
 
 
 
 
 
 
 

https://theses.gla.ac.uk/ 
 
 
 

 

Theses Digitisation: 

https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/ 

This is a digitised version of the original print thesis. 

 

 
 
 
 
 
 
 

Copyright and moral rights for this work are retained by the author 
 

A copy can be downloaded for personal non-commercial research or study, 

without prior permission or charge 
 

This work cannot be reproduced or quoted extensively from without first 

obtaining permission in writing from the author 
 

The content must not be changed in any way or sold commercially in any 

format or medium without the formal permission of the author 
 

When referring to this work, full bibliographic details including the author, 

title, awarding institution and date of the thesis must be given 
 
 
 
 
 
 
 
 
 
 
 
 

 
Enlighten: Theses 

https://theses.gla.ac.uk/ 

research-enlighten@glasgow.ac.uk 

http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
https://theses.gla.ac.uk/
mailto:research-enlighten@glasgow.ac.uk


PETROCHEMISTRY AND ENGINEERING PROPERTIES 

OF THE

HELMSDALE GRANITE INTRUSIONS

By

HOSSEIN SALMANPOUR RAHMDEL

Thesis submitted in fulfilment of the degree of
in the Faculty of Science, 

Department of Geology, University of Glasgow.

AUGUST 1987



ProQuest Number: 10647943

All rights reserved

INFORMATION TO ALL USERS 
The qua lity  of this reproduction  is d e p e n d e n t upon the qua lity  of the copy subm itted.

In the unlikely e ve n t that the au tho r did not send a co m p le te  m anuscrip t 
and there are missing pages, these will be no ted . Also, if m ateria l had to be rem oved,

a no te  will ind ica te  the de le tion .

uesL

ProQuest 10647943

Published by ProQuest LLO (2017). C opyrigh t of the Dissertation is held by the Author.

All rights reserved.
This work is protected aga inst unauthorized copying under Title 17, United States C o de

M icroform  Edition © ProQuest LLO.

ProQuest LLO.
789 East Eisenhower Parkway 

P.Q. Box 1346 
Ann Arbor, Ml 4 81 06 - 1346



I Wuok/ô
% 0 \ 5  

C o w  2

"^ASGOW 
UNIVERSITY 
LIBRARY

*



To my wife Flora and i%r children 
Makan and Rosa, for their love, 
devotion and encouragement, without 
which I could not have completed 
this thesis.



-1-

MEMORANDUM

The material presented in this thesis summarizes the 

results of the research work undertaken in the Department of 

Geology, University of Glasgow, under the supervision of 

Dr C,D, Gribble,

The results and ideas presented in this thesis are the 

the result of independent work by the author and any previously 

published or unpublished results of other workers are fully 

acknowledged in the text.



ii-

ABSTRACT

The study of the petrochemistry of the Helmsdale granite 
intrusions, NE Scotland, reveals that the Helmsdale granite 
consists of two granitic intrusions; an outer, early, 
coarser-grained porphyritic pink granite (CGP) and the inner, 
finer-grained type (FG). Major and trace elements show 
dissimilarities between the FG and the CGP types, with the former 
having higher iron, MgO and TiO^» and lower silica contents. 
Plagioclase and biotite removal appear to be the minerals changing 
the magma composition towards the later differentiated CGP type.

Both granites were subjected to weathering and hydrothermal 
alteration, although the latter is commonly confined to the zones 
of intense high K alteration within the FG type (inner intrusion). 
Ratios such as Na^O/K^O, Al^O^/CSiO^+Al^O^), 
(Na20+K20+Ca0+Mg0 )/Al20^, FCgOg/FeO and microfracture 
index (FI) have been found to be particularly useful as indices of 
physical and chemical weathering of the granites.

Various British standard tests are employed to assess the 
suitability of the Helmsdale granite aggregates for engineering 
purposes including roadstone and concrete making. The CGP 
samples generally have lower strength and slightly better AAV, PSV 
values than the FG samples type.

Apart from badly weathered materials (such as in Eldrable 
Burn) the Helmsdale granites appear to have the same strength as 
the Peterhead granite and are slightly below the rest of the 
granites of Scotland. The AAV values of 3-6% obtained show an 
acceptable level for aggregate to be used for most highway and 
trunk road running surfaces whereas the PSV results, on the other 
hand, suggest that aggregate from the Helmsdale granites can be 
used for site C with satisfactory performances. Aggregates from 
the Helmsdale granites are also suitable for most concrete 
mixtures and satisfactory performances will be achieved except for 
the purposes of heavy duty concrete floors.
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CHAPTER ONE 

INTRODUCTION

1.1, Objective and tasks

Investigation of the mechanical properties of aggregate has 

occupied many researchers for some time now. Only in recent years, 

some of the in-service results have shown that some slightly altered 

aggregates which passed all standard mechanical tests at the time of 

their use in construction failed well before their expected life span, 

as the materials deteriorated badly through further chemical and 

mineralogical alteration. Such observations suggest that current 

methods of evaluating some aggregates for * engineering purposes (especially 

for pavement construction) may not always give direct information on the 

future mineralogical, textural and chemical alterations that are likely 

to occur as a result of special conditions. Consequently, further 

attempts were made by a few researchers to include geochemical analyses 

in their assessment of aggregate properties for a better understanding 

of the possible future behaviour of altered rock and fresh aggregate 

for construction purposes.

The present study is another attempt in that direction to follow 

the existing methods but using a slightly different approach.

The Helmsdale granite in North Scotland, which is a late 

Caledonian granite (Newer granite), was chosen for this study. It

consists of two grain size varieties: the outer part is a coarser- 

grained porphyritic granite (1 to 4mm long) and the inner part is finer 

grained (about 1mm). Both granites have been subjected to the 

same weathering and hydrothermal alteration processes, although

i
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the hydrothermal effects are confined to the zones of Intense 

alteration mainly within the finer grained type. This is a ' 

situation where all factors such as weathering, hydrothermal 

alteration, different grain sizes occur together within one magma source, 

The main objective of this study is to assemble various 

geochemical, petrographical and engineering properties of aggregates 

from each granite type of the Helmsdale intrusions so that correlation 

can be made between the results obtained to satisfy the following 

points.

1), The effects of the geochemical changes (due to 

either the weathering processes or original variation) on 

the aggregate engineering behaviour,

2), identification of criteria which could be used to 

anticipate the likely behaviour of aggregate while in 

service,

3), assessment of the suitability of the Helmsdale 

granites as aggregate for engineering purposes, and

4). provision of enough information for further research 

for future workers,

1.2, Previous research and project development on the study of 

fresh and weathered rocks as suitable aggregate.

Over the last two decades the production of aggregates for 

construction has been the largest of the extractive industries in 

Britain, Although much of the aggregate produced goes into the 

manufacture of concrete, which is generally considered as the 

premier building and civil engineering construction material, the 

road industry also uses a substantial amount of aggregate to build
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highway and motorway networks to accommodate the continuously 

increasing traffic flows in the United Kingdom, Therefore, the 

quality of aggregate plays an important factor upon its selection 

for particular engineering purposes.

In the United Kingdom the selection of aggregate is usually 

based on several factors among which the result of mechanical 

property tests is the most important, A series of tests were 

outlined, modified and eventually standardized by different research 

and Governmental bodies which all defined aggregate quality. The 

available literature shows that the engineering behaviour of an 

aggregate depends mainly on the genesis and degree of weathering of 

bedrock. Weinert (1958) was probably one of the first to demonstrate 

the significance of weathering effects upon the physical properties 

of aggregate. Based on the study of igneous rocks for road foundation 

purposes in South Africa, Weinert (1964) showed that fresh aggregate 

has substantially higher strength (higher 10% fines value) than a 

badly disintegrated one. Dhir ^  (1971) and Ramsay e_t (1974)

point out that the strength of aggregate is related directly to the 

petrology and inherent fabric characteristics of the rock. Sub­

sequently they showed that existing strength tests (AIV and ACV) can be 

modified to measure new indices that they called "aggregate impact 

and crushing value residue". These values have been shown to be 

consistent and more sensitive indicators of the influence of the shape 

on the fresh rock aggregate strength than the standard test procedures. 

Hartley (1968, 1974) also showed that petrography has a considerable 

influence on the mechanical properties of aggregate and its durability 

while in service. He concluded that the main factors causing a 

reduction in the strength of igneous rocks are an increase in porosity,
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grain size and proportion of soft minerals due to chemical alteration 

of primary rock forming minerals. Hosking (1969) used the term 

"durability" for surfacing aggregates, followed by more work by Hartley 

(1974) who used this term for roadstone in the sense of "long lasting", 

by which they include properties such as resistance to wear, weathering 

and to any other factor that might impare long life in a road surface, 

f ( ^-^Nevertheless, most of the valuable information about weathering
Lu c

and its effect on aggregate physical properties and method of quarrying 

in Britain comes from extensive research studies carried out by a 

number of workers in south west England and, to a lesser extent, in the 

north east of Scotland, where the majority of rock quarried shows some 

significant amount of weathering which the subsequent engineering test 

revealed clearly the loss of physical performance with the increasing 

of weathering grades (Ramsay 1965; Ramsay et 1974; Dhir et al.1971 ; 

Fookes jet £l. 1971; Dearman 1974a, 1974b, 1976; Dearman e_t 1976; 

Irfan 1977; Irfan and Dearman 1978). Only recently an attempt was 

made to assess the aggregate properties of weathered granite based on 

criteria obtained from a combination of geochemistry and aggregate 

physical properties analyses (Moore 1979; Moore and Gribble 1980),

They concluded that, based on analyses of certain oxides like Na^O and 

C a&a n d  the Fe^O^/FeO ratio, the engineering properties of aggregate 

containing weathered and fresh material could be estimated without 

the necessity of actually carrying out the engineering tests.

Results of field and laboratory tests have also shown that in 

some cases the existing standard aggregate tests do not give 

information on the mineralogical or textural alterations that may 

occur in an aggregate used for road, pavement or concrete. Hence 

any prediction of the durability of already decomposed rock
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aggregates used for engineering purposes should take into account 

not only the state of weathering of the material at the time of 

selection, but the mode of construction, the environmental conditions 

and any potential alteration that the material may undergo while in 

service.

Although the problem of finding such criteria remains basically 

unsolved, there are some methods of study which may reveal much 

information useful to the engineer towards possible anticipation of 

the future behaviour of aggregate while in service. These include 

visual inspection supported by pétrographie studies based on micro­

scopic slides (Irfan and Dearman 1978) or X-ray diffraction (XRD); 

differential thermal analyses may also be useful particularly when the 

presence of deleterious minerals (clay minerals) is suspected 

(Gidigasu 1974).

The following generalizations, however, appear valid on the basis 

of previous studies of weathered rock for engineering purposes:

1). Weathering is a process controlled by several factors: a) the

environmental condition which itself is dominated by climate and topo­

graphy of the area, b) the properties of the rock material, including 

chemical composition, fabric, texture and permeability, and c) the 

properties of the rock mass, especially the homogeneity of the rock 

mass and discontinuity patterns.

2), Several weathering classifications for engineering purposes 

are in existence. a) Those qualitative classifications based on the 

degree of decomposition which can be determined by visual inspection 

together with the results of a number of relatively simple index 

tests such as the degree of the breakdown of the constituent minerals, 

hardness, and their strength. (Moye 1955; Little 1969; Anon 1970 and



1972; Dearman 1976). This type of classification has many 

limitations making it an unreliable method for predicting the 

mechanical properties and associated engineering behaviour of rocks,

b) The second group of classification is a quantitative one based on 

variation in physical properties related to the degree of weathering, 

using cheap and simple field and laboratory test techniques (Hamrol 

1961; Iliev 1967; Broch and Frankline 1972). This type of 

classification has its limitations too, in that it is relative, 

depending on a knowledge of the physical properties of the fresh 

substance. c) And finally, an alternative approach to quantitative 

classification has been attempted based on standard pétrographie 

techniques to evaluate the successive stages in the mineralogical and 

textural changes brought about by weathering processes (Mielen 1961; 

Weinert 1964, 1968; Dixon 1969; Merriam e_t 1970; Oradera et al. 

1978; Irfan and Dearman 1978).

All existing classifications of weathered rocks for engineering 

purposes consist of five principal divisions and different numbers 

of subdivisions. In Table 1,1 one of such classifications is shown 

(from Irfan and Dearman 1978).

1.3. Statement of problems

Problems related to this study were as follows:

1), In the geochemistry part of the study, one of the main problems 

was to find suitable sampling techniques which would provide sufficient 

fresh samples for geochemical study, since the greater part of the area 

under investigation is covered by vegetation and deep drift except for 

those outcrops along the relatively closely spaced river systems. 

Samples were also collected from two quarry faces and road cuts. The
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collection of relatively fresh and unweathered samples was 

particularly important f o r  . geochemical study in order to 

distinguish the original variation from those due to subsequent 

chemical weathering, since interpretation of geochemical analyses 

of the undetected altered samples could be misleading,

2. In the engineering part of the study the major problem was 

during aggregate test procedure, since some of the samples were 

badly weathered and the results obtained from some standard tests 

were misleading. Therefore, some of the test procedures were 

either modified slightly where it was possible (e.g. in the case of 

AIV test), or an alternative test was chosen instead. In the latter 

case, the aggregate crushing value test results (ACV) proved not to 

be sensitive enough for more weathered samples, hence a 10% fines 

value test was used instead which appeared to be more reliable for 

both weak and strong aggregates.
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CHAPTER TWO 

HISTORICAL GEOLOGY

2.I The Caledonian Granites of the British Isles and
their Petrography

The term "Caledonian" is used to cover the events which took 

place from jc. 700Ma to 400Ma ago as a result of subduction and 

plate collision associated with the closure of the lapetus Ocean 

during early Palaeozoic time (Dewey 1969). The Caledonian events 

in Britain can be divided into five distinct struetural-stratigraphic 

provinces (Figure 2.1).

H.H, Read, in his classic paper of 1961, proposed two fold- 

belts during the British Caledonides; namely the pre-Silurian 

metamorphic belt, "the early Caledonides" and the late-Silurian 

non-metamorphic belt "the late Caledonides".

A number of granitic and dioritic intrusions were emplaced 

within the Caledonian foldbelt, varying in size from small stocks and 

sheet-like bodies to large batholiths. On the basis of field 

petrography and structural evidence, Read (1961) classified the 

British Caledonian intrusions into two temporal groups:-

A, Deformed and metamorphosed (the Older Granites and 

Migmatites).

B. Undeformed and post metamorphosed (the Newer 

Granites).

Among the Newer Granites Read recognised two different modes 

of emplacement, namely:



FIGURE 2.1: Sketch map of Scotland showing:

a) The five physiographic/structural stratigraphie 
provinces of the Caledonian orogenic belt in 
Britain

b) The location and distribution of the Caledonian 
grani tes

c) Major tectonic features in northern England and 
Scotland

Intrusions are numbered as follows:

1 . Helmsdale 16. Cairngorm

2 . Lairg 17. Glen Cairn and Lochnagar

3. Migdale 18. Hill of Fare

4. Fearn 19. Mt. Battock

5. Glenelg-Ratagain 20. Corrieyairack

6 , Cluanie 21. Ben Nevis

7. Strontian 22. Strath Ossian

8 . Ross of Mull 23. Ballachulish

9. Strichen 24. Moor of Rannoch

10. Peterhead 25. Etive

11. Ardclach 26. Glen Fyne

12. Ben Rinnes 27. Distinkhorn

13. Moy 28. Loch Doon

14. Foyers 29. Cairnsmore of Fleet

15. Monadhliath 30. Criffel
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FIGURE 2.1. Sketch map of Scotland



-11-

B.l, Forceful (or active) granites, characterized by

marginal deformation of country rocks and formation 

of contact migmatites.

B.2, Permitted (or passive) granites, which were em­

placed by mechanical processes such as ring faults

or cauldron subsidence. These granites are younger 

than the forceful granites.

Later radiometric age determinations however, provided in­

formation which disagreed in part with Read's classification. In 

particular, it was found not to be possible to distinguish age 

differences between B^ and B^ granites (Brown £t 1968).

In studies of bathollth emplacement, Phillips ^  (1976)

and Pitcher (1978, 1979) demonstrated that Caledonian events in 

Britain were strongly influenced by the closure of the lapetus Ocean.

This hypothesis was supported by the researches of Brown (1979),

John stone et al. (1979), Simpson et. ajL. (1979), Watson and Plant (1979), 

who considered that a major change in granite magmatism took place 

between the B̂  ̂ and B^ episodes (that is, between Newer forceful and 

Newer permitted types) which correlated with the final closure of the 

lapetus Ocean. At that time, during subsequent crustal relaxation, 

the final Caledonian granite magmas were emplaced.

Brown and Locke (1979), divided the British Caledonian intrusions 

into two distinct age divisions, based on structural and petrochemical 

evidence, each of which is further subdivided spatially according to 

their position in relation to the ENE-WSW lapetus Ocean suture. The 

main divisions are as follows:
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1), An Older, pre-Silurian group comprising Read's Older granites 

and also his Newer 'forceful' granites. They show low con­

centration of incompatible elements, high Sr contents, high 

K/Rb ratios; low volume and low mobility magmas intruded 

under compressive conditions, consisting of migmatitic diorites 

and tonalités.

2). A Younger, Siluro-Devonian group comprising Read's Newer 

'permitted' granites, with variable, and , in some cases, 

extremely incompatible element enrichments, including low K/Rb 

ratios; large intrusive volumes and mobile magmas intruded into 

a tensional post-tectonic regime following the lapetus Ocean 

closure, consisting of granodiorites and adamellites.

The spatial subdivisions of groups 1). and 2). above are based on 

different isotopic and geophysical characteristics between intrusions 

emplaced on each side of the suture, and are given below:

1 - Northwest to Southwest.

The northwestern granites (IN) have small gravity and magmatic 

anomalies, high initial . ^^Sr/^^Sr ratios and inherited zircons.

They were probably produced by a partial fusion process involving 

Proterozoic continental crust and mantle-derived melts. The south­

western granites (IS) have similar geophysical properties but lack 

the isotopic characteristics of crustal melting.

2 - Northwest to Southwest.

The group 2 granites, are generally separated from those of 

group 1 by low initial ^^Sr/^^Sr ratios, and large negative residual 

gravity and aeromagnetic anomalies. The northwestern granites (2N) 

have gravity anomaly values of -32mgal (Etive intrusion), whereas
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the southwestern granites (2S) have lower values of -28mgal (Weardale 

intrusion). The 2N group also shows higher values for the aeromagnetic

anomalies. This evidence suggests that magma genesis occurred in the

upper mantle, or crustal underplate, with the 2N granites, rising 

through Lewisian basement and the 25 group rising through crust devoid 

of such basement material.

More recent work by Pankhurst and Sutherland (1982), showed 

difficulties in separating the Newer granites and they produced a 

different classification by grouping these granites according to the 

time of emplacement as follows:

1). Early to mid Ordovician granites - emplaced in NE Scotland (e.g. 

Strichen, Longraanhill, Aberchirder, Kennethmont and Auchedly),

2). Late Ordovician and early Silurian granites (e.g. Garabal Hill, 

Ratagain, Strontian and Foyers complexes, Rogart, Ballachuilish. 

Cluanie, Helmsdale and Moor of Rannoch),

3), Granites emplaced in Lower Old Red Sandstone times or earlier, 

(e.g. the ring complex of Glen Coe, Etive and Ben Nevis).

Although the provenance of the British Caledonian granitoids is 

by no means clear, the results from the Lithospheric Seismic Profile 

of Britain (LISPB) project, (Baraford and Prodehl, 1977; Bamford et al? 

1978), and Harmon (1983) show that there is a distinct difference in 

upper crust composition on either side of the Highland Border Fault 

Zone (Fig. 2.2), North of the Highland Border granitoid magmas were 

emplaced into Moine rocks and Dalradian metasediments of greenschist 

or higher metamorphic grade overlying a subduction zone considered to 

dip northwards (Wright 1976; Phillips et 1976; Van Breemen and 

Bluck 1981). South of Border, however, the magmas were intruded
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FIGURE 2,2. Crustal cross-section through northern England and 
Scotland after Banford ^  ±1'" (1977) modified to 
indicate that the pre-Caledonian basement has not 
been identified south of the Highland Border 
Fracture Zone,



- 1 5 -

into weakly metamorphosed, immature, Lower Palaeozoic geosynclinal 

sediments overlying a subduction zone considered to dip southwards 

(Bott 1974; Phillips jal, 1976). The Midland Valley links these 

two regions.

2.2, Classification of the Caledonian granites based on 
geochronological results.

Over recent years, there has been growing interest in the use

of radiogenic and stable isotope systems in the study of Caledonian

magmatism,

Sr-isotopic data (Long 1964; Bell 1968; Pankhurst 1974;

Busrewil e^ 1975; Pankhurst and Pidgeon 1976) showed that the 

granites could be divided into 3 groups, as follows; (see also 

Table 1).

1. Pre-tectonic Older granites.

2. Syn-tectonic granites.

3. Post-tectonic granites which include:

a) Newer forceful granites and

b) Newer last granitoids.

From the Sr isotope data and results on Sr and 0 isotopic 

data (Halliday £t al̂ , 1979; Pankhurst 1979; Hamilton ^  1980;

Harmon and Halliday 1980; Clayburn 1981) the following points can be 

made:

1 . The pre-tectonic Older granites and the syn-tectonic 

granites have a wide range of both oxygen-isotope values, 

and Sr/Sr ratios which are all greater than 0,710,

2. All .the post-tectonic group have a large oxygen-isotope 

range, but whereas the Newer forceful granites have a large



- 1 6 -

Sr/Sr ratio range of from 0.704 to 0,718, the Newer 

last granitoids have a small Sr/Sr ratio range of from

0.705 to 0.707. This, together with the I-type 

character of the Newer last granitoids suggests that they 

were derived from a mantle or lower crustal source.

U-Pb zircon studies (Pankhurst and Pidgeon 1976; Pidgeon and 

Aftalion 1978; Halliday ^  ^1. 1979) also support the grouping 

described above.

The Older granites and the Newer Forceful granitoids north of

the Highland Border Fault Zone contain relict zircons in which the 
207 203Pb/ Pb and U-Pb ages of 1500Ma are greater than the emplacement 

ages of the granites (Pidgeon and Johnston 1974; Pidgeon and Aftalion 

1978). These earlier ages define a previous magmatic event during 

which the zircon originally crystallized. The presence of these 

'inherited' zircons in almost all granites north of the Highland 

Border Fault Zone, and the absence of such zircons from granites of 

the Southern Uplands and Northern England suggests that 1) the 

Highland granites were partly derived from partial melting either of 

ancient Archaean basement or of younger Proterozoic Upper crust; and

2) the Southern Uplands and Northern England granites were partly 

derived from the partial melting of Lower Palaeozoic sediments 

(Pidgeon and Aftalion 1978; Harmon 1983).

Pb-isotope analyses of feldspars from a limited number of the 

Caledonian granites (Blaxland ^  1979; Clayburn 1981) also sug­

gested a lower crustal component for some of the granites north of 

the Highland Border Fault Zone. Furthermore, lead from feldspar 

becomes increasingly radiogenic southwards, suggesting the presence 

of older basement to the north and its absence to the south
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(Blaxland eh Él.' 1979),
186  Oxygen and Sr isotopic data for Caledonian granites

18with a wide spread of ages and compositions show a fi 0 range of

from 3,9 to 14.4% and Sr/Sr ratios ranging from 0.7037 to 0.7196

(Table 2.1), Harmon (1983) concluded that there was no clear

distinction between S-type and I-type granitoids as was seen in the

Palaeozoic granites of Australia (O'Neil and Chappel 1977).

Plutons between 430 and 390Ma in age occurred south of the

Highland Border Fault Zone and have a restricted range both in 0-

and Sr-isotope values with 6 0 values varying from 10.2 to 11.5%

and ^^Sr/^^Sr ratios varying from 0.7052 to 0,7088. These isotopic

parameters increase as the compositions change from diorite to

granodiorite and finally peraluminous granite (that is, from

intermediate to acid). However granitoids occurring north of the

Highland Border Fault Zone exhibit a large variation in both age and
18isotopic composition, with no clear dependence of either 0 or 

^^Sr/^^Sr ratios on their chemical composition. According to Harmon 

(1983), the isotopic data show no significant geographical trends as 

was suggested by Brown and Hennesey (1978), and that such variations 

in the isotopic composition were independent of age and style of 

emplacement.
18 87 86Harmon (1983) also plotted 5 0 values ^gainst Sr/ Sr ratios

for 38 British Caledonian granites and 2 Lower Old Red Sandstone

granite boulder clasts for which both 0- and Sr-isotopic composition

were known (Fig. 2,3). Figure 2.3 shows that no simple correlation

between 0- and Sr-isotopic composition exists for the Caledonian

granitoids. Previously, Taylor and Silver (1978) had shown that such

correlation existed for the Peninsular Ranges batholith. However if
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No. A g c (M a ) 6'®0 (%o S M O W ) (^^Sr/^Sr);

^eo^raphtc province 
1. Northwest Highlands 7 400-555 6 .6 -1 4 .4 0 .7 0 4 8 -0 .7 1 0 0
2. G ram p ian  Highlands 32 391 -514 4 .1 -12 .1 0 .7 0 3 7 -0 .7 1 9 0

(a) Northeast Scotland 
17 404-480 7 .1 -12 .1 0 .7 0 5 9 -0 .7 1 8 0

(b) Centra l H ighlands 6 40 8 -5 1 4 8 .0 -1 1 .0 0 .70 6 2 -0 ,7 1 9 6
(c) Western H ighlands9 39 1 -4 3 9 4 .1 -9 .8 0 .703 7 -0 .7 0 7 9

3. M id la n d  V a lley  • 1 390 7.9 0.7043
4. Southern Uplands 3 392-408 7 .8 -1 1 .9 0 .7 042 -0 .7076
5. N orthern England 4 390 -459 3 .9 -1 1 .5 0 .706 1 -0 .7 0 8 8

By leclonjc style 
1. Prc-Tcctonic

(O ld er)  granitoids 3 > 4 8 0 6 .6 -1 1 .0 0 .7 100 -0 .7190
2. Syn-Tcctonic granito ids9 4 50 -480 9 .2 -12 .1 0 .71 0 6 -0 .7 1 9 6
3. Post-Tectonic granitoids

35 < 4 5 0 3 .9 -1 4 .4 0 .7 037 -0 .7184
N ewer Forceful
granitoids 28 390-439 7.3-14.4 0 .70 3 7 -0 .7 1 8 4
Newer Last
granitoids 7 390-415 3 .9 -11 .1 0 .7048 -0 .7069

TABLE 2,1; Ranges for and ( ’̂ ^ S r / ® ^ S r ) ratios in the
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FIGURE 2.3. Diagram of 0 versus ( Sr/ Sr). for 38 British 
Caledonian granitoids and 2 granite boulders showing 
the range of isotopic compositions for various 
possible source regions as well as the <$^§0 versus 

(o7Sr/86Sr)^ trend for the Peninsular Ranges Batholith 
observed by Taylor and Silver (1978), (After Harmon 
1983).
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more restricted geographical areas are examined (Figs 2,4, 2.5), 

important trends in 0- and Sr-isotopic data can be seen, and based on 

this Harmon (1983) was able to separate British Caledonian granites 

into 5 restricted geographical areas, information on some of which is 

given in more detail as follows;

1. Northwest Highlands (Table 2.1).

The Ratagan-Glenelg, Cluanie, Ross of Mull and Bonar Bridge

intrusions are similar to other post-tectonic granitoids north of the

Highland Border Fault Zone for which a primitive deep-seated source,

contaminated by upper crust at a late stage is inferred. The

Strontian Complex has a lower content and inherited zircons which

suggests a mantle-like source for the early tonalité and granodiorite,

followed by crustal assimilation and fractional crystallization to 
18 87produce the 5 0 and Sr-enriched biotite granite. The oldest

18Caledonian granite. Cairn Chuinneag, has 6 0 values of 6.6 to 9.1%,

an ^^Sr/^^Sr ratio of 0.710 and a strong 'inherited* zircon component

which indicate derivation from older Proterozoic crust. The Helmsdale

granite has extremely high values of 11,6 to 14.4%, which are the

highest values found in the Caledonian granites. These values may be
18interpreted as locally enriched ^ 0 values due to the alteration of

the intrusion during hydrothermal U-Pb-Ba-F mineralization.

2. Northeast Scotland (Fig. 2.4a; 2a in Table 2.1),

The Oxygen and Sr-isotopic compositions of the granites of NE 

Scotland are similar to those of the Central Highlands. The Hill of 

Fare Complex, the only Newer Last granitoid in this area is similar to 

other Newer last granitoids (Etive, Cairngorm and Lochnagar) suggest­

ing primary derivation from a deep-seated source. However, a minor



FIGURE 2.4. Diagram of ^^^0 versus (^^Sr/^^Sr) 

in British Caledonian granitoids from restricted 

geographic areas:

(2a) Northeast Scotland 

(2b) The Central Highlands

ABBREVIATIONS:

LPS = Lower Palaeozoic Sediments 

GR = Grenville Paragneisses 

M = Mantle 

LG = Lewisian Granulites 

LA = Lewisian Amphibolites 

DMS = Dalradian Metasediments 

LG = Lower Crust
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amount of 'inherited' zircon in the Hill of Fare granite reflects 

substantial assimilation of younger continental crust prior to its 

emplacement. The remainder of the granites in this region, all with 

their strong S-type characteristics plus 0» and Sr-isotopic 

composition, require a derivation mainly from an upper crustal source.

