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Sunmmary.

The first part of the Thesis (Parts 1 and 2)
describes a theoretical investigation on the S-wave
K-nucleon scattering. Although the K~-meson-nucleon
interaction has received considerable theoretical
study, the details of the mechanism remain obscure.

In an interaction like this where absorptive processes
are known to be quite strong, the requirements of
unitarity imply a close relationship between the
various channels in the reaction. 1t is therefore
important in any consideration of K-meson-nucleon
scattering to take into account virtual processes
involving pions and hyperons.

This investigation studies the possible importance
of one particular virtual process namely scattering'
via the elementary virtual production of pairs. This
is achieved by using a reduced Hamiltonian for which
the processes

K —>N + N E~e—+ Y+ N

are allowed and the only Feynman diagram for X + N

elastic scattering is that shown in the figure below.

N x N
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The state vector contains terms in the configurations
(X + N), (N + N +Y) and (n +Y) and the problems can
be solved exactly to obtain the S-matrix for the
reactions
E+N~—)E+N
* + A
® + 2

Another version of the model in which % «»B + B
(where B is a baryon) is also allowed is investigated
but clearly higher configurations can now occur and
the model is not exactly soluble. Apart from its
application to K + N scattering, the model is of
interest in itself as it contains three open channels
and an application of Tamm-Dancoff approximatiocn
leads to a system of coupled singular integral
equations whiich have to be solved numerically. This
was done on the electronic computer of the Glasgow
University and both the models were studied for various
combinations of coupling constants in the theory.

Because a reduced riodel Hamil tonian has been
used, the coupling constants are not directly comparable

with those employed in calculations using the full



Hamiltonian., However it has been found that for
reasonable values of the coupling constants, a
substantial fraction of the observed cross-sections
can be obtained with this process. The model also
correctly predicts the sign of the real part of the
scattering amplitude for certain values of the
coupling constants. The conclusion from this
investigation is therefore that in S-states, pair
production by K-mesons and pions must be taken into
account in a future relativistic theory.

The second part (Part 3) of the thesis describes
a calculation on the elastic scattering of pions by
alpha-particles. The interaction of pions with alpha

particles has not been investigated theoretically so

far and in the present study, a variational method which

has been found quite successful in the pion-deuteron

scattering has been applied to this problem. This

method takes into account effects of multiple scattering

quite simply and is an improvement over pure impulse
approximation. The results of the calculations show
that multiple scattering corrections are small and
agreement with experimental results without such

corrections is reasonably good.
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1.1 Introduction.

The problem of interaction‘of negative heavy
mesons with nucleons is one of considerable theoretical
interest. The experimental results available at present
on the scattering and absorption of negative K-mesons
on protons are limited. Theoretical investigations
have therefore been principally concerned with fixing
such parameters of the theory as the coupling constants
and low energy scattering lengths. As is however well
known, it has not been possible to construct as yet a
satisfactory theory of strong interactions of elementary
particles. Quantum field theory which has had such
notable successes in electrodynamics can offer only a
semi-quantitative description of low energy pion-nucleon
systems. The success of the celebrated Chew-Low (1)
théory appears now to be largely accidental and the
point of view has been expressed that field theory is
inconsistent and will eventually die. On the other hand,
as Chew (2) has pointed out, many apparently valid general
principles (such as the substitution law) have been

discovered by studying the dubious concept of the



local field. In any case, quantum field theory is
the only apparatus we have at present for a detailed
description of elementary particle interactions
phenomena.

In pion physics, significant progress was made
before the era of dispersion relations by considering
the pion-nucleon interaction within the framework of
various approximation schemes. The most straightforward
approximation, of course, involves power series
expansions of the scattering matrix in the coupling
constant. In the case of meson theories, such an
expansion is meaningless on account of the large
coupling constant.

On the other hand, the usefulness and validity
of the methods of Bethe and Saltpeter (3) and of Tamm (4)
and Dancoff (5) have been extensively investigated.
Chew (6) has applied the Tamm-Dancoff method to obtain
the meson-nucleon potential. His calculation of the
scattering with pseudovector coupling in the pseudo-
scalar meson theory was in reasonable agreement with
experimental results.

Indications have been obtained that the K-meson-



Baryon coupling constants are very much weaker than
the pion-nucleon coupling. It seems therefore
reasonable to attempt to investigate K-meson-Baryon
interaction phenomena by means of an approximate
method like that of Tamm and Dancoff.

The difficulty in the study of strong inter-
actions is not only the lack of a framework within
which to make plausible approximations but in this
particular case there is the added complication of
eight coupling constants of which only one is known
with any amount of certainty. Also since the relative
parities of the K-mesons with the hyperons are not
yvyet known, one is forced to make a choice between
various possibilities. One may however proceed in
either of two ways. One may use the possibility of
determining the parity from K-meson-nucleon scattering
data by using a zero angle dispersion relation. In
this case one, of course, ignores the question of the
validity of the dispersion relations which have not
yet been rigorously proved and one also makes the
assumption that the contribution from the unphysical
region which is present even for forward angle due to

the absorptive processes in the K -p reaction is



negligible. It has however been recognised that
the structure of the unphysical region may be quite
complicated, with the possibility of a cusp in the
scattering amplitude where a new channel opens,
although indications from perturbation calculations
seem to favour a smooth extrapolation.

Alternatively, one can attempt to construct a
complete dynamical theory in which from certain
specified assumptions about the interaction Hamiltonian,
one calculates cross-sections which are then compared
with experiment. Various symmetry principles have
been proposed from time to time to reduce the number
of coupling constants and one of the most interesting
in this connection is that of Gell-Mann (7). He
adopted the point of view that, as a first approximation,
one may neglect all the baryon mass differences thereby
obtaining the highest degree of symmetry, which is
later reduced by secondary perturbations. He replaced
the isobaric spin singlet A and the triplet = by
two doublets. The four baryon doublets thus obtained
(including the N and © doublets) were assumed to
have exactly the same strong interaction with the x-

mesons. The K-meson couplings were assumed to be



moderately strong and responsible for the mass
differences and different behaviour of the baryons.
This is the well-known global symmetry of Gell-Mann.

It has however been shown by Salam (8) that if
the elements of the T"l matrix for the K -p interaction
relating to pion-hyperon processes are taken from the
pion-nucleon scattering, the results obtained for the
2"/ 2* ratio do not agree with experiment. If however
one uses the principle of restricted symmetry (9) that
is the equality of ®-A and x-Z coupling constants
without any reference to the pion-nucleon coupling,
then it is found (10) that the results are quite
consistent with the experimental data on hyperon
production ratios.

It is therefore to be emphasised that in any
attempt at calculation of the properties of the strong
interaction, one is forced to.make simplifying
assumptions so that one eventually ends up with a
rather simplified model., On the other hand, recently
there has been a great promise of a very comprehensive
dynamical theory in the double dispersion relations of
Chew and Mandelstam (11). It has been recognised that

in the theory of strong interactions pion-pion interactions



play a central role and double dispersion relations
have been used together with unitarity to provide a
complete dynamical theory where although the under-
lying short range forces are not properly understood,
long range interactions due to exchange of one or
two-particle systems can be handled in a consistent
way. This type of approach (2) has also opened up
the possibility of deciding whether the A and Z
are 'elementary' or bound states.

In the present far less ambitious model, s-wave
K-N interaction is treated systematically on the
assumption of pair creation in the intermediate states.
From the comparison between the predictions and
experimental cross-sections, we find that the model
is quite promising for certain choice of coupling
constants. The qualitative result of this investigation
is therefore that in any realistic theory of low energy
K-N scattering, virtual pair creation should be
explicitly taken into account since it accounts for

a large part of the experimental situation.



1.2 Gell-Mann-Nakano-Nishijima Scheme.

It is customary to classify the elementary
particles in the following way:

(a) The photon. Its rest mass is zero, spin 1 and it
interacts with all charged particles through a
universal constant e where ez/hx = 1/137.

(b) Leptons. These are neutrino, anti-neutrino, electron,
positron, negative and positive pu-mesons, light
particles, spin % and possessing no strong couplings.

(c) Mesons. These are Bosons of intermediate mass
possessing strong couplings. There are two sub-
groups; pions and K-mesons. Both occur with
charges * and 0.

(d) Baryons. These are fermions possessing strong
couplings and satisfying the law of conservation
of baryons. This law states that baryons can not
be created or destroyed except in the baryon-anti-
baryon pair production and annihilation. The
baryons are divided into two subgroups (i) Nucleons
comprising neutron and proton and (ii) Hyperons
consisting of A, £ and = particles. The latter
have masses greater than nucleons. All the baryons
are expected to have anti-particles.

All the new particles i.e. the K-mesons and the



hyperons have one rather surprising property in common.
They are produced with a remarkably high abundance
even in medium-energy collisions but have a relatively
long life-time. In order to account for the large
production cross-section, the interaction of K-
particles and hyperons with pions and nucleons must be
strong of the same order of magnitude as the pion-
nucleon interaction. VWith such a large wvalue of the
interaction coupling constant, one would obtain for a
hyperon a life-time of about 10”'22 sec. On the other
hand, the decay of a hyperon to a system of pions and
nucleons is known to have a life-time of order 10-10
sec. or longer.

To account for this paradox of copious production
and long life-time, Pais (12) was led to the hypothesis
of associated production of strange particles. He
pointed out that experimentally one never encounters
the single production of a hyperon or a K-meson; at
least two strange particles are always involved in the
production process. Interactions in which only one
strange particle is involved, as in the decay processes

are weak. In other words, one has in general three



types of elementary particle interactions: (i) strong
interactions such as the pion-nucleon and nucleon-
nucleon interactions, (ii) electromagnetic interactions
and (iii) weak interactions as in beta decay.

