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Abstract
The analysis of the following topic has been carried out using the following subdivisions, namely;

• History of W igs- involving the Database,

• The CFD analysis-involving the Gam bit and Fluent 5 program, and

• The Experimental tests.

D atabase: A database o f WIG craft was comprised, this allowed statistical analysis o f  WIG characteristics to be 

carried out. With the use o f specific attributes o f previous WIG designs a new design could then be comprised.

CFD: Although ditTicult, it is vital to compare lift, drag and moment coetTicients with both a  (the angle o f  attack) 

as well as h/c (the height to chord ratio). For this reason, as well as the increase in WISE craft over the years it is 

believed o f great importance to analyze these characteristics using numerical simulation techniques based on CFD 

programs. It is hoped to describe all forces exerted on wing profiles while analyzing all stages o f take-off. The 

aim o f this section was to analyze two different types o f  airfoil profiles using CFD. The NACA 0012 due to there 

being adequate information available on it, (it seemed logical to commence my CFD analysis on this profile) and 

the S-shaped profile, (which incorporates the M unk M6R2 over the upper portion and the CJ-5 over its lower 

portion). This was due to all new designs being based on this fairly new concept which has an increased 

effectiveness and has been proven to be o f more use in surface effect vehicles. Details o f  the strategy behind the 

numerous input requirements o f the Gambit program, such as the mesh generation process, the boundary 

conditions involved have been studied as well as the Fluent 5 program creation o f solver input files and 

information on the running o f solutions given prior to the solver outputs attained. Due to the involvement o f  five 

difterent angles o f attack, namely 0.2,5,7.5 and 10 degrees varying with five different h/c values, namely 

1.5.1,0.75,0.5 and 0.25, a positive or negative contribution to the aerodynamics involved around the airfoil could 

then be produced. Statistical analysis on the outcomes would then take place, resulting in effective results. 

Examples o f the types o f programs run are shown below, the LHS is NACAOOl 2 over still water and the RHS for 

S-shaped over curved ground simulating waves. These are two cases from 150.

I

I
This thesis is intended to enlighten and persuade the readers requiring various types 

o f information enticed to the W.I.S.E. field, to subsequently interrogate such enigmas 

in more detail and hence, aid in the development and construction o f future W.I.S.E. 

designs.
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85.[p.l72] Cm Values for S-shaped Aerofoil Over Still Water For 10 Degrees Angle of Attack. 
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5. series 5 is a=l 0 degrees angle of attack
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6. series 1 is a=0 degrees angle of attack
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5. series 5 is a=l 0 degrees angle of attack
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Ground (Peak). By Elizabeth Ford In This Thesis.
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6. series 2 is a=2 degrees angle of attack

7. series 3 is a=5 degrees angle of attack

8. series 4 is a=7.5 degrees angle of attack
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117 [187] All Cl Values For 2 Degrees Angle of attack for S-shaped Aerofoil where;
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3. series 3 is over peak

4. series 4 is over trough
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1.0 W I S E TECHNICAL ADVANCES

1.1 GENERAL

In the process o f  this thesis, Wing-In-Surface Effect technical advances, analysis and 

design aspects (such as the constructional characteristics) are covered. The interactions 

relating these aspects o f  design are explored and interconnected through the structure o f 

this thesis. The objective behind such investigations lies in their contribution towards 

determining the overall weight, the economic viability and, primarily, the performance o f 

every craft.

WISE (Wing-In-Surface Effect) craft are high-speed vehicles, which are based on the 

advantageous aerodynamic phenomena present when in ground effect. This is 

especially the case, during their take-off procedure, which is made easier due to the great 

L/D (lift to drag ratio) present. The term ‘Surface Effect’ is adopted on account o f  its 

ability to describe all surfaces, whether ground or water.

In order for WISE craft to be introduced in the passenger-carrying field, the study o f 

wing profiles is essential. This is mainly due to WISE craft being a unique concept, 

unlike present sea going transportation vehicles, which do not include the wing concept 

in their design characteristics.

Many methods have been used to study the aerodynamics o f  wings in ground effect such 

as the ‘moving belt’ technique, the ‘boundary layer’ method, the panel method and CFD 

simulation to name but a few. It has been incredibly difficult but highly important to 

compare the lift, drag and moment coefficients with both a  (the angle o f  attack) as well 

as h/c (the height to chord ratio). For this reason it is imperative to analyse these 

characteristics using numerical simulation techniques based on CFD (Computational 

Fluid Dynamics) programmes.
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A vast amount o f  research has already been carried out on the stability o f  WISE craft. It 

has been found that the centre o f pressure, which is present on the underside o f  the wing, 

moves forward with reduction o f the h/c ratio. This results in the nose o f  the craft moving 

upwards as the height between the wing and the surface decreases. This is why 

numerous WISE craft adopt a large tail plane concept resulting in an increase in stability. 

Unfortunately the tail planes do not increase the lift, but do however decrease the L/D 

ratio o f the wings. This is a major disadvantage and is why Russia commenced study on 

the S shaped aerofoil. It was said that by giving the aerofoil an S shape at its ends its 

stability would increase.

Results on the S shaped aerofoil have been obtained through practical experience as well 

as by experiments involving the upper section o f  such wing profiles. It was believed that 

this project would provide numerical data on the subject by describing in detail the forces 

exerted on the wing profiles while analysing all stages o f  take-off.

The report will commence by contributing information on the history o f  WISE craft. This 

will then be followed by a database o f  all known W I S E, craft, which was compiled 

during the study. Analysis o f  the database may be found in section 1.4 o f  the report. 

This was then followed with future conceptual designs in section 1.5. A discussion o f  

these designs will ensue.

Inclusive family trees o f  multitudinous sea transportation vehicle types have been 

presented in Fig.5-7. This broad approach is to provide the reader with enough 

information to understand the reason for choosing the S-shaped aerofoil design as the 

skeleton for this project.

The comments made on the design o f the S-shaped aerofoils exceptionally resourceful 

design (Section 4) are then reinforced with the use o f  a Computational Fluid Dynamics 

Program. The input file for FLUENT 5 was prepared on GAMBIT, a computer program 

that allowed efficient and effective construction o f  the models. [Ref.62 - 65 and 

Section4.3]
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The aim o f this projeet was to analyse two different types o f  aerofoil profiles using CFD 

analysis. The most basic shaped wing is known to be the NACA 0012. It seemed logical 

to commence CFD analysis on this profile due to there being adequate information 

available on it. The second was the S-shaped profile, which incorporates the Munk 

M6R2 over the upper portion and the CJ-5 over its lower portion. It was chosen due to all 

recent designs being based on this innovative coneept. It has been proven to provide 

increased effeetiveness in surfaee effect vehicles.

This thesis analyses a CFD problem involving wings in surface effect. The 

Computational Fluid Dynamics programme utilised is ; the GAMBIT and FLUENT 5 5 

programmes.

A fi-equently used aerofoil seetion in wing-in-surfaee effeet craft is the S-shaped aerofoil. 

Prior to commencing simulation o f  this aerofoil section over still water and then over 

uneven ground conditions, it was thought essential to verify the programme's eapabilities 

by primarily modelling the NACA 0012 section over ground and then over still water. 

This was carried out in order to aequire solutions, which could be compared with existing 

results and henee validated.

The simulations o f  the NACA 0012 over still water were carried out in order to observe 

variations in lift, drag, momentum coefficients, turbulence, the effects o f  wave patterns at 

low altitudes o f  flight and the effects o f  low altitude flight on the water surface.

Following this introduction, which includes background information on aerofoil sections 

and describes the CFD Fluent programme, it goes on to analyse aerofoil sections studied 

during the analysis [Sections 2.10, 2.11, 2.19 and 2.20]. It gives details o f  the strategy 

behind the numerous input requirements o f  Gambit, such as the mesh generation process, 

the boundary conditions involved, the Fluent 5 programme creation o f  solver input files 

and information on the running o f solutions given prior to the solver outputs being 

attained [Section 4].
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Due to the involvement o f  five different angles o f  attack, namely 0, 2, 5, 7.5 and 10 

degrees varying with five different h/c values, namely 1.5, 1, 0.75, 0.5 and 0.25, it was 

possible to show positive or negative contribution to the aerodynamics involved around 

the aerofoil [Section 5].

It may be that if  more information, however vague and general, was available to the 

public that more people would be intrigued by W.I.S.E. craft and wish to study them in 

greater detail. Perhaps, even, construct a passenger liner for commercial use.
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1.2 OBJECTIVES OF STUDY

The original concept of W.LS.E. creation was for this class of craft to attain characteristic 

qualities not yet acquired by conventional air and sea craft [Section 2].

Although there are some ships capable of accomplishing relatively high speeds, there is 

still a requirement for them to travel at even higher speed and in a smoother and safer 

manner, resulting in greater efficiency as a means of transport.

Aircraft on the other hand do have the speed required but lack the ability to travel close 

to the sea surface. It is in this area that W.I.S.E. craft are fundamentally suited, 
permitting the gap in transport to be filled effectively [Fig.3 - 4].

Ultimately, if W.LS.E. craft were to be sufficiently modified in the future, incorporating 

characteristic capabilities not adopted by other craft as yet, they would be greeted 

positively by all sectors including the military, passenger and cargo [Ref;8, 12, 15, 18, 

26, 43, 44, 44, 46, 49, 51, 80,- 102, 127, 131, 156 - 182].

For reasons discussed fiirther on in this thesis my interest was drawn to the outstanding 

design of the S-shaped aerofoil (which incorporates the Munk M6R2 over the upper 

portion and the CJ-5 over the lower portion). Although complicated due to its 

asymmetrical configuration, it was apparent that it would become very interesting to 

work on such a project and find as much information as possible involving wing designs. 

However, there is limited availability of specific data, due to the security and 

confidentiality of many national and military organisations.

Section 5 has further analysed the effects an S-shaped aerofoil would have on the 

efficiency of a WISE craft especially when flown at the advised altitudes and angles of 

attack. The results indicate that this design should, therefore, be taken into consideration 

for the future, since it would be capable of aiding the take-off, cruise and landing and 

stability procedures of all WISE craft.
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A frequently used aerofoil section for wing-in-surface effect craft is the S-shaped 

aerofoil. Prior to commencing simulation of this aerofoil section it was deemed essential 

to verify the ‘FLUENT’ programme's capabilities by modelling the NACA 0012 section 

over ground and then over still water. This was carried out in order to acquire solutions, 

which were compared with existing results and then validated.

The simulations of the NACA 0012 over still water were carried out in order to observe 

variations in lift, drag, momentum coefficients, turbulence, the effects of wave patterns at 

low altitudes of flight and the effects of low altitudes of flight on the water surface.

As well as containing an introduction to the problem, this section of the thesis includes 

background information on aerofoils, describes the CFD FLUENT programme and 

analyses aerofoil sections studied during the analysis. It provides details of the strategy 

behind the numerous input requirements of the GAMBIT programme, such as the mesh 

generation process, the boundary conditions involved, the FLUENT 5 programme 

creation of solver input files and information on the running of solutions given prior to 

the solver outputs being attained.

Due to the involvement of five different angles of attack, namely 0, 2, 5, 7.5 and 10 

degrees varying with five different h/c values, namely 1.5, I, 0.75, 0.5 and 0.25 , it was 

possible to show positive or negative contribution to the aerodynamics involved around 

the aerofoil.

It is believed that if more information on this subject was available to the public, even if 

vague and general, that a greater number of people would in fact be intrigued by W.LS.E, 

craft and wish to study them in greater detail, if not construct a passenger liner for 

commercial use.
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1.3 HISTORY OF W.LS.E

"Those involved in design can never quite agree as to just where the design process 

begins. The designer thinks it starts with a new aeroplane concept The sizing 

specialist knows that nothing can begin until an initial estimate of the weight is made. 

The customer, civilian or military, feel that the design begins with requirements.

They are all correct "

(quotation by Daniel P,Raymer

From Aircraft Design: A Conceptual Approach p,3)

The fabrication of Wing-In-Surface Effect vehicles has undergone abundant 

investigation. In consideration of previously acquired knowledge, gathered from its 

historical background, it was noted, with some surprise that they are not accounted for in 

the transportation system (for example the Von Karmen transportation diagramme in Fig 

3 - 4) as a means of transport. In addition to this, it may also be said that, their general 

characteristic configuration and technical requirements have not yet been fully 

established.

In the not too distant future, the use of W.I.S.E. vessels may be extensively broadened to 

accommodate transportation, sea rescue missions and air carriers, as well as sea launch 

vessels for space vehicles. Due to technological advances, which may be expected to 

take place, it could be assumed that transatlantic transportation could be made possible. 

However, for such apphcations of W.LS.E. craft, they would require to be of a large size 

and weigh up to several thousands tons [Section 1.5 and Ref.42, 99, 185,1^8].

Although these are futuristic conceptual advances, conclusions concerning current 

configuration and design may be made. For this reason it is imperative that the history of 

such craft is first discussed.

10
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It is a well-known fact that every aircraft in existence undergoes a ground effect or 

cushioning phenomena of an air pressure build up. This is experienced, primarily, during 

both the take-off and landing stages.

Numerous experiments have been carried out using various design concepts of such craft 

all over the world. However, the majority of the work has been a specialisation of 

Germany, USA, Australia (who are using W.LS.E. type vehicles as sea taxis of a limited 

capacity), China and Russia (where an extremely large amount of investigation was 

carried out) [Section 3.5].

The Russian design was named the Ekranoplan or nizkolet. (N.B. 'Ekran' is Russian for 

'screen' or 'ground'.) This type of craft, however, is also known as an ‘acopter’ (Greek 

for "curved wing"), a power augmented ram-in-ground effect (PARWIG) a wing-ship 

and a ram-wing craft among many others.

The most famous Russian Ekranoplans are the "Caspian Sea Monsters". According to 

the internet "Russian Aviation Page" on the "Caspian Sea Monsters" :- "It is believed that 

Russia is far ahead of the West with air-cushion vehicle technology and with W.LS.E. in 

particular".

Although, different countries commenced their studies of W.I.S.E. vehicles independent 

of each other in the 1960's, the actual concept of "Surfeice Effect" was adopted in the 

1920's.

In the 1960's the designs of such craft varied tremendously and numerous concepts were 

theorised. The three countries which focused and advanced their theories during this 

period were the U.S.S.R, the U.S.A. and Japan.

The Alexeyev Central Hydrofoil Design Bureau undertook the implementation of a 

significant design. All their efforts in creating a high speed W.LS.E. paid off when an

11
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incredibly large, 550 tonne, heavy lift military Ekranoplan was produced. It had the 

capability of flying over any smooth terrain.

They adopted a number of vector thrusting methods such as the use of Power Augmented 

Rams (P.A.R. W.I.G.'S) in order to achieve both a pressure circulation below the wings 

and an air cushion which aided in the take off and landing stages. The same engines are 

used during cruising flight and for lift. However, due to having to keep the nose down in 

order to stay in ground effect, difficulty was often encountered and stability lost, 

resulting in accidents where the Ekranoplan flipped over[Section 2.2]

This secret military extravaganza was uncloaked when an unknown vessel was detected 

by satellite on the Caspian Sea, giving such vehicles the name of "Caspian Sea Monster". 

These W.I.S.E.S have a reduced induced drag as long as they fly at an altitude similar to 

the chord line of the wings. Their stay in ground effect enhances their characteristics due 

to a reduction of fuel requirements, making them more economical to fly than a 

conventional aeroplane. The larger the distance it flies the more money on fuel may be 

saved. Hence, although the majority of W.LS.E. craft are used for A.S.W. (Anti 

submarine warfare), rescue schemes, sealift, amphibious assault and coastal defence, they 

would be ideal passenger and cargo carrying vehicles in places such as>

* The following places are quoted from the Internet "W.I.G. Page" on 'the efficiency of 

W.I.G. vehicles.

1. Sheltered seas Baltic, Mediterranean

2. Large lakes U.S.A. Russia

3. Sheltered coastal areas Austraha

4. Archipelagos Japan, Philippines and Indonesia

12
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It should be mentioned that the Lun was the ekranoplan which was given the nickname 

the "Caspian Sea Monster". In 1989 it was engaged in a search for the Komsomolets 

submarine, which had been involved in a disastrous nuclear accident.

The Alexeyev Central Hydrofoil Design Bureau was known for its tremendous efforts in 

designing such prototype craft. There were numerous constructions achieved of which 

ten became well known. One was the Orlyonok and the other was the Lun. These two 

designs were the most advanced in their time and were said to have been close to 

operational standards. Plans of the Orlyonok design may be found at the end of this 

section.

However, [Ref 34], the following section discusses the characteristic features of W.I.S.E. 

vehicles. It is believed that this information will enable the reader to gain qualitative 

information on all aspects of W.I.S.E. craft. It is therefore advised that the above 

reference should be referred to for further information, if required by the reader.

In addition to aerodynamic means of reducing the resistance and the load on the hull of 

the W.I.S.E. vehicle, hydrodynamic devices in the form of water skis are used. These are 

placed under the hull and act as a shock absorber. The possibility of using hydrofoils is 

being studied [Appendix A for Examples]

In evaluating the conditions of operation of a W.I.S.E. vehicle airframe with a complete 

set of take-off devices, one may note that the loads acting on the airframe of a W.I.S.E. 

vehicle are greater than the loads acting on the airframe of an aircraft. Thus, thç weight 

of the hull of the W.LS.E. craft is greater than the weight of corresponding designs of 

aircfàft. An additional factor, which increases the weight of the hull, is the need to 

include corrosion protection under marine conditions.

The main method discussed in this paper, is the introduction of a compound wing 

configuration, which increases the dimensions of the W.LS.E. craft. Estimates and

13
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studies show that for a flight weight on the order of 1000-1500 tonnes it is realistic to 

achieve a good aerodynamic quality. An even larger value is obtained in studies to 

improve the systems, which create an air stream under the wing during take-off. It is 

obvious that a system associated with the conversion of the kinetic energy of the engine 

stream into static pressure is, in principle, unsuitable in terms of energy. Thus, the search 

for new designs, which use special blowers and non-traditional designs of flexible 

enclosures should continue. At present the low economy and load ratio do not permit the 

W.LS.E. craft to successfully compete with aeroplanes in solving the traditional transport 

problems. They will become promising when specific properties of W.LS.E. craft, such 

as the amphibiousness, increased seaworthiness on take-off & the possibility of 

remaining afloat in the sea for a prolonged period, begin to play a decisive role. This 

makes it possible to see the W.LS.E. craft as an effective component of rescue systems, 

as well as its use as a platform for equipment during oceanographic and geographic 

studies. Moreover, the difference between the technical and economic factors of the 

aeroplane and W.LS.E. craft are reduced when one reduces the distance of the flight.

Analysing all marine transportation, it should be noted that a range of speeds from 0-60 

knots is covered by displacement ships and ships with dynamic support principles. 

Today's W.I.S.E. craft reach speeds of 200 knots and above. The creation of new marine 

craft which use either the ground effect or hybrid support schemes to cover that 

practically important range of speeds is promising.

Due to their economical fuel consumption, these craft would be best suited for 

commercial use on long haul routes such as Europe / Australia / Japan or possibly even 

internal flights inside the U.S.S.R.

[Ref. 99] Even though ACV's and W.I.S.E.'s have had several conferences dedicated to 

them, they have several common qualities, which automatically distinguish them from 

other maritime transportation craft. Nevertheless, they all adopt a quality, which results 

in their advantageous characteristics with respect to hydrodynamic lift and aerodynamic 

drag. These qualities become significant at higher speeds.
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Both Air Cushion vehicles and Wing-In-Ground Effect Craft fly in the ‘air’ side of the 

air-to-water boundary using the air cushion or the ground effect as a method of sustaining 

a specific height above the water surface, which produces aerodynamic lift.

Development would he required in four areas, namely: Structural materials, power 

plants, propulsion systems and Control vertical & in azimuth. These are discussed but 

not in detail in this paper.
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Co. Name Sukhoi OKB Sukhoi OKB Ô Lé T .
W.I.G. Name S 90-200 S-90-8 ESKA 1
Date 1992 1992 1975
Status not yet built not yet built built
Length m 40 11.7 7.55
Width m 61 15.1 6.9
Height m 11.85 3.5 2 5
Span, folded m
Tailplane Span 9.3
Wing Area Centre Section mE2 757.16 48.2
Centre Section Area mE2 502 36.6
Outerwing Panel Area mE2 250 11.6
Aileron Area mE2 1 31
Tailplane Area mE2 11
Control Surfs. Area mE2 31.59 2.86
Outer Faperon Area mE2 28 52
Wing Leading Edge -
Forward Sweep Angle degrees 1 -1
Tailplane area mE2 69 86
Tailplane Incidence degrees 33 30
Tailplane anhedral degrees -2
Type of tail unit Vee (450 outside)
Wing Aspect Ratio 5
Dihedral 100
Wing loading (at take-off
weight) kg/mE2 35.08 Ib/ft2 15 71 Ib/ft2
Powerplant 2x NK-1 2MK turboprops or M-601 turboprop engine with O ne 22 kW M63

turbofans at rear of centre four-bladed variable pitch co motorcycle engine
wing section along symmetry axial propeller on a pylon on

with fourblade co-axial variable- centre of symmetry (front)
pitch propellers

Engine Rating K.W 15,000 h p 551 22
Sp. Power (at take-off
weight) K.W / kg .227 hp/kg .2 hp/kg
Thrust Rating kg 15,000
Empty Weight kg
Max. Take-off Weight 132,000 3,700 450
Payload kg 20,000 273
Fuel Weight kg 58,000 500
Max. Range km 79952 477.98 350
Take-off Speed km/h
Max Speed km/h 470 300
Cruise Speed km/h 380 200 110
No. Passengers 220 6 0
No. Crew 2 2 2
Max. Flight Alt. M 1499.6 1499.6 10
Cruise alt. M 6.6-18 4 9-6 6 0 .3 -  1.5
Ground Effect Alt. M 6.6-18 4 9-6.6 0 .3 - 1.5
No. of fuselage 2 2 1
Take-off aids Static air cussion below centre Static air cussion below centre Curved Wing design with

wing by retractable flexible skirt. wing added floats and high
A cruise engine for static pressur- speed take-off by the use

isation for take-off and landing of RAM

Materials Used fuselages are  of segm ented fuselages are of segm ented
rubber-fabric shells on their rubber-fabric shells on their

bottom surfaces bottom surfaces

Funct's & Modifications high comfirt passenger liner high speed  passanger craft Used as  an experimental
over water surfaces, has a plus for short haul routes It's high speed  rescue
shaped wing, capability to fly at feaures are for high speed and liaison craft for

low alt. Over water, snow, swamp comfortand cost effectiveness. inland Russia
grass and meduim flight alt.

Internet add. htlp://www aero csl.nihon-u.ac.il hhttp://www aero cst.nihon-u ac.|p/ http://www.io.tudelft.nl/-
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Co. Name C L S T C L S  T C L S T OIIMF
W.I.G. Name ESKA 4 E-120 ES-2 OIIMF-1
Date 1971 1963
Status not built built built built
Length m 5
Width m 3.2
Height m
Span, folded m
tailplane Span
Wing Area Centre Section mE2
Centre Section Area mE2
Outerwing Panel Area mE2
Aileron Area mE2
Tailplane Area mE2
Control Surfs. Area mE2
Outer Faperon Area mE2
Wing Leading Edge •
Forward Sweep Angle degrees
Tailplane area m£2
Tailplane Incidence degrees
Tailplane anhedral degrees
Type of tall unit
Wing Aspect Ratio
Dihedral
Wing loading (at take-off
weight) kg/mE2
Powerplant A 13 kW engine

Engine Rating K.W 13
Sp. Power (at take-off
weight) K.W / kg
Thrust Rating kg
Empty Weight kg
Max. Take-off Weight
Payload kg
Fuel Weight kg
Max. Range km
Take-off Speed km/h
Max Speed km/h
Cruise Speed km/h
No. Passengers 2 0 1 0
No. Crew 2 1 1 1
Max. Flight A lt M
Cruise a lt M
Ground Effect A lt M
No. of fuselage 1 1 1 1
Take-off aids An engine located Its circular light weight, curved

at ttie tail shape and wing design and
engine. engine located at

the front

Materials Used Made of Aluminium
not certain about

wing material used

Funcfs ft Modifications A Blanik glider which Used as  a WIG
had been converted research craft.
into a WIG possibly
for test purposes for

ESKA.

Internet add http://www io tudelft nl/- http://www.io.tudelft.nl/- http //W W W  io.tudelft nl/- http://www.io.tudelft.nl/-
twaio/edwin/titml/cclst. htm waio/edwin/htmi/ccist.htn iwaio/edwin/htm l/cdst. htrr twaio/edwin/htm l/coiimf

htm
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Co. Nam* OltMF George Hermetiulte CSSRC CSSRC
W 1.0 Name OIIMF-2 PSI-575 Ram WIG 902 XTvy-1
Date 1965 1983
Status built built built built
Length m 5 5.7 9.55
WWttim 3 2 10 5 8
Heigtit m 1.7
Span, folded m
Tailplane Span
Wing Area Centre Section mE2
Centre Section Area mE2
Outerwing Panel Area mE2
Aileron Area mE2
Tailplane Area mE2
Control S u rfs. Area mE2
Outer Faperon Area mE2
Wing Leading Edge -
Forward Sweep Angle degrees
Tailplane area mE2
Tailplane Incidence degrees
Tailplane anhedral degrees
Type of tail unit
Wing A spect Ratio
Dihedral
Wing loading (at take-off
weight) kg/mE2
Powerplant Two 13 kW engines A 37 kW twin rotor Two HS350 kW Two HS350 kW

driving 1.2 m propeller wankel engine, the RFE aircraft piston engines aircraft piston engines
SG85 with a three with fixed pitch prop with fixed pitch prop
bladed ducted fan ellers ellers

Engine Rating K.W 6 k 37 30 30
Sp. Power (at take-off
weight) K.W / kg
Thrust Rating kg
Emprty Weight kg 370
Max. Take-off Weight 450 385 950
Payload kg 250 105
Fuel Weight kg
Max Range km 450 km
Take-off Speed km/h
Max Speed km/h
Cruise Speed km/h 100 140 120 130
No Passengers 2 0 2
No. Crew 1 1 2
Max Flight Alt M 0.5
Cruise alt M under 0.5
Ground Effect Alt M under 0.5 m
No. of fuselage 1 1 1 1
Take-off aids light weight, curved win; Two engines Two engines

design equires a short take-off
length of 150 m

Materials Used Made of njbber The
hull of laminated kevlar

wing tip floats of
polyurethane

F uncfs & Modifications A research craft A CSSRC test vehicle. Incorporates a re-
buit by students tractable under carriage
of the Institute 1 for slipway handling

A development of the 90:

Internet add ittp //WWW io tudelft nl http://www io.tudelft.nl/- ittp://www io tudelft.nl/ ittp //WWW io tudelft nl/
twa i o/ed wi n/h tm I/co i i nr waio/edwin/htm l/chenn waio/edw in/htm l/ccssrt waio/edwin/htm l/ccssrc
1 htm htm htm htm

24

http://www


Elizabeth Ford

Co. Nam* CSSRC F F 4  AFOOipbH FF&AFDOmbH F F 4  AFDGmbH
W 1.0 Nam* 3CTW-2 Aefieoii 1 M m O \2 AAfiach 3
Data 1990 1987 after Airfisch 1. 1990
Status built built built built
Length m 18 5 9 9
Wktth m 12.72 m 7 5
Height m 5.14 m
Span, folded m 5.9
Tailplane Span
Wing Area Centre Section mE2
Centre Section Area mE2
Outerwing Panel Aree mE2
Aileron Area mE2
Tailplane Area mE2
Control Surfs Area mE2
Outer Faperon Area mE2
Wing Leading Edge -
Forward Sweep Angle degrees
Tailplane area mE2
Tailplane Incidence degrees
Tailplane anhedral degrees
Type of tail unit
Wing Aspect Ratio
Dihedral
Wing loading (at take-off
weight) kg/mE2
Powerplant Two wing mounted Two cylinder BMW

448 kW 10-540 K1B5 60 kW boxer engine
piston engines which dnving a geared six
dnve two propellers bladed ducted prop

Engine Rating K W 896 129
Sp Power (at take-off
w ^ h t)  K W / kg
Thrust Rating kg
Empty Weight kg 425
Max. Take-off Weight 3600 650
Payload kg 1200 190
Fuel Weight kg 35
Max. Range km 900 370
T ake-off Speed km/h 70
Max Speed km/h
Cruise Speed km/h 150 120
No Passengers 14 0 0 1

No. Crew 2 1 1 1
Max. Flight Alt M 30 4.5
Cruise alt M 1 1
Ground Effect Alt M 1
No. of fuselage 1 1 1 1
Take-off aids The lower halves of the an airodynamic curved

propellers may provide 'ing desing However, unable
some PAR thrust at to carry out free flight

take-off

Materials Used Made of light comp
osite and metal con

struction.

