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A B S T R A C T

The thesis presents a theoretical and experimental 
investigation of the buckling of flat rectangular plates when 
subjected to symmetrical and asymmetrical temperature distributions 
over their lateral surfaces. These temperature distributions induce 
thermal stresses. Under certain conditions the compressive component 
of the induced thermal stresses causes the plate to buckle out of its 
own plane.

The evaluation of the critical temperature, which initiates 
buckling, is carried out in two successive steps.

1. A solution of the biharmonic equation that governs the 
distribution of thermal stresses under stable conditions 
is obtained.

2. This stable state distribution of thermal stresses is 
utilised to obtain an approximate solution of the 
equation governing the stability of flat plates with 
internal varying stresses. This gives the value of 
the critical temperature at the onset of buckling.

The subject matter of the thesis is divided into four parts :-

PART I is a review of the published literature covering rigorous and 
approximate methods which have been used to determine the stable state
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distribution of thermal stresses and the evaluation of the critical 
buckling temperature. It also includes considerations of plate 
deflections in the post-buckling range with particular reference to 
the growth of the plate centre deflection with increasing values of 
plate temperature differential.

PART II deals exclusively with the theoretical analysis and evaluation 
of the critical buckling temperature.

It includes, as its first consideration, the determination 
of the steady state distribution of thermal stresses in the plate.
An approximate solution of the biharmonic equation, governing the 
distribution of stresses is presented using the Kantorovitch Method.
This is followed by an original application of the Rayleigh-Ritz Method, 
to obtain an approximate solution of the biharmonic equation giving 
the thermal stresses in a polynomial form.

This is followed by an investigation of the effects of plate 
aspect ratio and the degree of asymmetry of the temperature distributions 
on the value of critical temperature. The cases considered have, to 
the author's knowledge, not been investigated hitherto.

The numerical work' associated with the theoretical analysis 
was carried out on a 'Deuce* Computer using Alpha Code and General 
Interpretive Programmes.

PART III presents the experimental work carried out in substantiation 
of the theoretical methods used in Part II. This covers the
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determination of the critical buckling temperatures and deformations 
of aluminium allpy plates, of aspect ratios ranging from one to three, 
subjected to symmetrical and asymmetrical temperature distributions#

PART IV discusses, critically examines and summarises the comparison 
and correspondence obtained between the theoretically predicted and 
experimentally determined values of critical tanperatures and 

deformations# It is shown that good agreement exists.

The thesis concludes with six appendices which present 
detailed analyses and calculations followed by a bibliography.
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LIST CF SYMBOLS

a half-plate length in x direction, in.

a ^  coefficients or vectors in series expansion
for plate deflections.

b half-plate width in y direction, in.
Et3D plate flexural stiffness, ------- 5-

12(1 -v*̂ )
2E Young's modulus of plate material, lb./in.

j V-1, unless defined otherwise.
t plate thickness, in.

integers
T temperature distribution in plate, °C.
T temperature differential, difference between centre

and edge temperature in 'tent-like' temperature' 
distribution (see figure 23), difference betwegn 
maximum and edge temperature (see figure 24)* 0.

T̂  temperature difference between centre and edge of
plate of reference 6 (see figure 3).

Tg^ temperature coefficient in a Fourier series.
T critical value of T , °C.ocr o
*Ü complementary energy of heated plate, in.-lb.

7 potential energy of an initially flat, buckled
plate, in.-lb.

w plate deflection, in.
initial plate deflection, in.



initial plate centre deflection, in.
W plate centre deflection measured from the

x-y plane of plate, in.
x,y coordinate axes.
a/b plate aspect ratio.

®o/ecr ratio of middle plane strain to the buckling strain,

EoT b^t0

A

X y

X' y

temperature differential parameter.

critical temperature differential parameter.

ratio of T to To ocr
a coefficient of thermal expansion in./in. °C.
p non-dimensional coefficients.
Y coefficients in stress function 0.
E , e normal strains in plane of plate in x and y directions

respectively.
C , 0 normal stresses in plane of plate in x and y directions

respectively, lb./in?
2T shear stress in plane of plate, lb./in.

6 incremental operator,
n variable of integration.
0 stress function.
V Poisson*s ratio.
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27 differential operator, — r + — r
îoi ay'̂

/ g4 23̂*'7 differential operator, — r + — r— % +
ax^ ax'̂ ay'̂  of

Z summation operator.

Numbers in brackets in the text refer to 
the publications listed in the Bibliography,
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PART I  CRITICAL REVIEW

The determination of thermal stresses and deformations plays an 
important part in the design of nuclear reactors, turbines, supersonic 
aircraft and other types of structural components operating at elevated 
temperatures. This has lead to renewed interest in the subject of 
thermo-elasticity which dates back to the first half of the last 
century idien D u h a m e l modified the equations of elasticity to allow 
for thermal effects.

Elastic thermal stresses in a body can be produced either by 
non-uniform temperature distributions throughout the body, or by 
restraints at boundaries which restrict the free thermal expansions. 
Thermal stresses can also arise when a composite structure consisting 
of members with different coefficients of expansion is subjected to a 
uniform rise of temperature.

In general, thermal stresses can be treated as a steady state 
problem, since even under temperature distributions varying with time, 
the thermal inertia effects can often be neglected.

Aircraft structures designed for supersonic speeds are subject to 
aerodynamic heating. This is caused by the rapid slowing down of the 
air through the boundary layer which generates heat. Thus the external 
surfaces of the aircraft are heated. The induced thermal stresses in 
plate elements resulting from non-uniform heating may have a significant 
effect on the aerodynamic performance of the aircraft.



2
Lateral deflections of a plate element can arise as soon as heating 
takes place if the temperature varies across the thickness but is 
constant over its surface. If, however, the temperature is constant 
across the thickness of an idealized flat plate element but varies in 
a non-linear manner over its surfaces, then the induced compressive 
components of the thermal stresses will cause lateral deflections of 
the plate to occur only idien a critical temperature is reached.

The behaviour of a plate with initial imperfections will differ 
from that of an idealized flat plate. In the latter case, no lateral 
deflections occur until the critical temperature is exceeded. A 
plate with initial imperfections will deflect as soon as heat is 
applied. These deflections will increase rapidly at a non-linear 
rate as the critical temperature (a characteristic of the applied 
temperature distributions) is approached.

The subject matter of the thesis is this instability phenomenon 
induced in rectangular flat plates by non-linear temperature distributions 
over the lateral surfaces of the plates.

The published literature of theoretical stress and deformation effects 
is very extensive. It is felt that a thesis review will serve a more 
useful purpose if it attempts to cover in relative detail, a rationally 
restricted range rather than provide brief resumes of a large number of 
papers.

Generally, the papers dealing with the thermal stress problem have 
been restricted to cases where the induced stresses are self equilibrating.
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That is to say, the stresses on any overall cross-section produce zero 
resultant direct and shear load and zero bending moment.

An object has been to show, in some detail, typical methods 
used in analysis rather than particular aspects of plate behaviour 
under non-linear temperature fields.

The first section of the review (l) deals with the steady state 
plane stress problem arising from non-uniform heating. In this section, 
the review includes exact solutions of the governing differential 
equation. It is relevant to comment here that while Duhamel'ŝ ^  ̂

analogy enables a thermo-elastic problem to be formulated as an ordinary 
elastic problem using fictitious boundary and body forces, only a 
few problems with body forces have been solved which are of direct 
relevance to the problem considered. Owing to the inherent difficulty 
of applying this analogy, various approximate methods have been used to 
obtain a solution. These are presented in the remaining part of section (l).

The second section (2) of the review is concerned with the instability 

of a rectangular plate induced by the compressive component of the induced 

thermal stresses. It is essentially a characteristic value problem if 

small deflection plate equations are used in the theoretical analysis for 

an idealized flat plate.
The final section (3) of the review is concerned with the behaviour 

of an actual plate with initial impofactions and where the stretching of 
the mid plane is taken into account in the analysis. Of particular 
interest is the growth of plate centre deflection with increasing value of 
temperature differential across the surface of the plate.



(1 ) Thermal Stresses in Plates under Stable Conditions

The basic equations of elasticity, modified to include 
temperature effects, were deduced independently by Duhamel^*  ̂̂ and 
Neumann^ in 1838. The equations were later modified by Hopkinson^^^ 
in 1879 who gave the equations in the form used to-day^^^.

If the plate is thin and subjected to arbitrary temperature 
distributions over its lateral surfaces then the differential equation 
governing the distribution and magnitude of the stresses in the plate 
is given by:-

7^0 = - E a 7^(x,y)   1.1

where 0 is the Airy stress function such:-

= â  ' V  '  ..........

At this point it is convenient to divide the published 
literature on the subject of thermal stresses into two categories:-

(a) Those giving a mathematically rigorous solution of the 
biharmonic equation for a particular temperature distribution.

(b) Those using approximate methods to arrive at a solution 
accurate enough for engineering purposes.



(a) Rigorous solutions of the biharmonic equation

A solution of the biharmonic equation has been obtained by 
Timoshenko and Goodier^^^ for the case of a long thin rectangular plate 
subjected to a temperature distribution constant in the longitudinal 
direction but varying in the transverse direction. The longitudinal 
stress, cr̂ , set up in the plate was deduced as follows. Each element 
in the plate was subjected to a compressive stress of magnitude -EoT 
in order to suppress its free thermal expansion. This procedure 
resulted in compressions of magnitude -EcÆ acting, in this case, on 
the transverse ends of the plate. If tensions of magnitude +EoT are 
applied to the transversed edges in order that there is no resultant 
force acting at the edges, then the thermal stresses in the plate are 
obtained by superposing the effect of these boundary tensile stresses 
at points removed from the ends, on the original compressive stress, 
-EaT at that point.

If the temperature is not symmetrical about the longitudinal
axis (x) then the tensile forces applied at the ends will not only
have a resultant force, t j EaTdy, but a resultant couple t 3 EoTydy

—b —b
for the coordinate system shown in figure 23. Therefore, the 
longitudinal stress at a point remote from the ends is given by

• ‘'x =   ■'•2

where is the compressive stress, -EaT; ô ' is the uniform tensile



(a) Cb)

Figiire 1(a) and 1(b): Temperature distributions assumed
in Reference 5.



,, H 4b
stress across the section given by cf = —  J EoTdy due to the

^ Zb _b
resultant tensile forces on the ends, and O’*** is the bending stress 

b
O*** = ^  J EoTydy due to the resultant moment on the ends.

Den Hartog^^^ considered the case of a plate of width *a* 
and infinitely long subjected to a sinusoidal temperature distribution

TIValong its longitudinal edges of the form:- T = sin —  and 
constant on lines across the width of the plate. This type of 
temperature distribution is shown in figure 1a, where 1 is one half 
wave length.

For this particular temperature distribution, the biharmonic 
equation can be written eis:-

7-^0 = -EoT^^ sin%%   1.3

where "u = */l.

Den Hartog, using classical methods, shows that a solution 
to this equation is any biharmonic function plus a particular integral. 
In this case, the particular integral satisfying equation 1.3 is;-

^ SoTq sin %   ̂ ^
^particular “ ---- ...... .........

and that the complementary function could be assumed as:-

^compl. = f(y) .........



If the complementary function is substituted in equation 1.3, 
the biharmonic equation is reduced to an ordinary linear differential 
equation:-

III* 2 >• Af - 2w^f +-LTf = 0 ......... 1.5

where the primes indicate differentiation of the function with respect 
to y.

The complete solution of this equation which includes four 
arbitrary constants of integration, can be expressed as;-

0 = siniox ĵ (Ĉ y + Cj^)e^ + (C^ + C^)e"^ - ...... 1.6

The constants can be found from the boundary conditions at

y = - where = 0^ = 0.

Den Hartog also solved the case of a triangular temperature 
distribution along the longitudinal edges, as shown in figure 1(b), 
by expanding the temperature wave in a Fourier Series of the form:-

T = %  ......... 1.7
1x2 1,3,5 1

In a paper published by Elosner and Forray'^ an Investigation 
was made into the thermal stresses set up in an aircraft wing due to 
kinetic heating. They assumed that the temperature over the surface 
of the wings varied in both the chordwise and spanwise directions, as 
shown in figure 3, and that the wings could be approximated to flat cover
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plates supported at the boundaries by flexible webs which offer no 
rotational resistance but remain straight with no transverse deflection#

If the plate is subjected to a temperature distribution 
represented by the Fourier Series,

_co _oo _ sTix tîiyT = T + T + S  S T . COS . cos   1*8
O 8=0 t=0 ® °

where T = difference between average temperature of the supporting 
structure and room temperature and is the difference between 
temperature at the edge of the plate and the average temperature of the 
supports, then a rigorous solution of the biharmonic equation can be 
obtained by taking the stress function in the form:-

» ' i" *'^2 *30 “ • * J ,  ^

♦ 2” s” t . cos cos ^    1.98=1 t=1 a b

where

t = ; t + = — SÏ ; t + = --- ---------
SO o 0 % 3 (4r) +

It can be shown that equation 1*9 satisfies the biharmonic 
equation and the boundary conditions when all the edges remain straight 
and the average strain along the edge equals the strain in the support.
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— 1i.e. G = G = —  3 e dx . . .. .. 1.10
X av 2a o ^

Hence, the stresses in the plate are given by:-

M  * *y “ ^  * Txy "   1.11* ay'̂  ^ ax'̂  ^  axey

for the coordinate system shown in figure 2.

The constants K| and are found from the conditions that
the strain in the supports equals the average strain in the plate along
the edges. Thus the resultant force on any cross-section parallel to
the X and y axes respectively, is:-

2b 2a
t S o^dy = 2E.|bt and t S <&dx = .. .... 1.12
0 o

These forces must correspond to the forces in the supports.

i.e. = -K.jbt and P^ = - K^at    1.13

Therefore the average strains in the supports are;

_ _
e = - .... + a T
* i j

1.14
K a* _ _e = - —  + a T

7 V

where the bar denotes support conditions and, in particular, and Ay 

are the cross-sectional area of the webs.



9

Along the edges, 7 = 0, y = 2b, the average strain can be 
found from the condition that

*2» = i  r  ...........

and along the edges x = 0, x = 2a

1 2b
w  '  »  i ' A  ...........

