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STO-IMARY

The class of nonlinear process presented in this study is 
characterised by a differential eq.uation involving products boi 
of the output variable with derivatives of the input, and of 
derivatives of the output with the input. It is described as 
’’output — dependent*̂  since its dynamic behaviour at a mean, 
operating, output level changes with that level, and it is sho\ 
that the nuclear reactor on an accepted approximation is of th: 
class.

Ihe processes studied each incorporate a gain element of 
either of two types, the gains of which are functions of the 
process output. There is a progressive development from the 
gain elements to selected first — order, and thence to second — 
order, controlled processes. Extensive use is made of phase— 
plane techniques in the study, as well as other forms of analyi 
transformations due to Poincare are introduced and applied wit] 
effect to the behaviour at infinity in the phase plane, and 
repeated applications of the Direct Method of Lyapunov produce 
successively improved definitions of the limits of operation f< 
stable responses. Some of these applications display new 
approaches to the use of the Direct Method.

The stability behaviour of each system following large st 
changes in input is clearly indicated by diagrams, which it is

— ih —



shown may not be obtained by a locally— linearised treatment 
involving the concept of a roots— surface. In particular, the 
controlled nuclear reactor on the above-mentioned approximatic 
is shown to be stable following step inputs of reactivity of 
any magnitude in either direction.
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STOMARY

The class of nonlinear process presented in this study is 
characterised by a differential equation involving products both 
of the output variable with derivatives of the input, and of 
derivatives of the output with the input. It is described as 
”output — dependent” since its dynamic behaviour at a mean, 
operating, output level changes with that level, and it is shown 
that the nuclear reactor on an accepted approximation is of this 
class.

The processes studied each incorporate a gain element of 
either of two types, the gains of which are functions of the 
process output. There is a progressive development from the 
gain elements to selected first — order, and thence to second — 
order, controlled processes. Extensive use is made of phase— 
plane techniques in the study, as well as other forms of analysis', 
transformations due to Poincaré are introduced and applied with 
effect to the behaviour at infinity in the phase plane, and 
repeated applications of the Direct Method of Lyapunov produce 
successively improved definitions of the limits of operation for 
stable responses. Some of these applications display new 
approaches to the use of the Direct Method.

The stability behaviour of each system following large step 
changes in input is clearly indicated by diagrams, which it is
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shown may not be obtained by a locally— linearised treatment 
involving the concept of a roots— surface. In particular, the 
controlled nuclear reactor on the above-mentioned approximation 
is shown to be stable following step inputs of reactivity of 
any magnitude in either direction.



ACKFOYOLEPaMERTS

The author wishes to acknowledge with thanks the help of 
his supervisor throughout the project, Professor G.D.S. MacLellan. 
He is also indebted to the U.K. A.E.A, ( Winfrith ) for its interest 
and support through its Research Agreement A/WIN/EMR47 i and in 
particular that of Ltr- Cdr.P.K. M ’Pherson , R.R. ( Rat'd ), Head 
of Dynamics Group.



RQTATIOR

The page numbers indicate where the symbol is first defined. 

Symbol Page no. Description
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a^^ 22 equations

Coefficients of output and product terms in0, On ■ Introd. , _ ,equation ( I.l )
b, b Introd. Coefficients of input terms in equation ( 1,1 )
D Differential operator in time t

1 113 Coefficient of k' th term of
f^ 2 112 Functions of x and y in differential equations
fll 2% 112 Linear function components of f^ 2
3 3̂ = -1
K 2 Gain factor
k Dummy index
L^ 88 Measure of a region of asymptotic stability
1 Dummy index
m n II
H 100 Parameter defined as R/S^
n . Dummy index
P^ 2 112 Nonlinear function components of ^2., 2
p Complex variable
p^ 12 Coefficients of operational polynomial
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Representation of the behaviour of a real physical process 
by a linear model, although convenient, is often unjustifiable.
In many instances a process, whose normal operation within a 
certain range conforms closely to the linear, requires some 
nonlinear description for operation beyond this range. Similar 
remarks apply to the control system incorporating a controlled 
process.

The region of normal operation may frequently be definable 
in terms of a unique set of limits on the variables in the 
system. A type of nonlinear control system exists, however, 
which operates in a limited region associated with an equili
brium condition that is variable. For limited operation abou" 
an equilibrium level, the behaviour may be considered as linear* 
but its dynamic characteristics may depend on the equilibria 
level;' such an approach will be termed 'local linearisation". 
Since the nature of the local responses varies with the equili
brium state, which can be defined by the input or output level, 
an adequate description for such a system is "input-, or "output-, 
dependent".

For some processes of this type, there may be only one 
equilibrium value of the process input, namely zero. In such 
cases, where a situation exists similar to a pole at the origin 
in the linear process, the output may have any value at

— ix —



— X

equilibrium while the input is zero, and the behaviour must be 
described as output dependent. It is for this reason that the 
general class of process is chosen to be considered as output, 
rather than input, dependent.

In practice, much information may be available relating to 
the locally linearised dynamic behaviour of a controlled process 
which is obviously output dependent. This is certainly the case 
in the field of nuclear reactor control, where normal operation 
involves relatively small variations about any one of many 
equilibrium states within a wide range. Introducing a three- 
dimensional extension of the conventional roots—locus concept, 
this information may be presented compactly as a series of 
roots—locus plots in the complex plane where the third dimension 
is the modifying parameter, i.e. system output. A "roots—surface" 
is therefore derived, from the shape of which the small—signal 
response of the closed—loop system can be deduced directly for 
all values of output and of loop gain.

An output dependent system may be subjected, however, to 
disturbances producing responsesltoo large to be considered local. 
It is thus of general interest to discover what relations, if 
any, may exist between the characteristics of the roots—surface 
and the response of the closed—loop system for large variations
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1 2in its state. M'Pherson ' has given a detailed appreciation 
of the value of such an extension of the linearised information 
to the full nonlinear behaviour; Williams"̂  also has drav/n 
attention to this general problem of the validity of dynamical 
models. On the basis of these relations, design procedures in 
the complex frequency domain might be developed for the control 
of output dependent processes; such procedures would possess 
advantages similar to those of the roots—locus method of syn
thesis for linear systems and for systems which contain single 
nonlinear elements, and would afford simultaneous information 
about the corresponding large-scale behaviour.

The variety of output dependent processes is, however, 
great. This study is restricted to the group of processes for 
v/hich the input and the output are related by a different
ial equation of the general form

A  * < “o %

in which any a or b may be negative or zero, and which is 
characterised by the presence of products both of with
derivatives of *&, and of derivatives of with Particular

\
Superscripts refer to the Bibliography on pp. 201— 204



examples of this type areI
r,4

dt̂ ’  ̂  ̂ + ( ̂ 00^"^^0lZT) %  =  °

d \
(:H.:): — 2 + ( ) %  =  0

Cl u

d \  d^(ai) — g + ( &! + â ô  ) —  + ̂ ooH = ’“ + ̂ 0̂u.ij dt
(i) represents the response of a nuclear reactor on a one—point, 
one delayed—neutron—group basis, where ^ is the neutron popul
ation and -d the reactivity! (ii) represents'̂  the relation 
between vagus inhibition changes, 0, and heart beat rate*, and 
(hi) represents^ the control of the carbon dioxide concentration 
in the bloodstream by respiration rate.

An interesting aspect of the general differential equation 
( I.l ) of the process' invites comment. In the strict mathemat
ical sense, the equation is in fact linear in I since the 
input ^ is some deterministic or stochastic function of t, the 
output is defined by an equation of the form

+ • • • + %(t) % =  Kt) (1.2)

which is a linear differential equation with time—varying 
coefficients. In the control engineering sense, however, the 
term linear implies that the principle of superposition holds 
and vice versa: in terms of the commonly encountered
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nonhomogeneous linear differential equation, with constant 
coefficients,

' * • ■*■ ®-0̂ o )

this principle states that if (t) and ■̂ J(t) are the corres
ponding responses to the forcing functions R(t) and P’(t) 
respectively, then the response of to a linear combination 
c R̂(t) 4-02̂ ^(t) is given by the corresponding linear combin
ation ĉ -̂  (t) f C2'̂ J(t). In the case of equation ( 1.2), however, 
the principle of superposition clearly does not apply, since 
the time—varying coefficients of the lef'b—hand side are functions 
of the forcing function -d(t). Thus, although the equation is 
strictly linear, it expresses a strongly nonlinear relationship 
between forcing function and response. This nonlinearity is 
even more clearly displayed in the closed—loop around the 
process, when is a function of the difference between the 
closed—loop input and output I in this event, the relevant
equation is nonlinear in in the strict mathematical sense also.

This dissertation reports the investigations into the 
control of several particular output dependent processes 
described by equation ( I.l ). A principal objective has been 
to disclose any relations which may exist between the roots— 
surfaces and the responses of the closed—loop systems in these 
particular cases, and possibly to generalise by extension. Each
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process has an output dependent gain only, of one of two types 
referred to as a and p ! in other words, none of the dynamic 
parameters are output dependent.
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The Output Dependent G-ain Elements

1.1 a type of gain element

1.2 p type of gain element

1.3 Processes incorporating a—type gain elements

1*4 Processes incorporating p—type gain elements 20
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(a)

(a)
1à -

— K
/

/
/

Figure 1.1 (a) Block diagram for a type of gain element
(b) Alternative block diagram to (a), involving 

groups -& and (i.e. X % and )
(c) a— type gain characteristic
(d) Input—output relationship



CHAPTER 1 

The Output Dependent Cain Elements

1.1 a type of ^ain element

A gain element may be described as the simplest process, 
i.e. one with a non^dynamic character. In view of this, the 
terms ^ and are used in this chapter for the input and output 
of the gain element, as for a process.

At the start it was thought advisable to study the most 
basic of output dependent gain elements, that which has a linear 
dependence of gain on output through a small parameter X. In 
the adopted notation,

gain =  K ( l + ) ( 1.1.1 )
Suitable block diagrams and the gain characteristic are shown 
in Figure 1.1 . It is immediately apparent, since X occurs only 
in association with ^  , that the significant variable is the 
group X*&̂ rather than alone. For economy, this group is-̂ 
hereafter referred to simply by ^ — as are X-&, etc. by ■&, etc.— 
but it is understood that a value of any variable involves the 
magnitudes both of the relevant signal and the multiplicative 
parameter as defined.

The relationship between input and output is given by

^ 2 —'
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(a)

-K

Pigure 1.2 (a) Block diagram for the element in a closed loop
(h) Characteristic of a closed loop around the a type

of gain element
(c) Overall gain of the closed loop as a function of
(d) Overall gain of the closed loop as a function of K-&



and is seen ( Bigure 1*1 ) to be single-valued throughout. Parts 
of characteristics which correspond to negative gain» i#e. for 

<C — K , appear generally in broken lines. The groups E-&,.etc. 
are used for a reason that emerges in Section 1,2 •

If a loop is closed proportionally around the element, as 
in the block diagram of Figure 1.2, ■& =  and the closed—
loop characteristic is given by

2 ( 1.1.3 )

the roots of which are

A 1̂ ̂ -1^E + E'^+^ ( 1-E-E^)^4-4K

2

E-ê is now the double-valued function of the input shown in 
Figure 1.2(b), whose values correspond to positive gain and 
A. to negative gain.

To depict completely the operation of the element, it is 
useful to show the overall gain of the closed—loop round it.
In Figure 1.2(c) and (d), the ratio is plotted against
both E-̂  and E-̂ , according to the expressions

2:3 or 2%--  ( 1.1.4 )or —  » i + K + m
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The overall gain of the closed—loop may be positive for any 
value of , in which case the variable gain is itself positive, 
and may be positive for negative , in which case the variable 
gain is negative. It is also possible to have the overall gain 
negative for positive K-̂  , in which case the variable gain is 
negative.

Emphasis of the operation in the closed—loop is given by 
the illustration of Pigure 1.3 • This sets out the responses 
of to sinusoidal inputs of two different amplitudes, for 
various values of K, Although the information presented is 
already contained in equation (1*1,3) and Pigure 1.2(b), Pigure
1.3 demonstrates the effect of K on the behaviour, which may be 
described in either of two ways I—

(i) as may be seen from either (a) or (b) of the figure, if 
K increases while remains constant, the behaviour 
becomes more nearly linearI this might be expected 
intuitively, since the magnitude of the input is dimin
ishing;

or (ü) as may be seen from comparative inspection of (a) and
(b), if increases while K remains constant, the behaviour 
becomes more nonlinear; the input magnitude increases.

1.2 g type of gain element

The p type of gain element represents a stronger dependence
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(a)

(c)

h K

AK&

K

Zero Ĉ iFj ZERO Q/MH
ZE&0 GAfN ERO

ZEao GAW --- .«T

(e

Figure 1*4
Characteristics of p—type gain element! (a) block diagramt

(b) gain, (c) input—output 
Characteristics of element in a closed loop! (d) input—output,

'(e) and (f) overall gain as functions 
of and respectively
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of gain on output than does the a— type* Whilst the latter has 
a linear dependence, given by equation ( 1.1.1 ), resulting in 
zero gain at the critical value of = — 1, the |3 type has a 
gain which is directly proportional to output, i.e.

gain =  ( 1.2.1 )
for which the critical value of output is zero. This behaviour 
is of considerable interest since the gain of the nuclear 
reactor increases proportionally with the pov/er output.

A suitable block diagram and the gain characteristic are 
shown in Figure 1.4(a) and (b). By comparison with Figure 1.1(c) 
or equation ( 1.1.1 ), this element may be considered as that 
special case of the a— type in which K has tended to zero v/hile 
the group has remained finite and nonr-zero. In other words, 
for ever-increasing signal magnitudes and ever-decreasing 
values of K, the a— type behaviour approaches that of the type 
p. The p characteristics may thus be deduced from the figures 
and equations of the previous Section, resulting in the relation
ships illustrated in Figure 1.4(c) to (f) and in the following 
equations!—

input— output K-& =  0\ independent of
^ (1.2.2 ) 

relationship! independent of K-&, for Kd = 1

closed— loop ( E*̂ )̂  ■î'( 1 — K*̂ ) =3 0
characteristic! the roots of which are ( 1^2.3 )

or 0
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closed—loop gain %/%, —  ^ or 0
characteristic! E-̂   ̂1.2.4 )

iT k^

It is not necessary to display the p — type responses to 
sinusoidal inputs corresponding to Figure 1.3 . These are
already available on that figure, being the responses for E = 0, 
and are given by the expressions for and A^ following 
equation ( 1.2.3 )•

1.3 Processes incorporating a— tyre gain elements

In this Section, attention is given to some general aspects 
of processes which incorporate an a— type gain element. The 
next Section deals similarly with processes which incorporate 
a p — type gain element.

As a preliminary, the local linearisation of the process 
equation ( I.l ) of the Introduction is discussed. This general 
differential equation is repeated here for convenience!

Ç   ̂ ( ̂ 0 + ̂00"̂  V

The equation for an equilibrium state follows from setting all 
the derivatives in the above equation to zero! if the equili
brium values of *& and ^ are denoted by and , it is

b “S*b̂-& b—
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The input is now considered to have a small perturbation 6-&(t) 
from its. equilibrium value, producing a perturbation t) in 
the output I substitution of 4- ô-D, into equation
( I.l ), with the use of equation ( 1.3*1 )» produces the following 
differential equation relating 6*̂  to 6^

m
( a^ + a^.û ) d̂ ô-GL

m n

0 m mO e' ^^m dt“
-i- a/v.̂ô'ô

n

0
(1.3.2 )

After making the following assumptions, which certainly hold 
for sufficiently small perturbations, that

m
^0~ ^00% e »E a.

0
■mO —  C O < t  < 0 0

^On%e|
eg_natlon ( 1,3.2 ) reduces to

“ d“ôô ^ ̂ “Tim" ~  ^
0 0

, n =  1, 2,.. .n

dtn

( 1.3.3)

( 1.3.4)

For zero values of ô*G, ô*̂ , and their derivatives at t = 0, the 
transformed version of equation ( 1.3*4 ) gives the small—signal
transfer function to be

Ôvt
n

I  ( V,».) »
( 1.3.5)

m



- 11

S'®
•&a>.

(a)

(b)

figure 1$5 (a) Block diagram of a process incorporating
an a — type gain element 

(b) Small—signal transfer function for the 
above process .
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in terms of the complex variable p. Use of equation ( 1*3*1 ) to 
eliminate produces the desired final result!

n
n

ô-a (p) ( ̂ 00®oe“ ^0^? ( Ôn'®oê  ̂

^  “ f r  ^

The form of the small—signal transfer function, and thus the 
nature of local responses, are heavily dependent on the 
equilibrium value of output, as described in the Introduction.

A process incorporating an a type gain element is shown 
in general block diagram form in figux'e 1.5(a). The gain 
parameter K of the bare element has been replaced by a transfer 
function, whose numerator is of first order and whose denomi
nator is of m’th order*, since U can be set to zero at equili
brium, the static behaviour is that of the bare a type gain 
element.

The operation of the process is described by the equation 

[ + . . . +l] ̂ =E[p^D + l]( i + (1.3.7)

which on expansion becomes

“ A . , . _  _  a» , .

® dt“ dt dt °

=  + (1.3.8)
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Equation ( 1*3*8 ) is seen to be a particular form of the equation 
( 1*1 ), where
1̂0 " ̂ 0 1 ^ 1  ^^1 * 0̂0 """ ̂ 0 ^Q — If ĵn” ior m 1
and b = â  ̂= a^^ = b^ = 0 for all m,n >  1 (1.3*9)

Substitution of these values in ( 1,3*6 ) produces the relevant 
small—signal transfer function!
5% ( p )  K ( l + 0  ) 2 ( p  p  +  i )
_ o _   ----------------- ° 1----±----------------  (1.3.10)
S^(P) •. +9.2( 1+%g)P̂ +[g.]_+ (li-Pi)%  jP + 1

for which a block diagram is figure l*5(b).

Thus, although the output dependency in the process is 
only in the gain factor, the values of the small—signal poles 
as well as the small—signal gain depend in general on the mean 
output level* furthermore, the gain dependency for small—signal 
response is not a linear one similar to that in the process,

pbut varies instead as ( 1 + *̂^̂) * This effect may also be 
noticed from considering the non-dynamic case of the process, 
i.e. where p^ = q̂  = q̂  = . * . = q^= 0 and the process has degene
rated into the bare a— type gain element! the static small- 
signal transfer function becomes

5^/5^= E( 1 + ̂ g)^ (1.3.11)

w h l o h  a g r e e s  w i t h ,  t h e  e x p r e s s i o n ,  d e r i v e d  f r o m  (  1 . 1 . 2  ) ,

^  =  E (  1  +  ^ ) ^
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^Openr-loop zero 
path 

- Roots—loci for
const • values of oe

X Open-loop pole path

Closed—loop pole paths 
for various values of K

Figure 1.6 I An illustration of the roots—surface concept
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If the process is considered to be controlled proportion
ally in a closed loop, the small—signal roots—loci are different 
for each different value of due to the changing open— loop
pole— zero pattern and gain. This leads to the presentation of 
the complete set of roots—loci as a roots—surface in the three 
dimensions of real and imaginary frequency components and mean 
output level the roots-surface may be in several parts,
just as the roots—locus may possess several branches, and an 
illustration is given in Figure 1.6 . Corresponding to the 
transfer function ( 1.3*10), the open-loop zero at — l/p^ is 
independent of but the openr-loop poles may describe complex
paths as varies; the closed—loop poles may therefore 
describe equally complex paths, one set of paths for each value 
of K.

The complexity of the roots—surface is much reduced in a 
special case of the process of Figure 1.5(a). If all the 
coefficients and the factor K are so large in relation to
unity and p^ that the characteristic equation ( 1.3*7 ) becomes

the'transfer function (1.3*10) assumes the form

P ( ♦ • • • +«!>
In other words, if the process dynamics have a pole at the
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(a)

f 1TV

(b)

S'&fp) K(l + -%eVRP+l)
ÏX-2

K
pfam^™ ■*■'•- +‘k)

St(p)

Processes ^?

Pigure 1.7(a) Block diagram of a process associated with that
of Pigure 1.5(a)

(h) An illustration of the non-uniqueness of the small- 
signal transfer function to a particular process
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origint the small—signal transfer function has a gain which 
varies linearly with and dynamics which correspond to those 
of the process I being independent of In this event, the
roots—surface reduces to a roots—locus, the form of which is 
independent of and on which the closed—loop poles lie at
positions corresponding to the variable gain K( l + -d̂ )̂*

In conclusion of this Section, one other feature of this 
type of process is discussed. In place of the process of 
Pigure 1.5(a*)t consider the associated process with an a— type 
gain element shown in Pigure l#7(a), in which the lead term 
( p̂ D-f 1 ) precedes the gain element. The response of this 
process is described by the equation

Z + ( 1-Ee-Ep. M )  A =  KÔ+Kp,-âi ( 1.3.14 )
^  “ dt“ at ° dt

Comparison with equation ( 1.3.8 ) shows that, in the identifi
cation of this process as one described by equation ( I.l), the 
relations ( 1.3.9 ) apply with the sole alteration that â Q̂ = 0. 
The relevant small—signal transfer function is therefore 
obtained from ( 1.3.6 ) as

2

%  ( l + %g) p“ + ...+ 42 ( l + P + 1

If the coefficient p^ is zero the two associated processes are
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identical, and the two transfer functions ( 1.3.10 ) and (1.3.15) 
have accordingly the same form. But in addition, if all the 
coefficients a and the factor K  are so large in relation to 
unity that the characteristic equation becomes

D [ +...+ ai]%= %(! + %)[piD + l]« (1.3.16)

the small—signal transfer function ( 1.3.15 ) assumes the form
5djp) _  K( pj^p-M) (1.3.17)
6̂ (p) p ( qĵ p““^ + q,j)j_ip““  ̂+ • • ' + g.]_ )

Since this is identical with ( 1.3.13 )« the small—signal transfer 
function of the special case of the original process is not 
unique to iti it has been shown to be shared with at least the 
same case of the associated process, as illustrated in 
Pigure 1.7(b).

