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I l l

Summary^

An In v e s tig a tio n  was made o f  th e  c r y s t a l l i s i n g  

p ro p e r tie s  of sodium c h lo r id e , sodium t h io s u lp h a t e  

a -p o n tah y d ra te , and barium hydroxide o c ta h y d r a te ,  in  

f lu id is e d  bed c r y s t a l l i s e r s .  The o p e r a t io n a l  

proceedure was c i th e r  to  grow batches of c r y s t a l s  

under known degree of su p e rsa tu ra tio n  to  d eterm in e r a te  

of growth; or to  grow c ry s ta ls  c o n t in u o u s ly  to  

d eto rn inc  c ry s ta l  s iz e  and q u a lity .

1 L v/Qs founa th a t the d i f f u s i v e  p ré se n ta tio n  

o f so lu te  to  the c ry s ta l  su rface  was, in  g en e ra l, 

slow er than  the ra te  o f su rface  re a c tio n . • This was 

probably caused by the low r e la t iv e  v e lo c ity  o f c ry s ta l  

and so lu tio n  in  f lu id is e d  bed c r y s ta l l i s a t io n ,  and by 

the im perfec tions in  s tru c tu re  produced by the 

c o l l i s io n s  in  the f lu id io e d  bed. Typical mass 

t r a n s f e r  c o e f f ic ie n ts  are  00, 4 , and 60 gms./cm. % h r . 

X gm./CcC. fo r  the th roe  s o lu te s , in  the o rder given 

above.

The c r y s ta ls  showed a re s is ta n c e  to  growth 

below su p ero a tu ra tio n s  of the order of 0*5 g n s . l l i t r e ,  

which agrees w ith the work o f Burton and C abrera,

(D isc, o f the  Par. S oc., Do.5 , ** C ry s ta l Growth" , 1949) 

who showed th a t  a  lower m etastab le l im it  fo r  growth 

i s  p o ss ib le .

The e f fe c t  of tem perature on growth ra te  was
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found to  vary w ith the so lu te . Sodiura ch lo rid e  growth 

r a te  increased  w ith to n p e ra tu re , while sodium 

th io su lp h a te  pentahydrate and barium hydroxide octahydrate  

growth r a te s  remained alm ost co n stan t w ith tem perature 

in c re a se .

Under p roduction  co n d itio n s  in  the  c r y s t a l l i s e r ,  

a t  some sp e c if ic  working tem perature , tho m etastab le  

l im its  fo r  bulk n u c léa tio n  a re  1 .6 , 50, and 2*8 gras./ l i t r e ,  

(su p e rsa tu ra tio n  c o e f f ic ie n ts  o f 1 .005, 1 .048, and 1.025) 

fo r  the th ree  s o lu te s . J u s t  before sup o rs a tu r â t ion 

reaches the m etastab le  l im it  th e  c r y s ta ls  become 

covered w ith p ro truberances which probably s ig n ify  

d e n d r itic  growth, and poor c r y s ta l  s t r u c tu r e .

The measured r a te s  o f c ry s ta l  growth showed an 

adequate degree o f r e p e a ta b i l i ty ,  and i t  was p o ss ib le  

to  sca le  up r e s u l t s  from a one inch diam eter ba tch  

coo ling  c r y a ta l l io e r  up to  a one fo o t d iam eter continuous 

evaporative  o ry o ta llio e r*

The product c ry s ta l  f o r  each so lu te  was g re a te r  

than 16 mesh under continuous production  co n d itio n s , 

w ith  no dust present* The c ry s ta ls  were hard , tended 

to  be s p h e r ic a l, and had a good lu s t r e .  P roduction 

r a te s  of 2 n .n . c ry s ta ls  were of the o rder of 40 lb s /h r .
g

% f t .  of c r y s t a l l i s e r  c ro ss -o e c tio a a l a re a , provided 

a su ita b le  heigh t of f lu id is e d  bed was a v a ilab le -
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A. In tro d u c tio n . 

i l  P rocess of In d u s tr ia l  C z y a ta llis a tio n .

(a) CominQrclal Inportanco.

The In d u s tr ia l  importune o cf cry  s t a l l i  cu ti on 

l i e s  in  th e  f a c t  th a t  a  c r y s ta l  produced from a  crude 

so lu tio n  may he i t s e l f  very p u re . A lso, the  c ry s ta ls  

ob tained  are in  a very s u ita b le  form f o r  hand ling , 

t ra n s p o r t ,  and s to rag e .

The s iz e  and (^pearance of tho c r y s ta ls  are  a s  

im portant coinnorcially as iho c ry s ta l  p u r ity . A product 

of la r g e , uniform ly s lzod  c r y s ta ls ,  w ith a good lu s t r e ,  

w ill  s e l l  more re a d ily  than  a badly agglomerated product 

con ta in ing  a  wide range of c ry s ta l  s iz e s ,  and thoro  

w ill  be no dust problem. Prom th e  procJucer*3 p o in t of 

view a uniform ly s ized  product i s  superio r because i t  io  

more e a s i ly  washed, f i l t e r e d ,  and d rie d , and w i l l  

con ta in  a cm allor amount of occluded mother l iq u o r .

The la rg e r  iiie c r y s ta l  s iz e ,  the sm alle r becomes 

the surface a rea  per u n it  mass of c r y s ta l ,  w ith the 

ro s u l t  t h a t  th o re  i s  le s s  chance of caking on s to ra g e . 

This i s  ve iy  im portan t, since a sack of sm all, uneven 

slzod  c r y s ta ls  can s e t  in to  a concrete  l ik e  mass under 

humid c o n d itio n s .

(b) I n d u s t r ia l  c r y s ta l l i s e r a .

The sim plest iype o f  c r y s t a l l i s e r  i s  tho  tank  

cry s t a l l i  c e r , where th e  so lu tio n  i s  allov/3d to  evaporato
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slow ly , as in  s a l t  pano, o r v/Iioro h o t c a tu ra te d  

e o lu tic n  i a  ellowad to  cool olov/ly to  the  eab len t 

tomperaturo* The stagnan t so lu tio n  g ives low h ea t 

and mass t ra n o fe r ,  end a tank  c r y o to l l ic a r  has a low 

production  c a p a c ity | the lab o u r c o s ts  aro h igh; 

and a la rg e  i r r e g u la r  c ry s ta l  i s  ob tained  which i s  

impuro by occluo icn .

The d ire c t  dcTolopment cf the tank  c r y s t a l l i s e r  

i s  th e  Yfulff^Bock o ry o ta ll is e r*  A hot sa tu ra te d  

so lu tio n  i s  cooled by n a tu ra l  convection , bu t th e  

c r y s t a l l i e e r  i s  rocked from side to  s id e , g iv ing  h o t te r  

mass tra n s fe r*  The capac ity  i s  low, bu t a  la rg e  

uniform  g ra in  i s  obtained*

A gita ted  batch  ciy  s t a l l i  se rs  and Swenson-^Valkar 

c j^ o ta l l i s o r s  liave w ater cooled h ea t cschangs cu rfaoea , 

and a re  a g i ta te d  to  in c rease  mass and h ea t tra n c fe r*

Tho cap ac ity  i s  h i ^ e r  than  th a t  of tho prev ious u n i t s ,  

and tho g ra in  f a i r l y  uniform  in  o ia e .

C ry s ta l l is in g  evapora to rs give voiy h igh

prodrm tion r a t e s ,  and aro  norm ally very o f f ic ie n t  h ea t

t r a n s f e r  u n i t s  w ith  l i t t l e  c o n tro l over c ry s ta l  s is o ,

although by c o n tro l of magma den sity  and use of forced
1

c ir c u la t io n  la rg e  c r y s ta ls  can be produce do A very

im portant exception  i s  the sugar b o ilin g  pan, which i s  

operated  on a batch  b a s is . The emphasis in  sugar
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o iy s ta ll is a t io n  i s  on unifonaity  and quality  of grain  

rather then high production ratea.

Tho ICiyotol, or Oslo process of c iy s ta l l is a t io n  

was invented by ? . Jereiaiasaen in  1950, and was designed 

to  give controlled  c r y s ta ll is a t io n  together with high  

production ra te s . Tho product i s  characterised by 

the remarkable unifoim iiy of s iz e ,  and the tendency fo r  

the c r y sta ls  to be rounded.

The process i s  continuous, and control i s  

obtained by oupersaturating the liquor in  one se c tio n , 

and depositing tto  escoss solu te on a "fluidised" bed 

of c ry s ta ls  in  another part of the apparatus. Thus the 

apparatus nay be s p l i t  in to  two p arts, a heat tran sfer  

section  which may be designed according to the laws of 

heat tran sfer , and a mass tronsfor section  which takes 

advantage of the rapid maos tran sfer in  f lu id ise d  beds.

The eupersaturation laay bo produced by coo lin g , evaporation, 

or "vacuum cooling".
An advantage o f the c la s s i f ie d  f lu id ise d  bed i s  

that only fu l ly  grovn c r y s ta ls  should be taken from 

the lower le v e ls ,  tho sm aller c r y s ta ls  being suspended 

at the top of the bed. The c r y s ta l l is e r  may a lso  be 

operated w ith a "rotating mixed bod"^ as in  c r y s ta ll is in g  

ovaporatora, in  which case a le s s  uniform product i s  

obtained.
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(c) The d en im  of  indnstritfl. c ry o ta llio G rs .

Bofoxa a  c iy o tc l l if r a t ic n  p la n t can be designed 

tlie  chem ical engineer m o t  have knowledge o f the 

fo llow ing  p h y s ic a l d a ta  f o r  tho so lu te  to  bo o iy a ta llisG d .

The te n p e ra tu rq -a o lu b il i ty  r e la t io n d i ip  of the  so lu to  

Tho tcm p o ra tu ro -so lu b ility  r e la t io n d i ip  and the  

h ea t of c iy s t a l l i s a t io n  are e s s e n t ia l  in  o rder th a t 

mass end h s a t  balanceo nssy bo prepared# An Oslo 

c r y s t a l l i s e r  may be eonsiderod as a  constan t volume 

re a c to r  whose opera ting  cond itions a re  governed by the 

c ry a to L lis a tio n  p ro ce ss , and the  fe e d , p roduct, end 

waste flow s a re  c a lc u la te d  from the above re la tio n s h ip s  

to  g ive th e  dosirod p roduction  r a te .

The r a te  of growth o f the  so lu te  c r y s ta l s .

Each so lu te  has a  sp e c if ic  r a te  of grov/th which 

may be expressed as a mass t r a n s f e r  c o e ff ic ie n t#  Tho 

mass t r a n s f e r  c o e f f ic ie n t  i s  used to  c a lc u la te  (1) tho 

curfaco a re a  req u ired  to  remove the su p e rsa tu ra tio n  

from the cn l u t  io n , and henco th e  mass of c ry s ta ls  which 

must alv/eys be re ta in e d  in  the c r y s t a l l i s e r i  and (2) 

tho l in e a r  incrsaoo in  s iz e  of the  c r y s ta ls  p e r  hour, and 

hence th e  re te n tio n  timo in  the c ry s ta l 11 se r to  give

tho dosirod  product s i z e .

The r a te  of gro\7th i s  a f fe c te d  by th e  degreo 

of c u p e rsa tu ra tio n , the tem peratu re , so lu tio n  p u r i ty ,



end Ihô r e la t iv e  tu rbu lence of ory s ta le  and o e lu tio n  

in  th e  o iy s ta l l io e r#  C ry s ta l q u a li ty  i s  a  fu n c tio n  

of th e  r a t e  o f growth. Too high growth ra to o  cen give
{3 9

badly formed c r y s t a l s ,  o r c r y s ta l s  with la rg e  ooclusionc 

of mother l iq u o r ,  end tho  moximum pom iso ab le  grov/th 

r a te  which w il l  g ive good q u a li ty  c ry s ta ls  must bo 

found exporim ontally  #

Tho m etastab le  l im it  of tho s o lu te .

I f  there  i s  i n c u f f i o i ^ t  c iy a ta l  curfaco a rea  

p re se n t in  the c r y s t a l l i s e r  then tho su p e rsa tu ra tio n  

v /ill  in c re a se , u n t i l  e i th e r  th e  giov/tli r a te  o f  tho 

c iy s ta l s  i a  s u f f ic ie n t ly  la rg o  to  abaorb the s o lu te , 

o r  u n t i l  new so lu te  c r y s ta l s  s t a r t  to  form. In  an 

in d u s t r ia l  c r y s t a l l i s e r  new c r y s ta ls  a re  c o n tin u a lly  

formed be causa cf lo c a l  concentration" f li ro tu a tio n s , 

c ry s ta l a t t r i t i o n ,  e t c . , but once a su p e rsa tu ra tio n  

chcv racteristic  of the  so lu te  i s  reached then, n u c léa tio n  

j r a te s  become very h ig h  and tine ont ro lle d .  ̂ This l im itin g  

concen tra tion  i s  known as the met as ta b le  l im i t ,  and in  

order to  ob ta in  la rg e  uniform c r y s ta l s ,  in d u s t r ia l  

c r y s ta l l i s a t io n  should take p lace in  th e  reg ion  between 

the s o lu b i l i ty  co n cen tra tio n  and th e  m etastab le  l im i t .  

Product c r y s ta l  s iz e .

The s iz e  of tho product c ry s ta l  i s  dependent 

on two main fac to rs*  F i r s t l y ,  th e  g re a te r  the



n u c lo a tlo a  r a te  the cm cllcr tho product ci;;/otala w ill  

bo , cad oecondly, the g re a te r  the c ry o ta l re te n tio n  

time th e  la rg e r  th e  c ry s ta ls  v d ll  be . The eico  of 

the product o iy s ta lo  w ill bo governed by tho n a tu ra l  

n u c léa tio n  ra to  of tho c r y s t a l l i s e r ,  u n le ss  b f r a c t io n  

o f the n u c le i a re  removed*
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ü i  nucloation*

S o lu b ili ty  and s iiosra o lu b ll l tÿ  In  aqueous s o lu tio n .

Tho degroo cf s o lu b i l i ty  of substances in  v/ator 

V ûîloa widely fro ti subatanoea such a s  sodium th io sa lp h a to  

pentahydratOÿ which d isso lv e s  lu  i t s  ovai w ater of 

c r y s ta l l ie a t io n  a t  and Ig  th e re fo re  Cixitinucus

w ith fu s io n , down to  oubotansea l ik e  b a il un su lp h a te , 

end in  the  extreme cage, th e  m etalsg which a re  inso lub lop  

f o r  a l l  p r a c t ic a l  puipoDss.

Tho c d c c n tr a t io h  of so lu te  which the so l vont 

can hold i s  dotcrmined by th e  tem pérature * A p lo t  of 

oqu ilib rlum  co n cen tra tio n  of solu*fe in  so lv e n t a g a in s t 

tem perature i s  known a s  th e  " s o lu b il i ty "  cu rve , end 

so lu te s  can show in c rea so , decrcaso , o r  remain alm ost 

co n stan t in  s o lu b i l i ty  w ith r is in g  tem pérature* Such a 

curve shows tho t o t a l  s o lu b i l i ty ,  which w ith  an 

ionieablG  s a l t  inc ludes  both  io n ised  and non-ion ic^d  

portions*
Now i t  has long been known th a t  a s a tu ra te d  

so lu tio n , f re e  of c r y s ta l s ,  can be cooled s l ig h t ly  

\7i th o u t d epositing  c r y s ta l s ,  and Hie so lu tio n  i s  then 

overoatu iatod  a t  the lower to up era  tu r n , o r in  a s nato 

of s u p o rs o lu b ili ty , or su p ^ rsa te ra tio n . A sa tu ra to d  

so lu tio n  can a lso  bo imde supersa tu ra to d  by a b s tra c tio n  

of eo lvon t, or by addLticn of a second so lu te  v /ith  a

common Ion*
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Tho pioneer work on supernolubllity  wao performed
4 5by Oatwaldf end further elaborated by Hlcro.

Tho viewpoint o f Miers i s  shown in  P ig .l*  The syotom

c o n s is ts  o f three regions;imsaturated^xaetastable, end

la b i le . Tho s o lu b ility  curvo ooparatos tho uncaturatod

and metastable regions, and the metastable l im it ,  or

superoolub ility  curve, separates the m etastable end

la b ile  regions* A cry sta l placed in  unsaturated so lu tion

w i l l  d isso lv e ; a cry sta l placed in  metaotable so lu tion

w i l l  grow, but no new cr y sta ls  w i l l  be formed ; and in

the la b ile  region new cry sta ls  are rea d ily  formsd

spontaneously, or by the s l ig h te s t  shook or disturbance*

The further the la b ile  region i s  penotratcd, the more

unstable i t  becomes, although there i s  the p o s s ib i l i ty

that increasing v is c o s ity  with supercooling w i l l  tend to

freeze the nucléation r a te , end a g la s s , or n on -crysta llin e

s o lid , w il l  be produced*

The main objection  to  the theory o f Miers i s  the

abruptness o f tho change from one region to  the other,

as represented by the su p erso lu b ility  curve* For ezamplo 
6de Coppet found that strongly supcroaturatod so lu tion s  

nucleated rap id ly , but le s s  strongly supersaturated  

so lu tion s a lso  showed spontaneous nucléation , but a fter  

a greater length  o f timo* Ho conoldercd that the 

probab ility  of nucléation  increased with supersaturation, 

but without any d e f in ite  lim it for  spontaneous nucléation*
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7
Young c l aims d th a t  a l l  th e  n e ta s ta h le  reg ion

of M iers i s  capable  of c r y s ta l l i s a t io n  i f  s u f f ic ie n t ly

strong  m echanical shocks a re  applied^ and th a t  the w ell

known in o cu la tio n  of su p e rsa tu ra ted  so lu tio n s  by sm all

fo re ig n  p a r t ic le s ,  such as d u s t, i s  a c tu a lly  caused by

m echanical imjB-ct between th e  p a r t ic le s .
6

Preckshot and Brom  found th a t  so lu tio n s  v/ere 

more e a s i ly  n u c lea ted  by c iy s to g ra p h io a lly  s im ila r  

substances 1hen by spontaneous n u d e a t io n , and th a t  

n u c le i alvays appeared, though a t  vory sm all cupersa tu ra tiono  

the w aiting  time might be very longo

(b) Theories of s u p e rs o lu b il i ty .
o iO

Experim ental work by I lu le tt  and l a t e r  by Van Hook 

has proved th a t very  tiny  so lu te  p a r t ic le s  are more 

so lub le  than  largo  p a r t ic l e s .

The f i r s t  th e o re t ic a l  expression  f o r  in c rease  

in  s o lu b il i ty  w ith decreasing  p a r t ic le  s ize  was given 

by Ostwald.

Let r  be the rad iu s  of a sp h e ric a l p a r t ic le  and i t s  

m olecular volume.
4 / aThe volume of a p a r t ic le  io  /3  Tt r  and the number

in  a gram m olecule i s  o^ 4 If r  .
D

Tho surface o f each p a r t i  o le  i s  4 î r r  , and tho to ta l  

su rface of a gram molecule w il l  bo 0 =
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Let Vx be 1iie radius o f a large parti d o  and 

the radius of a small p a r t ic le , and th e corresponding 

s o lu b i l i t i e s  be 0% and Ob# Consider the tran sfer  o f  

a sma l l  quantity o f p a r tic le s  of radius Tq in to  the 

same mass of p a r tic le s  of radius Vx*

Then by equating osmotic woik done and change in  

surface energy,

Ea: In = 3 ( |g  -
where i s  the solid«*liquid suzface tension*

I f  the large radius rx i s  made in f in i t e ,  0% 

bee Gas 8 ,  or Cg, tho normal s o lu b i l i t y ,  and

E I  l o « g  -  (# )

where /o  i s  the molar density .

11
Proundlich modified th is  to  road, 

RT lo g  ~Cg

but t l^  c s s s n t ia l  argument remained the same.

The flaw  in  th is  argument i s  that in f in it e ly  

small p a r t ic le s  would have an in f in it e ly  la ig e  cuper*» 

s o lu b i l i t y .  K n a p p ,h o w e v e r ,  postu lated  an e la c tr io a l  

charge on small p a r t ic le s , and, at somo lim itin g  

p a r t ic le  s i z e ,  tho e le c tr ic a l repulsion between chargee 

on very small p a r tic le s  overcouBS tho increased so lu b ility
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producsd by p a r t i c l e  o i z e .  î îu c le i  formed in  

su p e r sa tu r a te d  s o l u t i o n s  w i l l ,  d f  c o u r s e ,  be very s n a i l ,  

and Y /i l l  th e r e fo r e  tend t o  e x h i b i t  h igh  s o l u b i l i t y .

The increased  s o lu b i l i ty  o f n u c le i has been
1 3

approached from another angle by Van Hook.

The Gibbs adso rp tion  theorem s ta te s  th a t

RT dC

where s i s  the su rface  excess of so lu te  over C, the 

co n cen tra tio n  in  the bulk o f the so lu tio n . Then i f  

the su rface  ten sio n  in c reases  w ith co n cen tra tion  the 

su rface  lay e rs  con tain  le s s  so lu te  than the bu lk , o r, 

fo r  a sa tu ra ted  bulk s o lu tio n , su rface  la y e rs  are 

unoaturated* A minute nucleus w il l  th e re fo re  be 

u n s ta b le , rodiB solving in  the more d i lu te  la y e rs  of 

Dolution which i t s  ovm presence has c re a te d . Growth 

w ill  only occur when the  co n cen tra tion  of the surface 

la y e rs  becomes equivalent to  the normal s o lu b i l i ty  

co n cen tra tio n  i . e .  when the bulk so lu tio n  i s  a t  some 

a r b i t r a r y  le v e l of su p e rsa tu ra tio n .

(c) N ucléation r a te s .

Although i t  has been seen th a t  very email 

p a r t ic le s  show s u p e re o lu b il i ty , in  su persa tu ra ted  

so lu tio n s  sm all p a r t ic le s  can be formed and continue to 

grow.

I f  n u d e a tio n  be looked on as the coning to g e th er 

of two or more m olecules,



12

AD + AD + AB 4" ...— ABADABAB»—

th en  i t  fo llow s from normal energy concepte th a t  in  

u n sa tu ra ted  so lu tio n s  th e  so lid  complex on the r ig h t  

has a h igher f re e  energy le v e l than th e  m olecules in  

so lu tio n  on th e  l e f t .  In  e sa tu ra ted  so lu tio n  th e re  

i s  only one le v e l of energy, w hile in  a  cuper sa tu ra te d  

so lu tio n  the o o lid , in  some f in a l  hulk form, has le s s  

energy than the corresponding moleculeo in  so lu tion*  

V7ere the  re a c tio n  in  a homogeneous medium, eq u ilih rium  

would presumably be e s ta b lish e d  between r ig h t  and l o f t  

hand s id e s  a t  come fix ed  co n cen tra tio n  lev e l* .

The appearance of a so lid  phase must in te r f e r e  w ith 

th i s  simple hornogem^y. In troducing  th e  com plicating 

e f f e c t  o f a sp e c if ic  su rface  energy*

Now Dunning^* hao put forward the fo llow ing  

a n a ly s is  of liq u id  drop form ation from vapour*

When a l iq u id  drop of ra d iu s  i s  formed 

from 1 m olecules of vapour, w ith a liq u id -v ap o u r 

in t e r f a c i a l  ten sion  d  , the  vapour p ressu re  a t  the 

l iq u id  su rface  i s  given by 

log  ^  ^  o

where i s  the s a tu ra t io n  p ressu re  of the l iq u id  

a t  a plane eu rface , end v the volume of a molecule in  

th e  liqu id*  This equation  may be w r itte n  fo r  any one 

l iq u id  as
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lo g  ~  a B» -
Pô > n

whcro B is  a co n s tan t. The r a t io  of vapour a t  the 

d ro p le t su rface  to  p a r t i a l  p ressu re  in  th e  sa tu ra ted  

vapour v a r ie s  as tlie re c ip ro c a l of p a r t ic le  s iso .

For any su p ersa tu ra ted  vapour a t a pressor re  th e re  

i s  a c r i t i c a l  d ro p le t s is e  r^. f o r  which the  surface 

p ressu re  i s  equal to  p^. Than la rg e r  drops tlm n th i s  

w ill  grow, while sm allo r drops Yd 11 tend  to  evaporate .

I f  the chemical p o te n t ia l  of a s in g le  molsculo 

In  the vapour phase i s  u^y cmd in  the  l iq u id  i s  Uj3 y

i±LS change in  f re e  enorgy when i  m olecules pass from

the vapour to  the l iq u id  phase i s  given by l(ue«Ha.i).

When th is  i s  c a r r ie d  out by the form ation of a

l iq u id  drop of area  A, the in c rease  in  surface energy 

ia  and the t o t e l  energy cshango i a

I f  AG io  to  be negative  g ao must be the casa 

i f  the change i s  to  proceed spontanéously , then  Uq 

must be le s s  than U i.

For a sp h e r ic a l d ro p le t,
a 4 TÎ r f

A = 4 Tf and i  -  "g —

Then, A g  « 5 —  (us-U x)  d  4 tf
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Values f o r  AG w i l l  p a ss  through a maximum 

p o s i t i v e  v a lu e  as r±  in c r e a s e s  from z e ro  to a  c r i t i c a l  

v a lu e  r]^g where

U1 ■«Us

The maximum v a lu e  of A  vd.ll he g iv e n , by 

s u b s t i t u t i o n  f o r  r ^ ,  as
3 3 S

IG TT V 16 IT d  V
j .  1 i r  ir I - - # I m ' n t ^ t r n m y t n e ^

^  == 3 k V l o s . “ 2 i
P

ÎTov/ t r e a t i n g  tlie  r e a c t io n  

i  A3 ^  A3j_

a s  an e q u i l i b r i a ,  th e  lav/ o f  mass a c t io n  g iv e s

1 I 1nx -  k*n

where i s  t h e  number of i  embryos p e r  u n i t  volume. 

The e q u i l ib r iu m  c o n s ta n t  k' may a l s o  be ex p re sse d  in  

term s of th e  f r e e  energy  of n u c le u s  fo rm ation  

-  AG = kT log k* 

and th e r e f o r e
1 , ^  ,m  -  n exp « \ )

kT

I f  g i s  the  p r o b a b i l i t y  t h a t  th e  c r i t i c a l  n u c leu s  w i l l  

grow once formed, then

g n i  =  g n ^  e x p o  )

or J = p expo ( 3Fr^~ï5i57i )pL
where J xs the n u d e a t i o n  r a t e ,  and p i s  a constant®
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As shown, i n  P ig#2 whan J  i s  p l o t t e d  a g a in s t  the

m easure o f  s u p e r s a tu r a t io n  p th e  curve diov/s a
Pco

r a p id  in c r e a s e  i n  n u c lé a t io n  r a t e  when th e  s u p e r s a tu r a t i o n  

re a c h e s  a  c r i t i c a l  v a lu e .