Making use of the stress-strain relationships and equating 
strains in the webs to the average strains along the edges of the plate, 
then the equations for end are:-

E a ( T + + E(a - a) T
It, =    ^ -------------  C v * t )  ......... 1.17

E a ( + T_) + E(a - a) T
2

-  Ï X 7

Kg =    22------------ . (V +K^)   1.17
- K K

where K_ = 1 + ̂  j K = 1 + = #^ fj(E y AyK

After K.J and have been evaluated the stresses in the plate 
can be found by using equations 1.9 and 1.11.

In this particular case the method is primarily based on the
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solution of a two-dimensional stress problem in which the loads can be 
expressed in the form of a Fourier Series. This method for the 
solution of the biharmonic equation is discussed in detail by Timoshenko 
and Goodier^^^).

(b) Approximate solutions of the biheirmonic equation

In many practical problems of thermo elasticity it is difficult 
or impossible to obtain a rigorous solution of the biharmonic equation. 
Therefore approximate methods have been developed accurate enough for

(7)engineering purposes. One such method used by Mendels on and Hirschberg 
makes use of an approximate polynomial form for the stress function in 
order to reduce the biharmonic equation to an ordinary differential 
equation with constant coefficients. The method used is essentially 
a ‘collocation procedure* applied to the biharmonic equation.

Reference (7) is of interest since it gives numerical examples 
of the stresses set up in flat rectangular plates due to spanwise and 
chordwise temperature distributions over the lateral surfaces of the 
plate.

In this approximate method the stress function is assumed to 
have the form

0 = f  P.(y) 0.(x) ......... 1.18
j=l  ̂ ^

in which Pj(y) is a polynomial in y only, associated with the station



-1

Figure Li Coordinate system used in Reference 7, and the 
stations where the differential equation 

is satisfied.
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and satisfying the conditions:-

Pj(7j) = 1 I Pj(yi) = 0 ,  j #  i.............  1.19

At the edges of the plate, y = -1, shown in figure 4 where cy = = 0,

P(.) (-1) = 0 and (Î1) = 0   1.20

must be satisfied to ensure that C = and t = - ■ ■  ̂ holds for
y dx^ ^  8zQy

any 0j(x)* Polynomials for P^^j satisfying conditions expressed in 
equations 1.19 and 1.20 for even functions in y (i.e. symmetry about 
y = 0) can be obtained and are of the form:-

      1.21

and for odd functions of y (i.e. anti-symmetry about y = O) the 
polynomials are of the form:-

 :    1.22

TL fr/ -  ' / I



t
s
!8

Chordwlse dlatanre measured frnn renter]Ine, 
y, aemlchords

Figure 3; Comparison of diinensionless stress for several
methods of solution. Chordwise stress 0̂ .
plotted at free end, x = o; spanwise stress
0 and T plotted at i- chord from free end,X xy 2 1
X = plate thickness constant; T = T^(y - j).
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whereJT indicates the product for all values of i except i = j.

Substituting equation 1.21 or 1.22 in the biharmonic equation 
leads to a set of simultaneous differential equations:-

......... 1.23

Mendels on and Hirschberg have evaluated the thermal stresses
in a semi-infinite thin rectangular plate subjected to a symmetrical

2 1temperature distribution T = T^(y - j) for the coordinate system shown 
in figure 4* This particular temperature distribution has a zero mean 
and first moment - about the x-axis.

The stresses remote from the end^^^ are:-

= EaT^(l-y^) j = 0 j = 0   1.24

At points near the free end (x = O) the stress distribution 
is modified by the condition that the edgê  x = remains stress free.

The stresses near the free end can be obtained if the stress 
function is assumed to be:-

0 = ....... 1.25

i.e. a two station solution.

1 3The stations were chosen at the points y.j = ̂  and y^ = ̂



1
-------  1

panw ,me fltreai "4

"T ■■

/
t

/ !
/

t

k Choi dvlee fitr !6fl

/

/

L

L

1

Dlfltftnce from free edge, x, senlchords

Figure 6; Comparison at mid-chord for two and three station
solutions. Stresses for parabolic temperature

2 1distribution, T = T^(y - ̂ ).
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and the polynomials associated with these points are;-

- - > v  - & )
( R - & )

'i

1.26

1The values of and and their derivations, at y and

1 3
1̂ = 4 ^2 = 4

= 1 P̂  = 0

P” = -5.564 P" = 8.089

p” ”  = 88.75 P "̂" = -320.8

Pa = 0 ^2 = 1

P" = 8.571 P” = -22.78

Pg" = -282.1 Pg" = 1599

1.27

Substituting these values into equation 1.23 two linear



- -4-

:}

i

Figure 7; Spanv;ise stress, two station solution,
plate subject to parabolic temperature 
distribution, T = Tg(y^ - j).
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simultaneous differential equations are obtained:-

0 ” "  -  11.120^" + 88.750  ̂ + 17.1402 “ 282.10g = -  2EaT^

1 6 . -  320.80^ + 0 g "  - 45.5502 + 15990g = - 2E oT^

  1.28

The particular integrals of this set of equations are:-

0^ = - 0.07324EaT^ j 0 _  = 0.01595 E a ....  1.29

and the complementary function is obtained by the usual exponential 
substitution. Thus the complete solution is:-

00
0. = S A. e - 0.07324 E oT
 ̂ k=̂ 1 '

  1.30

0s = 2 B,e - 0.01595 E a T
^ k=1 * °

where X. are the roots of the determinental equation and are equal to 

= - 2.120 + j 1.117 X. = - 5.682 + j 2.681

— — X.| — — X^
Xg = X5 Xg = ^

the bar signifying complex conjugate quantities. is given in terms



Distance from 
_____  free edge.

semichords

1.0
Chordwlse distance measured from centerline, y, 

semichorda

Figure 8; Shear stress, T^; two station solution, plate 
subjected to parabolic temperature distribution,

Î = - 5).
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of as follows

B
5  ̂ -  11.13 + 88.75

jj ~ ” 2
17.14 Xj£ -  282.1

\    1-32

The Values of the A^*s can be found from the boundary 
conditions

0 at % = 0,

which implies:

0-,(O) = 0.j(O) = 0 (̂0) = 0^(0) = 0   1.33

The conditions at the end of a finite plate of length 2a are:-

'x = °

which again implies that:

0̂ (2a) = 0.J(2a) = 0^^^^ ~ ^à^2a) = 0   1.34

From these conditions the eight values of can be found.

If the plate is infinitely long in the *x* direction then A^, 
A^, Ay and Ag must vanish in order that the stresses remain finite.

Thus the values of the A^'s are:- 

A., = (0.0365 -  j  0.07114) EaT^ ; A  ̂ = i ,

.................. 1.35
Â  = (0.0003671 + j 0.0001926) EaT^ ; A^ =



Distance from 
free edge,

X ,
aemlchords

0.5

I
-.2

I -.3

.4

Chordwlse distance measured from centerline, y,
semichords

Figure 9: Chordwise stress, 0^; two station solution, plate
subjected to parabolic temperature distribution,



16

After adding all the complex conjugates the imaginary parts 
drop out. The final solution is:-

0^ = 1^0.03625 cos 1.117% + 0.07114 sin 1.117x1 E aT^

+ 2er5'6G2% fj).008941 cos 2.681% - 0.0001926 sin 2.681x1 EoT^

- 0.01595 EoT^

02 = [o.008941 cos 1.117% + 0.01294 sin 1.117^ EaT^

+ 2e"5'682% r 0.0009662 cos 2.681% + 0.0001790 sin 2.681xjEaT^

- 0.01595 E
......... 1.36

and the stresses given by:-

». ' fi'fi Î »r = ¥ i " *  V 2 • V  = - ' M

......... 1.37

The authors show that at x =

0̂ = - 0.07324 EaT̂  j 0̂  = - 0.01595EaT^

and 0^ = 0" = 0^ = 0̂ ' = 0, giving d = T = 0

1 2and 0^ = E aT^ ( J “ 7 ), which is identical to the egression for
the longitudinal stresses in a plate at a point far removed from the



f

Figure 10: Coordinate system and edge loadings (Ref. 8).
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ends using methods of reference (4-)* This distribution of stresses in
a flat plate, subject to a parabolic distribution T = T^(y - j) over
its lateral surfaces is shown in figures 5, 6, 7, 8 and 9* These 
figures have been reproduced from reference (7).

In a paper published on the end problem of rectangular strips 
Horvey points out that variational methods developed by Timoshenko and 
others in the 1920*s give only average stress values. Regions of rapid 
stress variations and stress concentrations cannot, because of the 
averaging properties of the method, be adequately dealt with.

In his paper Horvay shows that the problem of a flat plate 
subjected to temperature distributions, varying in the y-direction but 
constant in the x-direction, can be reduced to the problem of the 
stresses set up in an infinite plate given by the equation

 ̂ 3 ^= - E a T  + - J EaT 4y + ^y j EaTydy .........  1.38
—1 —1

together with the stresses, cL. , O’ and t  set up by the boundary
^  ^1 ^1

stresses that must be applied to ensure the transverse edge is stress free. 
Thus the problem is reduced to a long plate, as shown in figure 10, 
loaded on the transverse edge by stresses - Oĵ  . A solution for the

CO
stresses in the plate can be obtained using the method of self-equilibrating 
polynomials.

Horvay eissûmes that the stress function 0, satisfying the 
biharmonic equation 7^0 = 0, can be expressed as:-
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and that the complementary energy of a heated plate may be written as:

,♦ = -L /  j' t o ) ' 2.A . A . 2 0 , ,)(AL)'’
o -1 LOy 9% ô x S y  ôzQy

+ 2EaT + ̂ ) 1  dx.dy   1.402 2*

Substituting equation 1.39 in 1*40, n - 2 equations are obtained which 
after minimising by means of the calculus of variation yields a 
differential equation for the term of 0 :-

Sk "  ■ % k (^k)^ 4y + gk ( f k ' f  4 r = 0   1.41
—1 —1

The stresses due to the boundary loadings are therefore 
given by:-

“i, \  : V ,

At the free edge x = 0, g^ is made equal to unity. The stress function 
at the edge (bar above quantity denotes edge value for x = O) becomes

? = Sg 4k(y) Gk “ .........
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The 7 functions, f., are chosen as polynomials which constitute
an orthonormal and orthogonal set:-

1 2 1
I.e. J (fĵ ) dy = 1 and J ^k‘̂ k+1*^ ” ®

—1 —1

and at the boundaries, y = -1 , satisfy the conditions

f%( - 1) = 0 and f^ ( -1 ) = 0    1.44

Also, the even polynomials have the property that

J fA 'dy = 0   1.45
-1 *

which gives zero stress resultant along the edge x = 0 and zero resultant 
moment since f^ is an even function in y. The odd polynomials have the 
property that

1 „
J y f 1, <3y = 0 ......... 1.46
-1 *

which gives zero resultant moment and the odd properties of the function 
ensures a zero stress resultant.

Horvay has established that this set of self-equilibrating 
functions satisfies the differential equation

(1 -y^) f " "  - 107(1- 7^)f"' + (X-24)(l-7^)f" + (12-4\)yf' - 2\f = 0

where X = (n + 2)(n + 3) ......... 1.47
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The properties of f^ have been investigated and tables can be 
found in reference 9»

The expansion coefficients, G^, . .. C^, can be determined
by considering the self-equilibrating boundary stress system which can 
be equated after integrating twice, to the stress function 0(y) = 
at the free end. Thus:

y n .
(̂even) = ^ V-1 o (even)

-  * ̂ 4^4 ' ' V n  .........

and

* y fj
^(odd) = V  = piz+ . . . .0 - 1  (odd)

= •••• ®u-l^n-1

The same result can be obtained by integrating the boundary 
stresses on the free end and satisfying the boundary conditions, ^ = 0* = O, 
at y = -1. The stress function can then be resolved into its odd and 
even components to give the same results as above. Thus the expansion 
coefficients, .... C^, can be determined from the condition that

®n-1 = ^odd V i  ^  ......
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Figure 11; Plate dimensions, coordinate system and 
*tent-like* temperature distrubution, 

analysed in Reference 10.
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This can easily be proved by multiplying equation 1.^3 on both sides by 
and then integrating between limits:-

1'*' ^even^n*^ =   ’'•50

The condition of orthogonality ensures that the cross product terms 
C^ ^ ^ d y  = 0 and the condition of orthonormality ensures that

I ^   1.60
! *“1

Thus

Likewise for the odd components.

These expansion coefficients have been evaluated with respect 
to <y f^> and tabulated for k, 0 to 11 and n, 2 to 9 In Table IB of 
reference 9* It should be noted that the coefficients are zero for 
k + n = odd number. Reference 9 also gives the tabulated values of 
f^(y) and g^(z) and their derivatives.

According to Horvay these tables permit rapid solutions in 
numerical form to be found for flat plates with self-equilibrating end 
loads acting in the plane of the plate providing the end load can be 
expressed in polynomial form up to and including the ninth power.

Another method of approach to the solution of the biharmonic 
equation, the Kantorovitch method developed by Heldenfels and Roberts
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Figure 12; Longitudinal direct stresses, induced by-
temperature distribution of figure 11.
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assumes that the stress function can be expressed as 0 = f.g,, where f 
is a function of y only and g is a function of x only. An approximate 
solution of the biharmonic equation can be obtained by selecting a 
function f and then using the principle of minimum complementary energy 
to obtain the best approximation for the function g.

Heldenfels and R o b e r t s h a v e  used this method to determine 
the thermal stresses set up in flat rectangular plates subject to 
'tent like’ temperature distributions over their lateral surfaces. Using 
this method, the stress function is obtained in a fairly simple functional 
form. This is useful when the buckling of flat plates by the induced 
compressive components of the thermal stresses is to be investigated.
As this is the principal method used for the determination of the stress 
function, detailed analyses and calculations are given in Part II and in 
Appendices 1, 2 and 3 of the thesis.

The results of the above approximate theoretical analysis
have been verified experimentsully by Heldenfels and Roberts using
Baldwin-Lima AB7-ti-” length bakelite-bonded strain gauges attached to
a 3* X 2* X i"** aluminium alloy plate. Reference 10 states that agreement

^ 2between measured and computated stresses are within - 500 lb./in. and 
that good agreement exists between the experimental and computated 
longitudinal stress, 0 .̂ Only fair agreement was found between the 
computated and experimental transverse and shear stresses.

Reference 10 indicates that the error in the later cases can
cipp'̂OKi 1" lonf

be attributed to eewaAs in the analysis rather than errors of measurement.
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Figure 13; Longitudinal distribution of shear stress, T.
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Figure 14.: Longitudinal distribution of stress,
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Theoretical and e^erimental results are shown graphically in figures 12, 

13 and 14.

