of figure (%.%.1) are not necessarily intended to be the external
wing leading edge shapes. Aerodynamic and the structural
considerations wili determine the amounts of conducting material

necessary to transfer the heat away from the nose of the wing.

2

3.4 Solution for Q varying as (x + x5)

- . . . H
Up to now we have discussed the solutions for the Q =__%
=3
distribution of heat transfer which require special techniq%es because
of the singularity at x = 0. Such a hypothetical variation of heat

transfer cannot exist in practice and the golutions cobhtained are
therefore mainly of academic interest. For reproducing realistic
heat transfer rates while maintaining generality of the solutions, we

propose to solve the heat conduction equation with
H
o

Q = (5.13>

S
X + x_)P
o
where X, ig a constant.
Instead of being limited to infinite rate of heat transfer at
x = 0, we can now reproduce any appropriate magnitude of heat transfer
at the nose. Provided X, is small compared with L, the heat transfer
“digtribution away from the nose of the leading edge remains virtually

unaltered. The ratio of heat transfer at x = O to that at the xrear

edge of the conducting vlate (x = L) is simply

i
Q L + x\? if2
= O — . -+ l.l
e ( —9 = ¢ ) (3.14)
L 0 ) “ﬂo

.



This control on the ratio (QO/QL) is particularly useful when
comparing the theoretiéal solutions with experimentzl results. For a
fair comparison to be made it is important that the expression for the
heat input used in the heat conduction equation should represent as
closely as possible the experimental heat distribution,

In--this section we seek solutions of the following heat conduction

equation in the non-dimensional notation of equations (3.2)-—(3.6).

d.

ax ('T%)% = oot - 5 (3.15)

1
(¥ + xo)
»where the coefficients ¢ and e can be functions of temperature (6)

and position (X). The boundary conditions are the same as in equation

(3.10) i.e.

q"%x@ -0 at X = 0,1. (%.16)

3.5 DMethods of sclution of hest conduction eguation.

Fortunately, equation (3.15) can be solved by more than one
numerical method and we have in fact tried three. Full use was made
of the opportunity to study the comparative merits of the various

mnethods available to solve the ordinarx differential equation (5.15).

~ The three methods attempted are as follows:

1. Adaptation of iterative Runge-Kutia integration techniques.

2. TFinite-difference boundary value problem, where the interval
of X (0,1) is divided into N equal intervals and we solve
iteratively the M + 1 finite difference algebraic equations by
a) an explicit method (Gaussian elimination);

b) an implicit method (over-relexation).
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A brief discussion of each of the three methods now follows,

3.5.1. Runge-llutta integration.

This method is very often used to obtain sccurete solutions of
ordinery differential equations which have to be integrated subject to
. s 47 . .
prescribed initiel values . However, ours is a boundary value problem
and information -is not available on the stability of the solution
(because of the essentislly non-linear charscter of the equetion).
We express equstion (3.15) as two simultaneous first-order differentiasl

eguations; ‘that is, we put

e
= = U (3.27) -
au - 4L

and X - eb (X :’5{‘;)—% (3.18)

The sclution is started with a guessed value of temperature
(61, say) and zero temperature gradient. A step br step integration
of the two eguetions is carried out. Bach step is of length h which

adjusted adaptively, devending on the megnitude of the derivative

(9}

o
®

10 @ value U1 is obtained

at the rear edge (¥ = 1). This nrocess is reveated with a second

. Corresponding to the arbitrery value 8

=

value of nose temperzture O,, which gives us a corresponding value U

2 2’

from the boundary conditions exzpressed in equation (3.16), we should

have U = 0, at X = 1. Using a root finding technique (based oh

recula felei) a Letter estimate of the nose temperature (65) is made
from the two values Ul and U2. The calculation proceeds iteratively

so as vo cenverge to the particular value of nose temperature that

satisfies equaticn (3.16) within some specified tolerance.



In the execution of the programme using the method of Runge-Kutta,
the local value of h depends on how rapidly the derivatives are changing.
For a typical soiution (with XO/L = 0.001) the value of h at the nose of
tnhe leading edge is very small and could be increased by a factor of over
1000 before reaching the rear edge.

If a "good" guess (i.e. cléée to the value 90) of the starting value
oflthé nose Eemperature is not supplied, the solution starts to diverge
ve‘ry repidly causing the length h —»0. Provided this instability in the
solution is not encountered, however, the method works satisfactorily and
converges to the solution in a matter of about 10 - 20 seconds on the
English-Electric KDF9 digital computer, using a programme compiled by the

Kidsgrove ALGOL optimised translator.

3.5.2. "The method of "Bandsolve.

For this method (as well as the next one), we have to linearise
equation (3.15) and also express it in a finite differences form (for
details refer to Appendix A). The final form of the heat conduction

equation becomes,

n

i-1 i 2 i-1 3] 4
T e+ 'T__é_en_i- [‘T i 'l'n_%+4h e, (O )]en

where the interval X= 0,1 has been divided into equal divisions of

A
length-h ("N) with end points X_,X;,....X ,...X; and the value of © at

Xn is denoted by en. The superscript i refers to the value of the
parameter after the ith iteration.

We can revresent equation (5.19) more concis=ly bv the matrix



equation,
cttet o B (3.20)
where the value of ei'i is used in the elements of C and B whilst solving
for Gif Comparing equations tS.ZO) and (3,19) it is evident that © is
the vector (60,91,........9N); B is the column vector whose general éle—
2, 1 + e_© 4 . . -

ment is -h (Zzzgf)%- n”o ) and Q_lg a band matrix containing the
coefficients of éJ appearing on the left hand side of eguation (3.19).
The boundary conditions can be incorporated inside the matrix C which is
indicated in Appendix A. |

The method of "Bandsolﬁe" consists of solving for the N+1 unknowns
(65’61"""'@N) from N+1 simultaneous equations which are unfortunately
not a set of linear equations. Since most of the terms of the matrix C
" are zero (a maximum of three non-zero terms), the matrix is stored as a
band matrix (of size (N+1)x3) and then we employ Gaussian elimination to
solve for the unknowns. By the use of a band matrix, the number of
operations as well as the storage required is reduced from (ﬁ+1)2 to
5X(N+1) for each iterative process.

At the start of the computer programme the interval X=0,1 is divided
into 4 equal divisions. An arbitrary starting value of temperature (6).
is supplied to every point. Using equation (5.20), a solution of the
véétor 9 is obtained.‘_At the end of each iteration, a check is made on
the convergence error and the vectors B and C are updated using the values

of © just obtained. The iterative process is stopped and © accepted as a

converged solution when the following convergence criterion is satisfied,
N

i+1 i
1 en_ - Sn sgepso (3.21)
N+1 7n=o »

where "epso" specifies the limiting tolerance.
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The value of N is doubhled (N' = 2N), the new points thus introduced
being interpolated froﬁ the existing ones. The above mentioned
iterative process governing the convergence criterion is carried out
within an outer iterative loop that keeps a check on the discretisation
error which exists because the intervsl (0,1) of X has been divided into
a finite number of intervals., 1f ¢ is the new converged sclution but

having twice the grid points, then at the corresponding points we form
1 N
T+l n=o

f -
62n - en, < epso .(3.22)

If this discretisstion error criterion is not satisfied, the last
“value of N’ is doubled again and the whole procedure repeated. This
routine of doubling N and reiterating is repeated until the solution
having both the convergence and the discretisation error within the éame
tolerance (epso) has been obtained. |

Unlike the Runge-Kutte method, the interval (X = 0,1) is divided
into equal divisions.. The finalvvalue h is dictated by ;he discretisétipn
error neer the nose of the leading edge(at least where XO/L is small
comnared with unitﬂ. Hence gome unnecessary operations are carried
out away from the nose. This technique is preferrable to the Runge-
Kutta method in that (within reason) any starting value of temperature
leads to a converged solution.

As far as the computional time is concerned it is of the same order

as the Runge-Kutta method, i.e. between 10 - 20 seconds.

%.5.3 The methed of over-relaxation.

Alternatively, equation (3.19) may be solved by the method of

"relaxation". Here each stage of the iteration for © is slso a steg



in an iterative process aimed at solving the set of N + 1 simultaneous
equations so that values of © change whilst we solve the equations,

instead (as in the explicit method of Bandsolve) of afterwards. Briefly

this method consists of finding e(i> (having already determined e(i —1))
(1), 91(1'>-oc08 (1)

N in order, from a modified form of

and solving for 60

equation (3.19), which is

. - : - iwl, 4
. i-1 i 2[ 1 4 + e (6F )]
6; = 'I;H_;‘ en+1 + ,T;l-»-%— en-—l +h (n-kma non (3.23)
2 1182
’7;1% +’7;l~_%+4h e (€, )
A still more powerful scheme is that of over-relaxation where we
-form i-1 i 2 i-1y 4
i i-1 0 +T © +h(_ 1 + 3e (e )
8 = (10 & eaf nar nul n-% n-1 (n+Xp) ™~ n\ n (3.24)
n n . 2 i-1. 3 ’
T  +T +4dhe (8‘ )
: I n\ n

where (3 is the over-relaxation parameter,

The boundary conditions at X = 0,1 require special Qrovisions as
indicated in the Appendix A for the last method. The sequential
operation of the computer programme is essentially the same as for the
method of Bandsolve. Convergence and discretisation criterions are the
seme as in equations (3.21) and (3%.22) respectively. As for the last

- method, over-relaxstion yields é converged solution for any starting
value (within reason) of temperature;

For a linear differential equation the norm of the error can be
used to provide an estimate of the optimum value of while golving the
set of N + 1 equations. Such an attempt proved unsuccessful in the
solution of the present equetions (3.24). For a varticular wvalue of

7; = 0.98 and with the grid size fixed at ¥ = 16, the number of



iterations required to obtain a converged sclution for various values of
(A ié shown in figure (3.5.1). For N = 16, the optimum value of ¢
is 1.8. To show how the solution converges, we have plotted in figure
(3.5.2) the nose temperature vs iterations for¢ = 1.7,1.8 and 1.9,
After an initially divergent mode for &> 1.8, the solution exhibits a
damped oscillatory behaviour, while for W< 1.8, an exponentialiy
decayed nath is followed to convergence.
Whereas the optimum value of - @ . is 1.8 for N = 16, this value
unfortunately changes with the grid size, As we have already indicated,
_the value of N is revetitively doubled within the programme. In table
(5.5C1) we have ligted the number of iterations csrried out at each
grid size for the range ofty = 1.4(0.1) 1.9, with XO = 10“2 and
To = 0.98. The computation time is virtually independent of the over-
reloxation parameter 3 , However, fore< 1.5 the rate of convergence
is elow and the convergence criterion of equation (3.21) ¢can sometimes
terminate the solution prematurely. Finally in figure 3%.5.,3 we show
how the nose temperature reaches the required walue for« = 1.5 and

1.7, when N is allowed to vary.

Table 3.5.1 Convergence behaviour of the solution for various values ofd .

Iterations at each grid size with N =
PR Computation

time. secs. 8 16 32 64 128 256
1.4 42 28 61 107 1 -
1.5 39 20 50 94 7 1 -
1.6 40 17 38 80 21 1 -
1.7 42 24 25 63 37 1 -
1.8 43 57 24 43 44 1 .
1.9 44 74 51 34 33 2 | 1
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Figure 3-3.1. The effect of over-relaxation parameter
on the convergence of the numerical solution for

grid size (N 6)
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Using the value of W . selected in this way,i.e. a value between
1.5'and 1.8, thig me ho& still takes at least 4 - 5 times longer in
computation than the other two methods. Vhere the method of over-
relaxation is éuperior to the other two is that it can be easily ﬁodified
to include the additional dimepsion when we come to solve the three-

dimensional heat conduction equation.

u‘!—‘

¥

{

3.6 Discussion of numerical results for § varying as (x + xo)~
The introduction of the constant XO reises one question straight-
away -~ what is the effect of XO on the temperature distribution?
_-¢ > I . L - W xo
Solutions of equation (3.15) were sought where we vary X = = /L from
: o)
-8 . . . . .
1 to 107 while keeping the other parameters fixed. Figure %.8.1 plots
the variation of the nose and the rear edge tempervatures against X .
_ o
For K0<: lOM4 the temperature distribution becomes indevendent of XO.
Hence the solution of equation (%.12) which is singuler at X = 0, can
be reproduced from equation (3%.15) with X, < 1074, teedless to say,
equation (5.15) is the much gsimpler of the two eguations to solve.
The deductions from figure (3.6.1) are applicable over the whole range
of 7’ of interest. For q; =0.98, the chordwise temperature distributien
is plotted in figure (3.8.2) for several values of XO. As XO increases,
the temperature gradients everywhere are reduced with the greatest
effect close to the lesding edge (X = 0).
The results for families of parabolic and wedge sections have
e 12 _ .
already been published™ . e now present solutions of equation (3.15)
for a linearly varying thickness distribution. The thickness of the

conducting material at the rear can either be less or greater then thet
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at the leading edge. For a basis of comparison we use a slab section
having the same thickness as the nose of the trapezoidal section.

For a given nose thickness to, if we vary the thickness at the rear,
the changes produced in the tempersture distribution are so small that
we have to use a very exaggerated scale to ghoﬁ the differences. It is
for this reason that we usé the solution of the slab section as the
reference temperature distribution and plot the fractional variations
from this solﬁfion when the rear thickness (tL) is altered. For a
linearly varying thickness distribution, the results for XO = 10_2 and

75 = 0,98 (based on the slab thickness value) are presented in figure
(3.6.3) where t >t and in figﬁre (5.@3.4) for t < t;. It is worth
mentioning at this stage, that these solutions have a convergence and
discretisation error (section 3.5.2) of about * 0,01,

For a given nose thickness, any change in the rear thickness (tL)
of a trapezium producss a proportionate change in the total amount of
conducting material (i.e cross-sectional area At’ s8y) . 5The effects
of varying At relative to the area of the reference slabd (of area AS,
say) upon the leading edge and rear temperatures are shown in figﬁre
(3.6.5). One of the extremes is a wedge section when tL-aO giving-
At/As = 0.5. These two temperatures vary almost linearly with the
total cross—sectigp&l area. Increasing the overall area by a factor
of 5 produces a reduction in the nose temperature of only 0.7%.

In addition to the cross-sectional area, two other racuors, namely
1; (based on the reference slab thickness) and XO influence the temperature

distribution. The effects on nose and rear temperatures due to both these
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Figure 3.8.3 The effect on the temperature distribution due to
a linear varigtion of thickness,ﬁto>>tL (plotted as fraction of

the temperature distribution for the slab of the same nose thickness)
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Figure 3.6.4 The effect on the tempefature distribution due to a

linear variation of thickness, to< tL (plotted as fraction of the

temperature distribution for the slab of the same nose thickness), °
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Figure 3.6.5 The effect of the total cross-sectional area (At)

upon the nose and rear temperatures of a trapezoidal section ’ |

(plotted relative to the slub values of the same nose thickness). '
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parameters are plotted in figures (3.6.6) and (3.6.7). As X  decreases
the changes produced in the temperature distributions become larger.
For rr;—a.o end @ , the temperature distributions within a trepezium

must of course he 0, The meximum deviations are obteined at very

roughly 'rb = 1,0,

[=N

From the results presented in figures (3.8.% - %.6.7) we can conclude

that for linearly tépered thickness distribution the glab predicts quite
reasonably the temperaturs distribvution. For to>'tL, the predictions

. . + 7 . . .
are within - 0.2% and in general for toéftL the estimates using the slsab

U]}

R S L . . 4o
are well within -~1% of the actual distrivution. Provided we are prepared

to sacrifice this order of sccuracy, we can generalise the resulis of a
slab seczion to cover sny lineaxr variation of thickness if we redefine
T, ( cf. reference 12) as
.
2 .2 6.13\/8
= k. 1t .25
T, =%t /(€ oHL) (3.25)

7

where to is the nose (X = Q) thickness of the conducting materisl..

t is

.

Looking back at the results discussed in section (3.3)
evident now why the optimal distribution of thickness is tepered fowards
the rear and fhe reason why the wedge mekes the pooreét use of the :
conducting material. .

In figure (3.629) we present the variavion of the nose temperature
Vs.'T; for several valués of Xo. The corresponding‘effect upon the resr
temnerature of a body with a linear variation of thickness is shown in
figure (3.6.9).

How does the nose thickness (to) of the ccnducting plate a2ffect the

emperatiars digbrihution? To anaver this quastion, we heve plotted in

o]
4]

figaires (3.6.10 - %.6.13) the iermersture distributions for seversl veluas
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Figure 3.6.,86  The effect of XO and T, on the nose and rear

temperatures of a trapezoidal section, to/tL = 10:1 (plotted as

fraction of the values for the slab of the same nose thickness).
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FPigure 3.6.7 The effect of XO and ‘I’o on the nose and rear
temperatures of a trapezmoidal section, to/tL = 1:4 (plotted as
fraction of the values for the slab of the same nose thickness).
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Figure 3.6.10 Some temperature distributions in trapezoidal
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of VT; and Xo. Alzo sunerimposed on Lon gva the two extramwe tempesraturs

distributions, nemely, the rediztion equilibrium femperature snd the

"infinite corductivity" solution. =~ If we now interpret the varistions
of q; due to changes in the nose thicknesss of the conducting metexisl,

to (weinyr equation 3.25), ve see from these figures thet asg the ratio
/I incresses, the temperature gradilents everywhere are reduced and the

temperature distribution tends towards that obtained for the "infinite
conductivity" solution. On the other hand ss the ratio tO/L decreases,

ne temperature distribution tends towsrds the radiction equilibrium velu

&

everrwhere (vhich is essentially a non-conducting plate solution).
In the rest of our discussions, unless otherwise sizted, the

solutions presented sre for finite rates of heat transfer at the leadin

E

-

edge, given by the relation

H :
(o]

- 1
QT T rx)E
o]

e
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CHAPTER IV

Experimentsl verification of the theory of two-dimensional

conducting plates

4.1 Introduction

The purpose of experiméﬁtal investigation is two-fold. Firstly,
it is tg‘seek experimental verification of the theoretical prediction
of the 1eading‘edge temperature distributions based on certain prescribed
boundary conditions as described in chapter III. Models which are
used to represent the leading edge are subjected to a sirulated aero-
“dynamic heat flux corresponding approximately to the x—%‘distribution
along one surface of the model. The sgcond purpose of the investigation
is to enable_studies to be made on models whose theoretical solutions
are sometimes difficult to obtain.

Sinha10 conducted some prelimininary tests of two-dimensional models

: i

of constant thickness. By the use of a specially designed reflectorga,
1

-

T
|

aerodynamnic heating was simulated roughly proportiénal to x *, except

for the region very close to the leading edge where for practical reasons
the reflector is capable only of producing limited rates of heat transfer.
Assuming material proﬁerties to be independent of tempersture, he
“compared his experimental results with the fheoretical solutions obteined

1
. N -3 . .
by using the relation Q = Ho/x =, In his work he reported a discrepsancy

of about 10% between the experiments and theoxy.
While Sinha has obtained useful information from his preliminary
work, a number of factors which may well be influential on the final

results have not been considered. These factors are now discussed in

deteil which constitute part of the reasons for the present



1
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investigation. . loreover the types of model thet have been tested

covered only a partiouiax case, il.e. wiform thickness and does not
ﬁecessarily provide sufficient information for definite conclusions
to be arawn.

Power available for heating the model. The capability of power
output from the reflector is largely restricted by the type of heating
element used. - With a greater amount of power available a higher
temperature and temperature gradients in the model of moderate thermal
conductivity value can be expecued. This has at least two advantages.

_A high absolute temperature minimizes the effect of background
radiation whereas a higher temperature gradient - -facilitates the effect
pf heat conductgon to be observed. In the earlier version the heating
element was made from oxidized nickel wire, It has a fairly highA
emittance value among oxidized metals. Unfortunately the oxide layer
tends to become unstable in vacuum when the surface temperature reaches
about lOOOOC. The maximym power ouﬁput was L.2kW . A higher value
of maximum power that can be dissipated is desired.

Performance of the reflector. The temperature distribution iq
the model may be influenced by the distribution of thermal radiation
impinging upon the model, which is its source of heat input.- Althougt
the reflector was &esigned to simulate a desired distribution of
radiation, its performance was measured by an instrument which was not
fully developed. As the author was involved in the development of this

29

instrument at the time when the reflector was being calibrated, it

seens prudent to carry ouf a recalibration of the reflector now that

. 0 s .
the radiometer has been further developed3 . By doingz this we would
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be in a position to find out if and where there is any substantial
deviation of the reflecéor performance from its expected behaviour, and
better still by using the measured values be able to assess their
effect on the expected temperature distribution. |
Location of modél During the calibration of the reflector it
became apparent that tﬁe distribution of radiant energy was very
| sensitive to the e%éct location of the plane on which it was being
measured. This aspect has nct been considered in the previous tests.
The detailed technique of setting up the model in the present tests is
_merely mechanical and has no great significance. It suffices to say
that we ensure that all the models lie in the desired plane with their
leading édge lying along a required stréight line.

Surface properties of the models. Heat exchange between the heat
source and the modelland between the model and the environment has been
arranged to take place through the surface of the model which is
exposed to radiation. If this surface were a perfect reflector, the
experiment would be nullified. On the other hand, if the surface were a
black surface, the heating of the model wquld follow the exact heat ‘
distribution simulated by the design of the reflector. Since it is not

" possible to provide a black surface for our models, the absofptive power
of the surface sho&id be aimed at being as high as possible. Both the
surface absorptivity (for a grey metallic surface this is usually
identical with the emissivity value) and its dependehcy on temperature
are of importance for these data will influence the exact behaviour of
the mathematical model in our theoretical analysis. This part has not

been included in thes previous experiment.
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Test models. We consider the theory presented in Chapter IIT
to be general. Hence it is important that the expérimental
verification to be carried out should also be general. In practice
we will be content to examine results from a small number of models
of various types provided they cover a wide enough range. In previous
experiments only slab ﬁodels were tested. This can only be considered

as a particular case

4,2 Simulation of aerodynamic heating.

