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Preface

The present work was initiated in 1953 by the rather
tentative idea of investigating the presence of "event
harmonics in the air gap flux density wave of electrical
machines. During these investigations, it became clear
that, for the case of eccentric dissymmetry, which was seen
as one of the main sources of "even" harmonics, little or
no evidence of published work was to be found. ~ This
problem was then taken up as a subject for the present

Thesis.

Experiments were carried out, and results were
obtained which showed that eccentricity would account for up
to very large percentage harmonic contents. An approximate
theory was also established based on m.m.f. and permeance
waves. This explained the phenomena in some cases, but was
obviously wrong in other cases. For a rather long period
of time, no progress was made due to the lack of a correct
theory; +the theory presented in this Thesis was only
developed after the Author resumed the work two years ago.
The theory may be regarded as the extension of the
conventional m.m.f. theo:§ to the case of eccentric rotors.
A complete theory of constant-span (or equivalent) coil
windings is presented as an introduction to the eccentric

rotor theory, thus making the work self-contained.

/Originality
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Originality is claimed for some of the extensions of the
conventional m.m.f. theory, notably on the subject of
unbalanced excitation and inductances and for the

eccentric rotor theory.

The work was carried out in the Electrical
Engineering Laboratories of the University from 1953 to
1959, For the first three years of this period, the
Author was awarded a Research Grant and the James Watt

Scholarship (two years) by the Faculty of Engineering.

The Author gratefully acknowledges the help and
encouracement during the first year of this period of
Dr. J.E. Parton (now Professor of Electrical Engineering
at the University of Nottingham). He also wishes to
thank Professor B. Hague for permission to use the
facilities in the Laboratories and for helpful encourage-
ment. I!Mr, W. Butler, who constructed the experimental
machinery, is also thanked for his skilful and patient

assistance.
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list of Principal Syﬁbols

Flux density

Fourier components of B

Winding Comnection Factors

Air gap mean diameter

Winding factors

Coil-span factor of mth harmonic
Distribution factor

Skew factor

Air gap magretic potential or "m.m.f. wave"
Fourier components of H

Inductance or inductance matrix

Mutual Inductance

Number of phases in a polyphase system
Number of coils. (Repeatable section in
Fractional-Slot theory).

Air gap mean radius

Sequence number or sequence transform matrix
Number of turns

per coil; Tph: per phase

Unit Matrix

Unit column vector

Reactance

Integral number (in Fractional-Slot theory)



O X D P

P

4]

- IV -

2.71828 ..., base of Napierian logarithms

mean air gap length

Integral Number; Eccentricity ratio

Integral Number, (Number of identical groups in
Fractional-Slot theory).

Harmonic orders in Fourier Expansions

Number of pairs of poles

Number of coils in sub-group. Integral Number.
Order of Harmonics in Fourier Expansions.
Integral Number

Sequence Number

Time variable. Integral Number

Integral Number

Integral Number

Angular Measure in "Mechanical Radians"

T +%?ﬁf- kéV , Common Function in the Eccentric
Rotor Theory.

Coil pitch

Phase spread

Slot pitch

Skew Angle

Small Angle (Eccentric Rotor Theory)

Angular Measure in "Electrical Radians"

Characteristic roots of matrices
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Permeability of free space
Flux

Phase angle

Flux Linkages

Position or phase angle
Integral Number

Angular Freguency.
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1. Introduction

The air gap magnetic field is, as it were, the "working fluid"
of electrical machine. An exact knowledge of the distribution of
flux density in the air gap is the key both to the general analysis and
to the design of such machinery. It has, therefore, been the subject
of extensive enquiry and there exists a considerable amount of
literature on the subject. There are, however, not many conclusive
results to be found, and the subject is not likely to be exhausted for
some time to come. The reasons usually given for this state of
affairs are two; firstly, the complex geometry of the domains involved,
secondly, the fact that the main part of the domains are occupied by
iron having an extremely non-linear flux-magnetic intensity relation.
Of these two factors, the second is by far the most important, since
all field problems involving non-linear regions which at the same time
have geometrically awkward boundaries are practically intractable by

present methods of analysis.

For these reasons, the field in the air gap is usually
evaluated by approximate ana]ytical methods or, in some cases, by
graphical methods, Again, there are two fmdamental‘l& different
types of machines, namely, smooth-gap machines and salient-pole
machines, Clearly, the first is much more amenable to analytical

methods than the second. In fact, the second type is normally

/treatad



treated by methods which can only be justified on the grounds that they
give reascnable results when the constants are empirically adjusted by
comparison with experiment; This is certainly the case in the most
popular of all theorems, namely the two-axis principle. In the smooth-
gap machines there is more scope for exact analysis, and their fields

have, in fact, been investigated by several workersl’2’3 .

But even in
this simpler case, the exact analysis is probably of little practical
value, since the analytical solution must be expressed in slowly
convergent infinite series. Broadly speaking, the problem is to
express the radial component of the flux density in the air gap as a
function of the appropriate cylindrical polar co-ordinates and the
currents present in the windings., The solution must be readily
obtainable in Fourier Series to be of practical value; but the works
seen by the Author have not been in such a form, and it may be
reasonable not to expect them to be., Furthermore, the analytical
gsolution breaks down completely when the iron parts are satuwrated. A
moderately successful approximation can be obtained when the iron is
considered infinitely permeable, This problem has been extensively
treated by Buchholz?, who has also tackled the problem of eccentricity
in the air gap. However, the analytical treatment is always based on
a simplified geometric model, and the accuracy obtained is always

limited by this approximaticn.

The essence of these remarks is that the only theory that has

/found

1. See Bibliography, Page 1L0.
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found general approval in Engineering circles is the simﬁlest possible,
namely, that of magnetomotive force waves and air gap permeance. This
theory is based on the assumption of infinitely permeable iron and a
simple rectilinear flux distribution. Given these two properties it
is a simple matter to evaluate the flux distributicn at any point in
the air gap. The field problem becomes of secondary importance, and
the theory is, in fact, more concerned with the distribution of the
gources of the magnetic fields, namely the currents or winding coils.
The theory of windings has become a concept which not always has an
unmistakeable synonymity with the magnetic field in the air gap. This
has provided a few loopholes in the reasoning and very often
inconsistencies are apparent even in reputable texts. Thus Sayh
treats the mem.f. distribution without reference to the actual flux
distribution and applies the results to salient-pole machines without
comment, It 1s easy to be left with the impression that m.m.f. has,
in fact, a "distribution" independent of the flux. This misconception
has also led to some errbneous statements about the distortion of the

flux distribution due to an eccentric gap.

