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Summary.

The first part of the Thesis (Parts 1 and 2) 
describes a theoretical investigation on the S-wave 
K-nucleon scattering. Although the K-meson-nucleon 
interaction has received considerable theoretical 
study, the details of the mechanism remain obscure.
In an interaction like this where absorptive processes 
are known to be quite strong, the requirements of 
unitarity imply a close relationship between the 
various channels in the reaction. It is therefore 
important in any consideration of K-meson-nucleon 
scattering to take into account virtual processes 
involving pions and hyperons.

This investigation studies the possible importance 
of one particular virtual process namely scattering 
via the elementary virtual production of pairs. This 
is achieved by using a reduced Hamiltonian for which 
the processes

% N + N K <--> Y + N
are allowed and the only Feynman diagram for K + N 
elastic scattering is that shown in the figure below.

YK K
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The state vector contains terms in the configurations 
(K + N ) , (N + N + Y ) and (% + Y ) and the problem» can 
be solved exactly to obtain the S-matrix for the 
reactions

K + N ---- > K + N

% + A 

7t + S

Another version of the model in which % <— >-B + B 
(where B is a baryon) is also allowed is investigated 
but clearly higher configurations can now occur and 
the model is not exactly soluble. Apart from its 
application to K + N scattering, tlie model is of 
interest in itself as it contains three open channels 
and an application of Tamm-Dancoff approximation 
leads to a system of coupled singular integral 
equations which have to be solved numerically. This 
was done on the electronic computer of the Glasgow 
University and both the models were studied for various 
combinations of coupling constants in the theory.

Because a reduced model Hamiltonian has been 
used, the coupling constants are not directly comparable 
with those employed in calculations using the full
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Hamiltonian. However it has been found that for 
reasonable values of the coupling constants, a 
substantial fraction of the observed cross-sections 
can be obtained with this process. The model also 
correctly predicts the sign of the real part of the 
scattering amplitude for certain values of the 
coupling constants. The conclusion from this 
investigation is therefore that in S-states, pair 
production by K-mesons and pions must be taken into 
account in a future relativistic theory.

The second part (Part 3 ) of the thesis describes 
a calculation on the elastic scattering of pions by 
alpha-particles• The interaction of pions with alpha 
particles has not been investigated theoretically so 
far and in the present study, a variational method which 
has been found quite successful in the pion-deuteron 
scattering has been applied to this problem. This 
method takes into account effects of multiple scattering 
quite simply and is an improvement over pure impulse 
approximation. The results of the calculations show 
that multiple scattering corrections are small and 
agreement with experimental results without such 
corrections is reasonably good.
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1.1 Introduction.
The problem of interaction of negative heavy 

mesons with nucleons is one of considerable theoretical 
interest. The experimental results available at present 
on the scattering and absorption of negative K-mesons 
on protons are limited. Theoretical investigations 
have therefore been principally concerned with fixing 
such parameters of the theory as the coupling constants 
and low energy scattering lengths. As is however well 
known, it has not been possible to construct as yet a 
satisfactory theory of strong interactions of elementary 
particles. Quantum field theory which has had such 
notable successes in electrodynamics can offer only a 
semi-quantitative description of low energy pion-nucleon 
systems. The success of the celebrated Chew-Low (l) 
theory appears now to be largely accidental and the 
point of view has been expressed that field theory is 
inconsistent and will eventually die. On the other hand, 
as Chew (2) has pointed out, many apparently valid general 
principles (such as the substitution law) have been 
discovered by studying the dubious concept of the
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local field. In any case, quantum field theory is 
the only apparatus we have at present for a detailed 
description of elementary particle interaction# 
phenomena.

In pion physics, significant progress was made 
before the era of dispersion relations by considering 
the pion-nucleon interaction within the framework of 
various approximation schemes. The most straightforward 
approximation, of course, involves power series 
expansions of the scattering matrix in the coupling 
constant. In the case of meson theories, such an 
expansion is meaningless on account of the large 
coupling constant.

On the other hand, the usefulness and validity 
of the methods of Bethe and Saltpeter (3 ) and of Tamm (4) 
and Daneoff (5) have been extensively investigated.
Chew (6) has applied the Tamm-Dancoff method to obtain 
the meson-nucleon potential. His calculation of the 
scattering with pseudovector coupling in the pseudo­
scalar meson theory was in reasonable agreement with 
experimental results.

Indications have been obtained that the K-meson-
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Baryon coupling constants are very much weaker than 
the pion-nucleon coupling. It seems therefore 
reasonable to attempt to investigate K-meson-Baryon 
interaction phenomena by means of an approximate 
method like that of Tamm and Daneoff.

The difficulty in the study of strong inter­
actions is not only the lack of a framework within 
which to make plausible approximations but in this 
particular case there is the added complication of 
eight coupling constants of which only one is known 
with any amount of certainty. Also since the relative 
parities of the K-mesons with the hyperons are not 
yet known, one is forced to make a choice between 
various possibilities. One may however proceed in 
either of two ways. One may use the possibility of 
determining the parity from K-meson-nucleon scattering 
data by using a zero angle dispersion relation. In 
this case one, of course, ignores the question of the 
validity of the dispersion relations which have not 
yet been rigorously proved and one also makes the 
assumption that the contribution from the unphysical 
region which is present even for forward angle due to 
the absorptive processes in the K -p reaction is
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negligible. It has however been recognised that 
the structure of the unphysical region may be quite 
complicated, with the possibility of a cusp in the 
scattering amplitude where a new channel opens, 
although indications from perturbation calculations 
seem to favour a smooth extrapolation.

Alternatively, one can attempt to construct a 
complete dynamical theory in which from certain 
specified assumptions about the interaction Hamiltonian, 
one calculates cross-sections which are then compared 
with experiment. Various symmetry principles have 
been proposed from time to time to reduce the number 
of coupling constants and one of the most interesting 
in this connection is that of Gell-Mann (?)• He 
adopted the point of view that, as a first approximation, 
one may neglect all the baryon mass differences thereby 
obtaining the highest degree of symmetry, which is 
later reduced by secondary perturbations. He replaced 
the isobaric spin singlet A  and the triplet ID by 
two doublets. The four baryon doublets thus obtained 
(including the N and *3 doublets) were assumed to 
have exactly the same strong interaction with the %- 
mesons. The K-meson couplings were assumed to be
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moderately strong and responsible for the mass 
differences and different behaviour of the baryons.
This is the well-known global symmetry of Gell-Mann,

It has however been shown by Salam (8) that if 
the elements of the T*^ matrix for the K -p interaction 
relating to pion-hyperon processes are taken from the 
pion-nucleon scattering, the results obtained for the 
2 “/ S'** ratio do not agree with experiment. If however 
one uses the principle of restricted symmetry (9) that 
is the equality of tc-A and 22 coupling constants 
without any reference to the pion-nucleon coupling, 
then it is found (lO) that the results are quite 
consistent with the experimental data on hyperon 
production ratios.

It is therefore to be emphasised that in any 
attempt at calculation of the properties of the strong 
interaction, one is forced to make simplifying 
assumptions so that one eventually ends up with a 
rather simplified model. On the other hand, recently 
there has been a great promise of a very comprehensive 
dynamical theory in the double dispersion relations of 
Chew and Mandelstam (ll). It has been recognised that 
in the theory of strong interactions pion-pion interactions
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play a central role and double dispersion relations 
have been used together with unitarity to provide a 
complete dynamical theory where although the under­
lying short range forces are not properly understood, 
long range interactions due to exchange of one or 
two-particle systems can be handled in a consistent 
way. This type of approach (2) has also opened up 
the possibility of deciding whether the A and E  
are 'elementary* or bound states.

In the present far less ambitious model, s-wave 
K-N interaction is treated systematically on the 
assumption of pair creation in the intermediate states. 
From the comparison between the predictions and 
experimental cross-sections, we find that the model 
is quite promising for certain choice of coupling 
constants. The qualitative result of this investigation 
is therefore that in any realistic theory of low energy 
K-N scattering, virtual pair creation should be 
explicitly taken into account since it accounts for 
a large part of the experimental situation.
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1.2 Gell-Mann-Nakano-Nishijima Scheme.
It is customary to classify the elementary

particles in the following way:
(a) The photon. Its rest mass is zero, spin 1 and it

interacts with all charged particles through a
2universal constant e where e / h % = 1/137*

(b) Leptons. These are neutrino, anti-neutrino, electron, 
positron, negative and positive p-mesons, light 
particles, spin § and possessing no strong couplings.

(c) Mesons. These are Bosons of intermediate mass 
possessing strong couplings. There are two sub­
groups; pions and K-mesons. Both occur with 
charges - and 0,

(d) Baryons. These are fermions possessing strong 
couplings and satisfying the law of conservation 
of baryons. This law states that baryons can not 
be created or destroyed except in the baryon-anti- 
baryon pair production and annihilation. The 
baryons are divided into two subgroups (i) Nucleons 
comprising neutron and proton and (ii) Hyperons 
consisting of A , £  and Z  particles. The latter 
have masses greater than nucleons. All the baryons 
are expected to have anti-particles.
All the new particles i.e. the K-mesons and the
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hyperons have one rather surprising property in common.
They are produced with a remarkably high abundance
even in medium-energy collisions but have a relatively
long life-time. In order to account for the large
production cross-section, the interaction of K-
partides and hyperons with pions and nucleons must be
strong of the same order of magnitude as the pion-
nucleon interaction. With such a large value of the
interaction coupling constant, one would obtain for a

—22hyperon a life-time of about lO" sec. On the other 
hand, the decay of a hyperon to a system of pions and 
nucleons is known to have a life-time of order 10 
sec. or longer.

To account for this paradox of copious production 
and long life-time. Pais (l2) was led to the hypothesis 
of associated production of strange particles. He 
pointed out that experimentally one never encounters 
the single production of a hyperon or a K-meson; at 
least two strange particles are always involved in the 
production process. Interactions in which only one 
strange particle is involved, as in the decay processes 
are weak. In other words, one has in general three
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types of elementary particle interactions: (i) strong
interactions such as the pion-nucleon and n u d e  on- 
nucle on interactions, (ii) electromagnetic interactions 
and (iii) weak interactions as in beta decay.

The outstanding property of strong interactions 
is their charge independence or conservation of 
isotopic spin. A group of particles of nearly the 
same mass and other properties constitute an isotopic- 
spin multiplet. If there are (2T + 1) particles 
in the group, then T is the isotopic-spin quantum 
number of the multiplet and each member of the multiplet 
is characterised by a value T^ which takes on values
-T, -T+1,.... . T-1, T. As T^ varies, there is a
variation in the electric charge which increases in 
steps of e as T^ increases by one. For pions and 
nucleons, one can write quite generally

Q = + iN

where N is the number of nucleons. Nakano and Nishijima 
(13), Nishijima (l4) and Sachs (15) have generalized
this relation to include the hyperons as follows:

q = + i(B + s)

where B is the baryon quantum number and S is the
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•strangeness*. Nucleons and hyperons have B = 1, 
whereas the K-particles have B = 0. The assignment 
of strangeness is not unique. It depends on the 
assignment of isotopic spin. In the scheme of 
Gell-Mann (l6) and Nishijima, the parameter S has 
the value 0 for pions and nucleons, +1 for K-mesons, 
-1 for K-mesons, A  and S  hyperons and -2 for the 
cascade particle. The quantum number S is conserved 
by both strong and electromagnetic interactions; 
only the weak interactions can violate conservation 
of strangeness.

The assignment of isotopic spin and strangeness 
is summarized below.

Table

T '̂3 ^
B s Q Particle Spin

1 l,o,-l 0 0 1,0,-1 0
i if-i 1 0 1,0 p,n 2
i 0 1 1,0 K"*",K° 0
1 1,0,-1 1 -1 1.0,-1 i
0 0 1 -1 0 A i
12 1 -2 0,-1
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We have not included the anti-particles here#
The general rule is that the strangeness of the anti­
particles is negative of the strangeness of the 
particles. This leads to the interesting conclusion 
that there should exist two neutral K-mesons, one 
with strangeness +1 and the other with strangeness -1.
This has been experimentally verified.

There are small mass differences among the 
members of the same family as,for example, the 
reported mass difference between K^ and K of 3*7 - 0.7 MeV 
and that between S" and of 7.1 - 0.4 MeV. We
will disregard the small mass differences and utilize 
the isotopic spin formalism. Recently the property of 
charge independence has been experimentally verified 
(Î7) in the reactions + p K"*", % + p -> S* +
and Tt" + p — + K^. Under charge independence, the 
cross-sections of these reactions satisfy the triangular
inequality \j ̂  CE*) $ *\/ O' (2+) + ^  . Previous
experiments seemed to show a contradiction for backward 
produced '!£/ ' s but the new experiments have found no 
such contradiction.
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1.3 Summary of Experimental Results.
A large body of experimental information on K - 

meson decays and interactions has recently been 
published. Most of this has come from experiments 
with plates or with bubble chambers at the Berkeley 
bevatron. Preden, Gilbert and White (l?) have collected 
all the presently available data, summarized and 
combined them with their new measurements at high 
energy. Earlier summaries have been given by Kaplon (l8) 
and Ascoli et al. (19)*

The following reactions of K -mesons on free 
protons are allowed by conservation of baryons, charge 
and s trangene s s;

K* + p — i

K + n

k “ + P (1)
n (2)

2  ̂+ tC (3)
2 - + (4)
2 " + (5)
A  +
are

(6)

k " + n (7)
2 " + o

% (8)
+ (9)

A  + (10)

elastic scattering cross
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as a function of K"-meson incident energy in the
laboratory system appears in Pig* 1* The curve for 

2 is also plotted in the figure where A  is the 
K"-meson wavelength in the centre of mass system 
divided by 2%.

The main features of the (K p, K p) data are 
the possible peak in the cross-section at about 30 MeV, 
a sharp decrease to about 40 mb and then a fairly flat 
curve up to 300 MeV. However the suggestion of a peak 
can not be statistically substantiated specially 
because the emulsion data seem to show a 1eve11ing-off 
in the cross-section at about 30 MeV. It is important 
that more data be obtained in this region to settle 
this important point which has given rise to a resonance 
hypothesis in the K -p scattering.

The K”-p charge exchange scattering has also been 
investigated (20)• The cross-section rises from 
threshold, reaches a maximum of about 15 mb at I50 MeV/C 
and then decreases to 4 mb at 4l8 MeV/C S)•

The total cross-section for capture to give 2^%^
2appears in Fig. g together with the curve % 3k /2 as 

given in reference 17* The evidence for a decrease in



HK'

Angular distribution of K~-p 
elastic scattering. Angle 0kk' is bet­
ween the incoming K- and outgoing 
K-particles in the center of mass 
system. A distribution function: 
1 +  2 1 cos 0+J5(3 C0&2 0 — 1) fitted 
to the histogram yields: A =
=  — 0.06±0.4 and — 0.05±0.2.

X n

Angular distribution of K~-p 
inelastic scattering. Angle 0kti is bet­
ween the incoming K-particle and 
the outgoing Ti-meson in the center 
of mass system. A distribution func­
tion l - \ -2A cos 6-\-B{3 coŝ  0 — 1) 
fitted to the histogram yields: A =  

=  0 .1^0.2 and B =  0.3 0.3.
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the inelastic K*-p scattering cross-section with 
increasing energy appears to be sound. The collected 
data on angular distributions of* elastic and reaction 
cross-sections as given in reference 19 are shown in 
Figs. Ï and 4» These data are clearly consistent with 
isotropy.