The outstanding property of strong interactions
is their charge independence or conservation of
isotopic spin. A group of particles of nearly the
same mass and other properties constitute an isotopic-
spin multiplet. If there are (2T + 1) particles
in the group, then T is the isotopic-spin quantum
number of the multiplet and each member of the multiplet

is characterised by a value T, which takes on values

3
3

variation in the electric charge which increases in

-T’ -T'.'l’ e o 0 0 0y T-l, To AS T Varies, there iS a

steps of e as T, increases by one. For pions and

3

nucleons, one can write quite generally

where N is the number of nucleons. Nakano and Nishijima
(13), Nishijima (14) and Sachs (15) have generalized

this relation to include the hyperons as follows:

Q=T3+%(B+S)

where B is the baryon quantum number and S is the



- 10 -~

'strangeness'. Nucleons and hyperons have B 1,

whereas the K-particles have B = 0. The assignment
of strangeness is not unique. It depends on the
assignment of isotopic spin. In the scheme of
Gell-Mann (16) and Nishijima, the parameter S has
the value O for pions and nucleons, +1 for K-mesons,
-1 for K-mesons, A and £ hyperons and -2 for the
cascade particle. The quantum number S is conserved
by both strong and electromagnetic interactions;
only the weak interactions can violate conservation
of strangeness.

The assignment of isotopic spin and strangenes

S

is summarized below.
Table

T T3 B S Q Particle Spin
1 1,0,-1 ) 0 1,0,-1 xt, 7%, % 0

.21~ %9"% 1 0 1,0 p,n %

1 1,-+ | o [ 1 | 1,0 x*,K° 0

° -

1 1,0,-1 1 |-1 1,0,-1 xt,z.Z 1
0 4] 1 |{-1 0 N )

| 4.-3 1 |-2 0,-1 =% =7 i
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We have not included the anti-particles here.
The general rule is that the strangeness of the anti-
particles is negative of the strangeness of the
particles. This leads to the interesting conclusion
that there should exist two neutral K-mesons, one
with strangeness +1 and the other with strangeness -1.
This has been experimentally verified.

There are small mass differences among the
members of the same family as,for example, the
reported mass difference between X° and XK~ of 3.7 z 0.7 MeV
and that between X~ and I* of 7.1 I 0.4 MeV. We
will disregard the small mass differences and utilize
the isotopic spin formalism. Recently the property of
charge independence has been experimentally verified
(IP) in the reactions X+ pantikt, X+ D Do+ K°
and X + p—> =+ K*. Under charge independence, the
cross-sections of these reactions satisfy the triangular
inequality \]_;(-E’-s < «/-;'_(_2-‘::5 + «]—;‘—(—2—'3 . Previous
experiments seemed to show a contradiction for backward
produced Z 's but the new experiments have found no

such contradiction.
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1.3 Summary of Experimental Results.

A large body of experimental information on K -
meson decays and interactions has recently been
published. Most of this has come from experiments
with plates or with bubble chambers at the Berkeley
bevatron. Freden, Gilbert and White (17) have collected
all the presently available data, summarized and
combined them with their new measurements at high
energy. Earlier summaries have been given by Kaplon (18)
and Ascoli et al. (19).

The following reactions of K -mesons on free
protons are allowed by conservation of baryons, charge

and strangeness:

K  +p — K +p (1)
K° + n (2)
Zt+ R (3)
P>l (4)
2+ =° (5)
A+ x° (6)
and those on neutrons are
K +n— K +n (7)
=+ x° (8)
Ze+ w0 (9)
AN+ & (10)

The total K + p elastic scattering cross-section
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as a function of K -meson incident energy in the
laboratory system appears in Fig. 1. The curve for
xfxz is also plotted in the figure where A is the
K -meson wavelength in the centre of mass system
divided by 2x.

The main features of the (K p, K p) data are
the possible peak in the cross-section at about 30 MeV,
a sharp decrease to about 40 mb and then a fairly flat
curve up to 300 MeV. However the suggestion of a peak
can not be statistically substantiated specially
because the emulsion data seem to show a levelling-off
in the cross-section at about 30 MeV. It is important
that more data be obtained in this region to settle
this important point which has given rise to a resonance
hypothesis in the K -p scattering.

The K -p charge exchange scattering has also been
investigated (20). The cross-section rises from
threshold, reaches a maximum of about 15 mb at 150 MeV/C
and then decreases to 4 mb at 418 MeV/C (Fig. 2).

The total cross-section for capture to give Zfﬂt
appears in Fig. 3 together with the curve x7\2/2 as

given in reference 17. The evidence for a decrease in
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the inelastic K -p scattering cross-section with
increasing energy appears to be sound. The collected
data on angular distributions of elastic and reaction
cross-sections as given in reference 19 are shown in
Figs. % and 4. These data are clearly consistent with
isotropy.

If we believe this evidence of the angular
distribution to be isotropic, this suggests that the
interaction of K -mesons with protons is predominantly
S-wave. In discussing low-energy K -p interaction
therefore, we shall assume that S-wave processes are
predominant and neglect all higher angular momentum

waves.
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1.4 Phenomenological Theory. Effective Range Approach.

The S-wave K-N scattering amplitudes have been the
subject of numerous discussions (21) from a phenomeno-
logical effective range point of view. From isotopic-
spin consideration alone, one can write the cross-

sections for elastic and charge-exchange scattering in

the form
_ X 2ux, 20, lz
QI. ak l 70 e + f'. e - 2 (l)
x 2\\u° 2(&. k3
e = l 70 e - 7| e
4ke (2)
where 87== Ly + CPT is the complex phase-shift for
isotopic spin T = 0,1 and %Y. = exp (-2f7) . These

phase-shifts are related to the scattering amplitudes

by the relation

k cotdy = 1/An

where k is the centre of momentum and AT is the

scattering amplitude. The absorption cross-sections

in T = 0, and T = 1 are given by
=X (-7
0y = ll"( 77) (3)

and are related to the cross-sections for hyperon
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production by

6, = 60 (Z°)

(4)

20 (T +A) —q0(Z9

Q
n

(5)

One first determines the quantities . and 7, ,
from hyperon production cross-sections using eqns.

(3) to (5) and one can then apply a simple graphical
method (22) to obtain a  and a,.

Lacking detailed data on neutral hyperon

production, Dalitz and Tuan (23) made the assumptions:

(a) ©o(A) = €0 €= 0.2
(b) Po-o2
B1

Using the experimental data at a laboratory
momentum of 175 MeV/C, where o; = 86 mb, G, = 14 mb,
o (Z*+Z7)

1) A

45 mb, they found the four solutions:

0.2 + i 0.76 A

L}

1.62 + i 0.38 (a+)

1

2) A = 1.88 + i 0.82 Al = O.4 + i 0.41 (b+)

and the solutions (a-), (b-) obtained by reversing the
sign of the real parts of both Ao and Al.

In an attempt to distinguish between these four
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solutions, Dalitz and Tuan have calculated the K -p
elastic scattering cross-sections neglecting Coulomb

effects (Figs. 1 and 2).

L .
Fig. 1 Fig. 2

Below the threshold for K° production (90 MeV/C),
the four sets of solutions show their greatest differences
but in this momentum range it is very difficult to get
accurate data so that it has not been possible to
distinguish between the four solutions.

Jackson and Wyld (24) have calculated the K -p
elastic scattering cross-section including the Coulomb
effects and found that solutions (a-) and (b-) more
nearly follow the emulsion data, oﬁing to the destructive
interference with the Coulomb scattering. From this, it
is concluded that K -p interaction potential is repulsive

which in turn leads to the conclusion from dispersion
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relations that K -meson is scalar.

However, the re-analysis of the Berkely K--p
data presented by Alvarez (25) at the Kiev Conference
shows that the Dalitz solutions are not at all precisely
determined as was previously thought. The errors in
the data are such that the above solutions can only
be considered as tentative. It also appears that an
angular distribution for elastic K -p scattering at
172 MeV/C has been obtained at Berkeley which clearly
shows a constructive interference between the nuclear
and Coulomb scattering. This evidence will confirm
the earlier indication that K -p interaction is
attractive and therefore that K -meson is pseudo-

scalar.
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1.5 Field Theory. Soluble Model.

A simplified model which contains all the
essential features of strong interactions and at the
same time can be exactly solved has been studied by
Amati and Vitale (26). It is essentially the Lee
model (27), where the virtual K and % mesons in the
intermediate states are disregarded and the rather
unreliable approximation of no recoil is made to
obtain a soluble theory.

Assuming a scalar K-meson, the model gives

rise to the following integral equation

(0)"‘"’0) XT (k) = S‘ KT(k,k') YT (k') dk’

where the kernel is given by

?_G:v(k)v(nz My - M, -,

Kp(kk) = —=—== —
4wkwkr 2r (My-—M“"Uk)(MY—M“—Nk,)

G, being the re-normalized coupling constant and Y = A
or 2, particle. Owing to the separability of the
kernels, this integral equation can be solved by the
Schmidt method and the phasé-shift calculated from the
equation

£r(ko) = ;];- tané,

The scattering cross-section then follows from



et

- 20 -

the expression

o(w)= & sl

With a choice of coupling constants G%\/hx = G%;/hx = 0.3
a cross-section of the order of 10 mb. is predicted for
both isotopic spin states. Moreover the tangent of
the phase-shift turns out to be negative indicating a
repulsive K -p potential for both values of the isotopic
spin.

The reasons for the failure of the Tamm-Dancoff
calculation of Amati and Vitale have been pointed out
by Ceolin, Dallaporta and Taffara (28). Amati and

Vitale have considered the lowest order diagram (Fig. l)

but on
\\\K- /,
R
'l
N
N Fig. 1 N

account of the possible capture reactions of negative
K-mesons, it is not justified to treat scattering

independent of capture. The Tamm-Dancoff calculation
should take into account the wvirtual capture diagrams

which can be included quite naturally in two-meson
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approximation.

The complete set of Tamm-Dancoff equations in

this approximation is then

(B-Mym ) Xg (k) = Sd"' Xop (K) Kyg (k) S.Jk')[“(k')KM(kk‘)

. S‘"" X, () Ky, (k)

and similar equations for ), and ZIR° The
different kernels are obtained in the usual manner.
This procedure essentially leads to the

calculation of the following diagrams:

v H \ i
\ K . . ! \ /
\, R " /R \R Il?
." ..'.‘ [N "‘ "g a- ‘/ \-‘ “ 'l
A\ \ /S \ N X A
n Y ¥ W ] Y Y ] NN N~

in addition to the diagram considered by Amati and
Vitale. The results relating to the new terms are of
opposite sign from the old term and of about the same
magnitude and therefore contributes to correct the
previous result in the right direction. No quantitative
calculations were however made, since approximations
required were rather drastic. Ferreira (29) has made

a perturbation calculation of the third diagram above



and finds that the contribution is always large
enough to compensate the repulsive second order
diagram of Amati and Vitale and to change it to an
attraction. This is true for either scalar or
pseudo-scalar case and a coupling constant ze = 1.5.
We may thus conclude that in the scattering
process of K with nucleons, pions and K-mesons
should be considered in the intermediate states and
will probably give an important contribution to the
process. The neglect of all these could be Jjustified
if capture turned out to be a small fraction of
scattering but experimentally it is known that at

least at low energy this is not the case.
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1.6. Dispersion Relation Theory.

