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PREFACE

On my return to employment in a shipyard design
office after gradnating in 1947, I was required to solve many problems of
a non-routine nature. These were associated with almost every branch of
naval architecture, but structural strength problems predominated and most
of the latter were concerned with the local strength of the structural
members of ships rather then strength of the hull as a whole. It seemed to
be generally accepted that knowledge of the application of the theory of
bending was inadequate and cynics went s6 far as to state that no matter
what theoreticel stresses were obtained, they would bear little relation to
those which actually occurred. This unhappy state of affairs led me to
enquire what shortcomings there might be in the usual theory of flexure and
a survey of relevant literature revealed a formideble list. Although there
were many theories covering the whole range of possibilities there seemed
to be very little experimental evidence to enable one to decide which of
the possible causes of error was importent in shipbuilding, although it was
possible to make a reasonable guess. An exception was the vast amount of
experimental research at Glengarnock, which had been started by the Welding
Research Council Just before the last war to compare welded and riveted
stiffened plating under conditions which simmlated those in a ship.
Throughout this work (which is still going on) interim factual reports were
issued, but the investigators appeared to have shelved the task of analysis.
When the opportunity arose for me to carry ocut research at the University
it was not unnatural that I should chose to examine this problem.

The main objective was to decide what precautions
must be taken when using the theory of elastic bending to analyse the
strength of the structural members of ships and to formulate a suiteble
theory which could be applied in the design offices of shipyaerds. With the
latter end in view it was necessary that the final theory should be as
simple as possible and, bearing in mind that in general neither the loads
applied to most ship structures nor the strength characteristics of the
materials used were accurately known, it was permissible to omit refine-
ments of the theory which would affect the results by less than a few per-
cent. To achieve this cbjJect the stresses end deflections measured in the
experiments at Glengarnock were compared with those predicted by the theory
of bending, and the theory was modified until it could be made to agree
with the measurements with reasonable accuracy. This analysis was
supplemented by some experimental work on board ship which showed that the
theories developed could be applied also in practice. Although the
research 8id not necessarily proceed in a straightforward manner the
results are presented in this thesis in a logical sequence. There are five
main chapters with a review of the work in a sixth chapter, and an Appendix.

Two problems which were peculiar to shipbuilding
appeared to be important. The first of these was the difficulty of
deciding what degree of constraint there was at the ends of the structural
menbers of ships. To enable this to be taken into account I modified one
of the most useful tools of structural analysis - the method of moment
distribution. An early version of the theory was sent to the Institution
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of Naval Architects in an interim report on the research and was published
in 1952 (ref. Al), but later revisions were so extensive that a full
account of the final theory is given in Chapter I of the thesis. The
theory allows for the constraint at the ends of loaded beams which may be
straight or curved in the plane of the applied loads and may have constant
or variable cross sections.

The second problem was that of shear lag in
stiffened plating. This occurs in ships and eircraft and had received a
good deal of theoretical attention. Many of the theories indicated
conflicting results and hardly any experimental work had been publishedj
the Glengarnock results were inconclusive. I therefore investigated the
matter by theory and experiment, and the results were published in 1955 by
the Institution of Naval Architects. A copy of this paper, together with
the discussion, is bound as an Appendix at the end of the thesis and a
summary (and one small extension which has a bearing on later work) is
given in Chapter II. It is shown that shear leg is usually unimportant
in shipbuilding, but a new method of calculating shear lag effects is
described for use when required.

With this foundation it was found to be possible
to commence an analysis of the Glengarnock results and this is discussed
in Chapter III, Altogether the results of about 300 experiments were
examined. It was found to be possible to correlate a large mumber of these
by means of the theory déscribed in Chapter I. Further modifications or
additions to the theory of bending were required in order to account for
discrepancies noted in certain classes of specimen, and these are discussed
as they arise. An attempt to predict the experimental results entirely
from theoretical considerations met with a fair amount of success. A paper
on the analysis is nearly ready for submission to the Institution of Nawval
Architects.

In Chapter IV there is a description of some
experiments which I carried out on board ship. Measured deflections are
compared with those predicted theoretically and, although agreement is not
perfect, it is shown that it is possible to estimate fairly accurately the
constraint at the ends of a bulkhead stiffener with welded brackets, at
any rate in this particular case, by the theory outlined in Chapter I.

The theories described are all based on elestic
analysis of beams but in Chapter V there is a brief discussion of the
possibilities of using the theory of plastic bending in shipbuilding. This
is followed in Chapter VI by a review of the research and some conclusions
and suggestions for further work.

The list of references at the end of the thesis
includes all wark previously published which came to my notice and which
vas of use to me during the research. References are given in the text
where appropriate by a letter followed by a number; the letter indicates
the group in which the paper is classified and the mumber refers to its
position in that group of the list. Articles etec. which were found to
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contain faulty theories or which were of little use for other reasons, have
been omitted unless they are of historical interest or the faults noted led
me to an advance in lcnowledge.

I would like to express my gratitude to the staff
of the University for the help and encouragement I was given throughout the
period of my research. I have the most pleasant memories of the friend-
liness with which I was received by all those from whom I scught assistance.

My research also benefitted considerably by the
help given by the British Shipbuilding Research Association, I was allowed
to consult the field results of the Glengarnock experiments, and received
many useful papers and articles which would otherwise have been difficult
to obtain., Messrs, Alexander Stephen end Sons very kindly permitted me to
carry out experiments in two ships during construction and the firm's
generous assistance at that time is much appreciated. (See also footnote
on page 116). The remainder of my experiments were carried out in the
James Watt Engineering Laboratories of the University, by permission of
their Director, Prof. J. Small, and I am most grateful to Mr. E, J. Pair
for his assistance during those which concerned shear lag.

Lastly, I am indebted to the Institution of Naval

Architects and the Royal Commission for the Exhibition of 1851 for awerding
me their Post Graduate Resesrch Scholarship in Naval Architecture.

‘3.M.t¢u.;,9.h'.

Research Student at the University of Glasgow,

October 1949 - September 1952.
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CHAPTER I

CONSTRAINT AT THE ENDS OF STRUCTURAL MEMBERS OF SHIPS.

1) Introduction.

The classical beam theories enable investigations
to be undertaken regarding the strength of loaded beams of two types:

a) Those with ends completely fixed or encastre.
b) Those with ends freely supported.

In a ship these conditions are rarely fulfilled
and beams in an intermediate condition are said to be partially constrained
at the ends. It is customary in shipyerds to analyse the strength of
partially constrained beams in a somewhat unscientific mamner. It is
generally recognised that the incomplete constraint is due meinly to the
flexibility of the structure to which the beams are connected and to a
lesser extent to distortion of the connections, and that the strength of
loaded parts of the structure should be calculated by considering them to
be:.parts of the continuocus structure of the ship. Owing to the prohibitive
amount of work involved in considering a large part of the ship as a cont-
inuous structure merely to find the bending moments acting in a loaded
small part of it, recourse is usually had to other methods. Often the
bending moments are calculated on the assumption that the ends of the beams
are completely fixed and then the fixing moments are reduced by an empirical
amount, the value of which is often assumed to depend upon the size of
bracket or other comnection of the beams to the surrounding structure.

Even when the analysis is carried out by an experienced man the results can
be 1little better than guesswork. The main purpose of the research descr-
ibed in this chapter was to develop a more rational method which would
enable the strength of a loaded portion of a ship to be calculated after
correctly taking account of the constraint afforded by the surrounding
structure.

