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P R E F A C E

This work contains the  r e s u l t s  of an experim ental in v e s tig a tio n  

in to  some of the e f fe c ts  produced on th e  a irflow  cond itions in  mine sh a fts  

by th e  movement of cages. The in v e s tig a tio n  was c a rr ie d  out in  th e  

Department of Mining, The Royal College of Science and Technology, Glasgow 

and took the form of a programme of t e s t s  on models. The work rep re se n ts  

an ex tension  of the  experiments of Alex. Stevenson, Ph.D ., who used th i s  

method to  study th e  sh a ft p ressure lo sse s  produced by s ta t io n a ry  cages.

A b r ie f  o u tlin e  of the background, scope and ob jec ts  of th e  work 

and of th e  methods employed i s  given in  th e  In tro d u tio n .

Sections 2 to  5 deal w ith the  development of su ita b le  apparatus 

fo r  continuously  record ing  low le v e l  f lu c tu a tin g  pressures*  The methods 

av a ila b le  fo r  recording f lu c tu a tin g  p ressu res are  d iscussed , and te s t s  w ith  

e le c t r ic  re s is ta n c e  s t r a in  gauge transducers and w ith  v a r ia b le  capacitance 

type transducers are  described . The fa c to rs  a ffe c tin g  the  response of 

th e  apparatus to  f lu c tu a tin g  pressures a re  a lso  considered .

Sections 6 to  9 contain  a d e sc r ip tio n  of th e  model s h a f t  in  which 

th e  experiments were c a rr ie d  out and give d e ta i ls  of the  experim ental work. 

The re s is ta n c e  of s ta tio n a ry  cages, w ith  and w ithout s tra ig h t-s id e d  f a ir in g s ,  

i s  examined fu rth e r  w ith  p a r t ic u la r  re feren ce  to  th e  e f fe c ts  produced when 

two cages are  w ith in  the  zone where th e i r  combined re s is ta n c e  i s  not 

independent of the d is tan ce  between them. The work i s  then  extended to  

inc lude moving cages. The e f fe c ts  of the passing of two cages in  m idshaft 

on th e  s h a f t  re s is ta n c e  and on cond itions upstream and downstream from th e  

passing  p lace , and the  e f fe c t  of a  cage passing a p o in t in  the  sh a ft on 

cond itions a t  th a t  p o in t, and th e  p o s s ib i l i ty  of reducing th ese  e ffe c ts  by 

using  s tra ig h t-s id e d  fa ir in g s  are  covered.
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Section 1. I N T R O D Ü G T  I O N

Adequate v en tila tio n  of the workings i s  e ssen tia l for the sa fety  

of any underground mining project and in  Great Britain  minimum 

standards are la id  down by sta tu te  (Ref., l . l ) . I t  i s  a lso  important 

that the v en tila tio n  be supplied as e f f ic ie n t ly  and as economically 

as possible*

The v en tila tio n  energy i s  supplied by the main mine fan 

supplemented by a u x ilia r ie s , boosters and natural v en tila tio n  effects*

An a ir  fan works most e f f ic ie n t ly  when i t  i s  handling i t s  design  

volume against i t s  design pressure. Any attempt to  operate the fan 

under d ifferen t conditions re su lts  in  a decrease in  e ff ic ie n c y  and lo s s  

of power. When i t  i s  considered that the main fan motor in  a modern 

mine may have to  develop 1000 horse-power the importance of keeping the 

fan near to  i t s  design duty becomes apparent. In making h is choice of 

fan the engineer must estim ate the quantity of a ir  required to  v e n tila te  

the mine s a t is fa c to r ily  and the pressure required to  drive th is  amount 

of a ir  through the mine. The quantity i s  estimated from a knowledge 

of gas emission ra tes , number of working places and output and the 

pressure by estim ating the resistan ce  to  a ir  flow of the various parts 

of the workings.

The proportion of the to ta l  fan energy absorbed in  the shafts can 

be considerable because they carry larger q uan tities of a ir  than any 

other lin k s in  the network of underground roadways. In an estim ate of 

the v en tila tio n  requirements of a reorganised c o llie r y  undertaken by
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the author (1 .2) i t  was shown that with a fan d r if t  W.G. of 5*2 inches 

the p it  bottom W.G* was 3 «5 inches. The sh afts were le s s  than 1300 fe e t  

deep, only one of them had r ig id  guides and the a ir  quantity was about 

250,000 c .f .m . and yet the sh afts made by far the greatest individual 

demand on the fan* Modern mines are planned for more in ten sive  

production from deeper le v e ls  with higher rock temperatures and so  

require more a ir .  I t  has been estimated ( I . 3 ) that at le a s t  50? of the 

fan power w i l l  be absorbed in  the shafts of such a mine* Accordingly, 

inaccuracies in  the estim ation of shaft resistan ces w i l l  have more 

serious e ffe c ts  than inaccuracies elsewhere and reductions in  shaft 

resistan ces w il l  be of greater value than comparable reductions elsewhere.

The resistan ce  of a shaft can be estimated by

1) 6]q)eriment8 "in situ"

2) an a ly tica l methods based on knowledge of the
ch aracteristics  of other sim ilar shafts*

3 ) experiments on a model o f the shaft*

Tests "in. situ " , i f  ca refu lly  conducted, should give the b est re su lts  

and i t  i s  in terestin g  to  note that a team of in vestigators ( I . 4) claim  

to  have estimated the resista n ce  of a shaft to  -  1% using the " fu ll 

volume -  reduced volume" method. A nalytical methods have lim ited  

application  due to  the wide variety  of shafts in  existence* In many 

cases "in situ" te s t s  are not p ossib le and in  such cases r e su lts  from 

experiments on models can be very useful* Scale model te s t in g  of mine 

airways has been carried out by many in vestigators the

s u ita b il ity  o f the technique for shafts has been fu l ly  discussed (1*7).

In cases where comparisons have been p ossib le  between f u l l  sca le
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in s ta l l a t io n s  and models degrees of agreement vary ing  from 5? to  15? 

have been found*

The most p ro f i ta b le  f i e ld  fo r  model te s t in g  has been in  what has 

been c a lle d  "system atic" in v e s tig a tio n s  (1 .8 ) in  which th e  e f f e c t  of 

su ccessiv e  m odifications to  an airway are  studied* Models a re  p a r tic u la r ­

ly  s u i ta b le  fo r  th is  type o f work s in ce  fe a tu re s  can be e a s i ly  and cheaply 

a l te re d  and s in ce  sc a le  e f fe c ts  a re  u n lik e ly  to  se r io u s ly  a f f e c t  th e  

r e la t iv e  values of re s is ta n c e  produced by d if f e r e n t  designs* This type 

of work has been done on sh a fts  fo r  bunton spacing, p a t te rn s , and stream ­

lin in g  of buntons but a p a r t from the work of Stevenson (1 .9) th e  

r e s is ta n c e  produced by cages has received  no a t te n t io n .  Following " in  

s i tu "  t e s t s  on No.5 S h aft, O ity  Deep L td ., South A frica  i t  was s ta te d  

(1 .4) th a t  th e  e f fe c ts  produced by cages were neg lig ib le*  However, th is  

s h a f t  i s  rec tan g u la r, ro u g h -lin ed , heav ily  tim bered and 5»849 f e e t  deep 

and i t  i s  understandable th a t  th e  cages produced an in s ig n if ic a n t  

in c rease  in  th e  t o t a l  re s is tan ce*  In  h is  work Stevenson in v e s tig a te d  

th e  fa c to rs  c o n tro llin g  th e  re s is ta n c e  to  a i r  flow of cages by t e s t s  on 

s ta t io n a ry  models* He a lso  in v e s tig a te d  the  p o s s ib i l i t i e s  o f reducing 

th e  cage re s is ta n c e s  by means o f s tream lin in g .

The purpose of the  work described here was to  extend th i s  work to  

include th e  e f fe c ts  produced by th e  cages in  motion, to  compare th i s  w ith  

s ta t io n a ry  cage t e s t s ,  and to  e s ta b lis h  th e  r e la t iv e  importance of th e  

cage e f fe c ts  and th e  r e s t  o f th e  s h a f t r e s is ta n c e . Tests were c a rr ie d  

out on moving and s ta t io n a ry  model cages in  a h o rizo n ta l wind tunne l 

equipped as a model shaft*  The movement of th e  cages r e la t iv e  to  each
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other and to  the shaft produced fluctu ating  a ir  pressures which were 

recorded and rela ted  to the p osition  of the cages in  the sh aft by 

apparatus sp ec ia lly  b u ilt  for the purpose*

Most investigators have expressed th e ir  r e su lts  on sh aft  

resistan ces as " fr ic tio n  co effic ien ts"  ( f  or X ) as found in  the w ell 

known D®Arey formula which can be used to ca lcu la te  the head lo s t  in  any 

length of sh aft of any diameter. In the case o f cages, however, the 

resista n ce  i s  not dependent on shaft length and i t  i s  found more su itab le  

to  quote cage resistan ce as Pressure Drop C oefficien t (k) which i s  

defined as the ra tio  of the lo s s  in  pressure due to  the cage to  the mean 

approach v e lo c ity  head. Like " f  " and " Aj*, "k" i s  dimensionless and 

w il l  have the same value for any two systems which are dynamically 

sim ilar* To maintain uniformity in  th is  work sh aft resistan ces are a lso  

given as PoDoC.'s although th is  requires to  be q u a lified  by a statement 

of the length  and diameter of sh aft to which the quoted value r e fe r s . 

Confident correlation  of the re su lts  of te s t s  on models w ith f u l l  

sca le  in sta lla t io n s  has always proved d if f ic u lt  due to  the very high 

Reynolds Numbers common in  mine sh a fts . Great pcwer would be required 

to  produce high enough a ir  v e lo c it ie s  in  a model to  make the Reynolds 

Numbers equal and even i f  th is  were p o ssib le  i t  i s  l ik e ly  that a ir  

v e lo c it ie s  would exceed the value above which compre§sion\\effects can 

no longer be ignored ( l . lO ) , I t  has been discovered, however, that once 

the Reynolds Number i s  high enough to  ensure that the a ir  flow i s  fu l ly  

turbulent very l i t t l e  further change in  the values of f r ic t io n  c o e ff ic ie n ts  

takes place, and the re su lts  corresponding to  the highest Reynolds
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Numbers ob ta inab le in  models have fre q u en tly  been ex trap o la ted  to  

Reynold 's Numbers corresponding to  f u l l  sca le  co n d itio n s .

I t  has been assumed th a t  th is  e x tra p o la tio n  gives a higher value 

o f "f" fo r  a sh a ft th an  i s  a c tu a lly  th e  ca se . An in v e s tig a tio n  by 

Le Roux and Chasteau ( l . l l )  on a  la rg e  model w ith  a powerful fan  in  , 

which Reynolds Numbers up to  2,500,000 could be obtained gave 

experim ental proof of th i s  and showed decreases of between 2 .5 ?  and 5? 

depending on the  t o t a l  re s is ta n c e . As an a l te rn a t iv e  so lu tio n  Jones 

and H insley (1 .8) have shown experim ental r e s u l t s  in  which b e t te r  

c o r re la t io n  was obtained by operating  geom etrica lly  s im ila r  systems a t  

th e  same mean v e lo c ity  r a th e r  than  a t  d i f f e r e n t  Reynolds Numbers and 

ex tra p o la tin g  over the  gap.

The experiments in  th i s  work were done a t  Reynolds Numbers in  the  

range 250,000 to  450? 000 and th e re  was no measurable d if fe re n c e  in  "k" 

w ith in  th e  range. E x trap o la tio n  to  higher Reynolds Numbers may produce 

s l ig h t  d iffe ren ces  in  r e s is ta n c e  but r e la t iv e  values should be unchanged 

and comparisons made should be v a l id .

The work includes d e ta i l s  o f th e  co n s tru c tio n  of a s u i ta b le  

record ing  manometer and a th e o re t ic a l  s e c tio n  dealing  w ith  th e  fa c to rs  

a f fe c tin g  i t s  response to  o s c i l la t in g  p re ssu re s .



6

S ection  2* THE RECORDING MANCMBTER -  GENERAL

2 ol,._ The Need fo r a Recordiimr Manometer

In  th e  se c tio n  of h is  th e s is  e n t i t le d  "Suggestions fo r  F uture 

Work" Stevenson (1 .9) po in ted  out the  n e c e ss ity  of extending h is work to  

include moving cages in  order to  study th e  re s is ta n c e  to  a i r  flow due to  

cages in  mine sh a fts  under cond itions which approached f u l l  sc a le  

cond itions more closely» Stevenson suggested th a t  th is  could be done 

using model te s t in g  techniques s im ila r  to  those  used by him in  th e  study 

of the  e f f e c ts  produced by s ta tio n a ry  cag es. Before such a t e s t  

programme could be c a rr ie d  out i t  was necessary  to  provide a means fo r  

the  measuring and record ing  of the f lu c tu a tio n s  in  a i r  p ressu res  which 

the  moving o f the cages was expected to  produce. The p ressu res  in  th e  

wind tu n n e l were in  the range 0 to  14 inches w ater gauge w ith  super­

imposed f lu c tu a tio n s  of unknown am plitude and frequency. The am plitude 

was expected to  be f a i r l y  sm all -  about one inch  w ater gauge -  bu t i t  

was not p o ss ib le  to  estim ate  th e  probable frequency.

At th e  time when the  in v e s tig a tio n s  were begun (1956) no manometer 

capable of record ing  such sm all p ressu re  f lu c tu a tio n s  was in  commercial 

p roduction . I t  was th e re fo re  necessary  to  b u ild  one before th e  proposed 

t e s t  programme could be s ta r te d .

2 ,2 . D esired C h a ra c te r is tic s  of a Recording Manometer.

Ignorance of the na tu re  of the p ressu re  e f fe c ts  req u ir in g  to  be 

measured made i t  d i f f i c u l t  to  decide upon th e  c h a ra c te r is t ic s  req u ired
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by the  Recording Manometer. The im portant fa c to rs  to  be considered in  

th e  design  are  the  response, th e  s e n s i t iv i ty ,  th e  accuracy and the  u t i l i t y ,  

The response should be l in e a r  and u n d is to rted  to  s t a t i c  or t r a n s ie n t  

p re ssu re s . This can only be achieved by keeping th e  n a tu ra l frequency 

of th e  instrum ent high. Any moving p a r ts  must th e re fo re  be l ig h t  and 

any s tra in in g  members must be s t i f f .  The s e n s i t iv i ty  should be such 

th a t  a reasonab le range o f low p ressu res can be measured w ith  a s in g le  

gauge. The c a l ib ra t io n  should be unaffec ted  by tim e and by e x te rn a l 

cond itions such as v ib ra tio n  and tem perature and th e  instrum ent e rro rs  

must be kept to  a minimum. I t  has been suggested (2 .1) th a t  th e  

a llow able variance  should be 2? of the  t o t a l  range. Other d e s ira b le  

fe a tu re s  which should be provided, i f  p o ss ib le , a re  s im p lic ity  of 

m anufacture, in s t a l l a t io n  and operation , and th e  p ro v is io n  of means fo r  

in d ic a tio n  or recording  a t  s ta t io n s  remote from th e  p o in t o f in s t a l l a t io n .

2 .3 . Methods o f Recording F lu c tu a tin g  Air P ressu res.

The record ing  of f lu c tu a tin g  a i r  p ressu res  re q u ire s  th e  p ro v is io n  

o f a mechanism capable of converting p ressu re  in to  a q u an tity  s u i ta b le  

fo r  inpu t to  a re co rd e r. The methods (2 .2 ) of doing th i s  can be 

d iv ided  in to  two broad c la sse s  -  mechanical and e l e c t r i c a l .

In  mechanical p ressu re  record ing  th e  p ressu re  a c ts  upon an 

element producing a displacem ent which may be magnified by a system of 

le v e rs  befo re being recorded , u su a lly  by a pen, on moving paper. The 

nature of th e  method makes i t  more s u i ta b le  f o r ,  and more g en e ra lly  

app lied  to ,  the  reco rd ing  of high p ressu res in  th e  low frequency range.
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The most common example o f i t s  use i s  found in  th e  spring  operated engine 

in d ic a to r  of the  type f i r s t  b u i l t  by James W att. The method has been 

ap p lied  (2 ,3 , 2 ,4 , 2 .5 ) however to  a i r  p ressu res  in  th e  range g en era lly

found in  v e n t i la t io n  p ra c t ic e .  The technique employed i s  to  use a 

l ig h t  diaphragm which responds to  the p ressu re  changes and co n tro ls  by 

i t s  movement a m irro r, which i s  p a r t  of an o p tic a l system which moves a 

spot of l ig h t  over photographic f ilm .

In  e l e c t r ic a l  p ressu re  record ing  th e  p ressu re  s e n s itiv e  element 

forms a component in  an e l e c t r i c a l  c i r c u i t .  The e f fe c t  of th e  p ressu re  i s  

to  a l t e r  the  e l e c t r i c a l  p ro p e r tie s  of th e  element and so produce a change 

in  th e  cond itions in  th e  c i r c u i t .  The c i r c u i t  i s  so arranged th a t  th is  

change w i l l  produce an e le c t r i c a l  output s u i ta b le  fo r  use w ith  a cathode 

ray  o sc illo sco p e  or a galvanometer re c o rd e r . The e l e c t r i c a l  change 

produced by th e  p ressu re  may be r e s i s t iv e ,  in d u c tiv e , e le c t r o s ta t i c  or 

p ie z o -e le c tr ic .  R esistance  type p ressu re  tran sd u cers use w ire s t r a in  

gauges cemented to  an  e l a s t i c  element which s t r a in s  under th e  p re ssu re

(2 .1) and are  p a r t ic u la r ly  s u i ta b le  fo r  measuring p ressu re  p u lsa tio n s , 

in  p ipe l in e s  (2 .6 ) . V ariab le  inductance type transducers opera te  by 

allow ing the  p ressu re  to  vary  an a i r  gap in  a magnetic c i r c u i t ,  so 

varying th e  inductance of a c o i l .  V ariab le  capacitance type tra n s ­

ducers u t i l i s e  the  change in  capacitance which r e s u l t s  when the  spacing 

between th e  p la te  o f a condenser i s  a l te r e d  (2 .7 , 2 .8 ) w hile th e  p iezo­

e le c t r ic  type u t i l i s e  th e  e le c t r ic  p o la r i t ie s  developed when c ry s ta ls  

of c e r ta in  m inerals a re  su b jec ted  to  p ressu re  (2 .9 ) .

I t  has been suggested (2 .10  -  1940 ) th a t  e le c t ro s ta t ic  type
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gauges are more su itab le  for high frequency phenomena and electromagnetic 

types for lower frequency. Resistance types are a more recent develop­

ment, resu ltin g  from the improvement in  design and properties o f stra in  

gauges, which has taken place in  recent years.

Mechanical types are generally the simpler but e le c tr ic a l methods 

have a wider application  and are esp ec ia lly  required when pressures have 

to  be recorded at a point remote from the in s ta lla t io n  o f the manometer.

