

https://theses.gla.ac.uk/

Theses Digitisation:

https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/

This is a digitised version of the original print thesis.

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study, without prior permission or charge

This work cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given

Enlighten: Theses <u>https://theses.gla.ac.uk/</u> research-enlighten@glasgow.ac.uk THE NUMERICAL SOLUTION OF CERTAIN

DIFFERENTIAL EQUATIONS WHICH OCCUR

IN THEORETICAL PHYSICS

by Arthur Compton Allison.

A Thesis submitted for the degree of Doctor of Philosophy in the University of Glasgow.

|                    |   |                                       |     | ,<br>,<br>,<br>,<br>,                                                           |        |
|--------------------|---|---------------------------------------|-----|---------------------------------------------------------------------------------|--------|
|                    |   | <b>C</b> 0                            | NTE | NTS                                                                             |        |
|                    |   |                                       |     |                                                                                 |        |
|                    |   | · · · · · · · · · · · · · · · · · · · |     | ***                                                                             | Pag    |
| Chapter<br>Chapter | A |                                       |     | 1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1 | 1      |
| Chapter            | C |                                       |     |                                                                                 | <br>21 |
| Chapter            | D |                                       |     | <i></i>                                                                         | 37     |

| Chapter | D | 37  |
|---------|---|-----|
| Chapter | E | 47  |
| Chapter | F | 75  |
| Chapter | G | 86  |
| Chapter | H | 99  |
| Chapter | Ţ | 107 |
| Chapter | J | 119 |
| Chapter | K | 125 |
|         |   |     |

5

CHAPTER

## Introduction

This dissertation is concerned with the numerical solution of certain differential equations which occur very frequently in theoretical physics. The solution of any physical problem involves the setting up of a mathematical model and in the past this model has been solved by analytical methods or, in the many cases where no enalytical solution can be found, by numerical methods. Better approximations lead to more complicated equations and to more difficult solutions. In recent years the advent of large fast automatic computers has made the solution of these complicated systems possible.

The solution of a system of equations is simplified by an understanding of the physical processes which give rise to the particular equations and these equations frequently exhibit some awkward numerical pitfalls. Therefore a background of the two disciplines, numerical analysis and theoretical physics is desirable.

Thus, this thesis is divided into two parts. The first is a description of the numerical techniques involved and thereafter a discussion of some of the numerical problems which were encountered; the second is an account of the physical problem, the derivation of the differential equations and a discussion of the results obtained.

We investigate the scattering of an incident point particle by a homonuclear diatomic molecule, the only inelastic process under consideration being excitation of the rotational levels of the mole-The mathematical model we use to describe this collision is cule. that of scattering by a rigid rotator. This model will only be valid if vibrational degrees of freedom are ignored and the molecule is in the ground electronic state, that is, if the component of electronic angular momentum along the internuclear axis is zero. For scattering problems of this type the relative motion in the various channels can be described in terms of "ingoing" waves and "outgoing" scattered waves. When the coefficient of the "ingoing" wave is normalised to unit flux, the coefficients of the "outgoing" waves form the scattering or S matrix (Wu and Ohmura 1962) which determines the cross section. This S matrix is unitary because of the requirement of conservation of flux and it is also symmetric as a consequence of the time reversal of the system. Two associated matrices, the reactance matrix R and the transition matrix T also occur. Their relation with the S matrix is given by the equations

 $\mathbf{R} = \mathbf{\lambda} \left(\mathbf{I} + \mathbf{S}\right)^{-1} \left(\mathbf{I} - \mathbf{S}\right),$ 

I - S

From Al it follows that R is a real symmetric matrix. It will be shown later (Chapter G) that the cross section for the excitation of the j<sup>th</sup> rotational level to that level defined by rotational Al

**A**2

quantum number j' is given by

 $\sigma(y;y) = \frac{TT}{(2y+1)k_{yy}^2} \sum_{(2,5+1)} \sum_{i} \left[ T(y_{i};y'_{i}) \right]^{i},$ A3

3

Α4

where k, is the channel wave number.

The Schrödinger equation describing this collision can be simplified to give a set of coupled, second order, ordinary differential equations in terms of the radial distance r. These equations may be written

 $\left[\frac{d^2}{dr^2} + k_1^2 - \frac{l_1(l_1+1)}{r^2}\right] u_{1y} = \sum_{k} V_{kk} u_{ky}$ 

where  $k_i$  is again the channel wave number,  $\mathcal{L}_i$  is a constant and  $V_{ik}$  is a matrix element depending on the interaction potential and the angular dependence of the incident particle and target. These equations are to be solved subject to the boundary conditions,

(a) u<sub>ij</sub> is regular at the origin,

(b) My N exp (-1 [ kn - 2 e, T]). Sig  $= \left(\frac{k_{\lambda}}{k_{\lambda}}\right)^{\frac{1}{2}} S_{\lambda} \exp\left(\lambda \left[k_{\lambda} \cdot - \frac{1}{2} l_{\lambda} \cdot \right]\right),$ A5

or, introducing the reactance matrix R to avoid the use of complex numbers,

(o)  $M_{ij} \wedge sin(k_{i}\pi - \frac{1}{2}l_{i}\pi)$ .  $S_{ij}$   $-\left(\frac{k_{i}}{k_{j}}\right)^{\frac{1}{2}} R_{ij} \cos(k_{i}\pi - \frac{1}{2}l_{i}\pi)$ 

Historical survey

The first mathematical treatment of collisions involving molecules was given by Zener (1931). His treatment, based on the distorted wave approximation, was restricted to collinear collis-He showed the inions between a diatomic molecule and an atom. efficiency of interchange of translational, vibrational and rotational energy in molecular collisions, thus establishing the model of a rigid rotator for the consideration of rotational excitation of the molecule.

A6

Nothing more was done for about twenty years until Takayanagi (1952) solved the equations A4 using his modified wave number method. In this approximation the centrifugal potential

53

$$\mathbf{I}_{i}(\mathbf{I}_{i}+1)/r^{2}$$

is replaced by its value at a distance  $r_c$  , chosen to be of the order of the distance of closest approach, according to the classical theory, of the particles in a typical collision. The problem is thereby reduced to that of a one-dimensional collision with effective wave number k! given by

If the s-wave  $(\mathbf{l}_{i} = 0)$  radial equations can be solved in closed form, the direct numerical solution of the radial equations is avoided and considerable simplification results. This method has been used by Schwarz and Herzfeld (1954) to calculate rotational transitions in hydrogen. However it has two main disadvantages. First, it is useful only within the very restricted range of potentials for which an analytical solution of the s-wave equation is known; second, the arbitrary parameter  $\mathbf{r}_{c}$  introduces an added uncertainty into the final cross section.

l.(l.+1)

An approximate solution to equations A4 may be obtained by using the Born approximation (Mott and Massey 1949). This is obtained by first setting all  $u_{kj}$  equal to zero, k not equal to j, neglecting all  $V_{ii}$  and solving the remaining equations,

$$\left[\frac{d^2}{dr^2} + \frac{k_1^2}{k_1} - \frac{l_1(l_1+1)}{r^2}\right] \mathcal{U}_{11} = 0.$$

The solutions of A8 which satisfy the boundary conditions are the spherical Bessel functions,

$$m_{ii} = k_i \pi Y_e(k_i \pi)$$

The solutions A9 are then substituted back into the right hand side of A4 and the resultant uncoupled inhomogeneous differential 8A.

A9

Α7

equations are solved for all the  $u_{ij}$ . This method will give a very poor result for the value of the cross section due to the poor approximation the Born functions make to the true  $u_{ij}$  close to the origin. In this region the true  $u_{ij}$  will go to zero much faster than the Born solutions A9.

A much better first approximation is obtained by leaving the diagonal terms  $V_{ii}$  in equation A8. Solving the equation,

$$\frac{d^{2}}{d\tau^{2}} + k_{1}^{2} - \frac{\ell_{1}(\ell_{1}+1)}{\tau^{2}} - V_{11} \end{bmatrix} \mathcal{U}_{11} = D, \quad A10$$

gives, not just the spherical Bessel functions, but rather, radial wave functions which are distorted by the diagonal matrix elements  $V_{ii}$ . If these solutions are then substituted back into the right hand side of A4 the solution of the resultant uncoupled inhomogeneous equations defines the distorted wave approximation. This is the method used by Roberts (1963), Davison (1963, 1964), Dalgarno and Henry (1965), Dalgarno, Henry and Roberts (1966).

This approximation was one of the most satisfactory ways of applying a straight forward numerical approach to the equations A4. However, since these last mentioned calculations were carried out, larger and faster automatic computers have become available and it is now practical to find the solutions of equations A4 when none of the off-diagonal matrix elements  $V_{ik}$  are neglected. This defines the close coupling approximation. This method has been used by Barnes, Lane and Lin (1965) for the calculation of electron excitation cross sections in sodium.

To the best of the author's knowledge no calculations on the collisions between atoms and diatomic molecules have been carried out using this approximation and it will be an important part of this work to compare the distorted wave and close coupled approximations in several collisions of this type.

Another problem which is of current interest is resonant scattering. In practice, resonances are said to have occurred in scattering if the cross sections exhibit sharp maxima and minima. These resonances will only occur when an open channel is coupled to a closed channel, i.e. those channels for which  $k_i^2 \leq 0$  in A4. Thus for the closed channel case we introduce the boundary condition,

An extensive review article on resonant scattering has been given by Smith (1965).

myn Ke-kur

Content of thesis

As mentioned before, this work divides into two parts. In the first, consisting of chapters B, C, D, E, F, the numerical treatment of the problem is considered; in the second, which includes

AJJ.

chapters G, H, I, J, K, the physical problem is described and the significance of the results discussed. For this reason the basic equations A4, together with the asymptotic boundary conditions A5, A6, have been included in this introduction so that in the numerical section we can consider these equations quite independently from the physical problem from which they were derived.

Chapter B consists of a simple resume of the properties of a second order linear differential equation with the first derivative absent. Most of these properties can be found in the standard texts, e.g. Watson (1944), Mott (1952), Fox (1962), but it was thought worthwhile to include them here as constant reference

is made to many of them in the following chapters.

The numerical solution of this type of differential equation is described in Chapter C. Several numerical methods are discussed and some of the numerical pitfalls associated with these methods

are pointed out.

The distorted wave approximation is derived in Chapter D and the numerical scheme for the calculation of the cross section A3 is laid out. The chapter is concluded with a write-up, description and flow diagram of a program written for the English-Electric-Leo-Marconi KDF9 computer to perform these calculations. Similar programs have been written notably by Roberts (1963) on an I.B.M. 709 at Massachusetts Institute of Technology and Davison (1963) on

the EDSAC2 at Cambridge.

8

Most of the original work involving the close coupling approximation is described in Chapter E. Several numerical techniques were tried on the computer and some investigation was done into critical values of the parameters. Several numerical snags were encountered each manifesting itself in a loss of symmetry of the R matrix. The write-up, description and flow diagram of a program to solve coupled differential equations and evaluate the reactance matrix R are included.

The last section of the numerical part, Chapter F, describes the problem of coupling an open channel equation to that representing a closed channel. Some numerical problems are encountered and it is thought that these will increase in complexity as more equations are coupled together. These problems need further investigation.

Chapter G begins the physical part with a derivation of the differential equations describing the scattering of a point particle by a rigid rotator (Arthurs and Dalgarno 1960). The distorted wave and close coupled approximations are now seen in context and the effect of the orientation dependence of the internuclear potential is treated mathematically.

The validity of the distorted wave approximation is studied in Chapter H with reference to a particular example. Numerical calculations show that, in the case of scattering of a hydrogen atom by a hydrogen molecule, the distorted wave approximation behaves and breaks down in precisely the manner predicted in the theoretical

example:

Chapter I contains the majority of the numerical calculations in this thesis. In all, we consider the scattering of a hydrogen atom, a helium atom and a hydrogen molecule by a hydrogen molecule and also that of a hydrogen atom by a deuterium molecule, using both the distorted wave and close coupled approximations. These results have been summarised in a recent paper (Allison and Dalgarno 1967).

In Ohapter J the numerical techniques developed in Chapter F are applied to the search for resonances in the collision of a hydrogen atom and a hydrogen molecule. No resonances were found in this case; a result predicted by Mott and Massey (1965).

Chapter K, which concludes this work, contains a description of the scattering of slow electrons by a hydrogen molecule. The programs developed in Chapter E have been modified to deal with this case. A short introduction is included at the beginning of the chapter.

#### Intermolecular, potentials

The problem of finding a realistic intermolecular potential which describes the interaction between two colliding bodies forms one of the major difficulties in scattering theory to-day.

The non-empirical calculation of intermolecular potentials

10

from the first principles of quantum theory requires very complicated mathematics except for some pairs of the simplest molecules.

Empirical information comes from the scattering of molecular beams in gases, the second virial coefficient and the transport properties of gases.

There are various analytical expressions which have been used over the years to represent the interaction of the type shown in Fig 2. These are often written in the form

where 
$$\rho = \varepsilon \sqrt{\rho}$$
, and

where  $\mathcal{E}$  and  $\boldsymbol{\rho}$  are convenient scaling factors and  $v(\boldsymbol{\rho})$  is a shape function which may or may not contain one or more parameters. An empirical potential frequently used is (Hirschfelder, Curtiss and Bird 1954) the Lennard-Jones (12, 6) potential,

 $V(x) = 4\varepsilon \left[ \left(\frac{\sigma}{x}\right)^{12} - \left(\frac{\sigma}{x}\right)^{6} \right],$ 

A12

where  $\boldsymbol{\xi}$  is the maximum energy of attraction, i.e. the depth of the potential well which occurs at  $r = 2^{\prime\prime6} 6$  and  $\boldsymbol{5}$  is the value of r for which v(r) is zero. This potential gives a simple and realistic representation for non-polar molecules and while the inverse sixth power represents the attractive part fairly well the repulsive part is only an approximation. Another form is the Buckingham (exp -6) potential (Bernstein

et al 1963),

 $r_{s}$  (see Fig 2).

This function approximates the repulsive term by an exponential form. It is unrealistic in that the exponential term would lead to a meaningless maximum at a small value of r unless the function is arbitrarily made infinite for all r less than some value

V(r) = A e

Frequently the long-range force has been neglected and implicit in this neglect of the attractive part of the potential is the assumption that the long-range force gives a so gradually varying force that the internal degrees of freedom adjust themselves adiabatically and so no quantum transition is expected with appreciable probability. As a result simple potentials such as an exponential function.

 $V(r) = A e^{-\alpha r}$ 

have been used (Roberts 1963).

Among other purely repulsive potentials is the one used by Zener (1931),

л 7 b

 $V(x) = (\overline{x-b})^2$ 

Al4

12

A13

and the Morse potential (Davison 1963, 1964),

$$V(\Lambda) = D_{e}\left(\exp\left[-2\alpha(\Lambda - \Lambda_{e})\right] - 2\exp\left[-\alpha(\Lambda - \Lambda_{e})\right]\right). \quad A15$$

This tractable function represents the actual potential at small distances much better than the Lennard-Jones or Buckingham potentials but at large distances it is less satisfactory.  $D_{\underline{r}}$ is the energy at equilibrium separation  $r_{\underline{r}}$ .

Although the attractive part of the potential does not seem to directly cause the inelastic processes with appreciable probability it affects the transition probabilities indirectly by accelerating the relative motion when an atom and a molecule approach each other. Hence long range forces must also be taken into account.

For an investigation of rotational transitions in three dimensional collisions the orientation dependence of the intermolecular potential is also required. This is often written in terms of the Legendre polynomials and for the atom-diatomic molecule case one may write

 $V(x, \theta) = V_{rep}(x) \sum l_m P_m(x \circ \theta) + V_{attr}(x) \sum a_m P_m(x \circ \theta)$ A16

where  $\theta$  is the angle between the internuclear axis of the molecule and the line connecting the centre of mass of the molecule with the atom.  $a_n$  and  $b_n$  are the asymmetry coefficients whose sign and magnitudes are to be determined.

Usually only the leading terms are retained,

$$reh(r, \theta) = V_{reh}(r) \left[ b_0 + b_2 \cdot P_2(ros \theta) \right]$$

and

$$V_{attr}(\Lambda, \theta) = V_{attr}(\Lambda) \left[ a_{\theta} + a_{z} \cdot P_{z}(\Lambda \theta) \right]$$

whence

$$I(\vec{x}, 0) = V_{rep}(\vec{x}, 0) + V_{attr}(\vec{x}, 0)$$
 A17

The omitted term  $P_1$  (cos  $\theta$  ) is zero for a homonuclear molecule and  $V_{rep}$  (r) and  $V_{attr}(r)$  are respectively the repulsive and attractive parts of the potential. Review articles on the subject of intermolecular potentials have been given by Buckingham (1960)

and Dalgarno (1963).

#### CHAPTER B

Simple properties of differential equations

u

Consider the solution of the second-order linear differential

$$\left[\frac{d^2}{dr^2} + F(r)\right] \mu(r) = 0$$

**B1** 

where F(r) is a known function of r. Since this is a second order equation it will have two independent solutions (u<sub>1</sub> and u<sub>2</sub> say) and the general solution can be written Au<sub>1</sub> + Bu<sub>2</sub>, where A and B are constants.

The simplest case is when  $F(r) = k^2$ , where k is a constant. The general solution is then

- ぷん

i.e. the solution is an oscillatory function and  $\gamma$  is a real phase shift.

c sin (kr + y)

If F(r) is constant and negative,  $F(r) = -k^2$  say, then the two independent solutions are  $e^{-kr}$  and  $e^{+kr}$  with general solution In the general case when F(r) is not constant then if F(r) is positive, u is an oscillatory function. This can be seen as follows.

Since F(r) is positive then u and  $\frac{d^2u}{dr^2}$  will have opposite signs, i.e. at a point at which u is positive the rate of change of the tangent to the curve is decreasing so the tangent will bend more and more steeply toward the axis. When the curve crosses the axis, i.e. u is negative, then the slope of the tangent will increase. This process continues to give an oscillatory function.

If, however, F(r) is negative then u and  $\frac{d^2u}{dr^2}$  will have the same sign and an exponential solution will result.

We will be interested in the case where F(r) is initially negative and changes to being positive as r increases. In this case the solution will behave exponentially until F(r) = 0 and will then oscillate.

The form of F(r) with this particular property will be taken as

 $F(r) = k^2 - \frac{\ell(\ell+1)}{r^2} - f(r), B2$ 

and we impose the additional requirement that f(r) does not have a pole of order higher than one at the origin and  $r f(r) \rightarrow 0$ as  $r \rightarrow \infty$ . *L* will be taken as constant for a particular equation. For large r,  $F(r) \rightarrow k^2$  and the solution will have asymptotic form 16

$$u = C \sin(kt + \gamma)$$

17

BŊ

B4

B6

where  $\gamma$  is a real phase shift.

To investigate the behaviour of u, for small r, a series

solution of the form

$$u = \pi h \sum_{m=0}^{\infty} a_m \pi^m,$$

is tried.

18

Substituting into the equation

$$\frac{d^{2}}{dr^{2}} + k^{2} - \frac{\ell(\ell+1)}{r^{2}} - f(r) \int \mu(r) = 0$$
B5

and equating coefficients of  $r^{p-2}$ , there results the equation

$$[h(h-1) - l(l+1)]a_{0} = 0$$

Since  $a_0 \neq 0$  then  $p = -\mathbf{l}$  or  $\mathbf{l} + 1$ .

By equating all other coefficients of r to zero, all the terms  $a_n$ ,  $n \ge 1$  may be obtained in terms of  $a_0$ .

It is now required that the solution u is regular at the origin and so the solution with the requisite behaviour at the origin

$$\mathcal{M} = \mathcal{N} \sum_{m=0}^{\ell+1} a_m \mathcal{N}$$

This determines one of the arbitrary constants in the solu-

tion. The other constant provides an over-all normalisation.

To specify the solution uniquely some particular asymptotic form for the solution must be given. This will fix the normalis-

#### ation.

The asymptotic form B3 will hold only in regions where

 $\frac{\ell(\ell+1)}{\pi^2} + f(\pi)$ 

is negligible. Usually  $f(r) \rightarrow 0$  much faster than

so the latter is the preponderating term. However the spherical

Bessel functions

$$\begin{cases} \chi(\mathbf{x}) = \sqrt{\frac{1}{2}} \quad J_{\ell+\frac{1}{2}}(\mathbf{x}) , \\ \chi(\mathbf{x}) = \sqrt{\frac{1}{2}} \quad J_{\ell+\frac{1}{2}}(\mathbf{x}) , \end{cases}$$

 $M_{e}(x) = (-1)^{n} \int \frac{11}{2x} J_{e-\frac{1}{2}}(x),$ 

satisfy the equation

$$\frac{d^2 y}{dx^2} + \frac{2}{x} \frac{dy}{dx} + \left(1 - \frac{l(l+1)}{x^2}\right) y = 0$$

Thus kr ye (kr) and kr me (kr) are the two in-

dependent solutions of the equation

$$\left[\frac{d^2}{dr^2} + k^2 - \frac{l(l+1)}{r^2}\right] \mu(r) = 0.$$

The asymptotic solution of equation B5 may now be taken as

В7

 $\frac{\ell(l+1)}{r^2}$ 

B8

**B9** 

$$u(r) \sim kr(A Y_e(kr) - B n_e(kr))^{B10}$$

and this will be valid as soon as the effect of f(r) has died

away.

Equation B3 may be written, without loss of generality, as

$$u \sim c \sin(k\tau - \frac{1}{2}e\pi + \gamma),$$
 BII

so that  $\gamma = 0$  when f(r) = 0.

Comparing BlO and Bll gives

$$B = C \sin \gamma,$$

$$A = C \cos \gamma$$
,

and these may be used to determine  $\gamma$  uniquely. Thus the solu-

tion is completely determined by

- (a) the phase shift  $\gamma$ ,
- (b) the normalisation C.

For computational purposes BlO is written in the form

$$u \sim D kr (Y_e(kr) - tan y. n_e(kr)), B12$$

and taking two distinct points  $r_a$ ,  $r_b$  in the asymptotic region, allows D to be eliminated to give

$$\tan \eta = \frac{\mu_{\varepsilon} \sqrt{a} \gamma_{e}(kr_{a}) - \mu_{a} \sqrt{\epsilon} \gamma_{e}(kr_{\varepsilon})}{\mu_{\varepsilon} \sqrt{a} \sqrt{e}(kr_{a}) - \mu_{a} \sqrt{\epsilon} \gamma_{e}(kr_{\varepsilon})}, B13$$

whence

Ma

k ra. (Ye (kra) - tany. ne (kra))

20

**B14** 

Unfortunately the value of  $\gamma$  calculated from B13 by a standard computer subroutine is given in the range  $-\frac{\pi}{2} < \eta \leq \frac{\pi}{2}$ so  $\boldsymbol{\gamma}$  will be arbitrary by an amount TT , which will affect the sign of D.

The correct sign can be determined by ensuring that the directions of the solution u and the corresponding spherical Bessel function are the same in the asymptotic region. i.e. the phase shift  $\gamma$  is obtained by comparing that solution of kr ye (kr), with B9, which is regular at the origin, viz. that solution of B5, with the same initial condition, which has asymptotic form BlO (see Fig 1 ).

# FIGURE 1

Comparison of solutions U with  $J_{(krj_{1}(kr))}$  to determine sign of normalisation.



#### CHAFTER (

## Numerical Solution

Two numerical methods for the solution of equation B5 will be considered. The first is the Runge-Kutta method (Kopal 1955) which solves a set of coupled first-order differential equations. If a differential equation of any order is of such a form that the highest derivative can be expressed as a function of lower derivatives and the two variables, then, by simple substitution, it can be expressed as a set of coupled first=order equations. Thus the Runge-Kutta method is applicable to a differential equation of any order with this property.

## Runge-Kutta Method

The differential equations can be written

 $y^{i} = f'(x, y', y^{2}, \dots, y^{m}), 1 \le i \le m,$ Cl

then defining  $k_{10} = h.f(x_r, y_r, y_r^2, \dots, y_r),$ kei = h. f (x+ 1/2h, y/s+ 1/2k, o, .... y/r + 1/2 kno),

$$k_{A2} = h f'(x_{r} + \frac{1}{2}h, y_{r} + \frac{1}{2}k_{11}, \dots, y_{r} + \frac{1}{2}k_{m1}),$$

$$k_{A3} = h f'(x_{r} + h, y_{r} + k_{12}, \dots, y_{r}^{m} + k_{m2}),$$
gives

$$N_{x+1} = N_x + \frac{1}{6} \left( k_{10} + 2 k_{11} + 2 k_{12} + k_{13} \right).$$
 C2

The integration is started by assuming initial conditions  $y^{1} = y_{0}^{1}$ at the point  $x = x_{0}$ , where  $x_{0}$  and the set  $y_{0}^{1}$  are known, Equation B5 may be written, by putting  $v = \frac{du}{dr}$ ,

$$\frac{du}{dr} = r$$
,  
$$\frac{dv}{dr} = -\left[k^2 - \frac{\ell(\ell+1)}{r^2} - f(r)\right]\mathcal{U},$$

and in this form the Runge-Kutta method is immediately applicable. Thus by choosing initial conditions, say u = 0 and  $v = \frac{du}{dr} = a$ at r = 0, a step by step process may be set up giving values of uat successive points, interval h apart. Here a is an arbitrary constant.

These equations are derived from a comparison with the Taylor Series expansion up to and including terms in h<sup>4</sup>. This is the most commonly used method for the solution of differential equations on an automatic computer. It is relatively easy to programme-- absence of a starting procedure helps here and as large, complicated and even non-linear sets of equations can be handled with little extra effort it is not surprising that this method is so popular. Also changes in interval involve no complication, a situation which requires special treatment in finite difference methods.

