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ABSTRACT

Flavonols are polyphenols, secondary plant metabolites commonly found in 

plants and foods of plant origin. They have widespread biological properties in the 

human body. The recent discovery of their potential antioxidant activities has prompted 

extensive research. Flavonols particularly quercetin are potent antioxidants with higher 

antioxidant properties than the well known antioxidant vitamins C and E. Several 

epidemiology studies have demonstrated a strong inverse association between flavonoid 

intake and risk of coronary heart disease. The association with cancer is less defined 

with only some studies showing an inverse association and others not. In view of their 

potential to act as antioxidants and prevent oxidative damage-related diseases, it is 

important to have an understanding of their bioavailability. Indeed, information of the 

absorption and metabolism of individual flavonols in man is limited. Previous 

investigations of their absorption have shown conflicting results. It was previously 

speculated that flavonol glycosides were not absorbed due to their conjugation to sugar 

molecules and that only the agi y cones were transported into the blood stream. However, 

recent research has detected the presence of quercetin glycosides in plasma. These 

findings disagree with the earlier postulation that flavonol glycosides were not absorbed. 

In addition to absorption, the metabolism of flavonoids is another important area of 

research. As yet, little flnn information is available on the fate of flavonols following 

absorption. The aim of the present study was to conduct further research on the 

absorption and metabolism of flavonols and to establish the influence of flavonol 

structure on the extent of their absorption and metabolism.

In the first study, the accumulation of flavonols in plasma and their excretion in 

urine was investigated after a meal of lightly fried onions. Five healthy volunteers 

followed a low flavonol diet for 4 days. On day 3, after an overnight fast, subjects 

consumed 300 g of lightly fried yellow onions containing quercetin-3,4'-diO-p- 

glucoside, isorhamnetin-4'-0-p-glucoside and quercetin-4'-0-P-glucoside. Blood was 

sampled at 0 min, 0.5, 1.0, 1.5, 2, 3, 4, 5 and 24 h after the supplement. In addition, 

subjects collected all their urine for 24 h following the onion supplements. Isorhamnetin- 

4'-0-p-glucoside, a minor flavonol in onions accumulated in plasma at higher levels than 

quercetin-4'-0-p-glucoside which was a major onion flavonol. The peak concentration



in plasma, expressed as percentage of intake of isoihamnetin-4'-(9-P-glucoside and 

quercetin-4'“0-p-glucoside was 10.7 ± 2.6% and 0.13 ± 0.03 %, respectively. The time 

taken to reach peak plasma concentration after ingesting the onions was 1.8 ± 0.7 h for 

isorhamnetin-4'-0-p~glucoside and 1.3 ± 0.2 h for quercetin-4'-O-p-glucoside. 

Excretion in urine, as a proportion of intake, was 17.4 ± 8.3% for isorhamnetin-4 -O-P- 

glucoside and 0.2 ± 0.1% for quercetin-4'-0-P-glucoside. It was concluded that 

flavonols are absorbed into the bloodstream as glucosides. Structural differences in the 

flavonol molecule appeared to affect the level of accumulation and the extent to which 

they are excreted.

Further studies investigated the influence of structural modifications on flavonol 

absorption from the intestine. An in vitro everted rat gut model was employed to assess 

the uptake of several flavonol glycosides as well as free quercetin. Everted rat jejunal 

segments (6-10 cm) were incubated at 37°C in 20 ml of Krebs buffer containing 10 pM 

of the test flavonols. The incubation media was continuously gassed with 95% O2 and 

5% CO2 . Incubation was performed for 30 min with samples taken every 5 min from the 

serosal side. The rate of uptake of flavonols were in the order of quercetin-3,4'-di(9-p- 

glucoside > quercetin-3-O-p-rutinoside > quercetin-3-O-p-glucoside > quercetin-3-O-p- 

rhamnoside > quercetin-4'-0-p-glucoside > isorhamnetin-4'-O-P-glucoside > quercetin 

demonstrating the structural dependence of flavonols on their uptake across the intestinal 

mucosa. Quercetin glycosides and diglucosides as well as isorhamnetin-4'-O-p- 

glucoside were better absorbed than quercetin aglycone. Flavonol glycosides with 

glucose substitution at C3 or at both C3 and C4' were better absorbed across the small 

intestine than those with a glucose substitution only at C4'.

In the light of the differential uptake of flavonols across the intestine, the 

mechanism of their absorption was explored using the everted rat gut model described 

above. The uptake of quercetin-3-O-p-glucoside appeared to be concentration dependent 

with evidence of saturation observed in the concentration range of 10 pM to 500 pM. 

Several experiments were performed to assess the role of the sodium-glucose transport 

pathway (SGLTl) in flavonol transport. There was no significant difference in the rate 

of uptake of 10 pM quercetin-3-O-P-glucoside in the presence of 0, 1, 10, 50 and 100 

mM glucose (P>0.05). Phloridzin, an inhibitor of SGLTl did not reduce the rate of
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transport of 10 pM quercetin-3-<9-p-glucoside at concentration of 1 mM and 5 mM 

(P>0.05) although the same concentration inhibited glucose transport by ca. 33%. A 

slight inhibition was observed in the uptake of 10 pM quercetin-3,4'-diO-p-glucoside in 

the presence of 1 mM phloridzin, but this was not statistically significant (P>0.05). The 

possibility of quercetin-3-O-P-glucoside acting as an inhibitor of SGLTl was also 

investigated. This glucoside did not inhibit uptake of 10 mM glucose at concentrations 

of 10 pM, 50 pM and 500 pM. This study showed that the intestinal uptake of 

quercetin-3-(9-P-glucoside and possibly other quercetin glucosides was carrier-mediated. 

We conclude from this study that SGLTl did not play a role in the uptake of flavonol 

glucosides.

The liver metabolism of flavonol glucosides, quercetin-3,4'-di0-p-glucoside, 

quercetin-4"-0-p-glucoside, quercetin-3-O-p-glucoside , and isorhamnetin-4'-0-P- 

glucoside was investigated in an in vitro experiment. A 24 nM solution of flavonol was 

incubated in 10 ml of phosphate buffer (50 mM, pH 7.4, containing 10 mM MgCL) 

together with 1 g of rat liver homogenates with or without 24 nM .S-adenosyl methionine, 

incubation was performed for 2 h at 37°C with samples withdrawn every 10 min for the 

first half an hour followed by every 30 min thereafter. Metabolism of the four flavonol 

glucosides was seen. The extent of the reaction was highest for quercetin-4'-O-P- 

glucoside (89.1 ± 1.7 %), followed by quercetin-3-O-p-glucoside (67.6 ± 2.7 %), 

isorhamnetin-4'-0-p-glucoside (63.6 ± 0.4 %) and quercetin-3,4'-diO-P-glucoside (31.9 

± 4.1 %). Extensive méthylation of quercetin-3-O-p-glucoside occurred with less than 

10 % remaining after 2 h. Deglycosylation of the flavonol glycosides occurred, evident 

from the appearance of deglycosylation products. As the percentage accumulation of 

metabolites was much lower than the percentage of the substrate metabolised, other 

metabolic reactions, in addition to deglycosylation and méthylation, would appear to 

have been taking place.

Results obtained from this thesis can partially explain the seemingly low 

absorption of flavonol glycosides from the small intestine and their accumulation in 

plasma. The structure of flavonols, particularly the nature and position of the sugar 

moiety, has a major influence on their absorption and potential bioavailability.
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Furthennore, the substantial metabolism of flavonol glucosides by the liver may 

contribute to the low levels of the parent compounds detected in plasma and urine.

Findings from this present study raised interesting health promotion possibilities 

as identification of the flavonol conjugates which will be highly absorbed into the 

bloodstream can be used to encourage the public to increase their intakes of flavonol-rich 

fruit and vegetables. Identification of the metabolites of flavonol metabolism with 

potential anti oxidant activities can further contribute towards promoting the beneficial 

effects of increasing intakes of flavonol-rich foods.
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CHAPTER 1: LITERATURE REVIEW

1.1 Introduction

The feîatïonshfp between human diet and disease has been studied for many 

years. Diet is tecognised as one of the main factors influencing disease and life- 

threatening conditions particularly in the middle aged and elderly. Each year, a 

significant percentage of the groups suffer from diet-related diseases such as 

hypertension, cancer and diabetes. Thus, the potential contribution of diet towards 

prevention of disease is widely studied as one of the means of improving or maintaining 

quality of life. Furthermore, as prevention is better than treatment, various ways are 

being investigated to prevent development of diseases.

1.2 Diet and d isease

Coronary heart disease results in more deaths than any other single cause in 

countries around the world, particularly in western populations. The UK has one of the 

highest deaths from coronary heart disease in the world. Recent Scottish Health 

Statistics Report (1998) indicated a general fall in the incidence and mortality rates of 

ischaemic heart disease in Scotland over the period 1987-1996. However, Scotland 

holds the top position for coronary heart disease in the UK. Smoking, high blood 

pressure and raised serum cholesterol levels are the major risk factors for heart disease, 

the last two largely affected by diet.

In addition to coronary heart disease, diet may also be related to the development 

of cancer at several sites. After heart disease, cancer is the second cause of death in 

western countries. Scotland for instance, has the world’s highest incidence of lung 

cancer in females (Scottish Health Statistics Report, 1998). Cancer of the breast, 

stomach and bowel are attributable primarily to diet (Doll and Peto, 1981).

Diet can either promote or prevent heart disease and cancer. Fat, cholesterol, salt 

and alcohol are possible initiators of heart disease and cancer whereas dietary fibre and
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the antioxidant nutrients may be protective. In view of the potential protective effects of 

diet, extensive research, has been carried out to identify these beneficial nutrients, as well 

as foods in which they are present in high levels. The ability of fruit and vegetables to 

provide high quantities of the antioxidant nutrients is well established (Williamson, 

1996).

1.3 The importance o f fruit and vegetables.

Fruit and vegetables have long been known to be beneficial to health. They are a 

rich source of vitamins and minerals that the body cannot synthesize but which are 

essential to maintain normal development and function as well as provide protection 

against a variety of diseases. People with diets rich in fruit and vegetables enjoy better 

health than those with a low intake. In view of the beneficial health properties of fruit 

and vegetables, it has been recommended that people should consume at least 5 portions 

of fruit and vegetables each day (Foerster et a i, 1995).

There is emerging epidemiological evidence that low intakes of fruit and 

vegetables can contribute to several disease conditions including coronary heart disease, 

cancers, obesity and diabetes (Knekt et al,, 1994, Ness and Powles, 1997, Williams et 

al., 1999). In addition to vitamins and minerals, fruit and vegetables are also low in fat 

and calories and a good source of dietary fibre. Extensive studies have been performed 

to identify the compounds in fruit and vegetables thought to provide protection to the 

body. Among the compounds identified are the antioxidant nutrients, the main ones 

being vitamins C, E and carotenoids and also the minerals selenium and manganese. 

Antioxidants are able to scavenge highly reactive free radicals which cause oxidative 

damage to body tissues (Flalliwell, 1996). This helps delay or prevent development of 

diseases related to free radical damage (see section 1.8). Although the human body has 

its own defense against oxidative damage, this is inadequate. Thus, diet-derived 

antioxidants are important in maintaining health.

Attempts have been made to further identify other bioactive compounds in fruit 

and vegetables with potential health properties. This has led to the discovery of various 

other non-nutrients with potential antioxidant activities. The most important are
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phenolic compounds that are secondary plant metabolites made irp of various classes of 

compounds inclnding bydtoxybenzoales, hydioxycinnamates and a range of 

polyphenols. Flavonoids are the main class of polyphenols. They are potent 

antioxidants and some are more active than the well-known vitamin antioxidants (Vinson 

et a l, 1995, 1999). This thesis describes the nature and importance of flavonoids and 

discusses these bioactive compounds and their possible role in providing protection 

against diseases. Their absorption and metabolism, which is of particular importance 

will be discussed in detail later in this chapter.

1.4 History of flavonoids

Flavonoids have been reported from as early as 1925, with the description of the 

anthocyanin pigments in plants (Onslow, 1925). Even before their antioxidant properties 

were identified, flavonoids had been used for many years in traditional medicine for the 

purpose of maintaining good health and general well being. Approximately 40 species 

of plants have been reported to be used as phytomedicines due to their flavonoid content. 

One of the more popular is Ginkgo biloba.

Initially, certain citrus-flavonoids were claimed to have vitamin properties, and 

were referred to as ‘Vitamin P’ (Rusznyak and Szent-Gyorgyi, 1936). However, this 

term was later dropped due to insufficient evidence to support their role as indispensable 

food components equivalent to vitamins. In recent years, research has been focussed on 

the identification and quantification of flavonoids from plants. In this way, the 

physiological and biological properties of individual flavonoids can be evaluated. More 

importantly, flavonoids that are especially beneficial to health can be identified.



1.5 Chemistry of Flavonolds

Flavonoids are a class o f polyphenols that occur ubiquitously in plants and plant 

products. They are not synthesised in animals, but are found in plant-derived foods. The 

biological activities o f flavonoids at pharmacological doses are well established (Ferry et 

a i,  1996, Herrera et al., 1996) but an important issue is whether they can provide any 

potential health benefits at normal dietary intakes.

Flavonoids are found in every family and nearly every species o f higher plant 

(gymnosperms and angiosperms). Flavonoids typically occur as conjugates linked to 

sugars such as glucose, rhamnose or galactose (Cook and Samman, 1996). Relatively 

small amounts are found in the free form as aglycones.

A basic flavonoid molecule consists o f two 6C aromatic rings (A and B rings) 

linked by a 3C unit (C ring) (Figure 1.1). Ring A is formed by the acetate pathway 

whereas ring B is formed by the shikimate pathway. Condensation o f  ring A with the 

carboxyl group o f ring B formed the chalcones which then undergo cyclization to flavane 

derivatives.

Figure 1.1: Basic flavonoid structure

The structure o f the flavonoid molecule allows a multitude o f substitution 

patterns to occur, giving 13 different sub-classes, the main ones being flavones, 

flavonols, flavan-3-ols, isoflavones, anthocyanidins and flavanones. The substitutions in 

the flavonoid molecule include hydrogenation, hydroxylation, méthylation, sulphation 

and glycosylation (Cook and Samman, 1996).



To date, over 8000 different flavonoids have been identified and the list still 

increasing. Not all plant-derived foods have been examined to determine their exact 

flavonoid content, therefore the information regarding actual flavonoid intake o f humans 

is incomplete. However, this situation is changing as more studies are perfonned on the 

identification and quantification o f flavonoids in foods commonly consumed in the 

human diet. Hertog et al. (1992) recently reported the tlavone/flavonol content of 28 

vegetables and 9 fruits consumed in the Netherlands. An extension o f such studies will 

be useful in the estimation o f flavonoid intake o f the human diet and at the same time, 

the findings can be used in epidemiological studies to determine the association between 

flavonoid intake and disease occurrence. Before going into further detail on the 

beneficial role o f this polyphenol, a brief explanation on the different sub-classes and 

their biosynthesis is discussed.

1.5.1 Sub-classes of flavonoids

Flavones

o

Figure 1.2: Structure of  flavone

Flavones consist o f a group o f pale yellow pigments o f flower petals, leaves, 

seeds and fruits. They are less prominent in fruits compared to other classes of 

flavonoids, with the exception o f citrus fruits. Common flavones include apigenin, 

luteolin and diosmetin. Their roles in plants are to provide colour and taste to plant 

tissue (Peterson and Dwyer, 1998). Herbs such as parsley, rosemary and thyme and 

cereal grains contain flavones (Peterson and Dwyer, 1998).



1.5.1.2 Flavonols

OH

Figure 1.3: Structure o f  flavonol

The structure o f Havonol is very similar to llavones except for the addition o f a 

hydroxyl group at C3 o f ring C in the former. Flavonols are pale yellow and sparingly 

soluble in water. They are abundant in flowers and leaves making the flavonols one o f 

the most widely studied flavonoid groups. Some o f their roles include acting as 

regulators o f  germination, flowering and pollen tube growth (Furuya el uL, 1962). 

Quercetin, kaempferol and isorhamnetin are some o f the more common flavonols and are 

found in leafy vegetables, berries, herbs and legumes.

1.5.1.3 Flavan-3-ols

Figure 1.4: Structure of  (+)-catechin

Flavan-3-ols such as (+)-catechin (Figure. 1.4) and (-)-epicatechin are colourless, 

water-soluble and oxygen-sensitive substances. Their structure consists o f one OH 

group in position C3 o f ring C as well as saturation o f ring C. Catechins represent the 

group o f flavonoids that occur in highest concentrations in green plants especially in teas 

and fruits such as grapes, black currants and strawberries (Peterson and Dwyer, 1998, 

van het H of et a!., 1999). Catechin derivatives including epicatechin, epicatechin gal late 

and epigallocatechin gallate are present in high concentrations in grape seed and black 

and green tea. The astringent taste o f fruits, teas and wine are provided by catechins.



Condensation o f catechins leads to the formation o f a range o f oligomeric 

proanthocyanidins.

isoflavones

Figure 1.5: Structure o f  isoflavone

Isotlavones differ from the other sub-classes o f flavonoids with attachment o f the 

B ring at the C3 position of ring C. Daidzein and genistein are the most common 

isoflavones. Isoflavones are water-soluble compounds. This sub-class is found almost 

exclusively in legumes such as black bean, chickpeas and green split peas. Soybean is 

the most abundant source o f isoflavones and research has been performed on the possible 

health properties o f soybean. Isoflavones are widely known for their estrogenic 

properties (Setchell and Cassidy, 1999). This has prompted investigation on their role as 

potential alternative therapies for a range o f hormone dependent conditions including 

cancer, menopause symptoms and osteoporosis.

1.5.1.5 Anthocyanidins

OH

Figure 1.6: Structure o f  anthocyanidin

Anthocyanidins are water-soluble plant pigments and contain a flavylium 

structure with a cation group on ring C. Anthocyanidins such as cyanidin, delphinidin 

and pelargonidin are responsible for most o f  the red, blue and intermediate colours o f



(lowers and fruits, their role being associated with pollination or seed distribution. They 

occur in leafy vegetables, cereals, tubers and bulbs and are also present in fruits such as 

berries, apples and plums. The most common naturally occurring anthocyanins in the 

plant kingdom are the 3-glycosides or 3,5-diglycosides o f anthocyanidins (Harbome, 

1967). Conjugated anthocyanidins are called anthocyanins. The colour o f anthocyanins 

is pH-dependent with anthocyanidins being relatively insoluble whereas their glycosides 

are easily soluble and stable at pH 3-7.

Flavanones

Figure 1.7: structure of flavanone

Flavanone is the precursor for the synthesis o f other sub-classes o f tlavonoids. 

Flavanones are found mainly in citrus fruits and contribute to the flavour o f these fruits. 

In addition, liquorice roots, cumin and peppermint also contain flavanones. Naringin, 

which is found in grapefruit, provides the bitter taste whereas hesperidin in oranges is 

tasteless.



1.6 The brosynthesîs of flavonoids

1.6.x Introduction

The biosynthesis of all flavonoids involves three main pathways consisting of the 

shikimate pathway for the synthesis of aromatic amino acids, the general 

phenylpropanoid pathway for the synthesis of the intermediates for various flavonoids 

and the pathway for the modification of the flavonoid aglycones.

1.6.2 The shikimate pathway

The shikimate pathway, found only in microorganisms and plants is an essential 

route to the biosynthesis of aromatic amino acids including phenylalanine, tyrosine and 

tryptophan. It is responsible for the formation of the phenylpropanoid units, the 

precursors for flavonoid biosynthesis. Intermediates derived from this pathway act as 

protein building blocks and more important, in the synthesis of various secondary 

metabolites such as plant pigments and UV light protectants, although in this case, only 

the biosynthesis of flavonoids will be discussed (Figure 1.8). As only a brief explanation 

is given, the enzyme involved in each step is not discussed.

The carbon skeleton of the flavonoid molecule is derived from acetate and 

phenylalanine. Phenylalanine undergoes a series of reactions to form 4-coumaroyl CoA 

which forms the B ring and parts of the heterocyclic C ring of the flavonoid skeleton. 

Ring A is formed by condensation of three acetate units via malonyl CoA. Malonyl-CoA 

and 4-coumaroyl CoA are the precursors for the synthesis of all flavonoids. 

Condensation of ring A with 4-coumaroyl CoA produces tetrahydroxychalcone which 

subsequently undergoes isomerization to flavanone (naringenin). Flavanone acts as the 

precursor for the synthesis of the other sub-classes of flavonoids including flavones, 

flavonols, anthocyanidins and isoflavonoids.

Flavones (e.g apigenin) are synthesised from flavanones by introduction of a 

double bond between C2 and C3. On the other hand, oxidative rearrangement of the 

flavanone with a shift of ring B from position 2 to 3 give rise to isoflavone such as
9



genistein. Hydroxylation of flavanone in position 3 fonns dihydroflavonol, acting as 

intermediates in the synthesis of flavonols, catechins, proanthocyanidins and 

anthocyanidins. Introduction of a double bond between C2 and C3 of dihydroflavonols 

leads to the synthesis of the subclass flavonol.

Reduction of dihydroflavonols in position 4 leads to the formation of 

leucopelargonidin which act as an intermediate in the synthesis of catechin, 

proanthocyanidin and anthocyanidin. The synthesis of anthocyanidin involves a series of 

reactions including reduction of the carbonyl group of dihydroflavonol (Harbome and 

Grayer, 1986). Further reduction in position 4 of leucoanthocyanidins gives rise to 

catechins (e.g. Afzelechin). Leucoanthocyanidins are also the precursors for anthocyanin 

biosynthesis.

1.6.3 Steps to flavonoid modification

Simple flavonoids can be modified to give various aglycones or conjugates 

within each flavonoid class. This is achieved by further hydroxylation of rings A and B, 

followed by méthylation, glycosylation or sulphation of the various hydroxyl groups. 

The most common structural modifications of flavonoid aglycones are hydroxylation and 

subsequent méthylation in the 3' and 5' positions of ring B (Ebel and Hahlbrock, 1982). 

Extensive studies have been performed on the biosynthesis of flavone and flavonol 

glycoside particularly in parsley (Ebel and Hahlbrock, 1982). The sequence of reactions 

includes substitutions of ring B of the aglycones by hydroxylation and O-methylation 

followed by glycosylation and acylation of the resulting glycosides.
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1.7 Role of flavonoids

1.7.1 Role of flavonoids in plants

Table 1.1: Summary of the role of flavonoids in plants

Function Example of flavonoids Reference

UV protectants Anthocyanins, flavones, 

isoflavonoids
Dixon and Paiva, 1995

Regulate auxin levels Flavones Moore, 1989

Provide colour to plants Anthocyanins Harbome and Grayer, 1986

Attract pollinators Anthocyanins Harbome and Grayer, 1986

Aid in seed dispersal Anthocyanins Harbome and Grayer, 1986

Feeding deterrents Anthocyanins Harbome and Grayer, 1986

Protection against stress;
i) Pathogen attack 
11) Cold temperature 
lii)Nutritional stress

(e.g. low nitrogen or low 
phosphate)

Flavonols, isoflavonoids 
Anthocyanins
Isoflavonoids, anthocyanins

Bailey and Mansfield, 1982 
Christie et ai, 1994 
Graham, 1991

The main role of flavonoids in plants is to act as UV protectants and they are 

synthesised in response to light. They also control the levels of auxins, the regulators of 

plant growth and differentiation (Moore, 1989) in addition to providing colour, texture 

and taste to food plants (Harbome, 1986). At the same time, flavonoids can affect 

pollination by inhibiting or stimulating insect feeding (Hedin and Wangea, 1986).

Flavonoids are synthesised in response to UV-B light. Hence, they accumulated

in the upper epidermal cells of leaves (Day et al., 1993) and absorbed UV-B, preventing

further penetration into the leaf cells. Mutant plants lacking the ability to synthesise

flavonoids are more sensitive to UV-B (Landry et ai, 1995). Flavonoids are also

produced in plants in response to stress and this includes pathogen attack, high UV light,
12



cold temperature and nutritional stress (Dixon and Paiva, 1995). Isoflavonoids and 

flavonols (e.g quercetin and kaempferol) are synthesised in response to pathogen attack 

(Bailey and Mansfield, 1982) and low levels of nitrogen in nitrogen-fixing plants 

(Graham, 1991) whereas anthocyanins increase following cold stress (Christie et al., 

1994).

Flavonoids can exist in both coloured and colourless forms in plants, and 

influence the feeding habits of animals, especially insects, birds and herbivores and 

thereby can indirectly affect pollination. Anthocyanins are the most important flavonoid 

plant pigments. The flower colours provided by flavonoid pigments provide attraction to 

pollinating insects with each class of pollinator having its own colour preferences. In 

addition, flower colour may also signal the availability of the flower for pollination to 

attract pollinators and may then change colour, lose their attractiveness and hence be 

avoided by the pollinators (Harbome and Grayer, 1986). This will assist in increasing 

the efficiency of the pollination process.

Certain flavonoids can act as attractants to stimulate insect feeding and in most 

cases, the 0-glycosides are the active compounds rather than the aglycones (Harbome 

and Grayer, 1986). At the same time, flavonoids that act as attractants for some insects 

may be a deterrent to others. The structure of the flavonoid molecule together with their 

substitution pattern helps determine their role either as attractants or deterrents in insect 

feeding. Flavonoids acting as insect deterrents have the potential to be used as 

insecticides and confer protection to crops against insect attack.

1.7.2 Role of flavonoids in human health

1,7.2.1 Introduction

Of greater interest is the role of flavonoids in human health and their ability to 

influence various functions in the human body. Clinically relevant functions have been 

ascribed to flavonoids including anti-inflammatory, anti-microbial, anti-cancer and 

hypocholesteroiaemic properties (Formica and Regelson, 1995; Table 1.2).
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Table 1.2: Summary of the role of flavonoids in human health

Function Example of flavonoids ; Reference

Anti-inflammatory agents Quercetin, myricetin, fisetin Koshihara etal., 1983

Vascular responses
i) inhibits platelet aggregation
ii) inhibits LDL oxidation

Quercetin, myricetin 
Catechins

Lanza etal., 1987 
Rice-Evans etal., 1996

Anti-microbial
1) anti-viral 
ii)'anti-bacterial

Quercetin, morin, catechin Selway, 1986
Schramm and German, 1998

Anti-cancer
i) inhibits protein kinase
ii) inhibits calmodulin
iii) prevents oxidative DNA damage

Quercetin, genistein, daidzein 
Quercetin
Quercetin, myricetin

Srivastava, 1985 
Nishino etal., 1984 
Duthie et al., 1997

Inhibitors of enzymes
i) catechol-O-methyl transferase
ii) membrane NaVK^ ATPase

Quercetin 
Flavonol aglycones

Borchardt and Huber, 1975 
Umarova etal., 1998

Antioxidant
See section 1.9

Quercetin, catechin Rice-Evans etal., 1996

1.7.2.2 Flavonoids as anti-inflammatory agents

The role of flavonoids as anti-inflainmatory agents is well established. 

Flavonoids such as quercetin and catechin can reduce inflammation by suppressing 

various functions of neutrophils including release of oxidants during phagocytosis 

(Busse et al., 1984). The mechanism of their action appears to involve the enzyme 

systems of signal transduction and cell activation processes of the immune system 

(Formica and Regelson, 1995). This includes the widely reported ability of quercetin to 

inhibit lipooxygenase and monooxygenase, enzymes of arachidonate metabolism 

responsible for maintaining integrity of the inflammatory systems (Koshihara et al., 

1983, Da Silva e ta l ,  1998).
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1.7.2.3 Flavonoids and anti-microbial activity

The antimicrobial activity of flavonoids against a variety of bacteria {E. coli and 

Salmonella), viruses (Influenza A, rhino viruses) and fungi are well documented (Selway, 

1986, Schramm and German, 1998). Compounds such as quercetin, morin and catechin 

possess antiviral activity and the mechanism of action is related to their ability to bind to 

viral coat protein and interfere with nucleic acid synthesis, therefore damaging DNA 

(Formica and Regelson, 1995). Damage of bacterial DNA by flavonoids is also 

postulated as the mechanism for the anti-bacterial activity of flavonoids. The aglycones 

appear to be the active forms particularly the methylated or lipophilic flavones 

(Ramaswamy et aL, 1972).

1.7.2.4 Flavonoids and vascular responses

Various mechanisms have been ascribed to the role of flavonoids in vascular 

responses. The ability of flavonoids to act as antioxidants and prevent LDL oxidation is 

well established (See section 1.9.1). The other important role is their capacity to block 

platelet aggregation. Flavonoids such as quercetin can inhibit the enzyme 

phosphodiesterase involved in cAMP breakdown (Lanza et al., 1987) as well as lipid 

peroxidation in the platelets (Gryglewski et aL, 1987), subsequently leading to inhibition 

of platelet aggregation. In addition, flavonoids are able to promote vascular relaxation, 

thereby regulating normal blood flow to the heart and this has been postulated as one of 

the mechanisms of protection against heart disease (Formica and Regelson, 1995).

1.7.2.5 Flavonoids and cancer

The role of flavonoids in the prevention of cancer is associated with their

ability to influence cancer-inducing processes in the body. These include the ability of 

certain flavonoids to inhibit enzymes for instance protein kinase (Srivastava, 1985) as 

well as the protein calmodulin (Nishino et aL, 1984) responsible for regulating many 

physiological activities such as tumour promotion and regulation of cell transformation 

and cell growth. In addition, flavonoids particularly quercetin and myricetin can 

suppress hydrogen peroxide-induced DNA damage in isolated human lymphocytes
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(Duthie et al., 1997). Neither a-tocopherol nor p-carotene showed protective effects 

implying the importance of flavonoids as an alternative source of antioxidants.

1.7.2.6 Flavonoids as inhibitors of enzymes

Other biological effects of flavonoids observed may be largely contributed by 

their ability to inhibit or promote several enzyme systems involved in major pathways 

that regulate various processes in the body. Some of the common enzymes inhibited by 

flavonoids are catechol-O-methyl transferase (Borchardt and Huber, 1975), protein 

kinase C (Srivastava, 1985) and NaVK^-ATPase (Umarova et al., 1998). These enzymes 

play a role in the function of various mammalian cellular systems including tumour 

promotion and the regulation of cell transformation and cell growth. In most cases, the 

aglycones are the active forms whereas the glycosides are less active (Harbome and 

Grayer, 1986).

Catechol-O-methyl transferase is involved in the metabolism and inactivation of 

the catecholamines epinephrine and norepinephrine which regulate various metabolic 

processes in the body. Flavonoids such as quercetin, are inhibitors of catechol-O-methyl 

transferase, resulting in prolonging physiological actions of catecholamines. This could 

subsequently promote anti-histaminic and anti-inflammatory effects as well as reducing 

capillary permeability (Kuhnau, 1976).

Flavonoids can inhibit membrane-located Na^/K^-ATPase responsible for 

maintenance of transport processes across membranes (Umarova et al., 1998). The 

Na^/K^-ATPase plays an essential part in the mechanism of the inotropic effect of 

cardiotonic compounds. Several flavonoids particularly quercetin are able to inhibit this 

enzyme and showed positive inotropic effect. This inhibitory action would restrict 

membrane permeability.

1.7.2.7 Flavonoids and pro-oxidant activity

Polyhydroxylated flavonoids are susceptible to oxidation reactions, which can 

lead to formation of oxygen radicals (Canada et al., 1990). This process has been 

suggested as the basis for the proposed mutagenic properties of flavonoids (Brown,
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1980). However, the superoxide anions formed during autooxidation of flavonoids could 

still be scavenged by the body’s defense system including superoxide dismutase, other 

antioxidants or by flavonoids themselves. Furthermore, at dietary levels (26 mg/day), 

flavonoids have not been shown to be carcinogenic or mutagenic, in fact several 

flavonoids possess anti-tumour activities (Kamei et ah, 1996).

1.7.2.8 Medicinal properties of flavonoids

Many species of plants with medicinal properties contain flavonoids. 

Approximately 40 species have been used as phytomedicines due to their flavonoid 

content. Ginkgo biloba, for instance, has various health properties and has been used for 

generations as a herbal medicine for treating peripheral vascular disease such as 

intermittent claudication^ and cerebral insufficiency" in the elderly (Kleijnen et al., 

1992). This plant contains'a number of compounds including flavonols, flavones and 

proanthocyanidins. Although there is strong evidence that Ginkgo can relieve cerebral 

insufficiency, its role in treating intermittent claudication is inconclusive (Kleijnen and 

Knipschild, 1992). It is thought that the alleged affects are linked to the anti oxidant 

properties of flavonoids and their interaction with various enzymes in the body (See 

section 1.7.2.6 and 1.9). Indeed, flavonoids have been shovm to exhibit potent action on 

the nitric oxide system which is involved in various aspects of physiological regulation 

particularly in the regulation of vascular tone (van Acker et a i, 1995).

1.7.3 Summary

Flavonoids are not only important to plants but also play a major role in humans 

too. However, of particular current interest is their potential to act as antioxidants. As 

most of the observed beneficial roles of flavonoids are possibly linked to their 

antioxidative ability, extensive research has been carried out on this topic. Knowledge of 

the mechanisms of action involved is crucial towards understanding the potential role of

 ̂ Pain and cramp in the calf muscles, aggravated by walking and caused by insufficient blood supply.

 ̂ A collection of symptoms associated with impaired cerebral circulation: include difficulties of 
concentration and of memory, absent mindedness, confusion, lack of energy, tiredness, decreased physical 
performance, depressive mood, anxiety, dizziness, tinitus, headache.
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flavonoids in preventing oxidative damage and protecting against diseases such as 

coronary heart disease and cancer. The next section describes the relationship between 

oxidative damage and these two diseases and the role flavonoids play in providing 

protection.
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1.8 Oxidative dam age in the body

In order to assess the antioxidant potential of flavonoids, an understanding of the 

mechanism of free radical reactions is needed. The human body is constantly under 

attack from free radicals, causing oxidative stress in tissues and organs. As mentioned 

previously, free radicals and oxidative stress play a role in the development of several 

diseases including cancer and coronary heart disease. Free radicals are highly reactive 

atoms or molecules, capable of existing independently. Electrons in atoms or molecules 

are usually paired and are thus able to function normally. However, the presence of one 

or more unpaired electrons create free radicals that are very unstable and have the 

potential to cause extensive damage to the human body. Examples of free radicals 

produced in the body include hydroxyl (OH"), superoxide (O2" ’) and nitric oxide (NO*) 

radicals.

Free radical reactions involve either donation or acquisition of a single electron 

from another atom. This process leads to the generation of a new radical. If this process 

is repeated, more radicals will be generated, creating a series of reactions known as the 

chain reaction of oxidation. Chain reactions can cause a lot of damage to cells and 

tissues in the body, subsequently affecting their normal structure and function. Free 

radicals can react with either another free radical or a nonradical. When a free radical 

reacts with another free radical, their unpaired electrons are joined to produce a 

nonradical. A typical example is the reaction of nitric oxide (NO*) with superoxide 

radical (O2 * ') (Figure 1.9a). This type of reaction is desirable as the free radical reaction 

can be terminated. However, the reaction between a free radical and a nonradical will 

result in the generation of a new radical. An example is the reaction between superoxide 

radical (O2* ') and a fatty acid (Figure 1.9b). This type of reaction is more common in 

the body as most biological molecules are nonradicals.

NO* + O2 "  --------- ► ONOO' (a)

O2 " + LOOH ---------► LOO’ + H2 O (b)

Figure 1.9: Examples of free radical reactions
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Sources of free radical production are varied; there are endogenous as well as 

exogenous sources. Endogenous sources include normal metabolic processes occurring 

in the body such as aerobic metabolism and the immune system. Approximately 1-3% of 

the oxygen we breathe into our lungs is turned into free radicals. Some free radicals 

however are made deliberately. The immune system, for instance, generates free radicals 

(superoxide and nitric oxide) as part of the body’s defence system against foreign 

materials. However, at the same time, too high a concentration of these radicals can 

damage nearby cells or tissues.

There are various exogenous sources of free radical production with cigarette 

smoke, pollution and radiation being the more important. Cigarette smoke is a major 

hazard in promoting oxidative damage in the body and its role in the development of 

cancer and heart disease is well established (Kalra et aL, 1991). Radiation, especially 

from sunlight can also contribute significantly to free radical production.

Oxidative stress caused by these free radicals can damage important cells in the 

body, affecting DNA, proteins and lipids and leading to impairment of their normal 

function. The human body normally has its own defence system to counteract free 

radical attack. This defence system is in the form of enzymes and antioxidants. The 

enzyme systems are synthesised naturally in our body whereas antioxidants are obtained 

from the diet. Thus, dietary antioxidants are important as intakes of food containing high 

levels of antioxidants can boost the body’s defence system and protect against free 

radical damage. Ideally, there should be a balance between free radicals and antioxidants 

in the body to limit damage but when there are more free radicals and insufficient 

antioxidants to protect against their effects, this will lead to oxidative damage.

Various diseases are associated with free radical damage. Cancer and coronary 

heart disease are the major diseases associated with free radicals, followed by cataracts 

and brain dysfunction such as Parkinson’s disease and Alzheimer’s disease.
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1.9 Antioxidant properties o f flavonoids

The structure of the flavonoid molecule together with the presence of hydroxyl 

groups makes them very strong anti oxidants. Various experimental studies have been 

performed to demonstrate the mechanisms of flavonoid action as antioxidants, using both 

aqueous and lipophilic systems (Cotelle et al., 1992, Salah et al., 1995). Attempts were 

also made to determine the hierarchy of the antioxidant activity of different flavonoids 

and to establish their structure-antioxidant activity relationships.

The effectiveness of flavonoids as antioxidants is dependent on their solubility in 

either the aqueous or lipophilic phase to achieve maximum interaction with the free 

radicals. Most of the initial research was carried out using in vitro systems (Rice-Evans 

et al., 1996, Frankel et al., 1993) and it was not until recently that more in vivo 

experiments were performed with the development of better and more sensitive 

analytical procedures (Day et al., 1997, Nigdikar et al., 1998, Serafmi et a l, 1998). 

