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ABSTRACT

The thesis presents a theoretical and experimental

investigation of the buckling of flat rectangular plates when

subjected

to symmetrical and asymmetrical temperature distributions

over their lateral surfaces. These temperature distributions induce

thermal stresses. Under certain conditions the compressive component

of the induced thermal stresses causes the plate to buckle out of its

own plane.

buckling,

PART I is

The evaluation of the critical temperature, which initiates

is carried out in two successive steps.

A solution of the biharmonic equation that governs the
distribution of thermal stresses under stable conditions
is obtained.

This stable state distribution of thermal stresses is
utilised to obtain an approximate solution of the
equation governing the stability of flat plates with
internal varying stresses. This gives the value of

the critical temperature at the onset of buckling.

The subject matter of the thesis is divided into four parts :-

a review of the published literature covering rigorous and

approximate methods which have been used to determine the stable state
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distribution of thermal stresses and the evaluation of the critical
buckling temperature. It also includes considerations of plate

deflections in the post-buckling range with particular reference to
the growth of the plate centre deflection with increasing values of

plate temperature differential.

PART II deals exclusively with the theoretical analysis and evaluation

of the critical buckling temperature.

It includes, as its first consideration, the determination
of the steady state distribution of thermal stresses in the plate.
An approximate solution of the biharmonic equation, governing the
distribution of stresses is presented using the Kantorovitch Method.
This is followed by an original application of the Rayleigh-Ritz Method,
to obtain an approximate solution of the biharmonic equation giving

the thermal stresses in a polynomial form.

This is followed by an investigation of the effects of plate
aspect ratio and the degree of asymmetry of the temperature distributions
on the value of critical temperature. The cases considered have, to

the author's knowledge, not been investigated hitherto.

The numerical work' associated with the theoretical analysis
was carried out on a 'Deuce* Computer using Alpha Code and General

Interpretive Programmes.

PART IITI presents the experimental work carried out in substantiation

of the theoretical methods used in Part II. This covers the
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determination of the critical buckling temperatures and deformations
of aluminium allpy plates, of aspect ratios ranging from one to three,

subjected to symmetrical and asymmetrical temperature distributions#

PART IV discusses, critically examines and summarises the comparison
and correspondence obtained between the theoretically predicted and
experimentally determined values of critical tanperatures and

deformations# It is shown that good agreement exists.

The thesis concludes with six appendices which present

detailed analyses and calculations followed by a bibliography.
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LIST CF SYMBOLS

half-plate length in x direction, in.

coefficients or vectors in series expansion
for plate deflections.

half-plate width in y direction, in.

plate flexural stiffness, ------- 5-

12 (1 —v**)

2

Young's modulus of plate material, 1b./in.
V-1, unless defined otherwise.
plate thickness, in.
integers
temperature distribution in plate, °C.
temperature differential, difference between centre
and edge temperature in 'tent-like' temperature'
distribution (see figure 23), difference betwegn

maximum and edge temperature (see figure 24)* 0.

temperature difference between centre and edge of
plate of reference 6 (see figure 3).

temperature coefficient in a Fourier series.

critical value of T o °C.

complementary energy of heated plate, in.-1b.

potential energy of an initially flat, buckled
plate, in.-1lb.

plate deflection, in.

initial plate deflection, in.



initial plate centre deflection, in.

W plate centre deflectionmeasured from the
x-y plane of plate, in.

X,y coordinate axes.
a/b plate aspect ratio.
®o/ecr ratio of middle planestrain to thebuckling strain,
EoT bt
o

temperature differential parameter.

critical temperature differential parameter.

A
ratio of T to T
o ocr

a coefficient of thermal expansion in./in. °C.
P non-dimensional coefficients.
Y coefficients in stress function 0.
Ek, e normal strains in plane of plate in xand y directions

y respectively.
Cx" 0 normal stresses in plane of plate in x and y directions

Y respectively, 1b./in?

2

T shear stress in plane of plate, 1lb./in.
6 incremental operator,
n variable of integration.
0 stress function.

v Poisson*s ratio.



differential operator,— r +— r
iai ay'”
) ] gé 3
differential operator,— r + r— % +

ax* a&"ay'r of

summation operator.

Numbers in brackets in the text refer to

the publications listed in the Bibliography,

vi
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PART | CRITICAL REVIEW

The determination of thermal stresses and deformations plays an
important part in the design of nuclear reactors, turbines, supersonic
aircraft and other types of structural components operating at elevated
temperatures. This has lead to renewed interest in the subject of
thermo-elasticity which dates back to the first half of the last
century idien Duhame 1 modified the equations of elasticity to allow
for thermal effects.

Elastic thermal stresses in a body can be produced either by
non-uniform temperature distributions throughout the body, or by
restraints at boundaries which restrict the free thermal expansions.
Thermal stresses can also arise when a composite structure consisting
of members with different coefficients of expansion is subjected to a
uniform rise of temperature.

In general, thermal stresses can be treated as a steady state
problem, since even under temperature distributions varying with time,
the thermal inertia effects can often be neglected.

Aircraft structures designed for supersonic speeds are subject to
aerodynamic heating. This is caused by the rapid slowing down of the
air through the boundary layer which generates heat. Thus the external
surfaces of the aircraft are heated. The induced thermal stresses in
plate elements resulting from non-uniform heating may have a significant

effect on the aerodynamic performance of the aircraft.



Lateral deflections of a plate element can arise as soon as heating
takes place if the temperature varies across the thickness but is
constant over its surface. If, however, the temperature is constant
across the thickness of an idealized flat plate element but varies in
a non-linear manner over its surfaces, then the induced compressive
components of the thermal stresses will cause lateral deflections of
the plate to occur only idien a critical temperature is reached.

The behaviour of a plate with initial imperfections will differ
from that of an idealized flat plate. In the latter case, no lateral
deflections occur until the critical temperature is exceeded. A
plate with initial imperfections will deflect as soon as heat is
applied. These deflections will increase rapidly at a non-linear
rate as the critical temperature (a characteristic of the applied
temperature distributions) is approached.

The subject matter of the thesis is this instability phenomenon
induced in rectangular flat plates by non-linear temperature distributions
over the lateral surfaces of the plates.

The published literature of theoretical stress and deformation effects
is very extensive. It is felt that a thesis review will serve a more
useful purpose if it attempts to cover in relative detail, a rationally
restricted range rather than provide brief resumes of a large number of
papers.

Generally, the papers dealing with the thermal stress problem have

been restricted to cases where the induced stresses are self equilibrating.
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That is to say, the stresses on any overall cross-section produce zero
resultant direct and shear load and zero bending moment.

An object has been to show, in some detail, typical methods
used in analysis rather than particular aspects of plate behaviour
under non-linear temperature fields.

The first section of the review (1) deals with the steady state
plane stress problem arising from non-uniform heating. In this section,
the review includes exact solutions of the governing differential
equation. It is relevant to comment here that while Duhamel's***
analogy enables a thermo-elastic problem to be formulated as an ordinary
elastic problem using fictitious boundary and body forces, only a
few problems with body forces have been solved which are of direct
relevance to the problem considered. Owing to the inherent difficulty
of applying this analogy, various approximate methods have been used to
obtain a solution. These are presented in the remaining part of section (1).

The second section (2) of the review is concerned with the instability
of a rectangular plate induced by the compressive component of the induced
thermal stresses. It is essentially a characteristic value problem if
small deflection plate equations are used in the theoretical analysis for
an idealized flat plate.

The final section (3) of the review is concerned with the behaviour
of an actual plate with initial impofactions and where the stretching of
the mid plane is taken into account in the analysis. Of particular
interest is the growth of plate centre deflection with increasing value of

temperature differential across the surface of the plate.



(1) Thermal Stresses in Plates under Stable Conditions

The basic equations of elasticity, modified to include

temperature effects, were deduced independently by Duhamel”***“* and

Neumann” in 1838. The equations were later modified by Hopkinson”#*#

in 1879 who gave the equations in the form used to-day*#**.

If the plate is thin and subjected to arbitrary temperature
distributions over its lateral surfaces then the differential equation

governing the distribution and magnitude of the stresses in the plate
is given by:-
70 = -Ea7%(x,y) 1.1

where 0 is the Airy stress function such:-

At this point it is convenient to divide the published

literature on the subject of thermal stresses into two categories:-

(@) Those giving a mathematically rigorous solution of the

biharmonic equation for a particular temperature distribution.

(b) Those using approximate methods to arrive at a solution

accurate enough for engineering purposes.



(@) Rigorous solutions of the biharmonic equation

A solution of the biharmonic equation has been obtained by
Timoshenko and Goodier**”* for the case of a long thin rectangular plate
subjected to a temperature distribution constant in the longitudinal
direction but varying in the transverse direction. The longitudinal
stress, a*, set up in the plate was deduced as follows. Each element
in the plate was subjected to a compressive stress of magnitude -EoT
in order to suppress its free thermal expansion. This procedure
resulted in compressions of magnitude -EcE acting, in this case, on
the transverse ends of the plate. If tensions of magnitude +EOT are
applied to the transversed edges in order that there is no resultant
force acting at the edges, then the thermal stresses in the plate are
obtained by superposing the effect of these boundary tensile stresses
at points removed from the ends, on the original compressive stress,

-EaT at that point.

If the temperature is not symmetrical about the longitudinal
axis (x) then the tensile forces applied at the ends will not only

have a resultant force, t j EaTdy, but a resultant couple t 3 EoTydy
-5 -5

for the coordinate system shown in figure 23. Therefore, the

longitudinal stress at a point remote from the ends is given by

o Vy = W' 2

where is the compressive stress, -EaT; o"' is the uniform tensile
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Figiire 1(a) and 1(b): Temperature distributions assumed
in Reference 5.



+b
§ EdaTdy due to the
-b

resultant tensile forces on the ends, and ¢ '""is the bending stress

stress across the section given by 0‘; =

N-%}l_a.

b
o' = & § EdTydy due to the resultant moment on the ends.

X bB-b

Den Hartog(5 ) considered the case of a plate of width 'a?
and infinitely long subjected to a sinusoidal temperature distribution
along its longitudinal edges of the form:= T = T o sin 1—3 and
constant on lines across the width of the plate. Thils type of

temperature distribution is shown in figure 1a, where 1 is one half

wave length.

For this particular temperature distribution, the biharmonic

equation can be written as:-

V4¢ = -Eﬂouz sin wx ®sccvcncoe 1.3

where w = /1,

Den Hartog, using classical methods, shows that a sclution
to this equation i1s any biharmonic function plus a particular integral.

In this case, the particular integral satisfying equation 1.3 is:-

EaT_. sin wx
- o
¢p tic] hand 2 [ AN NN NNXNN] 1.4

end that the complementary function could be assumed as:-

¢comp1. = f(y) Bin.h,x [ AN NN NN NX K J 1.43-



If the complementary function is substituted in equation 1.3,
the biharmonic equation is reduced to an ordinary linear differential

equation:-
f”"-ZUZf"*"UAf = 0 (N ENNNRERN] 105

where the primes indicate differentiation of the function with respect

to Y.
The complete solution of this equation which includes four
arbitrary constants of integration, can be expressed as:-

g = sin'l-lx[(01y +02)ew + (03y +04)e-wy -MO] R Y

—2

The constants (11 -0 4 can be found from the boundary conditions at

+a
y /,werexy v

Den Hartog also solved the case of a triangular temperature
distribution along the longitudinal edges, as shown in figure 1(b),

by expanding the temperature wave in a Fourier Series of the form:-

8T
T = _20 zn .1—2c°sEE [N N N R NNR SN 1.7
™~ 1,3,5 B

In a paper published by Klosner and Forray(é)

an investigation
was made into the thermal stresses set up in an airereft wing due to
kinetic heating. They assumed that the temperature over the surface
of the wings varied in both the chordwise and spanwise directions, as

shown in figure 3, and that the wings could be approximated to flat cover
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plates supported at the boundaries by flexible webs which offer no

rotational resistance but remain straight with no transverse deflection.

If the plate is subjected to a temperature distribution

represented by the Fourier Series,

_ = ® smx by
T = T+T +3 2= Tst cos =-=. cos eecccsssee 1.8

where T = difference between average temperature of the supporting
structure and room temperature and T o is the difference between
temperature at the edge of the plate and the average temperature of the
supports, then a rigorous solution of the biharmonie equation can be

obtained by taking the stress function in the form:-

2 2
= X X o smx . oy
[ K, 5 *E, 5 ¢ §:=1 b, cos — + f:' bty cos T
00 0 anmx Hz
+2 2 ¢, cos ==, cos secesee 1.9
s=1 t=1 S a b
where
;7 = FSEEQ 3 + = MOt 3 : = EaTﬂ
S0 Sy 2 ot £, 2 st ST\ 2 11, 2
(= G () + &

It can be shown that equation 1.9 satisfies the biharmonic
equation and the boundary conditions when all the edges remain straight

and the average strain along the edge equals the strain in the support,
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§ eax cesssssees 1410
O

T = [ =
i.e. %x £

1
X av 2a

Hence, the stresses in the plate are given by:-

. o - o . %
Gx = 2 H O'y - 2 H TW = =- scssescenes 1.11
oy ox | dxdy

for the coordinate system shown in figure 2.

The constants K1 and K2 are found from the conditions that
the strain in the supports equals the average strain in the plate along
the edges. Thus the resultant force on any cross-section parallel to

the x and y axes respectively, is:-

23,

2
tg ody = Xt and tg gpdx = et  ceeeeee 1012

These forces must correspond to the forces in the supports,

ioeo Px = -K.lbt and. Py = -Kzat [ XX YR XY X ] 1.13

Therefore the average strains in the supports are:-

+
al
w3}

*

[ AR N NN NN N N ] 1.14

1]
1
.|.
al
|

€
y L

where the bar denotes support conditions and, in particular, I; and.z§

are the crogs-sectional area of the webs.



Along fhe edges, y =0, y = 2b, the average strain can be

found from the condition that

1 28
Cony = ;; g 8x§x
and along the edges x =0, x = 2a
1 52b
€ = —
vav T % 2 Y

Making use of the stress-strain relationships and equating

XN N NN NN NN

1.15

1.16

streins in the webs to the average strains along the edges of the plate,

then the equations for K, end K, are:-

Eu(To +T°°) +E(a - a)T

K1 = vz K K (V +Ky) [ E XN NN ENNN]
Ea(T +T ) +Ela-a)T
o O Q0 -
Kz - 2 (v +Kx) [EXEENNNENNN]
V" <-KK
Xy
where Kx = 1 +'g;§ 3 Ky = 1 +-§¥§
AR AgE

1.17

1.17

After K1 and K2 have been evaluated the stresses in the plate

can be found by using equations 1.9 and 1.11.

In this particular case the method is primarily based on the
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solution of a two-dimensional stress problem in which the loads can be
expressed in the form of a Fourier Series. This method for the
solution of the biharmonic equation is discussed in detail by Timoshenko

and Goodier(16).