(c) Critical discussion

It has been shown that only In particular cases can an ê cact 
solution of the biharmonic equation be obtained. A typical example Is 
the case of a semi-infInlte plate treated by Timoshenko and Goodier^^^ 
in which the stresses In a flat rectangular plate are given at points 
far removed from the free ends.

Approximate methods must be used if the value of the stresses 
near the stress free transverse edges are required. Reference 7, using 
the collocation method, shows graphically the variation of stresses in a

g 1plate subjected to a parabolic temperature distribution T = T^(y - 
Using only one station In the collocation method, the stresses are not 
grossly in error compared with the two and three station solution.

A comparison is also made with solutions in which the stress 
function Is expressed in terms of an Infinite series. If two terms are 
taken. Reference 7 states that the boundary conditions are satisfied 
only In an average manner. Nevertheless the agreement between the two 
methods Is remarkably good. Also shown in figure 5 Is the solution of 
the biharmonic equation using energy methods. Agreement with the other 
two methods is generally poor, especially at points near the transverse 
ends. This bears out the remarks of Horvay in reference 8 in which he 
states that energy methods give only average values; the values of
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stresses in regions of rapid stress variations are usually underestimated.

Horvay *s method for the solution of the biharmonic equation is
similar to the method developed for the particular case of thermal
stresses in flat plates by Heldenfels and Roberts. The difference lies
in the choice of f(y) part of the stress function. Heldenfels and
Roberts use for their f(y) function, a function proportional to the
stress function for an infinite plate, whereas Horvay takes the f(y)
function in the form of a series of self-equilibrating polynomials.

(12)Singer' points out that in the method of Horvay, the variation of 
complementary energy is carried out with respect n - 2 parameters.
This method should therefore give a more accurate result than the method 
of Heldenfels and Roberts in which there is only one variational equation.

Singer says that this statement must be qualified ly two 
remarks. Firstly, the calculation of the complementary energy implies 
orthogonality of the derivatives of the function f(y), i.e. f*(y) and 
f “ (y) . However, only the functions f(y) are orthogonal. Horvay, 
however, assumes that the coupling terms, j f/ f/^dy and f^’f/.* dyk k+2^ k k+2
are negligible for engineering purposes.

Secondly, Singer points out that Horvay *s solution is not 
valid for short plates since the effect of selT-equilibrating loads on 
the far end become noticeable when the penetration length is of the same 
order as the half-length of the plate. Generally this solution is in 
error for plates of aspect ratio less than 2.

Using both the Horvay and the Heldenfels and Roberts method.
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Figure 15: Spam/ise distribution of at y = 0*8 for a plate 
of constant thickness, and temperature distribu­
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2)Singer^  ̂has evaluated the stresses in a flat rectangular plate 
subjected to a * tent-like* t©nperature distribution:-

T = (1 - y) valid for 0 ^ y ^ 1
T = (1 + y) valid for -1 ^ y ^ 0

A comparison of the stresses is shown graphically in figure 15. It is 
presumed that Singer expressed the end loads (i.e. -cr^ ) in a polynomial

00

form by making use of Legendre Polynomial Expansion to ensure a 
continuous function over the range, y = -1 . This overcomes the 
difficulty of the discontinuity in the edges stresses at y = 0 resulting 
from the * tent-like* toaperature distribution.

The conclusion that can be drawn from the methods reviewed is 
that the method developed by Heldenfels and Roberts and the collocation 
method are suitable if the stresses are required in a functional form.
On the other hand, if the numerical stress distribution is required 
rapidly, it appears that the method of Horvay shows up to the best 
advantage, providing the aspect ratio of the plate is greater than 2.

The collocation method becomes complicated if more than a 
two station solution is used. Therefore, the method of Heldenfels and 
Roberts which gives a solution in simple functional form has much to 
commend. It is for this reason that this method has been used in the 
theoretical analysis (Part II) where applicable.
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2. Thermal Buckling of Flat Rectangular Plates

One of the first papers to investigate the thermal buckling
(13)of flat plates was published in 1952' by Gossard, Seide and Roberts.

They considered a flat rectangular plate simply supported 
along its edges and subjected to a *t®it-like* temperature distribution 
over its lateral surfaces. Although this type of temperature 
distribution is rarely encountered in practice (usually of exponential 
form), the analysis is applicable to any type of temperature loading.

As the temperature differential between t^e cooled longitudinal 
edges and longitudinal line source of heat increases, a value will be 
reached when the plate will buckle out of its own plane due to the 
compressive component of the induced thermal stresses.

If small deflection theory is used, and the stress 
distribution does not change at the onset buckling, the critical 
temperature can be found by methods appropriate to the stability of 
flat plates with varying internal stresses.

The deflection of the plate is governed by the differential 
equation:-

...........

and the internal stresses given by the stress function using the method
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Figure 17; Coordinate system and sissumed buckle pattern 
used in reference 13.
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of reference 10 is:-

+ cosh 2 cos +    1.62

where 3^,3^ and R^^R^ are defined in reference 13 and Appendix 4*

Using the principle of minimum potential energy, in conjunction 
with the Rayleigh-Ritz method, the critical buckling temperature can be 
found at the point of instability of the plate. To obtain a solution, 
reference 13 assumes à symmetrical buckle pattern about the centre of 
the plate

w = 2 2 a ^  cos cos S2E      1,63
m=1,3,5 n=1,3,5 2b

and that the potential energy of the plate is:-

V = § f* 
-a

S - 2(1 - V) ^  - ( | ~ )  1 } <ix.dy
-b [pxT J

1.64
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Since the variation of potential energy is stationary at the 
onset of buckling then:-

—  = 0 (for HI = 1,3,5 J n = 1,3,5)   1.65

This procedure leads to a set of linear homogeneous 
simultaneous equations of the form:-

K a_ + Z 2 K___ a__ = 0 .... 1.66
m=1,3,5 n=1,3,5

' IT Ü

P = 1,3,5 ; q = 1,3,5 

2 b .  2 aHzwhere Kpq

-  P

' [<: l>]
r® ®lP|np * ®2 * PfflpM

* ’ [” “. , ‘“l'l.p '°2^.p)'*“<p<P3“p. ' V i»*]

and to are defined in Appendix 4#

Gossard, Seide and Roberts found for a plate of aspect 
ratio 1.57, the lowest value of the critical temperature parameter to be:
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Figure 18; Variation of thermal buckling coefficient, K^,
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b^EoT t
Â  ' .........

Elosner and Forray'^' bave investigated the buckling of a 
flat rectangular plate simply supported by webs at the edges which 
remain straight and do not deflect j laterally and offer no rotational 
support • In particular, they investigated the case of a plate with 
parabolic variation of temperature over the plate of the form:-

’ ...........
T = T + T o

where is the difference of temperature between the centre and edge 
ôf the plate, and is the difference of temperature between the webs 
and the edge of the plate. A further simplification was introduced 
by making the cross-sectional area of the webs large compared with the 
cross-sectional area of the plate.

Under the action of the induced compressive component of the 
thermal stresses, the plate, at some value of critical temperature, will 
buckle out of its plane. Using methods similar to those used by 
reference 13, Klosner and Forray have evaluated the critical buckling 
temperature for the above problem, using the stress function in a form 
defined by equation 1.9. The results of their analysis are shown 
graphically in figure 18.

It can be seen that if is large compared to T^, then the
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effect of the self-equilibrating stresses in the plate are negligible; 
the plate acts as if it were uniformly heated but restrained at the 
boundaries from expanding freely. The results agree with the method 
used in reference 15. When the ratio of T̂ y/Ï̂  is less than 2, then 
the effect of the self-equilibrating stresses in the plate becomes 
dominant and the analysis of reference 15 is no longer applicable.
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3. Post-Buckling Analysis

It is well known that a plate after buckling will in many 
cases carry, without failure, loads several times greater than that 
to initiate buckling. In an analogous manner, a plate will sustain 
a temperature differential greater than that to initiate thermal 
buckling before failure occurs.

If the lateral deflection of a plate becomes large, i.e.
becomes comparable with the thickness, then the assumption that the
mid-plane remains unstressed, no longer holds. In this case the 

/ /Von Karmen large deflection plate equations must be used to evaluate 
the stresses and deflections. They are of the form:-

2 2 2 "1 w V  Ô Ü 8 u
ÿ  - g ' ^ j

= -EaV^T + E - ^ . ^ 1    1.69L  ôxSy

1.70

where the terms in the square brackets in equation 1.69 arise from the 
stretching of the mid-plane.

Equations 1.69 and 1.70 must therefore be solved simultaneously 
to obtain the stresses and deflections. Reference 13 has obtained an 
approximate solution of these equations using the Galerkin^^^^ method.
A simplification was introduced to reduce the amount of numerical work 
to reasonable proportions by assuming that the shape of the large
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Figure 19: Comparison of calculated and experimental
plate centre deflections.
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deflections were of similar form as that predicted by the small deflection 
theory.

After a large amount of involved numerical work, reference 13 
obtained the variation of plate centre deflection with the plate 
temperature differential* Taking initial plate deflections into 
account reference 13 obtained the following equation:-

EaTb^t 9
 T-—  = 5.39 (1 - - ^ )  + 1.12 (1 - y — )   1.71

from which the growth of centre deflection with increase in temperature 
differential for a plate of aspect ratio, 1*566, can be obtained.

Figure 19 reproduced from reference 13 shows the experimental 
and theoretical plate centre deflections, plotted as a
function of temperature differential, T^* The values of a, v, t, b 
and used in reference 13 to plot the theoretical curve were:-

a = 0.127 X 10"^/°F., v = 0.33 
t = 0.25 in., b = 11*5 in*, = 0.045 in.

(18)Gatewood has suggested that it may not be necessary to 
solve the large deflection equations for the themail buckling and 
deflection problem. In reference 18, equation 1*71 has been 
re-arranged into the form:-
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[ r r î r - ] '  •%  = ~  = 7 “  M  — — I -  °i .........  1-72ocr cr L I -  ®o/ecr

%icwhere D. = — —  
2.32t

Except for a different value of D^, reference 18 shows that 
this equation is identical to an equation derived in this reference^ 
based on mid-plane thermal strains. The method of reference 18 using 

j the mid-plane strain approach results in the value of as:-
I
i D. = — ^    1.73

^ 2.42t
I

Thus the determination of the growth of plate centre deflection with
increasing temperature differential requires only the evaluation of
the critical temperature and the value of ®o/®cr equation 1.72

I for particular values of T^/p . Using this result in the following
' ocr

equation:-

; w = — — ------- ,   1.74

I

j
the value of the plate centre deflection can be obtained for a plate

I with an initial centre deflection J for values of temperature differential
p to the critical buckling temperature, °
I Gatewood has suggested that the simplest method of solution
I is to graph equation 1.72 with as parameter. This graph, reproduced

from reference 18, is shown in figure 20. For particular values of
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and D.y the value of e can be read directly off this grandi, andi Of cr
hence the plate centre deflection can be found.

The preceding pages have outlined briefly the method used in 
the thermal stress and buckling problems. At this point is is of 
interest to outline some of the cases that have not been fully 
investigated hitherto.

It appears that little work has beau carried out on the 
influence of the aspect ratio on the critical buckling temperature of 
plates, particularly short plates. For plates of this size, the 
condition that the edges remain stress-free necessitates a modification 
of the longitudinal direct stress which introduces transverse and shear 
stresses. Undoubtedly, this will affect the critical temperature 
initiating instability in the plate and might have some practical 
significance.

To complete the buckling investigation it will be of interest 
to show the effects of the degree of asymmetry of the temperature 
distributions on the value of critical temperature. Finally the method 
proposed by Gatewood for the determination of the growth of plate centre 
deflection can be verified experimentally. Providing that this simple 
method gives results in agreement with the experimental values, and 
values obtained from a solution of the large deflection equations, then 
its use is justified for practical calculations.
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PART II. THEORETICAL ANALYSES

In this part of the thesis the effect of plate aspect ratio 
and the degree of asymmetry of the temperature distributions on the 
critical buckling temperature of plates is investigated.

The evaluation of the critical temperature is carried out 
in steps corresponding to the stages through which a plate passes as 
the temperature differential increases.

They are:

(1) Distribution of induced thermal stresses.
(2) Thermal buckling of flat rectangular plates.

The first step (1) is concerned with the distribution of the 
thermal stresses due to a steady state * tent-like* temperature 
distribution before the onset of buckling.

The Kantorovitch method developed by Heldenf els and 
R o b e r t s h a s  been used to determine the thermal stresses and has 
been extended to deal with asymmetrical * tent-like* temperature 
distributions. Since the Rayleigh-Ritz m e t h o d ^ i s  frequently used 
in elastic problems it was thought worthwhile to Investigate the use 
of this method for the determination of the thermal stresses induced 
in a plate as a result of a * tent-like* temperature distribution. The 
fact that the results obtained agree with results of the previous 
analysis, as will be shown later, provides some indication that both
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methods give satisfactory results.

The second step (2), the evaluation of the critical temperature, 
has been carried out using an original application of the Galerkin method 
in which both forms for the distribution of thermal stresses have been used.

The final part of the theoretical analyses is concerned with 
the use of an electronic digital computer (English Electric • Deuce*) to 
carry out the numerical analyses of some of the cases investigated.
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Figure 22; Coordinate system for asymmetrical heating of
the plate.
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1 • Theimal Stress Analysis

(a) Kantorovitch method - single product solution

Consider a flat rectangular plate heated along a longitudinal 
line and cooled along its longitudinal edges, as shown in figures 21 
and 22.

In the analysis for the induced thermal stresses the following 
assumptions are made:-

(1) The plate is free to e^and in its own plane.
(2) There are no external forces acting on the plate.
(3) The plate is thin and may be considered to be in a state

of plane stress.
(4) The material properties of the plate are constant in the 

temperature range of interest.
(5) The stresses are within the elastic range of the 

plate material.
(6) The plate does not buckle out of its original plane.

Using the Airy stress function, the stresses in the plate can 
be expressed as:-

^  J ^  and T = -   2.1
^ 0x ^  dxdy



Figure 23; Temperature distributions, symmetrical cases
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Figure 2L\ Temperature distributions - asymmetrical cases.
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and are governed by the differential equation:-

V ^ 0  = -Ba7^T(x.y)   2.2

If a * tent-like* temperature distribution is chosen (figures 
23 and 24) > then equation 2.2 can be simplified toI

= - E a  ^    2.3
dy^

The following analysis to determine an approximate solution 
of the biharmonic equation is similar to the method developed by 
Heldenf els and Roberts An approximate solution of equation 2.3
is based on the assumption that the stress function 0 can be expressed 
in the single product form:-

0 = f(y).g(x)   2.4

where f is a function of y only and g is a function of x only. The 
stresses in the plate, using the Airy stress function, are:-

= gf" ; cy = g"f and = -g’f*   2.5

where the primes indicate differentiation with respect to the appropriate 
variable.