Most of the in vitro studies determined the relationship between the structure of the 

different flavonoids and their effectiveness as antioxidants (Rice-Evans et al., 1996, van 

Acker et al., 1996). Based on the antioxidant activity of flavonoids in aqueous phase, it 

has been proposed that the requirements for maximum radical scavenging activities are i) 

a 3-OFI group on ring C and 5-OH group with 4-keto function in the A and C rings, ii) a 

2,3-double bond adjacent to the 4-carbonyl in ring C and iii) a catechol moiety on ring B 

(van Acker et aL, 1996). Quercetin, for example, satisfies all the criteria above and is a 

potent antioxidant (Vinson et al., 1995, van Acker et aL, 1996) (Figure 1.10a). 

Unsaturation in ring C allows electron delocalization across the molecule for stabilisation 

of the radical form. Catechin on the other hand did not satisfy one of the criteria above 

and showed a lower antioxidant activity than quercetin (Figure 1.10b). Unsaturation in 

ring C of catechin resulted in the loss of electron delocalization from the radical on the B 

ring to the A ring. Most studies have demonstrated strong antioxidant activities of the 

flavonoid aglycones compared to the glycosides (da Silva et al., 1998, Vinson, 1998). 

Glycosylation of flavonoids, for example in rutin (quercetin-3-rutinoside), reduces their 

activity due to blockage of the 3-OH group on ring C, while still retaining the catechol 

moiety (Rice-Evans et aL, 1996) (Figure 1.10c).
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Figure 1.10; Structural modification of  flavonoids and their antioxidant activities

The structural features for optimum antioxidant activity o f flavonoids in a 

lipophilic phase requires only the presence of a 3',4'-orthodihydroxy structure in the B 

ring and a 4-keto group in the C ring. The O-dihydroxy substitution in the B ring is 

needed for stabilising the resulting free radical form. In general, flavonoids especially 

the aglycones are not particularly water-soluble and have a more lipophilic characteristic. 

Thus, they are more likely to act as potent antioxidants in the lipophilic phase depending 

on their partition coefficient into the lipophilic region and their ability to react with the 

autooxidising lipids, it has been hypothesised that flavonoids such as catechins might be 

localised near the membrane surface, scavenging aqueous radicals and preventing 

consumption of a-tocopherol, whereas a-tocopherol mainly acts as a chain-breaking 

lipid peroxidation process within the LDL (Salah et al., 1995).

Although extensive research on the in vitro antioxidant activity o f flavonoids has 

been performed, very little information is available on the mechanisms through which 

these compounds act in vivo. Ultimately, in vivo studies are crucial to assess the 

bioactive role o f flavonoids in the body. Many o f the in vivo studies have investigated 

the antioxidant potential o f red wine and teas which are known to contain high levels of 

flavonoids (Princen et al., 1998, Serafini et al., 1998).
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Consumption of tea, particularly green tea, protects the plasma against 

peroxidation (Serafini et aL, 1996, Ishikawa et aL, 1997). High levels of the tea 

flavonoid catechins and theaflavins were postulated to prevent LDL oxidation by 

incorporation into the LDL molecule. In the first study, plasma of human volunteers 

collected after consumption of 300 ml of green tea significantly increased the lag-phase 

of 2,2’-diazobis(2-amidinopropane)dihydrochloride (ABAP)-induced peroxidation 

(Serafini et aL, 1996). The second study investigated the antioxidant effect of drinking 

five cups of tea per day for four weeks (Isliikawa et al., 1997). Plasma of volunteers 

collected at the end of the study prolonged the lag time of copper-catalysed LDL 

oxidation. In contrast to this, consumption of six cups per day of green and black tea 

over four weeks had no effect on copper-induced LDL oxidation in a group of smokers 

(Princen et aL, 1998). However, the large amounts of free radicals in cigarette smoker, 

which.can deplete antioxidant levels as well as cause lipid peroxidation in plasma, may 

explain the negative results. This may suggest that maximum protection is afforded to 

healthy humans where flavonoids can act in the prevention of free radical oxidative 

damage but may not be potent enough to act on damaged cells/tissues. Details on the 

mechanisms of antioxidant action of flavonoids are discussed in section 1.9.1.

Red wines have long been thought to provide beneficial health properties. They 

are rich in flavonoids particularly flavonols, anthocyanins and catechins (Bums et aL, 

2000) and it is thought that these components contribute to the protective effects of red 

wine against cardiovascular disease, a phenomenon popularised as the ‘French Paradox’. 

As people in France particularly the Southern of France consumed high amounts of red 

wine, this may explain the low incidence of cancer and coronary heart disease in France 

compared to the rest of the world (Renaud and De Lorgerii, 1992, Frankel et aL, 1993).

Data on the in vivo antioxidant activities of red wine are controversial with one 

study showing no effects (de Rijke et aL, 1996) whereas another showed protection 

against LDL oxidation (Nigdikar et aL, 1998). The possibility of alcohol in red wine 

influencing the in vivo antioxidant activities are excluded as similar studies with alcohol- 

free red wine (Serafini et aL, 1998) and concentrated red grape juice (Day et aL, 1997) 

showed enhanced plasma antioxidant capacity following their consumption.



1.9.1 Flavonoids and coronary heart disease

Oxidative damage caused by free radicals has been associated with the 

development of coronary heart disease (Strain et al., 1991). The three pathological 

conditions for coronary heart disease are angina pectoris, myocardial infarction and 

atherosclerosis. Atherosclerosis occurs as a result of narrowing of the blood vessels 

responsible for carrying blood to the heart. This can lead to heart attack due to 

impairment in blood flow.

Oxidative damage to low density lipoprotein (LDL) is implicated in the aetiology 

of atherosclerosis (Regnstrom et al., 1992). Figure 1.11 illustrates a schematic diagram 

of LDL oxidation. LDL is responsible for transporting cholesterol from the blood to the 

body’s tissues for storage and is susceptible to free radical attack especially in the blood 

vessel wall. Free radical attack on LDL leads to oxidation of the LDL molecule (Figure 

1.11). This is not recognised by the normal LDL receptors and is taken up instead by 

‘scavenger’ receptors on macrophages, a part of the white blood cell. A variety of 

products are formed as a result of LDL oxidation. Some of these products, for example 

lysolecithin are capable of inducing adhesion molecules for monocytes on the surface of 

endothelial cells (Kume et al., 1992). Other compounds such as cytokines can affect the 

growth of monocytes and their differentiation into macrophages and can also contribute 

to the disruption of endothelial cell integrity (Galis et aL, 1994). At the same time, 

smooth muscle proliferation occurs leading to injury of the endothelial cells. As more 

LDL is being oxidised, macrophages will be overladen with oxidised LDL, leading to the 

formation of foam cells. Foam cells together with smooth muscle cells will subsequently 

transform to fatty streaks, which over time slowly deposit on the endothelial cells 

causing narrowing of the blood vessels. A series of reactions occur which ultimately 

lead to platelet aggregation and subsequently to occlusive thrombosis. Myocardial 

infarction is caused by coronary thrombotic occlusions whereby the thrombotic clot 

breaks away and flows to a branch of the coronary arterial tree, thus blocking the artery.
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Polyphenols including flavonoids have been shown to inhibit copper-induced or 

macrophage-induced LDL oxidation in vitro (Frankel et al., 1993, de Whalley et al., 

1990, Vinson et al., 1995). The proposed mechanism of inhibition of LDL oxidation is 

via reducing the formation or release of free radicals in macrophages or possibly by 

protecting a-tocopherols in LDL from oxidation by becoming oxidised themselves (de 

Whalley et al., 1990). In addition, flavonoids can terminate the chain reaction of lipid 

peroxidation by hydrogen donation, thus becoming a flavonoid radical and in turn react 

with free radicals to stop the chain reaction from propagating (Robak and Gryglewski, 

1988).

In addition to preventing LDL oxidation, flavonoids can also act as anti

thrombotic agents in vitro. Activated platelets lead to the generation of lipid peroxides 

and superoxide anions. These radicals can destroy the endothelium dependent relaxing 

factor (EDRF) which are responsible for vasodilatory activity as well as inhibiting 

platelet aggregation. Flavonoids particularly from the sub-class flavonols are able to 

bind to platelet membranes, and together with their free-radical scavenging action can act 

as anti-thrombotic and vasoprotective agents and preventing the generation of lipid 

peroxides (Gryglewski et al., 1987). At the same time, they can also prolong the half-life 

ofEDRF.

Flavonoids are also scavengers of superoxide anions and have the ability to break 

the chain of formation of free radicals. They act as hydrogen-donating radical 

scavengers, for example by scavenging lipid alkoxyl and peroxyl radicals (Robak and 

Gryglewski, 1988, Salah et al., 1995). This will stop or limit the initiation of free radical 

chain reaction that can ultimately lead to lipid peroxidation.

Flavonoids also possess metal-chelating properties e.g. towards iron and copper. 

Iron and copper are known to catalyse many processes leading to the generation of free 

radicals. Thus, their removal from the cells may inhibit the formation of oxygen 

radicals. Catechin, quercetin and diosmetin are capable of removing iron from iron- 

loaded hepatocyte cultures (Morel et aL, 1993) possibly by forming an inert complex 

with iron. Afanas’ev et al. (1995) demonstrated the formation of an iron-rutin complex 

which is inactive and unable to produce oxygen radicals and this may play an important 

role in the antioxidant action of flavonoids.
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1.9.2 Flavonoids and cancer

Oxidative stress by free radicals has also been implicated in the development of 

cancer at many sites. Sunlight exposure and radiation, some of the sources of free 

radical production are risk factors for skin and lung cancer.

Cancer occurs as a result of abnormal cell division during growth and renewal of 

cells. Carcinogens, including free radicals, can initiate cancer by causing changes in

DNA, leading to mutation of the DNA. When a mutated DNA is fixed in replication, the 

damage will be transferred into the new DNA. Accumulation of damaged DNAs 

ultimately leads to cancer. Various mechanisms have been postulated for the role of 

antioxidants in preventing cancer. This includes their ability to repair damaged DNA 

and react with free radicals to limit or stop their action on DNA (Ames et aL, 1993). A 

recent study has demonstrated that diet supplemented with vitamin C, E and (3-carotene 

to a group of smokers and non-smokers resulted in a significant decrease in endogenous 

oxidative base damage in the lymphocyte DNA (Duthie et aL, 1996). Moreover, the 

lymphocytes from these subjects showed an increase resistance to HiOz-induced 

oxidative damage in vitro.

Flavonoids have the potential to provide protection against cancer. Two methods 

are commonly used to investigate the anti-cancer properties of flavonoids. One involved 

animal studies whereby the ability of flavonoids to inhibit or reduce chemically-induced 

cancer was assessed. The second approach involved studying the effect of flavonoids on 

cultured cancer cells in vitro. The anti-carcinogenic properties of quercetin have been 

extensively studied. Quercetin has been shown to inhibit skin tumours in mice induced 

by chemicals such as 7,12-dimethylbenz(a)anthracene, 3-methylcholanthrene and 

benzo(a)pyrene (Mukhtar et aL, 1988). In addition, dietary quercetin (2%) and rutin 

(4%) suppressed hyperproliferation of colonic epithelial cells and ultimately colon 

tumour incidence induced by azoxymethanol (Deschner et aL, 1991). In a recent study, 

quercetin has been shown to inhibit growth and induce apoptosis in cultured colon 

carcinoma cells (Richter et aL, 1999). Low dosage of quercetin (4-6 pM) was able to 

reduce cell numbers by 50%.
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The anti-carcinogenic properties of flavonoids described above were based on 

animal studies and their relevance to humans is not known. Obviously, human studies 

would provide more beneficial information. Recently, a clinical trial was performed on 

51 patients with terminal cancer. Following intravenous administration of quercetin at 

varying doses (60-1700 mg/m^), the levels achieved in plasma inhibited lymphocyte 

tyrosine kinase activity, the enzyme capable of overriding growth regulatory control, 

subsequently leading to cancer (Ferry et aL, 1996). This is one of the initial studies 

describing the possible role of flavonoids as anti-cancer agents in humans.

On the other hand, a few studies have shown that flavonoids, when used at higher 

doses may promote the development of cancer. Quercetin was employed in many of 

these studies whereby high concentrations of this compound can increase the incidence 

of cancer including intestinal bladder tumours (Pamukcu et aL, 1980), kidney tubule 

lesions in male rats (Dunick and Hailey, 1992) and colon cancer (Pereira et aL, 1996). 

However, at the level of dietary intake, mutagenic properties of flavonoids have not been 

observed.

Several mechanisms have been suggested for the role of flavonoids in cancer 

prevention. They include the ability of flavonoids to act as modulators of cell 

differentiation and apoptosis, as antioxidants, as modulators of protein function and as 

hormones, the last mechanism possibly by the estrogenic properties of flavonoids. 

Quercetin for example, has antiviral activities, being able to bind viral coat protein and 

inflict damage to DNA, therefore destroying the proliferative capacity of certain viruses 

(Castrillo and Carrasco, 1987). Quercetin also possesses anti-tumour activities as 

demonstrated by its ability to suppress the growth of cultured human tumour cells 

(Kamei et al., 1996). One of the reported mechanisms of action was by inhibiting 

protein kinase C (Srivastava, 1985). Quercetin has been shown to inhibit epidermal 

growth factor (EGF) receptor in cultures of colonic tumour cells, thereby inducing 

apoptosis (Richter et aL, 1999). Flavonoids may also act as antioxidants in protecting 

cells or tissues against oxidative damage. Quercetin for instance has been shown to 

protect CaCo-2 cells against oxidative attack (Duthie et al., 1999).

Although the above studies show promising anti-cancer properties of quercetin, 

the relevance of such studies to the anticarcinogenic properties in humans is
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questionable. For one, the high dose and type of carcinogens used in the animals is 

possibly different from cancer initiators in humans. Thus, the effect of quercetin may 

vary in human cells. In most cases, high doses of flavonoids were employed to induce 

an anti-cancer effect and their ability to show the same effect at dietaiy levels is not 

known.

1.9.3 Conclusion

Strong evidence exists particularly from animal studies on the ability of 

flavonoids to modulate various biochemical processes relating to protection against 

coronary heart disease and cancer. Their potent antioxidant action appears to play a 

major role in providing the beneficial effects. However, their ability to provide the same 

effect at the levels of dietary intake has yet to be addressed. Information on their 

absorption is crucial for this purpose. To address this issue, epidemiology studies 

investigating intake of dietary flavonoids and risk of coronary heart disease and cancer 

were performed.
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1.10 Ëpîdemidldgy evidence on fîavonoîd intake
and d isease occurrence

1.10.1 Introduction

Earlier studies have suggested that high dietary intake of fruit and vegetables, 

strongly correlated with the intake of antioxidant vitamins, may protect against 

cardiovascular diseases (Gaziano et al., 1994). Fruit and vegetables contain amongst 

others, high levels of flavonoids which may contribute to protection against diet-related 

diseases. Assessment of the health protective effects of dietary flavonoids requires 

nutritional epidemiology studies investigating the habitual intake of a certain population 

and the development of diet-related diseases. Such studies are not easy to evaluate due 

to the presence of other .nutrients including non-nutrients in the diet, as well as 

flavonoids. Therefore, a detailed protocol is required when conducting epidemiology 

studies, taking into account these confounding factors, as well as subject bias.

These factors not withstanding, epidemiology studies are useful for investigating 

the association between the dietary intake of flavonoids and risk of disease. This type of 

study monitors large populations and can provide important information regarding the 

flavonoid intake of a population group and occurrence of disease. However, the data 

should be interpreted with caution taking into account factors such as study design, 

effects of chance, subject bias, for instance smoking habit and lifestyle which may 

influence development of diseases studied. Data collection has to be carefully done to 

ensure maximum information is obtained. Also, reliance on existing food tables which 

do not have accurate flavonoid content of foods may result in under- or over-estimation 

of flavonoid intake. In addition, data on the bioavailability of flavonoids is still lacking 

and such information is important for assessing the relevance of the results obtained. 

Furthermore, the methods used to assess dietary intake have to be considered. The use of 

poor or inappropriate methods for assessing dietary intake is a major problem in this type 

of study.
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1.10.2 Epidemrology evrderrce orr Oavonard Intake and 
caronary heart d isease

To date, six epidemiological studies have been cairied out investigating the 

association between flavonoid intake and the occurrence of coronary heart disease. Four 

of the studies established an association between flavonoid intake and coronary heart 

disease whereby higher intakes of flavonoids were associated with lower incidence of 

coronary heart disease.

Table 1.3r Summary of epidemiological studies investigating the association 

between flavonoid intakes and incidence of coronary heart disease

study Population Follow up
(y)

Flavonoid
intake
(mg/dy

Disease risk 
(relative risk)

Hertog et ali  ̂t993
The Zutphen Elderly Study
Netherlands

805 men 
(65-84 y)

5
(1985-1990)

25.9 0.32

Hertog etal., 1995
The Seven Countries Study

16 cohorts from 7 countries 
12 768 men 
(40-59 y)

25
(1960-1985)

2 .6 -6 8 .2 r = -0.50
(p=0.01>

Keli etal., 1996
The Zutphen Study 
Netherlands

552 men 
(50-69 y)

15
(1970-1985)

18 .3 -28 .6 0.27

Knekt etal., 1996
Finland

5133 men and women 
(30-69 y)

20
(1967-1992)

0-4 1.4 Women = 0.73 
Men = 0.67

Rimnref s7., 1996
Male health professionals
USA

34 789 male 
(40-75 y)

6
(1986-1992) 20.1 1.08

Hertog et al., 1997 
The Caerphilly Study 
UK

1900 men 
(45-59 y)

14
(1979-1993)

26.3 1.1 ■

The first study was a five-year observation study in the Netherlands, otherwise

known as the Zutphen Elderly Study (Hertog et al.^ 1993). Some of the subjects were

recruited from a previous study in 1960, while others were recruited at the beginning of

this study in 1985. The age group ranged from 65-84 years and was therefore not

representative of the general population. Following a 5-year follow up, a strong inverse

association was found between mortality from coronary heart disease and intakes of

flavonoids in the highest against the lowest tertile of flavonoid intake with a relative risk

of 0.32. The study also suggested that flavonoid intake and tea consumption was
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inversely associated with mortality from coronary heart disease (rr=0.45) suggesting tea 

as a possible major source of dietary flavonoids in protection against coronary heart 

disease.

In a prospective cross-cultural study, the same investigators looked at 16 different 

cohorts in seven countries; Finland, Italy, Greece, the former Yugoslavia, Japan, the 

Netherlands and the United States (Hertog et al., 1995). After 25 years of follow up, 

average flavonoid intake was inversely associated with mortality from coronary heart 

disease and this explained about 25% variance in coronary heart disease in the 16 

cohorts. The cohort in Japan had the highest flavonoid intake (68.2 mg/d) and the lowest 

age-adjusted 25-year mortality (4.5-6.3%) compared to the other cohorts. Japanese 

people are known to drink a lot of tea, particularly green tea, which is rich in flavonoids 

(Hertog et a i, 1995) and this may explain the above results. On the other hand, green tea 

consumption has been shown to reduce serum concentrations of lipids and lipoproteins, 

suggesting a different mechanism for their protection against cardiovascular disease 

(Imai and Nakachi, 1995). The 16 cohorts recruited in this study showed vaiying 

background and may not be representative of the general population. In addition, the 

subjects may also have different lifestyles and dietary habits depending on their 

countries, which may influence the outcomes measured. The results, therefore, should 

be interpreted cautiously due to the influence of other dietary or non-dietary factors. 

Furthermore, although a 7-day dietary record was employed to assess nutrient intake in 

most of the cohort, in some cases, only a 1-day dietary record was used. The accuracy of 

the latter method is questionable, as it may not represent the habitual dietary intake of the 

subjects.

In another study, a cohort in Zutphen, Netherlands, consisting of 552 men aged 

50-69 years were monitored for 15 years (Keli et al., 1996). The subjects were followed 

from 1970 onwards although information on their dietary intake was available from 

1960, 1965 and 1970 owing to a previous study. The study demonstrated a strong 

inverse association between flavonoid intake and risk of stroke (rr=0.27) with 

participants in the highest quartile of flavonoid intake showing 73% lower risk of stroke. 

Based on the food data from 1960 to 1970, a strong inverse association was observed 

between tea consumption and stroke risk. Men who drank 4.7 cups of tea daily had a 

relative risk of 0.31 compared to those who drank less than 2.6 cups daily.
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In Finland, 5133 men and women were observed for 20 years (Knekt et al., 

1996). To date, this is the only study which provided information on the association 

between flavonoid intake and coronary heart disease in women. A weak association was 

found between the intake of flavonoids and risk of coronary heart disease with a relative 

risk of 0.54 and 0.78 for women and men, respectively. However, after adjusting for 

intakes of antioxidant vitamins, the relative risk was higher in women (0.73) but lower 

for men (0.67). Intake of fruits, which are rich in antioxidant vitamins, was strongly 

correlated with flavonoids intake. Therefore, the possibility that the inverse association 

observed in this study was also contributed by intakes of antioxidant vitamins cannot be 

excluded.

More recently, 34,789 male health professionals in the United States were 

observed for 6 years (Rimm et al., 1996). The data obtained did not support an inverse 

association between flavonoid intake and coronary heart disease and a relative risk of

1.08 was attained. In this study, men with a higher flavonoid intake tended to have a 

healthier lifestyle, drank less alcohol and smoked less. On the other hand, an inverse 

association was found between total flavonoid intake and coronary mortality in men with 

previous history of coronary heart disease (rr=0.63), although this was not statistically 

significant. This could be attributed to changes in lifestyle or dietary habits once 

diagnosed with cardiovascular disease. Another possible explanation is that flavonoids 

can be protective in men with prevalent coronary heart disease, probably due to their 

antioxidative action on thrombosis (Gryglewski, 1987).

The latest prospective cohort study was published three years ago involving 1900 

Welsh men (Hertog et al., 1997). After 14 years of follow up, no association was found 

between the intake of flavonoids and incidence of ischemic heart disease. The relative 

risk was 1.1 in the highest versus the lowest quartile of flavonoid intake. Instead, men in 

the group with high tea consumption appeared to have a higher incidence of ischemic 

heart disease which contrasted with previous results. This study argued that there was no 

association probably due to the effects of adding milk to tea. This might have caused the 

protein in milk to bind to flavonoids, thus inhibiting their absorption (Serafini et al., 

1996). As this style of drinking tea is common among the British, it may explain the 

above observation. However, not much information is available on the absorption of 

flavonoids from tea without milk and available data appear to suggest low bioavailability
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of flavonoids in tea (Hollman, 1997). This could be another alternative explanation to 

the results obtained. Also, in this study, men with high flavonoid intake tend to smoke 

more, which may have affected the outcomes due to production o f free radicals, leading 

to oxidative damage and subsequently heart disease.

In most of the studies, the average flavonoid intake of the participants was 

estimated from the study by Hertog et a l, (1992) who determined the flavonoid content 

of several common fruit, vegetables and beverages. Although flavonoid intake was 

inversely associated with coronary heart disease, the bioavailability of flavonoids from 

different foods should be taken into account. Furthermore, not much information is 

available regarding the absorption of dietary flavonoids from different foods and 

available data appear to indicate either low bioavailability of flavonoids from foods or 

their extensive metabolism following absorption (Hollman et a i, 1995, 1997). Further 

studies are therefore required to elucidate the absorption of flavonoids from various 

foods.

Most of the studies mentioned above employed either the dietary history method 

or a food frequency questionnaire, although in some instances, a 7-day dietary record 

method was used (Hertog et al., 1995, Rimm et al., 1996). Although ideally the 7-day 

dietary record is the best method to assess dietary intake, it is often not suitable for large 

population studies because of its high cost and low compliance from subjects. However, 

this method allows determination of nutrient intake based on the weight of all the food 

consumed and recorded by the subjects. The dietary history method or food 

frequency questionnaire, although less reliable than the 7-day dietary record are more 

applicable to population studies. Food frequency questionnaires are normally designed 

to assess intakes of specific foods or nutrients and may not be accurate enough for 

assessing flavonoid intake whereby certain high-flavonoid foods may have been 

excluded. On the other hand, the dietaiy history method requires subjects to recall their 

food intake, for example what they eat the year prior to the study. Subjects may not be 

able to recall what they ate last year or may have changed their dietary habits, which may 

influence the outcomes measured.

At the same time, flavonoid content can also vary significantly between cultivars 

of the same fruit and vegetables. Yellow and red onions for instance contain much
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higher levels of flavonols than white onions (Tsushida and Suzuki, 1996). Lollo Rosso 

lettuce contains 100 times more flavonols than Round lettuce (Crozier et al., 1997). 

Therefore, if  the specific type of fmit and vegetables or beverages is not recorded, this 

could result in either under-estimation or over-estimation o f flavonoid intake o f the 

participants. Several of the studies found an inverse association between tea 

consumption and mortality from coronary heart disease (Hertog et al., 1993b, Keli et al.,

1996). However, in addition to the flavonols in tea, the above effects could have also 

been contributed by the presence of other tea polyphenols particularly epicatechin gallate 

and epigallocatechin gallate. This type of study cannot prove causal relationships 

between flavonol intake and mortality from heart disease. More epidemiology as well as 

experimental studies on the mechanisms involved is still needed before definite 

conclusions can be made.
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1 . 1 0 . 3

cancer
E p i d e m i o l o g y  e v i d e n c e  o n  f l a v o n o i d  i n t a k e  a n d

A vast number of epidemiological studies have consistently shown an association 

between high consumption of fruit and vegetables with a reduced risk of cancer at most 

site (Block et a i, 1992). Although the compounds responsible for this have not been 

identified, it is postulated that several antioxidants present in fruit and vegetables may 

play a role. These include the well known antioxidants carotenoids and vitamins E and 

C. Other non-nutrient compounds have also been identified as possible anti-cancer 

agents including dietary fibre and polyphenols, among which flavonoids are extensively 

studied. Several large epidemiological cohort studies as well as case-control studies on 

the cancer protective effects of flavonols and ftavones have been conducted, as 

summarised in Table 1.4.

Table 1.4: Summary of epidemiological studies investigating the association 

between flavonoid intakes and incidence of cancer.

Study Population Follow up
(y)

Flavonoid
intake
(mg/d)

Disease risk 
(relative risk)

Hertog etaL, 1994
The Zutphen Elderiy Study
Netherlands

738 men 
(65-84 y)

5
(1985-1990)

25.9 1.21

Goldbohm etal., 1996 
Netherlands Cohort Study

120,852 men & 
women 
(55-69 y)

4.3 n.a 1

Hertog etal., 1995
The Seven Countries Study

16 cohorts from 7 
countries 
12,763 men 
(40-59 y)

25
(1960-1985)

2.6-68.2 r=0.39
(p=0.86)

Knekt ef aL, 1997
Finland

9,959 men & women 
(15-99 y)

24
(1967-1991)

4
(0-41.4)

0.54

Case-control studies

Garcia-Closas etal., 1998
Lung cancer risk in women 
Barcelona, Spain

103 cases 
206 controls 
(mean age=63 y)

3
(1989-1992)

5.1-5.6 Odds ratio=0.51
(p=0.1)

Garcia-Closas etal, 1999
Risk of gastric cancer 
Spain

354 cases 
354 controls

2
(1987-1989)

9.5 Odds ratio=0.44 
(p=0.003)

n.a = not analysed
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The Zutphen Elderly Study, which began in 1960, was a longitudinal study 

investigating risk factors for chronic diseases (Hertog et aL, 1994). In addition to new 

randomly selected subjects, some subjects from this study were recruited in 1985. This 

was also a part of the same study which investigated the association between flavonoid 

intake and coronary heart disease risk reported in the previous section. During the 5 

years of follow-up, total flavonoid intake was not related to all-cause cancer incidence or 

cancer mortality (rr=1.21). Although flavonoids from tea were not associated with all

cause cancer risk, flavonoids from fruit and vegetables were inversely associated with 

cancer incidence (rr=0.57). This may suggest the contribution of other beneficial 

compounds in fruit and vegetables including the antioxidant vitamins which are not 

present in tea. At the same time, men with cancers tended to be older and smoked more 

than men without cancer. This implies that long-term cigarette smoking may have 

already caused irreversible damage and flavonoid or other bioactive compounds in foods 

could not protect against cancer.

In another study, a relationship between flavonoid intake, tea consumption and 

cancer incidence in 120,852 Dutch men and women aged 55-69 y was observed 

(Goldbohm et aL, 1996). Initially, an inverse association between flavonoid intake and 

risk of lung and stomach cancer was detected; however, the association disappeared 

following adjustment for confounding factors including other dietary antioxidants.

The Seven Countries Study which investigated the association between flavonoid 

intake and coronary heart disease (see section 1.10.2) also looked at the incidence of 

cancer (Hertog et aL, 1995). However, the study did not find any association between 

flavonoid intake and all-cause cancer mortality, even after adjusting for fat intake and 

percentage of smokers. The use of dietary records taken at baseline (1960) to estimate 

flavonoid intake is questionable. This may not reflect long-term intakes of flavonoids 

and because no new dietary data were taken, any changes in the dietary habits of the 

subjects will not be recorded.

Another study in Finland followed 9,959 men and women and after 24 years 

found an inverse association between the intake of flavonoids and incidence of all-cause 

cancers (Knekt et aL, 1997). The relative risk was 0.80 between the highest and lowest 

quartile of flavonoid intake. The association was particularly strong for lung cancer
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(0.54). Participants who had lung cancer tended to be older males who smoked and 

consumed fewer fruit and vegetables. To date, this is the only epidemiology study in 

which a protective effect of flavonoids against cancer was obtained and the association 

still remained significant after adjustment for confounding factors including the intake of 

other antioxidant vitamins. However, further prospective studies are required, taking 

into account dietary as well as environmental factors which can influence the aetiology 

of cancer.

In a recent case-control study in Spain, the association between flavonoid intake 

and the risk of lung cancer was investigated in 103 cases and 206 controls (Garcia- 

Closas et aL, 1998). The study found a nonsignificant negative association between the 

intake of kaempferol and the risk of lung cancer (or=0.51). No protective effect was 

observed for quercetin, luteolin or total flavonoid intake. It should be noted that the food 

frequency questionnaire used in this study was designed to estimate intakes of 

carotenoids rather than flavonoids. Only 33 food items were included, most of them 

high-carotenoid foods and many high-flavonoid foods were excluded, for example 

onions and teas. Therefore, intake of flavonoids was probably underestimated and may 

not represent the actual intake of the groups studied. This was evident from the average 

amount of flavonoids consumed in this study (5.1 mg/d), which was lower than the other 

previously reported studies.

The same group performed a case-control study investigating the intake of 

flavonoid and risk of gastric cancer in Spain (Garcia-Closas et aL, 1999). A protective 

effect of flavonoid intake against the risk of gastric cancer was reported between the 

highest and the lowest quartile of intake with an odds ratio value of 0.44. At the same 

time, an inverse association was also found between the risk of gastric cancer and the 

consumption of fruit and vegetables. In addition to flavonoids, fruit and vegetables are 

also rich in antioxidant vitamins as well as other bioactive compounds which may 

contribute to the results obtained.

Apart from cohort study, the case-control study is another way to assess the 

association between diet and disease. In this type of study, people with the disease 

(known as cases) are compared with individuals without the disease (controls) and 

ideally, they have to be as closely matched as possible to avoid any confounding factors



or bias. However, one of the disadvantages of this study is the possible misclassification 

between cases and controls for example, a case may reflect on their past diet differently 

from a control who has no reason to look back over what they ate.

Therefore, with one exception, the results of epidemiological studies so far do not 

show any protective effects of flavonoid intake and the risk of cancer at various sites. At 

the same time, a case-control study also showed a protective effect of flavonoids against 

gastric cancer. It is more difficult to assess the effects of diet, in particular flavonoids 

and their association with cancer as various other factors, dietary as well as 

environmental, can influence the development of cancer. Also, cancer at different sites 

has different aetiologies. Furthermore, the follow up period of 4-5 years in several of the 

studies may have been too short to see an effect of flavonoids on carcinogenesis, a 

process which can take approximately 15-20 y.

1.10.4 Conclusion

The epidemiology studies described in this section showed promising results on 

the potential of flavonoids to protect against diseases particularly coronary heart disease 

and to a lesser extent, cancer. However, experimental data are required to support this. 

Although the in vitro antioxidative capability of flavonoids is well established, 

knowledge on their absorption and metabolism is not well understood. This area of 

research is important in trying to evaluate the biological properties of flavonoids.
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1.11 Absorption and metabotfsm o f  fIavon^oids

1.11.1 The importance of absorption studies

Various beneficial health properties have been attributed to flavonoids. This is 

largely contributed by their potent antioxidant activities. The ability of flavonoids to 

limit free radical reaction, which are determinants of diseases, implies their possible role 

in maintaining health and protect against diseases. Furthermore, epidemiology studies 

also suggest an inverse association between flavonoid intake and risk of coronary heart 

disease and to a lesser extent with cancer. To provide maximum protection, flavonoids 

have to maintain their active form in the body as well as being deposited in the target 

tissues where they can exert their antioxidative effects. With various complex chemical 

reactions taking place in the human body, flavonoids need to avoid the metabolic 

pathways that could transform them into inactive molecules, thus destroying their 

antioxidanf properties.

The increasing interest on the potential role of flavonoids in human health has 

thus created new prospects for flavonoid research particularly on their absorption and 

metabolism. Information on the bioavailability of these compounds is essential as the 

fate of these compounds once absorbed from the intestine can be determined and their 

health protective effects can then be evaluated.

1.11.2 Historical background on the absorption of 
flavonoids

Studies investigating flavonoid absorption began as early as the 1950s, 

concentrating mainly on animals. In most cases, pure flavonoids in high doses were used 

due to the lack of sensitivity of methods for flavonoid analysis. Over the years, 

absorption studies have gradually advanced to humans, and the information obtained is 

more relevant and directly related. Furthermore, the development of better and more 

sensitive analytical methods for flavonoid identification and quantification has facilitated 

the advancement of absorption studies.
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Attempts to investigate the absorption and metabolism of flavonoids have shown 

conflicting results. It was previously postulated that only free flavonoids were absorbed 

and not the glycosides due to their conjugation to sugar moieties (Kuhnau, 1976). 

However, this perception is slowly changing as more detailed studies are performed. 

There is emerging evidence that flavonoids appeared to be absorbed as their glycosides 

(Hollman et al., 1995, 1997). Clearly, additional studies are needed to further establish 

this, in parallel with the use of improved analytical methodology.

1.11.3 Absorption and metabolism of non-dietary flavonols

Most of the studies have been performed on animals with pure compounds 

instead of dietary flavonols (Table 1.5). Four separate studies administered quercetin 

aglycone to rats. In all instances, similar metabolites of quercetin metabolism were 

detected in plasma, urine and bile. The metabolites consisted of conjugated derivatives 

of quercetin, isorhamnetin and tamarixetin (Table 1.5), One of the studies which 

employed radiolabelled quercetin identified the conjugates as glucuronides and/or 

sulphates (Ueno et al., 1983; Table 1.5). Unchanged quercetin was also detected, mainly 

in faeces (Ueno et al., 1983, Manach et a i, 1995).

In contrast to the animal studies, human studies did not detect conjugates of 

isorhamnetin or tamarixetin following administration of quercetin aglycone (Table 1.6). 

Four years ago, a study was performed whereby pure quercetin aglycone was orally 

administered to nine ileostomy volunteers (Hollman et aL, 1995). A small percentage of 

quercetin (0.12%) was excreted in urine (Table 1.6). Quercetin in urine was analysed 

after acid hydrolysis. Thus, the presence of specific metabolites was not described. 

However, when absorption was estimated by subtracting quercetin content of the 

ileostomy effluent from the oral intake, percentage absorption of 24% was obtained 

(Table 1.6). This implies absorption of the aglycone and as only 0.12% was excreted, 

extensive metabolism/sequestration of quercetin has probably occurred. This contrasted 

with the findings of Gugler et al (1975) who did not detect anything in the urine even 

after a high oral dose of quercetin aglycone (4 g; Table 1.6). However, approximately 

50% of unchanged quercetin were excreted in faeces, suggesting low absorption. This
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group detected excretion of quercetin conjugates in urine only following i.v. 

administration. However, the validity of the method employed to analyse flavonols was 

equivocal and probably not sensitive enough to detect low levels of quercetin.

In addition to the aglycone, studies with flavonol conjugates are also needed to 

establish the differences, if any, between the absorption of flavonol conjugates and the 

aglycones. Rutin (quercetin-3-rutinoside), orally administered to rats was absorbable 

and metabolites were present as conjugates in plasma (Manach et aL, 1995, 1997; Table 

1.5). The rutin supplement produced similar metabolites as the quercetin supplements. 

However, the plasma concentration of metabolites from the rutin supplement was lower 

than the quercetin supplement. This raises the possibility that quercetin is absorbed and 

metabolised at a different rate than rutin. On the other hand, following oral 

administration of pure rutin compounds to human ileostomy volunteers, none of the 

metabolites mentioned above were detected (Hollman et aL, 1995; Table 1.6). Although 

the estimated percentage absorption of rutin was 17%, no metabolites were excreted in 

urine which contained only traces of rutin (<0.1% of dose; Table 1.6).

1.11.4 Absorption and metabolism of dietary flavonols

Although data are available on the absorption of flavonols following 

administration of the pure compounds, the main issue which needed to be addressed 

concerns the bioavailability of flavonols from common foods. Such studies are more 

complex as various factors can influence bioavailability of the dietary flavonols. This 

includes, for example, the ease in which flavonoids can free themselves from the food 

matrix and their solubility in the small intestine for the purpose of absorption. In 

addition, their interaction with other substances in foods may also affect their 

bioavailability.

Flavonoids in foods are normally present as glycosides. Although data are 

available on the absorption of pure flavonoid glycosides (e.g. rutin), their absorption 

from dietary sources needs to be established, particularly in humans. This type of study 

began only a few years ago and results are summarised in Table 1.7. The pioneer 

research was performed by a group in the Netherlands who demonstrated the absorption
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of quercetin glycosides following a meal of lightly fried onions (Hollman et aL, 1995; 

Table 1.7). However, they only measured quercetin after acid hydrolysis (which 

included estimates of free quercetin as well as the aglycone liberated from the glycosides 

following acid hydrolysis). Therefore, it was not entirely certain that all the quercetin 

was present as conjugates and not the aglycone. Ileostomy subjects with minimal 

resection were employed to overcome the problem of colonic degradation of flavonoids 

by microorganisms. In this way, absorption could be estimated by subtracting the 

amount of flavonols recovered in the ileostomy effluent from total intake. They reported 

that quercetin gluco sides from the onion meal were highly absorbable at 52% of the total 

intake. However, only 0.31% was recovered in urine. Thus, more than 50% of quercetin 

glucosides was unaccounted for. This study determined quercetin content following acid 

hydrolysis, therefore the presence of any quercetin metabolites such as glucuronides or 

sulphates will not be detected as these conjugates are also broken down to the aglycone 

form by the acid hydrolysis procedure.

