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THE NUMERICAL SOLUTION OF GCERTAIN
'DIFFERENTIAL TBQUATIONS WHICH OCCUR - =~ -
IN THEORETICAL PHYSICS
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| CHAPTER A

‘nbrodustion

ﬂThls dlssertation is concerned w1th the numerical solution of cert-,‘.’

lain differentlal equations which occur very frequently in theoret~-

tical physios. The solution of any physical problem involves the ‘
ieettlnv up of a mathematlcal model and Ain the past this model has
}beenmeclved by analyblcal methods ow, in the many cases where no

A{:analytlcal solution can be found, by numnerical methods. Bettér

T”approx1mat1ons 1ead bo more’ complicated equations and to more dif- ¢

“The | solutlon of a system of equaﬁions is 51mplified by an under--’

fStanding'of the physical processes which give rise to the particular
fequations and Lheee equations frequently exhlbib some awkward num-"
f;erical pitfalls. - Therefore a background of the two disclplines,

wf‘numerlcal analy51s and theoretical physics is desirable.

-Thue, thms the51s ig.divided into two parts. - The first is a

:ijdeecriptlon of the numerical techniquee involved and thereafter a
‘f'-,discuesion of some of the numerical problems which were encountered;
‘:_5 ithe second is an accoun’t of the physical problem, the derivation of

\f]:the different1a1 ~equations and & discusslon of the resulte obtained.




‘that of soattering by a rigid rotator. This model will only be val-
idbif vibratlonal degrees of freedom are ignored and the molecule is
in the ground eleotronlo state, that is, if the component of elect~
fonic angular momcntum along the internuclear axis is zero. For
ooattering problems of thls type the relative motion in the various
:;ohannels oan be descrlbed in terms of "ingoing" waves and "outgoing"
soatterod wavcs. _When the Ggeffiomcnt of the "ingoing" wave is nor-
;;molised to unit tlux, the oooffioients of the. "outgoing" waves form

o thol fsoattsmng or 8 matmx (Wu ond Ohmura 1969) which detormines

the cross%seotion.- Thls S matrix is unltary because of the re-

quirement of oonservatlon of flux and it is also symmetrlo as & con-

sequence of the time reversal of the system. Two.associated matric-
_es} the reactance matrlx R and the transition matrlx T also ocour.

,fViﬁfTheir relation with the S matrlx is given by the equations

A (1£-+S) L I - S) o / AL
L. : A2
T - 8.

From Al it follows that R is a real symmetrlc matrix. It will

be shown later (bhapter ¢) that the oross section for the excitation

of the jth rotational level bo that level defined by rotational
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_:q&hﬁﬁﬁm; ﬁmbéfr“j‘ 18 given by
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",vf“Llwn)/&‘xy @ °’_“)> } [’i’ (%3'49 .

:Thc Schrodlnger equation describing this collision can be simp-
j11:[1‘1@(1 to glve a set of coupled, second order, ordinary differential
?quatlons 1n terms of the radial dlstance r. These equations may

;be wrltten

A KR e | M= Y '
e - . _. T | ) 4

.ﬂi is a constant and.

,the angular dependence of the incident particle and targets These

; .

:Jor, introduoing the reaotanoo matrix R to av01d the use of complex

14’“numbers,




Historical survey

i:Thé‘first ﬁathematleal treatment of coll1sions involving mole-
cules was’ glven by Zener (19%1). ’ - His treatment, based on the
idistorted wave approxlmation, was restricted to collinesr collis- -
1ons between a diatomlc molecule and an atom. He showed the ine
fafficlency of interchange of translatlonal, vibrational and rotat-
ilOnal energy in molecular colllsions, thus establishing the model

: of a rlgld rotator for the conslderatlon of rotational excitation

:;fof the molecule.“

,?Nothlng more was done for about twenty years until Takayanagi
1952)isolved the equations A4 using his modified wave number

In this approximation the centrifugal potentiel
. , | -
.ii(li + 1) //r _ |
= iéﬁréﬁlﬁééd'By its'value at a distance r_ , chosen to be of the

i:order of the dlstance of closest approach, according to the class-

:ical theory, of the partlcles in a typical collision. The problem

effective wava numb@r ki given by



If thé a—wave Cﬂi = O) radial equ&tions can be solved in closed. -
Efform, the direct numerical solutlon of the radial equatlons ic av-
t01ded and considerable 91mp11flcation results. This method has
5$een used by Schwarz and Herzfeld (1954) to calculate rotational
;tranaitions 1n hydrogen. However it has two main disadvantages.
tﬁlrsﬁ 1t is useful only within the very restricted range of poten-
‘ﬁgals for which an analytical solution of the s-wave equation is
;known; seoond, the arbltrary parameter rc iptroduces an added

*ﬁuncertalnty into the final cross section.

”wAn.abprokimate solution to equations A4 mey be obtained by
usmng the Born approximation (Mott and Massey 1949).  This is ob~,
-tained by first setting all ul equal to zero, k mnot equal to

fynegleqting all vii ©and solving the remaining equations,

fa.liéi?;;‘  2 A4 (Lar)
ar ; - ' -(.(. A ‘ /u-u_.{, = 0

AL T ‘ Az oot ‘ ‘ A8

(f_‘qih‘e "éo‘lutions of A8 which satisfy the boundary conditions ere.

; Wf@the spherical Begsel functlons,

~~4E4./V' k{e (.J%A Ar)‘ | : A9

3
I

':¢he ééiﬁ%iana' A9 ave them substituted back into the right hand

“side of A4 &nd the Tesultant uncoupled inhomogeneous differentisl




.fﬁffﬁéeqﬁaiiona ér; solved for all the Uy 40 This method will give a
“vﬁ;fvery ﬁoor result for the value of the cross section due to the
ii””;;poor approximatlon the Born functions make to the true g close
iﬁﬁF to the orlgin.. In this region.the true u,, will go to zero much
Jﬁyﬁi?faster than the Born solutions A9.

c;b&}{mpbhabetter first approximation ig obtained by leaving thé

"diégoﬁalftexms~;vii, in equation A8. Solving the equation,

M puha + ARy -~ Yiar AMon = -D,

Y;giveé,ﬁn;t Just the spherical Bessel functions, but rather, redial
sw;»wave functlons which are distorted by the diagonal matrix elements
"ﬁfﬁvii;% ”If +hese solutmons are then substituted back into the right
}hand side of A4 the solution of the resultant uncoupled inhomo-

s ;igeneoue equations defines the distorted wave approxim&tion. This

‘ﬁﬁif?is ‘the method used by Roberts (1963), Davison (1963, 1964), Dal-

i?f(f?;fifgarno end Henry (196%), Dalgarno, Henry and Roberts (1966).

| iThié ﬁpéfoximation wés.one of the most satisfactory ways of.
.*faéplyiﬁg‘a'stréight forward numerical approach to the equations A4.
~\waever; since these last mentioned calculations were carried out,
' fllaiger.and faster automatic computers. have become available and it
5y;f;i$'né€‘§racticﬁl}to find the solutions of equations A4 when none
?Tifilijﬁgé}éfffdiagonal matrix elements Vik are neglecteds This de-~
'ﬁf{:fihé§x§#§ 9iO89 cbupling'appfoximation. Tﬁis'metﬂod has been used

“i' by Barnes,. Lane and Lin (1965) for the calculation of electron

Y
A

AlO



iiéxéiﬁatibh‘drpss sections in sodium,
To the best of the author's knowledge no calculations on the

'2200111810n8 between atoms and diatomic molecules have been carried

e ;out using this approxlmatlon and it will be an important part of
( $?W?ff;this work to compare -the distorted wave and close coupled epproxi=

.w:;fmations in several colllsions of this type.

txAnother problem which is of current interest is resonant

’ﬁ.gscattering. . In practice, resonances are said to have ocourred in

3?scattering.if the. cross sections exhibit sharp maxima and minima.
.‘§These resonances w111 only occur when an open channel is coupled to
Qﬁa closed channel, ERT-R those chennels for which k {0 in A4.

fj}Thus for the closed channel case we introduce the boundary condi-

lf"AnRéxtensi#e review article on resonant scattering has been given

. by ‘Smith (1965).

‘;fContent bf thesis

As mentioned boefore, this work divides into two parts. In

ﬂtﬁé fi:ét;-oonsieting of chapters B, C, D, E, F, the nﬁmerical treat~

h -_.mentlgfyﬁﬁefproblem is considered;. in the second, which includes

=3

ALY



éhéﬁﬁéréyéjbﬂ,'x, 3, K, the physical problem is desoribed ‘and the
signlficance of the results discussed. For this reason the basic
eﬁﬁations A4, together with the asymptotlc boundary conditions
Aé, A6 have been inéluded in this introduction 8o that in the
‘umerxcal section we can consider these equations quite independ-

ently £rom the phy81oal problem from which they were derived.

Chapter B consists of a simple resumé of the properties of a -

econdporder linear dlfferential aquatlon with the first derivat- |
:Qé\absentl ' Most of these propertles can be found in the stand—
fara texts, e.g. Watson (1944), Mott (1952), Fox (1962), but it
was thought worthwhile to include them here as congtant reference

BJmade t@ many of them in the following chapters.

:The numbrloal solution of thias type of dlfferentlal equation

sndescribed in Chapter C. Several numéﬂrcal methods are diacuss-

ed'and some of the numerlcal pitfalls agsociated with these methods

are p01nted out. C ' .

:;f The distorted wave approxlmablon is derived in Chapter D and
?theynumerlcal soheme for the calculaﬁlon of the cross section A3
~isnlald Outs The ohapter is concluded with a write-up, descrip-
tion and flow dlagram of a progream written for the Dnglish—Electrlcw.
‘i:Leo-Marconi KDF9 computer to perform these calculations. Similax
: programs have been written notably by Roberts (1963) on an I.B. M;
709 at Massachusetts Instltute of Technology and Davison (1963) on

"f the EDSACZ at Cambrldge.




Most of the original work involving the close ooupllng ap-
{prox1mation 1s deoorlbed in Chapter E. Several numerical tech-

?nlques wero trled on the computer and some investigation was done

:htovcr1t1ca1 values of the parameters. Several numerical snaegs
~‘vx‘re-re encountered each manlfestlng itself in a loss of symmetry of
FEJR_ matrix. " The write-up, description and flow diagram of a
rogrnm to solve coupled differential equations end evaluate the

eactancejmatrlx R are 1ncluded.

The last sectlon of the numerlcal part,Clapter F, describes

“the! problem of ooupllng an open channel equatlon to that represent-

~ing'a‘olosed channel. . Some numerloal problems are encountered and

t:is"thought that these will inorease in complexity as mowe eq-

ttione are coupled together, These problems need further invest-

wChapter @ beglns the physical part with a derlvation of the
jdlfferential equations deeorlblng the scattering of a point part-
cle by a rigld rotator (Arthurs and Delgarno 1960)e The distort-
ed\wave and olose coupled approximations are now seen in context
Qand the effeot of the orientation dependence of the internuclear

1{potent1a1 is treated mathematloally.

| The velid1ty of the distorted wave approxlmation ig studied in
JEvChapter H w1th reference to a particular example. Numerioal cal-
'i:culations show that in the case of scatterlng of & hydrogen atom -

liifby 8 hydrogen molecule, the distorted wave approximation behaves

"i”,and breaka down in preeaeel? thie manner predicted in the theoretical

PP

;Lﬂexamplés'ﬁ:



Chapter I contains the maJority of the numerical calculations

o e in this thesia. In 311, we consider the scattering of a hydrogen

" atom, a hellum atom &nd a hydrogen molecule by a hydrogen molecule
~’; and also that of a hvdrogen atom by a deuterium molecule, using
"'”t;both the distorted wave and close coupled approxlmations. These

- 'Qc:'results have been summarised in a recent paper (Allison and Dalgarno

17351'1967)

ﬂ In Ohapter J the numerical techniques developed in Chapter F .

.7‘are applled to the search for resonances in the collision of a

fhydrogen atom and a hydrogen molecule. No resonences were found

11?Piﬁbis_casc; a result prequted by Mott and Massey (1965).

Oh&pb@r K, which gcnglua@a this work, containg a doﬁm‘iptwn

igf of the Bcattering of slow eleotrons by a hydrogen molecule. The

‘N;if‘programs developed in Chapter E have been modified to deal with

”"this oase.f_ A short introduction is 1ncluded at the beginnlng of

= the chapter. ’

f'1Infcrmoleco1ar;potentials

:(Thé problcm‘of.finding a realistic intermolecular potential
*i'-which describea the 1nteractlon between two colliding bodies forms

one of the major difficulties in acatterlng theoxry to-day.

'»{T"The non-empirioal.calculation of intermolecular potentials




ﬁtated mathematlcs excepb for some pairs of the simplest molecules, -

Bmplrlcal 1nformatlon comes from the soattering of molecular

"ﬁvAfﬁifbeams in gases, the second virlal coefflclent and the transport

,;Tpropertles of gases.

fd#éiﬁfhé;jéa¢s to represen£ the interaction of the type shown in
T ;“;;These are often written in the form

e ~(p),

A /57' and

2

.§1§;}<:5a
v~
o2
n i

*

i where &, and {37 are convenlent scalmng faotors and V(P) is a

‘shape function which may or may not tontein-one or more parameters.

_[iAn emp1rica1 potential frequently used is (Hirschfelder,
Ourtiss a.nd Bird 1954) the Tennard- Jones (12, 6) potentia.l,

12 b

- ol

“ﬁhéfé j£”?ié.the:ﬁaximum energy of &ttfaction, i.e. the deéth of

‘}:rﬁﬂé:péfential well which occurs 8t T = ihtf and 6 1s the value

@T.‘ffffiﬂof :rj;fQT whichiAv(r) is zero. This potential gives a simpie
tfj‘ahd réalistic represéntation for non~polar molecules and while %he

'  ;;finverse sixth power represents the attractive part fairly well the

I repulsiv‘e part L8 suly an ﬂppi;’@xiﬂ&.hilmn

:from the flrst prlnciplee of quantum theory requirés very complic~ .

‘Thefe are vdrious analytical expressions which have been used

il

Al2



v e 2

fThia functlon approximates the repulsive term by an exponential

fform. f It is unrealistic in that the exponentlal term would lead

:E%;ion is arbltrarlly made infinite for all r less than some value

(see Pig 2)s

';?'FrGQuently the long-range force has been neglected and implic-
ﬁit in thls negleot of the attranotive part of the potential is the
{assumption that the long—range force glves a so gradually varying

_force that the internal degrees of freedom adjust themselves adia-

fprobabiliﬁy':_ As a result 81mple potentlals such as an exponential

ﬁfunction, W

<
3

—”
D
'S

* " have 'béén aged (Roberts 1963).

5 f?} Among other purely repulslve potentlals is the one used by
3ﬁ*£;zener (1951), OL' . »
""".- ';' ’};..‘; N e ) 'A . i .
. "\ﬂ\/ (_/r) - ()T - )t a /f.jf‘ib |

.;l

"

o - . e

‘ffto a meanlngless maximum at a small value of xr unless the funct-

“batlcally and 80 no quantum transition is expected with appreciable

12

Al3%

- Al4
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‘and the Morse potent1a1 (Davison 1963, 1964),

’D,g,(m[ 2ol -] -z asp [ ()] ) s

Thls tractable function represents the actual potential et
fsm&ll dlsbanoes much better than the Lennard-Jones or Buckingham
ipotentlals ‘but at 1arge distances it is less s&tlsfaotory. pﬁ

;is the energy at equilibrium separation Tye

ﬁJ‘Although the attractive part of the potential does not seem

gto”direotly cause the inelastic processes with appreciable prob-
fability it affects the transition probabllltles indirectly by ac-
fcelerating the relative motion when en atom and & molecule epproach

feach other. 'Hence long range foroes must elso be taken into ac-

Z:j;"be"aﬁinvestigation of rTotational trensitions in three dim-
fensional 0011191ons the orientation. dependence of ‘the intermolec-

‘-.gf?ular potentlal is also required. 'This is often written in terms

ﬁf@?}fﬁf?‘bf the Legendrq polynomials and for the atom~diatomic molecule case

F‘ff.one may write :

: 4..:V(“) waJb P (<028)+\/,, () Za ) o oms

5fwhere '9, is the angle between the internuclear axis of the molecule

g aﬁd.théf;ine conmecting the centre of mass of the molecule with the

atom.'?\é;flahd bn aro ‘the nuymmetry ocoofficionts whose aigﬁ and -

A I3
1




sﬁﬁeﬁifudeﬁiaie to be determined.