3. Central Highlands (Fig. 2.4b; 2b in Table 2.1).

Two distinct groups occur. Firstly Cairngorm and Lochnagar 

centres with similar isotopic composition to other Newer last grani­

toids in the Grampian Highlands, and for which a lower crustal source

is inferred. Secondly, the older granites of Ben Vuirich and Dun-

fallandy Hill and the Findhorn granite, which suggests a derivation 

from Lower Proterozoic continental crust.

4. Western Highlands (Fig. 2.5a; 2c in Table 2.1).

Granite plutons in, and adjacent to, the Glen Coe area (Moor of 

Rannoch, the Etive complex, Ballachuilish, Ben Nevis and Strath Ossian)

suggest a mantle or lower crustal origin, and the Kilmelford complex
87 86 18'with the lowest observed Sr/ Sr ratios and a wide range of 6 0

values suggests a deep-seated magma source, perhaps with some hydro-

thermal alteration. The Strathspey granite-migmatite complex shows

variation in composition which suggests either an upper crustal origin

or an upper crustal melt which has been contaminated by a more

primitive magma derived from a deep-seated source. The Ben Nevis

and Etive complexes have been shown by Nd- and Pb-isotope data to have

a lower crustal component in their magmas (Hamilton ejt 1980;

Clayburn 1981),

The Meall Ohdar and Starav granites contain the largest component 

of lower crustal Pb and Nd, suggesting a longer magma residence time in 

the lower crust prior to emplacement. The Foyers complex is not shown



-24-

in Figure 2 . 5a, but limited data suggest that the Foyers magmas were 

largely products of deep-seated melting, and subsequently changed by 

upper crustal assimilation and fractional crystallization.

5, Northern England and Southern Uplands (Fig. 2.5b; 4 and 5 
in Table 2.1),

6  ̂ ^0 values correlate well with ^^Sr/^^Sr ratios and also 

discriminate between different intrusions. This figure shows a 

linear array which lies between the fields of primitive mantle or 

lower crust (M,LC) and the local. Lower Palaeozoic sedimentary 

upper crust (LPS). In addition, SiO^ increases and Sr decreases 

with increasing £,^^0 and ^^Sr/^^Sr ratios.

2.3. Geographical extent of the Helmsdale granite.

The Helmsdale granite is situated on the east coast of

Caithness and Sutherland about 60km south west of Wick, The outcrop
2area of 100km probably represents about half of the original pluton 

as it is bounded to the southeast by the Helmsdale Fault (Fig, 2,6),

To the west, the granite is bounded by Moine granulite and Old 

Red Sandstone sediments, to the south by Moine granulite; to the east 

and southeast by Old Red Sandstone and Jurassic sediments, and to the 

northeast by Old Red Sandstone sediments (see Fig.2,6).

Compositionally, the granite consists of two rock types, whose 

boundary appears to be transitional, with a coarser grained outer 

porphyrytic granite and a finer grained, inner granite with less 

feldspar phenocrysts. This feature is seen on the southern side 

of the Helmsdale River along the Eldrable Burn on the western part of

the granite mass. Helmsdale granite has a sharp vertical to

steeply outward dipping contact, and was intruded at a high 

structural level into non-migmatitic, cold Moine granulites (Read 

jet 1925; Read 1931; Gallagher e_t 1971), This granite contact
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is exposed on the western margin at the Oulmsdale Burn, about one 

kilometre upstream from the junction with the Helmsdale River,

There the Moine granulites are intensely broken with small fragments 

hardened and welded together, some of which can be seen as xenoliths 

in the granite.

The granite is overlain by Old Red Sandstone sediments. In 

Glen Sletdale 200m from the junction with Glen Loth, Old Red 

Sandstone lower conglomerates rest at an angle of 50° against the 

Helmsdale granite, showing that the granite was intruded before the 

deposition of this conglomerate. Furthermore, the conglomerate 

contains many monomineralic clasts (feldspars, etc.) and clasts 

which have been derived from disintegration of the granite.

The Helmsdale granite was originally mapped in 1896, but it 

was the detailed work of Read and Phemister (1925), which first 

suggested that the Helmsdale granite was contemporaneous with the 

other "Newer" granites of northeast Scotland, and therefore of 

Lower Old Red Sandstone age.
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CHAPTER THREE 

Petrography and Geochemistry of the Helmsdale granites

3.1. Petrography 

Introduction

Pétrographie descriptions of the Helsmdale granites are based on 

a study of 100 thin sections and rock hand specimens the location of 

which is shown in Figure 2,6. Thin section examination shows that, 

despite small mineralogical variations such as changes in the amounts 

of plagioclase and mafic minerals, the intrusion as a whole has a 

fairly uniform petrography. Two rock types coexist each with a 

distinctive grain size: a coarser-grained porphyritic type which was 

intruded into the country rock slightly earlier than a finer-grained 

type with scarce phenocrysts of K-feldspar,

Both rock types are pink to brown in colour and contain 

approximately equal proportions of quartz, K-feldspar and plagioclase. 

Together these minerals account for more than 90% of the rock con­

stituents. For this reason, and also because in all the samples 

investigated the plagioclase composition ranges from An^ to An^^^ the 

classification and nomenclature advocated by Streckeisen (1976), have 

been used.in the present study. Using this classification, both of 

the Helmsdale granites are classified as a granite (it is called

an "adamellite" by other authors).

The finer-grained member contains slightly more mafic minerals 

and more anorthitic plagioclase and less quartz than the coarser-grained 

porphyritic member.
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3.2. The coarser-grained porphyritic type (CGP)

The coarser-grained porphyritic type occupies a smaller area 

than the finer-grained type (FG), occurring as a narrow rim about 

4km across, forming the outer margin of the Helmsdale granites. The 

CGP type has a sharp contact against the surrounding country rocks 

but internally grades into the FG type.

The CGP granite is coarser-grained with a hypidomorphic texture 

(Plate 3.1) containing K-feldspar, Na-rich plagioclase feldspar 

(An QQ 14 »̂ quartz, biotite and rare hornblende. The common accessory 

minerals include zircon, sphene, magnetite and apatite which are usually 

associated with the ferro-magnesian minerals in the groundmass.

The colour is pink to reddish and the texture, including the 

percentage of phenocrysts, is homogeneous throughout the samples 

obtained from this rock type. Modal analyses of some specimens of 

the coarser-grained porphyritic type are given in Table 3.1.

Phenocrysts

K-feldspar

These are large (up to 30mm long), fresh, pink in colour and 

perthitic: Carlsbad twinning is usually present. Unmixing and

perthite development occurs over a wide range of feldspar compositions. 

Figure 3.1 shows perthites occurring in the range Ab^^ meso-

perthites. in the range Ab^Q_gQ. The K-feldspar, orthoclase AbQ_^^ 

is a homogeneous phase. The perthite shows exsolution of an 

Na-rich phase from the K-feldspar host, the exsolved phase appearing 

sometimes as fine stringers or veinlets, making an angle of from 57° 

to 80° with the^Olojcleavage in the (Oil) plane. The exsolved Na- 

plagioclase also appears as blobs and patches (up to 0.7mm across)



PLATE 3.1. Photomicrograph of sample from Glen Loth
area (CGP type) showing typical texture of 
normal granite. Hypidiomorphic plagioclase 
grains form the fundamental framework, K- 
feldspar (K-fel) and quartz (Q) are inter­
stitial to the plagioclase (PI). Some 
altered biotite (Bi) is present.
Crossed nicols, XIO.
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near the K-feldspar margins. In larger phenocrysts the exsolved 

phase may appear as a narrow (0.2mni) continuous rim of composition 

A n ^2 (Plate 3.2). Table 3,2 gives microprobe analyses of K-feldspar 

hosts and their exsolved Na-plagioclase phases. These analyses show 

that the host K-feldspar is homogeneous with its composition remaining 

unchanged throughout each crystal. The classification and formation 

of perthites is summarized by Smith (1974).

Analysis No. 11 12 13

K-feldspar Na-plagioclase K-feldspar

SiO^ 62.22 63.60 62,38

18.43 19.14 18.75

Total FeO 0.19 0.28 0.00

CaO 0.37 0.27 0.32

Na^O 1.52 7.20 1.32

K^O 13.04 5.25 13.82

(Or 81.2 31.6 84.5
Mol. % (Ab 14.7 65.5 12.1

(An 4.1 2.8 3.4

TABLE 3.2 Microprobe analyses Nos 11, 12, 13 from K-feldspar
(perthite) phenocryst taken from the Glen Loth area.

The K-feldspar phenocrysts contain inclusions, usually of earlier- 

formed small plagioclase prismatic crystals (up to 1.5mm long), but 

small quartz crystals may occasionally be present (Plates 3.2, 3.3 and 

3.4). Microprobe analyses of such feldspar inclusions are given in 

Table 3.3 (see also Fig, 3.2). These feldspar inclusions have altered 

cores surrounded by fresh albite rims. These altered cores are low in



PLATE 3,2, Large K-feldspar phenocryst from coarser-
grained porphyritic type, showing continuous 
narrow rim of exsolved Na-rich phase (albite). 
Inclusions in phenocryst are small plagioclase 
crystals (up to 1,5mm long).
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Plate 3 ,3 . Photomicrograph of another K-feldspar
phenocryst from Ousdale Quarry (CGP type) 
showing small early formed plagioclase 
prismatic crystals poikilitically enclosed 
The inclusions are arranged mostly along 
the margin of the host K-feldspar,
Crossed nicols, XIO,

PLATE 3.4. Photomicrograph of perthitic K-feldspar 
phenocrysts showing parallel orientation 
of enclosed plagioclase crystal with the 
segregated albite, from Ousdale Quarry. 
Crossed nicols, XIO.
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CaO (/— ' 0.4%) compared to the rims which have about 1.8% CaO. Either 

this difference is original - caused by several periods of crystal­

lization under variable conditions of temperature and pressure giving 

oscillatory zoning during crystal growth, or as the result of the 

Ca-rich cores of the crystal breaking down with calcium being leached 

out and increasing in amount towards the rim. Examination of the 

Carlsbad twins show that the twin plane is unaffected by exsolution so 

that perthitic development probably post-dates the twinning and may 

be a late-stage feature. A microprobe traverse across such a plagio­

clase feldspar crystal inclusion with altered core is shown in 

Figure 3.2.

Quartz may also occur as phenocrysts in the coarser-grained 

porphyritic type (see page 41 ).

Groundmass

Plagioclase feldspar

Plagioclase feldspar is an important constituent in the CGP type 

occupying from 26.5% to 32.4% of the rock (Table 3.1).

The crystals range in size from 1mm to 4mm and alteration is 

common along twin planes and cleavages, with cores of crystals showing 

most alteration, Plate 3.5, fes was also seen in the plagioclase 

feldspar inclusions in the K-feldspar phenocrysts). These plagioclase 

feldspar crystals also have Na-rich rims which are corroded due to 

reaction with late liquids since these crystals are early formed.

Albite twinning is common with occasional combined Carlsbad- 

albite twins present, and zoning is also present. Many of the 

plagioclase crystals, particularly those taken from the margin of the
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2 0 -

1 0 -X
O

CaO

mvvs

FIGURE 3.2. Microprobe traverse across a plagioclase feldspar 
crystal inclusion in the K-feldspar phenocrysts.
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intrusion, show evidence of strain as their twin lamellae are bent,

and, in some extreme cases, broken and displaced (Plate 3.6).

Analysis No 59 60 61 62 63 64

Position on 
Sample 1 2 3 4 5 6

SiO, 65.81 65.02 66.43 65.85 66.04 64.23

Al^Oj 21.51 20.75 19.13 20.37 21.23 20.93

FeO 0.27 0.00 0.13 0.00 0.43 0.29

MnO 0.14 0.00 0.00 0.21 0.00 0.00

CaO 1.76 1.47 0.00 0.45 0.30 0.40

Na^O 10.13 10.32 11.43 11.03 10.92 10.5

K^O 0.12 0.00 0.00 0.00 1.18 0.85

(Or
(

Mol % (Ab 
(
(An

1.1 0.0 0.0 0.0 6.8 4.9

36.6 89.5 100 96.7 91,3 92.2

12.4 10.5 0.0 3.3 1.9 2.9

TABLE 3.3 Microprobe analyses of plagioclase inclusion in K-feldspar 
phenocryst, Glen Loth,
Analyses Nos. 59, 60, 61, 62, 63, 64 see Appendix 2,

Microprobe analyses of plagioclase crystals are given in 

Appendix 2, The range of composition of the plagioclase crystals in 

the groundmass varies from An^ to An^. Traverses across some of these 

crystals are illustrated in Figure 3.3.

K-feldspar

Low temperature orthoclase feldspar is the K-feldspar of the 

groundmass, varying in size from 1 to 4mm and comprising 31% to 40.8%



PLATE 3.5. Early formed albite rim bounding plagioclase 
crystal with highly altered core (dark area 
in the centre). Note the highly irregular 
border due to reaction with late liquids. 
Crossed nicols,X12.8 .

PLATE 3.6. Photomicrograph of plagioclase crystal, 
showing evidence of strain as the twin 
lamellae are bent, broken and displaced 
Crossed nicols, XIO
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FIGURE 3.3. Microprobe traverses across plagioclase crystals 
in groundmass
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of the volume of the rock (Table 3,1). These K-feldspars are also 

pink in colour and perthitic(cf the phenocrysts) with the exsolved 

phase occurring as stringers or veins making an angle of between 

57° and 90° with the^ 010 j-cleavage in the (001) plane. In some 

crystals the (Na-rich) exsolved phases are up to 0.7mm across and 

occur as blabs.

Microprobe analyses of some of these perthitic K-feldspar 

crystals are given in Table 3,4, with the complete results given in 

Appendix 2.

Analysis No. 105 106 107 108

Position on 
Sample K-rich Na-rich

(vein)
Na-rich
(bath)

Na-rich
(rim)

SiO^ 62.35 64.76 67.01 68.70

Al2°3 18.31 18.96 19.89 20.13

FeO* 00.00 0.29 0.13 0.00

CaO 00.00 0.00 0.11 0.00

Na^O 00.00 10.01 11.6 11.45

K,0 16.13 1.6 0.14 0.00

(Or
(

Mol 7o (Ab 
(
(An

100 9.5 1.1 0.0

.0,0 90.5 98.2 100

0.0 0.0 0.5 0.0

TABLE 3.4 Microprobe analysis of a K-feldspar perthite from a 
sample taken in Ousdale Quarry.

Analyses Nos. 105, 1 6 , 107, 108 (see Appendix 2)
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Quartz

Quartz occurs as small interstitial, anhedral crystals in the 

groundmass, although some larger phenocrysts (up to 10mm long) 

occasionally occur (Plate 3.7), The quartz crystals are clear, with 

regular fractures which are particularly common in samples taken from 

contact zones. Internal cracks are iron-stained and often filled 

with clay. Quartz crystals may contain inclusions of apatite and 

zircon (Plate 3.9),

Myrmekite

Myrmekitic intergrowths are rare in the CGP type, but more 

common in the FG type which has more basic plagioclase feldspar 

present. The myrmekite occurs between plagioclase feldspar and 

K-feldspar crystals.

Mafic minerals (Biotite and Hornblende)

Biotite (/-'0.7mm across) is the commonest ferromagnesian mineral 

present. The early formed biotite crystals (which are richer in FeO 

and MgO than later formed ones) are occasionally included in K-feldspar 

phenocrysts, but biotite crystals are usually found in the rock in 

irregular ’clumps*. The biotite crystals contain inclusions of 

magnetite, apatite and zircon (Plate 3,8), and alteration to chlorite 

is very common.

The percentage of biotite varies from 15% to 5.87% in the CGP 

type (Table 3.1). Table 3.5 gives microprobe analyses of some 

biotites and secondary chlorites taken from different CGP granite 

specimens and the full results may be found in Appendix 2.

Hornblende is less common than biotite, and is found in



PLATE 3,7. Photomicrograph of the large quartz
phenocrysts with a few intergranular and 
some hair-like microcracks. Note the 
small quartz grains are free of microcracks 
and they appear to be slightly orientated 
(mosaic texture). The small quartz grains 
are free of inclusions. Sample from Glen 

Loth area.
Crossed nicols, XIO,

PLATE 3.8. Photomicrograph of the mafic minerals 'clump* 
containing chloritised biotite (Bi), magnetite 
(mag), apatite (ap), zircon <&r). Sample from 
Ousdale Burn area (CGP type),
Crossed nicols, X51.2,
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association with biotite and accessory minerals similar to that 

described by Cawthorn and Brown (1976). According to their study, 

when the SiO^ percentage of the rock is greater than 71% and the 

Na/Na +  K ratio is less than 0.6, crystallization of amphibole will 

either cease or continue to crystallize together with mica forming 

mafic clots.

Analysis
No. 70 74 112 65 66

Biotite
(LW)

Biotite
(LW)

Biotite
(OQ)

Chlorite
(GL)

Chlorite
(GL)

Si02 50.36 48.22 50.94 25.28 24.32

A I 2O3 24.87 29.95 24.14 15.72 15.49

FeO 4.83 4.09 4.73 21.81 24.36

MgO 2.33 0.94 2.23 12.25 11.96

MnO - - - 0.18 0.16

CaO - - - 0.36 0.24

K20 9.73 9.73 9.26 0.47 0.31

TABLE 3,5 Microprobe analysis of selected biotite and chlorite 
from Langwell Water (LW), Ousdale Quarry (OQ) and 
Glen Loth (GL),

Accessory minerals

The main accessory minerals - magnetite, apatite, zircon and 

sphene - usually occur with biotite and other ferromagnesian minerals 

within mafic clots, but are also found as inclusion in K-feldspars 

phenocrysts (Plate 3.9).



PLATE 3,9. Some of the accessory minerals are illustrated 
in this plate, enclosed in K-feldspars (K-fel); 
magnetite (mag), apatite (ap).
Crossed nicols, X51,2.
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3.3, The finer-grained type (FG)

Introduction

The finer-grained type occupies a larger area of the Helmsdale 

granite than the CGP type. The colour of the rock changes from 

pink, near the contact with the CGP type, to brownish towards the 

centre of the intrusion. The pink variety is very similar to the 

CGP type except for the grain size which is smaller ( «--' 1mm), and the 

rock may be termed a finer-grained granite with granular texture 

(Streckeisen 1976; see also Plates 3.10, 3.11). The constituent 

minerals are similar to those of the CGP type, and include K-feldspar, 

Na-plagioclase (An^^), quartz, biotite, hornblende and the accessory 

minerals zircon, sphene, magnetite and apatite. The volume percent 

of the mafic minerals present is slightly higher (4% to 8%) than in 

the CGP type (see Table 3.1). Modal analyses of rock hand specimens 

of the finer-grained granite are given in Table 3,6. Ç'Ve.A.oc-T

^£>V y^'^rotls iV fo4<\V
Plagioclase feldspar

Plagioclase feldspar comprises 23% to 43% of the volume of the 

rock (Table 3.6) and the crystals range in size from 0,2mm to 1mm,

The composition of plagioclase feldspars were determined by microprobe 

analysis and the results are given in Appendix 2. In general the 

range of composition of plagioclase crystals varies from An^ to An^^ 

Although the plagioclase crystals commonly show albite twinning, 

occasional combined Carlsbad-albite twins occur and zoning is also 

present.

Alteration is common and is most advanced in the case of some 

plagioclase crystals. Microprobe traverses across some altered 

plagioclase crystals are shown in Figure 3,4 (see also Table 3.7),



PLATES 3.10, 3.11.

These micrographs are from the finer-grained type of 
granite (Eldrable Burn area). From the photographs 
it can be seen to consist mainly of a granular mixture 
of K-feldspar (K-fel), plagioclase (PI), quartz (Q) 
and biotite (Bi). One of the zoned plagioclase 
feldspars can be seen to have a cloudy core, mantled 
by a more sodic rim. Plate 1 is plain light and 
plate 2 is crossed niçois, XIO.
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Analysis
No. 141 142 143 144

Si02 63.7 65.59 63.87 65.87

A I 2O3 21.54 18.77 19.96 20.51

Feo* 1.88 0.68 0.29 0.15

MnO - - - -

CaO 0.29 - 0.09 0.34

Na^O 5.75 9.54 10.52 11.28

5.72 3.30 0 .84 0.51

(Or
(

38.4 18.5 5.0 2.6

Mol % (Ab
(

58.5 81.5 94.2 95.8

(An 3.1 0.0 0.8 1.6

TABLE 3.7 Microprobe.'dialyses of plagioclase feldspar with altered 
core from Caen Burn area (FG type),

Figure 3,4 shows while sodium and calcium increase in amount 

towards the centre of the crystal (point 4 in Fig. 3.4) potassium 

decreases in the same direction.

K-feldspar

The K-feldspar, which is usually quite fresh, is again a low 

temperature orthoclase feldspar comprising 32% to 46% of the volume of 

the rock (Table 3.6). Although the average grain size of a K- 

feldspar crystal in the finer-grained granite is about 1mm, larger 

K-feldspar phenocrysts may exist (up to 30mm in size). These K- 

feldspar phenocrysts are perthitic (cf_. CGP type) and occasionally
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FIGURE 3.4. Microprobe traverses across some altered plagioclase 
crystals of FG type. ^
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contaln small elongate plagioclase crystals as inclusions. These 

small plagioclase crystals are not orientated and are not surrounded 

by albitic rims as was the case in the CGP type. Microprobe analyses 

of the feldspars are given in Table 3.8.

Myrmeki te

Myrmekite is more common in the FG type than it is in the CGP 

type. In the FG type the amount of quartz (in the form of vermicules) 

in the myrmekitic intergrowth has increased as the host plagioclase 

feldspar became more basic. This caused more replacement of K- 

feldspar by Ca-rich plagioclase and the release of more silica to form 

vermicules of quartz between the plagioclase and K-feldspar crystals 

(Plate 3.12).

Mafic minerals

Biotite and hornblende are more common than in the CGP type, 

comprising 4% to 8.5% of the volume of the rock (Table 3.6). Biotite 

is often altered to chlorite but microprobe analyis of unaltered 

biotites shows that they are richer in MgO and FeO than the correspond­

ing biotite from the CGP type (see Table 3.9).

Accessory minerals

Apatite, magnetite, sphene and zircon are common, but smaller 

in size and less in amount than in the CGP type. They are always 

found in association with the mafic minerals (Plate 3.13).



PLATE 3.12. Sodic plagioclase crystal containing
irregular inclusion of quartz. The inter­
growth is commonly to be found at the margin 
of plagioclase crystals, where it penetrates 
a K-feldspar crystal.
Crossed nicols, X25.2.

PLATE 3.13, Some of the common accessory minerals can 
be seen to be associated with the mafic 
minerals.
Crossed nicols X25.2.
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Analysis
No. 87 88 131 134

Perthite 
K-rich Na-rich

Plagioclase
(enclosed 
in K-fel)

K-feldspar
(orthoclase)

SiO^ 63.14 68.55 63.68 62.27

TiO^ - - - 0.15

^^2^3 18.42 20.07 21.03 18.13

Feo* 0.15 - 0.15 -

CaO - - 2.15 -

Na^O - 11.72 9.77 -

K^O 16.28 0.09 0.21 16.19

(Or 100 1.1 100
(

Mol 7o (Ab - 100 86.5 -

(
(An 12.4 -

TABLE 3,8. Microprobe analyses Nos 87, 86, from K-feldspar perthite 
taken from Helmsdale Quarry and analyses nos 131 and 
134 from Allt Cille area, showing Ca-rich plagioclase 
enclosed in orthoclase analysis No.134.
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Analysis
No. 95 139 120 150

Biotite Biotite Chlorite Chlorite

SiO^ 37.01 34.81 29.72 28.75

Ti02 3.07 2.19 0.26 0.14

^^2^3 15.13 17.5 16.22 20.76

FeO* 20.18 22.39 19.78 20.01

MgO 10.26 13.11 15.35 15.42

CaO 0.10 0.19 - -

K 2O 10.22 5.92 1.06 0.96

TABLE 3.9. Microprobe analyses Nos 95 and 139 are biotite from
Helmsdale Quarry and Allt Cille respectively. Analyses 
Nos 120 and 150 are chlorite from Allt Cille and Caen 
Burn respectively.

Summary

1). The dominant textural feature of the Helmsdale granites as 

a whole is hypidiomorphic granular.

2). The coarser-grained porphyritic type (CGP) has large poikilitic 

potash-feldspar (perthite) phenocrysts which decrease considerably in 

amount in the finer-grained type (FG).

3). The preferred orientation and zonal arrangement of plagioclase 

inclusions, particularly in the CGP type, suggests that during growth 

the smaller plagioclase inclusions were rotated into a position with 

their long axes parallel to the crystal faces (both 100 and 001) of 

the potash-feldspar. Very occasionally a similar arrangement occurs
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with the plagioclase crystals surrounding K-feldspar phenocrysts, 

which helps to support the hypothesis that these potassium- 

feldspar phenocrysts grew in a liquid medium rather than a solid 

one.

4). Albite rims which occur on the K-feldspar phenocrysts decrease 

in the finer-grained type as the amount of K-feldspar phenocrysts 

also decreases. The albite rims formed during the development of 

perthite when sodium-rich material migrated to the edge of the 

potassium-feldspar and crystallized there. This agrees with the 

views of Tuttle and Bowen (1958) and Miller (1973).

5). The pétrographie study supports the view that two granite 

intrusions are present at Helmsdale, a coarser-grained porphyritic 

type (CGP) and a finer-grained type (FG). Figure 3.5 confirms 

the existence of the two rock types using a Q-Ab-An plot. Some 

variations in grain size and mineralogy occur, with the inner 

component of the intrusion (the FG type) having slightly more mafic 

minerals than the other one (the CGP type).

3.4. Geochemistry 

Introduction

Rock specimens from the Helmsdale granites were analysed to 

investigate any variation in the chemical composition of both granite 

types. 95 samples were collected and analysed for major elements 

and 16 trace elements (Ce, La, Sr, Zr, Ba, Ga, Cu, Zn, Nb, Co, Ni,

Cr, Y, Rb, Pb, Th). Major and trace element analyses were carried 

out by X-ray fluorescence techniques (Leake e^ 1969) using fused 

beads and pressed powder pellets in either a Philips PW1450 (major
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elements), or a Philips PW1220 (trace elements). Results of the 

rock analyses carried out are given in Appendix 1. This large 

number of analyses permits a detailed comparison to be made between 

the two granite types forming the Helmsdale intrusion,

3.5. Major element variation

Major elements have been plotted against SiO^ and other major 

elements (Al^O^, total Fe) and significant and regular trends have 

been revealed from both granite types. This major element distribu­

tion, the use of Niggli numbers and normative amounts may provide a

means of interpreting the chemical relationship and the crystallization 

history of the two granites (FG and CGP types).

Silica (SiO^)

SiO^ contents of the Helmsdale granites change from an average 

of 71% in the FG type to about 74,5% in the CGP type.

Calcium Oxide (CaO) (Fig, 3,6, a-c)

The average CaO content of the Helmsdale granites decreases from 

0.6% in the finer-grained (FG) type to approximately 0,3% in the 

coarser-grained porphyritic (CGP) type. In Figure 3,6a the CaO 

content decreases with increasing SiO^. Although the trend is con­

tinuous for both granite types, they are separated on their SiO^

contents, and also on their CaO contents although the later boundary is

not so clear cut. Figures 3.6b and c show positive trends- increasing 

CaO with increasing Al^O^ and total iron respectively. The slight 

enrichment in CaO in the FG type probably reflects the more basic 

plagioclase feldspar constituent present.

Sodium Oxide (Na^O) Fig. 3,7a)

In Figure 3.7a Wa^O against SiO^ shows a negative trend, with the
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CGP type having slightly lower average Na^O (4.9%) than the FG type 

(average 5.3%), The individual values in the CGP type are

also more scattered, because of the uneven distribution of K-feldspar 

phenocrysts in this granite.

The FG type has more Na-rich plagioclase than the CGP type 

(see Tables 3.1 & 3,6). In the FG type, microprobe analysis of 

plagioclase feldspars shows that the plagioclase crystals present are 

very sodic, ranging in composition from An^ to An^^, and Figure 3.7a 

confirms this point with the FG type having the higher Na^O content 

than the CGP type.

Potassium Oxide (K^Q)(Fig.3.7b)

K^O is plotted against SiO^ in Figure 3.7b, and the diagram 

shows that variation in K^O is independent of SiO^ content.

In Figure 3,7c, K^O 4- Na^O has been plotted against SiOg and a

slight negative trend results.

Aluminium Oxide (Al„0^)(Flgs 3.6b and 3.8)

The CGP granite has an average Al^O^ content of 12.8%, whereas

the FG granite has an average content of 14.8%. The higher alumina

in the FG type corresponds with higher CaO, total Fe, MgO, TiO^ and 

NagO' The higher CaO, Na^Oaid Al^O^ reflect the increased amounts of 

plagioclase feldspar in the FG granite types, and the higher total 

iron, MgO and TiO^ reflect the Increased amounts of mafic minerals in 

the FG granite types.

Other Oxides (Figs 3.9 & 3.10)

In Figures 3.9 and 3.10 Fe^O^, TiO^, MgO and total iron +  MgO +  

MnO show negative trends when plotted against SiO^; that is, they 

decrease with increasing SiO^.
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3.6. Variation in normative minerals

The geochemical data have been recalculated to normative mineral 

constituents, and quartz, orthoclase and albite have been plotted into 

the triangular diagram (Fig. 3.11). All the points occur in a small 

central field with the CGP types showing most scatter, with a 

compositional field which is elongated towards the albite apex.