An approximate solution of the biharmonic equation can be 
found, as shown in the analysis, by selecting a functionf(y) and then 
using the principle of minimum complementGury energy to determine the
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best value for function g(x). The accuracy of the solution is 
necessarily dependent on the original choice for the function f(y).

(21 )The complementary energy of a heated plate can be written
as:-

u* = ^  S j f o ?  + o £ - 2 v  (TO + 2(1 + v)t + 2Edl(o_ +0 ) dxdy 
22 _a -bL ^ ^  ^ jr J

2.6

If the temperature distribution across the surfaces of the 
plate is taken as T = I.Y, where % is a function of x only and Y is a 
function of y only, then substituting equations 2.5 and 2.7 in 
equation 2.6, the complementary energy becomes:

n* = J + Agg"̂  - 2v Ajgg" + 2(1 + v) Â g'̂

+ 22a (Â Xg + Agig") } dr   2.8

where

A. = S (f"fdy A. = /(f’)̂ dy-b 4 _b

Ay = S f̂ djr A, = ?  If"dy-b ® -b
b r nb b

A^ = "dy =1 ff I -A^ = -A^ Ag = J dy

......... 2.9
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The complementary energy can now be minimised by means of the 
calculus of variations. This leads to the foUoidjag linear differential 
equation for the function g for the particular case of X = constant.
(Full details are given in Appendix 1).

Agg*"’ - 2A,g"+A^g = - E a A g I    2.10

In the cases considered, the temperature distributions across 
the plate vary in the transverse direction but are constant in the 
longitudinal direction (figures 23 and 24). This can be represented 
by the equation

T = T^T(y)   2.11

A suitable choice for the function f is the stress function 
for an infinite plate^^^.

i.e. f " - 0„ where
00

1 b q y b
a = -EaT + —  S EaTdy S EaTy.dy    2.12
CO 2b b^ _b

Integrating equation 2.12 twice yields 

f = j f 0 ^  dy.dy +   2.13

The constants of integration can be determined from the boundary 
conditions at y = -b, where f = f ’ =0. Making use of these conditions.
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the constants of integration can be evaluated and also integrals 
represented hj k^ and

The complementary function, g ,̂ of equation 2.10 can be 
expressed as

go = 0̂  sinh rx sin sx + cosh rx cos sx

+ G.) cosh rx sin sx + C, sinh rx cos sx .. .... .. 2.14J 4

where - (r + js) and (r - js) are the roots of the auxiliary equation:-

- 2A,m^ + A, = 0   2.15

The particular integral of equation 2.10 is

E g Aa
gg - " . - 1  ••*.• 2.16P A,

since -EaA^ = A^, as shown in Appendix 2. Therefore, the complete 
solution of equation 2.10 is

e == S(: + Sp   2.17

i.e. g = 1 + sinh rx sin sx + cosh rx cos sx

+ 0. cosh rx sin sx + G, sinh rx cos sx  ̂ 4

where the constants 0^, 0^ and are constants to be determined
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from the boundary conditions at x = -a where g = g* =0. Using these 
conditions, the values of these constants are:-

Q = r sinh (ra) cos (sa) - s cosh (ra) sin (sa)
 ̂ r sin (sa) cos (sa) + s sinh (ra) cosh (ra)

r cosh (ra) sin (sa) + g sinh (ra) cos (sa) 
r sin (sa) cos (sa) + s sinh (ra) cosh (ra)

= 0   2.18

Thus the distribution of stresses in the plate is given by 
the following equations

0^ = 0^ {1 sinh(rx) sin(sx) + cosh(rx) cos(sx)}
00

0y = { 5 y 0 ^  dy.dy + S^y ♦ S^} (Cy sinh(rx) sin(sx)

+ Cg cosh(rx) cos(sx)}

T = - { 5 0^ dy + S^] {c^ sinh(rx) cos(sx) + Cg cosh(rx) sin(sx)}
00

2 2where = C^s C^r ; = C^r - C^s ; Cy = C.̂ (r -s ) - 2C^r.s. $

Cg = ac^rs + - s^)   2.19
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In the case of asymmetrical *tent-like* temperature distribu­
tions, as shown in figure 24, the tenperature can be expressed as:-

T = XÎ   2.20

where X = T^( constant) ; Ï = ^ c  for 0 < y < c

2b — yand Ï = — % for c < y < 2b.
2b - ®

At the point y = c, for the coordinate system shown in 
figure 24, a discontinuity occurs in the temperature function. This 
requires that the integrals A^, A^, A^ and A^ must in this case be 
evaluated over the two sets of limits, 0 to c and c to 2b respectively, 
and then added together to give the integral between the boundaries 
0 and 2b.

For the same reason the f (y) part of the stress function will, 
in general, have different forms in each domain. The derivation of 
the stress function for all the cases considered is given in Appendix 3*

To simplify the algebraic analysis, the stress function can
be evaluated for particular values of c = b, /4b, /2 and /4 which
corresponds to various degrees of asymmetry of the temperature 
distribution.

Figures 25 to 28 show the variation of the primary stress,
cr , for the above four cases considered in the investigation.

00



Zb

- 1-0

Figure 27; Primary stress distribution,
asymmetrical case, c = b/2.

Mb

2b

5

Figure 28; Primary stress distribution, cr̂
asymmetrical case, c = WU*
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Syimaetrical case, c = b

For 0 < y < b (Coordinate system shown in figure 21) 

b ^ o T  2 y 3 ,.
0 = — — —  {l - 3(g) + 2(g) sinh(rx) sin(sx)

+ cosh(rx) cos(sx)}   2.21

Asymmetrical case, c = /4b 

For 0 < y < ̂ /Ab

2 3
0 = b ^ a ï ^  {:|̂  (̂ ) - (̂ ) }{l + sinh(rx) sin(ax)

+ cosh(rx) cos(sx)}

For /4b < y < 2b

0 = = T ^  + I 0  _ g  (Z)^ + ̂  .

sinh(rx) sin(sx) + cosh(rx) cos(sx)}

2.22
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Asymmetrical case, o = /2 

For 0 < y < V 2

2 3
0 = b^EaT^ {| (̂ ) - ̂  (g) } {1 + siDb(rx) 8in(sx)

C, cosh(rx) cos(sx)}

For V 2 < y < 2b

slnh(rx) sin(sx) + cosh(rx) cos(sx)}

Asymmetrical case, c = 

For 0 < y < V a

0 = b^EaT^ (2) - II (̂ ) ] {1 + sirih(rx) sin(sx)

+ cosh(rx) cos(sx)}

For < y < 2b

sinh(rx) sin(sx) + cosh(rx) cos(sx)}

2.23

2.24
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(b) Rayleigh"Ritz method - polynomial form of solution

Another variational approach to the solution of the biharmonic 

equation governing the distribution of thermal stresses in a plate can 

be made using the classical Rayleigh-Ritz method in conjunction with 
the principle of minimum complementary energy. It will be shown that 
the results obtained agree with the results of the previous analysis. 
This provides some indication, though not a proof, that both methods 

give satisfactory results.

For a plate subjected to symmetrical temperature distributions 
about the longitudinal axis, the assumed form of the stress function 
satisfying these conditions can be written as;-

0 = E a T ^ ( x ^ - a ^ ) ^ y ^ - b ^ ) ^ Y , +    2.25

where y^, y^ and y^ are parameters to be determined.

It can be shown that the assumed form satisfies the boundary 

conditions of a plate free from external loads. These conditions are:-

O = = 0 at X = - aX 3ÇT

for the coordinate system shown in figure 21.

The Rayleigh-Ritz method applied to a plate subjected to a
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* tent-like * temperature distribution gives the stress function in a 
continuous form over the entire surface of the plate. Further, it is 
possible to take into account variations of temperature in both the 
longitudinal and transverse directions.

The condition for minimum complementary energy can be 
expressed as:- 

*
= 0, where n = 1,2,3 and 4    2.26

Applying this condition to equation 2.6, four simultaneous equations 
are obtained which determine the values of the parameters , ŷ , y^ 
and ŷ . The derivation of these equations is given in detail in 
Appendix 5. For the convenience of non-dimensional plotting of the 
stress distributions, and also for buckling calculations, equation 2.25 
can be expressed in the form:-

where and p^ are non-dimensional coefficients related to
y.j etc. by the following equations:-

EaToPg = EaT^p, = Y / a V

27

2.28
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The stresses in the plate are then:-

^7

• 3 o 4 5 « 3 - « 4 >  * 1 2 4 4 < f , - 2 P 2 - 2 P 3 * 4 f 4 >

4 2 -jL
♦ 2^ ( - 2p̂  + 4Pg+ P3 - 2P^) +30 ̂  g  (-2P3+ p )̂

+ 12^ ̂ (- 2p̂ + P2 +4P3- 2P̂ ) + 2 ^  (4Pi - 2Pg-2P3 + p̂ )

"  3 C ^  P 3  >  1 S ^  ( P ,  -  2 P 3 )  +  ^  ( - 2 P ^  +  P 3 )  J 
= A  = e o t / [ ^ 0 ^ ^ P ^  + 3 C ^ ^ ( P 2 - 2 P ^ ) + 3 0 ^ ^ ( - 2 P 2 + P ^ )

.  3C ^  P 2  - 12̂  ^  ( P 3 -  2P ^ )  -  12̂  ^  ( P l  -  2 P 2  -  2 P 3  +  4 P 4 )
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2 ̂  2 
+ 12 2% Zg (_2P̂  +4Pg+P3-2p^) +12 ( p̂  - 2pg)

a b &

y6 y4
+ 2̂  (-2P3 + P4) + 2 ^  (- 2P̂  + Pg +4P3- 2P )̂

2
2^2 - -rg- " 3  ' *'4'+ 2 - ^  (4P, - 2p,- 2p, + p,) +-% (-2p^ + PgH

T^  = ^  = - M  ̂  P4+ ^  ( P2- 2P4) + 1 ^ ( - 2 P 2 *  P4)

+ 24^  ( P3 - 2P^) + 16 ̂  ̂  (P̂  - 2P2- 2P3 + 4P̂ )

*  8  “  ( - 2 P i  + 4 P g  + P 3 -  2 P ^ )  ♦  1 2  ^  ( -  2 P 3  +  p ^ )

+ 8 ̂  (-2P^ + Pg +4P3- 2P^) + 4 ̂  (4 Pi - 2Pg- 2P3 + p^)j

2.29
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Figure 29: Comparison of the transverse distribution of
longitudinal stress (â ) at x = 0 for a plate 
subjected to a symmetrical 'tent-like* temperature 

distribution, plate aspect ratio 1•566.
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Figure 29 compares the distribution of the non-dimensional 
longitudinal stress obtained by the Rayleigh-Ritz and the Kantorovitch 
method developed by Heldenfels and Roberts.

For this comparison a plate of aspect ratio 1.567 subjected 
to a tent-like distribution

I = T (1 + ̂ ) for -b < y < 0
  2.30

T = T^(1 - ̂ ) for 0 < y < b

was chosen.

The particular value of the parameters etc., are in this
case:-

= 0.0708721 = 0.066080 

= -0.0207127 P^ = -0.0712483

The agreement between the value of stresses given by the two 
methods is close at all points except at the origin, x = 0, y = 0.

Since the Rayleigh-Ritz method is essentially an averaging 
process, the smoothing out of the distribution of longitudinal stress 
at the origin where a discontinuity occurs in the temperature function 
is hardly surprising.

Nevertheless, it will be shown in the analysis for the
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buckling of the plate, that this * rounding-off * in the distribution 
of stresses has no significance if the overall buckling of a plate 
is considered.
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2. Thermal Buckling Analysis

(a) Evaluation of the critical temperature using the single 
product form for the stress distributions

As the temperature differential T^ increases, a value will 
be reached in an idealized flat plate when the plate will buckle out 
of its own plane due to the compressive component of the induced 
thermal stresses.

Assuming that the plate deflections are small, which implies 
that the mid-plane does not stretch, and that the stress distribution 
does not change after the onset of buckling, then the critical 
buckling temperature can be found from the equation governing the 
stability of flat plates with varying internal stresses.

The relevant differential equation is:-

2.31

where the stresses tf , 0 and t  are given by the equations:X y xy

0^ = 9% (1 + sinh 2 ^2 a * ̂ 2 ^osh ^ cos R^ ̂  )
00

ffy = dy.dy + S^y +Sg) (D̂  sinh gig R^^ + DgCOshRj^ oosEg J)
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T ,  = (-So dy + &,) (D_ slnh E. — cos E_ 7 + D, cosh E, % sin E„ — ) xy x^ I 3 la 2 a 4 1 a 2 a

It should be noted that the constants, B^, D^, D^, D^, and R^,
defined in Appendix 4> are similar to those defined in equation 2.19*

The Galerkin m e t h o d ^ i s  convenient for determining the 
critical temperature differential providing that the assumed form of the 
deflection pattern satisfies the boundary conditions for simply supported 
edges in the cases considered, term by term.

For simply supported edges the boundary conditions are:-

w = 0, = 0 = + V at X = - a+ V ̂
ay^

a^w + V A
ay^ dx̂

2.32
U) = 0, M = 0 = + V at y = lb

It can be shown that the condition of minimum potential energy 
can be expressed as

SSS Qd.E) 6f Jdx.dy.dz =0   2.33

where D.E is the governing differential equation and 6f the small 
variation of a particular chosen function contained in the differential 
equation.

The minimum energy condition is therefore expressible directly 
from the governing differential equation and does not require the
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formulation of the energy expression itself.

Experimental results indicate that the buckle pattern may be 
taken as;-

(a) w = 2 2 a cos cos
m=1,3,5 n^,3,5 2» 2b

2.34

J:,., ^

The above forms apply to the symmetrical case only; and, in 
particular, form (a) covers the case of 1, 3 and 5 half waves and 
form (b) covers the case of 2, 4 and 6 half waves in the x direction.

In the asymmetrical case, a better approximation to the 
deflected form can be obtained by taking

(*) =: 2 a cos sin   2.35
m=1,3,5 n=1,2,3 2b

for the coordinate system shown in figure 22.