Funcfs & Modifications Is a further developmen Derived from Lipppisch's Development of the Development of other
i of the 902 and the design to reduce purchase Airfisch 1 with a lower Airfisch designs Has

1 XTW-1. and opperational cost aspect ratio wing to enhanced harbour
72 improve hartxiur manoeuvering elect

maneouvering rical controlled folded
winglets and retractable

water scew

Internet add http //WWW io. tudelft. nl/n http://www io tudelft.nl/- ittp://www io tudelft nl/ http //WWW io tudelft nl/-
c twaio/edwin/htm l/ccssrc twaio/edwin/html/cff twaio/edwin/htm l/cff twaio/edwin/htm l/cff

1 htm htm htm htm
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Co. Nam# F F & AFD GmbH F F 4  AFD GmbH F F & AFD GmbH f  F 4  AFDGmbH
W.I.G. Nam# Airfisch 4 4  5 Airfisch 8 HW-2VT Hoverwing HW80 Hoverwing
Oat# 199CS 1997
Status built built built
Length m 1086 10 63
Width m 8 5 10 62
Height m 2.5
Span, folded m 6 9
Tailplane Span
Wing Area Centre Section mE2
Centre Section Area mE2
Outerwing Panel Area mE2
Aileron Area mE2
Tailplane Area mE2
Control Surfs. Area mE2
Outer Faperon Area mE2
Wing Leading Edge -
Forward Sweep Angle degrees
Tailplane area mE2
Tailplane Incidence degrees
Tailplane anhedral degrees
Type of Jail unit
Wing Aspect Ratio
Dihedral
Wing loading (at take-off
weight) kg/mE2
Powerplant An 80 kW Hirih F30

engine driving a prop
and a IkW auxiliry

water drive

Engine Rating K.W 81
Sp Power (at take-off
weight) K.W / kg
Thrust Rating kg
Empty Weight kg
Max Take-off Weight 900
Payload kg 175
Fuel Weight kg
Max. Range km 200 800
Take-off Speed km/h
Max Speed km/h 130
Cruise Speed km/h 100 180
No Passengers 8 0 80
No. Crew 1 or 2 1 1 or 2
Max. Flight Alt M 5
Cruise alt M under 0 75
Ground Effect Alt M
No. of fuselage 1 1 1 1
Take-off aids A static air cushion

under the hull and
hydrodynamic forces

Materials Used

Funcfs & Modifications Aimed for commercial Used to reduce take Aimed to opperate
use in 1999 as a  sea off drag without PAR in the Baltic sea
taxi in sheltered areas and hydrofoils Used

as a model for the
HW-80

Internet add. ittp://www io tudelft nl/ ittpV/www.io tudelft.nl/ nttp://www. io.tudelft.nl/ http://www io tudelft nl/-
twaio/edwin/htm l/cff twaio/edwin/htm l/cff twaio/edwin/htm l/cff twaio/edwin/htm l/cff

htm htm htm htm
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Co. Nam# J S E Alexerve C H 0  B J S E Alexeive C H D B J S E Alexeive C MO S J S E Alexerve C H D B
W 1.0. Nam# SM-1 S#wL2&SIVt2P SM-2P7 SM-3
Dat# 1961 1962 1964 after the SM-2P7
Status built built built built
Langtti m 20 20 194 14.5
Width m 103 11 5 195 8 9
Height m 1 53 1.5 1 54 13
Span, folded m
Tallplane Span
Wing Area Centre Section mE2
Centr# Section Area mE2
Outerwing Panel Area mE2
Aileron Area mE2
Tallplane Area mE2
Control Surf* Area mE2
Outer Faperon Area mE2
Wing Leading Edge -
Forward Sweep Angle degrees
Tallplane area mE2
Tallplane Incidence degrees
Tallplane anhedral degrees
Type of tall unit
Wing Aspect Ratio
Dihedral
Wing loading (at take-off
weight) kg/mE2
Powerpljnt One turbojet engine One turbojet engine The turbojet engine was One turbojet engine

mounted inside the fuselage
and the air intake was in the

nose

Engine Rating K W
Sp Power (at takeoff
weight) K.W / kg
Thrust Rating kg
Empty Weight kg
Max. Take-off Weight 2830 3200 6300 3400
Payload kg
Fuel Weight kg
Max. Range km
Take-off Speed km/h
Max Speed km/h
Cruise Speed km/h 170-270 160-270 130-270 140-180
No Passengers 2 2 0
No. Crew 1 1 1
Max Flight Alt M
Cruise alt M
Ground Effect /Ut M
No. of fuselage 1 1 1 1
Take-off aids Take-off speed was reduced

by blowing under the wing,
thus providing a static air

cushion.

Materials Used

Funcfs & Modifications Their first full scale WIG The SM-2 was a tandem Was the first vehicle to use Very low aspect ratio wing
vehicle. Not Successful craft It was rebuilt with a PAR with endplates and large

due to extreamly high rectangular wing and a horizontal stbiliser Was a
take-off speed Crashed high T-tail (SM-2P) test vehicle for very long

in 1962 chord design Was very
unstable

Internet add http://www.io tudelft nl/- http://www.io tudelft nl/- http //WWW io.tudelft.nl/- http://www io tudelft nl/-
twaio/edwin/htm l/cchdb twaio/edwin/htm l/cchdb twaio/edwin/htm l/cchdb twaio/edw in/htm l/cchdb

htm htm htm him
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Co. Name J S E Alexeive C H D B J S  E Alexeive C H D B J S E  Almewe C H D B J S E  Alexerve C H D B
W 1.0 Name SM-4 SM-5 SM-6 SM-8
Date after the SM-3 1963 1972 1967
Status built built built built
Length m 20 18 31 18 48
Width m 15.7 194 14 8 194
Height m 1 96 1.52 7 85 1 52
Span, folded m
Tallplane Span
Wing Area Centre Section mE2
Centre Section Area mE2
Outerwing Panel Area mE2
Aileron Area mE2
Tallplane Area mE2
Control Surfs. Area mE2
Outer Faperon Area mE2
Wing Leading Edge •
Forward Sweep Angle degrees
Tallplane area mE2
Tallplane Incidence degrees
Tallplane anhedral degrees
Type of tail unit
Wing Aspect Ratio
Dihedral
Wing loading (at takeoff
weight) kg/mE2
Powerplant Two turtxijet engines One Two mounted PAR One turboprop cruise One turbojet or turbofan

forward for PAR thmst & nozzles engine and two Ai-25 mounted at the top of the
one aft for cruise thrust turbofans or turbojets for fuselage Exhaust is directed

PAR power & acceleration to 8 forward mounted nozzles
which blow under the wings

Engine Rating K W
Sp. Power (at takeoff
weight) K W 1 kg
Thrust Rating kg
Empty Weight kg
Max. Takeoff Weight 4800 7300 26925 8100
Payload kg
Fuel Weight kg
Max. Range km 700 120
Takeoff Speed km/h
Max Speed km/h
Cruise Speed km/h 140-230 140-230 350 220
No. P assengers 0 20
No. Crew 2 1 1 1
Max. Flight AIL M
Cruise aft M
Ground Effect Alt. M
No of fuselage 1 1 1 1
Takeoff aids

Materials Used

Funcfs & Modifications Development of SM-2P7 The first KM 1/4 scale A small predecessor of A 1/4 scale of the KM
Used as a trainer with prototype A spray wall the Orlyonok for water ice The first to incorporate a tail-

engines internally moun protected the internal & land. In the 80's it was plane with dihedral as in the KM
ted in fuselage engine against spray used as a trainer The air intake of the engine is

ingnition It crashed in 64 protected by a  spray screen

Internet add httpV/www io. tudelft. nl/- http/AATww. io.tudelft.nl/- http://www.io.tudelft nl/- http://www.io.tude Ift. nl/-
twaio/edwin/htm l/cchdb twaio/edwin/htm l/cchdb twaio/edwin/htm l/cchdb twaio/odwin/htm l/cchdb

htm htm htm htm
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Co. Name J S E  Alexeive O H D B J S E Alexeive C H D B J S E  Alexeive C H D 6 J S E  Alexeive C H D B
W I G. Name SM-9 SM 10 SM-11 KM
Date 1977 1985 1985 1963
Status built tjuilt built built
Length m 114 11 43 6.95 92-106
Width m 9 85 7 63 994 32-40
Height m 2.57 3.32 1.91 22
Span, folded m
Tallplane Span
Wing Area Centre Section mE2
Centre Section Area mE2
Outerwing Panel Area mE2
Aileron Area mE2
Tallplane Area mE2
Control Surfs. Area mE2
Outer Faperon Area mE2
Wing Leading Edge -
Forward Sweep Angle degrees
Tallplane area mE2
Tallplane Incidence degrees
Tallplane anhedral degrees
Type of tall unit
Wing Aspect Ratio
Dihedral
Wing loading (at take-off
weight) kg/mE2
Powerplant 8 tuitojets mounted at the

front of ttie fuselage The
exhausts could be deflected
to create PAR under wings
2 more turbojets mounted

on the fin for extra thnjst for
acceleration

Engine Rating K W
Sp Power (at take-off
weight) KW f kg
Thrust Rating kg 13208 6
Empty Weight kg 548665 3
Max. Take-off Weight 1750 2200 600 502943-548665
Payload kg
Fuel Weight kg
Max Range km 300 1500 (at V = 400 )
Take-off Speed km/h
Max Speed km/h
Cruise Speed km/h 120 120 110 430
No Passengers 0
No. Crew 1 1 1
Max. Flight Alt. M
Cruise alt M
Ground Effect Alt M
No. of fuselage 1 1 1 1
Take-off aids

Materials Used

Funcfs & Modifications An aspect ratio of 5 to The prototype of the Together with the SM-9 & It was the largest ever built of
improve L/D quality Also Volga-2. SM-11 it was used to its kind,was tested for different

different wing designs had improve the L/D quality wing designs Has a large T-
been tested to improve the of Ekranoplans tail with dihedral and a mid-wing

stability of the craft

Internet add http://www.io tudetft.nl/- http://www.io.tudelft.nl/ http://www io tudelft. nl/- http //WWW. io tudelft nl/-
twaio/edwin/htm l/cchdb twaio/edwin/htm l/cchdb twaio/edw in/htm l/cchdb twaio/edwin/htm l/cchdb
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Co Nam* J S E  Alexeive C H D B J S E  Alexerve C H D B J S E  Alexeive C H D B J S E  Alexeive O H D B
W.I.G. Name A 90 160 Orlyonok Lun Spasate! LfT
Date 1973 1970 1990
Status built built nearly finished built
Length m 58 73.8 73
Width m 31.5 44 45
Height m 16 16 20
Span, folded m
Tallplane Span
Wing Area Centre Section mE2
Centre Section Area mE2
Outerwing Panel Area mE2
Aileron Area mE2
Tallplane Area mE2
Control Surfs Area mE2
Outer Faperon Area mE2
Wing Leading Edge •
Forward Sweep Angle degrees
Tallplane area mE2
Tallplane Incidence degrees
Tallplane anhedral degrees
Type of tail unit
Wing Aspect Ratio
Dihedral
Wing loading (at take-off
weight) kgfmEi
Powerplant One Kunetsov NK-12MK Eight NK-87 turtxifan Czech engine, with no

1 lOOOkW turboprop high engines four on each side PAR
at the fin for croise throst of the fuselage aft of cockpit
& two NK-8-4K turtxifans
of 10 5 ton throst for PAR,
take-off, accelerating &

landing
Engine Rating K.W
Sp. Power (at take-off
weight) K.W / kg
Thrust Rating kg
Empty Welgtrt kg
Max. Take-off Weight 110-125 tons 380-400 tons 390 ton
Payload kg 15-28 tons
Fuel Weight kg 15 ton
Max. Range km 2000km (at 400 km/h) 3000 km 3000 km (at 400 km/h)
Take-off Speed km/h
Max Speed km/h
Cruise Speed km/h 400 km/h 450-550 km/h 550 km/h
No. Passengers 100-150 400 150 sitting or 500 standing
No. Crew
Max. Flight Alt M 3000 m
Cruise alt. M 1-4 m
Ground Effect Alt M
No. of fuselage 1 1 1 1
Take-off aids At trailing edge of wings a

5 section flap/aileron is fitted
and on leading edges, close to
wing tips are take-off screens

Two hydroskis are fitted on
the underside of fuselage

one at front and one at C.G.
Materials Used

Funcfs & Modifications As troops transport & assault As a missile launching Designed to locate & rescue Is a small trainer
vehicles. 4 were built, one w as strike craft. Similar to KM, people at sea from ships,

used for static tests but has a lower wing, is aircraft or oil rigs & platforms
smaller,has no fin mounted

engines
Also used for search & rescue
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Co. Name J S E Alexeive C H D B J S E  Alexeive C H D B J S E  Alexeive C H D B Benev
W l 6  Name Volga-2 Stnzh PE-201 (Martet) Raketa 2 Be-1
Date 1961
Status built built not built built
Length m 11 43 m 11 40 m 34 8 m
Width m 7 63 m 6 60 m 19 8 m
Height m 3 32 m 10.0 m
Span, folded m
Tallplane Span
Wing Area Centre Section mE2
Centre Section Area mE2
Outerwing Panel Area mE2
Aileron Area mE2
Tallplane Area mE2
Control Surfs. Area mE2
Outer Faperon Area mE2
Wing Leading Edge -
Forward Sweep Angle degrees
Tallplane area mE2
Tallplane Incidence degrees
Tallplane anhedral degrees
Type of tail unit
Wing Aspect Ratio
Dihedral
Wing loading (at take-off
weight) kg/mE2
Powerplant Two VAZ-413 rotary engines PAR WIG craft with two Three 1785 kW turtxiprop An RU-19 turtxijet on the

of 95 kW eacti engines on wings, extended engines, two for take-off & back of the wing
shafts drive the props which one for cruise.

blow under wings for propulssio
as well as lift.

Engine Rating K W 190 kw
Sp. Power (at take-off
weight) K.W / kg
Thrust Rating kg
Empty Weight kg
Max. Take-off Weight 2700 kg 1630 kg 33 t
Payload kg 800 kg more than 1 t
Fuel Weight kg
Max. Range km 500 km 1,500 km 800 km
Take-off Speed km/h
Max Speed km/h
Cruise Speed km/h 120 km/h 220 km/h 180 km/h
No. Passengers 8 1 90
No. Crew 1 or 2 1 1 or 2
Max. Flight Alt M 0.5 m
Cruise alt M
Ground Effect Alt M
No. of fuselage 1 1 1 1
Take-off aids Two floats with a very

small aspect ratio wing
intietween & small wings
extending from the floats

&surface piercing hydrofoils
also on the floats

Mjt'-'i.iis Used The flexible design is of
light alloy

Funcfs & Modifications Is a PAR-WIG vehicle as Used as anavy pilot trainer Similar to Volga 2 but has A small test craft for
economic as existing With dual control cockpits third engine on the fin It's a exploring stability &

hydrofoils It has balloon design of the Design Bureau control of the WA-14
typestructures for amphi for larger WIGs for inland It's design also includes

bious qualities. waterways landing gear.
Can cimb a 10% gradient

to land Stable design
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Co. Name Benev Benev Amficon Amficon
W.I.G. Name WA-14 WA-14M1P NVA-3 NVA-30P
Date 1972 1976
Status built built not built not built
Length m 28 12 m 26 m 11.6 m 16 5 m
Width m 30 m 30 m 10 m 15 m
Height m
Span, folded m
Tallplane Span
Wing Area Centre Section mE2
Centre Section Area mE2
Outerwing Panel Area mE2
Aileron Area mE2
Tallplane Area mE2
Control Surfs Area mE2
Outer Faperon Area mE2
Wing Leading Edge -
Forward Sweep Angle degrees
Tallplane area mE2
Tallplane Incidence degrees
Tallplane anhedral degrees
Type of tall unit
Wing Aspect Ratio
Dihedral
Wing loading (at take-off
weight) kg/mE2
Powerplant Two D-30 M turtxifans Two D-30 M turtxifans Two 50 hp engines & Twin 1900 kW turbo

above trailing edge of above trailing edge of a single 150 hp engine props on fins & The
central wing central wing & two at for fan lifting fan also 1900 kW

the nose for PAR take-off

Engine Rating K.W
Sp. Power (at take-off
weight) KW f kg
Thrust Rating kg
Empty Weight kg
Max. Take-off Weight 36-52 tons 52 t 3 t 30 ton
Payload kg 1.2t 12 ton
Fuel Weight kg
Max. Range km 2450 km 2450 km
Take-off Speed km/h
Max Speed km/h
Cruise Speed km/h 360-760 km/h 760 km/h 200 km/h 250 km/h
No. Passengers 4 70
No. Crew 2 1 or 2 1 or 2 1 or 2
Max. Flight Alt M
Cruise alt. M 10 km 10 km
Ground Effect Alt M
No of fuselage 1 1 1 1
Take-off aids Was later fitted with Was later fitted with rigid A big fan inside the

inflatable pontoons pontoons twin shaped fuselage
Powered by a separate

engine

Materials Used

Funcfs & Modifications Ground effect is just a Is the WA-14 re-designed Considered as a acale
take-off aid model for larger craft.

Used for anti-submarine
warfare Had borrowed land-

ing gear from the Tu-22.

Intemet add http://www.io.tudelft nl/- http://www. io. tudelft. nl/- http://www. io. tudelft. nl/- http://www, io.tudelft.nl/-
twaio/edwin/htm l/cberiev twaio/edwin/htm l/camf ikor twaio/edwin/htm l/camf ikor waio/edwin/htm l/camfikon

htm htm htm htm

32

http://www.io.tudelft
http://www
http://www
http://www


Elizabeth Ford

Co. Nam* A m ficon Amficon BOTEC 1 GmbH BOTEC 1 GmbH
W 1.0. Name NVA-eOP NVA.120GP TAB VII Jorg 1 TAP VIII-1 Jorg 2
Date 1974 1976
Status not built not built built built
Length m 25.5 m 35 m 6 20 m 8.30 m
Width m 33 4 m 42 m 4 10 m 3 28 m
Height m 1.55 m 1.75 m
Span, folded m
Tallplane Span
Wing Area Centre Section mE2
Centr* Section Area mE2
Outerwing Panel Area mE2
Aileron Area mE2
Tallplane Area mE2
Control Surfs. Area mE2
Outer Faperon Area mE2
Wing Leading Edge •
Forward Sweep Angle degrees
Tallplane area mE2
Tallplane Incidence degrees
Tallplane anhedral degrees
Type of tell unit
Wing Aspect Ratio
Dihedral
Wing loading (at take-off
weight) kg/mE2
Powerplant Twin 36 kW turbofans Twin 60 kN turbofans 1000cc48kW  Fiat

on fuselage a  lift fan is on fuselage & lift fan engine driving a
powered by a  5200kW is a 5200 kW gasturbine pisher propeller

gasturbine

Engine Rating K W
Sp Power (at take-off
weight) K.W / kg
Thrust Rating kg
Empty Weight kg
Max. Take-off Weight 60 ton 120 ton 700 kg 740 kg
Payload kg 27 ton 60 ton 265 kg 200 kg
Fuel Weight kg
Max Range km 200 km 200 km
Take-off Speed km/h
Max Speed km/h
Cruise Speed km/h 280 km/h 350 km/h 110 km/h 125 km/h
No Passengers 200 1 1
No. Crew 1 or 2 1 1
Max. Flight Alt M
Cruise alt M
Ground Effect Alt M
No. of fuselage 1 1 1 1
Take-off aids

Materials Used Made of Aluminium

Funcfs & Modifications Is a flair boat The first It is an improved Jorg 1
of a series of experimental

tandem wing craft.
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Co. Name BOTEC 1 Gmt)H BOTEC 1 GmbH BOTEC 1 GmbH BOTEC 1 GmbH
W.I.O. Name TAF VIII 2 Jorg4 TAF VIII 3 Jorg 6 TAF VIII-5 TAF VIII 7 Jorg 2
Date 1981 1991
Status built built built not yet built
Length m 8.30 m 14 00 m 1990m 45 60 m
Width m 3 28 m 5.85 m 8 50 m 1 6 6 m
Height m 1 75 m 3.30 m 4 65 m 9 00 m
Span, folded m
Tallplane Span
Wing Area Centre Section mE2
Centre Section Area mE2
Outerwing Panel Area mE2
Aileron Area mE2
tallplane Area mÊ2
Control Surfs. Area mE2
Outer Faperon Area mE2
Wing Leading Edge -
Forward Sweep Angle degrees
Tallplane area mE2
Tallplane Incidence degree*
Tallplane anhedral degrees
Type of tail unit
Wing Aspect Ratio
Dihedral
Wing loading (at take-off
weight) kg/mE2
Powerplant A 2 3L 147kW  BMW A 6 81 V8 engine of MTU 8 cylinder turtx) Two gas turbine

engine with fixed pitch 380kW diesel engine engines of 4250 kW
propeller

Engine Rating K.W
Sp. Power (at take-off
weight) K.W / kg
Thrust Rating kg
Empty Weight kg
Max. Take-off Weight 740 kg 3150 kg 8000 kg 60 ton
Payload kg 200 kg 1500 kg 14 ton
Fuel Weight kg
Max. Range km 200 km 400 km 500 km 1000 km
Take-off Speed km/h
Max Speed km/h
Cruise Speed km/h 125 km/h 150 km/h 185 km/h 200 km/h
No Passengers 4 to 6 7 14 113
No. Crew 2
Max. Flight Alt M
Cruise alt. M 0.4 0.3-1 1.25 m
Ground Effect Alt M 0 4 0.3-1 1.25 m
No. of fuselage 1 1 1 1
Take-off aids

Materials Used Made of Aluminium

Funcfs & Modifications Is an alum iniu tandem Only for inland waters Built for a customer
wing flarboat Better than Due to go for series in the Middle East

the GFRP Jorg 3 which production
could not withstand

impact loads from floating
objects
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Co. Name J S E  Alexerve C H D B J S E  Alexeive C H D B TsAGi ♦ MiG Pasific Teq Dev/ment Moscow
W.I.G. Name Utka (Duck) Dingo Mig-TA4 (Finder) Amphistar
Date
Status built built built built
Length m 10 4 m
Width m
Height m
Span, folded m
Tallplane Span
Wing Area Centre Section mE2
Centre Section Area mE2
Outerwing Panel Area mE2
Aileron Area mE2
Tallplane Area mE2
Control Surfs. Area mE2
Outer Faperon Area mE2
Wing Leading Edge •
Forward Sweep Angle degrees
Tallplane area mE2
Tallplane Incidence degrees
Tallplane anhedral degrees
Type of tall unit
Wing Aspect Ratio
Dihedral
Wing loading (at take-off
weight) kg/m l à
Powerplant Tail mounted main Main P&WPTB Teledyne IO-550C & 2 tilt-rotor Subaru powered

engine with single prop. Lift TBA-200 Nelson N-63CP props (220hp)
Two lift engine in nose

Engine Rating K.W
Sp Power (at take-off
weight) K.W/kg
Thrust Rating kg
Empty Weight kg
Max. Take-off Weight 20 tons 3.6 tons
Payload kg 0.84 tons
Fuel Weight kg
Max. Range km 850 km
Take-off Speed km/h
Max Speed km/h
Cruise Speed km/h 350 km/h 275 km/h 80 m/h
No Passengers 15-20 2 2 5
No. Crew 2 2 1
Max. F'llght Alt M
Cruise a lt M
Ground Effect Alt M
No. of fuselage 1 1 1 1
Take-off aids

Materials Used

Funcfs & Modifications Light transport General Aviation General Aviation Multipurpose amphibian, leisure
Similar to Volga 2.
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For Military Use
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[Ref. 49] However, at the turn o f  the century C. Ader, performed experiments involving 

wings in ground effect for the French government. Unfortunately, after an unsuccessful 

demonstration o f  his Avion -3, financial support was withdrawn in 1897. Nevertheless, 

he persisted with his work and patented the concept in England in 1904.

During the development and testing o f  their early manned ghders in 1900, the Wright 

brothers frequently flew in ground effect often reaching an astonishing distance o f  one 

foot above ground level.

Wing-In -Ground Effect has been acknowledged and studied since the initiahsation o f 

aviation. The finest early representation o f  ground effect involved the Domier DO-X 

seaplane. The DO-X seaplane was a large (56 ton) aircraft constructed by the Domier 

Co., Germany, in 1929, which was in service in 1930-31. The DO-X employed ground 

effect in order to increase its payload and range during flights.

In 1932 a Finnish engineer, Toivo Kaario, also carried out experiments on a high-speed 

snow sleigh. In 1935 he developed the first successful RAM-Wing-Ground Effect 

vehicle. More details on this vehicle and on other experimental vehicles are contained in 

the next section o f  this paper.

Pages 49 - 59 in section 1.3.1 below are examples of WISE craft add need only be referd to if 

additional information is required by the reader on specific characteristics of designs.

1.3.1 EXPERIMENTAL WING-IN-SURFACE EFFECT VEHICLES

The initial triumphant developments o f  W.I.S.E. vehicles took place in Sweden, Finland

and Northern U.S.A, where vehicles capable o f  skimming over snow covered ground,

swamps, marshes and open water were investigated. Russia also commenced its

development o f  vehicles in order to offer high-speed transportation to undeveloped

sections o f the country. These experimental vehicles are described in the following

paragraphs.

51



Elizabeth Ford

North European developments:

As discussed earlier, the first successful W.I.S.E. vehicle was an experimental, RAM 

wing, snow sled developed by TOIVO KAARIO in Finland in 1935.

Powered by a 16 HP engine 

Carried one man over the snow 

Travelled up to 12 knots.

In 1962, he developed the Aerosani no. 8 

Capable o f transporting two passengers 

Travelled at 43 knots.

During the late 1930’s, I. Troeng o f Sweden researched and developed concepts 

involving both a 3 ton and a 500 kg water bom  Wing-In-Ground Effect vehicle, they 

were based on the "lying wing" principle and used a hydroski located aft for stability. 

Unfortunately, government funds ceased together with further developments when the 

vehicles became unstable during tests. The Aeroboat is shown in fig 2 and its known 

Characteristics are also listed. Once more, the reader is advised to refer to this report for 

further information if  required.

Dr W. R. Bertelson o f  Neponset, Illinois, developed a series o f  Ram wing vehicles in the 

late 1950's and early 60 s. The vehicles were designed to aid him in visiting his home 

bound parents in his rural medical practice. The GEM-3 is described below and in more 

detail in the report discussed.

A four seat vehicle

Capable o f  speeds up to 95 knots

Capable o f  travelling over snow or water

Dr. Bertelson is still developing Air Cushion vehicles but has discarded the ram-wing 

concept in favour o f a gimballed, ducted fan that helps to control the lift o f  the craft.

In i 963 the Kawasaki group o f  Japan commenced testing the KAG 3 catamaran 

waterborne craft. However due to it being powered by an outboard marine engine it was
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not capable o f  leaving the water surface. Due to their developments facing further 

problems, the project was eventually abandoned.

According to [Ref. 134], "Simulation on the behaviour o f  Wing-In-Surface Effect Ships", 

a W.I.S.E. vehicle is faster than any other marine vehicle as summarised by Hooker and 

Terry (1992) and Rozhdestvensky and Synitsin (1993). W.I.S.E.s are based on the same 

concept as a super high-speed vehicle for commuter use, as proposed by Kubo o f Japan, 

where demand for high-speed marine vehicles stems from the need to improve the 

domestic transportation system. The Techno-superliner (TSL) is expected to take the 

role o f  a commercial cargo transport service to the Tokyo Metropolitan area in place o f 

road vehicles.

With close reference now to the Date Bar Chart on page provided, it may be noted that 

the Russians commenced their construction on W.I.S.E. craft in the early 1960's and 

rapidly decreased the number constructed before increasing once more up till 1975. 

From this time, their numbers decreased once again and then attained a steady output for 

the next decade.

A list o f these craft has been made available below:

B e-1, built in 1961, a test craft,

SM -1, built m 1961, a research craft, crashed in 1962,

SM-2, built in 1962, a research craft, for research on tandem design,

OMIIF-1, built in 1963, a research craft,

SM-5, built in 1963, a research craft, the prototype o f  the KM,

KM, built in 1963, a research craft, used to test various wing designs.

SM-2P1, built in 1964, a research craft for PAR

Although not inserted in the graph due to their exact dates not being given, the SM-3 and 

the SM-4 were probably built after the SM-2 and before the SM-5 and should be noted 

at this point.
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It should be noted that all the craft in the above list Avere either research craft or used for 

testing purposes. In addition to this it should also be noted that no other countries built 

W.I.S.E. craft during this time span. (That is none that have not been mentioned in the 

graph constructed. I f  their were others, then they will either be mentioned in the section 

below, or have not been known about, by myself, as yet).

There were an additional three craft built by the Germans between 1966-70 which, 

similar to the above, were once again research craft, one o f  them was the SM-8, which 

was a 1/4 scale model o f  the KM.

As noted previously, although the numbers were less during the following five year 

period, five craft were built by the Russians and one by the Germans. Those built by the 

Russians during this time span are listed below:

E -120, built in 1971, probably a research craft,

SM-6, built in 1972, a predecessor o f  the Orlyonok, probably also used as a

research craft,

W A -1 4 , built in 1972, used for anti-submarine warfare,

A-90-150

Orlyonok, built in 1973, used for troops transport and assault vehicle,

ESKA-1, built in 1975, used as an experimental rescue and liaisons craft.

As may be seen from the given information, significant progress had been achieved and 

the fewer craft produced were o f  more use and more successful. The majority o f  them 

were now o f  some use to the military rather than just being used for research.

Between 1976-80 two craft were constructed by the Russians and one by the Germans. 

The two Russian craft are listed below:

W A -14M 1P, built in 1976, a redesign o f  the W A -1 4 , used for anti-submarine warfare, 

SM-9, built in 1977, used as a research craft.
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Although yet another research craft was constructed, progress was once again made on 

an existing design, the VVA-14, resulting in higher efficiency and performance.

