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CHAPTER I - lOTnonUCTION

There la little doubt that, in recent yoara, the 
study of dispersion relatione ha# led to a greater 
understanding of tho fundamentals of strong interactions* 
Since Yukawa*s first proposals^^ for a meson theory, a 
large variety of method# has certainly been devised to 
investigate the basic properties of nuclear matter. At 
present, the dispersion relation# approach seem# to be 
very promising, and indeed there is every hope that many 
of the existing problems of meson physios will be solved 
in the near future*

Originally, it was thought that most of the answers 
would be provided by quantum field theory^^ This
theory was found to bo oxtremoly successful in describing 
reactions which involved photons and electrons* The 
usual procedure was to make expansions in terms of the 
snail photon^eloctron coupling parameter  ̂ '
After removing various divergences by renormalisation,
one could in principle calculate quantities to any degree
of accuracy required ; excellent agreement was obtained
with experiment* However, these perturbation methods
are completely unsuitable in meson physical the corresponding

2coupling constant g has the comparatively large value of 
1), with the result that successive terms in the power
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eerie# expansion# rapidly increase#
In order to circumvent those difficulties. Chew 

4)and Low  ̂ proposed a simplified model for pion^nucleon 
scattering* Still working within the framework of 
field theory, they took the interaction as

[î. ^ (I.X)

where reproeont the pion and nucleon fields
rospectively, T is the Pauli spin matrix, and T 
an operator describing tho charge state of the pion#
^  is directly related to the more well-known coupling 

constant of the charge-independent, pseudoscalar 
Kemmer interaction by i  3+ , where N is the
nucleon mass# Tho low-energy P-wave scattering phase 
shifts were then calculated, and they wore in fact found 
to be in qualitative agreement with the corresponding 
experimental values* However, there were two serious 
objections about the Chew-Low modelx the problem was 
treated non-rolativistically (nucleon recoil being 
neglected completely), and also the use of (l«l) 
automatically eliminates all anti-nucleon states (which 
should occur in any complete theory)« Divergencies 
arose in their theory, and it was therefore necessary to



- 3 •

introduce an arbitrary cut-off function to exclude 
Virtual pions of too high a frequency* Ae a result of 
these defects, the otate of pion physica continued to 
remain rather unsatisfactory*

Xt vao about thie time that attention was first 
being drawn to the possibility of investigating strong 
interactions by using dispersion relation techniques*
These do not depend on any power series expansions, but 
on the analytic properties of the 5-matrix elements 
themsolvos* At thoir foundation lies tho integral 
thoorom of Cauchy, which allows ono to represent a 
function f of A complex variable a as an integral over 
a simple closed contour Ci if f is an analytic function 
in a domain containing C and its interior D, then

\ (1.2)
if B lies in D* Taking separately the real and imaginary 
parts of (1 *2), we obtain integral relations between 

and Ivv. f I Mieporsion relations** are relations 
Just of this type*

We shall now proceed to doecribo some of the early 
history of dispersion rolations, and trace their rapid 
development in recent times*
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1. Single Plttpersion Bolntlon»*
The first works of note on dispersion relations

were carried out in 1926-27 by Kronig^^ and Kramers^^
in their researches dealing with tho classical dispersion
of light. In particular, the latter sliowod that a
disporsion relation between the real and imaginary parts
of the index of refraction (regarded os a function of
the frequency to , now allowed to become complex) followed
from the requirement that the refractive index was an
analytic function in tho upper-half id -plane (Cauchy*a
theorem) # and that, for a medium described by such a
refractive index, signals could not propagate faster than
light. Kramers thus made the vital discovery that
dispersion rolations were based on tho fundamental
concept of causality.

Unfortunotely, interest in the subject declined for
many years until, in 1946, Kronig^^ suggested that the
form of the S-matrix for elementary particle proceases
night be restricted by causality. Subsequently, many
investigations^^ wore carried out to determine general
properties of the S-matrix. Dispersion relations also
began to be re-applied to problems in electro-dynamics, 

o\such as ' relating forward scattering of light by a
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nuclear Coulomb field to pair production of photons in the 
eamo Coulomb field.

A striking edvance was made in 1954 by Gell-Mann,
Qoldbergor and Thirring^^^, who were the first to derive
diepereion relations within the fommllsm of quantum
field theory. They considered the forward scattering of
light. At tho basie of their treatment was a now form
of the causality condition# tho corjautator of two
Heisenberg field operators, taken at different spaco-
timo points, vanishes if the separation between these
points is spaco-liko. This is now known as the principle
of **microecopic causality."

lliGoldborgor ' later extended these investigations to 
the case of forward scattering of particles with mass.
In doing so, he made use of cm important general reduction 
formula of Lehmann, Symanzik and Zinmaermonn^^^. This 
formula enables one to write the amplitude for an 
arbitrary transition in terms of the Fourier transform 

9&y) of a matrix element of a commutator of two 
Heisenberg field operators (  ̂ ^  say)i

F - \ 1

Here the matrix element connects two physical states with
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^-momenta P,Q respectively| the Indice# 6,0 specify the
other parameters of these states. In (l«3), the energy
variable occurs only in tho factor « Tho vanishing
of tho commutator outside tho light cone allows one to
extend tho energy dopendence into the complex plane, and
a dispersion relation immediately follows.

There were also several interesting applications of
these dispersion relations ; for example, they were used
to distinguish between different sots of phase shifts
and to deduce a value for the pion-nucleon coupling 

l4)constant ^. Comparison between theory and experiment was 
facilitated by employing the "optical theorem", which 
relates the imaginary part of the forward scattering 
amplitude to the total cross-sectioni

L f  , (I.*)

where q is the magnitude of the centre of mass momentum. 
Obviously tho dispersion integrals may be evaluated from 
(1.4), provided that the experimental cross-sections 
are known. It is a significant point that the proof 
of (l.4) is based on another fundamental property of the 
S-matrix, its unitarity.

Tho next development was tho generalisation to non
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forward scattering. Many heuristic depivatione^^^ were
presented, all of them leading to single dispersion
relations in tho energy variable, tho momentum transfer
being held fixed. Almost simultaneously, there was a
large number of papers investigating the elementary
problems of nuclear physical pion-nucleon ocattoring^^^,
pica photoproduction^^^, nucloon-nucleon scattaring^®^,
electro-magnetic form factors of nucleon»^^^,
K-meson-nucleon scattcring^^^, and decay proceeses^^^
involving strong am well as weak interactions. Much

22)work was also done for non-rolatlvistic cases such as 
tho scattering of a particle by a fixed potential.
Each of these subjects is fascinating in itself, Hovover, 
we shall discuss here only two topics In slightly greater 
detailI they have boon chosen because of thoir practical 
consequences for applying the theory to experiment.

Tho first is sometimes called "polology", as it 
concerns the analytic propcrtios of tho scattering 
amplitude f. f may be regarded as a function of the 
two variables W (the centre of mass energy) and Z m cos 6 
( 0 being tho scattering angle). Chew^^^ has shown 
that, for many processes, f has a real pole in the 
complex s-plsne at « • lying Just outside the
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physical interval -1  ̂ c e +1# it corresponda to the
lotmat order perturbation diagriim in wlilch a particle
is exchanged* Further, tho residue at the polo is
proportional to tho coupling constants involved in the
reaction. Obvioualy, by considering tho function

^  for any particular value of the energy H,
and Gxtrapolating outside tho physical region to the
point s # we might bo able to detomine information
about the nature and strength of tho interactions
taking place in the reaction* This procedure has been
carried out for noutron-proton scattering by Cziffra and
Koravcsik ', who extrapolated to the "backward" pion
pole (at s m -1 - /%^), obtaining a value of tho pion-

2nucleon coupling constant g in reasonable agreement with 
other estimations# Similar calculations have been 
considered for pion photoproduction^^^ and K-msson-nucleon 
scattering^^), In the latter case, there were hopes of 
dotonnining the parity of the K-meaon from the sign of 
the residues unfortunately, it was impossible to do so 
due to a lack of experimental data*

Tho other topic on which wo wish to remark at this 
point ia tho excellent treatment of pion-nucleon 
scattering and pion photoproduction by Chew, Goldberger,
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Low and # This formed a considerable
improvement on the Chew-Low static nucleon model, 
bocauso it embodied all of tho general principles which 
any correct theory must havei analytic properties, 
unitarity, crossing syiisietry and the appropriate isotopio 
spin considerations, as well os Lorentz covariance* 
Dispersion relations were written down for tho invariant 
amplitudes Involved, and the S-, P- and D- partial wave 
amplitudes projected out* In order to evaluate the 
dispersion integrals, it was assumed tiiat the integrands 
wore dominated by the (^, pion-nucleon resonance, 
which seemed very justifiable from the experimental 
cross-sections* All of the expressions involved were 
expanded in powers of , terms up to first order being 
retained• Chow et al* obtained reasonable agreement 
with oxporimont for the P-wavos for energies up to the 
first resonance, but were unable to calculate from their 
theory the position of tho (^, resonance, or the 
5-wave scattering lengths as they had hoped* However 
their investigations marked a decided achievement in 
dispersion theory, and much subsequent work has been 
dependent on it.

At the samo time as all of the dispersion relatione
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already mentioned in this section wore being developed,
rigorous proofs wore being derived in order to set tho
theory on a more sound theoretical foundation#
Symanzlk^®^ gave tho first proof for forward scattering.
Bogoliubov ot domonstratod that similar atopa could
be carried out for pion-nucleon scattering at a finite

2angle provided that p , tho pion mass squared, was taken
sufficiently ncgativo. After a groat doal of involved
mathematics, they were then able to carry out a
continuation in the auxiliary mass variable up to the

2real physical value of p # }towever, this method was 
soon superseded by the work of Dremormann, Oolima and 
Taylor^^^ who made use of functions of several complex 
variables. Tho least complicated proof to date is that 
of Lehmann^^^, who used Dyson*# integral representatlon^^^ 
for tho commutator of two Heisenberg fields* Dyson 
proved that F(q), given by (1*3), could be represented 
in the form

00
- jdV UUJ

o

Lehmann also deduced that, for fixed energy, the 
scattering amplitiaio and its imaginary part wore 
analytic in certain elliptical areas in the complex

(1.5)



— IX —

momentum transfer plane.
All of tho80 proofs concerned dispersion relations 

in the energy variable, with the momentum transfer fixed. 
Apart from being very cumbereomo, they were also rather 
limited, and showed that the dispersion relations wore 
valid provided that the momentum transfer was loss than 
some maximum, and that certain inequalities on tho maemos 
of the particles were satisfied.

Tho next atop of groat historic importance was made 
in 1938 by Mandelstam^^^. Single dispersion relations 
arc obviously restrictive, since one independent varioblo, 
usually the momentum transfer, is held fixed in them.
Yliey do not give all the singularities of the S-matrix| 
to do so requires a knowledge of analyticity with roepect 
to the two independent variables. Handelstarn*a 
prescription for extending the energy and momentum transfer 
variables simultaneously into the complex plane has 
completely revolutionised modern thinking about tho theory 
of elementary particles.
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2# The Handelstan Kepreaentatton
Let us consider a reaction involving four particles, 

tvo of w M o h  are Incoming and two outgoing. This Is 
shown in Figure 1, where p^,...«,pj|^ ere the four-momenta

Figure 1
of tho porticloe, all of which are represented as 
imgoing. Obviously there are three distinct ways of 
taking the reaction. For example, in the system 
consisting of two nucleons and two pions, the various 
reactions are x ♦ K ic ♦ N, 15 ♦ N <— » % ^ N (with the 
pions interchanged), and x ♦ X <— » H ♦ N.

Energy-mo men turn conservation gives
♦ Pg ♦ • 0

Xt is convenient to introduce three invariants s^, a^t Sg
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doflned by

,̂= l̂'î
“• (1.6)

S = \i')

Each of them corresponda to the aquare of the total 
energy In the barycentric eyatem for the different poeaible 
pairings of tlto pnrtioloe in Figure 1* They are not 
linearly independent, but are connected by the equation

4. = vv>̂̂ 4- vvv\ ̂   ̂ (T#7)

where 'vvit ( i w 1,,.. ,4) are the maeeoe of the particle» 
and are given by ~ . Only two scalars are
needed to specify a four-particle reaction# these may 
be token as any two of the invariants e^, Sg, s^# In 
relativistic dispersion troatments, it is necessary to 
extend these tîiree variables throughout tho whole of tho 
complex plane.

It is a general feature of scattering reactions in 
elementary particle physics that, after separating off 
charge and spin dcpondenco, any process can be described 
by a sot of invariant amplitudes f\ say. These
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amplitudeo are of course functions of »g# (only
tvo of which arc indopondont)« Moreover, ono con also

3)invoke tho oubatltution which provides tZio
information that all of tho thro© reactions in Figaro 1 
(of the tvo-particlo type being diocussed) can be described

Ai)by exactly the same sot of invariant maplitudoe A  ♦
The physical amplitudes for any particular process are

.ci)the boundary values of tho analytic functions A when 
tZie variables a^, Sg, s^ approach their physical values 
for that process* On© cnn further sliow that the 
physical regions for the throe reactions of Figure 1 
are non-overlapping.

The substitution law is obviously very powerful and 
is of the utmost importance in dispersion relations. It
was first discovered in quantum field theory. When 
there are two or more of the intoracting particles 
identical, the cubstitution law reduces to "crossing 
symmetry". Interchanging two like particles leaves the 
sign of any amplitude unaltered or else changes the sign, 
depending on whother tho particles are bosons or fermions# 
it also interchanges two of the variables leaving the 
third ono alone. Obviously if the two like particles 
occur together in the initial or final state, crossing
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syraaotry aoroly corresponde to the Poult principle* 
Mandolstaa waa tho first to propose a general 

roprosexitacion for tho invariant iufix)lltulos. A typical
amplitude may be donated by A(s^, Sg, s^) where nil three 
variabloc have boon exhibited explicitly* The 
Mandelstam ropresentntion exproeseo A in the formi

(1.8)

All the spectral functions  ̂ are real, and the 
integrations ere over the areas in vliicU tho spectral 
functions do not vanish* The boundaries of these 
areas can be evaluated for any particular reaction, and a 
general procedure for doing so has also been given by 
Mandelstam* If tho integrals in (X*8) are not 
sufficiently convergent, they may be made so by the 
standard method of "subtractions".