The main disadvantage is that each function has to be calculated four times per step and this increases the time of computation. Also estimation of the truncation error is difficult so that the best that can be done is to make use of the fact that the local truncation error is of the order of  $h^5$  in the process described.

## Recurrence Formulae

The second method that will be described is a finite difference method known alternatively as Numerov's method (Hartree 1957) or second order Fox-Goodwin recurrence relation (Fox and Goodwin 1949). It is based on the finite difference formula

$$S^{2}\gamma_{r} = \left(1 + \frac{1}{12}S^{2} - \frac{1}{240}S^{4} - \cdots\right)h^{2}\gamma_{r}^{\prime\prime}$$
 C4

This formula is applied to the equation

$$\gamma y'' + f(x) \gamma y = g(x),$$

i.e. a second order linear differential equation with the first derivative absent. Truncating formula C4 after term in S and substituting into C5 gives the recurrence formula

$$\left(1 + \frac{1}{12}h^{2}f_{r+1}\right) Y_{r+1} - \left(2 - \frac{10}{12}h^{2}f_{r}\right)Y_{r} + \left(1 + \frac{1}{12}h^{2}f_{r-1}\right)Y_{r-1}$$

$$= \frac{1}{12}h^{2}\left(9_{r+1} + 109_{r} + 9_{r-1}\right)$$

$$c6$$

If values of the solution are known at two points then this relation may be used to generate further values of y. A disadvantage is that a starting procedure is usually required to evaluate two initial values. Also changing the interval requires special treatment, especially reducing the interval, in which case some means of estimating an intermediate value is necessary. This can be done by interpolation or, in the case of halving the interval, by simple elimination.

However the functions g(x) and f(x) need only to be calculated once per step and due to the very small truncation error, which has leading term

$$\frac{1}{240} S^{+} h^{2} y_{\pi}'' \equiv \frac{1}{240} S^{0} y_{\pi} \equiv \frac{1}{240} h^{0} y''$$

a larger value of h may be chosen than in the previous case. This fact, together with the recurrence formula C6 will mean that this method will run very much faster on an automatic computer than will the Runge-Kutta method.

It is generally true that a method which is tailor-made for a

particular differential equation, in this case, second order, linear, first derivative absent, will be more efficient than a general method such as Runge-Kutta. 25

Another example of this statement is that a second order, nonlinear differential equation with the first derivative absent will be more efficiently solved by the De Vogelaere method (De Vogelaere 1955) than by Runge-Kutta. In the former method the function values are only calculated twice per step.

Returning to equation C6 if we substitute

 $Y_r = (1 + \frac{1}{12}h^2f_r) Y_r - \frac{1}{12}h^2g_r$ 

then the recurrence formula becomes

$$Y_{x+1} = 2 Y_x + h^2 (g_x - f_x y_x) - Y_{x-1}$$
, 07

In this form the number of arithmetic operations per step is reduced and is very suitable for programming an automatic computer. A slight disadvantage is that the mechanism for changing the interval becomes more complicated. For example, to increase the interval size by a factor p the scheme is :

(a) Equation C6.

Set  $h = p \times h$  and replace  $y_r$  by  $y_{r-p}$ .

(b) Equation C7.

Set h = p x h.

add 
$$\frac{3}{12}h^2 \left\{ f(x-h\times h) \times y_{x-h} - g(x-h\times h) \right\}$$

Add 
$$3/12 h^2 \{f(r) \times y_r - g(r)\}$$
 to  $\gamma_r$ 

However since this routine would be entered very seldom compared with the number of steps required we prefer to use the recurrence formula as given by C7.

## Stability

There are two types of stability connected with these equations and the two numerical methods.

## (a) Inherent Instability

If in equation B1,  $F(r) = -k^2$  then the solution will be

$$u = Ae^{+kx} + Be^{-kx}$$

Even if our initial conditions require A to be zero, rounding errors will introduce a small multiple of the unwanted solution which will eventually swamp the true solution. When this type of equation is solved, with the above initial requirement, it is necessary to integrate backwards in which case the unwanted solution is decreasing and will not affect the true solution. This type of instability is a function of the differential equation.

## (b) Partial Instability

Consider the equation

$$y'' = -A^2 y$$
, which has solution

$$y = B e^{iAx} + C e^{-iAx}$$

(a) <u>Runge-Kutta</u>

When the Runge-Kutta method is used to integrate equation C9 the solution is represented by

C9

$$\mathbf{y}_{\mathbf{r}+1} = \mathbf{y}_{\mathbf{r}},$$

where

$$E = 1 + \iota h A - \frac{1}{2} h^{*} A^{2} - \frac{\iota}{6} h^{3} A^{3} + \frac{1}{24} h^{*} A^{4}$$
 C10

For this solution to converge to the true solution of the differential equation requires the condition  $|E| \leq 1$  which, in turn, implies  $h^2 A^2 \leq 8$ .

(b) Recurrence Formula

, Applying the recurrence formula C6 to the equation C9 gives

$$(1 + \frac{1}{12}h^{2}A^{2})E^{2} - (2 - \frac{10}{12}h^{2}A^{2})E + (1 + \frac{1}{12}h^{2}A^{2}) = 0$$
, cll

where again  $y_{r+1} = E y_r$ .

Now the set  $y_r$  is to represent an oscillatory solution so E must be complex.

Thus

$$\left(1 - \frac{5}{12}h^{2}A^{2}\right)^{2} - \left(1 + \frac{1}{12}h^{2}A^{2}\right)^{2} \angle O$$

or  $h^2 A^2 \langle 6.$ 

012

Thus the stability condition is very similar for both methods. Comparing equations C9 and B1 shows that these results may be applied to B1 if  $A^2$  is some measure of the upper bound of the function F(r).

An example illustrating this condition is given at the end of the chapter.

Choice of interval

There are two criteria that have to be considered before a choice of interval h is made.

(a) The truncation error must be made negligible.

(b) The stability condition must be satisfied.

The function f(r), which we consider, will have its largest value at small r and tend to zero as r increases.

The stability condition for the equation C9 using the recurrence relation was  $A^2h^2 \zeta$  6.

Thus if  $A^2$  is taken as an upper bound for f at initial value of r then this condition will allow a bound for the initial value of h to be chosen.

e.g. 
$$f = 10 + 4 \text{ at } r = r_0$$

then  $h^2 \langle 6_{10} - 4$ , whence h may be taken as 0.02 (say).

Further, asymptotically the solution will oscillate as  $sin(k \pi + \eta)$ . Truncation error for recurrence formula is, neglecting terms in  $h^8$  and higher,

sin ( ter + y)

C13

$$\frac{1}{240}h^{6}y^{(v_{1})} = \frac{h^{6}k^{6}}{240}$$

h must be chosen such that

$$\frac{h^6 k^6}{240}$$
 is negligible.

hk **〈** 0.22 .

For example if we require overall accuracy of four figures in the solution the integration should be carried out to six figures and the local truncation error is then allowed to be  $5_{10} - 7$ .

i.e. 
$$\frac{(hk)^6}{240} < 5_{10} - 7$$
,

or

Thus combining these two examples, and assuming k = 1, a suitable choice of initial interval would be 0.02. The interval could be increased smoothly, depending on how quickly f dies away, up to a final value of 0.2.

At this stage it is interesting to note that the next term in the correction from this recurrence relation is  $\frac{13}{15120} S^8$ . Assuming the sixth differences were included in a modified recurrence relation the same example gives

$$\frac{13}{15120} h^8 k^8 \langle 5_{10}^{-7} \rangle$$

Thus including the eighth differences we could choose a value of h about 1.7 times larger than the interval required to give the same accuracy with only the sixth differences included. It is unlikely that the extra work involved in evaluating the much more complicated recurrence formula would compensate for this reduction in interval.

#### Choice of initial condition

In chapter B the equation considered had boundary conditions

$$u = 0$$
 at  $r = 0$ ,  
 $u \wedge C \sin(kr + \eta)$ 

The phase shift  $\gamma$  is determined from the first condition and the second condition provides the normalisation factor C. The problem may be transformed into an initial value one by assuming some quite

arbitrary condition at the beginning of the range such as

$$u' = a \quad at \quad r = 0,$$

or 
$$u = b$$
 at  $r = h$ .

Choosing the first condition allows the Runge-Kutta method to commence its step, while the recurrence formula can be applied immediately if the second condition is used. The solution may then be integrated into the asymptotic region and the normalisation calculated.

A difficulty may arise when the recurrence formula C7 is used at the point r = h as the term  $f_0 u$  appears in the equation and  $f_0$  may be infinite.

Robertson (1956) points out that this term may be replaced by lim fu. Using B2 this is zero in all cases except for 2 = 1when it contributes an amount 2a where a is the leading term in the Frobenius expansion B6. In practice he found that retaining the first term in B6 was sufficient thus giving  $a = h^{-2}$ .

This trouble only arises if integration is started at the orig-

It was further shown in chapter B that equation B5 had two solutions which behave for small r as

$$u_1 = a_0 r^{\ell} + 1$$
  
 $u_2 = a_0 r^{-\ell}$ .

Theoretically the starting condition u = 0 at r = 0 must be taken
to get rid of the unwanted solution  $u_2$  which tends to infinity as r tends to zero. However numerically we can obtain all of the required solution by choosing completely arbitrary initial values at a suitable small value of r.

The most general solution of equation B5 is given by

 $u = Au_1 + Bu_2,$ 

where A and B are constants.

Then if  $r_0$  is chosen such that the unwanted solution  $u_2$  is very much greater than  $u_1$ , the integration starting from  $r_0$  will consist only of the wanted solution  $u_1$ . i.e. since  $u_2$  tends to infinity as r tends to zero then  $r_0$ can be chosen such that B is zero, to the accuracy with which one is working.

Two choices of starting conditions that can be used are

Ç14

**C15** 

(a) u = a at  $r = r_0$ , u = a at  $r = r_0 + h$ ;

(b) u = o at  $r = r_o$ ; u = a at  $r = r_o + h$ ;

where a is an arbitrary (usually small) number. This effect is demonstrated by an example.

Ex. Consider the equation

$$\left[\frac{d^2}{dr^2} + k^2 - \frac{\ell(\ell+1)}{r^2}\right] \mu$$

which has solution

$$\mathcal{U} = A \operatorname{kr} Y_{e}(\operatorname{kr}) + B \operatorname{kr} n_{e}(\operatorname{kr})$$

We wish to find that solution of Cl6 which is regular at the origin, i.e. B = 0.

Working to five figure accuracy in the solution, taking

$$k = 1$$
,  $k = 3$   
 $r_0 = 0.2$ ,  $h = 0.1$   
 $u_0 = u_1 = 10^{-5}$ ,

and integrating out past 7.1, where the first zero of  $\chi_3(\pi)$  lies, gives a phase shift  $\gamma = 0$  showing that only the solution which is regular at the origin is present.

This can be seen by using very approximate values of the spherical Bessel functions

at 
$$r = 0.2$$
,  $y_3(\pi) = 8_{10} - 5$ ,  $M_3(\pi) = 9_{10} + 3$   
at  $r = 0.3$ ,  $y_3(\pi) = 2.5_{10} - 4$ ,  $M_3(\pi) = 2_{10} + 3$ 

Thus  $B \leftarrow \overline{Q}(3_{10} - 9)$  and since  $rn_3(r)$  does not build up as r increases it can never affect the solution.

Repeating the example with  $r_0 = 0.7$  instead of 0.2 gave a value of  $\gamma = 0.0001$  which shows that some of the unwanted solution must be present.

Again

at 
$$r = 0.7$$
,  $\chi_3(\pi) = 3_{10} - 3$ ,  $M_3(\pi) = 6.5_{10} + 1$ ;  
at  $r = 0.8$ ,  $\chi_3(\pi) = 4_{10} - 3$ ,  $M_3(\pi) = 3.9_{10} + 1$ ;  
gives  $B = 4 + 10^{-3}$ ,  $M_3(\pi) = 3.9_{10} + 1$ ;  
gives  $B = 4 + 10^{-3}$ ,  $M_3(\pi) = 3.9_{10} + 1$ ;  
As  $r$  increases the unwanted solution oscillates in a simil-  
ar way and with similar magnitude to the required solution. Thus  
if any error is present at the first zero of  $\chi_2(-k\pi)$  it will

be carried through to the asymptotic region. In the latter example some of the unwanted solution would be present throughout the whole range.

An exactly similar situation occurs if initial conditions C15 had been used instead of C14. However C14 cannot be used in the case  $\mathbf{l} = 0$  when the solution is A sin kr + B cos kr as in this case only the unwanted solution B will appear. This is because that solution is finite at the origin. Initial conditions C15 will give a correct result in this case if  $r_0$  is of the order 0 = 6.

#### Example of Instability

The previous example was successful with choice of  $r_0 = 0.2$ , h = 0.1, for  $\boldsymbol{\ell} = 3$ . It might seem reasonable to make the same choice for  $\boldsymbol{\ell} = 10$ . If this is done the calculated function values increase very rapidly until the numbers become too large for the computer ( $_{10}$  + 39 in this case). This has occurred because a violent instability has been introduced by the choice of initial conditions. It was shown earlier in this chapter that the stability condition for the recurrence relation was  $A^{2}h^{2} \leq 6$ . In the previous example  $A^{2} \leq A^{2} \leq 6$ . In this example  $A^{2} \leq A^{2} \leq 6$ . In this example  $A^{2} \leq A^{2} \leq 6$ .

Thus this solution is unstable. The interval should have been about 0.02 to get a correct representation of the solution.

### Form of f(r)

A form of the function f(r) which will be used is given by

$$f(\pi) = a e^{-e \pi} - c/\pi^{6}.$$

As mentioned in Chapter A this function is not defined for small r as it does not obey the condition that r f(r) is finite as r tends to zero.

The shape of the function is shown in Fig 2. A spurious maximum occurs at some value of r and this affects the shape back to some point  $r_{g}$ . The function f is now modified to have the behaviour

$$f(x) = a e^{-bx} - c/x^{b}$$
 for  $x > N_{s}$ .

36

For  $r \langle r_s, f(r) \rangle$  can have any shape which, at worst, goes off as  $\frac{1}{r}$ , as r tends to zero, and has a continuous join with the form r er part at  $r = r_s$ . If these conditions are obeyed the solution is treated as being effectively zero for  $r \langle r_s$ . The values of the parameters a, b, c in f(r) are such as to make the value of  $f(r_s)$  of the order of 10 + 4.

If the integration is started at  $r_s$  and also at several values of r greater than  $r_s$  the phase shift is found to be unchanged, i.e. there is a region greater than  $r_s$  in which the unwanted solution is very much greater than the wanted solution and in this region starting conditions can be chosen quite arbitrarily. Clearly this range will increase for increasing values of  $\boldsymbol{\ell}$  and, in practice, the initial value  $r_o$  can be moved out to save computing time.

FIGURE 2

Typical shape of function of the form  $ae^{-br} - c/c_{r}$ 



CHAPTER

Distorted Wave Approximation

If it can be assumed that the non-diagonal matrix elements  $V_{ij}$ , i  $\neq$  j, are small compared with other terms so that all products on the right hand side of A4 except  $V_{ii}$  u and  $V_{1i}$  u, which involves the incident wave, can be neglected, then the equations A4 become

$$\frac{d^2}{dr^2} + k_1^2 - \frac{l_1(l_1+1)}{r^2} - V_{11} M_1 =$$

$$\left[\frac{d^2}{dr^2} + \frac{k_1^2}{r^2} - \frac{l_1(l_1+1)}{r^2} - V_{11}\right] \mathcal{U}_1 = V_{11} \mathcal{U}_1,$$

-Defining  $w_i$  to be that solution of

$$\left[\frac{d^2}{dr^2} + k_{\perp}^2 - \frac{l_{\perp}(l_{\perp}+1)}{r^2} - V_{\perp}\right] M_{\perp} = 0, \quad D3$$

such that

$$W_{\lambda} \sim \sin\left(-k_{\lambda}\tau - \frac{1}{2}l_{\lambda}T + \gamma_{\lambda}\right)$$
 D4

D1

D2

and  $v_i$  that solution of the same equation such that

$$v_{i} \sim \frac{1}{k_{i}} esh i \left( k_{i} - \frac{1}{2} l_{i} T + \gamma_{i} \right), D5$$

20

D7

and the solution of equation D2 is (Mott and Massey 1949)

$$\mathcal{U}_{\lambda} = -\mathcal{V}_{\lambda} \int_{V} \mathcal{W}_{i} \, \mathcal{V}_{\lambda} \, \mathcal{U}_{i} \, \mathcal{U}$$

which behaves, for large r, as

$$u_{i} \sim -\frac{1}{k_{i}} \exp(i\left(k_{i} T - \frac{1}{2} L_{i} T + \gamma_{i}\right) \int w_{i} \vee u_{i} dT DB$$

Matching these asymptotic forms with the boundary conditions A5 gives

$$S_{11} = exp((2i\eta_1), D9)$$

$$S_{11} = exp((\eta_1 + \eta_1) \left(\frac{k_1}{k_1}\right)^2 2i\beta_i, t \neq 1, D10$$

where

then

$$\beta_{i} = \frac{1}{k_{i}} \int_{0}^{\infty} w_{i} V_{i}, u, dr.$$

Thus with this approximation the S matrix elements can be obtained

in terms of the solutions of the uncoupled homogeneous different-

Formula A3 for the elastic and inelastic cross sections given by j = 0, j' = 2 becomes

$$\mathcal{O}(0;0) = \frac{4}{k_{1}^{2}} \sum_{\overline{J}=0}^{\infty} (2J+1) \sin^{2} \gamma_{1},$$

$$\sigma(2;0) = \frac{4\pi}{k_{1}^{2}} \sum_{\frac{5}{5}=0}^{\infty} (25+1) \sum_{l} \left(\frac{k_{l}}{k_{l}}\right)^{\frac{1}{2}} \beta_{l}^{2} \qquad D1$$

where i takes the values n, n-l ... corresponding to values of l'.

A program has been written to apply this approximation to certain cases to be described.

It solves M differential equations of the form

J - 4

$$\left[\frac{d^{2}}{dr^{2}} + k_{1}^{2} - \frac{\ell_{1}(\ell_{1}+1)}{r^{2}} - V_{11}(r)\right] \mathcal{U}_{1}(r) = 0$$

J

where M can take the values 4, 9, 16 .....,  $l_1$  is given by J J-2 J J+2

J - 2

and

$$V_{iy}(r) = Bo \{ N_o(r), \delta_{iy} + f 2^{-1}(i,j) N_2(r) \}$$

39

D12

where f2 is given by the formulae in Berstein et al (1963) and

 $N_{\mu}(x) = a\mu e^{-b\mu x} - \frac{c\mu}{r^{6}}, \mu = 0, 2.$ 

The integration is carried into a region where the potential  $V_{ij}(r)$  is negligible and the  $\beta$  - integrals are formed from a knowledge of the normalised solutions  $u_i$ ,

$$\beta_{i}^{3} = \frac{BO}{k_{i}} f_{2}(1, \iota) \int \mu_{1}^{3} v_{2}(r) \mu_{1}^{3} dr$$

The calculations are repeated for consecutive values of J until the contribution from the  $\beta$  - integrals has died away. The elastic and inelastic cross sections are then calculated from the formulae D12 and D13.

Data required is,

M (the number of equations),

B0, a0, b0, c0, a2, b2, c2 (parameters for  $v_0; v_2$ ),  $I_1, I_2, I_3, pl, p2,$  $r_0, h, yl,$ 

k<sub>1</sub>, k<sub>2</sub>, .... k<sub>M</sub>, j, j', initial J -1, eps,

The integration begins at  $r_0$  and takes  $I_1 + 1$  steps of interval h. The interval is changed to h x pl and  $I_2$  steps are taken. The range is completed by adding  $I_3$  steps of interval h x pl x p2.

bool.

The value of all solutions  $u_i$  is assumed zero at  $r_o$  and equal to yl at  $r_o + h$ . j = 0 for the cases considered and  $j! = 2(\sqrt{M} - 1)$ .

The initial value of J was usually 0 and J was stepped successively by 1 until the  $\beta$ -integrals had fallen off by a factor eps usually taken to be  $10^{-3}$  bool was a boolean marker set <u>false</u> if angular distribution was required and <u>true</u> otherwise (see equation 13). The data is read in and at this stage the maximum storage require-

ment of the program is known.

Since the two functions  $v_0(r)$  and  $v_2(r)$  appear in all the  $V_{ij}^{J}(r)$ elements it is more efficient to calculate these functions at all the tabular points and store them as two vectors. A This would be especially true if  $v \mu(r)$  were more complicated. When the value of J is known the values of 1 may be set up and also, the constants f2 (1, j) calculated from the reference. The equations are integrated as described in chapter C. The integration is terminated as soon as the phase shift has settled down to a steady value usually taken when two successive phase shifts differ by less than 0.0001. The phase shift is calculated from formula B13 which involves the spherical Bessel functions. It would be wasteful of computer time to test the phase shift too soon so a marker Xs is set within the program such that for values of r less than Xs the phase shift routine is ignored.

In the region for r greater than Xs the solutions are os-

cillatory and the phase shift is calculated each time any solution crosses the axis. As a safeguard to determine whether the phase shift has converged or the end of the range has been reached, the final value of r is printed out together with the phase shifts.

The value of the normalisation is then calculated from Bl4, averaged over several points, and the correctly normalised solutions are stored. This information allows the  $\beta$ -integrals Dl1 to be evaluated.

Three numeral methods of integration were tried. First the well-known Simpson's rule was used

$$\int_{x_0}^{x_{2m}} f(x) dx = \frac{h}{3} \{ y_0 + 4 y_1 + 2 y_2 + \cdots + y_{2m-1} + y_{2m} \}, D14$$

and secondly, two forms of Gregory's formula

$$\int_{x_0}^{x_m} f(x) dx = h\left\{\frac{1}{2}y_0 + y_1 + \dots + y_{m-1} + \frac{1}{2}y_m\right\}$$
$$+ \frac{h}{12}\left(\nabla y_m - \Delta y_0\right) - \frac{h}{24}\left(\nabla^2 y_n - \Delta^2 y_0\right) + \dots, D15$$

given by neglecting second differences and again by neglecting fifth differences (Modern Computing Methods 1961).

The integration was taken over the tabular points of the solution of the differential equation and hence the integrand split into three parts. There was little to choose between these three methods considering the accuracy required but in the case of Simpson's Rule I has to be odd and I<sub>2</sub> even. Probably the Gregory formula with second difference ignored, i.e. the Trapezoidal Rule with end correction, is the most convenient to apply in practice.

The phase shifts are calculated by comparison with the spherical Bessel functions. The next section describes the calculation of these functions based on the method given in "Tables of spherical Bessel functions", N.B.S. (1947).

#### Spherical Bessel Functions

Bessel functions of order  $\mathcal{V}$  satisfy the differential equation

$$x^{2} \frac{d^{2} y}{dx^{2}} + \sum \frac{d y}{dx} + (x^{2} - v^{2}) y = 0$$
 D16

One solution of D16 is  $\mathcal{J}_{v}(x)$  defined by the series

$$J_{v}(x) = \sum_{k=0}^{\infty} (-1)^{k} \frac{(x/2)^{v+2k}}{k! \Gamma(v+2k+1)}$$

For  $V = n + \frac{1}{2}$ , where n is an integer, the general solution of D16 is

$$A J_{m+\frac{1}{2}}(x) + B J_{-m-\frac{1}{2}}(x)$$

where A and B are constants. The well-known asymptotic expansion of J 1944).

 $J_{m+\frac{1}{2}}(\infty)$  is (Watson

43

$$\sqrt{\frac{1}{2x}} \quad J_{n+\frac{1}{2}}(x) = \frac{1}{x} \left\{ P_{n+\frac{1}{2}}(x) \cos\left(x - \frac{\pi}{2}(n+1)\right) - Q_{n+\frac{1}{2}}(x) \sin\left(x - \frac{\pi}{2}(n+1)\right) \right\},$$
 D18

44

where

$$P_{m+\frac{1}{2}}(x) = \sum_{k=0}^{\left[\frac{m}{2}\right]} \frac{(-1)^{k}(m+2k)!}{(2x)^{2k}(2k)!(n-2k)!}$$

$$Q_{n+\frac{1}{2}}(x) = \sum_{k=0}^{\lfloor \frac{n-1}{2} \rfloor} \frac{(-1)^{k} (n+2k+1)!}{(2 x)^{2k+1} (2 k+1)! (n-2k+1)}$$

The functions  $\mathcal{J}_{v}(\mathbf{x})$  satisfy the recurrence relation

$$J_{\nu+1}(x) + J_{\nu-1}(x) = \frac{2\nu}{3\kappa} J_{\nu}(x).$$

The closely related function

$$\Lambda_{v}(x) = \frac{\Gamma(v+i)}{(x/2)^{v}} \cdot J_{v}(x),$$
 D20

may be shown to satisfy the relations

$$\bigwedge_{v}(x) = \bigwedge_{v-1}(x) + \frac{x^{2}}{4v(v+1)} \cdot \bigwedge_{v+1}(x), D21$$

$$\bigwedge_{v=1}^{1} (x) = \left[ 1 - \frac{x^{2}}{4v(v+i)} \right] \bigwedge_{v=1}^{1} (x) - \frac{x^{2}}{4v(v+i)(v+2)} \bigwedge_{v=1}^{2} (x) D^{22}$$

For 
$$V = n + \frac{1}{2}$$
,

$$\bigwedge_{m+\frac{1}{2}}(x) = \sum_{k=0}^{\infty}$$

$$\sum_{k=0}^{k} \alpha_k \cdot \frac{(2m+1)!}{m!}$$

where

$$2_{k} = \frac{(-1)^{k} (n+k)!}{k! (2n+2k+1)!}$$
$$= \frac{-1}{2k (2n+2k+1)} a_{k}$$

which gives

$$\int \frac{\Pi}{2x} \int_{m+\frac{1}{2}} (x) = (2x)^m \sum_{k=0}^{\infty} a_k x^{2k}$$
D25

The simple recurrence relation D19 may be used to generate function values either by a forward or backward recurrence relation provided  $\frac{(2n + 1)}{x}$  is less than unity. When  $\frac{(2n + 1)}{x}$  is greater than unity the error in the generated values may increase rapidly and it becomes impractical to use D19 for computing D23

D24

purposes. However  $\bigwedge_{m+\frac{1}{2}}(x)$  may be conveniently generated by a forward relation when  $\frac{(2n+1)(2n+3)}{x^2}$  is less than unity and by a backward relation when this factor is greater than unity. 46

Hence we restricted use of recurrence formula D19 to values of n less than fifteen and in this range direct evaluation of  $\sqrt{\frac{1}{2\times}} J_{\nu}(x)$  from the power series D25 was valid whenever the recurrence formula broke down.

