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CHAPTER I

Survey of Hydromagnetic Stability Theory 
. Introduction 

Hydromagnetic stability theory can be approached by 
first considering the stability of simple mechanical 
systems and extending the methods established in 
these problems to deal with the more complicated 
question of plasma stability* This approach 
will be employed here to derive the Princeton 
Energy Principle (2), probably the most useful and 
widely used instrument in the investigation of the 
stability of static equilibria of plasmas*

There are two methods of studying the stability 
of a mechanical system» which can be illustrated 
by the one dimensional problem of a particle in a 
potential well* These two methods correspond to 
the normal mode» and energy methods of which only 
the latter will be discussed here because of its 
wider applicability*

The requirement for equilibrium in a potential
well is dV(B) =  o

at least two ways*
and this can occur in
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1.1

If the particle is displaced from its position of 
equilibrium it experiences a force

P = -

- - 2̂ .

If P has the same sign as the system is unstable
(as shown in 1(b)), but if P has the opposite sign from 

, i.e. if otz' is positive, the system
is stable (as in 1(a)). To study the equilibrium 
stability of a particle in a potential, , the
point of equilibrium Z* is found; then the
equation of motion of the particle when displaced 
by a small amount is written down, expanding the 
potential in powers of and keeping only
the linear term.

1.2 SE
a  z

Since j- is independent of Sz this
equation has solution 
S? ^ where

1.3 Jl'. - À  1 ^ - '

and the solutions are either oscillating^ _Q. <  O  ,
or exponentially growing (and decaying)^ Si!' >  O  »
Hence the problem can be investigated by:(a) solving 
the linearized equation of motion with a time dependence 

Sit , and determining the sign of -0_ , or
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(b) investigating the sign of • Of these
two methods the first is generally applicable but 
difficult to carry out, while the second can be 
applied only when the forces are derivable from a 
potential. Both methods are limited by 
linearization, and are unable to distinguish between 
an extended flat potential where there is neutral 
stability (2a), and a point of inflection which 
is unstable (2b)•

CL

Furthermore this theory considers only local 
behaviour, so that a small potential well on a 
large barrier (see 3), although unstable to finite 
perturbations appears to be stable in the theory.

If a mechanical system has many degrees of 
freedom, 1,2 must be replaced by

j
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which is the equation of motion for a disturbance,
, in any one of the co-ordinates, and which 

involves all the displacements. To solve the
equations of motion it is necessary to introduce 
the normal co-ordinates

1.5 <̂ Qj
and such that equation 1,4 reduces to

1.6 (^Qj = /\jj (no summation implied)
Taking the scalar product of 1,4 with (where
the prime denotes differentiation with respect to 
time), and integrating with respect to time gives 
the result,

1.7 r  X (H'T = ^  {hi % kj
^  ̂  L 1°^ [ ( K  k,+ hi jj

s  = -45t, =
Note that written in vector form equation 1.8 is

1.9 ^fn(^'P= Y

and that its reduction to this form from 1.7

1.10 Y (h'T "  ̂h- 6 (k)J
depends on the self adjointness of the operator A,
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i,e# for any two vectors in space

1.11 ^  - A('ÿ) =

Hence from 1.8 the kinetic energy will increase 
if the quantity ^  is positive
for any choice of arbitrary , and this
quantity is just the second order variation of 
the potential energy about equilibrium
- S W  = -  ̂  V

1.12 =
'‘J

Hence if | V ) — V  j is positive the 
kinetic energy must be decreased by such a 
perturbation, and the system will be stable if

is positive for all possible
choices of •

For a continuous system, such as hydrodynamics, 
the displacement, instead of being a vector function 
of time (t) , is a function of space and time
^ , it) , and the set of linear equations 1.4

must be replaced by a set of partial differential 
equations with suitable boundary conditions, the 
normal co-ordinates being eigenfunctions of this 
system while the are eigenvalues. If the energy
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me thod is used the variation in energy in
general depends on the form of the functions ^ and 
must be shown positive definite for all functions ^ 
to establish stability.
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^ 2 «Energy Principle in Idealized Magneto - Hydrodynamics

Throughout this section the system considered 
will be supposed to be described by the idealized 
hydromagnetic equations, Written in unrationalized 
Gaussian units these are :

2.1 f ^  =  -graclt^ + j xg

V . ( M  =  O

2.3
> djt f dt

z.h e + -V X 8 ^
— ë

2*5 V  X B =  ^  J

2.6 Y  B = o

2.7 V X  E - - i  I f

or these, equations 2.1 - 2.3 are the 
hydrodynamic equations, and can be derived from the 
Boltzmann Equation, on the assumption that the 
collision term dominates, by expanding in powers 
of the mean free path. It is therefore immediately 
assumed that the mean free path of the particles
in the plasma is small compared to all other
distances in the problem. Equation 2.4 expresses 
the infinite conductivity of the plasma, and is a
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particular case of the generalized Ohms Law 
obtained by Spitzer (l). Equations 2*5 - 2*7 are 
Maxwell's equations with displacement currents 
neglected. In section §4 an account will be
given of attempts to remove from the theory the 
assumptions of small mean free path, and of 
scalar pressure.

To investigate the stability of a system 
satisfying 2.1 - 2.7 about its equilibrium, these 
equations are considered in terms of j C ï ’ > ^3 »
the displacement that has been experienced in a 
time t by a fluid element originally at 7? » and
are linearized by neglecting terms of second order in 

f # Thus equation 2.2 becomes

and 2.3 becomes

2-9 -ht

While the magnetic field satisfies

. V  X ( ^  « 6)



M  ^ M

With these relations substituted into 2.1 the 
linearized equation of motion is

' "  t  %  -  f  (!)
where

2-12 F ( | ) =  Y [ y h v . f  -4- ( i . v ) K ] +

with

2.13 Ç^(f) =  Y  X (| ^ Bo)
;  / _If the scalar product of 2.11 is taken with f 

and the result is integrated with respect to time 
and throughout space, the following result is 
obtained•

2-1'̂ f a r  =  ^ a t j o t r  f. f (|)

This equation is the counterpart of equation 1.7 
of the previous section and just as in that case 
the operator A was shown to be self adjoint, so 
it has been proved (Bernstein et al (2)) that the 
operator F has this property

F  F ( ) ) ]
The demonstration of this fact depends on the 
existence of an energy integral for equations 2.1 - 
2 .7* > viz

2.16 y  = f r  I -V.% . 6""
STr y —
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such that when the potential energy terms are 
expanded In ^ , the change in the potential
energy is a quadratic form not involving
§ , while the kinetic energy is Just

2.17 I) =  i  j ^  r  cLir

Then using 2.14 and the fact that

. i) -4- Sv/

is constant,

“  5'^’̂  i f f ! )
=  —  S w

2.18 =  —

Prom which 2.15 follows since | satisfies the
same boundary conditions as § and can therefore
be chosen equal to any arbitrary displacement ^ 
Hence, if | is replaced by | in 2.18

2.19 f) =  - i j d T | ,  F(f)

It was further shown that the system can be
unstable if and only if there exists an  ̂ which
makes cSW negative.

After integration by parts, use of vector 
identities, and of the boundary condition

2.20 ri, B =  o
equation 2.19 can be written in the form.



- 11 -

2.21 àw - i-JolT{ Æ  - J. +  T'A. (V. | T +  (V. S)(|, v) k]

-ijdcr n . | | y A ( î | ) +  ( |.y)K -

If the plasma is bounded by a rigid conducting 
wall the boundary condition on this surface is 

*1 = O  so that the surface integral in 2.21 
vanishes. Otherwise this integral can be
split into a volume integration throughout the 
surrounding vacuum, and a surface integral over 
the plasma-vacuum interface. Then 

2.22 cSW =  é>Wfj -+- SŴ  -V- <̂ V\4

2.23
c

2.24 <̂ Vv(, = ^  f d r  ( V x  4)*

where A is the vacuum vector potential.

2.25 +

where jĵ xjj represents the increase in the quantity 
X on crossing the boundary.

Finally Bernstein et al have shown that 
the displacement f considered need not satisfy 
all of the normal boundary conditions. The f's 
considered need only satisfy the following 
conditions ;

2.26 (ax A)= - (n,|) e.
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A
at a plasma vacuum Interface ( is the vacuum
field), and

2.27 a. f ^  o

at a rigid perfectly conducting surface. It was 
shown that if an  ̂ , satisfying only 2.26 and
2.279 can be found which makes <5W  negative, then 
there also exists an | satisfying the full 
boundary conditions which makes cSW negative. The 
great usefulness of the energy principle in 
stability problems is due to this fact.

The work of the Princeton Group (2) was 
based on an earlier energy principle, introduced 
by Lundquist (3) » in which the variation of the

rmagnetic energy integral j g-rr was
calculated in terms of the displacement vector ^ 
using the fact that the assumption of perfect 
conductivity in 2.4 implies a 'frozen in field*. 
For if any area is considered in the plasma the 
flux through this area is B. cis and if the 
time derivative of this is taken moving with the 
plasma, then

2.28 ^ B.c(S =  - ^ ^ f )•

where p * =  E + ^ g =  O
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Hence the flux thro * any area fixed in the plasma 
remains constant*

The thermodynamic energy j did not
arise in this case because 

2*29 V. 'y =  O
was used as the equation of state instead of 
2*3 i.e. an incompressible plasma was assumed.
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^3• Applications of the Energy Principle.