(b) Approximate solutions of the biharmonic equation

In many practical problems of thermoelasticity it is difficult
or impossible to obtain a rigorous solution of the biharmonic equation.
Therefore approximate methods have been developed accurate enough for
engineering purposes. One such method used by Mendelson and Hirschberg(7)
makes use of an approximate polynomial form for the stress function in
order to reduce the biharmonic equation to en ordinary differential

equation with constant coefficients. The method used is essentially

a 'collocation procedure! applied to the biharmonic equation.

Reference (7) is of interest since it gives numerical examples
of the stresses set up in flat rectangular plates due to spanwise and
chordwise temperature distributions over the lateral surfaces of the

plate.

In this approximate method the stress function is assumed to

have the form

g

= Py(y) #,(x) vesesecses 1418
j=1

in which Pj(y) is a polynomial in y only, associated with the jth station



Figure Li Coordinate system used in Reference 7, and the
stations where the differential equation
is satisfied.
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and satisfying the conditions:-

Pj(yj) = 1 3 Pj(yi) = 0, j # i. ecscscscere 1.19

At the edges of the plate, y = ~1, shown in figure 4 where o =T, =0,

P() (1) = 0 and PEJ) (£1) = 0 seveeseese 1.20

2
must be satisfied to ensure that o = _ﬁ and T = - M holds for
T oax? N axay

any ﬁj (x). Polynomials for P( 1) satisfying conditions expressed in
equations 1.19 and 1.20 for even functions in y (i.e. symmetry about

y = 0) can be obtained and are of the form:-

Py(y) = —— Tl *- yiz)

[ AN RN NNN NN 1.21

and for odd functions of y (i.e. snti-symmetry about y = 0) the

polynomigls are of the form:-

0 ~ - TT
P,(y) = 1 36°%-5,%
j (sz 12 1A i

I XN NN N NN N N ] 1.22

_ 2 2
I_Ij (yj -yi)



Figure 3;

Chordwlse dlatanre measured frnn renter]Ine,
y, aemlchords

Comparison of diinensionless stress for several
methods of solution. Chordwise stress O
plotted at free end, x = o; spanwise stress
0x and Txy plotted at i- chord from free egd, 1

X = plate thickness constant; T =T*(y - Jj).
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whereT'r indicates the product for all values of i except i = j.

Substituting equation 1.21 or 1.22 in the biharmonic equation
leads to a set of simultaneous differential equations:=-

1t " " TR - 2
Z§=1 [Pj(y,_)ﬂj + 2B (7))l + By (yi)ﬁj:' = v EaT(x,yi):l
®scccccvee 1023

Mendelson and Hirschberg have evaluated the thermal stresses
in a semi~-infinite thin rectangular plate subjected to a symmetrical
temperature distribution T = To(y2 - %) for the coordinate system shown
in figure 4. This particular temperature distribution has a zero mean

and  first moment : about the x-axis.

The stresses remote from the end(u are:=
0 = EaT (l - y2) ; 0 = 0 ;3 7T =0 . 1.24
x o 3 1 y m L E N E R NNNN ] [

At points near the free end (x = 0) the stress distribution

is modified by the condition that the edge, x = Q, remains stress free.

The stresses near the free end can be obtained if the stress

function is assumed to be:=

g

P1¢1 +P2¢2 s0ccccvene 1.25

i.e. a two station solution.

The stations were chosen at the points 4 =% and y2 =%



panw ,me fltreai

Choi dvlee fitr !6f

-

Dlfltftnce from free edge, x, senlchords

Figure 6; Comparison at mid-chord for two and
solutions. Stresses for parabolic

2 1
distribution, T = T*(y - %).

three station

temperature



and the polynomials associated with these points are:-

.,
7 -G - %)
P, = L = -2—12(y2-1)2(y2-126-)

1 2,1 225
(g -V Gz - )

(5% - )P - )

- = 52 R _ PR - L
P, s 0 =167 - 59

2 1
& - N(E -9

1.26

The values of P1 and P2 and their derivations, at y = % and

=1 -3

1 =% Y2 =%
P, = 1 P, = 0
P.]” = -50564 P.;' = 80089
P1'”' = 88,75 P1"" = =320.8
P, = 0 P, = 1
P; = 8.57 P; =  =22.78
P! = .282.1 P!"' = 1599

2 T TeRs 2 7

[ X N R NN NN N

Substituting these values into equation 1.23 two linear

1.27



Figure 7; Spanv;ise stress, two station solution,
plate subject to parabolic temperature

distribution, T = Tg(y”* - 3Jj).
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simulteneous differential equations are obtained:-

111 (1] 11t

n

-2EaT
o

16.186" - 320,86, + 4" - 45.550,' + 15990, = -2Bal

2

P

e sosocoecse 1.28

The particular integrals of this set of equations are:-

= -0.0732,Eal, 3 ¢2p = 0.,01595EaT sieee 1429

and the complementary function is obtained by the usual exponential

subgtitution, Thus the complete solution is:=-

%

2

o
= b e - 0007324— EaT
" 0

[ X R R NN NN N ] 1.30

O
2 Be = 0.01595 E aT
k=1 % °

where kk are the roots of the determinental equation and are equal to

= =2.120 + j 1.117 Ny = =5.682 + ] 2.681
= \1 KA = LB
= _)\1 = ..LB
= xs LS = 7~7

the bar signifying complex conjugate quantities. Bk is given in terms



Distance from
free edge.

semichords
1.0
Chordwlse distance measured from centerline, vy,
semichorda
Figure 8; Shear stress, T*; two station solution, plate

subjected to parabolic temperature distribution,

A

i= - 5).



of Ak. as follows:-

4 2
- 11.13 + 88.75 '
Bk - -Lk zllif Ak C¢scccncsce 1032

The values of the A, 's can be found from the boundary

conditions: =

o, = Txy = 0 at x=0,
which implies:
$,(0) = g3(0) = g,(0) = gy(0) = 0 eeeneenes 1233

The conditions at the end of a finite plate of length 2a are:-

Q
]
|
]
o

which again implies that:

fi(20) = fi(2a) = B,(22) = Pi(2a) = 0 eeeceiinnn 134

From these conditions the eight values of Ak can be found.
If the plate is infinitely long in the 'x! direction then A5,
A6’ A7 and AS must vanish in order that the stresses remain finite.

Thus the values of the Ak's are:=

(0.0365 - j0.07114)EaT_ 3 A, = K,

N
I

[ AR NN RN NN X ] 1.35

AB = (0.0003671 + jO.OOO1926)EuTO 3 A4 =A3

15



Distance from
| free edge, ‘
X,
R semichords
0.5
[ —
1 T
[.9 —l /
o a — AV f E—
X =T TP
§ -.1 1’// R
H] .2__/ ///
g - L ‘
- A .
] d !
4 .1 7 -4 .
- !
2 =t / L
8 %
K /4
a T —t—
i L/
a -4 /0/ S
-5 .2 .4 .6 .8 1.0
Chordwise distance measured from centerline, y, ,

semichords

Figure 9: Chordwise stress, O y; two station sc.)luti..on,.pla.te
subjected to parabolic temperature distribution,
- 2_1
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After adding all the complex conjugates the imaginary parts
drop out. The final solution is:- | |

¢1 = 23'2’120x [0.03625 cos 1.117x + 0.07114 sin 1.117x] E aTo
+ 26-5.682x l: .008941 cos 2.681x - 0,0001926 sin 2.68‘!2:]EaT<>

- 0.01595 Eo.To

2e [0.008941 cos 1,117x + 0,01294 sin 1.117::] EaTo

=,
V)
|

+ 23—5.682:: [0.0009662 cos 2.681x + 0.0001790 sin 2.6811] EaTo

- 0.01595 E GTO
esceccsssse 1036

and the stresses given by:=-

- 1) 11t . = 3] "n = - [ P78 | - 1A}
Op = By By *P 8, 5 0, = P+ P gy 5 T P, - B P,
LR N N N X N N N N ] 1.37

The authors show that at x = o,

;éi1 = -0.07324Eal, ; f#, = = 0.01595EeT

L | SP] EE) | B . _ _
| and crx = EaT o (% - y2) s Which is identical to the expression for

the longitudinal stresses in a plate at a point far removed from the



by |

N
e

Figure 10: Coordinate system and edge loadings (Ref. 8).
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ends using methods of reference (4). This distribution of stresses in
a flat plate, subject to a parabolic distribution T =T o(yz - %) over
its lateral surfaces is shown in figures 5, 6, 7, 8 and 9. These

figures have been reproduced from reference (7).

In a paper published on the end problem of rectangular strips(s),
Horvay points out that variational methods developed by Timoshenko and
others in the 1920's give only average stress values. Reglions of rapid
stress variations and stress concentrations cannot, because of the

averaging properties of the method, be adequately dealt with.

In his paper Horvay shows that the problem of a flat plate
subjected to temperature distributions, varying in the y-direction but
constant in the x-direction, can be reduced to the problem of the

stresses set up in an infinite plate given by the equation

1 1
- 1 2
o'xm = =EaT + 2 {1 EaT @' + 2y .{1 EGTY dy TR YRR XY Y 1038

i c (o4 t by the b
together with the stresses, x,? ¥4 and 1§Yd set up by the boundary
stresses that must be applied to ensure the transverse edge is stress free.
Thus the problem is reduced to & long plate, as shown in figure 10,
loaded on the transverse edge by stresses -0, . A solution for the
o

stresses in the plate can be obtained using the method of self-equilibrating

polynomials.

Horvey assumes that the stress function @, satisfying the

biharmonic equation v_l"ﬂf = 0, can be expressed as:-



n
ﬂ(x.y) = i!=2 C, £,.(v).g (x) cessessses 1439

and that the complementary energy of a heated plate may be written as:-

2 24 2
G o= L st [(_ﬁ) +(_2ﬂ) - 2y 2 S Q_ﬁ+2(1+v)(§_9_)
ZE o -1 ox Gy axdy
2 2
+ 2EaT (Q'g + g'g)] dx.dy eessccccse 1.40
oy ax v

Substituting equation 1.39 in 1.40, n - 2 equations are obtained which
efter minimising by means of the calculus of variation yields a
differential equation for the K™® term of # :~

o 2 Vo2
g ' - 2 {: (" aweg S @@ = 0 e 1

The stresses due to the boundary loadings are therefore
given by:-
6. =z C f'g ; o =Xoc ¢ --c—-ch 1442
x, TR Y TR P Ty i B 4

At the free edge x = O, Bl is made equal to unity. The stress function

at the edge (bar above quantity denotes edge value for x = 0) becomes

n
B =z 05,00 = 5,050 cevecernes 1043

18
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The y functions, fk’ are chosen as polynomials which constitute
an orthonormal and orthogonal set:- |

1 2 1
i.e. _5_1 (£,) & =1 and ,_{1 fi-fpqd = 0
and at the boundaries, y = :1 , satisfy the conditions
+ - ] + - .
fk(-1) - 0 and fk(-1) - 0 seecse 1.44
Also, the even polynomials have the property that
1 11
§ f o dy = 0 ‘ cecesscase 145
-1

which gives zero stress resultant along the edge x = 0 and zero resultant
moment since fk is an even function in y. The odd polynomials have the
property that

1

51yf]:dy =0 RPN 7

which gives zero resultant moment and the odd properties of the function

ensures a zero stress resultant.

Horvay has established that this set of self-equilibrating

functions satisfies the differential equation
2,2 i 2yttt 2, 0" ! -
(1-5%) £ <= 10y(1-3%)2™ + (A =-22)(1-57)2" + (12-4\)yf =222 = 0

wvhere AN = (n +2)(n + 3) cecescccss  1o47
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The properties of fk have been investigated and tables can be

found in reference 9.

The expansion coefficients, 62, c 4 eoee Gn, can be determined
by considering the self-equilibrating boundary stress system which can
- n
be equated after integrating twice, to the stress function #(y) = Z, Cpfy

at the free end. Thus:

B = Sydn.SHE (n)an, = B +By° cues Bkv'k
(even) 4 o X 1771 o T P

(even)

= szz *04£4 s Cnfn seessccece 1048

and

- |
g = fan s a (0,080, = BT * BoY° eeee By 7
(odd) o "l gy MM {74 By k-1

= Cyfy + Oy veea O ,f

The same result can be obtained by integrating the boundary
stresses on the free end and satisfying the boundary conditions, B = B'= 0,
at y = 1. The stress function can then be resolved into its odd and
even components to give the same results as sbove. Thus the expansion

coefficients, 02, 03 esee C p? Con be determined from the condition that

1 1

c, = _5.1 Boyen ny  and C . = {1 Bogq fnq &  eeeeeee 149



Figure 11:

Plate dimensions, coordinate system and
'tent-like' temperature distrubution,
analysed in Reference 10.




- This can easily be proved by multiplying equation 1.43 on both sides by

fn and then integrating between limitg:-

1~ 1 1
i.e. 51 ¢evenfndy = 5'1 czfzfn ecee 51 Cnfﬁdy eeccocnscen 1.50

The condition of orthogonality ensures that the cross product terms

ol
51 Géfzﬁndy = 0 and the condition of orthonormality ensures that

| l j‘fnzdy =1 1.60

Thus

Likewise for the‘odd components.,

These expansion coefficients have been evaluated with respect
to <ykfn> end tabulated for k, O to 11 and n, 2 to 9 in Table 1B of
reference 9. It should be noted that the coefficients are zero for
k +n = odd number, Reference 9 also gives the tabulated values of

fn(y) and gn(x) and their derivatives.

According to Horvay these tables permit rapid solutions in
numerical form to be found for flat plates with self-equilibrating end
loads acting in the plane of the plate providing the end load can be

expressed in polynomial form up to and including the ninth power.

Another method of approach to the solution of the biharmonic

equation, the Kantorovitch method developed by Heldenfels and Roberts(10),
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Figure 12; Longitudinal direct stresses, induced by-

temperature distribution of figure 11.



assumes that the stress function can be expressed as g = f.g., where £
is a function of y only and g is a function of x only. An abproximate
solution of the biharmoniec equation can be obtained by selecting a
function f and then using the principle of minimum complementary energy

to obtain the best approximation for the function g.

Heldenfels and Boberts(1o) have used this methcd to determine
the thermal stresses set up in flat rectangulaf plates subject to
'tent like'! temperature distributions over their lateral surfaces. Using
this method, the stress function is obtained in a fairly simple functional
form. This is useful when the buckling of flat plates by the induced
compressive components of the thermal stresses is to be investigated.
As this is the principal method used for the determination of the stress
function, detailed analyses and calculations are given in Part II and in

Appendices 1, 2 and 3 of the thesis.

The results of the above spproximate theoretical analysis
have been verified experimentally by Heldenfels and Roberts using
Baldwin-Lima AB7-#" length bakelite-bonded strain gauges attached to
a3' x2' x+" aluninium alloy plate. Reference 10 states that agreement
between measured and computated stresses are within M 500 lb./in? and
that good agreement exists between the experimental and computated
longitudinal stress, dx. Only fair agreement was found between the

computated and experimental transverse and shear stresses.

Reference 10 indicates that the error in the later cases can
QPP'*ommn.hnns

be attributed to ewwads in the analysis rather than errors of measurement.
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Figure 14: Longitudinal distribution of stress, dy.




