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' -• ; _ O H A r m  a  ' , . /  V. -

■ Intrbdudtion;

\ : .\This dissertation is concerned with the numerical solution of cert­

s '  ■ ' -aih differential equations which occur very frequently in theoret-

. ' ical physics.: The solution of any physical problem involves the ■

 ̂: Botilrig up' of a mathematical model and .in the past this model has

::'ty;3':X\\:':'be'en .'solved by analytical methods or, in the many cases where no 

 ̂ , a^ solution can be found, by numerical methods. Bettér

. /: approximations lead to more complicated equations and to more dif- ̂

: X Tficult solutions. In recent, years the advent of large fast auto-

.:/Vy .;V;\]natic computers has made the. solution of these complicated systems 

'i '' / ' slble

/L-cxThe 'solution of a system of equations is simplified by an under- 

: .1 Y standing of the physical processes which give rise to the particular

"'.3-.' 'équations' and these equations frequently exliibit some awkward num­

erical pitfalls. Therefore a background of the two disciplines,

-' numerical analysis and theoretical physics is desirable.

 ̂ ; Thusÿ this thesis is divided into two parts. The first is a

description of the numerical techniques involved and thereafter a 

■ discussion of some of the numerical problems which were encountered;

■ the second is an account of the physical problem, the derivation of 

; the differential equations and a discussion of the results obtained.



'Xrr: - ̂'Xl'''X:':;\W@;:invù8tigate the scattering of an incident point particle by

XX v:'XiXi ■ bohohuôlear diatomic molecule, the only inelastic process under

/̂ consideration being excitation of the rotational levels of the mole- 

1; The mathematical model we use to describe this collision is

■X-lvf‘ V that^of boattering by a rigid rotator. This model will only be val- 

id̂  degrees of freedom are ignored and the molecule is

XXli'r::'X/-. -in':the ' ground electronic state, that is, if the component of elect- 

X̂ '̂ -ĉ ii'onio,'angular momentum along the internuclear axis is zero# For 

' \v.:-}:;sbatterihg problems of this type the relative motion in the various 

ÿ X , : - - ' '.channels .can; be described in terms of "ingoing" waves and "outgoing"

waves# When the coefficient of the "ingoing" wave is nor- 

& v'i /y malisod to unit flux, the coefficients of the. "outgoing" waves form 

8oattci'ing or 8 matrix (Wu mid Ohmura 1968) which déterminés

X #  1 cross section# This S matrix is unitary because of the re-

' 3 - ̂ quirement of conservation of flux and it is also symmetric as a con-

V ̂ sequence;,of - the time reversal of the system* Two. associated, matric- 

XX-iX'iX' b's'r .Xhe reactance matrix R and the transition matrix T also occur# 

X/; 1 3:':X Their relation with the S matrix is given by the equations

From ■ Al ..vit follows that H is a real symmetric matrix# It will 

be shown later (Chapter O) that the cross section for the excitation 

. of the j , rotational level to that level defined by rotational

A1

A2



Y'! : j * is given by

A5

where r kj i is the channel wave number.

equation describing this collision can be simp­

lified to, give a set of coupled, second order, ordinary differential 

equations in terms of the radial distance r. These equations may

bewrittenvX.v-'.-

d\m
/ f H

where : .k. < is again the channel wave number, X, is a constant and 

V̂ ĵ  ' is a, matrix element depending oh the interaction potential and 

%the Angular.dependence of the incident particle and target# These 

equations are to be solved subject to the boundary conditions,

(a) u .. is regular at the origin.

_  I

V
k ^ T T A5

: or, introducing the reactance matrix R to avoid the use of complex 

• numbers,,,



vx) - i V.
X ' ; suryey '

'' The first mathematical treatment of collisions involving mole- 

X:;;V;i'Am odies was given by Zener (l95l)* His treatment, based on the 

. ; ' . distorted wave 'approximation, was restricted to collinear collis- 

< iohs between a diatomic molecule and an atom* He showed the in- 

r ' X . efficiency of interchange of translational, vibrational and rotat- 

: icnal energy in molecular collisions, thus establishing the model 

of a rigid rotator for the consideration of rotational excitation 

V ;:;i r of ' the molecule.

Nothing more was done for about twenty years until Takayanagi 

r the equations A4 using his modified wave number

A' method. < In this approximation the centrifugal potential

: v | | ® ^  +1) /r' :
3''xXv is replaced by its value at a distance r^ , chosen to be of the

, X:.V. order of the distance of closest approach, according to the class-

A! 'X'Xr.' A:ical theory, of the particles in a typical collision. The problem

A ; ; i h e r e b y  reduced to that of a one-dimensional collision with
r,

. effective 'wavo number kj given by

A6



1 ï .

A l  - A ^  - — - r ~  ■ «7

Xv'j ̂ /Xv'-rx'' l'f : the.^8-wave (X. » O) radial equations can be solved in closed,

% T form, the direct numerical solution of the radial equations is av- 

vX V XA oidedvand considerable simplification results. This method has

”7̂ X ; been used .by-Schwarz and Herzfeld (l954) to calculate rotational

3 ̂ X v:, transitions in hydrogen. However it has two main disadvantages*

is Useful only within the very restricted range of poten- 

9 3 ' \V̂ f:'K::X-'tiaïs /for : which an analytical solution of the s-wave equation is 

|A: , : known the arbitrary parameter r introduces an added

X-XA(v,;\3',\-uncertainty into the final cross section. ^

approximate solution to equations A4 may be obtained by 

Xi ̂X'lA'X'v'X'A' UsingV the B o m  approximation (Mott and Massey 1949)* This is ob- ,

. tained by first setting all u, . equal to zero, k not equal to

- neglecting all V. , and solving the remaining equations,
7 .. -7 ,  IJL , ,

-  0

The;solutions of A0 which satisfy the boundary conditions are 

the spherical Bessel functions,

X': ; I  ' ^  Y ĵ .

Thé Solutiena A) âsè ttî§Sî auhatltutM baek into the right hand
-' i' : ' ';slde 6f A4, th# resultant unpoupied inhpmogeneous differential

A8

A9



equations are solved for all the u^j* This method will give a 

very poor result for the value of the cross section due to the 

poor approximation the Born functions make to the true u^^ close 

to the origin. In this region : the true u^^ will go to zero much 

'faster than the Born solutions Â9*

much better first approximation is obtained by leaving the 

diagonal terms V.. in equation A8. Solving the equation,

oU**-
X - 0, AlO

\A;3:3 giveu, not just the spherical Bessel functions, but rather, radial 

; /X wave functions which are distorted by the diagonal matrix elements 

'/If these solutions are then substituted back into the right
.  i'f A

'. r ; hand side of A4 the solution of the resultant uncoupled inhomo-

. g^ equations defines the distorted wave approximation# This 
'‘■'A-':''X X-

3 is the method used by Roberts (1965), Davison (1965, I964); Dal-

' gamo and Henry (I969), Dalgarno, Henry and Roberts (1966)*

This approximation was one of the most satisfactory ways of 

; applying a straight fory/ard numerical approach to the equations A4< 

However, since these last mentioned calculations were carried out,

. larger, and faster automatic computers have become available and it 

.. ' , is now practical to find the solutions of equations A4 when none 

'..■ A of the off-diagonal maj^ix elements are neglected* This de-

• X fines the close coupling approximation. This method has been used

A by Baines, Lane and Din (I965) for the calculation of electron
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; V A : ; v exoltâtlon cross sections in sodium*

V-XX ; To the best of, the author's knowledge no calculations on the 

collisions between atoms and diatomic molecules have been carried 

out using this approximation and it will be an important part of 

A this work to compare the distorted wave and close coupled approxi-

) X ' mations in several collisions of this type.

A " V  Another problem which is of current interest is resonant

, scattering.' v In practice, resonances are said to have occurred in 

A'̂;XA ' s if the. cross sections exhibit sharp maxima and minima.

A ' A; : These resonances will only occur when an open channel is coupled to
'A. ' A-xAAA"v A ■ . 2
' ' ' A ! : A - a closed channel, i.e. those channels for which k. C 0 in A4.

; A !X Thus for the closed channel case we introduce the boundary oondi-

' '-' X A A tion, x , '

>: a-XAxA.A;.C3;aA.- - 6

An extensive review article on resonant scattering has been given 

■ X -, by Smith (1965)*

AH'

Content of thesis .

: / As mentioned before, this work divides into two parts. In 

the first, consisting of chapters B, C, D, E, F, the numerical treat­

ment of the problem is considered; in the second, which includes



:Av'X'AXA-AA-A-Adhapters 'G, H, I, J, K, the physical problem is described and the *

A vAxABA-AXA^sighificence of the results discussed. For this reason the basic 

X'vXAA'AXXiXAequations A4 , together with the asymptotic boundary conditions 

X X'XXXAXAAxAg ,"'TAo\-: have - been included in this introduction so that in the 

XAXArXX- A3;ïivunerical section we can consider these equations quite independ- 

Xv-AX#XXv Aently.'.from the physical problem from which they were derived.

X'AA';;Ax'AX;XXAAA;X;\Ghapt^ B consists of a simple resumé of the properties of a . - 

xAAAX A WXXXA second - order linear differential equation with the first deriyat- 

XAXXA AXivè\absentp Most of these properties can be found in the stand- 

XA\xX:X'XAxAAard ' texts, - e.g. Watson (1944) * Mott , (1952), Fox (1962), but it 

XaX ;X aa-AX A was; thought worthwhile to include them here as constant reference 

X:'x:3"^Xih'^ade to many of them in the following chapters.

X  The numèrioal solution of this type of differential equation 

f;A'A v>AAAXA:X is Adescribed in-Chapter C* Several numerical methods are discuss- 

XAX;3?t;XXXA’ed':and some of the numerical pitfalls associated with these methods

X̂ ;A AAA‘;;A;;Aâre pointed out. .

Xa A/X X' Xaa 3 The distorted wave approximation is derived in Chapter D and 

X A'X- :. \A'A"/ the numerical scheme for the calculation of the cross section A3 

- -3. 'XA''3i8 ̂ laid but. The chapter is concluded with a write-up, descrip-

A A ;  ' A tion and flow diagram of a program written for the English-Electric- 

' A 3; ,A Deo-Marconi KDF9 computer to perform these calculations. Similar 

X: A3;pro^ams have been written notably by Roberts (1965) on an I.B.M*

709 at Massachusetts Institute of Technology and Davison (1963) on 

; the ED8AC2 at Cambridge. •
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XX, "X- Moèt 'of the original woi'k involving the close coupling àp-

X ' XX: X XX proximation is described in Chapter. E, Several numerical tech- 

:: XX , X' X on the computer and some investigation was done

; ; A' . X;x 3 intoXcritical values of the parameters. Several numerical snags 

;X ; ./■3XXXXwere encountered each manifesting itself in a loss of symmetry of 

(X X'XXXXXXXthef, It;•'■'matrix# The write-up, description and flow diagram of a 

X ■Â :vX'X :X;:;;b̂ 6grn̂  coupled differential equations and evaluate the

XA ; X.XX AXrV ;-reacttmce matrix R are included.

X XXX The last section of the numerical part,Chapter F, describes

.3; the problem of coupling an open channel equation to that represent-

X'X'XaXXXX ing 3aX closed channel* .Some numerical problems are encountered and 

XAXXXX'XXX'Alt A is 'ihought that these will increase in complexity as more eq«

X .Xx A \XXXXuatiohs .are coupled together* These problems need further invest-

X X X A X X X X X ° ’̂ *X;X;3V; • -

XX XX .3;X;XaXÏXXX- \Chapter C begins the physical part with a derivation of the 

X : AX;; Xdifferential equations describing the scattering of a point peirt-

XXXXX!xX:XXicle by a rigid rotator (Arthurs and Dalgamo i960). The distort- 

,X M close coupled approximations are now seen in context

X . 3 àndXthè effect of the orientation dependence of the internuclear

potential is treated mathematically*

A X  . The validity of the distorted wave approximation is studied in

Chapter H with reference to a particular example* Numerical oal- 

.ouiations show that, in the case of scattering of a hydrogen atom 

by a hydrogen molecule, the distorted wave approximation behaves 

. ; and breaks dpwh in precisely the manner predicted in the theoretical
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V. . Chapter I contains the majority of the numerical calculations 

' yX--''' in this thesis. In all, we consider the scattering of a hydrogen 

;X- ' atom,, a helium atom and a hydrogen molecule by a hydrogen molecule

X X '- - and also that of a hydrogen atom by a deuterium molecule, using

.both the distorted wave and close cpupled approximations# These

results have been summarised in a recent paper (Allison and Dalgamo
-jX': ' ̂ 967) *' ̂ : %.. '

X .X.X%X 'In Chapter J the numerical techniques developed in Chapter P,

A:..-' are ' applied to the search for resonances in the collision of a

: . ) : .X hydrogen atom and a hydrogen molecule. No resonances were found

X'̂X . inXihis case; a result predicted by Mott and Massey (1965)*

; X Qhgptgr K, which Gonslhdcs this wcfk, Gontains a dGSGi’iption

V.A/X; the scattering of slow electrons by a hydrogen molecule. The 

X a; programs ' developed in Chapter E have been modified to deal with 

y ,̂' XX'Vthis case. .. A short introduction is included at the beginning of 

X the chapter. , , , .

Intermolecular potentials

The problem of finding a realistic intermolecular potential 

which describes the interaction between two colliding bodies forms 

one of the major difficulties in scattering theory to-day.

The non-empirical calculation of intermolecular potentials
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from the 'first principles of quantum theory requires very oomplic- 

.-.■ated 'mathe'raatios except .for some pairs of the simplest molecules* •

: ■ ' \ Empirical information comes from the scattering of molecular

3 - beams in gases, the second virial coefficient and the transport 

X 3 XX properties, of gases.

V. ; ' A; ; , : ■.■;X There are various analytical expressions which have been used

r -AX .y /over the, years to represent the interaction of the type shown in 

3 i.X y ,X Ay. Fig 2*X These are often written in the form

y y i j i i y w '  -  d p ) .  ■ ■ ■

/ where 9K VP . , ' = . /f S' and ■
.. 3 ■ ■

:-Xvyy:3v'X\. " where.' £ and p~ are convenient scaling factors and v(o) is a 

A ‘ „ 3 A 'Shape' function which may or may not contain one or more parameters.

r  : 33 An empirical potential frequently used is (Hirschfelder,

, ; durtiss and Bird 1954) the Lennard-Jones (12, 6) potential,

\z
I ^  \

V  £• - ,  ,  ,  ,\ X  / A12

; .'where G is the maximum energy of at "brae tion, i.e. the depth of
%the potential well which occurs at r =« 2, 6' and 6" is the value

. , ,;,of r for which v(r) is zero. This potential gives a simple

, 3 and realistic representation for non-polar molecules and while the

inverse sixth power represents the attractive part fairly well the

y ' repulsive part is dhly P-n appï*â ijnntî n. ' X, ‘



12

■V'.7:'

form is the Buckingham (exp -6) potential (Bernstein 

Axy et aixipé;), ..

- oi. /f
y X ^ )  A  ^ . ' A15

This.function approximates the repulsive term by an exponential

font. It is unrealistic in that the exponential term would lead 
A ' v o - . '

A\ ' A; : to ; a meaningless maximum at a small value of r unless the funct-

xy' ; ion is arbitrarily made infinite for all r less than some value

'r„\ Xsee lie R). ' '

XX^ A ' yX: - 3 Frequently the long-range force has been neglected and implio- 

X Axy 3 itXin this negledt of the attraotivo part of the potential is the 

assumption that the long-range force gives a so gradually varying 

X force that the internal degrees of freedom adjust themselves adia- 

iX " b oad so no quantum transition is expected with appreciable

3X prpbabiiity* V'.. *As a result simple potentials such as an exponential

A-'A,', •vxix'-iunc tion, '

X= y x  . . : V  ('t) V  ^  ^  , A14

have been used (Roberts 1963)*

Among other purely repulsive potentials is the one used by

; XZener (1931), ^  '

oO /C y  Jlr ^
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and the Morse potential (Davison I963» 1964)*

y  T ( .Aay [ - Z c t y - 2 (/T-zQ)] j AI5

i/.= ; ','V; ; This tractable function represents the actual potential at

' ' small distances much better than the Lennard-Jones or Buckingham '

- potentials but at large distances it is less satisfactory.

X i s  the energy at equilibrium separation r . ‘

y ; ;X Although the attractive part of the potential does not seem

3xXX\to directly cause the inelastic processes with appreciable prob- 

3XX ability it affects the transition probabilities indirectly by ac- 

: X' oelerating the relative motion when an atom and a molecule approach 

X; haoh other. . Hence long range forces must also be talien into ac-

, ;;: X : For an ■ investigation of rotational transitions in three dim-

X XXensional collisions the orientation-dependence of the intermolec­

ular potential is also required. This is often written in terms 

of the Legendre polynomials and for the atom-diatomic molecule case  ̂

X one may write ^

/W. /Yt

where 9 is the angle between the internuclear axis of the molécule 

and the line connecting the centre of mass of the molecule with the 

atom. a^ and b^ are the asymmetry coefficients whose sign and
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 ̂: 3d are to be determined.

