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SUMMARY

The class of nonlinear process presented in this situdy is

- characterised by a differential equation invelving products bo

of the output variable with derivatives of the input, and of
derivatives of the output with the input. It is described as
"output —dependent" since its dynamic behaviour at a mean,
operating, output level changes with that level, and it is shov
that the nuclear reactor on an accepted approximation is of th:

class.,

The processes studied each incorporate a gain element of
either of two types, the gains of which are functions of the
process output. There is a progressive development from the
gain elements to selected first— crder, and thence to second -
order, controlled processes. Extensive use is made of phase-
plane techniques in the study, as well as other forms of analy:
transformations due to Poincaré are introduced and applied witl
effect to the behaviour at infinity in the phase plane, and
repeated applications of the Direct Method of Lyapunov produce
successively improved definitions of the limits of opexation fi
stable responses. Some of these applications display new

approaches 1o the use of the Direct Method.

The stability behaviour of each system following large st

changes in input is c¢learly indicated by diagrams, which it is




O

-— Y -~

shown may not be obtained by a locally-~linearised treatment
involving the concept of a roots—surface. In particular, the
controlled nuclear reactor on the above—mentioned approximatic
is shown to be stable following step inputs of reactivity of

any magnitude in either direction.
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SUMMARY

The class of nonlinear process presented in this study is

- characterised by a differential equatiop involving products both
of the output variable with derivatives of the input, and of
derivatives of the output with the input. It is described as
"output— dependent' since its dynamic behaviour at a mean,
operating, output level changes with that level, and it is shown
that the nuclear reactor on an accepted approximation is of this

class.

The processes studied each incorporate a gain element of
either of two Types, the gains of which are functions of the
process output. There is a progressive development from the
gain elements to selected first— order, and thence to second—
order, controlled processes. Extensive use is made of phase—
plane techniques in the study, as well as other forms of analysis)
transformations due to Poincaré are introduced and applied with
effect to the behaviour at infinity in the phase plane, and
repeated applications of the Direct Method of Lyapunov produce
successively improved definitions of the limits of operation for
stable responses. Some of these applications display new

approaches to the use of the Direct Method.

The stability behaviour of each system following large step
changes in input is clearly indicated by diagrams, which it is
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shown may not be obtained by a locally- linearised treatment
involving the concept of a roots— surface. In particular, the
controlled nuclear reactor on the above—mentioned approximation
is shown to be stable following step inputs of reactivity of

any magnitude in either direction.
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NOTATION

The page numbers indicate where the symbol is first defined.

Symbol

Page no.

11,12 44,
801, 22

20, On

%n, mo

b, bn Introd.
D

1Pk—1 113
fi' > 112
fll, 01 112
3 .

K 2
k

L, 88
1

m

N 100
n

Pl. o 112
p

Py i2

Introd.

Description

Coefficients of linear terms in differential
equations

Coefficients of output and product terms in
equation ( I.1)

Coefficients of input terms in equation ( I.1)
Differential operator in time
Coefficient of k'th term of Vo
Punctions of x and y in differential equations
Linear function components of fi‘ o
=1
Gain factor
Dunmy index
Measure of a region of asymptotic stability
Dummy index
" "
Parameter defined as R/'Z;2
Dummy index
Nonlinear funection components of fl,z
Complex variable

Coefficients of operational polynomial
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911,12, 21
Y

L
z'
L

12
89
113

88

72

33

78
91
83
113
113
114
114
115

78

109
88
64

140

139

— Vil —

Coefficients of operational polynomial

Parameter defined as J(KQ_.Lf-i-K—-l)Z + 4K
Homogeneous function of m'th degree in xandy
Radial co—ordinate

Directions of trajectories on isoclines

Time constants of processes

Eqﬁivalent time constant

Time

Variable related to A

Lyapunov functions

Variable related to &

Lyapunov function in the method of Zubov

m'+th member of a series approximation to v(x,y)
Series approximation to n'th degree for v(x,y)
Sets of points for which dv,/dt=0

Sets of points for which dv(n)/d’c.-:O

Replaces ¢, in Section 3.4c

Replaces ¢'5, in Section 3.4c

Variable related to %O

Coefficients of VV

Angular co-—ordinate

Damping factor of second—order process
Equivalent damping factor

Figure of mexrit




— Vi —

Input to uncontrolled process
Input to controlled process
64 An intermediate variable

Output of controlled or uncontrolled process

74 State variables related to § and d9/dt
92 State variable related to Q)
4 Roots of equation ( 1.1.3)

Multiplicative nonlinearity parameter
Denotes multiplication

Real frequency component

33 Equivalent real pole

78 Variable related to ¢ and %)

92 = State variables related to ¢ and 49/dt

115 A state variable related to 48 /at

113 Positive definite function of x and ¥y

113 n'th degree component of o(x,y)

86 Boundary of a reglion of asymptotic stability

Imaginary frequency component
64 Natural frequency of second—order process

140 Equivalent natural frequency

Denotes the equilibrium value of bracketed variable
" 1" final T 1" " 1"

" " initial u 3 1" "

Denotes a small increment or perturbation from

equilibrium in the bracketed variable




INTRODUCTION

Representation of the behaviour of a real physical process
by a linear model, although cbnvenient. is often unjustifiable.
In many instances a process, whose normal operation within a
certain range conforms closely to the linear, requires some
nonlinear description for operation beyond this range. Similar
remarks apply to the control system incorporating a controlled

process.

The region of normal operation may frequently be definable
in terms of a unique set of limits on the variables in the
system. A type of nonlinear control system exists, however,
which operates in a limited region associated with an equili—
brium condition that is variable. For limited operation abou-
an equilibrium level, the behaviour may be considered as linexx
but its dynamic characteristics may depend on the equilibriumw
levely  such an approach will be termed "local linearisation'.
Since the nature of the local responses varies with the equili-

brium state, which can be defined by the input or output level,

an adequate description for such a system is 'nput—, or “output—,

dependent",

Por some processes of this type, there may be only one
equilibrium value of the process input, namely zero. In such

cases, where a situation exists similar to a pole at the origin

in the linear process, the output may have any value at
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equilibrium while the input is zero, and the behaviour must be
described as output dependent. It is for thilis reason that the
general class of process ig chosen to be considered as output,

rather than input, dependent.

In practice, much information may be available relating to
the locally 1inearised-dynamic behaviour of a controlled process
which is obviously output dependent. This is certainly the case
in the field of nuclear reactor control, where normal operation
involves relatively small variations about any one of many
equilibrium states within a wide range. Introducing a three—
dimensional extension of the conventional roots—locus concept,
this information may be presented compactly as a series of
roots—locus plots in the complex plane where the third dimension
is the modifying parameter, i.e. system output. A '"*roots—surface'
is therefore derived, from the shape of which the small-signal
response of the'closed—loop system can be deduced directly for

all values of output and of loop gain.

An output dependent system may be subjected, however, to
disturbances producing responses’too large to be considered local.
It is thus of general interest to discover what relations, if
any, may exist between the characteristics of the roots—surface

and the response of the closed-loop system for large variations
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in its state. M"Phersonl'2 has given a detailed appreciation
of the value of such an extension of the linearised information

3 also has drawn

to the full nonlinear behaviour; Williams
attention to this general problem of the validity of dynamical
models. On the basis of these relations, design procedures in
the complex frequency domain might be developed for the control
of output dependent processesy such procedures would possess

advantages similar to those of the roots—locus method of syn—

thesis for linear systems and for systems which contain single

nonlineaxr elements, and would afford simultaneous information

about the corresponding large—scale behaviour.

The variety of output dependent processes is, however,
great. This study is restricted to the group of processes for
which the input ¥ and the output %o are related by a different—
ial equation of the general form

m n
SN

m
a9
Z<am+am0‘9) m+ (a0+8‘00‘9+§:a0n n)‘so

n, .
= b+Dbyd+ () (I.1)
l .

in which any a or b may be negative or zero, and which is
characterised by the presence of products both of &O with

derivatives of ¥, and of derivatives of %0 with ¢. Particular
\.

Superscripts refer to the Bibliograp_hy on pp. 201~ 204
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examples of this type are:

2
d=< dd

. 0 0 ad _

(i) -(;;2 +(al+alo%)-a-:t- +(a00‘9+a01?f)%o" 0
a%s,

2y o '

(Ji) E;é‘ -+ ( a0+ 8.00'3 ) v, = 0

' dzeo | as,

(1) Wdtz +(al+a1@-9 )E“; + age¥y = b+ byd

(1) represents the response of a nuclear reactor on a one—point,
one delayed-neutron—group basis, where Q)is the neutron popul—

4

ation and ¢ the reactivity; (i) represents™ the relation

between vagus inhibition changes, ¥, and hearit beat rate] and

5

(iii) represents”’ the control of the carbon dioxide concentration

in the bloodstream by respiration rate.

An interesting aspect of the general differential equation
(I.1) of the process invites comment. In the strict mathemat—
ical sense, the equation is in faet linear in g}: since the
input ¢ is some deterministic or stochastic function of t, the
output is defined by an equation of the form

a™y, A"ty |
fm(t)@ + fm—l(t)am oo+ £4(%) 8 = F(%) (I.2)
which is a linear differential equation with time—varying
coefficients. In the control engineering sense, however, the
term linear implies that the principle of superposition holds

and vice versa: in terms of the commonly encountered
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nonhomogeneous linear differential equation, with constant

coefficients,
™, "ty
aa_"+an}-.;-———j.+"'+a()eo&£‘(m) (I.3)

this principle states that if Q)(t) and Q;(t) are the corres—
ponding responses to the forcing fuunctions F(t) and F'(1t)
respectively, then the response of Q}to a linear combination

ch(t)%-c P'(t) is given by the corresponding linear combin—

2
ation cl§>(t)4-c2§;(t). In the case of equation ( I.2 ), however,
the principle of superposition clearly does not apply, since

the time—varying coefficients of the left—hand side are functions
of the forcing function €(t). Thus, although the equation is
strictly linear, 1t expresses a stirongly nonlinear relationship
between forecing function and response. This nonlinearity is
even more clearly displayed in the closed—loop around the
process, when ¢ is a function of the difference between the

closed—=loop input %.and output QJZ in this event; the relevant

equation is nonlinear in Q}in the strict mathematical sense also.

This dissertation reports the investigations into the
control of several particular output dependent processes
described by equation ( I.1). A principal objective has been
to disclose any relations which may exist between the roots—
surfaces and the responses of the closed—loop systems in these

particular cases, and possibly 1o generalise by extension. Each
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process has an output dependent gain only, of one of two types
referred to as a and By in other words, none of the dynamic

parameters are output dependent.
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1.2

1.3
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CHAPTER 1

The Output Dependent Gain Elements

a type of gain element
'B‘type of gain element
‘Processes incorporating e~type gain elements

Processes incorporating B—type gain elements

20
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CHAPTER 1

The Output Dependent Gain Elements

1.1 a type of gain element

A geain element may be described as the simplest process,
i.e. one with a non—dynamic character. In view of this, the
terms ¥ and Q)are used in this chapter for the input and output

of the gain element, as for a process.

At the start it was thought advisable to study the most
basic of output dependent gain elements, that which has a linear
dependence of gaih on output through & small parameter A. In
the adopted notation, |

gain = K(1+A9 ) ‘ (1.1.1)
Suitable block diagrams and the gain characteristic are shown

in Figure l.1. It is immediately apparent, since A occurs only

- in association with Q)q that the significant variable is the

group Aﬁ) rather than Q} alone. For economy, this group is-
hereafter referred to simply by % — as are Ad, etc., by ¥, etc.~—
but it is understood that a value of any variable involves the
magnitudes both of the relevant signal and the multiplicative

parameter as defined.
The relationship between input and output is given by

Ko = Kl (1.1.2)




N
<o

Y
¢

(e) / (a) /

Pigure 1.2 (a) Block diagram for the element in a closed loop
(b) Characteristic of a closed loop around the a type
of gain element
(¢) Overall gain of the closed loocp as a function of K
(d) Overall gain of the closed loop as & function of Kg




and is seen ( Figure 1.1 ) to be single—valued throughout. Parts
of characteristics which correspond to negative gain, i.e. for
K%O < —X, appear generally in broken lines. The groups K9,.etc.

are used for a reason that emerges in Section 1.2 .

If a loop is closed proportionally around the element, as
in the block diagram of Figure l.2, ¥ = ei-- %0 and the closed—

loop characteristic is given by
2 =
(Kg)+ (1L+X—Kg) K§ —K.K9; = 0 (1.1.3)

the K%O roots of which are

A’i = }2{-—1-—K+Kei +,j( 1—K-—K~‘§_)7+4—K:

-
A= 3 -1-TEg - (1-K-xg) P
A§>HK > A2

K&O is now the double-valued function of the input K%_ shown in
Figure 1.2(b), whose values A_ﬁ correspond to positive gain and

Az to negative gain.

To depict completely the operation of the element, it is
useful to show the overall _gain of the closed—loop round it.
In Figure 1.2(c¢c) and (d), the ratio %0/-9i is plotted against
both K¢ and K¢ , according to the expressions

s \
Lo éﬁ‘ or .{&;3 - K+K%0 . _ ( l.1l.4 )
Y K¢ Y 1+K+Eg
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The overall gain of the closed—loop may be positive for any
value of K%_, in which case the variabie gain is itself positive,
and may be positive for negative K%', in which case the variable
gain is negative. It is also possible 10 have the overall géin
negative for positive K%_.'in which case the variable gain is

negative.

Emphasis of the operation in the closed--loop is given by
the illustration of Figure l.3. This sets out the responses
of K¢ to simusoidal inputs K§ of two different amplitudes, for
various values of XK. Although the information presented is
already contained in equation ( 1.1.3) and Figure 1.2(b), Figure
l.3 demonstrates the effect of K on the behaviour, which may be
described in either of two ways.—
(1) as may be seen from either (a) or (b) of the figure, if
K increases while K%_ remains constant, the behaviour
becomes more nearly linear. +this might be expected
intuitively, since the magnitude of the input is dimin—
ishing}
or (i) as may be seen from comparative inspection of (a) and
(b), if K9, increases while K remains constant, the behaviour

. . . skt . gk
becomes more nonlinear; the input magnitude increases.

1.2 B type of gain element

The B type of gain element represents a stronger dependence

. vt - o
Tl e e Ls fEo B
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(b) gain, (e¢) input—oubtput

Characteristics of element in a closed loop: (&) input—output,
‘(e) and (f) overall gain as functions

of K%_ and KQ) respectively




of gain on output than does the a-— type. Whilst the latter has
a linear dependence, given by elqua'tion (1.1.1), resulting in
zero gain at the critical value of %ozz -—1; the B type has a
géxin which is direcisly proportional to output, i.e.

| gain = K§ (1.2.1)
for which the critical value of output is zero. This behaviour
is of considerable interest since the gain of the nuclear

reactor increases proportionally with the power output.

A suitable block diagram and the gain characteristic are
shown in Figure 1l.4(a) and (b). By comparison with Figure l.1(c)
or equation ( l.1.1 ), this element may be considered as that
special case of the a—type in which K has tended to zero while
the group K-So has remained finite and non—zero. In other words,
for ever—increasing signal magnitudes and ever—decreasing
values of K, the a— type behaviour approaches that of the type
B. The B characteristics may thus be deduced from the figures
and equatidns of the previous Section; resulting in the relation—

ships illustrated in Figure l.4(c) to (£f) and in the following

equations.—
input - output K%o = 0y independent of K¢ ( )
l.2,2
relationship. K»&O independent of X&; for K¥=1
 ¢losed —1oop (K9)%+(1—K%) Kg = O
characteristics: the roots A A2 of which are (1.2.3)

K-So= K%-—l or O



closed—loop gain %O/%._:—- 1-1/%X% or O
- characteristics K9, (1.2.4)
= 1+X$

It is not necessary 1o dis;élay the B-— type responseé to
sinusoidal- inputs K%, correspondiang to Figure 1.3 . These are
already available on that figure, being the responses for K= 0,
and are given by the expressious for /A, and A, following

equation ( 1.2.3).

1.3 Processes incorvorating a— type gain elements |

In this Section, attention is given to some general aspects
of processes which incorporate an o-— type gain element. The
next Section deals similarly with processes which incorporate

a B—type gain element,

As a preliminary, the local linearisation of the process
equation (I.1) of the Introduction is discussed. This general
differential equation is repeated here for convenience.

m m

a n n

: 0 d% a g
E ( a +a0%)—--m o+ (a +aO%+Z on=—= )% mb-z-bO«?r-:-an——mn
dt att 1 at

1 .
The equation for an equilibriun state follows from setting all
the derivatives in the above equation to zero: if the equili-

brium values of ¢ and %0 are denoted by %e and &oe y 1t dis

e ““E%Eag‘%‘%‘ or 8, = > %o (1.3.1)
80 ¥ %00% e a50% e~ Po
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The input is now considered to have a small perturbation 59(t)

from its equilibrium value, producing a perturbation 8»30('&) in

o
(I.,1), with the use of equation ( 1.3.1 ), produces the following

the output: substitution of &= g, + 88, S = ‘C’\oe + 6%0 into equation

differential equation relating 6{}0 to &%

Z( ) dméﬁ n ma-a = aPss
a, +a ) + E a ~6% -+ % 56
m0 e P . 0 ati 20n dtn

n
— Z( b= 2y ) ddfj (1.3.2)
O

After making the following assumptions, which certainly hold

for sufficiently small perturbations, that

=z asg
. 6)
bo— aOO%oe >>'Z aﬂl@'{{ﬁ‘l —0<Lt<<00
: 0
and |b — a5 8 >>| aoncS%Ol ¢ A= 1¢2;...0 (1.3.3)
equation (le3.2) reduces to
m gm
6& n
489
(a"}" = (b""a )"‘"""‘" (10304-)
% mO e ._ Z dtn

For zero wvalues of &9, 6%0,, and their derivatives at t =0, The
transformed version of equation ( l.3.4 ) gives the small-—gignal

transfer function to be

I
(S‘S‘ P) %” (bn Onno)p (10305)

59(13) m
( &, + amO%e) D

o[\/_]g
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¢ = | K{pD+1) v,
=il TR E*ﬁjzg)—eyw — — Cane
| K}-lﬂ Q‘I’F?-B * ﬂa’m-ﬂr@“ oo F :g‘
(2)
5905 Kl ety 50,05
Yl 3P 4. o 149 ) La.e.[%,g 38 0p + 1
()

Figure 1.5 (a) Block diagram of a process incorporating
an o —type gain element
(b) Small—signal transfer function for the

above process .
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in terms of the complex variable p} Use of equation ( 1.3.1) to

eliminate Qa produces the desired final result:

n
’ n
59 (p) (aod%e“‘bo)zz (bn”'aOﬂ%e)P
= Q (1.3.6)
6'9(13) iﬂ ' T m
\. — QL -
5 & amob"ambo)"( %1200 “mOaO)‘bejp

The form of the small—signal transfer fuanction, and thus the
nature of local responses, are heavily dependent on the

equilibrium value of output, as deseribed in the Introduction.

A process incorporating an o type géin element is shown
in general block diagram form in Pigure 1.5(a). The gain
. parameter K of the bare element has been replaced by a transfer
function, whose numerator is of first order and whose denomi —
nator is of m*th order; since D can be set to zero at equili~—
brium, the static behaviour is that of the bare a type gain

element,

The operation of the process is described by the equation
[ 2" +qm_lnm‘1+. . . +1} g =EpD+1](1+9)0 (1.3.7)

which on expansion becomes

- d%o a9, a5
qu——- +(ql——Kp1%)——{ v (1=Kg— Kpld )8,
2

= K9 -}-Kpl g% (1.3.8)
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Equation ( 1.3.8 ) is seen to be a particular form of the equation
(I.1), where

alogaOIxublz—Kpl' aoo=—b0=—1{g 8.021' am= qm for m 25 1

and b=?m0.= aOnzbnz 0 for all myun > 1 (1le3.9)

Substitution of these values in ( 1.3.6 ) produces the relevant
small—signal transfer function.

2
59 p) B K (1+9,0)" (pyp+ 1) (1.3.10)

58(p) B 2 ~
9(p) A (18 ) e o o+ qp (149, ) p +[q1+(ql pl)%oe]p +1

for which a block diagram is Figure 1.5(b).

Thus, although the output dependénc:y' in the process is
only in the gain factor, the values of the small—signal poles
as well as the small—-sgignal gain depend in general on the mean
output level. TFurthermore, the gain dependency for small—signal
response is not a linear one similar to that in the process,
but varies instead as (l+%oe)2. This effect may also be
noticed from considering the non-dynamic case of the process,
i.e., where P1=Q1=0o= e o o = qm-—-:O and the process has degene-—
rated into the bare a-— type gain element: the static small—

signal transfer function becomes

2
5»90/8%... K(l-a-%oe) (1.3.11)
which agrees with the expression, derived from ( 1.1.2 ),
ag
o 2
-d@ =K(1l+ '30) .

=
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pde

N Q

Open—loop zero
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Figure 1.6 : An illustration of the roots—surface concept



If the process is considered to be controlled proportion-—
ally in a closed loop, the small-signal roots—loci are different

for each different value of 9 due to the changing open— 1lo00p

ce'
pole~ zero pattern and gain.' This leads to the presentation of
the complete set of roots—loci as a roots—surface in the three
dimensions of real and imaginary frequency components and mean
outputilevel 9.4 the roots—surface may be in several parts,
just as the roots—locus may possess several branches; and an
illustration is given in Figure 1;6. Corresponding to the
transfer function (1.3;10). the open—loop zero a'b-—l/'p1 is
independent of %nf but the open—loop poles may describe complex
paths as %ua variesy ‘the closed-—loop poles may therefore
describe equally complex paths, one set of paths for each value

of K.

The complexity of the roots—surface is much reduced in a
special case of the process of Figure l.5(a). If all the
coefficients Ay and the factor K are so large in relation to

unity and p; that the characteristic equation ( 1.3.7 ) becomes
D[qmnm"1+qm_lnm'2+ . +ql]-3o~:;K[p1D+l]( 1+9)¢ (1.3.12)
the transfer function ( 1.3.10 ) assumes the form

89,(p) K(1+9J)(pp+1)

= (1.3.13)
89(p) 2,

p (™ g, PMEH . .. k)

In othexr woxrds, if the process dynamics have a pole at the
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Figure 1.7(a) Block diagram of a process associated with that
of Pigure 1.5(&)
(b) An illustration of the non—unigueness of the small—
signal transfer function to a partvicular process
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origin, the small—signal transfer function has a gain which
varies linearly with %O e and dynamics which correspond to those
of the process, being independent of % e* In this event, the
roots—-surfaoe reduces to a roo’cs——loous, the form of which is

1ndependent of € A and on Wh:u.ch the c¢losed—loop poles lie at

e
positions correspondlng to the variable gain K( 1+ VNRE

In conclusion of this Section,; one other feature of this
type of process 1s discussed. In place of the process of
Figure 1.5(a), consider the associated process with an a-— type
gain element shown in Figure 1.7(a), in which the lead ternm
(_p1D+l) precedes the gain element. The response of this

process is described by the equation

d% \ d%

a +(1 K8 —Kpy —) & , = K9 +Kp (1.3.14)
Comparison with equation ( 1.3.8) shows that, in the identifi-
cation of this process as one described by equation ( I.1), the
~relations ( 1.3.9) apply with the sole alteration that a1 q= 0.
The relevant small-signal transfer function is therefore

obtained from ( 1.3.6) as

59(p) K (14+9,,)% (pyp+1)

89(p) ‘lm(1+@oe)1’ +...+q1(1+%oe)9+1

If the coefficient Py is zero the two associated processes are
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identical, and the two transfer functions ( 1.3.10) and (1.3.15)
have accordingly the same form. But in addition, if all the
coefficients A and the facfor K are so large in relation to

unity thatv the characteristic equation becomes
-1 m--2
D [qu vq D" Pe s ql]eom K (14 %0)[pln+1]e (1.3.16)

“the small-signal transfer function ( 1.3.15) assumes the form

89(p) K (1+9.)(pyp+1)

5 (1.3.17)

§¢(p) p('gmpm_ld-qmﬂlpm" *e o o% Q)

Since this is identical with ( 1.3.13), the small—-signal fransfer
function of the special case of the original process is not
unique to it: it has been shown to be shared with at least the

same case of the associated process, as illustrated in

Pigure 1.7(Db).