The disclosure that a roots—surface of a process may not 
be unique to that process places a severe restriction at the 
outset on the capability of the roots—surface to give information 
about large-scale behaviour, as outlined in the Introduction.
In the example above, the large-scale responses of the two 
associated processes will clearly differ, yet any deductions 
about these responses from their common roots — surface would 
apply to each.
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K  ip.

Pigure 1.8 I Block diagram of a process incorporating a 
p — type gain element
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1.4 Processes incorporating g— type gain elements

A process incorporating a p — type gain element is shown in 
general block diagram form in Pigure 1.8 ; it corresponds to 
the process of the previous Section in which the a— type is 
replaced by the p— type of gain element. The static behaviour 
of the process is therefore that of the bare p— type gain 
element, which is shown in Section 1.2 to be deducible from the 
characteristics of the a— type.

The equation describing this process is

5 +(  ̂+ ( 1-E^-Ep.^) 8 =  0 (1.4.1)dt -̂ dt °
which is obtainable from equation ( 1.3*8 ) by letting K tend to
zero while and kO remain finite and non^aero. Thus, the
dynamic behaviour of this process may be similarly deduced .from
that of the corresponding process incorporating an a— type ,
element. In particular, if the numerator and denominator of
( 1.3.10) are divided by ( ^nd K is set to zero, the
small—signal transfer function of this process is given as

f M h  =  _________ ^4)e(FiP +_l)_________  (1.4.2 )
6̂ (p) p ̂  + . . . + qgP + ( <li“ P]̂) )

Since the dynamics of the transfer function are not dependent 
on output, the roots—surface reduces to a roots—locus in every 
case of this process, not only in a special case as for the
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a— type process.

In this special case, when the process dynamics have a 
pole at the origin, the dynamics of the transfer function 
correspond to those of the process itself, as before. In the 
general case, however, (1.4*2 ) indicates that the transfer 
function has a pole at the origin even if the process dynamics 
have not.

Finally, the aspect of non-uniqueness of the roots—surface 
can be demonstrated by this process also. By comparing the 
special case mentioned above with the corresponding,one of the 
associated process, where the lead term ( p^D + 1 ) precedes the 
gain element, a common transfer function results.
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(a)

— >«-
(b)

Z

4- 1

Figure 2.1 (a) Block diagram of a first-order process,
incorporating an a— type gain element

(b) Block diagram for perturbations in a 
closed loop round the above process



QKAPgER 2

The Oontrol of some First-Order Qutput—Dependent Processes

2.1 A process with an a—type ^ain element

Pigure 2.1(a) is a hlook diagram of the process chosen for 
initial detailed investigation. The special case in which the 
first-order lag is replaced by integration is treated in the 
next section.

In terms of the general formulation of Section 1.3, the 
coefficients p^ and are aero for m greater than one and 

= T , for this process. Accordingly, the characteristic 
equation is obtained from equation ( 1.3.8 ) as

d^
I—  + ( l-.E0)e =  E0 ( 2.1.2 )
dt °

and the small—signal transfer function from equation ( 1.3.10)

ÔO(p) + P + 1
The interrelations of small variations in the variables when 
the process is controlled proportionally in a closed loop are 
indicated by the block diagram of Pigure 2.1(b).

Proceeding to the construction of the roots—surface in‘the 
( Of 5^’*̂oe ̂ space, Pigure 2.2(a), the path of the opere-loop 
pole at — 1 / T ( I + is drawn first. Since the roots—locus

- 23 -
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at any value is a straight line extending from the open- 
loop pole position parallel to the a axis 9 the whole roots — 
surface lies entirely in the ( (̂9 ) plane, obviating the
necessity of a three-dimensional presentation for this system.
It should be noted that the point c? = 0, =— 1 is a centre of
symmetry for the open—loop pole patht for 1, the pole
has only negative values, which tend to 2;ero for large and 
become increasingly negative as tends to — 1, and its
positive values for — 3. conform to the property of symmetry.

hue to the simplicity of this system, the location of the 
closed—loop pole on the roots-locus for any values o'f-'.K and 
is readily obtained from the magnitude relation

I (l + ^ g )P+1
=  1 ■( 2.1.3 )

The closed—loop pole lies at a distance of K ( l->'& )/T from
the open-loop pole, the former having a more negative value
than the latter if 1 and a more positive value if 1oe - oe
The explicit expression for the closed—loop pole position is 
therefore

(2.1.4)

and several paths are shown on the figure for various values 
of K. Bach path has turning points at %g =— l±l/,/K, for which



- 26 -

the maximum and minimum values of the closed—loop pole are 
± 2 Æ / T, and the locus of extrema is given hy

a =  - 2/T( l + ̂ Qg) ( 2.1.5 )

It is in fact not necessary to draw many closed—loop pole 
paths for various values of K. In a first-order system, there 
is only one closed—loop pole whose distance from the opei^loop 
pole has a simple dependency on and K, as follows fromV ©
( 2*1.3 ). The roots—surface may therefore he drawn as in 
Figure 2.2(h), in which the single closed—loop pole path lies 
at a distance of K ( 1 + *̂  ̂) / T from the open-loop pole path and 
replaces the one—parameter family of paths of Figure 2.2(a).
The essential behaviour of the closed—loop pole and the corres
ponding local transient responses is now clear. For a given 
value of K, responses are stable if — 1 and the time
constant of the response is a maximum at a certain value of 
for progressively greater values of , and for progressively 
smaller values which still exceed — 1 , the speed of the 
responses increases.

Attention is now turned from the small—signal behaviour to 
the transient response to large steps of input. The system is 
assumed to be initially in equilibrium, so that the static 
relationship is that of the a—type gain element, equation (1.1.3). 
For given , the output may be either
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(a)
■1“K< A^<-K
 : : ^ # 4

A ^ > 0

(b)
■(K+l)74.Aô =-K-l

AjfO

(c)

® denotes a singularity in the phase plane

Figure 2*3 I Phase plane diagrams of the transient
response of the first-order system with
an Or-type gain element for
(a) 0, (h) s= 0, (c) 0



28 -

the roots—surface indicates that ( for which — 1 )
represents an initially stable equilibrium, A^^ ( — 1 ) an
initially unstable equilibrium. The input is subjected to a 
step at t = 0 to the value of , and the system responds accor
ding to equation ( 2.1.1) in which = " % . f i . e .  according to

d-̂ • ‘
T_P + ( + ( 2.1.6 )
dt

with the initial condition at t = 0. In view of equation
( 1.1.3 ) I the alDove may be written as

KT— ? =-( )( ) ( 2.1.7 )
dt

The solution of equation ( 2.1.7 ) can be represented by 
the ”phase line’* of ( see Andronow and Chaikin^ ), but more 
information is conveyed by using the phase plane of K-̂  and 
KT d»̂  / dt, Figure 2.3. There is only one trajectory for a 
first-order system and a single diagram is strictly sufficient, 
but three different diagrams are given to illustrate the cases 
when -^^>0, =0, and 0. The trajectory is parabolic,
with a maximum value for KT d-̂  / dt of (A^^— A 2̂  )̂  / 4 at

=  (A^^ + Agj  ̂) /2, and the singularities at = A^^ andAg^ 
are always to the right and the left, respectively, of the 
critical value E^ = — E. The response is seen to be unstable 
if E^^<$A2̂  I and otherwise stable to E-̂  - A^j^.
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D e n o m in a to r NEVER 

Equals Zero

Pigure 2.4 ! Denominator of equation ( 2.1.9 ) 
as a function of time.
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T h e solution is obtainable, however, in closed form! being 
a variables—separable equation, ( 2.1.7 ) may be written as

d m dt
T

( 2.1.8 )
0

00
leading to the solution

( 2.1.9 )
2f.

In the above expression, the exponent is always negative, since 
Aif" A 2£*+/J( 1— K— )̂  + 4K ; hence the denominator equals 
zero at a time t >  0 given by

H e - ■ ^ 2 1
( 2.1.10 )

which exists only if <C A . 2 t  * Ihis is illustrated by 
figure 2.4 in which the denominator is sketched as a function 
of time. Thus, if ^ ^ o ^ A 2f response is violently unstable, 
the output tending to infinity at the finite value of time given 
by ( 2.1.10)1 this is to be compared with the possible behaviour 
of a linear system whose output, though unstable, has a finite 
value for all instants in time. But if ̂ ^ Q ^ A 2f » "the output 
is as^ptotically stable to the value = A^^ .
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(a)

(b)

A
U nstable

y  X  X  X

Stable,

Steps 
IN K6;

X X X X Kft.4.0

Figure'2.5 I Stability diagrams for the step response 
of the first-order system with a—type 
gain element from
(a) initially stable states ‘
(b) initially unstable states
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To discover the criteria of stability in terms of the 
input values I use is made of the following extension of the 
ineq.uality in ( 1,1.3 )*

A i o >  -K >  A g f  

Because instability results only if ^  response
is stable for any value of if * this corresponds
to a half—trajectory in the phase plane starting from a point 
for which — K . But if = - ^ 2 0  ̂ the response is stable
only if -^2f implies this corresponds
to a half—trajectory in the phase-plane starting from a point 
for which — E >  E-̂  Z> A 2f • other words, if the system is 
initially stable it remains stable following a step in input of 
any magnitude in either direction., But if the system is 
initially in unstable equilibrium, it may be brought into a 
stable state by applying a negative step of input of any magni
tude. This behaviour may be appreciated by the consideration 
that, if the system is initially unstable, the gain is negative; 
to arrive at a stable state, the output must increase beyond 
the critical value, which calls for a decrease in the input in 
view of the initially negative gain.

A summary of the behaviour in regard to stability is given 
in Figure 2.5 in terms of the steps in E^ from an initial value 
of E^^. A feature to note of such diagrams is that the E-̂  ̂axis
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must belong to a region of appropriate behaviour*, that is, for 
the diagram relating to initially stable states, any point on 
the axis corresponds to the system input not being subject
to any change and must therefore belong to a region of stability, 
and correspondingly for the initially unstable case. In the 
particular case of Figure 2.5("b)i the axis is the included
boundary of the region of unstable behaviour.

In an effort to correlate stable step responses of this 
system with the form of the roots—surface, the response ( 2.1.9 ) 
may be approximated by a single exponential relation

— t/l*® ( 2.1.11)
where the equivalent time constant T* is chosen to give in some 
sense an optimum representation. A convenient measure of the 
quality of the response is provided by the time integral of the 
transient deviations of the output from its final value, i.e. by

‘00 ^( at (2.1.12)f
Through equating the value of this integral arising from the 
approximating response ( 2*1.11 ) to the value from the actual 
response ( 2.1.9 )i ( cf. Eechleba*^), the value of the equivalent 
pole 0* is given as

o'— -   Eto.o ■ -AII   ------5^2— ---- . (2.1.13)
' iios(i.îi£Alî)
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A Asince =----- ------ - =— Ter,If 2f f
If

This expresses the equivalent pole as a function of the initial 
and final values of and of the value of the small—perturbation 
pole oÿ at the final value of output. Furthermore, if

< ( 2.1.14 )
T p *1 ^so that the expansion log^( 14- x ) = x— ^ x +-̂ x'̂ — converges,

then or’ = cr«/( 1 — #,,, )2 ’ 3
E'(L _ — A-

( 2.1.15 )

where n = 00 If
To:

The inequality ( 2*1.14 ) reduces to À 2f ̂  Apf »
since A ^ ^ > A 2f • thus the expression ( 2,1.15 )% which may be 
preferable to ( 2,1.13 ), is valid for a stable response if

oo 2f •

An alternative means of defining T’ does not require the 
solution of the differential equation ( 2.1.7 )i as does ( 2.1,12 ) 
( cf. Morgan )̂. In this method.

0!* = ( A i f - K V / 2

where
dK«l
. <3.t _av *^lf ^%o

, ) /  

'Aif

'dKd.
dt

( 2,1.16 )
dKô

00
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v/hioh yields a compatible definition of the time constant in 
the case of the linear first-order response. After obtaining 
the mean value of the first derivative of over the range

^  ^  -^If* value of the equivalent pole is given as
2

+ ( 4K-Î-2K^ )A,^ + K ( 3 + 3K+2KÔ )<r»   ii--------- £2-- il------------- 22- ( 2.1.17 )
3T(E + A^^)

AlternativelyI if the appropriate substitutions are made from 
equation ( 2.1.4 ) e there results more simply

3 3 3 T ( K + A ^ p ( K  + K^^^)

The accuracy of representation by the equivalent time 
constants is illustrated in I'igure 2.6 by the responses for 
K = 4, with = ± 2  and “ 2 respectively, and a response
from an unstable equilibrium for K = 4, = — g and ♦
in each case, the movement of the small—perturbation pole is 
considerable. It appears that the use of either equivalent pole 
is of adequate accuracy for engineering purposes in estimating 
the nature of large transients.

The foregoing discussion relates to the response of this 
system from equilibrium following a single input step. Since 
the system theoretically requires an infinite time to reach
equilibrium again, it is of interest to consider the overall
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Pigure 2.7 % Phase plane diagrams of the responses of the
first-order system with an a—type gain element 
to various seq_uences of input steps.
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response to a sequence of input steps, each step being applied 
before the response to the preceding one is over. In every 
time interval between pairs of steps the response is described 
by equation ( 2*1.9 ), in which and are associated with
the current value of and equals the value of
achieved at the end of the preceding interval. The following 
three situations are considered separately, and are depicted in 
Figure 2.7: (a) the normal situation where the system is in a
stable state ( -&̂ >  —1 ) at the start of the period considered, 
which may be stable equilibrium or convergence to it: (b) the

I

unlikely situation where the system is in unstable equilibrium 
initially: and (c) the more probable alternative to (a), where
the system is initially unstable and diverging. The diagram (a) 
refers to a sequence of three steps! after the first step, the 
system output follows the asymptotically stable path towards

which is shown by broken lines: but when = A, <T A ^ ^
the input is decreased such that A^^ is less than A and the 
output begins to follow the appropriate path towards 
finally, when = B, A^^ the input is increased such that 
A^f A^f  ̂  A 2^ and the output tends asymptotically to 
Similar diagrams may be drawn for any sequence of input steps of 
any magnitudes, since Figure 2.5(a) assures that step responses 
are always stable from initially stable states. The diagram (b) 
outlines the response from an initially unstable equilibrium!
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so long as the input is decreased, the output tends towards a 
stable equilibrium and — 1 after a time t^ given by

(K6 -AofXK+An J( = IqggT-^— ( 2.1.19 )
“00

which for the response of Figure 2.6 from = — I*5 is t^=0*358T! 
as soon as the critical value of output is passed, input steps 
after any fashion may be applied and the system remains stable.
In diagram ( o), the output is shown diverging from the value 
^̂ 00 if, at any instant before the time given by
( 2.1*10 ) has elapsed, the input is decreased so that is
less than the instantaneous value of , the system is rescued 
from divergence: after a further time given by ( 2.1*19 )i the
system is stable and remains so following any input steps.

Information about the transient response to any input 
function may be obtained from a diagram similar to Figure 2.7(a), 
by considering the input function as the limiting case of a 
certain sequence of small input steps. For example, the response 
to a ramp input commencing at t = 0 can be depicted by the 
succession of responses of Figure 2*7(d) to progressively 
increasing values of A^^i the representation improving as the 
size of the incremental steps decreases and the frequency 
increases. The important fact which is revealed without any 
further specific investigation is that the transient response to
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Figure 2.8 : A process comprising an a element follov/ed by
integration; (a) block diagram, (b) roots-surface, 
(c) derivation of static characteristic from 
Figure 1.1(d), (d) static characteristic of the 
closed—loop system.
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any bounded input function is therefore stable, provided the 
system is initially stable.

The above discussion has referred in particular to responses 
to step inputs. It. is clear, however, that the expressions 
( 2*li9 ) et al. are valid also for responses due to step changes 
in the value of K with the input constant.

2.2 A special case of the process of Section 2.1

Instead of the process of the previous section, consider 
that shown in Figure 2.8(a). In accordance with the general 
discussion in Section 1.3 of processes with a pole at the origin, 
this process may be regarded as that special case of the preceding 
one in which both IC and T are very large in comparison to unity. 
Its direct characteristics and those of the closed—loop system 
round it may thus be inferred from the previous results, with 
one reservation to be discussed later.

If K and T in equation ( 2.1.2 ) are very large, the resulting 
small—signal transfer function is

0*&(p) Tp
for which the corresponding roots—surface is Figure 2.8(b). The 
static behaviour may be obtained from that of the a—type element 
in which K—>oo ; thus, the characteristic of the process alone 
is obtained from Figure 1.1(d) as in Figure 2.8(c) in accordance
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(a)

(b)

(c)

rK

Figure 2.9 : Phase plane diagrams of the transient response 
of the system v/ith an a element followed by 
integration for
(a) " 1, (b) = — 1, (o) 1
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with the equation
— 1 independent of *&° (2.2.2 )
independent of f o r -0=0

while the resulting static characteristic of the closed—loop 
system is Figure 2.8(d)* The two possible values of output for 
any value of input are now

-, = E0. s= —  K
^ for 1% >- E ,  , for m  <  - K (2.2.3)

A g =  -E ^ A g =  ^

and the roots—surface indicates that  ̂positive gain)
represents an initially stable eq.uilibrium, A^Q = ( negative
gain ) an initially unstable equilibrium, but it gives no indic
ation of the stability of the zero—gain equilibrium state*, 
however, since the process is a limiting case of the previous 
one, it may be deduced that the zero—gain initial state (0̂  ̂=— 1 )
is stable if  ̂<C — 1 and unstable if 0, _ — 1.Ho 10

Following a change in input to , the transient response 
is described by

d0
KI— 9 = - ( m - E &  . )( K6 fK ) (2.2.4)dt o XI 0

with the initial condition 0 = 0  ̂at t = 0. The relevant phaseO 00
plane diagrams, which may be obtained from Figure 2.3, are given
in Figure 2.9 % one of the singularities always lies at the
critical value K0 = — K, and responses are seen to be unstableo
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Figure 2.10 I Stability diagrams for the step response of
the system with an a element follov/ed by 
integration from
(a) initially stable states
(b) initially unstable states.
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if — % in cases (a) and (b) or if in case (c),
and otherwise stable to in case (c) or to =— 1 in cases
(a) and (b). The closed form solution follows from equation 
( 2.1*9 ) I iu which or — K, -^2f“""̂  ôz respecti
vely , as

-(K^K^^)t/T

The finite time taken for a diverging output to become infinite 
in this system is therefore

E(%f + l)t/m = log (2.2.6 )
0̂0

At this point, where stability diagrams similar to those of 
Figure 2.5 are to be obtained, it is important not to make false 
deductions on the basis of infinitely large K. The diagrams for 
this system are therefore derived from first principles, after 
which their relations to those of Figure 2.5 are discussed. To 
construct Figure 2.10(a), the diagram for the behaviour from 
initially stable states, consider firstly the situation for any 
input greater than — K, which is indicated by the line API 
from equation ( 2.2.3 )v = ^ \ q ' ^ — K for initial stability 
and the phase plane trajectories indicate that a response from 
K0̂ o ̂  is stable to 0^= if — 1 and stable to 1
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if -1, Uow if -1, the step in -( K + K-̂  ̂),
SO that consideration of all possible lines AB defines those 
regions indicated of stable responses in which or — 1.
To complete Figure 2.10(a), consider the initially stable 
situation for any input ^  — K, line CD. since = — K, 
the phase plane trajectories indicate that a response is stable
if <2— 1  the output remains at the value — 1 —  and is
unstable if ^  — 1. By interpreting this in terms of a step 
in K-̂ , and considering the totality of lines ŒD, the regions 
of stability at a — 1 and of instability are defined, which 
completes the diagram.

Figure 2.10(b) is constructed by similar arguments^ for 
any — K( line EF ) , responses are stable
to ^ = — 1 if i.e. for a negative step, and are
otherwise unstable! for any — K ( line OH ), = — K ;
responses are stable ( 0̂  remains at — 1 ) if — K, i.e. for
a step in E-̂  <C — ( E-î-E-̂  ̂), and are otherwise unstable.

The possibility is now evident of incorrect deductions in 
attempts to arrive at the complicated nature of these diagrams 
via those of Figure 2.5« With care, this may be acheived, as 
follows for Figure 2.10(a) from Figure 2.5(a)! consider any 
value of E ^ ^ > — E on the earlier diagram, which indicates that
the response is stable to E-̂  = for any step. Equation
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( 2,2,3 ) states that A-ĵ  ̂for this system becomes either if
K0^^>— K or — K if K, so that if the step in K-̂  is
greater or less than— K— K0. . the response is stable to 0_ = 0 ̂  ^^f or — E if E0^^-<— E, so that if the step in E-̂  is-
or — "I respectively. For values of — E, responses are
still indicated as stable to E-̂  = A^f any step, but nov/
*̂̂00 " therefore, if the step in E0̂  *< — E — E-̂ ,̂ A — E
and the output remains at the value — 1! if the step in 
E0̂  >  — E — E-̂ ,̂ A  2^ = E-̂  ̂ but the output does not converge 
on since the initial state 0̂  ̂= — 1 has become an unstable
one ( A . 2q •) due to the increase in E-̂  ̂ beyond — E.

