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Preface

The present work was initiated in 1953 by the rather 
tentative idea of investigating the presence of "even!* 

harmonics in the air gap flnx density wave of electrical 

machines. During these investigations, it became clear 
that, for the case of eccentric dissymmetry, which was seen 
as one of the main sources of "even" harmonics, little or 
no evidence of published work was to be found. This 
problem was then taken up as a subject for the present 
Thesis.

Experiments were carried out, and results were 
obtained which showed that eccentricity would account for up 
to very large percentage harmonic contents. An approximate 

theory was also established based on m.m.f. and permeance 

waves. This explained the phenomena in some cases, but was 
obviously wrong in other cases. For a rather long period 

of time, no progress was made due to the lack of a correct 

theory; the theory presented in this Thesis was only 
developed after the Author resumed the work two years ago. 

The theory may be regarded as the extension of the 

conventional m.m.f. theory to the case of eccentric rotors.
A complete theory of constant-span (or equivalent) coil 

windings is presented as an introduction to the eccentric 

rotor theory, thus making the work self-contained.

/ Ori^nalily
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Originality is claimed for some of the extensions of the 

conventional m.m.f. theory, notably on the subject of 

unbalanced excitation and inductances and for the 
eccentric rotor theory.

The work was carried out in the Electrical 

Engineering Laboratories of the University from 1953 to 

1959* For the first three years of this period, the 

Author was awarded a Research Grant and the James Watt 

Scholarship (two years) by the Faculty of Engineering.

The Author gratefully acknowledges the help and 

encouragement during the first year of this period of 
Dr. J.E. Par ton (now Professor of Electrical Engineering 

at the University of Nottingham). He also wishes to 
thank Professor B. Hague for permission to use the 
facilities in the Laboratories and for helpful encourage
ment. ÎÎT. ¥. Butler, who constructed the experimental 

machinery, is also thanked for his skilful and patient 

assistance.
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1. Introduction

The air gap magnetic field is, as it were, the "working fluid" 
of electrical machines* An exact knowledge of the distribution of 
flux density in the air gap is the k ^  both to the general analysis and 
to the design of such machinery* It has, therefore, been the subject 
of extensive enquiry and there exists a considerable amount of 
literature on the subject* There are, however, not many conclusive 
results to be found, and the subject is not likely to be exhausted for 
some time to come* The reasons usually given for this state of 
affairs are two; firstly, the complex geometry of the domains involved, 
secondly, the fact that the main part of the domains are occupied by 
iron having an extremely non-linear flttx-nagnetic intensity relation*
Of these two factors, the second is by far the most important, since 
all field problems involving non-linear regions which at the same time 
have geometrically awkward boundaries are practically intractable by 
present methods of analysis*

For these reasons, the field in the air gap is usually 
evaluated by approximate analytical methods or, in some cases, by 
graphical methods* Again, there are two fundamentally different 
types of machines, namely, smooth-gap machines and salient-pole 
machines* Clearly, the first is much more amenable to analytical 
methods than the second* In fact, the second type is normally

/treated
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treated by methods which can only be justified on the grounds that they
give reasonable results when the constants are empirically adjusted by
comparison with experiment* This is certainly the case in the most
popular of all theorems, namely the two-axis principle* In the smooth-
gap machines there is more scope for exact analysis, and their fields

1 2  3have, in fact, been investigated by several workers *  ̂ • But even in 
this simpler case, the exact analysis is probably of little practical 
value, since the analytical solution must be expressed in slowly 
convergent infinite series* Broadly speaking, the problem is to 
express the radial component of the flux density in the air gap as a 
function of the appropriate cylindrical polar co-ordinates and the 
currents present in the windings* The solution must be readily 
obtainable in Fourier Series to be of practical value; but the works 
seen by the Author have not been in such a form, and it may be 
reasonable not to expect them to be* Furthermore, the analytical 
solution breaks down completely when the iron parts are saturated* A 
moderately successful approximation can be obtained when the iron is 
considered infinitely permeable* This problem has been extensively 
treated by Buchholz^, lAio has also tackled the problem of eccentricity 
in the air gap* However, the analytical treatment is always based on 
a simplified geometric model, and the accuracy obtained is always 
limited by this approximation*

The essence of these remarks is that the only theoiy that has
/found

1* See Bibliography, Page ikO*
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found general approval in Engineering circles is the simplest possible, 
namely, that of magnetomotive force waves and air gap permeance* This 
theoiy is based on the assumption of infinitely permeable iron and a 
simple rectilinear flux distribution* Given these two properties it 
is a simple matter to evaluate the flux distribution at any point in 
the air gap* The field problem becomes of secondary importance, and 
the theory is, in fact, more concerned with the distribution of the 
sources of the magnetic fields, namely the currents or winding coils* 
The theoiy of windings has become a concept which not always has an 
unmistakeable synonymity with the magnetic field in the air gap* This 
has provided a few loopholes in the reasoning and very often 
inconsistencies are apparent even in reputable texts* Thus Sayk 
treats the m*m*f* distribution without reference to the actual flux 
distribution and applies the results to salient-pole machines without 
comment* It is easy to be left with the impression that m.m.f* has, 
in fact, a "distribution" independent of the flux* This misconception
has also led to some erroneous statements about the distortion of the 
flux distribution due to an eccentric gap.

In this work, the m.m.f* theoiy of the common types of 
windings is developed along the lines first published by Arnold^ at 
the beginning of the century* In his book, the principles of the 
method are clearly stated, but only simple types of windings are 
considered. The extension to a wider range of winding types is due

/to
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to B. Hâgue^ and A. Clayton?. The theoiy of the fractional-slot 
windings (which today have found a very wide application) has been 
less conclusively investigated* The earliest literature on the 
subject seems to be a paper by E.M* Tingley^ in 1915. Tingley’s 
analysis was extremely restricted, and the subject seems to have 
been void of mathematical treatment till 192? when Q. Graham? 
presented a paper on the subject to the American Institute of 
Electrical Engineers. The paper was, however, more of a 
qualitative nature, and the first attempt to generalise the theoiy 
is due to Calvert^®. In the discussion of this paper. Professor 
W.V. lyon draws the distinction between "regular" and "irregular" 
balanced windings and states that only for the former type can 
general formulae be readily developed* The irregular ones "must 
each be considered as a separate problem"* This is, in fact, the 
position today* However, there are two other notable contributions 
to the theory, by Malti and Herzog^^ and by M.M* liwschitz^f ^  

respectively* Althou^ the latter is usually credited with the 
development of the so-called slot-star method, this is in fact, only 
a pictorial representation of the complex-number treatment developed 
by Malti and Herzog* Their paper^^ is the basis of the treatment 
presented in this work, and it contains a great deal of valuable 
information. Most recently there has appeared a paper in the 
Proceedings of the Institution of Electrical Engineers by Walker 
and Kerruish^ which claims a simpler although rigorous treatment* 
Here some of the irregular windings are considered and distribution

/factors
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factors are given for some of these windings. The complete theory 

is, however, still wanting*

Both the integral- and fractional-slot windings are usually 

treated specifically for the 3-phase narrow-spread case* In this 

Thesis the theory is generalized to any number of phases, and the 

harmonics due to symmetric as well as unsymmetric polyphase currents 

are analysed* This extension has revealed a number of points 
believed to be relatively unknown heretofore. The narrow-spread 

windings and pole-changing windings are included in an extremely 

general treatment involving symmetrical components and connection 

matrices* The important quantities known as air-gap inductances 
are thoroughly treated, and a critical exposition of the concept of 
synchronous reactances is given. The latter are shown to be 
special cases of the sequence reactances, which are the eigen values 
of the general air-gap inductance matrix*

The Author hopes to cariy out further work along these 
lines in an effort to formalize the theoiy of linear machines, but 

this is outwith the scope of tiiis Thesis* The theoiy of fractional- 

slot windings has been largely limited to balanced "regular** windings, 
vAiile a special important type of irregular narrow-spread winding is 

treated in detail.

/The
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The m.m.f. theory has in the past been successfully applied 

even to salient-pole machines, notwithstanding that in this case the 

very basis of the theory, a smooth cons tant-length gap, is not 

present. With this in mind, it occurred to the Author that the 
theory might equally well be applied to the case of an eccentric gap. 
The idea was to obtain the "permeance wave" of the eccentric gap and 

multiply this by the m.m.f. wave. The flux density was exnected to 
follow. This simple method was pursued but led to a physically 
untenable result: the resulting flux-density function was not
solenoidal. When more closely scrutinised, the method revealed the 

fact that the m.m.f. wave cannot in fact be evaluated before the flux 
distribution is known. The m.m.f. wave pertinent in the case of an 

eccentric gap is quite different from the conventional one obtained 
with constant gap lengths. The latter part of this Thesis is 
devoted to the theory of the eccentric gap phenomena, based on a 

modified m.m.f. wave. By this treatment the mathematical 

simplicity of the conventional m.m.f. theory is preserved, and 

readily applicable general formulae are obtained. The items
y

considered are the waveform ol' the gap flux, the transverse force 
and the reactances respectively, so that together with the earlier 
sections, a fairly general treatment of the air gap phenomena is 

obtained. The results of the experimental investigations on an 

eccentric machine agree fairly well with the theoiy.

The analysis of the transverse pull on the rotor is quite 

general, and is applicable to any case in which the flux

/distribu ton

7
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distribution is known. Specifically it is shown that the existence 
of transverse forces iaqplies a vexy dense (at least partially dense) 
spectrum of hamonies. This result seems to have been largely 
overlooked in the literature known to the Author, although it is of 
prime importance. The resultant noise effect may also be assumed 
appreciable, and would merit further investigation.
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2* The Theoiy of integral-3 lot Windings

In this section the analysis of the general polyphase winding 
■will he presented. The treatment is substantially based on the work 
by Clayton, but it has been extended, and the mathematical procedure 
allows for greater generality, and relies to a lesser extent on 
graphical or physical arguments. More powerful methods of analysis 
are employed and several less known properties of these windings are 
discussed. The assumption of infinitely permeable iron is made 
throughout.

2.1 The Flux Distribution and Reactance of a Single Coil

The basic element in the analysis of integral slot as well 
as fractional-slot windings will in this work be taken as the 
approxima-te field distribution due to a single coil of arbitraiy 
angular span o( radians. (The angular measure is throu^out 
taken in mechanical radians unless otherwise stated). The flux 
paths due to such a single coil are shown approximately in Fig. 1(a). 
It is assumed that the flux density is constant both Inside and 
outside the coils and the fringing of the field in the nei^bourhood 
of the coil is ignored. The convention is adopted of referring to 
the position of the centre of the coil by the angle tf relative to 
some arbitraiy reference point on the stator.

/The



- 9 -

The total flux produced by such a coil may be computed

by the magnetic circuit law. We have,

<Jc " BilRoC - BoLR(2h -oi) (1)
where Bi and Bo are the (constant) air gap flux densities inside and 

outside the coil respectively, L the axial length of the stator and 

rotor, and R is the mean gap radius.

Since the magnetic field is assumed to be zero apart from 

the gap, we may write the total reluctance of the magnetic circuit

as
(2)

/i^re



- 10 -

where g is the gap length.

Now if the coil has Tq turns and carries the current I, we 
have by putting ITc ■^cî.and substituting from (l) and (2),

Bi - ITc 2n - o<

B,

“ST
po oc

2n

(3(a))

(3(b))

MoWe may now term —  the specific permeance of the air gap 
and the equations (3(a)) and (3(b)) may be interpreted as giving 
the **specific magnetic induction'* (flux density) by multiplying 
the specific permeance of the gap by the magnetic potential across 
the air gap. The latter is the quantity which is usually referred 
to as the "m.m.f. wave", and in this case has the form shown in 
Fig. 1(b). It has the same waveform as the flux density function,

2ti — oCand has the value Hi ■ ITc — 2n " " inside the coil, and the value 
Ho ■ ITc outside the coil.

B:

JE- !
J

ELÿ-th^
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(The gap length g strictly should be taken as "the effective gap

length". Since the normal machine has slotted stator and rotor

surfaces, the reluctance of the above magnetic circuit is greater

than that given ty (2), due to the smaller effective cross-section.
The necessary cor recti cm can easily be obtained from Carter's 

18coefficient •

This must be understood to be a particular case, and no 
general principle is intended. The objections to the concept of 

an "m.m.f. wave" have largely been made due to lack of precise 

definition. The most irritating of the definitions are those 
which define m.m.f. waves as the integral of line currents without 

reference to the flux distribution. Although the result is 
correct, the definition is confusing since it leads the student to 
accepting the m.m.f. wave as a function of the currents alone while, 
in fact, it has no meaning until a flux distribution has been found ' -A 
in terms of which the magnetic potential can be evaluated. A 
blind application of the m.m.f. wave in the case of non-uniform air 

gaps will undoubtedly lead to erroneous results unless some 

modifications are made. An example of this is provided in Section

h.

Although the present method of evaluating the flux 

distribution is clearly empirical, it is very nearly exact for the 

normal machine which has a small gap. Saturation of the iron will

/also



- 12 -

also upset the theory but, in that case, all known analytical methods 

also fail and cannot, therefore, in general claim any advantage.

If we accept the above basic assumption, we may represent the 

flux density function in the most convenient mathematical fom and 

proceed by superposition to derive the flux resulting from aqy given 

group of coils and, finally, a whole distributed winding. This then 

provides enough information about reactances to perform any desired 

analysis of the machine.

In Fig. 1(b) the flux density is shown as a function of x, 

the angular displacement round the air gap. By the above 
interpretation it is identical in form with the magnetic potential 

function or the m.m.f. wave. The function is discontinuous at the 
slots containing -the coils, but is easily represented by a Fourier 
Series. The shape is sometimes modified to a trapezium form in 
order to account for the fringing at the slots, but the advantage 

of this is of dubious value, since it does not allow for the slots 
at the interior and exterior of the coil which also produce a similar 

ripple in the flux wave. The tooth ripple frequency part cannot, 

therefore, be correctly represented by such an artifice, and the 
other harmonics are not drastically affected by the teeth.

The Fourier series representing the stepped function in 

Fig. 1(b) is given by



B W  “ ” (Bi + Bq) ^ COS m (x -(T) (Wa))
m=l

and using the relations (3) we have
B(x) - I ITc |2 ^  I sin m'^/2 cos m(x -T*) (l*(b))

 ̂ m=l

It be noted here that — IT̂  is the average value 

of a sine function of amplitude TTc Mc/g, i.e., the total m.m.f. 

of the coil multiplied by the specific permeance of the air gap. 
It is also the amplitude of the fundamental component in the 

series expansion, if C5< = n. This is a convenient definition, 
and very easy to remember.

The inductance of the coil will now be considered. This 
has two distinct aspects, namely total inductance and harmonic 
inductances. In anticipation of the more general expressions 
which will follow later, these quantities will be considered for 
the single coil.

The total inductance is given by evaluating the total

flux linkages per ampere, viz.
®‘/2 Dl

B ’ ~ J  B(x) 2 ^
-

Substituting from(U(b)) we have

L » ^ - ITc ̂  21 m 8inm^2 cosm(x -(T)“  dx
" .-l"

which gives
L = I 2Ji2 £  (isinm*'/2)2 (5)

m=l
/Thus

oo
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Thus, the total inductance is seen to contain a series of 

components each due to the various harmonic components in the 
flux wave. The mth harmonic reactance can consequently be 

defined as

k -  I ^  M n  (6)

This is proportional to the square of factor 

~ sin m®̂ /2, and subsequent analysis will show that the complete 

landing inductance has a similar form.

For convenience in the subsequent analysis the amolitudes 
2will be referred to — Tq Pc/g and \îe write this as

3 c = f T c ^  (7)
Equation (U(b)) m ^  then be written 

^  1B(x) = I Be m sin m ̂ /2 cosm (x - (f)
m=l 

or
^  1

B(x) = I Be m m cosm (x -(f) (U(d))
m=l ^

where f̂ ^̂  ̂is the "coil span factor" sin m ̂ /2. ux

In the following it has been found advantageous to re-define 

the winding factors so that the coil span factor becomes 

= J s i n m V 2  (8)
This gives greater conciseness to the formulae and is, therefore, 

an econorry in the already rather lengthy formulae. The span 

factor is also already a function of m.*

So far, the conductors (and slots) have been assumed to be

parallel to the axis of the stator, but in many machines the slots

are skewed, and a slightly different picture arises. Again by
/assuming
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assuming that the flux densities inside and outside the c oil are 
constant respectively it is clear that we may derive the values 
of these ty the magnetic circuit law and will, in fact, be no 
different from the above. However, the flux density is now a 
function of the displacement along the axis of the rotor as well 
as the angular displacement round the gap. It is very 
undesirable, and in fact of little merit, to introduce a second 
variable in the flux density function, and the effect of skewing 
need only be considered when dealing with the mutual inductance 
of two coils (on different sides of the air gap). This is 
illustrated in Fig. 2(a) which shows two coils having a mutual 
skew angle S • (it is not necessary to state which coil is 
skewed, but only that their sides make an angle S with each other). 
The change in mutual flux linkages with the coil displacement is 
now clearly quite different when the coil sides cross and ̂ e n 
th^ do not. The effect is precisely as if the flux density had 
a trapezoidal distribution and the coil sides were parallel (shown 
in Fig. 2(b)). It is, therefore, useful to represent this waveform 
in the Fourier Series form, viz.,OO 2

B(x) - ̂  (Bi + B o ) %  g sin |mO(. ^  sin imScosm (x -CT) (9(a))
m=l

and take this as the flux density distribution whenever we deal with 
coils having a relative angle of skew S . Again, the "skew factor" 
may be defined as

- i . I sin (10)
and by (7) we have
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B(x) = IBc cos m (x - a- )
m=l

(9(b))

where F 1 2 * “ in sin imoc . ^  sin .
of course, the conventional skew factor.

/

V&uLCuL &
-  EujVLLv/uldt U/tU''C

CoiL.

c>ĵ Co/̂  Sfĉ c6»
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Equation (9(b)) will be the elementaiy building block in the 

further development of the theory. In general, I is a function 

of time, and B(x) therefore becomes B(x, t). Again if I is an 

harmonic function of time B(x, t) msy be resolved into the familiar 
travelling waves.

The total field due to a number of coils excited by different 

currents presents in general a veiy complex picture, and only where 

there is a certain amount of symmetiy in the space and time 
functions concerned can the resulting field be given a compact, /'

useful mathematical form. However, by the technique of resolution 
into symmetrical components, it is often possible to obtain the 

most important parts of the functions involved, and make numerical 

calculations possible.

2.2 The Flux Distribution due to a Group of Equidistant 

Coils, similarly excited.
As the first step in the analysis of the flux distribution 

due to multi pie - c oil windings, we consider a group of q coils 
situated at equal intervals (e.g., one slot pitch apart).

The general problem is to sum the flux densities due to the 
individual coils at all points round the air gap. This is most 

conveniently done ty summation of the series expansions of the 

individual functions. In the present case this gives rise to 

the series,
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q oc

B(x) - IBcZ ^  COS m [x - ((Ç
r“l m“l

where y is the spacing between successive coils in the group. By 

performing the summation over r we obtain

B(x) - IB^qf COS m (x - T) (11(a))

where Î"* + (q - l)̂ )̂  i.e., the position of the centre of the
group of q coils. Again we define

Fa m

as the distribution factor, which is the value normally given for 

this. Also, the product ̂   ̂ Ç is contracted to F 

or simply Fm. Since F^ does not contain i^ all later 
applications, it must be clearly stated what F^ means, but the 

context should always suffice to make this clear. With this 
modification, equation (11(a)) becomes

oo
B(x) = qIBc2_ Fjtt cos m (x -r) (11(b))

m=l
In the case of a concentric group, the summation will be an 

arithmetical progression inc/ , the coil pitch, rather than the 
position angle 0", and we have to sum over q terms the expression

q oo ^B(x) ■ IBc5. Z_ - F^^nj sii^ (<X̂ + 2 - 1 y) cosm (% -O’) 
r»l m=l ̂

since the increase in the coil pitch in successive coils is 2&. 

