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GHiPirU I .

1 . 1  In troâucuion*

In recen t  yea rs  much expe r im en ta l  d a ta  has been 

c o l l e c t e d  on the p r o p e r t i e s  of -mesons and t h e i r  i n t e r 

a c t i o n  w ith  nucleons* A g re a t  d e a l  o f  t h e o r e t i c a l  work 

has been c a r r i e d  out t r y i n g  to  f in d  some u n i f i e d  i n t e r p r e 

t a t i o n  of these  exper im en ta l  r e s u l t s  on the  i n t e r a c t i o n  o f  

•n-mesons and nucleons  ; however, no adequate  t h e o r e t i c a l  

t r e a tm en t  of the problem has ye t  been found. This i s  

mainly due to  the s t r e n g th  of t h i s  i n t e r a c t i o n  which p r e 

v en ts  i t s  t rea tm en t  as  a small p e r t u r b a t i o n  o f  the  f r e e  

p a r t i c l e  states*. S evera l  n o n - p e r tu r b a t io n  ty p e s  of  approx

im ation  have been suggested f o r  d e a l in g  w i th  the  problem 

and i t  i s  w ith  the  a p p l i c a t i o n  o f  two o f  th e s e  which we 

s h a l l  be concerned.

I t  i s  w e l l  e s t a b l i s h e d  from the  e x p e r im e n ta l  r e s u l t s  

t h a t  71-mesons have zero sp in  and odd i n t r i n s i c  p a r i t y  (a 

comprehensive review of th ese  exper im ents  and t h e i r  i n t e r 

p r e t a t i o n  i s  g iven in  re fe re n c e  1 ) .  They a re  t h e r e f o r e  

Bose p a r t i c l e s  and are  d esc r ib ed  by a p s e u d o s c a la r  f i e ld *  

n u c leo ns ,  on the o th e r  hand, a re  Fermi p a r t i c l e s  of s p in  

and a re  desc r ib ed  by the Dirac f i e l d *  Of th e  many ty p e s  

of  coup ling  p o s s ib le  between th e s e  f i e l d s ,  two have been 

s tu d ie d  most e x te n s iv e ly ;  they are  p s e u d o s c a la r  (ps) 

coup l ing  and pseudovector  (pv) co u p l in g  and b o th  have the
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s im p lify in g  feature that the in te r a c t io n  ham iltonian i s  

l in e a r  in the meson f i e l d .  I t  has been shown (JO) th a t ,  

as fa r  as a perturbation treatment i s  v a l i d , the theory  

with ps-Goupling i s  renormadisable whereas th at w ith  pv- 

coupling i s  n o t, so th a t ,  in gen era l, unambiguous f i n i t e  

r e s u l t s  cannot be obtained using  pv-coupling* ïïe s h a l l  

th erefore  concentrate our a t te n t io n  on the theory w ith  

p s-cou p lin g  and furthermore we s h a l l  take the in te r a c t io n  

to  be charge-symmetric (26) which m aintains the charge 

independence of nuclear forces  and ensures th at the t o t a l  

iso to p io  sp in  i s  a constant of the motion*

Of the various approximation methods which have been 

suggested fo r  so lv in g  the equations of t h i s  theory and 

which do not assume a weak coupling between the f ie ld s^  

two, which have met with some su cce ss ,  are those proposed  

by Tamm ( JJ ) and Dane o f f  (12) and by Cini and Pub in i  (9)* 

The method of Tamm and Daneoff -  TD method -  has been  

applied  to  the problem of meson-nucleon s c a t te r in g  by 

various authors ( y ) , ( l 6 ) , (2J ) , ( 28) but the only treatment 

which r igorou sly  u ses  the charge symmetric pseudoscalar  

in te r a c t io n  hamiltonian i s  that by Dyson e t  a l  ( l 6 )*

They apply the method in  lowest approximation and, n e g le c t 

ing a l l  s e lf -en erg y  e f f e c t s ,  c a lc u la te  the e l a s t i c  s c a t t e r 

ing phase sh if t s*  Although the r e s u l t s  which they obtain  

have no q u an tita t ive  agreement with the phase s h i f t s  de

termined from the experimental r e s u l t s ,  the q u a l i ta t iv e
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agreement i s  g rea tly  increased, over th at obtained from a 

low est order perturbation theory c a lc u la t io n .  This lea d s  

one to  f e e l  that the basic  ideas behind the method are  

sound and th a t ,  by carrying out a c a lc u la t io n  to  a h igher  

order o f  approximation in  the method, r e s u l t s  would be 

obtained which would agree w e ll  w ith the corresponding  

experimental r e s u l t s .

The a p p lica t io n  o f the method o f Cini and Pubini -  

CP method -  to  meson-nucleon s c a t te r in g  has been carr ied  

out by Sartori and Wat a gh in ( JJ) .  The low est approxim

a tio n  has again been used and the nucleon trea ted  non- 

r e l a t i v i s t  i c a l l y  so that a c u t -o f f  momentum has to  be 

introduced to  obtain f i n i t e  r e s u l t s .  By a su ita b le  choice  

of the coupling constant and th is  c u t - o f f ,  they  obta in  

very good agreement with the experim ental r e s u l t s  fo r  the  

important p-wave sca tter in g  phase s h i f t  -  and rough 

q u a l i ta t iv e  agreement with the other experim ental phase 

s h i f t s .

The p a r t ia l  success o f these two methods seems to  

in d ica te  two things* F ir s t ly ,  the pseudoscalar charge- 

symmetric in tera c t io n  hamiltonian i s  not in c o n s is te n t  w ith  

experiment and secondly, each of the two approximation  

methods has some degree of v a lid ity *

To in v e s t ig a te  further the theory and a ls o  the v a l i d i t y  

of these approximation methods, i t  was thought u s e fu l  to  

apply the theory, using  these methods, to  another p rocess
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in vo lv in g  the in tera c t io n s  of mesons and nucleons* The 

process considered i s  that o f meson production in  meson- 

nucleon c o l l i s io n s  i .e *  vi + N —» ir + TT + N sometimes c a l le d  

double meson scattering*  This p rocess  has a th resh o ld  

energy when the r e s t  energy of a meson i s  a v a ila b le  in  the 

centre-of-m ass system of the o r ig in a l  meson and nucleon;  

t h i s  occurs when the incident meson has a k in e t ic  energy 

of ju s t  over I 70 Mev in  the laboratory system in  which the  

i n i t i a l  nucleon i s  at r e s t .  The production  process I s  

c le a r ly  c lo s e ly  connected to  e l a s t i c  meson-nucleon s c a t t e r 

in g , the two being competing p ro cesses  when the in c id en t  

meson has a k in e t ic  energy greater  that I 70 Mev* By 

eva lu atin g  the cross sec t io n  fo r  double s c a t te r in g  u s in g  

both the TD and CF approximation methods, fu rth er  checks on 

the theory with ps-coupling  and on the approximation methods 

are made available*

In the remaining part of t h i s  chapter , we s h a l l  d isc u ss  

the experimental r e s u l t s  which are a v a i la b le  on doubling  

sc a tte r in g  and a lso  the th e o r e t ic a l  work which has already  

been done on the problem*

In Chapter I I ,  the TD method and i t s  a p p lic a t io n  to  

double sc a tte r in g  i s  discussed* This work was o r ig in a l ly  

undertaken u sin g  the boundary co n d it io n s  d iscu ssed  by Dyson 

(1 5 ) and the main conclusions concerning the presence of  

non-physica l s in g u la r i t ie s  were arr ived  at from the 

equations obtained with these c o n d it io n s .  However, s in ce
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then a paper by Dyson and D a litz  ( I 7 ) on meson-nucleon  

sc a t te r in g  has become ava ila b le  in p reprin t form# In 

t h i s ,  m istakes are pointed out in  the boundary co n d it io n s  

used by Dyson ( I 5 ) and the correct co n d it io n s  are formu

lated* Our equations have subsequently been m odified by 

the use of these corrected boundary co n d it io n s  and are now 

s im ila r  to  the equations o f  Dyson and D a litz*  This modi

f i c a t io n  of the boundary con d itions s im p l i f ie s  the f i n a l  

se t  o f equations but does not a l t e r  the f i n a l  con c lu sion s  

which had already been reached.

Chapter I II  i s  devoted to  a d isc u ss io n  o f  the CP method 

and i t s  a p p lica t io n  to the problem*

1 .2  Experimental r e s u l t s  on double scattering:*

The f i r s t  double s c a t te r in g  event to  be observed (6) 

was found in  a photographic p la te  which had been exposed  

to  cosmic rad ia tion  at a high a l t i tu d e  ; the in c id en t meson 

had an energy o f about 1 Bev and the produced mesons and 

proton had energies o f  about 375» 3^5 270 Mev r e sp e c t 

iv e ly .

Pry (22) found another event o f  t h i s  type in  a photo

graphic emulsion which had been exposed to  a laboratory  pro

duced beam of 220 Mev negative  mesons* This appears to  be 

the lowest energy at which double s c a t te r in g  has so fa r  been 

observed.

Blau, Caulton and Smith (4) ,  (5) have carr ied  out quite
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an exten sive  in v e s t ig a t io n  of the in te r a o t io n s  o f  JOO Mev 

negative mesons with the n u c le i  o f  photographic emulsions* 

Prom th e ir  r e s u l t s ,  they estim ate that the c r o s s - s e c t io n  

fo r  the production o f  charged mesons from the c o l l i s i o n  o f  

negative  mesons and nucleons l i e s  somewhere between 3*5 ^nd 

10 m illib arn s  at t h i s  energy. They a ls o  f in d  that in  the 

centre-of-m ass system, the produced mesons tend to  come o f f  

in  the backward d ir e c t io n  and the nucleons in  the for -̂vard 

d ir e c t io n .

Recently, experiments have been carr ied  out u s in g  the 

1 .5  Bev negative meson beam of the Brookhaven cosmotron.

The nuclear in tera c t io n s  of these mesons have been in v e s t ig 

ated using both photographic emulsions (1 1 ) and d i f fu s io n  

cloud chambers (18)* At th is  high energy, as w e l l  as  

e la s t i c  and double meson s c a t te r in g ,  various other p ro cesses  

are p o ss ib le  in vo lv in g  the production o f  la rg er  numbers o f  

-mesons and a lso  the production o f heavy mesons. I t  i s  

found that the t o t a l  negative meson-nucleon in te r a c t io n  

c r o s s - s e c t io n  at th i s  energy i s  about 35 m il l ib a rn s  whereas 

the e la s t i c  sc a tte r in g  c r o s s - s e c t io n  i s  only 10 m il l ib a r n s .  

Thus, in most o f the c o l l i s io n s  production o f  some type 

takes p lace . In those production events which were 

analysed in d e t a i l ,  i t  was found (18) th a t about 8o% o f the 

events resu lted  in double s c a t te r in g ,  and the remaining 

20% in the production o f two extra mesons* Contrary to  

the r e s u l t s  at JOO Mev, the f i n a l  nucleons in  the double
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s c a t t e r i n g  events  were found to  have a tendency to  come o f f  

in  the backward d i r e c t i o n  in  the c e n t r e -o f -m a s s  system.

These a re  a l l  the exper im en ta l  r e s u l t s  which a re  

a v a i l a b l e  a t  p re se n t .  They do not  give a very  c l e a r  

p i c t u r e  of the behaviour of the double s c a t t e r i n g  c r o s s -  

s e c t io n  except in so f a r  as i t  appears  to  r i s e  from zero  

a t  th re s h o ld  to  some value l a r g e r  than  the e l a s t i c  s c a t t e r 

ing  c r o s s - s e c t  ion around l . p  l e v .

1 , 0  Prev ious  th e o r s t i c o . l  ,.Qn double sca t t e r ! n .

A c a l c u l a t i o n  has been c a r r i e d  out by Me Ik  in  and Bathe

(3 2 ) on the r e l a t i v e  magnitudes of the double s c a t t e r i n g  and 

e l a s t i c  s c a t t e r i n g  c r o s s - s e c t i o n s .  However, the  d e t a i l s  of 

the  c a l c u l a t i o n s  are  no t  c l e a r  as  i t  has been p u b l i s h e d ,  so 

f a r ,  only in  a b s t r a c t  form. They use the low est  o rd e r  TD 

approximation and i t  would appear  t h a t  they  n e g l e c t  a l l  the 

c o n t r i b u t io n s  to  t h e i r  equa t ions  from s e l f - e n e r g y  te rm s .  

Making some approximations as to  the  sm al lness  of the  p ro 

d u c t io n  p rocess  r e l a t i v e  to  the  e l a s t i c  s c a t t e r i n g  en ab le s  

them to  c a lc u la t e  the  r a t i o  of the  p ro d u c t io n  to  the  e l a s t i c  

s c a t t e r i n g  c r o s s - s e c t i o n s ;  they f i n d ,  among o th e r  n um erica l  

r e s u l t s  which are  no t  g iven ,  t h a t  t h i s  r a t i o  i s  l e s s  th an  1% 

a t  an in c id e n t  meson energy of 400 Mev. In  the  d i s c u s s i o n  

in  Chapter I I  of the a p p l i c a t i o n  o f  th e  TD method to  the  

problem, i t  i s  shown t h a t  i t  i s  no t  v a l i d  to  n e g l e c t  the  

c o n t r ib u t io n s  from nucleon s e l f - e n e rg y  terms in  the  c a l c u l -
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a t i o n  of  the double s c a t t e r i n g  o r o s s - s e c t i o n .  I f  HeIkin 

and Bethe have, as i t  appears ,  n e g le c te d  s e l f - e n e r g y  term s 

in  t h e i r  equa t io ns ,  l i t t l e  s i g n i f i c a n c e  can he attached  to  

t h e i r  r e s u l t s .

Two ca lcu la t io n s  have been carr ied  out in  each o f  which 

the angular d is tr ib u t io n  of the produced p a r t i c l e ,  obtained  

from various types o f coupling of the meson and nucleon  

f i e l d s ,  are compared. Kovacs (27) has compared the angular  

c o r re la t io n  of the two emitted mesons fo r  the two types o f  

in tera c t io n  v/hen the meson-nucleon in te r a c t io n  i s  much 

stronger and much weaker than the meson-meson in te r a c t io n .

In the f i r s t  case,  the incident meson in te r a c t s  d ir e c t ly  

w ith  the nucleon which then emits two mesons; in  the second 

ca se ,  the incident meson in tera c ts  v/ith the v ir tu a l  mesons 

surrounding the nucleon and two mesons are then produced by 

t h i s  mechanism. ICovacs has carried  out a c a lc u la t io n  a t  an 

inc ident meson energy o f  1 Bev u s in g  s c a la r  theory i . e .  

sca la r  mesons with sca la r  coupling. He f in d s  in  both cases  

that the angle between the two mesons tends to  be sm all,  

t h i s  tendency being much stronger in  the case o f  strong  

meson-meson in tera c t io n . lliyachi ( 3I) has c a lc u la te d  the 

angular d is tr ib u t io n  o f the Tï' -̂meson r e la t iv e  to  the in c id en t  

Tf-meson in  the reaction  + a t an in c id en t meson

energy o f 210 Mev. He tr e a ts  the nucleons n o n - r e l a t i v i s t i 0-  

a l l y  and f i r s t  of a l l  compares the r e s u l t s  o f  low est order 

perturbation  theory assuming p s-cou p lin g  and pv-coup l i n g .
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For ps-ooupling , the IT-meson tends to  make a large  angle 6 

v/ith the d irec t io n  o f the incident meson whereas, fo r  pv- 

coupling, the angular d is tr ib u t io n  i s  symmetrical about 

and i s  1 % 4 .  As Miyachi p o in ts  ou t, not much s i g 

n if ica n ce  can be attached to these  low est order perturbation  

theory r e s u l t s ,  and he attempts to  improve on them by con

s id er in g  the production as taking p lace in  two s t e p s .

F ir s t  of a l l  a sca tte r in g  takes p lace between the in c id en t  

meson and nucleon which i s  fo llow ed by the nucleon em ittin g  

the second meson. For the f i r s t  s te p ,  he u ses  the s c a t t e r 

ing m atrix element ca lcu la ted  by Chew ( 7 ) , ( 8 )  and assumes 

that the second step takes place through pv-coup l i n g .

The angular d is tr ib u t io n  obtained by t h i s  method i s  ra th er  

s im ilar  to  that obtained from the low est order p v-cou p lin g  

c a lc u la t io n  but more i s o tr o p ic .  At an energy o f  210 Mev 

which i s  only 40 Mev above the threshold  fo r  production , one 

would expect that the mesons, having a very low energy, 

would be produced predominantly in  s - s t a t e s  so th a t an almost 

iso tr o p ic  d is t r ib u t io n ,  as obtained by t h i s  c a lc u la t io n  o f  

Miyachi, seems l ik e ly  to  be co r rec t .

