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SUMMARY

The thesis is dividgd into three parts. In the
first part, a general survey of the twoenucleon problem
is given, with particular attention paid to those aspects
which impinge directly on the photodisintegration of the
deuteron.

-In the second part, we consider the conventional
theory of deuteron photodisintegration, with the radiative
interaction being taken as given on the basis of the
gauge invariance of the nonerelativistic Hamiltonian
for the two-nucleon system. Différéntial cross~section
and polarization formulae are presented, and a diacussion
given of previous calculations in this field. New
calculations are carried out using the Gammel~Thaler
type Y.L.A.M, phase parameters obtained in the_analyais
of Breit et als(hh’hs)

The transitions considered are

3P +3F

1., Electric dipole (381+3D1)——+-3P°.3P1. 2+ Fy

2, Magnetic dipole spin=flip (351+3D1)——~—150.1D2
3+ Electric quadrupole (331¢3D1)———7381+3D13
3, 3, 3

4. Magnetic quadrupole spin-flip_(381+3DI)——H-1P1.1F3

-3 3
The P2 - F2
3

D3 - ?GB coupling neglected. Wherever possible,

coupling is included, but the 381 - 3Dl and



phenomenoclogical wave-functions are used, and where this
is not feasible, they are calculated from a suitable
Gammel=Thaler poteantial. Differential cross-sections
and polarizations are obtained forxr photon iaboratory
energies up to 130 MeV, the calculations being carried
out both for a k% and 6% deuteron D-state probability.
Finally the results obtained are compared and contrasted
with those of provious calculations, and both sets
compared with oxperiments.

In the third part of the thesis, the calculation
of the matrix element for deuteron photodisintegration
by dispersion relations is considered. There are twelve
invariant amplitudes. The covariant form of the transition
amplitude is related to the non-covariant (Pauli-matrix)
form, which is further related to the individual multipole
transition amplitudes. The Born terms of the covariant
amplitudes are derived, and the dispersion relations
written down in energy for a fixed difference in the
photon=-proton and photon-neutron momentum transfers.
It is necessary to use this rather than a fixed momentum
transfer, in order to exhibit explicitly all the poles
in the dispersion relations,

The dispersion relations contain integrals over



both positive and negative energies, the latter arising
from the crossed diagrems for whiﬁh the imaginary part

of the amplitude is related to processes such as the
radiative absorpfion of an antienucleon by a deuteron,

and to the structuroc of the deuteron through the anomalous
singularities of the de-np vertex. These complications
are ignored, and we retain only the pole terms and the
integrals over positive energles.

The relations are restricted to dipole and quadrupole
transitions, and by considering the relations at two
different "momentum transfers", equations are obtained
explicitly for the individual electric dipole and magnetic
dipole spin flip transition amplitudes. The equations
are solved in a low energy approximation in which the
final state nep rescattering cut énd single pion exchange
cut only are considered, for the two cases qf the Y.L.A.M,
and Signell-Marshak phase-parameters. The results
obtained are compared with those obtained in part two

of the thesis,
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art X. A _Survey of the Two=Nucleon Problem.

l. Introduction,

The two nucleon probleu dates from the discovery of
the neutron by Chadwick in 1932, the existence of the
proton already having been established by Rutherford in
1919. The fundamental problem is to determine the
interaction between two nucleons. Qualitatively this
interaction is known to be strong and of short range,
c¢iving the two-nucleon systcm a characteristically simple
ppectrun, MNeither the proton—protbn syssem nor the
neutron-neutron system has a bound state, the only bound
state occurring in the neutron=proton system (the deuteron
ground state).

Information about the nature of nucleon forces may be
obtained in two ways. The first is by investigation of
the direct interaction between two nucleons by means of
scattering experiments, the properties of the bound state,
and transitions between the bound and continuum states.
The second 1s by the study of the properties of couplex

nuclei.
The lattor ecannot give any quantitative information

on the nucleon-nucleon interaction, but can give useful

qualitative information. The approximatoly linoar



dependence of nuclear binding energies on the number of
pgrticles in thq nucleus indicates that the nuclear forces
must be of short range = certainly less than the size of
any but the lightest nuclei. The equality betwoeen the
number of protons and neutrons in light nuclei can be
1nte:preted as showing the existence of a strong attractive
force between a neutron and a proton, which conclusion is
supported by the stability of the deuteron. For the same
reason one can conclude that, neglecting electrostatic
repulsion, the proton-proton force must be very nearly
equal to the neutron-neutron force. The behaviour of
mimmor nuclei (isobars with a neutron excess of 31) further
substantiates this conclusion. It can also be concluded
that the neutrone~proton force is of the same strength as
the neutron-ncutron and proton-proton forces from the study
of such isobaric triads as Belo. Blo. Clo and Clu. th. Olh
which exhibit behaviour analogous to that of mimror nuclel.
This apparent equality of the nucleon-nucleon forces leads
one to the hypothesis of charge indepondence of nuclear
forces.

For more gquantitative information about the nuclear
forces 1t is necessary to investigate the nucleon-nucleon

interaction directly. Generally speaking, the scattering



of two particles is the simplest way of obtaining data
on their interaction, and the nucleon-nucleon systen is
no exception., Other fruitful scurces of information
about the two-nucleon system are its electrcmagnetic
interactions, of which the photodisintegration of the
deuteron is a nost promising phenomenon.

In this first part of the thesis, the gceneral theory
of the two-nucleon interaction 1s developed, and applied
to the scattering and bound statoe problenms, particular
attention being paid to those aspects which are relevant

to the photodisintegration of the deuteron.



2. The Nucleon-Nucleon Interaction.

The general form of this internction may be doter-
nined readily from the general invariance principles of
non-relativintio quantum mechanic¢s and the princiblo of
charge independence, which require the potential to be

of the form (1)
Vixy= Vies + Vampr g® « Voo Sia + Vieo L. S

+Veew Lok gl +xivbgwi] (2.1)
2.1

Vs@) = V;(‘U + \/_‘V(‘D T gw

wvhere & (!"") is the spin (isotopic spin) operator of
the i-th nucleon, S,, = —B-g‘""i?""'" -'g"'.’q&“ is the tensor

operator, 3= % (g-‘"...gl'*) and L - (Q,-g_,) x(ﬁ,-k,_) is the
orbital angular momentum.

The problem is now to determine the form of the
functions VS(‘U « Historically, two methods of attacking
the problem have been available -« the meson theoretioc
treatment and the purely phenomenological approach.

In the former, a one-conponent pseudo-scalar field
variable (0(5..) is taken to describe the meson fleld, and

is assumed to satisfy the Lorentz invariant equation

(O “/4") ¢">) = 0 (2.2)
wvhere
202 _ 2 _
D = /‘é; 3§: It* FE A (203)



The field equation may be dorived by the usual
variational principle from the Lorentz invariant

Lagrangian

= "'{‘Z ;u) A /)3 (2.4a)

for a real field (corresponding to neutral mesons)

§ 2— 7‘[ j A f‘/} (2.4b)

'u 97}“
for a complex field (corresponding to charged mesons).
The interaction of the mesons with the nucleons
may be obtained by constructing a Lorentz invariant ternm L'
from (p( ) and “Péhd s the spinor field variable, which
satisfies a Dirac equation of the form

Zegﬁ_m+ = o0 (2.5)

/‘
derivabls from the Lagrangian

% i{l ;F(n)‘/“ %_1;‘?0__ );‘f("!) &"k‘l)g'”q.# (2.6)
- A o

The two simplest forms for L' are the pseudo-

scalar-pseudoscalar (ps-ps) coupling

D “7‘,‘6;‘&/, - 84'*‘6‘ "Pm ‘/o real field
L = - » ) (207)
-3(':" q}“e’/’, ¢ - qfa 4. %s lhd complex field ‘



and the paeudoscalar-—pseudovector (pa-pv) coupling

[ﬁ‘ +" ﬂ F.80%, '4' ] real field

l‘éﬁé[ﬂ\;y{;éﬁ’* ”‘fl"*;’;{]

-
-

{(2.8)

complex field

The (ps-ps) and (pa-pv) coupling constants 9 and-f
are real, and have the dimensions of an electric charge.

Equations (2.4), (2.7) and (2.8) may be simplified |
considerably by introducing 1sotopic spin and assuming

a syrmetric meson theory. For the latter we introduce

two real fields 49, and 4.1 by

b 2Uh-i0) L - & (de) (2.9)

and replace 40 by another neutral field 4‘3 » interacting

with the nucleon field by
-3 'h B"‘F ¢ + 3 \G"“Ilm 43 (2.10)

for the (ps-ps) case, and similarly for the (ps-pv) ease.

The syunnmetrical meson-field Lagrangian is then given

by

L, = .—_L(/" %2 (3‘[) o ‘/‘li (2.11)

{ =1

and the interaction Lagrangian by

l»’ = 3 az i+ s v "(’¢. (ﬁs-/s) (2.12a

. -
[ |




or

L'= - i Z.é A TR W1 + %—,{L (}u b) ~ (2.12b)

=

Starting from the Lagrangians (2.6), (2.11) and
(2.12), and following the usual presoription, the

Hamiltonian is given by H-+H' where
He #2055 v~ + et 2dnt e gumad)sodY2102)

'

H = :.) 2'- ¥ tf’(.’*/; ("-/3) (2.13!)’

or

[T ;{.,.Z. é ‘QT:EY:\L;)?{': "/;,F;‘Z’-i' K:”G-;r;%;'z (2.13¢)

-3 2(/{ FEwor¥)
re; being the momen:;um canonically conjugate to é;

On the basis of this llamiltonian, several papers
were published (243,4) on the properties of nuclear
systens due to pion exchange between the nucleons, in
which use was made of perturbation expansions in the
coupling constant, as well as applying the utatic
approximation in which nucleon recoil was neglected.
The resulting potential has a strong singularity at the
origin, whiech is aggravated by including higher order

terms in the expansion. Since the Schrodinger eqﬁation



is insoludble for such a potential, the interaction at
emall distances was replaced by a phenomenologioal
repulsive hard. core (2,3) which sufficed to fit moet of
the low energy scattering data, treating the depths and
widths of the repulsive core in the singlet and triplet
states as adjustable parameters.

Following on this, fhe success of the Chew~Low
cut-off theory in explaining pion-nucleon scattering
and photo-pion production led S. Gartenhaus (5) to
derive the corresponding static two~nucleon potential.

Using the non-relativistic p-wave extended source

Hamiltonian with cut-off,
H-= (l-crz) f&é( P(" ~,) X 9:” VJ{‘:() (2.14)

the second and fourth order terms were galculatead using
non-~relativistic perturbation theory. The resulting
potentials give a good fit to all the low energy data,
but not to the data at high energies.

In the static limit, any potential obtained is
necessarily velocity independent. To improve the high
energy results, P.S. Signell and R.E. Marshak (6) added

to the Gartenhaus potential a veloocity dependent



potential of the spin-orbit type
Ve = ['{.(N) + Pny “'z("‘)] L.S (2.15)

where !}«3) 4;90 are arbitrary functions. and fL ia
the Heisenborg exchange Operatdr. Since the spin-orbit
potential vanishes in S-gtates, tha predictions of the
Gartenhaus potential are essentially unchanged if the
spin-orbit force is chosen to be of sufficiently shoxt
range to be maskaed by the centrifugal barrier for the
deuteron D-state. The resulting potential gives a good
fit with experiment up to 200 MeV laboratory scattering
enesrgy, and qualit#tive agreement up to 310 lMeV.

At the same time J, Gammel and R. Thalerx (7) made an
axtensive conmputing-machine search for a phenomenological
potential, starting from the phaso-shift analysis of
II.P. Stapp et al.(s). They looked for Yukawa shaped
potentials consisting of central, tensor and spin-orbit
terms. The phenomenclogical potentials so obtained are
very sinllar in form to the Signsll-Marshak potentials,
differing mainly in the shape and depth of the central
cores. The agreement with experimental data is similar

to that of Signell and Marshak,
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Recently Dryan (9) and Hammada (10) have succeeded
in obtaining roasonable agreement with the data up to
310 MeV with models having the-one-pion exchange
potential tail and a spin-orbit term whose range 1s
compatible with meson theory. This, however, is at the
oxpense of considerable complication in the inner regions
of the potential, and llamnmada also includes a quadratic
L. S interaction in the singlet state.

It is thus generally accepted that the nucleon~
nucleon interaction 1s given asymptotically correctly by
the one-pion exchange contribution, but the inner regions
of the potential, which arise from multli«pion internmediate
states and from intermediate states with particles more

massive than ths pion, must as yet be obtained purely

phenomenologically.



- 11 =

3. The Scatterine State.
In this section, we follow the argument given

initially by J.M. Dlatt and L.C. Biodonharn(ll).
In the centre of momentum syatem, the two-nucleon

Schrodinger equation reduces to
'
§— — Vie Ve g ¥eary = E Y (3.1)

In the scattering problem, a solution of (3.1) is
required which has the asymptotic form

- ba .e'.;"
Yy — %*—A +fe.4) = i (3.2)

N ——ny o0

whero I:‘ = mE
The orbital angular momentum eigenfunctions are the

normalized spherical harmonics, which we denote by

JLQH M

] = (QL"")(L'M)', R (_')L - M .u..“a 2 .
YL'M(G é) l Luve (L'\-M)! 2[, L! Lm a@mo)bqn (3 3)

Then denoting the spin eigenfunctions by /x,i, the

elgenfunctions pertaining to eigenvalues I andl,

@S‘SQL
and quantum number [ , are given by

Iaal

c == Camie Yud®.8) %, (3.4)

33 La+351



where L=3«|, Tor I-) and the numerical coefficients
Cxy,L., are the usual Clebsch-Gordon coefficients.

The eigenfunctiona ‘4*(1) belonging to the eigen-
values I,3: and parity (-1)" can be written in terms

of the é'xs\:,. as

o I«

Yy = S S Unw T (04.5k) (3.5)

T<To & *3I=i
r'Fi

The incident plane«wave e may be similarly

expanded as

ec”’* A. = 2 fl-u'r (aL+1) "t:hd“"’ Y:.ow"b Xsa (3.6)

5.; I )

where a spin function has been inserted, and . ™ is

the spherical Bessel function
&
v [ J—
‘&L(I) = (3__.;‘) A;_-s{ () (3'7)

The eigenvalue X3 in (3.5) must equal S, in
(3.6) since it is a constant of the motion.
It is convenient to expand (3.6) analogously to (3.5),

which may be done by noting that

LAl

Y“ (6.4) = — Cxspio E,,,,, (3.8)

e N |
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whence
X4 r-———
¥ "L! “'/j Y i) Sfr'-o 5"%‘-1’*‘ (3.9)

which behavos asymptotically as

I*’Xs; N — a0 JLW (-'u-ﬂ L ‘“{L il-'r) /‘ ‘153 10)

J‘ e L 3I=I 55¢Lo EITY

The case with L = J 1is the simplest to treat, since
thies state is itself an eigenstate. (The singlet
scattering state is similar to this case). For
convenience, denote the three radial wave-functions
by Uzw, Grens , Wb for L m J=-13J+1 respectively.
Asymptotically 5 g () behaves as a force-«free solution,
and its most general asymptotic form ie given by a linaarx

combination of an incoming and an outgoing wave

-i{p<- £3n) c(pe-2TR
(F‘ —Bc (/N =) (3.11)

. e
Ux@u o -

The relative value of the outgoing amplitude B to
the inconing amplitude A is given in terms of the
scattering matrix S by
Be S A (3.12)
Since in pure elastic scattering, the flux of the |

outgoing wave must equal that of the incoming wave, ’S’&a 1



- 14 -

and hence S can be written in the form

S 205'3,-;

= e | | (3.13)
where the real quantity éa;: is the phase=shift for

the partial wave J = L. By substituting (3.13) and (3.12)
into (3.10) one gets

. "8;,: .
Upes ———— -2 Ao’ Tan (fp-tsmasyz)  (3.14)

Because of the tensor force, the two cases L = J«l,

L = J+1 are mixed and correspondingly there are two radial

wave-functions. Asymptotically, each radial wave-function

is a linear superposition of an incoming and an outgoing

wave i.0.
UIQ‘) - n' e. ;(‘"' i (:'l)’t)-v B' . ‘.(k‘.- irr-l)":)

- (Fv'*(';*')") 2 .'(k«-"s_":‘-u)w) (3'15)

Wi —— Fhe - B

The scattering matrix is now a (2x2) matrix such that

B = SA (3.16a)

'B, S. S.,_ n= (FL)
B= (B’) S - (3“ .. a (;.16»)

According to general theorems, the S-matrix must be

unitary ( sts - ') and symatrio(sr c 5) . It can be shown

with



that the nost general (2x2) matrix satisfying these

conditions contains three independent parameters, and

iz of the form

eio
S uU' e U (3.17)
where W is an orthogonal matrix depending on only one
real parameter <=3
Wi A Ty _
u-= —Sats mi:) (3.18)

and A is a diagonal matrix with real ulsmeﬁts

& o
A= ( et ) (3.19)
0 5:)‘!

«
From (3.18) and (3.19) the two eigenstates of H >

218 2¢8x
and A% or S W e

corresponding to eigenvalues e IR

are obtained as

‘UJ LB :
— = 1. _— = -
pG) G 73 4 nl“) “t tx {3.20)
! !
and the outgoing amplitudes are given respectively by
2: 8 2:8
s 3 m)_ ¥ &)
B = e H J BP= e A (3.21)
Subgtituting (3.20) and (3.21) into (3.15) we get
‘8
u's,,;_ N ——— —» -~ 21 ﬂd, 2 13‘.1;“.(#- ‘;_ (3‘-!)'! +£3’|.)
N—y oo
'63'4 (3022&)

N =D - oD

(U:Pi“) —_— - 1; ﬂcl. fmi-g e &(L-i(s‘dt*stﬁ)
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and
' ' . ié . .
Usg o ———> 2i Ay tines 279 o Cl'v-acs-o,r\tsn‘%:} 22b)
8 *
Wexcoo > =2ifly e T ea (l‘« - $lxe) +Jx.\()

Ve can thus coastruct the wave-~functions

= L
+T, 5‘,‘ ’Y'u-slS‘Aw Is.s*:'l -(-_L

= A1
3,528 ~ Yas, X és, sest t “"s,sq_.xk’ E's,sh:s-u
and correspondingly

3.24)
1I/3.5-|../3 = —:’Y v‘&.ﬁnf(‘” gSaSe,:r (

The phaso shifts 8..;- and the mixing parameter <x
are uniqusly determined by the requirement that the

radial wave-~functions vanish with the origin.

n

In view of (3.23) and (3.24) we can write F 0 as
o0 2 )
ii ‘L"'S,S-o_,ol (3. 3

\2¢3! = =
Ve nmust finally remove the ambiguity that there
are two elgenstates of the scattering matrix, but so far
no prescription has been given for calling one of them
an 'ol' state and the other a 'f' state. In the limit
of the collision energy going to zero, the difference
in the centrifugal barrier effects for L s J=-1 and

L = J+l i8 80 large that these states become eigenstates
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i.e., T x tends to O or g. We define the assignments
'‘a!' and 'f' so that in the limit the G-wave corresponds
to the state L = J-1 and the f-wave to the state L = J+1

i.e. we require

L. 65 = © (a11 5) (3.26)

E—=> o0

Explicit expressions for the amplitudes A may be
obtained by requiring the asymptotic form of (3.25) to
be of the form of (3.1), by substituting (3.23) and (3.24)
for (3.25) in (3.1) and ueing (3.9) together with the

identity
-6;5 &(F' - fwmn -t-S) = &(,‘N'émw)*(—"j’f “ié&é ‘e;# (3.27)

The resulting expressions for -Fs*(a,é)and the

differential cross-section

4T _ -};&A I‘Fst(a’ M} (3.28)

AN S oI shin

are conplicated (12'13'11'). and we do not give them

here.