The energy principle (2.21) derived above 
has been applied to various problems of more or 
less simple geometry. For problems with
cylindrical symmetiy the perturbations may be 
analysed as

3.1 tC'^) =  ^  ^ +
"'.A,

where Y; ^ ,g are cylindrical co-ordinates, and 
the Fourier components handled independently.
The Euler equations for 6 k/ are algebraic and 
minimize 6 W  for ^  and ^  • When the
minimization has been carried out 6V\/ may be written 
in terms of ^ alone.

3.2 cSW — I X" ■ tn’- + JC-r 

where -F = -A

3 = -6 8^- ^

and the prime denotes differentiation u>. -r. ^

Clearly <6v/ can be negative only if ^  is positive, 
i.e. only if ^  falls off less rapidly than .
Hence a sufficient condition for stability is
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and this can be achieved in the hard core or 
inverse pinch, in which a solid rod carries an 
axial current through the centre of the plasma. 
The current in the plasma is in the opposite 
direction to that in the conductor. Working 
from the energy integral 3.2 several authors 
including Laing (4) and Suydam (5) were able to 
find sufficient conditions for stability. For 
example such a condition obtained by Laing is

3.4 > y  8^

to be satisfied throughout the plasma 
Another is

lr'̂ -rjb'> rr^^o 1
3.5 / Some

Be =  o -r>Tr.J

The most important single characteristic of these 
stable configurations is that the total current 
carried by the discharge is zero. Working in the 
other direction, Rosenbluth (6), by using specially 
chosen trial functions for the radial perturbation 

, was able to show that there exist 
configurations, arbitrarily close to the 
stabilized pinch configurations which are unstable.
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The Euler equation of 3.2 is 
3*6 ^ -f" P ^ - 4 - G ^ ^ ^ o

where P,Q are functions of f,g,h,k,m,r. In 
investigating this problem, Suydam (?) observed 
that the most dangerous instabilities were those 
'fluted* displacements which interchange B lines 
without bending them. The B lines describe a

Dset of spirals of pitch p, = — ^  which in general 
varies from layer to layer. The level lines of
the ^ field on the other hand, describe a
set of spirals of pitch which is constant
throughout the plasma. Hence if these two sets
of spirals match over a finite region of space then 
a displacement is possible which does not bend 
B lines. ^ven if p.' is never zero it is still 
possible to chose k so that the two spiral systems 
match at one particular radius, and in this case 
displacements are possible which bend B lines 
very little in the neighbourhood of this radius.
It was therefore assumed that the worst possible 
choice of k,m is such that

3.7 f = ^

vanishes at some point in the plasma, 
r = a say.
Then at r = a, f = o and equation 3# 6 has in fact
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a regular singularity. The solutions of the 
Euler equation can therefore be written as

I  =  ( ^ ' f -  o )  ^  Powey ser ies  vn.

where ^  is a root of the indicial equation
V' -h V  /'I = Û 

where

A1
-r=a

It is possible to show that, for this particular 
solution of the Euler equation, if the roots of 
the indicial equation are complex, then the system 
is unstable, and if the roots are real the system 
is stable. Thus the following necessary condition 
must be satisfied throughout the system for 
stability

This condition will be sufficient also, if the 
Euler equation 3.6 is in fact minimizing, and if 
the physical arguments leading to the particular 
choice of k do correspond to actual minimization 
with respect to k.

If the pitch \x is constant throughout the 
plasma the local instabilities described by 3*8 
are replaced by convective instabilities in which
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whole flux tubes are interchanged the energy being 
derived from the expansion of the gas. A 
necessary condition for stability (p,' = o) is

3.9 6. cl-r C v / f *(8^

More recently a necessary and sufficient condition 
has been given (Newcomb (ll) , Suydam (_F) ) for 
stability of a cylindrical plasma. It may be 
stated as follows:

A necessary and sufficient condition for 
plasma stability is that the solutions of the 
Euler equation of the energy integral 3.2 shall 
have no zeros between the singular points of the 
equation.

Just prior to the publication of the energy 
principle (2), Rosenbluth and Longmire (8) 
considered the problem of stability in a mirror 
machine with longitudinal and radial magnetic 
fields. In the limit of low pressure the 
following stability criterion was obtained

dJL ^

where R is the radius of curvature of the field 
line along which integration is carried, and r is 
the distance from the axis. The method used was to

3.10
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calculate the second order variation in the 
thermodynamic energy integral J due to
the flute type of interchange. The assumptions 
made in this approach, and the limitations of the 
method will be discussed more fully in Chapter 2 
of this paper in which the methods of Rosenbluth 
and Longmire are extended to the non-zero pressure 
case. In the same paper (8) a different approach 
to the same problem was based on a consideration 
of the individual particle orbits. Using two 
adiabatic invariants p ( magnetic moment of the 
orbiting particles) , and ^ ( w h e r e  is
the component of velocity along the field line) 
the first order energy change was calculated for 
a single particle when its field line is displaced 
from its equilibrium position, and this energy 
change summed over all the particles tied to that
line. The energy change obtained in this way 
was shown to be proportional to f —^ j j g

, , J R  ̂  B-
where Pi, and Pj_ are the components of the
pressure along and perpendicular to the field
lines. Thus a criterion for surface stability
can be stated as

3.11 I bjLÏ±-dUt > 0  
Rx- B'
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which reduces to 3.10 for scalar pressure.
In the original paper (2) the energy 

principle was also applied to the problem of 
stability in a mirror machine, with no field 
in the ©  direction. Co-ordinates (fVi x) 
were used such that the direction is
perpendicular to the field, and the direction
along the field.

The perturbations f were Fourier 
analysed with respect to ©  as follows

X  x) \ ]

m ■ o I X

Upon integration of ( 6 with respect to ^  
the cross terms of the double product vanish 
so that

3 13 S w  - + 5 l

The have to be treated separately, but
the situation is simplified by the fact that if Çtrf 

^ can be made negative by some choice of
I so also can > so that in practice
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only the cases nq =-  ̂ m  = o need be
investigated. Now each mode corresponds to a
flute type of interchange considered by Rosenbluth 
and Longmire so that it appears that 3.10 may be 
a more general result than seemed likely.
If is considered with m  =• it is found
that it can be minimized algebraically with 
respect to Y and can then be minimized with
respect to Z , At this stage only one term
in can possibly be negative and this is

Hence a sufficient condition for stability is
R O  i.e. the field is everywhere convex to the

region of higher pressure. A necessary condition 
for stability is obtained by assuming X independent 
of X. • This is

which., if /D <  O  , can. be satisfied for
Ç

3.15 — —  > o
R r B ^

or
dJL . k' (r du 5'rr^'J § ^  Î B
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The Euler equation for minimization with respect 
to X cannot be solved exactly, but stability 
criteria can be obtained in certain limiting

Icases. Two such cases are (a) P
i.e. magnetic pressure very much greater than 
material pressure, and (b) if the surface =
constant (the field lines of the mirror machine 
lie in these surfaces) under consideration lies 
close to a cylinder. In both these cases the 
stability criterion obtained is 3*15 with 3*1^ 
as the alternative in case (b) and

^rp>J B

as the alternative in case (a)
Thus the condition 3*10 originally derived for 
stability against the flute type of interchange 
in the low pressure limit turns out to be a 
necessary condition for plasma stability against 
all modes { ^  ^  O  ), and in certain limiting cases 
turns out to be a sufficient condition also.

Any contained hydromagnetic equilibrium 
is topologically toroidal, and some of the 
results obtained for cylindrical systems have 
been extended to toroidal systems. Kadomtsev 
(9), for example, has also shown how to obtain an



analogue of Suydam*s criterion which is 
applicable to general toroidal configurations. 
The form of the necessary condition is

3.18 (y)+  32 TT l=>' A >  o

where, if are the longitudinal and
azimuthal fluxes, 1,J are the longitudinal 
and azimuthal currents, and is the volume
of the torus, then u = ^ —  represents
the number of turns of the line of force along 
the small perimeter in one revolution along the 
toroid, A is a rather complicated function of 
l,J,|i, -O- , and the prime denotes differentiation
with respect to • The method used to
obtain this result is to Fourier analyse the 
components of the perturbation perpendicular 
to the field as follows,

and to choose |om + n = o. This corresponds to 
the choice of ^  8g + 8© “  ̂  in the Suydam
criterion to match the spirals of the two fields,
B and f ,

X

Mercier (lO) has obtained another analogue of 
Suydam^s Criterion which is a necessary condition

for stability in an axisymmetric torus. This
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criterion is more stringent than Kadomtsev's 
which can of course also be applied to the case 
of axial symmetry.

It is possible that a toroidal version 
of Newcomb's necessary and sufficient condition 
also exists * This would depend on whether 
there exist solutions of the Euler equation 
which leave an entire magnetic surface unperturbed. 
Sufficient conditions for the stability of toroidal 
configurations have been given by Mercier (lo) and 
Suydam (12).

Few explicit forms for toroidal equilibria 
are known, as they can only be obtained by the 
solution of a,non-linear partial differential 
equation, and as a consequence of this few 
detailed applications of the stability criteria 
have been made. One such application by Lttst , 
Suydam, Richtmeyer, Rotenberg and Levy (13) to 
a toroidal analogue of the Stabilized Pinch 
shows that the toroidal results are similar to 
the cylindrical results if the aspect ratio is not 
too small.