If the relevant differential equation is substituted in 
equation 2.33, the condition of minimum potential energy can be expressed 
as:-

f ^ ° ° ...
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the integration being carried out over one quadrant for the symmetrical 
case, and over one half of the plate for the asymmetrical case.

This procedure leads to a set of linear simultaneous equations 
which constitutes a characteristic value problem from which the lowest 
critical temperature differential can be found together with the 
corresponding ratio between the coefficients, a^.

In the symmetrical case, the simultaneous equations for an 
odd number of half waves are of the form:-

1 a
EaT

'vT)ocr

2

S S - A (
1=1,3,5 n=1,3,5|_

]
where p = 1, 3, 5, q = 1, 3, 5{ and the form for even number of 
half waves, symmetrical case:-
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a
2

-'=no“^ 4 “ > 1 % * “A p >

ip>]

where p = 2, 4, 6, q = 1, 3, 5; and for the asymmetrical case:-

2 -2 I T lP~ T + q

- 2B ;,"-«-f<“3<>.p*“4v 1  .....

where p = 1, 3, 5, q = 1, 2, 3 and

V '  % >  ^mp' \p> ^mp» \p» Kp> ®2' ^2» ®3 defined
in Appendix 4*
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In order that the coefficients, a^, have values other than 
zero, the determinant of the above set of equations must be zero. This 
condition gives the values of the critical temperatures, the lowest 
value being the only one of importance.

If nine terms are retained in the deflected form, it is 
convenient to express the above set of equations in matrix form. For 
the particular case of a plate of aspect ratio 1.566, buckling into an 
odd number of half waves in the longitudinal direction, the nine 
simultaneous equations are as shown on the accompanying sheet.

The numerical evaluation of such matrices to give the largest
(17^eigen value can be carried out using an iterative method • This 

gives the largest value of

100

and by inversion the smallest value of

v S , = - 7 ^ - — ......... 2.41
12*2(1 -v^)

Besides giving the smallest value of the critical temperature, 
the above method also gives the relative values of the coefficients, a^< 
The value of the critical temperature parameter and the relative values 
of the coefficients, a^, was found to be, for a plate of aspect ratio,
1.566,
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and

2 * = 5.39423 2.42

'—  — ' 

1.0000

®31 0.13646

5̂1 0.000703

®13 0.03648

®33 = 0.00444

^53 0.000914

^ 5 0.000693

^ 5 0.000249

®55 0.000047

2.43

Using these coefficients the deflection of the buckled plate 

can be written as;-

w - fco8 cos ^  + 0.13646 cos ^  cos ^

+ 0.000703 cos ^  cos ^  + 0.03648 cos ^  cos ^2b 2a 2b
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+ 0.00444 cos cos 0.000911 cos 4?^ cos 4 ?2a 2b 2a 2)

+ 0.000693 cos ~  COS 4 ^  + 0.000249 cos 4 ^  cos 4 ^  ^  2b 2a 2b

+ 0.000047 cos COS 4 ?  3 . .. .. .. 2.442a 2b

In order to show the importance of terms retained in the 
deflected form, the critical temperature parameter has been evaluated 
taking various numbers of terms of equation 2.34 into account.

The convergence of the critical temperature parameter with 
respect to the number of terms taken in the deflected form is shown in 
Table 1. It can be seen that only the first four terms are of 
significance.

Tables 2, 3 and 4 present the results for all the cases 
investigated. In particular, Tables 2 and 3 show the variation of the 
value of critical-temperature parameter with respect to aspect ratio of 
the plate. In these cases it should be remembered that the temperature 
distribution is symmetrical about the transverse axis.

Table 4 shows the variation of the critical temperature 
parameter with the degree of asymmetry of the temperature distributions. 
Finally, Tables 6, 7 and 8 present the theoretical buckle patterns in 
tabular form corresponding to the critical temperature parameters given 
in Tables 2, 3 and 4*



TABLE 1

Terms taken into 
account

^11 6.317

*31 5.657

*11 *31 *51 5.657

*11 *31 *51 *13 5.396

*11 *31 *51 *13 *33 5.394

*11 *31 *51 *13 *33 *53 5.394

*11 *31 *51 *13 *33 *53 *15 5.394

*11 *31 *51 *13 *33 *53 *15 *35 5.394

*11 *31 *51 *13 *33 *53 *15 *35 *55 5.394



TABLE 2

Odd case, m = 1, 3, 5

Aspect Ratio
" A

Buckling 
Mode in 

*x* direction *oor

0.5 One half wave 72.497 1350
.75 H 16.949 315
1.0 H 8.12894 151.0
1.5 n 5.41837 100.5
1.57 n 5.39430 100
2.0 tt 5.720195 106.5
2.5 Three half waves 5.52141 102.5
3.0 It 5.05113 93.9
3.5 n 4.90547 91.1
4.0 fi 4.95655 92.0
4.5 It 5.06861 94.1

* Based on a plate. b =11.5 in., V = 0.313, a = 23.2 X l o-^A



TABLE 3

Even case, m = 2, 4, 6

Aspect Ratio 
%

Buckling 
Mode in 

*x* direction
EoT _ ocr

2.0 Two half waves 5.45747 101
2.5 It 5.019108 93.1
3.0 tf 5.10438 94.6
3.5 Four half waves 5.11992 95.0
4.0 It 4.927736 91.5
4.5 tt 4.85645 90

Based on a plate, b = 11.5 in., v = 0.313, a = 23.2 x 10 Ac.



TABLE L

Heater position
n^D

c = b (centre) 5.7588 107

c = ̂ b 4 6.20675 115

^ = 2 8.0305 149

13.3566 248

* Based on a plate, b =11.5 in., a = 23.5 in., v = 0.313,
o = 23.2 X 10“^/®C.
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(b) Evaluation of the critical température using the 
polynomial form of stress distribution

Having obtained an alternative form for the stress function (1b) 
using the Rayleigh-Ritz method, it is worthwhile to evaluate the critical 
buckling tenperature of a plate using this form in the buckling 
calculations* The value of critical temperature obtained can then be 
compared directly with the results of the previous analysis (2a). Also, 
an assessment can be made of the suitability of the Rayleigh-Ritz method 
used in the analysis for the stresses when this form is used in buckling 
calculations.

Following out the same procedure as in the previous analysis 
(2a) > the application of the Galerkin method to equation 2*31, using the 
distribution of stresses given by equation 2.29» leads to a set of 
linear simultaneous equations. If the terms a^^, a^^ and a^^ are 
retained in the series for the deflected form of the plate, then the 
set of linear simultaneous equations can be written in matrix form.
For a plate of aspect ratio of 1.566, the coefficients of the equations 
have the following values:-

15.76 21.91 14.76

0.4916 1.323 0.776

1.342 3.227 7.355

Ml

M3

31

100
E ttT b^tocr

Ml

13

31

... 2.45
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The numerical evaluation of the above matrices to give the 
lowest value of the critical temperature parameter was again carried 
out using an iterative method already referred to. Applying the above 
procedure to equation 2.45, the lowest value of the critical temperature 
parameter is

EaT^^ b t ocr
tr2o

— 5*41 2.46

and the relative values of the deflection coefficients, a are:-mn

1.000

*13 0.0351

*31 0.132

2.47

Some idea of the convergence of the critical temperature 
parameter in this case can be gained from Table 8.

If this value of critical temperature parameter is compared 
with the value in Table 2, for a plate of the same aspect ratio, it can 
be seen that the agreement between the values is very close.

Thus the methods used in this section provide an alternative 
approach to the buckling problan.

Although the methods used in this section give reasonable



TABLE 8

Terms retained

*11 6.35

^11 *31 5.64

1̂1 *31 *13 5.41
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results, the amount of numerical effort required is considerably greater 
than that of former methods. This arises from the form of stress 
function used which results in cross-product terms appearing in the 
buckling calculations. Using the single product type of stress function, 
this type of complication does not arise.
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3. Use of Deuce Computer

For each particular case, either equation 2.37, 2.38 or 2.39 
must be solved to determine the smallest value of the critical 
temperature parameter.

It has been shown that at least three terms in the equation 
for the deflected form must be considered in order to obtain a reasonably 
accurate value of the critical buckling temperature.

The amount of numerical work involved is dependent on the 
number of terms taken in the deflected form. If more than three terms 
are taken the amount of numerical work rapidly increases. With this 
point in mind, and also the desire to take sufficient number of terms 
in the equation for the deflected form to cover all values of aspect 
ratio of interest, it was decided to use an electronic digital computer 
to carry out the numerical analyses. The effort required in the 
construction of the programme does not increase proportionately to the 
number of terms taken in the deflected form.

To indicate the amount of numerical work involved, the first 
simultaneous equation has been written out in full, with nine terms 

taken in the deflected form.

From many considerations, especially from the point of view 
of programme construction, it appeared that Alpha-Code, an auto-code 
system, would be suitable for evaluating the coefficients in the nine 
simultaneous equations.
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The numerical evaluation was carried out on the computer in
several distinct steps* Firstly, the constants B^, D.|, and
D, were evaluated for a particular size of plate. The next step was 4
concerned with the evaluation of the constants to Cg using 
equation 5.62. In this case the nine different values of C.|, etc. 
were computed in the following logical order. For the values of 
m = 1, 3, 5, p = 1, 3, 5, the order was:-

 c35, c j l  etc.,

the index indicating the value of m and p respectively.

Using these values of C.̂ , G^, etc., the integrals 1^^,
G and K , were evaluated from the foimulaes given by equations 5.58, mp mp * ^
5.59 and 5.56 and 5.60 in Appendix 4 for values of m = 1, 3, 5 and 
p = 1, 3, 5 in precisely the same sequence as for the previous constants. 
Following this set of integrals, the integrals A^^, B^^ and were 
evaluated from the formulées given by equations 5.41, 5.42 and 5.43 
again for values of n = 1, 3, 5 and q = 1, 3, 5.

In the final stages of the computation, the numbers
representing B.̂ , B ^  3^p, 0^^, etc. were picked up in the
sequence specified by equations 2.37, 2.38 or 2.39 to give the numerical 
values of the eighty one coefficients of the nine linear simultaneous 
equations.

The evaluation of the critical buckling temperature in the 
case of asymmetrical heating wsis complicated by a discontinuity existing
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in the toaperature function at the point y = c. Separate functions 
representing the integrals and were required on each side
of the point of discontinuity. In the previous analyses, simple 
formulae were deduced giving the values of these integrals over the 
range of integration. As a result of the above complication, no simple 
formulae could be found, and therefore numerical procedures were used to 
evaluate these integrals over the range of integration of 0 to 2.

The Deuce Computer makes use of Simpson*s Rule to carry out 
numerical integration. In this case, 80 intervals were taken over 
this range of integration.

In order that the coefficients, a have values other than' mn
zero in the above set of simultaneous equations, the determinant must 
be equal to zero. This condition leads to the solution giving the 
nine values of the critical t emperature parameter, the lowest value being 
the only one of practical significance.

It has already been mentioned that an iterative procedure can 
be used to give the largest value or by inversion the smallest value of 
the critical temperature parameter.

A standard General Interpretive Programme (G.I.P. ) exists for 
this procedure and makes use of the following standard bricks.

LL097 - read good guess (initial vector)
LR02A - read binary matrix (the 81 coefficients arranged

in binary matrix form)
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LL042 - iterate
LL052 - punch result

This procedure can be represented in block form as follows

Iterate

Punch Result

Read matrix 
(binary form)

Read good guess 
(initial vector)



Figure LOi Supporting frame with test plate in position.
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PART III. EXPERIMENTAL WORK

A range of experimental work was carried out to verify all 
aspects of theoretical analyses. It included:-

1 ) The measurement of the initial irregularities of the plates.
2) The measurement of the temperature distributions over the lateral 

surface of the plate.
3) The measurement of plate centre, or maximum deflection with 

increase in temperature differential.
4.) The experimental determination of the critical buckling temperature.
5) The determination of the modes of plate buckling.

Owing to the effect of the temperature on apparatus 
material and measuring instruments, new techniques were devised before 
routine experimental work was carried out. Many of these new techniques 
were based on the use of *Araldite*, a synthetic epoxy resin.
Advantage was taken of its cold setting properties to avoid thermal 
distortions in the plate which would have been set up if conventional 
welding had been used.

Since it is easy to reproduce experimentally, a * tent-like* 
temperature distribution over the lateral surface of the plate was chosen. 
This type of temperature distribution can be obtained in a plate with a 
line source of heat and two equal heat sinks at the longitudinal edges.
If the plate is adequately lagged over its surfaces, then the flow of
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heat from the source to the sinks will be by conduction through the 
plate material; the convection and radiation effects will be negligible,

From the laws of conduction of heat through solids, it follows
that the plate will be subjected to a * tent-like* distribution of 
temperature over its lateral surfaces, and that the variation of 
temperature through the plate thickness will be constant.

For convenience, the experimental work was divided into two 
parts. The first part consisted of a series of tests carried out on 
a comprehensive range of T.I.224 aluminium alloy plates of constant 
width of 24 in. and i in. thickness with variations in lengths from 
2 ft. to 6 ft. in increments of 6 in. In each test the line source
of heat was in the centre position, c = b.

The second part of the experimental work was concerned with 
a series of tests carried out on a single 4 ft. x 2 ft. x "t in. 
aluminium alloy plate subject to a variety of asymmetrical • tent-like* 
temperature distributions.

Five different types of temperature distributions were 
investigated corresponding to the line source of heat in the c =b, 
c = -|b, c = 5/8b, c = b/2 and c = 3/8b positions.

Experimental Appliances

The essential features of the experimental apparatus are 
shown in figures 40 and 41.



P O S IT IO N  OF THERMOCOUPLES

tr.

+  TH ER M O C O UPLE -  TR A N S VE R S E  SPACING -  2"

ID E N T IC A L  P O S IT IO N IN G  FOR A LL P l ATES

Figure 42; Location of thermocouples.
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The experimental set-up consisted of a rectangular steel 
framework which supported the test plates in a manner assumed in the 
theoretical analysis. The frame, whose length and breadth were 
6 ft. 2 in. and 2 ft. 2 in. respectively, was constructed of 4” % 2" x 3/8" 
channel section. An adjustable cross-piece was fitted to accommodate 
plates ranging from 2 ft. to 6 ft. in length.