Figure 3.12 represents a Q-Ab-An triangle with all the points 

occurring in a small area along the Q-Ab side of the triangle. The 2 

plots strongly suggest that albite was the main fractionating feldspar 

phase in the Helmsdale granites (see also Figs 3.6 to 3.10),.

3.7. Variation in Niggli values

Niggli values were also calculated from the analyses and various 

plots made of alk, mg, fm, al, ^i, K, and c against 4i. In Figure 

3,13a, al against &i shows a positive trend in the FG type (al increases 

as si increases) but a possibly negative trend in the CGP type, although 

the points are more scattered and the trend is more imprecisely 

determined.

In Figure 3,13b both rocks show positive trends although the 

individual points of the CGP type are more scattered.

Niggli si is plotted against mg and fm values in Figures 3.14a

and b respectively, and show negative trends with both mg and fm

decreasing as Si increases.

In Figures 3.15 a, b and c the plots of si against C, fi and K

are inconclusive with no clear cut trends emerging.

3,8. Trace element variation

The detailed major element studies of the Helmsdale granite show 

that it consists of two homogeneous intrusions which are geochemically
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dissimilar with the central intrusion - the finer-grained granite 

type (FG type) having less siliceous minerals and more mafic minerals 

than the other intrusion - the coarser-grained porphyritic granite 

type (CGP type). Trace element data which have been used by other 

workers to establish a possible genetic history of granitic intrusions 

(Hanson 1978; Atherton and Tarney 1979; Halliday £t aĵ . 1980), will 

be used here to demonstrate the amount of differentiation in the 

intrusion, by plotting these data against yiggli si and fm values. 

Barium (Ba)

Barium decreases from the FG type (average 1400PP™ ) to the CGP

type (average 900 PP#). Ba^^ tends to occupy K*" sites and is
2+removed at an early stage of differentiation, Ba occupies 8-fold 

co-ordinated sites and so preferentially enters sites in feldspars 

(particularly K-feldspar),

Rhodes (1969), in his study of the Ba content of 70 granitic 

rocks from Australia, concluded that the Ba content decreased as the 

whole rock composition changed from granodiorite to leucocratic 

granite.

In Figure 3,16, Ba values of the Helmsdale granites are plotted

against//iggli 5i, A negative trend results and although some

scattering of points exists, the trend is very clear with analyses from

both granite types lying in the same trend line, with the more mafic

intrusion, the FG type having the higher Ba values.

Strontium (Sr)
2+Sr ion tends to occupy calcium positions in feldspars although

2+the relationship is not a clearcut one. This may be because the Sr

ion enters both plagioclase feldspars and K-feldspars. In Figure 

3,17a, data from both intrusions tend to show that a negative trend 

occurs in the Helmsdale granite as a whole, although the plots from
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each intrusion do not show any clearly defined trend (especially 

the FG type), and a trend is only revealed when both intrusions are

considered together.
2+ 2+The Sr . ion is larger than Ca and during fractionation magma should

become enriched in Sr relative to Ca. However, in an acid magma,

such as gives rise to granitic rocks, this pattern is reversed and

Figure 3.17a shows this, with Sr decreasing as the rocks become more

silica-rich (i.e. as silica increases), with the most acid members

of the CGP type having least strontium. The reason for this is that
2+preferentially the Sr will tend to enter the Ca position in a 

plagioclase lattice, and since the FG type contains more plagioclase 

feldspar, the Sr is removed before the CGP type crystallizes. All 

the evidence points to a single magma source for the two granite 

intrusions with the FG granite being an earlier differentiate than 

the CGP type. The sympathetic behaviour of Ba and Sr is shown in 

Figure 3.17b.

Rubidium

The analyses show that the Sr/Rb ratio falls from the FG type to 

the CGP type which might result from a decreasing fractionation of 

plagioclase in this sequence. Figure 3.18 is a plot of K^O against 

Rb, and Figure 3.19 shows the two trend lines plotted in another K-Rb 

diagram. The trend line suggests an average K/Rb ratio of 228 for 

the CGP granite and 205 for the FG granite. The K/Rb ratio of 228 

for the CGP type of granite fits exactly the trend line for

differentiated rocks of the normal calc-alkaline magmas. Since the
+  +FG type is richer in biotite, Rb will preferentially enter the K

positions there, and the FG type will therefore have a lower K/Rb

ratio than the more ’acid’ granite - the CGP type.
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Metalllc trace elements (zinc, nickel, cobalt, copper 
and chromium)

As the FG type is the more basic granite with more ferromagnesian

minerals present, and therefore more Fe and Mg, trace elements Ni, Co

and Zn which are sympathetic with Mg or Fe, or both, should be

greater in amount in the FG type which is the case. Figures 3.20a,

b and c show Ni, Co and Zn plotted aginst Niggii fm, A good,

positive trend can only be identified in the zinc plot since zinc

correlates closely with iron unlike Ni and Co which tend to occupy 
2+Mg sites preferentially. Furthermore, Ni and Co are very low in 

amount which makes any trend difficult to ascertain. Zinc (Fig.3.20c) 

occupies the Fe sites and will enter biotite which is the common 

ferromagnesian mineral in the Helmsdale granites. Chromium and 

copper (Figs 3.21a, b) sh'ow(no\.j variation with Niggii fm, although 

there is a greater scatter of copper in the CGP type granite, perhaps 

due to C u  ions being disseminated with K-feldspar phenocrysts 

(trapped within the lattice but not occupying any specific sites), and 

the amount of copper is therefore related to the amount of K-feldspar 

phenocrysts in the rock sample.

Zirconium

Zirconium is an element that concentrates in accessory minerals 

particularly sphene, apatite and zircon. Zr is more or less 

constant in both granite types with the FG type slightly richer on 

average (165\PP^ iA FG type and 15^ ppni in CGP type).

Gallium

Ga^^ is always sympathetic with Al^^, and correlates with the 

A I 2O3 content in rocks; those with most Al^O^ having most gallium.
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Lead and Thorium

Lead is commonly held in the silicate lattices of feldspar 

minerals. Both granites have similar amounts of lead (average 

4 0 ppm ).

Thorium tends to be concentrated in late stage igneous rocks 

where it can be correlated with potassium because thorium may be 

remobilized in acidic conditions (Sinha 1972). The thorium content 

is rather similar in both granite types (average 25 PP^.),

Summary

1), Some major element variation diagrams show dissimilarities 

between the FG type and CGP type, with the former having less silica 

and more mafic phases.

2), Alumina shows positive correlation with CaO and Na^O, with the 

FG type having more basic plagioclase than the CGP type,

3). The low CaO and high Na^O contents in plagioclase 

feldspar obtained throughout the Helmsdale granite samples confirm 

the feldspar is albite to oligoclase.

4). Alteration effects have tended to increase the K^O percentage in 

the FG type (Tweedie 1981), and therefore the analyses cannot be used 

to identify primary feldspar composition, thus potassium and sodium 

are of limited use in this study.

5), Another important alkali element which occurs in trace amounts, 

is rubidium. The plots of Rb against K."*" show that the K/Rb ratio 

is greater in the CGP type (apart from some points with unexpectedly
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low Rb) than in the FG type. This variation in K/Rb may be due 

to the CGP type being a later fractionated product.

6). The FG type is characterized by higher iron, MgO and TiO^ which 

are the main constituents of biotite, and Figures 3.7, 3,10 and 3.11 

suggest possible biotite fractionation,

7). Graphs involving normative values suggest a closer relationship 

between the FG type and CGP type as the plotted points occupy

a small field of composition. These graphs also suggest that the 

earlier differentiate (in the FG type) crystallized albite and 

biotite changing the magma composition towards the later differentiated 

CGP type.

8 ), It is clear from many of the plots discussed in this section 

that the Helmsdale granites should be considered as two intrusions, 

probably derived from a single magmatic source.

On the basis of 0 and Sr isotope data, Harmon and Halliday (1980) 

suggested that the parent magma of those late Caledonian plutons 

eraplaced between 390 and 435my, including the Helmsdale granite, were 

hybrids derived from the partial melting of mantle-like material 

containing varying proportions of a crustal component (such as the 

Lewisian gneiss for these northern Scottish granites).
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CHAPTER FOUR

Rock weathering and its influence upon aggregate 
properties of the Helmsdale granite

4.1. Introduction

Many igneous rocks have solidified at various depths in the 

Earth's crust at higher temperatures and pressures than exist at the 

surface. When these rocks are exposed to the atmosphere, under the 

new lower temperatures and pressures, and in the presence of air and 

water, they undergo a series of processes called 'weathering'. These 

processes cause changes in the physical, chemical and mineralogical 

nature of both the rock material and the rock mass. Rock weathering 

will continue until the state of stability is achieved once again 

when rocks are transformed to soil. The rock transformation is, for 

the most part, complete only at,and very close to, the surface, although 

in some jointed igneous rocks, such as granite, the weathering agents 

can penetrate along joints often many metres deep. For example, in 

parts of Australia depths of 300 metres of weathered granite have been 

recorded (Beavis 1985) and at up to 1500 metres in the USSR (Razumova 

and Kheraskor 1963).

Just as the depth of weathering may vary from place to place, 

patterns of weathering can also be extremely variable even in an 

apparently homogeneous rock mass. The nature of weathering and depth 

to which rocks weather are of considerable importance to all aspects of 

geotechnical engineering and often cause a great deal of damage if 

they are not fully assessed.
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The weathering of granite rocks has been studied for many- 

different natural environments, Goldich (1938) was one of the 

first geologists to investigate chemical changes occurring during 

weathering. Subsequent workers who have summarized the main trends 

of geochemical and mineralogical evolution towards the residual 

systems of weathering include Butler (1953, 1954),

Richardson and Adams (1963),Harriss and Adams (1966),

Helgeson £t (1969), Loughnan (1969), Rice (1973), Chesworth (1979), 

Taylor and Fryer (1982) and Baker (1985), In spite of all these 

publications relatively little has been considered from an engineering 

point of view. Consequently, in the present study, an attempt has 

been made to establish the type and pattern of weathering which has 

occurred in the Helmsdale granite, with particular emphasis on the 

behaviour of major and trace elements during the weathering and their 

effects on the engineering properties of the aggregate,

4.2.
Methods of investigation

For the purpose of the weathering study, only those samples 

from the two quarry faces, namely Helmsdale Quarry and Ousdale Quarry, 

have been u s e d .  Samples of relatively fresh rock and their

weathering products were collected in a vertical profile representing 

the finer-grained type (FG) and coarser-grained porphyritic type (CGP) 

respectively. In order to ascertain the effects of homogeneity of 

parent rocks within each FG and CGP type a number of horizontal 

samples were also taken from the bottom of the quarry faces and were 

subjected to the same analytical techniques as those from vertical 

profiles,

A total of 34 samples was chosen for this part of the study of 

which the freshest, least altered samples were those collected from
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the bottom of each quarry face, whereas the more altered samples were 

those collected towards the upper parts of the quarry faces and near 

the major discontinuities.

Thin sections were made of all 34 samples from both granite types 

(FG and CGP) of which 6 samples (3 from each quarry face) were chosen 

for microprobe study. These 6 samples were chosen particularly to be 

representative and showed the widest observed variation in degree of 

mineralogical changes caused by both weathering and hydrothermal 

alteration processes. Rock forming minerals were identified by pétro­

graphie observation of all 34 thin sections.

Modal analysis, whole rock chemical analysis and electron 

microprobe analysis of minerals were performed as described in 

Chapter 1, the XRD method being used to identify all the primary and 

secondary minerals, particularly those clay minerals which are normally 

difficult to identify under the normal microscope,

4.3. Weathering of the Helmsdale granite

The rate of decomposition of rock forming minerals is directly con­

trolled by the differential between physical and chemical conditions 

at the time of formation of the minerals, and those existing on the 

surface of the Earth during the weathering process.

In.the present study, however, the two main types of weathering 

(physical and chemical) together with the hydrothermal alteration 

processes in the Helmsdale granite were investigated as follows.

4.3,1. Physical weathering

Physical weathering involves the breakdown of the rock into 

smaller pieces without considerable alteration of its minerals, by
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some mechanical action such as loading and unloading, thermal 

expansion, freezing and growth of minerals and wetting and drying. 

Thus, the situ or residual soil derived from the disintegration 

process consists of an accumulation of minerals and rock fragments 

from the virtually unchanged original rock.

The breakdown of rock mass is usually controlled by dis­

continuities in the mass such as joints and fractures (block dis­

integration), whereas the mechanical breakdown of the rock material 

is controlled by micro-discontinuities such as micrafractures, grain 

boundaries and mineral cleavages (granular disintegration).

Discontinuities in the rock mass possess a number of physical 

and mechanical characteristics, some of which influence the degree of 

weathering, and this in turn influences the behaviour of the rock 

when placed under stress. Some of these characteristics which.can 

be measured, include the number of discontinuities, their location 

and orientation; their spacing, the nature of the openings, surfaces 

and infillings and their persistence or continuity. In particular, 

their spacing is very important since this affects the degree of 

freedom available for displacements or fluid movements within the 

mass, allowing weathering action to progress downwards or inwards 

from the ground surface or top of the quarry face. In other words, 

the nearer the rock is to the ground surface or top of the quarry 

face, the.more it will be weathered.

The joint survey of the Helmsdale granite was carried out and 

the results were logged systematically and can be seen in Table 4.1. 

According to this survey both types of granite were found to have 

medium to widely spaced joints (less than 1,2m), At least four main 

joint sets were identified in each of the two granite types using the
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stereographic projection and density contour peaks technique and 

rose diagram (Fig, 4.2), The results are shown in the orientation 

diagram (Fig, 4,1) where the diameters show the strikes of the joint 

sets, with the amount of dipping and dip direction also given,

TABLE 4.1. Joint set, data; strike measurements are in 
degrees magnetic

A Joint set
a) Widely spaced lm+

b) Open joint (narrow, between 6 to 20mm width), no 
water flow

c) 350° to 010°/vertical 

B Joint set

a) Widely spaced 1,2m (in the FG type becomes medium 
spaced 600mm,

b) Close joints, those joints which are not vertical/ 
have rather smooth surface,

c) 050° to 090°/vertical but variable (always more 
than 60° SE)

C Joint set

a) Medium spaced

b) Close joints, smooth surface

c) 120° to 140°/vertical but variable

C Joint set

a) Medium spaced in FG, widely spaced in CGP type

b) Narrow joints; filled with broken pieces and soil

c) 020° to 040°/sub horizontal dipping maximum 20° NW
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FIGURE 4.1. An orientation diagram showing the strike 
directions and dips of the four major 
joint sets.
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FIGURE 4,2. Rose diagram, showing the strikes of four 
joint sets for the Helmsdale granites.
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Figures 4.1 and 4.2 also show that in general the joint sets 

(in both granites) are scattered in different directions and are 

normally vertical or within ■ 30*̂  + of it, except the

D-joint set which is a sub-horizontal type or slightly dipping towards 

a NW direction.

The A joint set normally occurs in sets of parallel joints about 

Im apart, and are open (between 6 to 20mm) having rough joint 

surfaces and are commonly observed at the quarry faces as vertical 

long joints. The B and C joint sets are both close and vertical, or 

nearly vertical joints which are seen at the quarry faces striking 

070 and 130 respectively, the latter being perpendicular to the 

Helmsdale Fault. The D joints are the sub-horizontal joints (floor 

or sheet joints) and are narrow, commonly filled with residual and 

broken pieces of rock. They normally occur as mediumly spaced joints, 

although in the FG type (Helmsdale Quarry face) some closely spaced 

ones were observed.

Careful observation of many joints (B and C sets in particular) 

reveals a small displacement (of only a few cm) with the development 

of smooth joint surfaces.

At various stages of its history, joints in the Helmsdale granite 

have been exploited by hydrothermal fluids from which minerals have 

crystallized to form a variety of mineral veins, some of which are 

narrow.

Other types of discontinuities commonly observed in the 

Helmsdale granite (in both FG and CGP types) are fractures, but their 

intensity is not constant over the length of the quarry faces. Both 

the intensity and openness of the fractures tend to increase towards
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the upper part of the quarry faces which may suggest that the granites were 

subjected to an intense degree of physical weathering (such as freezing 

and thawing) after their formation. The surfaces of the fractures like 

those of the joints exhibit slight discolouration due to the pene­

tration of subsequent chemical weathering agents, the effects of which 

gradually decrease from the fracture surfaces inwards. The depth of 

chemical penetration, in general, is slightly higher in the CGP 

type compared to the FG type which may well be due to the coarser- 

grained porphyritic texture, and also a rather weak mineral boundary 

condition existing only in the CGP type;and the lack of such features 

in the FG type makes it less prone to the penetration of the 

weathering agents along the fracture surface.

Microfracture in rock materials also plays an important part 

upon the extent of both physical and chemical weathering. Micro­

fracture analysis of the samples in the present study was also carried 

out, applying the standard point counting technique (Chayes 1956), 

using a petrological microscope and a Swift Automatic Point Counter 

machine. Microfractures, including microcracks and voids have been 

quantified by counting the number of microfractures along a line of

traverse of 10mm long and a spacing of 0.5mm between each traverse
2line until all the microfractures within a total area of 100mm were 

counted on each thin section. Then the microfracture indices (FI) 

for all thin sections were calculated as the number of fractures per 

10mm length (based on the procedure explained by Irfan & Dearman 1978). 

Results of the determination of microfracture indices of all samples 

from the two quarry faces are given in Table 4.2,
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Height from bottom 
of the Quarry

FI
(FG) Helmsdale Quarry

FI
(CGP) Ousdale Quarry

1 0.8 0.6
2 0.9 0,6
3 1.5 0.9
4 1.0 0.6
5 0.9 0.4
6 1.0 0,4
7 1.2 1.0
8 1.1 0,8
9 1.1 0,9

10 1.3 0.12
11 2.0 1.4
12 2.5 1.7
13 2.7 2.1
14 2.9
15 2.9

TABLE 4.2. Microfracture indices for Helmsdale granite from two 
quarry faces.

No attempt was made to differentiate between microfractures 

according to their type and amount of infilling materials, since most 

of the microfractures in the present study are either iron-stained 

or filled with some weathering products. But attention has been 

paid to the thin section making procedure, since some of the open 

microcracks and open grain boundaries observed in thin sections are 

caused by high speed diamond cutting. Therefore, the cutting 

process was carried out under minimum force and lower speed.

4.3,2, Origin of discontinuities

Discontinuities including joints, fractures and microfractures
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represent failure of rock mass or rock materials under conditions of 

stress. Such applied stress can have a number of origins, some of 

which can be identified in the field by simple field observation 

techniques (Fookes ^  1971; Attwell and Farmer 1976; Hawkes

1982 and Heath 1985). The study of the Helmsdale granites, however, 

revealed that the major cause of fracture formation in this area 

was partly stress originated as a result of post-crystallization 

cooling stress of the granites. Relief of such stress following 

erosion of the overlying rocks could be responsible for the formation 

of the sub-horizontal joints (the D joint sets) in the Helmsdale 

granites(see Fig, 4.1), This type of discontinuity, referred to by 

some workers as "floor or sheet joints" (Heath 1985), are usually 

tight below the weathering zone, but here.due to excavation or 

erosional unloading they tend to be open, and sometimes infilled with 

material produced during weathering processes. This process, 

however, continues up through the weathering zone, reaching to its 

maximum width at the surface as was shown by the D joint sets in 

the case of the Helmsdale granites, and also by those sub-horizontal 

joints in the study of Carnmenellis granite in Cornwall (Heath 1985), 

The possible source for the second group of joint sets in the 

Helmsdale granites appears to be tectonic, related to later activity 

along the Helmsdale Fault at various times since the emplacement and 

cooling of the granites(Gallagher ejb al, 1971; Tweedie 1981). The 

build-up of tension as a result of such activity appears to have had 

some control over the orientation of the second group of joint sets 

(the B and C joint sets) in the Helmsdale granites, particularly in 

the FG type and along the Helmsdale Fault.
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These joint sets (B and C) are both vertical or nearly vertical 

(more than 60°).

The third group of joints in the Helmsdale granite is the 

A joint set which probably resulted from the pressure produced by the 

confinement of aqueous fluids which were found to be responsible for a 

small area of crystallization zone near the Helmsdale Fault. Heath 

(1985) in the fracture study of the Carnraenelis granite in Cornwall 

has demonstrated that the existence of this type of joint is often 

accompanied by brecciation as he found fragments of broken granite in 

a tourmaline vein filled joint system. Although such association of 

brecciated country rocks within mineralized veins have not yet been 

reported for the Helmsdale granite, Tweedie (1979) reported the 

existence of a zone of chalcopyrite, molybdenite, pyrite and quartz, 

occurring as narrow veins and joint coating in an outcrop of 

brecciated finer-grained granite (central granite phase) in the valley 

of the Ord Burn (see Fig. 2.1 for location). The A joint sets 

commonly occur as vertical and open joints (between 6 to 20mm wide) 

with a rather rough surface,

4.3,3. Chemical weathering (decomposition)

This is generally a destructive process which weakens the rock 

due to change of the mineral composition into new compounds by the 

action of chemical agents such as acid in the air, in rain and in 

river water. However the decomposition process can sometimes 

strengthen the rock substances rather than weaken them due to 

silicification and calcification.

Chemical weathering affects almost all minerals and only a few, 

among them quartz, may remain unaffected. The greater the percentage
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of weathexable minerals, particularly the ferromagnesian minerals, 

in the original rock the more advanced are the chemical changes. The 

chemical processes involved in decomposition are; oxidation, reduction, 

hydration, hydrolysis, carbonation, solution and leaching.

The great majority of igneous rocks in Britain are weathered to 

some extent, including the Helmsdale granite and other granitic rocks 

on the east coast of Scotland (i.e. Peterhead and Strichen; see 

Fitzpatrick 1963).

At the north of the Helmsdale river (Allt Cille, see Fig.2.1), 

the presence of deeply weathered rock of the CGP type (at least 35 

metres deep) has been reported by the Institute of Geological-Sciences 

(Gallagher e_t 1971). Based on this report and further study by 

Tweedie (1979), it has been demonstrated that the Helmsdale granite 

was unroofed for the last time during the Tertiary period, allowing 

the formation of deeply weathered mantle to cover the Helmsdale granite. 

But as a result of Pleistocene ice advances, most of the existing 

residual soil and weathered rocks had been removed, leaving behind 

fairly fresh rocks generally containing only slightly weathered to 

partly stained rock. If this is true then the presence of deeply 

weathered rock in the north east of Scotland, including that in some 

parts of the Helmsdale granite, must be regarded as a result of 

weathering processes of pre-glacial age as was suggested by Fitzpatrick 

(1961). Moore (1979) also concluded a pre-glacial age for weathering 

of the Peterhead granite, based on the existence of fragments of 

weathered granite in the overlying boulder clay.

It is also true that the Helmsdale granites have 

been subjected to hydrothermal alteration some time before weathering 

took place, since a high concentration of U, associated with deep
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weathering of the granites, was demonstrated by Tweedie (1979) as 

the result of subsequent weathering and redistribution of U in 

deeply weathered material, (see alteration section following).

4.3,4. Hydrothermal alteration of the Helmsdale granites

For engineering purposes, chemical decomposition can be divided 

into two processes described by the following terms :

a) Chemical weathering, which is decomposition caused by 

surface agencies such as air and water,

and

b) Chemical alteration, which is decomposition caused by water 

and gases of plutonic or volcanic origin - known as 

hydrothermal agencies.

The resulting substances of chemical alteration are called "alteration 

products" which can be distinguished from chemical "weathering 

products" on the basis of the extent, distribution and type of 

material resulting from each process. Weathering products are 

generally found within 100 metres of the ground surface (except for 

some rare conditions in which the weathered material could be found 

at much greater depths), the effects dying out with depth. In the 

case of alteration products however, these can be encountered at any 

depth below the surface and also differ in type of mineralogical 

change.

Simpson et (1976, 1979) in their study of several Caledonian 

granites from northern Scotland reported that the Helmsdale granites 

have an anomalously high uranium content (between 1-18 PFm) compared 

to other granites (between 2-8PPm), This enrichment of uranium is 

believed to be the result of a general weak, low to medium temperature
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(in the range of 100-400°G) hydrothermal event. But in some areas, 

mainly within the finer-grained type (FG) where the alteration is 

intense, the uranium content increases to up to 70PPm (see Fig. 4.3), 

This latest local high concentration of U is probably due to 

redistribution of uranium by secondary action such as weathering 

processes. This point however, would suggest that the main hydro- 

thermal event must have taken place sometime before the weathering 

processes started, and before the unroofing of the intrusion in Lower 

Devonian times (Tweedie 1979).

The source of hydrothermal fluids responsible for the alteration 

of the Helmsdale granite is not yet quite clear. Based on a study of 

similar alteration processes by Sheppard (1977), it was suggested by 

Tweedie (1979, 1981) that the hydrothermal fluids were derived from water 

circulating at various times in fractures and faults related to 

tension and movement on the Helmsdale Fault, which set up a convection 

system driven by a heat source at depth in the intrusion. There are 

two ways in which such heat necessary to generate the convection system 

could be produced; a) a hot interior of the presently exposed finer- 

grained granite type (FG), and b) as the result of a later intrusion 

phase as suggested by G.C, Brown, based on aeromagnetic evidence and 

further supported by Watson and Plant (1979) who suggested that a 

younger intrusion may be present at depth, beneath the Helmsdale 

granite which could have supplied heat, uranium or other mineralization. 

This idea is also supported by a similar conclusion based on the study 

of hydrothermal alteration events by Gavrilan and co-workers (1967),

The chemical and mineralogical changes due to hydrothermal 

alteration in the Helmsdale granite were studied in the present work.
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During the sampling collection from Ousdale Quarry, which is a coarser- 

grained porphyritic type, a zone of highly altered granite, about 5 

metres wide, was observed on the left-hand side of the quarry. Two 

samples (58 and 59) were selected for analysis from this hydrothermally 

altered zone together with more samples from the adjacent, apparently 

unaltered granite, of which two - one from each side of the altered 

zone (57 and 60) - were also analysed for reference. Thin section 

study of the samples 58 and 59 (altered once) has revealed intense 

alteration, with complete sericitization of plagioclase and complete 

transformation of biotite to muscovite and release of iron-oxide as a 

result of alteration processes. K-feldspar also appears to be 

affected and shows cloudiness under the microscope, particularly along 

the cleavage. Although quartz is not affected by alteration, its 

size has been reduced to small rounded crystals.

Four whole rock major, and trace element analyses of the samples 

for potassic alteration zone are presented in Table 4.3. The 

analyses of the two sericitized samples show a gain in K, total Fe, Mg, 

A1 and water, accompanied by loss of Si, and Na, while other elements 

remain more or less constant. The increase of K^O and F (fluorine) 

up to 3 times in the zone of intense petassic alteration has also been 

reported by several works as the result of a hydrothermal event 

(Gallagher e^ 1971; Tweedie 1979, 1981). The high potash values 

in the zones of intense alteration reflect the amount of sericitic 

alteration in these zones. The effect of sericitization on the 

alkaline elements is.best shown by the "igneous spectrum" of Hughes 

(1972), where the altered samples are displaced out of the normal 

range of granite values into the K-enrichment field (Fig.4.4, Plot a). 

The effects of sericitization on the position of the samples in the
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Q-Ab-Or diagram of Tuttle and Bowen (1958) are equally pronounced 

(Fig. 4.4, Plot b) displacing the altered samples to Q-Or join, 

due to an increase of K and reduction of Na and Ca contents as a 

result of the alteration of plagioclase and biotite to K-mica. 

Furthermore, in an AFM plot (Fig. 4.4, Plot C) the altered samples 

are slightly displaced towards the MgO corner if measured FeO is 

used, but if the total iron is used as FeO the increase of 

content (limonite and hematite) of altered samples, as a result of 

oxidation of Fê "** to Fe^^ in the biotite, drives the altered samples 

towards the F corner.

4.3,5. Petrography of the weathered granites

Based on visual assessment of the quarry faces combined with a 

close examination of handspecimens obtained from them, it appears 

that the Helmsdale graniteshave been affected by weathering processes 

in the following sequence:

1). Formation of discontinuities such as joints and 

fractures as a result of physical weathering,

2), Opening of discontinuities and breakdown of rock 

mass (block disintegration) as a result of alter­

native actions of freezing and thawing. Steps 1 and 

2 become more advanced towards the upper part of the 

quarry faces,

3). Discolouration of discontinuity surfaces from brown to 

pale brown (the FG type) and reddish brown (the CGP 

type) as a result of chemical alteration processes, 

and penetration of discolouration into the rock 

accompanied by partial decomposition of some minerals
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(i.e. biotite and feldspar) to their secondary 

mineral products (dominated by illite and small 

amounts of kaolinite.

4). Increase in the amount of discolouration and decom­

position of some minerals to clay minerals (dominated 

by kaolinite), accompanied by a small increase in the 

percentage of microfractures.

Thin section description

Thin sections were used to characterize optically the composition 

of the parent rocks and their secondary products together with different 

stages of mineral breakdown. The relatively fresh samples from the 

lower part of the quarry faces (samples 37 and 54) showed that 

assemblages of primary and secondary minerals were as follows:

K-feldspar (orthoclase and occasionally microcline perthite), plagioclase 

(albite and lower oligoclase), quartz, biotite and hornblende (this 

mineral was observed mainly in the FG type), plus muscovite and 

chlorite as secondary minerals. Although the mineral constituents 

examined in handspecimens showed no sign of alteration, under the 

microscope, feldspars showed cloudiness due to numerous small 

inclusions of secondary minerals (muscovite flakes) as a result of 

hydrothermal alteration - "sericitization".

