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The subject ma;ter of this thesis concerns the
flexural-torsional behaviour of thin-walled beams
under conditions of small and large displacements.
The relevant aspects are examined both theoretically
and experimentally and consideration is also given to

the nonlinear unstable behaviour of such beams.

The published literature covering theoretical
and experimental work is reviewed in Chapter I with
special reference to beams of open section such as
channels and angles. The review has been orientated
to survey in particular, the analytical concepts
introduced by previous investigators which are
relevant to a solution for the problem of large elastic

deformations of thin-walled open sections.

In the theoretical analysis presented in Chapter
II, the governing differential equations based on small
displacement approximations, are first considered.
Solutions of these equations for selected cases are
obtained in closed form. It is further shown that by
neglecting the St. Venant torsional rigidity term, the
solutions can be appreciably simplified. The

limitations implicit in this approximation are




discussed.

The general problem considering finite
displacements is then examined and the corresponding
nonlinear governing differential equations established.
In developing these equations, additional effects such
as initial axial stress, axial displacement and
longitudinal stress due to the 'shortening effect' are
included. Solutions of these equations using the
Galerkin approach are presented. The results obtained
give torque/angle of twist equilibrium paths under both
stable and unstable conditions and are shown to be
applicable to the determination of critical bending
moment values causing flexural-torsional instability.
The approximations used in obtaining the solutions are

indicated and their limitations discussed.

The experimental programme, apparatus and
techniques are described in Chapter III. In this, the
various experimental test rigs, including a controlled
angle of twist loading arrangement used to examine both
stable and uunstable behaviour, and the arrangement for

tests to failure, are described.

The experimental results obtained and their

comparison with corresponding theoretical values are
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ABSTRACT

The subject matter of this thesis concerns the
flexural-torsional behaviour of thin-walled beams
under conditions of small and large displacements.
The relevant aspects are examined bo;h theoretically

and experimentally and consideration is also given to

the nounlinear unstable behaviour of such beams.

"The published literature covering theoretical
and experimental work is reviewed in Chapter I with
special reference to beams of open section such as
channel§ and angles. The review has been orientated
to survey in particular, the analytical concepts
introduced by‘previous investigators which are
relevant to a solution for the problem of large elastic

deformations of thin-walled open sections.

In the theoretical analysis presented in Chapter
IT, the governing differential equatiouns based on small
displacement approximations, are first counsidered.

Solutions of these equations for selected cases are

obtained in closed form. It is further shown that by
neglecting the St. Venant torsional rigidity term, the

solutions can be appreciably simplified. The

- limitations implicit in this approximafion are




vi
discussed.

The general problem considering finife
displacements is then examined and the corresponding
nonlinear governing differential equations established.
In developing these equations, additional effects such
as initial axial stress, axial displacement and
longitudinal stress due to the !'shortening effect' are
included. Solutions of these equations using the
Galerkin approach are presented. The results obtained
give torque/angle of twist equilibrium paths under both
stable and unstable conditions and are shown to be
applicaple to-the.detefmination of critical bending
moment values causing flexural-torsional instability.
The approximations used in obtaining the solutions are

indicated and their limitations discussed.

The experimental programme, apparatus and
techniques are described in Chapter III. In this, the.
various experimental teét rigs, including a controlled
angle of twist loading arrangement used to examine both .
stable and unstable behaviour, '‘and the arrangement for

tests to failure, are described.

The experimental results obtained and their

comparison with corresponding theoretical values are



vii

presented in Chapter IV. In this it is shown that, din
general, good agreement is obtained between
theoretically predicted and experimentally determined

values in respect of both deformations and stresses.

The application of the experimentally
substantiated sméll displacement theory to practical
structural design is presented in Chapter V. In this,
specific cases of practical significance are analysed

and discussed.

The prinéipal findings of the investigation are
summarised in Chapter VI and the thesis concludes with
a Bibliggraphy, Author Inde# and Appendices. The
latter give full details of the theoretical solutious,
the material and section properties of the specimens

tested and also includes a suggested safe load table

for thin-walled channel sections.
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PRINCIPAL NOTATION

E . Youngs modulus

G Rigidity modulus

c - Shear centre

g Centroid

X, V, % Co-ordinate axes

X', ¥v's 5! Displaced co-ordinate axes
u, v . Deflections relative to

displaced axes
u, v Deflections relative to
undisplaced axes

Angle of twist

A ' Cross~sectional area

T Wall thickness

Ix’ Iy Priﬁcipal second moments of area
IC Polar second moment of area
A’}X,IQ - Third moments of area

KC Fourth moment of area

Torsion constant

r Torsion-bending constant

w ' Vlasov's sectorial co~ordinate
M 4 M Moment wvectors

x(x')’ “y(y')?




ix

T - Torque
B Viasov's bi-moment
L Beam span
AL Beam parameter where
GC
A B

Further definitive details of the above and of
any additional symbols used are given where mnecessary

in the text.
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REVIEW OF PUBLISHED LITERATURE




AIntroduction

The necessity for high strength to weight ratios
in aircraft structures has given rise to the production
and use of a wide range of thin-walled open sections.
Similar sections, produced by cold forming hot rolled
steel strip, have also been developed for use in
lightweight building structures. In both cases the
sections have been used as main and secondary

structural components.

The behaviour of these sections, under various
load aqtions, has been the subject of much theoretical
and experimental investigation. In these
investigations, the basic concepts of bending, uniform
torsion and non-uniform torsion of thin-walled open
sections, have been presented. These concepts have
been used in the development of the theoretical
analyses of instability and buckling of thin-walled

beams and columns,

In this chapter the published results of these
investigations are briefly reviewed. For simplicity
of presentation, this review is considered under four
main headings culminating in a critical summary,

that is:



1. Bending of thin-walled open
section beams.

2. Torsion of thin-walled open
section beams.

3. Combined bending and torsion
of thin-walled open section
beams.

4. Lateral and torsional buckling
of thin-walled open section

beams .

To dillustrate fully the development of‘the
theoretical analyses, the results of investigatious
into the corfesponding behaviour of conventionél hot
rolled sections are also considered. It should be
noted that the work included in this review has been
selected as that representative of the main
development of the analytical thought and corresponding

experimental work in this particular field.



I.17 Bending of Thin-Walled Open Section Beams

The stable flexural behaviour of open form beam
sections was first investigated by BACH (1909)1. In
his tests, Bachﬁused a conventional hot rolled steel
channel section. The channel, with its web vertical,
was tested as a simply supported beam carrying vertical
loads as shown in Fig. I.1. The two important résults

of his tests were:

(i) that the strains produced by the
loads acting in the plane of the
centroid were different to those
produced by loading in the web
plane. |

(ii) 4in neither case did the measured
strains agree with those
calcula’ »:d from simple bending

theory.

Bach explained these discrepancies as being due .

to the unsymmetrical nature of the channel beam.
MAILLART‘(1921)2 examined Bach's results in more detail
and noted that the discrepancy between measured and-
theoretical values of strain decreased as the plane of

loading moved from the centroid to the web. He



considered that if the loading plane was further
displaced from the centroid to a position behind the
web the discrepancy between theoretical and
experimental strains would vanish. He referred to
this third characteristic point as the !'shear centre!
and developed an approximate solution for determining

its position on the horizontal axis of symmetry of the

channel.

Maillart also developed expressions for the
longitudinal strain caused by the twisting of the
channel when the loads ao not act in the plane of the
shear c¢entre. Using these expressions he calculated
values of strain for Bach's channel tests which agreed

substantially with the measured values.

The flexural behaviour of channel beams was
further investigated by SEELY, PUTNAM and
SCHWALBE (1930)3. In their work the position of the
shear centre was obtained experimentally and the
results compared with theoretical values obtained from
an alternative expression to that developed by Maillart.
Satisfaetory agreement between experimental and

theoretical values was obtained.

They also presented a method for computing major



longitudinal stresses normal to a transverse section
of a beam which is subjected to bending and torsion or
to torsion only. This analysis was limited by the
fact that the beam had to be restrained in such a way
that one cross-section remained fixed without
distortion. This situation obtains at the central
section of a symmetrically loaded, simply supported
beam or at the fixed end of a cantilever beam.

Results of this analysis were compared with
experimentally measured strains and corresponding
stresses on a channel section cantilever beam and some

measure of agreement was obtained.

The flexural behaviour of thin-walled open
sections has also been examined in detail by
TIMOSHENKO (1945)4. In his work he considered first
the bending of a prismatical bar of arbitrary érossu
section by pure moment actions and established
expressions for the loungitudinal stresses which are
produced. This analysis was then extended to the
bending of such bars by transverse force action. At
this stage he introduced the 'shear centre' councept and“
derived expressions for locating the shear centre

position of some particular cross-sections.

The analysis was then developed further and



general expressions for the shear centre co-ordinates
of any arbitrary thin-walled open section were
obtained. Fig. I.2 shows the cross~section of a thin-
walled beam where g 1is the centroid and gx and gy
are the principal centroidal axes. The wall thickness
at any point is t and the second momenté of area of
the cross-section about gx and gy are Ix and Iy
respectively. The shear centre is the point ¢ whose
co—ordinates are X _ and Vo with reference to the
principal axes gx and gy respectively. The
expressions derived by Timoshenko for the co-ordinates

x and vy are
c c

i

/ m m
Xe = —/wsf/z‘a’s ond 4 —_ 1 wxlds T.1.1
7 3

where x and vy are the co-ordinates of any point on
the centre line of the section wall, s dis the
distance heasured along the centre line, m dis the

total length of the wall centre line and
S
co5=[¢'a/5 I.1.2

where 1 is the perpendicular distance from the

centroid to a tangent at a point on the wall.

In developing these expressions for the shear



centre co-ordinates, Timoshenko showed that his

analysis of the bending of prismatic bars by transverse
loads could be used for thin-walled open section beams
as long as the transverse loads were applied through

the shear centre axis. .If the loads did not act
through this axis the problem became more complex due

to the torsional deformations which would obtain. In
this situation the stresses could not be calculated from

simple bending theory.

Results similar to those of Timoshenko had also
been presented by VLASOV (1940)5 who investigated, in
some detail, the behaviour of thin-walled beams under
various load actions. He also developed expressions
for the co-ordinates of the shear centre of wvarious
cross—sections and noted the deformations produced by

loads not passing through the shear centre axis.

Both Timoshenko and Vlasov extended their
analyses to the problems of torsion, combined bending
and ﬁorsion and buckling of thin-walled open sections.
The results of their investigations into these aspects
of thin;ﬁalled beam behaviour are outlined in later

sections of this review.



I.2 Torsion of Thin-Walled Open Section Beams

The original theory of torsion of prismatic bars
was présented by COULOMB (1784)6. In his analysis, he
assumed that plane sections perpendicular to the axis
of the bar remained plane after twisting. This
assumption was valid for uniform bars of circular
cross—~section only. In torsion of bars of non-circular
cross—-section, longitudinal strains were developed which
caused distortion of plane sections after twisting.

This distortion has been referred to as warping.

. The general solution for the problem of torsion
of mon-circular section bars was derxrived by
ST. VENANT (1855)7. In his analysis, St. Venant
recognised the presencé of warping and assumed that it
was the same for all cross-sections. This assumption
is applicable only if the bar is twisted by couples
applied at the ends, in planes perpendicular to the
axis of the bar, and if the ends are free to warp.

This condition is referred to as 'uniform torsion'.

The fundamental equation of torsion, derived by
St. Venant can be written as

353? 4 Ei%é = -2 I.2.1
oOx* Dy?



10,

where ?6 is a stress function that, as well as
satisfying equation I.2.171, has to be a constant arouund

the cross-section boundary.

The solution of equation I.2.1 gave rise to the
following relationship between the torque T and the
angle of twist /5.

7 = Gcap | T.2.2
o3 ‘
where C , - the torsion comnstant, was given by the

expression

C = ?%/;fﬁgc%zc%y I.2.3

St. Venant showed how to solve these equations by what

is known as the semi-inverse method; that is, he started
by considering an expression for the stress function

that satisfied equation IT.2.1 and then examinéd the
cross—seétion that his expression implied. In this

way he obtained the valuevof C for several of the

simpler geometrical shapes.

PRANDTL (1903)8 showed that the solution of the
torsion problem could be obtained by considering the
equation of equilibrium of a membrane under transverse

pressure. This equation was of the form



2, z
o w o) _ 1,/:)
2 + “Z - - - ICZCLI—
o X Dy S
where w 1is the membrane deflection, s is the

membrane ténsion per unit length and p 1is the

intensity of transverse pressure.

Recognising the similarity between equations
I.2.1 and I.2.4, Prandtl showed that by using a soap
film all the information of stress distribution in

torsioﬁ could be obtained experimentally.

This method of analysis of the torsion problem,

usually referred to as the 'membrane analogy', was used

‘

by GRIFFITH and TAYLOR (1917)° to determine the
torsional rigidities of bars of various complex forms
of cross-~section. TIMOSHENKO1O has illustrated an

analytical solution, based on the membrane analogy, for

11,

torsion of a thin rectangular cross—-section aof length b

and thickness t . The value of the torsion comnstant

was found to be

bt? I.2.5

C = L
3 -

In the case of a thin-walled open section of constant
thickness t a value of C of sufficient accuracy was

given by the expression

C =L mte | I.2.6
3 s



where m is/ the developed length of the middle line of

the cross-section.

The St. Venant solution of the torsion problem
applied only to cases with no warping restraint and
where the cross-sections all warped in the same manner
and by the same amount. This condition implied that
the torque was applied by means of shearing stresses
distributed over the ends of the bar in the same way as
at any intermediate cross-section. If the
distribution of stresses at the ends did wnot comply
with this condition, local disturbances in the stresses

resulte@. In this situation, the St. Venant solution

12,

was only valid in regions at some distance from the ends

of the bar. This form of behaviour where warpiung
varies is usually referred to as 'non-uniform torsion!,
The variation in the warping has been shown to arise if

any cross-section of the bar is restrained from

longitudinal deformation oxr if the applied torque varies

along the bar.

)11 investigated the problem of

TIMOSHENKO (1905
torsion of an I-section with a built-in end. He found
that to compute accurate values of‘the angle of twist,

bending stresses in the flanges had to be considered as

well as the St. Venant torsional shear stresses. The



differential equation of torque equilibrium for the

IT-section was shown by Timoshenko to be

\

7= Gc B . pA T T.2.7
Iz z J37

The first term on the right hand side of equation
I.2.7 is due to the St. Vemant torsional shear stresses
and the secoud arises from the flange bending stresses.
In this lattexr term D denotes the flexural rigidity
of oné flange in its own plane and h 4is the distance
between the centroids of the flanges. For the general
case of a thin-walled open section, equation I.2.7 can

be presbnted in the following form

7= GCef _ Erdis I.2.8
a3 c/jg

where /7 is the torsion bending coustant for the beam

cross-section.

The results obtained by Timoshenko were also
found by WEBER (1926)12 who examined the twisting of
channel sections and by VLASOV f1940)5 in his analysis
of torsibn of thin-walled open sections.

REISSNER (1955)13, using variational methods, has also

13-

derived an equation of the same form as equation I.2.8.°

GOODIER and BARTON (1944)'4 extended Timosheuko's



14 .

!
analysis by considering distortion of the beam

cross-—section in its own plane. The differential
equation of torque equilibrium which they derived can

be written as

T = AdB _ pd%B s c %3 T.2.9
. - /_ 5
g g I3
where A , B and C are constants depending on the

material and section properties of the beam.

In the investigations described so far, the
solutions obtained for the tarsion problem were
restricted to small angles of twist. For the aﬁalysis
of large torsional deformations, the effect of higher
order terms, due to longitudinal stresses, should be
considered. The first indication of this conditfion was
given by YOUNG (1807)'° in his comments on the twisting
of circular shafts. He pointed out that whilst the
main resistance to applied torque was provided by
shearing stresses in the cross-sectional planes, a
small additional resistance, proportional to the cube
of the angle of twist, obtained due to a system of

longitudinal stresses.

This system of longitudinal stresses has been

considered by WEBER (1921)'® in his analysis of the




15-

'shortening effect' of torsiomn. This effect is
explained by considering the behaviour of a generator,
originally parallel to the axis of the bar which, after
tﬁisting, becomes a helix. The distance between the
ends of this helix, measured parallel to the éxis of
the bar, is less than the original length of the fibre,
by an amount proportional to the pitch angle of the
helix. -This, in its turn, varies directly with the
distance of the fibre from the axis of twist of the bar.
If no extermal longitudianl forces are applied to the
end sections of the bar, the outer fibres will be in
tension compared With those nearer the axis of twist

which are compressed. This condition results in an

overall shortening of the bar.

For a given applied torque, the angle of twist
calculated on the basis of shear stresses alone would
be greater than that determined by considering both
shear and longitudinal stresses since part of the torque
is used to maintain the longitudinal stress system.
The effect of the longitudinal stresses is more
pronounced at large angles of twist and gives riée to

a nonlinear torque/angle of twist relationship.

Weber, in his analysis of this phenomenon,

derived a differential equation of torgue equilibrium-



16.

for the torsion of a bar having a thickness t and

breadth b . This equation can be written as

=2

7= L bt L 1 pPr e BN I.2.10
> /3 ‘%5@0 (;3)

The first term on the right hand side of equation

I.2.10 is the usual St. Venant expression aund the

second term is the torque due to the shortening effect.
This analysis is valid for free ended torsion only, that
is, thére are no extérnal longitudinal force actions at

the ends of the bar.

Weber’s work was extgnded by CULLIMORE (19&9)17
who anaiysed the shortening effect in the torsion of
thin-walled open sections. His theoretical analysis
was substantiated by results he obtained from torsion
tests on aluminium alloy'I-sections and zeds.
Cullimore also presented a tentative thebry which
indicated a connection between the shortening stresses
and the position of the axis of'twist in an open

section subjected to pure torsion.

GREGORY (1961)18 also investigated the problem
of the shortening effect in torsion of thin-walled open
sections. His analysis showed that the appropriate

differential equation of torque equilibrium could be




derived by counsidering an arbitrary reference axis for
twist. The final form of the equation which he
presented can be applied to any cross-—~sectional shape
and included the warping term corresponding to
non-uniform torsion behaviour. His equation can be

written as

7= cc P 71—,{_5("//5)?(/( #:7:.?-2,- §;~ ﬁf?;)
éz; Z QE; < A Ly  Ix
’Eﬂd% | T.2.11

I3

The second term on the right hand side of equation
I.2.11 is the torque due to -the shortening effect.
Gregory dindicated that equation I.2.11 was in general
not easily solved. He suggested that in many cases it
appeared reasounable to neglect initially the term
. : B N\? : o
involving 57, R solve the resulting equation in

3

the normal way and then treat the shortening effect as

a superimposed perturbation.

In his theoretical analysis, Gregory also

17 .

presented a general solution for the problem of torsion .-

of thin—#alled open sections subjected to initial axial
force or bending moment. The effect of temsion on the
torsional rigidity of strips was first observed by

WILBERFORCE and CAMPBELL (1913)19 and a simple theory .



for the increase in torsional rigidity of a bar
subjected to dinitial axial tension was presented by
BUCKLEY (1914)20. A similar theory was also developed
by WAGNER (1936)21 in his investigations into the
torsional buckling of compressed aircraft stiffeners.
He shoﬁed that, if a thin-~walled open section is
subjected to inifial axial compressive stress, the

torsional rigidity of the member is reduced.

' This effect of initial axial stress on the
torsional rigidity of thin-walled open sections was
later analysed by GOODIER (1950)22. He extended the
St. Venant solution for torsion and showed that, in the
presence of axial stress, the torque equilibrium

equation I.2.2 was modified to the following form

T = (chﬂ—ai"];) B T.2.12
ol :
where the initial axial stress §  , is positive if
tensile and negative when compressive. That is, the

torsional rigidity increases if an axial teunsile stress
is present and decreases if the stress is compressive.

Goodier ‘also considered the problem of initial axial

18.

stress due to bending actiouns. This aspect of his work

will be described in the next section of this review.
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I.3 Combined Bending and Torsion of Thin-Walled Open

Section Beams

VLASOV (1940)5, in his investigations into the
behaviour of thin-walled beams, considered the problem
of combined bending and torsion of thin-walled open
seotions.. The general theory which he presented was
based on considering a thin-walled section as a spatial
system‘of the cylindrical or prismatic shell form with
rigid section contour. In his analysis of the beam
deformations in the presence of restrained warping, he
did not employ the usual hypothesis of plane sections
remainihg plane. ‘ Instead he assumed that the
projection of the shape of the cross-section on a plane’
perpeundicular to the longitudinal axis remained |
unchanged after twisting and that there were no shear
strains in the middle surface of-the cross—sqctionn
These assumptions constituted the basis of a new‘law
of distribution of longitudinal stresses in the cross-
section which he referred to as the 'law of sectorial

areas'.

The differential equations defining the problem
of combined bending, torsion and axial force which he

presented are
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In the last of equations I.3.1, the constant J;, was
defined by Vlasov as the 'sectorial moment of inertia’,
and corresponds to the torsion-bending constant usually
denoted by /  , and JQ is the torsion counstant more
commonly defined by the symbol C . The term m
denotes the value of an externally applied torsional

couple per unit length of the beam.

Vlasov then presented the following four

generalised force actiouns

dfa?'z | T.3.2

.The last of these forxrce actions B , was new and was
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referred to as the 'bi-moment. The value of B as
defined by the last of asquations I.3.2 can be obtained

by solving the last of equations I.3.71.

The resulting expression for the longitudinal
stress ¢ at any point on the cross-section was shown

by Vlasov to be

[—

Myx  Mxd | Bw

& = -~
Z, I Jio

A L] -
where 9 is defined as the t'sectorial co-~ordinate! of

the point and can be calculated from the expression

s
wz/( AR cls I.3.4

In this equation h is the perpendicular distance from
the shear centre to a tangent at the point and s is
the distance to the point measured along the middle

line of the section.

Vliasov indicated that the theory of restrained
torsion, more commonly referred to as noun-uniform
torsion, which he had developed, was analogous in its
mathematical formulation to the elementary theory of
beam fléxure. He also pointed out that, for thin-
walled open sections, where the ratio of wall-thickness

to the characteristic dimension of the cross-~section



is of the order of 0.02 or less, the torsional
rigidity GJd can be set equal to zero without

appreciable error.

If this simplification is adopted then the

last of equations I.3.1 becomes

£, o7 = M I.3.5
c/ﬁé‘

and is of the same form as the basic equation for the

simple theory of bending.

As a result of these analogies, Vlasov made the
following proposition:
‘ .

'All the analytical methods based on the law of

22,

plane'sections which are used in the theory of strength .

of materials and structural engineering for calculating
beams and systems in flexure, can be completely
generalised and extended to include the theory of
restrained torsion of thin-walled beams, or systems

consisting of such beams and of ribbed arches.!

As already mnoted in section I.1 of this review,
the theory of bending, torsion and buckling of thin-
walied open sections was also presenfed by
TIMOSHENKO (1945)4. Vliasov has stated that in

defining the fundamental problem of flexural-torsional



behaviour of a thin-walled open section beam,
Timoshenko has also started from the idea of examining
the beam as a shell. He points out that, apart from
a difference of notation, Timoshenko'!'s work is a brief
exposition of his own theoretical analysis of the

problem.

Both Vlasov and Timoshenko described how
transverse loads which did not pass through the shear
centre‘produced not only bending but also torsion of
the beam. In analysing this problem they suggested
replacing each force which did not pass through the
shear centre axis by a parallel force passing through
that axis and a couple acting in a plane perpendicular
to the axis of the bar. In this way the problem was

divided dinto two parts:

(i) the investigation of bending by -
forces distributed along the
shear centre axis,

(ii) the investigation of torsion by
couples acting in‘planes
perpendicular to the axis of

the bar.

The aunalysis of the first part of the problem was based

23,



on simple bending theory and for the second part the
non-uniform torsion egquation was employed. Both
authors presented closed solutions for particular small
displacement cases and considered both concentrated andA
uniformly distributed loads. It is to be noted,_
however, that Timoshenko did mot employ the bi-moment
concept suggested by Vliasov, nor did he consider the
possible simplification of the non-~-uniform torsion
equation, obtained by neglecting the St. Venant

torsional rigidity term.

The particular problem of combined bending and
tor51on of th1n~walled cnannel sections was
1nvest1gated by WINTER, LANSING and McCALLEY (1949)23
In their theoretical analysis they presented general
equations of equilibrium adapted from the work or
Timoshenko, These equations consider the equilibrium
of bending moments and torque about the displaced axes

x? ’ y’ and -5’ ’ as shown in Fig. I.3, and were

written as

z, -

X
dﬁ? dﬁ
f == A C/Z"‘: _a.;.u ’ 7
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- e Jir z»
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In these equations, tﬁé angle of twist /& is
considered to be small and the approximations

sin /7’ = /3 and cos /3 = 1 are adopted. The
symbol /mg used in the last of equations I.3.6,
defines the intensity of a uniformly distributed torque

about the shear centre axis.

The authors examined the case where the load
plane was parallel to one of the principal planes such
as for a channel beam loaded in the plane of the web.
Putting Mx = M , My = 0 and neglecting certain terms
which they said could be shown to be of higher order,

equations I.3.6 were reduced to the following single

expression

B e dp f“?_j? = — Mo T.3.7
/5% /3% £y 4

The boundary conditions to be satisfied in obtaining an

approximate solution to equation I.3.7 were then

25.

indicated for the particular case of a channel of length

2¢ and depth 2h , subjected to a single conceuntrate
load 2P applied at mid-~span at the top of the web.

In such a case M = P(&ng), /ﬂ; = 0 and if the origiun

of co-ordinates is located at mid-span, the appropriate

1
boundary conditions are

d
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The wvalue shown for g%;?{aj is found by iﬁtegrating

the first and second parts of the last of equations

I.3.6 and noting that, at mid-span, E@?x=c> and, as

3
illustrated by Fig. L.L4,

Mys = — Ple +AplY]

At this stage of the investigation the possible
simplifications which could be made in the analysis for
determining ﬁ% were considered. It was suggested that
since the angles of twist were small, the influence of
bending moment about the minor axis could be neglected.
Also fTor thin-walled sections the value of C was
small when compared with the other section properties.
Thus, by mneglecting the second and third terms ip the
left hénd side of equation I.3.7, the following
simplified equation was obtained

x7. .
£ B 2 — A3 I.3.8
c/j‘i"

This equétion is similar to equation I.3.5 derived by

Vlasov.