2 .A. Pressure Sen sitive Elements

The most widely used element in  instruments used for measuring 

pressures in  the range with which th is  work i s  concerned, i s  the m etallic  

diaghragm. German s ilv e r , beryllium copper, phosphor bronze and n ick el 

a lloys have a l l  been used (2 .11 , 2 .1 2 ) . Diaphragms may be f la t  or they 

may have corrdgations spun, pressed or stamped in to  them in  order to  

improve th e ir  load bearing properties. Some instruments incorporate 

a pair of diaphragms forming a capsule and bellows (2.13) and Bourdon 

tubes have a lso  been used.

Diaphragms have the advantages of being very compact, simple to  

manufacture and r e la t iv e ly  cheap. By making a su itab le  choice of pattern, 

m aterial, thickness and diameter i t  i s  p ossib le  to  produce a diaphragm 

capable of measuring any required pressure. A variable capacitance type 

diaphragm manometer capable of measuring (but not recording) pressures 

of 0.001 mm. of mercury (about 2 x  10 Ib /sq .in .)  has been b u ilt  (2 .1 4 ), 

while several commercial manufacturers use diaphragm type gauges for  

pressures as high as 10,000 Ib /sq .in .
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A diaphragm can be made more s e n s i t iv e  by reducing  i t s  th ick n ess  

and in c reas in g  i t s  d iam eter. However, th i s  lowers the  n a tu ra l  frequency 

and r e s t r i c t s  th e  frequency range in  which th e  diaphragm can be used to  

reco rd  o s c i l la t in g  p re s su re s . Due to  th e i r  ease of manufacture and 

a v a i l a b i l i t y  of th e  m a te r ia ls , f l a t  b rass  diaphragms were used exclusive­

ly  in  our e ^ e r im e n ta l  work on th e  development of the  reco rd ing  manometer.

S ection  3.  THE RBSCRDING MANGMBTER -  THE STRAIN
GAUGE DIAPHRAGM

3 .1 . E le c tr ic  R esis tan ce  S tra in .

The b as ic  element in  th i s  type o f tran sd u cer i s  th e  e l e c t r i c a l  

r e s is ta n c e  s t r a i n  gauge (P la te  3*1) which c o n s is ts  of a continuous 

re s is ta n c e  w ire  bent to  a s u i ta b le  p a t te rn  and f ix ed  to  a paper backing. 

The gauge i s  cemented to  the  diaphragm or o ther s e n s it iv e  element and 

th e  s t r a i n  produced by th e  p ressu re  i s  tran sm itte d  to  the  gauge. The 

e f f e c t  o f the  s t r a i n  on th e  w ire i s  to  in c re a se  i t s  len g th  and reduce 

i t s  diam eter causing an in c re ase  in  i t s  e l e c t r i c a l  r e s is ta n c e . The 

in c re ase  in  r e s is ta n c e  has been found to  be s l ig h t ly  g re a te r  th an  would 

be expected from c a lc u la tio n s  of th e  change of dimensions, and i t  has 

been suggested (3 .1 ) th a t  th is  i s  due to  a change in  th e  s p e c if ic  

r e s is ta n c e  of th e  m a te r ia l when i t  i s  s t r a in e d .  The s t r a in  s e n s i t iv i ty  

fa c to r  o f th e  gauge i s  defined as 8-

p ro p o rtio n a te  change in  r e s is ta n c ef  =
mechanical s t r a i n
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For most types of w ire gauge i t s  value i s  about 2 .2 .

The abso lu te  change in  re s is ta n c e  i s  v ery  sm all and i t  i s  necessary  

to  in co rp o ra te  the gauge in  a b ridge  c i r c u i t  (F ig . 3 # l) . The sim ple 

one-to-one bridge (a) i s  more common. The dummy gauge i s  made id e n t ic a l  

to  th e  a c tiv e  gauge and is  cemented to  a p a r t  of th e  assembly of about 

th e  same mass as th e  s tr a in in g  p a r t ,  thereby  g iv ing  autom atic compensation 

fo r  any changes in  tem perature. The s e n s i t iv i ty  of th e  arrangement can 

be increased  i f  th e  dummy gauge i s  cemented to  a p a r t  of th e  member which 

experiences a s t r a in  opposite  in  s ig n  to  th e  a c tiv e  gauge, and by using 

fu r th e r  s tra in in g  gauges as th e  r a t io  arms. The b ridge s e n s i t iv i ty  can 

be c a lc u la te d  (re fe ren ce  to  p a r t  b of F ig . 3 .1 ) as fo llo w s.

S X f  X K X mV oltage S e n s it iv ity  -  e =

C urrent S e n s it iv ity  = i  =

(m + 1)^

S X f  X I  X m

(m + l )  + m (n + l )

where

R = re s is ta n c e  of u n stra in ed  gauge (ohms)

S = b ridge v o ltag e  (v o lts )

m, n , = bridge constan ts

f  = s t r a in  s e n s i t iv i ty  fa c to r

S = mechanical s t r a in

I  = gauge cu rren t amps.

e = b ridge output (v o lts )  on open c irc u its

i  = b ridge output (amps) through in strum en t of r e s is ta n c e  Rg.



Gauge

Output
R atio  Arms

/1,

Bridge Vo ltag e

Gauge Dummy

Output
R atio  Arma

Bridge V oltage

FIG. 3 .1 . STRAIN BRIDGES
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C onsideration  of th ese  expressions suggests th a t  to  ob ta in  maximum 

cu rren t s e n s i t iv i ty  ( fo r  a given gauge vo ltage) "m" should be la rg e  and 

"n" should be sm all but th e  l im its  to  which th i s  can be c a rr ie d  a re  

s t r i c t ,  s in ce  such a b ridge would re q u ire  a dummy gauge and two r a t i o  arms 

of high d is s ip a tin g  power, and would make a heavy power demand on th e  

supply . Both th e se  fa c to rs  w i l l  adversely  a f f e c t  the  s te ad in e ss  o f th e  

b rid g e . I f  th e  s t r a in  b ridge  has to  be used fo r  recording dynamic s t r a in s  

then  the  ex te rn a l r e s is ta n c e  presen ted  to  th e  galvanometer by th e  bridge 

has to  be ad ju sted  to  arrange fo r  s u ita b le  damping of the galvanometer

(3 .2 ) . Such an arrangement may req u ire  r e s i s to r s  in  s e r ie s  or p a r a l le l  

w ith  th e  galvanometer reducing th e  s e n s i t iv i ty  of th e  b r id g e .

3 .2 . I n i t i a l  Work.

The i n i t i a l  work in  the  attem pt to  use a s t r a in  gauge diaphragm 

to  measure f lu c tu a tin g  p ressu res was undertaken by Thomson (3*3), who 

designed and b u i l t  two diaphragms. These were o f b rass  0.0015 inches 

th ic k  and 4 inches in  diam eter clamped between s te e l  r in g s  using 

A ra ld ite  103 as a f ix a t iv e .  Thomson experienced d i f f i c u l ty  in  making a 

t ig h t  f l a t  diaphragm and so e lim in a tin g  a sudden d e f le c tio n  of th e  

diaphragm befo re  the s t r e s s - s t r a in  r e la t io n s h ip  began. This sudden 

d e f le c tio n  he named the "C lick  E ffect" and overcame i t  by assem bling th e  

diaphragm a f te r  heating  the  p a r ts  under an in f r a  red  lamp and allow ing 

th e  d i f f e r e n t ia l  expansion cf th e  s te e l  and th e  b ra ss  to  t ig h te n  th e  

diaphragm.

On one of these  diaphragms Thomson mounted e igh t 24-00 ohm
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De H avilland one inch s t r a in  gauges. These were placed r a d ia l ly ,  four 

on each s id e  a t  90 degree in te rv a ls  and were connected in  p a irs  in  

p a r a l le l  to  form the four arms of a s t r a in  b rid g e . On th e  o ther he 

mounted four "home made" r a d ia l  gauges covering the  e n t i r e  su rface  of 

bo th  s id e s .  Due to  lack  of tim e he did not attem pt a c a l ib ra t io n .

3 .3 . F u rth er Development.

The output from the  s t r a in  bridges on Thomson’s diaphragms could 

be d e tec ted  on a s e n s it iv e  spot galvanometer, bu t i t  was much too  low to  

g ive a s a t is f a c to ry  output on a cathode ray  o sc illo sco p e  or a galvanometer 

reco rder and an attem pt to  b u ild  a s u f f ic ie n t ly  s ta b le  d ir e c t  c u rre n t 

am p lif ie r  was not su c ce ss fu l. At th is  stage i t  was doub tfu l i f  th ese  

diaphragms would give s a t is f a c to ry  r e s u l t s  and a more th e o re t ic a l  l in e  

was a ttem pted .

Theorv of Diaphragm S tra in in g

The theory  fo r  th e  s tra in in g  of f l a t  c i r c u la r  p la te s  under uniform 

p ressu re  was developed by Grashof (3*4-) and has been e s tab lish ed  

experim entally  fo r  c e n tra l  d e f le c tio n  (3*5) using a micrometer and fo r 

su rface  s t r a in  (3*6) using e le c t r ic  r e s is ta n c e  s t r a in  gauges. Other 

experiments (3*7) showed th a t  Grashof *s th eo ry  was lim ited  to  cases where 

th e  c e n tra l  d e f le c tio n  i s  very sm all compared w ith  th e  th ic k n ess . A more 

accu ra te  (and much more d i f f i c u l t )  theory  has been given (3*8) and has 

been experim entally  proved (3*9).

Grashof *s Theory i s  inadequate in  th a t  i t  considers bending only
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and assumes th a t  no s t r a in  e x is ts  on th e  n e u tra l  plane in  the  c e n tre  of 

the  p la te  m a te ria l a t  r ig h t  angles to  the load and th a t  the  s t r e s s  v a rie s  

sym m etrically through the  th ick n ess  of th e  p la te  from compression on th e  

high p ressu re  s id e  to  tension on th e  low p ressu re  s id e . In  th e  design  

of the s t r a i n  gauge diaphragm i t  was considered very  d e s ira b le  th a t  th e  

output s ig n a l from th e  s t r a in  b ridge  should vary  l in e a r ly  w ith  th e  

p ressu re  d iffe re n ce  across th e  diaphragm. The s t r a in s  produced by th e  

bending of the  diaphragm have th is  p roperty  bu t as the d e f le c tio n  

in c reases  o ther s t r a in s  have to  be considered . Grashof *s th eo ry  shows 

th a t  in  the  range where only bending i s  im portant the  s t r a in  i s  in v e rse ly  

p ro p o rtio n a l to  the  square of th e  th ic k n e ss . I t  follow s th a t  to  ob ta in  

the  b es t cond itions th e  diaphragm should be as th in  as p o ss ib le  w ithout 

lo sing  i t s  len ear p ro p e rtie s  a t  i t s  maximum working p re ssu re . D iffe ren t 

w rite rs  vary  in  th e i r  opinions as to  the p o in t a t  which Grashof*s Theory 

breaks down and i t  was decided to  c a rry  out l i n e a r i ty  t e s t s  on some 

se lec ted  diaphragms to  f in d  out th e i r  u se fu l range.

T ests.

The diaphragms te s te d  were made from b rass  f o i l  clamped between 

s te e l  r in g s  4 inches in te rn a l  diam eter (P la te  3 •7 ) .  The b ra ss  was kept 

t ig h t  by assembling th e  diaphragms under h ea t. For f o i l  0.0015 inches 

th ic k  th e  heat from an in f ra  red  lamp proved s u f f ic ie n t  but f o r  th ic k e r  

f o i l s  i t  was necessary to  use steam to  provide a high enough tem perature 

to  ensure th a t  th e  b rass  would t ig h te n  s a t i s f a c to r i ly  on coo ling . Four 

diaphragms were te s te d  -  one of those b u i l t  by Thomson, another a lso  

0.0015 inches th ic k  and two each 0.005 inches th ic k . One one-inch
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600 ohm gauge was fix ed  (3*10) on each of the new diaphragms a t  varying 

ra d iio  D if fe re n tia l  p ressu res were app lied  to  th e  diaphragm and 

sim ultaneously  to  a Betz P ro je c tio n  Manometer (See P la te  6*5). The 

r e s u l t in g  s t r a in  in  th e  gauge was picked up e i th e r  w ith  a  P h i l l i p ’s 

Model GM5536 A.Q. S tra in  Bridge or by w iring  th e  gauge in to  a b ridge w ith  

s u ita b le  5 w att ra te d  r e s i s to r s  and reading the  out of balance cu rre n t 

on a s e n s i t iv e  galvanometer* The p ressu re  across the  diaphragm could 

be v a ried  from zero to  about 12 inches W.G, and p ro v is io n  was made fo r  

re g u la r  checking of the s t r a in  bridge zero*

R e su lts .

The t e s t s  showed th a t  th e  l in e a r  re la tio n s h ip  between th e  s t r a i n  

on th e  0.0015 inch th ic k  diaphragms broke down a t  p ressu res g re a te r  than  

1 inch  W*G. w hile on the  0.005 inch th ic k  ones th e  breakdown occurred 

around 5 inches W*G. when the  gauge was in  compression and around 8 inches 

W.G* when in  te n s io n .

The t e s t s  a lso  showed th a t  a t  p ressu res higher than  1 inch W.G. 

th e  s t r a i n  on both  su rfaces of Thomson’s 0.0015 inch  th ic k  diaphragm was 

of th e  Same s ig n  and not opposite  as he had supposed. This proved 

co n c lu siv e ly  th a t  in  the case of such th in  diaphragms th e  s t r a in s  produced 

by s tre tc h in g  of the  m a te ria l were of a h igher order than  those produced 

by bending and th a t  a l in e a r  p res su r e - s t r a in  re la tio n s h ip  could not be 

ob ta ined . In  th e  case of th e  0.005 inch th ic k  diaphragms th e  bending 

s t r a in s  seemed to  predominate up to  p ressu res s u f f ic ie n t ly  high to  make 

a s a t is f a c to ry  p re ssu re - s t r a in  r e la tio n s h ip  p o ss ib le . No fu r th e r  

th ick n esses  were t r i e d .
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The actual le v e l o f s tra in  achieved in  these te s t s  was very low and 

w hile i t  could be picked up e a s ily  enough on a se n s it iv e  spot galvanometer 

the current output from the bridge was too low to  operate a galvanometer 

recorder which is  much le s s  se n s it iv e  because i t s  design (3*11) needs a 

sm aller core and smaller number of turns on i t s  moving c o i l  to  ensure 

a high natural freqency.

Calculations showed that i f  a d eflec tio n  of 1 cm. was wanted on
—6

the ava ilab le  galvanometer recorder a stra in  of about 700 x 10 would be 

required at the gauge* I f  a l l  four arms of the bridge could be made 

a ctiv e  then one quarter o f th is  stra in  would do* According to  Grashof *s 

Theory the stra in s on the experimental diaphragms should have been about 

100 X 10 per inch W.G. but the actual stra in s picked up were very much 

l e s s ,  in  most cases only about one tenth of t h is .  The cause of the  

discrepancy is  not certa in  but i t  seems that eith er 0.005 inches i s  s t i l l  

too th in  to  allow application  of the theory to  a 4 inch diameter diaphragm 

or e ls e  lo c a l strengthening of the th in  brass f o i l  by the gauge backing 

and the layer of bonding cement upset the normal pres sur e -s tra in  re la tio n ­

ship in  a complex way.

From these te s ts  i t  was concluded that s tra in  gauges on the surface 

of these diaphragms would not g ive a high enough output to  feed the  

ava ilab le  galvanometer recorder without e le c tr ic a l  am plification . Stable  

am plification  of the very small d irect current output would prove very 

d if f ic u lt  and an a ltern ative  method was sought*
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3qA. Unmounted S tra in  Gauges.

In  an attem pt to  produce a higher le v e l of s t r a in  on th e  gauge 

i t  was decided to  in v e s tig a te  the case of a diaphragm s tra in in g  a gauge 

s tre tc h e d  a t  r ig h t  angles to  th e  plane of th e  diaphragm between th e  

diaphragm cen tre  p o in t and a r ig id  support b a r .

Theory of P la te  Loaded Uniformly w ith  C en tra l Support.

Considering the theo ry  of th is  case i t  was f e l t  th a t  s in ce  the  

ac tio n  o f th e  gauge would reduce the  c e n tra l  d e f le c tio n  of th e  diaphragm 

to  a very  sm all value then  G rashof’s Theory was l ik e ly  to  apply .

The th eo ry  gives *-

Free d e f le c tio n  of p la te  under uniform load  = Wp

"p  "  - t

and F ree d e f le c tio n  under concentrated  load a t  cen tre  =

^ ^  ~ ^ inches
4 m  ̂ E t 3

where p = th e  uniform p ressu re  ( lb s . per s q .in .)

W = th e  concen tra ted  load  ( lb s .)

.1 = P o isson*s R a tio
m
S = Young’s Modulus ( lb s .  per s q .in .)

r  = rad iu s  ( in s .)

t  = th ickness ( in s .)

For p la te s  of any one m a te ria l under a f ix e d  p ressu re  we get

Wp = A r ^  where A = con stan t
t
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W ^Wt = B — E-—  where B = constan t
t ^

The two cases were then combined as follow s

I f  r ig id i t y  of the  support = e inches per Ibo then th e o re t ic a l ly  

Wp = Wt + We*

w =
Br'^ + et^

and S tra in  on gauge = 8 = -H i-  

where L = leng th  of gauge in  inches.

• s  =
(Br^ ♦ et^)L

The values of A and B fo r  a b rass  diaphragm under a p ressu re  of 1 inch 

W*Go were c a lcu la te d  and used to  estim ate the  value of s t r a in  l ik e ly  to  

be found on a one inch  gauge fix ed  to  the cen tre  po in t of a diaphragm 

of varying rad iu s and thickness* The r e s u l t s  are shown on Graph 3o l 

and in d ic a te  th a t  th e  s t r a in  inc reases w ith  rad iu s  fo r a given gauge 

s tren g th  and inc reases w ith a f a l l  in  gauge s tre n g th  (i*e* a r i s e  in  "e”) 

a t  a given r a d iu s . The most s ig n if ic a n t  p o in t i s  the very  sm all e f fe c t  

of varying diaphragm th ickness except w ith  th e  weakest gauges* The 

f i r s t  t e s t s  w ith  perpend icu lar mounting were c a rr ie d  out on the same 

diaphragms as the  su rface  s t r a in  te s ts*  A l ig h t  s t i r r u p  was f ix ed  to  

th e  cen tre  po in t of the  diaphragm and a one inch  Saunders Roe type f o i l  

gauge was s tre tch e d  between th e  s t i r r u p  and a r ig id  bar placed above the  

diaphragm* Pressures were app lied  to  the diaphragm and th e  s t r a in
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measured. The mechanical strength of the gauge (e) was found from a 

separate t e s t  by detatching the stirrup  from the diaphragm and suspending 

weights on i t .  Graph 3 .2  shows the values of bridge current picked up 

in  the pressure range 0 to 11 inches W.G. Good lin e a r ity  and s ta b i l i t y  

was obtained. The mean value of s tra in  picked up in  these t e s t s  was 

82 X 10 per 1 inch W.G. pressure. This compared very favourably with 

the th eo retica l value which was 90 x  10 per 1 inch W.G. and w ith about 

10 X 10“  ̂ per 1 inch W.G. which was the highest stra in  le v e l  measured on 

the diaphragm surface. I t  was s t i l l  much le s s  than the 700 x 10”  ̂ per 

1 inch W.G. which was required. From the th eo retica l curves i t  was 

obvious that a larger diameter diaphragm was needed. 12 inches was 

se lected  and the thickness was increased to  0.018 inches to  maintain a 

high natural frequency and to ensure that the theory would be more 

s t r ic t ly  applicab le. A s l ig h t ly  d ifferen t type of stra in  gauge with 

strippable backing had to  be used. The s tra in  le v e l  produced was about 

250 X 10  ̂ per 1 inch W.G. but the bridge was not very sta b le  at the 

voltage which was required. This was probably due to  the d ifferen t  

thermal ch aracteristics  o f the unmounted gauge and the mounted dummy.

