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In recent years much experimcental data has been
collected on the properties of R-mesons and theilr inter-
action with nucleons. 4 great deal of theoretical work
has been carried out trying to find some unified intsrpre-
tation of these experimental results on the interaction of
Tt -mesons and nucleons; however, no adequate theoretical
treatment of the problem has yet bsen found. This 1is
rainly due to the strength of this interaction which pre-
vents 1ts treatment as a small perturbation of the free
particle states. Several non-perturbation types of approx-
imation have been suggested for dealing with the problem
and it is with the application of two of these which we
shall be concerned.

It is well established from the experimental results
that K-mesons have zero spin and odd intrinsic parity (=
comprehensive review of these experiments and their inter-
pretation is given in reference 1). They are therefore
Bose particles and are described by a pseudoscalar field.
Ifueleons, on the other hand, are Ferml particles of spin &
and are described by the Diraec Tfield. Cf the many types
of coupling possible between these fields, two have been
studied most extensively; they are pseudoscalar (ps)

coupling and pseudovector (pv) coupling and both have the
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simplifying feature that the interaction hamiltonian is
linear in the meson field. It has been shown (30) that,
as far as a perturbation treatment is wvalid, the theory
with ps-coupling is renormalisable whereas that with pv-
coupling is not, so that, in general, unambiguous finite
results cannot be obtained using pv-coupling. Y7/e shall
therefore concentrate our attention on the theory with
ps-coupling and furthermore we shall take the interaction
to be charge-symmetric (20) which maintains the charge
independence of nuclear forces and ensures that the total
isotopic spin is a constant of the motion.

Of the various approximation methods which have been
suggested Tor solving the equations of this theory and
which do not assume a weak coupling between the fields,
two, which have met with some success, are those proposed
by Tamm (35) and Dancoff (12) and by Cini and Fubini (9).

" The method of Tamm and Dancoff - TD method - has been

applied to the problem of meson-nucleon scattering by
various authors (7),(16),(23),(28) but the only treatment
which rigorously uses the charge symmetric pseudoscalar
interaction hamiltonian is that by Dyson et al (16).
They apply the method in lowsst approximation and, neglect-
ing all self-energy effects, calculate the elastic scatter-
ing phase shifts. Although the results whieh they obtain
have no quantitative agreement with the phase shifts de-

termined from the experimental results, the qualitative
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agreement is greatly increased over that obtained from a
lowest order perturbation theory calculation. This leads
one to feel that the basic ideas behind the method are
sound and that, by carrying out a calculation to a higher
order of approximation in the method, results would be
obtained which would agree well with the corresponding
experimental results.

The application of the method of Cinl and Fubini -

CF method -~ to meson-nucleon scattéring has been carried
out by Sartori and Tataghin (33). The lowest approxim-
ation has again been used and the nucleon treated non-
relativistically so that a cut-off momentum has to be
introduced to obtain finite results. By a suitable choice
of the coupling constant and this cut-off, they obtain
very good agreement with the experimental results for the
important p-wave scattering phase shift - «,,~ and rough
qualitative agreement with the other experimental phase
shifts.

The partial success of these two methods seems to
indicate two thingse. Firstly, the pseudoscalar charge-
symmetric interaction hamiltonian is not inconsistent with
experiment and secondly, sach of the two approximétion
methods has some degree of validity.

To investigate further the theory and also the validity
of these approximation methods, it was thought useful to

apply the theory, using these methods, to another process
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involving the interactions of mesons and nucleons. The
process considered is that of meson production in ﬁeéon-
nucleon collisions i.ee TW+N— T+ +N sSometimes called
double meson scatteringe. This process has a threshold
energy when the rest energy of a meson is available in the
centre-of-mass system of the original meson and nucleon;
this occurs when the incident meson has a kinetie energy

of just over 170 llev in the laboratory system in which the
Initial nucleon is at rest. The production process is
clearly olosely connected to elastic meson-nucleon scatter-
ing, the two being competing processes when the incident
meson has a kinetic energy greater that 170 lev. By
evaluating the cross section for double scattering using
both the TD and CF approximation methods, further checks on
the theory with ps-coupling and on the approximation methods
are made available,

In the remaining part of this chapter, we shall discuss
the experimental results which are available on doubling
scattering and also the theoretical work which has already
been done on the problem.

In Chapter II, the TD method and its application to
double scattering is discussed. This work was originally
undertaken using the boundary conditions diseussed by Dyson
(15) and +the main conclusions concerning the presence of
non-physical singularities were arrived at from the

equations obtained with these conditioms. However, since
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then a paper by Dyson and Dalitz (17) on meson-nucleon
scattering has become available in preprint form. In
this, mistakes are pointed out in the boundary conditions
used by Dyson (15) and the correct conditions are formu-
latede. Cur equations have subsequently been modified by
the use of these corrected boundary conditions and are now
similar to the equations of Dyson and Dalitz. This modi-
fication of the boundary ceonditions simplifies the final
set of equations but does not alter the final conclusions
which had already been reached.

Chapter III is devoted to a discussion of the CF method

and its application to the problem.

l.2 Experimental results on double scattering.

The first double scattering event to be observed (6)
was found in a photographie plate which had been exposed
to cosmic radiation at a high altitude; the incident meson
had an ensrgy of about 1 Bev and the produced mesons and
proton had energies of about 375, 365 and 270 Mev respect-
ively.

Fry (22) found another event of this type in a photo-
graphic emulsion which had been exposed to a laboratory pro-
duced beam of 220 Mev negative mesons. This appears to be
the lowest energy at which double scattering has so far been
observed.

Blau, Caulton and Smith (4),(5) have carried out quite
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an extensive investigation of the interactions of 500 Mev
negative mesons with the nuclel of photographic emulsionse.
From their results, they estimate that the cross-section
for the production of charged mesons from the collision of
negative mesons and nucleons lies somewhere between 3.5 and
10 millibarns at this energy. They also find that in the
centre-of-mass system, the produced mesons tend to come off
in the backward direction and the nucleons in the forward
direction.

Recently, experiments have been carried out using the
1.5 Bev negative meson beam of the Brookhaven cosmotron.
The nuclear interactions of these mesons have been investig-
ated using both photographic emulsions (11) and diffusion
cloud chambers (18)s At this high energy, as well as
elastic and double meson scattering, various other processes
are possible involving the production of larger numbers of
n-mesons and also the production of heavy mesons. It is
found that the total negative meson-nucleon interaction
eross-section at this energy is about 35 millibarns whereas
the elastic scattering cross-section is only 10 millibarns.
Thus, in most of the collisions production of some type
takes placs. In those production events which were
analysed in detail, it was found (18) that about 80% of the
events resulted in double scattering, and the remaining
20% in the production of two extra mesons. Contrary to

the results at $0C llev, the final nucleons in the double
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scattering events were found to have a tendency to come off
in the backward direction in the centre-of-mass system.
These are all the experimental results which are
available at present. They 4o not give a very clear
plcture of the behaviour of the double scattering cross-
section except in so far as it appears to rise from zZero

at threshold vo sone valuwe laroer thoen the slastic secatter-
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A ezleuletion has been carried out by ilelkin and Bethe
(32) or the relative megnitudes of the double scattering and
elastic scatiering cross-ssciions. Howevexr, the devails of
the calculations are not clear as it has been published, so
far, only in abstract form. They use the lowest order TD
approximation and it would appear that they neglect all the
contributions to their egquations from seclf-energy terns.
Yaking some gpproximations as to the smallness of the pro-
duction process relative to the elastic scattering ernables
them to czlculate the ratio of the productlion to the elastie
scattering cross-ssctions; they find, among other numerical

results which are not given, that this ratio is less than 1%

(]

at an incident meson energy of 400 iev. In the discussion
in Chapter II of the application of the TD method to the
problem, it is shown that it is not valid to nezlect the

contributions from nuclcon sclf-cunergy terms in the caleul-
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ation of the Couble seottering sross=scciion. If Lelkin
an@ 3ethe have, as 1t appears, uczlected seli-snergy tsrms
in their ecuations, litile significance can be attached to
tielr results.

Tvo caleculations have been carried out in each of which
the angular distribution of the produced particle, obtained
from various types of coupling of the meson and nucleon
fields, are compared, Kovacs (27) has compared the angular
correlation of the two emitied mesons for the two types of
interaction when the meson-nucleon interaction is much
stronger and much weaker than the meson-meson interaction.

In the first case, the incident meson interacts directly
with the nucleon which then emits two mesons; in the second
czse, the incldent meson interacts with the virtual mesons
surrounding the nucleon and two mesons are then ﬁro&uced by
this mechanism. Kovacs has carried out a calculation at an
incident meson energy of 1 Bev using scalar theory i.c.
scalar mesons with scalar couplinge. He finds in both cases
that the angle between the two mesons tends to be small,

this tendency being much stronger in the case of strong
meson-meson interaction. lliyachi (31) has calculated the
angular distribution of the T'-meson relative to the incident
K-meson in the reaction W +pP — 7T'+%x"+w at an incident meson
energy of 210 llev. He treats the nucleons non-relativistic-

ally and first of all compares the results of lowest order

perturbation theory assuming ps-coupling and pv-coupling.
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For ps-coupling, the T-meson tends to make a large angle 0O

with the direction of the incident meson whereas, for pv-
coupling, the angular distribution is symmetrical about 0*%
and is (2+ee0) « As Miyachi points out, not much sig-
nificance can be attached to these lowest order perturbation
theory results, and he attempts to improve on them by ocon-
sidering the production as taking place in two steps.

First of all a scattering takes place between the incident
meson and nucleon which is followed by the nucleon emitting
the second meson. For the first step, he uses the scatter-
ing matrix element galeulated by Chew (7),(8) and assumes
that the second step takes place through pv-coupling.

The angular distribution obtained by this method 1s rather
similar to that obtained from the lowest order pv-coupling
calculation but more isotropic. At an energy of 210 lev
which is only 40 Mev above the threshold for production, one
would expect that the mesons, having a very low energy,
would be produced predominantly in s-states so that an almost
isotropic distribution, as obtained by this calculation of
Miyaochi, seems likely to be correct.

The most extensive plece of theoretical work so far
carried out on thé problem has been done by d'Espagnat (19).
He attempts to investigate as much of the general nature of
the problem as he caﬁ without making use of any of the approx-
Imations of field theory. He does this by drawing an

analogy between the processes of elastic and double meson-
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nucleon scattering and the resonance theory of nuclear
reactions. By assuming that the production process is
much smaller than the elastic scattering, which is certainly
true near the producetion threshold, he is able to cast the
formulae for the production and elastic scattering cross-
sections into forms similar to the formulae which arise in
the nuclear theory. For this analogy to be trus, he finds
that for those energies at which the elastic scattering
goes through a resonance, the production eross-section must
go through a maximum. From'this he deduces that if the
resonance in the elastie scattering at a certain energy is
due to a resonance in a certain state of lmown angular
momentum, parity and isotopic spin, then around this energy
the production takes place predominantly through this same
state. However, it is now almost certainly established
that meson-nucleon scattering through the state of angular
momentum*i,emxlparity and isotopie spin %_ has a resonance
at about an incident meson energy of‘l90 VNeve. d'Espagnat’s
results imply that, around this energy, the meson ﬁroduction
takes place predominantly through this state; this is not
consistent with the view that, around this energy which is
only about 20 lfev above the production threshold, the mesons,
having very low energies are produced almost wholly is s-
states i.e. the production takes plasce through the state of
1

angular momentum 3 and even parity. This would seem to cast

some doubt on the validity of drawing this analogy between
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meson-nucleon reactions and nuclear reactlionse.

Still making use of the assumption that production is
rmich less probable than elastic scattering, d'Espagnat
develops a relationship between the matrix elément for pro-
duction and the elastic scattering phase shifts, which he
takes as known from experiment. However, tc investigate
the conseguences of this relationship, he is forced to make
some approximation restricting the types of intermediate
states possible in the production process. By considering
the contributions from the various terms, in which different
intermediate states occur, of the lowest orxder perturbation
theory matrix element for the production process n'eh— xex'en
and, by making use of the experimentally determined slastic
scattering phase shifts, he maintains that the largest con-
tribution to the matrix element for production comes from
that part which corresponds to the following oxrder of pro-
cesses: scattering takes place between the incident meson
and the proton and finally the proton emits an extra meson.
Taking only this process inio account, formulae for the
differential and totezl production cross-sections in terms of
the elastic scattering phase shifts are derived. The only
result obtainéd by d'Espagnat from these formulae is the
order of magnitude and energy dependence of the ratio of
the production 1o ths elastic scattering croés-sections.
“his ratio he compares with the szne ratio caleculated from

the statistical theory of Fermi (20) which we shall discuss
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at the end of Chapter III. He finds that the two ratios
agree In order of magnitude but that the ratio, determined
from the statistical theory, increases more gquickly with

energy than does his.
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CEAPTER 1II.

2.1 Tormulation of the Tamm Dancoff method.

The approximation method as originally proposed by
Tamm (35) and Dancoff (12) for solving problems involving
interacting fields is based on the following idea. Suppose
a system of interacting fields, which is described by the
hamiltonian HeH + H' where H, is the hamiltonian of the
free fields and H' +the interaction hamiltonian, is in an
eizenstate |¥) of energy E i.e. “

(Ho+u)1 @Y = €1Q) (2.1)
Since H, is a hermitian operator, its eigenfunciions \@J,
mo,t,i.., form a complete orthonormal set,|d,) being the state
vector describing a state containing n free particles of
total energy E. — H13):e3.). Thus, |§) can be expanded
in terms of theld)as ,

\g) = 2.\. a (W) 1. (2.2)
where a(n) is the probability amplitude for finding the
system containing the n free particles specified by |3.)
1f it is first put into the state |¥) and the interaction
is then switched off.

Introducing (2.2) into (2.1), we obtain
(B-edal) = Z (BIWIE) al) (2.3)
which form an infinite set of coupled integral esquations
for the amplitudes a(n).

The TD method consists of approximating to this infinite
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set of equations by a finite set obtained by setting equal
to zero all amplitudes for states containing more than N
particles; the fundamental hypothesis behind this method
is that, if N is large enough, the results will be insens-
itive %o the value of I and will tend to some finite 1limit,
which is the solution of the infinite set of equatiomns (2.3),
as N tends to infinity. (2.3) now becomes a finite set
of (N+1l) coupled integral equations for the armplitudes a(0),
a(l)~--a(N) which can, in principle, be solved rigorously.