(̂The shortest coil having span(X̂ radians). This yields

B(.) - i ,1*. ( «,. 2 , - ^  ,)

cos m (x -(t ) (12)

I"
ihv /Hère
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Here again the distribution factor appears as before, and the factor 
H sin 2q - 1 y) is the coil span factor of a coil of average

span. Hence equation (12) can be considered as included in 

equation (11(b)) with the modification that the coil span factor must 
refer to the average span of the group.

It may be noted at this stage that a group of coils is not 

always arranged in such a simple manner as above, and summation may 
not be possible in the same way. Such cases arise in fractional- 

slot windings, which will be considered later.

2.3 Ihe Flux Distribution due to a number of similarly- 
excited groups of coils.

So far, only basic elements of a complete winding have been 
considered. In this section a number of groups will be considered 
together and, in particular, the set forming a single-phase winding. 
The single-phase winding is here considered as a true single-phase
winding, i.e., the limiting case of a so-called’Vd.de spread” ^

/
polyphase winding.

In the symmetrical single-phase winding there are p similar 

groups of coils spaced round the air gap at equal intervals of ̂  

radians. Such a winding will be seen to have p similar periods in 

the flux wave, and therefore has 2p fundamental "poles”.
Accordingly it is termed a 2p-pole winding. This single-phase 

winding has, of course, little practical importance, but it forms 
the basic element of the integral-slot polyphase windings and will, 

therefore, be considered in some detail.
/By
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By the same procedure as applied above in deriving equation

(11(b)) we have the field due to a single-phase winding,
Bph(x) - qlBo ^  Fn cosm (x -CT +pTï %  

f*l

which after summation gives

Bph(x) - qTBg 2_ Fm 00s m (x - O" ) (13(a))

The factor is another distribution factor for the winding,

but it will here be referred to as the "connection factor" since
it depends on the connections of the groups. In the following,
the groups are assumed to be series connected (in the same sense),

and the value of the connection factor is then simply p or zero
according as m is a multiple of p or not. Thus only harmonic
orders given by m ■ np (n * 1, 2, 3 ...) can exist in the flux
wave, and consequently the fundamental has period 2n/p. It is

now more convenient to change to "electrical" angular measure,

defined by the equation 0 ■ px; and substituting m ■ np and
X - 0/p in (23(a)) gives

Bph(x) " qlBc ^  F>n cos n (0 - 0“ ) (13(b))
n»l

where the arguments in F^ as well as (T are reckoned in "electrical 

radians"•

(1) ( The reason for the term "electrical radians" is, of course, 

that the e.m.f. induced in a conductor travelling in this field 
will have a repetitive period corresponding to a displacement given

by 0 » 2n).
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It should be noted that the field distribution due to this 
winding contains in general the complete spectrum of harmonics.

The even harmonics are only completely suppressed if OC , the coil 
span, is n electrical radians, since the coil-span factor is thus 

unity for all odd harmonics and zero for all even harmonics.

The extension of the above to polyphase windings will new 

be considered by the use of equation (13(b)), In this case, we 

have really already fixed the number of poles for the winding, and 

the treatment is therefore somewhat restricted. It wiU be shown 

later that if equation (11(b)) is used as the fundamental element, 

the treatment can be generalised to cover pole-changing windings 
as well as irregular windings. Since this part of the theory is 
original and is not required for the main trend of this Thesis, 
notes are only made on it in Appendix I,

2,U The Flux Distribution due to an Integral-Slot 
Polyphase Winding»

We consider in this case firstly hemitropic windings, which 
in the N-phase case consist of N single-phase windings of the type 

analysed in the previous chapter. These are spaced out round the 

air gap at intervals of 2n/Np radians (for a 2p-pole winding) or 

2n/N electrical radians in general. In general, these windings 

may carry currents which are not related in any wsy but will be 

assumed to have a common frequency. However, by the method of 

symmetrical component representation, they can always be reduced

/to
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to N sets of currents, (N - l) of which are sequential (i.e., having 
equal amplitude and an arithmetic progression in phase) and one set 

of which is the zero sequence set consisting of N equal co-phasal 

currents. These two types of excitation can be reasonably easily- 

analysed and the flux distribution will be sought for these kinds of 

excitation. It will be termed sequence excitation, since this name 

covers the general case, and the names zero, positive and negative 

sequence is only sufficient to describe the 3-phase case.

2.U.1 Hemitropic Windings
The current in the rth phase of a symmetrical system of 

sequence S is given by
Ir - Is cos (œt - fTi s (Hi)

The flux density function for the same phase is given by
oO   n

Br(0) * Ir Tph Bq^  ^ Fjj cos n (0-C* - r - 1 ̂ )

where Tph * q Tc * Total number of turns per phase per pole. 

Substituting for Ir we obtain 

BrS (6, t) ■ Is Tph Be 5Z. s^n G os (n0-(T - cot - r - 1 n"~^
n-1

+ cos (n9 - (T + cot - r - 1 n + S (15(a))N

and summing over all r to obtain the flux due to the complete winding,

Bs (e,t) -2_ BrS (e,t) ■ Is Tph B c H  |Fn 
r“l n“l

Of cos (n Ô -<T - £ût - N -  l n - S ^ )  + Cb cos (n6 - (T + ©t
- N - 1 nTs 1) (15(b))
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where

: liva w ( * »
Cb. - ('*<»))

Cfn and 0^^ are of the same form as the group connection factors and

will here he termed phase-sequence correction factors. (For the

sufficient reason that they are functions of the number of phases
and their sequence) • Their value is zero in general, with the

following exceptions
Cf * N when n - S * kN )

) k " 0, 1, 2 ....
Cb * N when n + S » kN )

The possible (non-zero) orders of harmonics are therefore contained
in the formula

n - kN ± S (16(c))

where the +ve denotes Of » N, Gb " 0 and the -ve sign denotes 

Cb * N, Cf » 0.

Since (n i S) is always a multiple of N, it follows from 

(15(a)) that we may neglect the (constant) phase angle in (15(b)), 

and we may then write this equation as

Bs(6,t) - 2 Z  Fj^ + g cos ((kN t S) 6 -O' T ast) (17)

where the signs are to be chosen as paired; i.e., +S and -<ct, and 
-S and +(ot respectively. This equation shows that in general, the 

flux wave is now composed of travelling waves of vaiying wavelength

/and
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and with angular velocities of propagation given by - electrical 

radians per second. The harmonics having velocity of propagation 

+ “ are said to be forward travelling waves, moving in the positive 

direction of x. Similarly, the harmonics having velocity - ̂  are 
termed backward travelling waves. It will be noted that for a 

given sequence and harmonic order Cf and C^ cannot be non-zero 

simultaneously, except when S ■ 0. This means that only zero- 

sequence currents can produce pulsating or non-rotational fields 

in these windings. However, if two sequences are present 

simultaneously, it is possible to have both a forward and a 
backwards travelling wave of the same harmonic order, thus 
producing either a pulsating or elliptical wave.

This is a completely general statement of the fields 
produced by integral-slot windings, and it is easily seen that the 
windings produce in general all orders of harmonics with the 

exception of those eliminated by the winding factors. We contrast 
this with the common text-book theory, content with treating the 
balanced case. This special case is, of course, obtained by putting 

S *= 1 in the above. For exaijqple, the nomal 3-phase windings 
(narrow spread) are according to this treatment, 6-phase windings, 

and the possible harmonics are consequently 6k f 1 under symmetrical, 

positive sequence excitation, (This winding will be considered in 

greater detail later)•

In order to display this result, it is of interest to consider 

a 5-ph winding. This is not only of purely theoretical interest,
/because
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because such windings do find occasional use in special machines. 

Tabulating the various cases we have:

Forward haimonics Backwards harmonics

10, 1$ 
U, 9, lU

10, 15 

1, 6, 11

5k ± 3
1, 6, 11

It will be noticed that the zero sequence excitation produces both
a forward and backward rotating field, so that the resulting field

is a pulsating one. If further the 1st and Uth sequences are both
present, the resulting field is rotating but elliptical, and if
they are in addition, equal in amplitude, the resulting field is

pulsating. Similarly for the 2nd and 3rd sequences, t%t these
produce different harmonics altogether. It may be noted that if
n is allowed to take negative values, and its sign being

interpreted as fixing the sense of rotation of the travelling

waves, equation (16(c)) can be written
n = kN + S ...  (16(d))

k = 0, ± 1, ± 2, ....
and equation (17) becomes accordin^y:

oo
Bs(e t) - F cos 0̂3t -(kN ♦ S)(© -(T)j (17(a))

/It
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It must be noted that F is evaluated for the numerical value 

of (kN + S) •

This convention was first adopted ty F.T. Chapman^^ and 

later also used by R.Richter^» . Though extremely useful as a 
compact notation, it has not been generally adopted, possibly due 
to the fact that a negative harmonic order does not have an obvious 

physical significance.

2.U.2 Hemisymmetric Windings
These windings are obtained from an N-phase (N-even)

hemi tropic winding by connecting in series opposition pairs of
phases which are displaced ty n electrical radians. The original 

N-phase winding can therefore be excited by an N*-("̂ ) phase system. 
If the latter is symmetrical, the field is obtainable by the above 
N-phase theory, but the general case needs separate consideration.
We consider the field due to two N'-phase windings, series excited 

and differing in space-phase by n electrical radians. By equation 

(17) we have

Bs (e,t) -Ils-ÿî'BcZ. ï‘|kN’+S| -  S)(ë^) ; cat)
k-1 '_Z______________ _ V

- cos (kN' + S e-(T- : ®t)j (18)

and putting (kN* - S) - n and contracting,

Bs(6,t) - Is <#* Be ^  Fn sin̂  ̂  cos ̂  0 -(T ^ ©t) (18(a))

The additional factor (sin ̂ )^ makes all even harmonics vanish, but 

it must be noted that n is now given by

n - kN* i S, N* » N/2.
/Thus,
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Thus, the winding, being fundamentally an N-phase winding, behaves 

as an N*-phase winding with the restriction that no even harmonics 
can be present#

Of particular interest is the case N* ■3. This is the 

commonly used 3-phase narrow spread winding. The table of harmonics 

is now.

s n
Harmonics

Forward Backward

0 3k 3, 9, 15 .... 3, 9, 15 ..
1 3k ± 1 1, 7, 13 .... 5, 11, 17 ....
2 3k ± 2 5, 11, 17 ... 1, 7, 13 ..

The presence of the triplen harmonics in both the forward and backward 
column indicates that these harmonics are pulsating. It is of 
interest to compare this table with that corresponding to the 6-phase 

winding from which it derives:

8 n
riarmcnics

Forward Backward

0 6k 6, 18, 2h .... 6, 18, 2It ....
1 6k - 1 1, 7, 1 3 ... 5, 11, 17 ....
2 6k - 2 2, 8, Hi .... it, 10, l6 ....

3 6k ± 3 3, 9, 15 .... 3, 9, l5 .....

k 6k - L 10, l6 .... 2, 8, lit .....

5 6k i 5 5, 11, 17 .... 1, 17, 13 ....

/From
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From this table it is apparent that unless the even harmonics are 

eliminated by the winding factors, the even harmonics being of 

order 2 x triplen ones are also present as pulsating fluxes. 
Sequences 3, 1 and Ç correspond to sequences 0, 1 and 2 

respectively in the corresponding 3-phase system, while the 
sequences 0, 2 and h which produce only even harmonics are 

eliminated by the connection factor. The connection factor arises 

in (18(a)) as a winding factor. It is possible to obtain this 

result without considering the winding distribution at all, apart 

from the fact that it is connected for a 3-phase winding. The 

interconnection of a 2N-phase winding to form an N-phase winding 
alw^s removes the even numbered sequences in the 2N-phase system.

In Appendix I the theory of windings is treated in a novel 
way, by starting from the basic, primitive winding having N single 
coils. This winding basically is a 2-pole, hemi tropic, N-phase 

winding. All other windings are obtained by external 
interconnections of these coils, and the theory of windings is 
therefore reduced to the study of the constraints introduced by 

the interconnections. (This is really a topological study, and may 

be of some importance and interest, but since it is not essential 
in the general scope of this Thesis and involves use of matrix 

algebra it has been deferred to the Appendices) •

/2.5
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2.5 The Air-Gap Inductances of the Polyphase Windings

In this section the reactances due to the air-gap flux will 

be discussed. These are of fundamental importance in the analysis 

of all types of machines, but there is little evidence of this in 

most text-books. One reason seems to be that for a long period it 

was usual to perform the analysis of machines in terms of flux per 

pole and so derive induced e.m.f., both of the ”transformer** and 
**rotational** type. This approach, although appealing to students
at a lower level, is hopelessly restricted and of little value in 
advanced problems involving stability, etc., under transient 

conditions. Furthermore, the present Author would contend that 
if a little knowledge of differential equations is presupposed, the 
analysis in terms of reactances (or inductances) is by far the 

easier - if any degree of elegance is aimed at.

The inductances of the polyphase windings are fundamentally 

of three kinds. The first is the total inductance per phase, which 

normally would include the leakage inductance. No attempt will be 

made here to obtain the latter; the object is specifically to 

determine air-gap inductances. Secondly, there are the mutual 

inductances between phases, and thirdly the sequence inductances 
which will be shown to have a fundamental and important significance 

in the analysis. The sequence inductances will be shown to include 
what is normally termed the self-synchronous inductance per phase.

/This
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This is, in fact, the inductance corresponding to the first sequence 
(or positive sequence).

2.5.1 Air-gap self inductance per phase

The total flux linkages in a distributed winding is clearly 

not the sum of the linkages produced by the single coils separately, 

since there is a large degree of mutual coupling between the coils, 
some of the fluxes being aiding - others opposing. The method 
adopted here for finding the total flux linkages per phase is to use 

the expression already obtained for the flux distribution, integrating 
this to find the flux linkages per coil and finally summing these 
linkages for all the coils. This method gives the total flux 

linkages as the sum of the harmonic flux linkages, which has the 
advantage of being more readily applicable to analysis.

The single-phase winding has the flux distribution given by

Bph(S) “ qPcl. Fn 003 n (0 -a*) (13(b))
n“l

In this case corresponds to the skew-factor is not to be

included in this calculation. Clearly, the flux linkages for a 
single coil situated at the angle ̂  relative to the reference axis

(9*0) is given by

t i

where D is the mean gap diameter and L is the axial length of the 

gap. Evaluating we have.
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t  ■flB.f îsr.u.nce-r)]^*”'''"2P .C «L Jj.̂ 2
• \k “ HES .(ïtBoX. Fn.i sin^cos n (| -(T) (39(a))
" ' ' P n-1 ^

Again, for the group of q adjacent coils, this expression must be

summed for q values of ^ , namely |^, , .. .... ^ + q - 1
the average value of which is (T • This gives

. H S  q̂ IBe t  Fn" (20)
 ̂ P n-1

In an integral-slot winding, the flux is symmetric about each group,Aand for p groups we have

f pPh - DLTc q2 IBc Z  Fn^ (21(a))
n-1

giving the linkages per phase. Substituting for Be and dividing 
by I we obtain

I/"')
where Tph * pqT̂ , the number of turns per phase. The reactance 
per phase is correspondingly,

Xph - ( ^  F J  F„2^ Tpj,2 (21(c))

where f is the frequency in c/s.
oo

The geometric factor is of some interest.
It gives at a glance the factors determining the inductance of the 
winding. Specifically it is seen to be proportional to the surface 

area of the mean gap and inversely proportional to the gap length 

and the square of the number of pole pairs. The factor containing 

the winding factors will in most cases be very nearly equal to

/Even
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Even for a single coil winding, having full pitch coils, the series 

becomes

2 _  “  1 + 1/9 + 3/25 +n-1,3
^  =1.235

Thus even in the extreme case of single coil windings having full 

pitch coils, the fundamental component of flux accounts for of 
the total inductance. In a distributed winding with chorded coils 

the figure would be above 97$. This is a clear indication of the 
degree of accuracy one may obtain with the simplified methods, 
based on the assumption of sinusoidal distribution of flux.

It may be noted that equations (21) are applicable to 

hemi symmetrical as well as hemi tropic windings provided the winding 

factors for all even harmonics are put equal to zero.

2.5.2 The Mutual Inductance between Phases

For the evaluation of the mutual inductance we may again 

start with equation (13(b)), and consider the linkages produced in 

the pth phase per ampere in the o(th phase.

____
e

FUji
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Referring to Fig. 3, the flux distribution caused by a 
current in the oCth phase is given by

B T ^  T? /A _ / fx/ _ ^<fio Z. Fn cosn (6 - ( ot- 1) |2) (22)
n

The total linkages produced in phase p is the sum of linkages 
in the individual coils* For a given coil ( p, ) situated at | 
the linkages are

r h ^ / 2IK

. ^  loc 9B0 Ç  Fn i Sin ̂  cosn (6 + | ÿ)
(23(a))

and summing over all values of ̂  within phase ^ , we obtain

DLTc I o, Fc Ç  Fn^ cosn( ^ - C L ) ^  (23(b))

Again, substituting for Be we obtainI F  I*. E oosn ( p - o l ) ÿ  (23(c))

whence, the mutual inductance between phases and p is given by 

"«p. ■

The expression is symmetrical in oC and p , and consequently

Furthermore, if we put OC- p , (2k) reduces to the 

self-inductance as given for equation (21(b)). The general 

equation, containing all the air-gap inductances can therefore 

be written

L cos n ( Ol - A  ) ^  (25)
o<p n ^ 1 «

where Lph^ means the self-induetance due to the nth harmonic flux.

The above is easily extended to include the mutual
/inductance
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inductance between stator and rotor coils. Since ((X -p is

simply the relative angular displacement of the phases, we may in

general replace this by - pr)^ + xp, giving the displacement
at any time between the CXsth phase on the stator and the ̂ yth

phase on the rotor, xp being the instantaneous displacement of the

reference phases on the stator and rotor respectively. Further

if the windings are different, so that their winding factors are

different, this must also be taken into consideration. Denoting
stator quantities and rotor quantities by subscripts 1 and 2
respectively, we have

Motl, ^2, -  | ^  ^  Tphi.Tph2 Z  Fn,l Fn,2

X cosn ( - P, 22. + xp) (26)N

This equation contains the most valuable of information as regards
analysis and design of machines having smooth (non-salient) air

gaps. It has, however, never come to the notice of the present
Author, and is certainly not mentioned in any of the standard texts
known to him. The torque produced in machines is directly

proportional to (MoCt consequently, no complete analysis^  V max
of smooth-gap machines can be without a mention of this quantity in 

one form or another.

2.5.3 The Sequence Inductances of Polyphase Windings 

In order to illustrate the fundamental importance and 

usefulness of the quantities evaluated in the preceding paragraphs,

/in



- 35 -

in this section the analysis of polyphase machines will here be 

presented by the powerful mathematical methods of matrix algebra.

Again we are only concerned with smooth gap machines, so 

that the stator (or rotor) inductances are not functions of the 

rotor position, or of time. Considering firstly the winding on 
one side of the air gap only, or assuming that these are the only 

excited windings, we arrive at the following set of equations

Vi - [r + (1 ♦ Lii)p] il + Li2pi2 + ..... * lON
?2 “ 2̂1 pii + [r + (1 + l22)pj 3-2 ...... * IgR PlR

(27(a))
- lui pii + 1^2 P ^  .............  [r + (1 + Lnn)pJ %

where 7%,---7^ are the phase terminal voltages, 1%,----%  the
phase currents, r the resistance per phase, 1 the leakage inductance 
per phase and L^^are the air gap inductances as defined by equation

(25).

These equations can be written in matrix form as

V - |(r ♦ lp)U ♦ Lp] I (27(b))
or alternatively,

^  ° {(r + lp)S*|i ♦ ip (27(c))
where U is the unit matrix, and the Krone eke r delta.

