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SUMMARY

A theoretical method has been dévised to predict the probability
characteristics of the response of linear systems to non-Gaussian stationary
excitation. Use is made of the higner product moments of the ewcitation ﬁrocessu
The information provided by higier order correlation functions of both Gaussian
and non-Gaussian processes is discussed.

An alternative more practical method of response prediction is established
vging Numerical Methods. This technique is shown to have many applications in
practice and can be extended to handle non~linear systems and non-staiionary

excitation.
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INTRODUCTLON

In many random vibration problems which occur in praciice where
the response of a given sysiem to a gingle random excitation is required,
it is reasonable to assume that the excitation process is Gausgian,
This assumption considerably simplifies any analysis. If the system
can be ccnsidered to be linear then the response to the Gaussian
excitﬁtion will itself be Gaussian[llj. Since any Gaussian random
process is completely craracterised by definition of its first and
second order moments; the excitation will thus be defined by its mean
value and auto-correlation function (or spectral density). Knowledge
of the complex frequency response o(if) of the system will then yield

the spectral density of the response So(f) using the relationshipi-

et

°(£) = | a(if) 12 s' (1) _ 1.

The mean value of the response and excitation are alsc simply related

(although for convenience are usually adjusted to %ero ) : -

E[&esponse] _
ELexoitatioq] = a(o) 1.2

Clearly ihe response of linear systems to Gaussian excitation can be
easily obtained once the system frequency response is known.

There are however, many instances where the assumption of
Normality is not justified. Even where specific distributions approach
the Gaussian ~ eg road surlaces ~ the approximation is olten to clipped
Gaussian rather than the true Gaussian distribution. It is not
generally known to whal extent various degrees of clipping of the
Gaussian distribution affects the above arguments.

Where the excitation to a linear system is known to be non-
Gausgian, it cunnot be uniquely defined by its first two moments.

Also, while equation 1.1 is gtill applicable, the response spectrum is
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insufficient to define the response completely. Therefore, in such
cases, both excitation and response are only partially defined and
hence alternative methods are required to complete the description.

Various techniques ar: presently available for the prediction of
linear system response to specific non-ftaussian excitations. BSee for
example, references EZ,B] which deal: with cases where the excitation
can be represented by a éeries of uncorrelated random pulses which
occur at Poisson disfributed time intervals ~ these excitations are
generally known as shot noise. Use is made of the moments of the
excitation to predict the corresponding response moments. These
moments are combined t¢ form a series which gives the Fourier Transform
of the first-order probability density of the response., By employing
Bdgeworth's expansion an estimate of this probability is obtained.

The success of this method is due to the fact that the required values
of the excifation moment functions are defined (analytically) and the
impulsivg recepltance of the linear system can be empleyed to give the
qorresponding values of the response moment functions. This method

can be considered to be the one-dimensional case of a more general method
whereby not Just the first-order probability distribution can be
estimated but alsoc all the higher orders.

It will be shown that by considering single non-Gaussian excitations
to be realisations of ergodic random processes, the probabilistic |
character of the responses of linear systems to these excitations can
be estimated from certain statistical parameters, These parameters can
be computed from the excitation time history.

In view of the practical difficulties in using these methods -~ in
particular, performing the Fourier Inversions - only s need for detailed
probabiliastic informafion will justify their use. 1In certain fatigue
studies this will be the case.

Tor the cases where less detailed probabilistic information is



required - eg in cases where only the mean value, auto-correlation
function, spectral density and first order probability are needed - it
is clear that an alternative method is required. With a view to the
provision of such a method, Numerical Integration techniques were
considered. These technigues permit a 'real-time' simulation of ‘the
response~prediction preoblem. The excitation is defined, the system is
represented by sets of equations sud these are then solved at various
time intervals to give the response. Standard random analysis can be
applied to this response to provide the information required.

Numerical Integration techniques have not been widely employed
in the simulation of vibration problems where both excitation and
response are of random nature. Consequently the testing of these
technigques requires considerable care and errors which might arise in
practical random simulaticn must be investigated.

One of the many integration 'packages' currently available was
employed in the test. The accuracy of the simulation was determined
and recommendations made concerning the use of such techniques in random

response prediction.
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THEORETICAL RESPONSE PREDICTION

DESCRIPTION OF A RANDOM PROCESS

Congider a random process {X(t)} whose sample functions are

denoted: -
i \
X (t), 1 = 1’2,0--0:
A schematic represertation of such a process is given in Figure 1.

For any time t the instantaneous value of X*{t) is X*(4+ ). The
1 1

set of all X'(t ) will be denoted X(t ) or simply X , the set of
1 ) 1

~all Xi(tp), Xq, etc. The random process {X(t)} cari be considered

to be composged of the set of random variablesg:-

Xi, 1= 1.2,%0000sen where n tends to infinity.

Complete probabilistic description of {X(t)} mey be achieved in

two ways:-

_(1) by specifying the n-dimensional distribution function for the

random variables Xi, i.e.

¥ (x ,x ,x ,....xn) = Prob[X(tl)ggxl,X(12)5;x2,....X(tn)5;xn}

{X('t)} 1 2 3

(2) or by definition of the n-dimensional characteristic function

(u ,ua,....un) = E[éxp(i(ulX(tl)+uEX(te).e..unX(tn)Y]

®
fx(e)} 2
where E[ j lenotes the expected value,
fesd (oe]

e, & 1 -5~ -‘ L -3 2 .lll
_.Z: ‘/Z cxp(l(ulxl;ungo...unxn)db %(xl xn) 2

so e 00 T ? {X(T)
n fold

Definition of the n~dimensional distribution function or



characteristic furetion implies all corresponding functions of orders

less than n gince,

o]
(X ,:’C ,-aooxn_:') z./‘ F (X ,X ,oaoox )dx

F

{x(v)} + @ T e {x(v)} r® no
and

(W g0 yaseou o) = P (W 1 ,u yeeeoun . ,0) 2.1.2

qix(t 1 2 n-1 {X(t)% 1 s’ a3 n-~1

The characteristic function defined by 2.1.1 may be expanded .
48
d (u1 yoeesl ) = 1 4+ iu. L[X ] * 5T ujukE[XJ.X]] ceeo

{x (o))

n
* n‘ Juk 1 ..,.E[XJKK ]

fOI‘ j,k,lyo;.a = 1,29399,..-,1’1
i.e. as a series of product moments of the random variables Xi from the

process {X(t)} « As an illustration assume n = 2, It follows that:-

CD{x(t)} (ul ,uz) =1+ i(ulE[Xl] +qu[X:J )
+ ':‘L‘E:‘ (ul‘?E[Xl ‘g} 4‘11:13[}(2.2] . uaE [Xl Kzz] wu E[XQKJ )
+ %f;: (ul8 E[Xlg] +ua3 E[X;] +u1 u1 uaE[XlxlXJ

+uquXXX]ruquXKK]+uual*[z(
1 1 21 1 2 2 1 2 2 21 1 211

+uuu B[X X X 4uuu}"[XXX.' )
512

+i—,~ 4}3[}( ]“... etc.

.0

14+ i(u E[X]+u x|+ & (w 2u(x 2]+u r[x 2] v2u v Blx x|
1 1 2 2 . 2 1 =

1

13 31,,[){ ]411 I“[k :[{—511 uL[X ‘X]+511 2 I‘{XX ])

+.oc¢¢no=aéc 2.103

-—I

Fourier inversion of this function gives the 2-dimensional
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probability distrivuation F{ ( )}(x ,¥ ) i.e. the probability that both
x(¢)y %

X(t ) is less than x and X(tg) is less than x . As n increases, the
1 1 2

characteristic function tends to the continuous function, which implies

the continuous probability distribution i.e,

d (u(t))—ﬂ?‘

(8] l(X(t)) 2,1.4

()]
-

clearly then the set of all product moments E[X ]5 EJ},X ], E[ﬁ X X_]
1 12 102 8

eeese etc is sufficient to uniquely define the probabilistic nature

of a random process.

BRGODIC RANDOM PROCLESSES

Assume now that the process {X(t)}is stationary. It follows

that the probability characteristics of the set of variables X(ti),
X(tj), X(tk),.....X(tn) are identical to those of the set X(ta)’

X(tb), X(tc),...,. provided that (tj"ti) = (tb-ta), (tk~tj) = (tc—tb),

eesss etce i.e. the probability characteristics »f the process are
invariant with a shift in the time reference and depend only on the

time increments between 1he random variables X(ti). Assume further

that {X(t)} is ergodic. This demands that any probability parameter
computed across the ensemble of {X(t)} ig identical with the same

parameter computed along any member function e.g.

R(s,)] =<3 ()> for any 1,3, 2.2.1

where { >denotes averaging with time t.
and that:-

1 : !
E[X(ti)X(th] =<:Xx(t)Xh(t+5)> for any i,j,k where 6 = (tj"ti)



243

E{X(ti)x(’bj)){(tk)] =(Xk(t)){k(mél)Xk(t4-63+-62)>

vhere 6 = t.-t., & = t =i,
1 9 17 e k]

- sses s

e CG

It follows from the above that any member function X*(t) of an
ergodic process is sufficient to uniquely describe the process.
Hence the characteristic function may be computed from such a member

function., The set of product moments of the process {X(t)} can

therefore be defined from the sample function Xl(t) as follows:i~-
E[x ] = ()
1
E[X X ] =<<Xl(t)Xi(t+T )> vhere T = t -t 2.2.2
1 24 1 1 2 1

E[X X X = QX647 )X (47 47 )D where T = b -t
1 2 3- 1 1 2 2

ok s e e

etc.
Of the above set of moments only the first and second are in general

use., E[X ] is the mean value and E[X X ] is the autocorrelation
14 12
function R(T)c
The question now arises as to the values of the higher order

moments of the class of ergodic processes whose distributions are

Gaussian.