We require some means of simulating steady state aerodynamic
‘heating (which we have éhown in Chapter II caﬂ be reasonably taken to
vary as x dg) of models used to represent the leading edge section of a
hypersonic wing. The simplest method of providing heating is to use
an eleclrically heated element as a source of infra-red radiation.

10,28

Sinha has designed and constructed a reflector 0.305m. long, which

o

is capable of producing a heat distribution roughly propOréional to x

in a given irradiated plane. Altogether the refléctor consigis of

seven curved surfaces blending smoothly to form a guasi-continuous profile.
The source of heat is a wire coiled round a ceramic (alumina) tube

which is reinforced by the insertion of .a tungsten rod through its centre

to prevent sagging gt high temperatures. Heating received by the model

is due largely to the reflected radiation and to a very small percentage

to the direct radiation from the element.

4,21 Power output from the filament.

The similarity laws derived in reference (12) permit us to carry
out scaled experiments provided we select the other parameters accori-

ingly. A low value of the heat input parameter Ho restricts the use

’
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of materials to those with relatively poor thermal conductivity
(as we shall show later in paragraph 4.3). In addition as we
increase the value of Ho’ the temperature values within the modgl
everywhere are higher and the effect of the background temperature
upon the temperature distribution is reduced. In the experimental
investigations the value o% H0 is directly proportioml to the power
dissipé%ed in the heater filament. It is therefore desirable to
increase the ébwer output of the electric element as much as possible.
The emissive power from a uniformly heated filament is proportional
to € T4, With the use of oxidised nickel wire a maximum power output of
about 1.2k¥ has been obtained. Whereas it may not be possible to
increase the emiséivity anyphigher than that of oxidised nickel, there
is a considerable scope for some materials to operate at a much higher
temperature. In this respect we may still be able to increase the
heating power. Three materials holding good promise are tungsten,
molybdenum and tantalum with their melting points51 at 543000, 2620°¢C
and 2996°C respectively. |
The suitable material should have a high operating temperaturs
in high‘vaouum and workability. Tﬁngsten is notoriously brittle at

room temperature while molybdenum is rather unpredictable and can

- transform rather suddenly from a ductile to a brittle statesz. Tantalum

is the most ductile material of the three at room temperatures. In as

far as the vapour pressure 51,35

is concerned tantalum has a vapour
" 2 o - 2

pressure of 12.5 nN/m? at 2000 K as compared with 13.3 nN/m% (about

10" ¥gorr) for tungsten at the same temperature and only 3.3 MN/m®

for molybdenum at a lower temperature of 1870°K., These figures suggest

that in a high vacuum environment, tantalum is likely to have a higher
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service temperature than either tungsten of molybdenum,

At a given tempeféture the radiative power of an element can be
increased by increasing the surface emissivity which can usually be
achieved by oxidation. Unfortunately, although all three materials
are relatively inactive chemically at room temperature, when heated
in air above 500°C they oxidize violently. Prolonged oxidation at
higher temperatures can lead to a total disintegration of the
materials. Only limited oxidation can be carried out at room temper-
atures below 500°C. All three materials possess Jjust about the same
values of surface emissivity at elevated temperaturesSs.ﬁ

Thus tantalum has been selected as the material for the heating
filament. Oxidation was limited to 30 minutes at about 45000,
producing a modest increase in the value of emissivity of about 0,3.
Oxidation changes the smooth and shiny surface texture of tantalum to
one which is quite rough and greyish in appearance. An'increase of
50% in the maximum power available is obtained if we replace the
oxidized nickel wire by an oxidized tantsium wire and we can safely
dissipate in the filament around 1.8k¥ of electrical power in a higb
vacuum.environment. The diameter of the tantalum wire is 0.08cm.
This increase in the operating tempera;ure of the filament ﬁas not

caused sagging at the middle of the element.

4,2.2 Calibration of the reflector

A brief description is given here of the radiometer which is
specially designed to measure the thermal radiation intensity over the
model. Its working principle is of a thermopile. The hot

Junctions of a thermopile are arranzed to lie in a straight line,
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which is placed in the irradiated plane at right angles to the axis

. along which the radiation intensity is varying. The cold Jjunctions
are kept at a constant temperature. With proper shielding the incident
radiation will pass through a slit just wide enough for it to impinge
on the hot junétions so that the radiation intensity thus measured
will represent the mean value over the distance corresponding to the
diameter of the hot Junction beads. By making the beads as small as
possible, the\resolutionA(i.e. the ability to sense the true value of
the local intensity) oan}be improved, at the expense unfortunately of
the sensitivity of thé instrument. By increasing the number of
thermocouples, the sensitivity can be improved.

(30)

This instrument is used to recalibrate the performance of
the reflector, The measured performance of the reflector is shown
in figures (4.2.1) and (4.2.2). The greater resolution of the
present radiometer has confirmed the fact that there exists at some
distance from the leading edge (about X = 0.68) large deviations of
radiation intensity from the desired trend of distribution. During
the calibration it also became apparent that the measured output was
very sensitive to the plane in which the measurements were being made.
Any small departure from the designed grradiated plane prodﬁces a

deteriorating effect on the performance of the reflector.
1

The reflector was designed to simulate a x ° distribution of
} heat transfer. Froﬁ the results presented in figﬁre (4.2.1) it is
evident that very close to the leading edge the reflecior can only
produce finite and very limited rateé of heat flux. However over the

range 0.0275 < X < 1 the reflector reproduces the desired distribution
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fairly well. It seems sensible to place the nose of the model at

X

1

0.0275 instead of X = Q. By shifting the nose of the model %o
X = 0.0275 we also ensure the maximum heat flux gradients occur along
the léading edge in accordance with the actual phenomenon of boundary
layer heating.

Q

Since the magnitude of the ratio o 1is about 5.8 only, it would
no longer be Jjustifiable to compare tth measured temperature
distributions in the modéls with those predicted by the theory using
the x'%/z variation. It would be interestinsg tc see how the results

_from the actual performance of the reflector differ from those based on

the {x + xo)b%/z distribution. In figure (4.2.2) the actual results are
“compared . with X = 0.0275.  The choice of X, = 0.0275 is simply
depived from the fact that the nose of the model is placed at X = 0.0275

in figure (4.2.1). With XO taken to be equal to 0.0275 the intensity

ratio is given by

1
< _(_1__;_0.0275 ®

Q
"QE 0.0275 = 6.1

which is about the same as the measured value. A direct comparison
between the experimental results and the numerical solutions of

' equation (3.15) can now be made with XO = 0,0275 and an apprdpriate
value of Hé. This gives the nose temperature about 4%-lower than

that if we use X = 0 (refer to figure 3.5.1).

4,3 Test models

The size of the reflector and conseguently the planform of the
models is largely determined by the size of the vacuum chamber. With .

the equipment available we can test models of planform area of
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0.305 x 0.152m2.
We propose to conduct experiments over as wide a range as possible

of the parameter 75 defined in equations (3.6) and (3.25) as

1.2 k.t

L o
T =(f) = —eE I3 1 (4.1)
M L o)

From the perfgrmance of the reflector it transpires that ideally all
the models should have the same length to ensure that they are subjected
fo the same heat ﬁransfer.distribution. We therefore fix the value of
length L = 0.152m for the models., For-reasons already outlined in

" section (4.2.1) it is advisable to use the highest value of Ho. As we
shall show a little later on it 1s also recommended to employ a high
value of surfaoe.absorptivity which for a metallic bédy implies an
equally high value of emissivity € . That leaves us with two
parameters k and t which can be selected to suit.  Although these two
parameters always appear together in equation (3.15) as the product kt,
it is still necessary from practical cénsideratioﬁs to choose the values
of k and t individually.,

Tokselect a suitable material for the models, theoretical

solutions of equation 3,15 (with Xo—wét)) were obtained for a wide
range of thermal conductivities and for three different fine-ness
ratios (%?. The nose and the rear edge temperatures are plotted in
figure (4.3.1)with H, = 1680 w/méé and € = 0.8, A low value of H is
used to represent the limited amount of heating available under
experimental conditions. It can be seen that highly conducting
materials such as copper and aluminium would give near uniform temper-

atures. It is imvortart that the material so chosen should produce a
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substantial temperature difference between the nose and the rear edge
of the model in order to reduce any error in the meésurement of
temperature, Insulating materials would be undesirable for they would
contradict the basic assumption that the ratio i‘is negligible
compared with the product kt. Materials having very low thermal
coﬁducﬁivity are also unsuitable because the conduction of heat along
the thermocouple wires may occur more readily than through the model.

One common metal that meets the general requirements is stainless

steel. The particulaf type of stainlegs slteel chosen was F.C.B.

_.Staybrite also designated as AISI -~ 347. Its coefficient of thermal

conductivity is given by the manufacturers§4 (Firth-Vickers Stain%ess
Steel Ltd.) as k = 15.9 (1+0.00039 x TOC) W/mOK.

Having decided on the value of the thermal conductivity (k), wé
now have at our disposal the parameter t (material thickness) to
effect a change in the non-dimensional parameter Tb. F}Om the
theoretical results presented in the last chapter we discovered that
if we keep the other parameters fixed, not only is the nose temperature
but the entire temperature distribution within the model sensitive to
the nose thickness. We therefore embark upon testing a family of
trapezoidal sectionsi(with a linear variation of thickness) ﬁith a
wedge section on ége one extreme and a slab of constant thickness on
the other. In addition we wish to find out the effect on the
temperature distribution of the amount of conductiné material and of

the nose thickness. For this purpose we construct models having the

same hose thickness but different thicknesses at the rear. Th

Q]

details regarding the dimensions of all the nine models is given in
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table (4.3.1). These arraﬁgements enable us to conduct
experiments for the range of 7b(based on the nose thickness)from
0.3 to 15,

A typical test model is shown in figure (4.3.2). Apart from
the top surface of the model,_all the other surfaces are highly
7§olished using diamond powders. The temperature measurements afe
taken at the middle section of the model where two-dimensional

conditions are expected to prevail.

4,.3.1 Treatment of the model surface exposed to radiation.

The top surface of the model is exposed to thermal radiation.

It should possess a high value of surface absorptivity in order to
utilise as much pf the limited heating available as possible. To

- minimise the effects of backzround radiation it is necessary in the
experimental investigations to maximise thé absolute meésurements of
temperature recorded on the model, This would require fhat while we
_use a high value of surface absorptivity, the top surface should have
a low emissivity. For most grey metallic surfaces, however, the two
coefficients are almost identical. In practice also, it would £e '
desirable for the surface of the wing to have a high value of Surféce
emissivity to take full advantage of radiation cooling under
eqﬁilibrium conditions., ‘

One of the studies undertaken was to investigate the effects of
surface roughness and oxidation on the variation of surface emissivity
with temperature for the type of stainlessvsteel used in this
experiment. We have in fact developed apparatus to measure the total

s

hemispherical emiss:’LVity‘ﬁ5 of solid materials, This method uses an
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Table 4.,3.1 - Test Models

Model Mo, Material - Description
1 ' Stainless Steel Slad e =Db = 1.27 cm
- (4181-347) o
2 “" v _ ~ Slad A< bow 0.635 e¢m .
3 om0 ~ Slab & = b= 0.317 em
4 n S Trapezoidal a = 0.635 cm
' . b = lo27 cnm
5 S Trapezoidel & = 0,317 om
: ' : b = 1.27 cm
6 - I " Wedge a = 0.0508 cm-
: b = 1.27 cm
7 ‘ u Trapezoidel a = 0.317 om
- " b= 0.635 cm;
) 8 ' ' " Wedge 8 = 0.0254 cm
. ’ b = 00655r cmm
9 on Wedge & = 0.0254 cm
- ~ b =« 0.317 om

- Note: For all ﬁodels, d = 30,48 cm, L = 15;246ﬁ. See Figure 4.5.9
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indirect heating approach and thus enables us to test both
electrically conductiﬁg and non-conducting materials, For materials
which obey the Lamberts' Cosine Law of diffuse emission,.the total
hemispherical emittance can be taken to be equal to the total normal
emittance. Some of the observations made in reference (36) relevant
to the present studyAarezf

1) Roughening the steel surface by shot-blasting increases the
emittance values slightly as compared with the as received conditions.
2) The combined effects of shoi-blasting and oxidation give more
favourable results fhan those of individual surface treatment.

3) The effect of oxidation on emittance is pronounced when the
temperature of oxidation is as high as 900°C with the emittance values
quite close already to the blackbody value.

Based on this experience we shot-blasted and then oxidigeﬁthe
top surface of ths stainless steel models at 900°C for 20 minutes.
After this treatment to stainless steel AISI - 347, reference (37) -
suggests that the emissivity of the surface can be taken as

€ = 0.735 (1 + 0.000297 x T°C).

4.4 Apparatus and experimental procedure.

The models ége subjected to simulated aerodynamic heating by
using the specially designed reflector housed inside aivacuum chamber.
The object of carrying out the testing of models in vacuum is %o avoid
convective heat transfer so that the entire heat input to the model and
heat dissipation from the model will be by thermal radiation alons.
Heat transfer by natural conveotion58 becomes insignificant if the

Grashof number (based on a mean representative temperature of the
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equipment) is less than 100. This would be possible if the working
pressure inside the vacﬁum chamber is maintained below 1 N/mz. The
experiments are in fact conducted at pressures of the order of ZmM/mz.

The inside walls of the vacuum chamber are painted black using
an enamel paint which is claimed to have an absorptivity of 0.9, Any
thermal -radiation being reflected from the walls of the chamber is
thus reduced to a minimum. Further, the vacuum chémber walls are
water cooled so that the background radiation can be maintained at a
known and definitely low level.  The level of background radiation can
Ape estimated to prévide a small correction to the rates of heat input
to the test model.

Apart from the top surface of the model which is sand-blasted and
oxidized, the rest of the surfaces are highly polished. Additional
shielding against radiation heat loss is provided by placing highly
reflecting surfaces parallel and close to the polished faces of the
model. The experimental set up is shown in figures (4.4.1) and (4.4.2).

Heat loss by conduction ffom the model is reduced by resting it on
four pointed ceramic pins, placed near the four corners. Heat transfer
to the ceramic supports through four pin-points can thus be.ignored.
These pins are mounted on Jacks which are used to adjust the height of
the model from a reférence surfacé inside the vacuum chamber.  With the
help of this arrangement it is possible to set the top surface of the model
precisely in the irradiated plane. In addition extfa care is taken
to ensure that the line of the leading edge corresponds exactly with the
axis X = 0 of figure (4.3.2).

Measurements of temperature were made by means of thermocouples
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Figure 4.4.2

General arrangement of model and reflector.
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embedded into the stainless steel or where the thickness is

insufficieni by spot»wélding the thermocouples onto the-surface. The
two methods have been found to give the same results. The thermocouples
are made from 40 SWG (0.012cm diameter) Bureka-constantan wire. - Wires
having such a small diameter have been seleotgd in order to reduce the
heat loss by conduction, Altogether tweive thermocouples are placed
in two rows (0.635cm apart) in the middle section of the model at six
prescribed locations., To detect any variation of temperature across
the thickness of the model one row of thermocouples was placed near the
_top surface of the model and the other row near the bottom surface.

The thermocouple emf (which is a measuve of the temperature) was
originally recorded by means of a potentiometric set up as shown in
figure (4.4.1). This has been replaced by a digital d.c. voltmeter
cafable of measuring to an accuracy of +1 BV .,  Although this in
itself might have no direct bearing on the results, it is ‘considered

to be a definite improvement in the laboratory methods in use.

The vacuum chamber is evacuated by means of~a 6" diffusion pump
backed by a single stage rotary pump. Once the working pressure of_
less than 2mN/m? (about 1075 torr) is reached, the'electrical power to

~ the reflector filament is switched on and thereafter increésed by
definite increméntéz After each increment of power and as soon as
.steady state conditions are reached the tempersture distribution in
the model is recorded. Only the comparison between the temperature
distributions corresponding to the maximum power and the theoretical
values is presented in the discussion later on, Table (4.4.1) gives

the results of the nine models that have been tested. Note that less

than 14% of heat dissipated in the filament in fact reaches the model,
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For each model the upper row temperatures were

taken near the top surface while the lower row

temperatures near the botiom surface.

T roter | model /2y xe.0008 | 1023 | 2m1 | 397 | 647 | .96
(W) (W) .
1 |1806 | 237.5 | 1179 éog.o 605.0 | 595.8 |563.4 | 569.2 |559.1
- 607.4 | 604.1 | 595.2 |582.6 |568.2 | 557.9
e | | ne | Gz |2 (e e g
sl | asez | v | G| ) B9 e oen) s )
4 (1852 246.0 | 1220 25?23 2?{:2 282:2 585.6 | 568.2 | 556.4
5 o35 | 2360 | e | GO T o0 | 265 | reus | sse.5 | 4e |
o e | o | et |t e
7ofweee | oesse | owee |ogd | BE-EN G120 20 | Dand
e | e | v | 27 || s s e s
o ots [ | v | gipe| ez e e [
Hote:




4.4.1  Txnerimentsal error

Whereas every precéution is taken to eliminate any experimental
errors, there are certain errors that are unavoidable. We present
here the soﬁroes of error that mey exist in the experimental results.
a) Althouzh convective heat transfer can be ignored at
below 2mN/m2, heat transfer by free-molecular conduction does exist.
It is shown in Appendix 3, that under the prevalent conditions, he
transfer by free-molecular conduction is negligible.
b) Since the model is isolated from the surroundings by resting it
on four pointed ceramic pins, heat loss by conduction throuzh the
sunvorts can be igmored. A very small smount of heat is lost through

the fjne thermocounle wires, but this is unavoidable and ncgligible

[43]

Ry O] B

cempared with the 1on”1tu@¢ﬂel conduction of haat,

c) Except the top surface, all the other surfaces are hizhly poliskred

and shieldad ageinst radiation heat loss. Nowever some heat loss from

<

.

the sides is inevitable.

d) The Eureka-constantan thermocouples used in the measuremont of
temperature have bheen calibratved et the Nationz2l Phygicel Laboratoxry
to within = 0.2°C,

‘e) A small enmount of heat is reflected from the vacuum chambar
walls ontvo the modéi.

£) Bacx-ground radiation from the vacuum chamber wslls which are

maintained at the cooling water temperature.

4.5, Discussion and cemparison of theory with exveriment

Figure (4.5.1) shows the calculated temperature distributions of

I
1_

the nine stainless steel models under a heating value given by
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H = 7500 W/mS/ 2 (and X _ = 0.0275). The numbers associated with the
models are the same as in tables (4.3.1) and (4.4.1). Also plotted
are the calpulated results for the two extreme conditions namely, the
radiation equilibriuvm temperature and the infinite conductivity
temperature which is constant along the model. Since the total input

of heat to the models must egual the total amount of heat radiated

~away from the'models, the family of curves satisfies the relation

L L H _
o I € T%adx = I e dx (4.2) ;
0 o y(x +x) .

- As compared with the non-conducting plate, the role of the

thermal conductivity of the material is to reduce the nose temperature
of the model at the expense of the rear edge value. In the last
chaptef we found that in a conducting plate which has a linear variation
of thickness but coﬁstant thermal conductivity and emissivity, the
temperature distribution isafunction essentially only of %he nose
thickness. A slab can be used to predict within 1% the temperature
distribution of any trapezoidal section that has the same nose thickness.
The resuits pesented in figure (4.5.3) are.for stainless steel models
where the coefficients of thermal conductivity and surface emissivity
are taken as functions of temperatures; the product kt becomihg a
function of X and 6; Any differences in the temperature distribution
due to the variations in the thickness distribution are too small to

be plotted in figure (4.5.1). The nose temperature as well as the
temperature gradients evefywhere can be significantly reduced by
increasing the nose thickness, which of course represents the quantity

of conducting material employed at the most crucial point. Alternatively,
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the same benefit could be obtained by increasing the thermal
conductivity of the material in the same ratio.

The other factor that is varied in the experiment is the quantity
of heat input tb the models. Figure (4.5.2) shows the variation of
nose and rear temperatures plotted against the heat flux parameter Ho
for models 1 and 6 (i.e. a slab and wedge section of the same rear
thickness respectively). An increase by a factor of about 10 is
required in the value of Ho to double the absolute nose temperature.

There are two possible ways of comparing the expefimental results -
with those calculated from the numerical solutions. lLooking again at
the performance of the reflector (figure 4.2.1) we see that the actual
measurements depart 1oca1}y in many places from the ideal distribution
based on (X + 0.0275) ﬂ%. For model 1, we compare in figure (4.5.3)
the temperature distribution calculated for the (X + 0.0275)—%‘
distribution of heat transfer with the numerical solution obtained for
the actual measured output of the reflector. Since the two temperature
distributions are so close to one another, we can conclude that the
local variations in the rates of heat input have little or no effect
on the temperature distribution. The very slight difference between
the two calculations that exists can be virtually eliminatedlby a slight
decrease in the vaiue of the constant XO. This, perhaps, could have
been used as a basis for selecting the value of the constant Xo'

Test results from the nine models are plotted in figures (4.5.4)
to (4.5.12). The agreement between the experimenial results and
theory (using Xo = 0.0275) for models 1,2,3,4,5 and 7 is remarkébly

good. We have used the relation expressed in equation (4.2) to
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calculate the magnitude of the constant H_ (table 4.4.1). This

method has been found.%o yield more reliable values than-the radiometer
readings? the method adopted by Sinhaio. In addition to the sources
of error already mentioned in section (4.4.1), there is the

uncertainty regarding the absolute values of the coefficient of

thermal cdnductivity (k) when seeking the numerical soclutions. The
values of k ahd € used are those quoted for the approoriate cases in

references 34 and 37 respectively. Even then for these six models

]

the maximum deviation from the calculated results (from equation 3.15
with X, = 0.0275) is only about 2%. For the three wedge models 6, 8
and 9 the agreement between theory and experiment is not quite so good.
The calculated temperature gradients are higher than the experimental
results and the maximum discrepency in the absolute values of temper-
ature is about 5% for these three models., One of the reasons for this
greater discrepency is that by normal workshop standesrd, it is difficult
to machine and then polish an exact wedge shape. - Because of the much
smaller magnitudes of the nose dimensions involved, any small deviation
froﬁ the ideal thickness is likely to have an exaggerated effect on_
the tempersture distribution. In the case of trapezoidal and wedge
sections the slight but inevitable rounding off of the leadiﬁg edge
could introduce ef;or in the meésurement of the nose thickness.
Numerical solutions have revealed fhat to get the same agreement
between the test resulis of the three wedge shaped ﬁodels and theory

as the other six models, we need to increase the product kt by a factor

of around 2.0 at the nose of these three models.

