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Abstract

In this thesis the bond graph modelling of multi-stage pendula is presented. The models 

are abstractions of the real physical pendula as used in the GEO 600 gravitational wave 

detector. In addition, Model Based Observers (MBO) for the control of these real physical 

pendula, are presented.

The bond graph domain is utilised because it is an energy based methodology which facil

itates the creation of unambiguous hierarchical models. This hierarchical property is fully 

exploited to produce a library of components which can be used to create complex multi

stage pendula in a modular fasshion. Included in these models are hierarchical wire models 

which can model forces due to linear extension, bending dynamics and transverse modes 

of vibration. Components have been validated against a real physical system and as such 

alternatively configured system models can be created with confidence.

Bond graph pendulum models are incorporated in the design of Model Based Obseiwer 

controllers. Model Based Observers are designed in the “physical domain” of bond graphs 

and as such provide an intuitive approach to controller design, and a unified approach to 

both system modelling and controller synthesis.

As a case study, a Model Based Observer has been designed and successfully implemented 

on a real physical pendulum system. This controller damps the resonant motion of a real 

double pendulum. A more sophisticated Model Based Observer, incorporating a split feed

back topology, which is designed to control the position of a multi-stage pendula has also 

been investigated.
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Preface

Chapter 1 contains a brief introduction to gravitational waves, including their production 

and means of detection. Noise sources that limit the sensitivity of ground based gravitational 

wave detectors are then presented. The subject matter in this chapter is derived from current 

literature and provides the motivation for the work contained within this thesis.

Chapter 2 provides an introduction to vibration isolation. In particular, the various vibration 

isolation elements, incorporated within a typical optic suspension, are given. These vibra

tion isolation elements will subsequently be modelled using the bond graph methodology. 

The material in this chapter is drawn fr om published literature.

The bond graph methodology forms the basis for both modelling and control purposes and 

as such is detailed in Chapter 3. Again material in this section is derived from cunent 

literature.

In Chapter 4 a library of components, designed in the bond graph domain, for use in the 

modelling of multi-stage pendula, is presented. This library of components facilitates the 

construction of 2-dimensional multi-stage pendula models in a hierarchical fashion. To 

validate these components the mode frequencies of a two stage real physical pendulum are 

compared with an equivalent bond graph model. Furthermore, this chapter forms a tutorial 

for the construction and analysis of these bond graph pendulum models, including the use of 

a suitable (pre-existing) computer program designed to create and manipulate bond graphs.

Chapter 5 extends the basic wire model introduced in Chapter 4. Here components are 

created which permit the inclusion of bending dynamics and transverse modes of vibration.
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The components detailed in Chapters 4 and 5, in conjunction with a new set of bond graph 

components, are used to create a Model Based Observer (MBO) controller for a double 

pendulum. This controller is detailed in Chapter 6 and is designed to damp the resonant 

modes of a double pendulum. This new controller has been implemented digitally and its 

performance compared with a previously designed analogue controller.

Chapter 7 details the investigation of a possible global control scheme which again is a 

model based observer design, incorporating a split feedback topology.

Finally, concluding remarks are made in Chapter 8.

in



Summary

A prediction of Einstein’s Theory of General Relativity is the creation of gravitational 

waves. These waves are created by an asymmetric acceleration of mass, travel at the speed 

of light, and produce a tidal strain in space. Unfortunately the interaction of a gravita

tional wave with matter is very weak, even violent astronomical events only produce strains 

of the order 10"^^ to 10“ ^̂  at the Earth. So far, the only evidence of gravitational wave 

production has come from indirect sources. However, direct detection of the tidal strain is 

deemed possible with Earth based detectors. One such detector is based upon the Michelson 

interferometer.

GEO 600, a ground based Michelson interferometer (having 600 m arm lengths), is a joint 

project between Universities in the United Kingdom and Germany, which is expected to 

have the necessaiy sensitivity to detect gravitational waves. It is currently in the final 

stages of construction at a site near Hanover in Germany. This detector is designed to 

be sensitive to gravitational radiation down to a frequency of 50 Hz. This sensitivity limit 

(2 X lO^^^m/ V ® ) is set by the thermal noise generated by the internal modes of the fused 

silica optics, which sets a minimum requirement for seismic isolation. The design goal for 

seismic isolation is to achieve a noise level a factor of 10 below that due to thermal noise at 

50 Hz. To achieve this, various isolation elements are inserted between the ground and the 

sensitive optic. Chiefly, sensitive optics are suspended as multi-stage pendula. To facilitate 

the design and control of these suspension systems it is desirable to have accurate system 

models.

Here, it is believed that the bond graph methodology provides the ideal platform for the

IV



modelling of these multi-stage pendula. This is because the methodology has the following 

properties; it is energy based, energy conserving, hierarchical, unambiguous, and equation, 

rather than, assignment based. With this in mind, this thesis presents a library of compo

nents with which simple (or complex) multi-stage pendula can be constructed in a modular 

fashion. This modularisation facilitates the easy interchange of components without having 

to re-model the complete system. To validate these bond graph components the mode fre

quencies of a real physical two stage pendulum are compared with those generated by the 

equivalent bond graph model.

Now, due to the resonant nature of pendula there is a requirement for active control of 

suspensions. Active control of these pendula takes two forms: “Local control”, so called 

because it acts on individual suspensions, is used to damp the resonant modes; whilst a 

“global control” scheme is used to apply actuation forces to a multi-stage suspension such 

that the detector is maintained in the correct configuration.

The current local controller is an analogue implementation of a classically designed control 

law. In this thesis, having shown that this analogue implementation can be successfully 

implemented digitally, an alternative local controller design is presented. This is a Model 

Based Observer (MBO) design, based in the bond graph domain, and is a physical approach 

to controller design and as such is a more intuitive design methodology. Also, since it is 

based in the bond graph domain it provides a unified approach to system modelling and 

controller design. A digital realisation of a MBO designed local controller has been suc

cessfully implemented on a real physical system, and the comparison between the original 

analogue and new MBO controller is presented in this thesis.

Having shown that a controller design, using the MBO methodology, can suitably damp 

a real physical double pendulum the methodology is extended to produce, and investigate 

the properties of, a MBO designed global controller. This is a split feedback an'angement, 

designed to reduce actuation forces at the sensitive optic so that less powerful, but qui

eter, actuators may be used at the sensitive optic. This is achieved by applying lower fre

quency/greater displacement actuation higher up the chain of pendula where noisier more 

powerful actuation can be used. Although this controller is not implemented on a real phys-



ical system its potential is suitably demonstrated.
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Chapter 1

All Introduction to Gravitational 

Waves and their Detection

This chapter introduces the concept of gravitational waves, why we may wish to detect them, 

their effects on matter, and means of production. Various gravitational wave detectors, with 

which detection of gravitational waves are deemed probable, are then introduced. Finally 

noise sources that limit the detector sensitivity are discussed.

1.1 An Introduction to Gravitational Waves

Why do we aim to detect gravitational waves? Firstly, we wish to verify, or otherwise, 

relativistic gravitational theories. Secondly, gravitational waves and their detection will 

provide us with new insights into the workings of the universe. Today’s telescopes gather 

information from electromagnetic radiation which interacts with, and is scattered by, matter. 

However gravitational waves pass through matter with impunity, thus revealing the internal 

dynamics of stars. Further, as a result of having to manufacture detectors of very high 

sensitivity, gravitational wave research groups are pushing back the frontiers of material 

science, seismic vibration isolation, laser technology and optics.



The existence of gravitational waves were predicted by Einstein’s General Theory of Rel

ativity (1916) [5]. They are analogous to electromagnetic waves in that they travel at the 

speed of light and are transverse waves. However, whereas electromagnetic waves are cre

ated by the acceleration of charge, gravitational waves are produced by the acceleration of 

mass and since mass has only one “sign” these accelerations need to be asymmetric. It 

should also be appreciated that the gravitational force is extremely weak compared with the 

electrostatic: The ratio of gravitational to electrostatic force for a pair of protons is % 10“ ®̂. 

Hence extremely large masses undergoing great accelerations are required to produce de

tectable waves. For this we turn to violent astronomical events such as supemovae and black 

hole formation and interaction, (see Section 1.2).

The effect of a gravitational wave is to produce a tidal force. As the wave propagates it 

produces a strain in space which is characterised by the dimensionless amplitude h, defined 

as

2ALh = ( 1. 1)

Where the length L < \gw  The effect a wave has on a ring of test particles can be seen 

in Figure 1.1. Here the wave is propagating normal to the page and demonstrates the “4-” 

(plus) polarisation. There is one other independent polarisation state known as the “x ” 

(cross) and has the same effect but rotated by 45 degrees about the propagation axis.

L — A L L + A L

Figure 1.1; The effect of a gravitational wave on a ring of test particles



1.2 Gravitational Wave Sources

Ground based detectors are not expected to have the ability to detect gravitational waves 

below a frequency of 1 Hz. This is due to Earth atmospheric density fluctuations and Earth 

vibrations causing perturbations of the gravitational field. Sources are predicted to have a 

maximum frequency of 10  ̂Hz. This upper limit arises from the minimum mass (typ

ically 1M© = 1 solar mass) needed to create a compact collapsed star massive enough to 

strongly emit gravitational waves. The frequency of the gravitational wave is determined 

by the time taken for the wave to traverse the radius of the star. Gravitational wave sources 

can be categorised into the following types; burst, “chirp”, continuous and stochastic, and 

are now discussed.

1.2.1 Burst

Bursts of gravitational waves are believed to be created by catastrophic explosions of stars. 

These explosions are called supemovae of which there are two types. Type I supemovae are 

generated when a white dwarf star, accreting material, possibly from a binaiy companion, 

undergoes a thermonuclear explosion. This occurs when it’s mass exceeds the critical mass 

(Chandrasekhar mass Mch =  1.4M© % 3 x 10^^Kg).

The catastrophic end to the life of a massive star, mass > 8M©, results in type II super

novae. When a massive star has burnt all its nuclear fuel the radiation pressure can no 

longer balance the gravitational force and the core collapses. Thus the density of the core 

increases until the star’s central density is close to that of an atomic nucleus. Matter that 

subsequently falls onto this central core rebounds, producing a shock wave that travels to 

the surface of the star, ejecting the outer layers. If the central core is not spherical when this 

process occurs, gravitational waves will be produced. Depending on the initial stellar mass, 

the remnant star will be a neutron star (possibly a pulsar) or a black hole (mass > lOM©). 

Such events, out to the Virgo cluster (15Mpc), are estimated to occur at a rate of 15 per 

month [6],

The expected strain amplitude produced from a burst source, a distance r from the Earth,



with frequency/, and emitting gravitational wave energy E, is given by Equation 1.2 [7].

/i ~  5 X 10"2222 r E  1 & IkHz
1 ^  ' “ 2 15Mpc

IO-^MqĈ f Llms. r ( 1.2 )

This is scaled, based upon the conversion of % 0.1% of the available energy into gravita

tional radiation [8 ].

1.2.2 “Chirp”

Coalescence of compact binary systems, of either neutron stars or black holes, produces a 

unique gravitational wave form known as “chirp”. The process, of two massive objects in- 

spiralling about their common mass centre, produces gravitational waves. As the separation 

of the binary decreases, the frequency and amplitude of the radiation increases. Eventually 

the binary reaches its final stable orbit and a subsequent “plunge” phase, with an expected 

high emission of gravitational wave radiation, occurs. Typically the inspiral stage is ex

pected to last 10® — 10 °̂ years, whilst the plunge phase will only last ~  15 minutes, and in 

this final stage the gravitational wave’s frequency will rise from ~  10 Hz to ~  1 kHz. The 

Sensitivity of GEO 600 (see Section 1.4.3) will restrict detection to the plunge stage of this 

phenomenon.

The strain amplitude associated with a binary coalescence is given by [7]:

/i «  2.6 X 10"2® M \  3 /  \ ^  (  100 Mpc^— V (M q / I (1.3)100 Hz

Where /  is the gravitational wave frequency, r is the distance from the Earth and M is the 

chirp mass defined as

(MiM2)t
M = (1.4)

(Ml -I- M2)2

Ml and M2 are the masses of the binary. Thome [9] estimates an event rate of 3 per year 

out to 200 Mpc

Radio observations of the binary pulsar PSR 1913 -f 16 [10] provide evidence of this de

crease in periodicity. The observed rate of inspiral of PSR 19134-16 is accurate to within 1%



(experimental accuracy) of the theoretical value predicted by General Relativity. This first 

indirect observation of gravitational radiation resulted in Russell Hulse and Joseph Taylor 

being awarded the 1993 Nobel Prize.

1.2.3 Continuous

Single rotating neutron stars with an asymmetric distribution of mass are expected to radiate 

gravitational waves. For such monochromatic sources it is possible to increase the sensitiv

ity of the detector by a factor of y/rïfï where Tint is the integration time. Further, since the 

received signal will be modulated, both in amplitude and frequency, by the Earth’s rotation, 

it should be possible to verify the detection of a source with a single detector.

1.2.4 Stochastic

Similar to the background cosmic microwave radiation, it is expected that a stochastic back

ground gravitational wave radiation exists. This background radiation appears in a single 

detector as noise. There are two ways of detecting it:

• If the unwanted noise sources were well characterised, and if the observed noise were 

greater, then any excess noise could be attributed to the giavitational wave. It is 

unlikely that ground detectors will be sensitive enough to distinguish this, although it 

is possible that a space detector could [8 ].

• With two detectors it maybe possible to cross-correlate their output. By multiplying 

the outputs, the instrument noise, assumed independent, will cancel, whilst the grav

itational wave noise will sum systematically. This assumes that the two detectors are 

close enough together that any given component of the gravitational wave noise is 

coirelated, i.e. the separation must be less than the wavelength of the gravitational 

wave [8 ].



1.3 Gravitational Wave Detectors

1.3.1 Introduction

Detectors of very high sensitivity are required to detect gravitational waves. Two main 

detector designs, predicted to have the necessary sensitivity, have been proposed. The first 

of these, the resonant bar detector, was proposed and developed by Weber [11]. The second 

is the interferometric type of detector of which both ground and space borne detectors are 

being developed.

1.3.2 Resonant Mass Detectors

Resonant mass detectors generally operate nari'ow band at 1 kHz with a bandwidth of 1 Hz 

and at low temperature 4K), having a sensitivity % 6  x 10“ ^̂  [12] [13] [14] [15]. Es

sentially they are massive (a few tonnes), high quality factor (Q), right cylindrical bars. High 

Q materials have the advantage that once excited they have a long ring down period. This 

increases the sensitivity of the detector through increased integration time. The passage of a 

suitably orientated gravitational wave will produce a strain in the detector, possibly causing 

a detectable motion of the bar’s ends at its fundamental modal frequency. Associated with 

the measurement of this motion is sensor and thermal noise. An integration time that bal

ances the conflict between a short integration time/higher sensor noise (high bandwidth) and 

longer integration time/increased thermal noise, is needed. Thermal noise can be reduced 

by using a very high Q material cooled to liquid helium temperatures (4.K). Bar detectors 

are currently under development at Stanford, Louisiana state university (ALLEGRO), Rome 

(NAUTILUS), CERN (EXPLORER) and Australia (NIOBE).

Increased bar detector sensitivity can be achieved by having more antennas and by increas

ing their mass. Extra mass also reduces thermal noise. A spherical resonant mass detector 

achieves both of these requirements. It has 15 times as much mass, as a bar of the same fun

damental frequency, and has 5 independent quadrapole moments, compared with the bar’s 

single mode. A gravitational wave passing through a spherical detector will excite these



modes. The direction and polarisation of the gravitational wave can be determined from the 

ratio of the mode amplitudes [16]. There are proposals to build spherical detectors in the 

USA (TIGA)[17] and the Netherlands (GRAIL)[18].

1.3.3 Ground Based Interferometric Detectors

Mirror

Beamsplitter

Laser Mirror

Photodetector

Figure 1.2: A Schematic of a Michelson interferometer

Ground based interferometric detectors are inherently broadband and are thus ideal for ob

serving signals that are either short burst or have frequencies that change with time. It is 

expected that GEO 600 will have a bandwidth from 50 Hz to several kHz. These detectors 

are based on the Michelson Interferometer.

The Michelson Interferometer is formed by a beamsplitter and two mirrors. Coherent light, 

split into two beams by the beam splitter, is incident on the mirrors as shown in Figure 1.2. 

Recombination of the light, at the beamsplitter, results in an interference pattern, the form 

of which depends on the phase difference between the two beams. This phase difference 

is introduced through the interferometer having unequal arm lengths. When in operation 

the detector is configured to have a null output; that is, it is maintained on a dark fringe. 

A gravitational wave passing through the detector causes the relative arm length to change, 

thus phase modulating the laser light. The effect of this modulation is to produce sidebands 

about the laser light frequency (carrier frequency). The gravitational wave information is



contained within these sidebands. It is this signal, by feedback to one or more of the test 

masses, that maintains the detector on a dark fringe.

The mirrors of the detector must be free to move under the influence of a gravitational wave 

without being influenced by seismic and acoustic noise. Hence mirrors and other optics 

are suspended as pendula and the detector is operated under very high vacuum (typically 

10~® mbar). As can be seen in Figure 1.1 (Page 2) an interferometric detector is ideally 

suited to detecting the quadrapole nature of gravitational waves. Further, the sensitivity of 

a detector is enhanced by increasing its size: The optimum having arm lengths L = Xgw/^- 

For a gravitational wave of 1 kHz the optimal length is 75 km which, due to practical consid

erations such as cost, is too long for ground base detectors. However a detector’s effective 

arm length can be increased by incorporating either delay line or Fabry-Perot cavities into 

each arm.

The Glasgow prototype detector is of the Fabry-Perot kind. A schematic is shown in Fig

ure 1.3. Here, a resonant cavity is created in each arm through the use of partially transmit

ting mirrors. Photons entering the cavity, via the partially transmitting miiTor, travel back 

and forth between the mirrors. This happens many times before the photons leave the cavity 

via the partially transmitting mirror. Thus the power in the cavity is much greater than the 

input power and the effective storage time of the light is increased.

GEO 600 is an example of a delay line interferometric gravitational wave detector. A 

schematic is shown in Figure 1.4. Here the storage time is increased by reflecting light 

at the outboard mirror onto an inboard mirror situated near the beamsplitter: Doubling the 

detector’s effective arm length.

The choice of the delay line, over the Fabry-Perot configuration, stems from the difficulties 

in implementing the Fabry-Perot cavity. Although a delay line interferometer has larger 

mirrors and may suffer from scattered light contaminating the beam, an interferometer with 

Fabry-Perot cavities may suffer from thermal lensing. This is due to the difficulty of produc

ing partially transmitting materials of very low loss. Moreover, extremely accurate control 

is needed to keep the two cavities independently on resonance.



I I Full Reflectivity Mirror

Fabry-Perot Cavity

Laser

Beamsplitter

Partially Transmitting Mirror

Mirror

I I
Photodetector

Figure 1.3: Schematic of a Michelson Interferometer incorporating Fabry-Perot cavities in 

each arm.
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Signal Recycling 
Mirror

Figure 1.4: Schematic of the GEO 600 detector incorporating delay lines in each arm, and 

mirrors for power and signal recycling.

1.3.4 GEO 600

The GEO 600 gravitational wave detector is sited at Ruthe (a few kilometres outside 

Hanover) and is nearing the completion of its construction stage. The project is a joint



collaboration between universities in the United Kingdom (Glasgow and Cardiff) and uni

versities in Germany (Max Plank Institute [Hanover] and Potsdam). The main features of 

GEO 600 are as follows:

• Each arm is 600 metres long and thus with the inclusion of a delay line the effective 

length is 1 2 0 0  m.

• The compensator is added to provide the same optical path length in each arm.

• As stated earlier the detector is maintained on a dark fringe. As a result, light, after 

recombination at the beamsplitter, is lost to the detector. The power recycling mir

ror [19] is used to reflect this light back into the interferometer. This increases the 

power in the arms of the detector, thus reducing the effects of shot noise (see Sec

tion 1.4.1). In GEO 600 the power is expected to be increased by a factor of ~  2000. 

To achieve this mirrors of vei-y low loss are required.

• The signal recycling mirror [20] operates in a similar manner as the power recycling 

mirror; returning any recombined signal back into the detector. The position of this 

mirror determines the frequency of the resonant mode and its reflectivity determines 

the operational bandwidth.

In operation the output intensity of the detector is maintained at a null by control of the arm 

lengths. A gravitational wave will change the output intensity. Hence the feedback signal, 

to prevent a change in arm length, will contain the gravitational wave signal. The control 

scheme employed for this purpose is known as global control. Global control is discussed 

in Chapter 7. Obviously the output signal will contain any noise within the system and as 

such are discussed in the next section.

1 0



1.4 Noise Sources in Ground Based Interferometric Gravita

tional Wave Detectors

Various noise sources, such as seismic, thermal and shot noise, limit the performance of 

gravitational wave detectors. These are detailed below.

1.4.1 Shot Noise

A fundamental limit to a detector’s sensitivity is the shot noise. The interferometric signal 

is directed onto a photodetector to produce a photocurrent. The quantised nature of light 

results in statistical fluctuations of this current. The spectral density fluctuation is given by 

the Schottky equation:

Si{F) = 2ei (1.5)

where e is the electronic charge and i is the photocurrent. The photocurrent is given by:

i =  ^  ^  (,.6 )
hu 27rnc

where h is Planck’s constant/27r, c is the speed of light in a vacuum, P is the light power 

and T] is the photodiode quantum efficiency.

The resulting displacement noise is :

* = ( 7 ^ )  (1.7)

1.4.2 Thermal Noise

Thermal motion occurs in all atoms at temperatures above absolute zero. Where the 

equipartition theorem associates ^ k s T  with each degree of freedom, T is the tempera

ture and kf, is Boltzmann’s constant. The random thermal motion of these atoms is mani

fest as a macroscopic displacement noise. Work by Callen et.al. [21][22] determined the 

relationship between the thermal fluctuations of a system and its dissipation (Fluctuation 

Dissipation theorem)

11



The pendulum modes of the system, transverse modes of the suspension wires and internal 

modes of the masses all contribute to the overall thermal noise signature. The thermal noise 

characteristics are illustrated with an harmonic oscillator.

The power spectral density for a harmonic oscillator is given by:

X^iw) = ----- , 4kBTw§ÿ(w)-------- -
ujm |̂ (wq -  -f u}Q(f){uj)'̂

where, kg is Boltzmann’s constant, T  is the temperature, wq is the resonant frequency, m 

is the mass of the pendulum and (f>{u}) is the loss tangent (defined below).

The loss tangent’ is defined as the phase lag between the applied force and the correspond

ing displacement. A low loss tangent corresponds to a high Quality factor (Q). Where 

Q = —i-y. Hence, to minimise thermal noise, materials of very high Q are used. In GEO 

600 the mirror and it’s suspension are made of fused silica having a Q of a few 10®. When 

a pendulum swings most of its potential energy is stored in the gravitational field and not 

in the bend of the wire. As a result the Q of the fused silica suspension has an effective Q 

100 times greater than that of the bulk material. A consequence of using high Q materials 

is that noise at the mode frequencies is resonantly enhanced. Hence, to damp resonantly 

enhanced motion due to seismic noise, pendulum modes are actively controlled. Also, 

the material and dimensions of the sensitive optic are chosen such that the internal modes 

(typically> 30 kHz) are outwith the operational bandwidth. Finally the violin modes are 

notch filtered out of the signal processing. The overall thermal noise, as contributed by the 

various modes of the test mass, are calculated to be 7 x 10“^®m/\/Hz at 50 Hz [23]. This 

is based upon a measured loss tangent of 2  x 1 0 “  ̂ for the fused silica optic.

1.4.3 Acoustic and Seismic Noise

The suspended optics of GEO 600 are housed in a high vacuum. The high vacuum has the 

effect of reducing fluctuations in the refractive index and affords protection from acoustic 

noise.
‘0(u;) may also be referred to as the loss angle or loss factor.

12



The seismic motion is approximately (10“ ^/f^) m /V ïïz from 1 Hz to ~  1 0 0  Hz. The true 

nature of this motion will depend on site location. The filtering of seismic motion, from 

ground to sensitive optic, is primarily achieved by hanging them as multi-stage pendula. 

Above their natural frequency each pendulum stage affords a ( /o //^ )  attenuation from seis

mic noise, where /o is the pendulum’s natural frequency. Additional attenuation is achieved 

from passive/active isolation stacks, (see Section 2.4.1). Layers of rubber and metal con

stitute the passive section, whilst the active section consists of piezoelectric actuators and 

feedback electronics. The effect of using mechanical systems to attenuate high frequency 

motion results in an enhancement of the seismic motion at the mechanical resonant frequen

cies. Hence these modes need to have low Q factors (high loss). For stacks lossy rubber is 

used whilst the pendulums are electronically controlled. This control scheme, since it acts 

on individual suspensions, is known as “local control” and will be discussed in Chapter 6 .

1.4.4 Other Noise Sources

Fluctuations in power, frequency and beam geometry of the input laser light are also sources 

of detector noise. The frequency and power are stabilised using feedback loops [20] [24]. 

For methods of beam geometry stabilisation see [25][26]. Electronic, sensor and actuator 

noise also need to be minimised.

1.4.5 Combining the Noise Sources: Projected Noise Performance of GEO 

600 Detector

Figure 1.5 shows how the above noise sources contribute to the overall noise sensitivity of 

GEO 600, Where the meaning of the various coloured lines are given below:

• Green = Total noise signature

• Black = Shot noise (From a 5W, 1.06^ m and a recycling factor of 2000).

• Blue = Represents the thermal noise and is a combination of the thermal noise pro

duced by the pendulum (assumes loss factor of 1.4 x 10“ )̂ and the internal modes of

13
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Figure 1.5: Predicted sensitivity of GEO 600 [1]

the sensitive optic.

• Red = Seismic noise.

Note that at higher frequencies the dominant noise source is shot noise. Thermal noise, 

associated with the internal modes of the silica test masses dominates between approxi

mately 50 Hz and 200 Hz. The resultant test mass motion, due to thermal noise at 50 Hz 

(7 X 10“ ^̂  m/y/Wz),  sets the design goal for seismic isolation. This states that the motion 

of a GEO 600 sensitive optic, due to seismic noise, should be a factor of 10 below that 

induced by thermal noise. As can be seen, the “seismic wall” dominates at lower frequen

cies. This results in an optimum strain sensitivity across a frequency band from ~  50 Hz to 

1 kHz. The next chapter details the necessary vibration isolation mechanisms used to meet 

the design goal for seismic isolation.