One can easily reduce (X«8) to single disporsion 
relation fom. For oxanple, for fixed Sg, A may be
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expreasod os ,.. -.—  ^

-v i A,fe,.s'̂ 1  ̂ (1.9)
(s-̂ o J ' ŝ;-s,) 7c j U[-sj

where

KK^^,‘>̂  = T,(si ^ ic W +- -MhA.
'' C<-S) ""J ’

(I.10)

with a elmllar formula for Ag involving  ̂ and .
Xt may be deduced that Aĵ  ie the imaginary part of the 
amplitude A vhon tho variables take values in the physical 
region for tho roaction in Figure 1 in which is the 
square of the baryoentrio energy. Outside this region, 

becomes complex; (X.IO) then constitutes an analytic 
continuation for In general, is called tho
absorptive part. Corresponding statements hold for A^« 

The analytic properties of A(Sj ,̂ Sg, s^) can bo 
directly deduced from (l.9) and (I.10). Singularities 
(poles and branch cuts) occur for the vanishing of the 
various denominatora. Chow^^^ has given a physical
interpretation of those singularities, and draws on 
analogy to the problem of finding tho Coulomb potential 
due to point charges and line charges.

The positions of the singularities are determined
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by the deiiO£dn(itcr© axul the possible enorg^r states* 
SlnguliU'il ioo close to tZie phycJcal region of th© 
variables itro asoociatoc! with one- end two-particle

and correspond to "long-range forces"; those 
will control collisiona with high angular momenta*
Distant sinGUlaritioe, ho\/evor, give rleo to short-range 
forces, and aro related to multi-partiole states. 
Unfortunately, It is impot^sibl© at present to deal with 
thoao ccnplicatod etatoa; they form a great stumbling 
block to calculations with the Monde1stam representation* 

Also in Chow*s picture, tho weighting functions 
etc* are oquivalont to tho "strengths" of the "forces", 
and oay bo evaluated by using the unitarity condition 
for the S-matrix* Writing S e l ^ ' Z . v T  , we find that 
the unitarity of tho S-matrix leads to

E v T  = t V .

Tho invariant amplitude A is proportional to T, so that

A,k, s,") oc X ^ < j l T \  v>
 ̂ (I.II)

OC ^ 1 "  \^ ;

where the \^y form a complete set of quantum mechanical
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State»• Thus In calculating absorptive part## on© soon 
runs into trouble again vrlth multi-partIcl© otntee.

Wîien Ms*nd©lstm4 first proposed hi® two-dimoneional 
reprosentaiion# it was hoped that, together with unitarity# 
It would form a framework for complote calculations 
Involving a minimum number of empirical parameters*
The Hrjndoletam representation could therefore be regarded 
as the basic postulate of n new theory. Any problem 
should bo capable of solution by starting from it and 
using only such other general concepts as unitarity and 
symmetry principles. Hovovor, this ideal situation 
ha® not 60 far been achieved in practice. Ono of the 
main difficulties is the lack of knowledge about the 
spectral functions# and in fact# most of the investigations 
on doublo dispersion relations have involved only those 
parts which can bo calculated from other simple 
considerations. There also seems some doubt about the 
number of basic constants necessary for a complete theory. 
Further, a generalisation of Mandelstam*® ideas is 
required to handle multi-partiole states.

Host of the elementary problems of nuclear physics 
have been roattacked by means of the Handelatom 
roproaontation with renewed vigour, and a vast number of
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pupora hciO hoen puMlehod. TTie general policy ia to 
cv&luato ac much ac can be handled * GrJcin̂ ; nso of any 
helpful cxi>erlîâcatal info m a t  ion (each no rtoninnnt 
a ta too and roaoimnces), Cviid. tZien to conparo with 
Gxperinent. In tZxis way, many intorooting facts hnv® 
boon discovorcd, an veil no gaining nnch incite into tho 
various problems* It io to be hoped that come day tZiese 
problcnc will nil bo colvcd by u complete, consistent 
dynaaalcal theory.

Tho most fundamental problem la that of pion-plon 
scattering, and a considérable amount of work has 
recently boon devoted to it. Tho general formalism 
has boon aot up by Chew and îîandolstam^^^ for partial 
wr.vo amplitudes and only two-pion Intomediate states*
Tho singularities in tho ^  piano {ô  being tho
barycentric Momentum) can easily be deduced from the 
double dispersion relationss they lie on tho real V -axis 
for o < c oo and \) 4, . It is also possible
to relate the discontinuity across tZie left-hand cut in 
terms of that on tho right from crossing. As a method 
of solution, Chew and Mandelstam suggested expressing 
the partial wave amplitude ae , where tlie
numerator function No contains the left-hand cut, and
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tho donomlnator function tho right-hand cut. In thlo 
way, they wore able to obtain a set of coupled Integral 
equations for the Ht and 3^ , There ie only on©
paramotor X involved, and thie may be interpreted ae the 
%% coupling constant ; poweible values of X are limited 
by tho condition that there is no %% bound state.

Calculations^^^ wore carried out with the S- and P- 
wavos being the dominant state». A resonanc© was 
obtained for tho S-wave in the isotopic 1 * 0  state at 
low energies. However for the P-wave, the integral 
©(iuations became divergent, and to obtain e self-consistent 
solution, a cut-off (corresponding to a now paromoter)
(lad to be introduced.

Cini and Fublni^^^ have also obtained the Chew- 
Handelstam equations by using a power series approximation 
in tho double spoctral integrals#

(s, - (s,' - s,') J (-Sj - S]
)_

(1.12)
+ s Ls; + sAdsi Ai!iL -1 J

keeping as many terms in the expansion as are needed to 
represent largo phase shifts. The advantage of this
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method le that the necessary approximation# are made at 
the beginning in a clear-cut manner. Tho theory io 
approximatoly valid at low onorgles, but for high cnorgiee 
its asymptotic behaviour is inconsistent with unitarity.

Another attach on the %% scattering problem was 
carried out by Bransdon and Moffat^^^ using tho inverse 
partial wave amplitudes. The resulting coupled integral 
equations are more amenable to numorical calculation, 
and these authors obtained both B- and P-wavo low energy 
rosominoes, the positions and widths being determined 
entirely by il . This result is certainly what might 
be expected from general coneldoration»^^^, but many 
objections have boon raised about a method Involving 
inverse amplitudes.

Moro recently. Chew and Frautschi^^^ have sugneated 
a moans of calculating the fringes of the double spectral 
functional these regions are likely to control the physical 
elastic scattering amplitude for arbitrarily high energies 
at small momentum transfers. This "strip approximation" 
might well be a step in the right direction. Obviously 
tho evaluation of the spectral functions is of vital 
importance to the success of a complete theory.

In the meantime, many calculations have been made
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to find tho effect of a %% Interaction on various 
proceaees* One of the first was the vork of Praser 
and Fulco^^^» Making use of their dispersion treatment
for n ♦ ^ — V H ♦ Mt they were able to obtain reasonable
agreement with tho experimental data on tho oloctro- 
magnetic isovector form factors of tho nucleon# on the 
assoriiption that the itx interaction was dominated by a 
rosonanco in tho I 1# J « 1 state at an energy \ U  S'|u,\

The pion«nucleon scattering problem has also boon 
tackled by Fraser and Fulco^^^# and separately by 
Frautschi and Walecka^^^• In both of these papers# 
the analytic properties of the partlal-wav© amplitudes 
are determined. Frautschi and Ualocka make calculations 
for the J e ^/2, P-wave state by approximating the
cuts by a set of Judiciously chosen polesf they assume
knowledge of the %% interaction from the Frazer^Fulco 
work on nuoloon form factors. Using the ^/d method of 
solution# they were able to obtain t2ie general features 
of exporimontal data with only thle very simple version 
of tho theory.

Preceases involving photons# Y ♦ x —> n ♦ « and 
Y ♦ H — > K ♦ N# have been examined respectively by 
Vong^^) and hall^^\ The latter found that the
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introduction of a iwt interaction gave only a email 
alteration in the Chow# Coldberger# Low and Kambtt 
roeulte^^)#

hu\All of tho60 roaotlone have been inveetigoted ' 
too using the Cinl«*Fubini approximation. On the whole# 
the résulté obtained are similar to tliose from the 
Chew«>HandelBtai3 programme* By fitting the experimental 
pion«»nucleon phase shifts as well as the nucleon 
electroffiagnetio form factors# Bowoock et al* deduced that 
the I # 1 " J pion-pion rt sonenco should be at 
ae compared to the much lower Frazer-Fulco value * Recent
trends also seem to indicate a much larger resonance
energy I it probably has a value^^^ nearer \  ̂  z-g

Considerable interest has also been paid to strange 
particle interactions # for example K«*meson«»nucleon 
scattering and absorption* One is greatly liondicapped 
here since there is uncertainty about the parities of the 
reacting particles# and the values of the coupling 
constants are unknown* Experiments w M c h  could be of 
help are rather inaccurate and sparse* The consequences 
of the Mandelstam representation have been examined too 
in connection with non»relativistio scattering 
double dispersion relations have in fact been proved for
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a certain class of potentials#
Tho Handolstam rspresentstlon attributes certain 

analytic properties to S-matri% elements# Xt is 
tImrefor# natural to see whether such a conjecture can bo 
tied up with conventional field theory. Work in this 
dirootion was started off by Karpina § Sommerfiold and 
Wlckmann^^^ who studied the vertex function and tho 
fourth order Feynman diagram of perturbation theory#
Their treatment wao soon cxtondcd^^^ to a general 
order diogram^^^ I and such an examination has gone 
a long way to Justifying the Mandelstam representation#
It has also lod to the discovery of anomalous thresholds# 
and has shown that for many reactions a Handelstarn 
representation certainly does not hold#

One might well ask at this stage what the present 
position of quantum field theory is# as regards strong 
interactions* There seems to be a diversity of opinion# 
Londau^^^ has stated that further work with field theory 
is a waste of time# Chev^^^ does not adopt such a 
strong point of view# but asserts that it is **dostined 
Just to fads away"# On the other hand# many pliysicists 
are still actively engaged in research in field theory# 
Few would deny the extreme importance and value of the
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part it ha© played# for through it have boon diocovored 
many of tho underlying law© of physic© (for oxamplo# 
tho ©ymaotry principle©)• However# grave doubt© have 
boon coat on it© validity in tho realm of strong 
interaction©I it way well be that hero the analytic 
S«matris plus unitarity ie the fundamental theory.
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3* Outline of Calcul f̂ tlona|
Tho problem of pion^nuoleon scattering poseeseea 

Q long history• As mentioned in the previous aeotioxis# 
it hue bseti studied in the ChewLow model and the single 
dispersion relations of Chew, Ooldberger, Low and Nambu, 
while recently a more satisfactory treatment has been 
given in the Mandelstam forr^alism by Frautschi and 
Walocks# All those investigations were for low energies 
only, below the first pion«*nucleon resonance which occurs 
for pion kinetic energies of 200 MeV in the laboratory 
frame of reference# In particular, by examining 
explicitly the J « ^^2, P- partial wave amplitude, 
Frautschi and Ualecka were able to reproduce tlio general 
features of the low energy experiments by using only 
very simple approximations for the more complete double 
dispersion relation theory#

However, a large amount of data, both experimental^^^ 
and theoretical^ ', ie now available for pion*nucleon 
scattering up to several GeV# Of course, for such 
high energies, inelastic production processes are 
possible and they become very important, especially 
ft ♦ M ft ♦ X # H* From graphs of the cross-soctions, 
two rofionances in tho pion*nucloon system have been
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found to occur at pion kinetic energies of about 6OO MeV 
and 900 MoV, in addition to the large first resonance 
at 200 HeV. This latter resonance is known with 
certainty to occur through a r«vave pion*nucleon state 
with total isotopic spin I « and total angular 
momentum J # ^/2* For the two higher resonances, 
oxpcriment seems to indicate that their corresponding 
paramo tors are I » i ,  J * ® ^ / 2, D-wuve and 1 # ^ ,  J m ^ / 2, 
F«wave rospoctively*

Chapter XX of this thesis is concerned with the 
extension of elastic pion-nucloon scattering up to medium 
enorgios (about 750 HoV), The P- end D- partial wave 
amplitudes are examined using the straightforword approach 
of Frautschi and Walecka in the hope that, even with this 
comparatively simple theory, some information will be 
obtained particularly for energies above the first 
resonance•

The procedure employed is to deduce the analytic 
properties of the partial wave amplitudes in the s«*plane 
(o is the square of the barycentrio energy W$ Frautschi 
and Walecka work in the W-#plane) from a Mandelstam 
representation for the invariant 4»vector amplitudes, 
and to replace the various cuts by a set of poles.
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However, In order to determine these pole positions and 
tho rcalduoe there, it is necessary to make use of a 
certain amount of experimental information# the masses 
of the reacting particles ( H ̂  6*73!p) # the pion-nucleon 
coupling constant (g '± 15) # the position of the dominant 
first resonance ( 8#9p), and the nucleon electro
magnetic form factors (via the Traser-rulco theory).
Of course, if one could handle the nandclstam 
roproscntation correctly, no experimental input data 
would be necessary# the results would be obtained in 
terms of only on© parameter which presumably would define 
the maos scale.