Structural members of ships are almost always ,
statically indeterminate and there are three general methods by which they
mey be analysed: strain energy, slope-deflection, or relaxation. There are
several variations of each of these but all the methods lead eventually to
the same results. When applied to structures which involve several members
the first two methods become very laborious on account of the large numbers
of similtsneous equations involved. The last is in fact an iterative
method of solving equivalent simultaneous eguations but it has the great
advantage that convergence may be accelerated at the initiative of the
computer. A reascnable approximation to the correct solution of a problem,
or even an intuitive guess, may usually be made and this may be used as a
starting point. After the artificial restraints have been relaxed to the
extent indicated unbalanced forces (residuals) remain which simply con-
stitute a new problem, and the solution of this may again be approximated



and the cycle repeated. Whatever approximations are made - good or bad -
the relaxation method leads eventually to the correct solution. It should
not be inferred that the relaxation method requires good intuitional powers.
If the relaxation of restraints is carried out in any predetermined sequence
it becomes simply an iterative process. The operator can vary the process
to any extent which his skill permits. (When deflections of the' joints do
not occur the relaxation method applied to continucus beems becomes the
moment distribution method and convergence is sufficiently rapid to give a
solution without resort to additional techniques of this kind). The relax-
ation method has the additionel advantages thet it is possible to visualize
the process as it is carried out and that the work can be stopped as soon
as the solution is within the accuracy of the assumptions upon which it is
based. These considerations influenced the choice of relaxation as the
method of analysis to be used.

.The amount of arithmetical work in any problem of
the sort under discussion increases very rapidly as the number of Joints
between beam spans is increased. This chapter is concerned with a new
technique which reduces the amount of arithmetical work by reducing the
nunber of moments and forces to be considered in the relaxation process.
Instead of distributing moments through the complete structure, the effects
of the unloaded members surrounding the loaded portion are expressed by
coefficients of constraint and the relaxation process is confined to the
loaded members only. A number of variations of the technique, all aimed at
reducing the arithmetical work, are illustrated in the examples.

Consider a continmuous beam which is to be analysed
by moment distribution. If the extreme ends of the beam are completely
fixed they do not require to be alternately released and fixed during the
distribution process; the moments carried over simply remain., On the other
hand, if the ends are freely supported the moments carried over to them
have to be repeatedly reduced to zero by releasing the artificial restraints
at the freely supported ends. As pointed out by Hardy Cross in his original
paper (ref. R 1) the process may be simplified by keeping sunh ends perm-
anently free throughout the distribution. The initial fixed-end moments
must be altered accordingly end a modified value of the stiffness must be
used when calculating the manner in which the unbalanced moment at the
adjacent joint is to be distributed. For a straight prismatic beeam with a
fixed end the stiffness at the other end is X = 4 EI/L eand the carry-
over factor is 1/32, but if one end is freely supported the stiffness at
the other end is K = 5 EI/L and the carry-over is zero.

In a ship the extreme ends of a loaded part of the
structure which it is desired to analyse are generally neither completely
fixed nor freely supported, but are partially constrained by the surrounding
structure of the ship. In order to avoid extending the analysis fo a number
of points beyond the loaded part of the structure the constraint at its
extremities may be evaluated. Vhen analysing the whole continuous structure
by the normel moment distribution methods change of slope is prevented at
all joints except the one at which an artificiel restraint is released
during a step in the process. In the new method, eartificial restraints are
placed only at joints within the loaded structure: changes of slope (but
not deflection) are permitted at a1l joints at the extremities of the
loaded structure and, with certein exceptions, at all Joints in the surr-
ounding unloaded structure. The surrounding structure resists chenges of



slope at the extremities of the loaded part of the structure and the stiff-
ness etc. of the outside members of the latter must be modified accordingly.
The bending moments in the loaded members may then be found without further
regard to the constraining structure surrounding them. The theory is a
logical development of the method used for freely supported ends mentioned
in the last paresgraph.

2) Streight Prismatic Beam ~ Moment Distribution Equations.

I Chenge of Slope imposed at one end.

The basic equations required in the application of
relaxation methods will be derived by the slope-deflection method (see, for
exsmple, ref, B 3) and the following sign convention will be used: "Loads
applied downwards ..... , bending moments tending to produce concavity
downwerds ..... , eand downwards deflections, are considered to be positive!

Consider a beam AB of length L and moment of
inertia of cross section I, and let a change of slope O be imposed at B
(x = L) by a moment Mg while the other end A (x = D) is constrained against
rotation by structure having stiffness, or moment per unit change of slope,
K¢ . Let the deflection be zero at both ends of the besm and let the
change of slope at A be § and the bending moment in the besm at A associated
with constreint applied by the end structure, be Ma. Then the slope-
deflection: equatione are:

s
6 - § = _1 | Max (2-1)
E 1
A
R
Le = _1 | Mxadx ' (2°2)
EI
A

The bending moments M in the beam arise from the
epplication of moments at the ends of the beam only. Hence the shear forces
must be constant along the beam and the bending moments must vary linearly
from A to B so that:

glde = Ares under bending moment = L (M, + M,;) (2°%)
A diagrem from A to B 2
8
ng-dx = Moment of area under = IPQM, + 3Mp) (2+4)
bending moment diagrem 6
. ebout A

Since the moment M, is associated with the presence
of the constraining structure at A, M,/ ¢ K¢ , by definition of K.

>



or § = u/E, . (25)

Hence equations 2°*1 and 2°2 become:

& - M, = L (M, + M) (2+8)
X 3EX
E
I8 = I (M, + 3M,) (3+7)
6EIL

Solution of these simultaneous equations leads to the results:

Stiffness K, = Me = (3+4c)EI (2°8)
of beem at B e L
Carry-over factor = Ma = = 2c (2°92)
from B to A Mg (3 + ¢)

where ¢ 1s a coefficient which expresses the constraint at end A
of the beam snd is defined by:

c = 1 = K. (2+10)
4ET 4ET
1 + -i:i- —-I-;— + KE

Hereafter "c"™ will be referred to as the
*coefficient of constraint! If the besm is completely fixed at 4, ¢ = 1,
end if the beam is freely supported at A, ¢ = O, Note that in these two
extreme cases equations 2°8 and 2°9 reduce to:the usual Hardy Cross
relationships,

II Deflection.imposed at one end.

Consider a similer besm AB and let a change of
level 38; be imposed at B while no change of slope is permitted at B, and
let the other end A be maintained at its originel level while changes of
slope are resisted by structure of stiffness K., Let the change of slope
at A be § and the bending mement in the besm at A associated with constraint
applied by the end structure be M,, and let the bending moment at B be M,,
Then the slope-deflection.equations are:



8
. .
-f = 1 | Ma (2-11)
EI
A
-8
-8 = _1 | ¥xax (2°12)
E 1
-Jﬁ'

Using the relationships 2°3, 2°4 and 2°5, these equations become:

-, = L (M, + M) (2°15)
38T
€
S, = IR (M, + o) | (214)
BEI .

Solution of these simultanecus equations yields the results:

M, = -35(1+¢c)EI 5 (2+15)
| »
M, = + 6c EI 5,
1 (2°16)

where ¢ is given by equation 2°10,

Equations 2°8, 2°9, 3°10, 2°15 and 2°16 are
generalisations of the usual equations required for the analysis of
structures made of straight prismatic beams by relaxation methods. Examples
of the use of these equations will be given in Sections 5 and 6. It will be
noted that the manmer in which the stiffness of the end structure arises
has not been specified. The end structure need not consist of beams for
which the stiffness K is known; the resistance to rotation may arise in o
nmumber of other ways.



5) General Equation for End Moments in e Loaded Prismatioc Beam
with Both Ends Partislly Constrained.