Although the dispersion relations for K-meson

scattering from nucleons have not yet been rigorously
proved because of the difficulty of satisfying certain
mass inequalities, we can formally write them down in
complete analogy with the pion-nucleon case. For the
forward elastic scattering, these relations take the

form

o0 -]
P ' .
DL(w) = ;g 1\'+(w) s oo L A () J,
W x W+ w ® (1)
4]

o

co \ad (,)
P A, : Av (070
D-(=) ;f—"‘"‘“ * ;’S ol (2)
[}

where w 1is the incident K-meson energy in the laboratory
system. For «w)>»K (K is the mass of the K-meson in units
of A = ¢ = pion mass p = 1), we can use the optical

theorem

A(0) = 2 Galo) (3)

In order to make practical use of Egqns. (1) and (2), one

must have information about A, (w) below the physical
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threshold w = K.
In the pion-nucleon forward scattering case,
there is only a discrete bound state below the physical
threshold. In the K-meson-nucleon case however A -(%)
has contributions below the physical threshold from
the continuum of XY and 2xY states. These are graphically

shown below.

“Unphysical Range----—--..-.----... p¢=Physical Range
SEeE——— .
. ' e e e —
K YA 1 Y K

Following the standard procedure, the contribution

from the pole terms can be easily calculated and we get

A_(w) %t- §(w-wy) 8'":,, (wi-MtY)
where T oAt
Y-M-K

2M

and the positive sign is to be taken for the scalar case

W =

and the negative for the pseudo-scalar., It is this
fortunate change of sign which makes the K-meson-nucleon
dispersion relations so sensitive to the K-meson parity.

We can then write down the dispersion relations in the



final form

)
Y
D) = —— 4+ L (yaw[ G o= («')
Glys 4n2 u,:w + —7—-——010

w'te

K .»')K
vi A

where K

Y g\. . Q J\'.)‘ M-K*
- K _ K - /=M=
x*e Borlrami-c] s ——r

Of course, the dispersion relations as writteh down

here do not converge unless c{ha falls faster than yb.

To secure better convergence, various forms of sub-

tracted dispersion relations have been proposed.
Matthews and Salam (30) have studied the

dispersion relations in the form

D (K-D0(K) = 4;'; ﬂ? Us‘o"(o')— g‘o‘*(d)][-;_'—'(- - ?}E_] k1o’
K

K
! ¢ -t { )
"";;.:j‘""o;("’)[ wt -’a'AK]Aw'+B's'
“hx

where B.S. means bound-state contributions. With the
preliminary experimental results, they could only make
a rough evaluation of the first integral in the energy
range K-2K and gave arguments to show that the
contribution from the second integral was negligible.

This is, however, by no means certain. Using



their effective range solutions (a, bl), Dalitz
and Tuan have attempted an analytic continuation of
A-(w) into the unphjsical region and found that the
contribution may quite well be large. However, as
has been pointed out, the solutions of Dalitz and
Tuan are based on preliminary data and may well
undergo significant changes with improved results
from experiments.

Other forms of strongly convergent dispersion
relations have been studied by Igi (31), Kerth et al.
(32) and Amati-Vitale (33). Using a form of effective
range relation proposed by Amati (34), Selleri (35)
has discussed the K+-p scattering data writing the

cross-section in the form

C+(®) = oK) + b (e-K) K <o < 14K

A future determination of b is likely to decide
whether K-meson is scalar or pseudo-scalar from the
dispersion relation of Amati. If present indications
of a weak dependence of o+(w) on w in the low-energy

region is accepted, then K-meson is likely to be
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pseudo-scalar with respect to both hyperons.

Very recently Kycia, Kerth and Baender (36)
have used a form of subtracted dispersion relation
which has several advantages over all other previous
forms. In their form, the cross-section integrals
converge rapidly and depend more on 03(«) then on
0.(w) . These integrals converge even if 0} (w)
go to a constant as @ goes to infinity. An
additional advantage is that the real parts of the
forward scattering amplitudes are used at energies
at which they are known from experiment. Furthermore,
the importance of the unphysical region is decreased
in the form of dispersion relation used by these
authors. In spite of all these advantages, the
results of these authors indicate that even with the
most recently available data it is difficult from
subtracted dispersion relations to arrive at unambiguous
conclusions as to the nature of the K-meson hyperon

coupling.
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l.7 Conclusions.

In the fore-going chapters, we have summarized
the various investigations on K-N scattering and have
noticed that although considerable progress has been
achieved in correlating the preliminary experimental
data by means of zero-range analysis, not much success
has been attained in fixing the parities or coupling
constants of the K-mesons. Dispersion theoretic
approach which has been so successful in the correspond-
ing pion-nucleon phenomena is here plagued by a
large unphysical region contribution which it is
difficult to estimate properly. On the other hand,
the zero-range analysis of the K-—p scattering data
at 175 MeV/C has given four possible sets (a:), (b:)
of the complex scattering amplitudes of which the
constructive Coulomb-nuclear interference in X -p
scattering seem to favour the solutions (a+) and (b+).
The elastic cross-sections from emulsion data show a
maximum at about 20 MeV and this has been interpreted
as due to destructive Coulomb-nuclear interference,

as required by (a-) and (b-) amplitudes. Neither of
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these conclusions is at all convincing and clearly
more experimental data will be required before the
sign of the Coulomb-nuclear interference term can be
settled.

As regards field theoretic calculations, a
model for K-meson-nucleon scattering has been studied
by Amati and Vitale but the results of such calculations
are in complete disagreement with experiment. The
failure of this model to explain the K-meson-nucleon
cross-section is hardly surprising since it does not
take recoil into account and neglects the effect of
K-mesons in the intermediate states. The outstanding
feature of the cross-section data available for the
K -p scattering and reaction processes is the strong
absorption leading to pion hyperon states of all

possible change combinations

K + p— Y + =

where Y stands for A and 2, hyperons. For
example, at a laboratory energy of 30 MeV for K—-meson,
the cross-section for X* and X~ production amounts

to 44 £ 8 mb. All of the differential cross-sections
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observed for the elastic scattering, charge exchange

and reaction processes in K -p collisions are found

to be essentially isotropic at this energy. The
available evidence therefore indicates that it is

the s-state interaction which plays the dominant role
in the K -nucleon processes at low energy. We can
therefore compare the observed absorption cross-
section with 7:’&2, the geometrical maximum cross-
section possible for s-wave interaction which is 103 mb.
at this energy. Since the absorption cross-section

is almost half the geometrical cross-section, the
competition of these absorptive processes will indeed
have a marked influence on the scatéering processes.
Quite generally, in any situation where the cross-
section for the reaction processes reaches a consider-
able fraction of the geometrical l1limit, the requirements
imposed by unitarity imply significant relationships
between the reaction processes and the scattering
processes in the wvarious channels. FEach strong
scattering in one channel has an appreciable reactive

effect on all other channels of the same quantum
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numbers.

The existence of such reactive effects casts
doubt on the validity of perturbation methods for
K-meson-nucleon interaction phenomena. This is
clear from the fact that reactive effects do not
appear in the lowest order term but are manifestly
important in the higher-order terms of perturbation
theory. Since perturbation theory is useful only
when higher order terms are small, it follows that
success of such calculation reguires small reactive
effects. Therefore the data on low-energy K-N
processes lead directly to the conclusion that
perturbation expansions are of very doubtful wvalidity
in K-N scattering. We have however constructed a
model which explicitly takes pion-effects into
account in the K--p scattering using a state vector
which comprises baryon-anti-baryon pairs and a
variational method for obtaining the integral
equations for the three coupled channels. This
represents a generalization of the model of Bosco
and Stroffolini (38) on s-wave pion-nucleon scatter-
ing. In the following chapters, we give details of

calculation on the model.
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Part Two.

2.8 The Lee Model and its Difficulties.

The exactly soluble model of a field theory
constructed in 1954 by T.D. Lee (39) has been the
subject of numerous careful investigations. Although
various other examples (40) have been discussed since
then,'it is Lee's model which clearly brings out the
meaning of renormalization and also reveals a number
of difficulties of a fundamental nature in all these
theories.

| The model contains three types of particles -
the V-particle, the N-particle and the ©-particle

which transform into each other thus
Ve N + ©
and it is defined by the Hamiltonian
Ho + HI
*
AR SCMCERLRAOID

H

H
o

fl

+ .Z? Gy Oy Ok
Hy = 5 J'z%,&'_n. H’,,(l’)%(‘l)ok 4 c'c] 5(p-k-q)

where Gi = pz + K° and it has been assumed that the

energy of the V and N particles does not depend on

(1)

(2)

(3)
(4)
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their momentum. In this respect, the Lee model is
rather far from physical reality.

The commutation relations of the field
operators are the conventional ones and there are

two constants of motion which are
ny + Ny = const. and n, + ng = const.

where n represents number operator for the respective
field. Because of this situation, the problem is
exactly soluble in a simple form. We can in fact
express the physical V-state as a superposition of
two states, one bare V-state and another state of N

plus ©:

) *
vy = 2 [Iv) + Z £00 9 IN)] 5)

g/

5 is a normalization constant and £f(k) is

where
proportional to the probability amplitude for finding
a ©-particle in a physical V-state.

Application of the Schrodinger equation

together with the orthonormality of the bare eigen-

states and a normalization condition for the physical
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V-particle then yields:

£lk) = \/;;2. E -'m w (6)

m, - E_ = Q:j‘ R do . Smy (7)
" ©4m,-E,
Z,'= 4+ B (8)

J“ kdw
A ) (@+my, - E)?
The divergent quantities 8&wmy and Z:' serve to
renormalize mass and coupling constant.