This is a system of differential equations which can be solved 

by ordinaiy, classical methods. However, the qystera can be reduced

/very
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very considerably by a suitable change of variables. The most 

suitable choice cannot in general be determined by (27) alone, since 
there are more windings in the whole machine which all have to be 
considered in the complete analysis, but some fundamental 

considerations can be made*

The matrix L is symmetrical and real and, therefore, has all 

real latent roots. That is to say, the canonical form of L is real.

In order to reduce the equation (27) to diagonal form, we must 
find a (linear) transformation of variables given by

V - SVs (28)
I - Sis

such that 13 - , where

h i .  - ■ ■A = ; : ;
i.e., J\_±s a. diagonal matrix. Substituting by (28) in (27(b)) 
then gives

Vs - -[(r + lp)ü Is (29)
This equation is a set of N independent equations relating the 2N

variables Vg and Ig by simple first order differential equations,

and their solution is mainly trivial. Clearly, (29) constitutes 

a fundamental form of (27), and if easily obtained will serve to 

provide a much better insight into the nature of the solution.

The transform matrix S of (28) will now be constructed by

/the
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the usual method. In the present case of L being the matrix given 

"by equation (25) it will be apparent that the symmetrical component 
transform is applicable.

The matrix L is a circulant, that is to say it m ^  be written 
in the form

11 12 13 ------  In

3-N ll I2 ------  1n-i

l2 13 lit ------  ll

(30(a))

where Lph“ cos n (-y- 1) ^  , Y "  3-, 2 ....., N.
Also, it is symmetric, whence 1. ^ - 1̂  25 snd we have

13 —

L -

3-N
1,Ig ll I2 — ---- -I.N.U

%  1̂ _2   3-1
(30(b))

Both these properties of L are important in the evaluation 

of its latent roots. In the special case of N ■ 3, we observe 

that I2 " I3, so that all the elements off the principal diagonal 
are equal. This makes the transform matrix S less determinate, and 

in fact, many forms are possible. It is shown in Appendix II that 

the transform matrices whiph will diagonalise L are the symmetrical 
component matrix and â derived form^r^pectively. For the case

N " 3, the latter corresponds to the apo component transform.

/The
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The procedure for determining the latent roots of L,

(  j\ n) which will be denoted by (S » 0, 1, 2 ...,N - l)
is given in Appendix II, and we may apply formula (II,10C), giving

Is “ ̂  j z  Î jh” n(r - l)|pjcos S(r-l) ^  (31)

Thus inverting the order of summation,

-Iipk” t f e g  I sj| <“
(323

*
'ST N kNTS

• • ^  ■ S.1.2 C33)
The latent roots which are in fact the inductance terms in the 
equations (29) must naturally be termed sequence inductances. By 

(33) we see that these are made up of harmonic inductances; in fact, 
we may write

Is“ - |Lph“ (3U)
where, of course, n must satisfy the integral number equation

n » kN ; S k - 0, 1, 2 .......

We are now in a position to draw an equivalent circuit for the stator

equations of a polyphase machine* In every sequence it is a 

separate RL circuit, where the inductance may be split into component 
parts as given by (33). These inductances are, of course, mutually 

coupled to the rotor coils, but if the rotor is also a symmetric 
winding, and the air gap is smooth, each is in fact coupled to only 
one equivalent RL circuit, thus giving rise to a complete equivalent 

circuit of the kind well known for induction motors. (The treatment

/of
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of machine theory from this point of view offers a wide scope, and 

it is the Author's intention to pursue this work to develop a  ̂cc

rigorous theory based on the above inductance calculations. It is 

hoped to remove many of the abstruse concepts regarding the 

inductances by showing how the various transformations are derived.

A critical note on the subject of synchronous inductance is given 
in Appendix III, but space and the purpose of this Thesis does not 
allow any complete treatment of the subject here).
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3. The Theory of Fractlonal-Slot Windings 

The fractional-slot windings have been known since the 

beginning of the century, and their advantages and disadvantages 

have been appreciated - although not fully understood - for a 
similar length of time. Their first application seems to have 
been in the construction of wave windings, and windings of very- 

large machines. The first attempt to analyse these windings is
oapparently due to E.M. TLngley , who considered the possibility 

of combining unequal groups of coils in a lap winding. There 
was no general method of attack, but his viewpoint seems to have 
persisted right up to the present in certain quarters. The 
harmonic analysis of the field produced by these windings seems 

to date from 1927 in the form of Q. Graham's paper^. The 
mathematical treatment has been further developed by M.G. Malti 

and F. Herzog^^, and no substantial advance has been made since, 

although there are several publications on the subject. The 
bulk of this literature is devoted to 3-ph, narrow-spread 

windings, and normally written by designers - for designers.
The treatment is, therefore, often lacking in freedom from 
unnecessary detail and in clarity. No attempt has been made 

to cover the general theory of polyphase windingŝ  and full use 

of the properties of harmonic functions has not been made.

In the following a generalised analysis of polyphase 

fractional-slot windings is attempted. It is based on the

/fundamental
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fundamental properties of harmonic functions, and brings out the 

mathematical origin of the slot-star method mentioned above*

General formulae for distribution factors are derived and 

rigorous discussion of their field of application is presented*

In the fractional-slot windings, the harmonic spectrum is in 

general denser than for integral-slot windings, but when properly 

designed may have a smaller overall harmonic content.
Consequently, the analysis is also more involved than for integral- 
slot windings, although the writer is of the opinion that it has 
in the past been unnecessarily clouded by special, non-matheraatical 
treatment. As an example, we may refer to Calvert*extensive 
tables of distribution factors which gives the impression that 
practically no uniformity is obtainable in the treatment.

There is a slight modification possible in the arrangements 
of 2N*-phase, N*phase connected windings, and these will receive 

separate treatment.

3.1 Wide-Spread Fractional-Slot Windings

In the fractional-slot windings, the number of coils per 

phase is not a multiple of the number of pole pairs, that is, if 

Q is the number of slots, N the number of phases, and p the number 

of pole pairs, Q/N is not a multiple of p. Each phase has q* or 
q* + 1 coils per pole pair, idiere q* is the integral part of Q/Np.

Normally, the fraction ̂  msy be reduced somewhat, i.e., Q 

and p may have some common factor, say 1. The winding may then

/be
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be arranged in Z identical sections, or repeatable groups. Each 

of these groups is capable of producing a balanced polyphase 

tystem, and the analysis of any one such group suffices for the 

complete winding. However, some modifications are possible in 
some or all of these sections, so that they have to be analysed 

separately and finally combined in order to give the results for 

the complete winding. In any case, each of these groups forms 
a separate part of the winding and indeed in the analysis, and 
attention will firstly be directed to such a group.

Q Q*C Q*We assume that ■ so that the fraction ttt containsNp Np'-fl# Np*
no factor coianon in Q* and p*. Thus the irreducible group

consists of Q* coils forming a balanced N-phase, 2p*-pole winding. 
A simple picture of this group is given in Fig. U, indicating that 

2n/4 radians is spanned by the group. By this we mean that the 

top (or bottom) layer of the winding within this range is 
completely occupied by coils all belonging to the same section.

It is Immaterial whether we imagine the group position to be 

defined by the top layer or bottom layer, or indeed by the 
midpoints of the coils. The latter definition is most 

convenient for the analysis, and will be adhered to in this 
analysis.
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2.7T ^-i ►

The simplest type of winding is that where all the 
repeatable sections are identical since in this case, the width 

of the group must necessarily be the lowest possible period in 

the flux wave. Consequently, only harmonics being multiples 

of JL may exist, and we can treat each section as spanning the 
same 2n/^ radians, rejecting all harmonics except those being 

multiples of ̂  This will be clear in the subsequent 
development. When treating these types of windings, the primes 

on Q and p are dropped, and we consider Q coils forming an N-phase 

system with 2p poles over the interval 2n/i radians. Since in

/order
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order to form a balanced system Q/N must oe integral, Q contains 

the factor N, in fact Q/N “ q, the number of coils per phase per 

section. Now Q and p contain no common factors, and p and N 
are therefore prime. In general, if p and N are not prime, the 

winding must either be integral slot or cannot be balanced.

(In this analysis no distinction is made between the 
number of coils and the number of slots, fully wound stampings 

only being considered. Sometimes windings are made where the 

number of poles is a multiple of the number of phases, and some 
unbalance may be accepted, or some slots may be left unwound.

A /
These windings are not included in this treatment). , C

The basic function in the analysis is again taken to be 
that given by equation (10), but we shall use it in the form 

%(x) = I Be Fm (36)
and throughout consider the actual flux distribution to be the 
real part of Bm(x). The exponential form has the added

advantage of being in one-to-one correspondence with the slot- 

star method. The vector e^^ is easily recognised as defining 

the position of the midpoint of the coil, and consequently 

shil'ts the basic pattern given by

Bm(x) - I Bo Fm 
m

forward by the angle 0̂ .

If this winding consists of identical sections, there

/are
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are i similar groups per phase, and by equation (13(a)), only 

values of m being multiples of £. give non-zero values, thus 

writing m “ r̂ , we have

■ 2  I Be Fnï. (37)
n

Now if we write 6 “ Ix, being the electrical radian measure in 

this case, and again take the arguments of Fm as well as (Ĵ in 
the same measure, (36) becomes

Bn(x) - I Be Fn -O') (36(a))

The addition of 2n/l to x is equivalent to the addition of 2n 
to 6, so that (36(a)) can be simply multiplied by Æ to give 
the sum of the fluxes due to the -I corresponding coils in the 
various repeatable groups # The analysis of a single group can 
be carried out as if it filled a complete 2n radians of a 
winding* If the sections are not identical, each section must 

be taken by itself, and the above restriction on the harmonic 

spectrum is not valid. The analysis then is considerably 

harder - as will be shown in due course.

Given equation (36(a)) and that the number of coils is 

Q, the distance between adjacent coils is given ly 2n/Q ■ JT . 

The position angle (T consequently increases by jj' radians per 

coil. The summation of the contributions to the nth harmonic 

in the qystem is therefore of the form

Bn(e) - E  If B(5 Fn (36(c))
r

/where
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where r takes some of the values 1, 2, ....... Q. The next step

is to consider the grouping of these Q coils into N phases, giving 

a predominant pth harmonic. (Fp f Unity is, of course, assumed; 

that is, the span is approximately one pole pitch). We notice 

that the number r may be taken to be the number of the coils, 
counted anticlockwise from a reference coil (or slot). It is 
well known that in order to obtain a balanced winding, the numbers 
r must form an arithmetical progression (modulus Q), i.e., for the
first phase, r takes the values 1, 1 + d, 1 + 2d, .....1 + (S - l)d,

for the next phase it takes the values
1 + 1 + (̂  + l)d, ....  1 + (-|̂  - l)d

and so on, ( all numbers being reduced mod. Q) • Now since the 
value of and are identical, the
modulus consideration may be dropped here and the arithmetical 

progression substituted directly. This would not be permissible 
had we applied (36) directly, without stipulating that all sections 

are identical. In this case, the expression is in general not 

summable in closed form, as will be shown later. According to 
(36(c)) we may then write the flux distribution due to the pth 
phase as

^  (e) " I  Be Fn (38)

which is in summable form. It remains to determine d. This

/must



- U7 -

must be chosen so that the step d corresponds to approximately 

one pole pair pitch or a multiple thereof. Consequently we 

require d = where k is ary integer (less than p). Further^ 

more, in order that all the coils/pole should be in adjacent 

slots, it is required that pd^ ^  i k.2% which is a 
sufficient condition. We can write this as

d * ^ where k is the smallest integer which makes
the R.H.S. integral. This is equivalent to

d . ^  (39)

To test whether this in fact produces a balanced 
polyphase winding we substitute in (38), putting n = p.

Bp (6) - I Be Q
 ̂ t=(f -D#

The + sign to be chosen according to the - sign in equation (39) 

In either case, the summations givec N equal magnitude vectors 

all having a difference in phase of 2ti/N, which is the required 

phase displacement, corresponding to a phase displacement of 

2n/Np in 6,

The general summation gives

^  (e) -  I  Be Fn g-jntd-Q
t=0

- ^  B, F„ ( W

/Thus
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Thus, the distribution factor is emerging as

j. sin n d Q/N n/Q
Q/N sin nd n/Q ^

The distribution factor is of the same form as that of the
integral-slot winding, and does in fact reduce to exactly the

same form for values of n being multiples of p* Thus if
n = n*p we have

 ̂  ̂  ̂sin n'(kQ *1 )̂  . ti/Q
f»"' q/N sin n'(kQ 'f "d V Q

sin n' Q/N. it/Q/ n'k(o/N - 1)
• cyW slii'n' (1*3)

From this equation it is evident that no harmonics which 
are multiples of N are possible unless n* is also a multiple of 
Q, and by virtue of the coilspan factor, these are also zero. 
Hence harmonic orders being multiples of the number of phases in 
the winding are generally eliminated.

The permeance harmonics due to the slotting of the 
stampings are of orders Q Î 1 and 2Q t 1 principally, i.e. 

n* = (Q Î l)/p or (2Q Î 1)/p. These are integral, that is to 

say they do exist if k “ 1 or 2 respectively. Since k <. p, it 

follows that unless p is larger than 2, one or both of the 
principal toothripples will still be present, and for effective 

reduction of the permeance harmonics, a larger number of poles 

per repeatable group would be desirable. These considerations 

do not, of course, apply to salient pole machines, where there is 

flux fringing at the pole shoes.
/In
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In general, fractional-slot windings, having identical 

irreducible groups veiy often turn out to have undesirable 
sub-harmonics, that is harmonics of longer wave-length than the 
principal harmonic. Very often these harmonics are reduced ty

re-arranging successive groups so that the sub-harmonic in each 
group are altered in phase sufficiently to be cancelled out 

between the several groups.

For the purpose of analysis, to cover such cases, it is 

necessary to evaluate the complete flux density function 
produced by each irreducible group, and finally to sum these 

functions.

The irreducible groups must still be individually 
balanced polyphase systems, and their layout must again follow 

the law of arithmetical progression, now with the reduction 

modulo Q as an essential part.

The central part of the problem is the evaluation of

li w  ®  m
' t-(f-1)^

where we have retained Q as the number of slots per irreducible 

group and ( td)q means (td) mod. Q. The summation now gives non

zero results for all harmonics, in particular all those 

corresponding to m not being a multiple of £.

/In
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In order to simplify the following details, the sequence will be 

written as
z('td)Q̂  (t » 1, 2 ... . Q/N), where z =

We now write x = [o/(̂ % (i.e., x is the integral part of O/d), and 

suppose
Q/N “ tcx + V, where 0 $ v < x, u and v being integers.

The sequence ( td)q may then be expressed by the sets
1. ... d, 2d,      xd
2. ... (x + l)d, (x + 2)d, ...... . (2x + h2)d
3. ... (2x + h2 + l)d, (2x + h2 + 2)d, ..... . (3% + h^)d

(u)..((u-l)x+ĥ _̂ + l)d, ((u-l)x+ĥ _̂ +̂ 2)d, .... . (ux + hu)d

(u+l)..(ux + h^ + l)d, (ux + hu + 2)d, (ux + v)d

where hn is the principal remainder of - n-g ., that is

If hu V, the last (u + l)th) row does not appear and the second 

last row will read

((u-l)x+h _̂_2 l)d,    (ux + v)d.
It will be noted that set 1 is in the range (l,Q), set 2 is in the 

range (Q + 1, 2Q) etc.
Thus try subtracting the appropriate multiples of Q in these sets, 

we obtain the required sequence (td)q.

We write

Q = xd + y

/whence
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whence the sequence (td)q can be represented by the sets

d , 2d , x d .........  (1*)

d - y, 2d - y, (h2 + x)d - y,  (2*)
(̂ 2 + 1) d - 2y, (h2 + 2)d - 2y, . (hj + x)d - y ..... (3»)

(^u-1 +l)d-(u-l)y, (ĥ .i +2)d-(u^l)y, ,.,(hu + x)d-(u-l)y .....(u*)
(hu + l)d - uy, (hu + 2)d - u y , ( v d  - uy) ...(u' +1)

The last row does not appear if v ̂  ĥi, and the second last row is 
then

(h^_2"*"l)d-(Ti-l)y, (h^.2*2)d-(u-l)y,    vd-(u-l)y

By this arrangement the sequence z( td)q j,g summable in (u+1) 

parts, since each of the sets (1*) (2*) (3*) etc., now gives a 
geometric series*

Writing the series out in full, we obtain
N g(td)Q = gd 4. g2d  ̂ ........ + z^d

t=l' ,
+ z-y (%d + g2d + ,,,, + z^ )

+ gXd-y (gd + g2d + ,,,,, + ẑ ^̂ )
+ aXd-2y (sd + s2d + ..... + ĥ3d̂

+ ' z ^ - ^  (zd + z2d + .... + z®*»̂ )

+ z^nd-uy (̂ .d + ^Sd + . .. * gVd)

Here, each of the brackets contain a geometric series, and by

/summation
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summation of these we obtain

J  .(«), . 4 0 ^  (1 . ,-F   -rajr,
t=l

. , ^ y  (1 - .“ ■*) . (1 -
+ .... + z * * l d - ^  (1 _ z M )

z^<i-«y vd
+ i T V  • (1 - 3 )

gd_ _x+ldT ^ (j.h2d-2y gh3d-3y + -u -ly^

4 (1 - z*̂ )(i-z-y) + (1 - z-̂ ’̂ -^ty(i-z-y)_L *

_ g(h,u<-x)d-(u-l)y *  5jhjjd-t]y _ gVd̂  

f in a lly ,

^  z(^)Q = j. 1(1 _ Ẑ '̂  (1 + Ẑ )) S + (1 - z^‘̂)(l-z"y)
t-1 ^
+ (1 _ J^-l)y)/(zy-l) + (1 -

> (W)
where

s - z*̂nd - ny
n«2

It is evident that in the general case, this formula cannot 

be further reduced, and the general formula for the distribution 

factor of a particular group has little practical (or theoretical) 

value. The above expression has been derived and is presented here 

to indicate that in the case of irregular windings, a considerable 

amount of tedious arithmetic seems to be necessary to obtain the 

distribution factors.
/It
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It mfiy be argued that the present method of attack is too 
restricted - in as much as only one group is considered* If the 

winding as a whole, including several sections of repeatable type, 

but differing by a small rearrangement respectively, were to be 

treated in the one analysis, more powerful methods must be sought. 
A possible alternative method of analysis is suggested in Appendix 

I, although it is not carried as far as to include fractional-slot 
windings. The main idea is to formalize the addition processes 

by interpreting these as singular transformations of the currents 
in the various coils* The reason for this method of analysis is 
to be found in the close link between the separate space-harmonic 
functions and the time-harmonic functions - and their respective 
symmetrical components. By considering the complete N-coil 

winding as a balanced N-phase winding, and resolving the 

corresponding N currents into symmetrical (N-phase) components, 

clearly each space-haxmonic as produced by each symmetrical 

component becomes trivial to evaluate* The problem is then to 

establish the various symmetrical components and add the 

contributions to each space-harmonic. The latter problem 
involves calculations of similar kind to those alreadly undertaken, 

but it is felt that a much better organisation is obtained by this 
method, and that it may be developed to give methods of synthesis 
as well as analysis of ary particular kind of winding, however 

irregular.

/The
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The problem of evaluating the sum of the geometric 

progression can be stated in another form, which again
illustrates the inherent difficulty. Instead of using 

congruences, the number (td) mod Q may be regarded as the 

principal value of log Thus (td)q may
be expressed as

e

* (costd ̂  - j sintd 2n/Q)'̂ '̂  (I46)
where it is understood that the bracket must be evaluated before 
raised to the povier Wi» Again if n/X is integral, the order 
of the evaluation is immaterial. This is the justification of 
the simpler procedure applied for the regular windings.

3.2 Narrow-spread fractional-slot windings 

As was the case in integral-slot windings, the narrow- 

spread windings can be considered as an even number, say 2N-phase 

winding, interconnected to form an N-phase winding. It is 
possible to obtain a balanced N-phase 2N-phase winding, and it is 

necessary to consider these separately. However, this theory 
includes the windings obtained from a balanced 2N-phase wl.ndings, 
and the latter need not be given any different treatment.