The most ex ten sive  p iece  o f th e o r e t ic a l  work so far  

carried  out on the problem has been done by d'Espagnat (10)♦ 

He attempts to  in v e s t ig a te  as much o f  the genera l nature o f  

the problem as he can without making use o f  any o f  the approx 

imations o f  f i e l d  theory. He does t h i s  by drawing an 

analogy between the processes  of e l a s t i c  and double meson-
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nuoleon sc a tte r in g  and the resonance theory o f  n uc lear  

r e a c t io n s .  By assuming that the production process  i s  

much sm aller than the e l a s t i c  s c a t t e r in g ,  which i s  c e r ta in ly  

true near the production th resh o ld , he i s  ab le to  ca st  the 

formulae for  the production and e l a s t i c  s c a t te r in g  c r o s s -  

se c t io n s  in to  forms s im ila r  to  the formulae which a r is e  in  

the nuclear theory. For t h i s  analogy to  be tr u e ,  he f in d s  

that fo r  those energ ies  at which the e l a s t i c  s c a t te r in g  

goes through a resonance, the production c r o s s - s e c t io n  must 

go through a maximum. From t h i s  he deduces th a t  i f  the 

resonance in  the e l a s t i c  sc a tte r in g  a t  a c e r ta in  energy i s  

due to a resonance in  a cer ta in  s ta te  o f known angular  

momentum, p a r ity  and iso to p io  sp in , then around t h i s  energy 

the production takes place predominantly through t h i s  same 

s t a t e .  However, i t  i s  now almost c e r ta in ly  e s ta b lish e d  

that meson-nucleon sc a t te r in g  through the s ta te  o f  angular  

momentum \ , even p a r ity  and iso to p ic  sp in  \  has a resonance 

at about an incident meson energy o f  I 90 Mev. d ’Espagnat^s 

r e s u l t s  imply th a t ,  around th is  energy, the meson production  

takes place predominantly through t h i s  s t a t e ;  t h i s  i s  not 

c o n s is ten t  with the view th a t ,  around t h i s  energy which i s  

only about 20 Mev above the production th resh o ld , the mesons, 

having very low energ ies  are produced almost wholly i s  s -  

s ta te s  i . e .  the production takes place through the s ta te  of  

angular momentum ^ and even p a r ity .  This would seem to  oast  

some doubt on the v a l id i t y  of drawing t h i s  analogy between
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meson-nucleon r e a c t i o n s  and n u c le a r  r e a c t io n s *

S t i l l  making use  of th e  assumption t h a t  p ro d u c t io n  i s  

much l e s s  probable  than  e l a s t i c  s c a t t e r i n g ,  d^Sspagnat 

deve lops  a r e l a t i o n s h i p  between the  m a t r ix  element f o r  p r o 

d u c t io n  and the e l a s t i c  s c a t t e r i n g  phase s h i f t s ,  which he 

t a k e s  a s  known from experiment.  However, t o  i n v e s t i g a t e  

the  consequences of t h i s  r e l a t i o n s h i p ,  he i s  fo rc e d  to  make 

some approxim ation  r e s t r i c t i n g  the ty p es  o f  in te rm e d ia te  

s t a t e s  p o s s ib le  in the p roduc t ion  p r o c e s s .  By c o n s id e r in g  

the  c o n t r ib u t io n s  from the v a r io u s  te rm s ,  in  which d i f f e r e n t  

in te rm e d ia te  s t a t e s  occur,  o f  the lowest  o rd e r  p e r t u r b a t i o n  

th e o ry  m a tr ix  element f o r  the p ro d u c t io n  p ro c e s s  

and, by making use  of the ex p e r im e n ta l ly  de te rm ined  e l a s t i c  

s c a t t e r i n g  phase s h i f t s ,  he m a in ta in s  t h a t  th e  l a r g e s t  con

t r i b u t i o n  to  the m a t r ix  element f o r  p ro d u c t io n  comes from 

t h a t  p a r t  which corresponds t o  the fo l lo w in g  o rd e r  o f  p ro 

c e s s e s :  s c a t t e r i n g  ta k e s  p lace  betv/een the  i n c id e n t  meson

and th e  p ro ton  and f i n a l l y  the p ro ton  em its  an e x t r a  meson. 

Taking only t h i s  p rocess  in to  accou n t ,  formulae f o r  the  

d i f f e r e n t i a l  and t o t a l  p roduc t ion  c r o s s - s e c t i o n s  in  term s of 

th e  e l a s t i c  s c a t t e r i n g  phase s h i f t s  a re  d e r iv e d .  The only  

r e s u l t  ob ta ined  by d^Espagnat from th e se  formulae i s  the  

o rd e r  o f  magnitude and energy dependence o f  th e  r a t i o  of 

the  p rod uc t ion  to  the  e l a s t i c  s c a t t e r i n g  c r o s s - s e c t i o n s .

This r a t i o  he compares w ith  the same r a t i o  c a l c u l a t e d  from 

the s t a t i s t i c a l  th eo ry  of Fermi (20) which we s h a l l  d i s c u s s
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a t  th e  end of  Chapter I I I .  Ee f i n d s  t h a t  the  two r a t i o s  

agree i n  o rd e r  o f  magnitude but  t h a t  th e  r a t i o ,  de te rm ined  

from the  s t a t i s t i c a l  t h e o ry ,  i n c r e a s e s  more q u ick ly  w i th  

energy than  does h i s .



(15)

CEAPTER II .

2 .1  Formulation of the Tamm Danooff method.

The approximation method as o r ig in a l ly  proposed by 

Tamm (35) Dane o f f  (12) for so lv in g  problems in v o lv in g  

in te r a c t in g  f i e l d s  i s  based on the fo llo w in g  id ea . Suppose 

a system of in tera c tin g  f i e l d s ,  which i s  described  by the  

hamiltonian H' where i s  the ham iltonian o f  the

free  f i e l d s  and the in teraction  ham ilton ian , i s  in  an

e ig en sta te  1$) of energy E i . e .

+ -- £1^*) (2.1)

Since i s  a herm itian operator, i t s  e ig en fu n ctio n s

form a complete orthonormal s e t , b ein g  the s ta te  

vector  describ ing  a s ta te  containing n free  p a r t i c l e s  o f  

t o t a l  energy Thus,(Î) can be expanded

in  terms o f  the t$^as

‘ ^  ( 2. 2 )

where a(n) i s  the p ro b a b ility  amplitude fo r  f in d in g  the  

system contain ing the n free p a r t ic le s  s p e c i f ie d  by 

i f  i t  i s  f i r s t  put in to  the s ta te  \ ^ )  and the in te r a c t io n  

i s  then switched o f f .

Introducing (2.2)  in to  (2 . 1 ) ,  we obtain

(,£-ewWW - (2 .3)Kv
which form an in f in i t e  se t  of coupled in te g r a l  equations  

fo r  the amplitudes a ( n ) .

The TD method c o n s is t s  of approximating to  t h i s  i n f i n i t e



(14 ï

se t  o f  equations by a f i n i t e  se t  obtained by s e t t in g  equal 

to  zero a l l  amplitudes for  s ta te s  con ta in in g  more than H 

p a r t i c l e s ;  the fundamental hypothesis behind t h i s  method 

i s  t h a t ,  i f  H i s  large enough, the r e s u l t s  w i l l  be in se n s

i t i v e  to  the value of H and w i l l  tend to  some f i n i t e  l i m i t ,  

which i s  the so lu t io n  o f  the i n f in i t e  s e t  o f  equations ( 2. 3 ) ,  

as H tends to  in f in ity *  ( 2. 3 ) how becomes a f i n i t e  se t  

o f  (Ft l )  coupled in te g r a l  equations fo r  the am plitudes a ( 0 ) ,  

a ( l )  — -a(H) which can, in  p r in c ip le ,  be so lved  r ig o r o u s ly .

However, making t h i s  approximation lead s  to  a ser io u s  

d i f f i c u l t y  which i s  connected with the s e l f - e n e r g y  o f  the 

vacuum. Every s ta te  of the in te r a c t in g  f i e l d s  con

ta in s  a large number of p a r t ic le s  which are c o n t in u a lly  

being created and destroyed in the vacuum. R e s tr ic t in g  the  

t o t a l  number of p a r t ic le s  to  N se ts  up an a r t i f i c i a l  c o r r e l 

a t io n  between these  vacuum f lu c tu a t io n s  at p o in ts  w idely  

separated in space; th i s  appears in  the equations as a 

spurious e f f e c t  of the vacuum f lu c tu a t io n s ,  which a re ,  in  

gen era l, badly divergent q u a n t it ie s ,  on the behaviour o f  

the r e a l  p a r t i c l e s .  Dyson (14) has suggested  the fo llo w in g  

m od ification  o f the TD method which overcomes t h i s  d i f f i c u l t y  

and which has other advantages over the o r ig in a l  method which 

w i l l  be d iscussed  la t e r .

Let be the vacuum s ta te  of the in te r a c t in g  f i e l d s  

with energy E i . e .  where i s  the

lowest eigenvalue o f  H; l e t  A(n) be the product o f  free
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p a r t ic le  a n n ih ila t io n  operators fo r  the p a r t i c l e s  sp ecified ,  

by n and. C(nM a s im ila r  product o f  fr ee  p a r t ic le  crea tio n  

operators fo r  the p a r t i c l e s  sp e c i f ie d  by n ' .  We now con

s id e r  the quantity  A I n  p lace  o f  the o r ig in a l

TD amplitude a (n) .  For the purpose o f  comparison, we note  

that, i f  1$  ̂ i s  the vacuum s ta te  of the fr ee  f i e l d s ,  then  

so that from equation (2 .2)  the o r ig in a l  TD 

amplitude can be expressed as

s. <$̂ 1 (\\A  \ î?')

Thus, in  the amplitude a ( n ) , the p h y s ic a l  s ta te  i s  

described in terms o f the bare p a r t ic le  s ta te  , whereas, 

in  the new amplitude , i t  i s  descr ibed  in

terms o f  the rea l  s ta te  i s  in t e r 

preted as being the amplitude for  f in d in g  n  ̂ fr ee  p a r t i c l e s  

more and n free  p a r t ic le s  l e s s  in \^ )  than in  . From 

the Schroedinger equations

and

i t  fo l lo w s  that

( 2. 4 )

where E and E are the en erg ies  o f th e  n and n' free  

p a r t ic l e s  r e s p e c t iv e ly  and 6% E -Eo .  The interaction

ham iltonian H* can be expressed in terms o f free  p a r t ic le  

crea tio n  and a n n ih ila t io n  operators so th a t ,  a f t e r  some man

ip u la t io n ,  the commutator in (2.4)  can be expressed as a sum 

o f  terms each of which i s  in  normal order i . e .  a l l  c r ea t io n  

operators ly in g  to  the l e f t  of a l l  a n n ih i la t io n  operators;
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the r ig h t side i s  then expressed in  terms o f the new TD 

amplitudes* Thus, l ik e  (2*3),  (2 .4)  i s  an i n f i n i t e  se t  

of coupled in teg ra l equations which can be made f i n i t e  by 

the TD approximation which we have a lready described*

In the case of the pseudoscalar charge-symmetric in t e r 

a c t io n  hamiltonian h' - » where the

n o ta tio n  i s  standard, the vacuum se lf -e n e r g y  terms, which  

cause d i f f i c u l t y  in  ( 2. 3 ) ,  a r ise  from the fa c t  t h a t ,  in  

( 2. 3 ) H* can create three p a r t ic le s  at a point w ith  two 

arb itrary  momenta and subsequently a n n ih ila te  th ese  same 

three p a r t ic le s ;  the in tegra tion  over the two free  momenta 

leads to  divergence d i f f i c u l t i e s *  However, in  (2 .4)  one o f  

the p a r t ic le s  created or an n ih ila ted  by Ĥ  must belong to  

the s e t  n or n  ̂; t h i s  condition prevents the presence o f  

any vacuum se lf-en erg y  terms in the equations#

Equations ( 2. 3 ) and (2.4)  a ls o  d i f f e r  in the fa c t  that  

the energy appearing in  (2.4)  i s  the p h y s ic a l ly  observable  

energy o f  the system since i s  the vacuum s t a t e ;  in  ( 2. 3 ), 

the energy E i s  not a p h y s ica lly  meaningful q uan tity  as what 

i s  observed i s  always an energy d ifferen ce#

From now on, we s h a l l  work s o le ly  in  terms o f  the modi

f i e d  TD method. I t  should be noted th at nowhere in  s e t t in g\
up equation ( 2 . 4 ) ,  have we used the fa c t  th at i s  the  

vacuum s ta te .  Equation (2.4)  holds fo r  any "comparison 

s tate" and then £■ i s  the energy d if fe r e n c e  between the

s ta t e s  1̂ ") and •
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2.2 The I n t e g r a l  equa t ion  f o r  e l a s t i c  and double s c a t t e r in g »

■7e s h a l l  now se t  up the formalism f o r  an i n v e s t i g a t i o n  

by the TD method of some of the consequences o f  assuming a 

charge-symmetric p seu d o sca la r  i n t e r a c t i o n  between th e  meson 

and nucleon f i e l d s .

The meson-nucleon system i s  d e s c r ib e d  by the  h a m i l to n ia n

H - Ho-v q' ( 2 . 5 )

where i s  the  sum of the  f r e e  meson and f r e e  nuc leon  f i e l d  

ha mi I t  oniane^ ' and

w' » 'VW (2.6)

the  re p ea ted  s u f f i x  ol be ing  summed over the  v a lu e s  1 , 2 , 3*

The Tot are  the u s u a l  i s o to p ic  sp in  m a t r i c e s .  The a re

the meson f i e l d  o p e r a to r s ;  and d e s c r ib e  the

charged mesons and the n e u t r a l  mesons. W i s  the

nucleon  f i e l d  o p e ra to r ;  i t  i s  an e i g h t  component s p in o r  

such t h a t  i f  t

x*''\VW Ï and - 4^̂  W

where and v̂ )pÛ  a re  r e s p e c t i v e l y  th e  n e u t ro n  and p ro to n

f i e l d  o p e r a to r s .  Also

2.nd z -

where i s  the  hermit  ia n  co n ju g a te  of

and and are  the u s u a l  Dirac m a t r i c e s  i . e .  p and

• LOC.Ot̂ Ot̂ ,

fo rk in g  in  the Schroedinger r e p r e s e n t a t i o n ,  we can 

expand the f i e l d  v a r i a b l e s  as  fo l low s

« V '  ^  ü.1̂ ) T'f-’t (2 .7)
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f w  V' A  ' (2.8)
jl.u

<̂ «tW » cÇ ,U V w ÿ[^ ^ (w u k U )]F -- (2 .9)

The momenta p and k are summed over the normal freq u en cies  

of the large volume T and the sp inors u(g  ) are summed over 

the four spinors s a t i s fy in g  the equation

U  l». 4 * t£(t u(|!) (2.10)
where , M being the nuoleon mass and the u n i t s

being such that % " c  & 1 . The sp inors are normalised such 

that

u'*(tî)u'(b> S (2.11)

^  i s  the meson mass and

is  an operator which d estroys  a meson o f  

momentum k in the charge s ta te  ^ and c r ea te s  a

s im ila r  p a r t ic le .  These operators s a t i s f y  the commutation 

ru le

«t'W ] - (2 .12)

Then u(p) i s  a p o s i t iv e  energy sp in or , i s  an

operator destroying nucleons described by u(p)  and bulfe) 

i s  an operator crea tin g  sim ilar  p a r t i c l e s ;  when u(p)  i s  a 

n egative energy sp inor, i s  an operator crea tin g  a n t i 

nucleons described by u(p) and d estro ys  s im ila r  p a r t ic le s .  

These operators obey the anti-commutation ru le

{ ,  C  (\i'\ \  ( 2. 1 3 )

The meson and nucleon operators a l l  commute w ith  one 

another.
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To make use o f  equation ( 2 . 4 ) ,  we require an exp ression  

fo r  in terms o f  creation  and d e s tr u c t io n  operators; t h i s  

can be obtained by introducing equations (2. 7 ) ,  ( 2 .8)  and 

( 2. 9 ) in to  (2 . 6 ) .  The in tegra t ion  over x and the summation 

over one of the momenta can be carr ied  out, g iv in g

k'.VL"
where

Let us f i r s t  o f  a l l  consider the two p a r t ic le  amplitude 

Equation (2.4)  g iv e s  fo r  t h i s  amplitude

where * 41 fo r  * 4Êji

•I fo r  ‘

Using (2 .14) and the commutation r e la t io n s  (2 .12)  and 

( 2, 1 3 ) ,  the commutator in  th i s  equation can be w r itten  as  

a sum o f normal products o f the operators so that the r ig h t  

side i s  expressed in  terms o f TD am plitudes. We obtain

•V t  L" \ i ' )
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where * H ' a n d ,  in  the d e r iv a t io n ,  use has been

made o f  the id e n t ity   ̂O.

Equation ( 2. 15 ) i s  one of the i n f i n i t e  se t  o f  eoupled  

in te g r a l  equations obtained from (2. 4 ); the other equat

ions are got by applying (2.4)  to  the amplitudes appearing  

on the r igh t side of (2 . 15 ). This in troduces amplitudes  

fo r  s ta te s  with larger  numbers of p a r t ic le s  which in  turn  

lead to  more in te g r a l  equations.

Sym bolically , the structure o f  t h i s  s e t  o f  in te g r a l  

equations can be seen as fo llo w s . We can w rite  {2. 1 5 ) &8

W -  lA 4 U%)

where (n) represents an n -p a r t io le  amplitude and I im p lies  

an in teg ra t io n  or summation over some variab le*  (2.4)  

g iv es

iW  and (̂  ̂ (:A 4 1 (4̂

and, in general

W A. "4 1

The TD approximation i s  obtained by assuming th a t (m) = 0

fo r  m>H where H i s  some chosen number o f  p a r t i c l e s .

For H - 2, the system o f  equations reduces to  

(0 and W W

which, by su b stitu tion , g iv es  a s in g le  equation  fo r  the one

p a r t ic le  amplitude.