During the span o f  1981-85, four craft were constructed, two by the Russians, one by the 

Germans and one by the Americans. The Russian W.I.S.E. craft are listed below:

SM -10, built 1985, used as a prototype o f  the Volga-2

SM -11, built in 1985, used as a research craft.

As may be noted, during this period, only two craft were constructed and were both used 

as research craft.

Between 1971-1975,the Germans produced a low, but steady output before shooting up 

in the number o f  W.I.S.E.'s constructed between 1986-1990. The Germans faced a rapid 

decrease in their numbers between 1990-91, which could have been affected by a 

decrease in their economic status as well as by the fall o f  the Berlin wall. However, it is 

encouraging to see that they have managed to increase these figures in this last decade.

Two o f the craft constructed by the Germans are listed below:

TAFVII-1 Jorg 2, built in 1977, used as a research craft,

TAFVni-2 Jorg 2, built in 1981, also used as a research craft.

As may be noted, due to this being the start o f  the German constructions o f  W.I.S.E. 

craft, the two, which were built, were both research craft.

During the five-year span between 1986-1990, five W.I.S.E. craft were constructed by 

the Germans and one by the Americans. The German craft are listed below:
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Airfisch-1, built in 1987, used as a research craft as a cost-effective design,

Airfisch-2, built in 1988, used as a research craft, a re-design o f  the Airfisch-1,

Airfisch-3, built in 1990, used as a research craft and had increased harbour 

manoeuvrability,

Airfisch-8, built in 1990, aimed for commercial use,

Spasatel, built in 1990, used as a rescue craft.

As may be observed above, the Germans showed an incredible amount o f progress in

their constructions o f  W.I.S.E. craft and moved fi*om research craft to rescue craft and

finally to commercially aimed craft.

However, this incredible success was not continued and only three craft were built in the 

following decade. Two o f  which were used for research purposes and the other (The 

TAFVIII3-Jorg 6) which was used for inland waters.

By this time, the Chinese had also commenced construction o f  W.I.S.E. craft. However 

they merely continued their constructions for a decade before ceasing. Their 

construction period spanned from 1981 to 1990. They managed to construct two W.I.S.E. 

craft. They are listed below:

Ram WIG 902, built in 1981, used as a research craft

XTW-2, built in 1990, used as a research and rescue craft.

The Americans had proposed two W.I.S.E. craft designs between 1991-95. They were 

the

S-90-200, and the S-90-8.

However, neither have been constructed as yet.
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The energy crisis o f  the 1970’s brought about a renewed interest in W.LS.E. technology 

because this technology had the promise o f  providing cost efficient craft to serve as 

large, long distance cargo transports (passenger service no longer being a viable role). 

Several new conceptual craft were proposed. To date, programmes to develop these craft 

have not been funded.

Meanwhile, a new generation o f  e?q)erimental craft, having the emphasis on ram-wing 

and par-wing concepts, has been constructed and tested.

In 1963, Dr. Alexander M. Lippisch tested his first "ramwing-in-ground effect vehicle" 

theX-112.

In 1964 Dr. Lippischs dynamic air-cushion vehicle was described by Gunston and proved 

to exercise an approximate 30% reduction o f  drag during flight when the speed was four 

times the original value. The speed varied fi’om  10 m.p.h. to 40.m.p.h. proving that 

flying at high speeds in ground effect actually reduced the amount o f  drag created and it, 

therefore, became a craft o f  higher efficiency suitable for travelling long distances.

The following is explained better by Dr. Lippischs results, plotted on a graph, showing 

drag as a function o f  speed. This may be found on page 2 o f  the proceedings o f  the 

Twenty-First Century Flying Ships by the University o f  New South Wales, Australia 

1995. Pictures o f  his designs may be found on page 38 o f  the same paper.

This design was tested in order to examine the stability problems. Further developments 

were undertaken in 1967 and the X -113 was then constructed. It could operate not only in 

ground effect but also could achieve a height o f  100m. In ground effect it required 1/3 o f  

the power it was supplied with and flew at its optimum performance at a height o f  half 

the wingspan [Ref 91].

In 1963, the Kawasaki Corporation in Japan built a waterborne ground effect craft, a 

catamaran powered by an outboard marine engine, designated KAG-3. In 1964-66, the 

SM-5 and SM-8 were built and tested.
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Less known W.I.G vehicles were developed in the former Soviet Union in the 1960’s, 

Their designs were based on the Lippisch Antonov-2 as well as a Blanik glider. These 

soon developed into the Volga-2, which was designed by the S.D.P.P. design bureau. 

During tests it was noted that this craft exhibited extraordinary pitch stability.

It was then apparent that this advantageous characteristic was the result o f  an S-shaped 

wing. Although this type o f  wing is still in the process o f  being researched all around the 

globe, its success has resulted in a recent production model o f  the Volga-2 and high 

hopes for the future.

In the seventies the Russian Ekranoplan program continued and led to the most 

successful Ekranoplan so far. The 125 ton A-90.150, Orlyonok.

In 1973, another new development was the tandem W.I.G vehicle, the German Jorg.

Also in Germany at about the same time, an aviation company called Rhein 

Flugzeugboch (RFB) bought Lippisch's patents and developed them. The largest 

Ekranoplan produced was the six seat X -114 that was also tested by the German military. ^

p sky as a high-speed boat

by Syozo Kubo, Toshio Matsuoka and Teetuya Kawamura 

From: 4* Pacific congress marine sciences technology 

1990 1 I 220-7

Title: Development o f a wing-in-ground effect marine craft, p  sky, as a high-speed boat.

It may be stated that ACV is a good method o f  transportation over water. We must 

remember the fact that ACV has its speed limit. ACV is Hfted up from the surface by its 

air cushion. When its cruising speed exceeds the design limit air will be lost from the air 

cushion. This will result in loss o f  efficiency and stability. In practice, when the cruising 

speed goes below the design Hmit, variations in flight altitude occur resulting in a similar 

loss o f  efficiency and stability [Section 2.8.3]
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1.5 W.LS.E. FORECASTING

Despite their having no immediate pre-eminence over existing craft, they do present 

admirable possibilities for the near future. Consequently, there is a necessity for them to 

undergo change. Current propositions for their designs, are competing within the aircraft 

realm. Nonetheless, there is barely any optimism for them ever being as proficient as 

aircraft. W.I.S.E. craft, therefore, ought to compete with ships and hence, fill the gap in 

the Von Carmen-Gabrielli transportation graph located at the end o f  Section 1.3.

It has been proposed that in divergence to the first generation W.I.S.E. designs, the 

second generation be o f  two-mode capability. They are either to work as ships [Ref 21, 

28, 40, 60], close to the sea surface, or like aircraft fiirther fi'om it. This new generation 

will consequently be fulfilling its chosen problem/solution requirements [Ref. 49, 52, 

160].

Due to them taking-off fi-om and landing on the sea, it is imperative that they embody 

ship attributes enabling them to accomplish their task. Thus they incorporate the 

indispensable use o f  an acicular bow, a common characteristic o f  ships, as well as large 

wing areas performing the fimction o f  acquiring a sufficient air cushion to elevate the 

craft high above the sea surface[ Appendix A]

[Ref. 75 - 79, 107]. In relation to future W.I.S.E.S designs, they will possess a unique 

arrangement, which although physically different to customary ships, will enable them to 

transform in to a prevalent instrument o f marine transport. The new conception o f 

W.I.S.E. craft will not only own marine aptitudes but over and above these credentials, 

they will attain a higher standard o f  safety than any conventional aircraft. This places 

them in an incomparable situation.

Miscellaneous W.I.S.E. designs will be contrived in the future [ 9, 88, 133, 152, 185]., 

principally substituting for inefficient air travel over a short distance. The larger designs 

would compete with long haul flights and ships. This would be due to their competence

59



Elizabeth Ford

in providing transmarine flights, creating economical and exceptional methods o f  

transportation for passengers and cargo.

Returning to the S-90-200, the focal point o f  this project, it may be said that, despite it 

not yet having been put into production, it is a second-generation W.I.S.E. craft. 

Nevertheless, its futuristic plans do not end there. Its evolution will later develop, 

resulting in a super heavy weight W.I.S.E. similar to the 750 tons Ekranoplan o f  the 

1970s.

The 750 tons ekranoplan, which may be found in the Krylov Shipbuilding Research 

Institute, has the ability to perform transatlantic flights, the principal objective o f 

W.I.S.E. designs. It had a payload o f  250-300 tons, travelled at a speed o f  25 km/h, at a 

height no more than 3-5 meters above sea level. With new designs being aimed towards 

fulfilling these specifications, immense research is focused on providing new successful 

concepts, which would ultimately solve existing problems.

NATO is currently discussing a task force o f  friture W.I.S.E. craft. The discussion is 

concerned with the use o f  W.I.S.E. craft in environmentally catastrophic incidences at 

sea, such as oil spills, and rescue operations. Simultaneously, consideration is being 

given to providing a new means o f  shuttle launch from super heavy W.I.S.E. craft. This 

would ultimately resolve some environmental threats.
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2.0 CERTAIN W.LS.E. DESIGN ASPECTS

2.1 Aircraft Disadvantaees:

Aircraft are expensive

Aircraft control requires a high degree o f  skill and training.

Maintenance o f  aircraft is intricate and costly.

Accidents tend to become catastrophic.

Airfield maintenance is expensive and difficult to monitor.

2.2 Characteristics of W.I.S.E.’s:

In the theory o f  the aircraft wing, one knows that surface effect increases lift and reduces 

drag.

W.I.S.E.'s are craft which can fly at only 10% o f  their aerodynamic dimensions, which is 

generally wing span or chord length due to the design preference for large chord lengths. 

They can only travel on a small layer adjacent to the surface. Its movement is restricted 

in a two dimensional layer. From another point o f  view, this limitation is not always a 

demerit. Due to its restricted motion many mechanisms o f  the W.I.S.E. may be 

simplified. Its engine is, for example, simpler than an aircraft's. It may be as simple as a 

car engine. There is also no need for a pressurised cabin.

By simple mechanisms we will be able to construct a W.I.S.E. at reasonable cost. Its 

maintenance will be relatively simple and again at a low cost.

Operational running costs o f  a W.I.S.E. are also lower than for an aircraft. A wing-in- 

ground effect has better efficiency than that at a high altitude. This means better and 

cheaper fuel consumption. The cost o f  the pilot training is much lower. And the 

maintenance costs are also lower.The quasi 2-D motion o f  the W.I.S.E. is also easier to 

control than the 3-D motion o f  aircraft; the motion resembles that o f  a car or a boat.

[For Desing Spects o f  WISE craft Refer to Ref. 11, 20, 27, 29, 36, 53, 77, 107, 142, 175].
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2.3 Classification of W .LS.E.s;

2.3.1 Flying Boat Type

A craft o f this type has a hull, main wing and tail units separately, just like an ordinary 

flying boat. This type is suitable for a high-speed craft, because the wing area is 

relatively small. We can design the main wing without a serious interaction between 

other elements o f the craft. The type is thus suited to a large high performance craft.

2.3.2 L ippisch W ing Type

This type has a special wing, the so-called "Lippisch Wing", whose plan form is an 

inverted triangle with a negative dihedral angle. The inventor o f  this wing was 

Alexander Lippisch, the famous designer o f  sail plane and aircraft, especially the 

inventor o f  the delta wing. A very high performance was reported on the aerodynamic

Development o f  this type o f  craft has continued in West Germany and in the USSR. 

CLST has been continuing their effort on developing W.LS.E.s o f  this type in China

2.3.3 Tandem  W ing Type.

This type has two wings, the front wing and the rear wing. It has no horizontal tail wing. 

Gunter Jorg, who was a designer o f  vertical take-off and landing aircraft in West 

Germany, has investigated this type.

2.3.4. R am  W ing Type.

This type has a big wing extended from the nose to tail o f  the craft. This is the simplest 

type o f  W.LS.E.. It has relatively large wing area. Thus it is suitable for a slow craft. 

One o f  the famous W.I.S.E.'s o f  the ram wing type is RAMESES-I, which was developed 

in the USA in 1975. This craft can even today, satisfy our requirements except for its 

pitching stability. The problem o f  W.I.S.E. o f  ram wing type from the time o f  the first
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W.I.S.E. by Kaario. Many experimental crafts including RAMESES-I, have been 

abandoned due to the difficult problem o f  controlling the pitching motion. This is a real 

problem for W.I.S.E. craft in practical use.

When one considers a craft o f  this class, one should keep in mind that more severe 

requirements will be imposed on developers. One o f  them will be the economic 

efficiency; one must have knowledge about performance o f  the W.I.S.E. wing. This 

suggests to us that systematic data on wing sections must be piled up just as the data o f 

wing sections o f  aircraft has been accumulated. It is not so easy to obtain such data in 

short periods o f  time. Numerical simulations will help us to find an optimum 

configuration o f  a W.I.S.E., if  one can develop a suitable method o f  simulation.

The other one difficult problem will be to decide the operational limits and to improve 

the ability to operate over rough water and in different sea states.

One can disregard many o f  the W.I.S.E. operational problems. These problems are 

thought to be unavoidable in a machine o f  revolutionary new characteristics. They will 

be solved step by step by the efforts o f  persons dealing with each individual problem in 

detail.
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2.4 CURRENT W.LS.E. ACHIEVEMENTS

2.4.1 Primary credentials

Capable of achieving extreme aerodynamic efficiency when flying in ground effect.

Due to its advantageous amphibious characteristics it proved to have a higher degree o f 

safety when compared to conventional craft.

Evidence supporting the capability o f  W.I.S.E. landing and taking o ff from water has 

been made available.

The PAR WIG concept has been found to offer an increase in hydrodynamic efficiency. 

They acquire an ability to ascend to cruising altitude with less energy than conventional 

aircraft.

Reduce their weight by not requiring a pressurised cabin.

Due to them becoming cheaper to run as their size increases, either additional passengers 

may be carried or each passenger may have additional space resulting in travel o f 

increased comfort.

2.4.2 Disadvantages.

Although W.I.S.E. craft do have their advantages, similar to all transport vehicles, they 

unfortunately also have disadvantages, they may be found below.

Due to the immense power required for adequate PAR effect, the weight o f  the 

machinery adopted for such tasks increases the overall weight o f  the craft, reducing the 

aerodynamic efficiency and stability.

Their immense noise pollution.

The high take-off speed required

The costs involved with their construction,

W.I.S.E. crafts increase in efficiency as their size increases.
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The safety problems caused by their requirement to fly at the lowest possible altitudes for 

fuel efficiency. This may prove to be incredibly dangerous when the waters are not 

calm.

Their inability to fit into existing regulations,

Their deficiencies when flying over rough waters are additional reasons, which cause 

dissatisfaction.
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2.5 W .I.S.E. Efficiency.

2.5.1 A erodynam ic Efficiency

The aerodynamic efficiency o f  W.LS.E. vehicles is primarily due to their capability o f  

travelling in close proximity to a horizontally parallel smooth surface. When these, 

relatively new, concepts are compared to other existing methods o f  transportation, it may 

be noted that they corroborate a high lift to drag ratio conjointly with a slow speed as 

contrasted to conventional craft o f  a similar size. However, they do have a similar 

efficiency to any modem heavy aircraft flying along the same path.

The fact that W.I.S.E. craft require shorter and wider wing designs is an additional reason 

for prohibiting the mounting o f  PAR equipment on top o f  the actual wing areas to blow 

the air directly under the wing. It is for this reason that W I S E, craft are not as efficient 

as conventional craft. It is possible that new ideas may be put forward in the future, 

resulting in highly competitive W.I.S.E. concepts

2.5.2 Time Effective

W.LS.E. vehicles are known to travel at great speeds unlike ships. I f  the average speed 

o f  a conventional ship was to be 36 km/h and an average W.LS.E., (not a super heavy 

weight), travelled at 500 km/h, then it could be stated that a W.I.S.E. craft travelled 14 

times fiirther in one day, than a ship.

2.5.3 Fuel Efficiency

There are two similar theories involved when considering the fuel efficiency o f  W.I.S.E. 

craft. One refers to the Von Karman - Gabrielli diagram shown at the end o f  this section. 

With regard to this diagram, it is stated that any vehicles close to the technology line are 

‘fuel efficient’. This is primarily due to the fact that it is theorised that as higher
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technology is adopted, these technological advances bring about a reduction in fuel 

consumption.

However, this is contrasted with the fuel efficiency diagram observed at the end o f  this 

section by the E.A.Aframeev ship building Research Institute. They state that even 

though first generation WIG craft did have incredibly high fuel efficiency, “the second 

generation Ekranoplans may have a fuel efficiency closer to that o f  a conventional air 

craft. This would be due to the simultaneous increase o f  weight efficiency and more 

effective use o f  the “ground” effect. [Ref. 40].

2.6 Effective Design

In order for a W.I.S.E. craft to have an effective design and consequently fulfil all 

Product Design Specifications, it must have a primary design requirement. This must 

deal with the craft's ability to fly above a specific wave height. This in turn determines 

their capability o f  landing and taking-off fi*om that sea surface. It is true that, in this 

respect, W.I.S.E. craft do have extreme similarities with conventional hydroplanes and 

therefore may adopt their advantageous characteristic capabilities in overcoming similar 

problems.

2.7 Power Requirements

Although one could say that due to the W.I.S.E.s low fuel consumption, relatively similar 

engines would be required such as those used for conventional aircraft designs. It is the 

taking off procedure, which incorporates the majority o f  the predicaments involved. Due 

to the immense power required for take-of^ a vast amount o f  thrust generated by an 

incredibly powerful power plant would be imperative.
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2.8.0 Skirt Drag.

2.8.1 Introduction

Due to the S-90-200s utihsation o f  a skirt enclosing the static pressure below the centre 

wing section, it is believed that the following section is o f  relevance in explaining the 

reason for retracting the skirt during flight.

The section is a brief description on skirt drag during the early stages o f  take-off, if  

further information is required on this section please refer to the “International 

conference papers on Hovering Craft Hydrofoils Advanced Transit Systems Amsterdam 

5-8 November1998 page 169” The following data is based on this paper.

4.8.2 ACV Skirt Drag

The skirt drag o f  the common ACV, when travelling over water. R. Murao, Dr Eng. from 

the Ship Research Institute, Ministry o f  Transport, Japan, has proved that, for such a craft 

over calm water, the skirt drag is determined by both the Froude number and the cushion 

pressure which has been shown in the diagram provided. In ACV the skirt plays a 

significant role in the hydrodynamic drag component but is difficult to measure directly.
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2.8.3 Utilisation of ACV Techniques.

[Ref. 165, 166, 178, 180]. Through the course o f  the succeeding section, it may be noted 

that characteristics o f  W.I.S.E. craft, primarily resembling ships and then air craft, is 

bridged by adopting ACV attributes. It may be o f  assistance for the reader to refer to the 

illustrations in this sub-section. They are shown to clarify the connection between 

W.I.S.E. and ACV craft [Ref. 91].

In addition to this, according to [Ref. 157] W.I.S.E.S have the advantage o f  being capable 

o f  hft-off from water surfaces. They create water runways in order to achieve their 

required speed for take-off. It is preferable for a W.I.S.E. craft to have a high wing 

loading when a high speed is utilised. This is only the case, however, when the 

appropriate height-to-chord ratio, angle o f  attack and stability are present. It is also the 

case that three times the cruising power is required for the take-off procedure. This is in 

order to overcome what is termed the ‘hydrodynamic humpdrag‘.

In order for a W.I.S.E. craft to avoid the high drag, produced by the dense water during 

the early stages o f  take off, it must lift-off from the sea surface. This is achieved by 

building an air pressure below the wing areas. Although this may be achieved with the 

use o f  PAR mechanisms, a more efficient and effective way o f  accomplishing its task is 

to adopt a skirt design, surrounding the edges o f  the centre wing panel. This modifies the 

dynamic pressure to static pressure, aiding W.I.S.E. lift-off procedures.

Studies on the X -113, using an air cushion, have been carried out by the Fischer 

Flugmechanic Company. Hanno Fischer developed the ‘hoverwing-technology’ in order 

to increase the vehicle’s efficiency and decrease its power requirements at take-off. The 

Fischer company also investigated the use o f  hydrofoils on the X -114 WIG craft. These 

caused a static air cushion to build up between the floats, aiding take-off. Once in cruise 

mode, the vehicle would operate using a dynamic pressure build up, resulting in a high 

lift to drag ratio. Due to the difference in water and air density being 800:1, it may be 

stated that the drag reduces as the distance from the water surface increases.
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The main advantage gained by solving such a problem in this manner is that both 

aerodynamic and hydrodynamic problems, such as hydrodynamic drag, are overcome.

An excellent breakthrough was achieved by the Fischer Flugmechanic (FF), when it 

developed the Hoverwing - Technology” aimed at reducing the lift-off power required 

for W.I.S.E. craft. Later, the “Hoverwing 80” was developed. It had the ability to 

transport 80 passengers at a speed o f  100 knots.

The Hoverwing Technology uses a small portion o f  the propeller slipstream to create a 

static air cushion between the floats. This is similar to the concept adopted for the S- 

90-200, which may be found in the database provided in section 1.

In this example, the air is trapped under the centre section o f  the craft raising it 

efficiently above the water surface. The displacement o f  the Hoverwings floats was 

reduced by 80 %, increasing its efficiency and ultimately reducing the power it would 

require. A close achievement could easily be attained by other craft choosing to adopt 

this method

The Thrust-to-weight ratio diagram provided clearly exhibits the prerequisites o f  all 

transport media. A seaplane or a very fast boat demand high thrust for cruise. 

Unfortunately, W.I.S.E.S can only take-off at a zero angle o f  attack. For this reason 

designs in general accomplish a 1:4 ratio o f  thrust-to-weight. However, the use o f 

Hoverwing technology a 1:6.5 can be achieved. The future prospects o f  such technology 

indicate that a capability for W.LS.E.s to achieve a 1:8 ratio is imminent.

The figure at the end o f  this section shows the relationship between different types o f  

transport technology up to now. With the use o f  this diagram, it may be seen that the 

Hoverwing Technology is the bridge between the W.LS.E. and the ACV.

Various marine vehicles adopt different methods in order to produce a static air build up 

aiding in the reduction o f  drag. However, these vehicles, unlike W.LS.E.s, do not leave
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the surface o f  the water. For this reason, it may be stated that W.I.S.E.s could easily 

compete with such craft due to their overall efficiency.

The retractable hydrofoils o f  the X-114H improved the seagoing ability during rough sea 

circumstances compared to theX-114, which did not incorporate hydrofoils. However, 

the drag at lower hump-speed could not be reduced. The power -augm entation as tested 

on the Airfisch-3PA, showed improvement in take-off drag. Nevertheless, it 

automatically became a more complex, hence more costly, design. A suitable and 

appropriate take-off mechanism should be chosen only after careful consideration o f  both 

its characteristic and economic requirements.

[Ref. 157] by Hanno Fischer, states that the hoverwing is the link between the 

displacement vessel and the helicopter, while also being the link between hydrofoils and 

aircraft. It is for this reason that it may be stated that the hoverwing technology is the 

link between ACV and W.I.S.E.

Although there is an apparent advantage in using a static air cushion, which, results in a 

smoother take-off and landing procedure, there is a disadvantage to this design 

configuration when catamaran floats are included. The reason for this is due to the 

requirement o f  a certain volume o f  air being present. This is in opposition to the high 

speed planning requirements.

Nevertheless, this was improved upon by the Versuchsalt fiir Biennenschiffbau e V 

(VBV) in Germany. In addition to this aerodynamic data may be obtained using a tool 

developed by FF called the ‘circuit test’ which is described further in the reference by 

Fischer, the reader is urged to refer to this paper for further information if  required.
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2.8.3.1 Conclusion

It may be concluded, that a static air cushion through the use o f  Hoverwing Technology, 

reduces the take o ff drag considerably, so as to achieve similar outcomes as an SES. 

Once take o ff has taken place, the skirt would be retracted allowing the static air pressure 

build up to change into dynamic air pressure, this result will greatly aid the craft in 

achieving ground effect.

Although, a skirt is included in the design o f  the S-90-200, it is imperative that the skirt 

retracts during flight. Reasons for this have previously been discussed. Never the less, 

during the take-off stage when the skirt is down, skirt drag is inevitable. For this reason, 

skirt drag has been discussed separately later in the report.

W.I.S.E.'s have the potential to fill the high-speed gap remaining between aircraft and 

other sea going transportation methods, however this would require the planning o f  

routes, sheltered terminals and other various aspects relevant to the subject.

Wing-In-Surface Effect vehicles must complete each voyage with no intermission in 

order to be efficient. An emergency landing or a take-off is hazardous when in open sea 

conditions, except when a very calm sea state is present. Nevertheless, commercial 

aircraft achieve this non-stop voyage requirement with a very high degree o f  reliability.

In addition to this, it is also hazardous for such vehicles to fly round ships and other 

obstacles. This has been proven to be a problem for Air Cushion vehicles and the latest 

generation o f  High Speed Craft, due to there being a constraint on route planning, which 

necessitates long distances for turn-round time. However, it must be noted that these 

distances must be kept to a minimum in order for such vehicles to be competitive with air 

travel. Terminal points should be conveniently situated both for passengers and for cargo 

in order to provide an advantage over Flying boats which have more restrictions placed 

on their terminal location.
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[Ref. 97] Nevertheless, early commerciahsation o f  W.I.S.E. vehicles could estabhsh an 

enduring market dominance with powerfiil W.I.S.E. designs, company planning and 

operation. The focus must lie in choosing its base for operations. This entails finding a 

suitable market and route where people require transport at both ends.
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2.8.4 The High Autoplane Maritime

The first design, adopted the use o f foils, the second hydroskis and the third an inflatable 

parasol delta wing to increase dynamic lift. This later design became triumphant and 

was chosen for extensive examination. It became the first o f its kind and implemented 

the use o f inflatable catamaran hulls.

Trials initiated in 1971, the craft's astonishing success determined by its new design. 

The normal outboard motor was discarded and in its place a raised air propeller was 

incorporated. This characteristic may also be observed in the S-90-200 design to be 

found at the end o f this report titled S-90-200. It is used to elevate the craft by utilising 

the thrust gained. This provides the means o f  overcoming obstructing obstacles and 

waves.

Once this reached an acceptable level, the ram-wing design could be amended for 

improved efficiency. In 1973, the normally outboard wing surfaces were located 

inboard on the prototype. This was to prevent damage being incurred during flight. This 

craft was a 1/3-scale model o f the Hennebutte Autoplane Maritime ram-wdng ACV.

81



Elizabeth Ford

• th ird  scAle C ynam ic m o d el of a H e n n e b u tte  A ucop lane  M a ritim e  r a m -w m f A CV . T h e  p ro to -  
, Mihich w as d u e  to  s ta r t  its  tr ia ls  in th e  la te  su m m e r of 1973. has Its lifting su rfaces  in b o a rd  

pjQ  n jn  c l  th e  tw in  hu lls t o  re d u c e  th e  p o ssib ility  o f dam age

ie -u p  of th e  A u to p la n c  M aritim e  m odel sh o w in g  th e  In fla tab le  hu lls and  th e  p lan ing  foils b e n e a th  
Foils of th is  ty p e  a re  a fe a tu re  o f th e  H e n n e b u t te  se r ie s  o f h igh  sp eed  d in g h ies

J -

R G .2 C

G e n e ra l i r r i n j e i n e n t  o f t h e  IHCH 77 A u to p l in e  M e n tim e

82



Elizabeth Ford

2.9 DESIGN OF W I S E. VEHICLES

[Section 1 - 2.8]Due to the evolutionary change in society there is a requirement for easy 

transportation methods which are feasible, consume minimum customer time and are 

available at reasonable cost. Marine transportation, in particular has been developed, to a 

great extent, in providing solutions to such needs. However, air travel still remains an 

alternative solution which, although it costs more, consumes the least time and takes into 

account the great comfort o f  the passengers, even when travelling in ‘economy’ class.

As previously stated, WISE (Wing-ln-Surface Effect) vehicles fill the gap in 

transportation between air and sea travel. For this reason, as stated in [Ref. 14];

A W.l.S.E. vehicle is a participating nomination for future super high speed marine craft 

which would prove itself to be o f  a higher efficiency than air vehicles due to its ability 

o f  sustaining ground effect flight. During cruise, W.I.S.E.s fly by using dynamic lift 

caused by the pressure build up on the wing sections. This is caused by the close 

proximity o f  the boundary to the vehicle, namely ground or surface effect. It is for this 

reason that numerous conceptual configurations o f  W.I.S.E. craft have been developed 

over the years. Nevertheless, the safety, economy and impact loads caused by waves are 

topics which, must be thought o f with care.

Prior to commencing the primary stage o f  design, evaluation o f  the weight, performance 

and stability must take place. Some o f  the characteristic design specifications which 

have to be considered according to reference (above) are;

The size and design o f  the main wing for adequate surface effect.

The size and design o f  the tails for longitudinal stability

The size and design o f  the fuselage(s) for attaining hydrodynamic efficiency.

In addition to this, analysis took place in the form o f a research project by the Ship 

Research Institute o f  Japan on the safety o f  WISES. Due to a computer aided design
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(CAD) system for W.I.S.E. vehicles having communal characteristics to that o f  airplanes, 

such as aerodynamics caused by ground effect and hydrodynamics, the direct operating 

costs (DOC) o f  W.l.S.E. craft were evaluated using those methods normally allocated to 

air vehicles.