If we believe this evidence of the angular 
distribution to be isotropic, this suggests that the 
interaction of K -mesons with protons is predominantly 
S-wave. In discussing low-energy K -p interaction 
therefore, we shall assume that S-wave processes are 
predominant and neglect all higher angular momentum 
waves•
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1.4 Phenomenological Theory. Effective Range Approach.
The S-wave K-N scattering amplitudes have been the 

subject of numerous discussions (21) from a phenomeno­
logical effective range point of view. Prom isotopic- 
spin considérâtion alone, one can write the cross- 
sections for elastic and charge-exchange scattering in 
the form

3t I „ 2 Id. 2.(K,

(2)

where + *■ is the complex phase-shift for
iso topic spin T = 0,1 and = exp • These
phase-shifts are related to the scattering amplitudes 
by the relation

k cot &T = 1/Ap

where k is the centre of momentum and is the 
scattering amplitude. The absorption cross-sections 
in T =s 0, and T = 1 are given by

«V = 5  ( ' - ? , • )
and are related to the cross-sections for hyperon

(3)
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production by

<r, = 2 <rCr*vC-+A) _ 4 <rCs*)

(4)

(5)

One first determines the quantities and ,
from hyperon production cross-sections using eqns.
(3) to (5) and one can then apply a simple graphical
method (22) to obtain a and a., •o J.

Lacking detailed data on neutral hyperon 
production, Dalitz and Tuan (23) made the assumptions:

(a) ^ € <r, €  ̂  0 2

(b) fo = 2
Pi

Using the experimental data at a laboratory 
momentum of 175 MeV/C, where = 86 mb, = l4 mb
o-(2 +4-Z4") = 45 mb, they found the four solutions:

1) = 0.2 + i 0.76 A^ = 1.62 + i 0.38 (a+)

2) A = 1.88 + i 0.82 A, = 0.4 + i 0.4l (b+)o 1
and the solutions (a-), (b-) obtained by reversing the
sign of the real parts of both A^ and A^.

In an attempt to distinguish between these four



- 17 -

solutions, Dalitz and Tuan have calculated the K -p 
elastic scattering cross-sections neglecting Coulomb 
effects (Figs* 1 and Z ) ,

Fig. 1

Below the threshold for production (90 MeV/C), 
the four sets of solutions show their greatest differences 
but in this momentum range it is very difficult to get 
accurate data so that it has not been possible to 
distinguish between the four solutions.

Jackson and Wyld (24) have calculated the K -p 
elastic scattering cross-section including the Coulomb 
effects and found that solutions (a-) and (b-) more 
nearly follow the emulsion data, owing to the destructive 
interference with the Coulomb scattering. From this, it 
is concluded that K -p interaction potential is repulsive 
which in turn leads to the conclusion from dispersion
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relations that K”-meson is scalar.
However, the re-analysis of the Berkely K -p 

data presented by Alvarez (25) at the Kiev Conference 
shows that the Dalitz solutions are not at all precisely 
determined as was previously thought. The errors in 
the data are such that the above solutions can only 
be considered as tentative. It also appears that an 
angular distribution for elastic K"-p scattering at 
172 MeV/C has been obtained at Berkeley which clearly 
shows a constructive interference between the nuclear 
and Coulomb scattering. This evidence will confirm 
the earlier indication that K -p interaction is 
attractive and therefore that K -meson is pseudo­
scalar.
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1.5 Field Theory. Soluble Model.
A simplified model which contains all the 

essential features of strong interactions and at the 
same time can be exactly solved has been studied by 
Amati and Vitale (26). It is essentially the Lee 
model (27)» where the virtual K and % mesons in the 
intermediate states are disregarded and the rather 
unreliable approximation of no recoil is made to 
obtain a soluble theory.

Assuming a scalar K-meson, the model gives 
rise to the following integral equation

x/k) r r (k')

where the kernel is given by

. /» , A 2 Gy My -  Mg —Kx \ ' r “ I   —

Gy being the re-normalized coupling constant and Y = A 
or particle. Owing to the separability of the
kernels, this integral equation can be solved by the 
Schmidt method and the phase-shift calculated from the 
equation

f(k ) = — taniyVo-' ^ ^
The scattering cross-section then follows from
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the expression

crfw)= ^
2 2With a choice of coupling constants Or ̂ / h %  = G ^ / k %  = 0.3 

a cross-section of the order of 10 mb. is predicted for 
both isotopic spin states. Moreover the tangent of 
the phase-shift turns out to be negative indicating a 
repulsive K”-p potential for both values of the isotopic 
spin.

The reasons for the failure of the Tamm-Dancoff 
calculation of Amati and Vitale have been pointed out 
by Ceolin, Dallaporta and Taffara (28), Amati and 
Vitale have considered the lowest order diagram (Fig. 1) 
but on

\ K" /4-/V /
Fig. 1

account of the possible capture reactions of negative 
K-mesons, it is not justified to treat scattering 
independent of capture. The Tamm-Dancoff calculation 
should take into account the virtual capture diagrams 
which can be included quite naturally in two-meson
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approximation.
The complete set of Tamm-Dancoff equations in 

this approximation is then

. Lk' •> 0«'*„(>■)

and similar equations for X and • The
different kernels are obtained in the usual manner. 

This procedure essentially leads to the 
calculation of the following diagrams :

. « , / \ , / 
V T " \ /  Â.... _ k : :...... - a

in addition to the diagram considered by Amati and 
Vitale. The results relating to the new terms are of 
opposite sign from the old term and of about the same 
magnitude and therefore contributes to correct the 
previous result in the right direction. No quantitative 
calculations were however made, since approximations 
required were rather drastic. Ferreira (29) has made 
a perturbation calculation of the third diagram above
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and finds that the contribution is always large
enough to compensate the repulsive second order
diagram of Amati and Vitale and to change it to an
attraction. This is true for either scalar or

2pseudo-scalar case and a coupling constant = 1*5*
We may thus conclude that in the scattering 

process of K with nucleons, pions and K-mesons 
should be considered in the intermediate states and 
will probably give an important contribution to the 
process. The neglect of all these could be justified 
if capture turned out to be a small fraction of 
scattering but experimentally it is known that at 
least at low energy this is not the case.
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1.6. Dispersion Relation Theory.
Although the dispersion relations for E-meson 

scattering from nucleons have not yet been rigorously 
proved because of the difficulty of satisfying certain 
mass inequalities, we can formally write them down in 
complete analogy with the pion-nucleon case. For the 
forward elastic scattering, these relations take the 
f orm ^

o.(«) « I r _Mü2. jw' ^ 1 r ,

oo

o

00

(1)

• 11 J (2)
0

where w is the incident K-meson energy in the laboratory 
system. For K (K is the mass of the K-meson in units 
of ^ =s c = pion mass p, = l) , we can use the optical 
theorem

^  (3)

In order to make practical use of Eqns. (l) and (2), one
must have information about (w) below the physical
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threshold w  = K.
In the pion-nucleon forward scattering case, 

there is only a discrete bound state below the physical 
threshold. In the K-meson-nucleon case however A-(«*0 
has contributions below the physical threshold from 
the continuum of and 2%Y states. These are graphically 
shown below.

^nphysical Range------ ----- ><— Physical Range

-E E

Following the standard procedure, the contribution 
from the pole terms can be easily calculated and we get

A.Cw") = j  («^+m±y)

=  --------
2fA

and the positive sign is to be taken for the scalar case 
and the negative for the pseudo-scalar. It is this 
fortunate change of sign which makes the E-meson-nucleon 
dispersion relations so sensitive to the E-meson parity. 
We can then write down the dispersion relations in the
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final form

D±C«0 = r - ^  + - ! - f k V r J 5 M  . c: 1"ri" 4n» J L a', w w"J

X
where

X ' .  ^ ' [ ( W - K ]
Of course, the dispersion relations as written down 
here do not converge unless falls faster than
To secure better convergence, various forms of sub­
tracted dispersion relations have been proposed.

Matthews and Salam (30) have studied the 
dispersion relations in the form

^  f [  % - ( 4 -  -  - r o r ]  K k '
K

[  Ik'l [  i i n r  -

Hjc
where B.S. means bound-state contributions. With the 
preliminary experimental results, they could only make 
a rough evaluation of the first integral in the energy 
range K-2K and gave arguments to show that the 
contribution from the second integral was negligible. 

This is, however, by no means certain. Using
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their effective range solutions (a-, b-), Dalitz 
and Tuan have attempted an analytic continuation of 
A-(&)) into the unphysical region and found that the 
contribution may quite well be large. However, as 
has been pointed out, the solutions of Dalitz and 
Tuan are based on preliminary data and may well 
undergo significant changes with improved results 
from experiments.

Other forms of strongly convergent dispersion 
relations have been studied by Igi (31), Kerth et al. 
(32) and Amati-Vitale (33)• Using a form of effective 
range relation proposed by Amati (34), Selleri (35) 
has discussed the K^-p scattering data writing the 
cross-section in the form

(T+(o>) s 4- k (w - M.) K < w < 14K

A future determination of b is likely to decide 
whether K-meson is scalar or pseudo-scalar from the 
dispersion relation of Amati. If present indications 
of a weak dependence of on w  in the low-energy
region is accepted, then K-meson is likely to be



- 27 -

pseudo-scalar with respect to both hyperons.
Very recently Kycia, Kerth and Baender (36) 

have used a form of subtracted dispersion relation 
which has several advantages over all other previous 
forms. In their form, the cross-section integrals 
converge rapidly and depend more on 0+ then on 

• These integrals converge even if 
go to a constant as o) goes to infinity. An 
additional advantage is that the real parts of the 
forward scattering amplitudes are used at energies 
at which they are known from experiment. Furthermore, 
the importance of the unphysical region is decreased 
in the form of dispersion relation used by these 
authors. In spite of all these advantages, the 
results of these authors indicate that even with the 
most recently available data it is difficult from 
subtracted dispersion relations to arrive at unambiguous 
conclusions as to the nature of the K-meson hyperon 
coupling.
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1,7 Conclusions.
In the fore-going chapters, we have summarized 

the various investigations on K-N scattering and have 
noticed that although considerable progress has been 
achieved in correlating the preliminary experimental 
data by means of zero-range analysis, not much success 
has been attained in fixing the parities or coupling 
constants of the K-mesons. Dispersion theoretic 
approach which has been so successful in the correspond 
ing pion-nucleon phenomena is here plagued by a 
large unphysical region contribution which it is 
difficult to estimate properly. On the other hand, 
the zero-range analysis of the K~-p scattering data 
at 175 MeV/C has given four possible sets (a-), (bi) 
of the complex scattering amplitudes of which the 
constructive Coulomb-nuclear interference in K**-p 
scattering seem to favour the solutions (a+) and (b+). 
The elastic cross-sections from emulsion data show a 
maximum at about 20 MeV and this has been interpreted 
as due to destructive Coulomb-nuclear interference, 
as required by (a-) and (b-) amplitudes. Neither of
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these conclusions is at all convincing and clearly 
more experimental data will be required before the 
sign of the Coulomb-nuclear interference term can be 
settled•

As regards field theoretic calculations, a 
model for K-meson-nucleon scattering has been studied 
by Amati and Vitale but the results of such calculations 
are in complete disagreement with experiment. The 
failure of this model to explain the K-meson-nucleon 
cross-section is hardly surprising since it does not 
take recoil into account and neglects the effect of 
TC-niesons in the intermediate states. The outstanding 
feature of the cross-section data available for the 
K -p scattering and reaction processes is the strong 
absorption leading to pion hyperon states of all 
possible change combinations

K" + p ̂  Y + %

where Y stands for A and S  hyper ons. For
example, at a laboratory energy of 30 MeV for K -meson, 
the cross-section for and 21" production amounts
to hh - 8 mb. All of the differential cross-sections
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observed for the elastic scattering, charge exchange 
and reaction processes in K -p collisions are found 
to be essentially isotropic at this energy. The 
available evidence therefore indicates that it is 
the s-state interaction which plays the dominant role 
in the K"-nudeon processes at low energy. We can 
therefore compare the observed absorption cross- 
section with % % , the geometrical maximum cross-
section possible for s-wave interaction which is IO3 mb. 
at this energy. Since the absorption cross-section 
is almost half the geometrical cross-section, the 
competition of these absorptive processes will indeed 
have a marked influence on the scattering processes. 
Quite generally, in any situation where the cross- 
section for the reaction processes reaches a consider­
able fraction of the geometrical limit, the requirements 
imposed by unitarity imply significant relationships 
between the reaction processes and the scattering 
processes in the various channels. Each strong 
scat'tering in one channel has an appreciable reactive 
effect on all other channels of the same quantum
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numbers•
The existence of such reactive effects casts 

doubt on the validity of perturbation methods for 
K-meson-nucleon interaction phenomena. This is 
clear from the fact that reactive effects do not 
appear in the lowest order term but are manifestly 
important in the higher-order terms of perturbation 
theory. Since perturbation theory is useful only 
when higher order terms are small, it follows that 
success of such calculation requires small reactive 
effects. Therefore the data on low-energy K-N 
processes lead directly to the conclusion that 
perturbation expansions are of very doubtful validity 
in K-N scattering. We have however constructed a 
model which explicitly takes pion-effects into 
account in the K -p scattering using a state vector 
which comprises baryon-anti-baryon pairs and a 
variational method for obtaining the integral 
equations for the three coupled channels. This 
represents a generalization of the model of Bosco 
and Stroffolini (38) on s-wave pion-nucleon scatter­
ing. In the following chapters, we give details of 
calculation on the model.
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Part Two.

2 .8 The Lee Model and its Difficulties.
The exactly soluble model of a field theory 

constructed in 1954 by T.D. Lee (39) has been the 
subject of numerous careful investigations. Although 
various other examples (4o) have been discussed since 
then, it is Lee's model which clearly brings out the 
meaning of renormalization and also reveals a number 
of difficulties of a fundamental nature in all these 
theories•

The model contains three types of particles, - 
the V-particle, the N-particle and the Q-particle 
which transform into each other thus

V N + e (i)

and it is defined by the Hamiltonian

H = (2)

(3)+ 2

2 2where = p + K and it has been assumed that the 
energy of the V and N particles does not depend on
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their momentum. In this respect, the Lee model is 
rather far from physical reality.

The commutation relations of the field 
operators are the conventional ones and there are 
two constants of motion which are

ny + n^ = const. and n^ + n^ = const.

where n represents number operator for the respective 
field. Because of this situation, the problem is 
exactly soluble in a simple form. We can in fact 
express the physical V-state as a superposition of 
two states, one bare V-state and another state of N 
plus 9;

| V ^  =  ^  f  C k )  I

yi / \where is a normalization constant and f(k) is
proportional to the probability amplitude for finding 
a 9-particle in a physical V-state.

Application of the Schrodinger equation

(5)

H | V >  =
together with the orthonormality of the bare eigen­
states and a normalization condition for the physical
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V-particle then yields:

f(k) = ^   !------ (6)

r kjw , An,
4%'J W4. -  E

z;' = I + l;‘ r ____ (8 )
4 * *  J  ( w + M w -

-»The divergent quantities SrOy and Zj. serve to 
renormalize mass and coupling constant.