}égUéuéliyfonlyjthe.leading terms are retained,

if
<
P
2
{ .
v 0 .
+
e
-0
A
=

I

V(’ﬂ‘ﬂ Vel (, 9) ¥ Vaﬁt«r.t’.{» ‘9)‘, ALT
;The omitted term Pl (cos & ) is zero for a homonuclear molecule -
.and V ? (r) and V 1m(:r') are respectively the repulsive and
fattractive parts of the potential. Review articles on the subject
Tof 1ntermolecu1ar potentlals have been given by Buoklngham (1960)

‘.a.nd Dalgarno ( 1963)




CHAPTER B - R

-EQEféimplé pr&perties of differential equations

'”";Qgpﬁgidér;thé‘solution of the second-order linear differential

o L ' ‘ '
SR ;f;z # F(r)| m(r) = o

'where F(r) is.a known function of r. Since this is & :senand
{order equation it will have two independent solutions (u end u,
;éay) and the general solution can be written Aul + Bu2 ‘where A
;;and B “are constants.

: The smmplest case is when P(r) = k2, where k is & con=

ﬁ;stant. The general solution is then

i;;;?;;hffllf%.amqb /&bf + B Cod Aen |

":gﬂri;é.-the solution is an oscillatory function and ’n is a real
ﬂ5§;§hdse>shift.

" If P(r) is constant and nogative, F(r) = - K° say, then -

-kr +k1

~~$‘ﬁhe two independent solutions are e and e with géﬁeral
;. %aolutipn 3 R o L - : |
= A & + B £ .

Bl
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'ﬁﬁiééihithéigenerél case when F(r) is not constent then if F(r)

87oig positive, u is an oscillatory funotion. This cen be seen as

‘ ¥ followsa: * -

SR - . 2

.Since “F(r) is positive then u and ‘Q_% will have opposite

i ERCTRE - . dp | .
{Signs, i;e; 4t a point af whibh u . is positive the rate of change

;of the tangenﬁ to the curve is decreasing so the tangent will bend
-‘szﬁgismore and more steeply toward the axis. When $he curve crosses the
;é;iaxis, i.e.: u is negatlve, then the slope of the tangent will in-
fcrease. Thls process continues to glve an oscillatory function.
{<f. -’ ) d2u

B If,‘however,‘F(r) is negative then u and —3 will have

dr2

the same smgn ‘and an exponent&&l golution will result.

;QWG wlll be interested in the case where P(r) is initially
f?negative and ohanges to belnp positive as r inoreases. . In this
;“;fcase the solution will behave exponentially until F(r) =0 and

'w111 then oscillate.

:The form of F(r) with this partioular property will be taken

R F(,,,-),; A _ - - () | o

‘~and we impose the additional requirement that f£(r) does not have
B ::a pole of order higher than. one at the origin and r f(r) —> 0
y}tgz"ig;;as r _4; oo . 5 wmll be’taken as oonstant for a partioular equa-

: ;:ﬁ!iﬁ;;ftion.' TFor- 1arge r, F(r) — k° and the solution will have

“Qasymptotio form;f 



'Vﬂﬂf,fSﬁBstitufiﬁg into the equation

A gt - A ()] ) |

B5
-"”_5féﬁ§7%qﬁatiné coeffiéienté of P2
[4»(4&') ) ,g(x;+l)].a° ~o.

fiéinagifaaiqﬁ.o‘ then p= -f or &+ L.

, there results the equation

*:By equ&ting all other coefficients of r to zero, all the

termsl a ,; n ),1 may be obtained in terms of 8,

f{itfiéfnbw required that the solution u is regular at the or-
f»{f;jfigin:énd‘éégihe solution with the requisite behaviour at the origin
s
AN = N eV /T ' ‘ B6

o S

\Tf‘ﬂ;fThis determines one of the arbitrary constants in the solu-

‘21jion;f3fTh¢ other conmbont provides an over-all normalisation,




To specify the solutmn uniquely some particular asymptotic

t

f.'orm i‘or the aolution must be given, This will fix the normalis-
) -\“" B a..tionb‘ b - .
i The asymptotlc form B3 will hold onl;y' in reglons where

/1-2-

£ (L+1)
/rz
so the latter is the. preponderabin{r term. However the spherical

'ia'lnégiiéib-l% ' ‘Usually £(r) —> 0 much faster than

e Bessel functlons )

oWl

a-s-_:- n
7~

4
—

i

3

R :

el
X
i

/&A—Xﬁ (,fe,r and . /&/r /yL L/kr) are the {two in-

"‘ .,;-'.sdependent solutiona of the equatlon

OLZ + /k . ) ( + l) m (/T)

A P

'l‘he gﬁsimptotio solution of equation B5 may now be taken as

Do
Ce

18




| ,u, (Yﬁ)'.: N,?e,r ( Y,au”) - B m (z?e/r)) “.Blo‘i

(Jifij*and thls will be valid as soon as the effect of f(r) has died

Hfunatlon B3 may be wrltten, without loss of generallty, as
EJL;A{*C qu(%W iﬂu'ﬂ%"f\" ~ Bll

Qgso$that 4] 0 when f(r)

;ngparingi BlO and Bll gives

B = C A "\']’

'an& these may be used to determine 41 unmquely. Thus the solu-
ftlon 15 completely determined by

: (é) the phase shif't ﬁq

I::"b

the normallsation C. -

ifFéf*cbmputational purposes Bl0 is written in the foxm
,u,/v ‘:D /&A’ ( Yﬁ (/?e,r) KoY. /V\,_z(,&zr)), . Bl2

4Tand taking two dlstlnct points r_, T

b in the asymptotic region,

“allows; D to be ellmlnated to give

5 - t f 4\ :__ My Ao Yx.(./k"m) - M, Ay Yx(’k’r.&) 313
o ke gy

© "+ whence - -

19



LoD = - . B4
B ek '/i‘m,(yz()’a/&) )C:vm] mey (e /Mo )) '

o

Unfortunately the value of 41 caloulated from B13 by a stan~

;fdard computer subroutine is glven in the range -IL <‘,\ j%}

Eso 41 will be arbltrary by an amount IT , which w111 affect the

Big‘ﬂ Of Dc -

PR

-The correct sign can be determined by ensuring that the dir-

Jﬂﬂigfectlons Of the golutlon u  and the oorresponding spherical Bessel

‘ ifunotion are the aame in the asymphobia region . _
'f}ixi.e. the phase ghift ”n is obtained by comparing that solution of
'“3‘139, which is regular at the origln, viz. /ﬁbf‘?k_(AkJ) y with
itﬁat solutlon of BB, with the same 1nit1a1 condition, which has

'}lasymptotlciform .BIO (see Fig 1 )e

BV a




FIGURE 1

.+ Comparison of solutions U with Jdﬁkfﬁl(k?)j~ to |

v
’

determine sign of normalisation.
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_— CHAPTER C

Numerical SOlu‘t.ion

' V%‘ilj{Two numerical methods for the solution of equation B5 will be

R x ,-f‘_;j‘_{cpnsldered. “ Dhe first is the Runge-Kutte method (Kopal 1955) :

\-“£5ﬂgg}fhhidh S6lves 6 set of coupled first-order differentisl equations.

If 8 dlfferential equation of any order is of such a form

;fsﬂthat the “highest derivatlve can be expressed as a function of low-

f;ffprﬁderivatlves and the two variables,then, by slmple substitution,
N f}‘;it l'gmz‘b'@ expressed a8 & set of coupled first-order equations.

Thus the: Runge-Kutta method is applicable to a dlfferentlal

‘Jequatlon of any order w1th this property.

: Runge-kutts Method

r oA
3

Z:TﬂéiQifferential equatiohs can be written




’;";Ag = /&, :}A( Qc{+!i/$b, "3(.4 + ".'z;’km. ‘-*AX:;*%"&ml):
hus o def e e b ---?-%f_ﬁ?ff#e-)

glves . ool o .
, A .
AYA‘H Akﬂ' o %</k40 2 /g?‘ +Z/fﬁ 2" /fe“) L

The integration is started by assumlng initial conditlons  y? = yil"

at the point x = xo y Where xO. and the set yi‘_gregknoﬁﬁyf;ﬁ

Bquation B5 may be written, By putting v~%.%§1;jwj;}ﬁ,;i; ;:1;7*2

. . s R :
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" and in this form the Runge-Kuﬁta method is’ 1mmed1ately appllcable._»5

. Thus by choosing inltlal conditions, say u = O and v ;'%%»= éfi‘4
].&t r = 0, a step by step process may be set up glv1ng values of u
" at successive points, intervel h apart.,  Heré 8 18 an arb1t~ -

rary constant.,
These equations are derived from a comparisoﬁ wiﬁhftﬂe'Tayldrynﬁui

Series expansion upAto and, including terms in
This ia the most commonly used method for thé'éoiutiéﬁ-@f diféf;.

ferentisl eqﬁations on an automatic computer. ;Iﬁ.iélﬁelgtivelj'

easy to program:c-- absence of a starting prooeduré.heipéﬂﬁeré';'“

. and as large, complicated and even non-linear sets of equations cam ‘' -



be handled with little extra effort it is not. surprising that this
“"method is so popular. Also changes in interval involve no com-.

plication, & situation whioh requires special tmcatment in finite .

difference methods.

The main disadvantage is-that each function has to be calcul~ ;' u
ated four times per step and thls increases the tlme of computation.  f
Also estimation of the truncation error is difflcult so that the
best that can be done is to make use of the fact that the 1ocal |
5

truncationlerror is of the order of* h” in the process descrlbed.A

. Recurrencé IFormulae

The second method that will be deacrlbed is & finite difference5;”
niethod known alternatively as Numerov's method (Hartree 1957) or ;;l- & ﬂh‘
second order Fox~Goodwin recurrence relation (Fox and Goodwin 1949) |

It is based on the flnlte difference formula
2 | . . - l . 1f i Hf:iﬂffﬁ_~iii S

This formule is applied to the equation L e
W' )y = gl : x> e

.i.e, & second order 1inear dlfforentlal equation w1th the flrst der~

. ivative sbsent,



Truncating formula C4 after term in S “and aubstiﬁuting :Lnto { ;' N

05 gives the recurrence formula

(’ ’“_315-’8:](/*'“3 Y2 ( /ﬁ s )AX" ( 12 )”yx |
= LA ,.( (2(“ , 10 3/, g/,,) Cs

~ If values of the solutlon are known at two points then this fel-.:;‘
ation may be used to generate further values of y. _;f;;f{‘ﬂfw :

A dieadvantage is that a starting procedure is usually requlred to N
evaluate two initial values. Also changing the interval requlrcs"f‘
Mspecial treatment, especially reducing the 1nterval, in Whlch case:ﬁ
some means of estimating an intermediate value is necessary;: This
can be done hy 1nLerpoJa,tion ony ll’l the ocase oi‘ halving the 1ntawa1,
by simple elimination. | D

However the functions g(x) and f(x) need only to be calculatad

" once per step and due to the very small truncatlon error, whlch has

leading term.

I m__ v
7““’ Tk A}"' = Zuo %AZ(" T 2ko /&?3

ll T

e larger value of h may be chosen than in the'previoué‘casé.‘ This
fact," together with the recurrence formula C6 “will mean that thls
method will run very much faster on an automatic computer than w111 'Ll

the Runge-Kutta method.

Tt is generally true that a meﬁhod which is tailéf;méééyfaf;é;i?i




partioular differential oquation, in this oase,'seéond\ordér;jlin- ;

rear, firet deriv&tlve absent, will be more efficient than a generél

method such as Runge-Kutta. | |
Ariother exsmple of this statemenﬁ is that a-éééoﬂd 6§dér; ﬁ§n- -

linear differential equation with the first derlvalee absent w1ll

be more efflciently solved by the De Vogelaere method (De Vogelaere-}"

1955) than by Runge-Kutta. In the former method the funqthn_val-- ‘l:

ues are only calculated twice per step.

| Returning to equation C6 if we.subsﬁitutg-gq;55f3 e o
- e S &:j K
Yo = (1o mA6) et by,

then the recurrence formula becomes

I

Vos 2 Ve o K (a o) Yo

In this form the number of arithmetmc operatlons per step 1s reduced

and is very suitable for programming an automatlc oomputer. A slight
. disadvantage is that the mechanism 1or changing the 1nterval bépdmés.‘
more complicated. TFor example, to increase the‘intefval éiz§ by.é. |

factor p ‘the scheme is 3

(a) Equation C6.
Set h = p x.h and replace Yo by ¥ o

\

(b) Equation CT7.

Set h = p x h,



2o ¢

Add %/& {f(/f'- x,&) Aj/’r’f"' ?(/f 41-7\-'{’&)}

to YA" 41. | |

Adc_i_ 3/,242{ £ {)x AX’F —-j/(/r)} ” )/A-

However since this routlne would be entered very seldom compared ‘?

with'the number of steps required we preier to use the recurrence .,

formula as given by C7.

" Stability

There sre two types of stability oonnacted:with‘ﬁh?éé:aquA;fligfﬁf,}

tions and the two numerical methods, :

(a) Inherent Instability

If in equation Bl, F(r) = —k2"_then'thc-sélqtiéﬁ:wiil‘ﬁéf;‘i"

u = AT 'Be_kr) ; _Ry?gtf*iﬁ;%kd::€J ﬁ'Cé--“
s Even if our initial oonditions reqﬁire A‘ fo be.zero, roﬁnd; ?a -”
ing‘errors will 1ntroduce a small multiple of the unwanted solutionfh
which will eventuelly swamp the true solut:lon. ' W}mn this. type of
equation is solved, with the above initial reqﬁlrement,_mt is neo--'
egsary to integrate backwards in whlch case the unwanted solutién 3

is decreasing and will not affect the true Bqlution.; tThls type_of



instability is a function of the differential equafioﬂ{;iﬁ??f{ftfi.»

© (b) Partial Instability’

‘Consider the equation
] 2 -.
y'" = -~ A"y, which has solution

ifx “iAx
e

* .

(a} Runge-Kutta SO
| When the Runge-Kutta method is used to integrate equa-a-;lfh

tion 09 the solution is represented by

vhere

E oo Daahf- 54000 - SRR LAY ao

For this solution to converge to the true solution of the dlffer- jflif” 
ential equation requires the condition lE’ (~ 1 which, in turn,;;:[fff

implics n?a? { 8.

~(b) ' Recurrence Formuls

. , Applying the recurrence formula C6 ~tolﬁhe‘equétioﬁL CQ:fgfgf

(A €= (2- 2 a)e (1o AN =0 o



24
where again Ypp 1 ™ B Y.
 Now the set ‘y¥ is to represent an osoillatory”solﬁtion'ép E gi
must be complex,
Thus ‘ 2 _— ‘. 1-ﬁv ii,fefoﬁlfLaii
sarar) - (1 BAY) Lo

(1 - &A% e AA) Lo

Thus the stability condition is verj similaf’fdffBoth?mefﬁbdé.L_ixg;-i
- Compering equations C9 and Bl shows that these rgéuifs'ﬁay_bégﬁg4535i’*
applied to Bl if A% is some measure of‘the.uppe?_bbuhdldf,thefgg;;;547}
function F(r). | | 5 | |
.An exaﬁple'illustrating this condition is given at>£béf§hdfof'thgff ;; SR

- chapter.

- Choice of interval

There are two criteria that have to be_cdnsidéiéd:bbiora-éfffﬁﬁ%""

" choice of interval h is made.