The "sericitization" process is characterized in the Helmsdale 

granite by the partial breakdown of both types of feldspar to muscovite 

(or its finer-grained form "sericite"). Practically all plagioclase 

feldspar grains in samples from both granite types are altered and 

the altered minerals usually have very irregular outlines. In 

contrast to plagioclase feldspar, K-feldspar appears to be less 

affected by "sericitization". The volume of any particular K-feldspar 

crystal altered to secondary muscovite (usually found along the
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fracture) is very small at less than 10%, compared to plagioclase 

which is usually more than 20% in the same thin section. During 

this early stage of alteration biotite crystals also appeared to 

have been altered to secondary chlorite. Optical examination of 

thin sections shows clearly that alteration begins around the 

margin and along the cleavage planes of biotite and gradually pro­

ceeds inwards, resulting in the formation of a green chlorite. The 

The proportion of biotite that is altered varies from less than 5% 

to over 90%.

Quartz is fresh and unaffected by alteration in samples from 

the lower part of the quarry faces. There are, however, a few short 

and tight intergranular microcracks mainly confined within the quartz 

crystals. Plates 4.1 and 4.2 show samples representative of this 

early stage of alteration.

The next stage of alteration can be recognised among the samples 

taken from the middle part of the quarry faces (samples 31, 49) which 

show further development of fractures, characterized by the appearance 

of longer, transgranular and stained microcracks on some minerals 

such as plagioclase feldspar and quartz grains (Plate 4,3),

Plagioclase feldspar appears to be more cloudy and more sericitized as 

the rock becomes more weathered. Alteration of plagioclase feldspar 

is mainly confined along the central part of the minerals and the 

cleavage and twinning planes. Sometimes small opaque areas are 

formed in some plagioclase (samples from the FG type in particular) as 

a result of extreme alteration and intense iron oxide staining. Most 

plagioclase grain boundaries, especially those between plagioclase 

feldspar and quartz in samples from the CGP type granite, are fractured 

by tight to slightly open but stained grain boundary type cracks.



PLATES 4.1., 4.2.

Photomicrographs of relatively fresh granite showing 
cloudy and slightly sericitized plagioclase (PI), 
cloudy but fresh K-feldspar (K-fel), large quartz 
with no cracks, and partially chloritized biotite. 
Grain boundaries are tight. Microcracks are few, 
intergranular and mainly in plagioclase and quartz. 
Plate 4.1. is from Helmsdale Quarry (FG type) and 
Plate 4.2. is from Ousdale Quarry (CGP type).
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Biotite also appears to be more weathered, Pleochroism of the 

biotite is lost to some degree, and marked colour changes from dark- 

brown to golden-yellow are very common. At the same time the 

decomposition of biotite was found to be accompanied by iron 

seggregation along cleavage planes and sometimes by loss of iron, 

preceded by the oxidation of ferrous to ferric oxides and 

loss of magnesium, potassium, sodium and a gain in water (see also 

Mineral Chemistry section). K-feldspar, now more weathered, 

appeared to be more cloudy (up to 25%) and some of them had developed 

microcracks. Quartz still showed no sign of alteration, but had 

developed more microcracks.

The final stage of weathering process was observed in samples 

from the upper part of the two quarry faces (samples nos. 27, 44). 

This stage is characterized by a high proportion of microcracks which 

vary in shape from a simple to branched transgranular type. Tight 

microcracks are normally iron-stained but iron-oxide has been removed 

from the open cracks which are now filled with secondary minerals 

formed during weathering. Alteration of biotite which started from 

the rims and cleavage planes long before this stage is now complete, 

covering all of the biotite crystals. This process is commonly 

followed by the liberation of iron-oxides, particularly among the 

samples from the Helmsdale Quarry granite (FG type). Although some 

of the released iron-oxides fill the microcracks and grain boundary 

cracks, most of them appear to form euhedral grains (magnetite) which 

are normally associated with the altered biotite and other mafic 

minerals. This phenomenon is particularly much more common in the 

FG type than in the CGP type of granite due to the existence of more 

mafic minerals in the FG type. Another possible explanation for



-104-

this could be because the iron which has segregated in the CGP type is 

leached out through the open grain boundaries.

Most of the plagioclase feldspars were now partially or wholly 

replaced by secondary minerals (kaolinite) in all samples. Where

the replacement is incomplete, the alteration was observed to be 

concentrated either adjacent to grain boundaries (i.e. mainly in the 

CGP type) or in the centre of the plagioclase grain surrounded by a 

clear albite rim. Pores were occasionally observed in some plagioclase 

feldspar as a result of the removal of alteration products by solution 

and could be seen to be deposited along the joints and open cracks. 

K-feldspar appeared more cloudy than before, but alteration is 

incomplete, covering up to 40% of its volume percent. In some samples 

a nearly opaque area has been formed in some of the K-feldspar grains. 

Quartz has also been intensely fractured by tight to open microcracks 

(Plate 4.4),

Based on thin section study of weathered rock of the Helmsdale 

granites, the sequence and nature of weathering processes has been 

revealed as far as the primary minerals are concerned, as follows: 

hydrothermal alteration, including sericitic and chloritic alteration, 

followed by physical and chemical weathering. Both biotite and 

feldspar have undergone some mineralogical changes which can be 

attributed to either hydrothermal alteration or weathering.

4.3.6. Mineralogical composition

The bulk mineralogy of the samples, as revealed by the X-ray 

diffraction traces (XRD) in Figures 4.5, 4.6 is further evidence 

accompanying the thin section study and can be related to the major 

changes in mineral composition of the samples explained in the thin



PLATE 4.3. Photomicrograph of sample illustrating
higher degree of alteration with further 
development of fractures. Microcracks 
are transgranular and stained. Grain 
boundaries are also stained, but tight, 
except for plagioclase which are open 
and filled with iron-oxides.

PLATE 4.4. This plate shows more advanced alteration 
process, having most of the plagioclase 
partially or wholly replaced by secondary 
minerals (kaolinite), assuming an opaque 
appearance under Plain light. The rock 
fabric is highly microfractured by tight 
to open, stained microcracks.
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section study. The diffraction trace of relatively fresh samples 

from the lower part of the Ousdale Quarry face (CGP type) is shown in 

Figure 4.5, trace a, which contains many high peaks due to a high 

percentage of both quartz and feldspars (Q and F peaks respectively) 

and a few very small peaks due to clay minerals (C), The traces b 

and c for slightly more weathered samples from the upper part of the 

quarry face, also contain many high peaks of quartz and feldspars 

like those shown in trace a, but have more clay (C). The amounts of 

feldspar have also been reduced upwards accompanied by slightly in­

creased amounts of quartz.

The diffraction races of the samples from Helmsdale Quarry 

(FG type) are shown in Figure 4.6, All the traces (a, b and c) con­

tain some high peaks similar to traces from Ousdale Quarry (CGP type, 

see also Fig, 4,5) due to high contents of quartz and feldspar (Q and

F peaks) and a few moderate to small peaks due to clay minerals. The

only difference between the traces of these FG type samples and those 

obtained from the CGP type is the appearance of a new 14,10 A° peak 

(001 chlorite) and it’s second order (002) which appears as a strong

7 A° peak (002 chlorite) in the trace from more weathered samples

(Fig, 4,6, trace c),

4,3,7. Microprobe analyses of selected minerals and their 
mineral chemistry

Microprobe analyses were used to study the chemical or mineral 

elements which were active during weathering processes (Menier and 

Velde 1979), Assemblages of primary and secondary minerals and their 

modes, both for the FG type granite (samples from Helmsdale Quarry) 

and the CGP type granite (samples from Ousdale Quarry) are presented
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in Tables 4.4 and 4.5 respectively. A selected number of microprobe 

analyses of minerals from each sample are given in Tables 4.6, 4.7 

and 4.8.

K-feldspar

K-feldspar in samples from both granite types were examined and

appeared to be less affected during hydrothermal and subsequent

weathering alteration. The clear, primary K-feldspar occurs in all

the samples and has a composition of An„^ to An. . and Or__ to Or-„^,UU 4 # i oU iUU
However, only some of the clear K-feldspars have been replaced by 

cloudy, secondary K-feldspar and this is a common feature among most of the 

samples. Although the replacement in most samples is partialand 

commonly occurs along the cleavage planes and transgranular cracks, in 

some other samples it is complete.

Unlike analysed clear K-feldspar which shows a closer range of 

composition in any one sample, the altered one exhibits a wider range 

in composition from orthoclase fledspar (Or^Q^) to pure albite (Ab^^^).

The altered K-feldspar grain is commonly perthite, consisting of a 

K-rich part which is altered and cloudy in thin section and Na-rich 

which is clean and unaltered, formed during exsolution process at low 

temperature from an original homogeneous feldspar solid solution,

(see Chapter 2 for more detail),

Plagioclase feldspar

Unlike K-feldspar which showed little mineralogical change 

during weathering, the plagioclase feldspar exhibited much more 

alteration effect which the microprobe analyses revealed as a loss 

of some chemical constituents, most commonly Ca and Na, Nevertheless, 

the clear (unaltered), primary plagioclase feldspar occurs in all the 

samples, but it’s volume percentage decreases from samples numbers 37
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te 24 and 55 to 43 within each FG and CGP type respectively, (See 

Tables 4.5 and 4,6).

TABLE 4.4. Primary and secondary minerals plus AI^ and AI^ (FG)

Helmsdale Quarry (FG type)
Sample

No. 24 25 29 32 34 36 37

Primary minerals
Quartz 25,18 25.92 27,41 24,02 26,00 25.10 25,75
Clear K-feldspar 18,52 32,12 29,01 33.12 32.73 36,42 33,90
Clear plagioclase 8,12 10,49 10,14 15,22 16,43 14,16 17,30
Biotite 0,15 0,82 1.00 2.12 2,53 3,71 3.92
Magnetite 0,19 0,14 0,17 0,10 0,11 0,20 0.10
Accessory tr tr tr 0,39 tr tr tr

Secondary minerals
Cloudy K-feldspar 17,94 10,12 7,59 6.37 5.14 5,75 4,18
Cloudy plagioclase 24,51 15.84 XI. 13 14,81 4,01 11,41 10,6
Chlorite 0,15 0.40 1,10 1.90 1,41 2,00 2.75
Muscovite 0,41 0.30 0,55 1,00 1,05 1.25 1,50
Clay minerals 4,00 3,50 1,45 0,65 0,59 0,00 0,00
Iron oxide 0,85 0,35 0,45 0,30 0.00 tr 0,00

Total feldspar 69,09 68,57 67,87 69,52 58,31 67,74 65,98
Total altered feldspar 42,45 25,96 28,72 21,18 9,15 17.16 14,78
Airf 0,61 0,38 0.42 0,30 0,16 0,25 0,22

Total mafic minerals 4,30 4.72 3,55 4,67 4,53 5,71 6,67
Total secondary mafic 4,15 3,90 2,55 2,55 2,00 2,00 2,75
AI 0,96 0,83 0,72 0,55 0,44 0,35 0,41m
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TABLE 4,5, Primary and secondary minerals plus AI^ and AI^ (CGP)

Ousdale Quarry (CGP type
Sample
No, 43 44 46 48 53 54 55

Primary minerals
Quartz 28.15 29,47 31.72 27,95 26,70 29,25 .25.5
Clear K-feldspar 28.55 29.32 35,17 40,0 32,85 35.98 30,52
Clear plagioclase 2.35 4.15 17.00 9.25 8,10 5.34 10,14
Biotite 1.22 0,90 2.25 2,10 2,45 3,15 2,82
Magnetite tr tr tr tr tr tr tr
Accessory tr tr tr tr tr tr tr

Secondary minerals
Cloudy K-feldspar 11.5 8,85 4,45 4,90 5.14 4,05 5,66
Cloudy plagioclase 24.68 23,93 7,11 13,85 22.52 17.09 23,32
Chlorite 0.45 0,13 0.25 0.34 0,33 0,55 0,90
Muscovite tr 0,35 tr 0,46 0,99 1,25 1,09
Clay minerals 2.22 2,21 1.38 0,90 0,92 0,05 0,05
Iron oxide 0.98 0,69 0,72 0,25 0,00 0,05 0.00

Total feldspar 67,08 66,25 63,73 68,0 68,61 62,46 69.64
Total cloudy feldspar 36,18 32.78 11,56 18.75 27,66 21,14 28.98
AI^ 0,54 0.49 0,18 0,27 0,40 0,34 0,42

Total mafic minerals 3,69 3,24 3,73 3,34 3,70 3.75 3,77
Total secondary mafic 2,47 2,34 1,48 1,24 1.25 0,60 0,95
AIm 0,67 0,72 0,40 0,37 0,34 0,16 0,25
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This decrease = in volume percentage of clear plagioclase in samples 

from the upper part of the quarry faces . i s accompanied by a 

progressive increase in weathering intensity as was shown by XRD 

traces (Figs 4.5 and 4.6).

While clear (fresh) plagioclase in general, has average com­

position - Or^Q Abgy An^, the altered plagioclase exhibits more 

chemical variation. The altered plagioclase in samples from the FG 

type granite shows a gradual decrease in Ab content from the rim with 

almost pure albite to the core with the composition of Ab . The An 

content of the altered plagioclase also decreases, but in a closer 

range from An^ to An^ in the same direction. But the Or content in the 

same altered plagioclase also shows a wider range from Or^^ to Or^ from 

rim to core respectively. The chemical composition of the altered 

plagioclase in samples from the CGP type granite on the other hand, 

shows a different trend, with margins of the mineral containing higher 

concentrations of Ab and Or and lower concentrations of An than the 

core. Such analysed altered plagioclase from the CGP type shows an 

average composition of Or^ Ab^^ An̂ ^̂  ̂ and Or^ ^ Abg^ ^ An^ at core and 

r im respectively.

Quartz, opaque and accessory minerals

All samples contain a significant amount of quartz and several 

analyses confirm that it is practically pure SiO^ and shows no sign 

of alteration.

Magnetite occurs in most of the samples, especially those 

samples from the FG granite type. Most of the magnetites occur as 

euhedral minerals associated mostly with biotite and other mafic 

minerals. Microprobe analyses show that magnetite in samples from the 

FG type is relatively homogeneous in composition and almost pure iron-
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oxide (FeJ),^) with no Ti and Mn. Because of its texture of fine

granules, needles or plates within other mafic minerals and secondary

chlorite, and also because of its chemical composition, the origin of

this magnetite could be related to a secondary formation. Analysed

magnetite from the FG type also shows a small amount of A-l^Q^ and

SiO^ which probably represents impurities, although small amounts of
3+A1 substitute for Fe can occur.

Analysed opaque (magnetite) minerals from the CGP type on the

other hand, show that in most samples they are relatively less

homogeneous in composition than those of the FG type. Here analysed

magnetite shows a lower percentage of iron-oxide (Fe^O^, FeO) content
3+accompanied by a richer A1 content, which replaces Fe and also has a
2+small amount of Ca which may partially replace the Fe , Ti is also 

present in small amounts in all magnetites analysed in samples from the 

CGP type. The chemical composition shows however, that most of the 

magnetites are close to a magnetite-ulvospinel solid solution (Deere 

e_t al̂ . 1966), The differences in magnetite composition existing within 

each granite, as well as between the two granite types are probably 

caused by partial conversion of primary titaniferous magnetite to a 

Ti-poor one during hydrothermal alteration and/or weathering processes, 

Bioti te

Analysed biotites in samples from FG type granite are distinc­

tive in their high MgO content and low total FeO, Although the 

composition of biotite is nearly constant within any specimen, it 

varies from one specimen to another. Nevertheless, analysed biotite 

in samples from the lower part of the quarry face show lower MgO and 

higher KgO, TiO^ than those analysed from the upper part. This point 

also suggests that samples from the lower part of the quarry face are
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less altered. Furthermore, analysed biotites from relatively 

fresh samples show alteration to secondary green chlorite accompanied 

by magnetite as its main by-products. This partial chloritization 

of biotite is commonly accompanied by similar alteration of feldspar 

(sericitization) in the same relatively fresh samples which qgain 

can be related to hydrothermal alteration.

Samples from the CGP type were also chosen for microprobe 

analyses for biotite (Table 4.6) for which the results appear to be 

slightly different from those obtained for the FG type. Here 

biotite is characterized by lower MgO and higher total FeO 

content. Furthermore, the alteration product is mainly clay and 

only a small volume percentage of it has altered to chlorite.
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FG
32 Oxygen 

129 124 121 165

CGP 
23 Oxygen

166 167

SIO^ 31.41 31.94 37.61 34.95 31,85 24.90

TiO^ 0.61 0.99 2.15 • 3.90 3,43 0,00

AI2O3 15.26 14.21 13.54 12.77 14,30 19,20

T FeO 18.95 19.81 17.23 28.88 30,74 36,00

MnO 0.38 0.49 0.34 0.34 0,45 0,40

MgO 16.52 16,66 14.59 3.69 5,54 4,93

CaO 0.00 0.10 0.00 0.00 0.00 0.00

NazO 0.00 0.00 0.00 0.00 0.00 0,00

K^O 2.09 3.52 8.86 8,88 4.70 0,65

Total 85.2.2 87.7 j 94.3^2- 93,21 90.2? 3 6  O'g

K 0.64 1.07 2.50 1,94 1.03 0,16

Na 0.00 0.00 0.00 0,00 0.00 0.00

Ca 0.00 0.03 0.00 0,00 0,00 0.00
Fe 3.82 3.94 3.19 4.14 4.50 5.72

Mg 5.93 5.90 4.81 0.94 1,42 1,35

Mn 0.08 0.10 0.06 0.05 0,07 0,06

Ti 0.11 0.18 0.36 0,51 0,45 0,00

A1 4.33 3.98 3.54 2,58 2,96 4,27

Si 7.56 7.59 8.33 6 5,57 4.70

TABLE 4.6. Microprobe analysis of biotite^- mr x/ure.ç.
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Chlorite

Chlorite occurs in all samples from both granite types, and 

it shows a restricted range in composition. Chlorite composition 

in all samples except sample 82^^^ is characterized by its low total 

FeO and high MgO content (see Table 4.7). A small amount of TiO^ 

(less than 1%) was found only in chlorite analysed in samples from 

the FG type, whereas those samples from the CGP type show no Ti02 

in their chlorite composition. Another difference between the two 

granite types is in their A1 content which is slightly higher in 

specimens from the FG type. Chlorite,in general, occurs either as a 

direct replacement of biotite or along the edge and cleavage plans 

of biotite and other mafic minerals, with no obvious textural relation 

to any primary mafic minerals,

Muscovi te

Muscovite occurs in a small amount only as a secondary mineral 

in all samples. It is usually restricted to samples containing more 

altered plagioclase feldspar and principally occurs as very small 

flakes, replacing the interior of plagioclase feldspar. Because of 

its small grain size, only a few satisfactory analyses of muscovite 

from the CGP type were obtained (see Table 4,8),

Table 4,8 also shows the chemical composition of analysed 

illite in samples from both granite types.
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CHLORITE

149
FG
150 82(b) 163

CGP
65 66

SiOz 25.84 28.75 47.13 29.04 25.28 24,32

TiOz 0.15 0,14 0.58 0.00 0.00 0.00

AI zOb 20.57 20.76 15.62 18,56 15.72 15.49

T FeO 21.43 20.00 20.68 17.55 21.80 24.35

MnO 0.60 0.35 0.00 0.47 0.17 0.16

MgO 16.52 15.42 0.74 18.89 12.25 11.97

CaO 0.00 0.00 0.76 0.00 0,36 0.24

NazO 0.00 0,00 0.00 0.00 0.00 0.00

0.18 0,96 0.94 0.61 0,47 0.31

Total 85.25 86,3 V 86.43 85.10 76.05 76.8 Z

Ca 0.00 0.00 0.18 0,00 0.10 0,07

K 0.06 0.29 0.27 0,19 0.16 0,11

Na 0.00 0.00 0.00 0,00 0.00 0.00

Fe 4.36 3.96 3.88 3.49 5.04 5.67

Mg 5.99 5.45 0.25 6.69 5.04 4.97

M r 0.125 0.07 0.00 0.09 0.04 0.04

Ti 0.03 0.02 0.09 0.00 0.00 0.00

A1 5.90 5.79 4.13 5,20 5.12 5.09

Si 6,29 6.81 10.57 6.90 6.99 6.77

TABLE 4.7. Microprobe analysis of chlorite.
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(Illite) FG 

78 96a 96b ■

(Illite) CGP 

71 74 75

Muscovite
CGP
73

SiOj 45.87 49.16 49.23 50.64 48.22 48.99 46.98

Ti02 0.00 0.00 0.15 0.00 0,00 0.00 0.19

24.96 26.12 26.25 25.06 29.95 30.14 20.61

T FeO 7.01 4.91 4.77 4.31 4.09 3.02 14.32

MnO 0.00 0.00 0.00 0.00 0.00 0,00 0.00

MgO 1.54 1.84 1.93 0.00 0.93 1.32 2.61

CaO 0.11 0.00 0.00 0.00 0.00 0.00 0.14

Na^O 0.00 0.00 0.00 0.00 0.00 0.00 0.00

KjO 8.85 9.75 9.36 10.23 9.73 10.19 8.42

ÉS33 9 3 . ^
Ca 0.02 0.00 0.00 0.00 0.00 0.00 0.03

K 2.41 2.53 2.42 2.61 • 2.48 2.56 2.26

Na 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Fe 1.25 0.83 0.81 0.72 0.68 0.49 2.52

Mg 0.49 0 .56 0.58 0.85 0.28 0.39 0.82

Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Ti 0.00 0.00 0.02 0.00 0.00 0.00 0.03

A1 6.28 6.25 6.27 5.91 7.04 7.00 5.11

Si 9.79 9.98 9.97 10.13 9.62 9.66 9.88

TABLE 4.8. Microprobe analysis of illite.
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4.3.8. Chemical changes on weathering and hydrothermal 
alteration

A geochemical study was carried out of all 28 samples taken 

from the two quarry faces (analyses numbers 25. to 39 from Helmsdale 

Quarry and 43 to 55 from Ousdale Quarry). The detailed geochemical 

results, including major and trace elements are given in Table 

Appendix 1. Chemical analysis was carried out in order to follow 

the chemical changes involved in the mineralogical transformation 

and formation of secondary minerals during weathering.

From the petrography study it has been revealed that the 

degree of weathering has decreased gradually from the top of the quarry 

faces downwards, characterized by a higher content of clay minerals 

like kaolinite in samples from the upper part of the quarry faces (see 

Figs 4,5, 4.6), Further evidence has been provided by microprobe 

analyses of primary and secondary minerals which has shown that the 

volume percentage of altered feldspars and altered biotite also 

decreased downwards (see pagello ).

Study of the geochemical data indicates that small chemical 

changes have occurred during weathering for some of the major elements 

and lesser changes for the trace elements, telated to such mineralo-= 

gical changes during weathering and hydrothermal alteration.

In most studies, the interpretation of geochemical data from 

weathered rocks is commonly based on a comparison of element concen­

tration in soil (the final weathering product) to those in parent 

rock (fresh rock). It is also possible to estimate the amounts of 

element removal based on camparisons with an element (usually A1 or Ti) 

assumed to be immobile during weathering processes (Harris and Adams 

1966). However, the assumption of immobility for such elements (A1
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and Ti) is not always warranted (Gardner Zl' 1978; Dumon and 

Vigneaux 1979), as was found in the present study. Therefore, the 

chemical variation was studied by plotting all chemical data obtained 

against the related heights of the samples on the quarry faces.

Major element variation

Since the leaching of SiO^, Na^O, CaO and MgO with the advance­

ment of weathering in granite rocks is more considerable compared to 

that of Al^Og and K^O, the ratios AlzO^/(SiOz +  Al^O^) and

(Na^O +  K^O +  CaO +  MgO)/AlzO^ may be used as the indices of chemical 

weathering. Furthermore, the ratio of FOzO^/FeO which was found to be 

a useful index for chemical weathering (Moore 1979), plus microfracture 

index (Fl) after Irfan and Dearman (1978), is also applied in the 

present study to identify different stages of chemical and physical 

weathering of the two granite types (FG and CGP). The results are 

given in Table 4.9 and Figures 4.7 and 4.8 for the CGP and FG types 

respectively.

Figure 4.7 shows that in spite of the increased microfracture 

index (FI), due to increased physical weathering towards the upper 

part of the quarry face, no considerable leaching of SiO^, NagO, K^O 

and MgO occurred on the chemical side. The Fe^O^/FeO ratio, however, 

shows considerable increases towards the top of the quarry, except 

for the last four samples at the top. The same unusually lower 

Na^O/KzO ratio also exists in samples from the top of the quarry, which 

may suggest a strong leaching of Na^O due to breakdown of plagioclase 

feldspar accompanied by a (increase in Fe^O^/FeO ratios because of the 

breakdown of biotite (Fe^"^) and the formation of Fe^O^ which has been 

carried away from more weathered rocks at the top. The original 

mineralogical variation might also be partly responsible for this
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behaviour since one sample at the bottom of the quarry face shows 

a similar result.

Figure 4,8 also shows no variation on the chemical or physical

side except for samples at the top of the quarry. The Fe^O^/FeO

ratio however, shows a very high value in some samples, due to leach- 
3+ing out of the Fe at the top and its accumulation along the grain 

boundaries (iron stained boundary) as was observed in the thin 

section study.

In order to find out the composition and amounts of important 

minerals, such as feldspar (plagioclase feldspar in particular) and 

their behaviour during the weathering process, the major element 

analyses of all the samples from the two quarry faces were re­

calculated to CIPW norms so that the results could be compared between 

different rock types as well as different samples within each granite 

type. In Figures 4,9 and 4.10 normative albite, quartz, orthoclase, 

albite plus anorthite (plagioclase) and orthoclase plus plagioclase 

(total feldspar) have been plotted against the height of each sample 

from the CGP type and FG type respectively.

Samples from the CGP type (fig. 4,9) show that the amounts of 

albite, orthoclase, plagioclase (Ab and An) and total feldspar 

(Ab +  Or +  An) increase at the expense of quartz, which decreases.

In particular, plagioclase (Ab +  An) appears to be slightly more 

susceptible to breakdown as a result of chemical weathering than 

orthoclase feldspar. Samples from the top of the quarry face, 

however, show rather different proportions in their orthoclase and 

quartz amounts than the rest of the samples, i.e. a very high amount 

of orthoclase is accompanied by very low quartz, while plagioclase 

shows normal behaviour as do the remainder of the samples.
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Thls is partly due to the original variation in mineral composition, 

since the CGP type samples contain large orthoclase phenocrysts. The 

same explanation is true for the sample from the bottom of the quarry 

face, with almost the same high amount of orthoclase and low quartz.

Samples from the FG type (Fig, 4.10) on the other hand, show a 

different trend than was observed in samples from the CGP type. Here 

the figure tends to support the view that a decrease in the plagioclase 

is followed by an increase in the orthoclase as well as quartz, due to 

the effect of weathering and breakdown of plagioclase (less Ab ■+■ An), 

Variation in sample 32 (6 metres high) however, is again related to 

the original mineralogical variation since the high amount of ortho­

clase is followed by very low quartz, while the plagioclase shows 

normal behaviour. This rather different mineralogical behaviour 

during the weathering process between samples from the two quarry faces 

is better illustrated in Figure 4,11, where normative plagioclase 

Ab + An) in samples from both granite types are plotted against 

normative quartz (Plot a), and normative orthoclase against normative 

quartz (Plot b). Furthermore, Figure 4,12 shows a plot of normative 

plagioclase (Ab 4- An) against orthoclase which suggests that while 

the decrease in plagioclase in the FG type is directly related to an 

increase in normative amounts of orthoclase, the variation of 

plagioclase in the CGP type is completely unrelated to orthoclase 

feldspar.

Distribution of trace elements during weathering process

The behaviour of trace elements and their relative changes 

during the weathering along the two quarry faces is shown in Figures 

4,13 and 4,14,

These figures show, in general, the absence of significant
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changes for the majority of the trace elements In samples from both 

quarry faces, which is rather consistent with major element study,

A small enrichment of Zr in samples from the upper part of the quarry 

faces can be attributed to the accumulation of zircon in samples with 

more advanced weathering.

Observations in the field, together with chemical and mineralo­

gical studies indicate that the tops of the two quarry faces (maximum 

three metres) are the most chemically altered parts, whereas the 

effect of physical weathering (shown by FI: see Figs 4.7, 4.8) is 

extended deeper into the quarry faces.

The following series of relatively stable major primary 

minerals during weathering has been established; Biotite 

plagioclase feldspar (albite) K-feldspar (orthoclase) quartz, 

in order of increasing stability. The chloritization of biotite 

and sericitization of feldspar which occur in the parent rocks 

continues during weathering. Small chemical changes occur mainly 

in a ratio of Fe^O^/FeO, Ca and Na, whereas among the trace elements 

only small enrichment of Zr ocurred in more weathered samples.

4.4. The clay mineral study of the weathered Helmsdale 
granite

The clay minerals are a group of secondary minerals formed at, 

or near, the earth's surface by weathering or hydrothermal alteration 

of feldspar and other aluminous silicates.

The clay minerals are built up of two basic structural units, 

the first comprising silicon-oxygen sheets, each formed by the 

linking together of tetrahedral SiO^-group, which is generally 

referred to as a "tetrahedral" layer, and the second unit, called 

"octahedral" layers, comprising a metal ion, such as aluminium or
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magnesiutn, lies within a group of six hydroxyls arranged at the 

corners of an octahedron. Adjoining octahedrals are linked by 

sharing hydroxyls (see Grim 1962; Brindley and Brown 1980 for more 

detail).