In order for one to design a W.I.S.E. vehicle, it is necessary to simulate either by means 

o f  a mathematical configuration or a model craft, the boundary representing either a solid 

or a fluid surface [Ref. 16]

Two and Three Dimensional algorithms and results are presented, where the stability, 

increase in lift and maximum lift o f  the design process is discussed. The corroboration is 

achieved through wind tunnel measurements at wing sections. Various wing designs are 

demonstrated. The control which the geometrical parameters have on the aerodynamic 

characteristics, flight stability and overall performance is presented. The means in which 

this takes place involves the initial design o f  a wing configuration for an 80 seat craft.

As a means o f  achieving a W.I.S.E. design, it is essential to use dependable 

computational models in order to forecast the aerodynamics involved. Stability is 

responsive to lift and lift coefficients, drag, drag coefficients and momentum. It is for 

this reason that those are the parameters investigated in this report through the use o f 

Computational Fluid Dynamics. A  precise result for the aerodynamics is attained using 

the Navier-Stokes-Solver, while an alternative approach involves Potential Theory.

As stated in the later section as well as in this reference, aircraft methods and results 

should and have been used as a guide and a starting point in order to attain effective 

ground effect results.
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2.10 WING CALCULATION AND DESIGN

It was thought that the following could not be said in a better way than [Ref. 16];

The vortex lattice method

This technique adopts the use o f  vortices on the camber line o f  the wing. The strength o f 

the vortices is obtained using the normal condition on the camber line and the Kutta 

condition at the trailing edge (as boundary condition). The centre plane is treated as a 

symmetry plane which ultimately decreases the size o f  the resulting equation. The 

ground is modelled as a stream plane

The influence o f  the ground is accounted by the mirror image method.

Mirrored image method

Schlichting (1985) investigated the influence o f  the exact position o f  the forces on the 

wing. The free vortices are assumed to be in the direction o f  the onset flow. The forces 

are computed at the place o f  the vortices with the corresponding local velocity using the 

formula o f  Kutta - Joukowski.

F = V X r

Even for unconventional wings and wing configurations the numerical convergence o f  

this method is proven. With the vortex lattice method, a quick and reliable algorithm is 

available. The effect o f  geometrical changes to the aerodynamic characteristics could be 

estimated easily.

2.10.1 SURFACE DISTRIBUTION OF VORTICES

The surface distribution method is based on the Potential theory. The singularities are 

vortices on the surface o f  the wing. Green's theorem states that the use o f  closed vortex 

rings o f invariable strength is comparable to a dipole distribution on the exterior.
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The pressure distribution on the surface is attained using the Bernoulli equation with 

local velocities. The force and moment coefficients are found through the integration o f 

the pressure distribution. While the lift and moment coefficients show a good accuracy 

the drag coefficient could not be computed accurately enough. This is mainly due to the 

finite number o f  panels in the region o f  the suction peak, which could not be sufficiently 

resolved [Ref. 16].
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2.10.2 CONCLUSION

The study illustrates that these Potential computing models are a feasible means o f 

designing and developing a wing-in-surface effect vehicle. Depending on the chosen 

optimising function, profiles may be developed. The impact o f  alterations in the wing 

geometry may be calculated using the vortex lattice technique. Furthermore, adopting 

the surface distribution approach may help to develop a more precise wing.

By interrogating the constructed database it became relatively easy to process all given 

information from previous designs. This formed a convenient starting point for this new 

design and provides an approximate means o f  checking a proposed solution.

For W.l.S.E. craft validated designs are rare. However the many available conceptual 

designs provide another source o f  this type o f  information. The distinct trends exhibited 

in the database suggest that this information is o f  significant value. The database 

constructed aided in the development o f  a new design and it, therefore, may be stated that 

it will be o f  use to future designers.
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2.11 Wing Aspect Ratio

An additional paper which included various informative and detailed information was 

[Ref. 14], which discussed the following points:

Although, higher drag is induced while the proximity between the aerofoil section and 

the surface decreases, comparatively high lift is attained.

As the wing loading factor increases, the fuel costs also have a tendency to increase 

when the height is kept constant.

A lower loading factor, less than 300kg/m^, is preferred when there is a lower cruising 

height involved due to greater surface effects.

The lighter wing loading factor is preferred in order to attain a lower landing speed.

A loading factor o f less than 300kg/m^, seems to be required in order that the W.I.S.E.s 

o f this size may possess seaworthiness in up to 3m. wave height.

A small aspect ratio wing can be used for WISES, unlike aircraft, because a relatively 

high lift due to the surface effect can be achieved for small aspect ratios.

A high aspect ratio wing is preferred.

Considering the risk o f  contact with water in the heel condition and the accumulative lift 

due to PAR effects, the smaller aspect ratios are considered better.

I f  the aspect ratio is 3, good efficiency is expected in the case o f  a 3m cruising height but 

less efficiency for a 6m height. For this reason an aspect ratio o f  4 was chosen in the 

latter mentioned paper.

As stated in [Ref. no .6 fi*om Ref. 14], a cambered and thin wing section is suitable for the 

wing-in-surface effect.

2.11.1 THE FORCES ON A LOW ASPECT RATIO WING

A model wing was tested with the ground plate and using the image technique to 

compare the results fi*om the two methods. [Ref. 23] shows the variations o f  the lift 

coefficient. Cl, and the pitching moment coefficient. Cm, (about the quarter chord) with 

height o f  the trailing edge, hjE, and incidence, a . The correlation proposed by Sullivan is
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also shown (please refer to Owden in References), which suggested that for positions 

above the line a method to remove the boundary layer should be used.

ENGINE AND PROPELLER CHARACTERISTICS

Design o f  a new engine is too expensive considering the small size o f  the WISES market. 

The reciprocal engine has a relatively low power to weight ratio, and is impossible to 

mount on the larger W.I.S.E. craft. The turbojet engine has a reduced efficiency at low 

altitudes. A turboprop was selected for the design o f  that paper [Refl4]. The required 

horsepower is defined as sufficient to overcome the hump resistance and to enable take

off.

According to [Ref no5 from Ref. 14], even at the hump speed, the WISES should have 

0. lg-0.2g acceleration in order to take-off safely.

2.12.1 Tail Wings.

Due to limited data on tail wing designs for W.l.S.E. craft, in that paper[Ref.no5 from 

Ref. 14], examinations o f  practical stability using the DTACOM method from reference 

no.7 was carried out.

A large vertical tail area is desirable for WISES to have stability in lateral wind

They must also have suitable manoeuvrability, considering the small allowance for the

bank angle when turning.

2.12.2 Other items

Hydrodynamic performance and stability which shifts forward.

The same engine horsepower as for a seaplane is required to overcome the hump in the 

resistance curve and to obtain the take-off speed

A W.I.S.E., which flies close to the surface, takes advantage o f  the extra lift present. 

Also, it should overcome the longitudinal instability.

Not necessary to have a high aspect ratio wing due to the ground effect.

Pressurisation o f  the cabin and the landing gear are not required.
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Less fiiel is used since they do not have to climb to high altitude.

However, drag due to external configuration and extra weight due to the reinforced 

fuselage design is included for hydrodynamic performance and water impact forces.

Efficiency o f  je t engines decreases as they operate at sea level, and treatment is required 

to prevent the harmful effects o f  salt-water spray.

Ducted propellers could be used to improve the efficiency and reduce the noise as well as 

to protect from spray.

According to [Ref. 14], the following points were found to be o f  importance and have 

therefore been mentioned below:

For W.I.S.E.s designs with larger wings, higher drag is induced but at the same time 

relatively high lift is obtained due to the surface effect.

As wing loading factor is increased so is the fuel cost, when at constant height.

A lower loading factor less than 300kg/m2, is preferred when there is a lower cruising 

height involved due to the surface effect being greater than at higher cruising heights.

The lighter wing loading factor is preferred to attain a lower landing speed.
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2.13 PARALLEL WINGS

According to reference no.68, which discusses a W.l.S.E. design and uses parallel wings, 

the following points were o f  interest and are mentioned below:

The sole, negative, Delta wing - Ram - Air Wing - has been replaced by two big identical 

parallel wings in a tandem arrangement, positioned in one trace.

-By this, better efficiency o f  the wings has been achieved.

-Stability has been improved, since both wings are moving in the same medium.(Surface 

Effect)

-Tandem construction allows an elongated boat construction, the harmful (injurious) total 

- resistance was reduced.

The wings have been combined by two end-discs and this formed a kind o f  channelled 

stream vehicle.

-This resulted in better usage o f Ground Effect (higher efficiency) and

-an increased static stability o f  the crafi; in rougher sea conditions, during landing in wave

conditions and in cornering flight.

In addition to the above information, the paper also discusses other aspects o f  design 

such as the engine, the fact that elastic aerofoil wings are used, the flaps and other points 

o f  relevance, the reader is advised to refer to this paper for further information if  

required.

Conclusion

The trend in navigation is towards faster, hydrodynamically improved ships or gliders. 

This is occurring - but increasing pollution o f  sea and rivers by obstacles, such as sunken 

ships or drifiiing shoals, has to be considered and taken seriously. For aerofoils, flairing 

in G.E., there is less danger o f this sort, which is mainly limited to take-off and landing 

routes. Areas near harbours are easier to survey and may be secured at reasonable cost.
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2.14 POW ER-A U G M EN TED -RA M

[Ref: 33, 43, 46, 58, 89, 120, 121, 132, 150, 159, 170, 173, 174].It is anticipated that a 

W.l.S.E. craft will become a super high-speed vehicle in the near future, owing its 

efficiency to its exceptional ability o f  attaining a high lift to drag ratio when operating 

at low altitudes. Unfortunately, a disadvantage that has been analysed in previous years 

and is continuing to evolve is its lack o f  ability to perform an optimum take-off and 

landing procedure when the air speed is low. It is therefore not feasible for many o f  the 

numerous designs to progress into the construction phase due to this problem. 

Furthermore, due to the extraordinary power required for take-off and landing, in order to 

overcome both the drag and the loads presented during these procedures fi*om wave 

action, the structure o f  the vehicle must be o f  very high strength. The result is an increase 

in weight, in addition to the extra weight o f  the high powered engines needed for take 

off.

The search for a feasible solution to this problem results in the use o f  aiding mechanisms 

such as an air cushion below the centre wing areas or the use o f  power-augmented ram 

(PAR). The PAR concept incorporates the use o f  propulsors that are mounted in fi-ont o f 

the wing to produce a high lift at low speeds. The advantageous characteristics o f  this 

concept entail its ability to take-off and land at low speeds. Reducing the speed at take

off or landing produces a safer atmosphere due to decreased loads caused by wave 

action.

Between the years o f  1975 and 1978, the David W. Taylor Naval Ship Research and 

Development Centre was analysing the aerodynamics o f  PAR-WIGs through 

experimental techniques. The tests were performed with zero forward speed as well as 

with a feasible airspeed, over a solid surface and over water in various sea states. They 

also predicted the static lift and drag performance using two-dimensional incompressible 

potential theory.

92



Elizabeth Ford

Lately, experimental investigation and theoretical analyses, which take forward speed 

into consideration, have been conducted in Japan. Although no-flow computation has 

been carried out, CFD simulation for two-dimensional PAR-WIGs has not been 

analysed. These studies were carried out by Hirata, who has been involved in numerous 

W.l.S.E. papers many o f  which are quoted both in the references and in the bibliography 

o f  this report.

The paper discussed in this section presents a study on the aerodynamics o f  three- 

dimensional PAR WIG configurations using CFD as well as experimental techniques. 

The Navier-Stokes solver used is based on the MUSCL-type third-order accurate upwind 

differencing, finite volume, pseudo-compressibility method with an algebraic turbulence 

model to close the system o f  equations. A multi-block grid approach was introduced 

and, in order to better comprehend the PAR effect, the following two boundary 

conditions were imposed on the ground.

The velocity is equal to the uniform flow and 

The no-slip condition.

Solutions involving a variety o f  trailing edge heights are compared with experimental 

data and the aerodynamic characteristics are discussed. The reader is urged to refer to 

this article for further information due to its extensive discussion o f  different aspects o f 

the procedures involved as well as additional information on PAR WIG vehicles.
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2.15 ENGINE CHARACTERISTICS

Although it is two engine aircraft that fly over the Atlantic, four engines will probably be 

chosen for the New Large aircraft for several reasons. First, every plane must be able to 

climb fi*om take-off with one engine totally disabled. For a two-engine plane this 

requires twice as much thrust available as that used in take-off. This would cause 

problems, such as a decrease in the cabin height and an increase in the hull size. It is the 

trend, for reasons explained later to make the new engines bigger and heavier for the 

same thrust than the ones they replace.

2.16 SIZING OF THE WING

Referring to the change in lift o f  an aircraft according to its angle o f  attack it may be seen 

that the lift rises almost in proportion to the angle o f  incidence until around the peak, 

beyond which it falls rapidly. The rapid drop in lift is due to a stall, which occurs when 

the boundary layers separate from the upper surface o f  the wing. Due to the danger this 

presents in a craft flying near the ground, it is important that this never takes place. The 

flight speed must therefore be high enough for lift to equal to the aircraft weight at a 

value o f  lift coefficient that is well away from the stalling value.

2.17 LIFT. DRAG. FUEL CONSUMPTION AND RANGE

Civil aircraft must lift as much as possible with minimum drag. Reducing the drag for 

the same lift allows the aircraft to use less fuel and travel a greater distance. To achieve 

this the quantity to be optimised is the product o f  flight speed and lift/drag ratios, VL/D. 

For steady, level flight, at small angles o f  attack, as for cruise, the following applies:

Lift = weight and drag = thrust o f  the engine.

In order to estimate the range, one requires to relate the fuel used to the thrust, which is 

the ftiel flow rate divided by thrust.Fortunately, it may be said that, the aircraft is at an 

advantage if  it can reach its optimum speed as soon as possible, allowing it to work 

efficiently and effectively. For W.l.S.E. craft this is done considerably faster which is an
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advantage. Please refer to 'Jet propulsion, a simple guide to the aerodynamic and 

thermodynamic design and performance o f je t engines' by Nicolas Cumpsty Chapter 2.

2.18 THE TURBOJET AND THE TURBOFAN

To make efficient use o f  high temperature ratios and pressure ratios o f  the engine a 

bypass stream is normally used. M odem subsonic civil aircraft engines normally have 

bypass ratios o f  five or more.

The temperature o f the gas entering the turbine is as high as the metal and the cooling 

arrangements will allow. At most operating conditions it is close to, or above, the 

melting temperature o f  the turbine material. During cruise the turbine entry temperature 

is typically about 250K lower than at take-off; this is desirable in order to prolong the life 

o f  the turbine but it also keeps the non-dimensional turbine inlet temperature T4/T2 

nearly constant.

The highest temperature ratio is encountered at top o f  climb and at this condition the 

non-dimensional variables in the engine, such as pressure ratio and non-dimensional 

rotational speed, will be greatest.

The pressure ratios now employed are sufficiently high that the temperature o f  the gas 

leaving the compressor is as near to the limit as is possible w ith current materials.

With a turbine inlet temperature for initial cmise (at 31000 ft) o f  1450 K  it is sensible to 

take an overall pressure ratio o f  40 and use this as the design condition. This may be 

divided into 1.6 for the core flow through the fan and 25 in the core itself. A pressure 

ratio o f  40 for cmise would give a pressure ratio o f  about 45 at maximum climb and 

nearly this at take-off.

There are aspects o f the engine that require some understanding o f  the way gases flow 

when the pressure changes are a substantial fi-action o f  their absolute pressure, because

95



Elizabeth Ford

there are then significant variations in density. This occurs when the flow velocities are a 

substantial fraction o f  the local sonic velocity, and such is the case throughout most parts 

o f  the engine.

2.19 STABILITY AND CONTROL

[Ref. 149, 167] Common aircraft are designed to take-off and land with the use o f 

wheels. In the take-off stages, it is noted that the aircraft's reaction is to pitch-up. In 

order to avoid stalling due to high angles o f  attack and due to the fact that all W.l.S.E. 

vehicles must take-off at a zero angle o f  attack, the pilot is required to pitch the nose 

slightly down keeping a minimum angle o f  attack until o ff  the water. When the craft is 

climbing after take-off, the crafts initial reaction is once again to pitch up, this must be 

controlled with care until straight and level flight can be attained at the required altitude.

Unlike aeroplanes, W.I.S.E.s acquire an air cushion below the craft at approximately the 

centre o f  the cushioning area, which may be calculated by using the crafts half-mean 

chord o f  the wings. For W.I.S.E.S, this position must also be its centre o f  gravity.

However, it should be noted that not all W.I.S.E.s have as big a problem with 

longitudinal stability as others do . Lippisch's proof o f  the reversed delta wing proved to 

be advantageous in this respect. In addition to this, the S-shaped camber line has been 

under great investigation and has, in fact, proven to be the most stable. This type o f  wing 

has already proven its success through the production o f  the Volga-2 and the Hydro wing.

For this reason, as well as for better lift and reduced economical expenses the S-90-200 is 

designed as it is.

The "stabilisers" o f  any aircraft whether conventional or ground effect, determine the 

crafts ability to fly either in or out o f  ground effect but not both.
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Tailplanes and elevators counter the pitching motions o f  any craft and move the centre o f 

gravity slightly backwards returning the craft to level flight. For this reason W.I.Gs have 

a larger tailplane than common aircraft, in order to handle efficiently the quick and large 

changes in angle o f attack required, not only when clearing obstacles but primarily for 

the hard and powerful take-off procedures.

It should also be noted that one o f  the theories currently available, associated with 

W.l.S.E. stability, states that the stability varies according to the size o f W.l.S.E. 

designed. For example, a craft o f  large dimensions will self stabilise, considering it is o f  

a super heavy nature (weighing between 800-1500 tons). Considering the fact that future 

plans for W.I.S.E. craft tend towards them being o f  a large nature, a section is included in 

this report on the optimisation o f  W.I.S.E. craft tending toward Large Scale W.l.S.E. 

designs. Please refer to this section for further information on this topic.

In the S-90-200 design, the two fuselages may be compared to catamaran aerofoils. In 

both cases aerodynamic lift is produced. For this reason it was advisable to research 

other similar ideas which have already been adopted by the Australians.

They have produced sea taxi W.l.S.E. craft o f  a limited capacity, which adopt curved 

wing designs.

The use o f curved wings, increases the stability o f  such craft and therefore reduces roll. 

Nonetheless, if  the wings were highly curved, as to submerse greatly prior to take-off, 

additional drag would become a big problem. A picture shown at the end o f  this section, 

made available fi’om the internet clearly indicates the Austrahan designs. For this reason, 

it is advisable that if  the wings were to be curved, only a small curve should be present, 

allowing the wings to partially aid with the roll stability o f  the craft in flight, as well as 

aid with accomplishing sufficient lift at take-off.

In this project, by using the same properties as the initial S-90-200 concept (indicating 

that currently available materials would be used), it became apparent that the current
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structure, if  altered at the wings, could cope with such a change. The lesser-curved 

wings would be preferred, due to them involving fewer stresses than the highly curved 

wings.

This design should therefore be taken into consideration for the future, since it would be 

capable o f  aiding the take-off procedure for all W.l.S.E. craft, as well as aiding with their 

stability.

In order to aid friture research in this subject, the following section, although not adopted 

in this report, contributes effective information for calculating the foUowing:-

The choice o f  elements used resulting in full stability o f  the craft at its maximum speed. 

The determination o f  the stability as it accelerates or decelerates.

The stability o f  the craft when fully constructed and loaded.

H = (AM/Aa)(l/Dl)

= li(l+ li ){(! *C1 lllbl)l/al-[l+C2(l+ li ) lbl(l+ l,/-p

where:-

H full longitudinal metacentric height o f  the object

M the total mass o f  the object

Aa increment o f  the angle o f  attack

D object weight

1 distance between the centres o f pressure o f  the hydrofoils

li arm  o f  lifting force o f  the back hydrofoil relating to the mass centre

Ibl = 1/  b l characteristic o f  the object lengthening relative to the chord o f  back wing.

The above is analysed further in the NATO conference papers held between 5-8 October

1998. The paper concerning the above is titled ’’Longitudinal Stability o f  Ekranoplans 

and Hydrofoils, written by V.I.Korolyov from the Institute o f  Hydrodynamics o f Ukraine 

National Academy o f Sciences.
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Furthermore, the same institute has also carried out tests on the Hydrodynamics o f 

W.l.S.E. wings. The generated hydrodynamic characteristics o f  the wing can then be 

used to design the W.l.S.E.. These tests have taken place on calm and wavy water 

surfaces and are o f  great relevance for the stability and control o f  such craft.

I f  fiirther analysis was to be made on this field, using a scaled down model o f the S-90- 

200  rather than a single wing, a more accurate result on the workings o f  such craft could 

be developed. Although not analysed further in this report, the paper concerning this 

may be found in the same set o f  conference papers as the above and is titled 

“Hydrodynamical Characteristics O f An Ekranoplan Wing Flying Near The Wavy Sea 

Surface” by V.G.Byelinskyy and P.I.Zinchuk [Ref. 79]

With regard to [Ref 78], the word "Ground effect" has been accepted as a technical term 

by the aerodynamicists. The word is however, not suitable to express an aerodynamic 

effect o f  a wing flaring always at a low altitude above a SEA SURFACE, therefore the 

present authors want to call it "Surface Effect". The term "WIG" will be changed to 

"WISE" (wing-in-surface effect).

It is known well that a number o f experimental WISE crafts have been developed ft-om 

the time o f  Kaario (1935, see OLILLA 1980). There will be many reasons. The present 

authors, as well as their co-workers, are attempting to establish a production model o f  

WISE craft. We will introduce our prototype o f  WISE craft "MARINE SLIDER; p  sky- 

2"[R ef 8], (for p  sky-1 refer to [Ref. 48]).

We can disregard many other serious problems related to W.I.S.E. operation. The 

authors think that these problems are unavoidable in a machine o f  revolutionary new 

characteristics. These will be solved step by step by the efforts o f  those persons dealing 

with the individual problems [Ref. 149, 167].
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2.20 INFLUENCE OF PAR IN GROUND EFFECT

This section discusses some o f  the theoretical methods and data used in the design and 

performance analysis o f  craft using wings operating in surface effect, W.l.S.E.. These 

W.l.S.E. craft derive improved lift to drag ratios as a result o f  the decreased induced drag 

losses ft"om the reduction o f  down wash velocity due to the ground effect and increased 

due to ram either from the forward motion or directly fi'om power. The existing 

theoretical methods are given and are used to predict performance for comparison with 

tests. The comparison shows that the lift drag ratios measured especially at low ground 

clearances are better than had been theoretically predicted. Possible procedures for 

improving the comparison are given. Using the conservative theoretical methods, the 

size and performance o f  competitive water-based craft are determined. The fimdamental 

design problems o f  the W.l.S.E. configuration are discussed and the need for power 

augmentation o f  the ram flow, PAR, is given. Using the PAR-WIG concept, practical 

high performance craft can be developed.

High performance advanced air vehicles with a capability o f  a high cruising range and a 

relatively high cruising speed are needed for a variety o f  strategic missions. These craft 

should be capable o f water takeoff and landing and be water based as in any future 

conflict, land bases and large airfields may not be available. While there are several 

types o f  craft that can operate fi*om water, none o f  these can fulfil the speed, range and 

payload requirements needed. To satisfy the high performance requirements several 

investigators, both in this country and abroad, have suggested the use o f  wing-in -ground 

effect craft or their derivatives. These are known as W.I.S.E. craft. When the power is 

used to augment the ft-ee air ram lift they are termed PAR-W IG craft. Due to the high lift 

to drag ratios possible with rather compact low aspect ratio wings operating close to the 

ground, it appears that the W.l.S.E. or PAR-W.l.S.E. type craft may be suitable for 

meeting the requirements. With high lift to drag ratios and a high respective cruise speed 

it should be possible to accomplish the desired mission with good transport efficiency 

and high productivity.
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With regard to the data table provided it may be seen that several countries have 

demonstrated successfully that Lippisch craft have been flown in and out o f  ground 

effect with satisfactory stability and good values o f  lift to drag ratio. In spite o f  the 

Lippisch success and the fact that the concept has been considered for many years, there 

have been numerous failures and there has been little progress in developing operational 

W.l.S.E. craft. Because o f  the promise o f  the possibility o f  a highly useful advance craft 

the available technology and characteristics o f  the W.l.S.E. and PAR-WIG concept are 

relied on to establish any operational and performance advantages and /or disadvantages 

with respect to other transport systems. Further it is desirable to determine just what 

makes the system good and what might be the technical risks for development.

[Ref: 33, 43 ,46 , 58, 89, 120 - 121, 132, 150, 159, 162, 165, 170, 173, 174].
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3.0 METHODS OF ANALYSIS

3.1 FEATURES OF WISE MOTION

A W.I.S.E. craft operates near the ground deriving its lift both as a result o f  the usual 

circulation effects and fi'om a pressure increase on the lower surface o f  the wing. This 

pressure increase is due to the conversion o f  the dynamic pressure o f  the forward motion 

to static pressure. This pressure increase is caused by the restriction o f  the airflow due to 

the closeness o f  the trailing edge and the wing end plates to the surface. [Ref 181]

3.1.1 Ground Effect

Changes in wing resistance near the ground are important for the more accurate 

determination o f  the conditions in the taking off and landing o f  an airplane. It has been 

found** that the wing resistance diminishes on approaching the ground, while the lift 

increases somewhat, thereby making the lift-drag ratio more favorable. A convenient 

method will be shown here which makes it possible to determine the polar curve o f  an 

airplane at short distances fi*om the ground by a simple short calculation, when the polar 

curve is known for flight in unlimited space. The satisfactory agreement between 

experiment and calculation is determined by the results o f  two experiments with models.

The features o f  W.I.S.E.s motion are investigated by means o f  a mathematical model and 

simulations o f  motion. Principally almost all the features o f  W.I.S.E.s are related to the 

nature o f  the surface effect on wings. Using a model o f  the so-called Lippisch type 

WISES with an inverse delta main wing, aerodynamic forces and moments are measured 

in a towing tank and a wind tunnel. The aerodynamic measurements, theoretical or 

empirical estimation o f  the derivatives in the surface effect are applied.
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3.1.2 ANALYSIS OF WISES RESPONSE TO THE ELEVATOR

In order to investigate the general characteristics o f  WISES, simulations with the linear 

and non-linear models are carried out. Typical results o f  the response due to the elevator 

and shown from figs.4-7 o f  R ef 181. The difference in the response o f  the non-linear and 

linear models shows the effects o f  the non-linear aerodynamic characteristics on the 

motions, which are due to the surface effect and produced by relatively large motions. 

They are remarkable in the damping o f  unstable motions. Therefore the unstable range 

o f  altitude estimated by the linear stability analysis is wider than that for the non-linear 

model. An example o f  responses induced by the non-linearity due to the surface effect 

are clearly seen in fig. 5. Typical non-linear behaviour o f  the W.I.S.E.s motion is seen 

for the less stable W.I.S.E.s with a small tail. In fig. 6 . Time histories o f  impulsive 

response o f W.I.S.E.S with a tail o f  VTR* = 0.8 are shown. Fig 7 shows examples o f  

trajectories o f  the impulsive response in a phase plane. It can be said that the W.I.S.E. 

craft is locally unstable but is stable in the global sense for these conditions.
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3.1.3 CONCLUSION

Basic dynamic characteristics o f WISES were clarified by the simulation o f  the response 

to the elevator. The non-linear nature o f  the aerodynamic derivatives with the height, 

induced by the surface effect, brought drastic changes in the motion characteristics.

In a certain range o f  cruising altitude fi'om the sea, the WISES showed longitudinal 

instability. The effects o f  the position o f  the centre o f  gravity and the tail volume ratios 

o f  the WISES on the characteristics were also examined.

By means o f  a suitable feed back system designed as an optimal regulator, the WISES 

maintained stable cruising in gusts, and a height change manoeuvre was achieved by the 

alteration o f  the reference height for the regulator.

The results o f  a series o f  tests for the reference height and the feed back method allowed 

the performance and limitations o f  the closed loop WISES system to be examined. 

Abrupt changes o f  height for collision avoidance required the combination o f  elevator 

control and thruster control.

Simulation o f  WISES behaviour in a realistic operating condition offers useful 

information for their safety assessment. Further investigation under various conditions 

will be required for the full assessment o f  safety.

The paper [Ref. 104] discusses mathematical models o f  the aerodynamics o f wing-in

ground effect vehicles in close proximity to the ground.
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3.2 FLOW COMPUTATION FOR THREE-DIMENSIONAL WING-IN-GROUND 

EFFECT USING MULTI-BLOCK METHOD TECHNIQUE

[Ref. 61] A W.I.S.E. craft is expected to be one o f  the promising super-high speed craft 

in the next generation. A  W.I.S.E. is characterised by a high lift to drag ratio and a 

backward shift o f  aerodynamic centre in close proximity to the ground, hence estimating 

their features accurately is very important in the design and safety evaluation.

In the present investigation, flows around a three-dimensional wing with end plates in 

ground effect are computed by the Navier -Stokes solver. Because o f  the geometric 

complexity o f  the configuration, a multi-block technique is used. In order to clarify the 

aerodynamic interactions between the wing and the ground, two boundary conditions on 

the ground are considered in this case 1) velocity is equal to the uniform flow and case 2) 

no slip condition. They correspond to an actual condition and a wind tunnel condition 

with a ground effect plate respectively. The results were compared with experimental 

data and the aerodynamic characteristics in ground effect are discussed.