For values of n greater than fifteen and for values of x greater than n the asymptotic expansion D18 was used. The most awkward range is when n is greater than fifteen and x less than n and in this range we used the functions  $\bigwedge_{m+\frac{1}{2}}(x)$ . These values were calculated from the power series D23. A block diagram showing the organisation of the various functions used, is given.



# DISTORTED WAVE PROGRAM











CHAPTER J

47

Vik Mky

Close coupling Approximation

If none of the off-diagonal matrix elements in equation A4 can be neglected then no analytical solution of the coupled equations can be found and it is necessary to proceed numerically.

A method of solving these equations has been given by Barnes, Lane and Lin (1965). It involves solving the coupled equations into the asymptotic region and there matching the solutions to the boundary conditions.

The equations are

$$\left[\frac{d^{2}}{dx^{2}} + k_{x}^{2} - \frac{\ell_{x}(\ell_{x}+1)}{x^{2}} - V_{xx}\right] u_{xy} = \sum_{\substack{k=1\\k=1\\k=1}}^{n}$$

for liiin, lijin.

To avoid use of complex numbers the boundary conditions given in terms of the R matrix are used,

Mix = 0 at N = No. My N kar Ye (kar). Sug + ( ki) Ry kar me (kar). E2

Since the S matrix contains all the elements of the R matrix

this set of equations must be solved n times using the n sets of boundary conditions.

If the matrix elements  $V_{ii}$  have no singularities of order two or higher at the origin then, for small r, the solutions of which satisfy E2 are given by El

Wig = dig N lat

where  $\Delta$  is a matrix of constants. The solutions thus obtained will not, in general, satisfy the asymptotic boundary conditions.

n linearly independent solutions of equation [E] must Thus be found and then a suitable linear combination can be matched to the correct asymptotic form.

The criterion for linearly independent solutions of this equation is that the phase shifts obtained must themselves be markedly different and strongly independent. This has been noted by Buckingham (1962). We make the assumption that if the rows of 🕰 are linearly independent then the respective asymptotic forms will also This choice of & is of great importbe linearly independent. ance and may certainly not be chosen in an entirely arbitrary manner as mentioned by Barnes, Lane and Lin (1965).

Thus the solutions u may be expanded as

Mig = ~ Wik Ckg

48

E3

E4

$$L = W. C$$

The solutions  $\underline{u}$  may be matched to the boundary conditions at two values of r (say  $r_a$ ,  $r_b$ ), large enough such that the potential terms  $V_{ij}$  have died away. Then, defining a matrix R' and diagonal matrices  $M^r$ ,  $N^r$  by

$$R_{iy} = \left(\frac{k_i}{k_y}\right)^2 R_{iy}, \qquad E5$$

$$M_{iy} = k_i \pi Y_e(k_i\pi). S_{iy}, \qquad E6$$

$$N_{iy} = k_i \pi M_e(k_i\pi). S_{iy}, \qquad E7$$

the matching process becomes

$$\frac{M^{a}}{M^{b}} = M^{a} + R' \cdot N^{a},$$
E8  

$$\frac{M^{b}}{M^{b}} = M^{b} + R' \cdot N^{b},$$
E9

whence

 $\operatorname{or}$ 

$$\mathbf{R}' = \left(\underline{w}^{\mathbf{b}}, \mathbf{N}^{\mathbf{a}} - \underline{w}^{\mathbf{a}}, \mathbf{N}^{\mathbf{b}}\right)^{\mathbf{a}} \left(\mathbf{M}^{\mathbf{b}}, \underline{w}^{\mathbf{a}} - \mathbf{M}^{\mathbf{a}}, \underline{w}^{\mathbf{b}}\right), \quad \mathbf{Elo}$$

The R, S and T matrices defined in Al and A2 may be easily found since

$$T = 2(I + R^{2})^{-1}R^{2} + 2 l(I + R^{2})^{-1}R$$
Ell

and S

E12

where I is the unit matrix.

The recurrence relation may be applied to these equations in terms of matrix operations.

Defining 
$$F_{xy} = \left(\frac{\ell_x(\ell_x+1)}{r^2} - k_x^2\right) \cdot S_{xy} + V_{xy}$$
, E13

equation El becomes

$$U'' = F.U$$

and substituting in C6 gives

$$U_{m+1} = \left(I - \frac{1}{12}h^{2}F_{m+1}\right)^{-1}\left\{\left(2I + \frac{10}{12}h^{2}F_{m}\right)U_{m} - \left(I - \frac{1}{12}h^{2}F_{m-1}\right)U_{m-1}\right\}$$
E15

i.e. to advance the solution of the differential equation E14 one step involves a matrix inversion.

If equation El4 is solved using recurrence relation El5 then a matrix inversion, or in practice, a solution of simultaneous equations, is necessary at each step. This matrix,

where  $F_{n+1}$  is defined by El3,

is strongly diagonally dominant except for small r. Indeed as r increases it will tend to a diagonal matrix. Iterative methods are very useful when dealing with matrices of this type and this gives two choices

51

E1.6

(a) to invert the matrix at each step which would be wasteful in the region where the coupling has died away. or

(b) to use an iterative method.

We decided to use the latter. Also one can examine more closely the nature of the solution and the effect of coupling if the equations are solved in this way. By this method the equations must be solved n times taking successive columns of  $\Delta$  as initial conditions,

Three iterative methods are considered.

Method A

A method of solving El, used by Buckingham and Massey (1942) and Robertson (1956) to solve a single integro-differential equation, is to solve the equation by successive approximation.

In the following scheme the suffix j refers to a column of  $\swarrow$  and remains fixed for each set of n equations. If initially  $u_{ij}^{o}$  is set equal to zero an iterative scheme may be defined as follows :

 $= \sum V_{ik} u_{ij}^{m+1} + \sum V_{ik} u_{i}^{m}$ 

and iteration may be carried out on some final value of the succesive solutions, e.g. the value of the solutions at the matching points. Note that this method involves iterating on the complete solution of the differential equation.

The next two methods take the iteration at each step. Method B

Truncating formula C4 after the term in b gives

$$Y_{T+1} = 2 Y_T - Y_{T-1} + \frac{1}{12} h^2 \left\{ Y_{T+1} + 10 Y_T + Y_{T-1} \right\} = 17$$

and an iterative scheme could be set up as

$$Y_{n+1} = 2 Y_n - Y_{n-1} + \frac{1}{12} h^2 \left\{ Y_{n+1} + 10 y_n + y_{n-1} \right\}, \quad E18$$

where, from 05,

$$y_{r} = g_{r} - f_{r} \gamma_{r}$$

The flow diagram is as follows :

Knowing  $y_{r-1}$ ,  $y_r$ ,  $y_{r-1}''$ ,  $y_r''$  for all equations. Set DIFF  $\equiv y_{r+1}^{"} + 10y_r^{"} + y_{r-1}^{"} = 0$  for all equations. for all equations. Calculate  $y_{r+1}$  from El8 Calculate y" from E19 for all equations. for all equations. Calculate new DIFF new DIFF - old DIFF  $\rangle$  E for all equations Test if yes no

Next step

E19

Method C

C7 the recurrence formula is written  $\mathbf{In}$ 

$$Y_{r+1} = 2 Y_r + h^2 (g_r - f_r y_r) - Y_{r-1}, \quad E20$$

$$y_r = \frac{Y_r + \frac{1}{12} h^2 g_r}{1 + \frac{1}{12} h^2 f_r}, \quad E21$$

E21

where  $y_r =$ 

This is a particularly suitable form for an iterative process as the calculation of  $Y_{r+1}$  using E20 is independent of the coupling terms on the right hand side of El. They only arise through the term g in E21.

The flow diagram is as follows :

|   | Knowing Y <sub>r</sub> ,   | Y <sub>r-1</sub> , y <sub>r</sub>                | for all equations.                 |
|---|----------------------------|--------------------------------------------------|------------------------------------|
|   | Calculate h <sup>2</sup> g | gr - h <sup>2</sup> fryr                         | for all equations.                 |
|   | Calculate Y <sub>r+</sub>  | j from E20                                       | for all equations,                 |
|   | and y <sub>r+</sub>        | $\frac{1}{1} = \frac{Y_{r+1}}{1 + \frac{1}{12}}$ | for all equations.                 |
|   | Calculate new              | ″ <sup>g</sup> r+1                               | for all equations.                 |
| ϯ | Calculate new              | y <sub>r+1</sub> from                            | E21 for all equations.             |
|   | Test if   new              | y y <sub>r+1</sub> - old                         | $y_{r+1} > \xi$ for all equations. |
|   | yes                        | no                                               |                                    |
|   |                            | Next step.                                       |                                    |

This scheme gives rise to Jacobi type iteration but if the last few lines are modified to be

Calculate new  $\mathcal{G}_{r+1}$ and then new  $y_{r+1}$  for all equations. Test if  $\int new y_{r+1} - old y_{r+1} > \xi$  for all equations yes no

then Gauss-Seidel iteration will result.

These two may be combined to give Successive Over-Relaxation by modifying the same few lines to give

new gt for all equations. Calculate Calculate new g<sub>r+1</sub> for from all and then new y<sub>r+1</sub>  $y_{r+1} = (Y_{r+1} + (wg_{r+1} + (1-w)g'_{r+1})/12)/(1 + \frac{1}{12}h^2f_{r+1})$ equ ations Test if  $| new y_{r+1} - old y_{r+1} \rangle > \varepsilon$  for all equations yes. l no Next' step

However the number of equations considered and the number of iterations involved are small enough for the extra work involved to be not worthwhile. For a large number of coupled equations this approach might be worth considering. The Gauss-Seidel scheme was 54

the one chosen for method C.

Methods B and C were compared by integrating the two coupled equations given by El with

$$\underline{\mathbf{k}} = \begin{bmatrix} 10\\ 1 \end{bmatrix}, \quad \underline{\mathbf{\ell}} = \begin{bmatrix} 4\\ 2 \end{bmatrix}, \quad \underline{\mathbf{V}} = \begin{bmatrix} 0 & 100\\ 100 & 0 \end{bmatrix}$$

over ten points with interval 0.05.

The number of iterations taken per step was output and the following was the result.

## Method B

4 steps with 7 iterations each.6 steps with 6 iterations each.

#### Method C

10 steps with 4 iterations each.

They were also compared by choosing an example with four coupled equations given by

|      | 16 | , <u></u> = | 2 |              | <u>V</u> = | 0 100 100      | 100  |
|------|----|-------------|---|--------------|------------|----------------|------|
| 1e — | 2  |             | 0 | , · <u>▼</u> |            | 1000 0 100     | 100  |
| K II | 2  |             | 2 |              |            | 1000 100 0 :   | 100  |
|      | 2  |             | 4 |              |            | 1000 100 100 : | iooj |

taken over 140 points at interval 0.05.

#### Method B

| 2   | steps | with | 9 | iterations | each. |
|-----|-------|------|---|------------|-------|
| 11  | steps | with | 8 | iterations | each. |
| 27  | steps | with | 7 | iterations | each  |
| 100 | steps | with | 2 | iterations | each. |

| 35  | steps | with | 5 | iterations | each. |
|-----|-------|------|---|------------|-------|
| 5   | steps | with | 4 | iterations | each. |
| 100 | steps | with | 1 | iteration  | each. |

Method

These results show that method C is much more efficient than method B. As well as having less iterations throughout the chosen range method C gives the correct result straight away when the coupling has died away whereas method B will still iterate twice.

We therefore adopt method C and compare it with method A. Three typical cases, with four coupled equations, were taken

$$\underline{k} = \begin{bmatrix} 16 \\ 1.5 \\ 1.5 \\ 1.5 \end{bmatrix}, \quad \underline{k} = \begin{bmatrix} J \\ J-2 \\ J \\ J+2 \end{bmatrix}, \quad J = 0, 2, 8;$$

and  $\underline{V}$  a matrix with elements of the form  $ae^{matrix} - c/r^{0}$  where a, b, c are constants.

In all cases method A took about twelve iterations until the relative error between the matching points of successive iterates was  $10^{-4}$  and the time taken for one column of  $\underline{\propto}$  was approximately two minutes.

The results from method  $\not\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$  are summarised in Table 1 for two choices of initial value  $r_o$ . For all four columns of  $\underline{\propto}$  the the time taken was about two minutes. Thus method C runs four times faster than method A and so method C is used in the following work. As can be seen from Table 1 the average number of iterations was two and this being the case the iterative scheme will probably be better than that of E15 using matrix inversion. However as the number of equations increases the matrix method will become more efficient as the time required to do the house-keeping of the matrices becomes a less proportion of the time required to do the arithmetic operations.

Table 1 also demonstrates the way in which the coupling affects the numerical solution of equations El. It can be seen whether or not the integration has proceeded far enough for the coupling to be considered negligible for, if this is the case, we would expect the number of iterations to be one.

#### Choice of iteps

iteps is a small number representing the relative error between successive iterates of method C.

If it is assumed that we require the solutions of these differential equations correct to four figures in the asymptotic region then we should try to keep six figures in the solution at each step and hence the relative error, iteps =  $5_{10}-7$  is a satisfactory choice in these conditions. This was checked by repeating the calculations with iteps =  $5_{10}-9$  and ascertaining that there was no difference in the final solution. 57

#### Choice of matching points

i.e.

The matching points  $r_a$  and  $r_b$  must be chosen so that substitution into B13 for all equations will give a sensible numerical result for the phase shift. This would not be the case if an unfortunate choice, such as  $r_{b_i} r_{a_i}$  equal to a period of the function  $-\frac{2 \pi}{k_i}$  in the asymptotic region, were made. However there is nothing in the given algorithm which restricts the choice of matching points to be the same for each equation. Thus in each case if  $r_{b_i}$  is fixed then  $r_{a_i}$  may be obtained by subtracting (say)  $\pi_{2k_i}$  from it,

 $r_b$  is taken around that value of r for which the phase shifts had converged in the distorted wave approximation. This only occurs when the potential  $V_{ii}$  has died away and, since the behaviour of  $V_{ij}$  is similar to  $V_{ii}$  this criterion will hold at the same value of r in the coupled case.

 $\mathcal{N}_{b_i} - \mathcal{N}_{a_i} = \frac{11}{2k_i}$ 

#### Choice of matrix 🕰

In most of the cases considered four coupled differential equations require to be solved. Thus  $\Delta$  is a four by four matrix and we make the choice

The rows of this matrix are linearly independent and further they This type of matrix gives a good chance of the are orthogonal. corresponding phase shifts being independent. It is easy to set up a matrix of this form for four equations but for more than four it becomes increasingly more difficult. This difficulty has been overcome by Smith, Henry and Burke (1966) who use the Runge-Kutta method to integrate from  $r_0$  to  $r_0+h$ . This allows an initial matrix  $\underline{\propto}'$  to be chosen with reference to the value of the derivatives af r instead of the function values at r +h. They found in these circumstances that  $\underline{\propto}$  = I (unit matrix) was a satisfactory choice and this reasoning will hold for any number of Knowing the function values at r and r +h allows equations. the recurrence formula to be used immediately.

1

1

E22

We

-1 -1 -1 -1 1 -1

This is a particularly attractive numerical calculation to carry out since one of the quantities which is evaluated is the R matrix which, as mentioned in chapter A, is symmetric. This condition of symmetry is dependent on the physical model, the equations of which we are solving, and has not been assumed at any stage in the calculation. This gives an excellent in-built check on the accuracy of our working. Thus if the symmetry of the R matrix breaks down it is an indication of something going wrong with that calculation and further investigation is necessary.

have come across two cases in which this occurs.

# Symmetry trouble 1

The symmetry of the R matrix breaks down for high values of 1 but the breakdown is much more pronounced for correspondingly low values of k. This situation is a direct result of the different magnitudes of the various solutions which result from the fact that the solutions increase exponentially until  $F_i(r)$ , defined in B2 as

 $f_{1}(\pi)$ 

$$F_{L}(N) = k_{L}^{2} - \frac{l_{L}(l_{L}+1)}{r^{2}}$$

is zero.

Consider the example n = 2,  $k = \begin{bmatrix} 16 \\ 1.5 \end{bmatrix}$ ,  $\ell = \begin{bmatrix} 6 \\ 8 \end{bmatrix}$ 

and  $f_i$  some function which is small compared with  $k^2$  for r > 2 (say).

Then  $F_1(r)$  has a zero about r equal to 2.5 and the corresponding solution u(r) will oscillate for larger r with approximately the same amplitude. But  $F_2(r)$  does not have its zero until about r equal to 7.0 and over the range between 2.5 and 7.0 solution  $u_2(r)$  is increasing exponentially while solution  $u_1(r)$  is oscillating. Thus the oscillatory solution  $u_2(r)$  will have a very much greater amplitude than solution  $u_1(r)$  for r greater than 7.0. In the example quoted solution  $u_1(r)$  had an

E23

amplitude of  $10^{+4}$  while the corresponding value of solution  $u_2(r)$  was  $10^{+10}$ . Thus cancellation will occur when these function values are substituted in a relation such as ElO.

Since solution  $u_2(r)$  is very much greater than solution  $u_1(r)$ over most of the range then, for small r, the coupling of solution  $u_1(r)$  with solution  $u_2(r)$  will be so small that it will have very little effect on the phase shift of solution  $u_2(r)$ . Hence this phase shift will be almost independent of the starting conditions and we will not be able to get linearly independent values of solution  $u_2(r)$ . For this reason values of the phase shifts for each column of  $\underline{\triangleleft}$  were printed out together with the R matrix, showing quite clearly that the breakdown in symmetry of the R matrix occurs when the phase shifts of solution  $u_2(r)$  are very nearly equal.

This type of situation suggests that the initial values  $\underline{\propto}$  should be scaled to compensate for the differing magnitudes. However the following two choices of scaling the columns of  $\underline{\propto}$ ,

$$\begin{bmatrix} 1 \\ 10^{-2} \\ 10^{-3} \\ 10^{-4} \end{bmatrix}, \qquad \begin{bmatrix} b \\ 10^{-10} \\ 10^{-10} \\ 10^{-10} \end{bmatrix}$$

<u>a</u>

were made for a set of four equations and there was no improvement in the symmetry of the R matrix.
The third choice

10<sup>+4</sup>,

<u>c</u>

corresponding to values proportional to  $h^{\perp}$  for h = 0.01 is the most realistic but this gave no improvement over straightforward use of the matrix  $\underline{\alpha}$  given in E22. 62

It was mentioned at the end of chapter C that the initial value  $r_0$  could be chosen in a certain range determined by the constancy of the phase shift. As a means of improving the present situation it is essential that  $r_0$  is taken as large as possible in this range, thus cutting down the range of r for which the solutions are building up exponentially. An illustration of this effect is shown in Table 2.

As  $l_i$  increases the position of the zeros of the functions  $F_i(r)$  increases so it was decided to automatically increase the starting value  $r_0$ .

#### Symmetry Trouble 2

It is of interest to study the effect on the solutions of an increase in the size of the coupling terms. This was done by introducing a parameter  $\lambda_k$  into the right hand side of El6. The equations are now

$$\left[\frac{d^2}{dr^2} + \frac{k_1}{k_1} - \frac{\ell_1(\ell_1+1)}{r^2} - V_{4,1}\right] \mathcal{M}_{4y} = \sum_{\substack{k=1\\k\neq l}}^{M} \lambda_k V_{4k} \mathcal{M}_{ky} = E^{23}$$

As  $\lambda_k$  is increased from its realistic value of unity we find that the symmetry of the R matrix breaks down badly. To investigate this we consider the analytical solution of two

coupled equations for small values of r. The two equations are

E24

$$\left[\frac{d^2}{dr^2} + R_1^2 - F_1\right] u_1 = \lambda_2 F_0.$$

$$\left[\frac{d^2}{dr^2} + k_z^2 - \frac{6}{r^2} - F_z\right] M_z = \lambda_1 F_0 M_z$$

We shall assume  $\frac{1}{F_0}$ ,  $\frac{1}{F_1}$ ,  $\frac{1}{F_2}$  to be small, for small r. Eliminating  $u_2$  from E24 gives  $\left(\left[D^2 + k_2^2 - \frac{6}{A^2} - F_2\right]F_0^{-1}\left[D^2 + k_1^2 - F_1\right] - \lambda_1 \lambda_2 F_0\right)\mathcal{M}_1 = 0$ 

i.e.

$$\begin{bmatrix} D^{2}(F_{0}^{-1}D^{2}) + k_{1}^{2} D^{2}(F_{0}^{-1}) - D^{2}(F_{0}^{-1}F_{1}) - F_{2}F_{0}^{-1}D^{2} \\ + (k_{2}^{2} - \frac{6}{T^{2}})F_{0}^{-1}D^{2} + (k_{2}^{2} - \frac{6}{T^{2}})k_{1}^{2}F_{0}^{-1} - k_{1}^{2}F_{2}F_{0}^{-1} \\ - (k_{2}^{2} - \frac{6}{T^{2}})F_{0}^{-1}F_{1} + F_{2}F_{0}^{-1}F_{1} - \lambda_{1}\lambda_{2}F_{0} \end{bmatrix} \mu_{1} = 0$$

Neglecting terms of the order of  $F^{-1}$  the equation becomes

$$\left[ D^{2} \left( F_{0}^{-1} F_{1} \right) + F_{2} F_{0}^{-1} D^{2} + k_{1}^{2} F_{2} F_{0}^{-1} + \left( k_{2}^{2} - \frac{6}{4} \right) F_{0}^{-1} F_{1} \right] \\ - F_{2} F_{0}^{-1} F_{1} + \lambda_{1} \lambda_{2} F_{0} \right] \mathcal{U}_{1} = 0,$$

In the cases which we are considering  $F_1$  and  $F_2$  depend on two similar functions  $v_0$  and  $v_2$  while  $F_0$  depends only on the function  $v_2$ . Thus we make the substitution

 $F_{1} = \mathcal{N}_{0} + \mathcal{N}_{2},$   $F_{2} = \mathcal{N}_{0} + \mathcal{N}_{2},$   $F_{0} = \mathcal{N}_{2},$ 

and the equation becomes

$$\begin{bmatrix} D^{2}\left(1+\frac{N_{o}}{N_{z}}\right)+\left(1-\frac{N_{o}}{N_{z}}\right)D^{2}+\mathcal{R}_{1}^{2}\left(1+\frac{N_{o}}{N_{z}}\right)\\ +\left(\mathcal{R}_{z}^{2}-\frac{6}{\Lambda^{2}}\right)\left(1+\frac{N_{o}}{N_{z}}\right)-\left(\frac{N_{o}+N_{z}}{N_{z}}\right)^{2}+\lambda_{1}\lambda_{z}N_{z}\end{bmatrix}\mathcal{M}_{1}=$$

or

$$\begin{bmatrix} D^2 + \frac{1}{2} \frac{N_0}{N_2} D^2 + \frac{1}{2} D^2 \begin{pmatrix} N_0 \\ N_2 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} k_1^2 + k_2^2 - \frac{6}{4^2} \end{pmatrix} \\ \times \left(1 + \frac{N_0}{N_2}\right) - \frac{1}{2N_2} \left(\left\{N_0 + N_2\right\}^2 - \lambda_1 \lambda_2 N_2^2\right) \end{bmatrix} M_1 =$$

This analysis shows that the effect of increasing lambda from its realistic value of unity is to reduce the size of the quantity, corresponding to f(r) in B2. Thus the effect of coupling is diminished. This manifests itself in a loss of linear independence of the phase shifts and a corresponding loss of symmetry in the R matrix.

Three numerical examples have been taken to demonstrate this effect, each example with a typical value of f(r).

(a) 
$$\underline{k} = \begin{bmatrix} 16 \\ 1.5 \end{bmatrix}$$
,  $\underline{\ell} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$ 

With this choice of <u>k</u> and <u> $\mathcal{L}$ </u> the zero of the functions f(r) of B2 given in E23 occur at approximately r = 2.5 and 7.0 respectively.

As  $\lambda$  increases these zeros are moved closer to the origin and symmetry breaks down at  $\lambda = 4.5$ .

(b) 
$$\underline{k} = \begin{bmatrix} 80\\ 66 \end{bmatrix}$$
,  $\underline{k} = \begin{bmatrix} 0\\ 2 \end{bmatrix}$ 

In this case the zeros of the functions are much closer to the origin initially than in (a) and symmetry is lost for a lower value of  $\lambda$  , in this case 2.4.