(2) The truncation error must be made negligible;fff

(b) * The stability condition must be satisfied, -

" The function f£(r) , which we consider, will.ha#ésifé?laxgesffj"ﬁ
value at small 1 and tend to zero as ihcréaéés;"fﬁrﬂéyﬂﬁf'ﬁ‘ :
The stability condition for the equation 09‘ qéihg the;récufré L

.1 epée relation was 'A2h2 { 6.



@hﬁa if Az is taken as an upper bound for f at initial value
of 1r . then this conaibion will allow o bound for the initial value

of h to be chosen,
Cee foa 10 * 4 at r = ré ,
then S ‘<. 610 -4 Qhence h ﬁay be fakep\géﬂfo;oé,:
(say). | o
Further, asymptotically the.so].utiion.will oscillateTaé:;@;%‘tﬁgf;ﬂj;;;i‘ﬁ

Truncation error for recurrence formula is, neglecting_termS'in-f_ft

n®  and higher,

b,
I b v s A
Ay

240 2 ko

il

/-M (er * "\) 013

‘'h must be chosen such that
h6 k6 is negligible,
240

Tor example if we require overall accuracy of four figufds‘ih th§?;f

solution the 1ntegrat10n should be carried out to 81x:figures and ‘1.”

the local truncation error is then allowed to be 510 = 7 -iff;*

l.e,
990 = T
240 © L STy

or hk - (_- 0.22 ,
Thus combining these two examples, and’assumihé"kfeﬁi;fa puit- -+ .
able choive of initial interval would be 0.02. The interval could

be increased smoothly, depending on how quickly £ . dies awéy,;up to7i:?3§;



a final value of 0.2.

At thio stage 1t idn intereating 1o notésthat‘théfgéiffﬁepm iﬁ '.
the conrection from this recurpencs relation is TEL%EBI _sjﬁ”:
Assuming the sixth differences wérc iﬁclud&d in a médifiea ré@ﬁrl'
rence relation the same example gives | o B

./‘e‘l. /&. < : 5 |o—7. " ) ‘ |

! 5 lz 0
Aok ey r

Thus including the eighth differences we could ohoose a value of h
about 1. 7 times larger than the interval required: to give the‘t:s”‘?“
game accuracy with only the 51xth differences included. It 15 un;
likely that the extra work involved in eva,luat:l.nb the mﬁch more com—';l?

plloated pecurrence formulo would compensate for. this reduatlon in

interval.

Choice of initisl condition

In chapter B the equation considered had boundary oonditions -
u=0 at =» =0,
M Cm(z%l/r*‘ﬂ‘)

The phase shift M. is determmned from the first condition and the
second condition provides the.normalisation factor Co . The problem B

may be transformed into an initial value one by assuming Bome quite



arbitrary condition at the begiming of the range suoh as '
u'' =a at T = 0y
or u =b &at r=h,
Choosing the flrst condition allows the Runge-Kutta method to com- :
mence its step, while the recurrence formula can be applied immed-~‘_f
iately if the second condition is used.. -The solutmon may then be o
integrated into the asymptotio reglon and the normallsatlon oalcul- _?f"
A difficulty may arise when the recurrence formula 07 is used
at the point o= h as the term f u appears in the equation Q,; ;j"'

and f may be infinite,

Robertson (1956) points out that this term may-. be replaced by
%ﬂﬂ* o fu. Using B2 this io zoro in all cagan . ahoepb few ﬁﬂﬂﬁ l:'_E:A'.
when 1t contributes an amount 2, where a . is the leading-ﬁgrm;iﬁ >j
the Frobeniug expangion Bb. Iﬁ practice he fbuﬁa thé%3re%giﬂing\

the first term in B6 was sufficient thus giving 8 ;'hfzp; f

This trouble only arises if integration is started.at'the90fig§."
in. | |

It was further shovm in chapter B that equaﬁioﬁ.fB5”;had_fwo ;Jk 
solutions which behave for small r as
f2.+ 1

: - £
u2 = ao ki .
Theoretiocally the starting oondition‘ u=0 at r =0 .muat bé,fakénq‘

e e



to get rid of the unwanted solution wu, which ténds to infinity as = -
'r tends to zerc. However numarieally we ‘can obtain 8ll of fhe]-"t“
required solution by choosing complately‘arbitrary'initiél values

at e suitable small value of w.

The most general solution of equation B5 is givenlbyh'}l“vf

n = Aul + Bu2 v

Y

where A and 3B are'constants.

Then if Ty is chosen such that the unwanted sélutidﬁ}baéﬁlﬁﬁf§éry;i’

much greater than 'hl s the integration staxting'fromvfrofiwillfcpn-}fﬂ;j:

sist only of the wanted solution Uy e

l.es since u, tends to infinity as xr tends %o z§rg}theh?;£6}“_f?ffﬂ
can be chogen such that B dis zero, to the accurécyfwith<ﬁhiéhﬁénéi?fji -
is working.

Two cholces of starting conditions that can Bé,uSediarg_;fj«g?i-?"

(a) . u=ga at ra=r, . f}@i:];QQiﬁkﬂi}::§;¥51014:f5

u=a at T o= ro + hj

\ w=a at 1= ré + h;i
where a 1is an arbitrary (usually small) humber..\fThié'éiféét iéf._:
demonstrated by an example. |

23.: Consider the equation

dat TTT Tk B o



whi.ah hés solution o R ey N
Ms A Aer Y (Ae) v B e m i(/fe/r)

We wish to find that solution of Cl6 which is.regular at-the or-
igin, i.e.s B = O. |

Working to five figure accuracy in the‘soluﬁiohg,takiné u¢;;{ffk

0" ™ =10"2,

A

and integrating out past T.l, where the_first'zéfdfdff"iﬂ}((f).jf; "

lies, gives a phase shift %) = O showing that only the solution = ... -

which is regular at the origin is present.

This can be seen by using very approximate values of'thezébﬁerihal:i’f_' :

Bessel functions

woreon )t B, mlA e q

at r = 0.3, | Ya (F) =25 o m'a,("") "%‘-.l?.‘_l._,é*‘s

Thus B dk.é?(BlO— 9) and since = Ny (r) ddesrnqt buﬁld up }_'

a8 r increases it can never affect the solutione - .- ..

-~ -

b d

| Repeating the example with TS = 0.7 instead of- 0.2 gévefa -

value of ) = 0.0001 which shows that some of the wivanted solu- -

tion must be present,



Agsain ‘ R
at r =07 X:SLA-) 3 1003 3 3(’{') 't
at T = 0.8, Y3 (4) = 4,73, (,«r) = 3, q oF
gives B &@ (310 ~4) which is not zero to the requ'irod SCCUTECY o
As r increases the unwanted solution oscillates ih‘avsimil—'
ar way and with similar magnitude to the requlred solution.; Thus
if eny error is present at the first zero of kﬁa(y&bﬁ) 1t w111
be carried through to the asymptotic region. In the 1atter,exf-:T??¥"
ample some of the unwanted solution would be present‘thrOUghaut the
whole range,

An exactly similar 81tuation occurs if 1nitial conditiona 015

had been used instead of Cl4. However (14, cannot ba used in ”}.g a

the case L = 0 when the selutlon ig A 8ln kv s B_ cod: ;kr-._j as:_;‘in" L

this case only the unwanted solution B will appéar;{f Thiévis bé—;‘{ o

cause that solution is finite at the 6rigin. Initlal conditions : ,“
Cl5 will give a correct result in this caée‘if‘ ro- is of the ordar

10"6‘

Example of Instability : ' ;uijf;tffﬁiﬁfﬁfFi£¥ l‘

The previous exémple wasg successful-with choicé‘ofj fhi¥'O-2}
h = 0,1, for 2= 3, It might seem reasonable to make the same lf?'

choice for £ = 10. If this is done the calculated function values



P
increase very rapidly untill the nﬁmbers become too 1&1‘3‘51-1‘61;4; fhé:; :
‘oomﬁuter (1o * 39 in this oase). L
This has occurred because s violent lnS'b&blll ty ha.s belaen' 1ntroduced

by the choice of initial condi bions.

It was shown earlier in this chapter that the stability condi;ﬁion

for the recurrence relation was A2h2 (‘ 6 . - ”g;;  a},"z,"'Cl2
In the previous example A* 2~ 3 w02,
2,2
AAh" = 3 %2, 72 { 6 '
In this example ' A L& 285 1R,

L

2
asat =25 {6,
Thus this  solution is unstable. The interval should have been

about O. 02 to get a correct representation of the solution.

Form of f£(x)

1

A form of the function f£(r) which will be used is glven by . .
Y ST o
<
J( (r ) a & - / /ré’
As mentioned in Chapter A this function is not dei‘ined i‘or small o
as 1t does not obey the condition that = £(r) is finlte ag ::I_.f:‘r. r
tends to zero. | |
The shape of the function is shown in Fig 2. A 'spuri-otis mé.x-_-'
imum occurs at some value of r and this affects t.lle‘:shape' baéi{ 40

some pohint Tye
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The function f 1is now modified to have the behaﬁiour_: )
JC(A-) k= et g ATy Ay

For x { T, f(r) can have any shape which, atiwofsf;Agogé;bff as
l, as r tends to zero;-and has ' a cohtinuous-joih ﬁifh‘the form-
= , _ Join with ihe |

ey part at » = Ty If these conditions are obeyeqffﬁqfsoiuﬁion L

is treated as being effectively zero for x { rs.;i Yf;f1”$i}ﬁ¢¥»:'
The values of the parameters a, b, ¢ in f(r) are such as to make the ’ 

- value of f(r ) of the order of o+ 4

If the integration is started at Ty and alsdxét‘several.valuea
of 'r greater than rS the phase shif+t is found to be unchanged, |
1.0, there is a region greater than Ty in which tha unwanted solu— \u

A’clon is very much greater than the wanted solution amd in. thia rap-— ’
ion gtarting conditions can be chosen quite arbltparily.:‘ Clear)y'
this range will increase for increasing vélucs of lﬂ and; in pract-.

- ice, the initial value r, ocan be moved out to save computing time.



FIGURE 2

.0 Typical shape of' function of the form ae-_l,);.r ._;g!.o/ 6 ..
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. - . CHAPWER D

Distorted Wave Approximation,

RN

- If-it can be assumed that the non-diagonal mabrix elements ij,,fvﬁ5

1 qb J, are small compared with other terms 80 that all produote on L

id i

the rlght hand side of A4 except V, ~ and Vl i" whlch in- ~

volves the . incident wave, can be neglected, then the equations A4

become'

- .
Ler " 0

~Defining vy t0 be that solution of

4 /&

E*+' AR

such . that -

AN 4, NM(/?QAA'— /&’ﬂ’+ ql )

and. v,  that solutlon of the same equatlon such th@t gl

o 0 it 5T )

- .A- .Dl‘

a. .‘f,. ..“ : D2 :

+y ... - .

D5



a6
and the solution of equation D2 is (Mott and.Méésé&;1949)ff>ffti )
| P I e

Matching these

“glves

Thus with this approximation the 3 métrix‘eleméhﬁé-@éﬁ}béﬁg@fd@héd*J“f;;f

20 .



\ .
3 t

in terms of the solutions of thé uncoupled homogénéé@ayaifférent~a_T;*

ial equations D3,

Formule. A3 for the elastic and inelastic'oroés'ééctioné

given by j = 0, j' = 2 becomes

[

o—(zl',‘o) = %Z(zsujZ( B

where 1 takes the values n, n-l ... correquﬁding $6 %aiﬁéé;.fﬁlf

AOf‘ 1 .

-39

o (050) = g (2ze) atnty o P2

B Dl}l .

A program hag heon wrltten to apply this approximatidﬁltoﬁoértain>f_'* -

cages to be described, ' : SRR SR

It solves M Qifferventisl equations of the form .. f&{%{:q;;”fiA‘-_“”‘

d* . /fef AR

olr? ‘ _ s Ad S

where M can take the values 4, 9, 16 .f.....;.;'.iﬁg; 1‘{.is]f-f
glven by J _

J -2 J J + 2 ) Ll e

J - 4 J - 2 J ‘ e ol s a0 n - tuc bop

. and

A R E AV L AL



where f£2 is given by the formulae in Berstein et al (1963) and

e o
N/’“(K) = ape T /r“'/u

\ g
The integration is carried into o region where the potential v j(r)
18 negligible and the/a-lnbewrala are formed from a knowledge

bf the normalised solutions u,

Pl B A

8

]

The calculaltions are repeated for consequtive'#alueéiofi;J‘g_-‘A-z
until the contribution from the /3- integrals has- died away.
The elastic and inelastic ocross -gections are then oalculated from

the formulee D12 and D13. - | R,

_Dnta raquired Ln

M (the number of equationé% o
0? 13, ‘ p;; 2, ' : L
o i " ' : U ‘
b Ky eeeens Xy T et s
Jy 3% initial ~ J -1, eps,  bool. Ait'}‘fzﬁ L

The integration begins at r, &nd takes I1’+~1_fétépélofuin£$ifaiv.h}'@”i
The interval is'changed to ‘h x pl and 12 steps éfé %ékéﬁ}:j“The} |

range is completed By adding 13 steps of interval h‘x'pl-#_ﬁzo -1.;;.';



The value of all solutions ui is assumed zero at r;’)and‘eqpal K

- to yl at T, o+ hes j=0 for the cases considerad and

3! 52.( fn_a-l).

The initial value of J was usually 0 end J. was sfepped suc- ..

cessively by 1 until the FB ~-integrals had fallen bff_bj a-faCtdr _ :

eps usually taken to be ., -3
bool was a boolean marker set false if angula? distribﬁﬁiéﬁ;wgs:ré~ff
quired and true otherwise (see equation I3). .. -

The data is read in and at this stage the maximum éto#é§éfraqﬁi£é—.ft'
ment of the program is known. RS
Since the two functions v (r) and v (r) appear in all the

J
13

at all the tabular points and store them as two vectors. N Thla

v L () elements it is more efficient to caloulate these fUnotiOnB

wowld be especially true if v u(xr) were. more oomplmcated. ‘7n”ﬁ¢i“.

Whon the value of J Lo known tho valuon of 1 muy hetmétlup:and-_"

also, the constants £2 (1, j) ' caloulated frbm'the référeﬁée;{i?hé P

equations are integrated as described in chapﬁef}C.“ The integra- o
tion is terminated as soon as the phase shift haé‘settledjddwhfﬁo a
steady value usually taken when two successive phasé'éhiftsidiffeffb

by less than 0,0001. The phase shift is calcuiétederbm.formula(fﬂﬁ

- Bl3 .which involves the spherical-Bessél functioné;' It would be RN

wasteful of computer time to test the phase shift too aoon BO & “7ﬁ
marker Xs 1is set Wlthln the program quch that for values of r |

less than Xs +the phase shift routine is 1gnored. -

In the region for r greater than Xs the solutions afeidé—:.'




oillatory and the phase shift is caloulated each time any solution .
‘ crosses the axis. As a safeguard to determine whether'the phaée
shift has converged or the end of the range has bheen reached; the

finel value of » is printed out together with the phase shifts. .

The value of the normalisation is then oajculated from '314,
averaged over several points, end the correctly normalised Bolu—-
tions are stored; This 1nformation allows the F3~integrals Dll
to be evaluated. |
Three numeé%l methods of integrdtion were tried.

First the well-knovm Simpson's rule was used
x

o &1 yoogoane
o Cee “'AX&A& ﬁk}AN} ;; 5;4::}

and, geocondly, two forms of Gregory's formula -

fde + (e g
+ T (T )~ (o gan ) oo

given by neglecting second differences and again by negleqting flfth

differences (Modern Computing Methods 1961).

S e - :
. '

The integration was taken over the tabular points of ‘the sols.
ution of the differential equation and hence - the integrandﬁsplit into

three parts, There was little to choose between thésefthree_methodé :3

congidering the accuracy required but in thé case of Simpsbn's Rule -



Il has to be odd and. 12

‘with second difference lgnored, i.e. the Trapeididal Rulé.wiﬁh end .

- even., Probably the Gregoryiformula

corrvection, is the most convenient to apply in practice.