3.3 EXPERIMENTAL

Two experiments were carried out in the Gottingen laboratory on a monoplane model o f  

134 cm span, with ftiselage and elevator, whereby the air forces were measured once in 

unlimited space and once near the ground. It is evident that this curve fully agrees with 

the measured values o f the lift coefficients up to about c&=l. For very large lift values, we 

obtain deviation for which no satisfactory explanation can yet be given. [Ref. 137]

Motions o f Wing -in -ground Effect Ships (WISES) are investigated by means o f  

stability analysis and computer simulation. Characteristics o f  WISES with a simple feed 

back control are examined for cruising at a constant altitude and for height change 

manoeuvres. Impulsive gusts and varying gusts with turbulence are used as disturbances. 

Application o f  the simulation results for safety assessments is discussed. Only 

longitudinal motions are considered for Simplicity and because o f  the poor accuracy o f  

predictions o f  the lateral aerodynamic derivatives.
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In Japan demand for high speed marine vehicles stems from a need for improvement in 

the domestic transportation system. The Techno-Superliner (TSL) is expected to take the 

role o f  a commercial cargo transport service to the Tokyo metropolitan area in place o f  

road vehicles. A W.I.S.E. concept enables use o f  a faster ship than the TSL or any other 

conventional high speed ship as summarised by Hooker and Terry (1992), and 

Rozhdestvensky and Synitsin.(1993). WISES based on the same concept are considered 

as candidates for a super high speed vehicle for commuter use in the future as proposed 

by Kubo (1993) plane and possesses the properties and nature o f  both.

WISES is a hybrid o f  a ship and an aeroplane and possesses the properties and nature o f  

both.

Because W.I.S.E.s is a new and entirely different type o f  ship running at extremely high 

speed, a thorough safety assessment based on a rational method is required. It is known 

that ground effect/surface effect on a wing includes longitudinal stability, so proper 

understanding o f  the motion characteristics and suitable design control system for 

WISES are key aspects o f  safety.

A research [ Ref. 57] project on WISES is being carried out in the Ship Research 

institute. The objective o f  the project is to perform a feasibility study on WISES for 

commercial use and to establish a foundation for the safety regulations o f  WISES as 

already introduced by Fuwa et al. (1993).

[Ref. 23] There is generally no boundary layer on the ground, for motion o f  a vehicle at 

low ground clearances without any atmospheric disturbances. An accurate experimental 

representation o f  such a flow field in a wind tunnel is difficult due to the existence o f a 

boundary layer on the surface representing the ground that alters the "ram-wing" 

features. This boundary layer can not be ignored in many applications including 

automobiles, racing vehicles and Wises, the latter o f  which is the concern o f  this paper.

The exact extent to which the boundary layer (or lack o f  it) affects experimental results 

for Wises apphcations is not clear at present but the required experimental range for 

wises is greater than that for conventional aircraft. This is because the minimum height
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at which information is required is near to zero as the current designs are generally for 

landing/take-off from water. However, it has been reported that the boundary layer 

altered the measured lift coefficients on an aspect ratio 6 model by 33% at a moderate 

ground height o f 20% o f  the span (equiv. 120% o f  the mean cord). The importance o f 

such effects is clear when we consider that the static and dynamic stability o f  the craft is 

directly dependent upon the lift and drag pitching moment derivatives with both 

incidence and height.

In order to determine the regions where the boundary layer will affect the lift 

coefficients. Turner compared lift coefficients for a relatively high aspect ratio wing 

using a flat plate and a belt. The height to span ratio at the point where the methods 

started to disagree showed a linear correlation with lift coefficients according to equation 

1, indicating when to remove the boundary layer. (Where h is the wing reference height, 

b is the span. Cl is the lift coefficient and AR is the aspect ratio)

[(h/b) / Cl] < 0.05. AR = 6

Sullivan also analysed the phenomenological flow features in ground effect and came to 

a similar conclusion which included the effect o f  aspect ratio given by equation 2

[(h/b) / Cl] < 1/ARti

In addition, a minimum length o f  ground plate o f  1 or 2 spans forward o f  the model was 

suggested based on the relative size o f  flow features. This minimum length will impose 

restrictions on the minimum height at which measurements can be made due to the 

boundary layer on the plate in front o f  the model.

Some resent Wises designs have used power-augmented ram  (PAR) where the engine 

exhaust is directed under the wings to provide additional lift. This is particularly useful 

during take-off and landing as it allows slower and hence safer speeds but the influence 

o f  the boundary layer during experiments is unclear.
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Turner also tested a tilt rotor configuration where the majority o f  the lift came from the 

power plants and not from aerodynamic factors. It was found that the moving belt 

technique was not required in this case. In the case o f  PAR the aerodynamic lift is 

greatly affected by the flow from the power plants and hence the boundary layer should 

be removed, if  possible, when indicated by equation 2 .

Previous studies have attempted to resolve the boundary layer problem in a number o f 

ways, all o f  which involve either complex and expensive equipment or approximations to 

the flow field.

Fink and Lastinger used two similar models, which were placed to form an image system 

with symmetry plane representing the ground. This is a very simple arrangement and 

possesses good access for flow visualisation. The mean velocity field will be adequately 

represented. However, if  flow separation is present this will not be the case. The 

turbulence field is unlikely to be well represented and investigation o f  PAR effect is not 

possible, due to the difficulty o f  ensuring symmetry o f  effects from the engines. In 

addition the method had the added expense and difficulty o f  making two identical models 

and supports, which also increases the blockage in the tunnel, hence reducing the range 

o f available model sizes.

Katzoff and Sweberg attempted to improve on the image technique by introducing a thin 

plate between the models. Its leading edge was downstream o f the leading edges o f  the 

wings. This was in an attempt to better simulate the turbulence field in the region o f  the 

ground. The subsequent boundary layer on the plate will be small but may separate at 

some position behind the wing particularly if  negative incidences are investigated. In 

addition, the pressure field needs to be known before the plate can be positioned. This 

required longer experimentation periods.

Undoubtedly, the best method was that described by Turner which involved removing 

the boundary layer from the tunnel floor by suction and then introducing a moving belt 

which was run at the same speed as the reference velocity. The effectiveness o f  this
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technique was found to be relatively insensitive to the belt speed, so precise speed 

control was not necessary. In addition the mean and turbulent flow field were well 

simulated with little necessary increase in tunnel blockage, and Par investigations were 

possible . The applicable speed range is dependent on the maximum speed o f  the belt 

and the technique requires possibly expensive and complicated equipment particularly 

for large tunnels with regard to removing the initial boundary layer.

The current work was carried out to provide a simple, cheap and accurate alternative to 

the above method.

[R ef;l-6 , 10-14, 16-17, 23-28, 43-44, 4857, 90, 109, 174, 190, 191 are but some]
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3.4 THEORETICAL ANALYSIS

A derivation then took place. The derivation for the relevant design parameters assumes 

that changes in quantities are isentropic and quasi-static allowing the use o f  mean values. 

It is proposed that the real velocities in the boundary layer, U  and the boundary layer 

height at the slot, hg, can be expressed by the equivalent constant velocity,Ue and height, 

he, such that the total momentum and mass flow rate o f  both the real and equivalent 

boundary layers are the same, p is the density, y is the ordinary perpendicular to the plate 

and L is the slot length. In this way we obtain several equations which lead to the 

following equation: [ p.s. if  extra information is required on the following please refer to 

Sowden and Hori, from the Aeronautical Journal June/July 1996]

Then, using Newton's second law, Bemouli's equation and simplifying by using other 

physics assumptions we finally get:

pLhsUs = pL integral Udy + pLhcUinfmity (note: from hs to zero).

The computation methods based on theory are outlined in this reference and below. 

They are used for recalculation and design o f  profiles, wings and wing configurations.

The flow is non-viscous, non-rotational.

The fluid is incompressible and stationary.

The potential function satisfies the Laplace Equation (the reader is urged to refer to this 

reference for further information if  required)

The disturbance potential has to satisfy the following boundary conditions:

Vanishing in infinity- where the disturbance potential tends to zero as the sum o f the x^ + 

y^ + zP tends to infinity.

Normal condition, there is no flow through the body's surface.

$ I f  lifting bodies are computed, the Kutta condition is applied in this paper as 

y (trailing edge) = 0
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Wing-In-Ground Effect vehicles are generally unstable where various pitching motions 

are concerned. For this reason, when designing a W.I.S.E., moving closer to the ground, 

one has to face the demand for natural height stabihty. The decisive factors involved in 

the pitching stability may be found in this reference on page 599, where it is stated that 

Staufenbeil (1976) introduced the parameter Fm as criterion for static height stability. 

Where: Fm = (CMh/CLh) / (CMa/Cla) and where height stability is proofed if  Fm <l or 

(CMh/CLh) < (CMa/CLa). Where CMh/CLh equals the shift o f  the centre o f  lift due to 

change o f the height, while CMa/CLa is the shift due to change o f the angle o f  attack.

As recommended in this reference, in order to attain profiles adapted for surface effect, 

an initial stage involving theoretical investigations should be performed. One method is 

using potential flow methods, where one may acquire effective results for numerous 

wing profiles at various distances fi'om the boundary. Three methods, based on the ideas 

o f  Martensen (1959), Hess and Smith (1972) and Oellers (1962) were tested in this 

reference. In all these techniques surface effect is represented using the mirror image 

process.

The method o f Martensen and Oellers is based on finding the stream function, which, 

initially, generates a streamline shaped in a manner similar to the contour o f  the profile. 

Martensen uses the normal condition to find unknown singularities, while Oellers uses 

the equation for the whole stream function, which is constant on the profile. The Kutta 

condition is used in both methods.

The Hess and Smith technique is based on a distribution o f  sources and a vortex line on 

the profile contour. The Kutta condition is used to determine the strength o f  the vortices. 

The strength o f  the sources may be found if  the normal condition is applied.

The methods o f  Oellers, Hess and Smith are not adequate for thin profiles, Martensen 

showed the best results. It is for this reason that Martensen’s technique was adopted in 

the paper discussed, which, should be referred to by the reader for fiirther information if  

required.
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The reason behind this paper being o f  importance was due to its general informative 

manner o f  representing and describing the design process as well as its discussion o f  S 

shaped aerofoils, a profile that has been chosen to be under investigation in this report. In 

the previously mentioned paper, the contour o f  the profile was created using the four 

digit NACA algorithm, where S shaped profiles may be created using two superimposed 

profiles. With the use o f  this paper, one may carry out an optimisation o f  the profile by 

giving a certain range for the parameters like chord and thickness.

The optimising criteria are the stability characteristics at various heights and angles o f 

attack, the increase o f lift when decreasing the height to chord ratio and the maximum lift 

o f  a profile when at its maximum angle o f  attack and lowest height. It was for this 

reason that numerous angles o f  attack and height/chord values were chosen for 

analysis when carrying out the CFD process.

In this paper, for every combination o f  the parameters, in the optimising process, the 

appropriate profile was computed, followed by the flow calculation with the Martensen 

methpd for a given number o f  heights and angles o f  attack. According to the resulting lift 

and moment coefficients the stability figures Fm are determined.

[Ref: 1 ,5 , 29-31,81,181-182]
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3.5 NUMERICAL CALCULATIONS

The polar curve for unlimited space is converted in the present case, with the aid o f  L. 

Prandtl’s wing theory and the multi-plane theory. According to this theory, the air from 

about the wing can be calculated on the assumption that the lift is distributed over the 

wing span in the form o f  half an ellipse, which is accurate enough for most practical 

cases. In this connection, we will utilize the theoretical consideration that a vortex band 

goes out from the trailing edge o f  each wing. The axes o f  the elementary 

vortices o f  this band are nearly parallel to the direction o f  flight and the width o f  the band 

is equal to the wing span. The added disturbing velocity resulting from this vortex band 

at any point is the integral o f  the disturbing velocities produced by the individual 

elementary vortices, whereby the former are calculated according to the Biot-Savart law. 

I f  a wing is in an airflow which is disturbed by a second wing, only the vertical 

component o f  the disturbing velocity comes into consideration for the induced drag o f 

the first wing, since the inflow direction and therewith the induced drag are changed by 

the vertical components o f  the disturbing velocity at the place o f  the supporting line. The 

vertical velocities, in the vertical plane passing through the middle o f  the chord, were 

calculated and graphically represented in fig .l, for a series o f  distances from the 

supporting line, by K Pohlhausen, at the suggestion o f  L. Prandtl, on the assumption that 

the lift is distributed in half an ellipse over the wing span.

In order to investigate the change in the resistance near the ground, we utilize the 

principle o f  reflection. We replace the surface o f  the ground by wing 1 ’ reflected by the 

ground [Ref 137. Fig 2] and calculate (by a method analogous to that for calculating the 

drag o f  a multiplane from the drag o f  a monoplane) in what manner the airflow about 

wing 1 will be affected by its image. We denote the distance from the ground by h/2. 

Wing 1 is now on the pressure side o f  wing V . We already recognize qualitatively that 

the disturbing velocity due to 1’ on wing 1 is directed upward. The resulting direction o f  

flow on wing 1, which is found by the geometric addition o f  the original direction o f the 

velocity v and the vertical velocity w n ’ due to wing 1’, and whose direction is indicated 

by v ’, is therefore, as we see, deflected downward somewhat less than in the undisturbed
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condition. The induced drag near the ground must therefore be smaller than at a higher 

altitude, since there is decreasing distance between wing 1 and its image 1’.
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3,6_______ POTENTIAL_______ FLOW
INVESTIGATION ON GROUND 

EFFECT BY IMAGE METHODS

APPEND ICIES D - G
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Potential Flows in Ground Effect

There are several approaches to this issue. They are

(a)

(b)
(c)
(d)

(e)

flow past a cylinder at various heights
(i) without circulation
(ii) with circulation

flow past a source sink pair aligned into the flow for a range of heights 
flow past an oblique series of vortices approximating flat plat at incidence 
flow past a doublet - vortex model of a foil where the doublet size varies in 
such a way to match the projected foil blockage for an angle of attack 
corresponding to the vortex strength 
analyse the foil itself.

The approaches have advantages and disadvantages as set out in the table below

Model Variables Advantages Disadvantages

a(i)

a(ii)

cylinder
spinning
cylinder

Rankine
Oval
flat plate at 
incidence

h/a
h/a.,circul
ation

h/c, t/c

no of 
vortices 
a, h/c

complete image pattern 
complete image pattern, 
models lift

indicative of camber

accuracy can be 
improved

h/a>l
h/a>l

link to incidence 
imprecise 
only 0 deg 
c and t vary 
line rough
no use at zero and no 
thickness, camber needs 
calibration

variable 
cylinder and 
vortex

f o i l

h/c, t/c,

h/c, t/c, 
camber

lowest level with all 
features,
provides a form drag 
model
full solution, 
allows advanced 
turbulent / viscous flow 
models to be used

requires CFD, most 
rime consuming
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Potential
Stream - Lines With Wake Stream Lines W ithout Wake

6
D iscussion :

The following are a series of runs, which produced a representation of a closed shape 
parallel to the water surface. These pictures illustrate that the width and the camber of 
the body change from a large camber when near the water surface to no camber when
in the air.

The bottom right hand picture shows the ’zero stream - line* producing a slight Rankine 
OvaL The difference between this picture and the bottom left hand illustration is that 
the latter allows 10% of the fluid to escape, representing a wake.
It will be seen later that although this does not have a substantial change on the lift it 

does on the drag. Appendix 'A* shows different conditions of source strength. The 
stronger the source strength, the thicker the resulting bodies.

Top Right Bottom Right
Length of Body = 2.4 Length of Body = 2.45
Max. Point = 0.62 Max. Point = 0.65

Min. Point = -0.48 Min. Point = -0.5
Thickness = 1.10 Thickness = 1.05

117



Elizabetii Ford

 1*01 I'M  i n

S o u r c e  1 .it't W i t h o n t  \ \  „ ke .Sink I.iff W i r h u u t  \> a k e

- l O o o L
- 2 0 0 0 1

- 3 0 0 0
0 . 2 5

l . ifl

Source Drag Without Wake

- s o o t
- 1 0 0 0 1 0 . 2 5

0 . 1 5

0 . 0 5

Sink Drag Without Wake

- 2 0 0 0- 4 0 0 0

- 6 0 0 0

Discuss ion:

Sink Lilt Without W ake - the variation with sink strength is quite weak. When further 
from the water surface one notices only a slight curve. But as the surface is approached 

the change in lift with sink strength increases quite dramatically. The results with high 
sink strength and low altitude gives a very sizeable contribution to lift. With high being 

else to I and low close to 0.2. With low sink strength the dépendance on h* is quite 
small.
S o u r c e  Lil t  W i thoii t  W :ikc - With low source strength (close to 0.2),  dependence on ’h’ is 
appreciably more significant. For higher flight dépendance on source strength the 
results are fairly similar to 'sink lift without wake'.
Uraii • Although the Drag illustrations seems to be similar, the source drag

without Wake has a higher drag than Sink Drag Without Wake

.Source Lil t  W i thou i  W :ike - With low source strength (close to 0 .2 ), dépendance on 'h' is
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Potential

S n m  ce \N i th W ;iki' Sink V\ ith W ako

- l O O O L
-2 0 0 o \
- 3 0 0 0 '

0 . 2 5

0 . 1 5

Lift

2000

0.  15

- 2 0 0

0 . 0 5

2000

- 3 0 0 0

Drag"fia34
Discussion;

Sink Lift Without Wake - As the surface is approached the change in lift with 
sink strength increases, although one may assume at first glance that this Sink

Lift {without Wake is similar to that on the previous page, one then notices that 

the sink strength this time reaches a value of O.IS and not 0.25, resulting in an 

overall reduced lift with high sink strength. However, once again, with low sink 

strength the dependence on 'h' is small.
Source l.iff Without Wake - With low source strength close to 0.2), dependence 

on ' h* is quite significant For higher flight dependence on source strength the 

results are not as similar to that on the previous page when comparing to 'sink 

lift without wake', due the value of sink strength reaching 0.1.

Draiz - Although the Drag illustrations seems to be similar, the source drag 

with Wake has a higher drag Sink Drag With! Wake
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Formulaer=—-----------------------------------------------

Stream Function W ithout W ake Producing Lift and Drag 

NSolvef

U (1 + s (1 / Abs [z - c] - 1 / Abs [ z -c  + 2 h l ] - l  / Abs [ z + c + 2hi] ) ) = = c - 1,

{x, y} 1
Nsolve f D [ (u z - u s ( Log[z - c ] Log fz + cl + Log [z - c + 2hl| - Log [z + c + 

2hl])), x] = = 0,{x, y)l

Nsolve [ D [ (u z - u s ( Log[z - c ] Log [z + c| + Log (z - c + 2hl] - Log (z + c + 

2hl])), x] = = 0,{x, y}]

Stream Function With Wake producing Lift and Drag 

Plot 3D [ Im[Résiduel

(D[(u z - u s ( Log[z - c 1 Log [z + c] + Log fz - c + 2hl] - Log [z + c + 2hll)), x] ^2, 

{ r ,c } l | ,{ h ,0 .1 , l l ,{ s ,  0.1,0’3}|

(D [(u z - u s ( Log[z - c I Log [z + c] + Log [z - c + 2hl] - Log [z + c + 2hl])), x] 2̂, 
{r, c}l I , {h, 0.1,1}, {s, 0.1,0.311, {h, 0.1,1,0.1}], {s,0.1,0.1,0.1}j

Source and Sink W ithout W ake Producing Lift and Drag

(D[ (u z - u a (Ii0 9 [z - c] - 0.9 Log[z + c] + Log[z - c + 2h I] -0.9 Log[z + c + 2 h I] ) ) 

X ] )  *2
, {r, c}]^ (h, 0.1, 1), (8, 0.1, 0.3}]

Plot3D[Re[Residua[

(D[ (u z - u s (Log[z - c] - 0.9 Log[z + c] ♦ Log[z - c + 2 hI] - 0.9 Log[z + c + 2 h ] ) ) 
x])^2

Source and Sink With Wake Producing Lift and Drag

I n  [ 1 0 7 ]  U = 100

Plot3D[Im[%80], {h, 0.2, 1), {s, 0, 0.15}, PlotPoints-» 20]
Plot3D(Re[«6S0] , {h, 0.2, 1}, {s, 0, 0.15}, P l o t P o i n t s-, 20]
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a = Pi / 24 
h = 1
V  = 8 
3 = 1 
C = 1 
u = 100
v = 2 P i c u a / 5
ContourPlot [Im [ (u (z + I vLog[z] - I v Log[z 2 h I]

+ I vLog[z + c / 2 (Cos [a] + I Sin [a] ) ] - I vLog{z + 2 h l  + c/ 2 (Cos [a] - I Sin[a] ) ] 
+ I (v+ I b ) Log[z + a (Co b  [a] + I Sin [a] ) ] - 
I (v + I s) Log(z + 2 h i  + (Cos [a] - I Sin [a] ) ]

+ I v L o g [ z - c / 2  (Cos [a] + I Sin[a] ) ] -I v L o g [ z  + 2 h I  - c / 2  (Cos [a] - I Sin[a] ) ] 
+ I v L o g [ z - c  (Cos[a] +ISin[a])] -IvLo g [ z  + 2 h I  -c (Cos[a] - I Sin[a] )]))],

( X ,  -4 h, 4h}, { y ,  -4 h, 4h), C o n c o u r s 41, PloCPolnts-» 80, 
Contour Shading Falsa]

24

1

8

1

1

100

5
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Potential Flow About 
Idealised Foil
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. POTENTm tiïO V ir A B OUT IDEALISED FOIL

The function which shows behaviour at an angle of attack is f 2 below

2 ^  (1-X) (x-X) / V  (1 -X^2) dX

Out [ 8! = y  a  7T I y  + xj

Substituting this value in the formula for the circulation density gives y2

(1 -x) / ( i + x)
i + x) J-iV (i-x)

(l + X) (X+1/2) dX(l + X)  J . i V  (1-X) (X - X )

This integration is in general complex and is given below in full
outr2i) =

I 3 V -  1 + X V l  + x  Log [ — y  ] + 2 V “ 1 + X X V l  + x  Log [ — y  ] -  3 V -  1 + x  VT

Log [ — -=^ I -  2 V- l  + x X V l  + X  L o g [ —= r  ] + Log [  r
V 2   ̂ V 2   ̂  ̂ V- l  + x  ( 1  + x ) 3 / 2  (1  + 2 X)

3 X Log [ - 

Log '

4 i
V -1  + X (1 + X ) ' ' "  (1 + 2 X)  

4 i

] + 2 x^ Log [ - 4 1
V - l + x  (1 + x)^^^ ( l  + 2 x )  

4 i,----------  ,   ] -  3 X Log [  = — ---------V l ' x V l ' x ( l i 3 x i 2 x 2 )  V - l + x  V l + x  (1 + 3 X + 2 )

2 X' Log [ ^ --^ ------------------- |] /  (2 7T V- l  + x Vl  + x)
 ̂ V- l  + x  v m r  (1 + 3 x + 2 x 2 ) M J / ^  '

Tidying this expression up gives

I n [ 2 2 ]  : =

Sinqplify[%9]
O u t  [ 2 2 ] ^

1 - X

l + X

V - l  + x  V l  + x  (3 + 2 x ) + ( l  + 3 x  + 2 x ^ )  Log *
4 i

V - 1  + X (1 +x) 3 / 2  (1 + 2 X)

(1 + 3 X + 2 x^ ) Log [   ■ ——  ̂ -̂------------------ ]|  /  ( 4 /i V - l + x  Vl  + x)
V - 1  + x  V l + x  (1 + 3 X  + 2 x2 ) M /

Putting an angle of 20 degrees for illustration. The Imaginary values are seen to be always positive, 

whereas the Real part produces the anticipated result for y2 but with some extra terms. Integrating 

over the chord will give the lift coefficient, which to first order correction for Brown Poroxirmty 

gives Cl = 2 Tca ( 1 + 1 / (( 4h  ̂2 )). If this truncation is not made the integration gives 

tlie complex result below.

In(24)  : - = , a = P i / 9 . Out(24) = P i /9
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V l  - h I ^ ^  V 1 + h /I + 2 i V l - h  h / ^ ^  V l  + h Y 1 + n i  r n

2 1 V 1 - h , V— ^  V l  + h  7T - 1 V l  -  h  h* / ^  V l + h  ;̂ t +
Y 1 + n \ j  1  *  h

^1 — h V - 1  - 2 h ------ Log [ ------------------------
V - 1  -  h  V l  -  h ( - 1  + h)  ( - l  + 2 h l

3 , —^ ^  V - l - 2 h - h -  Lo g  [    — -  ]
V - 1  + h  V - 1  -  h  V l  - h  f - l  + h )  ( - l  + 2 h )  '

4 i
^ W -  ' J - l - 2 h  h= L o g t - ^

I  1 -  h  V - 1  -  2 h  -  L o g   ̂ ^ ^

h V l - h  (-1+h) (-1 + 2 h)

\  I ' h   ̂ V-1 - h Vl - h (-1 + h) (-1 + 2H) '

V-l  + h h I  ̂ Vl+h Vl-h^ Log ^ *
1 + h  '  V - l  + h  (1 + h)-*' ^ (1 I 2 h)

1 - h  r r - r -V- 1 - h h“ /   — Vl h Vl - h*
V 1 + hV l + h  V l  + h ( 1 + h ) - "  ( l  + 2 h )

v - 1  + h h '  I  ^ ^  V l  + h  V l - h 2  Log [ ....-   - ---------
Y 1 '  h  I V - l  + h  (1 + h ;  - {1 -

' ^ ^  h  V - 1  -  2 h - h ^  Log [ -  ̂ ^
V - l + h   ̂ V - 1  -  h  V l  -  h  ( l - 3 h  + 2 h 2 )

' - 1 - h  , ,  r ~ ,— — — n -  _ r 4 i3 / —   ĥ  V- l - 2 h - h 2  Log [ - ---- - --------------------
V - l  + h  V - 1  ■ h  V l  - h  ( 1 -  3 h  + 2 h-  )

3 ^  V l - h ‘( l - 3 h * 2 h = ,

h 'V - l - 2 h-h=L .gt- -   ̂ H ' 3 h ,  2 h,, I

V - l  + h  h  / ^ ^  V l  + h  V l - h ?  Log [  ^ *-------------------------
V 1 + h  V - l  + h  V l  + h  (1 + 3 h  , 2 h^ )  '

1 • h  n — — r — —  r 4 12 ' / - 1  + h h" I - — —  Vl+h Vl - h2 Log [  . . ——:■
V l  + h I V- l+h V l  + h (1 -  3 h  + 2 h-

' 1 - h ---- /----- —---rz.---- r 4 iV “1 ' h h ’ / V l  + h  V l - h "  Log
\ 1 + h
I V l  + h v l - h ' -  L o g ------ ■——■—   ------------------------------

V 1 + h  V - l  + h V l + h  ( 1 -r 3 h + 2 h^ i

' - 1 - h  , f V l  - h + V 1 -  h  h  -  i  h  V I  + h  i

V — ---------  v T T T d -.,.:.---------- 1 *

' - 1 - h  r V l  -  h  + V l  -  h  h  -  i  h  V l + h  i

'i —  ------------ V r rT T D ^ ------- '

; -  ' J h  h- rr Lo g  f + ^ ' l  ~ ^  -
' i  - 1  + h  V l  h  ( 1 + h )

1 h ; I V l  -  h  - r - y i - h  h - i h  v l  h  i
~   . / r n r . i - h i ---------- '

1 - h  r V 1 - h  + V l  -  h  h  -  1 h  V 1 + h
-  L e g  --------

1 - h 1 - h  ! i  +  h
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l n [ l ]  — 9 + 9

O u t l l ] = 1 8

In [ 2 ] : = z s x  + I y

O u t [ 2 ] = X  + 1  y

T n l l } : = C09DBS>lexExpand[z]

O u t [ 3 ] = X  + 1  y

l n [ 4 ]  := x + z y
c  = 1

In [ 8)  : = h  = 1

O u t [ 8 ] = 1

l n [ 2 7 J : ^ Z z r Zxp[I q]

O u t [ 2 7 ] = r

i
I u  « 1 0 0

:
In [30]:=  X = r C o #  [q] 

y  « r Sin[Ql

O u t [ 3 0 ] = r

Ou t [ 3 1 ] = 0

I n  [ 2 8 ] : =  Exp[lq]

O u t [ 2 8 ] =  1

I n [ 3 2 ] := q =

Syntax::tsntxi ; 'q=" is incomplete; more input is needed.

I n [ 3 2 ] : = q

O u t [ 3 2 ] = 0

I n [ 3 3 ] : = Unset [q]

In f  3 4 ] ;  -

q

Ou t [ 3 4 ] = q

I n [ 2 8 1 : =

ComplexExpand [ Z ,  {  Z  }  ]

O u t ' O S ]  = 1 I m : r  ] - R e i r ;
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Ground Effect on Flow About 
Spinning Cylinder
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C.F.D ANALYSIS METHOD

4.1 OVERVIEW OF COMPUTATIONAL METHOD ADOPTED

The aim o f  this project was to analyze two different types o f  aerofoil profiles using CFD 

analysis. The most basic shaped wing is known to be the NACA 0012 and due there 

being adequate information available on it, it seemed logical to commence my CFD 

analysis on this profile. The second was the S-shaped profile. This incorporates the Munk 

M6R2 over the upper portion and the CJ-5 over its lower portion. The S-shaped profile 

was chosen due to all new designs being based on this fairly new concept which has an 

increased effectiveness and has been proven to be o f  more use in surface effect vehicles.