(c) 
$$\underline{\mathbf{k}} = \begin{bmatrix} 80\\ 66 \end{bmatrix}$$
,  $\underline{\mathbf{k}} = \begin{bmatrix} 25\\ 27 \end{bmatrix}$ 

Again the zeros occur at larger values of r than in either (a) or (b) and  $\lambda$  can be increased to 5 before symmetry is lost. The algorithm set up at the beginning of this chapter to solve coupled differential equations requires linearly independent phase shifts to be calculated. This is not possible in the present situation and so the method becomes inaccurate. No way round this difficulty was found but a check on the values of the phase shifts will show whether or not linear independence is being lost.

## Dependence of phase shift on $k^2$

A comparison between the distorted wave approximation and the close coupling approximation will be left until a later chapter. At this stage we investigate a peculiar numerical situation which arises in the close coupling approximation.

Consider the two coupled differential equations

$$\begin{bmatrix} \frac{d^2}{dr^2} + k_1^2 & -V_{11} \end{bmatrix} u_1 = \lambda_2 V_{21} u_2$$

$$\begin{bmatrix} d^2 \\ d_{1^2} + R_z^2 - \frac{6}{r^2} - V_{22} \end{bmatrix} u_2 = \lambda_1 V_{12} u_1$$

E26

E25

DD.

with the usual initial conditions (E2). The algorithm for solving coupled equations makes use of the fact that linearly independent solutions of the above equations can be found. These equations may be represented asymptotically by

$$\begin{split} \mathcal{M}_{11} &= A_{11} \sin \left( -k_{1} \pi + \gamma_{11} \right), \\ \mathcal{M}_{12} &= A_{12} \sin \left( -k_{1} \pi + \gamma_{12} \right), \\ \mathcal{M}_{21} &= A_{21} \sin \left( -k_{2} \pi + \gamma_{21} \right), \end{split} {}^{\text{E27}} \\ \mathcal{M}_{22} &= A_{22} \sin \left( -k_{2} \pi + \gamma_{22} \right). \end{split}$$

The difference between  $\gamma_{11}$  and  $\gamma_{12}$ ,  $\gamma_{21}$  and  $\gamma_{22}$  will give a guide to the strength of linear independence of the phase shifts. These asymptotic solutions are matched in turn to the boundary conditions obtained by permuting the initial channels. i.e.

$$U_{1} \mathcal{N} = \min(-k_{1} \mathcal{N}) + \mathcal{R}_{11} \cos(-k_{1} \mathcal{N}),$$

$$U_{2} \mathcal{N} = -\left(\frac{k_{2}}{k_{1}}\right)^{2} \mathcal{R}_{12} \cos(-k_{2} \mathcal{N}),$$

$$\left(\frac{k_{1}}{k_{2}}\right)^{2} \mathcal{R}_{21} \cos(-k_{1} \mathcal{N}),$$

$$\left(\frac{k_{1}}{k_{2}}\right)^{2} \mathcal{R}_{21} \cos(-k_{1} \mathcal{N}),$$

$$U_{2} \mathcal{N} = \sin(-k_{2} \mathcal{N}) - \mathcal{R}_{22} \cos(-k_{2} \mathcal{N});$$

and

and  $R_{11} = \tan \gamma_1$ ,  $R_{22} = \tan \gamma_2$  where  $\gamma_1$ and  $\gamma_2$  are the required phase shifts of  $U_1$  and  $U_2$ . Taking a linear combination of E27 and matching to E28 gives

$$\begin{split} \mathcal{L}_{1} A_{11} \sin \left( k_{1} \pi + \gamma_{11} \right) + \mathcal{L}_{2} A_{12} \sin \left( k_{1} \pi + \gamma_{12} \right) \\ &= \sin \left( k_{1} \pi \right) + \mathcal{R}_{11} \cos \left( k_{1} \pi \right), \\ \mathcal{L}_{1} A_{21} \sin \left( k_{2} \pi + \gamma_{21} \right) + \mathcal{L}_{2} A_{22} \sin \left( k_{2} \pi + \gamma_{22} \right) \\ &= - \left( k_{2} / k_{1} \right)^{\frac{1}{2}} \mathcal{R}_{21} \cos \left( k_{2} \pi + \gamma_{22} \right) \\ \text{whence, using the substitution} \end{split}$$

$$\begin{split} X &= A_{11} A_{22} \cos \gamma_{11} \cos \gamma_{22} - A_{12} A_{21} \cos \gamma_{21} \cos \gamma_{12}, \\ \text{we obtain} \\ \mathcal{L}_{1} &= A_{22} \cos \gamma_{22} / X, \\ \mathcal{L}_{2} &= -A_{21} \cos \gamma_{21} / X; \\ \mathcal{R}_{11} &= \left( A_{11} A_{22} \sin \gamma_{11} \cos \gamma_{22} - A_{12} A_{21} \sin \gamma_{12} \cos \gamma_{21} \right) / X, \quad \text{E30} \\ \mathcal{R}_{12} &= \left( k_{1} / k_{2} \right)^{\frac{1}{2}} A_{21} A_{22} \sin \left( \gamma_{22} - \gamma_{22} \right) / X; \\ \text{Similarly matching to E30 leads to the equations} \\ \mathcal{R}_{21} &= \left( k_{2} / k_{1} \right)^{\frac{1}{2}} A_{11} A_{12} \sin \left( \gamma_{11} - \gamma_{12} \right) / X. \quad \text{E32} \\ \mathcal{R}_{21} &= \left( k_{2} / k_{1} \right)^{\frac{1}{2}} A_{11} A_{12} \sin \left( \gamma_{11} - \gamma_{12} \right) / X. \end{split}$$

**۲** ۲.

\* 68

۰. ۱

 $\{X\}_{i}$ 

Also since R is symmetric,

.69

We now define a relation between  $k_1$  and  $k_2$  in terms of a variable E, s.t.  $k_1^2 = BO \times E$ ,  $k_2^2 = BO (E - hi)$ ,

where BO and hi are constants.

If E is increased then the phase shifts should change smoothly. For convenience the phase shift is tabulated in the range  $-\pi/2 \langle \gamma_{\langle} \pi/2 \rangle$  and thus there are effective discontinuities when  $\gamma$  passes through a multiple of  $\pi/2$ . This behaviour is observed in the distorted wave approximation obtained by setting  $\lambda_{z}$  equal to zero in E25 and using boundary conditions E28 to give  $\gamma_{i}$  or setting  $\lambda_{i}$  equal to zero in E26 and using boundary condition E29 to give  $\gamma_{z}$ . In the first case  $\gamma_{ii} = \gamma_{iz} = \gamma_{i}$  and E30 simplifies to  $R_{ii} = \pi \alpha_{i} \gamma_{i}$  as expected.

Similarly in the second case  $\gamma_{22} = \gamma_{21} = \gamma_2$  and E32 gives  $R_{22} = \tan \gamma_2$ .

In the following numerical work the parameters taken were

BO = 321.82, hi = 0.045384,

 $V_{11} = BO \times vO$ ,

$$V_{22} = BO \times (vO + \frac{2}{7}v2),$$
  
 $V_{12} = V_{21} = BO \times \frac{1}{\sqrt{5}}v2;$  where

$$v0 = 511.09 \exp(-3.59r) - 5.523 / r^{6},$$
  

$$v2 = 346.66 \exp(-3.779r) - 0.612 / r^{6},$$

and E is varied between 0.05 and 0.25. The graphs of  $\gamma_1$  versus E and  $\gamma_2$  versus E from the distorted wave approximation are plotted as dotted lines in Figs 2A and 2B. The close coupling approximation is used over the same range and we found that at various points throughout the range discontinuities occur, in that the phase shift suddenly jumps by an amount  $\pi$ .

Considering the graph of  $\eta_1$  versus E we find that these discontinuities occur at values of E shown in Table 3. Now on the graph of  $\gamma_2$  versus E,  $\gamma_2$  passes through the value  $\Pi/2$  at exactly the same values of E. The reciprocal process is also true; i.e. there are discontinuities in  $\gamma_2$  at the same values of E that  $\gamma_i$  takes the value  $\pi/2$ . That this should happen numerically can be seen by considering the equations E30 for  $R_{11}$  and  $R_{22}$ . If  $\gamma_2$  passes through the value and E32 1/2 then R<sub>22</sub> will be infinite or, in practice, numerically very The value of X at this point will be zero. large. This has the effect of causing all the R matrix elements to be infinite and  $\eta_{\rm L}$  will take the value  $\Pi/2$  immediately giving rise to a hence

discontinuity of the type shown in Figs 2A and 2B.

However the matrix : T given by

$$T = 2R^{2}(I + R^{2})^{-1} + 2LR(I + R^{2})^{-1},$$

remains finite as all the elements of the R matrix become numerically large and the cross-sections as calculated from A3 vary smoothly as the phase shifts pass through the value  $\pi/2$ . This is shown in Table 4. Thus although the shape of the graph of  $\gamma_1$ versus E looks rather alarming as given by the close coupling approximation, we can integrate with confidence over this region to obtain realistic cross sections.

Program to solve coupled differential equations

Four coupled differential equations of the type

 $\left[\frac{d^2}{dr^2} + k_{\perp}^2 - \frac{l_{\perp}(l_{\perp}+1)}{r^2} - V_{\perp}\right] \mu_{\lambda y} = \sum_{k=1}^{T} \lambda_k V_{\perp k} \mu_{\lambda y}$ A zi

where  $l \leq i \leq 4$ ,  $l \leq j \leq 4$ . are solved subject to the boundary conditions

u<sub>ij</sub> = 0 at ung ~ kir ye (kir) Sig + (kir) Rig kir Me (kir)

<u>1</u> takes the values J, J - 2, J, J + 2, and

$$\bigvee_{ig}^{J} = BO\left[NO(n).\delta_{ig} + f_2(i,g)NZ(n)\right]$$

where  $f_2^J$  is given by formulae in Bernstein et al (1963) and

$$\mathcal{N}\mu(\mathbf{x}) = a\mu e^{-b\mu \mathbf{x}} - c\mu \mathbf{x}_{\mathbf{x}}^{\mu} \mathbf{b} \cdot \mu = 0, 2.$$

The R matrix is calculated and the T matrix, giving the elastic and inelastic cross sections from A3, is found.

<u>Data</u> BO, aO, bO, cO, a2, b2, c2, I<sub>1</sub>, I<sub>2</sub>, I<sub>3</sub>, pl, p2, rO, h, y1,  $k_1^2$ ,  $k_2^2$ ,  $k_3^2$ ,  $k_4^2$ , O, 2,  $\underline{\propto}$  (4 x 4 matrix), initial J = 1, max J, bool, eps, sa, sb, ra, rb, any number of sets of  $\lambda$ ,

999.

The program is designed to be used in conjunction with the program for the distorted wave approximation described in chapter D. The initial parameters are defined there. This latter program contains

iteps,

an automatic test on convergence of the phase shift which indicates if the functions  $V_{\pm\pm}$  are negligible. This evenue at a particular value of r and this is the value of r which is taken to terminate the coupled equations program since, at this point, the coupling will have disappeared which is the criterion required for use of the boundary conditions.

12

As before the values of the potential  $v_0(r)$ ,  $v_2(r)$  are calculated and stored at all the tabular points.

The value of J is stepped by one and rO advanced a small distance each time. From a knowledge of J a matrix F2 is set up consisting of the required values  $f_2^J$  (i,j). The equations are solved over the entire range using consecutive columns of  $\underline{\propto}$  given by E22.

The values of the function at the matching points ra, rb which correspond to tabular points sa, sb are stored.
Matrix operations are used to calculate
(a) the phase shifts for each column of ☆ from a modification of B13,

(b) the matrix <u>c</u> given by

$$\underline{\mathcal{L}} = \left( w^{\&} N^{a} - w^{a} N^{\&} \right)^{T} \left( M^{\&} N^{a} - M^{a} N^{\&} \right)^{T}$$

a formula similar to ElO, and (c) the matrix R from ElO. The T matrix follows from Ell, the real and imaginary parts (TA, TB) being stored separately. These operations are repeated for successive values of J up to J max when the elastic and inclastic cross-sections are calculated from A3. 74

If the boolean marker bool is set equal to <u>true</u> then the various matrices TA, TB, for all values of J, are output onto magnetic tape.

The following matrices are output :matrix of phase shifts, <u>c</u>, R, TA, TB for each value of J and then the value of the elastic cross-section  $(j = 0 \rightarrow j! = 0)$  and the inelastic cross-section  $(j = 0 \rightarrow j! = 2)$ .

# BLOCK DIAGRAM

# CLOSE COUPLING PROGRAM.







L\_\_\_\_\_

J yes

MATRIX OPERATIONS

SET UP MATRICES wa we MaMe Nª N<sup>®</sup> CALC. and PRINT. PHASE SHIFTS FOR EACH COL. OF & CALC. and PRINT CDEFF. MATRIX CALC and PRINT R MATRIX CALC. and PRINT

real T = TA mag.T = TB

### TABLE 1

J value Initial interval 2.

0.01

•

l

### TABLE 2

In a typical case



0.231 \* 0.158 0.203 μw \* 0.123 FIN

TABLE 3

0°073 0 0.107 \* \*

0.068 μω \* 0.054 μω \*  $\eta_{\boldsymbol{z}}(rads)$  $\eta_1(rads)$ E(e.v.)

- discontinuity \*

FIN

\*

FIN

\*

FIN Fre

|         |                         | ·<br>·<br>·    | :                                         |       |       |                     |                                       |                                                                              |        |
|---------|-------------------------|----------------|-------------------------------------------|-------|-------|---------------------|---------------------------------------|------------------------------------------------------------------------------|--------|
|         | -0)<br>107              | 601            | 112<br>114                                | 116   | 118   |                     |                                       |                                                                              | ·      |
|         | ) <b>s</b> (24          | 0<br>0         |                                           | 0°0   | 0.0   | •                   |                                       |                                                                              |        |
| • • •   | <b>☞(0 ᡧ</b> 0<br>0.535 | 0°521          | 0.504<br>0.482                            | 0.457 | 0.430 |                     |                                       |                                                                              | . •    |
|         | R22<br>•0.82            | <b>-</b> 1.90  | -7.34                                     | 356.2 | 7.55  | in A <sup>2</sup> . |                                       |                                                                              |        |
|         | R11                     | 5.62           | <b>3.24</b><br>1.18                       | 21•1  | 3.87  | ss section          | 1<br>                                 |                                                                              | :,<br> |
|         | 7722<br>-1.170          | <b>-1.</b> 299 | <b>-</b> 1 <b>•</b> 425<br><b>-</b> 1•552 | 1.469 | 1°351 | ans and cro         |                                       |                                                                              |        |
|         | 711<br>0.835            | 0°765          | 0.695<br>0.626                            | 0.555 | 0.487 | uift in radi        | · · · · · · · · · · · · · · · · · · · | •<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>• |        |
| TABLE 4 | E(e.v.)<br>0.070        | 170 <b>.</b> 0 | 0.072<br>0.073                            | 0•074 | 0•075 | Phase sh            | ·<br>·<br>·                           |                                                                              |        |
|         |                         | · · ·          |                                           |       |       | ł                   |                                       |                                                                              |        |

Graph of  $\gamma_1$  (rads) versus energy E (e.V.) showing discontinuities at those values of E for which  $\gamma_2 = \frac{1}{2}$ 

2A

GURE

Т

in Fig 2B.



# 

FIGURE 2B

Graph of  $\gamma_2$  (rads) versus energy E (e.V.) showing discontinuities at those values of E for which  $\gamma_1 = \frac{\pi}{2}$ in Fig 2A.



CHAPTER F

### Decaying boundary condition

#### Introduction

If, in equations B2 and B1,  $k^2$  is replaced by  $-k^2$  the equations become

$$\frac{d^2}{dr^2} - k^2 - \frac{l(l+1)}{r^2} - f(r) \bigg] u(r) = 0, \quad \text{F1}$$

75

F2

F3

and, as mentioned in chapter B, the asymptotic form of the solution will be

$$u(r) \sim \Lambda e^{+lcr} + Be^{-lcr}$$

If the boundary conditions

$$u = 0$$
 at  $r = 0$ ,  
 $u \sim e^{-kr}$ ,

are imposed then it is only for certain values of k, the eigenvalues, that a solution of Fl can be obtained. However there is a solution of the equation

$$\left[\frac{d^2}{dx^2} - k^2 - \frac{l(l+1)}{x^2} - f(x)\right] u(x) = g(x), \quad F4$$

which satisfies the boundary conditions F3.

This is given by Mott and Massey (1949) to be : (a)if k is not an eigenvalue,  $\mathcal{U} = \frac{1}{2} \left[ \mathcal{U}_{1} \int g \mathcal{U}_{2} dr - \mathcal{U}_{2} \int g \mathcal{U}_{1} dr \right]$ where u<sub>1</sub> is that solution of Fl such that  $u_1 = 0$  at r = 0, and u<sub>2</sub> that solution of FL such that  $u_2 \sim \frac{1}{k} e^{-kr}$ (b) if k is an eigen value,  $\mathcal{U} = \frac{1}{2} \left[ \mathcal{U}_{1} \int g \mathcal{U}_{2} dr - \mathcal{U}_{2} \right] \mathcal{U}_{1} g dr$ where u<sub>1</sub> is that solution of Fl such that

 $u_1 = 0$  at r = 0,

implying that also  $u_1 \sim e^{-kr}$ , and  $u_2$  that solution of Fl such that

-76

F5

F6:

$$u_2 \sim \frac{1}{k} e^{kr}$$

Description of two coupled equations

We now consider the two coupled differential equations

$$\begin{bmatrix} \frac{d^{2}}{dr^{2}} + k_{1}^{2} & -V_{11} \end{bmatrix} \mathcal{U}_{1} = \lambda_{2} V_{12} \mathcal{U}_{2}, \qquad F7$$

$$\begin{bmatrix} \frac{d^{2}}{dr^{2}} - k_{2}^{2} - \frac{b}{r^{2}} - V_{22} \end{bmatrix} \mathcal{U}_{2} = \lambda_{1} V_{21} \mathcal{U}_{1}, \qquad F8$$

and impose the boundary conditions

$$u_{i} = 0$$
 at  $r = 0$ ,  
 $u_{1} \sim \sin k_{1}r + R \cos k_{1}r$ ,  
 $u_{2} \sim B e^{-kr}$ .

Equation F8 is in the same form as F4 so it will be possible to find solutions of F7 and F8 satisfying F9.

#### Numerical solution

Equation F8 will have asymptotic form F2 but only the decaying exponential is required. This equation is inherently unstable as described in chapter C. Thus forward integration is impossible in this region and we must integrate backwards, in the direction of decreasing r.

Again, for small r, the independent series solutions of F8 are

and

 $\mathcal{U} = \pi^3 \sum_{n} a_n \pi^n$ 

> bmr

and since we want to suppress the second of these, forward integration, in the direction of increasing r, is necessary.

The only choice left is to integrate forwards for small r, integrate backwards for large r, and match the solution in the middle, at some point where neither unwanted solution dominates.

Matching implies the equations

$$u_f = u_b$$
 and  $u_f = u_b^{\dagger}$  at  $r = r_c$ , F10

or  $u_f = u_b$  at  $r = r_c$  and at  $r = r_c + h$ , F11

where the suffix f or b denotes forward or backward integration respectively.

Equation FlO is more suitable for use with the Runge-Kutta method while Fll applies more easily to the recurrence relation. We use Fll.

Burke and Smith (1962) have described a method of solving these equations.

For the forward integration only two conditions,  $u_1 = 0$ ,  $u_2 = 0$ at r = 0, are known so two further values are required to specify the solution. These can be obtained by taking two linearly independent solutions and combining them to give the exact solution. Let these solutions be  $u_{11}^{f}$ ,  $u_{12}^{f}$ ,  $u_{21}^{f}$ ,  $u_{22}^{f}$ , the first index referring to the equation and the second to the choice of initial value. In the asymptotic region the only condition which can be separated out is  $u_2 \sim Be^{-k_2 r}$ . In this case three further conditions are required so three linearly independent solutions must be found. These will be represented by  $u_{ij}^b$ , i = 1, 2; j = 1, 2, 3. A linear combination of these solutions is now matched at the appropriate points, i.e. f f f b b b b

(a) 
$$c_1 u_{11} + c_2 u_{12} = c_3 u_{11} + c_4 u_{12} + c_5 u_{13}$$
  
(b)  $c_1 u_{21}^f + c_2 u_{22}^f = c_3 u_{21}^b + c_4 u_{22}^b + c_5 u_{23}^b$ 

at the point  $r = r_c$ , and two similar equations F12 (c) and (d) at the point  $r = r_c + h$ .

Dividing by  $c_5$  and taking all values of  $c_1$  to left hand side of F12 gives the matrix equation

$$\begin{bmatrix} U^{f}(\Lambda_{c}) & -U(\Lambda_{c}) \\ U^{f}(\Lambda_{c}+h) & -U(\Lambda_{c}+h) \end{bmatrix} \begin{bmatrix} C \\ C \\ U^{f}(\Lambda_{c}+h) \end{bmatrix} = \begin{bmatrix} U^{f}(\Lambda_{c}) \\ U^{f}(\Lambda_{c}+h) \end{bmatrix}$$
where  $U^{f}(r)$  is a (2 x 2) matrix  $u^{f}_{ij}$ ,  
 $U^{b}(r)$  is a (2 x 2) matrix  $u^{b}_{ij}$ ,  
 $U^{b}(r)$  is a (2 x 2) matrix  $u^{b}_{ij}$ ,  
 $U^{b}_{3}(r)$  is a (2 x 1) vector  $u^{b}_{3j}$ ,  $i = 1, 2; j = 1, 2,$   
and  $\underline{C}$  is a (4 x 1) vector  $c_{k}$ ,  $k = 1, 2, 3, 4.$ 

F17

This gives the correct combination of the arbitrary computed solutions required to fit the given boundary conditions. The phase shift can now be found by matching the asymptotic solution of F7,

80

 $u_1 \sim c_3 u_{11}^b + c_4 u_{12}^b + u_{13}^b$ ,

to the corresponding condition F9.

### Choice of matching point

The choice of matching point is not critical for a single equation with a decaying exponential boundary condition since the only requirement is that integration in either direction should not suffer unduly through unstable accumulation of error (Mayers 1962). In practice we choose the value of r for which  $V_{22}$ , given in equation T8, is a minimum.

#### Forward integration

There is no problem with the forward integration. We choose the matrix  $\begin{bmatrix} 1 & 1 \\ +1 & -1 \end{bmatrix}$  as values at the second tabular point and integrate as in chapter E out to the matching point  $r_{c} + h$ .

#### Backward integration

The situation in the asymptotic region is not so straightforward. If the backward integration is started far out at some point  $r_r$  and initial conditions

$$u_1(r_f) = 0(1),$$
  
 $u_2(r_f) = 0(1),$ 

are taken, where 0(1) represents some quantity of the order of one, then the second solution will increase very rapidly with respect to the first, until the effect of the coupling term on the right hand side of F7 will dominate the equation and the true solution will be lost.

On the other hand, if initial conditions .

$$u_{1}(r_{f}) = U(1),$$
  
 $u_{2}(r_{f}) = U(1)$ 

are taken, then the magnitude of the coupling on the right hand side of F8 would swamp the correct solution. This difficulty can be overcome if the backward integration is divided into two parts.

First equation F7 is integrated, by itself, backwards from  $r_f$  to some point  $r_e$  where we might reasonably expect the numerical value of the solution of F8 to be significant.

Then the coupled equations F7 and F8 are integrated backwards

F15

from  $r_e$  to the matching point  $r_c$ . A suitable choice of  $r_e$ will avoid the severe cancellation which occurs in situations defined by asymptotic conditions Fl4 and Fl5. To keep a check on this the values of both sides of Fl2 were printed out. An example is given which demonstrates the effect of the choice of  $r_e$ .

Equations F7 and F8 were solved using

r<sub>c</sub> '

i.e.

| 2 = | 16.091 |
|-----|--------|
|     | 1.609  |

and the matrix V was taken as in the example at the end of chapter  $E_{\bullet}$ 

The function  $V_{22}$  has a minimum about r = 3.8 and the matching points were chosen to be 4.01 and 4.11. The results, summarized in Table 5, were used to find a criterion for the choice of  $r_e$ . This is essential if a program is to be written with automatic calculation of  $r_e$ .

Table 5 shows that the phase shift  $\gamma_1 = \tan^{-1}(R)$  is very insensitive to the value of  $r_e$  although accuracy is lost as  $r_e$  increases. If we assume that the decaying exponential behaviour begins around the point  $r_c$ , an estimate of the value of  $r_e$  can be obtained by taking a value of r for which the quantity e has fallen off by some factor (say p) from its value at the point

 $\frac{e^{-k}2^{r}c}{e^{-k}2^{r}e}$ 

where  $P = \log_{\Theta} p$ .

i.e.

Using the values, from Table 5, of  $r_e = 8.01$  and  $r_c = 4.01$ gives P - 5, so the criterion used in the program was

 $r_{e} - r_{c} < 5.0/k_{2}$ .

i ko

 $\mathbf{P}$ 

This was found to be satisfactory over most of the range  $0 < k_1^2 < 16$ ,  $16 > k_2^2 > 0$ , although the accuracy diminished for very small values of  $k_1^2$ .