14



Chapter 2

Vibration Isolation and GEO 600

2.1 Introduction

In this chapter elements of vibration isolation within the context of the GEO 600 project 

are presented. Firstly, the vibration isolation requirements for GEO 600 are detailed. The 

fundamentals of passive vibration isolation are then given, and finally the detailing of the 

various passive isolation components that constitute an optic suspension are detailed.

2.2 Vibration Isolation Requirements for GEO 600

Towards the end of the previous chapter (Section 1.4.5) it was stated that the seismic iso

lation requirement for a sensitive optic is: At 50 Hz the test mass motion, due to seismic 

noise, should be a factor of 10 below that due to thermal noise. At 50 Hz the thermal noise 

is expected to be 2 x 10“ ^ ^ m /v S  which, for the GEO 600 optical scheme, corresponds 

to a test motion of 7 x 10“ ^°m/\/Hz [27]. The consequences of this are now discussed.

Having chosen a detector site it is necessary to characterise the seismic noise at that location. 

This was undertaken for the site at Ruthe (the GEO site) and a typical seismic profile is 

shown in Figure 2.1. Although the spectrum will vary, dependent on site and time, the

15



seismic Ruthe

X

I

Log-Book 190496 east end building
10

c :  = c : c  z ':  :  :1ÔT------------
h-OW-FuS11 Sunday 
h-OW-Fu Qg Friday __

10

10

m u m .10

10

10 10010
f[Hz]

Figure 2.1: Typical seismic readings for the GEO 600 site in Ruthe. For modelling purposes 

this is modelled as 1 0 “ ^ / m /y/lTz

following approximation has been adopted:

x{f )  = f  79
m

(2 . 1)
, / V

where xq = 10“  ̂m /\/H z for the GEO 600 site. Hence, with a noise specification of 

7 X 10“ °̂ m/\/1îz at 50 Hz, an isolation from ground motion ~  6  x 10̂  is required.

2.3 The Mechanics of Passive Vibration Isolation

Typically, vibration isolation can be thought of as something soft (“springy”) interfaced 

between a source of vibration and an object requiring isolation. The Mass-Spring system 

exemplifies this.
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Figure 2.2: Schematic and bond graph of a Mass-Spring isolation system

G{s) =
bs k

(2 .2)ms^ bs + k

A schematic, and bond graph*, of a Mass-Spring system can be seen in Figure 2.2. The 

transfer function G(s), Equation 2.2, of this Mass-Spring system can be generated in the 

usual manner, i.e. via the Laplace transform of the second order differential equation or via 

a suitable transformation of the core bond graph model (see Appendix A). From the bond 

graph representation an undamped transfer function can be obtained by either removing the 

resistive component R or by setting the value of its coefficient (b) to zero. (The generation 

of Bond Graphs, and their subsequent manipulation, is covered in Chapter 3).

In the undamped case Equation 2.2 is often written as

G{s) = w:
(2.3)

5 2  +

where the complex frequency s = a + ju ,  and the square of the resonant (or natural) 

frequency k is the spring constant and m the mass.
‘Since the bond graph methodology is extensively used throughout this thesis the bond graph model of a 

M ass-Spring system has been included here for completeness.
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Transfer Function G(s) of an Undamped 2nd Order System
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Figure 2.3: The transfer function of an undamped second order system

The characteristics of an undamped second order transfer functions can be seen in Figure 2.3 

Points to be drawn from this transfer function are:

• From dc, to the resonant frequency, the system’s frequency response approximates to 

unity.

• At the resonant frequency the magnitude tends to infinity.

• At frequencies above the resonance the system response falls as 1 //^ , and hence, 

above its resonant frequency, a second order undamped system affords isolation of

i / f .

This analysis assumes no damping, i.e. energy, once supplied to the system, remains without 

loss. For real systems this is not the case and energy will dissipate by various mechanisms. 

These include friction, as well as viscous and structural damping. A discussion of a damped 

second order system will follow an introduction to viscous and structural damping.

18



2.3.1 Viscous and Structural Damping Forces

Those resistive forces which are proportional to velocity are known as viscous forces. For 

example, a mass moving with increasing velocity through air experiences, due to increased 

mass/air particle collisions, an increasing resistive force which is proportional to the mass 

velocity. Viscous damping can be introduced into a model by the inclusion of a dashpot 

parallel to the components experiencing the resistive force, as shown in Figure 2.2

Spring damping can be introduced by inclusion of a small imaginary component in the 

spring constant k k[l i4>{u))], where f  is positive and known as the loss angle, and 

represents a phase delay between application of force at a point and the resulting displace

ment of that point. If (f>{u) is proportional to w it takes the same form as viscous damping 

and can be modeled in a similar fashion (i.e a dashpot parallel with the spring).

However, not all cases exhibit this form of damping; some show losses that are constant 

across some frequency range (i.e. <̂ (w) = </>o [28]). Such damping is known as structural. 

Loss angles, associated with structural damping, are typically very small; room temperature 

values range from 10“  ̂ for metals to 10“  ̂ for sapphire. It is from calculations using this 

form of damping that the thermal noise is calculated as 7 x at 50 Hz [29].

2.3.2 The Characteristics of a Damped Second Order system

Returning to the transfer function of the damped Mass-Spring system and the vis

cous forms of damping. Equation 2.2, these systems are often parameterised using the 

damping factor (() (Equation 2.4):

where

(̂  = b/2Vmk  (2.5)

and for systems with minimal damping, the system is parameterised by the quality factor 

Q = l/2 ( . The quality factor is related to the loss angle ((f>) where Q = l/(f>.
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The system now responds in the following manner.

• Again the frequency response, up to the resonant frequency, is approximately unity.

• The resonant peak is approximately Q times the low frequency response.

• At frequencies higher than the natural frequency (u;„), but less than approximately 

Qwn, the system responds as (w^/w)^.

• Above QuJn the magnitude of the response falls as 1/w.

These phenomena are illustrated in Figure 2.4 which shows the transfer functions of two 

second order systems, one with infinite Q (no damping) and the other with a Q of 10. Here 

it should be noted that very high Q second order systems maximise the above resonance fall 

off.

Plots of two 'damped* second order systems (one with Infinite Q tfie otfter witfi a Q of 10)
1e+03

O d  1 0 --------
Infinite Q ...........Resonant Frequency = 1 rad/s

1e+01
Oof 10

1e+00

1e-01

<3.
1e-02
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Q times Resonant Frequency
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ta-06
10010 10000 1 1
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Figure 2.4: The transfer functions of two 2nd order systems, one with infinite Q the other 

with a Q of 10
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Figure 2.5: Schematic of the GEO 600 gravitational wave detector

2.4 GEO 600 and Passive Isolation

A schematic of GEO 600 can be seen in Figure 2.5 which is based upon a Michelson In

terferometer (as described in Section 1.3.3). Each arm of the interferometer is 6(X) metres 

long and each optic is suspended as a three stage pendulum. The detector is enclosed within 

a vacuum system at a pressure of ~  10“® mbar. The vacuum system affords acoustic noise 

isolation and suppresses refractive index fluctuations. Suspending the optics as pendula af

fords isolation from seismic noise. Additional vertical and horizontal isolation is provided 

by passive and active isolation stacks and cantilever springs provide extra vertical isolation. 

The schematic of a main GEO 600 suspension ( Figure 2.6) illustrates the location of each 

of these elements.

2.4.1 Passive Isolation stacks

Passive isolation stacks consist of three rubber (RTV 615) bungs supporting a circular alu

minium block, all of which is encased by damped bellows to prevent contamination of the 

vacuum. The isolation stacks are designed to have a horizontal resonant frequency at ~  9 Hz 

and a vertical resonant frequency at ~  13 Hz with Qs of approximately 10 [30] [31].
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Figure 2.6: Schematic of the GEO 600 main suspension [2]

The passive isolation stacks, detailed above, are augmented with an active stage. This active 

stage consists of a piezo-electric transducer (PZT) and a number of geophone sensors. Here 

feedback and feedforward control laws will be employed to further reduce the transmittance 

of seismic noise from the ground to the isolated mass.

2.4.2 Increased Vertical Isolation using Cantilever Springs

Remember GEO 600 is a 4 pass delay line interferometer. This means that laser light 

traverses the length of one arm four times and thus increases the effective arm length by 

a factor of two. To achieve this, light is reflected from the end mirror to an inboard mirror, 

at which point the light is reflected back to the end mirror and then onto the beamsplitter. 

Figure 2.5 illustrates this.

To facilitate the inclusion of a delay line the inboard mirror is raised above the end mirror
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by 2h = 30 cm and hence needs to be angled by an amount equal to h/I. This results in 

cross-coupling between vertical and horizontal motion [32]. Moreover, due to the curvature 

of the earth, the “local vertical” at each minor location is not parallel As a consequence 

pure vertical motion, at a particular suspension, will couple into horizontal motion as “seen” 

by the laser beam. The amount of cross coupling is given by

=  ± 11- (2.6)
I mirror i^Earth

For GEO 600 this corresponds to a cross coupling of 5 x 10"^. Further, due to material 

defects and flaws in mechanical construction, cross couplings, between all degrees of free

dom, will occur. Work by Husman [33] has shown that, with due diligence, a cross coupling 

< 0.01 % due to misalignments can be expected. Hence the assumption, adopted by the 

GEO 600 project, that a total cross coupling of less than 0.1%, from vertical to horizontal 

motion, is thought to be non-conservative.

With this assumption in mind, what effect does this have on the horizontal isolation at 

50 Hz? Assuming a horizontal resonance at 1 Hz and a vertical resonance at 20 Hz (not 

unrealistic values for pendulums used within GEO 600), and assuming the vertical and 

horizontal seismic noise inputs are of the same magnitude, then for a triple pendulum

0 ( i )  >(è)
and hence the motion due to the coupled vertical motion is greater than that from horizontal 

motion, i.e. greater vertical seismic isolation is needed if the required sensitivity is to be 

met. This is achieved through the incorporation of cantilever springs. The blades used by 

GEO 600 are based on those used by the VIRGO group [34]. Those used witliin GEO 600 

are detailed in [35] [30] [33] . These cantilever springs are constructed from pre-stressed 

maraging steel of a trapezoidal shape and act as soft springs. Prior to loading, their shape 

is as shown in Figure 2.7 and once loaded are horizontal. For this trapezoidal geometiy the 

spring constant is given by

where, E  is the Young’s modulus for the cantilever material, a is the cantilever’s base width.
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h the thickness, I the length and a  is a geometric factor given by

3 / o /  /?2
a = (2.9)

2(1 -/?)

where /3 = b/a, and b is the width at the tip of the blade. The value of a  range from 1.0 

for a rectangle to 1.5 for a triangle. The value of a  associated with GEO 600 blades was 

calculated and verified experimentally by Husman and Torrie [33] [30].

Top View

Unloaded Cantilever Shape
Side View

Cantilever under load

Figure 2.7: Schematic of a cantilever spring 

2.4.3 Pendulum Suspension

A simple pendulum has a similar transfer function to that of the Mass-Spring system of Sec

tion 2.3, (Equation 2.3 and Equation 2.4 - undamped and damped responses respectively), 

and hence has similar vibration isolation properties. For a pendulum the natural frequency 

(ujn) is given by

( 2 . 10)

where g is the acceleration due to gravity and I is the pendulum’s length. Resonant fre

quencies on the order of 1 Hz are easily achieved. Moreover, pendulum restoring forces 

are dominated by the lossless gravitational force. Hence potential energy is predominately 

stored in the gravitational field with a small fraction stored in the bending and stretching 

of the wire, this relationship is characterised by the “dilution factor” [36]. Hence, pendula 

are ideal as seismic isolation stages. Moreover, constructing the pendula from very high Q 

materials (~ a few 10®) reduces the off resonance displacement noise due to thermal noise.
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This is because, as the Q of a system increases, thermal energy is increasingly confined to 

narrower frequency bands centred on the resonant frequencies. Moreover, high Q cascaded 

passive elements provide isolation of

i  ^2.11)

above the highest resonant frequency, where n is the number of passive elements. For 

detector sensitivity requirements, and the fact that very low resonant frequency pendulums 

are very long, a multi-stage pendulum design is used. Moreover, since passive isolation 

elements do not require energy sources, and do not provide energy to the system, they are 

intrinsically stable.

There are a number of disadvantages with using passive elements. The first is that their 

physical size tends to increase as the resonant frequency is reduced, which may make their 

inclusion impracticable. Further, as stated earlier, pendulums will resonantly enhance seis

mic noise and, because high Q materials are used in the construction of these pendula, this 

resonantly enhanced motion will take many cycles to decay. To prevent this phenomenon 

from limiting the sensitivity of the detector these pendula are actively controlled. The aim 

of this control scheme is to damp the motion of the pendula such that their effective Q is 

reduced to a minimum. This method of reducing the effective Q does not increase the off 

resonant thermal noise because the energy is removed from the system externally rather 

than internally (frictional losses are internal loses and hence contribute to the overall noise 

signature). Since this control scheme acts on individual multi-stage pendula it is known 

as local control The specifics of this form of control are described in Chapter 6. How

ever prior to introducing this control scheme the modelling of multi-stage pendula using the 

bond graph methodology, is presented. These models will subsequently form the basis for 

a bond graph controller design.
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Chapter 3

Bond Graphs

3.1 Introduction

Following an exposition of the modelling philosophy this chapter introduces basic bond 

graph components, constitutive relationships and the concept of causality. It is not an ex

haustive review, and is only intended as an introduction to the bond graph methodology. 

Comprehensive works on bond graphs are readily available [3] [37] [38]. Also a compre

hensive resource list of bond graph material is available at the Glasgow University bond 

graph mirror site [39].

3.2 Modelling Philosophy

A physical system may be represented by a multitude of different models. The type and 

complexity of any model will depend upon its end use. Naturally, no model can exactly 

replicate a physical system. Hence, the key factor in the development of a model, is the 

level of complexity needed to answer the modeller’s questions -  Too detailed and it may 

be impossible to analyse and extract essential information from the array of parameters -  

Too simplified and the model will not reveal essential system information. The aim of the 

modeller should be to produce the simplest model capable of supplying the relevant infor
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mation. For example, in the gravitational wave detector the violin modes of the suspension 

fibres are iiTelevant in the design of the local control feedback. To include them would pro

duce unnecessarily high order models and hence high order controllers, making them more 

sensitive to parameter errors. Yet, not to include them whilst developing the global control 

would result in an unstable controller. Ideally then, a core model of a system from which 

various representations can easily be extracted would facilitate the development of system 

models of various complexities and for different end uses. Obviously, if the core model is 

hierarchical it enables subsystem components to be changed without having to re-model 

the complete system. Furthermore, if the modelling technique is unambiguous it can be un

derstood by a computer program and hence the power of modem computers can be utilised 

to extract, via model transformations, specific model representations. Bond graphs meet 

these criteria and are therefore ideal for modelling the multi-stage pendula used within the 

gravitational wave detector.

3.3 An Overview of Bond Graphs

Bond graphs are graphical representations of physical systems constructed in the energy 

domain. As such, they provide a concise method for the conveyance of much system in

formation. By using a small set of idealised elements, system models in domains such as 

electrical, mechanical, and hydraulics can easily be produced. Moreover, since these same 

elements are used across all domains, multiple domain systems can be readily constructed. 

Furthermore, it is possible to use the bond graph as a core representation of the system 

from which other representations, such as state space equations and transfer functions, can 

be generated. Also, since the bond graph representation is unambiguous, a computer can 

be utilised to carry out these transformations. In addition, the bond graph methodology is 

equation based rather than assignment based. This reduces the need for multiple models 

of a single physical system. For example, the assignment based methodology requires two 

simple resistor models; one for each input. That is, := Ri if the input is current and 

i := R~^v if the input is voltage. As can be appreciated, the number of component mod

els increases rapidly with the number of component input/output permutations. However,
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in general, only one bond graph model is required for each component. Hence, a generic 

system model can usually be produced without a priori knowledge of a subcomponent’s 

input/output configuration. Moreover, since the methodology is modular, complex system 

models can be constructed in a hierarchical manner. Thus the reticulation of a system into 

its component parts allows the system model to be constructed from simple subsystems 

where the physical laws are understood.

3.4 Elementary Bond Graph Components

E ffo r t V a r ia b le  (e) ^  .
D irec tio n  o f  p o s itiv e

F low  V a r ia b le  (f)
p o w er  flo w

Figure 3.1: i4 simple bond

Hierarchical bond graphs are constructed from a few elementary components. The sim

ple energy bond is illustrated in Figure 3.1. The half arrowhead points in the direction of 

positive energy flow. Associated with each bond are two co-energy variables the product 

of which gives power. These are generally known as the effort (e) and flow (f) variable 

(an alternative is across and through -  in this thesis the former is exclusively used). It is 

common practice for the half arrow to be placed on the side of the bond associated with 

the flow variable. Table 3.1 shows effort and flow variables for various energy domains. 

Throughout this thesis the mechanical domains (rotational and linear) are exclusively con

sidered. However, all the underlying theory is equally applicable across other domains. A 

set of simple components form the basis of the bond graph methodology. Each component 

has an input/output relationship defined by its constitutive relationship (CR). These consti

tutive relationships relate input variables to output variables and as such may be linear or 

nonlinear. Points at which energy flows from one bond graph element, or subcomponent, 

to another are known as ports. The simple one port, two port and multiport structural el

ements provide the basic building blocks for producing compound subcomponents. These 

will now be detailed, more complex components and associated constitutive relationship
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Domain Effort Flow

Mechanical Translational Force Velocity

Mechanical Rotational Torque Angular Velocity

Electrical Voltage Current

Hydraulic Pressure Flow Rate

Table 3.1 : Effort and flow variables by domain 

will be introduced as necessary.

3.4.1 One Port Components

ONE PORT BONDS

Figure 3.2: The set of one port bond graph components: The source sensor SS, energy 

dissipator R and the two energy storage ports C and I

There are four elementary one port components (Figure 3.2): One source/sensor (SS), one 

energy dissipater (R) and two energy storage ports, (C and I),

The Source/Sensor Component (SS)

The SS component is used to interface bond graph subcomponents and define boundary 

conditions. Moreover, SS components are used as source elements to supply power to a
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system. A source component holds one of the power variables (effort or flow) constant or 

is some pre-defined function of time. The value of the co-variable is determined by the 

system the source supplies. Remember, the half arrow of a bond points in the direction 

of positive power flow, and hence when f{t)e{t) is positive, energy flows from the source 

into the system. It should be noted that these sources are ideal in so far as the co-variable 

is unbounded and hence a bond graph source component may provide infinite power (real 

batteries are not ideal voltage sources but are generally modelled as such). Often, in bond 

graph literature, effort source components are represented by the symbol Se and the flow 

source by the symbol Sf,  see Figure 3.3. In the mechanical domain these equate to force 

and velocity sources respectively.

B o n d  G r a p h  S y m b o l

S S ■ 7

S/ ■ 7

N a m e

Arbitrary 
Source Sensor 

Symbol

Effort Source

Flow Source

D e fin in g
R e la t io n s h ip

e(t) Defined 

f[t) Arbitrary

f[t) Defined 

e(t) Arbitrary

Figure 3.3: The SS Component: effort and flow sources 

The Resistive Component (R)

The R component, dissipates energy from a system, and has the following constitutive rela

tionship

e =  ^ r (/) (3.1)

in the linear case 0a(f) =  Rf, and in the non-linear case is a more complex function 

of the effort (e) and flow (f) variables.
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One port energy stores

The C and I components are known as the flow and effort stores respectively. In the me

chanical domain the C component is associated with potential energies and the I component 

with kinetic energies. Each component has an associated energy variable: generalised dis

placement (q), for the C component, and generalised momentum (p), for the I component.

The Capacitive Component (C) or Flow Store

The flow store has the following constitutive relationship

e = ^c{q)  (3.2)

where

q = J  fdt-\-qo (3.3)

in the linear case

^c{q) = ^  (3.4)

where, C is known as the capacitance. For example, a spring which obeys Hooke’s law can 

be modelled as a linear C component, see Table 3.2.

The Inertive Component I or Effort Store

The effort store has the following constitutive relationship

/  =  $i(p) (3.5)

where

p = J  edt (3.6)

In the linear case

$[(p) = J  (3.7)

where, I is known as the inertance. An I component can be used to model the translational 

motion of a mass element, see Table 3.3.

31



Generic Spring Variable Names

Constitutive
e =  0cW ) F  =

e = effort

Relationship
/ =  flow

Where q = f  f d t X = f  v d t V = velocity

Linear Case ^ = c F  = kx q = generalised displacement

Power e f F v  = k x f ^ jc = displacement

Energy Stored f  e /d t \ k x ‘̂
F = force

&=^ = spring const

Table 3.2: Bond Graph capacitive component (C) modelling a spring, i.e. a store of poten

tial energy.

3.5 Structural Elements

The energy conserving structural elements provide interconnections between bond graph 

components. There are two Junction elements, the 1 or '‘'‘Series'^ junction and the 0 or 

“Paraller junction, and two Couplers, the Transformer (TF) and the Gyrator (GY).

The structural elements have a common constitutive relationship defined by:

Cl-/l +  6 2 / 2  + • • • + ^n-fn =  0 (3.8)

where the subscripts 1,2 - - n indicate the number of ports at a junction. Note that bonds 

with half arrows directed towards a junction are deemed to be positive and those directed 

away from the junction negative.
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Generic Mass Variable Names

Constitutive

Relationship
/  =  ^i(p) V  =  ^>[(P)

e -  effort 

/  = flow 

V = velocity

p = generalised momentum

P -  linear momentum

F — force 

m = mass

Where p = f  edt P  = f  Fdt

Linear Case /  =  ?

Power e f

Energy Stored f  e /d t

Table 3.3: A Bond Graph inductive component (I) modelling a simple mass element, i.e. a 

store of kinetic energy.

f \  JUNCTIONS | \

- ^ 0  ------

C om m on E ffort

- y  1 —
C om m on Flow

Figure 3.4: The 0 and 1 bond graph junctions

3.5.1 Junctions

The two junction elements (0 and 1) are used to interconnect bonds. Examples of three port 

0 and 1 junctions are shown in Figure 3.4. The 0 junction, also known as the common effort
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or parallel junction, has the following defining relationship:

ei =  6 2  =  • • • =  e„ (3.9)

where, n is the number of ports connected to the junction and,
n

J 2 f i  = 0 (3.10)
t = l

where, i represents the bond attached to the junction, and the sign of is positive if the 

half arrow of the bond points towards the junction, and is negative otherwise.

The 1 junction, also known as the common flow or series junction compliments, the 0 

junction and has the following defining relationships:

f l  =  f 2  =  • ■ ' =  f n  (3.1 1)

where, n is the number of ports connected to the junction and,
n

^ e i = 0  (3.12)
1 =  1

where, i represents the bond attached to the junction, and the sign of e, is positive if the 

half arrow of the bond points towards the junction, and is negative otherwise.

It should be noted that, since all the bonds at a parallel junction have a common effort, only 

one bond can impose an effort input. Conversely, since all the bonds at a series junction have

a common flow, only one bond can impose a flow input. This idea will be made clearer in

Section 3.6 (Causality) and is illustrated in Figure 3.6 (Page 36).

3.5.2 Coupling Elements

The bond graph representations and defining relationships for the two coupling elements, 

transformer and gyrator, can be seen in Figure 3.5. These are energy transforming com

ponents; in each case the effort or flow variable is transformed and hence, to conserve the 

energy relationship of Equation 3.8 the co-variable must also be transformed, i.e. at every 

instance in time

ei{t)fi{t) = €2 {t)f2 {t) (3.13)
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Figure 3.5: Bond graphs for the transformer and gyrator

The transformer TF has the defining relationship

f i  =  nf 2 ,  e2 =  nei (3.14)

and is an idealised transformer which is used to model such devices as the electric trans

former and the ideal rigid lever.

The gyrator GY with defining relationship

f i =  9^2, l2 = 9 (3.15)

relates the input flow to the output effort. The gyrator is used to model such devices as 

transducers and the toy gyroscope.

The coefficients n and g may have modulating coefficients, i.e the coefficient is a function of 

some other system variable. Modulated transformers occur regularly within the mechanical 

domain where the modulating terms are cos(0) and sin{6), where theta is the angular ro

tation. These modulated transformers have the symbol MTF (and similarly the modulated 

gyrator has the symbol MGY).

Combinations of the coupling elements, TF and GY, and junction elements, 0 and 1, are 

known as junction structures. The properties of these junction structures will be detailed 

after an introduction to causality.
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Figure 3.6: Causality for the one port components

3.6 Causality

Causality is a key concept within the bond graph methodology. Causality determines which 

variable, effort or flow, is the input and hence which is the output of a bond. A bond’s
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causality is defined by its causal stroke as indicated in Figure 3.6. The end of the bond with 

the causal stroke denotes the direction in which the effort variable is directed. For example 

(referring to Figure 3.6) bond 1 of the 0 junction has a causal stroke indicating that the 

effort variable is directed towards the junction. The assignment of a causal stroke to a bond 

implies the variable (effort or flow) for that bond is known and hence can be propagated 

throughout the bond graph. In Figure 3.6 causal strokes displayed in red are assumed to be 

imposed and thus define, via component constitutive relationships, all other causal strokes 

associated with that component (black strokes).

Causality pertaining to energy stores has a fundamental role in determining overall system 

equations. Assignment of the causal stroke to an energy port will result in either integral 

or differential causality. Integral causality arises when an energy store’s input variable is 

integrated. Conversely with differential causality the input variable is differentiated. The 

causal strokes and resultant input/output relationships for the energy stores are shown in 

Figure 3.6 and Table 3.4 respectively. It is clear that integral causality arises when the state 

of the energy store is the time integral of the input variable. Perhaps the naming of the stores

Component Integral Causality Differential Causality

C e = f  dt) /  =  l * c ( e )

I f  = « =  i ^ n

Table 3.4: Integral and differential causal relationships for the C and I components

is now clearer, in that the effort store (I component) has integral causality when the effort is 

the input, and the flow store (C component) has integral causality when the flow variable is 

the input. Integral causality on an energy bond implies that this energy store is independent 

of all others and it will provide one state to the overall system model. Conversely an energy 

store with differential causality is dependent on at least one other energy store and provides 

one non-state to the system model: A non-state is a function of at least one other system 

state.

Whilst attempting to complete the causality of a bond graph model, each source should be
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taken in turn, and its associated causality propagated as far as is possible through the model. 

Following this, any energy stores that have not been assigned causality should be taken, 

one at a time, assigned integral causality, and then appropriate causal strokes propagated. 