GAUSSIAN RANDOM PROCESSES

It is”known[}ﬁl that definition of the first two moments of any

Gaussian process implies all the higher orders. Tor a general



Gaussian process iX(t)} with random variables X(ti> = Xi as before,

it has been shmm1[1] ‘-

E[xixjxk.,,.xn] = 0 if the number of terms in the bracket is odd

2.3.1
n
- 3 m[}(jxk]m[xrxs],... if number is even
J ko=
n!
Hote that the number of terms is ”;f“ n
z 2
2! (2)
i.
Efx =
[lpa
Bxxxx| =Bxx|exx]+re[xx X}J Blx X X x7 2.3.2
[1234 [12 34:-—-"1 []][ * ][23 <
Exxxxx] =0
1 2 3 4%
etc,

With the assumption of ergodicity these moments may be obtained from

any sample funcition X(t) say, as follows:-

E[x x] ={X(£)X(++7)> = R(T) where T = t -t
1 2 - 2 1

Blx x X = CX(6)X(bem DX(6e7 47 ) = R(7 7 )
e : voE 12 2.%.3

where T =t -t , T = t =%
1 2 2 3

E['X X X X] = )R t47 X (547 47 )X(6+T 47 47 D = R(T T T )
1 2 3 4 1 1 2 1 2 3 1 2.3

where 7T = 1t -%
3 4

These equations will serve to define the higher moments. It now
follows from equations 2.3%.2 that for any membor function of an ergodic

Gaussian process:-
R('rl're) = |
: T 4T JR(T +7T R(t +T +7 )R(T
R(r 1) = R(7 JR(T ) + R(r 4 ) (1 +7.) + R(T o7 7 JR( )

RrrttT)=0 2¢34
1 2 3 4
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]» .'

-9 -

T b [k ol Je ]

R{7 JR(7 IR(7,) + R(7 JR(w 47 JR(T 47, ) + .. (15 terms)

=
~~
-
(=
-3
W
=
-3
=
g
i

il

etc;
Bguations 2.3.4 apply to any member function Qf a Gausslian random process
or in effect, to any Gaussian random variable. The investigations into
the higher correlation functions of Gaussian random varisbles which
prompted the above theorétioal approach are describzd in Appendix A and
will serve asg practical verification of equations 2.3.4. Reference
should now be made to Appendix A.

For any process which is other than Gaussian. equations 2.%.4 will
not apply. The higher moments of some typically occurring signals were
derived (analytically or practically) and are alsc given in Appendix A.
A discussion of the individual usefulness of the higher moments in
describing non-Usussian signals is given in Section 2.6.

To recap, the probasbilistic nature of a random process is defined
by its characteristic function., This function may be expanded as a
series of product moments of the process. These moments may be computed
from a single sample function where the process is ergodic. It would
clearly be simpler to ggﬁitor the probability distributions where a
sample time history is available. However, it will now be shown that if
there exists a relationship between the moments of the input and output

of linear systems, the probability distributions of the output may be

computed solely from a knowledge of the input by uwsing the characteristic

function.

SOME GENERAL PROPERTINS OF THE HIGHER MOMENT FUNCTIONS
R(0,0) = <XB{H)D i.e, the mean cube value

R(0,0,0) = ¢ X¥*(1)> i.e. the mean fourth power value

etc.
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R(-T -7 ) = <X(t)X(t=7 )X(t=T -1 )D
12 1 12
Let t be replaced by t+T1+TE. This ig valid if the process is

stationary. It follows that:-

R("Tl'%) = <}i(t+Tl+T8)X(t+T2)X(t)> = R(fra'rl)

Similarly,

R("“Tl 9"",‘8 ,""TS 909¢¢-Tn) = R(TnyTn_lyoa . .Tl) 204-1

Refer back to equations 2.3.4 and recall that R(-7) = R(7). In the

equation (for Gaussian processes):-
R(T T 7 ) = R(T )R(T ) + R(T 47 JR(T +7 ) + R(T +7 +7 )R(T ) 2.4.2
1 2 3 1 3 1 2 2 3 1 2 8 2

Replacing T ,T ,7 by «Tl,-T2,~Té does not change the RIS, i.e.
1 2 3

R(-T =7 =7 ) = R(T T 7 )
1 =2 =& 1 23
But from above,
R(=T =T =7 ) = R(T 7 T )
1 2 2 3 21

Therefore if eguations 2.3.4 are valid it must follow that:-

4
=)
N
=i
-
=
g

R(T T 7T )
3 2 )

R(T 7 7))
3 2 1

1l

R(7 JR(7 ) + R(T +7 JR(T +7 ) + R{7 +T +7 )R(T )
3 1 3 2 2 1 3 2 1 2

which is identical to the RHS of 2.,4.2 above. This cenfirms the

validity of equations 2.3.4

PREDICTION OF THE RESPONSE OF LINBAR SYSTEMS

Consider a general ergodic process {X(t)} whose distributions
are non-Gaussian, and assume that the mean values of Xi(t> are zero
(this reduces the complication of the equations). The characteristic

function uniquely defines the process. For convenience the 2-
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dimensional characteoristic function will be dealt with but the

couclusions apply to all higher orders., Recall that (equation 2,1.3):-

d
{%x(+)

} 1

(u ue) = 1 + i(ul E[Xl] .yugE[Xg-J) 4 -;—-2‘,:— (uleE[X.l ?] -HLEEE[XEEJ

.3

+2ulu2E[XlK;]) + %E~(u13E[¥l€]+ug3E[¥g3]
+5u12u;E[X13X¥]+%u1uEEE[X1XEQ]) + 2i (veees ete.

From the definition of the product moments by equation 2.3.3 in the

previous section it is clear that:-

(b{x{t)}

-

(wu)

1 2

ig

2

=1+ i(0+0) + (R(O){ul2+uﬁg)+2R(6)uluz)

.-

+ == (R{0,0)(u ®+u ®)+3R(6,0)u u 2+2R(0,0)u ?u )
1 2 1 2 12

.ié:
P

o (2(0,0,0) (u *+u_*)+68(0,6,0)u *u ?
4o 1 2 1 =)

+4R(6,0,0)u u;wn(o,o,é)u Su ) 4. ... 2,5,1
1 ix 2 .

where 6 = t ~-%
2 2

By way of illustration assume for the moment that {X(t)} is

Gaussian.

“xw)

By equation 2.3.4 it follows that:-

(uu )
1 =2

-1 w% (R(0) (1 *+u_?)+2R(6)u u. )

1

+ == | 382 (0)(u *+u *)+6(R2(0)4+RZ(8)+R3(6))u *u ?
24 1 2 1o

+4((5R(O)R(6))ulauz+5(R(6)R(O))qu:)]+..... 2,5.2

but it is known [1] that the 2-dimensional funciion of s Gaussian

process is given by:-

@(ulug)

1}

1

exp(

[l - %-Ggu

- }‘Ogu ? . wl~0'2u 2 oR(8)uu ) wnere o° = R(0)
2 1 2 2 1 2

1 1 1 ‘ .
] 4., 4 - 2 = o*u %....
) + 5 o ul ....}[l 5 cau2 + 3 o) u2 ]
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1 - R(8)u u +
- o,

i

R?(8)u *u 2...ﬁ
12

:[} - l‘(R(O)u 2 4 RO)u ®) - R(B)uu + l-(oﬁu * 4 o*u %)
2 1 2 1 2 8 3 2

+-L R3(&)u Pu ® + }-Oéu Ba B oy l-OgR(é)u 3u
p) 1 2 4 1 =2 2 1 2
3 2p(s 3 1

+ R(8)uu® ..... etc. 2.5.3
2 12 ]

Equations 2.5.2 and 2.5.3 are identical. Note that for Gaussiar
processes the characteristic functions are real valued sinoe all the
odd order product moments are zero.

Return now to the case of general non-Gaussian rrocesses. The
characteristic function may be obtained from a single record of an
ergodic process by computation of the set of moment functions

RTT ¢ e & 0 e f]' L
(r )

It may. seem fruitless to compute the characteristic function
when a sample function is available - 1t would be simpler to monitor
the probability distributions. However, this approach provides the
link whereby the probabilistic response of linear systems may be
predicted solely from a knowledge of the input. Consider the
following: if a relationship exists between the moments of the input
and output of any given gystem it follows that the output moments
may be obtained from a record of the input. Just as the input was
characterised by definition of its moments; 80 too will the output.
Clearly then for complete probsbilistic description of the response
to a given system, a record of the input and the relationship
between moments of the input and output is sufficient.

The relationships required are those between the mean value
of the output and input, between the auto-correlation function R(T)
of output and input, between the third product moment function

R(T T ) of output and input, etc.
12

Consider any linear system with impulsive reccptance h(T) and
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complex frequency response u(if). It can be shownljé] that:-

v <ff “h(e)B(nR (1-c-r)asan

where x(t) and y(t) are the system input and output.

By extending the argument it can be gimply shown that:-

R (T T ) ,Zziﬂ n{ s)h(T)h(ﬁ)R (e-TH T 6T )dcd 16

and in general
03
BT yerent) f B(e)n(n) ... .n(a)n(d)
(n+1)fold

.Rx(e - M+ Tl,....a - 0 4 Tn)de dn da dd

Consequently, knowledge of h(T) of the system togzther with the

input moment functions implies all correspondiag moment functions

. of the output.