The disclosure that a roots—surface of a process may not
be unique to that process places a severe restriction at the
outset on the capability of the roots—surface to give information
about large—scale behaviour, as outlined in the Introduction.
In the example aboveg'theﬂlargeescale responses of the two
associated processés will clearly differ, yet any deductions
about these responses from their common roots-— surface would

apply to each.
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s

Figure 1.8 .

Y

Block diagram of a process incorporating a

B— type gain element
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1.4 Processes incorporating B8-— type gain elements

A process incorporating a B--type gain element is shown in
general block diagram form in Figure 1.8 7 it corresponds to
the process of the previous Section in which the a— type is
replaced by the B— type of gain element. The static behaviour
of the process is therefore that of the bare - type gain |
¢lement, which is shown in Section 1.2 %o be deducible from the

characteristics of the a—t;;fpe.

The equation describing this process is

d%

0 ad
qumm + ( qlﬂxplﬁ)—g +(1—Xo—~ Kpl ) 0 (1.4.1)

which is obtainable from equation ( 1.3.8 ) by letting K tend to
zero while K%O and K% remain finite and non—zero. Thus, the
dynamic behaviour of this process may be similarly deduced .from
that of the corresponding process incorporating an a-— type |
element. In particular; if the numerator and denominator of
(1.3.10) are daivided by (1+eoe). and K is set to zero, the
small—signal transfer function of this process is given as

89(p) 3 K9, (pyp+1)

89(p) P (qmpm"'l+ e v o+ ql_pl))

(1.4.2)

Since the dynamics of the transfer function are not dependent
on output, the roots—surface reduces to a roots—locus in every

case of this process, not only in a special case as for the
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a— type process.

In this special case, when the process dymamics have a
pole at the origin, the dynamics of the transfer function
correspond to those of the process itself, as before. In the
general case, however, ( l.4.2) indicates that the transfer
- function has a pole at the origin even if the process dynamics

have not.

Finally, the aspect of non~uniqueness of the roots—surface
can be demonstrated by this process also. By comparing the
special case mentioned above with the corresponding one of the
associated process, where the lead term (plDi-l) precedes the

gain element, .a common transfer function results.
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closed loop round the above process



CHAPTER 2

The Control of some First—Order OQutpuit—Dependent Processes

2.1 A process with an o—btype gain element

Figure 2.1(a) is a block diagram of the process chosen for
initial detailed investigation. The special case in which 'i:he_
first—order lag is replaced by integration is treated in the

next section.

In terms of the general formulation of Section 1.3 the
coefficients Py and g, are zero for m greater than one and
Q= T, for this process., Accordingly, the characteristic
equation is obtained from equation ( 1.3.8) as

d%o
Peee 4+ (1—-K9)9 = K& (2.1.1)
at ©

and the small-signal transfer function from equation ( 1.3.10)

as N2
.5%0(]9) a K(l-:-%oe)

= (2'.1.2)
88(p) T(1+€roe)p+1

The interrelations of small variations in the variables when
the process is controlled proportionally in a closed loop are

indicated by the block diagram of PFigure 2.1(D).

Proceeding to the construction of the roots—surface in:the
(o4 jw, %oe) space, Figure 2.2(a), the path of the open—loop
pole at —-1/7( 1+-§}oe) is drawzi first. Since the roots—locus
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at any value 4, is a straight line extending from the open-—
loop pole position parallel to the ¢ axis, the whole roots—
surface lies entirely in the (0,49 ,) plane, obviating the
necessity of a three~dimensional presentation for this system.

It should be noted that the point ¢ =0, %Oez-l is a centre of

symmetry for the open—loop pole path: for %Oe>—l. the pole

has only negative values, which tend to zero for large -SO o and

become increasingly negative as &oe tends to -1, and its

positive values for %oe<-1 conforn to the property of symmetxy.

Due to the simplicity of this system, the location of the

closed—loop pole on the roots—locus for any values of-K and %0 e

is readily obtained from the magnitude relation

2
X
K2+ %e) (2.1.3)

!
-

T(l+%oe) p+1

The closed—loop pole lies at a distance of K(1+49 Y/ T from
the open—loop pole, the former having a more negative value
than the latter if 'eoe> — 1 and a more positive value if %Oe<—1.
The explicit expression for the closed—lOOp pole position is
therefore |

1+K(1+4)°

6= — N (2.1.4)
(l+%oe~)T :

and several paths are shown on the figure for various values

'o:f K. ZITach path has turning points at _%oe =—121/JK, for which
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the maximum and minimum values of the closed—loop pole are
‘X2JK/T, and the locus of extrema is given by

o —2/m(1+%oe) (2.1.5)

I

It is in fact not necessary to draw many closed—loop pole
paths for various values of K. In & first—order system, there
is only one closed—loop pole whose distance from the open—loop
pole has a simple dependency on %O e and K, as follows from
( 241.3). The roots—surface may therefore be drawn as in
Figure 2.2(b), in which the single closed—loop pole path lies
at a distance of K(1+4 ) /™ from the open—loop pole path and
replaces the one—parameter family of paths of Figure 2.2(a).

- The essential behaviour of the closed—loop pole and the corres-—
ponding local transient responses is now clear. TFor a givezi’
value of K, respbnses are stable if %oe>-—l and the time
constant of the response is a maximum at a certain value of '90 e:
for progressively gréater values of «90 o ! and for progressively

smaller values which still exceed —1 v the speed of the

responses ‘inc¢reases,

Attention is now turned from the small-signal behaviour to
the transient response to large steps of input. The system is
assumed to be initially in equilibrium, so that the static
relationship is that of the a—type gain element, equation (1.1.3).

For given K§ . the output K¢ may be either Alo or [\, v and
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Figure 2.3 . Phase plane diagrams of the transient
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the roots—surface indicates that Al o ( for which 9 ,> -1 )
represents an initially stable equilibrium, A20 (9,,<=1) an
initially unstable equilibrium. The input is subjected to a
step at t=0 to the va}lue of eii‘ v and the syste.m responds &accor-—

ding to equation ( 2.1l.1) in which 9 =48 =9, i.e. according to

T-Z%’ +(1—K& o +K9) § =K§ o —K§ ( 2‘.1‘.6)
with the initial condition %0=&00 at t=0. In view of equation
( l‘.l..3.). the above may be written as
a$ ‘
Km-é-f =— (K¢ =Ny, ) (K = Ay ) -( 2.1.7)

The solution of equation ( 2.1.7 ) can be represented by
the "phase 1ine" of K%o ( see Andronow and Chaikin6 ) but more
information is conveyed by using the phase plane of K%o and
KT d%o/d't. Figure 2.3. There is only one trajectory for a
first—order system and a single diagram is strictly sufficient,
but three different diagrams are given to illustrate the cases
when &.Lf:’o' &if =0, and 'sif< 0 The trajectory is ;oarabolic,
with & maximum value for KT d%o/dt of (Alf_AZf )2/ 4 at
K = (Aqp +A e ) /2, and the singularities at K§ =A,, andA,;
are always to the right and the left, respectively, of the

critical value K%0~=—K. The response is seen to be unstable‘

if K§ KA, + and otherwise stable to K§ =A, ..



- 29 —

ADENOMINATOR
Ksm_Aaf- PSS pa—— e
- - -
Ay A DenorminaTorR NEVER
\\_\ EquaLs Zero
K&M-AZF
KAy

Figure 2.4 : Denominator of equation ( 2.1.9)
as a function of time.
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The solution is obtainable, however, in closed form: being

& variables—separable equation, ( 2.1.7 ) may be written as

kg, - %

d K9 : '
. (Keo— Alf)(Keo— A2f) OT
K%oo

1.e_ading t0 the solution

| | - - (Aif"Azf) /T
Py 'A'lf( K‘(}oo"' Azf) B AZf( K'300"' Alf) ©
| = (D o= By) t/T

(2.1.9)

( K«°}00~A2f) ~( K%oo'"Alf) ©

In the above expression, the exponent is always negative, since

Alf- Agf = +,J( 1—K~K& - )24+ 4K } hence the denominator equals
zero at a time t > 0O given by

(2.1.10)

e

which exists only if K§ < Nye. This is illustrated by
Figure 2.4 in which the denominator is sketched as a function

of time, Thus, if K900<A2f the response is violently unstable,
the output tending to infinity at the finite value of time given
by ( 2‘.1.10): this is to be compared with the possible behaviour
of a linear system ﬁhose output, though unstabdble, has & finite
value for all instants in time., But if K§ > A,.. the output
is asymptotically stable to the value K¢ = A, ..
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To discover the criteria of stability in terms of the
input values, use is made of the following extension of the
inequality in (1.1.3):

Alo> -k > A?_f
Because instability results only if K§ <G A e the response
is stable for any value of {Ei. if K%oo= Alo.: this corresponds
to & half-trajectory in the phase plane starting from a point

for which K§ > —K. But if kg = A2 the response is stable

o!
only if A20> Azf which implies §f< 9 ¢ this corresponds
to a half-trajectory in the phase—plane starting from a point
for which —K > K& > A,.. In other words, if the systeum is
initially stable it remains stable following a step in input of
any magnitude in either direction. But if the system is
initially in unstable equilibrium, it may be brought into a
stable state by applying a negative step of input of any magni-—
tude. This behaviour may be appreciated by the consideration
that, if the system is initially unstable, the gain is negative;
to arrive at a stable state, the output must increase beyond

the eritical value, which calls for a decrease in the input in

view of the initially negative gain,

A summary of the behaviour in regard to stability is given
‘in Figure 2.5 in terms of the steps in K%_ from an initial value

of K{?i.o‘ A feature to note of such diagi'ams is that the K&_.Lo axis
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must belong to a region of appropriate behaviour; that is, for
the diagram relating to initially stable states, any point on
the K%£> axis corresponds to the system lnput not being subject
to any change and must therefore belong to a region of stability,
and correspondingly for the initially unstable case. In the
particular case of Pigure 2.5(b), the K¢ , axis is the included

boundary of the region of unstable behaviour,

In an effort to correlate stable step responses of this
system with the form of the roots—surface, the response (2.1.9)
may be approximated by a single exponential relation

— /7" |
KY = Mg p=( Alf-xeoo ) e ( 2.1.11)

where the equivalent time constant T' is chosen to give in some
sense an optimum representation. A convenient measure of the
quality of the response is provided by the time integral of the

transient deviations of the output from its final value, i.e. by
(e
| Xo( A p—Kg ) at . (2.1.12)

Through equating the value of this integral arising from the
approximating response ( 2.1.11) to the value from the actual
response ( 2.1.9), ( mf.Néchleba?). the value of the equivalent

pole o' is given as

G'=—!‘- 2 K‘SO:Q—Alf = e K%OO—Alf ' (2 1 13)
© ot KS —=Aqon Ks — A T
P log <1+ o0 “*1f T log (1__ ) 1f>
- -A To
1f 2f T



'- since AlfmA2f= =—Top

This expresses the equivalent pole as a function of the initial
"and final values of K&O and of the value of the small—perturbation

pole op at the final value of output. PFurthermore, if

so that the expansion 10ge( l+x) =x—-}2x2+%“x3—.... converges,
then ' o' = c'i./( l—lt-l-!-}‘- u2— cees) (2.1.15)
K — A
where M= 20 1f
Tc.s'f

The inequality ( 2.1.14) reduces to 2N = Npe > K& >N op
since A1f>'A2f: thus the expression ( 2.1.15 ), which may be
preferable to (2.1.13), is valid for a stable response if

Ko< 2/ p=Aype -

An alternative means of defining T' does not require the

solution of the differential equation ( 2.1.7 ), as does ( 2.1.12)

). In this method,

ALRL
'T'r'(Alf.“ e°°)/2[ &

o]
av
' - {d K9 d Ko
where { 0} = 1 - O.dK%o
dt av 'Ali‘-Keoo dt
K%OO :

('éf, Moxrg

Alf (2.1.16)
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which yields a compatible definition of the time constant in
the case of the linear first—order response. After obtain-ing
the mean value of the first derivative of K%o over the range

Ko < K9 < Alf. the value of the equivalent pole is given as

2
~ Ajpr Caxw2my YA +K(3+ 3K+ 2Kg )

o = (2,1.17)

3’.D(K+.f\.1f)

Alternatively, if the appropriate suvbstitutions are made from

equation ( 2.1.4 ), there results more simply

R(A..-X¢s )
o' = -:-L-O"f +-?-o'0 +2 £ 00 (2.1.18)
37 3 30(K+A ) (K+Ky )

The accuracy of representation by the equivalent time
constants is illustrated in Figure 2.6 by the respounses for
K=4, with Kﬁoo = +2 and Alf= T 2 respectively, and a response
from an uwnstable equilibrium for K=4, K«%oo =—6 and A1f=-3 :
in each case; the movement of the small—perturbation pole is
considerable. It appears that the use of either equivalent pole
is of adequate accuracy for engineering purposes in estimating

the nature of large transients.

The foregoing discussion relates to the response of this
system from equilibrium following a single input step. Since
the system theoretically requires an infinite time to reach

equilibrium again, it is of interest to consider the overall

RENNIS
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-response to a sequence of input steps, each step being applied
before the response to the preceding one is over. In every
time intexrval between pairs of steps the res?onse is desqribed
by equation ( 2.1.9), inm which A, and A, arve associated with
the current value of K¢ ., and K¢  equals the value of K
achieved at the end of the preceding interval. The followlng
three situations are considered separately, and are depicted in
Figure 2;7: (a) the normal situation where the system is in a
stable state (JQ):> ~1 ) at the start of the period considered,
ﬁhieh may be stable equilibrium or convergence 10 it:l (b) the
unlikely situation where the system is in unstable equilibrium
ihitially: and (c) the more probable alternative to (a), where
the system is initially unstable and diverging. The diagram (a)
refers to a sequence of three steps:! after the first step, the
system output follows the asymptotically stable path towards
j\if' which is shown by broken linesi but when K9 = A,<:.[\if

"

the input is decreased such that [\1f is less than A and the
output begins to follow the appropriate path towards f&;};

: finally..when K§ = B, > j\;} the input is increased such that
j\;} < j\;}‘<: j\if and the output tends asymptotically to)iig.
Similar diagrams may be drawn for any sequence of input steps of
any magnitudes, since Figure 2.5(a) assures that step responses
are always stable from initially stable states. The diagram (b)

outlines the response from an initially unstable equilibrium:
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80 long as the input is decreased, the output tends towards a

stable equilibrium and &o> —~1 after a time %t given by

(Koo = Dy e XK+ A )
(K, = AZfXK +A1f)

(A =Nyt /=108, (2.1.19)

which for the response of Figure 2.6 from 4o = —1le51is tc=0-358T:

as soon as the critical value of output is passed, input steps
after any fashion may be ap‘plied and the system remains stable.
In diagram (c¢), the output is shown diverging from the value
K¢ at t = 07 if, at any instant before the time given by

t

( 2,1.10 ) has elapsed, the input is decreased so that A2f is

less than the instantaneous value of K9\ the system is rescued

from divergence}; after a further time given by ( 2.1.19 ), the

system is stable and remains so following any input steps.

Information about the transient response to any input
function may be obtained from a diagram similar to Figure 2.7(a),
by considering the input functibn as the limiting case of a
certain sequence of small input steps. TFor example, the response
t0 a ramp input commencing at t = O can be depicted by the
succeséion of responses of-Figure 2.7(d) to progressively
~increasing values of.f\lf. the representation improving as the
size of the incremental steps decreases and the frequency
_increases. The important fact which is revealed without any

 further specific investigation is that the transient response to



— 40 -

AC
.6' > 'n' ] K ﬁ; "1 Qe
"’?‘* 7D Y
(a) + (b)
| \'\é K(+g,o)T
A% o A
K —» co
 —
i ;2 ﬁ:
_/ -1 ZEro GAIN ""1
7 -— ZERO GaN
v
,/ (e) |
|
AK&
K Ks,

; :’h
( d) 7o Ga (STABLE) / -K
/

| Zewo Gav (UnsrasLe)
/

/
/7

Figure 2.8 ¢+ A process comprising an a element followed by
integration; (&) block diagram, (b) roots—surface,
(¢) derivation of static characteristic from |
Figure 1.1(d), (4) static characteristic of the
closed~loop system.



S
any bounded input function 1s therefore stable, provided the

system is initially stable.

The above discussion has referred in parvicular to responses
to step inputs. It is clear, however, that the expressions
" (2.1s9) et al. are valid also for responses due to step changes

in the value of X with the input constant.

2.2 A special case of the process of Section 2.1

Instead of the process of the previous section, consider
that shown in Figure 2.8(a). In accordance with the general
diécussion in Section 1.3 of processes with a pole at the origin,
this process may be regarded as that special case of the preceding
one in which both K and T are very large in comparison to unity.
Its direct characteristics and those of the closed-loop system
round it may thus be inferred from the previous results, with

one reservation to be discussed later,

If K and T in equation ( 2.1.2 ) are very large, the resulting
small—-signal transfer function is
&%(p)== K(Zl+{%e)
8(p) Tp

for which the corresponding roots—surface is Figﬁre 2.8(b). The

(2.2.1)

"static behaviour may be obtained from that of the a—type element

in which Kfqnoo v ‘thus, the characteristic of the process alone

is obtained from Figure 1.1(d) as in Figufe 2.8(c) in accordance
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with the equation

9. = —1 independent of 4
° (2.2.2)

'So independent of €, for ¢=0
while the resulting stvatic characteristic of the closed—loop
system is Pigure 2.8(d). The two possible values of output for
any value of input are now |
A = K s A o o= K
1 %' for K«‘g > —-K, 1
A,=-kK A2 = K9

1
and the roots—surface indicates that Alo =K\‘>io ( positive gain )

for K&_L<—K (2.2.3)

represents an initially stable equilibriun, AZO =Kg o ( negative
gain) an initially unstable equilibrium, but it giveé no indice
ation of the stability of the zero-gain equilibrium state)
however, since the process is a limiting case of the previous
one, it may be deduced that the zZero—gain initial state (%oo-.:—l)

is stable if 415_0< —1 and unstable if § >-—1.

Following a change in input to 'alf' the transient response

1s described by
ds
KT—
dt

—(K%O—K%if)(Keo+K) (2.2.4)

with the initial condition %o=-90° at t=0., The relevant phase
plane diagrams, which may be obtained from Figure 2.3, are given
in Figure 2.97 one of the singularities always lies at the

critical value K¢ =—K, and responses are seen to be unstable
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if K\‘}oo{\; —X in cases (a) and (b) or if K%oo;‘{ K9 p in case (e),
and otherwise stable to %oa'sii‘ in case (¢) or to %0-—----1 in cases
(a) and (b). The closed form solution follows from eguation
(2.1.9), | in which Alfzgeﬁ.f or — X, Azfz--K or K\‘}ii. respecti-—

vely, as
-(K-:-K-sif)-t/m
K&if(moo +K)+X( K%OO—-Kfrif) e

-(K-a-K&if)'t/T
(K%OO+K)'— ( K&OO-K«'}__].f) e

K9

o ( 2.2.5)

The finite time taken fox a diverging output to become infinite

in this system is therefore

'3",@'1
K(&,.+1)%/T = log (1- if7 (2.2.6)
.%.f e .90.;,.1 _. ¢
O

At this point; where stability diagrams similar to those of
Figure 2.5 are to be obtained, it is important not to make false
deductions on the basis of infinitely large K. The diagrams for
this system are therefore dexrived from first principles, after
which their relations to those of Figure 2.5 are discussed. To
construct Figure 2.10(a), the diagram for the behaviour from
initially stable states, consider firstly the situation for auny
input K%i)greater than —K, which is indicated by the line AB:
from equation ( 2.2.3), K§ = K& > —K for initial stability
and the phase plane trajectories indicate that a response from

K%oo > —K is s'table to %o== %i ‘if %if> —1 and stable to %o=--1

£
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\!$
if § .8 —1. Now if 8 .22 —1, %he step in K& & —( K+X& ),
il I 0

so0 that consideration of all possible lines AB defines those
regions indicated of stable responses in which \‘}O — %_f or — 1.
To complete Figure 2.10(a), consider the initially stable
situation for any input K“%-_ox/":z —K, line CD: since K-Soo = =K,
the phase plane trajectories indicate that a response is stable
if &if < —1 — the output remains at the value —1 — and 1is
~ungtable if %.f = —1. By interpreting this in terms of a step
in K%_. and considering the totality of lines CD, the regions

of stability at {}o% —1 and of instability are defined, which

completes the diagram.

Figure 2.10(b) is comstructed by similar arguments: for
any Keﬁ.o & —X( line EF), K%oo = K{%’LO< — X% responses are stable
to § = —1 if §,<§ v i.e. for a negative step, and are
otherwise unstable! for any K& Zz —K( line GH), K ==K;
responses are stable (%o remains at —1) if KY < —K, i.e. for

a step in K¢ < - (K+X9 ), and are otherwise unstable.
io

The possibility is now evident of incorrect deductions in
attempis to arrive at the complicated nature of these diagrams
via those of Figure 2.5. With care, this may be acheived, as
follows for Figure 2.10(a) from Figure 2.5(a): consider any
value of K%}io> - X on the earlier diagram, which indicates that

the response is stable To K%O-z Al:t‘ for any step. Eguation
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(2.2.3) states that /\,, for this system becomes either K§ , if

K% ¢
greater or less than —K—K& . the resvonse ig stable to $ =4 »
> —K or —-X if K%i““< —-X, so that if the step in K‘%. g

1 I
or -ii respectively. For values of K‘L’io(‘ — K, ITresponses are

> =X or —X if K%if<-K. so that if the step in K§ is

still indicated as stable to K§ = Alf for any step, but now

K¢ = —Ki therefore, if the step in K§ < —K — Kg A1f= —K
and the output remains at the value %0 = =1, if the step in

K«‘}i > -X —K«S\io. Alf = K&if but the output does not converge
on aif.’ since the initial state %oo = —1 has become an unstable

one ( A.20 .) due to the increase in K¢ » beyond —K.