In this work, the m.m.f. theory of the common types of
windings is dewveloped élong the lines first published by ArnoldS at
the beginning of the century. 1In his book, the principles of the
method are clearly stated, but only simple types of windings are

considered. The extension to a wider range of winding types is due

/to



to B. Hagu36 and A. ClaytonT. The theory of the fractional-slot
windings (which today have found a very wide application) has been
less conclusively investigated. The earliest literature on the
subject seems to be a paper by E.M. Tingl,ey8 in 1915. Tingley's
analysis was exfremely restricted, and the subject seems to have
been vold of mathematical treatment till 1927 when Q. Graham®
presented a paper on the subject to the American Institute of
Electrical Engineers. The paper was, however, more of a
qualitative nature, and the first attempt to generalise the theory
is due to Calvertl®. In the discussion of this paper, Professor
W.V. Lyon draws the distinction between "regular" and "irregular®
balanced windings and states that only for the former type can
general formulae be readily developed. The irregular ones "must
each be considered as a separate problem". This is, in fact, the
position today, However, there are two other notable contributions
to the theory, by Malti and Herzogll and by M.M. Liwschitz12,13,1h4
respectively. Although the latter is usually credited with the
development of the so-called slot-star method, this is in fact, only
a pictorial representation of the complex-number treatment developed
by Malti and Herzog. Their paper11 is the basis of the treatment
presented in this work, and it contains a great deal of valuable
information. Most recently there has appeared a paper in the
Proceedings of the Institution of Electrical Engineers by Walker
and Kerruish?g which claims a simpler although rigorous treatment;

Here some of the irregular windings are considered and distribution

/factors



factors are given for some of these windings. The complete theory

is, however, still wanting*

Both the integral- and fractional-slot windings are usually
treated specifically for the 3-phase narrow-spread case* In this
Thesis the theory is generalized to any number of phases, and the
harmonics due to symmetric as well as unsymmetric polyphase currents
are analysed* This extension has revealed a number of points
believed to be relatively unknown heretofore. The narrow-spread
windings and pole-changing windings are included in an extremely
general treatment involving symmetrical components and connection
matrices* The important quantities known as air-gap inductances
are thoroughly treated, and a critical exposition of the concept of
synchronous reactances 1s given. The latter are shown to be
special cases of the sequence reactances, which are the eigen values

of the general air-gap inductance matrix*

The Author hopes to cariy out further work along these
lines in an effort to formalize the theoiy of linear machines, but
this is outwith the scope of tiiis Thesis* The theoiy of fractional-
slot windings has been largely limited to balanced "regular** windings,
VAiile a special important type of irregular narrow-spread winding 1is

treated in detail.

/The



The m.m.f. theory has in the past been successfully applied
even to salient-pole machines, notwithstanding that in this case the
very basis of the theory, a smooth constant-length gap, is not
present. With this in mind, it occurred to the Author that the
theory might equally well be applied to the case of an eccentric gap.
The idea was to obtain the "permeance wave" of the eccentric gap and
multiply this by the m.m.f. wave. The flux density was exnected to
follow. This simple method was pursued but led to a physically
untenable result: the resulting flux-density function was not
solenoidal. When more closely scrutinised, the method revealed the
fact that the m.m.f. wave cannot in fact be evaluated before the flux
distribution is known. The m.m.f. wave pertinent in the case of an
eccentric gap is quite different from the conventional one obtained
with constant gap lengths. The latter part of this Thesis is
devoted to the theory of the eccentric gap phenomena, based on a
modified m.m.f. wave. By this treatment the mathematical
simplicity of the conventional m.m.f. theory is preserved, and
readily applicable general formulae are obtained. The items y
considered are the waveform d' the gap flux, the transverse force
and the reactances respectively, so that together with the earlier
sections, a fairly general treatment of the air gap phenomena is
obtained. The results of the experimental investigations on an

eccentric machine agree fairly well with the theoiy.

The analysis of the transverse pull on the rotor is quite

general, and is applicable to any case in which the flux

/distributon
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distribution is known. Specifically it is shown that the existence
of transverse forces implies a very dense (at least partially dense)
spectrum of harmonics. This result seems to have been largely
overlooked in the literature known to the Author, although it is of
prime importance, The resultant noise effect may also be assumed
appreciable, and would merit further investigation.
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2. The Theory of Integral-Slot Windings

In this section the analysis of the general pblyphase winding
will be presented. The treatment is substantially based on the work
by Clayton, but it has been extended, and the mathematical procedure
allows for greater generality, and relies to a lesser extent on
graphical or physical arguments. More powerful methods of analysis
are employed and several less known properties of these windings are
discussed. The assumption of infinitely permeable iron is made
throughout.

2.1 The Flux Distribution and Reactance of a Single Coil

The basic element in the analysis of integral slot as well
as fractional-slot windings will in this work be taken as the
approximate field distribution due to & single codl of arbitrary
angular span ¢ radians. (The angular measure is throughout
taken in mechanical radians unless otherwise stated). The flux
paths due to S'U.C!;l;: single coil are shown approximately in Fig. 1(a).
It is assumed that the flux density is constant both inside and
outside the coils and the fringing of the field in the neighbourhood
of the coil is ignored. The convention is adopted of referring to
the position of the centre of the coll by the angle O relative to

some arbitrary reference point on the stator.

 /The



The total flux produced by such a coil may be computed
by the magnetic circuit law. We have,
<Jc " BilRoC - BoLR(2h -o01i) (1)

where Bi and Bo are the (constant) air gap flux densities inside and
outside the coil respectively, L the axial length of the stator and

rotor, and R is the mean gap radius.

Since the magnetic field is assumed to be zero apart from
the gap, we may write the total reluctance of the magnetic circuit

as

@)

/i*re



where g is the gap length.

Now if the coil has T9Q turns and carries the current I, we

have by putting ITc BM“*ci.and substituting from (1) and (2),

Bi - ITe A< (3(a))
B, pe o (3(b))

We may now term Mo the specific permeance of the air gap
and the equations (3(a)) and (3(b)) may be interpreted as giving
the *specific magnetic induction'* (flux density) by multiplying
the specific permeance of the gap by the magnetic potential across
the air gap. The latter is the quantity which is usually referred

to as the "m.m.f. wave", and in this case has the form shown in

Fig. 1(b). It has the same waveform as the flux density function,
24 — oC

and has the value Hi M ITc — 2n " " inside the coil, and the wvalue

Ho W ITc outside the coil.

B
= |
|

ELy-th*



(The gap length g strictly should be taken as '"the effective gap
length". Since the normal machine has slotted stator and rotor
surfaces, the reluctance of the above magnetic circuit is greater
than that given ty (2), due to the smaller effective cross-section.
The necessary correcticm can easily be obtained from Carter's

o 18
coefficient

This must be understood to be a particular case, and no
general principle is intended. The objections to the concept of
an "m.m.f. wave" have largely been made due to lack of precise
definition. The most irritating of the definitions are those
which define m.m.f. waves as the integral of line currents without
reference to the flux distribution. Although the result is
correct, the definition is confusing since it leads the student to
accepting the m.m.f. wave as a function of the currents alone while,
in fact, it has no meaning until a flux distribution has been found "-A
in terms of which the magnetic potential can be evaluated. A
blind application of the m.m.f. wave in the case of non-uniform air
gaps will undoubtedly lead to erroneous results unless some
modifications are made. An example of this is provided in Section

h.