The next simple state we can solve for is IN + ©)

which can be written as

IN+©) = c’V) + %Z X(")Q':,N> (9)

and on application of the Schrodinger equation, one

obtains the integral equation satisfied by :X(k):

SN AN k) = g‘: 'ﬁj’_ My - My — Wo ’
(w-wg) X(k) 162 ] Voo Gr-my-)(m,- ) 2(x) (10)

where gi = gf Zz . Since the kernel of the integral
equation is separable, one can solve it easily and

the s-wave phase-shift § is given by

%tﬂ-ﬂs = g: h
7 @v-me0) (1 +D(R)

DC‘() = _e_‘:_ My — My - W (ll)

&k’
lox® o' (w-0") (my-my=0)?
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Everything is finite here and this is the most
significant fact that after performing the mass
and coupling constant renormalization, the phase-
shift for scattering turns out to be finite. 1In
this model, only the V-particle operator requires
normalization. In general, all fields have to be

renormalized. The relation between gi and gi is

3
. ¢
.= (12
2
4x

where

_ 1 k dw
= @-an-s‘,}“

The integral I is divergent and if we use a
cut-off in the integral, there will be a wvalue of
the cut-off for which (%:) I >1 so that fo/fan < 0
provided of course (gi/hx) 7 0. 1In this case g, is
imaginary and the Hamiltonian is no longer hermitian.
Also Z;' becomes - o060 in the point-source limit
and this contradicts the probability interpretation
given for this quantity. Kallen and Pauli (41) have

shown that this is an essential difficulty of the
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model and introduction of the indefinite metric does
not save the situation as the S-matrix is non-unitary.
Heisenberg (42) has therefore favoured the idea of
dividing all space into Hilbert space I containing
normal states of the system and having a positive
definite metric while the other part called Hilbert
space II contains states of a different category.
These latter states are composed of one normal

state and one 'ghost state' of the same mass.

This kind of difficulty has given rise to the
question whether such features are common to all
field theories. The defect perhaps arises from the
failure to build a theory with consistent transform-
ation properties, e.g. in a fully relativistic theory
after renormalization such divergences do not persist.
Therefore a self-consistent field theory can perhaps
be realised if every field operator and vertex

function is renormalized as in electrodynamics.
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2.9 A Model for S-wave bion-Nucleon Scattering.

Of the several exactly soluble field theories
discussed so far in the literature, Bosco and
Stroffolinit's (43) model for s-wave pion-nucleon
scattering is closest to the model we are discussing.
A variation of Lee's model was discussed by Machida
(44) and more recently Goldstein (45). In each of
these theories, the renormalization constants are
cut-off dependent, implying an imaginary wvalue for
the unrenormalized coupling constant as the cut-off
exceeds a certain critical value. For this situation,
Kallen and Pauli have shown that a 'ghost state' is
to be expected. Fried (46) has constructed a model
in which the coupling constant renormalization is
finite if the fermions of the theory are assumed
non-relativistic. For the unrenormalized coupling
constant to be real, the renormalized coupling constant
must satisfy an inequality involving mass ratios; if
this inequality is violated, a single boson ‘'ghost-
state' appears.

In the model of Bosco and Stroffolini, the

interaction Hamiltonian is that part of the fully
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relativistic pseudo-scalar Hamiltonian which

corresponds to the process

X «——>»N + N (1)

The physical meson state is defined by

[/
ln,®) = »f‘oo[ 150D + T £ (ne) |ah b ] (2)
s ! A
LA
{ by .
where QP’°7 and 5 » Op are the creation and
destruction operators for the nucleons and the
anti-nucleons. Substituting this in the Schrodinger

egquation

HI R = w [N W) (3)

and from the normalization condition one obtains as

usual

(vi-a-s) = £ ! &

T @, (we- 2M) 3 (4)
NG = 1o+ & ! @)
o (we-amp T3 - (5)

where nucleon recoil has been neglected and the cut-off §
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has been introduced on the momenta. The renormalized

coupling constant can be defined by the relation

bor e (6)
so that
2
2 _ g
®c T 1+ £2a(o) (7)
where
AG) =~ ! Emy’ (8)

R oy (we-2M)2 3

The pion-nucleon scattering state is defined by

. . f
IN:©) = s%k X (bk) o IN.(K) + .f?;P('?'i"s)' o{.'a,*, b';s) (9)

1725

The integral equation satisfied by the amplitude
X(p) in the barycentric system is then obtained in the

usual manner in the form

(MropE) hEAD = —EMO wes| T L () 4
P 4 @1 (7M—E) (10)
where

WO = 1~ EXO M- E gy
o o (e2m)*GME) 3

(11)

Separating into isotopic spin states and using
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(6) and (7),

-2 g: *dq 2% (1)
M+ wyp-E)bH L, (- ')'7 : -
P 3 ( an ,/';;:' (3M-E)[ L+ @A (P)—A(uDH

writing
!
M+Wp-E

Y(p) = §(Memp-E)s P £(P

and then solving by the Schmidth method for separable
kernels, one obtains the phase-shifts for S-wave
scattering.

It is found that the signs of the phase-shifts
are given correctly and they are independent of the
values of gi/hx provided the cut-off is chosen in a
reasonable manner.

Using a set of s-wave pion-nucleon scattering
phase-shifts given by Orear, Bosco and Stroffolini
determined gi/hﬂ to be equal to 1 and pointed out
that this value is of the same order of magnitude as
the renormalised constant obtained by Goldberger,

Deser and Thirring. The conclusion then was drawn

(12)
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that the nucleon-anti-nucleon cloud of the pion is
coupled with the pion much more weakly than the pion
cloud is coupled to the nucleon. Moreover, since
agreement with experimental results was quite
reasonable, Bosco and Stroffolini suggested that
s=wave pion-nucleon scattering at very low energy

is mainly due to the production of a wvirtual pair

in the cloud of the meson.
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2.10 Fundamental Interaction Lagrangian and the Present
Model.

In the Gell-Mann-Nishijima scheme, there is one

iso-scalar A -hyperon, three isospinors

(E)  x=Go

and two iso-vectors

Ry P2
x= () & =<E=)
= 8

where as usual

and similarly for y 2Rl
Assuming now
1) charge independence
2) charge and nucleon number conservation

and 3) three-field interactions (Yukaka coupling)

we can write down the strong interaction Lagrangian in

the following form:
= Gz N(B)TEN + G __E =gk

*Gex AT +he + Gt E(" YEPI

strong

+GNmﬁF‘KA + he 4 qu-_ NlrNeSK+ he

— (2K — y
kA + he + G ETIDK + he.
+ G, =T K =KE
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where

Kz - ¢, K¥ = ( -ii‘)

The symbols here have their usual meanings
i.e. each represents the annihilation operator of
the corresponding particle; the operator "' is 1
or .hg for even or odd K-meson-hyperon parity and P,
is 1 or Y% if the parity of & is equal or
opposite to the K-hyperon parity.

From isotopic spin considerations alone, a
term ,

€. x k¥r.x K+ he

should also be included. As however ® is pseudo-
scalar such a KKx-interaction can only be present
if the two K-fields K, K' exist with opposite parity
(Schwinger (47); Pais (48)). We do not consider
this possibility in the present model. We will
assune a pseudo-scalar K-meson and for simplicity
neglect all effects due to the E-particle so that

the Lagrangian can be written as

L =G P *GuPir * Grelrar * O + O Pakr

NNE  NNR AIX AER Tix IIK ANK AvK
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where

i

PNNI

1 [(Prsb-7%m)x® + 2 (Frgnnrs @ pa)]

U
]

pan = 1 [ T%Ax + Tt o B An] 4+ b

)
]

= & (B2 - 2 2) 0+ (Bhze- B4z %

+ ( TR - 29 J“’J
L[ FAK* 4w 7’5/\Ki] + hee

LI

1

Pew = 1 [ PRIKY- A BK" + 2 (79 T7K*+ By E*K")] +he.

Although it seems likely that the baryon masses,
especially the mass splittings are consequences of
strong interactions (Bransden and Moorhouse (49)),
no attempt will be made here to discuss the masses in
this sense. We shall consider the masses to be given
quantities, even though future developments may show
how these quantities originate.

The model we are considering is a generalization
of the model of Bosco and Stroffolini and there are
two versions of it. In the first version designated
model A, we retain that part of the interaction

Lagrangian which corresponds to the process

7!4-——;N+ﬁ

and 3{_¢——>Y+§

(1)
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The second version of the model is called model

B, the additional interactions

Te—3 D4+T, D+A , A+Z

are allowed.
In order to avoid difficulties connected with

vacuunt diagrams, we shall neglect the pair effect
vacuum e—3» K + B + B

where B stands for N, Z, 6 A.

It must be pointed out here that the neglect
of the effects of & -particle are not serious since
in the present model they only contribute to the
self-energy terms in which however we are forced to
use a cut-off.

It will thus be seen that the principal ob-
jective of the present investigation is the possible
importance of one particular virtual process, namely
scattering via the virtual production of pairs (l)
and (2) and hence the only Feynman diagram for R-N
elastic scattering considered is the following Figs.

1l and 2.

(2)
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Fig. 1 (Model A)

No other graph is possible in this order. In the

higher order, we may have Fig. 2

R

Y

Fig. 2  (Model B)

Clearly higher configurations can occur in model B

and the problem is no longer exactly soluble.
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2.11 The Truncated Hamiltonian.