The stability characteristics of this special case of the 
first-order system therefore differ from those of the system 
itself. From an initially stable state, the system output does 
not always follow the input! excluding zero—gain initial states, 
if the magnitude of a negative step is too great the system ends 
up in what may be termed the * shutdown* state of zero gain! and 
once in the stable shutdown state, it remains there unless 
caused to go unstable by too large a positive step. From an 
initially unstable state, this system may not be rescued and 
left in a finally useful ( stable ) state! the best that can be 
achieved is to leave it in the stable shutdown state. Thus, the 
only region of practical operation is that in Figure 2.10(a) in 
which ^ and ^  — 1Î responses of practical
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interest are therefore described by the following simplification 
of equation ( 2,2.5 ) in terms of only input values I

-K ( ̂ ^ + 1 )t/l
( 2.2.7 )

The corresponding expressions to ( 2.1.13 ) et seq. for the 
equivalent poles of this system are as follows I — 
using the integral criterion,

E ( 0^^- ^ ( "%.o""%.f )or* = -
T

\ f  +  l

( 2.2.8 )
V

Since 1 and 1, the inequalities below hold I

\ î > \ o '

^f-%0 1
^0-^1

\ o  ~  %f
%f

< 1

< 1
( 2.2.9 )

which, allow the use of the converging expansion for log (1 + x)
to give

if O’* = ĉ (̂l'“'~ | i .. ) I where p =

if O'* = 0^(1— -i n | i ^ — ..) t where p =
^f-V

( 2.2.10 )
•\o

since cr̂ = — E ( 1 + )/T . ‘
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(b)

- K

(c

Pigure 2.11 i A first—order process with a p—type gain element*,
(a) block diagram
(b) static characteristic of the closed—loop 

system — a repeat of Figure 1.4(d)
(o) derivation of the roots—surface from 

Figure 2.2(b)
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using the average derivative criterion,

KÔ.2 + ( 4. 2 % ) m  ̂  + ( 3 + 3K + 2m  )0-'= ii------- 12-ii--------- ii. (2.2.11)

2.3 A process with, a (3—type gain element

Figure 2.11(a) is a block diagram of the first-order process 
with a (3—type gain element chosen for investigation. It may 
represent approximately^ the nuclear reactor in the fast accident 
condition, v/hen the delayed neutrons are overrun by prompt
neutrons, for which the differential equation is

—  = iillân ( 2.3.1 )
dt 1

n = neutron population
6k = reactivity ( input )
p = total fraction of delayed neutrons
1 = generation time of neutrons

Ihe special case in which the first-order lag is replaced by
integration is treated in the next section.

Reference to Figure 2«l(a) shows that this process is the 
p—element equivalent of that of Section 2*1. On the basis of 
the general approach of Section I.4, all the characteristics of



( a )

(b)
K&

(c)

K&

Figure 2,12 ! Phase plane diagrams of the transient
response of the first-order system with
a p—type gain element for
( a )  ( b )  =  ( o )
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this system are deducible from those of the o-element process of 
Section 2.1, by considering the gain factor K to be decreased to 
zero while etc. remain finite and non-zero.

The static characteristics have already been presented in
Figure 1.4, but the closed—loop relationship is displayed again
for convenience in Figure 2.11(b)Î the two possible values of
output for any value of input are

= K*Q;— 1 yVn = 0
^ ^  for m  >  1 , for m  <  1 (2.3.2)
A g = o  ^ A 2 = k^ - i

Figure 2.11(c) shows the derivation of the roots-surface from 
that of Figure 2.2(b)* since p-j_ = 0 for this process, the open- 
loop pole is always at the origin. The stability of equilibrium 
states follows both from the roots—surface and from the charact
eristics of the process of Section 2.1 by extension? i.e. 
is a stable initial state, / ^ 2 o  ^  unstable one, irrespective
of the value of and including zero—gain initial states.

Following a change in input to the output responds
according to

KT— ° = -KÔ ( Ke +1-K4 ) (2.3.3)dt 0 0 II

with = &t t = 0. The phase plane trajectories ( Figure 2.12) 
are again parabolic, being special instances of those of Figure 
2.3? but since one of the singularities is at the origin,
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figure 2.13 Î Stability diagrams for the step response of
the first-order system with a p—type gain 
element from
(a) initially stable states
(b) initially unstable states.
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responses are unstable if ^  0 in cases (a) and (b) or if 
^  in case (c)i and otherwise stable to ^  l/K in

case (c) or to ^  = 0 in oases (a) and (b). The closed—form 
solution follows from equation ( 2*1.9 ) in which Â _jp = 1
or 0, or 1 respectively, as

e ( 2.3*4 )

If especially K-̂ £ = l , case (b), the solution is

I: +

K«o = K^o / ( 1 +  ̂ (2.3.5)
The finite time taken for a diverging output to become infinite 
is therefore1 in general,

: ' w  îkiïkii ( 2.3.6,
"«Lf-l H o

and if Kft .p <* 1 ,
t o -  tA«,00

Diagrams to indicate the stability behaviour following 
step inputs may be constructed on first principles', they may, 
however, be correctly obtained by extension from those of 
Figure 2.5, so long as care is exercised as mentioned at the 
similar development in the previous Section. The diagrams 
obtained for this system are shown in Figure 2.13, and in 
appearance are similar to those for the system with an a— type
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element followed by integration! the common point of the 
various regions is different, being at ® 1 rather than— K, 
and the values to which the output converges are altered. The 
only region of practical operation is that in Figure 2*13(S') 
in which l/K and 0! responses of
practical interest can therefore be described by the following 
version of eequation ( 2#3#4 ) in. terms of only input values!

( 2.3.7 )

The analagouB expressions to ( 2.1.13 ) et seq. for the equiva
lent poles of this system follow from equation ( 2.3«7 )I
using the integral criterion,

<r*ss
T

( 2.3.8 )

K^O-1 K^f
Since 1 and >- 1 , the following inequalities hold!

if

if

. 11K̂ o-1 " r  ï̂ \o-i
K(̂ o“%f) 1 %o-:
%f- ̂ K̂ f-1

<  1

< 1
( 2.3.9 )

which allow the use of the converging expansion for log ( 1 + x) 
to give
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T T o  K(& — &
if o-'. Of / ( 1 - 4 H + 4 r-..) where n=— — — —ux 10 1 2 3

(2.3.10)
1 1 0  %("& "% )if ftf <  0-’= 01 /( l--|i+in -..) where |i  --------—0 2 3 -1

since =— ( K'̂  ̂— 1 )/l .
Using the average derivative criterion, a simple result is

obtained: o-'=- ( 2K^q- 3 )/3T ( 2.3.11 )
finally, in the special case of = 1 , the integral criterion 
produces an infinite value for T’, i.e. an equivalent pole at 
the origin! this is because the time integral ( 2.1.12 ) of the 
transient deviations of the output does not have a finite value 
in this case. This result is worthless, but the value produced 
by the alternative criterion is simply <r*s=2ô /3 •

The accuracy of representation by the equivalent time 
constants for tl#8 system is shown by the typical responses in 
Figure 2.14# A point to note about the expression ( 2.3.8 ) is 
that the same value of o"* results if and are inter
changed, as demonstrated by the responses for K*̂  ̂= 2 or 6 ,
K-̂ o ® ® or 2 respectively! in either case 0"* = — 2*48 t/T. This 
effect occurs also in the corresponding expression ( 2.2.8 ) of 
the preceding system, but not in the system of Section 2.1. In 
addition, the response from K^^ml is seen to have an inflexion
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in it, at =:-| ( 1 ) = 2*5 t fact, responses in any of
the first-order systems have inflexions corresponding to the 
apex of the parabolic trajectory in the phase plane, if is 
sufficiently small. This suggests that a better approximation 
to the form of these responses might be effected with a second— 
order, overdamped linear expression, but the complexity of this 
approach prevented its use. Apart from the independent choice 
of the two equivalent time constants according to suitable 
criteria, a third factor requires determination! for a good 
approximation the value of the initial velocity of the output 
has to be non-zero and is therefore involved.

2.4 A special case of the process of Section 2.3

Just as the a—type process with a pole at the origin can 
be regarded as a special case of the Or-type process with a 
first-order lag, so can all the characteristics of the process 
of Pigure 2.15(a) be deduced from those of the process of the 
previous section. Por this purpose, the factors K and T are 
considered to be very large in comparison to unity’, the 
resulting characteristics are described quite briefly.

The static characteristic, Figure 2*15(h), of the closed- 
loop system follows from Figure 2.11(b); the two possible 
values of output for any value of input are
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*^1 "* ^
for K-Q, >  G I . for K& <T 0 ( 2.4#1 )

A g ^ o  ^ Ag « K^  ^

The roots—surface is identical to the previous one, Figure 
2* 11(c), providing another example of its non-uniqueness to a 
certain process. Following a change in. input to , the 
response is described by

de
El—  = - m  ( m -Et .) (2.4.2)dt o O II

SO that phase plane diagrams are very similar to those of 
Figure 2.12 I there is always a singularity at the origin, 
while the second one is at K^*=K^^ rather than 1 , and
the maximum value of KTd-^/dt is now (E'̂ )̂̂ /4 .

The explicit solutions of equation ( 2.4*2 ) give the 
response to be

K^f
Ke

4)0 ( 2.4.3 )

A diverging output becomes infinitely great at a time

(2.4.4 )
m - if E^^ ■ 0
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The stability diagrams, Figure 2.15(c), may be obtained 
from Figure 2.13 by letting K tend to infinity', they indicate 
that the only region of practical interest is that in which 
^ a n d  ^0 = !Che corresponding expressions to
( 2.3.8 ) et seq* for the equivalent poles of this system are 
as follows!—
using the integral criterion,

________________ —  (2.4.5)

4.0 4.f
if 0'' = 0f /( 1— where ~

0-'»<rQ/( where n =

since = — K^^/T',

using the average derivative criterion,
<r’=-(K^^+2K^^)/3T . .

( 2.4*6 )
« 2o^/3 if

2.5 Some general remarks

The foregoing investigations into selected first-order 
output—dependent processes do not strengthen the argument for 
obtaining information about large-scale behaviour from the 
roots—surface. The entire stability diagrams of any of the
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preceding three sections could not be deduced from the appear
ance of the corresponding roots—surface! only the simpler 
diagrams of the first process considered might be constructed 
through intuitive reasoning from its roots—surface. Expressions 
for equivalent time constants have been arrived at which appear 
to be of reasonable use in estimating the form of transient 
responses', however, the time constants are not functions only 
of small—signal time constants at suitable output levels, but 
also depend on values of the input and/or output, initially or 
finally. Eo means has been discovered of predicting the form 
of the transient response directly from the roots—surface, in 
the simplest case of first-order systems.
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(a)
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KU+ 1 sm

A

Pigure 3.1: (a) Block diagram of a second—order process,
incorporating an a— type gain element

(b) Block diagram of an equivalent process to (a)
(c) Block diagram for perturbations in a 

closed loop around the process.
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The Qontrol of a Second— Order Process with 
An g — Type Gain Element

3.1 Introductory aspects

In a progressive development of this study, a natural 
choice for a second—order process with an a— type gain element 
to follow the first-order process of Section 2.1 is that for 
which Figure 3.1(a) is a block diagram. With the notation of 
the general process of Section 1.3, the coefficients p^ and 
are zero for m greater than two, q̂  equals 2C/o)̂  , and q2 = l/w^ 
for this process. The differential equation is, in accordance 
with the general form ( 1.3*0 )i the following:

-, d%
at^ % a t  °

The block diagram of Figure 3.1(a) is not, of course, a unique 
representation, and a suggested alternative is given in Figure 
3.1(b) : this process could be described by the pair of equations

( 3.1.2)
dt

which are equivalent to equation ( 3*1*1 ) if the intermediate 
variable is eliminated.

— 64* —
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The static characteristic is that of the hare a— type gain 
element, Figure 1.1(d), and the small—signal transfer function 
follows from equation ( 1.3*10 ) as: —

i W ___________________

“ (P) ( l + «oe)pVu„̂+ 2C ( l + + l

Defining the small—signal natural frequency and damping 
factor Cq of the process to he

= w^/( l + ̂ g), ( 3.1.4 )

the transmission from 6 ^  to. when the process is controlled 
proportionally in a closed loop is indicated hy the block 
diagram of Figure 3.1(c).

Since the openr-loop singularities are output—dependent, the 
related roots—surface is three-dimensional in contrast to the 
planar surface of a first-order process. Construction of the 
roots—surface is carried out using the normalised frequency 
components cr/ŵ  and , thus : the values of the two open—
loop poles are given by

( (T+ jw )/w^=
oe

so that, for — 1<C l/C^— 1, the real part — C is constant
while the imaginary part tends to infinity as tends to — 1 
and to zero as tends to ( l/C^— 1 ), giving a complex pol^pair:
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Y

Figure 3.2: ,Hoots-surface for a second—order process with 
an a— type gain elementi in which Ç = 0*707
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for 1 or A C  — 1 the imaginary part is zero and theO © OS
paths of the two distinct poles lie only in the real plane. To 
every value of Z there corresponds a different roots—surface : 
for illustration, Figure 3.2 is drawn for Ç = 0707 i with the 
result that the roots—surface consists of :
(a) for — 1 C  "̂ <̂Z 1, the portions of the o/ŵ =: — C plane "above 

and below" the openr-loop pole paths t
(b) for 1 I the whole of the cr/a)̂ =— Ç plane together with 

the portion of the jw/w^=0 plane between the open-loop 
pole paths \ and

(c) for -^^C—l , the portions of the jco/o)̂ =0 plane "to the 
left and to the right" of the openr-loop pole paths.

Because in this case the roots—surface is composed of 
portions of two planes, rather than of a more general•surface, 
the parts of the roots—surface may be presented as in Figure 3.3 
in which a symmetric half of the portion of the plane cr/aĵ =—0*707 
is rabat ted into the 3a)/ü)̂ =0. plane. Also, the roots—surface 
is not really required as an aid to.find the closed—loop poles: 
being only a second—order system, the values of the closed-loop 
poles are known explicitly to be

„ 1 + K ( 1 + A^) ̂
(cr+jw)/w =  —  (3.1.6)

The closed-loop pole paths, a few of which are drawn on Figures
3.2 and 3.3, lie in the real plane for *^^<1— 1*, and if K^cV^i
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the paths lie in the real plane for

( 3.1.7 )

hut if K >  Ç^/4 the paths do not enter the real plane f o r 1.

Examination of the surd in ( 3.1.6 ) shows it to have extrema 
at = — iJt l/̂ E , so that the least oscillatory small—signal 
responseI or that with the greatest time constant, for a given 
value of K occurs around this mean value of outputI reference 
to equation ( 2*1.4 ) et seq. shows this value to he identical 
with that for extrema in the closed-loop pole of the first-order 
system. As a last general remark, the roots—surface again 
indicates that for any given and E the value represents
an initially stable equilihrium, A 2Q ^  initially unstable 
equilibrium.

3.2 The phase portraits for transient responses

This Section deals with both the familiar phase—plane 
portrait for transient responses and the less familiar, complem
entary, global representation of the behaviour throughout the 
entire phase space. The system input is assumed to have the 
value for t >• 0Î at t = 0, the output may be in either 
equilibrium state A^^ or A .20 ô ^̂ ^̂ P̂̂ nding to or changing
with time in a previous,, uncompleted transient response. The 
output behaviour is therefore described by equation ( 3.1.1 ) in
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Figure 3*4 * Preliminary sketch, of the phase plane 
portrait for the second—order system 
with an a— type gain element .
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which $ = •&— •Sq , i.e. by
2XT  ̂ oxXT O O+ (l+K-K:4f)Kô + (KÔ )‘̂ = E %  . (3.2.1)“n ^  II o o II

y

The critical points in the phase plane of and Kd^/dt 
correspond to equilibrium states of the system, of which there 
are two, so that their positions are!
(A) K^^^=A;Lf ’ K d^/at = 0, and (B) = Agf , K d<̂ /dt = 0

lîTow the roots—surface indicates that local behaviour around A 
is asymptotically stable to it, since both roots have negative 
real parts at A for any K and Z* to be precise, if the roots 
at any are complex, the singularity at A is a stable focus,
while if the roots are purely real — for K ̂  and
within the range ( 3*1*7 ) — the singularity at A is a stable 
node. The roots—surface also indicates that local behaviour 
around B is unstable', since there is always one positive and 
one negative real root, the singularity at B is a saddle point 
( rather, than an unstable node ).

The information obtained thus far allows the sketch portrait 
of Figure 3*4 to be drawn’, the singularity at A may be a stable 
node, rather than a focus. The essential features of the full 
portrait could be discovered if the locations of the four 
séparatrices of the saddle point were known throughout the phase 
plane; it is evident that the departing separatrix for K d-&/dt >0
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may either wind on to the focus ( BC ) or avoid it ( BC* ) , that 
neither of the converging séparatrices ( BD, BE) can come from 
the focus, and that the fourth separatrix ( BF ) cannot terminate 
at A, as this requires that it crosses either BD or BE and 
trajectories are only concurrent at singularities. But no 
further conclusions for the general case of equation ( 3.2.1) 
can he drawn without consideration of the behaviour at infinity.

To arrive at the portrait in a particular case of equation 
( 3*2.1), however, the method of isoclines may be used. Since

= (k̂ ) —  (ic5 )dt ' d'̂ dt  ̂ dt ' dE^ \ dt / 

equation ( 3*2.1 ) may be written as

(:§) ■ -“n ‘ H- Aif)( Asf)

(y.a.2,
dt d , dS .

2SW + (k — )^ dEA ' dt
Thus I the equation in the phase plane of an isocline on which 
all trajectories have the constant direction S is

A   =: —  -----—  ........ k j, j )
■ 2SW^+S

so that by plotting many isoclines, with superimposed lineal
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Figure 3.5! (a) Isoclines in the plane of and
(h) Determination of the directions of the 

séparatrices at the saddle point 3 ,
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elements in appropriate orientationsi the trajectories are built 
up to produce the portrait. Howevert to each different set of 
values of “̂ if *^2f c;<̂ ^̂ ^̂ Ponds a different pattern
of isoclines in the phase planeÎ to reduce the work involved 
in drawing several portraits, the following linear transformation 
is useful!

let ^ . — 1 — ^ 5  (3.2.4)

Since S =-  ̂ (k-^^) = —^  , the equation ( 3.2.3 ) is 
dK^ ' dt d^

transformed to %  = 0(1— '^)

w ( A ^ ^ ~  Ag^ ) where 0 = -A ±±--- ^
4Ĉ û + 28

( 3.2.5 )

By drawing portraits in the phase plane of ^  and ^  , the singu
larities at A and B appear always at the points (1,0) and (—1,0) 
and the isoclines need only be drawn once, Figure 3.5(a)! for 
a particular isocline, with the value 0, substitution, of the 
appropriate values of Ct ŵ , and A 2̂  yields the direction
S which it represents.

A useful guide in an accurate construction of the portrait 
is the actual directions of the séparatrices at the critical 
point. These may be determined in this way! by differentiating 
( 3.2.5 ) with respect to , the direction of the isocline
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Figure 3.6 : Phase plane portrait for second-order system 
with a — type element, for C - 0*707 i = 1, 
K-̂ f = 8/3 and K = 1 .
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associated with S at any point is

(3.2.6)
d-̂ 1 2Çtô  + S

Since all isoclines pass through a singularity, the direction 
of each isocline at B is given hy ( 3*2.6 ) in which = — 1* and 
the situation at B is indicated hy Figure 3*5(h)', a separatrix 
emerges from B along an isocline whose direction there eq̂ uals 
the direction S of the trajectories on it, so that the directions 
of the séparatrices are given hy the two roots of

2Ço)̂  + S

i.e. by S^,2=-^“n- “nV^^+A^f “ Agf (3.2.7)

As illustration, the completed phase plane portrait for 
C = 0*707, 1, A-^^=2 and A 2f=— 4/3i K-1, for which K'̂  ̂= 8/3,
is shown in Figure 3*6. In this particular case, the separatrix 
BO of Figure 3*4 ends up at A, and enters the portrait in 
the upper half—plane, turning around A to arrive at B. To see 
whether this behaviour is representative of the general case or 
not, the behaviour far out in the plane — "at infinity" — must 
he investigated.

Poincare^^ has presented suitable transformations for the 
determination of the behaviour in the entire phase space. The
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!

Figure 3.7 : The transformation for points at infinity.



— 7 8

treatment is extensive analytically with little indication of
11their application# Minor sky outlines the procedure hut q.uotes

only one application ( hy Andronov ) in nonlinear differential 
equations, which gives rise to singularities that are elementary. 
In contrast, the system in hand possesses complex singularities 
at infinity.

The transformations represent projections, which Poincaré 
terms gnomonical, from the phase plane on to the surface of a 
sphere, and thence hack on to two mutually perpendicular planes 
normal to the phase plane# In terms of Figure 3*7, a point X 
in the phase plane is projected hy a ray through the centre C 
of the unit radius sphere, which touches the phase plane at the 
origin, to give the corresponding points and X^ on the 
surface. There is a one — to— one correspondence between a point 
on the sphere and a point in the phase plane ( one — to — two in
the reverse direction ), and the topology of trajectories and
singularities is conserved*- Points on the equator correspond 
to points at infinity , and an arc of a great circle to a straight 
line, in the phase plane. From the sphere, a transfer may he 
made on to the planes P^ and P^ for clarity.

The first transformation to equation ( 3.2.1) consists in
defining d-e .H  = I ’ i ' dt = Zdt

or 2 = dt/X d"̂  , u = dt/d-̂  , dt = dt/Z



— 79

where u and 2 are the coordinates of plane Pg

from which 2 E d(— ) = — d2d̂t /
Z^a(E^) = Zdu-udZ .

It is to he noted that
increases 
decreasesfor 2^0, T ̂ as t increases

On writing ( 3.2.1 ) in the form
d ,d̂ \ d-& g
M  (%f) " ° ‘‘V  Aii)(

and recognising the requirement of the equation
d(Kô) dô 2_ = K__°
dt dt

the transformation produces

and
2

2 du— u dZ _ 1.

i « e • = 2Ç(i)̂ Ẑ  + w^Z ( u — Z ( u— Z ̂ 2̂ )

dT Z dT
= 2(1+ 2Çw^u ) +u^u ( u- zA^|.)( VL—  Z A g P

( 3.2.9 )

( 3.2.10 )

k ( 3.2.11)

All points in the phase plane except those on the E-̂  axis 
are represented on Pg* the points on the E-̂  axis are represented 
in the plane P̂ , which in turn does not include the projection
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of the Kd'&̂ /dt axis. As the set of points at infinity corres
ponds to the u axis ( 2 = 0), the only singular point ( dZ/dT = 
du/dT = 0 ) at infinity revealed hy the system ( 3*2.11 ) is at 
2 = u = 0. Furthermore, this is the only singular point of this 
system*, for, if Z^O, then the second of equations ( 3*2.11 )

which is incompatible with Z^O.

