VL

Universit
s of Glasgowy

https://theses.gla.ac.uk/

Theses Digitisation:

https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/

This is a digitised version of the original print thesis.

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study,
without prior permission or charge

This work cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author,
title, awarding institution and date of the thesis must be given

Enlighten: Theses
https://theses.qgla.ac.uk/
research-enlighten@glasgow.ac.uk



http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
https://theses.gla.ac.uk/
mailto:research-enlighten@glasgow.ac.uk

ANALYTICAL AND EXPERIMENTAL INVESTIGATIONS

OF THE COLLAPSE TOAD CHARACTERISTICS OF

THIN WALLED STRUCTURAL FORMS UNDER COM-

PRESSIVE TOAD ACTIONS.

A Thesis
Presented To The University Of Glasgow
For The Degree 0Of
Doctor of ©Philosophy.

Iftikharul Hagq Qureshi,
BoSco,(MechoEngo) Pboy AcRoCoSoToy

August, 1960.



ProQuest Number: 10656251

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction isdependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

uest

ProQuest 10656251

Published by ProQuest LLO (2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code
Microform Edition © ProQuest LLO.

ProQuest LLO.

789 East Eisenhower Parkway
P.Q. Box 1346

Ann Arbor, M 48106- 1346



ABSTRACT

INDEX .

LIST OF SYMBOLS

INTRODUCTORY REVIEW

CONTENTS

SECTION 1

SECTION 2

SECTION 3

SECTION 4

SECTION 5

SECTION 6

SUMMARY

]

APPENDICES

BIBLIOGRAPHY

Basic Large Deflection Plate.
" BEquations and Method of

SOlutiOpo

Elastic Critical Toad
Evaluationo

- Post Critical Load Carrying

Capacityo

Applicatidn of Single Plate
Results to Composite Forms.

Experimental Investigations.

Analysis and Discussion of
Results.

ACKNOWLEDGMENTS

Page °

22

26

50

66

63

(04

124
137

/139
/90

[9 6



ABSTRACT.

The advent of thin walled structural compression
members high-lighted the reservoir of strength which
exists beyond the initiation of a state of elastic
instability in thin flat rectangular plates loaded in
‘lengthwise compression. The evaluafion of this pogt-
critical strength generally called "maximum" strength
has been attempted on a variety of semtempirical bases
and in a few cases oh purely theoretical grounds.

The thesis presents é theOretical tréatmenf
for the maximum strength of flat plates, developed by
the author, using the concepts of the classical large
deflection theory of plates and the deformation theory
of plastiecity. A variety of unloaded edge conditions
ranging from free through elastically fixed to built-in
conditions and their symmetrical and unsymmetrical
combinations are considered. This theory, developed
for single plates is then applied by the introduction
of appropriate assumptions to the assessment of the |
maximum strength of structural sections regarded as an
assembly of such plates. Computations connected with
the théory were programmed and carried out by the author
on a "DEUGE" digital computer.

To check the.results of the theory an extensive
experimental programme covering the measurements of
strains and_deformations corresponding to the initiation
of instability and progress to collapse was carried out.
In connection with the experimental programme an original

application of the Moire fringe>technique was developed



by the author for the determination of deflection variations.

Following an introductory review of the relevant
published literature, the subject matter of the thesis
is divided into six Sections,

Section 1 presents the derivation of the basic large
deflection equations by minimization of the energy
integral effected by the use of Euler's equations, énd a
procedure for the approximate sojution of the large
deflection equation by.Galerkin'g method. This énergy
approach to the problem considered, and the generalisation
of Euler's equations for tﬁo variables with higher
derivatives put forward in this thesis is, to the
author's knowledge, original.

In Section2 the approximate solutions of the large
deflection equations and the results of elastic critical
loads obtained thereby for two general cases of plates
are presented. Thése are‘then compared with other
available published results obtained by cléssical
methods. The comparisons show excellent agreement.

Section 3 presents an analytical method for the
maximum load carried by compressed plates, based on the
application of the deformation theory of plasticity @
to the plates analysed by means of‘the large deflection
concepto. The applicationlbf this method of analysis
to the e{aluation of thé maximum load for plates with
free/and/or elastically supported unloaded edges is to
the author's knéﬁledge presented heré for the first time.

In Section 4 the results obtained for single plates

have been applied to evaluate the local instability and




maximum stresses for box sections, lipped channels and
plain channels.

The experimental work performed is presented in
Section 5. This covers tests in uniform compression
of plain and lipped channel, square tube and equalraﬁgle
sections. In addition to the results of the actual
tésts, the various auxiliary techniques such as an
original application of the Moire fringe method are
fully described, ‘

The mechanical properties inclusive of tensile
and compressive yield, Young“é Modulus ﬁ at zero and
varying mean stress, have been evaluated for all the
specimens used and are presented in full.

Section 6 contains the comparison of the
theoretical and experimental results with a relevant
critical discussion. |

The main test concludes with a Summary indicating
that generally good agreement has been obtained between
the theory and the experiments, establishing the .
former as a rational and reliable analysis for the
maximum strength in compression-of single-plates and
structural sections.

This is followed by 7  Appendices and an extensive
Bibliography. The Appendices contain those details
of theltheoretical and experimental investigations which
have been considered too bulky for inclusion in the main

test,



DEFINITION OF SYMBOLS.

The following symbols are used throughout the

text. Any additional symbols are defined where they

first appeafs

a.b, h

Rectangular co=ordinateso

Components of displacements in

%X 3 4% and 2Z directions.

Normal forces per unit length

in the middle plane .of the plate

in the X and 4 directions. |
Shearing force in direction of’g-
axis per unit length of section

of a ﬁlate perpendicular to xX-
axiso,

Bending moments per ﬁnit length

of sections of a plate perpendicular
to the x- and 4- axes respectively.
Twisting moment per unit léngth of

a section of a plate perpendicular
to x- axis. |

Sheafing forces parallel to thefz.-?’
éxis per unit length of sections of
& plate perpendicular to - and Y-
axes»reSpeotivelyo

Modulus of elasticity in tension

and compression.

Poisson's ratio..
Lengthy, width and thickness of a
plate,



'D"‘”E(Jiv;) Flexural rigidity of a plate.
™ Number of sinusoidal half waves.
o g Direct stress.

T Shearing stress.
c Direct strain.
X Shearing strain.

- F Airy's Stress Function.

G;tﬁt Critical buckling stress
parallel to x - éxiso

0% o Maximum stress parallel to
;x;- axiso

- Olietd ———  Yield point stress.

The Sections, Sub-sections and equations have
been numbered in accordance with the decimal system
of referencing. In this the first figure denotes
the main Section, the second Subsection and the
subsequent figures give the appropriate equation

‘number, For example 4,010 should be read as Section
b, Subsection 0, equation 0.
Throughout the text numbers shown in-square

bragkets denote the appropriate reference listed in

the Bibliography.
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INTRODUCTORY REVIEW.

Development in struetural and Aircraft Engineering
has led to widespread use of plate elements in a very
large numbér of applications and in consequence much
researﬁh has been stimulated on the buckling of plates.
Considerable basic progress-has been made during the
past twénty.years in this field of engineering as far
as the buckling strength of thin walled construction
is concerned. It is well known that longitudinally
compressed thin walled constructions have a considerable
capacity of carrying loads many times larger than the
loads initiating elastic buckling [1,2,3,28]%  This
has given rise to the use of maxiﬁum or collapée
load rather than the buckling load as the basis of
design. In turn this has led to the study of plate
céllapse problems (as opposed to those of elastic
instabiiity) which are generally too complex for
rigorous mathematical analysis: To date only the
relatively simple case of a simply supported and free
. edge plate>has‘been satisfactory treated theoretically
[4 ];-_ However semi—empi:igal treatments exist [5 - 9
28] which at present are being used as the basis of
deéigh specifications in this country and abroad. This
review is confined mainly to investigations conducted
since and during the Second World War dealing with the
collapse behaviour of single flét plates. Bugkling
and collapse strength of composite structural forms has

also been reviewed.
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The relevant investigationg are briefly reviewed
under two main headings:

Analytical Investigations.

Experimental Investigations and their -

Comparison with Analytical Investigations.

Also, since the collapse 1oad-of plate-elements
is directly associated with large finite deformations,
the introductory review culminates in a short des-
cription of the development of large deflection

theory for flat rectangular plates.

ANATYTICAL INVESTIGATIONSS

Collapse or Maximum Strength of Flat Platess

An exact theoretical analysis of maximum strength
would have to take into account large deflections and
the inelastic behaviour of the material, both of‘which
introduce non-linearities: making the problem very
difficult to tackle. In fhe folloWing available

theorgtical-analyses on collapse or maximum strength

- of flat plates are briefly reviewed. -

From the standpoint of theoretical analysis a
hinged flange (_ioe° a plate simply supported along the
loaded edges, simply supported along one unloaded edge
and free along the. other: Figo(l).)is the simplest
element. In 1950 E.Z. Stowell[hj."succeeded in deriving
the coilapse strength of such a plate. His analysis has
served in many cases as a starting point from which semi-

empirical methods have been devised to treat the collapse




of elements. The cases considered empirically are
generally more complex to analyse theoretically and
therefore in the following Stowell's method of
analyéis has been reviewed in relative detail.
Stowell computes the maximum load by making use of
the deformation theory of plasticity in combination
with the large deflection theory for such a plate.
The fundamental hypothesis in the finite deflection
analysis assumed by Stowell is fhat at any section
across the plate there is no curvature in the
direction normal to the applied loads this implies
that there is no bending in this direction. This
_hjpothesis enabled him to avoid the formalised plate
treatment of the problem.
For infinitesimal rotations the differential

~equation of equilibrium for a column under the

action of compressive stress 0y has been shown by
_ Wagner DO] to bes

I -eL e _Ee, & o1l
@ -ak) 3 e -

wheres © is the angle of twist.
'GJZ%%? 'is the St.Venant component of internal
resisting torque.
G;Ipfgi is the §dmponent of internal torque due
to the application’of‘compressive force.
"Ecaf:r“' is the component of internal resisting
torque due to bending of the column as it twists,
Stowell amends the differential equation I-Q-

to include the effects of changes in the middle



surface strains, which appear at finite values of the

rotation 6 , and obtains:

_a1,) 46 d% 2 0m-1.2
(67-aLy) 48 BG4 + ZEPT, dx)

where

J - b# )

3

3
h
I = 55

= 2(1+)

Substituting from 1.3 in 1.2 and taking

mab%ﬂ

A
Se=

_._.lz{em (ex/b) } ”

2(r+v9
he s%mplifies the differential equation tos

B S P!
ag’ .5 -

\ By soiving fhiszequation Stowell computes the



the various strain components and reduces them to forms
depehding on the parameter which specifies the amount of
twist.

Since in this analysis he assumed 6,=0 (see Fig.
(1Y) thereforé the fundamental deformation theory of

plasticity relation for increasing load:

6;? = E é“

sec . &

where €; = strain intensity

Z’Jz 2 s&z
= = Al Ex +EG +ELEY +
; BNy ralyr 7

and 03 = stress intensity = Ja;’q_ m"'_. G;‘O-:d +3’éi ’

|
reduces to

Jor w30 B el e Y e L5

with the compatible relationss

.‘ . T
0r = E,_ € |
......................... 1.6
_E X ¥ ’
t Sus i . _ .

By assigning values to the twist parameter the
strain components é;e'ahd ¥ at any point are computed
and hence the strain intensity €; completely determined.
From the stress strain curve of the material, the value
of stress intensity 0; and modulus Eg, 1is obtained
corresponding to the value of €3 and the stress 0
is then computed by the relation 1.6. The average

value of O, across the width of the flange

, b

is then determined for various values of the twist
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parameter giving a maximum GO wmex. fOr a certain value.
Stowell's analysis indicates that the maximum léad occurs
just as the edge stress at the supported unloaded edge
reaches a maximum. Therefore a significant physical -
fact which was brought to light by this analysis is

that the edge stress is intimately associated with
collapse and collapse occurs when‘the value of 62

at the edge reaches a value approximately equal to
compressive yield strength.

Stowell plots results obtained in this manner
for Aluminium Alloy 24S-T4 flange in a non dimensional
form of Gauit/gmon 28ainst 6:"“’/01,:e|d (Fig.(2) ).

A number of theoretical analysis have also been
concerned with the\post buckling load carrying capécity
of flat plates loaded in one direction and supported
along all edges. " With one recent exception[?9j‘ such
analyses are based on purely elastic considerations
and therefore yield relatively important information
only on a limitea range of post buckling behaviour.

The important problem of collapse requires the incor-
poration of plasticity theo;§ﬂihto the large deflection
ananysis. Mayer's and Budiansky [29] introduced the

plasticity effects and treated the case of a simply
supported plate using Vériational principles. Assuming
the average compressive stress at a strain of Q-0l for
2024-T3 alloy plate as an indication of collapse, Mayer's
and Budianéky'cbmputed the maximum loads for plates that
buckle elastically at 0-3,0:4,0-56 and ©0-6 of the com-
pressive yield strength. The results of'this analysis

are shown in Fig.(3)'
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An,approximate~aﬁalysis based on the load:
carrying capacity of purely elastic plates after
buckling is aiso available, This approximate™ .
analysis was first carried out by Theodor Yon Ka?mentzi

and summarised by S.P. Timoshenko[1]. Von Karmen
agsumes that the entire compressive load is carried
by two strips, along the two unloaded supported edges,
of width 2¢ , while the central buckled strip of
breadth (b-—2c) is free from stress. Disregarding
the middie portion of the plate the two strips are
handled as a long plate of width 2e¢ (Fig.(4) ).
It is assumed that the maximum 1l6ad is reached when
the uniform critical stress Oy for such a plate
becomes equal to the yield stress tT}uu of the
material. |
This results in the relations
_ KWEH -
T2 (1 —vd4er T

erit Oyiata .---_ --------------- - —'--,--;“»7

(where K is a constant depending upon the plate
dimehsions and the support conditions) givings

TN KE

| '\I 48(1-V*) G?a;ta

<

The maximum stress referred to the éctual
portions of the plate is then:
Groan = 28 Ofits _ AN EK Gries

In the case of a plate with one unloaded edge

supported,Athe same analysis holds but in this case

there is one strip of equivalent width < carrying



T —— —— ———— — T ——

- the load and

¢ - ThAKE
N 12(1 =) Gyiens

The relationship resulting from this analysis can-

be written in the form:

_-_G.:C:_Yi_t_‘ farerd gé.'_.'-t— -------------------------------- I-q
Omax N @eu ’

More elaborate investigations by Marguerre and

ngzﬁhlﬁkgain assuming that the maximum load is
reached when the critical stress carried By the
longitudinal edge strip of combined width iﬁb becomes
equal to the yield stress and further assuming that the
stress in the strip of wi&th@—-()b remains equél to the
elagtic buckling value gives the relationships

Gerit _ . GErSI:/ Oyietd
s~ To0-0)

where -
T TN KE .
b AfIZ(—v) Ghien
A large number of semi-empirical treatments of

maximum strength'of flat plates are_summarised in[zs]

and are based on the fact that collapse is closely'
associated with the highest attainable value of edge
stress which in turn is 2 function of the stress
intensity G037 at the edge. The varying boundary con-
ditions alohg the unloaded edges vary the value of 62‘
and‘may be expected to fesult in variations in the
maximumlstrengtk‘l° Therefore in the se semi-empirical
treatments the effect of bﬁundary conditions along the
unloadéé edges on the maximum strength has been carefully

considered.



Local Instability of Composite Structural Sectionss

A composite structural section can be regarded as an
assembly of plates, and thus the results obtained for -
single plates can be utilized to obtain the buckling
'loads in local instability of gtructural sections if the
boundary conditions for the plates at the cornnected edges
are determined, | |

In 1924 Bleich[30] first attempted to determiné
the buckling stressés 6f plate assembliesyin the form
of rectangular box sections. He assumed in his
analysis the plates with the'larger width to thickness
ratio as béing the buckling plates and the others as
the supporting plates. ILater, Mglgg[Bl}levaluated the
buckling stresses fox"]t' ~sections by taking info
account the flexural stiffnesses of the flanges which
were taken as the supporting plates,rand.neglecting-
their torsional stiffness. This method bf analysis
was later developed by Timoshenko[l]‘for the case of
a 1:g section. In his analysis he takes into account
the torsional stiffness of the supporting flange.

Chwalia[521 extended Melan's theory and included
torsional stiffness effects of the flanges of T
séctiong in determining the buckling stresses. .A
yeér later.an approximate treatment of plain channel ,
sections was carried out by P_a:_::;[‘33]o‘ Lund:guist{g’f'.,'?'i].\
and Stowell [36] also worked out local instability
stresses for §afious.open and closed structural sections.
Using a more direct approach to the problep Chilver(??]

evaluated the buckling stresses of open sections, of
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general form. His method consists in writing down
separately theequations for various plate components
and solving them simultaneously by the method of
determinents. Harvey[18] gave a complete analysis
forrconcentrically loaded plane and lipped chaﬁnelse
Harvey evaluated the elastic edge restraints at the
connecting edgés and utilized the gingle élate
results to evaluate the local instability of these
sections.

Eggllﬁﬁ%?él prepared tables for evaluating
the stiffness of elastic restraint provided between
the plates of built-up sections, and charts of
factor K where O.4 = % for various
gstiffness values for various types of plates. These
charts in addition to the tables can be used, to
evaluaté the critical stress for a particular
structural section if it is assumed that the stiff-

ness of elastic edge restraint is constant.

Maximum Streﬁgth Of Composite Structural Sectionss
Earlier attempts[%@] to determine maximum

-~ strength of short strpcfural sections uﬁder compressive
loads were based on the buckling behaviour of the
elements. In these analyses, the collapse load was
taken as the sum of the buckling loads of each of the
component plates. | o

~ Based on the fact that flat plates carry loads
considerably larger thén the buckling load, later

methods of evaluating maximum strength of structural



t
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sections were refined. Needham|41]has recently proposed
a method of analysis for formed structural sections. In
this method, the maximum load of structural sections is
obtained by summing the collapse loads of each of the
component plates. The method is based on the |
argument that in cold formed sections there is a
considerable increase in the compressive yield

properties in the corners depending upon the radius

of the rounded corner.

A large number of sémi-e@piricalntreatments
for various structural sections exiéto For Aluminiﬁm
and Magnesium alloy structural sections the semi-empirical
treatments are summarised by’Géfard{ZB]ve Other
empirical analyses for steel structures are presented
in {71, [9), [13]. The results of some of theée
tréatments are shown in plotted forms -in the part on
Experimental Investigations.

EXPERIMENTAL INVESTIGATIONS AND COMPARISON -

WITH ANALYTICAL RESULTS:

In most of fhe experimental investigationss
confined mainly to Aluminium alloy and steel structures,
tests have been performed with pérticular attention to
critical load and méximum load values, As a result
there is lack of inﬁormatiqn on the gomplete”strain and
deformation chéracterisiics of thin plate components ofv
structural sectionse.

Tests oar%ied out on cruciforms and square tubeg
provide data for single plates rather than for sections
conposed - -of plates. In effect the cruciform is

composed of four simply supported ~» free plates and the
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square tube is an integral assembly of four plates,
simply supported on all edges. A considerable
proportion of the experimentél work carried out has
been confined to these forms. The test results for
cruciform sections obtained by Stowell[4] and for angle
sections by Needhanﬂ%l]with theoretical curve, obtained
by Stowell are shown in Fig.(5) . The departure of the
angle sections from the theory for simply supported
flanges may be‘attributed to the warping of the
unloaded simply supported edge in the plane of the
flange. However in the cruciform section the edge
remains straight due to symmetry and test results are
in good'agreement with the theory.

Results of tests on square tubes and simply

supported plates by Anderson and Anderson, Botman,

Bessellng [MZ 43 . 44] are shown in Pig. (6) In Pig.

(6) are also shown by 11nes the theoretical results

of Mayers and Budiansky {29] and one empirical treat-

ment [28]. |

The stfength of steel channel struts was first
studied experimentally by Winter [8]. Extensive
experimental work has since been conducted on L ,-1. and
channel sections to check theoretical results and to
derive empirical relations. Test data on extruded
equal flange'“1=9 channel and jE sections of various
aluminium and maghesium alloy obtained by Heimerl [24]
and Shuette EMSI is shown plotted in FigJ{7) with the
empirical rélation derived by Heimerl. Also shown in

this figure by the dotted curve .is the theoretically
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defived relationship for a simply supported flange.
Chilver-[37] carried out tests on cold formed steel

and light alloy plain and lipped channels under concentric

loads. The experimental results and empirical relation-

ships as given by Chilver are shown in Pig.(8) and (®) .
Thé dotted curve shown is the Von Karmen relationship
for plates supported along all- edges.