3,2.1 N-phase windings derived from an unbalanced 

2N-phase winding 

In an unbalanced 2N-phase winding of the type referred to

/here
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here Q/2N is not necessarily an integer, although Q/N must still 
be integral. If that is the case, it is possible to construct 

and accommodate in the given stampings two separate N-phase 

windings which may be series connected to form a sin̂ :le balanced 

N-phase winding. The two component windings have (Q + x)/2N and 

(Q - x)/2N coils per phase per repeatable section respectively. 

Here x is any integer in the range 1-^(Q - 2Np) which makes the 

fractions integral respectively.

Now if (Q 1 x)/2N is integral and Q/N = q (an integer), 
it follows that t(q ± ̂ ) is integral. Hence x is an odd or eren 
multiple of N according as q is odd or even respectively.

/

2.
s



- 56 -

The lay-out of such a winding is illustrated in Pig. 5.

It is evident that such an arrangement would also be perfectly 
feasible with an integral-slot 2N-phase winding.

The repeatable group is again laid out according to the 

rule of arithmetic progression, but for either of the windings, 

the series does not go uniformly from one phase to the next, but 
jumps a number of steps. The summation of the harmonic fields 
must therefore be carried out for each separate phase accordingly, 

Thus for the first sub-landing we have.

Phase 1: ^n/Q (U7(a))
t“l

Phase 2î Bĝ Ce) - ^-jntd 2h/Q (U7(b))
t=07ii *1

Û 2 f -l)Q-txJ/2N ,
Phase f Î B, (e) = IpBcFn 2n/Q (U7(c))

^ ^ f  (P^Q + 1'J 'u

The second sub-winding is the complement to the first, and 

considering the phases succeeding phases 1, 2, ..... , in the

first respectively, denoting these by 1*, 2\ ... *, we have

Phase l5 B'» (6) = IiBcFn ^  e":"^ (U8(a))
t=(Q-»x)/2N+l

Phase 2: B^" (6) - l2BcFn g-Jntd 2n/Q
t“(3Q-*x)/2N*l

Phase p': B'" (6) = Ip BoFn ^  g-jntd 2n/Q
* ^ t“C(2f -l)Q+x]/2N

/The
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The two sets are then interconnected, so that Phase 1 

of the first set and Phase (N + l)/2 in the second set are in 

series opposition. The total flux due to this combined 

winding is given by

Equations (U7(a)) and (U7(p)) become on putting ^ = (N + l)/2 

and evaluating the series,

Bi^e - IjBcFn ^  «/Q
sin nd n/Q (U9(a))

and

■ W n  S e W .  (te(B))

Upon addition we have
, Q+x n jndit . Q-x n.n ^ „ sin nd -q -e sin nd--z% g

Bj (6) IiBcFn  iiTSrS/Q

X @-j(r2n * i) "/Q (50)

The general distribution factor is therefore

sin nd ^ - (-1)"^ sin nd ̂  5

Q/N sin nd n/Q

From this equation it is clear that if nd is an even number, we 

have

o 2sin nd x %/2NQ.cos nd %/2N 
^,n " Q/N sin nd n/Q (52)

/and

Fp,n ■ (51)
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and if nd is an odd number,

p 2 cos ndx ti/2NQ sin nd n/2N I drrrr-rrr— ^ ~rx ' /
. [I

 ̂9̂  Q/N sin nd n/Q

These equations are of great importance in design of 

fractional-slot windings. Since x is a variable parameter 

restricted only to be a multiple of N, it may be chosen to 

minimize any given harmonic,

3.3 The field due to sequence excitation of fractional- 
slot windings.

The sequence excitation again gives rise to connection 

factors as in the case of integral-slot windings. These are 

however, different in this case and must be evaluated anew.

The general expression for the harmonic fields per phase 

must now be taken as given by equation (38),
Btf (e) = Iç Be e-5"® § -1 (38)

t=( f -1)§
and after summation we obtain

B^ (6) = BeF.,n ‘ (5L(a))

Taking the real part of this equation we have 

sj (6) = Iç,BcF^^n cos (n© -fnd 2ti/N - ̂ n) (5U(b))
where ■4n is independent of ÿ .

N—1
Now I - S  Is cos (eût - flï S ̂  -4s) (55)

8=0 ^
and by substituting in (5U(b)) and comparison with Section 2.U.1,

/it
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it is evident that the connection factors are given by

. sin(nd + S)n .... ..
“ sin(nd + S)h/n (56(a))

and

Consequently the integral equation determining the harmonic 
spectrum for fractionâl-slot windings is 

k'N Î S
d—  (57)

k' - 0, 1, 2, ...
This is a modification of equation (16) obtained for the integral- 
slot windings. If we write d “ — --  we have

n - P (58)

It is clear that n need not now be a multiple of p, and the 

spectrum may therefore be much denser than for a corresponding 

2p-pole integral-slot winding. Of particular importance is the 

fact that there may often exist harmonics of the order p Î 1.
These harmonics are veiy likely to cause magnetic noise, and this 

problem has, in fact, been one of the major difficulties with 
these types of windings. In general, as will be shown later, 

the presence of adjacent harmonic orders (i.e., difference of 

unity in the order of harmonics) also will produce transverse 

forces on the rotor and may therefore have veiy serious effects.

/Example 1
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Example 1

Suppose a stator having 75 slots is to be wound as a 
3-phase, 20-pole machine.

We have

Q1 = 75___  = 35__
IpN 10 X 3 ^ X 3

Hence 1 - 5, Q = 15, p = 2; Q/N = 5
Thus d - ~ ^ = 8 (with k - 1)

The spectrum is therefore given by
n - ( » )o

For positive sequence excitation,
3k' + 1 , .n " — j —  » (

From ( p ) we have the series

n = -1, +2, -U, +5, -7, +8, -10, etc., where the signature
refers to the sense of rotation of the harmonic fields. In

terms of the electrical system, the harmonics are

n » -J, 1, -2, + 5/2, -7/2, U, -5, etc., showing that the

spectrum consists of the usual integral-slot spectrum as given

\yy
n - 1, L, -5 ...

plus a similar spectrum of hamonics having twice the wave 

length and opposite sense of rotations given by 

n = -J, -Ü/2, 5/2 ....
The winding factor for the winding is given by

. sin n 8.5 j  n
5 siii nÔ y  T

/The
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The coil span may be taken as ir/Q, which in this case
gives

Hence

37ti h3ncos n - cos n
5/2 sin n 8n/l5

This winding factor has been computed for the 8 lowest values 
of n to show the relative magnitudes of the harmonics 

n 1 2 3 U 5 6 7 8
0.103 0.790 0.000 0.250 0.000 0.000 -0.221 -0.221

B F*, ,n 0.103 0.395 0 0.075 0 0 -0.032 -0.0276
The lower line in the table gives the relative amplitudes of the 
hamonics. Clearly, the magnitude of the subhamonic (n " 1), is 

quite prohibitively large to make this a practical winding.
However, the example shows quite clearly that the magnitudes of 
both subharmonics and fractional order harmonics may be large in 

these types of windings, and therefore demand; careful design.

Example 2

Stampings having 306 slots, to be wound 3-ph, 28-pole, 

narrow spread.
1 = 2, Q = l53, p * 7, d = = 22.

Each repeatable group (l53 slots) will have two 3-ph windings

/ occupying
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occupying 153 + % and 153 - x slots respectively,
1st winding has slots/phase

2nd winding has 2̂̂ ^ ̂  slots/phase,

Thus X is any odd multiple of 3; the simplest case being x = 1.

The harmonic spectrum is defined by

n = k'N - S . k'3 Î 1 fs -
— d—  — 5T“  ̂ ^

giving the spectrum

n = 1, -2, U, -5, 7, -8, ••••
The winding coil pitch will be given by

slots « I jgy" 2n ** l6U° el.deg.

The distribution factor is given by

cos n 22n/6T? _ 2 sin n 22x n/6 x 153 
" 5l sin n 22 n/l53

The value of x may be varied to obtain the optimum result as 

regards minimisation of unwanted harmonics. From the point of 

view of noise, the 8th harmonic will clearly be the most 
dangerous.

The optimum value of x is therefore given by

A X  ■ 3k where k is any integer6 X 153
, . X “ 15.65k, from which x = l5 is the nearest integral

solution.

The distribution factor for the 8th harmonic is consequently.
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P o = 2 sin 88 x 5n/l$3 x cos 88n/3 = n Ai6<
P'8  5l sln Ï76n/Ï53--------

and for the principal harmonie we have

2 sin 77 x 5n/l$3 cos 77n/3 = 0.995
= 5l sin i5 W i53 •

The dissymmetry has therefore not appreciably reduced the 
fundamental, and substantially reduced the most dangerous 

harmonic.
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U, The Effects of a Parallel Eccentric Displacement 

of the Rotor

In the previous sections of this work, the theory of the 

air gap flux density distribution was reduced to what is more 

commonly known as the m.m.f. theory of windings by certain 

assumptions about the form of the gap flux. In this section, it 
will be shown that a similar method of attack is possible even 

when the rotor is eccentrically displaced. The only case 

considered is that of a parallel displacement, the skew 
displacement involves further severe difficulties. However, it 
is believed that if the skew is not very large, the distortion 

of the average flux density along the rotor is not very severe 
and does not, therefore, affect the induced e,m,f• The 
transverse forces resulting are, of course, also different in 
this case and give rise to a bending moment as well as a 
transverse force. The treatment of an actually eccentric rotor,

i.e., where the non-uniformity of the air gap would move with the 

rotor would be quite different, but this case has not been 

thought of sufficient interest to be included here,

L.l The Flux Density Distribution in a Smooth,

Eccentric Air Gap
The problem of determining the field in an eccentric 

annular space is certainly tractable from an analytical point of 
view, since the solution is easily obtained from that of the

/concentric
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concentric case by a well-known transformation^. Alternatively, 

the problem can be attacked by solving Laplace's Equation in terms 

of biaxal co-ordinates, which form the suitable co-ordinate system. 

These methods are appropriate when the permeability of the iron 
parts is considered infinite, so that the field in the iron is 

everywhere zero. In that case the outer boundary of the rotor 

are both immaterial. However, when the permeability of the iron 

is finite, these boundaries become important in the determination 
of the field. Since these boundaries do not correspond to any 

of the co-ordinates being constant, the problem of determining the 
constants of integration is hopeless by known methods. The 
geometric model of the machine for which an analytical solution 
has been obtained̂  is therefore very different from the actual 
machine. Especially severe does this approximation seem in the 
case of large diameter machines, since these have usually also a 

small axial length-bore ratio. In either case, these analytical 

methods are of more academic than engineering interest, and it 
must be of some value to investigate the possibility of 

establishing simpler methods which will give adequate accuracy.

The following treatment is substantially based on the same 

principle as outlined in Section 2.1. Again, the permeability of 

the iron is assumed infinite, and the flux distribution is assumed 
to be governed by the same principle as in the concentric case, 

namely that the field lines are lines of shortest distance between

/ the
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the stator and rotor surfaces. By the magnetic circuit law it 

is then a simple matter to obtain the relation between flux 

density and the currents in the vjindings.

(j~\- ■ i 1 ^

( 4 r;

fUix jxUt̂

The relevant geometric quantities are illustrated in 

Fig. 6. The plane containing the centre lines of the rotor and 

stator (X’X) is called the eccentricity plane, and all angular 

quantities are measured from this plane. It is now necessary 

to distinguish between stator and rotor angular measure; xg and 

Xr in figure are clearly different when describing the same points 

in the stator (P). This difference which is called the eccentric 

angular anomaly, is in most cases nef̂ ligible. The following 

considerations will serve to justify this statement.

From geometric considerations of Fig, 6, we have
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A? cos xs * BP cos xr + AB

and AP sin xg = BP sin Xr
AP cos Xs “ AP xs QQg xy + AB

sin Xr

AP (cos Xs sin xr - sin Xs cos xr) ® AB sin Xy
ABsin (xr - xs) = %p sin xr “ k’ sin Xr 

Xr - Xs * 8in"l (k* sin xr) (60)
k’ is the ratio of the eccentrĵ cf̂ displacement to stator bore. If

this quantity is not larger than 10“ ,̂ (60) can be written, with 

good accuracy

Xr - Xs = k> sin Xr (6o(a))
The maximum anomaty is therefore of the order of 10"̂  radians or 
0,5 degrees. This be of importance, but for practical cases, 
k* is much smaller than 10*2 and no correction is necessaiy.

The flux lines msy be assumed to be straight line 
segments which in turn are supposed to emanate from P and bisect 

ab in Fig. 6. The length of this line segment is a function of 

the angular displacement xg, the mean gap length g, and the 

eccentric displacement AB,

Again we have,

Pb = BP - Bb
r i= |̂ Ap2 + AB^ - 2AB.AP cos x̂ J - Bb

Normally, the displacement AB is small, say ]/ 100th of 

the bore radius AP, so that the square of this quantity may be

/ignored.
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ignored.

Thus Pb = AP - 2"^^ cos XgJ - Bb

Again, if the ratio ̂  is small, the root can be expanded 
binomially, so that

Pb = AP - Bb - AB cos Xg 

“ g (1 - ̂  cos Xs) 
where g (= AP - Bb) may be termed the mean gap length. It is in 

fact the mean of the maximum and minimum value of the variable gap 
length Pb, and c orresponds to the constant gap length in the 

concentric case.

ABFurther, the (constant) ratio —  can be defined as the 
eccentricity (k), so that zero eccentricity means concentric rotor, 
while unit (or 100̂ ) eccentricity corresponds to the extreme case 
when the rotor just touches the stator. Pb is the gap length at 

any point, and we write

Pb = g(l - k cos Xg) (61)
where k ■ AB/g.

(It is not of any importance whether xg or Xr is used in 

this formula, the error being of the order k’k or substantially 

less than one per cent. Furthermore, the difference in length 

of Pa and Pb is insignificant, and the length of the flux path 

is thus veiy nearly equal to Pb)•

/In
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In the following the angular displacement Xg only will 

be used, and the subscript will be dropped, and x, unless othervdse 

stated, will mean Xg.

In Fig. 7 the flux distribution due to a single coil is 

shown. The assumption is that the flux lines are radial lines 

drawn from the midpoint of AB, being of length g(l - k cos x).

/This
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This is the extent of the assumption^ and the rest of the analysis 

is exact. It is clear that this assumption is not valid if the iron 
is highly saturated, or if the gap is much longer than in normal 

machines.

Since there is no drop of magnetic potential in the iron, the 
magnetic potential drop across the gap is constant inside and outside 

the coil, and the magnetic potential or m.m.f. wave is again a 

rectangular wave as shown in Fig. 8(a).

1I

I♦

h M F  wave cLicc to ol Coct
Ctrl 6^ C
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‘ Now at any point in the air gap

(Pb) . B(x) = po H(x) (62)
where H(x) is the magnetic potential and B(x) the flux density; 

thus substituting for Pb we have

'■<*> ■ CO.

This is illustrated in Fig. 8(c).

The second condition we msy impose is that B is solenoidal.

Thus integrating the flux density over the stator surface, we have 
2 n

B(x) dx = 0, which follows from div B = 0 
o /i:

whence,

^̂0 % _______dx Po Ho dx
(j-_ ̂  g(l - k cos x) Jq-+v/2 gU - k cos x)

20
and integrating we have,

-vrn?
and inserting the limits we obtain the relation

Hi tan (| ̂  + VUoC) - t a n " ^ " ^ ^ ^  tan ( i ^  - ]/^<X)j

= Hq ̂ tan'^-^j tan (I (T - VUo<.+ n) -tan"3ÿ^^^~ tan (tT + VUokjj

Because of the multiple values of the inverse tangent we may

write this in the form,

%  ,  kir. -  a (6W a))
Ho k2?. + a

/where
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where k%, k2 are integers yet to be determined, and a is the 

principal value of

2(tan-l'J^^tan(i? + V U ^ ) - t a n " t a n  (i(T+ VU^)
By a further reduction we have

a . (65)
1 - k cos(T' 

from which it is immediately apparent that 

lim a * oC and
k—^O 
lim

%  + (X
k-^0

Now it is necessary that the latter limit must conform with the 
corresponding ratio in equations (3(a)) and 3(b)), whence we 

have ki “ 2, k2 " 0 and finally,
2ti -  aHi

Ho (6U(b))

This expression is of the same form as that obtained in 

the concentric case, but the angle (\ is replaced by a, as given 
by equation (65).

Again, by the magnetic circuit law, 

Hi Ho ® Ic To 
and combining with (6U(b)) we have 

Hi “ IcTc (1 - -If)

Ho “ IcTc • "2̂

(66)

(67(a))

(67(b))

/The
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The Fourier series corresponding to the m.m.f. wave is therefore

given by ^

H(x) “ IcTc KoL- S') I ^  m cos m(x -(H| (68)
^ m=l /

which can be written

H(x) = lio + *)ni cos m(x -(T) (69)
m=l

The m.m.f. wave for the eccentric gap is identical with the m.m.f. 

wave for the concentric case with the exception of the constant ho,

The flux density function follows from equation (63)

ho + ̂  COS m (x -cr) I (70)
m=l >

since ho and 1% are known functions of d and (T it is now possible
to expand B(x) in a series of the form

B(x) * (b̂  cos qx + b̂  sin qx) (71)
q=l ^ ^

By the usual procedure, 
c 1 A 2%bq “ I B(x) cos qx dx (72)

J 0
1bq = - I B(x ) sin qx dx (73)

j 0
These integrations are possible, but require an extensive 

manipulation, and it has been found much easier to expand the 

factor l/l-kcosx by the binomial theorem, and convert the powers 

of cpsx into equivalent multiple angle series. Then this series

/is
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is multiplied by the bracket in (70) and the coefficients of like 

harmonic terms finally added. The procedure is rather tedious, 

and the details are given in Appendix V, By the appropriate 

results found there we have
oO

B(x) “ ■ ho (1 + 2 ^ y ^  cos çc)

+ ^  [cos m(r(y^ + COS
m=l k q=l

+ sin mcr ̂  2 3  (y^^"^ - y 1*"̂  ) sin (7U)

where y = &nd |q - m| means the numerical value of

( q - m).

Since B(x) cannot contain any constant term, it follows

that
oO

ho + 1% y^ cosmCr' = 0 (75)
m*l

whence cA
ho * -XI y”̂ cosmCr" (75(a))

m=l
Substituting this value in (7U), there results

^  , oO
B(x) - _Ü2--_ 1  I cos mC 2]  (y  COS qs

g(l - k2)a I. q-1

+ sin rairïl (y |q-m| _ y'i**) sin cpcl (76)
q=l J

and finally, we have
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oo oO
B(x) = ̂ 1'" ^  1% (y y qtm) oo3(qx - mr) (77)

This is a very convenient, and surprisingly simple expression, where 

the harmonic terms are simple functions of the harmonic amplitudes 

in the conventional m.m.f. wave.

From equation (77) it is clear that the formula is equally

valid whether we interpret ̂  hĵ cosm (x -(T) as the m.m.f. wave due
m

to a single coil or a complete winding, since additions of terms 
due to several coils will involve mQ' only. The result will be 
the same in whatever order m.m.f s. or fluxes are added. This 

reveals the great power of application of equation (77).