The total Hamiltonian of strong interaction can
be written as

H=HO+HI

where the free-field Hamiltonian Ho is given by

1, = ZEOLOLE + ZEEREHE (1)
+ E} W <f’; (0. + E) Wi 4’,:(") e (0

+ renormalization counter terms,

and the interaction Hamiltonian is given by
H 1?* [ G 2.0 %, 3 RY,(@) 4 G PPVt (104, (@) s he:
+G, T OWXL®) 40+ G FO%L@ S @k ke

6 TO% FHOLE + ] "

The nucleon field operator can be expanded in

the form

37w px -t ;4»: s

where the oy and ba are the destruction and creation

operators of nucleons and anti-nucleons and the Dirac
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spinors w (p) and VY (p) for positive and negative
energy states respectively and are normalized in

such a way that

T &Ee= 1 ZYnuf= -1
The ¢ and v satisfy the Dirac equation
(Fp=M) (P =
(7p+cM) (@ = °

We can similarly expand the hyperon fields.
The K-meson and the ®-meson field operators can

be decomposed in the form
0:"~z - s.k > 3
o { of o #
* @")’ﬁ \/Zw,‘ ( (%)

o
The conjugate momenta to % is

m(x) = @n%’/‘ j‘\/—f;i“ [ ¢'(k) - c“*(k)] ;c‘k-xdsk

The energies of the baryons and the mesons are given by

Ee (P) = \hb’+ B* W = \/h‘a- K* Wy =\ K% P (5)

where B stands for the mass of the baryon, K is the
mass of the hyperon and the mass of the pion is A

The cormutation rules satisfied by the operators



are as follows:
fai(® ,a',’*(")} + 65 80P
S fhe. B@p - WGy

[ <0 - ‘3"("')] ¢ Gu S(kK)

All other commutators or anti-commutators vanish.
Retaining only the terms corresponding to the

processes
R «—— N + ﬁ,}a+§“2hfﬁ \ and A+%

Ke—sN + 3 and N +A

we obtain the interaction Hamiltonian of the model B.

o <2 [Our (AOH@ a0 k) 4 cc)
+Gaz: (Oi(P)bg(") C;r(") r:‘(P:‘l.'t) +<.c.)
+ G (FORW ce® (P12, K) e
+ %‘ (Qi(l’) b‘f(q)c,‘(k) CF(P-'I- k) + c.c.)

¢ G (@GO 1 (P k) + <)

.+ Gy (AOROGE T (R4K) + c )]
(

H,
in

6)
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where ), JZEH(P;*E‘M)M @ (P) o7 Ty 5 (3) S(Pr9-K)
b ‘}QEA(:;E(Q)G'(&) W g (D 5 (rs )
o \IQEg(ZP;E«(ﬂ)u(k) Be(P) 75 (1) 8 (P*1-K)
Qf . Jlmzp)‘&(q)w(k) G () oy TE v () £ (p19- k)
s = 26,2;5.‘(4)\'/(#) R () 8 (Pe1-)
o \/;Et(gfﬁq)w(k) a(r) T V(1) E(p1-H)

In the following we will use the following
projection operator
ALR) = Z w03 ()
r.p+ M X RE(D+M — (pY5 0P
aMe 2M.

and the large and small components will be factored

out by the use of

(!+ S5TP )
E(+M
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2.12 One Particle States.

The eigenstates of the total Hamil tonian
= Ho + Hint are most conveniently expressed in
terms of the free-particle states. It will be seen
at once that the vacuum of bare particles is also an
eigenstate of H with eigenvalue zero and that the
bare baryon and anti-baryons are also eigenstates
of H with eigenvalues Eg(P):

H lo) 0

(1)
14 P10

Ex () ¥ (Ploy

Now because of the possibility

'Jtd—bN-l-E
the state of one clothed ®X-meson is no longer equal
to the state of one bare meson. We can however
express the physical one-meson state as the super-

position of a bare meson and a nucleon-anti-nucleon

pair state:

) = e Llnew) -2 Paapdwians] (2

in the centre of mass system. Here N3(p) is the

normalization constant and F(9,-qp) represents the
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probability amplitude of finding a nucleon-anti-
nucleon pair in the physical ®-meson state.

It is now required that the above physical
pion-state be an eigenstate of H belonging to the

eigenvalue EK(P) so that we must solve the Schrodinger

equation
(HO + Hint) ' n)l'P)) = E,,.‘..(P) , n)‘(’P)> (3)
This leads to the result
A
A -q-
F, (9.-9p) (4,-9-p)
En (9) + En(P+9)- E. (P) (4)
where G i
NNK LA
q .
) - @ J2E..(Q)E..(m) wp MV T )

Also since  (P) is the energy of the bare-meson

ex®-E(P) = - j I‘.“(q,-r-q) R (a,-p9) &

. G M | @(p.a |*
e e J B (QEMY  E () s Eu(Pra)-Enf)) |
o)l = Z[ o (M)vs-c*w:‘(qﬂ[a:(q)qg 2 v}‘(m)]
_ 9-(pt1) + M
. -

where 7 = 2 is the isotopic spin factor. Thus the
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self-energy of the ®-meson is given by

on(P)-Ep) = ~ Ghone 7 j 31 M+ £ (E(Pe9) - 9. ()
l6n3 E,,(Q)Eﬂ(l’*‘l)w(p) En(Q) +En(Prq) -Ex(P)

It will thus be seen that the mass renormalization
for the m-meson here is more singular, in the limit of
no cut-off, than the corresponding V-particle mass
renormalization found by Lee. The reason is that we
have not neglected the momentum dependence of the
nucleon energy as was done by Lee.

Now from the normalization condition

NE@InE) =1

we have

CORIRE ) P SEAL UL il
l6x3 E«() E(p19)0(P) [E,,(q).,, Ew(P*9) - Ex( P)]z

We now define the constant of charge renormalization

by

g, = Lm N (P)

p>o

and the renormalized coupling constant by

Gz = Z', GNNR

NNTC

Hence in the present model, the renormalized

(5)

6)

(7)



- 54 -~

coupling constant is given by

2 - G:NR
NNR &
I+ Ghye A(S)
where
A0) = 7 S‘ L] 2M* (8)
b 09 B}(9) (26,4)- p)*

If we neglect recoil and introduce a cut-off,
we of course get the expression given by Bosco and
Stroffolini.

In an exactly similar fashion, the state of one
clothed K-meson can be found and the renormalized
K-meson coupling constants defined. The physical

K-meson state is given by
IRCED = N[ IRGD+Z S, (q,+—q)a*,'ce) E';t(—q-r)loz_} (9)
P9y

Hence as before we obtain from the Schrodinger

equation

HIRGP) = E(P| RCP)

the self-energy of the K-meson in the form

i (P)- () Ty S A MY+ Eu ()5 (Pra) -9 faw)
7 end Ev(ﬁ)E..(Pi‘l) w(p) E.,,(q) + E, (p+q)- EK(P)

= | :3
ht (10)



and from the normalization condition we get

R« 1+ S f d MY + E (@)E(PD)- 1.(prd)
" E@EPOP®  [E@)+E(p+9) - E(p]*
(11)
As before, the renormalized K-coupling constants
are defined by
2
Eaiv = Gy (12)
| + LG, By(®
Y
where
_ MY+ E,(@)E,(9) + 9*
B/(9 dq
6% | E(QEL D] E()+E(9)-K]?
In the more elaborate version of the model, we
allow the processes
Xe—sN + N, 42 , DA, AT
and in this scheme, the self-energy of the X-meson
becomes
x > ‘M. : ‘
MORACEPIR ; j d MMy + E@E(PH)- 9.(rg
¢ o E@E(Pu)  E@+E(P9) - E, (p)

(13)



where the following notation has been used

My =M, =M G, = G
M2 =A le =2 G2 = GAIK

The renormalized mw-meson coupling constants are

now given by

G2 - G
I + ZG! A (o)

where

3
2g(0) = g, [ 9 MMy + EXES) - 9
lox3 E;(‘l)’:::,(‘l) @, () [E;(Q)q- E. (q) _ "] 2

We notice that in the expressions (8), (12) and
(14), the energies of the bare-mesons occur in the
denominator and we can easily see from equations (5),
(10) and (13) that the bare particle masses tend to the
real particle ones as the coupling constants tend to
zero. For small coupling constants, we can therefore
replace wﬂ(o) and QK(O) by pion-mass and K-meson mass
respectively.

In this connection, we may point out that with a
reasonable choice of cut-off (0.7 nucleon mass) and
renormalized coupling constant of the order unity, Bosco

and Stroffolini have found that the correction to the

real particle mass by mass renormalization is very small.

(14)
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2.13 Two Particle States.

In order to describe the scattering of a physical
K-meson from a physical nucleon, we will use a Tamm-
Dancoff expansion for the two particle wave~functional
and solve the Schrodinger equation satisfied by the
wave-functional to obtain the scattering amplitudes.

The Schrodinger equation for the wave functional
is

(B, + 5, ) 1= B[ (1)

Expanding lmC»in a series of eigenfunctions of
Ho containing states with one baryon, m mesons and

n baryon-antibaryon pairs we have

vy = Z Xy | Amnd (2)

Aym0

where A specifies momenta, spins etc. of the system.
In the present model, we limit ourselves to states

with no more than one baryon-antibaryon pair. Thus we
write the wave-functional in the barycentric system in

the form

e = z[x.(r)a O IRCE + A @I - L& Bince]

‘ z [ )4, O (-*r-r)«;@ + KD L@Eand @
PRTDLCLATE («) AL IR0
+ % @) rﬁt(l’) bX" D& %@.p)d t(l") Fan i)
o Ylap) AR ) «i'(«)_'[ I
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It is then necessary to solve the Schrodinger
equation to obtain the three amplitudes X, , k)X, and Yy
from which one wishes to obtain the amplitude X .

It may be noted here that in model A i.e. the
exactly soluble version of the model, only the first
four terms occur.

To obtain the equations for the amplitudes
for the open channels K + N, A+ ®x, and T + =«
respectively (we do not consider energies above which

the processes B + B + Y are possible), | y) is inserted

into the expression

I1=<¥|E-H|Ww

and the condition &I = O for the variation in the X
is imposed. This gives the following equations for'&.w

e g,xm . We have

[E - Eu(p) - E(()-E, (9] Xy ()
[ <ol aX(®) BCr-b (e & (9| R (9

5 4
¢ <ol (B (p-a) ot () (e-1) & ()| MES) A (O ()

and a similar equation for Xs with A replaced by &

Also

[E- En(®) -E ) - Eg (P+8)] X (9

- = <ol &(MEC-IL® (ER O] A %) (5)
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and similar equations can be written down for xpn.%o,

Now from the condition

(RER| AP (E-0) o>

"
(4

we have

CRED| &P (E-1) ()] RESD 1,(9)
CRE| 4@ (£-1) )| NE) .09
+ KRED| SO (E-0) £ NED) ()
+ <KEP®| (P (e-H) a',‘t(q) bi‘.’(-q-s) a9 Jo> X, ()

<+

Wl
+ <REP) @ (E-H) ‘i{f'(") ASIDLCIDYACIE (6)

Substituting (4) and a similar expression for [,

into (6), one obtains

[ <K Re-®)| Q2P (E- H){d‘fCSD |RGsD X9 4 a“,,’cs)j AESPAE
+ 2 (DINC %, (9}

_Ba9 <RED| 4O W &9 e 9919 <ol
aye (@4 (-9 () (042 ©OF |REH XD
CP R =0 (7)

where

D E - Ey(q) - Ev(8) - Ey (a+8)

Two similar equations obtained from the conditions
<nEp|d@E-|T> =o

are relegated to the appendix.
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2.14 The Integral Eguations.