Consider a beam AB which is loadéd so that the
bending moments at the ends of the span would be M., ,sand M ,if the ends were

completely fixed, If the ends are only partially constrained, let the end
moments be M, and M, , Then from equation 3°1:

“ A
6 - ¢ = | M ax + M, dax
E i1
o (<]
L
= L (g, + M) M, ax (3°1)
2EL

where M, represents the bending moments associated with the loads
applied to the beeam if it was statically determinate, and M; represents the
bending moments associated with end constraint.

For completely fixed ends:

Ml dx +* Ms dx = 0
i jod
o4 o
.
: M, ax = - L (Mrp. + M)
. E 3EI

Substituting in equation 3°1:

o - m L u) -

L (1, + M) o (3°3)
2EI

3EI
Similarly, using equation 2°2 it may be shown that:

Le = _I® (M, + 2M;) - _I® (M, + 3K,) (3-3)
6EL 6EL

It K A and KB are the stiffnesses of the constraining



structures beyond A and B respectively:
g = u/x, and 6 = - M/K,

The negative sign is used in the second expression
because in general the sign of 0 is opposite to that of M,, Substituting
these expressions into equations 3°2 and 5°3 the following equations are
obtained:

ind E* - EB = ...E‘_. (MA + Hg) - _E.. (MFA + t-"Mﬁa)
K, Ke 2ET 2ET
- ML = _I* (M, + 2M,) - _I® (M, + 2M.)
_I-(: BEI 6EI
Solving these two simultaneous equations it is found that:
M, = 4c, ¥ + 2c, 1 - ¢c,) ¥, (3°4)
4ec, + (1 - cs)(.’) + ¢c,)
¥, = 4c, M, ¢ 23c, (1 - o) M, (5°3)
4c, + 1 - )5 + ¢,)
where ¢, = Kp c, = K
4ET + K. 4EI + L
L L

Note that the denominator of equations 5°4 and
3*3 has an alternative form: :

4c, + (1 - ¢)(3 » c.) = 4¢c, + (Q - ¢)( + ¢)

A particuler case of some importance is that of a
beam which is completely fixéd at one end and ially constrained at the
other. If end A is completely fixed (c, = and the coefficient of
constraint at end B is c; the equations become: ‘

M = cg Mg | (5+8)

X, = M, + Q- o), (3+7)
2



4) Applicstion of Theory.

The moment distri'bution or relaxation process is
used for only that part of the structure to which loads are applied. The
first step is to calculate the coefficients of constraint ¢ at the ends
of the members at the extremities of the loaded part of the structure.
Values of c¢ are calculated by starting at a point remote from the loaded
structure, either where ¢ is known or where possible variations will give
final results within the required degree of accuracy. FProceding towards
the loaded part of the structure, stiffnesses end coefficients of constraint
ere found alternately member by member, until a boundary of the loaded
structure is reached. The procedure is repeated until the coefficients of
constraint have been found at the ends of all the ocutside members of the
loaded part of the structure. The adjusted stiffnesses of these members
are then calculated using equation 2°8, The stiffnesses of all members
within the loaded part of the structure are calculated in the usual way.
The fixed end moments are then found in the usual way (except that those
in the members just within the boundary of the loaded part of the structure
are found by using equations 3°6 and 3°7), and unbalanced end moments are
balanced in the usual wey. The moments carried over to the partially
constrained ends are computed at the end of the calculation, using the mod-
ified carry-over factor (equation 2°9), and these in turn are distributed
to the members beyond them in ratio of their adjusted stiffnesses and
carried over the next spean, and so on until they become too small to be
taken into account further. The processes will be clarified by means of
exemples in the following sections.

A difficulty may arise in the calculation of the
coefficients of constraint in closed frameworks, such as a ship with one or
more rows of pillars, where a point sufficiently remote from the loaded
structure to ensble the coefficients of constraint to be calculated
accurately, sannot be found. In these cases it is possible to create
points at which the constraint is known by disposing artificial restraints
at one or more "strategic” joints in the unloaded framework. Starting at
these it is possible to calculate the coefficients of constraint and to
proceed as before. At the end of the computation, moments carried over to
these "strategic" joints are unbalanced. It only remains to carry ocut a
further analysis in which these joints are treated as a loaded structure,
considering one or two other joints as fixed when necessary. If sizeable
moments remained unbalanced after this, the cycle could be repeated until
a satisfactory solution was obtained. The process is generally not as
prolonged as might be supposed, for each time a moment is carried over an
unloaded span it is multiplied by a carry-over factor less than one half,
and in most problems the moments diminish very rapidly indeed. In many
cases it is found that it is ummecessary to start calculating the coeff-
icients of constraint more than two or three spans from the boundaries of
the loaded part of the structure, and that any reasonable assumption for
the value of ¢ to start the calculation of the coefficients will yield
a sufficiently accurate estimate of constraint nearer the loaded structure.
In this the only relisble guide is experience.

It is convenient when using relaxation methods to
fix one's attention on the moments and forces applied to the ends of the
spans by the artificial restraints instead of on the bending moments in the
beems themselves, particularly when considering a structure in whish there



are both horizontal and vertical members, and the following sign convention
is useful. A moment applied to the end of a beam is regarded as positive
if it tends to rotate the end of the beam in a clockwise direction, and
negative if it tends to rotate it counter-clockwise. HAfter the bending
moments in the individusl members have been found by applying the formulae
in the previous Sections (with the usual sign convention) it is a simple
matter to £ind the moments applied to the ends of each span using the new
sign convention. The main noticable difference is that the carry-over
factor is positive in the working of the problem, instead of #iegative,

5) Example 1. Strength of Stiffeners in an 0il Tanker.

Fig. 1 A shows a longitudinal section through an
all welded oil tander of similar construction to that of the "Neverita”
(ref. X 1). The ship is longitudinally fremed and the diagram represents
one of the many parallel longitudinsls at deck and bottom, together with
the vertical stiffeners on the bulkheads which separate each oil tank. It
is required to find the effect on these members of f£illing one tank.

Each tank is 378 in. long and 422 in. high. The
moment of inertia of the deck longitudinals is 210 iny s that of the bottom
longitudinals 980 in?, and that of the bulkhead stiffeners 317 ind The
The deck and bottom longitudinals are continuous along the length of the
ship and the bulkhead stiffeners are contimious from top to bottom of the
bulkheads and are rigidly connected to the longitudinals. In each tank
there are two heavy transverse frames 139 in. from the bulkheads, which
g0 stiffen the deck and bottom of the vessel that points on the longitudinals
such as A, A", F and F' may be assumed to be supported rigidly so that they
do not deflect under load. Similarly there are two sets of horizontal
girders 127 in. and 237 in. above keel, which so stiffen the bulkheads that
points such as C', C, S, D', D and T may be assumed to be supported rigidly
so that they do not deflect under leoad. It is assumed, however, that the
longitudinals and bulkhead stiffeners are free to change slope at the
points at which they are so supported. The relaxation process in such
cases becomes simply one of moment distributionm,

Suppose that tank B B' E' E is filled with sea
water ballast (35 £t°/ton) end that several identical tanks fore and aft
of this tank remain empty, (but weight is removed elsewhere so that the
draught of the ship is unchanged). The problem of calculating the bending
mements in the longitudinals and bulkhead stiffeners is greatly simplified
by the fact that both the load and structure are symmetrical about a plane
midway between the transverse frames A F and A'F', Only one half of the
structure needs to be analysed; the bending moments in the other half are
identical. The procedure is to find the bending moments in the loaded part
of the structure ABCDE by moment distribution methods modified to take
account of the structure FEWXYZ,PQRSTU,..,.. which, although there is no:
load applied to it, affords a certain amount of constraint to the joints
B and E,

The coefficients of constraint at E and P are
calculated as a preliminary. The constraining structure is a closed one,
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so that it is necessary to chose Jolnts which may be assumed to be comp-
letely fixed during the moment distribution process, as explained in

Section 4. In this exsmple jJoint T is suitable for this purpose. It is
considered that the structure beyond U and Z is sufficiently remote not to
affect the bending moments significantly. In order to calculate the coeff.
icient of constraint at E start from T and Z. Assuming that T is completely
fixed, the stiffness of YT at Y is

KYT = 4 E IYT

LYT

= 4x357E = 685 E tons in./radian
185

For numerical convenience it is preferable not
to substitute the value of Young's modulus E,
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Fig. 1 To illustrate Example 1.
A Diagram of structure.