4, Polarization in Nucleon-Nucleon Scattering.
The theory of polarization and triple scattering has

been given by L. Wolfenstein and J. Ashkin (15) and by
L. Volfenstein (16},
The scattering is described by a matrix Hij in spin

space, definad by
f,-(e.&) = % Moy a (4.1)

where the a; are the amplitudes of the various spin~states
in the incident plane wave, and the 1(;(9, d) are the
scattering amplitudes for these states. The Hij are
functions of the phase-sghifts and coupling parameters (8).
The polarization and triple scattering data are given in
terms of four parameters P, D, R and A, which may be
related directly to the MiJ and hence to the phase-shifts
and coupling parameters (8).

To describe the geometry of a multiple scattering

experiment, define for each scattering a unit vector

me k'
A ’k*k" (4.2)

wvhere k' é' are unit vectors in the incident and

outgoing directions respectively.
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In the first scattering, an unpolarized beam hits
an unpolarized target. The polarization of the scattered

nucleon beam is given by

I. L) = 2T~ [MM*I] = Pm, (4:3)
where ], is the differential secattering cross-section
for an unpolarized beam.

In the second scattering, we are interested in the -
differential scattering crosse-section I f'or a nucleon
beam with polarization JRm, inocident on an unpolarized

target. In this case it can be shown that

I,= To,+ B I, (b.b)
where I,  is the differential cross-section for an
unpolarized beam and B T4 1is the contribution to the
cross-section of the initial polarization. In general,

it can be shown that

TIp, = To. A aam, (4.5)

whence

T, =7, (I+ PP cnd) (4.6)

If double scattering only is being considered, a

left-right asymmetry is moasured relative to 72, . This
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asyzzetry 18 defined by

_ Tyer- I
S (47)
where 1 (*) refers to scattering such that m, is
parallel to + m, .. From equation (4.6) we have
immediately | |
€ = P, 7>.1. (l"s)

In the third scattering, a left-right asymmetry
is measured relative to the direction My in this
case, two directions suffice to specify the polarization.
It 4is usual to consider the two cases when M, is parallel

to m, and when <, is parallel to 5 , where

§-= M éi') (h'9)
Then it can be shown that
T, <&y 2y = L[ Po+ DLEDs- M (4.10a)
T,<8%. s = L)Aed ba~P Ld (maxk)]  (4.1200)

flere P, D,A,R are arbitrary functions of é,) é,’ i.e, of
the scattering angle 9

Defining the asymmetries in triple scattering

> Ty I
Wt — Lo
2 =
3 Tuw + T (4.11)
we have
PLR-DRwd) | _ _PRRsud (4.12a)

/ i

3"‘: )"‘"P,Pa.(-ﬁ¢ '*’7.th¢ (h'lzb)



5. The Bound State.

In the centre of momentum system, tha Schrodinger

equation is
[— ‘(;"\ 2 + V(:!.)} 1";(‘!) = & 4}(’1) (501)

where £ 4s the binding energy of the deuteron. From the
considerations of section 2, it is sufficient to consider

the potontial in the bound state to be of thoe form

Vir) = Ve + Sa Vy (5.2)
where \ ) and V,@ are respoctively the central and
tensor forcos.

Analogously to equation (3.5), the wave~function

nay be expanded as

"‘(’b('!s - 2 Auwd T 3a :.(9 /, ‘L‘) (5.3)

where the radial wave-functions U, satisfy the

coupled equations

A u‘(,” _ [ I_(l-ﬂ) -«rcwzub"” +(£,(~JZ, qu, Uptwr = D (5.“)

vhere ol'z=- me¢, &5 w=- Vv mand

S 3 = g < Q':‘h'-. 3 gsx;u» ds (5.5)

Since the deuteron ground state is known fron

experimental evidence to be a (3§,+3D,) state (12) we



can write
‘¢b(,":) = -"l';' UQV) §\S§° - -k w(‘v) '§IS*2 . (5‘6)

Retalining only the ;5, and l.7_), states, the
coupled equations (5.4) reduce to

o 2uw)
rrralite Z.t‘-u,mgu(w; +QPYymwew =o

. (5.7)
) (3
T - [_ﬁq- N~ Vet 36.,,@.\]!»(-\-; 2R v wmuw =0

How note that

Sa 2,5,. = 8 &, (5.8)

which may be obtained readily by noting that, since S,a
conserves parity and total angular momentum, S/
operating on @,3!0 can lead only to a linear combination

of Q-‘sw and @-ts.z i.0.

sozio:‘,, = e E.s,, + 6 & | (5.9)

t Ve

Since S. wvanishes when averaged over the direction
of & , and since in (5.9) S,. acts on a function which is
independent of & (L = 0), the resultant ocannot be a
spherically symmetric state. Ilence a = O, b can now be
evaluated by taking a special caso, say X =i and 4
in the =2- direction. The calculation is straightforward

and gives (5.8) immediately.
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Thus we can write (5.6) as
"1”3(’1) = [Hum ‘f?;‘ Sn—":'v.‘”“"] J'Sao (5.10)
1 G 0
c [ e e ] e o ot

Bquation (5.10) is the most useful form of the
deuteron wave-function for practical purposes.

The normalization of Utw and ww 1ies such that

] (5.11)

g Jubeo « wrtend v

Fronm oquation (5.7) one can deduce that cw and wiw
wust have the asymptotic forms

(;L'n L .Q_QN.

a ) (5.12)

e 3
Wy £ o (I"" v Y eyt

If we introduce the coupling constant i"3 » WO may

write
uw e N “3(«) , W = N tua(m (5.13)
where Ugfons and w.bw, have the asymptotic forms
-
u%m —_—C> y-)
\Utw N—on L Q& £ ['* otn (>

The exact form of the functions u%m, IUB(N_) is, of
course, dependent on the potential chosen to act in the

bound state. However since the deuteron is a loosely



bound system, reasonable phenomenologioal deuteron
wave-functions may be constructed by assuming suitable
functional forms ceontaining soveral paraneters and
adjusting these to fit the existing empirical information
on the nsutron-proton systenm. This is discussed for a

particular functional form in Appendix &4
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6. The Deuteron Magnetic Moment and Electric Quadrupole
Moment.

Heglecting relativistic correcotions, the magnetic

dipole nmoment of the deuteron is the expectation value

of the oporator

a . )
§.= Z‘ ’L’,ﬁ-{" * * '_-_{!’L\‘mzm ~ —%L 1:’"&; (6.1)

rsa
where X', and .. are respectively the proton and neutreon

nagnetic mements in units of nuclear Bohr magnetons. Equation

(6.1) may be written as
o® v «h, |‘lb () e 1
Cepese) 2=V (G ) B £ T

& _ [ 1] "y U'("'
-+ (‘F"M) T; at . -—g 2 =
(6.2)
Pt 1 \ - Man,
e — - ny - \cm ﬂ) ,___l?___ 'l
=% o -+ "‘t-s + ¢ q(l‘f b AN ',.‘-m.... g FA

vhere we have introduced the relative co-ordinates 1!',/,‘; by

i ”~ N .
/'!.'.': ’—"—'W ’ l"!"_z—';“_";_n“_: ) A.: k'— él
o (6.3)
e & (e md) 5 15 (ompe )

The terms containing the factors "5_ (e «+ 't"‘,’) and

! (g*> ¢*)vanish identically when the expoctation value of
(6.2) 1is taken, since the deuteron ground state is an
isotopic spin singlet and a spin triplet. Introducing the
orbital angular momentum operator L =(¢[u,§) and the

total angular momentum X= L + £ (g% s")we can write

Y= (pex) I - (Bexe- ) L (6.4)

~
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where the neutron-proton mass difference has been neglected.
On taking the expectation value of (6.4), in a state

of a given 1: the only non-vanishing component of §

is S: . Then the expectation value of W; in the substate

belonging to the quantum number I, 4is
o0

% B~ ¥ — 2(Xp+%a-i) ( weo A& . (6.5)

The coefficient of X3 in (6.5) is usually called the
deuteron magnetic moment. The integral ocourring in (6.5)
13' simply the D-state probability, which we denote by 'P;;

Thus
Ny= (Speta) - 2 (%p + ¥a-4) Pa (6.6)

At first sight, it would appear from equation (6.6)
that the measurement of O would allow the unique determin-
ation of rPD « This, however, is not se, since ¥, differs
only very slightly from {j.%. and one can only conclude
that P, lies in the range 0.039 < P. < 0.07(12),

Tho eleotric quadrupole moment of the deutoron is

given by the expectation value of the operator

a:k = ((3".- xe — Sik w‘) (’\‘!.) o‘q (6.7)
where ()(f,':) is the charge density of the deuteron. Putting

(’(‘i) = @ "4'; 1.{‘1 the expectation vajue of (6.7) is

13| Qik] 330) = 2 g d* (S Sekvt) b, e (6.8)
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whero "{’53‘ is an eigenfunction belonging to the quantunm
numbers

Ey a group thoorotical argument (17) 1'& can be shown
that |

Ldsae] Ruel 33y = €dsmy| 3R - S0 330)  (49)

where C is a constant, which may be determined by taking

a speoclal matrix element between two top states e.g.

< ¢33] Q[ s3) = ¢<aT] 339~ IY)3TH = cX(2aT-1) (6.10)

Thus
(33e] ik 1534) = 8- dane |3 23R g suhsniyg )
where we have defined
R = L1 dxx| 04 Iss) = S“I':: (3""‘"’) ey Ay (6.12)

Q 1s conventionally called the deuteron quadrupole moment,
Substituting equation (5.10) for 1{3 in equation (6.12) it

i3 easily shown that
Y. )
_ = 2 o ) :
(]
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7. Scattering Lenzth and Iffective Rahge.
At very lov scattering energies, all the mixing

parameters and phase-shifts may be neglected except
since this 13 the only one which is rélated to an S-state.
Then the total triplet cross-section is given by

L

0‘1, = 'F K I 5|.¢'L (7.1)

and the differential cross-section by

A b a6 [rent e (o s hsne Puns]  (7.2)

Experimentally, the differential coross~section is
found to be very nearly isotropic, which shows €, to be
very small.

The usual way to analyse the low energy data is to
employ the approximation

bets =- L& + & b (7.3)
where the two constants a and Yo are called the
scattering length and effective range respectively. The
theory was first developed by J. Schwinger and later by

(18)

J.M. Dlatt and J.D, Jackson » by H.A. Bethe (19) and

by L.C. Dicdenham and J.M. Dlatt (20),



Denote the ‘a! wave-funbtiona at anergies £ and Ea
by (44, ww) and (., wy,) respectively. Then it can
be shown as a direct consequence of the Schrodinger

equations satisfied by these wave-functions that
d
& lu. 2

Now introduce the force=-freo solutions u°, wu® with

A

By, oy, S o] Rt e, w00 (7.0)

normalization
W Lo ¢ M(F«-&é’d-n)/&a.‘ | (7.5)

vhore §, and £ are the a-~-wave phase-shift and the mixing
parameter belonging to J = 1, respectively. The complete

exproessions for «° and WL° are

we = CE {=~[_u—\‘5.¢ P - 'NQ"'JK
e € #ZCJ&L s;(ﬁ‘u- m,&ﬁuz

where §,(t 1is the spherical Bessel function

S.e(’" = (TT;)”' fI“;i(a; ‘ (7.7a)

and is regular at x = 0, and M,tu is the spherical

(7.6)

w),

Neumann function

myto = 07 (-ﬁm) -4 (7.70)
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and is irregular at x = 0,

Decause of the irregularity of M, oo at fhe origin, u,o
as defined by (7.6) diverges at ~=o0 , and the free
solutions are thus inconvenient for the present purpose.
Therefore we define modified asymptotic functiones &,, Wa

which are finite at m=o and approach uw.°, w_°

asymptotically,
ad - ud.o
2 dmine (7.8)
U-Sd_ - wye - (F') a

which can be shown to satisafy the differential equations

[£ «Fla, =0

(7.9)
-
L= Lrhla. = - e
Then utilizing (7.9) we can show that
flangvan Qron - anding
""@':‘ f")i Gy, Guoat ‘U, '3-‘1-3 - ‘?‘; (et @y, - 8:.;,.1.,_1843 (7.10)

where & and E. are the mixing parameters at energios E
and Ea respectively.
Integrating (7.4) and (7.11) and subtracting, we

obtain after some trivial algebra

et [ pot 8y, ~ pradbond= (p2-F2) | [EL Gun + G, G
. (7.11)

- U Us - W war { o



Remembering that € — o0 as the energy tends to zero,

and defining the triplet scattering length aes by
1 ‘ _
L. L;‘ “’#5-&2 =T as (7.12)
’;"—70 : ‘

wo get from (7.11) on letting %, —o©

@ L

Py
T
F!—a‘f 54.=- a-'b + —L ([a&ab‘-o*GJ-‘:“o“%uLo‘""-1-‘940}(7.13)

[ ]

where the subscript '1l' has been dropped and '0' inserted
to denote the zZero~energy wave-functions.

How note that 4, & differ from v, only inside
the nuclecar force range. Thus the main contribution to
the integral in (7.13) comes from the inside region where,
for low energies, the potential energy is numerically much

larger than the kinetilc energy. Thus we can assume the

integral to be energy independent and obtain the

approximation
}LVY' du =- ie +3 o ﬁ" (7.14)
oL
T - P T (7.15)

noting that, by definition, Coi, =O
In order to derive a reolationship betwecen the
scattering length and effective range as defined above,

and the deuteron parameters, we start with the coupled
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equations (5.7) satisfied by the deuteron wave«functions

(5.14). Analogously to (7.8) the asyuptotic functions

&3, 6.33 are defined by
Ea = Ca™ ia 2.

3 (7.16)

LB'%'—' L s {ﬁ& ('* o L-%)")- &m‘z

We may then proceed exactly as in the scattering case

to obtain
2 T ST T (7.17)
with o
Ny = D_(o[a‘ T~ ugd - we | dwe
oo (7.18)

Ny 18 called the deuteron effective range.



8. Dispersion RNelations foxr Nucleoon-Nucleon Seattering,

In view of the success of dispersion relations in
describing the pilon-nucleon interaction (21). it was
natural to apply dispersion relations to nucleon-nucleon
scattering. This was dono in the first instance by M.L.

(22) and independently by S. Hatsuyama (23),

Goldberger et al.
for fixed momentum transfer and in particular for forward
scattering.

llatsuyawa starts with the relativistic relation with
one subtraction, but negleccts entirely the non-physical
spectrun (relating'to the nucleon~anti-nucloon systen)
except for the single-pion pole, and also neglects the
high-enorgy part of the physical spectrum. An attempt 1is
nade to determine the pilon-nucleon coupling conatant from
triplet scattering, but the result obtained is about twice
the genorally accepted value. This is not really surprising,
however, since the neglected two-pion contributions in the
non-physical spectrum are of considerablo importance in
S-wave scattering.

On the other hand, Goldberger et al. retain the two
pion term which is evaluated in perturbation theory. The

pion-nucleon coupling constant found is in satisfactory
ra

y a

G s ereement with f = 0.08,
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The dispersion relations obtained in the non-
relativistic limit are similar to those for non-rolativistic

potentinl scattering (24,25,26)

s and in the low energy
S-wave region considered, it is found that the usual
effective range formula (equation (7.3)) is consistent
with the dispersion relations.

Doth these treatments suffer from the fact that even
for forward scattering, there is a large unphysical region
of the nucleon-nucleon scattering cut in which the angular
momentum eigenstate expansion is not necessarily aonvofgent.

Following on the general representation for the
scattering amplitude proposed by S. Mandelstam (27). M.
Cini et al.(za) developed dispersion relations for nucleon=
nucleon scattering in vhich the soattering anglé is kept
constant. These relations have the advantage as opposed to
the earlier ones of not involving any unphysical region of
nucleon-nucleon scattering, the whole non«physical
contribution coming from nucleon-~anti-nucleon scattering.,
On the basis of theso disporsion relations, an extrapolation
procedure is developed which 18 in close analogy to the
effective range approximation, and which loade to a
determination of the pion-nucleon coupling conatant. The
result obtained ( F‘- 0.11 £ 0.02) is in reasonable agreemant

with the generally accepted value.



An essentially equivalent treatment of the effective
range approximation was made by H.P. Noyes and D.Y, wOng(zg).
employing the N/D method proposed in a differcnt context
by G.F. Chow and S. Mandelstam (3°),

In a series of papers, D. Amati et al.(al) daveloped
the theory for partial wave amplitudes based on the Cinil-
Fubini (32) riethod of solution of the Handelstan represent-
ation, Lssentially all the singularities of the amplitudes
for values of the varianbles lying near their physical region,
are treated taking full advantage of the syrmetry of the
Mandeletam representation. The spectral functions are
calculated using unitarity, in both the nucleon and anti-
nucleon channels. In the latter case, the two=-pion
contribution is retained, but threeepion and higher neglected.
Integral equations for the partial wave amplitudes are
obtained, and the method of solution described.