A more recent study performed by the same group reported 1% absorption of 

quercetin glucosides in plasma of human volunteers when measured at peak plasma 

concentrations (Hollman et aL, 1996; Table 1.7). This was detected following 

consumption of high-flavonol fried onions. This was the first study that demonstrated 

absorption of quercetin glucosides into plasma. However, as only 2 subjects were used 

in the study, the validity o f the results have to be evaluated using a bigger sample size. 

The most recent feeding experiment with onions was published this year using similar 

protocol to the ones used by Hollman (McAnlis et aL, 1999). The percentage absorption 

of 1.5% in plasma for quercetin conjugates was similar to Hollman's (1996; Table 1.7). 

This supports the findings of Hollman et al (1996) as bigger number of subjects were 

used this time. It should be noted that the above studies reported the presence of 

quercetin conjugates based on the liberation of the aglycone compound after acidic or 

enzymic hydrolyses and did not analyse the non-hydrolysed samples for presence of free 

quercetin. Thus, it is not clear if the quercetin detected were actual conjugates liberated 

by the hydrolysis procedure or mfact free quercetin already present in the samples.

In addition to onions, feeding studies with other high-flavonol foods or beverages 

were also performed. Consumption of broccoli, rich in kaempferol and quercetin, 

resulted in excretion of the conjugates of kaempferol as well as lower levels of its
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aglycone (Nielsen et al., 1997; Table 1.7). No quercetin or its metabolites were detected 

in urine suggesting either their extensive metabolism or their presence at minute levels, 

below the limits of detection.

In another study, human volunteers consumed black currant and apple juice for 1 

week, after which 0.3-0.5% of the dose was excreted in urine as quercetin conjugates 

(Young et al., 1999). The excretion in urine was similar to the ones obtained in the 

ileostomy study where subjects consumed fried onions (Hollman et al., 1995; Table 1.7). 

The only difference is that in the ileostomy study, only a single dose was used whereas in 

the study by Young et al., the juice was consumed daily over a period of one week. 

However, the total intake of quercetin was similar in both studies.

Flavonols are also able to undergo ring fission in the large intestine (Booth et al., 

1956, Griffiths and Smith, 1972). This process is performed by the intestinal 

microorganisms, leading to production of phenolic acids. Phenolic acids can still be 

absorbed from the large intestine and this process is discussed further in Section 1.12.4.

The study performed by Hollman et al (1995) appeared to indicate the ability of 

flavonols to be absorbed as glycosides from foods, thus contradicting the theory by 

Kuhnau (1976) that flavonoid glycosides are not absorbed. However, based on levels 

detected in plasma and urine, the bioavailability of flavonols appears to be low. If the 

ileostomy study showed 52% absorption of quercetin glucosides (Hollman et aL, 1995) 

whereas only 1% was detected in plasma (Hollman et aL, 1996), thus a large percentage 

of the compounds were unaccounted for. This would suggest possibly extensive 

metabolism of the absorbed flavonols, the most likely reaction being glucuronidation, 

sulphation or méthylation and/or rapid removal from the blood stream via organs such as 

the liver.

1.11.5 Absorption and metabolism of catechins

Extensive information is available on the absorption and metabolism of catechin 

although most of the studies were carried out using pure compounds rather than dietary 

sources (Table 1.8). Catechins appeared to be more readily absorbed compared with
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quercetin. This was evident from several studies that reported approximately 41-50% 

excretion of the total radioactivity in urine following administration of radioactive 

catechin (Das and Sothy, 1971, Shaw and Griffiths, 1980, Hackett and Griffiths, 1981; 

Table 1.8). Roughly 34-51% of the administered radioactivity were excreted into the 

faeces of rats (Hackett and Griffiths, 1981).

Following administration of the catechin supplements, the metabolites detected 

were mostly conjugated derivatives of the original supplement (Table 1.8). In most 

cases, the conjugates were glucuronides and to a lesser extent, sulphate conjugates. 

Shaw and Griffiths (1980) detected the glucuronide of 3 '-0-methyl-(+)-catechm 

following oral administration of (+)-catechin to rats. Following the oral administration 

of (+)“Catechin to human volunteers, the major urinary metabolites were the glucuronides 

and sulphates of the administered compound (Hacket et a l, 1983). Humans also 

excreted glucuronides and sulphates of 3-(9-methyl-(+)-catechin in addition to the 

glucuronides of 3,3'-dimethyl -(+)-catechin following an oral dose of 3-G-methyl-(+)- 

catechin (Hackett et al., 1985). This suggests méthylation as another important pathway 

in the metabolism of catechins whereby the formation of methyl and dimethyl catechin 

metabolites was common. The most common position for méthylation to occur was 

either at C3 of ring C or C3 ' of ring B; or in the case of dimethylation, both C3 and C3 ' 

(see Table 1.8). In addition to méthylation, glucuronidation and sulphation, ring fission 

of catechins also occurred by bacteria in the large intestine. This reaction generated 

phenolic acids which are readily absorbed. This is discussed in more detail in Section 

1.12.4.

A recent study investigated the absorption of epicatechin from dark chocolate. 

This study demonstrated the absorption of epicatechin in plasma of human volunteers 

following ingestion of the chocolate (Richelle et aL, 1999; Table 1.8). Absorbed 

epicatechin was estimated after enzymic hydrolysis and did not describe the metabolites 

formed. Therefore, any glucuronides or sulphates of epicatechin cleaved by the enzymes 

as well as free epicatechin will be included. Méthylation products were not reported.
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1 .1 1 .6  Absorption and m etabolism  o f o th er  flavon oid s

Table 1.9 summarises the studies on the metabolites formed following 

administration of flavone, flavanone or anthocyanin. The pathway for the metabolism of 

diosmetin (5,7,3'-trihidroxy-4'-methoxy flavone) was followed in rats following oral 

treatment. Diosmetin was observed to circulate as glucuronides as well as 

diglucuronides in plasma. No free diosmetin was present in blood or urine (Boutin et aL, 

1993). This indicated a rapid glucuronidation process. In another study, no unchanged 

compound was detected in plasma after oral treatments of diosmin (diosmetin-7- 

rutinoside) to human volunteers although its aglycone diosmetin was present (Cova et 

aL, 1992). Both diosmin and diosmetin were not detected unchanged in urine, however 

their minor metabolites were excreted in urine, mainly as glucuronic acid conjugates. 

Degradation products such as alkyl-phenolic acids were present suggesting ring fission 

had occurred (See section L 12.4).

Following administration of luteolin (5,7,3 ',4 '-tetrahydroxyfiavone) to rats, 

methylated metabolites of luteolin (9-14% of dose) as well as the unchanged compound 

(6-15% of dose) were excreted in urine and bile (Liu et aL, 1995; Table 1.9). The 

presence of catechol group on ring B of luteolin probably promotes its méthylation.

The metabolic fate of anthocyanin is not as widely researched as the other 

flavonoids despite their wide presence in the plant kingdom. Recently published data 

reported absorption of intact cyanidin-3-glucoside and cyanidin-3,5 -diglucoside 

following oral administration of these compounds to rats and humans (Miyazawa et aL, 

1999; Table 1.9). No metabolites of the parent compounds were detected. Unchanged 

cyanidin-3 -glucoside was also present in plasma of rats following oral administration 

(Tsuda et aL, 1999). The authors also reported the presence of protocatechuic acid, a 

metabolite formed from the degradation of cyanidin-3-glucoside. Levels of 

protocatechuic acid exceeded that of cyanidin-3-glucoside suggesting the high absorption 

or extensive degradation of cyanidin-3-glucoside. It was postulated that the structure of 

anthocyanins with the flavylium cation group confers resistance against conjugation or 

hydrolysis reaction. At the same time, this group also detected 0-methylation products 

of cyanidin-3-glucoside in the liver and kidneys (Tsuda et al., 1999). However, these
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methylated metabolites were not present in plasma, suggesting they were probably 

retained in the tissues. Oral and i.v. administration of either mono- or tri-hydroxyethyl 

mtoside led to the urinary and biliary excretion of glucuronides of the parent compounds 

(Hackett and Griffiths, 1977, 1979). The unchanged compound was also absorbed and 

excreted in urine without modification (Table 1.9). In most instances, more than 50% of 

the radioactivity was excreted in faeces.

1.11.7 Biliary excretion of flavonoids

In addition to urine, another pathway for the excretion of flavonoids is through 

bile. Absorbed flavonoids and their conjugates can be reexcreted into the bile where 

they will flow into the duodenum. Flavonoids from biliary excretion may be subjected to 

further metabolism by the intestinal microorganisms. Alternatively, they may be 

reabsorbed from the intestine, transferred via the hepatic portal vein to the liver, 

metabolised and re-excreted in bile, creating an enterohepatic recirculation. 

Enterohepatic circulation may be important for bioactive substances including flavonoids 

as they can maintain fiavonoid concentration in target tissues

Biliary excretion has been demonstrated in several animal experiments. 

Conjugates of quercetin, isorhamnetin and tamarixetin were excreted in bile following 

administration of quercetin to rats (Ueno et al., 1983, Manach et al., 1996). Biliary 

excretion was also observed in rats after administration of catechins, methyl catechins 

and epicatechin (Das and Sothy, 1971, Hackett and Griffiths, 1981, Okushio et a i, 

1999). In most instances, the conjugated forms of the parent compounds (including 

glucuronides and sulphates) or their metabolites were excreted in bile (see Table 1.5 and 

1.8). Administration of labelled mono- and tri-hydroxyethyl rutoside to mice led to 

extensive biliary excretion of the unchanged rutosides as well as their glucuronides (71% 

of dose; Hackett and Griffiths, 1977). The extent of biliary excretion of flavonoids is 

comparable or maybe even higher than their excretion in urine. This implies the 

importance of this pathway in fiavonoid metabolism as these beneficial compounds can 

be subjected to enterohepatic circulation, thus maintaining a constant level in the general 

circulation.
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1 .1 1 .8  T h e  kinetics o f fiavonoid absorption  in hum ans

Investigations of the kinetics of fiavonoid absorption are useful to address their 

bioavailability. Bioavailability is defined as percentage of the ingested flavonoids that 

enters the blood circulation and becomes available for utilisation. The plasma profile of 

fiavonoid accumulation can be used to establish various kinetic parameters including the 

absorption, distribution and elimination phases of flavonoids. Such information can give 

an insight into the pattern of fiavonoid absorption, for instance whether flavonoids 

persist in the circulation following absorption or whether they are rapidly removed from 

the blood for excretion.

Absorbed flavonoids have to be transported by the blood to the corresponding 

tissues or organ to provide a biological response. Thus, it is possible that the 

concentration and persistence of flavonoids in the blood is a direct measure of their 

intensity and duration in the target tissues. One way of estimating this is by quantifying 

the area under the curve (AUC) of plasma fiavonoid concentration versus time. The size 

and duration of the biological response should be related to the AUC. AUC is also 

useful for evaluating the bioavailability of flavonoids and their clearance. When a single 

oral dose of flavonoids is administered, absorption as well as elimination can occur 

simultaneously in blood. The peak fiavonoid levels in plasma only represents the time 

where the rate of absorption equals the rate of elimination and does not necessarily 

indicate the end of the absorption phase. In theory, AUCs of flavonoids administered 

intravenously as well as orally are required to determine their absolute bioavailability. 

However, this is hot always possible and only relative bioavailability can be estimated 

from AUC of plasma flavonoids from oral doses.

1.11.8.1 Quercetin

So far, only three studies have followed the kinetics of quercetin absorption in 

humans. The first study used pure quercetin aglycone and failed to detect the unchanged 

compound in plasma following oral administration (Gugler et al., 1975). It is possible 

that a large fraction of the absorbed quercetin was conjugated with glucuronic acid or 

sulphate. As the authors only analysed plasma without prior deconjugation of quercetin 

conjugates, this could explain why they did not detect quercetin aglycone in plasma.
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Two studies reported the kinetics of quercetin glycosides absorption following a 

fried onion meal (Hollman et al., 1996, McAnlis et al., 1999). Both studies consumed 

similar amounts of quercetin from the onions. When absorption was expressed as 

proportion of intake, approximately 1-1.5% of quercetin glycosides was present in 

plasma at peak concentration. The time taken to reach peak concentration varied from 2 

to 2.9 h between the two studies. The plasma profile of quercetin indicates a rapid 

absorption phase followed by a slower elimination period. Low levels of quercetin could 

still be detected 24-48 h after the onion meal. As these studies only measured quercetin 

after hydrolysis, information on the absorption of quercetin aglycone was excluded.

Studies with ileostomy subjects found 52% absorption of quercetin glycosides 

from onions (estimated after acid hydrolysis; Hollman et al., 1995). However, the 

figures obtained in plasma (1-1.5%) were nowhere near this (Hollman et al., 1996, 

McAnlis et al., 1999). The low values obtained in plasma implied possibly extensive 

metabolism of this compound to its metabolites or their effective removal from the 

general circulation.

The profile for absorption of pure rutin indicated a slower absorption phase than 

quercetin with peak concentration achieved 9 h after taking the supplement (Hollman,

1997). This suggests slower absorption from the intestine or possibly absorption taking 

place further down the gastrointestinal tract. The author also compared the profiles of 

the absorption of quercetin from apples and from onions. Similar profiles were noted, 

although at peak plasma concentration, levels in the former was half that of the latter. 

Apples contained different types of quercetin glycosides compared to onions which 

maybe absorbed at different rates.

In most cases, flavonols were still detectable in plasma up to 24 h after the 

supplements. Thus, repeated intake of high-flavonol foods may lead to their build-up in 

plasma. Such studies are needed to confirm this.

Absorption studies reported above only determined absorption of flavonols from 

foods and did not specify or identify the absorption kinetics of the specific flavonols 

present in the dietary sources. Onions for example contain a wide variety of quercetin 

glucosides particularly quercetin-3,4 -diglucoside, quercetin-3-glucoside and quercetin-
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4'-glucaside. Investigation of the kinetics and bioavailability of these compounds as 

well as other ubiquitous flavonol glycosides can provide better information on the 

structure-absorption relationship of flavonols. At the same time, knowledge on the 

flavonols that are highly absorbable can be used to encourage the general population to 

consume foods containing high levels of these compounds.

1.11.8.2 Catechins

Catechins were readily absorbed and in most instances, peak plasma 

concentration was reached within 1 to 3 h, implying rapid absorption. Plasma analysis 

showed the compound was still present 12 h after the start of the supplement (Hackett et 

al., 1983, 1985), indicating a slow elimination phase. Longer periods of blood collection 

could provide further information on the existence of catechins in the general circulation. 

When areas under the plasma were estimated, the values obtained for 3-(9-methyl-(+)- 

catechin (Hackett et al., 1985) was 5 fold more than (+)-catechin (Hackett et al., 1983; 

Table 1.10). Thus, introduction of a methyl group substantially increased their 

absorption, possibly altering their stereospeciflcity, favouring their uptake from the 

intestine. Alternatively, methylated catechin may be less extensively metabolised in the 

body. However, as areas under the curve of plasma levels were determined only up to 12 

h, it may not be truly representative of the complete elimination phase.

In another study, a proportionate increase between AUC of plasma of epicatechin 

and the administered dose was observed (Richelle et al., 1999; Table 1.10). This implies 

a non-saturable effect on the absorption of epicatechin up to a dose of 164 mg. 

Maximum concentration in plasma was reached between 2 to 3 h, followed by rapid 

elimination.

Comparing the AUC for epicatechin from chocolate and quercetin from onions, 

the latter appear to be more bioavailable than the former (Table 1.10). The structural 

variation of quercetin and epicatechin may have an impact on their absorption. At the 

same time, influence of the nature and/or position of the sugar moiety on quercetin 

absorption should not be dismissed.
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Table 1.10: Areas under the plasma of flavonoids following consumption of the 

supplements

Fiavonoid supplements

. ■ —... .... ■ .. .

Dosage- Peak plasma 
concentration

AUC
(ng/ml/h)

Reference

Quercetin glucosides 
(from onions)

68 mg 224 ng/ml 
(1.5%)

2330 Hollman’s thesis 
1997

Rutin 100 mg 90 ng/ml 
(0.27%)

983 Hollman’s thesis 
1995

3-0-methyl-(+)-catechi n 2g 18000 ng/ml 
(3%)

41600 Hackett et al 
1985

(+)-catechin 2g 1507 ng/ml 
(0.2%)

8970 Hackett et al 
1983

Epicatechin 
(from chocolate-40 g)

82 mg 103 ng/ml 
(0.4%)

445 Richelle et al 
1999

Epicatechin 
(from chocolate-80 g)

164 mg 196 ng/ml 
(0.4%)

1069 Richelle et al 
1999

Diosmin 10 mg/kg body wt. 400 ng/ml 
(0.24%)

5617 Cova ef al 
1992

58



1.11.8.3 Flavones

Interestingly, following the administration of diosmin, (diosmetin-7- rutinoside), 

no unchanged compound could be detected in plasma (Cova et a l, 1992). Instead the 

aglycone, diosmetin, was present. Absorption was rapid with peak plasma concentration 

reached 1 h after dosage. This was followed by a slower elimination period with 

diosmetin still present above baseline levels at 48 h. Although similar dosage were 

consumed, a higher peak plasma concentration was obtained for diosmetin (400 ng/ml) 

compared to quercetin (248 ng/ml; Table 1.10) suggesting a higher rate of absorption of 

the former compound. The presence of the aglycone instead of the parent compound 

implies deglycosylation had taken place. At similar dosage, flavones appear to be more 

bioavailable than quercetin glucosides from onions, rutin and epicatechin (Table 1.10).

1.11.8.4 Aiithocyanins

Following oral ingestion of cyanidin glucoside and cyanidin diglucoside, high 

levels of the former was detected in plasma of human volunteers with a peak 

concentration of 13 ng/ml (Miyazawa et a l, 1999). In contrast, only trace levels of the 

latter were observed. Absorption of cyanidin glucoside was rapid with peak 

concentration reached 60 min after the supplement. However, when compared to 

quercetin, the percentage of anthocyanin absorbed from total intake was relatively low 

(0.02%) compared to 1.5% for quercetin.

1.11.8.5 Conclusion

Excluding 3-0-methyl-(+)-catechin and (+)-catechin, diosmin from the sub-class 

flavones appeared to be more bioavailable than the other flavonoids. Comparison of the 

relative bioavailability of 3-0-methyl-(+)-catechin and (+)-catechin with the other 

flavonoids could not be made due to the higher dosage of the two compounds (2 g; Table 

1.10). The AUC of plasma for epicatechin may have been underestimated as blood was 

collected only up to 8 h when levels of epicatechin was still above baseline.

It is evident that various factors play a role in determining the 

absorption/bioavailability of flavonoids from the small intestine. Modification in the
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structure of the fiavonoid molecule appears to have a big impact on their absorption. 

This could be as a consequence of changes in stereospeciflcity of the molecule or their 

solubility in either the lipid or aqueous phase. The mechanism of fiavonoid uptake from 

the small intestine needs to be established. Hollman et al., (1995) postulated 

involvement of the Sodium-Glucose Co-transport system (SGLTl) in the absorption of 

quercetin glucosides. This area of research merits further investigation as determination 

of the mechanism of fiavonoid absorption can provide information on the mode and 

extent of their absorption from the intestine.

Information obtained so far are still limited and there are still many missing 

pieces to be put together to get a clearer picture. However, with the development of 

better procedure for fiavonoid identification, rapid progress can be made. At the same 

time, identification of individual flavonoids following consumption of high-flavonoid 

foods can provide valuable infonnation on the bioavailability of the different flavonoids 

present in the foods. Eventually, this can be used to encourage high consumption of 

foods containing highly bioavailable flavonoids.
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1.12 S ites for fiavonoid metabolism

1.12 1 Introduction

Little infonnation is available on the metabolic pathway of dietary flavonols in 

humans following their absorption from the intestine. Knowledge on the fate of 

flavonoids following their absorption is relevant to assess their potential biological 

effects in the human body. Absorption studies indicated rapid absorption o f the 

unchanged flavonoids followed by a slower elimination phase (see section 1.11.8). 

When absorption or excretion was expressed as percentage of the amount ingested, it 

appears that very little flavonoids are absorbed from the intestine. It is not known if this 

is a result o f low bioavailability of flavonoids or their extensive modification before 

appearing in the general circulation. Another alternative explanation is their effective 

removal from the bloodstream for the purpose of sequestration in tissues or excretion. 

The extent of fiavonoid metabolism determines their ability to maintain their bioactive 

form in order to provide protection to human health. Furthermore, the metabolites 

formed need to have the capability to be stored in a significant amount in the body to 

exert their beneficial effects. The nature of the fiavonoid molecule with multiple 

hydroxyl groups and substitution patterns makes them susceptible to various enzymes 

and modification reactions.

Animal studies indicated that several sites are responsible for the metabolism of 

flavonoids and this may be true in humans too. The liver and the large intestine are the 

most common sites for fiavonoid metabolism (Hackett, 1986). At the same time, the 

small intestine and kidney may to a certain extent contribute to the biotransformation of 

flavonoids. The metabolic reactions which occur on the fiavonoid molecule include 

conjugation (e.g. with glucuronic acid or sulphate), méthylation, oxidation, reduction and 

ring fission. Animal studies particularly with radioactively labeled flavonoids are ideal 

for metabolic studies. Such methods allow monitoring of the radioactive flavonoids 

following their absorption as well as estimation of the radioactivity in various cells and 

tissues.
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1 .1 2 .2  Liver m etabolism  of flavonoids

The liver is probably the main organ responsible for the metabolism of flavonoids 

and contains various enzymes for these reactions. Some of the more important enzymes 

include UDP-glucuronyl transferases and catechol-O-methyl transferases. Furthermore, 

animal studies with radioactively labeled quercetin have reported a rapid decrease of 

radioactivity in the blood following absorption, accompanied by short-term increase in 

the levels in the liver and kidneys (Ueno et ah, 1983).

1.12.2.1 Méthylation

Phenolic compounds, including flavonoids with adjacent hydroxyl groups, can 

undergo O-methylation. An in vitro experiment with rat liver microsomes demonstrated 

the metabolism of fiavonoid aglycones by enzymes of the microsomes, the main 

reactions being hydroxylation, déméthylation and méthylation (Nielsen et al., 1998). 

Modification in the structure of the fiavonoid molecule particularly in the B ring appears 

to influence their metabolism by the microsomes. The extent of fiavonoid metabolism is 

highly dependent on the number and position of the hydroxy and methoxy groups in the 

B-ring. Flavonoids without hydroxyl groups or with a 4 -OH group in the B-ring were 

hydroxylated to give the catechol structure (3',4'-dihydroxylation). On the other hand, 

flavonoids with 0-methylation at the 4 '-position (but not the 3'-position) were 

demethylated to the corresponding hydroxylated compound. The catechol moiety on the 

fiavonoid molecule then becomes the substrate for catechol-O-methyl transferase, 

causing 0-methylation at the 3 '-position. This structure may be more biologically 

stable.

Piskula and Terao (1998) detected activities of catechol-O-methyl transferase in 

the liver. This enzyme catalyses the transfer of methyl groups from S-adenosyl 

methionine to a variety of substrates containing a catechol group. Méthylation has only 

been observed at the 3' position and not the 4' implying specific affinity of catechol-O- 

methyl transferase for its substrate.

Several flavonoids have been reported to inhibit catechol-O-methyl transferase in 

rat liver and also in human liver (Kuhnau, 1976). This inhibitory action is largely
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dependent on the structure of the fiavonoid molecule with fiavonoid glycosides less 

active than the corresponding aglycones. However, the 3',4'-0-dihydroxylation of ring 

B of fiavonoids appears to increase the affinity of fiavonoids for this enzyme.

1.12.2.2 Conjugation

In addition to méthylation, a conjugation reaction also occurs in the liver. The 

conjugation of fiavonoids mainly involved the introduction of glucuronic acids and 

sulphates. These reactions feature prominently in fiavonoid metabolism particularly of 

catechin and quercetin (See Table 1.5 and 1.8). This perhaps is the most common final 

step in the metabolic pathway of fiavonoids.

Certainly, glucuronidation and sulphation of quercetin and catechin has been 

demonstrated using isolated perfused rat liver system (Shali et al, 1991). In addition, 

activities of glucuronosyltransferases and phenolsufotransferases, the enzymes 

responsible for glucuronidation and sulphation respectively, has also been detected in the 

liver of rats (Piskula and Terao, 1998).

Conjugation of fiavonoids increases their molecular weight and at the same time 

creates more polar molecules which subsequently favours elimination in urine or via the 

biliary route where they can be further metabolised by the colonic microorganisms. In 

rats orally fed [̂ "̂ C] quercetin, 20% of the absorbed quercetin was excreted in bile and 

urine as glucuronide and sulphate conjugates of [^'^Cjquercetin, [̂ '̂ C] 3'-0-monomethyl 

quercetin and [^"^C]4'-0-monomethyl quercetin (Ueno et al, 1983).

1.12.2.3 Deglycosylation

A recent study reported deglycosylation of fiavonoid glycosides in cell free 

extracts of human liver (Day et al, 1998). This demonstrated the presence of 

glycosidases in liver which has never been detected before. The rate and extent of 

fiavonoid deglycosylation appears to be dependent on the structure and type or position 

of the sugar moiety. Quercetin with sugars at either the 3' position or the 3,4'-positions 

(e.g. quercetin-3,4'-diglucoside) were resistant to hydrolysis. On the other hand, 

quercetin-4'-glucoside and several 7-glucosides of isofiavonoids were deglycosylated by
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the liver enzymes (Day et al., 1998). Perhaps binding of sugars at the 3 -position or 

3,4'-position reduces the affinity of the glycosidases towards these flavonoids.

1,12.2.4 Hydroxylation

The liver has also been suggested as the site for hydroxylation of flavonoids and 

monooxygenases are widely reported to catalyse this reaction (Hackett, 1986). Indeed, 

several flavonoids did undergo hydroxylation following incubation with rat liver 

microsomes (Nielsen et al, 1998). The structure of the fiavonoid molecule appears to 

affect their hydroxylation. Flavonoids lacking hydroxyl groups in the B ring are more 

prone to this reaction. The end product appeared to be formation of the catechol 

structure.

1.12.3 Small intestinal metabolism of flavonoids

1.12.3.1 Deglycosylation

It was previously postulated that only fiavonoid aglycones were absorbed, and 

not the glycosides, due to the lack of glycosidases in the small intestine capable of 

breaking the sugar bonds. Lately, however, in vitro incubations of fiavonoid glycosides 

with small intestinal contents have led to the formation of aglycones of the parent 

compounds (Day et al, 1998) suggesting the presence of glycosidases. The structure of 

flavonoids as well as the nature/position of the sugar residues determines the extent of 

their deglycosylation. Similar to liver, isofiavonoids with glucose at the C-7 position and 

quercetin-4'-glucoside were extensively deglycosylated (>60%). This was also observed 

by loku et al (1998). Quercetin-3-glucoside, which was resistant to deglycosylation by 

the liver enzymes, was deglycosylated, albeit at a lower proportion (16%), by enzymes 

of the small intestine. Previous incubations of flavonoids with small intestinal contents 

as well as digestive enzymes demonstrated their stability in this environment (Hollman et 

al, 1995). This implies that the glycosidases are possibly located at the brush border 

membrane and that deglycosylation takes place during passage of the flavonoids through 

the intestinal membrane. This is supported by recent publications which detected 

absorption o f quercetin aglycone in the serosal side following perfusion of isolated rat

intestines with quercetin-3-glucoside (Spencer et a l, 1999, Notebom et al., 1997).
64



1.12.3.2 Glucuronidation

In addition to deglycosylation, glucuronidation of flavonoids has also been 

described in the small intestine. Until recently, liver was assumed to be the only site for 

glucuronidation of flavonoids. However, the recent detection of glucuronosyl transferase 

activities in the intestinal mucosa meant that the first step o f fiavonoid metabolism might 

already occur at the level of intestinal mucosa (Piskula and Terao, 1998). Indeed, the 

ability of the intestinal mucosa to glucuronidate other compounds such as naphthyl 

glucosides during their absorption have been reported (Mizuma et a i,  1994). Thus, the 

possibility of fiavonoid glucuronidation is also highly likely. It was only recently that 

the ability of the intestinal mucosa to glucuronidate flavonoids was demonstrated in in 

vitro experiments with rat intestines (Shimoi et ai, 1998, Spencer et a i, 1999, Walle et 

a l, 1999). In all cases, glucuronidation appeared to take place during the passage of 

flavonoids through the intestinal membrane. Glucuronidation includes the aglycone as 

well as the glycosides of flavonoids.

However, the extent of intestinal glucuronidation of fiavonoids in vivo is not 

known. Such findings question the role of the liver in glucuronidation of flavonoids. 

Intestinal glucuronidation has only been described for a small number of flavonoids 

(mainly flavonols and isofiavonoids). This area merits further research particularly the 

effect on catechins which are extensively glucuronidated upon their absorption.

1.12.4 Colonic bacterial metabolism

The colon is probably the main site for the metabolism of flavonoids that remain 

unabsorbed after passing through the small intestine. In addition, absorbed fiavonoids 

can be reexcreted into the duodenum in bile and thus be subjected to further metabolism. 

The colon contains a large population of anaerobic microorganisms, widely responsible 

for the biotransformations of unabsorbed substances including flavonoids. The colonic 

microfiora such as Bacteroides, Bifidobacterium and Eubacterium contain several 

enzymes capable of deconjugating the glycosidic as well as the glucuronide bonds of 

fiavonoid conjugates to liberate the free form. The resulting aglycones of fiavonoids are 

either absorbed or subjected to further metabolism by the intestinal microorganisms. The
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enzymes glycosidase and glucuronidase have been detected in colonic microorganisms 

(Kim et ai, 1998).

1.12.4.1 Ring fission of flavonoids

Ring fission is perhaps the most important step in the colonic bacterial 

metabolism of flavonoids. This reaction ultimately results in the split of the heterocyclic 

oxygen-containing ring of flavonoids to yield metabolites known as phenolic acids. 

Table 1.11 summarizes the animal and human studies on ring fission products following 

administration of flavonoids while the chemical structure of the resulting phenolic acids 

are illustrated in Figure 1.12. Evidence that ring fission of flavonoids required the 

presence of colonic microorganisms was obtained using rats treated with the antibiotic 

neomycin. The generation of ring fission products of flavonoids was not observed in 

these rats supporting the importance of colonic microorganisms (Nakagawa et ai, 1965, 

Griffiths and Smith, 1972).

In most cases, fiavonoid glycosides as well as their aglycone generated the same 

type of phenolic acids. Kaempferol and robinin (kaempferol-7-rhamnosyl-3- 

galactorhamnoside) for instance, underwent a cleavage reaction to generate a similar 

phenolic acid, hydroxyphenylacetic acid (Griffiths and Smiths, 1972; Table 1.11). The 

same was reported for quercetin and rutin (quercetin-3-rutinoside) (Booth et a i, 1956) as 

well as apigenin and naringin (apigenin-7-rhamnoglucoside) (Griffiths and Smiths, 1972; 

see Table 1.11). This implies that fiavonoid glycosides are initially hydrolysed by the 

intestinal microorganisms to the respective aglycones prior to the ring fission reaction.

Ring fission products are largely dependent on the structure of the fiavonoid 

molecule, therefore the phenolic acids formed varied depending on sub-classes of 

flavonoids. Investigations of the bacterial metabolism of flavonols, in particular 

quercetin, rutin and kaempferol showed that the compounds were degraded mainly into 

hydroxyphenylacetic acids (Booth et a i,  1956, Nakagawa et ai, 1965, Griffiths and 

Smith, 1972a, Baba et ai, 1981; Table 1.11). Oral administration to rats of certain 

flavone and flavanone, for instance apigenin and naringin resulted in the excretion of
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OH

OCH,

3 -h \ d ro \yp h en y  lacet 1C acid

3.4-dih> d r o \ \  phenylacelic  acid

3 .5 -d ih yd roxyp h en ylacetic  acid

3 -m e th o x y -4 -h y d r o \\ p h en ylacelic  acid

3 -h \ d ro x v b en /o ic  acid

.OH 3 .4 -d ih v d ro x v b en /o ic  acid

3 -h \ d ro x \ -4 -m e th o \v b e n z o ic  acid

3 -h \ droxycinnam ic acid

3-hydroxyphenylprop ion ic acid

5 - (3 -hyd roxyp h en yl) -y -v a le r o la c lo n e

ô-(3 .4 -d ih yd roxyp h en y l) -y -v a le r o la c lo n e

Figure 1.12: Structure o f ring fission products o f colonic bacterial m etabolism  of  

flavonoids

69



hydroxyphenyl propionic acids (Griffiths and Smith, 1972a). Ring fission reaction on 

(+)-catechin generated hydroxyphenylpropionic acids, hydroxybenzoic acids and 

valerolactones (Das and Sothy, 1971, Hackett et al, 1983). In contrast to (+)-catechin, 

3-0-methyl-(+)-catechin was resistant to ring fission (Hackett and Griffiths, 1981). The 

presence of a methyl group at C-3 possibly confers resistance towards ring fission. 

Clearly, structural features of the fiavonoid molecule determine the type of ring fission 

products. The presence of hydroxyl groups appears to be necessary for ring fission and 

their numbers as well as position determine their susceptibility to degradation by the 

intestinal microorganisms.

Depending on their structure, some of these phenolic acids show considerable 

antioxidant activities and thus may contribute towards the biological properties of 

flavonoids. Phenolic acids such as 3,4-dihydroxyphenylacetic acid and 4- 

hydroxyphenylacetic acid showed higher anti-platelet aggregation activities than rutin 

and quercetin (Kim et al, 1998). Studies have shown that phenolic acids were capable 

of absorption in the colon as they could be detected in urine of animals and humans 

following administration of the parent compounds (Griffiths and Smith, 1972, Hackett et 

ai, 1983, Cova et a i,  1992). Thus, further information on the extent of phenolic acid 

absorption as well as their metabolism is useful to evaluate their potential contribution as 

anti oxidants in the human body.

1.12.5 Renal metabolism of flavonoids

The major purpose of the kidneys is to produce urine. They therefore act as a 

vehicle for the excretion of metabolic products which need to be disposed of by the body 

and at the same time maintain osmolarity of the body fluids. The role of the kidney in 

the metabolism of flavonoids is probably the least studied.

Animal studies with radiolabelled flavonoids have detected radioactivity in 

kidney following fiavonoid absorption (Ueno et al, 1983). The kidney may contain 

enzymes capable of biotransformation of flavonoids. Indeed, méthylation of flavonoids 

was observed in the kidney of rats (Piskula and Terao, 1998). The investigators also 

detected low levels of the enzyme catechol-O-methyl transferase responsible for this 

reaction.
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Fiavonoid metabolism in kidney is not widely studied. As their main purpose is 

in the excretion of substances, it is possible that they play only a minor role in fiavonoid 

metabolism.
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1.13 The mechanism of fiavonoid absorption

1.13.1 Introduction

Information regarding the uptake of flavonoids across the small intestine is 

limited. Such information is useful to provide an insight into the bioavailability of 

various flavonoids from the diet, their ability to be absorbed and subsequently provide 

beneficial health properties. Previously, fiavonoids were regarded as unabsorbable 

although recent evidence reported the selective absorption of quercetin glucosides from 

onions as well as lower levels of quercetin aglycone (Hollman et al., 1995).

Recent interest in the mechanism of fiavonoid uptake from the small intestine has 

sparked widespread research in this area. Evaluation of the mechanisms of fiavonoid 

uptake are important because:

i) it can provide a better understanding of the role of flavonoids in human health

ii) the bioavailability of various flavonoids from dietary sources can be determined

iii) the relationship between fiavonoid structure, their cellular location and biological 

function in the human body can be addressed.

1.13.2 Background on intestinal absorption

In order to study the mechanism of fiavonoid absorption, an understanding of the 

process that occurs in the small intestine during absorption of substances is important. 

The small intestine can be divided into 3 segments consisting of the duodenum, jejunum 

and ileum. Jejunum is the main segment where most of the absorption of compounds 

occurs. Its mucosal surface is enriched with villus as well as transport molecules to 

enhance the efficiency of the absorption process.

Intestinal absorption of substances can occur either by passive or active transport. 

Passive transport involves the flow of specific substances from high concentration to low 

concentration so as to equilibrate their concentration gradients. There are 2 mechanisms 

of passive transport, by simple diffusion or by facilitated diffusion. Simple diffusion 

involves direct diffusion of specific molecules across the membrane, for example fatty
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acids. Facilitated diffusion requires a specific carrier protein to transport specific 

molecules. GLUT5 for instance is a protein carrier for fructose as the cell membrane is 

not permeable to hexoses. At the same time, GLUTS may also be able to transport 

glucose, albeit at a lesser extent than fructose (Gould and Holman, 1993, Mueckler, 

1994). A simplified diagram of the various transport mechanisms in the small intestine 

is illustrated in Figure 1.13.

Compounds that are hydrophilic are mainly transported via carrier proteins as 

they are not soluble in the lipid phase of the membrane. On the other hand, lipophilic 

compounds can diffuse across the membrane depending on the partition coefficient 

between water and the non-polar phase or the compound’s tendency to transfer from the 

aqueous phase to the membrane’s non-polar core. It was postulated that quercetin 

glucosides maybe transported via a carrier-mediated system as they are more polar and 

have low solubility in lipids.

In active transport, specific molecules are transported against their concentration 

gradients, from low concentration to high concentration. An example is the Sodium- 

Glucose Co-transport protein (SGLTl) responsible for the active transport of glucose and 

galactose. These hexoses are transported across the bmsh border membrane mediated by 

the simultaneous movement of sodium ions into the basolateral membrane (Figure 1.13). 