However, making this approximation leads to a serious
difficulty which is conneceted with the self-energy of the
vacuume. Every state |9) of the interacting fields con-
tains a large number of particles which are continually
being created and destroyed in the vacuume. Restrieting the
total numBer of particles to I sets up an artificial correl-
ation between these vacuum fluctuations at points widely
separated in space; this appears in the equations as a
spurious effect of the vacuum fluctuatlions, which are, in
general, badly divergent quantities, on the behaviour of
the real particles. Dyson (14) has suggested the following
modification of the TD method which overcomes thls difficulty
and which has other advantages over the original method which
will be discussed later.

Let |%.) be the vacuum state of the interacting fields
with energy E i.e. (Ho+w)'3) = €00 where E, is the
lowest eigenvalue of H; 1let A(n) be the product of free
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particle annihilation operators for the particles specified
by n and C(n') a similar product of free particle creation
operators foi* the particles specified by n'. We now con-
sider the quantity {{,\c()AWIY) in place of the original
TD amplitude a(n). For the purpose of comparison, we note
that, 1f 13.) is the vacuum state of the free fields, then
18.) = CLW1\3,) so that from equation (2.2) the original TD
amplitude can be expressed as
ald = B ) = <34AW )
Thus, in the amplitude a(n), the physical state \¥) is
described in terms of the bare particle state \d,)), whereas,
in the new amplitude {{,|c(w) AW IgY) , it is described in
terms of the real state |3). (@.\C(w\mu\\\'y\ is inter-
preted as being the amplitude for finding n' free particles
more and n free particles less in |¢) than .{n '@ « From
the So»hroedinger equations
HIDY = 1) and  HITY = EAT)

it follows that

(€ Eas e) LT O AWNITY = B[ et ALY, w]iE) (2.4)
where E and E are the energies of the n and n' free
particles respectively and €= & -€, . i’he interactim
hamiltonian H' can be expressed in terms of free particle
creation and énnihilation operators so that, after some man-
ipulation, the commutator in (2.4) can be expressed as a sun
of terms each of which is in normal order i.e. all creation
operators lying to the left of all annihilation operators;

-
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the right side is then expressed in terms of the new TD
amplitudes. Thus, like (2.3}, (2.4) is an infinite set
of coupled integral equations which can be made finite by
the TD approximation which we have already described.

In the case of the pseudoscalar charge-symmetric inter-
action hamiltonian H = Lq gc\’u me,t;q“m“‘\ , where the
notation is standard, the vacuum self-energy terms, which
cause difficulty in (2.3), arise from the fact that, in
(2.%3) H' can create three particles at a point with two
arbitrafy momenta and subsequently annihilate these same
three particles; the integration over the two free momenta
leads to divergence difficulties. However, in (2.4) onse of
the particles created or annihilated by H' must belong to
the set n or n'; +this condition prevents“the presence of
any vacuumn self-energy terms in the equations.

Eguations (2.%) and (2.4) also differ in the facet that
the energy appearing in (2.4) is the physically observabls
energy of the system since 19,) is the vacuum state; in (2.3),
the energy E is not a physieally meaningful quantity as what
is observed is always an energy difference.

From now on, we shall work solely in terms of the modi-
fied TD method. It shoulq be noted that nowhere in setting
up equation (2.4), have we used the fact that ) is the
vaguum states Equation (2.4) holds for any "ecomparison
stzte™ |y) and then ¢ is the eunergy difference between the

states 1) and \3,) .
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2e2 The integral eguation for elastic and double scatteringe.

vie sqall now set up the formalism for an lonvestigation

by the ID method of some of the couseguences of assuuing a

coherge-syanetric pscudoscalar intcraction between the méson

and nrucleon Tields.
The meson-nucleon system is described by the hamiltonian
Hoz Hoa (2.5)
where H,1s the sum of the free meson and free nucleon field
hamilbtoniars, and
Woe g (40 00 gt dad Wi (2.6)
the repcated suffix o being summed over the values 1,2,3.
The T« are the usual isotopic spin matrices. The &yl are
the meson field operators; &) and ) describe the
charged mesons and &) the neutral mesons. Wix) is the
nucleon field operator; it is an eight component spinor
such that if < :3(r tit,)
L) = W) and T = Wl
where by and P, are respectively the meutron and proton
field operators. Also
T = b and T, Yold) = = Py )
Tl = prind \« where W*W) is the hermitian conjugate of W
and Yu and yg are the usual Dirac matrices i.e. y:f and
B; s ld,d,a,.
Yorking in the Schroedinger representation, we can
expand the field variables as follows

L« v %, bolk) wlb) < *2 | (2.7)
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vy = v ;Y, bt (p) o4 & B (2.8)
Bl ,,Z, (m‘,\""io\.‘m +at§(-\z\]¢"*"= (2.9)

The momenta D and k are summed over the normal frequencies
of the large volume V and the spinors u(g) are summed over
the four spinors satisfying the eyuation
(h 4 M) wlp) = £Ep wip) (2.10)
where Ehz\ﬁgzzﬁ , M being the nucleon mass and the units
being such that R=:c=21. The spinors are normalised such
that
W WD) 5 S by (2.11)
p 1s the meson mass and wiFept.
6all) is an operator which destroys a meson of
momentum k in the charge state X and dﬂ(u creates a
similar particle. These 6perators satisfy the commutation
rule
[&¢Q\,d2(%] : &“jg%g (2.12)
"hen u(p) is a positive energy spinor, thg is an
operator destroying nucleons described by u(g) and b:Uﬂ
is an operator creating similar particles; when u(g) is a
negative energy spinor, buWX is an operator creating anti-
nucleons described by u(p) and b:m\destroys similar particles.
These operators obey the anti-commutation rule
ANV} b:«(h'\'ﬂ = Suw Spp (2.13)
The meson and nucleon operators all commute with one

another.
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To make use of equation (2.21), we require an expression
for H' in terms of oreation and destruction operators; this
can be obtained by introducing eguations (2.7),(2.8) and
(2.9) into (2.6). The integration over x and the summation
OVET one oi’ the momenta can be carried out, giving |

W :q % M&a.‘t\g\*fxf&\:\] o) b (g et} e () (2.14)
where Ay * ‘f&l\l‘“}\}‘

Let us first of all consider the two particle amplitude

(OIbtp)adp)\ Q).  Equation (2.4) gives for this amplitude

(e-op-Tn e (@Al el = <BMwpacty, w]igy
where  Tubb): #1 for (pad+pmhuly) = +Epulp)

-t for (-h« MY ul) = -6y wlcp)
Using (2.14) and the commu’cation relations (2.12) and
(2.13), the commutator in this equation can be written as
a sum of normal products of the operators so that the right

side is expressed in terms of TD amplitudes. e obtain
le- T EITIAMID) = qh By %[&\-\-.\\m u'm] (g, b1
+q r?: A [y, m.m][@,\ LXCATWOP{RTT)
| T KB &) b lpa) axip) @5}

+ )y 5& (b e k«.\]h’iw\ Uelt) (R b2t bt w8
+ T @ T b ) Blla-b) b1 )
~ 02 Lp) Ve (KT berla bl ) bt )
- Bl Gl T bt \.JL«.\ busla-t) h})’} (2.15)
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where et(-h%%(\i&\-\z\\ and, in the derivation, use has been
made of the identity TlR)ysulb)= 0.

Equation (2.15) is one of the infinite set of coupled
integral egquations obtained from (2.4); the other eguat-
ions are got by applying (2.4) to the amplitudes appearing
on the right side of (2.15). This introduces amplitudes
for states with larger numbers of particles which in tumm
lead to more integral equations.

Symbolically, the structure of this set of integral
equations can be seen as follows. We can write (2.15) as

(1) ~ () 4 103)
where (n) represents an n-particle amplitude end I implies
an integration or summation over some variable. (2.4)

gives

W~ T() and () ~ Q) + T4
and, in general |
W) ~ (net) 4+ Tlwed)
The TD approximation is obtained by assuming that (m)=z O
for m> XN where N is some chosen number of particles.
For N= 2, the system of equations reduces to
(M~ I1@Y and (Y ~ ()
which, by substitution gives a single equation for the one
particle amplitude.
For N= 3, we have

() ~ T, () ~ L)+ TI0) and (3} ~ (2)
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which, by substitution, leads to a single integral equation
(3) ~I) for the two particle amplitude.

Similar consideratioﬁs show that, for N= 4, the system
reduces to two coupled integral equations for the two and
three particle amplitudes and, as I inereases, the number
of coupled equations in the final set increases.

For the problem of meson production in meson-nucleon
gollisions, we must clearly choose N» 3 since the final
state 1s a three particle state. We shall in fact take
=3 as a first approximation to the problem so that ths
equations can be examined without the complieations intro-
duced by considering higher orders of approximation. Ve
therefore proceed to apply equation (2.4) to the amplitudes
appearing on the right side of (2.15) with the restriotion
that all amplitudes for states containing four or more
particles are zero.

For the one nucleon amplitude, we obtain
(e -Tutem) (.| by W) = 4 & A [R’Lo\ \ULA lf(~‘:3l[(§,\ b;(":\&(,&\\Q3

+\§.\°~‘o(-k\\»¢-\4s\\s‘g3] (.44
For the two meson one nucleon amplitudes we obtain

(€ - g - 0y =T lpt) Bl (Tl butnrt) e )| Y
SIS 2, Ay {r; Lot s w‘u;\l (@bl agd)

s 4 0% ‘1:, \‘,Xu‘\-\z-ﬂ et W (—h\l CATNE P [ ()
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and  (€- op + 0y =Ty () B ST p LY b bpad a1 §)
= q “-“' (—té.-\g\ i‘,’ l\:\‘d(’h\&\ s T w (’h\] <§.\ b \’\L\ C\&\‘.\\ Q\

& g By %', MXGJ e (s T t-k\] Pl be Y (u1g)

Pinally, we consider the three nucleon amplitudes.

When u(-p) and u"(q) are both positive energy spinors

e -8q - By +Surla-p) B )T b la-h) b la) b)) Y
: 4N %}(g-\a\\:&"(&\(ct«ﬂe-\l\“@.ltuk-t\ s 4) *(z"f.\afs\-a\‘ek\-h\\%}
- ) Fla-n)aepge u\ﬂ.\]&@.\m () ol §) 44T, el \er ug\q»xl (2.19)

Then ul(-g) is a negative energy spinor and u"(g) a positive

energy spinor

(e By + B +Solan) Eqp KR4 Silgen) b la) )

= qh B (@~\°.\{C~(-h\ ¢ 1@“&&]&@.\ belgdaglea\13) 4 @o\a?s(@\ buula)) Q;l
+ 4 Ml -\»,\K&"(s\ tew (ﬂ:,\}&(@ Jopag e @) 44T | ol u—\t\\@\} (2.26)

When u(-—g) is a positive energy spinor and u"(q) a negative

energy spinor

(e +8 ~€y + Sulat) € ) KT bola) burkap) Sl | D)

= qh Shla-pBlagp (w\]&(@.\ L) e +(Q.\ci"¢k-tx\kuk-\s.\\~§§x

4 b \4—@_\‘_&(-\».\\;1@d(&;v.\l&(%\‘w(ﬂ ap OB+l b t@\\@\ﬁ B
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When both u(-p) and u"(q) are negative energy spinors

( €+ EC} * E(‘. + g\.‘ lc_"h\ Eq_’h\ <§o\ ‘Dk(‘\’-\ ‘DA.." ((_\ kt'(‘i’h\\?)
= 42, 61-(1-\».\{&"(9 e u\«,-\».\]i&@.\w\%m\@ LA EARIINER] Q\l
- g\ 8 (a,-\..\{m-p,\m VLB b (D a - T) +{T | afla bl @\} (2.2

The equations (2.16) - (2.22) can now bs used to
eliminate the amplitude appearing on the right side of
equation (2.15) so that an equation is obtained containing
only two particle amplitudes. However, before this can be
done, the behaviour of these amplitudes, which are to be
eliminated, must be investigated; 1n particular, their
behaviour and interpretation must be studied at those values
of the momentum variables for which the energy factors
multiplying them in equations (2.16) - (2.22) are zero.

In equation (2.18), when u'(-p-k) is a positive energy
spinor, there is a possibility %hat the amplitude
(Q,\c\:(-\g\\m-h.g\ ap) ©) has a singularity, since there exist
values of p and k for which

€-Wp +uy-€ =0 (2423)
Such a singularity corresponds to the existence of real free
particles whose momenta are those given by the solutions of

equation (2.23), sinee for these momenta, if the right side

of (2.18) is non-zero, the coordinate space transform of the

amplitude is finite at infinity. In this case, the singul-

arity eorresponds to the existence of a real meson and nuclem
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in |§) and a real meson in the "comparison state™ @) .
However, the condition that the "comparison state™ |g,)
should be the vacuum state does not allow the presence of

a real particle in |3,) « Dyson (15) originally maintained
that, to avoid the existence of a real particle in |3,),

the amplitude should have no §-function singularities so
that, in integrals, the energy denominator (e-wy+wy=-EpuY
obtained on dividing (2418) by this energy term, should be
evaluated as a principal value. However, as has been
pointed out by Dyson and Dalitz (17), this is not correct,
sinece, on transforming to coordinate space, the pfincipal
value permits the existence of free particles described by
standlng waves at infinity. They polnt out that to ensurs
that a real particle never exists in &), the amplitude

(. )agit) botch4) aupdl Y must be finite for all values of p and
k. Thus, the right side of (2.18) must be zero for all p
and k satisfying equation (2.23%) when u'(-p-k) is a positive

energy spinor, l.e.

0 Keptheta L, weMT ) bet13) = O

for the infinite number of values of the momenta p and k
satisfying (2.2%) when u'(-p-k) 1is a positive energy spinor.

Hence

4 Xs Tw Qg, e (Tl af bl gy = ©

and since g and A, are non-zero, Y, and T« are non-
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singular matrices and the spinors u"(-g) form a complete
set, we obtain the condition that |

(Tladbel3) = o (2.24)
for all k,p and u'.

A similar argument must be apvlied to egquation (2.20)
when u'(g-p) is a negative energy spinor since there exist
values’of P 2nd ¢ for which

E-€E +Ep-€qp = O
This yields the condition that '
(T blp a1 @) = © (2.25)
for all.@ and p when w is a negative energy spinor.