Different arrangements of the above layers built up the units 

of which the clay minerals are composed. Some clay minerals have 

two-layer units (e.g. kaolinite), and others have three-layer units 

(e.g. montmorillonite), in which an octahedral layer lies between two 

tetrahedral layers. Figure 4.15 shows the structure and properties 

of principal clay minerals.

Although the atomic structure and cyrstal form of clay minerals 

is similar to that of mica, individual clay crystals are normally much 

too small to be identified using an ordinary microscope. Therefore 

the clay size fractions of four samples from the Helmsdale granites 

were examined by X-ray diffraction method to determine: a) what type

of clay mineral exists in each granie type, b) the nature of the 

alteration processes (weathering or hydrothermal alteration, and 

c) the intensity of alteration along the quarry faces.

Preparation of samples for XRD testing was carried out, 

starting with disaggregation of more weathered samples, from the upper 

part of the quarry faces, using a gentle grinding method under water, 

and then less weathered samples were crushed to small pieces using the 

mechanical, jaw crusher. Since such mechanical crushing processes tend 

to disorder the crystalline structure of some clay minerals, the size 

of fresh samples was reduced to IQmmlong aggregate using a jaw crusher 

after which they were subjected to a physical dispersion procedure 

such as being vigorously shaken in water for 48 hours. Finally, two 

size fractions 2^ m  and 0 .5y\m were separated by standard
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-135-

sedimentation procedure. There are considerable limitations to 

analyses based on the basal spacing and intensities of each clay 

mineral (Brindley and Brown 1980) and frequently a large number of 

minerals are present, which leads to overlapping reflections and 

few observable reflections from less abundant components. It is 

usual, therefore, to examine clay specimens before and after various 

treatments such as ethylene glycol, to aid the identification of 

smectites, and various heat treatments that collapse swelling 

minerals by dehydrating the interlayer material and destroy or 

transform minerals such as kaolinite and hydroxides. These various 

treatments were exercised for all the samples in the present study.

The X-ray diffraction (XRD) traces are shown in Figures 4,16,

4,17, 4,18 and 4,19 for samples 25, 35, 43 and 54 respectively.

The X-ray diffraction patterns for sample 25 (from the upper part of 

the Helmsdale Quarry, FG type granite) showed the presence of the 

following clay minerals:

' Chlorite

The presence of this mineral in this relatively weathered sample, 

as revealed by X-ray trace (d) in Figure 4,16 (based on the clay 

fraction 2 m), is identifiable by a strong 14 . 10 Peak (001),

accompanied by very weak second-order 4.7 A° Peak (002), Grim et al. 

(1961) and Brown and Bradley (1980) and others have pointed out that 

only those chlorites in which the proportion of octahedral positions 

occupied by Fe iors is not greater than about 30 per cent have such 

strong intensities for their first-order basal reflection. This point 

is also shown by both microprobe analyses of the chlorite (see Table 

4,7) and present XRD trace.

The trace (c), based on 0.5y<m fraction, shows only a small 

reduction in the amount of chlorite present, whereas the trace (b)
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K

2 0
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FIGURE 4.16. The X-ray diffraction trace for sample 25 (FG type).
(a) heated to 550°, (b) after treatment with ethylene glycol vapour,
(c) trace for 0 . 5y<m fraction, and (d) trace for Ijim fraction.
I = Illite, C = Chlorite, K Kaolinite, F = Feldspar,
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showed no sign of displacement on peaks position when the trace 

was run after treatment with ethylene glycol vapour. After the 

heating treatment to 550° (trace a in Fig. 4,16), an increase in 

the intensity of the (Oil) reflection of chlorite and a decrease 

in the intensities of the (002), (003), and (004) reflections would 

normally be expected, but as trace (a) shows the (001) reflection has 

totally gone and other basal reflections show almost no changes 

(the 003 and 004 orders are not included in the trace in Fig, 4.16).

Illite

This is also present in quantity, displayed by 9,9A° peak which

has not been affected by any subsequent treatment (glycol and 550°C

heating), although it is known that illite starts to lose its water

from 200°C to about 600° and eventually its structure is destroyed

above 850°C. Grim ^  (1951); Walker (1950); MacEwan (1947)

have pointed out that the position of the (006) reflection and the

intensity of the second-order basal reflection can generally be used

to distinguish between dioctahedral and trioctahedral forms.

Accordingly, and because of the absence of second-order reflection,

it can be concluded that the form of illite in sample HQ 25 is a

trioctahedral type. This point is further supported by microprobe
4+analysis of illite which shows very low Ti , and the mica (illite) 

is mainly ferriferous in octahedral positions (Table 4.8),

Kaolinite

The X-ray diffraction trace (d) in Figure 4,16 shows, two very 

strong 7,13 A° (001) and 3.57 A° (002) peaks which are adequate for 

identification of kaolinite. Furthermore, on. heating up to 550°C, 

kaolinite peaks totally disappeared due to loss of its crystalline 

character. Based on the ratio of the intensity of reflections, 

Hinckley (1965) showed that a strong and sharp reflection indicated
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the degree of high crystallinity of kaolinite. It is also true 

that the kaolinite in sample 25 is highly crystallized due to its 

very sharp X-ray diffraction peaks (see Fig. 4.16). This figure 

also shows that in sample 25 from the upper part of the Helmsdale 

Quarry face, kaolinite is the most abundant clay mineral present, 

accompanied by lesser amounts of chlorite and trioctahedral illite.

The X-ray diffraction patterns for sample 35 (from the lower 

part of the Helmsdale Quarry, FG type granite) is shown in Figure

4.17, which contains the same clay minerals as present in the X-ray 

diffraction trace of sample 25. The only difference is that here 

the amount of clay minerals is much less than the slightly more 

weathered sample 25, from the upper part of the same quarry face, 

Illite in particular has been reduced greatly in comparison to that 

in sample 25.

In contrast, in samples 43 and 54 from the upper and lower part 

of the Ousdale Quarry face respectively (CGP type granite), illite is 

the most abundant clay mineral present in both samples. The X-ray 

diffraction traces (figs, 4,18 and 4.19) contain very sharp and strong 

9.91 A° (001) reflections followed by very weak 4.9 A° (002) 

reflections and a very much stronger 3.33 A° peak (003) reflection. 

Furthermore, illite in CGP type granite like that in the FG type 

appears to be trioctahedral and its amount decreases from sample 54 

(lower part of the quarry face, less weathered) to sample 43 (from 

the upper part of the quarry face, more weathered), Kaolinite and 

chlorite on the other hand, are less abundant clay minerals present 

in CGP samples, particularly in sample 54 (see Fig, 4.18),
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FIGURE 4.17 The X-ray diffraction trace for sample 35 (FG type) 
See Figure 4,16 for symbols.
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(a)

(b)

29

15 10
FIGURE 4.18. The X-ray diffraction trace for sample 54 (CGP type) 

See Figure 4.16 for symbols.
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FIGURE 4.19. The X-ray diffraction trace for sample 43 (CGP type) 
See Figure 4.16 for symbols.
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CHAPTER FIVE 

Aggregate and its engineering properties

5.1. Introduction

The term 'aggregate* is used to identify any crushed rock or 

sand and gravel used for a variety of engineering purposes, of which 

the two main ones are roadstone and concrete. Aggregate normally 

comprises between 60 to 80 per cent of the volume of Portland ce/va»?/ 

concrete and bitumen mixes (Fig, 5.1), Therefore they should be 

hard, durable, clean and free from harmful materials such as clay 

or dust, iron pyrites, coal, mica, shale or similar laminated 

material, or flaky or elongated particles, in such a form or in 

sufficient quantities to affect adversely the strength or durability 

of the concrete or bitumen mixes (BS 882: 1983). However, the 

cost of rejecting an aggregate because it is of marginal soundness 

or contains a small amount of some unwanted material, can sometimes 

be very high, especially in areas where sound and clean supplies are 

scarce (Fookes 1980),

The suitability of the Helmsdale granite as an aggregate for 

use in different engineering purposes is determined by evaluating the 

material in terms of its physical and chemical properties. Various 

British standard engineering laboratory tests are employed to assess 

the suitability of these aggregates for use in structural purposes, 

including roadstone and concrete making. And finally, the influence 

of mineralogical and geochemical changes, as a result of weathering 

processes, upon aggregate engineering properties have been investigated,
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5.2. Geological factors affecting aggregate properties

The assessment of quality of aggregate is achieved through a set 

of physical tests (BS 812 : 1975). Based on the results obtained by 

these tests, it is common to find that the physical performances of 

crushed rock aggregates from different sources are not comparable, 

even if the parent rocks are the same (i.e. the Helmsdale granites). 

This lack of similarity in aggregate performance is mainly due to 

certain geological factors such as petrography and weathering processes 

to which the parent rocks may have been subjected after they had formed 

(Woods ^  _al. 1960; Hosking 1968, 1976; Hartley 1968, 1974; Ramsay e_t 

al. 1974; Lee ^  aJ. 1975; Irfan e_t 1978; Kazi ejb 1980), The 

difference in aggregate performances is particularly more pronounced 

when there are differences in their grain sizes, porosity and degree of 

alteration. This point however, has been investigated in the present 

study of the two distinct grain size varieties of granite rocks of the 

Helmsdale area.

5.2.1. Petrography

This depends upon a) rock type and b) rock texture. Properties 

such as porosity, grain size, proportion of soft minerals and the 

development of foliation depend upon the process of crystallization in 

igneous rocks. In their unweathered state, most igneous rocks possess 

low porosity and are relatively hard due to the nature of the silicate 

minerals and the crystalline texture, and give high strength aggregates 

(Hartley 1974).

Rock texture has already been described as another important 

factor affecting the performances and properties of aggregates. In 

particular :
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1), The orientation and arrangement of minerals in a rock, and

2). the occurrence and distribution of fossils or metallic 

ores within the rock.

Rocks such as quartzite which is almost entirely composed of quartz 

are brittle, but have a high resistance to abrasion (see page 172) 

even although they tend to have rather low crushing or impact strengths. 

Matthews (1961) demonstrated that aggregates with high silica contents 

(such as acidic igneous rocks), show higher resistance to abrasion 

and poorer adhesion to bituminous binders in the presence of water 

than more basic igneous rocks which contain less free silica and have 

a much higher ferromagnesian content. Coarse-grained rocks tend to 

be weaker in strength than medium to fine-grained rocks (see Figs for 

AIV, ACV, 10% fines). Aggregate which possesses a rough surface, due 

to the type of its mineral constituents, will exhibit a greater 

surface energy (Hughes et aĵ . 1959) and thus forms a stronger bond 

between bitumen and aggregate.

Any 'inclusions' in rocks such as fossils or metallic ores, will 

have an effect upon the aggregate properties, and the extent of any 

effect depends upon the size, proportion and distribution of these 

inclusions within the rock,

5.2.2, Chemical alteration

Chemical alteration and the manner in which it develops can 

strongly influence aggregate properties. Alteration may proceed 

on the periphery, within a crystal, (kernel alteration) or 

throughout the whole crystal. Of the two types of granite in the 

present study, the coarser-grained porphyritic type (CGP) has been 

more affected by peripheral weathering than the finer-grained type
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(FG), Peripheral weathering may reduce the bonding strength between 

grains so that their minerals are easily pulled out as was shown by 

some samples of the CGP type (e.g. samples 75 and 92).

Knill (1960) and Hartley (1968) showed that a small amount of 

alteration materials within a rock can improve its resistance to 

polishing since an assemblage of hard and soft minerals may increase the 

degree of roughness of stone surface (see PSV test results in this 

chapter),

In the U.K. however, chemical weathering is usually a long term 

process and is not therefore considered important in relation to the

relatively short period that an aggregate is in service. In other

countries and particularly those with tropical and sub-tropical 

climates, weathering can present a major problem to engineers with the 

stability of structures as was shown by several workers (Weinert 1968; 

Fookes e_t 1971; Dearman e_t 1978).

5.3. Aggregate shape and surface texture

A  property perhaps even more important than strength is particle

shape. Angular aggregate characteristics give a better interlocking 

property which increases the stability of all types of mixes. Thin 

and elongated aggregate pieces on the other hand, besides being 

subjected to size segregation in the mixing process, tend to be of 

low strength.

The importance of shape and surface texture characteristics were 

studied by Maupin (1970) who discussed the fatigue life of asphalt 

mixes, and concluded that a significantly shorter life occurs in 

mixtures containing "slabby" shaped aggregate. In concrete production, 

smooth and rounded aggregate particles are often more common (from
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gravel deposits, etc.), but due to their weaker bond with cement 

paste, the concrete produced has a lower strength than one made with 

angular particles which bond better with the cement.

The shape and surface texture of an aggregate particle derived 

by crushing depends in part on the presence of cleavage in some 

minerals, so that angular particles are produced by crushing, whereas 

the existence of crystals such as quartz, which has no cleavage, 

usually produces equidimensional particles. Many mineral crystals 

such as feldspar possess two cleavages which can cause rectangular 

shaped particles, which are even less desirable.

If weathered rocks are used to produce aggregate, the presence 

of cleavage and its effect on the shape of the particle becomes

stronger. For example, in the present study, due to a high proportion

of K-feldspar and quartz, the coarser-grained porphyritic type (CGP), 

in particular, has produced angular- to rectangular-shaped particles 

whereas the finer-grained type (FG) with a high percentage of mica 

(see petrography section) and finer-grained minerals has produced more 

elongate-shaped particles. Details in particle size and shape 

analyses can be found in BS 812: 1975.

5.4. Specific gravity, relative density and water absorption

Specific gravity of an aggregate is the ratio of its weight 

to the weight of an equal volume of water. Although this value is 

used in certain computations for mix design, it is not generally used 

as a measure of the aggregate quality. Specific gravity deter­

minations reported for most aggregates in common use show that values 

varying between 2.4 and 2,9 appear to be strongly dependent upon 

contents of iron and magnesium-rich minerals in igneous and meta-
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morphic rocks and the accumulation of such minerals in sedimentary 

rocks.

Bhatia and Hammond (1970) have shown that specific gravity 

values may be useful in the identification and classification of 

laterite rocks and related aggregates for construction purposes.

Based on specific gravity test results on such laterite rocks 

De Graft-Johnson e_t aJ, (1972) demonstrated that a linear correlation 

exists between specific gravity and aggregate impact and abrasion 

values. They showed for example, that high specific gravity values 

are associated with aggregate having lower AIV and AAV, An attempt 

was made to establish the existence of such a relationship between 

specific gravity results and the engineering properties of aggregate 

for weathered granite rocks of the Helmsdale types. The 

results obtained showed that the finer-grained type, in general, has 

a slightly higher specific gravity accompanied by higher aggregate 

strength (AIV, ACV, 10% fines) than the coarser-grained type. This 

study also shows that variation in aggregate physical properties within 

each granite type has no significant correlation with specific gravity 

test results.

Water absorption tests on the other hand, have produced more 

reliable results in the present study. Water absorption value is 

expressed as a percentage of the ratio of mass of the water absorbed 

by the sample to mass of the oven-dried aggregate in air.

In Figures 5.2, and 5.3. water absorption values are plotted 

against aggregate impact and abrasion values. These figures show 

that between the two types of Helmsdale granite the finer-grained type 

(FG) possesses slightly higher water absorption values than coarser- 

grained porphyritic (CGD) granite. These plots also show that the



-149-

0
1

K>

<
031-*cmc/>
03OQ
03

0
tn
r t

§
r tmM
03
c rwoMT3
r tH*
§

g W  A %
P pN  (33 g

N3

(V3

>
<

O  -n
O  O



— 1 5 0 —

*Ti
O
m

w

I
<(Uh-*CmM
0)MD)
H *awrt
grtroM
0)D*
CA
oMT)M"
H *

§

W  A
p
kj

%g O
lÛ

O) -

>><

O  o

"O



-151-

water absorption values obtained for both granite types correlate 

well with mechanical properties such as aggregate impact, abrasion, 

crushing and 10% fines values, and may be useful in the evaluation 

of weathered rocks and aggregates for engineering purposes.

Although no specification exists for the maximum water absorp- 

tionvalues allowed in aggregate, values for igneous and metamorphic 

rocks are usually less than 1% and for sedimentary rocks are usually 

less than 5% if these rocks are going to be successfully employed for 

engineering purposes. . The water absorption values for the two 

granite types are different (see Appendix 3). The coarser-grained

porphyritic type (CGP) has water absorption value of about 0.09% 

whereas in the finer-grained type (FG) this value reaches up to 1% 

and both values are acceptable for most engineering purposes.

In Figure 5.4. water absorption values are plotted against 10% 

fines values. If the water absorption values can be regarded as an 

indication of the degree of weathering, then Figure 5.4. shows that 

for any given water absorption, the required force necessary to get 

10% fines values, for the finer-grained type, is higher than for the 

coarser-grained porphyritic type. In other words, for the same 

type of weathering process affecting both granites -thé FG type with a 

water absorption value of, s a y  , 0.9% required a 10% fines - 

about 160 kN, which is higher than the CGP type granite with the 

same water absorption (0.9%), which required a much lower force - 

125kN.

Determination of relative densities was carried out to assess 

the variation in degree of the weathering between the two granite types. 

The method of testing adopted for the present study was that explained 

by BS 812 (1975) for aggregate 10mm nominal size and smaller. The
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results (see Appendix 3) are based on three different conditions, 

as follows: a) Oven dry basis, b) saturate and surface dry

basis and c) air dry basis (the apparent density),

5,5. Aggregate strength

In general, the strength of an aggregate depends on its 

mineral composition, texture and structure. Thus, a low strength 

specimen may be due to weakness of its constituent mineral grains 

if they are weathered.

Several engineering tests were employed to determine aggregate 

strength as follows:

5,5.1, Aggregate Impact Value (AIV)

This test measures the resistance to sudden shock or impact 

by subjecting a prepared test sample in a cylindrical steel cup, 

having an internal diameter of 102mm and an internal depth of 50mm, 

to a total of 15 blows from a 13.5kg to 14kg hammer, falling freely 

from a height of 380 +  5mm, The percentage of the ratio of mass 

of fines passing a 2,36mm BS sieve to total sample mass is known as 

the aggregate impact value. The stronger the aggregate the lower 

are the aggregate impact values.

This test, combined with the aggregate crushing value test 

(see page 165 ), are two standard tests recommended by the British 

Standards Institute (BS 812, 1975) to assess the strength of road 

aggregates under different conditions of loading, namely repeated 

impact loading or continuous loading (static) in the AIV and ACV 

tests respectively.

Typical aggregate impact values obtained for the roadstone from



-154-

different rock groups are given in Table 5.1, (from R.R.L. 1963), 

According to this table, the average aggregate impact value obtained 

for granite is 19%, which is very good compared with values of more 

than 30% obtained from weathered rocks. The former value, however, 

is regarded by engineers as an unsatisfactory value for hard wearing 

road surface purposes, and should be avoided.

Ramsay (1965) in the investigation of the aggregate strength 

tests demonstrated that within specific rock groups (i.e. granite), 

aggregate impact value is dependent on aggregate particle shape, and 

in particular the aggregate flaky index (If), He also argued that 

the choice of fines passing the 2.36mm sieve as the critical size to 

assess the strength of roadstone aggregate is an arbitrary value and 

does not take into account the percentage of original size range 

aggregate retained on a 10mm sieve after the impact test, which he 

called 'aggregate impact value residue (AIVR). Ramsay (1965) 

introduced this value for the first time as a more sensitive way to 

assess the quality of roadstone aggregate and the "in service" 

performance of such aggregate than the aggregate impact value.

This AIVR test, however, has its limitations like some other 

aggregate tests currently used. The main condition for this test 

was that the samples under investigation belonged to groups of 

fresh* fine-grained igneous rock aggregates having a high flaky index 

(l^). In a situation where the aggregate used is weathered or has a 

low flaky index, the shape of aggregate particles becomes less 

significant and instead the petrographic-petrological characteristics 

of the rock dominate. As a result, more studies were needed to 

investigate the behaviour of different rock groups with different 

strengths and grain sizes when subjected to impact and crushing tests.
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Ten per
C roup ■ Aggregate Aggregate Aggregate W ater cent fine* Polis )te<l

clastificilion crushing impact abrasion absorption Specific ag gre^U *10M
B.S. 812:1960 value* value* value* (per cent) gravity crushing

value
coefficient

Artificial Mean 2« . n.. 8-3. 0-7 2-68 0-59
Range (15-39) (17-33) (3 -15) ( 0 -2 — 1 -8) (2 -8 -2 6 ) (0  35-0-74)
No. of

sample* 35 21 18 18 18 33
Basalt Mean 14 15 6 1 1-1 2-80 0 4 2 '

Range ( 7 - 2 3 ) ( 7 - 2 5 ) ( 2 - 1 2 ) (0 0 -2 -3 ) (3 -0 -2 6 ) — (O-45-O-fl)
No. of

samples 123 79 65 68 68 70
Flint Mea D 18 23 1-1 1-0 ^ 5 4 0-39

Range (7 -25) (19-27) ( 1 - 2 ) (0 -3 -2 4 ) (2 6 -2 -4 ) (0-30-0-53)
N o . of

um ptes 63 32 45 24 24 7
Granite Mean 20 19 4-8 0-4 2-69 0-59

Range (ÇI-33) (9 -35) (3 -9 ) (0-2-0-9) (3 0 -2 -6 ) (0-40-0-70)
N o. of

sa rnpic* 41 32 28 16 16 23
G r i t s to n e Mean 17 19 . 7 0 0 6 2 69 — 0-72

R a n g e ( 7 - 2 9 ) ( 9 - 3 5 ) ( 2 - 1 6 ) ( 0 - 1 - 1 - 6 ) ( 2 9 - 2 - 6 ) (0-60-0-12)
N o. of

samples SI 45 31 33 33 32
Hornfel* Mean 13 12 2-2 0-4 2-82 0-45

Range (5 -15 ) (9 -17) (1 -4 ) (0 -2-0 8) (3 0 -2 -7 ) (0-40-0-50)
N o. o f

samples 28 24 13 15 15 4
Limestone Mean 24 2) 137 10 2-66 0-43

Range (11-37) (17-33) (7-26) (0-2-2-9) (2-S-2-5) — (0 3 0 -0 7 5 )
N o. of

sample* 164 61 34 42 42 51
Porphyry Mean 14 14 3-7 0-6 2-73 — 0-54

R*ngs (9 -29 ) (9 -23) (2 -9 ) (0 4 -1 -1 ) (2-9-2-6) (0-43-0-71)
N o . of

sample* 62 29 23 30 30 23
Quartzite Mean 16 21 3-0 0-7 2-62 — 0-51

Range (9 -25) ( 1 1 - 3 3 ) (2 -6 ) (0 -3 -1 3 ) (2 7 -2 -6 ) (0-45-0-67)
No. o f

um p lc* 57 37 29 21 21 20
All groups! Mean 19 19 5-7 0 7 2-68 17 0-51

Range (5-39) (7 -35) (1 -26) (0-0-3-7) (3 0 -2 -3 ) (1 -37) (0-30-0-13)
N o . of

292um p le* 724 370 311 312 312 69

TABLE 5.1: Groups of aggregate and their properties
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as well as the relative residue tests (AIVR and ACVR).

Only recently, research was carried out in Glasgow University 

to investigate the influence of the mineralogy of weathered granite 

upon aggregate impact and crushing values. (Moore and Gribble 1980), 

who demonstrated that aggregate impact and crushing values increased 

(lower strength aggregate), as the amount of feldspar (plagioclase 

in particular), decreased due to breakdown of feldspar during 

weathering processes.

In the present study, however, the aggregate impact test was 

carried out to investigate the following points: a) To assess the

strength of the Helmsdale granites aggregate (both FG and CGP types), 

and b) check the validity of the AIV and AIVR test result for 

weathered and low-strength aggregates from both the finer and coarser 

grained Helmsdale granites.

The Helmsdale granites were particularly suitable for this 

investigation since there are two types, the CGP type (outer part) and 

FG type (inner part). Both granites were derived from a single magma 

(see Chapter 3) and were subjected to the same weathering processes 

(see Chapter 4), thus a comparison of the influence of grain sizes 

and degree of weathering upon aggregate impact and residue values 

can be made between the two granite types.

The aggregate impact test was carried out in accordance with 

BS 812: 1975, whereas impact residue testing was carried out using 

procedures introduced by Ramsay (1965), The AIVR was determined by 

measuring the amount of aggregate retained on 10mm sieve after the 

aggregate impact test; expressed as a percentage of the original 

sample by weight.

Because of the nature of the rocks under investigation, sample
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preparation was probably the most important part, since weathered 

minerals such as feldspar and biotite are prone to breakdown during 

grading and sieving procedure and reduce to finer fractions which 

will, in turn, reduce aggregate impact,value and increase aggregate 

impact value residue values. Therefore sampling procedure was 

carried out in accordance with BS 812 (1975) with some additional 

care so as to reduce the effect of the 'grading factor' upon the 

aggregate properties. In particular:

1, Grading of samples was carried out in a shorter period 

by widening the jaw gap in the mechanical crusher,

2, Sieve procedure was carried out by hand and for a shorter 

time, rather than using a mechanical shaker.

3, No attempt was made to wash the samples. Since this 

procedure would cause further reduction in particle size 

and the loss of more fine fractions as a result.

In Table 5,2, the aggregate impact values and related impact 

value residue values are given for both finer-grained (FG) and 

coarser-grained porpyritic (CGP) type granites.

In Figure 5,5, aggregate impact values (AIV) are plotted 

against related aggregate impact value residue (AIVR), This figure 

shows that the relationship between AIV and AIVR is a linear one 

and those samples with higher impact values produced a lower AIVR, 

Figure 5,5, also shows that although both granites were subjected to 

the same weathering processes, the finer-grained type (FG) gave 

lower impact values and higher impact value residue than the CGP 

type. This suggests that among weathered rocks, the most important 

factors affecting AIV and AIVR are the grain size, proportion and
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nature of microcracks (caused by physical weathering), and grain 

boundary conditions. Thus, the existence of two different AIV and 

AIVR values for the two granite types of the Helmsdale granite can be 

explained as follows: - When CGP type samples were subjected to the 

AIV test, the constituent minerals started to break down. This 

breakdown may develop along the grain boundaries as well as through 

the weathered minerals, such as biotite and plagioclase, leaving other 

minerals, mainly quartz and K-feldspar, to their original sizes. The 

situation is rather different where FG type samples were subjected to 

the same AIV test procedure. In this case, because of finer-grain 

size, the weak'grain boundary effects"no longer exist and mineral 

constituents of finer-grained type samples were starting to break 

through the weathered minerals only. Thus, the FG type samples have 

shown lower AIV than the CGP type samples (see Fig. 5.5).

These different AIV test results obtained for the two granite 

types from Helmsdale can be further explained by more AIVR test 

results which tend to support the behaviour of samples under the impact 

test. For example, as was expected AIVR test results from FG type 

samples show a linear relationship with AIV results, i.e. the more 

weathered samples, having higher AIV produced lower AIVR values, whereas in 

the case of the CGP type, in those samples with AIV values higher than 

27% the AIVR has its lowest value and remains almost the same as the 

AIV value increases (see Fig, 5.5). This result suggests that in the 

case of weathered CGP type samples with AIV higher than 27% the AIVR 

test loses its sensitivity and remains unchanged with the increase of 

AIV.

Normative amounts of each rock specimen from both granite types 

were used to find out which mineral had an influence over engineering



"161“

properties of aggregate and also to investigate the effect of mineralo­

gical changes, as a result of chemical weathering, over such aggregate 

properties. In Figures 5.6, 5.7 and 5.8 the aggregate impact values 

are plotted against normative plagioclase (Ab +  An), normative quartz 

(Q), and total feldspar (Ab +  An +  Or). These figures show that 

overall, the quality of aggregate gradually declines (higher AIV) from 

finer-grain type granite towards the coarser-grained porphyritic type 

as the amounts of feldspars decrease, accompanied by an increase in 

normative quartz in the same direction. Moore (1978) has demonstrated 

that aggregate properties of Peterhead granite from the north-east of 

Scotland declined due to alteration of feldspar; particularly the

plagioclase feldspar. Although the highly weathered samples in the 

present study (AIV higher than 111) show markedly a reduction in 

plagioclase content, in the case of the rest of the samples the AIV 

results for both granite types show a positive linear trend with norma­

tive quartz content (Fig. 5.7) rather than plagioclase feldspars (Fig. 

5.6). The FG type samples with lower quartz content have produced 

aggregates with lower AIV, whereas the CGP type, with higher quartz, 

appears to be lower in strength (higher AIV).

Further support for the above explanation is better illustrated by 

Figure 5.8, which also shows that the CGP type with higher AIV values 

has nearly the same amounts of total feldspars as the FG type with lower 

AIV. There are, however, those points representative of highly weathered 

samples which show rather unclear trends, except in Figure 5.8 which 

suggests a further loss of feldspar as a result of alteration process. 

These results support the conclusion that of the relatively fresh 

samples, those containing a higher quartz content and coarser 

grain size, tend to give higher AIV results, than the rock
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samples which have a lower quartz content and finer grain size 

(Lees and Kennedy 1975). This is due to the brittleness of the 

quartz associated with weaker grain boundaries nature of the rock- 

forming minerals existing in the CGP type samples and the lack of 

such properties in the FG type,

5,5.2, Aggregate crushing value (ACV)

In this test, a 150mm diameter open-ended steel cylinder is 

filled in three stages, at equal depths, by 10mm aggregates. The 

cylinder is then compressed at up to 400kN within 10 minutes at a 

constant rate. The crushing value is expressed as a percentage of 

the ratio of mass of fines passing a 2,36mm sieve to mass of the 

original sample.

Aggregate crushing value (ACV) gives a relative measure of 

resistance of an aggregate to a static load. Any value below 10% 

indicates a very strong aggregate and those aggregates with crushing 

values greater than 35% would be regarded as too weak for any 

engineering use.