H.P. Noyos (33) has obtained integral equations of the
samo fornm, starting from the analytic structure of partial
waves prediocted by the Mandelstam representation using the
N/D method. Relativistic forrmulae are derived for the
encrgy dependcnce of the phase-shifts for nucleon-nucleon
scattering, neglecting inelastioc processes, The contribution
of the one=pion exchange to the abzorptive part of the

amplitude is exhibited explicitly and the method of inclusion
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of the two-pion exchange indicated. The formulae may be
generalised to include phenomenological constants to
represent the contributions from multi-pion and other
particle eéxchanges. The dependence of the phase=-shifts
on these parameters is sufficiently simple for it to be
applied to fitting exﬁerimental data. This programme 1is
at present being carried out by'n.P. Sfapp et al.‘(jh)

The ccmplete discussion of low energy nucleon-nucleon
scattering from the standpoint of double dispersion
relations ie given by NM.L. Goldberger et al.(35)' The
analytic structure of the partial wave amplitudes is
completely analysed, and a set of dynamical equations
genexrated by use of the unitarity condition is obtained.
Only one- and two-pion exchanges are considered, but it
is felt that this should be sufficient for energies up to
170 MeV. Methods of solution are given, but no explicit
calculation is carried out.

Ye can conclude that although, as yet; dispersion
relations have produced no information not derivable from
a semi-phenomenological potential, they are on a much more
secure fundamental basis, and appear capable of giving a
complete and unique description of the nucleon-nucleon

scattering system.
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9, The Phase-S5hift Analysis,

In view of the difficulties aﬁd anbiguities
encountered in explaining the nucleon-nucleon interaction
in the standard field~theoretical and potential-model
calculations, it ié nedassary to obtain as much information
ag possible from a direct analysis of the experimental data.

The standard method of extracting information from the
results of scattering experiments is to find setQ of
phase~shiftas which reproduce the experimental data. In
the nucleon-nucleon scattering problem, the data used
conéiats of the differential cross-section and the
polarization and triple scattering paramgeters P, D, R and A.

The first direct determination of the nucleon-nucleon
scattering matrix using the above data was carried out by
H.P. Stapp et al.(B) at a scattering energy of 310 MeV,
This was only partially successful in that eight distinct
phase-shift solutions were found, although theory indicated
three of these to be incompatible with the final state
interaction in the process M*+d >Atf. More recently
H.J. Horavcesik (36) showed that the cne~pion exchange
contribution (which is exactly calculable) can be expected
to dominate the scattering in the higher angular momentum

states. This allowad the ambiguity to be further reduced to
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two physically distinct phase-ghift solutions F37’38).

Very similar solutions are found at 210 Mev (39),
at which energy large angle measurementa of A 1ndicato
that one of the two remaining solutions is spurious (40).
leaving as the most probable solution that of Stapp Ne.l.
The close ginmilarity between the phase«shift sets at
210 MoV and 310 MeV make it reasonable to assums that at
310 HeV the Stapp No.l solution is also the most probible.

At lower cnergies the position is not nearly so clear.
There is certainly nmore than one way to fit the ex;sting
data, although the fact that no potential model so far
proposed is compatible with a nagative Qba phase shift at
98 MeV indicates a unique solution at that energy (hl,hz).
which is reasonable when compared to those at 210 and 310
MoV. At 68 HeV, to obtain a unique solution, it is
necesgary to impose the restriction that €3 be negative.
These unique solutions are given in Table 2.

At energies below 68 MoV the situation is even more
confused, due largely to the lack of triple scattering
data. Polarization is small, and the double scattering

experinents have been used only to show the necessity of

including the 3?.-3’-" coupling at 40 MeV (43 ). Highex
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partial waves are small, so the inclusion of the one pion
oexchange contribution is of no assistance.

In an attempt to obtain a unique solution at all
energies up to 380 MeV, H.P. Stapp ot al.(sh) haveo
initiated an analysis based on exprassing }> cotS as an
analytic function of energy. Thelxr object ia to use
functional forms incorporating the recently proved analytic
properties of partilal wave amplitudes, and to use theoretical
and experimental information regarding the rosidues of
poles and discontinuities across cuts, together with
phenomenologlical parameters to represent the remaining
singularities. The theory for this has been developed by
H.P. Noyes (33).
A similar analysis has been made by G. Dreit et alsh“'us)
who have conducted a gradient soarch of both proton-proton
and neutrone-proton data, assuming in the latter case the
applicability of atrict charge independence. Searches
wvere ocarried out starting with the phase-shifts from the
extended source + spin orbit potential below 150 MeV
extrapolated to the Stapp phase-shifts, and with the phase

paramneters corresponding to the Cammel-Thaler potential.

The better fits of both familioes are found to be essentially
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tho same. The best fit {the so-called YLAH set) is
civen in Table 1, together with the Gammel«Thaler and
Signell-ﬁarehak phase~shifts for comparison.

Ye thus see that although it ig reasonable to assume
that a unique (or nearly unique) scattering matrix has
been found for energies above 100 MaeV, there is still much
aisbiguity at the lower energies where double and ¢riple
scattering experinents are difficult to perform. As yet
the theory is not sufficiently advanced to remove these
ambiguities at low energies, and for further information
it is necessary to turn to soms othor process. The most
convenient to study is the photodisintegration of the

deuteron, and we consider this in Part 2.
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Part 2. Photodisintegration of the Deuteron.

'10. Introduction.

In principle, the 1nve$tigat1cn'of the photodisintegratioﬁ
of the deuteron can give information either on the
radiative intefaction if the dinitial and final state wave=
functions are known, or on the other hand if the radiative
interaction is known useful information can be obtained on
the neutron-proton interaction. It 1s generally with this
latter point in mind that deuteron photndisintegraﬁian is
investigzated, since the radiative interaction can be assumed
to be well known, at least up to photon laboratory energles
of 130 MeV.

(AG) that

In this energy range, it has been shown
explicit inclusion of the mesonic fleld ls unnecessury, and
so the interaction with the electromagnetic field nay be‘
taken as being given on thé basis of the gaugee~invariance
of the non-relativistic Hamiltonian for the two=-aucleon
system.v The photodisintegration proceeds mainly through
electric and magnetic dipole transitions, with the electrio
dipole transition dominant. Electric and magnetic
quadrupole transitions cause a marked interference in the

angular distribution, but their contribution to the total
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crossesection is small. Higher multipoles may be lgnored.
For unpolarized radiantion we can write the angular.
distribution as

Av

T = allzpows) +6820(11f, wb) (10.1)

wheﬁe the plus sigﬁ ia'for the protons énd the minus sign

for thé<naﬁtrons. The total cross-section is then given by
Gy = bdwa+ Er A |
= == o o (10.2)

a and b arise mainly from the electric and magnetic dipole
transitions, while af, and 5[5; come directly from
interference between the quadrupole and dipole radiations.
Generally speaking. experimental angular distributions
are fitted to the simpler formula
_ﬁ' = (fa+ 55a00) (12 p w0 ) | (10.3)
with the total cross-section still given by (10.2).
lThe experimental values for 03 , the isotropy facturaﬁ.
and B are given in Filgures 1, 2 and 3 respectively. o
" On the basis of the above interaction several autho§g7*59)
have calculated the angular distributions in the medium
energy range and have reached more or less satisfactory

agreement with the experimental data. To explain this data

it is found necessary to take into account transitions from

\‘\ \
R

)
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?he deuterén D;-sfété. . taldescribg t.hé f‘ihal stéta by
ph#aéfshifts which éorre&pand,to,a‘repulsivé long-range
,tengér potential_iu_thehtriﬁlet,od&'étatea (sgéh,és the
Signelluﬂarehak or Gammglﬁrhalarwpntential) anditg include
thawfranaitians to the final *F, astate. It is found that

:thavangu;ar_diatributicn parameters are sensitive to the

. Destate probability,

- At energiles above 130-ﬁ§Vﬂmes¢n effécts‘muéﬁ be
included explicitly. Experimentally (Figure 1) the total
 eross-section is found to have a maximﬁm invtha region of
326‘Mev which is caused by the resonance occurring in the

photOproduqﬁion.afvirtualpgéns on ﬁné nnalann,and
,Aabsgrption.hyv%he other. :Early,attempta,ta»éceonnt for
this behaviour were not very successful (6°f§§),-but

.racgntly LD, Pgarl&teinand.A,'Klainlggé)haVa giVan an

explicit prescription for including meson effects with
- considerable success. ~»

:Ag;in:tha_scatﬁaring prahlea._pelarizatiag of the
outgoing nucleons should provide a sensitive test of fh&
theory. Theorctically 1t can be shown (65'67) that the

polarization of the outgoing nucleons in the direction

e (k‘é')/’kr-ﬁ’ is given by

E)P"" 0 0% + X, 0+ ’(am‘&} (20.5)
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ﬁecause tnere ia a differenne betwaen theleases in

"which tha preton or tha ﬂeutran pelarizatian ia measured.'

we must distiumish “batween Xu]» :.md \G(mz |
anortunately; a% the mament experimentallavidenca

an the fina-,l stata pmlarization is nun-exiatene.



Figure 1, Exgorimental Total Cross-Section
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11, General Form of the Interaction of the Nucleon Field
with the Xlectromaznetic Field. '

The interaction Hamiltonian for the c¢oupled nucleon

and electro-magnetic fields is

H'= e ZF50ug -4 £ 2 F [
LR 28y _ 2R | (11.1)
*hm 2\6 Xg ( ‘;‘;‘:\

wvhere the first term gives the usual interaction of the
electromagnetic field with a spinor field, and the second
term (the Pauli term) is included to account for the
anomalous magnetic moment of the nucleon.

Choosing the gauge L,co, H' may be written as

1= '(;

H'f- -£ ""* 1+ YoX wH - “f’ [(xb‘ ) R P bei' wnB(11,2)

Since the above Hamiltonian can be regarded as a
small perturbation, the transition probability of the

radiative process 1is proportional to the matrix element

23| [Ham |0)
41(1;)0/;) (11.3)

whereo ].) and H) are respectively the initial and final
states of the two-nucleon system.
The standard expansion of the nucleon field

into plane wave states 1is

LAY %tn ';:h?i ( 4£ i S} (‘"(kj 7 ”“’QL)

-&r.e“é a};’(ﬁ) bﬁrh )g

(11.4&)
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*
and of the conjugate field Y},u = “t,_O‘J A Y

o= { iR g"‘ 2§ ohdm oy, S

=i,

>k, &) dgll.hb)
where -+,—-, v are the quantum numbers defining the
particle, anti~particle and isotopic spin states. a:"”@

aS%ﬁJ are reapectively the creation and annihilation
operators for the particle, and av""téJ, af;“*(#: those of
tha anti-particle. Thus the two=nucleon sgtate vector

is gliven by
”,‘A) - a:(-n(k.) a:*""(ko ,o> (11.5)

where ,°> is the vacuum state.
The operators ‘'a' satisfy the anti-commutation
relations

Jarods, aldy 1 = §,, 5(k-f)

(11.6)
Sy, ¥ f = Swoalk-pY)
The spinor amplitudes U,& satisfy the Dirac
equations
x [
A I (11.7)
11.7
&-&&\kﬁ (%p = ~) ap =0
and have normalié.ation :
G ud‘)é) W (*)é) £ 5 v,
(11.8)

w!

3

— ) v&E)
u, (\L’ o u é-’
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The electromagnetic field A can similarly be expanded

as
BRI IR T
Do - Gt (4] Mo b g}

vhere £ 1s the polarization vector of the field, and v
denotes the directlion of polarization.

The evaluation of the matrix element (11.3) may now be
accomplished using the properties (11.5) and (11.6) and

noting that

o (F,“g‘, LY u“b, = {""‘1-,4., l% wth! gg Q‘Aéf “ /’t"""“ i (11.10a)

- . D ahi Loi o~ A' t : £’
WX g whs = % -‘z:. )S{ 5:..2){*' _ Qyﬁfﬁ;i)% (11.100b)

where }»= {m"f' Ié'}%

Retaining terms of order no higher than Oy

c

equations (11,10a) and (11.10b) become

Ch s wh < Z[Gk) e (hfY] (i)

Wi % wby <= o (11.11p)

Since we are considering an absorption process, we
LB X

1 by 2—— ¢ €
may replace E(’&) v %(An v -’Lk.g € e to give finally



<l {u'qf Y SLTLTM o, dc, Yf ) €

[c ck a{(_ %‘_é) 1:5'51; - }-/y»,\éi +4-'E.3.§(_€é) L‘:r"'i’ -_9-:"%/5?](11‘.12)
*‘*D Ze%a) |

(— P

2 |+ u,
X} < '——'—"—""‘"“2 \Gm]'a: , =L (11.13)

A= o 2.

Fquation (11.,12) 4is the fundamental equation for
the investization of deuteron photodisintegration at
enzrglies for which we may dignore relativistic corrections
and the explicit interaction of the meson field. In |

practice this corresponds to photon energies up to 130 MeV

in the laboratory system.
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12, The Multipole "l"ranaj.tions.

To utilize equation (11.12), it is convenient to
introduce the centre-of-momentum co-ordinate X and the
relative co-ordinate = of the two nucleons by 2,= X+ix

-~ -

%,= K-4%x . Por the absorption process, we may assume
the centre of momentum (of the two nucleosns) to be at
rest in the initial state, whilo in the final state it
is moving with momentum P . Then the two wave-functions

are given by

if?_t

- '
4“9(?—:.’3‘1) - Cﬂ.iz)"l‘kb@) J "'l’-f-(ﬁu’-‘i) = (?tr)s:,_c “4’,‘_(3) (12.1)

and denoting the relative momentum by k we have

<] SHa) o = s B){z B [ (4w o k)

b . ks
(o Tty _ g C et )1#:,“6; (12.2)
-ff,S‘h‘(zJ(kns‘Q(e‘if., ce ® " )w (%) dae

The §-function merely states tho law of conservation
of total momentum, and will be omitted in what follows.

Since we have considered the electromagnetic inter-
action only to first order, equation (12.2) may be divided
into two parts, one leading to the isotopic spin singlet

final state and the other to the isotopic spin triplet
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final state. This 1s effected by making the re-arrangements

12,
. (l':__:-‘ ...';k_‘___’.‘ ; ‘g’_;_c Skny e (12,3a)
=33 (e *-e ) wle we ) 2%
i ’:%f 2 ik” -f&!
[-e. ‘!-/?.tu -+ 2 AG’ =i 2 [(e T-s.q_ ga&*"m) (12‘31))
.cm W_ (¢ 1 éB -1 F I ) pmal0)

cBpta) 287+ k’f{tﬂ»m"‘ T -ty SF 2 'j

In the above expressions, toerms in (V"+ﬂz )have

been dropped, since this factor 1s identically zero when
operating on the deuteron ground state.
<
8ince the wave=-length ) of the incident photon is |

related to the photon energy P, by ' |

A = 1,2396 x 10"10% (12.4)

k, being given in MeV, D is always large compared with
the deuteron radius i— = 4.3157 x 10733¢n., even at
energies of 100 MeV., Thus it is legitimate to expand the
exponential facotors ocourring in (12.3a), (12.3b) with
respect to é.! and retain only the first few terms. It is
this expansion which leads to the various multipole
transitions.

The Elsctric Dipole Transitions. These arise from the

lowest order term in the expansion of (12.3a), which gives

{’-‘:L%{ gq{’:m £ ('}é) oy L09- ©7) (12.5)

<+”H‘d¢.li}ﬂ -
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Since the operator occurring in the integrand 1s odd,
it causes a transition from the ground state (35v4-’22)
to an odd parity state, The spin configuration of "#5(;)
is unchanged, hence the final state must be a (3 P+ SF)
state, which is an isotopio spin triplet. This implies
that the relevant matrix slement of ¥ (¥?-‘t§’) is just
one.

By ﬁeana of the Schrodinger equations satisfied by 4¥gmg
and ‘\h.(".t.) equation (12.5) may be re-written as

({-‘”H'&:,ﬂ = -‘%-‘t—&gif ;Lz) hif "{3@)“’! (12.6)

The Electric Quadrupole Trangsitions. The integrand arising

from the linear term of the expansion of the retardation

factor in (12.3a) is

"2 (k) =- 22 Nkrg).(xnp)« G- FXb 3G xé,ﬁ)}(ﬂ-?)

As for (12.5), we can show that |
PN RN UE) (BF 1YY 1 B3 TTAPA
_ ngk_:- {£ A:. g 4,’,;2,}., _?i-_!g}_é’_u(/btm dwn  (12.8)

which gives the electric quadrupole transition. Since the

operator in the integrand is even, and does not atfect the
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spin configuration of 4# 6y y the final state must be
a (>5+ ™ £3G) state.

The Maggétio Dipole Transitions. Taking the loﬁest torm’
in the expansion of equation (12.3b) the integrand of the

second term of (12.,2) becomes

. T o _ e " g™
2 (ke e)d 1) 50 4 (gyevay B ~ 2 1z2.9)

Since this term contains no orbital operators, 1%t
cannot change the orbital configuration, If the spin
configuration is not changed either, then the relevant
matrix element must vanish due to the orthogonality, since
it is calculated between states of the same spin and orbital
configuration, but different cnergies. Thus the spin-state
must change which requires in turn the change of the
isotopic spin state, allowing us to drop the first term of
(12.9) and in the second replace the isotopic spin factor

by one. The correasponding matrix element is finally given

by

(ﬂjW&/Qﬁ:th%

g’ﬁm B-%~ (c“'w") (l;u)n[a » (12.10)

wvhich is the magnetic dipole transition due to the magnotic
moments of the nucleons, leading to a ('$-+‘3)) final

state.



« 5} -

The first term on the right-hand-side of equation

(12.7) gives the orbital magnetic dipole transition,

W anloy = BT (Hodog Hhon  az

which leads (as for the electric quadrupole transition) to
a (35+ 3D «2 G) final state.

The Magnetic Quadrupole Transitions. This is obtained

direotly from the linear term in the expansion of (12.3b),
to give the spin magnetic guadrupole matrix element,

()N L 1 6 et }3 * o kx( Wpe Yo (72 g™)
ST A

o 42) - 43 _gmego
*n.z.f)' '}a."_T;;"‘S‘?'-’%

vhich transition leads to a (3P+3f + ‘P+/F ) final

(12.12)

state.
By continuing this process, all the multipole transition
matrix elements may be obtained. In practice, howvever, it
is sufficient to retain only the dipole and quadrupole
matrix elements, and of those only the ones leading to
5, P, D or F-wave final states need be cansidered;
In view of the above discussion, we can give the

following table of allowed transitions.
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Multipole

Allowed Final States

Electric Dipole
Electrio Quadrmpole

Magnetic Dipole

Magnetiec Quadrupole

I

4 2
3 3 3 3 J
Sl + Dl ’ Dz " Ds + GJ

b § 1

o'

3 3, 3 3
51 + Dl' Dz. D3

s D, (spin transition)

+ 303:(orb1ta1

transition)

3 3 3 1 1
Pl' Pz + Fas Pl' F3

The above table is a special case of the general table

of allowed transitions given in Appendix 5




13, The Differential Crose-Seogion for Deuteron
ghotodisintegration.