Although the present method of evaluating the flux
distribution is clearly empirical, it is very nearly exact for the

normal machine which has a small gap. Saturation of the iron will

/also



also upset the theory but, in that case, all known analytical methods

also fail and cannot, therefore, in general claim any advantage.

If we accept the above basic assumption, we may represent the
flux density function in the most convenient mathematical fom and
proceed by superposition to derive the flux resulting from agqy given
group of coils and, finally, a whole distributed winding. This then
provides enough information about reactances to perform any desired

analysis of the machine.

In Fig. 1(b) the flux density is shown as a function of x,
the angular displacement round the air gap. By the above
interpretation it is identical in form with the magnetic potential
function or the m.m.f. wave. The function is discontinuous at the
slots containing -tte coils, but is easily represented by a Fourier
Series. The shape 1s sometimes modified to a trapezium form in
order to account for the fringing at the slots, but the advantage
of this is of dubious wvalue, since it does not allow for the slots
at the interior and exterior of the coil which also produce a similar
ripple in the flux wave. The tooth ripple frequency part cannot,
therefore, be correctly represented by such an artifice, and the

other harmonics are not drastically affected by the teeth.

The Fourier series representing the stepped function in

Fig. 1(b) is given by



- o) -

B(x) =% (B; + B,) Z_:l iiL’%—"y—z cos m (x -¢°) (L(a))

and using the relations (3) we have

Bx) =210, 20 5 L gin m%/2 cos m(x -¢°) (L(b))
7 e 5 m=lms:mm cos m(x -¢’

It may be noted here that% IT. -%-9 is the average value
of a sine function of amplitude IT¢ uo/g, i.e., the total m.m.f.
of the coil multiplied by the specific permeance of the air gap.
It is also the amplitude of the fundamental component in the

series expansion, if ® =n, This is a convenient definition,

and very easy to remember.

The inductance of the coil will now be considered. This
has two distinct aspects, namely total inductance and harmonic
inductances. In anticipation of the more general expressions
which will follow later, these quantities will be considered for

the single coil.

The total inductance is given by evaluating the total

flux linkages per ampere, viz.

ot/z
_Te DL
L -:-J B(x) 5 o
- &/2
Substituting from(li(b)) we have
To [ %/2 = 1 DL
L= -I—c- %ITCEBZ ﬁsinm“/Z cosm(x -0*)5~ dx
_#2 m=l .
which gives
Q0
2 D 2 < 1 .
L= 7 22 T 2 (5 sim%/2)? (5)
m=1

/ Thus
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Thus, the total inductance is seen to contain a series of
components each due to the various harmonic components in the
flux wave. The mth harmonic reactance can consequently be
defined as
k- 1 ~ Mn (6)
This is proportional to the square of factor
~ sin m®"/2, and subsequent analysis will show that the complete

landing inductance has a similar form.

For convenience in the subsequent analysis the amolitudes
2
will be referred to — Tg Pc/g and \ie write this as
3¢c=fTc” (7)

Equation (U()) m”™ then be written

A1
B(x) =1 Be m sin m */2 cosm (x - (f
m=1
or
A 1
B(x) =1 Be m m cosm (x —(f) (U())
m=1 ~
where "™ is the "coil span factor" sinm /2. ux

In the following it has been found advantageous to re-define
the winding factors so that the coil span factor becomes
= JsinmV2 (8)
This gives greater conciseness to the formulae and is, therefore,
an econorry in the already rather lengthy formulae. The span

factor is also already a function of m.*

So far, the conductors (and slots) have been assumed to be
parallel to the axis of the stator, but in many machines the slots

are skewed, and a slightly different picture arises. Again by

/ assuming



- 15 -

assuming that the flux densities inside and outside the coil are
constant respectively it is clear that we may derive the values

of these by the magnetic clrcuit law and will, in fact, be no
different from the above. However, the flux density is now a
function of the displacement along the axis of the ;rotor as well
as the angular displacement round the gap. It is very
undesirable, and in fact of little merit, to introduce a second
varizble in the flux density function, and the effect of skewing
need only be considered when dealing with the mutual inductance

of two coils (on different sides of the air gap). This is
illustrated in Fig., 2(a) which shows two coils having a mutual
skew angle § «+ (It is not necessary to state whi'ch coil is
skewed, but only that their sides make an angle é with each other).
The change in mutual flux linkages with the coil displacement is
now clearly quite different when the coil sides cross and when

they do not. The effect is precisely as if the flux density had
a trapezoidal distribution and the coil sides were parallel (shown
in Fig. 2(b)). It is, therefore, useful to represent this waveform
in the Fourier Series form, viz.,

B(x) -%— (By + BO)Z ;nl- sin #mo{ . 73?& sin imScosm (x -@) (9(2))

m=1
and take this as the flux density distribution whenever we deal with
colls having a relative angle of skew & . Again, the "skew factor"
ma;y be defined as
sin dm$ (10)

]
=

(e TN

Ty,
and by (7) we have



B(x) = 1IBc cosm (X — a) (9())
=1

1 2

where F * “ in sin imoc sin

of course, the conventional skew factor.

V&uLCuL &

- EujVLLv/uldt WtU'C
CoiL.

lo i Co/” SfccH>
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Equation (9(b)) will be the elementaiy building block in the
further development of the theory. In general, I is a function
of time, and B(x) therefore becomes B(x, t). Again if I is an

harmonic function of time B(x, t) msy be resolved into the familiar

travelling waves.

The total field due to a number of coils excited by different
currents presents in general a vely complex picture, and only where
there is a certain amount of symmetiy in the space and time
functions concerned can the resulting field be given a compact, /!
useful mathematical form. However, by the technique of resolution
into symmetrical components, it is often possible to obtain the
most important parts of the functions involved, and make numerical

calculations possible.

2.2 The Flux Distribution due to a Group of Equidistant
Coils, similarly excited.
As the first step in the analysis of the flux distribution
due to multipie-coil windings, we consider a group of g coils

situated at equal intervals (e.g., one slot pitch apart).

The general problem is to sum the flux densities due to the
individual coils at all points round the air gap. This is most
conveniently done ty summation of the series expansions of the
individual functions. In the present case this gives rise to

the series,



9 .
B(x) = IBc>_ § Foyy,m COS M [_x - (q +r_-—1'a—)]

r=l m=1
where y is the spacing between successive coils in the group. By

performing the summation over r we obtain
o0 s «6
B(x) = Ichnf?_l Ftyysl ﬁ‘%ﬁ— cos m (x =) (11(2))

where 0 = 3(G + (q - 1)y), i.e., the position of the centre of the

group of g coils, Again we define

s 1
o Sincmgy

F@”m gsingmy
as the distribution factor, which is the value normally given for
this, Also, the product Fo"a,m F';’m is contracted to F“’P’G;m
or simply Fne Since Fp does not contain Fx,m in all later
applications, it must be clearly stated what Fp means, but the
context should always suffice to make this clear, With this
modification, equation (11(a)) becomes

B(x) = qIBg 3. Fpy cos m (x =) (11(b))
m=1

In the case of a concentric group, the summation will be an
arithmetical progression ino! , the coil pitch, rather than the
position angle G°, and we have to sum over q terms the expression

% 2 1 1
B(x) = IBc Z = Fy m sinim (d,+ 27T y) cosm (x -q)
r=l m=1 ©

since the increase in the coil pitch in successive colls is 2 y,
[ The shortest coil having span® radians). This ylelds
| Z 1 inZm

B(x) = qiBc> = F, n S204Y ginim (o4, + 23 =1 )

m=1 m JM qs;urz—mx
cos m (x =) (12)

R } e /Here



- 19 =

Here again the distribution factor appears as before, and the factor
'% sin im (oK, + 2q - 1 U) is the coil span factor of a coil of average
span. Hence equation (12) can be considered as included in

equation (11(b)) with the modification that the coil span factor must

refer to the average span of the group.