Description of program

Two coupled differential equations of the form

$$\begin{bmatrix} \frac{d^{2}}{dr^{2}} + k_{1}^{2} & -V_{11} \end{bmatrix} \mathcal{U}_{1} = \lambda_{2} V_{12} \mathcal{U}_{2}$$
$$\begin{bmatrix} \frac{d^{2}}{dr^{2}} - k_{2}^{2} & -\frac{b}{r^{2}} - V_{22} \end{bmatrix} \mathcal{U}_{2} = \lambda_{1} V_{21} \mathcal{U}_{1}$$

are solved, subject to the boundary conditions

$$u_i = 0$$
 at  $r = r_0$ ;  $i = 1, 2,$   
 $u_1 \sim sin k_1 r + R cos k_1 r,$   
 $u_2 \sim B e^{-kr}.$ 

 $V_{ij}$  is the same as in previous programs. The program calculates and prints the value of R.

| Data                                                       |                                       |
|------------------------------------------------------------|---------------------------------------|
| BO, hi,                                                    |                                       |
| a0, b0, c0, a2, b2, c2,                                    |                                       |
| I <sub>1</sub> , I <sub>2</sub> , I <sub>3</sub> , pl, p≥, |                                       |
| r0, h, y1,                                                 |                                       |
| 0, 2, $\alpha$ (2 x 2 matrix),                             | $\underline{\propto}$ (3 x 3 matrix), |
| initial J-1 (set equal to -1 in th                         | is case),                             |
| J max (set equal to 0),                                    |                                       |
| $\lambda_1, \lambda_2,$ el, e2, e3.                        |                                       |
| $k_1^2$ is given by BO x e while                           |                                       |
| $k_2^2$ is given by BO (e - hi),                           |                                       |
| where e takes values el (o2) e3.                           |                                       |
| The matching points are chosen to be t                     | he tabular points given by            |
| $I_1 + I_2$ and $I_1 + I_2 + 1$ .                          |                                       |
| The two equations are integrated forwa:                    | rds to this point, using the          |
| matrix 🕰 as initial values.                                |                                       |
| The first equation is integrated backwa                    | ards from tabular point               |
| $I_1 + I_2 + I_3 + 1$ to the point $r_e$ det               | fined by criterion Fl6. Now           |
| the coupled equations are integrated be                    | ackwards to the matching points       |
| where the forward and backward solution                    | ns are matched. The vector            |
| of coefficients $\underline{C}$ is calculated and,         | to keep a check on the acc-           |
| uracy of the matching the left hand sid                    | le and the right hand side of         |
| equation F12 are printed.                                  |                                       |

٩,

Finally the phase shift  $\gamma$  given by arotan (R) is evaluated from boundary condition for  $u_1$  at the tabular points given by  $I_1 + I_2 + I_3$  and  $I_1 + I_2 + I_3 + 1$ .
0.095 0.095 0.095 ξ L.H.S F12(d) -1.7536 -1.6443 -1.6545 R.H.S F12(d) -1.6442 -1.6446 -1.6476 L.H.S F12(b) -1.9066 **-**1。8976 -1.9932 R.H.S F12(b) -1.8976 -1.8981 . -1.9015 TABLE 5 10.01 12.01 8.01 ь в

CHAPTER G

Derivation of radial equations

The formalism of Arthurs and Dalgarno (1960) is used to consider rotational excitation of a diatomic molecule by an incident point particle. The model which is taken to represent the molecule is that of a rigid rotator.

Let  $\hat{\Lambda} \equiv (\theta, \phi)$  specify the direction of motion of the incident particle, distant r from the centre of mass of the rotator, and let  $\hat{\Lambda}' \equiv (\theta', \phi')$  specify the orientation of the internuclear axis with respect to some axis fixed in space.

The Hamiltonian for the entire system is

$$H = H_{rot} - \frac{\hbar^2}{2\mu} \nabla_r^2 + V(\Lambda, \theta - \theta')$$

where  $-\frac{1}{2\mu}\nabla_{x}^{2}$  is the kinetic energy operator for the scattered particle,  $H_{rot}$  is the Hamiltonian for a free rotator in space and  $\bigvee(\chi, \theta \cdot \theta')$  is the interaction potential of the colliding systems. The wave functions describing the rotational states of the molecule are the spherical harmonics  $\bigvee_{\chi} m_{\chi}(\hat{\mathcal{L}}')$ defined in Condon and Shortley (1935), which satisfy

 $H_{rot} Y_{ym_y}(\hat{x}') = \frac{\hbar}{2I} Y(y+1) Y_{ym_y}(\hat{x}'),$ G2

G1

where I is the moment of inertia of the rotator,  $j \not k$  is its rotational angular momentum and  $m_j \not k$  its projection on the 'z axis. Let  $\underline{l} \not k$  be the orbital angular momentum of the incident particle,  $m_l \not k$  its projection and consider the wave function defined by

$$Y_{3}^{M}(\hat{x},\hat{x}') = \sum_{m_{e}} \sum_{m_{g}} (\gamma \ell m_{g} m_{e} | \gamma \ell J M) Y_{\ell m_{e}}(\hat{x}) Y_{gm_{g}}(\hat{x}'), \quad G3$$

where  $(j \boldsymbol{\ell} m_j m_j | j \boldsymbol{\ell} J M)$  is the Clebsch-Gordan coefficient.  $\mathcal{Y}_{J \mathcal{I}}^{\mathsf{M}}(\hat{\mathcal{L}}, \hat{\mathcal{L}}')$  describes a system of total angular momentum  $J \mathcal{L}$ and projection M  $\hbar$ , where

$$\underline{\mathbf{J}} = \underline{\mathbf{j}} + \underline{\mathbf{k}},$$

and it includes the entire angular dependence of the incident part-

If E is the kinetic energy of the incident particle, measured in the centre of mass system, the total energy of the system, when the rotator is in the state specified by rotational quantum number j, is given by

$$E_{\chi} = E + \frac{\hbar^2}{2T} \chi(\chi+1).$$
 64

Eigenfunctions of H, corresponding to total angular momentum quantum numbers J and M and appropriate to the entrance channel defined by quantum numbers (j, l) may be expanded in terms of  $Y_{5\chi\ell}^{M}(\hat{\mathcal{L}},\hat{\mathcal{L}})$ 

as

88

G8

G9

$$k_{y'y}^2 = \frac{2\mu}{\hbar^2} \left[ E_y - \frac{\hbar^2}{2I} y'(y'+1) \right]$$

and

$$\langle y'e'; J | y''e''; J \rangle = \int y_{J'e'}^{M *} \vee y_{J'e''}^{M} d\hat{x} d\hat{r}'$$

The scattering matrix  $S^{J}(j2; j!2!)$  is defined by the requirement that asymptotically

 $\mathcal{U}_{\lambda'e'}^{\mathcal{T}}(\pi) \sim S_{\lambda\lambda'}S_{ee'} exp\left[-\iota\left(k_{\lambda\lambda'} - \frac{1}{2}e\pi\right)\right]$  $-\left(\frac{k_{yy}}{k_{y'y}}\right)^{\frac{1}{2}}S^{5}(yl;j'l')exp\left[+\iota(k_{j'y}\pi-\frac{1}{2}l'T)\right].$ Gl(

# Derivation of cross section

Total wave functions  $\chi_{\chi}(\Lambda, \Lambda, \Lambda')$ , having the asymptotic form of a plane wave multiplying the initial target wave function plus a linear combination of products of outgoing waves and final target wave functions, are defined by Blatt and Biedenharn (1952) to be

$$\overline{\Psi}_{g}\left(\overline{x}, \hat{\underline{x}}, \hat{\underline{x}}'\right) = \frac{\mathcal{L}(TT)^{\frac{1}{2}}}{\mathcal{R}_{gg}} \sum_{J=0}^{\infty} \sum_{M=-J}^{J=J} \sum_{\ell=1J-g_{1}}^{J+g} \mathcal{L}^{\ell} \left(2\ell+1\right)^{\frac{1}{2}}$$
$$\times \left(g\ell m_{g} 0 | g\ell J m\right) \overline{\Psi}_{g\ell}\left(\underline{x}, \hat{\underline{x}}'\right).$$

G11

Equation Gll has asymptotic form

$$\begin{split} \underbrace{\Psi_{g}}(x, \hat{x}, \hat{x}') &\sim exp\left(\iota \stackrel{k}{\underset{y}{k}}, \underline{x}'\right) \bigvee_{y m_{y}}(\hat{x}') \\ &+ \sum_{y'} \frac{i}{\underset{k_{y}}{k_{y}}} \left(\frac{k}{\underset{k_{y'}}{k_{y'}}}\right)^{\frac{1}{2}} \pi^{-1} exp\left(i \stackrel{k}{\underset{y'}{k_{y'}}}\pi\right) \\ &\times \sum_{m_{y'}} \mathcal{Q}\left(\frac{1}{y'm_{y'}}, \frac{1}{y'm_{y}}\right) \bigvee_{y'm_{y'}}(\hat{x}'), \quad \text{G12} \end{split}$$
where  $q\left(j^{\dagger}m_{j'}; jm_{j}\right)$  is the reaction amplitude given by
$$\begin{aligned} \mathcal{Q}\left(\frac{1}{y'm_{y'}}, \frac{1}{y}m_{y}\right) &= \sum_{\mathcal{T}} \sum_{M} \sum_{\mathcal{L}} \sum_{\mathcal{L}'} \sum_{m_{\mathcal{L}'}} i^{\mathcal{L}-\mathcal{L}'} TT^{\frac{1}{2}}\left(2\mathcal{L}+1\right)^{\frac{1}{2}} \\ &\times \left[\frac{1}{y\mathcal{L}m_{y}}\rho|_{y\mathcal{L}\mathcal{T}M}\right]\left(\frac{1}{y'\mathcal{L}'m_{y'}m_{y'}}\frac{1}{y'\mathcal{L}'\mathcal{D}}\right)T^{\frac{1}{2}}\left(\frac{1}{y\mathcal{L}}\frac{1}{y'\mathcal{L}}\right) \bigvee_{\mathcal{L}'m_{y'}}(\hat{x}), \quad \text{G13} \end{aligned}$$

$$\underbrace{T^{J}(j\mathcal{L}; j'\mathcal{L}')}_{\text{being an element of the transition matrix defined by}$$

$$T^{J}(\chi \ell; \chi' \ell') = S_{\chi \chi'} S_{\ell \ell'} - S^{J}(\chi \ell; \chi' \ell'). \qquad G14$$

The differential scattering cross section for excitation from the  $(j, m_j)$  state of the rotator to the  $(j', m_j)$  state is given by

$$d\sigma(j'm_{j};jm_{j}|\hat{x}) = \frac{1}{k_{ss}^{2}} \left| q(j'm_{j};jm_{s}) \right|^{2} d\hat{x} \qquad G15$$

Since most scattering experiments do not distinguish between the

different states  $m_j$  or  $m_j$ , of the rotator, we average over the  $m_j$  and sum over the  $m_j$ , to give  $d\sigma(j'; j \mid \underline{\hat{r}})$ , the differential scattering cross section for the j - j' transition.

From equations G12, G13, G15 and by making use of the algebra of the Clebsch-Gordan and Racah coefficients (Biedenharn, Blatt and Rose 1952, Racah 1942) the following equation for the differential scattering cross section was obtained,

$$\frac{d\sigma(s';y|\hat{x})}{d\hat{x}} = \frac{(-1)^{\delta-\delta'}}{4(2j+1)k_{\delta y}^2} \sum_{\lambda=0}^{\infty} A_{\lambda} P_{\lambda}\left(\hat{k}_{\delta y}, \hat{k}_{\delta y}\right), \quad G16$$

and

where  $P_{\lambda}$  is the Legendre polynomial of order  $\lambda$ 

$$A_{\lambda} = \sum_{J_{1}:0}^{\infty} \sum_{J_{2}:0}^{\infty} \sum_{\ell_{1}:|J_{1}-\lambda|}^{J_{1}+\lambda} \sum_{\ell_{2}:|J_{2}-\lambda|}^{J_{1}+\lambda'} \sum_{\ell_{2}:|J_{2}-\lambda|}^{J_{2}+\lambda'} Z\left(\ell_{1}J_{1}\ell_{2}J_{2},\lambda\right)$$

$$X = \left(\ell_{1}'J_{1}\ell_{2}'J_{2},\lambda\right) \left(\ell_{1}'J_{1}J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'J_{2}'$$

where

$$Z(abcd;ef) = (-1)^{\frac{1}{2}(f-a+c)} [(2a+i)(2b+i)(2c+i)(2d+i)]^{\frac{1}{2}}$$
  
× (acoo|acfo) W(abcd;ef). G18

The total cross section for the j - j' transition takes the form

$$\sigma(\{\gamma'; \}) = \frac{1}{(2\gamma+1)} \left[ \frac{1}{k_{j}} \sum_{\tau=0}^{\infty} \sum_{\ell=|\tau-j|}^{\tau+j} \sum_{\ell'=|\tau-j'|}^{\tau+j} (2\tau+1) \left[ T^{\sigma}(\{\gamma', \gamma', \ell\}) \right]^{2}$$
G19

Distorted wave approximation

If the coupling terms in G7 are ignored there results the set of uncoupled equations

$$\left[\frac{d^{2}}{dr^{2}} + k_{\xi\xi}^{2} - \frac{l'(l'+1)}{r^{2}} - \frac{2\mu}{k^{2}} \left\langle \xi'l'; 5|V|\xi'l'; 5\right\rangle \right] \mu_{\xi'l'}^{5\ell}(r) = 0. G20$$

Defining  $\mathcal{M}_{\mathfrak{z}'\mathfrak{L}'}^{\mathfrak{z}\mathfrak{L}}(\mathfrak{A})$  to be that solution of G20 which behaves asymptotically as

$$w_{s'e'}^{s}(r) \sim sin\left(k_{s's}r - \frac{1}{2}l'T + \gamma_{s'e'}^{s}\right), G2$$

G22

where  $\gamma_{z'z'}$  is a real phase shift, the equation

$$u_{s'e'}(r) = S_{ss'}S_{ee'} u_{se}^{sse}(r)$$

is taken as the zero order approximation in an iteration procedure. The first order approximation is then those equations discussed in chapter D, the results of which are, changing the notation,

$$S^{5}(\chi e; \chi e) = exp(zi\eta_{\delta' e'}^{5\chi}), \qquad G23$$

$$S^{5}(\chi e; \chi' e') = 2i\left(\frac{k_{\delta'}}{k_{\delta'}}\right)^{\frac{1}{2}}\beta_{\delta' e'}^{5\delta e} exp[\lambda(\eta_{\delta e}^{5\chi} + \eta_{\delta' e'}^{5\chi})], \qquad G24$$

where

$$\beta_{3'e'}^{\text{se}} = \frac{2\mu}{k_{3's}^{\text{h}^2}} \int \frac{w_{3'e'}^{\text{se}}(r) \langle y'e'; 5| V| ye; 5 \rangle w_{3'e}^{\text{se}}(r) dr}{\delta_{3'e'}(r) \langle y'e'; 5| V| ye; 5 \rangle w_{3'e'}^{\text{se}}(r) dr} \text{ G25}$$

The elastic cross section becomes, in this approximation,

$$\begin{aligned}
\mathcal{O}(\{Y\}) &= \frac{TT}{(2\gamma+1) \int_{\mathbb{R}^{2}}^{2} \sqrt{2} \int_{\mathbb{R}^{2}}^{\infty} (25+1) \left[ \sum_{\ell} \sin^{2}(\eta^{T}) + \sum_{\ell} \sum_{\ell' \in \mathcal{L}'}^{\ell'} (\beta^{T}) + \sum_{\ell' \in \mathcal{L}'}^{\ell'}$$

while the inelastic cross section yields

G26

G28

The distorted wave approximation violates the conservation requirement as expressed in the unitarity of the scattering matrix,

$$\sum_{y'e'} \left| S^{5}(ye;y'e') \right|^{2} = 1$$

Now from G23, G24, G25,

$$\sum_{\substack{\lambda' \ell'}} \left| S^{\mathcal{T}}(\chi \ell; \chi' \ell') \right|^2 = 1 + \sum_{\substack{\lambda' \ell'}} \frac{\mathcal{R}_{\lambda' \lambda}}{\mathcal{R}_{\lambda' \lambda'}} \left( 2 \beta_{\lambda' \ell'}^{\mathcal{T} \lambda} \right)^2, \quad G29$$

so the distorted wave weak coupling approximation is only useful when

$$\Delta_{g'}^{\mathbf{x}\ell} = \sum_{\substack{g'\ell'\\g'\ell'}} \frac{k_{g'g}}{k_{gg}} \left( 2 \beta_{g'\ell'}^{\mathbf{x}\ell} \right)^2, \qquad G30$$

is small compared with unity.

When it is not small, violation of the conservation requirement can be avoided by the introduction of a reactance matrix or phase matrix (Percival 1960, Seaton 1961). Another method of approach, used by Berstein et al (1963), is to renormalise the matrix elements by multiplying them by a correcting factor

$$C_{2\beta\beta}^{\beta,i} = \left(1 + \nabla_{2\beta\beta}^{\beta,i}\right)_{2}^{j}$$

However, for practical computations, the quantity  $\Delta_{\chi}$  is tested and when it becomes too large compared with unity, greater than 0.5 (say), the distorted wave approximation is no longer used. This is the criterion adopted by Roberts (1963) and Dalgarno, Henry and Roberts (1966) in their calculations using the distorted wave approximation.

### Close coupling approximation

If none of the coupling terms in G7 are ignored then no analytical solution of these equations can be found so it is necessary to proceed numerically as in chapter E.

The asymptotic condition

$$\mathcal{U}_{s'e'}^{\mathcal{T}se} \sim S_{ee'}S_{ss'} \sin\left(\frac{k_{ss'} - \frac{1}{2}\ell\pi}{+ \left(\frac{-k_{ss'}}{k_{s's}}\right)^{\frac{1}{2}} \mathbb{R}^{\mathcal{T}}(sl;j'l') \cos\left(\frac{k_{ss'} - \frac{1}{2}\ell'\pi}{+ \left(\frac{-k_{ss'}}{k_{s's}}\right)^{\frac{1}{2}} \mathbb{R}^{\mathcal{T}}(sl;j'l') \cos\left(\frac{k_{ss'} - \frac{1}{2}\ell'\pi}{+ \frac{1}{2}\ell'\pi}\right), \quad G32$$

leads to a relation between the R and S matrices given by

$$S = (I - \lambda R)^{-1} (I + \lambda R).$$
 G33

The elements  $T^{J}(j\ell; j!\ell!)$ , may be found and hence the cross sections may be calculated from G19.

G7 consist of an infinite set of coupled differential Equations Practically we can only take the summation over a few equations. of the possible states. Thus the close coupling approximation ignores coupling to any higher levels than the ones under consideration.

Expansion of potential function

The potential 
$$\bigvee(\pi, 9-9')$$

of Legendre polynomials,

 $\vee (\pi, \theta - \theta') = \sum_{\mu} \mathcal{N}_{\mu}(\pi) \mathcal{P}_{\mu}(\hat{x}, \hat{x}')$ 

may be expanded in a series

G34

The matrix elements defined in G9 then involve terms such as

$$\left\{ \begin{array}{l} \left\{ \left\{ \left\{ {{x'e'; 5}} \right\} \right\}_{\mu} \left( {\hat x}.{\hat x'} \right) \right| \left\{ {{x'e'; 5}} \right\} \\ = \int \left\{ \begin{array}{l} \left\{ {{y'e'; 5}} \right\}_{\mu} \left( {\hat x}.{\hat x'} \right) \right\}_{\mu} \left( {\hat x}.{\hat x'} \right) \left\{ {{y'e'; 6}} \right\}_{\mu} \left( {\hat x}.{\hat x'} \right) \left\{ {{y'e'; 6}} \right\}_{\mu} \left( {\hat x}.{\hat x'} \right) \left\{ {{y'e'; 6}} \right\}_{\mu} \left( {\hat x}.{\hat x'} \right) \left\{ {{y'e'; 6}} \right\}_{\mu} \left( {\hat x}.{\hat x'} \right) \left\{ {{y'e'; 6}} \right\}_{\mu} \left( {\hat x}.{\hat x'} \right) \left\{ {{y'e'; 6}} \right\}_{\mu} \left( {\hat x}.{\hat x'} \right) \left\{ {{y'e'; 6}} \right\}_{\mu} \left( {\hat x}.{\hat x'} \right) \left\{ {{y'e'; 6}} \right\}_{\mu} \left( {\hat x}.{\hat x'} \right) \left\{ {{y'e'; 6}} \right\}_{\mu} \left( {\hat x}.{\hat x'} \right) \left\{ {{y'e'; 6}} \right\}_{\mu} \left( {\hat x}.{\hat x'} \right) \left\{ {{y'e'; 6}} \right\}_{\mu} \left( {\hat x}.{\hat x'} \right) \left\{ {{y'e'; 6}} \right\}_{\mu} \left( {\hat x}.{\hat x'} \right) \left\{ {{y'e'; 6}} \right\}_{\mu} \left( {\hat x}.{\hat x'} \right) \left\{ {{y'e'; 6}} \right\}_{\mu} \left( {\hat x}.{\hat x'} \right) \left\{ {{y'e'; 6}} \right\}_{\mu} \left( {\hat x}.{\hat x'} \right) \left\{ {{y'e'; 6}} \right\}_{\mu} \left( {\hat x}.{\hat x'} \right) \left\{ {{y'e'; 6}} \right\}_{\mu} \left( {\hat x}.{\hat x'} \right) \left\{ {{y'e'; 6}} \right\}_{\mu} \left( {\hat x}.{\hat x'} \right) \left\{ {{y'e'; 6}} \right\}_{\mu} \left( {\hat x}.{\hat x'} \right) \left\{ {{y'e'; 6}} \right\}_{\mu} \left( {\hat x}.{\hat x'} \right) \left\{ {{y'e'; 6}} \right\}_{\mu} \left( {\hat x}.{\hat x'} \right) \left\{ {{y'e'; 6}} \right\}_{\mu} \left( {\hat x}.{\hat x'} \right) \left\{ {{y'e'; 6}} \right\}_{\mu} \left( {\hat x}.{\hat x'} \right) \left\{ {{y'e'; 6}} \right\}_{\mu} \left( {\hat x}.{\hat x'} \right) \left\{ {{y'e'; 6}} \right\}_{\mu} \left( {\hat x}.{\hat x'} \right) \left\{ {{y'e'; 6}} \right\}_{\mu} \left( {\hat x}.{\hat x'} \right) \left\{ {{y'e'; 6}} \right\}_{\mu} \left( {\hat x}.{\hat x'} \right) \left\{ {{y'e'; 6}} \right\}_{\mu} \left( {\hat x}.{\hat x'} \right) \left\{ {{y'e'; 6}} \right\}_{\mu} \left( {\hat x}.{\hat x'} \right) \left\{ {{y'e'; 6}} \right\}_{\mu} \left( {\hat x}.{\hat x'} \right) \left\{ {{y'e'; 6}} \right\}_{\mu} \left( {\hat x}.{\hat x'} \right) \left\{ {{y'e'; 6}} \right\}_{\mu} \left( {\hat x}.{\hat x'} \right) \left\{ {{y'e'; 6}} \right\}_{\mu} \left( {\hat x}.{\hat x'} \right) \left\{ {{y'e'; 6}} \right\}_{\mu} \left( {\hat x}.{\hat x'} \right) \left\{ {y'e'; 6} \right\}_{\mu} \left( {\hat x}.{\hat x'} \right) \left\{ {y'e'; 6} \right\}_{\mu} \left( {\hat x}.{\hat x'} \right) \left\{ {y'e'; 6} \right\}_{\mu} \left( {\hat x}.{\hat x'} \right) \left\{ {y'e'; 6} \right\}_{\mu} \left( {\hat x}.{\hat x'} \right) \left\{ {y'e'; 6} \right\}_{\mu} \left( {\hat x}.{\hat x'} \right) \left\{ {y'e'; 6} \right\}_{\mu} \left( {\hat x}.{\hat x'} \right) \left\{ {y'e'; 6} \right\}_{\mu} \left( {\hat x}.{\hat x'} \right) \left\{ {y'e'; 6} \right\}_{\mu} \left( {\hat x}.{\hat x'} \right) \left\{ {y'e'; 6} \right\}_{\mu} \left( {\hat x}.{\hat x'} \right) \left\{ {y'e'; 6} \right\}_{\mu} \left( {\hat x}.{\hat x'} \right) \left\{ {y'e'; 6} \right\}_{\mu} \left( {\hat x}.{\hat x'} \right) \left\{ {y'e'; 6} \right\}_{\mu} \left( {\hat x}.{\hat x'} \right) \left\{ {y'e'; 6} \right\}_{\mu} \left$$