From (2.24) and (2.25) it follows that, to satisfy
the condition that () is the vacuum state of the system,
of the Tfour types of two particle amplitudes appearing in
the equations viz. (Llbuth)actp\ 1) and (@)% en)bui-b)| &)
for u(-p) a positive or negative energy spinor, all must be
identically zero for all p and & except (QJLJAQQMQQ\Q\
when u(-y) is a positive energy spinor. Thus, the only
two pariicle amvlitude appearing in the equations is that
describing the presence of a neson and a nucleon in the
physical state 1§) .

Fron eguﬂ%ion (2.17), it is seen that the amplitude
(@_\\M(—h.\g’c\p(\g\a.tl\;}\q) mey have a singularity when e>M4lp
at the values of p aund k which satisfy

E-wp-wy ~Epyy = O

Such a sinsularity corresponds to the presences of two real
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mesons and one nucleon in the state |PY which, in the
process of double scattering, is the final state in which
we are interested. - In this final stats, the particles

should be reépresented as outgoing waves. This is achieved

"if the singularity in the amplitude due to the factor

-l $ 2 ES ]
(e-u\..- ug-E\,ug\ is avoided in integrations by addling a
snall positive imaginary quantity to this energy denominator

l.e. we replace (e =Wy =Wy -Emgy‘ by

\
€ -wp - wn - Epyy

(€ ~0p-wy=Cpa +in)' = P - ixSle-op- - B

where P neans that a principel value is to be taken in the
appropriate integrals. t'e let w0 after all integrals
have been performed.

In a sinilar way by taking the energy denominator
obtained in (2.19) as

(€ -€-€p - g 4 inY
we ensure that, wvhen €>3M , the two real nucleons and
anti-nucleon, which can be present in \% when p and ¢ have
values satisfying

E-Ry~Cp-Bqp = O
are represented by outgoing waves.

Wle are now in a position to make use of equations
(2.16) -‘(2.22) along with the conditions (2.24) and (2.25)
to eliminate from equation (2.15) all the amplitudes appear-
ing on the right side. e let the normalisation volume

K ,%,‘
V—© so that )‘\-"\(1%\‘\11‘\ and the summations over the
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momenta become integrals over all momentum sSpace. Having
carried out all the eliminations, we obtaln ths following

intezral egquation for the amplitude

(&-wy - &) (T b gy acp)T) =

g 2 P e | A ey Bl e |l (@l ag)9)

W

v 2 s DR e) Lep) (B by, bpdae i) @)
Wy

+ ﬂdﬁ(h»e\ (‘1’.\ b o) O\(xlh\\@\ (2.26)

where the subscript + on the spinors iinplies a positive
energy spinor and the various functions appearing in (2.26)

are defined as follows

A h k) N |

Alpl) = M N{ : - e ) 11&: (v

€-Wp ~Wy -E\.,u.' 4<y e-E\..-E‘! =€t *‘.‘\_\

+ -

Blpw) = A MSK N o) 4 Kie) l‘(s (2.24)

€-M E+M

N T S

-O.W..e\ . 3%\&&\‘ 'X‘: \S AT (b \t\ + ) k\‘- ‘2\ ‘{ blﬁ\

&-wh-u%-\‘:y_,\,;h‘xt e—%&uk’-\»ﬁh*
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ﬂ*@ (b o€)

4 Sm A St Ny © “""‘}

| |

]
X -_ (7..3 o\
|

G-Eh- €, "EH‘L*(‘\, G‘E\._ +E\}_¥E\u|&

ity '\t U'\

T wpap ety - Eptlshaom) 6 ()
w QE\

It is helpful to represent the various interaction
terms in equation (2.26) by time ordered graphs which are
shown in figure (2.1). The term in A(p,k) is represented
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Fig.d.d) The labels R and C on the intermediate state
particles indicate respectively whether the particles
are present in the real physical state '§) or in the
comparison state (T .

by the graphs (a) and (b) and the term in B(p,k) by the
graphs (¢) and (d); these correspond to the scattering
of the meson by the nucleon. The term in L(p,e) 1is a
nucleon self-energy term and, is represented by graphs
(e) and (f); graphs (g) and (h) represent the term in
TT«dhﬁﬁ which is a meson self-energy term. No vacuum

self-energy terms appear in the equation.

If the calculations leading to equation (2.26) are



(29)

performed using the original formulation of the TD method,
an equation is obtained for the one meson one nucleon
amplitude which, although rather similar in structurse to
equation (2.26), has several important differences. The
terms in eguation (2.26) in whieh the particles propagate
fhrough the real physical state are the same in both
equations i.e. the terms represented by graphs (a),(b), {(e),
(e) and (g). In the term corre3pondiﬁg to graph (d), (esm)'
is replaced by (€-€p-M-& -wy-wyY' In‘the nucleon self-
energy term corresponding to graph (f), (e-wp 4wy +Bpu)’

1s replaced by \é~1£h—Eh3—uh-QuY‘ and, in the meson
self-energy term corresponding to graph (h), \e—EthE&Eh@Y'
1s replaged by Ke-Eh-&&-Emk-lwhY‘ v In addition to

these differences, there exists a vacuum self-energy term

Sp [Xi Tp N (4 T\ “&\}

C’."Eh’wh °Eq‘— C‘.k- uiﬂ

) %&‘«gﬂ Mt

which is strongly divergent and cannot be made finite by
any renormalisation proceedure. This is the type of term
which was discussed earlier and which led to the modified

formulation of the method which we are using.

2+% Discussion of self-energy terms.

Equation (2.20), as it stands, contains divergent con-
tributions from the meson and nucleon self-energy termse.

Little use can be made of the squation until these divergencs
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are removed. In the following discussion, we shall attempt
to carry out this removal by a renormalisation procsedure.
To carry out a renormalisation programme in an unambig-
uous manner, 1t is well known that it must be done by a co-
variant proceedurs. The first step is therefore to attempt
to put the meson and nucleon self-energy terms into co-
variant forms. That this can be done was first shown by
Visscher (36}. An alternative proof is given in Appendix I.
The result is |

Slpe) = —%‘%‘gd‘k X SelP)yg Bl = ulPy) (2.32)

and.

(q" = L v
-TV.((;W-'\ : - &ﬁyé‘ﬁ‘:‘xa“k S\,k; Se(k\xsspkmk\l = 2%5“;7\—(&) (133
where P is the 4-vector Ph.d@w%ﬂ and Q the 4-vestor
(-[a_‘i(e-eh\) . S¢and A; are the usual Feymman functions,
which appear in covariant theory, defined by

Selq) = ——-——-——?‘ +5M and Aelq) = —_— (» .

. q+M -y qtpe

and q * ;‘7/4\; K « The expx:essionsil(P.»‘\ and U ,
apart from ;;nstant factors, are respectively the second
order nucleon and meson self-energy terms of covariant
perturbation theorye. '

Due to the different energy denominators appearing in

the self-energy terms in the equation obtained using the
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original formulation of the TD method, these terms cannot
be put into covariant forme This is a further disadvantage
of the original method since the divergences in the equation
obtained using this method cannot be removed in any con-
sistent and unambiguous manner.

From covariant theory we kmow that ﬂ.((’.@ can be written

in the form (30)

APy) = A+ (Py-in)8 » Su Py

, M(v.!\
where A:N(iM) anda B =[ ] _ are infinite
Bu’"\ 0-‘-;5"\

constants and S“ko.x\ i1s a divergence free integral which,

as shown by Visscher (3%6), can be written as

t

S (P\ = ._5. (P LM} A - x (i)
" v g go A+ (o MYt xy
x[(P.uLM\ k\»i-— EM:—}-\—-’—Q—) - (Mag‘l (234)
where N, = M+ )~ . Henoe, making use of (2.11),

the nucleon se'lf-energy term in (2.26) becomes

T wlet) L) L) (| b ) awlp)| )

wy

z { %— A + 16-“,.‘ -'E'\..\ R + ke‘"’v-‘E\’-\RN“"e\}@’.\h&h\au(\z\\@\ (2:5)
=Y '

M\\ug
|

Rulb.e) = - lL 39 (e- AT e\,\gbg dy — x‘u-;\_
R W R G T W N CEEA R

xite-u,.\.ﬁﬂk(-x-l_b\‘_’;:#ﬂ) . Mxl h.%\
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and B'= 1B is a real quantity sinee it is clear from (2.29)
and (é.gl) that avb\Jllbe\uLh\ is real.

The divergent quantities A and B' can now be removed
by a renormalisation of the nucleon méss and the coupling
constant ge To do this, the nucleon self-energy terﬁ in
the form (2.%5) is taken to the left side of eyuation (2.26).
The term in A can be absorbed as a correction to the nucleon
mass; this is the séme as saying that this term cancels the
nucleon mass renormalisation counter term which would be
present if 1t had been explicitly used in the original
hamiltonian of tlie system. 3y defining a renormalised
coupling constant G = g‘U—BW" , the second term is
absorbed as a coupling constant renormalisation, so that

equation (2.26) now becomes

(&-up-€p)t- 6 Ryulpe)) (Tl beloh) anl)§) =

G\- Lg &3\‘ ““.&(.h\ { A “’- \‘i\ Tﬁtu £ 8 “)_.\t,\ tu.’tp.l U:‘,(-\g\ (Q.\\“t#(-k;\ d.(;Ut_“ Q)

+ (-aY' ﬂ;p (e AL aglp) o) (226

We have thus been able to extrast from the nucleon
self-energy term a well-defined finite part and to interpret
the remaining infinite parts as mass and coupling constant
renormalisations.

In the case of the meson self-energy term, we can

write (30)

'l/\—(@j\ = C +(Q" M'.D + Su(aY)
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- 3™
where C-= T“-F\ and D= { )Lt 1 . are infinite
-} Q:-’;"
constants and Sy l@Y is a aivergence free integral which |

has been discussed by Visscher (36) who shows that it can be

expressed as

Sala) = %;‘ ““FY_S dxg 4y 24 [ Ll-xd A an)

o " M - xl=x)pt-in (-ahey (@4 ) 4 M -5 liex) pr-ly

9

Thus, the meson self-energy term in (2.26) becomes

'ﬂ‘@ () @lbe, L a W T) = { -1%'4« %‘nb‘q:) +le-uy-gy) R.\\b.e\} @15, (B Q3

|

whee Ry lpe) =
T 2y (e-ay -,

Sy (@) (2:34)

and, (&"W‘\ = - (e-op-Epleruy-gy)

Now, as has been pointed out by Dyson and Dalitz (17),
to be able to remove divergent quantities V and W, say,
from our ejuation by mass and charge renormalisations, it
is necessary, as is clear from the discussion of the nuclson
self-energy term, that they should appear in the form
NV +W(e-wp-€) . In the meson self-energy term, the di-
vergent guantities C and D do not appear in this form but in
% - —'C"‘"P"(Q-Q-E\k M 4
he form o ey p-Eple + Wy -¢,) + This 1s due
essentially to the fact that the meson field is a Bose fisld.
It is clear that the substraction from W) of an expression
of the form \I+\»ch=—u‘,-r:‘,\, with V and W divergent quantities,

cannot produce a Tinite result. Thus, although we can ob-
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tain from the meson self-energy term a finite expression
defined in an wnambiguous manner through the covariant
form of this term, we are not able to interpret the remain-
g divergent parts in terms of renormalisation of mass and
coupling constant. This is rather a discouraging feature
of the TD method but we propose to overcome this difficulty,
for the present, by simply omitdng the divergent terms C and
D. Cguation (2.20) then talkes a form which is free from any

+ g ara A S T faddh Adsrwvoat pe @
terns rcontoinin. exnlicit divererces

(] - —

(e~ op-6)1- 6 Ry\pe) - ean(pe\)(@\b‘\,ﬁz\a.‘t\z\\‘y\

. ¢ L& At Al + Bleabee) @ W o @lg)  baw)

2ol The modified invegral ecuation.

e sholl now discuss the e wation (2.20") fron vhich

rgences have been removede. To do this,

all explicit dive

we introduce the quantity R«\p) defined by

X lb) = ;(@.\Bu.k-\da.‘t\s.\\x‘g) y\eh) (4o

Since we have taken &) to be the true vacuum state of the
system, AJp) is the probability amplitude Tor Tinding in the
tzte \§) a meson of momentum p in the charge state o« and a

nucleon of momentum -p deseribed by the spinor u(-p).

Since the sitzle of one meson and one nucleon has
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isotopic spin & or % , X«lp) can be written as a linear
combinations of two functions Xglh\ and X‘z“"\ , 'X‘i(h\ being
the probability amplitude for finding the meson-and nucleon
in a state of isotopic spin % and Xg{_(h\ the amplitude for
finding them in a state of isotopic spin 3’1 ’ llow, it is
easy to show as has been done by Dyson et al (16), that the
isotopic spin operator Q.((1=t,“tp has elgenvalues & =3
and Q*s." O corresvonding respectively to the states of
isotopic‘ spin & and 3’1 that Q:%*-’Cot‘ has eigenvalues

&, :-1 and &, =2 . Using this property of the oper=-
ators @, and &"(, and the orthogonality of the eigen-
functions corresponding to different eigenvalues of the

isotopic spin, eyuation (2.26") becomes

(e"ét-ep\(\' G Rylpoe) - G‘QM(\\.e\‘) X1 (p)

- o faksa; rstesas]x (2w

where I+ % or % is the total isotopic spin of ths system.
Defining the functions Filp) and R(pe) by

Rl - c;gm[auz.k\a';+%(h.e\§1 Tl (asd)
Ap.e) = Rulpe) + Rulpe (uy)

we can pubt (2.41) into the form
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F b

(2.4
(e-wp- )1 -6"2lpe )

Xl(h\ < Ll(\\,\ 5&(9'&)'-6"(‘-6‘—(1“’.5\)} + ‘P

where Lilt) is some funotion of p and P implies that, in

any integration over p, a prineipal value is to be taken.

If we now define

M-s
L.S“ lopsy = JL CM.., s ? Y. (ap) \/: (w) (2us)

1
HE-)
£ )

where C,:’,s is a Clebsch Gordon coefficient

(c,“ © Ot . Caolesp, a,g) of reference 3), ‘l..m(a,\ is a

spherlcal harmonie with w a4 wunit veetor in the directlon

of the momentum vector p and \l:(d is the probability

amplitude for finding the nucleon with z-gomponent of spin

s where m is the z-component in the chosen z-direction i.s.
\/.: (W) = &.. , then 5:13(%9.».\ is an eigenfunction of total

angular momentum J, z-component ! and orbital angular

momentum of the meson and nucleon L i.e. of parity (-\*'

*

These eigenfuncetions form a complete orthonormal set so that

Xz (k) can be expanded as

Xy p) = ;u-;\ X:nm 5;@,@ (2.46)

Ilow, the wave funetion in coordinate space \ly) for
one meson and one nucleon in a state of isotopie spin I is

the Fourier transform of X;lb) so that.