Kenedi, Shearer Smith and Fahmy [9] worked out

various semi-empirical relations as a basis of
design from a large number of tests on cold rolled

plain and lippe@ channel sections and angle sections.

DEVELOPMENT OF LARGE DEFLECTION THEORY .

Lagrange in 1811 [1k4,15] developed the
differential equation for bending of thin plates:

4
S S g 8w e 9 gy
b%ﬁ awgaaz _ baf D

where & 1is thé 1atera1 load intensity and 4 is
lateral deflection.

In deriving this equation he assumed that the

., deflection & is small compared to the thickness of the
‘plate which implies that the middle plane of the plate

remains unstrained. Later Lagranges equation was
modified {1] for the case of a plate subjected to
direct forées N.», N\& and Nx\* in the plane of the
plate by considering ¢, to consist of the lateral

components of the middle plane forces. This yields:

<}4 ‘N Y Sur o e
M- D — Nx + N 2N-x, - -------I-lz
‘ D {_ Ix* LA Y + ‘A'bx"a‘a’-




If it is assumed in the problem of bending of a
plate subjected to direct forces in the plane of the
plate, that ghe deflections are large compared to the
thickness of the plate, theﬁ it is no longer rational
to assume that the strains in the middle plane of the
plate remain unchanged during-bendingo ‘This problem‘

of bending of plates acted upon by direct forces and

taking into account effects due to large deflection

was first generalized by Von Karmen.[l,lé] o In his
analysis he assumes that the equation L.12 for the
deflection form holds in this case also if the direct
forces N, , Ny and Ny are considered to consist
of the applied forces and the effect due to straining
of the middle plane. These forces are then
determined from the compatibility condition of the
stress strain system present. Making use of Airy's

Stress function F this analysis yields two equations:

Ve = [3F e | ¢ F 5, Fe Fw]
D oy® ox* | dx*  dy* dxdy %2y |
. o SO, &Y |
viF = E (i@..j J 8w S| o 14
2% 3y ) o 42 . ,

which when solved simultaneously for 4 and & give

the solution of the large deflection problem.



SOLUTION.

CONTENTS o

SECTION 1.

Q) BASIC LARGE DEFLECTION PLATE EQUATIONS AND METHOD OF

1.0 Strain Energy Integrais

1.1 Derivation of the Basic Egquations from

the

energy integral
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BASIC LARGE DEFLECTION PLATE

EQUATIONS AND METHOD OF SOLUTION.




BASIC TLARGE DEFLECTION PLATE

EQUATIONS AND METHOD OF SOLUTION.

In published literature it is possibly more customary
to derive the governing equations of a particular problem
from the consideration of the appropriate compatibility
conditions of the stress and strain systems present. In
a number of instances~the approach tendsyto become laborious
and relatively inapplicable. In such cases the minimum
energy theorems may be utilised to give a relatively more
direct route to the derivation of the basic differential
equations,

‘The theoretical work presented in this section

utilises this energy approach to derive the characteristic

‘equations of flat plates subjected to direct force actions

-in the plane of the plate. The problem is generalised

through taking account of middle plane strains in the

plate due to the bending actions which arise9 thus treating

the problem as one of “1arge" lateral deflections, The

process outlined; establishes the total strain energy of

the loaded plate; the energy contents due to the direct
actions, the bending actions and fhe middle plane effects

due to bending being clearly differentiated. Minimisation
of the energy integral is then effected by the use of Euler's

Equations, culminating in a précedure for the solution of the

~
N

différential equations, utilising Galerkin's Method, The

application of the energy approach to the problem considered,
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together with the generaiisation of Euler's equations
for two variables with higher derivatives, presented in this
section, is to the author's knowledge, not available in the

published literature.
}.0 STRAIN ENERGY . INTEGRALS.

Consider a flat rectangular plate subjected to bending
action and external forces in the plane of the plate,
giving rise to "large" lateral deflections 4 and to the
internal actions indicated on an element dxdyd shown in
Fig.__,‘(lo’f

Assuming that the vertical shearing forces Qxz
ahd Q,z have negligible effect on the curvatures of the
plate and therefore the strain energy due to these forces
is negligible, the strain energy due to bending actions
alone, accumulated in the element is equal to the work
done by the moments Mxdy and Mydx and by the twisting
moments Mxydy and Mgs dx. .

Since,=g%xz represents approxim‘afely the curvature of

- the plate in the %Xz plane, the angle corresponding to

M,f_dnj is ——}-—mdx and the work done by this moment is
L M, 24
-3 e Sl dedy
Similarly, the work done by the moment My dwe is:

.=...L M% A?&. A\a

Agein; since the angle of twist corresponding to the
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@
twisting moment Mx% dy is ;“; dx ; the work done iss
%0}

;..L M da:&%

K%B%:Bg

Similarly, the work done by the twisting moment Myse dxc

L My 2% doe dy
Z ¢ %Y

Assuming Hooke's Taw to apply: -

2 =
Meﬂ:«])( Y -V -;5—) 4 | .LOD
My = =My = D(1-) :iw

and the total strain energy due to bending actions in the

element becomes:

Q 2 2. 2 h <
— 4 RZ QW 2., dw oW |l . d
av = 4D [() m2>+ .(b %25 + Y 4
o .
{ duw
D{i-v dx d

therefore the strain energy of bending of the entire region

R of the plate is:

of] (8 () 35

9%

=) (bxga )J =4
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JQ To establish the expression for the strain energ&

content corresponding to fhe forces acting in fhe middle plane
of the plate, it is assumed that these forces are applied
first to the unbent plate.

Assuming that the forces hgg,tﬂ% and PLR% are known
at all points of the plate, the corresponding components of

the middle plane strains according to Hooke's Law are

given bys
b B
‘ |
€= TE (Nx - vN%)
(¥
g 3 . ‘ .
- — vN+ \ ; y .03

é TE .(Nﬂ Y x),_ -
| 2(hrv) |
ﬁ;%| e png . ]

Therefore the strain energy Vs, due to the forces

acting in the middle plane of the unbent plate iss

'\/su:: —é—-\[l. [N-x_ex. + N‘é é%| -+ Nw& Y-,LWJ &%A!j
e .

y :M\Eﬂf Nr.+ N% —zvN N +2(R+V)Nx\a]d‘xo\\a

i.04




Now, when the plate is bent, additional strains are
produced in the middle plaheo The changé in energy
produced due to these additional strains in association
with the already present finite forces Nx, N'\é and hiw.a
is not negligible.

If w,v and w are the components of displacément
of a point in the middle plane, the total strain '

components of the plate after it has been bent are given

by:

un { w\
€x_..-2—— +?(az)
' dv | aw)
CS4=%. T2 (aa

dn o 34«!" QW
Yx\l:tb—'; + Swe -+ Sx 3‘3 ]

Therefore, the components of additional strain in
the middle plane, due to the deflection or bending of the

plate becomess

Qu - \ sz
€= 5x T (5Y) ~ &~
. : 2
€=  L(2) _ e 105
=%y TET\Sy) T ¢ °




where éxw,éiw and 'Kx%u are given by the relations .03
Considering €ax,,€y, and ¥y, etc., to be small in

comparison with €, , é%l and ‘&’lx_%b s 1t ia rational to assume

that the forces ngN% and N-,@_% remain constant during bending.
Hence, the additional strain energy"vgz of the plate

due to strains produced in the middle plane iss

Ve, =L (Nxxa + Ny ey + Ny x%) doe. Aoy
=1 = S+ N%‘S”' Noo(55 ﬂd’“\%
+-—-j1{ N\s( )-&-ZN@@@ 3:: > aw]cﬂz&j

2 .

Substitution in the last integral from [.03 gives:

+_Z'_j; [N%(%)1+N%(_§_;i).z+2_\\l,¢ %-WJC&%A%

r
: { 2 2 . 2

.06

Now, the fbtal strain energy of the .plate is the sum of
the strain energy content due to the forces acting in the .
middle plane of the unbent plate, the energy of bending::v and
the additional strain energy of the plate associated wiﬁfh

strains produced in the middle plane due to bending.
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€o

V: VS' ~+ \/B <+ VSZ'

V=.- f Nx+N«3—2vaN\a +2(|+V)Nx~3:lclxd~g
D )lw_ S _
E—jj 2+ -20 V) 922 bta" BzBa)}
du L du . oV
+\[L\[ "a-—' -3_'; +N'z:.\3 3\-{-&— B ]d%cl«a
— 9% -ai.. _B_W_: »x
+ij[Nx +Nsa( «.5>+2N Y S 3 ]A A‘a
- .._L_J.J {N: + N\;—ZVN N +2(l+'9\Nm;Jdmd~3
~E R ’
Introducing Airy‘'s Stress Function F9 such thats
-, -
F:
Nx = ‘{\ .—a_\d-i
3E
Ny = h<sS 1.07
>F
Ny = — 2% 2y
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the total strain energy of the plate becomes:
= 20 i(
2
' R
T3 2u _ FF v ¢ (au 2
O ———— - = + -
+h J;[ \32' y'3 d o b‘j %2y 2y Q= Aw'd‘d
N N N 2 2 2 Q 2 2

— 1 (a’F +[2F __ZVBf_._?ii +2(s+v)(3—5_) dx&%
2B Jf [\ogr/ \222 2y 2% =24 .

LT 3 (aw \, OF (aw)l 2 BF 2w 265 | duedy
2 5\31 A ) Do Y 3%y ax 8\3 -
N -' <

1.08

s 3u z(l—.v){;:’ Ze Ma)}hxa%

+

C

1.1 DERIVATION OF THE BASIC EQUATIONS FROM
THE ENERGY INTEGRALS.

Since the expression for sfrain energy YV does not
contain derivatives higher than second order, the forms of
Buler's Equations generalised for two variables (See Appendix 1)

reduce to:

2
439:;%: o

d)": = ';B;' CPF dxd

dx *

49‘“&:1

>
- 5*5¢F%+

- K3 > *
Pus — 2% s W T Sg‘%f dx2 s Wt 3‘3 43‘“%3 Bxa‘a 4’*‘
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- - T —— - SR o . - - - T - - . R R

Noting that ¢ denotes the integrand

and @ = 'bw ¢F

g a(a% a)

application of equations .}

ete., the

cb“’sa b(a«r/ 3)

to the energy integrals 1.08

B?-

givess

> _ou + - L >* au__k v\ I 3 [ Aw
2y% 2x x> 2y 2d¢ \ 2y dx 2 2dy*\ 2%
LT ey B 2w a4 (8 S

2 ox? (’B\d axa\a dx 3»3 242 a\ai

. Z 2 S 2 2 2 2 2
O 2y R 2, ¥ 2, OF
Dx* %2 D Btaz Bﬂ?- Bﬂ?- 2%y D=3y

2
2P 2 o
B‘xa‘a)

Now, since

2 (22) -

2 2 o

b'x.B\&‘

Bza‘a

12 () _ (P N,
2 22\ 2y/  \axay

> oS A — ( a'zw >2

azaa dx a% 2x.24

therefore |.|3 becomes:

bw_ Daw.
Qe aﬂzax

dw P
83 B?Bx

s dw  dir Fur
o4 bﬁbx" 3 B'dz

QW ng-
Ox a%*ax




e N Y Y it + 4
Bw)__bwabw__i_ IF o F aF)=O

323y dx*  dy? 2y* >Eayr oxt
or

4 4 z 2 2 :
e, e % E(W)_b«f. S| ina
dy* IxIY? 3ot duedy o3 2y*

Similarly, the application of equation {.12 gives:

2 BF . 23 2w _5 P 3 25, o FF D 2w
3\37— A% dx dx?* a'éf 3‘3 ’ 8%3\3 A Zha

E)N

»

2. 2,
228 2 2w) [ Dla & Fu o 2 2
Bxba 3% 3x 2 de?® d% d9* Y

2

2 2
2. 2 2 5 ¥ 32“*"-2.(‘—\)) . 24
22 2

bx_" a‘dz a\az ax_z gaz.
2 2 2, 2
332 dx* éxaa 323‘3
or

S o 4 S & ( ¥r Tw  3F Iw _o 3F s

r—— -+ gl - -+ —
ot Yy D\ 2ayr x> 2% 3y®  dxdy A
' : (15

Thus, utilising the Euler's equations the minimum
energy condition is reduced to the solution of equations
{.14 and 1.15. These equations are the Von Karman

differential equations for "large" deflection of plates.

1.2 APPROXIMATE METHOD OF SOLUTION.



At present, to the best of author's knowledge, fhere
are no methods available for the rigorous mathematical solution
of the large deflection plate equations. From the applied
point of view it is of great importance to have a solution
predicting the actual physical beéhaviour of a particular
case considered. Thus the rigorous solutions are important
from this aspect as long as fhe fundamental assumptions
involved and. the boundary condi tions considered in the
analysis are in agreement with the précticalvaspects of the
problem, Approximate methods become particularly valuable,
if such rigorous solutions are intractable. Again,
approximate methods should be such that all significant
boundary conditions are takén into account in the solution.
It is important at the same time that the deductions from
the approximate solutions should be able to predict the
actual behaviour adequately. This may be tested by
comparison of the analytical result obtained with that of
experiments reproducing the conditions investigated.

In the following an approximate method based on
Galerkin's fheprem [l?] is presented. This method is
considered of ﬁérticular value in applied investigations

because of its simplicity.

1.3 GALERKIN'S METHOD.
It was seen that the problem of minimizing the general

strain energy integral,

I :J\j¢(¥-9 y K M, Mo g Wy 5 MWoyy o W\“ ’ Ww_%,‘..---------,F,Fz‘,F%,
R _‘ .

F’.\:x 2 F‘aig ) F"‘é 2 """~--“> C&‘X.d't
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by imposing the arbitrary variation &% (x,y) and E¢(x, '-3)

in w and F respectively , led to the equations

(See page Appendix 1)s : -

ff L{(w)Ndxdy =o ‘ 1.3
R

and

\H L (F\)‘l’dﬁxdcﬁ =0 : 132
R
where

L(w) — ¢M _ %‘f&w‘ _ i‘pﬂ 4_; §¢fzu+ 3¢i93+ bz‘i’w,%_
4 x o4 2xay

o= O

{.33

and

o o - 2 2 2
L(Fv:.: CPF — ¢F"'—= aC‘DFELQ-- o 43':"" +_biﬁ'kﬂﬂ.f2§f3§ F o= 0
: 3 b‘j A d4Y* 2xay

) i-34
are the Euler's equations which reduce‘ to the
differential e@uations for a particular problem, and
®n and Y are arbitrary functions of (%, y) which,
together with their partial derivatives satisfy
homogeneous essential conditions on the boundary C
~ of the region R (Appendix I).
Tet & ond F©  be approximate solutions of the
probiem such that:
" t , : .
W= > ‘ .35

A=)

F = Z B:Fs . 136
A=t .




where the independent functions 4, and ¥, each
satisfy the respective boundary conditions imposed on
the exact solutions and o{, and @, are unknown - -
constantso, _
» In general, a particular variation Sus in W
can be substituted for the arbitrary variation gn“(’x: ‘3) °
Similarly SFE* can be used to replace %4'*(29 9) -
NOV;I_ from .35 and 1.36

[ w4
Sut= S 2" o,
D=1 bd'a

#»

et Y=
SF = Y-
4,2 26, Ps

By substitution, the left hand sides of
J  equations {.3! and §.32 become:

. &=t * ) : x A=t BF*
L' )= 24 Sksdedy and ||L(F )= 28 58 dxdy

=1 Dol ' s=1 28 :
3 R

Equations 1.33 and 1.34 are associated with
the exact solutions W& and ¥ , therefore when the

% "

approximate solutions W and F are substituted

for 4 and F , the equation !.33 and .34 will no-
longer be satisfied and will result ins.

L (%) = (e wnore D(rg)o ana L(F)= ACer)
where A(x>Y9)s# 0
If _Q,(x,%‘) and ?\(""é) , called the error
¢ functions, are sufficiently small then W oand BT

(which it is to be remembered satisfy the boundary



conditions exactly) can be regarded as satisfactory
approximate solutions. Thus the problem reduces to
selecting o(é» and @, so as to minimize the error
functionso.

A reasonable minimizing technique was suggested
by Galerkin as follows: Let the true solutions w-
and F ©Dbe represented by the series W=§. o5 W

A=)

and F =4§_ @sFs with suitable properties and suppose
that L(wﬂ)—»!_(w)and L(F*)-—.- L(F)as tE +oo &

Also assume that the arbitrary functions‘7Z(xq‘3)

end V(x> 4) can be represented in the series X = é:_céwg
-and 4/=:f§;dbﬁg where ¢g and dg are arbitrary_
constant;=: Then (noting that $«g and S@¢ are
variations in arbitrary constants and therefore are

not zero),

E »
LCW*)E_M d‘)&&#&: o] ag E —= oo ‘ .38
& S a&& — . -
NE oF
and ‘[ L(F )Z — cA‘xAJa:O 23 € ——-oo .39
@ A={ a 3
demand that equations 1.3t and |.32 be satisfied
> *
respectively. (Note that ____bw = 45, and 2F _ B e
' Oclg OB,

Now since equations 1.3t and .32 lead to .33
and 1.34, it can be stated that the conditions §.38
and 1.39 are equivalent, respectively to equations
L(w):o andLF)=0 as & =00 o This argument depends,
of course, on the proper behaviour and sélection of
the series involved,

Now for a true solution the error functions
vanish identically (equations: {.33 and 1.34). Tor

an approximate solution with a restricted number 2



4l

of parameters the best that can be done is to adjust the
constants ol and g so that L2(x,y) and A(x>Y)
stay close to zero throughout the region.

The foregoing argument led Galerkin to suggest-
for the error functionl,(pfv andl_(F}) a set of

conditionse
l_Aﬁ? :g:.EUE??iy;d_ = 0 . : ~
jf ( )6=' L9 .W B
R
, {.310
P ~ %
L(F)= 25 axdy=o0
R 6-.:-Ia & -

Yielding a set of t equations for the deter-
mination of the constants of, etc., and @, etc.,
giving the approximate solutions M*GC, 4) and F*(’X-,*a)' "

Thus Galerkin's Method consists of assuming an
approximate series with unknown constantsy; for the gov-
erning functions; each term of the sries satisfying -
all of the significant boundary conditions. These
approximate functions are substituted into the
differential equations, multiplied each time by their
partial derivatives with respect to the unknown
constants and equations of the type1.310 formed.
Solution of these equations simultaneously determines
the unknown constants and hence the approximate
solutions.

The justification of the Galerkin’s method has
also been approached by the consideration of the

method of "Least mean Square Error." [26].




It is clear that the labour involved in
obtaining approximate solutions by Galerkin's lMethod
rises rapidly as the number t of the independent
functions increases. Hence, for determining a
particular mode of a problem, it is advantageous to
employ a small number of functions which are known
to resemble the required mode. Thus the choice of
the functions should be guided by the greatest
possible knowledge of analogous problems,

It has been shown both in this thesis and in
References [26) and [27] that if the functions are
well chosen excellent approximations can be obtained

by the use of a ‘very small number of functions,
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1.4 FORMULATION OF APPROXIMATE FORMS FOR STRESS

FUNCTION F AND DEFLECTION 4% IN SELECTED CASES.

It is clear that the first essential requirement
for the approximate solution of the large deflection
equations for4different cases of rectangular plates
subjected to 1éngthwise compressive actions, is the
formulation of approximate forms of F and W
Iﬁ the following, two general cases of rectangular
plates are considered and from their relevant boundary
conditions, the approximate forms of F and 4 are
derived. Only one unknown constant in each series is
considered in the-present analysis for simplicitys the
procedure indicated however being equally applicable to

gseries with more than one constant.

 Cagse (a Flat Rectangular Plate Uniformly Compressed

Along Two Opposite Simply Supported Edges And
Having Equal Or Un-equal Edge Fixities Along
The Other Two Edges. | )
Fig.(l1) shows such a plate, the compressive action
is uniform along X =0 and ==& : +the simply supported
edges, and is denoted by N, force per unit length.
The elastic coefficient of edge fixity (Moment pér unit
slope per unit 1eng‘bh) for the edge Y=0 is denoted by

Je and for the edgeY=b by /% o
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Stress Function F 3
| The stress function ¥ must satisfy all of the

following boundary conditionss

Z i .
0‘9=§§2=o at y=0 and y= b
2
-:—F.’L-_—_N%\at %2=0 and % = G,
3
and ’C'x.é-_-;-__aff_=o at 2=0,%x=2,4=0 and 3:5,

dx 2y
The general form of the stress function which

satisfies all these boundary conditions, as formulated

in Appendix 2 page iss
F Nzﬁz ; x? r.d < i ke <
=24 e (3 - 5)(&- &)

where @ may be a constant, a function of % and/or

a function of 4 o

It is rational to assume that 0% distribution
is symmetrical when % = %; and unsymmetrical when
J2 # % o Thus the problem reduces to selecting %
in such a way that gbz%,ﬂz! distribution across any
section parallel to the Y - axis is symmetrical for
%= %, and unsymmetrical for ‘2%,

To avoid the manipulative difficulty introduced
by the permitted variations of % and %, from zero to
infinity a function 99 is taken such that when % and
k

, vary from zero to infinity 7% assumes the values

between =1 and +1; thus

§e s i) I

where MU = :+t
2b +
’ ]







5
Again, since for equal numerical values of »
with opposite signs the two cases are mirror images of
each other, the problem capbe simplified by imposing -
the condition that 2 1is always equal to or greater than

&, s in which case ) varies from zero to +1l.