A- tJaually. only the leading terms are retained,

X'-andX-X'X

' = % » ,  (.4

whénoe

ÿ :  C y  ®) = e) + e) A17

• .The omitted term ' (cos 0 ) is zero for a homonuolear molecule 

and . V  ̂ (r) and V^^^(r) are respectively the repulsive and

X attractive parts of the potential. Review articles on the subject 

...of. ihtermoleouiar potentials have been given by Buckingham (1960)

, and. Dal gamo (1965)̂  ..
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CHAPTER B

: Simple properties of differential equations

;X X - Consider the solution of the second-order linear differential

3̂ 'XLrXXX'Xeqüation ■■X3 ■

F ( ^ ) ✓it ( /f ) —  o

where F(r) is a Icnown function of r* Since this is a iSOQond

; Xorder equation it will have two independent solutions (u^ and u^

X say) and' the general solution can he written Au^ + Bu^, where A 

and ,B X are constants^

The simplest case is when F(r) « k , where k is a con- 

X stànt;X The general solution is then

X . X ^ ' ^  X- ;  o '

y  . G  / v w L  ( A f  -t- ^

i.è* the solution.is an osoillatory function and ^  is a real

A phase shift.

A- If F(r) is constant and negative, P(r) *= - k^ say, then 

the two independent solutions are e"^^ and e"*"̂  with général 

solution '
-y ;i: ' *Ji/r ' --/fe/V

■■£yy:'AÀ. -, A 4- 3  ^

B1
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theA general oase when P(r) is not constant then if F(r)

: - ia positive, u is an oscillatory function. This can he seen as

' ' '33 xx":';/ ■ X .. 2
/ F(r) is positive then u and — « will have opposite

■■'v'ixxAy;:. x X;:. ■ . dr
Xyu.'-' ; signs, i.e. at a point at which u . is positive the rate of change

;,3y ; y  A'\..of the tangent to the curve is decreasing so the tangent will hend

more and.more steeply toward the a%is. When the curve crosses the 

\ X - X .XX; Xaxis, i. e. u is negative, then the slope of the tangent will in- 

X X. crease. This process continues to give an oscillatory function.

X'Xvv- y If,'however,'F(r) is negative then u and —  ̂ will have

X̂ the, same sign and an exponential solution will result.

X .; X\ ; x3: ., X'y yXWe will he interested in the case where F(r) is Initially 

;■ ,;: X; V negative and changes to heing positive as r increases. In this 

' A, X X A'; X" A casé the. solution will hehave exponentially until F(r) « 0 and 

K A  Ax '  ̂AA'Xx'X will then'oscillate. ,

X ÀX3 ' v/XX:X;. - X, The Aform of F(r) with this particular property will he takenïXiyyxAy ' ■■ '■ ■

g A X X : X 3 y y X ; X X X ' - - -  . z
F - / A  —  i

’ and we impose the additional requirement that f(r) does not have

/'. a pole of order higher than one at the origin and r f(r) — > 0

y. XXas r —> oO - £ will he taken as constant for a particular equa-

. ' X • ;tiph, X For large r, F(r) — ^ k and the solution will have

3 asymptotic form ‘ •
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B5

. .. where ^  is a real phase shift.

,\'/yXX. ; - To investigate the behaviour of u , for small r , a series

X;X‘X'3; solution of the form '
<Xf

At
/fAtzU, - /f ' /  /r B4

At* O
: is tried.

. Substituting into the equation

y  -  y y .  _  k -)
oW* /f

yCL ( W )  = 0
B5

: and equating coefficients of r , there results the equation

a. - oo-l) -

A y ; Ay Since ' a. Tip 0 then p « -Z or Jt + 1.

y;3y ;VX X x ; y i y By; equating-all other coefficients of r to zero, all the 

X\ terms ' "a , n \  1 may be obtained in terms of a_.

7 '3 iXx'X';:'X' -'ItXis now required that the solution u is regular at the or-

'  ̂ X igiu and so, the solution with the requisite behaviour at the origin

■ .  . . -

2+1 T — /w
Al - /f /> /tt b6

AV.O
. ‘ :, This determines one of the arbitrary constants in the solu-

tion. ;' The oth@r constant prpvidcc an over-all normalisation.



18

'Ay; X X ;' To specify the solution uniquely some particular asymptotic 

.form for the.solution must be given. This will fix the normalis- 

• . ation. . ;

A The asymptotic form B3 will hold only in regions where

y t i d  4-0 j- Ĉ)
/ r

is negligible. Usually f(r) — > 0 much faster than
/ f

SO the latter is the. preponderating term. However the spherical 

Bessel functions ,

( -

satisfy the equation

B7

B0

d a: Z cUyt '— ' — -<3“ 4-
DC

I -
7

, Thus U  and l"^)
‘.dependent solutions of the equation

are the two in-

(jU * / f B9

The asymptotic solution of equation Bg may now be taken as
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BIO

Bll

a /  X r  ^ A  y ^ ( . X r )  -  3 / v y
: - end this will be valid as soon as the effect of f(r) has died

v -

0 '--EqnatibhX B5 may be written, without loss of generality, as
'... /' ‘'V\ \ 7 ' . . - '

P:y;i)ïiy-y.'-Ad; /v c  zvw- ( X r  - -k ,

y yxy A ''h3_..-\̂s6 that 4̂  - 0 when f(r) - 0,

: yX; y 'XXyx XÜ . BIO and Bll gives

;iX ||Xy3:' - 3  -  c - v ^ - v , .  ■ '

# # F 3 c # ; : ; r 3 \ ' 3  ft - c  ^  . .

3;v;X /..-';'XyXX;' an(i' these may be used to determine ^  uniquely# Thus the solu- 

3;;XX-:X;5v: tion .is completely determined by .

yX (a) the phase shift ̂  ,

; XXX xXh;c X (b) 9 the normalisation 0.

t r .. •‘XX''por '-computational purposes BIO is written in the form

'xXyAxXy3:X2'%/vX,7^ ( V ^ ( X X )  - /v\^(Xr)j^ B12

: X and taking two distinct points r , r, in the asymptotic region,X . ’V' . % 3 \ X.. . - . a D
■ " X allows 3) to be eliminated to give

X  ̂ :B13

; ;  ;  ; y  y  j / q )

-X vX whence -‘X '' ' X
\ .
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X ■  -,------------------ ------- r - • B14
rXAvX'XyXx.r: ; ^

v;. AvAXX , ;X Unfortunately the value of 0^ calculated from BI5 by a stan-
i X" ' ' ' ; 7 *TT* *TT*:;X X dard computer subroutine is given in the range 4

X' XvxZx'A-- '-.yy-. "'x; ■ ' ^ ^
Xx;X\':v so' ̂ -v'will be arbitrary by an amount TT » which will affect the

cyy 3Y\y.Mgn of.' D.

X x X , The correct sign can be determined by ensuring. that the dir- 

?. 3 3 ections,of the solution u and the corresponding spherical Bessel

y x ,  ;3 ; function are the same in the asymptotic region*

-) X  X  X  .i.e. the phase shift ^  is obtained by comparing that solution of
yy; yx;::-;' x ' ''X-3 ■ '
v/'X X .yXXX'3X̂ 9* which is regular at the origin, viz. » with

XX'' 'XX-'X'X'ihat. solution of B5, with the same initial condition, which has 

XX;X;Xy3 asymptotic form BIO (see Fig 1 )•

.'XtXX ' X,..;.
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Comparison of solutions U with J,;(kfj^(kr) ), to 

determine sign of normalisation.
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OMPTKR C

/V - üimerical Solution

, Two numerical methods for the solution of equation B5 will he 

; ,; ;' considered# The first is the Runge-Kutta method (Kopal 1955)

; which solves a set of coupled first-order differential equations.

/ ' .r  ̂ If a differential equation of any order is of such a form 

'Z. i-"' ' that the highest derivative can he expressed as a function of low- 

\ er derivatives and the two vari§hles^then, hy simple substitution,

pan h@ am a set of ooupled equations,
' Thus the Runge-Kutta method is applicable to a differential 

equation of any order with this property. .

V : ' T,Runge -Kutta Me thod

-. The differential equations can he written

then defining

01



gives

'Ŷ t,' i  -̂•>0 “
■•;■'■■' i .

The integration is started by assuming initial conditions y = y
■ . ; ‘ . O '

i : ■■■■■: -■-■■ ' ;. -■■ .;■'at the point x » x , v/here x and the set y are. known, ;O O' o . , -. ■
"' du ■''■'■■ ■Equation B5 may be written, by putting v ” dr * '

■ I  . . :

t  ■ a t  ,
■ r ; : '  -  ' '05

and in this form the Runge-Kutta method is'immediately.applicable.

Thus by choosing initial conditions, say u = 0 /and v - ^  = a 

at r = 0, a step by step process may be set up ^ving. values.of 'u 
at successive points, interval h apart, .Here a .is an arbit- ■ 

rary constant, ' \

These equations are derived from a comparison with,the Taylor 

Series expansion up to and including terms in h , , . ‘ :

This is the most commonly used method for the solution of dif­

ferential equations on an automatic computer. It is relatively 

easy to progromae—  absence of a starting procedure, helps here 

and as large, complicated and even non-linear sets of equations can



be handled with little extra effort it is not surprising that this 

method is so popular. Also changes in interval involve no com­

plication, a situation which requires special treatment in finite 

difference methods.

The main disadvantage is-that each function has to he calcul- 

ated four times per step and this increases the time of computation. 

Also estimation of the truncation error is difficult so,that the 

best, that can be done is to malce use of the fact that the local
5' 'truncation error is of the order of* h in the process described# '

Recurrence Formulae , . ' .

The second method that will bo doooribed ia a finite difference .. 
method known alternatively as Ruinerov's method (Haftree 195?) or 

second order Pox-Goodwin recurrence relation (Pox and Goodwin 1949)•

It is based on the finite difference formula ...

g Y  . (i .

This formula is applied to the equation \ J

i.e. a second order linear differential equation with the first der­

ivative absent.

04

05



Truncating formula C4 after term in o and substituting into 

G5 gives the recurrence formula

\ + - ( 2 - % (1 +
^  (. Jv+I ^ Y 061 z

If values of the solution are known at two points then this rel­

ation may be used to generate further values of y. \  ̂ ,

A disadvantage is that a starting procedure is usually.required to 

evaluate two initial values. Also changing the interval requires . 

special treatment, especially reducing the interval, in. which case, 
some means of estimating an intermediate value is necessary,. ■ This, 

can be done by interpolation or, in the case of .‘halving-the interval, 
by simple elimination. /

However the functions g(x) and f(x) need only to be. calculated 

once per step and due to the very small truncation error, which has 

leading term

0 ̂  n \ r ^ - i ê  ̂ W o
I ko ^

U. 1 II \ C y, ' ; & (VI)
£ ^  -  Ï I 7  ^ . ,

a larger value of h may be chosen than in the previous case*. This 

fact, together with the recurrence formula 06 will me an.that this, 

method will run very much faster on an automatic computer than will 

the Runge-Kutta method, ,

It is generally true that a method which is tailor-made for a



particular differential equation, in this case, second order, lin- = 

ear, first derivative absent, will be more efficient than a general 

method such as Runge-Kutta# •

Another example of this statement is that a second order, non­

linear differential equation with the first derivative absent will 

be more efficiently solved by the De Vogelaere method (De Togelâere 

1955) than by Runge-Kutta* In the former method the function val^ 

ues are only calculated twice per step#

Returning to equation C6 if we substitute ; ; 

then the recurrence formula becomes ' -

Y/f+i ^ "  Y/f- '. .

In this form the number of arithmetic operations per step is; reduced 

and is very suitable for* programming an automatic computer* • A slight 

disadvantage is that the mechanism for changing the interval becomes 

more complicated* For example, to increase the interval size by a 

factor p the scheme is :

(a) Equation 06,

Set h = p X'h and replace y by y *r  ̂ "r-p

(b) Equation C?. . ' ■ ' . : '

Sot h a p X h. , ./ -

07



üt>

Add ■A I (/f-  ̂ 4*-’̂ '^) j

to YyT-yfu.

Add V , ; , X ‘ j  H'̂ y* -  y ( 4 ]  to

However since this routine would be entered very seldom compared 

with the number of steps required we prefer to use the recuirenc© 

formula as given by Cy, ‘ ■

There are two types of stability connected with these equa­

tions and the two numerical methods,

(a) Inherent. Instability \

If in equation Bl, P(r) = -k^ then the solution will be' '

u = : -".:y Y  .C' \ 08

Even if our initial conditions require A to be zero, round-: 

ing errors will introduce a small multiple of the unwanted solution 

which will eventually swamp the true solution, % e n  this , type of ./ 

equation is solved, with the above initial requirement, it is’neo- ■ 

essary to integrate backwards in which case the unwanted solution 

is decreasing and will not affect the true solution,, .This type of



instability is. a function of the differential equation*; :

(b) Partial Instability

Consider the equation

y" = - A y, which has solution , : v;
- ■■ 09

. y = B e ^ ^  + c e - ^ . V  ^

(a) Runge-Kutta 7/
' • / \ . - ; Y.,

When the Runge-Kutta method is used to-integrate equa­

tion 09 the solution is represented by  ̂ ■ ‘.i ;,'

aÏ< vCf Ç ̂  A  ̂  ■ i 0 ^ A ̂
2  = .  1 +  x A f l  ~ ^Jk  ̂ ~ X  ̂ ^  ^  4  V

For this solution to converge to the true solution of the differ-

ential equation requires the condition | E | ^  1./.which, in turn,
?  ?  , ■ ' /  . ' ' /  ' '  ;

implies h A 8.’ x';' ' - j;\ Y,

(b) Recurrence Formula , /- -/
' ■ ', Applying the recurrence formula C6 to the equation 09 

gives ■ ’ ' ' ‘

CIO

■ Oil



'da

where again t « F y • ’r + i r

Now the set y is to represent an oscillatory solution so E ,.
. '■ . :

must he complex*

( l  -  ^ -ih^ ^ ) i O -

2 2 /  . '
or h V  < 6 . } '--X'T'k,;:-:: 012.

Thus the stability condition is very similar for both methods*

Comparing equations 09 and B1 shows that these results may be, -
2applied to B1 if h is some measure of the upper bound-of the \ ; 

function P(r). ■ ...V. ; ' . /

An example illustrating this condition is given at the : end of the

chapter* , '/". Y'1., '

Choice of interval ' ''/.''-'Y;

There are two criteria that have to be considered before a ’ , 

choice of interval h is made,

(a) The truncation error must be made negligible, / ; v ' ' -' -

(b) The stability condition must be satisfied, ^

The function f(r) , which we consider, will, have, its-largest 

value at small r and tend to zero as r increases^ ' / '

The stability condition for the equation 09 using the recurr- 
2 2ence relation was A h ^ 6, " , -



2
Thus if A is talcen as an upper bound for f at initial value 

of r . then this condition will allow, a bound for the initial value 

of h to be chosen*

e*g* f « + 4 at r - r^ ,

2 /then h ^  6^^ - 4 , whence h may be taken as 0.02

(say). . : ; . ; ;

Further, asymptotically the solution will oscillate as xLCvL

Truncation error for recurrence formula is, neglecting terms in ■
8h and higher, , . .,. . ^

'  i" V'\v

X*fO J Z  l+D

h must be chosen such that

h^ is negligible. ■ !. ' ‘ ’ '
240

For example if we require overall accuracy of four figures in the 

solution the integration should be carried out to six figures and

the local truncation error is then allowed to be 5 m  " 7 • ■-lU . ,

M i !  <  % „ - T ,

CI3

or hk <. 0.22 ,

Thus combining these two examples, and assuming 'k « 1, a suit­

able chpibe of initial interval would be 0.02. The interval could 

be increased smoothly, depending on how quickly f dies away, up to



à final value of O.2. . //-%"' - - - -

At this stage it is interesting to note that the next term in
i 3 r 8

the oonreotlon from this roourronoa relation is TSTTo P ‘ • ’ ■ •:

Assuming the sixth differences wore included in a modified recur­

rence relation the same example gives

13 » 8 „ 8
I s I Z o

A . A  ' /  ' 0.3C} /  -''Y:// /'Y
Thus including the eighth differences we could choose a value of h 

about 1*7 times larger than the interval required-tp ; give the V 

same accuracy with only the sixth differences included* It:is un­

likely that the extra work involved in evaluating the much more com- ■ 

plicated recurrence formula would compensate for,this reduction in 
interval* . • . ... Y ..

Choice of initial condition .

In chapter B the equation considered had boundary conditions ■

u « 0 at r » 0, :

ytt /V C f 0̂ ^

The phase shift is determined from the first condition and the : 

second condition provides the normalisation factor G* The problem 

may be transformed .into an initial value one by assuming some quite /



arbitrary condition at the beginning of the range euoh’ as -

n* = a at r = 0, , ■/

or u » b at r « h* .

Choosing the first condition allows the Runge-ICutta method to com­

mence its step, while the recurrence formula can be applied immed­

iately if the second condition is used. The solution may then be - 

integrated into the asymptotic region and the normalisation calcul­

ated, , - . : ' . .