At th is  point stra in  gauge t e s t s  were discontinued because b etter  

resu lts  were being obtained with a variable capacitance type transducer 

which was being developed sim ultaneously.

3 .5 . Conclusions.

l )  The le v e l  of mechanical stra in  produced on the surfaces of the
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diaphragms te s te d  by p ressu res of 0 to  8 inches W.G. i s  not 

s u f f ic ie n t  to  operate a simple d ir e c t  c u rren t bridge and a reco rd ing  

galvanometer as a means of record ing  p ressu re  f lu c tu a tio n s .

2) A m plification  of the  d .c .  output may be p o ss ib le  but w i l l  re q u ire

bulky and expensive equipment b u i l t  to  match both th e  s t r a in  bridge 

and the  galvanometer and c a re fu lly  designed to  avoid in te r fe re n c e .

3) The theory  suggested fo r  the  s t r a in  on a gauge s tre tch ed  a t  r ig h t

angles to  the plane o f a diaphragm agrees w e ll w ith p r a c t ic a l

r e s u l t s .  This method gives much higher s t r a in  than  i s  found on th e  

diaphragm surface but req u ire s  g re a t c o n s tru c tio n a l s k i l l  to  avoid 

d r i f t  and h y s te re s is .  The p o te n tia l  s e n s i t iv i ty  of th i s  method i s  

adverse ly  a ffec ted  by th e  d i f f i c u l ty  of arranging fo r more th an  one 

a c tiv e  ( i . e .  s tra in in g )  gauge.

Section  A. THE RECORDING MANCMBTER -  USE OF VARIABLE
CAPACITANCB

A .I. Eguinment Used.
The F ie ld en  Proximity Mater. (P la te  4 .1)

This instrum ent provides an e le c tro n ic  means o f measuring very  

sm all mechanical d isplacem ents. I t  in co rpo ra tes a mains r e c t i f i e r  

c i r c u i t  which feeds an R.F. o s c i l la to r  which in  tu rn  supp lies the  A.G. 

bridge shown in  F ig . 4.1* In  th is  u n it th e  v a r ia b le  in te rn a l  components 

Cl, C2 and R are  combined w ith  an ex te rn a l condenser to  form a bridge 

which can be com pletely balanced ( i . e .  in  v o ltag e  and in  phase) by th e  

slow motion d riv e  c o n tro ls . The o s c i l la to r  output i s  s p l i t  in to  two
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e a r th  f re e , equal and an tiphase  vo ltages a t  th e  transfo rm er. These 

are  fed to  e a rth , one through each s id e  of th e  b rid g e . When the  bridge 

i s  balanced the  v o ltag e  a t  the cen tre  tap  on th e  transform er i s  zero 

and th e re  i s  no inpu t to  th e  a m p lif ie r . Any change h e re a f te r  in  th e  

value of the  ex te rn a l condenser produces an out of balance vo ltag e

which i s  am plified to  form th e  instrum ent o u tpu t.

To operate th e  instrum ent i t  i s  necessary  to  b u ild  a condenser 

(C^) whose capacitance i s  varied  by th e  p h y sica l q u an tity  re q u ir in g  to  

be measured. This i s  u su a lly  done by vary ing  the d is tan ce  between two 

p la te s  but v a r ia tio n s  in  the  e f fe c t iv e  area  o f th e  p la te s  or in  the

d ie le c t r i c  p ro p e rtie s  of the  m atter between the  p la te s  can a lso  be used.

This condenser i s  arranged w ith  one p la te  earthed and th e  o ther connected 

to  the  bridge through a double screened cab le . The len g th  of th i s  

cab le  has to  be kept to  a minimum to  reduce ex te rn a l s tra y  capacitance 

which would reduce th e  p o te n tia l  s e n s i t iv i ty  of the b rid g e .

The output of the instrum ent v a r ie s  l in e a r ly  w ith  th e  change in  

capacitance a t  th e  end of the  screened ca b le . F u ll  output i s  an 

a l te rn a tin g  10 v o lts  R,M,S, across lOyOOO ohms which can be recorded by 

a cathode ray  o sc illo sco p e  across the output te rm in a ls . The cu rren t in  

th e  output r e s is ta n c e  i s  f u l l  wave r e c t i f i e d  and d e f le c ts  th e  meter on 

th e  p an e l. A jack  socket in  the  c i r c u i t  makes i t  p o ss ib le  to  connect 

a galvanometer reco rd er in  s e r ie s  w ith  th is  meter as a means of measuring 

th e  ou tpu t. The output c i r c u i t  i s  shown in  F ig . 4*3*

Two models of th i s  instrum ent, the  P.M.2 and the  P.M.A a re  in  

commercial p roduction . In  th e  P.M.4 the  measuring b ridge u n it
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i s  housed in  a box sep ara te  from th e  o ther components* This helps to  

reduce th e  tem perature v a r ia t io n  of th e  b ridge components which i s  the  

p r in c ip a l  cause of d r i f t  of the instrum ent zero .

The A.R.L. 12-Channel Galvanometer Recorder (P la te  L*2),

Developed a t  th e  Admiralty Research Laboratory a t  Teddington th is  

instrum ent i s  designed to  record  up to  12 s ig n a ls  sim ultaneously .

L ight from a lamp filam en t i s  re f le c te d  from the  m irrors of 12 galvanometer 

elem ents in  a common magnet block and focussed on 70 mm wide film  moving 

through the l ig h t  g a te . Film speeds o f -f, l i^  2^, and 5 inches per 

second are  a v a ila b le . There a re  two types of element whose s e n s i t iv i t i e s  

a re  80 micro amps, per cm (n a tu ra l frequency around lAO c /s )  and 

13 micro amps per cm (n a tu ra l frequency around 60 c / s ) .

Qossor Double Beam O scillogranh (P la te  Ao3).

This i s  a standard lab o ra to ry  model. The screen  i s  ^  inches 

diam eter and shows th e  p o s itio n s  of th e  two halves of a s p l i t  e le c tro n  

beam. The T p la te s  fo r  each h a lf  of th e  beam a re  d riven  by sep ara te  

am p lif ie rs  enabling two independent vo ltages to  be measured sim ultaneously . 

The sweep o f the time base can be v aried  from 0,05 to  1500 m illiseco n d s ,

A camera i s  a v a ila b le  which records th e  spot movements on 35 mm film  

moving a t  speeds from 0,05 to  25 inches per second.

V ariab le  Capacitance Diaphragm Gaugeso

The diaphragms used were of th in  b rass  clamped t ig h t ly  and f l a t  

between s te e l  r in g s  and were b u i l t  by the  same method as those  used in  

th e  t e s t s  w ith s t r a in  gauges. Perspex cover p la te s  w ith tappings were 

used to  make th e  diaphragms s e n s it iv e  to  d i f f e r e n t ia l  a i r  p re ssu re s .
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In  operation  the  diaphragm was earthed and a f l a t  b rass  d is c , concen tric  

w ith  th e  diaphragm and p a r a l le l  to  i t  was r ig id ly  fixed  a sh o rt d is tan ce  

away. This arrangement formed th e  v a r ia b le  condenser (0^ F ig . 4 .1 ) in  

th e  Proxim ity Meter b rid g e  c i r c u i t .  Under p ressu re  th e  diaphragm is  

d e flec ted  towards th e  fixed  p la te  producing th e  necessary  change in  

cap ac itan ce . This method is  p a r t ic u la r ly  u se fu l s in ce  th e  s e n s i t iv i ty  

o f the  gauge can be c o n tro lle d  w ith in  very  wide l im its  by varying th e  

design  constants thus -

Let A = area  of condenser p la te s  

d = d is tan ce  between p la te s  

then  capacitance Cq = B

where K = d ie le c t r ic  constant of th e  m a te ria l sep ara tin g  th e  

p la te s  ( = 1 fo r  a i r ) .

B = co n s tan t.

i f  one p la te  moves d is tan ce  ”w” where w ^  d

then  new capacitance = B AK
d—w

, • Change in  capacitance = dC = Cq ==* Ci

The s e n s i t iv i ty  can be increased  by making ”A” la rg e , ”d” sm all and "w" 

la rg e . Limits are  placed by th e  n a tu ra l frequency req u ired  and by th e  

necessary  degree of l i n e a r i ty  in  change of capacitance w ith  change of 

p re ssu re . N atural frequency decreases as "A" i s  increased  and as "w**
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i s  increased  by reducing diaphragm th ic k n ess . From ( l)  i t  i s  seen th a t  

th e  change in  capacitance v a rie s  hyperbolic a l ly  w ith  th e  d e f le c tio n  of 

th e  diaphragm. An approxim ation to  l in e a r i ty  can be obtained by keeping 

”w" sm all compared to  "d“ and so working only on a sm all p o r tio n  of the  

curve. The two curves on Graph 4-*l show th e  e f f e c t  of l im itin g  ®w” to  

0.5d and to  O.ld re sp e c tiv e ly . I f  th e  s e n s i t iv i ty  requirem ents of a 

gauge a re  such th a t  **w" has to  be la rg e  then  th e  l in e a r i ty  of th e  output 

can be improved by p lacing  a lay er o f mica in  th e  a i r  gap between th e  

p la te s .  The exact th ick n ess  of mica req u ired  has to  be found by t r ie i l  

and e r ro r .

A,2o Bxoerimental Work,

The p re lim inary  t e s t s  were c a rr ie d  out using a P.M.2 model feeding 

th e  o sc illo sco p e . A diaphragm U inches in  diam eter and O.OO5 inches th ic k  

was used in  conjunction  w ith  c i rc u la r  p la te s  o f varying diam eters fixed  

a t  d if f e re n t  d istances from i t .  Some of th e  r e s u l t s  were p lo tte d  on 

Graph 4*2 and in d ica ted  th a t  fo r  a reasonab ly  l in e a r  response over a 

p ressu re  range of 6 inches W.G. the p la te  would have to  be a t  le a s t  5 mm. 

from th e  diaphragm. The most s u ita b le  p lace  fo r the  fixed  p la te  was bo lted  

on the in s id e  of the perspex cover p la te  (See F ig . 4*2), The p la te  was 

then  separated  from th e  diaphragm by th e  th ick n ess  of the m etal clamping 

r in g  and s in ce  i t  was cu t s l ig h t ly  sm aller than  th e  in s id e  diam eter of 

th e  r in g  i t  was in su la te d  from i t  by th e  perspex . The c e n tra l core of 

th e  proxim ity  meter cab le  was connected to  th e  p la te  by a screened plug 

passing through th e  perspex. In te rfe re n ce  from ou tside sources was



Screened Plug Wal l  o f  Scre^ni

F ixed P la te

6 Dis • h o les

Fergpex.

FIG. A .2. DETAIL OF DIAPHRAGM GAUGE FUTX SX7'



•H



Secto Ao2) 25

reduced to  a minimum by enclosing the  diaphragm in  a screened box.

This arrangement was c a lib ra te d  ag a in s t steady  p ressu res over two 

ranges from 0 to  2.2  inches W.G. and from 0 to  12 inches W.G, In  each 

case the gain  of the proxim ity  meter am p lif ie r  was s e t  to  g ive  f u l l  

o sc illo sco p e  d e f le c tio n  fo r  the maximum p ressu re  used. The r e s u l ts  

showed a l in e a r  p ressu re  -  d e f le c tio n  re la tio n s h ip  up to  about 8 inches 

W.G. Repeated c a lib ra tio n s  showed some d iscrepancies in  s e n s i t iv i ty  

which may have been caused by v a r ia tio n s  in  ambient tem perature or by 

inaccu ra te  r e s e t t in g  of the am p lifie r gain  co n tro l which was a continuous­

ly  v a ria b le  po ten tiom eter,

A P.M.4. model then  became a v a ila b le  and was used fo r  a l l  fu r th e r  

t e s t s .  S ince th is  instrum ent had a sep a ra te  bridge u n it and since  the  

am p lifie r gain  co n tro l was of th e  decade type , i t  was expected th a t  the  

c a lib ra tio n  would remain much more s ta b le .  I t  was decided to  use th e  

A.R.L. galvanometer reco rd er as a p ick  up w ith  th is  instrum ent since  the  

use o f w ider film  o ffe red  g re a te r  p o ss ib le  accuracy and s in ce  more 

channels were av a ila b le  to  put ex tra  inform ation  on th e  reco rd s . When 

recorded on th e  galvanometer the  r e c t i f i e d  output showed considerab le  

r ip p le  and i t  was necessary  to  add a condenser inpu t f i l t e r  (4*1) to  the  

output c i r c u i t .  This removed a l l  th e  r ip p le  except a l i t t l e  $0 c /s  

leakage which was not se rio u s . The complete output and record ing  c i r c u i t  

i s  shown in  F ig . 4*3°

T r ia l  c a lib ra tio n s  were c a rr ie d  out, some of which a re  shown on 

Graph 4*3° These showed th a t  b e t te r  l i n e a r i ty  was obtained when the  

diaphragm was moved towards the f ix e d  p la te  than  when i t  was moved away
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from i t*  The l im it  of l in e a r  response was a t  about 5*5 inches W*G. -  

lower than  in  the e a r l i e r  te s ts*  This range was extended by b u ild in g  

ano ther 4 inch diam eter diaphragm 0.015 inches th ic k  and mounting i t  in  

th e  box alongside th e  o r ig in a l  (see  P la te  4*5)° This diaphragm gave 

l in e a r  output fo r  p ressu res  up to  I4 inches W.G. A ll th e  measuring 

equipment was perm anently mounted on a t r o l l e y  (see  P la te  4#4) w ith  a l l  

connections w e ll secured before f in a l  c a l ib ra t io n  was c a rr ie d  o u t.

The equipment was then  c a lib ra te d  ag a in s t th e  Betz manometer over 

th re e  ranges. These were from 0 to  2 .2  inches W.G. and 0 to  6 inches 

W.G. using th e  O.OO5 inch  th ic k  diaphragm and from 0 to  14 inches W.G. 

using th e  0,015 inch th ic k  diaphragm* In  each case the am p lif ie r  gain  

was s e t  to  g ive about f u l l  s c a le  d e f le c tio n  on th e  galvanometer 

reco rd e r fo r  th e  majdmum p ressu re  reached . The s t a b i l i t y  of th i s  f in a l  

arrangem ent, w hile s t i l l  not p e r fe c t , was much b e t te r  th an  the  e a r l ie r  

arrangem ent. The c a lib ra tio n s  were repea ted  se v e ra l tim es on d if fe re n t  

days and mean c a lib ra tio n s  were ob ta ined . The average d ev ia tio n  of th e  

in d iv id u a l readings from th e  means was about 2%, and th e  maximum d ev ia tio n  

about 35̂  •

4 .3 . Conclusionso

1) By c a re fu l a t te n t io n  to  the  re le v a n t theory  i t  proved p o ss ib le  to  

use the F ie lden  Proxim ity Meter in  con junction  w ith  a diaphragm type 

gauge to  record  f lu c tu a tin g  a i r  p ressu res a t  the req u ired  low le v e l .

2) Even g re a te r  s e n s i t iv i ty  than  has been achieved here i s  p o ss ib le  by 

using a th in n e r diaphragm and reducing th e  p la te  spac ing . The range
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over which the  output o f such a gauge w i l l  be l in e a r  i s  r e s t r i c te d .

3) The equipment was not s u f f ic ie n t ly  s ta b le  to  allow i t s  use as an 

ab so lu te  standard , but s in ce  i t  was mainly req u ired  to  reco rd  

r e la t iv e ly  sm all changes superimposed on a known steady  p ressu re  

th i s  proved to  be no disadvantage.

Section  5 THE RECORDING MANQMBTBR -  RESPONSE

5olo N atural Frequency of th e  Diaphragm

A d e f le c tin g  diaphragm can be expected to  respond f a i th f u l ly  to  

a f lu c tu a tin g  p ressu re  only i f  th e  fo rc in g  frequency of th e  ap p lied  

p ressure  i s  s u b s ta n tia l ly  lower than  th e  n a tu ra l frequency of th e  

diaphragm* I t  has been suggested (2 .2) th a t  th e  fo rc ing  frequency be 

lim ited  to  0 ,3  of th e  n a tu ra l frequency.

The n a tu ra l frequency of a b rass  diaphragm 4 inches in  diam eter 

and 0,005 inches th ic k  was estim ated  expw im enta lly  by allow ing th e  

diaphragm to  v ib ra te  in  sympathy w ith  a loudspeaker d riven  by a v a ria b le  

frequency o s c i l la to r .  The low est frequency a t  which th e  diaphragm would 

v ib ra te  was around 150 cycles per second.

An attem pt was a lso  made to  estim ate  the  n a tu ra l frequency of a 

diaphragm th e o re t ic a l ly ,  4  su ita b le  formula (See Appendix) was found 

to  be *—

p = (1)
a v/ wt
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where a = rad iu s  of p la te

t  = th ickness o f p la te  

w = d en s ity  of m a te ria l 

g = a c c e le ra tio n  due to  g ra v ity  

D :
12(1 -  S^)

E = Young's Modulus fo r  the  m a te r ia l

S = Poisson®s R atio  fo r  th e  m a te ria l

p = 2'TTf

f  = frequency

Using th i s  formula the  n a tu ra l frequency of the diaphragm in  q u estio n  can 

be ca lcu la te d  to  be 89 cycles per second* The formula, however, ap p lie s  

to  a p la te  v ib ra tin g  in  a vacuum and ( l ik e  Grashof *s Theory fo r  deflec tion ) 

makes no allowance fo r  s tre tc h in g  of the middle su rface of th e  p la te .  As 

shown in  the Appendix th e  e f fe c t  of th e  mass of the  a i r  in  which th e  p la te  

v ib ra te s  i s  to  reduce the  n a tu ra l frequency s l ig h t ly ,  w hile the  e f f e c t  of 

th e  s tre tc h in g  of the middle su rface  in  th e  case of a th in  p la te  w ith  a 

r e la t iv e ly  la rg e  d e f le c tio n  i s  to  in c rease  th e  n a tu ra l frequency. From 

th i s  i t  would appear th a t  th e  experim ental va lue  of 150 cycles per second 

i s  a reasonable f ig u re  fo r  the n a tu ra l  frequency.