B Bending moments deduced as a result of analyais.




| Agsuning that the coefficient of constraint at Z
is 0°5, the stiffness of YZ at Y is

K, = (3 + ¢)EI,
‘ il
= 35 x 2310 E = 5°285 tons in./radian
- 139

Then the coefficient of constraint for spen XY at Y is

o, = 2K
4%/1',« + ZKY

6°85 + 5°285 o= 0°668
6°04 + (6°85 + 5°285)

Using this coefficient, the stiffness of span XY at X is

Kx\( = (5 + c'fx) E qu(
L.,
= 3668 x 210 B = 5°54 E tons in./radian
159

Similarly, the coefficient of constraint for span WX at X is
K

c = x

Xw
4 /L, + K,

554 = 0+397
84 + 5°34

Proceeding in this manner towards E it is found that

K, = T7°15E tons in./radien
Cue = 0542
K = 535 E tons‘in./radian

Ew

Because of symmetry the span P P' may be treated
by the method described in most textbooks on moment distribution (see, for



example, paras. 1°10 and 1°17 of ref. R 3). Stiffness of span F F' is

K. = 2 BI = 4*3 E tons in,/radisn

Fe
Fe'

Then the coefficient of constraint for span E F at F is

K.

TEJL, v %

= 0+4)0

cFE

The stiffness of span EF at E is

K = (3 =+ c&) E I,

EF
Lee

5°05 E tons in./radian

The coefficient of constraint for span DE at E may now he calculated:

., = K
4-EI)G/LDF_ + YK
= 505 + 5°35 = 0°+603

8°85 + (5°05 + 5°35)

. These computations can be performed rapidly and
conveniently on a slide rule. In a similar manner the coefficient of
constraint for span BP at P and the stiffness of span BP at B may be
estimated. Starting from T which is assumed to be completely fixed, and
U where the coefficient of constraint is assumed to be 0°5, the figures
are:

K, = 11.52 E tons in./radian e, = 0°536
K., = 8°81E tons in./radian )

; Ceq = 0°543
K., = 24°68 E tons in./radian
Ko = 250 E tons in./redian o, = 0°389
K,, = 35°3 E tons in./radian c,e = 0°541
Kee = 24°98 E tons in./radian

After this preparatory work the main calculation of
moments in the loaded part of the structure is carried out in Table I (p. 15),



TABLE I

MOMENT DISTRIBUTION APPLIED TO LOADED PART OF STRUCTURE SHOWN IN FIG, 1 A,

Joint A B Y

Member ' AA' AB  BA BP BC . CB (D, DG DE

|

D

Distribution 0°410 0°593 0°446 0°396 0+158 0°465 0535 0°651 0349 |
: |

factors

(o ] (o= 3 ]

11
13

13
14
16

17
18

19

| 20

Initiel $192 -371 4371 O -375 +254 -138 +136 -195 .

noments
(tons in.)

Distribution A + 73 +106°
Cerry-over :

Distribution C ‘= 54 -« 62

Carry-over - 37

Distribution B » 55 - 49 - 30
Carry=-over - 37 =10

Distribution D
Carry-over ) ‘ +32

Distribution A + 11 + 16
Carry-over + 8

Distribution C 'e10 =12

Carry-over : - 5

Distribution D

Carry-over ; + 2

Distribution B =1 -1 0

Distribution C | S N |

- —

+ 4 + 8

- 31

+ 65 + 35

21

Final moments  +276 =376 4578 = 50 =335 4179 =179
(Tons in.) ;

‘~ 1

_}

+158 =158

l_




in much the same way as ordinary moment distribution. Artificial restraints
are applied at A,B,C and D and the distribution factors at each are found in
the usual way by dividing the stiffness of each adjoining member in turn by
the sum of the stiffnesses of all members meeting at that joint, and are
entered in line 3. The fixing moments at A,B,C and D are calculated from
the loading and entered in line 4, The following points ere noteworthy:

a) The sign convention is that mentioned at the end of Section 4.
b) Because of symmetry the stiffness of AA' at A is 2 ELYL,,

c¢) The sum of the stiffnesses at B includes the stiffness of BP
taking account of the coefficient of constraint at P as
described above.

d) Although a loed is applied to spen DE it is necessery to apply
en artificial restraint only at D, where the adjoining span is
also under loed. The fixin moments applied to the ends of span
DE would be 172 tons in. (counter clockwise) at D and 115 tons
in. (clockwise) at E, if both ends were completely fixed. The
joint E is not completely fixed, however, but is partially
constrained by spans EF and EW ahd the end moments ere calculated
by using equations 3°6 and 5°7, thus:

M = 07603 x 115
= 69 tons in, (clockwise)
M = 173 + (1 - 0°6803) x 115

= 195 +tons in, (counter clockwise)

The erd moments at A,B,C and D may then be balanced
by the normal processes of moment distribution, which require no description
here. This work is set out in Table I and the final moments applied to the
members meeting at A,B,0 and D are given in line 21.

The moments carried over into the unloasded part of
the structure are then calculated as _follows. The change in moment et B in
spen BP is 50 tons in, and the momenficarried over'to P is

2¢c, x (50) = 2 x 0°541 x 50
5 % c‘,‘ ‘ 5'541

= 15 tons in,



Similarly, the moment carried over to Q is

2 cee x (15) = 3 tons in.
3 + ¢, '

« gnd the moment carried over to R is

2cy X (5) = 1 ton in.

5"’°¢n

Turning now to the deck: the moment at E was
69 tons in. initially, and during the distritution process the moment
carried over to E was (see last columm of Tsble I):

2 x 0603 x (35 + 2) = 12 tons in.
5°603

, Henée the total moment at E is 81 tons in. This is balanced by moments
distributed between EF and EW in ratio of their stiffnesses

To EF 39 tons in, Carry over to F 9 tons in,
To EW 42 tons in.

Cerry over to W 13 tons in.
Carry ower to X S tons in,
Carry over to Y 1l ton in,

The moments carried over to joint T are insignif-
icant, a2nd it is therefore unnecessary to relesse the artificiel restraint
vhich was assumed to act there when the calculation of the effects of
constraint was commenced. In practice, unless a very accurate result is
required, it is usually unnecessary to consider more than two or three spans
beyond the loaded part of the structure when calculating the coefficients
of constraint, end in this example one could have started et joints Y and R,

The finel bending moments in the structure, assoc-
jated with the £illing of the tenk, are shown in fig. 1 B, on page 10,




6) Exemple 2. Trensverse Strength of a Cargo Liner.

It scmetimes happens that the problems may be so
simplified by means of the coefficients of constraint that the solution may
be obtained without resorting to a table of moment distributions. This
will be illustrated by reference to the strength of an idealized eross
section of a cargo liner.