The stability characteristics of this special case of the
first—order system therefore differ from those of the system
itself. TFrom an initially stable state, the system output does
not always follow the input. excluding zero—gain initial states,
if the magnitude of a negative step is too great the system ends
up in what may be termed the ‘ghutdown' state of zero gain: and
once in the stable shutdown state, it remains there unless
caused to go unstable by too large a positive step. From an
initially unstable state, this system may not be rescued and
left in a finally useful ( stable ) state: the best that can be
achieved is to leave it in the stable shutdown state. Thus, the
only région of practical operation is that in Figure 2.10(a) in

which & —» &, and § = Q_.Loae’: ~1% responses of practical
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interest are therefore described by the following simplification

L ]

of equation ( 2.2.5) in terms of only input values

--K(a_.L +1)t/T
J8e (8ot 1)+ (fo-gp) e t (2.2.7)

—~KE (% .+1)t/T
(4,+1)=(g —g)e Lt

%

The corresponding expressions to (2.1.13) et seq. for the
equivalent poles of this system are as follows . —

using the integral criterion,

K(9 =% ) K(a —49.)
if ‘%LO Vlo Hf (2.2.8)

O":-. -

LY 8 -9
g 10) Tloge<l+%l° kg

Qio-fl '&if-i-l

Since > 1l and & > 1, the inequalities below hold s

Tloge<1+

10
G = G o+l
if .&lf<610' _392____?_1_9 = |1— 2L < 1
%0+l ‘Q’io"'l
( 2.2.9)
-81 - {‘ﬁ_ + 1
if § o> eSS N | P 1
e Yo g+l | g o +1 <
i L f

which allow the use of the converging expansion for '.l.oge (1+x)

to give
i £ 0 1 1. 2 - %’0""311-'
if @ > o o.,~o'f/(1——2-$1+-§u — +.) Where p.-—.-...g.......__l_
P .
M (2.2.10)
. e
i 4<%, °"=°‘J(1"‘];U'*"l'l~12—--)f where p=_§'-_if.'_._%2
R : 4 ‘Q‘.‘Lo"'l

since o =-K(1+84 _)/T.
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Using the average derivative criterion,

_ Keff+ (4429 K& o+ ( 3+ 3K + 2K8, )

o= (2.2.11)
30 (1+9,)
== .:;;% .,..%ofo .§..§. ’&'Lf 10 ( 2.2.12)

fﬂ(l+%i)(l+§ﬁ)

2.3 A process with a B--type gaia element

Pigure 2.11(a) is a block diagram of the first—order process
with a-Bmtype gain element chosen for investigation. 1T may

E the nuclear xeactor in the fast accident

represent approximately
condition, when the delayed neutrons are overrun by prompt

neutrons, for which the differential equation is

d:(l: 51{“‘-8:& . ‘ (2.3’1)
d¥ 1

n = neutron population
8k = reactivity ( input )
B = total fraction of delayed neulrons
1l = generation time of neuwtrons
The special case in which the first—order lag is replaced by

-integration is treated in the next section.

Reference to PFigure 2.1(a) shows that this process is the
g—element equivalent of that of Section 2,1. On the basis of

the‘general approach of Section l.4, all the characteristics of



49
AKTS
(K%.'ﬂﬁ/ii- - -/-\
\.\ K
‘h/ K9, 1@ K4,
() //
AKTSE
K
;1-..
(D)
AKT &3
/ﬁ//f<<é;;4ﬁﬁflﬁh
gl g K%

(c)

Pigure 2.12¢

Phase plane diagramg of the transient
response of the first—order system with
a B—type gain element for

(a) K-> 1, (D) K o=1, (o) K§,<1




- 52 —

this system are deducible from those of the a—element process of
Section 2.1, by considering the gain factor K to be decreased to

zero while K¢, etc. remain finite and non—zexo.

The static characteristics have already been presented in
Figure 1.4, but the closed-loop relationship is displayed again
for convenience in Figure 2.11(b): the two possible values of
output for any value of input are

By =Ky -3 for Kg > 1, Hy=0-
Ny=0 N,=kg~1

Figure 2.11(c) shows the derivation of the roots—surface from

for K§ < 1 (2.3.2)

that of Figure 2.2(b)} since Py = 0 for this process, the open—
loop poie is always at the origin. The stability of equilibrium
étates follows both from the roots—surface and from the charact—
eristics of the process of Section 2.1 by extensiony i.e. Alo

is a stable initial state, Azo is an unstable one, irrespective

of the value of K&_.Lo and including zero—gain initial states.

Following a change in input to ﬁlf‘ the output responds

accoxrding to
d«‘}o
KTE—'E =—K%°(K&o+1—KQif) (2.3.3)
with § =4  at t=0. The phase plane trajectories ( Figure 2.12)
are again parabolic, being special instances of those of Figure

2.37 but since one of the singularities is at the origin,
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responses are unstable if Kﬁooé O in cases (a) and (b) or if
K§ < K4, in case (c), and otherwise stable to § =& ,—1/K in
~case (e) or to 9 =0 in ocases (a) and (b). The closed—form
solution follows from equation ( 2.1.,9) in which N, ,=K§ =1
oxr O, Azfso or K'Bif-l reépectively. as

Ko . (K& ,=-1) -
K — (K —~Kio+1)e (2.3.4)

If especially K'e'if =1, case (b), the solution is
I K§ = K& /(1 +K-aoot/m )
Keozxeoo/( 1+K%oot/T) (2.3.5)

The finite time taken for a diverging output to become infinite
i‘a therefore, izi general,

T K¢ —K& .+1
4 = ———— log 00 '311?

o (2.3.6)
K§ o —1 K8,

and if K§ .=1 |
EES t = — /K8

Diagrams to indicate the stability behaviour following
step inputs may be constructed on first principles; they may,
however, be correctly obtained by extension from those of
Figure 2.5, s0 long as care is exercised as mentioned at the
similar development in the previous Section., The diagraums
obtained for this system are shown in Figure 2,13, and in

appearance are similar to those for the system with an a-—type
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element followed by integration: the common point of the

various regions is different, being at K%io =1 rather than —K,

and the values to which the output converges are altered. The

only- region of practical operation is that in Figure 2.13(a)

. in which §—§ .~ 1/K and %o'*‘&io—l/K% 0: responses of
practical interest can therefore be described by the following

version of equation ( 2.3.4 ) in terms of only input values:

(K= 1) (K1)

K4, = (2.3.7)
(Kaio-—l) '*(K’Sif"‘“io) e

The analagous expressions to ( 2.1.13) et seq. for the equiva-—

(1-Kg,) t/T

lent poles of this system follow from equation ( 2.3.7 )¢
using the integral criterion, |
K(4e=8,) E(g,-§,)
K(%.—%.) K(& = .,o)
if 'Qio ) Tlog(1+ &10 aif >
KQ.LO“]' K'%_f-—l

Since K&if> 1l and Keio> l, the following inequalities hold:

(2.3.8)

ol=—

Tlog(1+

- Ko .—1
if §,< &, B P 1 = 1..._?1_2_..;._ <1
| K%o_l K'&io_:}L
% ) . L (2.3.9)
12 o> & o Yo~ bs)| | 1472 <1
Kgp—1 Egp—1

which allow the use of the converging expansion for 1oge( 1+x)
to give |
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K(‘9:1'.0"' %.f)

AL g, Yy o' o}./(l—%p-r%pg—..) where U=

(2.3.10)
2 K( )
1If 4, <§,0 0'= g /(l—%u+-§-u2—..) where = K;i.f_ailo
£ e

since o =— (K ~1 /T .
Using the averége derivative criterion, a simple result is
obtained: '=— (KR p+ 2K§ —3)/30 (2.3.11)

Finally, in the special case of K%_f=l v the integral criterion
produces an infinite value for T', i.e. an equivalent pole at

the origin: this is because the time integral ( 2.1.12 ) of the
transient deviations of the output does not have a finite value
in this case. This i'esult is worthless, but the value produced

by the alternative criterion is simply ¢'=20,/3.

The accuracy of representation by the equivalent time
constants for this system is shown by the typical responses in
Figure 2.14. A point to note about the expression ( 2.3.8) is
that the same value of ¢' results if K¢ » and K& are inter-—
changed, és demonstrated by the responses for Kalf= 2 or 6,
K& =6 or 2 respectively: in either case o'=—2:48 t/T. This
effect occurs also in the corresponding expression ( 2.2.8 ) of
the preceding systemn, but not in the system of Section 2.1. In

addition, the response from K& =1 is seen to have aninflexion

600
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in it, at K-&o=-3-2“- ( K p—1 Y =257 in fact, responses in any of
the first—order systems have inflexions corresponding to the
apex of the parabolic trajectory in the phase plane, ifiK%o is
sufficiently small. This suggests that a better approximation
to the form of these responses might be effected with a second —
order, overdamped linear expression, but the complexity of this
approach prevented its use. Apart from the independent choice
of the two equivalent ﬁime constants according to suitable
criteria, a third factor requires determination: for a good
épproximation the value of the initial velocity of the output

has to be non—zero and is therefore involved.

2.4 A special case of the process of Section 2.3

Just as the a—type process with a pole at the origin can
be regarded as a special case of the a—-type process with a
first—order lag, so can all the characteristics of the process
of PFigure 2.15(a) be deduced from those of the process of the
‘previous section. For this purpose, the factors K and T are
considered to be very large in comparison to ﬁnity: the

resulting characteristics are described quite briefly.

~ The static characteristic, Figure 2.15(b), of the closed -
loop system follows from Figure 2.11(b); the two possible
values of output for any value of input are
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Al..Kei A =0
Aaao for K‘&l>0|

The roots—surface is identical to the previous one, Figure

Az“K“’i fox K&i< 0 (2.4.1)

2.11(e), providing another example of its non—uniqueness to a

certain process, Following a change in input to '&.Lf + the

- response is described by

ad
KTE;O = —Kg (K§ —K§,) (2.4.2)
so that phase plane diagrams are very similar to those of
Figure 2,12 ¢ there is always a singularity at the origin,
while the second one is at Keo =K{ o rather than K& p~1 . and

the maximum value of KTd4/dt is now (K&_i_f)z/tt .

The explicit solutions of equation ( 2.4.2) give the

response to be

. K
K = e
1+ (fi-‘:-l) e_KQ‘Lft/T
\ %o (2.4.3)
K9
= o0 if K§,=0
1+Kg  t/T ‘ ‘

A diverging output becomes infinitely great at a time

b L 1og (1L
K'Qif 8( Q.Lo>

- -T/K8, 1f KQ,=0

(2.4.4)
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The stability diagrams, Figure 2.15(c¢), may be obtained
from Figure 2,13 by letting K tend to infinity, +they indicate
that the only region of practical interest is that in which
& —> & o and §,=%,7 O. The corresponding expressions to
( 2.3.8) et seq. for the equivalent poles of this system are
as follows: —

using the integral criterion,

K (§e—9,) K4 -4y)

olm ~ ( 2.4.5)
T].Og(l-f-'&i—-—-f——%'-g) Tlog(l.ym.@)
Yo &y
if 'Q_l_;f_!>'9i°' 0"=o'f/(»1—%u+-3§u2-..) . whexre pu= alc;i eif
- by
3 1.,.1,2 E "E ~
| | %o
since o, = -K&_,LG/T'.
: using. the average derivative criterion,
o'= — ( Kg o+ 2K§  )/3T o
(2.4.6)

=2%/3 if K§p=0

2.5 Some general remarks

The foregoing investigations into selected first—order
- output—~dependent processes do not strengthen the argument for

obtaining information about large—-scale behaviour from the

 roots—surface. 'The entire stability diagrams of any of the
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preceding three sections cquld not be deduced from the appear-—
ance of the corresponding roots—surface: only the simpler
diagrams of the first process considered might be constructed
through intuitive reasoning from its roots—surface. Expressions
for equivalent time constants have been arrived at which appear
tb be of reasonable use in estimating the form of transient
responses; however, the time constants are not functions only
of small-signal time constants at suitable output levels, but
also depend on values of the input and/or.output. initially or
finally. ©No means has been discovered of predicting the form
of the transient-response directly from the roots—surface, in

-the simplest case of first—order systems,
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CHAPTER 3

The Control of a Second—Order Process with

An a— Type Gain Element

3.1 Introductory aspects

In a progressive development of this study, a natural
cholce for & second—order process with an a— type gain element
to follow the first-ordér process of Section 2I.l is that for
which Figure 3.1(a) is a biock diagram., With the notation of
the general process of Section 1.3, the coefficients p; and g
are zero for m greater than two, q, equals 22;/wn , and ‘12:1/‘*’:12
for this process. The differential equation is, in accordance
with the general form ( 1.3.8 ), the following:

1 a® 2% ag,

2+
w 2at?  Wpat

+(1-K¢) ¢ = K¢ (3.1.1)

The block diagram of Figure 3.1(a) is not, of course, a unique
representation, and & suggested altermative is given in Figure

3.1(b): this process could be described by the pair of equations

d$
1 (o} 2%
+ O =94 +5L
mnzdt wn ° '%n

Q (3.1.2)
__%..—.K ( 1+'90 )’9—'90

at
which are equivalent to equation ( 3.1.1) if the intermediate

variable Qn is eliminated.

- 64 -
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The static characteristic is that of the bare a-— type gain

element, Pigure 1.1(d), and the small-signal transfer function

follows from equation (1.3.10) as: —

| 2
Sﬁo(p)_ K(1+%Oe) (3.1.3)

89(p) (14 %Oe)pQ/an_._ 2z ( 1+'303)P/wn+ 1

Defining the small-signal natural frequency w o and damping

factor (‘;e of the process to be

wezzmrf/(lwoe)'. = Luy fu ( 3.1.4)

the transmission from 8%]._ to 8»90 when the process is controlled
proportionally in a closed loop is indicated by the block
diagrem of Figure 3.1(c). |

Since the open—loop singularities are output—dependent, the
related roots—surface is three—dimensional in contrast to the
planar surface éf a first—order process. Construction of t]:ie
roots—surface is carried out using the normalised frequency
components o’/wn and Jjw/w, 1 thus ¢ the values of the two open—

loop poles are given by (
. 2 1
(o 30) /oy = (=2 tug JeZ-1)/fy ==t [eP-2 (Gi15)
, oe

so that, for —1< 4§ & 1/¢°~1, the real part —f is constant

while the imaginary part tends to infinity as -&o e tends to —1

and to zero as eoe tends to (1/?;2-—-1 ) giving a complex pole~pair:
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Figure 3.2: Roots—surface for a second—order process with
an a— type gain element, in which g = 0707
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for § > 1/¢%~1 or 4 < -1 the imaginary part is zero and the

paths of the two distinct poles lie only in the real plane. To

every value of { there corresponds a different roots—surface )
for illustration, Figure 3;2 is drawn for § =0707 . with the

result that the roots—surface consists of .

(a)‘ for -1 << %oe< 1, the portions of the o’/wn=-z; plane '"above
‘and below'" +the open—loop pole paths §

(b) for %> 1 the whole of the o‘/wn=—z; plane together with
the portion of the jw/bnf=0 plane between the open—loop
pole paths §y and

(¢) for ¢ .<-1, the portions of the jm/bn==0 plane "to the

oe
left and to the right'" of the open—loop pole paths.

Because in this case the rbots-—surface is composed of
portions of two planes, rather than of a more general surface,
the parts of the roots—surface may be presented as in Figure 3.3
in which & symmetric half of the portion of the plane¢/w=-—0-707
is rabatted into the ju)/mn =0. plane. Also, the roots-—surface
is not :ﬁ-eally required as an aid to find the closed~loop poles:
ﬁe_ing only a second—order system, the values of the closed—loop

poles are known explicitly to be

2
1+K(1+%oe)

(d+jw)/wn=—CiJC2- (3.1.6)

1+«9oe

The closed—loop pole paths, a few of which are drawn on Figures

3.2 and 3.3, lie in the real plane for § < —1; and if X<zh/4,
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the paths lie in the real plane for
_.14.‘% [52... Iz;4-4.1<]< § o< _l+3112 [2;21.»,!?;4—41{} ( 3.1.7)
~ but if K > 214'/4. the paths do not enter the real plane for eoe>—l.

Examination of the surd in ( 3.1.6 ) shows it to have extrema
at a‘}oez—-li 14K , so that the least oscillatory small—signal
response, or that with the greatest time constant, for a given
value of K occurs around this mean value of output: reference
to equation { 2.1.4 ) et seq. shows this value to be identical
‘with that for extrema in the closed—loop pole of the first—ordex
system. As a last general remark, the roots—surface again
indicates that for any given K¢  jand K the value j\lo represents
an initially stable equilibrium, 1\20 an initially unstable

equilibrium.

3.2l The phase portraits for transient responses

This Section deals with both the familiar phase-~plane
portrait for transient responses and the less familiar, complem-—
entary, global representation of the behaviour throughout the
entire phase space. The system input is assumed to have the
value &, for t>07 at t=0, the output may be in either
equilibrium state Z\lo or 1\20 corresponding to K%xﬂ or changing
with time in a previous,.uncompleted transient response. The

output behaviour is therefore described by equation ( 3.1.1) in
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Figure 3.4 ¢ Preliminary sketch of the phase plane
portrait for the second—order system
with an a— type gain element .
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K 0, 20K "0 < ; 2 . xg°

+ +(1+K—K§ K + (Kg)“ = K

2 q4.2 W
W, dt n dt%

%if (3.2.1)
The critical points in the phase plane of K9 and Kd%o/dt
correspond to equilibrium states of the system;, of which there

are two, so that their positions are.

(A) K =A ., Kay/at=0, and (B) kg = A .+ K9 /dt=0

Now the roots—surface indicates that local behaviour around A
is asymptotically stable to it, since both roots have negative
real parts at 4 for any K and g: +to be precise, if the roots
at any 'A'lf are complex, the singularity at A is a stable focus,
while if the roots are purely real — for K < 6;4'/4, and Ali‘
within the range ( 3.1.7 ) — the singularity at A is a stable
node. The roots—surface also indicates that local behaviour
around B is unstable; since there is always one positive and
one negative real root, the singularity at B is a saddle point

( rather than an unstable node ).

The information obtained thus far allows the sketch portrait
of Figure 3.4 to be drawn; the singularity at A may be a stable
node. rather than a focus. The essential features of the full
portrait could be discovered if the locations of the four
separatrices of the saddle jpoint were known throughout the phase

plane; it is evident that the departing separatrix forKd-So/d‘t >0
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may either wind on to the :t‘ocus'( BC) or avoid it ( BC® ); that
neither of the converging separatrices ( BD, BE) can come from
the focus, and that the fourth separatiix ( BF ) cannot terminate
at A, as this requires that it crosses either BD or BE and
trajectories are only concurrent at singularities. But no
further conclusions for the general case of equation ( 3.2.1)

can be drawn without consideration of the behaviour at infinity.

- To arrive at the portrait in a particular case of equation

( 3.2.1), however, the method of isoclines may be used. Since

a9 ag, 4 ag ag, 4 as,
K;{?g ) <Kaﬁo>?f5d1: - (x at / axe, <KE%'>

equation ( 3.2.1) may be written as

<K — K—-) + 2Cwn<K——> = —w 2(Kg — Ay ) (Kg = Ay)

dK&
2
a9, (K8 — A ) (KRG = Asp)
or K2 = — “n 2 1t et ( 3.2.2)
at - d < d-\‘}>
20w, + K
n dKo at

Thus, the equation in the phase plane of an isocline on which

all trajectories have the constant direction S is

2
K% _ Wy ( Kg, - Alf)( kg, — AZ:E')
- dt

(3.2.3)
2Cmn+s

so that by plotting many isoclines, with superimposed lineal
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Figure 3.5: (a) Isoclines in the plane of 9, and 9,

(b) Determination of the directions of the
separatrices at the saddle point B .
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elements in appropriate orientations, the trajectories are built
up to produce the portrait., However, to each different set of
values of g, wn"/xlf and j\zf corﬁeSponds a différent pattern
of isoclines in the phase plane} to reduce the work involved
in drawing several poritraits, the following linear transformation
is useful:

2kg = (A + Nyyp) 2 a9

let & = . -~ (3.2.4)
Nqp=Doe

2" A:Lf‘Asz dt

' a d
Since §=—2 (K 60) = —fz « the equation ( 3.2.3) is
: dK%) at d%_

transformed to = 0( 1-{{2)

2
W (N =AL2)
whexre C= 3 11 2f
4Cwn4-28

( 3.2.5)

By drawing portraits in the phase plane of ~81 and 62 ¢ the singu-—
larities at A and B appear always at the points (1;0) and (~1,0)
and the isoclines need only be drawn once, Figure 3.5(a): for

a particular isocline, with the value .C, substitution of the
appropriate values of &, W, ¢ j\lf and J\Zf yields the direction

S which it represents.

A useful gulde in an accurate construction of the portrait
is the actual directions of the separatrices at the critical
point. These may be determined in this way: by differentiating

(3.2.5) with respect to 8, '+ the direction of the isocline
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Figure 3.6 : Phase plane portrait for second—order systenm

e el et e e

with a— type element, for & = 0707, W, = 1,
K& o= 8/3 and K=1.
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associated with S at any point &1 is

2
a8y wg(Dpp—Iyyp) o
4%, 2L, + S

L (3.2.6)

9ince all isoclines pass through a singularity, the direction
of each isocline at ﬁ is given by ( 3.2.6) in which 9, =—1, and
the situation at B is indicated by Figure 3.5(b)} a separatrix
emerges from B along an isocline whose direction there equals
the direction S of the trajectories on it, so that the directions
of the separatrices are given by the two roots of

S = wg (Aqp =Ape)

2Cwn + S

ioe. by Sl‘zz_cwni anC2+A1f ""Azf ( 3. 207 )

Ag illustration, the completed phase plane portrait for
£=0707, w =1, Ajp=2 and A, - ==4/3, K=1, for which K¢ ,=8/3,
is shown in Figure 3.6. In this particular case, the separatrix
BC of Figure 3.4 ends up at A, and‘ﬁg,enters the portrait in
the upﬁer halﬂ—plane,lturnihg around A to arrive at B, To see
'ﬁhether this behaviour is representative of the general case or
not, the behaviour far out in the plane — “at infinity" — must

be investigated.

10

Poincaré~" has presented suitable transformations for the

determination of the behaviour in the entire phase space. The
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The transformation for points at infinity..

IMgure 3.7

- e e —_
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treatment is extensive analytically with little indication of
their application. Minorskyll outlines the procedure but gquotes
only one application ( by Andronov ) in nonlinear differential
equations, which gives rise to singularities that are elementary.
In contrast, the system in hand possesses complex singularities

at infinity.

The transformations represent projections, which Poincaré
terms gnomonical, from the phase plane on to the surface of a
sphere, and thence back on to two mutually perpendicular planes
normal to the phase plane. In terms of Figure 3.7, a point X
in the phase plane is projected by a ray through the centre C
of the unit radius sphere, which touches the phase plane at the
origin, to give the corresponding points Xl and X2 on the
surface. There is a one~to-— one correspondence between a point
on the sphere and a point in the phase plane ( one— to—two in
the reverse direction ); and the topology of trajectories and
singularities is conserved. Points on the equator correspond
to points at infinity, and an arc of a great circle to astraight
line, in the phase plane. From the sphere, a transfer may be

made on to the planes P, and P, for claritiy.