The next simple state we can solve for is IN + 0^ 
which can be written as

|N<-e> * & | v )  + 2  ojl I N ) (9)

and on application of the Schrodinger equation, one 
obtains the integral equation satisfied by ^(k);

i f w  • f -jill é x  J  \ f o Q  rr\rt“ W ^

2 2where g^ = g^ Zg • Since the kernel of the integral
equation is separable, one can solve it easily and 
the s-wave phase-shift S is given by

k— ianS c %, 
X r i

D(k) a —&  I my -  m  N  -  w (ll)
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Everything is finite here and this is the most
significant fact that after performing the mass
and coupling constant renormalization, the phase-
shift for scattering turns out to be finite. In
this model, only the V-particle operator requires
normalization. In general, all fields have to be

2 2renormalized. The relation between g^ and g^ is

I - ioi 4%
where

The integral I is divergent and if we use a
cut-off in the integral, there will be a value of
the cut-off for which ) I ^ 1 so that < 0

2provided of course (g^/4x) ^ 0. In this case g^ is 
imaginary and the Hamiltonian is no longer hermitian. 
Also becomes — oo in the point-source limit
and this contradicts the probability interpretation 
given for this quantity. Kallen and Pauli (4l) have 
shown that this is an essential difficulty of the

(12)
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model and introduction of the indefinite metric does 
not save the situation as the S-matrix is non-unitary. 
Heisenberg (42) has therefore favoured the idea of 
dividing all space into Hilbert space I containing 
normal states of the system and having a positive 
definite metric while the other part called Hilbert 
space II contains states of a different category.
These latter states are composed of one normal 
state and one * ghost state* of the same mass.

This kind of difficulty has given rise to the 
question whether such features are common to all 
field theories. The defect perhaps arises from the 
failure to build a theory with consistent transform­
ation properties, e.g. in a fully relativistic theory 
after renormalization such divergences do not persist. 
Therefore a self-consistent field theory can perhaps 
be realised if every field operator and vertex 
function is renormalized as in electrodynamics.
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2.9 A Model for S-wave Pion-Nucleon Scattering.
Of the several exactly soluble field theories 

discussed so far in the literature, Bosco and 
Stroff olini * s (4-3) model for s-wave pion-nucleon 
scattering is closest to the model we are discussing.
A variation of Lee's model was discussed by Machida 
(44) and more recently Goldstein (45). In each of 
these theories, the renormalization constants are 
cut-off dependent, implying an imaginary value for 
the unrenormalized coupling constant as the cut-off 
exceeds a certain critical value. For this situation, 
Kallen and Pauli have shown that a 'ghost state* is 
to be expected. Fried (46) has constructed a model 
in which the coupling constant renormalization is 
finite if the fermions of the theory are assumed 
non-relativistic. For the unrenormalized coupling 
constant to be real, the renormalized coupling constant 
must satisfy an inequality involving mass ratios; if 
this inequality is violated, a single boson * ghost- 
state * appears.

In the model of Bosco and Stroffolini, the 
interaction Hamiltonian is that part of the fully
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relativistic pseudo-scalar Hamiltonian which 
corresponds to the process

%  *---- »N + N (l)

The physical meson state is defined by

I n,Ck)> = [  I +  D  j: (►..ft) 1 4  (2  )
*̂1 »*1 '

where 0̂  » and ^ are the creation and
destruction operators for the nucleons and the 
anti-nucleons* Substituting this in the Schrodinger 
equation

H  I n . C k ) >  =  I n . C k ; > (3)

and from the normalization condition one obtains as 
usual

«

N C k )  » I +  f  !__________ C?m /
- 2M}» “ 3 (5)

where nucleon recoil has been neglected and the cut-off ̂
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has been introduced on the momenta. The renormalized 
coupling constant can be defined by the relation

N (k) (6)

so that
2

1 + g^A(o)

where
A(k) = -! -J  (8)

The pion-nucleon scattering state is defined by

(N^©> = Ç

The integral equation satisfied by the amplitude 
in the barycentric system is then obtained in the 

usual manner in the form

* r  f  4
4x

J
(10)

where

= I -  E

Separating into isotopic spin states and using

(11)
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(6) and (?),

writing

V(fO =  J ( m +W(,-e ) +  P ------------!------------  ,fCfO
^ ̂ M + fNTp-E

and then solving by the Schmidth method for separable 
kernels, one obtains the phase-shifts for S-wave 
scattering.

It is found that the signs of the phase-shifts 
are given correctly and they are independent of the 
values of S ^ / ^ % provided the cut-off is chosen in a 
reasonable manner*

Using a set of s-wave pion-nucleon scattering 
phase-shifts given by Orear, Bosco and Stroffolini 
determined g^/4x to be equal to 1 and pointed out 
that this value is of the same order of magnitude as 
the renormalised constant obtained by Goldberger, 
Deser and Thirring. The conclusion then was drawn

(12)
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that the n u d e  on-anti-nude on doud. of the pion is 
coupled with the pion much more weakly than the pion 
cloud is coupled to the nucleon. Moreover, since 
agreement with experimental results was quite 
reasonable, Bosco and Stroffolini suggested that 
s-wave pion-nucleon scattering at very low energy 
is mainly due to the production of a virtual pair 
in the cloud of the meson.
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2.10 Fundamental Interaction Lagrangian and the Present 
Model.
In the Gell-Mann-Nishijima scheme, there is one 

iso-scalar A  -hyperon, three isospinors

N = (n)« S  =( |: )  K = (Jo)
and two iso-vectors

% =
%i) /2, \

E =( S, 1
. 4 )  - Vs,/

where as usual

+ i ^ = %

and similarly for •

3

Assuming now
1) charge independence
2) charge and nucleon number conservation 

and 3) three-field interactions (Yukaka coupling)

we can write down the strong interaction Lagrangian in 
the following form:

^strong = S
+ A x C  +h c. + t̂ijc *■ 
t G _ . N r K A  + kc- 4. N r c - S K +  K.c-'NKA
+ G  Sr'fCA + he. + G g K g Z t L K  + K.CSka
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where

The symbols here have their usual meanings 
i.e. each represents the annihilation operator of 
the corresponding particle; the operator P  is 1  

or for even or odd K-meson-hyperon parity and
is 1 or CVj if the parity of S  is equal or 
opposite to the K-hyperon parity.

Prom isotopic spin considerations alone, a
term /^ K T K + K c.

» K K X

should also be included. As however % is pseudo­
scalar such a KK%-interaction can only be present 
if the two K-fields K, K* exist with opposite parity 
(Schwinger (4?); Pais (48)). ¥e do not consider 
this possibility in the present model. We will 
assume a pseudo-scalar K-meson and for simplicity 
neglect all effects due to the -particle so that 
the Lagrangian can be written as
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where

Pn«* = i [ ( ? V s | > - 4 f2(pygrut*+ nygl?7(-)J

^Mn ~ ^ [  Z % A x  + % \ A x +  +  2 %  A n - J  + h e.

P%W = i [ ( Ë V s 2 * - + Cs'VjS--
+ ( s V s 2 ® - S V s Z ^ 3 i J  

= ^[?)sAK++nV^AKjj + ke.

P t« . = i  [  H S ’ K * -  «Vs S T  4 Vz (  n Vg S 'K * 4  4k.e.

Although it seems likely that the baryon masses, 
especially the mass splittings are consequences of 
strong interactions (Bransden and Moorhouse (49))» 
no attempt will be made here to discuss the masses in 
this sense. We shall consider the masses to be given 
quantities, even though future developments may show 
how these quantities originate.

The model we are considering is a generalization 
of the model of Bosco and Stroffolini and there are 
two versions of it. In the first version designated 
model A, we retain that part of the interaction 
Lagrangian which corresponds to the process

% 4 f̂ N + N

and N



The second version of the model is called model 
B, the additional interactions

— >  S 4 X  , 2  + Â  , A  +  S  ( 2 )

are allowed.
In order to avoid difficulties connected with 

vacuum diagrams, we shall neglect the pair effect

vacuum f— # % + B + B

where B stands for N , IC, A .
It must be pointed out here that the neglect 

of the effects of S  -particle are not serious since 
in the present model they only contribute to the 
self-energy terms in which however we are forced to 
use a cut-off.

It will thus be seen that the principal ob­
jective of the present investigation is the possible 
importance of one particular virtual process, namely 
scattering via the virtual production of pairs (l) 
and (2) and hence the only Feynman diagram for R-N 
elastic scattering considered is the following Figs.
1 and 2.
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Fig* 1 (Model a )

No other graph is possible in this order. In the 
higher order, we may have Pig. 2

Fig. 2 (Model B)

Clearly higher configurations can occur in model B 
and the problem is no longer exactly soluble.
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2.11 The Truncated Hamiltonian.
The total Hamiltonian of strong interaction can 

be written as
H = H + Ht o 1

where the free-field Hamiltonian H^ is given by

=2E , (P) 'i(t‘)t(fO + L  Er (p) (1 )

K k
+ renormalization counter terms,

and the interaction Hamiltonian is given by

The nucleon field operator can be expanded in 
the form

fandOL

(2)

(3)

operators of nucleons and anti-nucleons and the Dirac
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spinors w  (p) and D(p) for positive and negative 
energy states respectively and are normalized in 
such a way that

1 -1

The W and i) satisfy the Dirac equation

(̂ y.p o3 ^

(̂•/|) + itA) V(p) * «

We can similarly expand the hyperon fields.
The K-meson and the %-meson field operators can 

be decomposed in the form

The conjugate momenta to is

ffW = (ÿyp [ I ?  [ «''k

The energies of the baryons and the mesons are given by

(P)" Vi»*+ w; = i<‘ (5)

where B stands for the mass of the baryon, K is the 
mass of the hyper on and the mass of the pion is jLL

The commutation rules satisfied by the operators
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are as follows;

{ Cp) . af (<»)] '

[ ĉ Ck) . = L'

All other commutators or anti-commutators vanish.
Retaining only the terms corresponding to the 

processes
— ► N + N, 2 + 2  , ^ , and A •»* S

K <-> N + S  and N + A

we obtain the interaction Hamiltonian of the model B.

“int r;̂(t>,<i.k) + c.c.')M.k /
+ 4 c.c.)

+ ( <4(l0i(^) C^(k) k) 4 c.c.)

+ M Q (f t * C C )
+ g„^(°!(p)4 (’*)^C'7 Q (m-**) +

(6)
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where

'■“ ■• Jîü̂ « '•■’'> " t W  ^ C p m - 9  

■ '/Ss» ° . W ‘V , ^ W

Pf , J  ^  - S3r(lO‘■Vy l^Cl) ^(p-tl-k)
 ̂ V % E,(R )W «^W

Pj = r M A  _ _  57 ((,) ,V V- (-,) S ( p t l - k )

r/ = P  M S  Z  5T_(p) tyjtf i>s(i) s^p+vS)
*■ V a6̂ (p)̂ (4)w(k) ®

In the following we will use the following 
projection operator

a : ( p) =  p  w ; Y p ; a /  (p )

+ |8 E;(p;4 M; -
2M.- ' â % C

and the large and small components will be factored 
out by the use of
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2.12 One Particle States.
The eigenstates of the total Hamiltonian

H = H + H. . are most conveniently expressed in o int  ̂ ^

terms of the free-particle states. It will be seen 
at once that the vacuum of bare particles is also an 
eigenstate of H with eigenvalue zero and that the 
bare baryon and anti-baryons are also eigenstates 
of H with eigenvalues Eg(P ):

H lo> = 0
(1)

Now because of the possibility 
% # N + N

the state of one clothed %-meson is no longer equal 
to the state of one bare meson. We can however 
express the physical one-meson state as the super­
position of a bare meson and a nucleon-anti-nucleon 
pair state;

3v(-»o> 4- 2  ( 2 )

in the centre of mass system. Here N^(p) is the 
normalization constant and represents the
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p r o b a b i l i t y  a m p l i t u d e  of f i n d i n g  a n u c l e o n - a n t i -  

n u c l e o n  p a i r  in  the p h y s i c a l  •jç-meson s t a t e .

I t  is n o w  r e q u i r e d  that the a b o v e  p h y s i c a l  

p i o n - s t a t e  b e  a n  e i g e n s t a t e  of H  b e l o n g i n g  to the 

e i g e n v a l u e  so t h a t  w e  m u s t  s o l v e  the S c h r o d i n g e r

e q u a t i o n

(»o + H in t )  I I nx(-P)> (3 )

T h i s  l e a d s  to the r e s u l t

w h e r e

w h e r e

A l s o  s i n c e  (p) is the e n e r g y  of the b a r e - m e s o n

:  £i- r M'________________ ,
J EH(9)E;,(iwOw(» EhCs)+Eh(’p+i;-e;(<o ^

IQ(P9)r = p [

?

X

1 (p+l) t
M”

w h e r e  ly = 2 is the i s o t o p i c  s p i n  f a c t o r .  T h u s  the
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s e l f - e n e r g y  of the % - m e s o n  is g i v e n  b y

'i** I J E,(«|)Eh(mHp) E,(q) + E,(pt9)_E,CP)

It w i l l  t h u s  b e  s e e n  that the m a s s  r e n o r m a l i z a t i o n  

f o r  the % - m e s o n  h e r e  is m o r e  s i n g u l a r ,  in the l i m i t  of 

n o  c u t - o f f ,  t h a n  the c o r r e s p o n d i n g  V - p a r t i c l e  m a s s  

r e n o r m a l i z a t i o n  f o u n d  b y  Lee. T h e  r e a s o n  is t h a t  w e  

h a v e  n o t  n e g l e c t e d  the m o m e n t u m  d e p e n d e n c e  of the 

n u c l e o n  e n e r g y  as w a s  d o n e  b y  Lee.

N o w  f r o m  the n o r m a l i z a t i o n  c o n d i t i o n

<n(-p)|n(+)> = 1
w e  h a v e

. I +  E,(4)E/P+9)-1 (M)
J E„(q) rE.Y«1j.r c

(6)E,(q)^(iw4Xp)

W e  n o w  d e f i n e  the c o n s t a n t  of c h a r g e  r e n o r m a l i z a t i o n

b y Zj = Lirn 
(>-><>

a n d  the r e n o r m a l i z e d  c o u p l i n g  c o n s t a n t  b y

G fL  = Z, G h«x (7)

H e n c e  in the p r e s e n t  m o d e l ,  the r e n o r m a l i z e d
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c o u p l i n g  c o n s t a n t  is g i v e n  b y

^  2 __ G miiIH*“ — — — — — — 1»_Nwn
I +  G Jh , A ( o )

w h e r e

A ( o ) » 7  C  — Ü _  __________  (8)

I f  we  n e g l e c t  r e c o i l  a n d  i n t r o d u c e  a c u t - o f f ,  

we of c o u r s e  g e t  the e x p r e s s i o n  g i v e n  b y  B o s c o  a n d  

S t r o f f o l i n i .