Pig. 2 A shows half of the transverse section
through a cargo vessel with hold and four decks. The section has been
simplified on the lines suggested by Hay (ref. X 2), the main essumption
being that there is a sharp corner at the bilge and all structural members
are straight and of uniform eross section, (see Example 4 for a comment on
this). It is assumed that the section considered is at the mid-length of
a long hold and that the stiffness of the longitudinal keel is negligible
compared with the stiffness of the transverse floors so that transverse
forces are resisted by the transverse framing alone. The rigidity of the
side plating and bottom plating of the ship under shearing forces in their
own planes is assumed to be very large so that deflections in the plane of
the pleting are negligible compered with those perpendicular to the plating.
Thus if a perpendicular load is aprplied to the transverse floor it will bde
resisted by the floor, which will bend, and the load is reacted at the ends
of the floor by shearing actions in the verticel plating such that the ends
B and B' do not deflect. A similar reasoning applies to the side plating
end framed, and to the decks and beams. The irmer ends of the beams at D,
F, H and K are assumed to be simply supported by the hatech girders. Under
these assumptions the structure can be analysed in the same way as a portal
frame.
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Fig. 2A, Structure analysed in Example 2. Idealized Cross Section
of Cargo Liner near Amidships.




Consider the changes in bending moments which
srise when dry docking the ship, which was floating initially at a draught
of 190 in, (waterline shown dotted in fig. 2 A). The loads due to water
pressure on the sides and bottom of the ship are removed and replaced by a -
single concentrated load acting vertically upwards at the centre keel A,
The changes in load all take place beneath the level of deck CD and the. »
first step is to find the coefficient of constraint at the top of the frame
BC by the process described in Example 1. Starting at K, where c, ;=0
because it was assumed that the end of the deck beam is freely supported,
the stiffness of the deck beam is calculated, using equation 2°8, and then
the coefficient of constraint at J is calculated using equation 2°10,

After this the stiffnesses of freme GJ and deck beam GH are found, followed
by the coefficient of constraint at G. The process is contimed down '
through E, to C where the coefficient of constraint is found to be 0°637.
The numerical values are shown in fig, 2 A, and full details of the comp-
utations are to be found in ref. A 1.

Consider next the change of bending moments in the
frame BC associated with the removal of water pressure on one frame space.
If both ends of the frame are completely fixed, the end fixing moments in
the frame are found to be:

N. = + 123 tons in,
}%8 = + 300*5 tons in,

It has been assumed that moments which tend to
bend the frame concave to the right are positive, Assume that joint B is
rigidly held, temporarily, by an artificiel restraint so that c¢,= 1. Then
if the coefficient of constraint at C is ¢, = 0°637, the moments at the
ends of the frame may be calculated by means of equations 3°6 and 5°7.

They are:

M = 0637 x 133 = + 78°5 tons in.

M = 3005  + (1 - 0°637) x 1233

2

= + 325 +tons in.

Consider next the floor and assume that the ends B
and B' at the opposite sides of the ship, are held completely fixed, temp-
orarily, by artificial restraints. With the ends tims fixed, the bending
moments in the floor, associated with the removal of water pressure and its
substitution by an equael and opposite concentrated load due to keel blocks
-at the centre line A, may be calculated by the usual methods. The end
fixing moment is found to be - 3048 tons in. (Negative, because the
moment tends to bend the floor concave upwards).

It is clear that the artificial restrsint at B
applies a moment to the end of the frame equal to 323 tons in. counter
clockwise, and to the end of the floor a moment equal to 3048 tons in.




counter clockwise. The corresponding restraint at B' at the other side of
ship spplies sn equal pair of moments of opposite sense. The total moment
applied by the artificisl restraint at B is (3048 + 323) = 3371 tons
in. counterclockwise., When the artificilal restraint at B and the corresp-
onding one at B', are removed these unbalanced moments are distributed
between the floor and frames in the mame manner as in a moment distribution
celculation,

With the top end of the frame part‘ially const-
rained, the stiffness of the frame at B is

K

L.

10°132 B tons in./radien

In view of symmetry of the ship and loads about
the centre line, the stiffness of the floor at B is

Kn = ZEIg"

g8
Lgg'

9818 E tons in./radien

Hence

Moment distributed to BB' = 98°18 (3571)
98°18 + 10°12

= 3041 tons in. (clockwise)

and the total moment applied to end B of the floor is

M, = =304 + 304

= - 7 tons in. (counter clockwise)

Moment distributed to BC = 10°12 (3371)
98*°18 + 10°123

330 tons in. (clockwise)
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and the total moment applied to end B of the frame is

M

sc - 323 + 330

+ 7 tons in. (clockwise)

Moment cerried over to C = 2 x 0°637 x (3%0)
3 + 0°637

116 tons in. (clockwise)

and the total moment at C + 116 * 785

+ 194°5 tons in.  (clockwise)

This moment at C iz distributed between CD and CE
in ratio of their stiffnesses and carried over to E in the same way as
explained in Exsmple 1. The final changes in bending moment are shown in
fig. 2 B. | .
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Fig. 2B. Changes of Bending Moment calculated in Example 2.
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It will be observed that by ordinary methods of
analysis by moment distribution the computation would have involved moment
distribution between five joints, viz: B, C, B, G and J, By use of the
constraint coefficient method the number of joints at which moment distrib-
ution was required was reduced to one, and only one distribution was needed.

At the seme time the advantage of being able to visualize the steps in the
calculation was retained.

If only one span is under load, the coefficients
of constraint at each end mey be calculated. The bending moments may then
be found directly by use of equations 3°4 and 3°5. In a structure in which
many spans are under load it would be possible to analyse each span indep-
endently and then find the total bending moments by superposition, but
little advantage is gained in this case and it is better to analyse the
loaded part of the structure by moment distribution as explained in

Example 1.

7) Analysis of Structures Containing Non-uniform Curved Beams.

In this and following sections, a theory will be
developed to enable end constraint to be allowed for in beams of arbitrary
initial curved shape in one plane, with cross sections which are not
uniform along the length of the beam. Equations will be developed to make
possible the analygis by the normal relaxation methods, of frames consisting
of such beams. It will be seen that these equations sre the ssme as the
ones used in the column analogy method (ref. C 1), but the analogy has
been dropped and the equations given here are developed for beams, and are
applied directly to them. Subsequently it will be shown how these equations
may be applied in the analysis of partially constrained beams and beams
joined together by semi-rigid cormections. In the original theory (ref. A1l
the coefficient of constraint method was extended but the method given in
Section 11 is simpler to apply.

It is assumed that strains and deflections of the
beams arise entirely from bending actions, and that strains due to forces
acting along the axis of the beam, shear across its axis, etc., may be
neglected., It is assumed that the non-uniformity of cross sections of the
beams is sufficiently gradual not to require the use of the tapered beam
theory, a condition not always realised in practice. It is also assumed
that the initial radius of curvature at any point along the central long-
itudinal axis of the beam is greater than 10 times the depth of the beam
end that the theory of bending of beams having a small initial radius of
curvature need not therefore be applied. (This will give sufficiently
accurate results when the bending moments in most ship's framing are calc-
ulated; in other cases modifications based on the curved beam theory give
a better ;Lpproximation when the equations developed below are used : see
ref., ©C1).

The sign convention adopted enables the equations
to be applied to straight or curved beams alike, When considering straight
beams, loads acting downwards were considered to be positive, and hending
moments tending to produce concavity downwards were positive; dowmmard



deflections were also positive, 1If the beam is curved turn it, in imagin-
ation, so that a line joining its extreme ends is horizontal end call the
left hend end A and the right hand end B, Choose rectangular co-ordimate
axes x and y which may be orientated in any direction with respect to the
curved beam provided that the same sign convention applies to the line
joining A and B, Measure s from A to B along the curved axis of the
beam, and the signs of loads, and bending moments are the same with respect
to the direction of s in the curved besm as they are with respect to x in
a straight beam, Changes of slope and deflection are measured with respect
to the initial axis of the beam. The position of the origin of the x-y
co~ordinate axes will be chosen later. -

The general theory will be developed with ref-
erence to a curved beam AB and the equations will apply directly to this
case, A similar argument may be used to obtain simpler equations applying
to straight beams, or these equations may be obtained by making obvious
simplifications to the more general equations.