To reproduce experimentally simple support conditions assumed 
in the theoretical analyses, the edge supports of the plate consisted 
of closely spaced steel balls located on each side of the plate using 
7/16" diameter bolts with recessed heads, as shown in figure 41.
Spaced at 3-inch intervals along the edges of the plate, the bolts 
which were screwed into the channel section gave a good approximation 
to simple line support conditions.

As already mentioned, a * tent-like* temperature over the 
lateral surface of the plate was induced by a line source of heat along 
a longitudinal line and cooling the two longitudinal edges.

A good approximation to a line source of heat was obtained 
using electric heating elements constructed from half-inch width asbestos 
strip wound with nichrome wire.

By means of aluminium bridge pieces previously attached to the 
plate with Araldite cement, the heaters were clamped on each side of 
the plate.

Cooling of the plate was effected by passing water at room
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temperature through diameter, 0*009” wall thickness aluminium tubes 
cemented to the longitudinal edges with Araldite cement* The flow of 
cooling was adjusted so that temperature distribution in the longitudinal 
direction was essentially constant*

To avoid fluctuation in the mains voltage, which could cause 
a variation of the heat supplied to the plate, constant voltage 
transformers were employed to reduce the fluctuation of mains voltage 
to within - i volt.

The power supplied to the upper and lower heaters, and in 
consequence the temperature differential across the surface of the 
plate, was varied by including a *variac* infinitely variable 
transformer in the circuit. As the lateral surfaces of the plate were 
well lagged it was found unnecessary to peen the thermocouple junctions 
into the plate material* It was also found that Vaeron-Eureka 
thermocouples attached to the plate with Araldite cement, used in 
conjunction with a Cambridge Portable Potentiometer, were suitable for 
the measurement of the temperature distributions across the lateral 
surfaces of the plate* Figure 42 shows the position of the temperature 
measurement stations on the test plate*

The buckled form of the test plates was determined by measuring 
the lateral deflections of the plate using dial gauges of the 0*001 in* 
per division type positioned along transverse and longitudinal lines, 
as shown in figure 43*



#
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Experimental Procedure

Before the plate was inserted into the framework, the 
thermocouples and the heating elements were fixed into the desired 
position.

The plate was then inserted into the framework and located 
in position using the ball supporting screws. Connections to the 
thermocouple switching unit, as shown in figure 44> were made and the 
dial gauges set into their correct positions. Finally, connections 
were made to the cooling water tubes.

After allowing the plate to reach thermal equilibrium 
(approximately two hours) readings of temperature and lateral 
deflection were taken. This procedure was repeated with increasing 
values of plate temperature differential up to a maximum value of 
approximately lOO^C.

Experimental Results

The following results were obtained directly from the 
thermocouple and lateral deflection readings

a) The experimental temperature distributions.
b) The growth of centre ot maximum lateral deflection

of the plate with increasing temperature differential.
c) The deflected form of the plate.
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Figure 45_; Measured temperature distribution, symmetrical
case, c = b.
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a) The temperature distributions were obtained by plotting the 
converted thermocouple for the various stations* A straight line 
drawn through the test points was used to predict the temperature at 
the centre line of the heater. Subtracting the temperature at the 
line supports, from this value, the plate temperature differential, T^, 
was found* The temperature distribution of all the cases considered 
are shown in figures 45 to 49# It can be seen that the test points 
define a straight line variation, permitting the temperature at the 
centre line of the heater to be assessed*

The deviation of points close to the heater can be attributed 
to the finite width of the heater • No measurable difference in the 
temperature was noted throughout the thickness of the plate. The 
' temperature along the longitudinal axis was virtually
constant; for all tests the variation did not exceed - 1^C.

b) Figure 50 shows a typical growth of centre deflection with 
increasing temperature differential plot for a 4 ’ x 2* x plate 
symmetrically heated*

Owing to the initial irregularities in the plate and the 
stretching of the mid-plane the onset of buckling is one of gradual 
development rather than of sudden occurrence predicted by theory* Thus 
the direct determination of the critical buckling temperature presents 
considerable difficulties. These can be overcome by the application 
of the Southwell-Lundguist plot which predicts the critical temperature, 
providing the variation of plate deflection with tanperature is known.
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Figure LGz Measured temperature distribution, asymmetrical
case, c = 3/4 1>.
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It should be noted that the Southwell-Lundguist plot has been 
derived on the assumption that the load deflection curve is a rectangular 
hyperbola, asymptotic to the critical buckling load.

In a flat plate this assumption would only be satisfied if 
the mid-plane of the plate remained unstressed at the onset of buckling. 
However, the stretching of the mid-plane does occur in the practical 
case which contributes additional strength to the plate in the 
post-buckling range. This means that after buckling has taken place, 
the plate will sustain a load greater than the critical load.

Nevertheless the critical load on critical tanperature can be 
predicted, providing values up to the knee of the temperature-deflection 
curves are used in the Southwell-Lundguist plot. A typical plot is 
shown in figure 51, from which the critical temperature can be deduced 
from the slope of the straight line.

c) The experimental deflected form which gives the buckle pattern of 
the plates is shown in figures 54 to 64# It can be seen that
irrespective of the longitudinal mode of buckling, the transverse mode 
of buckling is always one half wave.

Summary of Results

The effective aspect ratio measured between line supports 
and the maximum initial Imperfections in the plate are given in Table 9#

Table 10 presents the value of the critical temperature for
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Figure 47: Measured temperature distribution, asymmetrical
case, c = 5/8b.
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plates of various aspect ratio with the heater in the symmetrical position.

Table 11 presents the values of the critical temperatures for 
the 4 ft. X 2 ft. plate for various degrees of asymmetrical heating.

Material Properties

As a result of tensile tests carried out on specimens of 
T.I.224 aluminium alloy, the average value of Poisson*s Ratio was found 
to be y  = 0.313 (full details are given in Appendix 6). The value of 
the linear coefficient of expansion of the above alloy was given by the 
manufacturer and confirmed by tests carried out by the National 
Physical Laboratory as

o = 23.2 X 10“V*C.
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TABIÆ 10

Plate Length 
ft. Aspect Ratio 'oct

Mode of 
Longitudinal 
Buckling

2.0 1.0 168 One half wave
2.0 1.0 188 n
3.0 1.57 114 II
3.0 1.57 123 n
3.0 1.57 129 n
4.0 2.04 100 n
4.0 2.04 102 II
5.0 2.56 82.4 Two half waves
5.0 2.56 91.1 II
6.0 3.09 83.2 Three half waves
6.0 3.09 86.5 II
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Figure 50: Typical growth of experimental plate centre 
deflection with increase in temperature differential. 

(4-* X 2* plate symmetrically heated.)



table 11

Aspect Ratio Heater Position ^ocr
Mode of 

Longitudinal 
Buckling

2.04 c = b 100 One half wave

2.04 c = b 102 u

2.04 c = 4 117 n

2.04 c = ̂ b 4 108 fi

2.04 c = | b 136 ti

2.04 c = | b 125 tf

2.04 144 If

2.04 *= = 1 152 It

2.04 c = | b 176 n
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PABT 17. CRITICAL DISCl3SSiai

In Part II of the thesis a variety of methods has been 
presented for the evaluation of the critical buckling temperature of a 
plate subjected to * tent-like* temperature distributions. It is 
considered relevant to focus attention, in the first instance, on the 
relative merits of the methods employed.

Table 12 compares the value of the critical temperature 
parameter obtained for a plate of aspect ratio 1.566, symmetrically 
heated, using several different methods of solution.

Raaarkably good agre@nent was obtsiined between the values of 
the critical temperature parameter for the different methods used in 
the analysis. Table 12 also shows that the Galerkin and the 
Rayleigh-Ritz methods are equivalent to each other providing the same 
deflected form of the plate is assumed in both analyses.

A comparison of equations 2.37 and 1.66, which have been used 
to evaluate the critical temperature parameter, shows that the Galerkin 
method gives the simplest form of solution and, in this case, is 
preferable to the Rayleigh-Ritz method.

Figure 52 shows the variation of the critical temperature 
parameter against plate aspect ratio obtained by the Galerkin method. 
Figure 53 indicates the corresponding variation of critical temperature 
with plate length for a constant plate width of 24 in., and its 

comparison with experimental values.
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Good agreement was obtained between theoretical and experimental 
values, particularly for plates of aspect ratio greater than 1.5»

A rapid increase in the critical temperature was noted when 
the plate aspect ratio was less than 1.$. In this case it was 
inevitable that the agreement between e^eriment and theory would not 
be so close.

In short plates the condition that the edge stresses vanish 
necessitates a modification in the longitudinal direct stress and 
introduces transverse and shear stresses at points near the transverse 
ends. It is the effect of this redistribution of stresses in short 
plates which results in this rapid rise in the value of the critical 
temperature. This effect might have some practical significance.

In long plates the longitudinal direct stress (ô ) approaches 
the infinite plate distribution of stress; thus the plate behaves as 
if it were a plate subjected to loads acting on the transverse ends of 
the plate, a case extensively treated by Timoshenko and others.
Loading of this type causes a long plate to buckle into squares and for 
each mode of buckling, the load to initiate instability has the same 
minimum value. This condition is approached in the case of long plates 
with induced thermal stress due to * tent-like* temperature distributions.
For each mode of longitudinal buckling, the critical buckling temperature 
has the same minimum value. This is clearly shown in figure 52 for 
the series of curves corresponding to m = 3, 4, 5 etc., in which each 
of these curves is virtually tangential to a common minimum temperature line.
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In psLSsing it is interesting to compare the foregoing 
theoretical values of critical temperature parameter with the values 
obtained using a simple iterative method suggested by Kenedi^^^^^^\
In this method the assumption is made that the distribution of the 
longitudinal stress is the same as that of an infinite p l a t e a n d  

that the plate buckles into one half sine wave in the transverse 
direction and m half sine waves in the longitudinal direction. The 
above assumptions suggest that the buckling behaviour will be similar 
to the case of a plate subjected to compressive loads acting in the 
plane of the plate. This was found to be so.

For each mode of longitudinal buckling corresponding to 
m = 1, 2, 3 etc., a series of curves, shown in figure 52, was obtained. 
It was found that each individual curve had the same minimum value and 
occurred at a point where the number of longitudinal half waves equalled 
the aspect ratio of the plate.

In the more refined approach (2a),where the *end-effects* are 
taken into account, this mode of plate behaviour occurred only in the 
case of long plates where the transverse and shear stresses near the 
ends are small compared with the longitudinal stress. Thus if the 
values of the critical temperature parameter obtained by the two methods 
are compared it can be seen from figure 52 that at large aspect ratios 
the values are nearly identical. A slight difference of 5? does exist 
between the two methods; the iterative method giving the higher veulue. 
This small difference is, no doubt, due to the assumed form of buckled
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plate in each case* In the refined approach nine terms were taken in 

the series for the deflected form of the plate, whilst in the iterative 

method only one half sine wave was assumed in the longitudinal direction 

before the iterative process was carried out. A better approximation 

to the buckle pattern was effected by iterating once and this gave 
results, as already stated, which were in close agreement with the 

results of the previous analysis for plates of large aspect ratio.

In the theoretical analysis concerning the evaluation of the 
critical temperature it was shown that for a plate of aspect ratio of 
1*566 that the deflection coefficients auĵ , a^^ and were the only 
ones of significance, the others having a negligible effect on the final 
value of the critical temperature parameter*

At this point it is of interest to examine the significant 

' deflection coefficients for plates of other aspect ratios* Table 5 
shows that the coefficients a^^, a^^ and a^^ determine the deflected 

form of plates up to an aspect ratio of 2*25* In these cases, the 
coefficient, a^^, determines the overall deflected form; the other 

coefficients, and a^^, only affecting the deflected form at points 

near the supports*

For plates of aspect ratio greater than 2*25, the coefficient 
is predominant which implies that the deflected form of the plate 

w i U  be three half waves in the longitudinal direction.

Table 6 shows that the change over from the two half wave mode
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of buckling to the four half wave mode takes place at an aspect ratio of 

3.4. The complete behaviour of the buckling modes is summed up in figure 
52, and shows that as the aspect ratio is increased there will be a progressive 
change from the one half wave mode to the two half wave node and so on. In 
all the cases investigated the transverse mode of buckling was always one 
half wave. It should be noted that since the value of the deflection 
coefficients, a^^, given by small deflection theoiy are indeterminate and 
only the ratios defined, the theoretical peak values have been chosen to 
coincide with the experimentally observed peak values. Figures 54 to 63 
compare the theoretical buckle patterns with the experimental buckle patterns 
plotted from the dial gauge readings. It can be seen that the agreement 
between the theoretical and experimental buckle patterns is very close, thus 
confirming that the function chosen to represent the deflected form of the 
plate was of the correct type»

Thermal Bu^kligg - Asymmetrical Temperature Distributions
The effect of the degree of asymmetry of the temperature distributions 

on the critical tençjerature parameter and critical temperature is clearly 
shown in figures 64 and 65* The most significant feature of these graphs 
is that the critical temperature has a minimum value for a particular size 
of plate when it is subjected to a symmetrical ‘tent-like' temperature 
distribution. As the line source of heat is moved away from the central 
position, the resulting asymmetrical temperature distribution causes an 
increase in the value of the critical temperature. A limiting cas 

reached \^en the line source of heat/
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is coincident with one of the longitudinal edges/ the other edge being 
cooled as usual. In this case, although there is a linear temperature 
gradient across the surface of the plate, the stresses vanish since the 
strains corresponding to the free thermal expansion of each element,
G = G = aT, Y = 0, satisfy the conditions of compatibility.X y xy
Consequently, for this condition the critical temperature will be infinite.

Figure 65 shows experimental and theoretical values of critical 
temperature plotted as a function of the distance of the line source of 
heat from the origin. The agreement between theory and experiment is 
very good.

If attention is now turned to the deflected form of the plate, 
an examination of the vectors in Table 7 shows that only the vectors â ^
and a^^ influence the convergence of the critical temperature. Table 7
also shows that the vector which could affect the shape of the 
buckle pattern in the transverse direction and hence the position of the 
point maximum deflection, is very small compared with the dominant 
vector, a^^. Thus the shift of the point of maximum deflection is 
insignificant; a fact confirmed experimentally and shown in figure 66.

Post-Buckling Behaviour of Plates

In the concluding part of the review the post-buckling 
behaviour of plates was investigated with particular reference to the 
growth of plate centre deflection with increase in temperature differential.
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/ /It was shown that the Von Karman large deflection plate equations must 
be used if the stresses and deflections are required. Generally only 
an approximate solution to these equations can be obtained and even this 
is a very laborious procedure.