Should a causal conflict arise when propagating integral causality then that component’s 

causality must be changed to differential, and the new causality propagated. After the en

ergy components have had causality assigned any remaining R components without causal 

strokes should have causality arbitrarily assigned. Generally these are assigned to reduce 

mathematical difficulties (singularities etc). On completion of the above process one of 

three outcomes will occur:

1. The bond graph is under causal (incomplete causality). This implies that system 

variables can not be explicitly computed from system inputs and component constitu

tive relationships. That is, algebraic loops exist and therefore simultaneous equations 

must be solved. (System algebraic equations are not lower triangular).

2. The bond graph is over causal (conflicting causality). Here two components attempt 

to cause the same variable and the model is not physical. If a model of a real physical 

system is to be created, defining new variables and additional constraints may lead to 

a system model.

3. Causally complete (or causal). The systems algebraic equations are lower triangular 

and hence no causal conflicts exist.

Since the causally complete bond graph is unambiguous the extraction of alternative rep

resentations (Section 3.8) can be achieved through the use of a suitable software program. 

Hence the modeller can concentrate on the modelling process and leave the “handle turn

ing” to the computer. Throughout the course of this research the bond graph modelling tool 

MTT was utilised. This is a very powerful tool for the construction and analysis of bond 

graphs [40].

It should be noted that alternative software programs exist for the construction and manipu

lation of bond graphs. These include Bondlab, CAMBAS, Camp-G/ALSL, Dymola, a Java 

Applet program, Hyber Sim, MSI, 20-sim. More information concerning these software
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packages can be found via the Glasgow University bond graph mirror site [41] and a bond 

graph dedicated internet site [42]. Throughout this thesis MTT was solely used for the 

construction and manipulation of bond graphs.

3.6.1 Junction Structures

Junction structures are the assemblages of the structure elements, i.e. the common effort 

(0) and common flow (1) junctions, and the transformer (TF) and gyrator (GY) coupling 

elements (including modulated coupling elements). A simple junction structure can be seen 

in Figure 3.7

TF :n

Figure 3.7: An example of a simple junction structure [3]

With the causality shown in Figure 3.7, the expressions relating the flow and effort variables 

of the inputs and outputs can be expressed as a matrix (Equation 3.16)

61 0 n

Î2 _ —n 0

f l

6 2

(3.16)

Now, since this is an energy conserving construct the matrix relating inputs to outputs must 

be antisymmetric; that is, zeros must appear on the main diagonal, and the ijth component 

must be the negative of the jith  component. Here it should be appreciated that the junction 

structure relates input and output variables via a matrix transformation. Notice, that the 

structure elements have been used to create an appropriate transformation between input and 

output variables analogous to the two port TF and GY components of Section 3.5.2. These 

matrix transformations play a prominent role in the formation of multiport transformers{A3>\. 

This is best illustrated with an example:

In Figure 3.8 a multiport transformer can be seen
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Figure 3.8: An example of a multiport transformer

Here the effort variables at the external ports are related by

e\
- - -

63 1 m

.  4̂ n 1 62

and the flows are related by

1 n /a ’ f l  '

m 1
.  . Î2

(3.17)

(3.18)

The important point here, is that the matrix relating the flow variables is simply the trans

pose of the matrix used to relate the effort variables. In this example, the transformation was 

performed on a two input two output multiport transformer, but generalises to any number 

of ports. In the general case there will be m  input ports and n output ports, and the trans

forming matrix will be an n x m matrix and its transpose m x n. It should be noted that 

these transformers are energy conserving and hence multiport modulated transformers in 

which the elements of the matrix change with time may also be constructed [43]. This is 

particularly useful in mechanics, where multiport modulated transformers are used to per

form nonlinear geometric transformations. For example the following relationship holds for 

transforming flow variables from polar to translational coordinates

(3.19)
X cos 9 —r sin0

ÿ _ sin 9 r cos 9 e
and hence, we know that the relationship between the efforts (forces and torques) simply
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involves the transpose of the matrix in Equation 3.19[44], i.e.

cos 0 sin0 '  Fx ' '  Fr

—rsin6 r cos 6
.  .

T
(3.20)

Here it should be appreciated that if a bond graph multiport transformer can successfully be 

created from a valid flow (effort) transforming matrix then the efforts (flows) will, via the 

transpose of the original matrix, be correctly transformed. This property is implicitly used 

in the construction of the CoordTrans component (Section 4.5.3) which is used to define 

the location of suspension points associated with particular 2-dimensional masses.

This completes this introduction to the bond methodology and a simple example will now 

be presented to consolidate the ideas expounded above.

3.7 An Example to Illustrate Bond Graph Concepts

The aim of this section is to take a simple compound component and use it to illustrate the 

key concepts of the bond graph methodology. To this end the INTF component will be 

used. This component is widely used in the modelling of masses and wires where it is used 

to generate the angle through which components have rotated. That is the INTF component 

is a simple compound component used to integrate the flow variable.

3.7.1 The need for a INTF component

As indicated in Section 3.5.2, modulated transformers can be used to provide geometric 

transformations. These modulated transformers require the angle through which a mass el

ement has rotated. Within the domain of rotational mechanics the co-energy variables are 

torque (effort) and angular velocity (flow). Hence, time integration of the angular velocity 

will yield the angle. Since a bond has both an input and output it is necessary to ensure that 

the generation of the angular variable does not effect the system model in an undesirable 

manner. This is achieved through the incorporation of the amplified flow component (AF)
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Figure 3.9: The INTF component: Integrates the flow variable

that prevents the transmission of the effort variable to the system model. These characteris

tics are embedded within the INTF component which will now be analysed.

3.7.2 INTF bond graph design

The acausal and causal bond graphs of the INTF component can be seen in Figure 3.9. An 

acausal bond graph is a bond graph representation prior to the assignment of causal strokes, 

whereas the causal bond graph is a causally complete bond graph (see Section 3.6). Note, 

with the causality shown in Figure 3.9 it is assumed that SS:[in] is connected to a 1 junction 

which contains a port whose imposed flow variable is to be integrated. That is it imposes 

the angular velocity for integration. The analysis of this INTF component is presented in 

Table 3.5.
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SS:[out]

A C component with flow input (integral causality) (g =  f  f d t )  is used 
to generate the angle o f rotation. Now, the constitutive relationship for 
the C component is e =  Hence by setting =  1 the effort
variable (e) w ill be assigned the value o f  the energy variable (q) (i.e. the 
angle)

By attaching the C component and a one port source/sensor (SS) to a 
0 junction (common effort) the angle variable can be directed to other 
areas o f  a system bond graph. Notice, the C  component with integral 
causality imposes its effort variable ( cc)  upon the 0  junction. Hence 
any further bonds attached to this junction w ill have ec imposed upon 
them. Further, all other bonds must provide flow inputs. Hence the 
SS:[out] must be assigned the causality shown, as must all further bonds 
attached to this junction. Now, the algebraic sum o f  all flow variables 
at a 0 junction sum to zero. This leads to —f c  — /aa:[out] =  0. Notice, 
the signs of the flow variables: Since each bonds half arrow is directed 
away from the junction they are assigned a negative value.

0  SS:[out]SS:[in]

The one port SS:[in] provides the flow variable for integration. Now  
at the 0 junction -  f c  - f  /as:[in] -  /sa:[out] =  0 i.e  the flow input to 
the C component f c  — fss'.[in] ~  fsB:[out\- However a problem now 
arises; since a bond has an input and an output (effort and flow), the 
effort variable (angle) from the C component w ill have a ’’back effect” 
upon the system model. This needs to be prevented.

6l 62
f i - ^  AI' f 2 - ^

The Amplified Flow (AF) component is a two port element with the 
following constitutive relationship: / s  =  n / i  and e i =  Oc2 Hence, by 
assigning n  the value o f 1 gives /a  =  / i ,  and therefore by inserting 
the A F  component between the SS:[in] bond and the 0  junction the 
angular variable is prevented from influencing the system m odel in an 
undesirable manner.

SS:[in]
e« 6b

f a f f
A F

Having inserted the Amplifier the causal strokes must be assigned as 
shown. This causal assignment is forced by the structural 0  junction 
and the amplifier’s constitutive relationship. The right hand bond must 
provide flow input to the zero junction and therefore eg is input to A F  
and e i  =  0 eg. Further the left hand bond must have its causal stroke 
imposing flow upon A F, as defined by its constitutive relationship. The 
1 junction joining the SS:[in] bond and the two port A F  component ex
plicitly shows how the A F  bond is inserted into the bond graph. How
ever, the 1 junction’s (com m on flow junction) constitutive relationship 
leads to /«  =  f b  and since ^  =  0, ea -  e& =  0 => =  e;, (again
signs arise from direction o f half arrowheads). Hence, since f a  =  f b  
and Go =  f b  the 1 junction can be removed and the compound com po
nent reduces to that shown in Figure 3.9. So, a compound component 
(IN TF) has been created which can be used within any hierarchical 
bond graph to generate angular and linear displacements without ad
versely effecting the system  model.

Table 3.5; Analysis of the compound INTF component
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3.8 Transformations and Representations

Central to bond graph modelling is its use as a core model from which, via suitable trans

formations, other representations can be generated. Having created a bond graph model, 

and assigned causality, it is possible to create alternative representations of the physical 

system. For example, a state space representation of the INTF component can be extracted 

as follows. First, generate a set of ordered equations as shown in Table 3.6. When con

structing such a table equations relating sources and sensors (i.e known variables) should 

be appended first). The state equations are then extracted by selecting the derivatives ( / a )

Equation Comment

1 f l  — fin input (angular velocity)

2 /4 =  0 ideal sensor

3 63 = 9 integral causality (eg =  q/c with c=l)

4 62  =  63

5 64  = 62 output (angle)

6 ei =  0 AF constitutive relationship

7 /2 = f l / 2  =  n / i  with n=l

8 Q = f3 = f2 -  f i

Table 3.6: A set of ordered equations for the INTF component

of the state variable {q) and working backwards through the table of equations. For the 

INTF component there is only one energy store with integral causality and therefore the 

state space equations will have just one state as shown in Equation 3.21.

X\ — fin

y = xi (3.21)

where, x\ represents the state variable' (the generalised displacement), and is equal to the

integral of the input velocity fin, and the output y is equal to xi  (as expected).
' Note the choice of state variables is not unique and a change of variables can be performed by an appropri

ate transformation [45] q. However, all state variables used within this thesis will be generalised displacements
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Bond graph models are often non-linear. However, many of the useful tools for system 

analysis and control rely upon linear models. The models of mechanical systems, through 

the use of non-linear geometric transformations, are inherently non-linear and hence the 

non-linear to linear transformation will now be discussed.

3.9 Bond Graphs and Linearisation

As already stated, bond graph components, and hence system models, maybe linear or 

non-linear in nature. Hence it is possible, in fact generally desirable, to create non-linear 

models of physical systems using all the advantages that the bond graph methodology of

fers (hierarchical, energy based, unambiguous, etc.). These models can then, via a suitable 

transformation, be linearized about some operating point. This is particularly useful when 

modelling mechanical systems, such as multi-stage pendula, which through the use of ge

ometric transformations, are inherently non-linear. Moreover, it is good practice to create 

non linear models, from non linearised subcomponents, and then linearise the total system 

model about some operating point, rather than create system models directly from linearised 

subcomponents. This is because the linearisation of individual components may result in 

loss of important system dynamics which are only manifest in the complete non-linear sys

tem model. The linearization processes consists of two stages:

• finding the steady state

• performing the linearisation

Determining the steady state algebraic equations, for a system model, is often the most 

difficult of these stages. Taking a generic non-linear state space representation of a system, 
(q)  and generalised momenta (p). State equations w ill, in general, be displayed, with x i , X 2 . .  - Xn  replacing 

individual p ' s  and q' s ,  and an accompanying legend w ill relate appropriate state variables to individual com po

nents/states.
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i.e. an explicit set of first order differential equations, of the form:

x(t) =  f(x (t),u (t)) 

y(t) =  g(x(t),u(t))

(3.22)

(3.23)

where, x(t) is an x 1 state vector, u(t) is an x 1 vector of inputs, y(t) is an x 1 

vector of outputs. The steady state solution implies that x =  0. Thus the steady state 

solution corresponds to x =  xq, and u =  uq such that

/(xo,uo) =  0 (3.24)

The linearised approximation of the non-linear system is achieved via a first order Taylor 

series expansion, about the steady state:

Ax(t )  = AoAx(t )  -I- BoAu(f) (3.25)

y(t) = CoAx(f) -I- DoAu(i) (3.26)

where Ax(t)  and Au(t) are the small disturbances about the operating point of xq and uq.

Ax = x(t) -  xo (3.27)

Au = u{t) -  uo

(3.28)

and the matrices Aq, Bq, Cq and Dq are Jacobian matrices evaluated at xq and uq, that is

r 
<̂7X1 ^  •••• ^

Ao|xo,uo —
(7X1 ^  •• •• là ’

_ d x \
d f n
0 X 2

d f n
d X n

d q \
O X i

d g \
0 X 2

d g i
O X n

Co|xo,uo —

d g \
<7X1

d g \
6 X 2 "  O X n

^O|xo,uo —

XO,UQ

xi ax2

dix
Xrx

d J n  d f a  d f n
0 x 7  0 X 2 ■■■■ a x n

dan dçn 
.  o x I  0 X 2

dan 
dXn -

D O |xo ,uo

xo.uo

-̂91 dig I 
d x \  0 X 2

d g i  d g x  
d x \  0 X 2

O X n  J

(3.29)

#21
dXn

Xo.uo

bxn

dan dan 
.  d x \  0 X 2 O X n XO,UQ

(3.30)
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Where A q is an x n̂ ;, Bo an n̂ ; x n„, C q an % x nâ , and D q an x Uu matrix.

It should be appreciated that all the bond graph multi-stage pendula models contained 

within this thesis are non linear. When creating alternative linear representations of the 

core bond graph model, via appropriate transformations (see Section 3.8), linearisation will 

be performed, by MTT, on the non-linear model as necessary.

3.10 Conclusions

In this chapter the bond graph modelling technique has been introduced and a simple com

pound component used to illustrate the methodology. In the following chapters the method

ology will be used to construct complex hierarchical models of multi-stage pendula in a 

modular fashion. These models will then be used to create physical controllers designed 

within the bond graph domain. Which will in turn be evaluated on a physical system.
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Chapter 4

2-Dimensional Bond Graph 

Pendulum Models

4.1 Introduction

This chapter details the bond graph model of a multi-stage pendulum. The goal was to 

produce an easily extensible model that would facilitate the investigation of various system 

configurations and aid rapid development of control laws.

From the outset the aim was to exploit the hierarchical nature of bond graphs to produce a 

library of components, that a subsequent user could easily configure to produce models of 

various complexities. With the end user in mind, the purpose of this chapter is to detail not 

only the specifics of individual model components, but also to form the basis of a tutorial.

The model was developed using a bond graph manipulating software package MTT' (Model 

Transformation Tools). Although any bond graph component presented in this thesis is not 

explicitly dependent upon this software package, its use is recommended. This is because 

a library of pendulum components, compatible with MTT, already exist [46]. Therefore an 

end user already has, “at his/her finger tips”, all the necessary tools needed to investigate
^This, freely available software package, can be found at www.sourceforge.net/projects/mtt. It can be used 

with any Linux or U nix based operating system.
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the behavior of multi-stage pendula. It is assumed that a user will employ MTT  ̂to caiTy 

out their analysis, and as such the use of pendulum models will be demonstrated with this 

in mind.

MTT is well documented, and a manual that accompanies the software is available at the 

same repository as the software. As such, only those aspects of MTT usage that are directly 

relevant to the construction and analysis of pendulum models will be detailed here. It is 

assumed that relevant software packages (Reduce, Octave, xfig etc) are all available to the 

user and the user knows how to invoke the MTT interface. MTT can be run in a command 

line or (menu driven) windows environment. In this thesis MTT examples will be illustrated 

using the command line interface. Examples of MTT usage are presented using the ty p e 

w r i t e r  typeset. (New users should, in the first instance, execute the command m tt  as this 

will present the user with information on general MTT usage and options.

Bond Graphs are constructed using the xfig computer graphics program and have file 

names of the form Com ponentN am e^bg. f  ig^, (abg means acausal bond graph 

(see Chapter 3)).'' Each ComponentName_abg. f  ig  file has an associated Compo- 

n e n tN a m e -lb l. t x t  file. This is a label file that contains information about components, 

their constitutive relationships and associated parameters. Aliases are also declared within 

the I b l  file and will be discussed later. For each of the predefined pendulum components, 

appropriate I b l  files exist. Hence there should be no need for an end user to edit these files. 

However, if a new top level bond graph is required, say a triple pendulum, or a new mass 

component, then a new bond graph will need to be generated and therefore an associated 

I b l  file created/edited. To illustrate the various nuances of these I b l  files a selection will 

be presented within the general discussion of their associated abg  files. Having perused 

these, users should have no problems creating new system models.

^Naturally, as MTT undergoes continuous development, certain features detailed here may have changed 
within the current version. However the files pertaining to the components detailed within this thesis stand alone 
in the sense that MTT is backwardly compatible. Hence the user may use the bond graph m odels contained here 
to gain a feel for bond graphs and MTT and then consult the latest documentation for any developments. M odels 
contained within this thesis were developed using MTT version 4.7.3

^Bond graphs shown within this thesis are postscript versions o f the original .fig files 
acausal is a misnomer in the sense that should a preferred causality be desired then causal strokes maybe 

applied by the modeller at this stage. However if  no causal strokes are applied, MTT (by default) w ill attempt 
to m axim ise integral causality and w ill only prompt the user if  there is a causal conflict.
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4.2 The Model

As stated in Chapter 3 the bond graph methodology is hierarchical in nature, enabling the 

construction of complex systems in a modular fashion. Bond graphs can fully exploit mod

ularisation due to the acausal nature of individual components. Remember that bond graphs 

are equation not assignment based. Hence, in general, one bond graph component can rep

resent an individual system component no matter the input output configuration, Tliis is not 

possible with the assignment based methodologies where an individual component is only 

re-usable if the causality is fixed (Causality is discussed in Section 3.6).

The elements of the 2-dimensional multi-stage pendula are detailed in the following sec

tions. First a top level (or level-0) bond graph of a double pendulum is presented. This top 

level bond graph is constructed from a number of subcomponents, starting from this top 

level, each component (level-1) will be taken in turn and its properties, along with those of 

any associated subcomponents (level-2 and deeper), will be detailed.

4.3 A Double Pendulum Bond Graph

Figure 4.1 shows a schematic, and bond graph, of a two dimensional double pendulum. The 

main components of this bond graph are, Wire, Two Wires, UpperMass, and TestMass, 

which are in turn constructed from further subcomponents. The half arrows are vector 

bonds, in each case they represent three bonds carrying the elfort and flow variables associ

ated with the X, Y and angle (henceforth angle will be denoted by the symbol ©). Here, X 

and Y are the horizontal and vertical coordinates respectively and © is the angle of rotation 

as measured from the Y axis. The bracketed terms, [in] and [out], are vector port labels. 

They are markers that inform MTT as to which bonds of the subcomponent the vector bond 

should be associated with, and are declared within the I b l  file of the subcomponent. For 

example, within the label file of Wire the following lines of text must exist:-

% ALIAS in x_in, a_in,y_in
% ALIAS out x_out, a_out, y_out
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Figure 4.1: Double pendulum schematic and bond graph

Remember the declaration occurs in the subcomponent and denotes that an external vector 

bond named [in] connects to the SS (see Section 3.4.1) components SS:[xJn], SS:[aJn] 

and SS:[yJn] of the subcomponent Wire.

This is the first of three forms of aliasing and is known as Port Aliasing (see Figure 4.2 for 

a general description), the other forms are component and parameter aliasing and will be 

covered later.

Should a user require alternative system models a top level bond graph, similar to that shown 

in Figure 4.1, should be created using xfig and saved as YourModelName^bg . f  ig. 
Here an existing bond graph can be edited or by executing the following command:

prompt > mtt ComponentName abg fig

an xfig window will open. Within this window a new bond graph can be created from 

a library of MTT components -  just click on the library icon, click on the “not loaded” 

button, and then choose the “basic” option. This will load a set of objects that facilitates the 

creation of consistent bond graphs. Care should be taken when constructing models, bonds
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Component_abg.fig

SS:[inJ

/[n a m e ] y '  
SubComponent:name

[anothemhmcj

SS:K)ul]

named port connects 
to SS component of 
same name

Subcomponent_abg.fig (single 
SS:(name] port)

Other Bonds And 
Components Here

SS:[anothemamc]
A

named SS component 
defines port name

Remember port aliasing is allowed and is declared within the Ibl 
file of the subcomponent and takes the fo rm :- |

% ALIAS Newname Oldname

For example: % ALIAS yetanothemame anothemame
would allow the user to connect the external bond with the named 
port [yetanothemame] to the named component SS:[anothemame]

Subcomponent_abg.fig (vector SS:[name] 
SS:[Vnamc]

[1.2....J1]

Other Bonds And 
Components Here

\y . n]

SS:[Vanothemame]

Vector SS:[Vname] ports can be declared
as shown above. Where [1,2 n]
indicates the number of ports to be 
associated with the vector.

In the Ibl file of this component the 
following line(s) must appear. It declares the 
name(s) given to the external vector port.

% ALIAS Vname V name_ 1, V name_2 Vname_n
% ALIAS altname V nam e_l.Vnam e_2...... Vname_n

Figure 4.2: The SS bond graph component and the use o f named ports, port aliasing and 

vector bonds

are associated with a particular component be calculating the geometric distance from a 

bond to a component. If the user is not careful with the placement of bonds, relative to 

components, ambiguities may arise.

Having generated a bond graph the user should issue the command

prompt > mtt ComponentName Ibl txt

MTT will then generate an appropriate I b l  file. MTT creates, not only the C o m p o n en t-  

N a m e - lb l . t x t  file, but also a new directory MTT_Work, this directory contains all the 

intermediate files generated by MTT during the execution o f an MTT command. At this 

stage the user need not concern themselves with the details o f this directory.

The label file for Double (substituting Double for ComponentName) can be seen in Ta-
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%% Label file for system Double (Double_lbl.txt)
%SUMMARY Double
%DESCRIPTION <Detailed description here>

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% %% Version control history 
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% %% $Id$
% %% $Log$
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Port aliases 
}
% Argument aliases

%% Each line should be of one of the following forms :
% a comment (ie starting with %)
% component-name cr_name argl,arg2,..argn
% blank
% ---- Component labels ----

% Component type UpperMass
mass_l none m J : jJ ; g ;h u J ;h L I ; h r .] : v u J ;v lJ ; v r J  

% Component type TestMass
mass_2 none mJ2;jJ2;g;hlJ2;hr^;vlJ2;vrJ2

% Component type Wire
suspens ion_l none L l ; k . l  

% Component type TwoViolinWires 
suspens ion_2 none

Table 4.1: DoubleJbl.txt: Double pendulum label file

ble 4.1. The text in t y p e w r i t e r  typeset is automatically generated by MTT and the 

italicised text is supplied by the user. At this top level all the user need do is fill in the 

italicised text, as appropriate for individual models. As can be seen, MTT creates a new 

line for each component. Associated with each component are two fields; the first declares 

the constitutive relationship and the second is a list of parameters. Examples are given in 

Table 4.2.

component name field 1 (constitutive relationship) field 2 (parameters)

m ass.l none m_l ;j_l;g;hu_l ;h l.l ;hr_l ;vu_l;vLl ;v r.l

suspension, 1 none l_2;kJZ

Table 4.2: Form of the information fields for a top level bond graph

The examples given within Table 4.2 are the exact format for all component I b l  files where 

no explicit constituent relationship is given (i.e none). The list of parameters, separated by
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are precisely those required to pass parameters to subcomponents. This is the simplest 

form of the I b l  file; further nuances of the I b l  file are covered later.

This fully details the top level bond graph. In the following sections individual components 

are detailed.

4.4 Support

The bond graph of an idealised pendulum support can be seen in Figure 4.3 and it’s associ

ated label file in Table 4.3. This component is used to provide the boundary conditions at 

the top of the pendulum. That is, zero velocities are applied at the upper end of the pendu

lum suspension element. Moreover, it also provides a point at which disturbances can be 

injected into the model.

%% Label file for system Support (Support_lbl.txt)
%SUMMARY Support
%DESCRIPTION <Detailed description here>

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% %% Version control history 
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% %% $Id$
% %% $Log$
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %

% Port aliases 
% ALIAS in\top x - s ,a ^ ,y s

% Argument aliases

%% Each line should be of one of the following forms :
% a comment (ie starting with %)
% component-name cr_name argl,arg2,..argn
% blank

% ---- Component labels ----
% Component type SS

x_s SS internal,0
a_s SS internal,0
y_s SS in tem a W
[x_s] SS external,external
[a_s] SS external,external
[y_s] SS external,external

Table 4.3: SupportJbl.txt: Support label file

54



SS:x_s SS^_s SS;y_s

/  /  1/  
SS:[x_s] SS:[a_s] SS:[y_s]

Figure 4.3: Bond graph of an idealised pendulum support 

Points to note here are:

1 SS:[ijs] (where i=x, a or y) : are [named] SS components. These act as interfaces be

tween the internal bonds of a compound component and bonds external to the com

ponent. If an internal bond has a named SS component (i.e. SS:[name]) then this 

defines the name of that port (i.e [name]) and an external bond, connecting to this 

port, has the port label [name] (that is with SS: removed). Naturally the user may 

define aliases as detailed in Figure 4.2.

2 SS:i,s : are SS components which define the extent of the overall system model

3 Causal strokes have been assigned to each bond, providing the system with flow in

puts (velocities and angular velocity), and therefore effort outputs (forces and torque). 

These causal strokes result in integral causality for mass inertia elements. Applying 

effort causality to one or more bonds will result in one or more inertia elements having 

differential causality.

4 In the file Support_lbl .txt components each of the SS:[i,s] and SSrijs have 

been declared. Each of these components uses the SS constitutive relationship (CR). 

Associated with this CR are two information fields: The first is associated with the 

effort variable and the second with the flow variable. These fields can take a number 

of forms, which are detailed in Table 4.4. For each of the SSrijs components the 

variable internal has been assigned to each of the effort fields and the numeric 

value 0 for each of the flow fields. These declarations suppress the effort output and

55



argument meaning

external 

internal 

a number

a symbol (e.g m_l*g)

unknown

zero

denotes an input or output

suppress output (not to be used with inputs)

numerical input or imposed output

symbolic input or imposed output

used to solve algebraic loops.

used to solve algebraic loops.