Dhir e_t (1971), in the study of the aggregate crushing 

value of some igneous and metamorphic rocks (such as dolerite, 

porphyrite, basalt, andésite, dacite and felsite), showed that 

aggregate crushing values (ACV) for all rock types tested are related 

in a linear fashion to petrography and flakiness index like those 

explained for aggregate impact values (see page 154), With 

increasing flakiness index the aggregate crushing values increased 

linearly. They also demonstrated that the modified aggregate 

crushing value residue (ACVR) is more sensitive and more reliable 

than the standard aggregate crushing value (ACV) test.
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Two types of the Helmsdale granites (FG and CGP)were once 

again used to assess the reliability of this test for weathered 

aggregate. It appears from Figure 5.9 that the crushing test loses 

its sensitivity for weaker rocks (AIV ^  277ofor the coarser-grained 

porphyritic type). The aggregate crushing value residue test was 

not conducted for any samples in the present study. Based on study 

by Dhir (1971), the same linear relationship was assumed to

exist between ACV and ACVR for all samples except those with ACV 

higher than 27%, which test results are prone to distortion, as 

was demonstrated by the ACV test results,

5,5,3, 10% fines va lue

Aggregate with high crushing value results (ACV greater than 

35%) frequently give distorted results because of increased degra­

dation during the ACV test. Therefore, another test, the 10% fines 

test (Shergold and Hosking 1959) can be employed, which is more 

appropriate for weathered or weak aggregates.

The 10% fines value is obtained by measuring the percentage of 

fines passing a 2,36mm BS sieve for several loading values; these 

are graphed against the percentage of fines and the 10% value 

obtained in kN, This test was carried out for the present study in 

accordance with the procedure outlines in British Standard 812: 1975, 

The results are given in Appendix 3,

In Figures 5,10, 5,11, 5,12 and 5,13 the 10% fines values are 

plotted against normative quartz, albite (as the main constituent of 

plagioclase feldspar), orthoclase, and total feldspar (Ab +  An +  Or) 

respectively. These graphs show that the strength of the aggregate 

is higher (higher 10% fines value) in the FG type than in the CGP
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type, Furthermore, the amount of orthoclase does not seem to 

influence the 10% fines values for either granite type, Plagioclase 

and quartz contents do influence the strength of aggregate, particularly 

when the rocks are also weathered. Aggregates of both granite types 

subjected to 10% fines test have shown the same behaviour as explained 

in AIV test results,

5,6. Special aggregate tests for roadstone

The quality of roadstone aggregate is of great importance in 

determining the uses to which it can be put. The relevant tests are 

as follows:

5.6,1, Aggregate abrasion value (AAV)

The term "abrasion" means surface wear by means of attrition 

and the AAV gives a measure of the resistance of aggregate to such 

surface wear. The abrasion characteristic of the aggregate used in 

heavily trafficked road surfacing is a major factor in determining 

its resistance to wear. The, AAV is expressed as the percentage loss 

of weight of aggregate particles mounted on a flat plate which is 

subjected to abrasion by a standard quartz sand (Leighton Buzzard 

silica sand) in a Dory abrasion machine consisting essentially, of a 

machined flat circular steel grinding lap. The lower the abrasion 

value, the better the aggregate quality will be. The range of values 

varies from 1% for hard, resistant rocks (i.e. quartzite, flints) to 

more than 14% for softer, easily eroded rocks (i*e, limestones, weak 

sandstones),

Weathered aggregates usually give very high abrasion values, due 

to chemical decomposition, which can destroy the intergranular bond
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between the mineral grains, particularly in siliceous sedimentary 

rocks like sandstones, where the resistance is almost entirely 

dependent upon the nature of such intergranular bonds.

Among igneous rocks however, those acidic types with a high 

silicateand free silica content tend to be more resistant to abrasion 

(lower AAV) than basic varieties, with a high ferromagnesian, low 

silicate and no free silica (Hartley 1974), For example, fresh 

granites generally have abrasion \alues of about 3 - 4% whereas gabbros 

and dolerites have abrasion values of about 5%, Vesicular and 

amygdoloidal texture may also affect the AAV result depending on the 

nature of the mineral infilling,but in general they lower the 

resistance of the aggregate to abrasion. Hartley (1974) and Kasi 

(1980) also pointed out that the main factors causing a reduction in 

aggregate abrasion resistance are an increase in grain size and the 

proportion of soft minerals as a result of chemical alteration (see 

Chapter 4),

The influence of mineralogy on aggregate abrasion value is 

demonstrated in Figure 5,14, which suggests that the aggregate abrasion 

value increases with decreasing normative quartz and increasing albite 

(plagioclaseX In each case of finer-grained and coarser-grained type, 

there is a similar relationship between AAV and normative quartz and 

albite (plagioclase), although such relationship appears to be better 

illustrated in the case of coarser-grained porphyritic (CGP) than the 

finer-grained (FG), Further examination of Figure 5.14, shows that 

between two coarser-grained and finer-grained granites, the former 

has lower AAV value. This can be explained as follows:
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a), Petrographical and geochemical studies detailed in previous 

chapters showed that coarser-grained porphyritic type (CGP) 

contains higher Si02 and free silica (quartz) than the finer- 

grained type (ft). It appears (see Fig. 5.14(a)) that this 

higher free silica percentage in the CGP type has increased 

aggregate abrasion resistance (lower AAV) because of the hardness 

and lack of cleavage in the quartz crystals.

b). Chemical alteration, plus orientation and distribution of cleaved 

minerals such as biotite and feldspars in the finer-grained type 

produced a higher proportion of soft minerals when altered 

(chlorite), which caused a reduction in abrasion resistance 

(higher AAV) compared to the CGP type, which has less biotite 

and feldspar. This point has also been demonstrated by Figure

5.3, page I

The adverse effect of alteration of plagioclase upon AAV is shown in 

plot (b) of Figure 5,14, where normative albite content (as plagioclase) 

is plotted against AAV. It can be seen that finer-grained type granite 

with higher albite (as plagioclase) produced a higher AAV than the 

coarser-grained porphyritic type with less plagioclase. There are, 

however, a few samples which do not support these explanations, 

particularly within the finer-grained type.

The petrography study of fresh and weathered granite (Chapters 

3 and 4) showed that these samples are highly weathered and most of the 

biotite and plagioclase feldspar is altered to chlorite and sericite 

respectively. Nevertheless, based on aggregate abrasion tests con­

ducted on the Helmsdale granites, the proportion of hard, uncleaved 

minerals such as quartz was found to be the most important factor
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inf luencing the aggregate abrasion resistance of relatively fresh 

samples. Whereas in the case of weathered samples the above factor, 

combined with further adverse effects provided by the formation of 

the soft secondary minerals, are the real cause for further reduction 

in aggregate abrasion values. However in the Helmsdale granite the 

coarser-grained porphyritic type (CGP) is found to be more resistant 

to abrasion tests than the finer-grained type (FG), although aggregate 

abrasion values (AAV) obtained from samples of both granite types 

are very low (between 3 and 7) and acceptable for most engineering 

purposes,

5.6.2, Aggregate polished stone value (PSV)

Perhaps the most obvious road surface characteristic is skid 

resistance which represents the tendency of aggregate used for road 

surface dressing to be polished by traffic. The polished stone value 

or PSV gives a measure of resistance of roadstone aggregate to such 

road surface wearing action. This is one of the major determinants 

of road-user safety, since a proper level of skid resistance will 

ensure safe driving conditions.

Many factors affect the PSV, and in particular the microtexture 

and macrotexture of the road surface. Microtexture or microroughness 

is related to the surface texture of the aggregate and varies from 

harsh to polished. Macrotexture or macroroughness on the other hand, 

is defined by the surface relief of the pavement and is related to 

the gradation of wearing course mixes and to surface treatments (see 

Road Transport Research 1984), The macrotexture is described as 

being rough or smooth, A classification of micro- and macrotexture 

is given in Figure 5,15,
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FIGURE 5,15. Illustration of term used for describing 
road surface texture (RTR 1984),
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The microtexture of the Helmsdale granite aggregates was 

evaluated from the polished stone value (PSV), This value was 

obtained on a standard test sample (four samples for each rock 

specimen) containing aggregates which were mounted in a special 

curved metal mould with a polyester resin. Then the samples were 

subjected to the PSV test which consists of two parts; the first 

part involving the use of a pneumatic tyre and fine abrasive 

(corn emery and emery flour) which will artificially polish the 

specimens, and the second part which tests the polished aggregate 

mould in a friction tester to measure the coefficient of friction 

between the specimen surface and a pendulum-mounted rubber slider.

The mean of the PSV values of the four specimens were calculated and 

are shown in Table 5,3, This test was carried out in accordance with 

BS 812 (1975) where the test procedure is given in detail.

It was not possible to carry out the PSV test on all the samples 

obtained for the Helmsdale granite because the PSV test required a 

large quantity of material and also because the variation in the test 

results obtained for each type of granite was not significantly high. 

Thus it was decided to reduce the number of PSV tests to one sample 

for each location (with four specimens prepared for each test), except 

for the two quarry faces where the number of samples was increased to 

six, chosen from different heights on each quarry face. Sample 

numbers for which the PSV tests were carried out together with their 

normative amounts of albite and quartz are given in Table 5,3,

In Figure 5,16 PSV values have been plotted against the normative 

albite (as the main constituent of plagioclase) and normative quartz. 

Figure 5,16 (a & b) shows that for each granite type the relationship 

between PSV values and amounts of normative quartz and albite are
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Sample No, Albite Quartz PSV

2 42.21 23.07 54

21 50.33 15.87 49

25 41.79 21.93 53

30 47.22 20.28 50
32 46.27 16.02 50
37 47.65 18.5 51
43 35.83 28,96 52
44 36.59 23.17 54

45 33.29 28.07 53

49 37.88 25,29 57

53 40.27 27.67 55

54 40.24 27.21 56
71 38.34 29.94 59

75 38.32 29,24 57

78 39.65 26,25 56
86 40.61 26,05 56
92 56.29 28.46 58

95 58.41 22.21 55

TABLE 5*5* results for selected samples from the Helmsdale
granites and their normative amounts of albite and quartz.
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linear and that higher PSV values are associated with higher norma­

tive quartz accompanied by lower normative albite content in rock 

samples, except in the case of the three samples of the CGP type 

(43, 44 and 45) which have anomalously lower normative albite 

due to the high state of chemical weathering (see Chapter 4).

Aggregate polishing characteristic behaviour shown by the two 

Helmsdale granites can be explained as follows: In the case of

relatively fresh rock samples consisting mainly of minerals of 

comparable hardness such as plagioclase feldspar, K-feldspar and quartz 

and which tend to accept a high polish, the tendency towards a highly 

polished state (lower PSV) goes higher as the amount of free silica 

(quartz) decreases followed by the increase of cleavable minerals 

such as feldspar and mica. This point has been highlighted by fresh 

samples from the FG type (Fig,5.16), But in the case of weathered 

samples the proportion of hard mineral (quartz) increases at the 

expense of other minerals such as feldspar (plagioclase in particular), 

and mafic minerals which decrease due to the chemical alteration which 

generally results in the formation of a softer, altered product.

This process transforms the existing comparable-hardness rock-forming 

minerals into a rock consisting of mineral components with different 

hardness values which provides fresh texture during the PSV test 

which tends to increase the resistance to polishing. Samples of the 

CGP type granite (fig, 5,15) show this point by having higher PSV 

values,

However, the polished stone value (PSV) test has been regarded 

by some workers as either not being reproducible (Hingley 1971), or 

not showing the true behaviour of aggregate in actual traffic polishing 

conditions (Hosking 1969; Hartley 1974),
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The requirements for aggregate PSV in the surfacing of new 

motorway and trunk roads are given in detail by Harris (1977),

According to this, the PSV values of between 48 and 59 which obtained 

for Helmsdale granites (FG and CGP) suggest that these rocks are only 

suitable for the B and C sites wearing course. These sites include 

generally straight sections and large radius curves on motorways, 

trunk and principal roads, other roads carrying more than 250 commercial 

vehicles per lane per day, and finally those roads where wet skidding 

accidents are unlikely to be a problem.

5.6.3. Bitumen binding characteristics

Since aggregates make up about 80 percent by volume of bituminous 

mixes, their influence on the properties and performance of mix is 

great. Thus the ideal aggregate should have the following properties:

1), Suitable particle size and gradation

2). Strength and toughness

3), Correct particle shape

4). Low porosity (low bitumen absorption)

5). Resistance to stripping (surface texture and clean­
liness.

Factors 1, 2 and 3 are primarily for stability reasons, whereas factors 

4 and 5 are important to aggregate and bitumen interaction. Depending 

upon the use or purpose of the mix, a wide variety of sizes and 

gradations of aggregate may be used. For example, aggregate used for

the surface of heavily travelled roads generally should contain densely 

graded aggregate (i.e. materials that are well graded from coarse to

fine; see Specification for Road and Bridge Work 1980). In the case

of strength and toughness properties of the aggregate: because
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aggregate in a bituminous mixture supplies most of the mechanical 

stability, it must have a certain amount of strength and toughness to 

prevent breakdown under traffic and subsequent loss of stability. 

Unfortunately, there is no truly satisfactory test for measuring the 

the effective strength and toughness of an aggregate, hence when 

making a choice between different aggregates^ one would certainly 

choose the toughest and strongest available, as indicated by the tests 

such as aggregate abrasion, impact, crushing, and 10% fines test. 

Particle shape is another important property - perhaps even more 

important than factors 1 and 2. Angular aggregates in a mix result 

in higher strength compared with a similar mix made from rounded ones,. 

Thin and elongated aggregates are also not quite suitable for a 

bituminous mixture; besides being subject to size segregation in the 

mixing process, they also tend to be of low strength.

Porosity strongly affects the economics of mix, the higher the 

porosity the more bitumen will be absorbed into the aggregate thus 

causing a higher percentage of bitumen to be required in the mix 

design. However, this high porosity and higher percentage of 

bitumen required as a result, generally do not affect the quality of a 

mix. The surface texture and cleanliness of an aggregate, on the 

other hand, play an important role upon adhesion between aggregate 

and bitumen. A smooth glossy aggregate is easy to coat with a 

bituminous film but offers little adhesion to hold the film in place. 

Thus, the rougher the surface texture generally the higher the 

stability and durability of the bituminous mixture.

Many aggregates have surface coatings (clay, silt, calcium 

carbonate, iron oxides, opal, gypsum) which are the most common cause 

of stripping when surface dressing materials are affected by traffic
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(Tompkins 1972). The surface chemistry of an aggregate also plays 

an important role in the design of bituminous mixtures (Rice 1958).

In igneous rocks, more basic rock aggregates generally adhere better 

with binders than do acid rocks.

5.6.4. Frost heave test

The resistance of aggregates to attack by frost is related to 

porosity, water absorption, pore structure and the quality of the 

bond between bitumen and aggregate.

The performance of roadstone aggregates exposed to frost can be 

assessed either from their past performance in roads or by using the 

frost heave test. In this test a cylinder of rock aggregate, 150mm 

high and 100mm in diameter, is subjected to freezing conditions for 

250 hours (Croney and Jacobs 1968). The maximum expansion (or heave) 

allowed by the specimen must be less than 12mm. This test was 

omitted for the present study because the test results obtained 

elsewhere are generally unsatisfactory when compared with actual 

service records shown by the same aggregates (Fookes 1980), This 

test was also used for soils and road material by RRL (1968) and the 

general conclusion was that the results obtained were not realistic 

in terms of 'in service' performance. It was suggested by TRRL 

(1968% that crushed granites with 10 percent or less of particles 

passing the 75yU m BS test sieve can be regarded as non frost- 

susceptible. According to this, both granite types (CGP and FG) 

of the Helmsdale granites which produced average values of 9,6% 

for the coarser-grained porphyritic type and 7.92% for finer-grained 

type, will be acceptable as non frost-susceptible aggregates.

(Croney ^  1968; RRL Report LR90).
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5.7. Special aggregate tests for concrete

Concrete is a material which consists essentially of aggregates 

held in a cement paste (the binder or matrix). The cement paste is 

a mixture of water and cement and comprises 20% to 40% of the total 

volume of concrete (see Fig, 5.1,), Aggregate used in concrete 

consists of sand, which is fine grained (less than 4mm in size) and 

coarser grained aggregate (up to 30mm or more in size). The coarse 

aggregate and sand can comprise more than 80% of the total volume 

of the concrete and significantly affect the strength, durability and 

appearance of the concrete, therefore its selection must be 

carefully controlled. Sometimes the presence of an undesirable 

mineral (for example, iron pyrites) in a particular rock may be a 

source of weakness and may give rise to aggressive chemical reactions 

with the cement paste.

However, in properly made concrete, each particle of aggregate 

is completely coated and surrounded by cement paste which also fills 

all of the pore spaces. Therefore, the quality of concrete is 

dependent upon the quality of the bond between the aggregate and the 

cement paste; the stronger the bond the stronger the concrete. 

Consequently the formation of the bond depends upon several factors 

(Teychenne 1978; Teychenne ^  19?5), such as:

1), The surface texture of the aggregate and its cleanliness.

An aggregate with a rougher surface will have a better bond 

with the cement paste and the concrete made with it will

be stronger (see also Page 183)

2), The type of cement

3), The water/cement ratio
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4). The curing method

Aggregate used in concrete is also subjected to testing (BS 882,

1973; BRS 1968; BRE 1982). The main tests are as follows:

5,7,1. The drying shrinkage test

The drying shrinkage refers to the difference in length between 

the original wet measurement and the dry measurement of a concrete 

prism or cylinder, expressed as a percentage of the dry length (BRS 

Digest 35, 1968). Hobbs (1974) has shown that the shrinkage of 

concrete depends primarily on two parameters, a) aggregate shrinkage 

and b) paste shrinkage. Normally cement shrinkage causes most of 

the shrinkage in concrete, but some aggregates such as weathered 

basic igneous rocks and mica-rich rocks, which contain chlorite and 

other iheet silicates, exhibit rather high volume changes and, hence, 

will increase the shrinkage value of concrete mix. Other materials 

to be avoided include an excessive amount of clay in the aggregate, 

or admixtures of calcium chlorite which can be used as an agent to 

accelerate the drying-out procedure. The presence of gypsum (calcium 

sulphate) is particularly deleterious in concrete.

Certain factors, however, such as a change in the concrete mix 

proportions by the addition of cement or increase in the maximum 

particle size of the aggregate may help to reduce the amount of 

shrinkage of such shrinkable aggregate. Although the survey of 

crushed rock aggregates in Scotland, carried out by the Building 

Research Station (1968 and 1970), has shown that some of the rock types 

(i.e, fresh granite included) are not shrinkable (shrinkage value 

0,04%), the drying shrinkage test was carried out on concrete prisms
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tnade with coarse aggregate (size between 4.76-lOmm from the Helmsdale 

granites and natural sand as fine-aggregate (Zone 2 according to BS 

882, 1973), based on procedures described in BRS Digest 35, 1968).

The sand was from one particular source (Hyndford sand) which is low 

in shrinkage and therefore has no effect upon the shrinkage value of 

the coarse aggregate from the Helmsdale granites. The samples from 

which the aggregates were used for this test, and their related 

shrinkage values, are given in Table 5,4.

FG TYPE CGP TYPE

Sample
No 2 21 32 78 92 95 49 71 75 86

Shrink­
age 7o 0.036 0.033 0.032 0.029 0.030 0.032 0.031 0.036 0.046 0,026

TABLE 5.4. The drying shrinkage values of selected samples from 
two types of Helmsdale granite.

From Table 5.4. it can be seen that the initial drying shrinkage 

varied from 0.026 percent to 0,046 percent. The shrinkage values 

obtained show that fresh amples from both granite types have similar 

low shrinkage values (less than 0.036%), except sample 75 (CGP type) 

which has slightly higher shrinkage value (0,046%), This is mainly 

due to chemical alteration of its mineral constituents such as biotite 

and feldspar, as was demonstrated by Moore (1980); that formation of 

hydrous clay minerals, especially illite formed by breakdown of 

biotite - first to vermiculite and then to illite - was in fact the 

cause of higher shrinkage values in the more weathered rocks.

5.7,2. Compressive strength of concrete.

Strength of a concrete is probably the most important parameter
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in concrete construction, since it is the one generally used to

define the quality of concrete and to specify the quality required

by an engineer (BS 8328: 1976),

Although strength of concrete increases with time, for test

purposes the strength of concrete is specified after 28 days curing

in water. The test can be carried out on either a) Four cubes

of 100mm edge, or b) Four cylinders 150mm diameter and 300mm high,

or c) two beams 100mm x 100mm x 500mm long.

Cubes were used in this study and after 28 days curing in the
2storage tanks they were loaded at an approximate rate of 15 N/mm /min 

until total failure was reached (see BRE 1975 and BS 5328: 1976 for 

method of mix design and test procedure).

The compressive strength of concrete depends on many factors 

such as( type of cement and its amount in the mix, rock type, degree of
A  ÙW. ■VVŝ .

alteration and proportion of secondary mineral^, and the grading and 

shape of the aggregate particles. Some external factors also affect 

the behaviour of the concrete, such as temperature and environmental 

conditions under which the concrete is to be used. Thus, in order to 

make a comparison between the performance of concrete made with 

aggregate from two different rock types (FG and CGP) with different 

aggregate properties, all the factors in the mix design were kept 

constant for all the samples. The particular mix design used for the 

present study is given in Table 5.5, based on BRE (1975),

The compressive strengths of cubes made with selected aggregates 

from both granite types are given in Table 5.6, These values were 

derived from an average of four mixes (cubes) at the end of a 28 day 

period.
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TABLE 5.5. Concrete mix design used for present study.

Concrete mix deeign form 

Stage Item
Reference or

Values

1.1 Characteristic strength Specified Compressive 50 N/mm'..,
Proportion defective -

2 8 days

per cent

1.2 Standard deviation Fig 3 ..5.0 N /m m * or no data.. ” .  N /m m *

1.3 Margin C l ( t m  2.3312.33R 5 «  11.6 ..N /m m *

1.4 Target mean strength C2 , 5 , 0. , . + _ 11.6 = 62 .,N /m m *

1.5 Cement type Specified OPC/SRPC/RHPC

1.6 Aggregate type; coarse Crushed
Aggregate type: fine . -Uncr^shed

1.7 Frce-water/cement ratio Table 2, Fig 4 0.40 — Use the lower value

1.8 M axim um  fre t-w a le rlee iw n l ra tio Sprelfied

2.1 Slump or V-B

2.2 Maximum aggregate size

2.3 Frcc-wii 1er content

Specified 

Specified 

Table 3

Slump ■■ .30—60 nim or V-B

10
230

 s

. mm

kg/m*

3 3.1 Cement content C3

3.2 M axim um  cement content Specified

3.3 Minim um  cement content Specified

3,4 Modified free-waler/cement ratio

4 4,1 Relative density of aggregate (SSD)

4.2 Concrete density Fig 5

4,3 Total aggregate content C4

5 5.1 Grading o f fine aggregate BS882

5.2 Proportion o f fine aggregate Fig 6

SUl. 5 7 5  kg/m’ 

   kg/m*

-1 . kg/m* —  Use if greater than Item 3.1
nnd calculate Item 3.4

2.6 known/ass timed

2300
1505

kg /m *

kg/m*

Zone.

m i
5.3 Fine aggregate content

5.4 Coarse aggregate content
- C 3

1505 X 0.45 = 677.25
1505 -677.25 = 827.75

cent

Quantities
Cement
(kg)

Water 
(k f  or 1 )

Fine aggregate 
(kg)

Coane aggregate 
(kg)

per m* (to nearest 5 kg) 

per trial mix o f -------------

Items in italics are optional limiting values that may be specified.

1 N/m m* “  I M N /m * — I MPa.
CPC -  ordinary Portland cement :SRPC -  sulphate-resisting Portland cement; RHPC -  rapid-hardening Portland cement. 

Relative density ■  specific gravity.
SSD — based on a saturated surface-dry basis.
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FG TYPE CGP TYPE

S amp16 Q IS 
No 32 78 92 95 43 45 54 71 86 75

Compres­
sive 69.9 71.15 
strengths 
N/mm^

71.1 62 66.5 66.5 65.4 68.8 69.9 67.9 64 62

TABLE 5.6, The compressive strengths of selected samples from

Since in Table 5 .5., the mean deviation of the results of concrete block 
tests IS 5MPa, the values of compressive strengths of concrete blocks in 
Table 5 .6 occur more or less within this margin of error and therefore the 
compressive strength of concrete cubes using Helmsdale granites as aggregates 
can be given as 67.1 (mean value) + 5MPa (or MN/m^).

The relationship between some of the physical 
characteristics of the aggregates and the compressive strength of 

concrete made of the same aggregate Is shown In Figure 5.17. This 

figure shows that aggregates with higher 10% fines and lower water 

absorption values produced concrete cubes with higher strengths.

Although the above explanation Is true for samples of both granite 

types, the samples of CGP type In general made slightly lower strength 

concrete cubes than samples of the FG type. This Is again because 

of the grain size differences between the two granite types and 

weaker grain boundary characteristic of the CGP type, which caused 

the concrete cubes to fall under lower load than the stronger, and 
interlocked samples of the FG type.

In the case of weathered samples, however, because of the 

unclean condition of the surface of aggregate due to clay and other 

alteration products, the cement-aggregate bond Is greatly reduced
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which in turn caused a reduction in the strength of the concrete.

Although compressive strengths of concrete in the present study 

have shown a linear relationship with aggregate physical properties, 

Teychenne (1978), in a similar study but one based on several different rock 

groups, had demonstrated that except for the water absorption and particle 

shape, other aggregate physical properties had no effect on concrete 

compressive strength test results. This may be because when different 

rock groups are involved in concrete tests, the influence of factors 

affecting the strength of a concrete is different, depending upon the 

type of rocks (sedimentary, igneous or metamorphic) and grain sizes,

5.7,3, Alkali reactivity

Under normal conditions, ordinary or rapid-hardening Portland 

cement and chemically non-reactive aggregates will be adequate against 

weathering and chemical attacks.

However, there have been many instances of concrete structures 

deteriorating in a distressingly short time becase of decomposition 

of the concrete due to some sort of chemical reaction between unsound 

aggregate and cement paste. The commonest form of chemical reaction 

is alkali aggregate reaction, . The amount of reactive ingredient 

necessary to cause damage is very small - often as low as 0,5% of the 

total aggregate content. The alkalis involved in these chemical 

reactions are usually derived from the cement paste, whereas the other 

ingredients (such as certain carbonates or silicates) needed in the 

chemical reaction come from the aggregate.

Two types of reaction occur: a) an alkali-silica reaction,

and b) an alkali-carbonate reaction, A typical alkali reaction 

starts if the alkalinity produced by the lime (from the cement)
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induces the minerals comprising the aggregate to release their silica 

and associated alumina, and form new minerals within the al.kali-silica 

gel that develops as reaction rims around the unstable aggregate 

(Fig, 5,18,), This alkali-silica gel then absorbs water from its 

immediate surroundings and swells, creating internal pressures that 

can exceed the strength of concrete and will eventually destroy its 

structure.

The alkali reaction, therefore, can easily take place if release 

of silica occurs in an alkaline environment. Amorphous silica minerals, 

such as opal, appear to be reactive and rocks containing opal or other 

similar minerals such as chalcedony, chert and volcanic glass, have all 

been shown to be reactive (Vivian 1975; Dolar-Mantuani 1975; French and 

Poole 1976).

Acid reaction is commonplace in some special environments, such 

as the formation of an organic acid by the decomposition of an organic 

material (plants, etc.), or by oxidation of certain minerals (e.g. 

pyrites). These acids are effective on all calcareous cements and 

protection must be provided against such reactions. Table 5.7, lists 

the various types of protection required for concrete exposed to such 

acid attack.

Sulphate reactions are less common, but any sulphates needed for 

this type of reaction may be provided by the presence of minerals such 

as pyrites, gypsum, or by external sources such as continuous saturation 

of concrete by seawater, or groundwater containing magnesium or sodium 

sulphate. The possible protection against such reaction is to use 

special Portland cements, low in tricalcium aluminate (necessary for 

this reaction).

There are several tests to diagnose the presence of a reactive



FIGURE 5,18, Concrete viewed in thin section, showing 
a piece of reactive aggregate bound in cement, is 
surrounded by healthy aggregate. The margins of 
the reactiye particles are often fritted and gel 
often penetrates into the particle. Radial 
microcracks develop around the fragment at an 
early stage,
A-B represents the line of section for the graph 
(right) illustrates the relative concentration of 
constituents (concentration increases upwards) and 
their movement during reaction (Reaction boundary 
details from French, 1980),
The arrows represent the sense of movement of the 
components with Si and Co showing little or no 
movement.
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ingredient in aggregate, such as the gel-pat test (Jones and Tarleton 

1958), the rock sylinder test (ASTM C586: 1977), and the rock prism 

test, which may also be used as rapid test (French 1980), As a 

generalization the in-service performance of old concrete provides 

the best information for selection of non-reactive aggregates.

PH value of 
groundwater Type of protection required

5 - 7 No special protection required.

3.5 - 7 Increased cement content, use of special cement, use 
of limestone aggregate.

less than 
3.5

In the case of excessive groundwater movement, a 
protective coating should be applied, such as 
polythene or hard bitumen.

TABLE 5.7. Type of protection required for buried concrete 
exposed to acid attack.

5.8. Pavement constructions and their engineering properties

The suitability of an aggregate for roadstone aggregate depends 

on its usage related to its function and position in a particular road 

structure.