Winter, Lansing and McCalley extended their

investigation to consider the effect of intermediate
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bracing of the channel. They showed that the torque
actions produced higher values of stress at certain
points on the channel cross-section, than would be
calculated from simple bending theory. The resistance
to the torque actions was shown to arise mainly from
the lateral bending of the flanges. This resistance
could be increased by providing intermediate bracing
between the flanges of the channel. A design
approach for determining the strength and spacing of
such bracing based on an 'overstress criterion' was
presented. It was shown that it was never mnecessary
to prov?de more than four braces between supports in

order to limit the overstress to 10%.

TERRINGTON (1958)2” investigated the bending and
torsion of crane girders due to obligque transverse loads
which did not pass through the shear centre of the
girder. = In his analysis, he developed différential
equations of stability which, in their contracted form,
were similar to equations I.3.6 presented by Winter,

Lansing and McCalley.

Terrington's equations were also established by
considering eguilibrium of bending moments and torgue
about the displaced axes of the beam and can be

written as
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As in previous investigations, the angle of twist
was considered to be small and the approximations

sin/;’a = /9 and cos/.% = 1 could be used.

%errington indicated.that equations I.3.9 had
been solved.directly for bisymmetrical and |
monosymmetrical sections by PETTERSSON (1949)25 and
DOHRENWEND (1941)%°.  The method of solution adopted
by these authors was to reduce equations 1.3.9 to a
single fburth order differential equation which could
be solved by the solution of infinite series and the
use of Bessel functions. Terrington éuggested that
this form of solution was too oﬁmplex for practical
design calculations due to the numerous factors which

had to be derived. In his analysis of the problem,

28.

he presented an approximate method of solution in which

he neglected terms of the second order of small



quantities and thus modified equations I.3.9 to the

following form

M £7Z‘J%”-n — .
Sl e L S s ,{

o/ 5* |
Myl = fz,,i% = — M3 — WMy
My = GC dE _ Erdis
dj d;f’
= M 5.% + My
3 I.3.10

In solving these equations for a beam loaded
j - :
symmetrically about the centre of the span, the angle

of twist /9 was assumed to be parabolic in terms

of B, , the angle of twist at mid-span.

In the various solutions described so far, for
the problem of combined bending and torsion of beams,
the effect of the bending stresses on the torsiomnal
rigidity of the beam was not considered. This

122 g

condition was, however, examined by GOODIER (1950
an extension to his analysis of the problem of torsion
of a beam subjected to an initial axial stress. He
indicated that when such a stress ¢ d4is due to a
bending moment in a principal plane, it is given by the

expression

29.



- M
==y~ %) T.3.11

The torque/angle of twist wrelatiounship, allowing for

this stress, becomes

LI 15
7 = (GC + = ;C/.-:-.C. T.3.12
3 .

The addition to GC can be positive or hegative
according to the sign of M and thus the resulting
effective torsional rigidity can be increased or

decreased.

In Goodier's analysis the axes O©X , OY and

i

OE;S were oriented with O3 along the axis of

30.

torsional rotations and O©X and Oy parallel to the .

principal centroidal axes of the sectiomn. The plane
of the bending moment M was parallel to the Y3
plane, I was the appropriate second moment :of area
and 2& was the co-ordinate of the centroid. The
constant K& is a geometrical property of the beam

section and is given by the expression

Vo =ff(y;-§fg,}f'zc/>fc/y T.3.13

Lz
where 7

i
X
X
AN

Goodier pointed out that this constant vanishes -

and with it the effect of bending moment on torsional



rigidity -~ in the following cases:

(i) +the section has two axes

of symmetry

(ii) the section has point symmetry,

for example a zed section

(iii) the section has one axis of

symmetry and the bending moment
vector is in the same direction,
that is, the axis of symmetry is
perpendicular to the plane of

bending.

The solution of equation I.3.712 was later discussed by

ENGEL and

behaviour

GOODIER (1953)27 when examining the

of a thin-walled equal angle section loaded

as shown in Fig. I.5. In their investigation it was

shown that before twisting, the bending moment, being

in a plane normal to the axis of symmetry, had no

effect on

twisting,

the torsional rigidity. However, after

a bending moment component in a plane

parallel to the axis of symmetry was produced. This

component
torsional
direction

behaviour

-produced an increase or decrease in the
rigidity of the angle according to the
of twist as illustrated by Fig. I.6. ~This

was shown in a graph of torgque against angle

of twist at mid-span for various applied bending

31.



moments and is reproduced in Fig. I.7. The
corresponding experimental results obtained from their
angle tests are reproduced graphically in Fig. I.8.
The authors indicated that although the experimental
curves agreed in form with the corresponding
theoretical relatiounships, there were considerable
quantitative differences. They suggested that such
differences were due, at least in part, to the presence
of dnitial twist in the test specimen. It is to Dbe
noted, however, that whilst the theoretical curves are
plotted for angles of twist up to 2 radians the

experimental values do not exceed 0.2 radian.

Further examination of the theoretical curves
showed that it was possible for a point of instability
to be reached. Once this point was passed, the curve
might descend to intersect the twist axis and then rise
again to intersect it once more. This form.of curve
is shown in Fig. 1.9 where the last point of
intersection with the twist axis represented a stable'
‘deformed equilibrium state under zero applied torque.-
This condition was in fact obtained experimentally by
Engel and Goodier by applying bending moment to the
angle and twisting it by hand until it took up the

deformed equilibrium position. However, they did not

32.



record experimentally the complete torque/angle of
twist equilibrium path for this unstable foxrm of

flexural-~torsional behaviour.

The effect of bending stresses on torsional
rigidity was also discussed by GREGORY (1961) 7.  He
considered a thin-walled member of arbitrary open
cross—~section with no axes of symmetry. For such a
section both XK' x and &y had values and the torque/
angle of twist relationship which he presented was

written as

7 = {(GC - A’—/-‘f———‘M”"-}- 'LVMV) < T.3.14
l . Ly Zy @?

The significance of the geometrical comnstant ﬁf

for a cross-section in the analysis of lateral and
torsional buckling of thin-walled beams dis described

in the next section of this review.

33.



I.4 Lateral and Torsional Buckling of Thin-Walled

Open Section Beams

The problem of lateral buckling of beams was

first comsidered by PRANDTL (1899)28

. He dinvestigated
the behaviour of a beam of narrow rectangular cross-—
section subjected to bending moment in the plane of
maximum flexural rigidity. As a result of his
analysis, the critical value of bending moment, MC

which initiates lateral buckling was given by the

following expression

7ol B '
/Wc.—_- - EZ, &GC T.4.1

where GC was the St. Venant torsional rigidity and

EIY was the flexural rigidity for lateral beunding.

A similar solution for the critical bending

moment was obtained independently by MICHELL (1899)29.

In the Prandtl and Michell analyses, first order
approximations were taken for direction cosines and
cﬁrvatures and the solutions were limited to beam
sections having small ratios of EI% and GC to the

major flexural rigidity EIx .

A modified form of equation I.4.1 was later

presented by REISSNER (1904)30. In his analysis, he

3Lk,



35.

introduced more exact geometrical considerations by
méans of the general equations for the bending and
twisting of rods. In this way a modified expression
for the critical bending moment was obtained which took
account of the ratio of the principal second moments

of area of the beam cross-section. This expression

was written as

28
Me= 7"

I.4.2

GOODIER (1951)3—I examined the Reissner modification and
pointed out that as the ratio of the second moments of
area Ix and Iy approached unity, the value of
~critical bending moment increased without limit. ‘This
appeared to indicate tﬁat lateral buckling ceased to be
possible and that some other form of buckling, not
represented in the theory, obtained. To explain this
conditiqn, he introduced his analysis of the 'effect of
initial bending stress on the torsional rigidity of
the beam section. This effect produced the torque/
twist relationship described by equation I.3.12, that is
7 = (GC + %’%gg Tokh.3
oG
Tn this equation the addition to GC could be positive
or negative according to the sign of M . If this

addition was negative and sufficiently large, the
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apparent torsional rigidity could be reduced to zero.
In this condition the beam could fail by torsional
buckling. The value of critical bending moment for

this form of buckling would be given by the expression

Mo = — GC L Tolol
~
Goodler pointed out that equation I.4.L4 assumes
that the axis of rotation of the beam is restrained
frqm transverse displacement. He also indicated that
his analysis assumed the condition of free warping.
If the warping was restraiﬁed, modifications would have
to be iptroduoed which allowed for the non-uniform

torsion condition.

The problem of lateral and torsional buckling
with restrained warping was first discussed by
TIMOSHENKO (1905)32 in his examination of the stability
of an I-section beam in pPlane bending. In a later
investigation, TIMOSHENKO (1945)"* considered the
stability of a thin~walled member subjected to bending
and compression as illustrated in Fig. L.10. In his
analysis, he derived general equations of equilibrium
for the buckled form of the member\due to the bending
and compressive force actions. These equations

assumed that the effect of the force P on the bending



stresses could be neglected and that the longitudinal
stress at any point was independent of 3_ . Thre

equations are of the following form

51,0"“ y Pl o Py M) P L o
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If bending only is present, then the appropriate
governing equations can be obtained by putting P = 0O

in equations I..4.5, thus

E—Z.y d”a’ - /‘th c/-”—%z = &

o/ 5% o/ 37
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Timoshenko then considered the particular case

of a beam having a flexural rigidity in omne principal



plane many times greater than in the other and
subjected to pure bending in the plane of greatex
rigidity. Assuming that the 3{3 plane dis the plane
of greater rigidity and that the beam is bent in this
- plane by couples Mx R the following expression for
the critical value of Mx can be obtained, using the

first and last of equations I.L.6, thus

VA z
M)y = 202 | 2+ 757

> y i = I.4h.7
where 77%£Z' 77 E / 7
7= T2, B2, B gE(GCrirzy)
l £ = xS Lt Ly
A

Timoshenko indicated that the constant <; vanished

from equation I.4.7 for a section with

(i) two axes of symmetry
l(ii) point symmetry as in the case
of a zed section
(iii) ome axis of symmetry with the
bending couples ;cting in the
plane perpendicular to that

axis of symmetry.

Thus, for any of these cases the expression for the

critical bending moment became

38.
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It is to be noted that the conditiomns which apply to

the constant o, are comparable with those indicated
by GOODIER (1950)°% for the conmstant & . Both these
constants arise from considering the effect of initial
axial bending stresses on the torsional behaviour of
the beam section. The only difference between them

is one of definition. Thus, Goodier's constant & ,
which does not include the appropriate second moment of
area, is definéd with the shear centre as the origin of
co—ordi?ates. The constant_ o, derived by Timoshenko,
refers %o an origin of co-ordinates at the centroid of
the secticn and includes the approﬁriate second moment

of area.

In deriving equatiomns I.4.7 and I.u.8,iit was
assumed that EIy was small in comparison with EIx .
Timoshenko indicated that if GC and E[” were also
small, then buckling would occur at small vélues of M_ .
If EIX was of the same order‘as, EIY lateral
buckling would occur at small values pf M, only if

GC and E/M were very small.

The results described so far have considered bars

bent by couples applied at the ends which produce
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longitudinal stresses independent of 3_ . For this
form of loading, the coefficients of the terms in
equations I.4.5 are counstant. If, however, the bar

is bent by transverse load, the longitudinal stresses
vary with 3 and a system of linear conditions with
variable coefficients is obtained. ”Timoshenko pointed
out that for this situation the calculation of critical
values of loads became more involved and had been
obtained only for the simple cases of single transverse'
loads or uniformly distributed loads. Several cases
of this kind have been discussed by TIMOSHENKO (1905)11,

(1910)32 and (1936)32, and also by VLASOV (1940)°.

i
The values of critical beunding momenf calculated
from the equations which have been included in this
review, have corresponded to the coundition of failure
by 'general buckling'. This form of buckling
involves translation and rotation of the beam cross-
sections, but excludes distortion of the cross-section.
Failure can also occur due to. 'local buckling' of the
plate elements forming the beam section when such
elements are in compression. In local buckling, the
cross-sections are distorted in their own plane. The
analysis of this form of buckling has been developed

from the results of investigations into the buckling



behaviour of thin plates subjected to end compressive

stress and with various edge support conditions.

A review of the more important aspects of the

local buckling failure of thin-walled beams has been

presented by RICHARDS (1947)°% and CHILVER (1961)3°.

}-‘-.‘l.



I.5 Critical Summary

The review of published work on bending and
torsion of thin-walled open sections has shown that
much of the theoretical analysis was developed from
investigations on the corresponding behaviour of
conventional hot-rolled sectiouns. Due to the
approximations used in the methods of analysis, the
resulting solutions have been limited usually tq small
displacement problems. This is illustrated in the

analysis of stable flexural-torsional behaviour of

L2.

thin-walled members, presented by TIMOSHENKO and VLASOV,

where bgnding and torsion effects are treated
separatély. The stresses due to bending moments are
calculated from simple bending theory and the angle of
twist and warping stresses are obtained from the
"solution of the non-uniform torsion equation.
Additiongl components of torque and bending moment due
to axial displacement were not considered. The
omission of these components is valid only if the

displacements are small.

VLASOV's proposition, derived from the analogy
between the basic equations of the theory of bending
and those of his own theory of restrained torsion,

makes it possible to use technigques of analysis
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developed for the simple theory of beunding, for the
solution of restrained torsion problems. This,approach
to the anaiysis of the flexural-~torsional behaviour of
beams does not appear to have been fully appreciated by

othexr investigators.

The theoretical analysis of bending and torsion
effects in girders, presented by TERRINGTON, is also
limited to stable small displacement behaviour. His
solution, however, was developed from differential
equations of equilibrium which included components of
bending moment and torque due to axial displacement.
In ;llowing for these components, small angle
approximations are used and in obtaining hié final
solution, terms of the second order of small quantities
are neglected. WINTER, LANSING and McCALLEY used
equations of beunding moment and torque equilibrium,
similar to those of TERRINGTON, in their investigation
of the flexural-~torsional behaviour of thin-walled
channel sections, Their analysis is also ;imited by

small angle approximations.

In all the solutions described so far, the
effect of dnitial axial stress on the torsional
rigidity of the member was not considered. This

effect was included by TIMOSHENKO and VLASOV in their
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general equations of equilibrium for the buckled form
of a beam subjected to bending and compression. These
equations, which were used in the analysis of the
unstable f;exural—torsional behaviour range of thin-
walled members, also considered components of beunding
moment and torque due to axial displacement. They did
not include, however, the actién of externally applied

torgques.

The detailed investigations of torsional
rigidity changes due to initial axial stress, carried.
out by ENGEL and GOODIER, iundicated more clearly the
conditions that could lead to torsiomnal buckling of
beams. They also appear to have been the first to
consider nonlinear torque/angle of twist relationships
due to combined bending.and torsion effects.
Previously, the phenomenon of nonlinearity had been
considered only in the 'shortening effect! of torsion
discussed by WEBER, CULLIMORE and GREGORY. In their
theoretical analysis, ENGEL and GOODIER did not
consider either the 'shortening effect! or the effects
of axial displacement, although they calculated
theoretical values of twist of more than 2 radians.
However, in their experimental work they did not

measure such high angles of twist and did not obtain
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the torque/angle of twist relationship in the unstable

range of behaviour.

In the theoretical investigations which have

been discussed,

no single solution has considered all

the specific effects associated with' stable and

unstable flexural-torsional behaviour.

This can be

seen in TABLE I.1 which indicates the terms considered

in the more significant investigations included in the

review.

AUTHOR

TERMS INCLUDED

M, T

COMPONENTS

INITIAL
AXTAL
STRESS

SHORTENING

EFFECT

BEHAVIOUR

RANGE

TIMOSHENKO
VLASOV

TERRINGTON

GOODIER
WINTER
GREGORY

* % % % sk ¥

STABLE

TIMOSHENKO
VLASOV

PRANDTL/
MICHELL

REISSNER
GOODIER

*

UNSTABLE

TABLE I.1
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All the solutions for flexural-torsional beam
behaviour'which have been discussed were derived on
the basis 6f small displacement approximations and
cannot be applied satisfactorily to the more general

large displacement problems.

The theoretical and experimental investigations
presented in this thesis were planned both to reassess
and to extend the applicability of the current
theoretical approaches. In this sense, the
theoretical treatment, suggested by VLASOV, is employed
for the analysis of small displacement problems.
Thereafter, the differential equations of bending
moment and torque equilibrium are generaliséd by
including in them all the additional effects which have

been indicated in previous investigations.

These equations are then used for the
theoretical analysis of large deformations in the
nonlinear stable and uﬂstable ranges of flexural-
torsional behaviouxr. Experimental evidence of both
stable and unstable flexural-torsional behaviour is

presentea°
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The treatment of linear small displacement
problems is based on the analogy between the basic
equations of the theory of bending and those of the
theory of restrained torsion, as observed by VLASOV.

To obtain a solution for large nonlinear elastic
displacements, the basic differential equations of
bending moment and torque equilibrium are generalised

to dinclude all the additional effects described iun
previous diunvestigations. Particular solutions of these
equations using é single term Galerkin techunique are
outlined and nounlinear stable and unstable torque/angle
of twist equilibrium paths are predicted. This analysis
is then used to derive an expression for thg critical

bending moment causing flexural-~torsional instability.

ITZ.17 Linear Small Displacement Flexural-Torsional

Behaviour of Thin-Walled Open Section Beams

The basic differential equations defining the
displacements wu , Vv and /6 at any section 3 of a
beam subjected to combined bending and torsion, can be

written as

v
E-z;‘ .0/_"__0' = ?y
3%
4
e = o

57”0/2?._ G<i£CE. = M
cﬁ;* cdgz ' II.17.1
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The first two of equations IX.1.1 can be solved using
the simple theory of bending and are presented more
frequently in terms of beuding moment, thus:
b4
EL, AV o Mk
3%

' i . wm
EI";@‘% = 4 TT.1.2

-

The last of equations II.1.1 dis the non-uniform torsion

equation differentiated with respect to'.g sy thus:
A
i(ﬁ/"i’é_ Ge dp +7‘>=o TT.1.3
g3 I /3
which gives
! 2z
erdf _ Gedl = m ' IT. 1.4
. Tz

c/g3* 3

Where‘w1=..ﬁgf is the inteusity of a uniformly
z

distributed torque.

The force action associated with equation II.1.L4

is Vlasov's 'bi-moment' B and is defined by the

-

expression
Z
B=— £ IdF
dgz II.105'
The longitudinal stresses at any point x , v , « in

a beam cross-—-section produced by the moments Mx and My

and the bi-moment B are



.Z,; ’ »z:e,/
In the last of expressions IL.1.6, the symbol > is
defined as the !'sectorial co-ordinate' and is found for

any point in the beam cross-~section, from the

expression P

5
w:fhds ‘ IT.1.7

where h dis the perpeundicular distance from the shear
centre to a tangent at the point and s 1is the distanc
from a pole to the point measured along the middle line

of the section.

To illustrate the calculation of the sectorial
co-ordinate, the case of a chaunnel section as shown in
Fig. IIL.1 is considered. The point A is the shear
cenntre and D , the point where the axisgs of symmebtry
intersects the web, is the pole. The valﬁe of the
sectorial co—~ordinate at the point p on the web is
given by the product (e.s) and is twice the area swept
by a radius vector AM rotating from AD to Ap .
The sign of the sectorial co-ordinate at any point is
positive: if the radius vector rotates clockwise to

reach the point.

A diagrammatic representation of the sectorial

50,

€
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co—-ordinate at any point in a channel section of

depth d and breadth b is shown in Fig. II.Z2. The
values for the points of the web below the AX axis
are positive, since the radius vector is rotéting
clockwise. For the flange, the sectorial co-ordinate
decreases as the distance from the wéb increases. At
the point C , ﬁhich is the séme distance from the web
as the shear centre A 1is from the pole D , the
sectorial co-~ordinate is zero. Thereafter, the value
is of opposite sign and increases linearly to a maximum
at the free edge of the flange. Thus, the maximum
longitudinal stresses due to the bi-moment occur at the

web to flange junction and the free edge of -the flange.

The value of the bi-moment B dis found from the
solution of equation II.1.4, which can be transformed

in terms of B and expressed as

74 2 , ‘ .
SE _ XNB = —mn \ I1.1.8
C/,g,z
where A= [GC ' TI.1.9
Err :

The general solution of equation IT.1.8 is of the form

B = C 9mh Xz + Czcosh A% + B, | II.1.10

wvhere C1 and 02 are constants which can be

determined in any particular case, by the loading and
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boundary counditions, and BO is the particular
solution. If a uniformly distributed torque is

present then

o = 'ﬁ? IT.1.11

If the beam is subjected to concentrated torques, the

particular solution is zero.

The priuncipal forms of boundary conditions at
the ends of a beam are
i i l-““.-— d
(i) Pixed end B=o , B — o

3
(ii) Simply supported (angular

deformation restrained)

. z

p=0 , dﬂ=0 fience E=0

/32
(iidi) TPree emnd
2

C//3:=.c) Aerce B =O , 7”'(33/€gue):=<)

/3% .
Additional conditions can obtain in symmetrical

problems as will be indicated in the following examples

of solution of equation IT.1.8.

CASE T

A-Pbeam subjected to a concentrated torque T at
the centre of the span L as shown in Fig. II.3. The
end conditions are simply supported with angular

deformation restrained. This is a symmetrical problem
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and the general solution need only be found for a half

span, that is ogg{-é—i . The boundary conditions

are Cﬁ:@, 5-‘:0) org (3::-—-‘4'— R C_:(_‘EZ’:Z IT.7.12
2
dgz  Z
The second condition is obtained from equation II.1.3
noting that at 3-_:_4_, I8 o
Z o
E:

The general solution for B 4is thus:

5/_ = C; Smh %} o cchs/m?\\g TL.1.13
0L 3L T
IdB = AC cosh A + ACy SInA X II.1.14
Jg3
0L FLE

Using the boundary conditions IIL.1.12, the constants are

-
C,=2Ac05h&£_ andg Co=0O IT.1.15
Z
Thus

8 _ 7 sinh Mg

<A AL

O< <.L 2}\ COJ/\__....
3%z Z IT.1.16

This general solution for B can now be used to obtain
the corresponding solution for the angle of twist fg .

thus from equation II.1.5

C%ag —_ & IT.1.17

B
—

cfgz ES?




b

and substituting for B from equation II.1.16, then

¢j73 / 7<5ﬂ%ﬁ.ﬁ3

IT.1.18
C‘/j2 T Er 2 cosh AL
2
Thus, by integration
afﬁz_ / _ Zcos/\/\-} L A, IT.1.19
GB El7 2 0Fcosh D&
Z

/ 7 sinh A3

B T er I iPeosh AL
2

+ Ang +By II.1.20

Using the boundary conditions (z = 0, £ = 0) and

(3 2 » c} ==C’) the values of the integration
31 .
coustants are
l:=—...._.:£__._2. C’ff\d 6/:
ZEIMN
Thuis
2 = ! Tsinh A3 + 7 3
- ) Ed Py 2’ o
o3& £ 2XPcosh /\‘L ZEA : TT.1.21
.2
CASE IT

A beam subjected to a uniformly distributed
torque m per unit length, of span L as shown in
Fig. IT.L. The end conditions are simply supported
with angular deformation restrained. The boundary

conditions are
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The general solution for B dis thus

Pz = C sinhA }\? + Co cosA }\ﬁ - e IL.17.253
Az
o <5<t

Using the boundary conditions II.1.22 the constants are

Cr e 7%, cosh AL —/ and Cpo 270 - IT.1.24
N sink AL W=

A = 7 COSA)\L—'/_ sinA ’\ﬁ _cosAA§ +/ IT.1.25
og3<L AN sinA XL

As before, this general solution for B can be used to
obtain the corresponding general solution for the angle
of twist. Thus, substituting for B from equation

IT.1.25 in equation II.1.17 then

! d’“’/ﬁ__m cosh /\L—/’ smnh )Lg.._cos/\ A§+/\
| C'/jz_ ErX\ sinA AL )’

II.1.26

Thus, by integration

e

14 s feosh AL—/, cosA Az senA )L§+ ﬂ}_{_
C/§ PN\ sSinAAL A A J Az

IT.1.27

__-m  feosh AL=T, snh Az cosh Az 2* 4
P= EI'P\Q(::;Z/\A AL A2 TR - Py )'{‘ z'jrl-ﬁz

IL.1.28
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Using the boundary conditions (5 = 0,8 = 0) and

(5 = L'ﬁg = O), the values of the integration constants
are
.42==~Z§£;_ ond  Bymo 7T
2z 4
ZEIA Er7 A
Thus
_q _ 71 cosh }‘a.l'—/' S/}&A ).j,,_ Cosz/‘& A}_}_ }f)
—_ ” 5
- L g 7
2 ErNE ErN¥ TI.1.29

Similar forms of solution for B and fg can be
obtained for other cases of loading and end conditions.
Such soiutionslincrease in complexity when the beam is
subjected to unsymmetrical combinations of concentrated
and uniformly distributed torque actions. However, in
dealing with thin-walled sections,_the analysis usually
can be simplified due to the relative magnitudes of the
torsionai rigidity GC and the warping rigidity Ef .
Thus, for a thin-walled open section E/ usually is
many times larger than GC and éonsequently, in
practice, approximate solutions for B and ,@ can be
obtained‘by neglecting the GC term in equation II.1..4.
The resulting equation becomes

4%
Eﬂig = 7 II.1.30
o 5% ' | T
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The solution of equation I.1.30 is obtained by the
methods used for the solution of the basic equation of
the simple theory of bending, that is

Ef;{ Q',#W'
cijé'

= Yy IT.1.31

In developing the solution, singularity functions are
used to define the intensity of loading on the beam.
Thus, consider the case of a beam of span L subjected
to a concentrated torque T at a distance a from one
end, as shown in Fig. IT.5. The ends of the beam are

simply supported with angular deformation restrained.