For H = 3, we have

{(\ IW  » W 'V 4 and  ̂ W
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wliioh, "by su"bstitution, leads to  a s in g le  in te g r a l  équation  

W 1 W for  the two p a r t ic le  amplitude»

Sim ilar considerations show th a t ,  fo r  K • 4 , the system  

reduces to  two coupled in teg ra l equations fo r  the two and 

three p a r t ic le  amplitudes and, as h in c r e a se s ,  the number 

o f  coupled equations in the f in a l  se t  increases*

For the problem of meson production in  me son-nuc le  on 

c o l l i s i o n s ,  we must c le a r ly  choose s ince  the f i n a l

s ta te  i s  a three p a r t ic le  s ta te ,  We s h a l l  in  fa c t  take 

II - 3 ^8 a f i r s t  approximation to  the problem so th a t the 

equations can be examined without the com plications in tr o 

duced by considering higher orders of approximation. We 

th erefore  proceed to  apply equation (2 .4)  to  the amplitudes  

appearing on the r igh t side o f  ( 2. 1 5 ) w ith  the r e s t r i c t i o n  

th a t a l l  amplitudes for  s ta te s  con ta in ing  four or more 

p a r t ic l e s  are zero*

For the one nucleon amplitude, we obtain

U ^

For the two meson one nucleon amplitudes we obta in
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and 4  ̂“Su; W'oJ('l»*'t̂  W \$^

% <5 ^u!(r|p.'^\ 3̂ ^ * ^ ( 4  Ir^ij

F in a lly ,  we consider the three nucleon am plitudes.

When u ( - p ) and u"( l )  are both p o s i t iv e  energy sp inors

U - ̂  • tv. + 'Su' u-i»J\ W" k) ̂ ul-y.\\ $ \

=  ̂ "4 11 t), \ \  ̂($4 6̂

-  -ĉ  Vu"k \ W W  \$) U-M)

When u( -p)  i s  a negative  energy spinor and u ”(q) a p o s i t iv e  

energy spinor

(̂ fe-  ̂  ̂%t.' k - k " k \ \

: ^ \  6u* \ i   ̂  ̂̂ $o\ûJu\ Vu!'(ÿ̂  4̂

Wv'̂ i» ^ V u C * W \ 4 ^ j  U.ic>̂

IVhen u( -p)  i s  a p o s i t iv e  energy spinor and u ”(q) a n ega tive  

energy spinor

U + - v̂ 4“Su'k-Ĥ  Sjk\vt:Vu(.-\»^\^'^
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When both u (-p ) and n"(g.) are n eg a tive  energy sp inors

+ £(i +'Su'U-K)Êî-(iKî.lta-fe\W“WCti-ti)\î)

= +<4J4h \W(-hWî \

The equations (2 .16) -  (2 .22) oan now be used to  

elim inate  the amplitude appearing on the r ig h t  s id e  o f  

equation (2. I 5 ) so that an equation i s  obtained con ta in in g  

only two p a r t ic le  amplitudes. However, before t h i s  can be 

done, the behaviour of these am plitudes, which are to  be 

elim inated , must be In vestiga ted ; in p a r t ic u la r ,  th e ir  

behaviour and in terp re ta tio n  must be stu d ied  a t  those  va lu es  

o f  the momentum v a r ia b les  for  which the energy fa c to r s  

m ultip ly ing  them in  equations ( 2. 16 ) -  (2. 22) are zero.

In equation (2. l 8 ) ,  when u  ̂(-p-k) i s  a p o s i t iv e  energy 

sp inor, there i s  a p o s s ib i l i t y  that the amplitude

has a s in g u la r ity ,  s in ce  there e x i s t  

va lu es o f  p and k for  which

t  -  ̂ O (2. 23)

Such a s in g u la r ity  corresponds to  the e x is te n c e  o f  r e a l  free  

p a r t ic le s  whose momenta are those g iven  by the s o lu t io n s  of  

equation ( 2. 23), s ince fo r  these momenta, i f  the r ig h t  s id e  

of (2. 18 ) i s  non-zero, the coordinate space transform o f  the  

amplitude i s  f i n i t e  at in f in i t y .  In t h i s  c a se ,  the s in g u l

a r i ty  corresponds to  the ex isten ce  of a r e a l  meson and nuclecn
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in  14  ̂ and a rea l  meson in  the "comparison s ta te "  tÿ j  • 

However, the cond ition  that the "comparison s ta te "  

should he the vacuum s ta te  does not a llow  the presence o f  

a r e a l  p a r t ic le  in  # hyson ( I 5 ) o r ig in a l ly  maintained  

th a t ,  to  avoid the ex isten ce  of a r e a l  p a r t ic le  in  , 

the amplitude should have no <f-function s in g u la r i t i e s  so 

th a t ,  in  in te g r a ls ,  the energy denominator 

obtained on d iv id in g  (2, l 8 ) by t h i s  energy term, should be 

evaluated as a p r in c ip a l value. However, as has been 

pointed out by hyson and h a l i t z  (1? ) ,  t h i s  i s  not c o r r e c t ,  

s in c e ,  on transforming to  coordinate space, the p r in c ip a l  

value permits the ex is ten ce  of free  p a r t i c l e s  described  by 

standing waves at i n f i n i t y .  They p o in t out th a t to  ensure 

that a r e a l  p a r t ic le  never e x i s t s  in the amplitude

must be f i n i t e  fo r  a l l  va lu es  o f  p and 

k. Thus, the r igh t side of (2. 18 ) must be zero fo r  a l l  p 

and k s a t i s fy in g  equation (2. 25) when u^(-p-]k) i s  a p o s i t iv e  

energy spinor, i . e .

u

fo r  the in f in i t e  number o f  values o f the momenta g and k 

s a t i s fy in g  (2. 25) when u^(-p-k) i s  a p o s i t iv e  energy spinor, 

Hence

and since  g and \  are non-zero, and 'Cot are non-
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s ingu lar  matrices and the spinors u"(-k) form a complete 

s e t ,  we obtain the condition  that

“ O (2 .24)

fo r  a l l  k ,p  and u".

A sim ilar  argument must be applied  to  equation (2 .20 )  

when uMq-p) i s  a negative  energy spinor s ince  there e x i s t

values of p and q for  which

e - ®

This y ie ld s  the condition  that

(4.1 = 0 (2. 25)

fo r  a l l  and p when u i s  a negative  energy sp inor.

From (2.24) and (2.25 ) i t  fo llov /s  th a t ,  to  s a t i s f y  

the condition  that 1$^ i s  the vacuum s ta te  o f  the system, 

of the four types of two p a r t ic le  amplitudes appearing in  

the eauations v iz .  (§.1 and

fo r  u (-p ) a p o s it iv e  or negative energy sp in or , a l l  must be 

id e n t ic a l ly  zero for  a l l  p and oi except 

when u (-p ) i s  a p o s it iv e  energy sp inor. Thus, the only  

two p a r t ic le  amplitude appearing in the equations i s  that  

d escr ib in g  the presence of a meson and a nucleon in the 

p h ysica l s ta te  1̂  ̂ .

From equation ( 2 . i y ) ,  i t  i s  seen th a t the amplitude

siay have a s in g u la r i ty  when 6 > M +

at the values of p and k which s a t i s f y

6 -  - WL - " O

Such a s in g u la r ity  corresponds to  the presence of two r e a l
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mesons and one nuolooii in the s ta te  \^ ) v/liicii, in  the  

process of double s c a tte r in g ,  i s  the f i n a l  s ta te  in  which 

we are in te r e s te d . In th is  f in a l  s t a t e ,  the p a r t i c l e s  

should be represented as outgoing v;aves. This i s  achieved  

i f  the s in g u la r ity  in  the amplitude due to  the fa c to r  

( e - ‘ uiu - V i s  avoided in in teg ra t io n s  by adding a 

sm all p o s i t iv e  imaginary quantity to  t h i s  energy denominator 

i . e .  we replace (e - by

e -

Where P means that a p r in c ip a l value i s  to  be taken in  the 

appropriate in te g r a ls .  Ue l e t  4̂-$ o a f t e r  a l l  in te g r a ls  

have been performed.

In a sim ilar  way by taking the energy denominator 

obtained in  (2. I 9 ) as  

(fc - 6̂  -

we ensure th a t ,  v/hen 6 > , the two r e a l  nucleons and

a n ti-n u c leo n , which oan be present in  when p and q have 

values s a t i s fy in g

ê ■ £1 “ £\!. - ®

are represented by outgoing waves*

We are now in a p o s it io n  to make use o f  equations  

(2. 1 6 ) -  (2. 22) along with the con d ition s  (2 .24) and (2. 25) 

to  e lim in ate  from equation (2. 15) a l l  the amplitudes appear

ing on the r ight s id e .  We l e t  the n orm alisation  volume 

T—*<0 so th a t  ̂ and the summations over the
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momenta become in teg ra ls  over a l l  momentum spaoe. Having 

carried  out a l l  the e lim in a tio n s , we obta in  the fo llo w in g  

in te g r a l  equation for the amplitude

+ 2  û,c-y.̂
'̂4

+• 7T^ ( h i  M-'f)

where the subscript + on the spinors im p lies  a p o s i t iv e  

energy spinor and the various fu n ction s appearing in  ( 2. 26) 

are defined  as fo llow s

Ê- +<:\ -6(1,H
%'i Uai)

* \ . \ h 4 + - f i d
L e “ K e f  N\ V U-is)

/Liv-.ê') *
A‘ U-u\ V
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_ e - £̂ ,1, Vin, € - £y ♦■ (■ £(,jw

Wvvw Ĥ̂ ‘.\ '  i  ^10 -- E|,t p
«, î€(.

iî.îa)

U.îi)

I t  i s  h e lp fu l to  represent the various in te r a c t io n  

terras in equation (2. 26) by time ordered graphs which are 

shown in  figure  ( 2 .1 ) .  The term in  A(p,k) i s  represented

W

\

14

\
ft

U\ W

Fig43-.iy The la b e ls  R and G on the interm ediate s ta te  
p a r t ic le s  in d icate  r e sp e c t iv e ly  whether the p a r t i c l e s  
are present in the r e a l  p h ysica l s ta te  \^) or in  the 
comparison s ta te  144 •

by the graphs (a) and (b) and the term in  B(p,k) by the 

graphs (o) and (d) ; these correspond to  the s c a t te r in g  

of the meson by the nucleon. The term in  i s  a

nucleon se lf -en erg y  term and, i s  represented  by graphs 

(e) and ( f ) ;  graphs (g) and (h) represent the term in  

which i s  a meson se lf-en erg y  term. No vacuum 

s e lf -en erg y  terms appear in the equation .

I f  the c a lc u la t io n s  leading to  equation (2 .26) are
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performed u sin g  the o r ig in a l  formulation o f  the TD method, 

an equation i s  obtained for  the one meson one nuoleon  

amplitude which, although rather s im ila r  in  s tru ctu re  to  

equation (2 .2 5 ) ,  has severa l important d if fe r e n c e s*  The 

terms in  equation (2 .25) in which the p a r t i c l e s  propagate 

through the r e a l  p h y s ica l  s ta te  are the same in  both  

equations i . e .  the terms represented by graphs ( a ) , ( b ) ,  (o ) ,  

(e) and (g ) . In the term corresponding to  graph (d ) ,  U+ïaV* 

i s  replaced by le - - K - Ew - » In the nucleon s e l f 

energy term corresponding to graph ( f ) ,  U  

i s  replaced by Ld & % y' and, in  the meson

se lf -en erg y  term corresponding to graph (h ) ,  

i s  replaced by -tvj-£ .̂4̂ * In a d d it io n  to

these  d i f fe r e n c e s ,  there e x i s t s  a vacuum s e l f -e n e r g y  term

which i s  strongly  divergent and cannot be made f i n i t e  by 

any renorm alisation proceedure. This i s  the type o f  term 

which was d iscussed  e a r l i e r  and which led  to  the m odified  

form ulation of the method which we are u s in g .

2 .3  D iscussion  o f se lf -en erg y  terms.

Equation (2 .2 6 ) ,  as i t  stands, con ta in s  d ivergen t con

tr ib u t io n s  from the meson and nucleon s e l f - e n e r g y  terms* 

L i t t l e  use can be made of the equation u n t i l  th ese  divergences



C30)

are removed. In the fo llow in g  d iso u ss lo n , we s h a l l  attempt 

to  carry out th is  removal by a renorm alisation  proceedure.

To carry out a renorm alisation programme in  an unambig

uous manner, i t  i s  w e ll  known that i t  must be done by a co-  

variant proceedure. The f i r s t  step i s  th erefore  to  attempt 

to  put the meson and nuoleon se lf -en erg y  terms in to  co

variant forms. That th is  oan be done was f i r s t  shown by

T isscher (36 ) . An a lte r n a t iv e  proof i s  g iven  in  Appendix I,

The r e s u lt  i s

where P i s  the 4 -vecto r  and Q, the 4 -v e c to r

l“K, ♦ Sf and are the u sua l Feynman fu n c t io n s ,

which appear in covariant theory, defined  by

and ^  1̂1 ♦ The expressions i l lP.̂ \ and TTU'\ ,

apart from constant fa c to r s ,  are r e s p e c t iv e ly  the second  

order nucleon and meson se lf-en ergy  terms o f  0ovariant  

perturbation theory.

Due to  the d i f fe r e n t  energy denominators appearing in  

the se lf -en erg y  terms in the equation obtained u sin g  the
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o r ig in a l  formulation of the TD method, th ese  terms cannot 

be put in to  covariant form* This i s  a fu rth er  disadvantage  

of the o r ig in a l  method since the d ivergences in the equation  

obtained u sin g  th is  method cannot be removed in  any con

s i s t e n t  and unambiguous manner.

From CO variant theory we Imow th a t  i l  can be w r itten  

in  the form (30)

where and  ̂ "iXT^jp are i n f i n i t e

constants and i s  a divergence fr ee  in te g r a l  which,

as shown by Vissoher (36) , can be w r itten  as

1 -cNVk

where M x'V |a . Hence, making use o f  (2 .1 1 ) ,

the nucleon se lf-en erg y  term in (2. 26) becomes

X s

■I— ft + Iê ■ “ I». ■ £\i) Kn
h
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and B  ̂ = IB i s  a r e a l  quantity s ince i t  I s  c le a r  from (2 .29)  

and ( 2. 3 1 ) that i s  rea l*

The divergent q u a n tit ie s  A and B  ̂ oan now be removed 

by a renorm alisation o f  the nucleon mass and the coupling  

constant g. To do t h i s ,  the nucleon s e lf -e n e r g y  term in  

the form (2. 33) i s  taken to  the l e f t  s ide  o f  equation (2. 26). 

The term in A can be absorbed as a co rrec t io n  to  the nuoleon  

mass; t h i s  i s  the same as saying that t h i s  term ca n ce ls  the 

nuoleon mass renorm alisation counter term which would be 

present i f  i t  had been e x p l i c i t l y  used in  the o r ig in a l  

harniltonian of the system. 3y d e fin in g  a renorm alised  

coupling constant 6  ̂ % , the second term i s

absorbed as a coupling constant renorm alisation , so that  

equation ( 2. 26) now becomes

+ Ü- (^.\ 1 I'H')

T/e have thus been able to ex tract from the nuoleon  

se lf -en erg y  term a w e ll-d e f in ed  f i n i t e  part and to  in terp re t  

the remaining in f in i t e  parts as mass and coupling constant  

renorm alisations.

In the ease of the meson se lf -e n e r g y  term, we can 

w rite (50)

1T -- c. + D +
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where C - and D =  ̂ are i n f i n i t e

constants and i s  a divergence free  in te g r a l  which

has been d iscussed  by Vissoher (36) who shows that i t  can be 

expressed as

S .M  - iA .V ' ‘U q  ^
5Tt\-xU^ -I

Thus, the meson se lf-en erg y  term in (2 ,25 ) becomes

ViW<,y4, -
 ̂U|, 11 -

ôwJl (tf’+ = - (fe - .. Elp̂ E 4 tiij, -

How, as has been pointed out by Dyson and D a litz  ( I 7 ) ,  

to  be able to remove divergent q u a n tit ie s  V and \7, say, 

from our equation by mass and charge ren o rm alisa tion s , i t  

i s  n ecessary , as i s  c lea r  from the d isc u s s io n  o f the nucleon  

s e lf -e n e r g y  term, that they should appear in  the form 

M 4- • In the meson s e lf -e n e r g y  term, the d i 

vergent q u a n tit ie s  C and D do not appear in t h i s  form but in  

the form 53^ . This i s  due

e s s e n t ia l ly  to  the fa c t  that the meson f i e l d  i s  a Bose f i e l d .

I t  i s  c lea r  that the subs tract ion from 1T(a'\ o f  an expression  

of the form V 4-V| , with V and 17 d ivergent q u a n tit ie s ,

cannot produce a f i n i t e  r e s u l t .  Thus, although we can ob-
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ta in  from the me son se lf-en ergy  term a f i n i t e  expression  

defined in an unambiguous manner through the covariant  

form of th i s  terra, we are not able to  in terp re t  the remain

ing divergent parts in terms of renorrnalisation o f mass and 

coupling constant. This i s  rather a d iscouraging  feature  

of the TD method but we propose to  overcome t h i s  d i f f i c u l t y ,  

fo r  the present, by simply omitulng the divergent terms C and 

D, Equation (2.2o) then takes a form which i s  free  from'any 

terms containing e x p l i c i t  divergences

2..i The modified inte.aral e^'.nation.