In all the models, two rows of thermocouples were embedded at two
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different depths to detect any temperature gradients across the
thickness of the material. ~Consistent with the basic assumption, no

significant temperature variations across the thickness were measured.

4.6, Fabricated leading edge.

From the results and the discussions already presented in this
chapter it is evid;nt that when the reflector is used to simulate
the aerodynamic heating in a model the measured tempersture dis-
tributions correspond to the numerical solutions of equation (5.15)
with Xo = 00,0275, We now intend to use the reflector to provide 3
énalogue temperature distributions where thé numerical solutions cannot
be conveniently obtained.

A practical wing section is likely to be a complex structure
internally. We now make an experimental study of a "practical™
leading edge which has internal cavities and a channel section spar
parallel to the leading edge. Two "identical' models h;ve been made
and tested. The cross-section of the model is shown in fiéure (4.6.1)
and is made out of stainless steel designated Staybrite FD P or
ATST 321, Both the skin as well as the spar piece is made out of .

18 sWG (0.122cm.) sheet. The spar flange is spot-welded to the skin
at a pitch of 1.99@. The overall size of the model is 0.305m by
0.152m as before(section 4.3). At the leading edge, the top and bottom
surface subtend a total angie of 19°. The leading edge of the wing
is considered to be symmetrical and therefore we need oniy consider
one half of the section. In order to simulate the effecis of an

internal cavity, we place a highly polished reflector along the plane

of symmetry. The model is isolated from the surroundings by resting
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it on four pointed ceramic pins. The top surface of the model is
in the irradiated plaﬁe that has a one-dimensional variation of heat
flux as shown in figure (4.2.1).

After shot-blasting the top surface with size 80 grit the model
was oxidized in air at 900°C for 60 minutes. Subsequently apar{
from the top surface, the oxide layer was removed from all the other
faces (including the web surfaces)uby rubbing them with emery paper.
The reason for oiidizing the top surface is to increase its absorptivity
so that the model absorbs as much as possible of the limited amount of
available heating.

The model is given a rounded nose (figure 4.6.1) to represent
the nose of a practical leading edge normally constructed by the
bending of a sheet. By including this locally rounded shape of the
leading edge, we have retained the full thickness of the conducting
material at the nose of the model.

Temperature measurements were taken by thermocouples spot-welded
in two rows at the centre-section of the model. The experimental
set-up and the testing procedure is exactly as explained earlier in
sectlion (5.6.5). For the fabricated leading edge thg‘results from
the models are presented in table (4.6.1).

In order to éiscover how the measured temperature distribution
compares with the sclutions of the two-dimensional heat conduction
equation(S.i@, we use the following values of the ﬁarameters relevant
to the modely L = 15.2cms, t = 0.122cms and Xo = 0,0275. The
coefficient of thermal conductivity as supplied by the manufacturers

(reference 34) is taken as k = 15.9 (1 + 0.00039 x T°C) W/m°K.  For




Table 4.6.1.

Dxperimentael results of the febricated leadine edze

299.

Model 10 Model 11

Total power from heater (W ) | 1837 1823
Power received by model (W) 202.0 204.0

H va/ﬁ 3/2) 1050 1060

X = %/L Temperature © K Temperature K

0.0208 664.1 656.6
658.7 657.7
0.104 641.6 637.9
645.4 644.0

0.271 597.0 @ -

596.4 -
0.397 560.7 564.4
| 559.0 564.2
0.647 520.2 524.9
503.2 526.9
0.96 507.1 512.7
501.8 512.7
spar 498.0 503.5
vertical web face 498.0 496.7
spar 501.6 508.5
horizontal flange face 505.6 505.6

.t = 0.122 cms.

Material ~ Stainless Steel AISI 321




100.

the variation of the coefficient of emissivity with temperature,
adequate information is not available for this particular type of
stainleés steel. We have therefore had to develop equipment
(reference 35) to investigate the variat{ons of the total hemispherical
emissivity of Stainless Steel AISI 321 for several types of surface
finish- and treatment. From the results presented in reference (56)

we représent'the variation of the coefficient of emissivity with
temperature as € = 0.695 (1 + 0.000288 x T°C) for a shot-blasted

gurface which has been oxidised in air at 90000 for 60 minutes,

4.7 Discussion of experimental results and comparison with theory.

For the nine models that we discussed earlier on in this
chapter, the problem of internal heat exchange by radiation did not
oGCur. In the'case of the fabricated leading edge that we have
tested, the internal cavities on both sides of the spar web complicate
numerical. analyses. In addition to heat conduction within the
conducting material, we have thermal radiation within the cavities.
The effect of heat iransfer by radiation would be to moderate the

temperature gradients and can thus be seen to "conduct" heat away

‘from the hotter regions of the model to points further downstream.

However, because of the vertical web and some heat loss from the rear
portion of the model (lower surface), the complications introduced by
the cavities cannot be accounted for by a straightforward increase in
the effective thermal conductivity of the material. Thermal radiation
exchange within the cavity and thermal radiation loss from the vertical
web and the lower surface of the rear portion of the skin with the

environment can be formulated. The solution for the temperature
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distribution taking acoount of these conditions would require the
solution of a set of integro~differential equations which would present
some mathematical difficulties.

The experimental results for the two models (10 and 11) are
plotted in figure (4.7.1). = For calculating the temperature distribution
we require the value of the appropriate heat input parameter Ho'
Integrating the heét loss by radiafion from the top surface only gives
H, = 1000 Wﬂm§§;. Using this value leads to an estimate of the nose
temperature lower than the measured value by about 2%,  However, we

_know that heat is lost by thermal radiation from the wvertical web face °
and the lower surface of the rear portion of the skin to the water
cooled walls of the vacuum chamber. It would be possible to make a
rough estimate of this heat loss using the temperature distribution of
the skin and the emissivity of the stainless steel in the as received
condition (to represent the lower surface of the model) but this is
furthsr complicated by the presence of the reflector inclined at 10°
to the model,

However, we have one method of providing a rough approximation to
the heat incident‘on the model, Included in table (4.4.1) are values

: of the total power dissipated in the filament of the multi-cﬁrve
reflector for the ﬁine models tested in the verification of the theory
together with the gquantity of heat actually impinging the models.
There exists some indication of the value of Ho as é percentage of the
total power dissipated in the filament. The experimental results

presented in figure (4.7.1) are for power dissipationg of 1838 and

1823 watts. Using a mean correlating factor, we obtain at a value of
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H_ = 1200 W/méé. Calculated results for H = 1200 W/ms/2 are also
plotted in figure (4.7.1).

The effect of the cavity is expected to moderate the temperature
distribution as compared with the slab of the same thickness.
However, the measured temperature distribution exhibits the opposite
trend. - We already know that the temperature distribution is fairly
sensitive to‘the nose thickness of the conducting material. In the
calculations we have used a slab of thickness 0,122cm. to predict the
temperature distribution. quever if the nose does not have a

_sufficiently small nose radius to make the skin normal to the plane -
of symmetry at thé nose, then the effective nose thickness is going ﬁo
be less than the slab value. This seemg to b= the case and conseguently
the temperature distribution is not quite so severe as it should be.
Under practically the same heat input (table 4.6.1) model 12 exhibits
a slightly less severe temperature distribution as comparéd with model
11, which suggests that the effective nose thickness of model 12 is
greater than that of model 11, It is extremely difficult to measure
the variation of the material thickness close to the rounded leading
edge and therefore the calculated temperature distributions are presented
- only for the equivalent constant thickﬁess model.

Since the cal;ﬁlated temperature distributions have not taken
into account the effect of radiation exchange from one part to another
or that heat is lost from the rear portion of the mddel, a comparison
of theory and experimental results shows us how under the same heat
input, the two temperature distributions are likely to vary. A set of

controlled experiments could provide an insight into the heat transfer



phenomena taking place inside cavitieslwhere’radiation equilibrium
exists.

For given leading edge configurations the experimenial set-up
we have developed is cavable of providing us with the analogue
distributions of temperature. This is particularly useful when
numerical solutions cannot be easily obtained which is generglly the
case in realistic wing sections.,

Finally, in figure (4.7.1) we haveAalso plotted the temperatures
recorded on the spar. The addition of the vertical web does not
seem to have produced any diséontinuity or a marked change of slope

in the measured temperature distribution.
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CHAPTER V

Three-dimensional heat conduction in leading edge heating

5.1 Intreoduction

One of the aims of the,present study is to extend the two-
dimensional investigations to more realistic wing planforms suitable
for hyp;;sonic flight, by including the effect of sweep and apex
geometry. As before we enviéage the use of thin wing sections with
the leading edge thicknesses of the order of lcm. or less as compared
with a chord of several meters, and opposed to the blunt body config-
‘uration where the leading edges may well exceed lm. in thickness.

Relatively little information ié available on the hypersonic flow
over three-dimensional slender wings with sharp leading edges. It is
therefore in general extremely difficult to formulate the coefficient
of aerodynamic heat transfer to a hypersonic leading edge‘ In this
chapter wherever necessary, we utilise the flow pattern of a "caret”
wing which was firét suggested by Nonweiler.(4’5) At its design cruise
speed, this wing supports an attached plane shock between the leading

edges along the lower surrace and the flow is relatively simple being

parallel to the centre-section of the wing everywhere. This gives us

"an opportunity to extend the two-dimentional investigations to include

the effects of finite span and sweep-back.

In this chapter we present the theory and solutions of the three-
dimensional heat conduction equation., Detalls are given of a computer
programme we have developed which 1s capable of proaucing temperaturé

distributions over the leading edge section of a swept wing subjected
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to any general form of aerodynamic heating.

5.2. Heat transfer to thé three-aimensional leading edge.

Nonwei.Lerlk’b first suggested the use of "caret" wings in
nypersonic tflight. Tnesg'wings_nave_a delta planiérm and supﬁért
a plane shock wave along thne leading edse and are one example of the
family of "wavg»rider" wingé. The prominent feature of the carat
wing is that at the design mach number the streamlines4stay parallel
to the plane of symmetry over the entire wing surface and the flow

is uniform. We therefore assume that the heat input is a function -

of the streamwise distance from the leading edge.

The restriction put on the variation of heat transfer does not
reduce the generality of the results as it may appear to do. . At
hyperscnic mach numbers the influence of a disturbance in the floﬁ
is limited in the spanwise direction to regions within a narrow mach
cone. We are concerned with the heating to a narrow strip of the
order of the conduction lengtﬁ (1) parallel to the leading edge, and
particularly that part of the strip close to the apex of the wing.
Provided elsewhere unit order changes do not occur in the rates of heat
transfer over lengths of the order of igan the spanwise direction, our
results may be appliedAon a quasi-two-dimensional. basis (as in para.
5.7) allowing reaéonable estimates to be made of the 1eadiﬁg edge

temperatures of any swept wing, even if the streamlines are no longer

strictly parallel to the plane of symmetry of the wing.

Although the hypersonic flow over the caret is well defined, the
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solution of the heat conduction equation still presents some problems.

A caret wing which supports a plane shock wave would be of the shape

shown in figure (5.2.1)

Mgure 5:.2.1 A Caret wing.

Sinece the two wing surfaces of a caret are inclined to one
another, heat exchange by radiapion would occur between these two
surfaces., The formulation as well as the solution of the governing
heat transfer eguations would be extremely difficult.

For two inclined

surfaces it can be easily shown that the radiation exchange decreases
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very rapidly es the included angle between the two surfaces increases.
In practical caret wings this engle is likely to be well over 900.

e tberefére expect the heat transfer from one surface to the other, by
thermal radiation to be smnll and this effect is ignored in the form-

ulation of heat transfer eguation for the three-dimensional wing where

we replace a carat wing by an equivalent plane delta wing as shown in

figure (5.2.2.).

r
nN

Figure 5.2.2 Idealised hypersonic delta wing.

Consistent with the preceding chapters the coefficient of
aerodynanic heat transfer is teken to vary as inversely proportional
to the sguare root of the chordwige distance measured from the leading

edge., The assumpliions already made in the last chapter in the theory



of conducting plates remein unchanged end will not be repeated here.
e can now write the heat itrensfer equation for the three-

dimensional wings under ccnsideration as,

H
\ o
-g;(kt-g%;) -(m ) - 0 2 (5.1)
' (x+xo~ytan¢$

where x is a constant to eliminate the singularity along the leading
edge, X =y tantﬁ.
Once again we seek the solution of equation (5.1) over a closed

interval of x of length L (measured from the leading edze) and we define

“non-dimensional notation as before:

. (5.2)

Here the subscript L refers to the values of parameters at a distance

L from the apex of the delta. Also we have

Q, 4
L s
L .
. 2
and - T - kb or T = (i) X, (5.4)
(e OQ’5)¢ L2 o L
L°L -t ‘
where the conduction length X is defined as
LY
1= (=t (5.5)
_ i '

On substituting equation (5.2) - (5.4) intc equation (5.1) we get the

non~dimensional form of the heat trensfer equation as

(q-ae> (T--n) IS 1 . (5.8)
(X+XO—Ytan¢$2
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For the aerodynamic heat transfer varying ss (x + xo)- where x is
measured from the leading edge, we heve defined, as before a conduction
length, i-(equation 5.5) and precisely the same reasoning as bpefore
suggests thet cover this iength thermal conduction plays an important

role in the determination of the temperature distribution. We need only
solve equation (5.6) for lengths L of the order of £ in order to discern
the effects of therﬁal conduction on the temperature distribution. If

L is much larger than ﬁ, the temperature would in general be very closge
to the radiation equilibrium value and much lower than the apex or the
_}eading edge temperature. On the otﬁer hand when L is much smaller than
1, the temperature would in general be more or less uniform and close to
the "infinite" conduotivity‘value. A delta wing has a plane of symmetry
(y = 0) and therefore we need only solve the equation over one half

(y’};(), say) and the area of interest to us is shown shaded in figure
2.

(5.2.3) \

1

,_
SIS
[

Figure >.2.3 Leading edge portidn of the delta wing with

'Boundary conditions.
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5.% Boundary conditions

We assume that there is no heat transfer normsl to the edges of
the strip parallel to the leading edge. Across the plane of symmetry

dd
dx

it is evident that = 0. Aong the two free edges the conducting

material vanishes and the boundary conditions used are

where £ 1is measured normal to the leading edge (see figure 5.2.3)
which is simply an extension of the argument presented earlier for the
_two-dimensional plate. Similarly we consider the edge X=L~Ytan¢> to
be the chordwise limit of the conducting region. Further downstream
the conduction effects are negligible and the temperature distribution
follows very closely the radiation -=quilibrium condition. The heat
transfer normal to the edge can thus be ignored without affecting the

solution.

5.4 BSolution of the three-dimensional heat transfer enuation.

We solve equation (6.6) with two objectives in mind. TFirst we
_try to find where and how the two-dimensional soiutions and similariéy
.Iaws can be applied to the more general case of swept leading/edges.
Secondly we investigate the effects of the extra parameters that occur
in equation (5.6), namely finite-span and sweep-back, on the temperature
distribution.

The numerical solution of equation (5.8) has been obtainsd by

employing the method of over-relaxation which is the easiest of the

three methods described in section (3.5) to be generalised to include
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the extra dimension (Y). Equation (5.6) is first linearised and then
expressed in the finite-difference form using the central difference
notation.

The leading edge area is divided into a rectangular grid of length
hc (chordwise direction) and w?dth hs (spanwise dimension). In order
that all the edges are always coincident with a grid point, we choose
hc and hs such that

hc = hs’can (f)

Full details of the derivation of equation (5.6) in the finite

~differences form is given in Appendix C and the set of (N+1)x(M+1)

equations can be represented by

h
c

i 1 it 1 i 1
+ en"l’m[hZ ‘q;l--j?—,nzl + en,m+1|:h2'q;1,m+-é-] * en,m-l[h2 'ﬂx,m-%y
c ] s

1 1 '
é 2 Ern#’g,m * rrn——é—,nil * h2 Ern,mn% * q;,ma—%]
s

i i-1 1 i-1y4  i-1 1
en,m - (l_w)en,m +w§ * 5en(en,m) * en+1,n1[2 'rrn+—12~,%

T
(n+XO ~mtang)®

* “n(@iﬁ)ﬁ 3 (5.8)

with n = O(1)N and m = O(1)M.

The boundary conditions along the four edges (see figure 5.2.3) become
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as follows:

Along the edge parallel to the x - axis,

e(n‘,m+1) = 6(11, n-1) (5.9)

Along the edge parallel to the y-axis,

e(n+1,m) = .‘ e(n_i,m). (5.10)

and along the edges inclined at the sweep angle@b to the y-axis,

hi [ %n,me1) " e(n,m—-l)-_]' - hi [:e(n+l,m) - e(n—i,nd] (5.11)

For ¢ <45°, h < h_ and we use equation (5.11) in the form

- h2

e(n+1,m) - 6(n-—l,m) = ;% [:e(n,m+1) - e(n,m—li‘ (5.12)

On the other hand this eguation leads 1o instability in the solution of
the equations (5.8) for ¢ >45°  whenh > h_, and we utilise the

alternative form of equation (5.11) which is

h2

e(n;m+1) - e(n,mfl) = ;g' [ e(n+1’m) - e(n—l,m>i] (5.13)

The -main impact of attempiing the numerical solution of equatiogs
given by (5.8) is the very large storage required‘to store all the
-unknowns. Instead of handling (N+1)x5‘terms, we now have (N#i)x(M+1).
Even for a moderatélsizéd grid (N=64, say) the core-store necessary to
store all the array terms is beyond the maximum available on ogr English
Blectric KDF 9 digital computer, In order to cope with this storage
problem we use two additional magnetic tapes to supplemsnt the basic
core-store of the computer,

BEssentially the iterative procedure of the computer programme is
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the same as described for the solution of the two-dimensional equation

N

(section 5.5.2). It consists of an inner iterative loop that obtains a
solution of vhe linearised eouation and an outer loop which approximates
the solution of the linearised equations to the solution of the non-
linear heat conduction'equation (equation 5.8). The program starts
with a quessed value of tempéfature and a coarse grid mesh (N=4, say).
At any gi;en time the computer handles only three columns of the vector
©

€, namely © , © During each iteration, the columns are read
g n-1 )

n!' “n+lt’

in order, from one magnetic tape and after the process of over-relaxation
"has been carried out on every term of the column en, the columns are
written on to the other magnetic tape. At the end of each iteration,
the magnetic tapes change places and the reiterative procedure is repeated:
Convergence and discretisation error criteria are as described in section
(3.5.2), with the summation being carried out over the entire grid. The
ALGOL text of a computer program together with a summary of the major
steps are provided in Appendix D. |

As compared with the solution of the.twomdimenéiénal equation this
computer program has to carry out something of the order of (N+1) x M
more calcﬁlations for each iteration and each calculation involving at
least twice as many mathematical operations. In addition the operation
is further slowed considerably by the trensfer of data to and from the
magnetic tapes. Whereaé an acceptable solution of the two-dimensional
heat conduction equation can be obtained in about 20 secs. of computa-
tional time, we now require at least 40 minutes of actual computational
time and anofher 15-20 minutes to cover the manipulation of the magnetic

tapes. These times Jjust quoted are for XO = 10*2. For a lower wvalue
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of XO the computer times required are well in excess of 1 hour. With
the facilities available at present it is not feasible to obtain
solutions of the required accuracy for X, < 10*5, say. Instead an
alternative approach, if requirea, can be used to estimate the temp-
erature distribution for Xd——% 0. In this case solutions are obtained
for three different values of X (all greater than 1O~5, say) and the
values of the corresponding points extrapolated graphically or using a
simple power law to give the solutions applicable for X6—€>O. In this
way a solution for Xé-%'O can be obtained which is of & higher degree
of accuracy than that obtained by using XO < 10"5 but a larger tolerance
on the convergence and discretisation error criterions.

To reduce the total computational time to a minimum it is necessary
to use the appropriate value of the over-relaxation parameterd, The
dependence on @ is demonstrated by considering a specific example where
we take q;=0.98, X0=jo_2, qb=450 and the limit on convergence and

4. In table (5.4.1) are given the number

discretisation error to be 10~
of iterations carried out at each grid size for different values of the
over-relaxation parameter ¢ Also in figure (5.4.1) we plot the
variation of compitaiional time and the total elapsed time against@,

In table (5.4.2) and figure (5.4.5) we present the solution of the
equation with the éﬁme‘parémeters but where we have reduced the limit
oﬁ convergence and discretisatioﬁ error to 10-5. In obtaining the
solutions it is recommended to use an error term <§'1O"5 in order to
ensure sufficient accuracy of the solutions. While the computational

times have gone up by a factor of about 15, tne additional time required

to operate the magnetic tapes has increased from aboui 4 minutes 1o
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‘about 12 minutes. Based on the results of figure (5.4.2) it is
recommended to use >ﬁq5, becauée a smaller value sometimes terminates
.the Sonvergence premzturely,

One of the reasons why the solution of the three-dimeﬁsional
equation takes longer to converge thén the two~dimensional equation is
the discontinuity in the planform that exists at the apex of the delta.
In an effort to speed up fhe process of convergence, close to the apex,
instead of using the relaxation equations (5.8) to provide estimates of
temperature, we used a Laplace™s solution (obtained by a change of

_variables and using a polar system of co-ordinates) of the linearised
form of eqﬁation (5.8). Such a scheme yields the same temperature

distribution but unfortunately took slightly longer to converge.