From the analogous case of a simply supported
beam carrying a concentrated load W at a distance a
from one end, the values of the reaction torques at the

supports will correspond teo the support reactions in

the plane bending problem, thus

757.-_——-7-.___(5__.._”@._) and 72"—:-%:@  IT.1.32

The intensity of loading m in terms of the applied

and reaction torques is given by the expression

where <‘(’§> <j) - CL> anof <'j — L are
~/ -~/ -~
singularity functions as used in the Macauley analysis

. for beam deflections.
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Thus, from equation IIL.1.30

e B m
c¥§4‘

= - T2 (5), T(5-9) - T2 (3-5),

IT.1.34

by integration

e P _ 7-(./.-&) <§>°+- T(ﬁ"af-' & <Z)’ ““>o+ </

o 5%
5/72/3/6 ___/‘(z.—a)<5> 7"<a7—q> T <¢—L>+C,3_J_Cz
Tl - ZE 0
+ C/ 54 €23 4 Ca
ra | TP LG 1o 5o

-(Ei E_Z{? Cg Ly
6§+2a+ 2+

IT.1.35

The terms involving singularity functions vanish when
the bracket~< > is zero or negative. Using the

boundary conditions

(3=o0,

(3=¢L, /5=j,—5’—f=o) IT.1.36

The values of the integration constants are



59.

Cr=Cz2=Cp =0 aond Cg = 74 (L—ar) T(L—aa)3
& GL

Thus, the expression for the bi-moment is obtained

from the second of equations IL.1.35 as

B = — £ B
c/;;,?f‘
Thus
- _ J N b
6= TCLoc Ct)<3>__7"<§.,q> + 1@<3“L> II.1.37
L £
and if (L-a) = b then at % = a
& = T—f‘"—@ TT.1.38

The expression for the angle of twist is given by the

last of equations II.1.35 as

fm b [P GIE G- Fe o

TL(t=a) 5 _ T(L—ad® 5

+

é, L IT.1.39
as before, if (L-a) = b then at 7 = a
B = Tatb*® | ‘ IT.1.40
5;:/ﬂ£
These values of B and S are analogous to the
corresponding plane bending results, thus
2 L2
M Wa b5 aong (- W.._a.;_.__é IT.1.41

L BEL L
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The analogy is also observed in the distribution
diagrams of torque and shear, and bi-moment and

bending moment as shown in Fig. II.6.

If a = b = 35 as in the closed solution for
Case I, then the bi-moment B at 5‘: % becomes
L L
B8 = 7T Z'Z
L.
= L
/f‘(' II.1.L‘—2
and the corresponding angle of twist at 5 = % is
__é;)Z(é->2
P o= 7 (5) (%
._ ' BELL .
| 7.2
T R8E II.1.43

These values are also analogous to the corresponding
plane bending results for a central point load, that is

WL L

= IT.1.
4 GBEL, il

In the case of a uniformly distributed torque of
intensity m/unit length, the solution is obtained as

follows

g
5”;;6{ = 777 TTo1 45
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by integration

er LB~ wmg 4

-/ P
3
Erd B o PG 4y
5#32 4
Erdp _@§3+§2§Z+Cz§+cg
o3 G £
' X 3 =%
24 & z - II.1.46
As before, the appropriate boundary conditions are
4
(3=o0, B=9F =0) ond
| c/;:,e” .
i Z,5
(3-’-“‘{-; ﬂzd____ﬁ:“-o) - ’ IT.1.47
The values of the integration constants are
- 3
Cz-—_:Cg.::O , C/:—_’EZ_"‘{‘ X4 Cf’;:/ﬂzl
Z 2l

Thus, the expression for the bi-moment is obtained from

the secound of equations II.1.46 as

8 — B

d3*

II.1.48
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&=-THZ)(5)+%(2)

8 L] L]

The expression for the angle of twist is found from

the last of equatious IL.1.46 as

AN 4 AP TP IN we L?
R=rmlzz 3~ 72 3+ 24 5) II.1.50

L
pos
B L |7 (LNl LyP (4«
zr | ze \Z/ 2 K2/ ' 24

384“Eﬂ ' ‘ ‘ IT.1.51

Once again these values are analogous to the

corresponding plane bending results, that is

=z . i
=‘£§_L_ onc/ zfz-:?-f‘—”lé- IX.1.52

BB EL;
A summary of the results from these approximate
analyses for the problem of restrained torsion compared
with the corresponding values for the'analogous plane

bhending problem is giveun in TABLE II.1.

The analyses which have been presented have
illustrated how values of bi-moment and angle of twist
can be obtained without difficulty if the St. Veunant

torsional rigidity is neglected in the solution of the
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BEZAM LOADING

Bl - MOMENT B

OR BENDING
MOMERNT M.

AMNGLE OF TWIST [3

OR VERTICAL,
DEFLECTION "5

“i: = .[-u]:.-;: - T’Eﬂg
ey / wnitc fQﬂgfﬁf:l f\/l CL{':' v;;d o _I:i. 3 a_{*_” :5, .-:_I:J_
RERERE , 2 ”
s ) [P P
— ' ) ZEA BT
o vy Ly - -6..
m /unit fength L 3 i,
| B at =73 p a5 ==
99935- 2 5
WYAYAVA ! i@ B LA
<2 L, ?l T8 ) 584 EmL
_@E“__Q.Lq_-.—ﬁ———cn M Cft o o T sls o2 = oL
VW a‘ = 0 3 < ai‘ -
o ) . Wab _ wa?b?
" L o L T OBETIL
a .. B
M BC‘fE"%=Cﬁ ﬁdlﬂ'%ﬁa
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non-uniform torsion equation. The magnitude of the
errors arising from this approximation can be
estimated by comparing the true and approximate values
ofAbi~moment and angle of twist for different values

of the beam parameter AL.

Thus, for the case of a concentrated torgue at
mid-span of a simply supported beam with ends
restrained from angular deformation, the true and
approximate expressions for bi-moment and anglé of

twist at mid-~span are

7"ﬁ®\ﬁ‘§é : +7
éﬁm.fe =.= — =z , .65%0,_,_% — - II.1.53
- 7L _ T/ Enh _)j%é /5 _ 7«7__9”
.ﬁ"’e L ES7NE 2 ECN Cpprox- L gl IL.1.54

Introducing the symbols f1 and f2 for the bi-moment
and angle of twist coefficients, defined as
£_ B d £ £
= e QL =
Er

then for the approximate solution

=

T TL
fi=—*_=0.26 and f,o #BEL .5.0008

TL ‘sz

ET

II.1.56
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The expressions for the true values of f1 and f2
are
oL Foornfy 25
Fanh 2}-—- / Tanh 7
ﬁ;‘-" Lz ang :UCQ'*—-** P : =
2 AL L (ALYE 2 (AL)P IT.1.57

Using equations IIL.1.57 the variation of fT and f2
with AL in the range © <AL < 1.5 is shown
graphically in Fig. II.7 and compared with the constant

approximate wvalues.

FProm this analysis, it is seen that as AL
increases, the true value of tThe coefficients f1 and

f2 decrease. The errors at AL = 1 , expressed as
a percentage of the true values are approximately

+8.25% for f{ and +9.50% foxr fz . Thus, the
approximate solution tends to give higher values of
bi-moment and angle of twist and when used for practical

design problems will yield comservative results.

This approach to the analysis of torsional
behaviour cannot be used for beam sectiouns, such as
angles or tees, for which the torsion bending comstant
is zero, since by definition, the bi-moment will also be’
Zero. The torsional behaviour of these sections in the
linear small displacement range can be analysed using the

St. Venant torque/angle of twist relationship,

o -
7= GCC@C II.1.58



IT.2 Nonlinear Large Displacement Flexural-Torsional

Behaviour of Thin-Walled Open Section Beams

In the analysis of large displacement flexural-
torsional behaviour of thin-walled open sections, it
is mecessary to allow for additional;effects in the
formulation of the basic differential equations of
bending moment and torque equilibirium. These effects

are

(i) compounents of moment and torque
due to axial displacement
(ii) changes in the St. Venant
toréional rigidity due to
initial axial bending stress
(iii) components of torque due to
. the longitudinal stress
system of the t!'shortening
effect’
(iv) compounents of torque due to
the displacements of thé
points  of application of

the loads.

The first of these conditions is catered for by

considering the differential equations of equilibrium

of bending moment and torque relative to the displaced

66.
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axes of the member. Thus, for a positive system of

axes, ox , oy and 05 as shown in Fig. II1.8,
03 is the longitudinal axis through the shear

the values of bending moments and torque at any

where

centres,

section 3 s relative to the displaced axes ox' ,
oy! and 03' , due to applied bending moments,
+Mx and +My ’ and torque +M5 , are given by

f‘?
C’a
/Wy7 = Mycos/g — N i B — Mg /T
oz
¢
' o/ Z
Mg/ E— M3 -+ ﬁ”x -+ My dJ IT.2.1
CJJ
In deriving these equations, the approximations
tan £é5==ﬁ&f and ta fé{-iéf have been used.
ey o3 d*’f ez
This leads to the other approximations of
sin d& C/‘“, sda , sn T o cos ZT_,
dﬁ dg ol oz o3 /3
These approximations are cousidered acceptable, for
although the angle of twist is large, the flexural
/=
displacements are still of the order where i?_ and
P 7
é%f <3:;/ . The values of the bending moments Mx"
J
and Myl’ and torque Mﬁi’ obtained from equations

IT.2.1 can now be substituted into the appropriate
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differential equatiomns of equilibrium for bending

moments and torque about the displaced axes, thus

d g ez

£L, == My = =M, Cosf — M, s/nS 4 ff, ZLEE
z -

EZy g« Mt/’ = /V/y cosf . My 5/rﬁ/65 — /?,/j’,, JT

c%g a”

[/ —
S P Mgt = My + My EZ 4 pay 7
d3 oS57 "y g IT.2.2
The deflections v and u which appear in the fixrst
two of equations II.2.2 are taken to be in the direction
of the displaced axes oy' and ox' wrespectively.

The values of the deflections u and v ’ relative to

the undisplaced axes ox and oy in terms of u and

v o, can be seen from Fig. II1.9 to be given by the
expressions

U = Ucosh — v sinf

UV = WU SN 4V cos B S II.2.53

For initial axial bending stress the coefficient

of the St. Venant torsional rigidity term becomes,
according to the present sign convention

(C«}C_‘@VMV’.F‘% M"’> II.2.4
Iy I;(

ﬁ$ is the geometrical constant of the section
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defined by GOODIER*%’%7 as

4 % g (s /2‘,“’ A
f¢x=}(}(*{‘g’—§7’j?'§ dxdy ancl @y._.”(,ﬁ,—xg,}/( c;/mda/ IL.2.5

and R¥% = x® + y% where (x,y) are co-ordinates for a
system of axes with the origin at the shear centre.

As already noted, the comstant /& vanishes if,

(i) the section has two axes of

symme try,

(ii) the section has point symmetry,
for example, a zed sectiomn,

(iii) +the section has one axis of
symmetry and the bending moment
~véctor is in the same directi&n,
that is, the axis of symmetry
is normal to the plane of

bending.

Additional torque action is developed by the

longitudinal stress system due to the 'shortening

effect', especially if large angles of twist obtain.
The expression for this torque, derived by GREGORY19,
in terms of the present sign convention, is as shown
below and should be included in the differential

equation of torque equilibrium,

< 2z Z .
=4 & Z. fro ’}: 5 .
_f_ﬁ(_é)(gc__:..g’l_. ;"‘) IT.2.6
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where the constant K@ is given by the expression
Y 2
K =ﬂz*dxd§/ anced R = ><2+3/2 IT.2.7

As before (x,y) are co-ordinates for a system of axes

with the shear centre as origin.

The last effect to be counsidered is the torgue

produced by the displacement of the load poiunts. This

torque, referred to as Z; will depend on the relative
displacements of the points of application of the loads
and, as dillustrated in Fig. 10, for the case of a load P
at mid-span, its value at any section 3 where
o <§<~é§- is given by the expreséion
(vﬁ@- 3 “ IT.2.8
<§<-——
The generalised differential equations of bending
moment and torgque can now be formulated by including
the expressions IL.2.4, II.2.6 and IL.2.8 in the last

of equations II.2.2, thus

EIQCJ“';E—mﬁ@(cosﬁg-— Ajysﬁmﬁ3-+ Aaggﬁg
c/g? | ¢ oy
E.ch!"“ = Mycosf — Myxsin@ — M3 =474
o 3* g?
2 Z
(\Gc._ KyMy! \ &5 M’ If_ grrcli® L g ) __....__7’?2’__’4:{’:‘)
g+ T My == 1 Jog II.2.9

/3 /3




The solution of these equations for particular
combinations of bending moment and torque is examined

in the next section.

71.
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IT.3 Particular Solutions of the Generalised

Differential Equations oif Bending Moment

and Torque Equilibrium

The generalised differential equations irt.2.9,
for equilibrium of bending moment ané torque relative
to the displaced axes oi a beam, comprise a system of
nonlinear differential equations which are effectively
of seventh order. No mathematical technigues,
available at present, give generalised solutions for
such a system of equatious. However, numerical
solutions can be obtainea in specific cases by
techniques such as numerical'integration, Rayleigh~-Ritz
or Galerkin. | In the present analysis, approximate
solutions for equations IIL.2.9 are obtained by a

simplified single term Galerkin approach.

The analysis cousiders beams of monosymmetrical
open cross-section of the type indicated in Fig. IT.11.
The beams are subjected to combinations of bending
moment and torque which are éymmetrically disposed about
the mid-span position of the beam. This loading
produces a maximum angle of twist at the mid-span
position. The origin of the axes x , v and 5
coincides with the shear centre position of the

cross—section and the axis of cross-sectional symmetry
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lies along the x-axis. The bending moment and torqgue

are applied in the yg and xy ©planes wrespectively

as illustrated in Fig. IT.12. The sign convention for
bending moment, torque, deflections and angle of twist,
used in the analyses corresponds to ?hat adopted in the
derivation of the generalised differential equations as

indicated in Fig. ITI.8.

Four separate solutions, using different
approximations forx sin/6 and cosﬁ? ; and assuming
nonlinear and linear forms of variation of 2 with 3 ’
are obtained. In each case, the two dependent variables

u and: v , are considered in terms of the third

dependent variable /5 .

The boundary conditions used in obtainiung the
solutions correspond to the ends of the beam being

considered as

(i) simply supported with respect to
bending moment, that is, .

e __CJ%f

g d5*  dz*

(ii) free to warp but restrained from

= O

U=V =0

twisting with respect to torsion,

that is, B=0 , Cfé‘“ﬂ:o
&3

Additional boundary counditions for the problem arise
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due to the symmetry of loading, that is, at 5::-%

Jdu _ dv _ B

= = O
5 o3 ag

In the particular problem counsidered in this analysis,
the x—-axis is an axis of symmetxry of the beam cross-
section and thus K,=0 . In addition, the applied
bending moment is in the g plane only, that is
My = 0 , and since there are mno concentrated loads
'E%== o . The generalised differential equations

ITT.2.9 as applied to this problem can be written as

., U e
EIL, = - M, cos L a4 N, oz

g z & f
djz ok
1 7, Jdu« L asm £ Ve 7
Cf’Jz 7 c;fCP
4 7
[GC_ l@:y(—/\v}’){ ﬁlﬁﬁ“ﬁﬁé} %ﬂﬁ _ f?d’sz
7y o3 o/3?
3 w2 2 —
4..1.5(Eﬁ?)j{k _ e _ 5&{) = ﬁ@'+-/w%fff
Zz M3 A Iy - I3

IT.3.1

These equations can be further simplified by assuming

that M3 =423 and m@fﬁ’;" are small in comparison with
3 SF

chosfg- and stin/B and can be neglected. This

approximation is examined in Appendix VIII.Z2. Equatiouns

IT.3.17 can then be presented as




2
EL, Y _ M, cosp

d3*
/% -
E.Z'yd/;: = Vg 513 3
(C—}C+ Ky My Sfﬂﬁ} B gr

Ly

-+ /45(1825)(?¥',£}_.AW:> = JV% +—ﬂﬂ:§?g-

o33
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E IT.3.2

- To solve equations II.3.2 by a simplified one term
Galerkin technique, it is necessary to assume a form
of variation of /A with % in terms of &, , the
maximum angle of twist at the mid-span position. This
form must satisfy the boundary conditions for the

problem that is, at@:O,ﬁ.—:O,ﬁ:L,/&r_O

9’_@ = O..
<3

nj

and at 5 =

.These conditions are satisfied by assuming a

sine variation for ﬁ? with 3 , thus
. 7‘7"5
— ﬂ 5/“ P 8 . II.B-B
ﬁ% o ya
%
It is now possible to express —— and in terms
o3 o33

of B, ‘thus

B 73 c/,@
g/g_/_/:% cos 22 ond/ 55 —{7_'-)130505—— II.3.4




76.

The last of equations II.3.2 can now be written as

Gc,k‘gyfwksb?ﬁﬁbséj d) (77'0605 73
Zy

w e (E) b con T2 w Lo () E cos L= 52

3 I3
IT.3.5

To obtain the solution of equation IT.3.5 by the

Galerkin method, the derivative g%? must be expressed
as a function of fﬁL and 3 This can be
achieveé by direct integration of the first two of
-equations II.§.2 in which 8 is replaced by ﬁ%,shiggé.
These equations'are then

££C(£;§;==-Adxcxx;(/&,sﬁqugj

dg’z Ir.3.6

To facilitate the integration of equations II.3.6 sine
and cosine can be expanded into their series forms, thus
~ ey ﬂﬁﬂ - 77, &
(B, sm 27_)_h (}%,5ﬂ1-zé)
.2/' ,@!
. T3y
6Boswn -45/

— ~+

G/

cos (B, sin :__’_?5) =/ _
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sin (fosin T2y = f,5in 78 _ (s 73y°

g/

(p simnZ2)" (g, sin 73 )7
5/ T T sy

Using the first terms of the sine and cosine

series, equations IIL.3.6 become

74
El;:ELy'=="A4x

c!yf"
fjsrsiif ==-A4x/ﬁ,SAﬂ E:?
dg" L

IT.3.8
)

Integrating equation IL.3.8 directly and using the

boundary conditions 3= ©, U=Y =0 onc/ 3=£’-,

d“—--c—/g = QO the following expressions are
o3 o3

obtained for u and v ,

= z7, (77),6 sxn____.
(£L3-3%)

251',, i IT.3.9

vV =

In the previous section, it was shown that

U =wUcosB —vsing II.3.10

If the first term approximations of sine and cosine

series are used, equation II.3.10 becomes




—c'c'z—amz//@ ' II.3.11

and replacing & by J}jG, s/ ._ﬂz-g and substituting the
results II.3.9 for u aund v , the following

expression for wu d4is obtained,

/W - IT

Thus the derivative QE? is obtained as
| /3
o _ My L 73 Mx T 2 73
dj’ EIy ﬂ. ﬂo cos_z__ -—é-zf_x-z-(l.gms )/30 cos.E_
i QEI ”23)/60 S,n“"é IT.3.13

Equation IT.3.5 can now be written in an appropriate
Galerkin integral equation form, allowing fox the
symmetry of the problem, thus

e

Zy

ver(Zhcos D+ 4 2 (L) cos D (ka5 ) - oy

IT.3.14

780
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. . . 9T y S/ & .

Substituting B, $/71 2—3 for S/72 (ﬂo $/71 7:‘3) in

the J@y term and replacing .EQ? by the appropriate
Spo

derivative, that is

ﬁ:,@os/hgg herzce cfj/g_—_s/}z%é II.3.15

equation IT.3.74 can be written in the following form,

thus

z
¥4 - 7% 73T K My g2 ETS T3
[{Z_GCﬁo 5/72.2_. Co5 & o — XL X G 51 —= ya cos 2

L L Zy L
3 . 2 3. o
._’Z) Erg, stZé’cosZé /(77) K-._... )/_? 5/4Z3cosg.7§
L ‘ L L L A Iy L L
.../Vé.s//z_”.:?_ M _/ﬁ‘_/:ﬁo 5in7Z cos 773
L Ely 7 L L
/6 (L:} 3 ) sin73 cos 72
ZEJ' L L
;'Z.EI oz = O II.3.16
The fbllowing polynomial expression for M§ at 3 = %
that is, half the applied torque at mid-span, in terms

of ﬁa is obtained by solving equation II.3.16, thus

Mg = a//60+6/,602+ C/ﬂj ’ II.3017
¢ §= .

NP
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where

< = [-87/ &€ | /5528 £

L L3
2 z
- 0-/59 My £ 4 0254 My L
£, ELy
by = [owy By :
Ly
< = 388/ (,(___._ )

IT.3.18

A second solution for equations IL.3.2 for the
same combination of bending moment and torque is
presented in Appendix VIII.]. " A similar method of
analysis is employed, but, in substituting for sinlﬁ
and cos‘ﬁ the first two terms of their series form

are used, that is,

, 87
Stnt = —_— —
g =/ 37
2
cosﬁ =] /-—- ._ﬂ_.
2

! IT.3.19

The expression obtained for Mg aj's = % in terms of%%

is of the following polyrnomial form, thus

My = a8, +b,eo + cz B2 + o B+ ez/@o
L .
=% II.3.20
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where

Ty = [-57/ G%Z.F/5'526 £
L L3

=z
059 Mik 4. 0254 ML

£z, FI,
62 == /‘04'7 —-————_@YM;{
L.Zy
z g.‘?—'
cz = 35.88/ £ (Kc___ff. _ J.)
L3 A Iy
4 74
vo-mz ML _ o.pe Mk
ETy ETlx
Sy = —o Jogy BrMx
| 17,

z z
Aﬂxl-“k O-O/74-‘A%{L

Ep = —O-0/58
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IT.3.21

As before, the value of M3 at 3 = % obtained from
equation IIL.3.20, corresponds to half the applied

torque at that position.

-Bquations II.3.17 and II.3.20 refer particularlf
to problems where the torsional behaviour is
non-uniform and where the torsion bending constant I
for the beam cross-~section is non-zero. In such
cases, the variation of /5 with 4 is nonlinear.

If the geam cross-section is of the form where the
flanges all intersect at the one point, such as an

angle or tee section, there is mno flange warping during
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torsion and for these sections [ = 0 . In such
cases, the torsional behaviour is uniform except at
high values of bending moment and approximate solutiouns

for equations II.3.2 can be obltained by assuming a

linear variation of /3 with 3 ’ that is SQ?
' ?
a constant, thus
23
Py = Po 7 II.3.22

°<5<5

Two soiutions for equations.II.B.Z, aséuming a linear
variation of /3 and following a similar analytical
procedure as used to obtain the solutions II.3.17 and
II.3.20, are detailed in Appendix VIIL.1. In the
first solution, sin 4 and cos 8 are replaced by A3
and 1 respectively, and in the second, the first tTwo
terms of the sine and cosiné series are used.. The
relatio’nships found for Mg at3 =% in terms of Ao

are as follows,

(1) Sin B =B cospB =1

z 3
My = a5 8, + D38, + 35, II.3.23
_L
3°z
where 2 2
L £1} ETy

by = 1333 S
L7,
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Cqy = (K _._f. _ _"2:.
IT.3.24
3 z
(ii) singd = L cosp =/ L
f=p- po=i-L
2 3 y 5
M3 = awg‘,-a-é@ﬁo + e fB + c:{;blﬁ‘,'} €y f IL.3.25
L
357
where
26cC Mol ML
= = — 02 4 o-z9z X
# L 2 ELy 2 »
|
by = /333 By Mx
L Zy
2 2z 2
: Z
q#== 4“5% (k;_nﬁu_fgf} b O-/32 AW}L‘
~, L A Iy £,
. 2
—o-z217 ML
ETLy
o, = —0-/33 S
L Zy
2 2
ey= —0-0119 ML | o.0o4s6 Ml
EIy £Lx TT.3.26
The values of M§ at 3 = % found from equations
IT.3.23 and II.3.25 correspond to half the torque
applied at the mid-span position.

Equations II.3.17, II1.3.20, IIL.3.23 and IL.3.25

describe monlinear torque/angle of twist equilibrium



paths. Typical forms of these paths for an extruded
brass angle section, predicted by equation IIL.3.25,
are illustrated in Fig. IT.13. It can be seen that
the nonlinearity of the paths increases as the bending
momént is increased and, as'indicate? by the MB’ Mh’
M5 and M6 graphs, unstable equilibrium paths can
obtain. The significapce of the unstable behaviour
range is discussed later in the analysis of the

problem of flexural-torsional instability of thin-

walled open section beams.

The torque/angle of twist equilibrium paths for
one particular bending moment predicted by each of the
four solutions, are illustrated in Fig. II.14. These
graphs shéw that whilst the forms of the paths are
similar there are significant quantitative differences
between the various solutions. A detailed study of
the applications and limitations of each solﬁtion is
presented in Chapter IV where values predicted by the
different solutions are compared with a range of
experimentally determined torque/angle of twist

relationships.

84 .
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II.) Flexural-Torsional Instability of Thin-Walled

Open Section Beams

The torque/angle of twist relationships
obtained from the analysis presented in %he previous
section, can be used to derive an exéreésion for the
value of bending moment that initiates flexural-

torsional instability.

"Referring to Fig. IIX.15, it can be seen that,
as the bending moment is increased, the turning point
on the torque/angle of twist equilibrium path, which
definesithe start. of the unstable range of behaviour,
occurs at smaller values of torque and anglé of twist.
Thus, as the bending moment is increased, it is
theoretically possible to obtain an equilibrium path
in which the turning point coincides with the origin,
as dllustrated by the path for beunding moment Mc .
This indicates that, at this value of bending moment,
the beam is torsionally unstable and a flexural-

torsional failure mode may obtain.

The slope of the equilibrium path at any point

is given by the derivative gﬁﬁs and at a turning
o

point, this slope will be zZero, that is

C/M3= o TI ok«
/. '
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Thus 4if
My= ag,+ b +cpl+ -
2
then %,—:a—-f-gbﬂo-l—ﬁcﬂ,—l— TIT.0.2

13,

If the turning point is to coincide with the origin of
dM, P

the equilibrium path, then —9=0 at F,=0 . By
3

substituting these values into equation II.L.2, it can

be seen that, for the condition of instability, the

coefficient a must be =zero.

Expressions for the coefficient a were obtained
in the analysis presented in section II.3. In one case
the variation of the angle of twist & with 3 was
assumed to be. sinusocidal whilst for the seosnd solution

this variation was considered to be linear.

In the present analysis the beam is subjected to
bending moment only and the angﬁlar deformation which
obtains is due to torque components of the bending
moment about the displaced axes of the beam as given
by the term Mx'z/e/g . This torque éction varies
with 3 and thusathe resulting torsional behaviour will
be non-uniform even if the beam section islof a form
which does not exhibit the warping deformation usually

associated with non-uniform torsion. Thus the variation

of the angle of twist B with 3 will be nonlinear and
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the appropriate expression Tor the coefficient a dis
considered to be that found from the analysis based on

the sinusoidal distribution of twist.