We take the deuteron ground-state wava-tunction to
be of the form given by equations (5.10) and (5.13),
namely

No§ Yam  Sa weew '
Keo = & § 20 F i (23.1)

where ugqw; and Watu have the nermalization (5.14).
i denotes the initial spin quantum number.

If we now expand the final state wave-function as
in equations (3.23), (3.24) and (3.25), and retain only

the transitiona

EiDo ——— P ‘P ;Pa'.'. ‘Fa-
M.D. —> 'S., "Da
E.Q. . 3y, 3D, %D, 3)3 (13.2)
}icQ-h" 'P‘J'FS
then it can be shown (see Appendix 6 ) tha#
'f
. - [ e* 2 Y wke NN
<'F, S\H,'hil')n T lank S 3pa (2w @w)

-é&

o Bl Rt o 20 4 R 0 S A ror )

i@ (Bre) FE[46,€ ™0 38,00 & (b 200 Baa” O

-2 (6%~ 314,) Es, cion ]

+i (g ). F [.CExg) ['5' F, <60 _ 2 E., L (-"i,_-toq,,)E,L;l&'
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= 2, (G_Ea." 31.) Ean e';s"]

+(gufers cavbene )26, 60 36, &7

vk (632~ %) Ey, 00 )% X

’ ; _ a.)a L,,-k ‘6”_‘”\. /a.:'I N
lfwanls), = if oy sghe Yoxn BN

x g ’(g.“’_ g-(')).(i?'\KEB L M. e-iao -+ ilrra Ma_ c- 305_]
.8y

+1 [T‘ ga’) ;"é (“‘t) _MI- 02 - (g_""nﬁl'))-(k‘“g)a Mae

+ (q*"’x 97‘”) ;‘# [k‘xi) 33?3. M"e-;oa% 'X,M\

( 71 Zarka N ’X,"r ! .
<‘Ff$ ’ > ll(rrkos Pa (bw)'ﬁ. (&w)”-": 6. 1S #L

"g F‘-? [‘- (8 Ea, e—;&ll*{o E,t e-isjl— a2a E,;.e';613 ?
v (@u_‘_ g‘u)'(k"‘f-) ‘;#\ [—w Ea e'-‘g"'- 10 £ a3 e’ibn }

+ i(em ¢ln).£‘ ﬁ' (k‘n_i_) [IO oo -1y

v (QW*T‘”)‘ Fé‘(b';) ["5 Eax 'e-lsu-lofzg-e"s'ﬂ 1
.t&o‘

35 Exs e-‘Su ]

-« (I".’L‘g;".’g-.- ﬂ’k!"‘.‘ _i_) E,t-e.

+ (gofpo™y s fav ) [ JEae By gp, % gt ]

+ (g® ;3‘ gk -\-q_""; ot A );‘ [ 9£:, e 'S”~(5'Eu < by 266 ctb"Z}'X

- ( 's"-rl-o-nqa)ﬁ,:e'&l
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- ( é L N Bpt Ea ’7&,’1- n
<F” nm - I turk,S )w. emys e (axy* l‘l'
“i{"(c"u T+ .(!‘“,x,t‘,”’ﬂ.(k‘ng)[ 1M o3 M ‘43]

+ §ilgt-s™) « (ff’%g‘”)g.lgﬁ-(k“i) 5 Mye (s g ~x,™
where the amplitudes ELJ' M JJ are glven by

b
Eo = ( ol G-c(""zub\"’“ §& wye Sk

. | (3. -

oD
E.= g . G’..(!M [upw*r '}1 Wyt $ oy : N (4 3

F. - mi-.( o Ta (}«uz Upto — —E!I’:. w»w} o (3 9)
o o2 '

3 a2 86 ( e &,’M«; Wytwdn

0
-3
ESI-: VC.’S;% G (’dﬂ Uspﬁ) wbw ('3..0)
o0
S ER (O T T
Em = ?"- ( ,é.‘d Ly ) L&M) o (r2-11)
oD
( (&> 'U'a,(ﬁi [ ugeo - rz wytn Ldw (13.2)

(-]

13

(o & u(‘m L oo+ T2 waw S (133

8 o)

o

( (OW) Uzg Z Uptn ~ % LWyt Zdﬁf (173 L)
( C"o(fw Aot da 319)



oD

M, = ( G.éﬂ [%Lﬂu - % Wbﬁu’g W A (3-7¢)
°°°

My = ( Cf:.(ﬁa) Waytw dw (13-1)
Jo . |

The differential cross~section is given by

d Lo 2
fn = e 2 Im) e® me (13:19)

spin final state
spin initial state

polarization

where the density of final states, [xFJ. is given by
CEd= ‘a. (13.20)

and the incident flux ia equal to (2%)‘3.
The evaluation of (13.19) has been given by several

authors (49, 52, 53, 67). The result is

_a_(_U"'= o+ LM‘Q + C trP ~ Jdsatl Y

AR (13.21)

where
! *
a= -;; B(L) % bE,:' ‘*"un2 + (qg:'*b"f:) En +(Q'§:-¢-94’:) f;:
"‘gEu E.;?;_ m(&.-Sn) - gElo Ell“’"‘. GﬁC6aa— Jn.)

<18 E,, Ear “17. ao[&,;&,,,) ~ 1QEp Exn 32 em( 5;,—-5,-._)
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—6 En &, “Ig. , anls n—én.)

@3.22)
YA (’6}-;,“)‘[:‘{)2[ Ml admr- ,)'5_ MM, e (0s-02) .Sg
be i BbS 3E2 e (3T EE « Q3w 3g) B
+ gE,o £., 4’-. Cl)( Sw’&n) +1 & EELT, e ( 4,- Jn.)
(13.23)

4+ 12E, Ey. 5, C"’[&a“ 531.)"" GEp Eya v Trcn( 8 6”_)

-'&E,, Egg_ ’lfz CU)(&u'Jg\)g

+ ¢4 (‘6;— ,.) (M) [ al"lz + I"'oMz c”(°°'°”)]i

. .
¢ = Tao B> ';[% Eo [&Eo-w“:‘,-&;) ~ U By "’[5""5")

— 4 Ea3 m(d,,—&:s)z +E, [-—650. f-m(&,.—osm)
i 3E2l cn‘&.~5u) ) E-r‘_ m(Ju-Jn)- 85130’)(600‘81.5)3

+En I 2E,, can (- 50.) - "15-,, C-n(d,,,-d'u) -SEnonlén- Sn)

4 (2 Eey C-'s(én-‘a"')z +Exn Z_ll Eor %(6“'J°') (- ra)

- -5 E'&' L (531" Jol) +SE11 C’)(J;-'_- J‘lt) "?-Elﬁ;i(ﬁu'&z)]
2o (ﬁ], 3«.)( ) {M M, n(0,-2) — {1"’:"41 w(q_o,‘s

- MMy W(Oo'o"-) —*?L-‘L Mz My c”co"'-d!)]g

d= I:Lo B(b %{ E’o [ S &y Cm(d:o-&ts)g +£. zSE'n.Cn(Ju‘Jn.>
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+ 10 B2z car (b4~ 513)1 + En [ §E 2 en(bia-82) +10E0s cnlbpn- 81)
+CF o (n-8:3) + E,4, ] 156, en (85,2 4,) +6Eay el 8362,
—10 En eon(Bai-Sua) ~ L Erscon( 5ar-503) ( 229
+6o( G- ‘&M\(m) % Kt MM con (04 82) +§ MMz o (o,- oy)

"\'6—-1 Ma ,"3 Cn(é?.- as)%

The dimensionless constant B(k) is given by

Bk = 5 "‘*k oza (13.26)

and is shown in FPigure 4,



Figure 4, B(x)
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14, polarization of the Final State lucleons.

The theory of the polarizaticn of the final state
nucleons in deuteron photodisintegration has been gifan by
e Coyz and J. Sawicki (66)Aand Sy J.J. de Swart (67).

To calculate the polarization, one has to determine
the reaction amplitude

o = 4%° + = lm‘s %™

Mg =~ (laol)
and use the equation

P - f¢El 29 ) N5,
§¢H O da (14.2)

vhere 5( gav indicates averaging over the initial spin
and photon polarization.

Confining ourselves to the electric and magnetic dipole,
and the electric quadrupole transiticns, tha radiativé

interaction operator is proportional to

- .4 . -}gjﬁi(m"i-f“‘).(kﬂi)-‘% i bor
(see equations (12.6), (12.8) and (12.10)).

Choosing the quantization axis along

hek
JExE | (14.4)

N =
~
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and defining ( by
o = £ (14.5)

(14.3) may be written as

- [2- + ¢ LQ%- \6’"3% (O"‘" Q'm).gwbp
— Zx*géu‘a -« \gb'}\ [C‘f:- G-QJ’S&N¢ (1“.6)

AF,.,,‘ and a may be expressed in terms of Cnl.p and -1«:.:/

naumely
oo 12 codfarscd, o= g% wdeg™ec 4 (14.7)

In the frame of reference chosen, P» and ?:5
vanish. On substitution of (14.1), (14.6) and (14.7)
into (14.2) we get

) 2[R ) 2R o )L
Pz P = (KI) = L)+ taal® </ae)* (14.0)

Evaluating this expreasion gives finally

;'{4"05) P(L, = a0 [\6 b + Kﬁ @B + ’szbw'az
~ (14.9)

where

\60(}’) = 7,2 B‘L)§ fi “b’“*) [L‘M°E'l M(éu*oa)

*\r'— M, E. &(8“- 61)- "BS.‘- !2.. NI.E;L M(éa"Ot‘Z
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15. Photodisintezration of the Deuteron up to 130 MeV.

Before embarking on a discussion of the present
calculations, we give a brief summary of the results
obtained previously.

The total cross-section and angular distribution for
the photodisintegration of the deuteron have been known for
gome time to show reasonably satisfactory agreement with
theoretical calculation up to photon laborxratory senergies of

(12, 68-71), . applying the Siegert (72)

10 MeV or so
theorem for the electric dipole transitions. Until
‘racently, however, theoretical work on the differential
cross-section for photon laboratory energies between 20 and
150 MeV failed to account for the observed angular . '
distribution, particularly the large isotropio componentxy\
(63.6k.73,7h.75). With purely central forces acting batweéﬁ
the neutron and proton, the electric dipole term is a pure:
sin 0 , and the magnetic dipole contribution to the ‘
isotropic component was found to be small coumpared to the
experimental value. It was not until a more .ophistioated 1
potential with tensor and spin-orbit forces was consideredvkk

(which allows an electrio dipole contribution to the r \

isotropic term) that reasonable agreement with experiment |

=
N
\

S

was obtained. The calculation of J.J. de Swart and R.E. \
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Marshak (“8) showed clearly the importance of the deuteron
D-state and the final '3F; state. Following on this,

several papers were published (h9-59) in wvhich coupling

(50,5%,55:57,58,59)  1yoner radiation multipoles(32+53:5%455,

57+58,59) .14 retardation'30¢57+58)

were oconsidered. Up
to energles of 130 MeV, it is generally accepted that
retardation effects aro of little importance (50‘58’59).
but recently M. Hatsumoto (76) has reported that they are
essential at energies above 80 MeV. The angular distribution
parameters appear to be sensitive to the percentage of
deuteron D-state chosen. In the calculations of references
48, 49, 50 and 55; a D-state percentage of 6.7 was required
to enable theory to fit the experimental data, although
references 49, 52 and 58 obtain reasonably good agreement
with exparimént employing a deuteron with a 4% D-state.
llowever, in the ﬁoat recant calculationa, in which good
agreenent with experiment is obtained up to photon energies
of 150 MeV, M.L. Rustzi ot al. 3?) employ a moaified
Signell-Marshak potential, which gives a deuteron D-atate
percentago of 6.9.

Polarization calculations have been carried out in
references 51, 55, 59 and 66. As yet there are no
experimental data with which to compare the theoretical

predictions,
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Vith the exception of A.F, Nicholson and G.E. Brown (30)
and of G.vKramer (56). calculations have all been carried
out using Signell-Marshak phasa-shiftsa Nicholson and Brown
use Gammel-Thaler phase-shifts for an electric dipole
calculation qt i30 MeV and Kramer considers electric dipoie
transitions at four enorgies in order to coapare different
sets of phase shirts. including Signell-Marshak and Gammel-
Thaler phase shifts., Both show that the Gammel-Thaler
solution is capable of roeproducing the folded,angular'
distribuytion, but no detailed analysis is made. In view
of the recent phase-parameter analyses by G. Breit et al.
(4h,45) it 418 of interest to carry out a more detalled
analysis of deuteron photodisintegration using their best
solution, which is a phase-shift set of the Gammel-Thaler
type, and to compare and contrast tho results with the
Signellfnarshak solutions.

Thig is done for two different De-gtate percentages -
nanely 4 and 6. The deuteron wave-funotions used are
purely phenonmenclogical, of the Hulthin-Sugawara type
(see Appendix 3) i.e.

= N § Y  Sp wako 15.1
e {ng v T4 3 i’X,.,, ( a).
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where

- pla-2) o
Ugen = ceo Eo [i-e ¢ ]*’- - (15.1b)

g = g oS [ st

and 7=, Mc T Ne where a = 0,2316 x lolacm-l and the

hard-core radius is taken to be ~N. = Q,4316 x 10-13cm
For the two D-state probabilities chosen, Nz u 7.6579

x 107%™ and

B = 7.961 ¥ = 3.798 Aty = 0.,02666 for 4% D-state (15.2a)
B w 7,451 ¥ = 4.799 &A;.:a = 0.02486 for 6% D-state (15.2h)

Wherever possible, phenomenological th-nuclocn
continunum wave-funotions are used in the final state.
Otherwise they are calculated from the gpprobriate Gammel -
Thaler potential.

The Flectrigc Dipole Transitions. These transitions

35'+3D'———-—>— 'SPOJ‘SEJ 'BP.__', 35
are the most important transitions for the photodisintegration
at medium energies, and lead to an angular distribution in

the centre of momentum system of the form ¢

Ao
GI) = an~ e w0 (15.3)
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The transition emplitudes F.x appropriate to this case

are
0 )
E;o = go"“” Gio ¢~) [“b('o- J2 w, L’uZ Ax (15.4a)
b
E, = S:t.n G,.(‘rg Zu-g(nu +f;’3 '-U)E'JZ oAn _ (15.4b)
od
.. = c.mi-._( ol Ty Lty or - ? wnto{ e (15.40)

+ S‘i-‘&ﬁ%ﬁg MG:L(’“’ Lo A
o o

Farz s, 2 2 g:bu Gftgﬂ.._, Loglvs S

o
- 3 [
% - (}; uf'_ So olre U,1 4“) f“bh) - sr‘_‘ubﬂaldv
where the U,z are the final-state radial wave-functions, 8.

(15.4d)

the phasc-shifts and €, the >}- 2 F, coupling paramater.
To evaluate the amplitudes (15.4) exactly it is necessary
to know the radial wave-functions, which in turn requires
a knowledge of the potential acting in the triplet odd-
parity states. However it has been shown (48) that a very
good approximatibn to the triplet odd parity wave~functions
is

@& 5o - LB mby AR
UL-;}"-" })..4 2% SL

:

, 15.5
e Sag A ‘_(Im ( )
where S, w and M 0 are respectively the spherical
Bossel and Neumann functions. R 19 taken to be 1.4129 x 10'%3.

and the hard-core radius . to be 0.4316 x 10"13¢cm.
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The Magnetiec Dipole Transitions. The magnetio dipole spin-
flip transitions

SS,“' 3"b, —_— > ,So’ 'ba,

lead to the angular distribution

d 6 .
(0‘4) o G+ bar Sat6 (1~5¢6)
The appropriate transition amplitudes H;' are
oA
M, = go c-,cfm Upt da (15.7a)
oD
M, = g Gothw wpewde (15.7p)
o

In this case, the potential acting in the final ntatg
1s too atrong for the radial wave-functions Uy gbu to be
approximated by {(15.5). Accordingly the wave-functions
have been obtained by solving the Schrodinger equation

using the Gammel=Thaler potential
&~ ob 1 ’r < ”‘
\J(«) = s 4 .
“V, 2 s e (15.8)
/uw

with Vo = 425.5 MeV, p = 1.45 x 1013ca”

1 ana o w 0.4 x 20733

CHi,
This potentinl gives a good fit to the Breit et al. 'S,
phase-shifts, but the fit to the ' D, phase~shifts is

rather poorer.
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The magnetic dipole triplet transitions

3¢ 43D, — 35,+3D,,%D,

have been shown (58) to give an entirely negligible
contribution in the comsidered énergy range, and are
consequently neglected,

The_Electric Quadrupole Transitions. The electric quadrupole

transitions

SS'+3D' EE— 35,-'— *Dy, *D., 3Dy ¢ 3G,

are nost important through their interference with the
electric dipole transitions, which causes a forward
asymmetry in the angular distribution, Howover they also
contribute to both the isotropiec term and to the term
proportional to ai_nzﬂ . the complete contribution being

given by

(ﬁ'({) = g, + bi &0 + o ol wde n0sa’d (15.9)
k2 ~ 25 C'd w8 ]

Since the electric quadrupole transitions are second
order effects, the 35, and ’b, final states are takeln as
‘uncoupled, and the 3G, state neglected. In this
approximation the relevant transition amplitudes are

A
Ep|=ﬁ-‘¥;( (be)a G-o,é"o Wy o A (15.10&)

a o
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ob
Ea = {*G‘;(é'u T U — ﬁ w:ptﬂz(-’-ﬂ)' o (15.10b)
o
o0
Exn = { ‘@u(Pv) [U;(’V)-h f;‘-‘a_ W)(ﬂv)? )2 da (15.100)
oy
E'l;g ‘ ( Gz-’éd) [“bhj - % “J)?'sznln)" A” (15010d)

If the approxzimation (15.5) is a good ome for the
electric dipole amplitudes, it should be an even bLetter one
for the electric quadrupole amplitudes. Accordingly
approximation (15.5) is made in evaluating equations {(15.10).

The Magnetic Quadrupole Transitions. We retain only the
magnetic quadrupole singlet (spin-flip) transitions

3,3, —> 'B, 'F;
which interfere with the magnetic dipole transit:l.one,
contributing to the parameters ¢ and 4, the effect on |
parameters a, b and £ being negligible. The appropria'ter’.f

\

transition amplitudes .

o N o

Hl = (° (ele) 43',(;") [ Uyt - {M “-))('Uz e (1501151{)
o0 o

343 = 'g' L ( ox 5, ‘ﬁ&) wrle)  dw _ (IS'I%‘b)
(-] ‘\

are evaluated using the approximation (15.5) for 4, anduU, \
\

\
\

i

o

g e
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This can be Justified in this case by the (i, term in the
integrand, which enhances considerably the contribution of
the "outside” region of the final state wave~function, at‘
the expense of the ™"inside".