5.5 The effect of finite span

The sclution over the leading edge region of a delta_wing (shown
in figure 5.2.3) can be divided into three distinct parts: In the
vicinity of the apex of the delfa,‘the £emperature.rises significantlj
above the two-dimensional nose temperature. This increase of temper-
ature islattributed to the discontinuity in the planform at the apex of
the delta wing. The inflﬁence of this'local discontinuity extends over

| a relatively shoxt .distance in the spanwise direction. In figure
(5.5.1) we plot the leéding edge temperature against the spanwise
distance. As expected, the effect of the apex is limited to lengths
of the order of ia(conduction length). In fact as the angle of sweep-
back ( ¢>) increases the tempersture along the leading edge becomes
two-dimensional at a smaller value pf e A similar increase in

temperature of the leading edge occurs near the wing tip.
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- For the region 1<y < s-1, (where s is the semi—span)-which forms
the ﬁajority of the wing; the temperature distribution is the same and
of éourse independent of y.  Two-dimensional cdnditions prevail and
we shall show later how the results of the last chapter can be modified
to include the influence of sweep-back to give the temperature
distributions in this region.

At the spanwise tip of a swept wing, with the boundary condition
shown in figures (5.2.3) and (5.5.2a) the leading edgé tempersture
reaches a maximum., Instead if we consider a chordwise tip (as for
example on a cropped delta) and suppose zero heat transfer normal to the
edge (as in figure 5.5.2b) this produces a local minimum in the temperature
distribution at the tip. The singularity at the tip can be eliminated
by terminating the spanwise dimension normal to the 1eading-edge and
assuming no heat transfer parallel to the line of the leading edge
(figvre 5.5.2¢) . Since the grid we use is always parallel’ to the x, y
axes, it is much simpler nmumerically to employ instead the cropped delta
&onfiguration as shown in figure (5.5.2d) and the same boundary condition
as in figure (5.5.20) to give two-dimensional temperature values along
the leading edge over the range y > 1,

In this chapter we investigate the temperature distributiéns close
. to the apex region o;1y of the delta ﬁing. In practice the maximum
temperature is going to occur at the apex of the delta. Even if there
does exist another maximum at the tip such as shown in figure (5.5.2a)
we can estimate the temperatures there from resulis obtained for the apex
because the two singularities are basicslly the same. By limiting the

area of investigation adjacent to the nose of the wing (s=0(1), say) a
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considerable saving in computational time is obtained. In fact on
present day computers it might not be possible to obtain the temperature
distributions close to the leading edge of an entire delta wing within a
reasonable computer time. For these reasons we concentrate our efforts
to the apex region only which we expect to be the most crucial point

from the. heat transfer aspect of hypersonic flight.

5.6 The effeets of the angle of sweep (P ).

In extending the theory to include the extra spanwise dimension we
have also introduced one more important parameter, namely the angle of
“sweep of the leading edge #5 . To determine the effect of sweep on
the leading edge temperature, we Vary‘¢>from,00 (equivalent to a two~
dimensicnal leading‘edge) to very nearly 90°, The results for various
values of XO are plotted in figure (5.6.1) where the apex temperature
is relative to the corresponding value for an unswept wing. (i.e. same
Ho and L as shown in figure (5.6.2)). As mentioned befor;,actual
numerical solutions cennot be obtained for XO—~>O. Instead we use a
simple power law to extrapolate the apex temperature for Xo = 0 based
on the résults of XO = 0,03, 0.01 and 0.003.

For a given value of 45 , the changes'produced in the apex
" temperature by varying ’T; are very slight indeed. The resulis relative
to the unswept 1eading.edge temperature being presented in table (5.6.1),
in the range of ’r; from 0.28 to 4.1 for KO = 10-2. It must be pointed
out that these results are accurate to about + 0.1%, which wes the
tolerance criterion used in obtaining the numerical solutionms.

Increasing the angle of sweep can be seen to reduce the amount of

conducting material available at the apex and so produce an increase in
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x

Figure 5.6.2 Basis for comparing results for a leading edge swept
at an angle¢> with the corresponding unswept

configuration.
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Table 5.8.1 The effect of v; on the apex temperature of the delia
wing relative to the unswept wing temperature at

various values of sweep angle<.

X - 10-.2.
o]
\ ‘T' i ‘ .
o . 0.285 0.977 4,07
$ ,

0. 1.0 1.0 1.0
14.0 1,003 1,002 1,002
26.6 1,016 1,014 1.018
45,0 1,04 1.055 1,038 )
65,4 1,076 1.07 1,08
76.0 1.109 1.102 1.107
84,5 1.14 1,156 1,143
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nose temperature as compared to an unswept wing. However, the effecf
is slight, even for ext?eme angles of swegp—back, and within the
possibilities.of control by a lccally enhanced provision of conducting
material.

We now see how we can'modify the previous analysis of the two-
dimensional leading edge to éive us results for the swept wing., If we
suppose that £ is mgasured normel to the leading e&ge, then ¢ must
replace x in the similarity laws derived for an unswept.wing. Thus the
heat flux becomes equal to Ho/( ¢ seu::ch)v2 which means that we must
_replace Hé by Hocosmﬁb , and L is interpreted as length of the conduct-
ing region perpendicular to the leading edge. Solutions of the three-
dimensional equation (5.6) for a swept wing using the values HO and L,
give the same value of the leading edge temperature away from the apex
as does the solution of the equation for the two-dimensional leading edge
(equation 3.15) provided in the latter case we use the valles of the

|

heat input parameter as Hocosvqu and Lcos 4>} If the sweep-back is
envisaged as being achieved by yawing a given wing, then L remains
invarient with ¢ , and the reduction in the value of Ho would account
for a reduction in temperature by a factor between 0032/15¢) and cosl/sqb,
“depending on whether the ration (L/1) is iarge or smalll®, Cn the
other hand, if the‘;ing sweep-back is envisaged as being achieved by
shearing the wing, then the heat flux at the edge of the conducting
| region (and so the values associated with QL, TL, and 1) remsin

invariant whilst L decreases in proportion to cos ¢),‘producing a

reduction in the leading edge temperature. In either interpretation,

away from the apex of the delta wing, sweepback can be seen to reduce
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the leading edge temperature as oomﬁared with the corresponding value for
the unswept wing where the basis for caloulating the two tempersture dis-
tribut;ons is as shown in figure 5.8.2 (i.e. the same Value of Hb and L).
The temperature along a swept leading edge is plotted in figure (5.6.5)
for a specific example, away from the apex sweepback is seen to play a
beneficial role by lowering the temperature along the leading edge with
respect to an unswept wing value. Along the rear edge the temperature

distribution remains more or less constant, for a given angle of sweep.

5.7 Temperature distribution close to the apex of the delta.

We now plot a typical temperature distribution at the apex of a
delta wing - figﬁre (5.7.1). For the example shown, the span to chorad
ratio is 0.67 (¢= 71.6°); aﬁd T = 0.29.

The effects of varying the parameters of equation 5.6 are the same
as we found in the two-dimensional study of the problem. Forvexample, any
increése in the conducting properties (i.e. product kt) produces a modera-
ting effect on the temperature distribution; the temperatu;e gradients are
reduced everywhere, and at the same time the leading edge temperatures are
reduced at the expensé of.the tempefatures further downsiream. The simi-
larity laws derived in reference (12) can be applied directly to provide
the variation of temperature with a given parameter (k;t,e,Ho etc.).

Sweepback is seen to produce a local maximum in the leading edge
temperature at the apex of the delta wing. Fortunately this increase is
small and within contrcl by either locally enhancing ﬁhe effects of thermal
conductio (e.g. increasing kt) or eliminating the sharp apex.

We shall now prove that by vlacing certian restrictions on the
curvature of the leading edge, two-dimensional temperature distributions
prevail along the leading edge of the wing and the "undesirable" effects

of sweepback can be eliminated.
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In order to analyse the effects of the leading edge curvature on
the temperature distribﬁtion it is necessary to derive the heat transfer
equation in a set of general ortheogonal curvilinear coordinates.

Re~writing the general heat transfer equation in the ordinary

rectangular coordinates, we have

2, AT 3 (s ATy _ 4
™ (kt ax). il (kt o7 = €07 -Q (5.14)

Now in any general orthogonal system the displacements along the

coordinate curves ( u = constant and v = constant, say) are equal to

_dsu = hu du and dsv = hv dv and are always mutually orthogonal - see

figure (5.7.2)
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In this notation we can express equation (5.14) with the help of

references (39 and 40), as follows:

h
3 v or O ¢ .n 2y _ 4
ou (kt hu au) * v ( hv av) B huhv( €0t 'Q}_ (5.15)
Expanding equation (5.15) gives
kt _a..rg. ‘_j:.._ E.}.l.‘_' .}ll_Y. E.}.l}i + EE L(kt .@E),{_ kt@.@.(}_ f.}iu - EIE. ,a..}lY.)
ou ‘h_ ou 2 ou h ou ou ovh_ ov 2 av
u h, u v hv
u 9 . 3Ty Ay A
e =(kt =2) = h b (€ o - Q) (5.16)

— We now consider the application of the curvilinear system to

represent the leading edge of a hypersonic wing.

Figure (5.7.3) Transformation to orthogonal curvilinear system of

coordinates.
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In particular we make one of u - curves to be coincident with the
leading edge. The v -~ curves become straight lines normal to the u -
curve, The tangent to the curve at some point (P) makes an angle €

with the y - axis. For the two systems of coordinates, we have

x = Icos @.du ~ v sin@ (5.17)
- °
s
and ¥y ="/F sin @ .au + v cosf (5.18)
o

Also if s is the arc lengfh (measured from the origin)

@ _ 1
ds

R
?
i.e. 0 = R .ds
(3
where R 1s the radius of curvature of the leading edge at the point P.
In such a notation the arc length can be expressed as
2 2 .2 w2 2 2
ds” = dx” + dy" = (1 - ﬁ? du® + dv (5.19)

From our definition of the orthogonal system

2 2 2 2 2
ds” = b du” + hl dv (5.20)
Comparing equations (5.19) and (5.20) gives
. ‘
h,=1- R (5.21)
and h =1 (5.22)

Substituting equations (5.21) and (5.22) into equation (5.16) gives

a1 d

~ 9. A A 3 . 2T 9T o v
L T en (L-® ¢ v aalkt 50) + kb 5 o (L - R
(1 - §> 1-%

3. (s 9T & ‘
+A - Sk S) = (-3 (€01 - Q) (5.23)




Where we have made use of the relation that

Expanding equation (4.16) gives,

v 1 Yy L3, 3Ty 1, 9T
kts—ﬂ v\ e 27 du + vy ou (kt au) -Rkt oV
(1 -=) R 1-=)
R R
' v 4 :
(1 -3) av (kt = (-3 (e - Q) (5.24)

Note that R is function of u only in the particular system we have
e P y

defined ... oR = 0,
. ov

In order to malke all the derivatives of generally unit order, wve

normalise the parameters as follows:

R = R. R, w="U. 1, v= 1.5 ' (5.25)
. Particularly 1 can be associated with the conduction length normal to

the leading edge.

On substituting these relations into equation (5,24) it becomesg,
2 = 2

1 T 1 il vor| _ 1 1

"z[kt_[ -2 2 B aa]* - 2au(kt)

"R, R

S AR
N ‘ RNR)
-2 (

rolf <t

]

B | --R-Nl——ﬁktg-g: + =2 (ktg%:)] =(1_3§N—- ) cor - Q) (5.26)

Wow provided RN >> 1 and U>>1, we get the two-dimensional relation,

Q.

St - eott - q (5.27)

ov

for a wing of finite span we therefore note thet, provided ths line

of the leesding edge has a radius of curvature which is large comp,red
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with the conduvction length 1 and pfcvided that there are no spanwise
'@iscontinuities in the heat flux, then two-dimensional conditions
apply in the determination of the temperature distribution in planes
locélly perpendicular to the leading edge.

We already know from the results presented in figure (5.8.1) by
how much would the nose temperaturg'be,lqwered if we can so round the
leadiﬁg edge. 'For example, for XO =0 (i.e. Qd“§°°), at 80° sweep‘
the sharp delta wing avex exhibits a local temperature which is about
20%" higher than the corresponding unswept leading edge. At 45° sweep,
the figure is only about 5%. For finite rates of heat transfer at the
nose of the wing, the apex temperature of a delta wing is not quite so
severe as ccmpzred with 2 rounded nose, e.g. XO = 1Or2-gives about 12%
rise at 807 sweep. For practical values of the angle of sweep, the
pointed swept wing csn be ekpected to exhibit around 10% - 159 rise
in the apex temperature as compared with a two~dimensional Ieading

edge.
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Txmerinental study of three-dinensional wings.

The verification of the two-dimensional theory of a conducting

plate by experiments not .only has proved the important role played

-

by heat conduction within the material ﬁear the leading edge of a
) hypersonic wing but also has strengthened the belief in the
reliability of. the genersl equations so set up for the prediction of
.the temperature distribution in this regioﬁ. The three-dimensional
theory is in effect the extension of the two-dimensional theoxry; it
is influenced by the same governing factors. Vhat hag been found
true in the two-dimensionel case must apply eslso Lo the three-
dimensional one, Ho experimental verification is therefore deemed
Necessary. Since, however, the numerical solution of o three-
dimensionasl problem is much more complicated it would be'of interest
to examine the results by some experimentel me=ans. Though the models
used for the three-dimensionel study do not necessarily bear close
resemblance to those representing exactly the type of leading edge one
would contrive for hypersonic flight, the information thus derived
should be useful for two reasons -~ It will give some indication of
the accuracy of the numerical sclutiong and about the effects of finite
span and sweepback on the tempe;ature distribution. Thevexperimental

technique to be developed is also in its own right a useful technique .

for the study of leading edge heating.

6.1 Desisn and development of the three-dimensionsl heater.

In order to test experimental models, we reguire a heater capable
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of producing a "realistic! distribution of heat intensities over the
model. The heater should fulfil the following reguiremenrts:
a) +he apex of the delta model should be subjected to the highest
rates of heast flux.
b) the distribution of heat intengity impinging on phe model must
vary at least as x_%'in the chordwise direction (where x is measured
from the leadihg edge), with the highest gradients in the rates of
heat flux ococurring at or very close to the leading edge.
o)  the distribution of hest flux must be symmetrical with respect
to the plane ¥y = 0 (centre-section of the delta).
d)  the leading edges of the model should be heated uniformly.

One of the simplest methods of producing varying heat intensity
over a surface is by means of a wire (heated electrically) held

close to it (see figure below).

-

r

B B
INBLEHITEINNINAAN

At any point P at a distance ' from the wire the heat intensity

. . cog . . .

is proportional to ~M~£i~. Therefore, if the wire is held very
iy r2

close to the surface (s= ) we can then expect the hest intensities
i . -2 . N R

to vary very roughly s (s being measured along the surfece as

shown in the figure above). If we nov place the wire directly above .

»
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the lezading edge of the delta shaved model, we can expect the heat
g ‘s = , ) -2 .
infenzities %o vary very roughly as x over the model surface (where

x is measured from the leading edge), which is a much severer

=

variation of heat input than that predicted by the x © distridbution.

Before discussing how the resi of the desisn objectives were
realiged, we shall present the final confiszurstion (figure 6.1.1)

L

so that the merits of this layout cen be judged in comperison with
some of the slternative configurations tha@ we tried. Heating is
provided electricelly by itwo tantslum wires (l.Sme. dismeter) that
run @longside the leeding edze of the model énd join together at
the apex of the delts where they sre tied together by a fine
tantalunm wire. The heatinz wires were alweys placed in e plane

parallel 1o the surfece of tho model. We tried usinz more then

two wires which were either spread

D

venly over the eniire delis
planform or placed close together near ths leading edge.; fven with
two wires, the convergence at tha apex leads +to radiation exchange
betwesn the two wires producing locally a considersble rige in

4

tempereture, this offect becoming mcore merked as the numhar of wires
is incressed. ‘hereas the theoreticql heat innut distribution
(equation 5.6.) is sssumed to be of a constent megnitude alonz the
leading edge, this is very difficult to achieve when we use +two or
more wires. As the number of wires i1s incressed, not only doss the
heat intensity incressge vzry rapidlj along the leadiny edge a2s we
approgcﬁ'the apex but also produces a region of meximam heat transfer

at some distence sway from the apex (along the centre section).

Since this is clearly undesirable, it wag decided to use just two
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heating wires, one alonz each leading edge, from the apex to a
position further downstream. For this reason it was decided to ucge

Just two wires.

The two wires are connected to a fixed terminal at the apex end
A

wvhile the terminals szt the.other end are gpring loaded individually
to take‘up the sagging.of the wires at elevated temperatures. To
ensure thai tué two wires are at the ssme temperature there is a
provision to make zlight adjusiments to the current through each wire
by means of the sliding terminel, The two copper terminsls are

—ingulated from the cdpper framework by.ceramic bughes aand washers, as
shown in figure &8.1.1.

”For the tﬁo wires to dissipate the greatest amount of heat,
their diameter must be increased as much as possible. However, as
the wires become thicker the added weight causes them to sag even more

. ’ :
:at the high temperatures and it would. require fairly heavy springs to
keep them straight. Also the heavier wires would demand greater
currents to dissipate a given asmount of energy. A 0.152cm. dismeter
tantalum wire requires about 1104 at around 9V giving a total .
dissipation of about lkw. Increasing the diemeter of the wire would
lead to additional contact problems at the terminals across which
large currents have to be conducted. Once the terminals are made
very large to accommodate the thicker wires guite a high proportion
of the heat would be lost at the ends of the wires throush thermsl
‘condnction.

The heat loss through the terminals by thermal conduction is

inevitable. One of the design requiremenits of the heater is that
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the maximum heat flux should occur at the apex. - Any cooling of the

ends of the wires produces an undssirsble effect on the apex heat transfer.

To compensate for any heat loss by conduction cooling, the heater is
provided with copper radiation shields which are attached to the

three terminals. The shields are simply polished copper tubes to-
reduce %he radiation heat dissipation. The length of the wires is
kept consideragly longer than the model to minimise the end effects
and so ensure uniform heating of the leading edge. Thesge precautions

roved to be very successful ss can be judged from the performsnce of
b Juag b

“the heater discussed later on.

£.1.1 Radiometer for measuring the local heat intensity.

The periormance of fhe.heater was measured with the aid of a
radiometer which is shown on an enlargsd scale in figure (6.1.2). It
. consists of a pair of thermocouples, one sensing the heat ‘intensity
impinging upon it and the other embedded in the copper block which is
maintained at a constant temmerature by circulating cold water through
it. | The top thermocouple is about 0,02%cm., in diameter and painted'
black (giving the surface en absorptivity of over 0.9). So that the
~instrument measures the local heat inteﬁsity falling on & given plane,
only a fraction of the ciréular thermocouple bead protudes sbove the
copper block. The top surface of thes water-cooled copper block
defines the irrvadiated plene and is painted black to‘prevent any
reflections on to the thermocoupl?. The output of the radiome&er is
the emf set up by the difference in temnerature of the two
thermocounles. Bince we are measurini the temmerature difference

between tne temperature of the water c¢ooled jacket and the top
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thermocouple, the radiometer output is independent of the water
temperature, except at the very low maganitudes of heat intensities,

-

Calibration of the radicmeter has been carried out with the help
of a black~body cavity as a souxrce of infra-red rediation. The
rzdiometer has a linear regponse to the heat intensity impinzing on

it. -
-
In order to measure the variation of heat intensity impinging
on the model a special mechanism (on which the radiometer is mountad)

had to bhe designed anl constructed such that it is capable of

_traversing the whole of ths given plane reliably and accurately,

6.2. Performonce of +the heater.

The performance of the delta shaped heater is shown in Figqure
(6.2.1). Tt ghows the variation of heat flux obtained over one half
of a delta of chord 20.3%cms., and epasn 15.2cms. The sweep~back of
the leadinz edge can he varied Ly altering the angle between the two
wires et the avex. . However, we heve carried out the experimental
observation of the theory at sn angle of sweep—baok; ¢>= 69.50.

The two heating wires are put in a plane parallel to the plane

o

of the model and at some distance (d, €ay) from it. The variation

of heat intensity in {the irradiated plane is very sensitive to- this

distance d. The performence shown in figure (6.2.1) is for 4 = 0.7cnm.

Increasing the value of d, reduces considerably the . severity of the
heat flux at the apex as compared with the downsitream value. At the
same time the total heet incident on the plane is reduced. Consider-
ing that the majority of the heat is lost to the wells of the

vacuum chamber, it is important that we utilise as much as possible of
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FIG. 6.2.1
ASURED PERFORMANCE
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the limited amount of the heating availahle. However, if we reduce

L

d any further than 0.7cn. any slight veriation in d affects the

distribution of radiation over the gselected plane guite significantly.