There are two types of pavement where crushed rock aggregates 

are used; namely;

1), Flexible pavements

2). Rigid or concrete pavements

Each pavement consists of several layers of varying thickness, which
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also vary, depending upon other factors including traffic density, 

life expectancy of road and size and weight of vehicles. In general, 

each pavement consists of four layers (see Fig. 5.19 (a)) as ..follows;

a) Subgrade

The term 'subgrade' refers to the completed earthworks below the 

structural layers of a road foundation - b) and c). It may be in situ 

material, or imported and placed as fill and will be compacted to 

give it strength, which is a principal factor in determining the thick­

ness of the pavement and it can be assessed from the California Bearing 

Ratio test. The CBR test must be carried out on subgrade material 

compacted to density specified for the road construction and at the 

wettest moisture content which is likely to occur during the life of 

the pavement (see BS 1377: 1967 for more detailed information about the 

CBR test procedure).

Once the subgrade CBR and the expected total traffic flow 

(cumulative number of standard axles) have been determined, the 

thickness of other layers (b), c) and d)) can be found from the 

pavement thickness design chart for roads (see Fig.5.19,(b)) published 

by the Transport and Road Research Laboratory (TRRL 1970).

b) Subbase

This is the layer foundation immediately above the subgrade d) 

and below the road-base c) and which supports it. The quality of the 

materials, used for this layer need not be as high as for the overlying 

layers c) and d), and the material for the subbase can usually be

obtained from a site near the road under construction.

The thickness of the subbase depends upon the cumulative number 

of standard axles and the subgrade CBR. For example, it can be seen

from the Figure 5,19 that the subbase thickness will be 100mm for
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FIGURE 5,19. Pavement thickness design chart for roads
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subgrade CBR values of between 8 and 24. The thickness of subbase 

will be more than 100mm for GBR of less than 8 , and such subbase will 

not be required where the subgrade CBR exceeds 24.

c) Roadbase

This is the top layer of the foundation of the road, and the 

main load-spreading layer of it. It is usually constructed from 

high quality selected materials consisting of one of the following:

1). Natural gravel or crushed gravel

2), Crushed rock

3). Cement or lime stabilised soil

4). Bitumen stabilised sand

The quality of the aggregate used in the roadbase, and its thickness, 

depends upon the traffic conditions for which the road has been 

designed. One of the most economical forms of road construction up 

to 0.5 million standard axles, is a 150mm thick base layer with 

surface dressing and a variable thickness of subbase to accommodate 

variations in subgrade strength and traffic flow (see Fig. 5.19.(b)). 

This base thickness for roads carrying more than 0.5 million 

standard axles, changes to either a 150mm base with 50mm of

bituminous surfacing, or a 200mm base with a double layer of

surface dressing. Other requirements for crushed stone base 

materials are its strength (ACV 35%) and susceptibility to the 

a tion of frost, by which the rock must not be affected,

d) Wearing course

This is the uppermost layer (surface dressing), which is com­

posed of selected crushed rock aggregate with a bitumen binder. The 

type of materials used and their thicknesses depend on several factors
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including traffic density, the type of roadbase material used and 

thickness of the other layers of the pavement.

Although the wearing course of a road uses only a small 

amount of aggregate in comparison with the rest of the layers, the 

wearing course is very important, and a high proportion of the total 

cost of roadmaking can usually be allocated to it. Therefore, 

typical properties which may be specified for roadstone for 

bituminous surfacing courses are as follows:

1). Durability and resistance to abrasion. Maximum AAV for 

chippings ranges from 10% to 14% depending on traffic flow 

(Harris 1977).

2). Impermeability, or low water absorption (less than 5%).

3). Resistance to frost action, swelling and softening.

4). Must be strong enough to resist failure during emplacement 

and service (ACV less than 25%).

5). Should be of low tractive resistance and yet not liable to 

cause skidding. Minimum PSV values for materials used in 

highway construction varies, depending upon traffic density 

and type of highway layouts, from 45 (site C) to 75 for site 

A (Harris 1977), having traffic density of more than 1,750 

commercial vehicles per lane per day.

The wearing course, however, has to be laid in two stages 

(layers), except where the cumulative traffic (total traffic flow) is 

less than 0.5 million standard axles (see Fig, 5.19.(b)).

It is not always possible to find an aggregate which gives 

excellent results for all standard tests. Therefore, the term
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'durability' has been suggested by Hosking (1969) and Hartley (1974) 

to apply to roadstone aggregate behaviour in terms of its life- 

expectancy when used in any road construction,

A road may fail if the aggregate fails, and this can be assessed 

using the following criteria (from examination of the aggregate).

The aggregate may show: -

a), disintegration and alteration due to either mechanical 

crushing or chemical weathering

b), stripped away from the binding medium, due to lack of 

adhesion

c ) . rapidly worn away (abraded) by the action of traffic

d), reaches a state of polish so that skidding may occur

5,9, Aggregate properties required for different types of 
pavement

In general, an aggregate used for pavements is required to 

contain some or all of the following qualities:

5.9,1. General properties (bound or unbound aggregates)

a) Hardness and toughness. To resist repeated load without breakdown, 

aggregate must have a certain amount of strength and toughness. 

They can be assessed by wechanical tests such as AIV, ACV, AAV

and 10% fines values (see aggregate test in this Chapter), Two 

of the common factors affecting strength and toughness of an 

aggregate are particle shape and surface texture (see page 185 for 

more detailsj.

b) Low water absorption (resistance to frost action, swelling and 

softening). Aggregate particles containing very small, inter-
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connected voids are capable of attaining and retaining a high 

degree of saturation and may be susceptible to disruption if 

repeated freezing occurs,

c) Ability to provide a permanently non-skid surface,

A skid-resistant surface is one which is able to retain a high degree 

of roughness whilst in service. It should be noted, however, that 

the requirement for aggregate properties in surfacing of new motorways 

and trunk roads is strictly specified to match skid-resistance with 

various highway layouts and traffic flows. Minimum PSV and AAV values 

for materials used in highway running surfaces are fully given in 

tables by Harris (1977),

5,9,2, Special properties related to bitumen/tar bounded 
aggregates

There are many types of bituminous mixtures, but it is possible 

to formulate a concept of an ideal aggregate for most uses. The ideal 

aggregate would have: a) Low bitumen/tar absorption in order to

prevent pseudo 'burning' and loss of cohesion (Lees and Kennedy 1975), 

This factor is closely related to porosity and nature of the aggregate 

surface and an adequate coverage of aggregate, without the use of 

excessive bitumen/tar, may be difficult for highly porous aggregate or, 

with adequate coverage an excessive amount of volatiles in the mix may 

be absorbed by the aggregate, A lack of proper adhesion may also 

occur with smooth aggregate surfaces of very low porosity,

b) Stripping is another important surface reaction, which commonly 

occurs where the aggregate is of a type that wets easily with water 

which results in aggregate-bitumen separation, known as 'stripping*. 

Thus, aggregate must be adequately resistant to stripping and be
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able to adhere well to any bituminous binder with which it may be 

used.

5,9.3. Special properties related to cement bounded 
aggregates

Aggregate properties important to Portland cement concrete 

are, in many cases, very different from those important to bituminous 

mixes. In Portland cement concrete construction, aggregate should be 

chemically stable, that is, to be free from components which will 

perhaps cause chemical reactions with other constituents of mix, 

particularly cement (see alkali reactivity in concrete, page 192), 

Aggregate thermal properties are also very important in the design of 

Portland cement concrete structures. Ideally, thermal coefficients 

of expansion of aggregate, should be similar to that of cement paste 

in order to reduce bond cracking which may develop during fluctuation 

in temperature. Thermal expansion characteristics of some more 

common rock types are shown in Table 5,8, However, the range of 

coefficient values for any particular rock may vary widely with 

aggregates from different sources.

Aggregate Types Coefficient of 
(XIO-G per

expansion
°F,)

Quartz 6,6
Sandstone 6,5
Gravel 6.0
Granite 5,3
Basalt 4,8
Limestone 3,8

TABLE 5,8, After Fookes 1980
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5.10, Comparison of the aggregate properties of the Helmsdale 
granites with other igneous rocks in the United Kingdom

In the present study, the engineering properties of the 

Helmsdale granites and the assessment of their qualities as aggregate 

have been investigated, using various physical and chemical tests 

(see aggregate tests in this Chapter), For this part of the study, 

because the spread of values for different tests, both within and 

between the two granite types, are so large that considerable overlap 

exists between samples, it was decided to use the mean values of the 

test results obtained for each location Instead, and these are shown in 

Table 5,9, Furthermore, aggregate properties of different igneous 

rocks from selected quarries in the United Kingdom (including some of 

the igneous rocks of Scotland) are also chosen (Table 5,10, data from 

Harris 1977) for comparison between them and the results obtained in 

the present study.

Variation in the aggregate test results of samples from the 

Helmsdale granite and those from selected quarries are shown in 

Figure 5,20, which shows that both granite types from Helmsdale have 

similar specific gravities (SG about 2,60), which is lower than the 

rest of the samples from elsewhere.

Since the specific gravity is related to porosity, the lower 

value obtained in the present study may well be due to the fact 

that samples from the Helmsdale granite are slightly weathered. This

is particularly very important for concrete mix, since an aggregate 

with higher porosity (lower SG) can absorb more water from mix, which 

in turn reduces aggregate resistance towards freezing and thawing 

conditions. This point is highlighted by the water absorption plot, 

which again is higher (about 0,9%) in the Helmsdale granite, compared
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TABLE 5.10. Properties of aggregates from selected quarries 
in the United Kingdom

Rook type 
(Quarry) ACV 10% Pines 

value kN AAV AIV PSV SG Water ab­
sorption

Granite
(Oastle-an-Binas) 17 285 5.4 16 56 2 .62 0.65
Coedana Granite 
(Gwalchmal) 19 - 4 19 58 2.75 0.55
Peterhead Granite 
(Stirlinghill) 27 130 5.4 27 49 2.63 0.37
Mo ine/Grani t e 
(Banavie) 21 230 5 .2 21 51 2.70 0 .7

Gabhro
(Bean Quarry) 1.8 189 4 .1 15 62 2.75 0.30
Porphyry
(Arenig) 12 540 5 14 51 2.67 0.23
Biotite/Porphyrite
(Purance) 12 .6 270 2.5 14.5 52 2.64 0 .9

Bolerite
(Minffordd) 11 7 10 64 2.9 0.003
Bolerite
(Bevon & Cornwall) 14*6 299 5.9 10 .6 59.8 2.84 0.54
Bolerite 
(Whin Sill) 11.4 575 4.2 9.8 57 2.9 0 .6 1

Metamorphosed 
Bolerite (Penlee) 1 % 369 2 12 45 2.72 0.64
Andésite 
(Moon Hill) 16 259 5.2 12.7 59 2 .68 0 .8 8

Volcanics
(Whitwiok) 16 279 5.8 14 60 2 .80 0.19
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with the rest of the samples. The strength of aggregates was 

compared, based on AIV, AAV, ACV and 10% fines values.

Samples from the Helmsdale granites show,in general, 

lower strength than the rest of the samples from other quarries 

(higher ACV, AIV and lower 10% fines). The AAV and PSV results, 

however, are more encouraging. The PSV values, in particular, are 

within the granite range and even higher than the sample from the 

Peterhead granite.

Based on the aggregate test results in this study and those 

from Table 5,10, the following conclusions can be drawn:

1), More basic igneous rocks have better PSV, AIV, ACV 

and 10% fines, and poorer AAV and drying shrinkage 

values (the shrinkage values are not given in Tables 

5,9, 5,10),

2), Finer-grained igneous rocks have better AIV, 10% 

fines and ACV, and poorer AAV and drying shrinkage 

values,

3), Between two granite types of the Helmsdale granites, 

samples of the CGP type generally have lower strength 

and slightly better AAV and PSV values than the 

samples of the FG type,

5,11, Suitability of the Helmsdale granite aggregates for 
engineering purposes

Although some of the samples from the Helmsdale granite 

(i.e. Eldrable Burn area), have produced a poor quality aggregate 

due to a high degree of alteration, engineering test results (Table
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5.9) have revealed that aggregate from the Helmsdale granite is 

comparable in quality to that of the Peterhead granite, which is 

one of the granites mentioned in the Verney Report as a possible 

site for a large coastal quarry, and is currently used as a suitable 

aggregate for local industrial developments.

However, the quality of the samples tested as aggregates from 

different locations in the Helmsdale granite can be assessed as 

follows :

5.11.1. As roadstone aggregate

As was pointed out in a previous section (page ), aggregate 

properties such as strength and surface texture, are regarded as the 

most important factors required for aggregates for road-making 

purposes. Among the samples tested in the present study, those 

samples from Eldrable Burn and Longell Water areas have particularly 

high ACV and AIV values. Apart from these badly weathered samples, 

the rest of the samples from the Helmsdale granites show the same 

ACV and AIV results as were obtained from Peterhead granite, and 

slightly higher ACV and AIV than was obtained from other granitic 

rocks (Pig,5,20), As was expected, a strong inverse relationship in 

10% fines values relative to ACV and AIV was noted in each of the 

samples, A combination of high ACV and AIV values plus lower 10% 

fines values for both granite types of the Helmsdale intrusion 

suggests that all samples are low strength aggregates. As in the 

case of AAV values, while samples from Ousdale area (CGP type) are 

particularly very good (AAV 4%), the rest of the samples also make 

acceptable aggregate for most highway and trunk.road running surfaces. 

The PSV results, on the other hand, show that except for samples from
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Eldrable Burn (PSV—'50%), all remaining samples have similar PSV 

values of between 54 and' 62%, which is in the range of most of the 

granite rocks and better than the value obtained for Peterhead granite.

Based on the specification for road and bridge works by the 

Department of Transport for British Standards, minimum PSV values of 

between 75 and 45, and maximum AAV values between 16 to 10 depending 

on traffic densities and type of site (Harris 1977), aggregate from 

Helmsdale granite can be used for site C, with satisfactory performance,

5.11.2. .As concrete mix aggregate.

In concrete construction the most important properties are 

hardness, durability and cleanliness. The shrinkage of aggregate is 

also very critical in most cases, and aggregate with high shrinkage 

values should not be used unless its shrinkage value is studied in 

detail,

Based on concrete compressive strength (Fig. 5.17), aggregate 

strength studies (Table 5.9), and those limited aggregate AIV and 10% 

fines values required for different types of concrete (Table 5.11, 

based on BS 882: 1983), samples of the Helmsdale granites have shown 

that satisfactory performances will be achieved. There are, 

however, a few limitations where the use of the Helmsdale granites as 

an aggregate are not recommended:

1) Badly weathered samples, particularly those from Eldrable, 

have shown unsatisfactory strength results, due to the high 

degree of alteration which makes these rocks unsuitable for 

most engineering purposes, except for low strength concrete,

2) The Helmsdale granites, in general, are not suitable for the 

purposes of heavy duty concrete floors which require high
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Type of 
Concrete

10% fines 
(not less than)

AIV
(not exceeding)

kN %
Heavy duty concrete
floor finishes 150 25

Pavement wearing
surface 100 30

Others 50 45

TABLE 5.11. Limiting values on AIV and 10% fines for 
different types of concrete (after BS 
882; 1983).

10% fines ( J>150 Kn) and low AIV ( 4̂ 25%), except those relatively 

fresh samples from the FG type granites which may be used with 

great care.



- 2 1 2 -

CHAPTER SIX 

CORRELATION

6,1. Introduction

Aggregates are used for a variety of purposes, the two main ones 

being for roadstone and concrete. They normally comprise up to 80% 

of the volume of concrete mixes used in engineering constructions 

and it is not surprising that the quality of aggregates is of con­

siderable importance in determining their suitability for any specific 

engineering purposes. Thus, the suitability of aggregates for use in 

a given type of construction is normally determined by evaluating 

their physical and chemical properties.

Throughout preceding chapters references have been made to the 

effects that each geological factor (such as mineralogy, petrography, 

geochemistry, weathering and hydrothermal alteration) and environ­

mental factors (climate, in particular) have upon the quality and 

durability of aggregate. Therefore it is quite common to find the 

physical performance of the same type of crushed aggregate (i.e. 

granite) from two different sources is not comparable, particularly 

when there are differences in their grain size and degree of 

alteration (Masking 1968, 1976; Hartley 1968, 1974; Ramsey et al,

1974; Lees & Kennedy 1975), Weinert (196^, in the study of crushed 

rocks for roads in South; Africa, concluded that existing test procedures 

for suitability of an aggregate only indicate its present physical 

condition, which may change while in service possibly due to chemical 

weathering. As a result, attempts have been made in recent years
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to reach a better understanding of the iii situ behaviour of 

aggregates, particularly in some areas where due to growing demand 

for aggregates the use of slightly weathered aggregate (e.g. aggregate 

for weathering Grade II has successfully been used by Fookes 1980), is 

quite common, Moore (1978) has shown that based on comparison of 

some oxides (Na^O and CaO), along with the Fe^O^/FeO ratio between 

fresh and weathered rocks, the suitability of weathered rock for use 

as aggregate can be evaluated from geochemical parameters.

This chapter, however, is a general analysis and correlation 

between the results obtained from a series of mineralogical, 

petrographical, geochemical and aggregate engineering tests performed 

on samples from two granite types (FG and CGP), distinguished by 

different degrees of alteration,

6,2, The correlation results

The study of the relationships between different aggregate 

engineering test results has been carried out on all the samples from 

two quarry faces, plus a selection of samples from other locations in 

the Helmsdale granites. The results are shown in Figure 6,1, where 

the test results obtained from 10% fines, PSV, AAV, shrinkage, water 

absorption (WA), and specific gravity (SG), are plotted against AIV, 

Plot (a) shows that a perfect linear relationship exists between 10% 

fines and AIV values for both fresh and weathered samples,of the two 

granite types. Plot (b) on the other hand, shows that the relation­

ship between PSV and AIV values is different for the two granite types. 

In the case of the FG type, the PSV value improves (higher PSV) as 

the samples show small sign of alteration and then drops again to a 

very low value for more altered samples, whereas in the case of the CGP
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type: the relationship is almost the same for all samples: overall

the CGP type samples appear to have higher PSV values than the finer- 

grained type. Knill (1960) has also shown that igneous rocks contain­

ing a small proportion of soft minerals due to the alteration processes, 

or containing fractured grains, tend to have reasonably high polish 

resistance. It was also concluded in his study that the grain size 

has little effect upon PSV values, i.e. the finer-grained rock with 

minerals of comparable hardness tends to accept a higher polish (lower 

PSV) than the coarser-grained rock with the same mineral composition.

The present correlation study also agrees with the conclusion made 

by Hingley (1971) that the PSV test, in general, is not very reliable, 

although this is the only test at the present time for assessing the 

skid-resistance of road surfacing aggregate.

The AAV test results (Plot c) show a different trend to that ob­

served in plot (a). Here the FG type, with less quartz and a higher 

amount of mafic minerals (which showed higher strength - higher 10% fines 

and lower AIV) has higher AAV than the CGP type. This plot supports the 

conclusion made by Hartley (1974) that those igneous rocks containing a 

higher silica (e.g. the CGP) tend to resist abrasion better than the 

rocks with less silica and more ferromagnesium content (e.g. the FG type).

The drying shrinkage results (Plot d), while not showing any par­

ticular trends for the FG type granite, show only a small increase in 

the CGP type as the rock becomes more altered. Figure 6.1, (e) shows 

the relationship between water absorption and aggregate impact value 

test results. It can be seen that water absorption value increases 

with increasing AIV, The behaviour of the two granite types (FG and CGP) 

is fairly similar. The specific gravity resultd, however, do not show 

any variation in relation to AIV (Plot f) and remain constant around 

2.6 for both granite types.
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The behaviour of aggregate engineering properties (Fig, 6,1.) 

can be discussed in more detail, using some of the more important 

oxides representative of the most common mineral constituents of the 

Helmsdale granites. Figure 6,2.(g) shows the relationship between 

AIV and MgO as a main constituent of mafic mineral (i.e. biotite).

This plot shows that aggregate impact value increased with decreasing 

MgO. Figure 6,2,(h) also shows this point very well when GaO 

content, as a main constituent of plagioclase is used. The CaO in 

the FG type is much higher accompanied by lower AIV values (higher 

strength), while the CGP type samples with lower CaO show no relation­

ship with the variation in AIV values. The behaviour of NagO (Plot i) 

also as a main constituent of plagioclase, is the same as MgO and CaO 

oxides, i.e. lower percentage of NagO related to higher AIV in the 

CGP type. In Figure 6,2. (j & k) AIV increases as K^O and SiO^ 

increase,

The chemical analyses of the rocks were converted to normative 

amounts so that the relative composition of important minerals such 

as feldspars (plagioclase, in particular) and quartz could be com­

pared between the two granite types as a result of weathering process.

In Figure 6.3., the normative amounts of quartz have been plotted 

against normative albite and albite plus anorthite, as representative 

of plagioclase: this figure shows a steady decrease in the percentage 

of plagioclase is accompanied by. increase in the amount of quartz. 

Figure 6.4. on the other hand, diows no variation in amount of quartz 

when normative orthoclase (K-feldspar) is used instead of plagioclase. 

This figure tends to suggest that the K-feldspar is more stable during 

the early stage of weathering, whereas plagioclase is more susceptible 

to breakdown. (Rice 1973; Moore and Gribble 1980),
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Finally, the analysis of the relationships between the values 

of aggregate engineering properties and the alteration degree 

FI, AI^, AI^ and Fe^O^/FeO) can be used to explain the behaviour of 

both the fresh and the altered aggregate further. The alteration 

parameters are defined as follows:

1) FI is a microfracture index and were determined on thin
2sections as the number of microfractures in 10mm (after Irfan 

and Dearman 1978).

2) AI^ is an alteration index of feldspar and were determined again 

on thin sections as the ratio amount of altered feldspars to 

total feldspar.

3) AI^ is an alteration index of mafic minerals (biotite, in 

particular) and were also determined on thin sections as the 

ratio amount of altered mafic minerals to the total mafic 

minerals.

4) F^^Og/FeO is the ratio of Fe^*^ to Fe^*^ as oxidation ratio 

determined by geochemical analysis.

In Figure 6.5,, all the alteration indices are plotted against 

aggregate impact value results. This figure tends to suggest that 

the degree of alteration, oxidation and microfracturing increases 

as AIV increases. Furthermore, the CGP type appears to be more 

affected by very high degree of oxidation (higher FegO^/FeO ratio) 

than the FG type. The alteration indices^ however, show different 

behaviour for the two granite types in that while the CGP type shows 

that feldspars are the most affected altered minerals during weathering 

processes, in the case of the FG type mica is the first mineral to be 

affected.
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CHAFTER 7 

CONCLÏÏSIQES

A study of the literature indicates that the application of 
standard geotechnioal and engineering test procedures for the 
identification and evaluation of the properties of crushed rock 
aggregates has sometimes proved misleading. The results are even 
worse where the aggregates used are altered due either to weathering 
or hydrothermal alteration processes. It has been reported that 
weathered aggregate, and even fresh rock aggregate which passed all 
standard tests at the time of usage, failed well before its life 
expectancy, because the materials had deteriorated badly throu^i 
further chemical weathering under field conditions.

The Helmsdale granite, therefore, has been chosen for this 
study because of its unique geological environment to satisfy the 
following objectives:

1). Petrochemical study of both the fresh and weathered rooks 
from the Helmsdale intrusions,

2), The study of the aggregate properties of the granites and 
the effects of both weathering processes and different 
grain sizes upon them,

3). Correlation between petrochemistry and aggregate engineering 
properties to establish any common factor upon which the 
likely behaviour of one property can be anticipated by a 
study of the other.

4 ). Finally, whether any criteria can be established upon which
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both the present and in-service behaviour of an aggregate 
can be known.

The following conclusions pertain specifically to the Helmsdale 
granites studied in the present investigagion:

1). Pétrographie and field observations indicate that the Helmsdale
intrusion consists of two granites; the outer, coarser-grained 
porphyritic pink granite (CGP type) and the inner, finer-grained 
type (FG) which shows a transitional relationship with the CGP 
type, Mineralogioally, the FG type has slightly more biotite
and plagioclase minerals than the CGP type,

2), Chemical analyses showed that the Helmsdale granites should be
considered as two intrusions, probably derived from a single, 
magmatic source, such as partial melting of mantle-like material 
containing some crustal component (Lewisian gneiss). Graphs 
involving normative values also suggest a closer relationship 
between the FG and CGP types and plagioclase (albite) and 
biotite fractionation appear to be the only minerals changing 
the magma composition towards the later, differentiated CGP 
type. Further evidence for this is illustrated by the Plots 
of Rb against K"̂ , which suggest higher K/feb ratios for the
CGP type due to later fractionation product. The FG type is 
characterized by higher iron, MgO and TiO^ content which are 
the main constituents of the biotite which are being fractionated.

3). Based on the pétrographie study of the weathered samples from 
the Helmsdale granites, the sequence and nature of the alteration 
processes has been revealed as far as the primary minerals are 
concerned, as follows:
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Hydrothermal alteration, including sericitic and chloritic 
alteration, followed by physical and chemical weathering. Both 
biotite and feldspar have undergone some mineralogical changes 
which can be attributed to either hydrothermal alteration or 
weathering.

Geochemical study of weathered samples showed that both 
plagioclase and biotite are the first minerals to be affected 
by alteration. Kaolinite and illite are the common alteration 
products, which are less abundant in samples from the lower 
parts of the quarry faces. This point suggests a high leaching 
environment, since in a mild leaching environment either illite 
or montmorillonite, or both, would be expected. Therefore, 
hydrolysis and oxidation processes appear to be the main cause 
of the chemical weathering and this is highlighted by loss of 
Ga^^, Mg^^ aiad Ma'*' from the solution, accompanied by a pro­
portional increase in the amount of Al^* and, occasionally,

5+Fe in the early stage of the process.
4). Various engineering tests were applied to assess the aggregate 

quality of both fresh and weathered samples, which suggested 
that the Helmsdale granite as a whole is suitable for most 
engineering purposes, except for those requiring high-strength 
aggregate. Between the two types of granite existing in 
Helmsdale, the FG type is much stronger than the CGP type, 
although the latter type shows better PSV and AAV values.
Among the rock forming minerals quartz and plagioclase appear 
to be the related factor between aggregate engineering and 
petrochemical properties, that is, the higher the percentage 
of quartz in rook composition the better the aggregate (lower
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AAV and hi^er PSV), whereas rocks with higher mafic minerals 
are more prone to weathering processes. Aggregate impact and 
10% fines values appear to be the cheapest and quickest tests 
for assessing the aggregate strength and show a very good 
relationship with both fresh and altered samples. These 
aggregate tests, plus more pétrographie indices (FI, AI^ 
and AI^), and geochemical analyses (major oxides in particular) 
can provide enough information about both present and future 
behaviour of aggregate in use.
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Sample locations A.1

Geochemistry results

1) Major element tables A, 2

2) Niggli values tables A , 2

3) Trace element tables A,3

4) CIPW norms value tables A.4
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APPENDIX 2

MICROPROBE ANALYSES RESULTS
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GLEN LOTH PLAGIOCLASE

Analysis
No 18 19 21 22 24 47 48 50

SiO^ 65.30 66.07 66.67 68.11 68.45 67.23 68.16 64.75

TiOg - - - - - 0.00 0.00 0.00

Al^Oj 19.50 19.87 19.68 19.89 19.72 19.58 19 .87 19.54

T FeO 0.27 0.00 0.20 0.23 0.00 0.00 0.00 0.17

MnO - - - - - 0.14 0.00 0.00

MgO - - - - - 0.00 0.00 0.00

CaO 0.42 0.21 0.34 0.00 0.00 0.00 0.00 0.36

Na^O 10.80 11.32 11.13 10.68 11.18 11.80 11.55 9.27

0.23 0.00 0.14 0.37 0.00 0.00 0.00 2.29

TOTAL 96.52. 97.47 98.16 99.28 99.35 98.75 99.5% 96.