The phase shifts are calculated by comparison with’thq spher-
ical Bessel functions. The next section describes the caleunlat-
lon of these functions based on the method given in "Tables of'-

spherical Bessel functions", N.B.S. (1947).

Spherical Bessel Functions

Bessel functions of order ) satisfy the differentiaifequatiopﬁﬂf f[:f.j;l

A e
2 3¢ | ( 2 2\ - SR -
X :;:i?; ¥ de T | ‘DC ~ \J. ) /j<,fl ;‘?;ﬁj;f'lfF :?16_’

One solution of D16 is j\,(ﬁﬁ) -defined b;s'r-.ﬂ‘lé Sél"ies".\_." :

S | veak oo

= - L LE o

]1;(?A B (*l) B TR R &

’k“o. % [ r (\) +Z,&+'|) | R

For \) = n + % , where n ié_an integer, the generalfﬁolﬁtién.of

D16 is

m+’(x) B j—-m--( ) ) |

where A and B are constants.

The well-known asymptotic expansion of j:n+l(jx)‘l“Jiis:(Wafsoh',*"
' < TR

1944),



where

~ AfHsze)'

,a
H
~——”
*“ME

ey

"0

[
| Qma,-}l(x) = 2 (ﬂ x)lﬂu‘(zzfaﬂ)l(m lvfiﬂ)l

m

| D18

(zx)*"z(ue)l(m uq)\ .

The functions’ j\, (DC) satisfy the recurrence relatlon UL

i

_-J-\)-H(x) + 3- -
‘i‘he closely relgte'd function

r(ve)

A = Gy W, e

may be shown to satisfy the relations _

‘2

A A e A,

"’{' DP9 .

2V . N e -
ARG

D20 .

D21
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2 ' 2

/\U_,(x) = |1 - uu(v“) /\ (x) (UH)(U*z) /\vubc) b2z

I"O:E‘\) “n“*"g'}‘b

. M+l

where .
Xp T (am+ak+1)l ni

o2k amorak +-a)' ‘«*’é#l;{ IR

whieh gives:

" gk

foco o 1U

\=

[
X

Tﬁe simple recurrence relation D19 may be-usea-£6 éeﬂer;ta.
function wvalues either by a forward or backward recurrenca i‘cla‘t-—z
ion provided -(—?-n—-’-‘}‘)- is less than unity. When M ‘is
greater than unity the error in the generated values mav inorease__‘,':

" rapidly and 1t becomes 1mprac't1cal to use D19 ._for G,Ompu,ting, -,

el



purposes, However /\Aruf (\_ mey be conveniently gcner&tad

"by a forward relation when (2n 1)§2n +3) is less than.

x . : s
unity end by & backward relation when this factor is greater than

unity.
Hence we restricted uae'of recurrence formﬁla -D19 to‘valﬁés‘
of n less than fifteen snd in this range direct evaluation’of -_-
tYUL:E) from the powér series D25 was valid wheﬁeﬁé%lthe_g'-
recurrence formula broke down. » S
For values of n greater than fifteen and for Values'ofjnxf5éréafffﬁ'
er than n . the asymptotic expangion D18 was used. The most
awkward range is when n is greater than fifteen and x 1335 thanﬂ. ,

n and in this range we used the functions /\nx*L(Jx)

These values were calculated from the power series“AD25.fﬂ“A:pléck_“‘
diagram showing the organisation of the varlous fmw‘bionskuséd,' is

given.,
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CHAPTER B

Close oouplihg Approximation

If none of the off-diagonal matrix elements in equation A4 éan"
be neglected then no analybioal golution of the coupled equationa

can be found and it is necessary to proceed numerlcally., \;f:_~}ﬁ ‘

A method of solving these equations hag been given by Barnes,
Lene and Lin (1965). It involves solving the coupled equatlons  €‘
into the asympbotic region and there matching the solutions to the )

boundary conditions.
The equations are

d l_ zﬁ.c(»'f»ﬁ"i) v ‘:':-.
M+/$a _\“‘_ oA ’“’"X Z 4,,& *’“Xr'

dit ‘ AT

/?ewv
for L. 4 1 {n, S N G R (W
To avold use of complex numbers the boundary conditions gi#éh“iﬂl‘-f
terms of the 'R matrix are used,

/{/(/4,3.::'0 at '/r“"-'-/‘r;o

)

May Vv deod }(zue,gr).&x ¥ b"{) R"‘){ e ey ue.& ,,) o

| Since the § matrix contains all the elements of the R mafr;x-'{'



48"
;fhis set of equations must be solved n ' times ﬁéiﬁé;theafn: éefs
" of bounddfy conditions, B

If the matrix elemente V,, have no singularit'j.e;é Eaf(' cs.f'@éz?

" two or higher at the origin then, for small wr, .thé sélﬁtionq bf.
El which satisfy ¥2 are given by | :

A+l , f‘ﬁ}'g:‘i““' _ .
Way = Say A, e B

where QA is a matrix of constants. The solutions thus obtainedlul

will not, in general, satisfy the asymptotic boundary condltions.:'

Thus n linearly independent solutions of equation El must
be found and then a suitable linear oomblnation can be matohed to

the correct asymptotic form,

The criterion for linearly independent solutions oflfgis ;ggaéibﬁﬂ  :lv
La that the phasé shifte obtained mugt themSQIVGﬂ ﬁa markéél&:dif;uJ L
ferent and’ shsermie indepenc‘:lcmt. This hao been noted by ZBuckmngu C

ham (1962), We make the assumptxon that if the rows of c& ‘ave ..
linearly independent then the resgpective aaymptotlo‘forms w1ll alsq C
be linearly independent. This choice of 0k is of great import- .
ance and may certamnly not be chosen in en entirely arbltrary man-‘;?i

ner as mentioned by Barnes, Lane and Lin (1965).
Thus the solutions gy mey be expanded as .
"

Moy = E Wade Ty o B

,*?Q:.]
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or C AL

1]

<

The solut‘i‘ons- u may be matched td the boundary con'di"bic‘mé‘:' aﬂ; .tw_é
velues of r (say T Arb) y large enough such that fﬁe poterﬁ:ﬂ.di
terms -vi;j have died away, . -Then, defining a matrix R! ‘.: and
diagonal matrices Mr, N* by

=

, | hee |
—RA.X = ;%:;, ’R.A,X

M&A/v = %\’_,“A" Y’&L,fg&_ ) S*y E6
.

N Ay o= XQA_ A /YL/t L/ﬁ’.* /i') S&X N E7

~ the matching process becomes

il

A | A N & Ll
W i = M e R N B - B

whenoe

S B S T AN AU S AT
R = (i"f_..N - M N )( LM = M A ) B0
The R, S and T matrices defined in Al and A2 may be easily
found since S

- o Y

T'; z(z}ﬂﬂ,ﬂg¢z¢(1+ﬁﬂ;ﬁf:“§ﬁﬁi

o




where I dis the unit matrix.
The recurrence relation may be applied to these equatibhs iﬁ-terﬁé'f»

of matrix operations.

W

e Lo Lar) R
Defining ‘F'A - : ,_/%,_;L SA-X +\/AX ,E13

. /{'2

equation El becomes
1"

and substituting in C6 gives

-

[l

L}nm*l
, L SR DU B

— —— . L KL
A R 0 [T SR

i.e. to advance the solution of the differential eQudtionifEl4'1 B

" " one step involves a matrix inversion.

If equation Bl4 isg solved using recurrence relation E15 then )

a matrix inversion, or in practice, a solution of Simulténéous:eq-. o

vations, is necessary at each step. This matrix,

‘ 0 2 .
T - =k FMH g
where Fn+1 is defined by El},' o |
is. strongly diagonally dominant except for small ¢.>‘“Indéed:qéz ,iffs
r increases it will tend to a diagonalAmatrix.. Iterati&é méthodélT"e



are very useful when dealing with matrices df-thisftype,and'this:_'“
" gives two choices ‘ | o
(a) to invert the matrix at each step which would Eé-ﬁaatefgl-in. _
- the region where the coupling has died gway,;' oi
‘(b)  to use en iterative method.
We decided to use the latter. Also one can‘exaﬁiné‘more,cloéély the
 nature of the solution and the effect of coupling if ‘the Qngtions.
are solved in this way. By this method the aquations must be;sqlvf‘z
~ed n  times teking successive columns of E&;.&s initialfconditions}’ B
Three iterative methods are considered.
Method A
A method of solving El, used by Buckingham and Maséeny';.g
(1942) and Robertson (1956) to solve a ningle integfo#aif‘i‘eréﬂtﬂ.‘al
equationy is 10 wolve the equation by successive aﬁproiiﬁatian}fj,;j
In the following scheme the suffix J refers to ‘& colum of
A and remains fixed>for each set .of n equations,7 hIf-iﬂitia11yf7.'
ugj is set equal to zero an iterative scheme may‘be'defihedxas fol- |

lows 3

b ) : /E, Lo+1) | m“’l;j_f
ﬁ\t‘ H :{:SE;E +'4k& - 'LEf;f ) - \[&A,] 'Ak'i C :

Z VL'k LY T \/._J-'Je MA- X R E16

| Ao 4 A A& YA .
and iteration may be carrvied out on some final value of the succes- .

- ive solutilons,



6ue the value of the solutions at the. matching poihta;}f,Note that ;

"this method involves iterating on the complete solﬁtion.éf_fhe_&if—f-'

ferential equation, -

The next two methods take the iteration at each step. -
Method B |

. . S 2 -
Truncating formula C4 after the term in 8‘*:gives

AX#’H = 2 Yo - /'}/X_‘ . -,—‘-i'/EL‘ {AX}” + 10 AJ":'* 43/,:_,]

and an iterative scheme could be set up as
m

AX::' =. ¢ AXJ —‘ AX/M ¥ ]Li’w{ AXA'H + |DAJ/;+W;-'} ,-.\

whexre, from (5,

YW

The flow diagram is as follows &

il

%(/r a fe Ay/r :

Knowing Vpu1? Y2 Y;"ls o

for all equafibhsé-
T r S S :

Set DI = y;+l + .10y; i+ y;ml wo O .'forﬁall-bﬁuationa.'

N
7
. Calculate Yoil from E18 for all equations.

1
Calculate y'r+1

;’Caloulafe new DIIF for all equatibns.

from EL9 for all equations.’

L '
4 .
yes
no

Next step

BT

E18-

Test 1f | new DIFF - old DIFF ! N ¢  for all equations, .



‘Method C

In C7 the recurrence formula is written . -

Y

j y{‘m = 2 Ya + -,e,f (-% A"'b %)

' s Lot
where y = Yﬁ' F T';;ﬁ/?‘» %//ll’ .

R I P

This is a particularly suitable férm.for an iterative procqss~asrf '
~ the calculation of Y ., using E20 is independenthbf'the:cbupl—"‘

ing terms on the right hand side of El. They only'ariseffhréugh'_;

the term 8 in -2l
The flow diagram is as follows 3

N ' for all equations.

Knowing Yr" Y »

r-1’

Calculate hzgr - hzfryr for all equations. T3

Caleulate Y_. from E20 for all equations, ~..0.°

-+l
and. N = Yr+l for all equationﬁ;i@ﬁJ
r+1 e - n
1 .2 : . -
1+ =, hifr
\ 12
/ . .
Calculate new 8ril for all equations. -
N Calculate new from E21  for all,quétiéhsl53 L

yr+1A

& .
yes
no

Next step.

Test if new y..q - old yr+1\ 77 £, for'aiiigquéﬁidhéfa

53

520

B2l




This schemo gives rise to Tacobi type iteration buf;if th§;last-'f

"few lines are modified to be

\
I's
Calculate new g&+l

| for all equations,:. =
and then new ' Yorl '

Test if [ ‘new y&+l-" old y._ L J )» 6 for, all equations,;'.j

|
yes
no

then Gauss-Seidel iteration will result.

S

These two may be combined to give Successive 0vef-Relaiati¢n b§fuf15~¥

modifying the same few lines to give

N
7 _ RECNEE »
Calculate new gé+1 for all equatlonse: . ' 7
Calculate new Bril . E }ff’;!?xfnﬁtf f)'de1'
A and then new Yoil from “‘_: ;ma;ﬂ;ﬁV'-all‘ g
2 LN equ-".’
( Yr—{—l + (wg 1 + (l w) o +1) /12/ (1 4 5 1 fr+l) . .
e ations.
Tegt if { new y,., - old y \ ) 5 for all equatlons
' L h es ' ' ."' 3;w'_?~f;:-'-'
~ | Next‘step VIR

.However the number of equations considered and the number of iterw.
ations involved are small enough for the extr& work involved to be

not worthwhile. Tor & large number of couplgd equatiqns thlB,&p-ﬁ,‘

proach might be worth oonsidering; The Gaués~Seidel Soﬁémé.ﬁég;>



the one chosen for method C.

Methods B and C were compared by integrating theAtwo-égupiédﬂéqQﬁ#f

'tibns given by El1 with ‘ _
10 4] 0 100

E = ’ o_g = ) ') )
1 2 ’ - 1100 .0 |

i

over tén points with interval 0.05.

The number of iterations taken per step was output énd'fhe'fbiloﬁ-;k

ing was the result.

Method B
: 4 steps with 7 iterations each. .533 fyﬁvnf

6 steps‘ﬁith 6 iterations each. .

. Method C

10 steps with 4 iterations éach:“’. N

They were also compared by choosing an‘example wlth fpur Qdupied';

équationa given by

. (16 ] 2| - [ o+ 100 100 100
" - 1o 1000 00 100 100 |
k = ) /z lﬂ » . v = ) :, " "‘; - l.
= = 2 = 1000° 7200 -0 . 100
2 | 4| 11000100, 100 " 100

teken over 140 points at interval 0,05,
~Method B
2 steps with 9 itevations each.
11 steps with 8 ilterations each. -
27 steps with 7 diterations each

100 steps with 2 dterations each.

.5 55' 




-

Method C

35 ‘steps with 5 iterations~each.ii‘,
5 steps with 4 iterations each.

100 steps with 1 dteration each. .

T

These results show that method C is much more efflolenﬁ ﬁhan method ii

. B. As well as having less iterations throughout Lhe ohosen range

method C 0':L\res the correct result straight away when the coupllng |

* hasg died away whereas method B will still iterate tw1ce.f<"’

We therefore adopt method C and compare it with methoa A,aﬁ5Three~ }~f

typical cases, with four coupled equations, weréfﬁaken\;kﬁktfﬁ;g\fV“'
6 |, T B
1.5 | 0 e P
ko= 0y 5| * £ = ;| | J "" 0: 2,8:
| 1.5 - J+2 R A

e i SV o
and V & maLle with elenenta of the f@lm ‘ae b - o/r}f'where 8, .
o . ) L " 7

b, ¢© are constants.

In all cases method A took about twelve iterations uﬁtilnﬁha.ieléf—;ffyffi

ive error between the matching points of .successive iterates was .

1o-4 end the time taken for one ‘colum of oK waé‘approximgtelj.i?iﬁ-:“’"'

two minutes.

The results from method Ecare summarised in Table 1 for two‘?wfnrxi‘h

- choices of inltial value Ty Foxr all four columns of Cﬂ. the
the time teken was about two minutes. Thus method;C runs fouraga’A'

times faster than method A and so method C is used.ih the-fbllowiné'f;ij5

wWOork.



H

- calculations with . iteps = 510*9 and ascertaining that fhere'was . o

Ab ot be poen from Table 1 the average number o‘f‘. M;e‘a:r.saﬁd,géxié wae
two and this being the cage the iterative scheme wili’pyébably be
better thaﬁ that of E15 using matrix inversion, | Howévex'aélfhe:
number'of equations iﬁcreases the matrix method will.become mﬁ%é .
efficient as the time required to do the houseukeéping of‘thé mat- -
rices bécomes_a less proportion of the time fequired:tb do.fhe  ~--
arithmetic operations. | |

Table 1 also demonstrates the way in which the éouglingtéffééﬁéifhe}tfiﬂﬁif
numerical solution of equations Bl. Itléan be seenjﬁhet@sr‘of3; 

not the integration has procéeded“f&r enough fof the ooupling;to

"be considered negligible for, if this is the éase, we wou1d'ekpeqt

+the number of iterations to be one.