Substituting equation G3 and using the expansion

gives rise to the integrals evaluated by Rose (1957),

$$= \left[ \frac{\chi_{l_{3}m_{3}}(\hat{x})}{(2l_{1}+1)(2l_{2}+1)} \right]^{\frac{1}{2}} (l_{1}, l_{2}, m_{1}(\hat{x})) d\hat{x} \\ = \left[ \frac{(2l_{1}+1)(2l_{2}+1)}{(4\pi)(2l_{3}+1)} \right]^{\frac{1}{2}} (l_{1}, l_{2}, 0) (l_{1}, l_{2}, m_{1}, m_{2}) (l_{1}, l_{2}, m_{3}) d\hat{x} \\ = \left[ \frac{(2l_{1}+1)(2l_{2}+1)}{(2l_{3}+1)} \right]^{\frac{1}{2}} (l_{1}, l_{2}, 0) (l_{1}, l_{2}, m_{1}, m_{2}) (l_{1}, l_{2}, m_{3}) d\hat{x} \\ = \left[ \frac{(2l_{1}+1)(2l_{2}+1)}{(2l_{3}+1)} \right]^{\frac{1}{2}} (l_{1}, l_{2}, 0) (l_{1}, l_{2}, m_{1}, m_{2}) (l_{1}, l_{2}, m_{3}) d\hat{x} \\ = \left[ \frac{(2l_{1}+1)(2l_{2}+1)}{(2l_{3}+1)} \right]^{\frac{1}{2}} (l_{1}, l_{2}, 0) (l_{1}, l_{2}, l_{3}, 0) (l_{1}, l_{2}, m_{1}, m_{2}) (l_{1}, l_{2}, m_{3}) d\hat{x} \\ = \left[ \frac{(2l_{1}+1)(2l_{2}+1)}{(2l_{3}+1)} \right]^{\frac{1}{2}} (l_{1}, l_{2}, 0) (l_{1}, l_{2}, m_{1}, m_{2}) (l_{1}, l_{2}, m_{3}) d\hat{x} \\ = \left[ \frac{(2l_{1}+1)(2l_{2}+1)}{(2l_{3}+1)} \right]^{\frac{1}{2}} (l_{1}, l_{2}, 0) (l_{1}, l_{2}, m_{3}, m_{3}) d\hat{x} \\ = \left[ \frac{(2l_{1}+1)(2l_{3}+1)}{(2l_{3}+1)} \right]^{\frac{1}{2}} (l_{1}, l_{2}, 0) (l_{1}, l_{2}, m_{3}, m_{3}) d\hat{x} \\ = \left[ \frac{(2l_{1}+1)(2l_{3}+1)}{(2l_{3}+1)} \right]^{\frac{1}{2}} (l_{1}, l_{2}, m_{3}, m_{3}) d\hat{x} \\ = \left[ \frac{(2l_{1}+1)(2l_{3}+1)}{(2l_{3}+1)} \right]^{\frac{1}{2}} (l_{1}, l_{2}, m_{3}, m_{3}) d\hat{x} \\ = \left[ \frac{(2l_{1}+1)(2l_{3}+1)}{(2l_{3}+1)} \right]^{\frac{1}{2}} (l_{1}, l_{2}, m_{3}, m_{3}) d\hat{x} \\ = \left[ \frac{(2l_{1}+1)(2l_{3}+1)}{(2l_{3}+1)} \right]^{\frac{1}{2}} (l_{1}, l_{2}, m_{3}, m_{3}) d\hat{x} \\ = \left[ \frac{(2l_{1}+1)(2l_{3}+1)}{(2l_{3}+1)} \right]^{\frac{1}{2}} (l_{1}, l_{2}, m_{3}, m_{3}) d\hat{x} \\ = \left[ \frac{(2l_{1}+1)(2l_{3}+1)}{(2l_{3}+1)} \right]^{\frac{1}{2}} (l_{1}, l_{2}, m_{3}, m_{3}) d\hat{x} \\ = \left[ \frac{(2l_{1}+1)(2l_{3}+1)}{(2l_{3}+1)} \right]^{\frac{1}{2}} (l_{1}, l_{2}, m_{3}, m_{3}) d\hat{x} \\ = \left[ \frac{(2l_{1}+1)(2l_{3}+1)}{(2l_{3}+1)} \right]^{\frac{1}{2}} (l_{1}, l_{2}, m_{3}, m_{3}) d\hat{x} \\ = \left[ \frac{(2l_{1}+1)(2l_{3}+1)}{(2l_{3}+1)} \right]^{\frac{1}{2}} (l_{1}, l_{2}, m_{3}, m_{3}) d\hat{x} \\ = \left[ \frac{(2l_{1}+1)(2l_{3}+1)}{(2l_{3}+1)} \right]^{\frac{1}{2}} (l_{1}, l_{2}, m_{3}, m_{3}) d\hat{x} \\ = \left[ \frac{(2l_{1}+1)(2l_{3}+1)}{(2l_{3}+1)} \right]^{\frac{1}{2}} (l_{1}, l_{2}, m_{3}, m_{3}) d\hat{x} \\ = \left[ \frac{(2l_{1}+1)(2l_{3}+1)}{(2l_{3}+1)}$$

i.e.

$$\left\{ \chi^{\prime} \ell^{\prime}_{;;;5} \middle| \mathcal{P}_{\mu}(\hat{\mathcal{I}}, \hat{\mathcal{I}}^{\prime}_{;}) \middle| \chi^{"} \ell^{"}_{;;5} \right\} = \left[ (2\ell^{\prime} + 1)(2\ell^{"} + 1)(2\chi^{\prime} + 1)(2\chi^{'} + 1) \right]^{2} \\ \times (\ell^{"}_{;} \ell^{'}_{;00}) \ell^{"}_{;} \ell^{'}_{;00} 0 \left| \chi^{"}_{;} \ell^{'}_{;00} 0 \right| \chi^{'}_{;} \ell^{'}_{;00} 0 \times \frac{1}{(2\mu+1)^{2}} \times K, ^{G36}_{;}$$

where

$$K = \sum_{m_{2}, m_{3}'} \sum_{m_{2}'', m_{2}'', m_{3}'', m_{3}'', m_{2}''} \sum_{m_{3}'', m_{3}'', m_{3}''', m_{3}''', m_{3}''', m_{3}''', m_{3}''', m_{3}''', m_{3}''', m_$$

Using formulae given by Racah (1942),

$$(\chi_1,\chi_2,m_1,m_2|\chi_1,\chi_2,\chi_m) = (-1)^{\chi+m} (2\chi+1)^2 \vee (\chi_1,\chi_2,\chi_1,m_1,m_2,-m)$$

and

$$\sum_{\alpha\beta\gamma\varsigma\phi} (-1)^{f+\phi} \vee (abe, \alpha\beta, -\varepsilon) \vee (acf, -\alpha\gamma, \phi)$$

$$\times \vee (bdf, -\beta\varsigma, -\phi) \vee (cdq, \gamma\varsigma, -\gamma)$$

$$= (-1)^{e+e+f+d-b} \vee (abcd; ef) \varsigma(e,q) \delta(e,\gamma)/(2e+\phi)$$

then

$$K = (-1) \qquad (\chi'' \ell'' \chi' \ell'; 5\mu) / (25+1) \qquad G40$$

Hence

$$\left\{ \begin{array}{l} y' \ell'; \sigma \mid \mathcal{P}_{\mu}(\hat{x}, \hat{x}') \mid y'' \ell''; \sigma \right\} \\ = \frac{(-1)^{8''+\delta'-\sigma}}{2\mu+1} \left[ (2y'+1)(2y''+1)(2\ell'+1)(2\ell''+1) \right]^{\frac{1}{2}} \\ \times \left( \ell'' \ell' \circ \sigma \mid \ell'' \ell' \mu \sigma \right) (y'' y' \circ \sigma \mid y'' \mu \sigma) \\ \times \left( \ell'' \ell' \circ \sigma \mid \ell'' \ell' \mu \sigma \right) (y'' y' \circ \sigma \mid y'' \ell'' \mu \sigma) \\ = \int_{\mu} \left( y' \ell'; y'' \ell''; \sigma \mu \right)$$

G41

From G41 it is easily shown that

$$f_{0}(j!l!; j!l!; J) = \begin{cases} 0 & j!! \neq j! & l!! \neq l!. \\ 1 & j!! = j! & l!! = l!. \end{cases}$$
 G42

Thus from G42 it can be seen that no rotational transitions for a  $\bigvee(\Lambda, \Theta - \Theta')$  having only a  $\mu = 0$  term are possible.

If the rotator is symmetric, so that

$$\vee (\pi, \Theta - \Theta') = \vee (\pi, \pi - [\Theta - \Theta'])$$

then only even values of  $\mu$  will appear in expansion G34. For even values of  $\mu$ ,

$$f_{\mu}(j'l'; j''l''; J) = 0,$$

unless j! + j'' and k' + k'' are both even. This means that for a homonuclear diatomic molecule, no rotational transitions can take place for which  $\Delta \chi$  is not even. If  $\bigvee (\checkmark, \vartheta - \vartheta')$  is further restricted by truncating the series G34 after the term in  $\mu = 2$ , the only  $f_{\mu}$  that are non-zero are those for which  $j' = j'' \pm 2$  and k' = k'' + 2. This gives rise to the selection rule  $\Delta \chi = 0, \pm 2$ , for a homonuclear diatomic molecule whose potential has only  $\mu = 0$  and  $\mu = 2$  terms when expanded as in, G34. Thus the double summation in G7 consists, in general, of nine terms.

### CHAPTER E

Validity of the distorted wave approximation

The validity of the distorted wave approximation depends on the smallness of the off-diagonal matrix elements of the interaction energy. This will be investigated using an example given by Mott and Massey (1949).

It was shown in chapter G that the distorted wave approximation could be regarded as a first order approximation in an iteration procedure to solve the strongly coupled differential equations G7. The equations are here considered to be

$$\begin{bmatrix} \nabla^{2} + k_{0}^{2} & -\frac{2M}{h^{2}} V_{00} \end{bmatrix} \mathcal{M}_{0} = \frac{2M}{h^{2}} V_{0n} \mathcal{M}_{n}, \quad \text{H1}$$

$$\begin{bmatrix} \nabla^{2} + k_{n}^{2} & -\frac{2M}{h^{2}} V_{nn} \end{bmatrix} \mathcal{M}_{n} = \frac{2M}{h^{2}} V_{n0} \mathcal{M}_{0}, \quad \text{H2}$$

with the assumption that  $V_{on} = V_{no}$ .

These equations represent the interaction between two waves, the incident and elastically scattered, and that scattered after excitation of the nth stationary state.

In the case where the state given by  $\circ$  and n are nearly in resonance, the matrix element  $V_{on}$  will not be small and the distorted wave approximation would not be expected to yield good re-

sults. Both the distorted wave and close coupling approximations will be applied to this example and the respective expressions for the inelastic cross sections compared.

Writing  $k_0^2 = k^2 = k_n^2$  and assuming that the field  $V_{oo}$  is the same as  $V_{nn}$ , equations H1, H2 become

$$\begin{bmatrix} \nabla^{2} + k^{2} - \frac{2\mu}{h^{2}} \vee_{00} \end{bmatrix} \mathcal{M}_{0} = \frac{2\mu}{h^{2}} \vee_{0n} \mathcal{M}_{n}, \quad \text{H3}$$
$$\nabla^{2} + k^{2} - \frac{2\mu}{h^{2}} \vee_{00} \end{bmatrix} \mathcal{M}_{n} = \frac{2\mu}{h^{2}} \vee_{0n} \mathcal{M}_{0}, \quad \text{H4}$$

The required solutions satisfy

$$\mathcal{M}_{o} \sim e^{i k_{o}} + \frac{1}{4} e^{i k_{o}} f_{o}(\theta, \phi) \qquad \text{H5}$$

$$\mathcal{M}_{n} \sim \frac{1}{r} e^{i k_{o}} f_{n}(\theta, \phi) \qquad \text{H6}$$

Adding and subtracting H3 and H4 gives the equations

$$\left[\nabla^{2} + k^{2} - \frac{2M}{h^{2}}\left(\nabla_{00} + \nabla_{0m}\right)\right]\left(\mathcal{U}_{0} + \mathcal{U}_{m}\right) = 0, \quad \text{H7}$$

$$\left[\nabla^{2} + k^{2} - \frac{2 \mu}{k^{2}} \left(V_{oo} - V_{om}\right)\right] \left(\mathcal{U}_{o} - \mathcal{U}_{m}\right) = 0.$$

If the functions  $V_{oo}$  and  $V_{on}$  are spherically symmetric these equations may be solved to give

$$\mathcal{M}_{o} + \mathcal{M}_{m} \quad n \frac{1}{2} \left[ e^{i k_{o}} + e^{i k_{o}} \sum_{k} \frac{(2 l+1)}{2 i k_{o}} \left( \frac{2 i \eta_{k}}{l} - 1 \right) \mathcal{P}_{e}(xos\theta) \right], H9$$

$$\mathcal{M}_{o} - \mathcal{M}_{m} \quad n \frac{1}{2} \left[ e^{i k_{o}} + e^{i k_{o}} \sum_{k} \frac{2 \delta + 1}{2 i k_{o}} \left( \frac{2 \lambda \delta_{o}}{l} - 1 \right) \mathcal{P}_{o}(xos\theta) \right], H10$$

where the phase shifts  $\gamma_{\ell}$ ,  $\delta_{\delta}$  are given by the equations

H15

$$\left[\frac{d^{2}}{dr^{2}} + k^{2} - \frac{\ell(\ell+1)}{r^{2}} - \frac{2\mu}{h^{2}}\left(V_{oo} + V_{on}\right)\right] \mathcal{U} = 0, \quad \text{H11}$$

$$\left[\frac{d^{2}}{dr^{2}} + \kappa^{2} - \frac{\ell(\ell+1)}{r^{2}} - \frac{2\mu}{h^{2}}\left(V_{oo} + V_{on}\right)\right] \mathcal{U} = 0, \quad \text{H11}$$

$$\left[\frac{\mathcal{U}}{\mathcal{d} \mathcal{F}^2} + \mathcal{R} - \frac{\mathcal{S}(\mathcal{S}+1)}{\mathcal{F}^2} - \frac{2\mathcal{U}}{\mathcal{R}^2}\left(V_{00} - V_{0m}\right)\right]\mathcal{U} = 0, \quad \text{H12}$$

respectively.

Hence

$$\mathcal{M}_{n} \sim \frac{1}{\pi} e^{ik\pi} \frac{1}{4ik} \sum_{\ell} (2\ell+1) \left\{ e^{2\iota\eta e} - e^{2\iota\delta e} \right\} \mathcal{P}_{e}(\cos\theta) \quad \text{H13}$$

and the differential scattering cross section corresponding to transfer of excitation will be

$$I_{m}(\theta) = \frac{1}{16R^{2}} \left| \sum_{e} (2e+1) \left\{ e^{2\lambda \eta e} - e^{2\lambda \delta e} \right\} P_{e}(\cos \theta) \right|^{2}, \quad H14$$

" so total cross section is given by

$$Q_m = \frac{T}{k^2} \sum_{\ell} (2\ell+1) \sin^2(\gamma_{\ell} - S_{\ell})$$

Applying the distorted wave approximation to this problem gives the equations

$$\left[\nabla^{2} + k^{2} - \frac{2M}{k^{2}} \vee_{00}\right] M_{0} = 0, \qquad \text{H16}$$

$$\left[\nabla^2 + k^2 - \frac{2\mu}{k^2} V_{00}\right] \mathcal{U}_n = \frac{2\mu}{k^2} V_{0n} U_0(\Lambda, \theta), \quad \text{H17}$$

where  $U_o(r, \theta)$  is that solution of H16 such that

Then

$$\mathcal{U}_{n} \sim -\frac{1}{4 \pi} \frac{1}{\pi} e^{i \frac{1}{2} t} \int \mathcal{W}_{o}(x', \pi - \theta) \frac{2 \mu}{\hbar^{2}} V_{on} V_{o}(x', \theta') d\tau' = H18$$

where  $\cos(\theta) = \cos \theta \cos \theta' + \sin \theta \sin \theta' \cos(\theta' - \theta')$ , and  $W_0(r, \theta)$  is a solution of H17 with the right hand side set equal to zero. In this case

$$W_o(\Lambda, \theta) = U_o(\Lambda, \theta)$$

Using the expansions

$$U_{o}(x, \theta) = \frac{1}{k} \sum_{\ell} (2\ell+1) \lambda^{\ell} \frac{1}{r} U^{\ell}(x) P_{\ell}(\cos\theta)$$

$$U_o(\Lambda,\Pi-\Theta) = \frac{1}{k} \sum_{\ell} (2\ell+1) \tilde{\iota}^{\ell} \frac{1}{r} U^{\ell}(\Lambda) P_{\ell}(\cos \Theta),$$

H20

H19

where  $U^{l}(r)$  is that solution of

$$\frac{d^{2}}{dr^{2}} + k^{2} - \frac{l(l+1)}{r^{2}} - \frac{2\mu}{h^{2}} \bigvee_{oo} \mathcal{U} = O, \quad H21$$

103

which is regular at the origin, and by expanding  $P_1(\cos \Theta)$  and integrating over  $\phi', \phi'$  and  $\Theta$ , it follows that

$$Q_{m} = \frac{TT}{k^{2}} \sum_{\ell} (2\ell+1) \left| \frac{4\mu}{k h^{2}} \int V_{om} \left\{ U^{\ell}(r) \right\}^{2} dr \qquad H22$$

Now if  $\gamma_{\ell}$  and  $\delta_{\ell}$  are small they obey the relations

$$\begin{aligned} \mathcal{H}_{\ell} &= \frac{2\mu}{\hbar^{2}} \int \left( V_{on} + V_{oo} \right) \left\{ \int \overline{\Pi_{\ell}} \mathcal{T} \int_{\ell+\frac{1}{2}} \left( kr \right) \right\}^{2} dr, \quad \text{H23} \\ \mathcal{S}_{\ell} &= \frac{2\mu}{\hbar^{2}} \int \left( V_{oo} - V_{on} \right) \left\{ \int \overline{\Pi_{\ell}} \mathcal{T} \int_{\ell+\frac{1}{2}} \left( kr \right) \right\}^{2} dr. \quad \text{H24} \end{aligned}$$

Hence

$$\gamma_{e}-s_{e} = \frac{4\mu}{\hbar^{2}} \int V_{on} \left\{ \int \frac{\pi}{2} \int_{e+\frac{1}{2}}^{2} (kr) \right\}^{2} dr \quad H25$$

Thus the total cross section as given by H25 agrees with equation H15 if  $\gamma_e - \delta_e$  is small.

Thus the condition of validity of the method of distorted waves is that the integral, given in H25, should be small.

#### Effect of an increase in coupling

We now investigate the effect of replacing  $V_{on}$  by  $\lambda V_{on}$ in the previous analysis.  $\lambda$  is a parameter which is taken to indicate the effective magnitude of  $V_{on}$ . As  $\lambda$  is increased the distorted wave approximation will become less and less valid and we may examine the manner in which it breaks down.

For the distorted wave approximation the effect on the total cross section is given by

$$Q_{m} = \frac{\Pi}{\hbar^{2}} \sum_{\ell} (2\ell+1) \lambda^{2} \left\{ \frac{4\mu}{\hbar^{2}} \int V_{om} \left\{ U^{\ell}(\pi) \right\}^{2}$$

Thus as  $\lambda$  increases, the cross section will increase as  $\lambda$ 

In the close coupling approximation the effect of increased coupling can be seen from equations Hll and Hl2 with  $V_{on}$  replaced by  $\lambda \ v_{on}$ . As  $\lambda$  increases the phase shift  $\gamma_{\ell}$  will increase while the phase shift  $\delta_{\ell}$  will decrease. Hence the difference,  $\gamma_{\ell} - \delta_{\ell}$ , will increase and equation Hl5 shows that the cross section will increase from zero to some maximum value and then it will oscillate.

The distorted wave approximation is only valid in the region of initial increase in the cross section. It predicts a monotonic increase of cross section and will usually indicate too great a probability of the transfer process.

We might expect a similar situation to occur if resonance is not exact. To test if this is so we try some numerical calculations

H26

on a particular collision.

The example considered is the  $j = 0 \rightarrow j' = 2$  rotational excitation of a hydrogen molecule by an incident hydrogen atom. For this case we solve equations G7 with boundary conditions G10 using the formula defined in chapter I for the interaction potential between these two bodies. Three different cases were taken : (a) Energy 0.05 e.V., J = 0; (b) Energy 0.25 e.V., J = 0; (c) Energy 0.25 e.V., J = 25.

With total angular momentum J = 0 the only possible inelast-(a) ically scattered wave corresponding to j! = 2 is given by l' = 2.Thus there are only two coupled equations corresponding to  $\mathcal{L}' = 0$  and  $\mathcal{L}' = 2$ . The value of  $\lambda$  was varied and the graph of cross section, calculated by the distorted wave approximation (G27) and by the close coupling approximation (G19), plotted against  $\lambda$  . The results are shown in This shows that for low energies the distorted wave is Fig 3. a valid approximation, a result which was expected as the offdiagonal matrix elements, as given by the phase shifts, are This graph also shows very clearly the oscillatory small. nature of the cross section as given by the solution of the fully coupled equations.

(b) Again, with J = 0, there are only two equations corresponding to  $\mathcal{L}^{i} = 0$  and  $\mathcal{L}^{i} = 2$ . In this case, using a much higher energy, the values of the cross section as calculated from the two approximations differ considerably before  $\lambda = 1$ . In fact at  $\lambda = 1$  the value given by the distorted wave approximation is 36% greater than that given by the close coupling approximation (see Fig 4).

(c) Using an energy of 0.25 e.V. and J = 25 will give three inelastically scattered waves corresponding to l = 23, 25, 27.

Thus we have four coupled equations to solve and, in this case, the distorted wave approximation is again valid, the agreement being good out to large values of  $\lambda$  (in the range 0 - 9). Again this is because the phase shifts are small for these values of  $\mathcal{L}^{i}$ . These results are shown in Fig 5.

Thus the distorted wave is a good approximation for low energies; it breaks down at high energies, for low values of J; at these higher energy values it becomes more and more valid as J increases.

Another interesting way of demonstrating this last statement is to plot a graph of the contributions to the cross section from individual values of J against the J values. This was done for a set of energies 0.05, 0.10, 0.15, 0.25 e.V. All the curves had the same basic shape except that, as the energy increased, the difference between the maxima of the two approximations increased. Only the graph for E = 0.25 e.V. is reproduced here (Fig 6).

It can be seen just how the distorted wave approximation approaches the close coupling approximation as values of J increase. This graph will also show if enough J values have been taken so that contributions from higher values of J can be neglected. Calculated values of the partial inelastic cross section  $O_{\overline{o}}$  (0 - 2) versus coupling coefficient  $\lambda$ , for E = 0.05 e.V., using both the distorted wave (DW) and close coupling (CC) approximations.

3

FIGURE



# FIGURE 4

Calculated values of the partial cross section  $\sigma_0^-$  (0 - 2) versus coupling coefficient  $\lambda$  for E = 0.25 e.V., using both the distorted wave (DW) and close coupling (CC) approximations.



Calculated values of the partial cross section  $\sigma_{25}(0-2)$ versus coupling coefficient  $\lambda$  for E = 0.25 e.V., using both the distorted wave (DW) and close coupling (CC) approximations.

5

GURE

FΙ



-



# FIGURE 6

Comparison of the distorted wave (DW) and close coupling (CC) approximations as shown by the contribution to the inelastic cross section  $\mathcal{O}^{-}(0-2)$  from various values of J, for E = 0.25 e.V.



Introduction

The theory and numerical methods of the previous chapters are now applied to some practical cases. We consider the rotational excitation of a hydrogen molecule by a hydrogen atom, a helium atom and another hydrogen molecule. With little extra effort we also include the rotational excitation of a deuterium molecule by a hydrogen atom. These collisions have already been studied using the distorted wave approximation (Takayanagi 1963, Roberts 1963, Davison 1963, 1964, Dalgarno and Henry 1964, Dalgarno, Henry and Roberts 1966). We have applied the close coupling approximation to these cases and have demonstrated the failure of the distorted wave approximation at high energy.

CHAPTER

107

**I**1

## Calculations

The matrix element .

 $\langle j : \mathfrak{L} : ; J | V | j : \mathfrak{L} : ; J \rangle$ ,

given by equation G9, connecting the different scattering channels is evaluated by expanding the interaction potential as in Al7,

 $V(r) = \sum_{\mu} N_{\mu}(r) P_{\mu}(ros 0)$ 

This equation has been truncated after  $\mu = 2$  because Dalgarno and Henry (1965) have shown that higher order harmonics are unlikely to be important.

## Hence

$$\langle y'\ell'; J|V|y''\ell'; J \rangle = S_{\lambda\lambda'}S_{ee'}N_o(x) + \int_2 \langle y'\ell', y''\ell''; J \rangle N_2(x)$$
 I2

and, as shown at the end of chapter G, the double summation in G7 consists, in general, of nine terms. The functions,

may be conveniently calculated from formulae given by Berstein et al (1963).

Only collision processes in which the rotational quantum number j changed from zero to two were taken. In the case of scattering of a hydrogen molecule by another hydrogen molecule the incident molecule was not allowed to change its rotational level and was assumed to be in the state defined by j = 0 throughout the collision.

All coupling terms involving j = 0 were retained but the terms coupling j = 2 to higher rotational levels were neglected thereby reducing G7 to a set of four coupled differential equations.

Thus the scattering matrix  $S^{J}(j\boldsymbol{\ell}; j'\boldsymbol{\ell}')$  is, in general, a four by four matrix defined by the transition  $(j\boldsymbol{\ell}; j'\boldsymbol{\ell}')$ 

108

| 2J-2 ; UJ 2J-2 ; 2J-2 ; 2J-2 ; 2J | 2 <b>J</b> -2 ; 2 <b>J</b> +2 |
|-----------------------------------|-------------------------------|
| 2J; OJ 2J; 2J-2 2J; 2J            | 2J ; 2J+2                     |
| 2J+2; OJ 2J+2; 2J-2 2J+2; 2J      | 2 <b>J</b> +2 ; 2 <b>J</b> +2 |

In the case of J = 0 this reduces to a two by two matrix obtained by deleting the second and third columns and rows while for J = 1it gives a three by three matrix obtained by deleting the second row and column.

The elastic cross section  $\sigma^{-}(0;0)$  and the inelastic cross section  $\sigma^{-}(2;0)$  are calculated from equation G19. We also calculate the angular distribution defined by the relation

$$\Lambda(0) = 2 T \frac{d \sigma(\dot{x}; \dot{x}|\hat{x})}{d\hat{x}} \sin \theta$$

where the differential scattering cross section  $\frac{d \sigma (\chi';\chi|\hat{x})}{d\hat{x}}$ is given by G16.