To discover the form of the singularity consider the 
variational equations of (3*2.11) about 2 = u = 0%

i l l  . / A M )  . 5z + / A M )  .â.'ï V 3Z dt /2_̂ _o \«)u dx /2_u_o
= ( ± Ê a )  . ÔZ + /AÉü) . 5u

dT I az d-c V 0î '̂̂ /z=u=0
which are

d 62 
dT

d  ÔU

= 0*52 -j- 0*6u 

= 1*02 i- 0*5u
dT

Because the coefficient determinant of these equations vanishes, 
the singularity is not elementary, i.e. it is neither a saddle 
point nor a node, since foci and centres are not found on the 
equator (trajectories cannot cross it). The form of the 
singularity must therefore be determined by the behaviour of 
trajectories near it, as follows.
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(a) (b)

(c)

Figure 3.8 I (a) G-radients of trajectories near the singular
point at infinity

(b) Directions of trajectories
(c) Nature of the singularity .
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Consider the gradient of a trajectory in the u, Z plane:

dZ 2gtô Ẑ -f ( U-2A^P( u - Z A g P  (3.2.12)
Z ( 1 + 2gw^n ) + u ( u- ZA^^) ( u- ZA^p

(i) In the neighbourhood of the origin, Figure 3.8(a), on both 
lines for which 62 = ± 6u ,

^  2Ç0)̂ (ÔZ) .
du 62

omitting terms of higher order than first and second in the 
denominator and numerator of ( 3*2.12) respectively. Thus 
d2/du O' for 62 0 and d2/du <  0 for 62 <T 0, irrespective of
whether 6u ̂  0. To add the sense of direction to the lineal 
elements, Figure 3.8(b) , either of equations ( 3.2.11) may 
be used!

~  î%i. 2Çio„ (5Z)2 and ÔZdT ^ du
As d2/du >  0 for any 62, d2/dt ̂  0 for 62 ̂  0 in view of
condition ( 3.2.10 ).

(ü) On the 2 axis, o , * o

%>2gw^(62) near the origin.

Thus, d2/du ̂  0 for 62 5  0 as in (i), and as d2/du^2Suy[6Z)^ 
therefore dZ/dt ̂  0 for 62 ̂  0, again as in (i),

(hi) Close to the u axis, i.e. for 2 = 62 and |u| I 6Z| , 
equation ( 3# 2.12) reduces to
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az ^ 5Z

so for 5Z > 0, ~~ is small and  ̂nega^ve ] &s u5g 0, and 
for 6Z <  0, II is small and j  ̂ as u <2 0.

The sense of direction is seen from du/du ̂  w.? u^ and^ id
condition (3.2.10), to be condition I 3.2.10), to be

^  > 0  as 6Z > 0  if u >  0dt ^

—  4 0  as ÔZ ̂  0 if u <  0 .dt ̂

There is now sufficient information to define the behaviour 
of the trajectories to be as shov/n in Figure 3.8(c). The equator 
is not a trajectory as du/dt is not defined on it. Two trajec
tories, DA and OB, have special significance! all trajectories 
on one side of either of them approach or leave the origin in 
the positive u direction, while all those on the other side 
approach or leave the origin in the opposite direction. The 
behaviour suggests a possible coincidence of a stable and an 
unstable node, but a result given by Poincare ( ref.10, Ch.3, p.29 )
settles the issue after the transformation to plane P^ has been
considered.

The second transformation is described by

K ô = i ,  K_° = I , dt = ZdT (3.2.13)2 dt ^
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from which

,d-8:
Z‘"Kd(~) = Z dv - V dZ4- f‘dt

The relation ( 3.2.10) between u and t applies again. The 
transformed version of equation ( 3*2.1) is obtained as

dZ
Ẑ du

V
“z

and lilrLVdZ_l_ ̂  v 
g2 ZdT ^ Z

i.e. as dZ ^_^g2

and

du
dv
du

y dZ 
Z du

— vZ ( V  4- 2Çu)̂ ) — 1 — zy\,^^) ( 1 “ Z ^ 2̂ )

>- (3.2.14)

Since for Z = 0, dv/du = — cô  :/ 0, there are no singular points 
at infinity on the axis, and the singularity at infinity 
revealed by the first transformation is not represented in the 
plane P̂ . The only singular points of system ( 3.2.14 ) occur 
for v=0 at Z = l/A^^ or Z = l/Ag^ , which are the critical 
points already noted in the finite region of the phase plane.

The theorem of Poincare referred to above states that, if 
the total number of nodes, foci, and saddle points on the sphere, 
not on the equator, are denoted by 2N, 2P, and 28, and the 
numbers of nodes and saddle points on the equator are denoted



-p

-p

m
m
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ty and 2S^, then

+ 8 + 1 ( 3.2.15 )

In the ease of this system, 8 = 1, 21=1 or 0, ? = 0 or 1 respect
ively, so that the number of nodes at Z = u = 0 exceeds the number 
of saddle points there by one. Therefore, the singularity 
consists of at least two nodes and one saddle point coalesced.

With the knowledge of the behaviour at infinity, the 
question of whether the phase plane portrait of Figure 3.6 is 
representative of the general case or not may be answered. By 
drawing the salient features on the sphere. Figure 3.9, it is 
seen that the séparatrices ED, BE and BF must all terminate at 
the singularity at Z = u = 0, and that the fourth separatrix BO 
must terminate at A, in any case of equation ( 3*2.1 ). The 
nature of the phase plane portrait is therefore essentially 
similar to that of Figure 3.6 for all sets of values of C, ,
K and . ■

(
3.3 The stability of large transient responses

The phase portraits of the preceding Section indicate the 
existence in every case of a region of asymptotic stability to 
A. The boundary O  of this region consists of the whole of the 
two séparatrices EB and ED, so that the region extends to 
infinity in the positive Kd-̂ /̂dt direction. The aim of this 
and further sections is to define the finite extent of the
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Figure 3*10 1 The transformation (3*3*1) to
polar coordinates •
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region in other directions i for the general case of the system 
as described by equation ( 3*2.1).

The importance of this lies in the possibility of step 
responses from initially stable states being unstable, whereas 
for the companion first-order system of Section 2.1 such responses 
are always stable. The response is unstable if the representa
tive point in the phase plane lies beyond C l immediately after 
the step in input. Although bearing in mind that it is of 
interest to know the complete form of C l , special attention is 
given to defining the point L at which the separatrix ED crosses 
the axis for >  A ^ * this is a useful measure of the 
extent of the region, since it indicates the limits for stable 
responses from an initial equilibrium state.

A first approach may be an attempt to derive the equation 
of the separatrix, at least from B to I. Since it is, very 
approximately, of circular form around point A ( Figure 3*10 ), 
it may be valuable to transform equation ( 3*2.5 ) from the 
rectangular coordinates and the polar coordinates Y and
r(Y), where

^  = 1— r cos Y , 0 2 = " ^   ̂ (3*3*1)

and to attempt a series solution for r in terms of Y. Thus, it 
is found that sin Y If + r cos Y

COSY— -r sin Y
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and the equation describing trajectories appears now from
( 3.2.5 ) as

u)ĵ( Agf)( 2-r cos Y ) cos Y

f. + ( 4C%sin Y- 2 cos Y )
f f . r B l n T - — --------------S--------    (3.3.2)
■ u^CA^f-A2f)( 2-r COS Y ) COS Y

+ 2 sin Y ( 2Cw^ cos Y + sin Y )

The particular solution sought of this differential equation is 
that for which r = 2 at Y = 0 and d̂ g/d-̂  ̂ .̂t B has the negative 
value given by ( 3*2.7 )* For convenience, define

A i f - A 2 f  = +J( 1 - K - K ^ p 2  + 4K. = R ( 3.3.3 )

.0 that (3.3.0

If the solution is to be found in the form

r = Aq + A^Y + AgY^ + A^Y^ + . . . , (3.3.5)

it is clear from the foregoing that must equal 2, and A^ must
equal expression ( 3*3*4)* If ( 3*3*5) and the convergent
series for sin Y and cos Y are substituted in (3*3*2), and 
coefficients of like powers of Y are equated, the equation for 
the constant term gives

A^w 2̂r ( 2-Aq )-0

which is satisfied by A^ = 2: the equation for coefficients of Y
then gives
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^  ) =-“4

so that 2

Choosing in accordance with ( 3*3*4 )t the equation for
2coefficients of Y produces

C ( R— 4 ) + ( 4 + 3(̂  ̂E. )J R + C2Ag  ----------------- j---- -—  ( 3*3*6 )
E + hJ e 7 ç2

The increasing complexity of the expressions for the 
coefficients A^ is apparent; in fact, the expression for A^ is 
much too lengthy to he set out here. It appears that the series 
( 3*3*5 ) is limited hy practical considerations to the first 
three terms, and therefore the value for L given hy r at Y = n is 
liable to be most approximate. In addition, it is not known 
whether the approximation is greater or less than L, so it is 
concluded that this approach is of little value.

A more satisfactory approach lies in the use of the ”Direct
Method” of Lyapunov, as it has come to be called. After
receiving little attention in Western countries since the

12original paper in 1892, there has been in recent years a great 
increase in the literature available in English on the method.
No attempt is made here to list all the appropriate references — 
a suitable bibliography is to be found in the papers by Kalman 
and Bertram^^; only specific references are made to the
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treatments by a few autbore^^ .

Since, in the type of system under consideration, there is 
always at least one other singularity in phase space besides 
that to which solutions may be stable ( placed at the origin^ , 
it is impossible to find a Lyapunov function V with the ideal 
properties, i.e. (i) V to be positive definite, (ü) dV/dt , by 
virtue of the system equations, to be negative definite. In'such 
systems, dV/dt is zero at one point ( at least ) outside the 
origin — the other singularity — so that at best dV/dt may be 
found to be negative semidefinitel there is generally a contin
uous set of points on which dV/dt = 0. Furthermore, it is unlikely 
that V is found to be positive definite, and a useful alternative 
is the existence of a finite region around the origin within 
which V is positive definite. A region of stability is guaran
teed by a Theorem quoted by LaSalle and Lefsohetz^^, and included 
here for convenienceI

let V be a scalar function, with continuous first partial 
derivatives, of the state variables of the system, and let 
C l designate a bounded region within which V < k ( constant ). 
If, within n  , V is positive definite, dV/dt is negative 
semidefinite, and dV/dt is not identically zero along any 
trajectory of the system, then every solution starting inside 
C l is asymptotically stable to the origin.

As mentioned above, a prerequisite of the method is to
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describe the system by state variables such that the stable 
singularity is at their origin. If in equation ( 3*2.1 ) the 
variable is introduced such that

( 3*3*7 )

in which 1 — K-i--i'* rJ by definition ( 3.3.3 )

the system is described by the equation

 ± +2Çw„—  +w ( «I +R) = 0 (3.3.8)
d f

which places A at = The most convenient variable to use, 
however, is

ci)l = 'ôyR= ( K % - A i ^  ) A  (3.3.9)
because equation ( 3*2.1) becomes 

2d d̂-| Q
— — " -Î- 2̂  ̂tj — - ^ w ïÎ£p̂ (cj)-,-fl)=0 ( 3*3* 10 )
d A

which places B at — 1 with A at cû̂  = 0.
Finally, it is required to decompose ( 3*3.10 ) into a pair of 
first-order differential equations in the chosen state variables! 
one means of doing so is to choose

  = w VRcpp
dt ^ ^

(3*3*11) 
: — tx>n ('/H cpi + 2 Ç c p 2 )dt
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1

Figure 3*11 I Contours of the function , with the region
of asymptotic stability shaded*
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A first Lyapunov function V(cp̂ , cpg) for system ( 3*3.11 ) 
has been found quite readily. Consider the function (cf. p. 63 
of reference 14 ) '

Vi =s 3cp̂  + 3(̂ 2 + (3*3*12)

dVn d(pT dcp̂
for which — i = — - * — - + : ~  * — -

dt ôcp̂  dt àcpg dt

= 6(p̂  ( 1 + Ÿ2 ) + 2Ccp2 + JÊcp̂  )

= -12Cw^cp|

dV^/dt is therefore negative semidefinite and is zero on the cp̂ 
axis, which includes the two singular points. is symmetric 
about the Figure 3*11$ but is clearly not positive
definite; it is zero at the origin and on the curve

Cpn ------ L
S>2 = ± j = i p 3 - ^

which crosses the cp̂ axis at— 3/2 and lies completely in the 
region cp^< — 3/2 . is therefore positive definite in the
infinite half—space "to the rig Îit** of this curve. Contours of
constant positive either form closed curves around the origin 
with an additional branch to the left of B, in the case of 
Vi = ki-< 1, or form open curves for = ̂ 2 ̂  the greatest 
bounded region of positive is given by the curve V^ = l, which

1has two intersections with the axis at B and a third at •
and intersections with the cpg axis at ±l/«/3. This region (Q,)
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is therefore one of asymptotic stability to the origin, since 
all the conditions in the above Theorem are met.

In order to define the form of more exactly, consider 
the gradient of contours I from ( 3*3.12 ),

fig =_D; (! + ({,) (3.3.13)
d9i (?2

for any contour V^=:k. The gradient is zero for all k where 
and is zero at 1 and infinite at cp2 = C> for all k

except k = li when the gradient is indeterminate from ( 3*3*13 ) I 
application of L*Hôpital *s rule, however, produces

2' - ((1 + 29^)/^'^2

I.e.

Confining attention to the stability of responses from 
initial equilibrium states only, it is now possible to obtain 
stability diagrams similar to those of Figure 2.5 in terms of 
input steps from a given value of . From the relevant extent 
oflT.^, i.e. on the axis, from — 1 (B) to 0*5 (L^), it is 
evident that the restrictions on the magnitude of the input step 
for stable responses are
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Since the critical value of cp, (namely [l — K— Rj/2E) , 
corresponding to Ô =— 1, lies within the above range, the two 
separate ranges

(a) ( 1-K-KÔ. „-R)/2< E/2 and
(3.3.14)

(b) -RCIC^^-A]^^<( l-E-E^^-R)/2

relate to stable and unstable initial eq,uilibrium states respec
tively.
(a) The lower limit simply specifies that the initial equilib
rium state is stable, but the upper limit gives

2j( 1- K - K ^ j)^+4K ( 1-K-K ô̂ ^)2+4K (3.3.15)

as the condition for a stable response. Values of in terms 
of have been calculated for selected values of K from this 
expression, and after converting these to steps in in terms 
of the resulting diagram for the stability of responses 
from an initially stable equilibrium state appears as in 
Figure 3.12 .

f
This is quite different from Figure 2.5(a), in that a 

negative step within a certain range may lead to instability if 
— 1. The qualification in this statement is intentional I 

because a Lyapi^ov function is a sufficient but not a necessary 
condition for stability, the proven existence of is a 
guarantee that responses are stable outwith the indicated region 
of instability, but it need not follow that responses are
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unstable within itI the phase plane diagrams® however® reveal 
that there must be a region of instability of similar propor
tions, and the question of whether'the greater part of the 
region of Figure 3#12 is indeed one of instability or not is 
pursued in subsequent Sections.

(b) The upper limit simply specifies that the initial equilib
rium state is unstable, and the lower limit gives

(3.3.16)

as the condition for a stable response. This reduces to the 
simple inequality for all values of and ( positive )
K, so that the application of a negative input step results in 
a final stable equilibrium state* the diagram in this case is 
the same as that of Figure 2.5(h). Since the boundary of 
passes through B, the region of asymptotic stability does not 
admit of any improvement for case (b), and it is not a case of 
a region of ’̂ ossiblé** instability.

To conclude this Section, a particular feature of this 
system is noted. Whilst a stable response may result from an 
initially unstable state in which there is negative gain, as for 
the companion first-order system, it is also possible for this 
system to have a stable step response during which the gain of 
the element goes transiently negative. This is due to part of 
the region lying on the negative side of the critical value 
of Y]_ mentioned above.



OF

5'igure 3.13 : An actual region of sjtability, with guaranteed
region .
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3*4 less restrictive regions of stability 

3*4a A second Lyapunov function

If the boundary of superimposed on any phase plane
portrait, it is found that provides a rather conservative
estimate of the actual region of stability, particularly in 
regard to the value for the intersection at L. This is indicated 
in Pigure 3*13i which compares the actual region of stability 
in Figure 3*6 with n ^  .

As a possible second Lyapunov function consider

-Î- Bcp̂  0^292 ^2^ (3.4^.1)

in which the values of the coefficients A, B, • • are still to
be appointed. In view of equations ( 3.3*11 )t the time derivative 
of Vg is given by

~  [( .#0- 4B )cp2̂ -*/fCç̂ -̂4lDcp3̂ - +
dt L J

f2(J¥A-JIb-C)cp^cp2-2(ilBD 4-/ÎE)cp^^cj)2- 

^(0 + D)c{,̂ 4. ( 2Æ D - 4.E- 3VËP +

(VWE-6? )(p̂  -4- 2#( 2G-E)(p]̂ (p2l 
where E = R/z  ̂ 0 .

From the infinite variety of sets of coefficients A, B, . . , 
the following one has proved useful I to produce a form for dV^/dt

(3*4a.2)
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Figure 3.14 Î Curves of zero dV^/dt for various values of N .
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which is symmetric about both aoces, the coefficients of the six 
terms in the second group of ( 3#4s..2 ) are set to zero by the 
choice

A=2(3ÎT+8), B=5N + 8, 0 = B+8 ) ,
(3.4a.3)

I)=-a|¥( ÏÏ + 8 ), E = -4N, F = - 2E^/^/3, and G=- 2E
This gives

-

(3.48.4)—  2
dt

= K H ^ -  12U -  32)(p^ + ÎT(lSr+ 8)(cp^-l)cp^^ +
SO that both Vg and dV^/dt depend on the parameter N, whereas

has none such dependence.

Considering firstly dV2/dt after ( 3.4^.4 )i it is not even 
negative semidefinite everywhere as is dV^/dt. The form of the 
curve dV^/dt^O, which separates regions of positive and negative 
dV^/dt, may be seen by its representation as

„ Kf(N+8)cp 2(i_cp 2)
c?2 = --------- ---------- (3.48.5)

(K^-121-32) + 2E^ cp]̂

The curve intersects the cp̂ axis at ±1 for all IT. Examination 
of the sign-variations of the numerator and denominator shows 
that, for 0 ^  2-j-2i/33/3t two branches of the curve exist
only in the regions 1 ̂  <C ( 32 + 12N— IT̂ )/2Ê  with the lines 

( 32 4- 12E— N^y/2E^ as asymptotes ( see Eigure 3.14 ) ̂ for 
2 + 2 ^ 3 3 / 3 <  N <C 6 4- 2^17 » two branches of the curve exist only in 
the regions. ( 32 + 12IT— E^)/2IT^< ^  1 with the lines
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n

B

§-0

kg >  kg kg>’ kj > - Q

Figure 3.15 l Sketch of the contours of Vg and the curves
dVg/dt = 0 for a value of 1 less than 8*0 approx,
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c?i =±̂ 1 ( 32 + 12E- as asymptotes^ for IT = 2 + 2 3̂3/3, the
two brandies degenerate into the straight lines cp^=il^ for 
lSF=6-{-2JÏ7ï the curve is an ellipse, along with the 2̂
with intersections at cpg = i a/̂/17 —' 1 /2Î and for F p'6 + 2̂ /17, the
curve is a figure of eight with four intersections at the origin. 
In the regions between the branches is non-positive, so
that for values of N less than 6 4- 2jl7 there is an infinitely 
long region of negative definite dV^/dt straddling the cp2 
which may be useful, The character of must now be examined 
to discover if any contour forms a closed region of positive 
definite within this region of negative definite d Y 2/à.tl if 
this exists, a larger region of asymptotic stability than 
may exist.

?or any value of N, there is a curve = 0 which Intersects
the cp̂ axis at -h 8 )/K and the cp̂ axis at 3( )/2îî̂ /̂ ,
and below which is positive definite. As with the saddle 
point of the = 1 contour at B, there is a saddle point S on 
one of the Y ^ contours, but in this case S always lies in the 
upper half—plane. Figure 3,15 shows the character of for a 
value of ÎT less than 8*0 approximatelyt up to the limiting 
value of k̂ i contours of constant positive Vg :̂ orm closed regions 
within the region of negative definite dV2/dt, so that the region 
within Vg = is, by the theorem quoted, one of asymptotic 
stability; but this region represents little, if any, improvement
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over 11^. However, by a reductio ad absurdum consideration of 
the trajectories in the neighbourhood of S, it can be proved 
that S must lie on the upper left-hand branch of the curve 
dV'2/dt-O, as Indicated I it is therefore possible, by supple
menting the theorem with a deduction from equations ( 3.3*ll)t to 
prove as below the existence of a larger region of stability.

Consider the region formed by ¥2 = ̂^̂ and closed by the 
portion CD of the curve dV2/dt = 0. Throughout this region, 
dV2/dt is negative definite, and no trajectory can leave the 
region across V2 = . At any point on CD, dV2/dt is aero and a
trajectory must run tangent to the Vg contour through the point. 
Because CD lies where cpgP^O, the first of equations ( 3-3*11 ) 
states that d^^/dtP^O; hence, every trajectory from CD has a 
component of velocity in the positive direction. From inspec
tion of the directions of the Y 2 contours relative to CD, it is 
evident that all trajectories crossing CD do so into the region 
fig* Thus, the same purpose is fulfilled by CD as by the 
closing portion of the Y 2 = k^ contour required by the theorem, 
and n  2 ïïi'ast be a region of asymptotic stability.