The first transformation to equation ( 3.2.1) consists in

defining d9
_u o _-1 -
K'ﬁo--z-q -d-_-b'-'-‘-zf dt = 24«
(3.2.8)
or 2 =d4t/Kdae., u d'l;/d% .d':-dt/z
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where u and % are the coordinates of plane P2

from which ZK 4 -a-:;- = — 4%
&

(3.2.9)
24(kg,) = Zau—uaz.
It is to be noted that
for 220, 1 f éggigggggg as t increases ( 3.2.10)
On writing ( 3.2.1) in the form
d du d%o 5
75 (G * 0l g = —od (K Ag) (Kg= Agy)
and recognising the requirement of the equation
d(K%o) d-&o
= K=
av at
the transformation produces
dz 1 1 20 v n_
T 27aT ¢ 2Zuy g = =y (= D) (= Ayp)
and 4 du—udZ _ 1
Z3 at Z
. 4z _ 2 2 ' -'\
i.e. = = ZZ;wnZ +w "2 ( u-ZAlf)( U o ZA2f)
du udZ ‘
and S = Z+‘“—“ 02011
- e 7 (3 )
2
=Z(1l+ 2Z;wnu) +wnu( = ZAlf)( P ZAZI‘)

/
All points in the phase plane except those on the K%O axis
are represented on P22 the points on the K%o axis are representec

in the plane Pl' which in turn does not include the projection
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of the Kd%o/d‘i: axis. As the set of points at infinity corres—
ponds to the u axis ( Z2=0), the only singular point ( dz/dt =
du/dt =0 ) at infinity revealed by the system ( 3.2.11) is at
Z=u=0, PFurthermore, this is the only singular point of this

system}; for, if 2540, then the second of equations ( 3.2.11)

glves 0=2+30
&
which is incompatible with Z#0.

To discover the form of the singularity consider the

variational equations of ( 3.2.11) about Z=u=0?

a8z _ (.Q.QE) 57 + (..é.i%) . su
» Z

as 9% av /gy .o Quds /y ..o

d&u__: (f—-i@:) e &2 +(—§-(—13) + Ou
at 2%/ g o0 oudv/z o0

which are

432 _ 0.52 + 0-8u
ar

dd% _ 1,57 + 0-6u
at

Because the coefficilent determinant of these equations vanishes,
the singularity is not elementary, i.e. it is neither a saddle
point nor a node, since foci and centres are not found on the
equator ( trajectories cannotv cross it ). The form of the

- singularity must therefore be determined by the behaviour of

trajectories near it, as follows.



(e)

Figure 3.8 : (a) Gradients of trajectories near the singular
point at infinity ‘
(b) Directions of trajectories
(¢) Nature of the singularity .
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Consider the gradient of a trajectory in the u, Z plane:

2 2
az _ 2w, 2% + w2 (u-— Z./Llf)( U= ZAgf) (3.2.12)

dun 4 (14 2Z§.wnu) nhwlfu ( u"'zAlf)( U= ZAzf)

(1) In the neighbourhood of the origin, Figure 3.8(a), on both
lines for which 82 = t du,

2
2rw. (62
az . . buy, (82) a 20w, (82)

Pt

du 8%

onmitting terms of higher order than first and second in the
denominator and numerator of ( 3.2.12) respectively. Thus
dZ/du > O for 8Z > 0 and 4Z/du < 0 for 82 < 0, irrespective of
whether Su £ 0. To add the sense of direction to the lineal
elements, Figure 3.8(b), either of equations ( 3.2.11) may

be used.

ZZ 2zw, (82)%  and 2 8z
T

a7t

As dZ/at > O for any 8%, dAZ/dt £ O for 82 Z 0 in view of
condition ( 3.2.10).
(#4) On the Z axis, az _

2 2
" = 250 7% + 0 AlfAZfZ

wzcwn(SZ) near ‘the origin.
Thus, 4%/duZ O for 822 0 as in (i), and as dZ/d'rm&;uh(&Z)Z
therefore dZ/d't Z 0 for 822 0, again as in (i).
- (#i) Close to the u axis, i.e. for Z = 8Z and |u) />laz).

equation ( 3.2.12) reduces to
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2 2
e MY
v = 2.3 T u
. wnh

d?Z

so for 87 > 0, i is small and gposiﬁive% as u £ 0,

negative u
az . negative =
for 82 < 0, ™ is small and Epogiﬁiveg as u= 0, '

The sense of direction is seen from du/dT = wn2 u° and .
1

condition ( 3.2.10), to be
condition ( 3.2.,10) +to be

W >0 as 8220 if u>0
dv

dU. S RS

Ego as SZE0 if u< 0.

There is now sufficient information to define the behaviour
of the trajectories to be as shown in Figure 3.8(c¢). The equator
is not a trajectory as du/dt is not defined on it. Two trajec—
tories, OA and OB, have special significance. all trajectories
on one side of either of them approach or leave the origin in
the positive u direction, while all those on the other side
approach or leave the origin in the opposite direction. The
behaviour suggests a possible coincidence of & stable and an
unstable node, but a result given by Poincaré ( ref.10, Ch.3, p.29 )
settles the issue after the transformation to plane Pl has been

considered.

The second transformation is described by

dd
1 © N ‘
K = = et = o dt = Zd%x
0 Z ¥ | d‘b"' Z ) ( 30 2.13 )
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Y/

i

from which ng(K%)

7° X d(d%O Z4a az
— = V - v
it

The relation ( 3.2,10 ) between © and t applies again. The

transformed version of equation ( 3.2.1) is obtained as

_ _962 =¥
Z3d€ 4
Zav—vas_1 Voo 2 (L L
and Zz T + QC(JJHE = —'wn ("‘Z “Alf)(‘g "'Azf)
, 3
i.e. as 82 o2
av
and L = mozw vE—w(1-2A ) (1-2A, ) + X85 L (3,2.14)
Frl n n 1f 28 Ty 3% Coroeee

= -V ( Vv -+ 2;wn) —"(1.):{12( 11— ZA’lf)( 1= ZA2f)

Since for Z=0, av/dz =-w:f

)

=4 0, there are no singular points
at infinity on the K§> axis, and the singularity at infinity
revealed by the first transformation is not represented in the
plane P,. The only singular points of system (3.2.14) occur
for v=0 at Z:::I./A:Lf or Z==1/1X2f, which are the critical

points already noted in the finite region of the phase plane.

The theorem of Poincaré referred to above states that, if
the total number of nodes, foci;, and saddle points on the spaere,
not on the equator, are denoted by 2N, 2F, and 25, and the

- numbers of nodes and saddle points on the equator are denoted
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by 2Noo- and 2800 ' then

NOO+N+F=SOO+S+1 ( 3.2.15)

In the case of this systemy, S=1, N=1 or O, F=0 or 1 respect—
ively, so that the number of nodes at Z=u=0 exceeds the number
of saddlé points there by one. Therefore, the singularity

consists of at least two nodes and one saddle point coalesced,

With the knowledge of the behaviour at infinity, the
question of whether the phase plane portrait of Pigure 3.6 is
representative of the general case or not may be answered, By
drawing the salient features on the sphere, Figure 3.9, it is
seen that the separatrices BD, BE and BPF nmust all terminate at
the singularity at 2=u=0, and that the fourth separatrix BC
must terminate at-A. in any case of equation ( 3.2.1). The
nature of the phase plane portrait is therefore essentially
similar to that of Figure 3.6 for all sets of values of ¢, W, v
X and Q.i.f .

t

3.3 The stability of large transient responses

The phase portraits of the preceding Section indicate the
existence in every case of a region of asymptotic sta’dility to
A. The boundary §2 of this region consists of the whole of the
-two separatrices EB and BD, so that the region extends to
infinity in the positive Kd\‘}o/dt direction. The aim of this

and further sections is to define the finite extent of the
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A9,

Y (Y)

-

Figure 3.10: The transformation ( 3.3.1) to
polar coordinates .
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region in other directions, for the general case of the system

as described by equation ( 3.2.1).

The importance of this lies in the possibility of step
responses from initially stable states being unstable, whereas
for the companion first-order system of Section 2,1 suchresponses
are always stable. The response is unstable if the representa-—

" tive point in the phase plane lies beyond ) immediately after
the step in input. Although bearing in mind that it is of
interest to know the complete form of €L, special attention is
given to defining the point L at which the separatrix BD crosses
the K axis for K¢ >A1£: this is & useful measure of the
extent of the regioh, sinoe it indicates the limits for stable

regponses from an initial equilibrium state.

A first approach may be an attempt to derive the equation
of the separatrix, at least from B {to L. Since it is, very
approximately, of circular form around point A ( Figure 3.10),
it may be valuable to transform equation ( 3.2.5) from the
rectangular coordinates ¥, and ¢, to the polar coordinates Y and
r(Y), where '

& =l—rcosY, %,=-—rsin¥ ( 3.3.1)

and to attempt a series solution for r in terms of Y. Thus, it

' . -dr
dez sin -a-?--i-roos'f

dr . '
cos Y'{ﬁ‘ — ?slnY

'is found that

d-&l
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and the equation describing trajectories appears now from

( 3.2.5) as
“’nz(Ali"'AZi‘)( 2—1cosY) cos Y

| +( 4Zw _sinY—~2cos Y )
%-Er-rsin‘{ n

(3.3.2)
wrf-(Alf'_' AZ;E)( 2—rcosY) 00s<Y :

4+ 2s8inY( 2Lw, cos Y+sinY)

The particular solution souéht of this differential equation is
that for which r=2 at Y=0 and dez/del at B has the negative

value .given by ( 3.2.7). PFor convenience, define

Nqp=DNog = J( 1‘K“‘Kﬂif)2'+4K_ = R (3.3.3)
oo what ($2) w2/ - 2 (=L i) (3.3.4)

- If the solution is to be found in the form

it is clear from the foregoing that A, must equal 2, and Ay must
equal expression ( 3.3.4). If (3.3.5) and the convergent
series for sinY and cos Y are substituted in ( 3.3.2 ), and
coefficients of like powers of Y are equated, the equation for

the constant term gives
2
Ajw R(2=45)=0

which is satisfied by Ay=2{ the equation for coefficients of ¥
then gives
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A (4gw — A 0fR) =—4

so that lA1= 2 (Ci,/R+t‘.’2>/wnR
Choosing A, in accordance with (3.3.4 ), the equation for

coefficients of 72 produces

c(%me4)+(4+3%fR) R+C2
CwﬁR + 3(»1,12 R,} R+ C2

The increasing complexity of the expressions for the

(3.3.6)

coefficients An is apparent;y in fact, the expression for AS is
much too lengthy to be set out here. It appears that the series
( 3.3.5) is limited by practicel considerations to the first
three terms, and therefore the value for L given by r at Y== is
liable to be mosf approximate. In addition, it is not known
~whether the approximation is greater or less than L, so it is

concluded that this approach is of little value.

A more satisfactory approach lies in the use of the "Direct
Method" of Lyapunov, as it has come to be called. After
- receiving little attention in Western countries since the

o original paper12

in 1892, there has been in recent years a great
increase in the literature available in English on the method.
“No attempt'ia made here to list all the appropriate references —
a suitable bibliography is to be found in the papers by Kalman

and-Bertraml3; only specific references are made to the



—al-

treatments by a few authorst4 —19,

Since, in the type of system under consideration, there is
- always at least one other singularity in phase space besides
that to which solutions may be stable ( placed at the origin’),
it is impossidle to find a Lyapunov function V with the ideal
properties, i.e. (i) V to be positive definite, (i) d4v/dt, by
virtue of the system equations, to be negative definite. In'such
systems, dV/dt is zero at one point ( at least ) outside the
origin — the other singularity — so that at best dV/dt may be
found to be negative semidefinite; there is generally & contin-
uous set of points on which dV/dt=0. PFurthermore, it is unlikely
that V is found to be positive definite, and a useful alternative
is the existence of a finite region around the origin within
which V is positive definite. A region of stability is guaran-—
teed by a Theorem quoted by LaSalle and Lefsohetzl4. and included
‘here for convenience.
let V be a scalar function, with continuous first partial
derivétives. of the state variables of the system, and let
‘ ) designate a bounded region within which V< k ( constant ).
If, within ), V is posifive definite, dV/dt is negative
semidefinite, and dV/at is not identically zero along any
trajectory of the system, then every solution starting inside
" £1 is asymptotically stable to the origin.

As mentioned above, a prerequisite of the method is to
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describe the system by state variables such that the stable
singularity is at thelr origin. If in equation ( 3.2.1) the

variable %3_ is introduced such that

9 ( 3.3.7)

1=K%—1\

1t

in which A 1f = --[—-1 K-;—Kﬁf-:- R] by definition ( 3.3.3)

the system is described by the egquation

a &l
+2Z;w-——=—+w %E (L +R) =0 ( 3.3.8)
2 fat 1001
at
which places A at %"120. The most convenient variable to use,
however, is
@12051/R=(K%0—A1f)/R (303-9)

because equation ( 3.2.1) becones

% do
........l....gz,wn——:-': -;-mngRgol((pl«ﬁ-l)z o ( 3.3.10)
a2 . 4t

which places B at ¢, =~1 with & at ¢, =0,
Finally, it is required to decompose ( 3.3.10) into a pair of
first—-order differential equations in the chosen state variables.

one means of doing so is to choose

d(pl

—= = WJR _

at a2

d (303-11)
¢

—d-f = —wn(JR(p1+2Ccp2+,/ch§)
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Pigure 3.11: Contours of the function V, , with the region
of asymptotic stebility {1, shaded. ‘
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A first Lyapunov function V(tpl. ¢,) for system ( 3.3.11)
has been found quite readily. Consider the function ( ef. p. 63
of reference 14 )

Vo=3p2 + 395 4+ 203 ( 3.3.12)

avy 7y dgy +-av1 dy,

for which . ,
at o9, 4t ¢, 4t

=697 (1497 ) w,lBipy— 69 0, (JRpy + 209, + )

=— 12005
dvl/dt is therefore negative semidefinite and is zero on the ¢,
axis, which includes the two singular points. V, is symmetric
about the 91 axis, Pigure 3.11l, but is clearly not positive
definitey it :’x.s~ zero at the origin and on the curve

which crosses the ¢, axis at —3/2 and lies completely in the
‘region 91 < -3/2. v, is therewi;ore positive definite in the
infinite half-space '"to the rigi&k‘t" of this curve. Contours of
constant positive Vl either form closed curves around the origin
with an additional branch to the left of B, in the case of
V1=kl< l, or form open curves for V1=k2:>- 1. +the greatest
-bounded region of posi’cive Vl is given by the curve Vl= 1, which
has two intersections with the ¢, axis at B and a third at ‘?1“% '
and intersections with the ¢, axis at +1/J3. This region (.Ql)
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is therefore one of asymptotic stability to the origin, since

all the conditions in the above Theorem are met.

In order to define the form of ﬂl more exactly, consider

the gradient of V, contours: from ( 3.3.12),

d P
_(E.g.=—_-]-'(l+cpl) (3.3.13)
doy 92 ~

for any contour V1=k.‘ The gradient is zexro for all k where

¢1 =0, and is zero at 9; =—1 and infinite at ¢,=0 for all k
except k=1, when the gradient is indeterminate from ( 3.3.13) :
application of L'HSpital 's rule, however, produces

a a
S
Trllg | Y1 /g

Confining attention to the stability of responses from
initial equilibrium states only, it is now possible to obtain
stability diagrams similar to those of Figure 2.5 in terms of
input steps from a given value of \’35._0; From the relevant extent
of ‘Ql' i.e. on the ¢, axis, from —1 (B) to 05 (Ll). it is
evident that the restrictions on the magnitude of the input step

for stable responses are
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Since the critical value of ¢ ( namely [1“1{“1{% f—R]/QR) \
corresponding to %O = 1, lies within the above range, the two
separate ranges

(a) (1—K“K‘°{i_f"R)/2<K'Soo_Alf< R/2 and (3.3.14)

(b) —R<<TKg, - Ajp<(1l-K-Xg,—R)/2
relate té stable and unstable initial equilibrium states respec—
tively.
(a) The lower limit simply specifies that the initial equilib—

rium state is stable, but the upper limit gives

Rg o+ 20 ( 1= E—K8 ) 2 4K > Ko+ (1—E—Kg )% 4K (3.3.15)
as the conditio;a for a stable response. Values of {%if in terms
of &, have been calculated for selected values of K from this
expression, and after converting these to steps in %l in terms
of Qio the resulting diagram for the stability of responses
from an initially stable equilibrium state appears as in

i 12 . A
igure 3 Tﬂ

This is quite different f;rom Figure 2.5(a), in that a
negative step within a certain range may lead to instability if
& 0 — — 1. The qualification in this sta'tement is intentional .
because a Lyapunov function is a sufficient bu‘t not a necessaz&
condition for stability, the proven existence of {1, is a
guarantee that fesponses are stable outwith the indicated region

of instability, but it need not follow that responses are
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unstable within it: the phasg_plane diagrams, however, reveal
that there must be a region of instabiiity of similar propor -
tions, and the question of whether the greaiver part of the
region of Figure 3.12 is indeed one of instability or not is

pursued in subsequent Sections.

(b) The upper limit simply specifies that the initial equilib-

‘riun state is unstable, and the lower limit gives

K omof (1—K—Kg )% 4K < R —nf (1-E—K9 )24k (3.3.16)
as the condition for a stable response. This reduces to The
simple inequality & ,<< 4, for all values of &, and ( positive)
K, so that the application of a negative input step resulis in
a final stable equilibrium state: the diagram in this case is
the same as that of Figure 2.5(b). Since the boundary of.fil
passes through B, the region of asymptotic stability does notw
admit of any improvement for case (b), and it is not a case of

a region of 'possible' instability.

To conclude this Section, a particular feature of this
system is noted. Whilst a stable response may result from an
initially unstable state in which there is negative gain, as for
the comﬁanion first—order system, it is also possible for this
system to have a stable step response during which the gain of
the element goes transiently negative. This is due to part of
the region {1, lying on the ﬁegative side of the critical value

of ¢ mentioned above.
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3.4 Less restrictive regions of stability

3.4a A second Lyspunov funcivion

If the boundary of Q‘l is superimposed on any phase plane
portrait, it is found that Q’l provides a rather conservative
estimate of the actual region of stability, particularly in
regard to the value for the intersection at L. This is indicated
in Figure 3.13, which compares the actual region of stability

in Figure 3.6 with &} 1 -

As a possible second Lyapunov function counsider

2 2 2 2
Vo= Aoy + By + Co19p+ Doyoy + Boyoy + B + Gy (3.42.1)
in which the values of the coefficients A B, . . are still to
be appointed. In view of ec_iuations ( 3.3.11), the time derivative

of V2 is given by

av
—d—f-= Lw, [( NTC— 4B) g — Ty — Dy - BJWFgofcp;} +

| Lw, [2(,}1‘@-&3- Clpq@,=2(JHB+ D+ ﬁTE)(plzgoz-
(3043'- 2)
JT(C+ D)o + ( 2JTD—4B— 3JTF Jgy0,2 +

(.\/’I\'TE-f- 6F )g023 + 24T ( 2G-E)C?13C?2]

where N = R/2;2> 0.

From the infinite variety of sets of coefficients A¢ By . .

the following one has proved useful! to produce a form for de/d't



=2+ 2033/3

Figure 3.14 : Ourves of zero de/dt for

various values of N.
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which is symmetric¢ about both axes, the coefficients of the six
terms in the second group of ( 3.42.2) are set to zero by the

choice

A=2(3N+8), B=6N+8, C=AN(N+8),
( 3.48.3)

D:—W(N+8). E=~—4N, F=—2N3/2/3' and G == 2N
This gives

av |
-é-f-.—.-. Z;wn[(Nz— 12N -— 32)(922 + N(N + 8)((912- l)cpl2 + 2N2c912c922] (3.4a.4)

so that both V2 and de/d't depend on the parameter N, whereas

_V1 has none such dependence.

Considering firstly de/dt after ( 3.4a.4 ), it is not even
negative semidefinite everywhere as is dVl/dt. The form of the
curve de/dt=O', which separates regions of positive and negative

dV,/dt, may be seen by its representation as

N(N + 8)9-2(1 = g-2)
0f = L1 (3.48.5)

(¥%— 12N — 32) + 27 ¢ °

The curve intersects the 91 axis at £1 for all N, Examination
of the sign variations of the numerator and denominator shows
that, for 0K N<< 2+ 2{33/3, two branches of the curve exist
only in the regions 1< 9 < ( 32+12N—1%)/2N? with the lines

q;l:j-_:\y( 32+12.‘N—N2)/2N2 as asymptotes ( see Pigure 3.14); for

2+ 2Jd33/3< N< 6+ 2J17, two branches of the curve exist only in
the regions, ( 32+12N—1%)/2N°< ¢° < 1 with the lines
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A%

/f_gaz.o

ks > K, > s> Ky > kg >0

Figure 3.15: Sketch of the contours of V2 and the curves
dVZ/dt==0 for a value of N less than 8¢« 0 approx.
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cpl:_'f:\;( 32 4+ 12W-— 1\72)/2N2 as asymptotes; for N=2+ 2.33/3, the
two branches degenerate into the straight lines cplzil‘; fox
N=6+ 24_1—, the curve ils an ellipse, along with the 9o axis,
with intersections at cp2=i;\/,ff7'—l/22 and for N>>6+2J17, the
curve is a figure of eight with four intersections at ‘the origin,
In the regions between the branches de/dJc is non—positive, 80
that for values of N less than 6+ 2{17 there is an infinitely
long region of negative definite dV2/d'b straddling the ©y axis,
which may be useful. The character of V2 must now be examined
to discover if any contour forms a clos.ed region of positive
definite V2 within this region of negative definite dV2/dt2 if
this exists, a larger region of asymptotic stability than (i,

may exist.

For any value of N; there is a curve vzzo which intersects

the ¢, axis at o) ( 3N+8)/N and the 9, axis at 3( 5N+38 )/2N3/2.
and below which V, is positive definite. As with the saddle
point of the Vlzl contour at B, there is a saddle point S on
one of the V2 contours, but in this case S always lies in the
upper half—plane., Figure 3.15 shows the character of V2 for‘ a
value of N less than 80 approximately. up to the limiting
value of k3, contours of constant positive V2 form closed regions
within the region of negative definite aV,/dt. so that the region
within V2=1~:3 is, -by the theorem quoted, one of asymptotic

stabilityy but this region represents little, if any, improvement



over Ql . However, by' a reductio ad absurdum consideration of
the trajectories in the neighbourhood of 5, it can be proved
that S must 1i_é on the upper lefit—hand branch of the curve
dvg/d-t=o. as indicated: it is therefore possible, by supple—
menting the theorem with a deduction from equations ( 3.3.11 ), to

prove as below the existence of a larger region of stability.

Consider the region QQ formed by V2=k4 and closed by the
portion CD of the curve de/dt=O. Throughout this region,
de/d't is negative definite, and no ivrajectory can leave the
region across V,=k,. At any point on CD, de/dt is zero and a
trajectory must run tangent to the V2 contour through the point.
Because CD lies where ¢,>> 0, the first of equations ( 3.3.11)
states _‘Eﬁéi%"dgol/d't?m henceq every trajectory from CD has a
component of velocity in the positive 97 direction. From inspec—
tion of the directions of the V2 contours relative to CD, it is
evident that all trajectories crossing CD do so into the region
.QQ. Thus, the same purpose is fulfilled by CD as by the
closing portion of the V2=k4 contvour required by the theoremn,

and .Q2 must be a region of asymptotic stability.