A difficulty may arise when the recurrence formula 0? .is used 

at the point r « h as the term f^ u^ appears in the equation

and f may be infinite,o ' ;

Robertson (195^) points out that this term may be replaced by

lim fu; Using B2 this is %oro in all oasoo .oxoetib for JK w 1 r 0 .
when it contributes an amount 2a where a is the leading term.ino o • ■. ’
the Frobenius expansion B6. In practice he found that retaining .

. «2 ' ■ ■the first term in B6 was sufficient thus giving a = h . ,
' ° ,

This trouble only arises if integration is started at the orig- /

in, . ■■,//"■' //

It was further shov/n in chapter B that equation B5 ‘ v-had two •

solutions which behave for small r as . ' '

f + 1 *
^1 ^ ^0 ^ '

A

Theoretically the starting condition u « 0 at r « 0 must be taken

u„ « a r 2 0



rid of tho unwanted solution which tends to infinity as

r tends to zero* However numorioally we can obtain all of the . 

required solution by choosing completely arbitrary initial values 

at a suitable small, value of r.

The most general solution of equation B5 is given by

u « Au^ + Bu« , .. ■ ' / ■ ■ •

where A and B are constants. '

Then if r is chosen such that the unwanted solution u^ is very 

much greater than , the integration starting from r will con-  ̂

slst only of the wanted solution u^ . , . - Y \  7

i.e# since Up tends to infinity as r tends to zero then r ' 

can be chosen such that B is zero, to the accuracy.with which one - 

is working.

Two choices of starting conditions that can be.used are ■ ■

(a) u « a at r ^ r , -Y- / /, 014

u = a at r = r + h;0 •/ • •

(b) u « o  at r « r , . /i. 0150 y/'.- -,Y '

\ u =» a at - r ^ r  + h; y '0 ■ ■ V, : -- ■ '

where a is an arbitrary (usually small) number, This effect is 

demonstrated by an example. / . . .  ■

Ex* Consider the equation • . ; . - '



. J J

which has solution , y / '

yCl  ̂f\ Jvr Yg( Af) +-3 JiA /n̂  (Ar)
^  - ■ , ■ .We wish to find that solution of C16 which is,regular at the or­

igin, i.e. B = 0, , .
'■

Working to five figure accuracy in the solution*, taking .

k = 1, = 3 . r

r = 0,2, h = 0.1, ;

: ' "o = "l = 10 - 5 , '■ '

and integrating out past 7«1, where the first zero of Vj,(/y') . 

lies, gives a phase shift ^  - 0 showing that only the solution 

which is regular at the origin is present* ! -/ , • ; •

This can he seen by using very approximate values of the spherical ' 

Bessel functions - ., •

at r = 0.2, )(3 j " 1  lo'̂  ̂  V

at r >= 0.3, V i L ^ )  ~ \o~ ̂  ^ lô  ̂  '

Thus B ^  W  (^lo" and since r n (r) does not build up - , 

as r increases it can never affect the solution*

Repeating the example with r » 0*7 instead of 0*2 gavera .p -
value of = 0.0001 which shows that some of the unwanted solu­

tion must be present* ;



Again ■ . ,

at r . 0.7, M  ' '2> /  ;

at r . 0.8, ( y  - it ,0-3 , i

gives B Oio -4) which is not zero to the requii’od aoouraoy.

As r increases the imwanted solution oscillates in a simil­

ar way and with similar magnitude to the required solution. Thus '

if any error is present, at the first zero of it .will

he carried through to the asymptotic region. In the latter .ex- '.

ample some of the unwanted solution would he present throughout the 

whole range. :

An exactly similar situation occurs if initial conditions .015 

had been used instead of 014# However 014. cannot be .used in 

the case Z ̂  0 when the ccluticn Is A §in kr t ® coc kr'as in 

this case'Only the unwanted solution B will appear* This is be­

cause that solution is finite at the origin* Initial.conditions . 

015 will give a correct result in this case if r is of the order

1 0 - 6 *  ■ ' ' - ■ .

Example of Instability : : ' ;.

The previous example was successful with choice of r - 0*2,

h a 0*1, for X- « 5* It might seem reasonable to make the same
■ ■ '■ ■' ' ' ;choice for X = 10. If this is done the calculated function values



' ■ . ' , %increase very rapidly until the numbers become too large for,the

computer + 59 in this case), . •

This has occurred because a violent instability has been introduced 

by the choice of initial conditions*

It was shown earlier in this chapter that the stability condition
2 2 y ‘ ■for the recurrence relation was A h  \ 6 . 012

In the previous example f\ 3> + ̂

fCM"  ̂ 3,0+2. 1,0-2 T" - Y'-:'y

In this example ^  ,

Thus this solution is unstable. The interval should have been ; .

about 0.02 to get a correct representation of the solution.'

Form of f(r) . ' . / .

A form of the function f(r) which will be used is given by

it--).- y;::^
As mentioned in Chapter A this fimction is not defined for small r 

as it does not obey the condition that r f(r) is finite,‘as ' r . 

tends to zero. , . ; /

The shape of the function is shown, in Fig 2. A spurious max-'
imum occurs at some value of r and this affects the shape back to 

some point r„.



The function f is now modified to have the hehayionr

j. T a. Ji -  "V/T for

For r ^ r , f(r) can have any shape which, at worst,, goes off as

1 , as r tends to zero, and has a continuous- join with the form- 
r ‘ ; '
.er part at r = r^* If these conditions are obeyed the solution '

is treated as being effectively zero for r 4, "y/y-/

The values of the parameters a, b, c in f(r) are such as to make the

value of f(r ) of the order of + 4« . ■ ’ ‘ ‘

If the integration is started at r^ and also at several values

of r greater than r the phase shift is found to be unchanged,s
i.e, there is a region greater than r in which the unwanted solu- . 

tion is very much greater than the wanted solution and in. this reg­

ion starting conditions can be chosen quite arbitrarily. 'Clearly 

this range will increase for increasing values of and, in pract­

ice, the initial value r can be moved out to Save computing timê^o
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.Typical shape of function of the form ' c/ ^

! ■ ;



FIG. 2
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Distorted Wave Approximation

If it can be assumed that the non-diagonal matrix elements V,., ..

1 Tp j ̂ are small compared \vith other terras so that, all; products foh " 

the right hand side of A4 except and - which in­

volves the-incident wave, can be neglected,then the,equations A4 

become ' , - y

/T* “ ^'1 =  O  ' ) D1

J,Z

X"- A> X» D2

VDefining to be that solution of

éL
cÀ/̂''

z
A,

Xi. Itx+i) V^ Xh>
A

i>5

such.that

34

and V .  that solution of the same equation such th^t .. ’

35



po

then
i'

xt, A/ /kw, ( /f - ^ 1)6

and the solution of equation J)2 is (Mott and Massey 1949)-. . . ■

XC - a T. Air.- V ,  , A .
4- xur,

which behaves, for large r, as

Cv O/

VW*

I
XA. ; /V — A‘\ '—jL

oo
f

37

D8

Matching these asymptotic forms with the boundary conditions À5

gives ' - yy:yy::-:\':
■ • tV .

S It J ^ V •D9

-Cl - mo

where

oo
f

j
MTji V a  , XX, : mi

o

Thus with this approximation the S matrix elements can be obtained
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in terms of the solutions of the uncoupled homogeneous..different* 

ial equations ‘ '

Formula for the elastic and inelastic cross sections

given by j « 0, j* » 2 becomes

tt-Tf cOcr(o;o) =
' 0̂ =0

D12

O -  ( z  V o)
4-TT

oo

(23-^-1)^
D13

where i talces the values n, n-1 .,, corresponding to values '

■ . \;yyyy'::y,%
A progrojft has bmon writton to apply this approximation to certain • 

cases to be described* V;; '• ’, /, •

It solves M differential equations of the form / y y:-.....

A
A / .  A )  -

where M can talce the values 4» 9, ,*,,**.*..

given by J
J - 2 
J - 4

J
J — 2

J + 2 
J

and
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where f2 is given by the formulae in Berstein et.al,(1965) and

jĵ  — (Xf jx Jl
- JrjiÀ.Æ

The integration is carried into a region where the potential V^j(r) 

is negligible and the A  - integrals are formed from a knowledge 

of the normalised solutions u^,

?

A

oo
r

The calculations are repeated for consecutive values of. J. 

until the contribution from the ̂  - integrals has died : away.' ’ 

The elastic and inelastic cross sections are then calculated from 

the formulae 3312 and 331?. ■ ■ ^ ^

M (the number of equations),

BO, aO, bO, cO, a2, b2, c2 

f1 > ig) ) piJ p2J

h, yl,

kii kg,

j, j', initial J -1, ePG,

(parameters for ,v^ î ■ v^,

bool*

The integration begins at r^ and talces + 1 steps of interval h*

The interval is changed to h x pi and steps are talc en. The,

range is completed by adding I steps of interval h.x pi x p2,
y - ‘ .



4 *

The value of all solutions u. is assumed zero at r and equal '1 - . - 0 - . '
to yl at r + h. j = 0 for the cases considered ando . ’
y ̂  z i Jw - 1).

The initial value of J was usually 0 and J was stepped sue- . • 

cessively by 1 until the -integrals had fallen off by a factor 

eps usually taken to be -3 , - ' ■

bool was a boolean marker set false if angular distribution, was rè-y 

quired and true otherwise (see equation I)) * ; : •

The data is read in and at this stage the maximum storage require- . 

ment of the program is known, J ■

Since the two functions. Vg(r) and ^^(r) appear in all. thê

V,,(r) elements it is more efficient to calculate these functions
. . -y ' • -V

at all the tabular points and store them as two vectors, : _This 

would be especially true if vit(r) were more complicated»’ . ' ■

Wlion the value of J in kno\m ,tho valuoo of 1 may bo sot up and 
also, the constants f2 (i, j) 'calculated from the reference;- The 

equations are integrated as described in chapter-C,’ The integra­

tion is terminated as soon as the phase shift has settled down to a 

steady value usually taken when two successive phase shifts .differ 

by less than 0,0001, The phase shift is calculated- from formula - 

BI3 which involves the spherical Bessel functions, .It would be 

wasteful of computer time to test the phase shift too soon so a - 

marker Xs is set within the program such that for values of r. 

less than Xs the phase shift routine is ignored, ■

In the region for r greater than Xs the solutions are osT-
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oillatory and the phase shift is oaloulated each time any solution 

crosses the axis. As a safeguard to determine whether the phase 

shift has converged or the end of the range has been reached, the 

final value of r is printed out together with the phase shifts. .

The value of the normalisation is then calculated from BI4 , 

averaged over several points, and the correctly normalised solu­

tions are stored.' This information allows the ^  -integrals . Dll

to be evaluated.
ic .Three numeral methods of integration were tried.

First the well-known Simpson^s rule was used

yX

DI4

evnd secondly, two forms of Gregory* s formula

•I- f t
given by neglecting second differences and again by neglecting fifth 

differences (Modern Computing Methods 1961). . . •

The integration was taken over the tabular points of the sol^. 

ution of the differential equation and hence the integrand split into 

three parts* There was little to choose between these three methods 

considering the accuracy required but in the case of Simpson*a Rule
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has to he odd and Ig even. Probably the Gregory formula 

with second difference ignored, i.e. the Trapezoidal Rule with end 

correction, is the most convenient to apply in practice.

The phase shifts are calculated by comparison with the spher­

ical Bessel functions. The next section describes the calculat­

ion of these functions based on the method given in "Tables of 

Spherical Bessel functions", ÎT.B.S, (1947)»

Spherical Bessel Functions . ..■ • . .

Bessel functions of order V  satisfy the differential,equation .

' \  ' . 4 ' ' ’ ' ' 1 ■

One Solution of Blé is 3 ^ (hdj defined by the series' '

^  , \)

. I H , :
Ji! r

For \) =■ n + ■§■ , where n is an integer, the general solution of 

D16 is . . '

A X:;::
where .A and B are constants. ’ ,

The well-known asymptotic expansion of is (Watson

1944), , ' .

Dl6

B17



2.x

where
/w

ie /.

(-"l) (/VI + z !

^ ' X  12 ( 2  ! (/Vk - 2.4)1
X%. - 0 ' . _

N ]  , A ,  f  Si ■[•-1) (/YL + ZxR+l )!

"  /  U x f * "

X.,14  ̂ X .,(4 - ^  X W

The closely related function

\  , , r {'>*•) ^  I ,
A „ t * )  =

may be shown to satisfy the relations , ■ ■

44

Die

The functions 3_ (x) satisfy the recurrence relation

•DI9

D20
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l». ulv+l) A  h>̂ ) ~V41 ' 'v+1
D22

For V  * n 4

A IA - cu

/A =

u
4"

/Vt + t ) 1 ^
 i _  X  .
/n.;

D25

where

a
(-)) (/vu +.&)!

(_2/vu + 2..4.+|) 1

whloh gives

-  I
z A  ( i  AU + z M  + 1 )

ay f e  •=- I > D24

  oO

^ î.iW ■ (z^ry jk%
The simple recurrence relation DI9 may he used to generate 

function values either by a forward or backward recurrence relat­

ion provided (2n 4' 1) V is less than unity* XV/hen (2n +:Xl IS■ X " ■ ' , . X . ■ • .
greater than unity the error in the generated values may increase

rapidly and it becomes impractical to use DI9 for computing

. D25
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purposes. However may be conveniently generated

by a forward relation when ig less than

unity and by a backward relation when this factor is greater than 

unity.

Henoo we restricted use of recurrence formula D19 to values

of n less than fifteen and in this range direct evaluation of 
— “  ■

3 ^  from the power series D29 was valid whenever the /

recurrence formula broke down. " ■ •

For values of n greater than fifteen and for values. of x .. great­

er than n .the asymptotic expansion D18 was used# The-most 

awkward range is when n is greater than fifteen and x less than 

n and in this range we used the functions /\_ . i '
A. ■

These values were calculated from the power series D2$. A block 

diagram showing the organisation of the various functions/used, is 
given. - A
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SPHERICAL Be s s e l  f u n c t i o n s
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CHAPTER E

Close coupling Approximation ,' -

If none of the off-diagonal matrix elements in equation A4 ' can 

be neglected then no analytical solution of the coupled equations 

can be found and it is’ necessary to proceed numerically#

A method of solving these equations has been given by Bames; 

Lane and Lin (I965). It involves solving the coupled equations 

into the asymptotic region and there matching the solutions to the 

boundary conditions, .

The equations are

ci y

for

A*

/VI

Vi Ji y , El

To avoid use of complex numbers the boundary conditions given' in 

terms of the R matrix are used, . • .. ■ .

At at /f - /T,

■ill 1

Since the S matrix contains all the elements of the R matrix

E2
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this set of equations must he solved n times using- the n sets 

of boundary conditions*

If the matrix elements have no singularities of order

two or higher at the origin then, for small r, the solutions of 

El which satisfy E2 are given by

where ÎL n matrix of constants* The solutions, thus obtained 

will not, in general, satisfy the asymptotic boundary conditions* '

Thus n linearly independent solutions of equation ‘El must 

be found and then a suitable linear combination can be matched to 

the correct asymptotic form*

The criterion for linearly independent solutions of this equation ; 

1q that the phase shifts obtained must themselves bo markedly dif­

ferent and indépendant# This ho,D boon noted by Bucking-*.'.
ham (1962)* We make the assumption that if the rows of pt are - 

linearly independent then the respective asymptotic forms will also, 

be linearly independent* This choice of is of great import­

ance and may certainly not be chosen in an entirely arbitrary.man­

ner as mentioned by Barnes, Lane and Lin (1965)* . ,

Thus the solutions u. . may be expanded as . • V

 ̂ 1
-fe y  j



\ , '  ̂ ; ; , ■V-':. . 4^

or At Z: AaT /C ::

The solutions u may he matched to the boundary conditions at two 

values of r (say r^, r^) , large enough such that the potential 

terms V . , have died away* -Then, defining a matrix R* andij '
diagonal matrices by

V
IK '

Î-
z

y  , i .E

N a ^ - A a /t l ^ A / f )  V G À y  : ®  : s?

the matching process becomes _ ' r 'l- !. -

CV CL I , (L ' '' ,y. ̂ '1: < ̂  'yW" , /C % M i* # N .  ̂ ' 336)-
AAf"^ , /o ^  'K'. ''';.' ' :I3Ç)

whence

* I ir CL CL J^\ / ir Cl CLR  ̂(-IT • N - . N ). ( M . -ifL ” M . .,),
The R, S and T matrices defined in Al, and A2 may be easily 

found since . ■ ‘ . ■
1 —' 3 I - V ̂ Ï

EllT  - ^ ^  , 1%' + Z X  (l. -K'R"); R  . !
ana 5 =:. I - T ' J, / ' '
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where I is the unit matrix. . ' •

The,recurrence relation may be applied to these equations in terms 

of matrix operations. .' ‘ .

+ V A a + VDefining C  tz. B15

equation El becomes

and substituting in C6 gives

E14

U.n.1 =  il ~ I'z  ̂ I ^  TÏ  ̂y

i.a. to advance the solution of the differential equation ; EI4 

one step involves a matrix inversion.