- The magnetic quadrupole triplet transitiona

33' - 3’3, > 3P., 37’_,‘3&
are neglected.

Amplitudes (15.4%), (15.7), (15.10) and (15.11) have been
evaluated using the continuum wave«functions discussed
above, the douteron wave-functions (15.1) and the Y.L.A.M.
phase-shifts of Breit et al.(u"us). which have been given
in Table 1. The results of this calculation are given in
Table 3 and are compared with the corresponding Signell-
Marshak solutions in Table 4. As is to be expected, the
general behaviour of both sets of amplitudes is similar.
The most noticeable difference between the two is the very
strong enhancement of Fs. in the Gammel-Thaler solution at
low energies. This is due to the large negative wvalue of
the coupling parameter &, at these energies., Conversely,
at higher energles the Gammel-Thaler ocoupling paraméter
becones numerically smaller than the Signell-Marshak

coupling parameter, with the consequence that Esy in the
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Camnmele~Thaler solution becomes smaller than that of the
Signell-Marshak solution. As we shall see, this hai
important repercussions on tha angular distribution
parametera. The other important difference is that MZ‘

in the Gammel-Thaler solution is smaller than Mz in the
Signell-Marshak solution, which again has an important
bearing on the angular distribution parameters, particularly

at highor energiles.
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The Angular Distribution. When we have unpolarized
radiation, then in the appraximationa made, we can write
the angular distribution as

d ' 't + a.c.n ‘
R R

at+ Baalld +cemd® + denb aarl

where a, b, ¢ and d are given by equations (13.22) to
(13.25) inclusive.

¥e& can write a= o - o , b= bes 67..” CzCot Cm,d:d‘udg
Here o, and f. are the contributions from the El
transitions, o. and b.. are the céx;tributiona from the M1l
spin~flip transitions, ¢, and d. arise from the El-E2
interference, and Ca. and d., arise from the Ml-M2 interferanée.

a, b, Bl(a ¢/a) and 32(= d/b) have been calculated
using the Y.L.A.M, set of phase parameters of Breit et al.,
and the transition amplitudes of Table 3. The results,
together with the isotropy factor o = a/b. and the total
cross-section 0% are given in Table 5, and comparison with
the results using Signell-Marshak phase shifts made in
Table 6, The total cross-sections are given in Figure 5,
the ratio a/b in Pigure 6 and the quaniities Bl and 62 in

Figure 7. In this latger casa, the experimental points are
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plotted as $ obtained from a best fit of the experimental

data to the formula

(j‘{) = (avbsir0) (12 pend) (15.13)

The considerable inorease of oe at low energies in
the present calculations, compared to the value obtained
using Signell-lMarshak phase shifts, can be attributed
directly to the enhancement of Egz disoussed above. It so
happens that Ae depends almost entirely on the terms
involving EBZ' the other terms almost cancelling. On the
other hand, as the energy increases, the reverse situation
holds i.e, oo calculated from Signell«Marshak phase-shifts
becomes greater than that obtained in the present calculations,

also differs considerably in the two cases at higher |
energlos. This 13 a direct consequence of the smaller value
for Hz obtained in the present calculat;ons compared to that
obtaincd with Signell-Marshak phase~shifts. The values of
and b, in all cases are very similar. As a result of this
the ratio a/b found in the present calculations is greater
than that of the Bignell-Marshak results at the lower
energies, but less at the higher.

At onergies below 70 HeV, the best fit to the isotropy

ratio 1s obtained by the present calculations with a 4%
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D-state. This, however, does not give a reasonable fit
at all above this energy. The best fit above this energy
is given by the Signell-Marshak results, but they, in turn,
give too small a value at energles below 50 MeV. The best
fit over the whole range is given by the present calculations
using a 6% D-state, which lies intermediate to the other
two results. The total cross-section obtainsd with the
present calculations with a 45 D-state 1a too small above
80 HeV but the other solutions fit reasonably well up ¢o
130 MeV.

The parameters 61. 62 differ in the cases consideredqd,
but experimental accuracy is not nearly sufficient for any

conclusions to be drawn,
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Linearly Polarized Radiation. When we have partially or

totally linearly polarized radiation, the cross~-section is

de _ (4o ‘
o (,(.f\. A ('-f i‘_ Z (8 ﬂ(x) (15.14)
where Z,_ is the degree of linear polarization and ~¢ 1is

the angle between the plane of linear polarization and the
azimuthal angle of observation. The function S (@ is

d ) +
), Z® = ~ a8 (Izpews) (15.15)
with ,
= 6¢- 6...., «(, = L,s,, = o (15-'16)

To compare theory with experiment, the most convenient

quantity is
LM 6’ (4 d

be be A

s = (15.17)

The values of ~, P and s obtained in the present
calculations are given in Table 7, and compared in Table 8
with the corresponding values obtained from the results

using Signell-Marshak phase parameters.
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Polarization of the Nucleons.
The polarization of the outgoing nucleons for

o

unpolarized radiation in the direction M= Y. L)

is given by

E) e ol b ]

wvhere, for the proton polarization, ¥, X, and Ua. are
given by equations (14.10), (14.11) and (14,12). These
coefficients are calculated foxr the different energiesn,
and are given in Table 9. Comparison with earlier results
is given in Table 10.

The differences between the present calculations and
previous calculations are much more marked in the polar:léation
parameters than in the cross-section parameters. Unfortunately
at the moment there exists no satisfactory exporimental

results with which to compare the theoretical wvalues.
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Conclusions. It can be concluded that the GammaldThaier
type phase-pa#émetq:s‘gré és suitable for a q.téi;eg.analysia
of deuteron photodisintegration #a the Signell-Marshak |
phase-parameters. The best fit to the angular distribution
parameters at low energies is given with a low b—atato
probability, namely 4%. However to obtain a raandnablo

fit at photon energies greater than 70 NeV it is necessary
to increase this figure to at least 6%. The resulting fit
at onergies below 70 MeV is not so good as that obtaingd
with the lower D~state p:obability. but is still fairly.
satisfactory.

A low D=state probability is to be preferredron other
grounds, in that the magnetic moment of the deuteron
(equation (6.6)) can then be explained without complicated
inelusion of large mesonic and relativistic cortoctiona (12).
It may well be that retardation is of much more significance
than has hitherto been supposed (50, s8, 59), as has been
argued recently by M. Matsumoto (76). and that a proper
inclusion of relativistic corrections would allow the
angular distribution to be fitted up to 130 MeV with a low
D=state probability. |

The question of the correct deuteron D-state prohability

could well be clarified by accurate experimental angular
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distributions in the energy range 15«50 MeV, for there
the theoretieal parameters differ by up to 30% depending
on the D-state probability chosen,

In common with other treatments, the Ml spin«flip
transition is found to be small at low energles, which
ong would not expect intuitively. Accurate measuremnents
of a/b and ©, (and if possible ¥» ) at onergies up to
15 MeV would help to clarify this situation.

In theory, a complete set of measurements (angular
distribution, polarization of the outgoing nucleons,
angular distribution with linearly polarized photons) at
one energy should suffice to settle many of the cutstanding
questions. To simplify the analysis, the energy chosen
should be one wvhich corresponds to one of the scattering
energies at which a "unique" scattering natrix has been
determined i.e. scattering energies of 68, 98, 150, 210
or 310 MeV. These correspond to photon laboratory energies
of 37, 53, 78, 107 and 158 lleV respectively. 158 MoV is
too high, for at this energy relativistic corrections and
the inclusion of mesonic effects are necessary. 107 MeV
is probably too high also, at least until the question of
retardatién is8 settled. At tho other end of the scale,

37 HeV 1s too low for reliable polarization mesasurements



Figure 8, Theoretical Angular D;stribution at 52,3 MeV
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Fipure 9, Proton Polarization at 52,3 MeV
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Figure 10, Theoretical Angular Distribution at 77.3 MeV
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Figure 11, Proton Polarization at 77.3 HeV
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16. Photodisintegration of the Deuteron above 130 MaV.
At energies above 130 HeV it is necessary to take

account explicitly of virtual meson effects (4'6‘62'63'77)¢
The most successful of the several attempts made to include
these effects has been given recently by L.D. Pearlstein
and A, Xlein (46).

A formal solution for the S-matrix of the photo-
disintegration of the deuteron defined by

S. K b b diss ko (16.1)

=
is exhibited, using the formalism for bound state problems
proposed by A. Klein and C. Zemach (78). in which all
quantities of interest are developed with the aid of the
renormalized many-~body Green's functions. To carry out an
explicit evaluation it 1is found necessary to resort to a
phenomenological procedure which relates the formally exact
expression for ng.to parameters available from the more
fundamental phenomena of pilon-nucleon scattering, photopion
production and nucleon~nucleon interactions. By expanding
the result in the number of mesons exchanged, and by making
a serles of non-relativistic approximations, neglecting the
pion-pion interaction and assuming that P-wave pions are

dominant both in scattering and photopion production, the
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expression is reduced to one in which the corrections to
the conventional matrix element depend only on the amplitude
for photopion production, the renormalized plone-nucleon
coupling conatant and the appropriate two=-nucleon wave-
functions. Retaining only one-meson effecta, it is found

that the S-matrix for photodisintegration can be written as

Sup = SO+ Sem 5, ©5" «sPe e S (14.2)

So®&) and S.M) turn out to be the conventional electric
and magnetic transition amplitudes. 5,‘0(5) and S, a"(m) |
arise from the Born terms of photopion production, and 5,("@-“)
and 5"(M) arise from the couplete amplitude for photopion
production, excluding the Born terms., It is shown that S,"h)
and 5,3004) are negligible, and considering the magnetie
dipole P-wave pion production to be dominant, (16.2) can be
simplifiocd to

ssz Sa(F) + Simy  + SU0M) (16.3)

Hore < (M)) is given by

(ol S s h ey o e

ur k, A(a >

- Bp-X Fby i(ge o) (Fxg) Kou e °*
36ma

(16.4)
- -£: .CF Ca Rg’""utua .F; # (é‘&‘s ) -J-?b(q:h"g‘!.’)'(‘k"t_)z ’Z&I
M

- I o aen bomb-Raneen) (bedd Kas
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-cDA

£ uTea®) fh (bet) -3 @neet) () Vs e

“~ ‘6!»-‘6« Fiky i (go o). (kwe )3 o [w@ﬁ 1] pridae "‘“g e
with s N ;

Fhy = Bn smds e (ko) - 3"-){1 (16.3)
and the transition amplitudes K defined by

A-s
K, = ( —“’—"‘Ei c"""%(t-.'m)ubw-ufm)ﬁwimgdx

P (16.6)
2 5 - R
(o%%)’_ Sl 33Ky ¢ ¥ A %e \ﬁ‘ Lo () (16.7)
zﬂ.p = (O&ﬁ;&glﬁ ﬂ'f} e Up) I (16'8)
o0 I
sl gi’ﬁ«& “E R e (16.9)
:;Kﬁo -Rr
z::_, = —'F;— %’TKN‘? € % Wyt dn (16.10)
>
KM = (id";‘%’z %3-«-3& 4-,;:,‘:} _e--l(:, % U -_‘Lg sy oo (16.n)

4
k= - 2k) s khen | oo <IB Lhsa
Pearlstein and Klein find that to get reasonable

agrecment with experiment it is necessary to include a

hard~core both in the initial and final states, and to




suswgzedxy
Lxo0yy

Qay
a9y

9og

oo¥%

o
-y

.

'
v
——
Y

v

(Arw) 27

414 o)

4 o7

16 %

{ on

1 08

.0@

7 S |
21 ed

H

uyg Yoy

I9 1e30)] AdIe

g 80X

U0YT3088



L300yl

%os ook eog oo

(row) 3




- 88 -

Part I1X. Qisgersion Relations for the Photodisintesgration

of the Deuteron.

17. Introductién.

" In view of the ambiguities and difficulties of principle
1ﬁherent in the potential apprééch to doﬁteron phéto-
disintegration, it is of considerable interest to examine
the problem using the techniques of dispersion theory, since
this should give, in principle at least, a description of
the process independent of any assumptions as regards the
form of the interaction involved.

Apart from this, the application of dispersion relation
techniques to deuteron photodisintegration is of more
fundamental interest. In the last few years auéh techniques
have been applied extensively to processes 1nw;1ving
alementary particles. Pilon-nucleon scattering (21),
photopion production on nucleons (79'80), K-meson nucleon

(81'82), nucleon-nucleon scattering (22'23),'

scattering
and the structure of the nucleon (83-86) have been
investigated with comparative success using single dispersion
relations, and following on the genearal raprésontation for
the scattering amplitude proposed by S. Mandelstam (27).

considerable advances have been made in describing processes

involving elementary particles e.g. see references (28-35,
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87-91) among many others.

The extension of these techniques to problems involving
bound states should involve nothing new in prineciple (92'9k),
but sc far such processes have received xittle attention.

The simplest of such examples is when the bound state
remains bound throuzhout, and may then be treated as an
"olementary" particle. Pilon-~deuteron scattering has been
investigated by F, Kaschluhn (95) aﬁd elastic nnufron-
deuteron acatfering by R. Dlankenbeclexr ot al. (96). The
more complicated situation of the disintegration of a bound
state has been considered by R. Blankenbecler and L.F.

Cook (97). who consider the deuteron—— neutron + proton
vartex.

The approach made to the deuteron photodisintegration
is aimilar to the application of dispersion relations to
processes involving elementary particles, but differs in that
they are used in energy at a fixed difference in two
momentum transfers, rather than at fixed momentum transfer,
in order to exhibit explicitly all the poles in the dispersion
relations, This is necessary since the momentum of, say,
the exchanged proton in the proton-pole term ig Juat the
momentum transfer between the photon and the final proton,

and consecquently if the latter were held fixed this pole
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would not appear explicitly. For the dispersion relations
to be equally as valid as fixed momantuﬁ-transfﬁr
dispersion relations, it is necessary that fha #mplitude
be analytic in both energy énd momentum transfer i.e. that
the Mandelstam representation is valid for this process.
This appears to be true in perturbation theoiy‘(up to
one-meson exchange diagrams) and is non-relativistic
dispersion theory_(gs'loo) for simple potentials.

The dispersion relations contain integrals over both
positive and negative energies, the latter arising from the
crossed diagrams, for wvhich the imaginary part of the
amplitude is related to processes such as the radiative
absorption of an anti~-nucleon by the deuteron, and to the
structure of the deuteron through the ancmalous singularities
of the d-np vertaex. We ignore these complications, and
rotain only the pole terms and the integrals over positive
energioes. It is felt that this should beAa good approxi-

mation for low energies.
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18, Xinematical Considerations.

In this section we discuss the kinematics necessary
to write the transition amplitude for the photodisintegration
of the deuteron in a form suitable for the application of
covariant dispersion relations.

Let d,k be the four-momenta of the deuteron and photon
respectively, and let Py» Py be the four-momenta of the
outgoing nucleons. Let v characterize the photon
polarization, and let s, S50 8, be the spin labels of ﬁho
deuteron and the two nucleons respectively. Then the

Sematrix elenment describing the process ia
5P4= ,él"’" boo | dis; ki (18.1)

wvhere ¢ and 8 denote respectively all quantum numbers
describing the initial and final states. The transition

matrix TBQ is then defined by
Sﬁ).‘:' SP“ “+ ¢ TPA (18.2)

It has been shown (20) that, on contracting the

deuteron,

o&< "d-.‘ ;u. IJ.s; L:°>L.. = ;2 gal"x. d&x,

:§ A > L; S ,'T % by %t).g ‘kv> c;("‘l”t) ’Xd(‘xau) (18 . 3)



where C enx:) 48 the inverse two-nucleon Green's function,

satisfying an equation of the symbolioc form
™ | -t -f .
G broeny = Gy GQony — TGux) (18.4)

whero C"(a.-) is the inverse free-nucleon Green's function,

and I(>tx.) the generalized interaction between two nucleons.

Kbty = ol T oy ¥ew}|d) (18.5)
is the Dethe~S3alpeter amplitude for the deuteron.
Writing
/x | ‘\I«(tp ea‘.ol.x
2, % = -
4 () ifﬂ.fr)’ 24, 3‘ d (18.6)
where
< = 3" (1.-&-7(1)’ «é o MmNy (18.7)
we ha\;o

. "N 4
L b dsi b 3&,,) %} ( don A

:sél"s-;l’*ﬂl’fi'?(“%a) Fo-s93 | ko] ais 68 - i "('d“f‘"‘dm (18.8)

Qt'-;, Gas operating back on "T’(’"‘E})). q’("""’a)
give rise to the free-nucleon currents. In a complete
theory, I(. a) operating back would presumably give rise to
a complex of currents of all the particles involved in the
two-nucleon interaction. If we then assume "-k((g) to be

separable into "spin" and "space" parts (as it certainly is
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in the non-relativistic limit), |
’\k{(g) = (/d(g) S, (18.9)

wvhere S@b is a covariant 16 component matrix yiolding the
correct combination of nucleon spin states to form a
triplet state, 1t l1s natural to define a "deuteron currex_xt"»

formally by

I,60 = ‘f""é T §FG +4y) F6-14)3 067 68 T3 i (18, 10)

Then

m!é *.5,; }\’;’J.S; Av>“~

=Wi (dau;é AS.,’ *;S\_’ I'b(")’k'\’sk 2 id'x S(J.) (18011)

which is exactly of the form obtained on contracting an
"elementary" particle.

Equation (2.11) suggests that we write

<ﬁ.s,,ﬁ.5.,als ‘w) = (ot §( },-fﬁ d-|)

{(21!)"‘35.24,5&;% u(ﬁu u(f., ’1‘5 (H"Hd L) d!) u(d.o (18.12)

where @, (po , Gf (F; are the usual Dirac spinors with

normalization
' ’)?’
[ q(l’) a ¢ ﬁ) = 8

and =P /"‘,‘SA(‘.L; J, ‘:) is the general covariant matrix

(18.13)

element to which the dispersion relations will be applied.
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In gonoral.vtho,transitiqn matrix is proportional to
the polarization vectors of the photon and deuteron, which
we denote respectively by -g:&;m ;(JJ . .g_"rh satisfies
the usual Lorentz condition, and to ensure that the deuteron
be in a triplet state in its rost system, };JJ; must also

satisfy the Lorentz condition

43 =o (18,14)
In order to utilize egquation (2.12) it is necessary to
know the matrix S explicitly. Iliowever, in the absence of a
complete theory of the bound state, it is necessary to make
some assumnption as to tho form of this matrix. It must he
covariant, and can depend only on the deuteron variables.