Now t h i s  a n a l y s i s  h as  r e l a t e d  s u p e rs a tu ra t io n ^  

n u c le u s  s i z e , and n u c lé a t io n  r a t e  f o r  a  s p h e r ic a l  drop 

fo rm ing  from  s u p e r s a tu r a te d  v ap o u r . The fo im a tio n  

of a  c r y s t a l  of s p e c i f i c  foim f r a a  a  vapour w i l l  depend 

upon th e  d i f f e r e n c e  i n  energy  between a m olecule  in  

the  c r y s t a l  fa c e  and a  f r e e  m olecule  in  th e  vapour.

As b e f o r e ,  t h e r e  must be an e x p e n d itu re  o f energy in  

th e  c r e a t i o n  of th e  s o l i d  su r fa c e  and 

A  a  =2 K u g ^ u i )  + d g  Ag, where 6 ^  i s  some measure 

o f  s o l id -v a p o u r  su rface  e n e rg y . I t  fo l lo w s  by 

analogy  t h a t  a  c r i t i c a l  s iz e  f o r  th e  c r y s t a l  f a c e ,  and 

a  maximum v a lu e  f o r  A G w i l l  be

and A  Gj. = A L j L b 
vl±-vlq 3 (u i ‘̂ Ue)

Very l i t t l e  i s  knovm about th e  suifa.ce e n e rg ie s  

o f c r y s t a l s  ex cep t t i a t  thay  can  vary  from fa c e  to  f a c e .  

The shape f a c t o r  a l s o  v a r i e s  w id e ly , and as a r e s u l t  

th e  v a lu e s  f o r  a  s p h e r ic a l  n u c le u s  are  o f te n  used  a s  a  

b a s i s  f o r  c a l c u l a t i o n .  There i s  no d oub t, however, 

abou t same v a lu e  f o r  a  c r i t i c a l  s i z e  end energy inc rem en t

j u s t  a s  i n  l i q u i d  drops#
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The a d d i t io n  of a seco n d ^m p o n en t, a  s o l v e n t ,  

to  the  one component system  does n o t  change th e  

fundam enta l e q u a t io n  from

A G  -  i (u « -U i)  d  g

i n  which th e  change i n  f r e e  energy  of a  m o lecu le  moving 

Irom s o lu t i o n  t o  s o l i d  su rfa c e  i s  b a lan ced  a g a in s t  th e  

energy of f r e e  su r fa c e  c r e a t i o n .  In  a  n u c le u s  o f  

s p e c i f i c  dim ension rj^ th e  number of m o lecu les  w i l l
Q ■ S

vary  a s  r±  ̂ and th e  s u r f a c e  a s  r^  « Then i t
C  ̂ G

fo l lo w s  t h a t  A G = (us^Ui)

where 0% and Cq a re  shape f a c t o r s .

When Ui i s  g r e a t e r  than  a s  i n  s u p e r s a tu ra te d  

s o lu t i o n ,  th e  v a lu e  o f  A G p l o t t e d  a g a in s t  some l i n e a r  

d im ension r^  w i l l  p a ss  th ro u g h  a maximum as  b e f o r e , 

and presum ably th e  n u c lé a t io n  r a t e ,  J ,  should  fo l lo w  

the  same law , v a ry in g  a s  ih e  su p er  s a tu r a t i o n  r a t e  , 

o r  r a t h e r  a s  th e  square  o f  th e  logaritlim  of t h i s  v a lu e  #
iS is

S e v e ra l  w orkers have t r i e d  t o  e s t a b l i s h  the

r e l a t i o n s h i p  e x p e r im e n ta l ly ,  by p l o t t i n g  log  J  a g a in s t  

th e  r e c i p r o c a l  of th e  square  o f  th e  log# o f the 

e u p e r s a tu r a t io n ,  bu t r e s u l t s  have n o t  been v e ry
i?

s a t i s fa c to z ^ ' ' .  However, Dunning su g g es ted  a  m o d i f l c a t i c n  

i n  th e  n u c lé a t io n  r a t e  term  and ach ieved  s a t i s f a c t o r y

l i n e a r i t y . He d ec ided  t h a t  the p ro -e x p o n e n t ia l  f a c t o r
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P would depend on tW  su p e rsa tu ra tio n  in  such a 
way th a t

lo g  J  + 3 logolog —
PoO

should he employed in s te a d  of lo g  J  in  the  l i n e a r i ty  

t e s t .

The W0 &  of n u c léa tio n  i s  a v a ila b le  from 

momentary lo c a l  f lu c tu a tio n s  o f  co n cen tra tio n  and 

energy. N a tu ra lly  a chance a s so c ia tio n  such as a 

fo re ig n  body, a  dust p a i^ tic le , or a lo c a l  d istu rbance  

caused by s t i r r i n g  or rubbing, w ill low er t h i s  

c r i t i c a l  va lue . Indeed there  i s  experim ental evidence  ̂

th a t  a l l  n u c léa tio n  in  su p e rsa tu ra ted  so lu tio n  tak es  

place by a heterogeneous, and no t by a homogeneous 

mechanism. C iy s ta ls  o rig in a te  by heterogeneous 

c r y s ta l l i s a t io n  a t  an in te rfa c e ^  e .g .  on the  su rface  of 

suspended, in so lu b le  p a r t i c l e s ,  o r on th e  w a lls  of the  

c o n ta in e r.
Once a s ta b le  nucleus has formed i t  grows, with 

l ib e r a t io n  of energy, and th i s  l ib e ra te d  lo c a l  energy 

may w ell c a ta ly se  f u r th e r  nucleus form ation . Tho 

form ation  of "clouds" of t in y  n u c le i ,  so o f te n  seen 

in  tW  c r y s ta l l i s a t io n  of in o rg an ic  s a l t s ,  can re a d ily  

bo understood on th is  b a s is  of energy chain  re a c t io n .
BO .

Experim ental woric on m elts  has shovn th a t  vhe 

n u c léa tio n  r a te  -supe r  s a tu râ t  ion curve passes through a
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maximum and f a l l s  away a t  h igh o u p e rsa tu ra tio n , and
. SI
Becker and Boring allow edfor t h i s  by adding a 

v is c o s ity  term to  th e  work ex p re ss io n ,

J  " p ozpo
'  kT

vhere i s  th e  a c tiv a tio n  energy f o r  d iffu s io n .

That th i s  second f a c to r  can also  be e f fe c tiv e  in
. 82

n u c léa tio n  from s o lu tio n s  i s  shown in  Fig#25 (page 7€.-. ) 

where th e  v is c o s i t ie s  of s a tu ra te d  sodium th io su lp h a te  

so lu tio n  are p lo tte d  a g a in s t tençio ratu re. The dotted 

l in e s ,  showing increase  in  v is c o s i ty  with su p ersa tu ra ted  

so lu tio n , r i s e  s te e p ly , suggesting  th a t  the form ation 

of a s o lid  g la ss  i s  no t f a r  off# I t  may w ell be th a t  

the change in  v is c o s i ty ,  varying  vdLdely from one 

substance to  an o th e r, can ex p la in  the f a c t  th a t  some 

s a l t  so lu tio n s  cannot have s ip e rs a tu ra tio n  r a t io s  

in creased  above 1 .0 1 , v/hile sucrose so lu tio n s , which arc 

very v isc o u s , do no t fo m  n u c le i belov/ a super s a tu ra tio n  

r a t io  of about 1 .3 .

Furtherm ore, an a c t iv a t io n  energy of 4#4 IccslI so /gm. 

mole has been found f o r  sucrose n u c lca tio n . This shows 

the  importance of d iffu s io n  in  n u c lé a tio n , since the 

tem perature c o e f f ic ie n ts  of d iffu s io n  and v is c o s ity  of 

sucrose so lu tio n  give a c t iv a tio n  energ ies  of tho seme 

magnitude.



A reduc tion  in  the  surface energ^r should in c rease  

the n u c lé a tio n  ra te  g re a tly . Some workers claimed 

th a t  the  ad d itio n  of surfaco ac tiv e  agen ts d id  in c rease
• 3.5

th e  n u c lé a tio n  ra te  of sucrose , while o th e rs  found
85

no e f f e c t .  Van Hook suggests th a t th ese  su rface

a c tiv e  agents only decrease the s ta t ic  surface te n s io n ,

and not tho dynamic su rface te n s io n , v/hioh i s  tho

s ig n if ic a n t  value regard ing  n u c léa tio n .

The r e la t iv e  shape of tho so lu te  molecule has
20

a lso  been considered  as im portant in  n u c léa tio n , soma 

m olecules packing more e a s ily  in to  an ordered systom 

than o th e r s .

(d) Nude a t  ion in  heterogeneous system s.

In d u s t r ia l  c i y s t a l l ! se rs  always operate vdidi 

seed c r y s ta ls  p re se n t, and th e re fo re  t ru e  spontaneous 

n u c léa tio n  w ill never occur. I t  was found by McCabe
S7and Ting th a t  tho presence of c ry s ta l  seeds lowered 

th e  c r i t i c a l  value of su p e rsa tu ra tio n  producing n o tab le  

n u c lé a tio n , probably by c ry s ta l lo id s  from the o zy sta l 

su rface  seeding tho so lu tio n - The massivs n u c léa tio n  

occurred a t a d e f in i te ,  roproducib lo  su p ersa tu ra tio n  

when seed c ry s ta ls  v/ere p re se n t, and a t  lower 

sup o r  s a tu  r a t  1 on s than th i s  value there  was only a 

l i t t l e  randcm nu c léa tio n - The l im it  was a ffe c te d  by 

tho  r a te  of co o lin g , ra te  of s'birnring, and w % i^t and



s iz e  o f the c ry s ta l  seeds used.

There i s  no doubt th a t  n u c léa tio n  r a te s  increase  

ra p id ly  even in  c ry s ta l- s o lu t io n  s lu r r ie s ,  when a 

c e r ta in  le v e l  of su p e rsa tu ra tio n  i s  reached. This 

le v e l  may be a ffe c te d  by such v a r ia b le s  as th o se  

in d ic a te d  by McCabe, or by fa c to rs  such a s  a c tiv e  dust 

o r chemical add itives#  These l a s t  may a c t in  e i th e r
S8

d ire c tio n .

Summarising, theory  su^^ests t h a t  there i s  both a 

c r i t i c a l  s ize  f o r  s tab le  n u c le i ,  and a sharp in c rease  

in  nucleus fo m a tio n  when c e r ta in  su p e rsa tu ra tio n  le v e ls  

are  reached. I t  appears tlia t these conclusions ai% 

u n a ffec ted  by the presence of p refom ed  c r y s ta l s .  Prom 

the p o in t of view of in d u s tr ia l  c r y s ta l l i s a t io n ,  the 

old concept of a m etastab le  range of su p e r s a tu ra tio n  

i s  q u ite  sound; a n u c léa tio n  ra te  which i s  r e la t iv e ly  

alow makes f o r  apparent m e ta s ta b il i ty . I f  in  the  

body of th i s  th e s i s ,  a so lu tio n  i s  re fe r re d  to  as 

"m etastable" i t  v /ill be understood th a t n u c léa tio n  

r a te s  are too sm all to  be considered .

Super s a tu ra tio n  con be measured as a r a t i o , 

C oncentration  in  g m s ./ l i t r e  in  a su p e rsa tu ra ted  so lu tj^ n  

C oncentration  in  g in s . / l i t r e  In  a sa tu ra te d  so lu tio n  a t  the 

tem perature^or as an ac tu a l excess of co n cen tra tio n  « 

g m s # /l i t r e .
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The f i r s t  form i s  more d e s ira b le  from a 

th e o re tic a l  s ta n d p o in t, but when mass t r a n s fe r  ra te s  

are being considered the  sacond foim i s  p roper. In  the 

body of work fo llo w in g , the  simple su p e rsa tu ra tio n , 

in  g m s ./ l i t r e  i s  normally used.
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3 o Crystal Grow'th#
The p r in c ip a l  param eters a f fe c tin g  r a te s  of 

re a c tio n  in  concen tra ted  so lu tio n s  are  tem perature 

end co n cen tra tio n . The e f fe c t  of tem perature can 

u su a lly  he described by on A rrhenius eq u a tio n , and 

con cen tra tio n  by f (c )  •  f(cg ) , whore f (c )  i s  some fu n c tio n  

of the a c tiv e  co n cen tra tio n , and f(og ) i s  some fu n c tio n  

of the equ ilib rium  v a lu e , ie# the normal s o lu b i l i ty  in  

the case of c r y s ta l l i s a t io n .  The ra te  of re a c tio n  w ill  

then  be some fu n c tio n  of the su p e rsa tu ra tio n , f(C -  Cg), 

and f o r  most c r y s ta l l i s a t io n  processes the ra te  of growth 

can bo described  by

dxWÎ = B (C » Gg)

where B i s  a co n s tan t, and dx i s  the amount of so lu te  

c r y s ta l l i s e d  in  time d t .

There are  two main th e o r ie s  of c ry s ta l  grovd;h, 

one lay in g  emphasis on the so lu tio n  surrounding tho 

c r y s ta l ,  and the o th e r s tre s s in g  the importance of 

tho c r y s ta l  su rfa c e  i t s e l f .  Tlie f i r s t  i s  concerned w ith 

tho ra te  of so lu te  tra n sp o r t in  tho s o lu tio n , the  o th er 

w ith the p a s t h is to iy  of the c ry s ta l , and the type of 

c ry s ta l  su rface  which has been produced#

(a ) D iffusion  th e o rie s  of c ry s ta l  growth#
■ 09

Noyes and "^Hiitney measured the ra te  a t  which 

c ry s ta ls  d isso lved  end proposed an equation  of the fo m

™  ^ K A (Cg « Gg)#uu



Hare A i s  the su rface a rea  of the  c r y s ta l ,  Cg 

i s  the s a tu ra tio n  c o n c e n tra tio n , and Cb i s  the 

concen tra tio n  in  th e  bulk of the so lu tio n . K i s  a 

co n s tan t having th e  dimensions of a mass t ra n s fe r  

c o e f f ic ie n t ,  and dx and d t have the same meaning as 

b e fo re . No allowance is  made fo r  any timo requ ired  

to  remove the m olecules from the ordered a rray  of the 

c r y s t a l .

N sm st considered  th a t  the grovfth of c ry s ta ls  

could a lso  be considered  as a d if fu s io n a l  meclianicm, 

and m odified the above equation  to  read
dx = 3A ( Cg Cg)

5

where D i s  the c o e f f ic ie n t  of d if fu s io n , S i s  the f ilm  

th ickness through v/hich d iffu s io n  i s  tak ing  p la c e , and 

the  o ther symbols have the same meaning as b efo re .

I f  there  i s  d if fu s io n a l  c o n tro l o f c iy s ta l l i e a t io n  

and so lu tio n  then th e re  should be a re c ip ro c ity  of growth 

and so lu tio n  a t  equal degrees of under and over sa tu ra tio n  

I t  has been found th a t  d is s o lu tio n  i s  some s ix  timo a aa 

f a s t  as grov/th. Hcv;©ver, most of those reciprocit;^^ 

experim ents were performed a t c irc a  1 0 and i t  has
01 O 0^05

been suggested  ̂ th a t  a t  h ig h e r tem peraturas the

growth process tends to  become d iffu s io n  c o n tro lle d .
32

Marc added im p u ritie s  to  c r y s ta l l i s in g  lu t  ions 

and found th a t they in h ib ite d  growth g re a t ly ,  v/hilo
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havliig l i t t l e  e f f e c t  on the  r a te  of so lu tio n . This he

took to  be f u r th e r  evidence th a t  tho ra te  of growth

i s  n o t d if fu s io n  c o n tro lle d , b u t su rface  re a c tio n  co n tro lled ,
.00

Tliere i s  no doubt th a t  s p e c if ic  im p u ritie s  can g re a tly  

decrease the growth r a t e , ahd a su rface  re a c tio n  c o n tro l  

may rep lace  d if fu s io n •

A fu r th e r  c r i t ic is m  of the d iffu s io n  theo iy  i s  

th a t  with in ten se  a g i ta t io n  the surface film  should 

become very th in . I t  i s  commonly found th a t  the  growth 

ra te  in c reases  w ith s t i r r i n g  speed only up to  some
3 S7

l im itin g  va lu e ,  ̂ end does n o t increase  co n tin u o u sly .

There i s  the p o s s ib i l i ty  th a t  f ilm  th ick n ess  does no t 

vary in v e rse ly  -̂vith s t i r r i n g  speed i e .  th e  c ry s ta ls  

may be c a rr ie d  round rap id ly  in  t h e i r  ovn r e la t iv e ly  

stagnan t so lu tio n  "atmosphere". In  the  production of 

la rg e  s in g le  c ry s ta ls  the d ire c tio n  of ro ta tio n  i s  

reversed  freq u en tly  to  p re se n t the form ation of v e ile d  

c ry s ta ls  caused by tlie mutual c i r c u la t io n  of so lu tio n  

and c ry s ta l ,

Tlie p r in c ip a l  o b jec tio n  to  tlie N sm st theory  in  

any unmodified form i s  th a t  c ry s ta l  growth i s  a n iso tro p ic , 

whereas i f  the growth r a te  were d iffu s io n  c o n tro lled  

ccm pleto ly , c ry s ta ls  should be s p h e r ic a l  and have no 

plane fa c e s .
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39
(b) Berthovid*3 modi f lo a t  Ion of the d iffu s io n  theory  #

Borthoud considered  th a t  th e re  i s  n o t an in f in i te ly  

ra p id  reac tio n  a t  the c o y s ta l s  u r fa c e , but th a t  timo 

i s  needed to  arrange the m olecules during growth, 

and d isarrange them during so lu tio n . This im p lies a 

re c ip ro c ity  between grov/th end so lu tio n .

The co n cen tra tio n  in  the bulk of the so lu tio n  

and the sa tu ra tio n  co n cen tra tio n  are  Cg and Cg as b e fo re , 

b u t the concen tra tion  a t  the c ry s ta l  in te r fa c e  i s  Cx? 

g re a te r  than Cg, bu t le s s  than Cg# The d if fu s io n a l 

p rocess i s  followed in  s e r ie s  by a f i r s t  o rder in te r f a c ia l  

re a c tio n . I f  i s  the in t e r f a c i a l  re a c tio n  v e lo c ity  

c o e f f ic ie n t  then

^  ”  (Cs-Ci)

when the s ta tio n a iy  s ta te  i s  produced.

Hence

kR

= K (Cg « Og)

Tho surface re a c tio n  c o e f f ic ie n t  can vary 

from face  to  f a c e , and th e re fo re  allov/s f o r  the 

an iso tro p ic  nakarc o f c iy s t a l  growth. Berthoud* s 

assumption th a t v /ill be the  same f o r  grov/th and 

d is so lu tio n  need n o t n e c e s sa r i ly  be t ru e .
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i n f in i t e ly  la rg e  than the re a c tio n  a t  

th e  su rface  i s  i n f in i t e ly  rap id  and the re a c tio n  i s  

d iffu s io n  c o n tro lle d , and v ice  v e rsa . I t  i s  p o ssib le  

tlm t the su rface  re a c tio n s  of the faces  of a c iy o ta l  

may vary g re a t ly ,  with the r e s u l t  th a t  growth a t  some 

faces  may be d iffu s io n  co n tro lled  and a t  o th e rs  surface 

re a c tio n  c o n tro lled . In t l i i s  case th e  degree of 

super sa tu ra tio n  could change the shape of the c ry s ta l  

g re a t ly ,  s ince  the ra te  of growth of the su rface  

co n tro lls  d faces  would remain alm ost co n s ta n t,

(Cl ^ C ) ] ,  v/hile the d iffu s io n  co n tro lled  faces  

would be f re e  to  vary  with the  super s a tu ra tio n

(Cb - Cg)].

This hypo thesis would seem to  answer Spandenberg* s 

c r i t ic is m  of Berthoud*s th eo ry , namely th a t  a change 

in  super sa tu ra tio n  produces a change in  c r y s ta l  h a b i t ,  

whereas the  theory , as o r ig in a lly  s u ^ e s to d ,  shows a 

u n ifo m  change in  f a c i a l  growth ra te  w ith super s a tu ra t io n .

Berthoud* s re p re se n ta tio n  of c r y s ta l  g rowth as 

a d if fu s io n a l process foliov/ed by a c r y s ta l  su rface  

arrangement has been j u s t i f i e d  Ty sev era l workers. ^
15

Ilumphreys-Owen has a lso  found th a t  seme fac e s  of

sodium c h lo ra te  follov/ the N em st mode of growth, and 

th a t  o thers  ap p aren tly  grow f a s t e r  th an  Hie so lu te  i s  

p resen ted  to  tliem by d if fu s io n , i . e .  they  may grow 

d e n d r i t ic a l ly  to  en te r  f re s h  spheres of su p e rsa tu ra tio n .
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Le Diane £gid Sohmandt found th a t  sodium c h lo ra te

was on© of tho few so lu i^ s  which :^ow@d a r e c ip ro c i ty  

bo two en growth end so lu tio n .
4iU

Jenldns claimed th a t  by m p id  s t i r r i n g  he had 

30 reduced the film  th ick n ess  th a t  he v/as a c tu a lly  

measuring the ra te  of su rface  re a c tio n . N evertheless 

he was able to c o r re la te  h is  c iy s ta l l i jm t io n  r a te s  a g a in s t  

g where ^  i s  the so lu tio n  v is c o s i ty .  The

v is c o s i ty  i s  a function  of the  s o lu tio n , and should 

th e re fo re  have no e f f e c t  on the r a te  s.t the c ry s ta l  

su rfa c e , and he could no t th e re fo re  have been m easuring 

the  c r y s ta l  su rface  re a c tio n .
3S 3

Some so lu te s  have been found ® to  have a rat© 

of c r y s ta l l i s a t io n  which i s  b e s t rep resen ted  by a 

bim olecular re a c tio n . A b im olecu lar re a c tio n  in d ic a te s  

th a t  the c r y s ta l l i s a t io n  ra te  must be surface re a c tio n
4.S

c o n tro lle d . Jenlcins found only one case o f b im olecu lar 

re a c tio n , the c iy s ta l l i s a t io n  of naphthalene from 

methanol in  the presence o f collodion# The co llod ion  

produced a d ra s tic  h a b it change, and i s  ano ther 

example of sp ec ific  im purity  g re a tly  decreasing grov/th 

ra te  g the reby causing surface  re a c tio n  co n tro l of 

c r y s ta l l ! s a t  ion .

S'ommarising ptho d iffu s io n  theory'' of Berthoud would 

seem to  describe Uie problem of c r y s ta l  growth adequately.
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Growth takas place by d iffu s io n  o f the so lu te  to  the 

c r y s ta l  su i f  ace follov,'ad by c r y s ta l  su rface  re a c tio n . 

E ith e r  of tliese processes may c o n tro l the r a te  of growth, 

according to the p h y s ica l c h a r a c te r i s t ic s  of the system.

(o) The su rface re a c tio n .

The concept of a c iy s t a l  surface re a c tio n  combined 

v/ith d iffu s io n  has a lready  been e s ta b lish e d . Solutes 

are knovzn which would seem to  be com pletely surface 

re a c tio n  co n tro lled  in  th e i r  o iy o ta l  growth. Sucrose 

i s  ono of tho most im portant substances which i s  

produced in  a c r y s ta l l in e  fo m , and i t  has been found 

by Van Hook th a t  a 25 fo ld  in c rease  in  the so lu tio n  

v is c o s ity  makes no d iffe ren ce  to  th e  c r y s ta l l i s a t io n  

v e lo c ity . The a c tiv a tio n  energy f o r  c iy s ta l l i s a t io n  

i s  of the order of 16 locals./m ol© , while th a t  f o r  

d iffu s io n  i s  6 Icoa ls ./m o lc . Van Hook concludes 

th a t  the c iy s ta l l i s a t io n  p rocess i s  su rface  re a c tio n  

c o n tro lle d  a t  the n o m al tem perature range f o r  sucrose 

c r y s ta l l i s a t io n .

( d) Adsorption la y e r  th e o r ie a .

Marc considered t h a t  the d iffu s j^ n  la y e r  was 

to rn  o ff  by very rap id  stlz%"ing, leav in g  a la y e r  of 

alm ost m oleculnr dimensions, which had th e  natuits of 

an adsorbed la y e r . In te ra c tio n  between the m olecules 

in  t h i s  la y e r  and tho c iy s ta l  l a t t i c e  was r e la t iv e ly  slow#
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Yolmor grew merouiy c ry s ta ls  frcm the vapour, 

and observed th a t  the c iy s ta l s  grew le y e r  by la y e r ,  

though the la y e rs  were c e r ta in ly  no t on a m olecular 

sc a le . According to  Volmer when a p a r t ic le  a rriv ed  a t  

tho c r y s ta l  murface i t  only l o s t  p a r t  of the l a t e n t  

h e a t, and was f re e  to  move over th e  c ry s ta l  su rface  

l ik e  a "two dimensional g as" . From c o l l i s io n s  

between the p a r t ic le s  of th i s  adsorbed la y e r  a nucleus 

could be formed; the v e lo c ity  of grov/th o f the nucleus 

once formed, was p ro p o rtio n a l to  the square of the 

density  of the p a r t ic le s  in  i t -

The concept of grov/th by "two dim ensional" 

n u c léa tio n  i s  ^  m ila r  to  t h a t  fo r  th ree  dim ensional 

homogeneous n u c lé a tio n , and has been developed by
Cl

sev e ra l workers# Atcms condensing on a

surface v /ill p re fe r  s ta te s  w ith  a maximum number of
54 jt An e a re s t neighbours, Q«g« p o s it io n  a in  FigoSA- 

R epe tition  of s im ila r  s tep s  w ill  cover the  su rface  

with a close packed Ic y e r , Fig-SB, and grov/th w i l l  

tem porarily  stop  u n t i l  a new two dim ensionnl nucleus 

la fom ed  on the  su rface . Fig#30# k o ssa l and Stransln. 

have deduced th a t  the most favourab le  p o s itio n s  

surface n u c léa tio n  in  an ion ic  c ry s ta l  w ill be the 

co m ers  and edges r a th e r  than the face centres#
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energy of tho nuclouc u l l l  ho 
S » 2 T fra^  + î fr °  % (us-iii)  

whar® r  I s  iho radius of tho nuclouOp b io  1h© in te r  lay  or 

spaaing9 Ci in  the ^orfaoo frao energy 9 md (ug-Ui) 
i© the chaîne in  chocrLcal p o te n tia l.