Theoretical and experimental results are shown graphically in figures 12,
13 and 14.

(¢) Critical discussion

It has been shown that only in particular cases can an exact
golution of the biharmonic equation be obtained. A typical example is
the case of a semi-infinite plate treated by Timoshenko and Goodier(4)
in which the stresses in a flat rectangular plate are given at points

far removed from the free ends.

Approximate methods must be used if the value of the siresses
near the stress free transverse edges are required. Reference 7, using
the collocation method, shows graphically the variation of stresses in a
plate subjected to a parabolic temperature distribution T ==T°(y2 - %0.
Using only one station in the collocation method, the stresses are not

grossly in error compared with the two and three station solution.

A comparison is also made with solubtions in which the stress
function is expressed in terms of an infinite series. If two terms are
taken, Beference 7 states that the boundary conditions are satisfied
only in an average manner. Nevertheless the agreement between the two
methods is remarkably good. Also shown in figure 5 is the solution of
the biharmonic equation using energy methods. Agreement with the other
two methods is generally poor, especially at points near the transverse
ends. This bears out the remarks of Horvay in reference 8 in which he

states that energy methods give only average values; the values of

23
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stresses in regions of rapid stress variations are usually underestimated.

Horvay's method for the solution of the biharmonie equation 1s
similar to the method developed for the particular case of thermal
stresses in flat plates by Heldenfels and Roberts. The difference lies
in the choice of f(y) part of the stress function. Heldenfels and
Roberts use for their £(y) function, a function proportional to the
stress function for an. infinite plate, whereas Horvay takes the f£(y)
function in the form of a series of self-equilibrating polynomials,

(12) points out that in the method of Horvay, the variation of

Singer
complementary energy is carried out with respect n - 2 parameters,
This method should therefore give a more accurate result than the method

of Heldenfels and Roberts in which there is only one variational equation.

Singer says that this statement must be qualified by two
remarks. Firstly, the calculation of the complementary energy implies
orthogonality of the derivatives of the function £(y), i.e. £'(y) and
£''(y) . However, only the functions f(y) are orthogonal. Horvay,
however, assumes that the coupling terms, _3:: f]': f]': o end ,_q fll' f];'+2d,7
are negligible for engineering purposes.

Secondly, Singer points out that Horvay's solution is not
valid for short plates since the effect of self-equilibrating loads on
the far end become noticeable when the penetration length is of the same
order as the half-length of the plate. Generally this solution is in

error for plates of aspect ratio less than 2.

Using both the Horvay and the Heldenfels and Roberts method,
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(12) has

Singer evaluated the stiresses in a flat rectangular plate

subjected to a 'tent-like' temperature distribution:-

T

i

T°(1-y) valid for 0<y <1
T

T, (1+y) validfor -1 <y <0

A comparison of the strésses is shown graphically in figure 15. It is
presumed that Singer expressed the end loads (i.e. -0y ) in a polynomial
form by making use of Legendre Polynomial Expansion to :nsure a
continuous function over the range, y = 21 « This overcomes the
difficulty of the discontinuity in the edges stresses at y = 0 resulting

from the 'tent~-like'! temperature distribution.

The conclusion that can be drawn from the methods reviewed is
that the method developed by Heldenfels and Roberts and the collocation
method are suitable if the stresses are required in a functional form.
On the other hand, if the numerical stress distribution is required
rapidly, it appears that the method of Horvay shows uwp to the best

advantage, providing the aspect ratio of the plate is greater than 2.

The collocation method becomes complicated if more than a
two station solution is used. Therefore, the method of Heldenfels and
Roberts which gives a solution in simple functional form has much to
commend. It is for this reason that this method has been used in the
theoretical analysis (Part II) where applicable.
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2. Thermal Buckling of Flat Rectangular Plates

One of the first papers to investigate the thermal buckling

of flat plates was published in 1952813) by Gossard, Seide and Roberts.

They considered a flat rectangular plate simply supported
along its edges and subjected to a 'tent-like! temperature distribution
over its lateral surfaces. Although this type of temperature
distribution is rarely encountered in practice (usually of exponential

form), the analysis is applicable to any type of temperature loading.

As the temperature differential between the cooled longitudinal
edges and longitudinal line source of heat increases, a value will be
reached when the plate will buckle out of its own plane due to the

compressive component of the induced thermal stresses.

If small deflection theory is used, and the streas
distribution does not change at the onset buckling, the critical
temperature can be found by methods appropriate to the stability of

flat plates with varying intermal stresses.

The deflection of the plate is governed by the differential

equation:-
2 2 2
vl"(d = l_g‘ dxg";" + Gy'a_i"z' + 2Tx ] ecsssccses 1-61
ox ay ¥ axdy

and the internal stresses given by the stress function using the method
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Figure 17: Coordinate system and assumed buckle pattern
used in reference 13.




of reference 10 is:-

b%EuT |
g — [1 3(5) +2():]B sich R, g sin R, 5
+B, cosh&1§cos R2§+1J eseececsss 1,62

where B‘],B2 and R1 ,13.2 are defined in reference 13 and Appendix 4.

Using the principle of minimum potential energy, in conjunction
with the Rayleigh-Ritz method, the critical buckling temperature can be
found at the point of instability of the plate. To obtain a solution,

reference 13 assumes a symmetrical buckle pattern about the centre of

the plate:-

(=] oo

. - i p o _E
W = b1 coS3 _cos sessscessse 1.63
m-1’3 5 n—1,3, am 2a 2D

and that the potential energy of the plate is:-

b 2 2
D 7w 97w 9% .
v =2 fa sb{(ww) 2(1 )[ax2ay2 e ]}axay

2

2 2
aw 3w W W
o + 0 2 == |dx,
§ 5 (= T3 2Ty = dy

Nld’

es00s0cece 1.64
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Since the variation of potentiel energy is stationary at the

onset of buckling then:-

—6-1- = 0 (for m= 1,3,5 s = 1,3,5) sccccsccen 1.65

o™

This procedure leads to a set of linear homogensous

simultaneous equations of the form:-

1 co )

K
ocrt/ 2D

a + E 2 K = o [ XXX} 1.66
Pq°Pa " 5oqi3,5 ne,3,5 PER WD

bZEa.T

P=1,3,53 q=1,3,5
where K = 1(p29+q2§ 2
Pq 4 a b

qumn = p[m Anq( ByDyp + By By * Fmp):l

+ q[n c:nq(n11mp +D, Jmp)+ mBqn(DBGpm + D4Hpm):|

and B1 ’BZ’D1 to D4 are defined in Appendix 4.
Gossard, Seide and Roberts found for a plate of aspect

ratio 1.57, the lowest value of the critical temperature parameter to be:-



APPROXIMATE SOLUTION IREF 1iT

SOLUTION OF EQUATION (22)

Figure 18; Variation of thermal buckling coefficient, K*,

KH
with asoect ratio where T a
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Klosner and Forray(6) have investigated the buckling of a
flat rectangular plate simply supported by webs at the edges which

remain straight and do not deflecth laterally and offer noirotational
support . In particular, they investigated the case of a plate with

parabolic variation of temperature over the plate of the form:=-

T =T +T, [1 - (Li—g-)z :][1 - (y—i—b-)z] cesesssces 1,68

where T1 is the difference of temperature between the centre and edge
of the plate, and To is the difference of temperature between the webs
and the edge of the plate. A further simplification was introduced

by making the cross-sectional area of the webs large compared with the

cross-sectional area of the plate.

Under the action of the induced compressive component of the
thermal stresses, the plate, at some value of critical temperature, will
buckle out of its plane. = Using methods similar to those used by
reference 13, Klosner and Forray have evaluated the critical buckling
temperature for the above problem, using the stress function in a form

defined by equation 1.9. The results of thelr analysis are shown
graphically in figure 18,

It can be seen that if To is large compared to T1, then the
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effect of the self-equilibrating stresses in the plate are negligible;
the plate acts as if it were uniformly heated but restrained at the
boundaries from expanding freely. The results agree with the method
used in reference 15. When the ratio of TO/T1 is less than 2, then
the effect of the self-equilibrating stresses in the plate becomes

dominant and the analysis of reference 15 is no longer applicable.



A

3. Post-Buckling Analysis

It is well known that & plate after buckling will in many
cases carry, without failure, loads several times greater than that
to initiate buckling. In an analogous manner, a plate will sustain
a temperature differential greater than that to initiate thermal

buckling before failure occurs.

If the lateral deflection of a plate becomes large, i.e.
becomes comparable with the thiclkmess, then the assumption that the
mid-plane remains unstressed, no longer holds. In this case the
Von Ka&méh large deflection plate equations must be used to evaluate

the stresses and deflections. They are of the form:-

2

- 2 2. .2
V4¢ = —Eﬂva*E (% _-g;&-’l.g;%J 000000 1.69

2 p 2
t 9w 9~uw o w
v 4'.\, = = o- caam— .'.a‘ ———— +2T ———— [ X ENEXRENN X 1.70
DL=Xax? T gp° Xy axﬁy]

where the terms in the sguare brackets in equation 1.69 arise from the

stretching of the mid-plane.

Equations 1.69 and 1.70 nmust therefore be solved simultaneously
to obtain the stresses and deflections. Reference 13 has obtained an
approximate solution of these equations using the Galerkin(14) method.,

A simplification was introduced to reduce the amount of numerical work

to reasonable proportions by assuming that the shape of the large
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deflections were of similar form as that predicted by the small deflection
theory.

After a large amount of involved numerical work, reference 13
obtained the variation of plate centre deflection with the plate
temperature differential., Taking initial plate deflections into
account reference 13 obtained the following equation:-

EaT b% W W - W

0

S = 59 (1 -gB) 12 (1 - AEFE

c t

from which the growth of centre deflection with increase in temperature

differential for a plate of aspect ratio, 1.566, can be obtained.

Figure 19 reproduced from reference 13 shows the experimental
and theoretical plate centre deflections, We il PP plotted as a
function of temperature differential, To‘ The values of a, v, t, b

and Wic used in reference 13 to plot the theoretical curve were:-

a = 0.127 x 10°%/%., v = 0.33

t =0.25 in., b =11.54dn., W, =0.045 in,

(18)

Gatewood has suggested that it may not be necessary to

solve the large deflection equations for the thermal buckling and
deflection problems In reference 18, equation 1.71 has been

re~-arranged into the form:-
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| T e ‘ D

| = 0 2 N 2

: RI = T . + ] - Di csesccssse

1= eQ/ecr

where D, = .
2.32t

this equation 1is identical to an equation derived in this reference,

;
% the mid-plane strain approach results in the value of D, as:-
i

wic

i [ E X RN NNEXNNEN ]

] ; 2.42t

Thus the determination of the growth of plate centre deflection with
increasing temperature differential requires only the evaluation of

the critical temperature and the value of eo/'ecr from equation 1.72

for particular values of To/T . Using this result in the following

I
i
|
|
$ equation:~
[

ocr
W
w = ic ] [ A NN NN ERNN] 1.74
° 1-680
o/e

i
i
§ cr
i
5

the value of the plate centre deflection can be obtained for a plate

L with an initial centre deflection H&i‘for values of temperature differential

1p to the critical buckling temperature, g
{

!
!}.

j Except for a different value of Di’ reference 18 shows that

based on mid-plane thermal strains. The method of reference 18 using

1.73

Gatewood has suggested that the simplest method of solution
is to graph equation 1.72 with Di as parameter. This graph, reproduced

from reference 18, is shown in figure 20. For particular valueg of RT
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and D;, the value of eo/ecr can be read directly off this graph, and

hence the plate centre deflection can be found.

The preceding pages have outlined briefly the method used in
the thermal stress and buckling problems. At this point is is of
interest to outline some of the cases that have not been fully

investigated hitherto.

It appears that little work has been carried out on the
influence of the aspect ratio on the critical buckling temperature of
plates, particulafly short plates. For plates of this size, the
condition that the edges remain stress-free necessitates a modification
of the longitudinal direet stress which introduces transverse and shear
gtresses. Undoubtedly, this will affect the critical temperature
initiating instability in the plate and might have some practical

significance.

To complete the buckling investigation it will be of interest
to show the effects of the degree of asymmetry of the temperature
distributions on the value of criticsl temperature, Finally the method
proposed by Gatewood for the detefmination of the growth of plate centre
deflection can be verified experimentally. Providing that this simple
method gives results in agreement with the experimental values, and
values obtained from a solution of the large deflection equations, then

its use is justified for practical calculations.



PART II, THEORET ICAL ANALYSES

In this part of the thesis the effect of plate aspect ratio
and the degree of asymmetry of the temperature distributions on the
critical buckling temperature of plates is investigated.

The evaluation of the critical temperature is carried out
in steps corresponding to the stages through which a plate passes as

the temperature differential increases.
They are:

(1) Distribution of induced thermal stresses.

(2) Thermal buckling of flat rectangular plates.

The first step (1) is concerned with the distribution of the
thermal stresses due to a steady state 'tent-like! temperature

distribution before the onset of buckling.

The Kantorovitch method(14) developed by Heldenfels and
Roberts(1o) has been used to determine the thermal stresses and has
been extended to deal with esymmetrical 'tent-like'! temperature
distributions. Since the Raylelgh-Ritz method(14) is frequently used
in elastic problems it was thought worthwhile to investigate the use
of this method for the determination of the thermal stresses induced
in a plate as a result of a 'tent-like! temperature distribution., The
fact that the results obtained agree with results of the previous

analysis, as will be shown later, provides some indication that both
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methods give satisfactory results.

The second step (2), the evaluation of the eritical temperature,
has been carried out using an original application of the Galerkin method

in which both forms for the distribution of thermal stresses have been used.

The final part of the theoretical analyses is concerned with
the use of an electronic digital computer (English Electric 'Deuce') to

carry out the numerical analyses of some of the cases investigated.
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Figure 21 : Coordinate system for symmetrical heating of
the plate.
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Figure 22; Coordinate system for asymmetrical heating of
the plate.



1. Thermal Stress Analysis

(a) Kantorovitch method - single product solution

Consider a flat rectangular plate heated along a longitudinal
line and cooled along its longltudinal edges, as shown in figures 21
and 22.

In the analysis for the induced thermal stresses the following

assumptions are made:-

(1) The plate is free to expand in its own plane.

(2) There are no external forces acting on the plate.

(3) The plate is thin and may be considered to be in a state
of plane stress.

(4) The material properties of the plate are constant in the
temperature range of interest.

(5) The stresses are within the elastic range of the
plate material.

(6) The plate does not buckle out of its original plane.

Using the Airy stress function, the stresses in the plate can

be expressed as:-

ssosccesod 2.1

37



Figure 23; Temperature distributions, symmetrical cases
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Figure 2L\ Temperature distributions - asymmetrical cases.
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and are governed by the differential equation:-
Vl"ﬁ - —Eava (IOY) XXX EXXXX) 202

If a 'tent-like! temperature distribution is chosen (figures

23 and 24), then equation 2.2 can be simplified to
|

a*T

v4¢ = =Ea -_-2- XXX xx 203

dy

The following analysis to determine an approximate solution
of the biharmonic equation is similar to the method developed by
Heldenfels and Roberts(1o). An approximate solution of equation 2.3
is based on the assumption that the stress function @ can be expressed

in the single product form:-

¢ = f(Y)-g(X) ecocssssee 2.4

where £ 138 a function of y only and g is a function of x only. The

stresses in the plate, using the Airy stress function, are:-

(e} = ' H g = "f d < = - 'f' ecvcscesse e
g 3 9 g and T, g 5

where the primes indicate differentiation with respect to the appropriate

variable.