For N< 80 approximately, the contour V, =k5 =4(N+4)
through B provides the limiting contour. The condition for a
stable response from an initially stable equilibrium state is

therefore

Ko p+ 30/ ( 1—K—Kg )%+ 4K > K +A (1—K—Kg )2+ 4K (3.42.6)
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in place of condition ( 3.3.15) from.ﬁllo For 6+ 24173 N 3 8%%
however, the contour through B is unsuiteble because it crosses
the righit~hand branch of the curve de/atszo for a negative
value of ¢, and/or because it does not form a closed regibn with
CD. In this range of N, the conitour with the greatest value
between k3 and k5w which does not fail in this way. ray be used
t0 give improved bounds: a condition similar to ( 3.3.15) and

( 3.42.6 ) is obtained, in which the coefficient of the left~hand
radical lies between 2 aad 3. Toxr the limiting value of N=6+
2417, this coefficient is 2:62 approximately from Tthe contour

V2 = 520

Pigure 3.16 shows the enlargement, due to condition (3.48.6),
of the regions of guaranteed stability in Figure 3,12, and the
corresponding reductions of the regions withian which the step
response may be unstable. The restriction of N &0 for the
valigity of ( 3.4a.6 ) implies that, for particular values of X

and ¢, these enlargements are only valid for
[K(%f )‘“1}2‘1’“(165 —X) ( 3.42.7 )

approximately; the Figure shows the extenslons for { =0707 only.
For values of N such that 80 < < 6+ 2417 , boundaries are found
lying between those from conditions ( 3.3.15) and ( 3.4a.6),
certain sections only of which are likewise valid for given K

and . the form of the greatest extension from V2 to the region

of guaranteed stability is also indicated.



3,4b The method of Krasovskil and the Varisble

R
Gib

n«:
QJ

[

on

Gradient method of Schultz a

o

A few technigues do exist fo:

&

the systematic produciion of

!_

Lyapunov functions, and brief atteation is given here 0 WO

such procedures.,

Tn +that due to Krasovekiit? in which the differential

equations are described by

dxi
"‘“"’“‘“ﬂfi(quaoc exn)q 1319909 ¢ I
dt =
£.¢(0
1(0)
one constructs the Jacobian matrix F for the system
- -
T i < af-\ X
311/&X1 ° /9%,
B = o o ° °
Afn/éxl . . of_/ox,
o) S . ot A oy et S me P e TR T eemen
Thereafter the symmetric matyix F=F+ P ; where ' is P traunspos
N
is obtained, and if P can be shown ( by Sylvester's criteriz ) 1o

be positive definite, the systen is guaranteed $0 be globally
asymptotically stable., However, since the system in hand hag
been shown to be asymptotically stable only within a portion of

state space, the method of Krasovskii is clearly inapplicable.

The second procedure is not restricted to the establishment

of global stability, and is therefore applicable. As the name
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implies, the Variable Gradient method of Schultz and Gib30n16
starts with an assumed variable gradient function YV from which
V and dV/dt may be derived; the unknown elements of VV are
determined by consiraints on dV/dt and by the generalised curl
equations which arise from the requirement that VxVV=O0. In

terms of equation ( 3.3.11 ), the gradient function is assumed to

have the form

e a3 91+ %1292

w, Uop 91+ 29,
where the coefficlents a may be functions of ¢, and ¢,y from

which

v=§vvq.d(€) and ﬂ = vv?o _@;EQ, ' ¢ = 1
0 dt dt ({)2

The curl equation on VV in this case is simply
UV, VYV,
39,  Ouy

Using equations ( 3.3.11), the general form for the time
derivative of V appears as

av 2 2 - .

2 4
-wﬁ{§(2@2f¥a21@1)@1 ( 3.4b.1)
The next step in the procedure is Lo constrain dV/dt to be ai

least negative semidefinite by selection of sultable expressions

for the coefficients ai various ways of so doing have been tried,
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the resxﬁ—%é—wgi‘ three of which follow. —
(i) Impose aq,=0, and ayy = Ccpz/cgl( C a constant ) to eliminate
the term in. (p13 in ( 3.4b.1): then

ﬂ:—t].ﬁ(o --m J‘C(pltpz'i'w (rall"zﬁ)(?j_q)2

dt
2Lw Ccpz wr(2+0)c91<p2

2 . . 2
=— 200 (24 C)gy + 0 AR( a7 =2=Clpy905,—0 AR ( 2+ Clo 79,
To make this negative semidefinite, le%v
(2+CY1+ (pl)gol
(2+ 0)92

av _ 2 _
so that -————zawn(2+c)cp2 and VV=

av

It is seen that the curl equation is satisfied by this form of
- VV. Having constrained its time derivative in this way, the
function V itself appears as

Q1L 9o

V=(2+C)§ E(1+(Pl)(?1d(91'='(?2d(92}

0,0
={(2+CX 3(912+3q)2 +2<p1 Y /6

which is seen ( for C=4) to be nothing but the function Vy
already found.

(i) To obtain a different function, one may try setting
agy =2+ 20ay /AR in ( 3.4b.1) to eliminate the term in 919,
and Gy, = 2z/fR to produce a term in cp22 . This gives

av

o= — 2_ 2 __ 2
Gt 28,95 — W B 97" = 0 AR 29, + apy 07 Doy
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which may be made negative definite if ayq ==2¢,/p; ¢ but then
29, — 249,/JR
VV = 1 2
0

~ and the curl equation cammot be satisfied, since —2{/WR# 0.
.(:iﬁ) In a further attempt, one may set Upq = ( C, + C3cp2)/cp1 . to
eliminate again the term in @ in ( 3.4b.1), and ag,=0; to
produce a term in q)22 y leading to

- produce a term in cp22 + leading to

av 2
—_— wn( J§01:4C --.2*21 03)<p% :921&0&?12 + wn‘ﬁi( -tl:-": 2= 03)q>1q32

A =4 c

The choice of &g = (2+ 03)( l+cpl) eliminates the terms in ¢¢,
and c912(p2 v and to obtain at least a negative semidefinite form
requires 02=0:. With these appointments the curl equation now
gives that C; must be zero, and one has returned to the result

of (i).

As demonstrated by the above, the Variable Gradient method
has not produced any Lyapunov functions with negative semidefinite

time derivative which are different from V, .

-3.4¢ The method of Zubov

The procedure of Zubov17 for the construction of Lyapunov
functions holds more promise, in the experience of this author,
than does that of Schultz and Gibson., "It is less dependent on

the sort of intuitive trial and error required in the
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determination of the coefficients a and guarantees the production
of a V function to establish a region of asymptotic stability,

18 have recently

whether global or not. Margolis and Vogt
published a valuable account in English of the method, to which
this authorlg has suggested some modificationsy +the main points
are described below in terms of only a two-dimensional system,

after which its application to the system in hand is discussed.

The notation adopted for the method describes the system as

00

m. I
dX l( x.y).. '11( X'y)-*' 5 P]_( mllmz)x 1}" 2
d¥ m1+m2>:>2 : >
3e4c.1
00
: : m
-(-ii::fz(x.y)f-—.le(x.y)-a- E P2(m.m2)xmly2

in which f£y;(X¢y) =8 X+ay,y

are the linear function components of fl and f2: the method
preéupposes that the origin x=y=0 is asymptotically stable,
and that the roots of the characteristic equation of the linear

approximation all have negative, nonzero real parts.

Attention is focussed on the following partial differential
equation in the function v(x,y):

AV

™ L £(x0y) = —-tp(:hy)ﬁ_l ~v(xz,y)] (3.4c.2)

£ (x4y) + 2 3y
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in which o(x.y) =q>2(x.y) + cp3(:x:.y) Fe o o +c,om(x,y) +... 15 some
positive definite function of x and ys and @  is a homogeneous
form of m'th degree in x and y. According to & theorem of

Lyapunov, the function v(x,y) can be uniquely determined in the

form of a convergent power series going to zero for x=y=0.

-v(x,y) = vz(x.y) + v3(x,y) Fe oo e +vm(x.y) Foe . ( 3.4¢.3)

' m m—1 W1
where vm( X,y) = mDOX o+ lex T+ oot mDm—le + mDmym

If equation ( 3.4c¢.2) is incapable of solution in closed
form to give the exact function v(x,y) for a particular ¢(x,y).

it may be solved by the following set of recurrence equations

IVp | B
N 5 ( 3.4c.4)
V. v
m m
— foq 4+ = £, = R (x,y)
L Lt yT Bpix,
in which
: -
Z : 1.%29
Jk=m jekmml L +og=d
| nm I a }
Iy +Io=] J

JoEKem= 2y 30 4¢ o 4o o o
is a function of m'th degree in x and y which is known if each

of the vz(x‘.y). v3(x.y). . o o vm_l(x.y) have already been
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determined. Thus the sequence Vi is obtainable, giving the n'th
n

degree series approximation vinJ= ii}%n for the exact solution
2

v(x,y). The function vz(x.y) is guaranteed by a theorem of

Lyapunov12 to be a positvive definite quadratic form.

Zubov shows that the boundary of the region {1 of asymptotic
stability is given by the curves v(x.y) =1, and that the stability
is global if v(x,y) <€ 1 for all x and y. For the approximation
v(n). it is important to discover what curves vﬁrﬂ = ofzﬂ describe
regions which are guaranteed to be contained within {1 and so
provide approximations to it. Margolis and Vogt present theorems
which establish regions of stability based on the first approxi-—
mation v<?) and then on higher approximations v(n). but it has
been considered necessary by this author to present the following
modified versions of these theorems t0 allow the use of positive

semidefinite funections ¢ ¢ the proofs are to be found in ref.l9.

‘Definition: define as w, the set of all points (x,y) for
which &vg/dt==0.,other than points for which
dv2(x+5x, y+8y)/dt £ O or dvz(x-:-éx. y+8y)/dt = 0

for all éx and all 8y infinitesimally small. In other words,
‘w, consists of all points of zero dv,/dt which define boundaries
between regions of positive and negative dvz/dt. wnile excluded
from w, are points of zero dv,/dt which lie in surrounding

- regions of dvz/dt with constant sign. Denote these excluded
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points by wy . Designate by cq the smallest value of V, 0N Wy .
| ( 3.4¢.5)

Theorem . the curve vz(x,y) = Cq is wholly contained in{Y,

provided that the set of points Wy for Vo << Cq is not a half-—

trajectory of the system. ( 3.4¢.6)

Definition ¢ wg(n)(xvy) = all points (x,y) on which dv(n)/d“c=0.

other than those (w1<n)) for which
dv(n>(x+8xq y+8y) /At L O or dv(n)(x-:-axq y+8y)/dt 2 0
for all éx and all 8y infinitesimally small.

cl(n)= min [v(n)(x.y) on wécn)(qu)} ' ( 3.4¢.7)

Theorem. the cui've.v(lq)(x?y) = cl(n) is wholly contained in
), provided that the set of points wi(n) for vi2) < cl(n) is
not a half-trajectory of the systen. ( 3.4c.8)

Turning now to the application of this theoxry to the

stability of the solutions of equation (3.3.10), it has been

found preferable to decompose this equation into the following

pair of first—order differential equations, rather than to .

continue with the equivalent pair ( 3.3.11) :

de - -
-é-f—-=mn(ﬁcp°2- 269,)  d.e. %-é=wn(J@y— 20x )
( 3.4c.9 )
Ay dy
—==—uw Ry (1+¢q) L=ew JRx(1+x)
at a%

The new state variables 9q and cpﬁg are replaced for the time being
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by x and y for clarity, and the singularities A and B of systen

( 3.4c.9) are at x=y=0 and X=—1, y=—2//N respectively.

The partial differential equation ( 3.4c.2) in this case

appears &s

0, & Wy - 20s) — (BT x (L4 m) == (1 7P01-v)  (3.40.10)
. >y

| having chosen ¢(x,y) as the simplest of positive definite forms,
namely (x2+y2). To solve this in closed form, one attempts the
simulteneous solution of the assoclated ordinary differential
e.q_uations

w_dv
—_— " — 3940.11)
NRy—20x NRx (1 +x) (xzas-yz)(l-v)

No such solution has been found for these equations, however; S0
a

that the exact description of the region of stability is unobitain—
able. Reverting to the approximate solution after ( 3.4c.4 ), and
taking cp=2(x2+y2)g i.€6 cpg-.::'a(::~{:2—£-;>r2)v cmeO' for m > 2; the

first of equations ( 3.4c.4 ) gives

w, ( 2,D0% + D1y XA Ry — 2¢x ) -—wnd'ﬁ( oD X + 2,0,y Jx = 2(x2 + y°)

( 3.4c.12 )
for the determination of the coefficients 2Dk‘ From this, :i't is
readily found that |

v, = [NX2- 2 Nxy + (N + 2)y2]/z;wnl\1 ( positive definite )

for which - A ( 3.4¢.13)

av
-&-f. = — 2(x° + y°) — (2N + 4)x%y /T + 23
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The curve 23:3-- i:2 - (2N-s—4)y/.ﬁf]x2= 2y2 ¢ which passes through
the two singularities, is Wé% since this is a cubic, the

determination of ¢ 'is clearly difficult and one is forced to

1
abandon this attempt at the first level of approximation,

29 the coeff—

Using the positive semidefinite function ¢ =2y
icients 21)1{ follow from an equation similar to ( 3.4c.12) in

which the right-hend side is just —2y°. Hence,
2 2 ‘s At
= [Nx —z‘,-ﬁxy + (N 4)y 2Z;wnN ( positive definite)

for which | ( 3.4¢.14)
avy 2 2 3
= —2y°— ( W+ 4)x%y/IT+2x
at

The curve 2}:3-- (N« 4')37X2/ﬁ = 2y2 passes through the two
singularities and is W2§ although one stage simpler than the
previous expression for-w?_q one is again faced at the outset

with the simultancous solution of a cubic and a guadratic equation,

However, if ¢ is taken as 23:2 the resulting form for Vo is
= (x°+ yz)/zz;wn ( positive definite)
for which ( 3.4c.15)

- dv
df —2x?( 1L+ dTy/2)

In this case, since the expression for dvz/d“i; is factored, the
straight line y=— Q/Jﬁ is Wo while the y axis (x=0) is Wi s

and the singularities lie one on wy and the other on Woe
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ety
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Figure 3.17 . Sketch of the Lyapunov function V3 ]

produced by the method of Zubov, andﬂ3 .
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Figure 3.17‘ shows the useful half-plane of negative gemidefinite
dvz/d't. It is apparent that the minimum value ( 01) of Vo 00 W,
is 2/tw N, so that since the y axis for |y} << 2/J¥ is not a
"solution the circular region 32+y =4/N is one of asympto‘cio
stability. Vo in ( 3.4c¢.15) is therefore referred Ho as Lyapunov
function V3. and.' the circle as ﬂB’ As stated early on in
Section 3.3; the intersection L3 of QB with the positive ¢, axis
in the phase plane is of particular interest: on this axis,
d(pl/dt=0@ so that the corresponding line in the system ( 3.4c.9 )
is y=2x/JT. Ly is therefore given by the value of x> 0 at

which this line crosses ﬂy namely

I’B - 2/4N+[:_ . ( 3040016)

If the approximation is continued to include the third-—order

terms of qu the second of equations ( 3.4c¢.4 ) gives

2 2

wn(33DOX + 23D1}:y + 3D2y2)(ﬁy- 20X) =W ﬁ( 3301::5 + 23Déxy -+ 33D3y2)x
= R3 = (y/?;w X w. fﬁxQ) ( 3c4c.17)

for the determination of the coefficients 3D1c' After equating

the coefficients of similar terms, the form of vy ig found +0 be
vy = (3 — 6Ty — 1Ty 3) /3z0, (W 8)
for which

—é-é.-. {N1.2+21\y -.-f(N+8)y/2]/(N+8)
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3_v ..
so that v ._V34 v3
= [B(I\T - 8)(_22 + ya) + 21\T:{3- 12J§\?x2y— B:Efys‘] /6?;wn(1\'r+ 8) -

Gy av. @ ( 3.4c.18)
dv ]
avi =l 3, 3 ox? [( N+8 )—N’:{z-—QNyQ}/(N-:-B) (3.4c.19)
it at  at

and

Thus the y axis forms Wl(B) while W2<3) is the ellipse

2 - N+ 8 passing through B. To find 01(3)q one is

2N y2 + Nx
again faced with the problem of finding the minimum of a cubic
function such as ( 3.4¢.18 ) on a quadratic curve, the ellipse:
if the method 6;6 Lagrangian multipliers is invoked, the following
equatién

6 (W8 )xy— 24 Txy? + 120x2y + 12dTix> = 0
is obtained for simultaneous solution with the constraint
equatioﬁ of the ellipse, but this hardly reduces the difficulty.
No means has been discovered to obtain the expression for 01(3) 1
which in any case must be a complicated function of N, and —i't is

concluded that the best approximation to L% for this systen,

obtainable from the method of Zubov, is QB'

3,44 A method of undetermined coefficients

To summarise the experience so far of the methods of
application of Lyapunov's Direct Method, the function Vl was
easily discovered and gives the region _ﬂ.l for all values of the

parametver N, An improvement in the estimate of the actual region
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of stability resulted from the establishment of the region”flzc
but the effort involved was much greater and the region is only
valid for a range of values of N, The method of Schultz and
Gibson does not‘appear 0 be useful in the particular context of
the system being studied: it requires the construction of a
derivative function dV/dt which is at{ least negative semidefinite,
and has not produced any function other than Vl. The method of
Zubov was more successful in producing VB‘ but V3 is only a
quadratic form. It appears that Zubov's elegant procedure holds
much promise in application to a particular numerical case of a
system, when the successive determination of highexr—order
approximations may be handled by a digital computer: bdbut when
working literally with the general case of & system, as in the
present study, the fact that explicit solutions are only available
to algebraic equations of low degree ( possibly three or four')
severely limitvs the lével of approximation attainable for

general analytical results.

While recognising this restriction to low—degree algebraic
forms, it was thought possible to find further Lyapunov functions
which would still improve the guaranteed region of stability in.
the general case of this system. A method of undetermined
coefficients has been evolved which has had apparent success in
this way, and which enjoys the advantages of greater simplicity

and flexibility than the methods of Schultz and Gibson and of
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Zubov, It is a rationalisation of the procedure which produced
V2. and 80 starts with an assumed form for V in which the
coefficients of the various terms are to be determined to render

both V and 4V/dt suitable.

The initial selection of terms to be included in the V
function is aided by a table such as that shown in Figure 3.18,
which applies to the system under discussion. In each column of
this taﬂle is é statement of the terms produced in the function
dV/dt_by the presence of a particular term in the function V,
having regard to the system equations ( 3.4¢.9); there is a
distingﬁishablé pattern in this array. Since the form of V
_.ineludes a general constant factor, only (11—-3.)‘coefficients
of its n terms may be considered undetermined) the values of
these coefficients may be determined, Wholly or in part, by any
number up to (n = 1) of conditions on the terms in dV/dt. These
conditions are generélly such as eliminate terms of odd degree in

dV/d+t, which do not lead to sign definiteness.

The procedure és outlined so far is not of course sufficient
to guarantee the production of a Lyapunov funectioni all it does
is to facilitate the construction by trial and error of a i
possible function. There is no stipulation that dV/d+t must be \
négative semidefinite everywhere, which means that for the type‘

of system with a limited region of stability one is free to
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search for a suitably limited region of negative semidefinite
dV/dt around the origin. TFor de/d"b, this region is a strip on
both sides of the ¢, axis, valid o'n.ly for N< 6+ 2J17. The use
of this method is now demonstrated in its further application

to the system of equations ( 3.4¢.9).

Foxr V to be positive definite near the origin, the terms of
lowest degree in V must be a pair of equal, even degree in 91
and.cp'zﬁ thus the terms ¢, and cg;’z do not appear in the table,
and 1t is natural to include firstly q>12 and B ((p'z)z, B a constant,
rather than (914" and B (@'2)4 or others, The coefficient of cplz '
being unity, is the selected géneral constant factor of V,; and
the coef;"ioien’cs of all other terms are undetermined constants.

The table indicates that this introduces in dV/d+t one term in (912 .
one in q)lch‘z and two in ¢¢¢' the whole coefficient of 919

may then be made zero by the appropriate choice for B. To
eliminate the term cplzq')'z of odd degree, the coefficient C may be

used if a term Ccp13 is included in V, but this introduces a term

in (p13 in dV/dt: +to eliminate this in turn, the coefficient A may
be used of a term A(plcé’z in V. The further terms introduced
through Ag,¢'; are only in cplz. (cp'2)2 and ¢ ¢'5, the last of

which is removed by the choice of B.

To proceed in this way,

V = cplz +-Acplcpz-i- B (cp'z)2 + Ccpl3 ( 3.44.1)
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so that generally .

av —z;wni( 4+ AT ) q;le-AJﬁ-(c(;‘2)2-— 2(JfTN~ A BJEE)C?;L(P'Q
at

+ ( AT+ 6C )@13+Ji'\f( 2B— 30 )cpfq'ﬂzj ( 3.48.2)

The coefficients of the last three terms in ( 3.4d.2) are made

zero by the choice

A = Miﬁ-} ‘= —-'I-N-;-—- ' and_ C = ...——.-2..1\—]-—-—
4—=N N—-4 3N~12 .
which leaves the time derivative as
av 4L 2 N ;482 |
— = = AW + — ((? ) } (3.44.3)
at nL-— PAEIMETRAL:

It can be seen, without even considering the resulting form of V,
that this procedure is useless) expression ( 3.4d.3) is not
negative semidefinite even in the neighbourhood of 'bhevorigin.

- s8ince the two coefficients are of opposite sign. This failure
could have been predicted, since the above elimination of three
terms in ( 3.44.2 ) leaves only the sum of two quadratic terms,
which together may produce a sign definite function but not one
that is sign semidefinite} a sign definite function is of no
use, because as is mentioned in Section 3.3 the function AV/d%

"is at best negative semidefinite everywhere for this system.

In a further attempt with form ( 3.4d4.1 ), the three constants
can be so0 chosen as to eliminate again the terms in cplq$'2 and cplch"z
and the term in (@'2)2 rather than in cpl3. Thus, with A=0, B=1,

C=2/3, _ .2 2 3
glad V4 =. 9y +(cp'2) +-§<pl



- 126 -

Figure 3.19 : Sketch of the function V, and the region’.ﬂ.‘q_
of stability . |
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: av, :
and et —-4Cwnc912( 1+ 9q) : ( 3.4d4.4)

at
and dV4/c1’c is apparently negative semidefinite in the half—plane
¢ >>=1, for ¢; =0 is the set w; and ¢;=—~1 is w,s see Figure
3.19. The function V4 is seen to be the form in ¢4 and o'y
analogous to V; in ¢; and ¢,, SO that its nature need not be
further described than it is in Figure 3.19. Accordingly, the
closed region formed by the contour V4=1/3. like .@.19 is again
one of asymptotic stability, because within it dV4/dt is negative
semidefinite and not identically zero on a trajectory:; however,
because B now lies at ¢q=—1, ¢',=—2/fK, a larger region of
stability may be proved to exist using a similar deduction ¥o

that used in arriving at ﬂz .