Then tho c r i t i c a l  nuoloue rad iu s  end f re e  energy 

are given hy

and tho ra te  o f  n u c léa tio n  hy

J s p exp. C È Î^  )
kT

Before n u c léa tio n  can occur the su p e rsa tu ra tio n  

should ho of tho o rd er of 40-50^9 i . e .  a  matas ta b le  

l im it  fo r  surface n u c lé a tio n , b u t i t  i s  knomi th a t  

c ry s ta l  growth tak e s  p lace  a t  su p e rsa tu ra tio n s  of 

le s s  than  1^.

(e) D is lo ca tio n s .

I f  th e  M l l e r  in d ice s  of a c ry s ta l  face  are 

h igh than  the face  w ill  grow ra p id ly , where so low 

M l le r  in d ices  give slow growth. Tho modern theory  

of c ry s ta l  growth i s  th a t  n u c léa tio n  on low index su rfaces  

i s  unnecessary , since h igh  index su rfaces  are always 

p resen t because of screw d is lo c a tio n s . The concept of
63

screw d is lo c a tio n s  was in troduced  by Burgers to  account 

f o r  the very low stren g th  of c iy s ta l s  compared w ith the 

th e o re tic a l  va lue , and i t s  im portance in  c r y s t a l  grovrbh
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@7 SQSe
nas D©m dem onstrated by Prank and o th e rs . *

A screv; d is lo c a tio n  lo  formed when th e  d is lo c a tio n  

i s  p a r a l le l  to  the d is lo c a tio n  l i n e ,  and a block model 

i s  diown of a ty p ic a l screw d is lo c a tio n  in  P ig . 3D.

Addition of atoms to  the edge of the screw d is lo c a tio n  

w il l  develop a s e lf -p e rp e tu a tin g  s p ira l  growth, s ince 

the  d is lo c a tio n  perim eter 11 have a h ig h er angu lar 

v e lo c ity  than  th e  c e n tre . The screw d is lo c a tio n  w ill 

be able to  grow a t a low s u p e rs a tu ra tio n , as indeed 

c ry s ta ls  are able to  do.
S 0 '*•6 O

Screw d is lo c a tio n s  have been observed 

on such d iv erse  substances as sodium ch lo rid e  and 

long chain p a ra f f in s . Many of the growth s p ir a l s  have 

a la rg e  s te p  h e ig h t, and may be caused by m u ltip le  

d is lo c a tio n s  during n u c lé a tio n , or by successive  la y e rs  

p i l in g  on top  of each o th e r . Dawson and Vand have, 

however, observed m olecular s tep  h e ig h ts  by means of 

an e le c tro n  m icroscope.

( f ) E ffec t of im p u ritie s  on c ry s ta l  growth.
S9 06 03

S pecific  im p u ritie s  ara knovn to  slow

down, and may indeed stop  c iy s ta l  growth. The im p u ritie s

are  sp e c if ic  to each s o lu te ,  and even sp e c if ic  to  
c e r ta in  c r y s ta l  f a c e s , thus changing the  c ry s ta l  h a b it .

Q 0
The im p u ritie s  may adsorb on the step  of the screv^ 

d is lo c a tio n  and slow down growth, and in  so doing can
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65
produco b e t t e r  q u a lity  c r y s ta ls .

I f  th e  c r y s ta l  grows by surface n u c léa tio n  the  

newly formed nucleus may be rendered in e r t  by im purity  

ad so rp tion .

(g) Layer grow th.

R e la tiv e ly  th ick  la y e rs  have been seen spreading
07

over c iy s ta l  su rfa c e s . These la y e rs  may be 

com plicated screw d is lo c a tio n s , y e t in v e s tig a tio n  has 

shown th a t  th i s  la y e r  growth takes place under co n d itio n s  

which a re  no t concordant w ith th e  presence of screw
QQ 00

d is lo c a tio n s . Bunn and Berg evolved a technique 

of co n cen tra tio n  measurement by means of in te rfe re n c e  

fr in g e s  when a c ry s ta l  was grovdng between g la s s  p la te s .  

Bunn found th a t  the concen tra tion  was not uniform  along 

a fa c e , bu t was lowest a t  th e  c e n tre , and th a t  the 

concen tra tion  g rad ien t normal to  the  face was h ig h es t 

a t  the c e n tre .

Furtherm ore, s im ila r  c ry s ta llo g ra p h ic  fa c e s  o ften  

had d if f e re n t  growth r a te s ,  and there  was a tendency 

fo r  the slov/er growing faces  to  be in  con tac t with 

so lu tio n  of h ig h es t co n cen tra tio n , and in  the extreme 

case faces  which stopped growing had the h ig h es t lo c a l 

co n cen tra tio n .

I t  was concluded from these  observations th a t 

th ere  i s  a  su rface  m igration  of so lu te  to th e  c iy s ta l  

c o m ers , having the natu re  of an adsorbed la y e r ,  and
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th a t  the  i n i t i a t i o n  of la y e rs  a t the  cen tre  of the 

c r y s ta l ,  and the subsequent v a r ia tio n  o f growth ra te s  

io  due to  the  r e la t iv e  movement of so lu te  m olecules 

in  so lu tio n  and over the su rfa c e . According to  Bunn, 

growth tak es  p lace on high index su rfaces  which a r e  

co n tin u a lly  formed during la y e r  growth, ahd the c e ssa tio n  

of growth observed i s  caused by hea lin g  of these  h igh  

index su rfaces  to  form low index su rfaces .

Prank re p lie d  to  th i s  c r i t ic is m  of the  d is lo c a tio n  

theory  by claim ing th a t  convection would occur in  

Bunn's experim ent, and vjould a l t e r  th e  p re se n ta tio n  

of so lu te  from a purely  d if fu s iv e  p rocess . He co n sid e rs  

th a t  sudden changes in  growth ra te  are  explained  by 

rearrangem ent of d is lo c a tio n s , o r stoppage of growth 

by im purity  poisoning of Ihe d is lo c a tio n  s i t e .

The photographic reco rds taken by Emmet of c r y s ta ls  

growing show a very ordered form of la y e r  growth 

as in  screw d is lo c a tio n s , and not an in d isc rim in a te  

la y e r  expansion as i t  should be i f  Bunn's h y po thesis  

were c o r re c t .
70 ^

\;illia m s  in v e s tig a te d  la y e r  growth on lead  

n i t r a t e , and found iiia t growth could occur e i th e r  by 

n u c léa tio n  a t  the co rners  and edges as in  the  Kos s e l l -  

-S tran sk i model, or by a screw d is lo c a tio n  mechanism. 

I n i t i a l l y  the c ry s ta l  grew by n u c léa tio n  and la y e r
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com pletion, but a f te r  the super s a tu ra t io n  decreased 

growth took place by the form ation o f a screw d is lo c a tio n  

w ith a la rg e  step  h e ig h t. In  a d d itio n  the  mode of 

growth could be changed from su rface  n u c léa tio n  to  

screw d is lo c a tio n  by sc ra tch in g  the c r y s ta l  surface 

with a sharp s te e l  p o in t.
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—  The E ffec t of N ucléation Rate and Suspension 

Conditions on Product C rysta l Size*

I f  the in h eren t seed ra te  of a c r y s t a l l i s e r  under

working con d itio n s  i s  N n u c le i/h o u r, and the production

r a te  i s  P Ih s ./h o u r , the average weight o f a product
p

c r y s ta l  w ill  be ^  lb s . Large, well formed c ry s ta ls  

are  the opera tiona l ta r g e t ,  and i t  i s  o ften  found 

th a t  jfehe inheren t n u c lea tip n  ra te  i s  too high to  give 

the d esired  size  of product c r y s ta l .  C ry s ta l l is e r s  have 

been b u i l t  ( e .g . the Howard c r y s t a l l i s e r , and to  some 

e x ten t the Oslo c r y s ta l l i s e r )  which use hy d rau lic  

é lu t r ia t io n  to govern product c ry s ta l  s iz e .  These 

devices w ill  only perform as planned i f  the n u c léa tio n  

r a te  i s  low enough f o r  the desired  p roduct, otherw ise 

the c r y s ta l l i s e r  w ill  become overloaded w ith  an excess 

o f sm all c ry s ta ls .  I t  i s  ra re  to  f in d  tro u b le s  

a sso c ia ted  with too slow a n u c léa tio n  r a t e .

However, a p ropo rtion  of the f in e  c r y s ta ls  may bo 

removed in  a seg regation  chamber, and a m athem atical
7 1

a n a ly s is  has been p resen ted  by Saeman of product

s ize  co n tro l by th is  means in  s in g le  v e sse l c r y s t a l l i s e r s .

I f  and are the number of f in e s  and product

c ry s ta ls  removed per hour, and 1^ and 1^ th e i r  re sp e c tiv e

s iz e s , then ^
P ^ Ilf I f ̂ V?

where P and P are the w eights of f in e s  and product
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c r y s ta ls  produced p e r hour.

In an Oslo c r y s t a l l i s e r ,  opera ting  w ith a 

c la s s i f ie d  suspension o f c ry s ta ls  in  the  bed, f in e s  

may be segregated from the suspension when they  a re  

of the o rder of one te n th  product s iz e .  I f  th e re  i s  

a hundred fo ld  excess of f in e s  then

Therefore by removal and re so lu tio n  o f 10^ of

the c r y s ta l l i s e d  m a te ria l the product c r y s ta l  s iz e  may
0 «so

be increased  by a f a c to r  of 100 = 4 . 6

I t  can be proved th a t  in  a c la s s i f ie d  suspension

the cumulative c r y s ta l  weight v a r ie s  as the fo u rth  

power of the c ry s ta l  s ize  e .g . c ry s ta ls  up to  one-half 

product s iz e  c o n s ti tu te  only one s ix te e n th  of the

to t a l  weight in  suspension. Also the age o f product

c ry s ta ls  i s  fo u r tim es the draw-down time T, where 

T = and W i s  the weight of c ry s ta l  in  suspension.

The removal of small c ry s ta ls  in  the product 

from a mixed suspension produces a g re a te r  p roportion  

of sm all c ry s ta ls  in  the suspension than th a t  allowed 

f o r  by the fo u rth  power r e la t io n .  However, the c iy s ta l  

product w ill be approxim ately the same as in  a c la s s i f ie d  

suspension. The product v^ill show a dominant c ry s ta l  

s ize  equ ivalen t to  an ege of 5T as ag a in s t 4T fo r  

c la s s i f ie d  product removal. There v /ill be no small
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c r y s ta l s  withdrawn in  c la s s i f ie d  c r y s ta l  p roduct removal, 

and in  mixed product removal the  small c r y s ta ls  w ill 

be la rg e  in  number, b u t almost n e g lig ib le  on a  weight 

b a s is .

In  a d d itio n  the seed requirem ents f o r  mixed 

product removal are  about eleven tim es the number 

req u ired  f o r  c la s s i f ie d  p roduction . A f u l l  d e riv a tio n  

o f the above re la tio n s h ip s  i s  given in  Appendix C.

C la ss if ie d  production  w ill  give la rg e  c ry s ta ls  

w ith no f in e s  p re se n t. Mixed p roduction , with eleven 

tim es as many seed c r / s t a l s ,  w il l  give product c ry s ta ls  

o f alm ost the  same s iz e ,  bu t w ith a sm all f r a c t io n  o f 

f in e  c r y s ta ls .  I t  fo llow s th a t  in  a case where 

c la s s i f ie d  production g ives too sm all c r y s ta l s  because 

of a h igh seed r a te ,  th e  dominant product s iz e  w ill bo 

increased  by changing to  mixed product removal.
7 8

Robinson and Roberts have developed Saeman s 

work f u r th e r ,  and given c r y s ta l  s ize  d is t r ib u t io n s  fo r  

a s e r ie s  of continuous flow s t i r r e d  c r y s t a l l i s e r s .

An Oslo c iy s t a l l i a e r  w ill  norm ally work a t  some 

cond ition  in term ed ia te  between a f u l ly  c la s s i f ie d  bed, 

and a fu l ly  mixed bed.
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Bo Experim ental Technique.

1 o Experim ental Programme.

The purpose of the work was to  provide design 

d a ta  f o r  the production of sodium c h lo r id e , sodium 

th io su lp h a te  pen tally d ra te , and barium hydroxide octahydratc 

in  an Oslo c r y s t a l l i s e r .

The main p o in ts  to  be in v e s tig a te d  fo r  each so lu te  

were the ra te  o f c ry s ta l  growth, and tho e f fe c t  of 

tem perature and so lu tio n  v e lo c ity  thereon} the m etastab le  

l im i t  of supersa tu ra tion}  maximum c r y s ta l  p roduction  

ra te s}  and the shape and s ize  of c ry s ta l  which would 

be ob tained  from a continuous c r y s t a l l i s e r .

Tho two general methods fo r  measuring r a te s  of 

growth have been e i th e r  fo llow ing  the growth of a s in g le  

c r y s ta l  a t  a known su p e rsa tu ra tio n , o r measuring the 

change in  co n cen tra tio n  o f the su p ersa tu ra ted  so lu tio n  

when a mass of c ry s ta l  seeds i s  p re se n t. The f i r s t  

method g ives abso lu te  r a te s  of c ry s ta l  growth, b u t i f  

tho c r y s ta l l i s a t io n  process i s  surface re a c tio n  

c o n tro lle d  i t  p laces  too much emphasis on the c ry s ta l  

which i s  used in  the experim ent. The second method 

i s  convenient fo r  studying the o rder and mechanism of 

growth, bu t small seeds and fre sh  n u c léa tio n  make 

es tim atio n  of abso lu te  r a te s  of growth r a th e r  d o u b tfu l.
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G r if f i th s  a f t e r  long experience in  the  problems 

o f in d u s t r ia l  c r y s ta l l i s a t io n ;  was of the opinion 

th a t  the ra te  of c ry s ta l  growth i s  a very f ic k le  constan t 

to  measure and sa id  " i t  might be thought th a t  determ ination  

of the ra te  of c ry s ta l  growth in  a m etastab le  so lu tio n  

v/ould be easy- As soon as a ttem pts are made, i t  i s  

found to  be extremely d i f f i c u l t  to  g e t c o n s is te n t 

r e s u l t s ,  and a l i t t l e  experience soon convinces us 

th a t  c o n s is te n t r e s u l t s  cannot be obtained w ithout 

extrem ely thorough ag ita tio n ."

C rysta ls  were grown in  f lu id is e d  beds in  th ree  

d if f e re n t  types of appara tu s. In the f i r s t ,  sa tu ra te d  

so lu tio n  was cooled to  g ive the desired  degree of 

su p e rsa tu ra tio n  and passed once through a f lu id is e d  

bed of c r y s ta ls .  The change in  su p e rsa tu ra tio n  

passing  through the bed was only of the o rder of 2-3^,

The in crease  in  weight was measured over a given period  

of t i n e ,  and since la rg e , uniform  c ry s ta ls  were used 

in  the experim ent, the su rface  a rea  could be estim ated  

and the mass t r a n s f e r  c o e f f ic ie n t  c a lc u la te d .

Any small c ry s ta ls  formed by spontaneous n u c léa tio n  

were c a rr ie d  away by th e  upv^ards flow of so lu tio n .

The experim ental r e s u l t s  should give a good b a s is  fo r  

p la n t design since the weight in crease  i s  measured 

d i r e c t ly j  the su rface  a rea  of the c ry s ta ls  i s  know ,
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and the average growth r a te  of a la rg e  number o f 

c ry s ta ls  i s  found.

The o th e r two u n i ts  were continuous m odels, and 

were used to  ob ta in  production  f ig u re s  which could be 

sca led  up f o r  a  la rg e  p la n t .  As with the sm all u n i t ,  

they were f lu id is e d  bed c r y s t a l l i s e r s ,  but the amounts 

o f c iy s ta l  and so lu tio n  involved v/ere much la r g e r ,  w ith 

steady feed  of f re sh  so lu tio n  and withdrawal of c iy s ta l  

s lu r r y .

The su p e rsa tu ra tio n  can in c rease  c y c lic a l ly  in  a 

continuous p la n t ,  and es tim atio n  of the mass t r a n s f e r  

c o e f f ic ie n t  i s  th e re fo re  d i f f i c u l t ,  since the 

su p e rsa tu ra tio n  may rep re sen t only 1^ of the to ta l  so lu te  

p re se n t, while f in e  c r y s ta ls  are c a r r ie d  round the p la n t 

w ith th e  so lu tio n . Provided no f in e  c ry s ta ls  were 

p resen t in  the sample an accuracy of + 10^ in  the 

su p e rsa tu ra tio n  value fo r  sodium ch lo rid e  would req.uir© 

an accuracy of <±rca 1 in  3,000 in  the  es tim a tio n  of 

s a l t  in  so lu tio n . The o p e ra tio n a l con d itio n s  in  the  

continuous c r y s t a l l i s e r  could be c a lc u la te d , however, 

by applying the growth ra te  r e s u l t s  ob tained  in  the 

non-continuous models

Nuclei fo m ed  spontaneously in  the continuous 

c r y s t a l l i s e r s  and grew to  product s iz e ,  and th e re fo re  

th e  equ ilib rium  shape, s iz e ,  and q u ^ i t y  of product 

c r y s ta ls  could be determ ined. The e f f e c t  of production
'X
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ra te  on product- size was in v e s tig a te d , and a lso  the 

maximum production  ra te  p o ssib le  befo re  excessive 

n u c lé a tio n  and s a l t  in c ru s ta t io n  occurred .

2 . Experim ental Apparatus and Methods.

(a ) Cooling c r y s t a l l i s e r .

The apparatus i s  shown in  P ig s. 4 and 5 . A 

vacuum pump system sucked sa tu ra ted  so lu tio n  from a 

constan t tem perature bath  A, through a co o le r C and 

a c r y s ta l l i s a t io n  tube D in to  a re c e iv e r  E. The tank 

A was th e rm o s ta tic a lly  c o n tro lle d  to  + 0 .06^0 , and was 

covered to  reduce evapora tion . A s t i r r e r  suspended 

c r y s ta ls  in  th e  s o lu tio n , and ensured tem perature and 

co n cen tra tio n  u n ifo rm ity . The so lu tio n  was drawn 

through a f in e  nylon screen in to  a 2" diam eter 

disengaging tube B. By th is  means a c le a r ,  s a tu ra te d  

so lu tio n  flowed to  the cooling  and c r y s ta l l i s in g  se c tio n  

The c o o le r  C was a w ater jacketed  g la ss  o r copper 

p ip e . The c r y s ta l l i s a t io n  tube D was 1 inch  in  

dieuaeter, and a bed of prefom ed c r y s ta ls  was supported 

i n i t i a l l y  on a 20 mesh Monel screen . Solution  en te red

ta n g e n tia lly  a t  the base of the tu b a , passed upwards
\

through the now f lu id is e d  mass, and flowed f ra n  the 

top of the tube in to  the re c e iv e r  E.

Tiie tem perature of the so lu tio n  in  the b a th , the
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so lu t io n  en te r ing  the bed, and the so lu t io n  leaving  

the  tube were measured on them om eters  graduated to  

0 . 0 1 and standard ised  ag a in s t  each o the r .

The so lu t ion  flow was c o n tro l led  to give the same 

h e ig h t  of f lu id i s e d  bed in  each run.

Crysta ls  used in  the experiments were prepared 

i n  the small Oslo evaporative c r y s t a l l i s e r  described 

i n  the next sec t io n ,  and the re fo re  possessed the 

same shape as product c r y s t a l s  from an Oslo c r y s t a l l i s e r .

Both c r y s ta l s  and so lu t io n  were prepared from 

i n d u s t r i a l  grades of the re sp ec t iv e  so lu te s ,  and s o lu t io n s  

were made up with tap water - Glasgow Town Supply.

This i s  a p a r t i c u la r ly  pure form of i n d u s t r i a l  water 

with a t o t a l  s o l id  con ten t  as low as 100 p a r t s  p e r  

m i l l io n .

The c ry s ta l s  and so lu t ion  in  the bath were heated 

to  a temperature which would give the  required degree 

of supercooling on cooling  to  the c r y s t a l l i s a t i o n  

temperature, and held a t  t h i s  temperature f o r  one and a 

h a l f  hours to ensure p e r fe c t  s a tu ra t io n .  4 gms of 

crystalSj^normally 12-18 mesh, were weighed and placed 

in  the c r y s t a l l i s a t i o n  t u b e , and the so lu t ion  and 

cooling water flows s e t  a t  the required  r a t e s .  Tïïo t o s t  

l a s te d  15 minutes, and the c r y s t a l s  were s traightway 

removed, f i l t e r e d ,  washed with methanol, d r ie d ,  and weighed,
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(b) Laboratory Oslo c r y s t a l l i s e r .

This p la n t  i s  shorn in  f i g . 6 . A small

c o n t r i fu g a l  pump A, l a t e r  changed to a 0.33 H.Po Mono pump

c i r c u la te d  sa tu ra ted  so lu t ion  through a h e a te r  B to  

a f lashhead C, where p a r t  of Hie water was removed 

under vacuum. The supersa tu ra ted  so lu t ion  flowed 

down through the c e n t r a l  down ta k e , and up again through 

the f lu id i s e d  bed of c r y s t a l s  D. P a r t  of the flow 

could be d irec ted  through a s e t t l i n g  chamber P to 

remove f in e  c i y s t a l s  c i r c u la t in g  in  the stream. The 

so lu t io n  flow was measured by means of a Ewing b a l l  

and tube flowmeter. Cold sa tu ra ted  feed so lu t io n  

was sucked in to  the p la n t  a t  thé base of v e s se l  E;

The change from a c e n t r i f u g a l  to  a Mono pump

was made because of the d i f f i c u l t y  in  keeping the gland

of the c e n t r i fu g a l  t i g h t  under vacuum. I t  was only 

poss ib le  to operate by p u t t in g  the whole pump In  an 

evacuated chamber - a ver̂ »* clumsy contr ivance .  When a 

Mono pximp was i n s t a l l e d  the slower speed made a i r  

leaks  e a s i e r  to  chock, while the pump was s e l f  priming.

I t  was no t  poss ib le  to operate with a f l u i d  head th a t  

made normal atmospheric operation  a t  the pump s i t e  

p oss ib le  (a 50 f t .  head would be req u i red ) .

The c i y s t a l l i s a t i o n  v esse l  and f in e s  soparatcx” 

were a l l  in  g l a s s ,  the f i r s t  of 2'* diameter, 30" long, 

and 1he second 1.5" diameter and 10" long.  ̂ The h e a te r
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was a 12” length  of g ” bore g la s s  tube g with a 

jacke t  through which hot water was c i r c u la te d  from a 

th e rm o s ta t ica l ly  con tro lled  reservo iro  Evaporation 

r a t e s  up to  400 gms* of water per hour could be obtained 

with the c r y s t a l l i s e r  working a t  38®Co

In the operation  of the u n i t  upwards r a t e s  of 

flow were con tro lled  by the need fo r  smooth f l u i d i s a t i o n  

of a c r y s ta l  bed, and were normally s e t  a t  d r o n  3 cms/sec 

Under continuous production conditions  the f in e  

c r y s ta l  separa to r  E was discarded » and a l l  n uc le i  

formed were re ta in ed  in  the plant»

(c) Semi-technical p l a n t »

The p lan t  (Pigo7) was a l a r g e r  vers ion  of the 

labora to ry  Oslo c r y s t a l l i s e r ,  except th a t  no f in e s  

separa to r  was incorporated » The c r y s t a l  suspension 

was held in  a 1 ft» diameter, 4 ft* long glass vesse l  A, 

constructed from QoV»P. sections» Air leakages 

entrained by the l iq u id  flov/, rose to the top of the 

v esse l ,  where a tapping to the vacuum l in e  removed gas 

as required» This was e s s e n t ia l  to the smooth v/orking 

of the plant»

The pump B was a s t a in l e s s  s t e e l  Alfa-Laval 

ce n t r i fu g a l  u n i t  powered by a Go8 HoP® motor running a t  

1410 rop»mo, with an output of 40 gallons  per minute 

a t  a 5 f t  » head ̂  The so lu t io n  flow was measured a t



s e m i - t e c h n i c a l  p l a n t

FIG. 7.
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f i r s t  by the extension of a previously  c a l ib ra te d  

spring f l o a t  C, (Appendix a ) , and l a t e r  by means of a 

Rotameter» Under opera t iona l  conditions  the flow 

was normally 33 g.p»m., equivalent to  an upwards v e lo c i ty  

through the c r y s t a l l i s e r  of 3»4 cms»/ seCo This pump, 

with a mechanical s e a l ,  gave no trouble  in  opera t ion ,  

though previous attempts with a closed im pello r ,  packed 

gland type pump gave endless d i f f i c u l t y  through c ry s ta l  

bu ild  up and leakage»

The hea te r  D v/as a steam heated tube and sh e l l  

heat exchanger v/ith 4 s ta in l e s s  s t e e l  tubes 12 f t e  longv 

The flashhead E v/as of rubber l ined  mild s t e e l ,  18 ins» 

diameter and 2 ft»  long, and the so lu t io n  entered 

tangen tia l ly»  Solu tion ,  now supersa tu ra ted ,  flowed 

down to the c r y s t a l l i s e r ;  the separated vapour was 

condensed in a s te e l  tube condenser P, and co l lec ted  

in  condensate rece iv e r  G-o

Saturated feed so lu t io n  was sucked in to  the g la ss  

v esse l  under vacuum from a rubber l ined  mixing tank H» 

Solution flow l in e s  were e i th e r  g la ss  or rubber l ined 

mild s t e e l .

The p lan t  operated under vacuum, and the operating 

pressure was adjusted by hand, a f t e r  an attempt a t  

automatic controJ hnd fa i led  bscau^ e of corrosion in  

the con tro l  valve^ and the vacuum was provided by
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a Broom and Wade ro ta ry  vacuum pump.