Above the first resonance, the inelastic process 
X e N — > X f X e N becomes important* From angular 
distributions and momenta spectra, experiment yields 
strong evidenoe^^^ #54) in the final state, the
nucleon ie closely associated with one of the pions, and 
they appear to bo moving relative to each other in a 
P-wave, i # ^/2, j # state, that is, with the 
parameters corresponding to the first pion-nucleon 
resonance. In Chapter III, an attempt has therefore 
been made to include explicitly this inelastic channel 
X ♦ X ♦ M by reducing it to a two-particle state x ♦ H*,
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and troating N* as an ieobarlo nucleon particle of 
Intrinsic leotoplc spin ^/2, spin ^/2, oven parity and 
mass corrospondlng to the barycentrio energy of the first 
pion-nucleon resonance* Some relevant theory of spin 2 
particles is first of all noted, and then the kinematics 
and analytic properties of the process x ♦ N — > x ♦ R*' 
discussed* It is found that a Mondeletam representation 
does not hold for this process, but it is still possible 
to incorporate the Horn terms* The coupling constant 
gS for the xNN^ vertex is estimated by comparison with 
oxpcrincnt*

Pion photoproduction Y ♦ N — > x ♦ N is studied in 
Chapter IV# Experiment reveals three resonances in the 
cross-sections, for photon laboratory energies of about 
350 MeV, 75Û MeV and I050 MeV* It is interesting to 
note that the laboratory kinetic energies which an incident 
pion would need to produce the barycentrio energies as 
in these photoproduction cases, are in fact approximately 
200 MeV, 600 HeV and 900 MeV, the positions of the 
resonances in pion-nucleon scattering* This is just 
another indication of the close connection between 
photoproduction and pion-nucleon scattering*

Tho Mandelstam reproeontation has beon written down
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by Ball# and wa use thla to obtain tho analytic proportioo 
of the muXtipole amplitudes* Wo have concentrated In 
particular on the magnetic and electric dipole amplitudes 
which Iiave total angular momentum J • ̂ /si these have
boon augceeted^^^ #5^) the résonant etatee# A rough
estimation ie also made for tho effect of the Y ♦ x —> N t H 
reaction* The pole approximation# for photoproduction 
ere then combined with tl>oee already obtained in Chapter#
Ilf III, and the photoproduction crose-sootion# calculated*

The method of solution employed throughout is the 
^Vd method introduced by Chew and Mandelstaa, and which 
ie greatly simplified when the cuts are replaced by poles*
A generalisation to multi-channel processes (two particles 
per channel) ha# been made by DJorken^®^. In the present 
considerations, we have altogether three channels

(1) Y ♦ ÎÎ (2) X ♦ N (3) X ♦ R*.

For any specified total isotopic spin and total
angular momentum, the scattering an^litudes for the 
various possible processes can be incorporated into a 
matrix g(s). A typical elemont g (s) is the transition 
amplitude from channel i to channel j  ̂for example, 
represents the process x ♦ K — > X ♦ R** It is assumed
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that g(s) can he expressed in the form

= D"m Nu) (I#13)

where R and D are of course square matrices* The 
unitarity condition for inverse of g(s) is

where is the barycentrio momentum in the channel,
and 9̂  is the stop function 0 or 1 according as V is 
less than or greater than the threshold energy in the 
channel*

In any amplitude  ̂ the left-hand cuts are
replaced by a set of poles at i, ) with
corresponding residues . In order to satisfy the 
niemann-Schwarz reflection principle

 ̂  ̂ (1*15)

any complex pole must bo accompanied by its complex 
conjugate pole* These poles are incorporated into
h(s), and writing

^  ^  (1.16) 

ensures that g(s) possoaaes its correct left-hand polos
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find residues.
B(s} is taken to iiioXude all the right-hand cuts. 

From (Z*X5) and (X.X6), wo deduce that

end hence obtain the subtracted dispersion relation

= î)c-(i.)+ dU' 3 "  . (I»17)
 ̂ J (s'-sX̂ '-s,)

The normalisation may bo chosen so that

'Î)c-Uo'̂ = .

It also follows from (l«13) and (l#l4) that, for real e,

T v a , 3)..(s ) ^  •

Hence (X.17) becomes

OO

The lower limit of integration is determined by the process 
being considered and tho step function 9j.

Assuming the pole positions and residues are known, 
vs may find the by putting s = in (1.18)
and solving the resulting sot of simulteneous equations.
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Ono can thon calculate and l)-(s) for the physical
energy range of Intoreet (the Integral# in (x.10) become 
principal value integrals).

In later work, tho above theory will require slight 
modification#. This ie because we shall ueo redefined 
amplitudes, aa well as consider the special 1 x 1 and 2 x 2  
cases* However, these modifications are indicated where 
necessary*
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CHArTKR XX - PXOR-NÜCI.EO?^ BCATTKniRG 
Hany of tho basic formulao relevant to this chapter 

havo already been prosontcd in the papers of Chow, Goldborger 
Low and Kambu^^^, and Trautechi and Valocka^^^* The 
latter authors also give a full discussion of tho 
Mandelataa roprosentation, and tho analytic proporties 
of tho partial wave amplitudes are derived in the U-planei 
in tholr calculations, they concentrate on the J »»
P-wavo* For tho saho of costpletonoss, we shall includo 
these formulae here. Using the earae notation, we shall
work in the s-plane, obtaining the corresponding expressions 
for any partial wave, and later specialising to the 
p- and D-vavos.

1. Klnenaties*
For pion-nucleon scattering, we denote p^, as the 

incoming nucleon and pion four-momenta respectively, with 
pg, the corresponding outgoing particles* The
Lorents scalars may bo taken as

(II,1)

s, u and t are the squares of the energies in the respective
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(a) It f N ♦ K (b) i; + W — >% ♦ M (c) %  ^ %  -^N ♦ N
Pleure 2»

barycentrio oyatoma for the throe roactiona shotm In 
Figure 2 (a» p label the charge etatee of the plone)« 
They ore not linearly Independent» but are connected by 
the equation

+ U/ -V t ■= 2 Nl̂ + Z1̂,

In the baryoontrlc eyotem of Figure 2 (a) » we have

4- —  VJ 4- Xa^ (.1 —  9'')

tr - — 0— (^0^
(II.2)

where V Is the total energy, 9 the scattering angle, and
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q the magnitude of tho momentum;

Tho T«matrl% element for tho proceee is defined by 

with ÛU e 1. T may be expressed in the form

(11.1»)

where A#B are functions of a, u, t.
The decomposition in isotopio spin space is

= V  A ' \  1 IXf, Tj X"'
(II.5)

Total laotoplc aplna of ^/z, /z ora allowad, and the
corresponding oigenampXitudes ere obtained by taking the 
appropriate combination of the amplitudest

a" - A"- ft'-' i\‘ . 2 A'-' <«•«)

The substitution law immediately
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yields the following croaslng relational

A“'cî,u = ± » + Ep\tA,s,t) (11*7)

These enable us to express the values of A#B for the 
crossed pion-nucleon scattering case Figure 2(b) In 
terms of those for Figure 2(a)«

V© wish to study the partial wave amplitudes 
They are states of orbital angular momentum 4, total 
angular momentum J » X i "jt# and parity -(-l) t and 
are related to the scattering phase shifts by

1  • ("'«)

The differential cross-section is

<tl Ï Ï Ü i l p  iiX
I'l.n ‘i.i  ̂ ^

(IX.9)

whore tho matrix element is taken between Pauli spinors# 
and the summation indicates a sum ovor the final spin 
states end an average ovor tho initial ones. An angular 
momonturn dooompo&ition shows that
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(XI.10)

'- I. i-fc" - îiï’l ?,'«

with X « CO» 8 • Inverting those equations# wo obtain

4,19 . & j‘«  ^

Also# using (IX»9) and (II.4), ono can dcduco that

(XI.12)
^   ̂ ---—  [-A\ + Iw + N") ,ItTcV̂  ^

Cozabining (ll#il) and (XX.XS)» we finally obtain tho 
required oxproasion for tho partial wave ai^Xitudo» in 
terms of the invariant amplitudes A#Bt

 ̂ j A- ( (xi.13)
) 

+1
where  ̂ and similarly
Here u# t may bo regarded as functions of e#%.
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ïlovovGV, it la botter to work with the «u#lltude qcs)Ojit
doricod by

.1
Vt^ " . (II. 11»)

Dividing by introducos no additional eingularities 
in the , since it ia weXX-known that the phase-
shifts behave aa ae o • Thua by working
with ensures tliat our final rceults will poaaese
the correct threshold behaviour a# o • have
also multiplied by # in order to retain the convergence 
of certain integrals which occur later in the ^/d  solution.
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2# ybo Mandelatarn renieeontation; analytic properties. 
Xt Ic assumed that thu invariant auiplitudaa 

eatisfy a Handclotam representation. Denoting these 
amplitudes collectively by n-") we have

* 4 Î « Î - '

where (̂)
~  o (.'' = 1,̂ 1

tf = - C  = = R? = -w»-

(u)Tho spectral functions are real# and non-vanishing 
in regions whoso boundaries have been calculated by 
Mandelstam^^^I they are asymptotic to the lower limits 
of integration indicated in (IX.15)

One can easily reduce (IX.15) to a one-dimonsional 
form; for example# fur fixed s ,

î-n”- ii-N' IT J w_t) ’
ih+K f
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whuro

a'"' 1TC
(HJ.,'

I
K dU' U(<t'

> 1 I— w.r {ÿ)
L s ' ^ 4 ! ^  J (s'-4)-OO

- K U^'

This enables us to derive a sinplo expression for the
.IS)corrosponding partial wave amj>lltudo s by

projection# we have

yAj "
r+(

a x Mf s-N̂)-t ^
M dix

à-K
Tlelx) i L ' A t V ' t U i ü

(11.17)

r
It'-t)

It ie now posaiblo to deduce the mmlytic properties 
of the in tho e-planc from (l.l]), (I#l4) and the
Kondolstam reproeontation#

(l) The first terms in A^# above give rise
to a cut for s. s s oo Since also # this
corresponds to the physical region for pion-nucleon 
scattering# Figure 2(a)# and thus is called the physical 
cut. Tho second integrals of A^# however do not
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produce any «jingularltloeî they arise artificially in 
the reduction of tho double dispersion relations to the 
single dispersion relation form.

(il) Tho  ̂ term produces o polo at s = N̂ . 
However, (s-kM is independent of ^ , and it follows 
from tho orthogonality proporties of the Legendre 
polynomials that this pole occurs only in tîie J # 
^ f # O o r l ,  states. Since we shall be
concentrating later on tho J « P- and D-wavos, we
shall omit this polo term from further consideration.

Tho otU«r singularities arising from (lX,17) may 
be oaoily obtained by writing the other denominators 
LvL-N"") , and (t'-t) explicitly in terms of s and x
(using (IX.2)), They are all linear in x , and
therefore tho singularities are end-point singularities, 
that is, tho branch points occur for x^±\ , Uhon the
denominators vanish, we obtain simple quadratic equations, 
the roots of wliich yield the branch cuts in the s-plano, 

(ill) For tho Cuo-wA term, wo obtain the quadratic

where -i & % \ Ono can irmediatoly show that the
roots arc real, and the corresponding cuts are a short



— 43 —

cut (N- ̂  < s <= ijO'')  ̂ and a cut along tho
negative real s-axl© ^ o

(iv) Tho quadratic cotreepouding to the 
denominator is

(j4rx̂ z ̂0-'-  ̂— ()—X •=• 0 ^

where \ and vJ ^ CN̂ - |xÿ- . Again the roots may
be shown to be real for vx,' tliroughout its allowed range, 
and tho resulting cut is - «o . Vo call
thio tho crossed pion-nucleon cut, because of its close 
connoction with Figure 2(b) (as follows directly from 
tho Mandelatarn representation).

(y) TÎ10 denominator (t'-tj vanishes for

"t 4- Zĉ  0'“’̂') ■=- o

with and  ̂t' s oo the roots of the resulting
quadratic or©

 ̂ + cNV|N'̂y.\-x)] ± j It' i-x) 1 ̂

It follows that thoeo roots are real only for t! ^ ^
but are complex in the Interval V ^ The
corroGponding cut lies along the negative real axis 
_oo Ç  ̂ ^ o tho circle )$\ = (n̂') This cut is
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called tho %t: cut, einc© It la related to the reaction 
% + X — ♦ H of Figure 2(c)# Later, i e shall 
concentrate only on part of the circle cut * here we havo

s> - ^
' (11.18)

Xt might be added that, for more general réactions 
in which all tho particloo havo differont masaoe, those 
Uenomlnatore give rise to quartic eqtuitiono in a, of the 
form

X t)') % Ŷ cs>

whore 0 < I. However, ae mentioned above, the branch
points are given when \  ̂and tho quart!o then reduces 
to a quadratic again plus two additional branch points
at s » 0 and s » - oo.

(vi) Finally, there is a kinematical cut along
the negative real s-axis, due to the W-factors In the
coefficients of (IX.13); this is called the 
■irrationality cut*"^^^*

All of these cuts are Indicated in Figure 3^^^.
A Cauchy integral may now be taken round all of the cuts.
Ve also take tho integral round a contour inside the circle 
even though its value (for a point outside it) is serof 
it allows us to work entirely in t o m e  of discontinuities
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rxi*ur^

across the cuts.
The contribution from any particular cut on the left 

will be of the form

_L \
2TC't TC

(IX.19)

where C le a (olockwiee) contour round tho cut. and the 
absorptive part is just

(XX,20)

refers to one side of the out# and to the other
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side* Aa explained in % 3 of the introduction, our 
policy will be to replace an integral as in (11*19) 
by a set of pole tertis of the form - ŝ)  ̂ so
that they will be approximately equal to OftCh other 
when Q takes value® in tho (physical) enorf^y region wo 
are intcreoted in* Obviously, in order to deterrzlne 
the appropriate pole positions and the corresponding 
residues, one must ovaluato the absorptive parte for the 
variouo loft-haxxd cuts*

Tho general absorptive parts in terras of and A, 
for the crossed cut and the %% cut rempectivsly have 
in foot been derived by Frautsclii and Walecka directly 
from tho Mandelstam representation. They also show that^ 
in the positive part o  ̂s < of the crossed

cut, tho variables are in their physical region for tho 
crossed pion^^nucloon scattoring process Figure 2(b)  ̂

that is, LN + ̂f and -i  ̂+ i  ̂where is the
corresponding cosine of tho scattering angle* This 
section is therefore called the crossed physical cut*
Thus by using the crossing relatione, ono con evaluate 
the absorptivo part for the crossed physical cut in 
terms of physical pion«*nucloon scattering; we shall use 
this important point later*
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3. The glnf^le**micleon term
The alnglo nucleon term contributee to all

partial wavee. Vritln^

^ (X4- ̂

where o.  ̂  ̂ and eubetitutlng Into
(II.13) and (II.14), we obtain

(11.21)
\ V/ (,+' P M

-"xj % - ic i j _fü—  ,

The Intogratione with respect to % may bo carried 
out for any particular angular momentum state. (A 
number of such Integrals has been set out In Appendix A). 
The Integrated result always contains a logarithm term 
log • It Is precisely this logarithm which gives
rise to the single nucleon cuts % the argument (7^  
become# real and negative for e taking the values 
(M- <s < and - ÛO s ^ o . The discontinuities
across those cuts aro therefore easy to find, since a 
logarithm discontinuity is Just . Nor is It
difficult to dotorralne tho appropriate sign of the 
discontinuityI this may be done by finding whether the
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denominator acquiree a email poaitivo or negative 
imaginary part a®  ̂ ^  % ± I ueo of the identity

T̂Cii (.'X-V cC)
'%+a, + 1,6. %-+ ou

then load® to the required anewor.
One can i;miediRtely dotomlno tho absorptive part 

for the ©hort cut* For & ̂  s ±  ̂ we find o-
nonce we obtain the following result® for the short cut :

. i-'ii1+

(11.22)
lW+Nf:-W-N) ̂  -\) t y?"ÿv;+N)oij'

These ore drawn in Figure 4.