I n  a n  e x a c t l y  s i m i l a r  f a s h i o n ,  the s t a t e  o f  one 

c l o t h e d  K - m e s o n  c a n  b e  f o u n d  a n d  the r e n o r m a l i z e d  

K - m e s o n  c o u p l i n g  c o n s t a n t s  d e f i n e d .  T h e  p h y s i c a l  

K - m e s o n  s t a t e  is g i v e n  b y

I K(-P)> = I + L  (9)

H e n c e  as b e f o r e  w e  o b t a i n  f r o m  the S c h r o d i n g e r  

e q u a t i o n

H1R(-P)> = E/R)| R(-P)>

the s e l f - e n e r g y  of the K - m e s o n  in the f o r m

4 _________ lAY
Er( * ; Ey(<,) 4. (,;
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a n d  f r o m  the n o r m a l i z a t i o n  c o n d i t i o n  w e  g e t

_  , + £ 2 ^  r _____^ _________Mr t  Ey(4)E,(Pt9)_ ICP.4)
“  V | f c n 3  J  E , C < » ) E h ( P * ‘» ; K p ;  [ E r W * E ^ ( f * V - E ^ ( p ) J ^

(11)

A s  b e f o r e ,  the r e n o r m a l i z e d  K - c o u p l i n g  c o n s t a n t s  

a r e  d e f i n e d  b y

C r  ■  ^ ---------------  ( 1 2 )  
I + E G ^ B , ( " )

Y
w h e r e

By(4 _  Jrf MY-f E^(^)Ey(s)+ f  
|4*)J Ê (4)Ey(S)"x(̂ fENC9>E/i)-K]*

I n  the m o r e  e l a b o r a t e  v e r s i o n  of the m o d e l ,  w e  

a l l o w  the p r o c e s s e s

%< »N + N, E + 2 , 2+Â , A + 2

a n d  i n  this s c h e m e ,  the s e l f - e n e r g y  of the x - m e s o n  

b e c o m e  s

W (p )-E ,(p ) « 2 ^ - 7 .  [ —
i tejt* /‘J e (̂«iX v(H>h{p) Ev'C«»)4Ex >+«i; - e;,(r)

(13)
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where the following notation has been used
= Mĵ / = M -
= A ^2 “ Âlîî

= E
The renormalized %-meson coupling constants are 

now given by

where
A.(0) = r|. M;M;,+E;(«|)Ei,(0 - (l4)

¥e notice that in the expressions (8), (l2) and
(l4), the energies of the bare-mesons occur in the 
denominator and we can easily see from equations (5)»
(lO) and (13) that the bare particle masses tend to the 
real particle ones as the coupling constants tend to 
zero. For small coupling constants, we can therefore 
replace w^(o) and 6̂ ( 0) by pion-mass and K-meson mass 
respectively.

In this connection, we may point out that with a 
reasonable choice of cut-off (0.7 nucleon mass) and 
renormalized coupling constant of the order unity, Bosco 
and Stroffolini have found that the correction to the

real particle mass by mass renormalization is v®^y small.
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2.13 Two Particle States.
In order to describe the scattering of a physical 

K-meson from a physical nucleon, we will use a Tamm- 
Dancoff expansion for the two particle wave-functional 
and solve the Schrodinger equation satisfied by the 
wave-functional to obtain the scattering amplitudes.

The Schrodinger equation for the wave functional
is

( « 0  + H i n t )  Z  | l l r >  ( 1 )

Expanding j"̂ T̂  in a series of eigenfunctions of 
containing states with one baryon, m mesons and 

n baryon-antibaryon pairs we have

(2)

where "X specifies momenta, spins etc. of the system. 
In the present model, we limit ourselves to states 
with no more than one baryon-antibaryon pair. Thus we 
write the wave-functional in the barycentric system in 
the form

r? V m  I V V J I -, «1/

(3)
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It is then necessary to solve the Schrodinger 
equation to obtain the three amplitudes Xi , X2 Xj 
from which one wishes to obtain the amplitude Xi •

It may be noted here that in model A i.e. the
exactly soluble version of the model, only the first
four terras occur.

To obtain the equations for the amplitudes 
for the open channels K + N, A  + %» and ^  %
respectively (we do not consider energies above which 
the processes B + B + Y are possible), | is inserted 
into the expression

I = < ̂  I E - H I

and the condition & I = 0 for the variation in the
is imposed. This gives the following equations for

  Xio We have

[E - C „ (p) - £̂ ( s) - (IM-0] X, Cs)
r - [ < 0 |  <(P) Q-f,(85|î?f-S;>X.('*)

+ <[o| (p) tc (-p-4) ( E - n C ' S ) ^  x»c®)
and a similar equation for X5 with A replaced by 23 
A1 so
[e - e (̂p)- e Ĉs)-Ej;(|'+»3 X((«)
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and similar equations can be written down for - Xj© •
Now from the condition

^ K  ("A I 04(1̂  ( C - H ) 11$/"̂  = o

we have
I X i C s )  

4 <R (-p ;i <(p) (E-H) <ko |nc-s)>  X.CS)

+ < k (-p)I o:(p)Ce -h) cçI(s) I n(-s;^ ^4)

+ <g('P)| <(P) Ce-m)

4 < k ('P)1 (C(p) (E-H) ^!h-s)<ÿ(s)|o>X5(s; = o (6)

Substituting (4) and a similar expression for /g 
into (6), one obtains
[  <  R(-p) I <C(p) ( E- H){a,Vs) I R(-s)> x,(s) + a)cs;|

+ a*t(s)|nC-S)> X3CS)}

- 0(1.8) <  R(-P)I cT» Ce-M) cC!(9) <°l

a> («*91̂. (s9 (E-H)a;! (s) 11 R(-s^ XXV

+ 1 n(-s^ XlCs)|J =0 (7)

where
V  ® - Fy(s) - E„ Ci + s)

Two similar equations obtained from the conditions

K  n (-t»91 <4 C E - h9 I iPy> = o
are relegated to the appendix.
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2.14 The Integral Equations*
We will reduce the equation (?) of the previous 

chapter separately and establish the integral equation 
satisfied by X % .

The diagonal terms are

< K C-P) I <  (to ( E-H) ccks) I K (-«)>

The first term

= [ E - E„ (P) -nhCio] n/P) 4 2 [ e - I fyCP<*5rN<(p;

+ 2  frCp.Or*Cp.s) N 4 CP)

'  £ e - E , . ( P ) - v 4 ( |^  4  2  £  E  -  ( p ) -  +  Eh ( ( +4)

* K.CP) [E-EXP)-wrp)][ I + £  I fr(s.p?r]

= [E-E, ( p ) - w ( , g

The second term
= 2  j £ E - Ew(4)-E^ (l+^-EyC^ j fy(p,Vr + çYP'*) f r 4c «-

+ H^(P)

= p M ^ C P )  I fr(f‘V r  [  0 + 2  ( Ew( f^s) 4 Ey(s)-w(4)) +

■= I E - E w ( P ) - - w ( R ^
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Thus the total diagonal term is

h '̂cp) CE-E^CPX-wdoj h,(p)X.CP9
where

K,Cp) =  I -  jCCp)C E '^ (p)-'^ (p3 e .2î-
r 3

B  - EN(P)4Cy(S)-E
and the isotopic spin factor is given by

%NKJ7

We now consider the non-diagonal terms# These are
<  R(-p) I < (P ) CE-H) â î cs) I n  (-S)>

The first term

: [ e -E,C0-E.(C)-E,(P«2 frfr^F.Cp'F)

The second term

= ^(s)[ D(p,8) + 4 (p,^

4 D (p. 9) f,(P'V fy*&'V]

D(p.*) = E - E, (p) - Ey (g) - E, (P4g) .
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oort-Hence the total/^diagonal term

= - N,(s) r ,* (p .s )  r v ( p ' 0

^ . I  GhhaGnka [jSrTp; 4^
 ̂ j 4  EN(P)EyC#P#«» E-Eyfs?-e^(p)-EH(pfs;

where ^ _ | ^

In tills way Bq. (?) of the previous page is 
reduced to

 ̂( 1/ 3 / \

• • • • \ 1 /[E- E,(p)-(p3k(R)^>; - t  |k, . (p.*)4c»)ds

where
Kii(p.s) = °

K^2(pS) = N̂ (P)Ĵ (S) CjjOO I M^MA
jE ^ (t> *V ^ X V ^ C P M P ? ^ V

W V s  ____(2)
E - Eh (P) -Ey(s) -Eh (jws)

and is the same with A  replaced by 23
Eq. (l) above is the integral equation for and we
can obtain similar equations for and Xj exactly
the same manner. These are

[ E - e . (P > * C p3 W p> C , W  •  £
i" (3)
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and

[ e - E , ( p ) - « ( p g i i { p ) ; ^ ® .  Z  j K 5 j ( p . s W j ! . ( F >

The various kernels can be found in the appendix.
An alternative but much simpler method of obtaining 

the integral equations may be mentioned here. Ve start 
as before from the Schrodinger equation for the wave- 
functional

(«0 * “int)l^> * ^ \ V }  (5)
and then expand | in a series of eigenfunctions of 

containing states with one baryon, m mesons and n 
baryon-antibaryon pairs.

1 ^ )  . 2  cT"
(o)

where X specifies momenta, spins etc. of the system. 
Substituting (6) into (3)

[ e - e r " ]  o ? "  = B B S  <\ -. »|
*- I P ) *  ^ ' (7)

In the present model we limit ourselves to states 
with no more than one baryon-antibaryon pair, This 
results in the following equations

Y
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and
I 1/». I. o> <Xf

Hence substituting (9) into (8),

 L

(9)

(10)
E - e®''

There are two types of mesons in the theory* The K-N 
amplitude for example satisfies the integral equation

[E-EH(P)''''(P̂ a,(t.) = X^(Al^(s)r G„h*G^ Q ( P>®>  0̂ (8)
:: -EXp^-E^C^-EMfpp^

where N^(p ) and N^(S ) are normalization constants 
of the 7t-meson and K-meson ’physical* states since 
I f i  •» involves a ’physical* meson in Eqn* (lO) ♦
It will be noticed that there is no term involving 
a^(s) on the right of Eqn* (ll)* The reason is of
course that K + N  >-N + Y + N and this intermediate
state does not lead back to K + N but gives rise to 
7C + Y state.

In Eqn. (lO) we have assumed that X^p . When



— 65 —

however %  = ,0 , we get the self-energy contribution
which for the KN amplitude is the following

rc-P (io-vp(fg)3,(p) = 2 X y  r 4 -
y J 16» ÊN(l>t*X(*MÉ> E ' E h Cp ) - E t C O -^ (m ?

where Xy is the isotopic spin factor.
The simplest procedure for renormalization of the 

Tamm-Dancoff equation has been described by Be the- 
de Hoffmann (50). The self-energy terms are expanded 
in a series in powers of the difference between the 
energy of free-particles of momentum p and the 
actual energy of the system. The first two terras in 
the series are dropped and the rest is considered the 
renormalized self-energy term.

Thus expanding in powers of (p) + w (#»)- Ë]
where D is the denominator £ - Er* ( P) - 
we have

E- E „ ( P)-yy{p)

E.(ps; + ErCs)-w((5 ]Em (P+<> E /S > w(»»3 *■*

Thus from the above prescription, the renormalized
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self-energy term is
^ Gm / Ç  j  s p -m

,-  , * , e -Eh»)-w (p 1
 ̂E-E|,(1^^Ey(4)-W ^ (P ^s)+E /0 'W (0  ^(p4"9+j^(0^(gQ

x/(p)GHKY r ___________|G<® J E n W E y ( ( ) ^ ( P )
(m y  4 Eh(P*0Ey(s>  S<si9][E-EH (P)-W(ï>3’’
[Eh(P+s) 4 EyCf) -w(p)]‘[ E-Eh(P4?>Eh(J»)-E,Ĉ

Thus Eqn, (ll) is replaced by an equation where the 
wave-function on the left-hand side a ^ ( p ) is multiplied 
by the factor h^(p ) where

n » g L  r  A  E - E h ( P > '^ ( P )ki(p) - I — E  Xy
Y \ t^(P^9)Ey(.sMf) CEH(p4*;+Er(s>w(p3

MY 4 En (p+g)Ey(g)_ g. (g+p)
where (P*" (p)4 Ey (S)— E.

Xy : I Yi A
3
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2• 15 Reduction to Large Components and Elimination of* 
singular and Spin Dependence.

In the last chapter, we have obtained the integral 

equations in the form

[e- = L  r
j*' J

where the kernels are of the form

We next use the abbreviation

D w ( p ) % T  ( p )  -  x r c p )w

o that x r ( p )  a spinor. This yields

[E - E; (p) - wc cp3 bc(K);)f (p;, Z; r K  V j ( P - 9
r> J

where now

A i C l O ^ s  A'î’cp^s^y.5
C  -  E : ( p ) - E ; C O -  E . jC P * ^

. ^ I.J J Ec(P)Ejfs>.W«j(0 EjCpts;
A+(pj) A +  (p+sj) (2 )

E.'j (p +sp  + E: (P)+£,Cs;-E
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It is well-known that by reduction to large 
components we can deal with states of given parity. 
For this purpose we write the four component wave- 
function X C W  terras of the two-component Pauli
spinors and '

° ( I t

and by eliminating the small components in favour of 
the large, we can write X(p) the form

We insert this in Eqn. (2) and write

- PE:(+*4. -- fit,*?

Picking out large components by neglecting terras 
involving Yg as well as putting 3 = 1  and also re­
membering that 7̂5'= 1, we have
[ - p-fs <^Pl[PEy + 1+ ]

+ [e ,(P)+>^^[ E:CP)+E;Cs;)-v M cj

Thus the integral equations can be written as
ft - E; (pi -ojvCp;] t>c(p) xr (p) = Z) y (P'O
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where
M

■" ( Ei(P) + ̂ (C f M.4Mj- M , ( 3 )

where
B

and
X = cos 0, 0 being the angle between f and ( . 

We will follow the method of Dyson et al. (31) 
to perform the angular integration. For this purpose 
we write

oo

. L i L K M
n» (4)

and
ÛÛ

£ W C 6 +  E W ]
= Z ) 5 ! , P . W (5)



- 70 -

and define the operators and by
a,XCs) * n.C©s-ô(.)XCs)

then the kernels become

Ku(p.s)= N:(|>)Nj(s) £iifl2 r m ;  _____ Cp^a)

where

and the integral equations are

[ E - £ c ( ? ) ^ ^ : ( ÿ k : ( p ) U f ] - i  r K.j ''J* (6)
>' J

We now make a slight change in notation in (4) 
and (5) and write ^

1 -
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where for convenience we have defined the integrals
I

X.. f  — r - w  _

, ( 7 )

V  .  1 I ' - W

Considering states with definite angular momentum I 
and total spin j, it has been shown by Dyson et al. 
that the sum over n reduces to a single term and that 

and have the eigenvalues /(2r>*\) and / 2*+'
for j = I - 1/2 respectively. Hence

- 2 K u ,  K  + (ec(p).m.) x„

Ü   ( e : ( p ) + +  în.iii Xij (g)
■ OO+M; V /

+
E

Thus the final integral equations are

where

K  M, L,',(P$
I6x’ Jw; E;(pp EjCO

If we neglect recoil for the s-wave kernel, we
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immediately get
.00

which agrees with the equation of Bosco and Stroffolini. 
In our actual calculation, we however do not make this 
approximation.
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2.16. Non-Singular Amplitude and the B o m  Approximation 
We have obtained the coupled integral equations

[e  -  E .(p) -  wC(p>] X.(p) .  f  Xoj (i>Â) Xj Cs) (1)j:l J

and it is at once apparent that singular on
the energy shell. If were a regular function, the
left sides of the above equations would vanish for 
where are the roots of the equations

E; (iQ (p ) -  E

Since the right sides do not in general vanish identically 
for p = k^, the amplitude must be singular at p = k^.
The amplitude can be written generally

X  fp) • CG») + P  !----------------I C p) ( 2 )E'E;(p}-w . (p3

where P denotes the principal value and is a non­
singular function. Eq. (l) then becomes

f.W  ■ Ç  f p

Here the principal value is, of course, taken of the 
whole part of the integral.