5 .2 . Response of th e  Measuring System

The n a tu ra l frequency of the  diaphragm i s  not th e  only fa c to r  to  

be considered in  es tim ating  th e  frequencies which can be co n fid en tly  

measured w ith  a gauge of th is  ty p e . The e f f e c t  of the tubes used to
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connect th e  gauge to  th e  po in ts  a t  which th e  p ressu re  is  to  be recorded 

has a lso  to  be considered and i t  was po in ted  out (5*1) th a t  th i s  e f fe c t  

can r e s u l t  in  th e  n a tu ra l frequency of th e  system being lower than  th a t  

of th e  diaphragm and consequently o f g re a te r  im portance. T h eo re tica l 

and experim ental in v e s tig a tio n  of th i s  e f fe c t  was c a rr ie d  out by Taback 

(5 .2 ) .

In  th e  theory  th e  propagation of p ressu re  along a tube from an 

i n l e t  to  an instrum ent i s  governed by th e  genera l equations fo r  a tra n s ­

m ission  l in e  (5*3)• Although the  proof of these  equations given in  the
1

re fe re n c e  ap p lies  to  an e le c t r ic a l  system, th e  method i s  g en e ra l aM can 

be ap p lied  equally  w e ll to  an a c o u s tic a l system, provided c o r re c t ly  

analagous terms are  used to  describe  th e  system param eters (5*4) •

The general equations are

Eg = Sfe cosh J z i  + IR s in h  . I  ( l )

Ig = Ig  cosh y i l * s i n h  JZY ./& (2)
z

where Eg = Voltage a t  system i n l e t  (o r sending end)

“  Voltage a t  instrum ent (o r rece iv in g  end)

I  g = c u rren t a t  system in le t

I ^  = c u rre n t a t  instrum ent

Z = s e r ie s  impedance of u n it  le n g th  o f l in e

Y = shunt adm ittance of u n it le n g th  of l in e

The q u a n tit ie s  ’*Z” and ”Y" a re  defined in  terms of th e  system param eters 

as fo llow s

Z = R + j  w L
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I  -  g + j  w G

where R " se r ie s  re s is ta n c e  per u n it  len g th

L -  inductance per u n it  len g th

g “  shunt conductance per u n it  len g th

G -  capacitance per u n it  len g th  

w — 2 f

f  -  frequency in  cycles per second

The q u a n tity  >/zY i s  a complex number c a lle d  th e  propagation  constan t 

and can be w r itte n ,

= a "ft* j b (3)

where “a ” i s  dependent on the  decrease in  am plitude per u n it  len g th  of 

l in e  and i s  c a lle d  th e  "a tten u a tio n  constan t"  and "b" i s  dependent on the 

phase s h i f t  per u n it  len g th  of l in e  and i s  c a lle d  the  "phase co n s tan t" . 

The q u a n tity  i s  c a lle d  th e  " c h a ra c te r is t ic  impedance" of the  l in e

and i s  d esign ated  by

ioSo Zq =

From equations ( l )   ̂ (3) and (4) we g e t = cosh(a + j  h) Ji *

%

where Zp = s  instrum ent impedance.
^  IR

sin h (a  + j  b ) /
2R

Equation (5) g iv e s  th e  r a t io  of th e  v o ltag e  ( in  th e  e l e c t r ic a l  case)  

or p ressu re  ( in  the ao^oustical case) a t  th e  system in le t  or "sending end" 

to  th e  v o lta g e  or p ressu re  a t  th e  instrum ent or "receiv ing  end". The 

r e c ip r o c a l o f t h is  r a t io  i s  c a lle d  th e  Response and w il l  be a maximum
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a t  th e  n a tu ra l frequency of the system* Estim ation of n a tu ra l  frequency

by th i s  method w i l l  be exceedingly d i f f i c u l t  since "a" and "b" are  both
2

functions of "f"  and - i s  a fu n c tio n  of (a + j  b)
"R

"b" can be c a lcu la te d  from 

b -

where V = v e lo c ity  of propagation of p ressu re  waves in  th e  tube 
which i s  i t s e l f  dependent on "f" (5*5)

th e  f in a l  form i s  b = — -----  where C and D a re  constan t

fo r  any one tu b e . The form of the expression  fo r  "a" i s  sim pler s in ce

*®a" i s  p ro p o rtio n a l to  the  square ro o t o f th e  frequency bu t any values 

used a re  not r e l ia b le  s in ce  they  are not independent of th e  am plitude 

of v ib ra tio n .

The d i f f ic u l ty  of th e  th e o re t ic a l  method made i t  necessary  to  

check th e  response of the system by a s e r ie s  of experim ents. These 

covered s in u so id a lly  varying p ressu res of frequencies from 6 to  35 cycles 

per second in  tubes of bore 2 .8  to  11 mm. in  leng ths up to  20 f e e t  and 

showed th a t  fo r  the  commonly used 6 mm. bore tub ing  reasonab le  response 

could be expected a t  frequencies up to  25i> 15  ̂ 10 and 5 cycles per 

second w ith  tubes of len g th  Ig % 4 and 10 f e e t  re sp e c tiv e ly . The 

a d d itio n  o f a c a p i l la ry  r e s t r i c t io n  a t  the  i n l e t  to  th e  system produces 

damping of the  la rg e  p ressu re  am plitudes a t  resonance frequencies but 

has very  l i t t l e  e f fe c t  away from th e  resonance. The sm all h o les in  th e  

p i to t» s ta t lc  tube have th is  e f fe c t  and make i t  p o ss ib le  to  in c rease  these  

leng ths w ithout se rio u s e f fe c ts  on th e  response.
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Throughout the  work on cages th e  tubes from the measuring p o in t to  

th e  instrum ent were kept as sh o rt as p o ss ib le  and some checks were made 

by record ing  the  same p ressu re  e f fe c ts  using longer tu b es. No d iffe ren ces 

s ig n if ic a n t ly  g rea te r  than  th e  normal random f lu c tu a tio n s  were no ticed  

except w ith  very  long tubes* The p ressu re  v a r ia tio n s  produced by th e  

movement of th e  cages tended to  be "square" r a th e r  th an  s in u so id a l and 

any response e f fe c ts  which were p resen t were e a s ily  recognised*

S ection  6. THE MODEL SHAFT

6 ,1 , Duct and Fan

An experim ental wind tu n n e l equipped w ith  model buntons, guides 

and cages was used to  study how th e  presence and movement of cages

a f fe c ts  th e  a irflo w  in  mine s h a f ts .  The layou t i s  shown in  F ig . 6 .1 .

The wind tunne l was b u i l t  up from sec tio n s o f c irc u la r  s t e e l  ducting 

each 6 f e e t  long and l i é  inches in te rn a l  d iam eter. S ix ^-Toot long 

sec tio n s each made up of two h a lf  cy lin d ers b o lted  to g e th e r along 

lo n g d itu d in a l flanges were a lso  used. The upper h a lf  o f each of th ese  

sec tio n s  was made of th ic k  perspex w ith  strong  s te e l  f la n g e s . These 

sec tio n s  were placed a t  convenient p o in ts  along th e  len g th  o f assembled 

wind tunne l and provided very  u se fu l observa tion  p o in ts . Removal o f

th e  perspex se c tio n  was very  sim ple and provided a means of access to

th e  in s id e  of the  duct w ithout d ism antling . Tapped holes designed to  

allow the  in s e r t io n  o f a p i t o t - s t a t i c  tube were provided a t  various 

p o in ts  along th e  e n t i r e  len g th  of the duct which was 100 f e e t .



11



Sect* 6ol) 33

Air was drawn through th e  wind tu n n e l by a  Lis' inch  Howden 

c e n tr ifu g a l fan  (P la te  6*1). The fan  i n l e t  was connected to  a 45°

Y » ju n c tio n  p iece  a t  th e  end of th e  duct by a len g th  of 12 inch  diam eter 

Spiratube* This arrangement proved p a r t ic u la r ly  su ita b le  as i t  l e f t  a 

b lank flan g e  on the  main l in e  of th e  duct through which th e  d riv ing  ropes 

could pass to  th e  cages w ithout in te r f e r in g  w ith  the fan* The fan  was 

driven  d i r e c t ly  6 /  a 20 h.p* A*C* motor running a t  2850 R.P.M. No 

speed c o n tro l was a v a ila b le  and i t  was necessary  to  use th r o t t l in g  

devices to  co n tro l th e  q u a n tity  of a i r  flow ing in  th e  duct* A b u t te r f ly  

type sh u tte r  (See P la te  6 .1) was placed a t  th e  fan  in le t  and used to  

prevent overloading of th e  motor by allow ing th e  fan  to  run  up to  f u l l  

speed on no>load. The co n tro l exerc ised  over th e  a i r  q u a n tity  by th is  

device was f a r  too coarse to  be of any use in  esperim ental work and f in e r  

co n tro l was supplied  by a con ica l sh u tte r  which could be screwed in to  th e  

duct i n l e t  on a f in e ly  th readed  sp in d le . This proved very  s a t is f a c to ry  

during th e  ea rly  t e s t s  bu t had to  be removed l a t e r  as i t  in te r f e re d  w ith  

th e  d riv in g  ropes* I t  was rep laced  by a  s l id in g  in te rn a l  s leev e-ty p e  

th r o t t l e  a t  th e  Y -junction  c lo se  to  th e  fan  (P la te  6 * l) . The removal 

of th e  th r o t t l in g  cone allowed th e  ad d itio n  of a f la re d  in l e t  to  th e  

duct (P la te  6 .2 ) ,  The presence of the  d riv in g  ropes did not allow the  

use of any flow s tra ig h ten in g  devices in  th e  main se c tio n  of th e  duct 

bu t i t  Was p o ss ib le  to  in s e r t  a sh o rt len g th  of impregnated paper honey­

comb in  th e  Y^piece* This helped to  damp out any p u lsa tio n s  coming from 

the  fan  and a lso  provided a u se fu l s a fe ty  device by p reven ting  any 

m a te ria l from reaching th e  fan  i n l e t  in  th e  event of any of th e  sh a f t
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equipment breaking loose.

6 ,2 ,  S haft Lining.

Two p a tte rn s  of guides and buntons were used in  the  t e s t s ,  th e  

d es ig n  of th e  sh a ft lay o u ts  being based on inform ation  supp lied  by the  

N atio n a l Coal Board (6 ,1 ) . Since i t  was in tended to  sim ulate  cond itions 

i n  a s h a f t  24 f e e t  in  diam eter in  the duct th e  sc a le  r a t i o  was fix ed  a t  

25o6 to  lo The buntons were s e t  a t  4*7 inch  cen tres  corresponding to  

10 f e e t  in  a f u l l  sc a le  s h a f t .  The l in in g  was made up in  12 fo o t leng ths 

by so ld e rin g  the  components to g e th er on a sp e c ia lly  designed j i g .  In  

a d d itio n  to  th e  guides and buntons a s t r i p  o f by § inch  b rass was 

f i t t e d  along the  ends of th e  buntons to  g iv e  th e  necessary  r i g id i t y .

In  the  two-guide system (F ig . 6 .2 ) in  which te s t s  were confined 

to  s ta t io n a ry  models th e  t o t a l  len g th  of l in in g  in s ta l le d  was 24 f e e t .

In  th e  four^guide system (F ig , 6 .3) however, the  work was extended to  

in c lu d e  moving models. No inform ation was a v a ila b le  on th e  fe a tu re s  

which moving cages might e x h ib it and i t  was a n tic ip a te d  th a t  a cage 

s ta r t in g  to  move from r e s t  might re q u ire  to  move some d is tan ce  befo re  

s tead y  conditions were achieved. In  view of th is  i t  was decided to  

in c re a se  the len g th  of the  sh a f t l in in g .  Conditions in  the la b o ra to ry  

p revented  the  to ta l  len g th  of th e  duet being increased  above the  ex is tin g  

100 f e e t .  The le n g th  of l in in g , however, was increased  to  68 f e e t  

p laced  c e n tra lly  in  th e  100 fo o t len g th  of the  d u c t, Sin^e th e  lin in g  

was longer and was in tended fo r use w ith moving cages g re a te r  r ig i d i t y  

and much smoother alignm ent a t  th e  guide jo in t s  were req u ired  than in  any
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e a r l i e r  work. The longer l in in g  provided a longer t e s t  le n g th  and a 

s e t t l i n g  len g th  of l in e d  duct which could be expected to  improve the  

s im ila r i ty  between the  model and a f u l l  s c a le  in s t a l l a t io n .  When scaled  

up in  the r a t io  of th e  diam eters th e  l in e d  se c tio n  rep resen ted  a leng th  

o f n ea rly  1750 f e e t  of 24 fo o t diam eter s h a f t .

6 .3 . Cages and Cage C ontro l Gear.

The cages were made of wood and were of very  sim ple design .

S everal types of cage shoes were t r ie d  b efo re  s a t is f a c to ry  smooth running 

was achieved along th e  guides and p as t the jo in t s .  The f in a l  choice was 

sh o r t sp ring  loaded rods running in s id e  th e  channel se c tio n  of th e  gu ides.

The cages were d riv en  by a 1^ h .p . 3 phase A.G. motor f i t t e d  w ith  

a  continuously  v a r ia b le  hydraulic red u ctio n  gear (P la te  6 .1 ) .  The power 

was tran sm itted  to  th e  cages by f r i c t io n  d r iv e  on a. i  inch circum ference 

galvanised s te e l  rope passing  li" times round a 10 inch  diam eter d riv ing  

V ee-pulley . The motor u n it  was designed to  g ive an output to rque of 

510 inch  lb .  a t  a l l  speeds from 5 to  124 R.P.M. in  e i th e r  d ir e c t io n .

This meant th a t  a rope p u ll  o f 102 lb s .  was a v a ila b le  to  d riv e  th e  cages 

a t  any speed from 12^ to  325 f e e t  per m inute. S u itab le  te n s io n  was 

m aintained on th e  d riv in g  rope by the  t a i l  rope which passed from th e  

cages round th e  re tu rn  frame shown in  P la te  6 .2 . (This p la te  a ls o  shows 

th e  f la r e d  in l e t  to  th e  d u c t) . The nominal breaking s tre n g th  o f th e  rope 

was 538 lb s .  bu t i t  was fix ed  to  the  cages by e a s ily  broken s a fe ty  lin k s  

of s o f t  w ire . A fter th e  i n i t i a l  work in  design ing  s u ita b le  cage shoes 

very l i t t l e  tro u b le  was experienced. On th e  few occasions when a cage
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did  s t i c k  th e  breaking of th ese  l in k s  prevented any se rious damage.

The d riv ing  motor was f i t t e d  w ith  a rev e rs in g  s t a r t e r ,  and fo r  

convenient operation  a s e t  o f remote co n tro l bu ttons fo r  th i s  s t a r t e r  was 

fix ed  on th e  t r o l le y  ca rry ing  th e  measuring instrum ents* The s t a r t e r  

could a ls o  be operated au to m atica lly  by th e  cages themselves by means of 

m icro-sw itches w ith  s p e c ia l ly  designed a c tu a to rs  f i t t e d  in s id e  th e  duct a t  

th e  end of th e  l in in g .  These sw itches stopped th e  motor b efo re  s ta r t in g  

i t  away in  th e  opposite d ire c tio n , thus preven ting  ac c id e n ta l over-run  of 

th e  l in in g  by th e  cages and allow ing com pletely autom atic o p era tio n  i f  

re q u ire d .

6 .4  Cage P o s itio n  In d ica tin g  Equipment.

This equipment was req u ired  to  r e la te  the  p ressu res being recorded 

on th e  galvanometer reco rd e r to  th e  p o s it io n  of th e  cages in  th e  d u c t.

Three channels on th e  reco rd e r were used to  reco rd  th is  in fo rm ation . The 

a c tu a l p o s it io n  of the cages was marked by a  s ig n a l produced by th e  c losing  

of a  micro sw itch by each deck of a cage in  tu rn .  The d is tan ce  which th e  

cage had moved from th i s  m icro-sw itch was obtained by record ing  th e  s ig n a ls  

from a p h o to -c e ll which was momentarily exposed to  a lamp by th e  passing  

of a  sm all hole in  a l ig h t  p u lley  d riv en  by th e  main ro p e . SXperience 

showed th a t  th e  record ing  f ilm  did  not always m aintain  i t s  nominal speed 

through th e  l ig h t  g a te  and so a  s ig n a l from a clockwork operated sw itch  

was in troduced  to  a th i r d  channel to  g ive a  square wave o f ^ second p erio d . 

On very  c le a r  records i t  was a lso  p o ss ib le  to  check the  f ilm  speed by 

counting th e  peaks on th e  50 c /s  in te rfe re n c e  which was sometimes picked
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Secto 6,

upo Figo 6*4 shows ty p ic a l  f ilm  records of th e se  s ig n a ls

605o A ir Flow Measurement in  th e  Wind Tunnel.

During the  te s t s  on th e  two-guide system th e  a i r  flow was measured 

w ith  a s tandard  o r i f ic e  p la te  (6 .2) .  The g re a te r  le n g th  of th e  l in in g  

of th e  fou r-g u id e  system, however, g re a t ly  increased  th e  r e s is ta n c e  to  a i r  

flow of th e  duct as a whole and reduced the  q u a n tity  of a i r  which the fan  

was capable o f d e liv e r in g . The o r i f ic e  p la te  absorbed a  co nsiderab le  

p ro p o rtio n  o f th e  fan  w ater gauge which could have been more u s e fu lly  

employed m aintaining a h igher o v e ra ll a i r  v e lo c ity  i f  a  s u i ta b le  low- 

re s is ta n c e  flowmeter could be used. A c e n tr a l ly  p laced p i to t  tube 

would have g iven  th e  low est lo s s  o f a l l  flowmeters but i t s  c a l ib ra t io n  

could only have app lied  to  one p a r t ic u la r  v e lo c ity  d is t r ib u t io n ,  a 

q u a n tity  which i s  i t s e l f  dependent on Reynold’s Number. A Three-Q uarter

Radius P i to t  Tube Flow Meter (6 .3) was recommended (6 .4) • This co n s is ts

of 4 p i t o t  tubes a t  in te rv a ls  p laced a t  th re e  q u a rte rs  of the  duct 

rad iu s  and four s t a t i c  holes on the w a ll a lso  90*̂  a p a r t . (See F ig . 6.5  

and P la te  6. 3) .

The advantages of p lacing  the p i to t  tubes a t  th is  ra d iu s  can be

shown by th e  follow ing th e o re t ic a l  co n sid era tio n s

The d is t r ib u t io n  of v e lo c ity , ”u”, across th e  se c tio n  of a duct of 

rad iu s  R, can be expressed em p irica lly  as
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where U = v e lo c ity  a t  cen tre

7 = d is tan ce  from th e  w all

i , e ,  7 = R -  r  where r  = any rad iu s

m = constan t dependent on Reynolds Number

Now, i f  mean v e lo c ity  = û
2 __

th en  Q uantity  flowing = Q = TTR u

r=  I 27T u r  d r . 
o

0

27T u (R « y)dy

R

(R
2TTÜ ( - |- J  ( R » y ) d y

1_
77R^ Û = 2 T ru  I ( r  » y)dy.

o

In te g ra tio n  and s im p lif ic a tio n  gives

u  -  2m^
Ü (m + 1 ) (2m + l )

Q uantity flowing = %

= TTR"” U
(m + l)(2m  + l )

Let Q uantity  in d ica ted  on p i to t  tube a t  ^  rad iu s  = Qj_
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Qi = TT-R^u 

From (1) Qi = TTR  ̂ K U ^ -i- \ m.