‘

We now l ok more clossly ot the distribution of heat intensity

produced by the heater. Pl ne the centre line the megnitude of
heat flux decreases by a factor of over 50 from the apex to the bese
3 ¢

of the delta. This is indeed a much steevner variation of heat
1

s : - . . . ’ .
transfer then that ziven by the x = distribution (excapt for the

ragion very close %o the leading edge). In the theoretical study it
“was assunad that the heet flux alony the leadins edge is constant.
Since we usge tra wires (one along each leading edge), *the magnitude

of heat tronsfer aslong the leading edsze decresses rapidly from the

agons it

®

pex and settles at sbout half the apex value. For these

fD

.is no longer reslistic to compare the experimental results with the

variation of heat

—

e

calculated temnerature digtribution using the
trensfer

Inséeéd we celculate the distiibution of rediant enexrgy 1ncld at
on the model from an idealized heater where the two wires are repleaced
by line sources of heat. The calculated performance of such £ heater
ischown in figure (6.2;2.). A direct comparison of figures (6.2.1)

and (6.2.2) reveals verJ good egreement between the two. Th

o]

.,

measured performance shows a hl cher gradient along the leading edge
near the apex,and this was due to inter-rediation exchange beitween the
two wires causing en increase in the locel temnexrature of the wirs.
Ag a result of the temperature variation alonz the wire, ewey from

tne apex, the lesding edge heat trensfer is glightly lower then the




147

FIG. 6.2.2
CALCULATED PERFORMANCE
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calculatad results. If we look.at the spanwvise veristion of heat
transfer, we notice that the measured performance haé a rounded
profile at the leading edge. This iz to be expected since we use

a 0.152cm. diameter wire instead of a line source of heat. ' Because
the two results are so ver&vsimilar, we decided to use the theoreticeal
perforﬁance of the idealized heater to provide the numerical

solutions for'éomparison with the measured temperature distributions

of the model.

6.3,  Test Model.

For reasons already outlined in section (4.%) the models are
made of stainless steel - Staybrite F.D.P. also designested AISI-3%21,
The model is delta shaped of overall dimensions, choxrd 20.3%cms and
span lS.Qcms.

Since the mode of heat transfer to the model is by radiation
it is imperative that the top surface of the model should have a
coefficient of absorptivity close to unity. To satisfy this con-
dition,the‘top gsurface is first shot-blagted followed by oxidation in
air at 9OOOC for 60 minutes. | The rest of the faces are then highlf
polished using diamond paste. ]

For stainless steel (AISI 321) the value of the.coeffioient
of thermal conductivity as given by the manufacturer is k = 15.9
(l + 0,00039 x TOC) w/mOK. , However, very little data is available
on the coefficient of total hemispherical emittance. A comprehensive
study was, therefors, wdertelen to investigate how the emisegiviiy of
this particular type of steinless steel varies with temnerature and

various surface roughness and oxidation conditions, Trhe design of
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35

the equipment is given in reference””, and the results on stainless
steel (AIST 321) in reference 36.  The coefficient of emissivity
after the model has been shot-blasted and oxidized af 90000 for 60
minutes has been found fo be € = 0.695 (1 + 0,000288 x TOC).
Measurements of tempeféture are taken with the heln of
thermocgﬁples embedded in the bottom surface of the ﬁodel. In all
24 thermocouplés are used. 'Sinoe the delta planform hes a plene of
éymmetry, Zi of the thermpcouples are used on one hzlf of the model.
The other 3 thermocouples are put on the opposite side to ensure
—that during testing symmetrical temperature distributions exist at
all times. The thermocounles are made out of chromel-alumel wires
of 0,012cm. dismeter. A batch of thése thermocouples hag been
calibratéd against some constantan-eureks thermocouples that were
calibrated by The National Physicel Laborstory to an accuracy of
Lo0.2%. |
Two models have been constructed and tested. The first one had
a thickness of 1.27cm. snd the secénd one 0.64cn.

A typical test model 2long with the thermocouple locetions is

shown in fizure (6.3.1).

.

6.4. Anparatus and experinentel procedure.

The experiment is coniucted in a high vacwun enviroument. By
using a high vacuum ( jad 10-5 torr) convective heat trensfer from
the nodel is eliminsated. It has been demonstrated in Anpendix B
that in eddition the heat traunsfer by free moleculear conduction is

2lso neglizibly small.
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X  Thermocouple location.

Pigure 8.3.1 "Test model showing thermocouple locations.




151,

Ingide the wvacuun .chamber the m@del is supported in position
(velow the heater) on three pointed ceramic pins. By so isolsting
the model from the surroundings, the only heat conducted away is
either throuszh the ceramic.pins or the fine thermocounle wires,

However the total amount of heat loss by conduction is so small that

it can Be ignored.
That 1eavéé radiation ag the only means of heat transfer to and
from the model, Except the tép surface, all the other faces are
polished and additional shielding agsinst radiation is provided by
“placing polished aluminium reflectors parallel to these faces. Thus
heat exchange can occur at the top surface only. It receives radiation
from the heater‘#ires end the totel heat inpﬁt is considered to be
balanceﬂ'by heat radiated from the top surface to the walls of the
chamber. The inside walls of the vacuum chamber are all painted
black to prevent any heat from being reflected on to the ﬁodel.
Cooling water is circulated through pipés 8ttaohed to.the outside of
the vacuum chamber to keep back-ground radistion to a minimum.
Thellayout of the heater z2lonz with the model and reflector is
also shown in figure (6.4.1). The me&suring set-up is the same ss in
figure (4.4.1).  _
) The experimental procedure is the same as has bsen described in
section (4.4). After the workineg pressures of sbout 2mN m2 have
* been achieved, electric power is switched on to the heater, The
voltage is increased in definite increments and when stszdy state

temperature distributions havs been attained, the readings are notad.
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G5 Prosentation and discussion of results.

For rodel 1 (1.27cm. thick) the measured temgerature values are
given in table (6.5.1). At the seme power setting the results for
model 2 (0.635cm. thick) are provided in table (8.5.2) while table
(6.5.5) lists the temperaltures measured in this model at a higher power
setting. In order to calculete the theoretical temperature distribution

we have to subject the mathematical model to the same heat input

conditions. We therefore perform numerically,

P = 2ff€6'r4.dxdy. (6.1)

where the integration is carried out over the half-delta model, and P
represents the total heat dissipated by the top surface of the model,
Similarly an integration of the calculated distribution of heat inten-

sities impinging on the model ( f(x,y) say, which describes the results

presented in figure 6.2.2) gives,

P = ?Rfff(x,y).d.xdy | (8.2)

where once again the integration is carried out over the half-delta

and R simply represents the appropriate scaling factor. Knowing the
measured temperature distridvution T(x,y) we can therefore calculate

the value of R to compute the theoreticul temperature distribution
within the model when subjected to the same heat inpuf. Using such a
technique for comparing the messured values and the calculated tempera-
ture distributions obtained from the three-dimensional heat conduction
eguation, the results are as presented in figures (6.5.1 ~ 6.5.5),

where we have also given the values of P. |

As we pointed out in the discussion on the performance of the
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Peble 6.5.1 LExperimental Results of medel 1.

t = 1.27cm. Power dissinctied in the heater = 902 watis

. .0
Temnersture readings in K.

0 0.0625 | 0.125 0.1875 | 0.25 0.35
0.0125 681.0
D.0625 676.1
0.125 67%.0
0.1875 663.7 ggg?‘*
0.35 636.8 £36.1 | 636.5 ‘
0.505 613.4 | €13.5 | 614.4 gigg%
0.6875 596. 4 595.1 597.1 601.3 | 605.4
0.975 | 5791 | - 579.1 — 5905 | 20t

* velues of temnerature at the corrvesponding location civen hy ¥ = - Y,




Table 6.5.2

156.

Txnerimental rezulis of model 2.

t = 0.635cm. Power dissivated in the hester = 908 watis

Temperature raadings In K.

0 0.0625" 0.125 C.1875 0.25

~N
1
O
N
AN

0.0625

0.125

0.1875 632.8 22;:2 )
0.35 £43.2 | 64%.8 6454
21,7
0.525 609.7 | 610.% 616.6 | or'h
0.6875 536,2 H285.0 592.4 E0ALE 12,7
0.975 563.6 — 570. 4 — 593.9 ép,:z

* values of

temmerature at the corresponding location given by ¥ = -Y.

(o]
&
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Tabla £5.5.3  Experimental o
t o= 0,835c, the heater = 2029 watho,
Tomseratyrs roadincg in Oﬁ.
0 0.0625 0.125 N,1875 0.25 AN
0.0125 149.2
0.0625 T42.%
~ L I's
0.125 {245
),- r 7741‘;8(\
) 0.1875 116,90 77
G.35 671.7 | £7L1.5 673.9
- 61-"7»7
0.525 6%%.5 €3%.5 6411 e ,
S A A e 656.5_\
0.6375 6.7 £72,8 €12.4 £27.9 £37.8
A0, 3%
0.975 552.4 | - 559.3 | — 626.1 | Zi0'q
GAD, 1 ¥

¥ valuss of tampera
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heater, there are discrepencies between the actial heat distribution
and the calculated one using the line sources of heat. The two main
reasons are non-uniform tempsraiure along tﬁe length of th2 wires and

s finite diameter of the actual wires. As a result'the measured
variation of heat intensity is not quite so steep 2s the calculated

one (both in the x and y difection). This would account for the trends
that can be observed from the results plotted in figures (6.5,1 - 6.5.3)
where the gradients in the measured temperature distribvutions are less
than those exhibited by the numerical solutions. However, considering
all the inherent sources of experimentsl errors (section 4.4.1), the
-agreement between experiments and theory is very encouraging with the
maximimn diécrepency being just over 3% (figure 6.5.5).

For the same heat input, model 2 (0.655bm.) displays higher
temperature gradientsiin both the chordwise as well as the spanwise
directions as compared with model 1 (1.27cm. thick). Since the
model thickness, in this case represents the guantity of Eonducting
miterial, an increase in thickness as expected produces not only a
lower temperature value at the apex but also reduces the temperature
gradients everywhere.

In fact, the measured temperature distributions are fairly

i/2
similar to those predicted by the x variation of heat input
(c.f. figures 5.7.1 and 6.5.1 - 6.5,3). This underlines the findings
of the similarity laws which imply that any one parameter does not

greatly affect the temperature distribution.
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Introduction

7.1

In the desizn of a high

Loga-

aerodynamic and structural.

often contradictory to

wings in addition to carrying the normal
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aerodynamic loads have to

transfer, Temperature variations iun

instability. Various stulies have been

the instability criterion for simnle
In

stability. of leading edges under oursly

d in finding out how the

edge affectis the thermesl stability.

mount importance in the design
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From every asnect

to be undesgirable and should te desizned against.

aware of only two reports (references 42 and 43)

tapered in thickness, efere

calculates

calculating the trensiont fenperature
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distribubtion, the report 2ssumes iz winy to be instenitzneously

accalarated to & mach muther 3 while the thernal conduciion and

radiation effecis at the leading edge axre iznored. However the
thermal stresses induced by this Tenpersture Alsiributicon were not

nged to investigete the onset of buckling. On the other hand,
reference (43) considers a plate tapered in the spanwise direction
and celculates the buckling criterion for a uniform compressive end
load.

this chanter we use the tempersture distributions of chapter
ITI to calculate the thermal stresses in infinite plates (two-
dimension) for a family of trapezoidal sections (longitudinally)
under the influence of a given heat flux parameter H . Ye suggest an
appropriate buckle shape and conduct a preliminery investigaetion into
the onset of thermal buckling. In particuler we wish to investigate
the effect of heat conduction within ths material close to'the nose of

the wing on the thermal stress levels at the lesding edge and on the

onset of thermal buckling.

1.2 Thermal stress.

Vhen a uwniform structure is heated with the heating rate variabhle
over the surface, the temperature distribution yithin the body varies
from point to point. As a rule the resulting natural thermal exvension
of the various vparts of the struéture is seomeitricslly incompatible,

For the in ity of the structure, the compatibility of deformetions
must be re-established automatically by some dhysical phenomenon.,
This phenomenon is the development of internsal stresées which cause

additional deformations of a2 sufficient magnitude to presexrve the
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continuity of the structure. Thege stresces are known as thermal
stresses. Thernal stresses can bhe caused by other factors but we

-

need not go into the details ag these are beyond the scope of this

investigation.

=

Close to the leading edge,we have calculated (chapter IIT)
temperature distributions which may be such as to give rige to very
high thermal strezses. JSince these thermsl stresses are induced by
temperature gradients which in turn depend upon the heat conduction
within the material, we can expect the thermal stresses to he
influenced by the thernmal conductivity of the material.

We limit our analysis to two-dimensionsl plates (infinite span)

of variable thickness. The assumptions made in the formulation of

the equations are as follows:

'

1. The plate is perfectly elastic.
2, The plate is freely supsorted along all the edges.

3. The coefficients of thermal expension (@) and Young's modulus

of eiastioity (8) are constant.

4, The temperature variation in the plate is one-dimensional, i.e:

a function of the chordwise distance only.

5. The thickness of the plate is smell and the thickness distribuiion

is gymmetrical about the x - axis.

The coordinate axes systerm and some of the notation used in <he
following anslysis is indicated in figureb.2.1. In this chavter we
neve replaced tha syumbole to and tL by hoand H resvectively, to

define "the nore ard rear edge thicknesres.
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irure 7.2.1 Notation and co-ordinate system ,

—>

Ve consider sn infinite plate of unit width, by takinge the

basic unit of length as I and non~dimensionelisine all the other

measures of length by dividing by L. As we have showm in Chapier IIT

L

for two-dimensional pletes it is reaszonsble to assume that

T = (%) (7.1)

Therefore for an infinite plate freely supported on all edges the

follovinzy welations must alvays hold,

end in general O = £(x) # 0.
¥ :

where O 0 ars the normal siresses in the x and 7 direction

L5

Cﬁc’ L.

— N

’
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resnecvively end are positive for tanglle giregses, 7 reprosents

the shesr s

2
™o centroid of the “4rewezaoidel seachion ocours ot g digtencs x = ¢

whers

c 0
¢ = = o .5)
/ 5(}10 - H':\ (7 Y.
Using reference (44), ve can now write equation for thermsl

L’Th.dx 0y fi‘h(\ ¢). ax
+ (X-0) :

I . .
uuuxuﬁwa (7.8) iz valid for tenperature digtribubtliong which ars
functiong of x only and where the thickness 1z symmatricel ebout the
vlene z = 0. ' .

T

g sy ot gy R 2 E ERS - AP LR T I S A T R
Substituting equation (7.ﬁ) irte (;.6/ Sives on simplification

1 ! )
LT( ZXtan‘)@-ho) .dx (X~C) f @(QX;tanw-ho) (X-C).dX
-+ —

N ‘o (7.7)

Q

5
=
i

tan{:+h 1 4 2 1 2
S tam@d§*-50 + C7) + b (5 — C+C7)

It is & surashtivite it exercise to show that feor 2 congtant
A
temnoroture (7 = constsnt), erustion (7.7) sives O = 0. After a
‘ E 3/—
lot of 2lxsbre, even when the temserature distribution is 2 linear

funetion of x, we z27% 0; = 0 for & trepezoidel scetion,
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The temperature digtribvuiion in lesding edoo modzls abiained in
Chepter IIT cen be exnressed hy a polynominal ssries. A gixth-order

polynomial hes been found to be sufficient to represent snelytically

the tempersture distributions for all thicknesses verying from a wedge

to o slab mection. Tn general we can therefore write
Co 2 3 4 5 6
m =
T= a + a, X+ a,X +a,X +a,X + aX" + a.X .
o 1%+ g 3 4 ag 6 (7.8)

with 0 X < 1.

Substituting equation (7.8) into (7.7) and integresting, the reenlting

-equation can be reduced to the following expression.

O /aE = il : *2(h 2 46h H+:3}12) + 25(n 2 e7h H~a-4HZ) +
2 ) 0 o =0 o]
(ho +4hOH+H‘) 10 10

%24 (n Zign HesHD) + 25(h_%40h H+6HD) + 926(h “+10h He7H)
35 ¢ ° e ° ° ga °©  :°

+ = 12X ig(zh02+10hoﬁ+5ﬁ2) + 23(2n Ze1on HaED) +
(n “+4h H+H") |50 40 ° ©

E%(zhozmthomﬁﬁz) + 9%s5(on 2+16hOH+6H2) + %6(2h 2418n Hi7H?)
105 336 ° - gi © ©
2 5 6

] 4
- agX” - a X" - a,X" - a X" - aX . (7.9)

Since the structure has no externsl loads, the

n

roten of stresses

1
o

)
]
F3
4]

is self-equilibriaiting asd thevefore must satisfy the

glation

1
JC 0}.h.dx = 0 (7.10)

Tauavion (7.9) can he nrova

joT
ot
Q
0
a3

:tisfy the szbove criterion.
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We now consider a gnecific exemnle to demonstrate how the heat
conduction plays an impoxtent role in lowering the magnitude of stiress
in pletes tanpered in thickness. For a given heat input paraneter
(HO = 2700 W mé/z) we calculate, first of all, the appiopriat,
temperature distributions i£ sevéral plate geometries ( a femily of
trapezoiﬁal sections) using a typical stainless steel model of chord
15.2cms. Fdr stainless steel - Stayhrite ICB ag expleined in
Chapter IV, the appropriate values of k and € are k = 15.9 x
(1 + 0.00039 x T°C) W/a®K and € = 0.735 (1 + 0.000294 x 7°C).  This

“corresponds rouzhly to a value of the non-dimensional parameter

7; = 12.% x tO/L. (refer to equation 3.25 where td'is the nose
thigkness). Table (7.2.1) lists the coefficients of equation (7.8)
that are used to determine the stress 0& from equation (7.9). In
figure (7.2.2) we plot the variation of d& with X(X/L) for seversl
trapezoidal sections (21l having E = 0,083%3) havin: as thé two extreres
a slab and a2 wedge section, In all thé cases the'magnitude of the
stress can only be differentiated from one anothar close to the leading

edge. .

the

b=y

Figure (7.2.3) shows how the influence of nose thickness o
.trapezoidal sections on the temnerature distribution and also on the
stress at X = 0 ( o, 0 Y.  In reducing h from 0.0833 to 0.000167,
Yx =
the absolute nose temperature is incressed by eboﬁt %565 whereas ths
stress has increased by a factor of over 30. Figure (7.2.3) shows
the values of U&x -0 for two plates of constant thickness in

nondimensional values, 0.0207 and 0.00833, Althouch a constant wvalue

of 7 gives an identical temserature distribution for a flat plate
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and a trapezoidal sect.on nrov ed they have the sarme nose thickness
the value of 0& shows a decreass of about 304 as compared
x =0
with the tranezoidal section.
Of course when the extra material from the trapezoidsl section

taken awey %o zive a plate of the same rnosge thickne

is
the stress pattern is essentislly redistributed. For
of 0.,0083%3%, figure (7.2.4) shows the variations in the

distributions. The improvement in the value of the
noge is seen to occur at the exmense of the stress level

One interestinge observation that can be mads frem
RN

is that the coefficients a and 81(0f equation 7.8) 4
it. Herice, we can conclude that a constant or even a
distribution can never give rise to themmal stress in

varying slate sections.

7.3

Thermal buckling.

If the thermal siresses (celcoulated in the lest s
allewed %o incrzese indafinitely, when their masnitude
a ziven criticsl valus, the conducting plete will

Buckling is charscterised by disproporti onnueTV larss

bowaﬂ produced at slizht increeses in the thermel stress levels, These
deformations (w) take place normal to the plane of the plete ir which
the tempersture gredients have inducsd compressive stresses,

The "exsct' method of investigeiing such siebility problems is
o solve tha equation for the btuckled plate, which is e fourth order
periial ‘differential equetion. For theinal siresses ( 03) only, the
form of ths énpuation from Tiwoshenko45 is

85,
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4 \ - \
aw g % + 34y _ 12(1 - v3) (0‘.h 32 w) (7.11)
ox 4 dx%ay® | oyt E. hd dy?
where w defines ths buckled shane. fxcent for very simnle cages

@
i
o
9
%,
W
s

thie eguation is difficult to solve bacause it requires the

of the ternm w.

The energy nethod also can be used in investigating buckling of

p)

. . - . .

This msthod is especially useful in those csses where a

&

plates.
solution of equation (7.11) is difficult to obtsin., We assume thet
the plsate undergoes scom2 small lateral bund«ng consistent with ﬂi&@n
“boundary condifions, For pure thermel stresses we need consider
only the strain energy of bending (V) and the corresponding work
done hy the thermal "Loads" (U). The onset of buckling can be pre;
dicted from the relation, U o= v (7.12)

¥ith the help of rafexenoe (45), we nov derive the expressions

for U and V. In genersl, we can write that for an element of volume
O )

o,
i}

c dy dz the change in sirein energy per unit volume is

1 .
V=5 (0. € + e & T 'yxy) (7.15)

Therefore the total strain energy of the plate is obtained by

integrating over the whole of the plate'
1
=y . . - lj—
2” (o, €, * O, + T ’yxy)dxdydz (7.14)
where € and 1&y are the strain components, calculated on the

% Ey

besis of the assumptions of plane stress and that sectiong which are
plane and perpendicular to the middle surface (2 = 0) romein so after
bending. Due to the stretching of the fibres parallel to the neutrsl

2,
€ o= - Z.M ' (7.15)
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. .