SHo +1  ̂Lut

0 vt Cu/t
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For tho cut alone the negative real axis» there Is 
an added complication duo to irrationality* hovertheloss, 
the discontinuity is still reasonably simple to evaluate*
We aee that# on performing the integration in (XX*2l)# 
a typical term has the form (remembering 'ex' is a function 
of a)

(Lĉ) -4- jiU) ^ (11.23)

whoro the coefficient ^  is a function of W. Writing
s - - to*-  ̂ and XU'û) =. 4- V  ̂ VO can deduce

that the corresponding discontinuity is

m  -V- 1 4- JLCs) J!̂  ̂ . (11*24)

Tho corresponding absorptive parts for tho amplitudes 
being considered are drawn in Figure 3*

rO.S-

FJUZlîlS^.
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Tho integrals (XI*19) were computed for a range of 
0 corresponding to pion kinetic energies in the laboratory 
syatom up to 730 HoV* Tho following pole terms were 
found to give reasonable approximations (with p. » l)

tii.
‘Ix ^ f \g . I \ 1 310

S-WÇ-X SV\J+0 S+ÇlO ^
(11.25)

■ (;)L̂
A two-*poXe approximation was taken for the P«»wave 
amplitude along tho negative real axis since# as we shall 
see lator# this contribution is a very important ono in 
this partial wave. It turns out that# for the D<»wave# 
the single nucleon terms are not so dominant. The 
polos at s ^ correspond to the static nucleon pole
of the Chew«>Low theory.
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4# Tho croQêêd physical cut
It hao boon previously noted that the Grossed 

physical cut o  ̂ s ^ is closely associated
with physical pion-nucleon scattering| this follows 
from tho crossing relations. To determine its 
contribution# we use the simple procedure of Trautschi 
and Walecka# and introduce the functions

A..,)'- 1 Ü
J > TC J (jA -Vu)

they are both analytic in the s-plano except for a branch 
cut along the crossed xN cut# across which they have the 
correct discontinuities.

From (11.12)# VO have

= «.cVjI F̂ -'

B u.x.') = «-A/1  ^ ,

(11.27)

The Fj, # Fg may now be expanded in terms of the partial 
wave autplitudee by (XI.IO). (Frsutschi and
Walecka have shown that those Legendre polynomial 
expansions ore in fact valid on tho crossed physical cut#
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but not on tho negative real axle part of the crossed
cut) # Further# assuming the dominance of the resonant 

(^# ^) state in those expansions# we obtain

(11.28)

The existence of this resonance and its position are 
Qxperimontal results. Groat simplification is introduced 
into our calculations if ve take tho resonance as a very 
sharp one. Chew# Goldberger# Low and Kambu have sho%m 
that this corresponds to the approximation

whore Ÿ  ~ , and V I i s  the barycentric energy
of the resonance.

Tho absorptive parts in tho integrands of (ZX.26) 
may now be obtained by substituting (XX.28)# (XX.29) 
into (XX.27)# and using the crossing relations. Taking 
tho appropriate linear combinations of tho isotopic spin 
amplitudes# we obtain
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1C
■■ C

vhore Ivif-tis+fsfllvlf-(n- ^ ^  ,
1. eivan by vii*" = ZN'-̂ - ijv̂- _ s - . Gubstitutlng
these formulae into the above exproseions for
and P) (s.x.)"" and performing tho integration# wo obtain

A\.,-.
(11.30)

6 Cs.x') - -(lJ  ̂ \  ^

It ia now aimplo to deduce from (ll«30)
Writing {.H~ n#

where

"t. Xa (̂V Jli

w« derive the formule

M- I
(11.31)

+l(vJÎ-viïA+VJ') . (yJÎ-2.K-v/)) f
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Prom an examination of the logarithm term logl^^, .
\ D  — I I

it may bo shown that tho cut liee in tho intorval

< s & (11.32)

which is contained in o  ̂ s <  ̂ this may be eeen
immediately from (11.3%) by remembering that VIJ ̂
Thus as a result of the sharp resonance approximation# 
the crossed physical cut has been reduced to (II•32)*

In exactly the aamo way as described in detail in % 3 
above for tho single nucleon term# one can easily obtain 
from (ll,3i) expressions for the partial waves 
and by performing the appropriate integrations.
Those ii^nodiatoly glvo tho algebraic formulae for the 
corresponding absorptive parts for the cut (11,32); 
the Cauchy intégrale round tho cut may then be computed 
for a rango of physical values of a. Tho following 
polo approximations wore obtained

3/a.If
'* »+ V w-y 5 - If

(IX.33)
• (I)

We see that those terms aro quite small# and consequently
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it ia found that the crossed physical cut contributions 
do not have much effect on our final results*

Similar work was carried through with tho second 
and third pion«»nucl6on scattering resonances included 
(taking them to be I * J • ^^2 # D»wavs end I »
J «a F«wave states respectively), Their contributions
were likewise found to be small# and so are omitted in 
further calculations.

It is impossiblo at present to tackle the negative 
real axis part of the crossed xN cut. The reason 
for this is that wo can no longer use the Legendre 
polynomial expansions for and F^# since they now 
diverge. To calculate the absorptive parts for tho 
negative real axis cut requires a knowledge about the 
doable spoctral functions thornsolves; vary little is 
known about them at the prosent time.
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5* Tho eat .
As was found convenient in discussing tho crossed 

physical cut# vs introduce new functions /\  ̂ E>(s,xV
which enable us to calculate very easily tho contribution 
froa tho %% cut. They aro defined by

TTTt

which have tho appropriate analytic properties# namely a 
branch cut Along tho icx cut with tho correct diecontinuitios 
across it. It follows from tho Mandelstam representation 
that tho abaorptivo parts in the intogranda of (IX.34) 
correspond to the absorptive parts of the amplitudes A#B  

for tho process %  ̂ N ♦ N (Figure 2(c)). This
latter reaction has been studied in detail by Frazer and 
Fuloo# who uso it to enable them to investigate the 
elsetromagnotic form factors of the nucleon. Here# we 
QhalX tako the oloctromagnotic form factors as given# 
and use them to estimate the necessary absorptive parte.

Lot us consider the reaction ic ♦ — > IT ♦ ÎT in its
barycentrio system. Let |>, ^ denote the magnitudes 
of the nucleon and meson siomenta respectively! then
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s = 4-

w - ^
(11.35)

V = 1^1^+ r") = h- = V&* ^

where &  le tho total nucléon energy# and 'y le given by

 ̂ (11.36)
H  4% ‘

t la of course the square of tho energy Iti tîile barycentrio 
system.

The B«matrix element for the proceea la

%  ' a,0iS' ,

where the T#*matri% can bo expressed in the form

T  . - A  ̂1 1 ,̂
The leotopic spin decomposition is exactly the same as 
in (XX.3) for pion-nucleon scattering# but now total 
leotopic spina of 0#1 aro the allowed states. Xt may 
bo shown tliat the projection operators for X * 0#1
are ^  and reapoctivoly| so that
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Frazer and Fulco have shown how A#B may be expressed 
in tormo of hollclty amplitudoes

(11.38)
oo

where tho are the redefined heliclty
amplitudes for x ♦ x — > N ♦ N. Tho leotopic epin

(+\
indices have been omitted in (ZZ«38)« Tlie 
corro©ponding expansions for the absorptive parts

A  and E It, s follow immediately
from (11.38).

VJo wish to uso the latter partial wave expansions 
on the XX out, over part of viiich s and hence cos ^  
are complex• Xt is therefore necessary to dotermine 
tho region of convergence of those expansions. Since
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a function iit') which is analytic inside an eilipso 
with foci at % = ± \ can be expanded in a Legendre 
polynomial aeries within the ellipse, we must find from 
the Mandelstam reproeentation which singularities limit 
tho size of the ellipse* They in fact come from the 
vanishing of the denominotore in the oxproasion for A3 
when the two-dimensional spoctral functions aro
non-sero. By considering the regions in which the f,-.

ko)do not vanish, Frazer and Fulco proved ' that the 
Legendre polynomial expansions were valid over only 
part of the XX cut, namely that section of the circle 
for which  ̂ . The contribution from the xx cut has
thorofore boen ovaluatcd as far as is possible at present, 
that ia for kb""  ̂ using the Frazer-Fulco theory*
To treat the rerfiaindor would require a knowledge of the 
double spoctral functions*

¥e now assume that the x * X — > N ♦ N reaction is 
dominated by the I * 1, J « 1 state* From (11*37),
this moans that

and from (11 * 38),
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kA'oi ^

As£''tlv
(11.39)

Frazer and Fulco havo related the hollclty amplitudes 
 ̂ (t) to tho nuoloon oloctromagnotlo form factors.

For tho photon-nucloon vortex

Figure 6#

illustrated in Figure 6, the amplitude has the form

describos the charge structure, while 0^ describee 
tho anomalous ciagnotic moment strudturo* It ia now 
convenient to introduce the isotopic scalar and vector
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splitting

For roro momenturn transfer, we have that

(.o') s ŜL =. Q, l@)

(11.40)

(II.41)

(̂ 10') 2 - i'̂5- ̂  .

It follows from coneervation of G-parity that for the 
leoacalar part, only odd pion etatoe (3p, gp,....) are 
allowed for Y —  ̂!ÎÎT, but even plon states (2p, 4p,, *.. ) 
aro allowed for tho isovector part.

riegarded as functions of t, the are analytic
in tho t-plane except for a branch cut t o-K
along the positive real axis. Thus we can write the 
following dispersion relations for thomi

if' ê h  . • t ff IS
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where vo havo used to make a subtraction in the
cliarge from factors Q, (t).

The next stop is to relate tho (concentrating
now on the isovector form factors for which two-pipn 
Intermediate states are allowed) to the pion form factor 

It) and the process x ♦ x —  ̂ R ♦ H# using uni tari ty 
for tho process Y —  ̂N ♦ H with only a two-pion 
intermediate state. The result of tliis is

wiiere

(ir.44)

and ^ , y- c  ̂  ̂ .

Solving for tUo and Ç it-) In (11.44), and
•ubatttuting into (Zl.39). wo obtain

k A A'os (I&)
(11.45)
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It is also reasonable to make tho approximation

 ̂ (11.46)

Where i# tho value of neglecting any
pion-pion interaction* From (11*43)# we then obtain 
for

Assuming a xx roconanco in the I » 1, J e l  state
m

at an energy u 11,gp , one can derive a simple formula 
for the pion form factor '

^   . (11.48)

Further simplification is obtained if AU P  is
taken to have a very sharp resonance| equivalently

-M>3 r It') =  ̂ ^  . (11,49)

The may bo evaluated by using (ll,48) which yields
Ito
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Substituting (ll«47) into tho integrand# and using tho 
known valuea

 ̂ = 0-bi

19 ifrom Chow# Uarplua# Gaaiorowica and Zachariaaon 
ono finds that

1;̂ - = - \S.(o (11.50)

From (11,45)# (11,49) and (XI,56)# ve obtain tho 
exprêsdiono

7T

k &  = _ (̂0) a + z)î) S [\-\)

and putting those into the integrands of (11,34) with 
the appropriate isotopio epin combinations# we obtain

(11.51)

Ve may now finally deduce the formula for the partial
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wave amplitude. Writing

t = -X‘̂ (.A--*-) , 
Where oV = (,\  ̂ we find

= (i) ibicoi'**”- 1̂*% ̂

+\

J_.

”&±|W
(11.52)

As a result of talcing a sharp resonance at 
the XX cut is reduced in sise, and extends over only 
part of tho circle K it is open at the end near tho 
physical region, and starts at tho angles 4? « ± 23§^.
This can again be deduced from the logaritlim term arising 
after the integration in (IX.52) is performedt or else 
by observing from the quadratic equation discussed in 
%2(v) above that, for any given t! , the branch points 
occur for

By computing tho absorptive parts from (XX.52) 
and tho corresponding Cauchy integrals, we find that the 
contributions from 23J® < i 4> i < 66® can be approximated by
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—M'S — So 4 L
s -US't-S'SO

’■" \ ^ j  L Ï  -  U^s’+ î t  si.) Ï  -  iM . f f - Z k r i )

(11.53)

AS stated before, we ore unable ae yet to calculate the 
offoot of the negative real axis and the remaining part 
of tho circle, duo to a look of knowledge about the double 
spectral functions.
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6# neesults
Having approxlnatcd by polo torma (IX.25), (ll.33)t 

(11.53) all the left-hand cuts which can bo handled, wo 
aro now in a position to use tho ^/d method of solution. 
Obviously tho reaction x ♦ W — > X ♦ IÏ which wa are 
considering at tho moment, ia a single «.channel (x * K) 
processt it is a special case of the general discussion 
given in tho Introduction (Chapter X, % 3)#

Tho unitarlty condition for tho inverse of tho partial 
wave nmplitudo becomes

(11.54)w .  ' $»■ V «ix •

An extra factor ^ / s*- arises in (11.54) due to the 
redefinition (XI.l4) of tho amplitudes. (!̂ V̂ la the
ratio of tho total to elastic cross-sections for the 
particular partial wave being considered. Xt ia thie 
ratio which takes into account the existence of all the 
other energetically possible channels; this may be 
deduced by letting tho phase shifts become complex. For 
pure elastic scattering of tho partial wave, the ratio is 
If while for its total Absorption, it is 2, For strong 
interactional in fact, takes only values between
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1 and 2 for all physical s . It Is of course
possible to envisage some reaction in w M c h  tho ratio 
doo© bocono greater than 2, , but thie doos not happen 
for pion-nuoloon scattering.