% 1is then introduced in the function @ as

follows:
P =(2-2t)e

where @ 1is an arbitrary constant.

It is seen that @ is a constant for Y=o (k=%
and gives a symmetrical 67, distribution. For any other
value of Y (h.# %)) it gives an unsymmetrical 6%
distribution with respect to the centre line of the plate.

The stress function then becomess

- e(E- - He-w)

or

where S = (2. +2)3)
and T = (—B* 4‘)

The varioms €, distributions at =945 for
different values of  are shown in Fig.(i2).
Deflection Form & .

' In deriving the deflection form of the plate, the

form is presumed to be a sine wave in the % - directiong



the sides X = 0 and *x=& being simply supported. In the
Y - direction a simple analogy is used to formulate

the deflection form. The details of this are shown in

Appendix 2 page ° This method gives the deflection
ass: '
4 3 2
v ol Y Ay B: 4 CﬁjL_) : 1.42
— S M - + + —_—arca
w = o x \24b>  6b* b 3

which satisfies all of the following boundary conditionss

.

W=20O
‘ At x =0
2 2 and x =a
bw_‘__v bw - O
S a%z
W= o0
At \3=0
Sws _x 2W o
ajz ad )
~7v
Ay = O
: At \3:5
oM + Xz, _éﬂ£.=;o

-

A, ,B and C, are constants and are given bys

|-
2 T B T W

i

A : 1432

A
b e

406
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? = 24__*_8,;]3 - %/ 6+ 2%b

47

A
.o

e}

where & and b are the plate dimensions in the % and

Y directions respectively and

6%, + 22 b
144b + 482,67+ 48207+ 1222 B

9 =

1445

x B3 - b

-

A is an arbitrary constant, and M is the number of
half sine waves,

Case (b Flat Rectangular Plate Uniformly Compressed
Along Two Opposite Simply Supported Edges Elasticallj
Fixed Aiong One Edge And Free Along The Other.

The plate shown in Figo@ab_has uniform compressive
load N, per unit length applied along the simply
supported edges X= 0O and‘x=OiL ° 'ThAe edge Y=0 is
elastically fixed: the coefficient of edge fixity being
X , and the édge \&z—._b is freeo
Stress Function Ps

Proceeding in a manner similar to that for Case (a),
the stress function as shown in Appeﬁdix 2 page is

obtained ass

Ny gl _ =N/ 8 “) — _L4lb
26 v\ a* a B 28t 2

F ="
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where @ 1is a constant.
The stress function satisfies the following boundary

conditions considered significant: =

& : |
OF |
ds = = O at — b !
LK dx Ll h
5
~ _ OF _ N«
Ox = Bg" = N at x»:o and % = G&.
OF
and Ty = — =0 et $y=0,y=b,x=0and x =« |

The distribution of }0';._ along the section

is shown in PFig.(l4) .

Deflection Form W

In this_case, also, it is assumed that the deflection
form in the % - direction is a sine wave, while in the Y-
direction its formulation on lines somewhat different
from the previous case is shown in Appendix II page °

The deflection form then becomess

w o= ol st Ml [AxyF _}1_3 b 4+ 4 ] 1.42b
e L z()zb+z)b (rb+2) -

where A, and B, are obtained from (See Appendix)o

xb L wRTR %b u

12, + 6B v;*l‘__._[A +B J

P T a2y o L 2"t 20bad)  (b+2)

1435
a:_nd V

2 2b i

4A, +68, =(2—v)MNE g, +38, 4 2 ]

24 Pa ( ) (an-z) (Myufz)

l.44b




Y

for any particular values of VY the Poisson's ratio,

*»m the number of half sine waves & and b the plate

. dimensions and X the coefficient of edge fixity.

The deflection form satisfies all the following

boundary conditionss

W = O

Y- S
S;; +V 3\37— =°
L = O

> 5 — 2™ _
24" 2%

2. 2
2y 2w o
39 dx*
e 3
5%3 Bxia‘a

|0

AM x =0

and %X = &

i
o

Ay
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ELASTIC CRITICAL TOAD EVALUATION.

2.0 ELASTIC CRITICAL LOAD.

In calculating the load applied in the middle plane
of the plate which will produce elasfic instability, i.eo
the critical load; it is assumed that initially the plate
is perfectly flaﬁ° If the uniform compressive ioad
applied to the plate is less than its critical, the
plate remains perfect}ynflat and undergoes only an axial
compressions. ThisVimplies that the flat form of
equilibrium is stable, i.e. if a lateral Ioad is applied
to the plate producing a small deflection, this
deflection disappears when the lateral force is removed
and the plate becomes flat again. However, if the

applied compressive load is gradually increased; a

‘condition is reached when the straight form of

equilibrium ceases to be stable and aAslight lateral
load produces a deflection which does not disappear when
the lateral force is removed. The critical load is
thus defined as the smallest axial load which will
maintain a deviation from the-flat form of equilibrium,
or conversely, the largest axial load which the plate
may suppeort in its initially flat configuration and
which produces in the plate only acial compression.
Although, for the calculation of critical load,
it is sufficient to solve the differential equation for
the “deflection form |.i15; approximate solutions, using

Galerkin's Method, of both the large deflection plate

Al
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~equations 1.14 and 1.15 have been included, in the
following, for their later use in the evaluation of post
buckling maximum loads.

Case (a) Flat Rectangular Plate Uniformly Compressed

Along Two Oppgsité Simply Supported Sides

and Ha#ing Equl or Un=equa1 Elagtic Fixities,

Along The Other Two Sides.

The stress function and the deflection form,
satisfying their relevant boundary conditidns9 for
this case are given by equations 41 aand | 422
respectively. To complete the approximate solution,
@ and o the unknown constants, will now be‘
determined. . _

Applying Galerkin's Method to the large deflection
plate equations 1.14 and 1.15, the following equations

results

¢ | 2 2z 2
34F 2 SF Z?F E(Aw )-\-E 3«1‘. bzw" aF dxcdy =0
!/[E ot + 5 a\a d ‘3 dxdy D d’ﬁ

oo

2.0la
ba

2 2 2 2
e, o S S R(IF Jus  IF Fuw_, ¥ Ju)| 20 ndu-0
TRy oy Do oy 22 axdyswy 3K ¢

z : 2.02a

Substituting the expressions for wr and F
in equations 2.0fa and 2.02a and integrating, the following
two simultaneous algebraic equations in @ and <{ are

obtained:
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Solving these eugations for @ and o« and noting that

the latter cannot be zero the following expressions results

a ., c#Ne ot . :
C = 2.05a
P= e\b‘* f b
_Q' and
y/
Lo |C8 2.068.
b*E

where CI, C/’ and CW are constants: their values depending

upon a/b ,m, xb and b .« Plotted values of ¢/, ¢’

and C" against the aspect ratio a/b for selected %&b

and %,b values are shown in Figs.(15,16)and (I7) respectively.
For buckling under small deflection conditions 0y =

constant hence @:0 , and equation 2.05a becomes:

N . €'D
RN

4

KD =_C
or Nxc't_thhere K o

The numerical calculations of equations2.03a and2.04a
were performed on a DEUCE computer,

Plotted results of Nxcvit for various cases are given
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in Pig.(®)to(24)inclusive. Additional curves for

M = 2, 3, etc. may be obtained by keeping the K ordinate
the same but multiplying the corresponding &/}, ordinate

by the value of M o This.construction is indicated in
Pig. (18) .

Values of K calculated for a simply supported
plate by Galerkin“s method and the corresponding values
given by Timoshenko [1] using the classical equation
method are given Table 1. In Tables 2 and 3 values of
K  for two other“cases‘are compared with those obtained
by J.M. Harvey [18, 19].

To observe the effect of the choice of deflection
form on the critical stress, Galerkin's equations 2.0la
2.02a were solved by selecting different deflection forms
for two of the cases. Results of critical stresses for
a simply supported square plate and a built-in rectangular
plate are given in Appendix III. It is seen that good
agreement is obtained. It is permissiblé to conclude,
therefore, tha@ the accuracy‘of Galerkin's method is very

largely independent of the form assumed, provided the

~ boundary conditions are satisfied.

€, .

Table 1 Comparison of Values of K  for Uniformly
Compressed Simply Supported Rectangular
Plate )Cl)= kr. b=0 °
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3
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’;é:

6/b 0.k 0.5 0.6 0.7 0.8 0.9 - -1.0

-4: 83 0009 500717 )410)490 39 0)407
K 61692 | L4 . 728 39.934

x 83,003 50.729 41.709 39,478
K 61.685 L4 .709 380873

[ S J
Table 2 Comparison of Values of K for Uniformly
Compressed Rectangular Plate Simply Supported Along One
Unloaded Edge And Elastically Fixed Along the Other

kb.—-I-O ,kgb‘—-‘o"

a/b 0.6. 0.8 0.9 1.0 1.1 1.3

K* 51.386 L2.655 L41.399 L41.298 L42.033 45,309

K 51.864 42.81% %41.%60 41.086 U41.516 L5.4L46

- ¢
Table 3 Comparison of Values of K  for Uniformly
| Compressed Built-in - Simply Supported
Rectangular Plate Xb=00,%,b=0.
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,b

»

/b 0.6 0.7 0.8 0.9 1.0 1.1

58,875 5Uo.TU7 53.656 5U.534 560,817 60,186

K 59.800 55.165 53.333 54,304 56.742 60,350

¥ Values dreived by Author.
* Values given by Timoshenko-
8 Values given by Harvey.

Case (b Flat Rectangular Plate Uniformly

Compressed Along Two Opposite Simply

Supported Edges Elastically Fixed

Along One And Free Along the Other:

The stress function and the deflection form,
in this case, are given by equations |.4ib and |.42b
regpectively. Substituting these expressions for F
and W in Galerkin}s equations 2 Ola and 2.02a, and integrating

givess
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(- 8) g3 - )| et [k %

) o885 -5-m) + (@5 D) (%)
R -4 (B )
iy e e b il 1) vnage - 2)

G )G -1 @ &9 +f

((ZSiz) +z)g;{iﬁ)(%“ %>+2?ch;;22)"’ %" 2) Qda-&-?.)z ) E}

2.02b

| In this case also the values of @ and £ obtained
by solving equations 2.01b and 23_0259 are of the forms 2,053
and 2.06a respectively. . Plotted values of C’, c?
and C7 for two limiting cases are given in Fig. (25, 26)
‘and (27) respectively.

As before €> O gives the critical conditions and
N"’cvne —KbD
and M. .

where the value of K depends upon G/ , zb

Plotted results of values of K for various values
of Wb,)cb -and M. are shown in Fié.(ZB).

Values of K for various cases, obtained by this
method are compared in Tables 4, 5, 6 and 7 with the
corresponding values given by Timoshenka [l.] o

r )
Table 4 Comparison of Values of K for a Uniformly




Compressed Simply Supported ch:O)m Free Plate.

Table 6,

Table 7.

loo 200 205
14,515 6. 9hY 6.057
14,222 6.889 6.020

I'4 b ]
Comparison of Values of K for a Uniformly

Compressed Built—in()*cb-.-.—_go) and Free Plate.

1.0 1.5 2.0
16.910 13.285 13,747
16,679 13,230 13.620

Comparison of Values of ‘K’ for a

. Uniformly Compressed Elastically Fixed
()z,b;.Q‘O) and Free Plate.

1.0 1.5 2,0
15.000 10,040 8.896
14,710 9,968 8.883

2.5

8.976

8,883

Comparison of Values of ‘K’ for a Uniformly

Compressed Elastically Fixed (ﬁcb=8'o> and Free

Piéteq




/b 1.0 1.5 2.0 2.5

K 15,756 11,4822 11.154 12,228
K‘l

15.596 11.448 11.054 12,139

* Values. derived by author
* Values given by Timoshenko
It is evident from the comparison of results that
the method of analysis presented gives sdtisfactory results,
as far as the critical stress isAcpncernedo The maximum
deviation shown by the figures compared is not more than
2%. Thug the approximate solutions obtained provide the
réquired degree of accuracys
The method as outlined has the further advantage that
it is directly suitable for programming for the digital
computer which permits the evaluation of a much greater

variety of cases than would otherwise be feasible,
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POST - CRITICAL CARRYING

CAPACITY.

It is a well known feature of thin walled construction

that longitudinally compressed thin plates have a con-.
siderable reservoir Qf post-elastig.buckling strength
associated with "large deflectionso" The maximum load
of such plates can be many times the load at which
elastic buckling occurs. To date ohly the relatively
simple case of a simply supported and free edge plate |
has been treated theoretically [u]. Effective éemi-
empirical treatments exist [2, 5 - 9, 11, 12] which
form the basis of design specifications in this country
and abroad. Obviously, however, the need exists for
a basic analytiecal treatment and such a treatment is
presented in the following pages. . N

It should be noted that the post buckling collapse
strength is intimately dependent on the stress-strain
relations of the material. It is evident that if this
relation is linear at all stress values, no maximum
load as such is obtainable; increase in the load beyond
the elastic critical load resulting only in increasing
deformation. It is essential therefore, béfore
embarking on a post-buckling analysis, to specify a
basic stress-strain relationship for the matéria¥o

Essentially, the method presented, to assess
the maximum strength of thin plate elements, consists
of applying the stress-strain relationships postulated
by the deformation theory of plasticity to plates

analysed by means of the large deflection concepte.
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In the analysis the stress-strain curve for the
material has been assumed to be-a "flat top" type shown
in FigOCZQ)é It is emphasised,y however, that the method
presented is not exclusively dependent on this,. Any
stress-strain curve derived experimentally may be in-
.corporated in the.computations,~sincé the method presented

is one of general application .to any structural material,

3.0 DEFORMATION THEORY OF PLASTICITY,

The deformation theory of Plasticity-.as presented
below, is restricted to initially isotropic materials
with all time dependent effects (e.g. creep) ignored.
It is also assumed that the materiai is inoompressible
.s0 that Poisson's ratio ¥ = %.

Beyond the critical buckling state, additional
stresses are introduced into the stress systeﬁ becuasé
of the deformations in thefiiddle plane of the plate.
These additional stresses together with the original
stress that caused buckling combine to form a "stress
intensity" 'Gg o For a plane stress the stress intensity

is given by [20]: ,

Gi = [63%+ 6" — 0767+ 3T, 3.0l

and the strain intensity by:

2

2 [ez | ) 3.
ey S ST >

According to the fundamental hypothesis of the

deformation theory of plasticity, the stress intensity

0% 1is a single valued function of the intensity of



strain €, for the loading condition, i.e.

0y = B € , 3.03

where Es% is the secant modulus of the material,
the value of which depends upon the state of stress.
For unloading condition, however, the relation

between 03 - and €; becomes linear, viz.

F_o\e. _ ‘- —3.04

oo
.ﬁ

The stress-strain relations compatible with

equations 3.0l and 5ﬁ02 ares-

e - Ca+30y

€y = 0y - 50 - 3,05

E-Su.

-
The use of this deformation theory of plasticity

in the cases attempted is fully Jjustified because
“proportional loading™" type of stress history, i.e. the
one in which the components of stress increése in

constant ratio to each other is{.‘consideredo It is of
interest to note that deformation theories of plasticity
may be used for a range of loading paths other then the
proportional loading without violation of the requirements
of the physical soundness of the theory [21].

3,1 EVALUATION OF MAXIMUM LOAD: -



The maximum compressive load, for a plate,applied
in its plane is computed from the dimensions of the plate,
strain distributions across the width of the plate and
the stress-strain curve for the material.

It is assumed in the determination of the maximum
load that the form of the strain diétributions remains
unchanged even after yielding has commenced.

The method.of evaluation, in general, is
outlined below. -

"The strain.intensity €3 at various points
across the plate is determined from thg gtrain
distributions of the large deflection plate theory
By means of equation 3.02. Values of B at these
points are then read off the 03 ~~ €3 stress-strain
curve. For increasing strain intensity the stress at
any point across the plate is then obtained from
relations 3005a At the points where strain intensity
is decreasing (uﬁloading condition), the elastic modulus
E is used to compute the reduction in stress. The
average stress Og,, is computed from the stress |
distribution thus obtained. This proeedure is repeated
for various deformations till the maximum value of
is found.,
3.2, STRAIN DISTRIBUTIONS.

In accordance with the assumptions made:

c 1 [3F _ 1 3e
* 7 Bee | oy* 2 o
. ~ a9 » >
é :_-_a—l— bF -—'——a—E— zoZH
4 Esee| 222 PANFYE |
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As shown in the previous sections the general
form of the stress function & , for any plate, can

be written as: :
Foled +@[Y][x] - 3.22

where Y and X are, respectively, functions of %

and % only, and @ 1is a constant determined by

Galerkin's Method.

Substitution from 3.22 in 3.2l gives:

~1
: 1
* "Egeh + Esc {X d\a 2 a2 ]
é. "N'x. dz - X sz | .
L AT} ES% [Y dx* "2 dyr | 3.23
¥ _ =38 [dx _ dy
¥ B | dee dy

It is seen that the values of various strains,
E.. and N, are inter-dependent. - To simplify the

relationsh3c23 a factor N is introduced such that

ﬁl‘;.. =n_‘5‘m _ - _3.24
Esee e 1.

and it is assumed that (i) Noe ey 1is restricted to
lie within the elastic limit, and (ii) the plate

stiffness D’ varies with Ege. in the post-critical region.




It has been shown in Section 2 that @ as

obtained from Galerkin's Method, is of the form:

_c'otD grot Ne 3.25
§ b4- __k + b‘Z k -

E ~and N -€'D

Levie = c” bz

193
now Nxedr —C %
E 12c”b* (1~ ve)

‘p2
therefore N" = —n C{ Y .26
Eeae I2¢“p(1-v2)

where 1V, is the elastic Poisson's ratio.

Again _ (gD LN B o

where D= Eeoe
12 (V= ¥?)

Substitution from 3.26 gives:

g ¢/ 42 ol |
= | —h
= 1?9b‘_‘(‘—V€)( )

~3.27

Substitution from 3.26 and 3.27 into 3.23 yields

c_ _C/-e.\z 7 _ Cf‘e\?’&“' _ B sz Y o\’-X
= R T Ramaw O [ T T

+C R c'4Zo

E = 2 o~ = d‘z - x sz
4 24c_”(.|-‘_.’e?>b§ 20— vf)b‘*( l) ¥ dot 2 “32]

¥ _ +3ckat (. [dx,aw]
) *3 Il(li%z)b" (h I> de dy



3.28
From equations 3.28, the various distributions, -
across any section of a given plate, corresponding to

any specifled value of V\ may be evaluatedo

It follows that the straln intensity

2. 2 2 :
éi = "A!'—"—g— ex + é’j + éxe‘a, + x"ﬂ/“'

is completely determined as soon as a value of the

factor V\.—(.}() is selected.
3.3 EVALUATION OF DEFLECTIONS

The maximum load is associated with large finite
deflections and in the following the method of
evaluatlon of deflections is outlined.

As shown in Sectlons l and 2 the general form

61’ deflection w— can be wrltten as:

W o sin WK fg)—— 3.31

wheré‘»’g(‘?;) is a function of Y énly, and &£ is
a const‘ant.deter_mined by Galerkinfs Method.

ol as given by Galefkin's Method is of the
form 2006a vizs |

. I//
oL - | L6
o h/ Eb‘ —3.32

Since the maximum load occurs when the plate has

partially yielded, the deflection at this load is
assgssed on the basis similar to the strain computations.

Thus in accordance with the laws of plasticity and



elasticity 3.32 can be written as:

A = [ L& 3.33
Eeec ¥
Now from 3.27

L , |
B _ ciad (1= n)
Esee 2 (1-w?) b

k= [ (I —n)
/\7_(1——ve_)b4 334

Substituting from 3.34 into 3.3l gives:

_ c” ¢ ot (1—n) R
= ,/ 12(1— ver) b* ;F(‘a) e

from which the deflection at any point of a given

plate may be computed for any specific value of N

&

corresponding to any load.