€ = - z.g—%i (7.186)

¥y ay2
2y

‘yx = - 22."@"'\’{‘"" (7-1’7)

g 3xdy o
32w 3%y . .
where the terms = and T are in fact the curvaiures of the plate,

ox® oy

The corresponding stresses in the plate are

K

o = (€ + V€ 7.18
X 1 - vg ( X y) ( )
j o = i — (€ + ve_) (7.19)
Y 1 - p2 ¥y X
Toe Py By (7.20)
Yoo e w) Y a1 - 12) Xy
Substituting equations (7.15 - 7.20) into the expression for the

total strein energy of the nlate (enustion 7.14) sives

v - W[ E (—-z.azw - vz._@ig) —z._@ixg
2 1-v° 6X2 ay2 ax2

E ~z.62w - vz.azw »z‘_aiz + :
1-—v2 ay2 ax2 ayg

E <~2z(1-vl.62w ) —22.9_2‘ng ] dxdydz. (7.21)
2
v

1 2 oxXaoy axay

On re-arranging the terms,

‘ 2 9 2 ;
v B /]jzz __@iﬁ + 3% - 2(1,v)[a“w.a2w __(32\“1) ] dxdydz (7.22)
2(1—\)2) : ax2 ay2 . ax? ay2 oxay,

Similerly for the work done by thermal lozds (self-ecuilibriazting)

we can wvrite from equation (7.5) that

U =fff( cry. Gy)dxdydz ‘ (7.23)
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since for an infinite plate U& = 7;y = 0,
The componant of rstrain is obtained from the stretching of

the neutral surface and it is,

€ = (a"") (7.24)

nstituting into equation (7.2%) gives

f // (aw) dxdydz ) (7.25)

where 0&.15 positive for a tensile stress

The total potential enerzy of the plate ie therefore simply

{

U+ V.

The next sten is 1o assume an apvropriste buckled sheaps of the
plate. In our enalysis we have a trapezoldal variation of the
thickness of the plate coupled with the stress digtributions of
figure (7.2.2) vhich exhibit a higher level of stress at the nose as
compared with the rest of the plate. It seems reasonably therefore
to assume that the plate would buckle into sine waves in the y-

direction where the magnitude of the deformation would decay in some

RO

form in the x - direction. We, therefore, suggest the following
. buckle shape as appropriate under the conditions that we seek a

solution,

w = : W, .+ CO8 %?’Y.eﬁBX (n =‘1,2,5..... o) (7.26)
We shall from here onwards adont the non-dimensional notetion

already introduced in the last section. The congtant B determines

the rate of decay of the sine wave over the rssion X = 0,1, The value




of B can vary from O (giving the Zuler mode of buckling) to CO.

The coefficient L is a constant providing the magnitude of the

buckled shape for the given number of waves. The function for

has to satisfy the boundary conditions. For infinite plateg, the

integration nszed only be carried out over half the wave-length

S

S . ,
(- 5 ﬁO”E ) of the fundamental sine wave (n = 1). Hence for a

[«

S S .
freely sugported plate a2lonz the edges ¥ = - % and ¥ = —, equation

2

(7.26) complies with the condition that w must be zero. Along the

edges X = 0,1 the plate cen have some finite deflectilone

e

In order to calculate the work done by thermal stresses (Tp)

an snalytical expression for O&_IS naeded. Thermel siresses were
caleulated using a sixth order polynomial for the tempersturec
disgtribution. Tt is evident that in turn equstion (7.9) is alsc a
gixth order polynomial in X degeribing the veriation of o&. V2
theraefore write for & given HO that

0 = by oK+ b X2 b X 4+ bx 4 p x4 px° (7.27)

Unfortunately, for a given model, an incresse in the value of

¥  deoes not produce a proportionsl increacse in @ We malie one
1 1 1

o) ¥y

.
[

further ascumption that

4

- - 4
C = A(b_ +Db,X +0.X" +b X" +b X +b
N 0 1 2 47 5
which 13, in generel, not strictly true bul we
aprrowimation %o indicate by what factor (A) can the Javel

stregs fanction @ he increszsed befors the onset »f therasl

valus of HO that would dnitiasts buckling foc» a given platin

X2 4 b6X6) (7.28)

of the
huektine

176.

.
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and (7.25) sives on sinplification,

o0 ; '
vV - Zg; Bl = jof(2Xtanx-+}1) ,m2Bk

n=1 2&(1 v )

COSZH’KY }32 - 1'12'}[2 + 2(1-\)).}322(12'](2 5
. A R dxay

52 g%

and

?nnw n n 2 Lt 5 8
:§: (b +0 XD X b, X " 4b X b K 4D X )

(2XtanX + ho)sinzggg o 4BX

IXaY (7.30)
S )

L
. . . .. R ] v
Trege two equaitions gxe integreted over the intewvel X = 0,1
o S €
o > b3 - - N » p—y " -
ant Y = - 5, 5. Unfortnately, the epustions kLaecoma axiramely
I [
o —ma ey - 1 b
lencthy end sftzr a lot of elgehra snd we-srrancing of terme con ba
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: 2 N 4 L3
v - g B, 5 h05(1 e ) 4 6h02tanx fg - e <1 + jﬁﬂ
1 488(1-v7) J J

[? B2 - nmo )+ 2(1 - w)BAnTr? | (7.51)

where J = 2B, and

E 2. 2 2 -] P
ALWn SQ;EE hobo(l - e ) 4 (hob1 + 2b_tan )[:i - e (lfl)]
n=1

8BS J J

2b tanX) |2 - e Y142+ 2
2 ER
J J

-+

+(hob2

+(hgby (7.52)

+
[h"]
o
[\]
C"
g
<
S’
-
ta [9)]
]
(]
1
/_\u.
H
+
o jen
o+
<
) [&)]
+
e fe)!
&%
(I

L N L R e

. Coa L o 4
+(h b, + 2b,tar)) | 24 - e (1 4+ 12 4 “§' jﬂ

]
[EN
oo

+(h b, + 20 tanX) {120 - e" /1 + 5 + 20 + 60 + 120 + 120
05 4" IS

2 .3 4 5

J J J J

o len
!
I

o 6

[ R Lo
D

: 3 4 .5 6
J J N J 3

+(h by + 2btanX) | 720 - e”%ii + 6 + 30 + 120 + 380 + 720 + 72?}}

+ 2b.tany | 5040 - e/l + 7 + 42 + 210 + 840 + 2520 + 5040 + 5040
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The critical value of A is obtained from the expression
A=t (7.55)
e ¢ .
For the éalculation of A it is necessary to find, in each particular
case, the unknown constants in the expreséion for w which make
expression (7.3%) a minimum, i.e. the derivative of the fraction

(7.%3) with respect to that particular constant must be zer045._

With infiﬁite plates under compression it has been foundl“ﬁ5 that
by taking the first term only (n = 1) from the infinite series (as in
equation 7.26)jone can obtain reasonable estimates of the crilical

“values of the stress sufticient to initiate buckling. Fér infinite
plates the first mode of buckling is also such that the plate buckles
into sinusoidal waves ol wave-length 2L. In this preliminary
investigation we shall further assume that

5 =L (7.34)
and present the values of A obtained with the tirst term only of the
series (equation 7.28) included.
" Using the stress distributions that we calculated in the last

section using equation (7.9), we investigate the critical values of

A . Table (7.2.1) also lists the coéfiicients of equation (7.27)
that are obtained for the Vérious cross~sections subjected to zero-
dynamic heating given by H_ = QVOOlW/mS/Q. ( T, < 12,5 x tO/L).

The determination of the minimum value of A consists of reeding
the various constants necesséry into equation (7.3%) and to calculate -
numerically the minimum value of A by varying the value of B. Note
that v does not appear in the ratio (equation 7.33) and since we are

not concerned with the exact puckled shape, for this study it is
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sufficient to say that w, 18 non-zero.

In figure (7.3.1) we plot the variation of A with the nose
thickness ho. 1t is evicent that under a coﬁstant heat transfer
rate as the nose thickness of the trapezoidal sections is reduced,
the critical value of,the.étress level at which buckling would occur
1s conSmderabiy reduced. For a glven'plate geométry, the stress
function is directly intluenced by the temperature distripution which
1in turn depenas upon the similarity laws daerived in Chapter 11T,

Hence Ior low valuws ot nose thickness the leading edge wouid buckle
-under very much lower values 0l ueaulisn. Here again the importance
of conducting material at the nose of a wing is emphasized in delaying
the onset of thermal buckling.

Also shown in figuare (7.5.1) are the critical values of A for
-plates 0 constant thickness (0.0208 and 0.00833) subjected to the
same heating. Both ths values fall well below the corrésponding
results from the trapezoidal sections. Although the stress at X = 0
is lower for the plate, the reason it buckles earlier is that as
compared with the trapezoidal section it has a much lower flexural
rigidity. As the rear edge thickness is increased, both the parameters
V and q register an increase, but the strain energy of bending (V)
displays a proportionally higher increase leading to a greater value
of the critical A . Whersas the extra mass at the rear plays no
part in the temperature distribution at the leading edge and in fact
has an adverse effect on the stress value at X = 0, when it comes to
thermal buckling, it does seem to have a favourable effect by increas-

ing the stiffness of the plate and so delaying buckling.
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We also show in f;gure (7.3.1) the values of B that give the
minimum value of equation (7.33) for: trapezoidal variations of thick-
ness. As exvectsd (and consistent with our assumption) the value
of B increases as the nose thickness is reduced. This indicates that
the deformation of the plaﬁe (normal to the x - y plane) is confined
more and more to rggions close to the leading edge as the nose thickness
is reduced, uﬁder the temperature distributions specified in this study.

What can be said of the effecls of thermal conductivity on the
thermal stability of the leading edges? Increasing the heat
- conduction at the nose of the wing reduces the %ariation of temper-
ature which in turn would lead to lower stress levels. Similarly a
decrease in the heat conduction would produce the opposite effects.

Of all the shapes considered in Chapter IIl for the calculation of the
temperature, the "ideal" éhape from the buckling aspect is the one

that produces a linear variation of temperature. Since %he particular
case of the optimal variation of fhickness (to give a specified nose
temperature) also displays a lower variation of temperature (compared
with the slab section, say) suggesting that it would remain structurally
stable for much higher rates of heat input than the other segtions

(with the exception of the linear temperature one, of course), it

would indeed be a useful exercise to analyse its buckling behaviour by
fitting some analytical expression to describe the optimal variation

of thickness.
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CHAPTER VIII

8.1 The Present Investigation in Retrospect.

In this investigation on thz role of heat conduction et the
leading edge of a hypersonic wing, the author claims originality for
the follpwing'contributions. |

The heat conduction equation for two-dimensional leading edges
has been solved by three indevendent numerical methods. Theory of
conducting plates has been formulated for the three-dimensional
hypersonic wings, and the governing equation has been numerically solved

_gy the iterative method of over-relaxation. Solutions have been
presented where the streamvise cross-section of the material is
trapezoidal and is subjected to an aerodynamic distribution of heat

L
input varying as (x + xo)“z , X being measured in the stream direction
from ths leading edge. However, the computer programs that have been
developed are quite general and capable of providing temperature
distributions close to the leading edge of a hyperscnic wing for any
apprdpriate choice of the parameters (such as k, %, € and Q) provided
of course no singularity is encountered over the range of x and y l
that is of interest. 1t makes no difference to the operation of the
programs if thes; parameters are represented by an analytical expression
or are being obtained from a table of figures, as we have demonstrated
where the rates of heat input were being interpolated from the actual
measured values.

The theory of conducting plates has been extensively verified by

the testing of eleven stainless stesl models. It is desirable to

conduct the experiments under as hign a value of heating (given by the

.
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paramater HO) as possible, A theoretical study was carried out to
discover what material would give the maximum power output from the
electric filament. By replacing oxidized nickel wire by a tantalum

one, an increase of 50%

has been obteined. In order to measure
exactly the local heat intéhsities impinging on the experimental
models, it was necessary to develop special instruments. The desigﬁ
and development of a radiometer capable of measuring one-dimensional
thermal radiation intensity has been published in reference (%0).

Another line of research stemming from the main study, for

..reasons outlined in Chapter 1V, was an investigation into the surface
emissivity of stainless steel uszed in the making of experimental
models, Of particular interest was ways and means of obtaining values
of suriace emissivitj close to unity. Since adequate informaticn was
not avaiiable, equipment has been develcped to measure the total
hemispherical emissivity - (reference 35). Both eleotribally con-
ducting and non-conducting solid materials can be tested because an
indirect heating of the specimen is employed. fhe variation of
surface emissivity with temperature for various surtace roughness and
oxidation conditions is presented in reference 38.-

A study hss b?en initiated to investigate the temperature
distributions that can be expected to exist within wing structures
which may be fairly complex internally. Where numerical solutions
may not be easily obtainable, we propose to extract useful informatioq
from the experimental set up. Initial results from a two-dimensional
hollow leading edge region have already been presented in Chapter IV.

The use of a reflector to simulate aerodynamic heating (as in
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two-dimensional models) has been suverseded by the use of a heated

wire held élose to the model and alongside the leading edge. Vith
turther development {discussed later on) it seems possible that the
models could ve tested under.muoh higher average rates of heat flux.

For a conducting platé; the e@uations for a rounded arex region
have been formulated. Lt is shown that provided the nose radius is
considerably greater than the conduction length two-dimensional
results are avplicable for swept leading edzes. The results presented
in Chapters V and VI have been obtained 1or the tirst time. some of
-the contents of Chapter IIL to VI have already been puuvlished in
references 12 gnd 13,

A preliminary study into the stability of leading regions has
been undertaken where actual temperature disiributions that can he
expected to exist there have been used to calculate the variation of
thermal stresses. To estimate the onset of thermal buckiing, a buckle
shape appropriate to a plate tapered in the stream direction is
assumed. This approach has been ap?lied succegsfully to provide

reasonable results.

8.2 Discussion of results and conclusions.

In this study which is based on the theory of conducting plates,
we have invesﬁigated the effects of various parameters on the
temperature distribution in the vicinity of a leading edge ﬁhich is
subjected to aerodynamic heat transfer likely to be encountered at
hypersonic mich numbers. More particularly we have demonstrated the
importance of the role of thermal conductivity in moderating the

temperature distribution.

v
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Whereas the classical boundary layer theory predicts the

¥

variation of heat transfer as x ° (x being measured in the stream
direction from the leading edge), the infinite rates of heat input at

x = 0 can never exist in practice,. We have therefore modified this
1

-g
2

relation to give a (x + xo) distribution of heat transfer, where

'Xo is a small fixed length. This enables us to subject the leading

edge to appropriate finite rates of heat transfer while away frcom the
1

nose the distribution essentially varies as x = . We have presented
solutions in a parzmetlric form of the governing heat transfer
equations for a range of values of X that may be of interest.

From the results that we have presented, the following obser-
varions can be made.
a) Ignoring the effects of thermal conduction within the material
gives rise to radiation equilibrium temperature values everywhere.
The thermal conductivity oflthe material vlays a dominant role, over
distances from the leading edge of the order of a "conduction" length
(which we have defined as 1, and which is usually no more than a few
centimeters in size), by reducing the temperature gradients everywhere.
Heat is transported, within the material away from the leading edge
to regions further downstream where the input of heat flux ié
considerably lessvghan that at the nose.

If it is tc have any effect, the conducting material must,
therefore, be placed close to the leading edge of the wing. If the
streamvize cross-section of this material is trapewoidal (i.e. it has

a linear distribution of thickness), thz nose thickness alone

virtually determines the temperature distribution. For example, if
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we keep the nose thiokpess fixed, ean iﬁcrease by a factsr of 10 in the
total amount of conducting material produces a change of less than 1%
in the temperature distribution. If the same quantity of material is
used to increase the nose thickness, however, we get nose temperatures
which are lowef by over 10%.
b) The effects of the thermal conductivity are important over
lengths of the order of 1 (the conduction length) both in the chordwise
and the spanwise directions. This enables us to divide the leading
edge regions of a swept wing (with pointed apex) into three distinct
- strips ~ close to the apex, close to the tip, and the region between.
The apex tenmperature is generally'a maximum, but thatat the tip may
be another maximum, or a minimum, depending on its configuration.
In the intermediate region, which represents the majority of the
leading edge, the temperature distribution can be very easily
estimated from the two-dimensionasl théory.

Even for the most highly swept leading edges it is shown that
fortunately the temperature at a sharp apex does not rise by very
much more than 10% over the corresponding unswept wing (two-dimensional)
if we base the results on a common Ho and L. It is possib;e to keep
this rise of apex_ﬁemperature to a minimum by either locally enhancing
the conducting properties (i.e. increasing the thickness or the
thermal conductivity of the material) or eliminating the sharp arex
of the planform by rounding the leading edge, -~ subject to the
restriction that R/1>> 1, where R is the nose radius. Since 1 is
usually of the order of a few cm. ,this suggests that the radius of

curvature of the leading edge might be about 1m. or so. Away from
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the apsx region (whetber.it is rounded or sharp), sweepback is seen
to reduce the leading temperature below the corresponding two-
dimensional value {see fizure 5.6.3) where the basis for comparison
is cowmmon values of HO and L,
| - To estimate the apex %emperature of a swept wing with pointed
apex ﬁé first calculate the appropriate leading edge temperature of
the unswept ﬁing (from figures presented in Chapter ITI depicting
plots of 60 VS, Tb). The effegt of sweepback angle ¢3jﬁ then
added on from figure (5.6.1).
c) The two-dimensional theory of conducting plates has been

12
experimentally tested in the range of T_ = (iﬂ where L is the
downstream length, between 0.3 and 15. A family of trapezoidasl
sections (i.e. with a linear variation of thicknes@, comprising nine
stainless steel models have been tested, The experimental results
from six of these models have shown zood agreement with fhe results
predicted by the theory, with the maximum discreﬁency being less
than 2%, However, for the three wedge sections the maximum discrepancy
rises to about 5%. As well as other forms of unavoidable experimental
error, we must now add the complication of machining and polishing a
"sharp" wedge whose nose thickness is difficult to define.  The
effect of any small deviation in measurement from zerc is expected to
have a disproporticnate effect upon the calculated temperature
distribution, and particularly the nose value, Using fhe measured
temperature as a basis for estimating the nose thickness (to) suggésts
that in our intefpretation of the nose thickness of thé wedge sections

we have underestimated the value of this parameter.




d) The experimental‘get up is capable of providing useful analogue
results for‘leading edge sections which may be difficult to analyse
theoretically. As a firststage, we have tested two models to
represent a practical two-dimensional leading edge with a hollow cross-~
section, The heat exohangé by radiation within the caviiy is not only
difficult to formulate out would also present some difficulties when
attempting numerical solutions., A comparison of test results with
calculated temperature distributions that can be expected within a slab
of the same thickness as the skin has revealed agreement to within

.3 to 49, Thig further strengthens the usefulness of our simplified
theory is estimating the nose ftemperatures, However, it is perhaps
too early to draw any definite conclusions from the resulis of these
two models regarding the effects upon the temperature distridbution due
to thermal radiation exchange within a cavity.

e) The measured pertormance of the reflector shows markéd deviations
from the theoretically assumed heat transfer distritution. However,
these local distufbances have an insignificant effect upon the temperature
distribution when we compare the calculated results based on the actual
rates of heat transfer with those obtained for an ideal distribution of
heat input using an appropriste value of the constant Xy

) In the testing of models to represent two-dimensional leading
edges the simulated experimental)rateé of heat flux_to the model were
made to ﬁary closely.as a theoretically assumed form of heat transfer
distribution, However, in the three-dimensional theory of conducting
plates we have develoned a heater capable of producing a hypothetical

variation of heat intensities over a delta shapad model. Using an
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analytical apvroach to represent approximately the output from this
heater the heat conduction equation has been solved to give temperature
distributions within about 3 - 4% of the actual measured values from
two models that have been tested. This further strengthens our

belief in the capability of the simplified theory of conducting
‘plates to provide reasonable estimates of the temperature distribution
dong the surface subjectéd to appropriate_aerodynamic rates of heat
input.

g) ‘For models with %‘>>>1, the temperature measurements across the
. thickness of the material indicate negligible Lempersture differences.
This result is cénsistent with the basic assumption of the conducting
plate theory which enables us to reduce the dimensionality of the heat
transfer equations by one.

h) The preliminary investigation of the thermal stability of the
two~-dimensional leading edge reveals the existence of considerable
thermal stresses due to the tewmperature variation in thé chordwise
dimension. Once again we have presented results for a family of
trapezoidal sections with various values of the nose thickness subjected
to the same heating conditions. Based on the numerical solutions
giving the temperature distributions (Chapter III) that can be

expected to exist;nvariation of thermal stress are calculated., . As

the nose thickness is decreased, the thermal stresses at-the nose increass
very rapidly, ror example, reducing the nose thicknéss of a slab of
fineness ratio % = 12 to a wedge with the same rear thickness, while

increasing the nose temperature by about a third, also increases the

stress by a factor of over 30. For all the sections, the stress levels
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differ from one another only over a fraction of the length which is
adjacent to the leading edge. The increase in the local value of
the compressive stress at x = 0 produces a corresponding reduction in
the value of the critical buckling factor. As expected the slab is
capable of withstanding mﬁéh higher values of heating than a wedge
before thermal instability setshin.

Whereas a slab and a trapézoidal section of the same nose
thickness have practically an identical temperature distribution, the
stress pattern in the two sections are different, with the trapezoidal
section displaying a higher compressive stress at the nose. Thel
extra materiallat the rear of the trapezoidal section, however, adds
to the flexural rigidity of this section as compared with the slab
of the same nose thickness and as a result the slab section would

buckle earlier.

8.3, Suggestions for further work.

The present investigation has‘made the author aware of several
related topics‘of interest that need further attention.

In this study, thé numerical solutions of the governing heat
transfer equations for a conducting pléte have been obtained _assuming
& heat input distribution given by a solution of the classical boundary
layer theory. Such an approach had to be followed because of the
lack of actual values of the rates of heat transfer likely to be
encountered in hypersonic flight. The numerical methods that have
been dévelopgd tq provide the temperature distributions close to the
léading edge can, however, be applied quite readily to predict the

ncse temperature under any avrropriate form of aerodynamic heat
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transfer to the wing. It would be very interesting to solve the
heat conduction equations with the actual values of the local heat
intensities and compare the results so obtained with the estimates
of temperature distrioution preséﬁted in this dissertation.