In a single channel reaction like that considered



- 74 -

by Dyson et al., the identification may be made that
1

f(k ) = ^% tanE o
where k is the incident momentum and £ is the o
scattering phase-shift. In the present case, there 
are three open channels and it appears more suitable 
to deal with the S-matrix directly as will be shown 
in Chapter 18. Rewriting Eq. (3), we have

a
where

Since
/ ■V \ E; Cfc,)

where E is the total centre of mass energy of the system, 
we can simplify the first term of Eq. (4) into

(5)

where the factor kj ) is given in Eq. (8) of the
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last chapter with s replaced by • Since we are 
considering only S-waves, we have

L y W -  ^ (  e :Cp> e;C O *M c4M ;-M .ĵ y; ' 9 1

+ ( E;(p)+M;) I x j  + ^ + CO jj

where
I

1 %
X? ' 1   z ~ z r  X ' W  "

B y  4 E j j C * 3  J  6 ,  j  4 E . - C * )

and

Y : ' W • C — ^  - Y f ' w . f _______

These integrations can be performed by elementary 
means and we obtain

x iW  ' i f  E,jCP«>Ey (H) -  In jÙ : +
' *- R.'; 4 E.'y (p-0 J

[ i  { E:CrO-e Ĉh ;}

-  ( Aÿ- - B.j){E^,CrO-%(M}+

. _L k _6-i f (p*̂)
f® By + E:;(p-s^
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[i { (f-’) t.

where B:j = &: (|̂  + Ej (s) -E  ̂ Ajj = and Ejj (p^) ^

For small p and s we can write 

X. * ^  — !_ Y„ = il° 1 14 o< o E' I + ot

X » - | - y — !__ Y. = - 4 - - i r - ^ ^1 3 e d+K)* 1 3 1» (%+,)»

where a = B/E, r = ps/Ë and 2E = Ej,(p+a) + E^(p-s).
It will be seen that X and Y decrease in magnitude 
as we go from X^, to and Y^.

Thus for small p and k, we can neglect X # ̂ 
and ) and  ̂ i Kj ) is positive and hence
the Born approximation to the amplitude is positive 
resulting in a negative phase-shift S since .
This is the same result as that of Amati and Vitale.

In the next chapter we give details of the 
numerical method of solution of Eq. (4).
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2.17 Method of Numerical Solution.
We wish to solve the coupled integral equations

where

and

(3)•* E - E;(*3 - w; c*9

Let the solutions of the equations

E - E : (p) - w.- Cp) = °

be p = k., then G. .(p,s) have singular points at s = k[ 
of the type (k^-s)*"^. We now introduce

= p/k^ Xj = s/kj

so that

J .

and hence the singularity in (4) occurs at = 1. 
Writing

F^(x) = f^(k^x^)
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we have

FjCO - FiOO'*■ Z) I HCJ (*-1̂ 0 ^ (5)
j  ^

We now divide the range of integration into 
three parts; (0,l), (l,2) and (2,<^) so that Eq, (5) 
takes the form

I

- F;Yo+ z [ U  Hy FyC2-x9h*'
j  --0  n  ( 6 )

4  f  H ÿ C . ,x 9 F ; C » c '; j» J

We have seen above that the kernels H^j(x,x*) 
have singularities at 7t! = 1. To avoid this 
singularity in the integration, we use the method 
described by Gamme1 (51)* We write

M y  ( * ' * ' )  *  i [  H ÿ  ( x , * 9  + H y  ( x ,  2 - x 9 j

and
F : W  '  i  [  Z ;  M  + ( * - 0  

Fc(2-4 « i [ Z ‘ W  -

Then equations (6) become

. -S' (,)
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^ 0 4 0 X.6 o] = same thing » < S 2 (8)

F^(x) = same thing ^ ^  ̂  (9)

The kernels and  ̂( a, ) are non­
singular .

Replacing Eqns. (7) to (9) by a system of linear
equations and using an n-point Gaussian formula for 
the integration, we have

' Fc*(*r) 4 ç [ g ^ { M ÿ  (x,.YY>)2.(x,)

N :j C*r‘*0  ̂
J

ZA4t 
4*

( 1 0 )

^ [ZvC2-%|̂ +(x̂ -')Y;(2-%p̂  J = same thing ( < p (4 (H)

F^(xp) = same thing v) < |a $ 2n+* (l2)

where are the Gaussian weights.
Solving for 2, Y , F, we have

2'f(5p) =

X='
' ( r : "

X»" (13)
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A

4 Z/[ ^ | A N j j  2-x̂ ')J

*- Z/4»j H ̂j ^ ‘J (̂ 2-x , 2-x>,)̂

/ 1 r f '»

F»®(*p) = D  [ -  ̂ fAy C’‘p'*x) + N y

4 {kj^Xp- *̂ > H:j(:(p'^x)}] n < p

(14)

n < u < 2n + i

(15)

where
F/(a-%p)

T c " W  -  F . - ( > )  -  f^ c V 2 -x p )
(16)

On account of the fact that we have used Gaussian 
integration, we have the same number of equations as 
there are unknowns and therefore no additional 
condition is necessary on the functions 2, Y and F.

Finally then if we write the kernels K^^(p,s)
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in the form

V

the re-arranged kernels take the form

J

FiF.

where
Z:Zj * {  b'ij W '  + ^vi

r r i 1 ÛA I* K̂ ’j Ky'j Çxp, 2-x>)
'  ^ L EjCx̂ >6l(îs)-E

K:;(2-Xp,%y) ^ Kÿ(z.*^,2-4.) "j
E; - E ~  Ey (2-î‘>>"j(î-^>eJ

with

.  <^x(*x-0 r (p4^ - - f W  ( Q+9)]
^ -u  ■ 2 Ej (% 0 I-

Y.z,

r.Yi =
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Y.F, =i j ~ £)(*>■)

F.Y . =

( ü -t)

r  u - f W y ]

Û>>

^ J 2 tj CycO
r r 4 -Sl2_wF.Fj = fy- ixp +

Ail the operations have thus been put into matrix 
form and are now particularly suitable for high speed 
computation on an electronic computer. Gaussian 
integration formula was used for the integration of both 
the angular integrals X and Y as well as for the integral 
in Eqn. (l). The angular integrations were written as

X == — !- r 2 +

^ _____ '____  T'.O.y Xy FCxOA- = ---psssssv P^ 64^ A+lps

Y =

Y, =

1^2+ n

J^cjcxc G C ^ O

^ ^AfZf>5 x/Tilf?

where F(x ) = - V  A42|>5x__
G 4 ^ A+ XpSTc

G(x) = F(%) r ^  ^ nTÂ4 2P5X
\/ A+ 2|>s*
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and are the Gaussian weights with the corresponding 
pivotal points, A four-point Gaussian formula was 
found quite adequate and checked accurately with the 
analytic formulae given in the previous page. Programmes 
were written under the General Interpretative Scheme 
of Deuce to produce the re-arranged kernels and the 
linear simultaneous equations (l3) - (l5) were then 
solved by a Basic Programme to obtain the scattering 
amplitudes f^(p).
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2.18 The S-matrix.
In the previous chapter, we have described the 

method of numerical solution to obtain the scattering 
amplitude f^(p) from the coupled integral equations

W  ■ Ç - ( f )  ■* ®  (1 )
 ̂ »

Now various boundary conditions may be used for f^(p), 
depending on the values of XJ and on the way the 
integral over s is taken. In numerical work, it is 
easiest to deal with real functions i.e. we use stand­
ing waves in all channels instead of travelling waves 
so that we take the principal value of the integral 
over s. The most convenient choices are standing
waves of the form cos k,(r,-b.) and sin k,(r*-b.)i ' i i '  i ' x i '
where b^ are the channel radii. The first of these 
has zero derivative at r^ = b^ and the second has zero
value at r  ̂ = b^. We thus define the basic set by

fy = Aj (2)

where is the spin-dependent part and

J J
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where we have put = 0 for convenience•
We must now compare this with the Fourier transform 

of our Tamm-Daneoff scattering wave function (p).
The configuration space wave function for s-waves 
corresponding to %  J(p) is given by

,90

where asymptotically

J .  ( r t  -  $
Let the asymptotic form of ^  be written as ^̂ (.'0

Then
.0»

Sub s t i tu t ing

A W  ■ >■ S(t-e.(P>“ (r5 *P

we have
rf r

= #  '  ( M  P m  » 3 f l

%

where does not contain singularities at p = • The
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contribution of small f < f«> to this integral is given 
by this term but since the behaviour of f) is not 
known there, this finite term will remain undetermined. 
But the terms which become singular near p = k^ are 
the leading terms in Eq. (3) and these are given by 
the asymptotic behaviour of ^^*(0 • Thus asymptotically

Since however

and

E-Ey(^(p>ce “  ̂ E - <•« S (e-e.'ÛO-ywcCp^

we have

(4)

Comparing (2) and (4) we have

. - / Î  A f ( f c )
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Since there are three coupled equations, three 
independent solutions of f^(k^) may be found correspond­
ing to three different values of XJ and we will have 
the amplitudes and (p, = 1,2,3) from which the 
S-matrix can be determined.

Now the S-matrix is defined by means of a basic 
set of travelling wave functions. The wave function 
describing a reaction initiated through channel i is 
denoted by ijrj . The behaviour of J in the region 
of configuration space corresponding to some channel 

j is

where if i / j ,

-  4  S’...ry 'J

and in channel i,

W  = ]  / Ï 7

where Xj is the * current' in the channel i.
Expressing the complete set of functions ^  as 

linear superpositions of the complete set ,

#  J = L  Cy j W j



-  8 8  -

(6)

(7)

we determine the coefficients by comparing the
behaviour of the right and left-sides of this equation 
in an arbitrary channel

Equating the coefficients of exp(ik^f^ ) we have

+  ‘ ^

The coefficients of e xp ( - i ) lead to the
equation

i[ 7 ^
Substituting (7) into (6)

In the centre of mass system,
r > I ~i

h  - ^iL ^  "eTkjJ ’

Using (5) then we obtain

[  x f  -  f ^ o ]  # 3 ]  Sj,

If the S-matrix is complex, we can write

S = s + ir
and equate the real and imaginary parts of (8)

J (9)

(8)
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f
j (10)

Treating and r^^ as eighteen unknown independ­
ent quantities, we can determine them by arbitrarily 
choosing XC for each solution. For example one can 
wr i te

i) X,’ - - Xj = I

The choice is quite arbitrary and must be revised 
in the light of numerical solutions which must be as 
different as possible.

Finally a good check on the S-matrix can be 
obtained from its symmetry property and the
unitarity relation S^S = 1, These properties were 
checked in the present calculation up to the 5th 
place of decimals.
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2.19 The Cross-sections.
The cross-sections leading from an entrance 

channel i to an exit channel j is given by

(TC. %
‘J k (1)

where is the centre of mass momentum in the channel 
i . The S-matrix is given by

^ij = &ij + 2i sJT- Ty-j nT7 (2)

From isotopic spin considerations alone, one can show 
that the T-matrix elements for the various reactions 
are given by the following relations.

K +p K” +p T . 1, = +

K* + n Tc.«. = -

^  V - ( 3 )

r + ■ T t v = 56 To 4 i T,z

=

f\+ % ° =

Using (l), (2) and (3) one can obtain the cross-
sections for the various scattering and production
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processes.
We may also note here that for the low energies 

we are considering, the Coulomb and mass-difference 
(between K° and K") corrections can not be neglected.
A number of authors have shown how to modify the 
Wigner R-matrix formalism to include these corrections. 
If ? is the complex scattering phase-shift, we have

S =

and defining tJie amplitude A by the relation

kA = tan &

it has been shown by Jackson & Wyld that the mass- 
difference can be phenomenologically taken into account 
by writing the elastic differential cross-section in 
the form

1
aa

A o + — 2ckfAoAi
A.

£vhere A  - I- + + A.) - KM'A.A, ;

the centre of mass momenta for the systems K +p and K +n 
respectively. Introducing Coulomb correction, this
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relation is transformed into

J(ÇlL-
dû

2 i »  In

2 K s«^A
+  C '

A o + A i -  2 i A l

where the penetration factor C is given by

c " . 2 , ^ / 0 -;""9 7 '  k i
_L B - i ;

and the ^  now becomes 

^  =

and
tan a = — — + 2)/-f Rif “/= Euler constant.

Dalitz and Tuan have recently given a derivation 
of these relations within the * effective range^ formalism. 
Since the primary interest in the present work is a study 
of the behaviour of the model, it was not felt worthwhile 
to include the above corrections.



M
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2.20 The Results.
In order to reduce the number of coupling constants, 

we have put

"5 /if =  G * n »ca / 4 ^  =  G k.

in model A and in the second version of the model, the 
pion coupling constants were made equal

= ^ATn / = ^Zin- / 4X =

It should be noted that in common with the Lee 
model and several other models, while the unrenormalized 
coupling constants may take any real value, there is 
only a limited range in which the renormalized coupling 
constants must lie if the theory is to remain hermitian 
and ghost states are to be avoided.

This follows from the definition in model B,

^ I - L
where we must have ^  1 in order that Gt ̂  0,
The relation between the renormalized and the unrenormal
ized coupling constants depends on the value of the
cut-off chosen when evaluating the integral I. In
the present work, two cut-offs k = M & and 0.5 MA 

^ max ^

were initially tried and in Fig. 1, one example of the



TIIRB3 IÎTDEP3IÎDE3T SCATTERING AJ.ÎPLITITDES FOR THE F IR S T  

CHANI'JEL ON MODEL A .
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relationship between Qr and G is shown for a cut-off 
at 0*5 M • In the remainder of the figures, for 
convenience, the cross-sections are displayed as a 
function of the unrenormalized coupling constants G 
for this cut-off.

In Fig* 2, we have displayed typical scattering 
amplitudes for the channel K+N obtained from solution 
of the integral equations in the three cases =
1 ,2,3). It will be noticed that the extrapolated 
amplitudes f ) are widely different in the three 
cases and the solutions fall off smoothly* It may be 
mentioned here that as recoil effects are included in 
the calculations, the scattering equations do not 
require any additional cut-off. The integrations were 
however arbitrarily terminated when the scattering 
amplitudes have fallen off sufficiently. The limitation 
of storage space in the DEUCE was another factor which 
had to be borne in mind in this connection.

The energy variation of the elastic and inelastic 
cross-sections for the case

G^/4% = 5.1 

G*/4% = 4.8

is shown for model B in Fig, 3 for a laboratory K-meson



y»e«A Te*i CNBKi>r ih

THE H'IBEGY VÆRI.4TI0IT OP THE CROSS-SECTIONS FOR ELASTIC
SCATTERING OP HPHESONS ON PROTONS AND THE PRODUCTION 
O: 2* IIYPERONS BY k“-:,!ESONS ON PROTONS POR Oi/« = GkP»= 5.0
ON MODEL B.
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energ}'̂  of up to Uo MeV, It will be noticed that this 
set of coupling constants can not reproduce the 
experimental cross-sections. Experimentally, the 
elastic cross-section is about 90 mb at 20 MeV from 
bubble chamber studies and 55 nib from emulsion measure­
ments, The production cross-section for charged 
hyperons is about 60 mb.

The above unrenormalized coupling constants 
correspond to the following renormalized coupling 
constants

= 4,2

g^/4% = 2,0

The Fig, 4 displays the variation on model B of the
elastic cross-section with unrenormalized coupling

2 2 constant G^/U% for various values of G^/4tc, The
production cross-section for 2 -  hyperons is also shown
for one value of G /47t,

%

The Fig, 5 shows the variation on model A of
different elastic and production cross-sections for

2the coupling constant G ^ / k % = 1,5* The pronounced 
maxima in the elastic cross-sections Sti for
isotopic spin T = 1 also occurs in the isotopic spin 
state T = 0 which is not shown here.



4.0
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The Pig. 6 shows the variation on model B of
elastic cross-sections with pion coupling constants
2 2for various values of G^/4%.

The figures (4) to (6) display the variation of
the cross-sections with coupling constants at a single
energy of 20 MeV in the laboratory system. In all these
displayed results and Ĝ  ̂were talien to be of the
same sign. The distinct case where G and G„ are of% it
opposite sign has also been investigated. The Fig. 7 
shows the variation of cross-sections for elastic and 
production processes against G^/4% in this case.