Energy for this active transport is provided by a concentration gradient of sodium ions 

across the membrane, maintained by the enzyme Na^/K^-ATPase.

Once in the enterocytes, absorbed compounds are transported essentially by the 

same mechanism across the basolateral membrane into the blood stream. Fatty acids can 

diffuse directly across the membrane (Figure 1.13). Another carrier, GLUT2, which is 

not Na-dependent, is present in the basolateral membrane for the transport of glucose. 

GLUT2 is also able to handle fructose and galactose.
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Fatty acids

Fructose

GLUTS
GLUT2

SGLT1

Glucose

Na

Intestinal lumen Brush border 
membrane

Capillaries

Figure 1.13; A schematic diagram illustrating the various transport mechanisms 

involved in the uptake of specific substances across the intestinal membrane
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1 .1 3 .3  Approach in the stud y  of fiavonoid  transport

Transport studies are somewhat intricate as various factors have to be taken into 

account when conducting such studies. Movement of substances across the small 

intestine is defined as their passage through the epithelial barrier between the intestinal 

lumen and the blood vessels. The small intestine can transfer substances in 2 directions, 

(i) from the lumen to the bloodstream (absorption), and (ii) from the bloodstream to the 

lumen (secretion). Substances have to pass through 2 membranes during transport, the 

luminal (or mucosal) and the basolateral (or serosal) membranes. These 2 membranes 

have different characteristics and the mechanism of transport for one substance may 

differ between the 2 membranes.

Although many techniques are available to study intestinal absorption, there is 

not one perfect technique. In vivo methods are ideal due to the presence of blood 

circulation and maintenance of the physiological parameters. However, this is not 

always practical as several aspects of absorption cannot be studied, such as collection of 

the absorbed products. Although not without its disadvantages, in vitro methods are 

more popular as the experimental conditions can be easily controlled and at the same 

time allows better sampling from the mucosal as well as the serosal side. Perhaps a 

combination of different methods is best to provide better information on absorption and 

mechanism of transport, taking into account variations in physiological as well as 

intestinal function in the methods.

1.13.4 Fiavonoid uptake from the small intestine

Various studies have investigated the uptake of several flavonoids from the small 

intestine, using different in vitro techniques. This is summarised in Table 1.12. It is 

hoped that such studies could provide better understanding of the relationship between 

the structure of flavonoids and the extent of their absorption from the intestine.

A study used CaCo-2 cells as a model of human intestinal absorption and 

measured the permeability of various flavonoids in both luminal to basal and basal to 

luminal directions (Walgren et a/., 1998). Quercetin was the most permeable compound
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in the luminal to basal directions followed by much lower permeability of quercetin-3,4'- 

diglucoside and no absorption of quercetin-4'-glucoside (Table 1.12). It is possible that 

the glucose moiety in the 3-position promotes absorption whereas inhibits it in the 4'- 

position. The same method was used to study the uptake of chrysin (5,7- 

dihydroxy flavone; Walle et al., 1999). Movement from basolateral to luminal was two 

fold higher than from luminal to basolateral. This suggest bidirectional movement of 

certain flavonoids implying that not all the flavonoids absorbed will be available as a 

proportion of it might be excreted back into the intestinal lumen. However, the 

correlation between the cell culture technique and in vivo absorption is questionable. 

CaCo-2 cells are cancerous cells and any modification in the transport system as a result 

of cancer in not known. The relevance to uptake in normal subjects is open to argument. 

As the cell culture conditions may not be physiologically identical to the in vivo system, 

the observed basolateral to luminal movement of flavonoids may not occur in the actual 

human body as they might be taken up straight into the general circulation. Furthermore, 

in the in vivo system, the luminal concentration of ingested flavonoids would be 

expected to be much higher than the basolateral concentration, thus promoting passive 

diffusion. This gradient is expected to be maintained by removal of the flavonoids from 

the basolateral side by blood flow and plasma protein binding.

One other study indicated intestinal absorption o f quercetin aglycone (Notebom 

et ah, 1997) with another detecting low absorption, only 60 min after the start of 

incubation (Spencer et al., 1999; Table 1.12). However, Spencer et al found much 

higher presence of quercetin glucuronides following incubation with quercetin aglycone. 

This may explain the low absorption of the unchanged compound.

Recently published studies claimed the ability of the small intestine to both 

absorb and glucuronidate several flavonoids (Spencer et al., 1999, Shimoi et al., 1998; 

Table 1.12). This was observed in the glycosides as well as the aglycone of flavonoids 

although the structure of the molecule may affect the extent of their absorption and 

glucuronidation. The other previous studies only looked at absorption of the parent 

compoimd following their incubation. Therefore, the presence of glucuronides, if any 

were not included.
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In contrast to the above findings, following perfusion of isolated rat intestine with 

quercetin-3-glucoside, Spencer et al (1999) detected higher absorption of the aglycone 

compound compared to the parent compound and the glucuronides. This implies 

possibly deglycosylation of quercetin-3-glucoside while being transported through the 

intestinal tissue. Mizuma et al (1994) reported similar deglycosylation of naphthyl 

glucosides during intestinal absorption.

Most of the studies reported intestinal absorption of quercetin glycosides 

although one detected no absorption of quercetin-4'-glucoside (Walgren et al., 1998; 

Table 1.12). The aglycone fonn of several flavonol and flavone were also absorbed 

(Noteborn et al., 1997, Walgren et al., 1998, Spencer et al., 1999). However, one study 

reported glucuronidation of the aglycone of quercetin and kaempferol during their 

passage through the intestinal wall (Spencer et a l, 1999). Quercetin-3-glucoside was 

both deglycosylated and glucuronidated during intestinal absorption with higher levels of 

the aglycone detected than the glucuronides (Spencer et a l, 1999).

All the in vitro techniques employed to study the absorption of flavonoids 

showed some discrepancies in the results obtained (Table 1.12). As mentioned before, 

various factors can contribute to this, particularly the set up of the experiments and 

control o f the physiological conditions. Therefore, at this point in time, it is difficult to 

come to a definite conclusion regarding the extent of flavonoid uptake from the small 

intestine and the factors influencing them. It appears that only a very limited amount of 

flavonoids was transported (Noteborn et a l, 1997, Spencer et a l, 1999), suggesting low 

bioavailability of these compounds. However, this cannot be directly compared with in 

vivo system as lower absorption is expected from in vitro systems due to the lack of 

blood supply and other physiological conditions.

1.13.5 Mechanisms of flavonoid absorption from the small 
intestine

Hollman and his colleagues (1995) in their absorption study, found that quercetin 

glycosides flom onions were better absorbed than the aglycone. They proceeded to 

postulate that the SGLTl might be involved in the transport of quercetin glucosides.
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Indeed, SGLTl has been shown to be able to transport naphthyl glycosides in addition to 

glucose, their primary substrate (Mizuma et al., 1994). A few studies have investigated 

this hypothesis although no strong evidence was obtained. One study reported 

interaction of several quercetin glucosides (1 mM) including quercetin-3,4'-diglucoside, 

quercetin-3-glucoside and quercetin-4-glucoside with SGLTl based on an everted rat 

gut model (Gee et al., 1998). However, in contrast to this, quercetin-3-glucoside as well 

as quercetin aglycone behaved as glucose transport carrier inhibitors at flavonol 

concentration of 10 pM (Noteborn et al., 1997). It is rather puzzling that at low 

concentration, quercetin and its glucosides can inhibit SGLTl but not so at high 

concentrations suggesting possible discrepancies in the two methods employed.

Obviously, more studies are needed in this area, using different approaches. 

Phloridzin, an inhibitor of SGLTl could be employed to block the transporter and thus 

study their influence on flavonol glucosides uptake. As yet, it cannot be conflimed that 

quercetin glucosides are transported by SGLTl in the small intestine.

1.13.6 Limitations of i n  v i t r o  techniques to  study intestinal 
absorption

Obviously, with in vivo techniques, the physiological parameters are maintained, 

such as blood flow and hormone levels. However, with in vitro methods, it is difficult to 

maintain the exact physiological conditions and admittedly, some of it will be lost. Thus, 

the relationship between the transport mechanisms and the overall absorption may not be 

clear. Preparations of intestinal tissues from animals are also an important determinant 

particularly in maintaining tissue viability. Furthermore, speed and the use of well- 

oxygenated buffer are crucial in working with surviving intestines. However, the 

importance of this type of study cannot be denied in order to evaluate the exact 

mechanism and the extent of flavonoid absorption from the intestine. Researchers will 

need to be aware of the confounding factors and limitations of such studies.
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1 .1 3 .7  C onclusion

The potential for flavonoids to provide beneficial health properties is very 

promising. The next step is the determination of their absorption and metabolism. Of 

particular importance is the ability of flavonoids to provide protection at the levels of 

dietary intake rather than at pharmacological dose. Although substantial research have 

been carried out on this field, several gaps or loopholes still exist particularly on the 

mechanism of absorption and the fate of these compounds following their absorption. 

Inevitably, the flavonoids that circulates in the blood stream, either as the unchanged 

compound or as the metabolites will have the biggest impact on human health. Thus, 

evaluation of the factors influencing the mode and extent of flavonoid uptake from the 

small intestine together with their metabolism will provide a better understanding on the 

interaction between these compounds and the biological system.
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Aims of Study



CHAPTER 2: AIMS OF STUDY

The widespread potential of flavonoids in humans particularly as antioxidants is 

widely recognised. This has opened up the prospect for more research especially 

regarding their absorption and metabolism. As yet, information is still limited and 

further studies are required to provide a better understanding of their beneficial health 

properties in vivo.

Therefore, the main objectives of this thesis were:

1. To investigate the extent of accumulation of flavonols in plasma and their excretion 

in urine following consumption of a high-flavonol food.

2. To establish the mode and extent of flavonol absorption from the small intestine and 

evaluate the effect of structural modification as well as the nature/position of sugar 

moiety on their absorption.

3. To investigate the influence of flavonol glycoside structure on the extent of their 

metabolism by the liver.
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CHAPTER 3: MATERIALS AND METHODS

This chapter describes the general materials and methodologies applied in 

conducting experiments. An automated high performance liquid chromatograph system 

(HPLC) was extensively used for the analysis of flavonoids from various sources. 

Methods for extracting flavonoids from plant tissues as well as biological samples are 

explained. In addition, optimization of flavonoid analysis in plasma is also detailed in 

this chapter as information obtained is useful for the feeding studies described in Chapter

4.

3.1 MATERIALS

3.1.1 Flavonoid standards

Quercetin-3,4 '-diglucoside, quercetin-4 -glucoside and isorhamnetin-4'- 

glucoside were a gift from Dr T. Tsushida, National Food Research Institute, Ibaraki, 

Japan. Kaempferol, quercetin, and morin were obtained from Sigma Aldrich (Poole, 

Dorset, UK). Quercetin-3-glucoside and isorhamnetin were purchased from Apin 

Chemicals Ltd. (Oxon, UK).

3.1.2 HPLC solvents

Methanol and acetonitrile were of HPLC grade and obtained from Rathbum 

Chemicals Ltd (Walkerburn, Scotland). Aluminium nitrate nonahydrate and 

trifluoroacetic acid were purchased from Sigma Aldrich (Poole, Dorset, UK). Glacial 

acetic acid was obtained from Fischer Scientific (Leicestershire, UK).

3.1.3 Plant Materials

Yellow onions for flavonol analysis and the human feeding trials were purchased

at different dates at Safeway pic. (Byres Road, Glasgow). Previous analyses have shown
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that the flavonol content of the same cultivar of onions did not vary significantly from 

month to month (Crozier et al., 1997).

3.2 METHODS

3.2.1 Flavonoid analysis by High Performance Liquid
Chromatography

Samples were analysed using a Shimadzu (Kyoto, Japan) LC-lOA series 

automated liquid chromatograph comprising a SCL-lOA system controller, two LC-lOA 

pumps, a SIL-IOA auto injector with sample cooler, a CTO-1 OA column oven and SPD- 

lOA UV-VIS detector and an RF-lOA fluorimeter linked to Reeve Analytical (Glasgow, 

UK) 2700 data handling system. Reversed phase separations were carried out at 40°C 

using a 150 x 3.0 mm i d., 4 um Genesis Cig cartridge column fitted with a 10 x 4.0 mm 

i.d. Ci8 Genesis guard cartridge in an integrated holder (Jones Chromatography, Mid- 

Glamorgan, UK). The mobile phase was a 25 min, 20-40% gradient of acetonitrile in 

water adjusted to pH 2.5 with trifluoroacetic acid, eluted at a flow rate of 0.5 ml/min. 

Column eluent was first directed to the SPD-lOA absorbance monitor operating at 365 

nm, after which post-column derivatization was acliieved by the addition of methanoiic, 

O.IM aluminium nitrate containing 7.5% glacial acetic acid, as described by Hollman et 

al ( 1996)^an^,ppmped at a flow rate of 0.5 ml/min by a pulse-free Model 9802 preci^n^ 

mixer/splitter (Reeve Analytical). The mixture was directed to a RF-lOA fluorimeter 

and fluorescent flavonol complexes detected at excitation 420 nm and emission 485 nm. 

The limit of detection at A365 nm was <5 ng and linear 5-250 ng calibration curves were 

obtained for morin, quercetin, kaempferol, isorhamnetin, quercetin-3,4'-diglucoside, 

quercetin-3-glucoside, quercetin-4'-glucoside and isorhamnetin-4'-glucoside. The

fluorescence intensity of the individual flavonoid derivatives varied, however, 0.1-100 

ng linear calibration curves were obtained for morin, quercetin, kaempferol, 

isorhamnetin, quercetin-4'-glucoside and isorhamnetin-4'-glucoside.

Figure 3.1 illustrates typical HPLC traces of standards of flavonol aglycones and 

flavonol conjugates detected at absorbance 365 nm on the UV detector (Figure 3.1 A) 

and after post-column derivatization, detected by the fluorimeter (Figure 3.1 B). Peaks
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Figure 3.1; Gradient reverse phase HPLC analysis of flavonols.
Column: 150 x 3.0 mm i.d, 4-jim Genesis Cis cartridge column with a 10 x 4.0 mm 4-].im Genesis Cjg 

guard cartridge. Mobile phase: 20 min gradient of 20-40% acetonitrile in water containing 0,5% 
trifluoroacetic acid. Flow rate; 0.5 ml/min. Detector: absorbance monitor operating- at 365 nm and, after 
on-line post-column derivatization with methanoiic aluminium nitrate, a fluorimeter operating at 
excitation 420 nm and emission 485 nm. Samples: (A) 50 ng flavonol standards: (1) quercetin-3,4'- 

diglucoside, (2) quercetin-3-glucoside, (3) quercetin-4'-glucoside, (4) isorhamnetin-4'-glucoside, (5) 
morin, (6) quercetin, (7) kaempferol and (8) isorhamnetin detected at Agg; (B) 'as (A) but with 
fluorescence detection after post-column derivatization. The numbers corresponded with peaks for 

standards listed in (A)
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for all the flavonol standards could be detected at Asesnm whereas following post-column 

derivatization, the only flavonols that form fluorescent complexes were morin, quercetin, 

kaempferol, isorhamnetin, quercetin-4'-glucoside and isorhamnetin-4'-glucoside.

3.2 .2  Flavonol extraction from sam ples

3.2.2.1 Hydrolysis of flavonol conjugates in samples

The optimization of acidic conditions for the hydrolysis of flavonol conjugates in 

a range of plant tissues has been described by Hertog et al (1992) following an earlier 

detailed study by Harborae (1965) on the release of free flavonols by acid and enzymic 

hydrolyses. For this study, 600 pi of plasma, 750 pi of urine and 20 mg of lyophilised 

fried onions were hydrolysed .in a total of 2 ml of 50% methanol containing 1.2 M HCl 

and 20 mM sodium diethyldithiocarbamate as an antioxidant. The procedure was 

performed in a 3 ml glass v-vial whereby a teflon-coated magnetic stirrer was placed in 

the vial, which was then tightly sealed with a PTFE-faced septum prior to heating in a 

Reacti-Therm Heating/Stirring Module (Pierce, Rockford, II, USA). Hydrolysis was 

carried out at 90°C for 2 h (urine and fried onions) and 3 h (plasma). Extract aliquots 

were taken before acid hydrolysis to allow for the quantification of flavonol conjugates 

as well as any free flavonols present. Following acid hydrolysis, samples were 

centrifuged for 10 min at 3000 x g and the clear supernatant used to quantify for flavonol 

content.

In the case of onion hydrolysis, morin was used as the internal standard whereby 

10 pg of the standard was added to a total volume of 2 ml in the hydrolysis mixture and 

hydrolysis performed as mentioned above. Recovery of the morin internal standard was 

approximately 74% following a 2 h acid hydrolysis, indicating roughly 26% losses of 

flavonols from hydrolysis.

Extract aliquots of 75 pi taken both before and after acid hydrolysis, were made 

up to 250 pi with distilled water containing 0.5% trifluoroacetic acid (TFA) prior to 

analysis of 100 pi volumes (fried onions) and 200 pi volumes (plasma and urine) by

8 6



gradient elution reversed phase HPLC. Figure 3.2 shows a simplified diagram for the 

extraction and HPLC analysis of flavonols in plant tissues and biological samples.

The non-hydrolysed samples will contain all the flavonoid conjugates as well as 

any free flavonoids present whereas the acid hydrolysed samples will contain the 

aglycone as well as the free flavonoids liberated from their sugar conjugates. Therefore, 

the amount o f  conjugated flavonoids can be estimated by subtracting the levels o f  free 

flavonoids in the non-hydrolysed samples from total flavonoids obtained in the 

hydrolysed samples.

Conjugated flavonoids = Total flavonoids _ Free flavonoids

(Hydrolysed samples) (Non-hydrolysed samples)

3.2.2.2 Stability of flavonols in plasma during acid hydrolysis

For the routine analysis o f  flavonols in plasma, morin could not be used as the 

internal standard to account for losses that occur during acid hydrolysis. This is due to 

the presence o f  contamination peaks co-eluting with the morin internal standard which 

would aflect the accuracy o f  the recovery o f  the standard. Therefore, a separate 

experiment was performed to establish the stability of flavonols in plasma during the 

hydrolysis process. For this purpose, standards of quercetin, kaempferol and 

isorhamnetin (2 pg) were added into 600 pi of plasma containing 50% methanol and 

1.2M HCl in a total volume o f 2 ml. Plasma samples were then subjected to acid 

hydrolysis as mentioned in Section 3.2.2.1. Aliquots o f  300 pi samples were taken at 1 

h, 2 h, 3 h and 4 h during the hydrolysis process and content o f  the tlavonol standards 

analysed.

8 7



Plant tissues Biological fluids

Lyophilisation j

Acid hydrolysis
1.2 M HCl 

' 50% Methanol
' 90°C 
' 9-1 h

HPLC analysis
• 100-200 pi injection of  non-hydrolysed and acid hydrolysed samples
•  20-40% gradient o f  acetonitrile in water (pH 2.5)
• Flow rate = 0.5 ml/min

IJV detector
(365 nm)

Post-column chelation
(Methanol containing aluminium nitrate 
and 7.5% glacial acetic acid)

Fluorimeter
(Excitation = 420 nm) 
(Emission = 485 nm)

Figure 3.2: a sim plified diagram  of flavonol extraction and HPLC analysis
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3.2.3 The effect of temperature and storage time on the
flavonol content of plasma

Some of the plasma samples from human volunteers collected after they had 

ingested 300 g of fried onions were used for this study (see section 4.2.1). The plasma 

samples were divided into two groups and each group of samples was stored at either -  

20°C or -80°C. Flavonols in the plasma samples were analysed following a 1 week, 5 

weeks and 3 months storage and after being left for 3 h at room temperature. The 

procedure for acid hydrolysis of the samples is described in section 3.2.2.1. Following 

acid hydrolysis, the flavonol content of the plasma samples was analysed on the HPLC 

system (section 3.2.1).

3.3 RESULTS

3.3.1 Stability of flavonols in plasma during acid
hydrolysis

Results of the stability of flavonols in plasma during acid hydrolysis are 

illustrated in Figure 3.3. The content of quercetin, kaempferol and isorhamnetin appear 

to increase from 1 h to 2 h hydrolysis after which the level stabilized before decreasing at 

the 4 h time point. Overall, quercetin, kaempferol and isorhamnetin were stable during 

acid hydrolysis for up to 3 h, after that, degradation of the standards was observed. The 

low recoveries of quercetin, kaempferol and isorhamnetin at the 1 h time point could be a 

result of some of the flavonols still binding to plasma protein. Boulton et al (1998) 

reported extensive binding of quercetin to plasma proteins and the same may be true for 

kaempferol and isorhamnetin. Therefore, a 1 h hydrolysis of plasma is not sufficient to 

liberate the flavonols binding to plasma proteins.
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3.3.2 The effect of temperature and storage time on the 
fiavonol content of plasma

Table 3.1 summarizes the effect of temperature and storage time on the flavonol 

content of plasma. Free quercetin in plasma was stable up to 5 weeks in storage with 

concentration ranging from 8.1 to 9.8 ng/ml. During these 3 storage times, the levels of 

conjugated quercetin did not change significantly and remained the same. This was 

evident in both samples stored at -20°C and -80°C. When left at room temperature for 3 

h, levels of free quercetin increased by about 6 ng/ml although conjugated quercetin was 

the same as in the other 3 storage times. The slight increase in free quercetin could be a 

result of low level hydrolysis of conjugated quercetin.

There was not much difference in the content of conjugated kaempferol and 

isorhamnetin in the 4 storage times although the level of conjugated isorhamnetin 

analysed 1 week after storage at -80°C was slightly lower than the others. There were 

no detectable levels of free kaempferol and isorhamnetin in all the samples analysed.

Overall, there was no significant difference in the flavonol content of plasma 

stored at -20°C, -80°C and at room temperature for 3 h. Generally, flavonols in plasma 

are stable during storage for up to 3 months. The levels of free quercetin were slightly 

higher when left at room temperature for 3 h. Thus, plasma samples analysed within 3 

months will still give reliable flavonol values.
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3.4 Conclusion

Acid hydrolysis of plant tissues and biological fluids is widely used as one of the 

procedure for the hydrolysis of conjugates of flavonoids (Hertog et al., 1992, Hollman et 

al., 1995). Flavonoid standards are generally stable up to 3 h when heated at 90°C in the 

presence of 1.2M HCl. The stability o f flavonols in plasma up to 3 months in storage 

provides the ease in sample analysis as immediate analysis is not required. A study 

reported that quercetin added to plasma samples was stable for 5 h at 37°C and for 2 

months when stored at -20°C (Liu et al., 1995). HPLC procedure is also a very reliable 

method for the separation and identification of flavonols. The development of the post

column derivatization procedure (Hollman et a i, 1996) has enabled the estimation of 

minute quantities of flavonols normally present in biological fluids due to increased 

sensitivity and selectivity. Acid hydrolysis of samples and HPLC analysis were 

commonly used throughout this PhD project and this made up the main methods used in 

this thesis. Other methods relevant to each project will be described in detail in the 

relevant result chapter.
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CHAPTER 4: ABSORPTION AND EXCRETION OF
FLAVONOLS INCLUDING CONJUGATED FLAVONOLS BY 
HUMAN VOLUNTEERS AFTER THE CONSUMPTION OF 
ONIONS.

4.1 Introduction

Recent evidence has strongly supported the antioxidative role of flavonoids and their 

protections against LDL oxidation (de Whalley et al., 1990, Vinson et al., 1995). Quercetin, 

which in conjugated forms is commonly present in fruits and vegetables in high 

concentrations, possesses strong antioxidative properties (Rice-Evans et a i, 1996). 

Epidemiological evidence suggests a protective effect of flavonoid intake against coronaiy 

heart disease and to a lesser extent, against cancer (Chapter 1, section 11.10). The average 

intake of all flavonols has been estimated at 23 mg/d in the Netherlands diet with tea and 

onions being the major sources at 48% and 29% of total intake respectively (Hertog ei a i, 

1993). Estimating the intakes of flavonoids and the major dietary sources is not enough if 

their bioavailability is not known, From the estimated intake of 23 mg/d, it is important to 

know how much of it is actually made available or capable of intestinal absorption and 

subsequently utilise by the body. Determination of the bioavailability of different types of 

flavonoids can be used to identify foods containing the highly bioavail able flavonoids, 

which when consumed, will accumulate in the bloodstream and provide potential health 

benefits.

The absorption and metabolism of individual flavonols in man is however still 

poorly understood. Attempts to investigate their absorption have shown conflicting results. 

It was previously speculated that only free flavonols were absorbed and not the glycosides 

due to their conjugation to sugar residues (Kuhnau, 1976), However, recent research has 

reported the absorption of mtin in human plasma (Paganga and Rice-Evans, 1997) while 

data obtained with ileostomy patients has been interpreted as indicating that conjugated 

forms of quercetin may be better absorbed than the aglycone (Hollman et a i, 1995).
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Onions contain high concentrations of flavonols in the form of quercetin-3,4 

diglucoside and quercetin-4'-glucoside as well as smaller amounts of quercetin-3-glucoside, 

quercetin-7,4'-diglucoside, quercetin-7-glucoside and isorhamnetin-4'-glucoside (Tsushida 

and Suzuki, 1995, Price and Rhodes, 1997; Figure 4.1) . Onions therefore are useful 

materials for the investigation of the absorption of flavonols as recently developed HPLC 

techniques (Crozier et al., 1997) with post-column derivatization (Hollman et a i, 1996) can 

be used to quantify the overall levels of free and conjugated quercetin and isorhamnetin. 

This sensitive and selective method of analysis can also be used to monitor trace levels of 

quercetin-4'-glucoside and isorhamnetin-4'-glucoside in body fluids and, as such, facilitates 

more detailed studies on the absorption of flavonol conjugates than has previously been 

achieved. The aim of this study was to investigate the extent of accumulation of flavonols in 

plasma and their excretion in urine after a meal of lightly fried onions and to establish 

whether any of the different tlavonol conjugates present in the dietaiy supplement were 

absorbed without undergoing structural modifications. At the same time, the stability of the 

onion flavonols was investigated in an in vitro model of small intestinal digestion and 

colonic fermentation experiments.
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4.2 Materials and Methods

4.2.1 study design

Five healthy volunteers (1 male, 4 female), mean age 29.4 years (range 23-37 y), 

who were not on any medication and were non-smokers participated in this study. All 

subjects gave a written informed consent. Volunteers were asked to follow a low flavonoid 

diet for 4 days prior to the experiment and this included avoiding foods and beverages 

containing more than 15 mg/kg of flavonoids (Hertog et aL, 1992; See Appendix 1). On day 

4, after an overnight fast, volunteers were fed 300 g of lightly fried onions between 9.30 to 

10.00 a.m. An i.v cannula was inserted into each subject’s arm and venous blood samples 

were withdrawn at 0, 0.5, 1, 1.5, 2, 3, 4, 5 and 24 h after completing the meal. 10 ml of 

blood were collected at each time point into heparinised tubes and immediately centrifuged 

at 3000 X g for 10 min at 0°C. Aliquots of 1 ml plasma were placed into eppendorf tubes 

and stored at -80°C until analysis. Volunteers also collected all their urine over a 24 h 

period following the meal and collection was divided into 3 time points, 0-6 h, 6-12 h and 

12-24 h. Urine was collected into plastic containers which were kept in a cooler on ice. 

Aliquots of 20 ml urine at the various time points were stored at -80°C prior to analysis. 

The study protocol was approved by the University of Glasgow Human Ethics Committee 

for Non-Clinical Research.

4.2.2 Preparation of Onions

Yellow onions were purchased from Safeway pic. (Byres Road, Glasgow). 

Following removal of the dry outer scales, the onions were chopped into slices and lightly 

fried in olive oil before 300 g samples were consumed by the volunteers. Previous analyses 

have shown yellow and red onions to contain much higher levels of flavonols than white 

onions (Crozier el al.  ̂2000). The same group also showed that much more extensive frying 

of onions resulted in only a 21% loss of flavonols (Crozier et aL, 1997). Volunteers 

consumed the onions over a period of 20 min after collection of the fasting blood sample. 

Triplicate samples of fried onions from each feeding experiment were lyophilised for 

quantitative analysis of their flavonol content.
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4.2.3 I n  V f t r o  digestion and fermentation of fried onions^

The digestion or intestinal breakdown of flavonols in onions was investigated in an 

in vitro model. Yellow onions were purchased from Safeway pic (Byres Road, Glasgow). 

The dry skin was removed before they were chopped into slices and a 1 kg sample lightly 

fried in 250 ml olive oil. 50 g of fried onions were treated with 1 g of pepsin in 50 ml of 0.1 

M HCl (pH 1) for 1 h at 37°C in a shaking water bath. This was followed by the addition of 

30 ml of 0.1 M NaOH (pH 7.0-7.5) containing 10 g of Creon 25000 pancreatin (Solvay 

Healthcare, UK). Digestion was continued for a further 3 h.

Colonic bacterial metabolism of flavonoids was tested in an in vitro model modifled 

from the method of Adiotomre et al (1990). Faecal samples were obtained from 4 healthy 

volunteers and processed within 1 h of defecation. A 32% faecal slurry was prepared in 

phosphate buffer, pH 7.0. 1 ml faecal slurry was added to 9 ml of pre-reduced fermentation 

medium (pH 7.0) containing basic salts and 100 mg of either digested or undigested fried 

onions. Cultures were incubated in anaerobic jars at 37°C for 24 h. In addition, a control 

culture without onions was carried out.

Following the digestion and fermentation processes, samples were immediately 

frozen and lyophilised, after which they were ground to fine powder and stored at -20°C 

prior to analysis.

4.2 .4  Flavonoid extraction from sam ples

Extraction and hydrolysis procedure of flavonoids from plasma, urine, lyophilised 

onions, digested and fermented onions are described in section 3.2.2.

' The in vitro digestion and fermentation of fried onions was performed by Mr Khalid Khan, Department of 
Human Nutrition, Yorkhill Hospitals.
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4.2 .5  Flavonol analysis by high performance liquid
chromatography

The separation and quantification of flavonols in the samples were performed on the 

high performance liquid chromatograph system as detailed in section 3.2.1.

Where necessary, identification of flavonols in the biological samples and plant 

materials were perfonned by co-chromatography of the samples with flavonol standards. 

This was carried out on the HPLC system.

4.3 Results

4.3.1 Flavonols in fried onions

Quantitative estimates of quercetin-3,4 '-diglucoside, quercetin-4'-glucoside,

isorhamnetin-4'-glucoside, quercetin, isorhamnetin and kaempferol in the five lightly fried 

onions consumed by the volunteers are described in Table 4.1. There was a variation in the 

flavonol content of the different onion samples which were purchased over a 6-month period 

and this is in keeping with previous observations (Crozier et a i, 1997). The levels of free 

quercetin for example, varied from as low as 0.41 ± 0.03 mg/g fresh weight in one sample to 

as high as 7.4 ± 0.2 mg/g fresh weight in another. A 3 to 6 fold difference was observed 

between the lowest and the highest values of the other flavonols in samples of the five 

lightly fried onions. In all instances, quercetin-3,4'-diglucoside and quercetin-4'-glucoside 

were the major flavonols present contributing approximately 71% and 25% of total 

flavonols respectively. At the same time, lower levels of isorhamnetin-4'-glucoside was 

also detected together with the aglycone forms of quercetin, isorhamnetin and kaempferol. 

The flavonol aglycone represented less than 1% of the total flavonols in the onion samples.
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Our Î-ÏPLC procedure provided an effective separation of flavonol standards with 

quercetin-3,4'-diglucoside, quercetin-3-glucoside, quercetin-4'-glucoside, isorhamnetin-4'- 

glucoside, morin, quercetin, kaempferol and isorhamnetm being detected with an absorbance 

monitor operating at 365 nm (Figure 4.2 A). With the exception of quercetin-3,4 

diglucoside and quercetin-3-glucoside, ah of the above compounds form fluorescent 

complexes following a post-column reaction with aluminium nitrate (Figure 4.2 B). This 

method provided a more sensitive and selective approach for the identification of fîavonols. 

Figure 4.2 C and D illustrated typical HPLC traces obtained for the analysis of unhydrolysed 

fried onion extracts. Peaks that co-chromatographed with quercetin-3,4'-diglucoside, 

quercetin-4 -glucoside, isorhamnetin-4 '-glucoside and morin internal standard were detected 

at A365nm (Figure 4.2 C) whereas peaks that corresponded to the 4'-glucosides of quercetin 

and isorhamnetin as well as small amounts of quercetin and kaempferol were present after 

postcolumn derivatization (Figure 4.2 D).

4.3,2 Identification of flavonols in piasma and urine

Typical ITPLC traces of plasma after postcolumn derivatization collected at 0 and 1.5 

h after the ingestion of onions are illustrated in Figures 4.3 C and D. The 0 h sample of 

plasma contained only very minor fluorescent components and there were no peaks that co

chromatographed with the flavonol standards. On the other hand, plasma collected at 1.5 h 

after eating 300 g of fried onions contained isorhamnetin-4 -glucoside peak in far higher 

sensitivity than quercetin-4'-glucoside which was present in only trace quantities as a 

shoulder on an impurity (Figure 4.3 D) despite being found in onions in much larger 

amounts than the isorhamnetin conjugate (Table 4.1 ). In some plasma samples, kaempferol 

and isorhamnetin were also found but in trace amounts close to the limit of detection. The 

major onion flavonol, quercetin-3,4'-diglucoside, does not fluoresce following postcolumn 

derivatization and was not detected at Asesnm in any of the plasma samples analysed. This 

does not necessarily mean it was not present in levels broadly comparable to quercetin-4- 

glucoside because the limit of detection at A365nm for quercetin-3,4 -diglucoside was 500 

ng/mi while postcoiumn derivatization enabled quercetin-4'-glucoside to be monitored at

1 0 1
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Figure 4.2; Gradient reverse phase HPLC analysis of flavonols in onions.
Column: 150 x 3.0 mm i.d. 4-^m Genesis Gig cartridge column with a 10 x 4.0 mm 4-|im Genesis Cjg guard 
cartridge. Mobile phase: 20 min gradient of 20-40% acetonitrile in water containing 0.5% trifluoroacetic acid. 
Flow rate: 0.5 ml/min. Detector: absorbance monitor operating at 365 nm and, after on-line post-column 

derivatization with methanolic aluminium nitrate, a fluorimeter operating at excitation 420 nm and emission 

485 nm. Samples: (A) 50 ng flavonol standards: ( 1 ) quercetin-3,4'-diglucoside, (2) quercetin-3-glucoside, (3) 
quercetin-4'-glucoside, (4) isorhamnetin-4'-glucoside, (5) morin, (6 ) quercetin, (7) kaempferol and (8 ) 
isorhamnetin detected at (B) as (A) but with fluorescence detection after post-column derivatization;
(C) aliquot of a non-hydrolysed extract of yellow onions detected at Aĝ fnm; (D) same as (C) but with post- 
column derivatization and fluorescence detection. The numbers corresponded with peaks for standards listed 
in (A).
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Figure 4.3: Gradient reverse phase HPLC analysts of flavonols in plasma and urine.
Column; 150 x 3.0 mm i.d. 4-p.m Genesis C,R cartridge column with a 10 x 4.0 mm 4-jiim Genesis Cig guard 

cartridge. Mobile phase: 20 min gradient of 20-40% acetonitrile in water containing 0.5% trifluoroacetic acid. 
Flow rate: 0.5 ml/min. Detector: absorbance monitor operating at 365 nm and, after on-line post-column 
derivatization with methanolic aluminium nitrate, a fluorimeter operating at excitation 420 nm and emission 
485 nm. Samples: (A) 50 ng flavonol standards: (1) quercetin-3,4'-diglucoside, (2) quercetin-3-glucoside, (3) 
quercetin-4'-glucoside, (4) isorhamnetin-4'-glucoside, (5) morin, (6 ) quercetin, (7) kaempferol and (8 ) 
isorhamnetin detected at A3 6 5  (B) as (A) but with fluorescence detection after post-column derivatization;
(C) aliquot of a non-hydrolysed plasma collected immediately prior to the consumption of 300 g of lightly 
fried onions, with post-column derivatization and fluorescence detection; (D) as C but plasma collected 1.5 h 
after eating fried onions; (E) aliquot of a non-hydrolysed urine after consumption of fried onions with post- 
column derivatization and fluorescence detection. The numbers corresponded with peaks for standards listed 
in (A).
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concentrations as low as 10 ng/ml. In all instances, identifications of quercetin-4 

glucoside, isorhamnetin-4'-glucoside, quercetin, kaempferol and isorhamnetin were 

confirmed by co-chromatography and the peaks corresponded with the flavonol standards 

(Figure 4.3 A and B).

Figure 4.3 E showed typical HPLC traces obtained for the analysis of flavonols in 

urine after ingestion of the fried onions, detected following post-column derivatization. The 

trace was quite similar to plasma collected at 1.5 h (Figure 4.3 D) with the presence of 

isorhamnetin-4'-glucoside in higher quantities than quercetin-4'-glucoside which was a 

shoulder on an impurity peak. No flavonol peaks in both plasma and urine samples were 

detected on the UV detector at A.̂ 6 5nm. This is due to the high limits of detection of flavonols 

and the UV detector is not sensitive enough to detect flavonols which were nonnally present 

in low levels in biological samples.

4.3.3 Baseline flavonol levels in plasma of volunteers on a 
normal diet

A separate study was performed whereby three healthy subjects who participated in 

the fried onions study were asked to follow their normal diet for five days, after which a 

fasting blood sample was collected on the 6'̂ ’ day. This was to determine the baseline level 

of flavonols of subjects on a nonnal diet. Table 4,2 represents the flavonols detected in 

plasma of the three subjects. Quercetin and isorhamnetin were detected in plasma although 

there were no detectable levels of isorhamnetin in subject 1. The conjugated forms of 

flavonols were predominant compared to the aglycones. Quercetin was the main flavonol, 

contributing almost 80% of the total flavonols. The concentration of quercetin in these 

subjects is in agreement with a study reporting a mean baseline value of 28.4 ng/ml in 

plasma of 5 subjects following consumption of fried onions (McAnlis et al., 1999).
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Table 4.2: flavonol content of plasma following a normal diet

Results expressed as ng/ml ± standard error

Subject Free
quercetin

Conjugated
quercetin

Free
isorhamnetin

Conjugated
isorhamnetin

1 2.22+ 1.15 18.91 ±0.56 n.d. n.d.