“ / 1 J l  (2)
2m

As a lread y  s ta te d  the  value o f "m" depends on Reynolds Number, For 

medium Reynolds Numbers m = 7 i s  g e n e ra lly  used. T abu lation  of 

the values of (2) shows th a t  f o r  values of "m" between 4 and 10 th e  

value of /  Q l i e s  w ith in  th e  range 0.995 to  1 .005. This means 

th a t  th e  e r ro r  in  q u an tity  reading  caused by v a r ia tio n s  in  v e lo c ity  

d is t r ib u t io n  a t  d i f f e re n t  Reynolds Numbers i s  le s s  than  0 .5^ over th i s  

wide range. Q^/Q i s  u n ity  when m = 5 hence th e  c a l ib ra t io n  constan t 

i s  seldom ex actly  equal to  1 . A fu r th e r  advantage of th e  use of the  

th re e  -q u a r te r  rad iu s  p o s it io n  i s  th a t  i t  p rovides g re a te r  s e n s i t iv i ty  

to  changes in  q u an tity  than  the  c e n tra l  p o s it io n . The most s e n s it iv e  

p o s it io n  w i l l  be in  th e  elem entary annulus which makes th e  g re a te s t  

c o n tr ib u tio n  to  th e  t o t a l  q u a n tity . This occurs a t  th e  p o in t where th e  

product u .r*  i s  a maximum. ^

New u r  = U ” y)

&I y \
For a maximum valu e , (R -  y) must be a maximum and

an a ly s is  shows th a t  t h i s  occurs a t  th e  p o in t —
R 1 + m,

y 1 7For m = 7 th e  most s e n s it iv e  spot i s  = —— or a t  thR 8 8
r a d iu s .
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R ela tiv e  values are  g-

7 1 1 1
R 8 4 2

r 100 94 69

3
The rad iu s  p o s it io n  i s  p re fe rred  because i t  g ives a c a l ib ra t io n  

co n stan t very  c lose  to  u n ity  and because i t  g ives a higher d i f f e r e n t i a l  

p ressu re  to  be measured w ith  very  l i t t l e  lo s s  of s e n s i t iv i ty .

The presence of th e  fou r p i to t  tubes in  th e  ^  rad iu s  p o s it io n  

helps to  reduce th e  e f f e c t  of any asymmetry in  the  v e lo c ity  d is t r ib u t io n .

While not as accu ra te  as the o r i f ic e  p la te  because th e  d i f f e r e n t ia l  

p ressu re  head was lower and le s s  steady, th e  th re e -q u a rte r  rad iu s  p i to t  

tube flowmeter proved very  u se fu l and allowed th e  use of a much higher 

v e lo c ity  in  th e  duct than  would otherw ise have been p o s s ib le .

606. Nanometers.

During th e  t e s t s  f lu c tu a tin g  a i r  p ressu res  were measured w ith  the 

reco rd ing  equipment a lread y  described and s t a t i c  a i r  p ressu res  were 

measured w ith  two w ater manometers described  below.

The D i r e c t - l i f t  MLcromanometer (See P la te  6 . 4) was b u i l t  in  th e  

M ning Department of th e  U n iv ersity  of Nottingham. P ressu res a re  

measured by re tu rn in g  th e  w ater le v e l  to  a f ix ed  mark on th e  in c lin e d  

tube which i s  ra is e d  or lowered on a micrometer screw. The range i s  

from 0 to  10 inches W.G. and th e  sm allest d iv is io n  on th e  micrometer 

head re p re se n ts  0.001 inch  W.G. The instrum ent is  e a s ily  read  and can
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g ive a good es tim atio n  o f th e  mean value of a  p ressu re  which i s  not 

p e r f e c t ly  steady .

The Betz P ro jec tio n  Manometer (See P la te  6 .5 ) i s  o f German design 

and m anufacture. The a p p lic a tio n  o f p ressu re  causes a  change in  w ater 

le v e l  in s id e  th e  stem o f the instrum ent. A ccurate measurement of th e  

change in  w ater le v e l i s  made by observing, through an o p tic a l system, a 

long f in e ly  d iv ided  sc a le  which i s  suspended in  th e  w ater from a f lo a t .  

The t o t a l  range i s  0 to  4OO mm. (15.75 in s .)  W.G. and th e  sm a lle s t sca le  

d iv is io n  i s  0 .1  mm. (0.04 in s .)  W.G.

S ec tio n  7 PEIELBGNARY INVESTIGATIONS

7 o l. C onditions in  th e  Wind Tunnel.

Reference to  8tevenson*s work made i t  unnecessary to  undertake a 

complete B.S. fan  t e s t  bu t as some changes had been made in  th e  layou t 

s in ce  th a t  tim e, i t  was considered necessary  to  make a check on th e  

a irflo w  cond itions p re v a ilin g  in  th e  d u c t. This was done by making an 

11-po in t p i to t  tube tra v e rs e  across the  se c tio n  of th e  duct using th e  

sp e c ia l p i to t  tube shown in  P la te  7 .1 . The ca rr ia g e  o f th i s  p i to t  tube 

f i t s  on to  e i th e r  of two bosses placed 90 degrees ap a rt on one of the  

duct sec tio n s  and th e  measuring head can th e re fo re  be racked across a 

h o rizo n ta l diam eter and a v e r t i c a l  diam eter i t s  d is tan ce  from th e  cen tre  

being measured on a v e rn ie r  s c a le . H orizon ta l and v e r t ic a l  trav e rse s  

were undertaken a t  fou r d if f e re n t  a i r  v e lo c i t ie s  and th e  r e s u l t s  are  

shown on Graph 7 .1 . A th e o re t ic a l  v e lo c ity  d is t r ib u t io n  derived  from



M

£rtOg
O
coü

M
à

rcy
■ m .

gt-t

g
o

:îi
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expression  ( l )  (Section  6.5? page 37) i s  a lso  p lo tte d  on th i s  graph.

The experim ental v e lo c ity  d is t r ib u t io n s  appeared very  s a t is f a c to ry  and 

were in  much b e t te r  agreement w ith  th e  th e o re t ic a l  and w ith  each o ther 

th an  a s im ila r  s e t  shown by Stevenson. The most l ik e ly  reason  fo r  th is  

i s  th a t  th e  fan  was now working on th e  exhausting system whereas i t  had 

p rev io u sly  been fo rc in g . The mean value fo r  th e  cen tre  co n s tan t obtained 

in  th e se  t e s t s  was 0.81 and e x c e llen t agreement ex is ted  between th e  fou r 

v a lu e s . This i s  about the value expected fo r  such a  duct (7 .1) and i s  

more s a t is f a c to ry  than  a va lue  of 0.95 given by Stevenson.

7 .2 . Two Guide System.

The t e s t  len g th  used fo r  th is  system was fix ed  a t  36 f e e t .  Tv/o 

p i to t  tubes were s e t  on th e  ax is  of the  duct th i s  d is tan ce  a p a r t  and a 

c a l ib r a t io n  r e la t in g  the  p ressu re  drop across th e  t e s t  le n g th  (T.L.D .) to  

th e  p ressu re  drop a t  the  o r i f i c e  (O.D.) was ob ta ined . A 24 fo o t len g th  

of l in in g  was then  in s ta l le d  c e n tra l ly  in  th e  t e s t  len g th  and a  fu r th e r  

c a l ib r a t io n  obtained . This c a l ib ra t io n  was repea ted  th re e  tim es on 

d i f f e r e n t  days to  g e t a re p re se n ta tiv e  value b efo re  proceeding to  t e s t s  

invo lv ing  cages. The p i to t  tubes were then  moved to  20 f e e t  a p a rt 

ac ross the  l in in g  and a th i r d  c a lib ra t io n  c a rr ie d  out in  o rder to  ob ta in  

th e  r e s is ta n c e  of a len g th  of lin e d  s h a f t .  The th re e  c a lib ra tio n s  a re  

shown on Graph 7»2.
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7o3o C a lib ra tio n  of Flowmetero

Before th e  four guide lin in g  was b u i l t  in to  the duet th e  c a l ib ra t io n  

of the  th re e  q u a rte r  rad iu s  p i to t  tube flow m et^  was c a rr ie d  out* This 

was done by tak ing  sim ultaneous read ings o f th e  p ressu re  drop acro ss the 

o r i f ic e  and the head on th e  flowmeter, th e  t e s t  being repea ted  on d i f f e r e n t  

daySo Values o f a i r  q u an tity  and mean v e lo c ity  head were c a lcu la te d  from 

th e  o r i f ic e  drop read ings using th e  standard  o r i f ic e  formula (6 o2) and the  

r e s u l ts  were p lo tted  (Graph 7*3)* The p lo t  shewed th a t  a l in e a r  r e la t io n ^  

ship ex is ted  between th e  head on th e  flowmeter and th e  mean v e lo c ity  head 

over th e  range covered. Since the purpose of the  c a l ib ra t io n  was to  

obtain a method of estim ating  th e  Mean V elo c ity  Head (y) from th e  correspond­

ing flowmeter head (x) and s in ce  a la rg e  number of observations were 

av a ilab le  th e  r e s u l t s  provided a very  s u ita b le  su b jec t fo r  use of a 

reg ress io n  l in e  (7*2). The method of ob tain ing  the  equation  of such a 

l in e  i s  a common s t a t i s t i c a l  p ra c tic e  and no attem pt i s  made to  describe  

i t  here* I t s  s u i t a b i l i t y  fo r  a p p lic a tio n  in  th i s  p a r t ic u la r  in stan ce  

can be shown as fo llo w s8-

I f  the re la tio n s h ip  between two q u a n ti t ie s  "x" and "y" i s  s ig n if ic a n t­

ly  lin e a r  then  th e  " reg re ss io n  of y upon x" gives th e  equation of th a t  

l in e  from which th e  sum of the  squares of th e  d istances from a l l  th e  known 

po ia ts to  th e  l in e  measured p a r a l le l  to  th e  y -  ax is i s  a minimum* The 

reg ress io n  of upon "x" th e re fo re  gives th e  "b e s t s t r a ig h t  lin e "  fo r  

estim ating  the  mean value of "y" ( in  th i s  ease  the unknown mean v e lo c ity  

fo r  any given value of "x" ( in  th i s  case  the observed flowmeter 

The use of th is  technique supplied a sim ple a lg eb ra ic  re la tio n sh ip



-p

(TN



Secto 7o3) 44

between the  two q u a n ti t ie s  by means of which th e  mean v e lo c ity  head 

could be qu ick ly  c a lcu la te d  w ithout co n tin u a l re feren ce  to  a c a lib ra t io n  

ch a rt o

Thus

By c a lc u la tio n

y = Oo99 X -  0«53 where the u n its  a re  mm* W«G,

F urther c a lc u la tio n  in co rp o ra tin g  th e  c ro s s -se c tio n a l a rea  of 

the duct gives

Q = 546#6 ^  X -  0.54*

where Q = q u a n tity  flowing in  cubic f e e t  per m inute.

The range of flowmeter read ings covered in  the  experim ental c a l ib ra t io n  

was from 11 to  35 mm. W.G, The corresponding range of Reynolds Numbers 

re fe rre d  to  th e  duct diam eter i s  from 250^000 to  450g000. E x trapo la tion  

of th e se  formulae beyond th i s  range i s  no t adv isab le due to  v a r ia t io n  

with Reynolds Number of a combined m u lt ip lie r  in  the  standard  o r i f ic e  

formula on which they a re  based. A ll l a t e r  experim ental work was 

ca rried  out w ith in  th i s  range.

An a tte n p t was a lso  made to  c a l ib r a te  the  flowmeter ag a in s t a 

sim plified  p i to t  tube tra v e rs in g  method (7 . 3) • The tra v e rs e  used only 

four p i to t  tube p o s itio n s  on each diam eter and i s  based on th e  assumption 

tha t th e  v e lo c ity  d is t r ib u t io n  i s  a lo g - l in e a r  r e la tio n s h ip  of th e  form^
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where D = diam eter

y = d is tan ce  from w all.

The r e s u l t s  gave values of mean v e lo c ity  head about 1$ below the  

o r i f i c e  p la te  c a lib ra t io n  and were judged to  be le s s  r e l i a b le .

This discrepancy could have been caused by some lack  of symmetry in  

the  v e lo c ity  d is t r ib u t io n . Other sources of inaccuracy a re  th e  

d i f f i c u l ty  in  p lacing  the  p i to t  tubes a t  the exact measuring spots 

req u ired  and the  p o s s ib i l i ty  th a t  th e  se c tio n  of th e  duct was not 

ex a c tly  c i r c u la r .

7oA. Four Guide System.

The t e s t  len g th  used in  th is  system was between th e  p o in ts  

and ”b" (See F ig . 6 .1) and was 27 f e e t  long. A c a l ib ra t io n  ex ac tly  

s im ila r  to  th a t  on the two guide lin in g  was c a rr ie d  out and i s  shown 

on Graph 7.4«
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Section  8 STATIONARY GAGS EXPERIMENTS

Solo Scope

The purpose of th e  t e s t s  described  in  th is  se c tio n  was to  f in d  th e  

P ressure Drop C o effic ien ts  fo r  sev e ra l arrangem ents of cages and l in in g s , 

and to  study the  e f fe c t  on s h a f t re s is ta n c e  of the  in te ra c t io n  of two 

cages o f a  winding system* Of p a r t ic u la r  in te r e s t  was the len g th  of the

zones w ith in  which th e  combined re s is ta n c e  of two cages was dependent on

the  d is tan ce  between th e  cages. Each t e s t  co n sis ted  of f i r s t  fin d in g  

th e  P ressure Drop C o e ffic ien t produced by th e  two cages sid e  by s id e  and 

then  in c reasin g  th e  d is tan ce  between the  cages in  stages u n t i l  no fu r th e r  

f a l l  in  P ressu re  Drop C o effic ien t took p la c e . I t  was hoped th a t  th is  

inform ation  would be of use in  p red ic tin g  th e  cond itions l ik e ly  to  be 

found in  f u l l  sca le  in s ta l l a t io n s  as w ell as providing an in te re s t in g

b as is  fo r  comparison w ith  l a t e r  work on moving cages.

In  the  two-guide system (F ig . 6 .2) the  t e s t s  covered two-deck 

models, four-deck models, and a two deck model w ith  an ap p ro p ria te ly  

sized  counterw eight. In  th e  four-guide system which can be operated 

e i th e r  as a two cage or four cage winding in s t a l l a t io n  te s t s  were ca rr ie d  

out on two s izes  of cages as shown in  F ig . 6.3» On the fou r cage 

winding system te s t s  were confined to  those w ith  two-deck cages ( s e r ie s  

A/2) running on th e  two in s id e  gu ides. These cages occupied only a 

sm all p roportion  of th e  a v a ila b le  sh a ft a rea  and only s l ig h t ly  a ffec ted  

th e  cond itions as thqy passed. The la rg e r  cages of the two-cage winding 

system produced much more marked e f fe c ts  and work on them was extended to  

include two-deck cages ( s e r ie s  C/2) and four-deck  cages ( s e r ie s  0 /4 ) .
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The t e s t s  a lso  covered cages of th i s  type f i t t e d  w ith s tra ig h t-s id e d  

nose and t a i l  f a i r in g s .  The o u tlin e  of the two types of f a ir in g  used 

i s  shown in  F ig . 8 . 1 . The r a t i o  of th e  f a i r in g  height (h) to  th e  w idth 

of the  base (w) i s  defined as th e  aspect r a t i o .  For nose f a ir in g s  i t  

was fix ed  a t  2 and fo r  t a i l  f a ir in g s  a t  3, the  choice of values being 

based on e a r l ie r  work by Stevenson. The r ig h t-a n g le d  fa ir in g s  were 

fixed  to  th e  cages w ith  th e  sh o rte r  s id e  innerm ost so th a t  two cages 

sid e  by s id e  p resen ted  a tr ia n g u la r  p ro f i le  to  th e  a i r  flow . The 

follow ing ta b le  gives th e  d e ta i l s  of the fo u r guide systems te s te d  w ith 

re fe ren ce  numbers.

S eries Cage D e ta ils F a irin g  D e ta ils Overall
Height

in s .
Length

in s .
Width

in s .

No.
of

Decks

T otal
Height

in s .
Nose T a il

A/2 51 2 2 None None 6#

C/2 51 4 2 6 | None None 6|-

C/2/AN 5 | 4 2 6 | Type A None 14#

c/2/Airr 5 | 4 2 6|- Type A Type A 26#

G/2/EN 5 | 4 2 6 | Type B None 14#

C/2/BNT 5 | 4 2 6# Type B Type B 26|-

0 /4 5 | 4 4 12| None None 12#

C/4/AN 5 | 4 4 12| Type A None 2Cf

0/4/ANT 5 | 4 4 12| Type A Type A 32#

C/4/BN 5 | 4 4 12| Type B None zc%

0/4/BNT 5 f 4 4 12| Type B Type B 32#



Type A iBoeocelea

Type B Right-Angled

W

PIG. 8 .1 . OUTLINE OF CAGE FAIRINGS
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8o2o C alcu la tion  of P ressure Drop C o e ff ic ie n t>

The P ressure Drop C o effic ien t (P«D«Co) of a cage i s  defined  as the

r a t i o  of th e  lo ss  in  p ressu re  produced by th e  cage to  the mean v e lo c ity

head in  th e  s h a f t .

To measure the P.D.C. of any cage arrangement the cages were 

p laced  in  the app rop ria te  e s tab lish ed  t e s t  len g th  (Sections7o2 and 7*4) 

and sim ultaneous readings of head on th e  flowmeter and drop across th e  

t e s t  len g th  were taken a t  se v e ra l Reynolds Numbers in  the a v a ila b le  

range. The p roportion  of th e  experim ental t e s t  leng th  drop due to  the  

l in in g  was estim ated from the  c a l ib ra t io n  (Graph 7«2 or 7*4)° The 

rem ainder of th e  measured drop was a t t r ib u te d  to  the  cage(s) and was 

d iv ided by the mean v e lo c ity  head to  g ive the  cage PoD.Oo G enerally  

good agreement ex is ted  between the  values of P.DoCo a t  d if f e re n t  Reynolds 

Numbers and such v a r ia tio n s  as d id  occur were com pletely random. I t  

was th e re fo re  p o ssib le  to  conclude th a t  the  value of PoD*0. was independ­

ent of Reynolds Number w ith in  the  range coveredo

Bo3o R esults

8 .3 .1 ) Shaft L in ings.

From the  c a lib ra tio n s  of the t e s t  len g th s (Section  7) the  P.DoC.^s 

of len g th s of empty and lin e d  sh a fts  were c a lc u la te d . To make comparisons 

p o ss ib le  the  values were reduced to  those fo r  1^000 f e e t  of 24- fo o t 

diam eter s h a f t .