Table 4.4: Table o f possible SS field arguments 

impose zero velocities (i.e. the support is stationary).

4.5 A Bond Graph of a Two Dimensional Mass

In this section, a physical three dimensional mass is to be modelled as a two dimensional 

mass. As such the idea of correspondence between suspension points between the two and 

three dimensional masses need to be defined: This correspondence can be seen in Fig

ure 4.4. Here a three dimensional mass with six suspension points can be seen. This has an 

equivalent 2-dimensional representation with three suspension points.

In isolation, each mass element has three degrees of freedom (two orthogonal linear and 

one angular). However, individual masses are constrained by wires and hence the point at 

which a wire is attached plays a critical role in the resultant dynamics of the mass. The 

suspension point, and its associated transformation, relates the force and velocity at the 

point of attachment to the force and velocity at the centre of mass. Each mass requires the 

position of each suspension point to be defined, and hence a mass element is not generic; 

each mass component is uniquely defined by its number of suspension points. However, a 

number of mass components have been created: A TestMass with two suspension points, an 

UpperMass with three suspension points and an IntermediateMass with four suspension 

points. These cover the range of mass types, as currently used by GEO 600. However, 

having read the rest of this section, a user should have no problems creating alternatively
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3 -D im e n s io n a l M ass  
W ith  Six S u sp en sion  P oin ts

E q u iva len t 2 -D im e n sio n a l M ass  
=>  T h ree  S u sp en sion  P oin ts

Figure 4.4: The correspondence between the number of suspension points associated with 

a physical three dimensional mass and its two dimensional model

configured mass elements. The bond graph of the upper mass is now detailed.

4.5.1 The UpperMass Bond Graph Component

The bond graph of the upper mass component is shown in Figure 4.5, and as can be seen 

there are three vector SS:[named] components (SS:[up], SS:[dl], SS:[dr])^, each vector is 

comprised of three bonds, one for each of the X, 0  and Y coordinates ([1,2,3] respectively). 

Each vector bond carries the co-variables relating to individual suspension points (upper, 

lower left and lower right). These connect to appropriate ports of the subcomponent Up- 

perMassSusp. This subcomponent transforms the effort and flow variables at a suspension 

point to effort and flow at the centre of mass. A full description of this subcomponent is de

tailed in the next subsection. A further four ports exist at the component UpperMassSusp, 

three of these, [x_cm,a_cm,y_cm], are the centre of mass ports, one each for the X, 0  and Y 

coordinates. These are in turn connected to individual 1 junctions. Remember a 1 junction 
^vector SS ports are explained in Figure 4.2
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[1A3II__________

Figure 4.5: The bond graph component UpperMass

has a common flow input and efforts =  0. At each junction an effort store (I component) 

(I:m_x, I:j, I:m y), with integral causality, provides a state to the overall system model, and 

imposes the appropriate flow variable on their respective 1 junctions.

These inertia components (I) correspond to the three degrees of freedom for a two dimen

sional mass. Note that as part of a system model a mass component may be constrained such 

that one or more of the I components has differential causality, i.e. that energy store is no 

longer independent, and hence there is a corresponding reduction in the number of degrees 

of freedom possessed by the mass. However the same mass component is used no matter the 

causal arrangement: Thus exemplifying the re-usability of bond graph components under 

differing causal configurations.

In addition to the inertia components (I), each of the 1 junctions is augmented with a con

trol input (SS:cont_x etc) which provides an interface for control forces (bond graph control
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synthesis is discussed in Chapters 6 and 7). A further bond (SS:mg) appears at the 1 junc

tion associated with the Y coordinate, this source/sensor component imposes the force due 

to the gravitational attraction of the Earth on the mass. Finally there is an INTF component 

(Section 3.7) attached to the 1 junction with the conjoined I:j component and is used to in

tegrate the flow variable without imposing a corresponding “back” effort. Here the INTF:a 

component integrates the angular velocity to give the angle through which the mass has 

rotated. This variable is required for use within the effort modulating transformers found 

within the subcomponent Coord Trans (see Section 4.5.3) and to this end the [theta] port 

is provided at the UpperMassSusp component (as will be seen UpperMassSusp contains 

three instances of Coord Trans) The UpperMassSusp component will now be discussed.

4.5.2 The Bond Graph Component UpperMassSusp

tin ] j.Y  ^  

CoordTrans:up
[o u t]

[th e ta ]

CoordTran^:dl
[o u t]

[ W \
S S :[1.2,3]^

S S :[su sp d I]

cm ]

Figure 4.6: The bond graph component UpperMassSusp 

The bond graph UpperMassSusp can be seen in Figure 4.6. Most of the structure of this
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bond graph should now be familiar to the user. Apart from the new component CoordTrans 

the only other new element is the MTT vector junction 1 ,̂ denoted by the label [1,2,3]- Here 

four vector bonds converge on the 1 junction. The label [1,2,3] is a marker for MTT and sig

nifies that each vector bond, converging on the junction, consists of three bonds. These three 

bonds are just those associated with the X, 0 and Y coordinates ([1,2,3] respectively). This 

vector junction with its associated vector bonds is equivalent to the bond graph structure of 

Figure 4.7, but is clearly easier to comprehend.

Upper Siapenalon Polnl 
SS :|« .lnJ

S&(,_dl] ---------
lyower Left S tupcm ioa Point

--------------y  d ri

ix>wer Right SuspcnKion Point

Figure 4.7: The equivalent structure of a vector 1 junction as used within component Up

perMassSusp

Turning to the component CoordTrans, this is the key to the successful implementation 

of a mass element constrained by suspension wires. The position of a wire suspension 

point, relative to the centre of mass, is fundamental to the resultant dynamics of the system 

model. Fortunately, because the model is modular, it is not necessary to determine how the 

overall topology of the system effects the dynamics of an individual mass element. All that 

is necessary is to determine the correct transformations between co-energy variables at a 

suspension point to co-energy variables at the centre of mass. Having created a bond graph 

of this transformation it is simple, as will be demonstrated, to include as many suspension 

points as is necessary to model the system correctly. The correct transformation, and bond 
^Naturally a similar vector 0 junction is permitted.
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graph implementation, now follows.

4.5.3 The Bond Graph Component CoordTrans

Horizontal Offset

Vertical Offset

(0 , 0)

(0,0)

Figure 4.8: Definition of coordinate system

The fundamental elements of transformers and transformations, within the context of bond 

graphs, were discussed in Section 3.6.1. In this section it will be shown how the geometric 

transformation, required to correctly model 2-dimensional mechanical systems, is generated 

in the bond graph domain.

Referring to Figure 4.8 letp represent the position of a suspension point. Then h and v, the 

horizontal and vertical offsets of the suspension point respectively, are given by:-

h = r sin(0) 

V = r cos(0)

(4.1)

Now if the point p is rotated through an angle 6 ' about the centre of mass the new position
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is given by:-

Xp' = r  sin(0 +  0 ') = /i cos(0')-I-u sin(0') (4.2)

yp' = r c o s { 9 9') = —h s'in{9') + V cos{9')

Combining this motion with pure translational motion of the centre of mass gives:-

Xp" = Xcm + h cos{9') + V sin{9') (4.3)

Up " = Vcm -  h sin(0 ') + u cos(0 ')

where Xp " and yp ” are the points Xp ' and yp ' of the moving frame expressed in the absolute 

frame, X cm and ycm  are the x and y  coordinates of the centre of mass with respect to the

absolute coordinate system. Taking the time derivative of these equations results in a pair

of equations relating the angular and translational velocities, at a point in a rigid body, to 

the angular and translational velocities at its centre of mass, i.e (dropping ' from 9 ') the x 

and y  components of velocity, at the centre of mass are:

Xcm = ip  + h sin(0)0 -  v cos{9)9 (4.4)

ÿcm  = ÿp + h cos{9)è -f V sin(0)0

This transformation is embodied in the bond graph of Figure 4.9.

Here the component EMTF (Effort Modulating Transformer) is an elemental MTT compo

nent, where “Effort Modulation’’ relates to the bond marked [mod]. This bond carries the 

modulating variable (in this circumstance 9 - the angle through which the mass has rotated) 

as the effort variable. Each EMTF has a constitutive relationship that relates the output 

flow to the input flow variable in one of two ways, either

fout ~   ̂t^Os{9)fin

or

fo u t  =  l s i n { 9 ) f i n  (4.5)
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Upper Suspenion Point 
SS:[aJn|

EMTF:hs ITF:hc

EMTF:vc_ lTF;vs

ImodI

SS:[x_out]

SS:|tbeta|

Figure 4.9: Transformation relating suspension point velocities to centre of mass velocities. 

Points to note are:

• For each EMTF component the choice of CR is indicated by the component name 

(e.g EMTFrhs), where the first letter denotes whether the h (horizontal offset) or v 

(vertical offset) should be substituted for /, and the second letter indicates whether 

the sin or cosine variant of CR is used.

• In each case the input flow (fin) is Ù (angular velocity) the sign of which is evident 

from the direction of the bond.

• The corresponding relationship between the effort input and output variables is simply 

the transpose of the matrix relating the input and output flow variables (conservation 

of energy and transformation properties of junction structures -  Section 3.6.1).

• The signs of the parameters h and v are precisely those given for a Cartesian coordi

nate system with the centre of mass as the origin

It is possible to use MTT to check the consistency of components. This will be illustrated

63



by producing the ordinary differential equations for the CoordTrans. The first task is to 

check that MTT is able to create the CoordTrans^bg. m by issuing the command:

prompt> mtt -I CoordTrans abg m

This creates an m file of the ComponentName_abg. f ig .  The -I switch prompts MTT to 

return extra information. As MTT carries out the command, information will be displayed, 

and should an error occur an appropriate error message will appear. The user will then 

need to check the acausal bond graph and/or the I b l  file for errors. Assuming all is okay, 

execute the command

prompt> mtt -I CoordTrans cbg m

MTT will attempt to complete causality, by default integral causality is imposed and natu

rally if MTT is unable to complete causality it will return an error message. Causal conflicts 

should be resolved as detailed in Section 3.6. (Since CoordTrans has no energy storage 

ports, causal strokes, appropriate for force inputs at the centre of mass, were applied.)

Having successfully completed causality, issue the command

prompt> mtt -I CoordTrans struc tex (or view or txt)

this generates the structure file for the component CoordTrans where tex, txt and view 

will produce files of the form CoordTrans_struc . tex, CoordTrans-struc . txt 
or CoordTrans-Struc . dvi respectively (again view will produce a new window con

taining the CoordTrans-Struc . dvi file) .̂ The two tables that form the CoordTrans 

structure file can be seen in Table 4.5. Generally a structure file consists of four tables, 

listing the system inputs, outputs, states and non states respectively (remember non states 

are produced when a bond graph energy port has derivative causality). However since Co

ordTrans has no states or non states these tables are redundant. These tables are not the

exact files as generated by MTT, the names in brackets have been added for clarity.
’ Both of the ode and struc for the C o o r d T r a n s  files are MTT generated tex files
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List of inputs for system CoordTrans
Component System Repetition

1 x_in (Velocity) CoordTrans 1
2 a_in (Angular Velocity) CoordTrans 1
3 y-in (Velocity) CoordTrans 1
4 x-out (Force) CoordTrans 1
5 a-out (Torque) CoordTrans 1
6 y-Out (Force) CoordTrans 1
7 theta (Modulation Variable) CoordTrans 1

List of outputs for system CoordTrans
Component System Repetition

1 xJn (Force) CoordTrans 1
2 aJn (Torque) CoordTrans 1
3 yJn (Force) CoordTrans 1
4 x_out (Velocity) CoordTrans 1
5 a-Out (Angular Velocity) CoordTrans 1
6 y-Out (Velocity) CoordTrans 1
7 theta (0) CoordTrans 1

Table 4.5: The structure files for the CoordTrans component

Now create the ordinary differential equations by issuing the command:

prompt> mtt -I CoordTrans ode view

this will create a dvi file C oordTrans_ode . d v i and should automatically produce a new 

window displaying the file containing the ordinary differential equations (ode’s). The ode’s 

for the CoordTrans are shown in Equation 4.6. Note that because there are no dynamics, 

these are algebraic equations.
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yi =  U4

y2 = (hue — U4 V) cos (uy) +  W5 + {hu4 + U q v ) sin (uy)

2/3 =  W6

j/4 =  sin [u’j)hu 2 4- wi — cos {u'j)u2 V (4.6)

2/5 =  U2

ye =  sin {u7 )u2 V +  U3 +  cos {u7 )hu2 

2/7 = 0

Notice, with reference to Equation 4.6 and Table 4.5, that velocity outputs y4 and y 6  cor

respond to the Equations of 4.4 and that y2 (the torque) has, due to kinematics and energy 

conservation, been automatically generated [43]. Hence, although the coordinate trans

formation was developed via the transformation of input and output velocities, the bond 

graph methodology correctly generates the force equations (see Section 3.6.1). Moreover, it 

should be appreciated that the causality, as used to generate the odes of Equation 4.4, is not 

unique. Yet the same bond graph component is used independent of the imposed causality.

This covers the components that make up the UpperMass component. The only difference 

between the UpperMass, TestMass and IntermediateMass components are the number of 

suspension points. Moreover, following this introduction, a user should be in the position 

to produce masses with any number of suspension points.

Having created the bond graph component UpperMass, the next stage is to create the label 

file. Table 4.6:

prompt> mtt UpperMas Ibl txt

Again MTT automatically creates the text in the typewriter typeset and the italicised 

text must be supplied by the user. Points to note are:

• Vector ports have been declared (as explained in Figure 4.2 -  port alias declarations).
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%% Label file for system UpperMass (UpperMass_lbl.txt) 
%SUMMARY UpperMass
%DESCRIPTION <Detailed description here>

% %% Version control history 
%

% %% $ld$
% %% $Log$

% Port aliases
%ALIAS up u p - 1 ,  up^ 2 ,  up_3
%ALIAS d l d l - 1 , d l . 2 , d l . , 3
%ALIAS d r d r - 1 , d r - 2 , d r . 3
%ALIAS i n u p - 1 , u p - 2 , u p -3
%ALIAS o u t d l - 1  , d l - 2 ,  d l - 3 , d r - 1 , d r . 2 , d r . 3
% Argument aliases
%ALIAS $1 m . l
%ALIAS $ 2 j - 1
%ALIAS $3 g
%ALIAS $4 h u - l
%ALIAS $ 5 h l - 1
%ALIAS $ 6 h r . l
%AL1AS ^7 V U - 1

%ALIAS v l - 1
%ALIAS $ 9 v r . l
%% Each line should be of one of the following forms
% a comment (ie starting with %)
% component-name cr_name argl,arg2,..
% blank
% ---- Component labels ----
% Component type I

j lin f lo w J J
m_x lin flow ,m -l
m_y lin f lo w ,m J

% Component type INTF
X

a
y

% Component type SS
[up] SS external,external
[dl] SS external,external
[dr] SS external,external
x_cont SS external, i n t e r n a l
a_cont SS external,i n t e r n a l
y_cont SS external,i n t e r n a l
x_disp SS e x t e r n a l , 0
theta SS e x t e r n a l , 0
y_disp SS e x t e r n a l r 0
mg SS m-1 * g ,  0

% Component type UpperMassSusp
tf none h u J ; h L l;h r . l ; v u J ; v L l; v r J

Table 4.6: UpperMassJbl.txtfile
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Notice, the component declarations are similar to those of D o u b le _ lb l . tx t  

(Page 53. However here the constitutive relationship “lin” is declared*. This is a 

standard linear constitutive relationship, predefined within MTT, requiring two ar

guments. The first argument gives the name of the input variable and the second a 

named gain. Examples are given below.

arguments equation example

I flow,m state=m x flow P=mv; momentum = mass x velocity

C state,k effort=kx state F=kx; force = kx displacement

R effort, 1/r flow = p X effort i=v/r; current= voltage/resistance

• Notice that arguments needed by a CR (i.e lin here) are separated by whereas 

arguments passed to another component (i.e where the constitutive relationship field 

is declared as none) are separated by

• Components, such as INTF, where no CR is declared, default to a linear CR with 

gain of 1.

• SS components all use the SS constitutive relationship. The possible arguments for 

the two information fields were discussed in Section 4.4 and displayed in Table 4.4 

(Page 56).

• Argument aliasing is utilised. This allows parameters, contained within a higher level 

bond graph I b l  file, to be passed to a lower level bond graph. For example, in the 

D o u b le _ lb l. t x t  file the line (associated with the UpperMass) appears

mass-l none m_l ; j_l; g. , .etc
field 1 field 2

where the second field contains a list of the parameters needed by component Up

perMass. These are passed to UpperMass in the order shown, that is m_l is asso

ciated with $1, j_l with $2, etc. Although each $number declaration, of Upper- 

Mass_lbl. t x t  has the same name as those that appear in the higher level Dou- 

ble-lbl. t x t  file, this is not necessary. In fact these are just dummy arguments
®NB: As of writing this thesis the method by which a user declares constitutive relationships is undergoing 

a major rewrite. Therefore one should check the user manual.
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which correspond to the same named parameters found later within the U pper- 

M a s s - lb l . t x t  file. These dummy arguments are replaced by the named param

eters of the higher level component. Hence multiple use of the same component is 

permitted within a bond graph, whereby appropriate named parameters are passed 

from the higher level bond graph to the subcomponent. Each subcomponent will then 

have a unique set of parameters.

The wire component will now be discussed.

4.6 Construction of a Wire Bond Graph

The Wire component is a complex system and as such only a simplified wire model will be 

presented here. Chapter 5 gives a full description of the Wire component’s development. 

The Wire component presented here is deemed to be a semi-rigid wire. It is modelled to 

have linear extension but does not include bending dynamics or transverse (violin) modes.

4.6.1 Modeling a Semi-Rigid Wire Component

The important characteristics of a wire suspension, in terms of restoring forces, are the angle 

the wire makes with the vertical, and the change in it’s length. The first task of any bond 

graph model should be to determine these.

First consider two points (A and B) as shown in Figure 4.10. Their respective positions are 

given by the following set of equations

— 2 +  ^cm  (4.7)

Y a  — ^  COS(0) +  Y cm

X q =  — I sin(0) 4- Xcm

Yb  =  — 4 cos(^) 4- Xcm
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centre of mass

Figure 4.10: Geometry of a wire 

and hence their velocities are given by:-

X a = \[l cos{0)9 + i sin(0)] +  Xcm (4.8)

Ÿ a  —  — ^ [ / s i n ( 0 ) 0  —  /  c o s ( 0 ) ]  4 -  Ÿ c m  

X b = cos(0)0 4-/sin(0)] 4-Xcm

Yb = \[l sin(0)0 -  I cos(0)] 4- Ÿcm

which can be simultaneously solved for 0 , the time rate change of the angle, and I, the time

rate change of the wire length.

A x cos{6 ) — Ay  sin(^)
0  = I
i = A x  cos{9) 4- A y  sin(^) 

Where A x  = x a ~ xb  and A y = yA ~  i/B-

(4.9)

(4.10)

Hence, via integration of these variables, the angle and wire extension are generated. The 

(black) bonds contained within the dashed border of Figure 4.11 form the bond graph reali

sation of Equations 4.9.

Having created this component, various subcomponents can be embedded within it to gen

erate any necessary dynamics. These may include violin modes, restoring forces due to

70



INTF:theta

SS:[>Jn|

TF:I

Ax

llinext]

[mtxlK
EMTF:clEMTFrsa
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Figure 4.11 : Bond Graph of a wire element

linear extension and bending dynamics. The simplest of these is the restoring force due to 

linear extension. This is incorporated by the creation of the bond graph component LinExt, 

with the form shown in Figure 4.12. This simplified model may be replaced by more so

phisticated subcomponents (Chapter 5).

4.6.2 The bond graph component LinExt

S S :[an sn la r_ a |

\
SS:(liiM ar] ------------------ y  0 0 SS:zero

\
S S : |B n |n b ir .b |

Figure 4.12: Bond graph element that provides restoring forces due to linear extension 

The bond graph component LinExt can be seen in (Figure 4.12). The 0 junction with the

71



%% Label file for system LinExt (LinExt_lbl.txt)=\\
%SUMMARY LinExt simply models restoring forces=\\
%SUMMARY due to linear extension=\\
%DESCRIPTION <Detailed description here>=\\

% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % = W  

% %% Version control history=\\
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%=\\ 
% %% $Id$=\\
% %% $Log$=\\
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % = \ \

% Port aliases
%ALIAS in\aua angular.a
% ALIAS out\aJ> angularJb
% ALIAS X  linear

% Argument aliases 
%ALIAS $1 k
%% Each line should be of one of the following forms 
% a comment (ie starting with %)
% component-name cr_name argl,a r g 2 a r g n
% blank

% ---- Component labels ----

% Component type C
c lin state, k

% Component type SS
[angular_a] SS
[angular_b] SS
[linear] SS
zero SS

external,external 
external,external 
external,external 

0, internal

Table 4.7: LinExtJbl.txt File

three bonds ensures that the angle of rotation of the mass and wire at the attachment points 

are not fixed, i.e it is as if the wire’s ends were attached by frictionless hinges. This is 

achieved via the named SSizero source/sensor component which imposes zero force (see 

Table 4.7) on the 0 junction.

Restoring forces, due to linear extension of the wire, are provided by the named flow energy 

store C:k. As stated in Chapter 3, a C component has a constituent relationship that relates 

the effort variable to (f>{q) (the general displacement) where q = f  fdt.  In the linear case 

e = ^q.  Thus, for a wire whose extension obeys Hooke’s law the Wire and LinExt 

components model the appropriate system dynamics.
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List of inputs for system Wire
Component System Repetition

1 aJn Wire 1
2 a.out Wire 1
3 x_in Wire 1
4 x_out Wire 1
5 y-in Wire 1
6 y-out Wire 1

List of outputs for system Wire
Component System Repetition

1 a_in Wire 1
2 a-Out Wire 1
3 xJn Wire 1
4 X-OUt Wire 1
5 yJn Wire 1
6 y-out Wire 1

List of states for system Wire
Component System Repetition

1 c Wire-wire 1
2 mtt3 Wire-theta 1

Table 4.8: The structure file for the Wire bond graph. Inputs are flows and outputs are 

efforts

4.6.3 Using MTT to check the consistency of this bond graph wire component

The structure file for the above detailed wire component can be viewed in Table 4.8. Here in

puts are flows (linear and angular velocities) and the outputs are efforts (forces and torques).

By executing the MTT command:

prompt> mtt -I Wire ode view

the ordinary differential equations, Equations 4.11 and 4.12, will be created for this wire 

model, which simply models the restoring forces due to linear extension.
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Xi = {U3 -  U4 ) sin (X2 ) +  ( « 5  “  We) cos (ccg)
{ { u s  -  U i )  cos { X 2 ) -  (W5  -  Ue )  sin(x2)) (4.11)

;

yi = 0  

V2  =  0

y 3 = sin {x2 )kxi
(4.12)

2/4 — sin {X2 )kxi 

2/5 =  cos {x2 )kxi 

2/6 — cos {x2 )kxi

Here, Xi are the system states {xi is the wire extension and X2 the angle the wire makes 

with the vertical), ui are the inputs, and 2/i are the outputs, as detailed in the Wire struc

ture file of Table 4.8. As can be seen x i and X2 suitably replicate the Equations of 4.9. 

Moreover, in accordance with the principles expounded in Section 4.5.3 and Section 3.6.1, 

the restoring forces are exactly those one would expect for this “simple” wire model. Also, 

the two torques (outputs 2/1 and y2 ) are, as expected, equal to zero (remember, the SSizero 

component, of component LinExt ensures this is the case).

4.6.4 The bond graph component TwoWires

For duel suspensions, the bond graph Twowires (Figure 4.13) is used. Here two instances of 

a single wire are combined to produce a single two wire component. This illustrates the con- 

stmction of a simple hierarchical bond graph component. The label file (TwoWiresJbl_txt) 

for this component can be seen in Table 4.9, Notice that in this I b l  file port alias state

ments in and out have been declared (a description of port aliasing is given in Figure 4.2). 

This results in a two port component with six vector bonds at each port. Hence, when used 

as a subcomponent of a hierarchical bond graph, such as the double pendulum model of 

Figure 4.1 (Page 51), a simple [in]/[out] declaration can be used to conjoin this component 

with others.

74



This then completes all the components needed to model a two dimensional double pen

dulum. The next section draws all these components together, illustrates some more MTT 

usage and compares the natural mode frequencies of a physical double pendulum with those 

generated by equivalent bond graph and Matlab models.

SS:[in_left] 
I W ]

SS:[in_right]
[ W ]

k
[in]

WireiLeft
[out]

k
[in]

WireiRight
[out]

[ U 3 i k
SS:[out_left]

/ w ]
SS:[out_right]

Figure 4.13: The bond graph component TwoWires

4.7 MTT and the Double Pendulum

MTT has many features, such as the ability to carry out model simulation, sensitivity analy

sis (experimental) and generate alternative system representations such as transfer functions 

and state matrices The procedure for generating state matrices, using MTT, will now be 

demonstrated.

Having checked that MTT can generate the Double_cbg .m file (i.e. the causally com

plete bond graph exists) the structure file for the double pendulum can be created using the 
^All these and other features are documented within the MTT manual
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%% Label file for system TwoWires (TwoWires_lbl.txt)
%SUMMARY TwoWires
%DESCRIPTION <Detailed description here>
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %  

% %% Version control history

% %% $Id$
% %% $Log$
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %

% Port aliases
% ALIAS in in_lef t„l, in_lef t_2 , in_lef t_3 , in_right_l, in_right_2, in„]:ight„3 
% ALIAS out out_left_l, out„lef t_2, out_lef t_3 , out_right_l, out_right_::, \ 
out_right_3 
% Component aliases 
% Argument aliases 
%ALIAS $1 1
%ALIAS $2 k
%% Each line should be of one of the following forms:
% a comment (ie starting with %)
% component-name
% blank
% ---- Component labels -■
% Component type SS

[in_left] SS
[in_right] SS
[out_left] SS
[out_right] SS

% Component type Wire
Left none
Right none

cr_name argl,arg2,..argn

external,external 
external,external 
external,external 
external,external

l;k
l;k

Table 4.9: TwoWiresJbl.txtfile
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command:

prompt> mtt -I Double struc view

Again, the structure file gives information about the inputs, outputs, system states and non 

states, and those corresponding to the double pendulum can be seen in Table 4.10.

The ordinary differential equations (ode) can be created and viewed by issuing the 

command:-

prompt > mtt -I Double ode view

This will produce the system ode’s. These are symbolic equations, although it is possible 

to supply simplifying equations/numerical values, such as defining trigonometric identities, 

via the SystemName_subs . r file, (see MTT documentation)’®.