Ee 8ha11 now d is  eus s t  he e gra t i  on (2.2  5 " ) from wh ich  

a l l  e x p l ic i t  d ivergences have been removed* To do t h i s ,  

we introduce the quantity defined  by

Since we have taken to be the true vacuum s ta te  o f  the

system, i s  the p rob ab ility  amplitude fo r  f in d in g  in the

s ta te  a meson of momentum p in the charge s ta te  oC and a 

nucleon o f momentum -g described by the sp inor u (-p )*

Since the sta te  of one meson and one nucleon has
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Iso to p io  spin or \  , can be w r it ten  as a l in e a r

combinations of two functions and X \( \l\ , being

the p rob ab ility  amplitude for  f in d in g  the meson-and nucleon  

in  a sta te  of iso to p ic  spin and Xvijil the amplitude fo r  

f in d in g  them in a s ta te  of iso top io  sp in  \   ̂How, i t  i s

easy to show as has been done by Dyson e t  a l  ( l 5 ) ,  th at the

iso to p io  spin operator has e igen va lu es  61̂  % 3

and - O corresponding r e sp e c t iv e ly  to  the s ta t e s  o f  

iso to p io  spin i  and \  that has e igen va lu es

- - 1 and 1 1 * Using t h i s  property o f the oper

a to r s  and and the orth ogon ality  o f  the e ig en 

fu n ction s  corresponding to d if fe r e n t  e igen v a lu es  o f  the  

i so to p io  spin , equation (2. 26") becomes

Gr (1,41)̂ ,6.̂  - 6̂

= 1:4,)

where !*■ i  or \  i s  the t o t a l  iso to p ic  sp in  o f  the system.

D efining the fu n ction s FiIjp,) and by

qij.) -- Grda[ftife.bWi ̂ %ak)<ai]qiu) um)

we can put (2 .41) in to  the form
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Xrlk) - + 'P ----------- ^ ----------r (14Y)

where i s  some function  of p and P im p lies  th a t ,  in

any in tegra tion  over p, a p r in c ip a l value i s  to  be taken.

I f  we now define

- <Z/ 1 \  («(,) Y^U) l:4f)

. I I 3
where  ̂ i s  a Clebsoh Gordon c o e f f i c i e n t

( C  ̂ o f reference 3) ,  \  (*ŝ  ̂ i s  a

sp h er ica l harmonic with a u n it v ec to r  in the d ir e c t io n

o f  the momentum vector p and W i s  the p r o b a b il i ty  

amplitude for  f in d in g  the nuoleon w ith  z-oompnnent o f  sp in  

8 where m i s  the z-component in the chosen z -d ir e c t io n  i . e .

Vi W  - , then i s  an e igen fu n ctio n  o f  t o t a l

angular momentum J , z-oomponent II and o r b i ta l  angular  

momentum o f the meson and nucleon 1 i . e .  o f  p a r ity  .

These eigenfunctions form a complete orthonormal s e t  so th at  

oan be expanded as

'̂ 3.1 (.ïth (: 4b)TtW

How, the wave function  in coordinate space ^ i [ \ ]  fo r  

one meson and one nucleon in a s ta te  o f  i s o to p ic  sp in  I i s  

the Fourier transform o f  so th a t .
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where i s  the sp h erica l B e s se l  fu n ction  o f  order 1, (34),

The expansion (2 .45) allows the angular In teg ra t io n s  

in  (2 .47) to  be carried out, y ie ld in g

3Hl

For large values of r ,  jilH  behaves as

i i iw  “ ^

so that behaves asym p totica lly  as

By expanding the functions and in  terms o f  the

as has been done in the case of X % i n  (2 .4 6 ) ,  

and u sing  the orthonormality o f  these angular momentum 

e ig en fu n ctio n s , (2 .44) y ie ld s

M

*' le-

In sertin g  the expression (2 .49) iiito  (2 .4 8 ) ,  the  

In teg ra ls  can be performed to give an asym ptotic form fo r  

. Assuming fo r  the present th a t the fa c to r

i s  always non-zero, as might be expected, we 

obtain the fo llow in g  asymptotic expression
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where i s  defined by and so by (2* 3 6 ), ( 2. 39)

and (2. 4 3 )

How, by the d e f in i t io n  o f sc a tte r in g  phase s h i f t s ,  

the c o e f f i c ie n t  o f  in the expansion o f  the wave

fu n ction  o f  the two p a r t ic le  s ta te  behaves, fo r  large  values  

o f  r ,  as

c  c l-A t

where j). i s  the magnitude o f the r e la t iv e  momentum o f  the  

meson and nucleon and, i s  the phase s h i f t  fo r

s c a t te r in g  through a s ta te  o f  angular momentum J, i s o to p ic  

spin I and p ar ity  I-'/*' • I t  fo llo w s from t h i s  th a t the  

phase s h i f t s  for  me son-nude on s c a t te r in g  are g iven  in  terms 

o f  the functions appearing in our equations by

L l5t ("l3i

t&k u «i)Vt.

P\ (bV
which shows that the functions and so

are independent o f II. Henceforth, we s h a l l  omit 

the superscrip t If on these functions*

Making use of the fa c t  that angular momentum and the  

p a r ity  are conserved in a l l  in te r a c t io n s ,  we can d efin e  two 

fu n ction s and by
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b»,*k' -* *

K

K,Vn.‘ J J *■

In ser tin g  these d e f in i t io n s  (2. 52 ) in to  equation (2 .4 4 ) ,  

t h i s  equation, a f te r  a l i t t l e  a lgebra, y ie ld s  the in te g r a l  

equation

4- Gr’' T i  W-Ait ll.Sl)
% le - Uk-£k\L^~ 3*̂ (1

where so that the s o lu t io n  on

the energy s h e l l  i . e .  for  p * p« o f  th i s  s in g le  v a r ia b le  

in te g r a l  equation immediately g ives  the s c a t te r in g  phase 

s h i f t s  s in c e ,  by equation ( 2. 5I), i t  fo l lo w s  th at

W  - -K dixtlM

We note th a t ,  although the equation (2. 5 3 ) determ ines the

function  for  a l l  values of p, i t  i s  only the value

on the energy s h e l l  i . e .  which has any d ir e c t

p h y s ica l s ig n if ic a n c e .

We now consider the s i tu a t io n  when the t o t a l  energy

of the system 6 . I t  i s  c le a r  from the d e f in i t io n s

( 2. 27), ( 2. 29) and ( 2. 36) o f  , -SXlk.t) and ÜwÎ .ê) th a t ,

when th i s  s i tu a t io n  ob ta in s , the fu n ction  &ntlk) i s  complex;

the imaginary part comes from con tr ib u tion s to  the in te g r a ls

in (2. 53 ) from terms in and Jllji.fe) w ith  the fa c to r
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- ( t v t h i s  fa c to r  being implied by the presence  

o f  the sn a il  p o s it iv e  imaginary p art, \  , in  the d e f i n i t 

ions of these fu n ctio n s . The phase s h i f t  has th erefore  a 

non-zero imaginary p art, when and t h i s  lead s  to

the ex is ten ce  of in e la s t i c  as w ell as e l a s t i c  me son-nuc le  on 

sc a t te r in g .  How, the & -fu n ction  s i n g u l a r i t i e s ,  o f  which 

the imaginary part i s  composed, correspond to  the e x is te n c e  

o f  two r e a l  mesons and one rea l  nucleon in  the system. I t  

fo l lo w s  that the in e la s t ic  sca tter in g  c r o s s - s e c t io n ,  g iven  

by the complex phase s h i f t ,  i s  the c r o s s - s e c t io n  fo r  the  

production of a meson in a me son-nuc le  on c o l l i s i o n .  Thus 

from the so lu tio n  of equation (2. 5 3 ) > we can obtain  not only  

the e l a s t i c  meson-nucl e on sca tter in g  c r o s s - s e c t io n  but a l s o ,  

fo r  energies above the production threshold  i . e .  fo r  e.'? 

the t o t a l  c o r s s - se c t io n  fo r  the production o f  a meson in  the 

c o l l i s i o n .

Let us now consider the so lu tion  on the energy s h e l l  o f  

equation (2. 5 3 ) s. power se r ie s  in  Gr , This i s  obtained

by i t e r a t in g  the equation and expanding the fa c to r  

 ̂ g iv in g

IfA - Of"  ̂ ^1]

Jo  ̂ J \
+ c^Au
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Saoh term in  th i s  expansion can be represented  by a s e t  o f  

time ordered graphs o f the appropriate order in  G-.

To s im plify  the arguments that fo l lo w  we oan, without  

any lo s s  o f  g en era lity  in the f in a l  r e s u l t ,  con sid er  a 

s p e c ia l  case of our problem; we consider the s c a t te r in g  

o f  a p o s it iv e  meson by a proton a llow ing  only p o s i t iv e  

mesons in the intermediate s ta te s  and n e g le c t in g  p a ir  pro

duction* The graphs representing the terms in  the expans

ion (2*55 ) I for th is  sp e c ia l  case , are shown up to  order Or 

in f igu re  (2 .2 ) .  Graphs (1) and (2) correspond resp ective ly

//
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/

V. &
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4

\
\

4 \

V
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\
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\
•kjp-. 

‘ \

-k

Fig. (2 .2)

to  the f i r s t  and second terms in the expansion; the con

tr ib u t io n s  from both these graphs are r e a l .  In graphs

(3) and (4) which correspond to  the two terms o f  order 

energy can be conserved, i . e .  6" - G44.L - 0 , in

the "barred sta te"  shown in the figu re  ; when t h i s  i s  the  

case the terms in -c-R con tr ib u te  imaginary

p arts  to  the terms in (2. 55). Thus, u s in g  ( 2. 5 4 ), we can 

w rite
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where a ,b ,o  and d are a i l  rea l q u a n t i t ie s .  From t h i s ,  i t  

fo llow s that the e l a s t i c ,  , and production , ,

c r o s s - s e c t io n s  are given by

<ŝ  -  \ ( - \ ^ 676 4 higher order terms

and ^ I * I  ̂ 4 higher order teijms

How, the lowest production matrix element 

i s  the sum of the matrix elements and

which are represented by the graphs (5 ) and 

(6 ) shown in figure ( 2. 3 ). In terms of these  m atrix

t*//»
/

-i-k

-L

- I s . '* *  /  
' /

/

/

/

'f-//
/

/

-K /

Fig. (2. 3 )

elem ents, the production c r o ss -se c t io n  i s  g iven  by

w . t .
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We see t h a t ,  when energy i s  conserved, in  the  "barred  

s t a t e s "  in  graphs (3 ) and (4 ), th e s e  graphs a re  g r a p h i c a l  

r e p r e s e n t a t io n s  o f  t h i s  i n t e g r a l ,  s i n c e  graph (3 ) can be 

o b ta ined  by p la c in g  tY;o graphs l i k e  (5 ) or  (6)  end to  end 

and j o i n i n g  the meson and nuc leon  l in es . ,  o f  th e  same momenta 

in  the th r ee  p a r t i c l e  s t a t e  and (4) can be o b ta in e d  by 

j o i n i n g  graphs (5 ) and (6) in  a s i m i l a r  way. Thus, graph

(3 ) corresponds t o  the f i r s t  two terms in  ( 2. 5 6 ) and graph

(4) t o  the l a s t  two in t e r f e r e n c e  term s.  Thus,  f o r  the  

c a l c u l a t i o n  o f  the meson p rod uct ion  c r o s s - s e c t i o n ,  i t  i s  

e s s e n t i a l  t o  r e t a i n  in  our eq u a t io n s  the  c o n t r i b u t i o n  from 

the  n uc leon  se I f - e n e r g y  term as i t  would c l e a r l y  g iv e  a 

m ean ing less  r e s u l t  to  n e g l e c t  t h i s  c o n t r i b u t i o n  and con

s e q u e n t ly  l e a v e  only  the in t e r f e r e n c e  terms in  e x p r e s s i o n  

( 2. 5 6 ) f o r  the  c r o s s - s e c t i o n .  This c o n c l u s i o n  i s  c l e a r l y  

not  a l t e r e d  by c o n s id e r in g  h igher  order  terms in  the  

expansion  ( 2 .5 5 )  by removing the r e s t r i c t i o n s  v;hich were 

imposed on the problem e a r l i e r ,  in  order t o  s i m p l i f y  the  

d i s c u s s i o n .

However, as  we s h a l l  s e e ,  the p res en c e  o f  t h i s  n u c leo n  

s e l f - e n e r g y  term in  our equation  l e a d s  t o  a d i f f i c u l t y  which  

has prevented  the making o f  any d e t a i l e d  c a l c u l a t i o n s  on i t .

This d i f f i c u l t y  a r i s e s  in  the f o l l o w i n g  way. Our 

arguments up to  t h i s  p o in t  have been based  on th e  s e em in g ly  

v a l i d  assumption that  the f a c t o r  i s  n ev er  z e r o .

This i s  n o t  c o r r e c t  as  has been shown by V is s o h e r  (36 ) and
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by Dyson and D a l i t z  { I 7 ) who have s t u d ie d  th e  b eh a v io u r  o f  

the f u n c t io n s  and and f i n d ,  th a t  f o r  very

la r g e  v a lu e s  o f  p, they  behave as  f o l l o w s

and ~

Thus, f o r  very la r g e  p ,  the nuc leon  s e l f - e n e r g y  dom inates  

in  the  f a c t o r  i\-Gr d̂tji.fe)) so th a t  t h i s  f a c t o r  i s  very  la r g e  

and n e g a t i v e .  But,  by d e f i n i t i o n ,  - RkI|p..e\ - 0

so t h a t  (̂ l- i s  p o s i t i v e  and eq u a l  t o  u n i t y .

Hence th e r e  e x i s t s  some va lue  pj o f  p, where pj > p ,  f o r  

which I - O . Dyson and D a l i t z  f i n d  t h a t

f o r  ) (i. * \‘3(A • Account must be ta k e n  o f

t h i s  zero  o f  0 “ in  the a n a l y s i s  l e a d i n g  to

eq u a t io n  ( 2 . 5 0 ) and t h i s  le a d s  to  the  p r e s en ce  in  the  c o 

o r d in a te  space wave f u n c t io n  o f  the me son-nuc l e  on system  o f
ii'Kv

terras i n  ^ f o r  la r g e  v a lu e s  o f  r .  T h is  i m p l i e s  the  

p r esen ce  o f  p a r t i c l e s  o f  momentum pj^p a t  i n f i n i t y .  Howeve:^ 

the  t o t a l  energy o f  the  system i s  6 * so  t h a t ,  in

order t o  conserve en ergy ,  a s t a t e  c o n t a i n i n g  p a r t i c l e s  o f  

momentum p/  could  e x i s t  on ly  i f  one o f  t h e s e  p a r t i c l e s ,  f o r  

example, had a r e s t  mass sm aller  than the  n u c le o n  r e s t  mass;  

such a p a r t i c l e  would be the r e s u l t  o f  the  fo rm a t io n  o f  some 

type o f  bound system w i th  a r e s t  mass much s m a l l e r  than  II. 

There i s  no knowledge o f  the  e x i s t e n c e  o f  such a sys tem  and 

we must regard t h i s  s i n g u l a r i t y  a t  p -  pj a s  b e in g  c o m p le t e ly  

u n p h y s io a l  and i t s  presence  b e in g  due somehow t o  th e  approx
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im a t io n s  made in  a p p ly in g  the TD method#. IVe are  thu s  

p revented  from c a r r y in g  out any c a l c u l a t i o n s  o f  e l a s t i c  or  

double  s c a t t e r i n g  c r o s s - s e c t i o n s  based on e q u a t io n  (2*53)»  

I t  does  not seem l i k e l y  th a t  t h e s e  d i f f i c u l t i e s  would d i s 

appear in  a h ig h e r  order TD type o f  c a l c u l a t i o n  and s o ,  

t h i s  method f o r  the c a l c u l a t i o n  o f  the  double  s c a t t e r i n g  

c r o s s - s e c t i o n  has had t o  be abandoned.
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CHA.PÎER I I I .

3>1 D is c u s s io n  o f  the  Cini Fiiblui method.

The method proposed hy Cini and F a h in l  (9 )  makes u s e  

o f  a v a r i a t i o n a l  prooeedure t o  o b ta in  a seq.uenoe o f  approx

imate s o l u t i o n s  f o r  the  fundamental e q u a t io n s  d e s c r i b i n g  the  

system . vie s h a l l  f i r s t  o f  a l l  d i s c u s s  the  development o f  

th e  method, which i s  based on the  fo r m u la t io n  o f  s c a t t e r i n g  

th e o r y  due t o  Lippmann and Schwinger ( 2 9 ).

?/e s h a l l  work in  th e  i n t e r a c t i o n  r e p r e s e n t a t i o n  in  

which the system , at  time t ,  i s  c h a r a c t e r i s e d  by the  s t a t e  

v e c t o r  which s a t i s f i e s  the eu q at ion

'- ilt ')  -- H'UUt') (5 . 1 )

where we aga in  u se  u n i t s  w i th  t  = c-  \ and H’ ( t )  i s  t h a t  p a r t  

o f  the  h am il ton ian  o f  the  system d e s c r i b i n g  th e  i n t e r a c t i o n  

o f  the  v a r io u s  p a r t s .

The development o f  the system from some t im e  i n  th e  

remote p a s t  to  some time in  the remote f u t u r e  i s  d e s c r i b e d  

by a u n i t a r y  m a tr ix  S such th a t

loô  = (3*2)

A knowledge o f  t h i s  8 -m a tr ix  p r o v id e s  u s  w i th  any in fo r m a t 

ion  we may requ ire  reg a rd in g  the development o f  th e  system  

over a very  la r g e  i n t e r v a l  o f  t im e .