From equations II.3.271 the expression Tfor the

coefficient a 1is

Qy, = 157/ GC L /5528 £/

L L?
4 2
— 059 Ml 4 o-z54 ML
and if a, = 0, then

Ly
— [/ 57/ &C /5.828 £/7
== o = IZ. 4.0
and thus
ET, (9 875 GC 4 97.75 £/7
7, LE L%
( %)c,
/ — /-@_fz
* IT.L.5

or, in terms of TEQ_equation IX.4.5 becomes

77_2
ET, (GC+ [Z £/7)

iy, = I
Kig L =
[ — DI =4 . Ly

/e L

IT.4.6
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If the beam cross-section is of a form for which
the torsion bending counstant /° is zero, such as an
angle or tee section, then equation IT.4.6 can be

written as

7 Eff GC
/ o 377’-—-—1}'_ Iy ) b7
/1o Zx

The following assumptions are made in using
equations IL.L4.5, IL.4.6 and II.4.7 for the evaluation
of critical bending moment for flexural-torsional

failure.,

! (i) the beam cross-section has a
.value of Ix greater than Iy

(ii) the ox axis is an axis of
symmetry or point symmetry of
the beam cross-~section

(iii) . the bending moment is applied
in the ¥4 plane, that is, in

the plane of greater flexural

rigidity.




CHAPTER IIT

. EXPERIMENTAL INVESTIGATIONS

89.




‘The programme of experimental work was planned
to provide physical substantiation of the theoretical
analyses presented for linear and nonlinear, stable and
unstable flexural-torsional behaviour of thin-walled
open section beams. The tests performed are

classified into four main groups as follows:

(i) stable behaviour - linear torque/

angle of twist equilibrium paths -

angles of twist up to 0.15 wradian
(ii) stable behaviour - nonlineér

torque/angle of twist equilibrium

paths - angleg of twist up to

:1.0 radian

(iii) stable and unstable behaviour -
nonlinear torque/angle of twist
equilibrium paths - angles of

twist up to 1.5 radian

(iv) flexural-torsional failure due

to applied bending moment.

In the first three groups of tests, the specimens were
subjected to combinations of bending moment and torque
that produced stress values within the elastic limit

of the specimen material.

90.
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ITI.1 Stable Behaviour -~ Linear Torque/Angle of Twist

Equilibrium Paths - Small Displacements

A thin-walled mild steel lipped channel section
was subjected to a range of different combinations of
bending moment and torque. The exp;rimental values
of longitudinal stress distribution and angles of twist
were compared with the corresponding values predicted

by the approximate theoretical analysis.

The dimensions of the lipped channel section
used in this group of tests are shown in Fig. III.1.
The values of GC. and E/f’ found for this beam were
0.01905 x 10° 1bf in? and 134 x 10° 1br ink

respectively and using a test span of 6! - O

)\.L = 00860

'Details of the experimental rig in which the
beam was tested are shown in Fig. III.Z2. The design
requirements of this rig were based on the desired
support conditions of the beam with réspect to bending
and to torsion, that is,

(i) simply supported Tfor bending actions
(ii) free to warp but with angular
deformation restrained for torque

actions.




92.

These conditions were achieved by supporting the beam
in thin aluminium alloy diaphragms as illustrated in
Fig. III.3. These diaphragms were held in 'anti-
torque! frames which rested on the main test bench.

The frame at one end was provided with a set of roller
bearings and its counterpart at the bther end was
attached to a knife edge, prepared from a short length
of T—séction. To prevent angular deformation at the
ends of the test beam, the extremities of the anti-
torque frames were attached to cross-beams forming part

of the main test bench.

Various combinations of bending moment and
torque were applied to the'beam by suspendiﬁg weights
from different positions on the aluminium discs clamped
to the web of the beam by the screw Jjacks and spreader
bar arrangement, illustrated in IFFig. IIIL..L. The
position of the rectangular hole cut in the disc was
such that the centre of the disc coincided with the

centroid of the beam cross—~section.

This loading arrangement made it possible to
load the beam in a vertical plane containing the shear
centre and thus obtain the condition of bending with
no torsion - relative to the shear centre axis; By

moving the load away from this position, values of
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torque about the shear centre with the same value of
bending moment, could be applied simultaneously by the

one system of loading.

The distribution of longitudinal strain at
three cross~sections of the beam was-measured using
electrical resistance strain gauges attached ian pairs
to either side of the web, flanges and lips of the
section, placed as indicated in Fig. III.5. . The
location of the gauged cross-—-sections relative to one
end of the beam is also shown in Fig. IIT.5. FEach
pair of gauges was counnected in series and strains due
to local bending. deformations were thus self
cancelling and were not recorded. Readingé from the
strain gauges were recorded on a multi-channel battery

operated strain bridge.

Angles of twist were measured by the reflected
image teéhnique. The‘variation of this deformation
along the span of the beam was obtained by recordiungs
at eleven equally spaced positions aléng the span.
The mirrors reqguired foxr this system of angulaxr
deformation measurement, were atbtached to the web of
the beam at the point of intersection with the

horizontal axis of symmetry of the cross-section.

The test programme was arranged to give both
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symmetrical and unsymmetrical distributions of bending
moment and torque about the shear centre axis. The
load positions are detailed in Fig. IITI.6. In each
case the loads were applied in six different vertical
planes, one of which contained the shear centre. The
positions of these load planes are iﬁdicated in

Fig. IIT.7. Thus, the complete test programme allowed
for eighteen different combinations of bending moment
and torque relative to the shéar centre axis, dincluding

three cases of zero torque.
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IIT.2 Stable Behaviour - Nonlinear Torgue/Angle of

Twist Egquilibrium Paths -~ Large Displacements

This aspect was investigated initially in the
.stable behaviour range by a series of tests on a
1.5" x 0.75" x 0.064" mild steel cold formed chaunnel

section beam.,

?he tests were performed in a modified version
of the experimental rig used for thelsmall displacement
investigation of the larger lipped channel section beam.
The test arrangemeunt is shown in Fig. III.8. As .
before,‘the beam was held in diaphragm supports at each
end of %he test span. In this case, however, the
loads were applied at the ends of the beam outwith the
test span. This created a four point load system
which could produce a constant value of bending moment
over the test span as was considered in the theoretical
analysis. In order to obtain the condition of bending .
with zero torque, the loads had to be applied in the
vertical plane through the shear centre. This was
achieved by an aluminiuﬁ disc and pin arrangement
clamped‘to the web of the beam as shown in Fig. III.9.
The bending'moment loads were suspended from the pin

which, in turmn, coincided with the shear centre of the

beam cross-—-section.
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Tofque was applied to the beam at the mid-span
position using the disc and pulley system as
illustrated in Fig. IIIL.10. In this arrangement, the
centre of the disc coincided with the shear centre
position and thus, the torque was applied about the
shear centre axis. The direction of the applied
torque could be reversed by interchanging the pulley

brackets and cable system.

4 The support conditions for the test span were
considered to_be
(i) simply supported for bending actions
(ii) free to warp but with angular
deformation restrained for torque

actions.

In the tests, the angle of twist at the mid-span
position was measured by an adjustable vernier |
protracfor and level bubble, attached to the torque
application disc. The horizontal and vertical
deflections of the shear centre at tﬂe mid~span
position were measured by dial gauges connected to the
shear céntre pin of the toréue application disc by thin

wire.

The test programme was designed so as to obtain

i
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torque/angle of twist equilibrium paths at the mid-span
position for different applied bending moments,
including the case of zero bending moment. The
specimen was twisted in both the positive and negative
directions and at each increment of torque, the angle
of twist and the deflections of the’;hear centre at the

mid—-span position were recorded.

The.form of the applied loading on the test span
is shown in Fig. III.11. The values of Mx for which
torque/angle of twist equilibrium paths were measured,
were 500, 750 and 1000 in 1bf.  The direction of the
bending moment at. any section was mnegative according to

the present sign convention.
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ITTI.3 ©Stable and Unstable Behaviour - Nonlinear

Torque/Angle of Twist Equilibrium Paths -

Large Displacements

The typical form of a torque/angle of twist
equilibrium path in the stable and unstable ranges, as
predicted by the theoretical analysis, is shown in
Fig. IIT.12. In this graph, it is seen that for
certain values of torque, the corresponding value of
twist is not unique, for example, torque ’I‘1
corresponds to three angles of twist f% » B2 and /53
This type of equilibrium path caunot be obtained by the
usual procedure of applying increments of torque and
measuring the corresponding angles of twist. If this
technique were employed, the stable path would be |
followed up to the turning point a , after which any
further increase in the torque would cause thg beam to

twist through to the position b . The portion of the

path below the limne ab would not be measured.

However, for any angle of twist, the
corresponding value of torque is unique. This
conditioﬁ can be utilised in the development of an
experimental technique for measuring the complete
eduilibrium path. In this techunique, a controlled

deformation loading system is used whereby increments




of angular displacement are applied and the

corresponding values of torque recorded.

The arrangement of the experimental test rig
designed for this form of controlled deformation
loading is shown in Figl III.i3(a). = The load
conditions were similar to those used in the small
channel investigation, that is, a four point load
system producing constant applied bending moment over
the test span, with a torque action at the mid-span
position. The beam was held in gimbal supports, as
shown in Fig. 13(b), which allowed rotation about the

x and, y axes but prevented angular deformation,
that is, rotation about thefs—axis. The portion of
the beam between the gimbal supports was treated as the
test span. Thus the gimbal supports replaced the
diaphragm arrangements used for the channel tests.

This new form of supporf was adopted so as td provide
a more stable test arrangement since any distrubance
of the test beam when loaded in the unstable range,

could upset the equilibrium of the system.

In order to obtain the simply supported
conditions for bending actions, as considered in the
theoretical analysis, the gimbal support at one end of

the test span rested. omn rollers., Thin-walled equal

99.
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o~

angle sections were used as test beams. This form of
cross-section was selected for two reasons.
(i) The shear centre of an angle is
located at the same point
irrespective of the flapge'size,
that is, at the apex of the angle.
This condition made it possible
for the one form of opeuning to be
cut in the loading discs and the
central plates of the gimbal supports.
This opening allowed for a range of
anglg sizes with the apex coinciding
with the centré of the diéc or plate
in each case.
(ii) The flanges of an angle section
intersect at omne point and for this

form of thin-walled section the -

torsion bending constant is zero.

This implies that warping

deformations do not obtain and any
restraint of such deformations that ~
might be provided by the clamping
arrangement in the central plate of

the gimbal support, does not have to

be considered. Thué, the support
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conditions for torque action

are consistent with those

assumed for the theoretical

analysis.
Extruded brass angle sections were used as test
specimens. This material was seled%ed so that the
‘desired large displacement behaviour could be obtained
at relatively low values of bending moment, Torque and

corresponding stresses.

The bending moment loads were applied at the
extreme ends of the test beam by means of an aiuminium
disc, wire loép and pulley wheel as shown in.Fig.
IIT.13(c). This arrangement ensured that the load
acted through the centroid of the disc at all times.
The disc was clamped to the angle section so that the
shear centre of the angle coincided with the centroid
of the disc. In this way, the loading was in a plane
containing the shear centre and pure bending actions
only were applied over the test span length of the

beam.

The controlled deformation equipment used forx
measuring the torque/angle of twist equilibrium paths
at the mid-span position is shown in Fig. III.T4. The

system comprised a cable continuous round seven pulley
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wheels and attached at each end to opposite extremities
of a diameter. of an aluminium disc clamped to the
mid-span section of the test beam. The centroid of
the disc coincided with the shear centre of the angle
section. By moving the pulley wheel P1 in the
direction as indicated in Fig. III;{A, a rotation of
the aluminium disc was produced. The increment of
angular deformation was proportional to the movement

of the pulley wheel. A secondary pulley system S was
also provided, by which torques could be applied in the
opposite direction to that of the main pulley system.

The pulley wheel P was used to apply weight to

2
counterbalance the load effect of the torque disc and

its attachments.

Angular deformation of the mid-span section was
measured by a low-start torque potentiometer attached
to the torque disc. The free end of the pofentiometer
brush spindle carried a steel spliﬁe pendulum and as
the disc rotated this pendulum remained vertical.

Thig produced, in effect, a rotation of the
potentiometer brush equal to the angular displacement
of the disc. The change in signal from the
potentiometer was metered on an ultra-~violet

galvonometer recorder.
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The torque for any angular displacement was
evaluated from the product of the disc diameter and
the cable force. This force was measured using a
specially prepared spring steel dynamometer counnected
into the main pulley cable system as shown in
Fig. ITIT .4, Four electXxical resigtance strain
gauges were éttached to the dynamometer at positions
of maximum strain and formed a complete bridge circuit.
The cﬁange in signal from this bridge, which was
proportional to the cable force producing the strain,
in the dynamometer, was fed into a second channel of
the ultra~violet galvonometer recorder. The
dynamom;ter was fitted with'a spring, as shown in the
figure, to prevent deformations large enough to produce
a nonlinear load/strain calibration. The stiffness of

the spring used depended on the maximum cable forces to

be measured in any particular test.

The sensitivity of both the twist and torque
measuring devices was controlled by varying the current
voltage supplied to them. Both devices were

calibrated prior to the start of each test run.

Surface strains of the test beam at selected

positions were measured using electrical resistance

strain gauges. The gauges were of the foil type, % in
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gauge length and 110 ohm resistance, and were attached
in the form of 450 rosettes in the positiohs as
indicated in Fig. ITII.15. The readings from the
strain gauges were recorded by means of a 100~channel
data logging system which gave printed records of
results. The maximum rate of recording provided by
the system was 10 channels per second. The block
layout of this system is shown in Fig. III.16 and the
actual equipment is shown in Fig. IIT.17. The
horizontal and vertical deflections of the mid-span
section of the test specimen were measured by dial

gauges attached by wires to a pin fixed on the

1

horizonfal diameter of the disc behind the apex of the
angle. Using the dial gauge readings in conjunction
with the corresponding measured angle of twist the

position and orientation of the mid-span section could

-

be determined.

The theoretical analysis has indicated that when
the beam is subjected to combined bending and torsion,
the form of the torque/angle of twist equilibrium path
varies with the direction of twist. It has also been
shown that at large values of bending moment the
torque/angle of twist equilibrium path may be of the

type illustrated in Fig. IIIL.18.,. It can be. seen from
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this graph that in the unstable range of behaviour the
direction of the torque may be reversed for the same

direction of twist.

The test procedure adopted, enabled the
measurement of the equilibrium path for both directions
of twist and allowed for the possible condition of
torque reversal at ;arge applied bending moments.

This procedure is illustrated in Fig. III.19. The beam,
with the bending moment loads applied, was dinitially
twisted in the negative torque direction using the
secondary pulley system. Increments of angular

. deformation in the positive direction were then applied
starting from this initially twisted positién.
Recordings of torque, angle of twist, deflections and

strains were made at each increment of deformation.

This test procedure effectively displaced the
base line of the torque/angle of twist equilibrium path.
To obtain the appropriate interpretation of the results,
that is, where the origin of the\path'corresponded to
the axis of symmetry of the angle lying in the

horizontal plane, the base line had to be raised by an

amount equal to the value of the initially applied
negative torque. The point of intersection of this new

base line with the equilibrium path, corresponded to the
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appropriate origin, as shown in Fig. III.19. In the
case of torque reversal, the test could be performed
with the main cable system always in tension by
applying an initial negative torque greater thaun the .
magnitude of the torque reversal. lThe test equipment

is shown in Fig. IIT.20.

The full experimental programme comprised a
series of teéts on eqgual angle sections Qith flange
sizes 'of 1, 1.5 and 2 in. and éhicknesses ranging from
0.0375 to 0.0846 in. Individual tests were performed
a number of times, to check the repeétability of the

experiqeﬁtal system.

- Details of the material and ‘section properties
of each specimen are given in Appendix VIII.}. The
experimental techniques used for measuring the combined
materigl and section properties EIx ’ EIy and GC ,

are described in Appendix VIII.3.
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IITI.4 Flexural-Torsional Failure of Thin-Walled Open

Section Beams due to Applied Bending Moment

In oxrdexr to obtain experimental values of
bending moments causing flexural-torsional failure of
thin~-walled open sections, a series of tests were
performed on a range of thin-walled, cold rolled steel,
equal angle section beams. The angle section was
selected so that the tests could be carried out in the
experimental rig used for the tests on the brass angle

sections.

‘The angle specimens were held in the gimbal
supports and were tested by applying increﬁénts of load
at the extreme ends of the beam outwith the test span,
until failure, defined as the maximum load carrying
capacity, occurred. The loads were appiied by the
disc and pulley arrangements used in\the previous group
of tests. Thus, as before, the test span was
subjected to a constant value of bending moment in the
plané of greater flexural rigidity containing the shear

centre. Torque actions were not applied to the beam.

The horizontal and vertical deflections and angle
of twist of the mid-span section were measured at each

increment of load. These measurements were obtained
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by clamping the torque disc of the controlled
deformation system to the mid-span section and
employing the dial gauges and potentiometer device

used in the previous investigation. As before, the
position and orientation of the mid-span section could
be determined by analysing the dial éauge readings in
conjunction with the corresponding angle of twist.

The main and secondary pulley systems were mnot
connected to the torque disc. The single pulley system
used to counterbalance the load effects of the torque
disc and its attachments was included in setting up the
test equipment. The test rig, with an angle specimen
in its gosition af failure,-is shown in Fig. III.Z21.

The complete experimental programme comprised
tests on angle sections with flange sizes of 1, 1.5 and
2 in, five specimens of each size being tested. All
the sections were nominally 16 S.W.G. in Wall'thickness.

Details of the material and section properties of each

specimen are given in Appendix VIIT.l.




CHAPTER IV

L4

109.

COMPARISON OF THEORETICAL AND EXPERIMENTAL RESULTS
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The experimental dinvestigations have been
considered under four principal test groupings and the
comparison of the theoretical and experimental results
is presented under the same headings. Unless
otherwise indicated the comparison is presented in
graphical form showing experimental results plotted as
points with respect to the corresponding theoretical
values shown as a full line. The complete

experimental results are given in Appendix VIII.5.

IV.1 Stable Behaviour -~ Linear Torque/Angle of Twist

Equilibrium Paths - Small Displacements
| . .

The experimentally determined distributions of
angle of twist and longitudinal stress in the lipped
channei section agree well with the corresponding
theoretical values. The analysis used for
calculating these theorétical values was based on the
analogy between the problems of simple bending and
restrained torsion of beams discussed in Chapter IT,
section 1, and, since AL <:1, the St. Venant

torsional rigidity GC was neglected.

Angle of Twist

Typical variations of angle of twist with

applied torque, for each of the three different load
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cases, are shown in Fig. IV.1. The experimental
values show a linear torque/angle of twist relationship.
In cases (I) and (II), where the measured twist is at

a position of applied torque, the experimental
observations tend to be slightly higher than the
corresponding theoretical values. This condition is
not so apparent in case (IIIL) where the position of the
measured twist was some distance from the loaded
sections. This would appear to imply a localised load
effect. The distributions of twist along the length
of the beam for the maximuﬁ applied torque in each load
case 1is shown in4Fig. Iv.2. It can be seen that the

general tendency is as before, for the measured twists

to be slightly greater than the predicted values at or

near the applied load and torque positions. The
distributions of angle of twist along the beam span for
the complete range of applied torques for all load

cases are shown in Graphs/1/3,4 and 5 in Appendix VIII.5.

Longitudinal Stresses

The variation of longitudinal stress with
applied .torque at different positions on a cross-section
is shown for a typical case in Fig. IV.3. It can be
seen that the relationship between the change in

longitudinal stress and applied torque is linear. The
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maximum changes in stress occur at the Jjunctions of the
web and flanges and at the edge of the lips. This
condition is consistent with the distribution of the
'sectorial co—ordinate’ which has maximum values at

these positions, as illustrated in Fig. IV.4.

The results presented in Fig. IV.3 are shown
isometrically in Fig} IV.5 where the~typical form of
longitﬁdinal stress distribution, associated with
restrained warping béhaviour, is more clearly
il;ustrated. The distributions of longitudinal stress
in the upper flange at the three stréin gauged sections,
for case (I) loading with maximum applied torqué, are
showvn in Fig. IV.6. As expected from the-theoretical
analysis, these distributions are proportional to the
corresponding values of moment and bi-moment at each
section. The complete detéiled results of the stress
distribution investigation for all combinatibns of
bending moment and torqge, at thé three strain gauged
sections are shown in Graphs/1/8 to 16 inclusive, in

Appendix VIII.5.

It can be stated that, in general, the
experimentally determined distributions of longitudinal

stress in the channel agree closely with the predicted
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values. These latter values have been calculated
from the expressions presented in the theoretical

analysis (equations IL.1.6), that is

G =g Bw - IV. 1.1
7 7
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IV.2 Stable Behaviour - Nonlinear Torque/Angle of

Twist Equilibrium Paths -~ lLarge Displacements

The tests performed in thiS‘seotion of the
experimental investigation were devoted to the
measuremenf of angle of twist and shéar centre
displacements at the‘midwspan position of a small

channel section beam.

Angle of Twist

In the first instance the beam was subjected to
a conceuntrated torque action at the mid-span position
and the corresponding angles of twist at mid-span were
recordea. The results are.shown in Fig. IV;7. It
can be seen that the experimental values show a linear
torque angle of twist relationship ana agree closely

with the values calculated from the expression given in

the theoretical analysis (equation Ir.1.21), ‘that is,

_ L
*te 7

TFanh %+ 7L
Zﬁﬂ;\g 45/")‘2 IvVv.2.1

ey
S——

NI~y

3:

The corresponding theoretical wvalues of /6 obtained

from the approximate solution, which neglects the

St. Venant torsional rigidity GC that is, at 3 = Jé

2
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7L?
/6 = Iv.2.2
o H4BE”
7=z
are also shown in Fig. IV.7. For this case, the
approximate analysis yields values of twist much
larger than the experimental values.- This result is

to be expected since, for the small channel used,

AL = 12.7 and, as shown in Fig. IV.8, the true value

Er ')
717

this value of AL is 0.00126 compared with the

of the angle of twist coefficient £, ( = B. for

approximate solution value which is constant at 0.0208 .

The torque/angle of twist relatiounship at the
mid—spaé position; when the.beam is Subjected to a
constant bending moment MX = 1000 in 1bf over the
entire test span is shown in Fig. IV.9. This
relationship is monlinear and consequently, as is
shown, it does mnot agree with values predicted by the
linear sblution for /6 y &iven by equation IV.2.1.
Theoretical wvalues of torque and corresponding angle of

twist at the mid-span position obtained from the single'

term Galerkin solutions of the generalised differential

equationé of bending moment and torque equilibrium
(equations II.2.9), are also illustrated in FPig. IV.9.
The experimental observations agree closely with the

theoretical values given by the solution which
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considered-the first two terms of the sine and cosine
series. In the case of the solution where only the
first terms of the sine and cosine series were
employed, good agreement with experimental values
obtains up to angles of twist of approximately 0.25

radian.

The test results for the combined loading case
also illustrate the predicted variation of the torque/
angle of twist relationship with the direction of twist.
Thus, for a positive angle of twist of 0.4 radian at
mid-span, the corresponding applied torque is
approximately 39 in 1bf, whilst for the same angle of
twist in the negative direction, the appliea torque is
approximately 54 in 1bf. The results of similar tests
for values of bending moment Mx of 500 and

750 in 1bf are shown in Graph/2/l in Appendix VIIL.5.

Shear Centre Displacement

The predicted path of the shear centre at the
mid~-span position for both positive and negative
torques, at bending moments Mx of 500 and 1000 in lbf
are shown in Fig. IV.10. The theoretical values of
deflection in the displaced axial direction x' and y!',
at different angles of twist at mid-span, were found

from the solution of the first two of equations II1.2.9.
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The experimental observations show good agreement in
form with the predicted values, but tend to deviate
quantitatively at angles of twist above approximately

O.4 radian.

This deviation is also observed in the results
of similar flexural-torsional tests on the brass angle
section beams. In the analysis . of these ﬁests,
presented in the following section, a possible
explanation of the discrepancy between the measured

and predicted deflections is discussed.

The small channel section tests, which have been
discussgd, were uﬁdertaken 6nly as a preliminary study
of nonlinear flexural-torsional behaviour. The more
detailed experimental investigation of both stable and
unstable nonlinear flexural-torsional behaviour was
accomplished using the brass angle sections and the

controlled twist testing technique.
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IV.3 ©Stable and Uunstable Behaviour - Nonlinear

Torque/Angle of Twist Equilibrium Paths -

Large Displacements.

In the tests performed on the brass angle
section beams, measurements of torqué, angle of twist,
deflection and strain were recorded. The specimens
were subjected to different values of bending moment

Mx constant‘over the entire test span. The torque/
angle of twist equilibrium paths and the vertical and
horizontal deflections were measured at the mid-span
section and the strains near the edge of both flaunges,
on each! face, were recorded at a section 12_inches from
the mid-span position. The results of these tests are

shown in Graphs/3/1 to 18 inclusive in Appendix VIII.5.

Angle of Twist

.The torque/angle of twist equilibrium paths
illustrated the predicted nonlinear forms as shown for
a typical case in Fig. IV.11. The variation of the

torque/angle of twist relationship with the direction

of twist is also observed. Theoretical values were
obtained‘from the solution which considered the first
two terms of the sine and cosine series, that is,
equation ITL.3.20 in which the Variation.of ﬁ? with %

was assumed to be sinusoidal and equation II.3.25 which
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was based on a linear variatipn of /B with g . It
has been noted that for an angle section subjected to

pure torsion, warping displacement does not obtain and
theoretically the value of the torsion bending constant

is zero. Thus, a linear variation of /3 with 2 is

EZ
/3

in the presence of bending actions, the axial

to be expected, that is, is constant. However,

displacement of the beam gives rise to torque components

due to the applied bending moments, namely, Mx'ﬁ?i
' — 3

and My.ggf as idindicated in the last of equations

IT.2.9. These components effectively produce the

condition of a beam subjected to a varying distributed
' e

J
no longer constant and the solution assuming a linear

torque along the span. In this situation is

variation of /3 with 3 would nmot apply.