3.4 ILLUSTRATIVE NUMERICAL ANALYSIS;
(a) Maximum Loads |

In the actual computations the values of €., 5 &y
and X&% were found from equations 3.28 for a particular
value of N at eleven equally spaced points across the
central section of a given plate, As an example, a
square plate<9y5==hoasimply supported along all four
sides and uniformly compressed in the X~ direction

will now be considered. The general form of the stress

- function ¥ for plates supported along all sides as given

by {.4la, is:

= _ Nxy® x* _ x Y Tyd | 2y
Pt e - a)Q’ - ST b=

rof



>

wheres
){= S >‘-|. n -
A+ 2
A\ = ch_-r_L)
b + |
S:-_(Z +2)z’)'
T=(#-4)

Since, in this case, kb:@b:Otherefore A=1
and ¥ Ybecomes zero, giving S=2 and T=-%.

Thus the stress function becomes:

2 4
Pt e (F-m DR AT R e

Comparing 34la and 3.22 and substituting in 3.28

givess:

—_ —C’%\ZY\. - Cﬁf’(n '){ > 2_4\32
= a_?-

T 2(-v)’ b 12(-) B2

24 R 12a 12 Yyt 2493 . Y2 |
_S‘L"A) b‘(o& o +2‘>( B b B

¢ _ _+<tin R n-1) l?_x _12x 4.2) (
5’ 24(|_vel>cl/ b’z 2 (‘—Vef') b:. b=



) | |
4y Q(Oc?_x, 29" 129 o
b bz B \lar &/ k2 b

Y = 3R (- (4 _6* L 2x)(B842 (247 4y a2
o l2(t—v1) b+ a3 az* o b2 B2 + 5 > b
For a square plate Q/b =10 , C 492 .4902 , C J 2. 46‘1

and taking b/*f-\'“‘ 80 and V,= the strain expressions

'Z___’

at the central sectionx/a_—_—;—_becomez

4 ?
éx ==0:0005483Nn — 000684-O|(h l)[sz —2—3- g % %
342a

&, =0 /0. _ z'a‘* _4y3 2y4* 342
y =0:00027465n +0 006840I(v\ u){ e T

- 5’_—2— 4—2)] 3432
Y= 0 ‘ 3442
Considering a point such that %=T‘O_ and taking h=I-S
givess
€_,=-0-00124386 , €, = 4 0:000663485

o ==

¢

and therefore é‘c. é,‘-«é s+E,£4 becones = —0.001244787
and di’: a —ve. quantlty, specifying a loading

condition because € 3; 1is compressive if negative.

The value of Eg,. can now be determined from the
given stress-strain curve of the material. In this
analysis this has been assumed to be a "flat top" type
(Fig.(29)) with a yield stress of 30 x \0% lbs /ju>

the corresponding yield strain and the elastic modulus

being 0-00| wmseh/, , and 30x10® lbs /s 2 respectively.
_ weh wA N
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It is emphasised; however, that the method presented is
not exclusivel‘y'dependent on‘this and any stress-strain
relation postﬁlated may be incorporated in the numerical .
calculations. | _

Now, from Fig.(29) 63 corresponding to €; =
~0:001244787is —30% 18" Ibs /2 ,

o B = —20x|c¥ — 2.41005 x \o lbﬁ/u'vc:.
e _1.244787 x o073

The stress 0, at any point is given by

Oe=FEuc (€t 5 €y)

S G = 2 x 241005 10" % 91212 x 137 = 2931 x10* Ibs/i.2

For points where d€i 44 positive (unloading

dn
‘condition) the value of the elastic modulus E 'is used
to calculate the corresponding stress reduction.

Similar calculations are performed for each of the
eleven points and the distributions of stress 0, are
plotted from which the average stress Ox .. determined.

The above procedure is repeated for different values

of n and curves of 0y ag_ainst v are obtained, The

anv™
maximum value of 0x,, is then read off these curves.

To illustrate thg procedure a sample sequence of
plotted results for a ‘simply supported square plate is
now presented;

Fig.(30) shows the curvesof €, and €., for various
values of ™ , across the central section of the plate.
Figo(f;”\) and (32) give the corresponding distributions of

the strain intensity €4 and the effective modulus Esee

respectively.
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Maximum load occurs because the natural tendency for
the stress to grow with the increasing strain is counter-
acted by the decrease in the effective modulus. To.
illustrate this, curves of (0, corresponding to the:
strain distributions shown in Figo(SO) are given in
Fig.(33) .

Fig.(34) gives the curves of O against W
obtained in the above manner for various width to
thickness ratios ofla simply supported square plate.

In Fig.(35)-curve of Oy, against (€x+ L €y) at the
centre of the plate derived from previous results is
shown,

To demonstrate the effect of edge support
conditions on the strain, effective modulus and
stress distributions;results for two other casés are
shown in Fig.(36) to (44) inclusive.

Pig. (2€) gives the strains €x and €y
distributions, for various "W values, across the
central section of a rectangular plate (Ck/b =0-885,‘9{-=I’00>
elastically fixed(?hn=8> along one unloaded edge and
simply}supported along the other, The corresponding
strain intensity €, , effective modulus Eg,. and
stress @, distributions are given in Figs.(S?,BS)and
3?). In Figs.(4!) to(44)_ a similar sequence of graphs
is given for a plate(%l_:l-GB,%FGZ-E)gixed along one unloaded
edge and free along the othéfo mIt may be noted here
that the unifo?mly loaded edges in both the cases are
simply sup@br%éc{o

Fig. (40) and (45) give the plots of G,  _ against n

for various width to thickness ratios of the two plates

o
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contemplated above,
The effect of the aspect ratio and the thickness on
the maximum load for various plates is illustrated in

Fig.(46)s

(b) Maximum Deflections

Consider a rectangular plate(‘%_):O-B) simply
supported along two uniformly loaded edges and one
unloaded edge and built-in along the fourth. The

deflection W~ as given by {42aiss

U — oL s MmMx yt Y

Sun +B‘ 57---4-C“2

ax \24b® 6t b 3)

where A, , B, and C, are given by |.43a and |.44a,
In this case xb=o0o and £b=0 substituting these

values in i.44a and [.43a gives:

A, = 0-625
B, - 00625
C,= O

Thus the deflection becomess

e ok s M (9T 0625 93 | 0.0625 9* _aab
a 24> 6b* by

Substituting for & from 3.34 in 3.4lb gives:

wo [ -Nat o mitx (9% 0.625 43 | 0.0625 t}l)
| 21— v2) b bt %\ 6 b* b

For this plate C’= 1997-66 and C”’: -4823°‘36and

taking b _100 and U, =1 givess:
= T F
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X

&2

| | & _ , .
o =/;823-QGK|QQ7-66(I-A)©-8) st mlx (2%‘* _0-625-33+0L0625%>

25 x 104 a 45> 6b™ - b

The value of N corresponding to maximum load

of this plate is 1.56.

5 = 4.076 sin, WX ( 49 _ 0:625 9 | 0.062S 31)

24 3 6 b* b
For maximum deflection x =% and __a_‘i’:. =0
2 ,3«3
slewl _ 4.076 43 _0:625 4* _{40-125‘3
= 0

or ‘_‘j"— [-875yb + 0 75b>= O

which gives Y4 =0-6775band 43,a, 2t max. load

2 ) -
_ 4.076 [@»(;ZZS) _ o»ezsgo-ews) 4 0:0625 (0-6775)7'} b

or

Wrpop = 0:02073 b

o Miwax _ 0:02073b_ 5.073
N o-ol b |

Wi, 0
As an illustration wm?/g\_ against %M_graph
for the plate considered above is given in Fig. (4-7) o
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APPLICATION OF SINGLE PLATE RESULTS

TCO COMPOSITE FORMS.

' In Section 2 elastic critical loads calculated by
Galerkin's Method for single plates simply supported along
the loaded edges with the unloaded edges elastically
fixed - elastically fixed and elastically fixed - free
are given, If such plates form a part of structural
sections regarded as an assembly of plates, the elastic
fixity is provided by the adjoining plates. In this
Section the value of the elastic fixity provided by the
supporting plate to the bugkling plate of a composite
structural section is determined and the elastic critical
~loads for the local instability of various structural
forms are calculated.

A method similar to that employed by J.M. Harvey
fi8] is used in computing the elastic fixities of the
buckling plate components. As an illustration elastic
critical stresses in local instability of box sections
and inwardly lipped channels is worked out in detail.

A similar method is used for plain channel sections
and the results for all these are summarised in the form
of graphs. _ , |

In the fourth part of this Section the maximum
loads of composite structural forms is computed
utilizing the single plate results presented in Section

3 .

4,0 LOCAL INSTABILITY OF THE PIATE COMPONENTS OF BOX
SECTIONS . "
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Consider a box séction with the cross-section shown
in Fig.(49) .

Assuming the axial load to be uniformly compressive,
each flat plate component is subjected to constant com-
pressive stress Ng/%». Iﬁ a box section two opposite
plates support the other two buckling plates. . Thus the
problem of computing the elastic critical load for the
box section reduces to determining the elastic fixity X
provided by the supporting plate to the buckling plate
and then determining the critical stress by Galerkin's
Method,

To determine the elastic fixity for the buckling
plate; it is assumed that the slopes and the moments
along the common edge are equal and opposite °
Deflected Form Of The Supporting Plates:

Consider first of all the supporting plate; assuming |

that it has uniform stress distribution when it is i
!
supporting the buckling plate, the stress function = }

can be written as:

Fo N
245

and the large deflection equations reduce to

4 — ~ '
O My +.;Z-afwr . St N Do 4.01

The solution of this equation for the supporting

d
I
plate can be written in the forms {

W =Y sonmlie _ 4.02
1 f



Jg6é

where Y is a function of Yy only. Thus 4 satisfies

the boundary conditionss

W =0

2 2
abo;_—&-vaw:O
Do 5‘32—

for the simply supported loaded edges X=0 and X=04& &

Substituting from 4.02 in 4.0l gives:

d'Y _ o mR* _d%Y | /wdrt | @R Nx\ oy .0
dyt a\\a1+(a4 ol o:'-Dx)Y—o '_.———_4 >

The general solution of this equation is:

Y = (Cieosh Ry + Ca sinh Ty 4 CueanBy + c4sm§?)
where K =JM1§1 4, /= Nx w2 >
o D at*

_p-=)\/_ er\z -l-/\/.— Noe nwRi2
a* D a*

and C,,C,,C and C, are constants of integration.

Therefores

W = (Cl cosh ;(-tj - C’_SLMk;th +C3C€6—EL3 +C4_Sby\_é-\d) Su‘nv..%\-.’_‘.
4'04‘

Now consider the boundary conditions of the support-
ing plate at the connecting edgesy=0 and Y= b .
Assuming the connecting edges to remain straight

during loading the first set of boundary conditions is:

W= O at \2‘_—.0 and \3= b : _4.,05

The second set of boundary conditions is obtained






'

&

-

by' assuming that the bending moment at the connecting
edge of the supporting plate varies sinusoidally along
the length of the plate.

A D ~ My o T e _
a\a."' = -5 Sw\.._.a—._‘& at y=0 and \jﬁbﬂ ﬂ v

It may be noted here that My is taken positive if
it produces compression on the top surface (See Fig.(49) ).
Substituting 4.05 and 4.06 in equation 4.04, the

constants C, ,C,,C,and C, are obtained as:

C. + Mt},
D (X*+B%)

Co= —+My | —coshZb |
D (*+ B*) sink b

and the deflection form for the supporting plate is
completely determined.

By substituting the values of the constants
C,»C,,Ciand €, in 4.04 and differentiating, the slope

at the connecting edge \a,=0 iss

B _ Mysin B [L-Zeoshdb | BoasPb-8 .07
3y  D(x*+B% sird b Sim Bb

Boundary Conditions For The Buckling Plate:



Fig.(59)



For the buckling plate, let the boundary conditions

at the connecting edges be:

A0

=0 at ‘;1.-‘-0’ b,
4.08

am —r B,{_ﬂ"l at ‘ﬁ.’"o ',' _ai“r_'_ —— o ..;a_l*_y.‘. at \él=b| .
dyr oY% 24r 24 o

-
Once the value of k' is defined in terms of the

section dimensions, the boundary conditions for the
buckling condition are completely determined and the
critical stress can be evaluated by means of Galerkin's
Method as shown in Section 2 .

From the assumptions made, allowance for the
interaction of the plate components at the connected

edge requires thats

\ . ] W\K s . .
MRJSW\M—CTEE:‘Ma‘SMiI’E-Where M‘Ai Suv a" is the fixing
moment acting on the buckling plate (Fig.(50)),

and ,.,.3__‘»*_3'..:—--—6—*—"7'-

34 3 Y

Now D‘_}i_“l! = —M,, m@‘_&_m sinw‘“'l
b\a;‘ ¢

Also A4S — g OMT _ _ g QM

Bxd"f 3 Y 2y
R 2W _ _ My gon Mz

3y D, o L

For the same thickness 4~ for both the plates: D=D,

. ml\x .
ok o= My S Te _ 4.09
D 3»3/3‘zj o

Therefore from 4.07 and 4.09
koo (£P+8%) sinh b sin Bb

L 8 Bb (coshdlb- 1) +Bsond Lb (1-cesPb)

/s
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For the same uhiform stress Nx/-a\_ carried by the
supporting and the buckling plate, Z=Z. and E:—.@ and
also substituting b=lb, where = b{, the elastic fixity
for the buckling plate at the connected edges becomess
% X%+ B2) sind A Hb, sinBHb,

L, sin B Wb, (cosh L Hb, —1) + Bisnh L Mb, (1 - casBiHb)

4.010

Critical Stress For The Box Sections
The values of elastic critical loads Nx—cﬁ.b for uni-
formly compressed plates agsumed simply supported along
the loaded edges and having boundary condition 4.08
along the unloaded edges are obtained as indicated
previously by Galerkin's Method for various %b, values.
The results are shown in Fig.(!8) Section 2. Thus
from Fig.(18) the value of xb, the smallest value of N .
-_-,:%!; which is obtained by assuming the plate to
buckZ‘Le in one half sine waveg;m=| and the corresponding
ratiola,/b‘ can be obtained from equation 4.Q10. The
results of these calculations are shown in Figo(‘a'l) and
a typical calculations is presented in Appendix 4 o
From Fig.(51) the value of K for any value éf
can be obtained and the minimum critical compressive
load for the box section is given by:s

_ =k & A
et = T3 (|—vD) bF

where A 1is the area of cross-section.

4,1 LOCAL INSTABILITY OF THE PLATE COMPONENTS OF
INWARDLY LIPPED CHANNELS:
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Consider the lipped channel shown in Fig.(52)

In this case if the web buckles first the elastic
fixities at the connecting edges are provided by two
identical flanges. However, in the case when the
flanges buckle first the elastic fixities at the two
connecting edges may be unequal, one provided by the
web plate and the other‘by the lip. In the following
analysis it is assumed that the connecting edge of the
flange and the 1lip is simply supported.

(a) Instability Of Flange Plate:-

Deflection Form Of The Supporting Plate:

The connecting edge‘a,=;b, of the flange which is
supported by the lip is assumed to be simply supported
and therefore the deflection form of the 1lip need not
be determined.

Now consider the other supporting plates the webd
in this case,

Assuming the web to carry uniform stress, the
differential equation for the deflection form of the
web is exactly the same as for the supporting plate of
a box section, viz: 4.01.

The boundary condition in this case are also
similar and hence the deflection form of the web is:

W = (Geosholy + Csindn Ly + C, cosBy +C.,,$t'«»§‘3) SANES

_4.lla

where

LI



) c - _ My { t—wsﬁm'(b:’

2D (4B Simbeokb

0D (Z"—r?(&z)

c= —EA\&:_ \—@i‘ébl
YTDEEA B | swmBb

And the slope at the connecting edge y=0 1is:

‘ G mR = 3 =
J e - M\j S —= L — KL coshL b @’cas@b - % _ 4022
29 D (L2+ %) sind L b Sun Bb |
Boundary Conditions For The Flange Plates
In accordance with the assumption made the
boundary conditions for the edge\j‘=.b‘ of the flange
ares
4r, =0 N
4.13a

- z 2
L2 Ly 2w _ o
d Yz 3 x*

&

/ .
Let the boundary conditions for the flange along

-

Jv the connecting edge of the flange and the web, i.e.
‘é‘zo bes '



b.ﬁ = 0 T
4.14a

iy oA

- ———

dyr Y,

-

Let the fixing moment on the edge y,=0 be My . . From -
the assumptions made to incorporate the interaction of

the plate components at the connected edgess:

My sin 22— My sin 202
2 i‘
Now DA — _ My i mlle g Y, =0
b) ‘3'1 Dy o '
S S My son e _ My oo mlle
for constant thickness of the channel.
Also
O M5, =K Bw‘ =k dar
29t 3%, 3y
' . TN
o e =My T . 4153
D 2w/oy o

From equation 4.(2a and 4.15a.

g = (L34 B?) sind Zb sin Bb
X sinBb (coshdb —1) +Bsimh b (I~ cosFh)

For the same stress carried by the web flange
and the lipd =, and @=0, - Also substituting
b =Hb, 3 elastic fixity provided by the'web becomes?

)C?-: (°-le+-e’-l2) sl‘N\e\,be| 34.”\.-6‘“’\); 4,162
oy sin Byt b, (cosh ol by — ) + By sindv T H 5.(l-cosT51nb) |

Critical Stress For The Lipped Channel,

(Flange Failure):s
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The values of elastic critical loads Noc . TOT
uniformly compressed plates assumed simply supported
along the loadeéd edges and having boundary conditions
4.13a and 4.14a along the unloaded edges are obtained:_-;
by Galerkin's Method for various &b, andk,b, values.
These results are shown in Figs,.(19) to (24) inclusive. \
Thus from these figures the values of &b, ; taking
feb=0 for the simply supported edge, the émallest
value of K‘_ where N"Ccﬁt="%|?D— and the corresponding
ratio Ot/bl can be obtained. Using these values the
corresponding value of H is then obtained from
equation 4.15a. |

The results are shown plotted in Fig. (53)0
The value of K, for any value of H can be obtained
from Fig,(53) and the critical load for the lipped
channel when the flange buckles is given bys

_ —K} E ‘g-.\.z A h
Xerit T 12(1-v¢) b‘z,x

where A is the area of cross-section of the

inwardly lipped channel, :

(v) Instability Of Web Plates
Deflection Form Of The Supporting Plates

In this case the supporting plate is the flange.
Assuming the flange to carry uniform stress N"—/-:k the

differential equation for the flange is:

b“wq +2 s s, _ N %
d x4t 3x2ay: Ayl D, 9=*

4'I‘b

and the general solution of 4.i1b is:



by, — (Cy cosh ok, Y, + czs:mLI,\&‘ + Cscos'@—;nal-t- (;t_sifn%ha') sSm "“g:‘-

where

O( 17( z Nl W2
D. oC’:

?.ﬂ 2 Nw_ W\lf( 2

ﬁ D( 0\.2

and C,C,,Cy and C4 are constant of integration.

It is again assumed that the connecting edge of
the lip and flange is simply supported, and bending
moment at the connecting edge of web and flange
varies sinusoidally. .

Thus the boundary conditions for the

supporting plate become:

AT, = 0 at Y1=0, b, b
. :
Ius My, g mfix et Y =0 - 4.12b
B\j"‘ t A
blw! _ 0 atb y, = b,
ay2 ot

Using these boundary conditions the values of the

constants of integration are obtained as:

= M%h
D (:("z +,E-|z)




C, = + My,
* D|GZFﬁ-é?ﬁ‘EuxT§J;

and the slope of the supporting flange at the

connecting edge of the web and flange beéomess

4-13b

2un My, LI hjsa,\'““*
dy, [Lézﬁ+@3) tan B, b, b L b o

Boundary Conditions For the Web Plate:

Let the boundary conditions for the buckling

web be:
W = 0 \
r ab 3:0
gw _ X L
34> >4
J
=20
9:{7 \azb
I _ g dr
b%l— % b%
-

From the assumptions made, the fixing moment \41

on the edges 4=0 and %4=b is given bys

M,_é s Mfloe M, s, Wi
(- 8 | o

4.14b



Now 2O =___M_'a_sm mie
- D o
o gw-: MﬂlSW\ mNx
2y> D, a

~Also
> 2% 3%
4 —M, s M;‘-x at y=0 )
Dy 345y,
4.\5b
and similarly '
Dc 3“’7/6%. ’J
Thus from equations 4.13bh and 4-15b
R = (°<\2+ E:Z) tanf &, b, l'wl’\?;abu 4.16b

L tonB, b, B, tamb o, b,

For the same stress carried by the web and flange
K= L, s —é ..__—(;‘ . Also substituting b=Hb, in 4.16b

glvess

" (C+B) bamb & QZH tam Bb/jyg
L bam Bh — B tumhLhy,

4.\7b

Critical TLoad For The Lipped Channel.
(Web Failure)
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The values of elastic critical loads N for

X evit
uniformly compressed plates having boundary conditions
4.14b along the unloaded edges are given in Fig.(18) .
From this figure values of &b , the smallest value

of K,~ where Nxcr.w-_:"K\‘:;DJand the corresponding ratio

@/, can be obtained. Using the se values, the
corresponding value of H‘ is then obtained from
equation 4.17b.