G ly) = g&’\s Xile) Qq"{ = S a3 X4 (p) %il]‘mhu.\ S‘KM \I:\'.\,.v_\,) (2.41)
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where |(lp*) is the spherical Bessel funotion of order 2,(34)
The expansion (2.46) allows the angular integrations

in (2.47) to be earried oul, yielding
'°& Mo .
Yl - ;Q\.a\,xm (B g (o) Wit oo
™ (]
For large values of r, (b behaves as
fulbd « g7 silbeet)

so that ;) behaves asymptotically as
o ) ) "
\px (!‘ ~ 2:::': %)g bd‘) ‘X:‘SL“" {'—Lv'— L‘\‘lk.‘br] \:)n.!; \'}nk\ (IL‘Q\
L")

By expanding the funotions L“lb) and ®lp)in terms of the
M
“3;,&»}'!\.,“3 as has been done in the case of XA} in (2.46),
and using the orthonormality of these angular momentum

elgenfunctions, (2.44) yields

™M

FI.u u"\

(248)
le- wp-e)i- el ey)

X:n “’\ = L“;n(b\ Si(e.u,-e\,\(\- G'VR“’"\)] + :P

Inserting the expression (2.49) into (2.48), the
integrals can be performed to give an asymptotie form for
W) .«  Assuming for the present that the factor
(\— G"(L(b.e\) 1s always non-zero, as might be expected, we

obtain the following asymptotic expression

i+ 3 B T - s FL ]

\¢ 3 ML

. ™
) \-‘\t\ Ul 4% 6L (m\] eﬂﬂ Yo () (2.40)
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where b, 1s defined by &-w,-€, =0 and so by (2.36),(2. 39)
and (2.43) Rip..e) = 0.
Now, by the definition of scattering phase shifts,
the coefficlent of %:‘_g\vx, w) in the expansion of the wave
function of the two partiecle state behaves, for large values

of r, as

e R

e’LS“‘“’O\ e\.b‘,’( _ L—|\‘ N

where b 1s the magnitude of the relative momentum of the
meson and nucleon and, Sm(bo\ is the phase shift for
scattering through a stzte of angular momentum J, 1isotopiec
spin I and parity (' . It follows from this that the
phase shifts for meson-nucleon scattering are given in terms

of the functions appearing in our equations by

Qobntd | Lan b -ix P ()
L5 0 + i Fon, (1)
Fra(bd
e tan Smkku\ = =% L:‘n_"‘_ (2.51)
Laps)

which shows that the functions F:,,_(be\ , L?u(\m.\ and so
'X?s,.(t,o\ are independent of M. Henceforth, we shall omit
the supersoript If on these functionse

Making use of the fact that angular momentum and the
parity are conserved in all interactions, we can define two
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k '
2 g&.ﬂ.\&ﬂﬂg ks;ll,(v.\hu\ Ath.‘!\\a:\-k L‘!L.k'\ = ASL“‘-‘*‘ St:";"m‘ Lll.‘

[
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M4 ™
and Lgd&\.&&-ﬂkﬁnd%.h\ g\h.&\\bﬂgb&mh‘\ = By lpwl STTSM«\' 5u.'

Inserting these definitions (2.52) into eguation (2.44),
this equation, after a little algebra, ylelds the integral

equation

AI:&“’\ = & tl‘gﬁ{%b.b.\dl + Qn“’-\’-\ Qll

4+ G\- -P S kLA\‘ AIL“’-“\ &'] +8 S\“""‘\ Q1 \1.53)
o (e~on-2d - GRk)

where  Agnlp) = Fra ) /Ly (p) so that the solution on
the energy shell l.e. for p=p, of this single variable
integrai equation immediately gives the scattering phass
shifts since, by equation (2.51), it follows that
Can Sr )+ =% Byg ko) (2.54)

We note that, although the equation (2.53) determines the
function QO14p) for all values of p, it is only the valus
dn the energy shell i.e. Oi5 (k) which has any direct
physical significance.

e now consider the situation when the total energy
of the system €YM+2u ., It is clear from the definitions
(2.27),(2.29) and (2.3%6) of Alpk) , (pe) and Rulpe) that,
when this situation obtains, the funection &;u(\a\ is complex;
the imaginary part comes from contributions to the integrals

in (2.53%) from terms in Alpk) and Nlp.e) with the factor
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-8 S(e-up-wy-yn) , this factor being implied by the presence
of the srmall positive imaginary part, (4 , in the definit-
ions of these functions. The phase shift has therefore a
non-zero imaginary part, when €>M42yx, and this leads to
the existence of inelastic as well as elastic meson-nucleon
scattering. Yow, the § ~function singularities, of which
the imaginary part is composed, correspond to the existence
of two real mesons and one real nucleon in the system.' It
follows that the inelastic scattering cross-section, given
by the complex phase shift, is the oross-section for the
production of a meson in a meson-nucleon collision. Thus
from the solution of equation (2.53%3), we can obtain not only
the elastioc meson-nucleon sseattering cross-section but also,
for energies above the production threshold i.e. for e Midp
the total corss-section for the producetion of a meson in the
collisione.

Let us now consider the solution on thé energy shell of
equation (2.53) as a power series in & . This is obtained
by iterating the equation and expanding the factor
(- C;M\t.e\).‘ , giving |

Disled = & Elzul' [(‘\:N'-'b-\ a1 + Rl 41]

+ G °iet'1'- Pgwak[A,&..na'l 3 sn(b..u)a,] ' iAnu..y.\o.‘; 4'%3:.(“.\"\&1]

€-w-E

+ 6 Tetrepluu i[a alpdlal 487ty | RO T e vy (das)]
° &~y -8y
[ASL“-L\Q%[ + E,‘lt\.lio\ﬁ ]

o Suhdar|——Jhukdais Qn\\m\ﬁl]e_;ae‘

+ ‘\tq\\c\r oder  Revis (2.54)
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Each term in this expansion can be represented by a set of
time ordered graphs of the appropriate order in Ge

To simplify the arguments that follow we can, w1thout
any loss of generality in the final result, considser a
special case of our problem; we consider the scattiering
of a positive meson by a proton allowing only positive
mesons in the intermediate states and neglecting pair pro-
duction. The graphs representing the terms in the expans-
ion (2.55), for this special case, are shown up to order N

in figure (2.2). Graphs (1) and (2) correspond respectivdly

; p A - y
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// /,"- wd/ r /
/ TRa"% 1
AN . / A kA ;
/ ! | - \ .
-1 ' [} v
/ k// h_. A —h_ l': A‘( k-4 .r \\" A4 .
/ / ! k [} b~ R l.
/ / \ { a
/ ‘\ \ \ 4 —al k]
/ W/ \:L-"; b\ \ \ 1 ‘
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,ﬁtz. b [ \b b f \ PN S

Fig. (2.2)

to the first and second terms in the expansion; the con--
tributions from both these graphs are real. In graphs
(3) and (4) which correspond to the two terms of order ¢*
energy can be conserved, l.e. €- Qq-Wu-8g=0 , in
the "barred state" shown in the figure; when this is the
case the terms in - dle-w-wi-%q,,) contribute imaginary
parts to the terms In (2.55)s Thus, using (2.54), we can

write
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tan § ¢ 4G 4+ b6 & k(.&ic\.\ c.," 4 o

where a,b,e and d are all real guantities. From this, it
follows that the elastic, ¢, , and production, Sh.a

14

cross-sections are given by
us \* T
6u~ Vi-= \' ~ ka6 + higher order terms

SELY
and  Cpea ~ |~ \ehs\ ~ %A G’ + higher order texms
Now, the lowest production matrix element (a.k MAp
is the sum of the matrix elements (@.\g\M;\\z.\ and

(‘LUM&H’..\ which are represented by the graphs (5) and |

(6) shown in figure (2.3). In terms of these matrix

] At
—ak ] Ve LY B
- // y
/
Ve
’
4 4 '
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-k 7k -4 /
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/
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/
// 7/ y //
/ / / ’
s bt s 4 -ty
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\, 7/ \O“'n,
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Mg, (2.3)

elements, the production cross-ssction is given by

S &@“gm g timip V8 (e-op-ou-Bqu

. Sped ™ S&‘« gd‘h [\(s.\slMs\\»..\\‘ MM+ (et ince la vl
+ (ﬂ-li 1M o k‘.a\k lq-\& ‘M\’\ k’«)] ) (t-,--h)‘ “Wi - E—ﬁ&g\ (%56

-
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Ve see that, when energy is conserved in the "barred
states” in graphs (3) and (4), these graphs are graphical
representations of this intsgral, since graph (3) can bse
obtained by placing two graphs like (5) or (6) end to end
and Jjoining the meson and nucleon lines. of the same momenta
in the three particle state and (4) can be obtained by
joining graphs (5) and (6) in a similar way. Thus, graph
(3) corresponds to the first two terms in (2.56) and zraph
(4) to the last two interference terms. Thus, for the
galculation of the meson production cross-section, it is
essential to retain in our eguations the contribution from
the nucleon self-energy term as it would clearly give a
meaningless result to neglect this contribution and con-
sequently leave only the interference terms in expression
(2.56) for the cross-section. This conclusion is c¢learly
not altered by considering higher order terms in the
expansion (2.55) or by removing the restrictions which were
imposed on the provlem earlier, in oxder to simplify the
discussion.

Ilowever, as we shall see, the presence of this nucleon
self-energy term in our eguation leads to a difficulty which
has prevented the making of any detailed calculations on it.

This difficulty arises in the following waye. Cur
argunents up to this point have been based on the seemingly
valid assumption that the factor U-G;R%&ﬂ is never zero.

This is not correct as has been shown by Visscher (3%6) and
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by Dyson and Dalitz (17) who have studied the behaviour of
the functions Rulpe) and Rumlpe) and find, that for very

large values of p, they behave as follows

b

3 .
Rulpe "oty and Qplp.e) ~ 5—'—- ez,%\

€
3
Thus, for very large p, the nucleon self-energy dominates
in the factor (I- C;the\) so that this factor is very large
and negative. Zut, by definition, QNl\\..e\ = Qn(p..e\ = 0

so that (I G‘R(b..e\\) is positive and equal to unity.
Hence there exists some value p! of p, where po Yy p, for
which (- 6 (% e]) o . Dyson and Dalitz find that
for c’%‘r\ SR ST P \BM . Lecount must be taken of
this zero of (I\- G”R(b.e\\ in the analysis leading to
equation (2.50) and this leads to the presence in the co-
ordinate space wave function of the meson-nucleon system of
terms in e-m"" for large values of r. This implies the
presence of particles of momentunm PHD at infinitye. Howevex
the total energy of the system is eﬁ- €p, + 0y, so that, in
order to conserve energy, & state containing particles of
momentum pS could exist only 1f one of these particles, for
example, héd a rest mass smaller than the nucleon rest mass;
such a particle would be the result of the formation of some
type of bound system with a rest mass much smaller than 1.
There is no knowledge of the existence of such a system and

we must regard this singularity at p: p! as being completely

unphysical and its presence being due somehow to the approx-
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imations made in applying the TD method. We are thus
prevented from carrying out any calculations_of e¢lastic or
double scattering cross-sections based on equation (2.53).
It does not seem likely that these difficulties would dis-
appear in a higher order TD type of calculation and so,
this method for the calculation of the double scattering

cross-section has had to be avandoned.
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CHAPTER III.

3,1 Discussion of the Cini Fubini method.

The method proposed by Cini and Fubini (S) makes use
of a variational proceedure to obtain a sequence of approx-
imate solutions for the fundamental equations describing the
system. Ve shall first of all discuss the development of
the method, which 1is based on the formulation of scattering
theory due to Lippmenn and Schwinger (29).

/e shall work in the interaction representation in
which the system, at time t, 1s characterised by the state

vector (t) which satisfles the euqation
t:-tm = Kk (3.1)

where we again use units with X=c=| and H'(t) is that part
of the hamiltonian of the system desoribiné the intéraction
of the various parts.

The development of the system from some time in the
remote past to some time in.the rennote future is described
by & unitary matrix S such that

|o) = Si-e0) (3.2)
A knowledge of this S-matrix provides us with any informat-
ion we may require regarding the development of the system
over a very large interval of fime.

In order to determine the S-matrix, we shall make use

of the reaction matrix K which is introduced by Lippmann and
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Schwinger and is conneeted to the S-matrix by
-( ) -
S z ————‘ /IK (3’3)

K is a hermitian matrix so that the unitarity of the
S-matrix is maintained by (3.3) and, as shown by Lippmann

and Schwinger, K is defined by the equations

K = g:w\ewum (3.4)

where VY = 1 - ng\‘www\ ele-viax (3.5)
with elet) s § o O

N 5% (3.6)

They also define an operator XK' by

K = g s v Wi - v wivie)

[

- L&_ SV W e Le-tY u'\u\vw\‘ dx (3.7)
where a.dagger‘denotes the hermitian conjugate. It follows
from (3.7) that X' is a hermitian operator for arbitrary
T(t). |

Tow if &K' is the variation inm K' due to small arbit-

rary varictions of V(t) and V*(t), then

Sk = - V St | vy -1a i g“u'wwm e (o vh dar| ¢

- g‘&[v*m -f - g Ve R ele-t) w] HLe) dNLe) (3.%)

-0
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so that 8K':zo if and only if V(t) and V'(t) are
solutions of ejuation (3%.5). Also, when (3.5) is
satisfied

K' = g Hlelvik)de = K | (5;9)

Thus, I’z 0 gives & variational principle for equation
(3.5) and the stationary value of X' is the K-matrix whose
hermitian property is maintained byrthis principle.

Cinl and Fubini use this variational principle to
determine a statlionary value for the K-matrix for a certain
type of trial operator V(t) which they choose in the follow-
ing way.