If the applied bending moment is small, then the
additional torque compomnents will be correspoﬁdingly
low and the overall torsional behaviour will remain
predominantly uniform. As the bending moment
increases, the additional torque components become
larger and more pronounced relative to the applied
torque. At this stage the torsional behaviour will
tend to be non-uniform and a theoretical solution
based on the sinusoidal variation of‘/e with 3 might

yvield more acceptable results.
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This condition is illustrated in the typical
results shown in Fig. IV.11. At the lowest wvalue of
applied bending moment of 200 in 1bf, the experimental
results agree well with the values predicted by the
solution which assumed a linear variation of S with

3 . In the case of the maximué applied bending
moment of 400 in 1bf, the experimental observations
agree with the values predicted from the solution based
on a sinusoidal variation of ;I- with 2 . The
measured values for the intermediate applied bending
moment of 300 in 1bf tend to lie between the theoretical
paths corresponding to the two assumed forms of

variation of B with 3 . | .

The approximate limit of application of the
linear variation solution can be assessed, for the
present group of test results, in relation to the value
of critical bending moment MC for flexural-torsional
instability. The wvalue of Mc for each specimen has
been calculated from equation II.h.7.. It can be seen
that the lidear variation solution generally yields
acceptab}e results for applied bending moments in the
range O:<-Mx‘< O.ly M_ . The experimentally
determined torque/angle of twist equilibrium paths for
the 1 inch specimens A.1 and A.2‘(Graphs/3/1.and 2,

Appendix VIII.5) show a tendency to deviate from the
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appropriate theoretical path when the applied bending

moment M is in the range 0.8 MC<: MX<< M, . In

this range, the effect of any initial irregularities

in the specimen would be.most pronounced and could give
rise, at least in part, to the obseryed deviation. It
is to be noted, however, that the form of these paths,
is still as predicted. In particular, the paths for
bending moments approaching the critical value indicate
that the turning point, defining the limit of the stable
behavioural range, tends to coincide with the origin.
This condition is consistent with the anélytical
approac? used in the derivation of the expression for

critical bending moment given by equation IIL.L.5.

In the preliminary investigation ﬁsing the small

channel section, it wasvshown that the solution based

on the first terms only of the sine and cosine series

was limited to angles of twist in the range 0 <p <0.25
radian approximately. This limitation is also observed
in the results of the angle section tests. | This is
illustrated in Fig. IV.12, which gives the results of

a typical test for which a theoretical solution based

on a sinusoidal variation of fg with 4 was applicable.

It can be seen that, for the complete range of

measurement, the experimental observations agree with
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the theoretical values found from the solution based

on the first two terms of the sine and cosine series.
Agreement with the corresponding theoretical values
obtained from the solution based on the first terms
only of the sine and cosine series is again limited to
angles of twist in the range O</6 < 0.25 radian
approximately. A similar limitation of the range 6f
applicability of the solution using the first terms of
the sine and cosine series is also found in the
analysis based on a linear variation of /3 with 3 as

illustrated in Graph/3/20 in Appendix VIII.5.

?he experimentally determined torque/angle of
twist equilibrium paths also illustrate the‘necessity
for including all the additional torque effects in the
generalised differential equation of torque equilibrium,
that is, the last of equations II.2.9. A typical
experimental path is shown in Fig. IV.13 where the
value of the appliéd bending moment corresponds to
0.78 Mc . In this case, the appfopriate theoretical
solution is based on a sinusoidal variation of I@ with

3 . i It can be seen that the form of the

theoretical path predicted by the solution in which
the & term is the ounly additional effect considered,
does not agree with the experimental observations.

The alternative theoretical path found from the solution
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which considered all the additional effects agrees well
with the measured values. The difference between such
theoretical solutions is mnot so pronounced at values of
bending moment less than 0.4 MC where the solution is
based on a linear variation of /3 with 4 5, as
. illustrated in Graph/3/22 in Appendi; VIII.5. This
would indicate that, apart from the /& term, the
predominant additional effect is that arising from the
torque components of the applied bending moment, due to

axial displacement.

The remaining additional effect, that is the
longitudinal stress system arising from the !'shortening
effect', would appear to be of less importaﬁce,
particularly_in the range of angular deformation
considered in the present test group. This hypothesis
is further illustrated in the results of a torque test
at zero applied bending moment shown in Fig. iV.14.

In this test,.the experimental values indicate a linear
torque/angle of twist relationship in. the range
0] <:f§‘< 1.3 wradian approximately and good agreement

with theoretical wvalues found from the simple expressioﬁ

7L
po= = . IV.3.1
_4 4GC -
=7
is obtained. At values of twist greater than 1.3

radian, the apparent increase in torsional rigidity due
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to the longitudinal stress system of the !'shortening
effect' can be observed, although it is still

relatively small.

Shear Centre Displacement

The comparisons between the experimentally
observed aund predicted paths of the shear centre, that
is, the apex of the angle at the mid-span position, are
shown in Graphs/3/7 to 12 inclusive in Appendix VIII.5.
A typical case is illustrated in Fig. IV.15 where, as
in the case of the small channel tests, the values of
deflection in the direction of the displaced axes x'
and y'' were found from the first two of equations
IT.2.9. The experimental observations again show good
agreement in form with the predicted values but tend to
deviate quantitatively at angles of twist above

approximately 0.4 radian.

A-possible explanation of this deviation is
suggested by the results of the torsion test with =zero
bending moment previously discussed iﬁ relation to the
'shortening effect!. In this test the position of the
mid-span section was recorded at each increment of
tordue and corresponding twist. The relative positions
of torque disc pin, apex and centroid of the angle

section at different angles of twist are shown in
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Pig. IV.16. It can be seen that, as assumed in the
theoretical analysis, the sectiomn twists initially
about the shear centre, that is, the apex. However,
the position of the centre of twist does mnot remain
fixed and deviates from the apex at an angle of twist

of approximately 0.4 radian.

This would introduce additional body rotation
effects not considered in the theoretical analysis for
the deflection path and could explain the observed

deviation in the test results.

Longitudinal Stresses

The values of stress‘obtained from the'analysis

of the strain gauge rosette readings at each increment
of twist agreed closely with predicted values for each
specimen as shown in Graphs/3/13 to 18 inclusive, in
Appendix VIII.5. A typical case is shown in Fig. IV.17.
The theéretical values of stress were found by
determining the angle of twist F% at the strain

gauged section in terms of the value-at mid-span, using

the relatiounship

' IR

and then computing the longitudinal stresses due to the

bending moment components Mx cosﬁ% and M sin B4
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using simple bending theoxry. The appropriate
algebraic sum of the resulting stresses is compared
with the measured values. The agreement between the
experimental and theoretical stresses illustrate that,
as expected, warping stresses do not obtain in the
angle section. The results would élso indicate that
longitudinal stresses due to the 'shortening effect!
are negligible in the range of angular deformation

obtaining in the present group of tests.



IV.4 Flexural-Torsional Failure of Thin-Walled Open

Section Beams due Tto Applied Bending Moment

In this group of tests, three series of mild
steel equal angle section beams were tested to failure
under the action of pure bending mohént constant over
the entire test span. The three different flange

sizes considered were 1, 14 and 2 inches and all the

specimens were nominally 16 S.W.G. in thickness.

In each test the deflections and angle of twist
of the mid-span section were recorded for every
increment of applied bending moment. These results
were then used to plot the true path of the'mid~span
section in thé Xy -plane; as illustrated for a
typical test in Fig. IV.18. It can be seen that the
displacement of the mid-span section is dinitially in

the vertical direction only. As the bending moment i

127.

S

increased horizontal deflection and angular deformation

develop. This form of deformation behaviour is
consistent with that expected from specimens which
have inipial irregularities. If such imperfections
were not present then, theoretically the beam
deformations for this type of loading would bé
restricted to deflection in the vertical plane only.

In the present series of tests this plane corresponds
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to that containing the minor principal axis of the

beam.

The relationships bectween the applied bending
moment and the horizontal deflection of the apex and
the angle of twist, at the mid—span$section for the
same typical test are shown graphically in Fig. IV.19.
The curves are seen to approximate tolrectangular
hyperbolae and using the inverse plot technique

developed by SOUTHWELLBé, the approximate straight line

Y §p

¢ T3 oc i
relationships, &HG(-E; and ofp o< 7 are obtained
as shown in Fig. IV.20. The slope of these lines was

taken as defining the value. of critical bending moment
causing flexural-torsional instability. In this way

two values of critical bending moment were determined

experimentally for each specimen. It is to be noted
{ SH
that the slope of the H o< ;2* line is apparently

independent of the point on the axis of symmefry of the
beam cross-section for which the horizontal deflection
is taken. This is shown in Fig. IV.21 where lines
corresponding to the horizontal deflection of both the
apex and the centroid are shown and are seen to be

parallel.

The experimentally determined values of critical

bending moment are shown for each specimen in columns .
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EXPERIMENTAL THEORETICAL M,
COLLAPSE | INVERSE PLOT M, — —
SPECIMEN M SHQ %'ﬂ §pec %ﬁ MICHELL | RELSSNER | GOODIER EQanﬁs 4.7
(1) (2) (3) (4) (5) (6) (7)
s 960 890 905 760 880 1440 985
g A2 965 950 935 755 870 1405 980
E A.3 1060 870 900 710 820 1330 915
i Al 1090 860 8140 705 810 1300 905
= a5 1090 1030 865 705 810 1300 905
¢ | B.1 24,60 2460 24,00 1700 1940 1310 2160
2 Is.2 2460 2440 24515 1710 1950 1325 2190
:ri B.3 1980 2025 2060 1440 1645 1000 1820
% | Bed 1950 1975 1865 14,65 1675 1045 18,0
R 1980 1950 2080 1515 1730 1075 1920
c.1 14730 5130 54,00 3540 4060 1710 4530
% lc.2l  y965 5510 5180 3560 4105 1700 4600
‘E c.3 4600 5420 5600 3560 4105 1725 14600
8 ey 2385 41,20 2380 2940 3380 1275 3750
~ .5 2285 3180 24,60 2045 3380 1280 3750

All values are given in in 1bf

TABLE IV.1
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2 and 3 of Table IV.1. This table also shows
theoretically computed valués of critical bending
moment using the expressions preseunted by Prandtl
Michell, Reissner and Goodier and also using equation

IT.4.7 derived in this thesis.

On examination of these values it can be seen

that,

(i) +the experimentally determined values

SH

of M obtained from g;fcf \ and
c N

LYz :
é@eﬁ —~ are generally closely
g
comparable and
(ii) of the theoretically predicted M
values the one found from equation

IT.4L.7 gives the best agreement with

the experimental values.

The collapse moment values are shown in column 1
of the séme table. Comparison of these values with the
experimentally and the relevaunt theoretically determined
values of critical bending moment shows, with the
exception of tests CL4 and C5, acceptable correspondence.
This implies that for the specimens in the dimensions

proportion range, that is, width to thickness and depth

to length, covered by the test programme, the value of

M_ obtained theoretically from equation II.4.7 may be
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taken as representing the maximum load carrying
capacity. The post critical load carrying capacity
margin of the sections investigated is obviously
minimal and in fact, due to the effect of initial
irregularities already discussed, collapse loads in
some cases tend to be slightly lower.than the

corresponding experimentally predicted values.

In sections C4 and C5 the mode of failure was
different to that of all the other test specimens.
This was manifested by the angle of twist developed in
these sections being such as to result in a progressive
reduction in the effective torsional rigidity,
culminating in a snap through failure, This condition
is clearly illustrated by the divergence of the
critical bending moment values predicted from the
experimental results, based on horizontal deflection

and angle of twist respectively.




CHAPTER V

PRACTICAL DESIGN APPLICATIONS
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It has been shown that if a thin-walled open
section beam is loaded in a plane not containing the
shear centre, the resulting longitudinal stress system
can only be determined by counsidering both bending and
torsion effects. In practical design analysis this
form of flexural-torsional behaviouf will be in the
small displécement range and the distribution of
stresses can be evaluated by the methods presented in
Chapter II, section 1. The various factors which
have to be considered in this approacﬁ to flexural -
torsional analysis are indicated in the following
calculations for the safe load values of a thin-walled

: .
open section beam carrying a uniformly distributed load.

The beam section cousidered is a 10 in x 2 in x
14 S.W.G. (t = 0.08 in) channel section as shown in

Fig. V.1 and has, a span of 8 ft. The end conditions

are considered to be simply supported with réspect to
bending and free to warp butvrestrained from twisting
with respect to torsion. Tt is assumed that the
compression flange of the beam has adequate lateral

support..

The load carried by the beam is considéred to
be uniformly distributed across the width of the

flange and is treated as a concentrated load per unit.




length of the beam acting through the mid-point of the
flange as dllustrated in Fig. V.1. The bending and
torsion effects of this loading are considered

separately in the calculations which follow.

(1) Maximum longitudinal stress 6y due to bending

Maximum beunding moment

ﬁfxz:‘ayiz

and if w+ is in 1bf/in and 4L in £t then
My = 184 L in 15
S
The value of the appropriate section modulus is
2. = 2.804 in° ror L =8 fF 4
Ly = R in® and for 4 = £t the maximum stress

in the upper flange due to bending is given‘by the

expression

.

;.
4 8B 2-Bo4k

where the negative sign indicates compressive stress.

(2) Maximum longitudinal stress 67, due to torsion

The approximate method of analysis which
neglects the St. Venant torsional rigidity GC gives

the maximum value of bi-moment B for this case as
=z
8 = 7L
8
For <+ in 1bf/in, the uniformly distributed torque -1

134,
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about the shear centre is seen from Fig. V.1 to be

given by the expression

i = s { & %) L1l /5}C/4'ﬂ

The shear centre distance &€ for a thin-walled channel

section is found from the expression”

3
e = . # (reference 37 p.133)
e @‘%
In this case & = 2 in , & = 10 in and hence
&€ = 0.545 in. The value of #72 dis therefore

2« (0.545 + 1), that is 1.545« in 1bf/in and for L = 8 ft

the max;mum bi-moment is
2 .z
B8 = %745(/-54-540)(8) = /780w /6f

The value of the torsion bending constant /  for a

thin-walled channel section is found from the expression

: 2 ,3 3o
. . L3
/7 = éiﬁif{‘ .EL;_fiu : (reference 37 p.133)
/2 / + ed
7“2
which gives in this case /7 = 6.303 inG. The maximum

values of longitudinal stress in a channel section due
to torsion occur at the Junction of the web and flange
and at the free edge of the flange. The values of the

sectorial co-ordinate ¢« for these two positions are




(i) web to flange Jjunction (upper)

i = —(& x Zgé) = (0545 % 5) = — 2725 (n”

(ii) free edge of flange (upper)
A
wjj = +[{d-e)x ] = + [(Z2-0-545) %57

=+ 72754

The longitudinal stresses due to torsion at these

positions are given by the expression

G — / X’
7..

Thus for position (i)

? 6;3 _ 1780w (=2-725)

— 768w [bffin”

—

(o"".}@g

and for position (ii)

5/:3 _ /JBo(HT2T5) 4 ZosOow /é:f/z'/zz
G- 305 '
where the negative and positive signs indicate

compressive and tensile stress respectively.

(3) Maximum longitudinal stress 675 due to bending

and torsion

The total maximum longitudinal stress is given

by the expression

6, = 0, -+ 6.
“3 3 1 75
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Thus for position (i)
. 2
Oy = — 41/t — JoBeur = — /79w I6f [in
and for position (ii)

6223 = S 4 ZOoBO S = - /63O /fsf/z}zz

Thus in this case the final maximum longitudinal stress
due to bending and torsion occurs at the free edge of

the flange.

(4) Safe load evaluation

The maximum permissible value of stress in
bending, for thin-walled sections is given in Addendum
No. 1 (;961) to BS LL49 : 1959, as 0.65 Ys which for a
vield stress of ?% = Tk ‘tonf‘/in2 gives a permissible
value of 9.1 tonf/in oxr 20,400 1bf/in®. This value
of stress must be equal to the maximum longitudinal

stress 62§ due to bending and torsion, thus

/639w = 2o, oo

hence L = /2.5 /é]"/z}z or /50 /ép]"/_ﬁ‘,

As indicated in Chapter II, section 1, the
approximate method of analysis which neglects the
St. Venant torsional rigidity, overestimates the

maximum value of the bi-moment and corresponding



138.

longitudinal stresses. Thus in using the approximate

analysis the safe load will be underestimated.

The difference between the true and approximate
values of the bi-moment depends on the type of loading
and support conditions of the beam and can be related
in any particular case, to the value of the beam
parameter AL, The value of this parameter for the
beam at present under counsideration can be found as

follows.

Foxr a thin-walled channel section the torsion

constant C 1is found from the expression

c = Bfl (+2d)¢7

4
which in this case gives C = 0.00239 in'bo Taking
E = 30 x 10° 1bf/in% and G = 12 x 108 1bf/in®
then
= O-O/Z3 <z
E.'/" Jo»:/o(-x G-303

The true value of the bi-moment can be found by
multiplying the approximate value by a correction
factor o which will be related to the value of AL,

the type of loading and the support conditions of the-




beam. The variation of this correction Tactor with
~L for a uniformly distributed torque on a simply

supported beam is shown graphically in Fig. V.Z2.

This graph has been prepared by comparing the
true and approximate values of the bd-moment
coefficient j; , defined in Chapter IIL, section 1.

Thus for a uniformly distributed torgue

approximate 5 =

max.

iﬁ:éz and
S

I (c:os,/z AL -/

4 AL Al
& — — SR T — ¢ s%._;n+/
trae Smax. — z*\ smA AL 2 o2

5

and since for this case -+ = ——2 +then
by 7 LF

approximate 7‘; = o-/25 and

o / sk AL —/ ) Y __
true j5 = = ; ' VY 2L cosh 2L +/
I wEl sirA AL 2 2

The correction factor is found from the expression

]? true

o4 =
'ﬁ_approx1mate

For the beam at present under consideration AL = 1.18

and the correction factor ¢{ = 0.88.
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The maximum longitudinal stresses due to torsion
are directly proportional to the maximum bi-moment
value. Thus to obtain the true value of these
stresses the approximate values already found can be

multiplied by the correction factor el .

Thus for position (i)

- =2
% = — 768w ¥ O-88 = —GYGL /:f:':f/éfz

and for position (ii)
Oy =+Z050¢w % 088 =+/805¢cr 16 fir®

The total maximum stresses at these positions

)
thus become

(1) 675 = 04y + 65y = —4// W — &6 2 = ~ /08 Julffin”

3

. . - . Z

(ii) 52§ = Ogs+ 07y = —4// W +/805 z-i-/:)?{&w/éf/crz
As before the final maximum longitudinal stress due to

bending and torsion occurs at the free edge of the

flange and the safe load is found from the expression

/B4 ger = 2O, FOO
hence w = MG lffin or 175 LF /A

If the bending stresses only are considered

then the apparent safe load is calculated from the
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expression

Ll cr = 20,400
hence ALt = LDl /éf/..c;'z or 594 //éf/fg"

The results of the present analysis are

summarised in the following table.

ANALYSIS SAFE LOAD

Bendlng.and t0?510n - 150 1bf/ft
approximate bi-moment

Bending and torsion -
true bi-moment 175 1bf/ft

Bending ounly 595 1bf/ft

For the present analysis it can be seen that by

- taking into account the longitudinal stresses due to
torsion the safe load is reduced to less than one
third of the value based on bending stresses alone.
The difference between the safe loads found from the
approximate and true bi~moment analyses is, din this
case, significant and as expected the approximate
bi-moment approach gives rise to a conservative

estimate of the safe load.
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In the suggested safe load tables for thin-walled
channel sections presented in Appendix VIII.6, the
values given have been obtained by the present method
of analysis using the true bi-moment value. = However,
in cases. where MAL</ <the difference between the safe
loads based on the true and approxim;te bi-moment values
will be small. This condition is more often
encountered when lipped thin-walled open sections are
used. For these sections the increase in the torsion
bending constant /7 due to the lip is greater than the
corresponding increase in the torsion constant C .

This gives rise to smaller values of A and increases

the range of spans for which AL/ .

The advantages of the approximate bi-moment
analysis are more obvious when the structures
considered are of indeterminate form such as qontinuous
beams or rigid jointed frames. Thus in the.case of a
continuous beam the closed solution approach to the
bi-moment distribution due to concentrated or uniformly
distributed torques would involve laborious mathematical

techniques of analysis.

However if the approximate method of solution is
adopted, the resulting analogy between the problems of

restrained torsion and plane bending, discussed in
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Chapter IL, section 1, can be applied to the analysis.
In this way the approximate bi-moment distribution can
pe obtained by any of the methods used for the
analysis of bending moment distribution, simply by
replacing locads W or w by torque§ T or m and
flexural rigidity EI by warping rigidity EI. The
results of such an analysis are illustrated by the
bending moment and bi—moﬁent diagrams for a two span
continuous beam carrying uniformly distributed load

actions, as shown in Fig. V.3.

The problem of flexural-torsiomnal behaviour is
not restricted to thin-walled open sections and will
also obtain for conventional hot rolled sections of
open form or for any section subjected to combined
bending and torque actions. It is to be moted that in
the safe load tables for hot rolled channel sections,
presented in several structural engineering ﬁandbooks,
the values quoted are based only on flexural stress

analysis and no account has been taken of the possible

torsion effects. . The results of the present
investigation have shown that longitudinal stresses due
to torsion are of counsiderable magnitude and should be

included in the safe load analysis.
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CHAPTER VT

SUMMARY AND CONCLUSIONS
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In the review of published literature it has
been shown that the existing solutions for flexural-
torsional behaviour of thin-walled open section beams,
have been limited generally to small displacehent
problems., Although individual inv%stigations have
been carried out on the additional effects associated
with large displacement behaviour, no single solution
has been presenfed, in which all such effects are

included.

The theoretical analysis of émall displacement
problems presented in this investigation has been based
on the!wofk of VLASOV. Solutions of closed form have
been obtained for selected combinations of bending
moment and toxrque. The application and limitations
of an approximate method of analysis have been studied
in relation to the practical design aspects of thin-

walled open section structures.

The problem of large displacement flexural-
torsional behaviour has been examined theoretically and
the appropriate equations of bending moment and toxrgue
equilibéium have been established. In these
equations the following additional effects have been

included
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(i) Components of bending moment and torque
due to axial displacement.
(ii) Initial axial stress due to applied
bending moments.
(iii) Longitudinal stresses due to the
'shortening effect?t.
(iv) Components of torque due to load point

displacement,

Approximate solutions have been found for these
nonlinear equations for particular combinations of
bending moment and torque, by a single term Galerkin
technique. The results obtained from these solutions
enabled the prediction of both stable and unstable
nonlinear torque/angle of twist equilibrium paths in
the elastic range of behaviour. Further analysis of
these equilibrium paths has lead to the derivation of
an expression for the critical 'value of bending moment

producing flexural-torsioual collapse.

A range of experimental work has been carried
out on thin~walled channel and angle section beamé.
In the tésfs, small and large displacement behaviour
and flexural-torsional failure of thin-walled beams
due to bending moment has been examined. As predicted,

the behaviour has been found to vary from linear to
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nonlinear and stable to unstable according to the
displacement range, the value of the beam parameter
AL and the relative magnitudes of the applied beunding
moments and torques. The controlled 'deformation
technique of testing which has been.devéloped has
enabled the measurement of strain aéd deformation in
the elastic monlinear unstable range of flexural-
torsional behaviour. So far as the author is aware
this form of behaviour has not been recorded
experimentally in any previous investigation. The
results obtained from the experimental investigation
have substantiated the theoretical analyses which have
been pﬁesented fdr flexural-torsional deformation and

corresponding stress actions.

The principal findings of the present

investigation can be summarised as follows.,

(1) The small displacement flexural-torsional
behaviour of thin-walled open section beams
for which the parameter AL </ , is
linear and stable. The analysis -of |
deformations and stresses in this range
of behaviour can be obtained by
considering the bending moment and torque
actioﬁs separately.

(2) The evaluation of the angles of twist and

lougitudinal stresses due to torsion, in




(3)

(4)

the small displacement range can be based
on either the true or approximate
bi-moment analysis, depeunding on the
value of the beam parameter AL . It
AL>/ , the true bi-moment analysis
should be used and if AL <L/ , then
the approximate solution whichialways
gives rise to couservative values of
deformation and stress, will usually be
acceptable. This latter approach would
appear to be of considerable use in the
formulation of a rational design
procedure for structures composed of
thin-walled open section members.
The flexural-torsional behaviour of
thin-walled open section beams for which
tﬁe parameter ALS>/ can vary from
linear to nonlinear and stable to unstable
depending on the displacement range and
the relative magnitudes of the applied
bending moments and torques. The
analysis of this form of behaviour must
be. based on the more general theory which
takes account of the additional effects
such as axial displacement and initial
axial stress.
The maximum load carrying capacity with
respect to bending of a thin-walled open
section beam under flexural-torsional
conditions, would appear to depend on the
direction of the twist which develops as
failure approaches. If the beam twists

in a direction corresponding to increasing

148,




effective torsional rigidity, then the
bending moment causing collapse is
adequately predicted by the assessment
of critical bending moment. Failure,
in the form of 'snap through'
torsional buckling can occur at
bending moment values less than the
critical if the twist develops in the
direction corresponding to a

decreasing effective torsiomal rigidity.

149.




150.

ACKNOWLEDGEMENTS

The author wishes to express his thanks to
Professor A.5.T. Thomson, Head of the Department of
Mechanical Engineering at the University of
- Strathclyde, Glasgow, for the use of the facilities
of the Department.

!

Thanks are also due to Professor R.M. Kenedi,
Research Professor in Bio-Engineering at the
University, for his continued interest and guidance
during the period of this investigation. The author
would aiso like to express his thanks to the Cold
Rolled Sections Association for sponsoring-the

research programme.

Martin M. Black.




151.

CHAPTER VIT

BIBLIOGRAPHY AND AUTHOR INDEX




VII.1 Bibliography

1. BACH, C.
tVersuche uber die tatsachliche
Widerstandsfahigkeit von Balken mit

[— formigen Querschnitt'
- Zeit d. Vereins deutscher Ingeunieure, 1909,
p. 1790, 1910, p. 382.
2, MAILLART, R.
'Zur PFrage der Biegung'
Schweiz. Bauztg., 1921, vol. 77, No. 18,
pP. 195.

3. SEELY, F.G.,“PUTNAM; W.J. and SCHWALBE, W.L.
'The torsional effect of transverse bending
loads on channel beams '
quv. Illinois, Engineering Experiment
Station, Bulletin No. 211, July, 1930.