C rys ta ls  were removed p e r io d ic a l ly  from the base 

of the c r y s t a l l i s e r  through a diaphragm valve in to  a 

detachable g la ss  receiver» The product c r y s t a l s  were 

centr ifuged  to  about 3^ moisture, and then dr ied  o f f  

in  an e l e c t r i c a l l y  heated t ra y  drier»
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Co Experimental Results»

lo The C r y s ta l l i s a t io n  of Sodium Chloridec

Sodium ch lo r ide  i s  normally c r y s t a l l i s e d  in  

vacuum evaporators to give a very f in e  c r y s t a l ,  about 

30«60 mesho This i s  the " Vacuum S a l t ” of commerce, 

and nuc léa t ion  and c r y s t a l  growth are r e l a t i v e l y  

uncontrolled» On the o ther  hand, slow evaporation in  

la rg e  open pans, with e i th e r  d i r e c t  f i r i n g  or steam 

c o i l  hea t ing ,  produces a la rge  i r r e g u la r  c r y s t a l ,  the 

time honoured ** F ishery  Salt** » 3he l a t t e r  process 

i s  most unecononic from a fue l  e f f ic ie n c y  and labour 

po in t  of view, but the re  io a d e f in i t e  need fo r  t h i s  

s ize  of c ry s ta l  fo r  food p rese rva t ion  and l e a th e r  

manufacture»

Attempt to grow Inrge crystals^ In normal 

evaporators  have boon uniformly unsuccessfu l ,  because 

of the high inheren t  r a t e  of nuc léa t ion  of the so lu te ,  

and largo sodium ch lo r ide  c r y s t a l s  - r̂om Oslo c r y s t a l l i s e r s  

provide the ohly opposit ion  to ** Fishery Salt** »

A defec t  of the Oslo s a l t  i s  tha t  the commercial product 

tends to be sp h e r ica l ,  and the re fo re  p a r t  of the s a l t  

r o l l s  o f f  the h ides ,  e tc  » on which i t  has been thrown»

C r y s ta l l i s a t io n  t e s t s  were ca r r ied  out in a l l  three 

apparatus»

The c r y s t a l s  used in the growth r a te  expérimente
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were grown in  the labora to ry  Oslo c r y s t a l l i s e r ,  and 

were cu b ica l ,  with the corners and edges somewhat 

rounded» However, fo r  c a lc u la t io n  of surface area  i t  

was assumed th a t  theyifere p e r fec t  cubes, and a lso  th a t  

the side of the cube had a length  midway between the 

screen aper tu res  of the mesh size»

I t  was fu r th e r  assumed th a t  the shape of the 

c r y s t a l  remained in v a r ia n t  with size» In these 

circumstances the weight of a s ing le  c r y s ta l  of sp ec if ic  

dimensions equivalent to a l i n e a r  f a c to r  1, would be
3 2= Oi/ol i  , and the area = Cg 1̂

Then ^  ^
2-

or Wi = CgAi^

I f  the c r y s ta l  grows from to  Wg
3L

Wg = CgAg^
A

or ~ ^

%  "  
i»0o Ag = Ai (Wi'

^hat i s  t rue  f o r  one c r y s ta l  i s  t ru e  fo r  any 

f ixed number of c r y s t a l s ,  and the surface area of the 

bed of c r y s t a l s  a t  the end of the run could be ca lcu la ted  

from the i n i t i a l  a rea  and the increase  in  weight»

In the ca lcu la t io n s  of r a te s  of growth and mass t r a n s f e r  

c o e f f i c ie n t s  the average of the area  a t  the beginning 

and end of the run was taken as the area  on which growth
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took place»

S o lu b i l i ty  f ig u re s  were taken from the 

In te rn a t io n a l  C r i t i c a l  Tables ( l e t ,  Edn©, Voici ,  p«235),

la© Experiments in  a small cooling c r y s t a l l i s e r *

Hate  of c r y s ta l  growth.

The e f fe c t  of supercooling on the r a t e  of growth 

of sodium ch lo r ide  c r y s t a l s  i s  shown in  Pig©8» The 

c r y s t a l s  were i n i t i a l l y  12-18 mesh ( I d  memo), and the 

so lu t ion  v e lo c i ty  was 3 cmso/sec© through the 

c r y s t a l l i s a t i o n  tube when f ree  of crystals© The r a te  

of growth i s  expressed as gms» of so lu te  c r y s t a l l i s e d  

per hour per gram of c r y s ta l  in  the bed a t  the s t a r t  

of the run, and the supercooling i s  given in  degrees 

Centigradeo

C r y s ta l l i s a t io n  was ca r r ied  out a t  26, 38, 45^

62 and 73*»Cc

These r e s u l t s  have been rec a lcu la ted  in  Pig©9 

to give the supersa tu ra t ion  in  gms* of supersa tura ted  

so lu te  per l i t r e  of so lu t io n ,  and the growth r a te  as 

gmsc of so lu te  deposited per hour per square centimetre 

of c r y s ta l  surface© As a lready  s ta te d ,  the ac t iv e  

supersa tu ra t ion  i s  taken as the i n l e t  su pe rsa tu ra t io n  

to the bed »

The v a r ia t io n  of growth r a te  with temperature 

has been shown in  P igdO , a t  i n l e t  super s a tu ra t io n s  of
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Oo5, 1, lo5ç and 2 g m s c / l i t r e o

R eferring to  Pig*9 i t  can 1b seen th a t  the family  

of  curves shows a gradual change, from the curve a t  26®C 

w ith  a zero growth r a t e  a t  a su p e rsa tu ra t io n  of 0o5 gmsc/ 

l i t r e ,  to  the s t r a i g h t  l in e  a t  73®C passing through 

the origino For c r y s t a l l i s a t i o n  a t  temperatures of 

52, 62, and 73®C the dependence of growth r a t e  on 

sup e rsa tu ra t io n  i s  of the f i r s t  o rder ,  and a t  the lower 

temperature of some h igher  ordero

The o v e ra l l  mass t r a n s f e r  c o e f f i c i e n t s ,  iaOo 

inc lud ing  both d i f fu s io n a l  and surface reac t io n  

r e s i s t a n c e s ,  have been c a lc u la te d ,  and the  dimensions 

of  the c o e f f i c i e n t ,  K, are g m s ® / c m x  hra x gmo/c«Co % 

or cmso^hro Note th a t  t h i s  should be d is t ingu ished  

from a l in e a r  growth r a t e  even though the u n i t s  be 

the same e

In F ig o i l  the logarithms of the mass t r a n s f e r  

c o e f f i c ie n t s  a t  52, 62 and 73®C have been p lo t ted  ag a in s t  

the r ec ip ro ca ls  of the respec t ive  abso lu te  temperatures® 

The slope of the l in e  gives an a c t iv a t io n  energy f o r  

c r y s t a l l i s a t i o n  of 5«4 k i lo c a lo r i e s  per gm® mole® 

Moelwyn-Hughes s t a t e s  t h a t  a c t iv a t io n  energies of 

l e s s  than 6 k i lo c a lo r ie s  are ty p ic a l  of physical 

processes® Also an Arrhenius p lo t  (Fig®11) of the 

d i f f u s iv i t y  da ta  fo r  sodium ch lo r ide  so lu t ions  

contain ing 0®05 gm ® equivalen ts  per  l i t r e  ( loC® T®)



0-2 4

o
o

3-0 3 2 3-4 3 6

O
O
u

• / T
FIG.



/ f

51

gives an a c t iv a t io n  energy fo r  d i f fu s io n  of 4«8
75

k i lo c a lo r i e s  per  gm, mole. Van Hook found th a t  the 

a c t iv a t io n  energy fo r  sucrose c r y s t a l l i s a t i o n  decreased 

from 22"kcals per gm. mole a t  0®C to 6«.51ccals per gm. 

mole a t  70®C, and he be l ieves  th a t  a t  the l a t t e r  

temperature the c r y s t a l l i s a t i o n  of sucrose i s  a d i f fu s io n  

co n tro l led  process .
76Wilhelm, Conklin, and Sauer in v es t ig a ted  the

r a t e  of so lu t ion  of sodium ch lo r ide  in  water a t  18^C

and found K to be of the order of 30 cm s./hr .  ÎHiey 

assumed th a t  the d i f f u s iv i t y  remained constant from 

zero concen tra t ion  to the s a tu ra t io n  concentra t ion  and 

from the Berthoud r e l a t i o n  th a t

-  f
ca lcu la ted  the f ilm  thiclmess through which d i f fu s io n  

took place to be 0.016 m.mo

{ The d i f fu s io n  r a te  fo r  sodium ch lo r ide  in water 

i s  normally given as  1.35 x 10 cm. / s e c .  a t  

Making the assumption th a t  i s  cons tan t ,  where ^

I s  the v i s c o s i ty  of the so lu t io n ,  values of I) fo r  o ther  

operating  temperatures can be ca lc u la te d ,  and hence the 

e f fe c t iv e  f ilm  th ickness  i f  d i f fu s io n  con tro ls  

c r y s t a l l i s a t i o n .  The data  ,are s e t  out in  Table 1 below, 

and show a constant value fo r  the f ilm  th ickness ,  

comparable with th a t  found fo r  so lu t io n ,  v/hich i s
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normally considered a d i f fu s io n  co n tro l led  process

Table 1 -  E f fec t ive  Film Thickness.

Temp. D X 10 
(cm. /seCo)

K Film Thickness
(cmo/hro) (moEio)

52

67

73

2o8

3o4

4o3

45o7

57c2

77o4

Co 022 

0o0215

0 o 0 2 0

By p lo t t in g  mass t r a n s f e r  f a c to r ,  Jdp versus
77modified Reynolds number, Chu, K a l i l ,  and Wetteroth, 

c o r re la ted  the mass t r a n s f e r  da ta  from many types of 

f lu id i s e d  système Using t h e i r  c o r r e l a t io n ,  and th e re fo re  

t r e a t in g  c r y s t a l l i s a t i o n  as a d i f fu s io n a l  p rocess ,  

t h e o r e t i c a l  mass t r a n s f e r  c o e f f i c i e n t s  have been 

c a l c u l a t e d  and are compared with  the  experimental values 

in  Table 2® Agreement i s  not very good, but i s  perhaps 

as near  as might be expected from such a wide bas ic  

r e l a t i o n .

Table 2 -  Theore tica l  Mass Transfer C o eff ic ien ts

Temp. Size of C rysta l  Soln .V elocity  K K
(®0) (mesh) (cmso/seco) experimental) ( theor=

( oms o /hro ) e t ica l)
(cmGcfte)

52

62

73

73

12-18

12-18

12-18

8-10

3

3

3

5

45 o? 

57c2 

77o4 

87o0

47c

58o0

72 oO

74o5
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Summing up, the process of c r y s t a l l i s a t i o n  a t  

52, 62 and 73^0 has a s im i la r  a c t iv a t io n  energy as th a t  

f o r  d i f f u s io n 5 the f i lm  th ickness  in  c r y s t a l l i s a t i o n  

i s  of the same order as th a t  p resen t  in  so lu t io n ;  and 

the mass t r a n s f e r  c o e f f i c ie n t s  ca lcu la ted  from dimensional 

c o r re la t io n  are of the same order as the experimental 

values .  C r y s ta l l i s a t i o n  a t  these temperatures must 

there fo re  be co n tro l led  by d i f fu s io n  and not by a surface 

rea c t io n ,  a t  any r a te  fo r  the range of su p e rsa tu ra t io n  

and c r y s ta l - s o lu t io n  r e l a t i v e  v e lo c i ty  used in  the 

experiments.

At lower temperatures than 52®C dependence of 

growth r a te  on supersa tu ra t ion  i s  more complex, and 

th i s  suggests in te r fe ren ce  by surface alignment re a c t io n s .  

Such reac t ion s  may have a much higher temperature 

c o e f f i c ie n t  than the d i f fu s io n  process .  The condit ions  

and duration  of s t i r r i n g  to produce sa tu ra t io n  were the 

same as a t  the higher temperatures , where the growth 

curves pass through the o r ig in .  The n eg l ig ib le  r a t e s  

of growth noted f o r  su pe rsa tu ra t io n  l e v e l s  below 0.4 gms./ 

l i t r e  may be due to some e f fe c t iv e  *• energy barrier** 

or to  temporary blockage of ac t ive  growing areas  by 

im puri t ies  in  the so lu t io n .  The c r i t i c a l  su pe rsa tu ra t io n  

f o r  growth i s  only 0.15^ of the t o t a l  so lu te  p re sen t ,  

and i s  the re fo re  much smaller  than the 50^ required  fear
^ 4 7  55surface nucléa tion  as in  the Volmer model. ^



54

6 7The d is lo c a t iq n  theory, as proposed by Prank,
58and Mott and Habarpq, suggests th a t  a t  low 

su p e rsa tu ra t io ns  the r a t e  of growth w i l l  be p roport iona l  

to the square of the su p e rsa tu ra t io n ,  and hence a t  very 

low su persa tu ra t io ns  the r a te  of growth may be too small 

to measure. Also, a very small c r i t i c a l  sup e rsa tu ra t ion  

may e x i s t ,  since the c r i t i c a l  two dimensional nucleus 

must be small enough to pass betv/een d is lo c a t io n  c e n t re s .

The s a l t  used in  preparing  both c r y s t a l s  and 

so lu t ion  was an ordinary commercial product (Vacuum S a l t )  

and the water was an ordinary  Glasgow town water.

The pH of the so lu t ion  was 7.0 and i t  i s  not thought 

th a t  any notable  amount of impurity was p resen t .
S 6However, Sears has shown the in h ib i t in g  nature  of 

adsorbed oxygen on the i n i t i a t i o n  of c r y s t a l l i s a t i o n  

from the vapour, and i t  i s  poss ib le  th a t  t ra ce s  of 

adsorbed impurity produce the same e f f e c t  with  sodium 

ch lo r ide .

Substances which are known to a f f e c t  the 

c r y s t a l l i s a t i o n  of sodium ch lo r ide  are  lead and cadmium
85  78  78ions ,  urea , quaternary ammonium compounds, and

60n i t r i l o a c e t i c  ac id .  McCartney and Alexander found

th a t  carboxymethylcellulose had notable  e f f e c t s  on the
3 Îc r y s t a l l i s a t i o n  of calcium su lp h a te . Small q u a n t i t ie s

of 1 .0 . I .  C ellofas  B, the sodium s a l t  of carboxymethyl­

c e l lu lo s e ,  were added to  the so lu t ion  to give a
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concentra tion  of 30 p a r t s  per m il l io n .  This concen tra t ion  

had à very small e f f e c t  on the v i s c o s i ty  (0 .5^  in c re a se ) ,  

and thence on the d i f fu s io n  r a t e s .  As shown in  

Pigol2 the r a te  of c r y s t a l l i s a t i o n  a t  62®C was 

unaffec ted ,  but a t  26 and 38®C, region of surface r e a c t io n  

co n t ro l ,  the c r y s t a l l i s a t i o n  r a t e  drops sharp ly , with 

higher supersa tu ra t ion  le v e ls  before growth can be 

d e te c te d .

This supports the hypothesis t h a t  growth i s  

d i f fu s io n  con tro lled  a t  high temperatures and surface 

rea c t io n  con tro lled  a t  low temperatures.

E ffec t  of so lu t ion  v e lo c i ty  on the c r y s t a l l i s a t i o n  ratCo

The so lu t ion  flow was increased from 3 cm s./sec . 

to  5 cmso/seCo through the empty f l u id i s a t i o n  tube, and 

in  add it ion  8-10 m.m. c r y s t a l s  (1 .9  m.m.) were used 

a t  73®C. Results  are shown in  P ig .13.

The c r y s t a l l i s a t i o n  r a t e  increased with 

so lu t ion  flow both a t  73 and 45®C. The increase  in  

growth r a te  a t  45®C was not expected (su rface  reac t io n  

con tro l)  and the increase  in  mass t r a n s f e r  c o e f f i c ie n t  

a t  73®C (Table 2), though r e l a t i v e l y  small,  was more 

than expected, and shows a dependence of mass t r a n s f e r  

on f lu id i s in g  v e lo c i ty  to the power 0.43. This may 

have been caused by the r e l a t i v e l y  shallow beds used , 

and a wall e f fe c t  from the one inch tube.
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A f lu id i s e d  bed i s  f ree  to  expand with the so lu t io n  

flow, so th a t  the v e lo c i ty  pas t  the c r y s t a l  remains

approximately cons tan t  up to the l im i t in g  v e lo c i ty .
8 2Evans and Gerald c o r re la ted  f lu id is e d  bed mass t r a n s f e r  

ag a in s t  modified Reynolds Number and concluded th a t  the 

r e la t io n s h ip  between mass t r a n s f e r  c o e f f i c i e n t ,  K, 

f lu id i s ln g  v e lo c i ty ,  (V), and p a r t i c l e  s ize  (Dp ) ,  

could be put in  the form
0 . 95

Bed d e n s i t i e s  a t  d i f f e r e n t  f lu id i s in g  v e lo c i t i e s  

and various c r y s t a l  s ize s  were determined, and the r e s u l t s  

are shown in  P ig .14. The range of c r y s t a l  s iz e s  and 

f lu id i s in g  v e l o c i t i e s  used in  the experiments should 

cover a l l  probable opera t iona l  cond it ions .  According 

to the Evan’s r e l a t io n s h ip ,  the increase  in  mass t r a n s f e r  

between the sm alles t  c r y s t a l s  and the lowest f lu id i s in g  

v e lo c i ty ,  and the l a r g e s t  c r y s t a l s  and the h ighest  

f lu id i s in g  v e lo c i ty ,  i s  only a f a c to r  of 1 .6 .  Provided 

the c ry s ta l  bed i s  adequately f lu id i s e d ,  so lu t io n  

v e lo c i ty  and c r y s t a l  s ize  make l i t t l e  d i f fe ren ce  to 

growth r a t e .  A s im i la r  r e s u l t  has been obtained fo r
83mass t r a n s f e r  from p a r t i c l e s  in  s t i r r e d  v e s se ls .

Once the s t i r r e r  speed i s  s u f f i c i e n t  to suspend the 

p a r t i c l e s ,  increase  in  s t i r r e r  speed makes l i t t l e  

d if fe rence  to the r a te  of mass t r a n s f e r .
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Effec t  of growth r a t e  on c r y s ta l  qualityo
/ 2At r a t e s  of growth higher than Oo07 gmsc/cino x hr, 

i t  was noted th a t  the c r y s t a l  surface was i r r e g u l a r ,  

and studded by small excrescences® Microscopic 

examination showed these to be small cubes -  the so lu t ion  

v/as in  e f f e c t  deposit ing  f re sh  nu c le i  a t  the e x is t in g  

surface® The new growth could r e a d i ly  be removed by 

a t t r i t i o n ,  and would then behave as a f re sh ly  detached 

nucleus®

lbo Continuous c r y s t a l l i s a t i o n  in the labo ra to ry  

c r y s t a l l i s e r o  

E ffec t  of production r a t e  on f in e s  formation.

The c r y s t a l l i a e r  was worked as an evaporator ,  

and the so lu t io n  temperature was kept constant a t  38®Co 

Commencing with a standard weight of e i th e r  100 or 200 gms 

of 12-18 mesh (1*1 mom®) c r y s t a l s  as the i n i t i a l  bed, 

the heating water temperature was varied  to give 

deposit ion  r a te s  of from 25-100 gmse^hr® in  the 

c ry s ta l l ise r®  Each run was continued fo r  one hour®

The f in e s  separa to r  removed a l l ,  or nea r ly  a l l ,  

the so lid  fragments ca r r ied  out of the suspension®

These were about 0®1 s i s e ,  and v/ere removed a t  the

end of the run, f i l t e r e d ,  washed with methe,nol, dried  

and weighed®

The r e s u l t s  are shown in  Fig®15® The r a t i o  of 

weight of f in e s  (F) to weight of c r y s ta l  (?) deposited
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on the seed c r y s t a l s  has been p lo t ted  aga ins t  the 

depos it ion  concen tra t ion ,  which i s  the t o t a l  s a l t  

deposited pe r  hour divided by the so lu t ion  flow per 

hour, and must a lso  be the amount whereby the i n l e t  

concen tra t ion  exceeds the ou tle t*

The curves show a sharp upturn when some l im i t in g  

value of depos it ion  concen tra t ion  i s  reached* This 

l im i t in g  value i s  0*25 g m s* / l i t r e ,  equivalent to a 

production r a t e  of 52 gmso/hr* with an i n t i a l  seed load 

of 100 gms* This r i s e s  to  0*43 gm s*yiitre ,  equivalent 

to a production r a te  of 83 gms*/hr* with an i n i t i a l  

seed load of 200 gms*

How the c r y s t a l l i s a t i o n  process was continuous 

and the su p e rsa tu ra t io n  could increase  c y c l i c a l ly  u n t i l  

e i t h e r  the sup e rsa tu ra t ion  was high enough to force 

the required  amount of c r y s t a l l i s a t i o n  on the av a i lab le  

c r y s ta l  su rface ,  or u n t i l  the metastable l im i t  was 

reached, when nuc léa t ion  r e s u l te d ,  with the formation 

of f re sh  c r y s t a l  surface*

Samples were taken a f t e r  30 minutes from the 

supersa tura ted  so lu t ion  in the downtake when the 

c r y s t a l l i s e r  was operating a t  a production r a te  of 

50 gmsy^hr* with 100 gms* i n i t i a l  seed weight* The 

f ines  produced a t  t h i s  r a te  were neg lig ib le*  The samples 

were analysed fo r  t o t a l  ch loride  presen t  using s i l v e r  

nitrate^) and potassium chromate as an in d ic a to r ,  and the



59

ac tu a l  su pe rsa tu ra t io n  was found to be 1*5 gm s«/li treo

Increased production r a te  meant inc reas ing  su p e rsa tu ra t io n

and nucléation* Therefore the ” met a s ta b le  limit**

fo r  sodium ch lo r ide  so lu t io n s  under b o i l in g  condit ions

must be about 1*5 gm s*yiitre .

The logarithm ic  mean su p e rsa tu ra t io n ,  c a lcu la ted

from the i n l e t  sup e rsa tu ra t io n  of 1*6 g m s* /l i t re  and the

** depos it ion  co n ce n t ra t io n ’* of 0*25 g m s* / l i t r e ,  i s

1*38 g m s* /l i t re  (log* mean of 1*5 and 1*25 g m s * / l i t r e ) *

52 gms» of so lu te  were deposited on 2,720 sq* cms*

of c r y s t a l  surface  g iving a growth r a t e  of 019 gms* /

cm* X hr* From the cooling batch c r y s t a l l i s e r

the growth r a t e  i s  0.021 gms*/cm* x h r* , a t  1*38 gms*/

l i t r e  a t  38®G*

Sim ila r ly  a t  83 gms*/hr production r a t e  and with

200 gms* i n i t i a l  seed weight the log* mean sup e rsa tu ra t io n

i s  1*28 g m s . / l i t r e  and the growth r a t e  i s  0*016 gms*/cm*^

X h r* , and the equ iva len t  grov/th r a te  from the cooling
2

c r y s t a l l i s e r  i s  0*0185 gms*/cm* x hr*

Considering the inaccuracy in  measuring the very 

small m etastable  su p e rsa tu ra t io n ,  and the time delay 

in  the continuous c r y s t a l l i s e r  increas ing  c y c l i c a l ly  

from the depos it ion  concen tra t ion  to the equilibrium 

concentra t ion  va lue ,  there  i s  a s a t i s f a c to r y  agreement 

between the r a te s  of growth from the two c r y s t a l l i se rs  

operating  under d i f f e r e n t  conditions*
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The r a t e  of  growth of the seed c r y s t a l s  was 

ca lcu la ted  fo r  each run, and the ac t iv e  supe rsa tu ra t io n  

to  produce t h i s  r a t e  of growth was ex trapo la ted  from 

the cooling c r y s t a l l i s e r  re su l t s*  The i n l e t  

Bupersaturation was ca lcu la ted  from the a c t iv e  supersa tu ra tkn  

and the deposit ion  concen tra t ion ,  and the i n l e t  

supe rsa tu ra t ion  f o r  each run i s  p lo t ted  a g a in s t  the 

weight of f in e s  produced in  PigolG* The r e s u l t s  f o r  

the 100 and 200 gms* i n i t i a l  bed weight f a l l  f a i r l y  

c lose  toge ther ,  and show the metastable l im i t  to  be 

lo5 gm so / l i t re  as found by d i r e c t  t i t r a t i o n *

After the so lu t io n  passed through the bed the 

Bupersaturation was reduced below the le v e l  where rap id  

nuc léa t ion  takes place* Therefore the nuc léa t ion  

p ro p e r t ie s  of the system must have been s im i la r  to those 

occurring in  c r y s t a l  beds deep enough to reduce the e x i t  

supe rsa tu ra t ion  to n e g l ig ib le  proportions* In these 

circumstances the t o t a l  c r y s t a l  production can be 

c a lc u la te d ,  and the f in e  c r y s t a l  v/hich w i l l  be expected 

i s  shown, and ca lcu la ted  as a percentage of the t o t a l  

c r y s t a l  make** in  Table 3* The weights are  fo r  a 

c r y s t a l l i s e r  of the same dimensions as the experimental 

u n i t ,  but the percentage f in e s  should be v a l id  fo r  

a l l  production unite*
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Table 3 -  Percentage Pines Produced

I n le t  çupersatno Tbtal prodno Pinee i^oduct c r y s t a l s  jS Pines 
(gmso/lj (gms*) (gmso) (gmso)

1*4 294 1*5 292*5 0o5

1*5 314 3*0 311 loO

1*6 336 7*0 329 2 o l

1*7 357 15*0 342 4o2

1*8 378 2 6 ,0 352 6o9

1*9 400 300 0 362 9o5

2*0 420 50o0 370 l l o 9

A personal communication from loCdo S a l t  Division 

s t a t e s  th a t  a f in e s  f r a c t io n  of 11^ i s  obtained from f u l l  

sca le  Oslo c r y s t a l l i s e r s  when they are operating a t  an 

i n l e t  supersa t ion  of 2c2 gms^/litroo P a r t  of the 

f in e s  f r a c t io n  w i l l  a lso  be removed as product in  the 

loCcIo c r y s t a l l i s e r ,  and the agreement i s  the re fb re  good*

E ffec t  of c r y s t a l  bed weight*

In another s e r ie s  of t e s t s  the deposit ion  

concen tra t ion  was held constan t a t  0*64 gms*/l i t r e ,  and 

the i n i t i a l  seed weight s te a d i ly  decreased, with a 

r e s u l t in g  steady increase  in  the r a t i o  of the weight 

of f in e s  to the so lu te  deposited on the c ry s ta ls^

In Pigol?  the r a t i o  ^  i s  p lo t te d  aga in s t  the r a t i o  

of so lu te  c r y s t a l l i s e d  to the average weight of c r y s t a l s  

p resen t  in  the bed during the run %
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Continuous produotlom*

With the f in e s  separa to r  removed from the system 

product c ry s ta l s  vsere removed continuously  from the base 

of the c r y s t a l l i s e r .  The deposit ion  concen tra t ion  was 

0o24 g m so / l i t re ;  the bed was 19 in s ,  deep and contained 

950 gmso of c r y s ta l s  ; and product c r y s t a l s  were removed 

a t  the r a te  of 50 gmsc/hro When equilibrium  condit ions  

had been reached the product c r y s t a l s  had the weight 

composition shown in  Table 4,

Table 4 -  Weight Composition of Product C rys ta ls  a t
Equilibrium,

Crysta l  s iz e . fo by weight

8-'10 mesh 70cl

10-12 28o8

12-18 ” l o i

The product c r y s ta l s  were cubes with  the corners  

and edges rounded by abrasion^ the l a r g e r  c r y s ta l s  being 

r e l a t i v e l y  more roundedo They ware not spheru li teo^

and cleavage exposed hard shiny su r fa c e s « A sample

i s  shown in  Figol8 compared with vacuum pan sodium 

ch lo r ide  c r y s t a l s .  F ig ,19 i s  an X-ray r o ta t io n
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Figure 18, Sodium ch lo r ide  product c r y s t a l s  compared 

with ’Vacuum S a lt* ,



Figure 19® X-ray r o ta t io n  photograph of product c r y s ta l
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photograph of a s in g le  product c r y s t a l ,  and shar/s the 

ty p ic a l  p a t t e rn  of a cubic s t r u c tu r e ,  A s p h e r u l i t i c ,  

or poorly  formed mosaic c r y s t a l  would not have given such 

an even p a t t e rn .