In order to find the amplitude of a given harmonie in the 

flux wave it is advantageous to consider (77) in the form
oo

B(x ) • -'-iigs-k (b° cos qx + b® sin qx) (78)g(l - k2)a ^  q q

where

b^ ĥ  (y*^ y ^^) cosmiT (79)
m

and b® (y _ y "̂̂ ) sinm(M (80)
m

The amplitude of the qth harmonic is then given by

X V 1Po
g(l - k̂ )&

(bJ2 + (b®)2̂ 2
= b.»q (81)

By (79) and (80), putting 1% ( y - y “ Hj%,q

/w(e
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we have,
_O0

hq- rr^i* cosmg-)2 + q sin m0-)2) ^
'2 I m m Jg(l

2L.' O
•■• ’"> ■ m W *  ( Ç  ' i -  ‘ ^ I x  ”>«.0 D  '

(82)
This function is bounded, the upper boundaiy being

00

’’<3>nax ° g(i _ Ç “"’'1
The lower boundary is more difficult to find, and depends on the
successive values of the coefficients %. The most useful
expression is probably that giving the r.m.s. value of bq as a
function of • This is

q̂(rms)
oo

Po , (Ç< . 1  ' (8U)
g(l - k2)

As a rule, there will be one or two dominant terms in the 

sequence %, namely those corresponding to hp, the fundamental 
or principal harmonic in the m.m.f. wave, and that corresponding 

to m * q, if h q  is non-zero. The latter case gives a maximum 
of the function (yl9."W _ yArni). It may very often be sufficient 

to take these two terms into account, and the evaluation of bq may 

be performed very quickly.

The value of bqĵ ax given by

W  ■ ÎL hm (82)g( 1 - k̂ )2 m

If q ^ m  for all values of m we have the simpler form
QÙ

W  ■ -Rgyl (1 - y2<l) E h m  (85(a))

/While
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While if q for some values of m, the summation has two 
different ranges, viz.

^o rq-1
hn (1 -

+ ( ]L - ]r2%) &
m=q J

Similarly, the formula for bq̂ m̂g) reduces to

■ ï îrnsjî <1 - ^

(85(b))

(86(a))

Where q ^ m  for all values of m; and in the more general case 
where m q for some values of m.

q̂(rms) Po
g(l - k2)2 ^  (1 - y V

m=l

+ (1 - y^‘1)̂  Z  4
ra«q

(86(b))

To facilitate the computation of harmonics with the aid of these 
formulae, the values of (l - k )̂“2 and y^ are calculated and 
tabulated for values of k C  0*05 - 0.95 to an accuracy of four 
decimal places (Table 1, page 102).

The simplest case arises when the m.m.f. wave is nearly 
sinusoidal. In these cases it will be sufficient to consider 
the fundamental m.m.f* plus the hamonics of order q - 1, q and 

q f 1. Thus, we have by (85)
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hp - y S+P )

* hq_i (y  -  y^*l"^)

+ hq (1  -  y^“̂ ) + hq*]  ̂ (y  -  y^S+l)] (87)
where the term in hp must be ignored if p = q, o r p ® q l l .

Also, since rarely contains the full spectrum, some of these 
factors are normally zero. In fact for all sub-harmonics, i.e. 

q <  p, hq_3̂, and h^^^ sill are zero, and the expression contains 
only the fundamental m.m.f. coefficient. This is interpreted as 
the not surprising result that the sub-haimonics are only functions 
of the fundamental ccmponent of the m.m.f. wave.

Finally, if the m.m.f. wave is purely sinusoidal, the value 

of bq^g^ and bq^^g^ are both given by the expression

M  hp ( / W  - r W )  (88)

It is clear that in this case, the severe distortion of the field 

at smaller values of eccentricity is entirely due to the 
introduction of harmonics of the orders p - 1 and p + 1. Their

amplitudes are

bp+l " g(l°- kSyi hp y (1 - y2P) (8?)
and

V l  “ g(l°T-K2)-f hp 7 (1 - ŷ P"̂ ) (90)

These are both of the order ybp. Tl̂ refore, the function y

/gives
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gives a quick qualitative measure of the field harmonics introduced 

by the eccentricity.

In practice it is often required to have the relative 

magnitudes of the harmonics, rather than their actual magnitudes. 

Thus bq is required as a fraction of bp. In the case of a purely 
sinusoidal m.m.f. wave, we have

U.2 The Flux Density at the Rotor Surface
In most cases, it is accurate enough to take the flux 

density function evaluated in Section 3.1 as the same at stator 
and rotor surface. The kind of correction to be made if the gap 
and eccentricity are abnormally large will now be investigated.

The difference in the flux function is due to two causes,

(a) there is a compression of the tubes of flux due to the smaller 

diameter of the rotor, and (b) due to the eccentric angular anomaly,

These two effects can be seen in Fig. 9. The same amount 

of flux crosses the two segments QP and qp, being of different 

lengths, and the mean angular position of these segments referred 

to the angular measures Xg and Xy differ by an angle e + k* sin Xr. 

The additional anomaly e is proportional to k* sin xr and much 

smaller than this quantity, and will be neglected in the following.
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From this Figure, the following relation is obvious;

B(xs) . R dxs = B(xr) • r dx^ (92)
where R is the radius of the stator bore and r is the radius 
of the rotor bore.

Therefore,
R

B(^) = ? B(xs) ^ (92(a))
Putting Xg = Xr - k* sin Xr in the L.H.S. of (88(a)), and using 

(78) we have,
B(xr) = I ĝ i -• ic2)~l -k̂ ^°sxr) |̂ bq cosq(xr - k' sinxr)

+ bq sinq (xr - k' sin xr)j (93)
The subscript r may now be dropped; since k*sinx is of the order 

of 0«02, i.e., corresponding to 1®, the value of cos(k’ sin x)

differs from unity try about 0.002 only, and we therefore ignore this.

/Accordingly,
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Accordingly, (93) becomes

Br(x) “ r 'k2)ÿ (l - k*cosx) (cosqx + k* sinqx sin x)

+ bq (sin <pc - k'cos qjc sin x)J (9h)

In order to obtain (89(a)) in the same form as (78), we expand 
this in Fourier Series form.

c
- ĝ :  ^  * Bq sin qx)

where by the usual procedure we obtain
C 1 /* X 0Bq® - f (l-k* cos x) 23 |bn (cos nx cos qx

" J n n=ï

(95)

o
+ 2k’ sin nx sinx cos qx)

+ b^ (sin nx cos qx - 2k’ sin nx sinx cos qx^ dx
Hence,

“ "2-q • T -  <-l ̂  ' 4 l  r

-(^q+2 * ̂ q-g) r  - V q  + (b®_^ - b®̂ )̂ (k* + ̂ )  (96)

where the term b2_q only occurs \^en q = 1, i.e., it is always b%.

Neglecting terms involving k’2, we have 

Bq - b° . k' (3/2 b°_i - I b°̂ )̂ 4. (b=_^ - b=̂ )̂ k' (97)

gThere will be a similar expression for Bq. It is apparent 
that considerable labour will be involved in evaluating a larger 

number of these coefficients, and this refinement of the theory

/leads
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leads exactly to the same computational difficulties which arise 

in the analytical solutions. Since only practically usable 

formulae are aimed at in this work, this extension is not carried 

ary further.

U.3 The Rotating Fields in the Eccentric Gap 

In polyphase windings, by far the most important part of 

the m.m.f. wave consists of travelling waves, and the resultant
flux density wave will also consist of travelling waves.

If the normal m.m.f. wave of the winding is of the form

H(x,t) = 22 ̂  cos (m (x -<Tm) - wt)
m

we may replace mCr' in equation (77) by (m Î cut). Consequently,
according to (78) etc., we can write the flux density wave as

B(x,t) « 2 2  |(b̂  cos (qx - (ot) + cos (qx + cot)) (98)
q*l ^

where.

(99(a))
oO_ r

m-̂ ' ̂  n*l^q “ g(l - k^)i 22 (^,q ***  ̂22 \+n,q ̂ ,q ^mî  n*l J
(99(b))

and S  and ^  means summation with respect to values of m 

corresponding to forward and backward rotating fields respectively.

It is clear from the above equations that the travelling

/waves
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waves in the flux wave tend to be elliptic, and the complete 

picture of the flux wave is extremely complex. A general 

discussion of their nature seems of little use, but the above 

equations are sufficient to evaluate all the harmonic fields 

in any given case.

There is, however, one case which m ^  be dealt with in 

detail, namely that where the m.m.f. wave is a pure sine wave.

Then we have the form of H(x,t) as
H(x,t) = hp cos (px - cot) (100)

and consequently,
oO

B(%,t) - Z  bp cos (cpc - mt)

(101)
In this case it turns out that all the harmonics rotate in the 

same sense, at angular speeds given by o/q. rad/sec. A curious, 
and unexpected, consequence of this is that even a sinusoidal 

m.m.f. wave may produce fields moving at speeds in excess of 

synchronism.

U.U The Transverse Pull on the Rotor

The transverse pull resulting from the distortion of the 

magnetic field due to eccentricity will now be considered. The 

method adopted is that of evaluating the stresses at the surface 

of the rotor and then integrating over the whole surface to find 

the resulting force.
/The
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The boundary stresses follow from Maxwell’s hypothesis of 

electric and magnetic stresses. We are here concerned only 
with the magnetic field stress.

In a magnetic field, the energy density is given by the 
expression,

Wm = i HB Joules/mB 

Energy density can also be expressed as

N - m N

which has the dimension of stress (force/unit area). If the 

field is uniform. Maxwell’s hypothesis assumes that the region 

where such an ener^ density exists is subjected to a tension 

Wm in the direction of B (or H) and a compression Wm perpendicular 
to B (or H). At boundaries (where the normal component of B 
must be continuous in the absence of sources) the value of H may 

change if the permeability is changed, and there is consequently 
a change in the value of W^. This change is interpreted as the 
mechanical stress on the boundaiy* This is illustrated in Fig. 

10. Since in the case of infinitely permeable iron, the Maxwell 

stress (normal) in the iron must be zero, and the mechanical 
stress on the iron surface is therefore equal to the Maxwell 

stress in the air. By putting H ■ B/po for the air gap, we 
obtain the equation

f • b2/2ho N/m2 (102)

for the stress on the iron surface.
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' The phenomena can also be explained by considering the 

magnetos ta tic equivalent of the system# The iron is then 
assumed to consist of magnetic dipoles which, under the 
given conditions, are completely aligned with the field. 

Inside the iron, the net field is then zero, since the 

dipoles neutralise each other, and there appears free poles 

only at the surface of the iron/air boundaries, (Fig, 11),
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A concentration of poles corresponding to an air gap flux 
density B is in this case given by (Ĵ“ B Wb/m^. Again, the 
force per unit area of these surface distributions of poles 
is H, where H is the field due to one of the surface 
distributions only. For an infinite plane surface this is 

given by H = (//2po, whence the stress is given by N/m̂ .

Putting = B we obtain again equation (102).

Formula (102) is directly applicable to the present 

case provided the assumption is made that the flux is everywhere 

perpendicular to the iron surface. Since the force on the 

rotor must be equal and opposite to the force on the stator, 

we will evaluate the latter, since our formulae for the flux 

distribution are strictly evaluated for the stator surface 
only.
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X.

Consider an elementary area dS (Fig, 12(a)) given

by
dS = IRdx

where R is stator bore radius and L the axial length. The 
force dFx on dS is given by

^  b2(x) IRdx
It will be convenient to resolve this force along the planes 
X “ 0 (i.e., the eccentric plane) and x - n/2 respectively. 

These components are given T:̂

dFo = B<(x) cosx dx andB̂ (x) cosx dx

dPn/2 = 2^3 B̂ (x) sinx dx 
respectively. The total forces on the stator along these

directions are therefore
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2n

r -  f B̂ (x) cosx dx (103)J
and

2n
IR f _

n/2 " J b2(x) sinx dx (lOU)

The total force is finally given T?y 
2 2 1

F ® (Fq + F^yg) Newtons (10$)

The form of B(x) most suitable for carrying out the 

integration is given by (78), written in the form

f
q-

° H  [ ( Z  ^,q cosm(f> cosqs0*1  ̂ m

( %  0 riÔ ) sin qx:)l (l06)m  ̂̂  J
+

m

If, for the moment we put

“ X! %,q cos rod' (107)m

and
Yq = ^  %^q sin m<f (108)

we obtain after substitution in (106) and squaring.
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2
■ g(ï'-tS) ^  ( 4  ♦ 4  *
+ ^  Xq^^ (cos 2q + nx + cos nx)

n*l

+ Yq Yq+jj (cos nx - cos 2q + nx)
+ Xq Yq+^ (sin 2q + nx + sin nx)

+ Yq Xq̂ jj (sin ?q + nx - sin nx))j (109)
Substituting this in the force integrals and noting that the
only part of (109) that will contribute to these integrals 
are the terms involving cosx and sinx, we have

Fo - r  g2(l - k^y J " ^̂ q+l * ^q ̂ q+l)
o
2n

IR [io f , . 2
V 2  “ W  irr - 'K2)' (Xq ïq+1 - %q Xq+i) sin x dx

*' o
whence, finally 

IRti po
^o ** 2 ĝ (l - k<) (^q ̂ q+1 ^q ̂ q+1̂  (llO)

IRn po %
^n/2 “ ĝ (l - k̂ ) (̂ q ̂ q+1 “ ̂ q ̂ q+1̂  (m)

Equations (110) and (ill) are quite general and may 

serve to calculate the force in any case where the flux 

density distribution is known, not only in the case of 
eccentric rotors. They reveal the very important fact that 

only harmonics whose order (in the mechanical system) differ 

by unity contribute to the resultant force. Consequently, 

there can be no transverse force due to odd or even harmonics

/alone,
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alone, but occurs only if these are simultaneously present.

This mechanism is illustrated in Fig. 13(a) and (b). In these 

diagrams the harmonics of the flux densil^ are indicated in 
polar plots, the direction of the fluxes labelled by North and 
South polarities respectively. The ’’poles'* interact, since 

like poles will produce high flux density, while opposite poles 

will produce lower flux density. The difference in surface 
stress can be interpreted as outward and inward forces as shown. 

In Fig. 13(a) the fundamental is shown together i-Jith the second 

harmonic. The difference forces have a resultant as shown.
In Fig. 13(b) the fundamental is shown together with the third 
harmonic. In this case it is clear that tie difference forces 

cancel out in pairs, and that no transverse force results.

A"
N, \

(P-) (̂ )
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This conclusion has one immediate practical application. It 

reveals that a 2-pole, widespread winding having short-pitched 

coils will give rise to transverse forces and is therefore, to be 

avoided in practice. In the multipolar winding which has at 
least two identical groups, the consideration does not apply, 

since the harmonics are tiien all multiples of some number greater 

than unity; which implies that they differ in order by more than 

one.

For the eccentric case, the harmonic spectrum is in general 

complete, and transverse forces will alwsys be present. The 

evaluation of (llO) and (111) for the values of Xq and Yq given 
ty (107) and (108) will now be carried out. The values of the 

forces depend on expressions of the general type

Hm,q+1 (iSrt

Inverting the order of summation gives

E /cosm(T̂ /cosmcA
sinmoy I sinm(T/

where
^  ** q+1

Inserting the values for %^q and Î^^q4-1 as defined on Page 77, 
we have

CO

q=i
2
hm q*l q=m
Sm “ r2y(^_-y^ _ + y2)j (112)
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Thus we obtain the following identities,
SSLm mmmm.ZI q+1 + Vq+1^ * (coŝ rar + sin̂ mO* ) 
q=l m

“ Z! Sm
moO

22  (^qYq+i “ <̂/q+i) ” 2-, ^  (cos m(T sinmC* - sinrnST cosm?* ) 
q=l m

- 0
Whence finally, we obtain the force equations,

F(i - k2)| Ç  4  [— (1 ♦ ŷ )]
(113(a))

V 2  - 0 (113(b))

The theory therefore shows that the direction of the 
transverse force is always in the plane of the eccentric 

displacement, no matter what the disposition of the winding 
m.m.f. This means that the transverse force arising from a 
revolving field is constant. Apart from the increase (or 

decrease) in the bearing pressure, the mechanical effect of 

such a force would be small. However, for pulsating fields 
or elliptic fields there would be a pulsating transverse force 

of frequency twice that of the exciting currents. Since this 

force is due to a two-pole, sinusoidally-distributed "force 

wave", the noise effect can be obtained fairly easily with the 

aid of formulae developed by F.W. Carter^^. (No data is 

available to the Author of machines exhibiting magnetic noise, 

and the possibility of attributing noisiness to eccentricity
/has
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therefore not been investigated. It is hoped that further 

work along these lines may be undertaken in the future),

The numerical calculation of the eccentric force 
will be facilitated by the values of the function

Ei(k,m) = (1 _ ^ (1 + y2)J (llU)
given in Table 2 (page 105 ),

In most cases, it will be found that unless the m.m.f. 

wave form is unusually crude, the transverse force depends 
almost entirely on the fundamental. Thus even if the m.m.f. 

wave is a square wave - i.e. of the form

H(x) “ hp (cos pK + -j cos 3pK + ̂  cos 5px + ...) 
the force is about 8?̂  due to the fundamental. (About 80̂  in 

the case p ■ 1). For the much better waveshapes commonly 
encountered, the force is about 97% due to the fundamental.

Thus a practical formula for the transverse force 

can be given as

Ft = T *  g2°i - k2) hp (1 + ŷ )J (11̂ )

The accuracy of this formula has not as yet been subjected to

i any test. The measurement of transverse force required some
I
I rather elaborate apparatus to be set up, and to furnish a1j proper check on the formula, windings of different numbers of
i
1 poles would need to be used. In view of these mechanical

/difficulties
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difficulties this work has been deferred at the moment.

In older works on the magnetic pull, the force is 

usually quoted in terms of the average flux density. This 
form is easily obtained from (11$) where it is assumed that 
the flux wave harmonics are given by equation (88). If we 

put beff bp we have

1 Po (1 - y2p)
beff ■ ̂  Y  (TTkZyi hp (116)

and substituting the value of hp given by this equation in 

(11$), we obtain

Ft “ ̂  b^ff (i _ yüp)ü (1 ♦ ŷ )]
(117)

Rearranging to obtain the most convenient form for computation, 

we have

DLn „ 2y - (p + 2y2 _ rar^y^P"^ (ll8)
F t  “ Wo (1 -  y2t)2  '(1 - A  -------

This expression, when written in the form

F t ' 7^0 hgff E(y,p) (119)
where A is the total surface area, gives the transverse force 

as a fraction of the total surface force acting on the stator 

and rotor surface, the flux density being assumed sinusoidal.

For larger values of p, and small values of y, it is 

evident that (119) may be approximately represented by

F t " To hqff f r y ?  (120)

/and
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and substituting y * k/l +Vl - k̂ , we have

Ft ' &rg 4ff r: v/i ̂  VI - k'2
and by a further approximation,

Ft - In; k (321)

These equations may now be compared with the existing 

literature on the subject* There was considerable attention 

paid to the subject of magnetic pull in the first decade of 
this centuiy, and a summaiy of the several articles which

21appeared during this interval are given by Gray and Pertch • 

The above derivation, although quite different in theory, 
contains all the versions found in this paper. Thus (121) is 

Behrend*s Formula, (120(a)) is very nearly Sumec’s Foimula, and 

Fisher-Hinnen*s and Knowlton’s Formulae are, in fact, of the 

same form as (119) using only the linear part of the function,
i.e. k ^0.$. The dependence of f(y,p) on p is, however,
quite different in these formulae. The formula due to Key, is

also of the same form as (119), but does not include p.

The values of E2(k,p) have been computed and are given 
in Table 3. The principal curves are plotted in Fig. iL, 

which also gives a comparison with Rey’s Formula*

k.$ Inductances of Windings with Eccentric Air Gaps 

The flux linkages produced in the windings -v̂ en the 

flux distribution is distorted by eccentricity must be

/obtained
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obtained by integrating the flux density over the area spanned 

by each coil, and summing for all coils. In the case of 

unsymmetric windings, this would have to be done in single steps, 

and the calculation in that case is exceedingly tedious. However, 

the majority of windings are symmetric, and if further all coils 
per phase are connected in series, there are several short cuts 

possible. Only these types are considered here.