In spite of the many assumptions of 
ideal hydromagnetics there is a moderate 
agreement between the theoretical predictions
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and the experimental results. It should, 
however, be noted that many types of instability 
are almost independent of the particular properties 
assigned to the fluid; for example, the 
wriggling of a constricted discharge is an 
instability which requires only that the plasma 
be a flexible conductor, hence it is in no way 
remarkable that the theory should predict it. 
Attempts to investigate the detailed consequences 
of hydromagnetic stability theory have shown but 
little success * Magnetic probe measurements
in a rapidly collapsing pinch showed evidence of 
fluctuations appearing most strongly in regions 
where the Suydam criterion was violated. On 
the other hand, attempts to produce the stable 
unpinch predicted by 3.2 have not been successful.
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^4• Non-Idealized Hydromagnetics
Validity of the Hydrodynamic Equations

The standard equations of hydrodynamics 
depend, as was noted in ^2 , on the assumption 
of small mean free path in the fluid. In 
general this may not be a valid assumption, 
and in particular in a low density plasma will 
not hold. An attempt was therefore made 
(Chew, Goldberger, Low (l4)) to derive a set 
of magneto-hydrodynamic equations from the 
Boltzmann equation, using some other localising 
property than collisions.

In a plasma the individual ions and electrons 
follow helical paths, orbiting around their 
guiding centres, which in turn follow field 
lines and, assuming that the radius of gyration 
( ^ ^  ) is small compared to other lengths
in the system (such as )» it was this
property which was used. The Boltzmann equation 
with no collisions was written down, and expanded 
in powers of ^  (equivalent to the radius of 
gyration)

4.1 ^  + C'V. y ) f  + = 0
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4.2

4.3

 ̂i
he
- ^ ' uv%] 

t"t A - >  w S

4.4

4.5

where ^ is the ion charge, ^  the ion mass,
f the Boltzmann function, and grad^ denotes

mgradient in velocity space. In powers of —
f is f=- '..

ries of equations obtained from 4.1 isThen the se

E 4- "kT X B ) g Ca.d^ =  c. J

= o
' I I I , I ' l l '  I '

4.2 was solved by assuming that E is perpendicular 
to B, a result which can be qualitatively 
justified by observing that the high mobility 
of electrons along the field lines might be 
expected to prevent any component of the electric 
field E from building up in this direction.
The first two moments of 4.3 were taken in the 
usual way giving the following macroscopic 
equations,

If + V. = o

t ^  = - Y  t  + §)^B + X B

where I = 'nj'.f oUj-

^  € oUr

+ B) V. (u.x B)

d  ̂ k  4- Uo- V
cLt ^
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and where use has been made of Maxwell's 
Equations and of the infinite conductivity 
equation

in order to eliminate f̂  ̂ in favour of a 
macroscopic quantity defined by

4.7 J, =  V  y B -V* ^  ^ §)

1% is a pressure tensor defined by

and is restricted because of the nature of 
the solution of 4.2 to be of the form

4.8 Ç  =  K s ?  +  hx ( T - e e )

where G is the unit vector along the
magnetic field and J_ the unit dyadic.
The above equations (4.4 and 4.3) correspond 
to the continuity equation, and the equation 
of motion (2.2 and 2.1 respectively) of the 
idealized case; 4.6 is the infinite conductivity 
equation (2.4), and Maxwell's Equations hold with 
j defined by 4.7» Hence only an equation of
state is missing from the set. In order to 
complete this set of equations it was therefore
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necessary to take the third moment of 4.3» and 
this yielded the following two equations.

U  Q  ^  = V. y. - e. (e.Y)y.-v,
cLt

4.10 - - 3 V,u. 4- k. g- (s —  Y- C‘?xS.) —  Rj. Y '3
oLir

where the quantities Ÿ,, and ^  are the components 
of the pressure-transport tensor which need not, 
in general, be zero. To determine and ^
a new equation is required, and this will bring 
In a fourth moment of the Boltzmann equation*
Only if the terms containing and Ÿj_ are small 
compared to other terms in 4.9 and 4.10, and can 
be neglected, do genuine hydromagne tic equations 
of practical value emerge from the theory. If 
this is the case (i.e. j terms are small)
then 4.9 and 4.10 reduce to a pair of equations 
of state agreeing with those found by the 
Princeton group (2) in extending the energy 
principle to cope with non-scalar pressure. These 
equations can be written in the following form.

•4  ̂ é-(^)
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and complete the set 4.4 - 4.?.
These are the 'double adiabatic' equations of 
the Chew, Goldberger, Low (c-G-L) approximation 
which replace the single adiabatic equation of 
the magnetohydrodynamic (M-H) approximation,

2.3 )

It was also shown that the integral

4.13 ^  f y» + K  + A ^ ^  I ctr = (j

is conserved by these equations and can be 
taken to be the energy of the system, thus 
forming a basis for the work of the Princeton 
group. The equations of state found by them (2)

• h

4.15 ^  =  - ^ Y . ?  +  §.

were used to calculate the second order energy 
variation in terms of f in the same way as
for scalar pressure. The result obtained was :-

4.16 ■*" 

where
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4*17 ^ Totô

4.X8 -  j . Q x |  4. ik(y.t)\(Y.tjiivk)
+ i K  [?! - 3<^]%  ̂V. [I (M, - K)]

W[?-Y/'Y| §-|.(veJ.(y|).g_ Lf+ e,(7j>fs.v|
-|-(Yej-Ce.?f)] J

''here (̂ =  0 ( 7 ^ ) - $

Xt is possible that in some cases collisions 
might be sufficiently frequent to produce an 
isotropic pressure at equilibrium, but not frequent 
enough to maintain the isotropic pressure during 
an oscillation or instability time. Under these 
conditions the pressure will be determined during 
the motion by 4.l4 and 4.15 with ĵu — f̂-L — .
In such a case the integrals in 4.16 reduce as 
follows

S>W^‘ ~  iVs/5

4.19 ^  jc(T

Hence if 2.22 is denoted by ^ 'MH

4.20 ^  for each ?
where Y = 5y^ is assumed.
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This is not surprising when it is observed 
that although 4.11 and 4.12 imply 2.3 the 
converse is not the case, i.e. there are 
additional constraints.

Also starting from the collisionless 
Boltzmann equation Watson (l5) investigated
static equilibria assuming small Larmor radius
,  O  V  &7T A
( Y ) small P = — solving the
Boltzmann equation using individual particle 
orbits, Watson showed that, to first order in 
^ , the pressure tensor is indeed diagonal

in the ) system of co-ordinates
(see page 3o) . It was further shown that if ̂  

is the pressure-transport tensor, then to zero 
order in ^

4.21 Q

Finally it was shown that

"hlpii , hi- —  _  Q

'è>7C B Six.

This last equation is just the component
of the equation of motion for a static equilibrium 
assuming ̂  diagonal.

Brueckner and Watson (l6) using the same 
assumptions investigated the non-static case#
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It was found that the pressure tensor was 
still diagonal, but that the heat flow 
(Pressure transport) tensor was not now zero. 
The C-GvL equations were derived in the form 
4.9, 4.10 and it was noted that if there is no 
heat flow, and if the field lines are nearly 
straight, these equations can be written in the 
form

4.23 3 ^  ■ - W )

4.24 cLt '  ̂ ^

where  ̂ are the velocities, and
cc, ̂   ̂ZCg the'lengths* in the ©

directions respectively. These equations show
clearly the decoupling effect of the collisionless
theory. The form of these equations results
from the fact that heat exchange is not possible
between longitudinal and transverse degrees of
freedom, i.e. parallel to and perpendicular to B.
The longitudinal compression has Y = 3 since it
is one dimensional. Transverse compression
has Y s 2 since it is two dimensional. The
cross terms represent the effect of density 
changes only on the pressure. This is clearly
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shown if the two compressions are considered 
separately. Then for transverse compression;-

a  r _  c, ■ 4  r =  c.
4.25 M

while for longitudinal compression

. =  o ■ ^ M  =  o
4.26 M  i f s y  dt I f y

where in each case the first equation expresses 
the adiabatic behaviour of one component while 
the second equation expresses the constancy of 
the energy associated with the other component.

To eliminate E* Brueckner and Watson 
introduced a variable f defined by

4.27 'è-t

Where for any quantity Z
+ S  where Z» is the static value of Z

Then starting from the Maxwell equation
V x B -  ^  I I
which reduces to

4.« 4 H'- Y»
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when the static part is removed, the following 
integral was derived

4.29 W j •àt- d X  =  -

where
t̂î2vcS>./

There is here a close similarity to the 
work of Bernstein et al ( 2 ) , aind 4.29 can be 
used to determine stability. Nevertheless a 
variational principle cannot be derived from 
these results for the following reason.
In the ideal hydromagnetic case it was possible 
to show that the right hand side of 4.28 was the 
negative of twice the potential energy, whereas 
in the present case this is not the case, and 
Brueckner and Watson were unable to replace 
4.28 by an energy equation. As was observed 
above 4.29 can be used to test stability, for 
if the motion across the field lines is slow 
compared to thermal velocities, contours of 
constant density will remain parallel to magnetic

willfield lines. This means that t •
have the same sign everywhere along a field line.
Stability or instability will then occur according

<as > O . For any assumed f
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the frequency JTL of the motion may be
^  g

estimated from 4.29 by putting ^ ^ ,
evaluating the integrals, and solving for _CX • 
Brueckner and Watson applied this technique 
to the Kruskal - Schwarzschild problem of 
gravitional instability and obtained the 
same result as Kruskal and Schwarzschild for the 
instability rate*

The bulk of the recent work on plasma 
stability has used the Boltzmann equation for 
its starting point, and so it was not surprising 
that the next important step should come from 
this direction. This step was in fact the
publication of an energy principle derived from 
the collisionless Boltzmann equation with small 
Larmor radius, Kruskal and Oberman (l?) and 
Rosenbluth and Rostoker (l8) approaching the 
problem in different ways produced energy 
principles which, in the isotropic pressure 
case, are identical. Kruskal and Oberman start 
from the energy integral

4.30 E.

where f is the Boltzmann distribution function 
in 9 space of a particular species of
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particles and the summation is over all species.