Choice of iteps

iteps 18 a small number representing the relatiﬁé;éproﬁ?}jfft'

between guccessive iterates of method C,

. If it is assumed that we require the solutions of theseldifferénﬁAE;*llﬁ

. ial equations correct to four figures in the‘ésymptotidzregionff RN

then we should try to keep six figures in the solutionfétiéach
step and hence the relative ervor, iteps =5 10—7  is'q'éatiBfa¢t~';t i

ory choloe 1ln these oconditlons. This was checked by ﬁepegtiﬁg the

no difference in the fihal‘solution.




. Cholco of matching points

The matéhing points Ty and Ty ,muﬂt'be‘choséﬁ\éo;¥haﬁ Sﬁb-pn

stitution into B13 for all equations will give a sensible xm"mer-

ical result for the phase shift. This would not be the case if an -

~unfortunate choice, such as T T, equal to a perlod of the func- S

3 A

tion - 277 in the asymptotlc region were made. How-j-i*..'S
L ! ]

ever there is nothing in the given algorlthm whlch restrlcts the

choice of matching points to be the same for each equation.. Thus 'ﬁ

_.i ‘58'

in each ocase if Ty s is fixed then T, . may be-obﬁaihedzby(sub—T“}‘f

A
tracting (say)‘TT;ﬁEAQl from it, ‘ S
' | | - . '*TF
ioeo N‘-’er. d A’q’. :‘Q 2‘/&

A A

T, is taken around that value of » for which the phuse ahiftu f'l

had converged in the distorted wave approximation. Thia only ‘00= -

curs when the potential v, 14 has died away and, since thenbehaviouri Q:,;f

of VlJ"is gimilar to Vii this criterion will hold at the same

value of r in the ooupled case,

Choice of matrix 9&

In most of the cases considered four cdupléd difféiential-équa-f.*'

tions require to be solved, Thus & is a four by four matrix end .

..

| we make the choice




1 1 1 1
x ~1 -1
K = ' .
h A' -1 | 1 ‘ ..-l ) 1 . N . N
PR - I e T T
) | N - ‘ oo

r

The rows of thie matrix are llnearly independent end further they

are orthogonal. Thls type of matrlx 51voe a good chance of the

.corregponding phase shifts being independent. It 1s_easy toueet'{ .

up a matrix of this form for four equations but fbr'mdre‘thah'four{’

it becomes increasingly more difficult. . This dlfflculty has beenﬂl.‘-

overcome by Smith, Henrv and Burke (1966) who use the RungenKutta fsf;; 4

method to 1ntegrate from T to L +h. "~ This. ellows an 1nit1al

: . S
matrix Sﬁ' to be chosen with reference to the value of the derlv—j‘V*

“atives af T 1nstead of the function values at S +h._‘ They
found in these cnrcumqtances that X = I (unit matrix) was’ a sat-;f;
isfactory choice and this reasoning will hold for anv number of

equations. Knowing the function values at T, and v Ph allows';.

\':

vvﬁ:;
)

the recurrence formula to be used immediately.

Thie is a partlcularly attractlve numerlcal calculatlon to_,V

carry out since one of the quantities which is evaluated is the ngi;;fj

matrix whlch as mentloned in chapter A, is symmetrlc.;; This con-f

dition of symmetry is dependent on the physical model, the equa~ SR

tions of which we are solving, and has not been assumed at any .""‘7‘h

stage 1n.tne calculation, This plives an excellent 1n-built check-

onttﬁe accuracy of our working. . 'Thus 4f the eymmetry of.thef.Re"xl"fb

matrix breaks down it is an indication of‘something going{ﬁrong“i‘.i o

with that calculation -and further inveetigetioh is neeeeeefi;;; we# .fjv;lL




have come across two cases in which this occcurs..

Symmetry-trouble l~

The symmetry of the 'R matrix breaks down for high values of

1 but the breakdown is muech more pronounced for oorrespondingly

.low values of k. This 81tuation 18 a direct result of the dlf-

ferent magnitudes of the various solutions which result from the -

fact that the solutions increase exponentially until F (r), de-j“

2 L JA N onffiol
A e
is zero. e T
| . 6| e
Consider the example n = 2, k' o= P 43?3?."
: : : 1;5 C , 8
and f,  some fuhction which is small compared with 1k?§i£oiff A

fined in B2 as

. ) 2 (say).

z /&u;(4at4") -

_Then Fl(r) has 8 zero about xr equal to 2.5 and the corres~: -

o 60

CUE23

ponding solution wu (r) w111 osclllate for 1arger r wlth app-."'

roximately the same amplitude. But’ Pz(r) does not haVe 1ts zero

u,(r)

solution u2(r)'

is osoillatiﬁp.

‘untll about = equa] to 7.0 and over the range between 2 5 and

is 1ncreasing exponenti&lly while solution ‘*f: )

have & very muoh greater amplltude than molution u (r)~ for r

‘preater than 7.0.° In the example. quoted so]uulon ul(r) had an

Cog
]\ v

Thus the oscillatory solution u (r) will ib"T



KRS .
I )

~ amplitude of +4. while the oorresponding value of solution uz(r)

10
‘was '1O+10. Thus caneellation will ocour when these functlon valu-

unes are substituted in a relation such as BlO..

Since solution u2(r) is very much greater than aolutlon u](r)
over most of the range then, for small r , the’ coupllng of solution .

u (r) with solution ug(r) will be so small - that 1t w111 have very

- little effect on the phase shift of solutlon u (1). Hence thie

phase ghift will be almost independent of the startlng conditions‘?fgff:

and we (will mot be able to get llnearly lndependent values of aolur S

tion u (r) For this reason values of the’ phase shlfts for each.,ﬁén$3?§

- column of o were printed out together w1th the R matrlx, show-;.f”ifvlf

ing quite clearly that the breakdown in symmetry of the 'R matrix ﬁ}:h

occurs when the phase shifts of solution u2(r) are very neﬁrly

aqual. .

This type of situation suggests that the xnmtial values 0(

- should be scaled to compensate for the dlffering magnltudes.

However the following two cholces of scaling thefcqlumnssO£NjE£Jﬁwgﬁ!f:f” o

a B 1]
e o
1072 | R I

e .

E were made for a set of four eqnations and there was no 1mprovement -

{ in -the symmetry of the - R matrix. - :q _JA}H_f'fﬁg:-fﬁ o




fho third choice

. r— -
c 1
10+
. ' )
1
1074 o g
ﬂi+l' -
- goryresponding to values proportlonal to h for h = O Ol is "

the most realistic but this gave no 1mprovement over stralghtfor—_x

ward use of the matrix o given in E22,

T 62

It was mentioned at the end of chapter ¢ that the initlal value L

Ty could be chosen in a certain range determlned by the constancy -

of the phase shift, As a means of improving the present situationﬁ'

it is essential that r, is telcen as large as pOSSible in this

range, thus cutting down the range of r» {for which the solutlons o

" are building up exponentiglly. An illustratlon of this.effect-isf_

shown in Table 2.

As R, .increases the position of the zeros of thé‘funotishS?fF.(r)f '

increases so it was decided ‘to automatically'increaséfthe gtérting'-‘

value 1 .
0

Symmetry Trouble 2

It is of interest to study the effect on'the'soluﬁidhé'éfian “

increase in the sigze of the coupling terms. This was done by in-'T

troducing s parameter >\f into the right hand side of ElG. The':f

equations are now



dl 2 ’CJL (,e*-b\) . _ | . R ) .
Lt T T = Vou | My = ?\"0‘ V’“k M’&X Lo
Ao L e
4;¢L

As >\,& is :anreased from its realistic value of unlty we flnd ‘bhat

the symmetry of the R matrix breaks down Badly. I T

To investigate this we consider the analytical solution of w0

coupled equations for small values of »., The two 'edﬁs;t.idi?rs ?"fé—f |
—— 4 Jk. - F. Jbb| = >\i;;F; fAQz ) e

w4

e
>
N
i
3
£ N_n 3
&
N
]
~>"
o“T\
:

=
=

We shall assume -IJ; , =,
‘ )

=
o
O
o
o
6]
=
o)
o
s
-
H
o
H
@
=2
o]
s
| e
s

Eliminating w, from 24 gives

sz] FD- [3) +/Be

9,
+
eo%‘a;u
o
2\
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Neglecting terms of the order of T -

the equatiéh'becomeé'
[:Da(Fo"' F,) + F, B Dt «fe:a F, F;' + (J’e - ”)F F

-1 : -
- Fz Fo Fl + )\l >\g Fo] M’J -.::-O.. o
In the cases which wé are congldexring

\ I, and F2 depend on two
similar funcitions ﬁo and ‘VQ while FO depends only on the:i.j{.
- function v,.

Thus we make the substitution

e 3!
f

\ /U':,-i-/l.}:z

-

il

Ny + N,

?

Fo = A

and the equation becomes

. R : By
b Vo Ay + 1, o
+~L4%z - ;;1)("* ;G:) - (.__tN.f) + )\‘Az AT, M= 0 ;
: 2 C
or

('“ AA%) .'”_ 2y ( {’\’“

This analysis shows that the effect of increasing lambda from its

ol

w3 - WA ) M=o

realistic value of wnity is to reduce the size of the-quantity,

corresponding to f(r) in B2,

Thus the effect of ooupliﬁg-iér.




diminished. This manifests itself in a loss of‘lineab'independf-."
‘ence of the phase shifts and o qorrespondiﬁg loss of'symmetry in ..
the R matrix.

Three numerical examples have been taken t0~demonstfat9 this

effect, each example with a typical value of £(x).

‘ 16 - | o 0 | 1 - I -
(a) ‘ k = . X = e

With this choice of k and 2 the zero of the ﬁmctions N

f(r) of B2 glven in 23 occur at approxlmately = 2 5 and -
7.0 _respectively.
As N\ increases these zeros are moved closer to the ofiéinféndtfg_fn
symmetry breaks down at )y = 4.5,

go| ol . oo

() X = N
. 66 ' 2

- In this case the zeros of the functions are much oloser to theuj;iﬁ

 origin initially than in (a) and symmetry is lost for a lower valuef~-

of A y in this case 2.4.

80 | ' : 25

i

[k
u
*

() Xk .
S 66 | - 27

Again the zeros occur at larger values of r then infeitherﬁﬂ.

]

(a) or (b) and N can be increased to 5 before symmeﬁfyfis lost,

The algorithm set up at the beginning of this chapter”tdisoiféf; S




coupled differential equations requlres lineerly independent phase

" shifts to be calculated. This is not possible in the preaent sit-

nation and so the method becomes inaccurate. No way round thle
difficulty was found but ‘s check on the valuew of the phase ehifta

‘'will show whether or not linear indopondence is being'leet.'

2]
Dependence of phase shift on _k“

A comparison between the dmstorted wave epproxlmation end the

close coupling approximation will be left until a later chapter..e:>;;ﬁ'e7

At this stage we investlgate a peculiar numerical 81tuatlon which
arises in the close coupling approximation, -
Uonsider the two coupled differential equabiens :3L},ﬁffux-7

ey

, - .
éé?i * f$%f N.\/il AL,

[i

H

>\' 'VH?.' M‘, P

A* 2y
-k ’&& T \Gz Aoy

_ with the usual initial conditions (E2).

Phe algorithm for solving ooupled equations makes ﬁse-of fhe‘faet‘.
that linearly independent solutions of the above equatlons cen be

found, These equations may be represented asywptotically by

‘>$2 \/;1'Ati';‘”’““f*s--=,

fﬂ,EZSAQ
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. The difference between ’H,,‘ and N,

A
M,
AL

Moy,

-

I

= 92, M(/ﬂ?z,/{’-} 4,;-') S

) - ,*-‘v' EAS S f
- W T

fi

L2 M(/%z/f +’\]‘1))

= A'! M(/{" /1‘+ ,‘]”)

M2y and q'l zz"’ﬂl -"

give a gulde to the strength of linear independenée of‘thefﬁh&ée T

shifts.

These asymptotic solutions are matched in turn"té théfyff”

boundarynéonditions obtained by permuting the initial bhéhnéis.l,:’

lee.

. and

U, Vv Qm(/&ld‘)""‘

Uz'/v

U, ~

U,

V4V,

’Rn =

and ’\1 are the required phase shifts of U,

Ko 3,

)

(

_./mwwu(/&zxf) -

ol

2

it

%w@

<y

2

R,, m(/fe /f)
)fe,, o (ks ,,-)

.L

R, ‘uﬁ(/fe fr)

’tm"\z

colch fr)

and U

where .

2

m

. E28

"»1329,

Taking a linear combination‘of E27 and matching to E28 {giveﬂ""




e i ) e M(,pe mﬁ.z)
s sl e cnlho),
o B A < e @(/fez}+%;z).
| f(’?%//&,)m; “"””(/?eur) |

wVv

{i

_whence, using the substitution

" we obtain | SR

/Cl "= HZZ <o) /‘]Az_z /X "

nh“ )
il

- Ay oo “1;../X;-

=
1

(i oot w%ﬂﬁ;})/x Lo

pol
~
i

( '//?’E Hzr 922 /BAM-L /1122 '1'],”)/ E31
Similarly matching to E30 leads to the equ&'tiona L R

R, - .(/&a//fe) }q,,n,z i ,,],, ) /x



Also since R is symmetric,

Hn ﬂl:t. /k M(,‘]H "] u.) = Hz; ‘qz; /& M(ﬂ]“ , 1]:1) E34

We now . det‘ine a relation betwcmn lcl and k2- in te:nms of a vs.r1-~ :

‘ able. E, s.t. k12 = B0 x B,

1c22

it

B0 (E - hi),

. where BO and hi are constants. ,

If E_1s increased then the phase shifts should Change.smOOthly. 2v‘N B
For convenience the phase shift is tabulated in the’ range
~Tfz2 ¢ 41 { '\T/g and thus there are effectlve dlscontinﬁi;l‘:ies. e
when ) passes through a multiple of 'IT/ Z .. ’.Ehis .behavn.our is :
observed in the distorted wave approxmatlon oﬁtalned by Betting
)\1 equal to zero in K25 and uslng bounda,ry conditions E28
to give-’l], or s‘etting N , equal to zero in 26 “and.%ir}g‘j R
boundary condi‘bion E29 +to giVe q]z . LA e
In the first case ’1\ lil = M, = ’1‘ " and E30 smmpllfiegto
Ry = Jtawv,'lh as expected. I P
| Similarly in the second case q'lzz = ’I‘Zl = 412 and E52gives ;
Razz Aam Nz’ | |
In the folllow;i.ng.;.nmnerical work the parameters takenwe:e
B0 = 321.82,
Bi = 0.045384,

Vip - A BO x 0,




v = BO x (vO + %-vg),'

22,
v, = Ty = 10 xJ% v2 3 where

vO = 511,09 exp (=3.59r) - 5.523 /x , L
V2 = 346,66 oxp ( =%.7790)~ 0,612 / 20,

[N

end B . is varied between 0.05 and 0.25. o

Y

The graphs of %, versus B and Y, versus B from the distort-.

ed wave approximation are plotted as dottéd liﬁes'ih’FigéfQAjand.ZB;j

The close coupling approximation is used over the ‘same. range and :

"‘we Pound that at various points: throughout the range dlscontlnuit-

ies occur, in that the phase shlft suddenly-gumps,by_an‘amount TT,.;

Considering the graph of ’ﬁ, versus B we.fihd'tﬁatltheéé'”' ,

diseontinuities ocour at values of M shown in Teble 3.

"Now on the graph of 4‘2 versus kL, ’hz' passes‘thr@ugh:théAfalue.