An approximate solution of the biharmonie equation can be
found, as shown in the analysis, by selecting a functionf(y) and then

using the principle of minimum complementary energy to determine the
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best value for function g(x).‘ The accuracy of the solution is

necessarily dependent on the original choice for the function f£(y).

The complementary energy of a heated pla.te(21) can be written

asti=—
R N o S + o+ mar(a, +.)|
U —2E-a.-b x+y-2vaxay 2(1+v'cxy 2EaT (0 yd.xdy

(AN ER N NN R A ] 2.6

If the temperature distribution across the surfaces of the
plate is taken as T = X.Y, where X is a function of x only and Y is a
function of y only, then substituting equations 2.5 and 2.7 in

equation 2,6, the complementary energy becomes:

v = j; _5:{-&182 +A2g"2- 2V A3gg" + 2(1 +v) A48'2
+ 2Fa (AXg + AXg'') } ax ceveseses 2.8
where
A = {:(f")?’dy b, - {:(f‘)zdw
A, = {Z 22y b, = {:If"dy

Sbff"d e’ ® | Sb
= y = -A = =4 A, = Yf dy
b =2 [ LM T g = 2

LR R N K NN NN 2.9
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The complementary energy can now be minimised by means of the
calculus of variations. This leads to the following linear differential
equation for the function g for the particular case of X = constant.
(Full details are given in Appendix 1).

Azg""-2A4g"+A1g = -EaAJ cesesseces  2.10

In the cases considered, the temperature distributions across
the plate vary in the transverse direction but are constant in the
longitudinal direction (figures 23 and 24). This can be represented

by the equation

T = TOI(Y) secsccsonvee 2.11

A suitable choice for the function f is the stress function

for an infinite plate(4).

i.e fU = ¢ where
xoo
1 fb 5b
4) = -EaT + — EGTW "' EGTy.d.Y essecssosee 2012
xco Zb =D b3
Integrating equation 2,12 twice yields:-
£ = Sa dy.dy + 8,37 +8S, cecescssss 2.13

The constants of integration can be determined from the boundary

conditions at y = :t), wvhere £ =£' = 0. Making use of these conditions,
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the constants of integration can be evaluated and also integrals

represented by A1 R Az, A4 and A6.

The complenentary function, 8! of equation 2,10 can be

expressed as
8, ~ 01 sinh rx sin sx +02 cosh rx cos sx

+03 cosh rx sin sx + C, sinh 'K COS 8X  eseeecsese 214

4
where — (r + ja) and (r - js) are the roots of the auxiliary equation:-

4 2 =
Azn'l - 2A4m "'A.l - O (EXEENNNRX ) 2015

The particular integral of equation 2.10 is

Ealg
g = -

» T TR

= 1 L N N N N J 2.16

since -E aA6 = A1, as shown in Appendix 2. Therefore, the complete

solution of equation 2.10 is

g = gc +gp (AR NEK X R XN NN 2.17

i.e« g = 1+(}1 sinhrxsinsx+02coshrxcossx

+63 cosh rx sin sx +64 slnh rx cos sx

where the constants 01, 02, 63 and C 4 are constants to be determined



from the boundary conditions at x = Za where g = g' = 0. Using these

conditions, the values of these constants are:-

r sinh »(ra) cos (sa) = s cosh (ra) sin (sa)

C ——

1 r sin (sa) cos (sa) + s sinh (ra) cosh (ra)

s _ r cosh (ra) sin (sa) + s sinh (ra) cos (sa)

2 r sin (sa) cos (sa) + s sinh (ra) cosh (ra)
04 = 03 = 0 eceesceses 218

Thus the distribution of siresses in the plate is given by

the following equations:-

o, = me {1 +C, sinh(rx) sin(sx) + C, cosh(rx) cos(sx)}
ay = { ) t‘.\'xm dy.dy + S,y + 82} {0.7 sinh(rx) sin(sx)
+ Cg cosh(rx) cos(sx)}
Tey = - {S c’xmdy + 31} {05 sinh(rx) cos(sx) + 06 cosh(rx) sin(sx)}
where (35 = 013 + 021' 3 06 = C1r - Czs 3 07 = 01 (rz-sz) - Zer.s. H

08 = 2C1rs + 02(1'2 - 32) [ XN Y XN 2019

42
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Figure 25: Primary stress distribution, o

symmetrical case, c = b.

Figure 26: Primary stress distribution, a*;

asymmetrical case, c = *4-b.
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In the case of asymmetrical 'tent-like"temperature distribu-

tions, as shown in figure 2/, the temperature can be expressed as:-

T = II (N N N N NN NN N ] 2.20
where X = To(constant) 3 ¥ = Y/eforo<y<e
and Y = 2 -7 for ¢ <y < 2b.
op ~ ©

At the point y = ¢, for the coordinate sjstem shown in
figure 24, a discontinuity occurs in the temperature function. This
requires that the integrals A1, A2, 44 and AE must in this case be
evaluated over the two sets of limits, O to ¢ and ¢ to 2b respectively,
and then added together to give the integral between the boundaries

O and 2b.

For the same reason the f(y) paxrt of the stress function will,
in general, have different forms in each domain, The derivation of

the stress function for all the cases considered is given in Appendix 3.

To simplify the algebraic analysis, the stress function can
be evaluated for particular values of ¢ = b, 3/Z..b, b/2 and b/L which
corresponds to various degrees of asymmetry of the temperature

distribution.

Figures 25 to 28 show the variation of the primary stress,

g, for the above four cases considered in the investigation.
o :



Zb

Figure 27; Primary stress distribution,

asymmetrical case, c = b/2.

2b

Figure 28; Primary stress distribution, o

asymmetrical case, c = WU*



Symmetrical case, ¢ = b

For 0 <y <b (Coordinate system shown in figure 21)

6 = szaTo

2 3
{1- 3(%) + 2(%) Ha +C, sinh(rx) sin(sx)

+ 02 COSh(rX) COS(Sx)} evsess eese 2.21

Asymmetrical case, ¢ = 3 /4D

For 0 <y <3/41;

2 3
= vEar {F @ -2% @} +0, ston(rx) sinsz)
+C, cosh(rx) cos(sx)}

L BN 3 N N N N ] 2.22
For >//b <y<2

2 3
9
g =vBer, {-F+2i@-2D +FD+

C, sinh(rx) sin(sx) + C, cosh(rx) cos(sx)}



As etrical case, ¢ = b 2

For 0 <y < °/2

2 3
¢ = v¥ser (3@ -Z @ {1 +0; stan(ra) sin(ex)

+C, cosh(rx) cos(sx)}

For ©/2 < v < 2b

2 3 |
g = b°E oT_ {___+._(z) -'L(%) +-72§(%)}{1+

C, sinh(rx) sin(sx) + c, cosh(rx) cos(sx)}

Asymmetrical case, ¢ = b[é

For0<L<_/4

2 3 '
$ = VRer L@ -2 @7} {1 +c, sinn(rx) sin(sx)

+C, cosh(rx) cos(ex)}

For °/4 <3 <2b

g = b2w -5z +d @ - L 1) + &3 s

C, sinh(rx) sin(sx) + c, cosh(rx) cos(sx)}

1

45

2.23

Re24
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(b) Rayleigh-Ritz method - polynomial form of solution

Another variational approach to the solution of the biharmonie
equation governing the distribution of thermal stresses in a plate can
be made using the classical Rayleigh-Ritz method in conjunction with
the principle of minimum complementary energy. It will be shown that
the results obtained agree with the resulis of the previous analysis.
This provides some indication, though not a proof, that both methods

give satisfactory results.

For a plate subjected to symmetrical temperature distributions
about the longitudinal axis, the assumed form of the stress function

satisfying these conditions can be written as:=

2 2 -
¢ = Eﬂo(x2"'a-2) (Yz-bz) (Y-l +T2x2+T3y2+ T4x2y2) sscsees 2025

where Y12 Yo TB and yz are parameters to be determined.

It can be shown that the assumed form satisfies the boundary

conditions of a plate free from external loads. These conditions are:-

+
0& = 1?Y = 0 atx = =a
6 =1 =0 aty = ta
Y Xy y

for the coordinate system showm in figure 21.

The Rayleigh-Ritz method applied to a plate subjected to a
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ttent=-like! temperature distribution gives the stress function in a
continuous form over the entire surface of the plate. Further, it is
possible to take into account variations of temperature in both the

longitudinal and transverse directions.
The condition for minimum complementary energy can be
expressed as:-

*
il

a‘Y = 0, Wheren=1,2,3 and4 ssecsvsesee 2026
n

Applying this condition to equation 2,6, four simultaneous equations
are obtained which determine the values of the parameters Yy2 Yo» 73
and r4. The derivation of these equations is given in detail in
Appendix 5, For the convenience of non-dimensional plotting of the
stress distributions, and also for buckling calculations, equation 2.25

can be expressed in the form:-

2 2 2 2 2 2 2
g = bzmo[(f) -] E%) -1] [51 + 8,0 +p, D) 45, D ] 2.27

where ﬁ1, BZ, BB and 54 are non-dimensional coefficients related to

Y4 etc. by the following equations:-

2
EaT B, -r1a“b EaT p, = 73a“b4

EaT B, Yzaébz Ealp, = 1'48.6b4

L3 O B B A N W ] 2.28
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The stresses in the plate are then:-

B £

_6_2.Q—EaTb [30 +12 zz-(
= = B, - 28,)
o5 6 Lo "ébA 27 ¥,
"6(25 B,) 30"4%(5 28,)
+ - + + = -
Ta_ Z\=28, * B, AR 2P
xl*é & 72
+ 30 e (B3 - 28,) +12 ik (8- 2B,~2B; +48))
4 2
422 (=2B, + 4B, +B,~2B,) +30 2= 4> (=2 + B,)
A AR P B azg Ba* B,
2 2 2
+12%5 1)4(- 2By + By +4By- 28,) + 25 53 (4Py=28,- 2854 B))
+ 30‘é By + 125 (51 - 2py) + 5 2 (~28, + 53):]
% _ £ 7° £ 7 413
axz EaT b 30;5 'b6 34"'30:6 b (Bz" 2ﬁ4)+ 30~ (-252+54)

4
+ 3 Obz '|'12L 6(53" 254)"12&'&(&1 "253"'434)
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2
+12 % s 5 (=28, +48,+ By- 28,) +12 %7 (B, - 28,)

ab a

#

6
+ a;%bg (285 + B)) + 257 (=28 + B, 4485 = 28))

0 .
L &

+2 (4p,~ 2B.- 2B, +B,) + (=28 +p)]
azbz 1 2 3 4 8‘2 1 2

5% _ x5

:? a cr

a

P s

a

, |
+8 XL (~2p, + B, +4B,~ 2B,) + 4 —= (4B, - 2B, - 2B, + B )]
a2b4' 1 2 3 4 azbz 1 2 3 Y4



25 =75

INFINITE PLATE

MELDENFELS 4 ROBERTS

Figure 29: Comparison of the transverse distribution of
longitudinal stress (a*) at x = 0 for a plate
subjected to a symmetrical 'tent-like* temperature

distribution, plate aspect ratio 1¢566.
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Figure 29 compares the distribution of the non-dimensional
longitudinal stress obtained by the Rayleigh-Ritz and the Kantorovitch

method developed by Heldenfels and Roberts.

For this comparison a plate of aspect ratio 1.567 subjected

to a tent-=like distribution

- A B
T = T°(1+b) for -b<y<0
[ EE NN NENENNREN ] 2.30

3
l

A
T, (1 b) for 0<y<b

was chosen.

The particular value of the parameters 51 etc., are in this

case: -
By = 0.0708721 132 = 0,066080

= =0.0207127

B B, = =-0.0712483

The sgreement between the value of stresses given by the two

methods is close at all points except at the origin, x =0, y = 0.

Since the Rayleigh-Ritz method is essentially an averaging
process, the smoothing out of the distribution of longitudinal stress
at the origin where a discontinuity occurs in the temperature function

is hardly surprising.

Nevertheless, it will be shown in the analysis for the



buckling of the plate, that this 'rounding-off! in the distribution
of stresses has no significance if the overall buckling of a plate

is considered.

51
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2. Thermal Buckling Analysis

(2) Evaluation of the critical temperature using the gingle

product form for the stress distributions

As the temperature differential To increases, a value will
be reached in an ideelized flat plate when the plate will buckle out

of its own plane due to the compressive component of the induced

thermal stresses.

Assuming that the plate deflections are small, which implies
that the mid-plane does not stretch, and that the stress distribution
does not change after the onset of buckling, then the critical
buckling temperature can be found from the equation governing the
stability of flat plates with varying internal stresses.

The relevant differential equation is:-—

4 2 2 2
%V w = ¢ a‘%'«c a*%+2'c — sesescecss 231
X ax y ay ' oxdy

where the stresses Ok, 0& and Tiy are given by the equations:-

~ p:4 X p:S X
o, = q%w(‘1 +B, sinh R, 2 sin R, & + B, cosh R, T cos R, 3 )

- x X X X
o, = (Sfdxmdy.dy + 8,y +8,) (D, sinh R,3 sin B2 +D,cosh R, 7 cosR, 3)
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- s X X X o3 X
Ty = (-So’xwdy +S1)(D3 sinh R, 2 cos R, & +D4 cosh R, < sin Rza)

It should be noted that the constants, B1, B2, D1, D2’ 39 D,, R and R2

defined in Appendix 4, are similar to those defined in equation 2.19.

The Galerkin method(14) is convenient for determining the
criticgl temperature differential providing that the assumed form of the
deflection pattern satisfies the boundary conditions for simply supported

edges in the cases considered, term by term.

For simply supported edges the boundary conditions are:=-

2 2
w =0, Mk =0 ='§%§ + v-§%§ at x = :ea
ax ay
[ E A RN E NNNEZN ] 2.32
62w 62m +
SO M TOT R g Y

It can be shown that the condition of minimum potential energy

can be expressed as

SJS[(D.E) bf]d.x.dy.dz =0  eeeevecees 2,33

where D.E is the governing differential equation and &f the small

variation of a particular chosen function contained in the differential

equation,

The minimum energy condition is therefore expressible directly

from the governing differential equation and does not require the



formulation of the energy expression itself.

Experimental results indicate that the buckle pattern may be

taken as:-
(a) w = 57 = &m €08 mzﬂx cos r;gr
n=1,3,5 n=1,3,5 &
I E N RN NN NN 2.34
” 2 max nny
(b) = b} &, 8in 5= cos =X

m=2’4,6 n:'ﬂ ,3,5

The above forms apply to the symmetrical case only; and, in
particular, form (a) covers the case of 1, 3 and 5 half waves and

form (b) covers the case of 2, 4 and 6 half waves in the x direction,

In the asymmetrical case, a better approximation to the
deflected form can be obtained by taking

W = Zw p2 a.m COSEZ-"!Sinnﬂ esssneesene 2035
m=1,3,5 n=1,2,3 a b

for the coordinate system shown in figure 22.