2 6.45 ± 0.58 18.85 ±0.73 n.d. 5.87 ± 1.07

3 10.55 ±2.07 13.20 ±2.81 n.d. 3.96 ±0.38

n=J

05



4 .3 .4  Flavonol accum ulation in plasma

The fried onion supplement was well accepted and tolerated by the human volunteers 

and no adverse effects were reported. The five subjects followed a low-flavonol diet for 

three days and fasted overnight prior to being fed the onions. The time course profiles of the 

appearance of free and conjugated quercetin, quercetin-4'-glucoside and isorhamnetin-4 

glucoside in plasma are presented in Figures 4.4 A and B. As the amounts of flavonols in 

the onions consumed varied (see Table 4.1), flavonol levels in the plasma are expressed as 

percent of the amount ingested.

Due to the significant variation in the accumulation of flavonols in plasma of the five 

subjects, the profile of each individual was illustrated (Figure 4.4 A and B). Despite 

following a low flavonol diet 3 days before the experiment, trace levels of free quercetin 

could be detected in the fasting (0 h) plasma samples of subjects 2 and 5 (9.9-11.4 ng/ml) 

(Figure 4.4A). Low levels of conjugated quercetin (6.8 ±2.8 ng/ml) was also present in the 

0 h sample of subject 2. Levels detected in fasting plasma samples were much lower than 

baseline plasma levels of subjects on a normal diet (Table 4.2). This indicates that the low 

flavonol diet managed to eliminate most of the flavonols in the circulation. In other 

instances, there were no detectable quantities of flavonols in the fasting plasma samples. 

After 24 h, only conjugated quercetin could still be detected (above the baseline) in plasma 

of the 5 subjects whereas there were no detectable levels of the other flavonols.

Subjects 1, 2 and 3 exhibited similar profiles with a rapid increase of flavonol levels 

after onion consumption followed by a rapid decline in their concentration. On the other 

hand, flavonols in subjects 4 and 5 appeared to have a second peak concentration later on in 

the time course of the experiment and had a slower decline in flavonol content than subjects 

1, 2 and 3. Based on the profile of flavonol accumulation in plasma of the five subjects, the 

pattern of flavonol accumulation could be divided into 2 groups, the first being rapid 

absorption followed by rapid decline (as in subjects 1,2 and 3) and the second being 

moderate absorption and slower decline in flavonol levels (subjects 4 and 5). Subjects in the
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Figure 4.4 A: Free and conjugated quercetin in plasma collected from five human volunteers 
after the ingestion of300 g of lightly fried onions.
Data expressed as percentage of the intake based on flavonol content of onions ± standard error (n=5) and 

calculated on the basis of 3000 ml of plasma per person.
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Figure 4.4 B: Quercetin-4'-glucoside and isorhamnetin-4'-glucoside in plasma collected from 
five human volunteers after the ingestion of300 g of lightly fried onions.
Data expressed as percentage of the intake based on flavonol content of onions ± standard error (n=5) and 
calculated on the basis of 3000 ml of plasma per person.
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latter category appeared to have lower values of flavonols at peak plasma concentration 

when expressed as a proportion of intake compared to the first category. Overall, the 

absorption of flavonols was moderately rapid with peak plasma concentrations being 

reached in the five subjects at times ranging from 0.5-4.0 h after ingestion of the fried 

onions, although in most cases, a figure of 1.0-2.0 h was typical (Table 4.3).

There was a large variation in the profile for plasma accumulation of free quercetin 

among the 5 volunteers with subjects 1, 2 and 3 showing peak concentration as percentage 

of ingestion in the range of 12-53% whereas with subjects 4 and 5, it was between 1.1-2.3%, 

a difference of approximately 15 fold (Figure 4.4A). Similar profiles were observed for 

conjugated quercetin with subjects 1,2 and 3 showing higher peak plasma concentration 

expressed as percentage of ingestion (0.8-2.0%) compared to subjects 4 and 5 (0.6%). It is 

notable that compared with the levels present in the ingested onions, isorhamnetin-4'- 

glucoside accumulated in plasma in amounts ca. 10 times greater than conjugated quercetin 

and 50-fold more than quercetin-4 -glucoside. This was evident with all five subjects 

(Figure 4.4). In addition to free and conjugated quercetin, variations was also noticed in the 

accumulation of 4'-glucosides of isorhamnetin and quercetin, as a percentage of the amount 

ingested, between the five subjects. With subjects 2 and 3, the peak isorhamnetin-4'- 

glucoside level was ca. 16% and that of quercetin-4'-glucoside ca. 0.2 -0.4 % while the 

equivalent figures for subject 5 were ca. 5% and ca. 0.1% respectively (Figure 4.4 B).

The mean values for the key features of flavonol accumulation in plasma are 

presented in Table 4.3. A peak concentration of 452 ± 100 ng/ml was obtained for the 

overall level of quercetin conjugates while with quercetin-4'-glucoside it was 45 ± 11 ng/ml, 

which was less than 10% of the total quercetin conjugate concentration. The mean 

maximum concentration of isorhamnetin-4 -glucoside was 370 ± 91 ng/ml which when 

expressed as a proportion of intake from the onions was 10.7 ± 2.6% compared to values of 

0.13 ± 0.03% and 0.97 ± 0.21% from quercetin-4'-glucoside and quercetin conjugates, 

respectively. In addition to the conjugated flavonols, we could also detect the accumulation
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Table 4.3: Mean values ± standard error of key features of flavonol accumulation in 

plasma following the consumption of 300 g of lightly fried onions by five subjects.

Flavonol Intake
(mg)

Peak plasma 
concentration 

(ng/ml)

Time of peak 
plasma 

concentration 
(h)

Peak plasma 
concentration as a 

proportion of intake* 
(%)

Quercetin-4'-
glucoside

102 ± 2 2 45  ±  11 1.3 + 0.2 0 .13  ± 0 .0 3

isorhafnnetin-4’-
glucoslde

10.5 ± 1.5 370  ± 91 1.8 ± 0 .7 10.7 ± 2 . 6

Free quercetin 2.8 ± 1 . 3 37 .5  ± 9 .5 1.7 ± 0 . 6 17.4 ± 9 . 6

Conjugated
quercetin^

139 ± 2 5 452 ± 100 1.9 ± 0 . 6 0.97  ± 0 .2 1

^Calculated on the basis of 3000 ml plasma/person. 

“ Determined following acid hydrolysis.
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of trace amounts of free quercetin in plasma although at peak concentration, the levels were 

much lower than the other flavonols detected, i.e ca 10% of conjugated quercetin. However, 

the levels of free quercetin detected could be a result of hydrolysis of very large pool of 

conjugated quercetin rather than their direct absorption or metabolism.

The area under the curve for plasma accumulation of the different flavonols after the 

fried onion meal was estimated (Table 4.4). Conjugated quercetin showed the highest AUG 

whereas free quercetin had the lowest. The relative accumulation of quercetin-4'-glucoside 

and free quercetin was 5% that of conjugated quercetin. On the other hand, isorhamnetin- 

4 '-glucoside showed bioavailability approximately 50% that of conjugated quercetin.

4.3.5 Urinary excretion of flavonols

Similar to plasma, there was a higher excretion of isorhamnetin-4'-glucoside with a 

percentage excretion of 17.4 ± 8.3% compared to 0.2 ± 0.1% for quercetin-4'-glucoside 

(Table 4.5). Free quercetin and isorhamnetin were also detected in urine of the five subjects 

with percentage excretion of 30.2 ± 11.8% and 12.0 ± 9.0% respectively. Again, figures for 

free quercetin and isorhamnetin could be exaggerated because of large conjugate pools with 

trace levels of hydrolysis. Quercetin conjugates in the hydrolysed samples showed a 

percentage excretion of 0.8 + 0.4% which was 4 times the percentage excretion of quercetin- 

4 -glucoside. In most cases, a high proportion of the flavonols was excreted in the first 

collection period (0-6 h) whereby approximately 57% of the cumulative excretion were 

reached. Urine samples from the last collection period, contained on average, 4% of the 

total daily output of the flavonols indicating that the peak of urinary flavonol excretion lay 

well within the 12 h period.
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Table 4.4: Area under the curve of flavonols in plasma following ingestion of 300 g of 

fried onions.

Flavonol Peak piasma concentration 
(ng/ml)

AUC o-24h 

(h.ng/ml)

Quercetin-4’-glucoside 45 ±11 211 ±36

lsorhamnetin-4’-glucoside 370 ±91 1617 ±524

Free quercetin 37.5 ±9.5 149 ± 30

Conjugated quercetin^ 452 ± 100 3331 ±700

“ Determined following acid hydrolysis 
n=5 ± standard error

12



Table 4.5: Mean values ± standard error for the excretion of flavonols in urine 

following the consumption of 300 g of lightly fried onions by five subjects.

Results expressed as pg ± standard error.

Flavonol Intake
(mg)

Excretion period Total excreted 
as a proportion 

of intake 
(h)

0-6 h 6-12 h 12-24 h

Quercetin-4’-
glucoside

102 ± 2 2 1 0 0 + 2 7 65 ± 4 3 4.8  ± 2 . 6 0.2 ± 0 .1

lsorhamnetin-4’-
glucoside

10.4 ± 1.5 1175 ± 482 620 ± 374 23 ± 15 17.4 ± 8 . 3

Quercetin 2 .8  ± 1.3 134.9 ± 4 6 .7 1 0 1 .7 ± 6 1 .6 5.6  ± 2 . 3 30.2 ± 11.8

isorhamnetin. 0 .10  ± 0 .0 6 4 . 6 ± 2 . 1 3.9 ± 1.8 0.3 ± 0 . 2 12.0 ± 9 . 0

Conjugated
quercetin^

139 ± 2 5 661 ± 2 8 1 348 ± 184 66  ± 2 9 0.8 ± 0 .4

n.d. = not detected

“ Determined following acid hydrolysis



4.3.6 I n  v i t r o  digestion of fried onions

Table 4.6 shows the flavonol content of fried onions before and after in vitro 

digestion. There was no significant difference in the flavonol content of onions before and 

after digestion. However, a slight decrease was observed in the levels of conjugated 

quercetin including quercetin-3,4'-diglucoside and quercetin-4'-glucoside analysed in the 

nonhydrolysed samples. The levels of free quercetin were slightly higher after digestion 

compared to before. This suggests hydrolysis of trace amounts of the glucosides to liberate 

free quercetin. Isorhamnetin-4'-glucoside was the most stable compound with only 7% 

losses occurring during the digestion process. Overall, flavonols in fried onions are 

generally stable to the acidic and alkaline conditions of digestion with approximately 7-18% 

losses observed.

4.3.7 I n  v i t r o  fermentation of fried onions

In vitro fermentation was performed on the digested as well as the undigested fried 

onions (Table 4.6). Following fermentation, there were no detectable levels of quercetin- 

3,4'-diglucoside and quercetin-4'-glucoside in both the undigested as well as the digested 

onions. The levels of free quercetin did not increase after fermentation and less than 3% of 

conjugated quercetin was recovered following the fermentation process. As for 

isorhamnetin-4'-glucoside, there was almost complete degradation with less than 2% 

recovered after fermentation. Overall, fenuentation of fried onions led to the disappearance 

of conjugated flavonols including quercetin-3,4'-diglucoside, quercetin-4'-glucoside and 

isorhamnetin-4 '-glucoside.
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4.4 Discussion

Although the literature contains much infonnation on the seemingly low levels of 

absorption of the aglycone quercetin in a variety of rat test systems, there are few studies on 

the absorption of flavonol conjugates, the typical constituents of foods, by humans (see 

Chapter 1, section 1.11). Hollman and co-workers (1995) have investigated the absorption 

of quercetin glucosides by humans with an ileostomy. The subjects were fed quercetin 

glucoside-rich onions, rutin or free quercetin, after which the flavonol content of ileostomy 

effluent and rutin were monitored over a 13 h period. In vitro incubations of the three 

sources of flavonols with gastrointestinal fluids showed minimal degradation and extremely 

low levels of flavonols were excreted in urine. After corrections for sample handling losses 

and low level degradation in the ileostomy bag, absorption was estimated by subtracting the 

flavonol content of the ileostomy effluent from the oral intake. This albeit indirect 

procedure, indicated surprisingly high levels of absorption, 52% of onion quercetin 

glucosides, 17% for rutin and 24% for quercetin. Subsequently, the same group, who 

analysed samples only after acid hydrolysis, which does not allow distinction between free 

and conjugated quercetin pools, monitored flavonol levels in plasma after the ingestion of 

onions (Hollman et al., 1996). The time course profiles obtained with two volunteers were 

similar to those obtained in the present study (Figure 4.3), as was the peak quercetin (free 

plus conjugated) plasma concentration of 196 ng/ml. This is equivalent to ca. 0.9% of the 

flavonol content of the ingested onion flavonols and comparable to figures in Table 4.3. 

However, our results presented a more reliable figure as more subjects were used (n=5) 

compared to 2 in the study by Hollman et al. Detection of low plasma concentrations imply 

that quercetin/quercetin conjugates, if they are absorbed into the bloodstream in the 

quantities reported by Hollman et al. (1995), are being rapidly metabolised and/or removed 

from the bloodstream, presumably by the liver.

In the present study, it has been demonstrated for the first time that the onion

flavonol glucosides, quercetin-4'-glucoside and isorhamnetin-4'-glucoside accumulate in the

bloodstream and are excreted in urine without seemingly undergoing structural modification.

The main flavonol in onions, quercetin-3,4'-diglucoside, was not detected in body fluids but

this is likely to be a consequence of the relative lack of sensitivity of the HPLC detection
116



systems for this conjugate. The level of quercetin released from conjugated forms by acid 

hydrolysis, although low, was invariably several-fold higher than the concentration of 

quercetin-4'-glucoside in both plasma and urine (Table 4.3 and 4.5). This may be due to the 

presence of metabolites such as quercetin glucuronide and sulphate conjugates, which 

release free quercetin when acid hydrolysed (Hollman et a i, 1996, 1997), as would trace 

levels of quercetin-3,4'-diglucoside, which may also have been present. However, when 

compared to the levels present in the ingested onions, it is evident that isorhamnetin-4'- 

glucoside accumulated in both piasma and urine in proportionally far higher amounts than 

quercetin-4'-glucoside and other quercetin conjugates (Table 4.3 and 4.5). Further study is 

required to determine whether this is due to more effective absorption of the isorhamnetin 

conjugate or whether it is a consequence of the absorbed quercetin conjugates being 

removed from the bloodstream more rapidly than isorhamnetin-4'-glucoside. There is 

however, an alternative possibility that at least part of the isorhamnetin-4'-glucoside pool is 

formed by 3'-0-methylation of quercetin-4'-glucoside. Isorhamnetin is one of a number of 

metabolites that appear in the bile of rats after oral intake of quercetin (Manach et a i, 1996).

After the consumption of onions, flavonols accumulated rapidly in plasma with peak 

concentrations being reached within 1-2 h in most instances (Table 4.3, Figure 4.4). This 

observation agrees with previous findings by Hollman et aL (1996) discussed above and 

implies that absorption of flavonol conjugates occurs primarily from the stomach and/or the 

small intestine. The variation in the profile of absorption of the subjects (Figure 4.4) may be 

due to the differences in their intestinal physiology and habitual diet, which influence the 

extent of flavonol absorption, or alternatively they could be a consequence of different rates 

of metabolism/sequestration of the absorbed conjugates. Interestingly, the mean peak 

plasma concentration for conjugated quercetin and isorhamnetin-4'-glucoside (Table 4.3) 

are both in excess of the levels of p-carotene that are typically found in human plasma 

(Stocker and Frei, 1991).

Based on the in vitro digestion of fried onion, the onion flavonols were generally 

stable to the acidic and alkaline condition in the small intestine, leaving the flavonols 

unchanged for absorption. This also suggests that no modification or degradation of 

flavonols occurred in the small intestine. The same observation was reported by Hollman et
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al (1995), In vitro fermentation of onions resulted in almost complete degradation of 

flavonols by the feecal microorganisms. This suggests that no absorption of the unchanged 

flavonols take place in the large intestine. Hydrolysis of the conjugated flavonols by 

enzymes of faecal bacteria should have led to the increase in levels of free flavonols (Table 

4.6). However, this was not the case and there were low levels of free flavonols present 

following fermentation indicating the free flavonols were also subjected to degradation by 

the microorganisms. The ability of colonic microorganisms to metabolise flavonoids to 

phenolic acids is widely recognised (Griffiths, 1982, Hackett, 1986). Quercetin for example 

undergoes ring fission to form phenolic acids (Booth et aL, 1956, Nakagawa et aL, 1965).

The presence of flavonols in urine indicated their absorption from the small intestine. 

However, the levels obtained are not directly comparable to the values in plasma because 

absorbed flavonols maybe metabolised or sequestered in other parts of the body.

In this study, based on the AUC values, conjugated quercetin appears to be the most 

bioavailable flavonol relative to the other flavonols detected after the onion meal (Table 

4.4). The value for conjugated quercetin is similar to the ones reported by Hollman (1997). 

Conjugated quercetin in the hydrolysed samples may contain other glycosides, glucuronides 

or sulphates in addition to quercetin-4 -glucoside, contributing to the high AUC observed. 

Although ideally, determinations of absolute bioavailability require AUC for both 

flavonoids administered intravenously and orally, this is not always practical. However, 

relative bioavailability of various flavonoids can be estimated based on AUC from oral dose.

In their reports on the absorption of flavonols derived from onions and other 

vegetables, the Dutch group fitted data on flavonol levels in plasma and urine into a two- 

open compartment model using the equation C(t)=Ae'*'^+Be'“*+Ce'̂  ̂ (Shargel and Yu, 1992) 

where t equals time and k is the absorption rate constant and a  and P being the slope for the 

distribution and elimination phases respectively. The different parameters calculated from 

the equation were used to estimate the half-lives of the absorption, distribution and 

elimination phases and the bioavailability of total quercetin was calculated by comparing the 

areas under the percentage flavonol ingested-time curve (Hollman et aL, 1996, 1997). The 

validity o f such extrapolations is, however, open to question. Although the figures for
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isorhamnetin-4'-glucoside were higher, the peak quercetin levels detected in plasma and 

urine were low, ca. 1% of the amounts in the ingested onions. Homeostasis of plasma 

flavonol pools is almost certainly in a state of flux because o f the combined effects of 

transport through the gut wall into the bloodstream and removal by sequestration, 

metabolism and excretion. In the circumstances, figures obtained from the two-open 

compartment model are likely to be of little value until much more is known about the 

underlying physiological and metabolic events.

Information regarding the mechanism of absorption of flavonols is still not well 

understood. It has been postulated that the Na^-glucose co-transport system may play a role 

in flavonol absorption (Hollman, 1997). This co-transport system is involved in the 

transport of glucose across the intestinal wall (Mizuma et aL, 1994) and since the present 

study has provided unequivocal evidence for the absorption of the flavonol glucosides, the 

possible involvement of this method of transport merits investigation.

4.5 Conclusion

In conclusion, this study has shown that following the ingestion of lightly fried 

onions, there is a proportionally higher accumulation of quercetin and isorhamnetin-4 

glucoside than quercetin conjugates, including quercetin-3,4'-diglucoside and quercetin-4'- 

glucoside, in plasma and urine of humans. This is likely to be a consequence of either 

preferential absorption of isorhamnetin-4'-glucoside or, a post-absorption conversion of 

quercetin-4'-glucoside to isorhamnetin-4'-glucoside via 3 '-0-methylation. Distinguishing 

between these processes and clarification of the mechanisms involved requires frirther 

detailed metabolic studies including using radiolabelled flavonols. Identification of 

flavonols that are highly absorbable can be used to encourage increased consumption of 

food containing high levels of these compounds, which when consumed will accumulate in 

the blood stream.
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CHAPTER 5: THE UPTAKE OF INDIVIDUAL 

FLAVONOLS IN AN EVERTED RAT GUT MODEL

5.1 In troduction

Investigation of the absorption of flavonols is crucial in evaluating their 

biological role. The process that occurs during the movement of flavonols across the 

intestinal membrane is the first important step in determining how much of the ingested 

compound is absorbed. In vivo studies with animals and humans have described 

absorption of dietary as well as non-dietary flavonols (see section 1.11). Studies with 

ileostomy volunteers demonstrated higher absorption of quercetin glycosides (52%) than 

the aglycone quercetin (24%) (Hollman et ai., 1995). At the same time, there is a 

preliminary report on the presence of rutin in plasma of non-supplemented subjects 

(Paganga and Rice-Evans, 1997). On the other hand, conjugated quercetin was detected 

in plasma of human volunteers following the consumption of rutin-rich cherry tomatoes 

(Crozier et al., 2000). The absorption of specific flavonols is not known apart from our 

study which detected accumulation of higher levels of isorhamnetin-4'-glucoside in 

plasma compared to quercetin-4'-glucoside following ingestion of fried onions (Aziz et 

a i,  1998).

In vivo experiments to investigate intestinal absorption of flavonols are complex 

due to the difficulty of sampling the absorbed flavonols from the serosal side of the 

gastrointestinal tract. Ultimately, in vitro systems provide the best approach in 

evaluating the relative rate and extent of absorption of individual flavonols from the 

small intestine (see Chapter 1, section 1.13.3). This chapter describes the use of an 

everted rat gut model to investigate the intestinal transport of several flavonols.

The everted intestine method employed in this study is well established and is 

widely used to investigate in vitro intestinal transport. This model which uses rat 

intestine, originally developed by Wilson and Wiseman (1954) is capable of surviving in 

vitro over extended periods of time. It has the advantage that several segments can be 

obtained fi-om one animal, allowing randomisation as well as several replicates to be
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performed. In addition, the ability to incubate everted segments in the mucosal buffer 

allows the ease of testing various compounds as these can be added into the incubation 

media. Also, eversion of the intestine exposes the highly active mucosal cells to the 

well-oxygenated incubation media, thus prolonging the viability of the absorptive cells.

The objective of this study was to evaluate the effect of stiuctural modification of 

the flavonol molecule on their uptake across the rat intestine. At the same time, the 

influence of different sugars and their position on the flavonol molecule was determined. 

The flavonols tested were quercetin-3,4'-diglucoside, rutin, quercetin-3-glucoside, 

quercitrin, quercetin-4'-glucoside, isorhamnetin-4'-glucoside and quercetin (Figure 5.1). 

These flavonols showed variation in terms of position and type of sugar moiety attached 

to the molecule as well as the presence of a methoxy group (isorhamnetin-4'-glucoside). 

Information obtained will be useful to establish if there is any preferential uptake of 

flavonols and subsequently .determine their potential to act as antioxidants and their role 

in promoting human health.
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intestine model for investigation o f their intestinal transport.
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5.2 Materials and methods

5.2.1 Preparation of Krebs incubation buffer

All incubation experiments were done in Krebs-Ringer buffer. The Krebs 

incubation media were made up of 113.3 mM NaCl, 4.83 mM KCl, 1.214 mM KH2PO4 , 

1.205 mM MgS0 4 , 16.96 mM NaHCOs, 10.18 mM Na2HP0 4 , 0.645 mM CaCb 

(Mizuma et al., 1994).

5.2.2 Preparation of rat intestinal tissu es

Sprague-Dawley rats (male and female) were obtained from the animal unit at the 

Central Research Facility, University of Glasgow. Their average weight was 298 g. 

Animals followed the standard rat and mouse expanded diet obtained from B and K 

Universal Limited (Hull, UK) and water was provided ad lib. The non-fasted rats were 

stunned by a blow to the head prior to killing by cervical dislocation. An incision was 

made on the abdomen and the small intestine was immediately removed by cutting from 

the upper end of the duodenum to the upper end of the colon and was kept on ice-cold 

saline gassed with 95% O2 and 5% CO?. The small intestine was cleaned by removal of 

fatty tissues and mesentery. Eversion was carried out by tying one end of the segment 

onto a piece of glass rod (30 cm length, 2 mm diam) and pushing the intestine into the 

rod until the mucosal side was exposed (Mizuma et al., 1994). The segments were then 

cut to the desired length (6-10 cm) and placed in ice-cold saline infused with 95% O? and 

5% CO2 . Before the start of incubation, the segments were ligatured at both ends after 

the insertion of plastic cannulas, which in turn were connected to 3-way taps. A 1 ml 

plastic disposable syringe could then be conveniently attached to the 3-way taps for 

rinsing the segments as well as sampling from the serosal side.

5.2.3 Incubation procedures for the everted segm ents

The incubation procedure was performed according to the method of Mizuma et

al. (1994) with slight modifications. Briefly, after rinsing with Krebs buffer, the
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segments were filled with buffer using a 5 ml syringe and the tissue was placed in a 50 

ml beaker containing 20 ml Krebs incubation buffer with or without flavonol standards. 

The incubation medium was continuously gassed with 95% 0% and 5% CO2 and placed 

in a 31°0 water bath. Using the 1 ml syringe, approximately 150 pi was sampled from 

the serosal side and the same volume of oxygenated Krebs was replaced. Sampling was 

performed at 5 min intervals over a 30-minute incubation period. The same volume of 

sample was also taken from the incubation media at the start and the end of the 

incubation experiment. The samples were then subjected to flavonol extraction. 

Between five and eight segments were used for each experiment.

5.2.4 Uptake of individual flavonols

Standards of quercetin-3,4'-diglucoside, quercetin-3-glucoside, quercitrin, rutin, 

quercetin-4'-glucoside, isorhamnetin-4'-glucoside and quercetin aglycone were 

employed to establish the effects of structural modification on flavonol uptake by the 

small intestine. A concentration of 10 pM was used for each compound and standards 

were dissolved in methanol. The percentage of methanol in the incubation media was 

kept at a minimum (<0.7%).

The 10 pM concentration used for each flavonol was estimated based on the 

reported daily quercetin intake of 16.3 mg (Hertog et al., 1993). Assuming a gastric 

fluid volume of 100 to 500 ml and complete availability of flavonoids in the intestine, 

the final concentration of quercetin will roughly be between 100 to 500 pM in the 

intestine. Considering a divided intake of flavonoids throughout the day as well as the 

use of segments of rat intestine with less fluid volume, a flavonol concentration of 10 to 

50 pM was considered a physiological level. In addition, variability in the extraction of 

the different flavonols as well as fluid volumes along the intestine should also be 

considered.

Control experiments were performed without addition of flavonols in the 

incubation media. Similar sampling procedure as the test samples was carried out. This 

is to establish that no peaks corresponding to the added flavonols appear during the 

incubation process.
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5.2.5 Uptake of flavonol conjugates added into the sam e 
incubation media

A separate experiment was performed to establish if any competition existed 

between the uptake of flavonols across the rat intestinal wall when several were present 

together in the incubation media. For this purpose, standards of quercetin-3,4'- 

digiucoside, quercetin-3-glucoside, quercetin-4'-glucoside and isorhamnetin-4'-

giucoside were added into the same incubation media. A 10 pM concentration of each 

flavonol was used. Incubation of the intestinal segments and sampling procedure is as 

described in section 5.2.3.

5.2.6 Flavonol extraction from serosal and mucosal 
sam ples

Flavonols in the serosal and incubation media (150 pi) were extracted in 50% 

methanol. Samples were centrifuged for 5 min at 5000 x g and extract aliquots of 75 pi 

were taken and made up to 250 pi with distilled water containing 0.5% trifluoroacetic 

acid. Volumes of 200 pi were subsequently analysed by gradient elution reversed phase 

HPLC as described in section 3.2.1

5.2.7 Statistics

Where necessary, results were compared by Mann Whitney U non-parametric 

statistical test. The Minitab version 12.21 statistical software for Windows was used for 

all analyses.

5.3 Results

All the flavonols used in this study could be detected on the serosal side 

following incubation of the jejunal segments in incubation media containing the 

appropriate flavonol standards. Control samples run without the presence of flavonols in
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the incubation media did not show any contaminating peaks co-eluting with the flavonols 

tested in this experiment. The profiles for the uptake of the flavonols across the 

intestinal wall over the 30 min time course are illustrated in Figure 5.2. For the sake of 

clarity, as well as comparative purposes, the uptake of flavonols was expressed as 

pmoles of flavonol detected in the serosal samples per 10 cm of jejunal segments. The 

profiles for the uptake of the different flavonols showed some variation. In most cases, a 

linear-like profile was observed for uptake of most of the flavonols. In this instance, the 

amount of flavonols transferred was still increasing and had not reached its maximum 

values at the 30 min time point. On the other hand, two of the test flavonols, 

isorhamnetin-4'-glucoside and quercetin aglycone showed a sigmoid profile with slower 

initial uptake, followed by a rapid increase and subsequently reaching a maximal value 

where it plateau-ed at this point (Figure 5.2).

In most instances, flavonols could already be detected in the serosal samples at 

the 5 min time point. The uptake of isorhamnetin-4'-glucoside and quercetin appeared to 

reach their maximal values in the serosal side after 20 to 25 min incubation. When 

transport of flavonols was expressed as cumulative uptake over the 30 min incubation 

period, the uptake of quercetin-3,4'-diglucoside was highest, followed in descending 

order by rutin, quercetin-3-glucoside, quercitrin, quercetin-4'-glucoside, isorhamnetin- 

4 '-glucoside and lastly, quercetin (Table 5.1). The above observations corresponded 

with the rate of uptake of the flavonols (Table 5.1). Quercetin-3,4'-diglucoside showed 

the highest rate of uptake (2.99 ± 0.62 nmoles/10 cm/h) whereas quercetin had the lowest 

(0.01 ± 0.006 nmoles/10 cm/h). With the exception of rutin and quercetin-3-glucoside, 

the rate of uptake of quercetin-3,4'-diglucoside was significantly different from the other 

flavonols tested (P<0.05, Table 5.1).

126



|Quercetin-3,4'-diglucosicle

1600

800 t

0

1200
I Quercetin-3-glucoside

800 H

c
£
f

400 i

EÜ
o

0 s 20 30

iQuercetin-4'-glucoside

160 J

20 25

! Rutin1200 i

800 ^

400 i

! !

0 5 10 15 20 25 30 35

750 Quercitrin

500 ;

250 "

20 30

150 i|sorhamnetin-4'-glucoslde

100 i

9 -! Quercetin

6

3

0

0 5 10 15 20 25 30 35

Incubation time (min)

Figure 5.2: The profiles for the uptake of individual flavonol across the epithelial 

membrane over a 30 min time course.
Results are expressed as pmoles of flavonols detected in the serosal samples per 10 cm of jejunal 
segments.
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Table 5.1: The main features of the uptake of flavonols across rat intestinal segment

Flavonol Rate of uptake 
(nmoles/1 Ocm/hr)

Cumulative 
uptake 

(nmoles/10 cm)

Recovery in 
incubation media 

(%)

95% o r

Quercetin-3,4’- 
diglucoside

2.99 ± 0.62 1.80 ±0.38 92 ± 2

Rutin 1.83 ±0.26 1.12±0.13 81 ±3 (-0.87, 3.09)

Quercetin-3-
gtucoside

1.56 + 0.34 0.83 ±0.17 85 ±2 (-0.12, 3.14)

Quercitrin 0.77 ± 0.07 0.64 ± 0.06 94 ±2 (0.47, 3.99)

Quercetln-4’-
glucoside

0.32 ± 0.08 0.19 ±0.04 63 ± 8 (1.12, 4.38)

lsorhamnetin-4’-
giucoslde

0.22 ± 0.04 0.10 ±0.04 48 ±16 (1.15, 4.41)

Quercetin 0.01 ±0.006 0.01 ± 0.003 3 4 ± 8 (1.35, 4.63)

Flavonol 
conjugates mix

95% cl'’

Quercetin-3,4’- 
dlglucoslde

2.63 ±0.12 1.56 ±0.17 97 ±0.1 (-1.24, 2.06)

Quercefin-3-
glucoslde

3.03 ± 0.47 1.84 ±0.41 89 ± 2 (-3.24, 0.27)

Quercetin-4’-
glucoslde

0.49 ±0.13 0.29 ± 0.09 44 ±21 (-0.60, 0.21)

lsorhamnetin-4’-
glucoside

0.34 ± 0.04 0.23 ± 0.03 47 ±7 (-0.30, 0.04)

= 95% Cl for significant difference between the rate of uptake between quercetin-3,4’- 
diglucoside and the other flavonols tested.

 ̂= 95% Cl for significant difference between the rate of uptake between individual flavonol and 
flavonol conjugates in the same incubation media.

n = 5-8 segments ± SEM
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Figure 5.3 (C and D) shows an example of a typical HPLC trace of a serosal 

sample collected 30 min following incubation of an everted segment with quercetin-3- 

glucoside. Peak 2, detected by the UV monitor (Figure 5.3 C) co-chromatographed with 

quercetin-3-glucoside standard (Figure 5.3 A). Except for possibly some trace 

impurities, no other putative metabolite peaks were present on the UV trace (Figure 5.3 

C). When the same sample was analysed by the fluorimeter following post-column 

derivatization, trace levels of non-polar peaks were detected (Figure 5.3 D), none of 

which correspond to reference compounds (Figure 5 A and B). Free quercetin was not 

present, suggesting that deglycosylation of quercetin-3-glucoside was at best a peripheral 

event. No early eluting peaks were present in Figures 5.3 C and D indicating that 

quercetin-3-glucoside was not converted to giucuronide conjugates.

5.3.1 Uptake of flavonol conjugates from the sam e 
incubation media

Figure 5.4 illustrates the profiles for the uptake of the four flavonol conjugates 

following incubation of jejunal segments in incubation media containing all four 

flavonols. Quercetin-3,4'-diglucoside and quercetin-3-glucoside presented linear 

profiles for their uptake whereas isorhamnetin-4'-glucoside and quercetin-4'-glucoside 

showed an initial slow uptake. Uptake of flavonol conjugates in a mixture in the 

incubation media was compared to uptake of individual compounds. When incubation 

was performed with all four flavonol conjugates, the uptake of quercetin-3-glucoside was 

slightly higher compared to its estimated uptake as an individual flavonol. However, this 

difference was not statistically significant (Table 5.1). The relative rate of uptake of 

quercetin-3,4 ' -diglucoside, quercetin-4'-glucoside and isorhamnetin-4'-glucoside 

remained similar between the two experiments (P>0.05). Quercetin-3-glucoside showed 

the highest rate (3.03 ± 0.47 mnoles/10 cm/h) followed by quercetin-3,4'-diglucoside, 

quercetin-4'-glucoside and isorhamnetin-4'-glucoside with values of 2.63 ± 0.12, 0.49 ± 

0.13 and 0.34 ± 0.04 mnoles/10 cm/h respectively.
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Figure 5.3: Gradient reverse phase HPLC analysis of flavonols in serosal samples
Coluinn: 150 x 3.0 mm i.d. 4-pm Genesis Cig cartridge column with a 10 x 4.0 mm 4-jim Genesis Cig

guard cartridge. Mobile phase: 25 min gradient of 15-40% acetonitrile in water containing 0.5%

trifluoroacetic acid. Flow rate: 0.5 ml/min. Detector: absorbance monitor operating at 365 nm and, after

on-line post-column derivatization with methanolic aluminium nitrate, a fluorimeter operating at

excitation 420 nm and emission 485 nm. Samples: (A) 100 ng flavonol standards: (1) rutin, (2) quercetin-

3-glucoside, (3) quercitrin, (4) myricetin, (5) morin, (6 ) quercetin, (7) apigenin, (8 ) kaempferol and (9)

isorhamnetin detected at A363 nmi (B) as (A) but with fluorescence detection after post-column

derivatization; (C) aliquot of a non-hydrolysed serosal samples collected 30 min after incubation with

quercetin-3-gluoside, detected at A365 (B) as C but with post-column derivatization and fluorescence

detection. The numbers corresponded with peaks for standards listed in (A).
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5.3.2 Percentage absorption and residuals of flavonols

The amount of flavonols remaining in the incubation media at the end of the 30 

min incubation period was determined. The residual flavonols remaining after 30 min 

was high in most instances with more than 80% detected in the incubation media (Table 

5.1). However, compared to the low levels detected in the serosal samples, recoveries of 

quercetin-4'-glucoside, isorhamnetin-4'-glucoside and quercetin in the incubation media 

were low (<60%). This was observed in experiments with the individual flavonols as 

well as when all the flavonol conjugates were present in the incubation buffer.

Overall, compared to the amount of flavonol present in the incubation media, the 

total amount transferred to the serosal side at the end of the incubation period was low, 

with less than 0.5% being transported across the gut wall.

5.4 Discussion

Previous in vivo studies with humans and animals reported variation in the 

absorption of different flavonoids. Hollman et ai (1995) reported higher absorption of 

quercetin glucosides (52%) compared to quercetin aglycone (24%). Rutin, a quercetin 

conjugate with glucose-rhamnose sugar moiety had an even lower absorption at 17% 

(Hollman et ai, 1995). In a recent report, it has been shown that quercetin-3-glucoside 

accumulates in plasma much more rapidly than rutin (Hollman et a i, 1999). In our 

study, we detected higher levels of isorhamnetin-4'-glucoside than quercetin-4'- 

glucoside in plasma after a fried onion meal to human volunteers (Chapter 4). 

Isorhamnetin-4'-glucoside was only a minor flavonol in onion whereas quercetin-4'- 

glucoside was present in much higher concentrations. In addition to flavonols, 

flavonoids from the sub-class catechins were also absorbed at different rates with 3-0- 

methyl-(+)-catechin being absorbed (Hackett et al, 1985) more effectively than (+)- 

catechin (Hackett et al, 1983). This observation implies the possible influence of the 

structural modification of flavonol on their intestinal absorption. At the same time, the 

nature/position of sugar moiety on flavonols may also affect the extent of their 

absorption.
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However, it is not always straightforward to detennine the extent of intestinal 

absorption of flavonols based on in vivo feeding experiments. Various physiological 

factors can play a role in flavonoid absorption. In in vivo experiments, absorbed 

flavonoids are subject to modification and metabolism reactions, producing metabolites 

different from the original compound The rate and extent of metabolism of the absorbed 

flavonoids may vary from one flavonoid to the other. Thus, the concentration of 

flavonoids in plasma may not be directly related to their rate of absorption due to the 

influence of metabolic processes. A high plasma flavonoid concentration could mean 

two things; either it is a consequence of their effective uptake from the intestine or their 

less effective metabolism or removal from the bloodstream. Clearly, in vivo methods 

using plasma measurements are not ideal in evaluating flavonoid absorption from the 

small intestine. Rather, they give a measure of their relative absorption compared to 

other flavonoids.