We will reduce the equation (7) of the previous
chapter separately and establish the integral equation
satisfied by Yi.

The aiagonal terms are

CRED| (B CE-H) &) | R (-

- 5, CREDI® (e- 1) @k iolpeliin BHOLOEI RS
The first term

[£-Ec(®-w@]N® + D[e-£ @-EL)-E(s+9]) | S (PO N
+Z £, (p)T(PS) Ny (B

= N‘(P){ [E-E.(B-v (8] + ;[ E-E,(P)-E,(5+9)-E ($) + Ex CS+<D+E,(s)—w@I£¢u{}
= N(B) LE-E(A-v@I[ 1+ Z| 5 (s.0T]
Ne(P) [ E-E, (8D - w (V)]

[{]

The second term

= Z1[ e-6(@)-5 @B 5RO + Tl £,60 +ee
N NICOI RN

= SN[ D+ 2 ( Eulpis) 1B (D) + f&(m%e«o-w(pﬂt]
v D

= 2 | (el [ E-a@-w (@] o,
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Thus the total diagonal term is

N, (P [E-E(®-wB] n Y, (P

where

h(®)= 1- (®[e-E BO¥E)| 2 yia & MY +E, (P*)E,()-5.Ceob)
Y 'éx E(POEQWD [EnPrOsE)wElE, 0491

B = EN(P)-"EYCS)"E

and the isotopic spin factor > is given by

7A ® GI:K'I\ '72 = 3 G:x:;

Ve now consider the non-diagonal terms. These are

CREP)) () (E-r) @l ¢s) I (-9))
- §, <RI OE)IOEICIEOE L OEDE lned

The first term

- N[ <ol {RED +S AW £ kB alo (e ”)o, ©fe QDI (Q)L?-jfs)}@
. Ns@){ [ E-E®-E(B) -Eu (pr9)] £1(hS) Fe(p9)
¢+ T(ps) F(ps) + (P9 £, ()}

The second term
- 5@ [ (P ARE) Db « £000 (k) + TR (p9)
+D (15 F(rS) £"(p9)]

D(ps) = E -E.(P)- E,(5) - E (P*S)
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aofl=
Hence the total ,diagonal term

nr(Ps) 1y (ps)

- - N3C3)
E - E‘f(s)-EfJ (P) - E,‘ (r*s‘)
- - NG j i e L AR AT
4 E\(P) E, OEPOp E - Ev(9-Eu(p) -Eu(ps)
where gh = | ZE - 'CE

In this way Eq. (7) of the previous page is

reduced to

3
[e- E.O-~@n@L® - LK (002 02 ..

Jel

where

K, ,(ps) =°

£,(P%) = NON® S [ iin
fex jE" (P+9E(S) NOMIOEO)
B O PR po% o (5]
E-E, (P) -Ev(s) -E, (P*’)

and K, , (p.s) is the same with A replaced by X

«s(2)

Eq. (1) above is the integral equation for ‘X, and we
can obtain similar equations for 7& and x3 in exactly
the same manner. These are

[E-E, (D Tn® L) - zg Ky, (PO () & .
3 3
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and

[£-E (B - (P )]@(mw(P) SK,J(FS)X (5) & ()

The wvarious kernels can be found in the appendix.

An alternative but much simpler method of obtaining
the integral equations may be mentioned here. We start
as before from the Schrodinger equation for the wave-
functional

(5, + H, )W) = E|W) (5)
and then expand l@ in a series of eigenfunctions of
HO containing states with one baryon, m mesons and n

baryon-antibaryon pairs.

M\"I
Wy = Z <" [ aimo
Amn (6)
where A specifies momenta, spins etc. of the system.
Substituting (6) into (5)
[E_Em m.n 222<km.n'Hrer‘P
9 (7)
In the present model we limit ourselves to states
with no more than one baryon-antibaryon pair. This

results in the following equations

(E-EY) o = & <xiho| Har | poot r )
‘}
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and

(E—-E;")u';;' = %(v.o.ll Ht | 010> a'('.o

(9)
Hence substituting (9) into (8),
(E-ELD QY = Tt Hat| pro D poit | Har 6oy
FeP
e (10)
E-ep

There are two types of mesons in the theory. The K-N

amplitude for example satisfies the integral equation

e- Eu(p)—w(pilq,(p) = N4(P)N3(5)[GN,.,GW M (Pes) M (pis) o, (5)
E - E. (P)-Er(9-E (P9

R (ps) n*(e.s)
E -Ex($) -Eu(P)-E (P9

where NB(GD) and N, (8 ) are normalization constants

* GusGa @] (11)

of the ®-meson and K-meson 'physical' states since
e n °> involves a 'physical'! meson in Eqn. (10).
It will be noticed that there is no term involving
al(s) on the right of Egn. (11). The reason is of
course that K + N—>N + Y + N and this intermediate
state does not lead back to K + N but gives rise to
x + Y state.

In Eqn. (10) we have assumed that A¥p . When



however A = @ , we get the self-energy contribution

which for the KN amplitude is the following

& Gx, N2(pmr (397 v(psﬂ[ﬁ(m}rsu@
ler® E(prOEEME £ -En(P)-Ev@)-E.(r+9)

E-e@-@50 =2\ g

where Ay is the isotopic spin factor.

The simplest procedure for renormalization of the
Tamm-~Dancoff equation has been described by Bethe-
de Hoffmann (50). The self-energy terms are expanded
in a series in powers of the difference between the
energy of free-particles of momentum P and the
actual energy of the system. The first two terms in
the series are dropped and the rest is considered the
renormalized self-energy term.

Thus expanding p~! in powers of [EN(P)+W(P)-E]
where D is the denominator E - En(P)~E,(s) - Eqx (p+s)

we have

2 - ! _ E'EN(P)‘N(p)
E-Epn () 'Er(s)'w EN(P’W) + EYCS)-W(P) [EN (P+S}l EY(S)‘W(P gt--

Thus from the above prescription, the renormalized
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self-energy term is

2 Gl das
Ny (P) Guxr [MY-\- s-(s*Pﬂ

E-E@®-%0 5@ = —}Y:Rw ond

Eu(p+6) Ec(S) W(P)
[ ' E-E4 (B)-w(P
| E- EPDEGH EpDEOWH (P++E, (O @
2 2 2
N, (P G ds
- - EXY 2 )3 ! n
7 (64 E (P E (D) v (B)

_{_'@r + Eu(P)E,(©)- 5 Gp)][ £ - . @6
[Ex(P+$) + £, (&) -w(@] [ € -E, (P+D)-Eu()-E,C]

Thus Eqn. (11) is replaced by an equation where the
wave-function on the left-hand side al( P) is multiplied
by the factor hl(P) where

M) = 1 = 5y NPy i £-E (-
Y l(:m?‘ Ex(P+) E(Dw(p) [En(e+9)+Er()-w(P)]?

MY + E, (P+8)E(S)-5- CS+P5
Ev (P+8)+Ey(P)+Ev(8)-E

where
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2,15 Reduction to lLarge Components and Elimination of
Ansular and Spin Dependence.

In the last chapter, we have obtained the integral
equations in the form
3 ) 3
&
- B ®-oi(@] R@LLE) = 2 f Ke; (%) Xju(®) &
o

where the kernels are of the form

K (ps) = N(BNCS) ci(m | MMM | |
J 16x® | Bi(PE;Dei(po®  E(P)

[ @ (8) 7 B e[ porede] ()
E -E.(p)- EJ'CS)-— E (p+5)

We next use the abbreviation

Zo(PLL,® - X (P

ol
so that X} (P) is a spinor. This yields

3
[E -E:(®) - () h:(p)if(@ = 2, | Ky (p:s) ;(J.S(s) E
) '
where now

C;( 2 MM
K{j (P-S) ® NJP)NJCS) 'gn:) / Mtl Ms MJ ‘ '
E\‘(P) EJ (S)O;(P)u)'(t) Ea-'j ( . *9
/\i(P) Ys A (pts) Ys
£ - E:(P-E;Cs) - E.‘j (P+S

[ o——

= NPNE© Q‘;(z) — MJ—:‘ MM '
1 B EM@a@e®  E;(pro)
A(®) AY (P (2)

E;; (P+8) +E: (W+E(8)~E
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It is well-known that by reduction to large
components we can deal with states of given parity.
For this purpose we write the four component wave-

function %(P) in terms of the two-component Pauli

spinors  Ze(p) and Z-(P) ¢
[ @ )

and by eliminating the small components in favour of
the large, we can write X(P) in the form
X: = | M Xi+ (P
:(p +
E (PN

We insert this in Eqn. (2) and write

: i _BEI(P) +M. - pYsop
A(P) 2M¢

Picking out large components by neglecting terms

involving 9g as well as putting f = 1 and also re-

membering that 'ﬁ:= l, we have
: : - . X , Y50~ P
[ pEc(P)+M: - B TP][ BES (P+)+My+ p)’gr (P+S)] [ 1+ E% T ]

3
- E;j(pw) g(g):‘; + E; (P4 J C)M [ E (B +E () +M; +M; - M.ﬂ

" [Eh-(p)+ME][ EX(P) +E; () + M) =M -Mﬂ

Thus the integral equations can be written as

[E-Ec(0)-w@] W@ (F) - z [t $) 136 &8



- 69 -

where
Kei(p) = j:tzlu;fsacﬁ(r) j‘ Y x
* M. E; () E(I0.(P)e(®
: Tp o8
[ ORI { E;()+M; * E. (P)+M;}
Esl | E ST {[ E(P)+ M [ Ec(P)+E (DM
Est)uJ\ (E;,(P)+E,CS)+M +M; = M‘)ﬂ (3)
where
Byy= Eo(P) e E;(s)-E
G E Y,
and

x = cos ©, O being the angle between P and 8.
We will follow the method of Dyson et al. (51)
to perform the angular integration. For this purpose
we write

| oo
i - E AR »

and

s ~ P (=
E(ﬁ)[‘s_'_ E(x)] ME. zn n( ) » (5)
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and define the operators Sn and Rn by