If equation EI4 is solved using recurrence relation EI5 then 

a matrix inversion, or in practice, a solution of simultaneous eq­

uations, is necessary at each step. This matrix,

I - h  A "  f
where is defined by EI5,

/w + i

is. strongly diagonally dominant except for small r# Indeed,as 

r increases it will tend to a diagonal matrix. Iterative methods ■
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are very useful when dealing with matrices of this‘.type. and this 

gives two choices

(a) to invert the matrix at each step which would be wasteful in 

the region where the coupling has died away, or

(b) to use an iterative method. ‘ v' ,

We decided to use the latter. Also one con examiné more.closely the 

nature of the solution and the effect of coupling if the equations 

are solved in this way. By this method the equations must be solv­

ed n times taking successive columns of oL as initial conditions.

Three iterative methods are considered. ' . .

Method A ‘ ‘ ,

A method of solving El, used by Buckingham and Massey ■ • ‘

(1943) and Robertson (1956) to solve a single integrowdifferential , 
equation, is to solve the equation by successive approximation# . .

In the following scheme the suffix J- refers to a column of 

A  and remains fixed for each set.of n equations. If initially 

u. , is set equal to zero an iterative scheme may be defined as fol- .

lows t 
r

AIM \ /w

and iteration may be carried out on some final value of the sucoes- 

ive solutions, .
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e.g. the value of the solutions at the.matching points, ..Note that 

this method involves iterating on the complete solution of the dif­

ferential equation, ■ ' ' , ,

The next two methods talce the iteration at each step.

Method B .

Truncating formula 04 after the tern in S .gives

and an iterative scheme could be set up as .:

 ̂ * r A  1 Yy.r • '“Yy * Y-'-'l •

whereI from 05

The flow diagram is, as ’follows :

E18

E19

Knowing y^, y^_^, y” for all equations, •

Set DIKE = y^^^ t ].0y,'̂ 4- y^  ̂ 0 for. all equations^ r

. Calculate y^^^ from El8 for all equations,

. Calculate y"^^^ from El9 for all equations.

Calculate new DIE? for all equations.

Test if 
------

new DIEE - old DIKE ^ ^ for all equations ,

yes
^ ^ n o  

Next step
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Method 0 ,

In 07 the recurrence formula is written .

- z a"" (Y^f " f-yf “ ' V A t  V

where y = Y'"f / ,
X       r ' « W  ' P

\ , : - 
This is a particularly suitable form.for an iterative process as

the calculation of using E20 is independent of the coupl­

ing terms on the right hand side of El. They only arise through 

the term g in E21*

The flow diagram is as follows : ' ;

Knowing Y^, ^r-1’ 8,11 equations.
2 2 • • ' . Calculate h g^ - h f^yr for all equations. .

X

Calculate Y  ̂ from E20 for all equations, r-h.L

and y T = r+1___ for all equations,

yes
no 

NJ/
Next step

E20

E21

Calculate new g^^^ for all equations. ■ ‘ -

^  Calculate new y^^^ from E21 for all. equations. ■ .

Test if I new y^^^ - old y^^^ | ^  ^ for all equations.

—   ^
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This scheme gives rise to Jacobi type iteration but . if the .last 

few lines are modified to be
 >
Calculate new grtl

/\ and then
for all equations.

new yr+1

Test if I new 

 ^

yj,+i - y^+l } & for. all equations

yes
no

then Causs-Seidel iteration will result,

These two may be combined to give Successive Over-Relaxation by 

modifying the same few lines to give

Calculate new g^^^ for all equations,;:.'.

Calculate new g «r+1
and then new y from^r+1

yr+1
1 ,’2

'r+1 r+1' 12 rr+i

for ' 
all 
equ- . 
ations

Test if I new y^^^ - old y^^^ | ^ 6 for.all equations

— 4----- :-----  ' i : A
y®", no ' ■ ..

Next step - . . / - ' V.

However the number of equations considered and the number of iter­

ations involved are small enough for the extra work involved to be 

not worthwhile, Eor a large number of coupled equations this ap-.

proach might be worth considering. The Gauss-Seidel scheme was
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10 4 0 100
' , ; Ï =;■

1 2 100 ' 0

the one oho sen for method C, -If Y:-

Methods B and C were compared by integrating the two coupled .equa­

tions given by El with

k =

over ten points with interval 0.05# , *

The number of iterations talcen per step was output and the follow­

ing was the result, - ; :. ‘

Method B ' fY. ;; v

4 steps ivith 7 iterations each. v g. ' .

. 6  steps with 6 iterations each. . Y., ' .

■ Method C ^ ' ' . ' À i . - .

10 steps with 4 iterations eaohê ■ p. • ‘

They were also compared by ohoosing an example with fpur coupled 

equations given by ‘

16 2 0 ' .100 100 100
2 0 1000 o' . 100 100k = , X » f ' V =2 2 1000 100 • 0 : 100
2 ' 1000 -; 100,.■ loo • 100

taken over I40 points at interval 0,05*

Method B 

2 steps with 9 iterations each.

11 steps with 8 iterations each,

27 steps with 7 iterations each

100 steps with 2 iterations each.
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Method C .

55 steps with 5 iterations-each. '' \ .  ̂ !

5 Steps with 4 iterations each. . v ' ;

100 steps with 1 iteration each. 1 ''-'Wf.-./

These results show that method C is much more efficient than method 

B. As well as having less iterations throughout the chosen .'range .• 

method C gives the correct result straight away when the coupling 

has died away whereas method B will still iterate twice, • .

V/e therefore adopt method C and compare 'it with method A* ’ .Three 

typical cases, with four coupled equations, were taken , \v.- v.'.-'. ■ '.

k

l6 ■; J
1,5 J-2

, £ =
1, 5 J
1.5 Jt2

J =. 0,:2,;6}y. :

and V a .matrix with oloments of the form ae - c/r where ..a, . 

b, 0 ax'e constants, .. . . : ' ‘ .

In all oases method A took about twelve iterations until the. relat­

ive error between the matching points of.successive iterates was 

^Q-4 and the time talc en for one column of oC was approximately V ;■ 

two minutes.

' • ■ C - ■■ ■■The results from method 3 are summarised in Table 1 for two :

choices of initial value r . Eor all four columns of c< the

the time talcen was about two minutes. Thus method G runs four i,

times faster than method A and so method C is used.in the following

work. : . . . . . . .
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Ab ôâh bé Boon from Table 1 thé average number of itérations W&& , 

two and this being the case th@ itérative scheme v/iil probably be 

better than that of EI5 using matrix inversion. However as the ■ 

number of equations increases the matrix method will become more 

efficient as the time required to do the house-keeping of the mat­

rices becomes a less proportion of the time required to do the. 

arithmetic operations.

Table 1 also demonstrates the way in which the coupling affects the 

numerical solution of equations El, It can be seen whether or 

not the integration has proceeded far enough for the coupling to 

be considered negligible for, if this is the case, we would expect 

the number of iterations to be one.

Choice of iteps

iteps is a small number representing the relative,error v i/; 

between successive iterates of method 0,

If it is assumed that we require the solutions of these different-' 

. ial equations correct to four figures in the asymptotic region 

then we should try to keep six figures in the solution at each 

step and hence the relative -error, iteps « 5 ]q ”7 is a satisfact- 

‘ ory choice in these conditions. Tiiie was checked by repeating the 

calculations with . iteps = and ascertaining that there was

no difference in the final .solution. Y ‘,
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, Choioo of matching points , ' \

The matching points r and r, muct ho chosen so that aub- 

stitution into BI3 for all equations, will give a sensible,numer­

ical result for the phase shift. This would not be the case if an

unfortunate choice, such as r,-r equal to a period of the funo-
. ... ..

tion ill the asymptotic region, were made. % How-

ever there is nothing in the given algorithm which restricts the 

choice of matching points to be the same for each equation. : Thus

in each case if r, _ is fixed then r may be obtained by.sub-
i -, ' ' '

tracting (say) it, '

is talcen around that value of r for which the phase shifto 

had converged in the distorted wave approximation. ■ This only 00- 

ours when the potential has died away and,, since,the, behaviour

of V . i s  similar to V.. this criterion will hold at the same . 

value of r in the coupled case.

Choice of matrix <X

In most of the cases considered four coupled differential equa­

tions require to be solved. Thus oL is a four by four matrix and 

we make the choice ;



ex.

1
-1
-1
-1

1
1
1

-1

E22

The rows of this matrix are linearly independent and further.,they 

are orthogonal. This type of matrix gives a good, ohance of the 

corresponding phase shifts being Independent* It is. easy to set 

up a matrix of this form for four equations but for more .than four 

it becomes increasingly more difficult* This difficulty has been 

overcome by Smith, Henry and Burke (1966) who use the RungerKutta : 

method to integrate from r to r 4-h, This allows an initial

matrix to be chosen with reference to the value of the deriv­

atives at r instead of the function values at r +h« : They '

found in these circumstances that cX » I (unit matrix) was a sat- 

isfaotofy choice and this reasoning will hold for any number, of 

equations. Knowing the function values at r^ and r^th allows 

the recurrence formula to be used immediately. ' = ' . - '

This is a particularly attractive numerical calculation .to * 

carry out since one of the quantities which is evaluated is the R 

matrix which, as mentioned in chapter A, is symmetric. ■ This con-, 

dition of symmetry is dependent on the physical model,■ the equa­

tions of which we are solving, and has not been assumed, at any , 

stage in the calculation, Tliis gives an excellent ■ in-built check 

on the accuracy of our working. . Thus if the symmetry of the R ' 

matrix brealcs d o m  it is an indication of something going - wrong

with that calculation and further investigation is necessary. \ie
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have oome across two cases in which this occurs, '

Symmetry trouble 1

The symmetry of the R matrix breaks down for high values'of 

1 but the breakdown is much more pronounced for correspondingly • 

low values of k. This situation is a direct result of the,dif­

ferent magnitudes of the various solutions which result from the 

fact that the solutions increase exponentially until E^(r), de- .

■fined in B2 as

p  ( w  ) =• A
A a  (.'Za -*' i)

A
E23

is zero.

Consider the example n = 2, k
16

t
6.

1#5 8

2 :and some function which is small compared with k for ' '

r ) 2 (say)'.

Then ^^(r) has a zero about r equal to 2.5 and the dorreŝ .; 

ponding solution u (r) will oscillate for larger, r, .‘with ,app" ,• 

roximately the same amplitude. But ^^(r) does not have, its zero 

until about r equal to 7*0 and over the range, between 2,5 . and. 

7*0 solution Ug(r) is increasing exponentially.while solution 

u^(r) is oscillating. Thus the oscillatory solution Ug(r): will 

have a very much greater amplitude than solution lu (r) for r \ - ; 

greater than 7*0. ' In the example, quoted solution, u^(r) had-an
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\

amplitude of ^^+4 while the corresponding value of solution u^Cr)

was ' ^+10. Thus cancellation will occur when these function val-IV . . .  '
ues are substituted in a relation such as ElO, . '

Since solution u^Cr) is very much greater than solution !û (r) ' 

over most of the range then, for small r , the coupling of. .solution 

u..(r) with solution u^(r) will be so small that it will:have very -
• -  - ' ..V, , ' ' .

little effect on the phase shift of solution • Uo(r-)#;' •>ïïehoè®t.hîs-f 

phase shift will be almost independent of the starting conditions 

and we will not be able to get linearly independent values of solu- .■

tion u_(r). For this reason values of the phase shifts for each .■

column of were printed out together v̂ith the R ‘ matrix, show- .

ing quite clearly that the breakdown in symmetry of the. R matrix g 

occurs when the phase shifts of solution Ug(r) are very nearly

equal. \ , A:.Y

This type of situation suggests that the. initial valuea ^  : ■

should be scaled to compensate for the differing magnitudes* .. V

However the following two choices of scaling the columns ; of . , - : :

a 1 b . I,---.,.

10"^ 10-“

io“^
)

10"^°
io"4

■

10-10 
— —

were made for a set of four equations and there was,no,improvement 

in the symmetry of the R matrix. • / v ■
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Tho third choice

+410

10~4 _
X^+l

corresponding to values proportional to h , for, ,h « 0*01 ■ is 

the most realistic hut this gave no improvement over straightfor­

ward use of the matrix jd< given in E22.

It was mentioned at the end of chapter 0 that the initial value 

r^ could he chosen in a certain range determined by the constancy 

of the phase shift. As a means of improving the present situation ' 

it is essential that r^ is taken as large as possible in this . .

range, thus cutting dovm the. range of r for which the solutions 

are building up exponentially* An illustration of this effect is 

shown in Table 2$ ’ : ■

As increases the position of, the zeros of the functions'É^(r)

increases so it was decided to automatically increase-the starting ■ 

value r • ■ , ■

Symmetry Trouble 2

It is of interest to study the effect on the ; solutions of ah 

increase in the- size of the coupling terms. This was done by in­

troducing a parameter into the right hand side’ of ,El6, The

equations are now . ■ b ■



/W.

_ y
A

X x •E25

- I

As Xft Î8 increased from its realistic value of unity we find .that 

the symmetry of the R matrix breaks down badly,

To investigate this we consider the analytical solution of two 

coupled equations for small values of r. The two equations at*e

r . % " ' ' ' '■■■'
r - .  - - f XXx =. 

\ F.

£ _

We shall assume F

&
VI

Fz = .

1
■"V

1
^2

to be small,

Eliminating u« from E24 gives

D̂+- A  " “ Fg] F„ _D̂ + “ F,J
- X ,  ft ),Ji, ,̂  0

i.e.

r  ( f;') - - b  F,''3

• ■ ( a  “  F , +  ( ^ A  ~  F ,

' "4*)*^“ Î ^  F, - X, F
''o ~ -^1 F*. F

-I

XU I = 0

E24
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Neglecting terms of the order of E" the equation becomes*

ÿ  ( f." f.) *■ U  F."3' * A, F, f;' * ( a ‘ - W  F/'F,

- F% F» ' F, + X , X, F At O

In the cases which we are considering and Eg. depend on two

similar functions v and v while E depends .only on the ; • ’ 

function v^. Thus we make the substitution . . ; . . ;

F, -  ■V:

r z. ^ ^ 0  ^ , : :

^  F. .  /V-.

and the equation becomes

aTo 
^z

U. -;X)4-

AT£,

AT.

1 + /\T,

>U. = 0

or

]) + è " z

At-, = o
I  ••

This analysis shows that the effect of increasing lambda from its’ 

realistic value of unity is to reduce the size of the quantity, 

corresponding to f(r) in B2. Thus the effect of coupling is..



diminished* This manifests itself in a loss of linear Independ­

ence of the phase shifts and a corresponding loss of - symmetry in 

the R matrix.

Three numerical examples have been taken to demonstrate this 

effect, each example with a typical value of f(r).

16 ~ "*o”
(a) k =

1. 5
>

2

With this choice of k and Jt the zero of the functions 

f(r) of B2 given in E23 occur at approximately r ■= 2.5 and 

7.0 respectively. -

As X  increases these zeros are moved closer to the origin and 

symmetry brealcs down at \ ~ 1 ■

80 0
(b) k ==

66
9 ^  c=

2

■ In this case the zeros of the functions are much closer to. the 

origin initially than in (a) and symmetry is lost for a lower value 

of X , in this case 2.4* • '

(o)

Again the zeros occur at larger values of r than in either

(a) or (b) and X can be increased to 5 before symmetry, is lost.

60 . 25
k - > ^  S3

66

The algorithm set up at the beginning of this chapter to solve
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coupled differential equations requires linearly Independent phase . 

shifts to he calculated. This is not possible in the,present sit­

uation and so the method becomes inaccurate. No w^y round this 

difficulty was found but a check on the valuew of the phase shifts 

will show whether or not linear independence is being lost#

Dependence of phase shift on k'

A comparison between the distorted wave approximation and the 

close coupling approximation will be left until a later chapter,

At this stage we Investigate a peculiar numerical situation which 

arises in the close coupling approximation. ; ■ ■

Consider the two coupled differential equations ' : : ■ ■

d w
A V n E25

d/f'
yk.. V zz M. X, E26

with the usual initial conditions (E2).

The algorithm for solving coupled equations makes use of the fact 

that linearly independent solutions of the above equations, can be 

found. These equations may be represented asymptotically by



d r ,, = ^  ^ ^  + h  M 1

=: ^  ( A i ^   ̂A ' O  X A -  -

^L^^ - Aa, /Zvvd ( A / T  + % , )  / .

■^2.2 ~ ^22 /('+■>) 22,y.

The difference he Ween and 4^ , ^z\ snd //\j
give a guide to the strength of linear independence of the-phase

shifts. These asymptotic solutions are matched in turn to the

boundary conditions obtained by permuting the initial channels.

i*e* ■ . . . d ■ ■■',■■.

U I /V (-4., -f) +• T? „ ( - A , d  ) X  :

E27

E20

/V
l\A,

R,2 ; rr.

U, A, ixA'
\

(7̂  A/ "/j.xn.[A^) ~  "^2 2

E29

and

and ^  are the required phase shifts of U_ and Û .'1%, 1 ^

Taking a linear combination of B27 and matching to E26 gives
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/C, A „ va/di, 4 c ^ A , ,  ( ^ , / T + .