ê = 6 G . = ^. G ; oc = i l l

4.31 ^  ^ ^ ^  ^
=- _hy6l B

The quantity Âr̂ , represents the volume
element in velocity space. Xt is assumed that 
the boundaries present are such as to present 
no complications e.g. rigid and perfectly 
conducting walls with B tangential. The 
properties depending on small Larmor radius, 
are as follows
(a) the magnetic moment p, of a particle is 

constant along the particle motion.
(b) f is rotationally symmetric in velocity 

space about a line parallel to B and 
passing through the point ^

(c) ^  is the common perpendicular drift 
velocity of all particles.

It is this last fact which permits the 
introduction into the formalism of a 
displacement vector | y ^ ) as in (l6).
In the C-G-L approximation it was assumed that 
one particle species was of much lower mass 

than the other in order to satisfy the condition
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that E . n vanish. Kruskal and Oberman do 
not make this assumption, and find that E . a 
is in fact zero to lowest order in ,
and consequently as in (l4) that is diagonal 
to this order in in the ^  )

co-ordinate system.
The first order change in energy (4.3o)was 

written down in terms of the fields B and f , 
and the first order variations of these fields 
B* and f* where
B* = ( b ,5)I - B (v:|)
This first order energy change was then shown 
to be zero when the condition was made that 
all constants of the motion should have their 
equilibrium values. The second order variation 
of the energy was then written down in terms of 
f*, f** and the displacement f • Using the 
same condition that the constants of the motion 
should have their equilibrium values, f** the 
second order variation of f was eliminated, and the 
remaining quadratic form in f and f* minimised, 
subject to this condition, with respect to f*.
Thus a necessary and sufficient condition for 
stability is that the quadratic in f obtained 
by these methods be positive. The resultant
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expression for 6 W  may be expressed in terms 
of 4.18 ( within the plasma)

4.32 (5 W  —  é>vJ:

where it can be shown by means of a Schwarz 
inequality that X  ^  O and therefore that

4,33 S w  6  é>W‘

An important inequality can be obtained in 
the other direction when the equilibrium 
distribution functions( g ) are isotropic. 
In this case ” Pn P and

4- X.

where

4.35 X , = d r  8 (1-

With y  = and oCT =  d<^ dJL
BC«) is an



Integration over the volume of a flux tube T.
This result was also obtained by Rosenbluth and 
Rostoker. Since the integrand in I ,is positive 
a Schwarz inequality can be applied, and when this 
is done the ^  integration can be carried out.
This result is

4.36 iw>Sw„„ *J,Î.S*CSlXt?>*fKfïn

where

Thus if the pressure is isotropic the following 
inequalities hold for each ^

4.37 y  ^t)

and if ^ ? ? minimise  ̂ S W  and
respectively then

iKAl) f  iyt) «   ̂̂ <̂ (1)
so that stability in the M-H theory implies stability 
in the more refined theories.  ̂inally Kruskal 
and Oberman considered the problem when collisions 
are no longer negligible and showed that
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Rosenbluth and Rostoker approached the 
problem by solving the collisionless linearized 
Boltzmann equation for the perturbed distribution 
function assuming an exponential time dependence

In solving for it was assumed that the
equilibrium distribution function f ^
was isotropic i.e. . A two
component displacement vector ^ was
introduced, defined as follows

4.38 = I  4- <SE„

the component of g parallel to B being 
set equal to zero. This is equivalent to the 

variable introduced by Brueckner and 
Watson (4 .27). (SB ̂  5J could then be
expressed in terms of J through SB using 
the Maxwell equations . E satisfies the
Maxwell equation.

and starting from this equation it was shown that.
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for the marginal stability case, p

4.39 ê ^ Y  ^ y   ̂ —  (Y b ) X Y ^ C B x | )  = 4ttV. cSP̂

where (S P is the fluctuation in the tensor
pressure. Now Rosenbluth and Rostoker were able 
to show that the pair of equations 4.39 (one for 
each ^ component) can be derived from a 
variational principle, the appropriate functional 
being the energy change which results from the 
perturbation

SB. 15 6^4.40 Vs/= j{ -+ ^

When W is stated as a function of ^  then 
the condition that W be a minimum with respect to 
arbitraiy variations of "f turns out to be just 
that 4.39» the zero frequency equation is satisfied 
Thus >  O  is a necessary condition for
stability, and it was possible to show that this 
was also a sufficient condition.

4.4o may be written as
\a/ —  Vv̂  -H W| 

where

4.41 W g  =  ^  (Y|X|.Y)P^
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4.42 X  =  2 +<5^ Y I

WyviH -  W„ + Wj 
where W© is formally the same as 4.4l and is

4.43 H  = / / P ( Y | ) V r

4.44

In this case ^ is a three component variable, 
but Vv̂  is stationary with respect to variations 
of and Vv̂  is minimised by choosing

y.| _
 ̂J B

=  (ÿj)
as used by Kruskal and Oberman.
Using this value in 4.43 Rosenbluth and Rostoker 
showed that

4.45 ^

and therefore that for a Y = fluid

in agreement with Kruskal and Oberman.
Equations 4.4l and 4.42 for W( when P is isotropic 
at equilibrium) were obtained identically by
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Kruskal and Oberman. An upper bound was also found 
for W, namely

vy ^
where is the C-G-L energy change when
is taken to be zero. This inequality is less general 
than 4.33, since the equilibrium pressure is assumed 
isotropic•

In the final section of this paper the 
relationships among the M-H, C-G-L and R-R theories 
were considered. This was done by calculating 
^1 » ( the C-G-L energy change - W^) in terms
of the change in particle energy T when a field line 
is displaced in the plasma. The tj 'Invariants of the 
motion are p(magnetic moment) and (action
integral). Then in terras of T and &T the integral 
is . ^

where the summation is over all particles.
The integral of the M-H theory is

H  = f I
where the brackets indicate an average with respect 
to p over all particles of energy T on a line of 
force.

Similarly can be written as
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where 6TL is the energy change predicted 
if the action integral cLt is replaced by

dJi as the invariant* Thus the three 
theories correspond to (a) an average along each 
particle's orbit | — Consh^nhJ. , followed
by a summation over all particles in the R-R case*
(b) a double average in the M-H case (c) a double 
sum in the C-G-L case. In view of this the 
inequalities obtained by these authors are not 
surprising.

If the plasma equilibrium has anisotropic 
pressure the C-G-L equations predict the occurrence 
of new types of instabilities* Thus it has been 
shown (Chandrasekhar, Kaufman, and Watson (19)) 
that plane waves in an infinite homogeneous medium 
with a uniform magnetic field become unstable if 
either the parallel or perpendicular component of 
pressure becomes too large * The criteria for
instability are

> kx. ^ / 4-rr

hi >  (pj_ +

The former corresponds to propagation parallel to the 
field lines. These are the 'firehose' instabilities and
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arise from the centrifugal accelerations experienced 
by particles streaming along curved field lines*
The latter criterion corresponds to propagation 
perpendicular to the field lines* This is the 
'mirror' instability and arises from the trapping 
of particles in regions of weak field* If the field 
is locally weak, particles are retarded by the 
acceleration p , the local pressure increases
and the magnetic field is still further weakened*
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CHAPTER 11

Interchange Instabilities in a Plasma 
Derivation of Field Properties*

The problem to be considered is that of the 
stability of the static equilibrium of a plasma 
in an axially symmetric magnetic field, which in the 
most general case will be B =
in cylindrical co-ordinates * The
plasma is assumed to be an ideal non-viseous infinitely 
conducting fluid. In unrationalised Gaussian 
units the equations satisfied by the equilibrium 
configuration are as follows :-

5.1 vh =

5.2 Y  J

5.3 V. B = o

5.4 fe = o , "U- = O

where i»E,B,v are the current density, electric and 
magnetic fields, and fluid velocity respectively.
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From 5*1 and 5.2 It Follows that

Using 5*3 to express B as curl A

5*6 D =  'à/4-j-

/̂4-r.©-T , anawhere is defined to be , and
vanish since is not a function of ©  , i.e.
there is axial symmetry. This definition of B 
automatically satisfies 5#3#
Taking the scalar product of B with 1 gives

(’§•5')^ =  Q ^ b ). = o

i.e. hÈ _+ B A h  =o since A h  - o"^T 'h2;

, c)'V =  ^  Ç h ^ )  _
^•7 • ' *̂ 2 "^T ^ (̂<-r

Hence is a function of alone, i.e.
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surfaces of constant are also surfaces
of constant «

If C)̂  /4g =  o is a suitable choice
in 5*6 and

♦8 B =  (- ^  o,

If o  we must consider 5*5> noting that
axial symmetry requires ^
The ^  component of 5*5 gives 

[(Vx B) X b J^ =  o

-f. ^  (-rBe) =  oTp -àz / -r à-r '■

which has the solution

5.10 Bg, =

The T"and ^  components of 5«5* yield the same 
result

= . l ÿ )



5.11 A7T/b

— ^0 —

/ =  * fS)e P-F
'V'

For 8 ^  = o  this reduces ti

5.12 kirp' = _ _ e

Hence in general all the requirements of the field 
equations will be satisfied if the field is 
specified in terms of two arbitrary functions

j£) , and "F —  'P C ̂  ) , defining
, Be, Bz uniquely.
The field lines are defined in ^  Z.

space by the equations.