With this in mind, researchers have developed various in vitro methods to study 

the uptake of compounds across the intestinal wall. Although the advantages far 

outweigh the disadvantages, limitations may still arise while using in vitro intestinal 

preparations. Removal of intestine from the animal will result in loss of blood supply, 

subsequently causing loss of nucleotides from the mucosal cells and a decrease in the 

rate of oxygen consumption (Bronk and Leese, 1973). To overcome this problem, 

efforts were made to ensure minimal loss of intestinal function. This included placing 

the extracted intestinal tissue in well-oxygenated medium immediately after removal 

from the animal to ensure an uninterrupted oxygen supply. In addition, all our in vitro 

experiments were completed in the shortest time possible to minimise loss of tissue 

viability. With this method, the extent of absorption of various flavonols can be 

determined and their possible biological response investigated. Also the structure- 

absorption relationship of flavonols can be evaluated.

5.4.1 Structural modification and flavonol transport

All flavonols employed in this study could be detected in the serosal side 

indicating they were able to undergo transepithelial transport, i.e. crossing the luminal as 

well as the basolateral membrane. We found clear a distinction in the uptake of different
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flavonols. The glycosides of quercetin were more highly absorbable than isorhamnetin- 

4'-giucoside. However, variation in the amount transported was also observed among 

the different glycosides of quercetin. Quercetin-3,4 '-diglucoside and quercetin-3-

glucoside were both absorbed rapidly in contrast to quercetin-4'-glucoside and 

isorhamnetin-4'-glucoside which in turn are both absorbed more effectively than 

quercetin (Figures 5.2 and 5.4). It would therefore appear that a C-4' glucose moiety 

attached to quercetin results in an improved rate of absorption compared to the aglycone. 

However, the presence of a C-3 glucose markedly enhances the transport of quercetin 

conjugates. 3 '-0-methylation, as observed in isorhamnetin-4 '-glucoside did not seem to 

greatly affect its transport when compared to quercetin-4'-glucoside (P<0.05). Two 

published studies, one using perfusion of the rat intestine and CaCo-2 cells (Noteborn et 

al., 1997) and the other using CaCo-2 cells (Walgren et al., 1998) reported no absorption 

or only trace absorption of querccetin-4'-glucoside.

When rhamnose was present instead of glucose at C-3, as in quercitrin, the rate of 

uptake appeared lower than that of quercetin-3-glucoside, although this difference was 

not significant (P>0.05). Nevertheless, when both rhamnose and glucose were present at 

C-3, as in rutin, uptake was higher than quercitrin (P<0.05). This suggests that in 

addition to their position on the flavonol molecule, type of sugar moiety also plays a role 

in influencing the rate of uptake of flavonol glycosides. These observations would imply 

a structural specificity of the carrier responsible for flavonol uptake across the intestinal 

wall, assuming flavonol transport is carrier-mediated. Possibly, a glucose moiety at C3 

of flavonol glucosides increased their affinity for interaction with the carrier protein for 

their uptake.

Results obtained in this study were in agreement with a previous study by Gee et 

al. (1998). These authors used a slightly different method to study intestinal absorption 

whereby transport of several flavonol glucosides were determined based on their ability 

to displace preloaded [‘'^C]galactose in everted segments of rat jejunum. Thus, they did 

not directly measure concentrations of flavonols transported, but the amount of 

[^"^C]galactose displaced by the flavonols. They found that cumulative efflux of 

[^'^C]galactose was highest when everted sacs were incubated with quercetin-3,4'- 

diglucoside, and this was followed by quercetin-3-glucoside and rutin. Efflux of 

galactose by quercetin-4'-glucoside was lower than the above flavonol glucosides. The
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same was also observed for quercitrin which had a lower cumulative efflux than 

quercetin-4'-glucoside. This further supports the proposed importance of glucose in 

enhancing intestinal transport of flavonol glucosides and that glucose substitution at C-4' 

of flavonol conjugates can substantially reduce intestinal transport of these flavonols.

In contrast to this, a study on intestinal absorption of flavonoids reported 

glucuronidation of several flavonoids, in particular quercetin-3-glucoside and quercetin 

following perfusion of the rat gut with these compounds (Spencer et al., 1999). 

However, at the 10 pM concentration used in our study, we did not detect the presence of 

giucuronide peaks. This was evident from the HPLC traces of serosal samples following 

incubation with quercetin-3-glucoside (Figure 5.2 C). The HPLC trace detected by the 

LTV monitor at Absses nm only showed a peak corresponding to quercetin-3-glucoside 

(peak 2). If glucuronides of quercetin-3-glucoside were formed with more polar 

characteristics than the parent compound, these metabolites would elute from the 

reversed-phase HPLC column before quercetin-3-glucoside, but there was no evidence of 

this on the UV trace (Figure 5.3C). Spencer et al (1999) detected the presence of 

glucuronides after 60 min incubation whereas our incubation was performed only up to 

30 min. The incubation time used in this study may be insufficient for the formation of 

giucuronide conjugates and may explain the lack of glucuronides in our study. In 

addition, they also used a higher quercetin-3-glucoside concentration of 47.6 pM 

compared to 10 pM used in our study. Even at this high concentration, glucuronidation 

of quercetin-3-glucoside was low with less than 1.5 nmol detected per 20 cm jejunum per 

5 pmol of the perfused compound. These factors may explain why with the more 

physiologically relevant flavonol concentrations used in our study, there was no evidence 

of the formation of giucuronide metabolites.

With the aglycone quercetin, total uptake was only 0.01 nmoles/10 cm over the

30 min incubation period. These observations again indicate structural-dependence of

the flavonol molecule on their uptake across the rat intestinal wall. More importantly,

the presence of sugar moiety as well as their position greatly determines the extent of

uptake of the flavonols. Existing literature on the uptake of quercetin have shown

varying results. Two previous studies reported in vitro transport of quercetin which

contrasted with our findings (Noteborn et ai, 1997; Walgren et al., 1998). Noteborn et

al (1997), after a 2 h perfusion of rat jejunal segments with quercetin, detected 0.3-0.4%
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absorption of the parent compound, expressed as percentage of the initial dose. Walgren 

and colleagues studied intestinal transport of flavonols using human intestinal epithelial 

Caco-2 cells and reported very high flux of quercetin from the apical to basolateral 

membrane. However, the validity of using a cell-culture method is open to question and 

several factors have to be considered such as reliability and the extent to which the 

results are indicative of in vivo transport. Furthermore, cancerous cells may have several 

structural and physiological changes which can affect the normal absorption process of 

the small intestine. The ability of this cell culture model to successfully mimic a 

biological barrier like the intestinal mucosa has to be carefully assessed. Several factors 

can influence the transport and metabolic properties of cultured cells such as the stage of 

cellular differentiation and the availability of essential nutrients (Meunier et a i, 1995). 

Furthermore, composition of the incubation media e.g. concentration of substrates, 

temperature and pH may influence transport properties of the cells.

In contrast to this, a rat gut perfusion experiment detected uptake of small 

amounts of quercetin, but only 60 min after the start of perfusion (Spencer et al., 1999). 

However, these authors detected the presence of high levels of quercetin glucuronides 

following perfusion with quercetin. We did not detect HPLC peaks likely to correspond 

to glucuronides of quercetin in our study. Furthermore the study described above which 

investigated intestinal transport of quercetin using CaCo-2 cells did not detect peaks 

which may have corresponded to glucuronides of quercetin in the basolateral samples 1 h 

after incubation of quercetin in the apical side (Walgren et al., 1998). But these results 

should be interpreted with caution taking into account the limitations in using cell 

culture. Again, Spencer et al (1999) detected the glucuronides of quercetin only after 60 

min of incubation. Thus, the 30 min incubation period employed in our study may 

exclude any giucuronide formation. We detected low recovery of quercetin in the 

incubation media at the end of the experiment which could be a result of their instability 

during the incubation process. This has been reported in another study whereby low 

recovery of quercetin was detected at the end of the incubation period without evidence 

of the presence of its metabolites (Walgren et a i, 1998).

Two different studies also reported intestinal glucuronidation of flavonoids, this 

time following incubation of luteolin-7-glucoside with everted rat intestinal segments 

(Shimoi et al., 1998) and the other following incubations of chrysin (5,7-
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dihydroxytlavone) with CaCo-2 cells (Walle et ai, 1999). However, the structural 

difference, coupled with usage of a higher substrate concentration (1 mM; Shimoi et aL, 

1998) or difference in method for studying intestinal transport (Walle et al., 1999) may 

explain the differences in the results obtained.

Results obtained from this present study demonstrated the ability of several 

flavonols to undergo intestinal transport without being metabolised by enzymes. At the 

10 pM concentration of test flavonols used, no evidence of glucuronidation and/or other 

metabolic reactions could be seen. In most instances, the published articles which used 

non-physio logical concentration of flavonols (0.05 -  1 mM), reported lower extent of 

glucuronidation of the flavonols (Shimoi et al., 1998, Spencer et al., 1999). If this was 

the case, it would be highly unlikely that glucuronidation could be detected at the 

concentration we used (10 pM) which was reflective of the normal dietary intake of 

flavonoids. Furthermore, the relevance of studies using such high concentrations to 

normal in vivo transport is questionable as such a high concentration is not physiological 

and may affect their uptake. Compounds/metabolites detected could be artefacts which 

under nonnal physiological conditions may not be present. High concentrations may 

also have overloaded the intestinal segments, thus giving a false value of the extent of 

absorption of the flavonols. In some instances, longer incubation time was used (> Ih; 

Noteborn et a i, 1997, Walle et al., 1999, Spencer et al., 1999). When incubation was 

performed up to 1 h, reliability of the method used may be affected due to cell death, loss 

of tissue viability due to prolonged loss of blood supply and reduced oxygen 

consumption.

When the four flavonols, quercetin-3,4'-diglucoside, quercetin-3-glucoside, 

quercetin-4'-glucoside and isorhamnetin-4'-glucoside were added into the same 

incubation media, their rate of uptake across the intestinal wall remained roughly the 

same as when transport of the individual flavonols were investigated (Table 5.1). This 

suggests that transport of these particular flavonols were not dependent on each other and 

interaction or competition for uptake of these flavonols across the intestinal wall did not 

occur. This may also imply that a different mechanism of uptake for these flavonols 

exists. Alternatively, if they were absorbed by the same mechanism, no competition in 

their transport was observed at the 10 pM concentration used in this study.
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Structural modification of flavonoids may alter their stereospecificity, thereby 

possibly influencing their transfer across the intestinal wall. If transport occurs via a 

carrier protein, alteration in flavonol structure may change the binding site for the carrier 

protein, ultimately reducing or inhibiting their transport.

5.5 Conclusion

Results from this study indicated intestinal transport of the flavonol glucosides, 

albeit at different rates. Flavonols, when present as glycosides were more highly 

transported compared to the aglycone. It is likely that the nature/position of the sugar 

moiety, to a certain extent, determine the rate of uptake of the flavonol conjugates. 

Evidence of glucuronidation or sulphation/methylation of quercetin-3-glucoside and the 

other flavonols tested was not seen in our study at the concentration used. Further 

studies are required to determine the mechanism of flavonol transport across the 

epithelial membrane.
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CHAPTER 6: INVESTIGATION OF THE

MECHANISM OF FLAVONOL UPTAKE ACROSS THE 

SMALL INTESTINE IN AN EVERTED SMALL 

INTESTINE RAT GUT MODEL.

6.1 Introduction

In view of the overwhelming evidence of the biological and antioxidant potential of 

flavonoids (Chapter 1), research has focused on their absorption and metabolism. Ingested 

flavonoids need to maintain their bioactive form following absorption to provide beneficial 

health properties. The first important stage of flavonol absorption is their passage across the 

wall of the small intestine. As mentioned before in Section 1.13.2, substances can be 

absorbed from the small intestine via active or passive transport. Hydrophilic compounds 

are more likely to be transported via carrier proteins as they are not able to diffuse across the 

lipid phase of the membrane. In contrast, lipophilic compounds do not require carrier 

proteins as they can easily diffuse across the membrane.

Flavonol glycosides are more polar than their aglycones and are thus thought to be 

transported by carrier proteins. It has been proposed that the sodium-glucose co transporter 

(SGLTl) might play a role in the transport of flavonols particularly flavonol glucosides 

(Hollman et ai, 1995). This prompted research to investigate this hypothesis and to date, 

two papers have presented contrasting results. One study showed interaction of several 

flavonol glucosides with SGLTl (Gee et al, 1998) whereas another demonstrated that 

certain flavonol glucosides behaved as glucose carrier inhibitors (Noteborn et al, 1997). 

Clearly more work is needed to further establish the role of SGLTl in flavonol transport 

across the small intestine. The aim of this study was to investigate the mechanism of the 

uptake of flavonols across the small intestine and to further elucidate the involvement of 

glucose transporters in the transport of flavonols.
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Several experiments were performed to establish the mode of transport of flavonol 

glucosides and whether SGLTl played a role in mediating their uptake. In order to identify 

if uptake of flavonol glucosides was carrier or non-carrier mediated, the transport of 

increasing concentrations of flavonoids was investigated. Glucose, together with flavonols 

was used to investigate the possible involvement of SGLTl by measuring the possible 

competition or inhibition for SGLTl. In addition, phloridzin, a known inhibitor of SGLTl 

was used to block this carrier and the effect on uptake of flavonols was measured.

6.2 Materials and Methods

6.2.1 Materials

Standards of quercetin-3-glucoside and quercetin-3,4'-diglucoside were dissolved in 

100% methanol. Phloridzin and glucose were made up in Krebs buffer. Preparation of 

Krebs incubation media was described in section 5.2.1. D[U '̂^C] glucose was purchased 

from Amersham (Buckinghamshire, UK) with a specific activity/ of 310 pCi/mmol.

6.2.2 Animal study

The everted rat gut model previously described was used to investigate the 

mechanism of flavonol transport across the small intestine. Preparation of the rat intestines 

and procedure for the eversion of the jejunal segments was as described in Chapter 5, 

section 5.2.2.

6.2.3 Incubation procedures for the everted segm ents

The incubation procedure was performed according to the method of Mizuma et al. 

(1994) with slight modifications. Similar procedures as described in section 5.2.3 were
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applied Sampling from the serosal side was perfonned at 5 min intervals over a 30 minute 

incubation period.

6.2 .4  The mechanism of flavonol uptake by the small
intestine

Several experiments were performed to determine the mode of uptake of flavonols 

from the everted rat jejunal segments. Quercetin-3-glucoside was used in most cases due to 

its high uptake across the intestinal wall and also the availability of this standard. Figure 6.1 

shows a flowchart summarising the various approaches used in determining the mechanism 

of flavonol absorption from the small intestine.

6.2.4.1 Effect of substrate concentration on the uptake of quercetin-3-glucoside

In the first experiment, the rate of uptake of quercetin-3-glucoside from the mucosal 

to serosal side was determined. Everted segments of rat jejunum were incubated in 20 ml of 

Krebs buffer containing quercetin-3-glucoside at concentrations of 1, 5, 10, 50, 100 and 500 

pM. Sampling from the serosal side was performed every 5 min for 30 min according to the 

procedure described in section 5.2.3.

6.2.4.2 The effect of glucose on the uptake of quercetin-3-glucoside across the 

small intestinal wall

Competition for the glucose carrier was studied by measuring the uptake of 

quercetin-3-glucoside in the presence of increasing concentrations of glucose. For this 

purpose, everted segments were incubated in incubation media containing 10 pM quercetin- 

3-glucoside and glucose at concentrations of 0, 1, 10, 50 and 100 mM. Sampling from the 

serosal side was perfonned every 5 min for 30 min as described in section 5.2.3. Eight 

jejunal segments were used for each concentration.
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Mechanism of flavonol uptake across the small intestine j

1
Carrier- or non-carrier mediated? I

V
Measure the rate of uptake of quercetin-3-glucoside

1r
Does SGLTl play a role in flavonol glucoside transport?

Does flavonol interact with SGLTl? Does flavonol inhibit SGLTl?

Measure the effect of 
glucose (0, 1, 10, 50, 
100 luM) on quercetin- 
3-glucoside uptake

Measure the effect of 
phloridzin (1, 5 mM) on 
quercetin-3-glucoside and 
quercetin-3,4 '-diglucoside 
uptake

Measure the effect of 
quercetin-3-glucoside 
(10, 50, 500 pM)on 
[̂ '‘CJglucose uptake

Figure 6.1: A flow chart summarizing the various approaches used to investigate the 

mode of flavonol glycoside absorption from the small intestine
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6.2.4.3 The effect of phloridzin on the uptake of quercetin-3-giucoside and

quercetin-3,4'-diglucoside

The involvement of SGLTl in flavonol uptake was examined by measuring the 

uptake of quercetin-3-glucoside and quercetin-3,4'-diglucoside in the presence of phloridzin. 

Phloridzin is a known inhibitor of SGLTl (Dorando and Crane, 1984). It has the ability to 

bind to the glucose co-transport carrier and inhibits glucose transport. Everted rat jejunal 

segments were incubated in Krebs buffer containing 10 pM quercetin-3-glucoside, in the 

presence or absence of 1 mM and 5 mM phloridzin. In the case of quercetin-3,4'- 

diglucoside, due to limited availability of the flavonol standard, only 1 mM phloridzin was 

used. Everted jejunal segments were suspended in incubation media containing 10 pM 

quercetin-3,4'-diglucoside, with or without ImM phloridzin. The procedure for sampling 

from the serosal side was as described in section 5.2.3.

6.2.4.4 The effect of phloridzin on the uptake of glucose

The reliability of the model was established by measuring the uptake of glucose in 

the presence of 1 mM phloridzin. Everted jejunal segments were placed in the incubation 

buffer containing 1 mM glucose, 3 pCi D[U*‘̂ C] glucose and with or without 1 mM 

phloridzin. Sampling from the serosal side was performed every 5 min for 30 min as 

described in section 5.2.3.

One hundred pi of serosal samples and 20 pi of the incubation media were 

transferred to scintillation vials, 5 ml of scintillation cocktail (Optisafe 1, Leicestershire, 

UK) was added to each vial and the amount of radioactivity measured in a liquid 

scintillation counter.

6.2.4.5 The effect of quercetin-3-glucoside on the uptake of [̂ ‘*C]glucose

The possibility that flavonols may act as inhibitors of SGLTl was investigated by 

measuring the uptake of glucose in the presence of increasing concentrations of quercetin-3-

143



glucoside. In this experiment, the incubation media contained 20 ml of Krebs buffer, 10 

mM glucose, 3 pCi D[Û '̂ C] glucose and quercetin-3-glucoside at concentrations of 10, 50 

and 500 pM. The concentration of flavonols used in this experiment was in keeping with 

the estimated daily intake of dietary quercetin of 16.3 mg/d (Hertog e t  a l . ,  1993). The 

highest concentration of flavonol used at 500 pM was to ensure that enough flavonols were 

available to inhibit SGLTl, if indeed they act as inhibitors of this carrier protein. Incubation 

was performed by placing the everted jejunal segments in incubation media containing the 

compounds understudy. A control experiment was carried out by measuring the uptake of 

10 mM glucose without the presence of quercetin-3-glucoside. Sampling was performed 

according to the method described in section 5.2.3. One hunderd pi of the serosal samples 

and 20 pi of the incubation media were transferred into scintillation vials. 5 ml of Optisafe 

1 scintillation cocktail was added into each vial and the amount of radioactivity measured in 

a liquid scintillation counter.

A preliminary experiment was perfonned to establish the minimal concentration of 

glucose required for the incubation experiments. For this purpose, everted segments were 

incubated in Krebs buffer containing varying concentrations of glucose. 10 mM glucose in 

the incubation medium produced glucose that could be detected in the serosal samples.

6.2.5 Flavonol extraction from the mucosal and serosal 
sam ples and HPLC analysis

Extraction of flavonols from the samples was as described in section 5.2.6. A 200 pi 

volume of the supernatant was subsequently analysed by gradient elution reversed phase 

HPLC (see section 3.2,1).
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6.2.6 Statistical analysis

Where necessary, results were compared by Mann Whitney U non-parametric 

statistical test. Minitab statistical software release 12.21 for Windows, was used for all 

analyses.

6.3 Results

6.3.1 Uptake of varying concentrations of quercetin-3-
glucoside

When quercetin-3-glucoside was used to establish the mechanism of flavonol 

transport across the intestinal wall, the uptake of this flavonol appeared to be concentration 

dependent. Evidence of saturation of the transport of quercetin-3-glucoside was observed in 

the concentration range of 10 pM to 500 pM (Figure 6.2). The rate of uptake of this 

flavonol was linear up to a concentration of 100 pM, after which a hyperbolic curve was 

seen up to 500 pM. When the results were expressed as cumulative uptake over the 30 min 

incubation period, the same trend was observed as that seen in the rate of uptake (Table 6.1). 

The rate of uptake and cumulative uptake of quercetin-3-glucoside increased with 

concentration.
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Figure 6.2: The rate of uptake of quercetin-3-giucoside across everted rat jejuna* segments.
The rate of quercetin-3-glucoside transport was measured by incubating everted segments in incubation media 

containing 0, 1, 5, 10, 50, 100 and 500 fiM quercetin-3-glucoside over a period of 30 min. The rate of uptake is 

expressed as pmoles/10 cm/min ± SEM.
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Table 6.1: Mean values of the key features of quercetin-3-glucoside uptake across rat

jejunal segments

Ouercetin-3-
gliicostde

(mM)

Rate Of uptake 
(nmoles/1 Ocm/hr)

Cumulative
uptake

(nmoles/IOcm)

Recovery-
(%)

1 0.31 ±0.08 0.12 ±0.02 75.86 ±3.81

5 0.95 ± 0.49 1.10 ±0.48 86.82 ± 0.78

10 1.56 ±0.34 0.83 ±0.17 85.00 ± 2.00

50 12.38 ±1.68 8.31 ±0.87 85.40 ± 3.80

100 30.72 ± 11.63 21.69 ±2.88 90.00 ± 1.76

500 68.70 ± 11.88 41.31 ±6.13 89.89 ±4.8

n = 6 - 8  segments ± SEM

“ = residuals of quercetin-3-glucoside remaining in the incubation media at the end of the 30 

min incubation.
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6.3.2 The effect of glucose on the uptake of quercetin-3- 
glucoside across the small intestine

Figure 6.3 shows the uptake of quercetin-3-glucoside over 30 min in the presence of 

glucose at the concentrations indicated. There was no significant difference in the uptake of 

quercetin-3-glucoside with and without the presence of 1 mM, 10 mM, 50 mJVI and 100 mM 

glucose. Although the rate of uptake of this flavonol glucoside decreased slightly in the 

presence of 100 mM glucose (1.21 ± 0.32 nmoles/10 cm/h) compared to without glucose 

(1.56 ± 0.34 nmoles/10 cm/h), these figures were not significantly different (Table 6.2). 

Essentially the same pattern was seen when results were expressed as cumulative uptake 

over the 30 min incubation period.

6.3.3 The effect of phloridzin on the uptake of [^"^C]glucose, 
quercetin-3-glucoside and quercetin-3^4' -diglucoside

[^ '^ C ]  G l u c o s e

Phloridzin, an inhibitor of SGLTl was employed to investigate the possible 

involvement of this carrier on the uptake of flavonol glucosides across the intestinal wall. 

Figure 6.4 shows the profile for the uptake of glucose with and without the presence of 

phloridzin. At the 30 min time point, 2.3% and 3.4% of the radioactivity was transported 

into the serosal side with and without the presence of 1 mM phloridzin, respectively. A 

slight inhibition (33%) in the uptake of glucose was observed when 1 mM phloridzin was 

present in the incubation media (P>0.05). Nevertheless, phloridzin did not fully inhibit the 

uptake of glucose as radioactivity could still be detected in the serosal side at the 30 min 

time point.
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Figure 6 3 : The effect o f glucose on intestinal absorption of quercetin-3-glucoside

Uptake of 10 |iM quercetin-3-glucoside was investigated in the presence of 1 mM, 10 mM, 50 mM and 100 

mM glucose in the incubation media. Results are expressed as pmoles quercetin-3-glucoside detected in the 

serosal samples per 10 cm segment. (n=6-8 segments ± SEM).

—• — no glucose

1 mM  glucose  
^  10 mM glucose

—▼— 50 m M  glucose  
— 100 mM glucose
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Table 6.2: The effect of glucose on the uptake of quercetin-3-glucoside.

Results represent mean values of the key features of quercetin-3-glucoside uptake across rat 

jejunal segments.

Glucose
(mM)

Rate Of Uptake 
(nmotes/10cm/hr)

Cumulative 
uptake 

(nmoles/10cm)

Recovery®
(%)

95% Cl"

No glucose 1.56 + 0.34 0 .8310 .17 8 5 1 2 .0 -

1 1.7310 .29 1.0210 .17 86.1812.31 (-1.23, 1.01)

10 1.37 10.17 0.8510.11 86.11 13.55 (-0.78, 1.19)

50 1.3010 .37 0.7510.21 85 .2711 .30 (-0.67, 1.61)

100 1.21 10.32 0 .6010 .16 85.4512.71 (-0.69, 1.54)

= residuals of quercetin-3-glucoside remaining in the incubation media at the end of the 30 min 

incubation.

 ̂ =  95% Cl for significant inhibition of rate of quercetin-3-gIucoside uptake by glucose, 

n = 6 - 8  segments ± SEM
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Figure 6.4; The effect o f phloridzln on the uptake o f '^C-glucose

Uptake of 1 mM ‘“̂ C-glucose was investigated in the presence of 1 mM phloridzin in the incubation media. 

Results are exoressed as % of radioactivity absorbed from the incubation media. (n=6-8 segments ± SEM).

without phloridzin 
1 mM phloridzin
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Q i i e r c e t i n - S  - g l u c o s i d e

Figure 6.5 shows the effect of phloridzin (1 mM and 5 mM) on the rate of uptake of 

quercetin-3-glucoside across the intestinal wall. This was compared with the rate of uptake 

of quercetin-3-glucoside in the absence of phloridzin. From the graph, compared with the 

uptake of quercetin-3-glucoside without phloridzin, no inhibition was observed in the 

transport of quercetin-3-glucoside with the presence of 1 mM phloridzin. A higher 

phloridzin concentration (5 mM) was also tested. Again, no difference was observed in the 

rate of uptake of this glucoside. It was evident that phloridzin had no significant effect on 

the rate of uptake of quercetin-3-glucoside (Table 6.3).

Q u e r c e t i n - S ,  4  ' - d i g l u c o s i d e

Figure 6 . 6  illustrates the transport of 10 juM quercetin-3,4'-diglucoside with and 

without the presence of 1 mM phloridzin. Unlike quercetin-3-glucoside, a slight inhibition 

in the transport of this diglucoside was observed when 1 mM phloridzin was added into the 

incubation media. Furthermore, the rate of uptake of quercetin-3,4'-diglucoside with 

phloridzin was approximately half of that of their uptake without phloridzin (Table 6.3). 

However, this inhibition was not statistically significant.
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Figure 6.5; The effect o f  phloridzin on the uptake o f quercetin-3 glucoside

Uptake of 10 pM quercetin-3-glucoside was investigated in the presence of I mM and 5 mM phloridzin in the 

incubation media. Results are expressed as pmoles quercetin-3-glucoside detected in the serosal samples per 

10 cm segment. (n=6-8 segments ± SEM).

—•— widiout phloridzin 
—•— 1 mM phloridzin 
—V 5 mM phloridzin
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Table 6.3: The effect of phloridzin on the uptake of quereetin-3-glucoside and 

quercetin-3,4 -diglucoside.

Results represent mean values of the key features of quercetin-3-glucoside and quercetin- 

3,4'-diglucoside uptake across rat jejunal segments.

Flavonol Phloridrin
(mM)

Rate of uptake 
(nmoles/1 dam/h)

Cumulative
uptake

(nmples/IOcm)

Recovery®
(%)

95% Cl

Quercetin-3- - 1.56 + 0.34 0.83 + 0.17 85 + 2 -
glucoside

1 1.40 + 0.23 0.89 + 0.15 86.34 + 2.24 (-0.67, 1.17)*̂

5 1.64 + 0.43 1.00 + 0.26 89.81 + 3.02 (-1.91, 1.43)^

Quercetin-3,4' 2.99 ± 0.62 1.80 + 0.38 92 + 2
-diglucoside

1 1.76 + 0.27 0.99 + 0.16 90.02 + 3.12 (-0.67, 2.91)'=

” -  residuals of quercetin-3-glucoside or quercetin-3,4'-diglucoside remaining in the incubation media 

at the end of the 30 min incubation.

= 95% Cl for significant inhibition of rate of quercetin-3-glucoside uptake by phloridzin.

= 95% Cl for significant inhibition of rate of quercetin-3,4 -diglucoside uptake by phloridzin. 

n = 6 - 8  segments ± SEM
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Figure 6.6: The effect o f phloridzin on the uptake o f quercetin-3,4 '-diglucoside

Uptake of 10 pM quercetin-3,4 -diglucoside was investigated in the presence of I mM phloridzin in the 

incubation media. Results are expressed as pmoles quercetin-3-glucoside detected in the serosal samples per 

10 cm segment. (n=6-8 segments ± SEM).

•  without phloridzin 
—• — 1 mM phloridzin
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6.3.4 The effect of quercetin-3-glucoside on the uptake of 
[^^C]glucose

In this experiment, the possibility of flavonol glucosides acting as inhibitors of 

SGLTl was investigated by examining the uptake of glucose in the presence of varying 

concentrations of quercetin-3-glucoside. The transport of ['^C]glucose into the serosal side 

was expressed as percentage of the initial dose absorbed per 10 cm segment. No difference 

was observed in the uptake of glucose without the presence of quercetin-3-glucoside and 

when 10 pM, 50 pM and 500 pM quercetin-3-glucoside were present in the incubation 

media (Figure 6.7). Statistical comparison of the rate of uptake of glucose with quercetin-3- 

glucoside did not show any difference from with their uptake without quercetin-3-glucoside 

(Table 6.4). Furthermore, similar values for the cumulative uptake were obtained for the 

four conditions used (Table 6.4) suggesting no difference in their uptake.
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Figure 6.7: The effect o f quercetiii-3-glucoside on the uptake o f g l u c o s e

The possibility that quercetin-3-glucoside may inhibit SGLTl was investigated by measuring the rate of uptake 

of ‘'‘C-glucose in the presence of quercetin-3-glucoside at the concentrations stated. Results are expressed as 

% of radioactivity absorbed from the incubation media. (n=6-8 segments ± SEM).

•  control 
—• — 10 uM quercetin-3-glucoside 

V 50 uM quercetin-3-glucoside 
—T— 0.5 mM quercetin-3-glucoside
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Table 6.4: The effect of quercetm-3-glucoside on the uptake of ̂ ‘*C-glucose

Results represent mean values of the key features of glucose uptake across rat jejunal 

segments.

Ouercetin-3-
gfucoside

(pM)

Riate Of tiptake 
(®/ocJose/10cm/h)

Cumulative
uptake

(®/odo$e/10om)

Recovery®
m

95% o r

- 4.24 ± 1.25 3.15 ±0.92 82.88 ± 10.91 -

10 4.00 ± 1.06 2.83 ±0.81 91.70 ±4.44 (-4.95, 5.36)

50 5.00 ±0.83 3.71 ± 0.62 93.33 ± 2.42 (-4.96, 5.04)

500 4.61 ±1.39 3.34 ± 1.08 80.26 ± 7.29 (-7.41, 4.80)

 ̂= residuals of quercetin-3-glucoside remaining in the incubation media at the end of the 30 min 

incubation.

= 95% Cl for significant inhibition of rate of glucose uptake in the presence of quercetin-3-glucoside. 

n = 6 - 8  segments ± SEM.
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6.4 Discussion

In order to establish the mechanism of flavonol transport across the small intestine, 

the first step to evaluate is whether their uptake is carrier-mediated or non-carrier mediated. 

Most polar molecules are transported across the epithelial membrane via a carrier protein as 

they are not able to difiuse across the lipid membrane. To determine if a carrier is involved in 

the transport of flavonols, the uptake of increasing concentrations of quercetin-3-glucoside 

across the intestinal wall was measured. Results revealed that the rate of uptake of quercetin- 

3-glucoside was linear up to 100 pM. A linear plot of 1/rate of uptake against 

1/concentration was also obtained (y=3.899x + 0.199, r^=0.949 and correlation 

coefficient-0.974), suggestive of a hyperbolic relationship between these two parameters and 

for saturation of uptake at higher concentrations. However, the absence of results for 

concentrations between 100 and 500 pM means that the data cannot be assigned with 

certainty to a hyperbolic curve. Nevertheless, the evidence suggests that quercetin-3- 

glucoside is conveyed across the intestinal membrane in association with carrier molecules. 

This is highly likely as the glycosylated forms of the flavonol conjugates will give rise to 

hydrophilic polar molecules which are not able to difiuse passively across the epithelial 

membrane. Evidence of saturation was also reported in the transport of quercetin diglucoside 

across the rat intestine up to a concentration of 1 mM (Gee e t  a l ,  1998), further 

strengthening the possible role of a carrier in mediating flavonol glucoside uptake. However, 

the relevance of the observed saturation at 500 pM and 1 mM concentrations to in vivo 

physiological condition is questionable as such high concentration is not likely to be achieved 

at normal dietary intake.

6.4.1 The Involvement of SGLTl in the transport of flavonol g lu cosid es

It was previously postulated that SGLTl might be involved in the transport of 

flavonol glucosides across the intestinal membrane (Holmann e t  a l ,  1995). This carrier, 

located in the brush border membrane of the small intestine is responsible for the secondary 

active transport of glucose and galactose (Hediger and Rhoads, 1994). However, SGLTl 

has been shown to be able to transport other compounds apart from glucose. SGLTl has 

been shown to mediate uptake of the highly toxic compound cyacasin, a D-glucoside 

derivative of methylazoxymethanol (Kisby e t  a l ,  1992). In addition, this carrier was also
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reported to play a role in the transport of 2-naphthyl glycosides (Mizuma e t  a l . ,  1994). This 

group used similar everted rat gut model and reported a decrease in the transport of 2 - 

naphthyl glycoside in the absence of Na ,̂ a co-substrate of SGLTl.

Based on these observations, SGLTl was hypothesised to play a role in mediating the 

uptake of flavonol glucosides from the small intestine. It was postulated that the sugar 

moiety on the flavonol glucosides could bind to the active site on the glucose carrier protein 

in a similar manner to glucose, and so be transported across the intestinal membrane. If this 

was true, the presence of glucose together with flavonol glucosides in the incubation media 

would result in the two compounds competing with each other for binding to the carrier 

protein. However, when everted jejunal segments were incubated with quercetin-3-glucoside 

together with glucose, no significant difference was observed in the amount and rate of 

quercetin-3-glucoside transported across the intestinal membrane (Table 6.2). The presence 

of glucose, even at the highest concentration of 100 mM did not inhibit or reduce the amount 

of flavonol glucoside transported. This suggests that no competition exists between 

quercetin-3-glucoside and glucose for the glucose carrier. As the rate of uptake of quercetin- 

3-glucoside remained the same, it is possible that other carrier proteins may be involved.

To further establish the possible involvement of SGLTl, phloridzin, a known inhibitor 

of this carrier protein was employed to investigate its effects on flavonol glucoside uptake. 

Once more, no inhibition was seen in the amount of quercetin-3-glucoside transported when 

1 mM phloridzin was present together with the flavonol in the incubation media. Even a 

higher concentration of phloridzin (5 mM) did not inhibit the uptake of quercetin-3-glucoside 

implying no interaction between this glucoside and SGLTl. As for quercetin-3,4'- 

diglucoside, there was also no significant inhibition in their uptake across the intestinal 

membrane in the presence of phloridzin. Although the error bars in the graph appeared to 

suggest a significant inhibition { F i g u r e .  6 .6 ), this was not so, possibly due to the small 

number of segments employed in the experiments.

When uptake of [̂ "̂ Cjglucose was measured in the presence of 1 mM phloridzin, only 

33% inhibition was observed compared to without phloridzin. This implies that complete 

inhibition of SGLTl did not occur in the model used as glucose was still transported across 

the intestinal membrane. Thus, it is possible that this particular method is not suitable to 

assess the role of SGLTl in mediating flavonol uptake. Perhaps a combination of several

techniques can provide a more definite answer.
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A possible explanation for the lack of inhibition of glucose uptake in the presence of 

phloridzin could be that, in addition to the transceliular route of glucose absorption, glucose 

might also pass from the intestinal lumen to the circulation via the paracellular pathway. 

This route involves movement through the tight junction, the site between two adjacent 

enterocytes. The highly dynamic structure of the tight junction is subject to regulation, and 

activation of SGLTl has been shown to cause contraction of the tight junction, leading to 

their increased permeability (Philpott e t  a l . ,  1992). This may allow molecules to cross the 

epithelium via tight junction by solvent drag. Certainly, 30% of glucose has been shown to 

be absorbed this way (Asitook e t  a i ,  1990). The possibility that some flavonol glucosides 

might also be transported through this pathway is, however, unlikely given their polar 

properties. Transport via another carrier system is a more likely explanation.

Our findings contrasted with those of Gee e t  a l  (1998) who demonstrated that several 

quercetin glycosides including quercetin-3-glucoside and quercetin-3,4'-digiucoside 

accelerated the carrier-mediated efflux of pre-loaded galactose. This occurred via a sodium- 

dependent pathway, implying the involvement of SGLTl. The fact that the rate of uptake of 

some of these flavonol glucosides was higher than that of glucose signifies that the quercetin 

conjugates have a higher affinity to the carrier than glucose. In contrast to the findings of 

Gee e i  a l  (1998), our results suggest that the glucose carrier protein has a lower affinity for 

the quercetin conjugates than it does for glucose. It may be of relevance that Gee e t  a l  did 

not actually measure the amounts of flavonol glucosides transported in their incubation 

experiments but estimated uptake based on the efflux of galactose. At the 1 mM 

concentration used, measurable transport of the flavonols should have occurred and it would 

be interesting to see if there was any correlation between the cumulative efflux of both the 

galactose and also the flavonol glucosides tested. It should also be noted that the 1 mM 

concentration was non-physiological and is not representative of a normal dietary intake. 