In order to simplify the presentafion of
buckling stress resultsyvalues of K, eguivalent to

web failure are determined from the relations
}Q* — k<ur
H?.

and the results are incorporated in a combined curve

for flange and web failure as shown in Fig.(54)
4,2 LOCAL INSTABILITY OF THE PLATE COMPONENTS OF

PIAIN CHANNELS: |

Consider first the instability of the web of a plain
channel shown in Figo(SS)o : "
(2) Instability of Webs

In this case the flange which is assumed to be
uniformly compressed, is the supporting plate, Assuming
the bending moment along the edge \3,—.—_0 of the flange
to be My the boundary conditions along the unloaded edges

of the flange becomes

cat _ 4.21b




dyr dx*

at ‘élz b‘ 4.22 a
azbd', 3 _ D
dy3 axzag, '

Solving the differential equa‘tion for the
deflection in a manner similar to the one described
in the previous cases the slope at the connecting
edge‘ of the supporting flange obtains ass

_M% SW\W\ﬂx { 20{ p‘s b, + A, @,‘ (s +\:F)w5’mo(.b Cnsﬁ b+

oM, _
S e’\ cos Bib, sinbd &, b,

a‘éi - D, ("(t "“@tl)

(&?s: —dTPF_)_W*E S B, «} R 4.23a
"'P. i S(M\@‘ b‘ @S&\O{l bl

2 — T2
wheres P,:I,z_ (Q_..v)mag _ 6‘?-+v-m£—'

—_ 22 — 22
50‘"@:2“‘ (Z—V)% = o(‘ —V ma'?l

Now, assuming that the boundary conditions for

the buckling web along the edge Y=0 ares

W
W =20
4.24a
DT s
B\az B‘j
P
- From the assumptions made for the connecting edgess
.l"'_, = — My mRx . My w\f(f:cw
a
o4* b D, @ 4.25e
and 2M _ _ 3
2y 29

Therefore from 4.24a and 4. 25a°

.}c _ -M';\| SW\W‘“"/&
O, Qw-./a\a‘




 m— —

Substituting from 4.23a and taking &L =<4, E:@t
and b =Hb, givess:
}C Cz.*_-(gz)(sz-é&\ﬂ\p\;zb/}{ COSEB/H — ‘Dzﬂz CDSL\-ZB/H St/“f\.éb/\_{.)
d{Q@SP +§(S PZ)CBS‘EB/H Cﬂ&kGLVH} + @zS—L b(lbz) SW\L&VH SW\@V
For any value of kb the ratio®/p at which

—A243,

K, is a minimum can be obtained from Fig.(18) .
Using these values the corresponding value of W
is then obtained from equation 4.24a. The results
of these calculations are incorporated in Fig.(56)
(b) Instability of Flanges:

Assuming the brending moment at the connecting
edge of the supporting plates in this case the web, to
be M"z" ° The boundary conditions along the unloaded
edges of the web are identical with those for the
~supporting web of a lipped channel, therefore the
deflection form iS‘aiso similar and the'slope at

the cormectlng edge is given bys

Z s @b (1 —costdb) +6 Smke(b (cosBL - l)
s Lb sin @b

2w _ Mfm
% b +§2) 4.21%

Let the boundary conditions for the buckling

flange along the connecting edge Y4,=0 be:

w, =0
'7.
A AW,
c - )C )
3%. 33\
Now _ﬁ___ﬁ_msw\m?‘x My < mBax

b%‘ a D o
g“‘“=.—%£., K =L, , (5 8, and b=Hb, . 'Therefore from
4.5%b ans 4.22b, 1 o GEHED St b, s b,
Ty o B H by (1—oshil by ) + B, snd K Hb, Q.m@ﬂ:g )
4.22
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(o0
The values of elastic critical loads for uniformly

compressed piates simpvly supvorted along the loaded edges
and having boundary conditions 4.22za and 4.22b along the
unloaded edge have been evaluated in Séction'z. for

the various values of b, and shown in Figo(ZS)o

From Fig.(28) the value of &b, the smallest value of K,
whereN,gcm;.-% and the correépondihg ratio ‘L/b‘ can be
obtained. 'Using‘theée values the corresponding wvalue
of H is then obtained from equation 4-23b. The
results are shown plotted in Pig.(S6) which is a

combined curve for the flange and web in:stabilityo

The values of @<& in the web failure range are

equivalent values given by K, =Yy,
uoj APPROXIMATE METHOD OF COMPUTING MAXIMUM

LOADS’OF COMPOSITE STRUCTURAL FORMS:

n
The curves of average stressﬁ;wvagainstkwhere

n= N E for single pldtes are computed by the
Em N%cwil:
method described in Section 3. In composite

structural sections if the boundary conditions of

different plateg are known the curves of 0, 2g82inst
== ——————-—Nx
XonT ) Esee

conditions, along the unloaded connected edges, (at

cén be plotted for each plate. Boundary

the load at which instability initiates) of the plate
component which buckles first can be evaluated for
various strgctural forms by the method described in
previdus sections. In the present analysis it is
assumed that these boundary conditioné along these
edges of the buckling plate component remain constant
during the period following the initiation of

instability. It is also assumed that the unloaded
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edges of the supporting plate component in the post
buckling range become simply supported along the
connected edges. With these assumption it is possible
to plot curves of O, v €x,. for all the plate
components,. Assuming that the average strains

for the various plate components are equal, the sum

of the loads carried by the plate components are
evaluated, giving the average stress 0., , carried

by the structural section as Total load
Area of x section.

From the curve of 43, .~ €, . the maximum value of
this average stress G yan can be evaluated.

As an illustration consider a lipped channel of
the dimensions shown in the Fig.(87) . For-H=2.0
it can be seen from Fig.(54) that the web buckles
first and K; = 1325 and .. K,,,=53'.,F1fom Fig(i8)corres-
ponding to this minimum value of Kw.-‘-,k_b can be found
by interpolation to be 7.9 , Thus the elastic
fixity for the web is known. The flange is assumed
to be simply supported along both the unloaded edges.
The. curves of 0, ~€, for both the pla.,tel components
are shown plited in Fig.(58). The average stress

carried by the 1°1pp.ed channel at an average strain of

0-0009 inch/inch is thens

| . | .
y ¢ . . 4
G:‘Mr? <l74‘+2);-0 05X27)X|0 = 2.22 x |0 {bs/\.”‘z

Thus the curve of 0., "~ €&, _for the lipped channel
can be drawn by means of similar calculations and the
maximum stress value can be determined. Curves of
O o\ €y, TOT lipped channels with H=2:0 and various

thicknesses are shown in Fig.(59) - Curves of

te&f
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'y v Gerie obtained in this manne re
Perivye \/wew s manner a
shown in Figs. (60) to (64) inclusive for various H
values of lipped and plain channel sections, and box
sections.

It was seen in Section 9% that the distributions

of strains and deflections can be evaluated for

] ' e )

plates if the value of N = —=2 corresponding to a
' 67’-(.“‘.?

certaih load is known. In the case of composite

structural sections, the value of wn corresponding
to any load; given by e"'w/éw.crie can be obtained
from Goey\fVE€x,, curve for that structural section, and
the distributions of strains, etc. obtained for the
particular load, in a manner similar to the one

described in Section 3;
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EXPERIMENTAL INVESTIGATIONS.
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EXPERIMENTAL INVESTIGATIONS.

" The experimental work und&ertaken was planned (a)
to- determine the effect of dimension variations on the
elastic critical and maximum load carrying capacity,
of thin walled short struts, and (b) to obtain the
strain distributions and deformation characteristics
of various plate components.

Experiments under (a) were carried out
essentially to determine the critical-load and
maximum load under local instability conditions and
therefore comparatively short lengths were used to
ensure that plate buckling would occur with ﬁhe”edges
remaining straight.

Experiments under (b) were performed for a
comparison of experimental and theoretical strain
distributions and deflected forms of various plate
components of.shbrt structural sections loaded in
compressiono‘

The results of a large number of tests on cold
pressed plain channels, lipped channels and angle
sections and;hot drawn bdx sections are presented.
The range of:épecimens tegted is described in detail

for each experimental series, -

5,0 EXPERIMENTAYL APPLIANCES.
End Plattenss. |
Special end plattens were designed to fit in a

50 ton hydraulically operated Denisom Testing Maehine
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which was used for loading all the specimens,

A knife edge was provided at each end of the block
parallel to the axis of least moment of inertia of

the structural section, thus providing hinged end
conditions for the strut as a whole about this axis.

In order to realise as nearly as possible simply
supported edge conditions for each plate component end
supports with semi—circular grooves,as shown in Fig.(65)
and(66) were used for accommodating the specimens.
Strain Measuring Gears -

%4 inch gauge length foil type electrical
resistance strain gauges were used for measuring the
strain distribution. - A Baldwin ‘Lima-Hamilton type
strain bridge was used for the measurement of strains.
Deflection Measuring Gears

Dial gauges and Moire fruige apparatus shown in
Fig;@?)o were used for the measurement of-deflections.
The theoretical background and the development of the

Moire fruige apparatus is given in Appendix 6 .

5.1 TESTING TECHNIQUES AND EXPERIMENTAL RESULTS.
Determination Of Critical Instability Condition:
Two different methods were used for ascertaining
the experimental critical load and the corresponding
stress. The first method is based on the strain
variation characteristics and the second on the
corresponding deflection variation.
In the first method electrical resistance strain

gauges were placed - (at the centre of the webs, at

los
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the centre of the flanges of'lipped channels and near
the centre of the outer edge of flanges of plain
channels and angle sections) - in the direction-of the
applied compression for measuring the middle plane
strains €., and normal to the direction of the applied
load for the corresponding middle-p.lain strain; "-ﬁﬁ .
Curves of load P against (é'x."‘%:ég) were plotted
(Fig((;B)); the load corresponding to the maximum value
of (;e*‘*%:év)) being taken as the ~criticla1 loédg
This v&as in accordance with the theoretical relation-
ships presented in Section III (See Fig(35)).

| The second method was suggested ‘by the _,
theoreti"cally derived result shown in Fig. (47). Owing
to the initial imperfections present in the plate |
components flexure of plates occurs before the critical
load is reached and the experimentally derived
curves obtained are of the form shown in Fig,.(sﬂ and
(70) » In the case of short struts these curvea"do not
ha%e hyperbolic characteristics and therefore the
Southwell - Lundquist plote tend to predictvv‘alues of
the critical load higher than the theoretical. - It
was found, however, that the load corresponding to the
"op of knee" of the P~ rma, curve gives a better
approximation. |

The "top of knee" was observed to be best

approximated to by the point of intersection . B or
the line such as AB drawn through the pre-cri‘t‘ical
region and the tangent CB drawn through the point
of inflexion in the post-critical region.
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Test Series (a)

The first series of tests were carried out to
asses the effect of dimension variations on the elastic
critical and maximum load carrying capacity of various
structural sectidns, and also to determine the co-
relation between the critical and maximum stresses.

The following groups 6f experiments were
performed in Test Series (a).

Group 1l. The first group of tests ‘cbvered a wide
range of lipped and plain channel sections and was
intended primarily as a means of studying
experimentally the variation of critical stress in
local instability with the change in the web to  flange
width ratio H

Tests were carried out on lipped channels with
constant outside web size of .8@, length of 6-{}" and
iip size of %{fto ﬂ%lﬁ Sets of 3 to 4 specimens for three
different thicknesses with the flange size varying
from 2* to 6” were tested. Twenty two plain
channels of various thicknesses and of éonstant web size of
%f and length of 127 with the flange size varying
from 16" to 5-8” were also tested.

The variation of the critical stresses with
- for lipped and plain channels are shown plotted in
a non-dimehsional form in Fig. (71) and(72) .

The values of E and ¥ wused in Flgo("(l) and (72)
are average values obtained from extensive naterial
characteristic tests performed on flat specimen

machined from the structural sections. These tests
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~are discussed in detail in Appendix & .

Gfoup 2, The second group of tests were carried

out to determine the variation of critical stress of
equal angle sections with the change in length,
Thirty-eight equal angle sections of ;4@'lég~size and
four different thicknesses and the lenéths

varying from 4“ to 16" were tested.- " Results
obtained are shown in Fig. (73) .

Group 3. Although the first and second group of
tests in this series were concerned primérily with
the critical stresses, the maximum loads supported

by the specimens were also recorded and the maximum
stress evaluated. It was found'(See-Appendix 5)
that the yield sﬁresses of mild steel used for these
structural sections varied considerably from one
thiekpess tc another;, and since the maximum stress
depends upon the yield strength of the material,
therefore curves of Tmam/c, .~ H were plotted for
lipped and plane channeis and are shown in Figso(74)
and (75) » The results of EG'M/@-YMAN“/I: for angle
sections are shown in Fig.(76).

Group 4. This group of tests was carried out to
determine experimentally the éo=relation between .
the critical and maximum stresses; in local instability,
carried by various structural sections. Critical
stresses and maximum stress of about 160 lipbed
channels, plain channels, equal -angle sections and box
sections were recorded. o

Plotted results of Oeie /g ¢ against Terir/fr .,

08
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for various ¥ values of lipped channels are shown in
Figs, (77) and(78) . Similar results for plain
channel sections and equal angle sections are shown in
Figs.(9),(80)and (81) .

The square_tube sections tested were all in the
range of material failure and the resﬁlts for these
are shown in Figo(SQ)o

Test Series (b)s

In this series tests were carried'out to
determine the strain distributions and defiéction
forms across the plate components of various
structural forms. The tests have been devided up
into two groups and the‘techniques of testing is
described for each group.

Group 1. In the first group of tests strain dis-
tributions across the central section of lipped
channels; plain channels and angle sections-were
determined expériméntally°

Electrical resistance strain gauges were placed
in the direction and normal to -the direction of. the
load on both faces of the plate components of
structural sections. The corresponding strain gauges
were connected in series to compensate for the bending
strains and thus make it possible to ascertain the
middle plane strains. To make sure that the applied
load was uniformly distributed across %hevIOaded edges,
strain readings,in the direction of the applied load, €.
were measured at a small load and the position of the

specimen relative to the knife edge of the loading
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plattens adjusted to give approximately equal €, values.
After the specimen was set &, and -6.3- strains were
measured at a large number of loads. Each of the
strain readings were plotted against the ratio

average stress/yield stress and "best" curves drawn,
readings at selected values of G /6 viens PEiNE

then obtained from these curves. Some of the typical
results are shown. Figs.(83) and (84) give the
distributions of strain across the web and-flange of
two lipped channels at selected G;wm//JQML; values,

The strains in the case of the flange are averages of
the two flanges. Fig. (85) shows the strain distri-
butions across the centre of a plain channel obtained
in a similar manner as for the lipped channel. In
Fig. (86) and (87) are shown strain distributions across
the centre line of an equal angle section and a square'

tube respectively.

The total average strain €. ., was also evaluated
at various loads for the above cases considered and curves
of G-’f-m/@fcﬁ@% éﬁuwz/écﬁt are shown plotted in Eigso
(88)and (89) . |
Group 2. The second group of tests in this series was
carried out on lipped channels for determining the
deflected surfaces of various plate components. A
Moiré method was developed for determining the slope
contours on the actual structural sections. The
theoretical background and the developument of this

technique are discussed in detail in Appendix €6 .
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Briefly; the method consists in taking photographs
of a grid or ruled screen reflected from the polished
- surface of the unloaded specimen plate and- super-
imposing on this a photograph of the screen reflected
from the same surface in the loaded specimen. If the
specimen deflects during loading Moiré‘fruigesy i.eo
contours of constant slope are obtained. The ruled
screen consisted of parallel straight black and white
lines of equal thickness &/ o If the verticél axis
of the specimen is denoted by  , then if the ruling
on the screen is horizontal the Moir€é fruiges are
equivalent to contours of a@ﬁémbo If, however, the
ruling of the screen is vertical, agégAcontours are
obtained. It has been shown in the Appendix 6 that
these slope contours have an interval %Aé@, where £
is the distance between the screen and the specimen.

A typical set of photographs at various loads
obtained by this method for a plain channel web and
flange are shown in Figo(%)to(ﬂé)inclusive°

A method of marking the ruling on the screen
was employed (See Appendix & ) so that the absolute
value of the slope contours éould be obtained. Once
the absolute values of the contours are known the
distributions bf slopes across any éeCtinn‘can be
obtained and by means of graphical integration the
de¥lected form“evaluatedon W

The method of obtaining the deflections is
illustrated in the Appendix.

Some typical results obtained by this method are
{ } ".'..
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shown in Fig.(§7)to (§9) . Fig. (A7) gives the
distribution of deflection along various sections of

the flange of a plain channel corresponding to a.l&aaf’
values 0f 625 & 2§ T« In Figo. (98) is shown the plot of ‘
6;“%/5§hm against the maximum deflection of the same
flange and Fig.(499) gives the deflection distributions,
in the post%buckling rangepralong various sections of
the web of a lipped channelg the corresponding Moire

fringe photographs are also shown in these figures.

Further similar results are presented in thg Appendix 6 .
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ANALYSIS AND DISCUSSION OF
RESUTLT S,

6°Q CRITICAL STRESS INITIATING ELASTIC INSTABILITY:

As a preliminary to the major portion of the work
undertaken; .that dealing with the collapse as opposed
to the initiation of buckling conditiéns it was con-
sidered necessary to assess the reliability of the
theory concerned with the elastic critical stresses
presented in Section 2, Further the determination

of the elastic critical stress is a necessary

- preliminary to the evaluation of the maximum stress

as indicated in the theoretical work.

Some one hundred and thirty specimens of lipped
and plain channels, and equal angle sections were
experimentally tested providing as far as elastic
critical conditiéns were concerned examples of flat
components under a variety of edge conditions.

In every case the specimen lengths were so chosen
that purely local failure un-influenced by overall
instability was achieved.

Fig.{100, (0} Yand (102) present a comparison
of some typical experimental and corresponding
theoretical critical stress results for a
représentative range of specimen. The results are
presented in a non-dimensional form allowing for the
effect of the modulus of elagticity which was
determined from tests on several specimens (four to

six) from each length of the thickness tested and
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which varied from 2-8xI0 1bso/in2 t0 3416 x10 lbso/ingo The
results of material characteristic tests are réported
fully in Appendix 8§ .

The theoretical curves are based on the results
obtained in sub-section 4.1, 4.2 and 2.0, It may be
noted that the theoretical results shown in Fig. (100);
Uoﬁ)andGOZ) represent the elastic critical stress
variation for plates with various edge support con-
ditions along the unloaded edges. In Fig.(lCO)the
web of the lipped channel is equivalent to a plate
with symmetrical elastic fixity conditions: Aba=Xb
varying from O to 13.5 for the range of H values
shown. Similarly curve in Figo(-lm) for the flange
of a plain channel corresponds‘to a pléte with free
conditions for one unloaded edge and elastically fixed
along the others the X%b values varying from O +to
[~ = Curve .@9 in the same figure for the web of a
plain channel is a similar case to that of Fig, (100)
with the Xb=Xb values varying from 0 to 3.0.
Finally the theoretical curve in Fig. (102) coi‘responds
to simply supported and free conditions along the
unloaded edges,

The experimental critical stresses were
determined by using the "top of the knee" method
described in Section 5.0. The first was based on
load against deflection variationicorresponding to
the plate component first exhibiting the onset of
elastic instability. The deflections were measured

by dial gauges at or near the point of maximum
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deflection and/or by the Moire fringe pattern: from which

the actual maximum deflection can be deducted. The

second method was based on the load~relevant equivalent -

principal strain (éx +<@iéaa‘) variation deduced from

strain rosette readings placed at the points correSpondiné

to maximum deflection of the particular plate component.
For one fourth of the specimen sizes tested the

experimental critical stress waé determined using both

of the procedures mentioned above. For thq same

material and specimen dimensions good agreement was

invariably obtained by all techniques and in consequence

for the remaining three quarters of the tests dial gauges,

being simpler in experimental technique, were utilized.