The S-matrices obtained in all the above cases 
are given in the appendix. The amount of electronic 
machine time required for each point on the graphs 
turned out to be roughly eight hours and no detailed 
energy variation for the best coupling constants 
obtained for tîie model could be attempted.



THE VARIATIOI'I OH I.iODEL A OP DIFFERENT ELSTIC AND 
PRODUCTION CROSS-SECTIONS FOR THE COUPLING CONSTANT
Gk/W =; 1,5.
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2.21 Discussion of the Results and Conclusions.
The model we have discussed here is based on the 

assumption of the pseudo-scalar character of the 
K-meson and even A and ^  hyperon relative parity. 
The possibility of the scalar character of the coupling 
is not in accord with the photo-production data as 
shown in a preliminary analysis of Moravcsilc (^8 ) and 
also with the Tamrn-Dancoff calculations mentioned by 
Bialkowski and Jurewickz (53) on K - meson-nucleon 
scattering. Experimentally, the existence of the 
reaction

IC" + He  — »

would prove the pseudo-scalar nature of the K N A  -  

coupling provided the hyperfragment is in the ground 
state and of spin zero (Dalitz 5^> Block et al. 65 and 
Day & Snow 56)* Recent investigations seem to indicate 
that the K-meson will turn out to be pseudoscalar at 
least with respect to the A-hyperon. The question of 
the relative Z, and A  parity has not been definitely 
answered as yet. The possibility that it might be odd 
has been mentioned by Barsiiray (57) and Gursey (58).

The hypothesis of a three or four boson-field 
interactions of the type KK% or K^K%% has also been



j
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discussed and Pais (59) has advanced arguments in
favour of an odd relative parity between K"*" and •

From all these considérât ions it is apparent
that the fundamental interaction Lagrangian is by
no means completely certain and the reduced Hamiltonian
we have discussed can only be considered as a rather
crude model likely to give qualitative indications
of a certain aspect of the interaction mechanism.
Because a reduced model Hamiltonian has been used,
the coupling constants and are not directly
comparable with those employed in calculations using
the full Ilamiltonian. However, from a study of the
graphs it will be seen that for reasonable values of
G a.nd Ĝ ,̂ a substantial fraction of the observed 
% k

cross-sections can be obtained with the process 
considered namely pair creation in the intermediate 
states. In fact with coupling constants

G ^ / k % =1.5 Gg/4% = 3

which corresponds to the renormalized coupling constants

= 1*0 = 2.0

the cross-section turns out to be about 50 mb at
20 MeV which compares well with the emulsion data but



THE VARIATION OP CEOSS-SEGTIOÎTS POE ELASTIC AITD PRODUCTION 
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RELATIVE TO •
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not with the bubble chamber result. However a 
quantitative agreement with experimental data is not 
of particular importance in such model calculations.
The coupling constants predicted by the model do 
however merit a little discussion. According to the 
results obtained by Matthews and Salam and by Igi, it 
appears that the value of the coupling constant 
is of the order of 4. This value may of course undergo 
considerable change with increasing accuracy of ex­
perimental data. Recently Kycia, Kerth and Baender (6o) 
have concluded from dispersion relation analysis of 
the most recent data that if K-mesons were scalar,

would be less than about 0.6 and if pseudo-scalar 
less than about 10.

The question of the T:-coupling constants is still 
more difficult as the only one known with any certainty 
is ' In the present calculations we were forced
to use

= s h .  / h % = /hi.

in order principally to cut down computation time. This 
global symmetry is known to lead to wrong branching 
ratios of the S  and A  productions. The branching 
ratios of the reactions K + p with K*"-mesons
nearly at rest indicate that | where and
are phase-shifts of the % - V  scattering in the final
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state of isotopic spin 1 and 0 respectively.
Kawarabayashi (6l) and Capps (62) have pointed out 
that and should be much different
from each other in order to give the large phase- 
difference•

The best value obtained in the present model (model
B) is

ĝ /î TC 1

which should be compared with the result of Bosco and
Stroffolini who also noticed that a coupling constant
g^^^ /h% of the order of unity reproduced the S-wave
pion-nucleon phase-shifts reasonably well.

As regards the sign of the K -p interaction,
+

experiments seem to indicate that in the K -p 
scattering at low energies, the S-wave K^-p interaction 
is repulsive and K^-p interaction is attractive. In 
the Born approximation the K^-p interaction is attractive 
or repulsive according as NKY-coupling is scalar or 
pseudo-scalar whereas the K -p interaction is repulsive 
irrespective of the coupling.

Recently Ferreira (63) has made a 4th order 
perturbation calculation for the K -p scattering at
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the threshold and pointed out that for any combination 
of the NYK-coupling, the 4th order term is of opposite 
sign to the Born term and large enough to compensate 
for or exceed the Born term. The conclusions of Ceolin, 
Dallaporta and Taffara (64) agree with this.

In the present model, we have observed a similar 
behaviour. It is well-known that the sign of the 
interaction 'potential * depends on the sign of the 
real part of the K -p s-state scattering length. If 
we define (Hamilton 65) the elastic scattering amplitude 
by

JfC»-) =  -  K  ( I I )  <  K  1 T  ) K >

then according to Dalitz and Tuan (66), a negative sign 
of the real part of the forward scattering amplitude 
corresponds to an attractive K*-p interaction. This 
sign convention agrees with the one used by Nogami (67) 
and Jackson and Wyld (68) according to whom a positive 
sign of the real part of the tangent of the phase- 
shift corresponds to an attractive potential since by 
definition

T = 8

In the effective range analysis of Dalitz and Tuan,
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one writes kA^ = tan B rjy and A^ = + ib^ and it can
be shown that ReT has the same sign as the pair (a^^aj^) 
when they have a common sign. The positive solutions 
(a+, b4- ) of Dalitz and Tuan therefore correspond to an 
attractive potential. Since the K -p Coulomb amplitude 
is essentially real and positive, the positive sign for 
ReT corresponds to a constructive interference between 
Coulomb and nuclear scattering.

In the present calculations in model A, ReT,|which 
corresponds to elastic KN-scattering is positive for

othe coupling construit /4% varying between 1 and 5
and for both isotopic spin states.

In the model B, ReT^^^ is positive for the coupling
2 2 constant G^/4% up to 1.5 and u]p to 1.5 and for

both isotopic spins.
The same sign in both isotopic spin states agrees 

Ifith the solutions of Dalitz and Tuan.
Lastly, we may mention an interesting behaviour of 

the cross-sections observed in the present calculations. 
From figs. (4 ), (5 ), ( 6 ) it can be seen that the
cross-section increases in the way demanded by low 
order i^erturbation theory, for small or G^ However
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for large values of coupling, the coupling between 
the three channels becomes important and this 
results in a definite maximum in the cross-section 
as a function of G. This phenomena is known in other 
connections, for exaiuple the coupled equations of the 
type occurring in electron scattering by atoms have 
been investigated by Massey and Mohr with somewhat 
similar results.
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Chapter Three.
On the Elastic Scattering of Pions by Alpha-Particles.

3.1 Introduc tion.
Although the elastic scattering of pions by douterons 

has been studied by a number of authors, no attempt seems 
to have been made so far to study theoretically the 
interaction of pions with alpha-particles. In the 
impulse approximation used by Fernbach, Green and 
Watson (l) for pion-deuteron scattering, the scattering 
amplitude is expressed as a superposition of free nucleon 
scattering amplitudes and the effects of multiple 
scattering, nuclear binding and off the energy shell 
nature of pion-free nuc1eon scattering matrix neglected. 
Recently, Rockmore (2) has evaluated some of the 
corrections to the impulse approximation for pion-deuteron 
scattering. In particular he has extended Brueckner*s 
(3) method to take into account the spin dependence of 
the pion-nucleon scattering matrix. From a perturbation 
calculation he finds the correction due to nuclear binding 
to be of the order of ten per cent and he also shows 
that Brueckner * s neglect of the off-the-energy shell 
matrix elements in multiple scattering can not be justified.

The Brueckner method consists essentially in 
assuming that the pion propagator between two nucleons
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at and is of the form e^^^^  ̂ f  ̂ I ' As
has been pointed out by De Alfaro and Stroffolini (4) 
this assumption is correct only beyond the range of the 
pion interaction with both nucleons. Using a propagator 
which does not have singularities at small distances, 
they find that multiple scattering corrections are 
larger than the double scattering corrections and 
accordingly regard the agreement between experiments 
and Rockmore calculations as fortuitous.

Recently Bransden and Moorhouse (5) have considered 
a variational method for the problem which includes 
the effects of multiple scattering quite simply and 
found them to be quite small. It was therefore suggested 
that the method could be applled to processes such as 
pion-alpha particle scattering for which this correction 
was expected to be large.

Kozodaev (6) has experimentally investigated the 
interaction of pions with helium nuclei and found 
considerable decrease in elastic scattering cross-section 
at small angles. This is possibly due to an interference 
between Coulomb and nuclear scattering and it was 
concluded that interaction between %-mesons and alpha-
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particles is repulsive.
¥e have carried out a calculation of the pion- 

alpha partiele scattering problem following the method 
of Bransden and Moorhouse and compared the results 
with the two differential cross-section curves 
presented by Kozodaev et al. In Cliapter 2 we fomiulate 
the method and in Chapter 3 give the results. In 
Chapter 4 we discuss the results and in the appendix 
give a formula for multiple scattering.
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3.2 Formulation of the Method.
The method has been described in detail by Bransden 

and Moorhouse and we shall show here the necessary 
modifications for pion-alpha particle scattering. Let 
the Hamiltonian of the target nucleus be and the 
interaction between the meson field and the nucleon field 
be The unperturbed Hamiltonian is

H = H + Wo » p+K*' (l)

where Oo is the energy of the incident meson. The 
eigen-functions of H^ are “* ^ where f, #
are the co-ordinates of the target nucleons:

* (2)

The are the normalized states of target helium
nucleus with ^  the ground state.

The eigenstates of the perturbed Hamiltonian H 
which in the absence of the interaction Hamiltonian H^^^^ 
would be is in its presence written as .
Then the Schrodinger equation which describes the 
scattering is

C b  + Hint) %  = (3)
This equation has the boundary condition that at large
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distances from the scatterer

Let us suppose now that in Eq, (3) describes a
scattering event which originates in an eigenstate 
of say . In terms of Miller (7) wave-matrix-f2i ,
we write

^  4ix (5 )

where SI satisfies the Schwinger (8) expression

operating on the state <f>̂ . The eq. (5) gives the
scattering solution of eq. (3) with outgoing wave 
boundary condition. Here

E = E and E i = H f. (?)a a ' a o ^

The transition operator is now defined by
T = H. ,Aint

= Hint + Hint ^

Instead of attempting to solve equation (8), Bransden 
and Moorhouse use a variational method to obtain the 
transition matrix.

Schwinger (8) has given the following variational
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expression for the transition matrix

b a  - Z---------------   7-------------------- ^

which should be stationary when E = E = E, fora D
variations of and *gr̂ - about the correct solutions
of Eq. (3 )* Cliew (9 ) has suggested the simple trial 
functions = <j>p, and namely the
unperturbed eigenfunetions for use in the variational 
expression for the K-matrix.

Then the elastic scattering of pions by alpha 
particles is given by

T, L\'k

where

and

Here k and k ’ are the incident and scattered momenta

(11)

(12)
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of the pions. These equations are of course indefinite 
until an explicit form of has been fixed. This
is obtained from the fixed source meson theory with 
the interaction Hamiltonian

where (k) is a cut-off function. Now applying the 
method of Tamm and Dancoff, we obtain the following 
equation for the scattering of a pion from a nucleon 
situated at t :

£ -  aif̂  -

•k (Tk'ĉ rit' 14)

where we have used a square cut-off in momentum space
at momentum k and the nucleon has been assumed tomax
be at rest.

It is well-known that the scattering of pions on 
nucleons in the energy range 80 to 400 MeV incident 
pion energy is predominantly in the isotopic spin
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state 3/2 and spin state 3/2. It is therefore a 
good approximation to take the pion-nucleon inter­
action as being due to a potential operating on the 
(3-3) state only* The only part of the kernel of 
eq. (l4) which contributes is the first or cross-over 
term in the square bracket and we may write the 
potential in the form

< k'l V33 j K) . Fj/k'.k) c(k'-k).r

where is the projection operator for the 3-3 state

^33 “ «r.kV-k^ (16)

Nith the interaction potential so defined, one 
might solve the pion-nucleon scattering from the 
equation

(17)

by the usual method of resolving Ip* into partial waves. 
All phase-shifts are zero except the (3-3) phase-shift
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and this can be found by employing Schwinger’s 
variational expression for the K-ciatrix in pion- 
nucleon scattering. This is completely equivalent to 
the variational method of Cini and Fubini (lO) as 
applied by Sartori and Wataghin (ll). Instead of 
doing this, Brans den and Moorhouse obtained the pion- 
nucleon cross-section from the T-matrix using (9) and 
(17) and found the correct position and height of the 
resonance for a coupling constant

= 0,03

and cut-off .JÎ + = 6.8. With these values,
the interaction potential given by Eq. (15) is 
substituted in the pion-alpha particle scattering 
equation. The transition matrix for elastic pion 
alpha particle scattering can then be found from 
eqs. (lO) - (12), The results are given in the
following section.
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3•3 Evaluation and Results.
We consider the elastic scattering of %-mesons 

by alpha particles. We write the wave-function of 
the alpha particle in the form

where ^

Xk = ^ r iL

Here JN is the normalization constant and <T is a
parameter to be chosen to fit the experimental binding
energy of the alpha particle or its rms radius. Hofstadter
(12) et al. have estimated the rms radius of the alpha

-13particle to be 1.41 x 10 cm.
The principal defect of the Gaussian wave-function 

is its bad asymptotic behaviour as it falls off too 
rapidly with increasing separation of the nucleons. In 
order to improve the asymptotic behaviour of the function, 
one may employ wave-func tions of the tyî e (13 ) :

jN

where n = 1/2 leads to the simplest mathematical analysis.
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In the following calculations only a Gaussian wave- 
func t ion was used.

We take the incoming pions al ong the Z-axis and 
consider the scattering into an angle (6,^). Thus

k = (0 ,0 ,k) k* = (k sin 0 cos 0, k sin 0 sin 0, k cos 0) 

and eq. (lO) can be written as

Ck'K fO

with

where
•3r

I(k) '

* ( 3 7 ^

J. TrrTTT

■ ' -^T7----- -̂--  «.ÙJo

q » i (k - k)
and P = &(k* + k)
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In these equations originates from a single
scattering from the interaction potential ^ k'j f
and comes from repeated scattering. The
first term in N corresponds to double scattering
on the same nucleon whereas the second term corresponds 
to successive scattering from two nucleons. This term, 
which represents an effect of multiple scattering, was 
evaluated numerically and was found to be about I6Ç0 
of the first term at forward scattering. Neglecting 
this term, we can write

5^’
The differential cross-section Is then

In Figs. 1 and 2 we compare the calculated 
differential cross-sections in millibarns per steradian 
with the experimental results given by Kozodaev et al. 
¥e have also made Coulomb corrections at small angles; 
for higher angles it is negligible.
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In these equations originates from a single
scattering from the interaction i^otential ^ 
and comes from repeated scattering. The
first term in N corresponds to double scattering
on the same nucleon whereas the second term corresponds 
to successive scattering from two nucleons. This term, 
which represents an effect of multiple scattering, was 
evaluated numerically and was found to be about 16^ 
of the first term at forward scattering. Neglecting 
this term, we can write

The differential cross-section is then

-

In Figs. 1 and 2 we compare the calculated 
differential cross-sections in millibarns per steradian 
with the experimental results given by Kozodaev et al. 
¥e have also made Coulomb corrections at small angles; 
for higher angles it is negligible.
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3.4 Discussion of the Result.
¥e see from the two f i b r e s  that there is fairly 

good agreement with the experimental results. This 
seems to confirm the results of Braiisden and Moorhouse 
that multij)le scattering corrections predicted in this 
formalism are substantially less than the double 
scattering corrections. For this calculation and the 
calculation on pion-deuteron scattering, the coupling 
constant and the cut-off for the 3"3 pion-nucleon 
interaction are obtained from a variational method of 
solving the scattering equation* With this pion- 
nucleon interaction used in the pion alpha particle 
scattering equation, the same variational method gives 
reasonable agreement with experimental results.
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Appendix 1 .