H'(t) is, in general, proportional to some coupling
constaﬁt g so that iteration of the integral eguation (3.5)

for V(t) yields a power series in g

VEEY = 1 4 Vi) # Nule) 4= p Vi) - —
where  Vilt) = -LKRVWﬁV@JU\e(th (5.10)
-
and the suffix denotes the power of g in each term. It
follows that
K o2 Ko+ Ky # Ky 4 --— & KL b-— .
(3.11)

where K; = S HLe) Vi, Lo Ax

Formally, the infinite series (3,10) is an exact solution
of equation (3.5) for V(t). As a trial operator for the

variational principle we cut this series off at its n'th
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term and multiply each term of this finite series by a
time independent operator. Thus, we introduce into (3.7)

the trial operator

VI = A+ NLRIA, + - - v N, | (3.12)

where the AN; are time independent operators whose forms

are left undetermined at present. (3.7) becomes

- »

K’ lg A { NG A, + KVE L) W) = o0 ALV ) WV o
[CT

WKa,y

L)

- 02: g dc' l\t V* L&) HE) & (e-t) W' ey, Le) t\kg

| S XA

which, with the help of (3.10) and (%.11), reduces to

L

K' = L{k;l\; + «'ZK‘ - L f\! (K;w.‘-\(m\{\h} (3.13)

iz K

The n'th order approximation, K“ﬂ to the K-matrix is
obtained by putting into equation (3.13%) those values /\‘;‘
of the Aj for which é&k:0 , Thus, the N? are glven by

"

Ki = 2‘, (Kerien = Kin) I\(C\ , 16w (3.14)
Rz
and then
K(”\ 2 l \(.‘,f\&:‘ (3.15)

)

(50}
The (n+1l) equations given by (3.14) and (3.15) ean be put

more concisely as
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LY

K™ = T K+ 0, K , oscsn (3.16)
k=

k=
These equations (3.16) now give a seguence of approximations
Km,KN,Km——- to the X-matrix, each of which is hermitian.
Eguation (3%.3) can now be used to define a sequence of
approximations Sm,Sw,Sut—— to the S-matrix, the n'th approx-
imation S being given by

(S
(W \- ’}.k
S 2 —_C_. (3'17)
Le 3 ™
Since K“*is hermitian for all values of n, (3%.17) ensures

m,Sm--- to the S-matrix are all

that the approximations S@,S
unitary.

ow the S-matrix can be written as a power series in

S =l £S5, 4, b S 4o (3.18)

where, as shown by Dysam (13),

vl

S, * (_t\-'g u.g 4k, -~ S ax, ?XH'&.\\—\'&‘,\-. \-\'t\-.\] (3.19)

» -k
P ordering the operators chronologically from right to left.
It therefore follows from (3.3),(3,11) and (3.18) that
v ’ _
ASy = oS FG ¥y (3. 20)
k‘h
Iaking use of (3.16) and (%.20), Cini and Fubini show, after

some algebraic manipulations, that

w) ) ) .
S( 2 ;Sk 4+ %JSM;('“ , O % t 38 (3.21)
- 3
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This set of equations determines the operators PSJ as
the same functions of the & as the l\‘:‘ are of the K. .
It is worthwhile noting that, although the set of
equations (3.21) for S™dao not have an explicit dependence
on the K-matrix, the introduction of the K-matrix was
necessary as an intermediate step in order to obtain a
variational principle which maintained the unitarity of
the S-matrix. Lippmenn and Schwinger in fact derive a
direct wvariational principle for the S-matrix but, as they
show,it does not ensure that the resulting expression for
the S-matrix is unitaryse
The S; in equation (3.21) can be evaluated using
the covariant techniques of Feynman (21) and Dyson (13).
However, they contain certain divergences which we should
like to remove by some renormalisation procsesdure. Cini
and Fubini define such a proceedure by introducing a new
set of (n+l) operstors A(:‘ such that
R N WPV I N (3.22)
Lk Lro

"ith these operators, eguations (3.21) becone

LY

s - ;%.A‘I‘  oxisn (5. 23)
where o, ¢ ;[,5& (3.24)

Lre

The dlvergences can now be removed from the ¢ by the
standard nmethods of mass and eoupling constant renormalis-

ation discussed by Dyson (13) and llatthews (30)s As is
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pointed out by Cini and Fubini, this prescription for
renormalisation is not wholly satisfactory since the
renornalised constents introduced into the ejuations are
defined in terms of power series in the coupling constante.
This does not fit well into the general spirit of ihe
method which attempts to svold the use of the hormal per-
vurbetion method of defining quantities in this waye. An-
other unsatisfactory feature of this prescription is ithat,
In & given approximation S“L approximations to the renorm-
alised constants eppear in the various & to different
orders in tle couvling coustent. In spite of these un-
satisfactory features, Cini and Tubini use this prescription
as the only uwnambiguous and consistent one availablee.

If & and S, are the finite parts of & eand S,
defined by this prescription, it follows from a reversal
of the arguments used to obtain ecuations (3.23) and (3.24)

that
N "
{wy N ] ( () ’
ST S LS N etisw (3.25)
k"° k'-‘

Now, sinee the renormalised power series for S' i.e.

S =l 4 S 484 - a S b (3. 26)
is wnitary, then

k
OZJ S‘vS‘\:v =0 , Wyo (3+27)

A

This relationship (5.27) guarantees that the renormalised
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§'™ siven by (3.25) is uanitary.

For this method, which we have just developed, of
obtaining a sequence of approximations to the S-matrix to
have any validity, 1t is necessary that the power series
expansions (3.10),(3.11) and (3.18) of the various operat-
ors used should be convergent or, at least, asymptotic for
sufficlently small values of the coupling constant g.

From analogy with electrodynamics, it would appear that
this condition 1s satisfied.

Cini and Fubini have investigated a special case when
the power series are divergent for g=G where G is the
agtual méson-nucleon coupling constant, the divergence
being due to the existence of a finite number of poles
in the complex g-plane forlgl<G; these poles are closely
related to the existence of isobaric states of the meson=-
nucleon system which lead to resonances in the cross-sections.
They find that, although the power series diverge, ths
sequence of approximations s“,s™,s%-- converges in this
case. Thus, the method is applicable in this case where
perturbation theory is not wvalid.

Cini, lMorpurgo and Touschek (10) have applied the
method to the Ventzel pair theory negleeting nucleon recoil.
This theory can be solved exactly and they find that the
method gives the exact solution in lowest approximation,

a result which is not altered by going to a higher approx-

imation.
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Finally, 1% is useful to note that the §; and K;
appearing in our equations have matrix elements only
between states of equal energy. This property, as will
be seen later, considerably helps in the solution of the

operator equations for the s“.

3.2 The equations for elastic and double scattering.

e now apply this method of Cini and Fubini to the
problems of elastic and double meson-nucleon scattering.
To do this, we use the lowest order approximation to the
S-matrix which ig §W - s": S5,z 0.

llaking use of equations (3.21) for n=2, we obtain

Sm = \ &S, P;m
Sm s | 4 S,, o'h\ ' 33 O:x\
Sh\ 4 S, ' S-, 0‘(1.\ 4 Sq ‘\:\\

which yield

(1)

ST 1 1 4 5, (8-S - S 5,578, ) s, ('3;28)
Similarly, equations (3.16) yield
K™ = kalG-%y -k # G KR, (3.29)
Defining the matrix T by the equation
(2 Co
S = \ 47T (3.30)

equation (3.28) becomes
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T =S, +Pra-\T (3-31)

where P -sS.S and & =SS (3.32)
e now consider a meson-nucleon sysfem.whose total
energy € in the centre-of-mass system is such that e <M+3u;

there are only two real states possible viz. a stats of

one meson &nd one nucleon and a state of two mesons and

one nucleon. In the centre-of-mass system, the two
particle state can be specified completely by the three
conponents of the relative momentum of the two particles,
the z-component of the nucleon spin and the charges of the
meson and the nucleon i.e. by six quanfities which we shall
denote gollectively by a Roman letter so that la) is the
state vector of a two particle state. The three particle
state reyuires ten gquantities to characterise it completely;
these will be denoted collectively by a Greek letter and they
can be chosen as the linear momenta of the two mesons, the
z-component of the nucleon spin and the c¢harges of the thres
particles. The state vector |«&) therefore describes a
state of two mesons and one nucleon.

From the structure of the meson-nucleon interaction
hamiltonian, H'(t), which is given by (2.6) and is now time
dependent sinoé we are working in the interaction represent-
ation, it is clear that H'(%t) has matrix elements only
between states differing Ey one meson and by zero or two

nucleons.  Hence, from equation (%.1G), it follows that
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matrix elements of S, exist only between states differing
by an even number of particles and matrix elements of §,,,
exist only between states differing by an odd number of

particles, Therefore

("‘\5;\4\ (alSulx) = (alsala) = (“‘Sq\*\ 2 (alSi\b) = 0 (3.33)

(1]

so that, by (3.32)

(x1Pla) = (alPla) 2 (al@ib) = © (3.34)

ow the S-matrix has matrix elements only between
states of the same energy and the same total linear momentum.
Working in the centre-of-mass system guarantees that the
total linear momentum is conserved between states. The
conservation of energy can be explicitly introduced into

the equations by defining matrices §; such that
sy = Sle-g,) (lleia) (3.35)

whers E, and E, are the total energies of the states de-
fined by Y and 12y . It follows from (3.30) and (3.32)
that the matrices T,P and Q also have matrix elements only
between states of equal energies, so that matrices T,P and
Q can be defined in the same way as §; in (3.35).

If we now take matrix elements of equation (3.31), we

obtain, using (3.%3),(3.34) and (%.35)
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(a1Tih) = (alsalb) + o (atela) Slea-eMwiTi

+L‘\c~\ Ple) - L (alaix) SLEq- Ex)\aisla)] Sl )(elTib)  (336)

and,

(!Tla) = L&Wt\@% ,Z,ket\o;\\aSSKEcEs\tb\Q\e\]'ékﬁvep\\(s\t\a\
¢ b

4 o, (laib) SlEa- (b1 T1a) o)
b

where the summations mean that all variables specifying
the state have to be summed over all possible values and

the various matrix elements of the matrices E, and & are

given by
latgab) = oL (elfle) SEa-edelaulb) (5;58)
(igalp) - %_.(dlElx\MEcE‘\L\\i,\(s\ (3.39)
(«lgyla) 3:* (21a 18) § (B~ (b8l a) (3.40)
and (&l = ;, (ale@ip) Sle,~g4) (pl £:\x) (3.41)

These eguations can be simplified by constructing
the sigenfunctions of the various matrices P,Q,T and S;
appearing in them. To do this, we note that the matrices
P and Q are functions of the §; which are defined as funct-
ions of the hermitian matrices K; by eguations (3.20); it
follows that the matrices P,¢,T and §; have the same eigen-
functions as the matrices 51. 7e therefore consider the

eigenvalue equation for K,, some typical one of the matrices

X

=i
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! aq' .
l:_. ““ﬁk\‘\\ %tﬂ = K‘kq S‘, (3.42)

where KLA 1s the elgenvalue of X, corresponding to the
Ar'

eigenfunction %A , AT denoting any degeneracy which may

- Anl

exist. Since X, is hermitian, KLA is real and the &h

can be arranged to form a complete orthonormal set so that
Ay 00 ,
-{J&a*‘g& = dag Su | (3.43)
and, by the property of closurs,
CLYSILL
%'4 gg %5 : go.h_ (3e44)
Now, since K, is invariant under rotation in coordinate
space and in 1sotopic spin space, it follows that A corres-
ponds to the total angular momentum J and the total isotopic
spin I of the system and, A" to the z-component II of J and
the z-component i of I. Tﬂus, the eigenfunction %2~ must
be a linear combination of products of eigenfunctions of the
total angular wmomentum and of the total isotopic spin of the
system corresponding to the apsropriate values of these
guantitiese.

If g, is a unit vector in the direction of k., the re-
lative linear momentum of the meson arnd nucleon in the two
particle state |a) , then \J:L'.‘ (hewa) , as defined in
(2445), is an eigenfunction corresponding go a total angular
momertum J with z~component I and L=Tti 1s the relative

orbital ansular momentum of the two particles.
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Similarly, the sigenfunction vorre:snol.dm& to a

total isotopic spin I with z-component i is given by

T T ¢ -1 z - '
I.l katd) = Gt Y)Y, k) (3445)
b 4 -
where t,and t) are the z-components of the meson and

nucleon isovopic spins in some chosen z-direction so that

-2 t
\/, &) - étmt-t. and \{g ) = & S (3.46)
Thus,
' TI M Tk ,
&‘:A = ‘g oL Fl‘n (e ‘31;. "-\m‘“‘a\ X\l‘xi U:a.i.'.) (3. 47)

vhere Py (k) 1is some function of k,.

. AR+
Fow, multinlying both sides of (3.42) by % and
B [

sumning over A aund A', we obiain, with the use of (3.44),
Ad' & A fAa!
- - a
(bluale) = %g‘ Y (3.48)

(61K la) = L L \33; (8aimd) Xm (k. tl) rm(“ VY Feaa )

Jimi W
™M .
L 1
X 53‘-'.) t'l'u“\\\ L.STY (h.h.\ L'S.tm
Towever, K, hos natel : elements only between stetes of

erval energy so thel B aw = B rwy e ko= .