Consider the contour through B, for which V4 ={(12+N)/3N:

this has intersections with the ¢\, axis at *, (12+N)/3N, which
points are further from the origin than 2/fN. The region partly
contained by this contour for cpl>--1 and closed by the portion
BC of the line ¢y = —1 is region .Q4 of asymptotic stability, for
the following reason! on BC, for which ¢;=—1, ¢\, >— 2/JH, the

first of equations ( 3.4c.9 ) -gives

dcp . d _
1 JN 2 - 1
—tworw (a2 11), di.e. —=0
at 2 % o JW ' at =

so that all trajectories which cross BC do so into the region Q4.
It may be noted that the saddle point S of the contour V4= 1/3

again lies on the curve W .
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It is once more of particular interest to determine 14, the
value of ¢, at which the boundary.f24 intersects the 1ined@1/ﬁt==0
for @1:340. This requires the solution of the following cubic
e@uationg which arises from the simultaneous solution of
Vy=(12+N)/3N with ¢, = 2(91/F :

2N+ (3N+12) g = (W+12) =0 ( 3.4d.5)
In general, the explicit ( Cardan) solution of a cubic is rather
unworkablei; but in this case one root is already known, namely
¢ = — 1, since the boundaryﬂf14 has been arranged to intersect
the line d@1/6t==0 at B for all N. By factoring out (@1-%1)
from ( 3.44.5 ), the quadratic equation

Mo L+ (N+12) g ~(N+12) =0

is lef?, whose roots give the other itwo intersections. Thus” the

required expression is

L, = [J3(8+12X30+ 4) — - 12 /4w (3.43.6)

The successful production of V4 by this method of undetexrm-—
ined coefficients, in comparison with the result of ( say) the
mnethod of Zubov, is due to the way in which a cubic function hasg
been found usable by arranging that one root of the derived cubic
equation is previously known. V4 is, however, still not the best
funetion achieved. while continuing to work with this form of
function, but in more general terms, one further improvement has

been made iﬁ the following way. Returning to ( 3.44.1), again



Figure 3.20 . Sketch of the function V5 and the regionﬂ5

of stability, when N= 24 C/( 2—3C)%.
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. —_— , . 2 .
set A=0 and B=1 to eliminate the terms in (¢',)"~ and ¢,¢'5 in
av/dt, but let C remain undetermined as yet within the range

0L ¢ =€2/3. Then, rather then ( 3.4d.4 ), one has

2 vy 2 3
V5 = c?l + (({32) -.‘-C(pl")

av ( 3.43.7 )

_;;5. = - z;wﬂcpf {4 +6C ¢ +AN( 2~3C) c,o°2}

¥}

so that there is a half—plane of negative semidefinite dVS/d“'c
“2bove and to the right of' the straight line through B with
the equation

¢ 4 6C ( .
= —— - 3.46.8 )
Y2 = TR(2=30) J(2—30) %

since ¢, =0 is the set wy and the line ( 3.48.8) is Wy . It is

seen that V3 and V4 are respectvively the particular limiiting

cases of V. in which C=0 and C=2/3, and that one is now

5
considering a hali—plane of negaivive semldefinite dVE/d'i: whose
straight-line boundary through B may be inclined with any

negative gradient between the horizonval and the vertical.

The form of V. is clearly similar to that of V4$ specific—

5
ally, the contour V5=0 lies invthe half—plane cpla-*;’-l/c,, and
point B lies on the contour Vszl-— G+ 4/N ( see Figure 3.20) ,
By considering the discriminant of the cubic Vsqulz-z- Cq)ls it is
found that the contour with the saddle point is V5=4/27 ¢?, that
S is at gy =—2/3C, ¢, =0, and that S again lies on w,: thus,

the contour. through B forms a closed path around the origin o
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long as 1 G+ 4/N << 4/27 G
f.e. if NS 108 C2/(2—-3C)% (14 3C) ( 3.43.9)

The gradient at a point on any contour is given by

2¢,—2 = — 29 — 30, (3.4d.10 )

so that the loci of extrema are the lines gy =0 and q)l=-2/30‘;
by considering the next higher derivative, it is found that no
inflexions occur on the closed—path portions of contours for
which Vg << 4/27 ¢° ., Now, from ( 3.44.10 ), the gradient at B of
the contour through it is —AN (2—3C)/4, while the gradient of
the line Wy, eguation ( 3.4d.8), is — 6C/ATT (2= 30), Therefore
the contour lies, locally, iahove and to the right of* +the line
at B if they are tangent there; equating the gradients gives

the condition for tangency as
N = 24 G/(2~3C)? ((3.4d.11)

If the two conditions ( 3.4d.9) and (3.44.11 ) are taken together,
since 24 C (1 + 3C) == 108 02 reduces o the prescribed restriction
¢ << 2/3, the conditions may both be satisfied: i.e. if

N = 24 ¢/(2—3C) 2, the contour at B is tangent to Wo and forms a
closed region around A, PFinally, since this contour is closed
and therefore has no inflexions on it, the cloged region must

lie entirely "above and to the right of* w,: i.e, in the region
of nega‘tive‘a semidefinite dvs/d‘t:. To complete the descripiion of

this situation, the intersections of conbour Vg = 1—-C+ 4/N
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with Wo when N = 24 C/(2-—3C)2 are given by the roots of

2Cp 2+ (243C) gf +4py +(2=C) =0

so that there is double contact at By @y =—=1, and the thixd
intersection is at ( C—2)/2C¢: the 1as_t mentioned lies on thne

branch of the contour to the left of that with the saddle point,

since ( ¢—=2)/20<C —~2/3C for ¢ 2/3.

Because all the conditions in the Theorem of Section 3.3
are met,; the foregoing has established that a further region of

asymp'tb'tie stability exists, whose boundary QS ls described by
31\“?12 + 3N (¢') 24 {2(N+ 2) — 4N + 1]<913 =N+8+ 4N+l (3.4@.12_)

The intercept of QB with the line d(?l/d'tzo. for ¢; > 0, 1is
therefore given explicitly by

A3 (T + 8+ 4N+ 1 Y30+ 8—4afN+ 1) =N 8 4N+ 1
A(N+2)=84Fw+1

L (3.43.13)
The derivation of L5 from ( 3.44.12) and the equation of dg¢,/dt=0C
is only possible since one root of the resulting cubic equation,
namely 9q = — 1, is previously known, just as explained in

connection with L4 .

In summary, a comparison of the regions £ X QA, and {1 5 is

provided by Figure 3.21(a), which indicates the successive
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enlargements of the guaranteed regions of stability in the
general case of the system. A quantitative measure of ‘Q'n is
provided by the functions Ixn(N)g which are plotted in Figure
3.21(b). Ly, being equal %o 05, is independent of N, and L,
gives the greatest set of values of all, up to its limit of
validity N= 6-:-_ 2417 ¢ L3 represents no improvement over the
combination of Iy and L,, since ( 3.4¢.16 ) tends to zero with
increasing Ny but L 4 and L5 in turn have values progressively
greater than 045 , for N =6+ 2417, applications of L'HOpital 's

rule to { 3.4d.6) and ( 3.4d.13) show. that both L, and L5 tend

4
to 05 Wi'i:h increasing N. Thus, the best set of values for L
thained from the various V functions is
L =1 for 0 N« &0 ( approx. )
1> L > 081 ( approx. ) for 80 ( approx. ) < N 6+ 2417

and I = 1 for 6+ 2017 <N.

5

Before ieaving the form ( 3.4d4.7 )., it is worthwhile invest—
igating if V5 is the particular function of this class which
produces the greatest values foxr L, in view of the improvement
of L5 over L4_. The range of the coefficient C for consideration
is '

[2(Ns2)—adfivd /30 0 2/3

since the above expressions for the gradients of the contour

through B and of Wy show that, within this range, the contour

only intersects Wo for cpl.r{:._ — 1% @& region of stability may +then
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be formed by the part of this contour for cpl>—l and closed by
the line Gy = — 1, using the previous argument, for all

C =4 [2(N+ 2)-4JI\T—+—1}/3N . It is readily found that the inter—
sections of the boundary of such a reglon with the line dcpl/d"c=0

are given by
(cpl-:-l)[CNcp12+ ( 4+N—-CN)gol—~ ( 4+N-—GN)} = 0

so that the expression for L as a function of C and N is

.
T = U(MN—- ON)( 4 + N+ 3CN) + CN—4—N§/20N ( 3.44.14)

Partial differentiation of ( 3.4d4.14 ) with respect to C gives

S, E(;“"NMJ.M“LN— CN) 4 + N+ 3CN) —-CN—4—-N§

= J4d.1
3¢ 2 02N, J(2 + N— CO)(4 + N + 3Cil) (3.40.15)

which is not zero for any value of C within the range) There is
thus no ( true ) extremum of L with respect to C for these values

of C. However, if C=2/3, dL/OC K 0 for all N since

Mo w2 4120 N+ 144 < 12458  for all N

and if € = Ech-:- 2)-—-4JN+ 1}/3N, QL/dC is again negative for

all N since

5N+16—44JN+1 '7:\]?(1?-%-8-%—491\%*—1 )(3N+8—4JN+1)

for all N, ( This reduces to N‘d""}' 0). Thus, because L is a

continuous function of €, the maximum value of L for any N occurs

when C= EZ(I\H 2)-—4JN+13/3N‘; in other words, the best set L



Phase plane portrait for the second—order system

Figure 3.22 .

with a— type element, for ¢ = 0707, w, =1, I{%fr_j_o,gg‘l

K=1, and N=22-16;, showing the four applicable

regions of stability.
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obtainable from the form ( 3.44.7 ) is in fact 15 ]

The improvement of the best composite function L(N), as
defined above; over the uniform value 05 from L1 may again be
recorded diagrammatically as in Figure 3.16. Such a diagran
shows the greatest enlargements obtained of the regions of
guaranteed stability of Figure 3.12, the dlagram of stability
behaviour following stveps in-%; from initial stable values %1)'
However; since the boundary curves form a two—parameter rfamlly
in X and ¢, as indicated by Figure ;%16e a complete set of such
figures would be required for clarity, each one valid for one
value of ¢ and including the curves for a set of values of X. No
attempt. is made here to present such sets of curves, which may
e constructed from the definition of ¥ (::R/tz) and from the

following condition

K& o+ [2 L(I) + ﬂJ(l—K—Kaif)2+ 4K >

K%ioqL/J(l—K—K%O)2-k4I{ ( 3.4d.16)
of which ( 3.3.15) and ( 3.4a.6 ) are particular instances.

In conclusion of this section, another representative phase-—~
plane portrait for this system is shown in Figure 3.22, which
has been drawn by the same methbd of isoclines as has Figure 3.6,
The four fegions of stability ( there islno.flz for N= 22:16 ) are

superimposed, demonstrating the distortion of their shapes which
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accompanies the transformation from the (Pl_.(?v‘? system of variables
back to the phase-plane: see the previous figure. It is evident
that the boundary QB runs very close to considerable portions
of the separatrices BD and BE which form the actual region of
stability, but there is still an undevestimate ( 17°8L) of the
point at which BD crosses the positive Kf&o axis, which appears To -

be 21 approximately.

3.5 . Correlation with the rooits-~surface

To correlate the time behaviour of solutions with the roots—
surface, an attempt has firstly been made to obtain a closed —
form solution %o equation ( 3.2.1), which describes the large-—
step response and which is repeated below for convenience.

2

a°s a6
;—9 ; 2‘;%";‘9'* wn2(1 +K=Kg o) + wnzx (%o)2 = wf K9 . (3.5.1)
+ + : ,

A possible solution to an equation of the above type may be
achieved by the following transformation; listed in the cowmpre-—
hensive catalogue of differential equations and their solutions
by Murphy202 :
let %O('t) =u(z) v(t) +w(t) ; 2=0(%)
where 2(v'/¥) + (0" /0') = — 2L -
(vt/v) + (" /") L, (3.5.2)
wlEv = C(g*)?

_ YU | 204
and —2w “Kws (v'/v) + 22;wn(v’/v) + 0 (1+K=Kg o)
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By this, equation ( 3.5.1) is transformed to
w"(2) = Cu® + G(2) (3.5.3)

but as G(2) is not linear, — G=4A+ B/Z% —, equation ( 3.5.3) has
movable singular points in its solution; and no closed form
solution of ( 3.5.1) is possible., The effort expended in the
applications of Lyapunov's Direct Method follows; of course,
from the impossibility of achieving a closed form solution which
would likewlise yield information about the stabiliity of the

systen,

In some situations, it is known that an established Lyapunov
functlion can be made to yield limited infoxrmation about the time
behaviour of solutions within the guaranteed region of stabilivwy.
A figure of mexit n is defined as

n= ("g/v)min

being the minimum value of this expression within (2 v an estimate
of the largest time constant of respoﬁses is then given by 1/%.
However, a finite value for this time constant is only achieved
if dV/d+t is negative definite throughout {L, and since the time
derivative of any Lyapunov function in the system considered is

at best negative semidefinite, no useful estimate of the time
behaviour is possible in this way. In any case; if a result were
obtained for 7n, it would only give a maximum decay time applicable

to all respbnses within {L, which would be of no value in
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correlating the different time behaviours ol solutions from
different initial conditions with the characteristics of the

roots— surface.

An attempt to obtain equivalent natural frequency and
damping factor for responses has followed a method of "itime—

21

varying amplitude and phase' due to Grensted™ . Thus, the actual

response from ( 3.5.1) is represented by the form

§ =90 + a(t) sind (%) | ( 3.5.4)

in which a(t) and ¢(t), the time— varying amplitude and phas‘e
respectively, are determined by ( 3.5.4 ) satisfying ( 3.5.1) a{:
all instants of time. But rather than continuing with a and ¢ ,
make the following definitions of time- varying frequency and

damping factor.

t .
. —Soc'wndt
define (! =28 /a0 or a(t) = e l"
ALY
vb ‘ ( 3.5.5 )
and w'= dy/dt or (%) =S w' dt
o
so that ( 3.5.4 ) becomes
t ' v
-S Z;fwnd't +
%0=%0f'+ Ae 0 sin(Sow"d't +¢) (3.5.6)

~in terms of the equivalent natural frequency, w', and the
equivalent damping factor, §', where A and ¢ are arbitraxy

constants.
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Substitution of this form for 4 in ( 3.5.1) gives

5 21+K(1-:-%O

| . 2
T
Y 2_, 4z’ £
(Z'w ) = (") —wnué-_t—-e 205w+ w0 - sin (S w'dt+g)
+ e 0
+ dw' _ 20'w'w, + 20w'w,_ | cos (Stw‘dt + cp) (3.5.7)
Lat . . 0
-t.
....S §lw A%t -
+ 20’Khe O l-—cosz(g w'dt + 0 )= 0
2 1 0

The satisfaction of ( 3.5.7 ) at all instants of time requires
that éll its three terms are separately zero by virtue of the
forms of w'(t) and L'(t): +this is clearly impossible, and a first
approximation ignores the third term whose coefficient, involving
a negative exponential, decreases with time. The vanishing of

the coefficients of the first two terms therefore réquires that

2
1+K(1+9,)
w 2 Ofl +(C'wn)2-—w

(0% = wf
1-;-%0f

ac! .. 2
— _.QCC w
at n

n

' 2 (3.5.8)
and A -g-w—/w'wn = + -g-(—w-—)——/zl.(w')zwn :

2 at dt
which may be solved for by a 'converging iteration process.

1y 2 ;
(wo) = CO = 0

] 2 (@] . 1
(wl) = wn 1 o ' Cl = {
T of (3.5.9)
. ) 1+ K(L+9.)2 ) e
(wz) =wn 1+ 0 - ; Cé'—’z:» .
of

'2 |2 . ] ?
-(w3). = (wz) ' C3 = 62
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The resulting expressions for w'(t) and '(t) are not in
fact functions of time as allowed for by the method, and are
simply the values for the small-signal natural frequency and
damping factor as given by ( 3.1.6 ), evaluated at the final value
of output. This is because the ignored third term of ( 3.5.7)
represents the whole noniinear effect of the system. IFigure 3.23
- shows the accuracy of this approximation by means of three step
responses simulated on an analogue compuier, for the procesé’
with K=1, w =1 and £=0707 | the result ( 3.5.9) gives values
for w'/w,  of 141, 1°68, and 193 for §,.= 1, 2 and 3 respectively,
while the actual values from the figure each appear to be almost
constant throughout a response at the values 159, 185, and 2:006
respectively; ( 3a5.9 ) also gives a constant value for ' of
0707 compared with the computed values of 048, 056, and 062
initially ( as determined on the basis of initiel overshoot ).

all of which tend to 0707 as the oscillations are damped out.

A better approximation has been sought by extending the
method of Grensted to include a "correction coefficient™ (%) in
the equivalent form ( 3.5.6): it was hoped that a suitable choice
of e(t) would produce functions w'(t) and £'(%) which, being
time — varying, would give a ‘oe‘t’cer representa%“ibn of actual

responses. Proceeding thus, in place of ( 3.5.6 ) appears

% _
-S z 'wnd't

| t
'&0 = 'sof’*‘Ae(t) e 0 sin (gow'd"u-g-q)) (3.5.10)

PONE I TP



— 144 -

and the vanishing of the coefficients of the first two terms of

the corresponding equation to ( 3.5.7 ) produces the equations

2
1+X(1+9 ) oy
2 2 of’ . 2 ag de
(w') =W, T~ o . (C“wn) —wn'“a“%-—z(ﬁwn+7/e)2;‘wn
& of a’g
"'---*“"/~E + 25w, &5 (3.5.11)
as 2 1as
v
and Z;' -\..}-%}.—/w W _g_ld"‘/w £ = C %d((-*) ) /['((,0 ) (.l) J_-t_d_E/w €

rather than (3.5.8). In obtaining ( 3.5.11 ), the term
.~G e
—~§OZ; wno:s

has been ignored: +to minimise the misrepresentation due to this,

"
2 2/ . .2 .
w ‘KA e°(%) e sin <§Ow'du+cp>

assume the simplest form e(t) =1+ ¢t and minimise the time
integral I of the neglected Term with respeet to ¢, where
,t

% oL
. » -—S 4 wndc ) %

I = (l+ct)ce sin (g w“d”c-;-cp)dm‘:

O 0

The resulting equation for the vanishing of dI/dc is unworkable,
unless to a first approximation w' and ' are assumed to be
constants ( only in connection with this equation )i in this
event, the third equation along with the pair ( 3.5.11) to define

w'(t) and g'(t) appears as:
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C'wn [(C'wn)? -1-4((»?“)23 34 owt (Z;'wn)S E(C'wn)Z-;- 4((»')2} (2w' cos 29 +
;'w, sin 20) + (C“wn)ﬁ’ [(ann)2+ 4(@‘)23 (2w? sin 29—%'w, cos 2¢)
+ c{z [(C“wn)z.:r 4(03‘)2_? 3 +8w‘(z;'wn)4' (2w' cos 2¢ +c‘wn sin 29)

+ 2(c'mn)3€(c"wn)2-4(w“)2-§ (20! sin 2<;>-‘-2;’wn cos 2@)} = 0

2w ( Z;‘wn--c)

1i

where sin 2¢

(gtay—c) %+ (w)?

. 2 N2
(C'w = c) = (")

cos 20 = .
g 2 iy 2
(C'w, —ce)*+(u?)
n
The complexity of these equations is obvious. no ‘solution has
been found, nor has a better approximation to the form of respon—
ses by extension of the method of Grensted using any other form

of function =(t).

The possibility has also been investigated of an extension
to the methods, in Section 2.1, producing equivalent time
constants for first—order systems. However, it is apparent that
any approach based on the exact solution of the response equation
— as the integral criterion of Section 2.1 — is futile, since
this is unobtainable; attempts to extend the average derivative

critexrion; using either

2
| - 2 4=y d%O
Tt = 202 (90 94)/2( —3 +2(:wn';:>av.° W' = Tu /g
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| de-&o as, %, a%y as,
‘where ( 4—25wn;--)av = <—-mm—u2Qw -—> d%
d't2 d% %of 00 %O o dt

%
or ?—.',“--Z;mz(w‘af OO)/JE(~——-—— 24w, “U)I, M. s, w‘:Cwn/?;'

2 3 @’E} & "2
a=g & 2 of,d"% a3 . 2
where (——~9-+24w uug)_ = x < O-&Z@w O) a<
2 Il dh‘ J:'G m. S. (.\? _— @ 9 n d‘t O
at ’ o1 “ooVg  dat”

have resulted in pooxr representation of typical respounses by an
equivalent second—oxder form., This sori of criterion appears ©o
be incapable of extension to a second—order equation, since two
independent parameters are to be determined by some averaging

process on a single differential equation.

The conclusions to be drawn are

(1) +that scant information is obtainable on the time behaviour
of solutions which would allow of correlation with the
movements of the small—signal roots in the roots-surface. The
only result in this connection is that the actual response may
be approximated by an equivalent second—order linear form,
whose constant values of natural frequency and damping factoxr
correspond to the small-signal roots at the final value of
output: such a representation is obviously of limited value
in large—scale responses:

(i) that, although for the companion first-order system with
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an o— element of Section 2.1 its roots—surface may predict the
stability behaviour, the roots—surface of the second—order
system fails in this way. It does still indicate that responses
are stable from initially unstable states following negative
steps of input, but fails to indicate the presence, and to
define the limits, of the region of instability of Figure 3.12.
in other words, the small-—signal roois always have negative
real parts for %Oe“)--l. yet it has been shown that responses
may be unstable from initially stable states if the input step

is negative and lies within prescribed limits.,
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\9’ | K(T1D+i) \90'
D(T,D+ 1)

Figure 4l.l: Block diagram of a second-—ordexr process which
incorporates a B— type gain element and nay
represent the nuclear reactor.



CHAPTER 4

The Control of a Second— Order Process with

A B— Type Gain Element

4,1 Introductory aspects

Rather than study the corresponding process with a B— type
gain element whose behaviour is obtainable by extension from that
of the process with an a— type element of Chapter 3, the - type
second — order process chosen for iunvestigation has one zero and
one pole at the origin in ite dynamics, as shown in PFigure 4.1.

The characteristic differential equation is apparently

%, ) =2 c ey (
T-———-—-+ 1-KT% -—-—K S+ T < .
Zdtz at 1d't o} _ 4 )

and two different cases must be distinguished, where

I: 2,>T I 5[‘1<T2.

1 2 !
As mentioned in the Introduction, this process ( in case I )
represents the nuclear reactor on a one— point, one delayed—

neutron- group basis, for which the differential equations are

dn= 8k_5n+h0 : 4ac _ -@n—-?\c
dt 1 at
o ' . (4.1.2)
adn dn d 8k
or l—= + Al -~ 38k - (A Sk ¢ == = O
» 2 (B+ . )d ( P ) n

where - n = neutron population

- 149 -
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8k = reactivity ( input)
C = delayed—neutron population
B = total fraction of delayed neutrons

1l = generation time of neutrons

and A decay time of delayed neutrons

As follows from the relevant general form ( 1.4.2), the
small=signal transfer function for either case I or I of this
process is

6%0(1)) K9, o ( Tp+1 )

= (4.1.3)
8¢(p) p(Top+1)

which is identical dynamically to the process itself, and in

‘ which the gain varies proportionally to the mean output level.
The roots—surface therefore reduces to the conventional roots—
locus, as mentioned in Section 1.4, on which the small-signal
roots lie at positions corresponding to the variable gain, being

only a second-order system, the roots are known explicitly as

g.;.jw:-{ +1_+_,J(K -;-1)2 4K, mz]/zmz (4.1.4)

In case I, the root paths lie only in the real plane, but in
case II the roots become complex conjugates for a range of values
of K«‘.‘ro e * To define the forms of the root paths, the derivative
of (4.1.4) with respect to K9 is |

| (K% T1+l) - 207

-—[ml 2] 21,
:\Rm oI +1)° -4Kee N




Figure 4.2 + Roots— surfaces for a second —order process with
a p—type gain element in

(a) case I, Tl‘;" T2 (v) case I, T,> T4y
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so that the gradients do/d K9, at K§ =0 are —1and (T, Tl)/’l.‘z,
and the gradient as K9  tends to Loo is —T:L/EE2 . The roots-—
surface for case I therefore appears ( in two dimensions ) as in
Figure 4.2(a), and that for case I ( in three dimensions ) as in
Pigure 4.2(b). In the latter figure, the shape formed by the
complex portion of the roots paths is an ellipse, since its
projection on the ¢, jw plane is a circle and its projection on
the o, K%oe plane is a straight line! identification from (4.1.4)
of the real and imaginary parts of the roots in this region,
followed by elimination of the parameter K%O o+ 8lves the equation

of this projection to be

wé + (o+ /14 )2 = (2= 1y )/ml2 T,

while the projection on the real plane is part of the line

o =—(Kg T, +1)/20, .