In order t o  determine the 8 -m a t r ix ,  we s h a l l  make u s e  

o f  the r e a c t i o n  m atr ix  K which Is  in tr o d u c e d  by Lippmann and
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Sohwinger and i s  connected  t o  the  S -m a tr ix  by

S -- ' ~ C3.5J
I +

K i s  a h erm it ia n  m a tr ix  so th a t  th e  u n i t a r i t y  o f  the

S -m a tr ix  i s  m ainta ined  hy (5*3) ^iid, a s  shown hy Lippmann 

and Sohwinger, K i s  d e f in e d  hy th e  e q u a t io n s

K -  (  H'lbWU\AX (3# 4 )
-96

VU^ - \ * i ( w'lt'W M  {3 . 5 )

t  > t ’

, b<t'

where

7/ ith

(3*6)
1 j

They a l s o  d e f in e  an op era to r  hy

K' -  ̂ ^H'W'(U\+'j^WWlt\-vi+WW'UWU^

dükW’’U)tt'lOeU-t‘̂ H'lv̂ vu4<lt (3,7)
where a dagger  d en o te s  the  h erm it ia n  co n ju g a te*  I t  f o l l o w s  

from ( 3 *7 ) "that i s  a hermit ian  o p e r a to r  f o r  a r b i t r a r y  

V (t )*

How i f  5lC' i s  the v a r i a t i o n  in  due t o  s m a l l  a r b i t 

ra ry  v a r i a t i o n s  o f  V ( t )  and V * ( t ) ,  th e n

S \ <  - -  ̂ -   ̂ 4 i  ̂ tit-bA&wj&t

_  ^  - t  v X k ' \ H ' U ' ) i b t ' l  K i d 5 M l t ^  1 3 % ^



so th a t  iK 'io  i f  and on ly  i f  T ( t )  and ( t  ) are  

s o l u t i o n s  o f  equat ion  (3*5)•  A l s o ,  when (3#5)  i s  

s a t i s f i e d

K' - {  H'ldVUUt « K (3. 9 )
“ao

Thus, Jk': o g i v e s  a v a r i a t i o n a l  p r i n c i p l e  f o r  e q u a t io n  

( 3 . 3 ) and the s t a t i o n a r y  value  o f  E' i s  th e  E -m a tr ix  whose 

hermit ia n  property  i s  m aintained  by t h i s  p r i n c i p l e .

C in i  and Hub i n i  use  t h i s  v a r i a t i o n a l  p r i n c i p l e  t o  

determ ine a s t a t i o n a r y  value  f o r  the  E -m a tr ix  f o r  a c e r t a i n  

type  o f  t r i a l  op erator  V (t )  which th e y  choose  i n  th e  f o l l o w 

in g  way.

H *(t)  i s ,  in  g e n e r a l ,  p r o p o r t io n a l  t o  some c o u p l in g  

c o n s ta n t  g so th a t  i t e r a t i o n  o f  the i n t e g r a l  e q u a t io n  (3*5)  

f o r  Y (t )  y i e l d s  a power s e r i e s  in  g

V iO - I + "b 1. 4 — — i V----

(3*10)

and the  s u f f i x  d e n o te s  the  power o f  g in  each  term .  I t  

f o l l o w s  t h a t

K ' K, 4 Kv 4 4 Ki b —

whe re K ̂   ̂ H* lb) V lb) Ab
(3*11)

Form ally ,  the  i n f i n i t e  s e r i e s  (3 , 1 0 )  i s  an e x a c t  s o l u t i o n  

o f  eq u a t io n  (3*5) ^or V ( t ) .  As a t r i a l  o p e r a to r  f o r  the  

v a r i a t i o n a l  p r i n c i p l e  we cut  t h i s  s e r i e s  o f f  a t  i t s  n^th
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term and m u l t ip ly  each term o f  t h i s  f i n i t e  s e r i e s  hy a 

t ime independent o p era to r .  Thus, we in tr o d u c e  i n t o  (3*7)  

the  t r i a l  operator

VU) s K, -V V,U)^i.+-----  ̂ *4 (3*12)

where the A; are time independent o p e r a t o r s  whose forms  

are l e f t  undetermined a t  p r e s e n t .  (3*7) becomes

K' : Kit) - ^
L

w hich ,  w ith  the help, o f  ( 3 * 10) and ( 3 * 1 1 ) ,  re d u ce s  t o

K' " ^  (3*13)
iM L ki., J

The n^th  order approxim ation ,  t o  th e  E -m atr ix  i s

o b ta in ed  by p u t t i n g  i n t o  equation  ( 3 # 1 3 ) th o s e  v a lu e s

o f  the  f o r  which Sk!-o * Thus, th e  are  g iv e n  by

and then

-- (3. 1 5 )

The (n+1) eq u a t io n s  g iv e n  by (3. 14) and (3*15) oan be put  

more c o n c i s e l y  as
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+ X  , OSCSk ( 3 .16)
k--\ V.'. 1

These equa tions  (3* l6 ) now give a sequence o f  ap p ro x im at io ns

 to  the K-matr ix ,  each of  which i s  he rm it  ian*

Equation (3*3) now he used  to  d e f in e  a sequence o f  

approx im ations   to  the S -m a tr ix ,  th e  n ^ t h  approx

im a t ion  being  given by

c ‘' \ ± L J J L .  (3. 17 )
I + \

S in c e  K i s  hermit ia n  f o r  a l l  v a lu e s  o f  n ,  (3«17)  e n s u r e s  

t h a t  the  approximations S , S''’,S —  t o  th e  S -m a tr ix  a re  a l l  

u n i t a r y .

How the S-m atr ix  can be w r i t t e n  a s  a power s e r i e s  in

B

S * I 4“ S, *V Sj. -4 -4 (3 » l8 )

where,  as shown by Dyson ( I3 ),

 ̂ (3* 1 9 )

P o rd e r in g  the  o p e ra to rs  c h ro n o lo g ic a l ly  from r i g h t  to  l e f t *  

I t  t h e r e f o r e  follows from (3* 3) * ( 3 , H )  (3# I 8 ) t h a t
c-«

:iSY '  X '^ ' ‘̂ -̂'‘ + (3*20)

l laking use of (3# I6) and (3*2 0 ), Cini and Pub i n i  show, a f t e r  

some a lg e b r a ic  m an ipu la t ions ,  t h a t

s'*'-- X + X r ! r '  , o i C S K (3.21)
It'-o W-
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nThis s e t  of equ a t io ns  de termines th e  o p e r a to r s  » w as  

the  same fu n c t io n s  of  the  S; as  the  ^.re of th e  Kc .

I t  i s  worthwhile n o t in g  t h a t ,  a l th o u g h  th e  s e t  of 

e q u a t io n s  (3* 2 1 ) f o r  S^^'do no t  have an e x p l i c i t  dependence 

on the  E -m atr ix ,  the  in t ro d u c t io n  of the  E -m a t r ix  was 

n ec es sa ry  as  an in te rm ed ia te  s tep  in  o rd e r  t o  o b ta in  a 

v a r i a t i o n a l  p r i n c i p l e  which m ain ta ined  the  u n i t a r i t y  of  

the S-matrix* Lippmann and Schwinger in  f a c t  d e r iv e  a 

d i r e c t  v a r i a t i o n a l  p r i n c i p l e  f o r  th e  S -m a t r ix  h u t ,  a s  th ey  

show, i t  does no t  ensure t h a t  the r e s u l t i n g  e x p re s s io n  f o r  

the  S -m atr ix  i s  u n i ta ry »

The Sj in  equa t ion  (3# 2 1 ) can he e v a lu a te d  u s in g  

the  c o v a r ia n t  t ech n iq u es  of  Feynman ( 2 1 ) and Dyson (I3)# 

However, they co n ta in  c e r t a i n  d iv e rg e n ces  which we should 

l i k e  to  remove hy some r e n o rm a l i s a t io n  prooeedure* Cini 

and Fubini  d e f ine  such a proceedure by in t ro d u c in g  a new 

s e t  o f  (n*vl) o p e ra to r s  such t h a t

X X  (3.22)
l*-W «

F i t h  th e se  o p e r a to r s ,  equa t ions  (3* 21) become

C  ^  KS '  , o < «. S VI (3. 23)

where Cl = X  (3 .24)

The d ivergences  can now be removed from th e  by the

s tandard  methods of mass and coupling c o n s ta n t  r e n o r m a l i s 

a t i o n  d i sc u sse d  by Dyson (I3) and îdatthews (30)* As i s
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p o in ted  out by Cini and F ub in i ,  t h i s  p r e s c r i p t i o n  f o r  

r e n o rm a l i s a t io n  i s  no t  wholly s a t i s f a c t o r y  s in ce  the  

reno rm alised  c o n s ta n ts  in troduced  i n t o  the  e q u a t io n s  are  

d e f in ed  in  terms of power s e r i e s  in the  co up l in g  constan t*  

This does not  f i t  w e l l  in to  the g e n e ra l  s p i r i t  of the  

method which a t tem p ts  to  avoid the  use  of the  hormal p e r 

t u r b a t i o n  method of d e f in in g  q u a n t i t i e s  in  t h i s  way*. An

o th e r  u n s a t i s f a c t o r y  f e a tu r e  of t h i s  p r e s c r i p t i o n  i s  t h a t ,  

in  a g iven approximation 8% approx im ations  to  the  renorm

a l i s e d  co n s tan ts  appear in the v a r io u s  <5q to  d i f f e r e n t  

o rd e rs  in  the coupding constant*  In s p i t e  o f  th e s e  u n 

s a t i s f a c t o r y  f e a t u r e s ,  Cini and Pubini  use t h i s  p r e s c r i p t i o n  

as  the  only unambiguous and c o n s i s t e n t  one a v a i l a b l e .

I f  and are  the f i n i t e  p a r t s  o f  ^  and

d e f in ed  by t h i s  p r e s c r i p t i o n ,  i t  fo l lo w s  from a r e v e r s a l  

o f  the arguments used to  o b ta in  eq ua t ion s  (3* 25) and (3 «2 4 ) 

t h a t

K  ................

Ü0W, s ince  the reno rm al ised  power s e r i e s  f o r  S' i . e .

S - 1 + 4- ----- 4- Sr 4------ ( 3 *2 6 )

i s  u n i t a r y ,  then
Ic

(3. 27)

This r e l a t i o n s h i p  (3 *27) g u aran tees  t h a t  the  re n o rm a l is e d
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given by (3.25 ) i s  u n i t a r y .

For t h i s  method, which we have j u s t  deve loped ,  o f  

o b ta in in g  a sequence o f  approxim ations  to  th e  S -m a t r ix  t o  

have any v a l i d i t y ,  i t  i s  n ecessa ry  t h a t  the  power s e r i e s  

expansions (3 .10) ,  (3# H )  and (3# 18) of the  v a r io u s  o p e r a t 

o rs  used should be convergent o r ,  a t  l e a s t ,  a sy m p to t ic  f o r  

s u f f i c i e n t l y  small va lues  of the coup l ing  c o n s ta n t  g .

From analogy with e lec trodynam ics ,  i t  would ap p e a r  t h a t  

t h i s  co n d i t io n  i s  s a t i s f i e d .

Cini and Fubini have in v e s t i g a t e d  a s p e c i a l  case when 

the power s e r i e s  are  d iv e rg en t  f o r  g - Gr v/here Gr i s  th e  

a c t u a l  meson-nucleon coupling  c o n s ta n t ,  the  d iv e rg en ce  

b e in g  due to  the ex is ten ce  of a f i n i t e  number o f  p o le s  

in  the  complex g-p lane  f o r  th ese  p o le s  a r e  c l o s e l y

r e l a t e d  to  the ex is ten ce  of i s o b a r i c  s t a t e s  o f  th e  meson- 

nucleon  system which le ad  to  resonances  in  the  c ro s s - s e c t io n s ^  

They f in d  t h a t ,  a l th ou g h  the power s e r i e s  d i v e r g e ,  th e

sequence of  approximations ---- converges  in  t h i s

c a s e .  Thus, the method i s  a p p l ic a b le  in  t h i s  case  where 

p e r t u r b a t i o n  theory  i s  no t  v a l i d .

C in i , liorpurgo and Touschek (1 0 ) have a p p l i e d  the  

method to  the  ï ïen tze l  p a i r  theory  n e g l e c t i n g  nuc leon  r e c o i l .  

This theo ry  can be solved ex a c t ly  and they  f i n d  t h a t  the  

method g ives  the exac t  s o lu t io n  in  lowest  a p p ro x im a t io n ,  

a r e s u l t  which i s  no t  a l t e r e d  by going to  a h ig h e r  approx

imation.
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F i n a l l y ,  i t  i s  u s e f u l  to  note t h a t  t h e  Sj and Kj 

ap pea r ing  in  our equa t ions  have m a t r ix  e lem ents  only  

between s t a t e s  of equal  energy» This p r o p e r t y ,  as  w i l l  

be seen l a t e r ,  cons ide rab ly  he lps  in  th e  s o l u t i o n  o f  the 

o p e ra to r  equations  f o r  the

3*2 The equations  fo r  e l a s t i c  and double s c a t t e r in g »

V/e now apply t h i s  method of Cini and F ub in i  t o  th e  

problems of e l a s t i c  and double meson-nucleon s c a t t e r i n g »

To do t h i s ,  we use the  lowest o rde r  app rox im ation  to  the  

S -m a tr ix  which i s  S,î 0 .

Eaking use of equa t ions  (3* 21) f o r  n % 2, we o b t a in

5 ^  = I + s ,

: I +

( + s ,  t  4

which y i e l d

s'"

S i m i l a r l y ,  equations  (3 *1 6 ) y i e l d

k'" - i C x U v - - K, 4 k ,w ;  kJ K  (3.29)

(3. 28)

Defining the matrix T by the equation

- I -V T

eq ua t io n  (3# 28) becomes

(3. 30)
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T  - C3 . 31)

where ?  * Ŝ Sj.' and 4L « S^SV C3»52)

Tfe now consider a meson-nucleon system whose t o t a l  

energy e. in the centre-of-mass system i s  such th a t  a < 

there are only two rea l  s ta te s  p o ss ib le  v i s .  a s ta te  of  

one meson and one nucleon and a s ta te  of  two mesons and 

one nucleon. In the c entre-of-mass system, the two 

p a r t i c l e  s ta te  can be s p ec i f ied  completely by the three  

components of the r e la t iv e  momentum of the two p a r t i c l e s ,  

the s-Gomponent of the nucleon spin and the charges o f  the  

meson and the nucleon i . e .  by s i x  q u a n t i t i e s  which we s h a l l  

denote c o l l e c t i v e l y  by a Roman l e t t e r  so th a t  U) i s  the 

s ta te  vector of a two p a r t ic le  s t a t e .  The three p a r t i c l e  

s ta te  requires ten q u an t i t ie s  to character ise  i t  completely;  

these  w i l l  be denoted c o l l e c t i v e l y  by a Greek l e t t e r  and they  

can be chosen as the l in e a r  momenta of the two mesons, the 

z-component of the nucleon spin and the charges of  the three  

p a r t i c l e s .  The s ta te  vector |<) therefore  d escr ib es  a 

s ta te  o f  two mesons and one nucleon.

From the s t r u c t u r e  of the  meson-nucleon i n t e r a c t i o n  

h am il to n ia n ,  H^( t ) ,  which i s  g iven by (2 . 6 ) and i s  now time 

dependent s ince  we a re  working in  the  i n t e r a c t i o n  r e p r e s e n t 

a t i o n ,  i t  i s  c l e a r  t h a t  H^( t )  has m a t r ix  e lem ents  only 

between s t a t e s  d i f f e r i n g  by one meson and by zero  o r  two 

nuc leons .  Hence, from equa tion  (3.15), i t  fo l lo w s  t h a t
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matrix elements of  e x i s t  only between s t a t e s  d i f f e r in g  

by an even number of p a r t i c l e s  and matrix elements o f  8̂ ^̂  ̂

e x i s t  only between s ta te s  d i f f e r in g  by an odd number of  

p a r t i c l e s .  Therefore

i t  (3*3 3 )

so t h a t ,  by (3*32)

U l T U ^  -- - (o-l<aU ') -- o  ( 3 ‘ 34 )

How the 3-m a t r ix  has m a tr ix  e lem ents  only  between 

s t a t e s  of the same energy and the  same t o t a l  l i n e a r  momentum. 