An alternative method for determining the growth of plate
(18)centre deflection from its initial value has been proposed by Gatewood' 

using the theory of mid-plane thermal strains. It has been shown that 
this method is very simple to apply and therefore it is worthwhile to 
compare the values of plate centre deflection using this method with 
the experimental values already obtained in the critical temperature 
experiments.

At first this comparison was carried out for a plate of aspect 
ratio 1.566 since the results in reference 13  ̂ obtained from an
approximate solution of the large deflection equations, can also be
presented on the same graph.

The experimental and theoretical results are shown graphically 
in figure 67. The theoretical curves based on the theory of mid-plane 
thermal strains are presented for various values of initial imperfections 
of a plate. Good agreement was obtained between experimental and 
theoretical values of plate deflection for a plate with a measured 
initial imperfection of 0.050 in. Also plotted on the same graph are
the results obtained in reference 13 represented by the equation:-
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Figure 67: Calculated and experimental centre deflections of 
a 3 ft. X 2 ft. plate symmetrically heated.
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-  W?
T = 1 0 0 ( 1 - — ) + 1.01 {S.. ..As.)   4.1

Âgain^ good agreement exists between the experimental and theoretical 
values, based on a solution of equation 4*1.

Both theoretical methods may be expected to be fairly accurate 
when the initial deflected shape of the plate is similar to the first 
mode of buckling of the corresponding flat plate. This was found to be 
true for the 2 ft. x 2 ft., 3 ft. x 2 ft. and 4 ft. x 2ft. plate. In 
this range, figure 68 shows excellent agreement between experimental and 
theoretical values.

For longer plates, it is unlikely that the initial deflected 
shape will correspond to the predominant mode of buckling of the 
corresponding flat plate. It is for this reason that only fair 
agreement was obtained for the 5 ft. x 2 ft. and 6 ft. x 2 ft. plates.

In conclusion, it appears that the method of mid-plane strains 
is sufficiently accurate for practical purposes since in a design, only 
the average value of the initial imperfections will be known. Hence, 
using the above method some indication of the lateral deflection of a 
plate can be obtained if the temperature distribution of the plate is 
known.
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FiRure 68; Calculated plate deflections, based on mid-plane 
strain theory and experimental plate deflections 
for plates of various aspect ratios subjected to 
symmetrical *tent-like* temperature distributions
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SUMiAKI OF CŒTCLITSICNS

The subject matter presented in the thesis may be summarised
in broad outlines as follows:

1) The Galerkin method applied to the equation governing the stability 

of flat plates gives calculated values of critical temperatures 
which are in good agreement with experimental results,

2) It has been shown for the buckling problem that the Galerkin 

method is fully equivalent to the Rayleigh-Ritz method and leads 
to the same result if the same function is used to represent 
the deflected form of the plate.

3) Approximate methods for the determination of the thermal stress 

distribution based on minimum complementary energy concepts, 
appear to give consistent results in the evaluation of the critical 
buckling temperature,

U) The single product type of solution gives the stress function 

in the simplest functional form.
5) The * end-effects* modify the distribution of thermal stresses in 

plates of small aspect ratio so as to cause a large increase in the 

value of critical temperature,

6) The critical temperature of a plate has a minimum value when the 

plate is symmetrically heated about a longitudinal centre-line,

7) The theoretical buckling patterns (buckling modes), determined from 

the small deflection theoiy plate equations, match very closely the 

experimental patterns when the peak magnitude of the modes is selected 

to be identical with the experimentally observed peak magnitude.



83a

8) Values of plate centre deflection based on the theory of mid-plane 
strains compare favourably with the values obtained from an 
approximate solution of the Von Karman large deflection plate 
equation for values of temperature up to the critical temperature 
of an idealized flat plate.

9) Experimental values of plate centre deflections are in good 
agreement with the theoretical values derived from the large 
deflection plate equations and the mid-plane strain theory.
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APPENDIX 1

Minimization of the Complementary Energy

The complementaiy energy of the heated plate can be 
expressed as:-

u* = ^  J {A|ĝ  + Agg"̂  - 2vÂ gg" + 2(1 + v)Â g'̂

+ 2Ea (A^Ig + Agig")} dx 5.1

where Â  to Ag are defined by equation 2.9.
* *Setting the first variation of U , i.e. oIJ , to zero by means 

of the calculus of variations, then the variation of complementary 
energy, term by term, is:-

First Term
a 

-a
* 1 6U = -g- J Ajg &g dx

Second Terra

6U* = ~  5 g"ôg"dx = —  S e" b ^ ^ j d x

_ A2 a
I [ag']
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Integrating by parts yields

6U = Y   ̂ g"'6g'dx}

ÔÜ* = {[g” 6 g ^ ^  - y^g"'d
'—a —a

Integrating by parts again yields

*5a == - l̂ g”* g****6g dx]

Third Term

6U
ÊLyV a AqV a

= - 5 g 6g ** dx - S g" 5gE dxE

Integrating by parts taking the first expression first, yields

* r a a
5a = - { g5g' - J g^5g* dx}

E L J-a -a

Integrating by parts again yields

*5a == h !
E i -Fg + r g'&g) "  S g"6gdx}

L J-a L- J-a -a



and the second expression of the third term yields

* Aq a 
6U" = - J g**^g 

E -a

Fourth Term
* 2(1 + v)A. a 2(1 + v)A. a _ _

6U = ---—— ^ S g'6g'dx = ---—— ^ J g'd£ —a E —a

Integrating by parts yields

6Ü* =2<1 {fg'&gl - J g" 6g dx j £ L J—a —a

Fifth Term

ÔÜ = ^  j A^I6g dx
-a

Sixth Term

ÔÜ = ^  j AgX6g dx = ^  J A^Xd 6g' 
-a -a

Integrating yields

-a

86
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Collecting terms gives

*ÔU = 0 = g J {Â g+A2g""- + v) ♦ vÂ g*'+ EoÂ l} 6g dx

* E + v)Apg' - Agg’” }?)^

* E “ ''^2* +EaAgl}6gM ^...........  5.2

The boundary conditions at x = -a, where o' = T =0,X xy '
require that g and g' vanish at these points and that = -A^ and A^ = 0,

Using these conditions, the term under the integral sign in
equation 5.2 reduces to;-

Agg"" - 2A^g" + A,g ♦ EoA^I = 0   5.3

and the terms in the square brackets are equal to zero for the above 
boundary conditions. Thus the approximate solution is independent of 
Poisson>s ratio v.
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APPENDIX 2

The relationship, Â  = - A^Ea, provides a valuable check when 
the coefficients of equation 5*3 are being evaluated.

The proof of this relationship is as follows: 

b 2
since JL = J f" dy, then integrating by parts gives 

* -b

4  ‘ [ ' ■ ' d b  ■  ..........

Note that the contents in the square brackets are zero.

Integrating by parts again:-

A, =f- f f ”j  ^ ......... 5.5

noting that the quantity in the square brackets is zero.

In a similar manner, the expression for A^ is integrated by 
parts twice to give:-

b b
A, = J f"ïdy = S f ï ” djr ......... 5.6

-b _b

For a plate infinite in the direction the stress is a function of 
y only; therefore the biharmonic equation 2.2 reduces to:-
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f"" = -Eal"   5.7

Substituting for f ”**in the equation for the integral Aj, this yields

A| — -*E GA^ 5.8
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APPENDIX 3

Derivation of the stress functions for the symmetrical case (c = b), and
the asymmetrical cases, c = jb. -jb. jb

Symmetrical Case

Reference 10 suggests that a good choice for the function f is 
a stress function for an infinite plate.

Using the coordinate system shown in figure 21, then

“ E aT^(Vb - for O ^ y ^ b  ......... 5.9
00

Integrating equation 5.9 twice gives the function f together with two 
arbitrary constants of integration

,y3 2
f = EaT^ ( ^  - 2_ +S y + S j    5.106b 4 ' 20

Equation 5.10 is valid in one quadrant only and therefore conditions 
at y = -b are not applicable.

The conditions of symmetry can be used, however, which gives:- 

f'(0) = f(b) = f*(b) = 0    5.11

The condition, f*(0), is implied in equation 2.12 (zero stress resultant 
along any axis parallel to the y axis) and therefore the remaining
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boundary conditions are used to determine and

After solving for S.j and 8^, the function becomes;-

f = ^  {l - 3(^)^ + 2(^)^ }EaT^   5.12

Integrals Aj, A^, A^ and A^ can now be evaluated to give the coefficients 
of the resulting linear differential equation:-

13b^g"" - 84b^g" + 420g = 420   5.13

The complementary solution of this equation can be assumed to be of the 
form:-

gc =   5.14

Substituting this assumed form in equation 5.13, the auxiliary equation

13b4n4 - I68b4m2 + 42O = 0    5.15

is obtained, having roots

1 (2.1113 + 1.107523) j = 5,
  5.16

“3 ■ g (-2.1113- 1.10752j) ; m, =

where the bar denotes conjugate quantities*

Thus it follows that the complementary solution can be 
written as:-
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g = e2.1113 f   ̂ p 1-107523 f   ̂ -1.107523 f  ^

, e - 2 .1 1 1 3 §  (p^,-1.107523 |  ^ p ^ ^ 1.107523 fj .....

After some simplification, this can be written as:-

gc = C.J sinh rx sin sx + cosh rx cos sx

+ Co cosh rx sin sx + C, sinh rx cos sx .. ....... 5.18
i  4

where r = 2.1113/b and s = 1.10752A>« C.̂ to C^ are four arbitrary
constants to be found from the boundary conditions at x = - a.

By inspection the particular integral of equation 5*13 is

A/ Ea
gp = - — —  = 1   5.19 

4

Hence the complete solution of equation 5,13 is

g = 1 +C^ sinh rx sin sx + C^ cosh rx cos sx

+ cosh rx sin sx + sinh rx cos sx .......... 5.20

where the constants C.̂ , C^, C^ and C^ are determined from the condition 
that g = g* = 0 at X = - a which yields ; -
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r sinh ra cos sa - s cosh ra sin sa 
r sin sa cos sa + s sinh ra cosh ra

  5.21

r cosh ra sin sa + s sinh ra cos sa 
r sin sa cos sa + s sinh ra cosh ra

Using equation 2.1 in conjunction with equations 5.12 and 5.20 
the stresses in the plate are given by:-

E 0. T 2y
C = ----  - 1)(1 + Cw sinh rx sin sx + C. cosh rx cos sx)X 2 b I ^

c = (2 (?) - 3 (?) + l)(C_ sinh rx sin sx + cosh rx cos sx)

EoT b 2
- " ( (Ç) - ^b^^^5 ^  cos sx + cosh rx sin sx)

where

= C.jS + C^r = C^(r^ - ŝ ) - 2Ĉ r.s

= C.|r — C^s Gg = 2C^r.s + — s^)

  5.22
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Asymmetrical Cases

In these cases the temperature is no longer symmetrical about 
the longitudinal axis of the plate. This means that one half of the 
plate must be analysed instead of one quadrant analysed in the 
symmetrical cases. The ordinary differential equation for the g function 
is of the same form but with different numerical coefficients.

Since one half of the plate must be considered in the analysis,
it is necessary to derive separate expressions for the f function on each
side of the point of discontinuity of the temperature function.

The derivation of the f functions can be found using similar 
methods to those used in the symmetrical cases. In this instance it is 
more convenient to use the coordinate system defined in figure 22.

As in the symmetrical case the distribution of thermal stresses
in a long plate can be found by suppressing the free thermal expansion
of each plate element by applying a compressive stress, -EoT. As in 
the symmetrical cases considered, tensile stresses must be applied at 
the transverse edges to ensure that the edges remain stress free.

Owing to the asymmetiy of the temperature distributions there 
will be a resultant moment as well as a resultant force action set up.
Thus the longitudinal stress, 0̂ , at a point removed from the ends will be;

C = -EoT -jEaT + x Bending Moment ......... 5,23X ® 2b-̂



a

Figure 69; Tensile edge stresses, +EaT, applied at transverse
edges of the plate#
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The bending moment on the plate about the axis N - H  is:

BM = EoTg {| (| +b-c) - - b + c)} (figure 69)

which reduces to

BM = Ecff̂  I (b - c)   5.24

The longitudinal stress in the plate is therefore

a = f" = -EoT +iEoT + Ecff ......... 5.25X 0 o
* t

As already mentioned, separate expressions for f must be 
derived on each side of the discontinuity occurring in the temperature 
function, and the algebraic analysis is simplified if the f function is 
evaluated for the particular cases of c = ^  and

Particular case, c = /2

The analysis for this case is given in full; the other cases 
are evaluated in a similar manner.

For the domain bounded by 0 < y < ̂ , the temperature 
distribution can be expressed as

T = To ^/b   5.26
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and for the domain bounded by ■̂ < y < 2b,

T = A T   5.27
3b ®

Thus

f̂ * = EoT^ + ̂  + } valid for 0 < y < ̂     5.28

Integrating equation $.28 twice yields

f ' = EoT + f + ̂  + S.}   5.291 o > b 2 ^  1
and

f, = E c c r  )   5.30
* o 3b 4 4b I ^

At the boundary y = 0, f^ and f̂  = 0, which gives S.j = = 0 j

hence “ J  ̂  ̂  .........

For the domain bounded by ̂ /2 < y < 2b

b/2 v V ,
f ' = E<ff {- i ^  dy - J ~ ^  dy + I (| + -%^)dy]® o ° b/2 3b o ^ 4b

i.e.

= - [ f - ^
r v ^ / 2  r.
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which reduces to

..........

Integrating again gives

b/ 2 2 V 2 V 2/

i.e.

'2 = " V  ..........  :-33

The boundary conditions at y = 2b are f^ = f2 “ 0, which 
gives = 0; hence

^2 =   S-«

2b 2
Integral represented by is defined as J f *' dy. Since f **

o
is not continuous over the whole range of integration, the integration 
must, in this case, be carried between the limits 0 to b/2 and from 
b/2 to 2b and then the two results added together to give the value of A^.