4.  TIMOSHENKO, S.P.
'"Theory of bending, torsion and buckliung of
thin walled members of opeﬁ'cross section!'
Jnl. Franklin Inst., 1945, vol. 239,
Nos. 3, 4 and 5.

5. VLAZOV, V.Z.
Thin Walled Elastic Beams

Translation, Israel Program for Scientific

Translatiouns, Jerusalem, 1961,

152.




153.

6. COULOMB, C.A.
Histoire de l'Academie
1784, p. 229, (Paris, 1787).
7. ST. VENANT, B.
'De la Torsion des Prismes'!
Mems. Savants Etrangers, {855, vol. XIV,
pP. 233.
8. PRANDTL, L.
1Zur Torsion von Prismatischen Staben!
Physik. Zeit., 1903, vol. L4,. p. 758.
9. GRIFFITH, A.A. and TAYLOR, G.T. - |
'The use of soap Films in solving torsion
probleﬁs' . -
Proc. Inst. Mech. Eng., 1917, p. 755.
10. TIMOSHENKO, S.P.
Strength of Materials, Part II, Advanced
Theory and Problems '

Third Edition, 1956, p. 239. (Van Nostrand,

New York).

11, TIMOSHENKO, S.P.
'On the stability in plane bending of an
I-beam'
Bull. Polytech. Inst. St. Petersburg,

1905 and 1906, vols. 4 and 5.




154 .

12. . WEBER, C.
'"Ubertragung des Drenmomentes in Balken
mit doppelflanschigem Querschnitt!
Zeit. Angew. Math. u. Mech., 1926, vol. 6,
No. 2, p. 85.
13, REISSNER, E.
'On torsion with variable twist!
Oestrs. Tng. - Archiv., 1955, vol. 9,
Nos. 2 and 3, p.218.
T4 GOODIER, J.N. and BARTON, M.V.
'Effects of web deformation on the torsion
of I-beams'
Trans. A.S.M.E.,.19au, vol. 66, p. A-35.
15.  YOUNG, T.
A course of lectures on natural philosophy
and the mechanical arts
London, 1807.
16. WEﬁER, c.
'Die Lehre derxr Verdrehungsfestiékeit'
Forscharb. Ing. Wés., 1921; No. 249, p. 60.
17 . CULLIMORE, M.S.Go. |
\ '"The shortening effect, a nonlinear feature
of pure tgrsion'
Res. Eng. Struct., Colston Papers, 1949,

p. 153 (Butterworth, London).




155,

18. GREGORY, M.
'Elastic torsion of members of thin open
cross section!
Aust. Jnl. Appl. Sci., 1961, vol. 12,
No. 2, p. 174.
19. WILBERFORCE, L.R. and'CAMPBELL, A,
'On vibration galvonometérs with unifilax
torsional control'
Proc. Phys. Soc. (London),.1913, vol. 25,
p. 203.
20. BUCKLEY, J.C.
'Bifilar property of twisted strips'
Phil. 'Mag., 1914, ‘vol. 28, p. 778.
21, WAGNER, H.
'"Torsion and, buckling of open sections'
N.A.C.A., Tech. Mem. No. 807, 1936.
22, GOODIER, J.N.
'Elastic torsion in the presence of initial
axial stress'
Trans. A.S.M.E., 1950, voi. 72, p. 383.
23. WINTER, G., LANSING, W. and McCALLEY, R.B.
'Performance of laterally loaded channel
beams'
Res. Eng. Struct., Colston Papers, 1949,

P. 49 (Butterworth, London).




2.  TERRINGTON, J.S.

'"The calculation of bending and torsional

effects in girders'

Jnl. Inst. Struct. Eng., January, 1958.
25. PETTERSSON, O.

'Combined bending and togsion of simply

supported beams of bisymmetrical

cross section'

Trans. Roy. Inst. Tech. (Stockholm), 1949,

No. 29.

26. DOHRENWEND, C.O.

'Action of deep beams under combined vertical,
laterél and torsional loads!
Trans. A.S.M.E., 1941, vol. 63, p. A-130.
27 . ENGEL, H.L. and GOODIER, J.N.‘
‘Measurements of torsional stiffmness changes
and instability due to temsion, compression
and bending'
Jnl. Appl. Mech., December, 1953, p. 553.
28.  PRANDTL, L. '
'Kipperscheiﬁungen'>
Doctoral Dissexrtation, Munich, 1899.
29. MICHELL, A.G.M.
'Elastic stability of long beams under

transverse forces!

Phil. Mag., 1899, wvol. 48, p. 298.




306.

31.

32.

33.

34.

REISSNER, H.
tUber die Stabilitat der Biegung'
Archiv. d. Math. u. Phys., 1904, vol. 7,
(éitzungsb. Berl. Math. Ges. 1904, p. 53).
GOODIER, J.N.
tSome observations on elastic stability!
Proc. First National Congress of Applied
Mechanics, 1951, (A.S.M.E.)
TIMOSHENKO, S.P.
'Einige Stabilitatsp;obleme der
Elastizitatstheorie!
Zeit. Matnh. Physik, 1910, vol. 58, p. 337.
\ : .

TIMOSHENKO, S.P. -

Theory of Elastic Stability

157.

First Eddition, 1936, p. 239, (McGraw—Hill,

New York).
RICHARDS, N.E.
| '"The strength of open sections in
compression and bending!

Council for Scientific and Industrial

Research, Australia, Division of Aeronautics,

Report S.M. 94, May, 1947.




158.

35. CHILVER, A.H.

'Structural problems in the use of
cold~-Tformed steel sections'

Proc. Inst. Civil Engs., October, 1961,
vol. 20, p. 233.

36. SOUTHWELL, R.V.

'On the analysis of experimental
observations in problems of elastic
étability'

Proc. Roy. Soc. (London), April, 1932,

vol. 135, ser. A, p. 601.

37.

Handbook of Aeronautics, No. 1 -
Structural Principles and Data

Fourth Editiom, 1952 (Pitman).




159.

VII.2 Author Index

Name Reference No. Page
BACH, C. 1 1
BARTON, M.V. 14 P 13
BUCKLEY, J.C. 20 18
CAMPBELL, A. 19 ‘ 17
CHILVER, A.H. 35 4
COULOMB, C.A. 6 9
CULLIMORE, M.S.G. 17 16, 44
DOHRENWEND, C.O0. . 26 . 28
ENGEL, H.L. 27 31, LY

. GOODIER, J.N. 14,22,27,31 13, 18,29,31, 35,

39, 4L, 45,69

GREGORY, M. 18 16,33, 4Lk, 45, 69
GRIFFITH, A.A. 9 11
LANSING, W. 23 . 2L, 43
McCALLEY, R.B. 23 2L, L3
MAILLART, R. 2 1
MICHELL, A.G.M. 29 3L, 45
PETTERSSON, O. 25 28

PRANDTL, L. 8,28 10, 34, L5




Name
PUTNAM, W.J.

RETSSNER, E.
REISSNER, H.

RICHARDS, N.E.

ST. VENANT, B.
SCHWALBE, W.L.
SEELY, F.B.

SOUTHWELL, R.V.

TAYLOR, G.I.
TERRINGTON, J.S.

TIMOSHENKO, S.P.
VLAZOV, V.Z.

WAGNER, H.
WEBER, C.
WILBERFORCE, L.R.

WINTER, G.

YOUNG, T.

Reference No.

13
30
34

9
_Y
4,10,11,32,33

21

12,16
19
23

15

160.

Page

13"
34,45
L1

128

11

27,43, L5

6,11, 12,22, 36,
LO, 42,43,45

8, 13; 19’ ’—I-Os 42’
L3, 45,48, 145

18

13, Thy bk

.17

24, 43,45

T4




161,

CHAPTER VITIT

APPENDICES




162,

APPENDIX VITT.]

Theoretical Solutions

The method used to obtain an approximate single
term Galerkin solution to the generalised differential
equations of bending moment and tordﬁe equilibrium
(equations IL.2.9) has been described in Chapter ITI,
section 3. In that section one solution for a
particular combination of bending moment and torque omn
a beam was presented and the results of three
alternative solutions for the same problem were quoted.
Details of these altermnative solutions are given in

i
this Appendix.

The appropriate differential equations of
bending moment and torque equilibrium for the problem

considered have been shown in Chapter II, section 3,

to be
S ,
gy T heE
Ely du My S1r1 /3
. o/3*
‘ 3 P Z 2
(Gc + ””Mx-"””ﬁ) B _ e dE Ls(ﬁ)m_é_ﬁ')
Ly 3 d3* 2 \d3 A Iy

3 Ac1.T
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CASE T

Assuming a sinusoidal variation of /6 with 5

that 4is
L
and substituting
/33
s =B - —
3/
2z
COS[:; = / — ﬁ
2/
then equations A.1.1 can be written as
DL =z
2 : (ﬁo S/ “)
er, Y — i, |7 - £
“ \ C/jz . . . 2'/
< 773 3
2z (/5 S/ -—--)
Ely du —My | ff8irt —2 — ° <
d3* 3/
e 3
j ﬁ (/5; St -———)
GC Ky Mx[/ism L = 27 (ZI  cos D3
‘ Zy
3 z z
=
-—E./"---—7‘;’;—,3‘:,605-—‘iSE L£ E/@,cosﬁ)(‘z_gﬁ_f{)
L 2 L ~ A Zy
= My 4 M o
J ’.dg

A.1.2

To obtain the solution for the last of equations A.1.2




by the Galerkin method, the derivative éﬁ; must be
4

expressed as a function of 4,  and 3 .

Integrating directly, the first two of

equations A.7T.2 and using the boundary conditions

’

gives the following expressions for WU and U,

3 ,2

= — _____( /’L e S/rz _._é,“ __/_ﬁa L sin T3
ELy I L
”~ 2
VAP LYl VP Ll AR b
B e sz — s/ <
+ 54 o L /8 A 77* L
V% z /2 e
U o= X o2 _ LG5 L cos RS
ET, 3 /i.g /5 7> L

L 2L 3(L-LA)- L Do g A
51‘,( °) e EIx =

The horizontal deflection « relative to the

undisplaced axes is given by the expression
A = hcos — UsSing
that is, in terms of ﬁ% ,

: _ n 73"
A = «u |f — (/')"’S’ﬂz,)
2/

2.3
Ca. s 73
o s 78)
3/

. TIT
e A 5/:1['—‘3‘ —

L.
3:.:0 U==0 4—11.(.'/ j’:z, —_——= =0
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Substituting the expressiouns for <« and ¢ given by

equations A.1.3 into equation A.1.4 and differentiating
e
73

with respect to 3 the following expression for

is obtained,

it M, L= °L;
c—j—:—- X _éf:oﬁﬁ‘%_}._ﬁ_ﬁ?zEcOs——ﬁﬁ+
3 EZy | 7R L L e TF L L
3 3
LB BT gt T s T3 [ Lo T eos 73 |
54 % L L L 8 7 L L
m, L* 3
X ......'./..é?_ ﬂSIf'l ﬁcosﬁ / ..é:? 377'5//1 775 oS 773 +
EZy 2 7? L L L 12 % L L L
s 5 ) '
| P BT/ TS cosTd _ 1 L 37 500" 73 cos 73 +
108 % L L . L 36 T* L L L
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The last of equations A.1.2 can now be written in an
appropriate Galerkin integral equation form allowing

for the symmetry of the problem, thus

L
z . 77‘5 (ﬂs”'/ )
£, M, oS//Z <

Z

Z
;;/"77 cos TF /5 cos T3k _Ze_ Ky} _
7 fpees (74522, 1 o

-alzmsl)yg-o L

Equation A.1.6 can be solved by substituting ;wh.ﬁ?
for il

T4 and integrating. This procedure yields the

<o

following polynomial expression for ,MB at j = % in

terms of_ﬁg , thus

z 3 4 5

My = g, v by +Cafp + LA+ e,
a5z | ‘
where . ,
@, = /571 &€, /5.528 _é;ﬂ__ o590 Ml o.z54 ML
L L2 £Zy, ETx
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CASE IT

Assuming a linear variation of B with 3

that is
o 23
Rehads
and substituting | . .
smpBg =B
COS/§ = /[
then equations A.1.1 can be written as
Z
A
4
ﬁjya/a == MX’/@ 25’
e - % Mx(ﬂw) () 122V = K
AL

¢ ' a? A.1.8
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As before, the solution of the last of equations A.1.8

by the Galerkin method requires the derivative 5f5 to

be expressed as a function of &' and 3 .

Integrating directly the first two of equations

A.1.8 and using the boundary counditioens

3:0, WU ==O arzc/ 3-..—.£ da dU

2z’ dg c@

gives the following expressions for « and v,

LN

£y 3L

YV =
251; =~ (£3-37) ; A.1.9

The horizontal deflection & relative to the
undisplaced axes is given by the expression

U = {L<305/§-1f3/n/3
that is, in terms of ﬁ%

& =u— vg, 23
: L A.1.10

Substituting the expressions for « and o given by
equations A.1.9, into equation A.1.10 and
differentiating with respect to 3 the following

. « .
expression for —- i1is obtained

du _ My 35N e
0{5 EIy}@(é“ r).— "“:“/60/2?"‘.)%?

A.1.11
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The last of equations A.1.8 can now be written in an
appropriate Galerkin integral equation form allowing

for the symmetry of the problem, thus

2 /{/JZ;C L/y/‘/]y(ﬁo“‘](zf’) zlﬁ(zig)(& ___-fi ff)_’)..ﬁ/f

LA

M| A ___”*f - ”
"z, % ﬂ”"(f ‘2)] >a/j ©

4
Equation A.1.12 can be solved by substituting Z£.2. for
L

22? and integrating. This procedure yvields the

(<4

following polynomial expression for ﬂ4§ at'g = % in
terms of A, -, thus

z
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A y Ao1o13
CASE III

Assuming a linear variation of fg with 3 that
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and substituting
3

Slﬂ/é;’ ﬂ_

n'

cos B =/ - .é%

then equations A.1.1 can be written as

J e 23y
EL. Y =M, |/ - L=
el 21
3
2 AC
£y deu . _pmy 522 4. "f—_p}"')
od3* L

' 5 23 f/a’a-‘—’)
'Gc+/¢”M“[’5°Z" -

Jf[z,ﬁc, /g(zﬂ@ (;( _Ef_‘_’:f_z‘

= M§+de‘“ A1y
-E

Ly

As before, the solution of the last of equations A.T.14
=3

by the Galerkin method requires the derivative éE; to

be expressed as a function of A&, and 43

-

Integrating directly the first two of equations
AT.14 aﬁd using the boundary conditions

j==07 U=U=0O ond G=2% a@( cﬁ/

—_— T ——
_ e

gives the following expressions for +«{ and v.

. L
ﬂ:EIy[ ( 5)+/§9(/5L3-£>‘-]

1/_:/“»’7;:. / Ay, 1 4% 8% Lz
Zz‘}[fﬂ} Jj'i‘-:,—;'ﬂO(Lz ?z_) A.1.15
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The horizontal deflection U relative to the
undisplaced axes is given by the expression
T = wucosB — vsing

that is, in terms of 2,

2 233
a-ul- BZ ] f’”’ 42
31 A.1.16

Substituting the expressions for « and v given by
equations A.1.15, into equation A.1.16 and

differentiating with respect to 3 R the following
ofif

is obtained

J& 3 A P
e E-Ty[ [———“j (ﬂb _10ﬂ3)}+’6 (730~
e A5 43 Ml I frppa_ 6R3"y _
/51.‘5 - )f] Ef:[z {(,@3 L

ﬂ&@fﬁs 2 %§3¢ 2 r08.2% ;.

SE SR s - 2R

3.6 3 3
CLlzsy]

= g (5, 3) A.1.17

expression for

The last -of equations A.1.14 can now be written in an
appropriate Galerkin integral equation form allowing

for the symmetry of the problem thus,
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e s
« |42 : %
of (foc o 2l ) peZ) )
~ My — I, -
Mj sz}ﬂ (/é’o,32]> (‘—ffé) dj - ° A.1.18

2%

Equation A.1.18 can be solved by subétituting - for
g%? and integratiung. This procedure yields the
following polynomial expression for /W% at 3 =-% in
" terms of &, , thus
‘ z 3 s s
Mg = OpfB+ Ouf8 + Cp B, + Ay + €4 B
£
3=z
where
2z
Ty = 2GC _ oz5 ML | o.z92 M;L
! L E.Iy Elx -
by = 1333 KyHx
LIy
5 ') | z z
Cyp = HE (K -z~ -Jf) +o-132 ML _ o.2s9 ML
o A Iy £Z, ETx
C.’/#_ = 0 /33 '¢Z e
| LIy
z 4
€p = ~0-019 MLt | o.0436 ML
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APPENDIX VITT.Z2

Effect of Neglecting Bending Momeut Components

M da  ana mp d .
3 5, 30,5

It has been shown in Chapter iI, section 2,
that the equations of bending moment equilibrium about
the displaced axes of a beam subjected to bending and

torsion can be written as

Myr = My cosB + My Sing — Mg o

3
Myl = Mycosfp — Mysinp — Mj
: 3
1 : . A.2.1
If JMy = 0 , equations A.2.1 are reduced to
ﬂ@ﬂ = Mycosp — ﬂ{5‘%x
73
Myt =-Mxsini3 — M3 Jdv
' d3 A.2.2
Dividing by My equations A.2.2 become
M/ M 74
MX My Cfé
My _sing _ Mz T
My Mx d3 A.2.3
Assuming that the variation of & , ¥ and B with 3

is sinusoidal then, in terms of the maximum




displacements «, , v and @, at the centre of the
span, the displacements at any section -5 can be

written as
73

‘-—2—3 = &_O Sl'ﬁ 7

’175 ==’l7; 31’?? ffé
L

ﬁs "'"—"'/')’o 31'1'1 Zé
L A.2.0

Using these relationships, equations A.2.3 can be

expressed as

My My .

M: cos (B, sin 775) — /74_3 aoﬁcos :7‘,
My! _ sint (B, sin 775) _ M3 G T eos T3
MX My L L

A.2.5

In the experimental work described in the present

—

thesis, the maximum values of g, s 3 and W, or

Mx
v, which obtained were 1.4 radian, 0.2 and 23 in

respectively. For these maximum values, equations

A.2.5 become,

M1 . 7 73
r g . 73y _ oz L 72
M———X—COS(/G"SIH va O2 = cos—
A@/_. ”3 — -z.zrc 5fﬁ$
e ~sin(l-4sin73) — o z ¢ 7

A.2,6

The numerical values of the terms on the right hand

sides of equations A.2.6 in the range 0 % <I£~ are

174 .
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shown graphically in Fig. A.2.1. It can be seen that

for this range, the term 0.25-2 cos fz—% is mnegligible

in comparison with the terms cos(1.4:an1g§) and
sin(1.4 siné?’). Thus fof the maximum torque/bending

moment ratio and displacements, equations A.2.2 can be

approximated to

Myl ==Mysing A.2.7




177.

APPENDIX VIIT.3

Experimental Measurement of the Flexural and Torsional

Rigidities of the Brass and Steel Angle Section

Specimens

The extruded brass angle sections used for the.
experimental investigation were found to have small
variations in the cross-sectional dimensiouns. In an
attempt to allow for these variations the flexural and
torsional rigidities of each specimen were found from

pure bending and torsion tests.

1 _
(1) Flexural rigidities

In the case of the flexural rigidities, the
angles were tested by a four-point loading system as
shown in Fig. A.3.1. The aeflection at mid-span was
recorded for different values of applied bending moment
constant over the test span. , The test span length was
the same as that adopted for the combined beunding and

torsion tests.

The value of the flexural rigidity was calculated
from the expression
2
FI = Ma
Zh ‘ A03-1

where M was the applied bending moment, h the
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178.

corresponding deflection at mid-span and a was the

half span length.

For. EI, the angle was placed toes down on
simple knife edge supports and for FEI, it was held
in the gimbal supports of the main test rig and loaded

by the aluminium disc and pulley arrangement.

(2) Torsional rigidity

- The value of the torsional rigidity for each
specimen was found from two different forms of test.
In the first, the specimen was held in the gimbal
supportF and increments of ﬁorque were applied at
midnspaﬁ. The corresponding angles of twist were
recorded andlthe straight line torque/angle of twist
relationship obtained. ' The value of GC was found

from the expression

GC = — - A.3.2

where T was the applied torque at mid-span, 4, the
corresponding angle of twist at mid-span and L the

distance between the gimbal supports.

The second experimental method used to determine
GC was based on the torsional oscillation of the angle

section.  The specimen was suspended vertically from a
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fixed support and a plate of known inertia was attached
to the free end. The plate was displaced through a
small angle in the horizontal plane and released. The
frequency of the resulting torsional oscillations was
measured and knowing the length betw?en the fixed
support and the plate, the value of GC could be

calculated from the expression

. 2z
GC = I, (2mYf L A.3.3

where I, was the appropriate plate inertia, f the
frequency of the torsional oscillations and 1L was the

length petweén the fixed support and the plate.

The wvalues of GC found from the two methods

were closely comparable.

These experimental methods for determining the
flexural and torsional rigidities were also adopted for
the mild steel angle sections used in the tests to

failure under applied bending moment only.
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APPENDIX VIII.J,

Details of Test Specimens

(I) Lipped Channel Section (Test Group 1)
f&o"
y
|
o '575 "
SHear | A © o-075"
cersz"e '
l lr\e a g L 4
A% O f e 5
X X
oéﬁ%”
| L y
" o)
1327 |-98/
Y
SECTION PROPERTIES MATERTAL PROPERTIES
T, 2.83 ink BE|29.8 x 100 1bf/in?
I, 0.89 ink ¢ |i12.2 x 10% 1bf/in?
1.56 x 10=3 ink
r b.y7 in®

A=\

hence /\L for test

= 0.01195 x 72 =

= 0.01195 in !
beam

0.86.
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(IT) Channel Section (Test Group 2)

_ o 75
Y l
S o 064”
Shear
cennlie
IOc Gﬂ /_5//
% x
Y
o.ze2" | | or83”
Y
SECTION PROPERTIES MATERTAL PROPERTIES
I, 0.061 ink - El30.9 x 10 1bf/in?
I, 0.009 ink G| 13.0 x 109 1br/in?
C | 0.262 x 1073 ink
3 100 | _ fec
| 3.56 x 10 in A = T
A 0.179 in? | :
= 0.176 in"~
I, 0.109 ink*
, 5 hence AL for test beam
I{f‘y 0.016 in
. 5.107 106 = 0.176 x 72 = 12.7
C . .




182.

(ITTI) Brass Angle Sections (Test Group 3)
AVERAGE | AVERAGE EI_ EI, .
SPECIMEN | FLANGE FLANGE GC — —% —
BREADTH | THICKNESS 10 10 10
in in 1bf in? | 1bf in? | 1bf in? | 1bf/in?
A1 1.007 0.0480 455 2.288 | 0.5685 15.28
A.2 1.008 0.0382 250 1.845 | 0.4660 15.23
A.3 1.007 0.0640 1070 3.142 | 0.7776 16.06
B.1 1.496 0.0846 23140 13.58 3.338 15.50
C.1 2.001 0.0665 1620 25.91 5.987 14 .22
c.2 1.998 0.0588 1180 22.22 5.822 15.54
A I, K_ T, Ky
SPECIMEN
in® i in® in® in”
At 0.0945 | 0.00372 | 0.0176 | 0.0305 | 0.00528
A.2 0.0757 | 0.00306 | 0.0145 | 0.0248 | 0.00427
A.3 0.1249 | 0.0048Y | 0.0225 | 0.0400 | 0.00681
B.1 0.2460 | 0.0218 | 0.220 | 0.179 | 0.0446
C.1 0.2620 | 0.0421 | 0.787 | 0.342 | 0.118
c.2 0.2320 | 0.0374 | 0.696 | 0.303 | 0.104
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(IV) Mild Steel Angle Sections (Test Group L)
ff% EI? e m&' Ly
SPECIMEN 10 10 -
1bf in? | 1bf in? | 1bf in? in” ink
Al 5.818 1.443 2135 0.00754 | 0.00509
% A.2 | 5.769 1.436 | 2080 0.00754 | 0.00509
E A.3| 5.552 1.361 1965 0.00742 | 0.00503
% AL | 5.524 1.358 1920 0.00742 | 0.00503
- A.5 5.483 1.353 1915 0.00742 | 0.00503
w | B.1, 20.62 L .851 3115 0.0406 | 0.0171
E B.2 | 20.71 5.016 3150 0.0406 | 0.0171
¥ | B.3| 19.42 %.513 | 2405 |o0.0382 |0.0159
?? B.4 | 19.65 L .521 2515 0.0382 | 0.0159
é@ B.5| 19.61 .62 2595 0.0382 | 0.0159
" C.1 | 53.61 13.03 5045 0.130 0.04l1
& C.2 | 53.53 13.28 5015 0.130 0.04L41
E C.3| 53.05 13.19 5080 0.130 0,044
? C.4 | 50.02 12.02 3795 0.123 0.0413
N C.5{ 50.41 12.03 3805 0.123 0.0413




184 .

APPENDIX VIIT.5

Graphical Presentation of the
Comparison of Theoretical and

Experimental Results




GRAPH/1/1

s
G
i
3
— N

T |
I«:: & |3 L. gl i—c 1 >--}
() (m) (D
| V4
o 100 '
Q |
XN
N
() B = (3L2-4d%)
Z‘Z: o £ 2aE \
a
Y | O
: 50 |- | Ve Py "485-:r’\~=»/
g : / | / /O. .
G
5 40 /“ C/ /
: L~
’g ,@/ - Tobt

20

BETL —

N

Z

o 200 400 &Co 800 1000

rorawe (T)(in.[5f)

FIG. . 1. TYPRICAL TORQUE [ANGLE OF TWIST
RELATIOWSHIFS FOR SMALL DISPLACEMENT
BEHAVIOUR .




W
' i? GRAPH/1/2.,

f' P . “*‘lJL/ TN
& » /2 o QJ
80
D
o3 o
) /@/JK k\D\¥
40 S
/&»*:/ T = 1065 i fbf. \sK
12 24 %G A8 &0 72 in
W
T
80 G
oA Y CASE 1T
Q_—H— g

40 o

ANGLE OF TWIST (RADIANS) (x 103)

72 54 %6 48 G0 72 {n.
I‘ w w
& AT QT
120 A 1YY LN CASE T
' ‘/9_———()—\‘@\ *L-/E% Q‘L/Zj L/”
100 P <@

NV <
A N

12 24 26 48 60 72 in.