SaX(8) = — Xcmg Pa (65- 0p) X($)

o pos
R.K(® = ;—i—-gaﬂs P. (&-9}) :, 40,

then the kernels become

Kig(P9) = NN 9_@] ¥ L (PO
o M E(PDE@®

where

L(P) - Z[(E()M R, + [epm] )y, {

{ [E (}’)+M][E (P)*E (9-M- M*M.]S,,'* [E(Q-bE(sM,,ﬂqQ@

and the integral equations are

[ E-Ec(p)-ei(d] kc(P)X:@}%.; f Ke; (DX < (6)

We now make a slight change in notation in (4)

and (5) and write :

204! dx 2n+l
4. = = .{m o 09 Ko

2n+! dx
z; -~ = 2n+)
2 c(z)[e R em] ") Yo




e
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where for convenience we have defined the integrals

X . 5' P (%) 4c
" - B+E<’°)

St (7)
Pa (%) dz

S5 E[B+E()]

Considering states with definite angular momentum L

and total spin j, it has been shown by Dyson et al.
that the sum over n reduces to a single term and that

5, and R have the eigenvalues 5'," /(zn-n) and Sn"_h/ZﬂH

for j = L % 1/2 respectively. Hence

t‘
Lii(9) = 2 [ E+ M, i Ko+ <E“‘(P)*M") Snt Ko

o § (@) 5 -ty e M) S T

+ EZ;M' (E;(p)+ E; () +Mi+M; =My Sntt) Yv\] (8)
HORL

Thus the final integral equations are

[E-E: (M- w5 (DX - f%»’ S K (b % (9 s

where

Ke; (p) - EOMOCE) | M, L (p9 )
o> [ME(H) E5(D wi (D

If we neglect recoil for the s-wave kernel, we
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immediately get

00
G $*ds 7'(9
E - £ ()P h(DX:(P) = _JS (1) —

which agrees with the equation of Bosco and Stroffolini.
In our actual calculation, we however do not make this

approximation.
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2.16. Non-Singular Amplitude and the Born Approximation.

We have obtained the coupled integral equations

3 o0
[E- E2(P) - *PNOIENOFAO TP SK“J' (pA) X () e*ds (1)
T

and it is at once apparent that Z;OQ is singular on
the energy shell. If X/(p) were a regular function, the
left sides of the above equations would vanish for r:kc

where ki are the roots of the equations
E;(P)+wi(P) -E o

Since the right sides do not in general vanish identically

for p = ki, the amplitude must be singular at p = ki.

The amplitude can be written generally

(f) » A: S (E-E(P)-w(®)+P ! ~(p) (2)
x:(9) )+ PrAEEOR

where P denotes the principal value and f;(@ is a non-

singular function. Eg. (1) then becomes

p) = (p)] A -E:(9-w;,9
fi() - ; il )[%“E @@ E- EC.s)-w(Q J@ (3)

Here the principal value is, of course, taken of the

whole part of the integral.

In a single channel reaction like that considered
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by Dyson et al., the identification may be made that

1
f(k,) = == tand

where ko is the incident momentum and § is the
scattering phase-shift. In the present case, there
are three open channels and it appears more suitable
to deal with the S-matrix directly as will be shown

in Chapter 18. Rewriting Eq. (3), we have

?s 2 S (pS) s* -
g\'(p) - Jz:l:)\, K'j (P'k.!) (;8'}'('_0)%:] + P K v (P') ﬁ(_‘)J’ (lq.)

E-J%(Q-q&)

where

£;(9 = E;()+wj(2)

( s ) . _Ei (k) wi(k)

J

Since

where E is the total centre of mass energy of the system,

we can simplify the first term of Eq. (4) into

NS D
J

Ll., rkj
ENE [em e i)

(5)

where the factor Lij(r'ki ) is given in Eq. (8) of the
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last chapter with s replaced by kj' Since we are

considering only S-waves, we have

o). L ps &) , _ , R
LQ(P') z[g‘@*m{ X, 4+ (E(P)*-E,CQM.-&M;-M()Y. ’)}

R (s:(r)*M:){ X:j + ( E(D)+E () -1 - +M~‘)Yodﬂ

where |

|
3 d= ) dx
6 | P g
( ) By +E;( X (P) JoBg +EM

-t

and

!

5 e i
A(OR f 3 NG - j ok
J Ey(LB; 86 E; W[By+ E; (-]

These integrations can be performed by elementary

means and we obtain

)(PO‘) 2 —-*‘f[ E.')(P'C'S) E"] (P..S) - B‘-J (P‘) l Bb.J + E'-) (P"S)
By + Ey (p-9

J(P«S) il" [é { E:}(P‘Q'E?J'(F‘?}- i B.:)‘{ Ei(p9)-E} (P—‘)}

- : B. B; +Ey (P“‘)-)
(A - B E(RO-Es(p0f+ By (-8 i o eiro]

(9 Biir S0
Biy + Ey(p-9
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i oot € (ol oS B ()-Es(hb - (honB )l B * G2 ]
Y, J(P-’)‘;}:,[{{Ecj(f s)-ﬁ,(?-’)} B‘J{E;(P\b‘) RJ(P-S} Q‘g 3})(.1 &;-«* éj(?{?_l

where B.‘j = EC(P)"'ES Cs) -E ) A..‘J' = M,:‘;-i' Pz+s$ and E-."j (p+~$) . M.‘}-&(P*S)‘

For small p and s we can write

2 t

2 [
X T — Y = — —_—_.._—
o E 1+ o B |+
2 r i 2 o+
X 2] = Y = ™ em—
1 3 E Q-+ 1 3B @

where a = B/:E-, r = ps/ﬁz and 2E = EN(p+s) + EN(p-s)._
It will be seen that X and Y decrease in magnitude

as we go from Xo, Yo to Xl and Yl.

Thus for small p and k, we can neglect X,“j(f’. k,)
and Yli‘j( p.k; ) and Lij( P'kl ) is positive and hence
the Born approximation to the amplitude is positive
resulting in a negative phase-shift § since -f(k,):-i{ams .
This is the same result as that of Amati and Vitale.

In the next chapter we give details of the

numerical method of solution of Eq. (L4).
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2.17 Method of Numerical Solution.

We wish to solve the coupled integral equations

£.(0= 5500 +§:ch)(?:5) £, (9 ds (1)

where

20 - 2 Ky 095 (E-g6-99) (2)
J ®

(58 = Kej (P") s*
Gy(r) s — E; (9 - @, (3)

Let the solutions of the equations
E-Eo(P) -wi(p) =v

be p = ki’ then Gij(p,s) have singular points at s = ki

of the type (kj—s)-l. We now introduce

xi = P/ki xj = s/k‘_'i
so that
8 U ,
AR CRALTC Y
)
and hence the singularity in (4) occurs at xj = 1.
Writing

Fy(x) = fi(kixi)

kiGij(kixiijj) = Hij(xix )
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we have
o0
HOINNOR Z’j”ii (= %) F; () & (5)
J »

We now divide the range of integration into

three parts: (0,1), (1,2) and (2, %) so that Eq. (5)

-

takes the form

FONOR 2[‘({ Hij (5 ) Fo () + My (3 24) F(z-x)}lx
g emRee]

We have seen above that the kernels H (x x')

have singularities at x; = 1. To avoid this

singularity in the integration, we use the method

described by Gammel (51). We write

M;j(*.ﬁc) : %' [ H;J (K.?—‘) + H;j (l, Z-I')J
NG (’“‘f) = ';%_ [ H;J‘ (""") - Hy (X. 2-1.')]

and

fo) - b [Z06) ¥ () X)]
) s A2 - )0
Then equations (6) become

4 [2:6+ D16 = B9+ >l f{ M;,‘(Axgzj.@% N (x.x)Y).(&j}h'
j
N rH;J‘ (2,%) Fy (=) JZ] L.

2
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2
(26 GDYGA] = same ehing €% o)
Fi(x) = same thing *x2,2 (9)

/
The kernels Mi‘j(x,x.) and Nij,( z,»') are non-

singular.

Replacing Eqns. (7) to (9) by a system of linear
equations and using an n-point Gaussian formula for

the integration, we have
F(Z:0)+ ("r")Yi("r)] = F cB("y) + ‘JE[E ";{Mcj ("pu")) Z ; (%)
+ Ny (p®) Y, ("’)}

4-2% 6-')‘ Htj (xrlx))e'(x}] I < "Sn
Azd

i[Z;(z-xr)+(xr—n)Y;(z-x,,)] = same thing | ¢ p g9 (11)

Fi(xp) same thing ﬂstkszﬂ“ (12)

where &, are the Gaussian weights.

Solving for %, Y, F, we have
Z ;6("1') ) AZ:J[ 55 Oy “’?\{ M Cxe ) + M"J'(z"‘r"")}]

,_zh:cu,{ Nij (2p%) + Ny (Z'If”ﬂ)}
het

_zg w){ H;,‘ (xr,x,) + H;)' (2—1'., 2-17.)} [¢pen
e (13)
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Y2 (xp) - ;\2} ['“’x{ Mii(epan) - M (2”‘#"")}]

+ ?:[ g‘] &r(xl‘-) - 9 { N (xP.Z;‘) - Ny (2"‘{»' 2'17‘)}

Yy

- E%{ e (2w - H:j(z-xr,z-z,)}
nep
| | ¢ pgn
4
F‘B(‘t‘) = \2[ "°’>{ M5 ("p-h) +Nyj ("#"‘))} (14)
-+ {3;58;',- o H..j (xpfx))}] n < g < 2a4)
(15)
where
z2(x) = F(%) + FE(2-%p)
(16)

03 ("r) F’ (*r) - F2(2 -xr)

On account of the fact that we have used Gaussian
integration, we have the same number of equations as
there are unknowns and therefore no additional
condition is necessary on the functions &, Y and F.