¥e assume the form proposed in ref. (21), namely

Ld

3= "2}:2 ‘.M*MB‘A X5 C (18.15)

vhich ig formally equivalent to

Ed X o d i%e £vd )
5= 10+ 5 )+ 55 )1 + Eiem ) (18.16)

operating on the correct combinations of Pauli spinors.

Energy momentum conservation

l’ﬂ‘{" = ‘("‘é | (18.17)

implies that only three of the four-vectors are independent.,

We choose to take Pys P, and k.
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The mass-shell restrictions

bo = omi Beo,  Jd%= MR (18.18)
mean that only two independent scalars can be formed from

tho three independent vectors. We choose

(;d';t)a , Vi< (!’"L’)L (18.19)

Apart from a numerical factor, tho latter ia the

1%

difference betwecn the momentum transfer between the photon
and nucleon '2° (}az-L)a and the momentum transfer betweon
the photon and nucleon *1° (!’.-l?)a

In the centrec of nonentua systei,

(w- m) el

1
a2 _ _ (W’-‘-ﬂm"):
v= W v,z akk = 2w (18.20)

)

where W is the c.m. cnergy, O the angle of the outgoing
nucleons w.,r.t. the direction‘ of the incoming photon, and
k) é are respectively the momenta of one of the outgoing
nucleons and of the incident photon. |

The most general transition matrix element (18.12) must
be a function of Lorentz invariants, which we take to be
formed from the three independent vectors Py Ppe k and the

basic matrices in the spinor spaces of the two nucleons,

) () (i (v o W . Ol (5 6 .
1 ’ .'\64‘ ’ \6/, ixs‘ ‘/, 0}:’: %[\G}KQ-K”’S;KJ 2L (18'21)
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Substantial restrictions are placed on the form of
the matrix element by the requirements of gauge invariance

which demands that
o P ~ L |
N, e =0

and by the astandard invariance and symmetry requirements.

{(18.22)

The tronsformation properties of the basic matrices and
the 4-vectors under space inversion (P), charge conjugation

(4) and time reversal () are 1isted below.

AP EE
1 1 1 1

LL LE - To AL

i | -& % | o-w
L0 Vim X %) | =4 (8o -Xi Xo) 500600 408N %iX0)
L0 w580 A (6% %) "'z(“‘i"‘\;j SIS N IR AY

i XeNo _iNs%e | 6s%o 1% Xo

R T - 166 si%sY, | R UL TE




P 141

| Pe Pe ' [
*Spinor® bsevector L -B - b -k
k. e ke | bk

"Boson® Levector k -k k -k

in construocting the independent covariaﬁt forma'aubjeot
to these restrictions, the requircment of (18.14) i3 used
in the sense that only triplet states afa allowed in the
initial state. 7This reduces the number of allowed independent
forms from sixteen to twelve, and our choice is given in
Table 9. The various linear combinations are taken purely
for convenience in the ensuing algebra.

Denoting the independent covariant forms by m.-( LLL, ‘6’"‘(“)

running from 1 fo 12, we can then write

M= = M"(v,v.) (18.23)

F=u
vhere the fﬂ; are scalar functions of the two variables y v,
Since the electromagnotic interaction is being taken
only to first order, it is poasible to split each of the [4‘
into two parts, one arising from the isotopic scalar part
of the electromagnetiec interaction, and the other from the

isotopic vector part i.e. we can write

Mé = Mg o« M sl ) (18.24)
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Our selection of the twelve invariant forme is such
that all change sign under the opsration he—h, WX
Including the isotopic spin dependence, (18.24), we see that
of the tiventy f&ur invariant forms resulting, twelve change
sign under the above operation and twelve remain unaltor.ed.
But by the general Pauli Principle, the complete amplitude
must be unaltered by the above exchange. Under this

exchange V,—> ~ v, , and 80 we ¢an meet the reduired Principle

by demanding that
s
M: vv) =- Ma’(v,-v.); m:Y ©v) = M: Vo,-n) (18.25)

It should be pointed out that the expansion (18.23) 1ise
not unique. Invariant forms compatible with the necessary
synmetry and invariance requirements c¢an be chosen other
than those given in Table 9.  Such a set, m./ say, is related

to our chosen set by a linear relationship

Mi = Cey oy (18.26)

vhin’h 4n Ersevn manndeas a T‘nanr ”ninf"nnn‘ndp bﬂtw.en tha
corresponding amplitudes M: and M; viz,
corx

M'-' (v, v.) = (‘.3 N') (IJ, U,)
Mi (wv) = Coiy M (B o) | (18.27)



The set of ;" will then have the necessary syrmetry
of anti-syumetry properties w.r.t,. 'v, to satisfy the
(perhaps different) behaviour of M‘ and M #eééssary to
éatis’fy the. general Pauli Principle. | |

Although tha'stahdard invariance and sy@etry require~
ments are now exhausted, as yet no use has been made of the
unitarity of the S-matrix. As is §311 known (101). for
the photodisintegration of the deuteron, unitarity implies
that the phase of the amplitude in a single=partial wave
is the scattering phase-shift in the two-nucleon final state.
However equation (18.23) is not an angular momentum
eigenstate expansion, and consequently in order to apply
unitarity it is necessary to relate the amplitudes
to the partial wave amplitudes.

The first step is to relate the Dirac-nmatrix form of
the amplitude, (18.23) to the Pauli natrix form. In the
centre of momentum system, the amplitude H for the

photodisintegration may be defined by

L 1
2T I 6~ J<HY) P f’(‘)fa,',,
spin initial state

(18,.28)

spin final state

polarization
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where the density of the final states is given by

b

LE = "2 (18.29)
and the incident flux is equal to (2x)~7.

Analogously to equation (18.23) we may expand H as

H= = ki H' (18.30)

C=(
where the L-, are scalar products of T g™, L,é and Z

-

and are given in Table 10.
The restriction to twelve independent forms is again

due to the requirement of an initial triplet state. Without
this requirement there would be sixteen, the extra four

being
e e® {79 x @) - (g g)]. (Fxe)

e xe™ — ¢ (T ™)} F p (br7) |, Howwg=)-ian ). F (lz‘af)(m"“
However acting on a triplet state, g g®

gives unity and the other three forms are identically =zero.

Wo are thus left with the independent forms of Table 10.
The L; and the M. may be related by decomposing the

Dirac spinors to Pauli spinors. Fcr_this. we work in the

centre~of~-momentum system with

,>. = ( %I ) k) | (18.32a)

,’*= (%}, ’H (18.320v)
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l‘; ) (18.32¢)

d= (5o Lk k) (18.324)

A direct 6on§arison then givos o set of linear equations
relating the twelve amplitudes H'. to the twelve amplitudes Mt

viz.

(wW-2u Y(werd? gwt 2 } oMW
{'+(W*J~n)(w+m)" (w+2.) (wem)* no+ (WeM)? (W+ ) N

{ ' (w 2w Y W-M) + 4w V2 %M4 ; 16 W M,,

WM (W ) (W M) (Wt 2 ) (wemd? W+ ~)? (W+2)

(o) WP W-du)
%6”‘"‘) v }(w«m)(w*a.\)

W M

gQ‘,_m\ - (W) (W= Y %mu -

\mr-(-.'z‘,,~ (w-+M)R

AW (W) V2 M - 32 (2ny whem i H,
(W)t Cwand? § '3 (w+m) (w+a..) (W™ rtY(wt m-:')

(w -M)(W-2aAw) awt v MW
(Wt)? (w+dw) § ! (W3-t YW-p)? g  * W+ e YW 4 14) (W-M) Ms

4(wW-mXW-2u) v 2 )- uwvy, 8 W,
W (W +r1) (W+2m) §~, (W Lw YW m;‘%”“ * (w*-'l«-Xw-rM)’(W -m) Hlee

X (W ew) (W-m)> Qv o S (e e
+{(\N ) + War)3 % Ul*'-'lu)(:v"-f‘") M, g’ (wamX w+2m)

1a

< AWamdW-2)OW-M) | ew? (wm)v,ai 2w,
WM (W) (w4 M4 WW T )Wt M2

(an)‘_[ wr+mt 74 H.

mw wi-mt )
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16 W (W= Q) 2w (W-m)* (W-m) My ~ aw? (w-M) M,
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which we may write as

H = AM (18.34)

where A = (aid) is a 12 x 12 matrix and I = (Hi)’ M= (Mi)
are both 12 x 1 matrices.
The next step is to relate the HI; to the individual

rmultipole amplitudes. This is done in the next section.
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19. General Form of the Pauli Transition Matrix for the
Photodisintersration of the Deuteron.

The general form of the Pauli transition matrix for
deuteron photodisintegration has been given previously(59’67).
but not in a form suitable for the application of dispersion
relations. To obtain the matrix in such a form, we follow

a method due to L.D. Pearlstein and A, Klein (101)

who
apply i1t to the special case of dipole and quadrupole
transitions to S, P and D-wave final statas.

In the centre-~of-momentum system, the amplitude

required may be written as

ko ms*/T(WJ ’ I? N Ms> (19.1)
where ,i‘ and F‘ are unit vectors in the direction of
incidence of the photon and in the direction of relative
motion of the outgoing nucleons respectively, °)\ spoecifies
the polarization of the photon, s’ the spin of the final
nucleons and /', my the mz~components of the final and
initial spins respectively.

Expanding in angular momentum states,
Esm )T MY = = b, (3uste) P
IR,
*( L'S mg-mnd + ) g , L's' T s 9~> (19.2)

-ms'*x

2T maed | LA ms S YRR



- 107 =

vhere <LL'm~w L IM> = is the usual

LL'S man'
Clelsch=Gordon coefficient, In squation (19,2) L’/ refers
to the final-state orbital angular momentum, L to the
initial state multipole and p = O for electric transitions,
p = 1 for magnetic traneitions, and E_ denotes the parity
The operator of interest is the one with reépect to

the epin%space of the deuteron and the emergent nucleons.

Defining the triplet spin operator S by S = 4 (Z+g®)

and

So= 4 (Sa-iSy) = (.o
then any spin operator 0 can be written in the form

0 = {nlojn) 4C1+5)55 + Liofe)u) & S-S,
+Qaloll) 25.% + Zi)olle) sy s,
+1010110) § (ses-—$sLt45:3) — L1-1] 016D 3 S,S -
wdulof i) 254 = <ol o)1-1) §2 S+S; (19.3)
—{ )1 ol1-1) £ (+- 59)3;
oo oY H (T- el o a® - aP o)
~l ool olieh 4 (cp -SSP+ i[9 or- q';l‘lﬂ'(':,z)

-t—(ao) o|1-) ?‘a. (TW-P + o o> - TP °"£')
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Applying equation (19.3) to (19.2) we obtain, for the

caso )= 1,
b TO BN = ﬁL,(suwm%<umlvu~s\a><'-mlw>
»4 (1+53)5 ‘1’._.'09'1“) ~ Ztae) Lz HdLzalen) Jas- Sz‘ful(}s-k)
NI E T PUE tHTANE ENERUD R s2 v €k
~LUlor|t sl Tl enoy i s, s, '\,Uock.#)'
~ o) LIS Loyt (LSe35 = S3Civsy)) A (2 fr‘)
—Lraaf sy Lrsijine) § S5 Yo k)
« LN 3 Liso) Lu-d) 2548 ‘f,_f' (N3
_ o)t 3 L1 To] L) 2 53 Yoo 5B

- U |l|—|‘ L)l tiIolLu-n) ("53)53\{,_.'(‘;‘ P) }

- 2 LO(SL'J L?l—)g <L'O2Q,L'032><le.ﬁ' I_n.)
ILL R, '
» .{af.:L ( e 2 Q-;u TSP g )YJ(FI;)

U Otol tox Y '3 1 Leod 4 (trg’- IP et [P g o g q—‘{’]) Y,_.‘(ﬁ.k)

RGPS O YR L=y (T¢- o9 <P L T )1."(,4\@}
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and similarly for ) = =l. Rewriting Y.u({{) in terme
of f.®) we then obtain the following set of operators and
their equivalent invariant forms. -
o Lole 3% Pa(bk) = & §is kb (Fee) <GB p23 R ER
i LSSy Pk) =o g §uiie) 2.2 2K Pulbky - 2 3.4 bRk RER
C cafGkrpe bk BT CPERIR BB
wo (LS Y Rl - oo s o2 -Gk bi-G ks w2513,
-aseskblk]-akela-0k] 2 [hE2k -3 F)s s
~as e TRk k-2 pY )P .ER~ 4 [Ely*(sksz+3523.k)
-k (23285 +2F3.2) 4ps Bl (G®-5)] PS¢k
wuBDTEE 2k -2 PER
w SySe Pepl) = - s ko Ph
w Lo (45,5_ -5,11433]) Pypb) = ‘a [ -G k‘)‘} k-1 Rk b
wis (Le)*SyS_PBR) - T S-re) 3.RS5.E Rk «asbsi kR ER
X calk* pkbi- sk sbkz] R (F.le)g
v L-G” BB 2 Fe$ okl -@ b -skpe v apkzke
-a2spsedpipb
Wi SeS, Pa(FB) ="$~ 2.t 2k P.G:H

Lo (1-5) 53 PLpb) = ,—“-;.L 33 k- & /e“)’} Fi P. (k- by
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The equivalent invariant forms can be obtained by

continued application of the relation

> H =< “;;
L kA CE~8) (29.6)
for any vector A.

Substituting (19.3) in (19.4) and evaluating the

Clelsch-Gordon coefficlents, after much straightforwvard

but tedious algebra, one obtains

F]T™ | ) = ZH (19.7)

where the l«: are given in Table 10, and the H; by
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20. The Application of Unitarity to Deuteron Photo-
disintegration.

The application of unitarity to deuteron photo=-

digintegration is well known (101)

o and we outline it here
for the sake of completeness,
For a fixod angular momentum J, parity RL' final spin
and a given multipole, the possible reaction channels are
n+p—>n+p

Y+d—>n+p (20.1)

Y+ d—rY + 4

The submatrix of the transition amplitude referring
to tho processos (20.1) may be taken to be symmetric. Denoting
the initial and final orbital angular momenta by L and L

respectively, the submatrix T takes the form

L\ L.'L
Lﬁ' ( ) Ll
T, = L mih—> n+h L {20.2)
b b, A

where ‘b1 and bz are the appropriate multipole amplitudes
and A is the amplitude for Y + d—— Y ¢+ d. The unitarity

of the Sematrix implies that, on the energy shell,

T7- T = - .‘Z_;I'T*T' (20.3)
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In the ropresentation in which the n«p acattering is

diagonal the complete submatrix has the form

. 4;8‘1 o Le
TD = —imd 56(‘ L
© = ,,,.g £ (20.4)
L b

vhich is unitarily connected t¢ T by

T = w T, W (20.5)
where
wn z  Tén T e
U= - Wt @t o (20.6)
[ o |

Applying (20.3) to (20.4), we obtain
b= I . 84 (20.7a)

i &
bo- Ml & °F (20.7v)
Making use of equation (20.%) we see that

L,: an 2 {LL- J’.&..t‘{;
(20.8)

L.‘_: e 2 &.‘_1- tn & £P

In the case of uncoupled states, (20.7) simply becomes

be Jml o¢8 (20.9)
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From equations (20.7), (20.8) and (20.9) we find

that the appropriate expressions relating the multipole

amplitudes for the deuteron disintegration to the scattering

phase shifts are

b(3,3 F5) = )eg) o755

LGS = Im, ).t

b, (3.5 "':-.) - 'M:-J T

b,(3,3; Ex) - ’E:x | /833

b (3,34 M) = | Moo ) L Brus

bis,zunmg) - M.y ] R

blsistitn) = amnlbu) o ™ _ man [6p)et P
b(s3-1;8.,) = ., ) & R I ’E:-:..,p}c: 53
b, (3, 5-1; My s {S,Mv, Bl anes | M’hp'f‘. 83;15

b (=341, ¢, mi:}l’s_‘,’*’l"&m+ wwts ’E"“':P, < 83

S S g 'E:_.'_;.’ g..gﬁ-!- Cd)‘i‘sl Es--.ﬁlatéxp
ot | Myg] o ey s Ms,p ) e 33p

b (=54 8)

b(s3a; my)
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21. The Disperesion Relations.
Using the standard procedures for contracting the

photon and one of the nucleons, we may write the S-matrix
as a retarded commutator of the photon and nucleon currents,
L“Q’ and F.,_w + which are defined by

2

(7\69 = '\I’ = { &}
2% (x .
A JF /1
The result is
i

0\,_( bisi; };s., ds; ‘,v>h = @A)y E( I’rf’h*d-k) 2 am }

(a=)é 2 b, F,
. (bek) X
x Ttk gm L | RILE) oD ds) g0

+P.

where the retarded commutator R is defined by

(21.1)

(21.2)

RLAes Byl = -if(n-40) [Am, By (21.3)

and P, is a polynomial of arbitrary degree n, arising

from an equal~-times singularity in a T«product. lowever we
are going to write unsubtracted dispersion relations (21.10),
thus implicitly assuming P,k to be zero, and consequently

will treat it as such for the remainder of this section.
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Defining the amplitude E;‘ by

5(.,).— 5‘-,;\ ‘f(ﬂ."t)" é(bm'l’l d - 12)2(2 )"4&.4951 % ch'l (21.4)

zo that

v

Fr’1= a.d‘u P(}z) "ﬁ Nt‘klb'ﬁ‘JJ;L) S.“Jb Sks(d) (21.5)

we have
b |
%a") 2 E‘; & ““J{J"K <« ¢ ha RUEE), 6 DT ] 4,9)2X21.6)

The absorptive amplitude nP.r can then be obtained
from (21,6) in the usual manner. Inserting a complote set
of physical states and performing a space~time integration,
we find

- ) )

HPJ = P.\ r 9 P‘l (2107)

where 3

[
“’:‘J_ = -3 {Qﬂ) 2‘{";7 TA.L(L:) ZIO‘!.‘. @Jt_)" J(k‘bd‘-m)
X<|’~’t’ 1CJK°JIMX°\’/.0>)IJ Dz (‘t)
® (2> 2d, F

A, = 1 {eR 2 B, = (U aov sl-bn)  (21.9)

PN

%< b i w[ PAVEN ' 'LWIJ 5) (l!)