The values obtained were s-

Srapty Shaft -  0.58
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Two-Guide Lining -  2 ,81

Four-Guide Lining -  5.32

These f ig u re s  show th a t  th e  re s is ta n c e  to  a irflo w  of a mine s h a f t i s  

g re a t ly  increased  by the  presence of buntons ® an e f fe c t  which has been 

e s ta b lish e d  by sev era l in v e s t ig a to r s .  The f ig u re s  a lso  show how widely 

the  e f f e c t  can vary from sh a f t to  sh a f t. In  the  two guide system the  

presence of buntons in c reases  th e  s h a f t  re s is ta n c e  by 4»85 tim es w hile 

in  the four guide system th e  in c rease  i s  9 ,2  tim es. The d iffe ren ce

can alm ost c e r ta in ly  be a t t r ib u te d  to  the change in  bunt on p a t te rn  and

the  e f f e c t  of the  guides can be assumed to  be very sm all. The four 

guide system w ith  i t s  longer buntons placed more c e n tra l ly  in  th e  sh a ft 

could be expected t o  have the  higher r e s is ta n c e  but th a t  such an apparent­

ly  sm all change in  bunton p a t te rn  should alm ost double the  s h a f t  re s is ta n c e  

underlines th e  problem faced by the  v e n t i la t io n  planning engineer who 

t r i e s  to  estim ate  th i s  r e s is ta n c e . I t  is  obvious th a t  no simple 

so lu tio n  to  th is  problem e x is ts .  Attempts have been made (8,1^ 8.2) to  

derive em pirical formulae fo r  th e  purpose w ith  some success. The 

number of v a riab le s  involved, however, l im its  the  a p p lic a tio n  of sim pler 

formulae and makes more comprehensive ones unwieldy. In  o ther cases 

( e .g . 8 . 3) an estim ate  of th e  re s is ta n c e  of a s h a f t  has been made by 

b u ild ing  a model of i t  and te s t in g  in  th e  la b o ra to ry . Such te s ts  have 

given v a lu ab le  inform ation some of which has been s a t i s f a c to r i ly  checked 

from th e  r e s u l t s  of surveys of the  f u l l  sca le  s h a f t .
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8 .3 .2 . Two Guide System.

Before s ta r t in g  th e  t e s t s  a fu r th e r  check on the  a irflo w  cond itions 

in  the  duct was made by measuring the  P.D.C. of a s in g le  cage a t  various 

po in ts  in  th e  t e s t  len g th . The r e s u l t s  showed s a t is f a c to ry  consistency  

and t e s t s  involving dual cages were begun. Graph 8.1 shows the  P.D.C. 

p lo tte d  on a base of d is tan ce  between th e  cen tre  l in e s  of the two cages 

and shows th a t  fo r  bo th  two-deck and four-deck models the  t o t a l  re s is ta n c e  

to  a i r  flow of th e  two cages can be considered to  be the sum of th e  

re s is ta n c e s  of the in d iv id u a l cages when the d is tan ce  between th e  cage 

cen tre  l in e s  exceeds 2^ sh a f t d iam eters. As the clearance between the 

cages becomes le s s  th an  th i s  the  P.D.C. shows a gradual r i s e  follow ed by 

a very  rap id  r i s e  to  approxim ately tw ice the  steady  value, follow ed again  

by a gradual r i s e  to  a maximum when the cages a re  s id e  by s id e . Graph 8 .2  

shows the same inform ation w ith  th e  d is tan ce  between the  cages expressed 

in  terms of the cage h e ig h t. When p lo tte d  t h i s  way, th e  curves fo r  two- 

deck models and four-deck models f a l l  q u ite  c lo se  to g e th er w ith  the 

g re a te s t  r a te  of in c rease  tak ing  place when th e  d is tan ce  between th e  cen tres 

i s  about equal to  the  height of a cage. This shows th a t fo r  bo th  types 

of cage the  se rious in c rease  in  sh a f t r e s is ta n c e  takes p lace during th e  

period  when the cages overlap in  th e  s h a f t .  The maximum re s is ta n c e  

presen ted  during the passing  of two two-deck cages i s  3 .9  tim es th e  

re s is ta n c e  of a s in g le  cage. For four-deck cages th is  f ig u re  i s  3*7 

tim es, suggesting th a t  the  g re a te r  cage height a f fe c ts  th e  d u ra tio n  of 

the  high re s is ta n c e  much more than  i t s  v a lu e .

In  th e  case of th e  two-deck cage and counterweight system th e



Tpfo-(îuide System

4»

•r4

ONE 4-D eck Cîage = 0 .4 3  «

ONE 2-Deok (kge  s  0*39

D istance "between cage cen tre s  (Shaft Diam eters)



System.Two-Guide

5oo

4»

4»

•H

JlO

•H

ioa
4*

Distance between cage centres (Gage Heights)



' 1  ~nwi~ m -

Length cf lin ^ d  ?if D iaae t^ r Shaft of Resi&tajiof: eo u im le n t to  the
oages ^ e e t )

95

fe4»

•rHA
cI
95
s
1o
g
g4»0 .J2
4)

1 4» 
OS •i4A

mi

g
&K4

g '
Ot43
3



Sect, 8*3.2) 51

maximum P.D.C. occurs when the  cen tre  of the  cage i s  O.4  s h a f t  diam eters 

upstream from th e  ce n tre  o f the  counterw eight. The in c re ase  in  re s is ta n c e  

as th e  cage approaches th e  counterweight from th e  upstream s id e  i s  very 

sharp w hile th e  decrease to  the  normal value as th e  cage recedes down­

stream  i s  more g radual. From th is  i t  would appear th a t  th e  e f f e c t  of 

th e  counterweight i s  a t  i t s  g re a te s t  when th e  counterweight l i e s  in  the  

wake of th e  cage hindering th e  recovery  of s t a t i c  p ressu re  from th e  high 

v e lo c ity  head of th e  a i r  passing  through the  r e s t r i c te d  space between the 

cage and th e  s h a f t w a ll .  The re s is ta n c e  of the  counterweight alone in  

th e  s h a f t  i s  very  sm all y e t i t s  presence in  th e  v ic in i ty  of th e  cage 

in c rease s  th e  r e s is ta n c e  due to  th e  winding appliances by about 45% of 

th e  normal v a lu e . The t o t a l  e f fe c t  extends fo r  about 3 i  s h a f t  diam eters 

in  a l l  compared w ith  5 s h a f t  diam eters in  th e  case of passing  cages.

8 .3 .3 . Four Guide System.

Cage R esistances (Graphs 8 .4  and 8*5)

These graphs show th e  v a r ia t io n  in  P.D.C, as two cages pass in  a 

sh a ft and a re  s im ila r  in  shape to  th e  corresponding graphs in  the two 

guide system . The re s is ta n c e  due to  the  cages exceeds i t s  normal value 

when the d is tan ce  between th e  cage cen tre s  i s  le s s  than  3 s h a f t  diam eters 

(Graph 8 ,4) and i t s  g re a te s t  r a te  of in c rease  takes p lace when th e  

d is tan ce  i s  approxim ately equal to  the  height of a cage (Graph 8*5).

The maximum value of cage re s is ta n c e  i s  2*4 tim es the normal value 

( i . e .  4*8 tim es th e  r e s is ta n c e  of a s in g le  cage) fo r  two^deck cages and 

2.3  tim es th e  normal ( i . e .  4*6 tim es a s in g le  cage) fo r  four-deck cages.
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These f ig u re s  a re  higher than  in  the  two-guide system due to  th e  s l ig h t ly  

g re a te r  f ro n ta l  area and because the  cages a re  sh o rt and wide r a th e r  than  

long and narrow and approach the  s id es  of th e  duct more closely*  The 

re s is ta n c e  produced by four-deck  cages i s  only s l ig h t ly  g re a te r  than  th a t  

produced by two-deck cages probably because shock and recovery  lo s se s  a re  

comparable ir re s p e c tiv e  of th e  number of decks and the f r i c t i o n  lo s s  i s  

g re a te r  fo r  four decks. The re s is ta n c e  of th e  sm aller cages used fo r  

fou r cage winding ( s e r ie s  A/2) i s  very much le s s  than the o thers due to  

the  much sm aller area of sh a f t occupied.

Comparison between the  two guide system and the four guide system 

and co n s id e ra tio n  of th e  importance of the  presence of cages to  sh a ft 

r e s is ta n c e  i s  b es t made by considering  th e  cage re s is ta n c e s  r e la t iv e  to  

th e  s h a f t  r e s is ta n c e . For th is  purpose the v e r t ic a l  o rd in a te  o f th e  

graphs i s  marked in  terms o f th e  len g th  of l in e d  24- fo o t diam eter sh a ft 

of re s is ta n c e  equal to  th e  cages as w ell as in  terms of P.D.C. This 

shows th a t  w hile the abso lu te  value of cage P.D.C. in  th e  two-guide 

system i s  much lower than  in  th e  four-gu ide system the presence of cages 

in  th e  two-guide system r e s u l t s  in  a s l ig h t ly  g re a te r  p ro p o rtio n a l 

in c rease  in  o v e ra ll sh a f t r e s is ta n c e . For bo th  systems the  normal value 

of cage re s is ta n c e  i s  equ ivalen t to  between 200 and 300 f e e t  o f lin e d  

24- fo o t  diam eter sh a ft and the  maximum value i s  equ ivalen t to  between 

500 and 600 f e e t  of lin e d  s h a f t .  In  th e  four-cage system the  normal 

value of cage re s is ta n c e  can be considered equ ivalen t to  about I 50 f e e t  

of lin e d  s h a f t .  An estim ate of the value of cage re s is ta n c e  in  terms of 

sh a ft re s is ta n c e  was made using th e  em pirical methods of cu rren t p ra c tic e
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(8.4 ) and comparable r e s u l t s  were ob ta ined . In  view of th i s  i t  i s  

suggested th a t  th e  a d d itio n a l re s is ta n c e  produced by the  presence of 

cages in  sh a fts  should not be ignored in  v e n t i la t io n  planning un less the  

sh a f t  depth exceeds 3,000 f e e t  in  the case of a two-cage winding system, 

and 1,500 f e e t  in  the case of a four-cage winding system.

Cages w ith  F a irin g s (Graphs 8 .6 . 8 .7  and 8.8)

R e la tiv e  values of th e  re s is ta n c e  of cages of the  four-guide 

system w ith  and w ithout f a ir in g s  are shown in  th e  follow ing ta b le .

System
Normal R esistance Maximum R esistance

P.D.C.
F t .  of 

S haft 
Equivalent

R elative P.D.C.
F t .  of 

Shaft 
Equivalent

R e la tiv e

c/2 1.12 210 100 2 .74 515 100

0/2/AN 0.96 180 86 2.53 475 92

0/2/AHT 0.84 157 75 2.08 390 76

C/2/BN 1.42 266 127 2.78 520 101

C/2/BNT 1.30 244 116 2.48 465 90

C/J, 1.40 262 100 3 .20 600 100

C/4/AN 0.90 169 64 2.50 470 78

c / 4/ m r 0.88 165 62 2.29 430 71

C/A/feN 1.44 270 103 3.00 560 94

C/4/BNT 1.56 292 112 2,96 555 92
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The use of f a ir in g s  o f type A considerab ly  reduces th e  re s is ta n c e  

of th e  cages. Their e ff ic ie n c y  i s  g re a te r  w ith  four-deck cages than  

w ith  two-deck cages and i s  g re a te r  when th e  cages are spaced a p a rt than 

when they  a re  s id e  by s id e .  F a irin g s  of type B produce a sm aller 

red u c tio n  in  re s is ta n c e  when the  cages a re  s id e  by s id e  bu t they  a c tu a lly  

produce an in c rease  in  re s is ta n c e  when th e  cages a re  ou tside th e  passing 

zone. I t  would appear, th e re fo re , th a t  th e  red u c tio n  in  shock lo s s  

produced by the  use of assy m etrica l f a ir in g s  does not compensate fo r  the 

inc reased  f r i c t io n  lo ss  due to  the g re a te r  rubbing su rface  a rea . The 

e f fe c t  i s  more marked w ith  two-deck cages where th e  p ro p o rtio n a l in c rease  

in  rubbing su rface  i s  g re a te r .

When compared w ith some e a r l ie r  r e s u l t s  on a system very  s im ila r  

to  our two-guide system th e  reductions brought about by th e  use of fa ir in g s  

of type A give comparable f ig u re s . Stevenson d id  not examine f a ir in g s  

of type B on cages supported in  r ig id  guides bu t in  t e s t s  on a model rope 

guide lay o u t he found th a t  f a ir in g s  of th i s  type , w hile le s s  e f f ic ie n t  

than  sym m etrical ones, s t i l l  produced a red u c tio n  in  the  r e s is ta n c e  of 

a s in g le  cage. The presence of buntons obviously n u l l i f i e s  th i s  red u c tio n  

and makes th i s  type of f a ir in g  u n su itab le  fo r  a r ig id  guide system .

From th e  graphs i t  i s  seen th a t  except in  th e  case where nose and 

t a i l  f a i r in g s  of type B a re  used the  presence of the f a ir in g s  makes very  

l i t t l e  ad d itio n  to  th e  le n g th  of the  zone of above normal r e s is ta n c e .

In  a l l  cases steady  cond itions a re  reached by th e  time the  cage cen tres  

a re  4 s h a f t  diam eters a p a r t .  The most u se fu l p roperty  of th e  f a ir in g s  

i s  th a t  t h ^  avoid the  very  sudden in c reases  in  re s is ta n c e  produced by
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th e  passing  of cages a lone. I t  i s  u n fo rtuna te  th a t  the  f a ir in g s  of 

type B give a more g e n tle  curve than  those of type A which are  p re fe rred  

on grounds of lower aerodynamic r e s is ta n c e .

S ection  9 MOVING CAGB EXPIRIMENTS

9 .1 .  G eneral

Experiments on th e  in fluence  of the  moving of cages in  the  model 

s h a f t  were ca rr ie d  out on a l l  th e  cage s e r ie s  l i s t e d  in  S ection  Ô.1 

(page 47) except C/2/BN and C/2/BNT and the  same n o ta tio n  was used to  

id e n t i fy  th e  d if f e r e n t  s e r ie s .  The t e s t s  involved using th e  p ressu re  

reco rd in g  apparatus to  g e t a continuous reco rd  of the p ressu re  a t  

s e v e ra l p o in ts  in  th e  model sh a ft as th e  cages passed each o th e r . The

r e s u l t s  can be convenien tly  d ivided in to  four sec tio n s  as fo llow s

a) T ests on the  in flu en ce  of passing cages on sh a ft r e s is ta n c e  -  done

by record ing  th e  p ressu re  drop across the  t e s t  len g th  ^Bb” (F ig . 6 . I ) .

b) T ests on th e  in flu en ce  of passing  cages on th e  cond itions upstream

from th e  passing p lace  -  done by reco rd ing  th e  s t a t i c  p ressu re  a t

th e  p o in ts  "g" and "b" (F ig . 6 . I ) .

c) T ests on th e  in flu en c e  of passing cages on th e  cond itions downstream

from th e  passing  p lace  -  done by record ing  th e  s t a t i c  p ressu re  a t

th e  p o in ts  "4"? and '‘C” (P ig . 6 . I ) .

d) T ests  on th e  in flu en c e  of a cage passing  a po in t on th e  cond itions

a t  th a t  p o in t -  done by record ing  th e  s t a t i c  p ressu re  a t  th e  p o in t "A** 

as a cage passed "4"*
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In  e a rly  t e s t s  the  s t a t i c  p ressu res  were taken w ith  'i inch  bore 

tubes in se r te d  in to  the  duct a t  r ig h t  angles to  th e  a i r  stream . P a rt of 

a ty p ic a l  record  obtained by th i s  method i s  shown in  F ig . 9 .1  and shows 

th e  n a tu ra l f lu c tu a tio n s  in  the  p ressu re  in  th e  d u c t. The am plitude of 

th e se  f lu c tu a tio n s  i s  comparable w ith  the  v a r ia tio n s  in  p ressu re  produced 

by th e  movement of the cages and estim atio n  of th e  mean p ressu re  i s  very  

d i f f i c u l t .  The frequency of th e  f lu c tu a tio n s , however, i s  much higher 

than  the equ ivalen t frequency of the v a r ia tio n s  produced by the  cages 

and hence i t  was p o ss ib le  to  damp them out by using an N.P.L. p i to t -  

s t a t i c  tube to  measure th e  s t a t i c  p re ssu re . Records of the  same p ressu re  

recorded by th e  two methods a re  shown in  F ig . 9 .1  and show c le a r ly  th e  

s u p e r io r i ty  of th e  p i t o t - s t a t i c  tube fo r  the  purpose.

Records of p ressu re  were taken  a t  d if f e re n t  Reynolds Numbers and 

w ith  the  cages moving in  both  d ire c t io n s . In  each t e s t  record ing  was 

s ta r te d  w ith  the cages s u f f ic ie n t ly  f a r  ap a rt to  ensure th a t  th e re  was 

no in te ra c t io n  between them. Recording was continued w hile the cages 

approached, passed and receded u n t i l  th e  p ressu re  being measured re tu rned  

to  i t s  o r ig in a l normal v a lu e . In  order to  make d if fe re n t  t e s t s  p roperly  

comparable th e  p ressu re  readings were p lo tte d  as a percentage of th i s  

normal value on a base of th e  d is tan ce  between th e  cage cen tre s  expressed 

in  terms of the  s h a f t  d iam eter. Graph 9 .1  shows the p lo t  of a ty p ic a l  

s e t  o f te s t s  conducted a t  d if fe re n t  a i r  speeds and w ith  th e  cages 

tr a v e l l in g  in  both d ire c tio n s  p lo tte d  in  th is  way. Good agreement was 

obtained and i t  was th e re fo re  p o ss ib le  to  reduce a s e r ie s  of te s ts  to  a 

s in g le  curve rep resen tin g  th e  v a r ia t io n  in  th e  p ressu re  a t  any one p o in t



a) Using P i to t - S ta t i c  Tube.

b) Using ^ in ,  bore tu b e .

FIG.9 .1 . MLTHODS OF El CORDING PRESSURES.
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as th e  cages passed a t  any one speed fo r  a l l  Reynolds Numbers in  th e  

range. A fu rth e r  advantage of th is  method of p lo tt in g  i s  th a t  the  use 

of r e la t iv e  values of p ressu re  r e l i e s  only on the na tu re  of th e  c a lib ra tio n  

of the  p ressure  reco rd ing  equipment and not on i t s  ab so lu te  v a lu e . This 

avoided any d i f f i c u l ty  a r is in g  from th e  s l ig h t  in s t a b i l i ty  of the  equip­

ment (re ferred  to  in  S ection  4 ) since th e  c a lib ra t io n  could be r e l ie d  upon 

to  be a s t r a ig h t  l in e  passing  through the  o r ig in  even although the slope 

v a ried  s l ig h t ly  from day to  day depending on th e  cond itions of tem perature 

and mains v o ltag e .

F ig . 9*2. shows some of the reco rds th e i r  a c tu a l s iz e .  In  the  

graphs the p ressure  sc a le  i s  increased  by about f iv e  tim es and th e  time 

sc a le  i s  converted to  d is tan ce  and i s  increased  by about tw ice a t  the  

low est cage speeds and about four tim es a t  th e  h ighest cage speeds. This 

r e s u l t s  in  an apparent s c a t te r  of the experim ental p o in ts  about the mean 

l in e  due to  exaggerated measuring e r ro rs .  The records a lso  show th a t  

th e  normal p ressu re  i s  su b jec t to  occasional random v a r ia tio n s  whose 

magnitudes are not n e g lig ib le  compared w ith  th e  v a r ia t io n  produced by 

th e  cages and which could not be separa ted  from the cage e f fe c ts  i f  they 

occurred a t th e  same tim e. This e f fe c t  a lso  produces some s c a t te r .