From the above mentioned book, it was found through numerical simulations for steady 

flow past the wings at high Reynolds numbers, with turbulence, by a finite volume 

method, that, for high cambered profile, increase in lift was significant. The stability, 

however, was very poor. The S-shaped profile not only acquired excellent lift stability 

but also had a moderate lift coefficient.

Although the Japanese are known to be further ahead with their studies on Wing-In- 

Surface Effect vehicles, the general information provided to and known by the British 

public interested in this field is incredibly scarce.

It may be that if  more information, however vague and general, on this subject were to be 

made available to the public that more people would, in fact, be intrigued by W.I.S.E. 

craft and wish to study the subject in greater detail. Perhaps, even, to the extent o f 

constructing a passenger liner for commercial use

Although my personal knowledge is limited, compared to what others may know, this 

thesis is aimed at not only persuading others to follow and continue this work but also to 

provide knowledge which they, otherwise, may not have known. For this reason it is not 

continued directly ftrom the work o f  others, such as the book named above. Instead, an
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initial step back was taken, allowing information on low Reynolds number steady flows 

to be analyzed, creating a firmer base from which to work.

[Ref: 62 - 65, 68 - 71]

4.2 IN TRO DU CTIO N

WISE (Wing-In-Surface Effect) craft are high-speed vehicles which are based on the 

advantageous aerodynamic phenomena present when in ground effect. This is 

especially the case, during their take-off procedure which is facilitated by the great L/D 

(lift to drag ratio) present. The term ‘Surface Effect’ is adopted because it describes all 

surfaces, whether ground or water.

In order for W.I.S.E. craft to be introduced in the passenger-carrying field o f  

transportation, the study o f  wing profiles is both inevitable and essential. This is 

primarily due to WISE craft being a unique concept, unlike present sea going 

transportation vehicles, which do not include the wing concept in their design 

characteristics.

Although numerous methods have been used to study the aerodynamics o f  wings in 

ground effect such as the ‘moving belt’ technique, the ‘boundary layer’ method, the 

panel method, CFD simulation and many more, it has been proven to be incredibly 

difficult but highly important to compare the lift, drag and moment coefficients with a  

(the angle o f  attack) as well as with h/c (the height to chord ratio). For this reason, as 

well as the increase in WISE craft numbers over the years it is believed to be o f  great 

importance to analyze these characteristics using numerical simulation techniques based 

on CFD (Computational Fluid Dynamics) programs.

It may be noted that a vast amount interest has been shown in and research carried out on 

the stability o f  WISE craft. It has been found that together with reduction o f  h/c, the 

center o f pressure, which is present on the underside o f  the wing, moves forward. This
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results in the nose o f the craft moving up’wards as the height between the wing and the 

surface decreases. It is for this reason that numerous WISE craft adopt a large tail plane 

concept resulting in an increase in stability. Unfortunately the tail planes do not increase 

the lift, but do however decrease the L/D ratio o f  the wings. This causes a great 

disadvantage and is the reason why Russia commenced study on the S shaped aerofoil. It 

was said that by giving the aerofoil an S shape at its ends its stability would increase.

Although results for the S shaped aerofoil have been obtained through practical 

experience as well as by experiments involving the upper section o f  such wing profiles it 

was believed that this project would result in providing numerical data on the subject. It 

should also describe in detail the forces exerted on the wing profiles during all stages o f  

take-off.
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4.3-FLUENT INPUT REQUIREMENTS

The analysis o f  the following topic has been carried out using the following 

subdivisions, namely;

History of WIGs - involving the Database,

The CFD analysis-involving the Gambit and Fluent 5 program, and 

The Experimental tests.

4.3.1 CFD ANALYSIS USING GAMBIT AND FLUENT PROGRAMMES

This section o f  the report analyses a CFD problem involving wings in ground effect. 

Computational Fluid Dynamics programmers used were the Gambit and the. Fluent 5 

programmes.

A frequently used aerofoil section in wing-in-ground effect craft, is the S-shaped 

aerofoil. Prior to commencing simulation o f  this aerofoil section over still water and 

then uneven ground conditions, it was thought essential to verify the programme's 

capabilities by primarily modelling the NACA 0012 section over ground and then over 

still water. This was carried out in order to acquire solutions, which could be compared 

with existing results and hence validated.

The simulations o f  the NACA 0012 over still water were carried out in order to observe 

variations in lift, drag, momentum coefficients, turbulence and indications o f  wave 

patterns created at low altitudes o f  flight.

Following this introduction to the problem, which included background information on 

aerofoil sections and described the CFD Fluent program, it goes on to analyse aerofoil 

sections studied during the analysis. It gives details o f  the strategy behind the numerous 

input requirements o f  gambit, such as the mesh generation process, the boundary
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conditions involved, the Fluent 5 program creation o f  solver input files and information 

on the running o f solutions given prior to the solver outputs having been attained.

Due to the involvement o f  five different angles o f  attack, namely 0, 2,5, 7.5 and 10 

degrees varying with five different h/c values, namely 1.5,1,0.75,0.5 and 0.25, it was 

possible to show positive or negative contribution to the aerodynamics involved around 

the aerofoil.

4.3.2 GRID  G EN ERA TION

Due to CFD results being dependent on the grid formation o f  the model, it is very 

important that a correct grid generation be adopted. It is for this reason that a triangular 

meshing process was used to model the aerofoil sections under investigation. The grids 

were structured and had a spacing o f  0.04 units. The meshing process was carried out as 

a pre-processing operation on Gambit. Once the pre-processing operations came to an 

end, the file could then be exported fi'om Gambit and entered in to Fluent 5.

Fluent has the ability to work with both structured and unstructured grid generations. The 

main difference between the two types o f  grid generations is in the form o f data structure, 

which describes the meshes in the most appropriate manner. A structured mesh o f 

triangles or quadrilaterals incorporating the use o f  co-ordinates and connectivities which 

naturally map into the elements o f a matrix. This means that the location o f  each point 

may be found with ease.

The main advantage o f  a structured grid lies in its con^utational efficiency since there is 

no requirement for the solver to refer to a connectivity table at each iteration. This 

resulted in a more effective outcome.
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4.4 Overview of Physical Model in FLUENT

Fluent accommodates for an extensive scope o f  incompressible, and compressible, 

laminar and turbulent fluid flow problems. Fluent is capable o f  modelling various 

complex geometrical configurations.

A vital component o f  Fluent programming is the necessity to obtain a sturdy and exact 

turbulence model prior to commencing iteration. This is especially the case for 

turbulence models. There are turbulence models available in the Fluent Tutorial Guide 

covering a wide spectrum o f  examples and requiring little or no modification. Particular 

attention has been allocated to near-wall accuracy through the use o f  extended wall 

functions and Ronal models.

4.4.1 Continuity and Momentum Equations

FLUENT solves conservation equations for mass and momentum. For flows involving 

heat transfer or compressibility, an additional equation for energy conservation is solved.

4.4.1 The Mass Conservation Equation

The equation for conservation o f  mass or continuity equation is as follows;

(ôp/ôx) + ô/ôXI(pui) = Sm

This is the general format o f  the mass conservation equation, which is also dependable in 

the case o f incompressible flows. Sm is the mass added to the continuous phase from the 

diffused second phase due to phenomena such as the vaporisation o f  liquid droplets and 

any other user-defined sources.

For 2D axisymmetric geometries, the continuity equation is given by:

(ôp/ôx) + ô/ôx(pu) + ô/ôr(pv) + pv/r =

143



Elizabeth Ford

Where;

X is the axial co-ordinate, 

r is the radial co-ordinate, 

u is the axial velocity, and 

V is the radial velocity.

4.5 M om entum  C onservation Equations

Conservation o f  momentum in the I direction in an inertial (non-accelerating) reference 

frame is described by [8]

ô/ÔT(pui) +ô/ôxi(puivj) = - ôp/ôxi + ôxij/ôxj + pgi + Fi (8.2-3) from book 

Where;

p is the static pressure,

tij is the stress tensor (described below), and

pgi and Fi are the gravitational body force and external body.

Fi also accommodates for other model-dependant source terms such as porous-media and 

user-defined sources.

The stress tensor tij is given by

xij = [p (ôui/ôxj + ôuj/ôxi)] - 2/3(p Ôul/ôxl) ôij (8.2-4) from book

Where p is the molecular velocity and the second term on the right hand side is the effect 

o f  volume dilation.

For 2D axisymmetric geometries, the axial and radial momentum conservation equations 

are given by

Ô/ÔX (pu) + 1/r Ô/ÔX ( rpuu ) + L/r ô/ôr ( rpvu )
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= - ôp/ôx + l/r Ô/ÔX [rp ( 2ÔU/ÔX -2/3 ( V.v )] + l/r Ô/Ôr [rp ( 2ôu/ôr + ôv/ôx )] + Fx

(8.2-5) from book

And

ô/ÔT ( pv ) + FrÔ/ôx ( rpuv ) + Fr ô/ôr ( rp w  )

=-ôp/ôr + Fr Ô/ÔX [rp ( ôv/ôx - ôu/ôr )] + Fr ô/ôr [rp ( 2ôv/ôr - 2/3 ( V .v )]

-2pv/r^ + 2/3 p/r ( V .v ) + p v //r  + Fr

(8 .2 -6) from book

Where

V.v = Ôu/ôx + ôv/Ôr + v/r (8.2-7) from book

and w is the swirl velocity.

4.6 Tim e-D ependent Sim ulation

The FLUENT programme also has the ability to resolve equations for conservation o f 

mass, momentum, energy, and species, as well as various other scalar equations in time- 

dependent form. It is for this reason that it may be stated that FLUENT has the required 

ability to simulate a variety o f  time-dependent problems.

When one desires to solve steady-state phenomena, which are inclined to becoming 

unstable, activating time dependence is regarded as an additional aid tool. Integration o f  

the time dependent equations also regularly assists one in obtaining a steady-state result.

T em poral D iscretisa tion - In FLUENT the time-dependent equations have to be 

discretised in both space and time. The spatial discretisation for the time-dependent
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equations is equivalent to the steady state problem. It entails the integration o f  all the 

individual terms in the differential equations over a time step dt. Insights on s are located 

in section 8.9.1 from the 'Fluent' User Guide manual'.

Itera tions- Fluent resolves the time-dependent equations using implicit formulation. For 

this reason, it is vital that iterations be carried out at each time step. This panel, when 

exposed by the user, allows a maximum value to be appointed for the number o f 

iterations essential at distinct time steps. When the convergence characteristics are 

discovered prior to this number o f  iterations being fulfilled, the solution will advance to 

the proximate time step.

The time step size is the scope o f DT. For the modelling o f  transient cases with higher 

accuracy, it is vital to allocate DT a value which is at least one order o f  magnitude less 

than the smallest time constant indicated. This is the reason for choosing le-07 value for 

all cases under investigation in this report. They were then reduced systematically as the 

time-step constants decreased.
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4.7 Turbulence M odelled

Turbulent flows are known for their spasmodic velocity domains. These irregularities 

amalgamate transported quantities such as energy, momentum, and species 

concentration, and additionally result in the fluctuation o f  these transported quantities.

Due to these irregularities having the ability o f  being small scale and high frequency, 

they are not computationally economical. However, the precise governing equations 

may be time-averaged, ensemble averaged, or otherwise controlled to eliminate all small 

scales, consequently becoming a transformed set o f  equations which are economical to 

simulate. It may also be stated that the altered equations embody supplementary 

variables, which are unknown. Turbulence models are therefore required to determine 

these variables.

FLUENT provides a variety o f  turbulent cases, which may be detected in section 9.1 o f  

the Fluent users Guide. With regard to the problems investigated in this report, it was 

thought vital to select the R ^ n o ld s  S tress M odel. This was deduced through trial and 

error, as other initially adopted models did not provide a good enough method to resolve 

such problems. The R eyno ld s S tress M odel utilises a several equations, (5 equations are 

used), compared to other methods employing as little as one equation. Although this 

resulted in a more time consuming method it proved to be o f  greater accuracy.
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4.8 The Reynolds Stress M odel

The Reynolds stress model (RMS) is the most intricate turbulence model available in 

FLUENT. The RMS closes the Reynolds-averaged Navier-Stokes equations by solving 

transport equations for the Reynolds stresses along Avith an equation for the dissipation 

rate. This results in four additional transport equations being required in 2D and seven 

additional equations in 3D.

Due to the RMS model taking into account streamline curvature, swirl, rotation, and 

swift variations in the rate o f  strain adopting a highly rigorous method, unlike the one or 

two-equation models, it has greater potentiality to attain a legitimate solution to 

convoluted flows. However, the fidelity o f  the RMS predictions is still limited by the 

closure assumptions engaged in modelling various terms in the transport equation for the 

Reynolds stresses.

This procedure involves calculation o f  each Reynolds stress, ui'uj’, using differential 

transport equations. The individual Reynolds stresses are then used to obtain closure o f 

the Reynolds-averaged momentum equation. This action involves the exact momentum 

equations being multiplied by a fluctuating property, the product then being Reynolds- 

averaged.

When relating the Reynolds Stress the following equations are adopted:

The Reynolds Stress Transport Equation 

The Turbulent Diffusive Transportation Equation 

The Linear pressure-Strain Equations 

The Low-Re Equation

Equations for a Quadratic Pressure-Strain Model 

The Turbulent Kinetic Energy Equations 

Equations involving Dissipation Rate 

Equation for the modelling o f  Turbulent Viscosity
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Equations incorporating boundary conditions for Reynolds Stresses

W hen one adopts the RMS model for solving turbulence problems, FLUENT transmits 

the equation residuals for the individual Reynolds stress transport equations to a data file. 

One has the ability to programme convergence criteria to the Reynolds stress residuals: 

normalised residuals in the range o f  1 x 10 '̂  in most cases states a converged solution. 

However, one may be required to apply rigorous convergence criteria (below 1 x 10*̂  ) in 

order to assure total convergence. More information on the criterion adopted for the 

problems examined in this project are clearly stated further in this report.

Previously stated equations together with detailed information on each, may be obtained 

in section 9.5 o f  the Fluent Users Guide.
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4.9 Near-Wall Treatment For Wall-Bounded Turbulent Flows

Pressures affect turbulent flows in a dramatic manner. The no-shp condition must be 

satisfied at the wall boundaries. This phenomenon ultimately affects the mean velocity 

field. This affects an additional characteristic, namely turbulence, in a non-trivial 

manner. In close proximity to the wall viscous damping decreases tangential velocity 

oscillations, while kinematics blocking lessens normal oscillations. However, turbulence 

is drastically altered due to the creation o f turbulent kinematic energy caused by 

tremendous gradients in the mean velocity located at the outer region o f  the wall. Exact 

description o f  the flow in the near-wall region ultimately results in accurate predictions 

o f wall-bounded turbulent flows.

In the cases under investigation in this report, the aerofoil sections were located between 

two walls. It was for this reason that careful thought was allocated to the previous 

section. One was placed at the top 1.5 m above the lower wall region when modelling the 

aerofoil sections over ground and 2 m when modelling the flow around the aerofoil 

sections over water surfaces.

In the problems being examined in this report. T he N on-equ ilib rium  W all F unctions  

were chosen as a means o f  better simulation. The key elements in the non-equilibrium 

wall functions are as follows:

Launder and Spalding's log-law for Mean Velocity is sensitised to pressure gradient 

effects.

The two-layer-based concept is adopted to compute the budget o f  turbulent kinetic 

energy in the wall-neighbouring cells.

Although some illustrations o f  this process are included in APPENDIX 'A', more detailed 

information may be found on the topic in section 9.7 o f  the Fluent Users Guide Manual.
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4.10 Solution Strategies for Turbulent Flow Simulation

The length o f individual cells o f  the mesh (modelled on Gambit) were chosen to be 0.04 

units in length. It is vital to ensure that the mesh is fine to better calculate the variables 

around the whole flow field, however the Wall Functions involved require the mesh to be 

neither too fine nor too coarse. Prior to commencing the cases, mesh designs were 

thoroughly investigated. Some o f the designs were incapable o f  being generated, a few 

were unable to run on the Fluent programme and others, which were too coarse, were 

incapable o f  providing adequate results. The majority o f  problems were caused at the 

interface region between the air and the water surface in the multiphase cases. It was for 

this reason that this specific mesh type was chosen. This mesh design proved to be 

sufficiently effective as well as less complicated resulting in less computational time on 

Fluent.

During this exercise close detail was paid to section 9.10 o f  the Fluent Users Guide, 

which relates to Mesh Generation techniques, accuracy and convergence. I f  further 

information is required on these topics please relate to the section mentioned.

4.10.1 Multiphase flow models

There are three models available in the Fluent programme for simulating flow 

irregularities.

The Volume O f Fluid (VOF) model.

The Cavitation Model, and 

The Algebraic Slip Mixture Model.

For the investigation o f  the cases involved in this report, the VOF model was adopted for 

reasons explained below.
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The VOF model is a Fixed Grid Technique designed for multiphase cases where the 

position o f  the interface amid the fluids is o f  interest. In the VOF model, a single set o f 

Momentum Equations is communal to all fluids present and the Volume Fraction o f 

individual fluids in each computational cell is followed throughout the zone.

For supplementary phases added to the model, a volume fraction o f  the phase in the 

computational cell is introduced. In each control volume, the volume fraction o f all 

phases, sum to unity. The characteristic properties and variables in each given cell are 

either true o f  the phases or representative o f  a mixture o f  the phases, depending upon the 

Volume Fraction values.

Component Phases in each control volume determine the form o f  the transport equations. 

A single Momentum Equation is solved throughout the zone investigated.

A set o f Transport Equations is solved when turbulence properties are present in the flow 

field.

Additional information on the above, as well as ways in which interpolation may be 

carried out near the interface, is given, in detail, in section 15.2 o f  the Fluent Users 

Guide. Please refer to this section for further information.
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4.11 PRESSURE DISTRIBUTION ON THE WATER SURFACE.

It may be noted when referring to APPENDIX ’A', that, when the height h  is very small, 

i.e. 0.25, the front and back leading and trailing edge sections o f  the aerofoil experience a 

lower pressure distribution which results in a slight increase in the height o f the water 

surface. However, directly below the wing the pressure is increased causing the water 

surface to deform downwards. This may be read in the FLUENT Users Manual that the 

positive pressure below the wing was caused by the positive pressure created by the 

power surface o f  the wing, and that the negative pressure o f  the water surface was 

created by the negative pressure o f  the upper surfece o f  the wing.

It is due to the smooth and curved shape o f  the aerofoil that a smooth harmonic wave is 

made unlike in a ‘static aircushion’ effect, which produces a sudden height difference 

forward and aft o f  the craft.

The information obtained on the pressure distribution over the water surface is not 

sufficiently detailed to encourage pursuit o f  further study on this topic at this moment in 

time. Nevertheless, the possible results o f  such a study would be highly informative and 

helpful. It could be investigated in the fiiture either by m yself or by others interested in 

such a subject.

Directions on how to use the programmes is located in Appendix 'A'.
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EXAMPLES OF INFORMATION 

ATTAINED ON FLUENT
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RESULTS ATTAINED USING C.F.D. 

PROGRAMMES IN TABULATED 

AND GRAPHICAL FORMAT
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0012 - AerofolhOVER GROUND

Cd values only
a

h 0 2 5 7,5 10
1,50 

1.00 

0.75 

0.50 

0 25

0.086234

0.06671

0.15982

0.029377

0.028822

TABLE 1

Cl values only
a

h 0 2 5 7 5 10
1 50 

1.00 

0.75 

0.50 

0.25

1.0285

0.92178

0.69928

-0.21265

-0.8414

TABLE 2
Cm values only

a
h 0 2 5 7 5 10

1 50 

1.00 

0.75 

0.50 

0 25

-0.22375

-0.18241

-0.03609

0.023336

0.1262

TABLE 3
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cd cl cm
0
0
0
0

0.028822

0
0
0
0

-0.8414

0
0
0
0

0.1262
0
0
0

0 029377 
0

0
0
0

-0.21265
0

0
0
0

0.023336
0

0
0

015982 
0 
0

0
0

0.69928
0
0

0
0

-0.03609
0
0

0
0.06671

0
0
0

0
0.92178

0
0
0

0
-0.18241

0
0
0

0.086234
0
0
0
0

1.0285
0
0
0
0

-0.22375
0
0
0
0

TABLE 4
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\NACA 0012 - Aerofoil-STILL WATER

Cd values only
a

h 0 2 5 7.5 10
1.50

1.00

0.75

0.50

0.25

0.017169 0.019346 0.03446 -0.18969

0 012408 0.019841 0.036658 0.068605

0.018859 0.020617 0.031603 0.073714

0.021735 0.021865 0.037706 0.081461

0.042237 0.012408 0.040862 0.095695

TABLE 5

Cl values only
a

h 0 2 5 7.5 10
1.50 -0.015029 0.233585 0.627858 0.86567

1.00 -0.059039 0.233379 0.48707 0.97065

0.75 -0.108695 0.230043 0.38321 0.98994

0.50 -0.252227 0.194882 0.787912 1.1143

0.25 -0.907056 -0.059071 0.94841 1.5706

Cm values onlv
a

TABLE 6

h 0 2 5 7.5 10
1.50 -9.26E-05 -0.057311 -0.137762 -0.18969

1.00 0.004914 -0.058846 -0.1269 -0.18799

0.75 0.010187 -0.061696 -0.12207 -0.19307

0.50 0.02736 -0.0627 -0.175944 -0.20425

0.25 0.118582 0.004921 -0.20345 -0.2355

TABLE 7
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cd cl cm
0.017169 -0.015029 -9.26E-05
0.012408 -0.059039 0.004914
0.018859 -0.108695 0.010187
0.021735 -0.252227 0.02736
0.042237 -0.907056 0.118582
0.019346 0.233585 -0.057311
0.019841 0.233379 -0.058846
0.020617 0.230043 -0.061696
0.021865 0.194882 -0.0627
0.012408 -0.059071 0.004921
0.03446 0.627858 -0.137762

0.036658 0.48707 -0.1269
0 031603 0.38321 -0.12207
0.037706 0.787912 -0.175944
0.040862 0.94841 -0.20345
-0.18969 0.86567 -0.18969
0.068605 0.97065 -0.18799
0.073714 0.98994 -0.19307
0.081461 1.1143 -0.20425
0.095695 1.5706 -0.2355

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

TABLE 8
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C d va lu e s  o n lv
a

h Ô 2 5 7.5 10
1 50 0 .041426 0 .037245 0.044284 0.065931 0.11001

1.00 0.040742 0.035018 0.044559 0 074175 0 20868

0.75 0 041362 0 034996 0.047741 0.071427 0.57114

0.50 0.042198 0.034033 0.04745 0.076134 0.22404

0.25 0 04728 0.038865 0.04562 0 1 2 6 5 8 0.33224

TABLE 9

Cl va lu e s  on lv

h 8 2 5 7.5 10
1.50 0.28724 0.55056 0.86187 1.1201 1.1396

1.00 0 30925 0.60614 0.98046 1.0734 1.3418

0.75 0 33274 0.6581 0 9493 1.2961 1.9919

0.50 0 34468 0 69665 1 1398 1.3557 2.0987

0.25 0.30834 0.68021 1.0476 0.12093 2.1701

Cm va lu es  on lv
a

TABLE 10

h 0 2 5 7.5 10
1.50 -0.05469 -0.11158 -0.19423 -0.25518 -0.24875

1.00 -0 0543 -0.12493 -0.21407 -0.23423 0.11468

0.75 -0.06261 -0 1353 -0.21174 -0.28596 0 1 1 1 6 4

0.50 -0 07149 -0 15231 -0.25399 -0.30944 -0.28571

0 2 5 -0 09673 -0 20319 -0.33213 -0.55727 -0.40058

TABLE 11
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7.5 <

10

c d C l cm h
0.041426 0.28724 -0.05469 1.50
0 040742 0.30925 -0.0543 1.00
0 041362 0.33274 -0 06261 0.75
0 042198 0.34468 -0.07149 0 50
0.04728 0.30834 -0.09673 0.25

0 .037245 0.55056 -0,11158 1,50
0 035018 0.60614 -0 12493 1.00
0 034996 0.6581 -0 1353 0.75
0.034033 0.69665 -0.15231 0.50
0.038865 0.68021 -0 20319 0.25
0.044284 0,86187 -0.19423 1.50
0 044559 0.98046 -0 21407 1.00
0 047741 0 9493 -0 21174 0 75
0 04745 1 1398 -0 25399 0 50
0.04562 1 0476 -0.33213 0.25

0.065931 1.1201 -0.25518 1 50
0.074175 1 0734 -0 23423 1.00
0 071427 1 2961 -0 28596 0.75
0 076134 1.3557 -0 30944 0 50
0.12658 0.12093 -0.55727 0.25
0.11001 1 1396 -0.24875 1.50
0 20868 1 3418 0 11468 1 00
0.57114 1 9919 0 1 1 1 6 4 0 75
0.22404 2 0987 -0 28571 0 50
0 33224 2.1701 -0 40058 0.25

h/c
14.42209 0.75
13.17445 0.50
12 43073 0.38
12.24266 0 25
15 33372 0.13

6.76493
5 7 7 ^ 2 1 3
5 317733
4.885236
5.713677

5.13813
4.544704
5 0 2 0 0 ? 4
4.163011
4 354716
5 886171
6 9 1 0 2 8 5
5 5 1 0 9 1 7
5 615844
104 6721
9  653387
15ÈÈ 2^4
28 6 > 3 l i
1 0 6 )5 1 é
15 30989

TABLE 12

120
100

80
60
40
20
0

/

0.50 0.38

/

0.25 0.13

— Series 1 
Series2 
Series3 

- Series4 
— Series5

GRAPH 54
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Elizabeth Ford

cd  va lu es
for 0 angle of attack

0 048 
0 046 
0 044 
0 042 
004 

0.038

------------------- 1

I  -

y = 0 0373x^ - 0 0407x + 0 0512 
R- = 0 9265

-Seriesi
— - - — Poly (Seriesi)

0 00 0.20 0 40 0.60 0 00

GRAPH 55
for 2 angle of attack

0 04
0.039 
0.038 
0 037 
0.036 
0.035 
0.034 
0 033

y = 0 0355%' - 0.032X + 0 0415 
Zi R  ̂= 0.7297

— ♦  Seriesi
— - • — Poly (Seriesi)

0.00 0.20 0 40 0 60 0.80

GRAPH 56

for 5 angle of attack

0 048 
0 047 
0 046 
0 045 
0.044 
0 043

y = -0 0142x^ + 0 0086% + 0 0454 
R  ̂= 0 5168

 •  Seriesi
— - - — Poly (Seriesi)

0 00 0.20 0 40 0 60 0 80

GRAPH 57
for 7.5 angle of attack

y = 0.2769%  ̂- 0 3209% + 0.1541 
R  ̂= 0 8226

0 15

►̂Seriesi 
■ — Poly (Seriesi)005

0.00 0.20 0.40 060 080

GRAPH 58
for 10 angle of attack

1 5619%  ̂+ 1.0371%+ 0 1965 
R  ̂= 0.3982

0 . 6 -------

—»-----Seriesi
• - — Poly (Seriesi)

0.2

0.00 0.20 0.40 0.60 0.80

GRAPH 59
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Elizabeth Ford

cl v a lu e s
for 0 ang le  of a ttack

■0 2769x^ + 0.1873X + 0 2986 
= 0.71730.4

0.3

02 » Seriesi
 Poly (Seriesi)

0.800.600.400 0 0 0 2 0

GRAPH 60

for 2 angle  of a ttack

0 8

0 6

0.4

0.2

y = -0 2149x^ - 0 0463x + 0.7012 
= 0 9346

- Seriesi
-  - — Poly (Seriesi)

0.00 0.20 0.40 0.60 0.80

GRAPH 61

for 5 angle  of a ttack

-0 2632x^-0 1263X+ 1.1006 
= 0 6966

» Seriesi
- — Poly (Seriesi)

0 6
0.4

0.60 0.800.20 0400.00

GRAPH 62

for 7 .5  ang le  of a ttack

1 5 
1

05

y » -6 7959x^ + 7.0114x - 0 4097 
R^ = 0.6391

♦  -  Seriesi 
— - - — Poly (Seriesi)

O.DO 0.20 0 40 0 60 0.80

for 10 angle  of a ttack GRAPH 63

-0 2519x^- 1.6293X + 2.4521 
R ' = 0.88632.5

►̂Seriesi 
■ — Poly. (Seriesi)

0 5

060 0.800.20 0.400 00

GRAPH 64
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Elizabeth Ford

c m  v a lu e s
for 0  angle  of a ttack

-0 05 

- 0.1 

-0.15

X) 0.20 0 40 0.60

y = -0 1906x^ + 0.2306X - 0.1209 
= 0.9841

— - - — Poly. (Seriesi)

for 2 angle  of a ttack

0
-0.0#-

-0.1

-0.15

■0.2

-0.25

GRAPH 65

y = -0.3079x^ + 0 4047% - 0 2438 
R^ = 0 9676

X) 0 20 0.40 0 60 0. W

-Seriesi
— - - — Poly. (Seriesi)

GRAPH 66

for 5 angle  of a ttack

y = -0 555%̂  + 0 6873% - 0 4017
~  R  ̂= 0 9517
0. SO020 0 40 060

-0.1

» Seriesi
- — Poly (Seriesi)