8) Non—uniform Curved Besms ~ Moment Distribution Equations.

I Change of Slope imposed at one end.

Consider a beam AB held at A so thet no change of
slope or deflection may take place there. At B no deflection is permitted
but an external moment is applied there such that the change of slope is ©
radians. Let x,y, be the co-ordinate of B. Then if M is the change of
bending moment at any point, associated with the moment of the applied
couple: i

3
M_ds = 8 (s°1)
EI
A
8
EI
[
3
or M xds = e x, (8+2)
_ ET : '
A
from equation 8°1, since x, is constant.
3 -
Similarly M yads = 8y, (8°3)
ET



These bending moments arise from the application
of moments at the ends of the beam only, so that the shear forces must be
constant along the beam and the bending moments along the beam must vary
linearly across the xy plane,

i, e: M = N + P =+ Qy ,(3'4)

where N, P and Q are constants to be determined.

Hence

. 8 v

Ny 1 d4s + P| x ds + Q ds = <]
EI BEI IEI
A A YA
8 8 N

Nj_x ds + ©P| x*ds + Qlxyas = & x  p(85)
EI BI ETX
A A ‘a
8 3 g

N| _y ds + P{XYads + Q\ ¥ as = 8y,
EI EIX EI
A a

Consider now a diagram of values of 1/EI plotted
along the central longitudinal axis of the beam, If the xy plane were
horizontal the values of 1/EI could be plotted vertically, one half of each
ordinate being above and the other half below the xy plane. If the origin
of co-ordinates is taken at the centroid of this diagram:

8 | s
x ds = 0 and y ds = 0
EI
A LY

The remaing integrals in equations8°5 are also
geometrical properties of the 1/EI diagram and it is convenient to replace
these by the following symbols:

R g
las = a 2 as = 4 Y as = 1 Xy ds = 4_

ET EL 4 EL 4
[ A Qa A

The symbol a denotes the area of the 1/EI

diagram, and 1,, 1  and i,<7 denote the moments of inertia and product of

7’
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inertia of the diagram about the y snd x axes through its centroid. Then
equations 8°5 become:

Na = e
P :l), + Q ixy = 8 b
P 1*7 + QR i, = 8 Y,
Hence
N = 8
a

P = (x,i,,_ - ygiuy) e

2
(L1, ,)

Q = (Yaiy - xaixy) 8
(s - 1)

Y

The bending moments in the beam are found by
substituting these values in equation 8°4.

M

v (xi, - w1, )0x + (yi, - xd.)06y (8°6)
(1,4

xy - i?-.y )

6
a

By substituting the appropriate values of x and y
in equation 8°6 the moments at A and B may be calculated. The stiffness at
B is given by M;/® and the carry-over factor from B to A is equal to M,/ M.

When the beam is straight and coincides with the x
axis equation 8°6 simplifies to:

M = @ + ©6x X (8°7)

i

o {

B8
>




Il Deflection Imposed at One End.

Consider a besm AB, held at A so that no change of
alope or deflection may take place there. At B no change of slope is per-
mitted but a change in position of B, with components 8, in the y direction
and 8, in the x direction, is imposed there. Let x,y, be the co-ordinates
of B. If M is the bending moment at any point due to the imposed movement
at B: '

8
M_ds = 0 - (8+8)
EIX ’
)
B
M (s, -x)d = 8
EI ° 4
A .
or M ozds = -8 (8°9)
EI
A
by equation 8°8, because x; is constant.
8
Similarly M y.ds = =38 (8+10)
EI
A

Since the bending moments M arise from the
application of moments and forces to the ends of the beam only, the bending
moments must vary linearly across the xy plane.

i.e: M = N + P + Qy ‘ (8-11)
Hence
t g £
Nj] 1l aa + Pl X as + Q| Y as = 0
E I E E I
A A A
e 8 8
N|{x a + P{xXa + Q|Xyas = -5 (8+12)
E I E I EI Y
A a A
2 8 ¢
Nl ¥y as + Plxyas + Q| F as = -5,
E1 I EI J
A A A




If the origin of co-ordinates is taken at the
centroid of the 1/EI diagrem end if the integrals are written in terms
of the symbols defined in I above equation 8°13 becomes:

Na = 0
P, + Qiuy = -5,
P, + Qi = -3,

The solution of these three simultaneocus equations is:
N = 0

P E- Lj-.ays»( - iﬁ&y)
(11, - 1)

Q = ii’-y 5, - iyax)
(i;ir - i’ )

The bendirig moments in the beam are found by substituting these values in
equation 8°1l1 and are given by:

M = (1,5, - 1.5)x + (15, & 1,8)5¥ (813)
11, - 1) |

' By substituting the appropriate values of x and y
in equation 8°13 the bending moments at A and B may be calculated.

When the beam is straight equation 8°13 simplifies to:

M

- (8,) x (8°14)
i)’

9) End Fixing Moments in a Non-uniform Curved Beam acted on by Forces
in its Plane.

Before carrying out en analysis of a framework by
relaxation methods if 18 necessary to calculate the end fixing moments in
each loaded beam in the structure. Consider a beam AB which has both ends
fixed so that no rotation or displscement may occur at either end. Then
if M is the total bending moment acting at any point along the beam:

g__y_x_as = 0 (9°1)
EI
A
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]
o

M xas (9+2)
EI

A

8

EI

A

With its ends completely fixed the beam is stat-
ically indeterminate and the total bending moment at any point cannot be
found directly. Make the beam statically determinate by inserting a gap,
or a mmber of hinges (two in a straight beam, three in a curved one), and
calculate the statically determinate bending moments M due to the loads
acting on the beam in this econdition. The moments Ms will cause changes of
slope and deflection of the beam, and discontimuities will appear at the
gap or hinges. Continuity of the beam must be restored by the application
of shearing forces and bending moments at the point or points of discont-
inmuity. These result in further bending moments M; acting on the beam
which must vary linearly ecross the xy plane.

Then M, = N + P + Qy . (9°+4)
and M = M, 4 M. .
= M, i+ N + Px + Qy

8 -~ 8 g
-\ M as = N| 1 as + P| X das + Q ¥ ds
E1 EI ET EL
A JA A A
8 3 5 e
s Mxas = N| X as + P| xXas + Q| xyas /(9°5)
E1 JET E1 I
A A A A
g R B B
-|%yas = W[ y as + ©Plxyas + Q| Y as
EI EI EI EI
[ f) A &

‘The integrals on the left hand side may be inter-
preted in terms of differences of slope and deflection of the beam in the




statically determinate condition and will be denoted by:

] 4 3
-| Msas = B -|¥%xas = 8, ~\Myas = &,
EI EI EI
A A *

, Again, if the origin of co-ordinates is placed
at the centroid of the 1/EI diagram and the integrals on the right hand
side which are not equal to zero are replaced by the symbols in Section 8,
the equations expressing continuity of the beam become:

B = Na
6, = P, + Qi,
A, = Pi,, + Qi
Hence N = <)
a
P = (18, - 1i.4))
]
(iz.iy - ix)« )
Q = (1,8, - 1.4,)
(L4, - i, )

Substituting these values in equation 9°4, it is
found that the equation for the statically indeterminate moments is:

+ (1.8, = 4i.0)x + (LA. - i.,4,)y (9°6)

(1.4, - 1%

4
a

The end fixing moments are found by substituting
the co-ordinates of A and B into equation 9°6, calculating M; and adding
the values of M, (if not zero) at these points.