Since the frequency compogition of a process is often of very
great importance the spectral density functions corresponding to
the higher moment functions were defined. Input/output
relationships similar to equation 2.5.5 but in the freguency domain

were derived for linear systems in Appendix B, where it 1s shown:-

Sy(flfg..“.fn> = u‘(ifl )c"'(i(fgnfl)""‘d‘(l(fn—fl-l_l))
¥l 2
o (lnn)SX(fla..o.fn)

Figure19 gives a schematic representation of the steps required to

derive the distributions of the output of linesr systems from input

information alone.
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DISCUSSION OF HIGHER MOMENT MUNCTIONS

INDIVIDUAL MOMENT TUNCTIONS

At the outset of this research project it was decided to
determine what additiongl information on random signals could be
obtained from the higher moment functions with particular interest

in the third moment funchion R(T Te)' There i=s a natural reluctance
. 1

to consider moment functions of order greater than three for general
use in view of the difficulties associated with their presentation.

It has been shown that the higher moment functions cav be defined

for Gaussian processes (signals). The third and all subsequent odd
order moment functions were shown to be zero regardless of the
frequency content of such processes. The fourth and higher even
functions can also be expanded in terms of the second moment (or auto-
correlation) function - equations 2.3.4. It was further shown that fox
'any finite digital sample of a Gaussian process the computed values

of the third moment function were not zero but were found to be of

the same order as the mean cube value of the data. Clearly as the
sample size is increased the mean cube value will tend to zero as

will the third moﬁent function. Congsequently unless the sample size
is very large, it would be difficult to distinguish between

deviations from gzero in the third moment function caused by departures
from the Gaussian and those resulting from the finite sample. TFigure 20
gives an illusération of this. The plot of R(l’Ta) for the Gaussian
sample is superimposed on that for the sample clipped at 1.5 standard
deviations ~ i.e. all values in the sample greater than 1.5 are set

to 1.5, It should be noted that allowance has been made for the
reduction in RMS value of the data dvue to the clipping by plotting

the Mormalised third moment function which is defined:-



RN(¢ T ) = R{v 7 )/(nM3)?
T2 B

Little indication is given in the plotsvto suggest the sample has
been quite severely clipped. It is not surprising that this is so.

The normalised auto-~correlation gives‘little indication either, and as
shown in Figure 42 the eflect of the elipping reduces the overall level
of the spectrum within the specified frequency ranges, but has little
effect on its shape: it should be noted that this refers only to
Gaussian éignals whose spectra are white in this range, and may not
apply to narrow kand processes. Iﬁ can therefore be concluded that the
higher moment functions. taken individually, can give little information
on deviations from the Gaussian but taken collectively will define the
distribution uniquely via the characteristic funciion.

It is perhaps worth noting at this stapge, that one significant
difference occurs between the second and third moment functions. Recall
that for wide band random processes; where no single sine wave or set
of sine waves predominstes, the auto~correlation funcltion falls off
rapidly to zero, If, however, the process is narrow band the periodicity
in the signal betrays itself by causing the guto-cor—elation function
to fall to zero much less rapidly. The third moment function for a sine
wave 1s zerc - Appendiz A. It follows that o Gaussian signal super-
imposed uron a large amplitude sine wave (or close set of sine waves)
can be expected to have & third moment function similar to that of the
Gaussian signal alone,

In view of the fact that the third order cérrelation function is
zero for a Gaussian signal with any frequency c-ntent and that finite
samples of Gaussian vaiiables produce third correlations with small non-~
zero values which are similar to those of other practically occurxring

signals, the third correlation function R(t T ) is likely to be of little
. _ 1 2

use on its own. The major disadvantage in this function for approximatelr
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Gaussian signals is that it gives no indication of the frequency content
as doesg the auto-correlation function. The fourth and higher correlations
must be rejected for general use, in view of the computations required

in their calculation.

[

The Fourier Transforms of the higher moment functions, S(f ...fn),
1

as defined in Appendix B, progressively build up a picture of the
freguency compesition of a random process. Just as the spectral density
S(f) of a random signal defines the relative proportions of each frequency

present, the 2-dimensional spectrum S(f f ) gives information on the
12

phase existing between frequencies f and £ for each f ,I . It should
‘ 2 2

1 1

be remembered that the higher moment functions are not symmetrical, i.e.
R T T ceeaT R -7 -T .o n"T
( A n)=# ( RS LA n)

Care must therefore be exercised in any definition of cne-sided spectra.

MOMENT FUNCTIONS TAKi COLLECTIVELY

It has been shown that prediction of the response of linear systeus
Lo general non-Gaussisa excitation can, in theory, ue achieved via the
higher order moment functions of the input process. The following steps
are required:-

a) Computation of the higher moment functions R(7 T ), R(T T Yoes
A 1 2 1 23

etc from a statistically adequate sample function of the input

process the values of T ,T being determined by the order of the
102

characteristic function required.

b) Derivation of the correéponding moments of the output process
by either of the two methods outlined sbove, using either the
system transfer function or impulsive receptance,

¢) Bstimation of the output characteristic function using (b).

d) TFourier inversion of the characteristic function to give the

corresponding probability distribution funciion,
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e) Integratici of the distribution function 4o give lower order
digtributions.
The above steps will now be considered in turn, outlining any practical

difficulties or simplifications where they exist in each case.

(a) Computation of the moment functions can be simply achieved with
high speed digital computers. However, as the order of moment increases
so0 too does the computation required. If for example, in the computation

of R(t T T ) all values of T T s from 1 to 20 are required from a
1 2 3 <}

[C

sample of 3000 values say, then the number of quadruple multiplications
required is approximately 20° x 3000! Tortunately, this is not
necessary. Consider, for example, equation 2,5.1 vwhere the 2-dimensioral
charactéristic function is expanded. It can be z2en that only four
values of the fourth moment function are required, i.e. R(0,0,0),

®(6,0,0), R(0,0,8).

(b) In order that the above simplifications are applicable to the
response, the method used to compute the output moments must be that
given by equation 2.5.5; where a one-to-~one relationship exists between
gpecific values of the mément functions of the input and output. This
one-to-one relationship does not exist in the spectral density approach

where a whole set of values of, say, R(T T ) is necessary to compute
1 2
one value of s(f fe)' However, computation of higher spectral density
1

functions masy be required for information on the freguency composition

of processes.
(c) This is simply achieved once the moments zre defined.

(d) At the present time, there are methods of computing higher ovder
Tourier Transforms. The first order itransformation is widely practised
in spectral density estimates and the necessary amoothing functions,

etc. are well documented. It is necessary however, that at least second
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and third order Fourier Transformation technigucs are developed
together with the corresponding spectral estimates and implemented on

a digital computer.
(e), This is again simply achieved.

The foregoing method can predict the probabilistic response of
linear systems to non-Gaussian excitation, It has been shown to
require considerable computation in its execution., However, with some
restriction on the order of distribution function required, it will be
of use in fatigue aﬁalysis where amplitude probability distributions
are of paramount importance and frequency content of secondary
importance. Yor the cases where the above method is unnecessary or
unjugtified,; another method must be found. Consequently, it was
decided to investigate Numerical Integration techniques as a method of
response prediction. Such methods are considered more amenable to
periodic functions, but it was thought necessary to determine to what

degree thege methods could be applied to random vibration problems.
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NUMERICAL INTEGRATION TECHNTQUES

A NEED FOR REAL-TIME RESPONSE PREDICTION

In Section 2, it was éhown to be possible to predict probabilistic
information on the response of given linear systems to general
stationary random excitation. It was demonstrated that information on
the input process was itself sufficient to achieve this. By utilising
the higher product moments of the excitastion process the corresponding
product moments of the response process could be evaluzted via the
dynamic or impulsive receptance of the system. These response moments
permitted estimation of the characteristic function of the response
which, on Fourier Inversion, provided the required probability
distributions.

In order that the product moments of the input process be
calculated, a sample btime history (or a digital representation of it)
is necessary. From this time history of the excitsztion process the
product moments of the response process may be derived. The above
theoretical method, in providing the probability distribuiions from
these response moments, at no time gives sufficient information to
construct a time history of the response - only the probsbility that
particular sequences of values will occur in such a record. While surh
informstion is sufficient in many instances ﬁhere are many benefits to
be gained from obtaining a real-time record of the response. Some of

these advantages are as follows:~

i) those experienced in random analysis can draw much information on

the characteristics of a random signal from a visual representation,

ii) the real-time recr.sd (in digital form) can, with a digital spectral
analysis package, provide information on the frequency content of

the process - the most important factor in many applications.
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iii) in fatigue snalysis real-time records permit computation of
parameters such as peak distributions, level crossings, time

between levels, and so on.

The foregoing theoretical method deprives the user of such
advantages. As will be shown later the technique of Numerical
Integration can provide regl-time records when used as a method of
response prediction.

Before proceeding to outline the techniques of numerical
integration it ie appropriate to describe a problem of response
prediction of current interest to the author and how 1t is hoped to
eﬁploy integration methods in the provision of a solution. It will
also provide a blueprint of the msuner in which similar problems may
be handled.

The problem is that of estimating the responsz of a motor vehicle
as 1t moves at constant speed over-a road surface. The vehicle may be
a car or truck and the road surface may be of any type. The problem

can be visualised in three separate stages:-~

(a) Description of the input

Clearly the initial step in any response predictiion must be
adequate definition of the input. A wide variety of rozd surfaces
have hitherto been surveyed both in Britain and on the Continent. The
surveying technigques may be simple, employing a civil engineering staff
and theodolite or may be more sophisticated, the surveying being
performed by a smell wheel attached to a moving vehicle [6] . In either
case, a digitai representation of the road surface heights, as a
function of distance measured along the stretch of road; is obtained.
Once the vehicle speed is defined it is a simple matter to obtain the
surface heigﬁts as a function of time., This is the amplitude ~ time

record of the input to the vehicle. It should be stressed that for a
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reglistic input four such records are necessary. one for each wheel on
the vehicle. In order to define these records accurately, the cross-
correlation between the two tracks is required. At present, informatioxn
on this correlation is not nvailable, except for a few isolated road
surfaces, but it has been showmn by the author [7] that assumptions of
zero cross-correlation between the tracks does not introduce serious
errors over such a wide frequency range in the response prediction as

is the case whei. the tracks are tsken to be identical™ i.e, with maximun
cross~correlation, (onsiderable phase information will, however, he
available shortly as a result of work being currently undertaken by
M.I.R.A. (Motor Industry Research Association). It will then be possible
to describe road surface excitations to vehicles to a high degree of

accuracy.