The odes are used to determine the steady state of the system. The steady state is found by 

setting the state derivatives to zero and solving the resulting simultaneous equations for the 

states. Having solved these equations the results are passed to MTT via the sspar (steady 

state parameter) file. A prototype file is created via the command:

prompt> mtt Double sspar r

Where “r” signifies that this file is a reduce language file. The sspar {steady state parameter) 

file for Double (Double.sspar. r) can be seen in Table 4.11.

Initially all values are set to zero and the user should supply the relevant details. For this 

double pendulum the steady state values have been supplied corresponding to the extension

of the wires (MTTX13, MTT15 and MTT 17). Where MTTX13 represents state 0 :1 3 etc.
'“Basically the System N am e-Sub.r file is a Reduce file that is called by MTT whilst executing transforma

tions, such as ordinary differential equations, and can be used to change the expressions describing a system. 
These effect all system transformations. Alternatively, if  the same expressions are placed in the file System - 
Nam e_sim p.r only the representations in the M T^format are changed.
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List of inputs for system Double
Component System Repetition

1 act_l Double 1
2 act_2 Double 1
3 act_3 Double 1
4 theta Double 1

List of outputs for system Double
Component System Repetition

1 act_l Double 1
2 act_2 Double 1
3 act_3 Double 1
4 angle Double_mass„l 1

List of states for system Double
Component System Repetition

1 j Double_mass_2 1
2 m_x Double_mass_2 1
3 m_y Double_mass_2 1
4 mtt3 Double_mass_2_a 1
5 c Double_suspension_2_Left_wire 1
6 mtt3 Double_suspension_2_Left_theta 1
7 c Double_suspension_2_Right_wire 1
8 mtt3 Double_suspension_2_Right_theta 1
9 j Double_mass_l 1
10 m_x Double_mass_l 1
11 m_y Double_mass_l 1
12 mttS Double_mass_l_a 1
13 c Double_suspension_l _wire 1
14 mtt3 Double_suspension_l -theta 1

Table 4.10: The structure table for the double pendulum hierarchical bond graph
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% Steady-state parameter file (Double_sspar.r )
% Generated by MTT at Mon Oct 4 12:38:26 BST 1999

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% % Version control history 
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% % $Id$
% % $Log$
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Steady 
MTTXl 
MTTX2 
MTTX3 
MTTX4 
MTTX5 
MTTX6 
MTTX7 
MTTX8 
MTTX9 
MTTXl0 : 
MTTX11:= 
MTTXl2 : = 
MTTXl3 
MTTXl4 
MTTXl5 
MTTXl6 
MTTXl7 
MTTXl8

-state states
% Double 
% Double 
% Double 
% Double 
% Double. 
% Double. 
% Double. 
% Double. 
% Double. 
% Double. 
% Double. 
% Double 

g*(m_l+m_2) 
0; % Double 
(1/2)*g*m_2 
0 ; % Double 
(1/2)*g*m_2 
0 ; % Double

i_mass_l (j) 
i_mass_l (m_x)
_mass_l (m_y)
_mass_l_ang (mtt3)
_mass_l_x (mtt3)
_mass_l_y (mtt3) 
mass_2 (j)

_mass_2 (m_x)
_mass_2 (m_y)
_mass_2_ang (mtt3)
_mass_2_x (mtt3)
:_mass_2_y (mtt3)
/ (cos(MTTXl4)*k_l);%l_wire(c) 
:_suspension_l_theta (mtt3);
/ (cos(MTTXl6)*k_2);%2_Left_wire(c) 
i_suspension_2_Left_theta (mtt3)
/ (cos(MTTXl8)*k_2);%2_Right_wire(c) 
!_suspension_2_Right_theta (mtt3)

% Steady-state inputs 
MTTUl := 0; % Double.
MTTU2 := 0; % Double.
MTTU3 := 0; % Double.
MTTU4 := 0; % Double.
MTTU5 := 0; % Double.
MTTU6 : = 0 ; % Double.
MTTU7 := 0 ; % Double.
MTTU8 := 0 ; % Double.
MTTU9 := 0; % Double.
; ; END;

mass_2 
.mass_2 
mass_2 
mass_l 
mass_l 
mass_l 
mtt2 (x_s) 
mtt2 (a_s) 
mtt2 (y_s)

(x.
(a.
(y.
(x.
(a.
(y.

cont ) 
cont ) 
cont ) 
cont) 
cont) 
cont)

Table 4.11 : Double sspar.r file: The steady state parameter file for system Double

The forces corresponding to wire extension balance the weights of the masses. The relevant 

equations relating these forces are shown in Equation 4.13. These were taken from the set 

of system ode’s (for clarity others are not shown here as they do not effect the steady state).

Z3 =  cos {xe)k2 X5 cos {x8 )k2 X7 -  gm2 (4.13)

i l l  =  cos (xi4 )/i:ia;i3 -  cos (a:6 )A:2a:5 -  cos (a:8)A:2a:7 -  ^mi-I-U3
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Solving these for ia  =  i n  = 0  gives the equilibrium extension of each wire, which can 

then be appended to the steady state parameter file (Double_sspar_r). Here it has been 

assumed that wires supporting masses are symmetric, and hence the weight of the supported 

mass is evenly distributed between the wires. It should be appreciated that finding the sys

tem’s steady state is fundamental to generating the correct state matrices. This is because 

pendulum models, due to geometric transformations, are inherently non linear. Once the 

steady state has been determined a linearisation, as discussed in Section 3.9, can be per

formed. This linearisation will automatically be executed by MTT when transforming from 

the ordinary differential equations to other representations such as state space equations 

or transfer function. However prior to executing these transformations the supplied steady 

state values can be checked by executing the MTT command:

prompt> mtt -I Double ss view

“ss” denotes steady state and again view will present the file of the Double_ss. dvi in 

a separate window and thus the state derivatives can be checked to see whether they are 

exactly zero. For the sspar file above this is the case, and hence state matrices, transfer 

functions etc may now safely be produced.

prompt> mtt -I Double sm m

and

prompt> mtt -I Double tf m

produce state matrices and transfer functions respectively in the m file format (Mat- 

lab/Ocatve)” [47].

However before moving to Matlab or Octave a numerical parameter (numpar) file should 

be created.
"O ctave is a high level computer language , primarily intended for numerical computations and uses Gnuplot 

for graphics. It has a control toolbox and the syntax is mostly compatible with Matlab
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p r o m p t > m t t  - I  D o u b l e  n u m p a r  t x t

This file contains a list of all the parameters used within the model. Initially all values are 

set to 1.0 and should be edited to give appropriate numerical values. From this file an m file 

is created by replacing txt by m in the previous command. The numpar . m file for Double 

is shown in Table 4.13.

These are the appropriate parameters for the double pendulum as used in the 10m prototype 

gravitational wave detector [48]. Hence, should a user wish to use the predefined double 

pendulum model, with a different set of parameters, then all that is required is to edit the 

Doubl e_numpar. txt file and then re-issue the command.

prompt> mtt -I Double numpar m

4.8 Comparing Double Pendulum Models with the Physical Sys

tem

In this section, the mode frequencies of a real physical multi-stage pendulum will be com

pared with equivalent bond graph and Matlab models.

The resonant mode frequencies of a real physical double pendulum system are presented 

in Table 4.12. These measured values are compared with those generated by the equivalent 

bond graph and Matlab models. The Matlab model was designed by S Killboum [48]. 

The experimental error for each mode is reflected in the number of figures quoted after the 

decimal point [48]. The various defining parameters are detailed in the numpar file of 

Table 4.13 (Page 83).

4.9 Conclusions

In this chapter a library of bond graph components, for the construction of 2-dimensional 

multi-stage pendula, were presented. A hierarchical double pendulum bond graph model
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Mode Bond Graph Expt Matlab

Longitudinal 0.703 0.700 0.709

Longitudinal 1.913 1.86 1.92

Tilt 0.83 0.82 0.856

Tilt 3.18 3.24 3.15

Vertical 10.7 10.2 10.8

Vertical 27.3 28.2 29.3

Table 4.12: Table o f eigenvalues for prototype double pendulum

was then produced and the predicted mode frequencies compared with both the equivalent 

real physical system and a Matlab model. The predicted frequencies were consistent with 

those of the physical system and as such alternative multi-stage pendulum systems can be 

modelled with confidence.
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# -*-octave-*- Put Emacs into octave-mode
# Numerical parameter file (Double_numpar.txt)
# Generated by MTT at Fri Oct 1 12:22:14 BST 1999
#  % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %

# %% Version control history
# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# %% $Id$
# %% $Log$
# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
#These are the parameters for the prototype suspension
global rho_l rho_2 xl yl zl x2 r2 r_l r_2 y_i y_2

xl = 0.100; % dimension of UpperMass
yi = 0.041;
zl = 0 . 07 6;
rhol = 7800; % density of aluminium
m_l = rhol*xl*yl*zl; % Upper Mass

x2 - 0.1016; % dimensions of test mass
r2 = 0.0635;
rho2 = 2202; % density of silica quartz
m_2 = rho2*pi*r2''2*x2 ; % Test Mass

9 = 9.80665; % gravity

r_2 = 62e-6; % wire radius
r_l = 89e-6;

1_2 0.3700; % Wire lengths
1_1 = 0.1995; %

y_2 = 1.65ell; % Youngs Mod steel 5 thou
y_i = 1.72ell;

j_l = m_l* (zl''2+xl''2) /12; % Moments of inertia
]_2 = m_2* (r2''2/4+x2''2/12) %

k_2 2*y_2*pi*r_2''2/l_2; % Vertical spring constant
k_l = 2*y_l*pi*r_l''2/l_l; %

vu_l 0.003; % vertical offsets
Vl_l = 0;
vr_l = 0;
vl_2 = 0.003;
vr_2 = 0.003;

hu_l = 0; % horizontal offsets
hl_l = -0.0058;
hr_l = 0.0058;
hl_2 = -0.0058;
hr_2 = 0.0058;

Table 4.13: Double-numpar.m: The numerical parameter file for system Double
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Chapter 5

The Bond Graph Modelling of 

Suspensions

5.1 Introduction

“Nothing in life is as good or as bad as one first thinks”

Guy de Maupassant

In this chapter various aspects of wire modelling are introduced. It is instructive to introduce 

a “simple” wire model at which point the deficiencies of this model and possible improve

ments can be expounded. This will lead to the basic wire framework, as introduced in the 

previous chapter. Possible extensions to this framework will then be introduced. These 

extensions allow for bending and/or transverse modes of a wire to be incorporated into spe

cific system models. Moreover this will highlight the need for a modelling technique which 

enables the interchange of various components without the need for complete remodelling 

of the overall physical system. Bond graphs fulfill this criterion.

In addition, a method of generating a component’s constitutive relationship directly from a 

components energy equation is introduced. Since the bond graph methodology is based in 

the energy domain this is the most appropriate manner by which constitutive relationships

84



should, where possible, be derived.

5.2 An Introduction to Modelling Wires

In this section the restoring force due to wire extension and the fourth order partial differ

ential equation of a stiff beam are introduced. These provide the mathematical foundation 

for the subsequent hierarchical bond graph models of wires.

5.2.1 Restoring Force Due To Wire Extension

A wire under tension provides a restoring force (F) given by

F  =  —kôl  (5.1)

where k is the spring constant and 6 1 is the wire extension. This does assume that the stress, 

given by

Stress =  ------ Tension—  , (5.2)
Cross Sectional Area Of Wire

experienced by a wire, is significantly less than the breaking stress, and hence obeys 

Hooke’s law.

The spring constant is derived from the definition of Young’s modulus (E) given by

giving

A: =  ^  (5.4)

where, for a circular wire, the area A = irr^.
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5.2.2 Transverse Motion of a Wire Under Tension

A wire under tension can be modelled as a stiff beam under tension (T) given by the fourth 

order partial differential equation (Equation 5.5) [49].

where, E  is Young’s modulus, I  is the cross-sectional moment, (for a circular wire I  = 

7rr'*/4), p is the mass density, S  is the cross-sectional area, and x{y, t) is the transverse 

displacement of a point.

Well below the violin mode frequencies a static solution to Equation 5.5 gives a valid de

scription of a wire’s bending dynamics. This is because at low frequencies the transverse 

acceleration of a point approximates to zero, that is

I l  «  0 (5.6)

and the terms involving the second and fourth derivatives of x  with respect to y, dominate, 

and hence Equation 5.5 reduces to

However, at violin mode frequencies. Equation 5.5 is dominated by the two second order 

partial derivatives and hence reduces to the 1-dimensional wave equation (Equation 5.8),

Bond graph components which model Equations 5.1, 5.7 and 5.8, to produce restoring 

forces due to linear extension, bending dynamics and transverse modes respectively, will 

now be presented.

5.3 The Creation of a Basic Wire Framework

Taking advantage of the hierarchical nature of the bond graph methodology facilitates the 

creation of wire components that can be built in a modular fashion, and hence permits
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the easy interchange of variously configured wire models. These wire bond graph models 

can take many forms, ranging from a light rigid rod where no bending or linear extension 

is allowed, to a completely flexible wire where bending dynamics, linear extension and 

transverse modes of vibrations are all modelled.

5.3.1 Modelling a Simple Pendulum As a Rigid Rod

The simplest bond graph of a simple pendulum merely consists of a rigid rod 

(Gawthrop [37]). This bond graph model is equivalent to using a mass element (Sec

tion 4.5) with two suspension points, one above and one below the centre of mass. Zero 

velocity sources are applied to the x and y ports of the upper suspension point, indicating 

that this point is fixed in space and zero force sources are applied to the x and y ports of the 

lower suspension point, indicating that no forces are applied here. Analysis of this system 

indicates that only one of the mass inertia elements may have integral causality, the other 

two requiring the derivative form. Choosing integral causality on the inertia element asso

ciated with the 0  coordinate results in constrained state equations of the polar state space 

form. However, if either of the other two inertia elements are assigned integral causality a 

Cartesian state space description results. Yet the linearised transfer functions are identical. 

This simple pendulum model can, with minor modifications, be used to create a light rod 

bond graph component.

5.3.2 A Simple Light Rod

It is possible to create a simple light rigid rod from a modified two port mass component, as 

shown in Figure 5.1. Firstly, ports associated with control inputs, the x and y INTF com

ponents, and the restoring force due to gravity are all removed. The named inertia elements 

m-x and mjy  are replaced by SS elements which impose zero forces, and finally the angu

lar inertia element (J) is assigned a veiy small valued moment of inertia (say Kgrn^). 

This inertia element, with integral causality, is retained so as to provide the wire’s angu

lar velocity. The velocity can then be integrated, using the remaining INTF component
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Upper suspension polnl 
SS ;|up |

11X31

SS:m_x
SS:m_y

11X31K  
SS:|<inl 

Lower suspension point

Figure 5.1: The bond graph of a modified two port mass component used to model a light 

rod

to provide the wire’s angle of rotation. Remember, this variable is required by the EMTF 

transformers of the compound component CoordTrans (Section 4.5.3). This light rod com

ponent may be used in conjunction with various bond graph hinges (Figure 5.2) and masses 

to produce a more realistic model of multi-stage pendula. Two hinges are shown in Fig

ures 5.2(A) and 5.2(B) respectively, these are used as depicted in Figure 5.2(C). Note, the 

zero junctions associated with each hinge’s 0  coordinate have named bonds SS:[a] these 

bonds are attached to the 0 junction with the named SS component SS:[zero]. This permits 

the compound component HingedLightRod and conjoined components to each have differ

ent angles of rotation. The SpringHinge component Figure 5.2(B) contains a C component 

which provides a restoring force due to linear extension in the Y direction. This restoring 

force simply implements a restoring force consistent with Hooke’s law, (F = ky), where k 

is the spring constant given by

EAk = (5.9)

where, E is Young’s modulus, A is the wire’s cross-sectional area, L the wire’s length and y 

the extension from the equilibrium position in the Y direction.

Using the SpringLightRod component the “simple” single stage pendulum of Figure 5.3 

can be produced. The advantage of this model is that further degrees of freedom are intro-
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SS:[x_ln] SS:[aJn] SS:[yJn]

1 / 1 /  1/ 
0 ^ ' "  0

1/ 1/  1/  
SS:[x_out] SS:(a_out] SS:[y_out]

®  [ H in g e _ a b g .f ig

SS:[xJn] SS:(aJn] SS:lyJn]

/

/

«k
SS:[a]

/

/
0  y C :k

/
SS:[x_outJ SS:[a_out] SS:[y_oulJ

( g )  H in g e S p r in g _ a b g .r ig

SS:[yJn]
(IA3I

/
(in] 

Hinge |â _ 
[out]

/
[in]

LightRodirod
[out]

o k SS:zero

HingeSpringtspring [.f 
[out]

11X31/
SS:[y_out]

/

© L ig h t R ig id R o d _ a b g .f ig

Figure 5.2: Hinge, Hinge Spring and HingedLightRod bond graph components. Hinged

LightRod utilises LightRod (Figure 5.1) and the two types of hinge component to produce 

a “simple wire " component.

duced: One extra degree of freedom through the incorporation of the vertical spring within 

component HingeSpring, and a further degree of freedom from the independence of mass 

and wire angular rotations.

At this point it is worth noting that the development of this “simple” wire component is 

rather more complicated than one might have expected. Already six components are utilised 

and yet wire dynamics due to bending and transverse modes of vibrations have still to be 

modelled. The complexity arises through the need to determine the angular rotation and

89



Support
[to p ]

/
[in ]

SpringLightRod : Irod 
[o u t]

/
[in ]

OnePo rtMass : mass

Figure 5.3: A bond graph model of a simple pendulum with two degrees of freedom. Key 

components are SpringLightRod and a single port mass element.

linear extension of a wire. A more elegant method for the calculation of these variables was 

presented in Section 4.6 (Page 69). This forms the basic framework for all subsequent wire 

models. The advantage of this model is that only one component is required to calculate 

a suspension’s angular rotation and linear extension. Further, implicit in this formalism, 

is that a wire no longer has a fixed length. In addition, as will be shown, it is easy to 

incorporate appropriate wire dynamics into this framework. The next sections detail how 

both wire bending and transverse modes of vibration are modelled.

5.4 Introduction to Modelling the Bending Dynamics of a Wire

The basic framework of a wire bond graph, as introduced in Section 4.6 (Page 69), is shown 

in Figure 5.4. Embedded within this component is a subcomponent LinExt. This sub

component models the restoring force due to the wire’s linear extension (Section 4.6.1 -  

Page 69). To include the bending dynamics the subcomponent LinExt is replaced by a 

more sophisticated model, as follows.
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INTF:theta

SS:[xJnl

TF:I

Ax |m od||/

■LinExt:wire
Ay

[modK
EMTFxlEMTF:sa

'tmodl

SS:(x_out] SS:(a_oul]

Figure 5.4: The basic framework for the modelling of wire dynamics. 

5.4.1 Bending Energy of a Flexible Wire

The fourth order ordinary differential equation of a tensioned beam (Equation 5.5) was 

introduced in Section 5.2 and is re-stated in Equation 5.10.

(5.10)

where, T is the wire tension, E  is Young’s modulus, I  is the cross-sectional moment, (for a 

circular wire /  =  Trr‘̂ /4), p is the mass density, S  is the cross-sectional area, x{y, t) is the 

transverse displacement of a point along the wire.

Remember, at frequencies well below the violin modes a static solution to Equation 5.10, 

provides a valid description of the bending dynamics, and hence Equation 5.10 reduces to

A general solution to Equation 5.11 is given by

x{y) = A + B y  + -f De"*»

(5.11)

(5.12)
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where the constants A ,B, C and D are determined by the boundary conditions and

k = V T / { Y I ) (5.13)

where, A =  1/A: is the characteristic bending length and determines the arc length over 

which the bending occurs. The general boundary conditions are:-

x(0) =  x\

= X2

=  9

x{l)
dx{0)

dy
dx{l)

dy =

(5.14)

where, x\,X2,0,(f) are defined in Figure 5.5.

Figure 5.5: General boundary conditions for bending of a stiff beam under tension 

The elastic energy stored in a wire is given by Equation 5.15 [36]

E (5.15)

Hence by substituting the boundary conditions into Equation 5.12 the four constants {A, B, 

C and D) can be found. Equation 5.12 can then be substituted into the energy equation, 

thus giving the bending energy stored in a tensioned wire as a function of the variables,
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x\,X2,0,(f). To solve this equation analytically, without the aid of a computer, is almost 

impossible without making many approximations. However, by using an algebraic software 

package, e.g. REDUCE*, a complete analytical solution can be made. Whilst perform

ing appropriate transformation MTT utilises Reduce and hence the bond graph component 

modelling bending dynamics can use the full analytical solution rather than some approxi

mation.

From Equation 5.15 the restoring force, as a function of each variable, is given by Equa

tion 5.16.

F, = (5.16)

where, xi ,X 2 ,9i4> is to be substituted for the index i.

This is of the form^,

Fi = i/;{xi,X2,0,(l)) (5.17)

and is ideally suited to the creation of a multiport bond graph flow store (C component). 

This bond graph component will now be presented.

5.4.2 The Bond Graph Model of a Bending Wire

As stated earlier (in Section 3.4.1) a simple spring can be represented in the bond graph 

domain by a capacitive C component. Remember the constituent relationship for a C com

ponent is given by Equation 5.18

e — 4>c(ç) where Q = [  f
J f n

(5.18)
f o

and in the linear case

e = ^  (5,19)

'Reduce is a commercially available symbolic algebra package which is a necessary component of MTT. It 
is used to construct constituent relationships and to carry out symbolic manipulation during MTT routines (for 
example in the generation of differential algebraic equations)

^It should be noted that this equation constitutes a linear relationship. However, the method is generic and 
zis such the bond graph methodology is able to cope with nonlinear relationships, see Section 3.9
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where C is known as the capacitance.

Notice that Equation 5.18 is of the same form as Equation 5.17. Therefore a four port bond 

graph C component, one port for each of the variables x\,X2^0,(f), in conjunction with 

the constitutive relationship^ of Equation 5.16, form the basis of a bond graph component 

which models the dynamics of a wire due to bending. Figure 5.6 shows the four port C 

component where each bond has an associated flow and effort variable. a:‘i, 2:2 , 0,0  are the 

time derivatives of the generalised displacements, i.e., the flow variables, and / i , / 2 , T2 

are the respective effort variables (corresponding to forces (f) or torques (r)).

Top o f wire

c

Bottom o f wire

Figure 5.6: A four port bond graph C component

However, this four port bond graph can be reduced to a more concise bond graph, which also 

contains the restoring force due to linear extension. This is possible because the bending 

component will be embedded within the bond graph of Figure 5.4 and as such there is a 

change in boundary conditions. The new boundary conditions set xi =  0:2 =  0; in effect the 

bond graph which constitutes the basic wire framework (Figure 5.4) performs a coordinate 

transformation. The new boundary conditions are shown in Figure 5.7 and therefore the 

four port bond graph of Figure 5.6 can be reduced to a three port component, as shown

in Figure 5.8, two ports associated with bending and the other with the restoring force due
^Within MTT a component’s constitutive relationship is defined in an MTT file ComponentName.cr. MTT 

provides the ComponentName.cr files for each of the components found within an MTT distribution. However, 
it is possible for an individual user to produce constitutive relationship files of their own. These files are written 
using the Reduce syntax.
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to wire extension.

Figure 5.7: Effective boundary conditions for an embedded Bending component

SS:[theta]

SS:[dI] I

SS:[phi]

Figure 5.8: A i  port bond graph component combining extension and bending characteris

tics of a flexible wire

This component has been given the name Bending_abg.fig and is embedded within the 

component Wire_abg.fig (Figure 5.9). Note, the only difference between this and the earlier 

Wire_abg.fig is that the subcomponent LinExt:wire has been replaced by Bendingiwire 

(c.f. Figures 5.4, Page 91 and 5.9, Page 96). That is the introduction of the bending dynam

ics is achieved by simply interchanging the component LinExt with component Bending 

without the need for remodelling the complete system. MTT can then be invoked to cre

ate alternative model representations (for example state space matrices). Moreover, with 

bond graphs based in the energy domain, the generation of the constitutive relationship di
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rectly from the energy equation is the most appropriate method for the derivation of such 

relationships. This bending model is valid for frequencies well below the transverse mode 

frequencies. The modelling of a wire’s transverse modes will now be detailed.

INTF: the ta
SS:(a_in|

SS:(«_lnl

TFrI

Ax

0 I— Bending: wire
Ay ImodK

EMTF:clEMTF:sa
jm od i

SS:[y_out] SS:[a_out]

Figure 5.9; The inclusion of bending dynamics into the basic wire model. Note that the only 

difference between this and the component LinExtWirejabg.fig is that LinExt:wire has been 

replaced by Bending:wire

5.5 Modelling Transverse Modes of a Tensioned Wire

At first sight there would appear to be two approaches to modelling the transverse modes 

of a wire: A lumped approach and a finite modal method. However, it will be shown that 

the finite modal method, although appropriate in other circumstance, is inappropriate for 

modelling wires in the context of pendulum suspensions. Hence a lumped representation, 

although not ideal, is presented and ultimately used for modelling violin modes. Models 

will be compared with experimental results.
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C:k_3C:k_2 C ;k,4

TF:b_l TF:b_2 TF:b_3 TF:b_4TF;t_l TF:t_2 TF;t_3TF:t_4

SS:|trtm]SS;[topl

Figure 5.10: The bond graph of the modal method of modelling the modes of a continuous 

system. Here four modes are to be model with two force inputs.

5.5.1 Finite Modal Method of Modelling Transverse Modes

The bond graph finite modal method of modelling transverse vibrations for continuous sys

tems was presented by Margolis and is comprehensively covered in both book and paper 

formats [44] [50]. A typical modal bond graph can be seen in Figure 5.10. This is based 

upon Equation 5.20

Qy2 = (5.20)

Where T is the wire tension, E  is Young’s modulus, I  is the cross-sectional moment, (for 

a circular wire I  = 7rr'*/4), p is the mass density, S  is the cross-sectional area, x{y,t) 

is the transverse displacement of a point along the wire. A separation of variables is then 

performed by assuming that.

x{y,t) = X{y)f{t) (5.21)

giving two total differential equations, one spatial the other temporal. Then, for given 

boundary conditions, mode shapes ( X n { y ) )  and frequencies (w^) can be determined, where
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the subscripts n denote the mode. The mode shapes are orthogonal, in that

f  Xn{y)Xrn{y)dy = 0 (5.22)
Vo

This property is used to derive the modal mass (rrim) given by,

m m =  f  pAX^{y)dy,  m = l ,2 , . . .  (5.23)
Vo

where p is the mass density and A is the cross-sectional area, where for a circular wire

(5.24,

where L is the length of the wire and r its length. The modal stiffness {km) is given by,

kji — TTln^m (5.25)

These are precisely the parameters, and /c„, of components I and C respectively, used 

in the modal bond graph of Figure 5.10. The parameters of the TF components are simply 

the values of the mode shapes X(y)  evaluated at the point at which a force is applied. This 

analysis assumes that system inputs are forces. Margolis then proceeds to investigate the 

case where system inputs are velocities.