=  Avw(de,/f) + T%„
)

/C, A;5, A 2 A A . ( A ' ^ +   ̂'Ĉ  + ''iZî)
•'̂ 2, (̂Â )

whence, using the substitution  ̂ \

X  -  (̂ û xz '̂ ')>i - A u A z ,  , i
we obtain ' ' ; • V  ’ '

/C, = ẑz \tz 11

'Cz =  - ^  ^ 2 , / ^ ;

■R,, -  ( a  I. Azz ' ^ ' ) z i ~  A u  Ail • ^ ' ^ u  8)0

7%'2 = Azi /x ; ■ E51

Similarly matching to EJO lends to the equations . ., . ; - ■ ■

K z ^  ( A„ All - Au A„ X , , 8)2
I b ' . ' . A

'Rj, = A * A . ) " a „ a .z ; ; :r



Also since R is symmetric, * . . ' .Xv:X-''rAi. 1' - /'

A „  A , A ,  Ai, Az;, ^ 2).̂ :

We now.define a relation between k. and k_ in terms of:a vari-J. c ?

E54

2able E, s.t. « BO x E,

= BO (E - hi),

where BO and hi are constants.

If E is increased then the phase shifts should change smoothly. 

For convenience the phase shift is tabulated in the range j 

-TT/z 4 and thus there are effective discontinuities

when ^  passes through a multiple of /Z #, This, behaviour-is. 

observed in the distorted wave approximation obtained by setting 

equal to zero in E25 and using boundary conditions ' É28 

to give ' , or setting X, equal to zero in È26 and using . ; ; .’ 

boundary condition E29 to give . '

■In the first case and E50 simplifies;'to,

as expected.

Similarly in the second case '\z ' '.̂5.2 ..gives

%z'- ' '

In the following numerical work the par'ometers taken were. - ■ ;

BO « 521.82, .

hi = 0.045)84, ; I ' d •

Vt T “ BO X vO , '. ■ ■ . '. ’ /
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Vgg = BO X (vO + Y  v?),

3^12 “ = BO v2 ; where

A
vO = 511.09 exp (-3.59I-) - 5.525 / r ,

v2 = 546.66 oxp ( — 3*779i')” 0.612 / ,

and E - is varied between O.Og and 0*25* x . '

The graphs of ^  ̂ versus E and versus E from the distort­

ed wave approximation are plotted as dotted lines in Figs. :2A and 2B.

The close coupling approximation is used over the same range , and ■ 

we found that at various points' throughout the range discontinuit­

ies occur, in that the phase shift suddenly■jumps by an amount TT .

Considering the graph of Ij, versus E we find that these 

discontinuities occur at values of E shown in Table %  [ ■

Now on the graph of  ̂ versus B, passes through the value

exactly the same values of E. The reciprocal process is 

also true; i.e. there'are discontinuities in 'Iĵ  at the same 

values of E that ^  ̂ takes the value * That this should

happen numerically can be seen by considering the equations E50,
f

and E32 for and If passes through the value .

IT/j _  1 ^  rill 1. W W W  or, i„ ,r.otlo., n».rioolly v„y
large. The value of X at this point will be zero. This has the 

effect of causing all the R matrix elements to be infinite and 

hence  ̂ will take the value 2. immediately giving rise to a -



discontinuity of the type shown in Figs 2A and 2B.

However the matrix; T given by :r'.: '

remains finite as all the elements of the R matrix become numer­

ically large and the cross-sections as calculated from Aj vary . 

smoothly as the phase shifts pass through the value -..This is

shown in Table 4* Thus although the shape of the graph of . ^

versus E looks rather alarming as given by the close coupling . 

approximation, vm can integrate with confidence over ..this region= to

obtain realistic cross sections

Program to solve coupled differential equations

Four coupled differential equations of the type

where 1 4 1 4 4, 1 ^ j 4  4 •

are solved subject to the boundary conditions : ;

"ij = ° at r .

\ q/



1 takes the values J, J - 2  , J, J + 2 ,  ;

and ,V"' '
;T f -5"

V.,. =  - B O  AT O C^), Sxy  ̂  y) ATlL'r)

where, fg is given by formulae in Bernstein et al. (1965)•and

ATytll-^) CXyJlJL^ -

The H matrix is calculated and . the T matrix, giving the blast- 

ic and inelastic cross sections from A3, is found. ■ ' v ■

Data

BO, aO, bO, cO, a2, h2, c2,

h ’ igj pi, P2,

rO, h, yij

h '
, 2 

' ^2 »
, 2

' ^4 ’

0 , 2, g( ( 4 x 4 matrix),

initial J - 1, max J , bool,

sa. sb, ra, rb,

any number of sets of X ,
999.

The program is designed to be used in conjunction with, the -pro-am 

for the distorted wave approximation described in chapter D, The 

initial paraineters are defined there. This latter program contains



I J

an automatic test on convergence of the phase shift which indicates 

if the fuiiotiohEi hbgligihle,. . Thië at a portiouiar

value of r and this is the value of r which is,taken to termin­

ate the coupled equations program'since,; at this point, the coupling 

will have disappeared which is the criterion required for use of the 

boundary conditions.

As before the values of the potential v (r), Vg(r) are calculat­

ed and stored at all the tabular points. ' .

The value of J is stepped by one and rO advanced a small, dis­

tance each time. From a knowledge of J a matrix, F2 is set up '
J ' . 'consisting of the required values f^ (i,j). The equations.are 

solved over the entire range, using consecutive columns of ,• o4 given 

by E22. . . ■ ‘

■ -

The'values of the fiinotiôïi at the matching points ra, rb 

which correspond to tabular points sa, sb are stored. '

Matrix operations are used to calculate ■ V

(a) the phase shifts for each column of à modification of

B13, .

(b) the matrix U given by ' ■ : .

Æ  n'"-vur": .

a formula similar to ElO, and ; ■ .

(o) the matrix R from ElO. The T matrix follows from Ell,■ ‘ 

the real and imaginary parts, (TA, TB) being stored separately.
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Those operations ax*© repeated for suooesaive values of J up to 

J max when the elastic and inelastic orose^ sootions are oaloulat- ■ 

ed from A3*

If the boolean marker bool is ©et equal to true then the various 

matrices TA, TB, for all values of J, are output onto magnetic 

tape.

The following matrices are output

matrix of phase shifts, _q, R, TA, TB for each value of J, and 

then the value of the elastic cross-section (j = 0 j* » O) and 

the inelastic cross-section (j = 0 -4 j*'= 2),



BLOCK D IA G R A M

C L O S E  COUPLING PRO G RA M

î e/î3> 3) AT A

S ÊT (/ P /VD

V

/KJdur tr : ; cT + / 
tovAvûÉ /To

M n T -R j X 

(•PAÔÊ 4-.)



C A L C  

"pÏ?I fvr 
É L , A WD tw2L, 

CROSS sÊcr/i?ws

A



SOLVE EQUATIONS

S ET UP
uVfT, c 0 N/-a> IT.

SOLVE 
E 0 u ATiow$

?of I s t é a ;

I iVT e ft V /ÎL

S r 0 ft e 
coL pp PA, ̂ 3

Mo"



MATRIX OPERATIONS :
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ÎABLE 1

. J, value 
Initial interval

2.
0.01

Initial value r « 1.0 Initial value ro 1*5

No. of 
ITERATIONS

5
2

■1': >.1-.
2 
1 
2 

1 
2 
1 .

2 

1 

2 
1 :
2 
1 '
2 ■ :
1

2

1

No. of 
POINTS

65

124

■ 5 .
70
1
28
5
5
2
5
5
1
7
1
7
1

50 .. 
1

291

Noo of 
ITERATIONS

5
2

2 
1 
2 

1 
2 
1 
2 

1 
2 

'1 
2 
1 
2 ’

1
2 }.1
2

1

No. of 
POINTS

8
19

• • 5/:" 
152 

5
91 . . 
1 

27

5
5
2
5
4

.7 

1 . 
7 
1

,  50

' ■ 1 

196



TABLE 2

In a typical case

4.55)0 -0.0649 0.0043 -0.0002

H matrix- .. "°°°649
0.0041

0.0015 ' ^  ̂
..

m 2*0 .same case

4.5196 -0.0645 0.0045 -0.0002

-R matrix ' “P*0643 " " ^ _
' 0.0043 : .

' -O.OO02 ~ ^
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' F I G U R E  2A

Graph of j (rads) versus energy E (e.V.) showing
tT*discontinuities at those values of E for which ^  

in Pig 2B.





F I G U R E  2B

Graph of ^  (rads) versus energy E (e.V.) showing-
'TTdiscontinuities at those values of E for which = 'J'

'in Fig 2A#
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CHAPTER P

Decaying boundary condition

75

Introduction

2 2 If, in equations B2 and Bl, k is replaced by' -k, the

equations become

^ U  + i)
/f

= ol-: PI

and, as mentioned in chapter B, the asymptotic form of the solu­

tion will be ■ *• ' .

.tkr , «kB ■ " . .

If the boundary conditions

u « 0 at r « 0,

u /V e

are imposed then it is only for certain values of k , the eigep- ’ 

values, that a solution of PI can be obtained* However there-is 

a solution of the equation ■ .

P2

P5

•n
£

-•A. "
/f 3, P4

which satisfies the boundary conditions PJ*



This Is given hy Molt and Massey (1949) *

(a) if k is not an eigenvalue,

— .AÂ„ .

J

/T
r

I'
/ILI (̂(yT

where û  is that solution of ?1 such that 1

u^ *= 0 at r = 0,

and Ug that solution of FI stioh that ,

(b)

^2 - 1  . * ■

is an eigen value,
/T /f
f f

A Z 1 0/ i?(w* A/Z1 C'/d/f
j 0 i : .

a J0 J

I
z

where is that solution Of Fl suoh that .

Ut - 0 at r - 0, ■ :

implying that also u^ A/ e" , and u^ that solntipri of 

Fl such that

1 kr - V •'■■■:
*2 /V G . .

Description of two coupled equations

F5

/ : F6

We now consider the two coupled differential equations
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V II I ~ ■>

cL̂ - A ,  - t., -  V
W' Z.2

/LL. \  ,

F7

F8

and impose the boundary conditions :

w 0 at r = 0 , 1 - , rv

u^ A/ s in k^r -h R cos k^r ,

■n “ k r...Ug ,/v B e
' ' ' ■■■,'; - 

Equation P8 is in the same form as P4 so it will be possible

to find solutions of F7 and F8 satisfying F9#

■ P9

Numerical solution

Equation E8 will have asymptotic form E2 but only the de­

caying exponential is required. This equation is inherently un^ 

stable as described in chapter G• Thus forward integration is ,

impossible in this region and we must integrate backwards, in the 

direction of decreasing r, - ^

Again, for small, r, the Independent series solutions of

are

/Ct /f
A X - and /f

AX

/YV
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and, since we want to suppress the second of these, ■ forvmrdMnteg- 

ration, in the direction of increasing r, is necessary.

The only choice left is to integrate forwards for small r- , . .

integrate backwards for large r , and match the solution in the 

middle, at some point where neither unwanted solution dominates.

Matching implies the equations ' - ■ '

"f = *b . "'f “ ^ ̂ q ' » ; y;:-;I/ " \ ™

or u. = Ù, at. r = r ' and at r = r + h, •' : ‘ FÎ1

where the suffix f or b .denotes forward o5? backward .integra­

tion respectively. , '.i ;

Equation ElO is more suitable for use with the Runge-Kutt.a _ method . 

while Ell applies more easily to the reourrenoe rGlâtioïl,, . ;, Wq. ....

■ use Ell, ‘ ' ■ \ y , n  t '''

Burke and Smith (I962) have described a method of solving these / ,; '

equations. . , , . \ i ‘

Eor the forward integration only two conditions, ' û  =s 0, hx = 0 

at r «= 0 , are Imown so two further values are required to specify 

the solution. These can be obtained by taking two linaarly indep­

endent solutions and combining them to give the exact solution,: •

f f. f f ' ' ■■ ■’. ;Let these solutions be u^^, u' , u_n, the first index. .

referring to the equation and the second to the choice of initial, '

value, ' ' . ■ -• ‘ ^‘ .



In the asymptotic region the only condition which' can he separated
-kpr ' ■ '

out is Ug A/ Be . In this case three further conditions

are required so three linearly independent solutions must he found.
h . . . .

Thèse will he represented by u. i = 1, 2; j “ 1, 2, 5̂ '0̂ :

A linear combination of these solutions is now matched, at the ap­

propriate points,

i.e.

(a)

(b)
*11 °2 ^̂ 12

^21 . * °2 ’■̂22

P12

at. the point r = r^ , and two similar equations F12 (0) and (d) . 

at the point r = r + h. ' ' .

Dividing by Op and taking all values of o, to left hand Side
■ ' . I . J ■

of F12 gives the matrix equation . '

I .&■
1 - U W
1

a <■

c v t i : M
_  U 5 (vTc A ) .

and

/(r) is a (2 X 2) matrix f
" i j

U^(r) is a (2 X *2) matrix b
" i j

Uj(r) is a (2 X 1) vector b

G is a (4 X 1) vector

i = 1,. 2î . j = 1, 2, 

k = 1 , 2, 3, 4/\V
. G,

This gives the correct combination of the ai'bitrary computed solu-ty 

tions required to fit the given boundary conditions*. The phase



bU

shift oan now he found by matching the asymptotic solution, of .F?,■

« b ri b b
*1 ■ “ 15 ’ .

. ■ .

to the corresponding condition P9» ■ • .

Choice -of matching point ' . . ’ "- :

  —  ' : -  :  '

The choice of matching point is not critical for a single \ 

equation with a decaying exponential boundary condition since the 

only requirement is that integration in either direction should , 

not suffer unduly through.unstable accumulation of error ■ (Mayers ' 

1962). In practice we choose the value of r for which ' ) ’

given in equation EB, is a minimum. . ' ' ■'

Forward integration •. ' ; ' •

There is no problem with the forward Integration. V/e. choose 
1 1the matrix

+1 —1
as values at the second tabular point and

integrate as in chapter E out to the matching point r^ + h.
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Baokvmrd Integration t ■.. .

The situation in the asymptotic region is not so straightfor­

ward* If the baokv/ard integration is started far out at. some 

point r^ and initial conditions

Ui(r^) = (9 (1) , / •
. ' y'y ' F14

U2(xp = l9(i),  ̂ i -

are talc en, where i9 (l) represents some quantity of the order of \  

one, then the second solution will increase very rapidly with res-., 

pect to the first, until the effect of the coupling term on the ;

right hand side of F7 will dominate the equation,and the true ; , 

solution will be lost.

On tho other hand, if initial conditions . ‘ '

u^(rp = l9 (1) , . , :

are talcen, then the magnitude of the coupling on the right hand 

side of F8 would swamp the correct solution. . This difficulty 

can be overcome if the backward integration is divided into two - 

parts. . ' '

First equation F7 is integrated, by itself, backwards from r^ 

to some point r where we might reasonably expect the numerical 

value of the solution of F8 to be significant.

Then the coupled equations F7 and F8 ' are integrated backwards

F15



from to the matching point . A suitable choice of

will avoid the severe cancellation which occurs in situations, de­

fined by asymptotic conditions El4 and E15 • To keep a check. 

on this the values of both sides of El2 were printed out.

An example is given which demonstrates the effect of the choice of 

Equations E7 and E8 . were solved using . \ i .

k^ = 16.091

1.609

and the matrix V was talcen as in the example at “the énd .of chapter

■ ■ ‘ . . 
The function • Vgg has a minimum about r « 5.8 . and the match­

ing points were chosen to be 4*01 and 4*11 • The results, sum-

inariKod in Table %  were used to find a criterion for the choice of
% ■’ ■ ■■ -..■■■ .  .

r . This is essential if a program is to be written’with auto*’
, • ■ .vy :

matic calculation of r . " . '

Table 5 shows that the phase shift - tan" (r) is veiy insens­

itive to the value of r although accuracy is lost, as r .in- y, e e
creases. If we* assume that the decaying exponential behaviour; 

begins around the point r , an estimate of the value of r oan
° ■ .'- ' f  - V -be obtained by taking a value of r for which the quantity e

has fallen off by some factor (say p ) from its value-at the point..

"■c *
i.e. “V c  , : V \ -

e ■ ‘



I.e.

where P = log^ p ..

r - r e o ( P ,  ■

83

r - r e c

Using the values, from Table 3, of r = 8.01 and r » 4.01 ■. 

gives P —  5 > so the criterion used in the program was ‘

< 5.0/kg . ; , .  ,

This was found to be satisfactory over most of , the range • '

0 A A . 16 \ 0 , although the accuracy-
2 - ■■■-' - diminished for very small values of k^ . -

Description of program

Two coupled differential equations of the form

éL
cU^

A. -  V 11

A V 22 ~ A "  I »
L

are solved, subject to the boundary conditions • ■

u^ n 0 at r = r ; 1 = 1, 2,0

A/ sin k^r + R cos k^r, '

"2 A/ B e-kr .

h j is the same as in previous programs. The program calculates

and prints the value of R.