It may be noted at this stage that a group of coils is not
alwagys arranged in such a simple mammer as above, and summation may
not be possible in the same way. Such cases arise in fractional-

slot windings, which will be considered later.

2.3 The Flux Distribution due to a number of similarlx:

excited groups of coils,

So far, only basic elements of a complete winding have been
considered. In this section a number of groups will be considered
together and, in particular, the set forming a single-phase winding.
The single-phase winding is here considered as a true single-phase
winding, i.e., the limiting case of a so~called'wide spread® -7

/

polyphase winding.

In the symmetrical single-phase winding there are p similar

2n
P

radians. Such a winding will be seen to have p similar periods in

groups of colls spaced round the air gap at equal intervals of

the flux wave, and therefore has 2p fundamental "poles".
Accordingly it is termed a 2p-pole winding. This single-phase
winding has, of course, little practical importance, but it forms'
the basic element of the integral-slot polyphase windings and will,

therefore, be considered in some detail.

/By
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By the same procedure as applied above in deriving equation

(11(v)) we have the field due to a single-phase winding,

P o — 2
Bph(x) = qIBe = S Fp cosm (x =0 +f= 1 _3)
f=1 m=

vwhich after summation gives

o0
Bph(x) = qIB, . Fn %%5 cosm (x -G) (13(a))

m=1
The factor 4:—:{%5 is another distribution factor for the winding,
but it will here be referred to as the "connection factor" since
it depends on the connections of the groups. In the following,
the groups are assumed to be series connected (in the same sense),
and the value of the connection factor is then simply p or zero
according as m is a multiple of p or not. Thus only harmonic
orders given by m " np (n =1, 2, 3 ...) can exist in the flux
wave, and consequently the fundamental has period 2n/p. It is
now more convenient to change to "electrical" angular measure,
defined by the equation © = px; and substituting m = np and
x = 6/p in (13(a)) gives

Bph(x) = qIBg .?.‘Zil Fncosn (6 - T) (13(v))
na

where the arguments in Fp as well as 0 are reckoned in "electrical

radians" (1) .

(1) ( The reason for the term "electrical radians" is, of courss,
that the e.m.f. induced in a conductor travelling in this field

will have a repetitive period corresponding to a displacement given

by 6 = 27).



It should be noted that the field distribution due to this
winding contains in general the complete spectrum of harmonics.
The even harmonics are only completely suppressed if o , the coil
span, is n electrical radians, since the coil-span factor is thus

unity for all odd harmonics and zero for all even harmcnics.

The extension of the above to polyphase 'windings will now
be considered by the use of equation (13(b)). 1In this case, we
have really already fixed the number of poles for the winding, and
the treatment is therefore somewhat restricted. It will be shown
later that if equation (11(b)) is used as the fundamental element,
the treatment can be generalised to cover pole-changing windings
as well as irregular windings. Since this psrt of the theory is
original and is not required for the main trend of this Thesis,

notes are only made on it in Appendix I,

2.k The Flux Distribution due to an Integral-Slot

Polyphase Winding,

We consider in this case firstly hemitropic windings, which
in the N-phase case consist of N single-phase windings of the type
analysed in the previous chapter. These are spaced out round the
air gap at intervals of 2n/Np radians (for a 2p-pole winding) or
2n/N electrical radians in general. In general, these windings
may carry currents which are not related in any way but will be
assumed to have a common frequency. However, by the method of

symmetrical component representation, they can always be reduced

/to
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to N sets of currents, (N = 1) of which-are sequential (i.e., having
equal amplitude and an arithmetic progression in phase) and one set
of which is the zero sequence set consisting of N equal co-phasal
currents. These two types of excitation can be reasonably easily
analysed and the flux distribution will be sought for these kinds of
excitation, It will be termed sequence excitaf,ion, since this name
covers the general case, and the names zero, positive and negative

sequence is only sufficient to describe the 3-phase case,

2.4.1 Hemitropic Windings

The current in the rth phase of va symmetrical system of
sequence S is given by
Ir = Is cos (ot - 7 - 18530 (1h)
The flux density function for the same phase is given by

$ ————
Br(6) = Ir Toh BeY_ Fpcosn (8 -0 -7 =127
n-

vwhere Tph = q Tc = Total number of turns per phase per pole.

Substituting for Iy we obtain

Brs (6,t) = Ig TpthZ F, cos (@ -0 -t -T - in-—S%’l)
n=l

+cos (O -C +wt-r-1T+ S%’.‘.) (15(a))

and summing over all r to obtain the flux due to the complete winding,

Bs (6,t) 32._ Brs (6,t) = Ig Tph BCZ 3F,
r=1 n=1

Cf cos (n 8 -0 = wt" -N-ln-S%)-*Gbcos (n® -F + ot

-N-ln*gﬁ) (15(b))



where

—T—:ig(ﬁ = g )5'2731' (16(a))

Cpy, = % (16(v))

Cfp and Oy, are of the same form as the group connection factors and
will here be termed phase-sequence correction factors. (For the
sufficient reason that they are functions of the number of pheses
and their sequence). Their value is zero in general, with the
following exceptions:-

Cf =Nwhenn-3S =kN )

) k=0,1, 2 ...,

Cb *Nwhenn #S = kN )
The possible (non-zero) orders of harmonics are therefore contained
in the formula

n=kN*s (16(¢c))

where the +ve denotes Cf = N, Cp = O and the -ve sign denotes

Cb = N, Cf = O.