d-r __ cC'̂  ^ cCb>5.13 S:r - =  “ b T

Hence

i.e. the field lines lie in the surfaces of 
constant ^  , and therefore of constant pressure *
If =  O  the lines are planar, i.e. are two 
dimensional curves in ^  space.
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^ 6• statement of the Method»
Rosenbluth and Longmlre (8) have considered 

the stability of a plasma in the magnetic field 
B = against the fluted
type of interchange. The method used in (8) will 
be stated and discussed in this section before it 
is extended to more general cases in the next and 
subsequent sections*

6a 6b
Cross section of the 
unperturbed plasma

Cross section of plasma 
with fluted perturbation*

6.1

The diagrams above show the nature of the 
perturbation considered, and it is clear from 6b 
that this perturbation is equivalent to the exchange 
of the material in regions T and H .  If also 
perfect conductivity is assumed the field is 
'frozen in' and exchange of material implies also 
exchange of magnetic flux* The equilibrium 
potential energy of the plasma is

y'-l air
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and if this quantity should be decreased by an 
exchange of flux tubes the excess energy will go 
into kinetic energy of the perturbation causing 
instability* Thus Rosenbluth and Longmire examined 
the sign of A U  , the change in the potential energy 
of the plasma, when two infinitesimal neighbouring 
flux tubes were interchanged* The problem was considered 
in the limit (3 = ^  1 . In this limit the
magnetic field is nearly identical with the vacuum 
magnetic field so that it was assumed that any 
distortion of the field would increase its energy*
Hence only interchanges which left the magnetic 
energy unchanged were considered *

The magnetic energy in a flux tube is

6.2 -

where yC is the co-ordinate along the flux tube and 
A is its cross-sectional area*

6*3 B/4 =  0  =  flux contained in the tube which
is constant along the length of the tube.
Thus on combining 6*2 and 6*3
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Now one of the basic assumptions in (8), an 
assumption which will eventually be removed, was 
that the material of tube X occupies, after exchange, 
exactly the volume of tube II, and that the flux of tube 
1 is contained in exactly the cross section of 
tube II* i*e« that the remainder of the plasma 
is undistorted by the interchange* Thus the change 
of magnetic energy on interchanging flux tubes I and II

Hence in general A  =  O =P =•
The stability of the system was therefore to be 
determined by the sign of the change in material 
potential energy due to the interchange

6.6 = ÿ:q- [ j ~

where is the pressure in flux tube I when
it contains the material from tube II, and similarly 
for * Here another assumption was made(again

to be removed at a later stage of the paper) namely; 
that ĵ, and are also constant along a field line.



— —

The pressures /̂ / , were calculated assuming
that the adiabatic equation

was satisfied.
Now this equation can be applied either locally or 
over a whole tube. If applied locally the result is

Y

in which case  ̂ are not constant along the
length of a field line.
If applied over a complete flux tube the result is

which produces constant .
We would expect the local adiabatic law to hold if 
the instability time were short compared to the 
thermalisation time, and the constant pressure case 
to arise if the thermalisation time were short 
compared to the instability time, It will, however, 
be proved in a later section that the worst possible 
pressure distribution from the point of view of

stability is, in fact, that of constant pressure, and



6.9

- 55 -

in any case this assumption is consistent with 
the hydrodynamic assumption of frequent collission.

Using 6.8 and writing
" k  == |3 -I- & 1= )=«, =  1=

(v^ =  V -V- <Sv V, =  V

where "S\/ are infinitesimal, 6.6 becomes

= r:X-[^^r' ~y)ky.O-X~r)(LvJ]

In general must decrease towards the outer
limits of the plasma where it must tend to zero. 
Hence ^ —  «o in this region, and
( will certainly be less than zero.
The stability condition A E > 0  then reduces to

6.11 £ { ̂ Adi] <<=>

i.e. çb ^
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Applying this criterion, with the additional 
assumption curl B = 0 in the low pressure region 
considered, to a mirror machine with magnetic field B 
B = ( C-C ) Rosenbluth and Longmire
obtained

[ dZ.

for stability.
It must be noted here that the perturbation 

used might not be physically realistic, i.e. in terms 
of the energy principle, it is possible that no J 
satisfying the hydromagnetic equations, exists which 
describes the motion visualized in this theory.
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Generalisations to Finite Pressure Plasma.
In order to investigate stability within the 

plasma, as distinct from near the plasma boundaries, 
it is necessary to remove the condition ^ ^  .
The consequences of this are as follows ;-
a) curl B is no longer zero but must be obtained 
from 5*5*
b) both factors of AEj. =  must 
be evaluated.
c ) ^  cannot now be ignored since B no longer
approximates to a vacuum field*
Restrictions which are not relaxed in this section 
are those assuming and p/ constant along a
flux tube, and assuming the volumes and cross-sections 
of the two flux tubes undisturbed by the interchange* 

The requirement for stability is now

.1 A E  =

This expression will be evaluated for a mirror 
machine with magnetic field
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-  -

Diagram ?a shows the planar field lines of a mirror 
machine with field given by 7.2. Before evaluating 
7.1. we introduce the variables ^  ̂ ^ and OC
defined by

7.4 ') -  #

From the diagram the constant flux through the 
annulus between the surfaces of constant 
containing the lines 1 and 2 is

7,3 = Ŝ TT-r- S3> —  n- Bjt Sr'

Then

=
“  a-jT
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7.7 Hence 2 ^  =. "f

Obviously ^ ^  » %  are all constant along
a field line since they depend on or
Using these results we will now evaluate the change 
in the magnetic energy

<5 ~  ̂ B c6& — ^ B  cL(

=  -J(VvB).ct_S

by connecting the field lines at the ends to make a 
closed contour, and using Stokes Theorem

= - J ( V x  b ;̂  3) Cî

where D is the perpendicular distance between the
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two tubes and is defined by 7*5 

D = 3  . Using also 5.12.

7.8 <5Jscte =  -  j B

The change in the material energy is

=  s v ( ^ k  +  r p

where =  |b’J , and ^  ~

<SV=

7.10 =  +  4) j B

^ j § 1 ^
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The integrand of the second integral in this 
expression must now be evaluated in terms of the 
field variables B,r and R the radius of curvature of 
the field line in ^  space.

- - f ' K

7.12

Now if R is the radius of curvature of the field 
line (flux tube) along which integration is 
carried out

7.13 -Q- -  ^*>1

thus JL — ^  f ') y R

g3 ) ̂  V BmJ B  \ B

=  BÎ
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Comparing this with 7.12 it is clear that

7.14 -  A  '

Substituting this result in 7*11 gives

7.15 £ I f  -
djg

Rf B"

and this in turn gives the following result
for <S V

.16 f

Writing J ̂  =  l< j j B oÜl =  T  j

- A ' J f  - * =

SO that , the expression for
can now be evaluated

Combining 7.17 and 7*9 the complete energy change 
may be written as
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7.18 M  + f  [A'/r +
(p> '

i.e. the second order energy change is a quadratic 
form ■i' ^ t h e  variables
^ ^ ^ necessary condition for stability is,
therefore, that ^  (ĵ j be positive definite,
otherwise there exist values of C” and
S(p ("=̂ 0) which make A E  negative. The condition 

for positive definiteness is (i) Q  > O  ;
and (ii) 61C —  ^  > O
(i) is automatically satisfied since the integrals 
J and K are positive. The condition to be 
satisfied for stability is therefore (ii)

+  V/>x) - Y ^ x f  >  o

7.19 (fîV+V ) b x ) ( ^ ^  -  yk) >  Û

This inequality may be satisfied in two ways as 
follows :-

 ̂K'*-(i) 2̂ /^TT > — ^  and %  >  P

or
(ii) y'pz < -  and X  <  4TT

Taking ^  O these reduce to
(i) ypx > -
or
(11) X  < cJ
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Written explicitly as integrals these are

or

7.21
R-rB̂ (J S

Now 7.20 is precisely the inequality 3.16 obtained 
by Bernstein et al (z), and 7*21 only differs from 
3.15 by a Schwarz inequality. 7*21 is in fact a 
less stringent condition than 3.15, and this is not 
surprising in view of the restricted nature of the 
perturbation considered in this theory.
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^8. More General Perturbations.
In this section we continue to be concerned 

with a mirror machine type of magnetic field in 
which there is no ^  component. As in the 
previous sections the system will be assumed to obey 
the ideal hydromagnetic equations with scalar pressure 
but an attempt will be made to consider more general 
perturbations. It has been assumed up till now that 
the pressure in the flux tubes I and II is constant 
after the exchange has taken place. The consequences of 
relaxing this condition will be investigated, as will 
be the consequences of allowing the volumes, and 
cross-sectional areas of flux tubes I and II after 
the exchange to differ from their values before the 
exchange•

Consider, first, the change in material energy

6.6 ^ -  h W l

Assuming that the pressure obeys a local adiabatic 
law during the exchange,

(Kj



8

and integrating these equations along the flux 
tubes we obtain the following constraint equations

8.1 j (K) A  %

p J-J (Pi) A = A
Now suppose

•3 A' = A, A* 4- A * *

»-4 K  - A, ( ^ f  4- A ’ 4 A ”
where ^ a r e  the first order infinitesimal 
fluctuations of the pressure, and are
the second order fluctuations, and all four are 
functions of ; e.g. = P^Çt) * On
substituting 8.3, 8.4 into 8.1 and 8.2 equations
are obtained relating p  to ̂ and to

. Using these relations we will eliminate 
P and P ^ ^  , making it possible to minimise

algebraically for  ̂ p~^ .
8.1 and 8.2 reduce as follows
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Hence

Ai/v, ’ >16
Yjb,

P* -f p** + (yiftzX}y,/ py ? A

8.5 i.e. J jo* /A, ôé’i = o

j(P'4f  A.oa-,

In exactly similar fashion

8.7 t

On substituting 8.3 and 8.4 into 6.6 this equation 
becomes

 ̂ ( XI A  - p M  - |b,\4

4- v'-/ +j‘Cf3̂ + ^ j

- - X ^ é v ( S k . y k ^ )  Y+f/b^f? A c ^



— 68 —'

after using 6.10 to obtain the first term^
8.5 and 8.7 to eliminate the first order part 
of the second term and noting that 1 and

V, % are 1 to zero order. Hence

8 A M

where  ̂^  C , and ^  is given by 6.10
Thus 8.9 is minimised by choosing A  —  C> i*e. A E  
has its minimum value when /?/ and are
constant along their respective flux tubes.