At th i s  low r a t e  of production r e l a t i v e  to weight 

in  the suspended bed, Bupersaturation was la rg e ly  

discharged in  passage through the c r y s t a l l i s e r .  Growth 

r a t e s  were about one- ten th  of those measured with the 

IOC gmSo mass, and e f f e c t iv e  su p e rsa tu ra t io n  was 

correspondingly lower. This po in t  w i l l  be discussed 

l a t e r ,

lo .  C r y s ta l l i s a t i o n  in  the sem i-technica l  n ia n t .

95 lb s ,  of 10-12 mesh (1 ,4 -1 ,6  m,m,) c r y s t a l s  were 

tipped as a s lu r ry  in to  the c r y s t a l l i s e r  to give a 

f lu id i s e d  bed 2-3 f t ,  deep. This bed was re ta ined  

in  the g la ss  vesse l  during the c r y s t a l l i s a t i o n ,  

and only a few f in e  c r y s t a l s  c i r c u la te d  with the  s o lu t io n .  

The production r a t e  was varied  between 8 and 

33 lbs/hr® by a l t e r a t i o n  in  h e a te r  cond it ions ,  and the 

operating temperature was 73®Ce

The s ize  of the product c r y s t a l s ,  the i n l e t  

supe rsa tu ra t io n  to the bed, the production r a t e s ,  and 

the t o t a l  weight of s a l t  produced are given in  Table 5,
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Table 5 - Product of S a l t  C rys ta ls  by Semi-•technical Plante

I n l e t  
Supersat ,  
(gms./ L)

Total
Prodn.
(Iba)

Prodn.
r a t e
(Iba/hr

io by
\ +10 

 ̂ mesh

weight
1 0 -1 2  
me sh

1 2 -1 8
mesh

1 8 -3 0
mesh

—30
mesh

0o4 171 8 54c5 25 17 2c6 Do 9

Oo6 69 13 54o5 24c 5 20 loO OoO

1 . 0 139 20 85o5 8o0 lo2 OoO 4o3

lc6 100 32 50o2 3 2 .0 15o8 l o 5 0o5

Long opera t iona l  runs on a la rge  p la n t  are 

d i f f i c u l t  to  perform in  a College because of shortage 

of labour and l im ited  se rv ice ,  and th e re fo re  experimental 

runs are too sh o r t .  The r a t i o  of c r y s t a l  " make" to  

c r y s t a l  in  the f lu id i s e d  bed should be as high as poss ib le  

and c e r t a in ly  g re a te r  than was a t ta in e d  in  these t e s t s .

At the same time, the suspended mass was discharged a t  

the end of the run and screened. The s ize  d i s t r i b u t io n  

was very close to th a t  of the withdrawn product except 

fo r  a h igher proportion  of -50 mesh m a te r ia l .  The
!

r e s u l t s  were, however, co n s is ten t  with those obtained 

in  the labora to ry  t e s t s  as w i l l  be seen below.

At a production r a te  of 32 lbs,/hr, the mean 

r e te n t io n  time fo r  a bed weight of 96 lbs® i s  3 h r s , , 

while the dominant c r y s t a l  size i s  about 2 n«m,o Saeman 

has shown (Section 2d above) th a t  the dominant c r y s t a l  

s ize  must be based on a r e te n t io n  time of three  times 

the mean re te n t io n  time based on weight, and hence the
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2 modo c r y s t a l s  took 9 h rs .  to  grow. This suggests
3a l i n e a r  growth r a te  of 0.22 mom./hr® or 0.024 gmso/cm.

X h r .  From Fig® 9 t h i s  i s  seen to be equivalent to  an 

e f f e c t iv e  su p e rsa tu ra t io n  of 0.3 g m s . / l i t r e .  As the 

i n l e t  supe rsa tu ra t ion  i s  1.6 g m s . / l i t r e , t h e  o u t le t  

B upersa tu ra t ion , based on log® mean c a lc u la t io n s ,  i s
—g I

8 X 10 g m so / l i t re .  With such small o u t l e t  l e v e l s  

the g rea t  bulk of c r y s t a l  growth w i l l  take place 

around the l iq u id  i n l e t ,  as  Saeman and M il le r  noted fo r  

ammonium n i t r a t e .

I t  would follow from th i s  t h a t  the output of 

sodium ch lo r ide  c r y s t a l s  from an Oslo c r y s t a l l i s e r  

operating  a t  73®C w i l l  be almost independent of bed 

depth, and can be expressed as output per square foo t  

of c r y s t a l l i s e r  cross  s e c t io n a l  a rea .

When the i n l e t  supe rsa tu ra t io n  of 1.6 g m s . / l i t r e  

was exceeded in  an attempt to increase  production, 

no table  nucléa tion  occurred, as might be expected from 

the t e s t s  with the labo ra to ry  u n i t .  Even a t  a r a t e  of 

32 l b s / h r . ,  with the l im i t in g  i n l e t  concen tra t ion ,  there  

was some deposit ion  of c r y s t a l  a t  any i r r e g u l a r i t y  in  

the downtake pipe or f lashhead.

The c r y s ta l  q u a l i ty  was always ex ce l len t  when a 

proper bed of la rge  c r y s t a l s  was p re sen t ,  but i r r e g u la r  

masses of aggregates sometimes appeared when appreciable  

q u a n t i t ie s  of f in e s  were c i r c u la t in g  with the brine®
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I t  was noted th a t  the top 20^ of the c r y s t a l  bed

seemed to form a p a r t l y  c l a s s i f i e d  sec t ion  of smaller

c r y s t a l s ,  with the remaining 80^ of large  c r y s ta l s

evenly mixed and uniform®

No cubic h i l lo c k s  v/ere observed on the c r y s t a l

surface  as were found a t  growth r a t e s  g re a te r  than
2

0o07 gmso/cmc x hr® in  the opera tion  of the batch

cooling c ry s ta l l i se r®  This freedom from poor growth

was probably caused by the mixing of the la rge  bed

preventing  c r y s t a l s  from staying in  the region of high

sup ersa tu ra t io n  a t  the base of the c r y s t a l l i s e r ,  but

carry ing  them away to zones of lower supersaturation®
2Indeed t h i s  was the method used by M il le r  and Saeman 

to avoid poor c r y s ta l  growth formation with ammonium 

nitrate®

I t  was noted th a t  the la rg e r  the c r y s t a l s ,  the 

more rounded they became® C rys ta ls  of 1 m.m® size  

were p e r fe c t  cubes, and c r y s t a l s  above 2 m.m® size  

v/ere almost spherical® C rys ta ls  in  the batch c r y s t a l l i s e r  

always re ta ined  t h e i r  cubical hab i t  whether the 

sup e rsa tu ra t ion  was high or low® The rounding of the 

c r y s ta l  must have been caused by a t t r i t i o n  of the la r g e r  

c r y s t a l s  in  the r a p id ly  moving mixed sec t ion  of the 

bed, whereas the c r y s t a l s  under 1 m®m® s ize  suffered 

l i t t l e  a t t r i t i o n  in  the gently  f lu id i s e d  c l a s s i f i e d  

section® Since the growth r a t e  of sodium ch lo r ide  i s
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high, a r e l a t i v e l y  shallow c r y s ta l  bed i s  p o ss ib le ,  and 

a bed he igh t  o f ,  say 10 f t® , w i l l  increase  the e f f e c t  

of a t t r i t i o n ,  giving a sp he r ica l  product, without 

inc reas in g  the t o t a l  growth®

The f a c t  t h a t  the rounded c r y s t a l s  were produced 

by a t t r i t i o n  suggests th a t  growth i s  d i f fu s io n  con tro lled  

as a lready  stated® There was no tendency to rep lace  

co m ers  and edges to reform a cube, and the sphere i s  

the form which should be adopted i f  c r y s t a l  growth i s  

anisotropic® On the o ther  hand, sodium thiosulphate^ 

which shows some measure of surface  rea c t io n  co n t ro l ,  

always r e ta in s  i t s  sharp corners and edges, under

s im i la r  conditions  of a t t r i t io n ®

In general opera tion  of the p lan t  i t  was found 

to be im practicable  to s t a r t  with a sa tu ra ted  so lu t io n  

and evaporate u n t i l  nuc léa t ion  occurred® A milky 

white suspension conta in ing  a very la rge  number of nuc le i  

was formed, and could flow through the p lan t  f o r  days 

before s u f f i c i e n t  la rg e  c r y s t a l s  were obtained to form 

a proper f lu id is e d  bed® The operating  procedure was 

to take screened vacuum s a l t  of 0®2-0®5 m®m® s ize  as 

the o r ig in a l  seed, and to form a bed from t h i s  by slow

growth and c r y s ta l  removal® Id e a l ly  the p lan t  should

be r e s ta r t e d  with a bed of f u l l  s ize  c r y s ta l s  to 

enable s ize  equilibrium  to be a t ta in ed  quickly® When 

small seed c ry s ta l s  are  used to s t a r t  the bed, the c r y s t a l s



pass through a stage of poor q u a l i ty .  The small 

c r y s t a l s  tend to c lu s t e r  toge ther  to  form a l a rg e r ,  

e a s i ly  f r a c tu re d ,  opaque c r y s t a l  of 1 mom® s iz e ,  which 

must he removed from the bed before good, clean c r y s t a l s  

appear as product®

Flash nuc léa t ion  must be avoided a f t e r  seeding, 

and th i s  r e s t r i c t s  supe rsa tu ra t ion  to below lo6 gms®/litre 

under normal operating  cond it ions ,  un less  a f in e s  

separa to r  i s  in  constant use® Any in d u s t r i a l  sca le  

Oslo c r y s t a l l i s e r  should have a f in e s  separa to r  to 

des troy  excess nuc le i  which may be formed by con tro l  

fluctuations®

As the v e lo c i ty  of so lu t ion  c i r c u la t io n  i s  a lso  

l im ited  by the need fo r  proper f l u i d i s a t i o n ,  i t  

follows th a t  any i n d u s t r i a l  sodium ch lo r ide  c r y s t a l l i s e r  

has some l im i t in g  output which can be expressed in  

Sogo pounds/ square foo t  of c r y s t a l l i s e r  cross  s e c t io n a l  

area®

Id® Conclusions®

The c r y s t a l  growth of sodium ch lo r ide  can be 

co n tro l led  by f lu id  d i f fu s io n  (above 50^0) or by surface  

o r ie n ta t io n  (below 50®C)®

Mass t r a n s f e r  c o e f f i c i e n t s  of the order of 80 cmso/ 

hr® can be obtained in  a f lu id i s e d  bed of 1-2 m®m® size  

crystals®
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For co n tro l led  c r y s t a l  growth, su p e rsa tu ra t ion  

must not exceed 1®6 g m s . / l i t r e ,  and the r a t i o  o f  hourly 

production weight to  bed weight should not exceed 1 to  3o 

A f in e s  sep a ra to r  should be b u i l t  in to  i n d u s t r i a l  u n i t s  

to des troy  any excess n uc le i  which may be formed.

The l im i t in g  output of a sodium ch lo r ide
g

c r y s t a l l i s e r  producing 2 m.m® c r y s ta l s  i s  40 lbs/ft®  

of c r y s t a l l i s e r  c ro ss  s e c t io n a l  area®

Mixing of the f lu id i s e d  bed prevents  poor growth 

a t  high sup e rsa tu ra t io n  levels®

The la r g e r  the product c r y s t a l  the more spher ica l  

i t  becomes®

An Oslo c r y s t a l l i s e r  should p re fe rab ly  be put 

in to  operation  with a bed of f u l l  sized c r y s t a l s  in  the 

suspension holder®

Results  are  c o n s is te n t  from a small labo ra to ry  

sca le  up to  a 12 in s .  diameter c r y s t a l l i s e r ,  bu t f u r th e r  

experiment i s  requ ired  over a longer period fo r  

l a t t e r  tests®

The general r e s u l t s  from th i s  sec t ion  on Sodium 

Chloride C r y s ta l l i s a t i o n  were summarised in  a paper 

presented to the I n s t i t u t i o n  of Chemical Engineers

(London Section) in  October, 1959® (Bain and Rumford,
/

Trans® Instn® Chem® Eng®, 1960, 38, 10)® /
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2o The C r y s ta l l i s a t io n  of Hydrated Sodium Thiosulphate(Hvno).

I t  i s  d i f f i c u l t  to produce sodium ch lo r ide  as 

a la rge  grained c r y s t a l ,  and. th e re fo re  ” hypo” was 

chosen as a so lu te  because i t s  ease of c r y s t a l l i s a t i o n  

to  give la rge  c r y s t a l s  gave a comparison between extremes®

I t  i s  a lso  c h a r a c t e r i s t i c  of the so l id  hydrate c r y s t a l  

type as compared to the anhyarous sodium ch lo r ide .

Hypo i s  co lo u r le s s ,  and in  a g i ta te d  so lu t io n  c r y s t a l l i s e s  

as b e a u t i fu l ly  formed monoclinic prisms® The i n d u s t r i a l  

” pea** c r y s t a l s  are some 5 m.m® in size® The 

temperature c o e f f i c ie n t  of s o lu b i l i t y  i s  high g and the 

s a l t  melts in  i t s  own water of c r y s t a l l i s a t i o n  a t  48®Co

2a® Cooling c r y s t a l l i s e r  experiments®

Operational proceedure was s im ila r  to th a t  given 

fo r  sodium ch lo r id e ,  except th a t  the dura tion  of each 

run was 12 minutes. The c r y s t a l s  and so lu t ion  used 

in  the experiments were prepared from pea c r y s ta l s  of 

commercial ** hypo** and Glasgow tap w ater ,  and the 

experimental c r y s t a l s  were prepared in  the labora to ry  

Oslo c ry s ta l l ise r®

The surface area  of the c r y s ta l s  was estimated 

der iv ing  an experimental constant o in  the equation

W = c A 2

where W i s  the weight of the c r y s ta l  and A i s  the 

surface area of the crystal® The dimensions of 50
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la rge  c r y s t a l s  (6 mom®) v/ere measured microscopically

and the surface area  calculated® The constan t  c was

fourfd to be 0®136 gms/cm®^

The same assumptions fo r  a c t iv e  supersa tu ra t ion

and c r y s t a l  surface area  were made as fo r  sodium

chloride® S o lu b i l i ty  da ta  were taken from the I®C®T®

(1 s t  Edn®, Volo4, p®232) and so lu t io n  d e n s i t i e s  from
athe work of Butler®

Rate of c r y s ta l  growth®

Fig®20 shov/s the e f fe c t  of su p e rsa tu ra t io n ,  

expressed in  gms® of supersa tura ted  so lu te  (sodium 

th iosu lpha te  pentahydrate) per l i t r e  of so lu t io n ,  on 

the r a te  of c ry s ta l  growth, in  gms® of so lu te  deposited 

per hour, per square centimetre of c r y s t a l  surface® 

C r y s ta l l i s a t io n  was ca r r ied  out a t  24, 30, 35 

and 40®Co The c r y s ta l s  used were 6-^10 mesh (2-^3 m®m® ) ,  

and the so lu t ion  v e lo c i ty  through the empty c r y s t a l l i s a t i o n  

tube was 2®7 cms®|sec®

At 30, 35, and 40®C^the r a te  of grov/th i s  l i n e a r  

with respec t  to su p e rsa tu ra t io n ,  and temperature has 

no e f f e c t  on the c r y s t a l l i s a t i o n  rate® At 24®0 the 

l a t e  of grov/th i s  slower and more random than a t  the 

o ther  temperatures®
sThe mass t r a n s f e r  c o e f f ic ie n t  i s  4®3 gms®/cm® % hr®

X gnio/ccCc (4c3 cms®/hr® ) ,  v/hich i s  about one-tenth
sof the value found fo r  sodium ch lo r id e .  Butler  measured
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the l i n e a r  r a te  of growth of la rge  s ing le  c r y s t a l s

of hypo r o ta t in g  in  supersa tu ra ted  solutiono When

B u t le r ’ s r e s u l t s  are reca lcu la ted  to give a mass t r a n s f e r
2c o e f f i c i e n t ,  i t  i s  found to be 0*82 gms*/ cmo x hr*X 

gmo  ̂c o c o

In PigoSl the r a t i o  of supersa tura ted  concen tra t ion  

to sa tu ra ted  concentra tion  i s  expressed as a percentage, 

and p lo t te d  aga ins t  the r a te  of growth» The e f f e c t  

of t h i s  i s  to  accentuate the d i s p a r i ty  between growth 

r a te  a t  24®C and the r a te s  a t  higher temperatures, v/hich 

show no increase in  grov/th r a te  with temperature»

Butler  a lso  found no increase  in  growth r a t e  

with temperature»

Fig»22 shows the e f f e c t  of su pe rsa tu ra t io n  on 

growth r a te  fo r  c r y s t a l s  a t  a somewhat h igher

so lu t ion  v e lo c i ty  of 3o9 cms»/sec« The growth r a te s  

a t  ZO and 40®C l i e  toge ther ,  while the r a t e s  of grov/th 

a t  24®C are s l i g h t l y  lower»

E ffec t  of c ry s ta l  s ize  and f lu  id 1 sing velocityo.

The experiments i l l u s t r a t e d  in  Pig»23 show th a t  

an increase  in  so lu t io n  v e lo c i ty  and c r y s t a l  s ize  gives 

s l i g h t l y  higher growth r a t e , though these are not 

p roport iona l  to the product of the v a r iab le s  » As the 

c r y s ta l  bed i s  not s t a t i c  but tends to expand in  the 

normal v/ay of f lu id i s in g ,  th i s  i s  not surprising»
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Two c ry s ta l  s ize s  were used^ 2=3 m*mo and 6-7  mdao 9 

a t  flow r a t e s  of  2o7 and 3o9 cnso/sec*. re sp ec t!v e ly .

The e f f e c t  of  forced convection may be considered as 

varying with the Reynolds Number, or in  t h i s  case 

(V.Dop )o Taking the l i n e s  in  Pigo23 as guide, the 

r a t e s  of growth a re  as 1 to lo4 ,  while the r e l a t i v e  

values of (VoDp ) are  1 to  3o8o This suggests a value 

f o r  the Reynolds Number index of 0o25 ioSo deposit ion
0o25v a r ie s  as R̂

E ffec t  of v is c o s i ty  on growth ra teso

** Solutions** of Cellofaa  B were made up containing 

up to 0,8 g m s o j l i t r e , and growth r a te s  measured^ The 

ad d i t iv e  appeared to have no e f f e c t  whatever ( P ig ,24), 

but i t  was suspected th a t  i t  had merely dispersed in  

a f in e  suspension. This was conclusively  demonstrated 

by measurements of v i s c o s i ty  ( F ig ,25), which shows 

id e n t i c a l  values with and without C ello fas  B add i t ion .

The form of the v iscos i ty - tem pera tu re  curve v/ith 

sa tu ra ted  hypo so lu t ion  i s  of g rea t  i n t e r e s t  and w i l l  

be discussed l a t e r .

Comparison of r a te  of CTowth and r a te  of so lu t io n ,

6-7 m,m, c r y s t a l s  were d issolved in  undersaturated  

so lu t ion  of known concentra tion  a t  30®C, and the r a t e s  

of so lu t ion  are compared v/ith r a te s  of growth in  F i g ,26,

The r a t e s  of growth f a l l  only s l i g h t l y  belov/ the r a t e s  of 

so lu t io n ,  but they are much more i r r e g u la r  than the l a t t e r .
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Discussion of, r e s u l t s  from cooling c ry s ta l l i s e ro  

The c r y s t a l l i s a t i o n  r a te  i s  found to be 

p ro p o rtio n a l to the supersa tu ra tion^  and temperature has 

l i t t l e  e f fe c t  on the c r y s t a l l i s a t i o n  ra te*  I f  the 

c r y s t a l l i s a t i o n  process were su rface  re a c tio n  co n tro lled  

a la rg e  temperature c o e f f ic ie n t  of c r y s t a l l i s a t i o n  would 

be expected, as found by Van Hook in  the c r y s t a l l i s a t i o n
76

of sucroseo On the o ther hand i f  the rea c tio n  i s  . 

d i f fu s io n  co n tro lled  there  should be a small temperature 

c o e f f ic ie n t  of c r y s t a l l i s a t i o n  as found fo r  sodium 

ch lo ride  in  the temperature range (5 0 —73®G)o The aero 

tem perature c o e f f ic ie n t  can be most re a d i ly  explained 

by assuming th a t  both processes are a c t iv e ,  and th a t  

one has a negative tem pérature c o e f f i c ie n t<>

The v is c o s i ty  of the sa tu ra ted  s o lu t io n , co n tro lled  

in  p a r t  by tem perature, and in p a r t  by s o lu b i l i t y ,  i s  

r e l a t iv e ly  constan t from 20 to 30®C, and moves sharp ly  

upwards on e i th e r  lim ito  Also the concen tra tion  

in c reases  greatly , above 50®C, and since the d i f f u s iv i ty  

w il l  probably decrease with in creasing  co n cen tra tio n , 

then th e re  should be a tendency fo r  a maximum growth 

r a te  a t  30®Ce

The d i f f u s iv i ty  of sodium th io su lpha te  i s  given 

in  the loCcTo as 0o62 x 1 0  cmc j  seco a t  1 0 ^0 , and a 

concen tra tion  of I d  gm* m oles^ litreo  Making the 

assumption th a t  the d i f f u s iv i ty  does not decrease fu r th e r
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w ith co n cen tra tio n , and th a t  i s  c o n s ta n t,  values

fo r  o th e r  operating  tem peratures can be c a lc u la te d ,  

and hence the e f fe c t iv e  f ilm  th ic la iess i f  d if fu s io n  

c o n tro ls  the c r y s t a l l i s a t i o n  p rocess . The da ta  are s e t  

out in  Table 6 .

Table 6  « E ffe c tiv e  f ilm  th ick n ess .

Temp®
®C

D z 10 
cm.^/ see.

K ,
cmscj h r .

Film th ickness  
m c m o

24 0.7 2 o0 0,126

30 0o73 4o 3 Go 06

35 0o73 4o3 0o06

40 0o67 4o3 0,056

The d i f f u s iv i ty  i s  seen to  vary very l i t t l e  w ith 

tem perature, which suggests th a t  the c r y s t a l l i s a t i o n  

process i s  d if fu s io n  c o n tro lle d .  However, the f ilm  

th ic la iess are about double those considered to show
74

a d if fu s io n  c o n tro lled  p rocess , although there  must 

be some doubt about the d i f f u s iv i ty  value used. I f  the 

d i f f u s iv i ty  does decrease with in c reasing  concen tra tion  

then the film  th icknesses ca lcu la ted  are too la rg e ,  

e sp e c ia lly  a t  35 and 40®Co

There i s  a lso  the increase  in  growth r a te  w ith 

Reynold’s Number which suggests d if fu s io n  c o n tro l .  

C ello fas  did not d isso lv e  in  the sa tu ra ted  s o lu t io n , and 

the v is c o s i ty  could not be increased by th i s  means to
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determine more r ig o ro u s ly  the e f fe c t  of v is c o s i ty  on 

growth r a te .

Figo26 showed th a t  the r a te  of so lu tio n  was only 

s l i g h t ly  f a s t e r  than the r a te  of c r y s t a l l i s a t i o n .

This would be the case i f  the d if fu s io n  of so lu te  to  

the c ry s ta l  surface was followed by a c r y s ta l  su rface 

alignment which was very f a s t ,  but not in s tan tan eo u s , 

and of the order of four times as f a s t  as the d if fu s io n  

mechanismo

The alignment rea c tio n  w i l l  probably be very 

s e n s i t iv e ,  and may cause the v a r ia t io n  found in  

c r y s t a l l i s a t i o n  r a t e s .  I t  i s  po ssib le  th a t  a t  lower 

tem peratures i t  becomes more im portant, and may have 

caused the reduction  in  c r y s t a l l i s a t i o n  r a te s  found 

a t  24®C, and th a t  an a c c e le ra t io n  in  the alignment 

re a c tio n  a t  40®C balances the drop in  the r a te  of 

d if fu s io n .