‘o prIsTANCE  ALOW BEAM.,
-0

FIG.IZ. 2. - TYPILCAL, DISTRIBUTIONS OF ANGLE
OF TWIST OVER TEST SRAN.




GRAPH/1/73.

59 [ 3L
\
)
L m7':3ﬂ l
@ |l
A
70 : CABSE I
& -
c0
50

A0 /

o I
@) / \) \
| /| 7685 in.fof. \

O

N

Y
=t

TWIST (RADIANE)(%10°)

w

8

™~
5
\O

o

N
: ,,/1“ = 465 m.ﬁ@f. \ NI k
T / P \\

%ﬁ

24 3‘3 43

3 DIETANCE ALONG BEAM (1ns)

DISTRIBUTIONS OF ANGLE OF TWIST
OVER THEST BPAN.




GRAPH/1/4

%=0  %:L/3 %= Le
w
=
It
C e 72" N
CASE I

&0

(?//‘“@
50 : A \Q
Nt = 1074 ta. (Bf |
/Q (J)\\
Jd o \
o
40 , =\

ST = 873 m.ﬂf»f

| aNGLE OF TWIST (RaDIANS)(x107)

' DISTANCE ALONG EEAM (ins)

DISTRIBPUTIONS OF AFNGLE OF TWIST
OVER TEST SPAI. '




GrRAFH/1/5.

o
i
\2
3

] T CasSE T

120

‘~ £
L
|
100 ‘(//T\Km

At - 10740 X%

/ S N
&0 { N

(0
//ﬁ/'é\x = 8/‘2 in. fﬁ{ ¢
9| / 2 C\/g/\ N{f) R
1< S

A :\T = 671 in. (5. \E
40 /ﬁb o/@/{ D\Q\@ A G

D//‘/h\'f = 470 Ain. fﬁj‘ \\‘T
i e

)
)/@T\\T - 268 2. 56§ NS

‘J

ANGLE OF TWIST (®ADIANS) (x103)

E%) 2% %6 48

s DISTANCE ALONG BEAM (ing)

DISTRIBUTIONS OF ANGLE OF TWIST OVER
TEET  SRAN.,




OlgrAPH[1/6.

1000 , T - |
W CASE IIT SECTION A QQ
3
‘ | —
W~ 8000 M. = 2429‘ﬂ1ﬁ%. M/g/ﬂff N
=~ 6000 O - e
‘éw 4600 e e \3 > )
2000(.) o, o \
aj\ U/ ‘ © 1o O
o A
@ 2557' 400 GO0 8CO 1000 4 1200
i A |
@ 2000‘{}’/ £ =& — 2
3 — o -
§§§~ ----‘~~‘ﬁ%\~\‘k ‘\\\\R‘wg A. Lc?fgffk.Cumflf)
;;if’__ 4000 - S~ S‘?/
Sy :
%v &000 5\\ <5
U 8000
& *
A
12000, ? 4 ] >
6 ""! ' ‘+1|2 f'! | @
v 10000— —_— L .
u 7T gauge ]
%i-.\ 8000/— & TPosSITIONS e —~0
g °T Z//@/\ﬁ
=G S
%:’41\./ 4000 1 12 13 . : .
N /@/ / L)
b |

w
112]
&
i —
) R o
s 7
3 oo | Gr -
g e .
L2, \ 3
Z 100w >
2y
0 ‘\\\\ ,
12000 e
A

FIG.IZ. 5. VARIATION OF LONGITUDINAL

STRESS

WITH

TORQUE .




l GRAPH/1/7. l
P

~

TOP FLANGE,
MAXIMUM STRESSES
"ForR T = 1068 n. (65

o
8 8 8 8
) Q Q 0 9 .
06§ /ix€ Q - @ @ 2 B/
|
| N
' SECTION A.
| M = 1800 infbf.
O (T = Q) B = 9600 (b ind
:
| 1
\ ‘ \e\ j
1
) \LQ | SECTION B
' 1 M = 3000 in (Bf,
T (T = O)~ay \ B =16000 {Bf.in2
!
o . |
S ' . |
\Q\ :
\Q SECTION . C
; M = 3600 in.f5f.
o (T~ o)\‘_]l T~ B -19200 fBf.in2
1 \Q\ '
COMPRESSIVE STRESS _ .. TENSILE STRESS.

o
i

LG . I, 6. LONGLTUDLILNAL 8T RE’Sﬁ DIST’&IE&UT]‘.ONS
AT DIFFERENT QROSS - SEJTIONS.




GRAFPH/[1/5

\

N TTTTTTTTTTTTA

/




- GOQ0Z1
)

FLANGES

\
— 000}
>

<
v

\

-2

\

£
|
n
|
|
!
[
|
!
I
!
!
!
K

/

LONGITUDIN

-_,,.
oy
1

ey

IRIBUTIONS.




GRAPH [1/10

0002l
\

rd
~
t
!
|
| - -
! -7 e WED
| ,"' -
I P -
i e . ~
b i : P e " = ‘mam =
| e - CASE 1 BECTION C.
P L
!</ -~
”~
~ -

DISTRIBUTIONS.




@, GRAPH[1 /U,

T
1
|
|
| -~
!
|
!
[

GOM O // //l
I

g 8 2 e

- | e CeASE T SECTION A

fom e e T =T - 0002

- , _
FI1G.I{.5. LONGITUDINAL STRESS DISTRIBUTIONS,




o0, - GRAPH [1/12.

FLANGES

T
-~
”

I
|
]
[ ~
!
}

l
[
!
7
-~
|
l

~

WEB

- : P CasgE II SECTION .

~
RN //" LONGITUDIINAL STRESS DISTRIBUTIONS.




o0, GRAPH [1/13.

-

CASE T SECTION.C.




2 GRAPH [1/1%4-

WEB.

el e cagE T SECTION A.

|

i
l

!
!
!
|
|
|
|

] P
|
|
k

STREEES DISTRIBUTIONS.




-
-
~
-~

” . .

GRAPH [1/15.

”

-~

FLANGES.
/'1“-‘\
Il So
| RN
| N
| S~
| r>
| P
-~
] -
P 7
I -~

-~

!
I
|

SECTION B,




GRAPH[1/16,

—000Z S

/ N\

Pl Pie CASE T SECTION C.

N T T T TTTTTITTT TR

/N
\

ol ULONGITUDINAL . STRESS DISTRIBUTIONS.




GRAPH/2/1.

FIG. 17, 7.

- 120 /—[\&
&
g .
.\fl
AN i
5?};_80 B, .. Ttanh M2, L
S 2 2EM AD LETN2
2
o
Q- 4’0 ' 3
2 ﬁ@ o T
\g 43ET
’’’’’ 1“"_’-“- 0-4 0-&
TWIST AT ¢ (RADIAN)
- 40
— 80—
. ({
& -120 i

TORQUE / ANGLE OF TWIST RELATIONSHIP

- LARGE DISFPLACEMENT BEHAVIOUR.



GRAPH/2/2.

APFPROXIMATE ANALYSIS

i ____________________,____________}a_______.______.....-_.__
@ -02
L]
~ e
Cimy ;C.}&_
E—q ]
7 .
I TRUE A;NALYS%S A AL <
=t a -
3 f2 = (R0 Sy ?
t
ol
8
-0f
b \
)
z
I~
b | - TRUE {, = O-00126
: NG
! ~— \
<
. V]
2 4 ) F2) 10 {2
BEAM PARAMETER AL

&
8 N—"
i/p/ﬁz/‘"/?/’l

FIG. IZ. 8. VARIATION OF AWNGLE OF TWIST

COEFFICIENT {2 WITH BEAM
PARAMETER Al . '




GRAPH /2/3.

THEORETICAL SOLUTIONS
(@) EQUATION I¥.2.41.°
(b)) EQUATION IL. 3.20.
(¢) EquaTION IL. F.17.

1)
8
\&

l? D
By

= ®)| /
VA
! YO
| R
<
. © -
o P
& 40 PO R \@
B 4
- -0B -04 /Q |
/ 04 08
/' TWIST AT ¢ (RADIAN)

/O 40 — E |

‘ - T l

/// / -80 \ //:2 _/Qm AD
E '

o T 1 £ ,
// / 120 ‘JJ]
['/0 /| ‘ |

‘M" LOAD
M = {000 in. fﬁf .

FIg.TZ. ©. TORQUE /ANGLE OF TWIST RELATIONSHIR

FOR COMBINED BENDING AND TORSION




& GRAPH/2/4.
— 5 50§ -
<
— 1 1004—— 24=0 / 4@//0/
g e “Eqn. I.%.20
—_ O
B 50 )
-10 -0 -0-6 -04 -0i2 / l TWIST AT ¢
7| 62 04 06 08 10 (RADIARN)
-5 B
/6 o 7 - | |
= 500 i (G
l 50
T
_%11{50_;&{} |[ P 1
#..o
< & z ‘ ‘ o d
ool MO'/ e
2 > |
¢ 50 Eqn. T.5.20.

TWIST AT ¢

5
t
O ..
%

-0 -08 -0-6 -0 O
- ‘6 0°8 10 (RADIAY)

|

) 100 | —— M ==750 in 6],

S | |

\\
.\§\_~
Ji
© o
N ,N
L
(S
o

2z -"50 N
5

I
E 10 @T IY}RO/ | /’

T w 9Cg 5 /&/6 |
D ;‘; ’ N\ ? nfa
g@z’ / o EC[A’LI~3-‘20
=

i
TWIST AT &.
06 08 10 (RADIAN)

4-0 -G8 =04 -0;

e
'
0
) )
\J1
O

Q)
O
o
A

S

-50 i
/ -100| — | M = ~1000 in. (Bf.
%/'
)y ~50 —1

WONLINZAR TORQUE | ANGLE OF TWIST
| EQUILIBRIUM PATHS - §MALL CHANNEL SECTION.



GRAPH/2/5

THEORETICAL
PATH OF APEX

(in)
108 RADIAN %I |
N N
\[ (a) |- (A
S N\ Jeee] % e T p
O éo-\ﬂr RADIAT - 03 o y,
N y
e

ik

. BENDING MOMENT ONLY

FIG.IZ.10.

SHEAR CENTRE

UNLOADED POSITION ,
' \ 0 e e m"fﬁf‘
ek | ||
05 04 0% 02 01 T~ |l o1 02 05 04 05 (in)
- 08 RADIAW
| (i)
1:0 * '
N R ;’
-0 _ — 09
\' | @ . /30 /
/—— 68 o2
\ ) /
NER " /'
o 06
W— RADPIAN o/
1 \6 > o
BENDING MOMENT ONLY m»pO‘? THEORETICAL PATH
' ‘M =-1000 _in.fﬁj . N A | OF SHEAR CENTRE.
| | 02
UNLOADED | POSLITION _
\\ 01
]
08 07 06 05 04 03 02 Of | 01 02 0% 04 05 06 (i)

DISPLACEMENT PATH

AT MID - SEAN. (SMALL CHANNEL BEAM)



o

i
)
I

Eqn.X.5.25

g L S GRAPH[3[1.

e E_ 12 // / //
- M=O s

A gd:_ 8 \\/ / pd ©
8 /.' e /{\o
g_ 4 // o] Een. 1.%.20
& /rr@'/

-0 -06_-0-4 -D e

4 06 08 10 12 14

'!Lc»
£

/! TWIST AT ¢ (RADIAN)
| 6// | M = 200 . §F.
o/ da -8 =070 M
a4 (= 0-770 mie)
(I
/N7 & ]
+— g%  Equn I.%.25 .
& ) // ///
*ﬁ_izﬂ IV&O/ P // 5
§ jy // ///
i S . *8 i o
&f /// e ", ©
G -41—4 2 oN —
= yd //7 Fon.I.%.20
-0-8 -0-6 -0'4 -0-2 //@’ © ‘ L
~7 02 04 06 o8 40 2 14
e yauwi TWIST AT ¢ (RADIAN)
Pt / M = 240 in. (B
pd : -
A & (=0-84 Mc)
/I|I [ : g ‘TQ . !
P ‘%\i_ '12 ’ £ L { t z/"""
7 M=0) /’ Ao
n /
T T XL
&
& _, // // - TEgqn W3.20
H 3 / P [0}
08 -06 04 -0-2 |7 7 ,
cr"/- BRT04 ofepois o 12 14
el /AN oL
& // N TWIST AT ¢ (RADIAN)
,// //' -8 M= -260 1n. fﬁf
» (=091 M
rgj I/ "1’2 t c}

NONLINEAR TORQUE / ANGLE OF TWIST
EQUILIBRIUM PATHS (SPECIMEN A.l)




- 19 | Eqe L3525 | oraen/3/2

|

MO o

\1} -0
é' — 4 — s <G ey l Ecin.IE.’ﬁ.?O__

}g/ 02 04 06 08 10 12 4 ,
- = TWIST AT ¢ (RADIANS)

-4
072 M = -100 i [B§.
vz -8 (=052 Mc)
o
&
1.(.3/ Eqﬂﬁ.ﬁ.z\g
_._;___T:J —49 - L S
< 4=0 /
T—u -8 -
8‘ L’ // 10O~
IR PR e uE N
08 06 -0-4 *d'Q /_/:Z-O*'"”O’ l C{l . |
/,o"// 1 a2 04 06 08 40 12 1.4
<044 -4 TWIST AT ¢ (RADIAN)
/O% M = 145 in. [6f.
T B : -8 (20'7§MC)
@ﬁ
8 Eqn.I ‘5.2\5.
Sl .
T 12 ] 7
< M=0 /
~ H -8 L~ 5 §
& > A EqnE3.20
‘%ﬁ — & e ] JZ e
7~ = —
E’-‘l ' / //' O
-08 -96 ‘04‘ -0'2 /_G_/_/ 6— L__,—-J/ o
,@’% 00 04° 06 6 10 12 4
SRoS B4 RuE PVl TWIST AT ¢ (RADIAN)
/'// ” M =175 m_@j’
g -8 (= 0-91 Me)

NON -~ LINEAR TORQUE [ ANGLE OF TWIST
EQUILIBRIUM PATHS (SPECIMEN A2)




GRAPH/3/3.

o [
: 80 Equ.T.%.25 ~_ 9 |
B T @/
> 60
wd_l / P
; 1
[5'; AQ
%" 00 ~ EoLn.II.’fjl. 20 —
P L2 _ l
-08 -06 -04 -02 //ﬁ TWIST AT ¢ (RADIAN)
bzl o2 04 06 08 0 P2 14
/"/}/' ~20 |
ot M =-200 in, Bf
T "4.‘0 = O > M
s ] ( 3 c)
G &80 T
R
g Eqr.1.3.25-, [0
—_— &0 | P
N : i el
& A A0 AEqn. 1L.%.20
% 20 ; e Ob—nic : }
0 r oL~ |
' op-g -06 04 -0:2 %——" TWIST AT & (EADIAN)
=71 o2 o4 ce 03 0 12 14
/O/// 50 |
O A ~ T = : .
- % M = =300 in.{bf
/’/ 1 -40 (=0 5%1\/1(;) |
& | [ /
T 60 i EC{n L.3.25~, /
El 40 e =
e ! _ O
08 06 -0-4- -0'2 Z - TWIST AT ¢ (RADIAN)
A = - : ; - - - )
//@'1// G2 04 016 08 'ilO ‘112 14
’/Q > // "20 e M= -, ;‘@O ‘i.'ﬁ Ef
o 1 . .
P /,i -0 I ( o778 Mc)
A/ . .

FIG.IZ. {1. NONLINEAR TORQUE /AWGLE OF TWIST
EQUILIBRIUM PATHS (SPECIMEN A%)




S
— & g0 | gI ' | GRAPH/3 /4.
d Eqn 1L.3.25. —
T :Eﬁ 60 \l\ 4 =
% i\\fl;:O / - g
'\/ e //
2 /@/ — TRy .
g{ /////'“ SEgn.I.%.20.
a 20 //@/ =
04 03 -02 -04_ | AT
7] o1 02 0% 04 05 06 07 0B
S0 TWIST AT ¢ (RADIAN)
-~ 4 . c
zo/ M o= ~600 in. (5§,
— ~40 |—
> o
& -
i
q SRR
- %_ a0 Eqn. 11.3.25?\
T e M=0 >
©C -
—— 5(53 40 i/ 0 e
‘81’ /? .,./O"‘Qﬂ\/ r .
o-20 I = Een.11.%.20 —
T |
-04 -0% -02 -1 '
[ o1 02 03 04 05 G6& 07 08
— Ll
//’/ ~20 TWIST AT ¢ (RADIANW)
12T 1 " M = - 800 in. (5.
1" —_ |
& (= 0-51 M)
&
i .
T % &0 Eq‘l‘lﬂ"sgf_
M=0
A 1340 \«\/ ]
B ./ / e ="
@@f; // — :é""é’--
o 90 ; - ©
PP e ’\Eqﬂ.’iﬁ."’;’g.QO.
-0:4 -03 -02 04 |ZZ I S
/0,/ 01 02 0% 04 05 06 07 08
A eno TWIST AT ¢ (RADIAN)
37 , -
A M = -1000 in. fﬁj?.’
7 N Te ) — (=0:64 Mg) e

WNONLINEAR TOROUER/ANGLE OF TWIST
EQUILIBRIUM PATHS. (SPECIMEN B.1)




SRARH/3/5.

- 20 0T Eqa 1.520—
- — t
: A= TWIST| AT ¢ (@ADKAN)
~Qd ~0F - -02 -0 =] oA .
a4 -03 /[@/ ot 02 03 04 05 Ol'6 Ol"? 01&
;;; ~20 L 400 i (B
- M = el
gl 40 (= 0-25 M)
~&0
®
8
% 60 —
- % Eqn.Il.3 95\
— W—-40 M-'-'O/ /LEZ,_.
%2 } N
o 2 e RE n.1L.3.20
ﬁ"ji /% C{'
- - -02 -0- —
e ol 02 03 04 05 0% o7 08
@///% 00 TWIST AT T (RADIAN)
= ) | |
’ %/ 0 M = =700 in. Iﬁjl
7 ,::\ (:: Q40 MC‘.)
&
ol
S [ —
_——ﬁ—’ - 60 - Eqﬁ_’ﬁ:%-g
4 ,20 :‘
T ®@ 40 i\{é//l/ i
‘ . b’ .~ —t
& < - =TS
02 o4 ”/{@fﬁ' W\Eqﬁ'E%Qo
of 03 ! T 01 02 0% 04 05 06 07 08 09
] yy/ - TWIST AT g_{]_ (RT;DIM\I)
P -
== ]
. u = -800 4. [Bf.
/////6 40 [\ d]

(= 046 Mc)

NONLINEAR TORQUE/ANGLE OF TWIST
EQUILIBRIUM PATHS (SRPETIMEN Ci)




)

) ,
& e Y 5T © I | GRAPH /3 /6
M \/ OL—""] N |
— -2 Lo VEqn 1525 —
/10 ///’/ N
g /ﬁ? § Eqn L.3.20
B Z
-0:6_-0-4 02 | |
// 02 04 06 08 40 12 14 16
a0 TWIST AT ¢ (RADIAKN)
7y M = -400 in.(Bf
. / .
7 -20 (50'2‘7 Mc)
A, ~
e e
/ A&
‘—ﬁl“"ﬁO Z

Hqa. T.5.25.

wE
S
N

; Lo L
N - N -
o /?’” ~3 Q\o o
-0:6 04 -0 A EqRi.3207 SN
/| 02 04 06 08 #O\12 14 16
LE g TWIST AT ¢ (RADIAN)
/ M = - 600 i {55
AR -20 =0-4Q M
AL 8 lag '
VAR 3
g /]3 T M—_._Q/
< = T
R A —
§_10 70 O& i - | |
06 -04 -0-2 //E,. TS PO\ TWIST AT g:i_(sz;sa?mm)
/ 02 04 06 \\158 12 14 16
//‘ -10 J ! 0‘8\\\ I |
// / Eqn.1.5.20 \\ ' |
- L\
Viak © T Ni=-800 i Jof.

(=054 Mc)

NONLINEAR TORQUE |/ ANGLE OF TWIST
EQUILIBRIUM PATHS (SPECIMEN .C.2)




@ @ GRAPH[3/7
e

+oe -

0-8 RADIAN (10)
1.2

/-_—'i

[ THEORETICAL

1-Q / BaTH OF APEXK,
o
o \,3-4- RADUN 5.0 Ao
0] :
O\ 06 KC{)

SBENDING MOMERNT ONLY

M = ~200 mfﬁf.

 UNLOADED POSITION Q-2

>
08 06 04 02 02 04 06 028 {An)

68 RADIAN (in)
1 16 - |
| |
() 1)
402 0 -0R 1
| / THECRETICAL
O-4 zaADIAN ) PATH OF APEX
© \O 0-8 /O ©
C‘@\E\
G6 BENDING MOMENT OWLY
M = ~260 in. [bf.
o f

UNLOADED PoOSITION

\\oi '
!
0 08 06 04 0o 02 04 06 08 10 ()

sHEAR caNTRE (APEX) DISPLACHEMENT
 PATHS AT MID - SPAN.(SPECIMEN Al)




&

(i)
{2

GRAFH/3 /8.

w

- U2

/ 1-Q
08

06

o /\1-2 RADIAN \

04 RADIAKN

THEORETICAL
L7 PATH oF APEX

08 06 04 62

$om
“
.

(in)
(0-8 RADI AN—]1-4.

12
o \ |

\' g8

' |
1 —
UNLOADED POSITIC)I\{‘ l | M = - 100 in. (Bf.
_ | | |
02 04

06 08 (i)

RO

THEORETICAL,
PATH 'OF APEX.

o\b\\\ |

~BENDING MOMENT ONLY

]
M = -1“715 in. (BF.

{i
| |
.0 08 06 04 02 02 04 06 08 10 (in)

SHEAR CENTRE (APEX) DISPLACEMENT PATHS
AT MID - SPAN. (SPECIMERN A2)




(it2)

GRAPH/3 /9.

-—K 08 RADIAW — [§-4 i

—
B, ) —z2 (B
T (B)—p2

2 ~ve
+u 4.0

)

THECORETICAL

/

PATH QF APEX

3\8-4 RADIAN| 5 o

~o_d__O

e 4

O]

06

04

TN BENDING MOMERNT ONLY

UNLOADED TPOSITION

M = —30‘0 "{1’2 .(Ej:

; \O'f ‘
08 06 04 02 <0'2 04 06 08 ()

/

707 RADIANM*H ?(;Z‘i). o
\\ @ 14 @ /
& 2

/L

o \04 RADIAN

pd

THEORETICAL
PATIH OF APREX

L~

| \\@L%

08
06

\EEN:DI’N% MOMENT ONLY

M = ~ 400 m.fﬁf.

UNLOADED POSITION

\Of
— ' |
0 08 06 04 02 02 04 06 0-8 10 (i)

SHEAR CENTRE (APEX) DISELACEMENT
PATHS AT MID -~ SPAN (SPECIMEN A3.)




T0°8 RADIAN (i) ] GRAPH/5/10

0-8

.OA

o

/ FPard OF APEXK
o |

SENDING MOMENT ONLDY

{ ' ‘ .
09 M = ~8060 {n,%j?.
UNLOADED POSITION '
O
a :\( ‘
05 04 0% 02 0 o1 62 03 04 05 (in)
(i)
{2

T O & RADIAN

NEIOINNIO
NI

\ 0-4 RADIAN
\ %\T’I‘l FORETICAL,
Q o 06 e PATH OF APEX.

- O . ‘ ‘
04— BENDING MOMENT ONLY

| |
05 M= =1000 in.fbf.

O

UNLOADED POSITICN

. \0'5
| I
06 05 04 03 02 04 o1 02 03 04 05 06 (i)

FIG.Z, 5. SHEAR CENTRE (APEX) DISPLACEMENT
PATHS AT MID -~ SPAN (SPECIMEN BI)




| (n)_
| 04 GRAPH [3 /11
©) Ko'e, RADIAMN )
|
o —o5 — | |
O Tue - PATH OF APEX
0.4 RADIAN :
< 0-2 vg
w
N
UNLQADED POSITION BENDING MOMENT ONLY
\ M = - 600 {n.fﬁf.
2 | —
0% 02 01 o4 . ©-2 63 (i)
r in
) t, 0-5
08 RADIAN i
— o4 -
0 .
4 e - ;
| 03
0 0:4 RADIAN /., THEORETICAL
| | PATH OF APEX
OTQ\EENDINC} SMOMENT ONLY
M= ~-800 {1n. .EBJ{"
01
UNLOADED 'PosnmN\
04 0% 0-2 01 < O o2 a3 (in)

SHEAR CENTRE (APEX) DISPLACEMENT PATHS
AT MID - SPAN (SPECIMEN <.1.)




UNLOADED POSITION

1.\

(ir) .
RA .
i 04 ; G PE-I/'S/iQ
(5.) (Bo)
O Yy -
“f 0% — Y& |
o 08 L THEORET1CAL
( RAD ) PATH OF APEX
\ @‘2 /
© 04 RADIAN .
O I o)
| I %
C1 N\

BENDING MOMERNT ONLY

M = ~400 mf'ﬁjt

¢

0-4 03 02 o1 1 a2 03 (in)
i TG’S RADIAN (13'2’) l \
-0 i Q-5 |
THEORETICAL
| PATH OF APEX.
- 04 RADIAW 03
o\\@\g//@/ 4
PN
BENDING MOMENT ONLY
M =-800 in. [ff.
01
UNLOADED PO.SITION\ :
04 0% 02" E < o1 0:2 03 (i)

SHEAR CaNTRE (APEX) DISPLACEMENYS
PATHS AT MID-SPAN (SPECIMEN ¢.2.)




: GRAPH/3/13.

@ EN
& él_i moo|o
G F
ST RS S ¥ L
“"\Erf\@ 1’200[0 % / "
. 8000 DN
| POSITION o I3
| 4,000 b\é\ ; ! !
\\ -06 -04 -ol'fz o O TWIST AT d,;(azmrm)_
-10 ‘O'fkb\ ‘ 02 04 06 oBg| V2 VA 16
4000 ~0
o T 80|<:o T~
0l
8 \I*Q\\o\
§N§.1‘20co 'WC"‘O — el
= b é’“ | POSITION 5 .
O —~~ 16000 —

M =200 . (bf.