Finally, in this section, a new perturbation 
will be considered which may be represented 
diagramatically as shown below.

/ \

8a

/ \

Unperturbed

s

8b
Perturbed
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Here the change of magnetic and material energy 
due to this perturbation may be written down as 
eight energy integrals along the four perturbed 
and four unperturbed flux tubes. The original 
flux tubes I and II are now no longer constrained to 
have the same dimensions after the exchange as before, 
and to cope with the resulting distortion of field 
lines and plasma outside these tubes the concept of 
neighbouring flux tubes III and IV has been 
introduced* These tubes may be regarded as 
enveloping the original tubes I and II. The method 
will consist of minimizing the energy change with 
respect to the cross-sectional area (on which the 
magnetic energy depends) and the volume (on which 
the material energy depends) subject to the 
condition that the plasma external to the four 
flux tubes remains unperturbed, and to the constraint 
equations arising from the purely geometrical 
relationship between the volume and cross sectional 
area of the perturbed flux tubes. When this has 
been done the final expression still depends on p 
and , quantities measuring the relative magnitude 
of the enveloping flux tubes, in the form "^7
and the expression can then be minimized by 
maximising this factor, i.e. by choosing o(—> /S— ^ «=6 
which is the condition we would expect on intuitive
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grounds since this corresponds to the 
perturbations external to tubes I and II 
being absorbed in a relatively infinite medium. 
There now arises the question as to what 
orders of magnitude the variables must be.
In particular if and p are to become
infinite some of the procedure of changing 
volume integrals over flux tubes to line 
integrals along field lines must now be 
examined more closely. Since the answer to 
^his question is of fundamental importance 
to the present theory it will be discussed 
in full in a separate section ( §9 )• In 
the meantime it will be assumed that the orders 
of magnitude of the fluxes 0̂   ̂  ̂ ^
are such as to make the following work valid.

Before writing down explicit expressions 
for and the constraints will be
considered. Conservation of flux requires that:

8.10 B,'A,' = 8, Aa  ̂ =  B, A,

8.11 b " a '' = o(B,a , ; B̂ 'A'̂  =

Conservation of total cross-section requires 
that :-
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8.12 /i, = /\, + /4,  ̂ A;, 0 /S) “ /I, A,

Conservation of total volume requires that:-

8.13 X (' —  X  +  X J V,

Then if

8.14 A, =- A,(i + f)  ̂ A, =

where f and g are infinitesimal functions of ,
substitution into 8.12 ^ives

8.15 A," =  A , ( d - - P )  ■

and if

8.16 V, tss V, ( / ”+-

where h and k are infinitesimal constants, 
substitution of 8.16 into 8.13 gives

8.17 x" =  ; \4" =
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The geometrical constraints are

V  = ; %  =

8.18 i.e.

Expanding f,g,h,k in powers of f gives

and similarly for g,h,k. 
Using 6,4 AErri is

8.20 a :

~h

0-  0 * -i) -



where use has been made of 8#l4 and 8 «15

x*e
%TT A  =M - ÿ  (-9, -9, +  9")

i.e.

- A)+ -̂i)j+

-  &7T 4- F (9,, 9L, f., Q

where ( A  },is given by 6.5, and F written to
second order in is

Hence

8.21
<P

=  +  FCf,g)
4> S7T



where

8.22 F  =

In evaluating A  2 ^ it will be assumed that 
the pressures in the perturbed flux tubes are 
constant along the lengths of these tubes, an 
assumption which is justified by the remarks at 
the beginning of this section

8.23 (y'i)AEj, =  ( K h '  +

■̂  ( K' Vi + PC y" - =!̂ ,V, -/3 

The adiabatic equation 2.3 is used to evaluate

A' , A; i A" •
8.24 p,' =  (^) A, ; A

8.25 A/' = (̂J A ; A  = f̂ fp
After substitution of these results^ 8.23 becomes
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After substitution of these results^ 8.23 becomes

Or- -pv.~ AV,]

~  A?/3v{|

and on substitution of 8.16, 8.17 into it this 
last equation becomes

(2T-')AEj, =  (i-̂ A) y- C'+-̂ ) -p,v,~ A
+ [hM"f] + ff- - f̂pv,]

a :

+  h;X X  
*

4-

I.e.

(îT-oziE,, = C^-')(^^0, ^

where ( A  E  ), is given by 6.10, and G, written
to second order in is given by
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(pQ - -4, -*■

i.e.

8.26 Q C A  ^ ) =  + pi<(A~A,](^ +>'^)

and

Adding 8.21 and 8.27, and dropping the subscript 
1 on h ,k ,r and g

8.28 ^  +  /=" (̂f; ar)
^  (p S-tt

On dividing 8.18 by ^  and considering only 
first order components the constraint equations 
may be written as
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8.29 J . K  =  ; A K =  f

Ve now proceed to minimise A  E with respect 
to f and g subject to the constraint equations 
8.29. This is equivalent to minimising f“ )•
The Euler-Lagrange equations are

B H. 3^  . 0

f S ? " "b Î

Substituting back into 8 .28 to evaluate ^  and 

p we get  ̂̂  l_cx̂ range mcvlhpliers J

~ V “ 1 # ]
On writing P = H these equations

Jbecome

^ “ T  (? -
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On substituting these results back into 8.22 
P becomes

d /3 p-where S l  “ ô.̂i -̂h \ * and is the
minimised value of P.

A  E is now a function of h,k, <=< ,p 

^  -H -t- ^ S7r

T^e next step is therefore to minimise Q  Ô̂7T
with respect to the pair h, k.



The Euler equations are

' • ■'■ -I-4.7r('<£|3+v/>̂ j| = o

8.33 .', ^  =  — J A  J Y  -h A-TtH (<Ŝ -t- Y p  y )
-̂h\ K 4- Att y  Id h

and

o(C< 4-rrV^j +  k i r C a ^ + y ^ ^

0.0/, ■ r ____£L M  krr H (S>p+Yk̂ )8.3'» . . ^  -  ^+, u v Y p H

8.35 Q  ^  J<!7^ ^+LrT^A/r, /<̂  7
Stt % STTTtfJ ^ ' ^ 1

+ ( - ^ - 4 ? ^  *■ - x j

Then writing ^ _ XI il?- j"lL H J

8.36 Q=r JK -¥ Utt H (Sk-̂y/> ̂ )

and
S = 1̂-4- Avr H
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and substituting 8*33 and 8.3^ into 8#33 this 
equation becomes

j_ KQ. 
^ ATTH

8.37 =  - zQ=. e
^ UTTHS

where the suffix m denotes that ( Gt "*■ ^/sTf ) 
has now been minimised with respect to h,k# 
Using 7.l6 we may write down Q as
(̂  = 'J/<r 4- kir H f 4- k'rry/̂H

.  ^

=  ̂(K-f krry'fDH) 4- I

8.38 = ^ S 4- ^ T

v/\erç T  = ^ K +
Substituting 8.38 in 8.37 gives

+ c
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.-ĉAiLH. ( P'K +ypj:fj ̂ J-1
^ K+U-jrypH J % ( ^xrJ

i.e.

Returning to 8.37 it is clear, since K,H,S are 
all positive and since C is negative, that 
this expression is minimised by maximising

S L  =  J $ r  ] • 8one by
allowing g to take unboundedly large 
values. When this is done —TL — ^ 2 *
The final expression for E  is therefore

f  " - I
with — - given by 7.18, and this is
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i.e
A E  e" f I  - 1.T7-H (p'K + yp̂ n^  ~ f ^  F  K.4-n-^A« i

=  (>'K+'>̂AA) (J/<-
S K + ATT ̂  jb H

C -^Ypuyis ~ Lirp' H)
~  S X +  k-wYkH

As with 7.19 this will be positive if either 
of two conditions is satisfied

8.42 dJL > o
R'T S

or

This is precisely the result obtained by 
Bernstein et al (2) using the energy principle.
In fact 8•4l is identical to their expression 
with X for ^ where ~  the ^
component of the displacement. In 8.4l —  3) 
the perpendicular displacement of the flux tube.
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^9• Validity of approximations.
The crux of the theory in earlier sections 

is the assumption that the volume integrations 
over flux tubes can be replaced by line integrals 
along lines of force. This obviously requires 
that certain variables be infinitesimal, and 
we will now investigate the detailed consequences 
of these assumptions.

In ^7 this substitution of line
integrals for volume integrals was, up to a point,
rigorously possible, and it automatically defined
the lines of magnetic field , and as
follows•

d V  =  f cLÂ  (Jx.

9.1

A  (A)
oLA

The flux contained in a tube is

9.2 =  j Bo6A



- 84 -

and the magnetic energy integral is

and s this is

9.3 b V v = M a.
sJ

4>.
BoL(p

Equations 9*1 - 9*3 are all exact equalities, 
but to handle them more easily the following 
approximation was made.