The lowest mass states corresponding to MH'and A™

(21.8)

are given in PFigures 10 and 11 respectively.
The diagrams of Figure 10 have a disorete pole at v =M%
(the deuteron intermediate state) and branch cuts starting

at the physical threshold for the reaction, namely v = hmz.
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A section of this physical cut is “unphysical®™ in the
sense that for values of v near lunz. '005 9’ ? 1. The
explicit relation is, given V, fixed, then this region

extends over all values of V which satisfy

vi,,a
(\,__ N w‘,\(v- pMr)2 > (210_.1'0)
i.e. for all , such that
Lw? & v & V., (21.11)
where Vm., 1is the solution of
Lov? = (v- 4%‘)(\:—!*4‘3& (21.12)

In practice this unphysical region can be made
arbitrarily small by choosing ), sufficiently small, and
vanishes altogether in the limit of Vv, —> 0. This latter
limit corresponds to 90° for the outgoing nucleons in the
centre of momentum system.

The true unphysic‘al region comes from the crossed cuts
of Figure 1l. There are two discrete poles at vV= Mzt.lu'
(the one-nucleon intermediate states) plus branch cuts
starting at V= M- £ Dy, _.‘J/-.‘(/“ ....'h.),.l':-mz which ﬁriaa
from the anomalous threshold of the d-np vertex (97). The
same anomalous threshold is present aleo in the next

highest mass state, Figure 1llb, for which the expected
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normal thresholds are at v-—= Mm* 1‘-2'% - 9/‘(/‘*&)

The spectrum of the invariant amplitudes M;(yv,) is
thus

c om“-ht V- A’ane

o e oLT T popepep L I L L T T IR ‘@l was Vo e
~- PPCIE ] =l U A VS P

with
Va= Mt aly| -2, (u+an) (21.13a)
v.= M- alyl (21.13b)
be= M+ aly] (21.13¢)
vy = Mt (21.134)

Ve = lw? (21.130)
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For the crossed diagrans, the imaginary part of the
amplitude is related to processes such as the radiative
absorption of an mnti-nucleon by the deuteron, and to the
structure of the deuteron through the anomalous singularities
of the d-np vertex. Although it is clear in principle
how these latter singularities can be included (97). ve
shall ignore them in calculation, as well as the rest of
the.unphysical region ﬁitﬁ the exception of the pole~terms.
In this approximation we can write the disporsion relations

as

- ﬂ.‘b(:lLU.) F)," ('v-o.u) ﬂ'.b(m,v.) 1 Am M.(v'p) dv!
M;(\’,V;) - (v--v) * V+-v) - V-V * rc Ye v~ g (21.1"‘)

with the pole terms separated explicitly.
Writing equations (19.8) - (19.19) symbolically as
H: = 2 § fenebuey «qisapbe (3 "':)} (21.15)
A By K '

we can put
M., = n:; H, = ﬂr.j‘ Z%ﬁ, hokén “~ A3 bc(“;)} (21.16)

We assume that (21.16) is valid for the whole of the
cut on the positive real axis, including the region for
which |cos 8] > 1. Then equations (21.14), (21.16) end (20.10)

congtitute a complete statement of the problem,



Figgre 10.

)

<)

a) deuteron pole
b) elastic n-p reascattering cut

¢), d) lowest mass inelastic cuta.



Figure 11

2)
+f\\<—-———-pk
4
'fm-&——g-b
<)

a) proton and neutron erossed poles
b) pion-nucleon crossed cuts
¢) part of figure 11(b) exhibiting the nearest anomalous

singularity



22, Yertex Functions end the Discrete Contributions.
The contributions of the pole~terms to the dispersion

relations may be obtained directly from a knowledge of the
Y-p, Yen, Y=D and Denp vertex functions, on the mass-sheoll.

1) Y-N _vertex.
bl | 1) = iy ab i b L fblbn sl ,, o)
where P*=(}P-P)" 1s the invariant momentum transfer.

Fo =4(ttn)e, Fw =—_.,§h[£('*h)x;,+tn-n)‘c;§ (22.2)

where 'X) and §. are respectively the proton and noutron
anomalous magnetic moments in units of the nucleon Dohr
magneton.

2) d-np vertex.

This vertex has been discussed extensively by several

(22,96,97)

authors, The argument we give is due to

Blankenbecler et al.(96).

Consider the matrix element

L« Gut (b @024 R0y 0] Lol

e,

(22.3)
Writihg the delta-funotion as an integral, contracting the
neutron and using equation (2.6), we find

L= ag Tew | d4 ad? e;(N).x "a'aa/:'a"x{.
A - ~ LY (22.4)
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where P:: ﬁ-(-m) A= % (#-m)
The integration over the c.m. cowordinate may now be

performed, and introducing the Fourier transform of f, 6

by . Q
L@ = g {4‘ 'Y iy o
| (am) 3 (22.5) 7
we find
L= (awx)t J(/»wd) @M a b aey Gp G J.@

= @r)t S(pen-d) @mT b ae f(o"‘d' T@.d) @y (22.6)

where 7T(a,Q) is the Fourier transform of the generalised
interaction TG, )

Equation (22,6) is then a complete covariant description
of the d-np vertex. Ilowever the functions T @/Q)and ~f @)
are not known except in the non-relativistic limit, and to
proceed to this limit we follow the prescription given by

E.E. Salpeter (102).

In essence, the generalised interaction
I@', &) 1s replaced by a interaction vhich is quite general
except that it depends only on '4;_.-. 8- @ . This is
equivalent to replacing the Lorentz invariant, and hence
retarded, interaction by an interaction which is instant-

aneous, We may then introduce an equal-time amplitude JJ(@)

as the integral over A, of ‘P,((a) « In the non-relativistic
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limit, c{’,@) reduces to the Schrodinger wave-function. If
we use the Schrodinger equation in conjunction with the

instantaneous potential in equation (22.6), then

L=~ (2n)*5( prm-d) 'a,'.—': T a(m (22+q) ‘/d @ (22.7)

wvhora A= - m ¢

since § (p+m-d) may be replaced by {4 (ar« ¢d)
(making a slight approximation by adding fi s which is
numerically negligible), we require to conastruct le @) in
the neizhbourhood of qt=- ol

It 15 straightforvard to show that we can write

(pd €) = 1= ;-—,c _L’-.(.t‘l. [1+ Egg (i)z

(22.8)~

—~ (a%+¢q) [other terms }
where () is defined by
A  (22.9)

()’:-

N may be expressed in terms of the effective range Ny

N b U\('v_)

by

) ~ & (22,10)
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to give finally

L= tamy? 5 (b+m-d) (L_RPI Gbr e [+ ‘& Ia@) Y ubue (22.11)
with q = (k"'!‘.)

In general, there are four possible transitions for
d-n,p and consequently there should be four invariants
assocliated with the d=-n,p vertex. However, on the mass=
shell (wvhich is the case in question), this reduces to two(97).

Thua we write

(.Qn)’ }i u(ﬁ) é\,{(@’d)

_ m wA® "
- i(a«)'n.'.tpf-i abae | Ald-p) 10+ Blech) Vit ME}(

which satisfies the usual invariance and symmetry requirements,

22,12)

and reduces to the correct form in the non-relativistic limit,

Taking this 1imit and comparing with (22.11) gives immediately

A= {Z%;i (- f%)

3) Y-D vertex.

(22.13)

The requirements of Lorentz covariance and gauge
invariance lead us to write the following form for the matrix

element of the current operator between one~deuteron states

L alie] &) - Sl(:uz)":u.'-u, %L Sy § Wed) Ak £ 12k, 60 3

<Pk, x0T 3Ry« XTSth ST W) akals (22.10)




where L‘& d'- 4
To determine the mass-shell values of A, B, C, note

that

~

SM C‘é'?_t(d"/i“(aj ’d) = 61‘1.'), J(d'_k-d) {dll‘l’«wld> (22.15)

In the linit k—-—-’ O the left hand side of eguation (9.1#)
is the expectation value of the total charge operator, and

by comparison with (3.13) we can show immediately that

Aes = e (22.16)

the total charge of the deuteron.
Operating with ~ ( Y} on the space component of
equation (3.14), we have, in the limit, k———bo
éd'”ifas lxnien) [d) (22.17)
which is just the maznetic moment operator, and so can be

written
= %l 3ld) , 3= & &% o) (22.18)

where "§p is the deuteron magnetic moment in units of
nuclear Dohr magnetons.

Comparing this with (4.13) we find

Beo = AM ﬁ LY = ¢ m;u %> (22.19)
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Finally operate with Y,: - 3vb: on the time-
component of equation (3.13). Taking the limit of k— o

we obtain
2at] o (3me ) s [ 4

which is Just the quadrupole=-moment operator, »and 80 is

equal to

(22.20)

— e a | (22.21)

where Q is the deuteron quadrupole moment. Comparing this

with (3.13) we find

Ce» = % eQ (22.22)

The vertex functions may be combined appropriately
according to equations (3.8), (3.9) and the intermediate
spin seems trivially performed. After some tedious, but
straightforward, algebraic manipulation, we obtain the

disocrete contributions given in Table 11,



Table 11.

Charge Singlet

The Diacrete Contributions

! A Zhi A; >
2mMAsTe AMAXY2 [Ag , Aso} e
1 mlumt= V) A LUMEEY) P
_aMA Xt amf gt [2wB _ @M 9] 128
2 myu, my) Ly Vi
3 __B¥ta As*e
Lo L
L _Axte Axe
L & A
5 BY'e ul+u,l ...._8_.9‘4' Caar- D'} LBe
&MMV) 8""‘”) MV,
Bx' e N . Bxle rag-y)] a&de
6 B My, [24 «v,} Bmpu v’, :
_ Bu'2 gty __B¥%e rp 0,
7| - e 2D | [ :
_atBe ri et Bu%e raga vy mt{mam) oo o
8 Z0 L X H ud‘] + 4o C % 0, K)
2 , -~
R R A B G G
e 1t - 29 2Av,¥pe
10 __[‘il'a[u‘c?][u%',—‘,] ’T[‘.“ 3 “m,]_ e
1 _By'e Ax* |
1 L m? L m
Ax'e Adte
12 , L v L~

The charge triplet can be obtained by replacing r*

by Y" and putting all fl f°) to zeros
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23. Solution of the Dispersion Relations at low Energies

For the restricted calculations considered here,
that is the calculation of the dipole transition amplitudes
at low energles, 1t is convenient to express the dispersion
relations in terms of the amplitudes E and H-, of
Section 13 and the amplitudes K of Section 16 rather
than the general amplitudes Ly (S.L; Ey) and L, (\711-;".\) |
of Section 19, This can be done directly from equations
(13.3) to(13.6) and (16.4) to give

R‘ ?i_ EL . N . %_ aoF -t 810 3 F i 8n
H‘= { & by S 6o pa (Qu)"z(‘m)‘a [ ol - " 2

- .;5
*"O(!& *“ﬁt)gll‘. 8'1- & (6!;" “h.) Eg; < 3‘.]

e [y F gt S e 5 )
_f et ?i 1!"0. N . aw v _ -ibe -8
H’. = t Lo °S Gﬁd (aﬂ)sﬁg(“")‘a‘ (W'—N')(W'-&n\‘)"" [Eb 2 —tm % E" e ]
~i 8

. ~i8
4k (Lo - 29%.)E e -4 (6%, - i) s @ b ]

: . +E.y 2
Cw™ ) (WL & 23

—_— 2 Wy, "k‘olfza. -i&n -1 82y ‘Zg

3
Hy = { e ) ek N im e 5o 3 g ib

arck, ) 6pR (an Y ey

v (AT L) B O L (65, - 31) £,y .e"’Su]

2W v .1 8 .e
+(W‘—m‘)(\u:-a-.')'*[e‘l'e Vi Ene S“]g




H Lel 2 R_L-Z N 2w,
L=

FN h E ".5“- -8y
™ 2 L e aE ’
l j 12pa (b'r)*(a w)”x(w l.,,...) ‘(w'-m‘) [ b - 3 €

Hs=0
H, o

'.' -C‘L)"i. ‘ { _ ‘S'a .
= - . . F a g os "
1 SL éuh,s Go pa (G ysfary®s L-"" e ISEve

‘ n_ ci8a
+G"+L~1t)£‘"e y (632 =) £y, 2 ’ 7

6wo, e R
(\l "ﬂ)s(w.-ﬁ") o [3 F;, LY I - 3R ]}
et i okt N 2w, £ ! 6o
4rch, S 60}\-!‘ (ar)yr@ax)*s v (W e owr- )
E 08\( "8“
C o* rrk N KXW V), -<$E "5':'_ 28,32
H9 - Zlan“ S ’aﬂ‘(dfr)'l(an)"l- (\I. lun‘)*-(\h\m’) [3 22 ¢ *3 ]
= et kb, ar - S~ 10w o
H"’ { Arrk,S (211)"'-(41)"‘-{ P Rerre [ Mo e -~ M e :)

QWV' ‘g 1’* ‘M iM o r-Y _ 3 M 4-563
(\' - b )"'(w'-m') ol a... L 1€ a M ]

; -iQe ! -0
+ & F(L)[_'—i*'zat'e e *--aﬁ‘ z.aq'ﬁ‘ t]

4+ (6B % z,,..._q_,‘,‘s) £-5°z ]3

H..
H.-2 - i{ et l"i Nk, {6-:-_\6;,-‘(,.,~ | e

I-utk,) (»'Z‘Ut)"' L™ b 2 _\T—a M, 2

AWV, k. Xp+¥m < _i0y
+ ) . £ m
(Wram) s Cupr) & & 23 2

i
0

MFCA) l""IL Kaq 4-'6:" /:uﬁ (6, *--Qéﬁfu) -.a;}
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We define the amplitudes K to be gero for

By considering equations (23.1) for two different
values of the "momentum transfer" v, , say "év and V,
w2 may extract the dipole amplitudes alone, to give

_( e* 7‘ ’I'Lo. N -[905 446:°+3°£. _e-l‘éuj
lbrrkg Go pa (2r)’r ar)- !

v, H 0 - v, Hon

$
-L.e'-? ’h,- N .15, E Y
Cank ) opa @uylans [£oe’®osicne

g - H. oy~ H,{ W)y
(L‘" _ z??")eu-’ Bﬂ. - b(éga. 3"‘"‘) E,._ 83‘..] \at I,va— v'l 3

. Mo = QW vy,
witl  Havy S T Ha @)

et ;i ﬂ:La . N "8,. 3 i,
{Akk Gk‘! (2'!)"‘- (‘"')'1 [Eloc -+ - Eh-e

".6! -08 Vv, ”;(P’j -U,"'}m
+a(29fi- amp) b’ L (67, 31) £y @ “] : v,
N —f’Sao -;S”
{Anb ‘wl~t (am)*s Gy [ro8a ™ 156,
i & -8y Vo Hy(er) =v, Hyry
+ ety Ea e B (6Fam ) BTN IO
t X '-i D - i Do
f ety ke . oan XX [, &0 3l

l‘&ﬂ.’kos (3?'!)"‘ (m)‘l. _F S ‘ ,
\J; H'Jvl) - \’, Hp.ﬁh)
V- U'

o—
-

{ ot )i’. N L, . 3 4‘6’,- K.N O Va2 Hozfvl) - U,"’n.(”\)
r - [y [ ) ﬁM'_'C =
Anb,S (2n) 2y b K. Vi— V)
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If we now define the matrices ( L,y) = ( Q¢ ;) and
( My ) = (m My, s )s where (10) = 1, (11} =2, (12)= 3,
(32) = 4 and (o) = 1, (2)= 2, by o
¢ ko N

. ( e . :
c20 ~3o -ta(Sa+u) w (63 %) { 4,,‘..& bo/,,,'a,,)h@,,r)'a

(2es) T e -5 (29%-am)  (63v31w)
(23.3)

/o (s (3711‘ “"1‘!) é"‘ft“gt)

lo — (’t*a"‘h-) ("1; - 6"51.)
and

T ‘ h, N \6
‘ = - el e X
(MS).&) 2 2:9“ urck, J 3 (bn)‘t(an)"t =7 (23 h)
o 3{a
-

and denote their inverses by ( L. ; ) and ( mg3l )

respectively, then

.id - Vy HS(V')” v, Hj(va)‘]
Eistw 2 = é-\_ '2(53\5[ TR

._-Z" '-3’13\, v, [U‘ a; k(v v,) Mk(v,v) (23.5)

=V oik@,0) M @) ]

- .'01; _ Va HS‘"')' V) HIVI)
”:(v) £ - _( . (535 [ V)~V ]
(23.6)
= Z m ! [\), jb("”l) Mk‘#’a"i)

vJ V
Sl B3 Va-

- v, a ;) Mh(u,u;)]
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Applying the dispersion rolations (21.14) to the

M,(vv) occurring in (23.5) and (23.6), then

fus) i B ?vv,) Fh. (‘l’ Vo
' B, o0
"”(uv} ake B\, 19,,,.” (vuv |
* g::’ - ’v' + ":' g« ..' 1;)'- v * )Ju' - P skt ey
-

oQ
{ﬂfzv, 1R P ACTN s(a,_,(uw;)-%."’_@_ﬁ}ag .7)

v Up- v W-v rr vl

L™

and QH@ | anJV)
_Hx WV k 22
M_.s(w a_,:..Aslw = 4"_ v;- v, [vaa k@v,) % Y * V- V
.o
ﬂ: ,w,u,) ! ake (V'.V:\ nQ\ HIV'”')Ju'
+ T -+ oi- o -~V ash(v,qus.s)
4 LY
~ » > 'O -}
" nu(v-,vn\_,_ Re®,vy — B @, ) A (v'.g;\é»."’gﬁ.vz),(vr
VeIl oy Va-p we-v ot v v

The H, occurring in the integrands in (23.7) and
(23.8) may be related back to all the B,y and My of
Section 13 by equations (23.1). Since we are interested
onnly in the dipole amplitudes, we can extract the terms
in (23.7) and (23.8) depending on the quadrupole
amplitudes and the "mesonic" amplitudes K, and write

(23.7) and (23.8) symbolically as

D‘(v) wSD = e « W M)

« L A @V Do) 30 S o di>!
T > v

(23.9)
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In (23.9) Tet» 1s the contribution arising from
the pole«terms, 1, v that arising from the integration
over the quadrupole amplitudes and mw,wv that arising
from the integration over the "megonic* ampliﬁudes.

If 4,/ w and Myw are considered as known, then
cquation (23.9) forms a set of integral equations for
the dipole amplitudes.