A consequence of having velocity inputs is that either inertia elements are forced to have 

differential causality or, to avoid this form of causality, extra modal compliances are added, 

one for each velocity input. Margolis advocates the use of extra compliances to bypass 

the extra computational effort arising from derivative causality. However, by employing a 

computer to carry out necessary transformations derivative causality, in general, is not a 

problem.

However, within the context of modelling suspension wires this finite modal component 

has two velocity inputs imposed upon it, and as a consequence algebraic loops need to be 

solved [50]. MTT provides a mechanism for solving simple algebraic loops [51]. However, 

the algebraic loops, associated with this two velocity input modal component, involve the 

derivatives of inputs and states: Finding solutions to these is not a trivial matter. Moreover, 

since the use of this component requires prior knowledge of the boundary conditions, and 

input/output configuration, it was deemed unsuited to the modelling of a suspension wire’s 

violin modes. As such, an alternative approach to modelling violin modes will now be 

presented.
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5.5.2 A Lumped Method of Modelling Transverse Modes

This is the preferred method of implementing transverse vibrations of a tensioned wire. This 

is because, within the context of modelling suspensions wires, the lumped method provides 

a significant increase in the accuracy of generated mode frequencies vis-a-vis the modal 

method. Furthermore, this component can be incorporated into a system model without any 

prior knowledge of the overall system configuration (causality etc).

X+A X

Figure 5.11: Force diagram for a short segmented massive wire undergoing transverse 

vibrations
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5.5.3 Mathematical foundation

In Figure 5.11(A) a single segment of a wire under tension is shown. It is assumed that the

displacement of any wire segment, with respect to its equilibrium position, is small. The

two angles 6 and (f) are the direction tangents at x  and x  +  A x  respectively. The net forces 

acting on this segment are given by

Fy = T  sin{<f)) -  Tsin{6) = p A A x - ^  (5.26)

Fx = Tcos(0) -  Tcos(0)

where p is the linear mass density and A is the cross-sectional area. By making the assump

tion that the angular rotation of any segment is small, such that the arc length of a small 

segment As % Ax, and therefore sin(0) % tan(0) Equation 5.26 then becomes

Fy ^  T 'dy _ ^
dx x + d x dx X

= p A A z ^  (5.27)

where the subscripts refer to the points at which the gradients are evaluated, giving the 

1-dimensional wave equation [52],

d'̂ y 1 d“̂y
dx"̂  (p- dx^

(5.28)

where

c =  y /T fp  (5.29)

is the phase velocity of the wave.

5.5.4 Bond Graph Synthesis

Referring to Figure 5.11(B), the creation of a bond graph lumped approximation of the 1- 

dimensional wave equation follows. First let the transverse component of force due to the 

wire tension Tsin(^) =  F. Then from Equation 5.26

Fi+i -  Fi = ^ p i  (5.30)

100



where pi is the momentum of the zth lump

P i = pAAxy  (5.31)

and from Equation 5.27

Fi = ~^Qi (5.32)

where qi is the relative displacement between the ith and (z — l)th lump, i.e,

Qi = y i -  Vi-i (5.33)

Hence for the internal elements of the lumped representation the following equations apply

(5.34)

=  ^'pA A x'

The equations for the first and last elements depend on the input causalities to the overall 

lumped representation. With reference to Figure 5.12 the components SS:[one] and SS:[n]

provide inputs and outputs at the first and elements respectively. With velocity inputs

the first component has the following equation

dt^i =

Meanwhile, the nth component will have differential causality and hence does not contribute 

a state to the overall system model. The force output at SS:[n] is then given by

Fn =  ——Qn ~ pAAxVn (5.37)A x

With force inputs the first element now has differential causality and hence the velocity 

output at SS:[one] is

^one — ~^Fone (5.38)

and the nth component has the following equation
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Figure 5.12: A schematic and bond graph representation of the transverse motion of a wire 

under tension

The bond graph of a lumped wire model with four lumps is shown in Figure 5.12(B). 

However within MTT this representation maybe more succinctly implemented using the 

bond graph of Figure 5.13. Here, a single lump is represented by Lump_abg. f i g  (Fig

ure 5.13(A)) and the overall implementation of the lumped transverse mode bond graph 

representation can be seen in Figure 5.13(B). Here an instance of lump is used at each end 

of the representation. These allow alternative causalities, as determined by system inputs, 

to by imposed at each end of the bond graph. The compound component Lump : lump*m 

is a repeated instance of the component Lump with multiplicity m. Here it is assumed that 

each of these multiple instances has the same causality. The advantages of using this form 

of the lumped representation are: Firstly it is a more succinct representation and hence eas

ily incorporated into models and secondly provides a significant reduction in the time taken 

for MTT to complete causality and hence reduces the turn around time between alternative 

model synthesis. Should a modeller require a more accurate reproduction of the transverse 

vibrations then all that is required is to increase the multiplicity of Lump:lumps by an

102



C:dk \

SS: in)

/
0

/

/
SS;(out]

( ^ )  Lump_abg.rig

-y  I:dm

SS:[one]

/
Lump:top

/
Lump:lumps*18

/
Lump: bottom

/
SS:[n]

ImpUmentation of the 
lumped model within MTT

Figure 5.13: The implementation of the lumped model within MTT

appropriate amount. This is achieved by replacing “m” by an appropriate positive integer 

within the bond graph of Lumped_abg. f ig .

In Table 5.1 the I b l  file for the lumped representation of transverse modes is detailed. 

Note that although the component Lump:lump*m appears in the acausal bond graph the 

multiplicity (*m) should not be included in the declaration of the component within the 

label file.

Now the drawback with this lumped representation is that by increasing the number of 

lumps, to increase the accuracy of the lower frequency modes, introduces an increasing 

number of inaccurate higher order modes. The number of lumps that should be used is a 

decision for the modeller.
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%% Label file for system Lumped (Lumped_lbl.txt)%SUMMARY Lumped
%DESCRIPTION In the Figure of Lumped there is some text %DESCRIPTION Lump : lumps*m where m is the number of lumps %DESCRIPTION you require in your model

% %% Version control history % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% %% $Id$% %% $Log$
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %

% Port aliases %ALIAS in in%ALIAS out out
% Argument aliases
%ALIAS $1 dk%ALIAS $1 dm
%% Each line should be of one of the following forms:% a comment (ie starting with %}% component-name cr_name argl,arg2,..argn% blank
% ---  Component labels ------

lump none dk;dm
lumps none dk;dm
LumpT none dk;dm

% Component type SS[in] SS external,external
[out] SS external,external

Table 5.1: The label file for component Lumped
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5.5.5 Comparison of Lumped model with physical system

In Table 5.2 the mode frequencies, as generated by the lumped models with 2, 4 and 16 

lumps, are compared with the solution to the 1-dimensional wave equation (with fixed end 

boundary conditions) and with experimental results. It should be noted that there is some 

variation in the measured fundamental modes of each physical wire. This is because sets 

of wires, between successive masses, are subject to differing boundary conditions. Implicit 

assumptions are that each group of wires has precisely the same length, and the tension in 

each wire is exactly the same. It is further assumed that each wire is clamped to a pendulum 

mass such that the wire breaks away from its clamp normal to the clamps horizontal surface. 

Notice with only 2 lumps the generated fundamental mode is % 90% of the value generated

Modes Experiment Wave Eqn 2 lump 4 lump 16 lump

Upper Wires 504.9 506.4 505.61 455.21 492.71 504.79

Lower Wires 193.1 205 207.6 219.9 204.56 184.17 199.35 204.23

Table 5.2; Comparison of mode frequencies: Experiment Vs 1-d Wave Equation Vs Lumped 

Method

by the 1-dimensional wave equation. However the difference falls to < 3% with a 4 lumped 

representation. Within the context of modelling suspensions 4 modes would suffice as any 

error within the bond graph model is outweighed by the spread in the measured values.

This lumped representation of transverse modes is similar to that used by Margolis in 

the analysis of a longitudinally vibrating bar in the sense that it also reproduces the 1- 

dimensional wave equation. Hence, should a model of longitudinal vibrations be required 

then the above model can be employed with the constant of proportionality for the stiff

ness elements changed from T / A x  to EA / A x ,  where E  is Young’s modulus and A the 

cross-sectional area. The mass elements have the same constants of proportionality in both 

models. (See Margolis [44]).

Now, since a wire is rigidly clamped to a mass, the wire, at its attachment point, must have 

the same velocity as the mass. Hence, to embed this component within the general wire
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Figure 5.14: Hierarchical bond graph o f the component Wire incorporating the Lumped 

representation of transverse modes

framework its two ports should be connected to individual 1 junctions of the X coordinate, as 

shown in Figure 5.14. Further, the modeller still has the choice as to whether the component 

LinExt or Bending be used in conjunction with this lumped representation.

5.6 Conclusions

In this chapter the hierarchical bond graph models for the modelling of suspension wires 

were introduced. These components permit the inclusion of:

• restoring forces due to linear extension of a wire,

• wire bending dynamics and,

• the transverse modes of vibration

Furthermore, two possible models for the modelling of transverse modes of a wire were 

produced and evaluated. It was found that the most appropriate method for modelling these
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modes, within the context of suspension wires, was the lumped representation and as such 

it is recommended that this bond graph component be used. This is because its use does 

not require any prior knowledge of system causality. Also, it should be appreciated that 

the bond graph of the lumped wire representation is founded upon the same mathematical 

analysis as the standard PDE. In addition, since the Wire model is constructed in a modular 

fashion the full advantages of hierarchical bond graphs can be exploited. In subsequent 

chapters these wire models will be incorporated into pendulum models, which in turn are 

used in the design of local and global controllers (Chapter 6 and Chapter 7 respectively).
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Chapter 6

Local Control

6.1 Introduction

As stated in Chapter 1, the main optics of the gravitational wave detector are suspended 

from multi-stage pendula. This affords isolation from seismic vibrations. However, a con

sequence of using pendula is that seismic motion at the pendulum resonant frequencies is 

resonantly enhanced. To counteract this phenomenon the pendula are actively controlled. 

Since this control scheme acts independently, on individual multi stage pendula, it is known 

as local control. The current control law is an analogue implementation designed by S. 

Killbourn [48].

In this chapter a digital implementation of the current analogue control law is introduced. 

This is used to assess the feasibility of digital controller implementation. The analogue 

and digital implementations are compared and having shown that a digital implementation 

can satisfactorily replicate the analogue performance an alternative method for designing 

controllers will be detailed and evaluated. Here a model based observer controller will be 

designed in the bond graph domain.

Before controller designs are discussed the physical system will be introduced. This will 

include sections on sensor and actuator design.

108



6.2 Experimental Setup

In Figure 6.1 a photograph of the double pendulum system is shown. This photograph 

shows the position of the collocated sensors and actuators. For clarity a schematic of this 

two stage pendulum is shown in Figure 6.2. Points to note are:

Sensor-Actuator |1 |

Sensir-Actuator (3) 

Senaor-Actuator (4)

Sensor-Actuator (1)

Intermediate Maas

Teat Ml

Figure 6.1: A photograph of the double pendulum system

The two stage pendulum consists of a fused silica test mass (0.865 kg) and an alu

minium intermediate mass (0.8025 kg).

The intermediate mass is suspended by two wires (length 0.375 m, radius 62 mi

crons).

The test mass is suspended by two loops of wire (length 0.298 m, radius 62 microns).
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SCHEMATIC OF DOUBLE PENDULUM

TOP PLATE TOP PLATE

il holder
300 mm

375 mm

Tilt and  
Longitudinal

In term ediate m ass

I
4 mm

Mirror

High tensile 

stee l wires

Sideways and 
Rotation

Side View Front View

Figure 6.2: Schematic of physical double pendulum

• As can be seen in Figure 6.2, two sets of sensor/actuator pairs are used in the damp

ing of sideways and rotational modes, and another two are used for the damping of 

longitudinal and tilt modes.

6.2.1 Sensors and Actuators

A schematic of the sensor actuator pairs can be seen in Figure 6.3.
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Coil Former

Photo Detector

Figure 6.3: A schematic of the sensor actuator combination

Sensors

The sensors measure mass displacement and consist of an LED (SFH487) illuminating a 

photodiode (BPW345). An opaque flag, attached to the mass, partially obscures the light 

beam and hence variations in mass displacement create changes in photocurrent. The pho

tosensitive region extends over 3.5 mm. Each LED provides a flat response across an arc 

of 30°, with an error of -t-0% and —10%, centred about the tip of the led. Therefore, for a 

photodiode-LED separations greater than 6.53 mm the non uniform response of the sensor 

is reduced to a minimum.

Actuators

Feedback forces are provided by a coil/magnet combination. The magnet is attached to 

the mass and a force, generated by passing a current through the coil, acts on the magnet. 

Obviously, for a given current through a coil, the force experienced by the magnet depends 

on their relative positions. The force along the axis of the coil is given by

dB^
Fx =  p- dx (6 . 1)
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where p is the magnetic dipole and Bx is the axial magnetic field produced by the coil. For 

a coil of N  turns, and radius a, the magnetic field is given by

pINa?
= (6 .2)

2(a^ 4-

where p is the permeability of space and /  is the current through the coil. The variation of 

force for a given coil magnet separation is shown in Figure 6.4. The origin of this graph 

corresponds to the front face of the magnet and the plane situated at the centre of the coil 

and perpendicular to the axis of the coil. Notice that if the coil-magnet separation is ~  6 mm 

then across the effective range of the sensor the variation in the applied force, for a given 

current, is % 10%

Force per A m pere V s C oil M agnet Seperation

Î
 0.8I

< Nominal
O p e r a t in g
P o s i t io n

Front 
of Coil

0.6

0.4

0.2

C o il-M a g n et  Seperation (m m )

Figure 6.4: Variation of force with respect to coil magnet separation

In general the motion of the intermediate mass is expected to be tens of microns and hence, 

about the operating point, the response of the sensor/actuator combination is expected to be 

flat.
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6.3 The Existing Analogue Local Controller

The current analogue controller is detailed in S Kilboum’s thesis [48] and basically consists 

of differentiation to 12 Hz. A transitional filter is used to produce a flat response between

0.7 Hz and 2 Hz which reduces the gain ratio between the upper and lower modes. However 

this results in the phase at the lower mode not being at its optimal phase of -1-90°. To 

restore this phase, extra differentiation below the lower resonance is introduced. That is 

from 0.1 Hz to 0.7 Hz. This constitutes the damping component of the controller. However 

to reduce the effects of high frequency sensor noise, two resonant filters, one with a nominal 

resonant frequency at 15 Hz and Q factor of 3, the other at 18 Hz and Q factor of 4, and a 

single-pole low-pass filter at 12 Hz, are added. The bode plot of this controller can be seen 

in Figure 6.5 and is implemented using an analogue circuit.

Bode Plot: Local Controller (Analogue -  Theory)

100

-1 5 0

-200
10.01 0.1 10 100 1000 10000

200 
150 

^  100

% -5 0  
1-100 

-1 5 0  

-200
1 1000.01 0.1 10 1000 10000

Frequency (rads/sec)

Figure 6.5: Theoretical bode plot of analogue local controller
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6.4 Digital Implementation of the Existing Analogue Control

In this section, the digital implementation of the existing analogue local controller is de

tailed. First the basics of digital implementation are introduced, this includes sections on 

digital controller design methodologies and forms of computer implementation. Finally, the 

analogue and digital controllers are compared.

6.4.1 Introduction

A block diagram of a basic sampled data system can be seen in Figure 6.6, where G(s) is 

a continuous representation of the plant to be controlled, D(z) represents a discrete transfer 

function of a digital compensator and the blocks marked ADC and DAG are the analogue- 

to-digital and digital-to-analogue converters respectively. Here the continuous error signal 

is sampled by the ADC, at a given sample rate, to produce a digital error signal e(z) (Note: 

It is also common practice to sample the output y(s) and the reference signal r(s), and then to 

sum these directly to produce a digital error signal e(z)). A digital output u(z) is generated, 

according to the algorithm defined by the discrete transfer function D(z), which is converted 

into a continuous output u(s) using the DAC. This continuous output is, in general, achieved 

using a zero order hold (ZOH). Here the DAC voltage is held constant at the latest digital 

value until replaced, and held constant, at the next sample instant.

D(z) G(s)
r(s) e(s) e(z) u(z) u(s) y(s)

Figure 6.6: A block diagram representation of a sampled data system
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6.4.2 Digital Design in the Continuous Domain

There are two approaches to the design of digital controllers, either design in the continu

ous domain, and then convert to the digital domain, or design solely in the digital domain. 

Thus far, since control design in the continuous domain is mature and well understood, the 

former design process has been the most popular. Moreover, with the increasing speed of 

processors, providing higher sampling rates, digital implementations can more accurately 

replicate a continuous design. In this thesis, the design in the continuous domain and subse

quent conversion to a digital representation is undertaken. This is a valid approach because 

the bandwidth of a local controller is approximately 20 Hz and sampling rates are in the or

der of 2-10 kHz: The results shown later in this section are consistent with this assumption. 

With this in mind, only digital control within the context of the continuous design approach 

will be discussed here (for the alternative digital design approach see [53][54][4]).

6.4.3 The Discrete Transfer Functions

The discrete transfer function D(z) is defined as the ratio of the output sequence y(k) to the 

z-transform of the input sequence u(k), i.e.

D(z) = ^  (6.3)

where k is the k*̂  data sample and the z-transform of a sequence x(k) is defined as [54]
k=oo

X{z) = ^  XkZ~^ (6.4)
k=—oo

A continuous transfer function D(s) may be transformed to a digital transfer function D(z), 

by a number of methods. The “exact” method is the substitution of

s = { l / T) \ n z  i.e. z = (6.5)

Where T is the sampling period and z~^ has the physical interpretation of a time delay of

one period. However this substitution results in terms which are difficult to deal with and

hence simpler approximations are used. These include numerical integration and matched 

pole zero methods. These will now be discussed.
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6.4.4 Creating a Digital Transfer Function From a Continuous Transfer 

Function Using Numerical Integration

The field of numerical integration of differential equations is quite complex, but the fun

damental concept is to represent a given continuous transfer function D(s) as a differential 

equation and then to derive a difference equation whose solution is an approximation to the 

differential equation[54].

Analysis of a number of integration methods have resulted in substitution rules in which 

each occurrence of the complex frequency s, in D(s), is replaced by an approximation con

taining the complex variable z, a number of these can be seen in Table 6.1

Method Approximation

Forward Rectangular rule

Backward Rectangular rule  ̂~  T F

Trapezoid rule  ̂~  TITi

Table 6.1 : s substitutions (in z) corresponding to numerical integration.

The forward rectangular rule is simply Euler’s integration method and the trapezoid rule 

is also known as the bilinear transform or Tustin’s method [55]. The approximations of 

Table 6.1 map the s-plane to the z-plane. Now, in the s-plane s = jw  is the stability 

boundary and the mapping of this boundary, by the three rules, onto the z-plane can be seen 

in Figure 6.7.

The stable region of the z-plane lies within the unit circle and it can therefore be seen 

that the forward integration method may result in an unstable digital realisation of a stable 

continuous transfer function. Furthermore, since Tustin’s method maps the stable region of 

the s-plane exactly to the stable region of the z-plane it is the most commonly used of the 

approximations. An alternative approach to the creation of a digital transfer function from 

the continuous form is the matched pole zero method, this is now detailed.
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Backw ard R ectangle
Rule

T rapezoid Rule or 
B ilinear Transform  or 
T ustin ’s M ethod

Figure 6.7: Mappings of the left half s-plane (stable region) to the z-plane via the rules of 

Table 6.1. Stable s-plane poles map into the shaded regions in the z-plane. The unit circle 

is shown for reference.

Creating a Digital Transfer Function From a Continuous Transfer Function Using the 

Matched Pole Zero (MPZ) Method.

Since every point in the s-plane maps to a point in the z-plane through the mapping z = 

it should be possible to construct D(z) from D(s) by mapping the poles and zeros from one 

plane to the other, i.e. given a continuous zero-pole-gain representation

{s -  ai){s -  0 2 ) • • • ( 5  -  a„)

then

D(s) =  Ks

D{z) =  K,

(s -  bi){s -  6 2 ) • • • (s -  bn)

{z -  C i ) { z  -  C2 ) - - (z -  c„)

(6.6)

(6.7)(z -  di){z - d 2 ) - " { z  -  dn)

where c% = and di =  e^* ,̂ Kz is matched such that at DC, or at some low frequency, 

the gain of D(s) and D(z) are the same. Note, to find the DC gain of a digital transfer function 

simply substitute z =  1 into D(z). Further, it should be appreciated that as the sampling 

frequency increases (i.e the period decreases) the poles (and zeros) migrate towards the 

boundary of the unit circle.
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The “Delay Line Tap’’ Digital Implementation

Having designed a digital transfer function D(z) the next step is the actual implementation 

such that it can be realised by a computer algorithm.

Suppose D(z) is of the form

D(z) = 0 1  (6.8)

where the output Y(z) and input U(z) are both polynomials in z, then dividing the numerator 

and denominator of D(z) by the highest power in z yields

Y {z) _  ao + aiz~^ + .. .  an-iz~"+^ + Qn 
U{z) ~  1 +  6 iz -i H + 6„_iz-”+i +  bnZ~^

and since z~^ is equivalent to a time delay of T seconds the expression of Equation 6.9 can 

be expressed in the time domain by writing z~^y*{t) = y*{t — nT)* hence

y*{t) = aoU*{t) + a\iif {t — T) + • • • -t“ anU*{t — nT)

~b\y*{t — T) — b2 y*{t — 2T) • • • — bny*{t — nT)

This can be more succinctly written as

yO  =  OQttO +  ^ 1 ^1  +  • • • +  C ln U n  — b \ y i  —  6 2 ^2  • • * — ( 6 . 1 0 )

where the subscript 0 indicates the current value, the subscript 1 the first most recent past 

value, etc. In Table 18 a fragment of C program code is shown to demonstrate the implemen

tation of a simple second order discrete transfer function. Obviously this is not complete 

and as such only details the relevant code.

It should be noted, that so far the order of D(z) has been proper (that is the order of the 

numerator and denominator are the same) and as such it is impossible, in practice, to im

plement exactly. This is because it requires the measurement of uO and calculation of yO to 

occur instantaneously. To overcome this, strictly proper (where the order of the denominator 

is at least one greater than the numerator) digital transfer functions should be designed.
'%/*(() =  Y!,T= o -  k T ) ,  that is y * { t )  is a sequence o f unit impulses modulated by the function

y [ t )  at the sampling instants t  =  T ,  2 T ,  3T, ...
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main()
{

/* variable declerations etc here */

while (time < end_of_time)
{
if new_sample()

{
uO = input_adc0
yO = aO*uO + al*ul + a2*u2 - bl*yl - b2*y2;
output_dac();

/* now shift variables ready for the next sample */ 
x2 = xl 
xl = xO 
y2 = yl 
yl = yO, 
time = time+T 
}

}
}

Table 6.2 : A fragment of computer code for the implementation of a second order digital 

transfer function represented by the direct form [4]

The form or structure of Equation 6.10 is known as the direct form and can be represented 

graphically, as shown in Figure 6.8. Moreover, the direct form is not the only represen

tation of a digital transfer function, others include the canonic and delta forms [56]. The 

significance of structure is that the order in which arithmetic operations are performed may 

result in different levels of quantization error [57]. Moreover, the coefficients a„ and bn are 

also known as the A and B taps respectively. These digital implementations are commonly 

known as “delay line tap”.

Initially it was thought that a “delay line tap” controller implementation would provide a 

satisfactory basis for controller design. However, it soon became apparent that problems 

with this implementation fundamentally prevented its use. It was found that simple low 

order controllers could be satisfactorily implemented. However, as soon as the order of the 

controller increased to six or more, controllers suffered from errors. These errors arose due 

to the finite word length of the compensator coefficients and that as the number of poles 

and zeros increased so did the number of coefficients. Taking a continuous, zero pole gain, 

representation of a controller and converting this, via the bilinear transformation, to a set of
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Figure 6.8: A graphical representation of the direct form of a second order digital transfer 

function

A and B taps resulted in poles very close to the unit circle^. Hence, due to the finite word 

length, and the number of A and B coefficients, the implemented controller poles migrated 

across the unit circle and thus produced an unstable controller. Hence the Euler integration 

method in conjunction with the state space representation were adopted as the basis for 

digital controller implementation, and is detailed in the next section.

Digital controller implementation using the Euler integration method in conjunction 

with the state space representation

This method starts with the state space representation of the form:

X =  Ax +  Bu 

y =  Cx +  Du

(6 . 11)

^Transformations from continuous to digital representations were undertaken using Matlab or Octave built 

in functions
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then taking the Laplace transform gives

sX  =  A X  + BU  (6.12)

Y  = C X  + DU

Where x X , u U and y -> y  are the Laplace transforms of x, u and y respectively 

and s is the complex frequency. Now, the complex s variable can be replaced by one of the 

integration approximations of Table 6.1 to produce a function in z; i.e using the forward 

rectangle rule (Euler’s method)

(6.13)

gives

2 - 1^  X  = A X +  BU  (6.14)

y  =  C X  + DU

Now, remember that z corresponds to a forward shift of one time unit, that is,

zx{k) = x{k + 1) (6.15)

and hence in the time domain Equation 6.14 becomes the discrete equations:

x{k- i -1) — x{k) =  TAx{k) + TBu{k)  (6.16)

i.e.x{k + l) = {I + TA) x{k ) +TBu{k )

y{k) = Cx{k) + Du{k)

State space controllers, designed in this thesis, were implemented using dSPACE. dSPACE 

is a commercial set of hardware and software used to implement digital controllers. The 

software interfaces with Matlab, utilising the Real Time Workshop package. The hardware 

consists of 16 and 12 bit ADCs, and 12 bit DACs all with a voltage range of ±10 volts. 