Writing cj  ̂iJN ao be fore, we obtain

r4(.s> = ^  Dk")
(11.55)

>

whero we have omitted the varioua isotopic spin and 
angular momentum indices. In order to make the 
integration in (XI.35) simpler, an average value was 
taken for the ratio of tho cross-sections over tho 
whole energy range| we considered values between 1.0 
and 1.5# The were first calculated by solving
the appropriate set of simultaneous equations, then 
K(s)i d (s ) and finally the pion-nucleon phaso shifts (5̂ .̂ 
Tho results of these single-channel considerations are 
indicated in Figures 7 and 8 for the P- end D-waves 
reepoctlvely.

For the P-wave, our results are similar to those of
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CM

= 10

bO «0

UO ■̂0 90

P t y i i c # ! ,  V a l u . * 6  o f  S  .

PJ)L\j%vcol V-aA-wt̂  of s

<10 lOO

-s'

Figuro 7. (a) nnd (b) 
Single nucleon terms only, — All pion«»nucleon

poles.
- - - - Experiment
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%  |>0

4= m.0too

Û.)
Oft\, VokL̂w oj- % 

yto

Firure 8, (a) and (b) 
Single nucleon terms only# — All plon-nucloon 

poloe*
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rraiitôchl and Valocka who worked In tho W-plano» Tho 
qualitative foaturos of oxperimoat for both isotopio 
opin etatea 1 » ^/2, W z  are certainly reproduced*
However, tho position of tho (^/s, ^/z) resonance 
obtained ia rather lower than tho experimental ono.
Also, the phase eiiift starts falling off at higher
enorgiooi this is where our pole approximations aro not 
so good. If ia talion greater than 1#0, tho
resonance position is lowered even further, but the 
higher onorgy phase shifts aro incroaaod. The resonance 
position can bo improved hoifever by taking slightly 
leas than 1). Xt is significant that the %% polos havo 
little effect on the I *■ 2 phase shifts, wîieroas they
alter the X # § phase shifts by about 30^. The X «» ^/2 
state is completely dominated by tho large poles on tho 
negative real axis for the single nucleon term. (These 
correspond to poles on tho inoginary axis of the W#"plane). 
The other polos nearer tho physical region moroly affect 
the shape of tlie graph for . It is Indeed an
important advantage of this simple method of approximating 
cuts by polos in being able to see clearly the effects 
of tho individual contributions*

A very interesting rosult ie obtained in the D«-wave,
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I w i# J R Gtato. It can bo scon from Ficure 8(a) 
that tho Gln^lo nucleon terms alone (;ivo amall negative 
phase shifts In contradiction to the experimental values 
of • As noted oi rlier, the crossed physical pole
gives only a email contribution* It is in fact the 
XX poles which have tho dominant effect in this partial

C * 1wave ; they cause the phaso shifts to become
positive and largo I which is what would be expected if 
it was indeed this state that produced the second resonance* 

Thooe same iziz polesj docrcneo the single nucleon 
phase shifts in Figure 0(b) for , and are strong 
enough to make the resulting phase shifts small and 
negative. Experimentally * tho Sj) are not very well 
dotormined^^^, but there is a slight indication that 
they are small and positive* It would therefore appear 
that wo have used too powerful a %7C interaction*
Ilowovor# even If we were to reduce this so as to keep 
the still positivef it would not alter the qualitative
features of the phase shifts* The conclusion
tSiereforo from t2io D-wave is that a %% interaction has a 
strong influence on tho second resonance*
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rnAPTER XII * THE % ♦ N» CHANNEL*

As was raontlonad in the Introductiont tho inoXaatio 
process çî ♦ N — ». x + ♦ N becomes very important above
tho first resonance. For tho present investigations,
VO have reduced tills rather infamous tliree^particlo state 
7C ♦ 1Î ♦ n to a two-partlclo one it ♦ N^* where H* is 
rogardod as a bound pion«*nucloon system (isobaric nucleon) 
vhloh we shall take ae having intrinsic iso topic spin 
spin and even parity, with a mass (also denoted by N*) 
equal to the barycontric energy of the first pion^nucleon 
rosonanco (U* 8, pp) * If tho initial % + N state has
j « and is D-^wavo, it follows from the conservation 
of total angular monantum and parity that the N* particle 
and tho other final state pion are in a relative S*vave 
state. This approximation seems to be well-justified 
by oxpcrimont for energies up to about 750 MeV.

1* Kinematics*
Wo shall first of all set out some formulae for 

spin 2 particles. A spin 2 particle N* can be 
described by a wave function which satisfies
the equations
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with the Dubsidinry condition

is a 4-voctor, each component of which io A epinor*
Explicit ferns of tills wave function when tho direction 
of motion of N* is along tho positive a-axia have been

Denoting os , ve59)given by KusaUa '
have tho four independent positive energy solutions

% JO -  o

^ 'Y-, 4?’ =0

-W (IIX.I)
=• -<1% "M*

l'"' = R  ̂ ^  (jT = i

thejr correspond to spin projection* -^/s, - ÿ,
respectively in the N* rest frame*  ̂ ^  and -2* are 
the usual orthogonal polarisation vectorsi

C and P in (XXX*l) are tho energy end magnitude of the 
aomontum respectively of tho N* particle I *̂1 ere
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tho spin i  vaVO functions*
Tho T-rsatrix element for % f N — > ic ♦ N* can be 

written in the form

Tiu = IQ,Y ^ + ̂ 1%. (Q,+ aO
(ZIX.2)

^ Uy.ifi'i If €  + (.Q.+ 'Di.')

vhero Qĵ , Qg are tho nxoson momenta, Pg tho nucleon
and ÎÎ* momenta respectively. In the barycentrio system, 
wo shall denote tho total energy W ^  ae usual, and 
the scattering angle by (E) . The invariant scalars 
ere

s= - IP»-̂ Q,f  ̂ u,= -  ̂ -t = - (a-Qx"̂  (ill.3)

2 2 2where a 4 u 4 t a H *  ♦ N  t 2p , One can easily show 
that the particle energies are

E, N̂ -V>)  ̂ E:, . ̂  1$ ̂  N*L 1̂ )
(XXI.4)

Q° = w  , Q N  ^Cs-N»^ l*>) ,

and the magnitudes of the 3-momenta are
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(IXI.3)

Tho T-matrlx form (III.2) can bo reduced to a 
3-voctor fora by using

U,(.P) = A  - ^ - ■

[XTAIE*
±'V.where Is a Pauli epinor. Proa (III.2), we then

obtain the expression 0 ^ %   ̂ with

Ü, - Rvt*. "

The ....>) are defined by

^  i^lW+N'T- f)V [Jt + %]
(III.7)

[ l \ N - | _ - A ;  +\vJ 

and  ̂ havo exactly tho sacia form as ^
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raspoctlvfiXy but with  ̂ replaced by *€> '̂S,
The next task Is to expross the partial wave 

nmplitiidoo la t o m s  of tho invariant anplittulos
-̂Cb, S • This can bo done by using tho general 

formula

, (III.8)

whore tho Initial and final stated are linear combinations 
of spin and orbital angular momentum, Tho initial state 
is

i ‘ Y  X \  Y^ 18,4)) .

and tho final state (J " ^/s, L' 0) is

= là)'" C.  ̂ .

As can be seen, the full expansion of (ill.8) will 
contain a large number of Clobsch-Gordon coefficients 
and spherical harmonics! there is no difficulty Involved
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in deriving this expansion, but It le laborious» The 
rcsultlrig Dzprc;$nions arc rathor long and complicated, 
and need not Im> r^>produced hero » However, tho work la 
greatly simplified by observing that the Intogrend of tho 
J1 -intogratlon la (ill.8) is rotationally invariant.
This allows ua to transform to tho frame in which 9' « 0, 
that is the one in which Is moving along the positive
z«#directlon. Uo may therefore use the Kusnka wave 
functions (XXX.1) in th@ final state expansions. Further, 
tho spherical harniontcs may be combined by using the 
thoorera^^^

U L. 4-fTT (.XL+ \ ) .

for spherical harmonics at tho some angle.
We shall merely quote the final result obtained by 

tho above method for tho partial wave which is of 
Intorost to ua (J « V 2, D-wave going to S-wave) 1

- -̂«r) Vo W  - \ ̂

-V-
(III.9)
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whoro t!i9 are related to tho invariant acinlltudes
A-,% , ^ . S  by (III.7).

For tho reaction % + N — > % f N* vlth the angular 
momentum statem already stated, we shall use the 
redefined amplitude

^  , (III.10)

whoro channel (2) refer© to x ♦ K, and channel (3) to 
% ♦ N#.
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2^ Analytic prouurtica
Tho ikuportant quo a ti on at thia atago la: cio tho

invariant cuplitudco A, 3, %  pocsoaa a îîandolataa
rôproboiitatlon? Tho answer is that they üo not. Thle 
nay be proved by examining tho fourth order loop diagram 
in Figure 9* %t is in fact a spocial caso of tho more

Fiiiure,^

general situation Investigated by tho author^^^ in which 
an external stability condition^^^ #^9) violated at 
ono of tho corners of a Feynman diagram# This paper• 
apart from a fow minor alterationsf has been included 
in Appendix D. It is shown that the scattering amplitude
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has complox singularities| and these invalidate a 
liondelBtan rcprooentatlon*

It la no longer possible to calculate the die- 
continu!tiee across most of the branch cuts of tho 
partial vavo amplitudes in tho s-plano# as vo did in 
Cliapter II for pion-nucloon scattering. However, it is 
still possible to incorporate part of tho it ♦ N — > it ♦ K* 
reaction into our calculations, namoly the contribution 
from tho croasod single nucloon diagram, Figure 10,

N

rir.uro 10.

In analogy to the pion-nucleon scattering case, the 
corresponding Dorn torra hero for it ♦ H — > it ♦ N* will 
be of the form r—Î— . . From (III.3) - (ill.5) it
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follows that

where » coe cs>, and

^ CS-̂ - N*V yJ") " \ÛL = —
1_7-S

(iii.ii)

Tho resulting singularities of Ls'» In the s-plane may 
now be deduced* After Integration in (ill,9) with 
respect to , wo will obtain the logarithm term log 
The argument beconos real and nogatlvo when the condition

Ou

is satisfied. Tho branch points of the corresponding 
cuts in tho s-plane arc given by tho roots of (III.12) 
when 9̂  « 1; (III.12) then reduces from a quartic equation 
in a to a quadratic, plus the two additional roots at 
s *■ 0 and s tt -oo • Tho roots of tho quadratic turn out 
to bo



^ 83 -

For N B e G.gpL, thoso roots are the complex
conjugate pair

(III.13)

Tho cute of the Horn amplitude are theroforo along the 
negative real axis -o« ss t o  ̂and between the points
(ill.13). Thoso aro indicated in Figure 11, as well as 
tho physical cut  ̂̂ (N f p) . For tho negative real 
axle, there is also an irrationality cut. Instead of

V-

rifiure 11.

employing the moro accurato complex cut as shown# wo 
took it (for ease of computation) as a straight line 
botwocn the branch points. The discontinuitioa over tho
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unphysical cuts aro not difficult to calculatei they are 
proportional to $ whore i© the usual pion-
nucleon coupling constant given by ^  = h-tc If - ^
and eg* ie tho coupling parameter for the vertex*
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3* raytlal wave amplitude»
Prom a elnplo perturbation treatnont for Figure 10#

VO may derive the siiigXe nucloon terms for the Invariant 
amplitudes#

A • 4  V1-,

^   ̂ vu-S'- '̂'■‘5* (III. 14)

^ 3Êf =- o .

The ij| factor hero is tho ieotopic spin factor for the 
state X «

Tho definition of is arbitrary, but wo have 
taken it so that tho Mamiltonian for the xHN* vertex is

I <  IT:, NO - N* 14% K, N,,J

4-

In order to find on ostimato of %   ̂ it was 
ussuctod that the first pion-nucloon scattering resonance 
took ploco through the diagram shown in Figure 12, that 
is, with the N# particle as the intermediate state*
The matrix element for this Feynman diagram ie

VA.W . (III.13)
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\
\

/ /
t

TC \

\
N N'*' N

Flf^uro 12,

where ie tho propagator function for the
intermediate particle (momentum k ), and ie

with

4- W +  " ̂yV)p 1.

62)

(III.16)

When (III.I6) ie eubetituted into (111,15)# the resulting
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expression must reduce to the T-aatrlx formula (ll,b) 
for pion-nucloon scattering. On doing tWLs, ono can 
find oxplicit exproesiono for in terms of Vl.'i 
and the masses of the interacting partioles, as veil 
as cÿj’* • Hence the partial vavo amplitude 
may bo obtained from (IX,I3) and (IX,lb). This vas 
compared with the corresponding sharp resonance formula

 ̂ cw-m (vv'Vin)

of Chew, Goldberger, Low and . Reasonable
agreement over a range of values of s was obtained for

-  ( o .

Substitution of (III.lb), (III.7) and (III.9) into 
(1x1,10) yioldo tho following expanded form for .

+1 ryj^x
-\

+ %' lk+4 ̂  f,(x)

f.w) ̂ J
(III.17)

’ ! >
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The absorptive parts across the cuts may bo evaluated 
in the usual manner, and pole terms obtained from tho 
Cauchy integrals* It vae found that could be
approximated byi

From (ill.18), it will bo soon that tho contribution 
from tho negative real axis hae boon replaced simply 
by a polo at the origin.
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b. Rosults
At the present stage, there ere now two eUannele 

available, x ♦ H and x ♦ H*, which wo will lable aa 
(2) and (3) reopoctively. They aro both I » §, J « 2
atatea* The extended ^/d method of BJorken (described 
in Chapter X, % 3) indicates how the tiro chaxmols are 
coupled, and it is therefore possible to calculate the 
amplitude for pion-nucleon scattering with the 
inelastic channel n + U* explicitly taken into account*

Tho polo approximations for the single nucloon cut, 
tho croeeed physical out and the %% cut of the pion 
nucleon scattering amplitude have been stated in
(11.23), (ll*33) and (II.33)* As discussed in the 
present chapter, we have been able to obtain pole terms 
(ill.18) for tho Born amplitude of (end hence also
of ) • However tho reaction x ♦ — > x ♦
is extremoly complicated and prohibitively diffucult to 
tackle I it has theroforo been omitted completely in our 
work.