When the beem is straight equation 9°6 simplifies to:

MI' = B + Ay x (9°7)
a iy



10) Semi-rigid Joints.

Suppose a beam has in its length one or more Jolnts.
The joints will be referred to as “rigid joints" if they permit neither
relative deflections nor relative changes of slope between the two ends
Joined together (e.g: welded joints). If, under the sction of a bending
moment, the Joint permits a certain smount eof difference to occur between
the slopes of the two ends joined together, but still mainteins both ends
at the ssme level whatever the shearing forces applied, it will be referred
to as a "semi-rigid" joint. Examples of the latter are riveted and bolted
Joints. As a first approximation it may be assumed that changes of slope
in a semi-rigid joint are directly proportional to the changes in bending
moment acting on the joint. (In Chapter III of this thesis it will be shown
that riveted connections found in shipbuilding behave in this manner, after
the first load has been applied. See also discussion of the use of a bi-
linear relationship, in chapter Il of ref. B 11).

If a bending moment M acting over a length bs of
the joint causes a change of slope 56, then:

80 = M f 8s

where f is a factor which expresses the flexibility per unit length
of the joint. The quentity Mf is equivalent to M/EI in a besm end the semi-
rigid connection may be treated in the same way as a reduced cross section
of the beam. To take account of the flexibility of a joint the ordinates
of the 1/EI diagram for the besm could be modified accordingly provided that
the distribution and megnitude of f along the length of the joint is knowmn.
When this is done the bending moments in a beam with cne or more semi-rigid
Joints may be found directly by the equations developed in the last two
Sections.

. It is more likely in practice, however, that only
an overall value for the flexibility of the semi-rigid joint as a whole
will be known or obtaineble from experiments. In this case if a constant

bending moment M, applied between the ends of the joint produces a total
change of slope © measured between the ends of the joint:

Sde = M| f.as

where the integration extends over the length of the Joint.

or 6 = M, F (10°1)
where ¥ denotes the total flexibility of the joint.

Both M, and 6 may be found by experiment and F
may be obtained from the relationship

F = ,‘.S/Mo (10.2)

A besm with semi-rigid joints may be snalysed by
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the methods described in previocus Sections if it is assumed that the change
of slope of the Joint under bending moments which vary along its length is
the same as that produced by a constant bending moment equel to that acting
at a sultably chosen point along the length of the joint. This eassumption
is usually Justified because of the relatively short length of most joints
in practice. The quantity F is added to the diagram of 1/EL for the besm
at the co-ordinates of the chosen point along the joint, when calculating
the position of centroid of the diagrsm and the quantities a and i etc.
The veriation f along the joint is not required any more than is the '
variation of force when considering an impulse in some dynemic problems.

11) Besm which is Partielly Constrained at the Fnds.

The simple concept explained in this short Section
is the basis of the method of allowing for partial constraint at the ends
of beams which are curved or of non-uniform cross section. It rests on the
discussion of a semi-rigid Joint in the previous Section. The uze of the
method will be explained by examples in the following two Sections. The
principle is that, when it is desired to find the statically indeterminate
bending moments in a loaded beam which is partielly constrained at its ends,
the end structures are repleced by rigid structures at the ends of the beam
to which the latter is attached by semi-rigid joints having the seme stiff-
ness as the end structures they are assumed to replace.

Suppose that a beam AB is attached at A (and/or B)
to an unloaded structure which, while preventing deflections at the end of
the beem, allows it to change slope there but opposes such changes of slope
by reason of its stiffness. Let the stiffness of the end structure at one
end be K: . This quantity is defined (as before) to be the moment per unit
change of slope: ‘

Kf = Mt

6

where M, is the moment required to produce a change in slope 6 of the
end structure,

The effect upon the beam is identical to the effect
of a semi-rigid connection of very short length between the beem and a rigid
structure beyond A (or B), if the flexibility of the connection is given by:

?‘ = ) = _]_,_ (11.1)
M K¢

Thus the constraint assoclated with an end
structure to which the beam AB is attached at A, may be taken into account
by adding the reciprocal of the stiffness of the end structure to the
1/EL diagrsm at the co-ordinates of end A when calculating the properties
of the diagram, viz: a, i, etc. The effect of the end structure at the
other end B mey be taken into account similarly. If the modified properties



of the 1/EI diasgram are calculated in this way, besms partially constrained

their ends may be analysed with very little additional labour than if they
were completely fixed at the ends.

12) Example 3.

Strength of Mast.

Fig. 3 shows the mast of a large passenger liner.

Its cross section varies along its length and it is supported at the deck

end at different heights by three forestays.
loaded because of the sag and elasticity of the forestays.

The mast will deflect when
The structure

below deck is not rigid so the mast cannot be considered %o be completely
fixed at its lower end, It is desired to find the effect on the mast and
stays of applying a test load of 20 tons to the derrick.

Fig., 3.

FORCE OUE TO FORESTAY
» O-425 TOK/INCH f

FORCE DUE TO FORESTAY
» O831 TON/INCH

FORCE DUE TO FORESTAY
_—w-a 227 TONS/INCH
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The first step in the analysis of the problem is to

estimate the stiffness of the structure below the bottom of the mast at A.
This is done by a similer process to that described in Example 1. After
passing through two decks at W and X the base of the mast trunk rests on the
top of a heavy stiffener which runs down one of the main bulkheads to the

bottom of the mll.

The stiffness of the keel of the ship is such that the

bulkhead stiffener may be assumed to be completely fixed at its lower end.
The stiffness of the stiffener between Z and Y is calculated using the
equation K = 4EI/L and the resulting value is used to find the coefficient

of constraint at T,

The stiffness of stiffener between X and T is then

caloulated using the equation K = (3 + ¢)EI/L and the resulting value is
used to find the coefficient of constraint at X. The process is repeated
for the mast trunk between W and X, and again for the section between A and



¥, teking account of the taper of the mast trunk, The final result of this

calculation was that the stiffness of the structure below A was 331 E tons
in./redian at A.

Fig. 4.

F I T T L1

MOMENT OF INERTIA - INY

I

The next step is to celculate the stiffness of the
mast itself. Fig, 4 shows the shape of the diagram of moments of inertia
of cross section and it necessary to calculate, for each of sections AB, EC;,
and CD, the values of the integrals represented by the symbols a and 1

etc. defined in Section 8. This may be done graphically, numerically or by

any other suitable method depending upon the problem; the results for
section AB were:

a = 0°15073 radian/ton.in.
E

i = 6753°6 radian. in./ton
E

x, = 3393 in, X = = 450°9 in, L = 7908 in.