Data

BO, hi,

aO, bO, cO, a2, b2, c2.

h' ^2' ly Pl, P2*,

rO, h, yi,

0, 2, OC. (2 X
/

2 matrix) , ^  (3 x

initial J-1 (set equal to -1 in this case),

J max (set equal to 0 )

X2> el, e2. e3. '■ ■:

is given by BO x e while ■

kg^ is given by BO (e - hi) , ,

whero q takes values q1 (o2) 03.

The matching points are chosen to bo the tabular pointa given by 

I- + and I., 4- Ï» 4- 1 . " . f ■
1 2  1 2  . " rs-. ■ ' -

The two equations are integrated forwards to this point,- using .the 

matrix as initial values. ;■

The first equation is integrated backwards from tabular point ' .

I, 4- 4- I *H 1 to the point r defined by criterion #16. .. Now

the coupled equations are integrated backwards to the matching points 

where the forward and backward solutions are matched,- The vector 

of'coefficients is calculated and, to keep a check on .the acc­

uracy of the matching the left hand side and the right hand side, of, 

equation El2 are printed, . ■ , ’ . . ■ ■'



Finally the phase shift given by arotan (r) >io evaluated

from boundary condition fox* u. at the tabular points given by 

^1 i and 1^ 4- Ip 4- ly t 1 , f,
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CHAPTER G

Derivation of radial equations . , .

The formalism of Arthurs and Dalgarno (i960) is used to consider 

rotational excitation of a diatomic molecule by an.incident point 

particle. The model which is taken to represent the molecule is 

that of a rigid rotator. ■ p . ‘
A -

Let /i s. 9, 9̂ ) specify the direction of motion of the 

incident particle, distant r from the centre of mass of the
A I  I Irotator, and let /f a ( 8 ̂ V) specify the orientation of the 

internuclear axis with respect to some axis fixed in space.

The Hamiltonian for tho ontire system is , . .

H . = - z/b ^  + v ( / r  - 8 ') ^  J

I ■ ■
where “* is the kinetic energy operator for the

ZyC

the

scattered particle, is the Hamiltonian for a free rotator in

space and V  8 -&') is the interaction potential of the 

colliding systems. The wave functions describing the rotational 

states of the molecule are the spherical harraonios />v\,̂( <£ *')

defined in Condon and Shortley (1955)> which satisfy, ,

G1

G.2
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05

where I is the moment of inertia of the rotator, ^  is its ■ 

rotational angular momentum end m^ its projection on the z axis.

Let i jfi he the orbital angular momentum of the incident particle, 

its projection and consider the wave function defined by '

■ ' ■ / : t  ̂ ■ '
where (jfm.ra I'jXdM) is the Clebsch-Gordan coefficient.:d I ■ . . .

j ) describes a system of total angular momentum %  ̂  

and projection M A, where

I - 1 H
and it includes the entire angular dependence of the incident part-. 

iole and target. ‘ ’ ... ' .

If E is the Icinetio encu'gy of the incident particle, measured 

in the centre of mass system, the total energy of the system, when' 

the rotator is in the state specified by rotational quantum: number - j, 

is given by

Eigenfunctions of H , corresponding to total angular momentum quant­

um numbers J and M and appropriate to the entrance channel defined . 

by quantum numbers (j, l) may be expanded in terms of , ol^i^ )

as ‘ '



Ob

3" M

V '  2 '
are fonctions to be determined such thatwhere u'l'?*, (r)j '2

•S’M '5 M

G5

g6

Using the previous equations, the resulting set of coupled differ­

ential equations is ' ■ • ■

A ‘

Z > t
=2 yfT ^̂£(T '

where k.,, . is the channel wave number given by 
J 0

G7

Z I
G6

and

G9

The scattering matrix S (jJB; j*X*) is defined by the requirement 

that asymptotically



'h Ï
4 n
A U

GIC

Derivation of cross section

Total wave functions , ^  ^ /T /f ̂ /̂ ' j , having the asyrnp-

totio form of a plane wave multiplying the initial target wave ; ‘ :

function plus a linear combination of products of outgoing waves . 

and final target wave functions, are defined by Blattand Biedenham 

(1952) to be

Gll

-.'N.



Equation Gll has asymptotic form

y\j

*h

r
A,
Â.u

G12
if

where q (j*m,,; jm.) is the reaction amplitude given by J J

O' \A J. X ‘ /VŴ ' s
■y

■ ■ .

T ',.T (jXj j*!*) being an element of the transition matrix defined by

' I I

The differential scattering cross section for excitation from

the (j, m.) state of the rotator to the (j , m ) state is
. ■ 0 Ü ' • ’

given by

G14

c(,6r(^ /f = T Ï
y y

X
(tf G15

Since most scattering experiments do not distinguish between the



different states m, or m., of the rotator, we average over theJ J
and sum over the m ̂ , to give (L6~ (j'; j | ^ ), the dif­

ferential scattering cross section for the j - j* transition* . ,

From equations G12, GIJ, G15 and hy making use of.the 

algebra of the Clebsch-Gordan and Hacah coefficients (Biedenliarn,. 

Blatt and Rose 1952, Racali I942) the following equation for the ■ 

differential scattering cross section was obtained, .
00

JU gi6

where is the Legendre polynomial of order X and

,i].-ÿyyf
s,.0 3-».o

X z ( i > ,  ; i r > ) T ( v A ' ; I r p T

GI7

where

2  j - e .  i )  =  ( - 0  ( 2 . a , + t ) ( a - e - + ' ) ( 2 / C  +  i y ( 2 . c ( . +  i )

X  [ c u Æ  o o j c u x i f  o ' )  \A/î CLJrALciyJl,yŷ . .

The total cross section for the j - j* transition takes the form

G18

6~
. , . AST. .(ViV)

oO 3-tJf

AiiA )4 GI9



Distorted wave approximation •uV 'I '

If the coupling terms in G7 are ignored there results the 

set of uncoupled equations

/T
, V  ■

G20

Defining to be that solution of G20 which be- ■

haves asymptotically as

where ^^î ,is a real phase shift, the equation

\ r c . ' V

G21

G22

is talcen as the zero order approximation in an iteration procedure* 

The first order approximation is then those equations discussed in 

chapter D, the results of which are, changing the notation,

• G23

■5'jr
: G24



where
Où

Z yU.

ix
y  y

ïTWI, I J

J
G25

The elastic cross section becomes, in this approximation,;,.

oa

1

while the inelastic cross section yields

. pIL, 4*\ PO

G26

G27 .

The distorted wave, approximation violates the conservation. ' 

requirement as expressed in the unitarity of the scattering,matrix,

f A t

Now from G23, G24, G23,

G28

' 0 I

yy

M
t d tY-t

U

G29
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so the distorted wave we ale coupling approximation is only useful , 

when

r—

/z'

is snjiall compared with unity. .

When it is not small, violation of the conservation requirement.can ■ 

he avoided hy the introduction of a reactance matrix or phase matrix 

(Peroival I96O, Seaton 196I). Another method of approach, used by 

Be:^tein et.al (1965), is to renormalise the matrix elements by mul­

tiplying them by a correcting factor , ■ - , ’'i •

c / X  \\ * l\y j . y  x : ; . ,  j :  ° » '

However, for practical computations, the quantity lA-* :1s •

tested and when it becomes' too large compared with unity, greater. - 

than 0 .5 (say), the distorted wave approximation is no longer

used* This is the criterion adopted by Roberts (1963) and Bal- 

garno, Henry and Roberts (1966) in their calculations using the dis- 

torted wave approximation. -,

Close coupling approximation

If none of the coupling torms in GY are ignored then np an­

alytical solution of these equations can be found so it is necessary
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to prooeod numerically as in chapter E. 

The asymptotic condition

t

- ' A ] ^  »5^
'^yy

leads to a relation between the R and S matrices given by *s = (x-xîy'(i*x:î). vy;:::;;'
The elements T (j&; maybe found and hence the cross

sections may be calculated from G19*

Equations G7 consist of an infinite set of coupled differential < 

equations* Practically we oan only take the summation oyer .a few 

of the possible states* Thus the close coupling approximation i^* 

nores coupling to any higher levels than the ones under considera­

tion. '

Expansion of potential function

The potential V  ( /f, 9 -0'] may be expanded in à series 

of Legendre polynomials, ‘ - ■ ' '

G53

G54



matrix elements defined in G9 then involve terms such as

M
/  A \ \ .  t A  I A t

G55

Substituting equation G3 and using the expansion

^ T T
2ytt

/m

gives rise to the integrals evaluated by Rose (195?)»

' 1.4 -̂̂

G56

iâ 00 G57

I.e.

)< (2 ^  o o j ^ y  Oo|^yi0^ ^ ( 2 y4. + ,).Z /. K. G5f

where

M + Alt,
^  A K u

tl /
Art.y,/vit ,,|), i " c T H )  j ^  -g yzAM.)

I t - /

( Ù ' -v/Vvt̂,-/Ky G59
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ÏÏslng formulae given by Racah (1942),

and

Dcpysvs
^  1“  ') V  ( o x C n A ,  ot (î -e) V  -«(.y, 0) :

X V  (ircih -AS,-(^) V  ^  S ,'V)
*® + £+̂ ' + cC-J&* y

(- 1) W(a..«r,ct{, & + l)y

then

;y+-f->C

k  =  t - ' )

Hence

<  v ' z >

" . I
(- 1)
Z ytc + I 

X ( ^  X  0 0

X  W  ( 3 - y U . )

G4O

h  ̂ 3-) . G41



From G44 it is oawily sho\vn that - .
,

' ' ■ . ' . t

( 0 ù"4 4
f, (3‘A.5 J) = I 1 j„ . j, X- =1.. . ;. «42

Thus from G42 it oan he seen that no rotational transitions for a 

V ( ^ )  0-©') having only a yx « 0 term are possible. . .

If the rotator is symmetric, so that

0 -9') V ( /f, V - [e-e']) :'i/v
then only even values of yt will appear in expansion G.54* -, '"1... - \

For even values of yU. , /

. f^(o'je*5 d"i"i J) = 0,

unless 3 +  j" and + 2" are both even. This means that for . 

a homonuoloar diatomiQ molooule, no rotational tranoitioiiB'ean. take.- 

place for which A  ̂  is not even. If V  0 ~Q\) : 'is 

further restricted by truncating the series G54 after the term in 

yt « 2 , the only fyt, that are non-zero are those for which / 

j* = j" ± 2 and £* « 2" f 2. This gives rise to the selection .

rule A y » 0, i 2, for a homonuclear diatomic molecule whose,

potential has only yt = 0 and yt = 2 terms when. expanded as in. , G)4# .

Thus the double suimaation in G? consists, in general, of nine

terms. ' ’ ‘ ‘ ‘ ,
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CIIAPTKR H

Validity of the distorted wave approximation

The validity of the distorted wave approximation depends on the ■ 

smallness of the off-diagonal matrix elements of the interaction 

energy. This will he investigated using an example-given by. Mott 

and Massey (l949)° -

It was shown in chaptei' G that the distorted wave approxima­

tion could be regarded as a first order approximation' in an itera­

tion procedure to solve the strongly coupled differential equations 

G7 . The equations are here considered to be -

./"in
A V  M-O/vt } HI

v '  M l H i  V

with the assumption that V = V .. ̂ on no . .. •

These equations represent the interaotio.n between two waves, the in­

cident; and elas t,ically soattored, and lhat scattered after exoita- 

tlon of the nth ;-,riationary state. ' .

In the case where ttie state given by o, and ' n are nearly in

reaonfmoe, the matrix element V will not be small and the dis-.. 0 1 1  ■ ■ '

torted wave approximation would not lie expected to., yield'good re-'. '
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suits. Both the distorted wave and close coupling approximations 

will he applied to this example and the respective expressions for 

the inelastic cross sections compared*

2 2 2Writing = k .= k^ and assuming that the. field . is

the same as V , equations HI, H2 Become

Jit - ^  V
A,

Z ju.
^  O ̂  y H5

v '  + Ji ÀL
X

AX V  /U._ M

The required solutions satisfy

Y i 0 ( ® .>) H5

H6

Adding and subtracting 115 and H4 gives the equations

•= O - H7

H8 ■

If the functions and are spherically symmetric, these

equations may be solved to give



, lUJL

X
✓6-

H9

/M. Z ZlÂ/f
2 -«-fi/, 

Â  - ’E l " ' » ) , HIO

where the phase shifts , S/>

cC' + _ '^Mlîï

are given hy the equations

cU^

d J

(Aa

A

ZyU.
yCL * Ô Hll

/T O AX JZ = o H12

respectively*

Hence

1 a X t _j__ ,
A A M i X  (2 .1 + 1)

2 2 S, 
1  - X

z
L

and the differential scattering cross section corresponding to . 

transfer of excitation will be . -. .

IJ®) = UJ y  (2 X + 1) I i - 2-tSj

SO total cross section is given by

HI5

H U

Q /H.
TT

( 2 X  +  i) a v m ,
X

H15



. \ XV6

Applying the distorted wave approximation to this problem gives the 

equations , , . . ’

+- A' o 0 Hl6

/ W H17

where ÏÏ (r,0 ) is that solution of HI6 such that

X:àA

Then

A.

where

' I I a X ti f i r  , > r V _ y j V , e ' )  A t ' :  ; H i e

■ f  ■) ‘

and W^(r,9 ) is a solution of HI?, with the right hand, side set 

equal to zero. In this case ' . '

e).

Using the expansions

X
■ , :hi9'

U o ( ^ ,  T T - 6 ) )  ^ J  y  ( 2 X + i ) i  —  P  ( y r ) H20
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where U (r) is that solution of

drr A A H21

which is regular at the origin, and by expanding P^(pos ®  ) and
y I I

integrating over ^ and 9 , it follows that

Q X 2 X+I)
A J i

V  ( oLf
0 / V L  L  ^ '

Now if and are small they obey the relations

s

Z / u
A J j

V  _ V  -0  0 / V \ .  }  } 2

Z •■:.;■•

o U

Henoe

4
2

V.O/vt
J

ÏÏ22

H24

■H25

Thus the total cross section as given by H25 agrees with equa­

tion HI5 if is small,.

Thus the condition of validity of the method of distorted waves 

is that the integral, given in H25 , should be small, '- \
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Ijffeot of an Increase in coupling

We now investigate the effect of replacing V . by - X  Von on
in the previous analysis* X  to ft parameter which is taken, to

indicate the effective magnitude of V « As X is increasedon , I
the distorted wave approximation will become less and less valid, 

and we may examine the manner in which it breaks down. ,

For the distorted wave approximation the effect on the total 

cross section is given by :

: ÏÏ26

Thus as A  increases, the cross section will increase as X ' f;: '
In the close coupling approximation the effect of Incrciased . .. .

coupling can be seen from equations Hll and HI2 with. /'re-y

placed by X V" . As X increases the phase shift ^  p ‘will. ; ’ ■ . ^on • I ̂
increase while the phase shift will decrease. Hence thè\

difference, , will increase and equation HI5 shows that -, % :

the cross section will increase from zero to some maximum value and

then it will oscillate. , ' • -

The distorted wave approximation is only valid in the region

of initial increase in the cross section. It predicts, a monotonie . ,

Increase of cross section and will usually indicate too great a prob-
■ -  -ability of the transfer process. . . , , .

. We might expect a similar situation to occur if resonahcd is , ■

not exact. To test if this is so we try some numerical calculations .
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on a particular collision. ' .

The example considered is the j « 0 j ' = 2 rotational ex­

citation of a hydrogen molecule by an incident hydrogen atom. For 

this case we solve ■ equations G7. with boimdary conditions GIG 

using the formula defined in chapter I for the interaction potential 

between these two bodies. ‘ Three different cases were talcen,;

(a) Energy 0.05 o.Y. , J = 0 ; * <

(b) Energy 0.25 e.V. , J = 0 ; \ - " ' i?., i

(c) Energy 0.25 e.V. , J = 25.\ f ' ^ i . ' U - .

(a) With total angulai' momentum J » 0 the only possible inelast- 

ically scattered wave corresponding to j V. « 2 is given by

X ’ = 2. Thus there are only two coupled equations corres­

ponding to X* = 0 and X' = 2. The value of X  was varied 

and the graph of cross section, calculated by the distorted 

wave approximation (G27) and by the close coupling approxima­

tion (GI9), plotted against X  . The results are shown in 

Fig 3* This shows that for lov/ energies the distorted wave is 

a valid approximation, a result which was expected as the off- 

diagonal matrix elements, as given by the phase shifts, are . 

small. This graph also shows very clearly the oscillatory 

nature of the cross section as given by the solution of the . 

fully coupled equations, .

(b) Again, with J = 0 , there are only tv/o equations correspond-
:

ing to X* = 0 and X* = 2, In this case, using a much 

higher energy, the values of the cross section as calculated



from the two approximations differ considerably before X;. I*.

In fact at A  “ 1 the value given by the distorted wave ap­

proximation is greater than that given by the close coupl- 

ing approximation (see Fig 4)* , - i ' 'i-. ' •

(c) Using an energy of 0.25 e,V. and J ^ 25 will give three - 

inelaatically scattered waves corresponding to = 25j; 25,

^

Thus we have four coupled equations to solve and, in, this case, 

the distorted wave approximation is again valid, .the agreement being ■ ■ 

good out to large values of A  (in the range 0 9)* Again this

is because the phase shifts are small for these values of. X-', \ -

These results are shown in Fig 5* '

Thus the distorted wave is a good approximation for low energies; 

it breaks down at high energies, for low values of J ;= at these 

higher energy values it becomes more and more valid as J, increases. .