T/orking in  the oen tre -o f-m ass  system g u a ra n te e s  t h a t  th e  

t o t a l  l i n e a r  momentum i s  conserved between s t a t e s .  The 

co n se rv a t io n  of energy can be e x p l i c i t l y  in t ro d u c e d  i n t o  

the  eq u a t ion s  by d e f in in g  m a tr ice s  S; such t h a t

-- (3 . 35 )

where E, and E^ are the  t o t a l  e n e rg ie s  of  th e  s t a t e s  de

f in e d  by h) and • I t  fo l low s from (3*30) s,nd (3* 32)

t h a t  the  m a tr ices  T,P and Q, a l s o  have m a t r ix  e lem ents  only 

between s t a t e s  of equal  e n e rg ie s ,  so t h a t  m a t r i c e s  T,P and 

g can be de f in ed  in the  same way as 8* in  (3*35)*

I f  we now take matrix elements o f  equation (3- 3^) » we 

obtain ,  using (3*33) »(3«54) aud ( 3. 33)
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5(£.-e.)U\îlS\ U.îio)4  Xj\ w  * o L  u i< i\oc) s i 0<L- c«t) W s w
t L 01

and,

where the summations mean that a l l  v a r ia b les  s p e c i fy in g  

the s ta te  have to  be summed over a l l  p o s s ib le  va lues  and 

the various matrix elements of  the matrices ? and <& are 

given by

c.
(3. 38)

(3-39)

(3 .40)

and ^
I'

(3 .41)

These equations can be s im p lif ied  by co n stru ct ing  

the eigenfunctions of the various matrices P,^,T and 8. 

appearing in them. To do t h i s ,  we note th a t  the matrices  

P and (g, are functions of  the 8- which are defined as fu n ct 

ions of the hermit ian matrices Kj by equations (3*20); i t  

fo l io? /8 that the matrices P,Q,T and 8- have the same e ig en 

functions  as the matrices Kj. He th erefore  consider  the  

eigenvalue equation for  , some ty p ic a l .o n e  o f  the matrices

5 i .
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<' / , fW f**'
J L  l u  L I 4  A  = t  ( 5 . 4 2 )

, a
where i s  the e igenvalue of  co r re spo nd ing  t o  the

f
e ig e n fu n c t io n  L  , A  ̂ denoting  any degeneracy which may

f A  r A A '
e x i s t .  Since g^ i s  hermit ian ,  i s  r e a l  and th e

can be arranged  to  form a complete orthonorm al s e t  so t h a t

1 5 - « l

and, by the  p ro p e r ty  of  c l o s u r e ,

I C  C •

How, s ince  E^ i s  in v a r i a n t  under r o t a t i o n  in  c o o rd in a te  

space and in  i s o to p ic  sp in  space, i t  fo l lo w s  t h a t  A c o r r e s 

ponds to  the t o t a l  an g u la r  momentum J  and the  t o t a l  i s o t o p io

sp in  I  o f  the system and, to  the  z-oomponent I.I of J and
r  A A '

th e  s-component i  of  I .  Thus, the  e ig e n f u n c t io n  must

be a l i n e a r  combination of p roduc ts  of  e ig e n f u n c t io n s  o f  the  

t o t a l  ang u la r  momentum and of  the t o t a l  i s o to p io  s p in  o f  th e  

system corresponding  to  the  a p p ro p r ia te  v a lu e s  o f  th e s e  

q u a n t i t i e s .

I f  n^ i s  a u n i t  v e c to r  in  the  d i r e c t i o n  o f  th e  r e 

l a t i v e  l i n e a r  momentum of the  meson and nuc leon  in  the  two

p a r t i c l e  s t a t e  , th en  , as  d e f in e d  in

(2.45 )? i s  an e ig e n fu n c t io n  corresponding  to  a t o t a l  a n g u la r  

momentum J w ith  z-component LI and I-  Ti'i i s  the  r e l a t i v e  

o r b i t a l  an gu la r  momentum of th e ' tw o  p a r t i c l e s .
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S im ilar ly ,  the s igeniunct ion  corresponding to  a 

t o t a l  iso top io  spin I with z-component i  i s  given hy

where t^and t j  are the a-components of the meson and 

nucleon isotop io  spins in some chosen z - d ir e c t io n  so that

\  UO - KaX'1- and (3. 4 6 )

Thus,
7*\

 ̂ (3*47)
ftA'

~
113 A

where i s  some function of
r

ITow, multip lying both s ides  of (3-42) by  ̂ and

sujiiming over A and A^, we obtain, with the use of (3*44),

AA'* .A rAA'

AA'

SO that

I  (V \

" xVvUv.k'k)

however, has matrix elements only between s t a t e s  of  

equal energy so that Wŵ ■ i . e .  .

A l s o , i s  inawiriant under a reversa l  of  the coordinate  

axes,  so that i t  has matrix elements only between s t a t e s  

of the same p a r i ty .  Thus, in (3 . 49 ) M*- % l-O*-' ; but

l - T i i  and I'-Tt'v , so that i - l '  . P u tt in g
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( 3 * 5 0 )

we obtain,

tlîUwU^ = X (3*5 1 )
T i l  M l  ^

Since ic'ĵ  i s  r e a l ,  i t  fo l lows from (3*50) that (k&ilij 

i s  a r e a l  fuiiotion of k^.

I f  the matrix R represents any of  the m atr ices  P,Q,,T 

or S- appearing in our equations, then, as has already  

been discussed, R has the same e igenfunctions  as the K< and 

so can be expanded l ik e  g iv ing ,

T i l  Mi

However, since R i s  not a hermit ian operator ,  flljUx.O i s  

not a r e a l  function of  k^.

For a three p a r t ic le  s t a t e ,  we d ef in e

L r  1 L. I ^ ,M'»».

where n  ̂ and njj are u n it  vectors in the d i r e c t io n s  o f  kj_ and 

k j ,  the l in ea r  momenta of the two mesons* 1 i,iauVv 

an eigenfunction corresponding to a t o t a l  angular momentum 

J with z-oompoiient E for  which the mesons have o r b i t a l  

angular momenta X, and i-v combining toge th er  to  g ive  an angular  

momentum L.

He a lso  define
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■ 1  c,!. ' C , '  ' f L ' l U l X j u  ' 3 - 5 'l)K% ^

?;liich i s  an eigenfunction of t o t a l  i s o to p io  sp in  I  v/itb. 

z-component i  for ?/hich the meson p a ir  has i s o to p io  spin j .

With these d e f in i t io n s  {3*531 â nd (3*54) and making 

use o f  the same arguments concerning the r o t a t io n a l  i n 

variance of the system in coordinate space and in i so to p io

spin space, as were used in deducing (3*5 2 ),  we obtain  the

fo l lo w in g  expansions

JlLiivk K(. '
i: . .

JU,kL Kl

X U.Sb)

. - . . .  JM

t;ih'
IjV TM* 2; îi *

i  1.1« t̂ajA ̂ u i ÿ \ V U- l̂)

Remembering that"the meson has odd i n t r i n s i c  p a r i t y ,  

conservation of parity  r e s t r i c t s  the summations in  (3*55)

and (3*56 ) to values o f  R,, X,. and & such that (),+ X -̂l) i s

odd and in (3*57) to values of  X.,Xv, i,' and Ll such th at

(X, i s  even.
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(3. 5 2 ) , (3*55 l.(3»56)  and. (3. 5 7 ) provide us w ith

expansions of the matrix elements o f  the operators appearing  

in our equations between s ta te s  s p e c i f i e d  by l in e a r  momenta 

e t c .  in terms o f  matrix elements o f  the same operators  

between s t a t e s  s p ec i f ied  by angular momenta, p a r i ty  and 

i s o to p ic  sp in .  We s h a l l  use these expansions to  help  

s im plify  the equations (3*36) -  (3*41).

Mean?/hile, i t  i s  v/orth noting th a t ,  as f a r  as i s o to p io  

spin dependence i s  concerned, any production matrix element 

fo r  the production of a meson in a meson-nucleon c o l l i s i o n ,  

i . e .  a matrix element of the type , can be expressed

in terms of four independent matrix elements d  ̂ where f o r  

I , 3 =. 1 or 2 and for  I - i-, j « 0 or 1. This i s  a r e s u l t  

o f  the conservation o f  i so top io  spin which reduces the t o t a l  

number of  independent processes that are p o s s i b l e .  This 

i s  the same s i tu a t io n  as a r i s e s  in the problem of meson 

production in  nuc le  on-nuc le  on c o l l i s i o n s  where as sho?/n by 

Watson and Brueokner (37)» 8.11 the production matrix elements  

can be expressed in terms of three independent q u a n t i t i e s .

In sert in g  the expansions (3*52) and (3*55) i i i to  equation  

(3*40) we obtain

liirv
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where and - vfu^T^ .

ITsing the orthonormality p rop ert ie s

'  ̂ 11' û'  (3*5 9 )

j ‘ ŝv̂ MH'<̂ U'̂ Aaĵ Lc' (3*6 0 )

X ,  x;,XuA:) Xr.ata:') -- îr^u- (3- 61 )
%  '

and ^  -• ĵj' (3*6 2 )
ut;t*

the in tegrat ion  and a l l  the summations in (5*5 6 ) oan he 

carried  out, g iv in g

3̂UMwW ^  tT»,JivW f A .  ^lu (3- 40 ' )

where (3*6 3 )

S im ila r ly ,  using expansion (3*52) î a equation (3*3 8 ) g iv e s

5>io(‘‘*•.'“1 ' ( 3*38’ )

The expansions (3*52), (3*55 ) and (3*3 6 ) allow us to  

carry out a l l  the in tegra t ion s  and summations over the  

v ar ia b les  in a two p a r t i c l e  intermediate s ta te*  The 

s i tu a t io n  i s  more complicated in the case o f  a three p a r t i c l e  

intermediate s ta te  where, as we s h a l l  see p rese n t ly  the  

expansions (3*5 5 ) -  (3*57 ) ^0 not allow us to  carry out a l l  

the summations and integrations*

However, l e t  us suppose for  the moment, th a t  a < s o
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that the system cannot e x i s t  in a r e a l  three p a r t i c l e  s t a t e .  

The equations (3. 36 ) -  (3*41) reduce to

U ' l l O  = ( 3 . 6 4 )

T’here * h  I"-1PI(-) ^l6& - s ^ | (3*65 )

Using the same arguments and expansions as ?/ere used in  

deducing (3*38 )̂ and (3*4oM, (3*64) y ie ld s»

( 5 . 6 4 M

which, with (3*380  » g iv es

tL, {.K',K] * — — --------  (3*66)
SïAi -  Smi II.; U.\

Thus, for  the simple two-hody problem, at en erg ies  below 

the threshold for  the production o f  any nev; p a r t i c l e s ,  the 

operator equations, deduced from the formalism o f  Cini and 

Fubini, reduce to simple a lgebraic  equations from which 

numerical r e s u l t s  oan e a s i ly  be ca lcu lated#  I t  i s  c l e a r  

that t h i s  s im p l i f ic a t io n  does not depend on the f a c t  that we 

have carried through the c a lc u la t io n s  only in  the lowest  

order o f  approximation of  the GF method so that to  any order 

of  approximation, the two-body equations reduce to  a s e t  o f  

algebraic  equations* However, in  higher orders o f  approx

imation, d i f f i c u l t i e s  a r ise  in the eva luation  o f  the higher  

order S-matrix elements occurring in the equations; indeed,
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in t h i s  lowest approximation, which we are con s ider in g ,  

an an a ly t ic  form for  the matrix element o f  S has not yet  

been obtained in pseudoscalar theory v/ith p s-cou p lin g .

The expression for  the react ion  matrix,  K, analogous  

to  (3 . 5 5 )

k L u . U  -- —— ---------- ( 5. 67)

has been used by Sartori and IVataghin (33) to  c a lc u la te  the 

meson-nucleon e l a s t i c  s ca t ter in g  phase s h i f t s .  They do not 

make a complete r e l a t i v i s t i o  c a lc u la t io n  but make the fo l lo w 

ing n o n - r e l a t i v i s t i c  approximations. For the c a lc u la t io n  

o f  the p-?/ave phase s h i f t s ,  they use the in te r a c t io n  hamil

tonian

H' : (3. 6 8 )

which i s  the hamiltonian used by Chev/ e t  a l .  (7 ) ,  (8 ) and 

which oan be deduced from the complete ps(p s)  hamiltonian  

(2 .6 )  by considering only p o s i t iv e  energy s t a t e s  and n e g l e c t 

ing nucleon r e c o i l .  çM i s  the nucleon source d en s i ty  

and the o'c are the usual Pauli  m atr ices .  The n e g le c t  of  

nucleon r e c o i l  must be compensated fo r  by introducing in  

momentum in teg ra ls  a c u t - o f f  which i s  t r e a te d  as an arb itrary  

parameter of  the theory. By choosing s u i t a b le  va lues  fo r  

t h i s  c u t - o f f  and fo r  the coupling constant ,  g ,  which i s  the  

only other parameter in the theory, Sartor i  and Wataghin
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were able to  e s ta b l i s h  good agreement between t h e i r  r e s u l t s  

for the p-v/ave phase s h i f t  for  sca t ter in g  through a s ta te  

of t o t a l  angular momentum \  and iso to p ic  spin \  and the 

experimental r e su l t s  as deduced by G-licksman (2 4 ) .  Rough 

agreement was obtained with the other experimental phase 

sh i f t s *  The values of the two parameters used, correspond 

f a i r l y  c lo s e ly  to the values used by Chew in h i s  c a lc u la t io n s  

using  the TD method.

For the ca lcu la t ion  of the s-wave phase s h i f t s ,  the 

matrix elements are evaluated using the complete r e l a t i v i s t i o  

hamiltonian (2.6) and then a n o n - r e l a t i v i s t i c  approximation  

i s  taken by expanding out the nucleon energy in  terms o f  the 

nucleon momentum and re ta in ing  only the two lov/est order 

terms in an expression. Using the same va lues  o f  the 

coupling constant and the c u t -o f f  momentum as were used in  

the p-wave ca lc u la t io n s ,  they find that the s-wave phase 

s h i f t s  agree q u a l i ta t iv e ly  with the experimental values for  

incident meson energies above 30 Mev. Below 30 Hev, the 

phase s h i f t  for  sca tter in g  through a s ta te  o f  i s o to p io  spin i: 

goes through a resonance ; th i s  resonance i s  not observed  

experimentally and Sartori and Fat a gh in a t t r ib u te  i t s  

presence to the fact  th a t ,  in lowest approximation, the t r i a l  

operator used in the CF method i s  )too simple to  account for  

a l l  the d e t a i l s  of the f u l l  so lu t io n .

We now return to the more general case o f  our o r ig in a l  

problem when and the production of  a meson becomes



(57)

p o s s ib le .  He must now consider terms in our equations  

in which there i s  a sum over the v ar ia b les  o f  a three  

p a r t i c l e  s t a t e .

In sert in g  expansions (3*551 ~ (3*57) in to  equation  

(3*41), we obtain

(uVv^'^'^UUV':Li 
2j Ki

liivjy- -y  ̂ y-Tk'

iXi' IV i 1V4

However, the second order 3-matrix element between two 

three p a r t ic le  s ta te s  of  the type tiP*.\ii ŵlEV̂  i s  non

zero only i f  the momentum of one of  the mesons in  the i n i t 

i a l  s ta te  i s  the same as that of a s im i la r ly  charged meson 

in  the f i n a l  s ta t e ;  t h i s  i s  e a s i l y  seen from the Feynman 

graphs representing  the second order matrix element -  one o f  

the meson l i n e s  must go s tra ig h t  through. Thus

* Ul-iLU.l-.'Wlfe'*'*') {3. 70 )

Using (3*7 0 ) along with (3. 6I) and (3*6 2 ) in (3. 6 9 ) ,  we 

obtain
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III, - VIU,kL k

c j ^  ^ i i ' v  ^ x î j i x ' (̂ ,-j vkit) ^   ̂  ̂ l'^(l*'iA
TkiLUu l'KU"UTMIL.UU 
Tk'l'lv'L'

- y  TW

%Yj
 ̂ :̂waL'):qL\j),L̂ f̂4K ; k%L̂ ) 1 i.iyuW ^

The angular in tegrat ions  in (3*71) Q8.n be performed as i s  

shown in Appendix II  and the equation becomes

- X-> LM(h:ti)i;clc| J
1, It ^
i"L"y

 ̂^ ,K)^ :ji,'(u\3'W!,L U.Hl')

where

(̂ !̂,uCd;L'W\i:'i:K") J ^

X L  cY'  ̂ f C " c t  Y u UVUt;

V W WlilL^ ; U I f  WL; L ':\ V) ; 1̂ '̂ ") W ^oiCT 'i ) LT'^ [VM]

H(abod;ef) i s  a Raeah c o e f f i c i e n t  (2) and

'  i "  ^  U - “ V j - v v j  , L j * a  ■ ,

* f ;  L; h s  Xk;.q\ , U.--0
tv; +4.;
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where t  - ^ - O def ines  Itf̂  and

fe ' “UJ -<̂ c -'jY+ir+k'UL&llwt. =0 d ef in es  oos ; The va lu es  o f

and Ik are r e s t r i c t e d  to  those values fo r  which -\4co59^4( 

The l i m i t s  of t h i s  r e s t r i c t i o n  can be seen hy p l o t t i n g  K  

aga inst  for  various values of  cos ; This p lo t  i s

Fig* (3.11

sketched in f igure (3#1)* Values o f  Ip and C are allowed  

only i f  the point in the f igure  corresponding to  a given  

p a ir  o f  values l i e s  with in  or on the boundary o f  the area  

defined by the curve fo r  cos 6* - i l  ♦ This area Is  zero  

f o r  e* , i . e *  at the meson production th resh o ld ,  and

in creases  as increases  above t h i s  value#

Applying the same arguments to  equation (3#39) we 

have ju s t  applied to (3*4-1), we obtain
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with  the same d e f in i t i o n s  and l i m i t s  of  In teg ra t ion  as 

apply to  C3*4-1’ )•

In equations (3»59M and (3*4 lM , the three-d im ensional  

in teg ra t io n s  have been reduced to one in te g r a t io n  over a 

s in g le  momentum va r iab le ,  but the express ions  are s t i l l  con

siderably  complicated by the large number o f  summations over  

angular momentum in d ices .  The second and th ir d  order S- 

matrix elements appearing in (3*3SM and (3*4lM can be 

ca lcu la ted  f a i r l y  e a s i l y  using the covariant techniques o f  

Feynman (21) and hyson (13)* The fourth  order matrix  

element in (5*39M i s  the sum of matrix elements correspond

ing to a number of Feynman graphs; these  graphs d iv id e  in to  

two s e t s .  In the f i r s t  s e t ,  the four mesons of  the i n i t i a l  

and f i n a l  s ta te s  a l l  in tera c t  with the nucleon; these  graphs 

do not present any d i f f i c u l t y  in t h e i r  eva lu ation .  The 

second set c o n s i s t s  of graphs in which one o f  the mesons does  

not in tera c t  with the nucleon at a l l ;  the matrix elements  

corresponding to these graphs present considerable  d i f f i c u l l y  

s in c e ,  even a f te r  th ose ,  which are formally  i n f i n i t e ,  have 

been made f i n i t e  by a renormalisat ion, some o f  the in t e g r a l s  

in  terms o f  which the matrix elements are expressed, cannot 

be performed a n a ly t i c a l ly  for  arb itrary  va lues  o f  the momenta 

of  the p a r t i c l e s .