Ca 0.08 0.04 0.06 0.00 0.00 0.00 0.00 0.07

K 0.05 0.00 0.03 0.08 0.00 0.00 0.00 0.53

Na 3.79 3.93 3.84 3.63 3.79 4.05 3.92 3.28

Fe 0.04 0.00 0.03 0.03 0.00 0.00 0.00 0.02

Mg - - - - - 0.00 0.00 0.00

Mn - - - - - 0.02 0.00 0.00

Ti - - - - - 0.00 0.00 ' 0.00

A1 4.17 4.20 4.13 4.11 4.07 4.08 4.10 4.21

Si 11.84 11.84 11.88 11.96 11.99 11.90 11.94 11.88



-270-

Analysis
51 52 53 54 55 56 59 60

SiO^ 65.05 64.54 64.50 64 * 68 65.25 66.87 65.81 65.02

Ti02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

AI2O 3 22.42 21.86 22.01 21.39 22.13 20.09 21.51 20.74

T FeO 0.24 0.00 0.22 0.17 0.26 0.00 0.27 0.00

MnO 0.00 0.00 0.00 0.00 0.00 0.00 0.14 0.00

MgO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

CaO 2.85 2.76 2.63 2.79 2.61 0.28 1.76 1.47

Na20 10.36 9.48 10.18 9.46 9.82 10.87 10.12 10.32

KgO 0.22 0.22 0.28 0.31 0.28 0.00 0.12 0.00

TOTAL 101.lif 98.8 is 99.82 98.80 100.35 98.U 99.73 97.5 S

Ca 0.53 0.52 0.49 0.53 0.49 0.05 0.33 0.28

K 0.05 0.05 0.06 0.07 0.06 0.00 0.02 0.00

Na 3.51 3.26 3.49 3.26 3.34 3.74 3.45 3.59

Fe 0.03 0.00 0.03 0.02 0.03 0.00 0.04 0.00

Mg 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00

Ti 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

A1 4.61 4.58 4.58 4.49 4.57 4.20 4.46 4.38

Si 11.36 11.47 11.40 11.51 11.49 11.87 11.58 11.66



-271-

Analysis
No, 61 62 63 64 67 68 69

SiO^ 66.43 65.84 66.04 64.23 65.39 65.36 66.70

TiO^ 0.00 0.00 0.00 0.00 0.00 0.00 0.00

^^2^3 19.13 20.37 21.23 20.93 20.19, 20.59 20.01

T FeO 0.13 0.00 0.43 0.29 0.15 0.28 0.00

MnO 0.00 0.20 0.00 0.00 0.00 0.00 0.00

MgO 0.00 0.00 0.00 0.00 OfOO 0.00 0.00

CaO 0.00 0.45 0.30 0.40 1.33 0.14 0.30

Na^O 11.42 11.03 10.91 10.50 10.86 10.76 11.28

KjO 0.00 0.00 1.17 0.84 0.19 0.80 0.11

TOTAL 97.11 97.SI 100.18 97.21 98.11 97.93 98.70

Ca 0.00 0.08 0.05 0.07 0.25 0.02 0.05

K 0.00 0.00 0.26 0.19 0.04 0.18 0.02

Na 3.98 3.82 3.72 3.68 3.77 3.74 3.88

Fe 0.02 0.00 0.06 0.44 0.02 0.04 0.00

Mg 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Mn 0,00 0.03 0.00 0.00 0.00 0.00 0.00

Ti 0.00 0.00 0.00 0.00 0.00 0.00 0.00

A1 4.05 4.29 4.40 4.46 4.26 4.35 4.19

Si 11.95 11.76 11.63 11.62 11.70 11.71 11.85



- 2 7 2 -

LONGWELL WATER PLAGIOCLASE

Analysis
No» 25 27 28 29 30 31 35 36

SiO^ 65.46 66.59 67.65 67.72 64.01 66.28 65.11 68.6

Ti02 - - - - - - - -

AI2O3 21.55 20.49 19,91 19.91 21.99 21.06 19.99 19.9

T FeO 0.18 0.00 0.13 0.00 0.15 0.17 0.00 0.00

MnO - - - - - - 0.00

MgO - - - - - - 0.00

CaO 2.28 1.55 0,27 0.00 2.86 1.67 1,36 0.18

Na^O 9.75 10.30 10.81 11.73 9.26, 10.22 9.86 11.23

K^O 0.46 0.16 0.24 0.00 0.44 0.17 0.14 0.45

TOTAL 99.7# 99.09 99.07 99.36 98.7/ 99.57 96.44 100.4

Ca 0.43 0.29 0.05 0.00 0.54 0.31 0.26 0.03

K 0.10 0.03 0.05 0.00 0.10 0.03 0.03 0.10

Na 3.33 3.52 3.69 4.00 3.20 3.48 3.46 3.79

Fe 0.02 0.00 0.02 0.00 0.02 0.02 0.00 0.00

Mg - - - - - - - 0.00

Mn - - - - - - - 0.00

Ti - - - - - - - 0.00

A1 4.48 4.26 4.13 4.12 4.62 4.37 4.26 4.08

Si 11.54 11.76 11.92 11.90 11.41 11.66 11.79 11.9



-273-

HELMSDALE QUARRY PLAGIOCLASE

Analysis 
N o , 79 80 81 82 83 84

SiOg 69.01 68.81 67.73 68.61 67.51 67.16

TIO^ 0.00 0.00 0.00 0.00 0.00 0.00

A I 2O3 20.11 20.30 19.69 19.38 20.10 19.78

T FeO 0.00 0.00 0.00 0.45 0.00 0.00

MnO 0.00 0.00 0.00 0,00 0.00 0.00

MgO 0.25 0.00 0.00 0.00 0.00 0.00

CaO 0.00 0.00 0.00 0.00 0.27 0.00

Na^O 11.57 11.27 11.12 11.57 11.07 11.62

K^O 0.00 0.08 0.00 0.10 0.12 0.00

TOTAL 100.9f 100.46 98.5f 100. U 99.07 98.56

Ca 0.00 0.00 0.00 0.00 0.05 0.00

K 0.00 0.02 0.00 0.02 0.02 0.00

Na 3.87 3.79 3.81 3.92 3.78 3.98

Fe 0.00 0.00 0.00 0.06 0.00 0.00

Mg 0.06 0.00 0.00 0.00 0.00 0.00

Mn 0.00 0.00 0.00 0.00 0.00 0.00

Ti 0.00 0.00 0.00 0.00 0.00 0.00

A1 4.09 4.15 4.10 3.99 4.17 4.13

Si 11.92 11.93 11.97 11.98 11.89 11.89



-274-

Analysis
No. 85 86 88 89 93 94

Si02 68.72 67.58 68.55 68.17 68.23 68.41

TiÛ2 0.00 0.00 0.00 0 .00 0.00 0.00

AI2O3 19.67 19.74 20.07 20 .48 20.94 19.97

T FeO 0.00 0.00 0.00 0.00 0.14 0.00

MnO 0.00 0.00 0.00 0.00 0.00 0.00

MgO 0.00 0.00 0.00 0.00 0.00 0.00

CaO 0.00 0.10 0.00 0.00 0.42 0.00

11.28 11.75 11.72 11.13 11.21 11.46

K^O 0.00 0.00 0.09 0.12 0.18 0.00

TOTAL 99.67 99.17 100.43 99.92 101.1% 99.8%

Ca 0.00 0.02 0.00 0.00 0.07 0.00

K 0.00 0.00 0.02 0.02 0.04 0.00

Na 3.82 4,01 3.95 3.76 3.75 3.87

Fe 0.00 0.00 0.06 0.00 0.02 0.00

Mg 0.00 0.00 0.00 0.00 0.00 0.00

Mn 0.00 0.00 0,00 0.00 0.00 0.00

Ti 0.00 0.00 0.00 0.00 0.00 0.00

A1 4.05 4.10 4.11 4.21 4.27 4.11

Si 12.0 ' 11.91 11.92 11.89 11.79 11.94



-115-

OUSDALE QUARRY PLAGIOCLASE

Analysis
No, 99 . 100 101 102 108 109 110 111

SiOz 68.59 68.21 66.62 66.32 68.69 65.48 68.16 68.15

Ti02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

A I 2O3 19.86 19.70 19.47 19.52 20.13 21.29 19.57 20.01

T FeO 0.00 0.00 0.00 0.23 0.00 0.42 0.00 0.00

MnO 0.00 0.00 0.14 0.00 0.00 0.00 0.00 0.00

MgO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

CaO 0.00 0.00 0.00 0.09 0.00 0.00 0.00 0.00

Na^O 11.97 11.87 11.32 11.86 11.44 10.41 11.44 10.81

0.00 0.00 0.14 0.24 0.00 1,36 0.09 0.00

TOTAL 100.//% 99.78 97.6? 98.24 100.26 98.94 99.%6 99.17

Ca 0.00 0 .00' 0.00 0.01 0.00 0.00 0.00 0.00

K 0.00 0.00 0.03 0.05 0.00 0.31 0.02 0.00

Na 4.04 4.02 3.92 4.10 3.85 3.59 3.89 3.67

Fe 0.00 0.00 0.00 0.03 0.00 0.06 0.00 0.00

Mg 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Mn 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00

Ti 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

A1 4.07 4.06 4.10 4.11 4.12 4.46 4.05 4.14

Si 11.93 11.94 11.91 11.84 11.94 11.64 11.97 11.95



-276.

ELDRABLE BURN PLAGIOCLASE

Analysis No. 115 116 117 118

SiO^ 66,68 67.01 68.75 67.22

TiÛ2 0.00 0.00 0.00 0.00

AI2O3 20.32 20.60 20.03 19.87

T FeO 0.00 0.00 0.00 0.00

MnO 0.00 0.00 0.00 0.00

MgO 0.00 0.00 0.00 0.00

CaO 0.69 0.34 0.00 0.36

Na^O 10.82 11.36 11.19 11.43

0.18 0.16 0.10 0.10

TOTAL 98. 99. 100.07 98.9#

Ca 0.13 0.06 0.00 0.07

K 0.04 0.03 0.02 0.02

Na 3.71 3.87 3.77 3.91

Fe 0.00 0.00 0.00 0.00

Mg 0.00 0.00 0.00 0.00

Mn 0.00 0.00 0.00 0.00

Ti 0.00 0.00 0.00 0.00

A1 4.24 4.27 4.11 4.13

Si 11.81 11.78 11.96 11.87



-277-

ALLT CILLE PLAGIOCLASE

Analysis
No. 1.22 123 126 127 128 131

SiO^ 64.51 67.60 65.69 68.21 64.35 63.67

TiOz 0.00 0.00 0.00 0.00 0.00 0.00

^^2^3 20.19 19.58 19.27 20.01 22.10 21.02

T FeO 0.00 0.00 0.00 0.00 0.00 0.14

MnO 0.00 0.00 0.00 0.00 0.00 0.00

MgO 0.00 0.00 0,00 0.00 0.00 0.00

CaO 1.04 0.00 0 .00, 0.11 2.74 2.51

NazO 11.01 11.31 11.95 11.52 9.23 9.76

KzO 0.10 0.00 0.00 0.00 0.62 0.21

TOTAL 96.85 98. 96.91 99.85 99.0% 97.31

Ca 0.20 0.00 0.00 0,02 0.52 0.48

K 0.02 0.00 0.00 0.00 0.14 0.04

Na 3.86 3.88 4.18 3.90 3.18 3.42

Fe 0.00 0.00 0.00 0.00 0.00 0.02

Mg 0.00 0.00 0.00 0.00 0.00 0.00

Mn 0.00 0.00 0.00 0.00 0.00 0.00

Ti 0.00 0.00 0.00 0.00 0.00 0.00

AI 4.31 4.08 4.10 4.12 4.63 4.48

Si 11.68 11.96 11.87 11.92 11.43 11.51



-278-

Analysis
No. 132 133 136 137 138

SiOg 65.22 63.48 64.66 65.51 64.66

TiOz 0.00 0.00 0.00 0.00 0.00

^^2^3 20.81 21.73 21.31 21.19 21.19

T FeO 0.20 0.18 0.00 0.00 0.00

MnO 0.00 0.00 0.00 0.00 0.00

MgO 0.00 0.00 0,00 0.00 0.00

CaO 1.58. 2.60 2.05 2.27 2.11

NazO 9.94 10.17 10.23 10.17 10 .41

K 30 0.20 0.17 0.21 0.24 0.42

TOTAL 97.95 98.33 98.56 99.35 98.7?

Ca 0.30 0.50 0.39 0.43 0.40

K 0.04 0.03 0.04 0.05 0.09

Na 3.44 3.53 3.54 3.48 3.60

Fe 0.03 0.02 0.00 0.00 0.00

Mg 0.00 0.00 0.00 0.00 0.00

Mn 0.00 0.00 0.00 0.00 0.00

Ti 0.00 0.00 0.00 0.00 0.00

A1 4.38 4.59 4.48 4.41 4.45

Si 11.66 11.39 11.54 11.58 11.53



-279-

GAEN'BÜRN PLAGIOCLASE

Analysis
No. 140 141 142 143 144 145

SiOz 64.92 63.70 65.58 63.87 65.86 64.95

TiOz 0.00 0.00 0,00 0.00 0.00 0.00

AlzOs 20.30 21.53 18.77 19.96 20.51 19.50

T FeO 0.00 1.88 0.68 0.29 0.15 0.00

MnO 0.00 0.00 0.00 0,00 0.00 0.00

MgO 0.00 0.81 0.00 0.00 0.00 0.00

CaO 1.23 0.28 0.00 0.09 0.34 1.05

NazO 10.24 5.74 9.53 10.52 11.27 10.6 ?

KzO 0.21 5.71 3.30 0.84 0.50 0.17

TOTAL 96.9 P 99.65 97.86 95.57 98.63 96.24

Ca 0.23 0.05 0.00 0.01 0.06 0.20

K 0.05 1.36 0.76 0.19 0.11 0.04

Na 3.58 2.08 3.35 3.74 3.89 3.73

Fe 0.00 0.29 0.10 0i04 0.02 0.00

Mg 0.00 0.22 0.00 0.00 0.00 0.00

Mn 0.00 0.00 0,00 0.00 0.00 0.00

Ti 0.00 0.00 0.00 0.00 0.00 0.00

A1 4.32 4.50 4.01 4.32 4.30 4.18

Si 11.72 11.39 11.90 11.73 11.72 11.81



- 280-

AnaLysis
N o . 147 148 151 152 156 157

SiOz 66.31 66.10 64.43 67.46 59.4 67.16

TiOz 0.00 0.00 0.00 0.00 0.00 0.00

AI2O3 19.89 19.50 20.93 19.71 18.77 20.73

T FeO 0.35 0,00 0.00 0.35 0.36 0.00

MnO 0.00 0.00 0.00 0.00 0.00 0.00

MgO 0.00 0.00 0.00 0.00 0.00 0.00

CaO 0.18 0,00 1.58 0.18 1.43 0.29

NazO 10.70 11.52 10.31 11.40 9.96 12.06

K^O 0.41 0.11 0.19 0.18 0.33 0.12

TOTAL 97.S% 97.23 97.4% 99.2# 90.25 100.36

Ca 0.03 0.00 0.30 0.03 0.30 0.05

K 0.09 0.02 0.04 0.04 0.08 0.02

Na 3.70 4.01 3.60 3.89 3.77 4.08

Fe 0.05 0.00 0.00 0.05 0.05 0.00

Mg 0.00 0.00 0.00 0.00 0.00 0.00

Mn 0.00 0.00 0.00 0.00 0.00 0.00

Ti 0.00 0.00 0.00 0.00 0.00 0.00

A1 4.19 4.13 4.44 4.09 4.32 4.27

Si 11.85 11.88 11.60 11.89 11.61 11.73



281-

K FELDSPAR FROM GLEN LOTH (CGP TYPE)

Analysis
No. 2 3 4 6 7 8 9 10 . 11

SiOz 62.96 62.16 63.41 66.29 61.78 62.48 63.13 62,63 62.22

TiOz - ' - - - - - - -

18.44 . 18.40 19.23 19.62 19.12 19.09 18.91 18.33 18.43

T FeO 0,00 0.00 0.00 0.00 0.21 0.00 0.21 0.19 0,19

MnO - - - - - - - - -

MgO - - - - - - - - -

CaO 0.13 0.29 0.26 0.17 0.32 0.30 0.32 0.25 0.37

NazO 0.82 1.37 4.20 10.92 1.46 1.88 3.52 1.76 1.52

KzO 14.31 14.00 9.53 0.00 13.43 13.31 10.27 13.45 13.03

TOTAL 9 6,66 94, ZZ 96.6% 97.00 96.3% . 97.06 96.36 ■96.61 95.76

Ca 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

K 0.86 0.85 0.56 0.00 0.81 0,80 0.61 0.81 0.79

Na 0.07 0 .12 0.38 0.95 0.13 0.17 0.32 0.16 0.14

Fe

Mg

0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.01 0.01

Mn

Ti

- - - - - - - - -

A1 1.03 1.03 1.05 1.04 1.07 1.06 1.04 1.02 1.03

Si 2.93 2.96 2.95 2.97 2.93 2.94 2.96 2.97 2.97



- 2 8 2 -

Analysis
N o , 12 13 14 15 16 17 20 23

SiOz - 63.60 62.38 62.54 61.76 62.70 63.10 63.05 64.57

TiOz - ■■ - - - - - - -

AI 2O3 19.14 18.75 19.09 18.46 18.81 18.47 18.53 18.81

T FeO 0.27 0.00 0.21 0.25 0,00 0.00 0.00 Ô.24

MnO - - - - - - - -

MgO - - - - - - - -

CaO 0.27 0.32 0.32 0.39 0.37 0.28 0.00 0.00

NazO 7.20 1.30 1.00 0.73 1.25 1.25 1.56 0.99

K 2O 5.24 13.82 13.94 14.51 14.66 14.20 14.11 14.96

TOTAL 95.72 95.57 97./O 96./O 97. 97.3 P 97.25 99.57

Ca 0.05 0.06 0.06 0.08 0.07 0.05 0.00 0.00

K 1.24 3.34 3.36 3.54 3.06 3.42 3.40 3.52

Na 2.59 0.47 0,20 0.27 0.46 0.45 0.57 0.35

Fe 0.04 0.00 0.03 0.04 0.00 0.00 0.00 0.03

Mg - - - - - - - -

Mn - - - - - - - -

Ti - - - - - - - -

A1 4.20 4.19 4.26 4.17 4.21 4.11 4.12 4.09

Si 11.83 11.83 11.83 11.83 11.90 11.90 11.91 11.93



-283-

MARREL K-FELDSPAR
Analysis

No, 46 47 57 58 39 40

SiOz 67.76 65.51 64.80 64.79 64.03 64.13

TiOz 0,00 0.00 0.29 0.13 0.35 0.40

AI2O3 19.66 19.65 19.40 19.39 18.80 18.93

T FeO 0.18 0.20 0.20 0.35 0,17 0.00

MnO 0.00 0.00 0.29 0.00 0,00 0.00

MgO 0 .Ô0 0.00 0.00 0.00 0.00 0.00

CaO 0.30 0.00 0.00 0.66 0.16 0.20

NazO 6.51 6.99 1.88 9.43 1.15 1.04

KzO 6.87 7.57 14.03 2.01 14.44 15.43

TOTAL 101.2 s 99.92 100.S? 96.76 99.10 100.13

Ca 0.05 0,00 0.00 0.13 0.03 0.04

K 1.54 1.74 3.26 0.46 3.41 3.63

Na 2.22 2.44 0.66 3.33 0.41 0.37

Fe 0.02 0.03 0.03 0.05 0.02 0.00

Mg 0.00 0.00 0.00 0.00 0.00 0.00

Mn 0.00 0.00 0.04 0.00 0.00 0.00

Ti 0,00 0.00 0.04 0.01 0.04 0.05

A1 4.08 4.17 4.17 4.16 4.11 4.11

Si 11.94 11.80 11.82 11.81 11.87 11.83



- 28 4 "

LONGWELL WATER AREA K-FELDSPAR

Analysis
No. 26 32 33 34 76 77

SiOz 64.87 66.29 64.01 64.20 64.32 66.57

TiOz - - - - 0.00 0,00

18.93 19.45 18.46 19.0 18.52 18.88

T FeO 0.00 0.00 0.18 0.00 0.00 0.00

MnO - - - - 0.00 0.00

MgO - - - - 0.00 0.00

CaO 0.00 0.35 0.00 0.12 0.00 0.00

Na^O 2.02 7.68 0.39 1.12 0.81 7.24

K 2O 12.78 5.52 15.58 14.79 15.31 6.54

TOTAL 93.50 9f .2 ? 98.62, 100.23 98.96 99.2 3

Ca 0.00 0.06 0.00 0.02 0.00 0.00

K 3.00 1.26 3.71 3.49 3.63 1.50

Na 0.72 2.66 0.14 0.40 0.29 2.52

Fe 0.00 0.00 0.02 0.00 0.00 0.00

Wg -■ — - - 0.00 0.00

Mn - - - - 0.00 0.00

Ti - - - - 0.00 0.00

A1 4.11 4,10 4.06 4.14 4,06 4.00

Si 11.95 11.87 11.95 11.87 11.96 11.98



285-

HELMSDALE QUARRY K-FELDSPAR

Analysis
No.____ _____ 87__ 90 91 92 97 98

SiOz 63.14 64.72 64.67 64.21 64.36 63.72

TiOz 0.00 0.00 0,00 0.00 0.00 0.00

A^2°3 18.42 18.84 18.71 18.33 18.59 18.68

T FeO 0.15 0.31 0.00 0.00 0.22 0.00

MnO 0.00 0.00 0.00 0.00 0.00 0.00

MgO 0.00 0.00 0.00 0.00 .00 0.00

CaO 0.00 0.00 0.00 0.00 0.00 0,00

NazO 0.00 0.00 0.50 0.00 0.46 0.00

K 20 16.28 16.63 16.41 16.46 16.69 16.36

TOTAL 98.9? 100.50 100.9-9 99.00 100.32 98.76

Ca 0,00 0.00 0.00 0.00 0.00 0.00

K 3.92 3.91 3.86 3.92 3.93 3.90

Na 0.00 0.18 0.00 0.16 0.00

Fe 0.02 0.04 0,00 0.00 0.03 0.00

Mg 0.00 0.00 0.00 0.00 0.00 0.00

Mn 0.00 0.00 0.00 0.00 0.00 0,00

Ti 0.00 0.00 0.00 0.00 0.00 0.00

A1 4.10 4.09 4.07 4.03 4.04 4.12

Si 11.92 11.92 11.93 11.99 11.88 11.92



- 286"

K-FELDSPAR

OUSDALE QUARRY EB AC
Analysis

No. 104 105 106 119 130 134

SiOz 63.35 62.35 64,76 63,51 63.61 62.27

TiOz 0.00 0.00 0,00 0.26 0.18 0.15

A1 z°3 18.01 18.31 18.96 18.74 18.36 18.12

T FeO 0.00 0.00 0.29 0.00 0.16 0.00

MnO 0.00 0.00 0.00 0.00 0.00 0.00

MgO 0.00 0.00 0.00 0.00 0.00 0.00

CaO 0.24 0.00 0.00 0.00 0.00 0.00

NazO 0.00 0.00 10.01 0.58 0.57 0,00

16.01 16.12 1.60 15.62 15.67 16.18

TOTAL 97.61 96.7 8 95.62 98.71 98.55 96.72

Ca 0.05 0.00 0.00 0,00 0,00 0.00

K 3.86 3.93 0.37 3.72 3.75 3.95

Na 0.00 0.00 3.57 0.21 0.20 0.00

Fe 0.00 0,00 0.04 0.00 0.02 0.00

Mg 0.00 0.00 0,00 0.00 0.00 0.00

Mn 0.00 0.00 0.00 0:00 0.00 0.00

Ti 0.00 0.00 0.00 0.03 0.02 0,02

A1 4.02 4.12 4.11 4.13 4.05 4.09

Si 11.99 11.92 11.90 11.87 11.92 11.92



"287 -

GEÀN BURN K-FELDSPAR

Analysis
No 146 153 154 155 158 159

S'iOz 63.91 63.14 63.76 64.27 64.12 63.88

TiOz 0.00 0.00 0.00 0.00 0.13 0.00

AI2O3 19.66 18.44 19.16 18.56 .18.52 18.47

T FeO 0.54 0.21 0.00 0.00 0.59 0,14

MnO 0.00 0.00 0.00 0.19 0.00 0.00

MgO. 0.00 0.00 0.00 0,00 0,00 0.00

CaO 0.00 0.00 0.00 0.00 0.00 0.00

NazO 6.13 1.17 1.11 0.47 6.21 0.00

8.05 14.83 15.15 16.01 8,09 16.65

TOTAL 98.2? 9 7 .7 ? 99.le 99.50 97.66 99.I f

Ca 0.00 0.00 0,00 0.00 0.00 0,00

K 1.89 3.56 3,59 3,79 1.91 3.97

Na 2.18 0.42 0.40 0.17 2.23 0.00

Fe 0.08 0.03 0.00 0.09 0.02

Mg 0.00 0.00 0.00 0.00 0.00

Mn 0.00 0.00 0.03 0.00 0,00

Ti 0.00 0.00 0.00 0.01 0.00

A1 4.25 4.10' 4.19 4.06 4.04 4.07

Si 11.74 11.90 11.85 11.94 11,86 11.94
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BIOTITE

Analysis
No..

MORREL LW H.Q, O.Q. EB

42 70 74 95 112 113 114

SiO.2 25,42 50.36 48.22 51.12 50.93 33.73 40.44

TiOz 11.20 0.00 0.00 0.14 0.00 0.21 0.20

A I 2O3 15.05 24.86 29.95 26.62 24.14 20.97 32.71

T FeO 18.67 4.82 4.09 4.54 4.73 14.43 5.72

MnO 0.51 0,00 0.00 0.00 0.00 0.00 0.00

MgO 16.29 2.32 0.93 2.35 2.23 5.98 3.54

CaO 0.14 0.00 0.00 0.00 0.16 0.19 0.17

NazO 0.00 0.00 0.00 0.00 0.00 0.00 0.00

K 20 0.49 9.73 9.73 10.21 9.26 2.29 0.43

TOTAL 87.79 92.11 92.9% 9%.98 91.45 77.80 83.2 1

Ca 0.03 0.00 0.00 0.00 0.03 0.05 0.04

K 0.14 2.50 2.47 2.55 2.39 0.37 0.11

Na 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Fe 3.69 0.81 0.68 0.74 0.80 3.02 1.02

Mg 5.74 0.70 0.27 0.68 0.67 2.24 1.13

Mn 0.10 0.00 0.00 0.00 0.00 0.00 0,00

Ti 1.99 0.00 0.00 0.02 0.00 0.04 0,03

A1 4.20 5.92 7.04 6.14 5.76 6,20 8.25

Si 6.02 10.17 9.61 10.01 10,32 8.46 8.65
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BIOTITE

AC CGP
Analysis

No 121 124 129 139 165 166 167

SiOg 37.61 31.94 31.41 36.66 34.9 31.8 24.9

T 1O 2 2.15 0.98 0.61 2.07 3.9 3.4 0.00

13.54 14.21 15.26 14.18 12.7 14.3 19.2

T FeO 17.23 19.81 18.95 15.11 28.8 30.7 36.0

MnO 0.34 0.49 0.38 0.40 0.34 0.45 0,4

MgO 14.59 16.66 16.52 13.26 3.69 5.54 4.93

CaO 0.00 0,10 0.00 0.21 0.00 0.00 0.00

NagO 0.00 0.00 0,00 0.00 0.00 0.00 0.00

K^O 8.86 3.52 2,09 5.76 8.88 4.7 0.65

TOTAL 94.32 87.71 85.22 87.66 93.21 90.8?

Ca 0.00 0.02 0.00 0.05 0.00 0.00 0.00

K 2.50 1.06 0.64 1.70 1.94 1.03 0.16

Na 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Fe 3.19 3.93 3.81 2.92 4.1 4.5 5.72

Mg 4.81 5.90 5.93 4.57 0.9 1.42 1.35

Mn 0.06 0.09 0.07 0.08 0.05 0.07 0.06

Ti 0.35 0,17 0.11 0.36 0.5 0.45 0.00

A1 3.53 3.98 4.33 3.87 2.58 2.96 4,27

Si- 8,32 7.58 7.56 8.48 6.0 5,5 4.7
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CHLORITE

GL H.Q. AC CB GL
Analysis

No. 65 66 82b 120 149 150 163

SiO^ 25,28 24.32 47.13 29.71 25.84 28.74 29.03

TiOj 0.00 0.00 0.58 0.26 0.14 0.13 0.00

A I 2O3 15.72 15.49 15.61 16.22 20.56 20.75 18.55

T FeO 21.80 24.35 20.67 19.77 21.43 20.00 17.55

MnO 0.17 0.15 0,00 0.17 0.60 0.34 0,47

MgO 12.25 11.96 0.74 15,35 16.51 15.42 18.89

CaO 0.36 0.24 0.76 0.00 0.00 0.00 0.00

Na^O 0.00 0.00 0.00 0.00 0.00 0,00 0.00

K 2O 0.47 0.31 0,94 1.06 0,17 0.96 0,61

TOTAL 76.0.^ 76.82 86.43 82.54 85.25 86,3^ 85,10

Ca 0.10 0.07 0.18 0.00 0.00 0.00 0,00

K 0.16 0.11 0.27 0.33 0.05 0.29 0,18

Na 0.00 0,00 0.00 0.00 0.00 0.00 0.00

Fe 5.04 5.67 3.88 4.11 4.36 3.96 3.49

Mg • 5.04 4.97 0.24 5.68 5.99 5.44 6.69

Mn 0.04 0,03 0.00 0.03 0.12 0.07 0.09

Ti 0.00 0.00 0.09 0.04 0.02 0.02 0.00

Al- 5.12 5.08 4.13 4.75 5.90 5.79 5.20

Si 6.99 4.77 10.57 7.38 6.29 6.81 6.90
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ILLITE

Analysis
No, 71 75 It

H.q.
^ é

SiOg 50.64 48.99 45.87 49.16 49.23

TiOz 0.00 ' 0.00 0.00 0.00 0.15

A I 2O3 25.06 30.14 24.95 26.12 26.25

T FeO 4.31 3.02 7,01 4.91 4.77

MnO 0.00 0.00 0.00 0.00 0.00

MgO 2.86 1.32 1.54 1.84 1.93

CaO 0.00 0.00 0.11 0.00 0.00

Na^O 0.00 0.00 0.00 0.00 0.00

K O 10.23 10.19 8.85 9.75 9.36

TOTAL 93.10 93.66 88.33 91.72 91.é>9

CaO 0.00 0.00 0.02 0.00 0.00

K 2.61 2.56 2.41 2.52 2.40

Na 0.00 0.00 0.00 0.00 0.00

Fe 0.72 0.49 1.25 0.83 0.80

Mg 0,85 0.38 0.49 0.55 0.58

Mn OiOO 0.00 OiOO 0.00 0.00

Ti 0.00 0.00 0.00 0.00 0.02

A1 5.90 7.00 6.28 6.25 6.27

Si 10.12 9,66 9.79 9.98 9.97
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APPENDIX 3

AGGREGATE ENGINEERING TEST RESULTS
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