(b)  the second stage in response prediction is the defintion of the
system - in this case a motor vehicle., In view of the great complexity
of a motor vehicle certain assumptions must be made in its representation
as a dynamic system. It is usual to represent a vehicle by a mathematicszl
model whose components are linear approximations to those of the vehicle.
Such models ave currently being developed in the Departiment by the

author. The mathemgticel models provide gets of differential equations
(of the second order) which define the behaviour of the system, The

road surface excitations are incorporated in these equstions.

(¢) the final step is %he solving of the set of differential equations
representing the system to obtain the response of the system., It is at
this stage that Numerical Integration techniques a?e hoped to be
successfully employed in the solution of these equations. The means by
which the numerical methods provide the solution will be outlined in

the following section.

¥ This assumption arises when a 2-dimensional vehicle model is used
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Numerical Integration teclniques have hitnerto been successfully
applied to dynamic response problems similar to the one above,

However, in these cases the inputs were either single, transient
induecing, impulses or were of a periodic nature, and hence the responses
were periodic. It would indeed be a step forward if such methods could
be applied to random response prediction in general.

Consequently, it was necessary to test a typical numerical
integration package with a problem in random response predicition of
known solution. In the subsequent sections, a brief description of the
theory of numerical integration will be given together with the
particular test problem performed on the selecled package,

It is perhaps worth stressing at this point that while the scope
of this report is the testing of random response problems with linear
gystems and stationary excitations, there is no reason why the technigques
should not ge applicable to non-linear systems with non-stationary
excitations., It is the purpose of the following sections to establish
a method of evaluating the techniques, using the particular (but
perhaps most common) problem, that of linesr systems subjected to

stationary excitation,
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THEORY OF NUMBRICAL IHTEGRATION METHCDS

It must firstly be stated that the theory of Numerical
Integration methods is very complex., While the fundamental ideas
behind the integration techniques are simple, their practical
application is indeed very complicated., This is especially true of
such factors as error estimation, predictor correctors, and simiisxr
paraméters. Considerable research has been carried out to develop
these techniques and 'several computer 'packages' are currently available.
The specific details of the theory on which these packages are based
need not concern the vivration analyst. It will be sufficient to have
a general grasp of the principles involved so that prudent choice of the
user-specified variables in such packages may be made,

To this end a brief description of the theory will be given here
andxwill be bf a sufficiently general nature to be applicable to a
wide range of integration packages.

As stated above, it is reguired to solve a set of differential
equations. These equations are generglly of second order, but to avoid
needless complication a single equation of the first order will ser?e
to illustrate the techniques for the time being.

Consider the initial value problem.
y' o= flxy) o y(x) =y, 32,1
The {irst step is to find the value y which is the solution of the
1

differential equation foxr x z_xo+h, where h is some fixed value known

as the step length (size). Recall Taylor's series to estimate y .
1

2
y(x+h) = y(x) + hy'(x) + %E-y"(x) t eesees . 3.2,2

Writing y' = f(x,y) = fi-
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2 3

yix+h) = y(x) + hf +-%% 1o+ %TAf" + oeeenne 3.2.3

where ,f',f", are evaluated at (x,y(x)).

If h is small, terms in h®,h%,....etc may be neglected giving the

approximation:~
y(x+h) = y(x) + hf 3.2.4
The computation may now proceed:-

y(x +h) = Y, =Yt nf(x,,y,)

it
i

y(xo+2h) ¥y

y o+ hf(xo+h,y ) : 3.2.5
2 1 1 .

(X NXY

i
e
1§

y(xo+nh) Y1t hf(xo+(n«l)h,yn_1)

Figure 21 illustrates this technique graphically. In an gttempt to

follow the curve from the point (xo,yo) a distance h, in the x -
direction, is moved at gradignt f(xo,yo). This delines the new .point
(io+h,yi). A further distance h is moved with gradient f(xo+h,y1) 4o
the point (xo+2h,yg). Tﬁis process is repeated throughout the range

of integration, It can be seen that as the integration proceeds the
estimated points graduvally move away from the curve, For convenience,
the stepllength h was kept congtant but this need not be the case.
This very simple process is the Buler method., It is a first-order
method since only terms up to the first power of h are considered in
the Taylor‘s series. The omission of orders of h, greater than or

equal to 2, causes a truncation error of order h®, Further error is

introduced since the estimation of y(xn) is based upon the value y(xnml)

which is itself an estimate. As illustrated graphically, these errors
can mount up as the integration proceeds.

However, a much improved solution can be obtained by a simple



“ 25 -

modification., This is the adaption of a corrceciion procedure. Refer

to Figure 22 . As in the previous method, the point y is calculated.
1

The derivative at this point is determined i.e. f(xo+h9y Y. The average
1
of the derivatives at Yo and y is found and a new approximation y (%’
1 1

is obtained, i.e.
vy® =y o+ h~(f(x v )+ £(x_+h,y )) 34206
1 o 2 o’o o ™, ¢
Further approximations y  can be made by using the current value y 1i.e.
" 1

h 5 -
y, =¥, + 5 (Elepay) + £y ) 3.2.7

After sufficient corrections have been made, the final value of y can
1
be used as a starting point Lo obtain the point y . Corrective
2
procedures can now be similarly applied to y . This process is repesied
2

over the entire interval of integration. This is krown as the Euler-
trapezoidal method. It provides a simple example of a predictor-
cbrrector formula. The predictor-corrector methods employed in the
integration packages are based upon‘the same principle but infoxmation
on several previous values are used to obtain an increase in accuracy.

The Euler method would not be used in practice, in view of its
simplicity and resultant inaccuracy. More refined versions based on
the same principie are however, currently in use.

The other class of methods in widespread use is the Runge-Kutta
type. Many versions of this type exist but are sll based on estimates
of the derivative, not only at the ends of the interval h, but also at
intermediate points. A further feature of these methods is that the
calculation uses only the values at the initial point and previous
estimates are ncither used nor stored. A typical example of a Runge-
Kutta method will be outlined to indicate the method of computation.

The example is a fourth-order version., The step size will be



assumed constant but, again need not be so - in a variable step
version the length of the step would be determined in accordance with
some error criterion. Use of this method requires four gquantities to

be calculated at each integration interval, namely:-

a = nf(xn,yn)
h )
b = hf(xn+—2- S )
h 5.2:8
h n
c, = hf(xn S Yyt Er~)
a = hf(xn + by, + cn)
The value Yy 18 glven by s~
Yo =y +=(a +2b +2c +d)
n+1 n 6 ‘n “n n n
Since y!' = f(x,y) = Ay/h it can be seen that a s bn’ ) dn’ are

estimates of the increments in y at the left hand, twice at the centre,
and at the right-hand of the integration interval, In calculating

- the previous estimates a b c a are available and a
Inel? p ¥ ®n? "n? "n' n’ atla

weighted~average value of these increments in y provide the estimate

of the value Ypa1”

Most dynamic systems can be represented by sets of second order

differential equations of the form,

y' o= £(x,y,y") 3,2.9

The derivative of Taylor's series is required:-
h2
y'(x+h) = y'(x) + hy"(x) + Ei-y'"(x) coves

The Runge~Kutta method when applied to second order equations requires

computation of the following variables at each step:-

h ' " P .
&, = f(xn,yn,y n) noting that Iy, are evaluated up to the

term in h* in the relevant Taylor expansion
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b= L r(x 4 B +a_,y' +a ) vhe -8 n
n_ 2 n g Wy n*Y n n ey =% Wyt 3 /
h h '
°h =2 f(xn T Ty T Gy bn)
o _h '
d = 5 f(xn + hyy 4 ﬁn,y ot 2cn) where B = h(y'n + cn)

The new value Vil is now given by,

: 1
= ¥ o _ P
Ype1 = Vg * h(y n R )  where Rn =3 (an.bn+cn)

' o ot * % b 400 b
Y'pq = ', + R vhere R¥ = (an+2bn420n.dn)

W

The next step in the routine will require y'n+l' Repetition of the

above sequence is performed throughout the interval of integration.

In the methods described above, the step length h has been
assumed constant, The facility of a variable step length is offered
by many routines and will be mentioned here. The operation of these
methods is as follows. A value of‘h is chosen within the program -
usually as some fraction of a user-gpecified parameter - and the first
step executed. The value of the step length is reduced and the step
re~executed, If the difference between the two computed values
satisfies the error criterion, the solution is accepted. If it is
outwith the specified error, h is further reduced until the error
criterion is satisfied. The specified error may be a relative or an
absolute error and in many packages is specified either by the user or
by default. Integration routines vary considerably in the type of
error criterion adapted.