Another interesting way of demonstrating this last statement is 

to plot a graph of the contributions to the cross section from in­

dividual values of J against the J values. This.was done for . , v

a set of energies 0.05, 0.10, 0.15, 0.25 e.V. All the curves had . •

the same basic shape except that, as the energy increased, the dif- ^

ferenoe between the maxima of the two approximations, increased. v 
Only the graph for F - 0.25 o*V.' is reproduced here.(Fig 6), (-

It can be seen just how the distorted wave approximation ap­

proaches the close coupling approximation as values of' J; increase*

This graph will also show if enough J values have been taken so that V - '

contributions from higher values of J can be neglected..



F I G U R E  3

Calculated values of the partial inelastic cross section 

(O - 2) versus coupling coefficient A , for 

E - 0.03 e.V,, using both the distorted wave (UW) and 

close coupling (CO) approximations.
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F I G U K E 4

Calculated values of the partial cross section (O - 2) 

versus coupling coefficient A for E =  0*2$ e.V,, using, 

"both the distorted wave (w) and close coupling (CC) approx­

imations.

' (





, F Ï G U H E 5

Calculated values of the partial cross section C^^(0 - 2) 

versus coupling* coefficient X for E = 0.25 e.V., 
using both the distorted wave (EW) and close coupling (CC) 

approximations.



o-

X

in

L L CO



F I G U R E  6

Comparison of the distorted wave (UW) and close coupling 

(GC) approximations as shown by the contribution to the 

inelastic cross section CT (O - 2) from various values 

of J , for E = 0.25 e.V.
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C H A P m  I

Introduotion ■ ^

The theory and numerical methods of the previous chapters are now. 

applied to some practical cases. We consider the rotational. 

citation of a hydrogen molecule hy a hydrogen atom, a helium atom 

and another hydrogen molecule* With little extra effort we also 

include the rotational excitation of a deuterium molecule hy a 

hydrogen atom* These collisions have already heen studied using 

the distorted wave approximation (TaJcayanagi 1963, Roberts, 19.65, 

Davison I963, 1964, Dalgarno and Henry I964, Dalgarno, Henry and 

Roberts I966), We have applied the close coupling approximation 

to these oases and have demonstrated the failure of the distorted 

wave approximation at high energy.

Calculations

The matrix element , ■ .

( j'i'; J |v| j) , ; ■ '
given by equation G9 , connecting the different scattering channels 

is evaluated by expanding the interaction potential as in AI7 , .

V ( ' ^  I I

M' ' •I'-' '7
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This equation has been truncated after ytc « 2 beoause Dalgarno 

and Henry (I965) have shown that higher order harmonics are un­

likely to be important# ’ "
■ ’ . ■ .

Hence -

and, as shown at the end of chapter G, the double summation in G? 

consists, in general, of nine terms# The functions, ■

fg (o’i', J) , ■
may be conveniently calculated from formulae given by Derstein et al

(1963). . • . ■ .

Only collision processes in which the rotational quantum num- ; ' 

ber j changed from %ero to two were taken# In the case of scat­

tering of a hydrogen molecule by another hydrogen molecule the in­

cident molecule was not allowed to change its rotational level and 

was assumed to be in the state defined by j - 0 throughout the 

collision.

All coupling terms involving j  ̂0 were retained but the - ; 

terms coupling j = 2 to higher rotational levels were neglected 

thereby reducing G? to a set of four coupled differential equa- 

tions# : /:

Thus the scattering matrix S (jf; j'-E*) is, in general, a/ : 

four by four matrix defined by the transition ( i’JE*)



OJ ) OJ OJ J 2J-2  ̂ OJ Î 2J OJ Î 2J+2
2J-2 ; OJ 2J-2 2J-2 2J-2 ; 2J 2J-2 j 2J+2
2J ; OJ 2J ; 2J-2 2J ; 2J V ' ; 2J ;/ 2J+2

2J+2 ; OJ 2J+2 ; 2J-2 2J+2 ; 2J . ' i; 2J+2 j 2J+2

In the case of J =; 0 this reduces to a two by two matrix obtained 

by deleting the second and third columns and rows while for J =  1 

it gives a three by three matrix obtained by deleting the second row 

and column#

The elastic cross section CT (0;0) and the inelastic cross 

section 0~ (2;0) are calculated from equation 019. We also cal­

culate the angular distribution defined by the relation . '' ■. V '

l o - j Y d i A lwhere the differential scattering cross section. dJt , ’

is given by GI6 .

Equation GI7 is not in a. suitable form for computation and ̂ 

so, following Blatt and Biedenharn (1952), we write GI7 in a form . 

such that each term appears once only in the summation# T;, •

0 0  f 3- ‘

A, - T (!!-«
r

+ z
S’, X, Ji, Z'.

-, )! 'h)

. oont#'
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X X T ? p [  ]

x'rt[3',---yj + y z(A^.A^.jyA)
X z ( X > , X > , ; y x ) > - R T _

where RP [. ] denotes the real part of , \ ; . V.-.

; r"'(vAa’<)* T"‘{ÿA4’̂)Z7|iir
The actual number of terms in this expansion is reduced because of 

the restrictions that , ■ .. r.. !;); ■

jq + Jtg - X , Xp + %g' - X , +-Kp, "̂2 t-̂2-:
must be even, . = '-r;./-. v.

Rate coefficients (R) for a collision at temperature T . 

Kelvin in which the rotational quantum number changes from.. j . to 

j ' are defined by the equation \ /. /

R Q 15

where k is the Boltzmann constant and ^ * j ̂  is the cross .

section for the j j I trm-isition averaged over the Maxwell!ah
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distribution of incident energies, 

i.e.

(  Q k ' l - )  =  [  I t  , ,  «

where

m U ) ’ •  ^( 4 T )  ' V  4 T

and is the inelastic cross section corresponding to ,

impact energy E. :

.- All calculations in this chapter are performed using values. 

of ' energy in electron volts and measuring distance in angstroms 

with the exception of the rate coefficients which are in units of 

cm-" / sec. ; . . : :

We have adopted the Buckingham (exp - 6) type of potential 

used by Dalgarno, Henry and Roberts (1966) for the interaction 

potential between a hydrogen atom and a hydrogen molecule, . ̂  '

/V „ ( . /r )  = 511.  ^

/V, (/f) ^ IkL.Ll



±JL£.

For these particles

^ ̂  = 321.82 (e.V.y
and for the hydrogen molecule - \ ' ' : '. \ . '

= , 0.007564 e.V. , :

Thus there is an energy difference of 0.0454 e.V. between, the 

j « 0 and j = 2 rotational states of the hydrogen molecule*

Hence ■■ tv

° ^  ® - O . o t S I t

The energy range talcen was from 0*05 e.V., which,; lies just aboye 

the threshold of the j « 2 rotational level, up to 0.25 e.V* 

which lies below the first excited vibrational state at.0.553 e#V r 

(Roberts 1 9 6 3 ). '

The criteria described in chapter E were applied to give an 

estimate of the initial and final intervals and these parameters : 

were fed into the distorted wave program described in chapter D.

The results of Dalgarno, Henry and Roberts (1966) were verified and 

the largest value of r required to give convergence of the phase , 

shifts were printed out. This value was used to give ah estimate . 

of the position of the matching points in the close coupling pro­

gram. We also noted the number of J values required' so that the

contribution to the inelastic cross section from higher values was , -
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negligible. This value too was required by the close coupling pro­

gram which v/as now used to repeat the previous calculations. A 

full list of the numerical pacameters for the close coupling program 

is given in Table 6* The results are shown in Fig 7* Angular ■ 

distributions, defined by .I3 , were calculated for a few values of 

energy and we also computed the rate coefficients from equations'

1 5 and 1 6 for several values of temperature. .

For this collision we used the same interaction potential as 

in the previous section. :

In this case , ? ' / . '

» 386.10 (e.Vo A^)”^

and since the moment of inertia of the deuterium molecule is twice: 

that of the hydrogen molecule, both being considered, as rigid. rot-. 

ators, - \

2.x
0.003782 e.V,

Hence



where E is the kinetic energy of the incident hydrogen atom.

Again the results of the distorted wave approximation were in com­

plete agreement with Dalgarno, Henry and Roberts (1966).. ' The num­

erical parameters used for the close coupling program are listed .in 

Table 7* In this case the onorgics considered were restricted to 

the range 0.025 e.V. to 0,15 e.V* and our results are shown,in ' 

Fig 8. - - ' .

He - Rg

Roberts (1963) has used a purely repulsive potential in his : ; 

distorted wave calculations of the scattering of a helium, atom, by 

a hydrogen molecule. We adopt the same potential which, is. defined

by , . '1.

/V", ( /v )  =. 1+ 0 . I 0 2) . 8 3 0 / r y  y ;

(/r) = 0 . 3  /Vo (/f ) .

For this collision

645.47 (e.V. A^)-! ,

while again
t

A
0.007564 e.V.
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The distorted wave program was used to verify the résulté of Rob­

erts (1963) and to set up. iho paramotoro for the close coupling pro­

gram (Table 8). Both sets of results are compared in Fig 9 for 

the energy range 0*05 e.V, to 0.20 e.V.

Hg “ Hg

The scattering of a hydrogen molecule by another hydrogen mol­

ecule has been studied by Davison (1963) and Roberts (I965) using ; 

the Morse potential derived by Talcayanagi (1957) > ,

V ,

AT 2. -

A >=*

oC => 1.767 ,

5.587

A  =■ 0.075 .

/ _ ■ y V ' . v ■ \

From their independent calculations both Davison (1963) ‘ and ■ 

Roberts (I965) conclude that.the value of j}> is too small and a ' '' 

value of ^  » 0*14 is more realistic. Davison.(1963) also con­

sidered the Buckingham (exp - 6) potential defined by
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: / U a ( w )  = ^  A
where B « 11.0, 3) » 0.8 and |â O.I4* This was the potent­

ial used in our calculations. For these molecules , I ■

= 482.62 (e.V. 1^)“  ̂ ' ' 4 7.

' ■ . -  ■ : '
while again ■ - -"-t'/-; yÿ": y '

z

Z X 0.007654 e.V.

Elastic and inelastic cross sections are calculated over the energy* 

range O .05 e.V. to 0 .5 e.V. using both the distorted wave, and 

close coupling approximations. The numerical parameters are given 

in Table 9 and the results are illustrated in Pig 10. •

Angular distributions over the same energy range are calhulated
i . . .

together with the rate coefficients for several values of tempera­

ture.

Discussion

For the j » 0 to j' « 2 rotational transition of a hydrogen 

molecule by hydrogen impact, Dalgarno, Henry and Roberts (1966) noted
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that departures of the distorted wave S matrix from unltarlty ; 

‘became serious above energies of 0,15 Q,V, and Fig 7 confirms ‘ 

their conclusion* At the highest energy investigated, 0.25 e.V., 
the distorted wave approximation overestimates the .inelastic.cross 

section by gOg!).. and the error is increasing with increasing energy.

A similar comparison for the 0 ^ 2 excitation of deuterium 

by hydrogen impact is presented in Fig 8. • Because of the closer 

rotational .spacing in the deuterium molecule the distorted wave ap­

proximation becomes invalid at lower impact energies. At an energy 

of 0,15 e#V# it overestimates by 355̂ . ' ■ ,

Fig 9 shows the cross sections for the 0 ^ 2 excitati.oh’of ;a , 

hydrogen molecule by helium impact. The results show that the off- 

diagonal S matrix elements are becoming large at impact energy/^, r:, 

0.10 e.V. and this is again demonstrated by a comparison with the 

close coupling results. Indeed at an energy of 0,15' e^V. , the re­

sult of a semi-classical calculation by Bawley and Hoss (1965), , ; ,

giving a value of I.5I A ‘ for the inelastic cross section, differs. 

by less than 10^ from the close coupling result,lo3&&^, and is sup­

erior to the distorted wave, values of 1,89%^. . ./if'/

Fig 10 compares the cross sections for the 0 ^ 2 excitation . 

of hydrogen by molecular hydrogen impact. The rotational cross 

sections are small and little error results from the use of the disr, 

torted wave approximation for energies up to 0*3 e.V. .

The angular distributions and the elastic cross sections may be 

valuable in analyses of experimental data. The angular distributions



defined by equation 13 are shown in Pigs 11, 12, 13,. 14# ' They 

are all very similar; as the energy increased -/t ■ becomes more, 

sharply peaked and the location of its maximum shifts slowly to 

lower an.gles.

The elastic cross sections are slowly varying, functions of the 

impact energy, determined almost entirely by the spherical symmet­

ric parts of the interaction potential® Por H « H„, CT (0;0)dr
varies from 46.7 at O.O5 e.V. to 39*7 at 0.2$ e.V.; 

for H - brt,CT (0;0) varies from 48.5 at 0.025 e.V. to 41*0 A^

at 0.17 e.V.; for He - cr (0;0) varies from 53#9 A^ at

0.05 e.V. to 47*4 A at 0.20 e.V.; ' for Hg - CT (0;0) varies

from 45.5 A^ at O.O5 e.V, to 45*5 at 0.'30 .e.V.̂ 'v/cr'--:/;'-̂  /

The rotational excitation of hydrogen molecules by impact, with 

siow^liydrogen atoms and other hydrogen molecules may be, an important 

cooling mechanism in interstellar space (balga'rno, Henry ahd Roberts 

1966). Por this reason rate coefficients have been calculated in 

the two cases, H - and these results are listed in

Tables 10 and 11. ’ >
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TABLE 10
Rate Coefficients (r ) for H - (om/seo.)

t (®k ) R

20

30

40' . ' "■ •

50 5.1^0"^^
60

70 l.lĵ o"̂ 4

80 5.1,0-14

90 6.8x0-14

100 1.3,0-13
200 :
3 0 0 1.1,0-11

4 0 0 2.3,0-11
5 0 0 3.7,0-11



TABLE 11

Hate Coefficients (r ) for - Rg (cm /sec.)

T(®K) R

20 3.7,0-24
. , 30 3.3,0-20

40 2.9,0-18.

50 4.3,0-17

60 2.6,q -16
70 9.7,0-16

.80 : 2.7,0-15

90 6.0,Q-15

100 1.2,q-14

200 3.2,0-13

500 1.2,0-12

, .. ' ; '.V ’ ■ . 40P . ...; . ' 2..'7.,o -.12 , '

500 4.6,0-12



‘ F I G Ï Ï R S  7

Gross section for excitation of the 0 - 2  rotational 

transition in by H impact, BW, distorted v/ave

results of Balgarno, Henry and Roberts (1966); GO, 

close coupling results, , !'/
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F I G U R E  8

Cross section for excitation of the 0 - 2  rotational 

transitio^n .in "by ïï impact* DW, distorted wave

'resnlts of Dalgarno, Henry and Roberts (1966); CO, close 

coupling results.
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F I G U R E

Cross section for excitation of the 0 - 2  rotational 

transition in hy He impact* JM, distorted wave

results of Roberts (1965); GO, close coupling results.
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p I G ïï R E 10

Cross section for excitation of the 0 - 2  rotational 

transition in ïï̂  by ÏÏ̂ impact. I)\Y, distorted wave 

results of Davison (1965); CC, close coupling results.
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F I G U R E  11

Angular distribution SL (O - 2) ..for H- - •
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F I G U R E  12

Angular distribution J\ (O - 2) for ÏÏ - *
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F I G U R E  .13

Angular distribution (O - 2) for He - .
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F I G U R E  14

Angular distribution VL (o - 2) for .
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CHAPTEa J

We consider the effects which may arise in the elastic 'soattering ' 

when the impact energy is below the threshold value necessary to 

produce excitation to a higher level* In particular, we are look­

ing for resonances, i.e. a sudden variation in the.value:of the . 

elastic cross section# .

A two state approximation is def ined hy equations ; G?; .. with j 

J - 0 • The equations can he written . /') '

oU-i
+ . - V O O : ■ J1

and solutions u and u. are required such that,-: -'

u and are regular at the origin, C

u

Un

/V Bill (k^r) -I- R COS (k^r) ,

/ V B exp [ - (Kr) ] ,

J3

J4

where k^ is now complex and 2 ' • . . ' " \ ' r ' 'X' ' V " -K , K being'taken'positive# :

If is attractive and sufficiently large in absolute;

magnitude then there will be a set of solutions of the equation ;.

â l
d A ' y J5
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to the elgenvaliies 1C . * . K * ' It ie to be ex-' 

'pected that variations in the elastic cross section will appear at
2 2 2 values of k such that IC is close to one of the values #. •

The matrix element T may be continued into the -region .00
2 . where k^ ^ 0 by replacing k^ by iK • ' This is because, out­

going waves of wave number k^ are then replaced by exponentially 

decreasing functions as required.