It is relevant to comment here, as will be discusced later

in detail that the Moifé fringe technique extablishes the

complete deflected form of the whole surface making it

possible thereby to obtain deflection at any point and

to pin=point'the maximum deflection. It was shown by

the Moire fringe technique that using the "top of the

knee" method the deflection in the vicinity of the

maximum deflection gives the same critical stress (See

Fig.(103). Hence it should be noted that precise

positioning of the dial gauges with respect to the

point of actual maximum deflection, is not critical.
Turning noﬁﬁ%he the comparison of experimental

and theoretical results presented in Figs.{100) to(102)

it is seen that good agreement obtains. Fig. (102) shows

that some of the experimental results particularly at

0/ = I'0 tend to be somewhat lower than the theoretical
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results; the deviation present apparently increasing

for the smaller thicknesses tested. This is attributed
to the effect of initial irregularities and the slight
deformation of the’"stﬁaight" connected edge, during
loading, which infiﬁencé the boundary conditions. In
all the other results the scatter of the experimental
values in general is evenly distributed about the

theoretical curve.

6.1 MAXIMUM STRESS CORRESPONDING TO COLLAPSE:

The theoretical assesment of collapse conditions
of plates is presented in Section 3 and their application
to structural forms in Section U,

Comparison of these results js discussed in the
following, broadly on two bases. . Pirst, strain -
distributions were determined in a number of typical
cases with the purpose to test the rationality of the
theoretical treatment by comparing the experimental
results with their theoretical counterparts. Secondly,
the actual maximum étresses at collapse measured
experimentally are compared with the theoretically
predicted values. |

Fig.(104)to (106) show comparison of the theoretically
predicted and the experimentally measured strain dis-
tributions across the central cross-section of the plate
components (of lipped and plain channel, and equal angle
sections) in which elastic instability wag initiated first.
Graphs presented show valueg of the longitudinal and

lateral strains €, and 6% respectively up to as near

e e e e ——— e~ e
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the collapse as was possible to measure. It must be
clearly noted that the experimental measurements of
strains, as has already been indicated, were carried ocut
on plate components of structural sections. The
theoretical analysis presented in Section 3 was developed
for individual plates with precisely defined edge
conditions along the unloaded edges with the loaded
edges simply supported. This theory is then applied
in Section 4 to the failure of the plate components of
structural sections introducing the assumption of
constancy of the edge support condition along the
unloaded edges during the period defined by the
iﬁitiation of elastic instability and collapse. The
comparisons that.follow test both this assumption of
constancy and the theorj developed for single plates.
The agreement hetween the experimental and the
theoretical forms of distribution may be looked upon as
a measure of the reliability of the theory as a whole,
while that of the deviation in magnitude of the relevant
values may be taken to be indicative of the extent to
which the assumption of constancy of edge support applies.
It will be noticed: from the comparisons that,
although, in magnitude the experimental values of &
are slightly smaller than the theoretical near the
points of maximum deflection and tend to be larger near
the edges, the form of distributions in every case
corresponds to the theoretically predicted ones. - The

agreement obtained is considered both good and rational,

keeping in mind this assumption of constancy of the elastic

A4 4
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edge support fixity and the existence of slight non-
uniformity of the applied stress. From the résults
it would appear that the edge support constancy is not
wholy maintained. From the maximum stress results
discussed later the effect of this does not appear to
be significant; consequently considéring strain
results in conjunction with the maximum stress results,
the assumption of constancy of the edge fixity is seen
to be permissible. This reasoning abplies to all the
results presented in these figures which a4s a whole
confirm the above conclusion. C : »
To asses the relative correctness of the average
stress-strain relation developed in the theory, the

averages of the longitudinal strain readings across

all the plate components of the structural sections
obtained by direct measurements at various loads were
calculated and plotted in terms of the parameters
G;M/G;cvﬂ' against 6m,/é'_xc*wand compared with the
relevant theoretiqal curves in Figa(l(ﬂ) and(lOG)-

It is seen that excellent agreement obéains indicative
of the reliabiiity in applying single plate theory

to structural sections regarded as an assembly of
interacting plates.

Fig. (10q) and(MD) present the comparison of the
theoretical and experimental variation of maximum -
stress with the web to flange ratio H and thickness
A of lipped and plain channels. These results are

again presented in a non—dimensional form which allows

for the effect of yield stresso The yield stress
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was determined for several specimens from each length
of different thicknesses. tested (Appendix 5 ) and was
found to be considerably different for different
thicknesses. It can be seen that the agreement
between the theory and experiments is again good.

In Fig.(M) to (WS) the value of maximum stress
obtained experimentally and those predicted theoretically
as described in Section U4 are compared. The structural
sections considered are plain and lipped‘channels and
equal angle sections. The method of presentation is
the usuval non-dimensional form in which the parameters
arit/o';{b.‘u and G:rﬂ'/a-mm are regarded as the controlling
ones.

Fig. (W) shows the results obtained for lipped
channels of web to flange ratio H = 1.33 and the web -
to lip ratio varying from a maximum of 8 (normally
considered in practice to provide minimum edge support
condition equivalent to a simple support) down to a
value of 6. The theoretical curve shown in full
is the one corresponding to the structural section
where the collapse is initiated by the web
instability and corresponding to the appropriate web
to flange ratio. The second curve shown by broken
line oorreébonds to the minimum edge support at all
connected edges i.e. simple support. It is seen
that the distribution of the experimental points is
sensibly contained between these two curves. The
distribution further indicates that the edge support
conditions corresponding to the interaction of the

plate components is not fully developed in every case
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due presumably to random initial irregularities present
in the various specimens. Figo(ug)presents the
experimental results for various lipped channels with
H =2.0,2.28 and 4.0 and the web to lip ratios
varying from 6 to 16, The full line shows the
theoretically predicted values for web to flange ratio
H = 2.0 the broken line again represents the
minimum possible edge conditions. Comments similar
to those made for Fig.(ifl)apply. |

Fig.(U3) and (114) present the experimental and the
theoretical results in an exactly similar manner for
plain channels where the collapse is initia%ed by the
buckling of the flange and the web, respectively.

Pig. (115) gives the comparison of the theoretical
results for a simply supported - free plate with
the experimental results obtained by Néédh&m[hllon
Aluminium Alloy angles and steel angle specimens
tested by the author, It is seen that a certain
degree of scatter obtains.

Taking account of the various factors mentioned
above, the comparisons presented generally indicate
that the predicted results obtained by the method put
forward in the analytical part of the thesis show good
agreement with the experiments implying that the
theoretical analysis developed by the author is

rational and reliables

6.2 MOIRE FRINGE METHODs

Before concluding this discussion it is considered
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of interest to comment on the use of the Moiré technique.
for the determination of deflections right up to collapse,
developed for this application by the author. Fig.(We)
shows & typical deflected.surfaoe of a web of a lipped
channel for a load of 15 tons. It is seen that the
loaded edges have a tendency to shift in the semi-circular
grooﬁes of the loading plattens. Fig.(I17) shows the
load against maximum deflection variation for the same
lipped channel deduced from the experimental Moire
results at point A, This is compared-with the
theoretical variation computed as described in Section
4, Two points are of interest. First, the theoretical
variation assumes zero deflection up to the initiation
of elastic instability while the experimental readings
indicate gradually increasing deflection:dqe~to éhe
presence of initial irregularities . Deséite this
the experimental "top of the knee® method 6f prediction
of the load initiating elastic instability gives, for
all practical purposes, a value close to that forecast
by the theory. The second point is the correspondance
of the experimental variation in the post critical region
with that predicted by the theory. The distributions
are similar in form, with the experimental values slightly
larger than the theoretical due to the presence of
initial irregularities. This naturally has a
bearing‘on the "top of the knee" prediction of the
experimental critical load.

A typical series of curves of load against

deflection at points other than the point of maximum
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deflection are shown in Fig{Ng)for the web of this
lipped channel. As indicated previously the "top of the
knee" technique applied to the curve of load
deflection in the vicinity of the maximum deflection also
give nearly the same critical load as the load ~v
absolute maximum deflection curve.
Moiré fringe distributions were taken in a

selected number of cases. The experimental
procedure involved, however, is relatively complex
and consequently the deflection measurements in the
majdfify of cases were carried out by means of dial
gauges. Pig.(Nq) compares the distributions of
deflection in the longitudinal and transverse
direétions obtained by the Moire fringes for the flange
of a plain channel and by direct dial gauge measure=
menté° It is seen that these, for all practical
purposes, coincide indicating that the Moiré method
may, reliably, be used in determining the deflected
surfaces. For this plain channel curves of maximum
deflection for the flange and web obtained by Moire

" method are shown in Fig.(l20)together with the corres-
ponding theoretical curve for the flange,
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SUMMARY AND CONCLUSIONS.

1. The derivation of the basic large deflection
equations effected by the use of Euler's equations for
minimizing the energy integrals has been presented.
Galerkin's method was applied to these equations to
determine the approximate solutions of two general
cases. ( (a) both unloaded elastically fixeds
symmetrical and unsymmetrical combinations, and (b)
one unloaded edge elastically fixed‘andrthe other free)
of rectangular plates loaded in uniform lengthwise
compression.

2, The se approximate solutions were then
utilized to obtains
(i) The load initiating elastic instability of
plates with a variety of edge conditions. These
ranged from elastically fixed and free to symmetrical
and unsymmetrical combinations of elastic fixity along
the unloaded edgeso
(ii) The maximum strength in compression of the. flat
plates by using the solutions of the large defiection
equations in conjunction with the deformation theory
of plasticity.

3. . The results obtained for single plates were
then applied to various structural forms to obtain the
critical loads initiating local instability and the
maximum loads at collapse.

4, The experimental work consisted of ¢om-
pression tests to failure of concentrically loaded

steel plain channel, lipped channel, equal angle and



square tube sections under conditions ensuring failure
initiated by local instability. Application of the
Moiré fringe method to the measurements of deflected
surfaces of the plate components of plain and lipped
channel sections concentrically loaded in compression,
is also presenfedo.-

5 Good agreement is obtained between the
theoretical results predicted and the experiments
and the following peints have come to lighto.
(i) The experimental determination of the load
initiating elastic instability by th%,technique of
the "top of the knee%W of the load against deflection
variation is relatively independent of the position
of the point‘at which the "maximum" deflections are-
méasuredo Regults: showing good agreement with the-
theory are obtained. aslong as this point is in the
near vicinity of the point of actual maximum deflection.
(ii) The forms chosen for the deflection and the
stress function to obtain the solution of the large
deflection eguations for plates, at and beyond elastic
instability, have been shown to be rational and give
reéults in agreement with the experiments.
(11i) The analysis.of critical and maximum strength
of‘structurél sections regarded as an assembly of
interacting single plates is rational and gives results
in'agreement with the experiments.

(iv) The assumption of constancy of elastic edge fixity

during the period following the initiation of instability

upto collapse is permissible.

toO&
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APPENDIX I

MINIMIZATION OF THE ENERGY INTEGRALS.
(GENERAL PROOF OF EULER'S EQUATIONS):

The general form of the energy integral of two

functions w- and ¥ can be written as:s

I _—;ff(b(x, Yo Wy M 5 My o WSy 5 Wigg 5 Wiy 5o e ve e gy

R

%6 5wa.aﬁ §~§§~§§~~59 F, Fx 9 F5 ) F%?%7FE$‘AJF9&\$ IR RN

weemnes Fot , Byt s vooveeenil ) doe dy ————ALGO

Here, a single subscript in a function denotes
its partial derivatives with respect to the subscript
e.g- 4, = %Fﬂ: , and double subscripts denote the partial
derivatives of the second order with respect © the
subsgcriptss. Similarly subscripts of higher order, say

A denote the partial derivatives of the 4Ath orders

2 2
G-g. Fxx —3 an 3 Mj'z% - bw .
D dx 3y
& : A
2 y* oxP Ayt

Nate that {>-+cv=45 and b and 9, are integers.
If the highest order derivative in the integral
I is of the order t .then it is assumed that ¢> 9

the integrand given as the function of the arguments éx,%,ur .



including the order 2t are continuous.

Likewise w“(x,-ﬂ and F(x,%) are continuous and
have continuous partial derivatives with respect to
x. and 4 upto and including those of order 2 .
It is also' agsumed that these functions and their
derivatives upto order (b-1) have values prescribed
on the boundary C of the simply connected region R

(viz. the boundary conditions are of the forms

B‘[“] = % > A=1,2,3, ... J(E-1)

BA{F] =4, /s__:_‘.\,Z,B, ..,....‘,,(t-—ﬂ)

where B,'_e, [MS‘] etc. stand for expressions containing
W and its derivatives normal to the boundary,and
symbols ¢, and ly stand for prescribed values
known at every boundary point). That is w('x ° ?)
and F(x, '3) satisfy all the essential boundary conditions
{25] and are te;bméd admissible functions. (In the
priﬁciple of mi‘nirﬁum potential energy the essential
boundary conditjons are the requirements of geometric
compatibility).

For giiren; functions 4)—3‘(9(,-3) and F (x »4) having
the same respective boundary values as s (%, ) and
F(”‘?‘&)’ the integral J yields a definite numerical
value. It is required to determine the particular |
functions N‘(x,«a) and F(‘x,*a) which make the integral I

a minimum.

ra(



Assume the correct compatible golutions of the
problem which minimize the integral to be ws(a:,y) and
F("’?) o This minimum value of the integral will now
be compared with the value of the integral obtained for-
other functions &}(‘z,?) and F(>,4), This is achieved

_by adopting the standard procedure of the calculus of
variations. [17,22,23,25].,

Represerit, respectively, the functions Eg‘(ﬁco‘;}\)
and E(x, 4) by W(vc,-a)+ en(>>y) and F(x, $)+EY(esy)
where £N(x»Y) and &y(x»,y) are variations from the
respective minimizing functions Aw(x,4)and Fx > 4) o

For the requirement that 4S(x,v)and F(x %)
satisfy the boundary conditions imposed on as(x,y)
and F(-x,ta) the variational functions N (x,y) and ¥(x,y)
should be such that they méet all the requirements of
admissible functions except that they satisfy

homogeneous essential boundary conditionss

Ban!

i

o . /5_—_;,2,3,‘......,,@4) N

-

i
o

- é

B,J\P 1,2, 3, .....m,('t-n)
That is K(x,%)”and W(x-,\g)and their partial
‘derivatives upto the order (E—1) have prescribed
values equivalent to zero at every boundary point.
In the region R however, '}Z(-x, 4) and Y(x%>y) are
arbitrary. (If, however, in a particular problem

there are no essential boundary conditions then the



Ve (%)

YA

Fie. (120



variational funétions. n(x, y) and Y (x» ‘?)‘) may be entirely
arbitrary and in the analysis additional boundary con-
ditions result. Hence for the minimization of the
integral the minimizing functions will be the ‘functions';
which satisfy the additional conditions also. In the .
principle of min.imum energy these additional conditions
are the requirements of force balance.) The -
multiplying factor & is a small parameter. - Thus

by verying & and keeping 7((-::.,‘3) and W(x-, %) the

same, E‘(x,na) and E(x, *3) can be made to vary about

the neighbourhood of the true values MW (7-5*3) and F(‘xs';})o
This procedure reduces the variation of all these
functions'to the variation of a single parameter &

i.e. L now becomes a function of & . By

choice of A8 and F, I is a minimum for £=0 ,

hence:
4L — 0
d'g _§=0‘3

"Now

I(g) = ﬂR“’ ("» 4o WHEN 5 A0 + B s W+ ENys

wxx'{— %n"&% 9 w%\a +§"Z‘a.3 9 w%%‘%‘ g'rlx%gnua

&S 833889 3 W%G - %Tl%‘s 9 WWG "ﬂ“‘% ‘Qwﬂ 9 . wp&b%‘i +

g)thgq 9 ssssssssesayg F-ﬁ-;%\{/ 9 F%+§W% 3
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Flé +§3W\g 5 Fxx‘+§qlggz ’F '+,éw..&3 %‘&#gk}/&lﬁﬁ

SSsvvLLLRIN g Fxé +§W 3 9 F é+%\4¢’ A ‘P%% -{5:

gxy%b%q,,mm.,m) doe. duy -

Again 0“5@ ﬁ -I-é—dmlw and note that if = 5@, £,
\ R
~u..".) where s, F ... are all functions of & .

— =-§£..X,-iﬁwﬁ; 4= ELXELE_.J}. 55555555 N
g i de >F a5 :

Setting £=0 , is equivalent to replacing

To—
-

W, W, €tCo, and Fg s etco; by W, A5, ,etco,

and.F, F,. » etc., respectively. Hence, W and F

2
dg& |&=o

are now the minimizing functions and

gives:

J L (‘Pu’l + Pus N+ Pury Ty + Pag T
+¢w My s g Ty o 4 Pus, s 1] o8
* Pugs Nye + ‘%xp%e, Mgy + o+ GV
b Y+ C'PF%\V%‘ + P VYun +

+ CPF%\&\’P\&& + CPF,‘%,\P.%Q R RS o



A4S

<t>I?.,‘«s. qlx.” + CPF.é-s q’@y‘ + CP F,‘_p%«ﬁ’xqw"%wi) JW-&/‘@

Al.Ol

where <P~.r= _bi. _éé_ etc,

= Integrating by parts
aw:@.&a(ﬁ g g by parts,

gives:

]t oty = f e fvz 2 () 4|

Now, since it is assumed that N_ vanishes on

'r( 34’ -—o and therefore
O48x la

chwa N ddy = - H:z 2 (4,.) M%»

Also

e f[l L]+ 1 s

b
\f'n';id‘ 4auﬁud){]‘i%°

Again, since 7L .and 2’(- are assumed 'to vanish

oL %u

the boundary,

on the boundary,l?l ¢ \ and are

both zero.

therefore

[t = 2

Similarly:

J‘L%“’nw e =£U § L- j By o j&%
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In the same manner, it may be shown that:

(In the formal procedure of calculus of variations

actual evaluation of the integrals for a given 1

may be required and then conclusions drawn from

considerations that Y can be an arbitrary

variational function,)

[ by My =(=1) [ 2 iy
UVR JR *

| i, Mo dmdy =) [ 02 - o A
: wys (8 ={-| (= - Pug >
Jg ? 4 “ ( )£R3%6 4

jj %»,eﬂl,;ﬂ xdy “K"')J“{ 3 B:F’ j&"d"ﬁ’

Equation A% .Ql now becomes:

I

>
bxba

g‘h\ ses §+(_. ‘PWJ"%'(“

b > >
4) x> di%mj. bﬁ142‘ﬁﬂ
5 A




{t7¢

d p-)
+( )b 2Py ‘VI¢N— gﬁ’-&)—\- ¥ <\¢F T 2% ¢Fx= ?; F@%}

24

F‘m B‘a F‘a'a 2:2:.31 dPFwa

48
()54

4 4
)
) s ¢Fx‘,ﬁ+)} bz dog =0

7 AL02.
The two integrals in Al.02 will be individually
Zeroo. .
- > 3
".J]R@W P a“& ‘“’% T e 4’“’*% N e d,“"w
R
) ' az A b& .
e il = sshsseay -1
3xbka, w’@# %’( ) dxd
5 SV |
oY 3 4 Y o .
(=‘1) #ﬁ‘b%‘& ¢w‘a,s +( ) b"—-"’"xPa%P ¢w-xpaw =+' ss,‘f) Afz dv‘\a p= O
.| Y i ¥
ad f L ¥ (4’ BT B TR AL et
: 32 | 8 Zr’s ’
-+ — trsasanes -1
gxaaq)"’z‘( +( ) S ¢F§+

(—) ( )3 wd?r—'p “““““ ')dxd«\g,-:c |

Since the varlations n and W are arbitrary

functions; “the following am obtaineds



4% -

_ 92 > 5% 2
cbur | aﬁ£‘¢h;3¢v*' E;gf cb&g&-b 3G 4i@i£+ ” ‘¢%ﬁ55
P24 a ) ‘\
'Zx.été ”wa““ “““Wua(a ) *5‘&45(\& ) a‘jé d)w"%a
& &
1) 2 . = :
+ ) SoF 45«5_%{&— — 0 , A.03
and .
2 b 2 > 2
S g 4’%@ s S Py,

_32 A 4 5 4
+ bzb&dﬁ.’%— ““’"””"("‘) a%é’ ‘i’pzs'-*(““) 3871?4’;: s

d
$ ¢
+E) 2 S ,
+( >2z"3~3‘? ¢Fxpﬂv+ =0 hl.O%

Thus, the condition of minimizing the integral
I reduces to the solution of two differential
equations 4{.03 and Al.04 called Euler's Equations.

Strictly speaking it has been proved only that
if # and F satisfy the Euler's Equations the
energy is an extremum: either maximum or minimum.
However, it is physically evident that the energy in
the true state cannot be a maximum because it is always
possible to make the energy greater by locking some
extra internal stresses. Therefore Eulervs Equations
are in fact the conditions of minimizing the energy
integral and not maximizing it.