Also, X, ile invariant wnder o veversal of the coordinate

axes, So thas iV nos matrix elemenls only between statlss
o - g - N - - ! -
0f the same poyitye Thus, in (3.49) (0t = 0t ; obut

LTy and U=7ey , so that LU .,  Putting
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k:u' CRIANE Fl*.n (ke K':I Fus (kd) (%+50)

we obtain,

(L \ kk\ 0\\ 2 Kkll’ u‘m“ l LJJ& t 2w ‘“h ('-‘u‘ﬂ.\ 3(;'.‘(&5,{"\ x':'_:_ “Mti‘ (3' 51}

I
Since Kkl is real, it follows from (3.50) that Kiu(hgkd
is & real fuunction of XK,.
If the matrix R represents any of the matrices P,Q,T
or 5; appearing in our eguetions, then, as has already
been discussed, X has the same eigenfunctions as the E; and

so can be expanded like X, giving,

(biRta) = L & “‘“"“\2‘331 “%“‘h\sn;(‘!«\“«\ Xm\hh\kn.th.ti\ (3.52)

I

_ . 1
ITowever, since R is not a hermitian operator, Ry lk:k) is
not & real function of k..

rfor a three particle state, we define

M i 1' L, M-om
Yk.kkl-\' Bl 2/ CMs s M-sm\ " Y' '“-t‘Y ( J\/ ui\ (3+453)

where n! and nl are unit vectors in the directions of k! and
I

kJ, the linear momenta of the two mesonse S(:;q\k‘&‘mu) is

an eigenfunction corresponding to a total angular~momentum

J with z-component II for which the mesons have orbital

angular momenta 4, and L, combining together to give an angular

momentum Le

vle also define
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(B TN

L [ \ v T x
Nagplerted = e, | Y eV Y (3454)

» (u.'t!

which is an eigenfunction of total lsctopie spin I with
z=-component 1 for which the meson pair has isotopic spin J.
ith these definitions (3.53) and (3.54) and making
use of the same arguments concerning the rotational in-
variance of the system in coordinate space and in isoﬁopie
spin space, as were used in deducing (3.52), we obtain the

following expansions

&
OZ/ thn \uu‘(‘ \‘P "’“\ 2/ -\{“ Wt -o -p-hp \Sn‘;(h"“‘*

(plela)

I
3
: t o 4
b Xu\i\k“‘"‘("t(‘\ “;.g“‘m.\’-:.\ [3.55)
k&\@\(ﬂ = ‘gﬁ R““ o) (e, k. “0\ LLJ ;‘l—w‘h\‘iu RO (“o LTy “*o\
. Itk .
x N (b td) Ko L6 g kg) (+.58)
O\m&
- ' 1: .
((l\@\uh) - 1: (‘_‘3“)111‘(&0 \lp‘\(d'\( ‘i) Yll lL\ ’0'6"“’)
Jete
Y

1y TMe T4

x\fmm LYW \)(.,llh é.tp,tp\X“q-\g“i.ﬂ',h\ (3.67)
Remembering that-the meson has odd intrinsie parity,
conservetion of parity restricts the summations in (3%.55)
and (3.56) to values of &,% and & such that (t+2,-1) is
odd and in (3%.57) to values of {,,1,, %' and L] such that

(& +2,-2/-1) is even.
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(3.52),(3.55), (3.56) and (3.57) provide us with
expansions of the matrix elements of the operators appearing
in our equations between states specified by linear momenta
etc. in terms of matrix elements of the same operators
between states specified by angular momenta, parity and
isotopic spine. e shall use these expansions to help
simplify the equations (3.36) - (3.41).

Meanwhile, it is worth noting that, as far as isotopie
spin dependence is concerned, any production matrix elemsnt
for the production of a meson in & meson-nucleon collision,
i.6. a matrix element of the type (plkla) , can be expressed
in terms of four independent matrix elements R where for
I:%, j:=lor 2and for I=%, j=0 or 1. This is a result
of the conservation of isotopic spin which reduces the total
number of independent processes that are possible. This
is the same situation as arises in the problem of meson
production in nucleon-nucleon collisions where as shown by
Watson and Brueckner (37), all the production matrix elements
can be expressed in terms of three independent quantitiese.

Inserting the expansions (3.52) and (3.55) into equation
(3.40) we obtain

™o R £C . Mk i*
Tiat LY;,l,\L\.l(M &4'"“"*\ x “\'ﬂ“}t"'t"t‘\ S!lﬂ.l;lk\ (k.‘_ ,\t“'k‘\ \33'..‘ k‘ﬁmh\‘\ x‘-u-.‘. kk”t;\

i ™ ” .
3 V - - 1 .

- I;«zl:“\'\ %ﬁ‘gi \‘b 'll,l.,\\-\"\. (‘:‘v‘tlk“ X\\\S"-‘_ lkd. 'hnt&\ Ql,l.\u\?l" \k* "(‘ "k‘)

ML '

1 LY nt k , S e \ ‘jh l & t i'\

x Bn“x (g Wt L) 8 (6B g lemd) gy

1 W& o
8 el Wre Bsama) Xyl (ke ) (3.51)
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Using the orthonormality properties

Llaa Y o) B () = Sa St Su (3.59)

LN

where By,

TM& TN

- AV
%’ g A.I‘.KML' TRTALEN lx:u(u\'a“'“" NERNWENPIER (3.60)

'kz(' Xy Lkekt) Yo, (6kd) = Sipde (3.61)
i L v o
and. L X“\i)'-"lt"t"t‘) X“w\‘;(k"'t"*‘\ = ‘Sn' 5&'\'.' 5)]' (3' 62)
(AN .

the integration and all the summations in (3.58) can be

carried out, glving

1; o 1; - 1 '
S‘sun.t.m Widk) = @ m.x,m“‘* e 'v.“*\ €a Szu Leaika) (3.407)
k,E Wy {
where ¢,z —a . Ly e , |, (%3.63)
¢ B @, ¢ heTh 553

Similarly, using expansion (3%.52) in equation (3.30) gives
Sue i) = PL Lt o Sy (e beg) (3.387)

The expansions (3.52),(3.55) and (3.56) allow us to
garry out all the integrations and summations over the
variables in a two particle intermediate state. The
situation is more complicated in the case of a three particle
intermediate state where, as we shall ses presently the
expansions (3.55) - (3.57) do not allow us to carry out all
the summations and integrations.

Fowever, let us suppose for the moment, that e<M«dpn so
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that the systenm Qaﬁnot exist in a real three particle state.

The equations (3.35) - (3.41) reduce to

(&ITI8) = (algatb) + T lalele) Slewa ettty (5.64)

where (&‘iq‘h\ = ;LQ\E‘L) ME(EJLL\%HA (3.65)

Using the same arguments and expansions as were used in

deducing (3.38') and (%.40"), (3.64) yields,

T:: U‘a.'.ks} 2 S}L:'Lul‘; ka\ + pf: U(a', ‘L“\ ng*Is (k“"k“’ (3. 641)
'!.".’hiCh, With (5.38')’ gives

1 kS
Snx (e ‘*h‘

- (3.66)
Sis (\t‘.'. W) ~ Siu (kg lu\

—1
\LS (k(\'lk&\ »

Thus, for ihe simple two-body problem, at energies below

the threshold for the production of any new particles, the
operator equations, deduced from the formalism of Cini and
Fubini, reduce to simple algebralc equations from which
numerical results ocan easily be calculated. It is clear
that this simpiifioation does not depend on the fact that we
have carried through the calculations only in the lowest
order of approximation of the CF method so that to any order
of approximation,‘the two-body equations reduce to a set of
algebraic equations. However, in higher orders of approx-
imation, difficulties arise in the evaluation of the higher

order S-matrix elements occurring in the equations; indeed,
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in this lowest approximation, which we are considering,
an analytic form for the matrix element of S has not yet
been obtained in pseudoscalar theory with ps-coupling.

The expression for the reaction matrix, K, analogous

to (30 66)

1+
an u‘t'c \“-\

I
k Ly “‘L'. “A\ - K:.l“_.,- (ka; ka.\

K Uik = (3.67)

has been used by Sartori and "ataghin (33) to calculate the

‘meson-nuclson elastic scattering phase shifts. They do not

make a complete relativistic calculation but make the follow-
ing non-relativistic appioximations. For the calculation
of the p-wave phase shifts, they use the interaction hamil-
tonian |

1 \ - .

Hoe 2 e gnan (3.68)
which is the hamiltonian used by Chew et al. (7),(8) and
which can be deduced from the complete ps({ps) hamiltonian
(2.6) by considering only positive energy states and neglect-
ing nucleon reéoil. gy 1s fhe nucleon source density
and the & are the usual Pauli matrices, The neglect of
nucleon recoll must be compensated for by introducing in
momentum integrals a cut-off which is treated as an arbitrary
parameter of the theorye. By choosing suitable wvalues for
this cut-off‘and for the coupling constant, g, which is the

only other parameter in the theory, Sartori and Wataghin
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were able to establish good agreenent between their results
Tor the p-wave vhase shift for scattering through a state

off total angular momentuxl% and 1isotopic spin % and the
experimental results as deduced by Glicksman (24). Rough
agreement was obtained with the other experimental phase
shifts. The values of the two parameters used, correspond
Tairly closely to the values used by Chew 1n his calculations
using the TD msthod.

Tor the calculation of the s-wave phase shifis, the
matrix elements are evaluated using the complete relativistic
hamiltonian {2.6) and then & non-relativistic apprgf}mation
1s taken by expanding out the nucleon energy in terms of the
nucleon momentun and retaining only the two lowest order
terms in an expression. Using the same values of the
coupling constant and +the cut-off momentum as were used in
the p-wave calculations, they find that the s-wave phase
shifts agree qualitatively with the experimental wvalues for
Incident meson energies above 30 lleve Below 30 llev, the
phase shift for scattering through a state of isotépic spin &
goes through a resonance; this resonance is not observed
experimentally and Sartori and Vataghin atiribute its
presence to the fact that, in lowest approximation, the trial
operator used in the CF method is oo simple to account for
all the detalls of the full solution.

Te now return to the more gemeral case of our original

problem when €<Mspand the production of a meson becomes
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possible. we must now consider terms in our egquations
in which there is a sum over the variables of a three
particle state.

Inserting expansions (3.55) - (3.57) into equation
(3.41), we obtain

. IMms
2/' L.Sn -..“‘A‘ x[; “&.h) S:UM o U‘Mu.k:\‘(

WL, = LL(wy
1) W

(ol 02w x U-& td,h)

* 2‘/ Lgt {dlk(% Y l'“'h*\ xII \k“' ‘J Q(n_ G (kq', ‘lé.\(;

IMu.u\ it
MG~

1&;;,' M‘;" \(S“J‘ x‘i‘. * 'Y— LR
o " . ] “ t - ., R 0 "
¢ L ol R .60 3 e o) Yoy Liniing)

. Q{TMﬁ To'&
Xl\‘\‘( (S 9 P\ Slk‘Q{[L\TL\.“ lk ' h[’ k‘k \ S *(\“.(l"‘(\X“( ’l (%Mkh \

(3.09)

However, the second order S-matrix element between two
three particle states of the type (hp'lsdbw) is non-
zero only if the momentum of one of the mesons in the init-
{al state is the same as that of a similarly charge&‘meson
in the final state; this is easily seen from the Feynman
graphs representing the second order matrix element - one of

the meson lines must go straight through. Thus

(st = () slap) (-t | (3.70)

Using (3.70) along with (3.61) and (3.62) in (3.69), we

obtain
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) by 7
2' Bu‘;““““*\ WAL, m( T by “ s *-t'“”“\

ML Lugaos
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X AT (8, L(hP' «; W kd {“ 4 CHTV I (3.'“)

The angular iuntegrations in (3.71) can be performed as is

shown in Appendix II and the equation becomes

1; .

Smx.mq Ve i) = L (“‘é m'l () (i bgld) F (‘ R IR MR wlxr’is'-)
[N
NG .
J‘f‘ .i' PR "’3 o o

x ef‘(k“k*}Sa&.‘utu\:'tull. L U‘f- e bald ‘ (3.‘H')
where
FrKl‘u\,\x;uw\l:‘xc(L"):r::'.m) z (- \“3'“‘“ e ha’n\b.l.h)

l. l.u
X \HL \lla‘3\11:».\\(11,'“\:&:«i\\l\.‘ﬂ\.\."-h\lrh\i LS
ll- ‘L‘
X 02/ i hhb@h ol r ¢ C-g C‘: U HLlu 2\
M \,\“L'g:\,.g : ﬁ“d\ \A\I 3l \.".Y\\d \ull'\.l-:' : l..k"s W \«L‘I ¥ LT') \3"\1}

W(abed;ef) is a Racah coefficient (2) and

R . . \l' , " sk "
6‘,‘ (h‘;.k,(\ 22 ‘-& (e- Wy - uu‘) \/ TN , k%o (313
CT N SN S S L kase

E—u‘ oy
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where €- t«.-Uui,.— Eu"h = 0 defines l«le. and

& - Ui -y —Jtpmwwmg,uzwe.=o defines cos b, ; The values of kb
and k are restricted to those values for which -|¢cs8,¢(
The limits of this restrietion can be seen by plotting

against &4 for various values of cos 0, ; This plot is

£

ke,

sketched in figure (3.1). Values of k and are allowed

only if the point In the figure corresponding to a given
pair of values lies within or on the boundary of the arsa
defined by the curve for cos 6. =4\ . This area is zero
for €:M+lp, i.e. at the meson production threshold, and
increases as increases above this value.

Applying the same arguments to equation (3.39) as we

have just applied to (3.41), we obtain

L AR R ) ' I:\l. Cenoy

S'v!-m'-\m’n:u kh"kl'h"“‘\ ’ f:%cgd“é E.uh.\n\"\n."n: u‘t"‘\ "“e"‘i'\
RIS .
¥t xFy (l.'ll Wy (e 40 ) n'u..’) Gy gl

Iy e '
b Sy g (e () (3:34Y
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with the same definitions and limits of integration as
apply to (%.41').

In equations (3.39') and (3.41'), the three-dimensional
integrations have been feduoed to oﬁe integration over a

single momentum wvariable, but the expressions are still con-

siderably complicated by the large number of summations over
angular momentum indices. The second and third order S-
matrix elements appearing in (3.35') and (3.41') can be
calculated fairly easily using the covariant téchniques of
Feynman (21) and Dyson (1%3). The fourth order matrix
element in (3.39') is the sum of matrixz elements correspond-
ing to a number éf Peynman graphs; these graphs divide into
two sets. In the first set, the four mesons of the initial
and final states all interact with the nucleon; these graphs
do not present any difficulty in their evaluation. The
second set consists of graphs in which one of the mesons does
not interact with the nucleon at all; +the matrix elements
corresponding to these graphs present considerable difficulty
since, even after those, which are formally infinite, have
been made finite by a renormalisation, some of the integrals
in terms of which the matrix elements are expressed, cannot
be performed analytically for arbitrary values of the momenta
of the particles.

Assuming a knowledge of all the S-matrix elements
eppearing in equations (32.35') and (3.41'), finding a solut-

ion of these ecuations for the matrix elements of the matrices
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P and Q is a complicated procesdure due to the large

number of summations to be carried out over angular momentum
indices. Having solved these equations, the integral
equations (3.36) and (3.37), in whieh the matrix elements of
P and Q appear as kernels, have still to be solved for the
T-matrix elements before any cross-sections can be calculated.
This 1s a long arnd complicated programme which we have made
no attempt to carry through. Instead, we have made the
following approximation, for which, however, we have been
able to find no real justification at present.