For H <1 8*0 approximately, the contour V2 = k^ = 4( H-r4 ) 
through B provides the limiting contour. The condition for a 
stable response from an initially stable equilibrium state is 
therefore

+ 3a/( 1 - K-1%^) 2+ 4K >  ( 1 _ K- ) 2+ 4.K (3.4a. 6)
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in place of condition ( 3,3,15 ) from XI For 62^/17 ̂  H ̂  8*0, 
however, the contour through B is unsuitable because it crosses 
the right-hand branch of the curve dV^/dtsrO for a negative 
value of cpp and/or because it does not form a closed region v/ith 
OB. In this range of the contour with the greatest value 
between and kg, which does not fail in this way, may be used 
to give improved boundsI a condition similar to ( 3,3,15 ) and 
( 3,4ao6 ) is obtained, in which the coefficient of the left-hand 
radical lies between 2 and 3- For the limiting value of 17 = 6 
2Jl7 $ this coefficient is 2*62 approximately from the contour 
¥2== 52.

Figure 3»16 shows the enlargement, due to condition (3,4a,6), 
of the regions of guaranteed stability in Figure 3,12, and the 
corresponding reductions of the regions within which the step 
response may be unstable. The restriction of M< 8»0 for the 
validity of ( 3,4a.6 ) implies that, for particular values of K 
and Ç, these enlargements are only valid for

[k ( -fl ) - 1]^ <  4‘0 ( 1 6 Z ^ - K  ) ( 3.4a.7 )

approximately; the Figure shows the extensions for 'C = 0*707 only. 
For values of E such that 8*0 <  E <  6 24Ï7 « boundaries are found
lying between those from conditions ( 3,3,15 ) and ( 3,4a,6 ) , 
certain sections only of which are likewise valid for given K 
and the form of the greatest extension from to the region 
of guaranteed stability is also indicated*
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3,4b The method of Krasovskii and the Variable 
Gradient method of Solralts and Gibson

A few techniques do exist for the systematic production of 
Lyapuiaov functions, and brief attention is given here to two 
such procedures.

ISIn that due to Krasovskii in which the differential 
equations are described by

dx^
dt * « » ) 1 = 1 n

q( 0 ) H 0

one constructs the Jacobian matrix F for the system

F

ôf̂ /ôx.h

f̂ ̂/àx-n
Thereafter the symmetric matrix , where F' is F transpose,
is obtained, and if F can be shown ( by Sylvester’s criteria) to 
be positive definite, the system is guaranteed to be globally 
asymptotically stable. However, since the system in hand has 
been shown to be asymptotically stable only v/ithin a portion of 
state space, the method of Krasovskii is clearly inapplicable.

The second procedure is not restricted to the establisliment 
of global stability, and is therefore applicable. As the name
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implies, the Variable Gradient method of Sohulta and Gibson^^ 
starts with an assumed variable gradient function W  from v/hich 
V and dV/dt may be derived; the unlrnov/n elements of VY are 
determined by constraints on dV/dt and by the generalised curl 
equations which arise from the requirement that V x W  = 0. In 
terms of equation ( 3*3*11 )t the gradient function is assumed to 
have the form

VV
W.1 ^11 ̂ 1 ̂  ^ 1 2  

^21^1*^ 2^2

'9
V=|?V'.dcp and 

Q
1Ï
dt dt 9

where the coefficients a may be functions of cp̂ and (p̂, from 
which

92
The curl equation on '̂ V in this case is simply

ôcpg c><p̂

Using equations ( 3.3*11 )« the general form for the time 
derivative of V appears as 
dV . . ...N 2 .. /vr. .. 2
dt

( 3.4-b.l )

The next step in the procedure is to constrain dV/dt to be at 
least negative semidefinite by selection of suitable expressions 
for the coefficients aî various ways of so doing have been tried
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the results of three of which follow^ —
(i) Impose ci]_2 ~ <̂ 2 1 ^  ^ ̂  constant ) to eliminate
the term in cp̂  in ( 3*4h.l ) : then

= — 44tA)^9̂ "“ ^1^2 ^n^*^^ll"" 2a/H)cp2̂cp2 —
2 .. n ? / '  r. . r, \ . 224u)̂ G cp2 — (8-3-0 ) ̂2 92

= — 2Sŵ ( 2-3-0 ) “* 2 — 0 ) 9%92" ( 2 Sr C ) 9q̂ 92

To make this negative semidefinite, let
(%22 “ ( 2 -3- 0 )( 1 4- Y%)

<̂V , p i ( 2 -3- 0)( 1 -r Y"i ) 9*1so that —  = - 2Çu)„(2-3-C)y /̂ and VV=
dt ^  ̂ I (2-h 0)^2

It is seen that the curl equation is satisfied by this form of 
W. Having constrained its time derivative in this way, the 
function V itself appears as

rn* '?2. .
V=(2 + 0)| |( 1 + Tg

J 0, 0 ■*

= ( 2 + C X 3cp̂  + 3?^ + 2(j>2 )./6

which is seen ( for 0 = 4 ) to be nothing but the function 
already found*

(±L) To obtain a'different function, one may try setting 
^11 - ̂  2gcL2q//̂  in ( 3*4b.l ) to eliminate the term in ̂ ^92
and a 2̂ =" to produce a term in . This .gives

~  = “ 2Cu)̂ cp2̂ - 2ci>2 +
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which may be made negative definite if• «— 892/9^ • then
89 2 — 2S92//S 

0
and the curl equation cannot he satisfied, since — 2 C / / R 0 •

(m) In a further attempt, one may set = ( 2̂
eliminate again the term in 9^  in ( 3,4b.l ), and a^2 “ ̂ 1

2produce a term in 9g « leading to
2produce a term in 9g « leading to

ŵ ( 44 — 2602)9^ — 10̂ ^^029̂  + u)̂ a{r ( 8— ̂ 2  ̂*̂1̂ 2Jki C ' U. XÀ. C.- £. JJL ^ ' U. ' C.

choice of a^l® ( 2 + O^X 1 + 9̂ ) eliminates the terms in 9^92 
2and 92 92 * <̂3. to obtain at least a negative semidefinite form 

requires Og = D. With these appointments the curl equation now 
gives that 0̂  must be zero, and one has returned to the result 
of (i).

As demonstrated by the above, the Variable Gradient method 
has not produced any Lyapunov functions with negative semidefinite 
time derivative which are different from .

3*4q The method of Zubov

The procedure of Zubov̂ *̂  for the construction of Lyapunov 
functions holds more promise, in the experience of this author, 
than does that of Schultz and Gibson* It is less dependent on 
the sort of intuitive trial and error required in the
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determination of the coefficients a and guarantees the production 
of a V function to establish a region of asymptotic stability, 
whether global or not. Margolis and Vogt^^ have recently 
published a valuable account in English of the method, to which 
this author^^ has suggested some modifications; the main points 
are described below in terms of only a two-dimensional system, 
after which its application to the system in hand is discussed.

The notation adopted for the method describes the system as
00

—  = q( X, y ) = X, y ) 4- b  P2_( m2 )x y
( 3.40.1 )

fg( y ) = X, y ) +  ̂ Pg( m̂ , mg)x y

in which f̂-, ( X, y) =  ̂+ ̂12̂
^21  ̂3̂, y ) = a22̂x + E22y

are the linear function components of f^ and f2 I the method 
presupposes that the origin x= y = 0 is asymptotically stable, 
and that the roots of the characteristic equation of the linear 
approximation all have negative, nonzero real parts.

Attention is focussed on the following partial differential 
equation in the function v(x,y):

q(x,y) + ̂  fgCx.y) = -cp(x’,y)[l-v(x,y)] (3.4c.2)
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in which cp(x,y) = cp̂ Cx̂ y) 4- -î* . • . 4- 9^(%,y) -̂ * * . is some
positive definite function of x and y, and cp̂  is a homogeneous 
form of mHh degree in x  and y. According to a theorem of 
Lyapunov, the function v(x,y) can be uniquely determined in the 
fo2ma of a convergent power series going to zero for x = y = 0 I

v(x,y) = V2(x:,y)-f v^Cxiy) 7Î-• . . + v̂ (x,y)-i- . . (3.4c. 3)

where v^(x, y ) = + • • +

If equation ( 3.4c.2) is incapable of solution in closed 
form to give the exact function v(x,y) for a particular (p(x,y) , 
it may be solved by the following set of recurrence equations

7
in which

( 3.4c.4- )

\  =-'?m + Z- 'Pyx- >  y T

—̂ 8 A I
X  ”2)= y 5“ hi.

j, k, m — 2, 3, 4t • • * • 
is a function of m*th degree in x and y which is known if each 
of the VgCx'iy), v^(x,y), . . . v^^(x,y) have already been
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determined. Thus the sequence v is obtainable, giving the n’th
degree series approximation v' '= for the exact solution
v(x,y). The function V2(%,y) is guaranteed by a theorem of 

12Lyapunov to be a positive definite quadratic form.

Zubov shows that the boundary of the region £ \  of asymptotic 
stability is given by the curves v(x,y) = 1, and that the stability 
is global if v(x,y) <  1 for all x and y. For the approximation 
v^^^, it is important to discover what curves v̂ ^^ = ĉ  describe 
regions which are guaranteed to be contained within £ 1  and so 
provide approximations to it. Margolis and Vogt present theorems 
which establish regions of stability based on the first approxi
mation v̂ ^̂  and then on higher approximations v^^\ but it has 
been considered necessary by this author to present the following 
modified versions of these theorems to allow the use of positive 
semidefinite functions 9 I the proofs are to be found in ref.19 .

Definition I define as Wg the set of all points (x,y) for 
which dVg/dt = 0, other than points for which

dv2(s:4-ôx, y-î-5y)/dt ̂  0 or dV2(x-j-ôx, y-fdy)/dt ̂  0
for all 6x and all 5y infinitesimally small. In other v/ords,
W2 consists of all points of zero dv2/dt which define boundaries 
between regions of positive and negative dV2/dt, while excluded 
from W2 are points of zero dv2/dt which lie in surrounding 
regions ç>f (IVg/dt with constant sign. Denote .these excluded
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points by va . Designate by the smallest value of Vp on Wg •
(3.40.5)

Theorem I the curve Vg(x,y) = c^ is wholly contained inXl, 
provided that the set of points for V2 <C is not a half — 
trajectory of the system. ( 3*4c.6 )

Definition I w^^\xgy) = all points (x,y) on which dv^^^/dt = 0, 
other than those ( ) for which

dv̂ ^\x4-ôx, y4-6y)/dt^ 0 or dv̂ \̂x-3*ôx, y4-ôy)/dt5^0 

for all 6x and all 6y infinitesimally small,
0ĵ ^̂ = min [v^^\x,y) on w^^^(x,y)j ( 3.4c.7 )

Theorem I the curve -v̂ ^̂ (x,y) = Cĝ ^̂  is wholly contained in 
jQ, provided that the set of points for v^^^ <C c^^^ is
not a half — trajectory of the system, ( 3.4c.8 )

Turning now to the application of this theory to the 
stability of the solutions of equation ( 3*3*10), it has been 
found preferable to decompose this equation into the following 
pair of firs'b-order differential equations, rather than to . 
continue with the equivalent pair ( 3*3.11 ) I

— — — w (yjEcpL— 249-1 ) i.e. = w (Â By — 2^x ) 
dt ^  ̂ dt ^

——^ as — W a/R 9., ( 1 4- 91 ) —^ aJH X ( 1 *i* X )
dt ^ dt ^

( 3.4c.9 )

The new state variables 9  ̂and 9̂2 are replaced for the time being
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by X and y for clarity, and the singularities A and B of system 
( 3.40.9 ) are at x = y = 0 and x = — 1, y = — 2/JW respectively.

The partial differential equation ( 3*4o. 2 ) in this case 
appears as

w —^ (a[5 y — 24x ) — 0) X ( 1 4- x) =— (x̂  4- ŷ )( 1 — v) ( 3.4c. 10)
ày

having chosen cp(x,y) as the simplest of positive definite forms,
p pnamely (x 4-y ). To solve this in closed form, one attempts the 

simultaneous solution of the associated ordinary differential 
equations

w.̂ dv
^   ; (3.40.11)A/Ry— 2Çx a|Rx (14*x) (x 4-y )(l— v)

Eo such solution has been found for these equations, however, so 
that the exact description of the region of stability is unobtain
able. Reverting to the approximate solution after ( 3.4c.4 ) 1 and 
taking 9 = 2 ( x^ 4* y^ ), i.e. 9  ̂= 2 ( x^ 4* y^ ), 9̂  = 0 for m 2, the 
first of equations ( 3.4c.4 ) gives

W (̂ SgD^x + gD^y X^/Sy- 2Çx ) -  w^AfI( gD^x -i- 2gDgy )x  = -  2(x^ + y^)

( 3.40.12 )
for the determination of the coefficients From this, it is
readily found that

V2 = [ex^— 2/|Exy 4-(E4-2)y^]/4to^E (positive definite)

for which ( 3*4c. 13 )
d'V
— -  = — 2(x^ + y^) — ( 2F -i- 4 )x^y /« /î + 2x^ dt
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The curve [2 ( 2E 4- 4)y/jE] =  8y^ , which passes through
the two singularities, is W2 î since this is a cubic, the 
determination of ĉ  is clearly difficult and one is forced to 
abandon this attempt at the first level of approximation.

2Using the positive semidefinite function 9 = 2y , the coeff
icients follow from an equation similar to ( 3.4c. 12 ) in

2which the right-hand side is just — 2y . Hence,

V2 = [ex^— 4/|&y 4-(E-Î-4)y^ j^2Çw^E (positive definite) 

for which ( 3.4c.l4 )
— = — 2y^ — ( E 4- 4 )%^y/jE 4- 2x^

dt
The curve 2x^— ( E -3- 4 )yx̂ /lfE = 2y^ passes through the two 
singularities and is Wg J although one stage simpler than the 
previous expression for W2, one is again faced at the outset 
with the simultaneous solution of a cubic and a quadratic equation.

2However, if 9 is taken as 2x the resulting form for Vp is 

V2 = ( x^ 4- y^)/2Cw^ ( positive definite)

for which ( 3.4c.15 )
- = -2x^( l + Affy/2 )

dt
In this case, since the expression for dv2/dt is factored, the 
straight line y = — 2//e is W2 while the y axis ( x = 0 ) is w^ % 
and the singularities lie one on w^ and the other on
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A

2/g&)„N

figure 3.17 • Sketch of the Lyapunov function ,
produced by the method of Zubov, andit^
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Pigure 3»17 shows the useful half—plane of negative semidefinite
dv2/dt. It is apparent that the minimum value ( ) of Vg on W2
is 2/̂ ü)̂ ÎT, so that since the y axis for | y| *< 2 / J T is not a

2 2 /solution the circular region x 4- y - 4/^ is one of asymptotic 
stability! V2 in ( 3*4o.l5 ) is therefore referred to as Lyapunov 
function and the circle as As stated early on in
Section 3*3, the intersection L^ of with the positive c()̂ axis 
in the phase plane is of particular interest! on this axis, 
dcj)̂ /dt = 0, so that the corresponding line in the system ( 3<»4c*9 )
is y = 2x/jW. L^ is therefore given by the value of x ̂  0 at
which this line crosses namely

I<2 = 2/ t f Ë T Â ( 3.4c.16 )

If the approximation is continued to include the third—order 
terms of v^î the second of equations ( 3«4o*4 ) gives

%x) - w^aÜ( ̂ L^x^ 4- 2^I>2^7 ^3^3^^^^

— 3̂ “ ( yyĉ )̂( ü)̂ â/hx ) ( 3 8 4 0 » 17 )
for the determination of the coefficients After equating
the coefficients of similar terms, the form of v^ is found to be

v^ = ( 6&c^y— 4Æy^)/3Gw_( E4-8 )n
for which

dv
^ = 2x^ I I&2-Î- 2l!iŷ + A/S( F 4-8 )y/2]/( K+8 ) 

d,t
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SO that -i- Y2

= 4- 2Ex^- 12 JWx^y- 8 j /Sgw (N 8)n
( 3.40.18)

and Ay.‘‘-.l = - h ■»fÜi = -2z^[( E + 8 2 % ^ l / ( 8) (3.4c.19)
dt dt dt

Thus the y  axis forms while Wp is the ellipse
2 22 ITy 4- Nx = N-;-8 passing through B. To find « o:̂ G is 

again faced with the problem of finding the minimum of a cubic 
function such as ( 3.4c.l8 ) on a quadratic cuiwe, the ellipse! 
if the method of Lagrangian multipliers is invoked, the following 
equation

6(IT4-8)xy — 24Afirxŷ  4- 121x^y -i- 12jNx^ = 0 
is obtained for simultaneous solution with the constraint 
equation of the ellipse, but this hardly reduces the difficulty.
Ho means has been discovered to obtain the expression for ĉ  t 
which in any case must be a complicated function of H, and it is 
concluded that the best approximation to JTl for this system, 
obtainable from the method of Zubov, is

3o4d A method of undetermined coefficients

To summarise the experience so far of the methods of 
application of Byapunov's Direct Method, the function was 
easily discovered and gives the region for all values of the 
parameter H. An improvement in the estimate of the actual region
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of stability resulted from the establishment of the regioniTI^t 
but the effort involved was much greater and the region is only 
valid for a range of values of H. The method of Schultz and 
Gibson does not appear to be useful in the particular context of 
the system being studied! it requires the construction of a 
derivative function dV/dt which is at least negative semidefinite, 
and has not produced any function other than The method of
Zubov was more successful in producing V̂ , but is only a
quadratic form. It appears that Zubov̂  s elegant procedure holds 
much promise in application to a particular numerical case of a 
system, when the successive determination of higher-order 
approximations may be handled by a digital computer! but when 
working literally with the general case of a system, as in the 
present study, the fact that explicit solutions are only available 
to algebraic equations of low degree ( possibly three or four ) 
severely limits the level of approximation attainable for 
general analytical results.

While recognising this restriction to low-degree algebraic 
forms, it was thought possible to find further Lyapunov functions 
which would still improve the guaranteed region of stability in 
the general case of this system. A method of undetermined 
coefficients has been evolved which has had apparent success in 
this way, and which enjoys the advantages of greater simplicity 
and flexibility than the methods of Schultz and Gibson and of
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Pigure 3.18 : Table of terms in V and dV/dt for
equations ( 3*4c.9 ) •
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Zubov. It is a rationalisation of the procedure which produced 
Vg, and so starts with an assumed form for V in which the 
coefficients of the various terms are to be determined to render 
both V and dV/dt suitable.

The initial selection of terms to be included in the V 
function is aided by a table such as that shown in Figure 3.18, 
which applies to the system under discussion. In each column of 
this table is a statement of the terms produced in the function 
dV/dt by the presence of a particular term in the function V, 
having regard to the system equations ( 3.4c.9 )1 there is a 
distinguishable pattern in this array. Since the form of V 
includes a general constant factor, only ( n — 1)'coefficients 
of its n terms may be considered undetermined; the values of 
these coefficients may be determined, wholly or in part, by any 
number up to ( n — 1 ) of conditions on the terms in dV/dt. These 
conditions are generally such as eliminate terms of odd degree in 
dV/dt, which do not lead to sign definiteness.

The procedure as outlined so far is hot of course sufficient 
to guarantee the production of a Lyapunov function; all it does 
is to facilitate the construction by trial and error of a 
possible function. There is no stipulation that dV/dt must be 
negative semidefinite everywhere, which means that for the type 
of system with a limited region of stability one is free to
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search for a suitably limited .xegion of negative semidefinite 
dV/dt around the origin. For dV^/dt, this region is a strip on 
both sides of the cp̂ axis, valid only for H<6-j-2iJÏ7. The use 
of this method is now demonstrated in its further application 
to the system of equations ( 3.4c.9 )•

For 7 to be positive definite near the origin, the terms of
lowest degree in V must be a pair of equal, even degree in
and-cp*2 • thus the terms uot appear in the table,

P pand it is natural to include firstly cp̂ and B (cp̂ ) t B a constant, 
rather than cp̂  and B(cp*2)^or others. The coefficient of cp̂  , 
being unity, is the selected general constant factor of 7, and 
the coefficients of all other terms are undetermined constants.
The table indicates that this introduces in d7/dt one term in cp̂  ,

pone in Tq 9*2 two in cp̂ ÿg I the whole coefficient of 
may then be made zero by the appropriate choice for B. To

P *eliminate the term cp̂  ̂ 2 odd degree, the coefficient C may be 
used if a term Ocp]̂  is included in 7, but this introduces a term 
in <p̂  in d7/dtl to eliminate this in turn, the coefficient A may 
be used of a term Acp̂ cp'g tn 7. The further terms introduced

p p tthrough Acp̂ cp*2 are only in cp̂ , (cp’2) and cp̂cp’gi the last of 
which is removed by the choice of B.

To proceed in this way,

7 =s cp]̂ + A ̂ 2.̂2 + ̂  (?2̂  ̂ + C cp]̂ ( 3.4d, 1 )
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so that generally .

~  - 4 + AjW) - AjW (ÿg) ̂ - 2 A- B # g
dt  ̂ _

+ ( A ^ +  60 )(p̂  + 2B- 30 )(p]̂ ÿg j (3.4d.2)

The coefficients of the last three terms in ( 3.4<3-.2 ) are made 
zero by the choice

A = , b '=! — L  , and G =
4 *“ IT— 4 3B̂"“ 12

which leaves the time derivative as

~  s= — 4Ç(a) r— -— ( 3*4d.3)
dt ^ l4"-%T 1̂ -4 J

It can be seen, without even considering the resulting form of Y, 
that this procedure is useless*, expression ( 3*4^.3 ) is not 
negative semidefinite even in the neighbourhood of the origin, 
since the two coefficients are of opposite sign* This failure 
could have been predicted, since the above elimination of three 
terms in ( 3,4d.2 ) leaves only the sum of two quadratic terms, 
which together may produce a sign definite function but not one 
that is sign semidefinite*, a sign definite function is of no 
use, because as is mentioned in Section 3.3 the function dV/dt 
is at best negative semidefinite everywhere for this system*

In a further attempt with form ( 3#4d*l ), the three constants 
can be so chosen as to eliminate again the terms in cp̂ ÿg Tq Y2 
and the term in (cpg)̂  rather than in cp̂ . Thus, with A = 0, B=l, 
0=2/3, =.cp̂ 2̂
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-a.