In the problem considered in the text the

relevant boundary conditions considered for the



governing functions 4r and F may be regarded as
special cases of the boundary conditions assumed in this
proof and Euler's Equations caﬁ be directly applied to
the energy integral to give the differential equations

for determining the minimizing functions.



APPENDIX 2

(d» Formulation Of The General Form Of The Stress

Function F 8

The boundary conditions to be satisfied by the

stregs function & are:

\ Ne A2.10
2‘3 x-—-a ‘k
2
2F = 0 A2.11
2 -
Lo 132%,
2
oF = 0 ¢ A2.12
bxa\a‘ %=o
/ b A" 8
\ A
\ o F ] =0 A2.13
2ty -

Let the stress function be
- N e
F= Ay F(x)-3(9)
where
A isa cé)nstant
:g('x) is a function of X only.
%(\.(D is a function of Y only.
Now condition A2.10 givess

2A +;Hx)%(\ﬂ Nx ot %= o0 and x =A equating the

terms of the same order on both sides:

o= 0 ———(2)
;...‘.)

Z—A‘-——_—%— | > lf

TI2O
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Cenditions A2.11 gives? j 429 =0 ——=(Db)

Conditions A2,12 givess ,g, (=) 9’(4 )B%_o_omﬁ_,_(c)
and condltlon A2.13 gives: H:(x>%(‘3)\'3'°5—0“""(d)
Considering equations (a), (b), (¢) and (d) it is -

easily verified that: |
In (a) 3”(&3);& o .. H(x)l,c_;%;: O — — A2. 14
In (b) {’()£0 - H(x)\‘a;%;o —_— A2.15
In (¢) 9/(¥)%0 - l-ji’(x)‘x:&g() — = A2.i8
In (@) §(x)#0 = |g(Ply=g=0 A2..17

Now, let f(x)= B, +B">‘ B;;’- E;s E’;} where B,,B,,B,,8,

and B, are constants. .
At %2 =0 equation A2.14 gives {()=0

——

oo B°=0

At =& equation A2.14 gives }Qz) =0

c.o—§|+—é~z+33+—5-_ =O I
ey . B 28.% |, 3B, % 4—5 x3
Now, £(x)= —- + 2 4 38k | ABes
At x=0 equation A2:.16 gives S—'(x):O A

“B=0
At = equation A206 gives ;F’(‘x‘):_o
2. 4By + 378—3 +2B, =0 IT

D1v1d1ng equatlons T and IT by B, throughout

= Hl and _B.B_.—: H, givess

B
and taking
B, B,

4“\*\—3""—(2 +2=0 — ' 'ISZ.




A452

Solving ITT and IX simultaneously for II‘ and H, "
the following is obtained:?ﬁ::\ and H,= —2

: 4 |
. _ [ . 2 x3 x: \ &
- F0) = ( & Tt aE) e

Working in exactly the same way as above it is
found that:

therefore the general form of the stress function

becomess

cE 2
Fei ce(E-DE-D

where (5 is an arbitrary constant.

It is easily verified that the boundary conditions

continue to be satisfied if @ is replaced by a

factor (’ in the second term of the stress function

F oo e may be constant, a function of ¢ an@/

or a function of Y

o

Thuss

N.,‘ 2 2 2 “ ) A .' , )
vl P(:z _%—X \;" :) — Rz.18

(11) METHOD USED TO OBTAIN THE DEFLECTION FORM FOR THE

ELASTICALLY.FIXED - ELASTICALLY FIXED PLATEs

The boundary conditionss

- = O . w . .

et X=0,Q& A2.20
Jur o
dxe? 2y?% )

are satisfied by assuming that the plate deflects in
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M sinusoidal half waves, i.e. the deflection surface

can be written in the forms

w=Y sin mlx A2.2]

in which Y 1is a function of y only and determines
the deflection form in the Yy - direction.

To obtain Y consider the analogy betﬁéen a
beam and a thin strip of the plate cut paral_lel to
the x-axis at the centre of the plate.,

Let a beam of span b’ carry a uniformly
distributed load p along its entire length. To
make the boundary conditions of the beam analogous to
that of the plate consider end moments M and M,
acting at A and B respectively (Figc(lzz)), such
that if Y is the deflection of the beams

¥ Lo

where & and &, are constants equivalent to the

5 M‘ = E—I’L

Y=0 !

M;EI@‘%

[N

coefficients of edge fixity of tfle plate and EI is
the flexural rigidity of beam.

Taking a section €CC at distance Y from the left
hand side and applying Macaulay's Methods

2
ET %—;Y,-_ =M + P_Z%i — Ray
ETdY _ M%_‘_Pja _Ra¥ + C,

o\% & 2

_ My Pyt RaYE = —




Boundary conditions
WE‘-_‘Yr-O at y=0 gives@_,_—;O and wr= Y=0 at Lj.-.:-_b

givess

2
- -5 B @

Ol

Taking moments about B

RA=N; +£2l_> *“{1’ , (b)

(a) and (b) gives

. | 3
t—‘—;-}gb _Mb +Pb

SETY My Pyt My® Pbu® M MbY  MbY
6 b 12 6b 3 K3

Dividing throughout by b and denoting .“%‘_

by $ and My P by CV :
EIY B¢, 4 B9 _ by 9% _Bby _aAbY By
b 2 "T24 6 "2 Teb 3 6 T4

—A2.22

EI dY \33 _‘_-‘;\3___‘5\31__\3\31 +'5v\}z _Fb w—b

P dy 6 2 4 2b 3 3
L5 A2.23
24
Now, at Yy =0 ET dY b
_, P dy %
- F __Fb _g§b & L
Tk T T3 6 T4 (c)

~_.1v=2‘4—;_‘3 3 (a)



Equations (c¢) and (d) gives

(61b + 2 B

9= A2.24
144 4 481n,b 4+ 48xb +t2:ucab
.—._- /tb?: _ )t,b ) .
M8 P=gens T T GraRE A2:25
Hence, from A2.22
P by b’—” L be ¥ b4
T EI T (Gb _E*' )Mv(e )

A2.26

Thus for the plate the deflection form can be

written ass

. ‘ 4 3 |3 3
W = su x| Y b‘é b 4% b‘& K. b‘é)
& TR 2 T2 T Pt )+¢1’(6b 3
- 4 3 2
— ol aun WMEx | M A Y B, 4 C ¢ R
A~ swn = [24 =T o -+ - + 5 ] A2.27

where A is an unknown constant and

(4, P 9
A._( >+ 1z s
B =
265*
8 B 242
and b_v' and F are given by equations A2.24 and A2,25

*+58
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(3i1) FORNVULATION OF THE STRESS FUNCTION & FOR THE
ELASTICALLY BUILT-IN-FREE PLATE.

Let the stress function bes

F_ A.‘f—*—’ac("‘)-‘ﬁ(‘ﬁ) A2.30

where A is a constant.
f(x) is a function of * only and g(%) is a function
of Y onlyo

The boundary conditions to be satisfied are:

DF _ Na '
Sle TR A2.3
Z

Y =
3
SN o =0 A2.33
2% 3y ’Zi;‘&: 4z

Along with the above mentioned boundary conditions
one more condition required to be satisfied, is that

: 2
the variable part of Oy . ioeo‘agénz excluding the

constant portion, at'xdzg?should have a parabolic

distribution of the form:

(5 - ﬁ‘f) A2.34

p—

where J and H are constants.

Condition A2.34 represents a physically admissible

form,

It can be verified that this condition together
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with the two conditions A2.32 cannot all be satisfied
simultaneously. To permit a solution, it is assumed
that CSQ stress is of relatively little significance

L
and hence the condition %—“%: O at the elastically
x

built-in edge L3=O need not be satisfied.

Condition A2.3| gives:
2A -pf(x)g’-’(&d)'-_— L:(ﬁf at =0 and x= o

Equating the terms of the same order on both sidess

2A =;I:lc_:‘_ and H.(x) ‘3”(‘3”?;:& =0 — .(a)
~ Condition A2.32 gives:
., ,
H (=) §'(4)
and condition A2.34, excluding the constant portion
from ‘3%%7_ \x:% givess .
£6) 9 (D ecayy = T-Fg* - — )

It is concluded from (a), (b) , and (c) that

bt M

the conditions reduce to:s

HOIPES

H

|30 [ye =0 T

XK=&

H:(x)ixﬂ, =0 = EI

=0 _ , ~r

|9(4)

L



{ (4 ooy =

— — —

where J, and H, are constants different from J and H.

3 4 -
Letf('x.') B+E>|x B:SC_(_B;;Z B_Zx, where BoL \’B 53

and B, are constant. : :

Working in exactly the same marmer as in part

(1) of Appendix 2 the following is obtained:

o
f(=) = E-2)&

X YN F Tou . Ca¥? Touwd Tyt
B Again let %(\a)sc +9§7+,—B‘T\4; ez_} ci\%-_where
Co ,C Cz,C3 and C, are constants.

Condition IT gives:

Co+C,+ Cov T+ T, =0 _ A2.35

Now, %’(1) C‘ ?_Cbz‘i 3%2‘3 +4'C;;3 and |
(’(\3) = 7_Cz + 66&3 + b4

At ‘3=° 3 (%) =0

:c» ‘E\ = 0 A2n36
At y=b  g'(y)=0

. 2C, +3€ +4C,=0 A2.37
At x=—%~ ) ”("})_ 3, ""T_f\ﬂ

120 L 6CYy L R2GY_ T _ Tz (
b> + bi + o J, H, ¥ — —A2.38

Equivalence A2.38 will only be satisfied if
Ca=0 - A2.39




IO‘I

Now dividing A2.35 and A2.36 by C, and taking

._9__2_:_[, and __C_?-:E'a“g the following is founds
C

4 4
!+—l+tz=0 VI
4'4-ZI:L:=:O , VIT

Solving YL and ‘III simultaneously for L, and
Ez givess L,=-2 and [, =|

L 4
’ 3(%) -Z.C E" 2\34 “J?:)

Hence the form of the stress function becomes:

N X7 Y2 |
R ]

where ﬁ is an unknow constant,

(3V) Method Used To Obtain The Deflection Function
For The Elastically Fixed Plates
The boundary conditions to be satisfied by the

deflection form are:

W= 0 at =0
: ~A2.40
é&w 5 aw ‘ and X = 0O\
5 *+ =0
D% dy* J
W= 0 at y=0 - A2.44
2 .
W _ j OM _ 5 at x#-;c A2,42




lé6o

Blw Bzw- 3 .
0 ‘32 dx? ' )

2 2 o
265 4 (2-v) 24 _0 at y=b — A2.44
3‘33 I 5\3

It is observed that conditions A2.40 are

completely satisfied, if

L = ok son Wlix [Y]
a

where Y is a function of Y only and oL is an

arbitrary constant.

At Yy=0 o W=0gives Y=Q

S Co=0 A2.45

Now

Y = ,...__._4A;;43 L BB 20 T

—

“_ 12AN* . 6BY . 2C,
Y = b23 -+ 52’ + b"

V_ 2484 , 6B,
== =
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At y=0 condition A2.42 is equivalent to Y'=s¥ .
o o Condition A2.42 gives:

2G — & C,
b ' )
!‘L. E;‘ —_ )C_Clb . g N A2'4—6
2

Evidently, for the deflection function to be

useful, C, must be so chosen that C, does not tend

to infinity when % tends to infinity. It can easily
be verified that ifs E;:———‘——— a dimensionless ratio

_ b b +2)
then' CL=—~_:-3.3 is not infinite when X% —=co.

Hence the deflection form becomes:s

w’=o(sbm".‘.’ﬂ‘—l‘ Az 4% B, 9> kby> 1___.
a o= -+ = +2Q7.\3+2)b PO A2.47

The constants A, and ©, are determined from the
conditions AZ.43 and A2.44
Condition A2.43 givess

12A, 4 6B, Kby WRR? b L
Zha +de+<2; [ Az B +z(rd>+z) (&b+2)

(a)

and condition h'2544- givess

2 b o
24N 6%7__.(1 v)“"rb 4N, 428, —L(ﬂ;A—Z) .;-Qa:*l;g

(®)

Equations (a) and (b) are simple algebraic equations

which can be solved simultaneously for A, and B, . The
deflection form K2:.47 is determined and satisfies all the

boundary conditions,




APPENDIX 3

Effect Of Deflection Form On The

Critical Stress:=

The critical stresses were evaluated for two
cases vizo simpiy supported and buiit—in along the
unloaded edges, by sélecting different deflection
formss
1. Flat square plate simply supported on all edges

and uniformly compressed in one directions

The assumed deflection form in this case is:

W—;_—'OQS(MY-“%E-SDV\.L‘;&_ - _—A3.10

This deflection form satisfies all of the

following boundary conditions:

W= 0 h
at x=0,0 - A3
A a‘?. 1
8oLy 2M o0
37(7‘ akaz— -
W =0 h
at y=0,b _ o A3NZ
2 '2'

The same stress function is used as in case (a)
Page and the Galerkin's Equations 2.0fa and 2.02a

solved for Q/g =10 and vm=I0 givings

(oL
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— _ 40-04!
Ny = — 20:04D

compared to

Xeyit = gfL%;FLQ‘ as calculated before B

with (o= oLsMV“K’C y¥ +
a Z4b§ lZEF 114

2, Rectangular Plate Uniformly compressed along the

simply supported edges, built-in along the unloaded

edgess

The deflection form selected in this case iss

AZ.20

w=oLSM‘l\l‘_'£(\.‘_CAs?.—M>
a b

It satisfies all the following boundary conditionss

M= O h

2t x =0, N A3.24¢

ab %:=(),f> AR.22

9 o B

Using the same stress function as in Case(@)in the
text and taking d-/b =2:0 and v =2.0 the solution of

Galerkin's Equations givess:
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< .= =11:86D
crit =
as compared to:

Ny, ="52-8ID  obtained by taking:
b

et

W ol sun e (4t ¥ a’)
a 24 K> 12 b* 246
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APPENDIX L,

TYPICAL EVALUATION OF THE SECTION RATIO
H CORRESPONDING TO A GIVEN ELASTIC
FIXITY FOR PLATE BUCKLING OF A BOX
SECTION.

The equation defining the elastic edge fixity
r provided by the supporting plate component to the =
buckling plate component of a box section obtained
in Section 4 iss

* _ 4.,(. +B2) sk b, sun B Hb, A4.00
L3 B, 4 b, (cosh T b, — 1) 4B, Sinb o b, Q —cosBib)

where

By taking WM =|-0and substituting — K/bz for

the smallest value of _Ns_e_ , &, and @, are obtained

Z‘—;-A/ _1.+___1_K

B =L [T . Tb [
éa bA/// s + o K

For any value of xb{ the ratio CJL/&> at which
i

K is a minimum for wa =\:Ocan be obtained from Fig.

(le ), and thus the corresponding value of H can be



obtained from equation A4.00 , To illustrate this the
solution for Ab,;=2:0is presented. |

For %b,=2:0, the minimum value of K = 45.23 for
for m = 1.0 at &/, = 0.87.

oL =/\/7Y" L7280 =
0757 B}

_ /_@x* _ 1721 .34s
077157bt b? b,

Inserting these values in ef§uation

_2_ _ [(6”/\,)4-(3345/‘3. ]Sm.&.éllH sm'3545'\-\
o

O.r.\

bao]|

I
W

‘é'_'- Stm. 224SH (cosk 61l H —() +3345 Sind GLH( ~c.a5.3»34su>

Solving by trial and error this gives H= 0837

The values of H obtained by this method are shown
plotted in Fig.(5) ).
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APPENDIX 5.,

MATERIAL CHARACTERISTICS OF MILD
STEEL STRIP.

Tensile And Compression Tests.

All the plain channels, lipped and angle
sections used in the experiments were formed by
cold pressing from mild steel strip. Preliminary
tension tests on flat specimens cut from the same
structural section from different places showed
gome variations in the tension yield stresses and
values of Young‘s Modulus. It was planned to'carry‘
out extensive tests for determining the material
characteristics, in tension and compression.

Tensile and Compression specimens of the P
dimensions shown in Fig.()23) were cut at five to
seven different places from lipped, and plain
channels and angle sections. Tensilé and com-
pression load-strain curves Figs;“(‘alzﬂf Yand(12§") were
determined by the use of electrical resistance strain
gauges which were used on both sides of the specimen
and connected in series to;%ake account of any bending
moment effects that might be present. For com-
pression tests special grips were héie (Figo(l‘26)_)o
These grips realised built-in end conditions for the
compression specimen so as to increase the buckling
load and thus make the determination of the yield
stress in compression possible.

The variations in Modulus of elasticity E and

the yield stress G'Ygegd across the cross-section of
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lipped channel and a plain ckannel are illustrated in
Fig. (127) and Fig.(128& ). respectively. . Average values
of E , Ovyieed and v for various sizes of plain,
lipped and angle sections are tabulated.

It might be of interest to note here that it was
found that the slope of the unioading portion of the
stress curve was greater than that corresponding to the
value of Young's Modulus, determined from the loading
portion of the graph.

Resonant frequency method was also used for the
determination of E . The theoretical background and
the experimental details with the results of the

experiments are presented in the following.

Resonant Frequency Method of Measurement Of Modulus

Of Elasticity.

It is well known that a rise in damping capacity
of a vibrating specimen (the measure of the energy
dissipated per cycle of alternating stress) is
associated with the movement of dislocations. It is
also generally believed that stresses in the purely
elastic region in metals produce no dislocation move-
ment which is associated with plasticity. ' Therefore
in the determination of the true modulus of elasticity
of a material it is neceséary-to work in a range where
a small increase in applied energy of vibration causes
no increase in the damping capacity and consequently
no dislocation movement,

In the normal methods of determining modulus of



(€9
Elasticity very large stresses are involved which may
result in dislocation mover-nent°

The technigque described below produces extremely
small stresses (less than about 04015 Tons/inz) in the
materialyand gince in mild steel the dislocations are
effectively pinned, it can be assumed that the induced
vibrafions do not produce any dislocation movement
and are in the range of pure elasticity.

Theoretical Backgrounds

If a bar is caused to vibrate a ceftain
frequency termed the resonant frequency is found at
which the bar absopbs the minimum energy of the applied
vibrations. Thisifrequency depends upon the gize,
dengity and modulus of elasticity of the bar.

In an exhaustive mathematical analysis of the
subject Wood [53] assumes that the bar is uniform in
x-section, is subjected to neither tension nor com-
pression, the amplitude of vibration is so small that
rotary effects can be neglécted and the radius of
curvature 1s small enough to be represented by a
second differentiaia

The formula developed for the resonant frequency
of a bar free at both ends and having one peak of

maximum amplitude at the midpoint ist

N = 183416 2 [E.

&N P
3 2 ‘
where & w = for a rectangular bar of thickness N

in the vibrating plane, length & and density £ .

The working formula becomess
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i-05625 &#2

with E in éiylu.e's‘/@mf‘L for the c.g.s. system.

This mode of vibration has two nodes on
either side of the centre of the bar af a distance of
0-224 { from each end., |
Experimenﬁa;rbetails ahdhﬁesultsz

The apﬁaratus used in determiningithe'resonant
frequency is essentially that used by O'Hara[54] and
similar to ones described in[§5;5€l

The vibrations are’transmitted to the bar by
means of a threadvconnected to a piezo-eléctric
crystal, the signal to which isvsupplied by an
oscillator. The pick-up ecrystal receives these
vibrations from the thread at the other node point,
the resulting alternating voltage is suppliedvto a
frequency analyser which measures the frequency of
vibration. | 4

The amplitude of vibration'is increased by
increasing the power output of the oscillator (from
0 to 50 &ecibg;s )o Metallic screens are used to
prevent feed back from the crystals to the wires from
the oscillator and analyser. |

The bars (length = O c.ms) used were of rectangular

X-section with one dimension twice the other; the

smaller dimension being the thickness of the lipped
channel from which they were cut.

-The resonant frequency was measured with the bar

v
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vibrating in first one planeﬁand the othegfﬁeing
referred to as vertical and horizontal pos}tions
respectively,

The first run of tests consisted in the
determination of the variation of Modulus of Elasticity
across the x-section of a cold pressed lipped channel
0-0965" thick. The specimenfout length-wise at
five different points (shown in,Figo(l'&o)), The

results are tabulated helows

'-.3
Density _Exlo Vf Emean
Spec. Dimension gm/cc Vert. Hor.