In equation (3.%7), the terms on the right side involv-
ing ((Sl'[\a\ are assumed to be small compared to the other terms
on thils side of the eguation. e neglect these terms and,
consequently, the integral equation becomes the simple equat-

ion

(wiTla) = ), (xl@ib) §le,-gg)(eiTia) (3.74)
b
which, after using the expansions (3.52) and (3.55) of the
matrix elements and eguation (3.40'), yields

I e
T i) = el

L3LL Sepr ke ka)

T (e ) (3 75)

Some justification for our approximation may come from the
fact that, close to the production threshold, the production
cross-section 1s much smaller that the elastic scattering

oross-section. This may imply that the terms in (3.37)
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involving the production matrix element (GYI\a\ are much
smaller than those invélving the elastic scattering matrix
elemente However, too much reliance caanot be put on this
argument, since the smallness of the cross-section for a
process near its threshold energy is, in general, due to the
small density of final states factor and not to any smallness
of the matrix element.

For energies below the production threshold, the elastic
scattering phase shift, Stikd , for scattering through a

\)l* \

state of angular momentum J, parity (F" and isotopic spin I

is related to the T and X matrix elements by

.c1
L).v.&u(‘h-\ -~ = QAT‘(: Ut,",h“\ (5‘76)

and pR N 5:; “‘-A : - Q‘Ktn Ut.;h,_\ (3. 77)

For energles above threshola, inelastic scattering becomes
possible and the vhase shifts become complex. However, for
energies lying above but close to the threshold, ths inelas-
tic i.e. the procuction cross-section is much smaller than
the elastic scattering cross-section so that, in calculations
on the elastic scattering process, the effect of the compet-
ing production process can be neglected. Thus, in this
energy rezion near threshoid, gxverimental data on elastiec
ieson-nucleon scatiering can be enalysed on the assumption
that the scatterins rhase.shilts cre real. Eguations

T

(3.76) and (%.77) can then be used to find experimsntal be-
P
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haviour of Tﬁ(ﬁuhd and,Ki,uqkA as functions of the energye.
I7uch work has been carried out on the phase shift
analysis of the experimental results on meson-nucleon
scattiering, the most recent and extensive of which is the
work of de Iloffmemn et al. (25); the experimental data has
been a2nalysed up to an incident meson energy in the labor-
atory system of 217 llev which is about 45 Hev.above the
production threshold. The production process has been oom-
pletely neglected in their analysis. We shall use their
results in equetion (3.76) to calculate the values of
'Th(hdkd which we shall use in equation (3.75)s A cal-
culation of the second and third order S-matrix elements
then allows us to find the values of 'TiQJJ“(MLkI}kx) from

which the double scattering cross-section may be calculated.

3.3 Calculation and discussion of double scattering eross-

seati0nSe.

(A) Formulae for double scattering cross-section.

‘7e now consider in detail one particular double scatter-
ing process; this we choose to be the production of a
positive meson in the collision of a positive meson and a

proton
™ p— wraTwan (3.78)

To ealculate the matrix element for a particular pro-

duction process, 1t 1s convenient to use the original
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isotopic spin representation in which a state is specified
by the z-components of the isotopie spin of the individual
particles. Instead of (3.52) and (3.55), we have

(blela) mehm MY \L‘s,, () Vo (s0.0d) (3.79)
and
™
(M@\“\ 1%/ f*@’kPlQU!Ll\.\u‘p“p. \tmt-l‘(%“ -cﬁp,ho\ﬁu\lb\-"a\ (3.80)
L.

so that, in our approximation, eguation (3.37) gives

(h.h-*s\'ﬁmm\rk et = 1. (ks .y \Qu s ) ee ")(q( e Talaalesy  (3.81)

by

where

l, (&, -h.t;\Qm,t‘u.\(bk q) \h"b \ QQ (* \Snt“l'.\“but»\ = u:«t:-t;\Sst:rl.u(\-\(-“‘t“‘.‘\“*ﬂtt) (30 82 )

e

For the produotion process (3.78), &:&--1, &:4% | b=t and
R ; it follows from charge conservation that &'=-t
and t.+% so that (3.82) gives

(et @ g lokig) 144) = SLILTELLIUNL (3.83)

S0 (4 S i) 1-1,4)

and, with (3.81), this yields

E-"-:\ | Sseseg (hk;{\ \-1,.'1\
('(.-'.\ \S,u (q }q\ \.|,,i\'\

k" it v"l ‘ T,\:l‘,_\_\_\\ “‘tk', ({\ \'\-'ti\ = (" |"°|.\ Tu (ﬂ‘t\\ \ "."1\ ( 3 * 84 )

For other production processes where the final state can

be produced from two different initial states e,g.
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Tk
® bi—o AT 4 b

T+ n
in place of eyuation (3%.83), we have two simultaneous
ejuations for the two Q-matrix elements which appear in
equation (3.081).
It follows from (3.79) and (3%.52) that

W 1 { <
(6% 6 [ Tielq i)l k) = %Tu— (4:4) X lere Vo f et

1 T T |
‘ C’t. t. ‘gh.{-tn,ﬂ"et," (3.“)

#
b

1 (Y
® %T.ls({;d c’h,“ £

where use has been made of the definitions (3.45) and
(3.46)s  Thus, with the help of (3.76), any matrix element
(k| Tslq)|ee) can be expressed in terms of the phase shifts

for scattering.

For the process (3.78) we have C: :TL b 51}1 so that
3
3". . (32(\ ‘1 Lo
AT Wi A) = Thl) = = e Vi Sl (3.86)

t' ] tl
Tow, if (.‘. k“,(—h—k\élﬂf',—ﬁ& is the T-matrix element
b ]

for the production of two mesons of momenta p and k with
z-components of isotopic spin ¢ and t!and a nucleon of
momentum (—;g-lg) with z-component of spin m’ and of isotopic
spin t,’ from a state of one meson aﬁd orne nucleon whose
rmomenta are respectively q and -3 and whose z-components of
isotoplic spin are 1%, and 1, the nucleon having z-component of

spin m, then, as is shown in Appendix III, the total pro-

duction cross-section, (t\‘.tJ.t,‘\o‘kth.,’c,\ , where the z-components
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of the isotopic spins of the particles are still specified,

is given by

(eclotete) = o 02 (s LIt waliimgs -

x Sle- 8y -0 By ()
where &= €4+w, . Making use of (3.80), we can write

(b}:, \gt“ {'k’:‘i\tf. \I \@t' .“q:.\ = L “:'l h.‘&; \-ﬂfl.k(l.\ “’.L', q\ \ \""k*\

et

IM M
x in“Y( Lopand 3 () (3.0%)

.l\.l\.\'u
Since the experimental results on meson-nucleon

scattering have been analysed to glve scattering phase
shifts only up to an incident meson energy about 45 lev
above the meson production threshold in the laboratory
system, we shall be concerned with the production only at
energies close to threshold; the final state particles will
therefore have low kinetic energies and will consequently
be produced almost entirely in s-states. The terms in
(3.88) in which A4,:1,:ze¢ are therefore much larger than the
other terms 1in the expansion at these energies, so that
those terms for which L%o and .%o can be neglected
completelys, Vhen & =4, =0, L:o and J=% and it follows
from conservation of parity that L=1 ; thus, in (3.88) we
retain only terms in Ty,,4lkkiq) .

Inserting (3.88) into (3.87), the summations over the

spins are easily carried out giving
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(ks trle@les) T&—%{-g&ﬂﬂ\(H.t:.t,‘h:-.ﬁ,,m ve,u;t\\\e,.e‘\\v

(e - we— By (3.44)
for the total production cross-section at energles close
to threshold.
Henceforth, we shall be concerned only with the process
(3.78) and, as no ambiguity will arise, we shall omit the
isotopiec spin variables and denote the cross-section by & (¢

Then,

olel = Tfﬁ‘S“bﬁd‘k\t-*.-'.'am..\.\u.u:«\\-«.ﬂ»\\”é(e-u‘--«»-F-m\ (3090)

If we put T:3;, we obtain the lowest order pertur-
bation theory result, Sele) , for the cross-section:
EQ 01 3 ) v v '
o () - Toreq ) 2% | A8 Syt by 4 ) 8 et B} (3491)
Using (3.84) and (3.86), we obtain the oross-section , 6.(c),

derived from the CF method:

. v
6}_(.(6\ - ( e \ Sl (S",‘(tl\ .
(B ) (14 S lquad )

o e (3.92)

(B) Second and third order S-matrix elements.

The only Feynman graph contributing to the matrix
element &Vﬂsm(ﬁ\\bmﬁ) is shown in figure (3?2) where
capital letters refer to four-vectors. Using the inter-
action hamiltonisn (2.6), the matrix element corresponding

to this graph is
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: \ C1TM -
(! a* sl et = 'li‘kl“‘{(?a\*‘h&.a, s S{ask-at-x')

(@-k).g +iM

v Rla) g o ¥ @) 3.93)
Q= arg-w f ’
K /z@ where standard notation has been
//’ ‘Q"j// used and the spinors are normal-
ﬂ{ // Pig. (3.2) ised so that Wla)ula)=1.
’ \Q After some aigebra, this yields

g e et - %,k—u-'z\s,.uwm-\,-ﬁ% Sorilagnd) Toglagn)  (3-94)
with ‘

("."'L\S;u(mﬂ\-\.-‘d = UL(\\ + V., (4 Sx‘w,‘ *Vl_‘[q) Eu,-,b (30 95)
where

UL(“ : ln; \‘::‘ g&(mﬁ\o({.uw\ \(:*kusﬂ (3 96)

and V() = hi 1:*:\ g Alees0) V4, rb) \{:“‘Lme\ (397)

-_.L ﬁt Eﬁ*“ EQ *'QQ’“ ( .98)
U\‘('“”“\ - m\*u\ Bawq 2840 ~p 42 cesD ’ |

«s. EQ&QQ &M

<%

a Vg, : —L—k ) .
an ({ (059\ i\ 4< Eq‘*’q(ﬁa‘&m Wy 0y - [ +2qeos § (3 99)
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Two Feynman graphs contribute to the matrix selement

k""‘-"*\ss.a..\.\t\"“iﬂ\\"""*\ ; they are shown in figure (3.3). The

/
’
Q= QEK-K-K, 4 /ﬂ\(x Q‘=Q+K-—tc|-x‘\ /"\(.
7 7/
/ y
1 / ,'/
y K
L Q+K, ;,fc‘ Q'rK, /' v
s/
/ 7 Y, ,’
P / 4 2
R - vid 0 ek,
y 7 / ’
/ / 7/ V4
/’ g o /
K 47 L Q Rl A
,.

matrix element correspondiang to these graphs is

) .
e afsie ety = (& 3\3(10{(‘;\‘;} {3; = {%‘_ &-:i&\mw:-m-a)

v Tl ys (&»«K;\.\HN‘\‘ i (a-k).y M
(@4, Y4 M (@-k) +mr

‘&‘ ‘L»\-‘ M
(-4 + M

o ey vim
(R4, )\ 4 M~

Yeula)

| (3.103)

\¢

Since we consider only energies close to the production

threshold, we can neglect the nucleon recoil in the factors

M s .
;;, and T«‘T&:‘ , which appear in the matrix element, and replace

[
them by 1 andz-"\ respectively. Straightforward calculations

Tinally yield
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+0lpa) Follea) + VIR lpg) + VIRV F, (k.q\] \3.104)

where  Ulpkg) = - "%‘@UM\%NJPNW«\— ‘-‘\»‘-‘ul (2.105)
V(k’.k\ ® SS-A (Qb‘ék‘zn Wy = \(“) (—)o 106)
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so that,

F. EL“ ( l L QEQ‘JL"P—\'*'}*,Q -
and Folbe) = I'\_/ EgeM ! {1- g gty (€aep-pierta )l (3,109)
VTR aqlaey e ettty

(C) Cross-section in lowest order perturbaition theory.

Suations (3.104) - (3.109) ellow us to evaluate
in (3.91). However, the iutegrals in (3.G1) are compli-
caved considefably by the fzet that the §-function in the
intesrend devends not only on the maznitudes of the momenta
p and k but also on the anzlefbetween these two vectors.
In his work on meson production processes, reral (20)
simplifies the intesration by meking use of the approximat-
ion thet the meson mass is nuch smaller than the nucleon

mass i.es Ki«| . This approxination allows one to neglect

the recoil ener.y of the nucleon in the 5—function so that
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Eh% is effectively replaced Dby 1I; the § -Tunction is then
independent of the angle e  This approximation is made in
analogy to the approximation usually made in G-decay theory
wnere the recoll energy of the residual nuaeleus is neglected
since the mass of the emitted electron is very much smaller
than the mass of the nucleuse.

The d-function in (%3+491) restricts the integral through
(p,k,8)-space to be over a certain surface. The form of

this surface can be secen from figure (3.4) where sections

by
¥y

Tige (3.4)

throush the surface are sketched for wvarious values of
in full lines. P is defined by &-p-we-Ep=0 o« Fermi's -
approximation replaces this surface by one of constant‘
section; 1ts section is showm in figure (3.4) by the broken
line; P' is defined by é-p-we-M =0 so that B'> P.

Ve éhall not make use of Fermi's approximaéion as it
seems rather a drastic approximatioﬁ to assume that

when, in actual fact ﬁ@ﬁ 0. 15. Instezd, we proceed as

follows.
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FTor energies very close to threshold, all the final
state particles can be treated non-relativistically, so

that, putting €:=M+2p¢T, the d-funetion in (3.91) becomes

3&r-%3..%§¥3 and, consistent with thils non-relativistie
'A

approximation, the kinetic energies of all the produced
particles are neglected in Syu.mlpkiq) - Equation (3.91)

becomes

sile) = \(\4 Sy alom: ) a\\ga’ &A‘ké(T L “‘M\ (3110)

~

(3.110) becomes

Solel = % %—L e iSymtee - ) SAI &m[T-;r—K, L,,\\a‘](B.llll

The d-function now depends only on the magnitudes of the
vectors g and be The integrations are all elementary and
gan be performed giving
.

Sl = 7{{ %:_“ \(-\,—\.\\S,‘qmm(e.o; q“—l,-';\\v k_%) T (3.112)
Taking p: 140 lfev and 11+ 938 Kev so that o = 6.7, 4
threshold for meson production occurs at an incident meson
kinetiac energy in the laboratory system of E.: 171 leve
The results of calculations made using equations (3.104) -
(3.109) with (3.112) for various values of the incident
meson kinetic energy, B , ars given in Table I. Althousgh

#alues of (e}l are given up to E.» 200 Mev, the non=-

relativistic approximation used in deriving (3.112) is not
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e Sp(é\ (%‘)\o Py
EK (w MQV‘ a‘/r /r: -
hon-vel, &b\wex. “wton suf\.mu apvex.
111 153 $100 o o
[§o |:$7§ {144 OS54 -
|46 PN §-Re3 29\ 244
200 el LAk b {4 %
218 fu {4 - 1354
Table I.

valid as far above threshold as this.