Growth r a te s  were some five  times as high as 

those of B u tle r . B utler increased the speed of ro ta t io n  

of the  c ry s ta l  u n t i l  there  was no fu r th e r  increase  in  

c ry s ta l  growth, and assumed th a t  a l l  the r e s is ta n c e  to
3 3growth then lay  in  the su rface  re a c t io n .  Holden

of rotat-iOA
claimed th a t  the d irection^^of a c ry s ta l  has to be 

reversed frequ en tly  to prevent v e i l s  and occlusions 

caused by regions of poor d if fu s iv e  flow, and th a t  the
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ro ta t in g  c r y s ta l  can ca rry  round with I t  an atmosphere 

of s tagnan t sa tu ra ted  s o lu t io n « The p resen t r e s u l t s  

would seem to prove th a t  the f lu id is e d  bed g ives more 

accura te  in d ic a t io n  of growth phenomena than the method 

of Butlero

2bo The shape of hypo c r y s ta l s  obtained from f lu id is e d  

bed c r y s ta l l i s e r s o

Hypo c r y s t a l l i s e s  as c o lo u r le s s ,  monoclinic 

prismso PigeSVa shows.a ty p ic a l  c ry s ta l  h a b i t«

C rysta ls  produced from an evaporative f lu id is e d  bed 

c r y s t a l l i s e r  were found to have the  h a b it  shown in  

Pigo27b, end the same shape was preserved on fu r th e r  

growth in  a f lu id is e d  bed cooling  unito

Pigo27c i s  a plan view of the (001) face  of the 

c r y s ta l .  Of the prism faces  (llO^ was found to be small^ 

and was absent on many of the c r y s ta l s .  In every c r y s ta l  

one of t h e ( 0 1 0 ) faces  was la rg e ,  and the o ther  very 

smallb In every case i t  was found th a t  i t  was the 

( 0 1 0 ) face which was sm all, and the ( 0 1 0 ) face which was 

la rge  = B u tle r  foiind th a t  occas iona lly  one of the (010) 

faces stopped growing, Once again th i s  suggesto^ th a t  

cond itions  in  the f lu id is e d  bed werë more uniform, and 

neare r  the optimum than the cond itions  of B u t le r ’ s 

experiments.
The c ry s ta l s  were some 1,5 times broader across 

the ( 0 1 0 ) and ( 1 1 0 ) faces  than a c ry s ta l  of commercial
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hypo with the same leng th  of prism face . I t  i s  known 

th a t  much of the hypo of commerce i s  made in  a rocking 

c r y s ta l l i s e r o

The prism faces were smooth, lu s t ro u s ,  and 

o p t ic a l ly  c l e a r ,  although occlusions could be seen in s id e  

some of the c iy s t a l s .  These occlusions were u su a lly  

caused by a i r  bubbles sticking to  the c ry s ta ls  when they 

were sm all. The (001) faces  were not smooth, and the 

c r y s ta l s  were not o p t ic a l ly  c le a r  through the 0  ax is .

On a l l  the faces  of (00l{ , and the (010) fa c e s ,  a 

deep la y e r  system was v is ib le  to the eye, s ta r t in g  from 

the edges o f  the c ry s ta l  and proceeding towards the 

ce n tre ,
/ 2At growth r a te s  above 0,22 gmso/cmo x h r ,  the 

c ry s ta l s  l o s t  t h e i r  l u s t r e ,  and were covered with step  

l ik e  grov/thso Unlike sodium ch lo rid e , hypo c ry s ta ls  

a t  a l l  times preserved th e i r  d e f in i te  faces and edges, 

even though c r y s ta l  momentum, and th e re fo re  the e f f e c ts  

of a t t r i t i o n ,  must have been of the same order in  both 

systems. This suggests some measure of surface re ac tio n  

c o n tro l ,  w ith  the c r y s ta l  p e r s i s te n t ly  rep lac ing  

fra c tu re d  co rners  e t c .

However, d if fu s io n  must p lay a big p a r t  in  

changing the h ab it  of the c ry s ta lo  A c ry s ta l  from 

the f lu id is e d  bed changed its  shape v/hen suspended by a 

thread in  the so lu t io n ,  which was sa tu ra ted  a t  24®G and
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cooled to  18®Go The (010) faces  tended to  even up in  

s iz e ,  and the non prism faces s ta r te d  to growo A lso 9 

c ry s ta l s  grew on the thread supporting the la rg e  c r y s t a l ,  

and these  c ry s ta ls  had the h a b it  of Pigo26a except th a t  

{111 J was missing I the (010) faces  wereec^ually developed, 

which e lim ina tes  the  suggestion of im purity  causing the 

d iffe ren ce  in  t h e i r  growth r a te  in  the f lu id is e d  bedo

Growth formationsc

Three types of c ry s ta l  growth form have been foundo 

le P e r fe c t  smooth growth on the prism faces of the c r y s t a l s ,  

except fo r  face ( 0 1 0 )*

2b Layer growths on (001^ , face (010), and the underside 

of c r y s ta l s  grown in  stagnant so lu tio n .

3c Gross lay e r  growth a t  high su p e rsa tn ra t io n .
5 g B4I t  has o ften  been s ta te d  th a t  good q u a l i ty

c r y s ta l s  can only be grown up to a l im it in g  maximum 

r a te .  The p resen t v/ork confirms t h i s ,  but a lso  suggests 

th a t  the maximum r a te  v a r ie s  from face to  f a c e , and th a t  

i t  i s  only when gross la y e r  formation occurs th a t  the 

c ry s ta l  q u a li ty  r e a l ly  becomes poor.

At low su p e rsa tu ra tio n s  the prism faces  of the 

c r y s ta l  tend to grow smoothly, probably by a screw 

d is lo c a t io n  mechanism, to  give lu s t ro u s ,  o p t ic a l ly  f l a t  

surfaceSo Whan the  su p e rsa tu ra tio n  becomes g re a te r

than 50 g m s .^ litre  the surface becomes covered with 

rough steps and pro truberances which are  e a s i ly  broken
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away from the c r y s ta l .  C rysta l growth takes place by 

deposition  of c r y s ta l lo id s ,  as in  the concept of 

Pederov^® or by d e n d r i t ic  growth.

A c r y s t a l ,  ly ing  on the  bottom of a pool of 

u n s t i r re d  supersa tu ra ted  s o lu t io n , shov/ed on i t s  

underside the s tru c tu re  shown in  P ig.27d. The s tep s  

were of the order of 0 .01->0.1 m.m. th ic k ,  which i s  

many times the molecular h e ig h t,  and the c ry s ta l  was 

roughly square in  p lan . I t  i s  suggested th a t  n uc léa tio n
48,4 9took place a f t e r  the K ossel-S transk i model a t  the

co m ers  and edges of the c r y s t a l ,  where the su p e rsa tu ra tio n

v/as h igh, and th a t  lay e r  completion took place very

slowly under the middle of the c r y s ta l  where the supply

of so lu te  Was poor. Since growth round the edges of the

c r y s ta l  would take place ra p id ly ,  the system r e s u l t s

in  a ’’ p ic tu re  fram e” slowly moving in  towards the

cen tre  of the c r y s ta l .  Presh n u c léa tion  would take

place a t  a corner above t h i s ,  and an inverted  pyramid

i s  produced with the f i r s t  la y e r  meeting in  the cen tre

of the face while the nth la y e r  i s  s t a r t in g .  Beep

la y e rs  have o ften  been observed on c r y s ta l s  while the

c r y s ta l s  were grov/ing by means of sorev/ d is lo c a t io n s .

I t  has been proposed th a t  p i l in g  up of the molecular

growth lay e rs  i s  caused by f lu c tu a t io n s  in  the

concen tra tion  a t  the i n i t i a t i n g  c en tre . A s im ila r  method
'

of la y e r  th ickening can be proposed fo r  surface 

n u c léa tio n  and la y e r  completion.
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The step  heigh t of the lay e rs  v/as so g rea t  th a t  

the r e a l  mechanism of growth i s  do u b tfu l, and could 

only be a sce rta in ed  by microscopic examination a t  very 

high m agn ifica tions . I t  seems t r u e ,  however, th a t  

growth took place a t  the corners and edges of the face 

where the d if fu s iv e  p re se n ta t io n  of so lu te  was h ig h es t .

At the o p era tio n a l su p e rsa tu ra tio n  in  the continuous 

c r y s t a l l i s e r  (12 g m s . j l i t r e ) ,  the c r y s ta l s  shov/ed la y e r  

growth on the (OOl) and (010) faces . In an analogous 

manner to the above, n uc léa tion  takes place a t  the face 

corners and edges, and lay e rs  spread in towards the 

cen tre  forming a p i t  of encirclem ent. A plan of the 

(001) face i s  shown in  P ig .2 6 c , and i t  can be seen how 

the lay e r  growth follows the shape of the c r y s ta l  fa c e , 

i . e .  the d is tance  from edge of face to edge of lay e r  

remains constan t around the c r y s ta l .  An explanation  

of th i s  may be th a t  most of the d if fu s iv e  flow of 

so lu te  w i l l  come from the slower growing prism fa ce s ,  

and the g re a te s t  su p e rsa tu ra tio n  and concen tra ti  on 

g rad ien t w il l  be a t  the  edges of the f a c e , with reduced 

su p e rsa tu ra tio n  a t  the face cen tre  g iving reduced growth 

r a t e .

Por some unknown reason these  faces are more 

e a s i ly  nucleated than the o th e rs ,  and in  p a r t ic u la r  the 

010 face i s  more e a s i ly  nucleated  than the QIC facec 

Once the 010 face grov/s by surface nucléa tion  i t  p u l ls
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the  d if fu s io n  f i e ld  away from the 010 face which w i l l  

then grow more slow ly.

C rys ta ls  which formed on a thread  holding a 

la rg e  growing c r y s ta l  were in  a f i e ld  of lov/ su p e rsa tu ra tio n  

because of r i s in g  c u rre n ts  of l i g h t  so lu t io n .

These c ry s ta l s  had the h ab it  shown in  Pig.26a except 

th a t  ( i l l )  was m issing . No lay e rs  were observed on 

these  c r y s ta l s ,  and th e re fo re  a t  low su p e rsa tu ra t io n s , 

and w ith  no s t i r r i n g ,  the whole c r y s ta l  w i l l  grow
70slowly through screw d is lo c a t io n s .  Williams found 

th a t  lead n i t r a t e  grew a t  high su p e rsa tu ra tio n s  by 

surface  n u c léa tio n , and a t  low su p e rsa tu ra t io n  by screw 

d is lo c a t io n s .

The faces  which grew by surface  n u c léa tio n  were 

rougher in  appearance than the prism fa c e s ,  and the 

c r y s ta l  was not c le a r  through the C a x is .  The product 

c r y s t a l s ,  though c le a r  enough fo r  an in d u s t r ia l  c r y s t a l ,  

and of b e t t e r  q u a l i ty  than the pea c r y s ta l s  used to  

prepare so lu tio n , did not have the p e r fe c t  lu s t r e  and 

c l a r i t y  of the small c r y s ta l s  growing on the th read , 

or of the c ry s ta l s  shown in  B u t le r ’s work. This would 

of course be caused by s l ig h t  m is f i t  in  the la y e rs .

I t  has o ften  been claimed th a t  s l ig h t  f a u l t s  in  

the c ry s ta l  w il l  increase  the speed of growth by a 

fa c to r  of about fo u r .  The growth r a te  found in  t h i s  

work was f iv e  times th a t  found by B u tle r .  The increased
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growth r a t e , and the im perfection  in  o p t ic a l  q u a l i ty ,

a re  obviously caused by the la y e r  formations on the f a s t

growing faces . B u tle r  used the same range of

su p e rsa tu ra t io n , and yet he only found rap id  growth of

the 010 face o ccas io n a lly . Thin d if fu s io n  film s are

produced by the turbulence of the f lu id is e d  bed, and

these  must aid  surface n u c léa tio n  a t  moderate supersa tura tions

(12 g m s . / l i t r e ) , which are g re a t ly  below the 50^ excess

of s a tu ra t io n  concen tra tion  demanded by theory . There

i s ,  in  a f lu id is e d  bed, considerab le  rubbing of s o l id

su rface , which may cu t down the th ickness  of any

s ta t io n a ry  la y e r  and increase  surface  f a u l t s ;  some

attem pts have been made to expla in  heat t r a n s f e r

r a te s  by th i s  hypothesis .

2c. Continuous production of Hypo c r y s ta l s .

C ry s ta ls  of Hypo were grown continuously  in  

the lab o ra to ry  Oslo c r y s t a l l i s e r  which has been 

p rev iously  described . C r y s ta l l i s a t io n  was c a r r ie d  

out by evaporation under vacuum a t  30®C, so th a t  a 

comparison could be made with sodium ch lo ride  production 

under s im ila r  co n d itio ns . Cold sa tu ra te d  so lu t io n  was 

fed to the p la n t .

I t  was found p o ss ib le  to produce pea c r y s ta l s  

(6 m.m.) from 800 gms. of bed a t  a production r a te  of 

200 gms Y h r . The f lu id i s a t io n  v e lo c i ty  was 1.6 cm sc/sec ., 

and the bed was 1.7 f t .  deep. Product c r y s ta l s  a re



Figure 28o Product hypo c ry s ta ls
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shown in  P ig .28.

The c r y s ta l  shape has been p rev iously  d iscussed , 

and the c r y s ta l s  were c le a r ,  w ith a good l u s t r e ,  and 

th e re  was very l i t t l e  tw inning. The bed consis ted  of 

la rg e  6 m.m. c r y s ta l s  w ith  a very few small c r y s ta l s  

above i t .  The depo s itio n  concen tra tion  was ca lc u la ted  

from the production  r a te  and the so lu tio n  flow to be 

2 gms . / l i t r e ,  and the r a te  of growth was 0.05 gms./cm.^

X h r . .  Prom the cooling r e s u l t s  the a c tu a l  su p e rsa tu ra tio n  

was 12 g m s . / l i t r e ,  and th e re fo re  the i n l e t  su p e rsa tu ra tio n  

to the bed was 13 g m s . / l i t r e , and the e x i t  su p e rsa tu ra tio n  

was 11 g m s . / l i t r e .

The production  r a te  of 200 gm s./h r. i s  equ ivalen t
g

to 40.5 lb s /h r . x f t .  of c r y s t a l l i s e r  c ro s s -s e c t io n a l  

a re a ,  fo r  6 m.m. c r y s t a l s ,  a t  a bed heigh t of 1.7 f t .

In s ta r t in g  the u n i t ,  2.5 l i t r e s  of so lu tio n  

were sa tu ra ted  in  the  p la n t  a t  40®C and cooled over 

30 minutes to  36.5°C. 300 gms. of product v/ere

obtained of 1.5 m.m. s iz e ,  a f t e r  spontaneous 

n u c léa tio n  had occurred. I f  a c le a r  so lu tio n  i s  

evaporated to the n u c léa tio n  p o in t the n u c le i formed 

are  r e l a t iv e ly  few in  number, and grow ra p id ly .  By 

removing h a l f  o f the c r y s ta l s  p e r io d ic a l ly  a bed of 

la rg e  c ry s ta l s  i s  soon developed. There i s  no such 

d i f f i c u l t y  as th a t  met v/ith in  s t a r t in g  a sodium ch lo ride  

u n i t .
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M etastable l im i t .

Hypo I s  ab le  to  bold a la rg e  m etastab le  l im i t  

before spontaneous n u c léa tio n  occurs. The degree o f 

su p e rsa tu ra tio n  p o ss ib le  w ithout n u c léa tio n  depends very 

much on the co nd itions  under which the so lu t io n  i s  

p laced . I t  i s  p o ss ib le  to  cool a h o t,  con cen tra ted , 

hypo so lu tio n  to  room temperature w ithout c r y s t a l l i s a t i o n  

tak ing  p lace .

When c i r c u la t in g  in  the p la n t  so lu tio n  was 

supercooled by 2.4^0 a t  30®C before n u c léa tio n  took 

p lace . This g ives a m etastable  l im i t  o f 90 g m s . / l i t r e .  

However, a so lu t io n  which was s t i r r e d  ra p id ly  in  a 

beaker nucleated  a t  50 g m s . / l i t r e  su p e rsa tu ra tio n  a t  

30®G. The mechanical impact in  rap id  s t i r r i n g  must 

be g re a te r  than the impact tak ing  place in  passage 

through a Monopump. There i s  a lso  the im portant f a c to r  

to  consider th a t  growth becomes of a poor type a t  

50 g m s . / l i t r e ,  and th e re fo re  we may say th a t  the  

m etastable l im i t  a t  30®C i s ,  fo r  p r a c t ic a l  purposes,

50 g m s . / l i t r e ,  o r a su p e rsa tu ra t io n  r a t io  of 1.048.

Design of a la rg e  u n i t .

Assuming an i n l e t  concen tra tion  of 40 g m s . / l i t r e ,  

and an e x i t  co n cen tra tio n  of 10 g m s . / l i t r e ,  then the 

lo g . mean su p e rsa tu ra t io n  i s  22 g m s . / l i t r e .  The

su p e rsa tu ra tio n  system, whether by cooling  or evaporation ,
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must increase  the su p e rsa tu ra t io n  by 30 g m s . / l i t r e  on

each passage through the system.

At a su p e rsa tu ra tio n  of 22 gms . / l i t r e  the
2

r a te  of growth i s  0.095 gms./cm. x  h r ;  and a t  a

so lu tio n  v e lo c i ty  of 1 .6  cm sojsec., the production ra te
/ 2w i l l  be 360 lb s /h r .  x f t .  o f c ro s s -s e c t io n a l  a rea .

I f  the bed c o n s is ts  of 6 m.m. c r y s ta l s  then there  

must be 500 lbs. of c r y s ta l s  per sq. f t .  of c r y s t a l l i s e r  

c ro s s -s e c t io n a l  a rea , to  absorb the su p e rsa tu ra t io n . 

Prom the suspension d e n s ity  of the small c r y s t a l l i s e r  

th i s  would give a bed 11 f t .  deep.

A c r y s t a l l i s e r  4 f t .  in  diam eter and 12 f t .  deep 

w i l l  give a production r a te  of 1 .8 tons per hour of 

la rg e  hypo c r y s ta l s .  I t  v/as not p o ss ib le  in  the time 

a v a ila b le  to  chock these  conclusions w ith the 12 in s .  

diam eter c r y s t a l l i s e r .

2d. Conclusions.

The r a te  of growth o f  hypo has been determined 

in  a f lu id is e d  bed over a temperature range of 24-^40®C 

The c r y s t a l l i s a t i o n  i s  f i r s t  order w ith re sp ec t to 

su p e rsa tu ra t io n , and tem perature has l i t t l e  e f f e c t  on 

the c r y s t a l l i s a t i o n  r a te  over the temperature range 

s tu d ied .
2

The mass t r a n s f e r  c o e f f ic ie n t  in  4 .3  gms./cm. x h r  

X gm./o.G.o
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The re e u l to  suggest th a t  c r y o ta l l l s a t io n  takes 

p lace by d if fu s io n  to  the  su rface  followed by a very 

f a s t ,  bu t no t instantaneouo o r ie n ta t io n  a t  the c r y s ta l  

surfaceo Solu tion  i s  only s l ig h t ly  f a s t e r  than

c r y s t a l l i s a t i o n  a t  the tem perature and so lu t io n  v e lo c i ty  

used in  the experiments.

The c ry s ta l  shape produced seems to be p a r t i c u la r  

to f lu id is e d  bed c r y s t a l l i s e r s ,  and i s  sim pler than 

th a t  o f  c r y s ta l s  grown from stagnant so lu tio n  o r  rocking 

c r y s t a l l i s e r s .

The m etastable l im i t  fo r  n u c léa tio n  i s  o f the 

order of 90 g m s . / l i t r e  but a t  su p e rsa tu ra tio n s  of above 

50 g m s . / l i t r e  the c r y s ta l  q u a l i ty  becomes poor. The 

n u c le i  produced a f t e r  spontaneous nu c léa tio n  are  few 

in  number and grow r a p id ly ,  and th e re fo re  a bed of 

c r y s ta l s  can be r e a d i ly  formed from a sa tu ra te d  so lu tio n  

f re e  of c r y s ta l s .

The mass t r a n s f e r  c o e f f ic ie n t  i s  only one te n th  

of th a t  found fo r  sodium c h lo r id e ,  but because o f  the 

high m etastable l im i t  p o ss ib le  production f ig u re s  are  

high. 6 m.m. c r y s ta l s  were obtained from a f lu id is e d  

bed 1.7 f t .  deep a t  a ra te  equivalen t to  40 I b s /h r .  x f t  

o f c r y s t a l l i s e r  c ro s s -s e c t io n a l  a rea . I t  i s  estim ated 

th a t  1 .8  to n s /h r .  of*pea c r y s ta l s  could be obtained from 

a c r y s t a l l i s e r  w ith  a suspension holder 4 f t .  in  diam eter 

and a c ry s ta l  bed 11 f t .  deep.

o



88

3o The C r y s ta l l i nation of Barium Hydroxide Ootahydrate 

(B a r im  H ydrate).

Barium hydroxide so lu tio n s  are  s tro n g ly  a lk a l in e ,  

and a lk a l in e  ea r th s  are  normally d i f f i c u l t  to  c r y s ta l l i s e o  

Tshen cooled ra p id ly  a hot so lu tio n  of barium hydroxide 

c r y s t a l l i s e s  d e n d r i t ic a l ly  to  give very th in ,  f r a g i l e  

p la te s .  Barium hydroxide ootahydrate c r y s ta l s  ra p id ly  

absorb carbon dioxide from the a i r ,  and the c r y s ta l s  

become covered w ith  a la y e r  o f barium carbonate . This 

covering i s  not p ro te c t iv e ,  and th e re fo re  the id e a l  

shape of c r y s ta l  to  r e s i s t  a t ta c k  i s  a sphere.

Moreover, a sp h e r ica l  type of c r y s ta l  f i l t e r s  much 

f a s t e r  than a f la k e .

Sodium ch lo ride  has a f a i r l y  low s o lu b i l i t y ,  

and a small temperature c o e f f ic ie n t  of s o lu b i l i t y ;  

hypo has a high s o lu b i l i ty  and a la rg e  temperature 

c o e f f ic ie n t  of s o lu b i l i ty ;  barium hydrate has a f a i r l y  

low s o lu b i l i ty  and a la rg e  temperature c o e f f i c ie n t  o f 

s o lu b i l i ty .  The physica l p ro p e r t ie s  o f barium hydrate 

showed i t  to  be qu ite  a s u ita b le  so lu te  fo r  extending 

the rajige of experiment. S o lu b i l i ty  da ta  were taken 

from the Î.C .T . (1 s t  Edn. V ol.4 , p . 236).

3a. Rate of c ry s ta l  /growth.

C ry s ta ls  used in  the experiments were 12-18 mesh, 

and were prepared in  the lab o ra to ry  continuous c r y s t a l l i s e r
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S olu tions  were prepared from an in d u s t r i a l  grade of

barium hydrate supplied  by lap  or to Chemicals Ltd.»

and the so lu tio n  was f i l t e r e d  before use to  remove

any barium carbonate p re se n t .  The c r y s ta l s  woro n o t

as  r e g u la r  in  shape as the  sodium ch lo rid e  or hypo

c ry s ta ls»  and the s p e c if ic  su rface  area  was estim ated

by weighing a batch  o f  c ry s ta ls»  and measuring the

dimensions of the in d iv id u a l  c r y s ta l s  by micrometer.

The f lu id io in g  v e lo c i ty  was 3 cm a./sec. through

the empty f lu id i s a t io n  tube » and the d u ra tion  o f  each

run was 10 minutes. C r y s ta l l i s a t io n  was c a r r ie d  out

a t  23» 33 and 40®Co The weight o f c r y s ta l s  in  the  bed

a t  the s t a r t  of a run was 4 gms.

The e f f e c t  of supercooling on r a te  of growth i s

shown in  P ig .29. The r a te  of growth i s  expressed as

gmo. of barium hydroxide octahydrate  c r y s ta l l i s e d  por

hour p e r  gm. of c r y s t a l  in  th e  bed a t  the s t a r t  o f th e

run» and the supercboling i s  given in  degrees Centigrade.

These r e s u l t s  have been re c a lc u la te d  in  P ig .30 to  show
2

the r a te  of growth as gms./cm. z  hr» and the supersa tu ra tio : 

as g m s . / l i t r e .

When the growth r a te  increased beyond 0.06 gms.y
2 , cm. X h r .  » i . e .  a su p e rsa tu ra t io n  of 2 .0  g m s ./ l i t re »

the  c r y s ta l  q u a l i ty  became poor» and a t  high

su p e rsa tu ra tio n s  (4 g m s . / l i t r e )  the su rface  became

covered with tiny» s o f t  f la k e s .  Whenever these flakoo
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formed they tended to  fragment and form new c ry s ta ls^  

hu t in  the hatch  p la n t any fragmenta were swept away 

w ith  the f lu id io in g  l iq u id  flow in to  the waste receiver*

Ao in  the case of hypo, th e re  i s  no change 

in  growth r a te  w ith tem perature, and the  r a te  i s  

p ro p o fr t io a n a l to  the supersa tu ra tiono  However, the 

c r y s ta l s  show a r e s is ta n c e  to  growth up to a l im i t  o f  

loO gms*/ l i t r e ,  which i s  twice the value found fo r  

sodium ch lo rid e  a t  low tem pera tu res* To ensure 

s a tu ra t io n ,  the so lu tio n  was s t i r r e d  f o r  24 hours a t  

co nstan t temperature before passage through the  p la n t ,  

hu t the growth r a te  was n e g l ig ib le  below 1 g m * /litre  

supersaturationo

The re s is ta n c e  to  growth may no t he on th e  barium hydrate  

c r y s ta l  su rfac e , bu t on the barium carbonate la y e r  

p resen t on the c ry s ta l*  That i s ,  the m etastable l im i t  

f o r  barium hydroxide c r y s t a l l i s a t i o n  on a barium 

carbonate su b s tra te  i s  1 g m ./ l i t re *  There was no time

av a ilab le  to attem pt growth measurementsounder batch 

conditionsyon c r y s ta l s  which had never been in  con tac t 

w ith  carbon dioxide* The na tu re  of t h i s  minimum 

su p e rsa tu ra tio n  fo r  growth i s  very important s ince 

the p o ssib le  output w i l l  depend on th i s  factor* In 

e f f e c t  the minimum su p e rsa tu ra t io n  fo r  growth i s  a ”  blank** 

value which reduces the p o ss ib le  d riv in g  force fo r
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growth* In an Industria l plant carbon dioxide must

be excluded*

The d if fu e iv ity  of barium hydroxide i s  given
-5 8 ,in  the I*C*T* as 1*5 x 10 cm* j  sec* Assuming that 

the r e s tr ic t io n  to growth below 1 gm *|litre i s  caused 

^  (j by the carbonate film , then the mass transfer c o e ff ic ie n t  

i s  47*4 gms*/cm** x hr* x gm*/c*c*, which i s  of the

same order as the mass transfer c o e ff ic ie n t  for  sodium 

^\|r  ̂ chloride* The film  thickness through which d iffu sion  

takes place i s  0*012 m*m*, i f  a d iffu sion  controlled  

mechanism is  assumed* Such a thickness i s  quite 

normal and c lo se ly  comparable with those already 

suggested for sodium chloride cry sta llisa tio n *  In view 

of the n eg lig ib le  temperature c o e f f ic ie n t , d iffu sion  

control seems almost certain*

E ffect of dextrin on cry sta l growth*

In the continuous production o f barium hydrate 

i t  was found that dextrin  had an e f fe c t  on the cry sta l 

structure, and therefore the e f fe c t  o f dextrin on the 

cry sta l rate was studied* The rates of cry sta l growth 

from pure solu tion  at 33®C are compared in  Pig*31 with  

the rates o f cry sta l growth from a so lu tion  containing  

1 gm */litre of dextrin* Over the range of supersaturation  

studied the dextrin addition reduced the growth rate  

considerably* As the cry sta ls  were preformed the



#  -  N O  D E X T R I N  

O -  t  Ig/I- D E X T R I N .  