The validity of this study and its relation to actual in  v i v o  absorption requires careful 

evaluation.

To further investigate the possible interaction between flavonol glucosides and the

glucose transport pathway, a different approach was used. In this instance, the possibility of

flavonol glucosides acting as inhibitors of SGLTl was investigated. The hypothesis was
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based on the structural similarity between phloridzin and quercetin-3-glucoside (Figure 6.8). 

When the glucose moiety on phloridzin binds to the receptor on SGLTl, it inhibits glucose 

transport by acting as a competitive inhibitor (Dorando and Crane, 1984). In view of the 

structural similarity between phloridzin and quercetin-3-glucoside, the latter may possibly 

have the same action as phloridzin. However, this was not evident in our study as we did 

not find any inhibition in glucose transport in the presence of up to

O H

..OH

HO, .OHHO,

O H

PHPH
O H

O HO H

0uercetin-3-O-(3-glucoside Phloridzin

Figure 6.8: The structures o f  quercetin-3-glucoside and phloridzin

500 juM concentration of quercetin-3-glucoside. This implies that quercetin-3-glucoside did 

not inhibit the glucose carrier protein at the concentrations used.

Publications on the mechanism of flavonol transport across the small intestine are 

sparse as this area of research has received somewhat limited attention. To date, there are 

only three reports on very preliminary studies (Notebom et al., 1997, Gee et al., 1998 and 

Walgren et al., 1998).

Walgren et al (1998) used CaCo-2 cells, which were able to express SGLTl, to

examine the uptake of several quercetin glucosides. They reported no transport of

quercetin-4-glucoside from the apical to basolateral side of the CaCo-2 cells and concluded

that there was no interaction between SGLTl and the flavonol glucoside. In another study,

Notebom et al (1997) studied flavonol uptake using perfusion of surviving rat jejunal
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segments. Their results suggested that some quercetin monoglucosides, e.g. quercetin-4'- 

glucoside might interact with SGLTl based on the flavonols ability to stimulate glucose 

transfer. However, at the same time, they also reported that other quercetin glucosides 

including quercetin-3-glucoside, at concentrations of 10 pM, behaved as inhibitors of this 

glucose carrier. We did not observe this using the same concentration of quercetin-3- 

glucoside. However, Notebom and colleagues measured flavonol absorbed after 2 h 

perfusion of the gut segments. At this point, the reliability of the segments and their ability 

to transport molecule is questionable. Cells in the mucosal side may not be viable and may 

affect transport of molecules across the intestine. Therefore, estimation of true intestinal 

absorption may not be accurate. Certainly further studies are needed to evaluate this matter.

Other techniques exist to further evaluate the possible role of SGLTl in mediating 

the uptake of flavonols. Expression of SGLTl or other specific transporters in a cell system 

for example in oocytes of x a e n o p u s  l a e v i s  (Hediger e t  a l . ,  1987) can provide a more definite 

answer on the ability of this carrier protein to mediate flavonol uptake. Furthermore, other 

transporters exist in epithelial cells with the possibility of mediating flavonol uptake. This 

includes the Na^-dependent amino acids transporters which share 50-60% sequence identity 

as SGLTl (Hediger and Rhoads, 1994). On the other hand, there may exist other, yet to be 

identified, carrier proteins in the small intestine with the ability to mediate flavonol uptake,

6.4.2 Percentage recovery following incubation experiment

After the 30 minute incubation time, recovery of quercetin-3-glucoside and

quercetin-3,4'-diglucoside in the incubation media was more than 80% and 90%

respectively. Overall, when cumulative uptake of both the flavonol glucosides was

expressed as percentage absorbed, less than 0.5% was detected in the serosal side. At the

same time, low absorption of flavonols or other compounds into the serosal side is a typical

characteristic of i n  v i t r o  intestinal transport preparations. This can be partly attributed to the

different hydrodynamic properties to that which would occur in  v i v o ,  for instance the

absence of blood circulation in in  v i t r o  preparations. A few studies have demonstrated
163



gîucuronidation of fïavonol glucosides including quercetin-3-glucoside during their 

transport across the epithelial membrane (Shimoi e t  a l . ,  1998, Spencer e t  a t . ,  1999). 

However, we did not detect the presence of HPLC peaks which correspond with putative 

glucuronide conjugates of quercetin-3-glucoside (see Chapter 5).

6.5 Conclusion

This study established that the uptake of flavonol glucosides across the intestinal 

membrane occurred via a carrier-mediated pathway. From the various experiments 

performed, we have established that quercetin-3-glucoside neither interacts with SGLTl for 

their transport nor does it inhibit the glucose transport pathway at the concentrations used. 

Further research are needed to identify the carrier protein responsible for flavonol uptake 

across the intestinal membrane as this will enable investigations on the structural 

requirements for the carrier protein. In this way, flavonols that are highly absorbable can be 

identified and their biological properties determined.
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CHAPTER 7: IN  VITRO METABOLISM OF

FLAVONOLS USING RAT LIVER HOMOGENATES

7.1 Introduction

Available evidence on absorption studies points to extensive metabolism of 

flavonoids following their absorption. We have shown that quercetin glucosides and 

diglucoside were better absorbed from the intestine than the aglycone, quercetin 

(Chapter 5). In studies with ileostomy volunteers, based on the amount excreted in the 

ileal effluent, it was estimated that 52% of quercetin glycosides (Hollman e t  a l . ,  1995) 

and 89% and 5% respectively for isorhamnetin-4'-glucoside and quercetin-4'-glucoside 

(Aziz e t  a l . ,  2000) were absorbed following a fried onion meal. However, when 

percentage absorption was measured in plasma following the same type of diet, only low 

levels of flavonols were detected at peak concentration (<2%) (Hollman e t  a l . ,  1995, 

Aziz e t  a l . ,  1998, McAnlis, 1999). Thus, a large percentage of the absorbed flavonols is 

unaccounted for which raises the possibility that substantial post-absorption metabolism 

of the quercetin glycosides may be occurring.

Not much information is available regarding the pathway of flavonol metabolism

after their absorption. Several studies have reported gîucuronidation as well as

méthylation of quercetin following oral administration of the aglycone to rats (Ueno e t

a l . ,  1983, Manach e t  a l . ,  1997). The liver has been suggested as the major organ

responsible for the metabolism of flavonoids and vaiious reactions can occur including

hydroxylation, méthylation and the formation of sulphate and glucuronide conjugates

(Griffiths, 1982, Hackett, 1986) (See Chapter 1, Section 1.12.2). Although some

research has been performed on the hepatic metabolism of flavonols, they have always

concentrated on aglycones rather than flavonol glycosides. As flavonols in food are

predominantly found conjugated to sugar conjugates (Cook and Samraan, 1996), which

appear to be more absorbable than their aglycones (Chapter 5), investigation of their

post-absorptive metabolism is required. The main objective of this study was to

investigate the metabolism of flavonol conjugates particularly those that were found in

abundance in onions. In addition, the proposal that quercetin-4'-glucoside undergoes
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méthylation to isorhamnetin-4'-glucoside in the liver was also investigated. For this 

purpose, i n  v i t r o  incubations of the test flavonols with rat liver extracts were carried out. 

Similar procedures have been used to study the metabolism of flavonoids such as 

quercetin and fisetin (Zhu e t  a l . ,  1994) and (-)-epicatechin (Piskula and Terao, 1998) by 

hepatic enzymes.

7.2 Materials and Methods

7.2.1 Preparation of flavonol standards and incubation 
buffer

Standards of quercetin-3,4'-diglucoside, quercetin-3-glucoside, quercetin-4'- 

glucoside and isorhamnetin-4'-glucoside (Figure 7.1) were dissolved in methanol. All 

incubation experiments were performed in 50 mM phosphate buffer (pH 7.4) containing 

10 mM MgCL.

7.2.2 Preparation of liver homogenates

Liver samples were obtained from Sprague-Dawley rats (average weight 286.5 g) 

kept on a standard rat and mouse expanded diet (B and K Universal Limited, Hull, UK). 

Rats were stunned with a blow to the head prior to killing by cervical dislocation. An 

incision was made on the abdomen and the liver was removed immediately and placed in 

saline solution on ice. The livers were cleaned and divided into 1 g portions which were 

frozen in liquid nitrogen and stored at -80°C prior to the experiment.

7.2.3 Deglycosylation of flavonol glucosides

A method developed by Shaw and Griffiths (1980) with slight modifications was 

used for the incubation assay. Rat liver extracts were prepared by homogenising 1 g of 

thawed liver in 5 ml of ice-cold phosphate buffer (50 mM, pH 7.4) containing 10 mM 

MgCla. The incubation medium comprised 1 g of homogenated liver and 24 nM of
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flavonol in 10 ml phosphate buffer (50 mM, pH 7.4, containing 10 mM MgCh). The 

reaction was started by the addition of the flavonol substrate and the incubation was 

carried out in a shaking water bath for 2  h at 37°C. Half ml samples were withdrawn at 0  

min and every 10 min for the first half an hour and every 30 min thereafter. Triplicate 

experiments were performed for each flavonol. The flavonols tested were quercetin-3,4'- 

diglucoside, quercetin-4'-glucoside, quercetin-3 -glucoside and isorhamnetin-4

glucoside. Control experiments were conducted in the absence of either the flavonol or 

the liver homogenate.

7.2.4 Méthylation of flavonol g lu cosid es

The same incubation procedures as those outlined in section 7.2.3 were 

performed but with the addition of 24 nM 5'-adenosyl methionine (SAM) as a methyl 

donor (Shaw and Griffiths, 1980). Triplicate incubations were carried out using 

quercetin-3,4'-diglucoside, quercetin-4 -glucoside, quercetin-3-glucoside and

isorhamnetin-4 -glucoside as substrates.

7.2.5 Flavonol extraction from lyophilised tissu es

Samples obtained were immediately frozen with liquid nitrogen prior to 

lyophilisation. The freeze dried incubates were extracted in 0.5 ml of 1 0 0 % methanol 

for 30 min at 4°C and the extracts were centrifuged at 3000 x g for 1 0  min to sediment 

particulate matter. Aliquots of supernatant, 37 pi in volume, were then made up to 250 

pi with distilled water containing 0.5% trifluoroacetic acid prior to the analysis of 200 pi 

volumes by gradient elution reversed phase HPLC (section 3.2.1).
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7.2.6 Identification of isorhamnetin-3-giucoside in the
liver extract^

Standards of isorhamnetin-3-gIucoside and liver extract samples were analysed 

on a Shimadzu lOAvp liquid chromatograph, with an absorbance monitor operating at 

365 nm. A Genesis 4 pm 150 x 3.0 mm C l 8  reversed phase column, maintained at 40°C 

was eluted at 0.8 ml/min with a 45 minute gradient of 10-45% acetonitrile in water 

containing 1% fonnic acid. After passing through the flow cell of the absorbance 

monitor, the column eluate was directed to a Shimadzu LCQ8000 quadropole mass 

spectrometer with an atmospheric pressure chemical ionisation (AfCI) interface in 

positive ion mode operating in full scan mode from 300 to 700 amu.

7.3 Results

7.3.1 Metabolism of quercetin-3,4 -diglucoside

In the presence of liver homogenates, querceti n-3,4'-diglucoside underwent 

deglycosylation as depicted by the gradual decrease in its concentration over the 

incubation period and the concomitant increase in the concentration of quercetin-3- 

glucoside which reached levels of 175 ± 21 ng/g (1.9 ± 0.2 % of the initial substrate 

concentration) after 2 h (Figure 7.2). Essentially the same pattern was observed when 

liver extracts and quercetin-3,4'-diglucoside were incubated in the presence of SAM. 

This suggests that no méthylation of this diglucoside occurred. Quercetin-4'-glucoside 

was not detected in any of the incubation mixtures and no quercetin-3-glucoside was 

detected in the control samples.

A typical HPLC trace obtained from the incubation of quercetin-3,4'-diglucoside

with liver extracts at 0 min and 90 min, detected on the UV monitor at A3 6 5  nm

illustrated in Figure 7.3 (A and B). Co-chromatography established that peaks 1 and 2 

corresponded to querceti n-3,4'-diglucoside and quercetin-3 -glue oside, respectively.

' HPLC and MS identification of isorhamnetin-3-glucoside in liver extract was performed by Mr William 
Mullen, Department of Biochemistry, University of Glasgow.
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Figure 7.2: The profiles of quercetia-3,4^-diglucoside and its metabolites following 
incubation with liver homogenates under the conditions stated.
Incubations were performed for 2 h at 37°C and sampling every 10 min for the first 30 min and every half 

hour thereafter. Following lyophilisation and methanolic extraction, samples were analysed for flavonol 

content on a reversed phase HPLC system. Flavonol content is expressed as ng/g fw ± SEM. Each 

condition is a mean of 3 experiments. Graphs show liver extract profiles of quercetin-3,4'-diglucoside and 
quercetin-3 -glucoside.
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Figure 7.3: Gradient reverse phase HPLC analysis of flavonols in liver extracts
Column: 150 x 3.0 mm i.d. Genesis Cis cartridge column with a 10 x 4.0 mm 4-pm Genesis Cjg 

guard cartridge. Mobile phase: 25 min gradient of 15-40% acetonitrile in water containing 0,5% 
trifluoroacetic acid. Flow rate: 0.5 ml/min. Detector: absorbance monitor operating at 365 nm. Samples: 
(A) aliquot of sample collected immediately after the incubation of quercetin-3,4'-diglucoside with liver 
extracts; (B) as (A) but collected 90 min after the incubation; (C) aliquot of sample collected immediately 

after the incubation of quercetin-4'-gluco si de with liver extracts; (D) as (C) but samples collected 90 min 
after the incubation. Peaks l=quercetin-3,4'-diglucoside; 2=quercetin-3-glucoside; 3=quercetin-4'- 
glucoside; 4=quercetin; 5=isorhamnetin.
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Quercetin-3-glucoside accumulated over the 90 min incubation period along with other 

metabolite peaks which did not correspond with any of the available flavonol standards 

(Figure 7.3 B).

7,3.2 Metabolism of quercetin-3-glucosîde

Rapid metabolism of quercetin-3-gIucoside occurred when SAM was added to 

the liver preparations with 4049 ± 55 ng/g f.w at 0 h falling to 354 ± 89 ng/g f.w at the 

last sampling point (Figure 7.4). Three metabolites were detected, isorhamnetin-3- 

glucoside and the aglycones isorhamnetin and quercetin (Figure 7.4). The formation of 

isorhamnetin-3-glucoside was extremely rapid as it was detected at the 0  min time point, 

which was sampled within seconds of the addition of quercetin-3-gluco si de. This 

flavonol glucoside appeared to peak around 20-30 min with a concentration of 914 ± 26 

ng/g f.w (23 ± 0.7 % of the original substrate concentration) before gradually decreasing. 

Free isorhamnetin was also detected in the presence of SAM, with levels peaking at 23.3 

± 3.4 ng/g f.w (0.6 ±0.1 % of the original substrate) after 30 min, after which it declined 

steadily. Trace levels of free quercetin gradually decreased to less than 5 ng/g f  w at the 

end of the 2  h incubation period.

The data demonstrate that in the liver preparations, quercetin-3-glucoside is 

subject primarily to 3'-0-methylation in the presence of SAM. The detection of trace 

levels of quercetin and isorhamnetin indicate that both the substrate quercetin-3- 

glucoside and its major metabolite isorhamnetin-3-glucoside are subject to 

deglycosylation. The levels of quercetin-3-glucoside in the control samples without 

liver homogenate remained high during the 2 h experiment. The three metabolites were 

not detected in the control incubations (Figure 7.4).

Traces obtained in an typical HPLC analysis, with detection at A3 6 5  nm and by

fluorescence detection following on-line post-column derivatization, with a liver

preparation collected after a 20 min incubation are illustrated in Figure 7.5 B and C.

Peak 1 was identified as quercetin-3-glucoside by co-chromatography whereas peaks 2, 4

and 5 corresponded to isorhamnetin-3-glucoside, quercetin and isorhamnetin

respectively. Although traces of isorhamnetin-3-glucoside (peak 2) and the unidentified
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Figure 7.4: The profiles of quercetin-3~glucoside and its metabolites following incubation 

with liver bomogenates under the conditions stated.
Incubations were performed for 2 h at 37°C and sampling every 10 min for the first 30 min and every half 
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content on a reversed phase HPLC system. Fiavonol content is expressed as ng/g f.w ± SEM. Each 

condition is a mean of 3 experiments. Graphs show liver extract profiles of quercetin-3,-glucoside, 
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Figure 7.5: Reverse phase HPLC and mass spectrum analysis o f a liver extract foUmving 

the incubation of quercetin~3-glucoside in the presence o f S-adenosyl methionine.

HPLC analysis. Column: 150 x 3.0 mm i.d. 4 pm genesis Cig cartridge column. Mobile phase: 25 minute 

gradient of 15-40% acetonitrile in water containing 0.5% TFÂ. Flow rate: 0.5 ml/min. Detector: 
absorbance monitor operating at 365 nm and following post-column derivatization, a fluorimeter at 
excitation 425 nm and emission 480 nm HPLC-MS analysis. Shimadzu LCQ8000 quadropole mass 
spectrometer with an Atmospheric Pressure Chemical Ionisation (APCI) interface ;n positive ion mode 
operating in full scan mode from 300 to 700 amu. (A) HPLC trace of flavonols in liver extract collected at 
0 min following incubation with quercetin-3-gIucoside and SAM, detected at A3 6 5 ; (B) as (A) but collected 

20 min after the incubation, detected at (C) same as (B) but with post-column derivatization and 
fluorescence detection; (D) APCI positive ion spectrum of a 50 ng standard of isorhamnetin-3-glucoside, 
M+-m/z 479; aglycone base peak-m/z 317. (E) APCI positive ion spectrum of isorhamnetin-3-glucoside 
obtained from HPLC peak 1 in (B), M+-m/z 479; aglycone base peak-m/z 317.
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HPLC peak 3 were present in the 0 min sample (Figure 7.5A), they were not detected in 

the control sample without the presence of liver extracts. This implies either rapid 

metabolism of quercetin-3-glucoside or the presence of trace impurities from the liver 

preparations.

Isorhamnetin-3-glucoside has the same retention time as quercetin-4'-glucoside 

(see Figure 7.3) but the identity of the isorhamnetin conjugate was continued by LC-MS 

(Figure 7.5 D-E). The isorhamnetin-3-glucoside standard (Figure 7.5 D) and the

metabolite (Figure 7.5 E) both yielded spectra with major ions at m/z 479 (M ' ) and m/z

317. The mass spectrum of quercetin-3-glucoside contains the equivalent fragments ions 

14 amu lower at m/z 465 and m/z 303 (W. Mullen, unpublished).

7,3.3 Metabolism of quercetin-4'-glucoside

Metabolism of quercetin-4'-glucoside by liver homogenates was observed with 

the level of the glucoside decreasing gradually over the 2 h incubation period with 

approximately 175-250 ng/g f.w detected in the last sampling point compared to the 

initial concentration of 5857 ng/g f.w at 0 min (Figure 7.6). Deglycosylation of 

quercetin-4'-glucoside occurred as indicated by the build up of low levels of free 

quercetin, equivalent to ca. 1% of the original substrate concentration after 2 h (Figure 

7.6). Incubation of quercetin-4'-glucoside in the presence of SAM resulted in the 

appearance of isorhamnetin in the liver preparations (Figure 7.6). Isorhamnetin levels 

peaked around 60 min, giving approximately 43.3 ± 3.7 ng/g f.w (0.7 ± 0.1%), after 

which it started to decrease. Trace levels of isorhamnetin also formed in preparations to 

which SAM was not added, possibly as a consequence of endogenous SAM acting as 

methyl donor. Isorhamnetin-4'-glucoside was not detected as a metabolite of quercetin- 

4 '-glucoside. This suggests that the isorhamnetin that accumulated was formed by 3-0- 

methylation of quercetin. Levels of quercetin-4'-glucoside in the control samples were 

generally stable and only fell slightly over the 2 h incubation period (Figure 7.6). 

Neither quercetin nor isorhamnetin were detected when quercetin-4’-glucoside was 

incubated without the liver preparation.
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Figure 7,3 (C and D) iJlustrate typical HPLC traces of a sample collected at the 0 min 

and 90 min time point, detected by the UV monitor at 365 nm. Peaks 3, 4 and 5 co

chromatographed with quercetin-4'-glucoside, quercetin and isorhamnetin, respectively. 

Quercetin and isorhamnetin gave higher peaks when detected by fluorimeter after post

column derivatization (data not shown). Other unknown peaks not present at 0 min 

could also be detected on the UV trace 90 min after the incubation. These peaks did not 

correspond to any of the available standards.

7.3 .4  Metabolism of isorhamnetin-4 -glucoside

Deglycosylation of isorhamnetin-4'-glucoside was obsei*ved when the conjugate 

was incubated with the liver homogenates. There was a ca. 50% decline in the level of 

the glucoside over the 2 h incubation period (Figure 7.7) that was associated with a 

concomitant increase, albeit at a lower level, of isorhamnetin. Free isorhamnetin was not 

detected in the control experiments (Figure 7.7). The rate of decline in the level of 

isorhamnetin-4 '-glucoside was not affected by the presence of SAM in the incubation 

medium (Figure 7.7).

7.3.5 Summary of metabolism of flavonols by rat liver 
hom ogenates

The méthylation and deglycosylation of the fiavonol glucosides by rat liver 

homogenates is summarised in Table 7.1. For comparative purposes, accumulation of 

the metabolites at the end of 2 h was expressed as a percentage of the initial substrate 

concentration. Generally, flavonols in the control samples were stable throughout the 2 h 

incubation period with more than 80% of the parent compounds recovered at the end of 

the experiment.

All four fiavonol glucosides underwent metabolism over the 2 h incubation 

period. Metabolism was highest for quercetin-4'-glucoside (10.9 ± 1.7 % recovered after 

2 h) followed by quercetin-3-glucoside (32.4 ±2.7 %), isorhamnetin-4'-glucoside (36.4 

± 0.4 %) and quercetin-3,4'-diglucoside (68.1+4.1 %) (Table 7.1). Interestingly, when
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Table 7.1: The extent of fiavonol metabolism and the accumulation of metabolites 

following incubation with rat liver homogenates.

Fiavonol Recovery of 
substrate after 2 h

Accumulation of metabolites ^
(%), -.

incubation^
(%)

Qiiercetin-3-
glucoside

Isorhamnetin-
3-glucoside

Quercetin Isorhamnetin

Quercetin-3,4'- 
diglucoside

With SAM 46.4 ±6.8 1.2±0.3 - - -

Without SAM 68.1 ±4.1 1.9±0.2 - - -

Control 100 - - - -

Quercetin-3-
giucoside

With SAM 8.6 ±2.2 - 16.7 ±1.5 0.1 ±0.05 0.1 ±0.03
Without SAM 32.4 ±2.7 - 6.5± 1.0 0.2 ±0.15 0.01 ±0.01
Control 100 - - - -

Quercetin-4’-
giucoside

With SAM 14.5 ±2.2 - - 0.8 ±0.3 0.4 ±0.1
Without SAM 10.9±1.7 - - 0.8 ±0.2 0.1 ±0.01
Control 82.9 ±7.9 - - -

lsorhamnetin-4’-
giucoside

With SAM 33.6 ±2.6 - - - 5.7 ±2.6
Without SAM 36.4 ±0.4 - - - 4.6 ±1.4
Control 79.2 ±4.9 - -

Results are expressed as the percentage of fiavonol remaining at the end of the 2 h 
incubation period relative to the amount at the start of the experiments. (n=3 ± SEM).

 ̂ Accumulation of the metabolites after 2 h incubation was calculated as a percentage of the 
initial substrate concentration in the incubation media. (n=3 ± SEM).
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accumulation of the metabolites was expressed as percentage of the initial substrate 

concentration, the figures obtained did not directly correspond to the extent of 

metabolism of the substrate at the end of the 2 h period. In most instances, accumulation 

of the metabolites was much lower than we would have expected based on the extent 

ofmetabolism of the parent compound. It would appear that other types of metabolism 

are occurring as well as deglycosylation and méthylation and this will be further 

discussed in the next section.

Quercetin-3-glucoside was methylated extensively when SAM was added to the 

liver homogenates. At the end of a 2 h incubation period, more than 90% of the 

quercetin-3-glucoside added to the liver preparation had been metabolised. At peak 

concentration, the accumulation of methylated products, isorhamnetin-3-glucoside and 

isorhamnetin was 22.6 ± 0.7% and 0.6 ± 0.1%, respectively. In the case where SAM was 

not present, accumulation of isorhamnetin-3-glucoside and isorhamnetin was only 6.5 ± 

1.0% and 0.03 ± 0.02%, respectively, at peak levels. Deglycosylation of quercetin-3- 

glucoside occurred at a much lower extent than 0-methylation with the percentage 

accumulation of quercetin in the range of 0.6-0.8%. The total accumulation of 

metabolites at 2 h only accounted about 20% of the total quercetin-3-glucoside 

metabolised.

Deglycosylation of quercetin-3,4 -diglucoside yielded quercetin-3-gIucoside (1.2- 

1.9%) which accounted for only 6% of the decline in the level of the parent compound 

(32-54%). Quercetin-4'-glucoside was deglycosylated to quercetin (1.0%) and a 

proportion of the free quercetin was methylated to isorhamnetin, as observed in 

incubations with the presence of SAM (0.4%). The extent of metabolism of this 

glucoside was much higher than the metabolites generated implying the involvement of 

other reactions besides deglycosylation. Some deglycosylation of isorhamnetin-4'- 

glucoside also occurred, giving rise to approximately 4.6-5.7% of isorhamnetin, 

representing only about 13% of the metabolised substrate.
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7.4 Discussion

Studies on the antioxidant activities of flavonoids suggest higher activities of 

flavonoid aglycones compared to the conjugated forms (Laughton et al., 1991, Rice- 

Evans et al., 1996). However, flavonoids, with the exception of flavan-3-ols, almost 

always occur in the diet as glycosides and only a very small proportion exists as the 

aglycone. Thus, metabolic studies of flavonoids are important to provide information on 

the fate of these compounds following their absorption and the resulting biological 

activities of their metabolites.

7.4.1 Méthylation of flavonols

The ability of the liver catechol-(9-methyl transferase (COMT) to methyl ate 

several flavonoids has been reported (Zhu et a l, 1994). In the present study, méthylation 

of quercetin-3-glucoside occurred when SAM was present in the incubation experiments. 

This was evident from the percentage of the fiavonol substrate recovered at the end of 

the incubation period (8.6%) as well as the amount of metabolites formed. High levels 

of the metabolite isorhamnetin-3-glucoside could be detected. The presence of a 

catechol group (C-3 ,4 -dihydroxylation) on quercetin-3-gIucoside would increase the 

affinity of the COMT for this fiavonol. The additional presence of the aglycone 

isorhamnetin suggests some deglycosylation of quercetin-3-glucoside to liberate 

quercetin which subsequently undergoes 3'-0-methylation to isorhamnetin. 

Alternatively, it could also be a result of deglycosylation of isorhamnetin-3-glucoside. 

Figure 7.8 illustrates a proposed pathway for the hepatic metabolism of quercetin-3- 

glucoside.

Méthylation of quercetin-3-glucoside was rapid and this was evident in the rapid 

increase of the 0-methylated metabolite isorhamnetin-3-glucoside. A higher affinity of 

the COMT for quercetin, ca. 3 orders of magnitude higher than its natural substrates, 

catecholamines, has been reported by Zhu et al. (1994). This may explain the above 

observations. As isorhamnetin-3-glucoside was also detected in incubations without 

SAM, albeit to a lesser extent, some endogenous SAM may already be present in the
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liver homogenates to allow O-methylation to occur. O-methylation was not observed 

with quercetin-3,4'-diglucoside, quercetin-4'-glucoside and isorhamnetin-4 -glucoside, 

possibly due to the absence of the catechol group on the B ring.

Méthylation of flavonols has been demonstrated in rats orally fed quercetin 

(Manach et a l, 1997). In this instance, conjugates of isorhamnetin and tamarixetin (4'- 

O-methyl quercetin) were detected in plasma. Although the 4 -O-methylation of 

quercetin-3-glucoside has not been reported previously, this reaction would appear to be 

feasible because of the presence of the catechol moiety on the B ring of the quercetin 

conjugate. Méthylation of quercetin and fisetin using porcine liver COMT has also been 

reported in vitro (Zhu et al,, 1994). In addition, studies on the tissue distribution of 

COMT showed that liver had the highest activity, supporting the role of liver in this 

reaction (Piskula and Terao, 1998).

Of the four fiavonol conjugates tested in this study, only quercetin-3-glucoside 

underwent méthylation. This is the only fiavonol with a catechol group on the B-ring. 

Quercetin-3,4'-diglucoside, quercetin-4'-glucoside and isorhamnetin-4'-glucoside do not 

have a 3 ',4 '-dihydroxy structure. In addition, the presence of SAM in incubations with 

quercetin-4'-glucoside and isorhamnetin-4 -glucoside did not result in further 

metabolism suggesting that méthylation of these flavonols did not occur.

When quercetin-4'-glucoside was incubated in the liver homogenates, 3 -0- 

methylation of the fiavonol did not occur to yield isorhamnetin-4'-glucoside. This 

implies that the active site on the enzyme COMT is not able to bind quercetin-4'- 

glucoside. Thus, the data obtained with the in vitro rat liver preparations did not support 

the hypothesis that in humans, absorbed quercetin-4'-glucoside undergoes 3 -0- 

methylation to form isorhamnetin-4'-glucoside. It is possible that other tissues may play 

a role in this reaction or that human liver may contain different (9-methyltransferases to 

rat liver. Alternatively, the 24 nM SAM concentration used was too little for 3 -0- 

methylation of quercetin-4'-glucoside to occur.

The enzyme COMT catalyses the inactivation of catecholamines and is also 

responsible for the detoxification of xenobiotic catechols (Creveling et aL, 1970). The 

presence of the catechol structure is a crucial structural moiety for interaction with
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COMT. In addition, the polarity of the compound to be methylated is probably of 

importance (Piskula and Terao, 1998). Catechols with polar substituents are 

preferentially methylated at C-3' whereas the presence of non-polar substituents, e.g. 

quercetin aglycone leads to random méthylation, giving rise to either 3'- or 4 -0- 

methylated metabolites (Creveling et aL, 1970). In this study, when the fiavonol 

conjugates were deglycosylated to produce quercetin, COMT will O-methylate the 

aglycone, but not the parent compounds, quercetin-3,4’-diglucoside or quercetin-3- 

glucoside, to isorhamnetin.

7.4.2 D eglycosylation of flavonols

Deglycosylation was observed with all four flavonols, albeit at seemingly 

different rates as evident from the concomitant rise in levels of the aglycones (Table 7.1), 

Variation in the percentage accumulation of deglycosylated products of fiavonol 

glucoside metabolism suggests structural specificity of the liver p-glucosidase. The 

enzyme appears to have a higher affinity for fiavonol glucosides with glucose 

substitutions at C-4' than at the C-3 position. This was evident in the conversion of 

quercetin-3,4 -diglucoside to quercetin-3-glucoside and metabolism of quercetin-4'- 

glucoside to quercetin compared to the low level of quercetin accumulation in 

incubations with quercetin-3-glucoside. The apparent lack of conversion of quercetin- 

3,4'-diglucoside to quercetin-4'-glucoside is in keeping with this proposal.

Day et al. (1998) described in vitro deglycosylation of several flavonoids by 

glycosidases of liver cell-free extracts. In particular, they observed 69% deglycosylation 

of quercetin-4'-glucoside. Interestingly, this group reported that quercetin-3-glucoside 

and quercetin-3,4 -diglucoside were not hydrolysed by the enzymes from the liver 

extract. Nevertheless, we detected some metabolism of quercetin-3,4 -diglucoside and 

possibly quercetin-3-glucoside, with recoveries of ca. 32% and 68% respectively, of the 

original substrate. However, as mentioned above, the 68% metabolism of quercetin-3- 

glucoside could be primarily the result of méthylation rather than deglycosylation.
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7.4.3 Other metabolic reactions

One interesting observation from this study is the possible involvement of other 

metabolic reactions in addition to méthylation and deglycosylation. Based on our 

results, the accumulation of metabolic products did not correspond to the extent of 

metabolism of the corresponding fiavonol glucoside (see Table 7.1). In most instances, 

the level of metabolites recovered at the end of the 2 h incubation was equivalent to <6% 

of the initial substrate concentration. In contrast, there was a >30% fall in the level of 

substrate, leaving ca. 24% of metabolites unaccounted for. As the fiavonol glucosides 

were relatively stable in the control samples, it would imply that other metabolic 

reactions are occurring in addition to deglycosylation and méthylation. As an example, 

extensive metabolism of quercetin-3-glucoside was observed from the appearance of 

methylated metabolites. However, based on the decline in the levels of the glucoside and 

accumulation of the metabolites, it would appear that a large percentage of the 

metabolites were not accounted for. As we only detected 0.2% of deglycosylated 

products, other reactions may have occurred in addition to deglycosylation and 

méthylation. The possibility that other methylated metabolites were produced as well as 

isorhamnetin-3-glucoside and isorhamnetin should be taken into consideration. In 

addition to 3 '-O-methylation of quercetin-3-glucoside, 4 '-O-methylation of this 

glucoside could also have taken place to yield tamarixetin-3-glucoside. Indeed, we 

detected an unknown HPLC peak, which when analysed by the LC-MS showed similar 

mass spectrum to isorhamnetin-3-glucoside (peak 3, Figure 7.5 B). However, due to the 

lack of this standard and limited time, this was not further investigated.

The liver has been reported to be able to glucuronidate, sulphate and hydroxylate 

flavonoids as well as carry out deglycosylations and méthylations (Griffiths, 1982, 

Hackett, 1986). A study by Day et al (1999) demonstrated glucuronidation of free 

quercetin and isorhamnetin following incubations with liver cell-free extracts. 

Glucuroni dation of these aglycones was extensive and three to four glucuronidation 

metabolites were detected. Glucuronic acids were added to the fiavonol molecule at 

various sites, mainly C-4', C-7 and C-3. In addition to in vitro experiment, in vivo studies 

with animals also demonstrated glucuronidation and/or sulphation of flavonols following 

oral administration of the parent compound. Glucuronides of quercetin, isorhamnetin
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and tamarixetin as well as sulphates of quercetin were detected in the bile and urine of 

rats fed quercetin (Ueno et al., 1983). Sulphation of quercetin was also reported in 

an isolated perfusion experiment with rat liver (Shali et a i, 1991). Zhu et al (1994) 

described extensive metabolism of quercetin following its intraperitoneal administration 

to hamsters. In addition to extensive O-methylation of the parent compound to form 

isorhamnetin, a portion of the resulting metabolites was also conjugated by 

glucuronidation or sulphation. In another study where rats were supplemented with 

0.2% quercetin, the major circulating metabolites were glucurono-sulpho conjugates of 

isorhamnetin and quercetin (92%) (Morand et ai, 1998). This group also demonstrated 

in vitro sulphation and glucuronidation of quercetin by liver extracts. Although in vitro 

glucuronidation of fiavonol glucosides by the liver has not been reported, the likelihood 

of this happening is high given that the liver is likely to conjugate flavonols rather than 

deglycosylate.

7.5 Conclusion

This study confirms that the liver is capable of O-methylation and 

deglycosylation of several naturally occurring fiavonol glucosides, particularly those that 

are found in abundance in onions. Quercetin-3-glucoside underwent extensive 

méthylation to yield methylated metabolites of this fiavonol. This stresses the 

importance of the catechol group for méthylation of flavonols, catalysed by the enzyme 

COMT. Deglycosylation of quercetin-4'-glucoside, isorhamnetin-4'-glucoside, and to a 

less degree quercetin-3,4 '-diglucoside, implies structural specificity of the enzyme 

glycosidases towards the flavonols. Results from this study also suggest that méthylation 

and deglycosylation are not the only metabolic reactions involved in the liver 

metabolism of fiavonol glucosides. The possibility of other metabolic events occurring 

merits further research, especially the possible formation of glucuronide and sulphate 

conjugates. Furthermore, the rate and extent of fiavonol metabolism appear to be 

dependent on their structure as well as the position of their sugar moiety. Such study is 

highly relevant in determining the metabolites formed by flavonols following their 

absorption. In this way, the potency of the original flavonols ingested can be determined 

and the benefits of their consumption evaluated. The information will also be useful for 

any in vivo metabolic studies of fiavonol glucosides.
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CHAPTER 8: GENERAL DISCUSSION

Recent interest in the absorption and metabolism of flavonoids in humans was 

sparked by reports of their potent antioxidant activities and possible protection against 

diseases associated with oxidative damage. Evidence from epidemiology studies, 

although still limited, points to a possible protection of dietary flavonoids against 

coronary heart disease and possibly cancer (Hertog et a i, 1993, Keli et al., 1996, Knekt 

et a i, 1997). This area of research requires further investigation as the information 

available is limited and several questions remain unanswered.

The main objective of this thesis was to carry out research on the absorption and 

metabolism of flavonoids particularly from the sub-class flavonols. Attempts were made 

to identify absorption of individual flavonols prior to acid hydrolyses treatment which 

breaks the glycoside as well as any glucuronide or sulphate linkages. Most studies have 

analysed fiavonol content after the hydrolyses of conjugates. This gives only a 

combined estimate of the free flavonols and the aglycones liberated from the conjugates. 

Specific fiavonol glycosides cannot be identified this way. At the same time, the mode 

and extent of fiavonol absorption from the small intestine was also evaluated. The 

process that occurs in the gut or during transepithelial transport is the first step that 

determines the bioavailability of fiavonol. In addition, we investigated the hepatic 

metabolism of several flavonols.