It must be emphasised that while the simplest integration.method
will certainly give only approximate solutions, very sophisticated
routines neced not give highly accurate estimates. It is a fact that
in striving for a high degree of accuracy, problems of stability can

arise: i.e. the errors become greatly magnified as the computational
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sequence progresses until the routine breaks down. 1t is practically
impossible to state with any certainiy, that a particular routine will
give good resultis with a particular type of problem, without prior
testing. Clearly great care must be taken when using numerical
integration methods - this cannot he stressed to highly ~ since the
margin between a very good estimation and e very poor one can be slighi.
The above outline of the theory of integration methods is. of
necessity, severely curtailed. However, it should be sufficient for
most applications whdn considered in conjunction with the information

provided in package user-manual,
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THIS Co5 .M. P. PACKAGE

In crder to ascertain whether numerical integration methods are
applicable to randem response prediction, a typical commercial package
was chosen. The package was the IBM 'Continuous Systems Modelling
Program' known as C.S.M.P. This package is implemented on most IBM
computers and as such has wide application. The facilities provided
by C.5.M.P. are well documented in the user's manual [8] ; but,; for
completeness, a brief description is appropriate;

Co5.M.P. is a general purpose package with a wide range of
applications. It offers a choice of seven integration routines varying
in complexiby from & simple rectangular method to a Milne method,
written in doubla precision with predictor-corrector and variable step
length to satisfy the user-specified error criterion. fThe language of
C.5:M.P: allows the user to derive C.5.M.P. statements which represent
the differential equations of the system of interest., These statements
are very simple to construct as will be illustrated later., C.S.M.P.
also provides a translation phase which avoids the user having to specify
the statemenis in correct computational sequence i.e. to avoid any
phase lag occurring in the execution.

A standard library of interval function generators is provided
for specific purposes, e.g. delay time, randém number generators, dead
space limiter etc.

One particular facility is worthy of note. It is possible with
C.5.M.P. to specily externsl functions: these take the form of sets of
co-~ordinates which are representative of the functions., This facility
provides the link between traditional integration methods and their
application to random analysis. If an external function is specified

as a large number of amplitude -~ time co-ordinate pairs, that function

.
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can be representotive of a random signal. Congider the function so
specified to be the input to a dynamic system translated into C.S5.M.P.
language., The simulation is executed as follows. It ig clear that
the statements will involve the input function. As the integration is
performed and the time parameter progresses, the function is accessed
at each step to obtain the value of the input to system at that
pariicular time, If it should happen that the program step size is
smaller than the user-specified time intervals in the furction datay
then the program estimates the required value bj linea:r interpolation.
This raises an important point. If the step length should be set to =
value smaller than the dats spacing At, or if the integration method
should be variable step, then values of the excitation between the
specified values will be taken to lie on the line joining the surrounding
specified points, There is no justification for this. Ideally, the
integrations should be performed only at times where the excitation is
known i.e, at multipies of the data spacing, If this is adhered to,
then only fixed step routines can be used. Unforitunately, variasble
step routines are desgirable for reasons other than their variable step
facility being generally of a higher order than the fixed step methods
available in the packages. During the preliminary trials two facts
emerged: -

1) when using the fixed step method (4th.order) setting the step
size much less than the data spacing produced very little difference
in the simulation accuracy, when compared with setting the step length
equal to the date spacing (although wvasteful of computing time). This
implies that the system response to the waveform obtained by joining
the digitisations by straight'lines is little different from the response
obtained without specifying the shape of the waveform between the
digitised values. Presumably, the choice of the sampling interval for

the excitation - avoiding aliasing problems ete. - is sufficient fo



adequately definec the excitation within the frequency range associated
vith the sampling interval. Particular methods of Jjoining the
digitisations will hovwever produce different response outwith this
frequency range. Note that this argument applies to linear systems -
it need not apply to non-linear systems.

2) the 5th order variable step method gave responses similar (more
accurate) to the above and consideration of the computing time required
to execute the same problem as above suggested that the zstep length
stabilised at a value equal to the sampling interval. This is
reasonable, If the step length is initially set much smaller than the
sampling interval, the routine will then find the excitation 'very
predictable! - in fact, a straight line., The routine will therefore
lengthen the step until some error criterion is about to be vielated.
Clearly, this value will be equal to the sampling interval (or very
close to it).

It therefore appears that variable step methnds can be used since
the problem chosen here was perhaps the most difficult to simulate., If
the excitation is narrow band, the variable step mechods will reduce
computing costs by allowing the step size to be greater than the sampling
interval if this is perhaps chosen needlessly‘small.

Although outwitn the scope of this report, the external function
facility can be used in non-stationary randém analysis., 1f, for
example, the response of a vehicle accelerating over a road surface is
required, it would be a simple task to adjust the time co-ordinates in
the function reprosentative of the input at constant speed, to conform
to that of the input to the accelerating vehicle. The response
predicted in this manner would be no less accurate than that for the
constant velocily case.

The C.S.MeP. package offers fixed formal printing énd print~

plotting of the solutions. A sample output is shown in Figure 2%. The




time (or equivalent) increments for plotting are, again, user-specified,
although it is usual to set them equal to those specified in the
external function data. The print-plot facility is especially useful
for visual interpretation of the output and can be usefully employed
to estimate transient - decay time which will be mentioned later.

A simple problem was devised to test the package when applied to

random simulation.
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THE TEST PROBLEM

The next task was to devise a realistic problem of random
response prediction with which to evaluate the C.S.M.P. package in
particular and numerical integration methods in general. Consider the

necessary attributes of any such test problem: the major ones must be:-

a) it must be a typical problem. This satisfies the critericn of
general application.

b) the exact solut;on to the problem must be available in order
that the accuracy of the technigue under test might be assessed.

c) the problem should be designed to accentuate any suspected

weaknesses in the proposed technique.

If a), b), and ¢) are strictly adhered to the accuracy of the technique
as indicated“by the test problem will be a lower bouand., In view of the
fact that testing such a technique as numerical integrstion, with all
its attendant variables, is likely to involve considerable computer
time, it was desirable to keep the test problem as simple as possible
without violating the conditions above.

As a result, the test problem was chosen to be ithat of predicting
the response of a single degree of freedom linear system to Gaussian
white noise excitation. The reasons for adopting this particular

problem were:-

i) it is a typical problem and it is a simple cne ~ this satisfies
condition a).

ii) it is known{[lil that the response of any linear system to
Gaussian excitation is itself Gaussian. The fesponse is therefore
completely characterised by its spectrum. The dynamic receptance

a(if) of the system is easily defined and with use of the equation,



g (f) - I m(if) |2 s (1) vhere R and E denote response

R E(

and exc! sation respectively

together with the excitation spectrum, the theoretical response
spectrum can be evaluated, satisfying condition b).

iii) it is stated in the C.S.M,P. user's manual that integration
techniques 'camnot be expected to handle wildly oscillating
functions with extreme precision', It is clear that such functions
night introduce serious errors in response estimation,
Consequently, the most serious errors are likely to be caused by
functions which exhibit no dominant periodicity: the excitation

forcing function was therefore chosen with a white spectrum.

Pigure 24 gives a representation of the tert system - a simple
mass/spring/damper arrangement subject to forced excitation., The

differential equation defining the behaviour of the system is:=-

m¥ + ok + kx = F(t) with the usual notation.

The forced excitation F(t) was represented by a digital record
consisting of 3000 samples whose distribution was Gsussian and whose
frequency spectrum was white within the 0-25Hz range. The sample size
of 3000 was selected since this number is the lowest which can be
considered statistically representative of a random signal for the
present ﬁurposeo However, for most applications, this sample size
should be considerably higher, This is in accordance with condition
1ii) above. An amplitude-time plot (with the assumed sampling interval)
of the forcing function is given in Figure 2.

The system parameters m and k were set to give the system s
resonant frequency of just over 1lliz which, together with the assumed
sampling frequency of the excitabtion (50Hz) gave 1 s:ccond of oufput per

page on the print-plots. This facilited recognition of the resonant
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frequency in the respon:2; at one cycle per page of print-plot output.

The system transfer function a(if) is given by:-

1

»

by

N

. ! . .
a(lf) = £ 1?{ Lo f.a _ 5-4»}.
1~ <' ) + 12 L

| g
.,sf
n n

wvhere { is the damping ratio, fn the resonant freguency.

The modulus of this function is sometimes known as the magnifics.vion
factor of the system. The differential equation of the system was
translated into C.S.M.P, statements, The basis of these statements is

the integral function, INTGRL. The appropriate equations are:-

X = INTGRL(O,XDOT) where the first argument is the initial value

XDOT = INTGRL(O,X2DOT)
Buhe?
F = AFGEN(FORCE,TIMR:)
X2DOT = (F-cxXDOT-k#X)/m
2
%’f; , ¥opor = XX
at?

vhere X = x, XDOT = , and I ig the external function

(arbritary function generator - APGEN) named FORCE with independent
variable TIME., FORCE is specified as the set of input time-amplitude

co-ordinates in the following manner:-

IE‘ORCE = 0.0,000’00029()‘594,0.04, Og§72,oo-o.60.0909921

The simplicity of the above statements is commendable, Complicated

dynamic systems éan therefore be represented on C.S5.M,P, with 1little
effort,.

The choice of the damping factor, ¢, requirced more consgideration.
Assume the damping is set very high, say several times the critical
value. The response x(t) will then be very similar in frequency content

to that of the excitation since the system is effectively ‘'solid'. As

the damping is gradually reduced to say, 3% critical, the shape of the

response spectrum will become progressively more narrow-band. It was
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important therefore to choose a range of values ¢f damping and to assess
the accuracy of the simulation in each case, The values of the damping

ratio chosen were:-
¢ = 0.5,0.25,0.1,0,05,0,52,0.005

This range should be sufficient to cover the majority of response
prediction problems.

Once the program was set up, a preliminary check on its operation
was made. Bince it is known that numerical integration works well with
‘predictable' inputs, ; sine wave input of 1lHz frequercy was selected as
the force input. The value of { was set to 0.25 for *his test. Use was
made of the variable step Runge-Kutta method offered in the package.
Any linear system excited by a pure sine wave will produce a response
vhich is a sine wave of the same frequency but with different amplitude
and phase (with respect to a time reference).