Equation G17 is not in a suitable form for computation and so, following Blatt and Biedenharn (1952), we write G17 in a form such that each term appears once only in the summation.

$$A_{\lambda} = \sum_{J=0}^{\infty} \sum_{\ell=|J-\gamma|}^{J+\gamma} \sum_{\ell'=|J-\gamma'|}^{J+\gamma'} Z(\ell J \ell J; \gamma) Z(\ell' J \ell' J; \gamma') \left| T'(\gamma \ell; \gamma' \ell') \right|^{2}$$
  
+ 2 
$$\sum_{J_{1}} \sum_{\ell_{1}} \sum_{\ell'_{1}} \sum_{\ell'_{1}} \left[ \sum_{J_{2}} \sum_{\ell_{2}} \sum_{\ell'_{2}} Z(\ell, J, \ell_{2}, J; \gamma) \right]$$

cont

 $\times Z(l'_{1}J'_{2}J'_{2}; y'\lambda) \times RP[]$  $+ \sum_{l_2} \sum_{l_2'} Z(l_i J_i l_2 J_i; \lambda) \times Z(l_i J_i l_2' J_2; \lambda) \times Z(l_i J_i l_2' J_2; \lambda) \times RP[J_i = J_2] + \sum_{l_2'} Z(l_i J_i l_i J_i; \lambda)$  $X \ge (l_1' J_1 l_2' J_1; \gamma \lambda) \times RP \left[ J_1 = J_2, l_1 = l_2 \right]$ 

110

+ & ,!

15

where RP [ ] denotes the real part of

$$T^{3'}(yl_{1};y'l_{1})^{*}, T^{3_{2}}(yl_{2};y'l_{2})$$

The actual number of terms in this expansion is reduced because of the restrictions that

$$\boldsymbol{l}_1 + \boldsymbol{l}_2 - \boldsymbol{\lambda}, \quad \boldsymbol{l}_1' + \boldsymbol{l}_2' - \boldsymbol{\lambda}, \quad \boldsymbol{l}_1 + \boldsymbol{l}_1', \quad \boldsymbol{l}_2$$

must be even.

Rate coefficients (R) for a collision at temperature TKelvin in which the rotational quantum number changes from j to j' are defined by the equation

$$R = \left(\frac{16 \, \text{\& T}}{\frac{2 \, \mu}{\text{\& TT}}}\right)^{\frac{1}{2}} \left\langle Q_{3'3} \right\rangle$$

where <u>k</u> is the Boltzmann constant and  $\langle Q_{j'j} \rangle$  is the cross section for the  $j \rightarrow j!$  transition averaged over the Maxwellian distribution of incident energies,

$$\langle Q_{\xi'\xi} \rangle = \int M(E) \sigma_E(\xi';\xi) dE$$
,

where

t.e.

$$M(E) = \frac{E}{(\underline{k}T)^2} exp\left(-\frac{E}{\underline{k}T}\right)$$

and  $\mathcal{O}_{\epsilon}(j^{\dagger};j)$  is the inelastic cross section corresponding to impact energy E.

All calculations in this chapter are performed using values of energy in electron volts and measuring distance in angstroms with the exception of the rate coefficients which are in units of  $cm^3$  / sec.

We have adopted the Buckingham (exp - 6) type of potential used by Dalgarno, Henry and Roberts (1966) for the interaction potential between a hydrogen atom and a hydrogen molecule,

$$N_{0}(\pi) = 511.09 \exp(-3.59\pi) - \frac{5.523}{\pi}$$
  
 $N_{2}(\pi) = 346.66 \exp(-3.719\pi) - \frac{0.612}{\pi}$ 

**I**6

For these particles

$$\frac{2 \mu}{\pi^2} = 321.82 (e.V. \Lambda^2)^{-1}$$

and for the hydrogen molecule

$$\frac{\hbar^2}{2I} = 0.007564 \text{ e.v.}$$

Thus there is an energy difference of 0.0454 e.V. between the j = 0 and j = 2 rotational states of the hydrogen molecule.

Hence

$$\frac{k_{33}}{k_{33}^{2}} = \frac{2\mu}{k_{2}^{2}} \left\{ E - 0.045 \right\}$$

The energy range taken was from 0.05 e.V., which lies just above the threshold of the j = 2 rotational level, up to 0.25 e.V.which lies below the first excited vibrational state at 0.353 e.V(Roberts 1963).

The criteria described in chapter E were applied to give an estimate of the initial and final intervals and these parameters were fed into the distorted wave program described in chapter D. The results of Dalgarno, Henry and Roberts (1966) were verified and the largest value of r required to give convergence of the phase shifts were printed out. This value was used to give an estimate of the position of the matching points in the close coupling program. We also noted the number of J values required so that the contribution to the inelastic cross section from higher values was
negligible. This value too was required by the close coupling program which was now used to repeat the previous calculations. A full list of the numerical parameters for the close coupling program is given in Table 6. The results are shown in Fig 7. Angular distributions, defined by I3, were calculated for a few values of energy and we also computed the rate coefficients from equations I5 and I6 for several values of temperature.

113

H - D<sub>2</sub>

For this collision we used the same interaction potential as in the previous section.

In this case

 $\frac{2 \mu}{\hbar^2} = 386.10 (e.V. \Lambda^2)^{-1}$ 

and since the moment of inertia of the deuterium molecule is twice that of the hydrogen molecule, both being considered as rigid rotators,

 $\frac{h^2}{2T}$ 

0.003782 e.V.

Hence

$$k_{33}^{2} = \frac{2\mu}{\hbar^{2}} E,$$

$$k_{33}^{2} = \frac{2\mu}{\hbar^{2}} \left\{ E - 0.0227 \right\}$$

where E is the kinetic energy of the incident hydrogen atom. Again the results of the distorted wave approximation were in complete agreement with Dalgarno, Henry and Roberts (1966). The numerical parameters used for the close coupling program are listed in Table 7. In this case the energies considered were restricted to the range 0.025 e.V. to 0.15 e.V. and our results are shown in Fig 8.

He - 
$$H_2$$

bу

Roberts (1963) has used a purely repulsive potential in his distorted wave calculations of the scattering of a helium atom by a hydrogen molecule. We adopt the same potential which is defined

$$N_o(\pi) = 470.10 \exp(-3.830\pi)$$
  
 $N_o(\pi) = 0.375 N_o(\pi)$ 

For this collision

$$= 643.47 (e.V. Å^2)^{-1},$$

while again

The distorted wave program was used to verify the results of Roberts (1963) and to set up the parameters for the close coupling program (Table 8). Both sets of results are compared in Fig 9 for the energy range 0.05 e.V. to 0.20 e.V.

The scattering of a hydrogen molecule by another hydrogen molecule has been studied by Davison (1963) and Roberts (1963) using the Morse potential derived by Takayanagi (1957),

$$\mathcal{N}_{o}(\pi) = A\left(\exp\left[-2\alpha(\pi-\pi_{o})\right] - 2\exp\left[-\alpha(\pi-\pi_{o})\right]\right)$$
$$\mathcal{N}_{2}(\pi) = \beta A \exp\left[-2\alpha(\pi-\pi_{o})\right],$$

where  $A = 2.991_{10} - 3$ ,

$$\propto = 1.767$$
,

 $r_0 = -3.387$ ,

 $\beta = 0.075$ 

From their independent calculations both Davison (1963) and Roberts (1963) conclude that the value of  $\beta$  is too small and a value of  $\beta = 0.14$  is more realistic. Davison (1963) also considered the Buckingham (exp - 6) potential defined by

$$\mathcal{N}_{o}(\pi) = A \exp\left[-2\alpha(\pi - \pi_{o})\right] - \frac{B}{\pi}$$
$$\mathcal{N}_{2}(\pi) = \beta A \exp\left[-2\alpha(\pi - \pi_{o})\right] - D_{f}$$

where B = 11.0, D = 0.8 and  $\beta = 0.14$ . This was the potential used in our calculations. For these molecules,

$$\frac{\mu}{\hbar^2} = 482.62 \ (e.V. \ \hbar^2)^{-1},$$

while again .

$$\frac{h^2}{2T} = 0.007654 \text{ e.V.}$$

Elastic and inelastic cross sections are calculated over the energy range 0.05 e.V. to 0.3 e.V. using both the distorted wave and close coupling approximations. The numerical parameters are given in Table 9 and the results are illustrated in Fig 10.

Angular distributions over the same energy range are calculated together with the rate coefficients for several values of temperature.

#### Discussion ·

For the j = 0 to j' = 2 rotational transition of a hydrogen

molecule by hydrogen impact, Dalgarno, Henry and Roberts (1966) noted

that departures of the distorted wave S matrix from unitarity became serious above energies of 0.15 e.V. and Fig 7 confirms their conclusion. At the highest energy investigated, 0.25 e.V., the distorted wave approximation overestimates the inelastic cross section by 50% and the error is increasing with increasing energy.

A similar comparison for the  $0 \rightarrow 2$  excitation of deuterium by hydrogen impact is presented in Fig 8. Because of the closer rotational spacing in the deuterium molecule the distorted wave approximation becomes invalid at lower impact energies. At an energy of 0.15 e.V. it overestimates by 33%.

Fig 9 shows the cross sections for the  $0 \rightarrow 2$  excitation of a hydrogen molecule by helium impact. The results show that the off-diagonal S matrix elements are becoming large at impact energy 0.10 e.V. and this is again demonstrated by a comparison with the close coupling results. Indeed at an energy of 0.15 e.V. the result of a semi-classical calculation by Lawley and Ross (1965), giving a value of 1.51 Å<sup>2</sup> for the inelastic cross section, differs by less than 10% from the close coupling result, 1.38Å<sup>2</sup>, and is superior to the distorted wave values of 1.89Å<sup>2</sup>.

Fig 10 compares the cross sections for the  $0 \rightarrow 2$  excitation of hydrogen by molecular hydrogen impact. The rotational cross sections are small and little error results from the use of the distorted wave approximation for energies up to 0.3 e.V.

The angular distributions and the elastic cross sections may be valuable in analyses of experimental data. The angular distributions

defined by equation 13 are shown in Figs 11, 12, 13, 14. They are all very similar; as the energy increases  $\mathcal{N}$  becomes more sharply peaked and the location of its maximum shifts slowly to lower angles.

The elastic cross sections are slowly varying functions of the impact energy, determined almost entirely by the spherical symmetric parts of the interaction potential. For  $H - H_2$ ,  $\sigma$  (0;0) varies from 46.7 Å<sup>2</sup> at 0.05 e.V. to 39.7 Å<sup>2</sup> at 0.25 e.V.; for  $H - D_2$ ,  $\sigma$  (0;0) varies from 48.5 Å<sup>2</sup> at 0.025 e.V. to 41.0 Å<sup>2</sup> at 0.17 e.V.; for He - H<sub>2</sub>,  $\sigma$  (0;0) varies from 53.9 Å<sup>2</sup> at 0.05 e.V. to 47.4 Å<sup>2</sup> at 0.20 e.V.; for H<sub>2</sub> - H<sub>2</sub>,  $\sigma$  (0;0) varies from 45.5 Å<sup>2</sup> at 0.05 e.V. to 43.5 Å<sup>2</sup> at 0.30 e.V.

The rotational excitation of hydrogen molecules by impact with slow-hydrogen atoms and other hydrogen molecules may be an important cooling mechanism in interstellar space (Dalgarno, Henry and Roberts 1966). For this reason rate coefficients have been calculated in the two cases,  $H - H_2$ ,  $H_2 - H_2$ , and these results are listed in Tables 10 and 11.

| ,<br>,                                                     | •                |                      |          |        | •      | •              |                        |         |        |
|------------------------------------------------------------|------------------|----------------------|----------|--------|--------|----------------|------------------------|---------|--------|
| <u>TABLE 6</u> Numerical Parameters for H - H <sub>2</sub> | •                | 4 • • • • •          |          |        |        | ·              | 1 . P                  | · · · · |        |
|                                                            | ·                |                      | J max    | 10     | 16     | 22             | 28                     | 34      | 4      |
|                                                            |                  | I <sub>3</sub> = 250 | Ъf       | 0.072  | 0.060  | 0.054          | 0.048                  | 0*036   | 0.036  |
|                                                            |                  | I <sub>2</sub> = 50  | q.r.     | 20.434 | 17.146 | 14.952         | 14.158                 | 11.170  | 11.170 |
|                                                            | г H <sub>2</sub> | I <sub>1</sub> = 100 | លំ<br>អ  | 20-074 | 16.846 | 14.682         | 13.918                 | 10.990  |        |
|                                                            | ers for H        | = 0.006              | 0 K<br>K | 1.49   | 7.92   | 17 <b>.</b> 57 | 33.67                  | 49.76   | 65.85  |
|                                                            | al Paramet       | 1.0 ћ                | ь<br>М   | 16°09  | 22.53  | 32.18          | <b>4</b> 8 <b>.</b> 27 | 64.36   | 80.46  |
|                                                            | Numeric<br>r -   | "<br>អ               | D2       | 4      | ŝ      | б              | শ্ব                    | Μ       | M      |
|                                                            |                  | 321 <b>.</b> 82      | Гđ       | м      | N      | М              | N                      | N       | $\sim$ |
|                                                            | TABLE            | ·∎<br>O¤             | 되        | 0.05   | 0.07   | 0.10           | 0.15                   | 0.20    | 0°25   |

.

· 、

| ,<br> | J max    | 10       | 15            | 50     | 25              | 27             | 30     | 35             | 35             |
|-------|----------|----------|---------------|--------|-----------------|----------------|--------|----------------|----------------|
|       | ,<br>d'1 | 45.41    | 37.23         | 36.93  | 28.95           | 28.95          | 28.95  | 19 <b>.</b> 77 | 19.77          |
|       | ц<br>Ц   | 44.91    | 36.83         | 36.53  | 28.65           | 28 <b>.</b> 65 | 28.65  | 19 <b>.</b> 77 | 19 <b>.</b> 77 |
|       | гO       | ۲.<br>۲. | 1.3           | 1.0    | 1•0             | 1•0            | 1.0    | 1•0            | 1•0            |
|       | 5 0<br>¥ | 0.891    | <b>4</b> °752 | 10.544 | 18 <b>.</b> 266 | 29.849         | 37.571 | 49.154         | 56.876         |
|       | ч<br>К   | 9.653    | 13.514        | 19.305 | 27.027          | 38.610         | 46.332 | 57.915         | 65.637         |
|       | D2       | ŝ        | 4             | 4      | 8               | м              | ĸ      | · 01           | N              |
|       | Ъ.       | . 01     | 2             | 0      | 2               | 0              | $\sim$ | 0              | N              |
|       | 떴        | 0.025    | 0.035         | 0.050  | 0.070           | 0.100          | 0.120  | 0.150          | 0.170          |

Numerical Parameters for H - D<sub>2</sub> TABLE 7

BO = 386.10

 $I_{1} = 100$ h = 0.01

 $I_2 = 150$ 

 $T_3 = 400$ 

Numerical Parameters for He - H<sub>2</sub> h = 0.005 I<sub>1</sub> = 100 I<sub>2</sub> = 150 I<sub>3</sub> = 300

J max ĥ 20 22 52 200 25 35 37 40 2 14.965 14.965 11.975 14.965 14.965 11**.**975 11.975 18.255 18.455 11.975 <sub>2</sub>น 18.205 18**.**005 14.765 14.765 14.765 14.765 11.825 11.825 11**.**825 11.825 ដ អ **1.**0 1.3 1.0 1.0 **1**.0 1.0 1.0 1.0 л. О **Т**•5 о Н 22°274 28.709 35.144 48.013 67.317 2.970 9.405 15.840 80.187 99.491 N N M 109.390 32.174 38.608 45.043 51.478 57.912 64.347 64.347 96.521 128.694 . Д ഹ Ц S N  $\sim$ N 0.05 0.06 0.03 0.10 0.12 0.17 0.20 E.

TABLE 8

B0 = 643.47

TABLE 9 Numerical Parameters for H<sub>2</sub> - H<sub>2</sub>

 $I_3 = 400$  $I_2 = 150$ I<sub>1</sub> = 100 h = 0.008BO = 482.62

| p2 | ال<br>بر<br>بر  | N N<br>M | О<br>Н | ra<br>r | ರ<br>ಸ | J max |
|----|-----------------|----------|--------|---------|--------|-------|
| 4  | 24.131          | 2.228    | 1.4    | 29.824  | 30.144 | 12    |
| 4  | 28.957          | 7.054    | 1.2    | 29.624  | 29.944 | 15    |
| 4  | 33 <b>.</b> 783 | 11.880   | 1•0    | 29.424  | 29.744 | ΤŢ    |
| р  | 38.610          | 16.706   | 1.0    | 23.120  | 23.360 | 50    |
| м  | 43.436          | 21.533   | 1.0    | 23.120  | 23.360 | 22    |
| б  | 48.262          | 26.359   | 1•0    | 23.120  | 23.360 | 25    |
| м  | 57.914          | 36.011   | 1.0    | 23.120  | 23.360 | 27    |
| m  | 72.393          | 50.490   | 1.0    | 23.120  | 23.360 | 30    |
| N  | 82•045          | 60.142   | J•0    | 16°016  | J6.176 | 32    |
| N  | 96°524          | 74.621   | 1°0    | 15.216  | 15.376 | 35    |
| N  | 120.660         | . 98°757 | 1.0    | 15.216  | 15.373 | 37    |
| 0  | 144.790         | 122.880  | 1•0    | 15.216  | 15.376 | 40    |

TABLE 10

Rate Coefficients (R) for  $H - H_2$  (cm<sup>3</sup>/sec.)

|   | т( <sup><b>о</b></sup> К) | R                      |                  |               |
|---|---------------------------|------------------------|------------------|---------------|
|   | 20                        | 4•5 <sub>10</sub> -23  |                  |               |
|   | 30                        |                        |                  | •<br>• •<br>• |
|   | 40                        | 3.5 <sub>10</sub> -17  |                  | . •           |
|   | 50                        | 5.1 <sub>10</sub> -16  |                  |               |
|   | 60                        | 3.1 <sub>10</sub> -15  |                  |               |
|   | 70                        | 1.110-14               |                  |               |
|   | 80                        | 3.1 <sub>10</sub> -14  | · · ·            |               |
|   | 90                        | 6.8 <sub>10</sub> -14  |                  | ·. · · ·      |
|   | 100                       | 1.310-13               | ļ                |               |
|   | 200                       | 3.110-12               |                  |               |
|   | 300                       | 1.1 <sub>10</sub> -11` |                  |               |
|   | 400                       | 2.3 <sub>10</sub> -11  | 1,:<br>1,<br>, , |               |
| 1 | 500                       | 3.7 <sub>10</sub> -11  |                  | · · ·         |
|   |                           | 10                     |                  | ς.'           |
|   |                           | 3                      |                  |               |

## TABLE 11

Rate Coefficients (R) for  $H_2 - H_2$  (cm<sup>3</sup>/sec.)

| T(°K)                 | R                     |
|-----------------------|-----------------------|
| 20                    | 3.7 <sub>10</sub> -24 |
| 30                    | 3.3 <sub>10</sub> -20 |
| 40                    | 2.9 <sub>10</sub> -18 |
| 50                    | 4.3 <sub>10</sub> -17 |
| 60                    | 2.6 <sub>10</sub> -16 |
| 70                    | 9.7 <sub>10</sub> -16 |
| 80                    | 2.7 <sub>10</sub> -15 |
| 90                    | 6.0 <sub>10</sub> -15 |
| 100                   | 1.2 <sub>10</sub> -14 |
| 200                   | 3.2 <sub>10</sub> -13 |
| 300                   | 1.210-12              |
| 400 · · · · · · · · · | 2.710-12              |

500 4.6<sub>10</sub>-12

Cross section for excitation of the 0 - 2 rotational transition in H<sub>2</sub> by H impact. DW, distorted wave results of Dalgarno, Henry and Roberts (1966); CC,

RE

G TT

close coupling results.



# 

FIGURE 8

Cross section for excitation of the 0-2 rotational transition in  $D_2$  by H impact. DW, distorted wave results of Dalgarno, Henry and Roberts (1966); CC, close coupling results.



## FIGURE 9

Cross section for excitation of the 0 - 2 rotational transition in  $H_2$  by He impact. DW, distorted wave results of Roberts (1963); CC, close coupling results.





Cross section for excitation of the 0 - 2 rotational transition in  $H_2$  by  $H_2$  impact. DW, distorted wave results of Davison (1963); CC, close coupling results.

000 С С દે ۸O 0.25 0.20 Allison (DW) ois E (eV ) FIG. 10. 00 0.05 ∿(0-5)% <u>0</u> 0

FIGURE 11 Angular distribution  $\mathcal{A}(0-2)$  for  $H-H_2$ .

.



### FIGURE 12

. Angular distribution  $\mathcal{N}(0-2)$  for  $H - D_2$ .





.

## FIGURE 13

Angular distribution  $\mathcal{N}$  (0 - 2) for He - H<sub>2</sub> .



# FIGURE 14

Angular distribution  $\mathcal{N}(0-2)$  for  $H_2 - H_2$ .



· ·

#### CHAPTER J

We consider the effects which may arise in the elastic scattering when the impact energy is below the threshold value necessary to produce excitation to a higher level. In particular, we are looking for resonances, i.e. a sudden variation in the value of the elastic cross section. TTA

A two state approximation is defined by equations G7 with J = 0. The equations can be written

$$\begin{bmatrix} \frac{d^2}{dr^2} + k_0^2 & -V_{00} \end{bmatrix} u_0 = V_{01} u_1, \quad JI$$

$$\begin{bmatrix} \frac{d^2}{dr^2} + k_1^2 - \frac{6}{r^2} - V_{11} \end{bmatrix} u_1 = V_{10} u_0, \quad J2$$

and solutions u and u are required such that,

u and u are regular at the origin,

$$u_0 \sim sin(k_0r) + R cos(k_0r)$$
, J3

 $u_1 \sim B \exp[-(Kr)],$ where  $k_1$  is now complex and  $k_1^2 = -K^2$ , K being taken positive.

If  $V_{11}$  is attractive and sufficiently large in absolute magnitude then there will be a set of solutions of the equation

$$\left[\frac{d^{2}}{dx^{2}}-K^{2}-\frac{6}{x^{2}}-V_{11}\right]\mathcal{U}_{1}=0,$$
 J5

corresponding to the eigenvalues  $K_1^2 \dots K_n^2$ . It is to be expected that variations in the elastic cross section will appear at values of  $k_0^2$  such that  $K^2$  is close to one of the values  $K_1^2 \dots K_n^2$ .

120

**J**6

The matrix element  $T_{oo}$  may be continued into the region where  $k_{1}^{2} \leq 0$  by replacing  $k_{1}$  by iK. This is because outgoing waves of wave number  $k_{1}$  are then replaced by exponentially decreasing functions as required.

This is not possible for R which instead is calculated, for  $k_1^2 \ \zeta \ 0$  from

Too = 1 - e

where  $\gamma_{o}^{\circ}$  is the phase shift for elastic scattering from the ground state. Above the threshold  $\gamma_{o}^{\circ}$  is complex but below it is real and equal to  $\tan^{-1} R_{oo}^{\circ}$ .

Since T and R are both symmetric two by two matrices they may be expressed in terms of three variables (Mott and Massey 1965). One of these, c, is taken to be  $R_{00}$  above the threshold and the other two are defined in terms of  $T_{11}$ ,

 $T_{ii}$ 

where  $\gamma_{\bullet}$  is the complex phase shift for elastic scattering of particles of wave number  $k_1 \cdot e^{-k_1}$ 

If we now assume that there is no change in angular momentum,  
1.e. no term in 
$$\frac{6}{r^2}$$
 in J2 then  
 $k_1 \mod \gamma_0^{'} = -\frac{1}{a} = -\frac{1}{A-xB}$ ,  $B \nearrow 0$ , J7  
and A and B define the other two variables.  
Following Mott and Massey (1965),  
 $T_{oo} = -2\left(\frac{1+xc}{1-xc}\right)\left(\frac{c}{1+xc} + \frac{x - k_1B}{1+x - k_1A}\right)$ , J8  
 $T_{oo} = -2\left(\frac{1+xc}{1-xc}\right)\left(\frac{c}{1+xc} + \frac{x - k_1B}{1+x - k_1A}\right)$ , J8  
 $T_{oo} = -2\left(\frac{1+xc}{1-xc}\right)\left(\frac{c}{1-xc} + \frac{x - k_1B}{1+x - k_1A}\right)$ , J8  
 $T_{oo} = -2\left(\frac{1+xc}{1-xc}\right)\left(\frac{c}{1+xc} + \frac{x - k_1B}{1+x - k_1A}\right)$ , J9  
 $R_{oo} = R_{oo} = \frac{\left[k_1 - \frac{k_2B}{1+xc}\right]^{\frac{1}{2}}}{\left(1 - \frac{1}{xc}\right)\left(1 + \frac{x}{x} + \frac{x}{x}\right)^{\frac{1}{2}}}$ , J10  
 $R_{oo} = R_{oo} = \left[-k_1 - \frac{k_2B}{1+x^2}\right]^{\frac{1}{2}}$ , J11  
where R matrix elements only apply above the threshold. The

elastic cross section is given by

$$\frac{T}{k_o^2} \cdot \left| \left| T_{oo} \right|^2,$$

and, for  $k_1^2 > 0$ ,

$$\left|T_{00}\right|^{2} = 4 \left|\frac{c}{1+ic} + \frac{l\cdot k\cdot B}{1+l\cdot k\cdot a}\right|^{2}$$

J12

Expanding in powers of  $k_1$ , we see that, just above the threshold,

$$|T_{00}|^2 = \frac{4\kappa^2}{1+\kappa^2} (1-2BR_1)$$
 J13

To obtain the corresponding formula just below the threshold we replace  $k_1$  by iK in J12 to give

$$|T_{00}|^2 = \frac{4c^2}{1+c^2} (1-2B\frac{K}{c}).$$
 J14

Since B > 0 it follows that the elastic cross section falls at least initially in passing above the threshold. In passing below the threshold it will rise or fall depending on the sign of c. In either case the cross section has an infinite derivative at the threshold. This is expected since from J9 the cross section for inelastic collisions rises as  $k_1$  and

$$\frac{\partial \sigma_{\text{inel}}}{\partial k_{\circ}} \propto \frac{\partial k_{\circ}}{\partial k_{\circ}} = \frac{\partial}{\partial k_{\circ}} \left( \frac{k_{\circ}^{2}}{k_{\circ}} - \lambda \right)^{\frac{1}{2}} = \frac{k_{\circ}}{k_{\circ}} \frac{-3}{k_{\circ}} \frac{-3}{k_{\circ}$$

Thus we would expect the onset of the inelastic processes with infinite derivative with respect to  $k_0$  to have a similar effect on the elastic cross section.