The actual wing strueture 1s likely to be a complex affair
with internal cavities, ribs and spar booms. The formulation of
the heat tranéfer equations to these scctions could ve extremely
complicated and the solution may even be impossible on the present
day computers. However, as we have demonstrated with the help of
the experimental apparatus that has béeﬁ developed, analogue solutions
can be readily obtained. Yhererore, not only would it pe possible to
provide the temperéture distributions that can be expected 1n
realistic structures but the solutipns may provide an insight into
fhe complex phenomena governing the heat transfer. in this respect
a study has been initiated to investigate the effects of internal
cavities.

'he wing surface may also be a composite structure with some
special material possessing extremely nigh values of thermal conduct-
ivity placed at the Leaaing edge to agcentuate the moderating ettect
upon the nose temgerature. However, where this material joins the
rest of the load carrying structure uweserves some attention. Ouce
again worlk is well advanced to étudy the efiects across a Jjunction
vetween two different materials and in particular the ertect of this
Jurcvion on the overall temperature distribution,

The thermaltstability of leading edge sections subjected to

aerodynanmic heating has not yet received sufficient attention. A
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preliminar, investigation has been presenfed to provide some
information as to the onset of buckling. A rigorous study of the
problem is essential before making definite conclusions. As soon as
finite span is introduced, end effects start to dominate the temperature
distribution, In additién,fhe three-dimensional wing is likely to have
spanwise-variations of teuwperature which, if included, is going to
complicate the anslysis considerably.

From the heat transfer considerations the surface of the wing
should have as high a value of emissivity as possible to radiate away
the maximum amount of heat. For most metals, the simplest wazy to
increase the coefficient of emissivity is to roughen the surface and
then oxidize it at a high temperature. However, this surface
roughness is not consistent with the assumptions made in fhe analysis
of the boundary layer and especially the effects of surface roughness
on the heat transfer coefficient. This aspect has receivéd hardly
any consideration and some data on this ﬁroblem wouid be very desirable,.

The heater that has been constructed to test three-dimensional
leading edges has shown considerable promise. With the develovment of
small circular reflectors it seems possible that the proportion of
power dissipated within the heating wire that actually_reaches‘the modei
can be considerably increased over the vresent figure of about 10%,

By superimposing the effects of more than one wire along the leading
edge it would be possible to simulate aerodynamic heating with.much
higher rates of heat input (Ho) and so avoid the necessity of carrying
out experiments on'a scaled down temperature range. If necessary,

several heating wires suitably arranged over the leading edge region of

a wing may be vseéd to simulate a given variation of heat intensity.
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D"" ‘1’1(11.‘.. :x

Derivation of the two-dincnsional heat conduction equation

in a finite differences form

The methode of Bendsolve and relaxation necessitats the
derivation of the heat conduction equation in the finite differences
form. We have adonted the centrel difference notation. The interval

X =0, 1 1s divided into N equ~l divi]

[N

ai it wl noi s XK R
sione with end points XO,Al, . XN’

(vhere XO =0 and X, = 1). If we denote the value of 9 gt Xn by 8

)

the equation (4.1) cen be re-written (using reference 47 ) in the fornm,

4
%[ﬂl+%(en+1 - eni’ - %Ei;l—%(en~1 - enil = hgen@n - —""’1‘-“:1‘; (A.l)

(n+XO)2
with h= 1/N. R
On re-arrensing we get
4 T 2 4 l H
Toetnes ( nig ) + T, ELNE R Senen - “‘““""'1’“; (£.2)
(n+x )*
T T 2 8
lueu n+’_2 n+1 (q-‘n—[-‘."' '+' n-—-é_ + h e en)en + 7;1-.-—.‘—81'1_1
=- . where n= O(1)N (A.3)
- (n+X0) 2

Souation @ 3) represents (I + 1) simultaneous equations with I¥ +
q ’

AN

unknovms, nsmnely © ., ,..0 ,..0 . The values of © and ©
) DEMELT B _11¥00 P Uit -1 N+1
occuring in the eguation at n = 0 and n = ¥, resvectively do not exist:

However, the boundary conditions at ¥ = 0, 1 supely us with the two

know

i3]
0
g
[

additional relations nacess:

o5} .
o =0 at X = 0, 1.. (&)
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and in the present notation these can be expressed as

-1 7 Y10 and Oger = Opg (4.5)

Unfortunately, of course, equations (1 %) are not a set of lineer
equations. Hovever, lhere may exist a convergent iterative meihod of

FRCR (i) “ A 3. n
solution. If 8 denotes the value of ©_ after the completion of

"y
ke

the ith iteration ®_ (o) benv* a starting value), then
[en(1+1);' 4 [ ()é/I~ (9 (1+1) -6 1){‘ A

and expanding
ERE 1)] 4o (1), (13 [e (1+1) 4 (i)] +R(0.6)
n n n n n

where R ig small (of second ovder) if the difference between the

interpelates is small, Substituting equation (4.6) into (A.3) gives

7, el-Y, T 16511)1 [fr o+ T o |~4ne9(l -2 er(li)

n+z n+‘L = N+ -5

- [~—-~5L—-~~—T + 8e pli-1) 4_] | (4.7)

o oli) o e e (i-1)
where @ 11 has also been repnlaced by 9n+1 .
Equation (A 7) can be more conc:welv renresented by the matrix
“equation
c.9 = 3B (a.8)

where & 1s the vector ( 60,61,‘...9n,........GN); B is the column vector
. iy 4

whoge general element is —h2 ( -~;ﬁz + Beneél) ) and £ is the band

(n+ o)
matrix,
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Under the specifiecd boundery conditions (equation A.4 or A.5) for

n=0sasdn=0»N the followiny relations have heen

for the

Alsgo for gufficien

q'_l_ + ‘7:_1“ = 2 ‘T’O
C amd T T o
end T o Ty = 2Ty
are vslid approximetions.
Ve can now write
C R
JLCIEE D I CO BN
g (3 -1)

to reprssent that © =
n n

L and B whilst solving for ©

I=E

usad in the matrix

w
[¢]

(4.9)

R e L N,

(a.10)

T e e g

(a.11)

is uged in the elements of
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e
Lpoendix B

influerce of hish vacuum on heat transfer.

vacuunm engineering
types of

ditions,

molecules
ensrgy, or

The concept of mean free path is extremely important in

in that it defines the boundaries of two different

gaseous flow. At s

the n

an

are in a

enty

ean free path

constant

m through

molecule to molecule leads

Hn
o
Q

chamber,

with

vith the r

the woalla

of

called wvisco:

re decraa

gault tha

molecular flow repime is no

atmospheric pressure or low vacuum con-
is exceedingly small. Hence, the
state of intercollision, trensferring
he gasg. The wmomentum trensfer from
to the concept of gas viscosity, and the
as flow.

gses to the high vecuum regions, the mean

much lonzer than the dlnnl siong of the confining

t thP molecu g will collide more frenuently

the chamber than with esch other. g flow in such &

4

Jonger dependent on momentun transfer

‘between molecules, but now denends only on the stetistical motion of

the independently mvoing molaculas,
All the experimontal inv irationye have been carrisd out in A
. ' o . : - i 2 . .
high vacuum environmant with nressures of sround 2 mj/; . To find

out the

effects of v

the kKinetic

scuum on the modes of hzat trensfer rzceourse has to

-

vheory of gases. For o Mawxwell-Boltzmenn

elocities, reference (48)

)7 e, (B.l)
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whare ) = coefficiant of dynenic viscosity meacured in Poice,
T = absolute szppesratura.

P = pressure nessured i torr.
M = molescular mess of ths gas.

2

At Tou densitiss the Fausden mumber (Kn) is used 4o ceperste the
free molecular from the viscous flow where convective hest trensfer
cen occur. For the ranse 10 < Kn < 100 free mnolecular conditions

prevail. he ¥rmgden number is defined as

Kn

n
!
!

(B.2)
where L is the body characteristic length.
Ingide the vacuum chamber different perte atltain various temperaturas
- 2 3 Or S 1, A 4. Ly . 1"0 - 7,
(from as high as 3000 K on the heater filament wire tc about 3C0°K on the

vecuum chember wall.) To complicate matters further the coefficient of

dynenic viscosity decreases at extremely low pressures and increases with

temperature. The molecular weight of air elso underzeoes a smell
reduction at low prezsures. Assuming a representative temperature of

o, . - . '
about 8007y, equations (B,l) snd (ﬁ.2) zive Kn = 50 where L = 30cms.

Thus in addition to heat exchange by radiation scme free molsculer
conduction transfer can occur. To assess the magnitude of heat loss

due to free - molecular conduction (EO) reference (46) sugrests

‘ 7 ,
- 1.4 10 Y+ 1 2 A
By, = dt L (‘-7 - 3 ) ‘-;J/ om” / %k

M= - :
where?Y is the ratio of the specific heats.
A celculation beaged on some r2presentative velues of perameters indicates

that asg compared with the smount of hest digsinated by radiation from the
top surface of the nodel, the effect of free-moleculsr heat conduchion
£ ¥

loss would be lesg then 0.05%.
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Deriveticn of the three-dimoncionsl heat itrengfer

numerical solution to be atitempiad we linenrige the equetion snd elso
derive it in a finits - differcrces form (not necesserily in thet

order). The latter nrocess is essentlal for seekin

oo goluticn dY
the method of over-relexstion.
As explainsd in Chapter V, we solve this eguation over o strip of

le n“‘h L (measured in the x-direction) perallel to *he leading adge
swept at an angleaqb . The area of iuterest lies close to the apex
of the delta wing end is shown in figure (C.1) whiech also shows the

.

boundary conditions imposed on the four edges of this strip. The

4

units of lencsth have hoen non-dimensionalice

e

1 by dividing thean by L.
Ve divide the interval X = 0,1 into I equal divisions with
L o _ i a . o
h ==, In order that the four edges always coincide with grid
points, the grid hasg, in senerel to bhe rectan

mmler such that

L]

s c
divisions of length %s gach, Thersefore
o
M = = = H ]
1 L
S
Ve ghell denoie the value of 8 av X end Y by .
n m n,mn wiere
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Figure ¢.1 FMathematical model of the cropped-delta wing.




202.

n==0,1,... ¥and m=.0,1 ... I, Using the central difference
notation we can exnress the valus of © at any genersl point P in

n,m

1

terms of the values of the four surroimndins poiuts (shown in the
insert in figure C.1). Using reference (47) we can exosress equation

"(C¢.1) into the finite differences form which is

1 (q
12 E n+—?2—,m<6n+1,m - en,m) - q;l--%-,m(en,m - en-i,m);
c
1 (e
* 12 E l;.,m %( n,m+l en,m) " qa;l,m-%v(en,m -9 o 1)3
S 4 ‘
- - en,men,m -4 (c.2)

e

where q = (n + X, - m ten ¢ )

Re-arranging equation (0.2) gilves

1 1, 3
"en,m§h2(q—r'1-%,m * q;l-’é‘,m) + h2(rrn,m+~'§ y (r;l,m—é—) * e1r1,m®n,m g
c S
Opat,m x T n-1,m x T n,m+tl x q°
e b Ntk ,m + n-L,m + —t-—= n,miL
. 2 a2 2 2 2 ? 2
h h h
c c s
3]
4 Bzl X Ty = -0 (c.s)
hg
We now linearise the set of equations given by (C.B.) If we denote the
i o]
R Ctam o ing 11
value of B after ith iterastion by © a,m ( en,m being the

g 12

starting value), then

i 44 i1 i i-1\1 4
(en,m) - 6n,m + (en,m - en,m)
i-1 4 i-1y3, 8 i-1
= (Gn,m) + 4(en’m) (en,m - en’m) + R (Cc.4)

where R is small (of the second order) if the difference between the

interpolates is small.
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£

On re-arranzing equation (C.4), we set
i (4 i-1y4 i-13% i
(6n,m) = “5(6n,m) + 4(en’m) O (c.s)

Substituting equation (¢.5) in%o equation (C.3) and a little re-

arranzing gives the iteretive form of equation (C.3) as

ol 1 i-1y3
n ? QT°+2, q;~%3m) " hZGTh m'{,+'q;,my%9 - 4en,m(en,m) %
c s,
61 ' 6i i
- r ‘
L ontlm K‘r£~é3m . "“A%Jm x T o, pamel qu _
2 2 =’ 2 ity
h h h
c c s
e no-l x T, = 3 (ei“l)4 : (c.e)
g - - 9 e, n\n,n '
hg
Eguation C.6 can be modified to give
e'—l ei
i i-1y4 +1l,m x -1 :
et = | q+ e (8170) + R qun+—’2—,m 4 Bzl ].cq”n-%—,m
n,m n,m' n,n h2 h2
c c
i-1 i
1 xT -1 .
mptd 1Ty g 2t 2T ol 1T )
ne N N n+%,m n~%,m
s s c
P AT ey wae (6H° (0.7)
h2 n,mti n,m—% n,m' n,m
S .
i-1 : i-1., , . e .
where © and e just determined from the previous
n+l,n n,n-+1
iterstion is used in place of G and 6 © respectively.
E n+i,m n,m+1
To use the method of over-relexation we introduce the over-re ation

parameter& into equation C.7 to give,
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i i-1 -4 1 i-1 o i
en,m . (1~¢°>6n,m +o°[% + 5en(6n,m) * €Gn+1,m'r;+%,m * n~1,m" n»%3m§

+A£L€81"1 T+ et T 1% A b .+ T g
h2 n,m+l’ n,mid n,m=1""n,m-% 2( n+s,m N, m
S .

1 (g i-1y9
+ hzf n,mig ‘T;l,m-%.g + 4-en,m(en’m) } (c.8)
S
with n= 0,7,2,....... N and m= 0,1,2,...... M.

Equation €.8 therefore represents a set of (N+1)x(i+1) simultaneous

equations.
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Appendix D

ALGOL - 60 Computer Programme

D.)l. Description of computer programme. The input of data is done

with the aid of the procedure "RW". All the quantities are non-
dimensionalised with respect to the leading edge length (LE), thermal
conductivity (k) at 0°C and the Stefsn-Boltzman constant (sigma) which

i3
give for a reference temperature TR =( 2 ). Fxecution of the main

ox LB
programme starts with a call on the procedure "TempDist".

The leading edge section of the delta wing (see figure C.1.) is
divided into a coarse grid, the length LE being divided into 4 inter-
vals only. In the spanwise direction the intervals are decided upon
by the geometry of the wing. Generally, the grid is rectangular such
that all the edges of the cropped delta fall on grid poin?s. A
starting value of temperature which in this case happens to be a fraction
of the radiation eguilibrium temperature is.allocated to every point
of the coarse grid.

To supplement the core store of the computer all the grid points
are stored in columns on a magnetic tape. At any given time the
computer handles a maximum of three columns. The middle column is
relaxed term by term (the terms being updated at the same time) inside
the procedure "overelax". The first column is then transferred to
the second magnetic tape and one more column is read from the first
magnetic tape. In this fashion, all the columns are progressively
over-relaxed. Special arrangements are neéessary for the first and

the last columns of the grid because of the boundary conditions. At
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the end of each iteration, if the covergence criterion (eguestion 3.21)
is not satisfied, the wvhole grid is relaxed again. The two megnetic

tapes are interchanged so that columns are now being read from the tape
on which they were being written during the previous iterstion.

Once a convergzed solution haes been obtained, the number of intervals

are doubled. The new points thus introduced in eny column are inter-
polated using a third order relationship within the nrocedurs "EUBRTA

On the other hand the fterms of the new columns are calculated on 2
linear basis between the existing columns.

The whole of the grid is repeatedly relaxed again until a new

“converged solution ig obitained. Yext, a check is made on the

.

"discretisation" error and if this criterion (equation 3.22) is not
satisfied the internal points are doubled once again and the re-iterative
process repeatéd. When both the‘criterions have bheen simultancously
satisfied, the solution is accapted and output. Eguations 3,21 and
3.22, havinz to be summed over n = O(1)N and m = O(1)M. |

The procedure "overelex'" calls upon the procedures "Q", "kit'" and
"emissivity" to supply the values of these parameters corresponding
to the relevent positions and the latest estimate of the temperature.

Cutlet is provided from the procedure "TempDist", if the solution
" does not converge within a specified number of iterations, via the
label THACON. On the other hand, if the solution demands too fine a
grid size (i.e. if it is necessary for the length LE to be divided into
more than 1024 intervals) control is switched to the label ”DISCRETB“Q

On successful completion of the programne the output consistg of

the data followed by the femnzraturs distribution which

+~

‘3
1
0
™
=
i
m
i3
Ca
4%
€2
.
>

colvmne, To economise on computer tima as well as naper, every
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fourth term only is output.

D.2. The computational plan of the ALGOL text is summarised below

in terms of the block structure and line numbers (25 lines to a page).
LINE 1  begin heading and introductory comment.

LINE 17 zxreal procedure RW, reads in data from paper tape and prints

out a copy of the description of the parameter followed by

the value of the actual parameter.

TLINE 23 real procedure kt, calculates the product of thermal

conductivity and the thickness of the model.

LINE 31 <xreal procedure Q, supplies the value of the rate of heat

input at the specified location.

LINE 36 real procedure emissivity, provides the value of the coefficient

of emissivity.
LINE 41 procedure TempDist; heading and full descriptive gcomment,
| LINE 62 begin body of TempDist.
LINE 63 p;ocedurewoverelax followed by descriptive comment.

LINE T0 begih body of overelax wherein the columns are assigned values

using the latest estimates of temperature.
LINE 115 end overelax.

LINE 122 begin manipulation of magnetic tapes and transferring columns

from tape to programme and back to the other tape.




LINE 188

LINE 206

LINE 212

LINE 225

LINE 237

LINE 254

LINE 282

LINE 284

LINE 287

LINE 335

LINE 346

LINE 381

* LINE 408

LINE 410

LINE 415

208.

begin check on convergence error.
goto UNCON.
begin check on discretisation error.

—r

begin block to double the number of intervals, full descrip-~

tive comment.
Erocédure SUBTAB, with descriptive comment.
end SUBTAB.
end doubling the column size.
goto DISCRETE,
start the output of columns.
end TempDist.
Data input and non-dimensionalising of parameters.
call TempDist.
label DISCRETE.
label UNCON.

end prograsmme.

D.3%. The following is the text of a working ALGOL computer programme

reproduced directly from paper tape. It starts on line 1 on the next

page and thereafter the first line on the following pages are numbered

25, 50, 75, ... etc., to facilitate quick reference.
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begin
comment SOLVES THE HEAT f%ANSFER EQUATION FOR THREE-
DIMENSIONAL DELTA WINGS. THE METHOD OF OVER-RELAXATION
IS USED ON THE EQUATICN IN THE FINITE DIFFERENCES FORM.

The shape of the body is the leading edge portion of a
delta wing (defined by the chord and semi-span). The tip
cut-off is parallel to the centre line of the wing (i.e, a
cropped-delta). The thermal conductivity, surface
emlssivity and the thickness of the materlal can all be
functions of temperature and position. In the particular
non-dimensional system used in thils program, the three basic
parameters used are k at 0 degC, slgma and the leading edge
characteristic length L, together with the reference
temperature TR= (kO/sigmaxL)1(1/3);

g e D

at run timej

real -procedure RW(S); string S;
begin real t;
RW:= t:= read (20);
write text (70,S); space (70,3); output(70,t);
newline (70,1);
end LINE 22,  RW;

real procedure kt (T,x,y); value x,T,y; real T,x,¥;

comment provides the product of thermal ¢onductivity and
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the thickness of the model. k and t can both be functions
of temperature, x and y;
comment uses non-local variable alpha and array dataj

begin comment assume constant t;

kt:= (1.0 + alpha X (T - 273.15/TR))}xdatal1];
end LINE 30,  ktj

real procedure Q(x); value x; real xj

-

comment provides the heat input to the model.

begin comment uses non-local variables QO and x0j

- Q= QU/sqrt(x+x0);
end LINE 35,  Qj

real procedure emissivity(T); value T; real T

Prbideee iy

comment provides the variation of emissivity with temperature;

begin comment uses non~local variables em and beta;

emlssivity:= em X (1.0 + beta X (T - 273.15/TR));

end LINE 40, emissivity;

procedure TempDist(f1,£2,f3,LE,ndchord,ndsemispan,TR,Tstart,
TOL, omega , DISCRETE , UNCON, TOO, TNO, TOM, TNM ) 3
integer £1,£2,£3,ndchord;
real LE,TR,Tstart,TOL,omega,ndsemispan,TOO,TNO,TOM, TNM;
label DISCRETE,UNCON;
comment over-relaxatlon is started by assigning the value
Tstart to a coarse grid (the chafacteristic chord length LE
being divided into 4 intervals). The whole grid is

repeatedly relaxed until the convergence error TOL has been
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satisfied. After a converged solutlon has been obtained for
the whole grid, the number of iﬁtervals are doubled and the
points relaxed again. This process of doubling is repeated
until the discretisatlon error 1s of the same order as the
convergence error (i.e. TOL). Control is swltched to the
label UNCON if the the number of iteratlons allowed prove
to be insuffiecient for convergence. Similarly, if the
discretisatlion error demands too fine a grid (N > 1024)
outlet is provided via label DISCRETE. The use of the
optimum value of the over-relazatlon parameter, omega is
essential for an efficient use of the program;
comment uses non~local procedures Q, kt and emissivity;
begin
procedure overelax(h,l,TA,TD,TB,N,d,M,omega)}
value h,1,d,N,M,omega} integer d,N,M;
real h,l,omegas array TA,T0,TB3
comment performs a single cycle of over-relaxatlon with
gilven relaxation parameter omega and expects to find
values of T[k] already assigned from previous iteratioﬁ;.
comment uses non-local procedﬁres Q,kt, and emlssivity;

begin real e,tl,t2; integer k;

e:=1.0~omega;
t1:=1.0/(hxh); t2:= 1.0/(1X1);

for ki:=0 step 1 until N do

begln real rhsj array rn,rs,rw,re[1:2];




rhs :=Q (kxh )+3.OXemissivity (T0[k])xT0{Xk ] T4, 03
AP =0 then
begin
rw[1]:=t2xkt (0. 5% (T0{k]+TB[k~1]) ,hxk, 1X(d+0.5) )
rw[2]:mrw[?]xTB[k—1]
end
glse
begin
rwl 1] :=t2xkt (0. 5% (TO[k]+TA[k+1]) ,hxk, 1x(d-0.5) )3
rw[2]i=rw[1]xTA[k+1];
end LINE 853
if a=M then
“begin
re[1] 1=t2xkt (0. 5% (TO[k]+TA[k~1]) ,hxk, 1X(d-0.5) )}
re[2]i=re[1]xTAlk-1] :
end
else

begin
re{1]:=t2xkt(0.5x(TO[k]fTB[k~1]),hxk,lx(d+0.5))3
re[2]:=re[1]1xTB[k~11]}

QEQILINEA95;

rnl 1] :=t1xkt (0.5 (T0[k]+T0[k=1]) ,hx(k=~0.5) ,dx1)}

ml2]:=rn{1]xT0[k-11]3

rsl1]:=61xkt(0.5x(TO[K]+T0[k+1]) ,hx(k+0.5) ,dx1);

rs[2]:=rs[1]xT0[k+11];
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TO[k]:= exT0 [k ] +omegax (rhs+rs{2]+rm[2]4+re[2]+rw[2] )/
(rs[1]+rn[1]+rw[1]+re[1]44 OXOmlS ivity (TO[k] )x
T0[%]13.0);

end LINE 103}
if d=0 then
mgg&g_TD[ 1]: ~TD[1], TB{-1]:=T0[0];
end
else if d>0 and A<M then
begin
TB[-1]:=TA[1]+t1/t2x(TO[1]-T0[~1])3
TA[N+1] = TB[N-1] -~ £1/t2X(TO[N+1] ~ TO[N-1]);
end