17/3 at exactly the same values of E. The reciprocal process is

also true; i1.e. there-are discontinuities in Q]z at théﬂsdﬁéif ‘
values of * E that ‘H' takes the value 7T/z,. ihat this‘éhould

happen numexrically can be seen by considering the equatlons E}O

P

and B32 for R and R If 412 passes through the value

11 22°

TT/z then R will be infinite or, in practice, numerically very,i

S22

large. The value of X at this point will be zero. ThiS.haé the"

effect of causing all the R matrix elements to be infinite_andj" ’

hence ’Hl will take the valuejT/z'ﬁmmmdiately glving rise tb ﬁl-:]VT:




discontinuity of the type shown in Tigs 2A and 2B,

However the matrix: T given by

T e e (zeR) R @)

remains finite as éllvthe elémentS'of the R matrix secomé.ﬁuﬁer— L
ically large and the crossuseotlons as calculafed from A3 vary
smoothly as the phase shifts pass through the value1T/a T Thls is
showvn in Table 4. Thus althounh the shape of. the graph of ’h‘

versus E looks rather alarming as given by . the close coupling

approxlmatlon, we can integrate with confldence.Qver”thlsjregion=to-f ﬂ"

obtain realistic cross sections,

‘Program to solve coupled differential equations - - .\ :

Four coupléed differential equations of. the type'l}{‘iﬂj“

+ /4kut - *‘>\V(L¥‘ 'Aklk:;ZEE:_)H{\dJE?LC o

AN 2 AR

where 14 1 ¢ 4, 1 €3£ 4.
are solved subject to the boundery conditions

w,, = 0 ‘ at r = T
i3 | o’ \E

g berpplhin ([ Ryhon mli).




1 tekes the values J, J -2 , J, J4+2,. .’

and

V

"’X. = BO [UO(”),BLX*:['Z (.""JB’) /U’Z(/'I') ,
where . fg is given by formulae in Bernsteln et al (1965) and :ff-

Y AGE Q//LL/Qj'&/“(’/r___, /“/ b 02

The R matrix is calculated and the T matrlx, giving the elast-' ‘--‘

ic and inelastic cross sections from A3, is found. '

.Daté,
B0, a0, WO, cO0, a2, b2, c2,
Il’ I2, Ij, Ply P2,

k3 ’ k4 , .
0, 2, X (4x4 mattbix),

initial J =1, max J , bool, eps, diteps, ;"“
88, sb, T8, Tb,

any number of sets of )\

999,

- The program is designed fo be wsed in conjunction with the ;p'x"'o'&:c.-é.m L

vior the distorted wave app:rox:mmllon d.O..xCl‘_Lbed in chapter D. ‘I‘hd

inltial puraueters are defined there, This lat ber progtmm conbains




an sutomatic test on convergence of the phase shift which iﬁdiéated

' 4L the funotilong vi;] EHEY I‘l@é‘li@ibléa: mm @g@m*u at o pamioula:v:

value of r and this ig the walue of »r which is taken to termmn- '

ate the coupled equatlons program since, at this p01nt the coupling

will have dlsappeared which is the criterion required’ for use.of ‘the -

* boundary conditions.

As before the values of the potential .vd(r),,‘vz(r)‘ areicalqulaﬁ-

ed and stored at all the tabular points.

The value of J is stepped by one and x0 advapced'atsmali;qia?;

tance each time. IFrom a knowledge of J a matfix~fF2”fi§"éét up
congigting of the required values fg (igj), The.equafiéﬁsfa:e":.

solved over the entire range using consecutive columns of .k given .=

by E22. . S R TITER
The' values of the fungkian &b the mabchlng points ra, ;rbI”.f

which correspond to tabular p01nts sa, 8b are stored.:;f f{

Metrix operations are used to calculate

(a) the phase shifts for each columm of X  from a quificatién:of" 

B13,

(b) the matrix ¢ given by
-1

e = Lore ] ()

a formula similar to 10, and

(o) the matrix R from E10. The T metrix follows from Ell,f~f‘

the real and imaginary parts. (TA, TB) being stored séparateiy.

s




fheoe operations are repeated for successive values of -J up to

' J max when tho elastio and inelastlio oronp-scotlions aré caloulat-
ed from A3,
If the boolean marker bool is set equal to frue then the various

matrices TA, TB, for &ll values of J, are output onto magnetic'

“tape.

The following matrices are output :-

matrix of phase shifts, ¢, R, TA, TB for each Valﬁa bfl’j  aﬁd'i”

thén the value of the elastic cross~section _(j = 0 —) j';éfb)”'and‘

the inelastic cross-section (j = 0 = j''= 2).

Lo,
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TABLE 1

~J value | S 2.
Initial intexval = 0.01
Initial value frb = i.O Ix_aiﬁial value r, = 1.5
No. of "~ No. of No, of No. of
ITERATIONS POINTS ITERATIONS POINTS
5 63 3 8
2 124 2 i 19
L . e 5 R ~l,‘§ 3 ‘
2 70 2 132
1 1 1 3
2 28 2 91
1 5 1 1
2 5 2 27
1 2 1 5
2 5 2 5
: 1 5 1 2
2 . 1 2 5
1 7 © 1 4
2 1 2 ;2
1 T 1 T
2 1 2 1
E 30 1 7
2 1 2 1
1 291 1 30.
2 1o
) 1o ‘“.




U R matrix | %

TABLE 2

In a typiecal case

: p,‘_'ra.,. "- .1.1.‘0' - . . _.."‘ . : o . . \‘ L s AN ! N .

405330  =0.0649 0,0043  =0,0002
~0,0649 T~ . '
0.004L ~ - |
0.0013 - ~—

R matrix.

5 = 2,0 same case

445196 ~0,0643 ‘b,oo43 © =0.0002 -
~0.0643 T~ ‘ P
0.0043 T

' =0.0002 SR BN
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PIGURE 24

Graph of /}]l (rads) versus energy E (e.V.) showing
‘ ' T
discontinuities at those values of IE for which ’\] 2 = -’z’

in Fig 2B.







i FIGURE 2B

Graph of_’@\z“Krads) versus energy B (e.V.) showingi

discontinuities at those values of E for which ’H,l‘é %E '

‘in Fig 24.-
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CHAPTER T

Decaying boundary condition

Introduction

If, in equations B2 snd Bl, k> is veplaced by =k° the

equations become

oA 2 (L) I
oA - B g ) 'u_'w,,_ G m

and, as mentioned in chapter B, the asymptotic .form of the ééiu;'.JV-
tion will be

P2

we) A ™ 4 pe ™ |
If the boundary conditions
u=0 at r=0,

R

are imposed then it is only for certain values of k ,fthe ¢igeﬁ-f
values, that a solution of F1 can be obtained.j-deweVef;thﬁreiiS'n

a solution of the equation

d? 2 /E(»@t'l
it *

}(ﬂj Ap(ﬂ' %’(Aj ; ?41‘

which satisfies the boundary conditions 1I'3,



This 18 given by Mott and Massey (1949) to be ;_‘:’”‘ o

' (a) if k is not an elgenvelue,

whexre vy is that solution of Fl such thaﬁl.flj

n

l=0 at I‘:O,

end w, that solution of TL such that. '

u‘ Y 1 e-.-kr _
2 k 7 )

(b) if 'k is an eigen value,

_ ~ a R s G L
Sl I k Gl ek Gl S

where 1w is that solution of FL such that;fﬂi‘}

) :
~ 67T, and w

implying that also u1 Uy that éolﬁfioﬁ'ofjf;: :

'l such that

kx
e

Description of %ﬁd coupled equations

We now consider the two coupled differential equétioﬁé;i€‘ﬂv

b




N T VAVAC R
dr 2 [ A
S A A

and impose the boundary.oonditi6n8c~

u, =0 at »=0

u, A sinkr + R cos ko 'E#f' F9.

1 1 1

~Jer

f tu2}‘ﬁu B e

Eguation - P8 i1g in the same form as T4 ‘8o it will bafpdaéibi§t~':

to £ind solutions of 7 end ‘P8 satisfying F9.Q,:aﬂ¢f§;1*'

Numerical solution

Equation ¥8 will have asymptotic form FQ._butgbhly_éﬁétdé-f‘ ;j'
caying exponential ié required.  This equation is inﬁéféhﬁiy‘ﬁhnlfifgh
stable as described in chapter<¢. Thus forw&rd>inﬁegfati6ﬁ-isjf‘;1
impossible in this region.and we must integrate ﬁaokwaqu,jin‘tﬁé:Axw:;
direction of decreasing .

§

Again, for small. v, the independent series .solutions of ' F8°

A = /f E a,m(y‘ | and A E /erm/r ,

are

o ' . "M




and . since we ﬁant to suppress the second of tﬁeée,‘fo:wardﬂiﬁteg§lu'
ration, in the direction of increasing =, is nedéssary.f;w'

The only choice left is to integrate forwardsifdf smdllifg.;.-
integrate backwards for large r , ‘and match the solutibn'injtﬁév

middle, at some point where nelther unwanted solutlon dominates.jJ

Matching implies the equations

_ . . :- = o RN I e
ui‘ u_b and , u £ u b a‘-t_' ‘ ‘I' = ITO, A : B Flo
oxf uf - \J.b at - Cr o= rc - and at : T o= rc + _:h?_ ':, :.- ‘ Fll

where the suffik' f or b .denotes forward ol backﬁa}d}inﬁggré;:xj-'\

tion respéctively;

Equation F10 is more suitable for use with the RuﬁéeéKﬁffé;méthdd{K

whil@ Ml &pplles more eaai Ly to Lhe recurrence velahions_jQbeqdﬂ

use F1l. -
Burke and Smith (1962) have described a method of éolVihé‘thééé{@f;fgﬁfl\f
equétions. - o -

;:For the forward integration only two conditions, l = O,_fﬁQS%»O:;}?

et » = 0, are known so two further values are required to specify L
the solution. These can be obtained by taklng two llnearly 1ndep-1_'; "

endent solutions and combinmng them to give the emaot aolution. l‘ﬁ;”‘

; e £ £, £ £ Ll
"Lgt these solut?ons be Uy ulQ’_ u2$,. Usns tbe_f;lst ip@ex1& 
referring to the equation and the second to the‘choicgﬂbf-init{al.”

I‘ o -

value,




In the asymptotic region the onlv condition which can: ba separated'_;_

~kor
" out i1s u, N Be 2 . 1In this case three further conditlons
are required so three linearly independent solutions must be found.

These willl be represented by “?j’ i=1, 2 J m_l)v2,.3f‘

A linear combination of these solutions is now matched at the ap—

propriate points,

d.e, .
£ f b b e L
(&) opuyy oW, T eg Ty boo Dy kgL
: PRI v
(b) L% Ve R s oy + °4 ugg f_,95 u231‘

'at_the‘poinf r=1r , and two similar equatlons. F12 (c) and (d)

at the point r

4

r + h.
c .-

Dividing by %5 and teaking all values of o4 to'lefﬁ_h@ﬁ@fﬁidéwl;a,

of 12 giveé the matrix equation

Uy (e

e I e s sl

i -

-U'}(ﬂu) -~U'6an.) c

...._. -.._----—-—|---—.—-—.-.-..-—-

L/ (’ﬁc**k)

where .-Uf(r) is a (2 x 2) matrix Wiy oo
'b . . B .
U (r) is a (2 x 2) matrix Uy
b,y

UB(I) is a (2 x 1) vector u

and ‘39 is a (4 x 1) vector o

This gives the correct comblnabion of the albltrary computed solu~j.

tions required to flt the given boundary oondltlons.x. The phase

_ U‘,(/r.c.-f-/&-) | _ Uf(,ﬁ%)j |

.:f{|Fl3A




shift can now be found by matching the asympfoﬁio so1utiont6f ¥, .

u v C b + C ub +.- ub‘
1 3% - 412 130

to the corresponding condition T9,

Choice- of matching point

The choice of matohing point is not critioal for-a single =

equation with a decaying exponential boundary.conditioﬁ~sinbe{£he-', ;;,

only requirement is that integration in either dirgdtionIShoﬁld,1tii;AV
- not suffer unduly through unstable accumulation bf érror'(mayaﬁs‘x;:ff

1962). In practice we choose the valqe of "» for Which‘ Yé2 ,-i;

- gilven in egquation '8, 1m o minimun,

Torward integration

There is no problem with the forward integratidn.-f;Wefcﬁbbse
11 Lo

+1 -1 . o .

integrate as in chapter B out to the matching point T, + he o oo

'

the matrix as values at the second tabﬁiar'péint énd‘




Baokward integration

S

The situation in the asymptotic region 18 not 80 st?aightfdr;

_ward.' If the backward integration is started far out at. some . :

point To and initial conditionsg
w) - 0@, e

8l

- Fl4

ave taken, where |)(1) ‘vepresents some quentity of the of@ernéfi;;}.J}

one, then the second solution will increase very rapidly:Wiﬁn'reaéilf§ 5

pect to the first, until the effect of the coupling term.bh-fhe tl4;]"f

right hand side of F7 will dominate the equation.and the‘frué"-;

solution will be lost.
On tho other hand, 1f initlal conditions
s = V@),
are taken, then the magnitude of the coupling on the rlght h&nd

side of T8 would swamp the correct solutlon. Thms dlfflculty

can be overcome if the backward 1ntegratlon is d1v1ded 1nto two \

parts.

R R

First equation F7 is inbegr&ted by Ltself,. backwalds from rf j-f

_to some point To where we might reasonably expect the numericul _"V;

value of the solutlon‘of 8 to be slgnlflqant.

Then the coupled equations 7 and I8 are integrated dekw&idsi.




from Ty to the matching point oo+ A suitable'choiﬁe 65',ré-f

will”avoid the severe cancellation which occurs in sitnationsjde;

fined by asymptotic conditions T14 and TF15 . To keep & check

on this the values of both sides.of T12 Weie printed oﬁt. ::

An exemple is given which demonstrates the effect of the choice»of‘

I‘eo

Equations F7 and F8 .were solved using

k? 16,091
1.609

i

- Nt

and the matrix V was taken aslinlﬁhe exambleiatffhe«éndTOf:éﬁéptefi' |

O

" The fUncﬁ10n~ V22-

ing poinﬁs were chosen to be 4.01 eand 4. 11 . The results, sum-l :f/~

marizaed in Table 5, wore used bo find o oritor-j.on :Fcu:- the ohoice of

ry « This is essential 1f & program is to be wwibben wiLh ﬂuLOH-f

metic caloulation of L

Table 5 shows that the phase shift 'ﬁ1| = tan" (R) is very insens- 4'.

itive to the value of T, although accuracy is 1ost as ré .inL-‘

creasgses, If we assume that the decaying exponentlal behaviour

begins afound the point T, s 80 estimate of the value-of ré  caﬁ
- -k,
be obtained by taking a value of = for whlch the quantity 8 2

has fallen off by some factor (sav P ) from its value at the point;

r .
c

o

i.0. 2 c - - >.

o . -8 : (; ' Py,

. -k .r o :
e ' .

has & minimum about r = 3 8 and the match- _ o




wie
nNIoo .

1.€, ’ re - rc <
where P = 108-@ P .

Using the values, from Table 5, of- x, = 8.01 and Td.u 4-01np;
gives P #= 5 , so the oriterion used in the program was =

-y {50/l

" This was found %o be satisfactory over most -of. the :ange-{figf“

85

0 (.kiz { 16, . 16 '> kéz > 0, although tﬁe-aqéﬁrébyQ ;J"'f

diminished for very small values of k12 .

Description of program

Two coupled differential equations of the form

-y

i : : . .
. l .
Tt * oV M, =N,

-l
T

”’,ﬁ, ;CF* — 44éz - .:;} f.\J;2 ’LFz m k>${\\/.

are golved, subject to the boundary conditions

u, =0 at Tr=1r_ ; i=1, 2,
i o
uy n sin klr + R cos klr,
11‘ Fav4 B e-kr. .
2
vij is the same as in previous programs, ~ The ppbgram~qaiéﬁlaté§'

and prints the value of R.