,.2 2 b  2
i.e. Ai = ! dy + J f,' dy   5.35o 1 b/2

In a similar manner, integrals represented by A2» A^ and A^ can be



98

evaluated. For the case of c = b/2, the following values were obtained:- 

= 0.124999(Ecffo)^ A, = 0.00937500b^(EciTo)^

Ag = 0.002a4598b^(EoTo)^ A^ = -0.125000(Eo)^o

Substituting these values in equation 5.3, the following linear 
differential equation is obtained:-

2.84598b^g"*' - 18.750b^g" + 125.000g = 125.000   5.36

Using the same procedure as for the symmetrical case, similar 
equations for the stresses are obtained. They are:-

0^ = EoT^ ̂ 4 " { 1 + sinh rx sin sx +0^ cosh rx cos sx }
valid

2 ^ 3
C = Ecff̂  { d" - ^r][^r7 sinh rx.sin sx + cosh rx cos sx} fory 0  ̂ 0 24b f o

0 < y < b/2
T: = -EûŒ^ [ ̂  - ^ ^ }  fCg sinh rx cos sx + G/ cosh rx sin sx }%y 0 4 8b ^

+ G.| sinh rx sin sx +G^ cosh rx cos sx]

2 2 3
0 = Ecff {G„ sinh rx sin sx+Gj^ cosh rx cos sx }
7 18 3 24 72b ” 8

2
"̂ xy " "^°^o^3 " 1 2  ^^5 ^  C08 sx +G^ cosh rx sin sx]

valid for b/2 < y < 2b .... ..... 5.37
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where Ĉ , G^, Gy and Gg are defined in precisely the same manner
as for the symmetrical cases.
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Summary of Asymmetrical Cases

For convenience, the forms of the tençerature f, f * and f " 
functions and values of integrals Â  etc. are given in tabular form 
in Tables 13, 14 and 15.

Thus the stresses in the plate are:- 

(Tg = f"g } ffy = fg" and = -f'g'   5.38

where g is defined by the equation

g = 1 +0^ sinh rx sin sx + cosh rx cos sx  ....    5*39



lABIÆ 13

Case Domain bounded by Temperature function

e - 4
0 < y < ̂ b

c -|b
|b < y < 2b

b
“ = 2

0 < 7 < 1 27T = T_0 D

1 < 7  < 2b T = T
° 3b

b 0 < 7  < 1 T = T  ^  0 b
° = 4 ^ < y < 2b T = T (âL=-éZ) 0 7b
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TABLE 16

Case %1 %2

G = b 2.11130 1.107520

G = ̂ b4 2.13669 1.148515

® = 2 2.22727 1.29097

° = 4 2.46601 1.64447



Io
€H

CQ
2-PCO

I

<D

§
O

+
X\c$

ptT̂
§
o

Mid
crT
o
o

CNt
m
+
Mid
CtT
a
Mid

QQ
m

NrO
C\i+

CM
'w '

I

%
M

CM I CM

V  
I»

V  
O

.Û

II
o

+
Ml d
ftp*
o
o

Ml d
pT
mo
0

CM
m
+
Mid
pT̂
a
CQ

Mid
p T*

1
m

m

CM

o
%
H

CM

,Q

V  
l>>

V
o

+
Mid
pT*
CQ
O
O  . Ml«*
dT
.d
CQ
O

%
m+
Mid
pf*
a
CQ

Mid
Pf"

0)

5
m

<HS
+

CM

RI8

cr̂|■4̂
II
O

+ 
Ml d
pT̂
CQ
O
o

Mid
dT
raoo
CMPQ
+
Mid

p r

a
CO

Ml d
pJ”

CQ

T—

5
o

<Hcî
1

CM
+ y j û

H R mlw
o

%
o

%
H H

CM CM,û

XIICM
V V
t>> S
V V

o

+
Ml d
dT
CQ
O
Ü

Ml d 
pT
wo
"KzPQ

Ph
a
(Q

Ml d

CQ

5f-s

Wg!
+

CM

Hcî
I

-1^

%
M

CM

V  
l>*

V
rÛlCM

fûlCM
II
O

+
Mid
dT
CQ
OÜ

MId
p T
*§o
ü

CMm
+ 
Ml d
pT̂
a
(Q

Ml d 
dT

CQ

pq

CM
>i,Û

%M
CM

yQl-<t
V  
S
V
o

+Ml d
pf̂
8O

Ml d
pT
w0ü
CM

pq+
MId
pf̂
5
CQ

Ml d 
pT
1
CQ

5
m%Ts>J,o

CM
Xlyo
#

I
t>J,û
T-|Ĉ
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APPENDIX L

Backling Calculations

The constants in equations 2*37, 2.38 and 2.39 are defined 
as follows:-

sinh cos R^ - Kg cosh R̂  sin R^ 
sin R^ cos R^ + sinh R̂  cosh R^

cosh R̂  sin R^ + ^inh R̂  cos R^ 
sin R^ cos R^ + ̂ 2 ^iah cosh

^1 = S  ÏÏ ; ^2 = ^2 b
5.40

where r and s are the roots of equation 2.15.



other coefficients are:-

(Sf3
if n - is odd
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5.41

1 if n — q is even or zero

B 1

(Sz3 ti)̂  2
if n - q is odd

5.42

B 1

r,)
2

if n - is even or zero



Gnq = Ï2 ^ ^ } cos ^  cos ^  d(J)
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1
nq if n - a is odd

nq if Is even 5.43

^  (iia2
if n - is zero

A'nq

*  S (-13 + 9 ë ) sin sin d (?)
3/4 2b 2b 'b

valid for c = /4 b 5.44
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2f/L

" 1/^ è  ■̂■'̂  * ̂ (b) - 9 0  } 003 S3E sin iS[ a (£)

valid for c = ̂ /4b    5.45

+ 1/4 &  1-4 +16Z_ 13(Z) + 3(Z)%in îg: gin ̂  d(J)

valid for c = ̂ /4b    5.46

1/2

= I 4  ̂ b) ^  0

^ {/2 Ï2 (^b - 7) ^ 0

valid for c = b/2    5.47
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®nq = {  8 2) | c o 3 ^ s l n ^ d  (2)

" {/2 24 (-G + 14 % - 50 ) C03 ̂  sin ̂  d (J)

valid for c = b/2   5.48

{/2 &  f-4  + 24 f - 2 1 0  ^ 5 0 ^ }  sin ̂  sin ̂  d (Z)

valid for c = b/2    5.49

valid for c = b/4   5.50
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1/4
®nq = ^ J c o s ^ s l n ^ d ( | )

* J 4 1^2 (-16 + 3 0 Z _ i i  ^ )  cos I ?  sin ̂  d(|)

valid for c = b/4 .. ....... 5.51

°nq = ia (3 - 5 b ^ 0  aio. S3E sin SSE d 0

 ̂J 4 3^  (-4 * 48 J - 450^ +110^ sin ̂  sin ̂  d (J)

valid for c = b/4   5.52

X X  mTOC p̂ DC .V .®mp = I sinh a, ; sin 5% sin sin d(;)

r , m + p m + p .= sinh R| {C.j cos(R^ + — ^—  w) + cos(R^ - — ^  n)

m — p m — p . N
- Cj oosfRg * — ~  ") - G, oosCRg g—  w) ]

, , m + p .  . m + p+ cosh R.| i- sin(R^ + — -—  v) - sin(R^ -  — ^—  it)
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, n — P v  t 31 — p . ^
+  s i n ( a ^  +  — ^ —  it)  +  C g  8 i n ( a ^  -  — g —  w) j

valid for all integers of m and p 5.53

\ p  =  ̂ cosh h  I cos ̂ 2 I sin ̂  sin ̂  d(|)

r r m + p  . . m + p .E = cosh [-C.J sin(Rg + — tt) - 8in(R^ - — w)

+ 8in(R^ + ̂  sin(Rg - — }

M , m +  p  . ,  m +  p  \-C^ cosCRg + — 2 ~  " 0^ costRg - —

m -  p m -  p+ Crj cos(R^ + — ^  w) + Cg cosCR^ - — ^  ’j)}

valid for all integers of m and p 5.54

'.p = S sin sin d (̂ ) n 2a 2a &

\ p  =  0  I f
m - p

^mp = i
m -  p = 0 5.55
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r X X  mïTX p %G = 5  sinh IL — cos R« — s i n  cos —  d (%)mp 1 a 2 a 2a 2a ^

m -
G^p = (-1)  ̂ {(Ĉ  " ̂ 2 “ ̂ 3 ^ ̂ 4^ sinh R.̂ cos R^

- (Cg - - Cy + Cg) cosh R| 8in R^ }

valid for odd integers of m and p     $.56

G* = J sinh R̂  — cos R« ̂  cos -%—  s in d ®np Q l a  2 a 2a 2a a

I r / m + p . , m + p \
G^p = sinh Rvj i “ cos (R^ + — —  ^2 2 '

+ cosfEg + m) - C4 003(Rg - w)}

+ cosh R^{c_ sin(R2 + if) - sin(R2 -

- C„ 8ln(R2 + — ^  t) + Cg sln(R2 - «)}

valid for ail integers of m and p .......... 5.57



X pTixImp = S sinh - sin - cos —  cos —  d(-)

m - p
= (-1 ) " {(C.J + - C^) sinh cos R,

— (Ĉ  + Cg — Gy — Gg) cosh R.̂ sin Rg 1

r X pnx x\J = i cosh R^ T cos R« cos — - cos d Wmp l a  2 2a 2a &

-P
•̂ mp - (-"1)

+ 1 + Cg "" G^ — C^) cosh R,̂ sin R^

+ (C^ + Gg - Gy - Cg) sinh R.j cos R^}

1 X X  mnx pnx ,xxKmp = 5 cosh H, - sin Rg - sin cos ~  d (-)
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valid for odd integers of m and p 5.58

valid for odd integers of m and p 5.59
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%

m- p
= (-1) {(Ĉ  " ̂ 2 " ̂ 3 ^ ̂ 4^ cosh sin

+ (C^ - Cg - Cy + Cg) sinh B̂  cos R^] ..... 5.60

valid for odd integers of m and p

I J X X  m %  p %  , XK = j cosh R., — 8in R« — cos sin “ • d — mp ;; 1 a  2 a 2a 2a a

K^p = cosh R.̂ {- sin(Rg + 2 ^ sin (R^ - 1̂)

m — p . , m -•

where

+ C^ sin (R^ + " 2  “ G^ sin (R^ - — ^  n)}

+ sinh R| {- C^ cos (R^ + ” 2^  * G g cos (R^ - — )̂

m — p m — p *)
+ Cy COS (R^ + 2 *) ~ Gg cos (R^ - " 2

valid for ail integers of m and p........ ......... 5.61

+ (Rg -*• n)
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CL = T
^ 2  + (R^ n)'

CL = T
m - p

h * 2 ^

Rj^ + (Bg + II)

c, . 1  ,4 4 2 m — P v

C r  =  T ■S
a)

C, = T

. 1

^  + ( ^ 2 +  2 ")

*8 = i

5.62
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APPENDIX 5

Determination of the stress function using the Ravleigh-Ritz method 

in conjunction with the principle of Minimum Complementary Energy

The complementary energy of a heated plate can be written as:- 

u* = ^  J - 2v + 2(1 + v)t^ + 2EoT ( + <r̂ )} dxdy

5.63

For simply connected regions, the stress distribution has been shown to 
be independent of the elastic constants ; thus:-

/  = 4  5 5  [ A / . A "  • 2A ) ' ' . 3 »^  o o - eiy ax àxssr ax

5.64

The integration is carried out over one quadrant of the plate if a 
symmetrical temperature distribution is considered. It can be assumed 
that the stress function, satisfying the boundary conditions

a = T = O a t x  = i a  X ay

= 0 at y = - b
5.65

can be expressed as:-
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0 = (x^ - a^) (y^ - \?) (y, + + nyy^ +   5.66

Using the Rayleigh-Ritz procedure, the condition for minimum 
complementary energy of the plate is

âs! , 2L = w! , a! = 0 ......... 5.67
ar, 8tj btj ar^

This operation leads to four linear simultaneous equations 
for the parameters Y-|> and Y^f viz:-

. j B S .  , 122 i2j ,y . 2  . . 5 )  A . & t o V
1001 77 4 256a^^b^ o o Qy^ 9x^

; l | a . ^ k . g k 2 ] T /



1 U

2^2 ^

77 1001 4
a b

256a9b' o o °T3 ôy 8x

U3 11 11 143

, ^ M . 2 Z 6 j , , ^ k 2 } Y , b V  
143 121 143 4 2A î ¥  î î a k P ^ A A ^ r25&.” b’ o o 6t, 5,2

where k = —r 
a

5.68

For a symmetrical *tent-like* temperature distribution, the 
temperature in the first quadrant can be expressed as T = Tg(1 - ̂ A>). 
Substituting this equation in the above set simultaneous equations and 
then integrating, the values of the parameters can be found. In many 
cases it is more convenient to express the stress function in the 
following form:-

2 J2 ZiJZ 2 ^2 y2 2 2
(* = - D Ç  - 'HP, * Pa ̂  * P3 p  * P*   5.69

where p̂ , p̂  and p^ are non-dimensional parameters related to ŷ , 
ŷ  and ŷ  by the equations:-

EoT^Pl = Y,a. V Eol^p, = Y,a4b4

5.70

EoT^Pg = T g a V
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Figure 70; Mechanical Characteristics Poisson* s Ratio,
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APPENDIX 6

Material Characteristics and Properties

(1 ) Poisson*s Ratio

Test pieces of TI.2% aluminium alloy were subjected to 
tensile loads in a 50 ton Denison Universal Testing Machine.
Saunders-Roe i in. electrical foil resistance strain gauges were fixed 
to the specimen in the longitudinal and transverse directions. Using 
a Strain Resistance Bridge, readings of increase of resistance and 
applied load were taken. Figure 70 shows typical readings of 
longitudinal and transverse strain plotted against applied load.

From the results of the tests the average value of Poisson*s 
Ratio was found to be: v = 0.313»

(2) Calibration of Vacron-Eureka Thermocouples

The thermocouples were calibrated using a vacuum flask 
containing melting ice (O^G.) to provide a cold source and a hypsoraeter 
with steam at 100^0. to provide a hot source.

The e.m.f. generated between the hot and cold junctions was 
measured by a Cambridge Instrument Company portable potentiometer.

The calibration was repeated with the switches of the * Thermal 
Buckling * apparatus incorporated in the circuit.
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Figure 71; Thermocouple calibration curve.
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Results; Temperature Differential = lOO^C.
E.M.F. of thermocouple = 4»70 m.V.

A standard parabolic curve for a Vacron-Eureka junction was 
fitted after adjustments, between the two calibrated points. It was 
found that the deviation of the curve from the straight line joining 
these two points did not at any point exceed For practical
purposes, the straight line calibration was therefore adopted, (figure 71)
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