Using the variational method, the following 
equations are satisfied

<<(p)R(;P)l E.wliF) = 0 (i)

<ai(r')ri (-p)|E-rtl =0 (2)
etc., where the 1 i s  given in Chapter 1].
Then

+ (9.19 =0" '"(3)

+ Wferlf-I-P) 4 W )  =0 ....

<<(^)^(-r-iK(p;|e-H I m 4 ( p ) ^ U ^ w 4 ( ^ A - p )   (6)
V h p ,  4) (<Y-P-4) = o
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« < » ) Ê , ( - 9 ' P > 5 ( p )  l e - h  I +  X , ( R < ^ ^ ( p ) n t ' P )
+ Xs(^'p) 'ïî(̂ )̂ /('p-‘i)i*(p)) = « 

{ 4 q ) ^ ( - M ) 4 ( p )  1E - H 1 U f A A - f )

• • • • ( 7 )

» o  (8)

m - o ....(9)

a O  •***(lO)
From (6) - (lO),

1^ '0  = -  «  (‘»}tï'fl-P )<4(P )|E -«l X .(P )a f(p A )

ïç(<i,p) = - k-H

Xs(9t) = - <«i(’’)Ê('P-‘̂ “’*(P)/E-H| U f ) A p ) ( f ( - P p

X,(*»*P) = -<«?(*») Xj(p3 ' ^ W ( 4 ’̂  -q(9)-Egq)-^0w9^^
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Substituting these equations into Eqs. (l) - (3 )» 
we get three equations as follows ;

« ' ( P ) K ( t )  ) e : - h  I [  /,(!> ) f A f > À - f ) W

^ W  A 't> )

= o
(A)

where the fourth and fifth terms are

-  C < S '(p 9 K (f )  jE -H  ) I

and the same expression with A replaced by ZD and X% 

by Xj ■
Similarly

(-p) IE-HI

-  <«;(Bn(-p) |e - m i
+ = * .....  (B)
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and

< a h p }n (-p ^ l E-HI  [qï^(p;ï<V-p}pccp;+ <fl(p)nyui>̂)
-<Q .î(P)n t'P) 1 E-H I j E-H

- <oÇ(p)n(t) IE - H 1 4  I

+ AtOnî'P)/j^pp [E-ErC^-CK(9)-E/M^''

(C)
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Appendix 2

The various kernels in Chapter l4 are given below

,  ,  I t t ' M g ; ( p ) A : W ' 4 W"""" I4«= / 4 eT(b «.>SW> e-E.(0-£,(rt-«f!)
K13 (p,s) = K^^(p,s) with A  replaced by 2/
replaced by (̂ (̂t )
K^^(p, s) = Kj_2(s»p) and M «— > A  .

^̂ 22(p,s) - N,(p) I  A'Z)'- ^z(-0
Ifcitî /4̂ (P3EfsX“(p># e -̂ (P>5,CO-Ee<ï4x

K (p.s) I ar{p)h’i(p*s)<i>i(*)

I(>«3 J 4 e,(p)^(sMpx^ E -E/p)

K (p.s) I q,(T) gy(p}At(p*0^«(t)
/4Ej(p)^(î>(s;o<^ E«(p^O E-Ey(p)-E/s>E;(p+*)

XO/
K (p.s) =-ĵ {i»;35̂ .s;| |_^ l 5!  L _  At(p+!)

'̂3̂  ̂ J4E,(^E%(O#0 (̂)hs; E-E,(J»)-e/ s> ç;(p+s;

^  (p) a! (p«} «f C!) 1
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Here C..(t ) is the isotopic-spin factor

J2 2
0(1) = ATT

c(o) = o ffcGMK̂ IK

^GH.GzK - 2 %

Introducing the abbreviations

h 2  = ^13 =
^22 ^23 = Sj?

4 ) ' - E b ) =  Eg

q(P) = N^(P) Ngb) = ^3(3)

we can write the kernels as

£. (p..) -  / M.M] M.-i Cij(r-)

«rhp7 “i(0
EL - e c (p; - E jC*3 - e .ijCp*';)
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Appendix 3 .
Programme for the Self-Energy and Normalization Functions

This programme was made under the Tabular Interpretative
Programme (T.I.P.) scheme of the Deuce. In T.I.P., the
data storage space consists of 128 columns each having
30 rows and 128 additional spaces for constants. The
codeword is of four parts in the form a, b, c, r or
N , N, , N , r v/here a or Na are in general column or a b ' c
constant numbers respectively and r is the codenumber 
of the operation.

The programme is given below.
Programme T(1).

N o . a b c r Notes.
0 16 0 N31 4 Read
1 N98 N98 N98 3
2 N108 N108 N108 3
3 24 0 N51 4 Read x the pivotal points
4 10 0 0 4 Read A

5 0 0 0 15 s = n A
6 10 0 1 4 Read

7 N32* N32* N78* 0 2 2 
"i' 4 -

8 0 4 7 16

9 0 0 0 18
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No • a b c r Notes.
10 0 0 2 0 2s
11 N79 2 3 2 id +J
12 3 0 3 6 Ej(s)
13 N80 2 4 2 + M ? .
l4 4 0 4 6 h j b )
15 N33 N34 N82 0
16 N82 2 5 3 Mpi.j -
17 4 3 6 0 Ej(s)E. ,(s)
18 5 6 7 2
19 3 4 9 2
20 9 N35 8 3 E^j(s) + E^(s)
21 8 8 8 0
22 8 6 8 0
23 2 8 8 1
24 8 7 8 0 Integrand for B
25 8 1 8 0 Multiplied by S
26 8 0 8 15 Add
27 8 9 N90 13 Integral to N90
28 N90 n 4 N90 1 Divide by %
29 N90 N35 N90 1 b O )  (o)
30 N31 N51* N51* 0 k±x = p
31 0 N31* 30 0 ps

( J)
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No • a b c r Notes•
32 N51* N31* N83 0 2P
33 N83 N78 N84 2 _2 2 M, + p
34 N84 0 N83 6 Ei(p)
33 N83 N81 N86 2 2 .2p +
36 N86 0 N86 6 (p)
37 N87 N83 N87 2 Ei(p) + w:(p)
38 N87 N38 N89 3 Ej^(p) + Wv(p) -■ E
39 3 N86 11 3 Ej(s) - (p)
4o N83 N38 N88 3 E^(p) - E
4l N88 3 14 2 B^(p) + Ej(s) - E
42 N39* 30 10 0 ps xp.
43 10 10 12 2 2ps xp,
44 2 12 12 2 28 + 2ps xn
43 12 N83 12 2 2 2 p + s + 2psxp.
46 12 N80 12 2 4 }  • + + 2ps xp.
47 12 0 12 6 Eij(xn)
48 12 11 13 2 E^j(xn) + Ej(s) - *̂̂ (p)
49 13 13 13 0 square
50 12 l4 34 2 E^j(xn) + Eĵ (p)
31 12 3 13 0 E. .(x̂ t)E. (s)
32 13 13 18 0) Denom• in B^(p)
33 18 34 34 0 j ” in hf (p)

E
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No. a b c r Notes.
54
55 
36

5
15
16

10
16
2

16
16
16

3
2
0

2II.M, . - s - ps XU 1 ij ^
(x h )Ej (s)-s^-psx|i

s^x "

57 16 18 20 1 Integrand of B^(p)
58 16 34 21 1 " li^(p)
59 20 1 20 0 Multiply by ( Simpson weights
60 21 1 21 0
61 20 0 20 15 Add
62 21 0 21 15 Add

63 20 9 N9I * 13 Integral to to N9I
64 21 9 NlOl* 13 ” to NlOl
63 N91* n 43* N9I* 0 Multiply by &y(Gaussian wgts.)
66 NlOl* n 43* NlOl* 0 It

67 N91* N98 N98 2 Accumulate in N98
68 NlOl* N108 N108 2 N108
69 0 4 42 16
70 0 0 0 18
71 0 0 72 19
72 N2 n 4 N99 0 2%

73 N99 N86 N99 0 2% WJ (p)
74 N98 N99 N98 1 B^(p)
75 N108 N99 N108 1 $
76 N98 N90 N98 3 Akp)
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No. a b c r Notes•
77 N108 N89 N108 0
78 N98 0 0 5 Punch Ap)(p)

79 N98 0* 24 13 Move to col* 24
80 N98 N98 N98 3
81 N108 0 0 5 Punch ^ I U p )

82 N108 0* 25 13 in 25
83 N108 N108 N108 3
84 0 24 30 16
85 0 0 0 18
86 24 0 0 5 Punch A^(p)
87 25 0 0 5 11 4 ^ ( P )

88 24 24 24 3
89 25 25 25 3
90 0 0 0 31

Programme T(2)
No. a b c r Notes•
0 9 0 N31 4 h ' h t ^2 * ^3 * *

1 0 0 16 4 X

2 0 0 1 4 h± b  )

3 0 0 0 • 4
4 0 0 2 4 h"l2)
5 0 0 3 4 h (3)
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No • a b c r Notes.
6 0 2 2 2
7 N32 1 1 0
8 N33 2 2 0
9 N34 3 3 0 G3h.O)

10 1 2 2 2
11 2 3 4* 2 SGjhiO-)

B G  .A^b)12 0 2 2 16
13 N1 5 5 2 A^(p)
14 5 0 0 5 Punch. A^(p)
15 4 5 7 1 a;^(p ) pGjhk)(p)
16 Nl 7 7 2 h^(p)
17 N31 16 16 0 p = k^x
18 16 16 17 0 2P
19 N35* N35* n 4o * 0
20 n 4o * 17 IS* 2 ,,2 2 + p
21 18* 0 18* 6 Ei(p)
22 0 2 19 16 w;(p)
23 18 19 20 0 E^(p) w(p)
24 5 0 0 30 Punch A.(p) itt
25 5 20 20 0 A^(p )E^(p ) W v (p )
26 N35 20 20 0 ^iiA^(p)E^(p) w; (p)
27 N37* 20 22 1 M jA l a ^(p )e ^(p ) w; (p)
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No. a b c r Notes.
28 22 0 21 6

1 ---------- -—
29 21 7 21 1 C^j(p) = -—  /-----— -----

30 21 0 0 30 Punch in binary
31 21 0 0 3 ” decimals.
32 0 3 27 16
33 7 0 0 3 Punch h^(p)
34 0 0 0 31

K;(p} = 1 " f  " ' 1

AJ (p) = 1 * 2 4  f 4 ( t )
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Appendix U ,

ProiTcramme for the Kernels ♦

This programme was made under the General 
Interpretative Scheme of the Deuce. The G.I.P. is 
a programme for controlling standard programmes 
called * Bricks * and is particularly suitable for 
matrix operations. The function of G.I.P. is to read 
and store on the drum a number of standard bricks and 
then to obey them in a manner specified by a series 
of codewords. Each codeword again is written in the 
form a,b,c,r which instructs G.I.P. to obey the rth 
of the stored bricks and provide that brick with 
parameters a b and c which usually specify what
data is to be used and what is to be done with the
results.

The programme is given below.
Programme G(i )

Bricks required
1. Read Binary Matrix
2• Punch

3-4. Term by Term Matrix Arithmetic
3. Term by Term Matrix Square Root
6. Select Element
7 . Expand Scalar
8. Scalar Mult
9 . Form a zero-matrix.
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No. a b c r Notes

0 0 1 1 47
1 0 2 2 47
2 0 0 0 1 Read

3 0 0 197 1 Read x 1 x 24 matrix

4 0 0 184 1 Read x 12 x 24 matrix

5 93 95 6 42 Select

6 197 0 197 8 = P

7 93 95 8 42 Select kj

8 184 0 184 8 k jX = s

9 3 0 0 48
10 197 197 1 3 2P
11 3 0 0 48

12 184 184 2 3 2?
13 3 0 0 48
14 197 184 l4 3 ps

15 93 95 16 42 Select 2

16 14 0 160 8 2ps

17 93 95 18 42 Select Ik
18 1 24 26 7 Expand

19 3 0 0 48

20 26 26 197 3 Mi^

21 1 0 0 48
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No • a b c r Notes
22 197 1 39 3
23 17 21 24 46
2 k 2 197 4o 3
25 17 21 26 46
26 1 197 172 3 «L *
27 39 0 1 5 q(p)
28 4o 0 40 5 B.(s)

29 1 0 0 48
30 172 2 52 3 .,2 2 2 + P + s
31 52 0 2 5 q j ( o )
32 1 0 0 48

33 1 40 64 3 q ( p )  + Ej(s)
34 17 18 35 46 Select E

35 2 0 0 48
36 64 26 64 3 Bij(p.s)

37 1 0 0 48
38 64 2 76 3 + E . .(0)

39 12 24 100 9 zero-matrix
4o 12 24 112 9 «

4l 12 24 124 9 It

42 12 24 136 9 If

43 93 95 44 42 Select xji
44 160 0 14 8 2ps xp
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No • a b c r

45 1 0 0 48
46 52 14 14 3
47 l4 0 14 5
48 2 0 0 48

49 2 14 88 3
50 1 0 0 48

51 14 64 184 3
52 4 0 0 48

53 88 184 184 3
54 93 95 55 42

55 184 0 27 8
56 93 95 57 42

57 184 0 184 8
58 27 0 27 8

59 1 0 0 48
60 184 100 100 3
61 1 0 0 48
62 27 112 112 3
63 1 0 0 48
64 76 14 148 3
65 4 0 0 48
66 148 14 14 3
67 3 0 0 48

Notes♦

2 2 2+ p + s + 2ps xp
q . ( x )

E.j(x) + B. .

Fij(x)
Sele et
X  F ^ j ( x )

Select 

X F (x)

IJ 'ij
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No. a b c r

68 184 l4 88 3

69 3 0 0 48

70 27 14 14 3

71 1 0 0 48

72 88 124 124 3

73 1 0 0 48

74 14 136 136 3
73 94 95 43 37
76 95 95 95 39

77 0 2 0 6
78 1 24 26 7
79 1 0 0 48
80 100 26 100 3
81 1 0 0 48

82 124 26 124 3
83 4 0 0 48
84 124 2 88 3
85 4 0 0 48
86 136 2 52 3
87 4 0 0 48
88 100 76 14 3
89 4 0 0 48
90 112 76 27 3

Notes.

iJ

■p p

3 2 * gw.F(x )r ' M

3 [2 + E;/»)
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N o . a b c r Notes.