The digital signal processor (dsp) is a Texas instruments TMS 320C31. Further details and 

specifications can be found at the Internet site: www. d sp a c e  . de

To evaluate the suitability of digital controller implementation using dSPACE the analogue 

local controller (as detailed in Section 6.3) was used as a benchmark. The controller was
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Comparison of complete local control implimentations(Digital Fs lOkHz)
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Figure 6.9: Comparison of local control implementations

represented in a state space format and implemented using the Euler integration method 

with a sampling frequency of 10 kHz. The digital and analogue responses of the system to 

a swept sine input were taken using a spectrum analyser. These were compared with theory 

and can be seen in the graph of Figure 6.9. As can be seen the digital response is consistent 

with theory. However, there is a slight difference in the analogue implementation. Here, the 

maximum gain, an artifact of the two resonant filters, is shifted. This arises due to known 

errors (tolerances) in the components used to construct the circuit. In particular the resonant 

frequencies of the two Scultéty filters are susceptible to variations in nominal capacitor and 

resister values. Furthermore, it can be seen that the phase of the digital implementation is 

consistent with theory up to ~  20 Hz. There also exists a variable gain control for both the 

analogue and digital implementations.

Having shown that the digital implementation can satisfactorily reproduce the theoretical 

frequency response it was successfully used to damp motion of the double pendulum. An 

alternative approach to local controller design is the Model Based Observer [58] (MBO)
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which can be designed in the bond graph domain and is presented in the next section.

6.5 Model Based Observer (MBO) Control

As the name suggests, a model based observer controller [58] incorporates a model of the 

physical system. Generally, before a controller is designed, knowledge of the physical sys

tem is required. This usually results in the generation of a model to facilitate system analy

sis. Having created this model, and assuming the model is an accurate representation of the 

physical system, it seems only natural to use the model as the basis of the controller. More

over both the model and controller can be developed within the bond graph domain, thus 

providing a unified approach to model and controller design. In addition, these controllers 

are based in the physical domain and thus provide a more intuitive approach to controller 

design.

Physical
System

Observer
feedback o

! \-

\l \l \(

Model

Controller
feedback

^ y .

Compensator

^ y .

w

Figure 6.10: Schematic of a model based controller

A schematic of a model based controller can be seen in Figure 6.10. The following points 

should be noted.
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• The block “system” represents the real physical system.

• The block “model” is a dynamic model of the physical system.

• The model has the same control inputs as the system.

• The output(s) of the system and model y^ are compared to produce an error sig

nals), e.

• The observer feedback is used to drive the states of the model to those of the system 

and hence drive the model error to zero.

• The block “Controller Feedback” contains a controller to drive the model, and hence 

the system, to a desired state.

• Both the model and compensator can be constructed in the bond graph domain.

A simple Mass-Spring system will now be used to demonstrate the principles of model 

based controller design in the bond graph domain. Having demonstrated the potential of 

this design methodology it will be extended to the more complicated double pendulum 

system. In each case the aim of the controller is to damp mass motion.

6.5.1 Mass-Spring Model Based Controller

A bond graph of a mass spring system is shown in Figure 6.11. In the following demon

stration it will be used for both model and physical system purposes. Figure 6.12 is a 

hierarchical bond graph of the model based observer controller. Note:

• Se:d is a bond graph effort source which enables the injection of disturbances.

• Sf:w is a flow source used to provide the setpoint.

• De:u is a bond graph effort detector (sensor) which, in this instance, measures the 

control effort.

• De:y outputs the displacement of the mass.
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Figure 6.11 ; Bond graph and schematic of a mass spring system
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Figure 6.12: Hierarchical bond graph of a model based controller

• The bond graph subcomponent Sensor contains an INTF (integrate flow) component 

which is used to model a physical sensor that measures displacement.

• The subcomponent Compensator is a hierarchical bond graph which implements the 

compensator portion of Figure 6.10, i.e. incorporates the observer, the controller and 

the system model.
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Figure 6.13: Bond graph containing the model based observer and inverse sensor model 

(see Figure 6.10)

The hierarchical bond graph component Compensator consists of four sections (Fig

ure 6.13). Starting from the left: The first section converts the sensor output (which mea

sures mass displacement) to measured mass velocity. This section introduces the bond 

graph concept of bicausality which is detailed in Appendix B, The next three sections map 

directly to the three blocks of the compensator section of Figure 6.10. The second sec

tion (the observer), which contains the named resistive component R:r_o, implements the 

observer feedback. Note the zero junction compares the system and model velocities to 

produce the model error. The R component takes this error as its input and returns a force 

proportional to this error and thus drives the models mass position to that of the system. 

The third section contains the model of the system. It outputs the model’s velocity and 

takes inputs from the observer (Section 2) and controller (Section 4). The bonds associ

ated with SS:mod-disp are simply included for analysis purposes, giving the displacement 

(as determined by the model) of the mass, and would not be included in an implemented 

controller. Finally, section four implements the controller. In this instance it consists of a 

single R component connected to a zero junction. Ignoring bonds SS:[w] and SS:[u] it can 

be seen that component R:r_c returns a force proportional to the model’s velocity. It should 

be noted that should integral or derivative action be required then capacitive C or inductive 

I components can be added as necessary. Introducing SS:[u] enables the force generated 

by the component R_c to be extracted from the compensator bond graph, and applied to 

the system bond graph. Note that, in the top level bond graph (Figure 6.12), component 

AE ensures the velocity input of SS:[u] is zero. The bond associated with the component
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SS:[w] interfaces to the setpoint and as such provides an input (flow) and hence (via R:r_c) 

imposes a force on both model and system.

Having constructed this set of bond graphs, MTT can be employed to create alternative 

model representations which in turn can be used to analyse the system. The structure file 

(m tt MBO s t r u c  view ) can be seen in Table 6.3, giving the inputs, outputs, states 

and non-states (the non-state arises as a consequence of the derivative causality on the C 

component, within the INTF component, which is used to perform sensor inversion.

List of inputs for system MassSpring
Component System Repetition

1 u (disturbance) MassSpring_d 1
2 u (set point) MassSpring-W 1

List of nonstates for system MassSpring
Component System Repetition

1 mtt3 MassSpring_comp_mtt 1 1

List of outputs for system MassSpring
Component System Repetition

1 modeLdisp MassSpring.comp 1
2 y (control) MassSpring.u 1
3 y (system_disp) MassSpring.y 1

List of states for system MassSpring
Component System Repetition

1 k MassSpring_comp_model 1
2 m MassSpring_comp_model 1
3 mtt3 MassSpring_comp_mtt7 1
4 mtt3 MassSpring.sensor 1
5 k MassSpring.sys 1
6 m MassSpring.sys 1

Table 6.3; The structure files for the mass spring velocity damping model based observer

G =

(    (rpa)______    Tr \
{ k '^ + 2 k m s ^ + k r c S + k r o S + m '^ s * + m r c S ^ + m r o S ^ - \ - r c r o s '^ )  { k + m s ^ - \ - r c s )

__________ j - r c y s ^ )     (rc(fc+ma^))
{ k ^ + 2 k m 3 ^ + k r c a + k r o S + m '^ s ‘̂ + m r c 3 ^ + m r o S ^ + r c r o S ^ )  { k + m s '^ + r c s )

___________  (fc+ma^+rça-t-roa) ____ ________ ______r.-
\  { k '^ + 2 k m s '^ + k r c S + k r o S + m ^ s * + m r c S ^ - \ -m r o S ^ + r c r o s '^ )  ( k + m s '^ + r c s )  /

(6.17)
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The closed loop transfer functions G(s) of the MBO are detailed in the transfer function ma

trix of Equation 6.17, where and Tc are the observer and controller damping coefficients 

respectively, m is the mass and k is the spring constant. Notice, that the transfer functions 

associated with the setpoint (G(i,2)) do not contain terms involving the observer gains (r_o), 

this is in accordance with the separation principle [59] which states that the observer and 

controller can be designed independently. Furthermore, the denominators of these transfer 

functions have the same form as the standard damped second order transfer function (Sec

tion 2.3.2) and therefore r_c can be chosen such that the closed looped system is critically 

damped, i.e.

rc =  2> / ( mxk)  (6.18)

Therefore, assuming the model can be driven to the same state as that of the physical system, 

(the task of the observer), it will also be critically damped. Impulsive inputs at Se:d enable 

an appropriate value for r_o to be chosen such that the model is driven to the same state as 

the system within an appropriate time scale. The value assigned to r_o is generally limited 

by sensor noise.

Notice that the overall bond graph structure is constructed such that both model and system 

are subcomponents, making this damping controller generic. Therefore should a system 

require a velocity damping controller, simply replace the system and model bond graphs, 

and reassign the values of the r_c and r_o coefficients. More complicated compensators can 

be designed in this manner. Thus creating a library of bond graph compensators.

(Simulated) step and impulse responses of this bond graph designed model based observer 

controller can be seen in Figures 6.14 and 6.15 respectively. Figure 6.14 shows the step 

response of both the “system” and model to a step input at the setpoint. The values of the 

coefficients, Tc and Tq were chosen such that.

Tc =  ^ \ / { m x k )  (6.19)

and

To =  0
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In Figure 6.15 both the “system” and model responses to an impulsive disturbance at the 

mass can be seen. Here the value of r_c is the same as earlier and r_o= 4rg. These graphs 

suggest that the methodology of model based observer control has the potential to ade

quately control physical systems. In the next section the methodology will be used to design 

a local controller for a real physical multi-stage pendulum.

Spring-Mass Step Responses (MBO)

0.5

Step Responses:

Setpoint to System Displacement 
Setpoint to Model Displacement

2.50.5
Time(Seconds)

Figure 6.14: The response of the system" and model to a step input at the setpoint

6.6 Local Control Design Using Bond Graphs

In this section a local controller, designed to damp the resonant modes of a double pen

dulum, is presented. The methodology is an extension of the previous section. The only 

difference is that the system to be controlled is a slightly more complicated multi-input 

multi-output (MIMO) system.

The bond graphs shown in Figures 6.16 through to Figure 6.18 are the set of hierarchi

cal bond graphs used to produce a local controller for the double pendulum of Figure 6.1 

(Page 109). Figure 6.16 is the top level bond graph. Notice it is of the same form as that 

used in the Mass-Spring MBO designed controller. However, here the bond graph compo-
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Figure 6.16: Top level MBO bond graph controller

nent Actuators! has been included to define the location of the two actuator/sensor pairs 

which provide longitudinal and tilt actuation forces. Moreover, bonds are now vector bonds 

which reflects the fact that these bonds form interconnections between components that 

contain two instances of the corresponding components used within the controller design of
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Figure 6.17: Bond graphs - Actuators! and associated subcomponent Xact.

Mass-Spring (Section 6.5.1): For example, the component SE:dist, as used in the Mass

Spring system, has changed to component SE2:dist which simply reflects the fact that this 

component contains two instances of the effort source SE.

The bond graph component Actuators! and its subcomponents can be seen in Figure 6.17. 

These bond graphs simply define the location of sensor/actuator pairs. Each subcomponent 

Xact provides the location of one collocated source/sensor. Here the single input to Xact 

carries the effort variable corresponding to the actuator force. Since an actuator only pro

vides forces in the X direction, Xact has two SS components (SS:aJn and SS:yJn), with 

zero effort causality, these in turn connect to the Y and 0  coordinates of the component Co- 

ordTrans. As detailed in Section 4.5.3 (Page 63), CoordTrans simply provides the correct 

geometric transformation between a point in an extended body and its centre of mass. Here 

actuation force applied in the X direction, at the location of an actuator, is mapped to force 

at the centre of mass and torque about the centre of mass.

The subcomponent Compensator! of Figure 6.18, contains two instances of the subcompo

nent ContObs. These subcomponents (see ContObs_abg . f i g  of Figure 6.18) are similar
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Figure 6.18: Bond graphs - Compensatorl and subcomponent ContObs

to the compensator components as used in the Mass-Spring system. The only difference is 

that the component Sys:mod has been replaced by the port SS:[act] which allows the two 

ContObs components to interact with a single bond graph model of the physical system.

The bond graph model of the system, i.e. the double pendulum, is the same as that intro

duced earlier in this thesis (Chapter 4). Here, because the controller is designed to damp 

intermediate mass motion, well below the resonant frequencies of the suspension wires (vi

olin modes), the simplest wire model is used. This models restoring forces due to linear 

extension and results in a model of order 14.

This completes the description of the bond graphs used to create a new double pendulum 

local controller. Notice, the basic structure of the controller is the same as that for the Mass

Spring system and that, in general, earlier bond graphs are simply re-used with little or no 

modification.
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Again, using MTT, these bond graphs can be transformed into other system representations 

for system analysis purposes. Primarily, a state space representation can be generated and 

then by varying r_c and r_o, the system response, to step and impulsive inputs, can be anal

ysed. Suitable values of r_c and r_o can be chosen such that the controlled system behaves 

in the desired manner. The compensator can then be extracted and implemented on the 

physical system. This process was undertaken, and a model based controller for the double 

pendulum produced. This was implemented using a state space representation, Euler inte

gration and a sampling frequency of 2 kHz. The results of this compensator implementation 

are discussed in the next section.

6.7 Results

To compare controllers, an impulse was applied to the intermediate mass and the corre

sponding system ringdown measured using the sensors (detailed in Section 6.2.1). The sen

sor reading was amplified and the time sequence recorded using dSPACE. Typical impulse 

responses are shown in Figures 6.19 (Page 135) and 6.20 (Page 136), these contain time 

sequence plots, of both the original classically designed analogue controller and the new 

digitally implemented model based observer design, for channel 3 and channel 4 respec

tively. These two channels correspond to the two collocated sensor/actuators that measure 

longitudinal and tilt motion (see Figure 6.1 -  Page 109). As can be seen, the normalised re

sponse of each controller implementation performs equally well with very similar ringdown 

periods. So the question arises as to why bother with yet another method that results in the 

same outcome?

Firstly the modelling of both the physical system and compensator can both be constructed 

in the bond graph domain: Thus providing a unified approach to model and controller de

sign. Furthermore, the model based observer design provides the control engineer with a 

method of designing controllers in a more intuitive manor. For example: A physical system 

requires velocity damping. Hence, the system model within the compensator is connected 

to a dissipative component (i.e. a bond graph R component) and “energy” is dissipated 

from the system model and hence the physical system is also damped. This does assume
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the model states can be driven to the system states, the task of the observer, and thus re

quires a good model of the system. Another advantage is that the compensator is passive^, 

it is therefore assured to be stable. Furthermore, in this model based observer design, there 

are only two “tuning” parameters, (r_o, r_c), each of which is not simply some weighting 

factor, but instead have an intuitive meaning. For example, increases in the value of r_c 

increases the damping provided by the actuator, and increases in the value of r_o drives the 

modal states to the system states faster. Moreover, should the control engineer design a new 

compensator then a digital implementation is, in general, easier to update than the analogue 

equivalent.

6.8 Conclusions

In this chapter it was shown that a digital implementation of the original analogue controller 

was feasible. The Model Based Observer (MBO) controller design was then introduced, and 

its potential demonstrated through the design of MBO controller to damp the motion of a 

Mass-Spring system. The methodology was then extended to produce a MBO controller to 

damp the modes of a double pendulum. This new controller design was successfully imple

mented on a real physical system and its performance compared with the current analogue 

local controller. Both implementations were seen to have a similar performance. However, 

since the MBO design is based in the physical bond graph domain its design process is 

demonstrably more intuitive. Moreover, it was shown that the bond graph domain provides 

an ideal platform for the design of model based observer controllers and thus provides a 

unified approach to model and controller design.

■’Note: It is also possible to produce active compensations by added active bonds
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Figure 6.19: System response to impulse at intermediate mass - channel 3 (Top > original, 

Bottom > MBO)
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Figure 6.20: System response to impulse at intermediate mass - channel 4 (Top > original. 
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Chapter 7

Global Control

“The problem with simulations is that they are doomed to succeed” 

anon (but no doubt wise)

Whilst in operation the interferometric gravitational wave detector is maintained on a dark 

fringe. In this configuration noise, due to fluctuations in input light intensity, does not 

appear in the output signal. However, an offset from the dark fringe, by an amount Ax,  

results in laser beam intensity noise appearing in the output signal as

6x = A x -  (7.1)

where 7 is the intensity noise of the light. It is anticipated that the laser light intensity, 

for GEO 600, will be stabilised to 1 part in ~  10̂  [60]. Thus to achieve a displacement 

sensitivity of 10“ °̂ m /\/H z requires the root mean squared motion of the test mass to 

be less than 10“ ^̂  m. The displacement noise of the test mass, due to seismic noise, is 

~  10“ 6 m at 1 Hz, and even with local control the damping of this motion is only reduced 

by a factor of 10 and so a servo gain of at least ~  10® is required.
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7.1 Feedback to the Test Mass

To have a single loop with a gain of ~  10® would result in a minimum bandwidth of ~  

1 kHz. Moreover, as a consequence of applying this level of control directly to the test mass 

there is no filtering of the control noise, and therefore actuators with exceptionally low 

noise characteristics are required. In addition, the use of coil magnet actuators is prohibited 

because attaching magnets to a test mass introduces significant mechanical loss and hence 

is a potential source of thermal noise.

Figure 7.1 : One possible electrostatic drive configuration

To overcome these difficulties it has been proposed that actuation at the test mass be pro

vided by an electrostatic drive. This utilises the dielectric property of the test mass (a dielec

tric material is polarised by, and attracted towards, an electric field). A typical electrostatic 

drive can be seen in Figure 7.1, it consists of interlaced “combs” which can be deposited 

on a glass plate which in turn is positioned ~  1 mm behind the test mass. A bias voltage 

is applied across the combs, attracting the test mass towards the plate. The position of the 

test mass can then be modulated by modulating the bias voltage. Unfortunately the force 

generated by the electric hinge held of an electrostatic drive is limited by the breakdown 

voltage that may be applied across the combs and is generally much less than the force 

generated by coil magnet actuators. However, if the lower frequency/greater displacement 

actuation were to be applied at the intermediate mass, or at some higher stage in a chain 

of pendula, then the required actuation forces at the test mass can be reduced. Moreover,
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since the low frequency actuation is to be applied at the intermediate (or higher) mass, coil 

magnet actuators can be used. The topology of this control configuration can be seen in 

Figure 7.2 and is discussed in the next section.

Low Frequency 
Actuation to 

intermediate mam

High Frequency 
Actuation to 

Test Maas

/ / / / / / /

Figure 7.2: Schematic of split feedback topology

7.2 Split Feedback Control

To minimise the actuation range at the test mass, the crossover frequency, where feedback 

dominated by actuation at the intermediate mass changes to feedback dominated by actu

ation at the test mass, should be maximised. Since the feedback loop to the intermediate 

mass involves non-collocated sensing and actuation the elastic properties of the intervening 

material plays a more critical role in the response of the test mass. Furthermore since the 

bandwidth of the feedback loop to the intermediate mass is to be greater than that used in 

the local control design, the transverse modes of the suspension wires must be included (in 

pendulum models) to ensure that these modes are not excited, and thus create an unstable 

control law. So the goal of the global control design is to create a stable split feedback 

controller which maximises the control effort at the intermediate mass (thus reducing the 

actuation ranges required at the test mass) without exciting the transverse modes of the 

suspension wires, and still achieve a gain ~  10® at 1 Hz.
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The rest of this chapter explores the possibility of using a physical model based observer 

to design the split feedback control for multi-stage pendula. The performance of this bond 

graph designed controller will then be assessed to see whether it meets the above design 

goals.

7.3 Split Feedback Controller Design Using A Bond Graph 

Model Based Observer (MBO)

C a n tilever  B lades
42  cm

In term ed ia te

1cm  28  cm

T est M ass  
5.6  kg

F ace  V iew

I
S id e  V iew

Figure 7.3: Schematic of a GEO 600 gravitational wave detector suspension. Notice that 

this is a three stage pendulum with two stages of cantilever blades.

The pendulum model, used in the design of the MBO split feedback controller, is a three 

stage pendulum rather than the two stage pendulum of the local control design*  ̂ (Chap- 
‘The bond graph model o f the double pendulum, as used in the local controller design, models the real 

physical pendula used to suspend mode cleaner optics: The mode cleaner is used to stabilise the beam geometry 

o f the input laser [25][26]
^Initially a split feedback design was undertaken for a double pendulum. The move to a triple pendulum
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ter 6). The bond graph triple pendulum is a model of a real physical triple pendulum used 

to suspend a main optic of GEO 600. A diagram of this triple pendulum can be seen in 

Figure 7.3 and the the equivalent bond graph is shown in Figure 7.18 (Page 157). Note that, 

included in this system are two sets of cantilever springs. In accordance with the analysis 

of Husman [33] and Torrie [30] these cantilevers are modelled as simple springs, i.e bond 

graph C components, where the spring constant is given by the uncoupled mode frequency 

(umf). For a set of cantilevers, at a given pendulum stage, the uncoupled mode frequency is 

the resonant frequency of the cantilever blades supporting the mass of that stage only. For 

the upper set of blades (2 in number) the mode frequency is 2.57 Hz, the mass is 5.7600 Kg 

and hence Ajumf =  739 N/m, and for the lower blades (4 in number) the mode frequency is 

3 Hz, the mass is 5.6034 Kg and hence k^mï = 498 N/m.

7.4 Split Feedback MBO Bond Graphs

Sc5:( ■7-AE5

CoBipcnMtor5:coinp

Sa:w

Figure 7.4: Top level hierarchical bond graph of a model based observer as used to design 

a split feedback global controller

was motivated by the extra degree o f freedom (control) provided by the extra stage.
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In this section the hierarchical MBO bond graphs, as used in the design of a split feedback 

controller, are presented.

The top level bond graph of a hierarchical model based observer (MBO) can be seen in Fig

ure 7.4. The design of a global controller, like the local controller, is a bond graph designed 

MBO and hence many of the components used in the creation of the local controller can 

simply be re-used with little or no modification. For example, the top level bond graphs, 

of both the global controller (Figure 7.4) and local controller (Figure 6.16 Page 130), have 

the same structure. However, since there are now five actuator/sensor pairs (two actuators 

at the upper mass, two actuators at the intermediate mass and one at the test mass) the com

ponents SE2, Sensor!, AE2 and De2 (all described in Section 6.6) have been replaced with 

components where the suffix has changed from 2 to 5, which simply reflects the fact that 

these components now contain five instances of the basic components instead of two. Also 

the vector bonds connecting these components consists of five bonds rather than two. The 

main changes occur in the compound component Compensators which will be discussed 

after the component ActuatorS has had its properties detailed.

7.5 The Bond Graph Component ActuatorS

M  I I

It I /  K 2I
Actualors2: Imass

■M l

Figure 7.5: Bond Graph Component ActuatorsS: Defines the location of the actuators, two 

at the upper mass, two at the intermediate mass, and one at the test mass.

The bond graph component modelling the location of the actuators (hierarchical component 

ActuatorsS) can be seen in Figure 7.5 and simply consists of two instances of the com-
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ponent Actuators2, which provide the location of actuators at the upper and intermediate 

masses, and a single instance of an Xact component, for modelling the actuator location 

at the test mass. These components were used in the local control design (see Section 6.6 

(Page 129) for a full description of each component). Remember that the Xact component 

contains an instance of CoordTrans (Section 4.5.3) with zero forces applied to the input 

bonds associated with 0  and Y coordinates, and hence provides actuation in the X direction 

only, i.e the axis of longitudinal pendulum motion. Furthermore, the two parameters, h, 

defining the horizontal offset from the centre of mass, and v, defining the vertical offset 

from the centre of mass, can be utilised to assess the effects of cross-coupling when the 

electrostatic drive is incorrectly aligned. That is, when perfectly aligned h = v = 0 and 

V ^  0, h ^  0 otherwise. It should be noted that the ActuatorS component simply defines 

the location of actuators; if actuator dynamics need to be modelled then extra components 

need to be created.

7.6 The Bond Graph Component Compensators and Associated 

Subcomponents

Figure 7.6: Bond graph component Compensators: Used to produce a split feedback com

pensator.
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The bond graph Compensators can be seen in Figure 7.6. It consists of a number of 

subcomponents, each of which will now be detailed.

7.6.1 The Bond Graph Component Sys

This is a compound bond graph model of the physical system for which a compensator is 

to be designed. For the purpose of global control design this model is of a triple staged 

pendulum, where the suspension wires model both linear extension and transverse modes. 

These bond graph components are all detailed in Chapters 4 and 5.

7.6.2 The Bond Graph Component ActuatorsS

This component is described above (see Section 7.5)

7.6.3 The Bond Graph Component VelContObs

SS:z

Senior ùiitne

H;r_o
\ \

I
SytUm

R:r_c\

J
" fS8:|wl
ConlroUer

M4ul

Figure 7.7: The bond graph of the component VelContObs. It extends the ContObs compo

nent by providing an extra port to convey the flow variable at the 1 junction I:s to external 

components

The bond graph component VelContObs can be seen in Figure 7.7 and is simply a duplicate 

of the ContObs component (see Section 6.6) with the addition of the SS:[v] port, which is 

included to convey the flow variable from the 1 junction 1rs, to other bond graph compo

nents. When used as a subcomponent within Compensators the port SS:act will impose.

144



upon junction 1rs, the model’s test mass velocity. The port SS:[v] can then convey this vari

able to the PosnCont component, where this velocity is integrated and subsequently used 

to provide actuation forces relating to the test mass position.

7.6.4 The Bond Graph Component PosnCont2

R:r_p
AE

Figure 7.8: The PosnContl component

The component PosnContl (Figure 7.8) is used to provide restoring forces relating to the 

position of the test mass. Inputs to this component are test mass velocity (SS:[vel]) and 

set point (SS:[w_p]). There are three outputs, one providing proportional action (SS:[test]) 

and two providing proportional-integral action (SS:[dc_upper] and SS:[dcJnt]). For the 

purposes of global control the proportional action should be applied at the test mass and 

proportional-integral should be applied at the upper and intermediate masses. For simplicity 

the four port component PosnCont (Figure 7.9) will be used to illustrate the ideas of a 

position control bond graph component. The component PosnCont! (Figure 7.8) simply 

provides two ports with proportional-integral action instead of one.