Consider a symmetric 2p-pole winding which gives rise to 
the conventional m.m.f. function

H(x) = ̂ 2  hn cosnp (x -(^ ) (122)
n

where it is to be noted that hn is proportional to Fn, the 
winding factor of the nth harmonic in the electrical system of 
reference. For the resulting flux density function, we may 

refer to equation (77). Thus

Z E s
X cos (qjc - nptf) (123)

Now in the type of winding assumed, it is evident that 

only harmonic orders of np, namely those of the m.m.f. wave, can 

produce effective linkages. Furthermore, ty writing B(x) in the 

form
B(x) = Uq cosq (x -(t ) + Vq sinq (x -(f) (12U)

it is evident that the sine terms do not contribute to the self

flux linkages. Equating the expressions given by (123) and

/(12U) we
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8q = g(l - k^)i Z  hn (ŷ "h-npl _ cos(q - np) (T (125)

(l2li) we have

n

The ratio Uq/Uq = Xe,q> that is the ratio of the value of Uq to 
its value in the concentric case can therefore be expressed as

le,q " ( A  k’̂)f p^p Z ^ n  (y - yQ"̂ P) cos (q - np)«r
(126)

Now since the effective flux density has been increased in the 

ratio \e,q*l it follows also that the inductance corresponding 
to the same (qth) harmonic must be increased in the same ratio.
By (21) and (126) we have then

“ n ^ '(l'-"kg)’| Fq/p Ç  Fn (y“5-hPl _ y"̂ ""P) cos (q - np)
(127)

and the total inductance

Iph “ Z Z  (128)
q/p=l,..

where q/p takes the values corresponding to those of n in (122) #

The notation q/p as the order of harmonic is clumsy but 
necessaiy, if the advantage of having the m.m.f. given in terms 

of electrical order of harmonics is to be preserved*

Since the value of Lph is now a function of Gt it may be 

deduced that there will in general be unbalance in the phase

/inductances
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inductances in a polyphase winding. The magnitude of unbalance, 

or even the kind of unbalance depends on the values of Fn. If 

the m.m.f. is very nearly sinusoidal, Fn ? 0, n ̂  1 and we then 

have

which is independent of O' and no phase unbalance arises. Thus 

the purer the waveform of the m.m.f. wave, the less unbalance 
due to eccentricity.

The effect of unbalance in the phase reactance will bring 
about a corresponding unbalance in the exciting currents when 
excited from a balanced voltage supply. The effect is therefore, 

in general to produce unwanted sequence currents and corresponding 
losses.

The effect on the mutual inductance between phases may be 

similarly obtained. Suppose the mutual inductance between two 
phases disposed at and ^ ^  respectively. That is

according to Fig. 3, with the exception that is now taken as 

the origin (for obvious reasons). The flux produced by phase 

is again

Z  Ç  cos[<5C - np(r +
" (130)

and by equating this to the expression 

B(x) = Uq cosq (x - T -  ^|^) + Vq sinq - CT - |̂ ) (131)
where the cosine terms only are effective in producing linkages

/with
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with phase ^ , we obtain the corresponding flux linkages, and 
finally the mutual inductance, which is

■_”k2)f V p Z  Fn (y ooŝ q-̂ Hni <T

OL- ^ )§%] (132)
whence

M - Z  (133)
r q/p

Equation (132) can be seen to be a generalisation of (2U) to 
which it reduces when y = 0.

The mutual inductances between rotor and stator windings 

are differently affected, since the winding factors may now be 

quite different for the two windings. In fact, it may happen 
that the secondary winding can have effective linkage with the 

harmonics introduced by the eccentricity, and there does then 
exist a mutual coupling between the windings due to these 
harmonics. However, if this is the case, it is non-reciprocal 

because such harmonics cannot be linked by the primary winding. 
Such a non-reciprocal mutual inductance cannot transfer any 
power, and these harmonics are in fact, reduced to a very small 

value by the secondary induced currents. Thus squirrel-cage 

motors may be assumed to be free from these harmonics almost 
entirely, and in fact, incur very small losses due to them.

The compensating rotor currents may be computed from the value 

of the respective harmonic flux density amplitudes. If the

/speed
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speed of the rotor happens to coincide vdth the harmonic 

travelling wave in question, however, no rotor currents will be 

induced and the harmonic will not be compensated, but this will 

be a very rare occurrence. Since the major harmonics 

introduced by the eccentricity are of orders adjacent to that 
of the fundamental, i.e., have 2(p 1 1) harmonic poles, their 

synchronous speeds will be (it ]/p) times the fundamental 
synchronous speed respectively. It would be theoretically 
possible for a multi-polar induction motor to run at this speed, 

((l-l/p) times synchronous speed), and the harmonic might then 
be more prominent. In turbo-alterna tors which are not equipped 
with damper cage windings, however, the eccentricity harmonics 

would always be present.
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TABLE 2

El (k,p) = (2y - (p + 2y2 - pŷ ) y^p - l)/(i _ k2)(l - ŷ )

1 2 3 U 5

0.1 0.00505 0.1013 0.1015 0.1015 0.1015 0.1015
0.2 .10U2 .2105 .2126 .2126 .2126 .2126

0.3 .16U8 .337U .3UU5 .31)55 .31)55 .31)55

o.U .2376 .1)960 .5151 .5199 .5199 .5199
0.5 .3305 .7105 .71)75 .7695 .7695 .7695
0.6 .1)630 1.0290 l.li)9U 1.1682 1.1717 1.1717
0.7 .6672 1.5839 1.8388 1.9030 1.9188 1.9223
0.8 1.0U18 2.6037 3.3205 3.5807 3.6815 3.7037
0.9 2.OOU3 5.5837 8.0850 9.5001) 10.2619 10.8725



— lOU — 

TABLE 3

(k,p) = (27 - (p + 2y2 - pyk) y2p-ly(]^ . y2P)2 (% _ 7^)

\\p 1 2 3 U 5

0.1 0.0503 0.1003 0.1005 0.1005 0.1005 0.1005

0.2 0.1021 .2021 .20UI .20UI .20U1 .20U1
0,3 0.1573 .3072 .3135 .3135 .3135 .3135
O.U 0.2182 .U17U .U327 .U36U .U36U .U36U
0.5 0.287U .5362 .5608 .5770 .5770 .5770

0.6 0.3756 .6668 .7366 .7U77 .7U99 .7500

0.7 0.U901 .8308 .9U20 .9707 .9786 .9803
0.8 0.667U .9981 1.21U3 1.2995 1.3266 1.3333
0.9 1.0335 1.6270 1.63U6 1.8U81 1.967U 2.06U9
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5. Experimental Work 

The waveform of the flux density distribution in machines 

can normally be obtained fairly easily. The measurements of 

actual eccentric displacement of the rotor may, on the other hand, 

be nearly impossible. Furthermore, with the normal end-shield 

construction, the air gap eccentricity cannot be varied, and any 
standard machine would be of little use for this purpose. A 
special machine was therefore constructed. This machine and the 
tests performed on it are described in Section 5.1 below. As a 
practical matter, the air gap was made relatively large and, 

consequently, high flux densities were difficult to obtain.
Although this is no drawback for testing the theoretical values 
found in the previous Section, no indication of the effects of 
saturation could be obtained by it. A standard type of machine 

was therefore adapted for this purpose, the details of the [J

machine and tests are given in Sec to*, on 5.2 below.

5.1 Investigation on a variable eccentricity machine 

The main results required in the eccentric rotor 

problem are the functions relating the harmonic amplitudes in the 
flux wave, the independent variable being the eccentricity^. The 

machine described in this Section was specially constructed to 

allow such measurements to be made.

Since the actual lateral displacement of the rotor is 

only a fraction of the nominal gap length, being usually of the

/order
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order of 20 - 30 mils, the exact measurement of this displacement 

offers considerable difficulty. In the machine constructed, the 

air gap was made abnormally long (3/16") so that the actual 
maximum displacement involved corresponds to 3/8* or 200 mils 

approxima-fcely. By a micrometer movement, this displacement 

could be measured fairly accurately. Also in the approximate 

theory, the percentage increase in harmonic content is only a 

function of the dimension less ratio k, and the relative 
magnitudes are therefore not affected. (Hotrever, this 
approximation depends on the smallness of the ratio of the 

displacement to mean gap radius, and therefore may be unreliable. 
The error is assessed below). Further, in order to reduce 
calculations to a minimum, a two-g)Ole exciting winding giving a 
nearly sinusoidal m.m.f. was used. This was obtained by 
suitably grading the number of turns of the successive coils.

The photograph (Plate l) shows the assembled machine, 

mounted on a base plate and coupled to its driving motor A,

The rotor runs in bearings fixed in brackets which are secured 

to the base plate and is quite separate from the stator. The 

stator housing D is fixed to a bevel edge plate which is held 

in position at the base plate by two guide strips. The bevel 

edge plate can be made to move in the guide strips by a screwed 

rod. This forms a micrometer type of movement, and the

/displacement
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displacement may be read on the graduated disc attached to the 

end of the screwed rod, (B on the photograph) •

The stator movement can be determined to an accuracy of 

the order of 0.001’*, and allows the eccentricity (k) to be read 

with an accuracy of one per cent.

The stator stampings were machined so that they can be 
rotated inside the housing itself. This allovis the winding to 
be moved relatively to the eccentric plane without altering the 
eccentricity. Thus independent control of the variables k and 

V is possible.

Plate II shows a contact print made of the actual 
stampings used for the machine, and gives an exact picture of 

the dimensions involved.

The rotor is wound with a number of search coils of 

span varying from full pitch to half pitch. The ends of the 

coils are brought through the drilled shaft to a selector 

switch (E on the photograph) at the enid of the shaft. This 
allows any of the search coils to be connected to the sliprings. 
The wide range of pitch of the search coils allows all harmonics 

to be measured with small attenuation#

The driving motor as ëhown in Plate I is a small

/universal
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universal type commutator motor. Since the speed obtained with 

this motor is not very stable, this was eventually replaced by a 

squirre 1-cage motor with "poles" milled out in the rotor so that 
it would run synchronously at a speed of l500 rev/min. This 

provided a very satisfactory stable frequency output.

Particulars of the Machine 

Stator: 36 slots, 3 $/8" bore.
Wound 2-pole, split concentric; 7 coils per pole. The lay-out 
of the winding is shown in Fig. iÇ.
The grading of the number of turns of the coils gives the m.m.f. 
curve shown in Fig. 16. The fundamental component represents 

the major part of total m.m.f. apart from the higher order 
harmonics due to the slotting.

Rotor: hk slots, 3 l/L" diameter.
Wound with 7 search coils, each 7? turns, having the follodng 

pitches:

Coil No.
Span

Slot Pitches Degrees

1 22 180®

2 20 16U°

3 18 1U7°

k 16 131°

5 lU 11$°
6 12 98°

7 11 90°

Nominal air gap - 3/16", l87#$ mils.



- 109 -

10



- 110 -

' , : j ..4 ,

<!d

5'5C

/>
L

f̂ jnnckumc. h f<xL 
Co*v\ponfcnt

8 ^
Slots no.

FigJk
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Method of Measurements

The search coil voltages have ivave forms varying frcm 

almost pure sine form to the very complex form containing the 

complete lower spectrum in the case of extreme eccentricity*
/The
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The waveforms to be analysed are displayed in the oscillograms 

0.1 - O.U« Clearly for the wide range of measurements a quick 

reading instrument was necessary. The. only instrumentation 

available at the time of construction was a wattmeter, which 
was used in corgunction with a standard L.F. Oscillator. This 

was very unsatisfactory at the lowest and highest frequencies, 

due in the first case to the difficulty of obtaining a completely 
pure 25-c/s current, and in the second case low amplitude of the 

high frequency components prevented accurate measurements. The 

Author was subsequently provided with a Muirhead-Pametrada Wave 

Analyser, which proved very suitable. This instrument, r̂hich 
is capable of discrimination of the order of 75 db in the octave, 
should be expected to give reliable results for at least the lower 
order harmonics.

The oscillographic work was done with a Cossor 1035 
Oscillograph with camera. The following oscillograms illustrate 

very clearly the effects of making the rotor eccentric and 

support the theory and measurements.
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The above oscillograms were taken of the voltage 
induced in a full pitch search coil. Since the coilspan 

factor for all the odd order harmonics is unity and zero for 

all the even order ones, only odd harmonics are present in 
these waveforms. The eccentricity was raised in steps up 

to 0.95, and the waveforms show an appreciable distortion 
due to the relatively rapid increase of the higher order 
harmonics at extreme eccentricity. Apparently, little 

distortion can be detected for eccentricities up to 0.5. As 
may be expected at the highest eccentricity, a pronounced 

tooth ripple is introduced due to the lack of fringing in the 

very short parts of the gap.

(a) Eccentric angle C » 0

(b) " " <T = 7i/2.
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0.2
These oscillograms are taken of the voltage induced in the 

search coil having n/2 pitch. The coil span factor for the odd 

harmonics are here all 0.7071, while all the even harmonics being 
an odd multiple of 2 have unity coil span factor; the rest of 
the even harmonics have zero coil span factor.

The oscillograms show clearly the familiar skew symmetric 

waves due to the presence of even harmonics, especially the 2nd 
harmonic. Again the increase in tooth-ripples is very noticeable 

at extreme eccentricity.

(a) Eccentric angle, (T 0

(b) Eccentric angle, (T * n/2
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0.3
These oscillograms display the effect of varying the 

eccentric angle. In (a), a full pitch search coil is used and in
(b) a half pitched coil is used. Since the machine has a 

sinusoidal m.m.f. wave, the flux function is (Equation (77)) :

B(x) ■ constant x (cos# cosqx + sinCTsinqx)
q

With o’" 0, this series has cos terms only and when (T= ît/2 there 

are only sine terms. By inspection of the oscillograms, noting 

that the main harmonics are the 2nd and 3rd in (b) and (a) 
respectively, the correctness of the formula on this point may be 

verified.

The eccentricity was held constant for all of these wave forms, 

and the magnitudes of the harmonics are therefore expected to be 

constant.
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For the above oscillograms, the eccentricity was held 

constant at 0.6, and the waveforms in the various search, coils 

displayed. The set (a) was taken with eccentric angle n/2, 

and (b) with eccentric angle 0. These waveforms merely 

illustrate the complete set of measurements possible with the 
search c oils.
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W W W
0.5

These oscillograms illustrate the principle of 1:2 ratio 

pole changing, but not in the usual sense. Two search coils, 

having half-pitch span, have their individual induced voltage 
wave forms illustrated in (a). These coils are displaced 180® 

on the rotor, and by series opposition connection all the odd 
harmonics are added, while all the even harmonics are cancelled. 

The resulting wave form is shown in (b). When they are 
connected in series aiding, all the odd harmonics cancel, and all 

the even harmora.cs add. This is shown in (c). (Mostly 2nd 

harmonic) • ' ™ ^
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Measurement of the harmonic contents in the flux wave in the 

eccentric gap

The flux density wave can be assumed to be of the form

B(x) = ^ 2  bn cos(nx + (t)n) 
n=l

The voltage induced in a search coil of span (X radians is 

therefore given by

d 0+ ,V = cTb TA. r bn cos (nx +<3pn)dx
i- ^/2

DLwhere T is the number of turns in the coil; A =

V « -ft TDL ^  sin ̂  sin (ng

Again, if the rotor carrying the search coil is driven at the 

constant angular speed w, 6= cot, whence

V = TDLco^ bn sin cosncot + clĵn

“ k ^ V n  cos ncot + c^n
Thus the nth harmonic in the induced voltage is directly

proportional to the nth harmonic in the flux wave, and

^  = vn sin «-/2 
bi VI sirrn~0t/2

From this relation, the relative amplitudes of the harmonics 

in the flux wave are readily obtained from the corresponding 

ratio of the voltage harmonics.

/For
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For examination of the variation in the harmonic content 
of the flux wave in the constructed machine, the wave analyser 

was connected to the rotor brushes with search coil No, 3 
connected to the sliprings. The field was excited to lA d.c,, 

which gives a maximum average flux density of 0,3 Wb/m^, This 

flux density is sufficiently low to exclude any effect due to y -
saturation of the teeth.

lit
1 /■

The rotor was then centred by tuning the analyser to 
the second harmonic and moving the stator till a minimum reading 

was obtained. Since the analyser will record voltages of less 

than ImV, this proved a very satisfactory procedure. The 
fundamental component of the search coil voltage had an amplitude 

of the order of 2V, and changes in the 2nd harmonic of the order 
of ImV could be detected. This corresponds to movements of the 
rotor less than 0,001" and the method therefore allows centering 

to this degree of accuracy.

The analyser was then tuned to the fundamental (25 c/s)

and the readings noted for 10 different (eccentric) positions of

the rotor. The rotor was again centred and the procedure

repeated for the 2nd harmonic, and again for the higher harmonics.

The results are tabulated below, showing immediately below each
vn sinreading the corresponding ratio ^ in«/2

in n (x/ü • X

l A
/It
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It should be noticed that the readings corresponding to

0.99 eccentricity must necessarily be somewhat approximate.

The readings were taken with the rotor nearly touching the
stator, but there must clearly be some air gap left,

/ Presumably there may also be a slight angle between the centre 

 ̂ lines of the rotor and stator, since the mechanical j

construction is not easy. This would mean that for 0,99 some 
smaller figure should be substituted, and in fact all the 

eccentricities should be reduced in the same proportion.

The test was carried out for eccentric angles of 0 and 

tt/2 respectively, and both results are tabulated. According 
to the theory developed above, in the case of a purely 
sinusoidal m.m.f. waveform, no difference should be expected.

In fact, the tvjo results differ little, but the amount seemed 
to be too large to be due to any fault in the oredicted value, 
and a test was carried out to find the exact nature of the 
variation. The variation was finally found to be due to two 

causes
1. The stator stampings had not been completely 

concentrically machined, so that the rotation of these in the 

housing slightly altered the amount of eccentricity.

2. The analyser was slightly phase sensitive, and the 

change of phase incurred by turning the stator altered the 

reading, sometimes appreciably,

/The
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The first of these causes was easily detected by the ^^7 
centring procedure outlined above. The discrepancy was about 

I 0,003", corresponding to a variation of 0.03 in the eccentricity.

The second of the causes, being slightly on the
\n/ incredulous side, was only detected by observing the search coil
.A''" voltage in the concentric position on an ordinary sensitive

voltmeter simultaneously with the analyser. The waveform is 
almost purely sinusoidal, and the two instruments would be 
expected to give identical readings. When turning the stator, 
the voltmeter reading remained practically steady, while the

] analyser reading varied vTith a small amount corresponding to the
y

difference in the above tests. The reason for this faulty 

reading of the analyser is believed to be due to the fact that 
the voltage observed happened to have a frequency of 25 c/s, 
being a submultiple of the supply frequency. Some slight 
amount of hum present in the amplifiers may interfere with 
frequencies which correspond to the hum frequencies.

Since no better instrument for wave analysis was 

available, the given results were taken to average to the ^  

correct values.

For the two-pole machine under test, and assuming that 

the m.m.f. wave form is sinusoidal, the flux density wave form 

is given by equation (77) as

f
' A  
u  X..
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B(x) = bio ^  , cosq x -”ô
q^ (l - k2)%

where biQ is the amplitude of the fundamental component in the
concentric position. The function y9-1 (l -y2)/(i _ k2)“ is

tabulated in Table U, and shown graphically for the four loi^st
values of q in Fig. 17. The results of tests 1 and 2 are

shown alongside these functions in Figs. 18 - 20. The
agreement must be admitted to be fair and if the argument for
reading the eccentricity actually lower than that given is

accepted, the agreement is still better. Clearly, the effect

of the third harmonic actually present in the m.m.f. wave is
appreciable in the resultant. Here the initial third harmonic

(which increases as 1 - y2/(l - k2)i) opposes that introduced by '

the distortion of the fundamental (which increases as
y2(l - y2)/(i - k^)“). The net effect is a minimum at 0.35

eccentricity.
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•̂2 Investigations on a standard machine 

For a complete analysis of the air gap field imder 

various kinds of excitation and load conditions very extensive 
measurements would be required, and some of these measurements 

would require very elaborate apparatus. In the present case, 

on]y two crucial tests were performed in order to test the 
validity of some of the results predicted in the previous 

theoretical work. In the first case, it is shown that in a 
rotating field, the harmonics due to eccentricity behave in 
the manner described in Section U.3, and in the second case 
the effect of saturation is considered. î̂o artificial 
eccentricity was introduced in this machine, and the results 
may therefore be taken as typical of a randomly chosen 
production-type machine.