Finally then if we write the kernels Kid(p,s)
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in the form

N
Q R i
Kij(PsS) = 1S C T
v W

i%j ivj i
iZJ Fin FiF
where
28 = Shyp - o My ) « Mg (25 =)}
G+ d [ IO | KiGyam)
’%‘f‘ 2% ECopuG)E Ej(2-%) +4(2%)-E
o Ks(2 ) LY (2-%.,2%)
B (%)+4(0) -E E; (2-%)¢w;(2-%)-E
- 8.:)- XN’ + %’E%‘:) [(P+S) + £(%) (Q +°)]
with
£(0) "28-2» and  &(6) = E(xa)+ey()-E
oG T(pe9) - £ (A+S)
20 * T2 g0, [ J
L T :
2F; = ey (RO7) (=) (a-°)]
e P-s) + §(x)(Q-©
Y\.ZJ = erix,_) ( ) g

W = Syhy(n) + 2D [@9- 5 (2]
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(r-7)

T3Fy = a,(x,)

F.Z, = —l_é;_(—s U+ £(0) V:l
Fity T “22,"2:;[ o- £1]
FiFJ' - 8 d Q(XA)W

All the operations have thus been put into matrix
form and are now particularly suitable for high speed
computation on an electronic computer. Gaussian
integration formula was used for the integration of both
the angular integrals X and Y as well as for the integral

in Eqn. (1). The angular integrations were written as

[2+ Z}m F‘(m)]

X

© B+\}A+zps

X. = ' E W, X¢ F(x“)
1 BJAH.F ¢

l
= 2 EQ‘G(I.
Yo B+JA+2P$ \]_A+_2.ps— [ * ]
}_‘,o\ x. G(x)

<
n

1 B+JA_+zps_ my;
where F(x) = JA+2pS  — ) A+lpsx
B+ JAYZpsx<
F(")[ B+ \in-ZPS + \/ A-)-zPsx, —]

Thoame 1

(]
z
it
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and w, are the Gaussian weights with x, the corresponding

i
pivotal points. A four-point Gaussian formula was

found quite adequate and checked accurately with the
analytic formulae given in the previous page. Programmes
were written under the General Interpretative Scheme

of Deuce to produce the re-arranged kernels and the
linear simultaneous equations (13) - (15) were then

solved by a Basic Programme to obtain the scattering

amplitudes fi(p).
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2.18 The S~-matrix.

In the previous chapter, we have described the
me thod of numerical solution to obtain the scattering

amplitude fi(p) from the coupled integral equations
£~ S22 Ky (19500 (1)
J ]

Now various boundary conditions may be used for fi(p),
depending on the values of A, and on the way the
integral over s is taken. In numerical work, it is
easiest to deal with real functions i.e. we use stand-
ing waves in all channels instead of travelling waves
so that we take the principal value of the integral
over s. The most convenient choices are standing
waves of the form cos ki(ri—bi) and sin ki(ri-bi)
where bi are the channel radii. The first of these
has zero derivative at r;, = bi and the second has zero

value at r, = b,. We thus define the basic set . by
2. = ?t“cj (x4 (2)

where }6‘ is the spin-dependent part and

FONE-E AR L
J
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where we have put bi = 0O for convenience.

We must now compare this with the Fourier transform
of our Tamm-Dancoff scattering wave function )Q:(p).
The configuration space wave function for s-waves

corresponding to X'(p) is given by
ORI j L) 5. (r) P

where asymptotically

() - b
I (v) -
Let the asymptotic form of \P(.{) be written as *‘.(0
Then
()« [E [ s 200 1
Substituting
)
' = A o(E-E:(p)-w: ;l@
Y1) = N S(eEutd) +P g K
we have

00

40)- \[;_ Ms@{x;s(e&@—wc(r) e f(vﬂ

st»p[ﬁ(f Eifp)-e (9)+P ;) ol £:(r) + 9.2

e & & 9 00

where 3;(9<does not contain singularities at p = ki. The
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contribution of small +¢ ¢t to this integral is given
by this term but since the behaviour of 4%?) is not
known there, this finite term will remain undetermined.
But the terms which become singular near p = ki are

the leading terms in Eq. (3) and these are given by

the asymptotic behaviour of *ﬂﬁ). Thus asymptotically

v¢(0) ~ J‘jsmr[k 8(e-E: (P)""'-(a)-{-P e (P? ﬁ )]M;

Since however

| { .
e - ¢ En e — 8 (B )
and BP k
o k. ( g:(P= E(p)1we(P)
j E -E(p)-wp)+le = =% RIR() =k ®
we have

| | i
o) - T [ 2 soke - xflR)emke] k (w&(a,,k. ()
Comparing (2) and (4) we have

Ay \/_— Ak ('BE (P))P k.
i "\/E— n?(fi) ks (‘}&(P)

L}

os]
i
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Since there are three coupled equations, three
independent solutions of fi(ki) may be found correspond-
ing to three différent values of X! and we will have
the amplitudes Al and BY (n = 1,2,3) from which the
S-matrix can be determined.

Now the S-matrix is defined by means of a basic
set of travelling wave functions. The wave function
describing a reaction initiated through channel i is
denoted by P, . The behaviour of 4P in the region

of configuration space corresponding to some channel

v, = $(a) e

where if i £ j,

Lk:,‘("i )

and in channel 1i,

\ ‘CLT‘ ;L;_ru‘ {
\";i(")' mle - Sue ]i/l—

J is

koo
.. e —
S‘J JI Iy

"

2
1}.

where I; is the 'current' in the channel i.
Expressing the complete set of functions é + as

(9

linear superpositions of the complete set ﬂ?; ’

. = ?C‘iwj
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we determine the ccefficients cij by comparing the

behaviour of the right and left-sides of this equation

in an arbitrary channel

Equating the coefficients of exp(ik f, ) we have
Al gt S e S e
%[FS‘VMB‘]:' ‘?Cusﬂﬁ: (6)

The coefficients of exp(-iktﬁ ) lead to the

equation . . | |
%-[ % Sl -"Bi] - - G VI (7)
Substituting (7) into (6)
Mgy s 8 - z[ ﬁ{s.,_ch’] s L
k. ik o

In the centre of mass system,

k: E
! | *
AR O] s

Using (5) then we obtain

Fan [ A - exgf(] 2[5+ f W] 5 Vhee

If the S-matrix is complex, we can write

S = s + ir

and equate the real and imaginary parts of (8)

¢ :
R PR EEE O o
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F P P
i 510920 2 50)5] Vi
' (10)
Treating sij and rij as eighteen unknown independ-

ent quantities, we can determine them by arbitrarily

choosing Ao for each solution. For example one can

write
{
l) )\“ s X,_ = ;\; = |
2) N ox A = Ay -
3) >| = | )‘3; : )\i z =1

The choice is quite arbitrary and must be revised
in the light of numerical solutions which must be as
different as possible.

Finally a good check on the S-matrix can be

obtained from its symmetry property Si and the

= S,
J ji
unitarity relation STS = 1. These properties were
checked in the present calculation up to the 5th

place of decimals.
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2.19 The Cross-sections.

The cross-sections leading from an entrance

channel i to an exit channel j is given by

4nk§ 2

o= T3 T (1)
R;

where ki is the centre of mass momentum in the channel

i. The S-matrix is given by

From isotopic spin considerations alone, one can show
that the T-matrix elements for the various reactions

are given by the following relations.

K +p —» K +p Te. = %(Tgl Til)
Ko+ Tee = 3(T5; - T7,)
Zhex T s g T -4 T (3)
TH R Tou= kT ¢4 Ts
n°+ x° Type = ?‘BT"(,
A+ x° Tyxe = J% ﬁ;

Using (1), (2) and (3) one can obtain the cross-

sections for the various scattering and production
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processes.
We may also note here that for the low energies
we are considering, the Coulomb and mass-difference
(between K° and K~ ) corrections can not be negiected.
A number of authors have shown how to modify the
Wigner R-matrix formalism to include these corrections.

ir § is the complex scattering phase-shift, we have

and defining the amplitude A by the relation
kA = tané

it has been shown by Jackson & Wyld that the mass-
difference can be phenomenologically taken into account
by writing the elastic differential cross-section in
the form

i‘ojt. - Ao+ Ay - 20K AcA *
dn A

= S(ReR) (AotA) - hEAA,

/
’ k%k represent

where & =
the centre of mass momenta for the systems K-+p and K°+n

respectively. Introducing Coulomb correction, this
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relation is transformed into

o lasm6f2 2
JQ. 27 * / C A0+A|- 2!:VA°A'
—~—t— = 4

where the penetration factor C is given by

CZ=2n7/(l—é2ﬂ7) 7° ;"E B=’:§-

and the A now becomes

N PR (A,+A9[kﬁ.c‘k(;-clra«.o9-A1.A, Kk (1~ chanc)

and

tan o = -EZ[%ZLR +2'/+R°\b(;7)] 7= Euler constant.

Dalitz and Tuan have recently given a derivation
of these relations within the 'effective ranget!'! formalism.
Since the primary interest in the present work is a study
of the behaviour of the model, it was not felt worthwhile

to include the above corrections.






2.20 The Results.

In order to reduce the number of coupling constants,

we have put

F3Gog/ar = Guxa /4% = G [4x

in model A and in the second version of the model, the

pion coupling constants were made equal
2 2 2 2
Gown/ 4% = GRan [ax = Gzir [4x = G far

It should be noted that in common with the Lee
model and several other models, while the unrenormalized
coupling constants may take any real wvalue, there is
only a limited range in which the renormalized coupling
constants must lie if the theory is to remain hermitian
and ghost states are to be avoided.

This follows from the definition in model B,

Gi G
| - ZgG?I

a
where we must have 2, G{I<1 in order that G: > O.
¢

The relation between the renormalized and the unrenormal-
ized coupling constants depends on the value of the
cut-off chosen when evaluating the integral I. In

the present work, two cut-offs kmax = My and 0.5 M,

were initially tried and in Fig. 1, one example of the
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relationship between G and G is shown for a cut-off
at 0,5 M ., In the remainder of the figures, for
convenience, the cross-sections are displayed as a
function of the unrenormalized coupling constants G
for this cut-~off.

In Fig. 2, we have displayed typical scattering
amplitudes for the channel K+N obtained from solution
of the integral equations in the three cases %P(u =
1,2,3). It will be noticed that the extrapolated
amplitudes f%(kl) are widely different in the three
cases and the solutions fall off smoothly. It may be
mentioned here that as recoil effects are included in
the calculations, the scattering equations do not
require any additional cut-off. The integrations were
however arbitrarily terminated when the scattering
amplitudes have fallen off sufficiently. The limitation
of storag<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>