T E M P E R A T U R E  -  3 3 ® C .

0*2

0*1

FIG. 31

8

S  ( g / l  )



92

e f fe c t  o f deztrln  on cr y s ta l shape could not be 

determined here. In continuous runs i t  was observed 

that •• f la k e ” growth was checked. C learly the 

dextrin had olowod down surface adjustment, andrates 

might no longer be d iffu sio n  con tro lled .

3b. C ry sta llisa tio n  in  the laboratory continuous 

c r y e ta llia e r .

The g la ss  plant was reconstructed as shown in  

P ig .32 to bring about c r y s ta ll isa t io n  by coo lin g .

Hot so lu tion  was saturated in  a temperature controlled  

bath, and transferred to  v e s se l E where i t  was kept hot 

by water a t 65®C c ircu la tin g  through the jacket.

The hot saturated so lu tion  was added to the p lant 

through a va lve , and the rate o f dropping adjusted to  

give approximately the correct feed -ra te . The so lu tion  

in  the plant was cooled by tap water in  cooler B to  22®C 

and the cold waste so lu tion  was run out a t P. Product 

wao removed from the base o f  the c r y o ta llis e r  a t h a lf  

hourly in ter v a ls .

The plant was operated at a c ircu la tin g  so lu tion  

temperature of 22-23*0 (so lu tio n  concentration 77 gms./ 

l i t r e ) ,  and a feed so lu tion  temperature of 46*0 (so lu tion  

concentration 184 g m s ./ l itr e ) . The operational 

conditions and product s iz e s  are shown in  Table 7.
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Table 7 - Size o f Product Barium Hydrate Crystals*

Prodn.rate Wt. o f crvsto Duration o f
(gms*/ hr*) bed(gms*) run (h r s .) +10meeh 10-12 12-18 -38

50 400 24*5 20 10 50 20

50 800 16*5 15*5 15*5 57 12

100 800 16*0 23 25 47 5

Barium hydrate can therefore be c r y s ta llise d  to 

give an 80j5 + 18 mesh product in  a f lu id ise d  bed 

cry sta llisero

The product cry sta ls  were o f  good q u a lity  (Pigo33) 

and the cry sta ls  were ju st as hard as sodium chloride  

c r y s ta ls . Most of the cry sta ls  were ovoids» discs^  

or spheres, with no edges or corners v is ib le ,  but when 

they were cut open they showed good lustrous surfaces*

A cry sta l was occasionally  obtained which had a 

bipyramidal hab it, and the ovoids, d is c s , and spheres 

could have been formed e a s ily  from th is  habit* The 

cry sta ls  were in  general much more rounded than the 

sodium chloride c r y s ta ls , and th is  agrees with the very 

low value of film  thickness found, i*e* that cry sta l 

growth i s  almost com pletely d iffu s io n  controlled*

Crystals formed by spontaneous nucléation  in  

the absence of a seed bed were very flaky and th in , 

and developed in to  th in  flak es with a low strength*

They had grown in  a dendritic fash ion , and i t  took a 

considerable time for these flak es to  be removed from
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the bed as product, and be replaced by more s o lid ,  

bulky c r y s ta ls . I t  was found that the addition o f  

1 gm #/litre o f dextrin aided the development o f the 

flaky cry sta ls  in to  harder, spherical c r y s ta ls . As has 

been shown, dextrin reduces the rate of cry sta l growth.

Cooling produced cry sta l growth in  the feed tube 

when so lu tion  saturated at 60®C was added to the p lant. 

This would be easier  to avoid in  a large plant by means 

of steam tracin g , but at th is  high concentration  

(376 gms . / l i t r e )  there w il l  always be a danger o f  

nucléation  and subsequent blockage in  the feed pipeg 

and a lso  lo c a l concentration flu ctu ation  at the point 

o f addition w il l  be higher, with subsequent greater  

nucléation .

The surface area o f the bed was 14,000 cm. and 

at a production rate of 100 gm s./hr. the growth rate  

was 0.0072 gras./cm. x hr. This i s  a growth rate  

which w il l  give good q u ality  growth (F ig .30).

The small plant was only run Up to a production 

rate o f 100 gms./hr.^ because i t  was thought i t  would 

be easier  to control low feed rates o f hot saturated  

so lu tion  on the sem i-technical plant than on the small 

p lan t. There were no problems of nucléation or 

cry sta l growth in  the cooler at th is  ra te , v/ith the 

plant working at , and the cooling water in le t

temperature at 16.5®C.



95

3o. Barium hydrate production in  the sem i-teohnical n iant.

The p ilo t  plE^t was a ltered  as shown in  Fig*34 

to  convert i t  to a cooling c r y s ta l l is e r . Hot saturated  

so lu tion  was pumped from the saturation tank F up through 

an e le c tr ic a lly  heated pipe lin e  to the mixing v e sse l E.

I t  was then mixed with the c ircu la tin g  so lu tio n , which 

was cooled in  heat exchanger D. The feed and 

c ircu la tin g  flows were now measured by rotameters C.

A f in e s  separator G was placed in  the c ircu la tin g  stream.

At f i r s t  i t  was attempted to grow a bed o f cry sta ls  

from cold saturated so lu tion  by adding hot saturated  

so lu tion  at 45®C. Masses of woolly f lo e s  were formed, 

which on f i l t r a t io n  proved to be composed o f tin y  fla k es . 

These f lo e s  were s t i l l  formed a fte r  the addition of a 

bed o f 50 lb s of large c r y s ta ls . I t  was discovered  

that the flo ccu la tio n  v/as caused by a ir  which entered 

in  the vortex in  the mixing v e s s e l ,  and travelled  with  

the so lu tion  flow . This was prevented by bypassing 

the mixing v e s s e l ,  and merely using i t  as a liq u id  

se a l. The feed so lu tion  was then in jected  stra igh t  

in to  the so lu tion  flow . I t  may be noted that i t  i s  

not p ossib le  to In ject hot saturated so lu tion  through 

a pipe projecting below the c ircu la tin g  so lu tion  le v e l .

The projection  soon blocks up.

After the problem of flo ccu la tio n  was solved i t
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was found that the nuoloation rate wao too high. At a 

production rate of 10 Ib e/h r. oome 9 Ib o .o f fin eo  were 

being produced for  every 1 lb» growth on a bed o f  60 Ibo# 

of oryotalo . Aleo the so lu tion  flow dropped from 

55 galla^min» to 25 gallSc/nin. over 6 hours» and 

obviously cry sta l growth was taking place in  the 

cooler» The growth in  the cooler could be removed by 

steaming the outside of the tubes»

The tomperaturo of the c ircu la tin g  so lu tion  f l w  

was 26*0 and in le t  cooling water temperature was 16» 5*0. 

The tomperaturo difforenco o f 9»5*0 across tho heat 

exchanger tubes seemed rather high* In order to  decrease 

the temperature d ifference the cold water flow through 

the heat exchanger wao increased from 4 to 27 g a lls » /min» » 

and the water flow wao made counter-current instead of 

co-current* This procecdure su ccessfu lly  lowered the 

plant temperature to  21*0 at the sta r t of a run i«o* a 

temperature d ifference o f 4*5*0, even lower than that 

used in  the laboratory Oslo c r y sta lliser*  However, the 

temperature o f the c ircu la tin g  so lu tion  rose s tea d ily  to 

25*0, f in e s  were s t i l l  produced, and cry sta ls  grew in  

the heat exchanger tubes and reduced the flow» I t  wao 

not therefore a question o f poor heat transfer causing 

cr y sta l growth because of a high temperature d ifferen ce , 

but rather the formation of crycta lo  in  the tubes, even 

at the low temperature d ifference o f 4*5*0, causing
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poor heat tran sfer .

To in v estig a te  the p o s s ib il ity  o f s ta in le ss  

s te e l  cata lysin g  the nucléation of barium hydroxide 

the g la ss  tube cooler in  the small plant was replaced  

with a s ta in le ss  s te e l  cooler of about the same 

dimensions* The same conditions were reproduced as 

in  the g la ss  cooler operation, and there was no growth 

in  the cooler, or f in es  formation, and therefore there 

was no ca ta ly tic  effect*

The s ta in le ss  s te e l  tubes in  the big plant had, 

of course, been used for  sodium chloride production, and
8 7i t  i s  known that p itt in g  i s  produced in  s ta in le s s  s te e l  

by b o ilin g  brine, e sp ec ia lly  in  the presence of so lid  

crysta ls*  To reproduce th is  e f fe c t  the s ta in le s s  

s te e l  tube which had been used in  the small plant was 

etched with hydrochloric acid , and a temperature d ifferen ce  

of 5,5*0 se t  up across the tube in  the small plant* 

Nucléation was produced, though not as excessive as 

in  the p ilo t  p lan t, and cry sta l growth was observed 

in  the tube where the cooling water entered the heat 

exchanger* This annular deposit grew u n t il  i t  blocked 

the tube*

Since the f lu id  flow on both sid es o f the heat 

exchanger was of the same order, then the equilibrium  

temperature of the tubes would be 19*2*0* I f  crev ices  

are present in  the tube w all on the so lu tion  s id e , then
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the eo la tion  w il l  tend to  remain in  these crevices, and 

become supercooled by 2*8*0 ( i . e .  over the metastable 

l im it )  even though the general so lu tion  flow i s  

turbulent, Now th is  degree of supercooling w i l l  cause 

nucléation  and cry sta l deposition  on the tube walls»

There was no time ava ilab le  to  replace or re tube 

/ the heat exchanger, and therefore the temporary expedient 

was tr ied  of passivating the tubes with concentrated 

n itr ic  acid , and coating with a th in  layer o f bakelito  

resin» Passivation  did not prevent c ith er  the 

nucléation or the growth in  the cooler, but the layer of 

resin  su ccessfu lly  prevented nucléation» There was, 

however, oome cry sta l growth in  the cooler,

A f u l l  sca le  plant would require two heat 

exchangers in  paral] 3̂ * so that one could operate w hile  

the other was being oteamed. I f  the tubes were o f  

s ta in le s s  s t e e l ,  as high a p o lish  as p ossib le  should be 

given to  them. There i s  a lso  a p o s s ib i l i ty  of using  

other heat transfer m aterials. Impervious graphite 

probably has a surface which would prevent crysta l 

growth and nucléation , and moreover the high thermal 

conductivity would help to reduce the s iz e  of a heat 

exchanger» This would have to  be large to carry a 

large heat load a t a temperature d ifference o f only 5*0.
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5do Oonclusiona»

(1) The rate of growth o f barium hydrate i s  lin e a r

with respect to  supersaturation, and there i s  a zero

temperature c o e ff ic ie n t  o f c r y o ta llisa tio n  over tho

temperature range 20-40*0, The c r y s ta ll isa t io n  i s

probably under d iffu sion  con tro l, and the mass transfer
•  2coefficient i s  47 gms,/cm, s hr, z gn,/coC,

A minimum supersaturation for  growth was found, of

value 1 g m ,/l itr e , but i t  was not proved whether th is

i s  a true barrier^ or whether th is  i s  the concentration

required to build upon a barium carbonate layer.

The cry sta l growth becomes o f  a poor, flak y  type 
2above 0,05 gms,/cm, z  h r , , and the metastable lim it  

of nucléation i s  of the order o f  2 ,8  g m s ,/l itr e ,

(2) I t  was p ossib le  to produce barium hydrate 

continuously in  the laboratory p lan t. The crysta lo  

were good q u a lity , c lea r  and with a good lu stre  before 

being attached by carbon d ioxide, 80^ of the product 

was above 18 mesh, but the cry sta l shape was very 

irregu lar , and of a spherical type. The crysta l
2

production rate was equivalent to  10 Iba/hr, z  f t ,  

of c r y s ta l l is e r  cross section a l area.

P ittin g  in  the heat exchanger tubes of the 

som i-technical plant caused excessive nucléation , and 

growth in  the tubes. The temperature d ifference across
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the tubes should be kept below 6*C, and the tube 

ourfocQ on the so lu tion  side should have as high a 

p o lish  as p o ssib le . With a good smooth surface on the
« 3tubes a production rate o f 40 IbCi/ft, z  hr* should be 

p ossib le  before nucléation  becomes ex cess iv e , both 

from the bulk o f the so lu tion  and on the cry sta l  

surface.
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Do General PlGCussion,

(a) The e f fe c t  o f d iffu sion  on the rate of c ry sta l growth.

I t  was found that normally tho d iffu s iv e  

presentation of so lu te  to  the cry sta l surface was rate

co n tro llin g , and the rate o f  surface reaction  was

subsidiary. Increase o f temperature produced a greater

dependence on the rate of d iffu s io n .

In recent years many workers have in vestigated  

the rate o f growth of s in g le  c r y s ta ls , both by 

rotation  o f the c r y s ta l, or by pumping so lu tion  past a 

stationary c r y s ta l. In every case they found a 

reaction  which was governed by the rate of d iffu s io n  

at low r e la t iv e  v e lo c it ie s  of c r y s ta l and so lu tio n , 

but above a certa in  c r i t ic a l  v e lo c ity  d iffu sion  wao 

no longer important, and c r y s ta ll isa t io n  wao surface 

reaction  con tro lled . This minimum v e lo c ity  varied  

with the so lu te , but was o f the order o f 1 f t , |  se c ,

Now the v e lo c ity  o f so lu tion  past the cry sta l 

in  th is  work was o f the order of 0 ,2  f t , / s e c , ,  and th is  

v e lo c ity  remained approximately constant with f lu id is in g  

flow , since a f lu id ised  bed i s  free  to expand, %e 

f lu id is in g  v e lo c ity  to l i f t  the cr y s ta l w il l  vary w ith  

cry sta l s iz e ,  and crysta l and so lu tion  d en sity , but most 

inorgarijc cry sta ls  have a density of from 1 ,5  -  2 ,5  gmso/CoOo
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and a pqlation d ensity  o fo irca  1 .2  g m s ./c .c ., and 

therefore the r e la tiv e  v e lo c ity  o f cry sta l and so lu tion  

w il l  be about 0 .2  f t . / s e c . ,  for the cry sta l s iz e  range 

studied . Therefore i t  i s  p ossib le  that in  a l l  

c r y s ta llisa t io n  in  flu id ised  beds the d iffu sion  step  

w il l  be extremely important, as was found for the 

three so lu tes experim entally te sted . I t  may be noted 

that in  a l l  in d u str ia l c r y s ta ll is a t io n , whether by 

mechanical ag ita tion  or natural b o ilin g , the c r y s ta l-  

so lu tion  r e la tiv e  v e lo c ity  w il l  be w ell below 1 f t . / s e c .

Ao added evidence i t  may be stated that hypo, 

under continuous production cond itions, was found to  

grow almost as fa s t  as i t  d isso lved , although>ypo» 

with i t s  b ea u tifu lly  formed faces,m ight be considered  

to be a surface reaction  controlled  c r y s ta l.

One unexplained point i s  that Butler a fter  

increasing the rate o f  rotation  o f a hypo cry sta l u n til  

further increase made no d ifference to the growth 

rate ( i . e .  d iffu s io n a l resistan ces were n e g lig ib le ) ,  

only found a growth rate o f one f i f t h  that found fo r  

cry sta ls  growing in  a fluidised" bed where d iffu s io n a l  

resistan ces were quite high. The only explanation seems 

to  be that the q u a lity  o f Butlers s in g le  cry sta ls  was 

superior, and the fa u lts  and im perfections in  the Oslo 

cry sta ls  increased th e ir  growth rate g rea tly , so that 

the rate o f so lu te presentation by d iffu sion  became
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extremely Important» The continuous c o l l is io n s  may 

have caused these fa u lt s ,  which were portrayed by the 

thick layers on certa in  cry sta l fa ces .

I t  should be noted that in d u str ia l c r y s ta ls  need 

not have the perfect regu larity  o f s in g le  cry sta ls  which 

are required for o p tica l and e le c tr ic a l purposes. I f  the 

s lig h t  m is f its  in  the layers only decrease the cry sta l  

quality  s l ig h t ly ,  but a lso  increase the growth r a te , 

then they are b en e fic ia l from an in d u str ia l point of 

view in  reducing the s iz e  o f apparatus necessary for  

a given production weight»

Sodium chloride and barium hydrate cry sta ls  

tended towards a spherical h ab it. Now th is  rounding 

was probably caused by a t tr i t io n , e sp ec ia lly  since the 

larger cry sta ls  were more rounded than the sm all, but 

since corners and edges did not grow again i t  i s  

suggested that the surface reaction  rate was rapid 

compared with ra tes o f d iffu s io n , as was proved by 

measurements o f growth r a te s , and that the surface 

reaction  i s  anisotropic» The re la t iv e  sharpness o f the 

com ers and edges of cry sta ls  grown in  flu id ised  beds 

w il l ,  to some ex ten t, ind icate the importance o f the 

surface reaction in  the c r y s ta llisa t io n  mechanism.

I t  was found for each so lu te  tested  that increase  

of supersaturation beyond a certa in  lim itin g  value 

produced a very poor type of c ry sta l growth, e .g . irregular
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granules and stepped growths covering the surface»

This was a form of dendritic growth, and occurred just  

below the supersaturation where new c r y sta ls  appeared 

in  the so lu tion . I t  i s  possib le  that these new cry sta ls  

were formed from p a r tic le s  rubbed o ff  the cry sta l surface 

and that true nucléation of the bulk so lu tion  never 

occurred» The supersaturation value causing dendritic  

growth and nucléation w il l  be a function of the solute  

d if fu s iv ity , but the so lu tion  v isc o s ity  and ease of 

packing of tho so lu te molecule w il l  a lso  a ffe c t  the 

value» Sodium ch loride, barium hydrate, and hypo, have 

metastable lim its  for nucléation at 30*0 of 1»6, 2»8, 

and 50 g m s./litr e  resp ective ly  (supersaturation ra tio s  

of 1 .005 , lo025 and 1»048) and the values are roughly 

in  the order o f decreasing so lu te  d if fu s iv ity  (1»8,

2*0, and 0»7 x 10 ® cm.^/sec» ) and increasing molecular 

weight (58»5, 315, and 248 gms»/mole)»

Since i t  has been shown here that d iffu sion  

plays the major ro le  in  the c r y s ta llisa t io n  of the 

three so lu tes examined, i t  i s  in terestin g  to compare 

the experimental r e su lts  with those of other workers, 

and to try to achieve an overall correlation  for the 

e ffe c t  of d iffu sion  on growth rate» This i s  shown 

in Pig»35, which io  a p lo t of Mass Transfer C oeffic ien ts  

againot Schmidt Numbers» Only a lim ited  number of 

su itab le data i s  a v a ila b le , and resu lts  at low temperatures
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have been omitted as too subject to  surface control»  

but the figure shows that there i s  a p ossib le  

rela tion sh ip  based on d iffu sion  constants» which can 

be put in  the form

_  - 0 . 6 7K = 22 Sc

The exponent of 0.67 i s  the same as that
7 7used for d iffu s iv e  mass transfer from flu id ised  beds. 

Unfortunately, d iffu sion  c o e ff ic ie n ts  have never been 

measured in  supersaturated so lu tio n s , or even in  

concentrated so lu tion , and the v is c o s i t ie s  of 

supersaturated so lu tion s are a lso  unknown. I f  these 

figu res could be determined, and the ra tes of growth 

for other so lu tes determined, then the v a lid ity  of 

such a correlation  could be more fu l ly  tested .

(b) Metastable lim it  for growth.

A th eoretica l minimum supersaturation, or 

metastable l im it , for  growth has been suggested by 

Yolmer *̂^ *̂  ̂ but cry sta ls  grov/ a t supersaturation le v e ls  

which are far below the proposed 50^ supersaturation. 

However, even with a d islo ca tio n  growth mechanism 

i t  i s  possib le  that such a metastable lim it for growth 

may e x is t .  Thus, a d e fin ite  metastable lim it for  

growth was found for sodium chloride cry sta ls  a t  

temperatures le s a  than 50®C, the value of the lim it  

varying with temperature. A growth lim it  was a lso  found
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for  barium hydrate, but i t  may have been nucléation  

on a barium carbonate layer which caused the barrier*

The low est supersaturation measured in  hypo 

c r y s ta llisa t io n  was 6 g m s ./litr o , and therefore a 

growth lim it  i s  a lso  p ossib le for th is  so lu te , since  

the lim its  for sodium chloride and barium hydrate were

0.5  and 1*0 g m s./litr e  respectively* Examination o f  

P ig .20 w ill  show that there i s  a tendency for  tho 

growth rate o f hypo to decay below 20 g m s ./litr e .
9 1

I . e . I .  workers have a lso  found a minimum 

under-saturation necessary for  sodium chloride so lu tio n ,

1 .e . the curve of growth rate v . supersaturation  

repeats i t s e l f  on the solu tion  side with unsaturated 

so lu tion .

The nature of th is  barrier to growth must be 

connected with the formation and development of growth 

by a d isloca tion  mechanism, which a t higher 

supersaturations i s  overcome by d iffu s iv e  presentation
99of solute* Cabrera and Burton propose such a 

mechanism, and Fig* 36a shows an id ea l growth curve 

for th is  mechanism. Neither sodium chloride nor 

barium hydrate, with or without ad d itives, showed growth 

curves of th is  form, but rather that of Fig.36b*

I t  has been suggested by l o C . I .  workers that i f  sodium 

chloride growth i s  taken to higher supersaturations 

then a growth curve i s  developed sim ilar to F ig.36a,
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and hypo cr y s ta ls  a t 24®C (PigoSO) certa in ly  show a 

growth curve o f th is  fonao

(c) E ffect o f temperature on growth ratea

The rate, o f  growth of sodlun chloride crysta lo  

was found to increase with temperature $ while the 

rates of grov/th of hypo and barium hydrate cry sta ls  

were found to  be independent of temperature. How the 

factors a ffectin g  rate o f growth are the rates of 

surface reaction  and d iffu s iv e  presentation of soluteo  

I t  i s  suggested that the rate of surface reaction  w i l l  

resemble a chemical reaction , and w il l  probably show a 

high temperature c o e ff ic ie n t  o f growth. Any zero 

temperature c o e ff ic ie n t  of growth must therefore be 

explained by some other hypothesis than surface reaction  

phenomena.

The d if fu s iv ity  of the so lu te w i l l  be a function  

of the absolute temperature, th e concentration o f the 

so lu te , and the v is c o s ity  o f the so lu tion . Increasing  

temperature w il l  increase the d if f u s iv i t y g increasing  

concentration and v is c o s ity  wiH decrease the 

d if fu s iv ity . On the basis o f these assumptions the 

e f fe c t  of temperature on rate of growth may be 

considered for  each so lu te .

Sodium chloride shows l i t t l e  increase in  

concentration with temperature, and a decrease in  

v isc o s ity  with temperature, and therefore the d if fu s iv ity
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ehould Increase with température alone. The ra tes  of 

growth w il l  be more complicated a t low temperatures by 

the e f fe c t  o f the surface reaction . The experimental 

r e s u lts  agree with the above, s in ce above 50^0 the rate  

o f growth i s  proportional to  the e f f e c t  o f temperature 

and v is c o s ity  on d if fu s iv ity .

Hypo has a rate o f growth which i s  constant 

from 550-40®C, but i s  reduced a t 24®Co The d if fu s iv ity  

should remain constant from 30-40*0# because o f thé 

minimum in  the viscooity-tem perature curve (F ig .2 5 ) .

The e f fe c t  o f increasing concentration w i l l  not bo too 

grea t, since the i n i t i a l  s o lu b ility  i s  high, and may 

w ell be balanced by the increase in  the surface 

reaction  r a te , which cer ta in ly  increases from 2 4 -3 0 * 0 .

The fa c t  that barium hydrate has a zero 

temperature c o e ff ic ie n t  of growth can only be explained  

by variation  in  the rates o f d iffu sio n  with temperature, 

since the mass transfer c o e ff ic ie n t  i s  high enough 

to  suggest a d iffu sio n  controlled  c r y s ta llisa t io n  

process. The d if fu s iv ity  w i l l  increase and v is c o s ity  

w il l  decrease with temperature, in  so lu tion s of 

constant composition, but a high temperature c o e ff ic ie n t  

of s o lu b il i ty , with a low s o lu b ility  at 20*0, w i l l  check 

these changes, because o f the rapidly increasing  

concentration.

The theory of growth rate variation  with
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temperature must remain hypothetical u n t il  experimental 

measurements are mado o f d if fu e iv it io s  and v is c o s i t ie s  

in  supersaturated so lu tio n s .

(d) The e f fe c t  of so lu tion  v e lo c ity  on frroTrth r a te .

Since a f lu id ised  bed i s  free  to expand with  

so lu tion  flow the e f fe c t  o f so lu tion  v e lo c ity  on growth 

rate should be sm all. However, the e f fe c t  o f  

so lu tion  v e lo c ity  was found to be appreciable.

The exponents o f the modified Reynold’s numbers in  

the equation

K = B(Rg)*
were 0.13 and 0oS5 for  sodium chloride and 

hypo. I t  io  suggested that the email diameter

f lu id isa t io n  tube (1 in ch ), and the shallow beds used

in  the experiments combined to produce a w all e f f e c t ,

and i t  was only a t the higher v e lo c it ie s  that the

bed was fr e e ly  expanded, with b etter  d istr ib u tion  o f

fresh  supersaturated so lu tio n .