The static characteristic of the closed - loop system is the
same as that of the special case of the first-—order system with
a B—type element, Figure 2.15(b). For any value of K& o the
output may have the same value or be zero. The roois—surface
indicates for either case that, if Kei";' O, equilibrium at ‘(}o a%i
is stable, and that, if K%i< 0, equilibrium at %O -_-\‘}i is unstable
due to the root in the "right half space®, but it does not

indicate whether the equilibrium at €. = 0 ( zero gain) is stable

)
or unstable, since this is the critical case of a small—signal
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pole at the origin: this point is decided below.

4,2 The phase portraits for transient responses

This Section demonstrates again the value of considering
-the complete phase portrait of a system, Jjust as in Section 3.2
the ‘behaviour in the general case of the previous system was
defined by such consideration. The input to the closed-loop
system in hand is assumed to have the value 'Sif for t+>0% at
t=0, the output may be in any state, and its response is
according 1o equé,tion (4.1.1) in which ¥=9;=9 . 4=%, and
a% /at= 0y i.e. %o

2

d «3-0 : : d%o
‘1'2 " + (1--Kfl'.‘1if+ 2KT1%0)—5;- + K(-S-o—'ii_i_f)w‘}O:Of (4.2.1)
at :

The critical points in the phase plane of § and dero/d'b.

corresponding to equilibrium states of the system, are at
(4) =% d»S-O/d't=0 and (B) § =0, a¢/av=0 .

As mentioned above, the nature of A is giv»en by the roots-surface
for all ‘values of {lﬁ_f excepl zero, when A and B are coincident,
but the nature of B is as yet undetermined. To be precise, the
roots—surface shows that A is a saddle point in either case I ox
I if K&j_f<0, that A is a stable node in case I if K%if‘:a- 0, and
that 4 is either a stable node or a stable focus in case I if

K-&if> C. 1t is a stable focus if
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Singularity A | Singularity B
at § = 4., at § = 0
K%f> 0 Stable Node saddle Point
H
[¢)]
3 _
© Kg o< O Saddle Point Stable Node
K8 .= b and
Yr 2 Stable Node Saddle Point
82 K§ >0
%
o | P> K% .>a | Stable Pocus | Saddle point
@
g | K§ . —~b and
& | Murs Saddle Point | Stable Node
—a <Ky, <O
-b L K%_f-ti -8 Saddle Point Stable Focus

a = [2n,—1 ~2[1,(0,—1)) | /2

b = [2n,—1 42 o (0, ~-1) /2"

Pigure 4.3 : Natures of the singularities A and B of the
second — order system with a B— type gain element .



lom,— 1 —2 [0, (T,— 1)) | /02 < Ky, < [20,— 1y + 2 JT,(T,—1,) | /22

The nature of B may be discovered by forming the relevant
variational equations from ( 4.2.1), but it may also be found by
applying to ( 4.2.1) the following linear transformation

. — )
& =9-%, (4.2.2)

s0 that the system is now described by the equation

0% ] :
a §> . dﬁ) '
——n N 1 — Q. Q KW B
T, . + (1+K.Lla‘§_f 2K.D1% ) e + K( & +‘f‘f)eo =0 (4.2.3)

with s:mgularltles A'=E A at %' =0, B'EB at %" ==l Since
(4.2 Ey) is identical to ( 4.2.3) if -%f in the former is replaced
by ""Q.Lf' the nature of the singularity B at ""o =0 for positive
K%if is identical to the nature of B' at %0' ="'&if‘ i.e., of A av

L =% p Tor negative K&, and vice versay which is %o say that

B is a saddle point in either case I or II if K{‘rif?O, tha-i: B is
a stable node in case I if K&_.Lf< 0, and that B is either a stable
node or a stable focus in case I if K%if< 0 as for A. The table
which is Figure 4.3 sums up the natures of the singularities as

derived.

At this stage, similar remarks may be made about the
appearance of the phase portrait for the general case of this
system as are made in Section 3.2, and supplemented by Figure 3.4,
for the previous system. It is not yet possible to name the

“"source and sink™ of the two separatrices of B to its right, and
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Figure 4.4 ¢ Isocline pattern Ffor the particular case of the
second — order system with B- element, for T, =2,



this point of central importance has to be determined by consid -
eration of the behaviour at infinity. However, in a particular
- case of equation (4.2.1), the finite phase portrait may be

obtained from the isoclines whose equations are found to be

dx‘}o K(%f—-eo )'90'

= (4.2.4)
at KTl( zsoueif) +(1+T2$) |

where S=d (d%o/dt)/d%o is the constant slope of trajectories on

a particular isocline,

Introducing the normalised phase variables cpl.-:%o/%if and
9= (d%o/d't)/.&if. equation ( 4.2.4 ) appears as,
K ( 1“""?1 ) (Pl

9o (4.2.5)

with & at ¢; =1, ¢5,=0 and B at ¢; =¢9,=0. Since 'thig form is
more complicated than the corresponding equation ( 3.2.5), it is
not possible to have a single pattern of isoclines wvalid for all
sets of values of Tl' T2 and K{‘if: however, when drawing the
isoclines for a particular set, as in Figure 4.4, it 1s useful

to note that

2
1 4

Q. =
80,8, +4 (1+ 1,8 )/mif

(4.2.6)

2

after the linear transformation €, =¢;—1/2, $,=¢,, in which
Sz:d%a/d-&i:d (deo/d‘t)/deo . This allows the use of symmetry, for
the two branches of the isocline S=-l/ﬁ32 have the origin |
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%l=%2=0 as a centre of symmetry: Ifurthermore, for the two
branches of any other isocline S, the origin is a centre of symm-—

etry for the two branches of the isocline S', where

S's—(8+2/1,) (4.2.7)

A principal feature of the isocline pattern is the existence
of a pair of isoclines whose braunches are straight lines. The
isocline with S=— ( K§ o1 +1 )/T2 consists of the lines

9 == 91/20

(4.2.8)
_ and (pl::l

while that for which S=( K o1, =1 )/mz- consists of the lines

Po= ( 1'—‘?1 )/2T1

(4.2.9)
and q)l.-.zo

In the pattern of Migure 4.4, these isoclines represent the

slopes of =3 and 1 respectively.

The actual directions of the separatrices at the saddle
point B follow from a procedure described in Section 3.2 . Thus,
differentiation of ( 4.2.5) with respect to 91 gives the direction
of the isocline S at any point ¢, as

2 2
a9, ) KDy ( 29— 297 =1) +K(1—29 X1 +1,8)/%, (4.2.10)

gy [xT) (29=2) + (1+T,8 )/&_.Lf]2
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Pigure 4.5 : A specimen phase plane portrait for the second— order
system with B — element, for Tl =2, T2 =1 and I{%if= 1:
case I,
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The actual directions of the separatrices at B are therefore the
roots of the equation

K p

S+1-K%fT

S (4.2.11)

I,

namely »81'2 _[K\‘}if’l?l 1...,J(1{%ifm1 1) .4K&ifme}/2m2

1

which are seen to be real for all K%_f except

_ [2‘.132— T, + 2T (T, = 1) | /12< g o< = [21, = ) — 20T (T, — )| /2.
The values 31'2 therefore correspond not only to the directions
of the separatrices of the saddle point at B for K%f:'ro but
also to the directions of trajectories at the stable node at B
when such exists. 4 similar procedure gives the following
expressions for the directions of the separatrices at the saddle
point at A for K%_f< 0 and the directions of trajectories at

the 'stable node at A when such exists:

- vy 2
S0 = [- K T — 1-;./(K‘9:i.fml +1)°—4Kg (1, }/21‘2 (4.2.12)

For illustration in a typical case, the completed phase
plane portrait for Ty =2, I,=1, K¢ =1 (case I) is shown in
Figure 4.5. In this particular instance, the separatrix
approaching B from 9,7 0 does not appear to have previously
crossed the ¢, axis, in contrast to the behaviour of the
corresponding separatrix of the previous system. To see whether
this is representative of bhoth cases I and I in general, the

behaviour at infinity must be investigated.
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The first transformation to equation ( 4.2.1) of the two

introduced in Section 3.2 for the behaviour at infinity consists

in defining . ds
- o _ 1 -
’ ( 4- 2013 )
or % = dt/d%o v ou= 9 dt/d—&o , 4t = at/Z
from which  Z° d(-d-‘-?o) = — A%
av
2249 = Zdu-udz
Thus, for Z =0, 7 % éggigzggzg as t increases (4.2.14)
Equation ( 4.2.1) is then transformed to
' -
3z . o
£ [K(u— 4 ¢2) uZ + (2- K8 02,3+ 2KTyu) 2] /2,
. du udZ ' (4.2.15)
d. ——— Z e mosaRat [ &
an d< ¥ Zdn 7
2
= 2+ [K(u~ g ;2) u® 5 (5-KQ (7,7 + 2KTy0) u | /T,

-
By inspection, this system has two singular points at infinity,

Z2=0, where u=0 and ~-—2T:L . Moreover, these are the only singular

points, for if Zs£ O the second of equations (4.2.,15) gives

=Z+2 .0
O +Z 0

which is incompatible with Z £ O,

Considering the form firstly of the singularity at Z2=u=0,

the variational equations of (4.2.15) at this point give

a7 at




- 162 —

so that the nature of ithils eomplex gingularity must also be
determined by the behaviour of trajectories near it as Lollows .
the gradient of a trajectory in the u, Z plane is

K{u—& .2) us (Z=XK9 7%+ 2KT. 1) :
az _ % e Yoty 1. . (1.2.16)

du 2 0
T2+ K(u-—%ifZ) w4 (Z_Kaifculé + 2KTyu) u

2
(i) In the neighbourhood of the singularity, on the line &7 = éu,
Az ~ ~
T a1+ 2KT, - K&, o0y ) 6Z/T2 A2 Cy 82
and _gi_n_u = 07
dT
(i) In the neighbourhood of the singularity, on the line 8% =-— du,

o8 o
and. du ~~ 84
dz

(i1) On the Z axis, u=0 and

a7z -
= = (1_1{%_1_le) Z/T2= C3 2= Cy 8Z near the origin /
% = 2 = 80Z neaxr the origin

¢

(iv) Close to the u axis, i.e. for Z=48% and §u§§> )cSZl. 'equa"tion

(4.2.16 ) reduces to

az ., 82
du u
4% . positive ) -
so for '82 >0, o is small and gnega‘cive) as w20, and

47 . negativeg =
for &2 <‘0, ™ is small and gpositive as u< 0.
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Figure 4.6 ¢ Nature of the singularity at infinity, Z=u=0,
for Cl> 0, C,< Q. C3< 0. ( Directions of
trajectories on various lines are in brackets ).



_164,_

The sense of direction is given to the trajectories from

au _, 2
= = K (u+ 20, ) u/1,

At

so that d—-:z as 82 20 if u> 0

dt

and i‘;>o as 620 if 0 > u > — 21, .

(v) 4Z/du becomes infinite on the line

Ku® (u+ 20y )

- K%ifu(u+Tl)f—T2-u
~ = 2KT, (8u)%/T, if us=bu

which is a parabola, concave downwards, on which

3 2

u” (u+ 2T, ) |
az _ _ L _, & — 417K 5(u) /0 2
aw [K&gu(u-ﬁ-'l“ ) = T,~u]

Thus, for du = 0, 42/d% € 0 gince 8Z< 0 in either case.
(vi) dZ/du is zero on Z=0 and on the line

Ku ( u+ 2‘1"1)

2 =
I{% £9+ KQ_.Lle-- 1
2KT
R~z -t du & — QKTléu/CB near thne origin.
K&ifi‘l— 1

On this line, du/dt1 =2 & — 2I{T16u/03 .

There is now sufficient information 1o construct a sketch,

as in PFigure 4.6, of the singularity, but it is to bve noted that
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the slopes of the trajectories on the lines 8Z= X du and u=0, as
well as the slope of the line on which d%/du=0, depend on the

constants Cl o 03. The given Pigure shows how the trajectorlies
must behave in the vicinity of the origin for a set of paramevers

for which

G>O'?C<O‘C<OO

1 2

3
Recognising that 017 03 '702, it is readily seen that the
behaviour is not radically different foxr any other set of
parameters K, Tl and %if  and that all trajectories for 2> 0
pass by the singularity while those for Z2<< 0 form closed paths,

starting and terminating at the singularity.

-Turning now to the form of the singularity at Z2=0, u=-—-2'l‘19

the variational equations of (4.2.15) at this point give

482 _ 5.52 + 0.5u

a7 :

dsu T.e— 2T — 2K4, 1.2 SXT.2
—=_ 2 71 Qif'l.csz b ——, 5u
d< T2 TQ

so0 that once more the singularity is complex in nature. The
expression ( 4.2.16 ) for the gradient of itrajectories is, of
course, still appropriate and is used again to give the direciions
of trajectories on selected lines, since the equations of

isoclines are 100 complicated.

(i) On the line Z=u=+ 20y, in the neighbourhood of the singularity

where Z2=3872 ~ 0,
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A 1+ Kg o0 — 2K2,
—

2 2
du Tz-—- 2@1 + 4.KT1 — 2&9& ffﬂl

82 = 04 82

du 2 m 2 r s
and Folad ( Dy 20y + 4KT" = 2Kg o1 ) 5.&/@2 = 05 8%

(i) On the line Z=—u—2T, ; in the neighbourhood of the
singularity where 2=387 = O,
1+ K“ﬁi le 4+ QKTIL

4z 82 = Gy 82

du 2 )
Tz— 2T1-- 4.KT1 - 2K~':\if.l.1

du 2 2 .
and . ~ (D= 20y = 4KD;" = 2K o247 ) 62/’1‘2 = Gy 32
(#) On the line U 2D
1 K%ifﬁ.‘l

&z
= : -5

ar Iy— 2Ly =K o1

Z-.-.-CBZ

du 2y -
roll (2,20 — 2K 27 ) Z/T, = Cq 2

and

(iv) Close to the u axis, i.e. for =382 and ju+ 20|33 |82},
equation ( 4.2,16 ) again reduces to

az . 8%

o

au u
as in the case of the singularity at the origin, with the
result that

negative ) = _

az - .
positive ) for either u << 21.1 .

for 82 £ 0, == is small and E
du

Likewise, the sense of direction is again given by

ﬂzK(u-a-QTl)uz/Tz
as :
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A

so that %e‘?o as 822 0 if u>— 20,
T

and-@;‘?- 0 as 822 0 if u<< —20. .
d'c 1

(v) As previously, d4Z/du becomes infinite on the line

Ku® (u+2D,)

4 =
K%fu( u+ Tq ) — T,—u
4X1 2
which is d8Z= du= ClO Sdu if u=-2T, + du
2 1
2K, i'ml — 'l‘2 + ZT

This is a straight line through 2=0, u=-— 2&‘31, on which

2n 3
o K=

aw [2&%5&12 20 — 9:‘2} 2

Thus, for du< O, &%/4% €0 in view of condition ( 4.2.14 ).

(vi) Again as before, dZ/du is zero on Z=0 and on the line

Ku(u+ 20 )

72 = —
K%ifu + K&i i‘Tl -1
2K‘l‘1
which is 62 & ——meiew Su = (.. SU near u=-—27. .
11 1
.{% f 1'\" 1

This is another straight line through the singularity on which

du/dt = 2 = Ciq du

A sketch of the singularity may now be made, but in this
case the slopes of the svrajectories on all the selected lines, as
well as the slopes of the lines on which dZ2/du=0 and oo, depend

on the constanis 04_ TO cll“ Their values rely on the value of
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Figure 4.8 ¢ Nature of the singularity at infinity, 2=0

11:-—2T1? for 05‘ 010 and 011 positive, other
C, negative, ( Directions of trajectories on

various lines are in brackets ) .
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'%‘_f for a given set of Tl' T, and X, and the diagram in Figure 4.7
indicates the ranges of Kaif' within which each coefficient is

positive.

Using the set of parameters T1=2. T2=1. K=1 and %i‘sl'
which are compatible with those for which Figure 4.5 1s drawn,
the nature of the ftrajectories in the neighbourhood of this
singularity must be as shown in Figure 4.8. In this case;
constants 05, clO and Cll are positive while the other five are
negative. 3By considering the different possible sets of constants
as Tl'. T2. X and «E}if vary, it may be obsexrved that the nature of
the singularity is basically unai*cered from that shown. for Z2>0
the trajectories are like those from an unstable node, while for

Z<<Q they are like those from a saddle point.

The separatrix for 2<<0 and the trajectory to which all
others emanating from the singularity for Z >0 are tangent may
lie in the fourth and second quadrants respectively, however,
rather than in the third and first as shown: the condition for
this to happen is found from obtaining the direction of the
separatrix and nodal trajectory at the singularity, by the method
previously described. Thus, by differentiating equation (4.2.16
— in which dZ/du has been set equal to a comstant S — with respec
to u, by setting 2=0 and u=-—-2(£‘l in the resulting equation, and
then by equating to S the direction d2/du of the isocline as it

appears, one obtains S=0 or
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2
4Kf{.‘1

S = = Clo (4-2-17)

2
21({‘,1le + 2T1-—- T2

The separatrix and nodal trajectory therefore lie in the second

and fourth quadrants if ClO< O, d.e,

if Ky o< (Ty—2my )/207 (4.2.18)

The second transformation to equation ( 4.2.1 ) must now be

| considered in case a singularity at infinity exists at the two

points of the phase plane not represented in the first transfoxrm—

ation but represented in the second. Thus,

let §=1/7Z, ay/at=v/Z2, at=2Zds

for which 22 d%o - —da%

ag
223(—2) = Zdv — vaz
at |

and equation ( 4.2.1) is transformed to

-q..% == —--'V'Z2
dt
av ZaT
= [K(4p8=1) = ( Z2=Kg 1 7+ 2KT, ) v] /1, —v2 2
J

The only singular points of this system are at Z=0, v=—1/2T1
end v=0, 2=1/% % the former is that in the first transform—
ation at 2=0, .-.=-2Tl. and the latter is the singularity at A
in the finite region of the phase plane. No new singularity is

therefore revealed.



>

The change from t to 7 reverses the indicabed directions of
trajectories for Z2<< 0.

Figure 4.9 ¢ Compositions of the complex singularities at
(a) 2=0, u::-ZTl () Z=u=0 .
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To discover the constituents of the two complex singularities
at infinity, the rule (3;2.15) is again invoked. In this system.
once more S=1 and N+ F=1, so that the number of nodes at the
two singularities at infinity exceeds the number of saddle points
there by one. Thus it may be that the singularity at'u=-2T1
derives from the coalition of one unstable ( "improper"™ ) node
" and one saddle point, and that the singularity at u=0 derives
from the coalition of one unstable ( improper ) node of a 3pécia1
type, one stable ( improper ) node of the same special +type, and
one saddle point of a special type. The feasibility of the above
is justified by the diagrams of Figure 4.9, which show how this
could come about. The special nature of the nodes mentioned
above is that| wheieas an improper node normallylhas two dsolated
trajectories with a common direction different to that of all the
other trajectories, these special trajectories share the same
direction ( the u axis ) as all others in these two nodes; the
special nature of the saddle point at u=0 is similar, in that
the two, normally distinct, directions of the separatrices are
identical ( the w axis ) so that two of the usual four quadrants

of the saddle point do not exist.

The question of whether or not the phase plane portrait of
Figure 4.5 is representative of both cases I and Il in general
is now given attention. The point of principal interest is the

location of the whole of the separatrix approaching B from @lzvo
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( when K& >0 ), which in Figure 4.5 appears to lie completely
in the fouxrth quadraht, or approaching A from q;l>* O when K%. f< C.
By drawing the salient features on the sphere, Figure 4,10, it
- can readily be seen that this separatrix may stem from the
singularity at Z=u=0 — in which case it does lie completely in
the fourth quadrant — but that it may equally well stem from the
unstvable node side of the singulaxity at Z2=0, u= -2qu in
which case 11 crosses the ¢, axis for ¢4 > 1. The matier may be
settled as follows, by considering the behaviour of the departing
separatrix from the saddle-point side of the singularity at Z=0,
= — 2T ¢ |
equation ( 4.2.17 ) gives the direction dZ/du of this
separatrix at the critical point to be cm'; there is a
connection, however, between the Ttwo expressions for the
direction of any trajectory in terms of the two different
co—ordinate systems, which is obtained thus from ( 4.2.13) ¢

a3

as. ¢ do :
since ——= -2, z2. .48 ( O)=(u~‘91g§)/u2
dt u doq  dg ds do’

do
_ 9
But 42/d¢, = —1/ 0.2 = — 2°
Qo ==L/ Qo =—

do, T ( 4.2.20)

It

so that finally



dc92
a
or dz = (Pl
du dcpz
(Pl'g"" - 9o
?1

Therefore, the corresponding direction dg,/dg; of the separ-—
atrix as it leaves the singularity at infinity is obtained by
setting u= -—2‘1_‘:L in ( 4.,2.20) and letting Z2 tend to zero from

a negative amount .

do 1
-—-—-g = Lim ( LY " ) ( 4e2 21 )
dc?l ' = — 0 ] 2-21 - E/Clo

sep X

Now this singularity lies at infinity in the 911 9o plane on
the line ¢,=—¢,/ 2Ty, since u=¢,/¢,=—2T; , and this line
is one of the straight—line branches of the isocline for
which §=— (Kg T, +1)/T,, equation (4.2.8): in the special

situation of

S=—( K%_le +1 )/TZ == 1/2T1 = dcpz/dcpl )iso cline

for which K& .=( T,— 21, )/20.2>>0 (4.2.22)
£ p— 2Ly 1

the separatrix from the singularity at infinity is also the
separatrix into the saddle point at B, and this special double
separatrix is part of the iso¢line dcpz/dcpl=—l/2Tl . Bquation
(4.2.20) implies that dZ/du= Cig=Foo along it. However,

if rather than this special situation there is

K> ( T,~20 )/202>0 (4.2.23)
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the constant C;, is positive and (4.2.21) shows that the
direction d@z/dml of the separatrix departing from the vicinity
of u==-2T1,ﬂZ==0 is slightly more negative than the slope
---1/2‘.Dl of the isocline branch: +this separatrix cannot
therefore cross this branch of the isocline anywhere and must
end up at the stable singularity A, while the separatrix into

B must originate from Z=u=0. ILastly, if condition (4.2.18)
applies, i.e. if ‘

0 <K < ( D, 27 ) /212 (4.2.24)

C10 is negative, the slope of the departing separatrix is

slightly less negative than —1/2T , and this separatrix must
bypass B to the left and end up at 2=u=0, while the separ-—
atrix into B must have crossed the positive g, axis in coming

ﬂmmZ=0.u=~2%3

To sum up, the behaviour at infinity has shown that the
phase plane portrait of Figure 4.5 is representative of the
system if Kﬁif:P-G. so long as

Kg o > ( T,— 21y ) /207
But if, instead, condition ( 4.2.24 ) applies, then a radically
different portrait obtains, which is similar to that of the
previous system in the possibility of responses being unstable
from initially stable states. For negative values of K& .. 2

similar argument to the above shows that Figure 4.5 ( only with

the roles of A and B interchanged ) is representative of the
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system in general so long as
Kg o < (20,-1,)/20°< 0
and that the different type of portrait is only in evidence if

(ep -1, )/2T12< K§ o< O (4.2.25)

4.3 The stability of large transient responses

In case I ( ‘.131>A T,) and case Il if T,< 2T,, neither of the
derived conditions ( 4.2.24) and (4.2.25) holds for any values
.of K‘D‘izﬁ“ so that Figure 4.5 is representative of the behaviour
in such systems., If %_0:7 0, responses from initially stable’
eq,uilibriﬁm states are therefore stable to %Oze&f if Q.i.f? 0 and
to 60= 0 if Q_I._fé 0y and if ? < 0, the initially stable state
is that of zero gain for 600= C, and responses are stable (%OEO)
if %._f<0 but unstable if &.Lf? 0.!..Reference to Section 2,4 then
shows that the stability diagram for step responses from initially
stable states, comstructed from the above statements, is identical
to that of Figure 2,15(¢) which need not be repeated; an identical
diagram is also obtained for the stability behaviour of such a
system for step responses from initially unstable equilibriun
states as belongs to the parallel first—order system of Section
2.4 . Thus, consideration alone of the entire phase plane poéOrirait
has defined the stability behaviour for this system in case I and
case II if T

2-5 2T . Also, since the nuclear reactor as repres—

ented by ( 4.1.2) belongs to case I and since §, represents
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Pigure 4.11: (a) Sketch phase portraits for
|92] < (2,—21y) /207K

(b) Stability diagram for the step response, from
initially stable equilidbrium states, of the
second—order system with B~ element, for Tz:r ZTI
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neutron flux which is by nature only positive, the first stablility
diagram of the pair indicates that step respomnses in power output
of a proportionally controlled reactor are stable to the demanded

power level for any size of step in demand in either direction.