The graphs which appear in  th i s  se c tio n , however, a re  a l l  th e  r e s u l t  of 

a t  l e a s t  four te s t s  under d if f e re n t  cond itions and can be considered to  

rep re se n t c lo se ly  th e  p ressu re  v a r ia tio n s  in  th e  s h a f t  due to  the movement 

of th e  cages.

In  the course of th e  experim ental work on nine s e r ie s  of cages 

the  v a r ia tio n s  in  e ig h t d if fe re n t  q u a n ti t ie s  a t  fou r cage speeds were
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recorded and the  r e s u l t s  provided m a te r ia l fo r  about 300 curves. A 

s e le c tio n  o f th ese  curves showing th e  c h a ra c te r is t ic s  of unstream lined 

cages in  f u l l  and th e  im portant tren d s in  th e  c h a ra c te r is t ic s  o f stream­

lin e d  cages i s  shown in  Graphs 9*2. to  9*21. In  a l l  th e se  graphs the 

p a r t  to  th e  l e f t  of th e  c e n tra l  o rd in a te  (y = 0) rep resen ts  th e  cond itions 

w hile the  cages are  approaching each o ther and th e  p a r t to  th e  r ig h t 

rep re se n ts  th e  con d itio n s a f te r  they have passed.

9 .2 . E ffec t of Passing Cages on Shaft R esistance (Graphs 9 .2  to  9 .6 ) .

Graphs 9*2, 9*3 and 9*4 show the  v a r ia t io n  in  th e  p ressu re  drop

across the  t e s t  le n g th  "Bb” as cages pass a t  a range of speeds. The 

speeds vary  from about h a lf  the  maximum p o ss ib le  up to  the maximum and 

a re  expressed in  s h a f t  diam eters per second throughout. The v a r ia tio n  

in  P.D.C, of the  t e s t  len g th  plus the  cages was ca lcu la ted  from the 

r e s u l t s  of the  t e s t s  on s ta tio n a ry  cages and i s  shown fo r  comparison.

The most marked e f f e c t  i s  th a t  w hile th e  curves fo r  s ta t io n a ry  cages a re  

symm etrical about th e  cen tre  l in e  those fo r  moving cages are  not and th a t  

the  degree of asymmetry in c reases  w ith  cage speed. Movement of th e  cages 

appears to  in c rease  th e  len g th  of th e  zone w ith in  which th e re  i s  in te r ­

a c tio n  between th e  cages. Although the  e f fe c t  of in c reasin g  speed i s  to  

in c rease  the  len g th  of the  zone the  r a te  of in c rease  i s  le s s  than  the  

r a t e  of increase  in  speed and th e  n e t e f fe c t  i s  to  reduce th e  du ra tio n  

of the  period of abnormal p ressu re .

The passing of two cages of s e r ie s  A/2 produces a very  sm all in c rease
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in  p ressu re  and appears u n lik e ly  to  have any se rio u s e f f e c t  on the 

cond itions in  the s h a f t .  More se rious e f f e c ts  could be produced i f  

th re e  or a l l  of th e  cages in  a four-cage system came w ith in  th e  zone of 

in te ra c t io n  sim ultaneously . Since the four-cage system i s  u su a lly  used 

to  wind w ith  two p a irs  of cages from d if fe re n t  le v e ls  th e  a r r iv a l  of a l l  

th e  cages a t  one p o in t w i l l  not be p o ss ib le  and se rious e f f e c ts  should 

no t occur.

When the  la rg e r  cages of se r ie s  C/2 and C/4 are  used, however, a 

much more marked in c rease  in  the t e s t  le n g th  p ressu re  drop i s  reco rded .

The shape of th e  curves i s  sim ila r to  th a t  obtained fo r s ta tio n a ry  cages 

in  th a t  fo r  both types of cage the o v e ra ll le n g th  of th e  zone of in te r ­

a c tio n  i s  about th e  same, but the most se rio u s  in c rease  occurs e a r l ie r  

and p e r s is ts  fo r  longer in  th e  case of four-deck cages. The maximum 

p ressu re  drop recorded appears to  be independent of cage speed w ith in  th e  

range covered although th e  po in t a t  which i t  occurs i s  n o t. The e f f e c t  

of in c reas in g  speed i s  to  make the  r i s e  and f a l l  of p ressu re  w ith  d is tan ce  

more g en tle  w ithout much e f fe c t  on th e  maximum v alu e .

The in c rease  in  P.D.C. of th e  t e s t  len g th  plus the s ta tio n a ry  

cages i s  about 50^ g rea te r  than th e  in c rease  in  th e  t e s t  len g th  drop 

produced by moving cages, but th is  does no t mean th a t  th e  re s is ta n c e  of 

th e  moving cages i s  lower than the re s is ta n c e  of th e  s ta t io n a ry  cages 

s in c e  the  curves are  not s t r i c t l y  comparable. A curve of t e s t  len g th  

drop w i l l  be id e n t ic a l  to  a curve of P.D.C. only i f  th e  q u an tity  of a i r  

flow ing remains constan t during the t e s t .  In  the case of a  mine s h a f t, 

however, the  r e s u l t  of the  passing of cages i s  a  temporary in c rease  in
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th e  t o t a l  re s is ta n c e  which i s  accompanied by a f a l l  in  th e  q u a n tity  

flow ing . The ex ten t of th e  f a l l  w i l l  depend on th e  fan c h a ra c te r is t ic  

and on the  r e la t iv e  values of the cage re s is ta n c e  and th e  t o t a l  c i r c u i t  

r e s is ta n c e . Such cond itions vary w idely from sh a ft to  s h a f t and no 

g en e ra l ru le s  can be la id  down.

An attem pt was made to  record  th e  v a r ia t io n  in  the  head on the  

flowmeter w hile the  cages passed but no d e f in i te  r e s u l t s  were obtained. 

F ig . 9 «3 shows the  n a tu ra l flowmeter bead w ith  i t s  heavy f lu c tu a tio n s .

I t  was p o ssib le  to  damp th ese  out f a i r l y  s a t i s f a c to r i ly  by using leng ths 

of narrow bore tubing in  th e  connections but even then  the  method was not 

s u f f ic ie n t ly  accu ra te  to  give r e l ia b le  q u a n ti ta t iv e  r e s u l t s  of the 

v a r ia t io n  in  flowmeter head. The graphs show th a t  th e  t e s t  len g th

drop reaches a maximum of 1 2 of  i t s  normal v a lu e . This in crease  

combined w ith  only a 1% drop in  mean v e lo c ity  head w i l l  r e s u l t  in  a 

P.D.C. of 130^ of the normal as found w ith  th e  s ta tio n a ry  cages. The 

d e f le c tio n  on the  galvanometer produced by th e  flowmeter head was on]y 

about h a lf  an inch and i t  was not p o ss ib le  to  measure a 1% change w ith 

any confidence. The decrease in  q u an tity  which could be de tec ted  on the 

reco rds was very  sm all showing th a t  w hile th e  in c rease  in  re s is ta n c e  of 

moving cages i s  g re a te r  than th e  in c rease  in  t e s t  len g th  drop i t  i s  not 

any g re a te r  than  th e  in c rease  in  the re s is ta n c e  of s ta t io n a ry  cages.

Examination of th e  records a lso  showed th a t  when th e  cages were 

o u ts id e  the  zone of in te ra c t io n  the t e s t  len g th  drop was th e  same whether 

th e  cages were moving or n o t. F ig . 9»4» shows p a rt of a reco rd  which 

was s ta r te d  before the  cages began to  move. The d istu rbance a t  th e  po in t



FIG. 9 .1 . HË.AD ON 3/A RADIUS PHOT TUBE FLOWMETER.



a) Gage Speed = 5 . 5  Shaft D/sec

b) Gage Speed = 2 .2  Shaft D /sec.

FIG. 9 .1 . pressure: drop across test length Bb.

N o te :- The cages are  moving during  the p a r t of the record 
between the v e r t ic a l  l i n e s .
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where th e  cages s t a r t  to  move i s  due to  e l e c t r i c a l  in te rfe re n c e  from th e  

motor s t a r t e r  c i r c u i t .  This suggests th a t  any in c rease  in  p ressure  drop 

due to  increased  a i r  v e lo c ity  r e la t iv e  to  one cage i s  balanced by the  

decrease  in  p ressu re  drop a t  the  o ther cage.

The e f f e c t  of f a ir in g s  on the re s is ta n c e  of moving cages i s  shown 

on Graphs 9 .5  and 9#&. Only the  h ighest and the  low est cage speeds are  

shown in  f u l l  bu t i t  was possib le  to  es tim ate  th e  p o s itio n  of the peaks 

and ends of the  in te rm ed ia te  curves and show th e  same trends as are  seen 

in  Graphs 9*2, 9 .3  and 9.4»

The a d d itio n  of f a ir in g s  of type A to  a cage lowers th e  maximum 

p re ssu re  drop and g ives a smoother curve w ith  an approxim ately constan t 

r a te  o f in c rease  and decrease of p re ssu re . There i s  very  l i t t l e  change 

in  th e  le n g th  of th e  zone of in te ra c tio n  w ith  four-deck cages w hile w ith  

two-deck cages the  zone i s  shortened even although th e  f a ir in g s  g re a tly  

in c rease  th e  le n g th  of th e  model.

The use of f a ir in g s  of type B g ives curves in  which the  r a te  of 

change of p ressu re  i s  a lso  approxim ately constan t and is  even le s s  than 

in  th e  curves using type A. This i s  done a t  th e  expense of an inc rease  

in  th e  len g th  of th e  zone of in te ra c t io n . In  th i s  re sp e c t the  r e s u l ts  

a re  s im ila r  to  those obtained fo r  the  P.DoC.*s of s ta tio n a ry  cages. 

Although the  red u ctio n s achieved by the  use of f a ir in g s  do not appear to  

be very  sp ec tacu la r when p lo tte d  th is  way i t  must be remembered th a t  the  

t e s t  le n g th  i s  equ ivalen t to  692 f e e t  of 24- fo o t  diam eter sh a f t and even 

a sm all percentage red u c tio n  rep re sen ts  a considerab le  sav ing .
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9 .3 . E ffec t of Passing Cages on C onditions elsewhere in  th e  S h aft.

Note The p ressu res  recorded in  th ese  t e s t s  rep resen ted  th e  d iffe ren ce  

between the  s t a t i c  p ressu re  a t  c e r ta in  p o in ts  in s id e  the  duct and atmos­

pheric  p re ssu re . Since the  fan  worked on th e  exhausting system th e  

p ressu res  p lo tte d  along th e  p o s itiv e  ax is  a c tu a lly  rep re se n t the  

depression  a t  these  p o in ts  below atm ospheric. The graphs can th e re fo re  

be considered as reco rds of the p ressu re  lo ss  along the duct from th e  

i n l e t  to  the  p o in t concerned.

Graphs 9*7 to  9*11 show th e  v a r ia t io n  in  p ressu re  a t  p o in ts  ”a ” 

and **b‘* s itu a te d  7 i  and 13^ f e e t  re sp e c tiv e ly  upstream from th e  passing 

p la c e . The curves show th a t  th e re  i s  a red u c tio n  in  th e  p ressu re  a t  

th e se  p o in ts  as the cages p ass . The maximum value of th e  percentage 

red u c tio n  i s  approxim ately the  same fo r  two-deck and four-deck cages 

and seems to  be s l ig h t ly  g re a te r  a t  p o in t ”b" than  a t  p o in t . The 

curves fo r  two-deck cages appear more peaked due to  the  sh o r te r  d u ra tio n  

of th e  o v e ra ll e f f e c t  and of the  period of se rio u s re d u c tio n .

The e f f e c t  of in c re as in g  speed i s  to  s l ig h t ly  in c rease  the  ex ten t 

o f the  e f f e c t  g iving smoother curves and a lso  to  in c rease  th e  asymmetry 

of the  curves about th e  ce n tre  l in e .  Graph 9*11 shows the  e f f e c t  of 

using fa ir in g s  on th e  v a r ia t io n  in  th e  p ressu re  a t  po in t "g" a t  th e  top  

speed only . The fa ir in g s  reduce th e  maximum change in  p ressu re  and 

make the  changes in  p ressu re  more g rad u al. F a ir in g s  of type A do not 

in c rease  the  len g th  of th e  d istu rbance  appreciab ly  bu t those of type B 

extend i t  a c e r ta in  amount.

Graphs 9*12 to  9*17 show the  e f f e c t  of passing cages on th e
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pressu re  a t  p o in ts  "A", and **C*‘ a t  13§- and 2 3 i  f e e t  re sp e c tiv e ly  

downstream from the  passing  place* The fe a tu re s  a re  v ery  s im ila r  to  th e  

previous s e t  except th a t  th e  passing of cages produces a r i s e  in  p ressu re  

a t  these  p o in ts . The maximum percentage in c rease  reached f a l l s  pro­

g re s s iv e ly  from “4” through ”B” to

Records were a lso  taken of the  p ressu res a t  th ese  p o in ts  as th e  

sm aller cages of s e r ie s  A/2 passed . No s ig n if ic a n t  changes in  p ressu re  

could be n o ticed  and i t  seems sa fe  to  assume th a t  the movement of such 

sm all cages w i l l  not produce any d ra s t ic  e f fe c ts  on th e  s h a f t  co n d itio n s .

The e f fe c ts  ju s t  described  a re  considered in  th e  follow ing 

th e o r e t ic a l  a n a ly s is  of th e  p ressu re  changes produced by th e  v a r ia t io n  

in  a i r  q u an tity 'f lo w in g  in  the  d u c t. None of th e  reco rds taken  showed 

any s ig n s  of r e f le c te d  waves tr a v e ll in g  a t  sonic speeds and i t  i s  assumed 

th a t  th e re  was no compression and hence cond itions of c o n tin u ity  p rev a iled  

Consider any p o in t P on the model s h a f t d is tan ce  from th e  

i n l e t .

At any tim e

S ta t ic  p ressu re  a t  P = w
A ir v e lo c ity  = V

Air a c c e le ra tio n dV
d t.

B e rn o u lli’s Equation between P and a p o in t Q d is tan ce  ** S x ” down­

stream  from P gives

p yZ _ p d / p  \  c
~ * ~ z i  ~ ~   ̂ Tg * d F i ~  + - 2^ - /  done by the

\  / a i r .

(1 )



Sect. 9 .3 ) 64

The work done by th e  a i r  can be considered in  two p a r ts  s-

a) Work done a g a in s t f r i c t io n  = ~"2gd^ ' 6 x

where f  = f r i c t io n  fa c to r

b) Work done a c c e le ra tin g  th e  a i r

= in c rease  in  k in e tic  energy

(7 + 8 v ) ^  -  /
2g

_ 7 67  n eg lec tin g  ( 6 7 ) '
g

= - i -  5 t  and 7 .§ t  =
g 6 t

Work Done - A  i L  8 x .
g d t

S u b s titu tin g  in  ( l )  we get

f  ( i .  a s .  = - 1  ® . 5 .
dx \w  2g 2gd g d t

P ^  7^  _  4 f 7 ^  C 1  d 7  r
M * ~ z i  -  -  2i d -  0 % -  -g -  -â T  + c

Jo Jo

Since th e  p ressu res were recorded as the  d iffe re n c e  from atm ospheric 

we assume 

p
—  — 0 a t  X “  0
w

a lso  f  S x  = 0 a t  x = 0
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^  = _ M f L  X -  i  X (2)
W 2gd g d t

i . e .  th e  p ressu re  a t  any p o in t in  th e  model a t  any tim e i s  th e  a lg eb ra ic  

sum of th e  f r i c t i o n  lo s s  between th e  i n l e t  and th a t  p o in t (as ca lcu la ted  

from the  in stan taneous v e lo c ity )  and th e  a c c e le ra tio n  head o f th e  column 

o f a i r  between th a t  p o in t and the  i n l e t .

At p o in ts  in  th e  duct upstream from th e  passing p lace the p ressu re  

i s  d i r e c t ly  p ro p o rtio n a l to  ”x” and th e  percentage p ressu re  change as 

p lo tte d  in  th e  graphs should be th e  same fo r  a l l  such p o in ts . In  a 

normal s h a f t  t h i s  w i l l  be th e  case bu t in  th e  model th e  l in in g  does not 

extend to  th e  i n l e t  and th e  th e o re t ic a l  expression  fo r  ”p” i s  of th e  

form

- T  = -  A y 7% _ B (x -  y )?2  - -g -  ^7- %

where y = d is tan ce  from th e  i n l e t  to  the  end of the  l in in g ,

and A, B = c o n s ta n ts .

In  th e  model, th e re fo re , th e  r a t io  of th e  two pressu res produced a t  a 

p o in t by two s e ts  o f co nd itions i s  not independent of "x " .

At p o in ts  in  th e  duct downstream from th e  passing p lace  th e  

term  expressing  th e  f r i c t i o n  lo s s  in  (2) cannot be d i r e c t ly  ap p lied  s in ce  

th e  passing  of th e  cages in c reases  the  re s is ta n c e  to  a irflo w  between the  

i n l e t  and th e  p o in t. I f  we assume fo r  th e  moment th a t  no red u c tio n  in

a i r  flow takes p lace  then  th e  e f f e c t  of passing  cages w i l l  be to  in c rease

th e  p ressu re  a t  a l l  p o in ts  downstream by a constant amount. Since the
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p ressu re  inc reases p ro g re ss iv e ly  downstream the percentage change in  

p ressu re  a t  a  p o in t i s  reduced as we move fu r th e r  downstream. The 

red u c tio n  in  q u an tity  flow ing w i l l  produce an e f fe c t  s im ila r  to  th a t  

a t  p o in ts  upstream but the  red u ctio n  i t  causes i s  not enough to  

compensate fo r  th e  in creased  f r i c t io n  lo s s  a t  the cages and hence the 

n e t e f f e c t  i s  an in c rease  in  p ressu re  w ith  the  p ro p o rtio n a l change 

becoming sm aller as we move downstream.

9 .A. E ffec t of a Caere passing a p o in t on cond itions a t  th a t  p o in t.

Graphs 9 .1# to  9*21 show the v a r ia t io n  in  p ressu re  a t  a po in t in  th e  

s h a f t  as a  cage passes th a t  p o in t .  The p ressu res  are p lo tte d  as 

percentages of th e  steady  p ressu re  when the  cage i s  upstream from the  

p o in t, and the d iffe re n ce  in  le v e l between th e  ends rep re sen ts  the 

in creased  f r i c t io n  lo s s  upstream due to  th e  cage.