A Description Of The Component PosnCont

In Figure 7.9 the annotated bond graph component PosnCont can be seen. This component 

takes a velocity (/,;) (input at the port SS:[veI]) and then converts this to displacement via 

the component INTF (Section 3.7, Page 41). This displacement variable (e )̂ is carried by
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C:c_pR:r_p

e^c-CpTp J { e w - e d ) d t  

/ r = r p ( c w - g j )
/c  =  /»

AESS:[vel] l : r y r  SS:(dc_int]AF 0:c

AF

SS:[w_p] SS:[test]

Figure 7.9: Bond graph component PosnCont, provides proportional and integral action for 

position control

the effort variable of the INTF output and hence, when the output bond of this component 

is attached to the 1 junction l:r, the input (cr) to the resistive component R:r_p is given by

(7.2)

where e ĵ is the effort variable associated with the SS component SS:[w_p] and is the set

point for test mass position control. The output flow (//?), of the R component, is given 

by

Jr — ^d) (7.3)

and therefore this output can be used to provide a restoring force proportional to the error 

in the test mass’ displacement and the setpoint. However, using only control forces pro

portional to the error results in a controller with a steady state error. This can be overcome 

through integration of the error signal (e^ — e^). The C:c_p component attached to the 0 

junction 0:c can be used for this purpose. The input to this C component is rp{eyj — e<i) and 

hence, because the C component has integral causality, the output is

(7.4)

and ensures zero steady state error. The inclusion of the AE and AF (Section 3.7) compo

nents simply ensure that only the variables of interest are propagated. The port SS:[test]
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permits proportional action to be applied at the test mass whereas the port SS:[dcJnt] per

mits proportional-integral action to be applied at the intermediate mass. As stated above, the 

PosnCont! (Figure 7.8) simply has an additional proportional-integral action port, which 

is used to apply proportional integral action at the upper mass (port SS:[dc_upper]).

7.6.5 The Bond Graph Components DcContObs4, DcContObs! and DcCon- 

tObs

-7 WTf - 7 ’_

tS:l 1

1 /

Figure 7.10: The bond graph component DcContObs provides an extra port c.f. ContObs 

for the inclusion of integral action forces associated with position control.

The bond graph component DcContObs can be seen in Figure 7.10. The only difference 

between this and the component ContObs (Section 6.6), is that an additional SS component 

(SS:[dc]) has been added which provides a port for the injection of proportional-integral ac

tion associated with the position control. This port has a bond connecting it to the 0 junction 

0:dc which is used to apply proportional-integral actuation forces to both the model and 

physical system. Since this is the only change to the original ContObs component it still 

retains all the features detailed earlier (Section 6.6), i.e it still provides velocity damping 

and observer gains.

The bond graph component DcContObs! (Figure 7.11) contains two instances of the com

ponent DcContObs (Figure 7.10). With reference to Figure 7.11 the various SS components 

should be connected to the following external bonds:

• SS:[y_l] and SS:[y_!] are associated with sensor outputs of the upper (intermediate) 

mass (of the “physical system”).
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II

Figure 7.11 : The bond graph component DcContObsl containing two instances of the com

ponent DcContObs

•  SS:[u_l] and SS:[u_2] are associated with the generated controller forces for each of 

the upper (intermediate) mass actuators (of the “physical system”).

• SS:[out_l] and SS:[out_2] connects to the ports associated with the upper (interme

diate) mass of subcomponent ActuatorS of component Compensators (i.e. to the 

system model not the “physical system”);.

• SS:[int] connects to the port of PosnCont associated with the proportional-integral 

action and thus carries the position control forces.

• SS:w_l and SS:w_2 provide individual set points for each of the upper (intermediate) 

mass actuators. Thus providing dc offsets.

tiJi \

Figure 7.12: The bond graph component DcContObs4 containing two instances of the com

ponent DcContObsl
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The bond graph component DcContObs4 (Figure 7.12) simply contains two instances of 

the DcContObs! component: DcContObs2:upper for the two actuators at the upper mass 

and DcContObs2:int for the two actuators at the intermediate mass.

7.6.6 Augmentation of the Observer

SS:[y] R:r_o SS;Iw]R:r_c
TF:nonn

0:dc
INTF

SS:z SS:v QY

AE 88:[de]
ControllerObserverSensor inverse System

SS:,

Figure 7.13: A modified DcContObs component incorporating integral observer action, 

which is used to drive the displacement error between system and model to zero

In the local control MBO design, the observer (used to drive the states of the model to 

those of the real physical system) simply consisted of an R component, which provided 

forces proportional to the error between system and model velocities. This was adequate 

for damping control, however this is not true for the global control and hence additional 

elements need to be provided. This can be achieved through the inclusion of an integrator 

(in this case an I:i_o component) as shown in Figure 7.13. Notice that the input to this 

component is simply the error between the system and corresponding model displacements 

and thus, whilst the error is non zero, observer forces (integral action) will be provided to the 

model. The GY is simply used to convert the integrated error, associated with flow output 

of I:i_o, from a flow to an effort variable and the AE components are used to ensure that 

only the desired variables are propagated. Naturally both the DcContObs and VelContObs 

components require this modification.

This completes the detailing of the subcomponents found within the hierarchical component
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Compensators. In the next section the performance of this bond graph designed MBO will 

be assessed. It should be noted that the state space representation of this component is 

precisely that which would be implemented in the digital controller software/hardware of 

dSpace (or equivalent).

7.7 Analysis of the Model Based Observer Split Feedback Con

troller

Having created the bond graph components of this MBO, the software program MTT was 

utilised to transform this core representation into the state space representation (this process 

is detailed in Section 4.7), Octave (similar to Matlab) was then used to to carry out system 

analysis.

In the first instance, constraints on actuator forces are ignored, that is, it is assumed that 

action forces are not limited.

It should be appreciated that this is a very high order system: The triple pendulum model 

has thirty-six states, the complete MBO bond graph design has eighty-five states, and the 

compensator alone has forty-four states. With this in mind one might imagine that design

ing a split feedback controller would be a very difficult endeavour. However, as will be 

shown, using the MBO significantly reduces this difficulty. This is because there are only a 

small number of “tunable” parameters. Moreover, these parameters are not just some matrix 

weights or some such hidden weighting factors where physical insight is lost, but instead 

have a transparent physical interpretation. These parameters can be seen in Table 7.1, the 

first five parameters (r_cu_l, r_cu_2, r_ci_l, r_ci_2 and r_ct_l) are simply the damping coeffi

cients associated with the local control. That is, this global control design also incorporates 

a local controller providing velocity damping. The remaining three parameters, Vp, and c% 

are associated with the position control: The parameter rp is the coefficient for the propor

tional control (i.e. provides the actuation force at the test mass) and the parameters and c% 

are the coefficients of the integral action (for upper mass intermediate masses respectively). 

Therefore, the effective split feedback design, for this thirty-six state multi-stage pendulum,
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reduces to choosing appropriate values for the three parameters rp, Cu and c%, but of course 

this assumes that the local control damping parameters have already been chosen.

To determine appropriate values for each of the damping coefficients all parameters were 

initially set to zero, then each set of damping coefficients, (r_cu_l and r_cu_2 for the upper 

mass, r_ci_l and r_ci_2 for the intermediate mass, and r_ct_l for the test mass) were taken in 

turn, and appropriate numerical values assigned such that when a (simulated) impulse was 

applied, at respective masses, the ringdown was reduced to a minimum. Whilst determining 

these numerical values all observer gains were set to 1 x 10 .̂ Although these are not the 

values one would use in a real implementation it is valid here because they are simply being 

used to assist the design of the controller. Remember, in accordance with the separation 

principle, the controller and observer can be designed independently.

r__cu._1 = 60.0 % upper mass damping coefficient (act 1)
r__cu._2 = 60.0 % upper mass damping coefficient (act 2)
r__ci._1 = 35.0 % int mass damping coefficient (act 3)
r__ci._2 = 35 . 0 % int mass damping coefficient (act 4)
r__ct._1 = 55.0 % test mass damping coefficient (act 5)

r_p = 40; % proportional action
c_i = 100; % integral action (intermediate mass)
c_u = 100; % integral action (upper mass)

Table 7.1: A fragment o f the numpar file (numerical parameter file) for the MBO split 

feedback controller

Having chosen the damping parameters, the remaining three split feedback parameters can 

be chosen. The value of rp determines the actuation force at the test mass, reducing its value 

reduces the actuation force at the test mass but, for a given value of and c„, increases the 

time taken for the system to reach the steady state. The relative values of c* and determine 

the relative steady state actuation forces at the upper and intermediate masses. Naturally if 

one of these parameters is set to zero, steady state actuation forces will only be applied at 

the mass associated with the none zero c parameter. The complete table of parameters (i.e 

the num par file for this system) can be found in Appendix C (Page 170).

In Figure 7.14 actuator forces, as a result of a simulated step input at the position setpoint 

(SS:[w_pl), can be seen, and the resulting displacements are shown in Figure 7.15. It should 

be noted that this MBO observer is a linearized representation of the non-linear MBO and
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hence forces and displacement scale linearly. To investigate the damping qualities of the 

controller a simulated impulse was applied at the upper mass, the resulting motion of the 

upper, intermediate and test can be seen in the graphs of Figure 7.15. The bode plot of the 

compensator (Compensators, (i.e that part of the design which would be implemented as 

a digital controller) can be seen in Figure 7.17

7.8 Conclusions And Comments

The graphs of Figures 7.14 and 7.15 shows that for both (simulated) step and impulse re

sponses the system behaves exceptionally well. However, as mentioned earlier, this analysis 

has not considered constraints on actuation forces. Moreover, as can be seen in the bode plot 

of Figure 7.17, the split feedback dc gain at the upper and intermediate masses is very much 

less than the design goal of 10® (i.e 120 dB). Furthermore, this MBO design does not con

tain the necessary filtering to prevent sensor noise coupling into pendulum motion (work 

in progress). Yet, this very simple design process, based in the physical domain of bond 

graphs, and model based observers, has yielded a controller which, under the less severe 

design constraints, controls the (simulated) triple pendulum extremely well. Also, it should 

be remembered that only three parameters, which have a physically intuitive meaning, were 

used in the creation of the split feedback synthesis, and as such makes the design process 

that much simpler.
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Figure 7.14: The actuation forces at the upper, intermediate and test masses in response to

a step input at the test mass setpoint
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Figure 7.15; The resultant displacement o f the upper, intermediate and test masses to a step

input at the test mass
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Figure 7.16: The impulse response o f the upper, intermediate and test masses - impulse

applied at upper mass
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Bode Diagrams
Input Is Position Setpoint (Test Mass). Outputs are Actuation Forces to Masses 

Magnitude (db)
100

50

-5 0

-1 0 0  

Phase (deg)
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-200

-400

-6 0 0

-1000
110

Frequency (rad/sec)

Figure 7.17: The bode plots: Input is position setpoint (test-mass) and outputs are actuator 

forces to masses: Magenta:- test mass. Other colours are those to the upper and intermedi

ate masses. These all have approximately the same magnitude because the the coefficients 

Cu and Ci have been assigned same values.
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Figure 7.18: Bond graph of a GEO 600 gravitational wave detector suspension. Notice that 

this is a three stage pendulum with two stages of cantilever blades.
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Chapter 8

Conclusions

In this thesis the requirement for multi-stage pendulum models was demonstrated, for which 

the bond graph domain was chosen. This is because the bond graph domain provides a 

unified approach to modelling hierarchical, unambiguous, core models, from which other 

representations can be generated. Furthermore, the construction of system models in a 

modular fashion facilitates the interchange of subcomponent models without the need to 

remodel the complete system. With this in mind a library of components was created. 

Validation of these components was achieved by creating the equivalent bond graph model 

of a physical system and comparing mode frequencies.

This thesis also showed that the bond graph domain offered a unified approach to system 

modelling and controller design. This was plainly borne out through the bond graph Model 

Based Observer (MBO). Here a bond graph model, of a real physical pendulum, was used 

in the synthesis of a bond graph MBO controller, designed to damp pendulum resonance. 

This MBO controller was implemented digitally and its performance compared with that 

of the original, classically designed, analogue controller to which it was shown that both 

controllers had a similar performance. However, since the “tuning” parameters of the MBO 

have physical meaning the design methodology is demonstrably more intuitive.

Having successfully created a MBO controller, for damping the pendulum modes, the poten

tial of this design methodology was demonstrated with a MBO designed global controller.
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Although this controller fell short of the veiy severe requirements of a GEO 600 global con

troller the proof of concept was shown. Here the split feedback topology, for a system with 

thirty-five states, was achieved with only three (effective) “tuning paiameters”. Also, the 

(simulated) system response to step and impulse responses would, under less severe design 

goals, be deemed excellent.

8*1 Future work

Possible future work stemming from this thesis includes:

• The further development and implementation of the split feedback MBO.

• To prevent sensor noise from coupling into pendulum motion, sensors at the inter

mediate and upper masses, are actively filtered. Therefore, if a bond graph model of 

an operational amplifier were created (work in progress) then pendulum modelling, 

controller design and sensor filter design could all be undertaken in the bond graph 

domain. Moreover, previously designed analogue circuits could easily be created in 

the bond graph domain from which a suitable representation could be readily ex

tracted for digital implementation,

• Finally, it is only natural that the 2-dimensional bond graph components, used in 

the modelling of pendula, within this thesis, should be extended to include the tliird 

spatial dimension.
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Appendix A

Transforming the Bond Graph 

Representation of a Mass-Spring 

System into an Equivalent Transfer 

Function Representation

The annotated bond graph of this system can be seen in Figure A. 1. Note, this is the causally 

complete bond graph of the acausal bond graph of Section 2.3 (Page 16). The causality has 

been completed assuming a velocity input and, following the rules outlined in Section 3.6 

(Page 36). In this figure symbolic co-variables (efforts and flows) for each bond have been 

appended (see Section 3.7-Page 41 for an example of how to complete this stage). The set 

of ordinary differential equations which mathematically describe this mass spring system 

(with the causality shown) can easily be extracted from this bond graph, i.e.

(A.l)Xi{t) = u{t) - X2{ t )
m

X2{ t ) — kx  1 (t) + & (

y { t )
X2{t)

m

-  0 (A.2)
m J

(A.3)
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Figure A. 1 : The schematic and causal bond graph of a Mass-Spring System

The State matrices (A,B,C,D) of the state space representation

x{t) = Ax{t) 4- Bu{t) 

y{t) = Cx{t) -t- Du{t)

(A.4)

(A.5)

(A.6)

are then simply:

A = b_
m

B  =

C
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D

where x(t) is a column vector of the states and and u(t) is a vector of inputs i.e.

X =
xi

X2

and

u =  [wi]

Finally the transfer function G(s) is generated from C[sl — A]^^B + D, (I is the identity

matrix of the same dimensions as A), giving:

G(s) bs + k
(A.7)

ms^ + bs + k

Now it should be appreciated that the causal bond graph representation is an unambiguous 

representation of a system, and that each stage of the transformation from bond graph to 

transfer function is a simple “turning of the handle” process. Hence these stages, including 

the possible completion of causality (for given input causality) can be undertaken by a 

suitable computer program.
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Appendix B

Introduction to Bicausal Bond 

Graphs

In Chapter 6 it was seen that bicausal bond graphs were utilised in modelling the inverse 

dynamics of a sensor. That is, the bond graph sensor models an idealised instrument whose 

input measures and integrates velocity to give displacement (sensor output). The task then, 

is to model the inverse of this process such that velocity is derived from the differentiation 

of the sensor output. The bicausal bond graph model of this sensor inversion can be seen 

in Figure B.l. Firstly, note that this bond graph component is hierarchical, containing an 

instance of the INTF component which was used to model the sensor (Section 6.5.1). Sec

ondly, two bicausal SS components can be seen, identified by the fact that half-stroke, rather 

than full stroke, causality has been applied. The SS component SS:z provides zero effort 

and flow sources and SS:v provides effort and flow sensors (remember that SS components 

with full causal stroke assignment, provide either an effort source and flow sensor or a flow 

source and effort sensor).

Prior to presenting an annotated bond graph describing the inverse dynamics of a sensor the 

basic theory of bicausal bond graphs will be presented.
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7  SS:[u]7  INTF

Sensor inverse

Figure B.l: Hierarchical bond graph component utilising bicausal bonds to model the in

verse dynamics of inverse sensor dynamics

B.l Bicausal Bond Graphs

Bicausal bond graphs were introduced by Gawthrop [61] to give a foundation for deriving 

system properties relating to system inversion, state estimation and parameter estimation 

directly from the system bond graph [62]. In this appendix only the system inversion aspects 

of bicausal bond graphs is presented. For further reading see, [62] [61].

B.1.1 Bicausal Bonds

The two bicausal bonds can be seen, along with their associated assignment equations, in 

Figure B.2. The notation is such that:

• a causal half-stroke on the flow side of the bond (the common convention is that half

arrow head is on the flow side of a bond) implies that flow is imposed on the variable 

at the far of the bond (the variable associated with the far end of the bond is on the 

left-hand side of the assignment statement) and

• a causal half-stroke on the ejfort side of the bond implies that ejfort is imposed on
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Figure B.2: Bicausal bonds

the variable associated with the near end of the bond (the variable associated with the 

near end of the bond is on the left-hand side of the assignment statement).

This notation has the result that when causal half-strokes are applied at the same end of a 

bond they have the same meaning as the corresponding (full) causal stroke (Section 3.6).

B.1.2 Bicausal Junctions

Figure B.3: The propagation of bicausality at a junction

Bicausality can be propagated through junctions, an example is shown in Figure B.3. Here 

the C component is assumed known and is thus unicausal. Now, given the bicausality of
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bond 1 (ei and / i )  the impinging effort (ei), at the junction, forces the causality on the C 

component’ (i.e it is forced to have derivative causality). Thus the causality of flows f \  and 

/s, in conjunction with the constitutive relationship for the 0 junction, implies the causality 

of / 2 , as shown.

B.1.3 Source Sensor SS Components

The SS component was introduced in Section 3.4.1. The four bicausal forms of this com

ponent can be viewed in Figure B.4. Notice the first two forms have their half-strokes at the 

same end of their respective bonds and hence have the same properties as the full causal SS 

components of Section 3.4.1, namely:

(1) effort source and flow sensor

(2) flow source and effort sensor

whereas the two bicausal SS components with half strokes at opposite ends of their respec

tive bond are

(3) flow and effort source

(4) flow and effort sensor

respectively.

B.1.4 Flow and Effort Amplifiers

Th& flow amplifier (AF) and effort amplifier (AE) are ideal two port flow and effort ampli

fiers respectively. With the standard causal pattern, as shown in Figure B.5, the following 

set of equations,

ei := 0, and / 2  : = / i  (B.l)

'Remember at a 0  junction there is common effort, and hence only one bond can impose effort and also that 
Yj, f l o w s  =  0
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/ SS (1) effort source and flow  sensor

SS (2) flow  source and effort sensor

1-------------------------^  SS (3) flow  and effort

i-------------------------4  SS (4) flow  and effort sensor

Figure B.4: Bicausality and source sensor components SS 

for the AF component and

/ i  ;= 0, and 62 := ei (B.2)

for the AE component, apply. However, if the output flow (^2 ) of the AF component is 

known, then the bicausal half-strokes as shown in Figure B.5 apply, resulting in the follow

ing assignment statements:

6i := 0, and f \  := / 2  (B.3)

Similarly if the output effort (6 2 ) of the AE component is known then the bicausal half

strokes as shown in Figure B.5 apply, resulting in the following assignment statements:

/ i  := 0 , and ei := 62 (B.4)

The bicausal bond graph has been extended to incorporate other components [62]. These 

are not covered here.

B.2 Using Bicausal bond graphs to model the inverse dynamics 

of a sensor

In Figure B . 6  the annotated bond graph component that models the inversion of the sensor 

dynamics can be seen. The determination of each bond’s co-variables was simply deter-
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Standard Causal Pattern

Alternative Bicausal Causal Pattern

Figure B.5: Possible bicausal assignments as applied to flow and effort amplifiers

mined from the definitions presented above and in Chapter 3. Here, for clarity, this bond 

graph model has been presented as a non hierarchical system (c.f. Figure B.l). Points to 

note are;

• The component SS:z provides zero effort and flow sources. The zero effort sources, 

through the propagation of causality, imposes derivative causality on the C compo

nent. The zero flow source in conjunction with the AE component ensures that there 

is no “back effect” on the system whose effort variable is to be differentiated.

• The AF is simply included so that only the derivative q is propagated to any external 

components.

• The 1 junction with the attached bond graph component SS:v is simply included to 

provide effort and flow sensors. The effort sensor carries the effort input from the 

SS::[u] (i.e the effort variable associated with a conjoined component). The flow
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Figure B.6: The annotated bond graph of the bond graph component modelling inverse 

sensor dynamics

sensor outputs the derived velocity. Furthermore, the use of this bicausal SS compo

nent ensures that the output port (SS:[u]) has a full causal stroke.

Notice that, as desired, this bond graph model takes an effort variable as its input and pro

vides an output (flow) which is the derivative of the input.
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Appendix C

Split feedback Numerical Parameters

Here are the numerical parameters as used in the design of the global controller

^*****************
g = 9.81;

UX = 0.1;
uy = 0.3;
uz = 0.07;
deni = 2700;
m_l = denl*uy
%ilx = m_l*(uy
j_l = m_l*(uz
%ilz = m_l*(uy
^*****************
ix = 0.1;
ir = 0.09;
den2 = 2202;
m_2 = den2*pi
%i2x = m_2*(ir
j„2 = m_2*(ir
%i2z = m_2*(ir

% dimensions of upper mass (square)

% density (aluminium) 
% mass

% dimension of int mass (cylinder)

% density (fused silica)
% intermediate mass 
% moment of inertia (sideways roll)

Table C.l: Numeriacl parameters used in global control design 
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^****************************************************************** 
tx = 0 . 1 ;  % dimensions of test mass (cylinder)
tr = 0.09;
den3 = 2202; % density (fused silica)
m_3 = den3*pi*tr''2*tx; % test mass
%i3x = m_3* (tr''2/2) ; % moment of inertia (sideways roll)
j_3 = m_3* (tr''2/4+tx''2/12) ;% moment of inertia (longitud tilt)
%i3z = m_3* (tr''2/4 + tx''2/12) ;% moment of inertia (rotation)

1_1 = 0 . 4 2 ;  % upper wire length
1_2 = 0 , 1 8 7 ;  % intermediate wire length
1_3 = 0.280; % lower wire length

r_l = 350e-6
r_2 = 175e-6
r 3 = 154e-6

% radius of upper wire
% radius of intermediate wire
% radius of lower wire

y_l = 1.65ell;; % youngs mod of wire 1 (s/steel 302)
y_2 = 1.65ell; % youngs mod of wire 2 (s/steel 302)
y„3 = 7el0; % youngs mod of wire 3 (f silica)

% spring constants

k_l = 2*y_l*pi*r_l''2/l_l % spring constant for wires (susp 1)
k_2 = 2*y_2*pi*r_2''2/l_2 % spring constant for wires (susp 2)
k_3 = 2*y„3*pi*r_3''2/l_3 ; % spring constant for wires (susp 3)

k_cl = 2*739; % effective spring const cantil 1
k_c2 = 2*498; % effective spring const cantil 2
 ̂ ***************************************************************** 
% parameters for violin modes - suspension 3 only *************** 
rho_w = 2202; % density of steel
a„w = pi*r_3''2; % x-sectional area of wire
n_wires = 4 ;  % number of wires
n_lumps = 4 ;  % number of lumps
dx_wires = l_3/n_lumps;
mass = m_3;
wire_tension = (raass*g)/n_wires;
lin_rho = rho_w*a_w;
dk_3 = (wire„tension/dx_wires)
dm_3 = dx_wires*lin_rho
dr_3 = 0.0;
^ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Table C.2; Numerical parameters used in global control design continued
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% suspension locations 
vu_l = 0.001; % Upper Mass Susp
vdl_l = -0.001; % Upper Mass Susp
vdr_l = -0.001; % Upper Mass Susp
vul_2 = 0.001; % Intermediate Mass Susp
vur_2 = 0.001; % Intermediate Mass Susp
vdl_2 = -0.001; % Intermediate Mass Susp
vdr„2 = -0.001; % Intermediate Mass Susp
vul_3 = 0.001; % Test Mass Susp
vur_3 = 0.001; % Test Mass Susp
hu_l = 0.0; % Upper Mass Susp
hdl_l = -0.03; % Upper Mass Susp
hdr_l = -0.03; % Upper Mass Susp
hul_2 = 0.03; % Intermediate Mass Susp
hur_2 = 0.03; % Intermediate Mass Susp
hdl_2 = -0.005; % TestMassSusp,Triple
hdr_2 = -0.005; % TestMassSusp,Triple
hul„3 = 0.005; % Test Mass Susp
hur_3 = 0.005; % Test Mass Susp

% actuator 
h„ai_l =

locations
-ix/2; % Actuator 1 Intermediate Mass

h_ai_2 = -ix/2; % Actuator 2 Intermediate Mass
h_at_l = -tx/2; % Actuator 1 Test Mass
h_au_l = -ux/2; % Actuator 1 Upper Mass
h_au_2 = -ux/2; % Actuator 2 Upper Mass
v_ai_l = ir/2; % Actuator 1 Intermediate Mass
v_ai_2 = -ir/2; % Actuator 1 Intermediate Mass
v_at_l = 0.000; % Actuator 1 Test Mass
v_au_l = uz/2.0; % Actuator 1 Upper Mass
v_au_2 = -uz/2.0; % Actuator 2 Upper Mass

***********
% *  *  *  * 

norm_i. 
norm_i. 
norm_t. 
norm_u. 
norm_u. 
wnorm 
%***** 
r_ou_l 
r_ou_2 
r_oi_l 
r_oi_2 
r_ot_l 
r_cu_l 
r_cu_2 
r_ci_l 
r_ci_2 
r_ct„l 
r_p 
c„i 
G u

These 
_ 1  =

_2 =

_ 1  =

_ 1  =

2 =

parameters can be used to normalise inputs/outputs 
1 . 0 ,
1 . 0  
1 . 0  
1 . 0  
1 . 0  
1 . 0

% DcContObs4 Actuator 1 Intermediate Mass
% DcContObs4 Actuator 2 Intermediate Mass
% VelContObs Actuator 1 Test Mass
% DcContObs4 Actuator 1 Upper Mass
% DcContObs4 Actuator 2 Upper Mass

le5 
leS 
le5 
le5 
le5 
60. 
60. 
35. 
35. 
55 . 
40; 
100  
100

% compensator stuff 
%
% Observer Gains 
%
%
% Upper Mass Damping Coefficient (Act 1)
% Upper Mass Damping Coefficient (Act 2)
% Int Mass Damping Coefficient (Act 3)
% Int Mass Damping Coefficient (Act 4)
% Test Mass Damping Coefficient (Act 5)
% Proportional Action
% Integral Action (Intermediate Mass)
% Integral Action (Upper Mass)

Table C.3: Numerical parameters as used in global control designed continued
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