From a knowledge of tho polo positions and the 
residues, ono can easily re-calculoto the pion-nucleon 
phase shifts 2̂- having incorporated the effect of the 
D o m  term of tho reaction x 4 N <— > % ♦ Our results
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for thla aro preoentodt in Figure 13

t

loO go foo

Flfiuro 13
Singlo channel pion«»nuGleon scattoring 

(all iCf poles)
Plon-nucleon scattering (all polos# 

polos included)#
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It will bo eecn that# although tho % 4 N# channel 
(aa far as we have treated It) doee not produce a 
significant alteration of the phase shifts. It certainly 
does enhance them above tho values obtained for purely 
elastic pion-nucXeon scattering with all other possible 
reactions nogloctod* Hovcvor, the phase shifts
remain dominated by tho %% pole terms of , This
result may well be an indication that It is the %% 
interaction which is providing the mechanism for the 
higher pion-nucloon resonances»
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cnAPTrn iv - p i o n rnoTornomTCTiON

It is voll«*knovn that pion photoprocJuctien is 
strongly dopondont on pion«*nucleon scattering# The 
close connection between the two processes ie clearly 
Indicated by the ^/d  method# which relates their various 
contributions in n definite manner# Such is the topic 
considered in the present cîiapter# and photoproduction 
is investigated with the knowledge of the results 
previously obtained for the reactions % ^ N — » n ♦ H 
and i; f N —  ̂it + N̂ *# The procedure is similar to
that used already in Chapters IX and III, Pole 
approximations ore calculated from the analytic properties 
of the amplitudest with particular roforenco to the 
J » ^/s# magnetic and electric dipoles# since those are 
tho states which tiro thought to give rise to the 
rosonancos in tho photoproduction crosse-sections,

1# Kinematics»
Most of the formulae in this section, as veil as in 

the next# aro contained in the works of Chew, Goldberger# 
Low and llambû *̂  ̂# and Ball^^^ | our notation is similar, 
though a few alterations havo been made#
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The momenta of tho interacting pertlclos are 
denoted by Q and K corresponding to tho outgoing
and incoming nuoloono# the pion and tho photon roopectivoly* 
The invariant scalars nay be taken as

VA- =. — (.P V — K ( I V . 1 )

they are the squares of the energies in tho barycontric 
systems of the three reactions indicated in Figure l4#

(a) Y ♦ N * n (b) Y ♦ N ♦

Pifttire 14#

(c) Y ♦ ç; -^N ♦ N

In particulart wo shall consider the photoproduction 
process. Here



t  = v l~

(%V,2)

= |Â — Z tOfe, 4* C6S 9

o. l@.k)where ^ Is the angle given by cos 9 = \

are tho nucléon energies* ^ is the pion energy# and 
are the magnitudes of tho final and initial momenta 
respectively. In terms of a and U* we have

E,-^Cs+Ki»-')  ̂ '^1= ^  Cs -̂nV jJ-')  ̂ .0 =

(IVO)

The S^matrix element for tho process is

=(iron yüriski"
The T-matrix in turn may be expanded in the fora

T ^ 4- -t  ̂ (IV,4)

where A, ^  ̂C  ̂D  are invariant functions of a* u* t*
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and

M.% - (̂ ■̂ XQ.''v') ~ (.9.

He -- >5 \C)ï,iXû.n-ĉ|.k X û .O^ (IV.3)

H t> -- - i-M ,

with ? - -klV^rV
The ieotopio spin decomposition is

^ r . 1 [T, T,) X" + 1, X" ̂ (IV.6)

and similarly for ^ ^ ̂ ̂  # The substitution law then 
yields tho following crossing relations with respect to 
tho interchange of # and ui

U,o:i t-'» L+,o\A & c 1) symmetrical

\ C+j®l L— ̂
f\ %  ̂ c D  antisymmotrical

(IV.7)

We now wish to derive expressions for the angular 
momentum oigcnamplitudoe in terms of the invariant 
amplitudes At, g ̂ , D  . Wo first of all note that the



differential cross<*^soction is given by 

where

= {(i-t') '̂ , -V- ^(.9:

The are related to the A ̂ ^ ̂ ^ by

t» 'N '\ ^(.E,i-N)LE^^N'iy^

zw  1

(,^-N 'l IE , + 'n |

z v i

W -N") ^CEi+N'i6,+ N )\'’%

zW

(yl-U) V e ,+ n )

%N4-f4)

^  '- .-zrrx TTTT.i. . :7 C  , M l  + M )

(IV.8)

(IV.9)

and these equations also serve as definitions for the ^  
funotione* On tho other hand, the nay be expressed 
In terms of the multipole amplitudesi
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i=

\  - ^  1(̂ +1 ^ -1

'- I If».- Mi*] + [Ei.^ %]')

Hr Ji-\

(IV.10)

The multipole amplitude# Mg*  ̂ are functions only
of •! they refer reepootively to tranaitions initiated 
by magnotio and electric radiation, leading to final 
states of orbital angular momentum t and total angular 
momentum ĵ ± .

From conservation of total angular momentum and 
parity, one can easily deduce a table for possible 
transitionst
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Angular Momentum
Uultlpolo Parlty

(total)
Final 

(orbital),X
Initial 

(orbital), L Total, J

I I Macnetle 3

I i-\ x-'i Elaotrlo 3^

I I Magnetic S'" Ir'T

I £+1 X-'i Elootrlo 3"-

Finally, (lV,10) may bo roveraed to obtain 
in torma of the t

-I
\ r"'

-V

w.- - ^  l-"^.Iw + \ -\^)')] JL>.
(IV,XI)

l^\



«• 1 0 0 ^

(IV.11), together with (XV.9)t yields the required 
relations botweon tho multipolo amplitudes ^
and tho invariant amplitudes E C   ̂ 1 ) .

However, in order to retain tho correct tîxroehold 
behaviour as ^  o and o , we shall employ redefined
amplitudes. As stated before, we shall concentrate 
on the magnetic and electric dipoles which have J « ^/2f 
that is, and respectively. The appropriate 
redefined amplitudes are

nonce we may derive the expressions

(IV.13)

c  ̂ tl r ~ Q

(IV.X4)
- ̂  Fi kw- ̂ .4 - (V-)~ w ]
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2# The Tfftndelstftrîî représentât Ion g analytic properties. 
For convenience, wo shall denote the amplitudes

, C*-̂' , i f  by , i.i, ,17, . Ve
assume that the invariant amplitudes satisfy a 
Mandelstam representation

H J.W
l!+t|v)*’ ( I V . I 5 )

« Ü)
-t)

\ T ,, r . .1+ cU
tq

Due to invariance under G-parity, the lower limit 
depends on the isotopic spin; for tho isotopic vector 
amplitudes t whoroaa for the isotopic
scalar amplitudes  ̂ Tho spectral

- - r

functions are real, and tlio boundaries of tho regions 
in which they oro non-vanishing, are asymptotic to the 
lower limits.

Tho polo terms are more complicated} they correspond 
to the lowest order uncrossed and crossed nucleon 
diagrams.
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IIt I
% . -7I+ \-̂*-

S.r'

c

D

.1k%

-kit

"Nt 
Fit * F'*-/

F»V - F»v\
hk - ̂TAt

Vs-NM

1*5»'NM

I -Nt ̂ 
-^VvrM 

Nvi

'\

(IV.16)

where  ̂ ij  ̂t  ̂ , rk = ««*1 -\^ [̂ N̂ .
For fixoc^a, the one-dimenaional form of the 

Mandelstam representation (XV.15) Is

Ai' \ f . V\,Ĉ u‘]d.u' --:---
Oo

X l̂ - ̂) (IV.17)

usl̂ e.*z.

V̂ i ĉ X) = 1 «  iîli'^ J , o - - *!
i)

Wj -- TC y»' + - Vvi'
/S'X» (.''!,t')

(IV.18)

In analogy to tho plon-nucleon caao, and are the
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I l  (J)absorptive parta of rr when tho variables arc In their 
physical regions for the reactions Y ♦ N — > 1Ç ♦ N,
Y ♦ ^ .— > IÎ ♦ H respectively, indicated in Figure®

We may now deduce the analytic properties of the 
multipolo amplitude® in the a-plane.

(i) We first note that on uncrossed single 
nucleon diagram is not allowed for J » states; the 
polo term therefore doo® not occur in the
amplitudes  ̂ w© are considering*

(ii) We may write

U-
(IV.19)

where a ^  c = mwl \) - ^
Hence one can deduce that the crossed single nucleon 
tern gives rise to o pole at and a cut along the
negative real axis <,s s, o.

(ill) The terra gives rise to singularities
with branch points at and s=-* , as well as those 
given by the roots of the quadratic equation
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u 's ’- 4- y -  rA’ = 0

with u*' >, CN+j*.f . These roots are all real, lying to the 
loft of the point s  ̂ LN’-- . Tho corresponding
cut (a locus of branch points) ia

The positive part of this cut (IV.20) corresponds to the 
physical region for the reaction Y ♦ N — > x ♦ N 
(Figure l4(b)) which is directly related to physical 
photoproduction (Figaro l4(a)) by crossing.

(iv) Biniilarly, the branch points due to 
occur for s - o $  ̂-oo and for the roots of the quadratic

with >. . Examination of tho discriminant shows
that the roots are real provided that ^ o.

For t' the roots lie along tho negative real axis
. For the roots are complex and of

the form s ̂  \ ̂  lŷ  and it may be easily deduced that 
they lie on the loop



105 -

(IV.21)

This loop is syrinotrical about the real s-axis» and 
alBost colncldos with tho circle H\ = . For the range

-î̂ t' t , we only got part of the loop# starting 
at tho points

•s =-  ̂_

The discontinuity across this cut is related by tho 
Mandolstaa roproocntation to tho absorptive part of tho 
reaction Y 4 •K — > K ♦ W# shown in Figure l4(o).

All of these singularities are drawn In Figure 15# 
We now obtain pole approxioations for tho various parts



- X06 -

3* The gln/Tlo nucleon terns «
The single nucleon terme have boon eot out fully in 

(IV.I6) (for tho J w 2 stateai there are no terms) ;
they divide very conveniently into two types contributions 
©rising from the interaction of the photon with tho 
charge arui anomalous magnetic moment of the nucleon.

Prom (lV.9) and (IV.I6)# we obtain

ÏÏ».«■

Fv Cg.» (IV.22)

F
1̂ -

and

f" (yi-N) ̂

•r [- C v i . N ' ) - JlÉL tW+N) iu.-N̂)

N'-)

(IV.23)

f %C'r.*-
‘‘-.r
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Tliese may now be inserted in (lV.13) # (lV.l4) for Yi f
H-) X ~  )

the roeiduos ut and the absorptive parts along
the negative real axis way then be dotoxnained.

For the polo at , the ^ log ) term
(whore a,b are as given in (iV.ip)) may be evaluated

UowQVor#by oxi>anding in powers of ^ Ü
one cannot do this for % log # since ë " ”
in this case# tho appropriate inverse tangent function 
was taken for tho corresponding integral. It may 
further be noted that & does not have a pole at

The pole approximations were taken as

Iv-'ZM \ 
l-W'î'A
l-̂Oj (IV.24)

i f
04)
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4. Thc^ rrcssrd*»phyFlc;^l phctoproduction cut.
As stated previously# the discontinuity across the 

positive reel cut o < s <: can bo related
by crossing to tho obsorptivo part of the physical 
photbproductlon amplitude. W# proceed to calculate the 
contribution from this cut in a manner similar to that 
used for tho corresponding cut in plon-nucleon scattering.

Resolving (lV#9)» wo obtain

\ V M  V/+M/ ^

(IV.35)

The may be expanded in terms of tho multipolo
amplitudes# as given in (iV.lO)i this is permissible 
on the crossed physical photoproduction cat# since it 
Diay be proved from tho spectral functions that these 
expansions convorge on this cut. We shall further 
assume that the expansions are dominated by the 
amplitude (Chew# Goldberger# Low and Kambu showed that
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thla amplitude was ths dominant one at low energies). 
Honco It follows that

F. . „

-V —Ific

fu. 0

and using tho replacements  ̂ x*̂\l)

wo derive tho formulae

Ĉŝ ?c) i ,  — ̂

C Is.x'i = -V o3l>) -  (IV.27)

1) ) = ^CM \x + ‘̂'•''> ■'•'2-C'*)+N')]

0Where y}-Ŷ -, ^,°L «nd w ere given in
(XV.3). The Isotopio epin superscripts^^ have been
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omitted throughout*
Wo shall ma!;o tho additional assumption that it is 

the X o z isotopio spin state which ie the more 
important I thus

L'l ^ -1/ , (IV.38)

(P) .The isotopio epin amplitude contributes only to X o 2* 
Chew# Ooldberger# Low and Nambu have obtained a formula 
relating to the pion-nucloon (^# scattering
amplitudo

C(̂v"N)
“K  ~ ~ T T  ■ ) (IV.39)

where are non-rationalieod# and & « 0.08, The so
approximation» (lV.28) and (lV.29) may be substituted 
into (IV.27)» yielding convenient formulae for 3).

The contribution from tho crossed physical 
photoproduction cut may bo evaluated in a simple manner 
by introducing tho functions

. 1 I i.' (IV.30)
' i *
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aa Ic tho plon-nucleon scattering cnsei thoeo functions 
obviously have tho correct analytic properties. The 
required absorptivo parts of s) may be obtained
from (IV.27) and tho crossing relations (IV.7)« The 
integrals in (IV.30) are greatly simplified by again 
using the sharp resonance formula

[in his integralst Ball uses an effective range formula], 
Hence wo obtain1

T<fn)

s
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The quantitloa with suffix ’R* have W replaced by VĴ  

in their definitions. (IV.3I) may now be substituted 
into (lV#9) to yield expressions for and from
(IV.13), (IV.14).