This is not possible for R which instead is calculated, . ■00 .2 ' / \  ̂
for k. I 0 from . - ■ /■ : V' . '

. ^  . Jo ■ ■■■v:. .. V-

where ^  is the phase shift for elastic scattering from the 

ground state. Above the threshold is complex but below.it ■

is real and equal to tan R . . ■

Since T and R are both symmetric two .by two matrices they _ ■

may be expressed in terms of three variables (Mott and .Massey .1965) •

One.* of these, o, is talcen to be R above the threshold."and the 
' ' 00

other two are defined in terms of T_. , . . \

' - ' '. - '  ̂ 'r:' '' '' ■
where is the complex phase shift for elastic scattering of ;

particles of wave number k..
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If we now assume that there is no change in angular momentum, 

i.e. no term in / 2 in J2 thon ‘

a.
I

A --X3 ) J7

and A and B define the other tvro variables. 

Following Mott and Massey (1965) ,

r .o 0 I — XL
1  -^,"8

J8

J9

0\

. \

t o
z

>

JIO

Jll

where R matrix elements only apply above the threshold. The 

elastic cross section is given by ’

I T /
Jz,

and, for ^ 0 ,

T.o o

a /C ■■-X;

z.l — k-1 I 4- Ĉc■
+ ------- p— -

1 + a. J12
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Expanding in powers of k. , .we see that, just above the threshold,
, ■' /  - \  .i;.r = Tvf ('

To obtain the corresponding formula just below the. threshold • 

we replace k, by ilC in J12 to give ' . \

It ^  _  1<
I t / C

J15

Since B 0 it follows that the elastic cross section falls at 

least initially in passing above the threshold. In passing below 

the threshold it will rise or fall depending on the sign of .c ,

In either case the cross section has an infinite derivative'at the 

threshold. This is expected since from J9 the cross section for 

inelastic collisions rises as k. and f ' 1.,

IX -  i t  = t
Thus we would expect the onset of the inelastic processes with in­

finite derivative with respect to k to have a similar effect on ' 

the elastic cross section, • , '

We now consider the case where the incident and inelastically scat­

tered waves are associated with different angular quantum numbers, ‘
2 •' . ■-i.e. the term 6/r , corresponding to £  ̂2 is included in eq- ■

nation J2 , In this case ,

JI5



J16

provided r "—4 0 as r oo  ̂ ' ■. V , ‘T. ^̂ 7-

kXand henoe the inelastic cross section, will, riso as Ic- " for -1
small k. , '  ̂ " -1 ■ V . ■

Thus

J 1 8

Thus the cross section for inelastic collisions no longer possesses

an infinite derivative with respect to k at the threshold and we0 . ■ ... ,

would expect no anomalous behaviour* Further confirmation of this 

last statement can be obtained by extending the previous method* ; ■

This has been verified numerically in the case of rotational

excitation of a hydrogen molecule by a hydrogen atom,' Using the

potential defined in chapter I we find that condition Jiy is sat-
. àisfied since goes off asymptotically as l/j^ .

The behaviour of the cross section is manifested in the varia­

tion of the phase shift defined in . ■

^The equations Jl and J2 are solved subject to the boundary, 

conditions JJ and J4*> using the program described in chapter F,
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The phase shifts are printed out for values of energy below the ' / 

threshold of 0.045 e,V, Values of the phase shift above the " 

threshold, where both channels are open, are calculated by the us­

ual close coupling progrojn of chhpter B. The results are shown 

in Pig 15. It is clear that no abnormal behaviour occurs just, 

below the threshold, the phase shift varying smoothly to match up ■ '

with the values above the threshold. The discontinuity at',an en- x .

ergy of 0.0475 e.V, is the same type of singularity as described 

at the end of chapter E. Thus these results confirm that a res­

onance is not likely to be found in any case in which there is. an ,

internal change in angular momentum.



P I G U R E 15

Graph of versus energy E (e.V.) showing smooth

behaviour through the threshold.
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CHAPTER K

Introduction

Rotational excitation of homonuclear diatomic molecules by- slow 

electrons has been extensively studied in the past. The first 

■ attempts to treat rotational excitation of these molecules failed 

to obtain cross sections large enough to explain the observed en- ;

ergy losses (Morse. 1953» Carson 1934)* In these investigations ’ ;

- all long range effects were neglected, -" ■ - • ■ - ^

Gerjuoy and Stein (1955 a> b) pointed out that the long range \

interaction between an electron and the quadrupole moment of the : ̂ .. - . - '-I; . -
molecule would account for these large energy losses. There are ' 

discrepancies between their calculations, based on the Born, approi-. . 

imation, and analyses of experimental values (Engelhardt and Phelps, I

1963), Balgarno and Moffat (1963) ‘showed that polarisation of the./. ,

molecule by the incident electron would result in an additional long 

range force which would increase the cross section for molecular ' ’

hydrogen. It was found that while inclusion of the polarisation /

correction improved the agreement in the case of IL , the results 

were still too small. This last discrepancy was resolved by con- , 

sidering distortion of the wave iiinction describing the scattered 

electron by the electron-molecule interaction,. Investigations have 

, been carried out using the distorted wave approximation, by Mjolness



and. Sampson (1965)» Talcayanagi and Geltman (1964, I965) end Dal- ; 

gamo and Henry (1963) with the result that the cross, sections oh- 

tained are in fair agreement with experiment, A major uncertainty 

in the à - scattering problem is the manner of including the, 

polarisation interaction. At low energy this is usually accomplish­

ed by cutting off the asymptotic form of the potential ’.at some value 

of r determined by fitting the calculated elastic cross section 

to the experimental values, : - , ,

In this chapter the close coupling approximation is applied to . 

the rotational excitation of a hydrogen molecule by a^slow electron. 

The program described in chapter E has been altered to include- the 

more complicated potential function and also the initial step has 

been modified so that, for i  ̂0 ̂ the integration effectively • 

starts at the origin, ‘ ,

The choice of parameters involved in the inclusion of the polarisa- .

tion term is discussed and the results are compared with the eq,uiv4
■ ■ . :v; ;

aient distorted wave approximation and the work of other authors.

Potential function for e -

* The potential used to represent the interaction between a 

hydrogen molecule and an incident slow electron is that given by 

Balgarno and Henry (1965).. •> ' : . . , .
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The potential is expanded as in AI7,

%
v(,/T, e) = - y

where

/f

0.

5". 9 31 /T

/r >  0 . |  ;

/I* < o - 7 '
A .
/f

'U-, (./r)
/f

3 Ik-Xyr-'yC % 1
6Iy

1
®AV /f ‘̂ ' V

K 1  ■ ■

K2

K5

K4

K3

r being measured in units of Bohr radius and , v(r) is in atoinio , 

units. • Atomic units will be used throughout thiS: chapter; ■

The coefficients A,,, a., B . b .  are listed in Tables 12, 13 .

to six decimal places. The functions y . ' . y /y

-  A T ^  H  / U y l M  ,

are illustrated in Pig l6.



In the present form equations K4 end K5 are not ip, a; suit­

able form for computation. y/r/'-'y-y''' ' /

G.g, for r y 0 .7 »

/W.W -- /r A
A- t

A-t-y/f (,-0̂/f) k6

and sinoe the asymptotic form of v (r) does not involve terms in.o -
1 //r these must cancel. The coefficients A., are only tabulated 

to six deoimal places Ûo rounding error will bring in a contribution
1from the /r term. Using the fact that A. , -1. this .Ij ■ '

formula may be rewritten for r ^ 0*7 ,

A

1̂.
A - I

s 1 >H
y.5('-'

At|

which may be evaluated without the previous trouble. 

In the case of v«(r) , for r ^ 0,7 >

3xy/f K7

and from symmetry conditions (Geltman and Talcayan&igi 19&5) Vg(r)
1 /is zero at r = 0 . Hence all the coefficients of / s ̂ s 0,

2, 5 must vanish. Again rounding errors will occur' and the terra in 

^'r^ will nominate tne value or'/ 3 will dominate the value of v^(r) as r tends to zero.



The computed values begin this spurious increase for values ,

of r ^ 0 ,3 , Thus it was decided to replace the entire express­

ion K7 for Vg(r) by a function of the form Pr^ which will
' -

give the correct behaviour at the origin. Here P is a constant.

At large values of r , y^(r) falls off exponentially and

V2(r) as - 0.447 / r^ . Balgarno and Moffet (I965) have calcul­

ated the quadrupole moment of a hydrogen molecule to be 0;473 80

the computed V2(r) has been increased by a factor. I.O58 to give
' 0 4 y ̂ ■ ■the correct asymptotic behaviour - " , y

" , a y -  -  :
This potential has ignored the long range terms due to?the pol? 

arisation interaction and these are included asymptotically; as,. . 

in y(r) . .

was taken as 5»33 and o(. as 1.25 a^ (Takayanàgi :and 

Geltman I965). This form would dominate the potential for small \ 

values of r so it is out off near the origin by multiplying' by ? 

a factor ; ' :

(1 - exp [ - (^r)^ ] ) , \

(Mjolness and Sampson I965) where 8 is an arbitrary parameter' 

which controls the effective strength of the polarisation. . The 'y 

final values of the potential-are then obtained by adding i' ; ; ■

^  /A
X A .............................................. “

■ to the functions '-ŷ (r).



Discussion of results V ■ ; ;

Arthurs and Dalgarno (196O) showed that for collisions, of slow 

electrons with molecules the major contribution to. the elastic cross 

section comes from values of J near to values of j corresponding 

to low values of X  • Thus to calculate the elastic cross section 

given by j = j * = 0 the important equation is that vdth •'X  - 0 •• ? ‘

For the inelastic scattering defined by j = 0, jt = 2 }the equation .

with X  = 1, X* = 1 for J « 1 gives the largest contribution. . -

If the polarisation terms were neglected, i.e. :• ft = 0  in - 

ÏC8 then the values of the elastic cross section obtained.^were/very y

much greater than the experimental values. As the parameter ; 

was increased so the elastic cross section decreased whilq the in-, 

elastic cross section increased (Fig 17)« A value of ^  ^ 0.6.. 1 . -/ 

gave elastic cross sections over the energy range up to / I e.Vo- ' ■ .

which fitted reasonably well with , the experimental values calculate 

ed by Engelhardt and Phelps (1963). At an energy of \1 e.V. : .the . / 

inelastic cross section increased by n factor four, as varied - ■

from 0 to 0,6 ., showing that inclusion of the polarisation term \ 

is of major importance in these calculations. . This investigation 

of a‘ suitable choice of ^  was done using the distorted •wave ap- ■ 

proximation. The calculations were repeated using the close coupl- ' ' 

ing approximation (Fig 18), In all oases the.inelastic cross sec- ‘. 

tion as given by the close coupling approximation was about ,10^ ' .

higher than that given by the distorted wave approximation., , At v ■:



first glance this seems surprising considering the argument of / 

chapter ÏÏ* However, if the off-diagonal matrix elements are . 

small, it is possible, initially, for the close coupling results 

to be greater thtm those given by the.distorted wave, ■ This has 

been confirmed by comparing the inelastic cross section for differ­

ent values of X , where X is a constant multiplying the off-. ' 

diagonal matrix elements. The behaviour is illustrated in Fig 19 

which is consistent with .the conclusions of chapter H, .

Also, it was apparent that the j = 0 elastic cross .section

for scattering in the energy range below 1 e.V, was sensitive to,

the coupling with an inelastic channel. For example, the j 0-
2 ' 2 ■ ' '■ ■' elastic cross section was reduced from 65 a to 56 a .ato - 0 . • • • -

E - 1 e.V, by including coupling with the j* *= 2 . state. .

In the final graph, Fig 20, we compare our results, using a., 

value of ^  = 0*6 , with those of previous workers,; oyer .the, , y.

energy range less than 1 e.V. Balgarno and Henry (1965) used the 

distorted wave approximation with the same potential given in eq-= 

nation K1 but omitting the polarisation terms. Their results ?, 

are denoted BH and are smaller than all the others which include, 

the polarisation, Balgarno and Moffet (1965) included thé polaTis- 

ation term and, using the Born approximation, obtained an,extension ' 

of the theoretical formulae derived by Gerjuoy and Stein ,(1955 a,b). 

This formula gives values (BM) y/hich aro large.r than in the 'previous 

case, r , . • .

Talcayanagi and Geltman (1965) have applied the-distorted wave 

to the asymptotic, form of the potential , : y



Z/f

and they took Q « 0.464» « 5*3» ^  = 1.25* This asymptot­

ic form was out off at some value of r (say R), the non-spher-.
2 ■ ‘ ■ leal part was talcen to zero proportional to r and the spherical

part retained the value for r ^ R • ’ They chose the-

out off value R - 1.2 as that value which gave the best fit.to

the experimental values of the elastic cross section. This choice

brings in rather more of the polarisation than we have taken and ;.

hence their results give larger inelastic cross sections (TG). . ? ' t '

Mjolness and Sampson (I965) also considered only the.asymptot­

ic form of the potential but they used a more sophisticated method 1 : 

of determining the cut off parameter. They included.the polarisa­

tion term with both a non-exponential cut off in which rf. ié're- ' 

placed by ^nd an exponential cut off -. ',y ' ' . ' ' y.\?...

The exponential cut off proved to be more satisfactory in thd oasç 

of the hydrogen molecule so this is the case we quote. . The ; para­

meter r is chosen such that agreement with the experimental values, 

of the elastic cross section is obtained. . Their value■of . f d.8 ' : 

compares favourably with our value of - 0.6. ‘ An additional . 

parameter r^ is also introduced at which point the contribution/

from the quadrupole term is sharply cut off, r is chosen "to be



1 for a hydrogen molecule. Their potential is /

v H  y - ÏC10

where
ol '

d m  - e W  *  G  .

and -(Mît
: e  M  '  , xj / r ,  , ■

■ ■:" ' . • = o  i  /T (

They took the values Q « 0.49, 0^ “ 5*5, ^  ” 1 . 3 8 . . -

The problem of finding a potential which represents the long ,; , 

range forces correctly, includes a minimum number of arbitrary para­

meters and is easy to handle, is difficult. In these respects our; 

potential which includes the cut off of the quadrupole term in,the ' 

definition of the short range terms and which only includes the one 

out off parameter appears to be the most satisfactory of the poten- 

tialB described.

The results published in this chapter are in good agi'eemênt ; 

with similar calculations recently carried out by Dane atid Geltman

(1967). ’ : 1  i;. .



TABLE'12

Coefficients A.. and a.. for e - potential.

i 4 i ^12 ^13

1 -0.99963 -0.00034 -0.00003
2 -3.16654 -0.00381 . -0,00048
5 -4.54009 -0.02122 -0.00368
4 -3.75910 -0.07770 -O.OI863
5 -1.86801 -0.20975 -0.07017

-0.66033 . ,-0.44262 , ■-0.20930
7 -0.28954 -0.75373 -0.51385
8 -0.24780 -1.04861 —1.06440
9 +0.03922 -1.17911 -1.88985

10 0.0 -1.00688 -2.89977
11 0.0 -0.47909 -3.84426
12 0.0 +0.14033 -4.34352
13 0.0 +2.73735 -3.99879
14 0.0 0.0 -2.54867

^1 %2 *3

4.14286 12.42857 16.57143



TABLE 13

Coefficients B.. and b.. for e - H_ potential.

i 3il %i2 ®i4,

1 -Oc 26498 -0.00159 -0.00008 -0.00003 -0.00001

2 -1.09777 -0001152 -0.00097 -0.00059 ; -0.00011

3 -2.27396 -0.04772 -0.00600 -0.00285 -0.00095

4 -5.14024 -0*13179 -0.02487 -0.01370 -0.00527

5 -3.25239 -0.27500 -0.07727 -0.04966 -0.02185
6 -2.48435 -0.44978 ■ -0.19190 -0.14396 -0.07241

7 -0.11535 .. -0.01498 -0.59568 -0,34719 -0.19977

8 0.0 +0.15209 -0.69203 -0.71485 -0.47130

9 0.0 -0.08520 . , -O.O8I5I -1.27733 . -0.96840

10 0.0 -0.05082 -0.05954 -1.99882 -lo75415
11 . 0.0 ' 0.0 -0.02352 -0.25251 -2.82055
12 0.0 0.0 OoO -0.04941 -4.03252

\ ^2 ^5

4.14286 8.28571 12.42857 14.50000 16.57145



F I G U R E  16

Potential function V(r) used in the e - Hp collision.
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'' F ï G n Ü E'' - 17 ' ' - - ■ ■ - : : ' '

Variation in the elastic cross section 0 ” (O - O) and 

the inelastic cross section 0“ (O « 2) depending on 

the valne' of the cut-off parameter ^  , for energy

E = 1.0 e.Vo
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F I G U R E  18

Comparison-6f-the.inelastic cross section (T" (O - 2) 

versus energy E (e.V.) for several values of

= 0*2, , 0#4> 0.6, using both the distorted wave (UW)

and close coupling (CC) approximations.
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Calculated values of the inelastic cross section 

C7“ (0 - 2) versus coupling coefficient A , for 

E = 1.0 e.V., using both the distorted y/ave (UW) 

and close coupling (CC) approximations.
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’ ■ ; .. Comparison of 'tho inelastic cross section XT, (O - 2) 

calculated in this thesis with the work of previous 

. authors : (DH) Ualgarno and Henry,. (DM) Dalgarno and

Moffet, (m s ) Mjolness and'Sampson, (TG) Talcayanagi 

and Geltman.
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