Assuming a knowledge of  a l l  the S-matrix elements  

appearing in equations (3«39M and (3.41* ) ,  f in d in g  a s o l u t 

ion of these equations for the matrix elements of  the matrices
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P and Q i s  a complicated prooeedure due to  the large  

number of summations to  be carried out over angular momentum ' 

indices* Having solved these eq.uations, the in te g r a l  

equations (3«3^) (3*37), 1  ̂ which the matrix elements o f

P and Q, appear as kern e ls ,  have s t i l l  to  be so lved  for  the 

T-raatrix elements before any c r o s s - s e c t io n s  can be calculated*  

This i s  a long and complicated programme which we have made 

no attempt to carry through. Instead, we have made the 

fo l low in g  approximation, for which, however, we have been 

able to  find no real  j u s t i f i c a t i o n  at present*

In equation (3*3 7 ) ,  the terms on th e  r ig h t  s ide  in v o lv 

ing are assumed to  be small compared to  the other terms

on t h i s  side of the equation* He n e g le c t  th ese  terms and, 

consequently, the in tegra l  equation becomes the simple equat

ion

•' (5*74)
k

which, a f t e r  using the expansions (3. 3 2 ) and (3*55) o f  the  

matrix elements and equation (3*40 ') ,  y i e l d s

j*

( 3 .7 5 )
s L i k ' ,  m

Some j u s t i f i c a t i o n  for our approximation may come from the 

fa c t  th a t ,  c lose  to the production thresho ld ,  the production  

c r o s s - s e c t io n  i s  much smaller that the e l a s t i c  s c a t t e r in g  

cross-sec t ion *  This may imply that  the terms in  (3*37)
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involving the production matrix element i a r e  much, 

smaller than those involving the e l a s t i c  s c a t t e r in g  matrix  

element* However, too much re l ian ce  cannot he put on t h i s  

argument, since the smallness of the c r o s s - s e c t io n  for  a 

process near i t s  threshold energy i s ,  in gen era l ,  due to  the  

small density  of f in a l  s ta te s  fa c to r  and not to  any smallness  

of the matrix element.

Hor energies below the production th resh o ld ,  the e l a s t i c  

s c a t ter in g  phase s h i f t ,  , for  s c a t t e r in g  through a

s ta te  of angular momentum J, p a r ity  and i s o to p ic  spin I 

i s  re la ted  to the f  and K matrix elements by

it SjL3 -pi I t
t  -  I -- (3. 7 6 )

and 5)11 W  1 - .̂k î Ik.;kJ (3*77)

For energies above threshold, i n e l a s t i c  s c a t t e r in g  becomes 

p o ss ib le  and the phase s h i f t s  become complex* However, fo r  

energies ly ing  above but c lose  to  the th resh o ld ,  the i n e l a s 

t i c  i . e .  the production c r o s s - s e c t io n  i s  much smaller than 

the e l a s t i c  sca tter ing  c r o s s - s e c t io n  so t h a t ,  in  c a lc u la t io n s  

on the e l a s t i c  sca tter ing  p rocess ,  the e f f e c t  of  the compet

ing production process can be neglected* Thus, in  t h i s  

energy region near threshold, experimental data on e l a s t i c  

neson-nucleon scatter ing  can be analysed on the assumption  

that the scatter ing  phase ^shifts  are real* Equations 

(3 . 7 6 ) and (3*7 7 ) can then be used to f ind  experimental be-

4.
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haviour of T/, J and as fu n ct ion s  o f  the energy*

Iluch work has been carried out on the phase s h i f t  

a n a ly s i s  of the experimental r e s u l t s  on me so n -n u d e  on 

s c a t t e r in g ,  the most recent and ex ten s ive  of which i s  the  

work o f  de Hoffmann et al* (25); the experimental data has 

been analysed up to an incident meson energy in the labor

atory system of 217 tiev which i s  about 45 tiev above the  

production threshold* The production process  has been com

p l e t e l y  neglected in th e ir  analysis*  He s h a l l  use t h e i r  

r e s u l t s  in equation ( 5*7 6 ) to ca lcu la te  the values o f  

(lc<,;(ct) which we sh a l l  use in equation (3*75)» A c a l 

cu la t io n  of the second and third order S-matrix elements  

then allows us to find the values o f  from

which the double sca tter in g  c r o s s - s e c t io n  may be calcu lated*

3*3 Calculation and d iscuss ion  of double s c a t t e r in g  c r o s s -
seot’iona." ' """""  ̂  ̂ —---r^-nr-r^

(A) Formulae for double sca t ter in g  c r o s s - s e c t io n *

He now consider in d e t a i l  one p a r t ic u la r  double s c a t t e r 

ing process; th i s  we choose to be the production o f  a 

p o s i t iv e  meson in the c o l l i s i o n  of a p o s i t iv e  meson and a 

proton

+ (> —* + TTW ( $ .7 8 )

To ca lcu la te  the matrix element for  a p a r t ic u la r  pro

duction process,  i t  i s  convenient to  use the o r ig in a l



(74)

Iso top ic  spin representation in which a s t a t e  i s  s p e c i f i e d  

by the z-components o f  the iso top ic  spin  o f  the in d iv id u a l  

p a r t ic le s *  Instead of (3*52) and ( 3 * 5 5 ) ,  we have

(Uêld : « L ( 3*79)

and
rîH

((̂ \̂  14  t -S' • (3*^0)
X7i,lvL

so th a t ,  in our approximation, equation (3*3 7 ) g iv e s

^  1 ( t h t f (3* 8 i)

where

tri;:

For the production process (3. 78), and

; i t  fo l lows from charge conservation  that  V--* 

and tv‘A so that (3*82) g ives

(3. 83)
(4 îij '<01 '0

and, with (3 . 81 ), th i s  y i e ld s

(''■-'AlW^qV.'.AM-^A^ -  brV.|S.iTw_,qi?,kx)l-W ( 3 * 8 4 )

l-’Â

For other production processes where the f i n a l  s ta t e  can 

be produced from two d i f fe r e n t  i n i t i a l  s t a t e s  e , g .
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^ ■'’ M - ,  ■R-+-K-+I. 
ïï° + tv \

in place o f  equation (3* 83), we have two simultaneous  

equations for  the two Q,-matrix elements which appear in  

equation (3»8 l) .

I t  fo l low s from 13*79) sind (3*52) that

• X T i i t ^ o  ‘ •i. t  ‘ (>irt

where use has been made of the d e f i n i t i o n s  (3*43) and 

(3*4 6 ). Thus, with the help of  (3*7 6 ) ,  any matrix element

can he expressed in terms o f  the phase s h i f t s

fo r  scatter ing*
/♦ ( \ Î cFor the process (3*7 8 ) we have so that

l - t A 1 k ;\ \  \ ' T )<\\ 5 ^  e l%\ (3*86)

How, i f  tijl'' ITi  ̂ i s  the T-matrix element

for  the production of two mesons o f  momenta p and Ic with

2-components of i so to p ic  spin t,'and tj and a nucleon o f  

momentum (-p-k) with a-component o f  sp in  m' and o f  i s o to p ic  

spin t̂  from a s ta te  of  one meson and one nucleon whose 

momenta are r e sp e c t iv e ly  q and -q and whose 2- components of  

i s o to p ic  spin are t, and the nucleon having z-component of  

spin m, then, as i s  shown in Appendix I I I ,  the t o t a l  pro

duction c r o s s - s e c t io n ,  [<rUUt,Av  ̂ , where the z-oonponants
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o f  the iso top ic  spins of the p a r t i c l e s  are s t i l l  s p e c i f i e d ,  

i s  given by

-- U ’d a  ^JLIlt>>'>1̂

where & = . Faking use of (3 . 80) , we can write

-- X  U'.fcAt,iV cy lt . lv ,

Since the experimental r e s u l t s  on meson-nucleon  

s c a t te r in g  have been analysed to  give s c a t t e r in g  phase 

s h i f t s  only up to  an incident meson energy about 45 Mev 

above the meson production threshold in  the laboratory  

system, we s h a l l  be concerned with the production only at  

energ ies  c lose  to threshold; the f i n a l  s ta te  p a r t i c l e s  w i l l  

therefore  have low k in e t ic  energies and w i l l  consequently  

be produced almost e n t ir e ly  in s - s t a t e s *  The terms in  

(3# 88 ) in which : L - 0 are therefore much la rg er  than the  

other terms in the expansion at these e n e r g ie s ,  so that  

those terms for which and o can be n eg lec ted

completely* IThen i, - - o , U ** o and J = ^ and i t  fo l lo w s

from conservation of parity  that 1*I ; th u s ,  in (3*88 ) we 

r e ta in  only terms in .

In sert in g  (3*88) in to  (3»87),  the summations over the  

spins are e a s i ly  carried out g iv ing
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»c â - <*ik —

for  the t o t a l  production c r o s s - s e c t io n  at energ ies  c lo s e  

to  threshold .

Henceforth, we s h a l l  be concerned only with the process  

(3. 78 ) and, as no ambiguity w i l l  a r i s e ,  we s h a l l  omit the 

i s o to p ic  spin va r iab les  and denote the c r o s s - s e c t io n  by c{j:\ 

Then,

(3. 9 0 )
IG It é  J J

I f  we put T = , we obtain the lowest order p ertur

bation  theory r e s u l t ,  , for  the c r o s s - s e c t io n :

^  ' IG X è 1 1 (VK^I't' J \  ̂ (3*9 4 )

Using (3.84)  and (3*86), we obtain the c r o s s - s e c t io n  , <5PfU\, 

derived from the CF method:

....  ̂ (3. 9 2 )
V H 6̂  I I I \ - \ M \

(B) Second and th ird  order S-matrix elements*

The only Feynman graph contr ibuting  to  the matrix  

element Is shown in f ig u re  (3*2 ) where

c a p i ta l  l e t t e r s  r e fe r  to four-vectors* Using the in t e r 

a c t io n  hamiltonian (2*5), the matrix element corresponding  

to  t h i s  graph i s
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X lA*
U k ' W  h" '

U. î^

\Q'k

/K

/K'
- w '  /

F i g . (3. 2 )
kQ

where standard n o ta t io n  has been 

used and the spinors  are normal

ised so that  .̂

A fter  some a lgeb ra ,  t h i s  y i e l d s

with

IaA\SujIV'01aa^ * ^ik\ ^
where

= !ln|  ̂&(.(«»6\ Uk,o@(6̂

4t“‘6WU,‘«e\and

Oq.to»») =.  . i h \  i ijjl

and
£<l * vA

■■ —

Thus -^VlôlO

.h a r ,  O.I'l ' 4 l * j 1 _ 2Èifi±L(,
I K'^V

(5. 9 5 )

(3. 9 6 ) 

(3*97)  

(3. 9 8 )

(3*99)

(3* 100 )

(3*101)

(3*102)
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Two Peynman graphs con tr i’oute to  the matrix element 

i they are shown in  f ig u re  (3. 3 ).  The

Q'-* <3 VK-K.-K-v A y  K

a'+K̂

/
/

/IK,

/
/

V
Q

<a'VK, y / k

l<3- kvy
/

/

iQ

Fig. (3.3)

matrix element corresponding to these graphs i s

 ̂ (A » \ ^
k ' ,k : I  p =  —  —

ui v̂ Wc

X IL V (<i->c,Vx vvtA
1 (.«'+vcA''+̂ V''

^ U7dx (A-ICvVx 4-vn
U‘+vc,r  ̂H'" l4-kd 4- K' V “'*)

Since we consider only energies c lose  to  the production

threshold ,  we can neg lect  the nucleon r e c o i l  in  the fa c to r s  
1—; and ----- , , which apnear in the matrix element, and replace

them by 1 and — re sp e c t iv e ly .  Straightforward c a lc u la t io n s  

f i n a l l y  y ie ld
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Üu.

v;nere.'G UyÛ

and q q O

SO t h a t ,

p. îf.O H ,

k'x / G.4f\ (  ̂d(w8̂ Vt
V̂ Û̂SÏÔ

(3-105)

(5 -1 0 6 )

(3 -1 0 7 )

iiÜL __1 __

F'

(3. 108)

(3*109)

(C) C ro s s - s e c t io n  in lowest o rde r  p e r t u r b â t  ion th e o ry .

h qua l i o n s  (3 . 1 0 4 ) - ( 3 • lOS ) a 11 ov; us  to  e va lua t  e 

i n  (3*511* However, the i n t e g r a l s  in  (3 *5 1 ) a re  Gompli- 

Gated c o n s id e rab ly  by the f a c t  t h a t  the  î - f u n c t i o n  in  the  

in te g ra n d  depends no t  only on the magnitudes of th e  momenta 

p and k but  a l s o  on the  angle  ̂ between th e se  tv/o vec to rs*

In  h i s  work on meson p roduc t ion  p r o c e s s e s ,  Fermi ( 2 0 ) 

s i m p l i f i e s  the i n t e g r a t i o n  by making use  of  the  approx im at

ion  t h a t  the meson mass i s  much s m a l l e r  th a n  the  nuc leon  

mass i . e *  • This approxim ation  a l low s  one to  n e g l e c t

the  r e c o i l  energy of the nucleon in  th e  S - f u n c t io n  so t h a t
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i s  e f f e c t i v e l y  replaced by II; the ^ - fu n c t io n  i s  then  

independent of  the angle Oo •- This approximation i s  made in  

analogy to  the approximation u su a l ly  made in  ^-decay theory  

adhere the r e c o i l  energy of the r e s id u a l  nucleus i s  n eg lec ted  

s ince the mass of the emitted e lec tro n  i s  vary much smaller  

than the mass of the nucleus»

The S*-fanction in (p .g i )  r e s t r i c t s  the in te g r a l  through 

(p ,k ,6o)-space to  he over a certa in  surface» The form of  

t h i s  surface can he seen from figure  ( $ .d ) v;here s e c t io n s

?

4k

through the surface are sketched fo r  various values  o f  

in f u l l  l in es»  P i s  defined hy - o » Permits '

approximation replaces  th i s  surface hy one o f  constant  

s ec t io n ;  i t s  sec t ion  i s  shown in f igu re  ( $ , 4 ) hy the broken 

l i n e ;  P ' i s  defined hy f e - - (hf*-K - o so that P ’> P*

he s h a l l  not make use of Permits approximation as i t  

seems rather a d ra s t ic  approximation to  assume that  

when, in actua l  fac t  ^  0 .1$ .  Instead ,  we proceed as

fo l lo w s .
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For energies  very c lose  to th resh o ld ,  a l l  the f i n a l  

s t a t e  p a r t i c l e s  can he treated n o n - r e l a t i v i s t i c a l l y , so 

th a t ,  p u t t in g  the ^ -fu n ct ion  in ( J . 9I )  becomes

^  and, con s is ten t  v/ith t h i s  n o n - r e l a t i v i s t i o

approximation, the k in e t ic  energies  o f  a l l  the produced 

p a r t i c l e s  are neg lected  in Equation (3*91)

becomes

(3* 110)

Making the transforniation of v a r ia b les  p4k % a and p * k s h ,  

(3*^110) becomes

The ^ -fu n ct ion  now depends only on the magnitudes o f  the  

v ec to rs  a and b# The in tegra t ion s  are a l l  elementary and 

can be performed g iv ing
X

^  (-Tf-— I ^  (3*112)

Taking = 140 Mev and 11^ 93^ Mev so th a t  p - 6»7> "khe 

threshold  for  meson production occurs at an in c ident  meson 

k in e t i c  energy in the laboratory system o f  I 7I  Mev»

The r e s u l t s  o f  c a lcu la t io n s  made us in g  equations (3#104) -  

(3*109) with  (3*112) for  various values o f  the inc ident  

meson k in e t i c  energy, , are given in Table I» Although  

values  o f  <Tp(e\ are given up to Ê » 200 Mev, the non

r e l a t i v i s t  ic  approximation used in d er iv in g  (3*112) i s  not
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Cw Mtv. V % f « 1 ,

n i l l e o 0 0

I'S-IS C $4 —

M I L 144

l a c U1H- iv -K

m l\r\ - I3.SL

Table I .

v a l id  as far  above threshold as t h i s .

At energies where the n o n - r e l a t i v i s t i o  approximation  

i s  not v a l id ,  we replace the in teg ra t ion  over the surface  

defined by by an in tegrat ion  over the surface

defined  by where * \l • This i s  a

surface whose sec t ion  i s  given by the curve 6 0 in f igu re  

(3*4) and i s  independent of G,. This surface can be 

regarded as being, in  some way a mean o f  the v a r ia t io n s  

with  G . o f  the o r ig in a l  surface; i t  a l low s  a c e r ta in  amount 

of  nucleon r e c o i l  to be taken into account» A l l  the i n t e 

gra t ion s  in (3*9 1 ) OEin now be performed a n a l y t i c a l l y  with  

the exception of one, g iv ing

Jo
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where, in  the integrand, p i s  a funct ion  o f  k def ined  by

0 and, as before, P i s  def ined  by e-^-üp-tp-o  

I t  was not found p oss ib le  to  perform the in te g r a t io n  

in  (3*113) a n a ly t ica l ly *  I t  was th erefore  carr ied  out 

numerically  and, to  the accuracy required ,  t h i s  was quite  

w e l l  accomplished by p lo t t in g  the integrand as a function  

o f  k and f inding  the area enclosed by the curve and the  

l i m i t s  o f  integration* This c a lc u la t io n  was carried  out 

fo r  E^»190, 200 and 215 blev, the r e s u l t s  being shovm in

the l a s t  column of  Table I*

This approximation w i l l  be f a i r l y  good when the va lues  

o f  the third order S-matrix element on the o r ig in a l  surface  

do not vary much from the values on the "mean surface "»

F o r  energ ies  c lo se  to  threshold , a l l  the surfaces  l i e  near  

to  one another so th a t ,  providing the S-matrix i s  a reason

ably  well-behaved function  of the momenta i t  w i l l  not vary 

much from one surface to another* T his ,  along w ith  the

f a i r  amount of agreement obtained between the r e s u l t  o f  t h i s

approximation and the re su l t  from the n o n - r e l a t i v i s t i c  approx

imation at 190 Mev, where the n o n - r e l a t i v i s t i o  approxim

a t io n  should be v a l id ,  provides some j u s t i f i c a t i o n  fo r  the  

approximat ion.