Tho crossed cut is shortened slightly as a result 
of the sharp resonance approximation (as can be seen 
from the logarithm terms obtained from (IV.3I)I the 
limits (positive e) arc given by the oquationa

and can easily bo computed to be

0 6 5 S; (IV.32)

The eoirespending pole approximations were found to be

(IV,33)

Tho negative axis part of the crossed photoproduction
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cut is nogloctodt in order to estimato its contribution# 
wo would need to know tho values of tho double spectral 
functions.
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5. The X% cut
Very little ie known about the process Y 4 x —  ̂N 4 K. 

however, in this section, an attempt is made to calculate 
its offoot on photoproductionI it ie hoped that the 
results we obtain for the Yx cut in this section is at 
least of the correct order of magnitude.

Figure l4(o) for the process Y 4 % M 4 N can be 
derived from the photoproduotion procees (Figure 14(a)) 
by making the substitutions

, Q-*Q'= - a . (IV.3%)

In tho barycontric system for the reaction, we have

 ̂= - (-K- us6'

U. = ^ îf wB' (IV.35)

t = - lo! + Kf = (3-E

where \>,V are the magnitudes of tho final and initial 
momenta respectively, E ie the energy of a final state 
baryon, and coo 9' ^ ^ the square of the
total barycentric energy, and

 ̂V = , E = kfv . (IV.36)
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The s-ffi€itrlx element (from (IV*34) ie given by

Tho differential croas-section ie

ii = wl ^
where

_ IY..D, , l (IV.38)
^  "  ë  i l ,  "  '  i /  W i l \

The of (IV.38) are related to tho invariant amplitudes
A ?> ^ can bo shown that

A ' ̂  I"-”'

T 4 . ]

c - - - w F

^  “ CE'B, €)^]

The discontinuity across the Yx cut can be obtained 
from the unitarity condition
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\ T-T = ̂ <MN )t (IV.40)

continued analytically from physical energies 
to tho interval ^ t s It is aoeuned that the
only important intermediate state in the expansion (XV.4o) 
is a two-pion 1 » 1, J » 1 state. An expansion con be 
made for the in terms of helicity amplitudes,
involving the reactions Y ♦ x — > X ♦ X and % * % — > N ♦ N. 
However, the helicity amplitudes for the latter reaction 
may be eliminated by ro-expressing them in terms of the 
isotopic-voctor electromagnetic form factors of the
nucleon. The result of such a calculation (as given by 
Gall, and by Gourdin, lîartln end Lurie) is

a ' t te) It)

\ /

(IV.41)
jVVs = 0
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C®)The iâotopic spin amplitude is the only one which yields 
a contributiont since invariance under G-parity forbids 
tvo-plon states for the'"'̂'"'̂ amplitudes# is a real
function arising from Y ♦ x -> n ♦ X» and Uong^^^ has 
shown that en approximate form for it is

f l±J^\ I L + X \  (IV,42)tfx JL̂O) \ ] \ ̂  t+oC j

whore a p» 3» P * -63, is the pion form factor with 
~ Vb%. A\ ie on arbitrary constant, and Dali 

has deduced from examination of that its
magnitude is of the order of • However, the helicity 
amplitude expansions are not valid over the whole of the 
cut, but only for part of itf it is shown in Appendix C
that they are valid on tho loop up to at most ^90^#

It is convenient to have 2 -function approximations 
for the Ct:l  ̂and those umy be derived from (II.4)), 
(11.48) and (11.49) for cjHt) / P^ct) and Abs Hct) 
respectively. Ucmembering that ĉ'̂.Cb) Is real, we have 
from (11.43) that

from which we Immediately Obtain
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il'IF) ~ ^  F-
(IV.43)

~ \oî,S

4'

The contribution from the near port of tho t% loop
nay bo found in a simple manner by introducing tho functions

^  1  ̂ (IV.44)

which huvo tho correct analytic properties. Substituting 
(XV.43) Into (iv.i40), wo obtain from (IV.44)

--VI
-  iî) \0S-.5- \  (vk,) ti"-'

:  l o \  ibC.C i llf.\ \  A-,0 I VoÇ.S iL̂t) 4^ ■ X J

k) = 0
(IV.45)

c»' .H'C ,o\ ... V  ̂f'”' ?jiW

As a result of tho  ̂-function approximations (TV.43), 
tho t% cut ahrinl^s a little, and for the Frazer-Fulco
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\  loop starts at the points

<► = ko-Oif. ± V ,

Tho corrospending formulae for and may
now bo obtainod from (IV.4$), and the polo approximations 
(for integrations round the near parts of the loop up 
to 90®) were found to bo

X,?' (p'MS-) 'iWv') /\ I (̂ 049 + \'Oivv̂

^ ' S ' -Cvi o - v - ' M - t M v )  \\ I I)

(IV.46)
^ \ (p-\î4 / \  ^  f 0 \ Co-ft- D M 0  t \

Those ere small since
For the negative real axle and the back part of the 

loop of tho cut, one would need to know the spectral 
functional and therefore they have been omitted from the 
present considerations.
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6* Results,
The method has again been employed, and the 

croes-eeotions for the photoproduction procoeoea 
Y ♦ y — > R® 4 , Y 4 4 X, have boon calculated •
The differential cross-section tor unpolarised photons 
and nucleons is

a  = i\\\\

_  us’e

from which the total croaa-aection may be derived.
The two-channel caso, (1) Y 4 H (2) n 4 H, vas 

treated first, using the unitarity condition for the 
inverse of the pion-nucleon scattering amplitude 
stated in (11.34). Quantities wore taken to only first
order in the electromagnetic coupling constant -e. i 
thus it nay bo deduced that
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KĵCs') V 0
(IV.47)

Mgg(e), I>22(^) kavo already been evaluated In Chapter XI, 
eo that tho problca reduces to dotormlning K^^(a),

In tho pion-nucloon scattering case, wo worked with 
the isotopic spin I « ^/z, 2 eigenamplitudes. For
photoproduction, vo therefore carried out tho 
computations first for tho amplitudes \ (icH and

I # from (IV.6), they are related to the
amplitudes by

(IV.48)

where K stand a here for either "Wlki or . The
amplitudes of interest can then be found from

^)(VWV> - 1% + JÎ x w

< )s\\ - j i 1 + J% ̂ )sV ) Vi") ,

(IV.49)
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Tlie pole approximation» for the plon-nucleon X « 2
scattering amplitudes arc given in Chapter XX| (XV.48) 
indicates the appropriate combinations of the pole terms 
determined in the present chapter to be taken for the 
corresponding photoproduction amplitudes.

The experimental cross-sections are drawn in 
Figure 16I our own results are presented in Figures 17 
and 18, corresponding to calculations involving 
and respectively.

The first photoproduction resonance is obtained in 
Figure 17# The energy at which it occurs is rather low* 
this is duo to the fact that the pion nucleon poles by 
themselves only produce a low energy scattering resonance 
(Figure 7(&))# The cross-sections are also larger than 
the experimental values. As an initial calculation, 
the J « 2, P-wave state was neglected and only
the state taken into account. We see from the
Figure that the %% pion-nucleon poles help to decrease 
the cross-sections. Also from the isotopic factors in 
(XV.4g), these cross-sections for the reactions Y e p ^  e p 
end Y 4  ̂ ^ 1C* 4 irv are in the ratio 2il, The inclusion 
of the state reduces this ratio slightly, but
not enough to give agreement with experiment. This
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frould therefore seem to indicate that either ve havo 
uftder^eotimated the etote# or eleo other
multipoles have the effect of reducing the ratio*

The second resonance ie obtained in figure 18#
Again# tlie position is rather lev# end the cross-seotione 
largo. The resonance is basically duo to the dominant 
effect of the J o ^/2# D«vave state. The
ratio li2 for the Y ♦ \> — > ^ # Y e ^ ^ yv

cross«»section9 at these higher energies arises from the 
isotopio spin factors in (IV.48); the effect of the

State is small. Increasing above 1,0
causes the resonance to become more peaked# and its 
position is lovered.

It may be noted that the effect of the Yk photo* 
production cut io small, A range of velues for f\ 
between ot and-̂ ioe, were considered# this caused 
alterations of only 2^ and 3S& on the Y ♦ \̂> — ^ ♦ V •
Y f ^ — > 15̂  ♦ cro9 8*8sotions respectively.

Finally, the channel vas also included in the
calculations for the higher energy cross*sections. The 
results are indicated in Figures 18(a), (b). Because 
of their complication, the % e N* — > « ♦ !!♦ and
Y e N — > % e reactions were omitted.
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In tho previous chapters, a very simple version of 
the theory has been employed to investigate pion*nucleon 
scattering and photoproduction up to second resonance 
energies. By using the various approximations described, 
VO have boon able to reproduce most of the qualitative 
features of the experimental data.

he have firstly considered the J m , P* and D* 
waves of pion^nucleon scattering, resonances being found 
in tho 1 0 ^ / 2  and I « § isotopio spin states respectively. 
In particular, it vas noticed that, for the first 
resonance, the crossed single nucleon terms were the 
dominant onoa, and tho %% interaction had little effect.
On tho other hand, for tho second resonance, the %% 
intoraction played a very significant role, the single 
nucleon terms by thorns elves giving small, negative phase
shifts

Since little io known with certainty about the %% 
interaction, our results indicate that some useful 
information about it might well be gleaned from a 
detailed study of tho D*vavo. It would of course be 
interesting to extend the present treatment to other 
partial waves, especially to the F*wave to see if it is
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possible to obtain the tliird pion*nucleon resonance. 
Recently, the energy at which the X o 1 e J resonance 
le thought to occur lias increased^^^, and the value 
favoured at the moment is , oo compared to the
rreeer*Fulco taken here. Obviously further
calculations related to tho work of this thesis, as well 
as for other portial*waves, should bo made with this 
higher value of . Tho X # O m J state should 
also be included, since more data about this state is now 
becoming available.

The xN* channel is rather difficult to handle, both 
because of the algebraic complication and also because 
tlie reactions involved do not satisfy a Mandelstam 
representation. However, we have shown by taking only
the Born terms of % + N -- > % f N* that the pion
nucleon phase shift is certainly enhanced. Since we 
have already evaluated tho coupling parameter for the 
idfN* vertex, it should be possible to incorporate in 
addition the D o m  texia» of the reaction x ♦ — > x ♦
which ia naturally involved in the matrix ^/d  method.

The results obtained in pion photoproduction depend 
to a groat extent on thoso for pion*nucleon scattering# 
resonances in the photoproduction croes*section appear
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as conséquences of tho corrospond1ng scattorlng ro&onunceSf 
and this has buen shewn by our work on tho J - ^/s, 
nsagnotic and cloctrlc dipole omplitudus* In addition,
It vas found that tho %% pion*nucleon polos reduced the 
height of tlie first resonance photoproduction peaks, while 
variation of tho constant A arising from tho reaction
Y ♦ X — > X ♦ X produced changes of only a few percent*

Again, further etudy should be devoted to other 
multipole amplitudes over nil energies* In particular, 
one would like to detonrilno tho cause of the discrepancy 
(mentioned in Chapter IV} in the ratio of tho first 
resonance peaks for ti*o reactloiiS Y ♦ j? and
Y ♦ Ip — > f and also which state (or states)
gives rise to tho third photoproduction resonance*

Our method has been greatly restricted by the lack 
of knowledge about various sections of the left-hand cuts, 
and we were unable to estimate their contributions*
One would hope that it will not be too long before 
sufficient information is known about tho double spectral 
functions themselves, when both pion-nucleon scattering 
and photoproduction may be solved by means of a complete 
theory.
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A r r r r m i x  a  -  ü s t:F ü L  iN T rn itA L S  

Ne here set out a number of elementary integrals 
involving Logondro polynomiale# and which aro relevant 
to tho thoeio#

O' ■ tO- %4lî4

1>
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.''PPCTDTX n

or; T!P.: .rfALYTTCTTY OF T>/nTXAL 1/AVn AHT'LTT?71)1:8 

Ton t7?ir-TAT̂L-T: PAnTict.nn XX. r::T?Ttnm.i\TXo?̂  T-norrr

i« Introduction
In this appendix » we consider two-particle acattering 

proceeneo of the type a e b  — > o e d » i n  which one of 
the outgoing particles is unstable In the sense that an 
external stability oondition^^^ »^9) violated# If 
one oonslders the enelytio properties of scattering 
amplitudes in terms of Teynsum diagrams, as for example 
in Figure Ig, then tho external stability condition is

Figure 19
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said to be violated at tho (l4) vertex# eay, if |>̂ >
Such a situation ml^ht occur# for example# in the wide» 

angle pair production of oleotrone by photons on protons# 
as in Figure 20. For sufficiently high cnnrgy of the 
incident photon Y^# an eloctron-poaitron pair may be 
produced by a virtual photon Yg vZios# 4*momentum squared 
is large enough to violate an external stability condition 
In the proton Compton acattering amplitude.

sC

PlKUre 20.

Another situation is in the consideration of the



- 135 -

production of pnrtlclos using an Isobar model 
as in

^ * H f N*
Y ♦ N —  X ♦ N* }

where eubsoqaently decays into a nucleon and a pion.
For theae amplitude# (which are of course important in 
tZie rest of tho tboeie)# the external stability condition 
may bo violated at the comer of a graph*

In % 2 (for comploteneee)t we write down briefly 
some essential expressions and the equations of the 
surfaces of possible singularity for the scattering 
amplitude corresponding to tho fourth order loop diagram 
in Figure 19* There is also a discussion of the physical 
shoot and of the contours of integration. Xn % 3# 
we investigate the behaviour of the scattering amplitude 
on these surfaces# and finally in  ̂& describe the 
singularities of the corresponding partial wave amplitudes

2. The scatterim: amplitude an^ Landau surfs^ces.
The scattering amplitude for tho fourth order loop 

diagram in Figure Ip can be written (apart from a ^
constant) in the form#
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\ - 1 „ (n.i)t""* -o O

where

(B.a)= ^«^-X - X,ucd' \y-u~., i U  )

and wo have taken ^ ip,̂+ , Km. = K^ Kh- It ia
more convenlent^^^ #^9) introduce the qaantltiee 

.. defined by the equation#

4- irk I

(BO)

and to change the integration variablee to Xi  ̂given by

TC; = (B.4)
i='

Tho amplitude ^  then reduoea to the simple form:

td   N m 5C - i.x  ̂ <” •’ >ĈTC ̂" (i-X 1̂
“ ° -ù£? ’
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wher©

(3.6)

Lot ua BUppoBO that the quantities all
satisfy both Internal a n d  oxtornal stability condition* 
while violates a n  external stability conditiont 
that is

^ ^  . (0.7)

and ore the variables in tho theory# by (B«3)« 
they ore directly proportional to the more familiar 
energy-squored variables* s and t#

As can be seen directly from (B#2)# the amplitude ̂  

defined in (B.l) and (B*5) (with  ̂ in their real
physical scattering regions) is precisely the Feynman 
amplitude* which io obtained by associating a small 
negative imaginary part to each (l’-i, .... 4-)  ̂ the
squares of the internal masses© So long as the
contours of integration may be taken along the real 
a;,-axes* and the integral in (D#g) is well-defined. 