3 N

Figure 3.19 I Sketch of the function and the region
of stability «
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- 127 -

^̂ 4 „2
dt = —' Y]_ ( ̂  Y]_) ' ( 3 • 4d • 4 )

and dV^/dt is apparently negative semidefinite in the half—plane 
cp^^ — 1 t for 9]_ == O' is the set and cp^=— 1 is v/2* see 5'igure
3.19 . The function is seen to he the form in 9-̂ and 
analogous to in 9  ̂and cpg, so that its nature need not he 
further described than it is in figure 3*19. Accordingly* the 
closed region formed hy the contour V^ = l/3» like is again
one of asymptotic stability, because within it dV^/dt is negative 
semidefinite and not identically zero on a trajectory* however, 
because B now lies at 9^= — 1* 9  ̂ " 2/VE, a larger region of 
stability may be proved to exist using a similar deduction to 
that used in arriving at g *

Consider the contour through B, for which = ( 12 IT )/3^ ! 
this has intersections with the 9  ̂axis at ±f̂  ( 12 -h ÎT )/3ÎT, which 
points are further from the origin than 2//H. The region partly 
contained by this contour for 9^^ — 1 and closed by the portion 
BC of the line 9^ = — 1 is region jQ^ of asymptotic stability, for 
the following reason* on BC, for which 9^= — 1, 9̂2 2/Ĵ * the
first of equations ( 3*4c*9 ) gives

, i.,. ^ ^ 0
dt ^ 2 VE dt

so that all trajectories which cross BC do so into the region
It may be noted that the saddle point S of the contour V. = I/34
again lies on the curve Wg .
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It is once more of particular interest to determine the 
value of cp̂ at which the boundary intersects the line dcp̂ /dt = 0 
for T]_ ̂  O' This requires the solution of the following cubic 
equation, which arises from the simultaneous solution of 

= ( 12 4 IT )/3IT With = 2cp^/^ :

2Ucj)̂ +̂ ( 3ÎÎ + 12 ) ( N-i-12 ) =0' ( 3.4d.5 )

In general, the explicit ( Cardan) solution of a cubic is rather 
unworkable; but in this case one root is already known, namely 
9^= — 1, since the boundary £1  ̂has been arranged to intersect
the line d9^/dt = 0 at B for all IT. By factoring out ( 9  ̂4 1 )
from ( 3.4d,5 ), the quadratic equation

2Mcp2^+ ( ÏJ+12 ) ( H^-12 ) = 0

is left, whose roots give the other two intersections. Thus'' the 
required expression is

= [j3(3Sr+12)(3Er-i-4)-U-12]/4H ( 3.4d.6 )

The successful production of by this method of undeterm
ined coefficients, in comparison with the result of ( say) the 
method of Zubov, is due to the way in which a cubic function has 
been found usable by arranging that one root of the derived cubic 
equation is previously known. is, however, still not the best 
function achieved! while continuing to work with this form of 
function, but in more general terms, one further improvement has 
been made in the following way. Returning to ( 3,4d.l), again
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(V

Pigure 3.20 • Sketch, of the function and the region
of stability* when 24 C/( 2 — 30 )̂  •
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Oset A = 0 and B= 1 to eliminate the terms in (^2) G,nd 
dV/dt* but let C remain undetermined as yet within the range 
0 ^ 0 ^  2/3. Then* rather than ( 3.4d*4 ) ? one has

V
( 3»40*7 )

— ^ [4 + S C < j > 3 _ 2-30) ÿg]
d t

so that there is a half—plane of negative semidefinite dV^/dt 
**above and to the right of̂  the straight line through B with 
the equation

since = 0 is the set and the line ( 3*4d,8 ) is Wg * It is 
seen that and are respectively the particular limiting
cases of V*̂ in which 0 = 0 and G = 2/3, and that one is now 
considering a half—plane of negative semidefinite dV^/dt whose 
straight—line boundary through B may be inclined with any 
negative gradient between the horizontal and the vertical.

The form of is clearly similar to that of Y^\ specific
ally, the contour Vg = 0 lies in the half—plane — l/C, and
point B lies on the contour = 1— Gi- 4/h ( see Figure 3*20 ) .

p 3By considering the discriminant of the cubic -i- 0 cp̂ is
found that the contour with the saddle point is = 4/27 Ĝ , that 
S is at =— 2/3G, cp2“ «̂ and that S again lies on W2% thus, 
the contour, through B forms a closed path around the origin so
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long as 1-0+ 4A  <4/27 0̂

i.e. if Sr >  IDS cV(2-3C)^ (1+30) ( 3.4<i.9 )

The gradient at a point on any contour is given by
a CO Q o

2 cp̂2 """ “ — 2̂-|̂ — 3Ĉ)-̂ ( 3®4^»1G )

so that the loci of extrema are the lines cp]_ = G and 2/30̂ ,
by considering the next higher derivative, it is found that no 
inflexions occur on the closed—path portions of contours for 
v/hich <C 4/27 0̂  * Now* from ( 3»4(̂ « 10 ) » the gradient at B of 
the contour tlirough it is — jjh (2— 30)/4, while the gradient of 
the line v/g? equation ( 3*4d*8), is — 6C//h (2— 30) « Therefore 
the contour lies, locally, ’̂above and to the right o f t h e  line 
at B if they are tangent there', equating the gradients gives 
the condition for tangency as

1 =  24 0/(2-30)^ (3.4d.ll)

If the two conditions ( 3o4d.9 ) and (. 3*4d. 11 ) ure taken together,
psince 24 0 (1-^-30)^ 108 0 reduces to the prescribed restriction 

C <  2/3Î the conditions may both be satisfied! i.e. if 
N - 240/(2— 30) , the contour at B is tangent to W2 and forms a 
closed region around A. Finally, since this contour is closed 
and therefore has no inflexions on it, the closed region must 
lie entirely "above and to the right of" W2, i.e. in the region 
of negative semidefinite dV^/dt. To complete the description of 
this situation, the intersections of contour = 1 — 0 4/]̂
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with Wg v/hen N = 24 C/(2— 30)^ are given by the roots of

2 0 cp2 4- ( 2 -y 30 ) cp2 4cp]_ t ( 2- 0 ) = 0

i.e. (cp^4-l)^( 2Ccp^*f2— C) = 0

so that there is double contact at B, cp-̂ =— l , and the third 
intersection is at ( 0— 2 )/2G! the last mentioned lies on the 
branch of the contour to the left of that with the saddle point, 
since ( G - 2 )/20 <  - 2/30 for C <  2/3.

Because all the conditions in the Theorem of Section 3.3 
are met, the foregoing has established that a further region of
asymptotic stability exists, whose boundary A ^  is described by

31 + 31 (cp'g) [2(1+ 2)- 4/Ji+i]c?3 = 14-8 + 4J1+ 1 ( 3.4cL. 12)

lie Intercept of fl ̂ with the line d^^/dtsO, for 0, is
therefore given explicitly by

/J3(l+ 8 + 4a/i + 1  )(31-i-8-4j/l4-1 ) - l l - 8 - ^ d Ï Ï T Ï

4 (1+ 2 )-
 -------:------------------------------ :----  (3.41.13)

The derivation of from ( 3.41.12 ) anl the eq.uation of d^^/lt = 0
is only possible since one root of the resulting cubic equation, 
namely <p̂ = — 1, is previously known, just as explained in 
connection with .

In summary, a comparison of the regions and is
provided by Figure 3#21(a), which indicates the successive
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figure 3.21 (a) A comparison of the regions C l ^ , and fï

(b) The various measures L,̂ of as functions of H
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enlargements of the guaranteed regions of stability in the
general case of the system, A quantitative measure ofXl.^ is
provided by the functions L^(H), which are plotted in figure 
3.21(b). 1̂ , being equal to 0»5 , is independent of H, and Ig
gives the greatest set of values of all, up to its limit of 
validity E" = 6 4- 2^17 " r̂epresents no improvement over the
combination of since ( 3*4c. 16 ) tends to zero with
increasing E, but and in turn have values progressively 
greater than 0*5 , for F 6 2̂ 17! applications of Hôpital  ̂s
rule to ( 3*4d.6 ) and ( 3.4d.l3 ) show... that both L. and l>r- tend
to 0*5 with increasing H. Thus, the best set of values for L 
obtained from the various V functions is

L =s 1 for 0 ̂  8*0 ( approx. )
1 >• L >  0*81 ( approx. ) for 8*0 ( approx. ) <  H ̂  6 2̂ jl7
and I = for 5 + 2JÏ7 <  I .

Before leaving the form ( 3*4d.7 ), it is worthwhile invest
igating if 7g is the particular function of this class which 
produces the greatest values for L, in view of the improvement
of bg over b̂ . The range of the coefficient 0 for consideration

[2 ( N -f 2 ) - 4Æ T Ï  J / 3ÏÏ sg 0 ̂  2/3

since the above expressions for the gradients of the contour 
through B and of W2 show that, within this range, the contour 
only intersects w^ for — 1 ; a region of stability may then

I S
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be formed by the part of this contour for — 1 and closed by 
the line cp̂ = — 1, using the previous argument, for all 
0 9̂ [2(H-i-2) — 4.-JWTÎ ]/3H . It is readily found that the inter
sections of the boundary of such a region with the line dcp̂ /dt = 0 
are given by

( +1 ) + ( 4 + N- CU )cp2_- ( 4 + N- CÏÎ )J = 0

so that the expression for L as a function of C and E is

b = + H-CN)(4 + K-}-3C®) -Î-CT-4-n1/2CI ( 3.4d.l4 )

Partial differentiation of ( 3.4d.l4 ) with respect to C gives

\T [4 + h1[J"(4 + E- GF)(4 + ÎÏ+ 3OF) - C T - 4 - W
~  = ------- -g—  ... — i-zr-------  ( 3.4d.l5 )
à C 2 C'̂lSrj(4 -i- N- CU)(4 + 1Î + 3Cij)

which is not zero for any value of C v/ithin the range’, there is 
thus no ( true ) extremum of b with respect to C for these values 
of C. However, if 0=2/3, ôb/^G <  0 for all E since

Wg + 120 ÎJ+ 144 <  12 + 5N for all I 

and if C = 12($T-> 2) — 4<ÆVÎ j/3N , L̂/c)0 is again negative for 
all E since

5 H - i - 1 6 - 4 J i n  > a / 3 ( H  +  8 +  4Æ T Ï  X  3 ÎT +  8 - 4 » Æ ~ + ï  )

for all E. ( This reduces to E^ P*' 0 ). Thus,' because b is a 
continuous function of 0, the maximum value of b for any E occurs 
when 0= [2(E+ 2) — 4Æ V 1]/3̂ 1 in other words, the best set b
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a 1 I
I

1 1
1 !5

I I
1 1\
I I

30

ï'igure 3.22 • Phase plane portrait for the second—order system
with a-type element, for g = 0*707, w^= i, = 10*92, 
K = l, and F =22-16, showing the four applicable

regions of stability.
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obtainable from the form ( 3.4d.7 ) is in fact •

The improvement of the best composite function L(F), as 
defined above, over the uniform value 0«5 from may again be 
recorded diagrammatically as in Figure 3*16. Such a diagram 
shows the greatest enlargements obtained of the regions of 
guaranteed stability of Figure 3*12, the diagram of stability 
behaviour following steps in from initial stable values . 
However, since the boundary curves form a two—parameter family 
in li and Ç, as indicated by Figure 3*16, a complete set of such 
figures would be required for clarity, each one valid for one 
value of C and including the curves for a set of values of K, Fo 
attempt, is made here to present such sets of curves, which may 
be constructed from the definition of F ( = R/ç̂ ) and from the 
following condition

[2I(ïT) +l] J (1-K-K^^)^ + 4K

+ a/(1-K-K^J)27^ ( 3.46.16 )

of which ( 3*3* 15 ) and ( 3*4a,6 ) are particular instances.

In conclusion of this section, another representative phase— 
plane portrait for this system is shown in Figure 3.22, which 
has been drawn by the same method of isoclines as has Figure 3.6 . 
The four regions of stability ( there is no for F = 22*16 ) are 
superimposed, demonstrating the distortion of their shapes which
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accompanies the transformation from the cp̂ — cp̂ system of variables 
back to the phase—plane, see the previous figure. It is evident 
that the boundary runs very close to considerable portions
of the séparatrices ED and BE which form the actual region of
stability, but there is still an underestimate ( 17®81 ) of the 
point at which ED crosses the positive axis, which appears to ■ 
be 21 approximately.

3*5 . Correlation with the roots—surface

To correlate the time behaviour of solutions with the roots— 
surface, an attempt has firstly been made to obtain a closed— 
form solution to equation ( 3.2*1), v/hich describes the large
st ep response and which is repeated below for convenience!

A possible solution to an equation of the above type may be 
achieved by the following transformation, listed in the compre
hensive catalogue of differential equations and their solutions 
by Murphy^^ I

let ^(t) =u(z) v(t) 4 w(t) , 2 = (p(t)

where 2( v V v ) ( 9'Vcp® ) = - 22u)̂

K V = C (9’)̂
and — 2w^ K w = (v"/v) ̂  2£o3̂ (̂v® A) 4-w^(l^.K-K-^^)
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By this, eq.uation ( 3.5.1) is transformai to

u"(Z) = Cu^ -5- G(Z) ( 3.5.3 )

but as G(Z) is not linear, — G = A+B/Z^ — , equation ( 3.5.3 ) has 
movable singular points in its solution, and no closed foz-m 
solution of ( 3.5-1 ) is possible* The effort expended in the 
applications of Lyapunov’s Direct Method follows, of course, 
from the impossibility of achieving a closed form solution which 
would likewise yield information about the stability of the 
system.

In some situations, it is knô TL that an established Lyapunov 
function can be made to yield limited information about the time 
behaviour of solutions within the guaranteed region of stability.
A figure of merit iq is defined as

being the minimum value of this expression within £1 Î an estimate 
of the largest time constant of responses is then given by l/*o. 
However, a finite value for this time constant is only achieved 
if dV/dt is negative definite throughout Jfl , and since the time 
derivative of any Lyapunov function in the system considered is 
at best negative semidefinite, no useful estimate of the time 
behaviour is possible in this way. In any case, if a result were 

, obtained for r), it would only give a maximum decay time applicable 
to all responses within iTI, which would be of no value in
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correlating the different time behaviours of solutions from 
different initial conditions with the characteristics of the 
roots — surface.

An attempt to obtain equivalent natural frequency and
damping factor for responses has followed a method of "time—

21varying amplitude and phase" due to G-rensted . Thus, the actual 
response from ( 3*5.1 ) is represented by the form

^-^f + a(t) sin4(t) (3*5*4)

in which a(t) and 4(t), the time — varying amplitude and phase
respectively, are determined by ( 3*5*4) satisfying ( 3*5*1) at
all instants of time. But rather than continuing with a and 4 i
make the following definitions of time— varying frequency and
damping factor! ^

—j C’w^dt
define — — /ato„ or a(t) = e ^

dt^ ^

and
At , ( 3.5.5 )

w* = d^/dt or 4(i) = \ w’ dtÜA
so that ( 3*5*4 ) becomes

't
dt- pt .

*̂0 “ % f   ̂ sin ( j w ’dt -Kp ) (3*5*6)

in terms of the equivalent natural frequency, w* , and the 
equivalent damping factor, Z \  where A and cp are arbitrary 
constants.
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Substitution of this foroi for t in ( 3.5.1) gives

n dt
•m  2 + y

n  n 1 + 0bf
sin oï’dt + cp )

dw*
dt

— 2S’(o’u)̂  + 2̂ co’u)̂ (),cos V  ̂lo'dt + <p ) ( 3.5.7 )

+ i KA e 2 ^
t

1 —  COS 2(J w*dt + cp )| = 0

The satisfaction of ( 3*5.7 ) at all instants of time requires 
that all its three terms are separately zero by virtue of the 
forms of o)*(t) and S*(t): this is clearly impossible, and a first
approximation ignores the third term whose coefficient, involving 
a negative exponential, decreases with time. The vanishing of 
the coefficients of the first two terms therefore requires that

2
(W)^ = + (s 'w ) ̂ - w 5_' - 2 C Z

and S' = : + % — /w’w = Ç + ii£lL/4(u')^to
2 dt ^ dt

( 3.5.8 )
n

which may be solved for by a ‘converging iteration process!

(u)p^ = w 2l^^(l-^V .
n

bf

,\2

wn - z

Z{ = c 

2
bf

( 3.5.9 )

(up = (up,\2 ^3 = ^2
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The resulting expressions for co®(t) and Ç*(t) are not in 
fact functions of time as allowed for by the method » and are 
simply the values for the small—signal natural frequency and 
damping factor as given by ( 3»1*^ )» evaluated at the final value 
of output. This is because the ignored third term of ( 3*5.7 ) 
represents the whole nonlinear effect of the system. Figure 3.23 
shows the accuracy of this approximation by means of three step 
responses simulated on an analogue'computer, for the process 
with K=l, = 1 and £-0*707 1 the result ( 3.5.9 ) gives values 
for w*/w^ of 1*41* 1'68, and 1*93 for = 1, 2 and 3 respectively, 
while the actual values from the figure each appear to be almost 
constant throughout a response at the values 1*59 « 1*85, and 2*06 
respectively*, ( 3.5.9 ) also gives a constant value for £’ of 
0*707 compared with the computed values of 0*48, 0*56, and 0*62 
initially ( as determined on the basis of initial overshoot ), 
all of which tend to 0*707 as the oscillations are damped out.

A better approximation has been sought by extending the 
method of Grensted to include a ” correction coefficient” s( t) in 
the equivalent form ( 3.5.6)^ it was hoped that a suitable choice 
of e(t) would produce functions to'Ct) and £*(t) which, being 
time — varying, would give a better representation of actual '-i 
responses. Proceeding thus, in place of ( 3.5.6 ) appears

t  + A s(t) e sin (\ co'd-b + cp ) (3.5.10)
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and the vanishing of the coefficients of the first two terms of 
the corresponding equation to ( 3*5*7 ) produces the equations

(w')^ = io^— 2iL^. (G'w ^  -2(Sw +— /e);'w
^ dt ^ dt' ^

+ /e +2Sw — /s (3.5.11)
d-fc2

and V  =‘ Ç-yliliyw'u e=Ç+ihUf/4(u')2u +|iS/to e
2dt' ^ 2at ^ dt ^ 2dt ^

rather than (3.5.8), In obtaining ( 3*5*11 ), the term
At

-J pt
a)%A£^(t)e ^ sin^(\ w'dt-i-co)n dQ

has been ignored; to minimise the misrepresentation due to this, 
assume the simplest form e(t) =l-î-ct and minimise the time 
integral I of the neglected term with respect to c, where

noo 2 2/C^I = j (1-fct) e sin ( ̂ w^dt -r cp y dt

The resulting equation for the vanishing of dl/dc is unworkable, 
unless to a first approximation and £’ are assumed to be 
constants ( only in connection with this equation ) ; in this 
event, the third equation along with the pair ( 3.5.11 ) to define 
ü)’(t) and £’(t) appears as.
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 ̂+ 2w" (C'ŵ )-̂  [(S'w^)^-i-4(u')^ j (2w’ cos 2ç + 

G'w^^sln 2̂ ) + [(G'w^)^4-4(w')^j (2w’ sin 2cp — 2 ' cos 2tp)

+ 0T2 [(Ç'ü)̂ )̂ -!-4(w')̂ ] ̂  + 8w’(Ç’û )̂ ' (2w' cos 2cj) + Ç'ŵ  sin 2cp)

+ 2(C'w^)^[(;'wJ^-4(w')^] (2w' sin2<p-C’w^cos 2cj))| =  0

2co' ( S'w -c) 
where sin 2<p = ---------------

iC ” e) ̂ -> (ŵ  ) ̂

(çVü - c)^- (w')^
OOS 2cp - —-----   r---- -

(S'w^“ c)̂ -}-(w')̂

The complexity of these equations is obvious! no solution has 
been found, nor has a better approximation to the form of respon
ses by extension of the method of Grensted using any other form 
of function s(t).

The possibility has also been investigated of an extension 
to the methods, in Section 2.1, producing equivalent time 
constants for first-order systems. However, it is apparent that 
any approach based on the exact solution of the response equation 
— as the integral criterion of Section 2.1 — is futile, since 
this is unobtainable; attempts to extend the average derivative 
criterion, using either

2

d t CL t
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d \  da ' pof,d\ da .
where ( £ + 2Su„ — 2 )------ —  ( — - + 2gw — 2 ) da

dt^ ®0f-ÜaJdt2 ""at/

d^a d
or £'- C“n (8of-«o„)//3(^.25“„^)^.„,s. . »'-£»/«'

dt“

r d \  da ̂ -i2 T r % f , d \  da , 2
wherel(— -  + 2;w^— I =- — I ( _ + 2 Ç u ^ ™ )  d^

L dt̂  J '-of 4)0')a ̂ df̂00

have resulted in poor representation of typical responses by an 
equivalent second—order form. This sort of criterion appears to 
be incapable of extension to a second—order equation, since two 
independent parameters are to be determined by some averaging 
process on a single differential equation.