91 0 92 0 47
92 0 0 1 47
93 0 0 0 6

94 0 19 0 0

95 0 0 0 0
0 4 0 0 48
1 88 76 64 3
2 4 0 0 48

3 52 76 76 3
4 62 63 5 42 Select H.1
5 1 24 26 7 Expand
6 1 0 0 48

7 26 1 39 3 q(p) + Mi
8 2 0 0 48

9 1 26 38 3 q(p) - M^
10 4 6 11 46 Select Kj
11 4o 26 52 3 Ej(.) .
12 2 0 0 48

13 4o 26 88 3
-  "j

14 1 0 0 48
15 39 52 124 3 Ei(p) + Ej(s) +
16 1 0 0 48

17 38 88 88 3 E^(p) + Ej(s) -
18 4 6 19 46 Select
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N o . a b c r

19 26 88 88 3
20 3 0 0 48
21 64 88 88 3
22 1 0 0 48

23 88 14 l4 3
24 3 0 0 48

23 39 l4 14 3
26 2 0 0 48

27 124 26 88 3
28 3 0 0 48

29 88 76 76 3
30 1 0 0 48

31 76 27 27 3
32 0 2 0 6

33 32 0 32 8
34 4 0 0 48

33 27 32 32 3

36 3 0 0 48

37 160 32 32 3

38 1 0 0 48

Notes♦

3 E^(p) + E (s) - - M.+
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No * a b c r

39 14 52 32 3 qj(p,s)
4o 52 0 0 2 Punch
4l 0 0 0 47
42 0 3 0 6

43 0 0 0 0

Notes•
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Programme - G(2)

Bricks Required;
1. Read Binary Matrix
2. Punch

3-4. Term by Terra Matrix Arithmetic 
3-6. Diagonal Post-Mult.

7. Select Element
8. Expand Scalar
9. Compound Rows

10. Extract Submatrix
11. Term by Term Matrix Sq. Root
12. Transpose

Codewords ;
No. a b c r Notes
0 0 1 1 47
1 0 2 2 47
2 0 0 0 1 Weights
3 0 0 1 1 pivotal points
4 0 0 2 1 k., Mj, E,q.(T)
5 0 0 3 1 O^j(p) 1 X 24 matrix
6 0 0 23 1 A.(k.x)
7 0 0 24 1 L. .(k.x-k.x) first half  ̂ J 1 1 '
.8 0 0 48 1 ’* second half
9 0 0 22 1 Ç 1 X 24 matrix
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No • a b c r Notes.

10 16 18 11 46 Select and expand
11 4 1 3 3 s = kjX
12 3 0 0 48
13 3 3 9 3 2s
14 24 48 60 9 Lij(s.p)
13 60 0 60 12 Lij(p.s)
16 94 93 17 42 Select Mj
17 1 24 4 8 Exx^and
18 3 0 0 48
19 4 4 3 3 J
20 1 0 0 48
21 9 3 6 3 Mj +
22 6 0 7 11 E.(s)
23 l6 21 24 46
24 6 0 8 11 Wj(s)
23 1 0 0 48
26 7 8 10 3 Ej(s) + w;(s)
27 3 0 0 48
28 7 8 11 3 Ej(s) o/j (s)
29 16 17 30 46
30 2 0 0 48
31 10 4 12 3 6j(s) = Ej(s) + '
32 3 0 0 48
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No. a b c r

33 11 23 8 3
34 8 0 8 11
33 4 0 0 48
36 9 8 8 3
37 60 8 24 3
38 12 0 1 32

39 3 24 60 12
4o 0 0 42 33
4l P 0 0 P
42 60 0 4 48
43 0 4 84 10
44 60 0 4 48
43 4 8 88 10
46 60 4 8 48
47 0 4 116 10
48 60 4 8 48
49 4 8 120 10
30 1 0 0 48
31 84 116 112 3
32 1 0 0 48
33 88 120 124 3
34 12 0 1 48

Note s•

(s) A. 
(s) A.

32 ’’Diagonal Pre-niult” Brick

^ij(p.s)

10 Extract S
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No • a b c r Notes.

33 0 4 10 10 Extract 0̂ "̂) 0 < > < 3
36 12 0 1 48
37 4 8 11 10 Extract
38 4 0 0 48
39 10 11 6 3 f(x)
60 124 6 128 3 f(x) (q + c)
61 1 0 0 48
62 112 128 142 3 (p+s) + f(x) (q + c)
63 22 0 1 48
64 4 8 14 10 Extract 0  ̂X <3
63 0 0 1 48
66 0 4 13 10 Extract ^
67 4 0 0 48
68 13 10 16 3

69 142 16 146 3 Z.Z . 1 J
70 2 0 0 48
71 112 128 130 3 (p + s) — f(x) (q + c)
72 3 0 0 48
73 14 16 7 3

74 130 7 134 3
73 2 0 0 48
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No. a b c r Notes.

76 84 116 116 3 P - S
77 2 0 0 48
78 88 120 120 3 Q - C
79 120 6 84 5 f(x ) (Q - c)
80 1 0 0 48
81 116 84 88 3 (P-S) + f(x) (%
82 88 16 138 5
83 2 0 0 48
84 116 84 162 3 P—S — f(x) (q —
85 162 7 166 5
86 60 0 4 48
87 8 24 24 10 Extract R
88 60 4 8 48
89 8 24 4o 10 Extract T
90 1 0 0 48
91 24 4o 104 3 R + T
92 0 93 0 47
93 0 0 1 47
94 2 0 0 7
95 0 0 0 0
G 2 0 0 48
1 24 40 120 3 R - T
2 0 0 1 48
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No • a b c r Note s•

3 8 24 5 10 Extract S 6 X $ 23
4 12 0 1 48
5 8 24 3 10 Extract
6 4 0 0 48
7 5 3 1 3

8 io4 1 24 5
9 120 1 4q 5

10 60 8 24 48
11 0 4 84 10 Extract U
12 60 8 24 48
13 4 8 92 10 Extract V
14 92 6 88 5 f(x)V
15 1 0 0 43
16 84 88 104 3 U + f(x)V
17 2 0 0 48
18 84 88 88 3 U - f(x)V
19 104 16 120 5
20 88 7 104 5
21 6o 8 24 48
22 8 24 88 10 Extract ¥
23 88 1 170 5
24 10 0 1 32 •Comp. Col.' Brick

25 146 154 124 10 Z.Z., Z.Y.
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No • a b c r Notes.

26 124 24 146 10
27 138 166 28 10
28 28 4o 150 10 ( h q .  q q .  V j )
29 120 104 88 10
30 88 170 24 10 (FiZj, F.Yj, F,Fj)
31 146 150 154 9
32 154 24 60 9
33 10 0 1 32 ’Scalar Mult* Brick
34 2 0 0 7 Select kj

35 60 0 60 10
36 2 4 0 7 Select C..(t) xj ' ‘

37 60 0 60 10 K i j ( p . s )

38
39
40
41
42

0 0 43 33

43 60 0 0 2 Punch
44

Note

0

:

0 0 47

(i) 1 = L 1,1, 1. r.CvO,(ir').Cv),CV'). '• ....... i] 1 X 24 matrix
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(ii) For punch out ^ ̂ ̂  ̂ and ^ ̂ ̂  ̂ . Then use
the f oil owing i^rogramme - G(3)«
(iii) For ^22* use a zero-matrix for instruction
in the next programme - G(3) •

Programme - G(3).

Bricks Re<luired ;
1. Read Binary Matrix
2. Punch

3-4. Term by Term îlatrix Arithmetic
5. Ex%Dand Diagonal

Codewords :
No. a b c r Notes

0 0 0 0 1 K„(^)
K33<")1 0 0 24 1

2 1 0 0 48
3 0 24 24 3 K^3
4 0 0 0 1
5 0 0 1 5 Exp and
6 1 0 0 48
7 1 24 24 3 a 3 3

8 24 0 0 2 Punch
9 0 0 0 33
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Appendix 5«
The Born Terms*

Wc have defined
o < ^
6 < |*£J 
3 <(*<25

where

■ 2 ) j [  f‘M t
I

t’(W q>j[ !v‘(0 -

C.tT) / IA-. E:(K>;(ii) '

» i f- Î *

o  i  I*

t i r Î

c B/p >, , k a w    ' 2
-J2«‘ A T w #  ^

For each solution, one can fix the %. which are
arbitrary; e.g.

i)
a )

iii)

The choice must be revised in the light of 
numerical solutions which must be as different as
possible.
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Proicraiiime - T(3)

No. a b c r
0 4 0 N32 4 Mi, M.,
1 N32* N32* N36* 0
2 0 4 1 16
3 2 0 n 4o 4 k., k.
4 n 4o n 4o n 46 0 4
5 2 0 N14 4 E, Aj(tj
6 4 0 N70 4
7 4 0 N80 4
8 0 0 0 4 X

9 0 N40 28 0 kiX = p
10 28 28 2 0 2P
11 n 4i N41 n 4 0
12 28 N41 35 0 pic.

13 35 35 3 2 2pkj
14 N36 2 5 2 + p^
15 N38 2 4 2 " L  * ■>"
16 N37 n 4 N3 2 "j * “j
17 N39 n 4 N7 2 2 ,2

18 5 0 5 6 Ei(p)
19 N5 0 N3 6
20 N7 0 N7 6
21 N3 N7 N8 0

Notes.
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No. a b c r Notes.

22 N8 0 N8 6

23 n 4i N8 N8 0 k ( Ck;")W)C*';)) ̂
j

2k N8 N14 N8 1

25 5 N5 7 2 E^(p) + Ej(kj)
26 7 n i 4 7 3 Bij(p. k.)
27 n 4 4 4 2 + p^ + kj
28 4 0 13 6
29 7 13 14 2 Bij + E,.(o)
30 13 l4 15 0
31 NO 24 20* 13
32 0 4 31 l6
33 0 0 0 18
34 3 N80* 16 0 2pk.xg^

35 4 16 16 2 n? . + p^ + k^ + 2pk xg. 3- J J J ■*-
36 16 0 16 6 Eij(x)
37 14 16 17 2 °ij A )  +
38 13 16 18 3 E,j(0) - E..(x)
39 7 16 19 2 ^ ^ijh)
4o 18 19 18 1 h j h )
4l 17 l6 17 1
42 17 18 19 0 ®ij h )
43 N80* 18 16 0 X F( x )
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No. a b c r Notes

44 N80* 19 17 0 X  G(x)
45 N70* 18 18 0 w F(x )
46 18 20 20 2
47 N70* 16 16 0 û>k F(x )
48 16 21 21 2
49 N70* 19 19 0 OjG(x )
30 19 22 22 2
51 N70* 17 17 0 6)xG ( x )
52 17 23 23 2
53 0 4 36 16
34 0 0 0 18
35 N2 20 20 2 2 + S«^P(x^)
56 N2 22 22 2 2 + H<U|^G(x^)
57 22 13 22 1
58 23 13 23 1
59 20* 14 20* 1 ij ij .yij

60 0 4 59 16
61 0 0 0 18
62 N32 5 8 2 S^(p) +

63 N33 N3 n 6 2 * *‘j
64 5 N32 10 3 Ej(p) - M3
65 N5 N33 Nil 3

-  "j

ij
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No. a b c r

66 8 N6 12 2
67 12 N34 12 3
68 10 Nil 10 2
69 10 N34 10 2
70 10 22 10 0
71 12 23 11 0
72 20 10 10 2
73 21 11 11 2
74 35 n6 35 1
75 8 10 10 0
76 35 11 11 0
77 10 11 12 2
78 NI 5 0 NI 3 6
79 12 NI 5 12 1
80 12 N8 12 0

81 1 0 1196 4
82 0 0 6 4
83 N96 6 6 0
84 12 6 12 0
85 12 0* N30 13

Notes

E^Cp ) + Ej(kj) + +

Ei(p) + Ej(kj) -
B^(p) + E.(kp - - Hj+Mpj

M± + M .J
M.1 + ''j
M.1 - M .J
H.1 - '3

aj

IJ
J j 

h j  /hi

Read C..(t ) ij
Read ^(p)
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N o. a b 0 r

86 12 4* N51 13
87 N50 N51 N52 2
88 N 50 N51 N53 3 i j
89 N 32 0* 12 13
90 N53 4* 12 13
91 0 4 85 16
92 12 0 0 5 Pun

93 0 0 0 31

Notes

ij



-  1 3 2  -

Appendix 6 .
Typical S-Hatrices.

1, The S-matrix in the model B for
G^/h% =  0*5 G^/k% =  0.5

T = 1

^11 ^ 0.99222382 + i 0.01152938
S,„ = 0.00296197 - i 0.09787091 S ,= 0.00296598 - i

0 . 0 9 7 9 7 8 3 5

= 0.00762178 - i 0.07549031 S .,= 0.00762624 - i
0 . 0 7 5 5 4 4 2 2

S = 0.98628904 - i 0.04746687
S =-0.00250802 + i 0.12403592 S =-0.00250726 + i
'̂3 0.12396850

S = 0.98898675 + i 0.02750368
T = 0

S = 0.99614681 + i 0.00715839
S = 0.00432825 - i 0.08727423 S = 0.00433096 - 1

0.08732889
s = 0.99196700 + 0.09143951

2 . 0^/4% = 0.5 G^/4tc = 1.5A K
T = 1

S = 0.97415213 + i 0.03421486
= 0.01486057 - i 0.17570214 S ^ =  0.01488329 - i

0 . 1 7 5 9 2 1 9 5

S,„ = 0.02114059 - i 0.13514694 S _ =  0.02115153 - i
0 . 1 3 5 2 5 1 3 4



- 153 -

S„2 = 0.970604i6 + i O.OO305I6I
S.,. =-0.01741694 + i O.1628O8O8 S =-0.01740667 + i

0 . 1 6 2 6 7 0 3 6

S = 0.97530525 * i 0.05715323
T = 0

S i  = 0.98782784 + i 0.02120230
S. = 0.01188320 - X 0.15358907 S ^ =  0.01189114 - i

0 . 1 5 3 6 9 1 5 9

3 = 0.97933301 + 1 0.13099699

3. G^/4% = 0.5 G^/4% = 3
T = 1

S = 0.94939858 + i 0.06617713
= 0.04510890 - 1 0.25954912 S ^ =  0.04518797 - i

0 . 2 5 9 9 3 4 2 0

3 = 0.04934789 - i 0.19865847 S ^ =  0.04937526 -
0 . 1 9 8 8 3 2 4 9

S 2 2  = 0 . 9 3 4 0 2 6 9 6  + X 0 . 0 8 0 5 7 1 6 1

S., =-0.05010961 + i 0.22168522 S =-0.05006733 + i
J2 0.22143529

s = 0.94665458 + 1 0.10154319
T = 0

3 = 0.97384497 + X 0 .04148895
S = 0.02659768 - X 0.22180973 S ^ =  0.02667718 - i

0.22197248
S = 0.95603586 + i 0.18992355
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Appendix 7 .
Multiple Scattering Integral in Pion-Alpha Scattering<

Cons ider

E-H.

where

Tp . . and -ÇK-

D being recoil momentum of the alpha-particle and R =
+ r^) .

This gives rise to the following integral for 
two successive scatterings on nucleons 1 and 2, say;

f, , , . -2<r’q  i- ^iO-R
N I <Jn, &

Introducing the co-ordinate system

5 1  =  i - ( q  ^ 2  -  ^^3 -  ^ 4)
52 = - r^)
53 = - r3 + r^)

we find the integral reduces to

Ml V . J . - 2 « r ' C s A S i ’4 % 9  +  ‘̂ S | 1 + ' - ' C f t * ^ - ( P - p ;N \ aSiAS.̂ 9L 0

where we have omitted the momentum conserving function. 
Using Laplace transform, this integration reduces to

-jy+ 2(P-gO/j2<r’-
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