If the relevant differential equation is substituted in

54

equation 2.33, the condition of minimum potential energy can be expressed

asi=-
a borzb 4 2 2 2
j 5 (%VU-GXG—%-O' g—g’—ZT au) aw = 0 [ N NN N] 2.36



the integration being carried out over one quadrant for the symmetrical

case, and over one half of the plate for the asymmetrical case.

This procedure leads to a set of linear simultaneous equations
which constitutes a characteristic value problem from which the lowest
critical temperature differential can be found together with the

corresponding ratio between the coefficients, am*

In the symmetrical case, the simultaneous equations for an

odd nunber of half waves are of the form:-

2
1 1,28, 2b
a _(q =+p _ﬂ
EaT b%v Pq [4\ b 7 a
ocr nzD

= ) p> m?(B,I_ +BJ +F )
"'rx:zlm=__1,3’5 n=-’1,3,5[ Anq 1 mp 2 mp mp

2
2 a
- qun b—2 (D1Imp + Dsz P)

+ E mono ( 3 mp 4 mp ] LA A AN ] 2037

where p =1, 3, 5, q =1, 3, 5; &and the form for even number of

half waves, symmetrical case:-

55



1 1¢.28,2b |7
EaT__b% “pa [4(q b " P a):l
/4%

= p> z A o? (BD +B
amm=2,4’6 n=1,3,5[ nq ZEmp mp

2 a_.
- cnqn b 1 mp DZEmp

l

a '
- 2nqm.n. (D 3 mp DAKmp)] evese 2.38

where p =2, 4, 6, q =1, 3, 5; and for the asymmetrical case:-

2
2 12k, R2a
2 a‘pq[:A(Pa*'qbﬂ
EaTocrb t/ﬂ?.
D
= a. pXA bA -AI'I m (BIp 2Jm "'Fmp)
m=1,3,5 n=1,2,3 1 P
c'nz-'f‘-g(n +DJ )
~ “nq 2\ 1Imp 2°mp

b
- ZB qm.n.b ( 3 mp 4 mp)] essve 2-39

l 1 t
nq’ Bnq Bnq’ cnq cnq’ Dmp
o’ G G

mp’ Cpp? Imp Jmp, K p? mp’ 1, 2, 1, D2, D3 and I}4 are defined
in Appendlx Lo

where p =1, 3, 5, q=1, 2,BandAnq
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In order that the coefficients, &’ have values other than
zero, the determinant of the above set of equations must be zero. This
condition gives the values of the critical temperatures,'the lowest

value being the only one of importance.

If nine terms are retained in the deflected form, it is
convenient to express the above set of equaticns in matrix form. For
the particular case of a plate of aspect ratio 1.566, buckling into an
odd number of half waves in the longitudinal direction, the nine

simultaneous equations are as shown on the accompanying sheet.

The numerical evaluation of such matrices to give the largest
eigen value can be carried out using an iterative method(17). This

gives the largest value of

100

2
E aTocr'b t /HZD

and by inversion the smgllest value of

2 a b ?
EaT (“/%) Toc

bt = 2000000000 2‘41
ocl" / 25 127201 =v3)

r

”

Besides giving the smallest value of the critical temperature,
the above method also gives the relative values of the coefficients, &n®
The value of the ceritical temperature parameter and the relative wvalues
of the coefficients, & mn? was found to be, for a plate of aspect ratio,

1566,



> 5439423 ceverenres 2042
7D
and

_a..” ] B 1.00007
a3 0.13646
a51 0.000703
23 0.03648
a3 = 0.00444 eeevereens 2443
a53 0.000914
a5 0.000693
a35 0.000249
a55 0.000047

- - - —

Using these coefficients the deflection of the buckled plate

can be written ag:=

- UL 4 X
w = a, {cos >, o8 -% + 0.13646 cos % cos -;%

cos &

+ 0.000703 cos %?- cos Xz, 0.03648 cos >

2b

P



|
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2mx A4 27X 3ny.
+ 0,00444 cos o cos 2b + 0.000911 cos " cos >

Jx

+ 0.000693 cos a

2% 3mx LA
cos b + 0.00921.9 cos 28 cos b

+ 0.000047 cos m co3s m} esseossvse 2044
2a 2b

In order to show the importance of terms retained in the
deflected form, the critical temperature parameter has been evaluated

taking various numbers of terms of equation 2.34 into account.

The convergence of the critical temperature parameter with
respect to the number of terms taken in the deflected form is shown in
Table 1. It can be seen that only the first four terms are of

gignificance.

Tables 2, 3 and 4 present the results for all the cases
investigated. In particular, Tables 2 and 3 show the variation of the
value of critical-temperature parameter with respect to aspect ratio of
the plate. In these cases it should be remembered that the temperature

distribution is symmetrical about the transverse axis.

Table 4 shows the variation of the Vcritical temperature
parameter with the degree of asymmeiry of the temperature distributions.
Finally, Tables 6, 7 and 8 present the theoretical buckle patterns in
tabular form corresponding to the critical temperature parameters given

in Tables 2, 3 and 4.



TABLE 1

Ed’focrb t
Terms taken into ————
account ﬂzD
8.11 6.317
G a31 5.657
841 3,31 8'51 5.657
241 5.31 a51 al.13 5.396
a4 a.31 85y 8y 3 a33 5¢394
819 83 85 %3 833 &g 2+39%
819 831 85 843 833 B85 8 2+3%
819 831 85 B3 833 853 85 8 5.39%
a 50394




TABLE 2

0dd case, m =1, 3, 5

Aspect Ratio ﬁggl:lii:llg Ecl5'|¢.:>c:.:""2'l" * %%.
/o 'x! direction 7D oer
0.5 One half wave T2.497 1350
75 " 16.949 315
1.0 " 8.12894 151.0
1.5 " 5.41837 100.5
1.57 " 5439430 100
2.0 n 5.720195 106.5
2.5 Three half waves 5652141 102.5
3.0 " 5.05113 93.9
3.5 # 4490547 91.1
40 " 4495655 92.0
4e5 " 5.06861 9.1

* -5
Based on a plate, b = 11.5 in., v = 0,313, & = 23,2 x 10" /°C.



TABLE 3

Even case, m = 2, 4, 6

Aspect Ratio ﬁggfig E“Tocz:D v T * %%.
%/ 1x' direction 7D ocr
2.0 Two half waves 5e45T47 101
2.5 " 5.019108 93.1
3.0 " 5.10438 9.6
3¢5 Four half waves 5.11992 95.0
4.0 " 4.921736 91.5
4ed " 4+ 85645 90

* X b
Based on a plate, b = 11.5 in., v = 0,313, a = 23,2 x 10" >/°C.



Ed]:ocrbzt *
Heater position -——;25—- Tocr c.
¢ =b (centre) 5.7588 107
¢ = %b 620675 115
_b
c =3 8.0305 149
_b
c = Z 1303566 %8

*
Based on a plate, b = 11.5 in., a = 23.5 in., v = 0.313,

@ =23.2 x 10-6/00.
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60
(b) Evaluation of the critical temperature using the
polynomial form of sitress distribution

Having obtained an alternative form for the stress function (1b)
using the Rayleigh-Ritz method, it is worthwhile to evaluate the critical
buckling temperature of a plate using this form in the buckling
calculations. The value of critical temperature obtained can then be
compared directly with the results of the previous analysis (2a). Also,
an assessment can be made of the suitability of the Rayleigh-Ritz method
used in the analysis for the stresses when this form is used in buckling

calculations.

‘ Following out the same procedure as in the previous analysis
(2a), the application of the Galerkin method to equation 2.31, using the
distribution of stresses given by equation 2.29, leads to a set of
linear simultaneous equations. If the terms-a11, 844 and a4 are
retained in the series for the deflected form of the plate, then the

set of linear simultaneous equations can be written in matrix form.

For a plate of aspect ratio of 1.566, the coefficients of the equations
have the following values:-

1576 21,91 1476 || ey, —a1:
0.4916 1.323  0.776 || a5 = 100 Byz | e 245
EaT bt 2
1342 3.221  7.355 || ey o /4 839
_ i | B L7




The numerical evaluation of the above matrices to give the
lowest value of the critical temperature parameter was again carried
out using an iterative method already referred to. Applying the above
procedure to equation 2.45, the lowest value of the critical temperature

parameter is

, 2
Ea‘l‘ocrb 7

7D

= 5041 . essscscsesee 2.46

and the relative values of the deflection coefficients, a _, are:=

mn
]- - — =
8.13 - 0.0351 [ XX R RN NN NNY Y] 204—7
I - -

Some idea of the convergence of the critical temperature

parameter in this case can be gained from Table 8,

If this value of critical temperature parameter is compared
with the value in Table 2, for a plate of the same aspect ratio, it can

be seen that the agreement between the values is very close.

Thus the methods used in this section provide an alternative

approach to the buckling problem.

Although the methods used in this seciion give reasonable
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TABLE 8

EdT _ b%
ocr
Terms retained n2D
244 6.35
8.1 1 3.31 5 . 64
5.41
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results, the amount of numerical effort required is considerably greater
than that of former methods. This arises from the form of stress
function used which results in cross-=product terms appeé.ring in the
buckling calculations. Using the single product type of stress function,

this type of complication does not arise.
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3. Use of Deuce Computer

For each particular case, either equation 2.37, 2.38 or 2.39
must be solved to determine the smallest value of the critical

temperature parameter.

It has been shown that at least three terms in the equation
for the deflected form must be considered in order to obtain a reasonably

accurate value of the critical buckling temperature.

The emount of numerical work involved is dependent on the
number of terms taken in the deflected form. If more than three terms
are taken the amount of numerical work rapidly increases. With this
point in mind, and also the desire to take sufficient number of terms
in the equation for the deflected form to cover all values of aspect
ratio of interest, it was decided to use an electronic digital computer
to carry out the numerical analyses. The effort required in the
construction of the programme does not increase proportionately to the

number of terms taken in the deflected form.

To indicate the smount of numerical work involved, the first
simultaneous equation has been written out in full, with nine terms

taken in the deflected form.

From meny congiderations, especially from the point of view
of programme construction, it eppeared that Alpha-Code, an auto-code
systen, would be suitable for evaluating the coefficients in the nine

simultaneous equations.
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The numerical evaluation was carried out on the computer in
several distinct steps. Firstly, the constants B1, B2, D1, Dz, D3 and
D 4 were evaluated for a particular size of plate. The next step was
concerned with the evaluation of the constants 01 to 08 using
equation 5.62. In this case the nine different values of C,, C, etc.
were computed in the following logical order. For the values of

m =1, 3’ 5’ p =1, 3’ 5’ the OI‘der wasSi=-

¢ o3 ... ¢, 6% o .....c?°

1263 1207 Gy 2 » ete.,

the index indicating the value of m and p respectively.

Using these values of G1, 02, etc., the integrals Imp’ Jmp,
Gmp and Kmp’ were evaluated from the formulaes given by equations 5.58,
5.59 and 5.56 and 5.60 in Appendix 4 for values of m =1, 3, 5 and
p =1, 3, 5 in precisely the same sequence as for the previous constants.

Following this set of integrals, the integrals %q’ Bn and Cn were

q q
evaluated from the formulaes given by equations 5.41, 5.42 and 5.43

again for values of n =1, 3, 5and q =1, 3, 5

In the final stages of the computation, the numbers
representing B1, B2 cesee Imp’ coees qu, etc. were picked up in the
sequence specified by equations 2.37, 2.38 or 2.39 to give the numerical
values of the eighty one coefficients of the nine linear simultaneous

equations.

The evaluation of the critical buckling temperature in the

case of asymmetrical heating was complicated by a discontinuity existing



in the temperature function at the point y = ¢. Separate functions

representing the integrals Anq, Bnq

of the point of discontinuity. In the previous analyses, simple

and Gnq'were required on each side

formulae were deduced giving the values of these integrals over the
range of integration. As a result of the above complication, no simple
formulae could be found, and therefore numerical procedures were used to

evaluate these integrais over the range of integration of 0 to 2.

The Deuce Computer makes use of Simpson's Rule to carry out
numerical integration. In this case, 80 intervals were taken over

this range of integration.

In order that the coefficients, 8rn? bave values other than
zero in the above set of simultaneous equations, the determinant must
be equal to zero. This condition leads to the solution giving the
nine values of the critical temperature parameter, the lowest value being

the only one of practleal significance.

It has already been mentioned that an iterative procedure can
be used to give the largest value or by inversion the smallest value of

the critical temperature parameter.

A standard Genersl Interpretive Programme (G.I.P.) exists for
this procedure and makes use of the following standard bricks.

LL097 - read good guess (initial vector)
LRO2A =~ read binary matrix (the 81 coefficients arranged
in binary matrix form)
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LLO42 = iterate

LIL052 - punch result

This procedure can be represented in block form as follows:-

Read good guess
(initial vector)

A Read matrix
(binary form)

Iterate

!

Punch Result
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Figure LO1 Supporting frame with test plate in position.
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PART III. EXPERIMENTAL WORK

A renge of experimental work was carried out to verify all

aspects of theoretical analyses. It included:-

1) The measurement of the initisl irregulerities of the plates.

2) The measurement of the temperature distributions over the iateral
surface of the plate.

3) The measurement of plate centre, or maximum deflection with
increase in temperature differential.

4) The experimental determination of the critical buckling temperature.

5) The determination of the modes of plate buckling.

Owing to the effect of the tempersture on apparatus
matefial and measuring instruments, new techniques were devised befors
routine experimental work was carried out. Many of these new techniques
were based on the use of 'Araldite'!, a synthetic epoxy resin.
Advantage was teken of its cold setting properties to avoid thermal
distortions in the plate which would have been set up if conventional

welding had been used.

Since it is easy to reproduce experimentally, a 'tent-like!
temperature distribution over the 1ateral.suxface of the plate was chosen,
This type of temperature distribution can be obtained in a plate with a
line source of heat and two equal heat sinks at the longitudinal edges.

If the plate is adequately lagged over its surfaces, then the flow of
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heat from the source to the sinks will be by conduction through the

plate materisl; the convection and radiation effects will be negligible.

From the laws of conduction of heat through solids, it follows
that the plate will be subjected to a 'tent-like'! distribution of
temperature over its lateral surfaces, and that the variation of

temperature through the plate thickness will be constant.

For convenience, the experimental work was divided into two
parts. The first part consisted of a series of tests carried out on
a comprehensive range of T.I.224 aluminium alloy plates of constant
width of 24 in. and # in. thickness with variations in lengths from
2 ft. to 6 ft. in increments of 6 in. In each test the line source

of heat was in the centre position, ¢ =b.

The second part of the experimental work was concerned with
a series of tests carried out on a single 4 ft. x 2 ft. xti'in.
aluminium alloy plate subject to a variety of asymmetrical !tent-like!

temperature distributions.