These graphs show th a t  the  p ressu re  a t  the po in t in c rease s  to  a 

value above i t s  h igher normal as th e  cage p asses . Because of the  

method of measuring and p lo tt in g  used th i s  rep resen ts  an in c rease  in  the  

depression  below atm ospheric and hence rep re sen ts  a lower abso lu te  

p ressu re  in  th e  duct corresponding to  a higher v e lo c ity  head due to  

the reduced area  a v a ila b le  fo r  flow . The p ressu re  waves formed by th is  

fo rced  in c rease  in  v e lo c ity  w i l l  t r a v e l  up and down th e  s h a f t  along w ith  

th e  cages. The r e la t iv e  amount by which th e  passing, of a cage w i l l  

d is tu rb  the  steady  p ressu re  a t  a  po in t w i l l  depend on th e  r a t i o  of th e  

cage drop to  th e  normal p ressure  a t  th a t  p o in t. The curves as shown 

fo r  p o in t th e re fo re  are  only ty p ic a l  and not g en e ra l. They do,
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however, give a good in d ica tio n  of th e  e f f e c ts .

One outstanding fea tu re  i s  how qu ick ly  steady cond itions re tu rn  

a f t e r  the passing of a cage showing th a t  th e  lower a i r  v e lo c ity  is  

q u ick ly  re s to red  as the a i r  re-expands in to  the  f u l l  a rea  of th e  sh a f t. 

Increas in g  cage speed has very l i t t l e  e f f e c t  on the  p a t te rn  of the 

graphs a p a rt from a s l ig h t  smoothing of the  curve, although the  e f fe c t  

occupies a much sh o rte r  time a t  higher speeds and the  r a te s  of change 

of p ressu re  are h igher. This i s  probably because the  a i r  a c ce le ra tio n s  

a re  only lo c a l  and no g rea t in e r t i a  e x i s ts .  A cage moving ag a in s t the  

a i r f l o w  c rea tes  a s l ig h t ly  g rea te r  d istu rbance  in  the p ressu re  a t  a 

p o in t than  a  cage moving w ith  the airflow *

Graphs 9 .20  and 9*21 show the  smoothing of the  d istu rbance 

achieved by adding fa ir in g s  to  th e  cages. The curves shown a re  those 

fo r  the  h ighest cage speed used. The f a ir in g s  of type A appear to  be 

more su ccessfu l s in ce  they reduce th e  cage drop making th e  permanent 

change in  the p ressu re  a f te r  a cage has passed sm alle r. Both types 

extend th e  d u ra tion  o f th e  abnormal p ressu re  bu t allow the  d iffe ren ce  

in  p ressu re  le v e l to  be e s tab lish ed  by le s s  sudden changes.

9 .5 . General Conclusions.

The r e s u l ts  g ive an in d ic a tio n  of the fe a tu re s  which moving cages 

can be expected to  produce in  a f u l l  s c a le  s h a f t .

The passing  of two cages in c reases the  re s is ta n c e  of th e  s h a f t and 

r e s u l t s  in  a temporary decrease in  the  q u an tity  flow ing. This decrease 

i t s e l f  i s  probably the  most se rious e f f e c t  produced and i t  w i l l  have an 

e f fe c t  on the  v a r ia tio n s  in  p ressu re  which tak e  p lace . The amount of



Sect. 9 .5 ) 68

the  d ecrease  w i l l  depend on

a) th e  shape of th e  fan  c h a ra c te r is t ic ,

b) the  p ro p o rtio n a l in c rease  in  the t o t a l  c i r c u i t  r e s is ta n c e ,

c) th e  in e r t i a  of the a i r  in  th e  c i r c u i t .

F acto rs b) and c) w i l l  probably cause th e  red u c tio n  in  q u an tity  to  be 

le s s  in  a f u l l  sca le  s h a f t than  in  the  model.

The curves obtained by p lo tt in g  th e  f lu c tu a tin g  p ressu res  in  th e  

model as percentages of th e i r  normal va lues should be ap p licab le  to  f u l l  

sca le  sh a f ts  i f  th e  r a t io s  of cage re s is ta n c e  to  sh a ft r e s is ta n c e  are  

comparable* In  deep heav ily  lin e d  s h a f ts  the  cages w i l l  have p ro p o rtio n ­

a te ly  sm aller e f f e c ts .  In  th e  case of th e  records of varying p ressu re  

as a cage passes a p o in t th e  in c rease  in  a i r  v e lo c ity  due to  th e  cage 

and th e  corresponding change in  s t a t i c  p ressu re  w i l l  be th e  same a t  a l l  

p o in ts  in  the sh a f t , but obviously th e  p ro p o rtio n a l change w i l l  vary  from 

p o in t to  point* E xactly  how i t  w i l l  vary  w i l l  depend on th e  p a t te rn  of 

the  s t a t i c  p ressu re  along the  len g th  of th e  s h a f t .  This i s  governed by 

w hether th e  s h a f t i s  an upcast or a  downcast, whether th e  main fan  i s  

fo rc in g  or exhausting and by the n a tu ra l in c rease  in  atm ospheric p ressure 

w ith  dep th . These fa c to rs  w i l l  a lso  a f f e c t  the  p ro p o rtio n a l change in  

p ressu re  produced a t  various p o in ts  in  the  s h a f t .

The te s t s  on the use of f a ir in g s  proved th a t  cage re s is ta n c e s  can 

be s u b s ta n tia l ly  reduced. The e f f ic ie n c ie s  obtained were sometimes le s s  

than  th e  values given by Stevenson, The main reason fo r  th is  i s  

d iffe re n c e s  in  shape and s iz e  of the  cages used. The im portant fa c to r  

seems to  be the r e la t iv e  sizes of the  cage and th e  s h a f t ,  A w ider cage
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re q u ire s  a longer f a ir in g  befo re  th e  same aspect r a t io  i s  reached and 

increased  f r i c t io n  lo sse s  in  th e  space between the  f a ir i i jg  and the sh a ft 

w alls  are  probably re sp o n sib le  fo r  th e  lower e f f ic ie n c y . The t e s t s  on 

moving cages showed th a t  fa ir in g s  are  a lso  u se fu l fo r  making th e  p ressu re  

changes in  the s h a f t  caused by th e  cages le s s  v io le n t . Type B fa ir in g s  

seem more e f fe c t iv e  than  type A but a re  u n lik e ly  to  be used because of 

th e i r  higher re s is tan ce*

In  h is th e s is  Stevenson mentioned the  p o s s ib i l i ty  o f th e  use of 

f a ir in g s  (p a r t ic u la r ly  of type B) producing side  th ru s ts  on th e  cages due 

to  aerodynamic forces* The system o f guides and cage shoes used in  th is  

work was very su ccessfu l bu t some tro u b le  was encountered in  s e r ie s  G/4/BNT 

due to  the cage shoes jumping out of the gu ides. This may sim ply be due 

to  th e  g rea t o v e ra ll len g th  of the model bu t unbalanced a i r  fo rces  may 

have had some e f f e c t .



A P P E N D I X

Theory o f V ib ra tion  of a  C irc u la r  P la te  olaaped a t  th e  Edges 

In  connection w ith  th e  work o f Section  5 (pp.27 and 28) a formula 

s u ita b le  fo r  estim ating  th e  n a tu ra l frequency of v ib ra tio n  o f a  f l a t

c i r c u la r  p la te  dam ped a t  i t s  edges was req u ired . In  a study o f  some of

th e  re lev an t l i t e r a tu r e  i t  was n o ticed  th a t  d if f e re n t  au tho rs gave 

formulae which were ir re c o n c ila b le  and some doubt e x is te d  as  to  vAiich one 

ought to  be used. D e ta ils  o f th e  formulae considered  a re  contained  in  

th e  ta b le  on the next page. The n o ta tio n  used i s  a s  follow s

a s  p la te  rad iu s

t  a 2h s  p la te  th ick n ess

w a d en s ity  of m a te ria l of p la te

E a Young's Modulus f o r  the m a te ria l

S a p o is s o n 's R atio  fo r  th e  m a te ria l

g a a c c e le ra tio n  due to  g ra v ity

f  a P = n a tu ra l frequency o f v ib ra tio n
2TT

Of th e  fo n a ila e  given only (2) and (5) a re  id e n t ic a l ,  ( l )  i s  

s im ila r  to  th ese  except th a t  i t  quotes th e  r e s u l t  in  c y c le s /s e c . in s te ad  

of rad ian ^sec . In  th e  te x t  the  au th o r does not d e fin e  th e  u n i ts  o f **f” 

but he c a l l s  i t  th e  "n a tu ra l frequency" ^ i c h  most read e rs  would su re ly  

assume to  be c y c le s /se c .

Formula (3) becomes id e n tic a l  w ith  (2) and (3 ) i f  "mass" d en s ity
"w"—  i s  used in s tead  of "w". T his c o rre c tio n  i s  req u ired  to  make th e



equation  dim ensionally balanced. In  th e  te x t the au th o r g ives a worked 

example in  which he uses a value of 7*8 fo r  "w" fo r  s te e l  in  the  C.G.S. 

system and a p p lie s  th e  formula w ithout including "g". This i s  almost 

c e r ta in ly  in  e r ro r .

Formula (4 ) i s  s im ila r  in  form but num erically d if fe re n t from th e  

o th e rs .

In  cases (2)  and (4 ) proofs are  given. Both use th e  Rayliegh 

approximate method and yet the  r e s u l ts  d isagree. The p roo fs were cheeked 

and an apparent e r ro r  discovered in  Temple & B ick le y 's  method.

The b a s is  of the methods used in  the proofs i s  to  equate a value of 

th e  s t r a in  energy in  the  p la te  to  a corresponding value o f the k in e t ic  

energy. Timoshenko uses maximum values whereas Tesple & B ickley use mean 

values but s ince  the  maximum value can be shown to  be tw ice th e  mean in  

each case the  p ro o fs do not d i f f e r  in  th i s  p o in t .

K inetic Energies

Consider an  element o f the p la te  a t  rad iu s  " r " ,  w idth r a d ia l ly  "dr" 

and subtending angle "d@ ” a t the cen tre .

Now.

Mass o f element = -Z - t r  d r d 6 .
g

Displacement of element
from normal p o s it io n  = s in  p t

where Zq = am plitude of v ib ra tio n  = f ( r )

V elocity  of element = ■■,̂ 0,., = Zq p cos p t
dt



K in e tic  Energy of element =

K in e tic  Energy of p la te

2g
2 2 2 

Z q  p  c o s  p t r  d r d

wt r̂ 2 2

2g

p^ cos p t Zj, r  d r

I f  th e  p la te  i s  symmetrical about the  cen tre  then  Zq i s  not a  fu n c tio n  of

.*• K inetic  Energy o f p la te wt 2 2 —r 2
° " 2^  P cos p t 2Tr| 2q r  d r .

For mftY-imim value during the  cycle cos p t = 1.

For mean value during the  cycle we use th e  mean value o f cos p t 

which i s
2TT1

2TT
—  (1 + cos 2 p t)  d (p t)

1
2

Hence mean value TTWYiTntim value

s t r a in  E nergies

Both p roofs take th e  s t r a in  energy on the  element of p la te  to  be

d (S .E .) =
24(1 -  e f )  M

^ z  

r  A r
r  d r  d



For the whole p la te

S#E, = Et3
TT

24(1 -  s2 )
r  d r  d

0 r  = O'

again i f  Z = Zq s in  pt where "Z" i s  a function o f "r" but not of 

"O'", and "sin pt" i s  not a function o f "r" we get

S #E • ss Et-5

24(1 -  S2)
2 TT a ln r  wt Zo 1 è z o

è r ‘ à
r  dr I

Up to  t h i s  p o in t th e  p roo fs a re  id en tic a l*  The next step  re q u ire s  the 

choice o f a  fu n c tio n  fo r  " Z q " in  term s of "r"  to  enable the  in te g ra tio n  

to  be c a rr ie d  out* The chosen function  must s a t is f y  th e  boundaiy 

con d itio n s and Rayliegh* s P r in c ip le  s ta te s  th a t  provided i t  g ives a  

reasonable approxim ation to  the d e flec ted  shape of th e  p la te  th en  th e  

frequency a s  c a lcu la te d  from th e  expression  w ill  be c lo se  to  th e  n a tu ra l 

frequency and in  any case not lower than  i t .

Timoshenko uses th e  s e r ie s

Z q  = 1 + \ + ag I X + * 1 + a- 4 r  •  - 3a y  \ a

and taking the f i r s t  two terms and equating maximum K>£. to  maximum 8«E« he

g ets  I  -------
p = 10.21 _ t_  / gE

a 2  7 I 2 w ( l  -  S^)



Temple and B ickley take  the function

Zg = C -  3 a + 2 j  

and ge t

m eanK .E. = t  qS -  3 a r^  + 2 r^) \  âr.

Expansion, in te g ra tio n  and s u b s t i tu tio n  gives 

Mean K.E. = 3 pZ-TT a®.
70 g

Also i f

Zg = C f  a3 -  3  a r^  + 2 P

we get 

1 ^Zo 6 C ( r  -  a)
r  r

2
= 6 C (2 r -  a )

Mean S.E. = -  --------------------  ̂^  f  ( 6 C(3r -  2a.)} r  dr.
2 24(1 -  3̂ ) j  I  J

Expansion, in te g ra tio n  and s u b s t i tu tio n  gives 

Mean S.E. = 9 ----
24(1 -  S'^)

This does not ag ree  w ith th e  value given by Temple and B ickley which i s

,, 90 Et^TTC^Mean S.E. s  ■ - ■ ii i■ .n■. « — — — -
2 24(1 -  s2)



However, continuing w ith th e  values a s  ca lcu la te d  above we equate th e  

mean values o f s t r a in  and k in e tic  energ ies to  get

^  p2 a® 3  g Et^ a^
70 g 24(1 -  S2)

whence

Note th a t

P = 210 Et-" , g . 1 (6)
24(1 -  s2) w t  a^

  = Eh) = ijl
24(1 -  3*̂ ) 3(1 -  S2)

and  ----  s  mass p e r  u n it  area  = m.
g

Temple and B ickley give

p2 g however even
m a^

i f  th e  f ig u re s  they  g ive fo r  mean K.E. and mean S.E, were c o rre c t t h ^  

should get

p2 = . l OlO. ^ ,
m a ^  .

Reducing (6) to  a form conparable w ith  the  o th e r formulae g ives

a^  J  12w(l -  s2)

and since  ^103 =, 10.21. the  formula ob tained  i s  id e n tic a l  w ith

Timoshenko’s a p a rt from a very s l ig h t  discrepancy due to  th e  d if fe re n t  

choice of fu n ctio n  fo r  Zq.



s t r i c t l y  speaking th i s  formula a p p lie s  to  a p la te  v ib ra tin g  in  a 

vacuum w ithout s tre tc h in g  of i t s  c e n tra l p lane . When th e  p la te  v ib ra te s  

in  a  f lu id  some of the f lu id  v ib ra te s  along w ith th e  p la te .  T his has the  

e f fe c t  o f in c reasin g  th e  in e r t i a  of the system (A.6) and reducing th e  

n a tu ra l frequency. The s iz e  of the reduction  depends on the r a t io  of 

th e  p la te  d en s ity  to  th e  f lu id  density  and i^ en  the f lu id  i s  a i r  the  

red u c tio n  w i l l  be sm all. In  the case of a th in  p la te  where th e  s t r a in  

energy i s  not th e  r e s u l t  o f simple bending a more accu ra te  theory  

c o n s is te n t w ith  th e  more accu ra te  theory f o r  d e fle c tio n  (3 . 8 ) has been 

developed. T his g ives a h igher value fo r  th e  n a tu ra l frequency than  

T im o^enko ' s fommila.
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SUMMARY

 g . Æ.,,Affi£Loa j .

Â thesis pres mit ed for the degree of Doctor of Philosophy of the 

University of Glasgow hy Alan Willd.©, B.Sc., December, 1959-

This thesis ocnitains the results of an 

experimental investigation into some of the effects 

produced on the airflow conditions in mine shafts

ty  the movement o f cages*



The in v e stig a tio n  was carried out in  the î^anlng Department 

and was supervised by Professor G. îîibberd.

The in v estig a tio n  took the fcxrm o f a programme of te s t s  

on a model sh aft f i t t e d  with buntons, guides and moving cages.

The range o f Reynold’s Numbers a va ilab le  was from 250,000 to  

450,000.

During the years 1953-56, A. Stevenson studied the factors  

influencing sh aft pressure lo ss e s  produced by stationary cages, 

and noted a lso  the e f f e c t  o f stream lined cages in  reducing these  

l o s s e s .

The pres wit work i s  an extension o f  Stevenson's work and 

includes the e ffe c ts  produced by cages in  motion. These e ffe c ts  

arc compared with those produced by stationary cages and the  

r e la t iv e  ingxartance o f the cage e f fe c ts  and the general shaft  

r esis ta n ce  i s  e stab lish ed .

The movement o f the cages in  the model shaft was expected 

to  produce sm all flu ctu a tion s superimposed on a ir  pressures in  the 

range 0 to  14 inches W.G. ( 0  to  0*5 p . s . i . )  which had to  be 

continuously recorded. When the in v estig a tio n s were begun in  

1956 no mancaneter capable o f  recording such small pressure flu c tu a tio i 

was in  commercial production and i t  was necessary to  bu ild  one.

The th e s is  contair^ d e ta ils  of the development of su itab le  

pressure-recording apparatus* The methods ava ilab le  for recording 

f lu ctu atin g  f lu id  pressures are d iscussed  and t r ia l s  w ith e le c tr ic  

r esis ta n ce  s tr a in  gauge transducers and with variab le  capacitance 

type transducers are described. These show the la t t e r  type to  be 

more su ita b le  and a sa tis fa c to r y  prototype i s  eventually  produced.

The factors a ffe c tin g  the response o f the apparatus to  flu ctu atin g  

pressures are a lso  considered*



In the experimental work the t e s t s  f i r s t  cover stationary  

two-deck and four-deck cages with and without stra ig h t-s id ed  

fa ir in g s  supported in  two d iffe r en t patterns o f gu ides. Gage 

resistan ces are expressed as Pressure Drop C o effic ien ts  (P.D.G.) 

and particu lar a tten tio n  i s  paid to  the magnitude and extent of 

the increase in  combined cage P*D.C. when two cages o f a winding 

system are w ithin the zone where th e ir  ctmblned re s is ta n ce  varies  

w ith the distance between them. The length  o f  th is  zone i s  

shown to  be l e s s  than 4  sh aft diameters in  a l l  cases and the  

variation s in  P.D.G. when the cages are Within i t  are shown in  

d e t a i l .  The use of fa ir in g s  i s  shown to  produce some reductions 

in  the cage P.D.G,

The work is then extended to  note the effects of cages in  

m otim . The t e s t s  cover a range o f cage speeds and can be divided  

as follcPv^s *-

a) Tests on the in fluence o f passing cages on shaft re sis ta n ce ,

b) Tests on the in flu en ce o f passing cages on conditions upstream 

from the passing p lace,

c) Tests on the in flu en ce o f passing cages on conditions downstream 

from the passing p lace,

d) Tests on the in fluence o f  a cage passing a point on conditions 

a t th at p o in t.

The r e su lts  show th at the moving of cages can produce considerable  

disturbance and often  very rapid changes in  the airflow  conditions 

in  mine sh a fts . These e f f e c t s ,  however, are usually  o f f a ir ly  

short duration. The use o f fa ir in g s  i s  shown to  reduce the  

disturbances and make the changes le s s  rapid but th is  i s  usually  

done a t the expense o f an increase in  the duration o f the e f f e c t s .