Ay 0.096" x 0.194" x 3.952" 7,66 13,2 12.88 13.04
Ap 0.097" x 0.194" x 3.951" 7.7 13.16 13.14 13.1
A 0.0965"x 0.194" x 3.949" 7. 13,48 13.29 13.38
Ay  0,096" x 0.195" x 3.950" 7.71 13.13 13.08 13.11
A5 0.097" x 0.194" x 3.951" 7.76 13.26 13.21 13.24

The second run of test consisted in determination
of the modulus of elasticity of specimens cut from
the centre of the web of lipped channels ot various

thicknesses. The results are tabulated belows

Dimensions of Spec. | Mean E x10  Tow/i2
0.153" x 0.304" x 3,945" 13.01
0,117" x 0.23%36" x 3,993" 213,15
0.0965"x 0.1925"x 30986" 13.13
0.0751"x 0.151" x 3,951" 13.18

0.058" x 0.115" x 3.985" 13.16

(7/
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APPENDIX 6.

. 4

MOIRE FRINGE METHOD FOR THE DETERMINATION OF
DEFLECTED FORMS OF PLATE COMPONENTS OF STRUCTURAL
SECTIONS ILOADED IN AXIAL COMPRESSION.

The determination of complete deflected surfaces
of buckled plate components of structural sections such
as plain and lipped channels by means of large numbers
of dial gaugés becomes very awkward. Therefore a
Moiré Method was developed for this purpose. The
Moire method which determines the changes in slope of
a loaded specimen has previously been adopted‘[h69 47]
to determine the.distributions of moments and';urface
stresses in slabs under lateral loads. In this method
and some other existing techniques for slope and
deflection measurements [ﬁ89h9,50,51,52] models are
used instead of the original specimens., In buckling
problems the material characteristics and the initial
imperfectioné in'the manufactufed'specimensare Sf
importance andwtﬁéféfofe attempt was made in‘these

experiments to use the actual structural speci‘mens°

The Basic Idea Of the Method And the Theoretical

Backgrounds

A mirror surfaced specimen is used to observe the
reflection of a ruled screen placed in front of the
specimen. These observations are usually made by means

of a photographic camera. Consider the image S of a



At Screen
Fig, (1a1)
I~ %. ;*‘ &o" So s
4 } - |
5 25,
s o

MOIKE EFFECT

Eig, (132)



’ /175"
certain point P of the specimen plate on the ground glass

screen of the camera, it can be seen that in the point S
a reflected image-of the point Q on a line of the screen
appearso. Ifhnow the specimen is made to deflect, the
slope é makes the reflection of a point R on another
line coincide with S on the ground glass. (Fig.(@™)).
Clearly the distance QR can be used to determine the
slope 8 . One of the practical ways of observing
QR and thus determiping the slope is by super-impesing
photographs of the reflected images from the initially
flat plate and the deflected plate. The ruling of
the screen is chosen in such a manner that the super- _
imposed photographs - if at all different - exhibit
Moiré fringes.

If lines on the ruled screen produce reflected
images, S 951, S2, Sz etc. on the photograph from the

unloaded specimen and the images Po, P1, P2, Pz, etc.

after the plate has been deflected9 then the line »
(See Pig.(132) joining all the points where Py and Sp

Py and S7, etc. intersect mach other is the locus of

all the points where the distance QR has a value = Q.

A line f1 adjacent to fy 1is the locus of the points
where P, and 51 , P1 and So etc. intersect. Between
f; and fog QR differs exactly by an amount d where 4 is
the interval on the ruled screen (the lines on the screen
are made E% black and %} white). In this way it
becomes possible to obtain Moiré fringes which may be
interpreted as contour lines of QR. Now it remains to

compute the slope € from QR. For a flat screen (See
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Fig{13)) the relation between QR and € is found to be
2
QR - 26429 %%

T G-27,8)
variable for various points on the specimen. This

The small term: X/ is a

suggests a choice of the shape of the screen V in such

a way that QR = 2& , . »
To make QR*= 2¢ @ it is required that the 1éngths

of the incident rays from the screen to any point of |

reflection on the specimen should be constant and equal

to ¢ o i.e. AA" = BB' = € . Thus the shape of the

screen can either be obtained by meansiof graphical

construction or from the solution of the differential

equations &Ehz: S cx obtained by successive
L L O .
approximations.

Apparatus And Experimental Technigues

The screen was made of a photographic film 30"
X 36" with black and white parallel lines each 1/10"
thick, glued on to a transparent perspex sheet. The
black lines on the film were photographic silver deposit
and were practically opaque. Two formers were screwed
on to the screen to give the required cylindrical shape - .
and the whole screen mounted on a wooden frame so that
the screen could be turned about its axis to orient
the lines upon it in any desired direction (FigSQOSQ»o
The lines are of-course parallel to the axis of the
cylinder. To the back of the screen was attached a
sheet of white paper to diffuse the light supplied by
four’200 watt lamps mounted behind the scréen° A
"Leica®™ camera for 35 m.m. film with a £ 5.5 lens was

used. A Kodak Panchromatic film was used for photographing



The specimen tends to make the reflected virtual image
very irregularly astigmatic by its curvature and there-
fore the photographs were téken with a small aperture
of 1812.5 and exposures of 5.5 seconds. Enlargements
of the photographs were made on translucent paper and
the photographs superimposed}and printed for analysis.
The Spgcimcns had to be prepared with elaborate
care, The surface was carefu1¥ycleaned and after
applying a cellulose primer several coats of a
mixture (2 parts of black cellulose paint, 12 parts of
fast thinners and 1 part retarder) were sprayed.
After the paint had dried the surface was "planed"
by means of GOongrit water paper used with soap and
water so that no "orange peel" effect was 1éfto This
was then polished with metal polishes (Brasso and Silvo
in order) and wax, producing an excellent reflecting
surface.,

Dgtermination Of Deflections And Bending loments:

To evaluate deflections from the slope contours
it is required to know the absolute value of the contours.
This could be achieved by numbering the lines on the
screen and in fact this was done by marking on the
centre line of the screen, normal to the ruled lines
on it, a seriesg of reference dots at an interval of
every ten lines (See Fig.l24). In this way the
zero contour was determined and hence the value of all
the contours obtained. An indication of the deflected

form at a convenient place (preferably near the edges)

¢/
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on the specimen was then ascertained from the

separate photographs by observing the spread or con-
traction of the lines (if the lines have spread after
the application of load then the specimen has deflected
concave away from the screen). Thus knowing the
deflected form at a certain place the slope distribution
curve was constructed, and the signs of the slope
contours about the zero contourg'established to give
the required deflection form on graphical %ntegration'
of this curve, These deflections were then used to
.evaluate critical loads in the manner described in
Section 5, The plotting of the slope distribution
curves and the graphical method of integration is
illustrated in Figggsﬁo The corresponding fringe

pattern and contour lines are shown in Fig.{(26).

Experimental Resultss

Results obtained by means of the method des-
cribed above for uniformly compressed plate com-
ponents of plain and lipped channels are shown in
Figs{1z)to( (39)inclusive. The graphs of maximum
deflection as a function of the load for the buckling

plate components are shown in Figs(u7ﬂ20)°
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APPENDIX 7

TABLES OF CRITICAL STRESS, MAXIMUM STRESS AND YTFLD STRESS FOR

LIPPED AND PLAIN CHANNFL, AND EQUAL ANGLE SECTIONS.
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X-SECTION
5:;3": Ty-\:gcsess Lfl.ggm & S - s

BB | "R Q& ‘m/‘il ‘r;u:/:iz Tone /a2
8x 35x05| 00585 12-3 318 | 548 10-20
795<3-5<05| 0-059 12-3 35 55 1026
B x35x05| 0-0945 23 7-3% 10-& \'7 4
795 <3.5x05| 0-095 12-3 G 95 (-3 \7- 4
8 x346x05| 0116 2.3 1098 11.82 1-92
Bx & x 05| o0.0885 | ©-1875 230 583 9-58
84 <~ 05| 00585 | 61875 | 22 G-21 958
8 x4 x| |0-075 |©-1875| 533 | 109 15.97
dx 4 x05|0.076 | G- 1875 | 544 1088 1597
Bx 4x0.5|/0.0906 | 61375 B G 12.86 | 1549
Bx 4x05{0-097 |G- 1&75| & O | 274 | 1549
Bx 4 x| [0093| & I875| 1032 | 12-12 | 1549
&x 4oxl |00263 | 01875 | 1086 | 12-2 | 1549
7.97-39 x| | 0.1l | B1875| \3-65 | 1445 | 13.59
8x398x1| 0.7 | 61875 | (45 | 1481 | 1359
8x 4-x08| 0.-0587| 6:1875 | 2.62 5-83 S.-58
8 x 4~05| 0-076 | ©1875! &/0 | 10-88 | 15-27




LIPPED CHANNEL

" |
. ;’1" ’J j -
LS ]
X-secruoN _
SIZE THickNESS | LENGTH
INS. INS. INS. GC_Q.T Omax. OvieL
bxbixb, h Q Tows/it | Tows/in® | Tows/in®

797x 2x05]| 0-0585 ©-2 2.22 7.2 10.0
&0 x197x05| ©-©073 6-2 587 1368 190
795 x 2 x0.5| 0-089 9| 3.27 | 666 (0-0
R x 2 xo0s5| 00/85 -1 552 131 190
797%195%05| 0. 1165 . 9.45 10-43 126
79]x2<05]| 0-1\/2 9.1 9.96 1Q-25 12-&
793 x2<08| 0-058 | 12-2 3.08 © -\ 100
797<1:95<0.5] O-1165| 12.2 36 1026 126
795%347%05| ©:0585| 6-16 3586 573 | 1026
795 x34pbx05| ©- 096 (=) -2 2. 72 (/- 4
798 x3:45<0.5] 0-11& @ -lb 11-58 \2- 4 1-92
79%347<0-6| 008585 | 9-22 4-.24 | 5-5 10.26
797x3.5<05| 0.-078 | 9.22 &0 -7 \845
795:3.45~0.5| ©0.078 9.22 B854 1267 &45
795:35x0.5| 0-0908 | 922 9.3 13-3 \7- 4
795x3-45 05| 011G 9.22 1078 2.5 | 1192
79T <3.47:05] ©.117 922 | 11-2 | w2s | 1192




LIPPED CHANNEL

rog

W |
-4
X-SECTION
slgse Tﬂ:i’(gess LE':SgTH 642.1 6'400‘- 6*(;&40

"Bx'BxX0% | ‘R ‘A | Towsser | Towalar| Towasin®>
B~6x1-5 |00595 | 6392 | 2362 526 0-57
&x6x1:5 | 0059 © 32 25 5-3 ©.57
J~o=xI50059 | 639 | 213 566 10 57
8x ©6x15 | 0-075 | 639 | 498 | 227 I6-73
8x & % | 00752 639 5.32 100 673

Bx 6xal [0.097 | 39 | 884 | 43| 675

&~ x1'5 | 0-0965| 6:32 &-33 1136 o 25
2~6x1 |0025| 039 | &ot | 1157 (625
8x% xI'5 | 00996 & 32 78 YRE=Y |6 25
&x6 x 1 |009297| 639 | 784 L-g | 1625
&x& 1 o-u7 39 | 9287 1213 1422

8xo x| | ou7 629 | 983 73 | 14.22
8xex| | ony ©39 | llos | 1296 | V42P
Ex&x | o (515 6-39 1248 422 14 -86
8~oxI5 0075 | 1278 508 | 236 1673
8 x6x1'5 |0.0/5 | 1278 5-13 898 | |73
8o~ 11485 O-0965| 12-78 825 -2 | 1625




LIPPED CHANNEL

QI

' - —%
LR 5
X .L? o
i 2
X-Sselcz‘!é'on Thekoess| Lewer -
L NS IS, S et S max Svelo
"bx’bixbs | R as Tous/o* | Tons/n? | Tows/i 2
B x| | 0098 1278 8-28 | 7 625
B8xGx 150096 | 1278 | & | 11-78 | 1625
o x| ©.0998 | 12-78 & 3 -7 16-25
18xe xS |o-u7 | 1278 | 283 | 1243 | 422
Bxex | (0815 | 1278 | 129 | 1442 | 1480
Sxe~ | | o185 | 1278 127 1282 | 14-86
gx o x| | 0152 1278 | 1&77 | 13-2 14.. 86




PLAIN CHANNEL e
- b .
N i
{.‘b
.

X-SECTION
s\‘n»zss . m‘f:';ess Le;gcsam GCQ'T Orsax. Siclo
B <o W a Tou._s,/yi'?—- Tows/in™ Tau-al/u"-L |
8 x297|0-075 | 278 s s DS 15-49
8 x 3 |00975 G- 725 - o 15-49

8 x 3 [0:092| 9-26 | 742 10-3 15-49
8x 3 |o0.0077| 12-3 |. 56| 95 | 15-49
8 x 3 O-1165 -1 l0-O 10-62 | 13-59
S x D o6 | 9-25 972 | 10-9 | 13-59
& x 3 0 006! 12-3 2-83% 5.8 10. 5]
8x 3 | 0078 | &.15 4 -9l 78 \5.97
8x4.5| cosl | &-1. 1735 | 4315 | 10-51
ax45]00887(12-78 | 1-475 | 4.2 1O-51
8x4&5]| 011G | 12-7 o - | 848 1322
8x 45016 [ 12-7 5-7 7 22| 13.22
8x 55| 0-06 © 3 p 4-355| l10-5]
8 x 5.5 Q.06 &-3 (<13 3-88 0.5
&x55 | 0-u7 | 12.78 4 3 55| 13.22
8x 55| o7 | 1278 | 4.33| 7-\4| 1322
&= 85| ou7 | 12.78| 4-24| 785]| 13.22



PLAIN CHANNEL

(s

M
] 4
| + |
| )
X-SECTION
one | MRS M | G | Bone | Bue
bxb, L A Tt | Tows/e | Tow/in
8" x1.& | 00593 | 6-05 | 2.6l 5 .49 Yo
& x1-¢'| o058 | 12:4 2:59 4 94 Yo
8 x|-&'| 0-0785| 605 486 | 977 | 19
& x{.6|0078 | 914 489 | 9.2 19
& x|.6 |00785 | 12. 4 442 | 1142 'O
& %16 |0.165 | &os 926 | 9.7 12.6
8 xl6 | 01168 ©-08 9.82 10-65 12-©
& x 10| 0N 12-4 | 9.0 9.26 12:6
8 x 2 0072 12-35 3-50 9.07 13-57
8 x 2 | o7 | 1235 I-0o7 | 12-58 | 11:192
& x2.5|0.075 12-38 ©: 16 (O-7 1845
& x2.5 | 0077 12.35 70 9.8l 1845
-8%°3 | 0.06 oI 2.57 | 4.66 | 1O-51
8 x 297 | 0.0582| 9©.26 2:47 A-O 9-58
8 x 295 o.0602| 12-3 2.56 .| 477 | w051
8x 3 |00785| 615 | 546 | 9.4 | 1597
8 x 3 |o.o75]| 123 43l 8-3 15-57




EQUAL ANGLE i
0
X .SSF —g ;\0&) THICKNESS | LEOGTH .
ety | P e oS | Son S,
3.97x397|o-0973 & 474 G-4-5 528
4 < 4 oo/a4| 12 3.53 5.57 | \T70
4 x 4 0-098 (2 3.87 5.03 (5-98
4x4 |oos85| & |1ig7 | |- S. .
4x 4 0.0875| 1 [+ 195 1-82 2-7
4dx4 | 0.06| b ligs | 1-62 o7
4-x 4 ©-0784| & 2.-42 | 3-47 \7-76
Axd | 0078 e 2-41 | 3394 | 77
Ax 4 0.0/85 {a) 2.2 3 .49 \7-76
Ax4 |o.09ls| I | 332 | 431 | 1598
A x4 | 0.097 [} 358 | 425 | 1598
4~ 4 | 0097 1] 3-33 | 4-22 | I5-98
4= 4 o172 =S 285 4-.02 | 13.587
Ax 4 | o-u79 16 383 4.01 | 13.57
4x 4 |on73 1) 387 | 401 | 13:57




EQUAL ANGLE

ANy

I\
2 \0
& J Y
/
\ 7/

X-SECTion .
SIZE THCLVESS| LENGTH \ o : '
- b'l:lst')» '..'“’h?;’ i’:‘f'r g 6c Q-:’_ 6 MAX 6. YtE;LpL
4 x A o0 06t 4 318" 416 9.75
A x4 | 0-0595 4 | 244 378 75
4 x 4. c.ocg7| 4 2.32 3.58 75
4 x 4- c-o7a5| 4 ©36 | 810 | 1775
4x4 |o0-0785| 4 618 | 716 1776
4x4 | 00978 4 .2 73 598
4 x 4 o098 | 4 9.38 | 1002 1S-98
Ax 4 | o098 | 4 268 | Il.os | 1593
Aoxd | oul | 4 0.9 I35 | 13.57
4x4 | on7l 4- 12-3 128 | 13.57
bx 4 | o107 4 1-32 l1-94. | 13.57
Ax 4 | 006 8 1-79 2-75 -7
394394 o0 0B 8 67 | 278 | -7
394 394.[0- 015 8 1-79 | 2784 | 97
4 x 4 |o-o7g4 8 S4b | 579 | 776
3% x39p|0 0972 & 478 25 | 15.98
Ax 4 00973 8 A8 | 623 | 1598
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SUMIARY OF THESIS
o
AVALYTICAL AND EXPERL.ENTAL INVESTIGATIQHS

SN WALLED STRUCTURAL FORIS UNIER

COMPRESSIVE LOAD_ACTIONS

by

Iftikharul Haq Qureshi,
B.Sc.,(Mech.Eng.) b, » A.R.C.S, T. ’

The advent of thin walled structural compression members
high-lighted the reservoir of strength which exists beyond the .
initiation of a state of elastic instability in thin flat
rectangular plates loaded in lengthwise compression. The
evaluation of this post-critical strength generally called _
"maximin! strength has been attemyted on a varlety of semle
empirical bages and in a few cases on purely theoretical grounds,

The thesis presents a theoretical treatment for flat plates,
developed by tho author, using the concepts of the classical large
deflection theory of plates and the deformation theory of
plasticity, A varlety of unloaded edge conditions ranging .from
free through elastically fixed to built-in conditions and their

syrnetrical and ungymmetrical combinations are considered.



This theory, developed for single plates 1s then applied by the
“introduction of appropriate assumptions to tho assessment of the
maximum strength of structural sections regarded as an assembly
of such plates. Computafions connected with the theory were
programmed and carried out by the author on a 'DEUCE' digital
comput er,

' To check the results of the theory an extensive experimental
'programme covering the measurements of strains and deformations
corresponding to the initiatlon of instability and progress to
collapse was carried out. In connection with the experimental
programme an original application‘of the Moire fringe technique
was developed by the author for the determination of deflection
variations, .

Fcllowing an introductory review of the rclevant published
literature, the subjéct matter of the thegis is divided into six
Sections, .

Section 1 presents the defivation of the bagic large
deflection equations by minimization of the energy integral
effected by the use of Tuler's equations, and a procedure for
the approximate solution of the large deflection equations by
Galerkin's method. This energy approach to tho problem
consiéered, and the generalisation of Euler's equations for two
variables with higher derivatives put forward in this thesis is,

tb the author's knowledge, original,



In Section 2 the approxinite sclutions of the large deflection
equations and the results of clastic critieal loads obtained thereby
for two gcneral coses of plates erc presented, These are then
compared with other available published rcoults obtained by
classical methods. The coupariscns show cxccllent agrcement.

Section 3 presents an analyticsl method for the maximum load
carried by compressed plates, based on the application of the
deformation theory of plasticity to.the plates analysed by means
of the large deflection concept. The application of this method
of analysis to the evaluation of the maximm load for plates with
free and/or elastically supported unloaded edges is to the author's
knowledge presented here for the first time,

In Section 4 the results obtalned for single plates have
hbeen applied to evaluate the local instability and meximmum stresses
for box sectlions, lipped channels and plain channels.

The erperimental work performed is presented in Section 5.

' This covers tests in uniform compression of plain and 1ipped‘
channel, square tube and equal angle sectlons. In addition te
the results of the actual tests, the varioug awdiliary techniques
such as an original aprlication of the Moire fringe method are
fully deseribed,

The rechanical properties iﬁclusive of tensile and compressive
yield, Young's Modulus E at zero and varying mean stress, have been
evaluated for all the specimens used and are presented in full,



"Section 6 contains the comparison of the theoretical and
experimental results with a rclevant criticsl discussicn,

The main text concludes with a Summary indicating that
generally good agrcenent has been obtained between the theory
and the experiments, establlishing the former as a rational and
reliable analysis for the maximm strength in compression of
single-plates and structural sections,

This is followed by six Appendices and an extensive
Bibliography. The Appendices conbain those details of the
theoretical and erperimental investigztions which havoe been

considered oo bulky for inclusion in the main text,