To achieve this, first, we performed a feeding study with healthy human 

volunteers. They consumed a single dose of flavonol-rich fried onions after which the 

presence of flavonols in the plasma and urine was analysed (Chapter 4). A modified in 

vitro everted rat gut model developed by Wilson and Wiseman (1954) was applied for 

the investigations of fiavonol absorption from the small intestine. This common and 

widely used method is useful in evaluating intestinal uptake of flavonols as it allows easy 

sampling from the serosal side as well as maintaining cell viability. In the case of 

fiavonol metabolism, the liver was chosen as it has been widely reported to play a major 

role in fiavonol metabolism. In vitro incubations of flavonols commonly found in onions 

was carried out in the presence of rat liver homogenates. In this way, the route of their
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metabolism can be evaluated and will give an indication as to the extent of their 

metabolism and susceptibility towards biotransformation.

8.1 Discussion of the techniques used in this study

This thesis involved extensive use of HPLC as a means of fiavonol identification 

and quantification. Development of a post-column derivatization procedure involving 

formation of a fiavonol-A1(N0 3 ) 3  fluorescent complex has allowed increased sensitivity 

and selectivity for fiavonol analysis (Holiman et al., 1996). Such method provided ease 

in analysing fiavonol normally present in biological fluids in minute levels. Flavonols 

with a free hydroxyl group at C3 and a keto group at C4 can form fluorescent complexes 

with aluminium ion, hence increasing their sensitivity for the purpose of identification 

(Hollman et al., 1996). The procedures of Ho liman et al (1996) were made more reliable 

and suitable for automated HPLC by using 0.1 M rather than the much more viscous 1.0 

M methanolic A1(N0 3 )3 . This resulted in only a 2-3-fold drop in sensitivity and a ten

fold saving in the cost of A1(N0 3 )3 .

The everted rat gut model adapted for studying intestinal transport of flavonols 

provided reliable results. It is a convenient way of studying intestinal transport due to its 

simplicity as well as sensitivity. The large standard error in certain incubations is 

indicative of the different characteristics (e.g thickness of intestine) and transport 

behaviour between different segments and also between different animals. The age of 

the rats used is important as intestine from young rats remain viable for longer periods 

than those taken from adult animals. However, newborn intestine is not suitable due to 

their fragility.

The liver is the main organ responsible for the metabolism of absorbed 

compounds. Development of in vitro methods to study hepatic metabolism has enabled 

the identification of metabolites produced following the metabolism of specific 

flavonols. This has allowed investigation of the relationship between fiavonol structure 

and the extent of their metabolism. Such study is more complicated in in vivo systems
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due to interference from other substances and other physiological processes as well as 

the difficulty of sampling.

8 .2  Absorption o f flavonols

The quercetin glucosides from onions were well absorbed into the plasma of 

human volunteers and excreted into urine. This was the first study which described the 

absorption of individual onion flavonols, mainly quercetin-4'-glucoside and 

isorhamnetin-4'-glucoside. So far, feeding studies with onions reported absorption of 

only quercetin glycosides, determined after acid or enzymic hydrolyses (Hollman et al., 

1995, 1996, McAnlis et ai, 1999). Such studies allow estimation of quercetin glycosides 

only after liberation of the aglycone from the sugar bonds. As they did not analyse the 

samples before acid/enzyme hydrolysis, it was not clear if the quercetin detected was 

actually that liberated from sugar bonds or the free quercetin already present before 

hydrolysis. With this method, the absorption and identification of specific fiavonol 

glucosides is not known. However, the availability of standards as well as sensitive 

HPLC and post-column derivatization procedure has enabled the identification of the 

fiavonol glucosides. The data obtained in the present study demonstrated absorption of 

fiavonol conjugates, hence contrast and so refutes the hypothesis of Kuhnau (1976) that 

only fiavonol aglycones are absorbed.

In our study, we found high plasma levels of isorhamnetin-4'-glucoside, a minor 

fiavonol in onions whereas quercetin-4'-glucoside, which was present in high 

concentrations in onions, was present in low levels in plasma. Interestingly, quercetin- 

3,4'-diglucoside, which was the major onion fiavonol was not detected in plasma of the 5 

subjects despite being highly absorbed in the everted rat gut model. Our study 

demonstrated selective absorption of flavonols from the small intestine. On the other 

hand, their differential metabolism or sequestration into tissues following absorption may 

explain the results obtained. Several hypotheses are proposed to explain the results 

obtained based on our work and the existing literature.
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The higher accumulation of isorhamnetin-4'-glucoside compared to quercetin-4'- 

glucoside is in agreement with another recent study where ileostomy volunteers ingested 

200 g of fried yellow onions (Aziz et al., 2000). This study reported approximately 40 

times greater accumulation of isorhamnetin-4'-glucoside compared to quercetin-4'- 

glucoside in plasma of the volunteers following a meal of lightly fried onions. An 80 

fold difference was obtained in our study (chapter 4). Interestingly, when the content of 

the ileostomy effluent was analysed for unabsorbed flavonols, more than 80% of the 

ingested isorhamnetin-4'-glucoside was recovered whereas only about 5% of the 

quercetin-4'-glucoside remained in the ileostomy effluent. Our in vitro incubations of 

onions with digestive juices to mimic the small intestinal digestion process demonstrated 

the stability of the fiavonol glucosides. Less than 20% degradation was observed despite 

the presence of O.IM HCl in the lumen of the small intestine (Chapter 4). Indeed, 

Hollman et al (1995) also reported the relative stability of flavonols to gastric juices in 

vitro. This implies that metabolism of flavonols did not occur in the lumen of the small 

intestine, leaving the flavonols unchanged for absorption. Thus, the flavonols recovered 

in the ileostomy effluent were the unabsorbed flavonols remaining after passing through 

the small intestine. The high recovery of isorhamnetin-4'-glucoside in the ileostomy 

fluid implies that intestinal absorption of this fiavonol glucoside was not very efficient 

despite its presence in high levels in plasma. Certainly our in vitro everted rat gut model 

showed less efficient uptake of isorhamnetin-4'-glucoside compared to the other fiavonol 

glucosides (Chapter 5). One explanation for the high levels of isorhamnetin-4'-glucoside 

in plasma is its poor metabolism and/or less efficient removal from the bloodstream. 

Longer retention of isorhamnetin in plasma compared to quercetin has been reported, 

possibly as a result of more effective release of isorhamnetin into the hepatic venous 

blood (Manach et ai, 1997). An alternative explanation is that a proportion of the 

absorbed isorhamnetin-4'-glucoside is excreted into bile and is reabsorbed via the 

enterohepatic circulation, thus maintaining its presence in plasma. Biliary excretion of 

conjugated isorhamnetin (Manach et ai, 1996) as well as conjugated forms of quercetin 

and tamarixetin (Crespy et al., 1999) has been described in rats orally fed quercetin. It 

has also been proposed that some of the isorhamnetin-4'-glucoside present in plasma 

may have been fonned by 3 '-O-methylation of the absorbed quercetin-4'-glucoside 

(Aziz et al., 1998), hence explaining higher levels of the former and lower levels of the 

latter. However, our in vitro experiments with liver homogenates did not show this. The

190



absence of the catechol structure on ring B, required for O-methylation by COMT 

(Creveling et al., 1970) could have prevented this reaction. The possibility that tissues 

other than the liver playing a role in this reaction should also be considered. The kidney 

has been reported to have the ability to methylate the anthocyanin cyanidin-3-glucoside 

(Tsuda et al., 1999). Alternatively, rat liver and human liver may have different 

metabolic properties.

Unlike isorhamnetin-4'-glucoside, the low recovery of quercetin-4'-glucoside in 

the ileostomy effluent implies their efficient absorption from the small intestine. Thus 

the low levels of this glucoside in plasma is likely due to their effective metabolism 

and/or removal from the bloodstream. One possible pathway for their metabolism is by 

deglycosylation of the sugar bonds, catalysed by the liver (3-glycosidase. Our incubation 

study with liver extracts demonstrated almost 90% metabolism of quercetin-4'-glucoside 

(Chapter 7). Another study reported 69% deglycosylation of quercetin-4'-glucoside 

following incubations with cell-free preparations from human liver (Day et al., 1998). 

This group also found extensive deglycosylation of quercetin-4'-glucoside following 

incubations with cell-free preparations from small intestine which may further explain 

their low levels in plasma. They proposed that deglycosylation occurs during the 

transport of quercetin-4'-glucoside across the intestinal membrane, releasing free 

quercetin. If this was the case, large amounts of free quercetin should be present in 

plasma and urine of the volunteers following the fried onion meal. However, we did not 

detect the presence of high levels of this aglycone in plasma and urine. This implies that 

if deglycosylation of quercetin-4'-glucoside occurred during their passage across the 

small intestine and in the liver, there is another pathway which metabolises or effectively 

removes the free quercetin from the bloodstream.

Our feeding study did not detect the presence of quercetin-3,4'-diglucoside in 

plasma or urine despite their efficient absorption in the everted rat gut model (chapter 5) 

and also in the study of Gee et al (1998). The ileostomy fluid of volunteers fed the fried 

onion meal was also devoid of this diglucoside (Aziz et al., 2000). This suggests the 

efficient absorption of quercetin-3,4'-diglucoside from the small intestine. The 

diglucoside did not accumulate in plasma in detectable amounts despite its absence in the 

ileostomy fluid (Aziz et al., 2000). This indicates that if quercetin-3,4'-diglucoside is
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absorbed from the small intestine, there exists an efficient pathway that metabolises this 

compound or effectively removes it from the bloodstream. The liver has been proposed 

as the organ responsible for metabolism of quercetin-3,4'-diglucoside. Our in vitro 

hepatic metabolism of quercetin-3,4'-diglucoside showed approximately 50% 

metabolism (chapter 7). However, we only detected 2% of deglycosylation products, 

indicating the possible involvement of other reactions, possibly glucuronidation and/or 

sulphation. From our feeding study with the volunteers, estimation of levels of 

conjugated quercetin after the fried onion meal in the acid hydrolysed samples gave a 

percentage of intake of 0.97% at peak plasma concentration (chapter 4). Compared to 

the 0.13% accumulation of quercetin-4'-glucoside in the non-hydrolysed plasma, a 

percentage of the conjugated quercetin could be contributed by metabolites of this 

aglycone as well as its glucosides and diglucosides, possibly glucuronide or sulpho- 

conjugates. Certainly, more in vitro experiments are needed to confinn the metabolic 

pathway for fiavonol glucosides as well as the metabolites formed as this is the most 

common ingested form of flavonols. Glucuronidation and sulphation of quercetin by 

enzymes of the liver is widely reported (Ueno et al., 1983, Shali et al., 1991).

In recent studies, the ability of several flavonoid glycosides as well as free 

quercetin and isorhamnetin to undergo glucuronidation during their passage across the 

small intestine has been described (Day et al., 1999, Spencer et al., 1999). This raises 

the possibility that the liver is not the only organ capable of this reaction. Although the 

authors did not investigate the glucuronidation of quercetin-3,4'-diglucoside and 

quercetin-4'-glucoside, the possibility of these two flavonols following this reaction 

should be considered. Spencer et al (1999) suggested that glucuronidation favours the 

presence of the catechol structure (3 ',4'-(9-dihydroxylation) on ring B. However, 

neither quercetin-3-glucoside nor rutin have this structure and both were absorbed 

mainly as glycosides. It should be noted that a higher concentration of the perfused 

compound was employed by Spencer et al. (> 50 pM) than was used in our study (10 

pM). It is unlikely that such a high concentration of flavonols will be present in the 

small intestine at one time given that the average daily intake of flavonols is only 23 

mg/d (Hertog et al., 1993) spread throughout the day. Based on these results, it is highly 

unlikely that a large proportion of the quercetin-3,4'-diglucoside and quercetin-4'- 

glucoside pools are subjected to intestinal glucuronidation. Furthermore, these two
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fiavonol glucosides did not possess the catechol structure on ring B which have been 

proposed as a structural requirement for intestinal glucuronidation (Spencer et al., 1999). 

Perhaps the liver plays a more prominent role in glucuronidation of flavonols. The 

characteristic of the liver glucuronyltransferase and sulphotransferase is not known and 

the requirements for binding to the flavonols are not known. It is possible that a different 

glucuronyltransferase and sulphotransferase from that found in the intestinal membrane 

is reacting in the liver.

8.3 Accumulation of flavonols in plasma

We estimated the relative area under the curve (AUC) of plasma fiavonol 

glucosides and the aglycone in the onion study. In keeping with their presence in 

plasma, the bioavailability o f quercetin-4'-glucoside was one eighth that of 

isorhamnetin-4'-glucoside. When AUC was estimated for conjugated quercetin after 

acid hydrolysis, a much higher value was obtained, approximately 2- fold and 16-fold 

higher than isorhamnetin-4'-glucoside and quercetin-4 -glucoside, respectively. 

Conjugated quercetin in the hydrolysed plasma may contain other glycosides, 

glucuronides or sulphates in addition to quercetin-4'-glucoside. Their bioavailability 

may be different from quercetin glucoside, depending on the rate and extent of their 

absorption from the intestine, hence the high AUC observed (Chapter 5).

Bioavailability most likely differs with different flavonols. Tomatoes for 

example are rich in quercetin rutinoside (Stewart, personal communication), apples 

contain high levels o f quercetin galactoside (Lister, 1994) whereas tea contains mainly 

conjugated forms o f quercetin and kaempferol as well as low levels o f myricetin (Hertog, 

1994). The bioavailability of dietary rutin in humans is not widely studied. A pilot 

study investigating the absorption of flavonols in human volunteers who ingested cherry 

tomatoes only detected very low levels of conjugated quercetin in plasma (<2%) (Crozier 

et al., 2000). Unchanged rutin was not detected in samples of unhydrolysed plasma, 

probably because it was present at levels below the limits of detection. Bioavailability of 

pure rutin was one third (Hollman, 1997) that of quercetin glycosides from onions 

(Chapter 4). In addition, the bioavailability o f quercetin glycosides from apples was also
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lower than onions (Hollman, 1997). The fact that apples contain different sugar 

substitution attached to quercetin compared to onions may explain the difference in 

bioavailability (Lister, 1994). On the other hand, the bioavailability of tea flavonols has 

not been described, possibly because fiavonol concentration in tea is lower than other 

dietary source and coupled with extensive metabolism will preclude their identification 

in plasma. A pilot study detected less than 2% accumulation of conjugated quercetin at 

peak plasma level following ingestion of 400 ml of black tea (Crozier et al., 2000). The 

clear difference in bioavailability of quercetin glycosides described above suggests that 

eating tomatoes and apples or drinking tea may not increase plasma fiavonol levels as 

much as onions.

Determination of the bioavailability of flavonols from various dietary sources can 

provide useful data on foods containing highly bioavailable flavonoids. The information 

is highly useful in epidemiology studies whereby the major source of dietary flavonols 

can be compared with their bioavailability. In this way, a more precise association 

between fiavonol intake and disease occurrence can be made. Several epidemiology 

studies reported tea as the main source of flavonols, but tea flavonols did not appear to 

be highly absorbable (Crozier et al., 2000). This may indicate that the inverse 

association may have been contributed by other compounds in tea such as catechins 

instead of flavonols.

8.4 Mechanisms of absorption of flavonols

The mode and extent of fiavonol absorption from the small intestine is one of the 

determinants of their bioavailability. Results from both the onions feeding study and 

uptake of individual flavonols from the everted rat gut model suggest differences in the 

extent of their absorption. A carrier protein is the most likely vehicle for the transfer of 

fiavonol glycosides across the intestinal membrane due to the polar properties of 

fiavonol conjugates. Existing literature also seems to point to the involvement of a 

carrier protein for the transport of flavonols across the small intestine (Gee et al., 1998). 

Attempts to identify the carrier involved have provided conflicting results. Our study

194



indicated that SGLTl was unlikely to play a major role in mediating fiavonol glucoside 

uptake across the small intestine (Chapter 6).

Clearly, more studies are required to determine the exact mechanism. Other 

transport pathways and carrier protein exist in the membrane of the small intestine 

responsible for the uptake of a variety of compounds. The prospect of these carriers 

being involved in mediating fiavonol uptake should not be ruled out. We proposed 

several possible mechanisms for intestinal transport of flavonols (Figure 8.1). GLUTS, a 

fructose transporter is a potential carrier. It has a 39-65% sequence identity with other 

glucose transporters (Mueckler, 1994), suggesting a possible involvement in mediating 

the uptake of flavonols. In addition to SGLTl, the presence of a second Na^-dependent 

glucose transporter in the brush border membrane has been suggested based on kinetic 

studies (Ferraris and Diamond, 1986). The ability of phloridzin to inhibit this transporter 

has not been determined and its involvement in fiavonol uptake is possible. In addition 

to the known transporters, there maybe other carrier proteins with the ability to transport 

flavonols which to-date have not been identified. As mentioned previously (Chapter 6), 

several compounds including glucose are capable of being transported via the tight 

junction which can be regulated by SGLTl. However, the likelihood of flavonols 

following this pathway is dependent on their structure particularly their polarity.

195



Na
LU M ENIV

Na

SE R O SA L

Figure 8.1: Possible m echanism s o f  intestinal fiavonol transport.

Four possible routes are hypothesised for the transport of flavonols on the apical 

membrane and one possible route for transport across the basolateral membrane: (I) 

sodium-independent fructose transporter (GLUTS); (II) the sodium-dependent glucose 

transporter; (III) an unidentified transporter; (IV) the paracellular pathway and (V) the 

sodium-independent glucose transporter.

196



8.5 Metabolism of flavonols

8.5.1 Liver metabolism

Differences in the degree of metabolism of various flavonols by liver extracts 

imply structural-dependence on their metabolism. This was observed in the feeding 

study with onions (chapter 4). Excretion of onion flavonols in urine following ingestion 

of the fried onions ranged from as low as 0.2 % (quercetin-4'-glucoside) to 17.4 % 

(isorhamnetin-4'-gIucoside), expressed as a percentage of the total intake (Chapter 4). 

Their accumulation in plasma showed a similar trend. Differences in excretion of the 

onion flavonols imply differences in the extent of their metabolism. Holiman e t  a !  

(1995) reported 52% absorption of quercetin glucosides from onions whereas we 

detected less than 1% at peak levels in plasma and 0.8% in urine. This suggests 

extensive metabolism of quercetin glucosides following their absorption. Indeed, 

substantial metabolism of flavonoi glucosides was seen with experiments using rat liver 

homogenates with percentage metabolism ranging from 32-91% (Chapter 7). Although 

we could detect only méthylation and degiycosylation of flavonoi glucosides, the 

possible involvement of other reactions should not be discounted.

In addition to méthylation, liver is also capable of forming flavonoi conjugates 

with glucuronic acid and sulphate. The enzyme glucuronosyltransferase and 

phenolsulfotransferase are responsible for glucuronidation and sulphation, respectively. 

Formation of glucuronides and sulphates of quercetin has been demonstrated using an 

isolated perfused rat liver system (Shah e t  a i ,  1991). The types of metabolites formed 

appear to be dependent on the parent compound. In rats fed a quercetin diet, 92% of the 

circulating metabolites were glucurono-sulfo derivatives of isorhamnetin and quercetin 

(Morand e t  a l . ,  1998). The remaining 8% was contributed by the glucuronides of 

methoxylated forms of quercetin (e.g isorhamnetin or tamarixetin). The glucurono- 

sulpho derivative of isorhamnetin is 6 times higher than the glucurono-sulpho derivatives 

of quercetin. This implies extensive méthylation of the parent compound. The extent of 

the same reaction occurring following ingestion of quercetin glucosides is not known. I n  

v i v o  glucuronidation of quercetin glucosides following their ingestion has not been
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reported. This is because analysis of quercetin conjugates from biological samples has 

always been done based on the free quercetin liberated after acid or enzymic treatment. 

Nevertheless, the prospect of this happening is likely and merits further investigation.

Our i n  v i t r o  incubation of quercetin-3,4'-diglucoside with liver extracts showed 

about 32-54% metabolism of this diglucoside with 2% accumulation of quercetin-3- 

glucoside. If the same occurred i n  v i v o ,  we should have detected some quercetin-3- 

glucoside in plasma or urine after the onion supplement. However, there was no 

evidence of this. This is probably a result of the extensive méthylation of the liberated 

quercetin-3-glucoside to isorhamnetin-3-glucoside or possibly tamarixetin-3-glucoside. 

As these two methylated metabolites do not form fluorescent complexes with A1(N0 3 )3, 

which facilitates detection with enhanced sensitivity, their possible presence in plasma or 

urine could not be confirmed using an absorbance monitor operating at 365 nm. 

Conjugation is possibly the most common final step in the metabolic pathway of 

flavonoids to generate hydrophilic molecules to assist in their excretion.

8.5.2 Small intestinal metabolism

In addition to liver, recent findings suggest that the small intestine may play a 

substantial role in the initial metabolism of flavonoids. I n  v i t r o  incubations of fried 

onions with digestive juices demonstrated the stability: of onion flavonols towards 

enzymes in the juices as well as the acidic environment. However, degiycosylation and 

glucuronidation of flavonols has been reported in the small intestine (Notebom e t  a l . ,  

1997, Day e t  a l . ,  1998, Shi moi e t  a l . ,  1998, Spencer e t  a i ,  1999). It was proposed that 

these reactions occur in the brush border membrane during flavonoi transport across the 

intestinal membrane rather than in the lumen of the intestine (Day e i  a i ,  1998). 

Quercetin was mainly glucuronidated whereas quercetin-3-glucoside was deglycosylated 

more extensively than being subjected to glucuronidation during their movement across 

the intestinal wall (Spencer e t  a i ,  1999). If degiycosylation of quercetin-3-glucoside 

occurred during their uptake, we should have detected quercetin aglycone in our everted 

segment incubations. However, this was not apparent and several reasons could have 

caused this. The 10 pM concentration of quercetin-3-glucoside was probably too low to
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see any measurable amount of free quercetin in the serosal side, given that the percentage 

absorption of the parent compound was low in the first place. Furthermore, Spencer e f  

a l . ,  1999, in their study used a higher concentration of quercetin-3-glucoside and longer 

incubation periods and such high concentration may not be achieved at normal dietary 

intake.

8.5.3 Colonic metabolism of flavonols

An i n  v i t r o  fermentation of digested and undigested fried onions was carried out 

to investigate colonic bacterial metabolism of flavonols which escaped absorption. 

Extensive degiudation of flavonols occurred with neither flavonoi glycosides nor their 

aglycones being present in significant amounts at the end of a 24 h incubation period. 

The liberated through hydrolysis were not detected. Thus, absorption of unchanged 

flavonols in the large intestine is improbable, leaving the small intestine responsible for 

flavonoi absorption. Ring fission of flavonols appears to be the main step in colonic 

bacterial metabolism of flavonoids. This reaction yields metabolites such as phenolic 

acids which possess considerable antioxidant activities and can be absorbed (Kim e t  a l . ,  

1998). Hence, a small part of the ingested onion flavonols which escaped absorption in 

the small intestine could still provide beneficial health properties through their action 

with colonic microorganisms. Studies investigating the extent of phenolic acid 

absorption following ingestion of flavonol-rich food and their antioxidant activities can 

provide more information on the potential of these metabolites.

8.6 Proposed pathway for the metaboHsm of 
flavonols

Based on the results obtained in this study as well as published reports, we 

proposed a hypothetical pathway for the metabolism of flavonols. Absorption of 

flavonols occurred in the small intestine, most likely in the jejunal segments. Following 

absorption, flavonols enter the portal veifi primarily as the unchanged compound. 

Glucuronidation and degiycosylation may occur in the liver as well as sulphation and
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méthylation before appearing in the general circulation (see Figure 7.8, chapter 7). 

Again, the extent of these reactions occurring on the flavonoi molecule is highly 

dependent on their structure. The kidney may be involved in méthylation of flavonols 

(Piskula and Terao, 1998, Tsuda e t  a i ,  1999) although the extent of their contribution is 

not known. Degiycosylation by the liver may only be a minor pathway as the 

metabolism of flavonols tend to go in the direction of producing more polar molecules 

for the purpose of excretion. This was observed in rats fed a diet of quercetin whereby 

conjugated forms of quercetin including glucuronides and sulphates were detected in 

plasma instead of aglycone (Ueno e t  a i ,  1983; Manach e t  a l . ,  1997). The order in which 

these reactions occurred and the metabolites that accumulate will be dependent on the 

flavonols present, their structure and sugar substitution. In a study where rats were fed a 

quercetin diet, conjugated forms of isorhamnetin accumulated in levels ca. 4.5 fold 

higher than quercetin conjugates (Manach e t  a i ,  1995). This implies méthylation as a 

more prominent reaction in the metabolism of quercetin than conjugation.

Following the above reactions, the metabolites generated can be sequestered in 

various tissues or excreted either via urine or bile. Metabolites excreted in bile are 

capable of further metabolism and absorption through the enterohepatic circulation.

8.7 Absorption of flavonols and the impact of their 
biological properties.

Based on the onion feeding study, flavonols particularly quercetin conjugates 

persist in the blood for a number of hours following consumption and had a long 

elimination period. Levels above baseline could be detected in samples of several 

volunteers collected 24 h after they first ate the onions. Subjects on a normal diet had 

quercetin levels of 25 ng/ml. This implies that continuous consumption of high flavonoi 

food can lead to an elevated steady state level of flavonols in plasma. Owing to the low 

bioavailability and extensive metabolism of flavonoids, consumption and identification 

of highly bioavailable flavonoids is crucial.
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Results from this present study, together with published reports show very low 

levels of the unchanged administered flavonoi excreted in urine (< 20%). The relevance 

of the absorption and metabolism of flavonols in the human body is ultimately related to 

their biological properties particularly as antioxidants. Flavonoi aglycones are more 

potent antioxidants than their glycosides owing to the higher numbers of free OH groups 

for hydrogen donation (Rice-Evans e t  a i ,  1996). However, flavonols in the diet exist 

almost exclusively in the glycoside form. Although some flavonoi glycosides may 

undergo degiycosylation during their absorption, the likelihood that the resulting 

aglycone will circulate in the blood circulation is minimal. Most likely, the flavonoi 

aglycone will be further metabolised by the liver or kidney to conjugated flavonoi to give 

a more polar molecule.

Thus, epidemiological studies describing association between flavonoi intake and 

reduced risk of heart disease is probably not caused by the unchanged flavonols due to 

their extensive metabolism. Rather, the protective effect is probably a result of the 

biological properties of the metabolites of flavonoids or the involvement of other 

compounds with antioxidant properties. Several phenolic acids, arising from ring fission 

of quercetin glycosides showed considerable antioxidant activities (Merfort e t  a l . ,  1996). 

Phenolic acids for instance 3,4-dihydroxyphenylacetic acid and 4-hydroxyphenylacetic 

acid were more effective in anti-platelet aggregation activity than quercetin (Kim e t  a i ,  

1998). Thus, the potential of the metabolites of flavonoids acting as antioxidants cannot 

be discounted. Alternatively, the association observed with increased flavonoid intake 

may only mean that high flavonoid intake can be associated with a healthier lifestyle, 

consumption of high amounts of fruit and vegetable which are rich in other antioxidants 

and regular exercise.

8.8 I n  v i v o  antioxidant activity of flavonoids

Several flavonols showed higher antioxidant activity than vitamins C and E. 

Quercetin, for instance, is more potent than the 2 vitamins when their antioxidant activity 

was measured as the Trolox equivalent antioxidant activity (TEAC) (Rice-Evans e t  a i ,  

1997). The TEAC technique measures the relative ability of flavonoids to scavenge the
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ABTS radical cation (2,2’-azinobis (3-ethylbenzothiazoline-6-sulphonic acid) generated 

in the aqueous phase, compared with standard amounts of Trolox, a synthetic water- 

soluble vitamin E analogue. Using a different antioxidant assay, flavonoids were again 

shown to have higher antioxidant activities than vitamin C, E and p-carotene. In this 

instance, antioxidant activity was measured as the concentration of flavonoids needed for 

50% inhibition of LDL oxidation (Vinson e t  a i ,  1995).

In i n  v i t r o  experiments, metabolites of quercetin including quercetin glucuronides 

were shown to significantly delay copper-induced lipoprotein oxidation at concentrations 

of 0.5 pM (Morand e t  a l . ,  1998). Furthermore, in another recently published article, 

several quercetin glucosides found in onions, mainly quercetin-3-glucoside and 

quercetin-4'-glucoside were capable of inhibiting lipoxygenase-induced LDL oxidation 

i n  v i t r o  (Da Silva e t  a i ,  1998). Quercetin and quercetin-3-glucoside exhibited a higher 

inhibitory effect than quercetin-4'-glucoside with IC50 values of 0.4, 0.5 and 1.2 pM 

respectively. Glucose substitution at C-4' significantly reduced antioxidant activity, due 

to absence of C-3',4' G-dihydroxylation, which is one of the requirements for strong 

anti oxidant activities (van Acker e t  a l . ,  1996). It is highly likely that isorhamnetin-4'- 

giucoside will exhibit similar antioxidant properties as quercetin-4'-glucoside due to 

sugar binding at C-4'.

One way to determine the effectiveness of flavonoi consumption is to evaluate 

their i n  v i v o  antioxidant activity. This can be done by measuring the antioxidant activity 

of a sample of plasma following ingestion of a high-flavonoid food. One recent study 

measured plasma antioxidant activity of human volunteers following ingestion of 225g 

fried onions (McAnlis e t  a l ,  1999). Although the antioxidant activities of plasma 

increased after the onion meal, it was not enough to cause a significant change in the 

susceptibility of plasma to LDL oxidation. This study gave a peak plasma concentration 

of 284.4 ng/ml (0.82 pM) for quercetin. Comparing this value with the IC50 values of 

quercetin metabolites obtained by Da Silva e t  a l  (1998) (0.4 -  1.2 pM) and the 

concentration for inhibiting copper-induced lipoprotein oxidation (Morand e t  a l . ,  1998) 

(0.5 pM), some inhibition should have been observed in LDL oxidation. However, the 

possibility of quercetin binding to protein in plasma may explain the lack of inhibition of 

LDL. Binding of quercetin to plasma albumin following their oral administration to rats
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has been described (Manach e t  a h ,  1995). Furthermore, an i n  v i t r o  study also 

demonstrated extensive binding of quercetin to plasma proteins with more than 90% 

attached to serum albumin (Boulton e t  a h ,  1998). The extent to which plasma binding 

inhibits the cellular association of quercetin is of utmost importance as this may affect 

their antioxidative capability.

In our study, we obtained a peak plasma concentration of 45 ng/ml (0.1 pM) for 

quercetin-4 -glucoside after the fried onion meal. This concentration was much lower 

than the reported IC50 of 1.2 pM for quercetin-4'-glucoside (Da Silva e t  a h ,  1998). This 

implies that the presence of quercetin-4'-glucoside at this concentration was probably 

insufficient to inhibit LDL oxidation. In contrast to this, the 452 ng/ml (1.5 pM) peak 

plasma concentration of conjugated quercetin was significantly higher than the i n  v i t r o  

quercetin conjugates concentration of 0.5 pM required to delay copper-induced 

lipoprotein oxidation (Morand e t  a h ,  1998). This is assuming that a large proportion of 

the quercetin conjugates is present as glucuronides. Thus, there is a high possibility of 

plasma inhibiting lipoprotein oxidation at this concentration and this clearly merits 

further investigation. In theory, we probably do not consume 300 g of fried onions in a 

single meal. However, consumption of flavonol-rich foods spread throughout the day 

may lead to build-up of flavonols in the circulation. Although the onions used in our 

feeding studies did not contain quercetin-3-glucoside, which showed substantial 

antioxidant activity (Da Silva e t  a h ,  1998), other varieties of onions contain substantial 

levels of this monoglucoside (Tsushida and Suzuki, 1996, Price and Rhodes, 1997). 

Since their i n  v i t r o  antioxidant activity is higher than that of quercetin-4'-glucoside (Da 

Silva e t  a h ,  1998), fiirther investigation on the absorption of quercetin-3-glucoside is 

interesting in view of its potential role as an i n  v i v o  antioxidant.

Based on the IC50 values for quercetin and the concentration of quercetin 

glucuronides required to inhibit lipoprotein oxidation, «the reported daily quercetin intake 

of 16 mg (Hertog e t  a h ,  1994) will be insufficient to cause any beneficial antioxidant 

activities. Assuming 1% of the total intake was present at peak plasma concentration and 

approximately 3 L volume of plasma, a circulating quercetin concentration of 0.17 |iM is 

obtained at peak levels. Thus, the presence of quercetin at this concentration is likely 

insufficient to prevent LDL oxidation. Nevertheless, the bioavailability of quercetin
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from different dietary sources may vary, hence influencing antioxidant capacity of 

plasma. Therefore, studies evaluating the absorption of flavonols following ingestion of 

different flavonol-rich foods can provide more information on their bioavailability. At 

the same time, encouraging the public to increase intakes of high-flavonoi foods above 

the present reported levels may lead to increase in plasma flavonoi concentration.

8-9 Prospects for future research

8.9.1 Bioavailability of flavonoids

Clearly, there is still limited information on the bioavailability of flavonoids. Our 

main interest is of the bioavailability of flavonoids from dietary sources. Although 

extensive studies have been performed on the absorption of flavonols from onions, not 

much is known regarding the bioavailability of flavonols from other main sources such 

as tea, tomatoes, apples, red wine and fruit juices. In addition, estimation of the 

absorption of specific flavonoi glycosides will provide us with information regarding the 

bioavailability of these flavonols. Identification of the absorption of specific flavonoi 

glycosides is desirable rather than their estimation based on the aglycone liberated 

following acidic or enzymic hydrolyses. This is because similar flavonoi conjugates, but 

with variations in the nature/position of the sugar moiety, may be absorbed at different 

rates. Therefore, hydrolysis of the sugar bonds or any glucuronide'or sulphate bonds will 

only , give estimates of the overall bioavailability of the flavonoid conjugates and not the 

individual compounds. Ultimately, such studies are useful in determining the 

relationship between the structure of flavonoids including sugar substitution and the 

extent of their absorption.

8.9.2 Metabolism of flavonoids

In addition to bioavailability, knowledge on the metabolism of flavonoids is also 

vital to determine the end products and the route of their metabolism. In view of the 

extensive metabolism of flavonols particularly quercetin glucosides, perhaps research 

should focus instead on identifying the metabolites produced. The prospect of tissues
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other than the liver playing a role in flavonoi metabolism should also be investigated. 

Metabolic studies with radiolabelled flavonols are the best approach as metabolites 

produced can be easily tracked and identified. The availability of complex 

instrumentation, for instance mass spectrometry analysis has opened up a wider area of 

research and enabled the identification and confirmation of various structures of 

flavonols which could not be done on a normal HPLC system. Identification of 

metabolites is important towards evaluating the biological properties of dietary 

flavonoids. It is not sufficient from epidemiology evidence to conclude that high intakes 

of flavonoids are protective against diseases if in truth, they are metabolised to a non

reactive form.

8.9.3 The m ode and extent of flavonoid absorption

The mechanisms of flavonoid absorption from the intestine warrants further 

research. I n  v i t r o  methods are ideal as they allow easy access to the serosal side of the 

intestine. Thus, flavonols absorbed can be immediately sampled prior to metabolism as 

would have probably occurred with i n  v i v o  system. Determination of the carrier protein 

requires a more specific method. Experiments involving isolation of brush border 

vesicles for instance can be used to investigate the involvement of SGLTl in flavonoid 

uptake. In addition, the expression of specific transporters for instance SGLTl or 

GLUTS in the oocytes o f  X a e n o p u s  l a e v i s  offers a powerful tool for identification of the 

carrier involved for intestinal transport of specific compounds (Hediger and Rhoads, 

1994). Such method can be adapted for investigating the transport system of flavonols. 

Furthermore, this technique can also be used to identify the actual flavonoi glucoside 

transporter if any of the transporters mentioned before did not play a role in their uptake. 

As current data are limited and showed contrasting results, clearly more studies are 

needed, comparing various techniques for intestinal absorption, before any conclusion 

can be drawn.
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CHAPTER 9: CONCLUSION AND 
RECOMMENDATIONS

9.1 Conclusion

9.1.1 Absorption of flavonoids

Absorption of quercetin occurred in the small intestine. Following a single dose 

of fried onions, there was higher accumulation of isorhamnetin-4'-glucoside than 

quercetin conjugates, including quercetin-3,4'-diglucoside and quercetin-4'-glucoside in 

plasma and urine of humans. Glycosylation of flavonoids enhanced their absorption. A 

carrier protein is most likely involved in the uptake of flavonoid glycoside across the 

intestinal membrane. The study described in this thesis provided no evidence that the 

sodium-glucose co-transport protein (SGLTl) mediates the uptake of flavonoi 

glucosides. In addition, quercetin-3-glucoside did not inhibit the glucose transport 

pathway. Structural modification in the flavonoid molecule, particularly the

nature/position of sugar substitution determines the extent of their absorption.

9.1.2 Metabolism of flavonoids

Based on the low levels of flavonols appearing in plasma and excreted in urine 

after the onions feeding study, flavonols especially quercetin glycoside are extensively 

metabolised. Méthylation is one route for metabolism of flavonols with a catechol 

moiety, for example quercetin and quercetin-3-glucoside. Degiycosylation of flavonoi 

glycosides may occur to a certain extent although reactions favouring the formation of 

more polar molecules appear to predominate. The extent of flavonoi metabolism by the 

liver is dependent on their structure as well as sugar substitution. Changes in 

stereospecificity will affect binding to the active site of the relevant metabolic enzymes. 

It remains to be detennined whether metabolites arising from flavonoi metabolism have 

the potential to act as anti oxidants and provide protection against oxidative damage.
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9.1.3 Flavonols in plasma and antioxidant activity

The reported average quercetin intake of 16 mg/d is probably insufficient to 

provide significant quercetin concentration in the circulating blood to prevent LDL 

oxidation. Consumption of foods containing highly bioavailable flavonoids, spread 

throughout the day can potentially lead to build up of flavonols in plasma. 

Determination of the concentration of quercetin metabolites in plasma and their 

anti oxidant ability is required to fully evaluate the beneficial effects of flavonoids.

9.2 Application of findings

Knowledge on the absorption and metabolism of flavonoids can be used to 

evaluate their biological role, particularly as antioxidants, and their ability to prevent 

LDL oxidation. Determination of the structural modification of the ingested flavonols is 

essential to obtain further understanding of their beneficial health properties i n  v i v o .  

Identification of flavonoids that are highly bioavailable can be used as a public health 

message to encourage increased consumption of foods containing high concentration of 

these flavonols, which will accumulate in high levels in the blood stream.
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