The response produced by C.S5,M.P, for this preliminary test was
found to be very accurate, being a pure sine wave with amplitude and
phase almost exactly as predicted by equation 3.4.l.

C.5.M.P. was now tested with the random input problem.
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EXPERTIMENTAL PROCEDURES AND RESULTS

EXPERIMENTAL PROCEDURES

Since the random probicm ig likely to be the most difficult to
solve with numerical integration methods, it was appropriate %o select
the most sophisticated routine offered in the C.S.M.P. package. This
is thg Milne method. It is a fifth-order method with variable ciep
length incorporating predictor-corrector. The version used,; as
implemented on the IBM’B?O/lBB, has been rewritten in double-precision.

Using this method the random test problem was execubed with the
various values of damping ratio and the response amplitude print-
plots obtained. On scrutinising the plots it was apparent that a
certain degree of non-stationarity existed in the responses. In each
case the peak amplitudes at the beginning of the plots wer: greater
than those Eor the remainder. It was also apparent that the time taken
for the peak amplitudes to settle down was grestver for the lower values
of the damping ratio. In the case where the damping ratio was 0,005,
the peak amplitudes remained more or less constant throughout the
integration interval. It was clear that the cause was transient
response, the decay time incressing with reduced damping. TFor the cass
where the damping was 0.00% critical it was presumed that the transients
were still dominant at the end of the simulation, i.e. after 60 secs
(60 cycles at 1Hz).

It is a simple matter to determine the number of cycles taken ior
these transients to reduce to some percentage of their iritial value.
Where the damping ratio is 0.005, the number of cycles for the‘transient

to reduce to say, 10%, of their initial value, is given by:-

o

0 where n = number of cycles, X , X are the initial
n = 1n e o’ n

1 and nth amplitude values.
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leCs

n % 0.005 = 1n(10) = 2.3

L

n = 460 cycles, which is equivalent to 460 secs in this case.
However, since the integrafion method has a variable step length, it
is not possible to obtain, with any accuracy, the initial wvalue of the
transient. It is therefore difficult to assess at what fraction of
their initial value can tﬁe transi=nts be neglected. Another method
of trénsient estimation was devised.

A separate run is required wiih a new foreing function as follovs.

Instead of 3000 amplitude-time co-ordinates, only the first input force
amplitude is used. The remainder are set to zero. This is simply

achieved by the following statement:-
FOB.CE = OaO,OoO 90902 90-594 90-04 ,OnO ,60 .O ’OoOo

In effect the first {transient inducing) force ampl:itude is allowed to
act on the systém and ig then quickly reduced to zero and remains at
this value throughout the integration iﬁterval. The print-ploi. is now
representative of the transient décay (Fig 23). Now, by comparing the
relative magnitudes of the respense in the two cases the point at
which the transient can be neglected is determined. ‘fhe response on
the original plot can now be taken Lo be steady-~state. TFor the present
tests the transients were neglected when the relative magnitude was
about 2%. A disadvantage of this method is that the response sample
size is effectively reduced. It was found that for £ = 0.5, 2750 values
of the response wera reliable, whereas the number was Jjust less than
2000 for [ = 0.02. This disadvantage can be ov-rcome as will be
described in the section on FURTHER DEVELOPMBHTS,

The reliable response values so obtained were analysed with a

separate statistical and spectral analysis package. The accuracy of

the simulation was assessed by considering two factors:-
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a) PROBABILLTY DISTRIsUTION

As stated previously, the response distribution should be
Gaussian, i,e. similar to the excitation, It is not possidle, however,
to exactly represent a Jdaussian distribution with a finite sample. The
3000 valued input sample is therefore only an approximation to the
Gaussian distribution, although a good one for the =size of the sample.
This fact makes the test more realistic: not only is 4re integration
technigue under test, the adeguacy of representing a continuous
distribution with a finite sample is also under evaluation.

Since, at the outset, these tests were designed to illustrate
.any veaknesses in the simulation technique a thorough assegsment of
probability distribution was essential. In ploti:ing prebability
histograms, the choice of the number of class intervals is of great
importance. If the intervals are chosen too wide, derivations from
the time distribution can be masked; it often happens that the valuves
ocourring within a wide class inﬁe?val can be badly skewed and yet the
centre of the interval coincides with the true Gaussian curve.
Conseguently, the number of class intervals for a sauwple size N was

selected by the formula,

NCI = 1.87H %

which is the number required by the Chi-square test for a 9% confidence
level [9tl. This gave 45 intervals for a 3000 valued sample. The
histograms were preferred to the Chi-square test of Bypothesis
Acceptance., This test either passes or fails tle sample: it does not
give any indication of which amplitudes are well represented or those
that are not. If, for example, some data fails the test for NHormality,
no indication is given of which amplitudes caused the failure. This

is of general interest since in some disciplines, high amplitude

derivations are unacceptable, e.g. certain problems in fatigue,; whereas
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in others such deviations sre of less importance.
Tt must therefore be stressed that this distribution test is a
severe one., The probability histogram of the forced oxcitation is given

in Pigure 25 with the true Geussisn distribution superimposed (full line).

SPECTRA

The response spectra were computed for comparison with the
theoretical spectira. The data was analysed using the standard Blackman-
Tukey method up to 25Hz ~ this limit is imposed by the sampling interval

to avoid aliasing probl@ns[S]u The random error €. of the computed

spectra is given hy:-

€, = where Be is the analysis bandwidth and T the record
Be E length in seconds.
l.e.
¢ 1 L. 184 for the 3000 valued sample

RN

This should be remembered in comparing the measured and theoreticzal
spectral densities. There is an unfortunate characteristic producecd by
the Hanning smoothing function which is associated with the Blacknman-
Tukey spectral analysis procedure. If the spectrum of the signal under
analysis falls off rapioly with inecreasing frequency the estimates
produced can eventually become unstable. The instability is manifest
by negative~valued estimates of spectral density.

This phencmenom occurced in certain cases in the present analysis

- but fortunately did not do so until the values of the spectral density

had fallen several orders of magnitude from the resonant values.

The spectrum of the forced excitation isg shown in Figure{“SJ.

RESULTS

For each value of damping ratio, lthiree response plots were

produced: -
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a) ’an amplitude-iime plot (where time zero is the point at which the
transients were neglected).

b) the probability histogram with the true (continuous) Gaugsian line
superimposed.

¢) the response spectral density (full line) with the theoretical™

spectrum superimposed (dotted line).

The above set of plots are given consecutively for each value of
damping in Figures 26 =40 . (Note the value § = 0,005 is sbsent since

the response was entirely contaminated by the transient)

¥ as given by the equation SR(f) = | a(if) |? SE(f)
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DISCUSSION OF THE RESULTS

It can be seen from the amplitude~time plots of the responses
thét their form is what would be expectedgl Compare, for
example, the force excitation and the response of the system with
damping ratio 0.02. The wide hand characteristic in the excit%tion :
has been filtered out by the system to produce a response that is
typical of narrowlband randon with its characteristic fluctuating
amplitude sine wave. It is clear also that the dominant frequency in
all the responses ig 1Hz which is the system resonant frequency.
Perhaps the only criticism which can be levelled at ine responses is
that in some of the plots « especially where the damping is low - there
appears to be a little non-stationarity in the initial stages. This is
almost certainly due %o residual effects of the trangient which can
easily be removed with larger samples. This may be achieved by allowing
gome time to elapse in the responées; after the transients appear to
have died away, bhefore assuming the response to be steady state. This
will counteract the residual effects of the transients which may remain
for some time within the integration routine.

The theoreticel and measured spectra show good agreement.

Where deviations do occur from the theoretical spectrur, at the low
demping values, it is in the magnitude rather than in the shape of the
spectrum, The reduced sémple gizes for these cases will account for
the discrepancies.

The probakility histograms show that the response distributions
are approximately Ggussian, The plot for I = 0,02 can be seen to
exhibit a tendency %o a sine-wave distribution., This indicates that
the transient is still present in the response to some extent,

It is clear that increasing the sample size of the iaputs to say,



20,000 values would produce extremely accurate responses, even for the
present problem of narrow-band filtering., Where the problem dees oot
demand such a sharp change in spectral shape the simulation will be
even better,

In conclusion,; the technique of random response simulsgtion by
numerical integration can only be considered to have grest potential.
It will be possible with fhis method to predict linear system response
to non-Gaussian excitation, non-linear system response to both Gaussian
and non-Gaussian excitation and even non-stationary problems could be

handled.
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RECOMMENDED PROCEDURES FOR RANDOM SIMULATION BY NUMERTCAL METHODS

The following procedures are strongly recommended for any random

response problem which is t¢ be solved with Numerical Integration.

REPRESENTATION OF THE INPUT

Spectral analysis procedures impose constraints upon the sampling
intervél and record length of the input[ 5], The sampling frequency
must be at least twice that of the highest frequency of interest in
the analysis. The record length T which defines the sample size (n=T/bt,
At = sampling interval) must be at least that determined by the desired
accuracy €., of the spectral estimates and by the analysis bandwidth BE’

i.e.
1

G T

For narrow-band response simulgtion, the minimum recomnended sample size

e =
xr

n, is derived in Appendix C. It is given by:-

25¢f where %n is the maximum frequency of interest, fo
ny —u-
fo and { is the resonant frequency and associated damping

whose product is minimum,

This sample size does not make allowance for transients.

CHOICE OF INTHGRATION METHOD

It would be dangerous to recommend particular types of integration
routine for general application ~ the choice is largely dependent upon
the gpecific type of problsm., However, the following procedure may be

helpful in such a choice:=~

1) Select the most sophisticated routine offered in the package -
usually a variable step method.

2) Perform a trial run over part o# the integration interval using
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this method, .