However* ^  may become singular in the limit as  ̂tends
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to Koro# du© to eithor end-point clngulurity or a 
CO incident singularity (pinching the contour) in ce.ch of 
the intégrations.

A» a conacquexxco of - I , all of tho contours ofu IM- /

integration in (B#5) f^y no longer bo talien ce real when & 
le put equal to zero* For if ^ o w# find
ir^mdlately that D vonlahce at tho pointa

-  I -V

end it ia important to not© that D vanielioa at theae 
pointa for all values of the variable a  ̂ • Those
pointa obviously do not pinch their rospootivo contours# 
and BO they may be avoided by dofoming these contours off 
the real axes* Tills deformation must be carried out in 
suoh a way that ^  romaiaa tho physical scattering 
amplitude. By finding tho zeros of tho denominator in 
(B*5) with ^ ^0 and  ̂and observing their
movstnent as e-^o^ ve may deduce that# wZxsn th# 'x,-
ond T- contoure are of tho fora Indicated in Figure 21,

hbc,)
■ ■'-\ • I • ^

Figure 21
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Also, tho amplitude ^  may be extended outside the 
physical scattoring rogione by continuing analytically
in thé variables M m  | this conatitutee the physical■'*> ) 02-4-
sheet^^^© In our subeequent investigations, wo shall 
therefore consider tho multi-sheotod function FCm , î\HrJ
defined by

F  . V- f jx Jv. (n.,)

where tho contours are os indicated in Figure 21,
end tho X- contours are real# and detorrrine in
particular tho singular!ties of F on its physical shoot©

It can easily be shown tZmt F i# certainly on its 
physical sheet when \  both have small negative
imaginary parts© Expanding D, wo have

D K  -, 'J, +
r,. . , <,(0.10)

and here the on tho right hand side are assumed
to be in their physical regions©

Vith all the real and so 4 positive,
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(B«X0) obviously gives th© Feynman denominator, as in 
(B*3}* üovover, tho factor  ̂ can vanish in
the four oases =. =x^=ohhd
For tho first throe of thoso cases, it is easy to show 
that (o*10) reduces to a positive quantity (again giving 
the correct Teynisen limit as tends to zero) ; for 
oxanple, for -x̂  ̂(B«10) becomes

by eliminating (using ^ \ ), and this has the
positive ninioaum value of ^ ; similarly for
tho second and third cases. The fourth case, - o ,
corresponds precisely to the situation where we have the 
small contour deformations discussed above* Eliminating 

 ̂say, and putting (where ^ is small, and
^ ia in n neighbourhood of the points in (6,8)), we 
find that (B,10) contains the Imaginary part

-IV u-

For the lower defomation, % < i and , wliile for the
upper dofomation, &Rd '̂ <0 * Thus at each of the
deformations, (B.IO) still possesses a small negative
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imaginary part, and 00 again ia the correct Feynman 
denominator, (This is of course what we would have 
expected, since these contour deformations were in 
fact chosen to correspond to the Feynman limit)«
Hence when and approach their real axes from their 
lower half-plane#, F become# identical with the Feynman 
amplitude 'if- and is therefore on its physical sheet.

The surfaces on which F may be singular, are given 
by the vanishing of the determinant and principal minors 
of the matrix £  t

(Bell)

Explicitly, the equation# of these surfaces are:

(B.12)
2-M-
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L; : '1>s -

: '1.̂ = ' J . x ' l )t

(D.13)

and

ts s. cX̂  ̂  =- o (d*jl4)

It will be noticed that, eince m  ^ \ the eurfacoft C■̂14- > ^+and are complex© In Figure 22, we have drawn a 
typical curve ^  corresponding to the real eolutione 

C  ̂ of the equation (0©l4) © ( i \ and = t 1
are asymptotee to r’  ̂ V.% and L-7 &re the horizontal
and vertical tangente raepeotively)•

A picture of the surface ^  which connects the 
various parte of r and which arieee from the complex 
conjugate roots of (n«l4), may bo obtained by using the 
usual search-line teclmique^^^*

\i& must now invoatigate whether F is singular or 
regular on the surfaces (0©12), (B*13) end (B©l4) on its 
physical shoot©
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L

Figure 22.

3# yhe aingularitiea of F .
On© method^^^ of determining the eingularities of 

a scattering amplitude ia to perform an analytic 
continuation in the (real) external maeaea from a region
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of known analytlclty to r noro oxtonslvo region containing 
th© ctcoircHÎ vainen of the external mueeus» and to obaerve 
the gradual dcvolopnent of the Landau aurfaccs* However# 
if one attempts to make a continuation in one of the 
external masses through tho point where an external 
stability condition la violated# a singularity is found 
at that point# This may causa the sudden appearance 
and disappearance of singularities on th© physical sheet 
of r# and GO invalidates tho above method#

The procedure adopted in this appendix is to consider 
the analytic continuation from a region which has

 ̂ "1̂ 4 0 (regular for tho physical shoot of F) #
up to and on to each of tho various Landau surfaces
(B.12)# (D#13) and (B.l4) separately#

For th© surfaces - ± \ , we firstly note that we
can continue analytically from 'R, up to neighbourhoods
of these surfaces without needing to deform tho contours 
of Integration (other than the small deformations 
indicated in Figure 21# of courso) since we can go by a 
route along which D does not vanish# Further# on these 
Gurfacoe (which correspond to x̂ -=i o ) # D reduces to
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where we have eliminated by the £ «function in 
(0$5)# Ae "X, varies along it# contour from 0 to 1 
(Figure 21)» we coe that D is always positive if 
bat vaniohoG (two coincident roots) at tho point 
if (D certainly does not vanish on tho complex
parts of tho «contour» since D acquires a non«zero 
imaginary part there)» Those roots pinch tho contour 
(as may be shown by taking slightly greater than -l)^
Thus F is regular on tho surface '4 ^ \ but
singular on tho surface %  % -I.

Similarly F is regular on  ̂but singular on

It may likewise be seen that no further contour 
deformations are necessary to reach the real tangential 
surfaces , and in fact F is regular on these four
surfaces provided that the conditions

>. 0  ̂ (B.15)

are satisfied# For example » on (which correspond 
to "̂4.-0 ) » D reduces to

^  4- +  + 2-x,x, 'jg ^
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with Yz 4- = I . For %, real* Earplua et al^®^ have
shown that this D con be expressed a# a positive definite 
quadratic form ( 'y,̂ > - 1  L.% ^ if the first of the
conditions (0*15) holds# For complex 
whore | ia in the neighbourhood of tho pointe in (n#8)»
D can be written (eliminating 3̂ ̂ eay) in the form

= (cxvj -f c) lyi

For D to vanish* both its real and imaginary parts must 
vanish eimultanoously# However* the resulting quadratic 
and linear oquatione in ŷ , ore not consistent# and so D 
is non«sero aleo in tho complex parte of the «contour* 
Therefore * because of the non«vanishing of B* F is 
regular on LT | and similar arguments apply for ^ ,

It may be noted that the conditions (B#15) are not really 
very restrictive* and ere certainly satisfied for the 
examples biontioned in %1 of this appendix (in fact*

,̂1, %  , are all positive there).
Similar results of rogularity do not hold* however*

on all of the complex tangential surfaces Vi , 
as may be deduced from the investigations of Landshoff 
and Treimon^^) who considered the reduced vertex diagram
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to which those eurfaces correspond| they showed that# 
whereas L%  ̂ aro regular  ̂ L%  ̂ are singular*
That t is regular on Û. , L* follows from the fact that 
ue may easily continue analytically from ^  up to and on 
to these surfaces without D vanishing* However, in order 
to go from tho region ^  (wliich has < o  ̂  ̂o )
to a neighbourhood of kt , say (which has > o )
we must pass through the real point where 
and D can vanish for a point on the previously chosen 
integration contours* This eingulnrity may nevertheless 
bo avoided by further deforming these contours| this 
can certainly bo done, since we are not yet on any of 
the Landau surfaces and these are the only surfaces 
whero we may have unavoidable singularities* Thus we 
must continually deform tho contours as we enter the 
upper half plane and approach kt until# when we 
finally reach iX  ̂the contours can retreat no further and 
are pinched by coincident singularities* Hence we are 
unable to continue F analytically from iL on to iX , or 
similarly on to * F is therefore singular on ut, i-t 
on its physical sheet*

Just as for the real tangents ^  we may continue
from X  up to tho real curve ^  without further contour
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deforoatlon* For th© behaviour of F on H   ̂ the method 
of Fowler ot was used: O vanishes on P at the
points given by

Xj Xy.
^   ̂ ^  ^  ^  U.!.-,..) (D.1Ô)

where is the cofaotor of in the expansion of
^ dot ®  . Sinoe ell the oofeetors in (B#16) are

real, and  ̂ it may be deduced that (D»l6) ia
satlafield only when the Xi ctvi, are real,
Thoroforst since the allowed real values of the x-i 

in (0*5) ore only positive# we must determine the region 
R in the real  ̂ plane (Figure 22) where the
cofaotors in (B.16), regarded as functions of and

# have the eamo sign*
It is convenient here to take because, for 
is negative for all real # The rogions

where the other three cofactors are negative can easily 
bo obtained# and it is found that no part of r lisa 
in the intersection (n) of these regions* Therefore D 
does not vanish anywhere on r for the allowed positive 
valuos of the x-- variables of integration! and thus
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F is regular both on P  and also on that part of ^  
sprouting out along P  •

However# P io not regular on tîîo whole of ^  : 
it io elngular on that section which la separated off 
from the rest of by the branch cut Joining the points 
of contact of and with ^  # (The 1-dlmeneional 
branch cut on this A-dlnonsional surface ^  # which lies 
In the 4"#dii5onsional  ̂ apace# divides into
two separate sections)#

The singulnritlos of the scattering anplitudo F are 
therefore the real threshold singularities at ’̂2̂.= -!,
and complex singularitioe at values of  ̂

corresponding to L-I  ̂\-T and the above singular section 
of ^  • Tho presence of these complex singularities 
invalidates a Handolstaia representation for F#

4. The einfrularlttes of the partial wave amplitudes 
The singularities of the partial wave amplitudes of

FI

+\

•̂ Cs) - y cl(câ &') r~f$, c«ô.)

are slightly simpler than those of F itself# as a result
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of tho theory of Taylor and varburtoa^^^# They showed 
thate in the caae when all the et&bility conditions are 
satisfied# the partial wave amplitudes do not possess 
complex singularities duo to the singular parts of ^  ̂ 
since these singularities depend on the internal masses 
squared only as differences. By a slight
extension of their argument# the seme is true even when 
an external stability condition is violated| and 
has no complex singularities arising from the singular 
section of ^ ,

In Figure 23# we have indicated a typical cut s-plane

for # Besides the usual physical cut end the 
u^# t^cuts# there are branch cuts arising from ^
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HiQ cut duo to atarta at the complex point A# and 
may bo taken ao that It joins up with the physical cut DC.
Tho surface Lt produces n similar cut in tho t-plane# 
and this bocomos tho cut D£F (tho locus of branch pointa) 
shown in the sapiens* However, it mmy bo remarked that 
these latter branch cuts from ^  are not directly 
related to any physical procood, and ao it ia no longer 
easy to dotermine the discontinuities aoroe# them# It also 
seems very difficult at present to see what new singularities 
will bo introduced into tho above a-plane from higher 
order perturbation diagrams.
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AprrKPix ç.
VAhXniTY OF LT Gf \ntm robWOMlAT. EXPANSIONS

The convergence of the Legendre polynomial 
oxpansione in the complex e«*plone le Invoatlgated with 
the use of the following theorem:

If is analytic inside an ellipse with foci at 
, then it can be expanded in a Legendre eoriee 

\  witiiin the ellipse.
Y/e shall consider first the X% cut for which 

i. V   ̂ The region of convergence of the 
Legendre polynomial expansions used is limited by the 
singularities of in the complex cos©'-plane.
From (lv.33), we have

- <^e' .  Z' ls_N^+  ̂ + tk  -  N ( c . l )

where of course t is the square of tho energy for the 
process Y ♦ x — > II 4 2Î.

Tho expression for is given in (XV.16) \

- i W , ' + i (cW
^  (.1̂' +  s t  ' -  x N  -  ̂ )
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It can be aliQtrn fron crossing tliat tho two terme In 
(C*2) produce elngularltlea which lie symmetrically about 
the oricin in the y -plane* SinguXaritlee ariee when 
tho epoctral functions are non-zero end the denominators 
vanish I let be the smallest value of s for which
this happens. Then tfie corresponding singularities 
in the -plane from the two terms of are

(c .3 )

These singularities limit the size of tho ellipse In 
which a Legendre polynomial expansion is valid (Figure 24)#

piRur# 24
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To find an approximate solution# lot u# take tho
hr)ellipse aa an infinite atrip Thua the condition

that lios within the strip is

end from (C#l), this bocomos

it-N^_ \ (c«4)

Now let us take s complex and on the Yx cut; it is 
approximately of the form . Tims the condition
(C«4) reduces to

'  TiT. -N'‘-K') , (c .3 )

The minimum of can bo determined from the
boundaries of the spectral functions os drawn by Ball# 
and it is found to be ^ at ^ ^ Ujû • Hence we
deduce from (0»3) that a Legendre polynomial expansion 
is valid on the Yx cut for)4)\ ̂  qo\

Similar investigations can be mode for the negative 
real axis part of the Yic cut# end also for the crossed 
photoproduction cut #
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