Details of test machine
Induction Motor, 2 H.P., (C r ompton-Parkins on Ltd.)

Stator Bore
Air gap \/6ĥ  (approximately)
Stator Winding: 2U coils, 5/6 full pitch, U poles.
Rotor Windings: Search coils, each 10 turns, various pitch.

One 20-turn coil wound Gramme type to 

eliminate pitch factors. Any of these 
search coils may be connected to sliprings 

through a sid.tch at the end of the shaft.

/The
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The machine was coupled to a large d.c. machine by a 

V-belt drive. This provides a steady, variable-speed drive 
essential for these tests.

5.2.1 Travelling-wave harmonics

In Section I;.3 it was shoT-m that any winding where the 
principal part of the m.m.f. wave is sinusoidal produces a 

complete spectrum of harmonics due to eccentricity which all 
travel in the same direction with a ŝ n̂chronous speed 
ci/m rad/sec, o being the frequency of the exciting currents 
and m the order of harmonics.

The winding employed for a test of this statement was 

a narrow-spread, U-pole, 3-phase winding. The spectrum of 
m.m.f. harmonics is suitable, because it contains only a very 

small 5th and 7th harmonic, and these are the only components 

that will affect the lower order eccentricity harmonics.

The travelling harmonic waves may be detected by the 

rotor search coil and distinguished by analysis of the search 

coil induced voltage when the rotor is driven at any constant 

speed. The induced voltage is, however, of a very complex 

waveform, since the component frequencies do not retain their 
integral frequency relationship when the rotor speed is 

altered. The slip frequencies corresponding to the m.m.f.

/harmonic
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harmonie of the given winding is shown as a function of rotor 

ST̂ eed in Fig. 21. Ng is the synchronous speed of the 

fundamental. At stand-still, the induced voltage frequency 
is ?0 c/s, this being the mains frequency, while at ary other 

speed there are various frequency components. From the point 
of view of measurement of these harmonics, it is important 
that none of the components coincide. The low-speed region 
is seen to be useless for an analyser vrith a finite band^ddth. 
Furthermore, since the fundamental is so much larger than the 
harmonics, the regions where this coincides with the harmonics

ISO

0-6 O.g-0-Ô -0 6 . 0̂-4 02. 0-2

Slip r t .
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The eccentricity harmonics due to the fundamental 

component of m.m.f. is shown in Fig. 22, The harmonic spectrum 
is here labelled according to the number of pole-pairs for each 

harmonic, the corresponding m.m.f. harmonics are labelled I, V,

VII (corresponding to Fig. 21). The only satisfactory region 

for measurements can be seen to be at N -0.3Ns, i.e., when yrxry 

the rotor is driven against the main field at approximately 

synchronous speed.

ISO

IOC

- 0.9 - 0.6 -04  - 0 -2.
Fû9 2.2 
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The voltage induced in the Grainme coil was first 

analysed, at the constant speed N = -Ng. The response of the 

analyser is shown in Fig* 23* This clearly indicates that 
the spectrum does indeed include the frequencies predicted.
The 75-c/s, 125-c/s and the l50-c/s components which correspond 

to the 1st, 3rd and Uth harmonics respectively are all present, 

/ To dispel any doubt that these are in fact constant-magnitude 
rotating fluxes, their presence must be recorded at several 

speeds. The frequency at any given speed was deduced from 
Fig. 22 and the magnitude measured by the analyser* The 

results are shown in Fig. 2U. The points are rather 
scattered, due to the difficulty in measurements, but they 
indicate that the magnitude is proportional to the frequency. 

This shows that the corresponding rotating fluxes have constant 

magnitude•

The large peak in Fig. 23 which corresponds to the 

principal harmonic (the fundamental in the m.m.f. wave) 

p I ; indicates also the limitation of the amplifier. Clearly, the 

bandwidth required for this large harmonic is about - 10 c/s 

at 100 c/s and in general, it requires 1 10!̂  of the frequency.
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The waveform analysed in Fig. 23 is shown in Oscillogram

0.6. The timing wave is Ç0 c/s. Clearly, the percentage 

harmonic content is very small, but variations in the waveform 

corresponding to lower frequencies can just be detected.
V V V V V V V V V V V V V V V V V V V V V V V V ' V l

0.6

Oscillograms showing the waveform of the search coil 
induced voltage when driven at synchronous speed forward are 

also shown. 0.7 and 0.3 represent the same waveform, but 
recorded with different film speeds. The timing wave is again 
50 c/s, and a strong 25 c/s is now apparent. This is again 
consistent with Fig. 22, which shows that such a component may 

be due to either of the two lowest harmonics due to eccentricity,

(1 or 3). In this case the tooth-rionle harmonics are clearly 
of the same order of magnitude as the eccentricity harmonics.
J V V V V V V V V V V V V V V V V V W V V V V V V

0.7

o78
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5.2.2 Effect of saturation

One phase of the stator winding was in this test 

excited by d.c. current. The rotor was driven at a constant 
speed of 1200 rev/min, and the Gramme search coil e.m.f. was 
again analysed at varying excitation. The results are plotted 
in Fig. 25. The logarithmic plot allows a comparison between 

all the harmonics which are, of course, of widely varying 
amplitudes. The harmonic orders refer again to the actual 
number of "harmonic pole-pairs", and the harmonic orders of 
the corresponding m.m.f. wave are added in Roman numerals 

(where they exist)•

The results are quite striking. The harmonics which 

are due to the m.m.f. wave directly behave as would be expected 

in a saturating magnetic circuit, showing the familiar "knee", 
and then flattening out. The harmonics due to eccentricity, 

however, show in fact a definite maximum in the region of the 

knee and then decrease considerably. The explanation of this 
curious result is not at all obvious, and no theoretical 
treatment will be attempted here. The effect is, however, in 

full agreement with the knoivn behaviour of the transverse pull. 
This is known to have a maximum somewhere in the region of the 

knee, and this certainly accords with these results.

It must be admitted, therefore, that the formulae 

evaluated for the flux density distribution in Section U must

/be
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be used with due caution, and that they cannot be exnected to 

hold for high flux densities.

This is another instance of the quite unpredictable 

behaviour of non-linear media and indicates that a very 
interesting problem is at hand. A possible method of attack 

on this problem is to assume that the saturation in any case 
is limited to the teeth, and consider the toothed region as 
polarisable only in the radial direction. This would still 
leave two inl'initeiy permeable boundary regions, the stator 
and rotor cores respectively, and the problem might thus again 

be tackled by analytical methods.
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6. Conclusions 

The first three Sections of this Thesis do not break new 
ground in so far that the problem has already been analysed. It 
has been found, however, that the extension of the conventional 

s;/Tnmetric analysis to the general unsymme trie case has not added 

much to the complexity of the situation, and has led -bo a rather 
simple generalisation of the known formulae. The most striking 

of these may be replacement of the well-known expression,
n = kN ± 1 by n = kN - S k = 0, 1, 2, 3 .....

for the harmonic spectrum of an integral-slot id.nding, and a 
similar expression for the fractional-slot case. Also, a 

complete air gap inductance matrix has been derived and shown
to have a simple canonical form. The matrix reduces to
diagonal form when the variables are symmetrical componen-bs 

(or components), and the inherent simplest reference frame 
is shovjn to be that of symmetrical components.

The treatment of the winding theory was originally 

intended to be only the introduction to the work on the 
eccentric rotor problem but while writing this, the need for 

a more general and powerful method of analysis became obvious 
Author.̂  These requirements may be satisfied by some 

kind of topological analysis in terms of the simple connection 

matrices. These ideas are suggested in Appendix I, but 

considerably more analysis would be needed to establish a

/coherent
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coherent theoî % The field is, in the Authoropinion, full 

of interest and promise, and would warrant further study. It 

is of special interest to be able to ^nthesize windings from 

an optimum waveform point of view, but the methods which have 
been developed to date are only trial and error based. This 

is especially true of fractional-slot Tendings, Synthesis 
normally requires more fundamental techniques, and it is hoped 

in the near future to tackle this problem from the point of 
view suggested in Appendix I,

In carrying over the m.m.f. methods of flux density 

calculation to the case of eccentric rotors, a fundamental 
difference is encountered. The m.m.f. wave cannot any longer 
be entirely determined by the current distribution, but must 

contain an additional term arising from the eccentricity. The" 

r~̂ aluê x>f this has been evaluated, and the complete flux 
density function has been determined as a function of the 

eccentricity. The results, which are supported by the 

experimental results, m ^  be obtained veiy quickly from the 
prepared tables. These results may be contrasted with 

similar results obtained by the more exact methods of field 
analysis] If computed results are required, the latter 

methods would require the aid of a Computer and perhaps, in 
the end, fall dox-m on the basic simplifications. The formulae 

evaluated in this Thesis are not formidable even to slide- 

rule workers.
/The
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The effect of eccentricity on the rotating fields is, 

in most cases, similar to the introduction of unbalance in 
excitation, i.e., elliptic fields will arise. Also the 

eccentricity harmonics which will mainly be produced ty the 

fundamental component in the current distribution (or m.m.f. 
wave) are shown to rotate in the same sense, and sometimes 

faster than the normal m.m.f. wave. This effect has also 

been shown by experiment.

In most cases, the change in the total inductance of 
the winding with small eccentric displacements will not be 

significant, but it is possible that the relative magnitudes 
of the harmonic inductances may be upset. A peculiar 
non-reciprocal mutual inductance also occurs, which accounts 

for the elimination of certain eccentricity harmonics.

The transverse force has been shown to depend almost 

entirely on the fundamental component of m.m.f. and is 
considerably lower for the two-pole machine than the multi

polar machines. This is due to the fact that for a 2p-pole 

winding, the most important eccentricily harmonics have 
2(p - 1) and 2(p + 1) "poles" respectively. If p = 1 only 

the latter exists, and consequently the effect is smaller, 

f An interesting problem arising from the general analysis is
' j how far the eccentricity harmonics may be responsible for 

/ "magnetic" noise. Investigations in this respect have not

/been
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been made, but might well prove interesting and fruitful.

A procedure which would quickly determine this for any given 

machine could be devised fairly simply and might be an 
interesting project.

The eccentric transverse force has long been known to 

be considerably affected by saturation in the teeth, and this 

also holds for the flux distribution. In fact, it can be 

argued physically that the lower the saturation point, the 
smaller will be the effects of eccentricity. (Taking the 
extreme example of no iron present, the effect is clearly not 

present at all), The transverse force is known to be a 

maximum when the flux density corresponds to a point somewhere 
on the "knee" of the B/H curve, and in terms of the formulae 

evaluated above, we may deduce that the eccentricity harmonics 
have their relatively largest amplitudes at this point. This 
has been confirmed by experiment, and the results clearly 

indicate the limitations of the linear analysis. The non

linear analysis may bring to light further interesting 
phenomena, but will require considerable effort and ingenuity.
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ApPEmix: I

The generalised theory of constant span polyphase Windings
A statement of a general method of analysing windings 

will now be given. Since special types of xd.ndings are of a 

great variety, no complete theory in the sense of pursuing 

every case to a final answer will be attempted here, but the 

frame of reference into which all windings must fit will be 

given. Such a frame is the symmetrical ccmponent system.

The common properiy of all windings having constant span 
can be stated as followsî N coils, all producing similar flux 
distributions are symmetrically disposed round the air gap.
Such a system forms an N-phase, 2-pole winding. Since N, the 

total number of coils is large, it is normally excited by a 
polyphase system of N’ ” N/q phases, N* being in general a much 
smaller number than N. The N coils are, therefore, connected 

in groups of q coils, all carrying the same amount. These 

connections can be viewed as constraints, and their effect is 
in fact, to reduce the possible sequence numbers in the original 

N-phase winding to N*, at least if the connections are also 
symmetrical.

The N-phase basic winding, which may be called the 

primitive winding, gives a flux distribution
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B(x,t) - îr Be y  m - (Tr) (l.l)_ îr Be y
r=l m=l

where the N currents have not been given any particular

inter-relations apart from having common frequency.
Consequently they may be resolved into the N component systems 

given by their symmetrical components. For any given sequence, 

the resulting field is given by

Bs(x,t) - ' ' ■ ' ^
r'
► Be Is cos(oit - r - 1 s-g) ^  F^ ^ cosm(x - r - 1-̂ ) 
^  m=l ^

- ^  «̂..m® Be Is (Cf cos(tct - mx) + C^ cos(ut + mx))
m=l

<=» ■

SO that (l20) can be written

Bg(x,t) = Bo Is ^  + mx)
m= -00

(1.3)
This shows again that harmonics of the orders 

s + m = kN k = 0, -1, -2, ...

i.e. m = kN - s (l.U)
are possible.

It is apparent that in general, any value of m is possible, 
provided s can take all values from 1 to N - 1, the harmonic fields 

being travelling waves rotating in the forward or backward

/directions,
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directions, or being pulsating, depending on the sequence 

numbers. This result is only a mathematical statement of 

the physically obvious result that a winding can be made to 

have any number of pole pairs. The windings which are 
symmetrically connected to form a 2p-pole winding will have 

a constraint on the sequence numbers so that the lowest 

possible value of m is p. That is, p = s  or N - s, whichever 
is the lower. Clearly in the 2-pole case, s =0, 1 .... 
therefore m = -1, for s = 1 etc.

In order to find the constraint of the sequence 

numbers resulting from a given interconnection of the coils, 
it is necessary to consider the transform relating the phase 
currents and their symmetrical components. This is in matrix 

form

II

l2

In

“12
S21 822

Shi ••• s»

I'o

li

J
_ % 1

(1.5)

where the primes denote symmetrical components. The matrix

(1.6)
(®ot& ) is defined ty

f
=  1)(^- U-fT

its basic element being (i.e., the conjugate of the

principal Nth root of unity).

A^e
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We can express (l.5) in index notation tgr the relation

lot ° I' (1.7)
where are the phase currents, and their syirmietrical

components. (S is related to the sequence number by s + 1.

The matrix unitary, and its inverse ( (s^ )
1 #being symmetric) is consequently --—  (s ). The inverse ofN

(s^. ) follows from the relation
f'

/ r  ° ® (unit matrix)

. • (s^)-I = I (s*^) (1.8)

The inverse of the transformation of (l«7) is then

l y  = 1, j((X-l)(^-l)% (1.9)

or, since (i-1 = s,

T' - h  I» (1.1°)

After an interconnection of some of the coils, I<x_ will be

related to N* new currents, say , through a singular 

transform

lot = (GoLy)l̂  (I.ll)
The matrix will have only unit elements (il) in general, 

if the connections are all series connections. Such a matrix

is termed (by Kron, G.) a connection matrix. It is singular,

since it has more rows than columns. Substituting in (27(a))

/we
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, V ./ ■

we have - -cTl
ij (1.12)

Contracting with respect toot gives a new matrix, say R, such 

that

II - N ( rs,) Iy (1.33)
1

s
The matrix R has in general s non-zero rows, so that all possible 

sequences are again obtainable. However, if the connections are 
symmetrical in some ways, several rows may be found to be zero. 
Thus only some of the original N sequence numbers will now be 
found possible.

As mentioned above, no attempt will be made here to 
establish the matrices (Rĝ ) for the various classes of windings, 

but the Author hopes to resume this work at a later stage. It 
seems likely that pole-changing windings as well as fractional- 

slot windings could be profitably treated in this way. In 

order to show the suggestiveness and power of the method, a 

couple of examples are worked here.

Consider the connection of the coils into N* groups of 

q adjacent coils, i.e. N = qN*.

The corresponding connection matrix is of the form

7
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or, more simply
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1, 0, 0
1, 0, 0

1, 0, 0
0, 1, 0
0, 1, 0

0, 1, 0, 0
0, 0, 1, 0
0, 0, 1, 0

0, 0, 1,0

U n  « • • • • « •
—

^  .......................

..............................

0

,0,1,0 
,0,1,0

,0,1,0
,0,0,1 
,0,0,1

0,0,0,1

(I.IW

(1.15)

where Uq is a column vector containing only q units. (This kind 

of matrix is well known in the topological analysis of linear graphs. 

See for example Veblen: Analysis Situs, American Mathematical Socieiy 

1931, page 11),

The only non-zero elements are given by the relation
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= (v- l)q + r

q

Using this relation in (1.12) and contracting with 

respect to oc , we obtain

Is ' 5 ^  I)q r - I)s-IT J (1.16)
r=l

■ ' ■ H -  (1.17)

The factor ej( ̂  will be recognised as the

factor corresponding to the matrix in (I.10) and we have 
again the factor which will be shown to be a

generalisation of the distribution factor. We note that 1̂  = 0 

if s is a multiple of N/q., i.e., (q - l) sequences are 
eliminated by the interconnection.

Since m “ kN + s, we may write the above factor as

sinqsTi/N _ sin(mq-kNq)îî/N - sinrnqn/N , ,^kq - 1 n̂\
qsiHsltTn qsTECmZlc'W ir q s i^ T /N  ("D

which is numerically equal to the normal distribution factor. 

This equivalence shows that all the harmonics generated by a 

particular sequence excitation have equal distribution factors. 

This interesting feature may not, however, be of much practical 

use, since in general there are several sequences in the 

primitive set corresponding to a given sequence in the supply 

system.

/In
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In order to obtain the mosb general expression for the 
N sequence currents in the integral-slot winding, a second 

constraint is necessary, corresponding to the interconnection 
of the N* groups into a 2p-pole, N**-phase winding. The 

connections are such that p groups (equidistant) are connected 

together in the same sense. Thus, in the column I y

11 “ Il+N" “ Il+2N** “ .... * Il+pZlNF*
(1.19)

12 “ I2+Î?* “ I2+2N" •••• 2̂+p-lN**

The required connection matrix (C^^ ) is therefore given

’ 1 , X  = ^ + kN"
k = 0, 1, p-10 , y “ S kN**

and substituting in equation (l*17) we have

J, , 3 gj 4  sinqsn/N ^  j( g +kN"-l)s^ j 
N ® qsinS7i/N ^

and summing over all k there results
Tt = S ̂ 3 q ?  We sinqsn/N sinsn ^jFT ̂  J  S-1 s^

N ® sins n/N sinsn/p %
(1.20)

sinqsTi/NHere the factor = I P, when s = p

0, when s 4=- P 
(T = 0, 1, 2, ___  N**q-1

sinqsîr/Nand the factor sinsV/N “ except when s is a multiple of 
N/q. (or N**p).

Again by (l*U) we may now define the harmonic spectrum
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ty the equation

m = (kJI"q + <r)p (1.21)
where (T is not a multiple of

Clearly there are q-1 sequence numbers excluded ly the 

last statement, so that there are N**q - 1- (q - 1) - (N** - l)q 
possible values of T in (1.21).

The distribution factors for the values of s given by <Tp
becomes

_ slnq? pn/N  ̂ sin (T n/N" 
ft,<r qsinTpn/tJ qsin rn/N"q ' '

This has an interesting consequence: since T may only take
(N** - 1) q different values there may only be (Df* - l)q distinct 

distribution factors in such a winding.

Substituting T p throughout (1.20) for s we have 

I'rp " r  (I N"- . |r (1.23)

Again we may substitute for its symmetrical components, 

given Iqy
H  - e-j(S (I.2L)

so that 2̂
I V p  = f  (-l)^P-^)'" S" . -l)(s"-<T)TF

5-1

and summing over all S we have
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I*
Q"P ¥  I-"'-"'

-j(N" - l)(s" -C)n/N" J „ (1,2$)X e

Here the factor

sin(s" - cT)ti  ̂ r N*', s" - r  = kN** ^
sin (s'* -(r)n/N** ; k = 0, -1 ....