3) Repeat with the second most sophisticated method., If it happens
to be a fixed step method, set the step size to the data spacing

4) Compare the responses produced. They should he similer. If so,
accept the original method. If not, and further reduction in the
step size of the second method gives no improvement, discard the
sriginal method and répeat the steps with the second and third
methods, and so on with all pairs of methods until some agreement

is obtained.

It is egsgential that a 'second opinion' be obtained, since it is
dangerous to accept unguglified responses where the general form of

the response is wilown,

TRANSIENT REMOVAL

Adopt the procedure outlined in Section 3.5 (l).

4, CO3T

The cost of the simulation is largely dependent upon the complexity
of the system, the step size, the interval of integration - in effect
the excitation rececrd length - and the method of integration. For the
one degree of freedom system used, with the 3000 valued excitation
sample, the cost was approximately £3 (£6 to commercial users). It is
likely to be less than this in general for such a problem, since fhe
step size was of necessity very low in view of the white spectrum of the

excitation.
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RESPONSE OF A SINGLE DEGREE OF FREEDOM LINEAR SYoTEM TO CLIPPED

GAUSSIAN EXCITATION

It was possible within the time available to assess the response
of the test system t6 clipped Gaussian excitation., The values of
damping chosen were { = 0,25 and 0.1 to keep the effective response
sample as large as possible - about 2750 in this case. Two degries of
clipping were chosen - 1,5 sigma and 1.0 sigma, where sigms is the
standard deviation, unity in this case. A plot of the 1.9 sigma
clipped sample is given in Figure4l and the corresponding spectral
density plot in Figure 42.

It is interesting to note that the effect of this clipping is to
reduce the oversll level of the spectrum, but it retains its shape, i.e.
it remains white. While this is the case up to 25Hz, it may be that
the higher £¥equencies are attenuatedby the elipping,

The responses were predicted for the {two damping valuves and the
plots were produced as before and are given Figures‘l5 - 04,

It is immediately apparent from the probability distributions
that the responses are approximately Gaussian. The spectral density
plots show good agreement with the theoretical spect:um,

These results suggest that a linear system tends to restore the

Normality to a clipped Gavssian excitation.
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3,9  TFURTHER DEVELOPMENT OF THE C.S.M.P. PACKAGE

The encouraging nature of the test results of C,5.M.P, has
justified further developmeri of the numerical simulation technique.
Since the completion of the work reported upon here, the following

refinements have been made: -

1) it is now possible to handle samples of up to about 1C0,000 values.

- 2) the output from C,5.M.P. (which may be more than one variable) is

read gutomatically written onto a temporary file without saerificing
the print~plot(s), This file is accessed during “he same run by a
compatible statistical and speciral analysis package.

‘5) computer plots of the following parameters are available in the sane

E]

U8 -~

Auto-correlation function

Spectral density

Probability histogram with Gaussian superimposed (option)
Amplitude~time signal

Pegk distribution

Level crossings

Coherency end Phase (ifi two outputs produced by C.S.M.P.)

The flexibility of the entire package will permit much basic

research to be done in tre near future.
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CONCLUBIONS

The conclusions may be summarised as follows:-

Complete probubilistic information on an ergodic process can be
obtained from the set of product moments of the process. These product
moments can be obtained from a single realisation of the process.

When arranged in a certain manner, the product moments delfine the
characteristic function of the process. Fourier Inversion of this

function yields the probability distributions of the process.

For Gaussian processes, the higher product momenis are simply
defined. For ergodic Gaussian processes, the higher order correlation

functions R(T ,7 ,.....Tn) of any realisation of the process can be
1’ 02

expressed as simple functions of the auto-correlation function R(T) of

that realisation (or of any other).

By using higher order input/output relations for linear systems,
either in the time or frequency domain, probabilistic information on
the response can be obtained from a knowledge of the excitation, where

the excitation is assumed to be a member function of an ergodic process.

The computation required to obtain the distributions, especially
for the higher orders, is considerable, but‘need not be prohibitive
with the use of a modern digital computer. The technigue is likely to
be of use in fatigue analysis where amplitude distributions are most

important.

The third order product moment functions of random processes, Or

equivalently, the third order correlation functions R(T T ) of random
1 2

variables are theoretically zero for zero mean Gaussian variables and

for single sine waves. In practice, when computed from finite digital
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samples, the third order correlations are not zzro but fluctuate in a
random manner with amplitudes of the order of the mean cube value of
the sample. Random variables which can be considered as s Gaussian
variable superimposed unon a sine wave function have third order
correlations also approximately zero. Many other random variables have
third order correlations which are very small. Deviations from zero

in the third order correlations of finite samples do zant therefore
necessarily imply deviations from the Gaussian. For random varisbles
which are approximately Gaussian, the third order correlation function

is of little use.

A more practical method of randoﬁ response prediction is Numericsal
Integration. Lven when using limited digitisations of the excitations,
the response of linear systems can be predicted with acceptable accuracy.
An increase in the excitation sample size will yield a corresponding

increase in simulation accuracy.

Numerical Integration Techniques can be applied to non-linear

systems and non-stationary excitations,

The response of a single degree of freedom system to excitations,
whose distributions are sharply clipped Gaussian and whose spectra are
white over the frequency range where the system response is high, terde

to the Gaussian for certain values of the damping ratioc.
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GENERATION OF THE GAUSSIAN SAMPLE

In order to compute higher correlation functions of a Gaussian
random variable, it is firgt necessary to obtain a digita: sample of a
time history of the random variable. It would have been possible to
obtain a tape recording of some practically occurring signal such as
the response at some point on a motor vehicle which conld then have
heen digitised. bhile it is usual to assume that such responses are
Gaussian there is insufficient justification for this sssumption to
base research upon it, In the absence of practically ccecurring Gaussian
signals, 1t was convenient to generate a set of numhers (amplitudes)
whogse distribution exhibited a close approximation to the Gaussian. Ain
IBM random number generator was used and 10,000 nunrbers genervated with
an N(0,1) distribution,

Consider the implications of attempting to relate these numbers
to a digitised set of asmplitudes derived from seome time history of a
Gaussian process. Broadly speaking, if we have a large, or even infinite,
set of numbers which are assumed to be digitised from some time history,
the individual values determine the probability distribution of the
record and the order in which the numbers appear defines the 'freguency
composition' of the sample - this is then related to the time history.

If, for example, the numbers in the sample increase and then decrease
periodically, the times history can be considered to be narrow band., I,
however, the numbers exhibit no periodic pattern, they will be
representative of wide-band random, There must exist only one infinite’
set ofAdiscrete valueg which have g specific Gaussisn distribution.

The set may however may be arranged in an infinite number of ways giving
different frequency ccintents when each number is associated with a tiume
co~ordinate; In this instance, consider a 10,000 valued sample of the

infinite set of numbers which would be generated from the subroutine if
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allowed to run for all time. Consider the first %000 values of this
sample., Since no ftime co-ordinates are implied with the sample, they
must be arbitrary. We can congider the 3000 values tq be & representation
of the first micro-second of the infinite record or the first 60 seconds,
To associaite the sample with a particular record length merely defines

the shape of the spectrum of the infinite signal within a specific

frequency range. If the record l-ngth is taken as | micro-~second then

we have a very short record of the signal defining very high freguencies.
Taking the length to be 60 secs gives a larger record length defining
much lower frequencies.

The sample (5000 values) was assumed to be a 60 second record with
gsampling interval 1/50 sec. The spectrum was calculated with these
agsumptions and was found to be white within the frequency range O -~ 25Hz
as defined by the sampling interval. It should be anoted that the

random error in the spectral estimates is about 20% and is given by:-

wvhere BF ig the bandwidth of analysis and T the

BE E record length.

It is apparent that for any sampling interval the shape of the spectrun
within the associated frequency range will also be white. The subroutine
can therefore generate sets of numbers which, by correct choice of
associated time co-ordinates, can represent a signal which is white
within the specified range.

The higher ccrreiagtion functions for the sample were computed as

outlined below. One point mugt be stressed: i will be seenr from the

graphs representing these higher correlations that the x-axis is

labelled 'data spacing units'. The reason for this is since the time
co~ordinates are arbitrary so too are the lag values. The values of
the correlation functions are computed only at multiples of the data

spacing (for obvious reasons). However, for visual intrepretation,
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these values are joined by straight lines, Thig does not imply that

the continuous correlation function has this form. In fact, it ico

apparent that the continuous graph could not possibly have such a
form since there is no reason why these values should not occur within,

say the first lag length by suitable choice of sampling interval.
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ESTIMATTION OF THi HIGHIR CORRBLATION FUNCTION

As mentioned above for frequency analysis, the %000 valued sample
was considered to be a 60 second record of Gaussian noise in the range
0 ~ 25Hz, This range is determined by the sampling interval, since
higher frequencies cannot be represented unless the data spacing is
reduced, The amplitvae-time and spectral density plots are given in
Figures 2,3%.

The third correlation function R(T T ) for values of 7 ,T = rd
1 2 e

where § is the data spacing and n = 0,1,2,4....20 was computed using

the following equation:-

N~(T +T ) X, X

. X,
R i i T 4T
R(T . ) N 3, ) 1 14 N 1+ 1+ s
12 Leed N - (T 41 )
=1 1 2

where N is the sample size and xi'the individual samples. Initially,

the computation was performed with the first 1000 values of the sample.
A selection of the plots obtained for this sample are given in
Figures 4-7. At this stage, a check was made on the effect of altering
the order of the sample -~ in effect, altering the [requency content of
the signal. The numbers were arranged in certain seguences which had
the effect of reducing the predominant bandwidth of the signal and the
third correlation function recomputed. Again a selection of the plots
for this set (2) ére given in Figures 8-11, It is apparent from the

plots of Set 2 that, while the individual values of R(7 T?) differ f{rom
. 1

those of Set 1, the plots have g similar nature. Other -rrangements of
the numbers were tried and considerable time was spent in attempting o

relate the values of R(7 T ) to those of the auto-correlation functicn
. 18

R(T). No correlation could be found. It was then suspected that the
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third correlation function was independent of the auto-corrclation
function. Bearing in mind that it has been long known that the mean
value and auto~-correlation function define all higher orders, this

could only mean that R(T T ) = 0 for all Tng for a Gaussian variable.
1 = ‘

The values obtained were clearly being caused by the non-continuity of
the distribution - ie since the sample is finite.