Five different types of temperature distributions were
investigated corresponding to the line source of heat in the ¢ = b,

¢ =2b, ¢ = 5/8b, ¢ =1b/2 and ¢ = 3/8b positions.

Experimental Appliances

The essential features of the experimental apparatus are

shown in figures 40 and 41.
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The experimental set-up consisted of a rectangular steel
framework which supported the test plates in a manner assumed in the
theoretical analysis. The frame, whose length'and breadth were
6 ft. 2 in. and 2 ft. 2.in. respectively, was constructed of 4% x 2" x 3/8®
channel section. An adjustsable cross-piece was fitted to accommodate

plates ranging from 2 ft. to 6 ft. in length.

To reproduce experimentally simple support conditions assumed
in the theoretical analyses, the edge supports of the plate consisted
of closely spaced £" steel balls lﬁcated on each side of the plate using
7/16" diameter bolts with recessed heads, as shown in figuré AR
Spaced at 3-inch intervals along the edges of the plate, the bolts
which were screwed into the channel section gave a good approximation

to simple line support conditions.

As already mentioned, a 'tent-like'! temperature over the
lateral surface of the plate was induced by a line source of heat along
a longitudinal line and cooling the two longitudinal edges.

A good approximation to a line source of heat was obtained
using electric heating elements constructed from half-inch width asbestos
strip wound with nichrome wire.

By means of aluminium bridge pieces previously attached to the
plate with Araldite cement, the hesters were clamped on each side of
the plate.

Cooling of the plate was effected by passing water at room
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temperature through %" diemeter, 0.009% wall thickness aluminium tubes
cemented to the longitudinal edges with Araldite cement, The flow of
cooling was adjusted so that temperature distribution in the longitudinal

direction was essentially constant.

To avoid fluctuation in the maing voltage, which could cause
a variation of the heat supplied to the plate, constant woltage
transformers were employed toc reduce the fluctuation of mains voltage

to within =% volt.

The power supplied to the upper and lower heaters, and in
consequence the temperature differential across the surface of the
plate, was varied by including a 'variac!' infinitely variable
transformer in the circuit. As the lateral surfaces of the plate were
well lagged it was found unnecessary to peen the thermocouple junctions
into the plate material. It was also found that Vaeron-Eureka
thermocouples attached to the plate with Araldite cement, used in
conjunction with a Cambridge Porteble Potentiometer, were suitable for
the measurement of the temperature distributions across the lateral
surfaces of the plate. Figure 42 shows the position of the temperature

measurement stations on the test plate.

The buckled form of the test plates was determined by measuring
the lateral deflections of the plate using dial gauges of the 0.001 in,
per division type positioned along transverse and longitudinal lines,

as shown in figure 43.



Figure UU\ Supporting frsune with details of instrumentation.



Experimentael Procedure

Before the plate was inserted into the framework, the
thermocouples and the heating elements were fixed into the desired

position.

The plate was then inserted into the framework and located
in position using the ball supporting screws. Commections to the
thermocouple switching unit, as shown in figure 44, were made and the
dial gauges set into their correct positions. Finally, connections

were made to the cooling water tubes.

After allowing the plate to reach thermal equilibrium
(epproximately two hours) readings of temperature and lateral
deflection were tzken. This procedure was repeated with increasing
values of plate temperature differential up to a maximum value of
approximately 100%.

Experimental Results

The following results were obtained directly from the

thermocouple and lateral deflection readings:-

a) The experimental temperature distributions.
b) The growth of centre or meximum lateral deflection
of the plate with increasing temperature differential.

¢) The deflected form of the plate.
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Figure 45 ; Measured temperature distribution, symmetrical

case, c = b.



a) The temperature distributions were obtained by plotting the
converted thermocouple for the verious stations. A straight line
drawn through the test points was used to predict the temperature at
the centre line of the heater. Subtracting the temperature at the
line supports, from this value, the plate temperature differential, To’
was found. The temperature distribution of all the cases considered
are shown in figures 45 to 49. It can be seen that the test points
define a straight line variation, permitting the temperature at the

centre line of the heater to be assessed.

The deviation of points close to the heater can be attributed
to the finite width of the heater., No measurable difference in the
temperature was noted throughout the thickness of the plate. The
| temperature along the longitudinal axis was virtually

constant; for all tests the variation did not exceed z 1%.

b) 7Figure 50 shows a typical growth of centre deflection with
increasing temperature differentiasl plot for a 4' x 2!' x %ﬂ plate

symmetrically heated.

Owing to the initial irregularities in the plate and the
stretching of the mid-plane the onset of buckling is one of gradual

development rather than of sudden occurrence predicted by theory. Thus

the direct determination of the critical buckling temperature presents
considerable difficulties. These can be overcome by the application
of the Southwell-Lundguist plot which predicts the critical temperature,

providing the variation of plate deflection with temperature is known.
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It should be noted that the Southwell-Lundguist plot has been
derived on the assumption that the load deflection curve is a rectangular
hyperbola, asymptotic to the critical buckling load.

In a flat plate thig assumption would only be satisfied if
the mid-plane of the plate remained unstressed at the onset of buckling.
However, the stretching of the mid-plane does occur in the practical
case which contributes additional strength to the plate in the
post-buckling range. This means that after buckling has taken place,

the plate will sustain a load greater than the critical load.

Nevertheless the critical load on critical temperature can be
predicted, providing values up to the knee of the temperature-~deflection
curves are used in the Southwell-Lundguist plot. A typical plot is
shown in figure 51, from which the critical temperature can be deduced

from the slope of the straight line.

¢) The experimental deflected form which gives the buckle pattern of
the plates is shown in figures 54 to 64. It can be seen that
irrespective of the longitudinal mode of buckling, the transverse mode

of buckling is always one half wave.

Summary of Results

The effective aspect ratio measured between line supports

and the maximum initial imperfections in the plate are given in Table 9.

Table 10 presents the value of the critical temperature for
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plates of various aspect ratio with the heater in the symmetrical position.

Table 11 presents the values of the critical temperatures for

the 4 ft. x 2 ft. plate for various degrees of asymmetrical heating.

Material Properties

As a result of tensile tests carried out on specimens of
T.I.224 aluminium alloy, the average value of Poisson!s Ratio was found
to be ¥ = 0.313 (full details are given in Appendix 6). The value of
the linear coefficient of expansion of the above alloy was given by the
manufacturer and confirmed by tests carried out by the National

Physical Laboratory as

o = 23.2% 10‘6/°c.
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TABLE 10

Flate Length  pspect Ratio  T___ %. Loggg:ugnal
* Buckling
2.0 1.0 168 Cne half wave
2.0 1.0 188 N
3.0 1.57 114 "
3.0 1.57 123 "
3.0 1.57 129 "
4.0 2.04 100 "
4.0 2.04 102 "
5.0 2.56 82.4 Two half waves
5.0 2.56 91.1 n
6.0 3.09 83.2 Three half waves
6.0 3.09 86.5 "
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Figure 50: Typical growth of experimental plate centre
deflection with increase in temperature differential.

@4* X 2* plate symmetrically heated.)



TABLE 11

A o Mode of
Aspect Ratio Heater Position Tocr Ce Longitudinal
Buckling

2.04 c=b 100 One half wave

2.04 c=b 102 "

2.04 | ¢ = %b 117 n

2.04 ¢ = %b 108 "

2.04 o = %b 136 "

2.04 ¢ = g-b 125 "

2.04 c=2 144 .

2.04 ¢ = -g— 152 n

2.04 ¢ = %b 176 n




co

80

70

60

50

TYPICAL SOUTHWELL LUKIDQUIST

Figure 51:

/ To-Toi IMS X tC"V°C

Typical Southwell-Lundguist plot.



75

PART IV, CRITICAL DISCUSSION

In Part II of the thesis a variety of methods has been
presented for the evaluation of the critical buckling temperature of a
plate subjected to 'tent-like! temperature distributions. It is
considered relevant to focus attention, in the first instance, on the

relative merits of the methods employed.

Table 12 compares the value of the critical temperature
parameter obtained for a plate of aspect ratio 1.566, symmetrically

heated, using several different methods of solution.

Remarkably good agreement was obtained between the walues of
the critical temperature parameter for the different methods used in
the analysis. Tsable 12 also shows that the Galerkin and the
Rayleigh-Ritz methods are equivalent to each other providing the same
deflected form of the plate is assumed in both analyses.

A comparison of equations 2.37 and 1.66, which have been used
to evaluate the critical temperature parameter, shows that the Galerkin
method gives the simplest form of solution and, in this case, is

preferable to the Rayleigh-Ritz method.

Figure 52 shows the variation of the critical temperature
parameter against plate aspect ratio obtained by the Galerkin method.
Figure 53 indicates the corresponding variation of critical temperature
with plate length for a constant plate width of 24 in., and its

comparison with experimental values.
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Good agreement was obtained between theoretical and experimental

values, particularly for plates of aspect ratio greater than 1.5.

A rapid increase in the critical temperature was noted when
the plate aspect ratio was less than 1.5. In this case it was
ineviteble that the agreement between experiment and theory would not

be so close.

In short plates the condition that the edge stresses wanish
necessitates a modification in the longitudinal direct stress and
introduces transverse and shear stresses at points near the transverse
ends, It is the effect of this redistribution of stresses in short
plates which results in this rapid rise in the value of the critical

temperature. This effect might have some practical significance.

In long plates the longitudinal direct stress (Gx) approaches
the infinite plate distribution of stress; thus the plate behaves as
if it were a plate subjected to loads acting on the transverse ends of
the plate, a case extensively treated by Timoshenko and others.
Loading of this type causes a long plate to buckle into squares and for
each mode of buckling, the load to initiate ingtability hag the same
minimum value. This condition is approached in the case of long plates
with induced thermsl stress due to 'tent-like! temperature distributions.
For each mode of longitudinal buckling, the critical buckling temperature
has the same minimum value. This is clearly shown in figure 52 for
the series of curves corresponding to m = 3, 4, 5 etc., in which each

of these curves is virtually tangential to a common minimum temperature line.
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In passing it is interesting to compare the foregoing
theoretical values of critical temperature parameter with the values
obtained using a simple iterative method suggested by Kenédi(19’20).
In this method the assumption is made that the distribution of the
longitudinal stress is the same as that of an infinite plate(A), and
that the plate buckles into one helf sine wave in the trangverse
direction and m half sine waves in the longitudinal direction. The
above assumptions suggest that the buckling behaviour will be similar
to the case of a plate subjected to compressive loads acting in the

plane of the plate. This was found to be so.

For each mode of longitudinal buckling corresponding to -
m=1, 2, 3 etc.,, a series of curves, shown in figure 52, was obtained.
It was found that each individual curve had the same minimum value and
occurred at a point where the number of longitudinal half waves equalled

the agpect ratio of the plate.

In the more refined approach (2a),where the 'end-effects! are
taken into account, this mode of plate behaviour occurred only in the
case of long plates where the transverse and shear stresses near the
ends are small compared with the longitudinel stress. Thus if the
values of the critical temperature paraméter obtained by the two methods
are compared it can be seen from figure 52 that at large aspect ratios
the values are nearly identical. A slight difference of 5% does exist
between the two methods; the iterative method giving the higher value.

This small difference is, no doubt, due to the assumed form of buckled
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plate in each case. In the refined approach nine terms were taken in
the series for the deflected form of the plate, whilst in the iterative
method only one half sine wave was assumed in the longitudinal direction
before the iterative process was carried out. A better approximation
to the buckle pattern was effected by iterating once and this gave
results, as already stated, which were iﬁ close agreement with the

results of the previous analysis for plates of large aspect ratio.

In the theoretical analysis concerning ?he evaluation of the
critical temperature it was shown that for a plate of aspect ratio of
1.566 that the deflection coefficients 8445 a31 and a3 were the only
ones of significance, the others having a negligible effect on the final

value of the critical temperature parameter.

At this point it is of interest to examine the significant
‘ deflection coefficients for plates of other aspect ratios. Table 5
shows that the coefficients 8412 834 and 243 determine the deflected
form of plates up to an aspect ratio of 2.,25. In these cases, the
coefficient, 8412 determines the overall deflected form; the other

coefficients, a4 and 243> only affecting the deflected form at points

near the supportis.

For plates of aspect ratio greater than 2.25, the coefficient
a31 is predominant which implies that the deflected form of the plate
will be three half waves in the longltudinal direction.

Table 6 shows that the change over from the two half wave mode

78
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of buckling to the four half wave mode takes place at an aspect ratio of
3.4. The complete behaviour of the buckling modes is summed up in figure

52, and shows that as the aspect ratio is increased there will be a progressive

change from the one half wave mode to the two half wave node and so on. 1In

all the cases investigated the transverse mode of buckling was always one

half wave. It should be noted that since the value of the deflection

given by small deflection theoiy are indeterminate and

aAA

coefficients, ,

only the ratios defined, the theoretical peak values have been chosen to

coincide with the experimentally observed peak values. Figures 54 to 63

compare the theoretical buckle patterns with the experimental buckle patterns

plotted from the dial gauge readings. It can be seen that the agreement

between the theoretical and experimental buckle patterns is very close, thus

confirming that the function chosen to represent the deflected form of the

plate was of the correct type»

Thermal Bu”kligg - Asymmetrical Temperature Distributions
The effect of the degree of asymmetry of the temperature distributions

on the critical tengjerature parameter and critical temperature is clearly

shown in figures 64 and 65* The most significant feature of these graphs
is that the critical temperature has a minimum value for a particular size
of plate when it is subjected to a symmetrical ‘tent-like' temperature

distribution. As the line source of heat is moved away from the central

position, the resulting asymmetrical temperature distribution causes an

increase in the value of the critical temperature. A limiting cas

reached \“en the line source of heat/
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is coincident with one of the 1ongitudinal édges,»thé‘oﬁher edge being
cooled as usual, In this case, although there is a linéar temperature
gradient across the surface of the platé, the stresses vanish since the
strains corresponding to the free thermal expansion of each element,

E_=€_ = aT, ¥

X y xy
Consequently, for this condition the critical temperature will be infinite.

= 0, satisfy the conditions of compatibility.

Figure 65 shows experimental and theoretical values of critical
temperature plotted as a function of the distance of the line source of
heat from the origin. The agreement between theory and experiment is

very good.

If attention is now turned to the deflected form of the plate,
an examination of the vectors in Table 7 shows that only the vectors 844
and 843 influence the convergence of the critical temperature. Table 7
also shows that the vector &9 which could affect the shape of the
buckle pattern in the transverse direction and hence the position of the
point maximum deflection, is very small compared with the dominant
vector, 8410 Thus the shift of the point of maximum deflection is

ingignificant; a fact confirmed experimentally and shown in figure 66,

Post-Buckling Behaviour of Plates

In the concluding part of the review the post-buckling
behaviour of plates was investigated with particular reference to the

growth of plate centre deflection with increase in temperature differentisl.
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4 ft. X 2 ft. plate subjected to a variety of
asymmetrical temperature distributions.