Data : : ‘ BT “ . : | ":;i". ‘ r '
BO, hi, ‘ R
. ao' bo, CO, &2, b2’ 02,

I Izr 13’ " pl, y

1,
r0y h, ¥y1, -
0, 2, A (2x2 matrix) , 0( (3 x 3 matrix),

initiel J-1 (set equal to -1 in this case),

J max (set equﬁl to 0 ),

>\1, >\2,' el, o2, e3.

k12 is given by BO x e while - - S e -,f_¥§f?'

k22 is given by B0 (e = hi),

where e ‘ltakes values al (02) 6%

The matching points are chogen to be the tabuiam inﬁ£s“gi§én‘bﬁ,-'
The- two equafions aré'inﬁegrated forwards to thié'pqiﬁé{'ﬁsihéiﬁhé.'
matrix O as initial values. '

The first equatlon is 1ntegrated backwards from tabular p01nt

Il + I, + I3 + 1 to the point re deflned by orlterlon P16 Now

the coupled equations are integrated backwards to the matching points'

where the forward and backward solutions are matched;-\ The veotor

P

of coefficients € is calculated and, to keep a oheck on. the acc~
uracy of the matching the left hand side and the rlght hand.smdevoff,“l

equation 12 are printed.




Finally the phase shift ‘W1 given by arotan (R) -io evaluated
frem boundary condlitlon for uy
T

st the tabular points giféﬁ by -

I+ I, + I3 and I, + I

ot 3 + 1
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¢y 1-

(p)etd S*H'1

9LV9 1~
g9 1-
o1~

(p)eTld S*H'¥

266671 CT06° T~
9906°1- ﬁmmm.ﬁr
9L68°T- 9168° T~

()eTd §8°T ()21 S'H'Y

T0°0T

10°8

G VL




CHAPTER G

Derivation of radial equations

The formalism of Arthurs and Dalgarno (1960) is used td.conéiderﬂ
rotational excitation of a diatomic molecule by an 1n01dent p01nt
particle. The model which is taken to represent ‘the molecule 19 ;':

that of a rigid rotator.

Let A =(6,9) speclfy the direction of motion of the .
incldent partlcle, distent r trom the centre of - ‘mass of the
rotator, and let ét = (0, d)  specify the orientation of the

internuclear axis w1th respect to some axis ilxed 1n spaoe.‘,fQ S

The Homiltonien for the onbire system is :-.,;‘L:_L."i;uP;

; IS o) e
Ho= Hoe ~ 24 s v(me-e)y 0 e
where ,<%/k<2} 'is the kinetic energy operator for the
scattered particle, H is the Hamiltonian for a free rotator in

rot
space and vV (»r 8-8') is the interaction potential of the :

colliding systems. The wave functions descrlbing the rotational ',
states of the molecule are the spherlcal harmonlos \@qwm (ff )

defined in Condon and Shortley (1935), which satisi‘y

IR IR} BREI R

86




L

where I is the moment of inertia of the rotator, j_)£7islits 3

" rotational angular momentum and mj,% its projection on?fhe;'z axis,.

Let £ & be the orbital angular momentum of the incident partic1e,

m, A its projection and consider the wavé function defined,by:”'

/LXW (4.4) ZZ Y““x”"'«ah’“”) 7£-'~ () yxm ”:' G3

Mg My
whers (jfm . IJIJM) is the Clebsch- Gorden coefflclent.

M A A : - ‘. o
/tk58£(4£,4ﬁ) describes a system of total angular momentum - d jk

and projection MJ&, where
I = J+2,
and it includes the entire engular dependence of the incident‘part-.: 

icle and target.

If B is the kinetic enorgy of the 1n01dent particle, measured

in the centre of mass system, the totul energy of ‘the system, when

the rotator is in the state specified by rotation&l‘quantum:numberh é’-_a,

is gilven by

R

Y

Bigenfunctions of H , corresponding to total angular-moﬁentum qﬁant4»

‘um numbers J and M and appropriate to the entrance channel defined
M A A

by quantum numbers (Jj, 1) may be expanded in terms,of “Ekfxz(/r d')

as

co- B e Ele).




where u, ,2,(r) are functions to be determined 'such that

SM

i %M 1) : By ;‘Eu 1, /i) .

LoBB

Using the previous equations, the resulting set of coupled*différ} _'~:

ential equations is

42 R T AT B2 R S
[3—;’“ " '_/&8'5' ' “—“}T "'Lm-(”)f | ;

- where k?,j is the channel wave number given by

hyy @ T [Ek i EE‘3LB+0}?“

ent.

ERQYATY

" The scattering matrix SJ(jﬂ; j'B') is defined by the requirement.

that asymptotically

R N KRV AT

r_.fﬁ_i.jGT.:

Z Z; <X£ SIVI X’ie“?; M “ “ L), :




Derivation of cross section

. ﬁ A * o S T "
Total wave functions EL. (/r 4{' /rl)- ; having the asymp- o
¥ T |
totic form of a plane wave multiplying the 1n1t1a1 target wave: N
function plus & linear combination of products of. outg01ng waves',§:~ﬂrf
and final'target wave functions, are defined by Blﬁttfan@ Bied§ﬁharn-‘»‘
(1952) to be | T,
- : 2 o0 S T ' I C
iy LA 1
. A A
| (’r.-i,’i) = E (?.Jiﬂ) :
¥ ‘

T=0 Me-3 L:lzwy)

el

<yt lyeon }HL

_7.i>1>




YV

Bguation Gl1 has asymptotic form
Y i, i) v epledyet) Y u) ..
| ., o
3 et

Y’ .
Z AT S Y""’"x) yém(":) ez
_wherém q (;j'mj,; jmj) is the reaction amplitude given by .

Wmprm) = £ TS Y e

M/P,Z/m:&

tyimkolk,ﬁa'm)(hﬁmta.mu] /zﬁm) ij Y£ ( ) o5

R, (jl’, j'2') Dbeing an element of the transition mutrix defmed by

- | 3,‘ ) :_M -j-  '_ S
At —_ : ! t)' SRR ¢ 4 ¥
T (X’ehé'/e) = SM'(;.Q,B' S ()5«2')%,& o
The differential scattering cross section for excitatibh from o
he (J, mj) state of the rotator to the (3, mj.,').v_ state is -
g{%en by | | ‘

deoly'mysym| &) = &, |9y y ) | dd

Qs

Since most scattering experiments.do not distingﬁi_sh be,tw‘e'é'ﬁ .the .




different states mg or m j'. of the rotator, we vsivﬁe'ragé:'o’ver fhe- A
'mj and sum over the mj, tq give d s (j'~ J ‘ 2 ),; the dif—

.ferentidi scattering cross section for the Jj -~ J! tran51tion. AL '

From equations G612, G13, Gl5 and by making'use-of.thez_ -
algebra of the Olebsch—Gordan and Racah coefficiénts (Biedehharn,.  S
Blatt and Rose 19)2, Racah 1942) the following equatlon for the

differential scattering cross section was obtalned,.

0(/? | Iy(lku /&M 2 H ? “«),_f -; G16

~—

where P, is the Legendre polynomial of order A éﬁd_ﬁ‘ykzj'f‘fg
© Sy Sy yj s
> > > > 7 (’K'Sr»’eﬁl-?k)\.):’ .

5,0 Tpeo Ll odsaler mu. Is:4) o
617

X Z(’en'jl_"?'z, XA) | (Xl')X/a)T () )XX’)
where _ S o A R
‘ . Lif-are)
.Z(MMM) - (1) }:(1@+a)(2£+:)(z,c+l)( o(.H)]
, X(amCDOla//CJ: ) W(Ct/fnc,ol. LJ() G18 |
The total cross seotlon for “the J - J'I tran31tion takes_the fgr@.' |
Ty 3"'3’ Z

Jeo0 Etsjjg 1131 ' o 1

Rk L:'-zwwm} 5 Tl -




Defining

Distorted wave approximation s S }uiﬁ;yj

If the coupling terms in G7 are ignored there results the -

set of uncoupled equations

,E'{,2'+l) 2 Nl Iy L | o
d,,»l oz ;?%<X'€ TM};/@ 3)/“- Ln") 0 Gzo‘_

533- o .;f_la”“i”‘-'j
/T) to be that solution of G20 .'which be- .

haves asymptotloally as

. | EET VR
,i' (4) v oam (/&’.M A5 T+ ,}“ ) G21

a, ' .
where fh32'18 a real phase shift, the equation .

sy
',e' (‘N) gw _gm' A y L (’“r ) G2?

is taken as the zero order approximation in an'itera&idﬁ'ﬁ¥§§édufé{"
The first order spproximation is then those'equationstdfscuséedjiﬁ'f“
chapter D, the results of which are, changing the notation,. -

oy

SQ‘(XLS X’e) N 2h ( - Lj)w.'

o ca5




whers

g

e 2wl s

L+

The elastic cross section becomes, in this approximation,

oo

‘ tG25

Lxt

while the inelastic cross section yields

Jeo Lslw-y) 2% lval

1% ). -

626

st = v 2 S G

The distorted wave approximation v1olates_the conserVation:1;."- .

requirement as expressed in the uﬁitarity of the scatteriﬁgvmatrix, '

Il

Z ‘S (y42; (\rfl)

¥'la'

- Now from G23, G24, G25,

' is (x4 H)

¥y A xR

Loy e )
| Ay ‘(‘)’._X'ﬂf",-)‘ S




so the distorted wave weak coupling aﬁproxim&tion'is’onij uaéfui 

‘when
TX'L ' /gr_xl ' ﬁ'k"e
Xl

o 630

>
it
kgl
-
P

is small compared with wnity.

-When 1t is not small, violation of the oonservation requlrement can .
be avoilded by the 1ntroducilon of & reactance matrix or phase matrlx
(Percival 1960, Seaton 1961).,  Another method of approach, used by
Bengteln et al (1963), is to renormelise the matrix elements by mul-.

tiplying them by a correcting factor.

\ T .
~ B S Lo T e
syt W’» B
| | ‘ sau& :
However, for practical computations, the qu&ntity Zk ,is;_ﬁf

tested and when it becomes' too large compared w1th un;ty,.g:ééﬁer,-l'
than O. " (say), the distorted wave approximatiéﬁ iS‘néuloﬁgerill
used. This is the cxriterion adopted by Roberts (1965) and Dal«igﬂ
garno, Henry and Roberts (1966) in_thelr_calculatlons.us;ng.the‘dis—,;

. torted wave approximation.

Close coupling approximation

“If none of -the coupling terms in GY 'are.ignored?tﬁéﬁ n§ an:A

alytical solution of these equations can be found s§ it is heéeséwny‘




- 95
to proceed numerilcally as in chapter B,
The asymptoticvcondition

ﬂj:f SR YTIS M( /?e!rh’/f_ "z ’gﬂ—) NI
;jiﬁﬁ: 2 oy ,.i , ‘ Li ‘_;l vi.
+ Ty R (X/ﬁ,_h/ﬁ) /00‘5(/&)3/1' 1; .?,ﬂ'), .G3.2

leads to a relation between the R and S matrices given By"“iv g
S = (1‘ - A R) (I * /L'R) . ot 633

The elements T (j&; j'8'), may be found and hence the oross =~ =

sections may be calculated from Gl9.

Bquations G7 consist of an infinite set of coupled difféfeﬁﬁialﬁi. 3

equations, Practically we can only také the summéfion 6verga fewa

of the possible stantes. Thus the clonre ooupling apprOximétioﬁ Ll :

nores coupling to any higher levels than the ones under cdhsidera;-‘

tion.

Ekpansion of potential function

The potential \/(443 9‘-9') \ may be expanded'ih*ﬁtéépies ST

of Legendre polynomials,

Y (,r’a.-'a') = Z W, (o) B‘—( ;‘L) G34

M ﬁ

s




\

Tho matrix elements defined in G9 then involve tefma‘sucli- as
| ] A "~ "
(Xl‘t)’ /j{r_}}f,ﬂ '57 IR , o
' A A d A Ay M - N e
' . A AW 1A A ’
= s fz) L) a4 ) di ¢
/Lj/-jk’al( 3 R( )/\;Kj(" ~ df”-—-. . 35
Substituting equation G3% and using the expansion . o |
_ ~A /T' = ,1' - G636
Rlad) = 30, Z Yl 2) Y,M NNt
gives rise to the integrals evaluated by Rose (1957),

| j Ve A) Vo () Y, () 42

L

[ lheadlas it o

(}5 2 3‘"\3 (4 N ) "2". > [(,2 ,ﬂ.'-w) (2.&"+|)(1X'+|)(23"+15}

y LX’,“-/@ "0 Duu,g/’u 0)(&"8’0‘0! X’h’/u‘ ) (2/““)2. X K @34

N

> (*')M+m(31m3. ehﬁs‘m)‘
P (g"ﬁ"m h P :fm) (ﬁ'iﬂixm */m/},e £ /u/m,) ..
'l

s PR




Using formulae given by Racah (1942), - .

Y, e

> 0

Xpyse

L+€

= (1)

then ;

Hence

<x£

+i+d-&

b wm..

V(Q/PJ‘LQ.)OL{S)"E) (a,,¢3£ ..oLX ¢)
X V(rf’rd.:f (3§, ¢) (&oL%, X5, ﬂ

51"’ La)yeisy

Y

-.~ R L. . -
- . + 2 -

(”') {(2 ¥+ :)(2}5 *’)(U; “)(Z’e “)]

l/u,+|

X (Xﬁ(}/ﬂf/u,)

i
—

f (M ¥ s)

) <0 T wwm* '

wleetsas) sag) e «1/16,,.)

. G40

SN (w x,e s,w) / (:wl) |

S, . /{. o o N o A
M P > ’ X

(Lol £yl yiae)




From G41 1t is easily shown that

{ 0 ' 41 sh jiz ' _3:.1.-,-#,21.

1 ' jn = [j' ‘ .t" = A . G42

.fo (31205 guans 3) - -
Thus from G42 it can be seen that no. rbtational trans_itiqns fdr.a
\/(/{’, S-B') hafing only a /u,'x:: 0 | term are poésible‘. .

If the rotator :is gymmetric, so that
V{(#0-9)

then only even values of will apped:r in expa.nmon G34. PR

i

(/r 'rr-—[e 9'])A

For even values of /Lt ’

£ (308 32 3) = 0,
unless Jjh + J" and L' + 2" are both even, This means that for ._.‘
a homonuo1 oar diﬂ,tomno molooule, no mtattona‘l ii:mnﬁ:itLons can 'bake
place for which A ¥ is not even. If Lnf 9 9 ) 3 "i.s‘_'.l‘- L
further restricted by trmwating the series (}54 ai‘ter the term in'

M =2, the only f /,t, that are non-zero are those for Whlch

jv ="+t 2 and 2' = 2" + 2. This gives rise to the seleotlon

rule A y = 0, ¥ 2, for a ' homonuclear dlatomic molt,oule whose
potential has only M= 0 and M =2 terms when,ebcp'anded as ir;.,'_ G34.
Thus the double summation in G7 consists, in generall, b:ﬁ"-ninéi:{ P

terms.




CHAPTER - H

Validity of the distorted wave approximation

The validity of the distorted wave‘approximation depends Qn‘the'if"
_smallness of the off~diagonal matvix elements of the inﬁeféctioh_;:
energy. This will be investigated using an example-given~bnyQtt,

and Massey (1949).

It was shown in chapter G that the distorted-waﬁevappréiimd; '
tion could be regarded as a first oxder approximﬁtion'in,ah itera{
tion procedure to solve the strohgly coupled diffefenti&lveQua{idhs

.

GT7 The equations are here considered to be

U R Y v a
[ Voo '4%0 T Tz \Cs;] 'LL” = V. ALf cone o H

A

oy

+ Jw"bm - '?V:g \/MM_ M e \Zm.b-’u’a‘ , ~.:H_2.

I RS w oy Y, e 2

With.the assumption that V l: \ .
_ . on no
These equations represent the‘interuotiou betwean th ngéé}:$ﬁe iﬁ—i'
cldent and elastically sonttﬁred, and lhat seatbored afﬁef'éxqiga{fr-
tion of the nth  stationary stato. ' | |
In\the cage whove the sﬁaﬁe_givén‘By. 0, -uﬁﬂiih éfé;ﬁégrly;in‘

regonance, the matrix element v0u~ will not be small and the dis~

torted wave approximation would nob be expeeted ta yield good pes'.
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~ sults. Both the distorted wave and close coupllng approximations oo

willl be applied to this example and the reapectjve expre881ons for

the inelastic oross seotlons compared.