Since (n % S) is always a multiple of N, it follows from
(15(a)) that we may neglect the (constant) phase angle in (15(b)),

and we may then write this equation as

o)
Bg(e,t) = ISJBc kr=l Faw + s cos (v 25) 8-T 7 at) (17)

where the signs are to be chosen as paired; i.e., +5 and -wt, and
-5 and 4wt respectively. This equation shows that in general, the

flux wave is now composed of travelling waves of varying wavelength

/and



and with angular velocities of propagation given by 4 %) electrical
radians per second. The harmonics having velocity of propagation
+ 5 are said to be forward travelling waves, moving in the positive
direction of x, Similarly, the harmonics having velocity - < are
termed backward travelling waves. It will be noted that for a
given sequence and harmonic order Csf and Cy cannot be non-zero
simultaneously, except when S = O, This means that only zero-
sequence currents can produce pulsating or non-rotational fields
in these windings. However, if two sequences are present
sirmultaneously, it is possible to have both a forward and a
backwards travelling wave of the same harmonic order, thus

producing either a pulsating or elliptical wave,

This is a completely general statement of the fields
produced by integral-slot windings, and it is éasily seen that the
windings produce in general all orders of harmonics with the
exception of those eliminated by the winding factors. We contrast
this with the common text-book theory, content with treating the
balanced case. This special case is, of course, obtained by putting
S = 1 in the above. For example, the normal 3-phase windings
(narrow spread) are according to this treatment, 6-phase windings,
and the possible harmonics are consequently 6k ¥ 1 under symmetrical,
positive sequence excitation. (This winding will be considered in

greater detail later).

In order to display this result, it is of interest to consider
a 5-ph winding. This is not only of purely thecretical interest,

/because
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because such windings do find occasional use in special machines,

Tabulating the various cases we havet

S |n Forward harmonics Backwards harmonics
0 |5k Sy 10, 15 ceevacess 5y 10, 15 seveesea
1 {5k 1, 6, 11 cececoncce by 9, 14 veeececee
2 skt 2, Ty 12 eerececone 3, 8, 13 cecscenne
3 |5k%3 3, 8, 13 cececscesne 2, 75 12 cevecaces
L {52l by 9, 1h ceeeecnaes 1, 6, 11 ceececcse

It will be noticed that the zero sequence excitation produces both
a forward and backward rotating field, so that the resulting field
is a pulsating one. If further the 1lst and Lith sequences are both
present, the resulting field is rotating but elliptical, and if
they are in addition, equal in amplitude, the resulting field is
pulsating. Similarly for the 2nd and 3rd sequences, tut these
produce different harmonics altogether. It may be noted that if
n is allowed to take negative values, and its sign being
interpreted as fixing the sense of rotation of the travelling
waves, equation (16(c)) can be written

n=kN+S ..... (16(a))

k=0 %1, 22, ....

and equation (17) becomes accordingly:

o0

IsaNBe k.z_,. FIkN”Sl cos [w‘b (kN + S)(8 "0')] (17(2))

Bg(@ t) =

/It
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It must be noted that F|kN+S! is evaluated for the numerical value
of (kN + 3).

This convention was first adopted by F.T. Chapmanl® and
later also used by R.Richter16’17. Though extremely useful as a
compact notation, it has not been generally adopted, possibly due
to the fact that a negative harmonib order does not have an obvious

physical significance,

2.L.2 Hemisymmetric Windings

These windings are obtained from an N-phase (N-even)
hemitropic winding by connecting in series opposition pairs of
phases which are displaced by n electrical radians. The original
N-phase winding can therefore be excited by an N'-( -g) phase system.
If the latter is symmetrical, the field is obtainable by the above
N-phase theory, but the general case needs separate consideration.
We consider the field due to two N'-phase windings, series excited
and differing in space-phase by n electrical radians, By equation
(17) we have

Bs (0,t) = -gIsqN'BcZ F i1 45) [cos (kKN' T 5(8 =0) % ot)
-cos (KN' 2 S 6 -(F=mn = wt)J (18)

and putting (kN' ¥ S) = n and contracting,

Bs(6,t) = IS aN' B Zn Fp sin® gﬁ cos fn 8 -0 * wt) (18(a))
The additional factor (sin .’2‘.’.‘) 2 makes all even harmonics vanish, but
it must be noted that n is now given by

n=kN' %S, N'=VN2,

/ Thus,
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Thus, the winding, being fundamentally an N-phase winding, behaves
as an N"-phase winding with the restriction that no even harmonics

can be present.

Of particular interest is the case N' = 3, This is the

commonly used 3-phase narrow spread winding. The table of harmonics

is now,
Harmonics
S n Forward Backward
of 3k 3, 9, 15 c.eo 3, 9, 15 eeeee
1] k22 1, 7, 13 ... 5, 11, 17 ....
2] 3klt2 5s 11, 17 «ee 1, 7, 13 ceese

The presence of the triplen harmonics in both the forward and backward
columm indicates that these harmonics are pulsating, It is of
interest to compare this table with that corresponding to the 6-phase

winding from which it derives:

Harmonics

S n Forward Backward

0} 6k 6, 18, 2l ...s 6, 18, 2k ...,
1] éex i 1, 7, 13 eeeee 5, 11, 17 ....
2] 6kZ2 2, 8, 1 .o L, 10, 16 ....
3] 6k¥3 3, 95 15 ceees 3, 9, 15 cenen
L 6kt L, 10, 16 .... 2, 8, 1 veeae
5] é6kis Sy 11, 17 eeee 1, 17, 13 ....

/From
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From this table it is apparent that unless the even harmonics are
eliminated by the winding factors, the even harmonics being of
order 2 x triplen ones are also present as pulsating fluxes.
Sequences 3; 1 and 5 correspond to sequences 0, 1 and 2
respectively in the corresponding 3-phase system, while the
sequences 0, 2 and 4 which produce only even harmonics are
eliminated by the connection factor. The connection factor arises
in (18(a)) as a winding factor. It is possible to obtain this
result without considering the winding distribution at all, apart
from the fact that it is connected for a 3-phase winding., The
interconnection of a 2N-phase winding to form an N-phase winding

always removes the even numbered sequences in the 2N-phase system.

In Appendix I the theory of windings is treated in a novel
way, by starting from the basic, primitive winding having N single
coils. This winding basically is a 2-pole, hemitropic, N-phase
winding. All other windings are obtained by external
interconnections of these coils, and the theory of windings is
therefore reduced to the study of the constraints introduced by
the intercomections. (This is really a topological study, and may
be of some importance and interest, but since it is not essential
in the general scope of this Thesis and involves use of matrix

algebra it has been deferred to the Appendices).

/2.5



2.5 The Air-Gap Tndustances of the Polyphass Windings

in this section the reactances due to the air-gap flux will

be discussed. These are of fundamental importance in the analysis
of all types of machines, but there is little evidence of this in
most text-books. One reason seems to be that for a long period it
was usual to perform the analysis of machines in terms of flux per
pole and so derive induced e.m.f., both of the "transformer" and
"rotational® type. This approach, although appealing to students

at a lower level, is hopelessly restricted and of little value in
advanced problems inveolving stability, etc., under transient
conditions. Furthermore, the present Author would contend that
if a little knowledge of differential equations is presupposed, the
analysis in terms of reactances (or inductances) is by far the

easier - if any degree of elegance is aimed at,

The inductances of the polyphase windings are fundamentally
of three kinds. The first is the total inductance per phase, which
normally would include the leskage inductance. No attempt will be
made here to obtain the latter; the object is specifically to
determine air-gap inductances., Secondly, there are the mutual
inductances between phases, and thirdly the sequence inductances
which will be shown to have a fundamental and important significance
in the analysis. The sequence inductances will be shown to include

what is normally termed the self-synchronous inductance per phase.