A graph of the r e s u l t s  given in  Table I i s  shown in  

f igu re  (3. 5 )
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'■ S O /" ^ < L tA  6kj[i^«)((û'K&JbtoVv

Io

w ivoloo

Fig. (3. 5 )

(3)) Gross-sect ion from Cini Fab in i  method.

We can novi/ ca lcu la te  the values of fo r  various

values  of , by making use of eq.uation (3*92)♦ To do 

t h i s  v;e reg,uire a knowledge of  and

The va lues  of  the second order S-matrix element fo r  

d if f e r e n t  values of g. can be evaluated from eg.uations 

(3*100) -  (3# 102) ; these are given in  the th ird  column o f  

Table IIo

As i s  shoivn by de Hoffmann et  a l .  ( 25),  the phase s h i f t  

a n a ly s i s  o f  the experimental data on me son-nucle  on s c a t t e r in g
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does not lead to  a unique set  of  phase s h i f t s . .  Hov;ever, 

on the grounds o f  the present t h e o r e t i c a l  p r e d ic t io n s  o f  

the q u a l i ta t iv e  behaviour of the phase s h i f t s  and requir ing  

that the phase s h i f t s  should be smooth fu n ct ion s  o f  the 

energy of the system, they s in g le  out one s o lu t io n  which 

they b e l iev e  i s  almost cer ta in  to  be the correct  one -  t h i s  

s o lu t io n  i s  the one obtained u s in g  in te r p o la t io n  (b) on 

Track I ,  in  the notation  of th e ir  paper. In t h i s  s o lu t io n .

ni - - 0 0

llo O'S’4-

1̂ 0 [ 0 \

loo -to(T I** 1̂ 6 f'34"

1\S “ \ \ \ ; lo-m

Table I I .

the phase s h i f t  -  <Xj, in  th e ir  n o ta t io n  -  i s  a l in e a r  

function  of  the k in e t ic  energy of the inc ident  mesons in  

the laboratory system i . e .  of ; t h i s  v a r ia t io n  i s  shown 

in f igure  (3*6 ) and the required values  o f  are g iven in  

the second column of Table I I .

In (3*92), the values of  obtained from the "mean
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s u r fa c e a p p r o x im a t io n  were used at a l l  en erg ies  except  

i 180 Mev where the n o n - r e l a t i v i s t i o  approximation r e s u l t  

was used. The values of  obtained are g iven in  the

l a s t  column of Table II  and the corresponding p o in ts  p lo t t e d  

in f igu re  (3*7 )*

(E) C ross-sect ion  from s t a t i s t i c a l  theory.

The r a t io  of  the meson production c r o s s - s e c t io n  to  the 

e l a s t i c  s c a t ter in g  c r o s s - s e c t io n  has a l s o  been ca lcu la ted  

u sin g  the s t a t i s t i c a l  theory o f  Fermi (20 ) .  This theory  

i s  based on the fo l low ing  idea. llien a meson and a nucleon  

c o l l i d e ,  th e ir  k in e t ic  energy i s  suddenly re leased  in to  a 

small volume surrounding the point of  c o l l i s i o n ,  the s i z e  o f  

t h i s  volume being governed by the extent of the meson f i e l d  

surrounding the nucleon. As a f i r s t  approximation, t h i s  

volume i s  taken as a sphere of radius However, t h i s

sphere su f fer s  a Lorentz contraction  due to  the motion o f  

the nucleon of momentum we therefore  consider  the energy 

as being re leased  into  a volume V * ». ITithin t h i s

volume, mesons, nucleons and a n t i -n u c leon s  are co n t in u a l ly  

being created and destroyed. The theory assumes that  the  

meson-nucleon in tera c t io n  i s  so strong that  s t a t i s t i c a l  

equilibrium i s  a tta ined  within t h i s  volume before i t  breaks  

up into  a number of f r e e ly  moving p a r t i c l e s .  The p r o b a b i l i ty  

that the f i n a l  s ta te  w i l l  contain a c e r ta in  number o f  

p a r t i c l e s  i s  therefore proportional to  the p r o b a b i l i ty  that
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these  p a r t i c l e s  are a l l  simultaneously present in the  

small volume IT# This theory depends on the ex is te n c e  

o f  a very strong coupling between mesons and nucleons in  

contrast  to  the weak coupling required fo r  the v a l i d i t y  

o f  perturbation theory*

In the c o l l i s i o n  of a meson and a nucleon, each o f  

momentum g, the r a t io  of the meson production or double 

s c a t t e r in g  c r o s s - s e c t io n ,  , to  the e l a s t i c  s c a t t e r in g  

c r o s s - s e c t io n ,  , i s  given by

and '] ^  (3. I I 6 )

where (3*115)W 1 Ix' t

In eva luating  the in teg ra l  in (3* H 6 ) ,  we have assumed that  

the t o t a l  energy of the system i s  s u f f i c i e n t l y  near the pro

duction threshold that a n o n - r e l a t i v i s t i c  approximation i s  

v a l id  as far  as orders of magnitude are concerned.

In the c o l l i s i o n  of a p o s i t iv e  meson and a proton, the 

p r o b a b i l i t i e s  that the f i n a l  nucleon i s  a neutron or a proton  

are equal,  so that with the c r o s s - s e c t io n  for  process

(3*7 8 )
<T _  I S W
<3iiL ^ (3* 117)

Various values of , evaluated from equations (3* 115 ) -

( 3 . 117),  G.re given in the second column of Table I I I .
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E-ir CiL ( 4̂v. ^  X
<5‘«l

\n\ 0 0

ijo oA o \

\^o 0 \

loo L'l

H' k |0 I

Table I I I .

In the l a s t  column of Table I I I ,  the values  of <3̂  used  

in the c a lcu la t io n  of the r a t io  are those corresponding

to the phase s h i f t s  already employed in the c a lc u la t io n  of  

(of .  fi.gure 2 of reference 25). To obtain d e f i n i t e  

numerical r e s u l t s  fo r  t h i s  r a t io ,  for  comparison w ith  the  

r e s u l t s  of  the Fermi theory, we have used the value t

t h i s  i s  the value found by hyson et a l .  ( l5 )  in t h e i r  t r e a t 

ment of meson-nucleon sca t ter in g  by the TD method which g iv es  

the best  f i t  with experimental^ r e s u l t s .

(F) D iscuss ion  of r e s u l t s .

The r e s u l t s  in Table II  show that the double s c a t t e r in g

c r o s s - s e c t io n  i s  larger  than the corresponding
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o r o s s - s e o t io n  <5p(ê  , obtained from lowest order perturbation

theory ,  by a fa c to r  of the order o f  lo' which, f o r  

i s  o f  the order o f  10* Also, for  t h i s  value o f  the  

coupling constant ,  <3”̂  to^mb. at  an in c ident  meson energy

o f  200 Mev* How, at t h i s  energy the experim entally  de

termined c r o s s - s e c t io n  for  the e l a s t i c  s c a t t e r in g  o f  p o s i t i v e  

mesons on protons i s  of the order o f  100 mb* so that our 

ca lcu la ted  double sca t ter in g  c r o s s - s e c t io n  i s  smaller than

the experimentally  determined e l a s t i c  s c a t t e r in g  c r o s s -  

s e c t io n  by a fa c to r  of \o'^ * I t  does not appear p o s s ib le  

t h a t ,  with present experimental te c h n iq u e s , the double 

s c a t t e r in g  could be detected  and measured w ith  any accuracy  

a t  these energies  c lo se  to the threshold  when the competing 

process  of  e l a s t i c  s c a t ter in g  has such a r e l a t i v e l y  large  

cr o s s - s e c t io n *  Indeed, as has been d iscussed  in  Chapter I ,  

the lowest energy at which any measurements have been made 

on the double sc a t te r in g  process i s  50O Mev* fo r  the s c a t t e r 

ing of negative  mesons on protons (3 )> (4 ) ;  even at t h i s  

energy i t  was found d i f f i c u l t  to  measure the double s c a t t e r i i^  

c r o s s - s e c t io n  with any accuracy so that  i t s  value was only  

f i x e d ,  by these  experiments, to  l i e  somewhere in the wide 

range of  va lues  5-5 ~ lOmb.

From the r e s u l t s  in  Table I I I ,  we see t h a t ,  as fa r  as  

orders o f  magnitude are concerned, the r a t io s  o f  the double 

to  the e l a s t i c  sca t ter in g  c r o s s - s e c t io n ,  c a lcu la ted  from the  

two independent th eo r ie s  of Fermi and o f  Cini and Fu bin i ,
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<0*
agree ex trem ely  w e l l ,  f o r  ^ , a t  e n e rg ie s  c lo se  to  

th r e s h o ld .  d^'Espagnat (I9 ) o b ta in s  a s i m i l a r  agreement 

between the r a t i o  c a lc u la t e d  from h i s  th e o ry  and t h a t  o f  

the  Fermi th e o r y ;  however, he f i n d s  t h a t ,  a s  th e  energy 

in c re a s e d ,  th e  Fermi r a t i o  i n c r e a s e s  more r a p i d l y  th a n  does 

h i s .  Our r e s u l t s  seem to  in d ic a te  a l e s s  r a p id  in c re a s e  

o f  the  Fermi r a t i o  compared to  the  r a t i o  from th e  CF method. 

I t  should be no ted  however t h a t  the  n o n - r e l a t i v i s t i o  approx

im a t io n ,  used  in  c a l c u l a t i n g  the  Fermi r a t i o ,  l o s e s  i t s  

v a l i d i t y  as  the  energy in c r e a s e s  so t h a t  the  r e s u l t s  c a l 

c u l a t e d  w i th  i t  do n o t  show the  c o r r e c t  energy dependence 

o f  th e  r a t i o  a t  th ese  h ig h e r  e n e rg ie s .

Due to  th e  approxim ations which were made t o  overcome 

the  d i f f i c u l t i e s  encountered  in  c a r ry in g  th rough  a c a l c u 

l a t i o n ,  based  on the  CF method, f o r  a system in  which s t a t e s  

c o n ta in in g  more th an  two p a r t i c l e s  a re  p o s s i b l e ,  our r e s u l t s  

cannot be used  as the  b a s i s  f o r  a d i s c u s s i o n  o f  th e  v a l i d i t y  

o f  th e  CF method. The d i f f i c u l t i e s  a s s o c i a t e d  w i th  a p p ly 

ing  the  method to  any but  th e  simple two-body problem, as  

has been done w i th  some success  by S a r t o r i  and Wataghin (33)  > 

are  c l e a r  from our work.
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APPEIIhlCES.

Appendix I.

To e s t a b l i s h  the r e la t io n s h ip s  between the nucleon  

and meson se l f - en erg y  terms (2. 2g) and (2. 30) and the 00* 

variant expressions given in (2. $ 2 ) and (2. 3 3 )» carry

out the k - in teg ra t io n  in the oovariant in t e g r a l s .

U>|n__w + Po Uo
-  ~  " ’■‘V . k Z

V

where 4 (IR and . Therefore

(xn\ J ( )

- ,  i < 0V  1%  +  < - i W  +  + v . * v \

4- U4,..L.

Ihus,

- "il [ i w :
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For the meson se l f -en erg y  term,we have

H W  -  -

W_it 4- V..
Tk Utv\

W-Ji4̂ 4 - fk*
r - ' P V

where Therefore,

Utĉ  J L t̂-v. 4- 6.̂ >u 4(.\

f
(U-u -<Q, - €.̂ ,̂ u ̂  -%vw\ (f (s

+Ê .vw

A fter  some algebra and us in g  the r e la t io n s  {>-. sy.(.•:. o, C:w, 

we obtain

-   ̂ .r ,

SO that lT,i  ̂ ^  IT lo?\ •

Appendix I I .

I7e wish to  perform the fo l lo w in g  in te g r a l

^ " oL J Hê-o, _Uk-€|p.4-v̂ lA\)

For p and k 4 0, making use of the c losure  property o f  

sp h er ica l  harmonics, we can write
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where e - uj, - oi. - \| k>4-(yf+a.(»w c*sG,  ̂ o d e f in e s  cos P.. Therefore,
e - — uiv.

Making use of  (5*5 3 ) > the orthonormality o f  the sp h e r ica l  

harmonics, and the id e n t i ty

c  : '  y:*'ui MHtî Ucvb

we obtain ,

I  = > . ‘- 7 R X  C )  '  C  ':  "

K c"' ' (•’■' C*‘' r f c'" f* (
K -t t  n'-t-x' *■' « A X k-w '-«vk

■ C  k  J  c I y ' C k  ‘ f  w  N

By making use of the symmetry r e la t io n s  o f  the Clebsch  

Gordon c o e f f i c i e n t s  (3 ) and o f  the property o f  the Racah 

c o e f f i c i e n t s  ( 2 )

: : A ' “

the summations over t , x  and x  ̂ can be carried out ,  g iv in g

" c '''

c V  c f cC  V ‘ ^

X Vjl.i-’U '- ç i t .V )  VI l ' t ) V«, UO (4.l|
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With (A.4) and (A.5 ) ,  t h i s  y i e ld s

t^ n

y.

V lî̂ (̂i»v*>li*.'»'Mu,;«K.iti't'll'i'-*>X'“ +̂0(̂ '-'‘*'lUx*''(̂ +̂')̂  Ĉ ' ^

X Vi L̂' K Lij 1 tv^VI L -,  ̂C -, (S'-') Vf i^«cr'v; ,̂ T') (All

Hence fo r  k4  0,

-- z \ ^  l|.A) F̂ ^AUd 1",:W

where

llp.w\ ~ Y|*. (ft.u)

and the in te g r a l  i s  over those values of  p such t h a t ,  fo r  

a g iven k, ~u  (.

Tihen k  - 0 ,

Ou.-̂  ~ ^

where p̂  i s  defined by e - u i \ , ^ ^  o . Thus, fo r  k^ 0,



(97)

K4 W

This leads to  the formula (A.10) for  the in t e g r a l ,  where, 

in  t h i s  ease ,

Appendix I I I .

The follov/ing proof i s  e s s e n t i a l l y  that  g iven  by 

hr. P.T. Matthews in an unpublished se t  o f  le c tu r e  n o tes  

on an "Introduction to Pield  Theory".

The t o t a l  t r a n s i t io n  p rob ab il i ty  fo r  a system of one 

meson of  momentum q, and one nucleon o f  momentum -q̂  going  

in to  a s ta te  of two mesons and one nucleon i s

by (5»30) Eind (5»35) where and P̂  are the t o t a l  four-  

momenta o f  the i n i t i a l  and f i n a l  s t a t e s  r e s p e c t iv e ly *

7/e suppress the spin and i so to p ic  spin v a r ia b le s  for  the  

p resen t .  how,

and, for  the energy component of  , fo r  example, we can

write



(98)

so t h a t  f o r  , we have

r  ■ Y T
Ou.(jô “ Llk. ——T-« iin\'

V - ^ e o

where VI i s  the  t o t a l  space-t ime volume c o n s id e red .

I t  fo l low s  t h a t  the  t o t a l  t r a n s i t i o n  p r o b a b i l i t y  p e r  

u n i t  time p e r  u n i t  volume i s

-ük- E^\

where and the r - i n t e g r a t i o n  has  been c a r r i e d  o u t .

The wave fu n c t io n s ,  which we use t o  d e s c r ib e  th e  mesons 

and n u c leo n s ,  a re  norm alised  so t h a t  the  d e n s i t y  o f  mesons 

or  nuc leons  i s  per  u n i t  volume. Hence, the  t o t a l

t r a n s i t i o n  p r o b a b i l i t y  p e r  u n i t  time p e r  u n i t  volume p e r  u n i t  

d e n s i t y  of  incoming p a r t i c l e s  i s

The t o t a l  c r o s s - s e c t i o n ,  , which i s  th e  t o t a l

t r a n s i t i o n  p r o b a b i l i t y  p e r  u n i t  f l u x  o f  incoming p a r t i c l e s ,  

i s  ob ta in ed  from t h i s  by d iv id in g  by the  magnitude of  the  

r e l a t i v e  v e l o c i t y  of the i n i t i a l  nuc leon  and meson system

i . e .  by ( I g  ^  . Ihus

Taking sp in  and i s o to p ic  sp in  in to  a c c o u n t , th e  t o t a l  cross- 

s e c t io n  i s  ob ta ined  by averag ing  t h i s  e x p re s s io n  over ohe 

i n i t i a l  sp in  s t a t e s  and summing in  over the  f i n a l  sp in
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s t a t e s .  This g iv e s  équation (3. 87) of the t e x t .
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