If S =  B where \  labels
the field lines in a tube then B was replaced by 

=  H  (i) Cx. =• ij Q) which is its
value at a particular point in the cross section 

(viz where cuts ) . Then 9*1 - 9*3 
reduce to

f r
cLV = (A gTA

B j

Since

9.5 0, = B. I ctA — Bt Â_

ÿ d V  = lo(̂
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s. -e9.6 j
which are precisely the equations used in ^ 7 and 
§8.
Now if J is taken to be the fundamental 

variable, it is clear that 9*4 and 9.6, which 
occur in the expression 7.1 for ^ E"  ̂ must each 
be correct to zero order in J . i.e. we must 
have

.7 [ ct v =  01  f •+ 0 ( | ) J4 J

and

9.8 [s'av =  ['+ 0(1)]

The question to be considered here is: what 
order of magnitude must be in order that
9.7 and 9*8 will be satisfied? We answer this 
by considering 9.1 - 9.3» and by assuming that 
0  is an infinitesimal, i.e.

9.9 (p —   ̂ (nx)
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To consider ^ clA it is convenient to introduce
variables ^  such that, S form a
local system of cylindrical polars. S is 
perpendicular to the = constant surface, and

^  along the surface* Then =  Jj"sc(ec(S
as shown below

sutA
Section of flux tube.

9.10 Then j B d A  =
-'a

clD s ds

Expanding B in a Taylor series about ~ 
9*10 becomes

do

B<.4, 4- ■5.3 de
J

C s - s j s d s

But

^  4  I ||i ma^xCs-sjA^

maxfs-S,) =  =  a(4>,)

Hence
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In similar fashion

j = BIa ^ L ' ^  , -rkui q.3. b

and on inverting 9*11 to obtain

9.13 =  d>̂  [' 4- c>C4i)j

and using this in 9 *12 this equation becomes

Similarly 9*1 is

9*15 j dv = (%

Hence 9*7 and 9*8 will immediately be 
satisfied if n is taken to be 1 in 9*9 i*e* if

9.16 0 =  0 ( 1 )
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Turning now to the actual perturbation as 
visualised in diagram 6b; if there are m flutes, 
then

=  ̂  ̂^ If ( s fioihc
o(i/„

=■ mFrnihe.̂  in fath

In either case 9*16 is satisfied.
Thus the theory of ^7 holds whether or not

^  ^ • In ^ 8, however, the above
remarks hold with c/>, (Ẑ replaced by
and hence according to 9*16 we must have

=  0(1 )  ; f3<p̂  =  0 ( 1 )

and therefore

9*18 = ^(kj = ‘=^,=/8)

Thus if m is finite » and
according to 9* 18 the approximations are only 
valid if may not
be infinite. Only if m is infinite, hi =

=  O ( J f may be
permitted to go to infinity. Finally we note
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that since ^ the independent
variable S p  =  ^ 0> must satisfy

9.19 6p =

These results may be summarised as follows :- 
In ^ 7 the theory applies to finite m modes 
as well as to Hi =  . In the finite m case
the variables satisfy

^  o>(|) j S(p = j

For m  —  ^  , if O a =  the
variables satisfy the following equations

0 - 0 ( 1 " ' )  ; -  O  (I"*’) ; p -  of|j
In §8, if P are allowed to be infinite 

the approximations are valid only for 
In this case if rrt =- O  the following
equations hold

0  =  0 ( f " )  ; -5(6- 0 ( 1 " " )  ; 0(1)

c(̂  =  o  ( I * a n d  t h u s  =  Off)and
If m is finite the maximisation of
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+ — &—  must now be carried out-A i_ - oi-^\ ^  /B+{
subject to a constraint, viz : -

9.20 ^  ^ K, 1 a  (Frô  9.18)

where is a finite (but arbitrarily large) 
constant•

In fact, for the interchange considered

9.21 0  ^  !— ^3. where K„ is a finite constant^  rn 2

Hence the constraint is equivalent to

m o(̂

i.e.

9.22 ^  m

Then to maximise  ̂ ^  m  , and

9-23 (i+

where as noted above may be chosen as large 
as we like, still remaining finite. If this 
value of max is used the result is



=  4- f--------7 r A-osiF.vê
\ / M  =  o6> /̂<̂ -f-fXl/<;j ( Ucxnhhy j

Hence if mode m is unstable so also is m-f-i
and the worst possible case is with tn, — > <xi> 

This result was also obtained by 
Bernstein et al. (2).
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^10. Inclusion of Field.

The theory of ^7 and ^ 8 can be applied 
to the case with magnetic field

10.1 b' =  (8.^(7; 5), B e , ( r , z \

whenever the exclicinge of flux tubes 
visualised in these sections is possible. This 
requires that two flux tubes having originally 
the same ^  co-ordinate will continue to have 
the same 0  co-ordinate along their lengths, and 
will not sliĵ  round the = constant surfaces
away from each other. In the general case 
the ©  co-ordinate is given by =  J ^
Tlie condition under which the theory of §7 and 

8 will be valid is therefore

- . cLe
10-2 ^  j 2T  ̂̂

The lines of force of the field 10.1 are 
defined by

10.3 A" = ^  ^ ^ c(£'
B r  Bji B  s'



10.4
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where B  =  ( By ^  j %) ^ is
given by 10.1 and cCé  ̂ oC£^ are elements of 
length along B and B* respectively.
From 10.3

=  J êl -cU <rJB

3) rThe operators , and o are related as
follows

10.5 cS =  ^  ^

&
surface, and therefore
where is the derivative normal to the

Then the condition 10.2 is

^ SpucU = o

where c£ is given by 10.3^ and this integral cein 
be evaluated using the methods of ^7* Thus



-  -

[y -  8 ^
'T 8 cUL =  C)

oÜ2 ( 4 ( V . § ) . +  (8,^,- B , i ) B

10.7

after using 10.5* When 7*l4 is used to evaluate the 
last term of this integral as p b  • and

is replaced by T 8 , the condition
for validity of the exchange reduces to

I/di' L_
/  (/^ RrB

where ̂yoĉ  =

= O

In evaluating A E , equation 7*1 still holds, but 
5.11 replaces 5*12 in the elimination of ^ •
The four integrals involved in 7*1 are :-

B
cL£

B etc ; f B CiC and Kiese

integrals are replaced as follows
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10.8 f cLg r cüe _ rJ  -B- -  J B' B = K

dH cT r oLÇ' 
B'

=  - S ï oU
R i-B’-

C Y  ̂  a U

10.9

using 5*11.

J BcCt-4 |B'ctC' = C (B')̂  cce
B

= j Bote 4- j Bio6e

10.10 = f B M  -f- -P̂ 'M.

B
M

'T'̂ B

since 4  =  n  i"t> -  f' .Then using 5*11

10.11 s B'dt' - - f<f + M'I + f 4
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Stokes Theorem is used to evaluate the last term

oU j - i

^ar)-0^’

Then using 7.l4 to evaluate the second term

Sf.-T-̂ 8 5 T-* a-5 4 g 3 « a  .  4 - M .
B

10.12

On substitution of 10.12 into 10.11 and use of 5*11

10.13 cS|e'oi^'=- [*.cW
s

Using these equations the expression for A  E  
obtained in 7*1 can now be evaluated. The various 
integrals involved will be denoted as follows

-  = j ^ .  - I  ; f f . ic

10.14 j-y-»- 8 = L - ^  = M  . f J Lg3 i-r+g)

/,
B= + = ?
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Then , . r / i
[ f  =  = |B'c^ =  J-4P L

g(Q'M'=- 4ff'|L44TT^'/|A1+fV|A'-!?f"|P

Then
6.10 A  E"̂  = "y') where

V = c;i>Ĵ ' = ; (SY = (S0. x-f 0 (|x + Z'f'iai)

10.16

and from 6.5

= 1  +ĵ f’'L + tTrt5'||<-ff|L-4Trp/|n-fV''|A/+5f|p|

X0.17 =^^]"+P^Lj + ^|47r^V<-f/:'i.-4Tr/5'/A7-/f'/V+?f^p’?

Then combining 10.16 and 10.17 the result is
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10 M)

-  ff'L _  _  f V V  _  f
8'H' ^ gir 47t

+ f  (Eÿ£>l) I X/< +y ^  Cx+ f p'M)j

Section § 8 goes through as before with 8,37 
giving the resultant negative term in .
With _Q_ ■=■ ^ this is

8.37 ( G + ^

Where

«" 1 #  ; = I f

5,= /<•-+-A-n-y'/^H  ̂ Qi^= '̂ /<r-4.ùnrH (Sp>+~>^k^)

i.e.



- 99 -

Hence
^  K  (K^U-TTykj^

+ WrH -ĝ  \_\̂ K + y^(X+ ff M)]
^ 5 K f- 4Tr iŝ ̂ H

Hence
10.19 ( G + ^ ) ^  - - ^  -+

-?^^[^'/<+ y/=(T+frAig

_  g% atth 4- (%+ pf/v,)']'̂
 ̂ ^ )< -hiirrrTŜ  ̂H

' ( # L  ^

4- K̂+2r'KX-+̂P'Al)‘if(I+PP'Ai) _ t-TTHO'KPP'fci)Y
5  i<----- -( k +4-n-Vp,H----

on addition of 10.18 and 10.19*
This is a quadratic form in ^ ^ which can
always be made negative by suitable choices of ^ 
and ^ . It will now be shown that when
condition 10.7 is applied to the above quadratic 
in that the cross term in vanishes
leaving an expression involving alone. This
is of course precisely what happened in §8, but 
the co-efficient of now differs from the
one obtained there. The indefiniteness of 10.20 
may be taken as confirmation of the belief that



the theory will fail to be valid if 10*7 is not 
satisfied.
The co-efficient of the ^ ̂  term in 10.20 is

dS. Bg M  
-r*

dm

__ urvr
S

Now

\x =

Where 10.5 has been used to replace ̂  "̂ rT
When 10.6 is used to express the abovean.
equation becomes

B

fl qf f



- ±u± -

/

Then using 7.l4 to evaluate the last term

i.e.
10.22 _ P    £  -  2 f ^  +  £ £ ^  - y -R-r^B^ -r^3 -r-̂ fî3

Then using this equation to eliminate all therterms except r jR-r̂ B̂  10.21. gives the
following expression for the co-efficient of 
in 10.20

10

and according to 10.7 this is zero.
Thus 10.20 has reduced to

/a B] ^  + f f W  I x+ ff'M - A-TT̂ 'h]
1 0 . 2 4  \ C p  K  -t- A - n - y p ,  H

As with 7.19 this expression will be positive if 
either of two inequalities is satisfied

X+ff'M y.U-rrf='H or X + > ~ £ /<
yp

I.e.