1
It was shown that the Von Ké}man large deflection plate equations must
be used if the stresses and deflections are required. Generally only
en approximate solution to these equations can be obtained and even this

is a very laborious procedure,

An alternative method for determining the growth of plate
centre deflection from its initial value has been proposed by Gatewood(18)
using the theory of mid-plane thermal strains. It has been shown that
this method is very simple to apply and therefore it is worthwhile to
compare the values of plate centre deflection using this method with
the experimental values already obtained in the critical temperature

experiments,

At first this comparison was carried out for a plate of aspect
ratio 1.566 since the results in reference 13, obtained from an
approximate solution of the large deflection equations, can also be

presented on the same graph.

The experimental and theoretical results are shown graphically
in figure 67. The theoretical curves based on the theory of mid-plane
thermal strains are presented for various values of initial imperfections
of a plate. Good agreement was obtained between experimental and
theorstical values of plate deflection for a plate with a measured
initiel imperfection of 0.050 in. Also plotted on the same graph are

the results obtained in reference 13 represented by the equation:-
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We - W2

: W
T = 100(1 "'_i'g) + 1001( < ic) ‘escescsscss 4.1
o Wc _b2

Again, good agreement exists between the experimental and theoretical

values, based on a solution of equation 4.1.

Both theoretical methods may be expected to be fairly accurate
when the initisl deflected shape of the plate is similar to the first
mode of buckling of the corresponding flat plate. This was found to be
true for the 2 ft. x 2 ft., 3 ft. x 2 ft. and 4 ft. x 2ft. plate. In
this range, figure 68 shows excellent agreement between experimental and

theoretical values,

For longer plates, it is unlikely that the initial deflected
shape will correspond to the predominant mode of buckling of the
corresponding flat plate. It is for this reason that only fair

agreement was obtained for the 5 ft. x 2 ft. and 6 ft. x 2 ft. plates,

In conclusion, it appears that the method of mid-plene strains
is sufficiently accurate for practical purposes since in a design, only
the average value of the initial imperfections will be known. Hence,
using the above method some indication of the lateral deflection of a
plate can be obtained if the temperature distribution of the plate is

known.
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SUMMARY OF CCNCLUSIONS

The subject matter presented in the thesis may be summarised

in broad outlines as follows:s

1) The Galerkin method applied to the equation governing the stability
of flat plates gives calculated values of critical temperatures
which are in good agreement with experimental results.

2) It has been shown for the buckling problem that the Galerkin
method is fully equivalent to the Rayleigh-Ritz method and leads
to the same result if the same function is used to represent
the deflected form of the plate.

3) Approximate methods for the determination of the thermal stress
distribution based on minimum complementary energy concepts,
appear to give consistent results in the evaluation of the critical
buckling temperature.

4) The single product type of solution gives the stress function
in the simplest functional form,

5) The 'end-effects! modify the distribution of thermal stresses in
plates of small aspect ratio so as to cause a large increase in the
value of critical temperature.

6) The critical temperature of a plate has a minimum value when the
plate is symmetrically heated about a longitudinal centre-line.

7)  The theoretical buckliﬁg patterns (buckling modes), determined from
the small deflection theory plate equations, match very closely the
experimental patterns when the peak magnitude of the modes is selected

to be identical with the experimentally observed peak magnitude.



8)

9)

83a

Velues of plate centre deflection based on the theory of mid-plane
strains compare favourably with the values obtained from an
approximate solution of the Von Karman large deflection plate
equation for values of temperature up to the critical temperature
of an idealized flat plate.

Experimental values of plate centre deflections are in good
agreement with the theoretical values derived from the large

deflection plate equations and the mid-plane strain theory.
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APPENDIX 1

Minimization of the Complementary Energy

The complementary energy of the heated plate can be

expressed as:-

* _ 1 2 2 12 " 2
U= — _S.a {A1g + 4" - 2uage™ + 201 + V)ag

+ 2B (AgXg +AgXg")}ax 5.1

where A_‘ to AS are defined by equation 2.9.

* %
Setting the first variation of U, i.e. 30U , to zero by means
of the calculus of variations, then the variation of complementary

energy, term by term, is:=-

Pirst Tem

st = 1 aes
U = E _aA.]g g dx

Second Term
A a A a '
® 2 "y 2 1 dg
oY = == O0g dx = = b dx

E :c-ag ¢ E fag [Em]

A a
- 2 [} g"d[dg']

E _,
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Integrating by parts ylelds

A a a
85U _Eg {[g"bg'] - § g'"'bg'ax}
: -a

-a

§U* _A_z_ {I: "bg] '”d[bg]}
Integrating by parts again yields:=-

o = [g 6g:| -[g'" dg| +§ g"ogax}
-2 =2 -3

Third Tern

*

v a AV a
3 = -:L—’— 5 gbg"dx--g'- § g"ogax
E _a E _a

Integrating by parts taking the first expression first, yields
fZ_.{ [%5gil 5‘ g'dgt ax }

Integrating by parts again yields

%\-’ _{-[g 6g']: +[g'6g]-aa - .S: g" og dx }



and the second expression of the third term yields

% a
0 = = h § g''og
E 5
Fourth Term
* 2(1+v)A, a 2(1+v)aA, a
59 = ——= f g'tglax = ——= { g'a [5§]
E -3 E -3,
Integrating by parts yields
* + 12 a
dU =i2(_1_v)_A4 {[g'bg - § g"og dx }
E - ) -3
Fifth Term
% a
o0 = B § axegax
-3
Sixth Tern
¥ _ Ea a _. Ea & 1
= 3 § AgXbgax = T ;faagxd dg

-8

. Integrating yields

¥ _ Ea | &
-3,



Collecting terms gives

B =0 = & 5 {ag+ag""- 2Em4(1 +y) + va.gg" + BaA X} bg &x
+ % [{(VAB + 2(1 +v)A4)g' - Azg"'}bg]:

+%[{A23" - vayg’ +Ea.A81}bg']ja cecesecses 542

The boundary conditions at x = :a, where o’x = Txy =0,

require that g and g' vanish at these points and that Ay = -AA and A. = 0.

5
Using these conditions, the term under the integral sign in

equation 5.2 reduces to:=-

Azg“" - 2A4g" + A1g +EQA6I = 0 sscsscseee 5.3

and the terms in the square brackets are equal to zero for the above
boundary conditions. Thus the approximate sclution is independent of

Poisson's ratio v.



APPENDIX 2

The relationship, A1 = -AéEc, provides a valuable check when

the coefficients of equation 5.3 are being evaluated.

The proof of this relationship is as follows:

b 2
since A, = § £'" dy, then integrating by parts gives
-b
[ PN} § b b 113
A.l = f f - S ff dy' I XX NN YX Y 504

Note that the contents in the square brackets are zero.

Integrating by parts again:-

b b
A1 =[— ff“] + S ff”"dy 20s0scccee 5'5
-b =b

noting that the quantity in the square brackets is zero.

In a similar manner, the expression for A6 is integrated by

parts twice to give:=-

b b
Ay = Sb £''¥dy = SbfY"dy cescesssse 5.6

For a plate infinite in the 'x' direction the stress is a function of

y only; therefore the biharmonic equation 2.2 reduces to:-



1

f = "‘EGY" eevresncee 5.7

Substituting for £""' in the equation for the integral A;, this yields

A.1 = “EaAé esesesenee 508



APPENDIX
Derivetion of the stress functiong for the gymmetricel case (c =b), and

the asymmetrical cases, ¢ = 2b, £b, 3b

Symmetrical Case

Reference 10 suggests that a good choice for the function f is

a stress function for an infinite plate.

Using the coordinate system shown in figure 21, then

= M = Th -1
wa = £ = EaTo(/b 2) for 0<y <b ceesecssse 5e9

Integrating equation 5.9 twice gives the function f together with two

arbitrary constants of integration

- er (BLF
f b EﬂTo 6b-%4's1y +32) sessesscoe 5010

Equation 5,10 is valid in one quadrant only and therefore conditions

at y = =b are not applicable.

The conditions of symmetry can be used, however, which gives:-

£'0) = £(p) = £'(®) = 0 cessescsns  5.11

The condition, £'(0), is implied in equation 2.12 (zero stress resultant

along any axis parallel to the y axis) and therefore the remaining

90
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boundary conditions are used to determine S1 and 32.

Af'ter solving for S1 and 82, the function becomes:-

2
= B2 Y)? o oy
f = 12 {1 —B(b) +2(b) }EGTO secsvesscce 5012

Integrals A1, Az, 44 and A6 can now be evaluated to give the coefficients

of the resulting linear differential equation:-

13'b4g"" - 84b2g" + 420g

420 LR A NN N R N NN 5.13

The complementary solution of this equation can be assumed to be of the

form:=

gc = Pemx : e8ssccrsoe 5.14

Substituting this assumed form in equation 5.13, the auxiliary equation
13b4m4 - 168b2m2 + 420 = 0 2000000000 5.15

is obtained, having roots

m = 1 (21113 +1.10752§) 5 m, =&

sscsenssce 5016

. - ——
my = p(-21113-1.10752)) 5 m, =m,

where the bar denotes conjugate quantities.

Thus it follows that the complementary solution can be

written ags:=



X X X
BINBE rp J0723 | 1410752 34

€ = 1 2

X X X
. e..;2,1113 -5 {P39 1.107523 ¢ . P4e1'10752‘1 a} ceees 5.7
After some simplification, this can be written as:=
8, = 01 8inh rx sin sx + 02 cosh rx cos sx
+03 cosh rx sin sx -H}4 sinh rx cos sx eeccsssese 5.18

where r = 2.1113/b and s = 1.10752/%. C, to GA are four arbitrary

constants to be found from the boundary conditions at x = z .

By inspection the particular integral of equation 5.13 is

Ea
BEe _ 5.19

g = ==

? b

Hence the complete solution of equation 5.13 is

g = 1+C1 sinh rx sin sx +02 cosh rx cos sx

"’03 COSh rXx sin sx "'64 sinh rx CcOoS 8X Ry 5.20

where the constants 01, 02, 03 and C 4 are determined from the condition
that g = g' = 0 at x = =& vhich yields:-

92



r sinh ra cos sa - s cosh ra sin sa

r sin sa cos sa + s sinh ra cosh ra

r cosh ra sin sa + s sinh ra cos sa

C, ==
T sin sa cos sa + s sinh ra cosh ra

5.21

Using equation 2.1 in conjunction with equations 5.12 and 5.20

93

the stresses in the plate are given by:-
EGTO &
o, = 5 (b -1)(1 +C, sinh rx sin sx +C, cosh rx cos sx)
EaT b 73 32
Oy = —— (2 (b) - B(b) + 1)(C7 sinh rx sin sx + Cg cosh rx cos sx)
EaT.b z2 y ) . .
Ty = " ((b) - (b))XC5 sinh rx cos sx +C, cosh rx sin sx)
where
C. = C,s+C.r C =G(r2-52)-$rs
5 1 2 7 1 2
¢, = C,r-C.g C, = 2,r.s +0C.(r° - 57
6 1 2 8 1°° 2

eG0s 8000000

5.22
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Asymmetrical Cases

In these cases the temperature is no longer symmetrical about
the longitudinal axis of the plate. This meahs that one half of the
plate must be analysed instead of one quadrant asnelysed in the
gsymmetrical cases. The ordinary differential equation for the g function

is of the same form but with different numerical coefficients.

Since one half of the plate must be considered in the analysis,
it is necessary to derive separate expressions for the f function on each

side of the point of discontinuity of the temperature function.

The derivation of the f functions can be found using simijlar
methods to those used in the symmetrical cases. In this instance it is

more convenient to use the coordinate system defined in figure 22.

As in the symmetrical case the distribution of thermal stresses
in a long plate can be found by suppressing the free thermal expénsion
of each plate element by applying a compressive stress, =Eal. As in
the symmetrical cases considered, tensile stresses must be applied at

the transverse edges to ensure that the edges remain stress free.

Owing to the asymmetry of the temperature distributions there
will be a resultent moment as well as a resultant force action set up.

Thus the longitudinal stress, Oi, at a point removed from the ends will be:-

o, = -Eal +3EdT +3(b; )
2b

% X Bending I{Oment eescssssnse 5.23
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Figure 69: Tensile edge stresses, +Eal, applied at transverse

edges of the plate.



The bending moment on the plate about the axis N- N is:

BM = Edl_ {% ($+b-c) - (&b-2=9)(—2—b—3=-"- -b+e)} (figure 69)

which reduces to

b

BM = Efﬂ‘o}'(b-C) . secceceses 5021'.
The longitudinal stress in the plate is therefore
o = £ = -E? +3EaT_ + (b-c)(b-y) o ceececeees  5.25

2b2

s

As already mentioned, separate expressions for f must be
derived on each side of the discontinuity occurring in the temperature

function, and the algebraic enalysis is simplified if the f function is

b

evalusted for the particular cases of ¢ = 2b, b and P’

Particular case, ¢ = °/2

The analysis for this case is given in full; the other cages

are evaluated in a similar menner.

For the domain bounded by 0 < y < %, the temperature
distribution can be expressed as
T = T a/b LA N N N N R N NN ) 5.26
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and for the domain bounded by 2 <y < 2,

T = MT eesecssone 527

3b °
Thus
no_ & .1.b-y b
f1 = EaTo{-b tot 7o } validfor0<y<2 S 1Y -

Integrating equation 5.28 twice yields

2

Y- .Yy by~ 2
Eﬂo {-b + 2 + 4b + S.l} [ XX EEN NN NN 5.29

N

]
£

and

2
_ L, -
£, = EaTo{-Bb S p + 8,3 +sz} cesecseese 5430

At the boundary y = 0, £, and f1' = 0, which gives S, =S, =0 ;
2
- ¥¥_9r
hence f1 EdI‘o’{S % 'b} [ E NN NENNNENN] 5.31
For the domain bounded by b/2 <y<2D
b/2 y y
b-
£) = Bt {-§ Zgy- [ L-Fg+f (§+2"T)gy}
2 ° o b T 'y 3 o 2 4b

, ﬂ 2
£ = g (T 2 (a_2’ +x+EL:ﬁ/_+S}
o* |®b 3 3bf/2 2 4b 3
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which reduces to

» 2/
- b_4y, T L, oy,
£, = E {3 -3 +Ls = 33} ceeenceses 5432
Integrating again gives
= A b_4y ¥ Y, by=-y'2
f2 Eﬂ°?£ - dy ~|.g/2(3 3 +3b)dy +£ (2+ T )i‘f*'SBY +34}
i.e.
2 2
n i
f2 = Eﬂ { 18 + 3 27 +72b “'SBY "‘543 e0csssarcre 533
The boundary conditions at y = 2b are f‘,2 = fé = 0, which
gives S3 =S 4 = 0; hence
2
_ B2,y %, 5
fz -— EGTO{ 18 3 24 72b} XXX XXX X 5034
2 2
Integral represented by A, is defined as § £" dy. Since £"
o

is not continuous over the whole range of integration, the integration
must, in this case, be carried between the limits O to b/2 and from

b/2 to 2b and then the two results added together to give the value of A_l.

i.e. A1 = ?/2 f" dy + S f“ dy eevessnsse 535
o b/2

In & similar manner, integrals represented by A2, A4 and A6 can be
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evaluated. For the case of ¢ = b/2, the following values were obtained:-

0.124999 (EeT )? 4, = 0.009375006° (ot )?