In the excluded case II when T2=> 2T1. the diagram for
initially unstable equilibrium states can clearly be dismissed
from further consideration as being the same as that for the
other cases, as also can the portion of the diagram for initially
stable equilibrium states foru§n~<(L Howevexr, as regards the
completion of the latter diagram. Figure 4.5 is only represent—

-ative of the behaviour if
EVESS N )/2T12K
so that the diagram, Figure 4.11(b), is the same as that for the

othexr cases outwith the strip for K%_0>0 between the lines

Step in K§ =* == — kg,
2Tl

To £ill in the details in this strip., consider the two sketch
portraits of Figure 4.11l(a) which show the points L, and L, at
which the separatrices of interesi cross the ¢, axis, for the
cases of § . a positive value C < ( T,— 2T, )/2T°K and the
corresponding value - C: din view of the ghifting transformation
( 4.2.2) whereby the natures of A and B are interchanged, it is
readlly seen that the phase portrait in the second case is

identical to that of the first shifted to the left by C, so that
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the lengths ALl and BL2 are equal, say X. Then, for %i?=’c‘ at
the limiting value of %o =% = C+ X, the response is stable if

the step (= C— %, )> —~X; and for «‘%_f_-.:-- ¢, at the limiting

value of § =& =X, the response is stable if the step (=—-C-—~‘}io}
< —C~X; such pairs of points, as shown in Figure 4.11(d),

form a pair of lines which are symmetrically disposed about the
line bisecting the fourth qﬁadrant and lie within the strip.

They must stem from the origin of the diégram. but whether they
become asymptotic to the edges of the strip ( as shown ) or not

is conjecture at this stage.

Once again, therefore, the consideration alone of the entire
phase piane portrait has been sufficient fo define the stability
behaviour of the system, for T, >21,% in particular, it ha‘s
proved the existence and provided the general form of a region
of instability which is addifional to that of the corresponding

diagram for the other cases of the system.

4.4 Applications of Lyapunov's Direct Method

In order 1o obtain an analytical expression for one symmetric
half of the boundary of the additional region of instability of
Figure 4.11(b), the Direct Method of Lyapunov is again used.

- Proceeding from equation ( 4.2.3), since the stable singularity
A is suitably at §'=0, and B is at §'=—&,, it is preferable
to describe the system in terms of cpl=%°'/&if and a first way of
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deeompbsing this into a pair of first—order differential equations

produces

dcpl

PP ¥

(4.4.1)

dg |
LS [K&if (L1+9q)oq +(1+Kg Ty + 2Keifmlq)l)(?2]/m?-

at

On a comparison with equations ( 3.3.11) it is noticed that
(4.4.1) are of rather similar form, except for the additional
term in ¢ 9, in the second equation. the coefficients of the
terms in 97 and cplz are again equal. This partial similarity,
along with that of the shapes of the actual regions of stability
for the two systems, led to the initial trial of the following as

a Lyapunov function .
2 2 |
which is almost identical to function ( 3.3.12). Working only

with K\‘)i f'? 0, which will give the upper half of the required
boundary, it is then found that

dvy 5
which differs from the time derivative of function ( 3.3.12)
through the presence of the term in cplcpzzi however, as @22 stands

out as a factor, there is an infinite half-plane of negative
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semidefinite dVl/d'h on the positive side of the line
¢ = — (1+1/Kq T )/2

which is w, . while the ¢, axis is wq .

Frora the nature of the function Vl' which has already' been
recorded as Figure 3.11, it is olear that a region of positive
definite Vl contained by one of its contours and lying within
the area of negative semidefinite dVl/d't may form {1 - Thus, if
-12 - 1+1/K~E§LfT1)/2 ives Ko € < 1/T, ( since K{ﬁ_f‘?O), the
contour V1=1 with the saddle point at B encloses the largest
region which satisfies all the requirements of the Theorem quoted
and which is therefore nl: see Figure 4.12. But if K& .> 1/T
the contour must be used which corresponds to a closed curve
through the point ¢y == (L+ 1/K%_i.’.1?l Y/2, 9,=0. In the first
instance, the value L, of the intersection of 'Ql with the

positive Py axis is 0«5 | in the second, the resulting cubic

equation for the three intersections is ’
(1 +Kg oI, (1= 2KG oT,)
[2<91+1+ ][14-(1- Yo + b Egul Efl =0
g pT) 2K ¢y ( 2Kg 19 )
so that I’l = {l"éx‘%i.i‘ml"' ﬁJ(ZK%fT1)2—1]/4K%le (4.4.4)

which is less than 05 .

‘To construct now the required boundary of the strip on

Fgure 4.11, if K§ o= ( T,—20, )/21.° S /Ty, dee 4y >0, (>21, )
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then Ll==<}5 applies throughout the strip: +this means that
C+X=15 Qif for X =05 %..f v S0 that the upper boundary is a
straight line of gradient —1/3 and the guaranteed region of
stability locally is as shown in Figure 4.13. Bub if T, > 4T o
then L, = 05 only applies up to K p= 1/ T, and expression (4.4.4)
must be used thereafter up to I(Q_.Lf:( T,— 204 Y/ 23312 . this
expression decreases to a value of 0366 as ml—>o, so that the
upper boundary tends towards a straight line of gradient

— 0366/ 1366, i.e. —0:268.

Following on the above definition of the boundaries, use of
the method of Zubov has been explored in the chance of an
enlargement of the regions of guaranteed stability. Working with
the ¢y ¢, Systenm (4.4.1 ), however, attempits with the three
possibl'e quadratic forms of o(x,y) lead either to sets Wy which
include the origin or to forms dV2/d't which are too high in
order to be useful. As in the previous system, therefore, it
may prove valuable to consider different representations of the
systém (4.2.3)7 two such alternatives are

dcpl

. 2
at [Tz ¢ = (1 +XY Ty Yo7 —Kg £Tyoy ]/ %o

ag's

(4.4.5)

and
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1 {Tzqu— (1+X8 T, )gol]/mz
(4.4.6)

] “ 2] fm 2
—l {K%iszcpl(l + 2’1“1(9'2) “’“{K‘o'ii‘ o™ %%_le(l - K‘%‘.fml)}cplj}/%

Using ( 4.4.5) in which ¢, 5x and ¢/, =y for convenience, 4 is a%
the origin while B is at x= =1, y= ---Il./‘l‘2 . Por o(x,y) = 2::2 '

solution of the partial differential equation for Vo gives
Vo= T, (KQ o x° + Ty°) /K o(1+KQ 1)) ( positive definite)

. 4V, 2
for which -—é-%- =5 - E’rzy o+ K-Q_.Lf’flx-g- 1 K‘t}ifml}/(l +K{§_le) (4.4.7)

go that, since the y axis is Wy and the straight line
is Woi there is a useful half-plane of negative semidefinite

dv,/dt ""above and to the right of" this line. The winimum value

(c1) of v, on w, is veadily found as
Te( 1+K&ifi‘1)
Kgp Tp+ (Kg o Ty)°
establishing that the region bounded by the ellipse ﬂz. for
which

Cl'-‘-‘

(1+XKg 0,)°
\

+ I, 5° = i = (4.4.8)
T2 + K-Qrile

2

K§fx

is one of asymptotic stability, since Wiy is not a trajectory

within it.
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Pigure 4.14 ¢ Approximate simultaneous solution of the
equations of an ellipse and a parabola %o

determine Lz'
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To discover the expression for L, in the original ¢4. ¢,
system, one must now find the intersection for ¢, = 0 ofﬂ2 and
of the cuzrve 610;:,_/(31%::0v ices T,y = (1+ K-ﬁ‘a._fﬁ.‘l)x + K Ty x° .

Since this involves a quartic eguation, the explicit solution is
extremely complicated and is not quoted; however, a useful
approximation 1o L2 follows., Referring to Figure 4.14. since the
curve dcpl/d'b.:(} is a parabola councave upwards, it is clear that
an overestimate for the point x::Lz is obtained by using the
value x, of the intersection (I) of Q2 with the tangent to the
parabola at the origini however, if the sivraight line from the
origin to the point on the parabola corresponding to Xq is
considered, it is equally clear that the intersection J of .ﬁ.z
with this line provides a value X, which is an underestimate of
1.2 . This procedure may obviously be repeated, providing
successive upper and lower bounds which converge to L2 . However,
Xo provides sufficient accuracy, and is obtained thus . if the

two equations are written temporarily as

y2+ax2=b-

y =CX + dx2
then x12 = b/(a+ 02)

The straight line 0OJ is therefore

y = <c+d;\lb/(a+02))x

: 2
and so x22-.-.b/[a+02+ bd 2+20d/ sz
' a+c a+c¢
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Pigure 4.15: The regionﬂ3 of asymptotic stability for

the second-order system with a p- element.
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2 .
K8 (14-KQ. Y ) 1+4+K$ T Ko T
where a=;E£, b= Afl . C= T%f]'amidn E*l .
T 2
2 T2( T2 - K{‘&le ) s 2

From this lower bound on L2 an alternative boundary to that
of Figure 4.13 may be constructed for the strip of possible
instability. However, by comparing the results from.fll and.fle
for representative sets of Tl‘ T2 and K%jf. it is seen that L2
produces little or no improvement over the values of Ll' whose
form is much simpler than that for.xz. FPor this reason, this
application of the Zubov method is not carried through to the
~stage of a stability diagram like Figure 4.13.

Brief mention is lastly made of one further attempt to
obtain better boundaries. Continuing with the description (4.4.5)

of the system, if one investigates the now—familiar form
a2 2 3
Vy=3x + 30, /Ky p + 2%
it is found that

av

Ef = —6x° (1+x X 1+Ky Ty +Kg Ty x) /T,

Thus, the y axis is wy while both lines x= —1 and x-_—--].----ZL/K«‘}M."E1
are sets w,: see Figure 4.15. dV3/&t is therefore negative
semidefinite everywhere, except in the strip between these lines
where it is positive semidefinite. Using the V3 contour which

passes through B, and the fact that all trajectories cross x= -1

in the positive x direction, since on it
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1+K9 T Kg T
axo 1, ety _ Mty
at T, T, T,

it is proved that another region.§23 so formed is one of
asymptotic stability. However, once again when an attempt is
finally made to obtéin L3, one is confronted with a fourth—-order
equation; although in this case it has been arranged that one
root, namely-]..lis known, since the curves involved intersect
at By, one is still left with a cubic equation. Numerical examples
have indicated no significant improvement in L due to.f13, SO
that no attempt is recorded to find an expression for L3 from

this cubic.

4.5 Correlation with the roots — surface

Applications of the techniques of Section 3.5 to the sécond—
order system with a g-— element have shown them to be of no more
value than in their first application. One other approach has
been investigated for this system in order to correlate the time
behaviour of stable transient responses with the features of the

roots—surface (—loci ), which alone is reported.

This approach, largely empirical in nature, consisted in
defining values for the two equivalent time constants, oxr the
equivalent natural frequency and damping factor, from some form
of averaging process on the values of the small - perturbation

singularities within the range of transient variation. It is
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described with reference to a typigal set of time solutions,
Figure 4.16(a), obtained from an analogue computer, which are
for the case II systenm with T, =1, T,= 2, K=1 and «?E.Lf=10' '

49 /dt = O initially, § =01, 2, 5, 15, 20 initially. The roots—
loci are shown in Figure 4.16(b), where the imaginary part is

rabatted into the plane of ¢\ K&o o *

The value was first investigated of using a straight average

of the root values over the range ‘C}oo

allowance for the imaginary component when inc¢luded. Since the

to e making appropriate

results were not encouraging, it appeared that a weighted average

might be more suitable, where the weighting function was
W= 2(‘3'0"%00)/<%0f"”900)

This represented an lmprovement, but in order to have one .
welghting function common to all responses from different eo ° to
& particular value of %of v the exponential weighting function

- 0.06(1(\‘}0e— 10)

was tried, which gave best results for the response from %oo =20,
The five equivalent ‘second—order responses calculated using Vo
are shown on Figure 4..16(3.) , from which it is seen that repres-—
entation is fair for the responses from %oo = 20,?&,%5 and 5, but
poor for those from 2 and 01 . The quality of representation
may be judged by the values given to the "rise time'" ( to 61 per
cent. of final value ) and to the time of maximum velocity, or

inflexion, as shown in PFigure 4.17: <the actual rise time for any
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Figure 4.17 :

: z s \ &>

Actual and equivalent'times of rise and to maximum

velocity, for the responses of Figure 4.16(a) .
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response from gx) is best approximated by the form employing Wo i
whereas the time to the point of inflexion is best approximated by
the straight averaging. In elther connection, the averaging
approach fails at low values of Qx> since finite times are
produced, whereas the actual time behaviour becomes slower and

slower as %oo tends to zero.

Similar conclusions are drawn about correlation in this
system with its roots—surface as have been made in Section 3.5
for the earlier system. No effective means has been discovered
for predicting the time behaviour from the roots—surface: though
some measure of correlation has been attained with the responses
of Figure 4.16, attempts to apply the same weighting procedure
to responses to other values of %xf have shown that different
values of the negative exponent in W, are required fo: each value
of Qxf' and that representation is rather poor even then. As
~ regards the ability of the roots—surface to predict the forms of
the stability diagrams, once again it fails to establish the
regions within which negative steps falling in a certain range

cause the system to go unstable from inifially stable conditions.
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Conclusions

The first set of conclusions relates prineipally to the

output—dependent systems studied and reported, whereas the

second and third sets embody recommendations of a more general

nature and wider application.

It must be concluded that the roots— surface has been proved
incapable of yielding useful and accurate information about
large—scale behaviour. The stability of large step responses
in particular has been shown not to be predictable by the
appearance of a.roots—-surface. while no method has been
discovered to correlate satisfactorily the time behaviour of
the transients with the movements of the small—-perturbation
singularities, and these facts emerge from consideration of
systems of orders as low as first and second. Even if more
satisfactory correlations had been achieved in particular
cases, it would have been unreliable to apply the same
techniques to further roots-surfaces, especially considering
the aspect of norn—uniqueness of the roots— surface which has

been revealed.

This study, certainly, has been restricted to consider-—
ation of transient responses of output—dependent systems

where the input variable has a constant value) it may bé that,
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for other input functions whose time variations are slow in
comparison to system time constants, the transient behaviour
is capable of being predicted more dependably from the
movements of the singularities, as suggested by M'Phersonl'z.
However, this study has provided a demonstration of the
difficulties and pitfalls involved in attempts to examine such

strongly nonlinear systems in a linearised way.

2. Notwithstanding the remarks in 3 below, the transformations
of Poincare for the behaviour at infinity in the phase plane
have been found most useful in determining the stabilify of
large transient responses: in this connection, the remarks of

Daviesz2

are interesting., It would appear t0 be a useful
preliminary in investigating the stability of a system, which
may be continued by Lyapunov's direct method or other means.
An extension of the transformations to third—order systems
has been outlined by Kammiller®>, and it might be useful to
have fuyther, purely analytical, extensions to higher—order

gsystems, despite the lack of a geometrical interpretation.

3. Lyapunov's Direct Method has been used successfully thiough—-
out the study but, as has been often emphasised by other
authors, many developments of the method are still possible
and desirable. In this project it has been found that, working
literally, a maximum amount of use must be extracted from the

low—order algebraic forms for which explicit solutions are
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possible. and that the existing techniques of Zubov et al. are
not particularly valuable, being best suited to particular
numerical systems. Various devices have produced good results
from low—order forms: +the method of undetermined coefficients
proposed offers the advantages of simplicity and freedom to
construct a time derivative which may be made negative semi—
definite in a suitably restricted région commensurate with

the region of asymptotic stability produced ¢ the investigation
of alternative ways of decomposing an n'th order differential
equation into n of first—order may be rewarding, as discovered
in Sections 3.4c¢ and 3.44d and in connection with the prelim-
vinary study of a fourth—ofder output—dependent system, not
reportedy by this means, the total numbexr of terms “on the
right-hand side" of the equations may be reduced, and by
distributing the singularities in a different pattern around
the origin it may be possible to arrange for intersections of
 the boundary L) with sets w, ( or others) to occur at known
fixed points, thus reducing the order of the emsuing equation

for another intersection of interest (as L).

. It would appear worthwhile to develop the method of
undetermined coefficients for higher~order systems, perhaps
to the stage where the logical choice of terms and evaluation
of coefficients could be aided by a digital computer, having

regard to the advantageé of the different decompositions
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referred to above. At the same time, there is a requirement
for sign-definiteness criteria , similar to Sylvester's, forx
higher—order forms than quadratic, which would allow their
free use: this point has also been made by Gibson et 31?4.
Any developments would also be most valuable which conveyed
information about the time behaviour of trajectories within
the region of stability from the Lyapunov function; it seems
plausible that a Lyapunov function is capable of affording

such information, even where its time derivative is only

negative semidefinite.



L.

2.

5.

Te

BIBLIOGRAPHY

i

- M'PHERSON, P.K. Applications of Complex Plane Methods to System

Design. Trans. Soc. Instrum.'Tech. 14(2) 1962, pp.89~—90.

M'PHERSON, P.K. The Use of Complex Plane Methods in the
Analysis of Plant Dynamics and the Design of Automatic Control
Systems. U.K,A.E.,A, Reactor Group Report AEEW-— R120, Winfrith,
Nov. 1961, pp.l2-=14.

WILLIAMS, T.J. Process Dynamics and its Applications to
Industrial Process Design and Process Control. Survey Paper 11,
Proc. Second Intern. Cong. of IFAC on Auto. Control, Bas;p.
1963 : to be published, Butterworths. |

CLYNES, M.E. Circulatory System . Respiratory heart rate reflex
( RER ) in Man : Mathematical Law. Medical Physics, ed. Otto
Glasser, 3, p.184. The Year Book Publishers Inc.

GRODINS, P.S. et al. Respiratory Responses to 002 Inhalation ¢
a Theoretical Study of a Nonlinear Biological Regulator.
Journal of Applied Physiology. 7, 1954-55, 283- 308.

ANDRONOW, A.A. and CHAIKIN, C.E. Theoxry of Oscillations, 1949,

Princeton, Princeton University Press, p.32 and p.145.

NECHLEBA, P. Extension of the Concept of Time Constant.
Electrotech. Z. 74 ( 1953), 98.

- 201 -



! — 202 -

8. MORGAN. P.G. Definition of an Equivalent Time Constant. Control
Data Sheet No.24, Oct. 1961.

9. SMETS, H.B. and GYFTOPOULOS, E.P. The Application of Topolog-—
ical Methods to the Kinetics of Homogeneous Reactors. Nuclear

Science and Engineering, 6 (1959 ) . p.347.

10. POINCARE, H. Journal de Mathematiques (3) 7, 1881 : also (Buvres,
7.1, Gauthier-—Villars, Paris, 1928, p.5 et seq.

11, MINORSKY, N. Nonlinear Oscillations, 1962, New York, Van
Nostrand, pp.91l-—96.

12, LYAPUNOV, A.M. The General Problem of the Stability of Motion.
Doctoral thesis, published by Kharkov Mathematical Society,
available in translation as 'Probléme Général de la Stabilité
du Mouvement', Annaies de la Faculte des Sciences de Toulouse,
9, 1907, pp.203~474, reprinted as Annals of Mathematical

- Studies No.l7, Princeton University Press, 1949.

13. KAILMAN, R.E, and BERTRAM, J.E. Control System Analysis and
Design via the ''Second Method" of Lyapunov. Trans. A.S.M.E.,
82 Series D, 1960, Pp.371— 393 and pp.394— 400,

14. LASALLE, J.P. and LEFSCHETZ, S, Stability by Lyapunov's
Direct Me+thod with Applications. 1961, New York, Academic

Press, p.58.




v‘

- 203 —

15. KRASOVSKIi. N.N. Global Stability of the Solutions of a System
of Nonlinear Differential Equations. Prikladnaja Matematika i
Mekanika ( P.M.M, ), Vol.18, 1954, pp.735—737. English Trans-—
lation by Rekasius} Z2,V,, as Appendix B of report AFMDC— TR~
61—6, July 1961, of the Aeronautical Research Council.

16. SCHULTZ, D.G., and GIBSON, J.B. The Variable Gradient Method
for Generating Lyapunov Functions. Paper No.62-81l, 1962,
Trans. AIEE,

17. ZUBOV, V.I. Mathematical Methods of Investigating Automatic
Regulating Systems. ( Leningrad 1959 ). USAEC translation
AEC— tr— 4494, September 1961.

18, MARGOLIS, S.G. and VOGT, W.G. Control Engineering Applications
of V.I.Zubov's Construction Procedure for Lyapunov Functions.
IEEE Trans. on Automatie Control, Vol.AC-8, pp.104-—113,

April 1963.

19. KERR, C.N. Control Engineering Applications of V.I.Zubov's
Construction Procedure for Lyapunov Punctions. IEEE Trans. on

Automatic Control, Vol.AC—9, April 1964.

20. MURPHY, G.M, Ordinary Differential Equations and their
Solutions. Van Nostrand, New York, 1960, p.168.

21. GRENSTED, P.E.W. The Frequency Response Analysis of Nonlinear
Systems. Instn. Elec. Engrs., Monograph No.l26 ( 1955 ).



' | - 204 —

22. DAVIES, IT.V. Summing ~up in & Discussion on Stability of
Systems.'arranged by the Automatic Control Group of the
I. Mech. E., London, May 1964. Proceedings to be published
by the I. Mech. E..

23. KAMMﬁLLER, R, Zur Anélyse der Phasenraumes. Regelungstechnik,
Heft 7, 10 Jahrgang, July 1962,

24. GIBSON, J.E. et al. Stability of Nonlinear Control Systems
by the Second Method of Lyapunov. Report AFMDC— TR—61-—6,
July 1961, of the Aeronautical Research Council, p.91.