'/■ 2 %
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or

10.26 éL
r B J

p' 4- î£\££ B  :2 .

10.25 may be rearranged as
dJL
R r È^ >  ?7T/3' çU2

B V B’-H-Bà 4- f f dl

^ 7T p' f Bô ^
Ce?+ Bâ)

ff'2

Since 10*21 is zero at all points in the plasma 
it follows that the integrands are zero, and 
therefore that

10.27 R tt 3
+  G z  _ _  p ' _  Urrrp'p _  o

-r-®- &■ S ’-

- f ' =  2f
s-

-L. +
Rf B -r̂ B* B"̂

Substituting this into 10.25 and 10.26 we get
dJ2
RrB' > ^Tr p>( BldJl 4- ______ |-i_ ̂  _ 2'7T̂'

f cLg 
\ RrB'

r fJ  R r  B ^ + B g  J-r^
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i.e.

10.28 cü2
R-r

>

Applying 10.27 to 10.26 we get
f dĵ Â r cm

Cb v b )̂
< 2y/3^

r 82
s^(s’-+es)

4- r Bg
J b3(̂bV  b;

10.29
rdé 4. r Bi B^<dl 
B U-

A particular case of some interest is the 
cylindrical plasma with field § “  C^> B^M)  ̂

(no ^ dependence since Rr — "1:̂  ) .
This can be obtained from 10.1 by allowing

— > O  , in which case R —> 9 B — > Bg. ,
> -& — » &y and theref ore^^ ̂  —!— ^  .-a>%p ̂ 't Bz ̂ T-

5.11 now reads

— ~  — £iry-hctr ^2

where
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i.e.

910.30 F  ^  ~

where f,g are derivatives with respect to r. 
10.7 now reads

p ̂ = o. and therefore (l = o 
i.e.

f 3

and the Inequality 10.29 reduces to

4-Tr̂ / r ' _i.  !--- ?  f

eliminating by using 10.30 this reduces to

o <  - _ L  16 9 +  i f i f ^

From 10.31
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I.e.

_lS ^  f 6^9 f 4 7 t + B j '] , ?%(%+%)
B &  "Ark j- C O

1. e

10.32 B. A./ Ba») _4_

This is identical with 3»9» a criterion which 
was obtained from the energy principle (2).



^11. Summary.
Section ^5 consists of an investigation of the 

properties of the *rairror machine* field with or 
without an azimuthal component. Functions ̂
(the stream function) > and f —  are
introduced, which define the field uniquely and 
are constrained to satisfy It is found
that the lines of force of the magnetic field lie 
iii. the surfaces of constant , and that the
pressure is constant over these surfaces.

In section §6 the thermodynamic approach 
to stability in a plasma, used by ^cosenbluth 
and Longmire, is introduced. For low pressure 
( yS «  I ) it is shown that the most dangerous 
perturbations of the plasma (as regards stability) 
are those which do not distort the magnetic field, 
and that the * fluted * interchange(6b) in which 
neighbouring tubes of equal flux are interchanged 
is such a perturbation. The change in potential 
energy Of the plasma (6.1) is evaluated for such 
an interchange in 6.5 and 6.10, and the stability 
criterion obtained by hosenbluth and Longmire stated 
as
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where the integration is along a line of 
force in the plasma, and R is the radius of 
curvature of that line.

In ^ 7 the assumption of infinitesimal
pressure ( /3 «  I ) is removed, and a stability
criterion is established for the same perturbation
as that discussed in § 6 , i.e. one for which
neighbouring tubes of flux (not necessarily equal
fluxes now) are interchanged, the magnetic field
carrying with it the plasma, because of the * frozen
in* field which is a consequence of the assumption
of infinite conductivity, while the remainder of
the plasma external to these tubes remains
undistorted. It is no longer certain that this is
the most dangerous type of instability, so that
although the criterion obtained is sufficient for
stability against this particular interchange it
may not be a sufficient condition for stability in
general. Neither is the condition a necessary
one unless it is assured that such an interchange
is permitted by the equations of motion. Since,
however, the results of section §8 are identical
to those of Bernstein et al.(2) whose method permits
only those perturbations which are physically
possible (only displacement vectors ^ ^ , "i ) which
satisfy the equations of motion), it appears that the
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interchanges visualised in § 6 - §10 are
indeed dynamically possible and therefore that 
all the criteria produced in these sections are, 
at least, necessary for stability. The conditions 
for instability obtained in ^ 7 is

Section §8 consists of generalisations of 
the theory and methods of §7» The pressures in 
the perturbed tubes are allowed to vary along the 
lengths of these tubes, although still obeying 
the adiabatic law 2.3 locally. The energy change 
is calculated and found to be minimised by choosing 
constant pressures after interchange in the two 
tubes, and this is achieved by applying 2.3 over 
the complete volumes of the tubes. This is of 
course consistent with the hydrodynamic approach 
to the problem. Since the criteria of § 7 are 
slightly less stringent than those obtained from 
the Princeton energy principle (2) it is clear 
that the perturbation visualised in ̂  7 is not the 
most dangerous possible. The greatest restriction 
on the interchange in 7 is that the tubes are
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constrained to retain their shapes ( i.e. volumes 
and cross-sections) so that the energy integral 
(6.1) over the total plasma volume may be replaced 
by two integrals along the infinitesimal tubes.
This restriction is removed in § 8, and distortion 
of field and plasma external to the two original 
tubes (1 and 2) is contained within two 
neighbouring tubes (3 and 4), which are eventually 
allowed to become of relatively infinite volume. 
Plasma external to these four tubes must now 
remain undisturbed by the interchange, and this 
condition places constraints on the combined volumes 
and cross sections of the perturbed tubes (l + 3) 
and (2 + 4), without constraining the original 
pair (1 ,2) directly, (see diagrams 8a, 8b).

The potential energy change, A  E, can now 
be minimised with respect to variations of the 
volumes and cross-sections of tubes 1 and 2 subject 
to these constraints. This results in the original 
expression for .A E ( a quadratic form in ^ ^ ) 
being replaced by the expression obtained by 
Bernstein et al viz.;

A E  - I
 ̂ . y I l< -f- h.TrYj2>H J
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where D is the displacement perpendicular 
to the field lines, and I,H,K are integrals 
along the field lines. This yields the following 
criterion for instability

TLTS'p

Un& /"at) /p

Section ^ 9 is occupied by an 
investigation of the validity of the methods 
used in §6 - ^8, and it is shown that (l) the
theory of §6, § 7  holds for * fluted * interchanges
of all modes ( m  o ) and that (2 ) the theory 
of ^ 8  holds for ra —>  ^  , and that for finite
m

Finally, in $10 the methods of ^8 are 
applied to a magnetic field with an azimuthal 
component. It is shown that the interchange 
is only possible when^^ “ where/^” /rB
a n d , a condition arising from 
the requirement that two tubes, adjacent at 

some point in the plasma will continue to be
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adjacent alon^ their lengths, i.e. that they 
have equal ^  co-ordinates along their
lengths

Sec hon ah
Sechoir\ 
a I- "Z=̂

If this condition is not satisfied the interchange 
of complete flux tubes is no longer possible, so 
that stability may be enhanced by the addition of 
a field. For a field satisfying the

the
criterion for instability is
additional c o n d i t i o n — /R-t B

j: > dUL

For a cylindrical field B =  ( . ^ 3 BgCf))
the criterion for stability, obtained from the 
above is

The additional condition to be satisfied in this 
case is ^  * IT this does not hold,
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Suydaiu ’ s criterion applies.

Possible Extensions of These Methods.
The theory as presented here, although 

applied to a ’mirror machine’ type of field cannot 
in fact describe a mirror machine, because in the 
hydrodynamic approach there is no containment 
along the lines of force (p = constant). The 
C-G-L equations, in spite of the shortcomings of 
the theory from which they arise, could be applied 
to the method used in this paper to give some 
information regarding the importance of the 
tensor pressure. This information should be the 
same as that which could be obtained from the 
"^rinceton Energy Principle (2) for tensor 
pressure since this contains the same assumption 
of zero heat flow along the lines of force as 
the C-G-L theory. The energy integral 6.1 would 
be replaced by , ctC and the
C-G-L equations, replacing the scalar pressure 
adiabatic law ^  ^ would be used
to calculate the two components of the pressure 
( ) in the flux tubes after interchange.
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The only stability condition available at 
present showing the roles played by <̂ nd

is that obtained by -t^osenbluth and Longmire from 
a consideration of individual particle energies, 
and is applicable only to the boundaries of the 
plasma, being only a first order calculation • 
This condition is

cU > oR-r S“

which probably only represents half of the true 
stability condition, (c.f. 8.42 and 8 .43}
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