/ This
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This is, in fact, the inductance corresponding to the first sequence

(or positive sequence).

2.5.1 Air-gap self inductance per phase

The total flux linkages in a distributed winding is clearly
not the sum of the linkages produced by the single coils separétely,
since there is a large degree of mutual coupling between the coils,
some of the fluxes being aiding - others opposing. The method
adopted here for finding the total flux linkages per phase is to use
the expression already obtained for the flux distribution, integrating
this to find the flux linkages per coil and finally summing these
linkages for all the colls. This method gives the total flux
linkages as the sum of the harmonic flux linkages, which has the

advantage of being more readily applicable to analysis.

The single-phase winding has the flux distribution given by
V)
Bph(6) = qIBcZ Fpcosn (8 -¢) (13(v))

n=1
In this case Fp corresponds to F“’P’n; the skew-factor is not to be
included in this calculation. Clearly, the flux linkages for a
single coil situated at the angle g relative to the reference axis

(6 = 0) is given by
V.
= DLTe
B,.(6) .do . 19
c £ ph(©) - (19)

where D is the mean gap diameter and L is the axial length of the

gap. Evaluating we have,
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% - ﬂmc qIBc OZO &1 [Sin n(e -0*)] E-&» N/Z

2p n=1.° n ) £- Y2
R \}/c = Di'Tc .qIBc Z]_ Fp 5 sin IElficos n (€ -0) (19(2))
e n‘

Again, for the group of q adjacent coils, this expression must be

sumed for q values of E, namely é;, €1+K’ ceena, g +q-1y,
k]
the average value of which is ¢, This gives

=)
yfg = DIIJ'TC ?TBe % Fp® ) (20)
In an inﬁegral—slot winding, the flux is symmetri; ébout each group,
and for p groups we have - A
%h = DLT, g2 IB, nZl F2 (21(a))

giving the linkages per phase. Substituting for B¢ and dividing
by I we obtain

S 5)
ALphf"(-,?;—;gE > Fnz) “Tonl (21(1))

n=1
where Tph = pqTe, the number of turns per phase. The reactance
per phase is correspondingly,
o0
oDL 2
Koo = (2 £ = w?) (21(e))

where f is the frequency in ¢/s.

oo
The geometric factor %p_gﬂ{# % Fp2 is of some interest.

It gives at a glance the factors determining the induztance of the

winding. Specifically it is seen to be proportional to the surface

area of the mean gap and inversely proportional to ths gap length

and the square of the number of pole pairs. The factor containing

the winding factors will in most cases be very nearly equal to F12.

/Even
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Even for a single coil winding, having full pitch coils, the series

becomes
2 .1+ 1/9 +3/25 +
n-1,3
~ =1.235

Thus even in the extreme case of single coil windings having full

pitch coils, the fundamental component of flux accounts for of
the total inductance. In a distributed winding with chorded coils
the figure would be above 97S. This is a clear indication of the

degree of accuracy one may obtain with the simplified methods,

based on the assumption of sinusoidal distribution of flux.

It may be noted that equations (21) are applicable to
hemisymmetrical as well as hemitropic windings provided the winding

factors for all even harmonics are put equal to zero.

2.5.2 The Mutual Inductance between Phases
For the evaluation of the mutual inductance we may again
start with equation (13()), and consider the linkages produced in

the pth phase per ampere in the o(th phase.

FUji
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Referring to Fig. 3, the flux distribution caused by a

current I in the o(th phase is given by

B, =I, dBe Z_ Fp cosn (8 - ( o= 1) 2 T (22)

The total linkages produced in phase P is the sum of linkages
in the individual coils, For a given coil ( F‘ ) situated at §

the linkages are

W. §+d/2 B_ ae . 2llc
0(/2 ot 2p (23)

\Vp-z— To®o P Fagstnd oo (00 f-TTH

(23(a))
and summing over all values of § within phase ﬁ we obtain
\l{b‘*- DLT, e I, GZ F,2 cosn( ? OL) (23(v))

Again, substituting for Be we obtain
2 po DLTpn? 2n
‘%&- T — Im; Fp? com ( B-ct)y  (23(e))

whence, the mutual inductance between phases ¢ and %is given by

2 po DLTpH2 2
fap T RE T gu Tl corn (o) (@

The expression is symmetrical in & and F , and consequently
Moup- MP"'. Furthermore, if we put A= P , (24) reduces to the
. self-inductance as given for equation (21(b)). The general
equation, containing all the air-gap inductances can therefore

be written
a‘z, %Lphncosn(o(-?)%ﬂ (25)

where Lph means the self-inductance due to the nth harmonic flux.

The above is easily extended to include the mutual
/inductance
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inductance between stator and rotor coils, Since (- % )-1%’-!- is
simply the relative angular displacement of the phases, we may in
general replace this by (Xg - pr)%".'. + xp, giving the displacement
at any time between the A\gth phase on the stator and the ]Brth
phase on the rotor, xp being the instantaneous diéplacement of the
reference phases on the stator and rotor respectively. Further
if the windings are different, so that their winding factors are
different, this must also be taken into consideration. Denoting
stator quantities and rotor quantities by subscripts 1 and 2

respectively, we have

- 2 Ho DL
Mot1, P2 "mE W Tphy - Tpho % Fn,1 Fn,2

X cosn (0<|-f.‘>1 %I‘_ + xp) (26)

This equation contains the most valuable of information as regards
analysis and design of machines having smooth (non-salient) air
gaps. It has, however, never come to the notice of the present
Author, and is certainly not mentioned in any of the standard texts
knmm to him. The torque produced in machines is directly
proportional to (Moty %2) and consequently, no complete analysis
) max
of smooth-gap machines can be without a mention of this quantity in

one form or another.

2.5.3 The Sequence Inductances of Polyphase Windings

In order to illustrate the fundamental importence and

usefulness of the quantities evaluated in the preceding paragraphs,

/in
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in this section the analysis of polyphase machines will here be

presented by the powerful mathematical methods of matrix algebra.

Again we are only concerned with smooth gap machines, so
that the stator (or rotor) inductances are not functions of the
rotor position, or of time. Considering firstly the winding on
one side of the air gap only, or assuming that these are the only
excited windings, we arrive at the following set of equations

Vi ={r+(1413))p) 11 + Lpopip + .eeeees + 1y Piy

Vo = Ipy pig +[r+ (1+1p2)p) 42 veeenenn + Ipy piy (27(2))

VN- IJN]- p11+I'N2 p12+ sesccccssene +[r+ (1+LM)pJ iN
where Vi, ---- Vy are the phase terminal voltages, i}, ---- 1y the
phase currents, r the resistance per phase, 1 the leakage inductance

*f

per phase and L_, are the air gap inductances as defined by equation

(25).
These equations can be written in matrix form as
Vv = {(r + 1p)U + Lp} I (27(1))
or alternatively,
V, ={(r+1p)y,, *L,.pti (27(c)
(SRR IR EA )

where U is the unit matrix, and S& (5 is the Kronecker delta.