[ e

else if d= then |
begig,TA[N+1]:= TO[N]; TO[N+1]:= TO[N=-1]3
end LINE 114;

end LINE 115, over relax}

integer w,r,J,N,M; real 1,h,term,spt,sum;

we= 1003 ri= 1013
£ind (w, [*#xxexxx]); find(r, [DG150003]);
Ni= 43 M:= ndchord X Nj

for j:= 1 step 1 until 9 do

be?in
begin integer c¢, d, k, NPLUS1' real eps;
array TA,TO,TB,TCOPY[~1: N+1], boolean swing}

NPLUS1:= N+13
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h:f~1.0/N; 1:= ndsemispan/M;
eps:= ~TOL X (M+1) X (N+1)3 term:= ~TQL X (N+2+1);3
swing:= j#];
if swing then
readbinary (r,TO,[LABEL]); wriﬁebinary(w,TO,LLABEQL);
readbinary (r,T0, [LABEL]); readbinary(r,TB,LLABELl)

for ci= -1 step 1 untll NPLUS1 do TO[c]:= TBl[c]:= Tstart;

or ci= O step 1 until N do TCOPY[c]:= TO[c];

or k:= 1 gtep 1 untlil 200 do

begin
sumi= eps;

for d:= 0 step 1 until M do

begin
overelax(h,1,TA,TO,TB,N,d,M,omega);
if d= O then
begin
for c:=0 step 1T until N do

P -~

sum:= sumtabs(TCOPY[c]-TO[c]);

for c:= -1 step 1 until NPLUS1 do

begin TAlc):= TO[cl; TO[cl:=1C0OPY[c]:= TB[c];
end LINE 148;

if j= 1 then writebinary(w,TA,[LABEL]);
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begin
for c:= -1 step 1 until NPLUS1 do TBlcl:=Tstart

end
géﬁg_readbinary(r,TB,LLABELl);A
end )
else if d=1 then
begin

for ci= 0 gtep 1 untll N do

sum:= sumtabs (TCOPY[c]-T0[c]);
wriltebinary(w,TA, [LABEL]);

for ci= -1 step 1 until NPLUST do

begin TAlcl:= TO[c]; TO[cl:= TCOPY[c]:= TB[c];
end LINE 1633
Af J= 1 and k= 1 then

begin
for c:= ~1 step 1 until NPLUST do TB[c]:= Tstart

end

else readbinary(r,TB, [LABEL]);
end
else if d<M then
begla

for c:=0 step 1 until N do

sum:= sum+abs(TCOPY[c]-TO[c]);
writebinary{w,TA, [LABEL]);
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for c:= -1 step 1 until NPLUST do

begin TAl[c):= T0O[c]y TO[cl:= TCOPY[c]l:= TB[c];
end LINE 1773
if d= M-1 then goto PASS;
Af J= 1 and k= 1 then
begin
for ci= -1 step 1 until NPLUST do
]

.TB[c]:= Tstarts
end
_.  else readbinary(r,TB,[LABEL]);
PASS:
end

else

Wt Tebecamen e

begin
for c:= O step 1 until N do

sum:= sum + abs(TCOPY[c]-TO[c]);
wrltebinary(w,TA, [LABEL]);
writebinary(w,T0, [LABEL]);
| end LINE 1933 .
. ' end LINE 194, transferring termé to magnetic tape
w at the_énd of one iteratlon;
interchange(w) rewind(w); rewind(r);
1f sum<0O then goto RETURN;

ci= W3 Wi= I} ri= C}

interchange (w)3
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readblnary(r,TA, [LABEL])s -
if 3>1 then writebinary(w,TA,[LABEL]);
readblnary(r,T0, [LABEL] };

readbinary(r,TB, [LABEL]);

for ci= 0 step 1 untll N do TCOPY[c]:= TO[c];

end LINE 2053

goto UNCONg

write text (70, [[c]**N#=%x])e  write(70,£1,N);

ieee -

write text (70, [*¥%**ITERATIONS¥*=¥*]):
write (70,£1,k);
Af swing then

begin readbinary(w,TA, [LABEL]);

readbinary(w,TB, [LABEL] );

for c¢:= 0 step 2 until N do

term:= term + abs(TAl[c]-TBlcl);

begin TOO:= TBlO]XTR; TNO:= TB[N]XTR;
goto OUT;

end LINE 219;

rewind(w)é rewind(r);

end LINE 221;

end LINE 222, a converged solution for the whole

grid has been obtained;

begin
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comment This block expects to read from magnetic
tape (x) columms of array T (each colum of size
[-1:N+1]). For each column the number of internal
points are doubled, the new points thus introduced
are Interpolate using the procedure SUBTAB from the
exigting polnts. The doubling process also involves
interpolating new columns of the array T. Columns
of array T and size [«1:2N+1] are transferred step
by step onto magnetlc tape (y). Upon exit the values
of N and M are twice that on entry;
ggggggg c,d,NPLUS1,oldn,x,y,mold;
array al[-1:N+1],TA,TO,TB[-1:N+N+1]3
procedure SUBTAB(a,1,b);  value 13  integer 1;
array a,bj
comment values of alk] are supposed known.for
= ~1(1)1+1f‘ This procedure assigns values to the
array b[-1:21+1]. The even numbered subscrilpts
have the same value as in array <a> whille the odd
ones are Interpolated using a third order
relationship;

begln integer kj

for ki= 1 step -1 untll 0 do blk+k]:= alk];

for ki= 1+1-3 step ~2 untll 3 do

Cblkli= (9.0x(blk+114+blk~11)=b[k+3]-b[Kk-31)/16.0;
b[-1]:= (5.0x(al~1}+3.0xal0]-al1])+al2])/16.0;
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bl1]:= (9.0x(al1]+al0])-al2]-al-11}/16.0;
bl1+1-1]:= (9.0x(al1ll+al1~1])-al1+1]-a[1-2])/16.03
bl1+1+1]:= (5.ox(ali+i]+3.0xal1]l~al1l~1])+
al1-21)/16.0;3
ggg LINE 254, SUBTAB;

Xi= Wy yi= 1} interchange(y);

readbinary(x,a, [LABEL])s readbinary(x,a,[LABEL]);

mold:= M; oldn:= Nj

SUBTAB(a,N,TA)

N:= N + Nj Mi= M + M3

NPLUS1:= N + 13

writeblnary(y,TA, [LABEL]);

for di= 1 step 1 until mold do

begin
readbinary(x,a, [LABEL] );
SUBTAB(a,0ldn,TB)}
for c:= -1 step 1 until NPLUS1 do

TO[c]:

1l

(TAlc] + TB[c])x0.5;3

if d=1 then TO[0]:= TA[0]~0.25x(TA[0]-TB[0O]);
comment The new columns are interpolated using a
linear relationship between the points of the
existing columns. At the apex the heatb transfer
across the centre-line 1s zero and therefore, a
second order relatlonshlp ls used;

writebinary(y,TA,[LABEL]);

.
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writebinary(y,T0, [LABEL] )
for ci:= ~1 step 1 untll NPLUS1 do TA[c]:= TBlc]l;

end LINE 277;
writeblnary(y,TB, [LABEL]);
interchange(r);  rewind(w); rewind(r);
Wi= X3 ri= ¥y}
interchange(w);
end LINE 282, doubling the grid size;
end LINE 283;
_ goto DISCRETE};
00T
| rewind(w);
write text(7o,llpeo;#**GRID**SIZELcl%%*N%m**i);
write(70,£1,N);
. write text(70,[[10s]M*=**])s  wrlte(70,£1,M);
l:= 1 X LEy h:=h X LEj

for j:= O step 16 until M do

begin integer c,k,COUNT; array A,B,C,D[-1:N+1];

l ' write text(70,[[3c][4s]N[6s]X*METRE]);
for c:=j,c+d while e (if J=M then J else j+12) do

begin
write text(70,[***xxM*x])s  write(70,£1,c);
end LINE 2973

newline(70,1);

space (70,20)
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for ci= 0, ct4 while e (If J=M then 0 else 12) do

begin
write(70,72, (j+e)xl)s  space(T70,4);
end LINE 3033
newline (70,2}
if =M then
begin
readbinary (w,A,[LABEL]);
for ki= 0 step 4 until N do
begin
% : write(70,£1,k); space(70,3);

write(70,£2,hxk)s  space(70,3);
write(70,£3,A[kIXTR)s  newline (70,1);
end LINE 313; |
. TOM:= A[O]XTR} TNM:= A[N]XTR;
goto ENOUGH;
end LINE 316;

if j= 0 then readbinary (w,A,[LABEL]);
' readblnary (w,A,[LABEL])s; skip(w,+3);

-

readbinary(w,B, [LABEL]); skiﬁ(w,+3);

readbinary (w,C,[LABEL]}); skip(w,+3);
readbinary(w,D, [LABEL]); skip(w,+3);

for k:= 0 step 4 until N do

begin

write(70,£1,k)s space(70,3);
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write(?O,fEQhXK)ﬁ space(70,3);
write(?O,f3,Afk]xTR); space(T0,5);
write(70,£3,B[kIXTR); space(70,5);
write(70,£3,C[k]xTR); space(70,5);
write(70,£3,D{kIXTR); newline(70,1);
end LINE 330; |
write text(70,[[pll)s
end LINE 332;
ENOUGH ¢
_close(w)s close(r):
end LINE 335, TempDist;
Integer ndchord,f1,£2,13;
real chord, semlspan,LE,k0,TR,Q0,x0,Tstart,TOL,alpha,emn,
beta,omega, SIGMA,ndsemispan,T00, TNO,TOM,TNM,H,TAU;
array datal1:10];
open (20); open (70);
SIGMA:= 5.67-8; comment Sigma has units in W/SQ.M/DEGKTH;
£1:

i

format ([-ndddd]);

It

f2:= format ([-ndd.dddd]);
£3:= format ([-ndddd.d]);
LOOP: “
chord:= RW([[p2c]WING* CHORD* LENGTH* -*UNITS**¥METRE] ) 3
semispan:= RW([WING*SEMI-SPAN*~*UNITS* **METRE] ) ;
LE:= Rw(LLEADING*EDGE%CHARACTERISTIC*LENGTH*PARAMETER*m*

 UNITS***METRE] )3
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ndchord:= chord/LE;

ndsemispan:= semiSpan/LE;

comment the chord and semi-span lengths have been non
dimensionalised as multiples of the leadling edge

parameter, LES

datal1] := RW([THICKNESS*OF#*MODEL*-*UNITS***METRE] ) 5

kO:= RW(LTHERMAL*CDNDUCTIVITY*AT*O*DEGC*~*UNITS***W/M/DEGKL);
(x0/SICMA/LE)T(1/3.0)3

RW( [ CUT*OFF* FACTOR* - * UNITS* **METRE] ) /LE;

TR:

I

x0:
em: = RW( [EMISSIVITY*AT*0*DEGC] )
TAU:= RW([TAUO*~*1/172.0] )}
Hi= ((kOxdatal1]/TaU)18.0/(emxSIGMA)T2.0/LET13.0)7(1.0/6.0)3
write text(70, [HEAT*FLUX*-*UNITS***W/MT1.5%%%] )
write (70,£3,H); newline (70,2);
QO := HXLE/kO/TR;
datal1):= datal[1]/LE;
beta:= RW([THERMALXVARIATION*OF*EMISSIVITY* ~%
. UNITS***PER*DEGC] )XTR;
Tstart:= (H/SIGMA/em/sqrt(LE/2.0))10.25/TR;
TOL:= RW([TOLERANCE*ON*SUCCESSIVE* ITERATTONS*AND*
| DISCRETISATION*ERROR] )3
RW ( [ CO-EFFICIENT*OF*THERMAL* CONDUCTIVITYX ~*

it

alpha:
UNITS***PER*DEGC] )XTR}
omega:= RW([OVER-RELAXATION*PARAMETER] )3

newline(?OéB);
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write text (70, REFERANCE*TEMPERATURE*DEGK*=*%%])s

write (70,£3,TR); newline(70,2)§

write text (70, FINE-NESS*RATIO**=%*%]);

write(70,£2,datal1])s newline(70,2);

write text(70, [ ANGLE*OF*SWEEP-BACK* *=x%x]);

write(TO,format(Lrndd.ddccl),arctan(ndchord/hdsemiSpan)XST.3);

TempDist(£1,£2,13,LE, ndchord ,ndsemispan, TR, Ts tart, TOL, omega.,
DISCRETE,UNCON,T00,TNO,TOM,TNM) ;

write text(70,LipeciTEMPERATURE*AT*TIP*;%T%*o,M*:***l);
write (70,£3,TOM);
write text(70,[[3c]RADIATION*EQUILIBRIUM* TEMPERATUREY ~*
TR AN, %z ¥ X.J..) ;
TR:= (H/SIGMA/em/sqrt(LE))T0.25;
write (70,£3,TR); |
 write text(70,[[5c]NON-DIMENSIONAL* TEMPERATURES* WITH
RESPECT*TO*TIP*VALUE] )
write text(?O,Li?cl?*0,0%m***i)5
write (70,£2,TO0/TOM);
write text(?O,LL?ciT*N,O*=***l);
write (70,£2,TNO/TOM);
write text(TO,LLBCET*N,M*“***J)5
write (70,f2,TNM/TOM); -
write text(70,LiﬁciNDN«DIMENSIONAL*TEMPERATURES*WITH*
RESPECT*TO*TR* AT*T**N, 0] ) 3

write text(70,[[2c]T#0,0%=%*%]);




‘wrlte
write
write
write

wrlte

write

write
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(70,f2,TO0/TR);

text (70, [[2c]T*N,O¥=t¥x] )3
(70,f2,TNO/TR)

text (70, [[3e]T+0,Mx=txx]);
(70,£2,TOM/TR); |
texﬁ(70,LL?¢1¢*N,M*:*%%l)3
(70,f2,TNM/TR);

goto if read boolean (20) then LOOP else FINISH;

DISCRETE: write text(70,LDISCRETISATIDN*ERRDR*TDD*SMALL***

”’SUGGEST**ALLDW*SMALLER*GRID*GR*INCREASE*TDLl)5

UNCON: write text(70,[SOLUTION*NOT*CONVERGED***SUGGEST* *

INCREASE*NUMBER*OF* ITERATIONS**OR* INCREASE*TOL] ) 3

if read boolean (20) then goto LOOP;

FINISH:

.

close(20); close(70);

comment Data contains (12, boolean);

end LINE L4153~
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D, 4 The input to the computer program consists of a set of 12

paramaters followed by a boolean statement. If the boolean is
declared irues then ths program expects to read another set of 12
parameters. The run ishterminated by making the boolean false.
The 12 pararmsters required by the program must éppear in the
following order:-
1. Chord, C, see figure C.1 - units m.
2. Semispan, S, see figure C.1 - units mn.
. Leading edge length, L, see figure C.1 -~ units m.
4. Thickness of model - units m.
5. Thermal conductivity at 0°C - units W/m °X.
6. XO (non~dimensional). |
7. Emissivity at 0°C.
8. Tau(non-dimensional).
9. Beta, coefficient of thermal emissivity - units /OC.
1Q. Tolerance on convergence and discretisation errori
11.  Alpha, coefficient of therm=l conductivity - units /OC.
12. omega, over-relaxation parameter.
A typical datsz tape might therefore consist of,
1.0§ 0.5; 0.5; 0.02; 24.0; 10703 0.7; 1.0; 3.0x10™%; 107°; 2.5x107%,

1.65 false;

The output consists of a descriptive list of inputparameters
together with certain other constants, An account of iteratiohs taken
at eachvgrid size is 2lso printed. The main output is arranged in
columns (each column representing a constant value of Y) with the
absolute vilues of local temperature in K. ¥inally, a few of the
temperature values {described adequately) are printed non-dimensionalily

with respect to various values of reference temperature.
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Theoretical modelling of expervimental heat input to delta models.

The delta shaped heater used to simulate aerodynamic heat trens-

fer to the apex region of a delta wing performs very differently from
1

==,

the distribution prediotéd by the x * law. In order to correlate
the experimental results with theory it is therefore necessary to
subject the computer model to a heat distribution similar to the per-
~formance of the heatex. This was achieved by replacing the wires of
the heater by line sources of heat. Using a line source instead of
a vire of finite thickness affords considerable simplification to the
formulation of the equation. | We make one further assumption, that
the line sources of heat have a constant radiation intensity along
the entire lengths.
.Ihe notation used in this section does not have.the same
significance elsewhere in this dissertation. Some of the nomenclature
is indicated in figure E.1.

The two wires are inclined to the x-~axis at a semi-apex angle Y

- If 1 is the length of each wire measured from the origin then

l=2+Db= a; + bl ‘ (B.1.)




Figure B.1, Nomenclature and axes gystem for the line sources of

radiation intensity along the leading edge.

Consider a general point P (x,y) in the plane of the model.
We can associate the following distances with this point P.

X cosy + ¥y sin?y (@.2.)
1 - (x cosy + y sin?¥ ) _ (E.}.)

a
b

I

il
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a; = x cosy =~y siny (B.4.)
by =1 - (x cosy =~y sin?y ) (B.5.)
d = x sin?y -~y cos?Y (B.6.)
d1 = x sin?y + y cos Y (B.7.)

where the distance d is in the plane of the model.

We further define additional parameterg as shovm in figure E.2.

Figure E.2.

The two wires are held in a plane parallel to the top surface of .
the model at a height h above it. Consider an element ds at a
distance s from the point Q on one of the wires as indicated in figure

B.2. Let I be the radiation intensity of the line source.  Through




the point P, in a plane parallel to the line source of heat, if Ep

is the heat flux per unit area impinging on this plane, then we can

write
&1 2
E = - cos"@ ds. (B.8.)
P R®
b -
where R = S2 + r2 (E.9.)
and 1@ = h° + a° (E.10.)
2 2 2
Also 00526 = ( %) = h2 + d2 > (E.11.)
s  +h” +d

_Substituting equations (B.9) - (£.11) into equation (E.8.) gives

a
[ (% 4 d®) as
p (s2 + 0+ d2)2
-b N

2 2 S 1 tan s
I.(h" + d%) [: " + T T
2(n%+a2) (n%+a%4s?)  o(hZa®)(nP4a?)E  (WP4a?)F

tarl & 4 tan bt R 4 B bk :l - (®.12.)

I

~b

il

ol

. T 5L
. ¥ T r2+a2)3 (r2+ bz-)2

1 is the heat flux per

unit area impinging on the model, which comes from one wire, we can

Resolving EP in the plane of the model, if E

write

a.r b.xr
. - -+ 4 [(B.213.)
(r2+a2)2 (1'24—’02):a

Similarly we can derive the contribution from the other wire.

1=

E, =E_ cos8 = L.h tannlj‘--i- tan'l L
P op T T

in the notation we have used E2 can be simply written down by replac-

ing the parameters a,b,d and r by aq ,bl,dl;xrl,respectively, so that

2 2 2
r” =h+a; (B.14.)

I.h |, -1%1 a1 any LT
tan T + tan o + 1 ok 0

il (L‘J.lBl)

[
<

2 2
(rl + bl)




Near the apex of the delta, the distribution of heat transfer

to the model is strongly influenced by the short length of the wire,c.

(see figure BE.1.)

Figure E.3.

An approach similar to that of figure E.2. indicates that we now

have d = y. Therefore,

x? = n? ey’ ~ (B.26.)

. The contribution to the heat flux being radiated to the model by
the two wires <E3) can be written down as

B - oT (x + c) (h2 + y2) ds cosf3
3 ’ 2 2 2.2
(h" + y° + s9)

X




which on integration becomes

' r
ol |l o - e SR
r, 2 2 (2, +(o+x) )"
X.1
R S S
(z, +x°)? (B.17.)

Thé total heat fiux (E) impinging on a unit ares of the model
is A
E = E +E_+E (E.18.)
An ALGOL procedure has been developed to calculate the variation
" of heat transfer to the model based on equation (E.18.). This
procedure was incorporated in the computer programme (replacing the

real procedure Q ), whose text is included in Appendix D, to calculate

the temperature distribution in models subjected to approximately the

experimental gimulation of the aerodynamic heat transfer.
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