N
[

A, = 0.00284598b5(EdT°)2 | A

-0.125000(Ea)2r0

Substituting these values in equation 5.3, the following linear

differential equation is obtained:-
2.84598b%g"" = 18,7502 " + 125.000g = 125,000 ssveesesss 5436

Using the same procedure as for the symmetrical case, similar

equations for the stiresses are obtained, They are:-

o, = Edl {4 Lb}{1+c1 sinh rx sin sx +C, cosh rx cos sx}
valid
2
o, = E&, {3%— - %}{07 sinh rx.sin sx +Cg cosh rx cos sx } for
0<y<vP2
'cxy = -Eoir { EX 21—}{0 sinh rx cos sx +06 cosh rx sin sx}
g, = EcT {12 1%}{1 01 sinh rx sin sx +02 cosh rx cos sx}
- g (Bo.bx T2 5P
o‘y Edl‘{18+3 R }{G s:r.nhrxsmsx-ﬂ?8 cosh rx cos sx}

2
T, = -Edro{g--% +%}{05 sinh rx cos sx +06 cosh rx sin sx}

valid for b/2 <y<2b eccenccsen 5.37



9

where 01, 02, 05, 06’ 07 and 08 are defined in precisely the same manner

as for the symmetrical cases.
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Summary of Asymmetrical Cases

For convenience, the forms of the temperature f, £' ang £"
functions and values of integrals A.I etc, are given in tabular form

in Tables 13, 14 and 15.

Thus the stresses in the plate are:-

o, = g ; o, = fg'" and T = <£'g'  ceeeeecees  5.38

where g is defined by the equation

g = 1 +C1 sinh rx sin sx "’02 cosh rx cos SX oseccssenscs 5.39



TABLE 13

Case Domain bounded by Temperature function
0<y<3-b T=T 4y
4 o 3b
c=%
—p (Sb=4Y
£b<y<2b =1, (R
b =7 X
0<y<2 : T"Tob
b
c=3
bey<a T =7 (=2
(o] 3b
b =p &
° 0<y<4 T--Tob
c =7
Peycm T = (B2o4T)

4 o
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TABLE 16

Case K1 K2
c=b 2.11130  1.107520
¢ = %b 2.13669  1.148515
c =§ 2.22127  1.29097
¢ = % 2.46601 1.64447
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APPENDIX 4

Buckling Calculations

The constants in equations 2.37, 2.38 and 2.39 are defined

as follows:-

K, sinh R, cos R, = K, cosh R, sin R

B. = 1 1 2 2 1 2
] =
K1 sin R2 cos 32 + K2 sinh R1 cosh R,l
5 _ K1 cosh 1'1‘.1 sin 32 + K2 sinh R1 cos R2
2 = - .
Kj sin Rz cos R2 + K2 sinh R1 cosh B.1
K1 = br K2 = bs

_ 2 .2
D, = B, (K] - K5) - BEK,

o
i

2 .2
By(Ky - K3) + BKK,

o
"

-
o
]

3 = By, + B Ky 5 = Bifq - BX;

o'lp
-
to
i
=
o'ie

o0 0ssBOORS 5.40

where r and s are the roots of eguation 2.15.



Bnq

Bnq

Bnq

]

QOther coefficients are:-

1

§ (y —) cos E‘ cos SEX d (y)
o
1 n -
- 5 if —3| 15 0ad
(n-2- g ") 2
-——1—2 if |B=9] is even or zero
(234 m 2
1
1 Y L nny W 5 (L
2£b(1 )s:.nzbcos d()
1 if n_-z;_g is odd
(n_;ﬁ m)
] if E_;__‘l is even or zero
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542



nq

qu

Gnq

c
ng .

nq

1 2 3
-:113_ g _{1 -3(%) +2(%) } cos %“%cos 95"% d(%)

1 7 i B=93] is oad
(223 ) :
1 Z if MJ is even Gsecesssse
@58
L + 1 if 2-9 is zero
B mrg ot 2
2

¥4 s Yy ., 0y . gny .y
3,/ ‘54‘(3-7b)sm2bsm zbd(b)

2
2. g L B 9 L (L
+§/440 (=13 +9b)sm 7o S S d(b)

valid for ¢ =3/4b
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Bnq

' —
qu =

!

4hq
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i

= [ = (-6 +7%)%cosﬁsin3%d(%)

5 48 2b

2 2
RN Iy _ o MY n I g &
+ 5/4 " {~=16 + 26(3) - 9(%) } cos o 5in - d &)

valid for ¢ =>/4b ceveseeses  5ulb

3/4 5 2
2 (9-7L)(Ly sin 2T gin W 4 &
‘3)/1 (9-7H (L) st Lo T a

2 2 3
+ S -g-a‘{-4+16%-13(§) +3@) 3 stn T sin LT o)

3/} 2o
valid for ¢ =3/4b ®evecrcsse 5046
1/2
3 (1 -37%) asn B aw 5 (X
g 7 (1-3§) sin 55 sin 224 (5)
+ 52 L (5L .7) sin X 510 X 4 (&)
1/2 12 b 2b 2b b

valid for c¢ =b/2 essesnssee 5047
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1/2
- 3 (3L T eos 2 o4, AW 4 (L
Bnq = c{/ 8(3b-2)bcos o 810 d(b)

2
. P _ (L nny ay . (X
15/224(3»,14 5())cos stinzbd(b)

valid for ¢ =b/2 csesssssss 548

sin SEZ d (Z)

1/2
o = V3@ - @ o

2 9 3
L L n ' y
+ {/2 72 {-44-24%-21(%) +5(5) }sin-z%sm-gé%d @

valid for ¢ :b/2 ssesesevee 5.49

b/4
r T4 _cLl nuy qQy . (L
Anq = g 3 (1 Sb) sin = sin o d(b)
2 LBy gy .y
+ 1}4 A (11 - 15) sin Tt sin e d ()

valid for ¢ =b/4
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1/4,
B]'Jq =£ %(-2+5%)%cos—2;sin%j%d(x)
2
1 .V_ ny [« LA 4
+1}4 13 (=16 +30 % - 11 é) cos ¥ sin b d(b)

valid for ¢ =b/4 cocssssses  5e51

2
7 nny qny
C;xq (5)/ —8 -5 %) (%) sin sin d (%)

2
+ (=4 + LSX 45(I) _,_11(2) ) sin — sins“— d(z)
1/4 336 2b
valid for ¢ = b/4 ‘eeececccen 5.52
- 51 P nx X x)
Dmp = ) sinh R, < sin R2 sin 5> sin = d(;-
Dmp = sinh R, {C cos(R R ﬂ) +C, cos(R - E.;;.,.E )

...(;3 cog(Rz +m;Pn) -04 cos(Rz-m;pn‘)}

m+p m+p
+coshR1{ G, sin(R, + —5— ——

> ﬂ) - 06 Sin(R -



mp

mp

mp

mp
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+C,, sin(R, + =L n)+cssin(32-9—-:2'-£u)}

7 2

valid for all integers of m and p eessscssss D53

mux pIx . (X
i 22 sin 28 d(a)

m+p m +
coshR {-C sin(R + — ﬂ) -C sin(R -TP- )

2 2

+C sin(32+m—;2?t) +C, sin(r, 2}

3

Pn. G4 cos(R, - B )

+sinhB1{-c cos(R, +2 20 .

2

) +Cg cos(R, ~-==P ) }

R ‘l'm
+C7c08(2 >

2

valid for all integers of m and P eseccsceses 5054
1 ) .
nmx < nnx Li> 4
§ cog = cosE= 4 (®) = § sin — sin EX 4 €3]
o 2a 2a @ o 2a 2a 2

£

]
o

([ AN NN NN NN Y 5.55

=
N




mp

mp

Gmp

mp
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1 mnx X
§ 51nhR1—cosR X gin — cos om d(x)

o 2a 2a 2a
n=p
2
(=1) {(C1 -C,=-0y+ 04) sinh R, cos R,

- (€5 = Cg = Gy +Cg) cosh Ry sin RZ}

valid for odd integers of m and p esecsscees 5456
1
x X oog ToX gy B 4 (X
§ sinh R, J cos R, 3 cos —= sin &= d)

o

m+p m+p
sinh R, {-01 cos(R, + =5— m) +C, cos(R, = —5= m)

n-p n-p
+03 cos(Rz* 5 11)-(:.4 cos(Rz- > ")}

m+
+ cosh R, {C sin(B. + —— 11) - Cg sin(R E%-E )

~ C,, sin(R, + 22B ) +Cg4 sin(R p.ﬂ)}

7

valid for all integerB of m and P ssccsssece 5057



mp

mp

mp

Kmp

1 nmx pX x
g sinh Ry X ain RZE cos —— cos —— d(;)

o=
(-1)—52 {(31 +C, -03 - 04) sinh R, cos B,

= (G5 +Cg = Cy = Cy) cosh Ry sin Rz}

valid for odd integers of m and p

1 mmx x
g cosh R, ; cos R, cos oo c08 = d(;)

m-p
(=1) ¢ 1 {(01 +C_,=-C -04) cosh Ry sin R

2 3

+(c5 +06-c7-08) sinh R,

valld for odd integers of m and p

1 mmx pix
X X —— f iiind X
g coshR1asinR2asin 7a °°% oo d()

L X NN N NN NN J

R

cos R2 }

eesssGeenSS

109

5.58

5.59
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(- 1)""2 {(c

Kmp = -C -C +04) coshR1 sinli‘.2
+ (05 - 06 - 07 +08) sinh B.1 cos Rz} esese 5,60
valid for odd integers of m and p
' 1 x x nux prx
Knp = g cosh Ry 3 sin R, 2 cos —— sin == da
Kyp = cosh By {- C, sin(, +55Em vc, om R, - 22 W)
+ G, sin (B, «==E ) -G, sin (8, - =32 0)}
+ sinh R, {-05 cos (B.2 +n;%2ﬂ) +C, cos (RZ-E-;-Eﬂ)
+ G,y cos (R2 +£§2 T - Cg cos (R2 -%‘P' )}
valid for all integers of m and p eereccsses  5.61
where
. o1 R, +E'%B n




I
=

=

EN

R B

FN

N

=

+(

R _m_-.Ru)z

2 2

L AR RN NN E NN ]

5.62

11
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APPENDTX

Determination of the gtress function using the Rayleigh-Ritz method

in conjunction with the principle of Minimum Complementary Energy

The complementary energy of a heated plate can be written as:-
v o= = ?? (P +P-2v00 +2(1+v)T_ + 2Bl (0, +0,)} dxdy
Py —a b . ¥ y xy Xy X y

o8008 OOGOSODS 5.63

For simply connected regions, the stress distribution has been shown to
be independent of the elastic constants; +thus:-
TR § - N S BB .
U o= & SI{ED + & 28 s+ ma (EL 2D}y
oo - Oy Oxdy oy~ &

ax?

[ E NN N N NN NN J 5.64
The integration is carried out over one quadrant of the plate if a

symmetrical temperature distribution is considered. It can be assumed

that the stress function, satisfying the boundary conditions

_ _ _ o+
o, = ?iy = 0 at x = -2
eoeeecessese 5.65
4+
g = = = -
. Tky O at ¥y b

can be expressed as:-
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2 2
¢ = (xz - 32) (Y2 - b2) (Y1 + T2x2 + ngz + Y4X2Y2) eecseccncse 5066

Using the Rayleigh-Ritz procedure, the condition for minimum

complementary energy of the plate is

3* 3* ’
——— I s = - 0 Y 5067

This operation leads to four linear simultaneous equations

for the parameters Yys Yoo 73 and 'f/*, vizs-

{é'z/*"%ék*%kz}*”{ rm i at e (B e BR) opf

7
+ (S, —Akz}*rb = - —2ede0 ?? ZEar 2 (62‘6 Z‘Q)dxdy
539 539 256a9b5 oo 671 aY Eb:

{Téilh"‘%l*kz}'f +{—9— -i-ki--i-k}'rza +{.._12 _zth}*Bb?,

~143 77 Vi i
| ab
P LIRE 22 o L DT5S g D @3 Dy
5
- 1001 256a B oo 5'1'2 ay' ox~

-6-4-1--6—42 + -4 élkz ;]2-2.4.&6- +—%2
{7 11k}Y1 tr * o K Jrpe’ AT R 143k} e



ab 2 2
(IR A2 2 paR2 o (2L g 2mar 52 (&L . ”)axay
1001 256a’b’ o0 o T3 oy &P

{%+%k2}*r1 + (12, 12,2y g2 o {122, 102,23 ¢ 42

143 1 11 143
576 . 276 576 , 2 2 2 9:7:7:545 _g
+{2= + =20k + 227} ¢ %~ = ———552Ea'r =) dx
U ia = A 2562 b’ o o —% v
b2
where k = —2 . ssessccnce 5.68
a

For a symmetrical ttent-like! temperature distribution, the
temperature in the first quadrant can be expressed as T ='ro(1 -»y/b).
Substituting this equation in the above set simultaneous equations and
then integrating, the values of the parameters can be found. In many
cases it is more convenient to express the stress function in the
following form:-

2 2 2 2 2
X X
= szdTo(—é-1)(ﬁ2-1)(B1 +52%+53”—2+34—i§) ceeee 5469
a b a b azb
where 51, 52, BB and 34 are non-dimensional parameters related to Y45 Yoo

75 and 12 by the equations:=-

— 2 — 4
Eal B, = y,e'b B p, = 73a4b

(AN RN NN NE N J 5070

2 - 4
EdTOB2 Yéaéb EdTOQ4 = r4a6b
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Figure 70: Mechanical Characteristics Poisson's Ratio.
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APPENDIX 6

Material Characteristics and Properties

(1) Poissont!s Ratio

Test pieces of TI.224 aluminium alloy were subjected to
tensile loads in a 50 ton Denison Universal Testing Machine.
Saunders-Roe % in. electrical foil resistance strain gauges were fixed
to the specimen in the longitudinal and transverse directions. Using
a Strain Resistance Bridge, readings of increase of resistance and
applied load were taken. Figure 70 shows typical readings of

longitudinal and transverse strain plotted against applied load.

From the results of the tests the average value of Poisson's

Ratio was found to be: v = 0.313.

(2) Calibration of Vacron-Eureka Thermocouples

The thermocouples were calibrated using a vacuum flask
containing melting ice (OOC.) to provide a cold source and a hypsometer

with steam at 100°C. to provide a hot source.

The e.n.f. generated between the hot and cold junctions was

measured by a Cambridge Instrument Company portable potentiometer.

The calibration was repeated with the switches of the 'Thermal

Buckling! apparatus incorporated in the circuit.
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Figure 71: Thermocouple calibration curve.
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Results: Temperature Differential = 100%.

E.MF. of thermocouple = 4.70 n,V,

A standard parabolic curve for a Vacron-Eureka junction was
fitted after adjustments, between the two calibrated points. It was
found that the deviation of the curve from the straight line joining
these two points did not at any point exceed -;"'OC. For practical

purposes, the straight line calibration was therefore adopted, (figure 71).
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