We now consider the case where the incident and inelastically scattered waves are associated with different angular quantum numbers, i.e. the term  $6/r^2$ , corresponding to  $\mathcal{L} = 2$  is included in equation J2. In this case,

provided  $r^{l+2} V_{ol} \rightarrow 0$  as  $r \rightarrow \infty$ , and hence the inelastic cross section will rise as  $k_1^{2l+1}$  for small  $k_1$ .

To, ~ k. e. ż

Thus

 $\frac{\partial \sigma_{inel}}{\partial k_{o}} = \frac{\partial k_{i}}{\partial k_{o}} = \frac{\partial}{\partial k_{o}} \left( \frac{k_{o}^{2}}{k_{o}} \right)^{2 + \frac{1}{2}}$ = k. (2l+1) k, -70 as k, -0 J18

120

J16

J17.

Thus the cross section for inelastic collisions no longer possesses an infinite derivative with respect to  $k_0$  at the threshold and we would expect no anomalous behaviour. Further confirmation of this last statement can be obtained by extending the previous method.

This has been verified numerically in the case of rotational excitation of a hydrogen molecule by a hydrogen atom. Using the potential defined in chapter I we find that condition J17 is satisfied since  $V_{ol}$  goes off asymptotically as  $1/\sqrt{3}$ .

The behaviour of the cross section is manifested in the variation of the phase shift defined in J3.

The equations J1 and J2 are solved subject to the boundary conditions J3 and J4, using the program described in chapter F. The phase shifts are printed out for values of energy below the threshold of 0.045 e.V. Values of the phase shift above the threshold, where both channels are open, are calculated by the usual close coupling program of chapter E. The results are shown in Fig 15. It is clear that no abnormal behaviour occurs just below the threshold, the phase shift varying smoothly to match up with the values above the threshold. The discontinuity at an energy of 0.0473 e.V. is the same type of singularity as described at the end of chapter E. Thus these results confirm that a resonance is not likely to be found in any case in which there is an internal change in angular momentum.

### FIGURE 15

Graph of  $\gamma_1$  versus energy E (e.V.) showing smooth behaviour through the threshold.




#### Introduction

Rotational excitation of homonuclear diatomic molecules by slow electrons has been extensively studied in the past. The first attempts to treat rotational excitation of these molecules failed to obtain cross sections large enough to explain the observed energy losses (Morse 1953, Carson 1954). In these investigations all long range effects were neglected.

Gerjuoy and Stein (1955 a, b) pointed out that the long range interaction between an electron and the quadrupole moment of the molecule would account for these large energy losses. There are discrepancies between their calculations, based on the Born approximation, and analyses of experimental values (Engelhardt and Phelps, 1963). Dalgarno and Moffet (1963) showed that polarisation of the molecule by the incident electron would result in an additional long range force which would increase the cross section for molecular hydrogen. It was found that while inclusion of the polarisation correction improved the agreement in the case of  $H_{2}$ , the results were still too small. This last discrepancy was resolved by considering distortion of the wave function describing the scattered electron by the electron-molecule interaction. Investigations have been carried out using the distorted wave approximation, by Mjolness and Sampson (1965), Takayanagi and Geltman (1964, 1965) and Dalgarno and Henry (1965) with the result that the cross sections obtained are in fair agreement with experiment. A major uncertainty in the  $\hat{\mathbf{e}} - \mathbf{H}_2$  scattering problem is the manner of including the polarisation interaction. At low energy this is usually accomplished by cutting off the asymptotic form of the potential at some value of  $\mathbf{r}$  determined by fitting the calculated elastic cross section to the experimental values.

In this chapter the close coupling approximation is applied to the rotational excitation of a hydrogen molecule by a slow electron. The program described in chapter E has been altered to include the more complicated potential function and also the initial step has been modified so that, for  $\mathbf{1} = 0$ , the integration effectively starts at the origin.

The choice of parameters involved in the inclusion of the polarisation term is discussed and the results are compared with the equivalent distorted wave approximation and the work of other authors.

## Potential function for $e - H_2$

The potential used to represent the interaction between a hydrogen molecule and an incident slow electron is that given by Dalgarno and Henry (1965).

The potential is expanded as in Al7,

$$V(\Lambda, \Theta) = - \sum_{\mu=0}^{2} \{ \mathcal{N}_{\mu}^{N}(\Lambda) - \mathcal{N}_{\mu}^{E}(\Lambda) \} P_{\mu}(\cos \Theta), \quad \text{KI}$$

where

$$\mathcal{N}_{o}^{N}(\pi) = \begin{cases} \frac{2}{\pi}, & \pi \neq 0.7; \\ 2.857, & \pi \neq 0.7; \\ 2.857, & \pi \neq 0.7; \end{cases}$$

$$\mathcal{N}_{2}^{N}(\pi) = \begin{cases} \frac{0.98}{\pi^{3}}, & \pi \neq 0.7; \\ 5.831\pi^{2}, & \pi \neq 0.7; \end{cases}$$

$$\mathcal{N}_{o}^{E}(\pi) = \frac{2}{\pi} \sum_{g=1}^{3} \left[ \sum_{\lambda=1}^{14} A_{\lambda g} \pi^{\lambda-1} \exp(-a_{g} \pi) - A_{\lambda g} \right], \qquad \mathbb{K}4$$

$$\mathcal{N}_{2}^{E}(\pi) = \frac{2}{\pi^{3}} \sum_{y=1}^{5} \left[ \sum_{l=1}^{12} B_{ly} \pi^{-l} e_{y} h \left( -b_{y} \pi \right) - B_{ly} \right], \quad K5$$

r being measured in units of Bohr radius and v(r) is in atomic units. Atomic units will be used throughout this chapter.

The coefficients A<sub>ij</sub>, a<sub>j</sub>, B<sub>ij</sub>, b<sub>j</sub> are listed in Tables 12, 13 to six decimal places. The functions

$$N_{\mu}(\pi) = N_{\mu}(\pi) - N_{\mu}^{E}(\pi), \quad \mu = 0, 2$$

are illustrated in Fig 16.

127

In the present form equations K4 and K5 are not in a suitable form for computation.

e.g. for 
$$r > 0.7$$
,

$$\mathcal{N}_{o}(\mathbf{x}) = \frac{2}{\pi} + \frac{2}{\pi} \sum_{\mathbf{x}} \left[ A_{\mathbf{x}y} - \sum_{\mathbf{x}} A_{\mathbf{x}y} \cdot \mathbf{x} \exp((-a_{\mathbf{x}}\mathbf{x})) \right], \ \mathbf{K}_{o}$$

and since the asymptotic form of  $v_o(r)$  does not involve terms in 1/r these must cancel. The coefficients  $A_{ij}$  are only tabulated to six decimal places so rounding error will bring in a contribution from the 1/r term. Using the fact that  $\sum_{k=1}^{3} A_{ij} = -1$  this formula may be rewritten for r > 0.7,  $\delta^{r_i}$ 

$$N_{o}(\pi) = -\frac{2}{\pi} \sum_{y=1}^{3} \sum_{\lambda=1}^{14} A_{xy} \pi^{\lambda-1} exp(-a_{y}\pi)$$

which may be evaluated without the previous trouble.

In the case of  $v_2(r)$ , for r < 0.7,

$$N_{2}(\pi) = 5.831\pi^{2} + \frac{2}{\pi^{3}}\sum_{y=1}^{5} \left[ B_{1y} - \sum_{\lambda=1}^{12} B_{\lambda y}\pi \exp(-b_{y}) \right] K_{7}$$

and from symmetry conditions (Geltman and Takayanggi 1965)  $v_2(r)$ is zero at r = 0. Hence all the coefficients of  $1/r^s$ , s = 0, 1, 2, 3 must vanish. Again rounding errors will occur and the term in  $1/r^3$  will dominate the value of  $v_2(r)$  as r tends to zero. The computed values begin this spurious increase for values of  $r \langle 0.3 \rangle$ . Thus it was decided to replace the entire expression K7 for  $v_2(r)$  by a function of the form  $Pr^2$  which will give the correct behaviour at the origin. Here P is a constant.

At large values of r,  $v_0(r)$  falls off exponentially and  $v_2(r)$  as  $-0.447 / r^3$ . Dalgarno and Moffet (1963) have calculated the quadrupole moment of a hydrogen molecule to be 0.473 so the computed  $v_2(r)$  has been increased by a factor 1.058 to give the correct asymptotic behaviour  $-\frac{0.473}{-3}$ .

This potential has ignored the long range terms due to the polarisation interaction and these are included asymptotically as  $-\alpha_{\mu}/2\pi^{4}$  in  $v_{\mu}(r)$ .

 $\measuredangle_{o}$  was taken as 5.33  $a_{o}^{3}$  and  $\measuredangle_{2}$  as 1.25  $a_{o}^{3}$  (Takayanagi and Geltman 1965). This form would dominate the potential for small values of r so it is cut off near the origin by multiplying by a factor

$$(1 - \exp[-(\beta r)^4])$$
,

(Mjolness and Sampson 1965) where  $\beta$  is an arbitrary parameter which controls the effective strength of the polarisation. The final values of the potential are then obtained by adding

$$-\frac{\alpha_{\mu}}{2\pi^{4}}\left(1-\exp\left[-(\beta\pi)^{4}\right]\right)$$

K8

to the functions  $v_{\mu}(r)$ .

#### Discussion of results

Arthurs and Dalgarmo (1960) showed that for collisions of slow electrons with molecules the major contribution to the elastic cross section comes from values of J near to values of j corresponding to low values of  $\boldsymbol{\ell}$ . Thus to calculate the elastic cross section given by j = j' = 0 the important equation is that with  $\boldsymbol{\ell} = 0$ . For the inelastic scattering defined by j = 0, j' = 2 the equation with  $\boldsymbol{\ell} = 1$ ,  $\boldsymbol{\ell}' = 1$  for J = 1 gives the largest contribution.

If the polarisation terms were neglected, i.e.  $\beta = 0$  in then the values of the elastic cross section obtained were very K8 much greater than the experimental values. As the parameter  $\beta$ was increased so the elastic cross section decreased while the inelastic cross section increased (Fig 17). A value of  $\beta = 0.6$ gave elastic cross sections over the energy range up to die.V. which fitted reasonably well with the experimental values calculated by Engelhardt and Phelps (1963). At an energy of le.V. the inelastic cross section increased by a factor four, as  $\beta$  varied from 0 to 0.6, showing that inclusion of the polarisation term is of major importance in these calculations. This investigation of a suitable choice of  $\beta$  was done using the distorted wave ap-The calculations were repeated using the close couplproximation. ing approximation (Fig. 18). In all cases the inelastic cross section as given by the close coupling approximation was about 10% higher than that given by the distorted wave approximation. At

first glance this seems surprising considering the argument of chapter H. However, if the off-diagonal matrix elements are small, it is possible, initially, for the close coupling results to be greater than those given by the distorted wave. This has been confirmed by comparing the inelastic cross section for different values of  $\lambda$ , where  $\lambda$  is a constant multiplying the offdiagonal matrix elements. The behaviour is illustrated in Fig 19 which is consistent with the conclusions of chapter H.

Also, it was apparent that the j = 0 elastic cross section for scattering in the energy range below 1 e.V. was sensitive to the coupling with an inelastic channel. For example, the j = 0elastic cross section was reduced from 65  $a_0^2$  to 56  $a_0^2$  at E = 1 e.V. by including coupling with the j' = 2 state.

In the final graph, Fig 20, we compare our results, using a value of  $\beta = 0.6$ , with those of previous workers, over the energy range less than 1 e.V. Dalgarno and Henry (1965) used the distorted wave approximation with the same potential given in equation K1 but omitting the polarisation terms. Their results are denoted DH and are smaller than all the others which include the polarisation. Dalgarno and Moffet (1963) included the polarisation term and, using the Born approximation, obtained an extension of the theoretical formulae derived by Gerjuoy and Stein (1955 a,b). This formula gives values (DM) which are larger than in the previous case.

Takayanagi and Geltman (1965) have applied the distorted wave to the asymptotic form of the potential,  $\bigvee(\pi) = -\frac{d}{2\pi^4} - \left(\frac{Q}{\pi^3} + \frac{d'}{2\pi^4}\right) P_2(\pi \circ \theta), \quad K9$ 

and they took Q = 0.464, d = 5.3, d' = 1.25. This asymptotic form was cut off at some value of r (say R), the non-spherical part was taken to zero proportional to  $r^2$  and the spherical part retained the value  $-\frac{d'}{2R^4}$  for r  $\zeta$  R. They chose the cut off value R = 1.2 as that value which gave the best fit to the experimental values of the elastic cross section. This choice brings in rather more of the polarisation than we have taken and hence their results give larger inelastic cross sections (TG).

Mjolness and Sampson (1965) also considered only the asymptotic form of the potential but they used a more sophisticated method of determining the cut off parameter. They included the polarisation term with both a non-exponential cut off in which  $r^4$  is replaced by  $\sqrt[\gamma^4]{(\chi_o^2 + \chi^2)^2}$  and an exponential cut off ,

$$-\exp\left[-\left(\frac{\pi}{\pi_{o}}\right)^{4}\right].$$

The exponential cut off proved to be more satisfactory in the case of the hydrogen molecule so this is the case we quote. The parameter  $\mathbf{r}_{0}$  is chosen such that agreement with the experimental values of the elastic cross section is obtained. Their value of  $\mathbf{r}_{0} = 1.8$ compares favourably with our value of  $\beta = 0.6$ . An additional parameter  $\mathbf{r}_{c}$  is also introduced at which point the contribution from the quadrupole term is sharply cut off.  $\mathbf{r}_{o}$  is chosen to be

$$V(r) = -\frac{\alpha}{2r^4}G(r) - \frac{Q}{r^3}D(r)P_2(ros \theta),$$
 K10

where

$$D(n) = O(n) + \frac{\alpha'}{2Qn}G(n)$$

and 
$$G(r) = 1 - exp\left[-\left(\frac{r}{r_0}\right)^4\right]$$
  
 $O(r) = 1$  if  $r 7 N_{c}$   
 $= 0$  if  $r < N_{c}$ 

They took the values Q = 0.49, A = 5.5, A' = 1.38.

The problem of finding a potential which represents the long range forces correctly, includes a minimum number of arbitrary parameters and is easy to handle, is difficult. In these respects our potential which includes the cut off of the quadrupole term in the definition of the short range terms and which only includes the one cut off parameter appears to be the most satisfactory of the potentials described.

The results published in this chapter are in good agreement with similar calculations recently carried out by Lane and Geltman (1967).

|                           | •                                     | · .                       |                                       |                  |
|---------------------------|---------------------------------------|---------------------------|---------------------------------------|------------------|
|                           |                                       |                           |                                       |                  |
|                           | TABLE' 12                             | ·<br>·                    | · · · · · · · · · · · · · · · · · · · | • • • •          |
|                           |                                       | 1                         | · · · · · · · · · · · · · · · · · · · | • • •            |
| · · · · ·                 | Coefficients                          | $A_{ij}$ and $a_{ij}$ for | e - H <sub>2</sub> potentia           | 1.               |
| n na seanna<br>Cailteanna | 1                                     |                           |                                       |                  |
| ·                         | i.                                    | A <sub>il</sub>           | A <sub>i2</sub>                       | A <sub>i3</sub>  |
| -                         | l                                     | -0.99963                  | -0.00034                              | -0.00003         |
| • •                       | 2                                     | -3.16654                  | -0.00381                              | -0.00048         |
|                           | 3                                     | -4.54009                  | -0.02122                              | -0.00368         |
|                           | 4                                     | -3.75910                  | -0.07770                              | -0.01863         |
| N                         | 5                                     | -1.86801                  | -0.20975                              | -0.07017         |
| · · ·                     | · · · · · · · · · · · · · · · · · · · | -0.66033                  | -0.44262                              | -0.20930         |
|                           | 7                                     | -0.28954                  | -0.75373                              | -0.51385         |
|                           | 8                                     | -0.24780                  | -1.04861                              | -1.06440         |
|                           | 9                                     | +0.03922                  | -1.17911                              | -1.88985         |
|                           | 10                                    | 0.0                       | -1.00688                              | -2.89977         |
|                           | 11                                    | 0.0                       | -0.47909                              | -3.84426         |
|                           | 12                                    | 0.0                       | +0.14033                              | -4•34352         |
|                           | 13                                    | . 0.0                     | +2.73735                              | -3.99879         |
|                           | 14                                    | 0.0                       | 0.0                                   | <b>-2.</b> 54867 |
|                           |                                       | al                        | <sup>a</sup> 2                        | a <sub>3</sub>   |
|                           |                                       | 4.14286                   | 12.42857                              | 16.57143         |
|                           |                                       |                           | · .                                   |                  |

## TABLE 13

Coefficients  $B_{ij}$  and  $b_{ij}$  for  $e - H_2$  potential.

| i. | B <sub>il</sub> | B <sub>12</sub> | B <sub>i3</sub> | B<br>i4        | B<br>i5          |
|----|-----------------|-----------------|-----------------|----------------|------------------|
| l  | <b>-0</b> 26498 | -0.00139        | -0,00008        | -0.00003       | -0.00001         |
| 2  | -1.09777        | -0.01152        | -0.00097        | -0.00039       | -0.00011         |
| 3  | -2.27396        | -0.04772        | -0.00600        | -0.00283       | -0.00095         |
| 4  | -3.14024        | -0.13179        | -0.02487        | -0.01370       | -0.00527         |
| 5  | -3.25239        | -0.27300        | -0.07727        | -0.04966       | -0.02185         |
| 6  | -2.48435        | -0.44978        | -0.19190        | -0.14396       | -0.07241         |
| 7  | -0.11533        | -0.01498        | -0.39568        | -0.34719       | -0.19977         |
| 8  | 0.0             | +0.15209        | -0.69283        | -0.71485       | -0.47130         |
| 9  | 0.0             | -0.08320        | -0.08131        | -1.27733       | -0.96840         |
| 10 | 0.0             | -0.05082        | -0.03954        | -1.99882       | <b>-</b> 1.75415 |
| 11 | . 0.0           | 0.0             | -0.02352        | -0.25251       | -2.82053         |
| 12 | 0.0             | 0.0             | 0.0             | -0.04941       | -4.03232         |
|    |                 |                 |                 |                |                  |
|    | b1 ·            | <sup>b</sup> 2  | bz              | <sup>b</sup> 4 | ъ5               |
|    | 4.14286         | 8.28571         | 12.42857        | 14.50000       | 16.57143         |
|    |                 |                 |                 |                |                  |



Potential function V(r) used in the e - H<sub>2</sub> collision.

.

FIG.16.



.

Variation in the elastic cross section  $O^{-}(0-0)$  and the inelastic cross section  $O^{-}(0-2)$  depending on the value of the cut-off parameter  $\beta$ , for energy E = 1.0 e.V.

FIGURE 17

FIG.17.



### FIGURE 18

Comparison of the inelastic cross section  $\sigma$  (0 - 2) versus energy E (e.V.) for several values of  $\beta$  = 0.2, 0.4, 0.6, using both the distorted wave (DW) and close coupling (CC) approximations.



### FIGURE 19

Calculated values of the inelastic cross section  $\sigma$  (0 - 2) versus coupling coefficient  $\lambda$ , for E = 1.0 e.V., using both the distorted wave (DW) and close coupling (CC) approximations.

 $\frac{1}{2} = \frac{1}{2} \left[ \frac{1}{2} \left[$ 

FIG.19



ζ

FIGURE 20

Comparison of the inelastic cross section  $\mathcal{O}(0-2)$ calculated in this thesis with the work of previous authors : (DH) Dalgarno and Henry, (DM) Dalgarno and Moffet, (MS) Mjolness and Sampson, (TG) Takayanagi

and Geltman.



# REFERENCES

Allison, A.C., and Dalgarno, A., 1967, Proc. Phys. Soc., 90, 609. Arthurs, A.M., and Dalgarno, A., 1960, Proc. Roy. Soc., A, 256, 540. Barnes, L.L. Lane, N.F., and Lin, C.C., 1965, Phys. Rev., 137, A 388. Berstein, R.B., Dalgarno, A., Massey, H.S.W., and Percival, I.C., 1963, Proc. Roy. Soc., A, 274, 427. Biedenharn, L.C., Blatt, J.M., and Rose, M.E., 1952, Rev. Mod. Phys. 24, 249. Blatt, J.M., and Biedenharn, L.C., 1952, Rev. Mod. Phys., 24, 258. Buckingham, R.A., 1960, Planet. Space. Sci., 3, 295. Buokingham, R.A., 1962, Numerical Solution of Ordinary and Partial Differential Equations (Ed. L. Fox), Pergamon Press. Buckingham, R.A., and Massey, H.S.W., 1942, Proc. Roy. Soc., A, 179, 123. Burke, P.G., and Smith, K., 1962, Rev. Mod. Phys., 34, 458. Carson, T.R., 1954, Proc. Phys. Soc., A67, 909. Condon, E.U., and Shortley, G.H., 1935, Theory of Atomic Speatra, Cambridge University Press. Dalgarno, A., 1963, Rev. Mod. Phys., 35, 611. Dalgarno, A., and Henry, R.J.W., 1964, Atomic Collision Processes, Ed. M.R.C. McDowell (Amsterdam: North Holland), 914. Dalgarno, A., and Henry, R.J.W., 1965, Proc. Phys. Soc., 85, 679.

Dalgarno, A., and Moffet, R.J., 1963, Proc. Nat. Acad. Sci. India, A, 33, 5

Dalgarno, A., Henry, R.J.W., and Roberts, C.S., 1966, Proc. Phys. Soc. 88, 611.

12%

Davison, W.D., 1963, Disc. Faraday Soc., 33, 71.

Davison, W.D., 1964, Proc. Roy. Soc., A, 280, 227.

De Vogelaere, R., 1955, J. Res. Nat. Bur. Stand., 54, 119.

Engelhardt, A.G., and Phelps, A.V., 1963, Phys. Rev., 131, 2115.

Fox, L., 1962, Numerical Solution of Ordinary and Partial Differential Equations (Ed. L. Fox), Pergamon Press.

Fox, L., and Goodwin, E.T., 1949, Proc. Camb. Phil. Soc., 45, 373.

Gerjuoy, E., and Stein, S., 1955a, Phys. Rev., 97, 1671.

Gerjuoy, E., and Stein, S., 1955b, Phys. Rev., 98, 1848.

Hartree, D.R., 1957, The Calculation of Atomic Structures (New York: John Wiley).

Hirschfelder, J.O., Curtiss, C.F., and Bird, R.B., 1954, Molecular Theory of Gases and Liquids (New York: John Wiley).

Kopal, Z., 1955, Numerical Analysis (London: John Wiley).

Lane, N.F., and Geltman, S., 1967 (unpublished).

Lawley, K.P., and Ross, J., 1965, J. Chem. Phys., 43, 2930.

Mayers, D.F., 1962, Numerical Solution of Ordinary and Partial Differential Equations (Ed. L. Fox), Pergamon Press.

Modern Computing Methods, 1961, Notes on Applied Science, No. 16 (H.M.S.O.)

Morse, P.M., 1953, Phys. Rev., 90, 51.

Mott, N.F., 1952, Elements of Wave Mechanics (Camb. Univ. Press).

Mott, N.F., and Massey, H.S.W., 1949, The Theory of Atomic Collisions (Oxford: Clarendon, 2nd. edit.).

Mott, N.F., and Massey, H.S.W., 1965, The Theory of Atomic Collisions (Oxford: Clarendon, 3rd. edit.).

Mjolness, R.C., and Sampson, D.H., 1965, Phys. Rev., 140, A1466.

Percival, I.C., 1960, Proc. Phys. Soc., 76, 206.

Racah, G., 1942, Phys. Rev., 62, 438.

Roberts, C.S., 1963, Phys. Rev., 131, 209.

Robertson, H.H., 1956, Proc. Camb. Phil. Soc., 52, 538.

Rose, M.E., 1957, Elementary Theory of Angular Momentum (London: Chapman and Hall).

Schwarz, R.N., and Herzfeld, K.F., 1954, J. Chem. Phys., 22, 767.

Seaton, M.J., 1961, Proc. Phys. Soc., 77, 174.

Smith, K., Henry, R.J.W., and Burke, P.G., 1966, Phys. Rev., 147, 21.

Smith, K., 1965 (unpublished).

Tables of Spherical Bessel Functions, 1947, Nat. Bur. Stand. (New York: Columbia Univ. Press).

Takayanagi, K., 1952, Prog. Theor. Phys., 8, 497.

Takayanagi, K., 1957, Proc. Phys. Soc., A70, 348.

Takayanagi, K., 1963, Prog. Theor. Phys., Japan (Suppl.), 25, 1.

Takayanagi, K., and Geltman, S., 1964, Phys. Letters, 13, 135.

Takayanagi, K., and Geltman, S., 1965, Phys. Rev., 138, A1003.

Watson, G.N., 1944, Theory of Bessel Functions (Camb. Univ. Press).

Wu, T.Y., and Ohmura, T., 1962, Quantum Theory of Scattering (London: Prentice-Hall).

Zener, C., 1931, Phys. Rev., 37, 556.