-0 2
-0.3

-0.4

GRAPH 67

for 7 5 angle  of a ttack

-0 /0
-02
-0.3
-04
-0.5
-0.6

» ObSO 040-----------060-----------OSO

y

y = -1 6684%' + 1.8836% - 0 7377 
R' = 0 9192

-Seriesi
— - - — Poly. (Seriesi)

for 10 ang le  of a ttack GRAPH 68

0.2

0

-0.4

-0.6

» 0 20.

y = -4.4141%' -f 4.2298% - 0.9233 
R" = 0.8671

 # Seriesi
— • - — Poly (Seriesi)

GRAPH 69
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Elizabeth Ford

C d v a lu e s  o n lv

h 0 2 5 75 10
1 50 0.040975 0 03818 0 046736 0.073696 0.10807

1 00 0 040598 0 035468 0 04582 0 068686 0.10724

0.75 0.03972 0 034798 0.045735 0 085898 0.16291

0 5 0 0.038358 0.031415 0.045229 0.10355 0.21126

0 2 5 0.036509 0.0275 0 057833 0.15045 0.36733

TABLE 13

Cl v a lu e s  o n ly

n 1 2 5 7.5 10
1 5 0 0284 6 8 0.55673 0 8566 0 94699 1.0376

1.00 0 32357 0 60402 1.0107 1 158437 1 2916

0 75 0.31343 0 66068 1.0183 1.159099 1.3195

0.50 0.37769 0.72033 1.1847 1.3115 1 642

0 25 0 40805 0 87006 1 4109 1 9227 2.8111

Cm  v a lu e s  o n lv
TABLE 14

n 0 2 5 7.5
1 50 -0 0537 -0 10914 -0.18968 -0 19524 -0 22699

1 00 -0.05691 -0 1195 -0.21375 -0.25781 -0 28488

0 75 -0.05337 -0.13125 -0.21675 -0 23259 -0 23536

0 5 0 -0 06545 -0.14397 -0.24382 -0.24771 -0 25579

02 5 -0 08465 -0.1781 -0 26444 -0.26793 -0.19579
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Elizabeth Ford

10

c d • 1 h h/c

0.040975 0 28468 -0.0537 1 50 14 3933f 0 75

0 040598 0.32357 -0 05691 1 00 12 5469 0 5 0

0.03972 0 31343 -0 05337 0 75 ’ 2 67269 0 38

0.038358 0.37769 -0 06545 0 50 10 1559^ 0 25

0.036509 0.40805 -0 08465 0.25 8 947188 0 13

0 03818 0.55673 -0.10914 1 50 6 85730;

0 035468 0 60402 -0.1195 1 00 5 87"991

0 034798 0 66068 -0.13125 0 75 5 266998

0 031415 0 72033 -0 14397 0 50 4361196

0.0275 0 87006 -0.1781 0.25 3160702

0 046736 0 8566 -0.18968 1 50 5 455989

0.04582 1.0107 -0.21375 1.00 4 53.^492

0 045735 1 0183 -0 21675 0 75 4 491309

0 045229 1.1847 -0 24382 0 50 3 81776

0.057833 1.4109 -0 26444 0 25 4 099015
0.073696 0 94699 -0.19524 1 50 7 782131
0 068686 1.158437 -0.25781 1 00 5 929229
0 085898 1.159099 -0 23259 0 75 7 410786

0 1 0 3 5 5 1.3115 -0.24771 0 50 : 895539

0.15045 1.9227 -0 26793 0 25 7 824934

0.10807 1 0376 -0 22699 1 50 10 41538
0.10724 1.2916 -0 28488 1 00 8 30288
016291 1.3195 -0 23536 0 75 1234634

0 21126 1 642 -0 25579 0 50 12 86607
0 36733 2.8111 -0.19579 0 25 13 06.713

TABLE 16

—♦—Seriesi 
Series2 
Series3 
Series4 

— Senes5

0.130.38 0.250.75 0.50

OR -0.19644
GRAPH 70
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Elizabeth Ford

ea vïTiu^ — -----
for G angle of attack

0 042 

0 04 

0038 

0 036 

0034

y = -0 0002x^ + 0 0004X + 0 0409 
R̂= 1

------------- Poly (S e r ie s i)

0.75 0 50 0.38 0.25 0.13

for 2 angle of attack

0 05  
0 04  

0.03 

0 02 
0.01 

0

GRAPH 71

y = -0 0004x^ - 0 0003X + 0.0385 
no«n i_________

■ Seriesi
-  Poly (Seriesi)

0 75 0.50 0.38 0 25 0.13

for 5 angle of attack

0 0 8  

0 0 6  

0 0 4  

0 02 
0

GRAPH 72

y = 0 0019x - 0.0092X + 0.0551 
R" = 0 8424

 Poly (Seriesi)

0 75 0 50 0 38 0 25 0 13

GRAPH 73
for 7 5 angle of a ttack

0 0 5

0 75 0.50 0 38 0.25 0.13

y = 0.0074x^ - 0 0258X + 0 0921 
R^ = 0 9905

-Seriesi
-  Poty. (Seriesi

GRAPH 74

for 10 ang les of a ttack

y = 0 0219x^ - 0 0691X + 0.1578 
e  Ttr = 0 9844

0.3

0.2
—#— Seriesi 
 Poiy (Senesi)

0.75 0.50 0 38 0 25 01 3

GRAPH 75
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Elizabeth Ford

“Ct'valoes------------------
for 0 angle of attack

0 5
0.4

0.3

02
0.1
0

y = 0 0041%  ̂+ 0 0055X ♦ 0 2799 
R'«na216_____

 Poly
(Seriesi)

0 75 0 50 0.38 0.25 0.13

for 2 angle of attack GRAPH 76

y = 0 0148x' - 0 0148x ♦ 0 5634
^ R '  e 0 9869

Seriesi 
Poly (Seriesi)

0 4
0.2

0.75 0.50 0.38 0.25 0.13

GRAPH 77

for 5 angle of attack

= 0 0216x^ - 0 0016X + 0 863 
^  R  ̂= 0 9629

Poly

0.75 0 50 0.38

for 7 .5  angle of attack

2 5

2
1 5

1
0 5

0
0 75 0 50 0 38 0 25 0 13

GRAPH 78

y= 0 0 6 7 9 x ^ -0  1972x+ 1 144 
R  ̂= 0 9188

-S enesi

-  Poly 
(Seriesi)

GRAPH 79
for 10 angles of attack

y = 0.1518x^ - 0.5209X + 1 5135 
>  R̂  = 0.9412________,

2.5 Seriesi 
Poty (Seriesi)

0.5

0.25 0.130.50 0.380 75

GRAPH 80
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Elizabeth Ford

crtTvalaes---------------
for 0 angle of attack

_y = -0 .0 0 7 X  - 0  0 4 1 7  

R ^ =  0 .7 1 8 2
-0 02

-0  0 4

- 0  0 6 -  Linear (Senesi

-0  0 8

for 2 angle of a ttack GRAPH 81

y = -0 ^ 3 5 x -  + 0 0046% - 0.1119 
R ' = 0.9838

0 75 0.50 0 38 0 25 0.13

Poly (Senesi)

-0 15

GRAPH 82
for 5 angle of attack

-0.1

-02
-03

0.75 0.50 0.38 0.25 0.13

y=  -0 0 0 1 2 x ^ -0  0 1 0 6 X -0  1804 

= 0.9692

 Poly (S e rie s i)

for 7 .5  angle of attack

= 0 0032x^ - 0  0 3 2 5 X  - 0  1 7 7 5  

n  = 0  6 1 3
-0  0 5

Seriesi-0.1

-0  1 5
Poly
(Seriesi)-02

- 0 .2 5

- 0 .3

GRAPH 84
for 10 ang les of attack

0
-0 05 

-0.1 
-0 15 

-02  
-0.25 

-0.3

y = 0 0118x^ - 0 0619X - 0.1843 
 ' R ' = 0 6354

-0̂ 75— 0:50— 000— 025— 043-
-Seriesi 
Poly. (Seriesi)

GRAPH 85
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Elizabeth Ford

All Cd

0.4

0.35

0.3

0.25

0.2

0.15

0.1
0.05

0.75 0.50 0.38 0.25 0.13

■ Seriesi
■ Series2 
Series3 
Series4

■ Series5

All 01
GRAPH 86

3

2.5

2
5

1
0.5

0
0.130.75 0.50 0.38 0.25

-*— Seriesi 
-# — Series2 

Series3 
— Series4 

Series5

All Cm
GRAPH 87

0.75 0.50 0.38 0.25 0.13
-0.05

- 0.1

-0.15

- 0.2

-0.25

-0.3

■ Seriesi
• Series2 
SeriesS 
Series4

■ Series5

GRAPH 88
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Elizabeth Ford

jS-Shaped over peak (curved ground)

Cd values onlv

h 0 2 5 7 5 10
1 50 0.03305 0.0427 0.03176 0.042 0.0672

1.00 0.03743 0 01592 0.00898 0.02658 0 04946

0.75 0.04159 0.01976 0.02254 0.00761 0.04265

0.50 0 04508 0.01389 0.01752 0.02291 0.02743

0 2 5 0.04031 0.01124 0.01324 0.01695 006435
O l ^ " ” 0.01017 -0.0412 -0.0951 -0 0962 0.28011

Cl values onlv
TABLE 1

h 0 2 5 7 5 10
1.50 0.21082 0.18803 0.72162 0.58275 0.68051

1.00 008584 0.38607 0.62789 0.71695 0 82932

0.75 0.06117 0.23515 0.62616 0.65827 0.61

0.50 0.07929 0.14626 0.53695 0.72871 0.6094

0.25 -0.4127 0.18564 0.5396 0.43392 1.59
o .i 'm -0.8957 -0.5575 -0.4196 -0 0339 0.28011

Cm values onlv TABLE 18

h 0 2 5 10
1.50 -0.5251 -0.0525 -0.1805 -0.168 -0.1907

1.00 -0.0443 -0.1189 -0.1949 -0.2205 -0.1786

0.75 -0.0407 -0.1082 -0.1847 -0.2288 -0.2209

0.50 -0.0373 -0.1069 -0.178 -0.2317 -0.2599

0.25 -0.0505 -0.1232 -0.1986 -0.0235 -0.0424
0 .125 J -0.0854 -0.2243 -0.3595 -0.4423 -0.2392

TABLE 19
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Elizabeth Ford

10

7.6

cd cl cm h
0.03305 0.21082 -0.5251 1.50
0 03743 0 08584 -0.0443 1 00
0.04159 0.06117 -0.0407 0.75
0.04508 0.07929 -0.0373 0 50
0.04031 -0.4127 -0.0505 0.25
0.01017 -0.8957 -0 0854 0.13
0.0427 0.18803 -0.0525 1.50

0.01592 0.38607 -0.1189 1.00

< 0.01976 0.23515 -0.1082 0.75
0.01389 0.14626 -0.1069 0.50
0.01124 0.18564 -0.1232 0.25

V -0.0412 -0.5575 -0.2243 0 13
0.03176 0.72162 -0.1805 1 50
0.00898 0.62789 -0.1949 1.00

< 0.02254 0.62616 -0.1847 0 75
0.01752 0 53695 -0.178 0 50
0.01324 0.5396 -0.1986 0 25
-0.0951 -0.4196 -0.3595 0 13
0.042 0.58275 -0.168 1 50

0.02658 0.71695 -0.2205 1.00
< 0.00761 0.65827 -0.2288 0 75

0.02291 0.72871 -0.2317 0 50
0.01695 043392 -0.0235 0 25
-0 0962 -0.0339 -0.4423 0 13
0.0672 0.68051 -0.1907 1 50
0 04946 0 82932 -0.1786 1 00

< 0 04265 0.61 -0.2209 0.75
0.02743 0.6094 -0.2599 0.50
0.06435 1.59 -0.0424 0 25
0.28011 0.28011 -0.2392 0 13

h/c
0.75 15 68
0.50 43.60
0.38 67 99
0.25 56 8 5

0.13 -9.77
0.0625 -1.14

22.71
4.12
8 4 0
9.49
6.05
7.38
4.40
1.43
3.60
3.26
2.45

22.67
7.21
3 71
1.16
3.14
3.91

283.81
9.87
5.96
6 99
4.50
4.05

100.00

TABLE 20

300  00

25 0  00

200  00 - -

15 0 .0 0

100.00
50.00

-50.00

GRAPH 89
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Elizabeth Ford

cd values
for 0 angle of attack

y = -0.0037x^ ± 0 0231x + 0,0101 
B I e 0 8339

- Series 1
- Poly. (Series 1)

0.75 0.5 0.375 0.25 0.125 0 063

for 2 angle of attack GRAPH 90

y = -0  0028X- + 0.0067X  + 0 .0 2 8 6  

mf = 0  7 9 2 7
00 6

00 4

0.02 Series 1

- -  Poly 
(Series 1)-0 02 

-0 04 

-0.06

for 5 angle of attack GRTAPH 91

-0 0089x^ + 0 .0 4 4 5 X  - 0 0207 
S  = 0.7708

005

— Series 1

-0 05
- -  Poly 

(Seriesi )-01

-0 15

for 7.5 angle of attack

005

0
-0 05 

-01 

-015

GRAPH 92

y = -0 00 7 8 x ' + 0 .0344X  + 0  001 

R^ = 0 .7471

0 75 0 5 0 38 0.25 0 T3\0.06 ♦  Seriesi
— - - -  Poly (Seriesi)

for 10 angle of attack GRAPH 93

y = 0.p24x̂  - 0.1365X + 0.2029
= 0.8547

---------- Poly (Seriesi)

0.75 0.5 0.38 0.25 0.13 0.06

GRAPH 94
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Elizabeth Ford

cl values 
for 0 angle of attack

0.5 

0

-0.5 

-1

y = -Q.0653x^ + 0.2571 x - 0.0541 
= 0.9488

0.75 0.5 0.38 0.2Î 6 — • — Seriesi 
— - - — Poly (Seriesi)

for 2 angle of attack GRAPH 95

0.5

0.75 0.5 0.38 0.25 0.13 'U 06
-0.5

0.1184 
= 0.8444

- $ — Seriesi
— - —  Poly (Seriesi)

for 5 angle of attack

1

0.5

0

-0.5

GRAPH 96

y = -0.077x^ + 0 3650X + 0.3265 
R  ̂= 0.8218

0.75 0.5 0.38 0.25 0.13 (jig6

-* Seriesi
Poly (Seriesi)

for 7.5 angle of attack

1

0.5

0

-0.5

GRAPH 97

y = -0.0706x^ + 0.384X + 0 2416

0.75 0.5 0.38 0.25 0.13 0.06

R' = 0.9518

— • — Seriesi 
— - - — Poly. (Seriesi)

for 10 angle of attack GRAPH 98

-0.0445x^ + 0.3197x + 0.323 
iR̂  = 0.0771

&— Seriesi 
• — Poly. (Seriesi)

0.5

0.75 0.5 0.38 0.25 0.13 0.06

GRAPH 99
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Elizabeth Ford

cm values 
for 0 angle of attack

0.2
0

-0.2
-0 .4

- 0.6

y = -0.0472x^ + 0 .3931x  - 0 .7 8 9 9  

= 0 .8041

0 75 / ) / ?  0  38 0 ?5 -0 JL a-00^
— # — Seriesi 
— - - — Poly. (Seriesi)

for 2 angle of attack GRAPH 100

- 0.1

- 0.2

-0 .3

O .t6c.0L5 .0 .3 8  0 .2 5  0 .1 3  0 .0 6

y = -0 .0 0 5x^ + 0 .0 1 03x - 0 .0 8 2 2  

= 0 .7 4 8 6

-# —  S e r ie s i

for 5 angle of attack

- 0.1

- 0.2

-0.3

-0.4

0.75 0.5 0 .375 0.25 0 .125 0 .063

GRAPH 101

y = -0.0153x^ + 0 .0813x - 0.2688 

Rf = 0  81

^  - y  sl:.  ♦  Seriesi
—  - -  —  Poly. ( S e n e s l )

GRAPH 102
for 7.5 angle of attack

- 0.2

-0 .4

- 0.6

0 / 5  0 5  - 0 3 8 _ 0 ^ 0 . l3 v 0

y = j0 .0 1 7 2 x ^  + 0.0983X - 0 .3 0 1 7  

^ = 0 .2 1 8 5

-# Seriesi
— - - — Poly (Seriesi)

for 10 angle of attack

0 76 0.5 0 . »  O Ji

-0.15

GRAPH 103

y = -O.OOOIx^ + 0.0044X - 0 .2 0 2 3  

0 .0 0 7 7

— 8— Senesl 
— - - — Poly (Seriesi )

GRAPH 104
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Elizabeth Ford

All Cd

All Cl

0.3

0.2

- 0.1

- 0.2

-♦—Seriesi 
Series2 
SeriesS 

K Serles4 
SeriesS

GRAPH 105

All Cm

•S e rie s i

S eries2

S eries3

S eries4

SeriesS

GRAPH 106

-0.1
-0.2
-0.3
-0.4
-0.5
- 0.6

• S en esl

■ Series2 

S enes3  

Series4

■ SeriesS

GRAPH 107
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Elizabeth Ford

IS-éhmtdonrlmuahfoifmmwSS'

Cd values only
a

h 0 2 5 7.5 10
1.50 0.0378 0.03837 0.0505 0.07763 0.15769

1.00 0.03936 0.04276 0.05956 0.08583 0.14527

0.75 0.03166 0.04482 0.06501 0.09642 0.14552

0.50 0 04213 0.04742 0.073 0.10534 0.16763

0.25 0.04507 0.05167 0.08156 0.12105 0.19216
0.12 5 _ 0.0475 0.05455 0.08824 0.12798 0.21112

Cl values onlv
a

TABLE 21

h 0 2 5 7.5 10
1.50 0 40625 0.73442 1.0748 1.1732 1.089

1.00 0.44648 0.81743 1.1588 1.344 1.2635

0.75 0.50773 0.86398 1.2451 1.3886 1.4053

0.50 0.55222 0.91348 1.3169 1 496 1.461

0.25 0.58436 1.0129 1.4595 1.654 1.6586
0.125 0.61717 1.0351 1.5711 1.7407 1.7909

Cm values only
a

TABLE 22

1.50

1.00

0.75

0.50

0.25
. 0 .125

7.5 10
-0.05753

-0.058

-0.06797

-0.06204

-0.0688

-0.11342

-0.11594

-0.11744

-0.11879

-0.12494

-0 20044 

-0.20312 

-0.2084 

-0.21291 

-0.22462

-0.23346

-0.25087

-0.24886

-0.25684

-0.26812

-0.14423

-0.21703

-0.24532

-0.23287

-0.24409
-0.06831 -0.12735 -0.23117 -0.27539 -0.246

TABLE 23
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Elizabeth Ford

7.6

10

Cd cl cm h
0.0378 0.40625 -0.05753 1.50

0.03936 0.44648 -0.058 1.00
0.03166 0.50773 -0 06797 0.75
0.04213 0.55222 -0.06204 0.50
0.04507 0.58436 -0.0688 0.25
0.0475 0.61717 -0.06831 0.125

0.03837 0.73442 -0.11342 1.50
0 04276 0.81743 -0.11594 1 00
0.04482 0.86398 -0.11744 0.75
0.04742 0.91348 -0.11879 0.50
0.05167 1.0129 -0.12494 0 25
0.05455 1.0351 -0.12735 0.125
0.0505 1.0748 -0.20044 1.50

0.05956 1.1588 -0.20312 1.00
0 06501 1.2451 -0.2084 0 75

0.073 1.3169 -0.21291 0 50
0.08156 1.4595 -0.22462 0 25
0.08824 1.5711 -0.23117 0.125
0.07763 1.1732 -0.23346 1 50
0.08583 1.344 -0.25087 1.00
0 09642 1.3886 -0.24886 0 75
0.10534 1.496 -0 25684 0 5 0
0.12105 1.654 -0.26812 0 25
0.12798 1.7407 -0.27539 0.125
0.15769 1.089 -0.14423 1.50
0.14527 1.2635 -0.21703 1.00
0.14552 1.4053 -0.24532 0 75
016763 1.461 -0.23287 0 50
0.19216 1.6586 -0.24409 0.25
0.21112 1.7909 -0.246 0.125

h/c
0.75 9.3051
0.50 8.8158
0.38 6.2354
0.25 76292
0 13 7.7119

0.0625 7.6956
5.2251
5.2315
5.1875
5.1915
5.1013
5.2696
46989
5.1400
5.2212
5.5432
5 5884
5.6164
6.6169
6.3859
6.9439
7.0414
7.3186
7.3522

14.4803
11.4974
10.3551
11 4736
11.5857
11.7885

TABLE 24

16 0000
14 0000
12 0000
10 0000
8.0000
6.0000
4.0000
2.0000
0.0000

0.063

GRAPH 108

181



Elizabeth Ford
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cl v a lu e s
for 0 angle of a ttack
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cm values
for 0 angle  of a ttack

0

- 0.02

-0.04

-0.06

-0.08

y = 0 0QQ3x  ̂- 0.0045x - 0.0528

0 75 0.5 0.38 0.25 0.13 O.otf’ -0 .6914

• Seriesi
— - - — Poly. (Seriesi)

for 2 angle  of a ttack

-0.18 
-0.19 

-0.2 
- 0.21 
- 0.22 
-0.23 
-0.24 J -

0.75 0.5 0.38 0.25 0 1 3  8 06

GRAPH 111-SI

y = -0.0008x^ - 0.0007X - 0.1987 
' = 0.9891

• — Seriesi 
■ — Raly (Senesl )

GRAPH 111-S2
for 5 angle  of a ttack

V = -0,0008x  ̂- 0 0007X - 0.1987 

nir? n n ë  = 0 9891
-0.18
-0.19

- 0.2

- 0.21

-0.22
-0.23
-0.24

— Seriesi 
 Poly. (Seriesi)

for 7 .5 ang le  of a ttack

- 0.2

- 0.22

-0.24

-0.26

-0.28

0.75 0.5 0.375 0.25 0.125 0.063

GRAPH 111-S3

y = -4E-05x  ̂- 0.0074X - 0.2291 
R  ̂= 0.9357

-S enesl
— - - — Poly (Seriesi )

GRAPH111-S4

for 10 ang le  of a ttack

0

-0.1

- 0.2

-0.3 ->

0.75 0.5 0.375 0.25 0.125 0.063

y = 0.0075x^ - 0.0693X - 0.0934 
 ̂= n884f y  = o.i

- Seriesi 

Pnlv___

GRAPH 111-S5

184



Elizabeth Ford

AllCd
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pxf values of the S-#h#ped aerofoil at 0 angle of afSclH

1.50 0 03305 0.0378 0.04098 0 04143
1.00 0 03743 0 03936 0.0406 0.04074
0.75 0.04159 0.03166 0.03972 0.04136
0 50 0.04508 0.04213 0.03836 0.0422
0 25 0.04031 0.04507 0.03651 0.04728

GRAPH 1 1 1
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[cd values of the S-shaped aerofoil at 2 angle of attack]
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|cl values for 2 angle of attack of an s-shaped aerofoil

1.50 0.18803 0.73442 0.55673 0.55056
1.00 0.38607 0.81743 0.60402 0.60614
0.75 0.23515 0.86398 0.66068 0.6581
0.50 0.14626 0.91348 0.72033 0.69665
0.25 0.18564 1.0129 0.87006 0.68021
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0.4
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5.0 ANALYSIS OF RESULTS

The following section is comprised o f all the analytical data obtained from the Fluent 

program. A section discussing the various graphs precedes each graphical 

representation and should be referred to for all information purposes.

In previous years numerous WISE craft operated using pilots trial and error processes in 

order to find suitable heights and angles o f attack at which to either take off at or land. 

It is believed that the following information although incredibly detailed will prevent 

fiirther accidents occurring through pilot error. The best suited and worse angles o f 

attack at which to fly at are stated and described below. This information would allow a 

pilot o f a WISE craft to fly safely at optimum height to chord ratios and angles o f  attack.

5.1 NACA OVER STILL WATER

With close reference to the previous graphs in this section, the following has been noted. 

At zero angle o f  attack, no lift is produced for the NACA 0012 aerofoil. As the angle o f 

attack increases, so does the Lift Coefficient Cl. The first column indicates that 

although, there is no lift for this aerofoil at zero degrees, there is still a significant 

decrease in Cl as the height to chord ratio, h/c decreases.

At 2 degrees angle o f attack and for 5 degrees it is noted that between h/c values o f  0.75 

and 0.38, one notes a decrease in the value o f  Cl as h/c decreases. However, as h/h 

decreases further between 0.38 and 0.13, a significant increase in Cl is noted. This is 

due to the pressure increase below the lower section o f  the aerofoil together with the 

angle o f  attack as the height between the aerofoil and the water surface decreases.

At 7.5 degrees angle o f attack, one notes an increase in the value o f Cl as h/c decreases. 

Again this is due to there already being a significant Cl value initially at h =1.5m, this 

together with the decrease in h/c produces an increase in pressure as the aerofoil reduces 

height, producing this overall increase in the lift coefficient Cl, and hence lift. At 10
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degrees angle o f attack, which on its own produces significant lift, together with the 

pressure build up below the aerofoil as the h/c values decreases, an overall increase in 

the value o f Cl, hence lift is produced.

Therefore, it may be stated that fi'om 2 degrees angle o f attack at h/c = 0.38, as either or 

both the angle o f attack increases or the value o f h/c decreases, the value o f Cl increases, 

producing increased Lift. Hence, it could be said, that if  a NACA 0012 aerofoil section 

was to take off fi’om still water its h value (i.e. the distance between the lower section o f 

the aerofoil and the water surface), for a chord length o f  2m should be 0.75m and it 

should have a minimum angle o f attack o f 2 degrees, when travelling at a speed o f 100 

metres per second, in order to produce some sort o^ although little, lift.

It should therefore not even attempt to take off if the h/c value is less than 0.38 and the 

angle o f attack is less than 2 degrees.

With reference to the individual graphs o f  the Cl values at different angle o f  attack, it is 

reinstated that the previously mentioned statements are correctly interpreted. In addition 

to this it may be noted that not only are the values close to I (specifically for 7.5 

degrees, where = 0.9428, and for 10 degrees, where R^ = 0.9311), but that the chart 

and equations (2"^ Order Polynomial Equations), together with the corresponding trend 

lines o f  the graphs, describe the change in Cl in a similar manner to the line joining the 

points for each series.

This is particularly the case for 7.5 degrees angle o f attack. It may be noted that for this 

reason, these equations could be used to find additional points between the h/c values o f 

0.75 and 0.13 as well as predict additional points outside this range. However, care must 

be taken, as forecasts could be invalid in reality. This information or advice, not only 

applies to this subtopic but to all forthcoming information.

As may be seen, either fium the tables or fix>m individual graphical representations, the 

overall angles o f the lines (for all except fium the 2 degrees angle o f  attack graph) 

increases as the h/c values decreases. Thus indicating that the drag coeflhcient Cd
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increases as the distance between the lower surface o f the aerofoil and the water surfece 

decreases. Both for zero and for ten degrees angle o f attack, the equations o f the second 

order polynomial trendlines are very similar to the lines through the points. It may be 

noted that the values are incredibly close to 1, specifically 0.9576 and 0.9919 

respectively, resulting in an incredibly similar trendline to the actual line joining the 

points. Therefore, if  it were desired to find additional information either for values 

between 0.13<h/c<0.75 or outside this range, the equations denoted may be used.

Although different equations are adopted for 5 and 7.5 degrees angle o f attack, it may be 

noted that due to a decrease o f  Cd at h/c = 0.38 for 5 degrees the R^ term is 0.6493. In 

addition to this, due to a low Cd value at h/c = 0.75 for 0.75 degrees, the R^ term is 

0.8693. Due to the decrease o f  Cd at 0.13 when at 2 degrees R^ = 0.7467. Even in these 

cases, although the equations themselves should not be used for further information, the 

lines through the points (not the trendlines) may be used for approximate solutions.

Although the graphical representations o f the Cm values are known to go up and down, 

resulting in an inaccurate prediction, it is believed that some o f the trendline equations 

could be used for a prediction o f  further information, which would be o f  some accuracy. 

This is especially the case for trendlines with equations which have R^ terms greater 

than 0.9.

For example for 0 degrees angle o f attack, it may be seen that the overall trend indicates 

an increase in Cm as h/c decreases, resulting in instability. The R^ term o f this graphical 

representation is 0.9405, meaning that the equation for the trendline could be used for 

further information. This is also the case for 5,7.5 and 10 degrees angle o f attack, where 

the respective R^ terms are 0.9867,0.9867 and 0.9327 respectively. With the R^ for 7.5 

degrees being the best trendline representation o f  points, resulting in quite an accurate 

equation for additional information.
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However, due to the great change in the 2 degree graph for Cm, it is not advised to use 

this equation as a source o f  fiirther information. However with close reference to known 

data, a close approximation could be made using the line joining the points for 

information on 0.13 < h/c < 0.75. Both the 5 and 7.5 degree graphs for Cm, indicate a 

decrease in the Cm value as the h/c values decrease result in better stability. However 

for the 10 degree Cm graph as the h/c values decrease the Cm values increase resulting 

in instability which, may be due to high angle o f attack and turbulence at the trailing 

edge.