Writing k02 = k2,= ki and assuming that'the.fieldx vod‘ is

the same ‘as th y equations HIl, HZ become

R e B

f#

L

il

SR SRV DYy

/'{rl\.- °.° M ' /ﬁz- om "o,

‘The required golutions satisfy

o MO,

" H3

H4

HE

. Adding and subtracting H3 and 14 gives the equations it

O A A ()| i) <o

) \ ':_' N

)&’2.

[V’- N /&1 - % (\/00 X V; M) (#D "ALA‘.)::O

If the functions V__ and V_  ave sphericﬁlly'syﬁmetrid'fhese"ij -

equations mey be solved to give




- L Sl
voaaeetd . “
ooy

ke L ;%Wm o)

" o — 2041 248, j
M- ’“’ v '2':' /{W Z 24t ( a ')PLMB) » HLO
| yy R o

where the phase shifts ’\]L ’ S,Q are given by the .eQu,aJtions-{.gi -

sz 2 /g(,?,ﬂ)‘ 1/u. . 1

) M= 0 m2t

respectively.

 Henoce | IR
Y L L I ) zu,,, Cagy
M 7m0 * 'W*&z (M"')[ 4 L} ("‘”9) Cms

and the differential scattering cross section ‘co;:'r'c_eép.oriding t0 R

transfer of excitation will be

L Im(e y 6 £t Z (2£+| zu,,;. “83} 'p ( m 9) Hl4

)y '- v

" s0 total oross section is given by‘

Qe = TS (a2 u (m g) Cms

.:\QH

L




Applying the distérted wave approximation to this problemAgive§ the

requations

(2 A M I i PR ST
| v * /FE B )ﬁ-ﬂ \/OD} 0 = 0 ' H16-"‘.

V UL/re)

; i 2 _ 2 M fi“ |
V 4-‘-/& . /,%‘z \/DDJ MM /&1

where Uo(r,e ) is that solution of H16 such that ‘ﬁ"

el 2T e

o Then

Mg 0 = ' d A Mé(”lﬂ'@);ﬁ: \/C,MUO (”,9') j"l,-.;'C_"-;“:-.I.I,lB‘.;IV_M':.‘_

'--ﬁ"
“.v}hére.‘ ' fC/o-‘.\ B « b <cond' 4 am 9..@9'@"5( i '¢'),
.ahd -Qo(r,S ) is a so%ution ofi H17 with‘ﬁhe iight"hggd.;iqe éé%r‘?‘fgvi
equal to ?ero. In this case ' L ‘ !

Mo(/r, 9) = UOL/TJQ)'
- Using the expansions

Uo(£,0) =g D> @) AL Ui e (@ssy L mg

ll

Uyl @ Z(m. ,p LU ) ?ﬁ(m@)) HQO

- Lt




where UL(zr) dis that solution of

d* 2 (L |
rr ’““;‘*‘2 i \/o.,-

= o.,- . Hel

which 1s regular at the origin, end by expa.ndlng P (cos @ ) and

integrating over @, O and ® , it follows that
gtl e | i £ I T

Q.M - E (z 2+1) Y V., U () o(»r He2. . .
Now if ’\] g &nd 8 ¢ are small they obey the i‘ela_t'ionxél - -

Lzm ou

5 - 4 (v,,,‘v;m)z %T;

Hence | : . ‘ S L
| Iy p ‘ﬁr -
R Y 3 u«a e
2 £ ‘ je\. o *1 T
Thus the total cross section as .given by H25 agleoswithequa..

tion H15 if -8, is small,
2%

Thus the condition of validity of - the ‘method of distorbed wa.ves

is that the integral, given in 1-125 y should be smull.




Bffect of an inorease in coupling . -J,' ;??;x;ff;. T

FERNUREEY ik b i

We now investigate the effoot of replacing V by -~)\ V
in the previous analysis, )\ lo o parameter which is taken to

indicate the effective magnitude of V on ° As ‘>\‘ 15-1ncreasedi3j-‘

the distorted wave approximation will become less and less valid,;,;

and we may examine the manner in which it breaks.dQWn.,“
For the distorted wave approximation the éffect.on:the tbtailj‘V

cross sectlon is given by

ﬁfﬁa@_f?

RS~ > e N | Ve | e

. Thus as )\ increases, the cross section will increase as,;)\ﬂﬁ;;s;y RERNRER

In the close coupling &pproxamaLion ‘the effect‘of inérdased u'\ ;f=Q';
cdupl;ng can be seen from equationd H1l and H12 with V :éj;:;~£;;3
~ placed by A .von' As A 1ncleases the phase shift '4L3 w1ll }
increase while the phase shift $z will decvease. ~ Hence. 'bhe
'differenée, .4Lg- S » will increase and equablon Hl) shows thatl
the cross section will inorease from zero to gome maximum Val?e,and;;;g,:Q?'
then it will bscillate. - Lo

o

The distorted wave approximation is only validhiﬁ“thé'fegion ~"’

of initial inorease'in the oross section. It predigta a monotonic
increase of cross section and will usually indicate too great a prob—'li &

i

abllity of the transfer process.
. We might expect a similar situation to occcur if re$0n§n§e¥iéi3¥fAﬁ.fstt

not exact. To test if this is so we try some nuhéricai}bélduiafioﬁs:f e




on a particular collision.

The example considered is the j = 0 -3 j' = 2 Trotational ex-

citation of a hydrogen moleocule by.an incident hydrogén'atom.'"_For

using the formula defined in chapter I for- the interqctipn'ﬁbténtiai L

'this case we solve equations G7 with boundary dondiﬁionsileOJQj

between these two bodies. ‘- Three different cases wefe taken 3 .

(a)

(b)

(o)

(a)

Fnergy 0,05 eVe , J =0 ; T
Bnergy 0.25 e.V. , J =03

. Energy 0025 e.V. ) J 25- .' ‘ '\ “- |

With total angular momentum J = 0 " the only ﬁossihlé ineiééf?i' .

ilcally scattered wave corresponding to J!. = 2_;i95§ith:by .

2! = 2. Thus there are only two coupled equatidns cérrés;, :

ponding to £' = 0 end 2' = 2, The value of A waé_varied .

 and the graph of cross section, calculated by the distorted -

wave approximation (G27) and by the close coupling approxime-
tion (GlQ); plotted against N+ The results afe shown in
Mg 3. This shows that for low energies the distorted wave is

a valid approximation, a result which was expected as the of f-

diagonal matrix elements, as given by the phase shifts, are *.

émall. This graph also shows very'cleérly the oscilldtory VTJ
neture of the cross section as givenAby the solutionléf‘the»ﬂ"

fully coupled equations.

Agedn, with J =0 , there are only two equations corregpdndé'_.-if“*'

ing to 2!' =0 and B! = 2, In this case, using a-mﬁch.

~ higher energy, the values of the cross section as calcﬁlatéd fk




V0.

~ from the two approximations differ cbnsidefﬁbly‘béfofe~)%=$' 1.
In fact at ){ 1 the value glven by the dlsborted wave apu |
proximation is 36% greater than that given by the close coupl— '

ing approximation (see Fig 4)

(o) TUsing an‘energy of 0.25 e.,V. and J = ?; Qill l:,ivc—a threé

1nelastically gcattered waves correspondlng to ﬂ'.m ?3, 25, 1‘2:‘

27, LSS

Thus we have four coupled equahlons to solve and;.1n~thls oase, e
the- dlstorted wave approximation is again valid, the agreement belngl.-
good out to large values of A (in the range . O - 9) Again thls “*;_:
isg because the phase shifts are small for these values of ,2' . .

These resulis are shown in Fig ).

Thus the distorted wave is a good &pproxlmaiion for low energiea; -
1t bresks down at high energles, for low values of J ; at these

higher energy values it becomes more and more V&lld as J increases.:'

Another interestlng way of demonstrating this last statement is
to plot a graph of the contributions to the cross: sectlon from in~
dividual v&lqes of J agalnst the J values. Thlb was done for
& set of energies -0.05, 0.10, O, 15, 0,25 e.V. t All the curvea had
B the same ba91o shape except that, as the energy 1ncreased, the dif~

" ference between the maxima of bhe two approx;mations Jnoreased. "?'

Only the graph for B = 0.25 e.V.W is reproduced here (Plg 6)
It can be seen just how the distorted wave'apprbkimatioﬂ.ép?7f‘
proaches the close coupling approximation as values of' Jffinbrehse; 3_,;§V

_Thls graph will also show if enough J walues have been taken 80 - that

contributions from higher values of J can be negleoted.A;rﬁ‘



FIGURE 3

' Calculated values of the partial inelastic eross section
o (0 - 2) versus coupling coefficient A , for
E = 0.05 e.V., using both the distorted wave (DW) and

close coupling (CC) approximations.
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"FIGURE 4

Calculated values of the partial cross section CT;'(O - 2)
versus coupling coefficient :)\ for E.= 0,25 e.V., using
both the distorted wave (DW) and close coupling (CC) approx-

imations.
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FIGURE 5

Calculated values of the partial cross section Cf;5(0 - 2)
versus coupling coefficient >\ for T = 0.25 e.V., |
using both the distorted wave (DW) and close coupling (CC)

approximations.
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FPIGURE 6

Comparison of the distorted wave (DW) and close coupling
(¢C) approximations as shown by the contribution to the
inelastic cross section ¢ (0 - 2) from various values

- of J, for B = 0.25 e.V.
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" CHAPTER I

Introduotion

The theory and numefioal methods of tﬁe pre%ious‘chdp%eré are:now_
applied to some ?raotioal cases, | We consider ﬁhe»fofatidnéi;exéf;
citation of a hydrogen molecule by a hydrogen atom,-a‘héliﬁm atom _
and another hydrogen molecule.  With little eitré effort»wé;élsq
include the‘rotational excitation éf a deuterium"moleqﬁle>fy€é- |
hydrogen atom. These collisions have glréady’béén studiéd.ﬁéing_:
the distpried wave approximation (Takayanagi 1965, Réberfé_l955;_L.
Davison 1963, 1964, Dalgarnc and Henry 1964, Daigarﬁé, Henry aﬁd_.\?
Roberts 1966), We have applied the close oouﬁliné épprOXimgtibn.j .§
to these cases and have demonstrated the failure offthe distorted

wave approximation at high energy. .

Calculations

 The medrix element | ,
Cagrs alv]gmers 0y o

given by equation G9 , connecting the different scattering channels | . o

is evaluated by expanding the interaction potential as in ;Al7:;_¢.

Vi) =3 wpnlen a

M




~ This equation has been truncated after /u,u 2 beoause Dalgarno
. and. Henry (1965) have ﬂhown thet highor ordor harmonmcs are un=-

likely to be important.

Hence

i) = ol LAv45 )

and, as shown at the end of chapter G, the double summation iﬁ  GT
consists, in general, of nine terms. The funcﬁions;

f (jtlt, ;j".Z"' )
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I2

may be conveniently calculated from formuh%aglven by Bersteln et al'»5. .

(1963).

Only oollision processes in wh:ch the rotational quantum num-};j
ber j changed from gero to two were taken. In the case of scat- :

tering of a hydrogen molecule by another hydrogen moleoule the in—“

cident molecule was not allowed to ohange 1ts rotatlonal level and:fgﬂ

. was agsumed to be in the state defirned by Jj =0 throughout>jhe
collision. |
All coupling terms involving j = 0 were rétained'but thé:-

terms coupling J = 2 +to hlgher rot&tmonal levels were neglected

thereby reducing G7 0 :a set of four coupled difforentlal equa- ;;QV‘”i”

tiong.

Thus the scattering matrix SJ (583 j'l')"is,.in geherél,’é?iqﬁ””““*

four by four matrix defined by the transition (j& §'B%) . . .




0y 0J 07§ 272  O0F; 2 T 07 2042
‘2323 03 . 20-2 5 232 . 2523 23 . 2J-2 2042

23 3 0J 2y 232 - 20y 28 L0 edem2
CoJe2 3 OF - 2:2y 23-2 20425 23 U ag2 ;202

In the case of J.u 0 this reduoés ﬁoia tWOLby'$W0 ma&fix.oﬁtqined
by deleting the second and third columns and rows whilé for  J¢§ 1
it gives<a three by three matrix obtained by deleting the-éqund fdw'_
and column. | | | !

The elastic crosslseétioni o~ (0;0) ‘and thé,inelééfic crbs;:-’
section O (2;0) are calculated from equafibn} Gl9," -Weﬁaléo'dﬁl-i';_

culate the angular distribution defined By the relation;{T-i55{

d.U'(X>8‘”)

‘where the differential scatterinp oross seatlon “ “3 Y

b

is given by Gl6.

Equation G17 is ndt in é‘suitable form for computafion'and- -
g0, following Blatt and Biedenharn (1952),.we write - Gl? in a form i."
such that each term appears once only in the summatlon.,;ﬂ i?f" -

00 = Ty S+§ 2 .QQ

<> > >z ,em:fm)z.(u,es,v) T (x,ﬂ,k,e)

CT=0 Lalwyl ezl

+22 >£' Z: > > > MVS’??)X)‘)

barea -

. oonte s




S section for the J*ﬁ Jt tranqltlon averaged over th Maxwellian L

where RP [. ] denotes the real part of ‘ ,1A);ﬁ'f:'<:

7‘(.

T‘S'(M;x'%') T (M)H )

 "The actual number of terms in Lh1a expansion ig reduced because of

the restrictions that |

Ll + )-2 -\ ‘11' 4 3-2' L )\ ’ 1'1_ + 11' . ,821-1,2 ST
musf be even.

Rate coefficients (R) for a- oolllsion at temperabure T
| Kelvin in which the rotational qunntum number chaﬂggs-frqm 3 to

j' are defined by the équation

| L - S
R _ «re/fé_r-2< IR .
N AT Ryy > y .

‘where k is the Boltzmann constant end < Q |j> is Lhe cross Lﬁ*”’\“"”




"fmdistriﬁﬁfion of incideﬁt energles,

(o) = [ M@oYy de, | x
where

. B  '|:_.

(T M e

Mle)

and 0% (3';j) 1is the inelastic cross section corresboﬁdiﬁg to_31f'
impact energ& B.

All calculations in this chapter are performed u51ng Values !} *f-.
- of energy in electron volts and measuring distance in angstroms
. with the exception of the rate ooefflclents whlch_are 1n.un1ta Qf;f;:<

o’ / sec.

H~H

We have adopted the Buckingham (exp ~'6) type df'potehtiéij_ff; o
used by Dalg rno, Henry and Roberts (1L966) for the. interaction fi}"

potential between a hydrogen atom and a hydrogen molecule »v~3:ﬁ€fg--.-. -
5 szs e
o, él2 gy e

bbb %( 3 m/r) "

A

/U_z("")A




Cy

For these particles

.2 ‘ h B -
‘jjéét = 321,82 (euv, %)

and for the hydrogen molecule -
%.2.
| 2T |
 Thus there is an enexrgy difference of 0.,0454 e.VQ{'betﬁéeﬂf%hé ‘

1

0.007564 e.Ve

§=0 and j = 2 rotational states of the hydrogen molecules . - .o -

Hence ' .
'&Hr A |

@he energy range taken was from 0.05 edV., whlch lies Just &bove

© the threshold of the J = 2 rotational level, up. to o 25 o v.,_‘

- vhich lies below the first excited vibrational state at O 353

| " (Roberts 1963).

The oritefia_deécribed in chapter & were appliedifé;gitéﬁ;nt‘ﬁ}'
estimate of -the initial end final intervals and'theéé'ﬁéfameiéfg5¥i:
were fed into the distorted wave program desorlbed in ohapter D.-‘é;f:'
 The results of Dalgarno, Henry and Roberts (1966) were verified and
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