0, s'* - (T+kN** + q - 1

For a given sequence s'* in the N**-phase excitation 
system, the possible values of T , determining the sequence 

numbers CTp in the primitive system are therefore given by
(T= s'* + kN'*, k = 0, 1, ... , q - 1

Since s'* ^  N**, this equation automatically excludes multiples 
of N** for ^ except when s'* is zero. The only possible value 

of (T for s'* = 0 is therefore also 0. Other values of s'* 
gives rise to q values of T' . A winding containing q coils 

per phase per pole has, therefore, only q distinct 

distribute on factors appropriate to each type of sequence 
excitation. This conclusion is easily verified by examples.

It may be that in this exposition these conclusions seem 
pointless, but it appears that this kind of information may 
be of great interest when dealing with more complex types of 

Td.ndings, and this kind of structural analysis of the windings
f]ought at least to be carried out. The Author hopes to do 

this at a later stage.

/Another

ii
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Another example of this treatment is the relation 

between the fluxes produced hy N*-phase windings derived from 

a primitive 2N*-phase windings. These windings have already 

been considered in Section 2.U.2., and it suffices to take up 

the analysis from Equation (17), where we may write N = 2N*.

The connection matrix relating the 2N* currents in the primitive 
winding to the N' supply currents is

1
0
0

0 0 
0 0 
1 0 
0 0 
0 1

etc.

0 0 .
- 1 0 -  
0 0 0
-1 0
0 0
0 -1

0 0 0

(1.26)

The scheme is contained in the statement

= 1 when 0*̂= (2"y- 1) mod N 

^  = -1 when 0̂ = (2 y- 1 + N') mod N 

Substituting this in (29) we have

I»s
(êy-l)modN"I)^^ ĵ ( ( 2 "y -l+N* )modN-l) s ^   ̂^1

Since the modulus N restriction only amounts to the subtraction

/of
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of 2n or multiples from the argument we can relax this, and

the expression becomes

° N 4  [l - ejM's ̂  3 Ijj

j (1.27)

The factor ^1 - e^^^j vanishes for all even values of s .
This eliminates the zero sequence together with the 2nd and

Uth in the 6-phase, 3-phase connected winding in agreement 
with the results obtained in Section 2.L.2.

Were the coils connected in the same sense, we should 

have the factor (̂ 1 + ê ^̂ j and thereby eliminating all odd 
values of s, and we find that all the harmonics are now even, 
thus effectively doubling the number of poles in the winding. 
This covers the cases of 1 - 2 ratio pole-changing windings.

It is to be noted that the above algebra is only

pertinent when N* is an odd number. If N* is even, the 

parent 2N*-phase winding cannot be connected in the same 
fashion, and with the exception of the U-phase, 2-phase 

connected windings, these have not much interest.
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APPSMDIX II

The reduction to canonical form of circulant matrices

Consider the matrix L given Equation (30), Section 

2.5.3. We seek a matrix S such that 3“^ IS is a diagonal 
matrix. Since S must be non-singular, it follows that all 
the columns (or rovrs) of S must be linearl̂ T independent. It 
is convenient to use the index notation, and we write

s = s(p) = (3(1), s(2), ...., s(N)j (II.1)

where S'^) are the column vectors of S.

Since 3*“̂  IS = V\., we have
LS = 3 A (II.2)

or
IS( p ) ,= s( P (II.3)

where means the |Sth row (or column) of V Y .
is diagonal, we have with

Ai
A  = h

9

1 An
Thus having found the values of , equations (II.3) suffices 

to determine the column vectors 3̂  P ).

By (II.3) it follows that 
(I - U X.)s( p) = 0 (ii.U)

where U is the unit matrix.
/Cons e quently,
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Consequently, if there is a non-trivial solution for

|l - üXvj =0 (II.$)

This is, of course, the characteristic equation of the matrix 

L, and \^is a latent root. The equation is of order N in 
Xp and has therefore N roots, some of which may be equal or 
repeated. (In general, if there are repeated roots, it may 

not be possible to find N independent solutions for \  
and the required non-singular transform m ^  not exist. This 
eventuality is of considerable mathematical interest, but need 
not concern us here). We noîr drop the suffix ^ in Xj*> and 
will endeavour to find the roots of the equation

(l - uXl - 0 (II.$(a))

where L is the circulant matrix given by (30).

Thus we have

Il -X., i2, . . . . , In
Il - X , ••••••, ijj-i

l2, I), . . . . , ii-X.
= 0

which again is a circulant determinant. This determinant 

can be factorised into linear factors by a rather elegant 

method as follows
Let CÙI* be an Nth root of unity, so that

tor “ (r-1) and construct the matrix



— l56 —

Cr =
<1̂

(II.7)

N-1
®r

Clearly, Cj.-1
Cùp-1

- 2

COj»1-N

Furthermore |Cj. A Cp” |̂ - j a | , so that any factor of the 
R.H.S. is also a factor of the L.H.S, and conversely. We 

now construct

| c r  (1 -  \U ) C r- l|  = 1l  -  \ ï ï |  ( I I .9 )

To facilitate the forming of the matrix product we make use 
of the index notation. Thus with

Cr= cop̂ (I - Xu) 2

and ye , we have

Cr(L-\u)Cr-I =

_ («-t) ^
  COp ^ 0 (g ,

Consequently, we have

ll “X 5 l2<^ \  ...... 9 In

I L - Xu I = 1n-1 û>r'

. N-1 _ N-2l2co , I3CÙ , f ii - X-

(II.9)

where use is made of the fact that cÿ = ccp̂ *̂  in order to make

all the exponents of wr positive. It is now clear that the
/ sum
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sum of all the elements in each column are equal, whence 
this sum is a factor of the determinant; furthermore this is 

so whatever r we choose in the range, 1 ̂  r ̂ N, consequently 

aq;/- of the N factors,

ll  ̂l2 *  , r = 1, 2, .,,N
are factors of |l - X u | , Finally, since these N factors 
are distinct, and |l -\u | is a polynomial of degree N in\, 

these are all the factors. Consequently, the solution of 

(II.5) is
N

z :  irr r=l r

\ =  i  Ir ( P-D(r-l) (n.10(a))
1 r=l

Substituting in (II,L), we have

( l - U  2 1  Ir e-ir ( p-1)(r-1) j g(p) = q (ll.U(a))
r=l

which when written out in full becomes

^  , l-r ^- 2_ Ir “f. , l2,r=2
N

; %

In > ” Z_ Ir^a 5 ....J l%g_i r=l

l2, I3, ^  l-d
J ~ Z_— Ir^A r=l -J

(?)
1

( p )32

(11.11)
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A solution of these equations must satisfy the relations

N-1 - (P-)Û) p bi

The simplest solution is given by 
1
CÛ-1

Ù),- 2

-N+1
J

(11.12)

These column vectors have modulus and are quasi-unitary. 
The transform matrix given by the N columns in (11.12)

( p = 1, 2, ...N) is the matrix S, where
2it ̂ -(ot-1) -j((̂  -1) ( ̂  -1)^"

S*. = Wp
which is, of course, the familiar symmetrical component 

transform. its quasi-unitary property, the inverse is
easily shown to be:

2ti
,-l (0̂ -1) (p.-Dir ( II . lU )

’ N ®
The above procedure is quite general, and applies to all 

circulant matrices.
If the matrix in addition to circulant symmetry is also 
per symmetric (or simply symmetric), we have the addtional 

property that

Ir “ lN-r+2
It can be shown that by applying this constraint to (II. 10(a))

/that
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Ithat the imaginary part vanishesj the proof is, however, a 

bit clumsy. A more general proof follows from the general 

theorem found in any book on Advanced Algebra that the latent 

roots of a real symmetric matrix are necessarily real,

(II.10(a)) thus becomes 

NA N  2n
L  = Z L  Ir COS jj- ( a- 1)(N - r ♦ 1) 
r r=l

N 2n
’  ̂Y  ̂  cos ̂  (^- l)(r - 1) (11.10(c))

This equation is of importance in deriving the sequence 

inductances of a polyphase winding.

In the case of symmetric circulants, the unitary 

transformation of ŝ n̂umetrical components is still applicable 

and does, in fact, diagonalise the system. However, in the 

solution of (II. 11) it is now apparent that both the real and 
imaginary parts of 8^ given by (11.12) are independent and, 

in fact, orthogonal solutions of (II.11). .This would suggest 

that in this case a real basis can be found for the matrix L. 
But since there are 2(N - 1) pairs of real and ima.ginaiy (plus 

one unit column) corresponding to the set of N columns given 

by (II.12), some of these must be linearly dependent. The 

real parts are given by

Re = cos((i- l)(ot- 1)|^ (II.1?)
and the imaginary parts

Im = -sin(p- !)(«(- 1)^ (II.l6)

/To
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To find which of the real part columns are independent, we 

merely apply the orthogonality test:

2n „  2n
^  cos ( Pi-1) ( ̂ &-l)

1 N . .  ̂ 2tt .0 A

^  cos ( Pi"l)( P<.-1)n cos( P *^)n

sin (

Since^^ N, it is easily seen that the second factor is non-zero 
only if pi = p2) which is trivial, and the first factor is 

non-zero only if ^i +^2 "  ̂= N. By utilising these, 
criteria we have

3^^ = |H cos (N - l)n where pi + &2 * N + 2

and 3^ ̂ = 0 where + ̂ 2 4̂  ̂  + 2.

Thus the columns determined by

Pi + P2 4 ^ * 2  (11.18)
are linearly independent, and represent eigenvectors of the 
symmetrical circulant matrix.

By a similar test applied to the columns given by 

(11.16) we obtain the identical criterion.

/Clearly
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•Clearly then if the ji first columns are considered, 

( p= 1, 2, . b) these are all linearly independent if 

2b + 1 < N  + 2, i.e., b< g where |y  is the

integral part of ^ -g—^ • Thus the^ "2 first of the

columns given by (11.1$) and (II.I6) are linearly independent.
It is, of course, equally valid to say that the set of columns 

corresponding to is also a set of linearly
independent solutions, A very simple example of this principle 

is furnished by the problem of finding the possible eigenvector 
representations for the 3-phase inductance matrix. This is, 
of course, a symmetrical circulant, and the vieil knovm 
symmetrical co-ordinate axis determined by the transform 
matrix.

1
1 -I -j ̂

-i-jf
It is here obvious even without the help of the criterions 

mentioned above that the only real independent columns are 

given by

^ 1  1 0  

S = 1 V3/2
1 “?T “ 'S/s

This is, of course, the transform matrix generally known 

as the Clarke transform or 0̂, ̂ ,0-se que nee transform.
Thus there cannot be any other transforms which will

diagonalise the given inductance matrix, which accounts
/for
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for the fact that no others have been suggested.

It is of interest to note that none of these 

transforms were orî înally developed by the method presented 

here. The present Author is of the opinion that this method 
is the only natural way of dealing with systems of this kind, 

and that the elementary algebra required is not beyond any 

graduate students. Consequently, it is advocated that 
matrix algebra be included in Engineering Mathematics courses 
to the benefit of all who wj11 have occasion to deal with 
systems of differential equations. The pa-ierful method of 

eigenvector representation such as the above should not be 
I'd.thheld from Engineers arç/ longer, considering it has been 
a treasured tool of mathematical ptry si cists for decades.

 ̂ f .1.'̂
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Appendix III

A critical note on the use of synchronous reactance

The terra synchronous reactance (or impedance) is 

normally associated with the positive sequence reactance per 

phase corresponding to the fundamental space comoonent of 
flux. In practice, hoî̂ ever, it appears that when this is 
stated as ’̂synchronous reactance per phase'*, sufficient care 
is not always taken to distinguish between the quantities 
associated with the actual phase voltages and currents and 
the purely fictitious symmetrical components. In fact, the 

"reactances’* corresponding to the s;\nmmetrical components are 
often inappropriately used in equations involving actual 
phase voltages and currents.

As an example we may quote two papers ty 

Y.H, which illustrate this point. In one of the

first papers^^ treating the synchronous machine by operational 

methods we find:
"The stator equations for the synchronous, round-rotor 

machine are

Va = (R + Lp)ia + p(M cosG if)
vb = (R + Lp)ib + p(Mcos (0 - 2n/3)if)
vc = (R + Lp)ic + p(Mcos (0 - L|.7i/3)if)

where R is the resistance per phase, L the seIf-synchronous

/inductance
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inductance per phase, and M the mutual inductance between the 

field and a stator phase when the axes of these are coincident".

We must reject these equations as false, since the 

basic equations are clearly,

va = (R + Lp)ia + pib + ‘̂WPic P(^ cos 6 if)
vb = (Mba la + (R + Rp)ib + %c pic + p(M cos(0 - 2Ti/3)if)

Vc = (T'lca ia + % b  ib + (R + Î p)tc + p(M cos(0 - Un/3)if) 
where L is the total inductance per phase, % b  the mutual 
inductance between phases a and b etc, and R and M are defined 
as ebove. By neglecting all the harmonics in the space 

distribution, we may write these (by ')x

Va 1 . . ia 1 “2 ""2 ia=(R + Ip) Lph P
vb . 1 , ib 1 ib

Vc . . 1 ■ic -p 1 ic
pM COS0

cos(0 - 2tt/3)
if

COS(6 - Un/3) 
where Ijis the leakage reactance per phase.

By no algebraic substitution is it possible to obtain 

the equations given by Y.H. Ku. However, using the symmetrical 

component transformation we obtain the simpler equations:

Vo = (R + Lop)io
VI = (R + hip)il + 3/2 Mpe^® if

V2 = (R + iip)i2 ‘*■3/2 Mpe-jG if
/The
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The constant speed case (synchronous speed) results 

in 6 = cot + S where co is the angular frequency of Va vb and vc 

(and ia ib and ic) and furthermore, if the terminal voltages 

are balanced, vp = v2 = 0, We have then, assuming 
Vf = V? V%e3^^ and i^ “ 2 ^ 1  ̂̂

?1 = (H + jcoLi) + 3/2 2 If

or = (R + jaiL%)

which is the familiar balanced synchronous operation equation.

We must therefore maintain that the quantity "self- 

synchronous inductance per phase" is a misnomer: it does in

fact not exist as a "reactance per phase" at all, but in the 

positive (or negative) sequence equivalent network. It is 
an abstracted value, and should not be used in any but the 
abstracted equations.

It is obvious that the fact that the positive 

sequence components are proportional to the phase components, 

and identical in the reference phase for a balanced ^stem 
accounts for the identification of "per phase" and symmetrical 

component reactances. There is, however, a clear difference 

between them, and this difference ought to be pointed out very 
strongly.

Similar remarks apply to the o(, |3 ,0 Sequence system, 

The Q̂— component is equal to the a-phase quantity vhen there 
is complete symmetry, and is therefore often confused with

/phase
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phase quantities.

Fortunately - or maybe unfortunately - the constants 

of the equations are always determined experimentally, so that 

the inconsistency is to some extent obviated. For example, 
Y.H. Ku’s equations will work in practice for sinrnnetric 

operation, since the factor 3/2 which is neglected is absorbed 
in M.
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AppEimn 17
General Expressions for cos^ in terms of multiple angle agreements 

Two cases arise in this expansion, namely odd and even 

values of m.

Consider firstly, the case where m is odd. Writing m as 

2m-l we have
cos2'»-l X = 2 ^  + e-iX)2m-l

and expanding the bracket,
= 22m=I Co + C% e^^2m-3)x +

. ..... .-1* . ...
2m-l -i(2m-2r-l)x . r̂a-l -i(2m-I)x

°2m-r-l ® ••• ^2m-l ®

2m-l 2 m 2m-l________ ______
cos X = 2^m-l y C ^ cos 2r - Ix (IV.l)

r ^

In the second case, where m is even, m is written as 2m,

giving
cos^-^x-^ +

- i k  ( %  8^^"^ + %  ,i(2m_2)x  ̂ ^

, %  al(2m_2r)x , +

2m . 2m
C2„_r e-i(2m_2r)x

2m 2m
Cm + 2 Z _  cos 2rx

r=l
(17.2)
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APPENDK V

The expansion of ( j (1 - kcosx)“  ̂in terms of multiple

angle arguments 

The binomial expansion of (l - kcosx)"^ gives,
(1 - kcosx)"! = 1 + kcosx + k̂  coŝ  x +  ..... ...

= 1 + ) (k^^ cos^^ X + ĵ 2m-l oog2m-l
m~l

By the results of Appendix IV, this becomes

^2 i  oos2i^-Tx
m=l \ / r=l TTi-r

^  r T̂\ <:
Cm + 2 y  C „ COS 2rxS ir V .

06 oo /, % 2m-l 2m-l
•*■ 2 21 7 "  f|\ C cos 2r - Ix (V.l)

Now the m-sumations may be carried out independent of 

r in the first term, and for any value of r in the cosine 
coefficients.

Thus
oo kl 2m 2m ^  /k\ 2m IT(2m * 1)
m=0 V2J " m

rir\ 2m i urn + 11_______
fT™ + 1) p m  + 1)

/Expanding
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Expanding ft2m + 1) by the gamma-function duplication 
formula gives

f "  f k\ 2m 2m ^ |2. J7(„4)_P(„+i) ^2m
W  " ^  r(m+l)p(m+l)

^ H, 1, i; k2)

where F (t, 1, 1; k̂ ) is the hypergeometrie function of 
elements 1, 1; k̂ . By a well knovm change of the elements

this reduces to
(1 - k2)-" F (t, 0, 1; k2) = (l - k2)"?

Thus
oo

m=o ( I p  (l-k2)-^ (V.2)

Again,

r . - (ÏI—  1,51 -m-r -131 ^ \ 3 I

ijçi2r 66 ri. _ / 1,1 2mJp2m + 2r + l) (
m=o^  2r'TÏ5"'2>rS'+"iy ’2

2r ^  P(m + r + j) J7(m + r + 1) 2^^ i jA
/ p(m + 2r + l)j7 (m + l) jpT  ̂2)
m=o

. (1)"' ^  ''î

fk\2r f !  F(r p r ( r  + 1) / T  i
= 12) J7(r + h p i r  + 1) 22r (l-k^)“" F(r+i,r,2r+l;k2)

2r
(1 - k̂ )"' F(r, r+i, 2r + 1; k̂ )

/Now
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2 2
F( + h  z) = (% + F(2*, 0̂  1, <̂  + i;

Thus the above reduces to

riA 2r  ̂ 2 2r Vl-k^-1
= 11) (1 - k2) - (r r vf- 'k̂ ) F(2r, 0, 2r + Ij

and finally,

.Ç(r
By similar process.

oo
H h V ' ^  2m-l2 _  Mm=r ^21 V r  - (1 - kZ)-2 (rïvrnE?)^^-^ (v.u)

substituting V.2, 3, and U in V.l gives
k______ _\P(1 - k cosx)*2 = (1 _ k )̂"2 (1 4. 2 ̂  cospx)

(V.$)
OO

= (1 - k^)”2 (1 + 2 2 2  y^ cospx) (V.$(a))
p=l

kwhere y = •

Multiplying(V.$(a)) by sin nx gives 

sin nx (1 - k cosx)“^

o 1= (1 - k^)“  ̂(sin nx + 21 7^ (sin(n + p) x + sin (n - p)x))
p“l
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= (l - k̂ )"̂  (sin nx + sin qx
q=n+l

n-1 

oo

. c ■ n—qZ L  y sin qx

q+ny sin qx 
q=l

(1 - k2)"2 jgin nx + (y“^ - ŷ ) yQ sin qx
q=n+l

+ y (y^ (y“^ + ŷ ) Sinqx - y^^ sin nx̂ l
q=l J

= (l - k2)"2 y^ (y~^ + y^) sin qx
'q

06
+ Z —  (y“^ - y^) y^ sin qx)l ’ ’ 
q=n+l J

Thus,
2 I I

sin nx (1 - k cosx)"^ = (1 - k̂ )"̂  2_ (y sin qx
q=i

(V.6)
where jq-nj is the numerical value of q-n.

Similarly, cosnx (l - kcosx)
= (l - k̂ )"̂  (cosnx + y^ (cos(n + p) x + cos(n - p)x))

P=1
which by a process similar to the above gives

oO
cosnx(l-kcosx)= (l-k )̂“̂  (ŷ  + (y yO."*"̂) cos qx)

q=l

(V.7).