This is a system of differential equations which can be solved

by ordinary, classical methods. However, the system can be reduced

/very
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very considerably by a suitable change of variables., The most
suitable choice cannot in general be determined by (27) alone, since
there are more windings in the whole machine which all have to be
considered in the complete analysis, but some fundamental

considerations can be made.

The matrix L is symmetrical and real and, therefore, has all

real latent roots, That is to say, the canonical form of L is real.

In order to reduce the equation (27) to diagonal form, we mst
find a (linear) transformation of variables given by
V = SVg
(28)
I = SIg

such that S-1 IS = A, where

i.e., f\ is a diagon2l matrix. Substituting by (28) in (27(b))
then gives
Vg = {.(r + 1p)U +Ap} Is (29)

This equation is a set of N independent equations relating the 2N
variables Vg and IS by simple first order differential equations,
and their solution is mainly trivial. Clearly, (29) constitutes
a fundamental form of (27), and if easily obtained will serve to

provide a much better insight into the nature of the solution,

The transform matrix S of (28) will now be constructed by

/the
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the usual method. In the present case of L being the matrix given
by equation (25) it will be apparent that the symmetrical component

transform is applicable,

The matrix L is a circulant, that is to say it may be written

in the form
11 12 13  —eme-- 1y
Iy 13 1l - 1ya
L= (30(a))
2 B Y - D

n 2n
where 1 = %Lph cosn (y-D g, ¥*1, 2 ....., N

Also, it is symmetric, whence 17’, = 1y -x* 2, and we have

N

1 lp 13 e Iy
L 1 L Iy

L= (30(b))
Iy g g ——— 1 )

Both these properties of L are important in the evaluation
of its latent roots. In the special case of N = 3, we observe
that 1p = 13, so that all thé elements off the principal diagonal
are equal., This makes the transform matrix S less determinate, and
in fact, many forms are possible, It is shown in Appendix II that
the transform matrices which will diagonalise L are the symmetrical
“component matrix and a derived form™respectively. For the case

N = 3, the latter corresponds to the o\Fo component transform.

/ The
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The procedure for determining the latent roots of 1,
()]_,Xz, ----‘,>\N) which will be denoted by Ig (S =0, 1, 2 ...,N = 1)

is given in Appendix II, and we may apply formula (II,10C), giving
- n 2n 2n
Is £ [Z Lyp cos n(r - 1)ﬁ-] cos S(r-1) T (31)

r=1 (n
Thus inverting the order of summation,
n3ijsin(n + S)n n
= = +* - -
Is §Lph = {_sin cos (n + S)(N l)N

n + S)'N
+ Sin@@ - S o (n-S)(N-l)“} (32)
Sih(n - S)ﬁ X
kN+S
* = N
e s E,lﬁ JE (33)

The latent roots which are in fact the inductance terms in the
equations (29) must naturally be termed sequence inductances. By
(33) we see that these are made up of harmonic inductances; in fact,
we may write

1" = 3 Loy (31)
where, of course, n must satisfy the integral number equation

n=kNg¢S k®0, 1, 2 ceccanee
We are now in a position to draw an equivalent circuit for the stator
equations of a polyphase machine, In every sequence it is a
separate RL circuit, where the inductance may be split into component
parts as given by (33). These inductances are, of course, mutually
coupled to the rotor coils, but if the rotor is also a symmetric
winding, and the air gap is smooth, each is in fact coupled to only
one equivalent RL circuit, thus giving rise to a complete equivalent

circuit of the kind well known for induction motors. ( The treatment

/of
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of machine theory from this point of view offers a wide scope, and
it is the Author's intention to pursue this work to develop a
rigorous theory based on the above inductance calculations., It is
hoped to remove many of the abstruse concepts regarding the
inductances by showing how the various transformations are derived.
A critical note on the subject of synchroncus inductance is given
in Appendix III, but space and the purpose of this Thesis does not

allow any complete treatment of the subject here).

e
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3. The Theory of Fractional-Slot Windings

The fractional-slot windings have been known since the
beginning of the century, and their advantages and disadvantages
have been appreciated - although not fully understood - for a
similar length of time. Their first application seems to have
been in the construction of wave windings, and windings of very
large machines, The first attempt to analyse these windings is
apparently duvue to E.M. Tingleys, who considered the possibility
of combining unequal groups of coils in a lap winding, There
was no general method of attack, but his viewpoint seems to have
persisted right up to the present in certain quafters. The
harmonic analysis of the field produced by these windings seems
to date from 1927 in the form of Q. Graham's paper’. The
mathematical treatment has been further developed by M.G, Malti
and F, Herzogll, and no substantial advance has been made since,
although there are several publications on the subject. The
"~ bulk of this literature is devoted to 3-ph, narrow-spread
windings, and normally written by designers - for designers.-
The treatment is, therefore, often lacking in freedom from
unnecessary detail and in clarity. No attempt has been made
to cover the general theory of polyphase windings, and full use

of the properties of harmonic functions has not been made,

In the following a generalised analysis of polyphase

fractional-slot windings is attempted. It is based on the

/fundamental
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fundamental properties of harmonic funétions, and brings out the
mathematical origin of the slot-star method mentioned above.,
General formulae for distribution factors are derived and

rigorous discussion of their field of application is presented.

In the fractional-slot windings, the harmonic spectrum is in
general denser than for integral-slot windings, but when properly
designed may have a smaller overall harmonic content.

Consequently, the analysis is also mcre involved than for integral-
slot windings, although the writer is of the opinion that it has
in the past been unnecessarily clouded by special, non-mathematical
treatment. As an example, we may refer to (.‘.alth-:-rt'slo extensive

tables of distribution factors which gives the impression that

practically no uniformity is obtainable in the treatment.

There is a slight modification possible in the arrangements
of 2N'-phase, N'phase comnected windings, and these will receive

separate treatment.

3.1 Wide-Spread Fractional-Slot Windings

In the fractional-slot windings, the number of cocils per
phase is not a multiple of the number of pole pairs, that is, if
Q is the number of slots, N the number of phases, and p the number
of pole pairs, Q/N is not a multiple of p. Each phase has q' or

Q' + 1 ccils per pole pair, where q' is the integral part of Q/Np.

Normally, the fraction'%i may be reduced somewhat, i.e., Q

and p may have some common factor, say 4. The winding may then

/be
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be arranged in & identical sections, or repeatable groups. Each
of these groups is capable of producing a balanced polyphase
system, and the analysis of any one such group suffices for the
complete winding, However, some modifications are possible in
some or all of these sections, so that they have to be analysed
separately and finally combined in order to give the results for
the complete winding. In any case, each of these groups forms
a separate part of the winding and indeed in the analysis, and
attention will firstly be directed to such a group.

& .9 Q-
We assume that Np | Np'E so that the fraction Np' contains

n§ factor comén in Q' and p'. Thus the irreducible group
consists of Q' coils forming a balanced N-phase, 2p'-pole winding.
A simple picture of this group is given in Fig. L, indicating that
2n/8 radians is spanned by the group. By this we mean that the
top (or bottom) layer of the winding within this range is
completely occupied by coils all belonging to the same section.