The sample vas now increased to %000 and then to 10,000, the
third correlation function being computed each time. 3e=2, for example.
Pigures 12-14 which show selected plots for thello,OOG velued sample.

It is immediately apparent that for each lee the value of R<T1T0> is
mich less than fcr the 1000 sample. It was noticed too, that the

individual values of R(Tsz) were typically of the same order as the

mean cube value of the data. Clearly then, as the distribution approachazs
the true Gavssian - as the sample gets very large ~ then the mean cube

value will tend to zero as will the third correlation function R(T T ).
12
It is worth noting st this stage that where the distribution is

W{p,0°), R(T T2> is given by:-
1

R (17 ) = + po® (ROt ) + R(T +7 ) + R(T ))
(u,0°) 1 2 1 1 2 2

where R( ) refers to the W(0,l) distribution. Computation of the

fourth correlation function R(T T T ) was conducted in a similar manner:-
123

. X X, X,
i 70T TAAT 4T TAeT 4T 4T
=l

Z
Rt 77 ) = f;“ : A do b3
1 o2s Aot N o~ (7 4T Y
LT

[

On computing this function for the 1000 valued sample, it was immediately
apparent that some of the values were approximately zevo- ( 107 %) while

other values were either 1 or 3. Since the auto-correlation of the
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sample is given by:-

R(T)

R(T)

fi
i._!

T=0

T >0

]
@]

the following relabtionship was found by a process of eliminsgtion:-

R(T T
1 ol

7 ) = R(T JR(T ) + R(T +7 JR(T +7 ) + R(T +7 +7 I)R(7 )
2 3 1 2 1 =2 2 3 1 2 3 2
It was thought that this welation, if correct, could have been derived
analytically and the investigations into the theory of random prccesses

showed these relations to be correct. A comparison of selected wvalues

of the theoretical and experimental computations of R(7 T T ) are given
1 2 3

in Table 1.
Again, where the distribution is ¥(p,0”), the fourth correlation

function is given bys-

RT 77 ) = c*R(T 77 ) + pEGEEI(T ) + R(T ) + R(T )
1 2 3 1 2 3 i 1 2 3

q
+ R{T 47 ) + R(T +7 ) + R(T +7 +7 )J +op*
1 2 2 3 1 2 3

where R{ ) relates to the N(0,1) distribution.
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A.%  ANALYTICAL DERIVATION OF HIGHER PRODUCT MOMENTS OF SINUSOLDAL FUHCTICTS

A.%.1 SINGLE SINUSOID

2
Let X(t) = acos(t). Recall that R(T) =-%~ cos(T)

Now, 7
R(t T ) = Lim L ?}ﬂx(t)x(t+¢ YK(t+T 4T )atb
12 T—ro T 0 N 1 s
)
I
= %ETGD% ?/ﬁa?cos(t)cos(t+7 Yoos (4+T +7 )at
T 1 2
T2
L
Lim 1 o )
et fI dt
)

It can he shown that:-
52
I = zf-[cos(t+2Tl+Tq) - cos(t+T2) + cos(3t+T ) + cos(t—ZleTe)].

and hence it follows that:=-
R(t T ) =0
102
Similarly it can be shown that:-~
at
R(T T 7T ) = o [oos(T wT =T ) 4+ cos(T =T =7 ) + coa(T =T =7 )].
123 8 1 = 8 ‘2 a3 5 1 =2

and in general for X(t) = acos(t):-

n

n
. a_ ) )
R(Tl rgTS .o Uc‘Tn) Z COS(2TI' jg‘ rJ) for n odd

1t

A35.1.1

= 0 for n even
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AeB.2 GRIERAL PERIODIC TusCTION

Let X(t) = cost + cos(2t+%). Recall that R(T) = %—(cosT + €os2T).

After considerable algebra it can be shown thati-
R(T 7 ) = & (cos(7 427 +9) + cos(2r 4T ) + cos(T -7 +))
1 2 4 L2 102 )

Hote that the sbove functior is dependent upon the phase angle v
in contrast to the auto~correlation function. It can be further shown
that all the odd moments are dependent on the phase angle whereas the
even moments are not.

In general then, for X(t) = cost + cos(2t+y1) + coa(3t+¢2)... t-

. Tl . | 5o
R(T '“'Tzn) = 1(11?Ta“”rrzl'l’bl’va““\bn) Au3.2.1
) and
R(T cooor2n+1) = F(TVI.‘I 000912 1) for all n = ].’ngo..

A.3¢% PSEUDOC RAUDOM BINARY TUHCTION

A digital sample of a P.R.B signal was obtained., The third

order product moment function R(T Tp) was computed as before and typical
1 2

plots are given in Figures 15~17.






B.1 HIGIER ORDER INPUT-OUTPUT SPECTRAL RELATIONS

Consider the linear system in Figure 18 with complex frequency response
a(if), impulsive receptance W(7), and input-output P(t), x(t), It

follows that:-
x(t) =f\xf(T)P(t~T)dT W(T)=0, <0 (1)
(o}

Wow R_(T 7 ) =<x(t)x(t+7 )x(t+7T +7 )>
X1 2 1 102

[on]

but x(t) =fw('n'a)}’(t—7a)dTa
(o]

oo

ST x(twl) =[\~J(TB)P(1;-TB+T1)<1TB

t+T +T ) = f W(T JP(t=t +T +7 )dT
x(oerar,) = fuln )e(unon v dar,

. Rx(rrl Tz) :f)w(Ta)fm\,;('rﬁ)fmw('r'r)
o o o

LPUt-T )P(t-T 4T )P(t-T 4T 47T })>dT 47,47
( “) ( B 1) ( Y o 2) a Py

p

Replacing (t—TG) by t (since process is stationary)

R (1 1) = futny) foutng) [

<P{t)p( t+Ta"Tﬁ+Tl )P( t+'rm+Tl+'r2 -TY) >dTadTﬁdTY

[ea] (a0 ja=}
= f w(T W(n y T 4T =T T +T_-T )dT 4T, dT
j;u('\q)[ 1( ﬁ).[w( ry)Rp(|1+ T8t .Y) " ATt

e iop(f T 4L T )
Defining S_(f £ ) =f/ R.(T 7 )e 1122 g7 g7 (2)
X 12 f oo * 1 2

1 2

i.e. the double Fourier Transform of RX(T1T3)



(s o0 el
= S (f f) i}r w(T )}f wiT )J/vw(f )
12 o] CI”O B (s} Y
oo ion{f T 4f T )
. T - - 11 2R . A
‘Z: Rp( e TN TY)e dT&dlﬁdlY

s -ionf T @ ~ion(f ~f ) g, po ionf T
=fw(1' Ye 2 “jf W(T)e 2 1" Pfoy(qye 2
O o (0] ‘3 (¢] Y

:é; Rp(Tl+T - B’T +xB-1 )

ion(f (7 7 ~7 )+f (T 47 -7
7 1(r1+ o~ Tt (T ¢ 0 'Y))

! B dtT dT _.dT
a By
@ -i2Rf T @ ~i2n(f ~f ) g reo o
= w(T e R BTCR T 2 1 B (e ) e LT,
a B v
(o) (o] O
x5 (£.£,)
= o(if Ja(i(f £ ))a*(if )s (£ £ ) “prTiT2
1 2 3 2 P 1 =2
s (e ) = alif )a(i(f -r Na*(if )s (£ £ ) (3)
X1 =2 b1 2 1 2 P 1 =

Similarly it can be shown:-
. - _ ; : - (3 - #( 3 (e
bx(flfe...fn) = o,(lfl)a,(l(f2 fl))...a(l(fn fn_l))a (1fn)5p(ilf2) (4)
Note that substitution of f =0 and @(ifn) = 0 in (4) yields the

(n-1)th response relation.

For n = 1, equation (4) gives:-

Sx(fl) = a(ifl)a*(if 3 !f) | «(if) |? s (£)
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RECOMMENDED MINIMUM SAMPLYE 3174 FOR NARROW-BAND RESFONSE SIMULATION

The minimun sample size recommendation is based upon the
assumption that in using numerical integration in the simulation of
response, the output sample size is the same as the specified
excitation sample size -~ this is clearly desirable.

Congsider a narrow-band response problem. It will be assumed that
the gpectrum has a similar shape to the magnificatior factor of the
system. Spectral analysis of this response will impose conditions upon
the sample size., In Figure 55 the response spectrum of a typical
narrow-band signal is given., The width of the half~power points is

2f0§ where fo is the resonant freguency., It is desirable to have a

bandwidth of analysis lesgs than this value, i.e.

}a
BE < 2fo°

Now,
r.
X

n vhere T is the record length, At the sampling interval,

n the sample size

but,
At o= 5%—- whera fm is the maximum frequency of interest in the record
T m
. om
n = 2lfm
i.e,
n
T = =7
2fm

low for a 20% error in spectral density estimates:-

1 1 _ 2fm
25 -BE T zfofn
25f
m
SN2
fo§

If the system respense has more than one response peak, the value of n

is chosen for the case where the product fof ig a minimum,
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