It may therefore be noted that, for all angles o f attack, as the h/c values decrease the Cd 

values increase. However, with regard to the Cm graphs, although for 0 and 2 degree the 

aerofoil becomes greatly unstable when close to h/c = 0.13, which could be due to the 

small angles producing little to no lift.

For 10 degrees. Cm, once again increases as h/c decreases due to the large angle o f 

attack close to the still water surface producing an increased pressure build up on the 

lower surfece o f the aerofoil, as well as high turbulence at the trailing edge which 

corresponds to drag.

However for 5 and especially 7.5 degrees, a decrease in Cm is present as h/c decreases, 

resulting in better stability. For this reason and with close reference to the Cl, Cd and 

Cm results, as a final conclusion, it is true that 5 and 7.5 degrees produce better ground 

effect, lift and have a decreased instability, especially when in close proximity to the 

water surface

Referring to the Cl, Cd and Cm graphs, which show all five series together. Where 

series 1, 2, 3 ,4  and 5 represent 0 ,2 , 5, 7.5 and 10 degrees angles o f attack respectively, 

for values between the range o f h/c = 0.13 and 0.75 it may be noted that all series, apart 

from 10 degrees, intersect at h/c = 0.48, where the corresponding Cl value is around 

0.25, however series 5 intersects series 4 at around h/c = 0.43, where Cl is approximately 

just over 0.5. Series 5 intersects series 1 at around h/c = 0.44, where Cl is just under 0.5. 

Series 5 intersects series 2, where h/c is around 0.45 and Cm is around 0.375. Finally
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series 5 intersects series 3 when h/c is equal to approximately 0.45 and the value o f Cm 

is around 0.34.

Nevertheless, point (0.48,0.25) is the most common and it may therefore be stated that 

for all series apart from series 5, an angle o f attack o f around 0.48 degrees corresponds 

to the same value o f Lift Coefficient Cl, which is around 0.25.

For values where h/c is less than 0.5, it is best to use 0 degrees angle o f attack, for 0.44 < 

h/c < 0.5 it is best to use 7.5 degrees angle o f attack, for h/c > 0.45 best to use 10 

degrees angle o f  attack.

With regard to the Cd values for all five series shown on the one graphical 

representation, it may be stated that for values o f  h/c > 0.5625, it is best to use series 4 

and for values o f  h/c < 0.5 best to use series 5.

Finally, looking at all five Cm series together on the one graphical representation, one 

may note that there are two intersections occurring. One intersection occurs at h/c = 0.5, 

where Cm is just below -0.05 for all series apart from series 5 (which represents the 10 

degree angle o f attack) and another intersection occurs at h/c = 0.19 where the value o f 

Cm is approximately -0.2. For h/c < 0 .19 , it is best to use 2 degrees angle o f  attack, for 

0.19 < h/c < 0.41.For 0.41 < h/c < 0.5 it is therefore best to use 7.5 degrees and for 0.5 < 

h/c < 0.75, best to use 0 degrees angle o f  attack.
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5.2 NACA 0012 OVER FLAT GROUND

Five programs were run for this case, this was due to there being no requirement for the 

information apart from its use as verification to the Fluent programme's capabilities. 

However, there was a similarity between the majority o f points for the NACA 0012 over 

ground, with the equivalent points over still water.

The following programs were run; h/c = 0.13 with a = 0 ; h/c = 0.25 with a = 2 ; h/c = 

0.38 with a = 5 ; h/c = 0.5 with a = 7.5 and finally h/c = 0.75 with a = 10. Where h/c is 

the height to chord ratio and a is the angle o f attack. This was thought to be better than 

having the angle o f attack increase as the h/c decreased, mainly due to turbulence which 

is created causing drag and instability.

With regard to the Cl graph shown, series 1 represents the programmes run for over flat 

ground. These results were then compared to the equivalent points for NACA 0012 over 

still water. This is represented by series 2. A second order polynomial equation has been 

allocated for series 1 and 2 which, describes their trendline. has also be stated, this 

indicates the accuracy between the actual series lines and the trendline. The closer R^ is 

to 1, the higher the accuracy between the two lines, which results in the 2™* Order 

Polynomial Equation being a good prediction method for values either within the range 

covered or outside it.

It is noted that due to series 1 and series 2 being similar, the trendline has an R^ term 

with a value o f 0.9854. This means that an approximate value o f  either NACAGG12 over 

water or ground for an increasing angle o f  attack as the h/c values increase, with 

reference to the already found points. If  a better approximation is required then care 

must be taken and either series 1 or 2 must be used individually depending on the 

required information. However, in both cases Cl increases as the angle o f  attack 

increases and the value o f h/c increases.
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With regard to the Cd graph shown, there is a drastic increase in Cd while over ground, 

at h/c = 0.38 and a = 5, the line joining those five points o f  series 1 may be inaccurate. 

With regard to series 2, although Cd decreases as h/c and a decrease (simultaneously), 

the two series lines are o f a similar nature ( i.e. overall both decreasing in Cd as h/c 

decreases) there trendline has an RE2 term equal to 0.9606 resulting in an equation 

which together with close comparison to each series could provide an approximate 

solution o f  further points/information if required.

Now with regard to the Cm graph, due to the two series having slight variation o f values, 

the trendline best describes series 1 rather than both series 1 and 2. The RE2 term 

however is 0.9646 resulting in a  good approximation o f values or fiirther information for 

series 1 by using the 2 ^  Order Polynomial Equation describing the trendline, this 

together with close comparison to series 1 its self could provide a close approximation 

o f solutions. Overall, the graph does show an increase o f Cm (instability) as h/c 

decreases together with a simultaneous decrease o f  angle o f  attack.
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5.3 S-SHAPED OVER STILL W A TER

With regard to the individual Cl graphs for the S-shaped aerofoil over still water, unlike 

the NACA0012 aerofoil section, the S-shaped aerofoil is specially designed to work in 

harmony with ground effect. It is for this reason, and due to its curved design that for all 

cases o f angle o f  attack, as h/c decreases from 0.75 to 0.13 the Cl values increase 

producing increased lift as ground effect is adopted. In addition to this a 2*  ̂ Order 

Polynomial Equation describing the trendline and an term is indicated for all cases. 

Due to there being a close similarity between the trendline and each series, the R^ terms 

are all greater than 0.9, resulting in equations being a good method o f predicting 

additional, although approximate solutions to each problem. It may be noted that, by 

referring to the individual Cl graphs, as the angle o f  attack increases so does the value o f 

Cl. Once again the closer the R^ terms are to 1, the more accurate the equation o f the 

trendline, resulting in a good approximation method o f  attaining a solution.

Now referring to the Cl graph o f all series together, one notes that the higher the angle o f 

attack as h/c decreases, the better. The higher the series number i.e. series 5, the steeper 

its curve. For this reason it is best to use higher angles o f  attack such as 10 degrees, 

when close to the surfrce i.e. h/c = 0.13, in order to achieve a maximum value o f  Cl.

With close reference to the individual Cd graphs, one notes that 0 and 2 degrees angle o f 

attack, as h/c decreases the value o f  Cd decreases. In both cases the R^ term is 

incredibly close to 1, specifically, R^ = 1 and R^ = 0.9801 respectively, resulting in an 

excellent trendline and 2™* Order Polynomial Equation which, may be used for further 

information.

As the angle o f attack is increased to 5 degrees, Cd increases as h/c decreases. Once 

again, it is noted that the R^ terms are once again close to 1. (Although for 5 degrees the 

R^ term is equal to 0.8424, four out o f five points lie on the trendline with one just a bit 

lower, even this equation could be used with good approximate results, if  care was taken 

and comparisons to known results was made.
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For 7.5 degrees = 0.9905, this results in an excellent trendline and equation, which 

could be used for further information. For 10 degrees R^ = 0.9844, here two o f  the points 

lie just off the trendline and hence if  the equation was used care must be taken and 

reference to previous points must be made.

With regard to the Cd graph showing all the series together one notes that, with the 

exception o f  series 1 and 2, they follow a similar pattern to the Cl graphs. The greater 

the angle o f attack the greater the steepness o f the graph, hence producing a greater Cd 

value as the angle o f attack increases inversely to the h/c values, (i.e. h/c decreases). 

Hence, although 10 degrees at h/c = 0.13 gives the highest Cl value, it also gives the 

highest Cd value. In addition to this information a graph representing the Cl/CD value is 

made available for the reader for fiirther information, although not analysed in this 

section. However, the following point is made; For an S-shaped aerofoil over still water, 

best CD/CL *100 vs h/c, for 0.25 and under use 7.5 degrees for 0.25 and over use 5 

degrees.

With regard to the individual Cm graphs, fiom 0 degrees at h/c = 0.75 to 10 degrees at 

h/c = 0.25, as both the angle o f attack and h/c decrease, so does the Cm value. In other 

words better stability is gained when the angle o f  attack is 7.5 degrees and the h/c value 

is 0.25. Although instability increases for 10 degrees at h/c = 0.13 to reach a value close 

to that o f  2 degrees at h/c = 0.13, the worst Cm value is reached at 0 degrees angle o f 

attack where h/c = 0.75, producing an unstable circumstance. However, it should be 

noted that Cm increases as h/c increases and the angle of attack decreases.

For this reason and also by taking into account all Cd, Cl and Cm values for the S- 

shaped aerofoil over still water, one may state that it is at its best when flying at 10 

degrees when h/c = 0.13 where the instability is at its lowest.
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S-SHAPED OVER TROUGH (curved ground to simulate 8:1 waves).

Thirty programmes were run for the S-shaped aerofoil over a wavy solid boundary, 

which were designed in such a manner as to represent waves in a water surface. For this 

reason, they had a ratio o f 8:1 and were placed at h/c values o f 0.75, 0 .5 ,0 .3 ,0 .25 ,0 .13  

and 0.0625, the shape o f  the wavy boundary allowed the aerofoil to get closer to the 

surface. The trough was placed directly below the centre o f  the aerofoil. However, once 

again, the angles of attack remained the same, specifically 0,2,5,7.5, and 10.

As may be seen fi'om the individual Cl graphs for all angles o f  attack, as h/c decreases 

Cl increased to reach a maximum value. All points increased in harmony with each 

other, this is noted due to the trendline R^ terms all having a value greater than 0.9, once 

again the closer this value is to 1 the better the approximation gained fix)m the provided 

equation o f the trendline, which would be used for fiirther information.

Referring to the Cl graph which includes all Cl series, indicates that the highest Cl 

values are reached by series 5 which is 10 degrees angle o f attack, and series 4 which is

7.5 degrees angle o f attack. The highest being series 4 for h/c >0 .315 and series 5 for 

h/c < 0.315, especially when under 0.13. The lowest Cl values were attained for series 

1, which is for 0 degrees angle o f attack.

Now with regard to the individual Cd graphs one notes that, apart fijom that o f 0 degrees 

angle o f  attack which has an R^ term with a value o f 0.6838, all the rest have R^ terms 

greater than 0.96. Thus resulting in trendlines similar to the actual series lines joining the 

points, as well as resulting in adequate equations suitable for further use as methods o f  

producing additional approximate information.

Overall all series, and hence trendlines indicate an increase in Cd, as h/c decreases. 

When referring to the Cd graph which, includes all series, one notes that the highest 

value o f  Cd is reached by series 5 at Cd = 0.21112, which works out at around 26.7 % o f 

its Cl value. However one should note that its lowest percentage for Cd/Cl * 100 is
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attained for 7.5 degrees angle o f attack at h/c = 0.75. However, this is not in extreme 

ground effect.

Regarding the individual Cm graphs one notes that, for all values. Cm decreases as h/c 

decreases. Also, apart from 0 degrees, which has an R^ value o f 0.6914 and 10 degrees 

which has an R^ value o f 0.884, 2 ,5  and 7.5 degrees all have R^ values greater than 0.9, 

resulting in adequate trendlines, and trendline equations which when dealt with carefully 

and compared to actual line, can be a good method o f  finding an approximate solution.

Referring to the Cm graph, which includes all series, one notes that the lowest Cm value 

indicates that instability is reached at 7.5 degrees angle o f  attack when the aerofoil is in 

extreme ground effect at h/c = 0.0625, and the worst is reached, in other words the most 

unstable or highest Cm, by 0 degrees angle o f attack at h/c = 0.75

Referring to the Cd/Cl * 100 vs h/c graph, we note that both 2 and 5 degrees are 

appropriate to provide lift and have the least Cd percentage value. Therefore best to use 

2 or 5 degrees when just taking off.

With regard to the Cl graph, which is comprised o f  all 5 series, we note that the highest 

value o f Cl is reached when a=0 and h/c = 0.13. Other than this, the second highest is 

reached when a = 10 and h/c = 0.5. One may note that (approximately / overall) as the 

angle o f  attack increases Cl increases and apart from a = 10 and h/c = 0.13 as h/c 

decreases Cl decreases.

With regard to the individual graphs o f  Cd, 0 and 10 degrees, have the highest R^ terms 

with 0.9 < RE2 > 0.8. The rest however, have 0.7 < R^ < 0.8. For 0 degrees Cd 

increases before it decreases, this occurs once h/c passes 0.25 and tends toward 0.0625. 

However, for the rest, as h/c decreases Cd also decreases.
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Regarding the Cd graph, which includes all series, we note that the highest Cd value is 

reached by 10 degrees at h/c 0.0625 and the lowest Cd values are reached by botii 5 and

7.5 degrees.

With reference to the Cd/Cl * 100 vs h/c graph we notice that, taking into account the 

lift vs time at take off and hence angle o f attack, the best angles for just after take off are 

between h/c values o f 0.0625 and 0.13. Once over h/c o f 0.13 it is best to use 0 degrees, 

then for values up to h/c = 0.44 it is best to use 5 degrees. For values over this it is best 

to use 7.5 degrees.

THE SINGULAR GRAPHICAL REPRESENTATION BELOW EACH TABLE ARE 

THE Cd/Cl GRAPHS.

With regard to the Cd/Cl *100 graph indicated in figure !!!, throughout h/c best to use 5 

degrees for best CD/CL *100 vs h/c
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5.5 COMPARISON OF S-SHAPED AERFOIL

The graphical representations, which follow in this section, represent the Cd, Cl and Cm 

values o f  the s-shaped aerofoil. The reader must note that the numbers ranging from 1 -  

5 on the x -  axis, represent the blue numbers (the height) from 1.5 -  0.25 respectively. 

For all cases series 1 represents values over peak, series 2 over trough, series 3 over still 

water and series 4 over curved ground. The following graphs have not been discussed 

further as they are self-explanatory. Please refer to them for fiirther information.
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6.0 DISCUSSION OF CFD

6.1 GENERAT.

Two-Dimensional Computational Fluid Dynamics Analysis of Wings In ground Effect 

and assessment on lift, drag and momentum coefficients resulting in a Three- 

Dimensional Turbulence model of efficiency and instability.

The analysis o f the following topic has been carried out using the following 

subdivisions, namely;

•  History o f Wigs- involving the Database,

Analysis o f Potential Flow On Ground Effect By Image Methods,

The CFD analysis-involving the Gambit and Fluent 5 program, and 

Plans For The Experimental Tests In The Future

6.2 Database;

A database o f WIG craft was comprised. This allowed statistical analysis o f WIG 

characteristics to be carried out. With the use o f  specific attributes o f previous WIG 

designs a new design could then be comprised. During this procedure, it was noted that 

the S-shaped aerofoil section was a veiy common wing configuration in the design o f 

Ekranoplans. In addition to this, it was noted that although wing designs varied 

according to Characteristic requirements, the fuselage shape did not alter. It was for this
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reason that it was brought to my attention than the fuselage shape could be changed in 

order to be more aerodynamic and efficient.

Due to the S-shaped aerofoil being o f  excellent shape for ground effect flight it was 

thought possible to alter the fijselage shape into an approximate S-shaped design. It was 

for this reason that the following study concentrated on the S-shaped aerofoil.

It is believed that once adequate information has been aquired through the course for this 

thesis on the S-shaped section, that further studies incorporating the aerofoil shape as 

part o f the fuselage as well as the wing sections could be pursued by either myself or 

others intrigued by WISE designs.
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6,3 Potential Flow:

There are several cases o f Potential Flow which were examined. This study took place 

in order to gain a better understanding o f  the flows around aerofoil sections such as 

those examined in this thesis.

•  Potential Flow Past a Cylinder at Various Heights

• Without Circulation

• With Circulation

• Flow Past a Source Sink Pair Aligned into the Flow For A Range O f Heights

•  Flow Past An Oblique Series O f Vorticies Approximating A Flat Plate At Incidence 

Flow Past A Doublet - Vortex Model O f An Aerofoil Where The Doublet Size Varies 

In Such A Manner To Match The Projected Foil Blockage For An Angle O f Attack 

Corresponding To The Vortex Strength.

• Anatyse The Foil Itself Using CFD
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6.4 CFD;

Although difficult, it is vital to compare lift, drag and moment coefficients with both a  

(the angle o f  attack) as well as h/c (the height to chord ratio). For this reason, as well as 

the increase in WISE craft over the years it is believed o f great importance to analyze 

these characteristics using numerical simulation techniques based on CFD programs. It 

is hoped to describe all forces exerted on wing profiles while analyzing all stages o f 

take-off. The aim o f this section was to analyze two difièrent types o f  airfoil profiles 

using CFD. The NACA 0012 due to there being adequate information available on it, (it 

seemed logical to commence my CFD analysis on this profile) and the S-shaped profile, 

(which incorporates the Munk M6R2 over the upper portion and the CJ-5 over its lower 

portion). This was due to all new designs being based on this fairly new concept which 

has an increased effectiveness and has been proven to be o f  more use in surface effect 

vehicles.

Details o f the strategy behind the numerous input requirements o f  the Gambit program, 

such as the mesh generation process, the boundary conditions involved have been 

studied as well as the Fluent 5 program creation o f solver input files and information on 

the mnning o f  solutions given prior to the solver outputs attained. Due to the 

involvement o f  five different angles o f  attack, namely 0,2,5,7.5 and 10 degrees varying 

with five different h/c values, namely 1.5,1,0.75,0.5 and 0.25, a positive or negative 

contribution to the aerodynamics involved around the airfoil could then be produced. 

Statistical analysis on the outcomes would then take place, resulting in effective results. 

Examples o f  the types o f  programs run are shown below, the LHS is NACA0012 over 

still water and the RHS for S-shaped over curved ground simulating waves. These are 

two cases fi*om 150.
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Although num erous methods have been used to study the aerodynamics o f wings in 

ground effect such as the ‘moving belt’ technique, the ‘boundary layer’ method, the 

panel method, CFD simulation and many more, it has been proven to be incredibly 

difficult but highly important to compare the lift, drag and moment coefficients with a  

(the angle o f  attack) as well as with h/c (the height to chord ratio). For this reason, as 

well as the increase in WISE craft numbers over the years it is believed to be o f  great 

importance to analyze these characteristics using numerical simulation techniques based 

on CFD (Computational Fluid Dynamics) programs.
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7.0 V ERIFICA TIO N

Prior to commencing simulation o f  the S-shaped aerofoil section, it was essential to 

verify the 'FLUENT' programmes capabilities by modelling the NACA 0012 section 

over ground and over still water. This was carried out in order to acquire solutions, 

which were then compared with existing results and thus validated. It was for this 

reason that various methods o f analysis in [Section 3] were exampined.

The simulations o f  the NACA 0012 over curved ground and still water were carried out 

in order to observe variations in lift, drag and momentum coefficients, turbulence and 

stability/instability.

Due to the involvement o f  five different angles o f  attack, namely 0,2,5,7.5,10 degrees 

varying with five different height to chord ratios, namely 1.5,1 te tool for verificatin 

,0.75,0.5,0.25, it was possible to simulate the aerodynamics around the aerofoil section.

Although the NACA 0012 aerofoil was not designed for In Ground Effect flight (I.G), 

purposes but for Out O f Ground Effect (O.G), it nevertheless provided an adequate tool 

for validation purposes.

The simulation proved that for a chord to height ratio less than 0.38 with an angle o f 

attack between 2 and 10 degrees, pressure below the aerofoil section increased as either 

the height to chord ratio decreased or the angle o f attack increased. The results were as 

expected.

Even though, for purposes o f this study it is not imperative to know the graph equations 

and the R squared terms for the NACA 0012, this information is provided in order to aid 

the readers understanding o f the simulations.
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7.1 S-SHAPED A ERO FO IL

A Frequently used aerofoil section for WISE craft is the S-shaped aerofoil. Although 

complicated due to its asymmetrical configuration, it provides valuable information

when studied. What was noted during the simulation procedures was the following;

•  h/c < 0.25 or h/c = 0.25 use a=7.5 degrees.

•  h/c > 0.25 or h/c = 0.25 use a=10 degrees.
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8.0 CONCLUSION OF CFD

Changes in wing resistance near the ground are important for the more accurate 

determination o f the conditions in the taking off and landing o f an airplane. It has been 

found that the wing resistance diminishes on approaching the ground, while the lift 

increases somewhat, thereby making the lift-drag ratio more favourable.

The results which were found through Computational Dynamics were o f great 

importance to both the aerodynamic knowledge gained on the S-shaped aerofoil section, 

as well as proving the aerofoils efficiency for ground effect flight. It could therefore be 

adopted as a design for a fuselage as well as for the wing sections allowing improved 

aerodynamic efficiency and stability. In addition to this, knowledge on the aerodynamic 

characteristics o f  such an aerofoil section allowed flight the detection o f stable and safe 

flight paths to be chosen for future reference.

The information which was gathered may be briefly summarised in the following 

section;

Due to all WISE craft primarily having to take-off at zero angle o f  attack, in order to 

gain speed before increasing the angle o f attack the initial stage o f  take-off is level. 

Once the required speed is attained (depending on the size and capabilities o f the craft), 

the craft should gradually increase its angle o f  attack to 7.5 degrees until the height to 

chord ratio o f  0.25 is reached. This angle o f attack should then be followed by a 

maximum angle o f  attack o f 10 degrees is reached. This would allow a stable and 

efficient take-off procedure without instability hazards.

Graph trendlines are provided and analysed in the previous section (section 5) allowing 

further predictions to be made. This information is intended to enlighten the reader and 

be adopted by pilots o f  WISE craft in order to attain a safe take-off, landing and cruising 

procedure.
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9.0 CONCLUDING REMARKS

9.1 GENERAL

The aim o f  this study was to predict the aerodynamic characteristics for fiiselage design 

in future propositions and optimum flight paths WISE crafl; should follow in order to 

prevent accidents caused either by high angles o f attack or by wrong take-off 

procedures. This was attained by simulating a commonly used aerofoil in the WISE 

sector, the S-shaped aerofoil, using 'GAMBIT' and 'FLUENT 5' Computational Fluid 

Dynamics Programmes and assessing the lift, drag and momentum coefficients. A 

three-dimensional turbulence model o f  efficiency and instability was then attained and 

analysed,

9.2 DATABASE

In order for the simulations to commence the History o f WISE craft was studied, this 

allowed a database o f WISE craft to be constructed, which includes design specifications 

on sizing and characteristic qualities to be listed suitable for quick reference. An 

analysis o f  this information was conducted in order to attain trendline equations for 

guidance to further designs.

Numerous trends relating the main dimensions as well as characteristics such as the 

speed, range, weight, payload, fuel etc. have been provided. This information may be 

found in section 1.4 in the form o f tables, graphical representations and equations. This 

will ultimately aid in the future o f WISE designs and WISE forecasting.

Once the graphs and equations have been used to attain the desired WISE dimensions, 

speed, range and other characteristics, further analysis may be made using the 

information provided in section 2 on the WISE Design Aspects such as the aerofoil 

shape, engine requirements and many more to fulfil the design specifications.
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9.3 CFD

Once the background o f  WISE designs was achieved, a method o f simulation was 

chosen. In order for this to take place further research was inevitable on previous 

methods o f  analysis on WISE craft. This incorporated Flow Computation Techniques, 

Theoretical Analysis, Experimental Methods, Numerical Calculations and 

Computational Analysis, which may be found in section 3.

Following this research, further study followed on the chosen 'GAMBIT' and 'FLUENT' 

programmes. This allowed simulations o f  the NACA 0012 to take place for verification 

purposes prior to simulation on the S-shaped aerofoil.

For Verification purposes. Methods of Analysis were studied and Computational 

Analysis took place in the form o f Potential Flow Models On Ground Effect by 

the Image Methods.

Due to CFD results being dependent on the grid formation o f the model, it is very 

important that a  correct grid generation be adopted. It is for this reason that a triangular 

meshing process was used to model the aerofoil sections under investigation. The grids 

were structured and had a spacing o f  0.04 units. The meshing process was carried out as 

a pre-processing operation on Gambit. Once the pre-processing operations came to an 

end, the file could then be exported fiom Gambit and entered in to Fluent 5.

A vital component o f  Fluent programming is the necessity to obtain a sturdy and exact 

turbulence model prior to commencing iteration. This is especially the case for 

turbulence models. There are turbulence models available in the Fluent Tutorial Guide 

covering a wide spectrum o f examples and requiring little or no modification. Particular 

attention has been allocated to near-wall accuracy through the use o f extended wall 

functions and Ronal models.
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In FLUENT the time-dependent equations have to be discretised in both space 

and time. The spatial discretisation for the time-dependent equations is 

equivalent to the steady state problem. It entails the integration of all the 

individual terms in the differential equations over a time step dt

Fluent resolves the time-dependent equations using implicit formulation. For this 

reason, it is vital that iterations be carried out at each time step. This panel, when 

exposed by the user, allows a maximum value to be appointed for the number o f  

iterations essential at distinct time steps. When the convergence characteristics are 

discovered prior to this number o f iterations being fulfilled, the solution will advance to 

the proximate time step.

FLUENT provides a variety o f  turbulent cases, which may be detected in section 9.1 o f 

the Fluent users Guide. With regard to the problems investigated in this report, it was 

thought vital to select the R eynolds S tress M odel. This was deduced through trial and 

error, as other initially adopted models did not provide a good enough method to resolve 

such problems.

For the cases under investigation, the graphics windows were activated for Residuals, 

Cl, Cd and Cm values. Due to the indicated value for the forces being vague, which was 

not accurate enough, the graphics windows were used to indicate a  rough approximation 

o f  the solution in order to observe its overall trends. However the individual files o f  the 

forces were opened before an accurate solution to several decimal places was achieved.
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ANALYSIS

Once all information from simulations was attained through the 'FLUENT' programme, 

tables were constructed o f all numerical information attained and graphs followed with 

trendline equations. Analysis o f this information allowed prediction o f lift paths to take 

place and discussions made.

This thesis is intended to provide the reader with further information in order to increase 

ones capacity o f knowledge on the WISE sector and influence fiirther analysis on this 

sector.

FUTURE EXPERIMENTAL ANALYSIS

Experiments in the form o f a truck traveling at various speeds with a scaled down model 

o f  a WIG mounted on the top would take place. Boththe fuselage and wing sections 

would have the approximate shape o f the S-shaped aerofoil section. This would allow 

verification o f results previously attained to take place, as well as provide additional 

information on external disturbances such as gusts to be analyzed. This could obtain a 

better feel o f  the movements and dynamic forces required in the take-off procedure.
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Beriev 1
from

Beriev

The Be-1 is a small test vehicle for exploring the stability and control of the W A-14. 
The single seat test craft has two floats with a  very low aspect ratio wing in between and 
small wings extending from the floats The Be-1 is powered by a RU-19 turbojet that is 
mounted on the back of the wing Starting aid is provided by surface piercing hydrofoils 
that are mounted on the floats Apart from the floats the Be l is also equipped with a 
landing gear. The Be-1 was built in 1961 and the first flight from water was made in 
1964

Technical data
Explanation of symbols

Pictures
Click on an image to enlarge

thumbnail s ize  (b) picture by description

22456 Beriev ashore

\2S S t
24071 Beriev rear view

15881 Beriev on foils

©2000 The WIG Page
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WA-14
from

Beriev

The W A-14 is not a  true WIG vehicle, since the ground effect is only a  take off aid 
The W A-14 cruises at an altitude of 10 km. The first flight of the W A -14 took place in 
1972 Later the W A -14 was fitted with inflatable pontoons for operation from water. The 
W A-14 IS powered by two D-30M turbofans mounted above the trailing edge of the 
central wing The landing gear of the W A -14 is borrowed from the Tu-22

In 1976 a W A-14 prototype was converted to a WA-14M1P, the inflatable pontoons 
were replaced by rigid ones and two additional D-30M turbofans were installed at the 
nose of the vehicle. These engines blow in the cavity under the wing for PAR take off.

Technical data
1 26.00 m
b 30.00 m

Wmax 52 t

Vcr 760 km/h
R 2450 km
Explanation of symbols

Pictures
Click on an image to enlarge
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N \ A-601*

I h r  N V X tw in .16 kN tiirtxftans u rr m otiiiln l on top  o l ih r  lu s r la g r  and the lu s t la g r  m u u n lrd  
lift Ian IX pow ered  hv a 52IK) k \ \  gasiuHhinc I he W  \  66  can  accom odate  20Ô passengers.

N\ \ AOP I rrlink'Hl l>Hla
I .cngth 25 5 ni

W idth isp.an) .1.14 m

M ax tak e -o ll u e ip h i hi) ton 

Payload 27 ton
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APPENDIX C

POTENTIAL FLOW ON GROUND 
EFFECT BY IMAGE METHOD.



APPENDIX C 
SECTION A

STREAM FUNCTION WITHOUT
WAKE
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APPENDIX C 
SECTION C

SOURCE AND SINK WITHOUT 
WAKE GIVING LIFT AND DRAG
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