However, the variation  with v e lo c ity  i s  small

from €in in d u str ia l point of view, but i s ,  o f course,

important th e o r e tic a lly .

(p) Factors e ffec tin g  sca le  up of Oslo c r y s ta llls e r a .
7 5G riffith s  stated that c r y s ta llisa t io n  rates 

are very f ic k le  constants to measure, and unless thorough 

a g ita tion  i s  used repeatable c r y s ta llisa t io n  rates are



110

liDposaible to  achieve. How i t  can bo seen from the 

various graphs that the cry sta l growth ra tes were 

reasonably regular and repeatable. Bzrthermore, 

since the in v estig a tio n  o f sodium chloride was carried  

out from a batch sca le  up to  a continuous p i lo t  plant 

sc a le , and the r e su lts  were con sisten t throughout, 

then i t  i s  ju s t if ia b le  to say that a sm all, batch coolin g , 

f lu id ise d  bed c r y s ta l l is e r  w il l  give r e su lts  which 

are applicable to continuous f lu id ise d  bed c r y s ta l l is e r s ,  

whether cooling or evaporative models.

Seldom do two in v estig a to rs  find  the sane value 

for  the growth rate o f a sp e c if ic  so lu te . In a 

discussion  on the e f fe c t  o f a g ita tio n  on sucrose growth
99rate Van Book said • Opinions d if fe r  concerning the 

influence o f s tir r in g  and a g ita tion  upon the c r y s ta llisa t io n  

v e lo c ity  of sucrose. Experiments on th is  question have 

load d ifferen t in v estig a to rs  to  conclude that there 

io  e ith er  a pronounced e f f e c t ,  or r e la t iv e ly  none -  

noncommital d ecision s being r e la t iv e ly  fe w .”

The main reason fo r  varia tion  in  in vestigators  

r e su lts  i s  that there i s  a big varia tion  in  experimental 

con d itions, and therefore the r e su lts  obtained in  the 

present experiments should only be applied to the 

design o f Oslo c r y s ta l l is e r s  operating a t f lu id isa tio n  

v e lo c it ie s  o f 3-5 cm s./sec .

Any increase in  diameter of the suspension
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holder w il l  almost cer ta in ly  cause a d ifferen t

f lu id is a t io n  pattern, and th is  may have a marked e f fe c t

on cry sta l s iz e  and cry sta l q u a lity . For example,

c r y s ta ls  grown in  shallow beds in  the batch cooling

c r y s ta l l is e r  showed poor growth structure above 0.07 gms«/ 
2

cm. X hr.{ no poor growth was observed in  the cr y s ta ls

from the continuous p ilo t  p lan t, where cry sta ls  growing

at the base of the v e sse l might w ell have exceeded th is
, 2rate o f 0.07 gmso^cm. x hr. The reason was probably 

that the system of f lu id isa t io n  in  the deep bed allowed 

c r y sta ls  to vary th eir  p osition  g rea tly , and therefore  

kept th e ir  average growth rate below the c r i t ic a l  value.

( f ) Continuous cry sta l production.

A granular cry sta l product which was above 

16 mesh s ize  (>  1 m.m.) was obtained from each of the 

so lu tes te sted . In terms o f sparkle and cry sta l 

hardness the quality  was always ex c e lle n t.

I f  the supersaturation increased beyond the 

metastable lim it  then excessive nucléation occurred, 

but the r e su lts  o f excessive nucléation were d iffe r e n t  

in each case. Sodium chloride produced a myriad of 

t in y , cubic c r y s ta ls , which turned the c ircu la tin g  

so lu tion  to a milky colour. Barium hydrate produced 

many s o f t ,  tin y  f la k e s , while hypo produced r e la t iv e ly  

few n u cle i which grew fa ir ly  quickly to a considerable 

s iz e  (0 .5  m.m.). By means of a f in e s  separator an
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excess of n u cle i can be removed, but the Increased

production caused by high supersaturation i s  small

compared with the added plant com plications. A f in e s

separator i s  only necessary to allow for any

flu ctu a tion  in  operational con d itions, or where i t  i s

v i t a l  to produce large c r y s ta ls .

The possib le production weight i s  therefore

lim ited  by the metastable l im it ,  and the f lu id is in g

flow . I f  the case o f sodium chloride i s  considered,
2

then a production rate of 40 lb s ./f t .  z  hr. of 2 m.m.

c r y sta ls  was obtained a t a metastable lim it  of 1 .6  gm s./

l i t r e ,  and a f lu id is in g  v e lo c ity  of 3 .2  cm s.|sec .

A f lu id is in g  v e lo c ity  o f 6 .4  cm s./sec . would make p ossib le
2

a production rate of 80 I b S r / f t .  x h r . , but the bed 

height would have to be increased to  allow  for the  

decreased bed d en sity , and for the increase in  c r y s ta l  

surface area necessary to absorb the extra c r y s ta llin e  

m aterial. In f a c t ,  the bed height would be increased  

from 3 f t .  to 11 f t .  A disadvantage caused by 

increased v e lo c ity  i s  that more o f the small c r y s ta ls  

w il l  be swept round the system, and in  general a more 

rounded product w i l l  be obtained because of the 

increased a t tr it io n .
7 9G riffith s  proposed an em pirical design figure  

fo r  c r y s ta ll is e r s  on a cry sta l production per u n it



113

voltimo b a sic . Eo ca lled  th is  tho Separation In ten sity  

Factor, and claimed that a l l  c r y s ta llisa t io n  operations 

ohould be carried out at between 6 and 30 Ibs^ft.^  x  hr. 

fo r  a 1 m.m. grain product. The experimental re su lts  

obtained are shovm in  Table 8 , which showo reasonable 

agreement with G riffitho* range.

Solute C rystal s ize  
m. m.

Production rate  
lbc./fto® X hr.

8 .1. F. 
1 m.m.

for
grain

sodium chloride 2 13.5 27.0

hypo 6 12.0 72.0

barium hydrate 1 .5 6 .0 9.0

The comparison beti?een continuouo production 

by cooling or by evaporation was made uoing two d ifferen t  

so lu te s , sodium chloride and barium hydrate, but they 

were both o f the same typo, having a high growth rate  

and nucleating read ily  at low supersaturations. I t  was 

found to be s l ig h t ly  easier  to operate an evaporative 

plant than a cooling p lan t. I f  the m etestable lim it  

was exceeded in  the evaporative plant then an excess 

of n u cle i wao formed, but with l i t t l e  deposition  o f  

c r y s ta llin e  m aterial on plant surfaces. The excess 

n u cle i could be removed in a f in e s  separator.

Exceeding the metastable lim it  in  a cooling plant brings 

about blockage of the cooling tubes as w ell as excessive
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nucléation . The cooling plant therefore requires very 

carefu l temperature con tro l, and probably a spare coo ler . 

In an evaporative c r y o ta llis e r  sn a il c ry sta ls  w ill  tend 

to d isso lve  on passage through the heat exchanger, 

while in  a cooling c r y s ta l l is e r  they w ill  tend to grow 

on passage through the heat exchanger. Good vacuum 

and temperature control i s ,  o f course, necessary in  

a vacuum evaporative p lan t, since a sudden increase  

in  vacuum w ill  produce a shower o f n u c le i.

Another d ifference between these forms o f working 

i s  that the problem of flo ccu la tio n  was met with under 

cooling cond itions, but not under vacuum evaporative 

cond itions. Under vacuum conditions^any a ir  c ircu la tin g  

with the so lu tion  was removed in  the flash-head , whereas 

any a ir  entering under cooling conditions was free to 

c ircu la te  and form stab le f lo e s  with small c r y s ta ls .

This mechanism may have been aided in  the cooling  

c r y s ta l l is e r  by the a lk alin e nature of the so lu tion , 

since such a so lu tion  i s  more prone to form soapy 

foams than the neutral so lu tion s used in  the vacuum 

c r y s ta l l is e r .

Correlation between laboratory and plant conditions.

The work on continuous cry sta l production was 

hampered by lack of time and labour. Since c r y s ta llis e r s  

take a long time to reach equilibrium cond itions,
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automatic control of temperature and volume of feed, 

c r y s ta ll isa t io n  temperature and cooling water flow , 

and rate o f product removal i s  necessary to reach stab le  

con d ition s. S h ift operators are a lso  necessary to  

prepare feed so lu tion  and process further the product 

crysta ls .^  Perhaps the nearest approach in  a College 

laboratory to continuous cond itions, w ith the minimum 

of supervision, could be achieved by use of a g la ss  

laboratory p lan t, autom atically con tro lled , w ith a large 

feed reservoir and a large fin ished  product tank.

Product removal could be governed by a s lid e  valve 

controlled  by a p h o to -e lectr ic  c e l l  focused on the 

f lu id ise d  bed le v e l .  I f  a deep bed (6 f t . )  i s  

used in such a p lan t, then conditions should approach 

very c lo se ly  those o f a f u l l  sca le  plant working 

continuously.
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Eo AppendIceso
(a) A flow meter for hot saturated o a lt so lu tio n s.

In the course of the work on the c r y s ta ll isa t io n  

of sodium chloride i t  became necessary to measure the 

flow of hot saturated so lu tion  passing v e r t ic a lly  

downwards through a pipe o f two inches diameter, a t a 

rate o f 25-35 ga llon s per minute. A conventional 

rotameter was not read ily  obtainable, while the o r if ic e  

p la te  o r ig in a lly  in s ta lle d , with leads to  a gauge, was 

choked at once v/ith s a lt  d ep o sits . A section  o f the 

pipe was replaced by a three foot length of two inch  

bore g la ss  tubing, in  which was hung, by a supporting 

wire sp ider, a v e r t ic a l spring with a wooden bobbin at 

the end (P ig .37). The spring was of phosphor bronze 

w ire, coiled  t o  a  A. inch diameter, with 12 turns to  the4
inch length , and a to ta l length of 9 inches. The wire 

was 1 8  S . W . G c  in  th ickness, and the c o i l ,  as constructed, 

gave an extension of 0.092 cms. per gram of load.

The wooden bobbin, in  hard wood, was a cylinder of ^ inch 

diameter and A inch long.

The extension o f the spring in  the tube was 

calibrated  against saturated s a lt  so lu tion  at room 

temperature. The r e su lts  are shown in  P ig .38. Since 

the spring extension should be proportional to the 

v e lo c ity  head, the extension has been p lotted  against 

the square o f the so lu tion  flow in  P ig .39 which shows 

th is  re la tio n  as generally  established^though there i s
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break In the middle of the graph*

The device was in sta lled  in the c r y s ta llisa t io n  

plantf and operated with entire sa tis fa c t io n  for  

about 12 months of in term ittent use* No cry sta ls  

formed on either spring or bobbin, despite the 

occurrence of s l ig h t ly  supersaturated cond ition s, and 

the presence of f in e  cry sta ls  in  the c ircu la tin g  solu tion  

Since then some experimental work has suggested that 

the device would operate more smoothly in a smaller 

tube -  about 1*5 inches in  diameter*

(b) C ry sta llisa tio n  o f sucrose*

Sucrose i s  a very important food stu ff, and i t  

i s  estimated that 43 m illion  tons are manufactured each 

year* Perhaps the most important o f the manufacturing 

processes i s  that of c r y s ta llisa t io n  where carefu l 

control i s  necessary in  order to prepare high purity  

cry sta ls  of the correct size* C rysta llisa tio n  i s  

carried out in  vacuum evaporators with natural 

c ircu la tio n , and may be fin ished  in  stirred  cooling  

cr y s ta llise r s*  These operations are carried out 

batchwise under very variable cond itions, since at the 

beginning of a batch only a small amount of seed i s  

present in  a large volume of so lu tion , while at the end 

of the run a large mass of product cry sta ls  are present 

in a small volume of solution*

The surface area therefore varies grea tly , and



118

a t the s ta r t o f the run, when the surface area i s  sm all, 

a small production rate must be adopted to prevent 

excessive nucléation . However, since the c ircu la tio n  

io  normally thermal, c ircu la tio n , a small production 

rate means poor c ircu la tio n ; a lso  a t the end o f the 

run v/hen the magma has thickned, the dense, viscous
9Gmass prevents easy c ircu la tio n . Webrc suggested  

that the Oslo c r y s ta ll is e r  would produce more constant 

conditiono, and would e sp ec ia lly  help in  the production 

of large (6 m.m.) preserving c r y s ta ls , where the 

availab le  cry sta l surface area i s  small and • fa ls e  

gra in ” i s  undesirable. Ho mention has been found 

in  the lite r a tu r e  o f any experimental work on the 

c r y s ta llisa t io n  of sucrose in  Oslo c r y s ta l l is e r s .

C ry sta llisa tio n  experiments were carried out in  

the laboratory Oslo c r y s ta l l is e r  at 35 and 65®G, and 

the cry sta ls  in  the bed grew read ily  to 6 m.m. cry sta ls  

at a 100 gm s./hr. production ra te . I t  was found that 

the f lu id isa t io n  v e lo c ity  had to be circa 0 .5  c m s ./se c ., 

or large 6 m.m. cry sta ls  were swept over to the pump, 

and blocked the l in e s .  The density  of sucrose 

i s  1 .59 g m s ./o .c ., and the density  of saturated sucrose 

so lu tion  i s  lo365 gm so/c.c. a t 55®C. This very small 

density  d ifference makes even f lu id isa tio n  very 

d i f f ic u l t ,  and the cry sta ls  behave lik e  feathers  

flo a tin g  on a ir  currents, any currents o f so lu tion



119

carrying them away to the pump. This was in te n s if ie d  

by the heavy oyrup caucing ca v ita tion  a t the pump 

a t vacuum greater than 28 in o . o f mercury, and by 

flu ctu a tin g  pump flow , caused by resistan ce  in  the 

pump gland from carmelised sugar. Theso p ra ctica l 

d i f f ic u l t ie s  might be overcome on a f u l l  sca le  plant 

because o f the greater hydrostatic head, the sm aller 

r e la t iv e  resistan ce  on the gland o f a large pump, and 

the fa c t  that a larger pump and p ip elin es would not 

block so read ily  with large c r y s ta ls . Hov/ever, there 

w il l  always be a tendency to draw large cry sta ls  through 

the system.

Pure saturated sucrose so lu tion s have a 

v is c o s ity  o f circa 1 p o ise , which decreases with  

increasing temperature, and supersaturation can more 

than double the v is c o s ity . Impure saturated molasses 

can have v is c o s i t ie s  as high as 800 p o ise s , with 

normally a minimum v isc o s ity  at 50-60®C, and so lu tion  

v is c o s ity  may thorofore be an extremoly important 

factor  in  sucrose c r y s ta llisa t io n  in  industry.

Extensive work has been done on the rate o f growth of
90 . 0 0  - 9 7sucrose c r y s ta ls ,  ̂ and i t  has been suggested

3 3that above 70®C the c r y s ta llisa t io n  of sucrose i s  

d iffu sio n  con tro lled . Normal in d u str ia l c r y s ta ll is in g  

temperatures are 60-65®Co Therefore any method of  

increasing the crysta l slurry turbulence would be
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b en efic ia l*

During high production ra tes the maesecuite 

v e lo c ity  through the heating tubes i s  of the order of
I 9 815 cm s./sec . The r e la t iv e  v e lo c ity  o f the cry sta ls  

and so lu tion  may therefore be higher than the 1 cm ./sec 

appertaining to the Oslo c r y s ta l l is e r . However, at  

the end of a batch, the massecuite v e lo c ity  through
99the heating tubes drops to 0 .3  cm s./sec . th erefore, 

o v era ll, the Oslo c r y s ta l l is e r  would probably have as 

much ag ita tion  during production as a natural c ircu la tion  

evaporator, and there would be advantages gained in  

b etter  nucléation and temperature control i . e .  no 

hydrostatic head causing high b o ilin g  temperatures 

and d isso lu tio n  of c r y s ta ls .
90Kucharenko studied the rate o f sucrose cry sta l 

growth, and h is  r e su lts  may be recalculated to give
I 2a mass transfer c o e ff ic ie n t  of 0.78 gms./cm. x  hr. x gm./

c .c .  a t 60®Co The metastable lim it  of sucrose i s  such

that the ra tio  o f supersaturated to saturated

concentration i s  1 .2  before nucléation becomes 
100excessive . At 60®C th is  represents a supersaturation

of 184 g m s.I litre  and therefore à cry sta l growth rate  

of 0.144 gms./cm. x hr. at in le t  to the bed. I f  a 

concentration drop of 100 gms./ l i t r e  through the bed 

i s  assumed then the production rate w i l l  be 375 lb s/h r . 

at a so lu tion  v e lo c ity  of 0 .5  cm s./sec. through the
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suspension holder. The lo g . mean supersaturatioa  

w il l  be 128 g m s ./ l i tr e , which w il l  produce an average 

growth rate o f 0 .1  gms./cm. x hr. I f  the bed c r y s ta ls  

are assumed to be 6 m.m. in s iz e ,  then a flu id ised  bed 

depth o f 12 f t .  w i l l  be s u ff ic ie n t  to remove the 

deposition  concentration. Tho rate of cry sta l growth 

under these conditions i s  comparable to that o f hypo 

cry sta ls  in  the proposed f u l l  sca le  c r y s ta l l is e r , and 

therefore a sucrose c r y s ta l l is e r  4 f t .  in  diameter and 

12 f t .  deep should produce 1 .8  tons per hour of large 

sucrose c r y s ta ls . The cry sta l s iz e  w il l  o f course 

depend on the nucléation rate under these cond itions, 

but the supersaturation ra tio  of 1 .2  i s  generally  

accepted as giving a low rate o f nucléation .

For the reasons already stated the experimental 

work was discontinued in  the g la ss  p lan t, and not 

attempted in  the p ilo t  plant because the high 

temperature c o e ff ic ie n t  o f s o lu b ility  made continuous 

work for several days e s s e n t ia l, and created problems 

of handling large volumes o f highly viscous syrup 

with lim ited  equipment and labour.

Appendix 0 .

Mathematical treatment of cry sta l s ize  d istr ib u tio n .

The follow ing theory has been abstracted from
7 1the work of Saeman.
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The rela tion sh ip  between cry sta l s iz e  and 

volume may be given ac

1 « —       —— (1)

where i s  a constant.

The relation sh ip  between growth rate and 

superoaturation may be given as

dt ~ ^2^  (2)
where kg io  a constant

or 1 » kg St ------------------------------------(3)

How for c la s s if ie d  product removal ( i . e .  only 

f u l l  sized cry sta ls  are removed from the suspension) 

the number of cry sta ls  in  suspension sm aller than 1 

i s  equal to the seed rate N, times the age t  of c r y s ta l, 

s iz e  1 ,

A sim ilar re la tio n  between cumulative cry sta l  

weight and s iz e  1 may be proposed. I f  dZ i s  the 

number of cry sta ls  in  s iz e  increment dl then

dw =     (5)

where p  io  the cry sta l d en sity .

Using the derivative dZ from equation (4)
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3
™    ------------

which on in tegration  gives
4

4kikg8  ~ ^

and therefore the cumulative cry sta l weight varies as 

the fourth power of the cry sta l s iz e .

The actual cry sta l age may be expressed as a 

function of the draw down time T, which i s  the ratio  

of the weight of suspension W, to the production ra te , P, 

or

1 = 1   (8)

Now P = —k1

and therefore T = 5  ^  ^
s - ^ / k i

4kg 8 (9)

and since 1 = kgSt
T = 1  (10)

Therefore the age of c la s s if ie d  product cry sta ls  i s  

four times the draw down tim es.

To f a c i l i t a t e  further work i t  i s  convenient to 

replace absolute crysta l s ize  1 by ^ where
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L = kg SI

IhuB ÏÏ = - ---------------------------------------------------( ? )
4 k^kgS

-  (&)' --------------------------------

The fu n c t io n  I d  p lo tte d  a g a in s t  j  in  P ig .40.

How the product c r y s ta l  s i z e  fo r  c l a s s i f i e d

removal i s  4L, and th erefore  the t o t a l  weight o f  

suspension i s

= 6 4 /)  N I L° ----------------------------(12)
4 k.

S ize  d is t r ib u t io n  fo r  mixed product removal.

In t h i s  ca se  product i s  withdrawn d ir e c t ly  

from uniform ly mixed suspension,' and th erefo re  the  

p r o b a b il i ty  th at sm aller  c r y s t a l s  w i l l  be removed 

as product i s  proportional to the r e sp e c t iv e  population  

d e n s i t i e s .  I t  fo llo w s  th a t there v / i l l  be more 

small c r y s ta ls  present in  the suspension than w i l l  he 

accounted for  by the simple fourth  power r e la t io n .

I t  may be assumed th at the c r y s ta l  s iz e  range 

i s  subdivided in to  equal s iz e  in t e r v a l s ,  where n i s  the
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population  d en s ity  o f c r y s ta l s  w ith in  the in te rv a l .  

Since the  number of c r y s ta l s  withdrawn per u n i t  time 

i s  p ro p o rtio n a l to the population  d en s ity  and the 

withdrawal r a te

t o  ,   (13)

and th e re fo re

n = n^e    (14)

where n^ lo  the i n i t i a l  population  d en s ity  of seeds

The value of n^ i s  equal to  the seed ra te  

divided by the ra te  of growth^ or

“ o  -  k f s "  -----------------------------------------------------

Equation (14) can then be re w rit te n  as

n = ^  e ~L

llow as shown prev ious]y the weight of c r y s ta l s  in  any 

s ize  in te rv a l  i s

clV7 =  — — —
ki

In t h i s  case dü = n d l ,  and so

-1
) 1® e L dl -------------- (17)

which when in teg ra ted  gives



12Ô

.r , ® -1
V/ 3x C ( / l l i—ll» ) 0 jj o[o "k G(y) 3(^>) *5* (y) ] “—(18)

i l l  i j  jJ X»

and hence

V; = )(6 -  e ^  )c[G + 6{J) -f 3 ( |) "  (J)  ] — (19)

The v a r ia b le  te rn  in  equation (19) can again be
1.
1represen ted  as a func tion  of (&)

i’( i )  = (6 -  e L) [G + 6 ( i)  •!- 3(^)^ i- (^)" ] — -----(20)

and i s  p lo tte d  in  Fig 40o

Equation (13) a lso  rep resen ts  the c ry s ta l  

s ize  d is t r ib u t io n  fo r  c ry s ta ls  v/ithdrmm as pro(5uct

5 _ 3
dP _ /o l  dn i p n  / \
dl -  “  d t = -  kiT — ---------   (21)

S u b s ti tu tio n  of (16) in  (21) gives

*=“1
dP = ( / ^ ^  ) 1 e Î  ' d l -----------   —-(22)

or by analogy with equation (17)

T ®
P = f (^ )   (23)

How the d e r iv a tiv e  curve fo r  f(g )  with resp ec t to  (g) 

i s  shown in  Figo40, an(3 i t  can be seen th a t  mired 

product w il l  have a dominant c ry s ta l  s ize  o f y  ^
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compared v/ith the s ize  ^  = 4 found f o r  c la o s if ie d  

production .

Comparison of n e e d i n g  r e g n l r e n e n t a  f o r  b o t h  e y g t e r h n

Hoit u n d e r  e q u i v a l e n t  c o n d i t i o n s  o f  b e d  weight

and production r a te ,  the draw do’wn time T and c r y s ta l

re fe ren ce  s ize  L w il l  be the same fo r  both systems.

Thenonly d i f f e r e n t  seed r a te s  can produce

equ iva len t cond itions in  both systems.
a

i . e .  ïïç = = 1%  (24)
ki

= 6 / ^ T
k i

.  64/3 Nq
k i

9
a 6 /> L

and Pq ^ ® Pjjj 25)

ki

where oubscripto c and n r e f e r  to  c la s s i f ie d  and 

mixed removal of product.

Hence » 0.094 Hq

and th e re fo re  under comparable cond itions  the 

requ ired  seed r a te  fo r  mixed product i s  eleven times 

the number requ ired  fo r  c l a s s i f ie d  product.
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noTsenclaturoc

r  -  rad iu s  of p a r t i c le  or nucleus# cns.

Vq -  molecular volume, c*c*)gn. nolo.

V -  volume of a jnoleculc, c.Co

/®iQ -  m olecular density# gm. moles/c.c© 

o -  su rface area  of a gm. mole of p a r t ic le #  cnio

C -  so lu te  concentration# gm.y c.o©

Cg -  s a tu ra t io n  co n cen tra tio n , gm.yc.c.

o -  excess of so lu te  over the bulk so lu tio n  value#

gm c e c o

d -  su rface tension# dynesfcm©

R -  gas constant©

T -  abso lu te  tem perature, *K.

p -  vapour p re ssu re , m.m© Hg©
s

A -  surface  a rea  of p a r t ic le #  cm©

/ju -  chemical p o ten tio n a l of a m olecule, cals©

AG -  change in  f re e  energy, k cals»/gm© mole©

J© -  n u c léa tio n  r a t e ,  nunberyecc©

-  a c t iv a t io n  energy fo r  d iffu s ion#  k cals.^gm© mole©

K -  mass t r a n s f e r  c o e ff ic ie n t#  gns©  ̂cm© z  hr© % gm©̂ c©c©.
2 I

D -  d i f f u o iv i ty ,  cm© /sec©

$ -  f ilm  th ickness  through which d if fu s io n  i s  taking

place# cmo©
g

k^ -  ourface re a c t io n  v e lo c i ty  c o e f f ic ie n t ,  gms.^cm© % hr, 

% gm© y c © Ç ©
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-  oo lu tion  v ic c o c i ty ,  p o issa , 

a -  In te r la y e r  s p a c i n g ' c n s .

n -  number of n u c le i  formed per hour.

îlj  ̂ -  number of f lno  c ry a ta lo  rcnorcd per hour.

lip -  number of product c r y s ta l s  removed per hour.

P -  weight of f in e  c r y s ta l s  removed per hour*

P -  weight of product c r y s ta l s  removed per hour.

IjP -  o ise  of flnsr o ryota l#  f t*

Ip -  Dice of product c r y s t a l ,  f t .

W -  weight of c ry o ta lo  in  susponsion in  f lu id is e d  bed, Ibn 

T -  draw dov/n t im e , h re .

R -  r a t e  of c ry s ta l  growth, gms*/ gm. z  h r .
2-  r a te  of c ry s ta l  growth, gms./cm. z h r .

S -  experimental su p e rsa tu ra tio n ,  g m s .^ l i t r e .

V -  f lu id is in g  v e lo c i ty ,  cmo.ysec.

Dp -  c r y s ta l  equ ivalen t d iam eter, cma.