We solve equations (23.9) for the amplitudes,
assuning the phasoeshifts to bo given, the solution being
carried out for the two sets of phase=~shifts considered
in Part 2 = namely the Y.L.A.M. set of Dreit et alllt¥e®5)
and the Signell-Marshak set(s) q v» was evaluated
in each case using the appropriate quadrupole amplitudes

of Part 2, This contribution is found to be very éméll.

except at very low energies, because of the factor
awv;

o fn‘)"‘ (w*- M)

at low energies, the contribution of qQ,v 1is still

occurring in equations (23.1). Even

not considerable, because at these cnergies the pole
contribution ﬂﬂw is dominant, E§en.at photon energies
of 50 HeV, T, is =till contributing to some 70% of
the rightehand=-gide of equation (23,9) Mo was

evaluated using the amplitudes K of Section 16. These
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latter were evaluated with a 6% Destate phenomenological
deuteron wavee«function, and harde=core wave-functions of
tho type (15.5) with the phase-shifts obtained by a

s ana p

suitable extrapolation of the Y.L.AM,

2
phase=-ghifts. The results were checked with experiment
and found to give agreement similar to that obtained

by L.D. Pearlstein and A. Klein(hs).

The solution for the dipole amplitudes E ,y and M.
was carried out for photon energies up to 50 MeV, The
results are given for the two cases in Table 14 and the
corresponding cross-section parameters in Tabdble 135,

The latter are compared with experiment in Figures 12
and 13,

Due to the comparitive crudeness of our approximations
and calculations, we cannot Jjustifiably draw any rigid
conclusions from these results,

The dispersion relations solution is satisfactory up
to photon laboratory energies of about 35 MeV, but
thereafter starts diverging rather rapidly from the
experimental rosults, That agreement should be obtained
as high as 35 MeV must be considered satisfactory in

view of having ignored completely the cuts arising from

the crossed diagrams and the cut from the anomalous
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threshold of the d-np vertex,

The transition amplitudes obtained are sufficlently
similar to those obtained in the conventional calculations
to make it impossible to decide which of the two sets of
phase-ghifts is8 to be preferred, although the transition
amplitudes obtained from dispersion relations resemble
those obtained from the Y.L.A.M. phase parameters more
closely than they do those obtained from Signell-larshak

phase parameters,
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24, Conclusions
We have seen that the conventional theory of the

photodisintegration 1s sufficient to explain the existing
experimental data reasonably well up to photon laboratory
energies of 130 MeV, These calculations, however,

are not without their ambiguities and uncertainties.

Dy a suitable choice of the deuteron D-state probability,
difforent (albeit similar) sets of phase parameters can
reproduce the experimental data within the limits of
experimental error, It seems unlikely that any
distinction can be made from experiment for some time yet.
Some more insight may possibly be obtained by the inclusion
of higher multipoles than the dipole and quadrupole

{which is at present being carried out by M.L. Rustgi

ot 31(59)) and by a complete assessment of the effects

of retardation,

The application of dispersion relations seems the
most natural way to proceed, since this avoids the
ambiguities and uncertalnlivi of the conventionsl approach.
- We have seen that, even in a simple approximation, the
dispersion relations can give as good a result as the

conventional theory in the energy range at which the
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approximation 1is pertinént. To extend the present
calculations to higher energies it is necessary to include
the cut arising from the anomalous threshold of the de-np
vertex. Less important is a more exhaustive treatment
of the one pion intermediate state and at least a
qualitative assessment of the effect of the twoepion
intermediate state,

A discussion of the photodisintegration of the
deuteron in the Mandelstam representation should certainly
be feasible. A treatment of the photodisintegration
analogous to that of 1ll.P. Noyee(aa) for nucleon-nucleon
scattering, in which the E,5 w» §.5 and My i a3 say,
could be expressed as analytic functions depending on a
limited number of parameters would seem the best approach.
Such a scheme, taken in conjunction with the recent
strides being made in the phase shift analysis, should
allow a fairly complete description of deuteron

photodisintegration to be made,
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Appendix 1. Mass Values and Other Constants.

We take the currently accepted values for the masses

as follows,

Mass of charged pion = 139.63 2 0,06 MeV
Mass of neutral pion = 135.04 2 0,16 MeV
Mass of proton - 938,2133 0.0l MeV
Mass of neutron = 939.506% 0,01 MeV
Mass of deuteron a 1875.5% MeV

Since we ignore the mass differences between the
charged and neutral particles, we take the weighted mgan
for the pion and the nucleon, to give

| = 138,10 HeV
and m = 938.86 MeV

The binding energy of tho deuteron is taken to be

€ = «2,225 HeV.
The nucleon and deuteron magnetic moments, and the
deuteron quadrupole moment are taken to be

Y, = 2.79276 % 0.00006 Bohr magnetons

1 2

Yn s-1,91304 « 0.00010 Bohr HMagnetons

Y, = 0.857411% 0.000019 Bohr Magnetons
Q = 2.738 % 0.014 x 10727 2,
The deuteron scattering length is taken to be

Ay = 1,704 x 10713 en.



. Wen
»Qm.-——a—’ to be

and =
G Y Uat‘l)

p = 0.02667 45 D-state
0.02487 6% D-state.



Appendix 2, The Y-Matrices.

Our choice of Y-matrices 1is

¥ = (\6"1 \§..\

vhere
I o o
¥, = T - )
o -I - o
with I = t o 0o = o ) o o-t
.
° 1 1o ¢ o
Wo define
. o T
Ng= Wo ¥, Wayy = -t T o

and the charge conjugate matrix

0 Ta
C = So®a =
(?% lo)



Appendix 3. Relations between Fnergies in the Laboratory

and Centre-of-Momentum Systems.

Denote quantities referring to the laboratory system
by primes, and those in the c.m. system unprimed. Let
particle 'l' be the target (stationary in the laboratory
system) and particle °'2' the incident particle. Let &/ E.
be the energies, including rest energies and k,', | 3%
the momenta, with moduli }>.', };' . Let P’ be the total
momentunm in the laboratory system and ’9. (- k) the
nomenta in the c.m., system, with modulus }> sy Tor either
particle, and W, W' the total energies in the two systeums.

Since the 4-vector scalar product is invariant under

Lorentz transformations,

i.0.

(me B -
s M2 mle Am, Ey

Thus for nucleon-nucleon scattering

W = J gmn(m\-(-fs)



and for deuteron photodisintegration,

W= My (1« 25y)

In the cenns system, the photon energy k. is given by

_ wEpr
k. = aw



Photon Laboratory Fnergy to Centre-of-Momentum Energy.

Ey W
5 1880.43
10 1885,47
15 1890, 42
20 1895, 40
25 1900, 26
30 1905,25
35 1910,24
'th 191k, 9%
:hs 1919,90
50 1924 ,84
60 193443
70 194“.22
80 1953,71

90 .1953;h2 |
100 197282
110 | 1982,42
120 1991,73

By '
130 2001, 25
140 2010,47
150 2019,90
175 2043,01
200 2065,08
225 2088.35
250 2110,71
275 2132.83
300  2154,74
325 |  2176.30
350 | 2197.90
375  2219.35
400 -2240.35
25 2261,15
450 | 2281,65
w5 | 2302407
500 2322,49




Rucleon Laboratory Scattering Energy to Centre of Momentum

Energy.
B ¥
10 1882.8.
20 1887.6A
30 1892,6
40 1897.4
50 1902,6
60 1907, 4
70 1912,3
80 1917.3
90 1922.2
100 1927,2
110 1931,8
120 1936.7
130 19h1,6
140 1946,5
150 19513
160 1956.0

T, V in MeV.

E, W
180 '1965,7
200 1974.8
220 1984,7
240 1994,0
260 2003,.5
280 2012.9
300 2022.1
400 2068.0
500 211340
600 21570
700 2200.0

| 8oo 2242,0
900 2284.,0
1000

2325.0




Appendix i, Phenomenological Deuteron Wave-Functions.

Although the exact form of the deuteron wave function
can only be obtained by a knowledge of the potential
acting in the bound state, reasonable deuteron wave-functions
may be conatructed by assuming suitable functional forms
containing several parameters, which can be varied to fit
existing data on the neutron-proton system.

The data which can be used for this purpose are the
deuteron binding energy & (which determines the asymptotic
form of the wave-functions by equation (5.14)), the deuteron
magnetic momentlﬁwhich gives an estimate of the D-state
probability through equation (6.6)) the electric quadrupole
moment Q (equation (6.13)) and the deuteron effective range,
~, (equation (7.18)).

The functional forms chosen are those sugcested by

L. Hulthin and M. Sugawara (12) of the form

U = Ncn>€3 [r- {rp(a-*z)] e He R R He = W,
: -Ka) -Bi)‘
- x - 3(1-
ot = 'I&‘a [,_ ‘L.T('n rc)] .el['.., 3(: -+ O,;: ]
u=w = o, ne R The normalization factor N

is obtained from equation (7.18) as

Na_ = 201
] - oltrb



Taking », = 0.4316 x 10”13 em, (.00 7¢c ® 0.1) and
N 1,704 x 10'13em., then

H? = 7.6579 x 102 em~t,

and the parameters f, ¥, S €4 aTO given by

| P, g Y sin EQ
3% 8.237 3.155 0.02942
b 7.961 3.798 | 0.02666
5% 7.699 4,356 | o0.02514
6% 7.451 4.799 0.02486

The values for deuteron D-sgtate probabilities of
3%, 4% and 5% are given in reference (12). The last

case, PD = 65 has been calculated.



Appendix 3. The Allowed Transitions.

Lot L be the totai angular momentum of the photon,
the orbital angular momentum in the final state, and
the initial and final spins and J the total angulnr mcmontum.
Conservation of angular nomentum requirea that for
triplet-triplet trensitions,
| L'+2
Llat
L= o (45.1)

K-l
L2

and for triplet-singlet transitions,

L'+t
L - L

(A5.2)
K-}

Parity conservation on the other hand, demands that
for eleotric 2 pole transitions
L L
(-1)5 = (-1)
1.0 L ‘-, * Q,N (M=O) ',-‘) IR ) (Asoj)
and for magnetic 2L pole transitions,
r! 341
(1) = (-1)

i.6. L = L= 2 Qw (m=0,22,....) (A5.4)



Combining the requirements of (A5.1) to (A5.4) we

can construct the following table of allowad transitions.

Table of Allowed Transitions_.

L J L Multipole s Parity
L L'+l L' | Electrie 2% 1 (-1)*
L L L " 1 (~1)*
L Lo L " 1 (-2)F
.' :
L L) L'+ " 1 (-1)1‘
L K- L'- 2 " 1 (-1)L
L L'+ | JARY| Magnetic 2k 1 »(..u)""
L L RN - 1 | ™
v L oy . 1 ot

L L'-1 L) n 1 ent?!
L L' "L | Electric 2" 0 (-1)"
r ' L 5 L L L

L L [REN] Magnotic 2 0 ()

, . ' ' L)
L v L= " 0 (o)




Appendix 6. The Transition Amplitudes.

Note first that the expansion of the final-state
wave-fundtion into itsa compondnt angular momehtum sfaf.a

may be written as

V. '615
4?(’_) = (:7_';) ii‘e(u'ﬂ) F;(SJ _"'P"'(E (ﬁ )’xs (46.1)

for the triplet spin state, and

Y = .&"s(’i*') ii'lfl_)—“{os P, -’

(2.1:’)"!- (A6 2 )

for the singlet case,

Fe (3 is the projection operator for
the state <X=)\, L:2 s=| and from a consideration of the
values of L, S 1in the various states of interest, we

arrive at

a
Fe =- L g,,_s_) (A6.3a)
- - kN
Foo = =2 :f &-3) (46.3b)

2 L. S S)
F;(") + 3L, S«@.s)

= A (A6.30)
3+24.8 -&.s)?

Foo =— —2ERE 8D (46.34)

F(" = — 2t 2 —G.3) ’ (A6.3e)

10



- Ls)?

-L.5 |

Foe = 6 4‘; (A6.31)
- S+ 4 l:.f, +(L._S_)" :

F,_k3) = s | (A6°33)

From (A6.1) we see that we are interested in terms

of the form
Koo = Fods Pol&) (a6.4)

which yields for the above cases the following results:

.~ ~-3.FSA
K\@) = F 3 # (A6.5a.)
_ 3.4 S,
R = . 4 (A6.5b)
_ LPA-SESA -3:56=
K@ = E 7 £) (46.50)

oo SEN 4 {3 ESs -2¢ 36N kY- 0B 6y A b.s
- ) 14 Yoii ~oBtrk Rk’"(AG.Sd)

K(U = 3(,;":)l"'l- 35.35.&#5—35&; S ep)t S Dlvr Y]
] 4 Ginb) S eb)+ 3: SLrE) b4 (6. 5e)

o= D=1« 35Sk e SGek) SGeh)
=

(A6.5F)



- 2B -3 65555 F5 -65Gwf)SExf) -24 sm«)
kz@) 30 o kAG 5g)

Writing the deuteron wave~function as

"'("D("‘:’ - {ﬁ LION %.; i‘.‘:‘.f';‘z x™ (46.6)
arc

and incorporating the results of the preceding equations,

we obtain after integrating over angle

CelH)Y = RIRID,, « KFIMT Y « SEIHID g « SE[HID,,, (46.7)

wvhere . 5 ~
sl liy, = -fet Pomh O N
E) Lank ) 3p  Q@n) wmy™

*_ ‘8'2

-+ [I(.P.g_ -43.2 -S-J-'?}"'h}{mfa CG,;(I'M [“b@o

<
- <L
gr-.“’:n('vlfvol” “+ S:}_.u:.i._ -2. &3.( Lr;:_QLm Lo 4w '\'O‘kg

o

vl e-i5sz{£.z¢.ﬁ'§ -6 _5.-'!?.#3 By Z"FP‘;*‘}-!;A;

~15; §.(/>‘»<:)—S"12} { @ % = ﬁ-( “7';:-(‘*“ Weew o



P
—\S.}i %f,_{ai(ﬁrq Cube\)—;,i'-z. “"’)Q)}'YAN z 'Xim-

i e* )i “"’L Bb—0 m ’x:-r N
<1°|“’> lbn:k, I - R e N

o4
x{¢ iGo (g ") (knz) f OOQL-) Up@y dw

o8

-».e"oit'('_"(-'-'- S..lu)(k‘;:;)[j-%f? ‘; WAB-JL'%( Ga‘é“) U-lbf'.)o‘dt} KIM‘

1 1
ol - : ) l.m‘:’ ” /X"W 3 ’
<tk D { a:ko S P Gmh @eys eas

o

‘{ T gk cgry go I& g“,.dao watn ~F o
"3 ok b - T bbiesi bR S E

v [3.(Bne) FE« 26-RF ]~ T3 Eekysbrs)~5.Gory 5.6 Lﬂ}
( Sao [userm & wplwtde - 582 2apkk,

~+ §Ia‘£ SkEFeg+3 7% I’S/@Z-u- C 5(/-‘-:)545"“‘)
- é(krk') 2-(#'!)]} g U'u¢4 Eubg, o+

o

W 'S'Y e

?.

SR BTV Y PRy PRy S S
-2 [Sne) 3.6vF) « 24k 2 $-0)]

oD

+~3. Ii(’;"'!)l;.k +2.$F“) k-i_ ]} ( B);(ﬁ') [”DN)—% w,,m}-.‘ok%’i



o . by : x LJ’ N fp+ Em IX:1
<-F,H">“’- =,{£n:k°%' |3 (om)™ b&m- . (@ry>

*$ it pk i(shog®) (bn ) C‘“’.% Lua = 8 enta)ved

e P (gt g).Erey [ ER - shh e fof

oD

s@rbsvkwrbsob)} 3 @ < Bybw Whyeo ~ o % ~x™

§L= mt,_-s-.;_; rw By s
Yo = apt,,,..g X T2,

The above equations may be recast into the form (13.3)-

(13.6) by straightforward vector algebra.
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SUMMARY

The thesis is divided into three parts. In the |
first part, a general survey of the twoenucleon problem
is given, with pariicular attention paid to those éspects
which impihge directly on the photodisintegration of the
deuteron,

In the second part, we consider the conventional
theory of deuteron phofodisintegration. with the radiative
interaction being taken as given on the basis of the
géuge invariance of the none~relativistic Hamiltonian
for the twoenucleon system, | Differentinl cross-section
and polarizétion formulae are preéented. and a discussion
given of previous éalculations in this field. New
calculations are carried out using the CamnmeleThaler
type Y.L.A.M. phase parameters obtained in the analysis
of Ureit et al.(uh'hs)

The transitioné considered are

l. Electric dipole (381+3D1)-—* 3P0.3P1.3P2+3F

2
’ . 3. .3 1. 1
2, Magnetic dipole spin-flip ( Sy+ Dl)———+ S,e Dy,
3. Electric quadrupole (381+3D1)——+ 351+3513

3n 35 L3
L, Magnetic quadrupole spin-flip (351+3D
2 coupling is included, but the 381 - 3Dl and

- 3G3 coupling neglected, Wherever possible,

The 3P2 - BF

5
Dq



phenomenoclogical wave-functions are used, and where this
is not feagible, they aré calculated from a suitable
Gammel«Thaler potential, Differential cross-~sections
and polafizations are obtained for photon laboratory
energies up to 130 MeV, the calculations being carried
out both for a 4% and 6% deuteron D-state probability,
Finally the results obtained are compared and contrasted
with those of previous calculations, and both sets
compared with experiments,

- In the_third part of the thesis, the calculation
of the matrix element for deuteron photodisintegr#tion
by dispersion relations is consideréd. There are twelve
invariant amplitudes. The covariant form of the transitic
amplitude is related to the nonecovariant (Pauliematrix)
form, which is further related to the individual multipole
transition amplitudes, The Born terms of the covariant
amplitudes are derived, and the dispersion relations
written down in cnergy for a fixed difference 1ﬁ the
photon;proton and photon-neutron womentum transfers.
It 1s necessary to use this rather than a fixed momentum
transfer, in order to exhibit explicitly all the poles
in the dispersion relations,

The dispersion relations contain integrals over



both positlve and negative energies. the latter arising
from the crcsssd diagrams for which the imaginary part
of the amplitude is related to procasses such as the
radiative absorption of an anti-nucleon by a deutaron;
and to ihe structure of the deuteron through the anomalous
singul&rities of the de=np vertex. These complications
are igncred, and we retain onlf the pole terms aﬁd the
integrals over positive energies. |

The relations are restrictad to dipale and quadrupole
transitions. and by considering the relatlons at two
differént‘"momentum transfers"; equations aré obtained
explicitly for the individual eloctric dipole and ﬁagnetic
dipole spin flip transition amplitudes. The equétions
are solved in a low energy approxim&tion in which the
final state ne=p rascatteriﬁg cut and sin'le pion exchange
cut only are considered, for the two cases of the Y.L.A.M.
and Signell-ﬁafshak phaseeparaneters., The results
obtained are compared with those abtained in paru two

of the thesis.