At energies where the non-relativistic approximation
is not valid, we replacme the integration over the surface
defined by ¢-wp-w-f:0by an integration over the surface
defined by t-op-w-Wysewhere Wy : Jjbs 0sM +  This is a
surface whose section is given by the curve 90-.15,. in figurs
(3.4) and is independent of §,. This surface can be
regarded as being, in some way & mean of the variations
with .of the original surface; it allows a ce'rtaih‘ amount
of nucleon recoil to be taken into account. - All the inte-
grations in (32.91) can now be performed analytically with
the exception of one, giving

Tole) = —&—S e LI (i el (30113)

Oy + W
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where, in the integrand, p is a function of k defined by
e-Wp-we -Wpwz 0 and, as before, P 1s defined by &-p-wp-E,:0

It was not found possible to perform the integration
in (3.113%3) analytically. It was therefore carried out
numerically and, to the accuracy regquired, this was quite
well accomplished by plotting the integrand as a function
of k and finding the area enclosed by the curve and the
limits of integration. This calculation was carried out
for E,» 150, 200 and 215 llev, the results being shown in
the last column of Table I.

This approximation will be fairly good when the values
of the third order S-matrix element on the original surface
do not vary much from the values on the "mean surface'.

For energies close to threshold, all the surfaces lie near

to one another so that, providing the S-matrix is a reason-
ably well-behaved function of the momenta it will not vary
much from one surface to another. This, along with the

fair amount of agreement obtained between the result of this
approximation and the result from the non-relativistic approx-
imation at E =150 Mev, where the non-relativistic aprroxim- |
ation should be valid, provides some justification for the
approximation.

A graph of the results given in Table I is shown in

figure (3.5)
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(D) Cross-seetion from Cini Fubinl method.

e can now calculate the values of o&.elel for various
values of E,, by making use of equation (3.92)s To do
this we require a knowledge of (~\.—‘x\$1.-;(«-.1\\-\,-‘:,\ and 5?1 (q).

The values of the second order S-matrix element for
different values of ¢q can be evaluated from equations
(3.100) - (3.102); +these are given in the third columm of
Table II.

As is shown by de Hoffmann et al. (25), the phase shift

analysis of the experimental data on meson-nucleon scattering
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does not lead to a unigque set of phase shifts. However,
on the grounds of the present theoretical predictions of
the qualitative behaviour of the phase shifts and requiring
that the phase shifts should be smooth functions of the
energy of the system, they single out one solution which
they believe is almost certain to be the correct one - this
solution is the one obtained using interpolation (b) on

Track I, in the notation of their paper. In this solution,

‘i ' LS. - i3 . -4
By M S\ 5 (—‘.-1\5;.3{&'.1\\-\'.'.; Y GA " EAVT k%ﬂ\ el | T (e)x &i\\gm

.l - - o} o)

({0 -4° S-44% o S o4s
\qo ~§ (A TR! 244 [-o\
A00 -0l b-i4e S 3% 286
P TS =13 b3y : 1356 LRIy

Table II.

the phase shift 52’- Ay in their notation - is a linear
function of the kinetic energy of the incident mesons in
the laboratory system i.e. of E,; this variation is shown
in figure (3%.0) and the required values of Sk are given in
the second column of Table II.

In (%.92), the values of oyle) obtained from the "mean
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surface™ approximation were used at &ll energies exacspt

E,> 180 Mev where the non-relativistic approximation result
was usede The values of ole) obtained are given in the
last column of Table II and the corresponding points plotted

in figure (3.7)e

(E) Cross-section from statistical theory.

The ratio of the meson production cross-section to the
elastic scattering cross-section has also been calculated
using the statistical theory of Fermi (20). This theory
1s based on the following ideae. 7hen & meson and & nucleon
collide, their kinetic energy is suddenly rsleased into a
small volume surrounding the point of collision, the size of
this volume being governed by the extent of the meson field
surrounding the nucleon. As a first approximation, this
volume 1s taken as a sphere of radius f“‘ However, this
sphere suffers a Lorentz contraction due to the motion of
the nucleon of momentum g; we therefore consider the energy
as being released into a volume V‘=%;'£%A o Within this
volume, mesons, nucleons and anti-nucleons are continually
being created and dsstroyed. The theory assumes that the
meson-nucleon interaction is so strong that statistical
equilibrium 1s attained within this wvolume before it breaks
up into a number of freely moving particles. The probability

that the final state will contain a certain number of

particles is therefore proportional to the probability that
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these particles are all simultaneously present in the
srall volume V. This theory depends on the existence
of a very strong coupling betwesen mesons and nucleons in
contrast to the weak ceoupling reyuired for the walidity
of perturbation theory.

In the collision of a meson and & nucleon, each of
nomentun q, the ratio of the meson production or double
scattering c¢ross-section, & , to the elastiec scattering

gross-section, &, , is given by

! 3,114
OiL $11) (3 !
. \ e
where S = E;y&b}t» S(e—u‘.-eb\ = :—i—‘ Liﬂ ; {%3.115)
¥ oty o ¥ [ P
and Q) = ™ ‘S&’k&wh S le-wp-wn E‘,’,\,\ gt (ﬁ\‘t‘ (3.116)

In evaluating the intezral in (3.110), we have assumed that
the total enersy of the system is suffieiently near the pro-
duetion ithreshold that a non-relativistic approximation is
valid as far as orders of magnitude are concerned.

In the collision of a positive meson and a proton, the
probabilities that the final nucleon is a neutron or a proton
are egual, so that with & the cross-section for process

(3.78)

-
-

L
. X

2\

S
st (3.117)

. - 6 . -
Various values of “&, , evaluated from eguations (3.115) -

(%117), 2re siven in the second colwmn of Table III.
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Ex te Mev. & x e 6‘;5 x \o*
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Table III.

In the last column of Table III, the valuss of 64 used
in the calculation of the ratio G%L are those corresponding
to the rhase shifts already employed in the calculation of
6 (cf. Tizure 2 of refercnce 25). To obtain definite
nunérical results for this ratio, for comparison with the
results of the Ferml theory, we have used the value %}“:\b;
this is the value found by Dyson et al. (16) in their trezat-
rment of meson-nucleon scattering by the TD method which gives

the best Iit with experimenta] results.

(F) Discussion of resultse.

The results in Table II show that the double scattering

eross-section &ele) is larger than the corresponding
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aross-section &;le) , obtained from lowest order perturbation
theory, by & factor of the order of (gﬁmmg which, for‘ﬁavw,
is of the order of 10. Also, for this value of the
coupling constant, o (e)~ [6’mbe. at an incident meson enérgy
of 200 llev. Now, at this energy the experimentally de-
termined cross-section for the slastic scattering of positivs
mesons on protons is of the order of 100 mb. so that our
calculated double scattering cross-section is smaller than
the experimentally determined elastiec scattering cross-
section by a factor of 10, It does not appear possible
that, with present experimental techniques, the double
scattering could be detected and measured wlth any accuracy
at these energles close to the threshold when the competing
process of elastic scattering has such a relatively large
cross-section. Indeed, as has been discussed in Chapter I,
the lowest energy at which any measurements have been made
on the double scattering process is 500 Mev. for the scatter-
ing of negative mesons on protons (3),(4); even at this
energy it was found difficult to measure the double scattering
cross-section with any aceuracy so that its value was only
fixed, by thess experiments, to lie somewhere in the wide
rangs of values 3.5 - 10mb.

From the results in Table III, we see that, as far as
orders of magnitude are concerned, the ratios of the double
to the elastic scatiering cross-section, calculated from the

two independent theories of Fermi and of Cini and Fubini,
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agree extremely well, for §a~\°, at energles close to
threshold. d'Espagnat (19) obtains a similar agreement
between the ratio calculated from his theory and that of
the Fermi theory; however, he finds that, as the energy
increased, the Fermi ratio increases more rapidly than does
hise. Cur results seem to indicate a less rapid increasse
of the Fermi ratio compared to the ratio from the CF method.
It should be noted however that the non-relativistic approx-
imation, used in calculating the Fermi ratio, loses its
validity as the energy increases so that the results cal-
culated with it do not show the correct energy dependences
of the ratio at these higher energies.

Due to the approximations which were made to overcoms
the difficulties encountered in carrying through a calcu-
latibn, based on the CF method, for a system in which states
gontaining more than two particles are possible, our results
cannot be used as the basis for a discussion of the validity
of the CF method. The difficulties associlated with apply-
ing the method to any but the simple two-body problem, as

has been done with some success by Sartori and Wataghin (33),

are clear from our worke
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APPENDICES.

Appendix I.

To establish the relationships between the nucleon
and meson self-energy terms (2.29) and (2.30) and the co-
variant expressions given in (2.3%2) and (2.%3), we carry

out the ksintegration in the covariant integrals.

0 (e \&\ - 3—?\ gd‘\t \‘; S\:U’—k\' Xs Al

an)!

"
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= j’*\t‘l{&{ ;Uﬂ- x 1 ¢ Xs
() SR (M BN B Pty

where  Hop = -« (psl) + oM and P -e-w, + Therefore
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&Eﬁ: \63& \({ | Do+ + My
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IE"""& (("’ e Et’-ﬁ\& \.C\‘ Po Uiy 'Eh‘s -L'\)
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+ b k b..*\-. \\(‘xs
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Wrx)' Y o By (& -0 -t ty) ISTY (P.wa +Cju ﬂ\)

Thus,
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3%\.8&\‘)\; Xg{ A e 4 K- } ¢ = .Sl(b..e)
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For the meson self-energy term,we have

A S

ﬂ KQ"\ -3 8 Xd@k Sh hg Selk) \s SFLmu\l

xax)

1"
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-3 e er e gy et gy
ol B ey - (e

where Q.e-&.  Therefore,

Tl = -2 &m S\{ e B0 s (o +-Bu) il
Wy KQ"“EK + Eku-& ‘c‘\“Qo“Ek- E‘._.,! +'u\\

((-l-l, -Q, - E\a_ug\ "Nsk“-b.-\s ’Eh“\ s \k

J.E‘U,g (Qo‘E\. 4 Etuk -&i\\kQ,'!-Eh +E\u‘5 .(g\‘

After some algebra and using the relations Spp-Spti=o0, 0y,

we obtaln

- + - |
T < - & fon s ienta Mﬂ S }

€ B BB by BB+ By -0y

so that T\-q (el = i‘;“\@}\ Sapt -

Appendix II.

e wish to perform the following integral

. IM & - ~3ml
1 - 023% (‘Lﬂ@-\{ -1\"(L..\!;(°§\,‘Vﬁk-'~\\ S(G—U\-- Wy - Em\,\ il(l:(u\‘lkbk"b“'b) U\.ﬂ

For p and k% 0, making use of the closure property of

spherical harnonics, we can write
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§ (e-u@—uk-Et».w\ N ";1« & ub_uk Y“(cnsﬁc Y, (w«\ (63)

where &—ub—u«-\l{a*w‘m‘nbkus& = 0- defines cos b, Therefore,
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v J'm!
X \Ir ('.‘p\ Yt:u " (’ﬁ\.,‘&k. N (0.3)

laking use of (3.53), the orthonormality of the spherical

harmonics, and the identity

< ¢ Qe+t )2ba) & 5 ¢ e« % ¢ X4p
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By meking use of the symmetry relations of the Clebsch
Gordon coefficients (3) and of the property of the Racah
cosefficients (2)
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the summations over t, x and x' can be carried out, giving
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With (A.4) and (A.6), this yields

Al (openn) = 2 72 7 Y “lwbl) R (“MNL“ ““‘”(’x\
TR S bl
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GP U"k\ = 11(% ke_u‘,-ak\yr kwse.\ (A.\l)
and the integral is over those values of p such that, for
a given k, -t<wbl.

then k = 0,

S(G—wp— O Emg\ = —lﬂ' ‘;(\‘ ~be \ ()
[Cb&-u‘.\

where p, is defined by e- Wy -p-Ep =0, Thus, for k=0,



(97)

Ep A
This leads to the formula (A.lo) for the integral, where,

in this case,

By W
6 = T LL: o0 e

Appendix IIL,

The following proof is essentially that given by
Dr. P.T. 1Tatthews in an unpublished set of lecture notes
on an "Introduction to ield Theoxry™.

The total transition probability for a system of one
meson of momentum g and one nucleon of momentum -¢ going

into 2 state of two mesons and one nucleon is
(2 (ol eeltatsiy -l = (Eplee{ec leeema-al [

by (3.30) and (3.35) where P;and P are the total four-
momnenta of the initial and final states respectively.
/o suppress the spin and isotopic spin variables for the

present. Tow,

[s*ua_?&\]t = Syle) Oulf-ty)

and, for the energy component of S o) , for example, we can

write
T

(S ‘€t
g LL d'b/k x LL\M- J
% €0 T o l‘K

>

g(o\ S L\‘.M :l'&

T L
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so that for 3.40\ , we have

dlo) = Lim T
(o) S

Y=o
where VI is the total space-time volume considered.
It follows that the total transition probability per

unit time per unit volume is

: \‘gm&&w \lek vl Tl g ~a)) S e o= Bpu)

where €-:=Be+wq and the r-intesgration has been carried oute.
The wave TIfunctions, which we use to describe the mesons
and nucleons, are normalised so that the denslty of mesons
or nucleons 1s G(;\x per unit volume. Hence, the totzal
ransition probability per unit time per unit volume per unii

density of incoming particles is

(ax)’ g & &&‘k |k -l T \‘&w&“» Be-wp-wn ~8p,,)

The total cross-section, 6(¢) , which is the total
vransition probability per unit flux of incoming particles,
is obtained from this by dividing by the magnitude of the
relative velocity of the initial nucleon and meson system

qe

. N
i.6. by \{M’f EJ = foy Thus

Equ
RS A AT (I (B
Teking spin and isotopic spin into account, the total cross-

section is obtained by averazing this expression over the

initial spin states and sumning in over the final spin
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(59)

This gives equation (3%.07) of the text.
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