The conclusions to be drawn are 
(i) that scant information is obtainable on the time behaviour 
of solutions which would allow of correlation with the 
movements of the small—signal roots in the roots—surface. The 
only result in this connection is that the actual response may 
be approximated by an equivalent second—order linear form, 
whose constant values of natural frequency and damping factor 
correspond to the small—signal roots at the final value of 
output; such a representation is obviously of limited value 
in large-scale responses:

(ü) that, although for the companion first-order system with
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an a— element of Section 2.1 its roots-surface may predict the 
stability behaviour, the roots—surface of the second—order 
system fails in this way. It does still indicate that responses 
are stable from initially unstable states following negative 
steps of input, but fails to indicate the presence, and to 
define the limits, of the region of instability of Figure 3.12! 
in other words, the small—signal roots always have negative 
real parts for — 1* yet it has been shown that responses
may be unstable from initially stable states if the input step 
is negative and lies within prescribed limits.
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e K ( T , P f  1 ) 

D ( T ^ D +  1)

Figure 4.1 ! Block diagram of a second— order process which 
incorporates a p — type gain element and may 
represent the nuclear reactor •
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The Control o f a Second— Order Process with- 
A [3 — Type Gain Element

4.1 Introductory aspects

Rather than study the corresponding process with a (3 — type 
gain element whose behaviour is obtainable by extension from that 
of the process with an a— type element of Chapter 3» the p— type 
second— order process chosen for investigation has one sero and 
one pole at the origin in its dynamics, as shown in Figure 4.1 . 
The characteristic differential equation is apparently

T A  a»2— ^  + ( ) ^  - E ( e + T. £2 )A = 0 (4.1.1)
^ 2 dt dt ^dt'

and two different cases must be distinguished, where
I : T ^ >  Tg , IE : T^< Tg .

As mentioned in the Introduction, this process ( in case I ) 
represents the nuclear reactor on a one— point, one delayed — 
neutron— group basis, for which the differential equations are

—  = — — &n+XC , BL2s 1 xi-XC dt 1 dt . 1

or 1 ^  + ( p + Xl-01c)|£- ( X ôk + -âî E) n = 0 dt^ dt dt
where n = neutron population

-  149 -

( 4.1.2 )
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6k = reactivity ( input )
0 = delayed— neutron population
p =3 total fraction of delayed neutrons
1 = generation time of neutrons

and \ = decay time of delayed neutrons

As follows from the relevant general form ( 1,4.2 ), the 
small—signal transfer function for either case I or H of this 
process is

ô'a(p) p ( ^ )

which is identical dynamically to the process itself, and in 
which the gain varies proportionally to the mean output level.
The roots-surface therefore reduces to the conventional roots— 
locus, as mentioned in Section 1.4t on which the small—signal
roots lie at positions corresponding to the variable gain; being
only a second—order system, the roots are known explicitly as

cy + jo, = - [ ] A ^ 2 (4.1.4)

In case X, the root paths lie only in the real plane, but in
case IE the roots become complex conjugates for a range of values
of . To define the forms of the root paths, the derivative oe
of ( 4.1.4 ) with respect to is

-  2^2 / 2T2
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94

Figure 4.2 Z Hoots— surfaces for a second— order process with 
a p — type gain element in 
(a) case I, 2̂ case IE, ^1
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so that the gradients dô /d at =0 are — land ( 
and the gradient as tends to ± oo is — '^j^/^2 * roots —
surface for case I therefore appears ( in two dimensions ) as in 
Figure 4.2(a), and that for case IE (in three dimensions) as in 
Figure 4.2(b). In the latter figure, the shape formed by the 
complex portion of the roots paths is an ellipse, since its 
projection on the o, jw plane is a circle and its projection on 
the cT, plane is a straight line! identification from (4.1.4)
of the real and imaginary parts of the roots in this region, 
followed by elimination of the parameter , gives the equation 
of this projection to be

w2 + ( <r+ l / T ^ = ( Tg- %  ) / T ^  Tg

while the projection on the real plane is part of the line

<r = - (Kô^gÏ3_-}-l)/2T2 .

The static characteristic of the closed— loop system is the 
same as that of the special case of the first-order system with 
a p — type element. Figure 2.15(b). For any value of E-̂  , the 
output may have the same value or be zero. The roots—surface 
indicates for either case that, if equilibrium at
is stable, and that, if E'̂ <; 0, equilibrium at ^ ^  is unstable
due to the root in the ”right half space” , but it does not 
indicate whether the equilibrium at - 0 ( zero gain ) is stable 
or unstable, since this is the critical case of a small—signal
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pole at the origint this point is decided below.

4*2 The phase portraits for transient responses

This Section demonstrates again the value of considering
the complete phase portrait of a system, just as in Section 3* 2
the behaviour in the general case of the previous system was 
defined by such consideration. The input to the closed—loop 
system in hand is assumed to have the value for t>-0", at 
t = Q, the output may be in any state, and its response is
according to eq.uation ( 4*1.1 ) in which \f
d-̂ /dt = 0, i. e. to

d \  d-a
Ig   + ( 1 - )  — 2 + = 0 (4.2.1)

dt^

The critical points in the phase plane of ^ and d-^/dt, 
corresponding to equilibrium states of the system, are at

(A) d-̂ /dt = 0 and (B)  ̂ d-̂ /dt ;= 0 .

As mentioned above, the nature of A is given by the roots-surface 
for all values of except zero, when A and B are coincident, 
but the nature of B is as yet undetermined. To be precise, the 
roots—surface shows that A is a saddle point in either case I or 
H  if that A is a stable node in case I if and
that A is either a stable node or a stable focus in case 31 if 
^%f ̂  0 1 it is a stable focus if
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Singularity A 
at % =

Singularity B
at ■& = 0 0

H
0)

*̂̂ f ̂  0 Stable Node
.... ....

Saddle Point
£Qcd0 K ^ ^ C O Saddle Point Stable Node

>  b and 
a >  >  0

Stable Node Saddle Point

M
<D

b >  >■ a Stable Pocus
h

Saddle point
03d0 — b and 

— a ̂  0
Saddle Point Stable Node

— b ̂  E^^ ̂  — a Saddle Point Stable Pocus

Pigure 4.3 I Natures of the singularities A and B of the
second— order system with a type gain element.
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[2Ï2- % -  <  [2Tg_ 2 J t ^ ( T ^ - T ^ )  ] / t ^  .

The nature of B may he discovered by forming the relevant 
variational equations from ( 4*2.1), but it may also be found by 
applying to (4-2.1) the following linear transformation

(4.2.2 )
SO that the system is now described by the equation

d\' d«'
^ 2 ~ ~ J  -i- ( 1 ^ (4.2.3)du

with singularities A’ = A at = 0, B’ s B at . Sincej o o i±
( 4-2.^) is identical to (4-2.3) if in the former is replaced 
by ̂  the nature of the singularity B at = 0 for positive 
K-̂ f is identical to the nature of B’ at i-e- of A at
*̂0 " %f negative , and vice versa? which is to say that 
B is a saddle point in either case I or IE if that B is
a stable node in case I if and that B is either a stable
node or a stable focus in case IE if 0 as for A. The table
which is Pigure 4*3 sums up the natures of the singularities as 
derived.

At this stage, similar remarks may be made about the 
appearance of the phase portrait for the general case of this 
system as are made in Section 3*2, and supplemented by Pigure3-4t 
for the previous system. It is not yet possible to name the 
"source and sink" of the two séparatrices of B to its right, and
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Figure 4.4 Isocline pattern for the particular case of the

second —order system with p— element, for T-j_ = 2, 
12 = I t  K^^  ̂= l  .
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this point of central importance lias to be determined by consid
eration of the behaviour at infinity. However » in a particular 
case of equation ( 4.2.1 ), the finite phase portrait may be 
obtained from the isoclines whose equations are found to be

( 4.2.4 )

where S = d (d'&/dt)/d'& is the constant slope of trajectories on 
a particular isocline.

Introducing the normalised phase variables 
cpg « (d*̂ /dt)/-̂ ĵ i equation ( 4.2.4 ) as,

K ( l-(p^ ) cpi
( 4.2.5 )

( 2cp^-1 ) + ( 1 + Tg S ) / \ £

with A at cp̂ = lt = C) and B at := cp,) == (). Since this form is 
more complicated than the corresponding equation ( 3.2.5 ), it is 
not possible to have a single pattern of isoclines valid for all 
sets of values of 2̂ '̂̂ f * bow ever, when drawing the
isoclines for a particular set, as in Figure 4.4, it is useful 
to note that

1 — 4&̂ ^
^  ----------------------      ( 4.2.6 )
 ̂ 4 ( 1 + ̂ 2 ̂  )/%f

after the linear transformation l/2, *e2 = 92’ which
S K  ̂ allows the use of symmetry, for
the two branches of the isocline S=— l/l^ have the origin
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-̂  ̂= -&2 = 0 as a centre of symmetry; furthermore, for the two 
branches of any other isocline S, the origin is a centre of symm
etry for the two branches of the isocline S’, where

S’= - ( S + 2/T2 ) (4.2.7)

A principal feature of the isocline pattern is the existence 
of a pair of isoclines whose branches are straight lines. The 
isocline with S =— ( +1 )/Ï2 consists of the lines

cp2 — Ŝ l/23?i
(4.2.8 )

and =s 1

while that for which S = ( 1 )/îÜ2 consists of the lines

cj>2 “ ( 1 —
( 4 .2.9 )and SB Q

In the pattern of Figure 4,4, these isoclines represent the 
slopes of — 3 and 1 respectively .

The actual directions of the séparatrices at the saddle 
point B follow from a procedure described in Section 3.2 . Thus, 
differentiation of ( 4.2.5 ) with respect to 9  ̂gives the direction 
of the isocline S at any point 9%

dtp, ( 2tp, - 2<p,̂ -1 ) + K ( 1- 2cp, )(1 + T„S}A. .
— £ =  i  i  i --------------------------------------- ± ---------------£ --------- i i  (4.2.10)

( 2(p̂ - 1 ) + ( 1 + IgS )/^J 2
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\
figure 4.5 : A specimen phase plane portrait for the second-order 

system with |3 — element, for = 2, = 1 and = 1 :
case I •
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Ihe actual directions of the séparatrices at B are therefore the 
roots of the eq,uation

8 =  —   (4.2.11)

namely  ̂g = ^1 “ ̂ ^  ̂  4E%_ T̂g j/aTg

which are seen to be real for all except

-  [2 T2 -  2}̂  + -  [2Ig-  -  2/^T2^ ®2“  ĥ ]Al'
The values  ̂therefore correspond not only to the directions 
of the séparatrices of the saddle point at B for but
also to the directions of trajectories at the stable node at B  
when such exists, A similar procedure gives the following 
expressions for the directions of the séparatrices at the saddle 
point at A for and the directions of trajectories at
the stable node at A when such exists I

^1,2 = [- A  - ̂  + 1)  ̂ ]/^^2 (4.2.12)

Bor illustration in a typical case, the completed phase 
plane portrait for 2̂ == 2, üù? == ]L, E^^ =1 ( case I ) is sho%n in 
Figure 4.5 . In this particular instance, the separatrix 
approaching B from 0 does not appear to have previously
crossed the cp̂ axis, in contrast to the behaviour of the 
corresponding separatrix of the previous system, lo see whether 
this is representative of both cases I and IE in general, the 
behaviour at infinity must be investigated.
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T h e first transformation to equation ( 4*2.1 ) of the two 
introduced in Section 3.2 for the behaviour at infinity consists
in defining o 1

dt 2m , dt =s 2 dT

or 2 = dt/d-̂  , u ss -̂ dt/d-ô̂  , dx s= dt/2

from which 2̂  d(-^) - — d2dt

2̂ d*d = 2du-ud2 o
Thus, for Z^O, T jâecreÏÏlIÎ ^ increases 

Eq_uation ( 4.2.1) is then transformed to

( 4.2.13 )

( 4.2.14 )

£3
d^ 
dx [k(u--̂ Ẑ) uZ-{- (Z-K.̂ l̂3_Z+ 2KTj_u) zj/Cg

u d2 ^ ( 4.2.15 )

= Z + [k(u~ ̂ Ẑ) u  ̂+ (Z-K̂ T̂̂ Z + 2KI^u) u]/t.
By inspection? this system has two singular points at infinity?
2 = 0? where u = O' and — 22?2_ * Moreover? these are the only singular 
points? for if 2 ̂  0 the second of equations ( 4*2.15 ) gives

which is incompatible with 2 0.

Considering the form firstly of the singularity at 2 = u = 0, 
the variational equations of ( 4*2.15 ) at this point give

d 62 
dx 5 O'* 62 0 • ÔU d 6u 

dx ss 1.02-pO* 6u
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so that the nature of this complex singularity must also be 
determined by the behaviour of trajectories near it as follows • 
the gradient of a trajectory in the u? 2 plane is 
d2 K(u-'^^Z) u-i- 2Kf̂ u)

TgZ -j- K(u- -̂ Ẑ) 4 ( Z- K^^T^Z -!■ 2KT^u) u
Z (4.2.16)

(i) In the neighbourhood of the singularity? on the line 52=:ôu,
dZ
du 2KI^- ) 02/lg ̂  62

and âB », ÔZdx
(:h) In the neighbourhood of the singularity, on the line 6Z=— 6u,

dZ 70du -̂( 1- 2KÏ2_-K^£T2. ) ̂ Z/Tgsi Cg 5Z

and —  »  ÔZdx
(ni) On the 2 axis, u = 0' and

dZ
du
du

= ( 3 L - - - ) Z/l^ = 0̂  2 = O ^ à Z  near the origin 

= 2 = 62 near the origindx
(iv) Close to the u axis, i.e. for 2=62 and |u |Z$> |62|, equation 

( 4*2.16 ) reduces to

du u
so for ÔZ II is small and j u ̂ 0, and

for 5Z <• 0, —  is small and f \ as 0 .\ posrtxve ;
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4L

Figure 4 * 6  1 Nature of the singularity at infinity, Z = u = C, 
for 0, C2<  0, 0 ^ < C  0* ( Directions of
trajectories on various lines are in brackets )
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The sense of direction is given to the trajectories from

~  «i K ( u + 2Tt ) uV®odT X ^

so that —  >  0 as 5 2 ^ 0  if u >  0 dt ^

and ™  >  0 as ÔZ ̂  0 if 0 >• u >  - 21, .
dt .

(v) dZ/du becomes infinite on the line

Ku^ ( u s- 21. )
2 = ■

« - 2KT (̂ ôu) V®2 i-j: II =

which is a parabola, concave downwards, on which

iH . _ K V ( u . 2 I ,  )g ^  ^
[k^^u ( u-hTi )-T2-u]"^ ^

Thus, for Ôu'^0, dZ/dt ̂  0 since 6Z< 0 in either case,
(vi) dZ/du is zero on Z == 0 and on the line

Ku ( u^ 2T^ )
Z =

2KI.
-----  du » — 2KT-, 5u/0. near the origin .

- 1 . ^ ^K^fTi

On this line, du/di: = Z îî» — 2KT^0u/C^

There is now sufficient information to construct a sketch, 
as in Figure 4.6, of the singularity, but it is to be noted that



— 165 —

the slopes of the trajectories on the lines ÔZ = i Ôu and u = 0', as 
well as the slope of the line on which dZ/du = 0, depend on the 
constants to 0̂ . The given Figure shows how the trajectories 
must behave in the vicinity of the origin for a set of parameters 
for which

O', 0, *

Eecognising that Cîg, it is readily seen that the
behaviour is not radically different for any other set of 
parameters K, T̂  and , and that all trajectories for Z 0 
pass by the singularity while those for Z 0 form closed paths, 
starting and terminating at the singularity.

Turning now to the form of the singularity at Z=sO, u = — 2T̂ , 
the variational equations of ( 4.2,15 ) at this point give 

d ÔZ = O.ÔZ - f  O . Ô U
dT
d 5u - 2T. - 2 %  4KT.̂•r- = _2------ i ------ 62 + ------------- i .  5udT m m±2

so that once more the singularity is complex in nature. The 
expression ( 4.2.16 ) for the gradient of trajectories is, of 
course, still appropriate and is used again to give the directions 
of trajectories on selected lines, since the equations of 
isoclines are too complicated.

(i) On the line 25 == ii 1202.̂̂, in the neighbourhood of the singularity 
where Z s ÔZ Q,
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■ 15 ̂   -------H-l---- i--- 62 = 0̂  52
àu _ 2 T ^ + 4KT£ - 2K^^Î£

and Æ; ( Ig- 2 %  + 4KI^- ) 52/$^ = Ĉ  52

(ü) On the line Z= — u— 2T̂ _ « in the neighbourhood of the
singularity where Z = ÔZ 0,

1-^m Æ  4' 2KT-J lé ----- — ± U z ----- ±--   62 = 0. ÔZ
Ï2 - 2Ï2_ - - 2E'^^T^

and Is ( l2~2I^-4KÎ3_^-2K^^Î2.^ ) 52/ïg = C„ 52 , 
d'k

(in) On the line u - — 2T^ ,
d2 ? _ n -7S3  ̂   ̂  ̂'  ̂ ■' ' ' ■■ ' Q W «• Vr  ̂ M
àu ïg-2ÏÏ3_-2K'^ ï̂^ °

and -âS = ( 2$^- 2Ê 3̂!]̂  ) 2/$^ = Cq Z

(iv) Glose to the u axis, i.e. for Z=a6Z and |u-î-2 T 2 _ | » 
equation ( 4.2.16 ) again reduces to

du u
as in the case of the singularity at the origin, with the 
result that

for ôZ'^0, ~  is small and [ p ^ f ) for either u ̂  — 2T^ 

Likewise, the sense of direction is again given by
du
dT

K ( u + 21, ) uVl.
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Figure 4.7 . Ranges o f for positive values of the
constants to 0^^.
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so that iH  ^  0 as 5Z $  0 if u > -  22,dT

and —  é  0 as ÔZ ̂  0- if u <  — 21-, .

(v) As previously, dZ/du becomes infinite on the line

■1Ku^ ( u + 2Ï, )z =
4KT

X
2

,ou( 1% -k {Df)---11

which is ÔZ ^ ^  "*“^^1

This is a straight line through Z-0, u - — 2T^ , on which

 ~  (6u ) ^

Thus, for 6u^ 0‘, dZ/dt ̂ 0  in vie?/ of condition ( 4.2.14 ).
(vi) Again as before, dZ/du is zero on Z - 0 and on the line

Ku ( u 4 2T, )
Z

IC'5; .pU ]LXX
2KT.

which is ÔZ  ----— 6u = 0̂  ̂ Ôu near u = — 2T̂  .

This is another straight line through the singularity on v/hich
du/dx =5 Z = ÔU

A sketdh of the singularity may now be made, but in this 
case the slopes of the trajectories on all the selected lines, as 
well as the slopes of the lines on which dZ/du = 0 and oo , depend 
on the constants to Their values rely on the value‘of
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V:

ÀL
(+)

Pigure 4#8* îïature of the singularity at infinity, Z = 0

•1u =— t for Or- , G-/\ and C-n -positives other3 ' '"lO '"ll ",
negative* ( Directions of trajectories on

various lines are in "brackets ) *
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for a given set of and the diagram in Pigure 4.7
indicates the ranges of within which each coefficient is
positive*

Using the set of parameters Q?̂ =:2, (E/) == ]Lt K = 1 and -̂  ̂= 1 ̂ 
which are compatible with those for which Pigure 4*5 is drawn, 
the nature of the trajectories in the neighbourhood of this 
singularity must be as shov/n in Figure 4.8. In this case, 
constants Ĉ , Ô q and positive while the other five are
negative. By considering the different possible sets of constants 
as Tg, K and vary, it may be observed that the nature of 
the singularity is basically unaltered from that shown I for Z >^0 
the trajectories are like those from an unstable node, while for 
Z C  0 they are like those from a saddle point.

The separatrix for Z 0 and the trajectory to which all 
others emanating from the singularity for Z>-0 are tangent may 
lie in the fourth and second quadrants respectively, however, 
rather than in the third and first as shown I the condition for 
this to happen is found from obtaining the direction of the 
separatrix and nodal trajectory at the singularity, by the method 
previously described. Thus, by differentiating equation (4.2.16] 
— in which dZ/du has been set equal to a constant S — with respeo" 
to Ui by setting Z = 0 and u=— 2T^ in the resulting equation, and 
then by equating to S the direction dZ/du of the isocline as it 
appears, one obtains S = 0 or
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4KT.
ao ( 4.2.17 )

The separatrix and nodal trajectory therefore lie in the second 
and fourth quadrants if <  0, i.e.

if ( T2-2Ii )/2Ii ( 4.2.18 )

The second transformation to equation (4,2.1) must now he 
considered in case a singularity at infinity exists at the two 
points of the phase plane not represented in the first transform
ation hut represented in the second. Thus,

let K l/Z , d-̂ /dt = v/Z , dt = Z dT
for which Z d'6’ » — dZ o

55̂ cl (.— Si ) = Zdv - vdZ 
dt

and equation ( 4.2.1 ) is transformed to 

dT

d? Z dT
= [k ( 1 ) - ( Z-K'^^T^Z + 2KI^ ) v j / l g - Z

>( 4.2.19)

The only singular points of this system are at Z = 0', v=— l/2T^ 
and v- 0, 2 = 1/*^^; the former is that in the first transform
ation at Z = 0, u = — 2T^ , and the latter is the singularity at A 
in the finite region of the phase plane. Uo new singularity is 
therefore revealed.
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O

(a)

*
o —

The change from t to t reverses the indicated directions of
trajectories for 2*<r0 •

Pigure 4*9 I Compositions of the complex singularities at
(a) 2s=0i u =3— 22*2̂ (b) Z = u=*0 •
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To discover the constituents of the two oomplex singular!tie: 
at infinity, the rule ( 3.2*15 ) is again invoked. In this system, 
once more 8 = 1 and If 4- ]? =: so that the number of nodes at the
two singularities at infinity exceeds the number of saddle points 
there by one* Thus it may be that the singularity at u=— 2T^ 
derives from the coalition of one unstable ( ’’improper’* ) node 
and one saddle pointi and that the singularity at u = 0 derives 
from the coalition of one unstable' ( improper ) node of a special 
type I one stable ( improper) node of the same special type, and 
one saddle point of a special type. The feasibility of the above 
is justified by the diagrams of figure 4.9« which show how this 
could come about. The special nature of the nodes mentioned 
above is that', whereas an improper node normally has two isolated 
trajectories with a common direction different to that of all the 
other trajectories, these special trajectories share the same 
direction ( the u axis ) as all others in these two nodes; the 
special nature of the saddle point at u=0 is similar, in that 
the two, normally distinct, directions of the séparatrices are 
identical ( the u axis ) so that two of the usual four quadrants 
of the saddle point do not exist.