It is immaterial whether we imagine the group position to be
defined by the top layer or bottom layer, or indeed by the
midpoints of the coils. The latter definition is most
comvenient for the analysis, and will be adhered to in this

analysis,
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The simplest type of winding is that where all the
repeatable sections are identical since in this case, the width
of the group must necessarily be the lowest possible period in
the flux wave. Consequently, only harmonics being multiples
of Imay exist, and we can treat each section as spanning the
same 2n/” radians, rejecting all harmonics except those being
multiples of * This will be clear in the subsequent
development. When treating these types of windings, the primes
on Q and p are dropped, and we consider Q coils forming an N-phase

system with 2p poles over the interval 2n/i radians. Since in

/order



order to form a balanced system Q/N must oce integral, Q contains
the factor N, in fact Q/N “ g, the number of coils per phase per
section. Now Q and p contain no common factors, and p and N

are therefore prime. In general, if p and N are not prime, the

winding must either be integral slot or cannot be balanced.

(In this analysis no distinction is made between the
number of coils and the number of slots, fully wound stampings
only being considered. Sometimes windings are made where the
number of poles is a multiple of the number of phases, and some
unbalance may be accepted, or some slots may be left unwound.

A/
These windings are not included in this treatment). ,C

The basic function in the analysis is again taken to be

that given by equation (10), but we shall use it in the form

$(x) = I Be Fm (36)
and throughout consider the actual flux distribution to be the
real part of Bm(x). The exponential form has the added
advantage of being in one-to-one correspondence with the slot-
star method. The vector e”” 1is easily recognised as defining
the position of the midpoint of the coil, and consequently
shil'ts the basic pattern given by

Bm (x) - I Bo Fm
m

forward by the angle 0".

If this winding consists of identical sections, there

/are
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are 4 similar groups per phase, and by equation (13(a)), only
values of m being multiples of £ give non-zero values, thus
writing m = nf, we have

Bna(x) = 2. I By Fnyp oI
n

(37)

Now if we write © = Ax, being the electrical radian measure in
this case, and again take the arguments of Fp as well as (” in
the same measure, (36) becomes

By(x) = I B Fp eJ2(8-0) (36(a))
The addition of 2n/1l to x is equivalent to the addition of 2n
to ©, so that (36(a)) can be simply multiplied by L to give
the sum of the fluxes due to the 4 corresponding coils in the
various repeatable groups. The analysis of a single group can
be carried out as if it filled a complete 2n radians of a
winding. If the sections are not identical, each section must
be taken by itself, and the above restriction on the harmonic
spectrum is not valid. The analysis then is considerably

harder - as will be shown in due course,

Given equation (36(a)) and that the number of coils is
Q, the distance between adjacent coils is given by 2n/Q = ¥ .
The position angle § consequently increases by ¥ radians per
coil, The summation of the contributions to the nth harmonie

in the system is therefore of the form

Bn(6) = 3. I, B, Py 90 g=in(r-1)y (36(c))
r .

/where
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where r takes some of the values 1, 2, ......, Q. The next step
is to consider the grouping of these Q coils into N phases, giving
a predominant pth harmonic. (Fp 2 Unity is, of course, assumed;
that is, the span is approximately one pole pitch)., We notice
that the number r may be taken to be the number of the coils,
counted anticlockwise from a reference coil (or slot). It is
well known that in order to obtain a balanced winding, the numbers
r must form an arithmetical progression (modulus Q), i.e., for the
first phase, r takes the values 1, 1 +d, 1 + 2d, eecve 1 + (% - 1)d,
for the next phase it takes the values

1 +-Qﬁd, 1+ (% + 1)d, ecees, 1+ (%Q - 1a
and so on, (all numbers being reduced mod. Q). Now since the
value of e~Jn(T-D& ang o=In(rmod -V .0 ysentical, the
modulus consideration may be dropped here and the arithmetical
progression substituted directly. This would not be permissible
had we applied (36) directly, without stipulating that all sections
are identical. In this casé, the expression is in general not
summable in closed form, as will be shown later. According to
(36(c)) we may then write the flux distribution due to the pth

phase as

? i} jne £y -Jnt&-q
By (8) = I, BoFne (zl)Q o)

which is in summable form. It remains to determine d, This

/must
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must be chosen so that the step d corresponds to approximately
one pole pair pitch or a multiple thereof. Consequently we
require d k% where k is any integer (less than p). Further-
more, in order that all the coils/pole should be in adjacent
slots, it is required that pd?- = ? * k.2n which is a

sufficient condition, We can write this as

+
g= 2 - kQ here k is the smallest integer which makes
the R.H.S. integral. This is equivalent to
ko 21
d = 5 (39)

To test whether this in fact produces a balanced

polyphase winding we substitute in (38), putting n = p.

Q 2n
¢ frk -jptdg
Bp (8) =I BcF
P e pv%;-l)% )
=
=1 BgF jt 2
© pta(f-l)% e:r'Jt /e (LO)

The ¥ sign to be chosen according to the 2 sign in equation (39).
In either case, the summations give: N equal magnitude vectors
all having a difference in phase of 2n/N, which is the required
phase displacement, corresponding to a phase displacement of

2n/Np in 6.

The general summation gives

p a2
Bo (8) = I, BcFn 33 e~ In%T
=0

sin nd n/N -jnd(%—l)'g

= I B Fy sinnd n/Q e (L3)

/Thus
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Thus, the distribution factor is emerging as

« sSinn d /N n/Q
FP’n Q/N sin nd n/Q (L2)

The distribution factor is of the same form as thatAof the
integral-slot winding, and does in fact reduce to exactly the
same form for values of n being multiples of p., Thus if

n = n'p we have |

£, _, = sin n'(kQ )3 . 7/Q
pon! - PN sin o' (kQ £ 1)7/Q

. sin n' Q/N. n/Q(_l) n'k(¢/N - 1)

. fF,ns = YN sinn' w/Q (L3)

From this equation it is evident that no hamonies which
are multiples of N are possible unless n' is also a multiple of
Q, and by virtue of the coilspan factor, these are also zero.
Hence harmonic orders being multiples of the number of phases in

the winding are generally eliminated.

The permeance harmonics due to the slotting of the
stampings are of orders Q ¥ 1 and 2Q 21 principally, i.e.
n' = (Qf1)/por(2Qq%1)/p. These are integral, that is to
say they do exist if k = 1 or 2 respectively, Since k { p, it
follows that unless p is larger than 2, one or both of the
principal toothripples will still be present, and for effective
reduction of the permeance harmonics, a larger number of poles
per repeatable group would be desirable, These considerations
do not, of course, apply to salient pole machines, where there is

flux fringing at the pole shoes.,
/In
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In general, fracticnal-slot windings, having identical
irreducible groups very often turn out to have undesirable
sub-harmonics, that is harmonics of longer wave-length than the
- principal harmonic, Very often these harmonics are reduced by
re-arranging successive groups so that the sub-harmonic in <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>