!
a J HEN
hud
7 W
w = 16Ca0
e
© 12000 .
D\Q '
\o\acoo . L
- }D\ /posr'rrow o
4.00Q | l
\ | o | o
.06 -04 -02 PN\ 0-8 TWIST AT ¢ (RADIAN)
-0 08\ 02 04 06 \OQS; 2 14 16
| ' N o
1 . Laocd .
iy} ~—
@ 9% 12000 o
gﬁ’ gaﬁ \Q\“\-e o — |
% b 16000 _ . 5/4
o = POSITION D
Q ,

M= -340 in.bf.
VARLATION OF TONGITUDINAL @STRESS WITH
ANGLE  OF  TWIST . (SPECTMEN  Al)




a5 GRAPH [3 /14
¢ [N |——{@000

~——| g @? }

B?\g 6000 o
= ’ | X 2
& 4000 L
o POSITION ‘¢ X B
) = 2000 {’g\ ol
\ %,

{
©
o

]
o
A

3
Q
v

N o TWIST AT & (RADIAN)
{-2

0% 04 06 1-Q 4 16
08 | .

L\

O

o

/
7 .
;

i \{O\
>
wow oy M=-400 in. 6§ |
W3 v
:5 8 o
~ PosiTION B
1QOC'>O
e
S 10060

O
eocLo
W o e
J
a IUI% ‘g 4"000 & « 7
z 5o | oN| _rposiTion '«
N 2og, 9000 NQ/ |
\ CoT O\
\_-06 -04 -0:2 AN
-+Q - .3\ 02 04 06 10 12 14 16
N 500 O N\ TWiIsT AT ¢ (RADIAN)
o\ . : : |
EN | M= ~145 {n.fﬁﬁ\
g __ 4 6000 4 S
RN 3
b mﬂg ‘ \ \
@ Q< gooco N
R O
0 O & ‘ $®\ . ©
% & S 10000 e ]
Y T | POSITION 5
12000

VARIATION  OF LOWGITUDINNAL @ STRESS WITH
ANGLE OF TWIST (BFECIMEN A2)




"\ ]
\C\)\ 2008 —1 GRAPH/3/15
o \ I
o} \emo — -
H‘g%\ Asmo\ e / 2
me s POSITION
7 E o N/ b
ﬁgﬂ oL {i—?«/ —12CG0 b\\
06 =04 -0:2 ™o |
-0 -ova\ 1 02 04 06 N_ 1o 12 14 16
O . 20606 , o-@a\ “:'wxls-r‘ AT ¢ (RADIAN)
S N 4000
%m"&\ \ =-200 0. 6§, |
(\]
43S eooo .
~ 2 & |— aooo o
\ Q ~’ N O o)
\t) 2, _—‘——'-—-"'O /
- 1000 e
POSITION
o) | 10060 —t :
o \
o « 82000 —]
)
GocO [O) L
3 Eg;;: B\ POSITION
@ l&b\ — 4000 —N /
AEE S
R .
N =06 ~04 -0-2 \go-s |
-0 -o-a\ | 02 04 06 P 40 12 14 1.6
- N TWIST AT ¢ (RADLAN)

|
=-%00 in. [Bf. \O o

> N

4 Nl |
[.,JF s O%J:&' \\

%: Fosnx; \
3

O

[&)

o

©
i T 17, VARIATION OF LONGITUDINAL STRESS
| WITH AWGLE OF TWIST. (SPECIMEN A3).




GRAPH/7 /16.

POSITION o '
~~ 4000 \c\.gg\ CT |

~-06 -0:4 -09 O |TWIST AT ¢ (RADLAN)

o
]
5 a%
= ] v
W N
HEE &
— 5 *T 12000
~o— B\Og\o:) \5

o - T~
t0 08 T~ ’ 02 Ga 0.@,\0\1-0 12 14 16
g he L o0 oe |
BB~ ™~
E‘}“-‘i‘ 8000 <52 ]
0§ ox | o il
: I 12000 7 '
8 N POSITION D
M = - 600 ‘{ﬁ._{%
QLN
Y €}
i R
‘ { 16000
12000
fé .
ul . . 4
= POSITION L '
S 4000 \éq ——— |
| ,
\(\}6 -0l -02 20 0-8 TWIST, AT a (EA‘DIAN)
0T N 62 04 06~ 10 {2 14 16
2000 I~
1 \O\o \
% ({g,; 12000 o
I Q| =
25 Eﬁ.’ | POSITION O 7
g hat

M =-800 in.fﬁ_»}‘-‘.

VARLATION OF  LONGITUDINAL STRESS

WITH ANGLE CF TWIST (SPECLMEN Bl)




GRAPH [%/17

STYRESS

ENSILE
(155 /%)

/ 3
65000 X - X
\ :

 PosrTIoN G | |

!
2000
~_ i | ‘ T |
06 04 -0 o lrwist AT ¢ (RADIAN) .

i
]

d
N
e
)

o)
-0 ~08 ] | 02 o4 o'-m\i-o 2 14 16
|
3 O‘g .
‘{5 mg.'\ , \
0w & 4000 1 ~]
| o
¥ | o
% 5@ —ec00 — ]
§ v | poSITION H7
M = -400 in [f.
I 10000
\ l
‘ I 8000
|
\ E b @ 4[000 O\\o\ POSITION 01
< | . . ! |
< | QIOOO N | ' Ir !
\ ~0-4 - -0-2 ¢

5 TWIST AT ¢ (RADIAN)
40 -08 -0-5\ 02 04 ON 0 12 14 16

™

N

A

™\
L

M = -700 i (Bf

VARIATION OF LONGITUDINAL STRESS WITH
CANGLE OF @ TwWIsT. (SPECIMEN C.1.)

COMPRESSIVE




GRAPH /3 [18.

jral w0 '&'\
= ERZER
U-l [TJ [
7 N~
W a
RN L6900 /
4060 \bh
2000 \o\ 5 POSITION c,__,__j(
| / .
10 -0.N5 “OH D wﬁ* o TWIST AT {i (RMDEAN)
\Qr\[} o2 G4 oo~ %5 12 14 16
{
, ; < 2000 0-8 ~]
a1
:;. | \ \\
By 4000 Sy N
R “~a
B so00 7
%7 M Yy - e d
& ba | POSITION b o ,
Y RE = -400 m.fﬁf.
Q
(&)
: 10603
— |
= 8000
\
O
- fL d 6000 ‘
xp ©
J %'y \ o
0 g,g ~ TR0 g u —F
Zon & | BOSITION o
N TR \0; I l
< = \-ir :g"ooo - { |
~40 -OA -0-4 -02 (O TWIST AT % (RADIAN)
. ‘O%\Q 02 04 o-‘a\oc?a Jo 12 14 16
|
_ \@ 2000 \\ 5
o | N | ©
S 4000 -
woany O \& ot
4 3 % | jposiTION § \\
o a é*g? —8000 Q_o
g ~ 0] o [0©
1Y)
! - 10000 M = - 600 in..(é_.;-‘.

VARIATION OF LONGITUDINAL STRESS

WITH ANGLE OF

‘

TWIST . (SPECIMERT &2.)




GRAFH [5/19.

w
Bveli Eqn. 1L.%.20
o4 WaNaip N . Y
§, wOE
_'26 Vd x:«:iv/
wl M-:O/ e
% 12 \5“ ///
o / 7° Fqn.XL.5.17.
a_ / o7 vl
R e e A
-1:0_-0'8 -06 -04 -0-2 // ~—
/| o2 o4 o6 08 10 12 14
/ 6// e TwWIST AT ¢ (RADIAN)
amnva -8
’/
7 "2 |
/ -
//// // -6 M = -200 mfﬁf
4/ ' -00

FIG.1Z.12. TORQUE / ANGLE OF TWIST EQUILIBRIUM
PATHS - COMPARISON COF g£OLUTIONS

FOR ONE AWND TWO TERMS OF SINK

AND COSINE SERIES (SPECIMEN A.1.)




GRAFH [3 /20.

=
&-l:i
&
S
<!
iy
—— 6@ i
K
?f 40 YQ/L=O// |
P )/ Eqn.a.3.25
Yoo . z/
f}@;_&:@*@ 7
-0 =08 ~-06 04 -0-2 /%; T @\Q\S [TWLST AT ¢
71 o2 04 06 08 N_ 12 ~ (RADIAN)
/Qf -0 4-&\ 14
A7 e “Eqn L3 25 /}\ \
. -G
/’ / €0 M = - 600 ia fBf.
-
// &0
/ |
/ 400 —
/ |
4 _ 20 ——

TORQUE [ ANGLE OF TWIST EQUILIBRIUM PATHS

- COMPARISON OF SOLUTIONS FOR ONE AND

TWO . TERMS OF SINE AND COSINE SERIES
‘ . (sPmciMEN C2.)




GRAPH [% /21,

&
':‘ Eqn.IL.%.20
g (6C AND K TERMS ONLY)
: U 40— 5
2! M=0 4 2
< G X‘ ! / )
{ 2 7 7 //QA
g 50 e /&__Eqn. 1IL.%.20.
0 /S 7 7 (st rERMS)
X / A .
i 10 - —J
r % //Q
~0:8 -0:6 -04 -02 |/ >
7// 02 04 o6 08 10 12 14
SV TWIST AT ¢ (RADIAN)
0 .
T/
I/c{ "/ '20 I~
4 /
© .
// // =20 M= - 400 in. [ﬁj‘".
/
/ "4‘0
-50 | ——+F

FIG.IZ.13.  TORQUE / ANGLE OF TWIST EQUILIBRIUM
PATHS ~ COMPARISON OF THEORETICAL
SOLUTIONS WITH AND WITHOUT
ALL ADDITIONAL EFFECTS.

(5PECIMEN A.%)




GRAPH/3 /22 |

— 80 |
Eqn. 1.3.25 o

"0 (AL TERMS) ——\J/
o . o -
= &0 /4/
g : //
o 50 f—20K ~Eqn. 1.3.25
- , / / (e axn K
< 40 @0 ‘ TERMS ONLY)
M- &

2-0 / /4

Py

#

TWIST AT }g (RADIAN)
4 06 08 10 {2 |4

-0 =0-b =04 -0

~

-10

\}\ \
(o
™~
o

M = — 2001 [bf

N
e

ol
&

TORQUE /ANGLE ~OF TWIST EQUILIBRIUM
PATHS ~ COMPARISON OF THEORETICAL
SOLUTIONS WITH -AND . WITHOUT ALL

ADDITIONAL  EFFECTS (SPECIMEN A.3)




TorqQUE (in.[6f)

o
W

[G@APH/ %5/23. \

e 7

A
28 - 57

4GC 8E S ATS: /
T B + 5 (Ke RIS )“’\v;/
24 o,-/
N a  AGC
O/ \\ T = 7":1_%—130
- o/
y
16 7
@ 7
1‘2 /
4 /"
O4- 08 1.2 -6 2-0 2-4

FNQQ-EZ'Q 14‘-

ANGLE OF TWIST (RADIAN)

SPECIMEN A2 (BRASS)

TORCUE [ AMNGLE OF TWIST

EQUILIBRIUM  FATHS AT MID -~ SFaW

SECTION  FOR APPLIEZD TOROUE OWNLY




@ DIsc PIN

GRAPH/B/24.

O AREW CENTROID PATH FOR
e C’EN‘TRQIE CERTRE OF “PWwWisT 27
INITIAL APEX BOSITION
: . —f
Sl
e /3
/. _© @@@@\5//(,6;= 04 RADIAN
O Y |
RSN o - e .
558 N . o4 0B (in9)
® € i
% INITIAL APEX FOSITION
@ @
o2
o Ol
& 0}
@o
8] ® O]
@ | 08
@ © OI
® ©
e | {2
Pe O
60
"' {6
@
Sl o
2:0
@
A
— &)
=)
N
2.8 @

SEECIMEN A2 (BRASS)

FIG.IZ.16. DISC FIN AND ANGLE APEX
U AND CENTROTD RATH AT MID-

SPAN FOR APPLIED TORQUE ONLY




GRAPH /4 /1.

oy
[
9.8 ~
. @ DISC PIN o
O APEXR Q.
S
O CENTROID
O
238
D
1.6 S
o ©
S
12 @)
S
~ © © o
D a8 OO Oe
@ QO o
o ©
o9 ° e
v, . r-\o PR
L O-4 A/ é}/
@ (C)D S HORIZONTAL AXIS XX
Q%a | 9 & BEFORE L.OADING.
$‘i*2 0-8 04 /{ 04 cg_@\\% 12 {6 @Gn)
INITIAL. APEX | \
FOSITION
i

SPECIMEN A1

" PATHS FOLLOWED BY DISC PIN AND ANGLE

APEX  AND QENTROID DURINMG WEST 99 FAILURE




GRAPH[4 /2,

g :
@ DIsC PIN 2t |
O APEX O o)
O CENTROD 2:0
. 5 o
. 16 ©
O
S
&) O
1.2 &
O o
© o | o
O S
O ﬁés O e
@ O o
& S
o 04 ee
o® © HoRIZONTAL ax
GB LY A\IS Xx
o) © / BEFCORE LOADING
o, . , Y
2 . |08 oa 04~ 08 2 ()
INITIAL ABEX
PO gﬁ—me
I

SPECIMEN B2.

FIG.IZ. (8., PATHE FOLLOWED BY DISC RPIN AND
ANGLE APEX AND CENTROID DURING

TEST 7TO FAILURE,




GRAPH /4/5.

® DISC PIN 1.&
O APEX
. _ . 5
] CENTR’OIZD 142
. * e
o
o
09 ©) &)
: . OO @@
O =
ol & ©
@ | CS) é‘g
r(‘a) §i~=§SE’QIZGNTAL AXE KR
\‘.J)
) 8 BEFORE L.OADING
o4 &1 (i)
0-.{2_ ) 038 Ty ‘i'e)
IWNITIAL APEY
POSITION
i
! 1

SPECIMEN  Ci.

PATHS TFOLLOWED BY DIsC PIN AND
ANGLE APRPEXK AND CENTROID DURING

TEST  TO TAILURE




J

60)

(in. {f

MOMENT

BENDING

BENDING MoMERT (i fB])

@F?.Apﬁ/ﬁr/‘}' .

tlvs] |
l 0}
o O
: O
6 O] P
0
O
OO
©O)
apo—&
OO
o
200-C
O]
©)
. HORIZON TAL,
02 0 -4, 56 ¢85 DEFLECTICON (i)
: o ©
805 59~
o O
OO
600 OO
©)
o
13
4003
©
2001
O
L0
ANGLE| OF
02 O 06 08 TWIST (RADIAN)
SPECIMEN A1

APPROXIMIATE RECTANGULAR HYPERBOLIC
RELATIONSHIPE ML JH AND ML IB.




BENDING MoMenT (in.f6f)

BENDING MOME

vt (in. 065)

B

ol ©
o
2000 o
O (O
o
o%
o
150 o
0
4000
500
>
O -4 o9 12 1-6
©
o o
2000 b o
o ©
o
o
1500 ~0
o
o
1000
o
500
o2 Q-4 06 08

EPRCIMEN B.2.

HORIZONTAL
DEFLECTION (i)

ANGLE: OF
TWIST (RADIAN)

FIG.TZ.19. APPROXIMATE RECTANGULAR HYPERBOLIC
RELATIONSHIPE MG dH AMD ML § B




GRAPH/4/6.

5000
O
o o
4000 o2
O
" o
& o
cl P
& TS
g o
Z |
S 000t
9 - |o
2,
. L
& 1000
a ©)
i
HORIZONTAL
Q-2 04 0'6 = 08 DEFLECTION (in)
O
| o
O
4000 5
& °
= o}
3000
k- ©
%Z o)
<
o 2000 ©
S O
O
)
k
% 1000 |2
;‘% 0
I
*ﬂ ANGLE OF

©-1 02 0-% 04 TWIST (RADIAN)
SEECIMEN C.1.

APPROXIMATE RECTANGULAR HYPERBOLIC

RELATIONSHIPS MK JIH amp MK 8.




GRAPH/4/7.

’ e

0¢ 7

7 (in)

FLECTIO

e 04 //65
wid
A ’d
2 /
=
z O T
S
&4 HORIZOWNTAL DEFLECTION
% BENDING MOMERNT
|
OC002  &0004 00006 GEO08 0001 (fﬁf"f)
08
=
<
t— @] X
: | 4
< 06 -9%
S
b= / -
R
‘:2’
04 -
fz, / ‘
S
2 Q/Q '
1o -
& .
<¢ o ANGLE OF TWIST
BENDING MOMENT

00002  0-0004 00006 00008 o-001 (i l(6F)
SPECIMEN  Af{

SOUTHWELL INVERSE PRPLOTS
IrLIH/ M aRD LB/ M.




5 (in)

T
X

9

I

TWIST (RAE IA

Vi

ANGLE ©

HORIZONZAL DEFLECT

GRAPH/4/8.

(557)

{0 o
0'8 /@/
//
O-4 /
0-2
o 0/® HORIZON TAL DEFLECTION
e / BENDING MOMENT
; ©-0001 ©-0002. ©-000%  3-0004
o)
68
o/
i _
06 9///
04 '
. ®
Of-‘z l/éd
£2 .
/g ANGLE OF TWIST
o) BENDIRG MOMENT
oco0f 0CCOZ  G-O003 ocoss (i 1)
SPECIMERN B9, '
FIG.IZ. 20. SOUTHWELL INVERSE PLOTS

dus. fH/M AND S8 KB M.




GRAPH/4/9.

08

Td\ A

5 Vs

.

= 06

-

) /

5

. e

g O-4 /?j/
0 : ol

Eo 2

I

L 0 7

S . R

= /Q/J : HORIZONTAL DEFLECTION
g _0064,9 ‘ BENDING MO EAEI\:T

000004 ©-00008  0-00012 (657)
v O }

o

= .

< 03 ‘

B p/

- a

0N

§ 02 /o

M o/é

[ e

Q /

w ARGLE OF TWIST
[

3 o | BENDING MOMENT

0-00002  0:0000% 000006  0-00008 (g
SPECIMEN ¢.1

SOUTHWELL INVERSE PLOTS.

SHC Sr/ma AND &5 £ JB/ M.




GRAPH / 4 /10.

.9 |
O APEX
"
o 5 CRNTROID
AL o SERE
i o
Q
—
B |
O 08 ‘ /
it
i /
I /
o 1% 2
= 06 /}2 ,@/
- y
i :
5 | d
N O A2 O
H
B /@/ 6@/
5]
0]

i v

" & ]

o o5 /e@’
. 0/6 ~ HORIZONTAL DEFLECTION
O}Y e BENDING MOMENT
(SH APEX 0% @ /@ : | (fﬁf"IE
SCALE o 30002  G0004 6-0006 00008 o001 0-0012

bW ceNTROY | , | |
SCALE O 00002 0-0004  0-0006  0-0008  0-00f
|

SPECIMIER A1

SOUTHWELL INVERSE PLOTS TFOR SH &£
o

SH/M USING SH-APEX AND &H - CENTROID




. GRAPH/4 /1. [

1-4
o

1.2 ; -

O APEX V
-
& | *
© ceN 119
T CENTROID . |
0 e
(] :
[% 08 ‘ l
A /” ﬁ/
J | /O/
& 06— - o
O -
ﬁ /
5 |
S 04 ‘ ’
<)
/ /| ’
0-2 o) P
[©) : 1 HORIZONTAL DEFLECTION
9 C_}Gﬁ BENDING MOMENT
cg'H AFPEXR CSD ) : . ¢ fﬁ} _

- 1
SCALE o© ©-C001  ©0-0002 G-000%  0-0004  ©-0005  ©-0006

§H CENTROID { | | ) |
SECALE O ©-0001 06002 06003  0.0004  0-0005

SPECIMEN B2
FIG.IZ.21. SOUTHRWELL INVERESE PLOTS FOR
SreC Su/M USING  SH- ARPEX  AND

$H - CERTROID.




GRAPH/4/12.

O APEY

6 CENTROID

e
R

c

N
AN
"

N
\

o
2
St..ﬁ.

HORIZONTAL. DEFLECTION (in)

HORIZONTAL DEFLECTION
BENDING MOMENT

o/

©
N
BANG,

S)
OH APEX OOOO © R ()
sScaLE O 000002 O-000D4  © 00005  (G-06008  ©0-000i0  ©-00012
dH GENTROD_ : ; — :
STALE - 0.-00002 0-0008C4 000006 ©-00008

SPECIMERN (1.

SOUTHWELL INVERSE PLOTS FoRrR SHK& 6H/M

USING SH - APEX AND SH—CENTROID.




21—'-2 L

' APPENDIX VIIT.6

Suggested Safe Load Table for Thin Walled Channel Sections

LOADS GIVEN IN 1bf/ft
SECTION SPANS IN FEET

h in d in 3 i 5 6 8 10 12 14

10.0 x 2.5
t = 0.160 2673 1574 1067 793 523 362 273 216
0.128 2083 1207 802 582 365 267 200 156

0.104 1665 955 627 448 272 191 147 117

10.0 x 2.0

t = 0,128 1821 1076 732 546 366 276 208 165
0.104 Tyl 838 559 108 259 191 155 122
0.080 1087 623 LO09 292 175 124 96 79

9.0 x 2.5 »

t = 0.160 2367 1406 963 724 450 315 239 191
0.128 1836 1070 716 524 335 232 173 137
0,104 1463 842 555 400 246 175 131 102

8.0 x 2.0 ‘
t = 0.128 1415 853 596 K58 290 205 156 125
0.104 1109 65 Ll 330 220 153 115 91

0.080 828 479 318 230 144 105 80 62
7.0 x 2.0
t = 0,128 1223 750 526 386 243 174 134 107
0.104 951 567 390 295 183 128 98 78
0.080 705 L11 275 201 129 89 67 53
6.0 x 3.0

t = 0.160 1489 871 584 W27 269 193 149 121
0.128 1176 679 LL9 323 198 139 106 85

6.0 x 2.0

t = 0.128 1041 621 L23 314 202 146 113 91
0.104 789 461 308 224 ° 140 99 75 60
0.080 587 346 23y 172 105 73 55 Ll
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LOADS GIVEN IN 1bf/ft

SECTION SPANS IN FEET
hin d in 3 L 5 6 3 10 12 10
6.0 x 1.5

t = 0.10L 71h L61 325 243 157 113 87 69
0.080 506 310 220 171 107 77 59 L7
0.064 387 230 158 119 79 55 L2 33

5.0 x 3.0

t = 0.160 1145 679 L62 343 222 162 127 103

0.128 898 52N 350 255 160 115 89 72
5.0 x 2.5

t = 0.160 1083 651 553 341 225 166 129 104
0.128 8n2 498 338 250 160 117 91 n
0.104 672 392 261 190 119 85 65 53

5.0 x 1.5 :

t = 0.104 598 365 255 193 127 92 71 56
0.080 5418 263 179 133 85 62 L8 38
0.064 315 191 134 99 62 L 34 27

5.0 x H.O

t = 0.080 391 268 189 143 93 67 50 39
0.064 2773 183 138 104 67 1.8 37 29
0.0o4u8 184 115 83 67 Ll 32 24 19

4.0 x 2.5

t = 0.128 617 3713 258 195 129 96 . 75 61
- 0.104 L87 289 196 145 9y 69 54 Ll
4.0 x 2.0 '

t = 0.128 581 362 257 197 133 08 76 60
0.104 456 276 191 145 96 71 55 L5
0.080 338 200 135 100 6.4 46 36 29

L.O x 1.5 .

t = 0.104 L35 273 195 150 100 73 55 Ly

0.080 316 192 133 101 67 L9 38 30
. _ 0.06% 24L 145 99 73 L7 34 R7 R2
L.O x 1.0 '

t = 0.080 311 198 1432 109 71 - 50 37 29

0.06L 229 145 102 78 51 37 28 22

0.048 147 96 69 51 33 2L 19 15
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LOADS GIVEN IN 1bf/ft

SECTION SPANS IN FEET
h in d in 3 L 5 6 8 10 12 1L
3.0 x 2.0

t = 0.104 313 197 1.1 109 75 55 L3 3L

0.080 227 138 96 - 73 L9 36 29 23
3.0 = 1.5 ' )

t = 0.104 303 198 105 113. 76 51 L1 32
0.080 214 134 96 75 51 37 29 23
0.06L 162 99 69 53 35 26 20 16

2.0 x 1.5

t = 0.080 136 91 68 593 36 26 19 15

0.06L4 99 61 L7 37 25 19 14 11
2.0 x 1.0

t = 0.080 139 ol 68 52 32 22 16 12
0.06L 99 66 19 38 25 17 12 9
0.048 6l L2 31 21 16 12 9 7

1.5 x 1.0 . R ,

t = 0.064 76 52 38 29 18 12 9 7

0.048 1.8 33 2L 19 13 9 7 5
4.0 x 4.0

t = 0,160 958 565 383 283 182 133 105 86

0.128 7573 1,38 291 211 152 oL 773 59
3.5 x 3.5 . .

t = 0.160 762 162 321 243 162 121 - 96 79

0.128 592 350 238 177 114 8l 66 55
3.0 x 3.0

t = 0.160 603 380 274 213 147 110 86 69
0.128 L58 280 197 150 102 76 61 L9
0.104 359 215 147 110 73 5k L3 35

2.5 x 2.5

t = 0,160 481 320 238 188 128 93 70 55
0.128 3573 227 166 131 90 67 52 L1
0.104 269 168 120 93 T L8 38 31

0.080 196 118 82 62 L2 31 25 20




LOADS GIVEN IN 1bf/ft

SECTION
h in d in

2.0 x 2.0
t = . 160
.128
104

.080
064

loRoNoNeRe

1.5 x 1.5
t = 0,128
0.104
0.080
0.06L4
0.048

1.0 x 1.0
t = 0.080
0.064
0.048

395
279
205
141
106

231
162
107
75
L9

77
56

35

270
190
136
91
66

156
111
73
51
32

L9
37
2L

SPANS IN FEET

5

200
T2
102

66

L7

112
81
55
38
Rl

3l
26
18

6

154
112
81
52
36

83
62
L3
30
19

25
20

14

8

99
75

5%

36
25

51
39
28
21

13

10

68
53
1,0
27
19

3k
26

20
15
10

 ONOOND

12

49

30
21

15

2L
19
15
11

]

R ]

4

37
30
L
17
12

18

T4
11

6

W

2L45.
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