The question of whether or not the phase plane portrait of 
Figure 4.5 is representative of both cases I and IC in general 
is now given attention. The point of principal interest is the 
location of the whole of the separatrix approaching B from
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(when 0 ) t which in Figure 4-5 appears to lie completely
in the fourth quadrant « or approaching A from cp^>^0 when 0,
By drawing the salient features on the sphere, Figure 4-10, it 
can readily he seen that this separatrix may stem from the 
singularity at 2 = u-0 — in which case it does lie completely in 
the fourth quadrant — hut that it may equally well stem from the 
unstable node side of the singularity at Z = 0, u= — in 
which case it crosses the cp̂ axis for 9^3:̂  1. Ihe matter may he 
settled as follows, hy considering the behaviour of the departing 
separatrix from the saddle-point side of the singularity at Z = 0, 
u = — 22^ «

equation ( 4-2*17 ) gives the direction dZ/du of this 
separatrix at the critical point to he 0̂ ;̂ there is a 
connection, however, between the two expressions for the 
direction of any trajectory in terms of the two different 
co-ordinate systems, which is obtained thus from ( 4.2*13 ) I

almce f&.l, fÎ2 . J-(fi) = ( |S )
dt u dç^ d-̂  dt ^9%

dZ dcp2 19^

so that finally
dZ

^̂ 2 . HÏÏ (4.2.20)
dcp2_ u ~  - Z du
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or A2  _____
du dcpp

Therefore, the corresponding direction dcp2/^9q of the separ — 
atrix as it leaves the singularity at infinity is obtained by 
setting u- — 2T^ in ( 4*2.20 ) and letting Z tend to zero from 
a negative amount I

Icpp 1
7 Z  ■ z . ^ 0 ' > (4.2.21)

sep’s
Now this singularity lies at infinity in the cp2 pl^® on 
the line cp2=“"9q/ since u = cpjî/92 =— 2T̂  , and this line 
is one of the straight—line branches of the isocline for 
which S =— ( + 1 )/T2» eq.uation ( 4.2.8 ) I in the special
situation of

S =- ( K4 Æ  + 1 )/r„ = - 1/21, = ( d(? Vdcp, )
isocline

for whioh = ( ïg- 21^ ) / 2 T ^ >  O' ( 4.2.22 )

the separatrix from the singularity at infinity is also the 
separatrix into the saddle point at B, and this special double 
separatrix is part of the isocline dcp2/l92. • Equation
(4*2.20) implies that dZ/du = Ĉ q =± oo along it. However, 
if rather than this special situation there is

)/2T^^>-0 (4.2.23)
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the constant 0^^ is positive and ( 4*2.21) shows that the 
direction dtpp/̂ T̂̂  of the separatrix departing from the vicinity 
of u= — 2T̂ , Z =: 0 is slightly more negative than the slope 
— l/2T^ of the isocline hranchl this separatrix cannot 
therefore cross this branch of the isocline anywhere and must 
end up at the stable singularity A, while the separatrix into 
B must originate from 1% = u = (>, Lastly, if condition ( 4.2.18) 
applies, i.e. if

0-<K-^^<: ( I2-2I3_ )/2Ti^ , (4.2,24)

is negative, the slope of the departing separatrix is 
slightly less negative than— l/2T^ , and this separatrix must 
bypass B to the left and end up at 2 = u = 0>, while the separ— 
atrix into B must have crossed the positive (p]_ axis in coming 
from Z 0, u= — .

To sum up, the behaviour at infinity has shown that the 
phase plane portrait of Figure 4*5 is representative of the 
system if so long as

^  ( ̂ 2“ )/2Ti
But if, instead, condition ( 4.2.24 ) applies, then a radically 
different portrait obtains, whioh is similar to that of the 
previous system in the possibility of responses being unstable 
from initially stable states. For negative values of , a 
similar argument to the above shows that Figure 4*5 ( only with 
the roles of A and B interchanged ) is representative of the
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system in general so long as
^  ( 21^-Ig )/2T̂  <  0

and that the different type of portrait is only in evidence if

( Ig )/2^i <  <  0 ( 4.2.25 )

4«3 The stability of large transient responses

In case I ( case IE if neither of the
derived conditions ( 4*2.24 ) and ( 4*2.25 ) holds for any values 
of I so that Figure 4*5 is representative of the behaviour 
in such systems. If 0, responses from initially stable'"
equilibrium states are therefore stable to ^  if 0 and
to = 0 if and if 0$ the initially stable state
is that of zero gain for = 0, and responses are stable (-^sQ) 
if 0 but unstable if 0. l .̂ Heference to Section 2.4 then
shows that the stability diagram for step responses from initially 
stable statest constructed from the above statements, is identical 
to that of Figure 2.15(c) which need not be repeated; an identical 
diagram is also obtained for the stability behaviour of such a 
system for step responses from initially unstable equilibrium 
states as belongs to the parallel first-order system of Section
2.4 * Thus, consideration alone of the entire phase plane portrait 
has defined the stability behaviour for this system in case I and 
case IE if Tg ̂  2T̂ . Also, since the nuclear reactor as repres
ented by ( 4.1.2 ) belongs to case 1 and since ^  represents
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(a)

(b)

/ Xt UNSTABLE 
/ y STABLE /

/ , A A y

/ / / / / 
/ Stable /
/ X

Figure 4.11% (a) Sketch phase portraits for
K f l <  ^® 2-2% )/2Ti2k

(h) Stability diagram for the step response, from 
initially stable eq.uilibrium states, of the 
second-order system with p— element, for
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neutron flux which is by nature only positive, the first stability 
diagram of the pair indicates that step responses in power output 
of a proportionally controlled reactor are stable to the demanded 
power level for any size of step in demand in either direction.

In the excluded case IE when $2 ̂  the diagram for
initially unstable equilibrium states can clearly be dismissed 
from further consideration as being the same as that for the 
other cases, as also can the portion of the diagram for initially 
stable equilibrium states for 0. However, as regards the
completion of the latter diagram, Figure 4#5 is only represent
ative of the behaviour if

 ̂ )/2T]̂ K

so that the diagram, Figure 4.11(h), is the same as that for the 
other cases outwith the strip for 0 between the lines

I9- 2T,
Step in EQ, =± — — --i - K*.

To fill in the details in this strip, consider the two sketch 
portraits of Figure 4.H(&) which show the points and I2 at 
which the séparatrices of interest cross the axis, for the 
cases of a positive value 0 <  ( T2" )/2T̂ K̂ and the
corresponding value — C % in view of the shifting transformation 
( 4.2.2 ) whereby the natures of A and B are interchanged, it is 
readily seen that the phase portrait in the second case is 
identical to that of the first shifted to the left by C, so that
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the lengths and BLg are equal, say X. Then, for » G, at 
the limiting value of = 0+ X, the response is stable if
the step ( =s C— ) >  — X % and for =— 0, at the limiting 
value of == %o - the response is stable if the step (-— G—
<  — C— X; such pairs of points, as shown in Figure 4.11(b), 
form a pair of lines which are symmetrically disposed about the 
line bisecting the fourth quadrant and lie within the strip.
They must stem from the origin of the diagram, but whether they 
become asymptotic to the edges of the strip ( as shown ) or not 
is conjecture at this stage.

Once again, therefore, the consideration alone of the entire 
phase plane portrait has been sufficient to define the stability 
behaviour of the system, for T̂  2T2$ in particular, it has 
proved the existence and provided the general form of a region 
of instability which is additional to that of the corresponding 
diagram for the other cases of the system.

4.4 Applications of Lyapunovas Direct Method

In order to obtain an analytical expression for one symmetric 
half of the boundary of the additional region of instability of 
Figure 4.11(b), the Direct Method of Lyapunov is again used. 
Proceeding from equation (4.2,3)# since the stable singularity 
A is suitably at = 0, and B is at it is preferable
to describe the system in terms of 9% = & first way of
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decomposing this into a pair of first-order differential equations 
produces

dcpi

( 4 .4 . 1 )
— (1 + ?]_)?]_ + (1 + Yg /^2

with A at =5 cp2 = B at cp̂ *® — It 93“ ^̂

On a comparison with equations ( 3* 3-11) it is noticed that
( 4.4.1 ) are of rather similar form, except for the additional
term in cp]_92 the second equationi the coefficients of the

2terms in cp̂ and cp̂ are again equal. This partial similarity,
along with that of the shapes of the actual regions of stability
for the two systems, led to the initial trial of the following as 
a Lyapunov function I

v̂ _ = + 3Ï2Yg^A%f + ( 4.4.2 )
which is almost identical to function ( 3.3-12). Working only
with which will give the upper half of the required
boundary, it is then found that

dV. .
— i = -6y2"̂ ( + + 2Ï^Yi ) (4.4.3 )dt

which differs from the time derivative of function ( 3.3.12)
2 2through the presence of the term in 9^92 • however, as (p2 stands

out as a factor, there is an infinite half—plane of negative
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(a)
?o

%

Figure 4.12: Sketch.es of the regions of asymptotic
stability for
(a) <  l/li
(b) >  1/T^
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semidefinite dV̂ /̂dt on the positive side of the line

(p̂ œ — ( 1 )/2

which is W2 I while the s^is is w-ĵ .
\Prom the nature of the function which has already been 

recorded as figure 3.11» it is clear that a region of positive 
definite contained by one of its contours and lying within 
the area of negative semidefinite dV^/dt may form Thus $ if
- 1 >  - ( 1 -f 1/E^^T]^ )/2 i. e. ^  l/T^ ( since 0 ) . the
contour = 1 with the saddle point at B encloses the largest 
region which satisfies all the req.uirements of the Theorem quoted 
and which is therefore I see figure 4.12 . But if K-^^>-l/T2_t 
the contour must be used which corresponds to a closed curve 
through the point  ̂I/*" cpg^O. In the first
instance, the value of the intersection of with the 
positive cp̂ axis is 0*5 1 in the second, the resulting cubic 
equation for the three intersections is /

2 .,, 1 , ( n - K % A X i - 2K^r%)‘+ (1  --

so that = [ 1 - A ^ \ f \  ( 4.4.4)

which is less than 0*5 .

To construct now the required boundary of the strip on 
Figure 4.lit if = ( 2̂ 2” ̂ ^1 1/%* i.e. ^2 (>21^ )
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figure 4.13 Definition from XI ̂ of the boundary of the 
strip region of possible instability for 
(a) 4Ti ^ Ï 2 (b)
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then = 0*5 applies throughout the strip: this means that
(3 4- ][ == 1*5 for % = 0*5 \  f t so that the upper boundary is a 
straight line of gradient — 1/3 and the guaranteed region of 
stability locally is as shown in figure 4.13 . But if 2̂ ̂  ̂ 1̂ * 
then L^= 0*5 only applies up to and expression ( 4.4.4 )
must be used thereafter up to )/ I this
expression decreases to a value of 0*366 as so that the
upper boundary tends towards a straight line of gradient 
- 0*366/ 1*366, i.e. -0*268 .

following on the above definition of the boundaries, use of 
the method of Zubov has been explored in the chance of an 
enlargement of the regions of guaranteed stability. Working with 
the cp̂, cp2 system ( 4.4.I ), however, attempts with the three 
possible quadratic forms of cp(x,y) lead either to sets w^ which 
include the origin or to forms dV^/dt which are too high in 
order to be useful. As in the previous system, therefore, it 
may prove valuable to consider different representations of the 
system (4.2.3 )» two such alternatives are

dcj)
dt

dt

and

( 4.4.5 )
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—  = [ Ipqi'p- ( +1% f Tn )<?i1A2
 ̂  ̂  ̂ ^  (4.4.6)

—  = “  [K^fïgC PiC l + aî^cp'g) 2K^^T^(1 + K ^ f ï i ) } 'P i ] / ï 2 ^
dt
Using ( 4.4*5 ) in which ^ ̂  and cp^^y for convenience, A is at 
the origin while B is at x = — 1, y= — l/ïg . For c(>(x,y) = 2 x , 
solution of the partial differential equation for Vp gives

Vg =» $2 ( positive definite )

dVp pf 1 /for which— S = _ IT^y E-%̂ 3̂!]̂x + 1 4- J/( 1 + (4.4.7)
dt

so that, since the y axis is and the straight line

Tgy = -( 1 + X

is W2» there is a useful half—plane of negative semidefinite 
dV2/dt "above and to the right of" this line* The minimum value 
(ĉ ) of V2 on W2 is readily found as

% f ^ 2 -  (^%f^l)^ 
establishing that the region bounded by the ellipse Tig, for 
which p

^\f^ ■*■̂2^   •"" (4.4.8 )
*2 *

is one of asymptotic stability, since w^ is not a trajectory 
within it.
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figure 4.14 I Approximate simultaneous solution of the
equations of an ellipse and a parabola to
determine •
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To discover the expression for in the original ^2 
system, one must now find the intersection for O' of and
of the curve dcp̂ /dt:=0, i.e» y = (l 4 - *̂̂ f ̂ 1 •
Since this involves a quartic equation, the explicit solution is 
extremely complicated and is not quoted; however, a useful 
approximation to follows. Referring to Figure 4*14» since the 
curve dcp̂ /dt = 0 is a parabola concave upwards, it is clear that 
an overestimate for the point x= I2 i  ̂obtained by using the 
value of the intersection (I) of with the tangent to the 
parabola at the origin*, however, if the straight line from the 
origin to the point on the parabola corresponding to is 
considered, it is equally clear that the intersection J of 
with this line provides a value %2 which is an underestimate of 
1̂2 • ïhis procedure may obviously be repeated, providing 
successive upper and lower bounds which converge to • However, 
%2 provides sufficient accuracy, and is obtained thus I if the 
two equations are written temporarily as

p py"̂ + ax = b
2y - c X 4- d X

0 / 0  '  ̂then x^ “ b/( a c )

The straight line OJ is therefore

y = (o4- d Jb/( a-f ĉ  ) ) X

= b/"pand so x^
2 k 2a4- c ^ a + c



— 1 0 0

Figure 4.15 : Ihe r e g i o n o f  asymptotic stability for 
the second—order system with a p — element .
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m . + i + K & Æ  m  .1.
where a=-rii , h  ------ ==-=—  , c= ==-= and d = ■■ --•== .

2̂ h  2̂

From this lower boimd on L2 an alternative boundary to that 
of Figure 4*13 may be constructed for the strip of possible 
instabili.ty. However, by comparing the results from XI^ and 
for representative sets of and , it is seen that
produces little or no improvement over the values of L̂ , whose 
form is much simpler than that for Xg* this reason, this
application of the Zubov method is not carried through to the 
stage of a stability diagram like Figure 4*13 •

Brief mention is lastly made of one further attempt to 
obtain better boundaries. Continuing with the description (4*4.5) 
of the system, if one investigates the now-familiar form

+ 3 $2 + 2x^
it is found that

^^3 _ ..2
dt

Thus, the y axis is ŵ  ̂while both lines x= — 1 and x =— 1— l/K-^̂ T  ̂
are sets Wg I see Figure 4.15 • dV^/dt is therefore negative 
semidefinite everywhere, except in the strip betv/een these lines 
where it is positive semidefinite. Using the contour which 
passes through B, and the fact that all trajectories cross x = — 1 
in the positive x direction, since on it
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dx _  _ 1, ^ - ü î h  ^  0
dt Tg ^2 2̂

it is proved that another region XI^ formed is one of 
asymptotic stability* However, once again when an attempt is 
finally made to obtain L̂ , one is confronted with a fourth-order 
eq.uation; although in this case it has been arranged that one 
root, namely— 1 , is known, since the curves involved intersect 
at B, one is still left with a cubic equation. Numerical examples 
have indicated no significant improvement in 1 due to so
that no attempt is recorded to find an expression for from
this cubic.

4*5 Correlation with the roots— surface

Applications of the techniques of Section 3.5 to the second- 
order system with a p — element have shown them to be of no more 
value than in their first application. One other approach has 
been investigated for this system in order to correlate the time 
behaviour of stable transient responses with the features of the 
roots—surface ( —loci ), which alone is reported.

This approach, largely empirical in nature, consisted in 
defining values for the two equivalent time constants, or the 
equivalent natural frequency and damping factor, from some form 
of averaging process on the values of the small— perturbation 
singularities within the range of transient variation. It is
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described with reference to a typical set of time solutions, 
Pigure 4,16(a) , obtained from an analogue computer, which are 
for the case ÏC system with 1̂  = 1, (Dg = 2, K =: 1 and = 10 , 
d-̂ /dt = 0 initially, ^ = 0*1, 2, 5i 15» 20 initially* The roots — 
loci are shown in Pigure 4#16(b), where the imaginary part is 
rabat ted into the plane of cf, •

The value was. first investigated of using a straight average 
of the root values over the range to making appropriate 
allowance for the imaginary component when included. Since the 
results were not encouraging, it appeared that a weighted average 
might be more suitable, where the weighting function was

This represented an improvement, but in order to have one 
weighting function common to all responses from different to 
a particular value of , the exponential weighting function

Wg= e
— 0*0 6 ( g — 10 )

was tried, which gave best results for the response from = 20 . 
The five equivalent second—order responses calculated using Wg 
are shown on Pigure 4.16(a), from which it is seen that repres
entation is fair for the responses from 0 = 20 ,,̂15 and 5, but
poor for those from 2 and 0*1 . The quality of representation 
may be judged by the values given to the ”rise time*’ ( to 61 per 
cent, of final value ) and to the time of maximum velocity, or 
inflexion, as shown in Pigure 4*17% the actual rise time for any
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“ SY AS

]?igure 4.17 : Actual and équivalent times of rise and to maximum 
velocity, for the responses of Pigure 4.16(a) .
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response from is best approximated by the form employing Wg,
whereas the time to the point of inflexion is best approximated bÿ
the straight averaging. In either connection, the averaging
approach fails at low values of since finite times are
produced, whereas the actual time behaviour becomes slower and
slower as tends to zero •00

Similar conclusions are drawn about correlation in this 
system with its roots—surface as have been made in Section 3*5 
for the earlier system. ITo effective means has been discovered 
for predicting the time behaviour from the roots—surface: though 
some measure of correlation has been attained with the responses 
of Figure 4.16, attempts to apply the same weighting procedure 
to responses to other values of have shown that different 
values of the negative exponent in Wg are required for each value 
of , and that representation is rather poor even then. As 
regards the ability of the roots-surface to predict the forms of 
the stability diagrams, once again it fails to establish the 
regions within which negative steps falling in a certain range 
cause the system to go unstable from initially stable conditions.
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Conolusions

The first set of conclusions relates principally to the 
output-dependent systems studied and reported, whereas the 
second and third sets embody recommendations of a more general 
nature and wider application.

1. It must be concluded that the roots— surface has been proved 
incapable of yielding useful and accurate information about 
large-scale behaviour. The stability of large step responses 
in particular has been shown not to be predictable by the 
appearance of a roots— surface, while no method has been 
discovered to correlate satisfactorily the time behaviour of 

■ the transients with the movements of the small— perturbation 
singularities, and these facts emerge from consideration of 
systems of orders as low as first and second. Even if more 

. satisfactory correlations had been achieved in particular 
cases, it would have been unreliable to apply the same 
techniques to further roots— surfaces, especially considering 
the aspect of non-uniqueness of the roots— surface which has 
been revealed.

This study, certainly, has been restricted to consider
ation of transient responses of output — dependent systems

y
where the input variable has a constant value’, it may he that,
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for other input functions whose time variations are slow in 
comparison to system time constants, the transient behaviour 
is capable of being predicted more dependably from the

1 2movements of the singularities, as suggested by M*Pherson ’ •
However, this study has provided a demonstration of the 
difficulties and pitfalls involved in attempts to examine such 
strongly nonlinear systems in a linearised way.

2. Notwithstanding the remarks in 3 below, the transformations
of Poincare for the behaviour at infinity in the phase plane
have been found most useful in determining the stability of
large transient responses: in this connection, the remarks of

22Davies are interesting* It would appear to be a useful 
preliminary in investigating the stability of a system, which 
may be continued by Lyapunov's direct method or other means.
An extension of the transformations to third—order systems 
has been outlined by Kammuller and it might be useful to 
have further, purely analytical, extensions to higher-order 
systems, despite the lack of a geometrical interpretation.

3. Lyapunov’s Direct Method has been used successfully through
out the study but, as has been often emphasised by other 
authors, many developments of the method are still possible 
and desirable. In this project it has been found that, working 
literally, a maximum amount of use must be extracted from the 
low-order algebraic forms for which explicit solutions are
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possible, and that the existing techniques of Zubov et al. are 
not particularly valuable, being best suited to particular 
numerical systems. Various devices have produced good results 
from low-order forms : the method of undetermined coefficients
proposed offers the advantages of simplicity and freedom to 
construct a time derivative which may be made negative semi — 
definite in a suitably restricted region commensurate with 
the region of asymptotic stability produced : the investigation
of alternative ways of decomposing an n'th order differential 
equation into n of first-order may be rewarding, as discovered 
in Sections 3«4o and 3#4<3. and in connection with the prelim
inary study of a fourth-order output—dependent system, not 
reported: by this means, the total number of terms "on the
right-hand side" of the equations may be reduced, and by 
distributing the singularities in a different pattern around 
the' origin it may be possible to arrange for intersections of 
the boundary XI with sets Wg ( or others ) to occur at known 
fixed points, thus reducing the order of the ensuing equation 
for another intersection of interest (as L ).

It would appear worthwhile to develop the method of 
undetermined coefficients for higher-order systems, perhaps 
to the stage where the logical choice of terms and evaluation 
of coefficients could be aided by a digital computer, having 
regard to the advantages of the different decompositions
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referred to above. At the same time, there is a requirement 
for sign-definiteness criteria , similar to Sylvester’s, for 
higher-order forms than quadratic, which would allow their 
free use : this point has also been made by Gibson et al.̂ "̂  • 
Any developments would also be most valuable which conveyed 
information about the time behaviour of trajectories within 
the region of stability from the Lyapunov function*, it seems 
plausible that a Lyapunov function is capable of affording 
such information, even where its time derivative is only 
negative semidefinite.
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