A

It is now necessary to find the modified values
taking account of the constraint at A. Since the stiffness of the structure

below A is 331 E tons in./radian, the corresponding value of F, may be
found from equation 11°1, snd is: '

F, = 1 = 0°00302 radiens/ton.in.
351 E 3

The symbols 2 and i stand for integrals which
represent the area, and second moment of area of the diasgram of 1/EI resp-
ectively, and the usuel rules apply to them when an area is added to the
diagram,

Denoting the modified values by superscripts, it



is found that:

a' = 0°15073 + 0°00302 = 0°15375 radisns/ton.in.
E E €

Taking moments about original centroid of diagrem of 1/EI :

Shift of centroid = 0°00302 x 450°9 = 8°86 inches
0-18$3°7S
Hence x; = 348°16 in. x; = = 443°02 in,

And by the theoreim of parallel exes:

i* = (67336 + 0°00302 x 450°9® ..  0°15575 x 8°86°)/E

= 73856 radian in./ton
E

The calculation of the effects of a change of slope
and of deflections at B is straightforwarad:

Using equation 8°7

K, = Mo = E + (348°16 x 348°16) E = + 33°03 E
) 0°15575 7585°6 ton in./radian
M, o B - (348°16 x 443°04) E = - 1448 E

) 0°15575 78356 ton in./radian

Forces for equilibrium: 0°0475 E ton. to right at A
0°0475 E ton: to left at B

Using equation 8°14, and assuming that the value of E = 13,400 tonsg/in? for
mast steelwork:

M, = 34816 E = + 65°1 tons in./inch deflection to left at B
78556 |

M, =-442°04E = =~ 8076 tone in./inch deflection to left at B
73556

Forces for equilibrium: 1+826 ton to right at A
1°826 ton to left at B



Similar calculations are made for the rest of the
mast and the figures are used to construct the first part of Table II (the
signs being changed in accordance with the convention that moments applied
Xo the sections of the mast are to be considered positive if clockwise,
and forces and deflections to left are positive). The forces necessary to
overcome the resistance of the forestays were calculated assuming an
effective modulus of elasticity = 5,000 tong/in? and are entered in the
column headed "forestays: From this part of Table II the upper part of
Table III is constructed representing the forces and mcments applied by -
the artificial restraints to effect the standard operations indicated.
Line 1 of Table III corresponds to line 1 of Table II, the only difference
being that the total moment applied at B is entered in column B. ILine 1A is
obtained from line 1 by proportion and shows the effect of 100°0 tons in.
applied at B. (This figure is underlined to draw attention to the fact).
The remainder of the Operations Table is constructed in a similar manner,
down to line 5A. Three apecial operations were added which were found to
speed up the relaxation process. Line 6 was obtained from line 3.by
balancing, once for all, the moments =3318°5 and =3983°0 by means of lines
1A and 2A, and calculating the resulting forces. Lines 7 and 8 were
obtained from lines 4 and 5 in a similar menner. By means of these last
three operations attention is concentrated on the forces at B, C and D
when forces are applied to these points and changes of slope there are not
prevented. The force in the topping 1ift is + 13°8 tons and is resisted
initially by an equal force in the opposite direction applied by the
artificial restraint at B, which is entered in line a of Table IV, It
is necessary to find what deflections must be applied to the mast in order
to distribute this between the mast and forestays and reduce the forces in
the artificial restraints to zero, using lines &, 7 and 8 of the Operstions
Table. ' :

Starting the relaxation process, a very raigh
approximation shows that the mast may deflect about 2 in. at B and C, and
less at D, and lines b, ¢ and 4 are computed on this basis. (Line b is
simply twice line'§, and so on). The algebraic sum of each column is then
calculated, and if the approximation had been correct the forces in the
restraints would be zero. It was not, however, and a new approximation is
required. It is clear from the forces remaining that the relative deflect-
ion of D was not great enough, and line f represents the result of an
increase of 0°5 in., there. The sum of the columns, line g, shows that the
original estimate of deflections was too low and in lines h, J and k they
are increased by 50%. The sum of the residuals, line 1 shows that an
improvement would be made if the deflections of C and D were increased
relative to B and lines m and n show this. Examination of the residuals in
line p and comparison with the operation in line ¢ indiecates that a further
deflection of 0°02 in. at C would reduce the residuals at C and D nearly to
zero., In line r the residuals are very like those which existed at the
start of the problem in line a, except that the force at B has been
reduced to just over half a ton. This is about one twentieth of the orig-
inal force at B and suggests that a considerable improvement would result
if all the deflections were increased by one twentieth of their present
values, Lines s, t and u show this and the residuals left after finding
the sum of the columns, line v, are negligibly small so that the problem
may be considered to be solved., The complete solution is entered in the
second part of Table II. The lines 9. 10 and 11 simply record the effect
of the total deflections found in Table IV, using lines 3, 4 and 5 of



TABLE II - Mcoments (Tons in.)
Operation A B (]
BA BC CB CD
1 Unit rotation at B +14°48 +23°03 +55°72 +23°95
2 Unit rotation at C » +25*95 +36°15 +16°38
3 Deflection 1°0 inch at B +807°5 +636 c=3034°5 =2983
4 Deflection 1°0 inch at C +3054°5 42083 -1018
5 Deflection 1°0 inch at D +1016

Relaxation Solution (After Table IV)
6 Initial actions.

7 Rotation at B =605 =962 -3328 =1001
8 Rotation at C +373 +561 +254

9 Deflection B = 3°15 in. +2544 +2005 =12457 -9396

10 Deflection C = 3°381 in. +13370 . +10086 -3435
11 Deflection D = 2°8875 in. ‘ +2934
12 Totals +1939 ’ +1041 =1045 +350 =247

TABLE IT - Forces (Tons)

Operation A B c D Fore-
, AC ED stays
1 Unit rotafion at B =0°0475 «0°2476 +0°3951
2 Unit rotation at C =0°2326 +0°+1488 +0°0758
3 Deflection 1°0 inch at B <=1°836 +27°52 - «35°695 . +2°27
4 Deflection 1°0 inch at C «-35°695 +30°40 =4+705 +0°53
5 Deflection 1°0 inch at D -4+705 +4°705 +0°425

Relaxation Solution (After Table IV)

6 Initial actions. =158

7 Rotation at B +1°98 +10°34 «12°33

8 Rotation at C . =545 +32°38 +1°18

9 Deflection B = 3°15 in. =574 +86°69 -80+93 , +7°15
10 Deflection C = 3381 in. =-86°87 +103°78 =15°'91 +1°79
11 Deflection D = 2°8875 in. «13°58 +13°58 +1°23

" 18 Totals =376  =7°09 -1°78  =1°15




TABLE ITI

Operations Table.

Moments (Tons in. )

B
1l Unit rotation at B +78°*75
JA +100°00
2 Unit rotation at C +23°95
2A +45+59

3 Deflection 1°0 inch at B =3318°5
3A =1114°0

4 Deflection 1°0 inch at C +3954°5
4A +1378°5

5 Deflection 1°0 inch at D
S5A

6 Deflection 1°0 inch at B 0
with moments balanced.

7 Deflection 1°0 inch at C 0
with moments balanced.

8 Deflection 1°0 inch at D 0
with moments balanced.

+23°95
+30°41

+52°53

+100°00

-2983°0
«1001°5

+1967°0
+636°0

+1016°0
+1981°0

0

Forces (Tons)

~-0°3476
-0°+3144

-0°2228
~0+4238

+29°79

+10°00

-25°695
-8°31

+13°93

-10°775

+353°31

+0°3951
+0°3747

+0°1468
+0°3794

-35°+695
-8°63

+30°+93
+10°00

=4°705
-9°17

~10°775
+15+15

-5+985

+0°0758
+0°1444

«~4°705
-1°53

+5°13
+10°00

+3+31

=5°985

+3°435



TABLE IV

RELAXATION TABLE.

Forces (Tons)

B C D
a Initial actions - 13°80
b Deflection: = 2 in. at B + 35°86 - 21°55 + 661
¢ Deflection =2 in. at C - 2155 + 30° - 11°97
d Deflection = 1 in, at D + 331 - 5°985 + 3435
e Residuals - 6°18 + 2°765 - 1935
f Deflection = 0°05 in, at D + 1°655 - 3°99 + 1°'71
g Residuals - 4°535 - 0°235 - 0°+3235
h Deflection = 1°00 in, at B + 1293 - 10775 + 331
J Deflection = 1°00 in. at C - 10°775 + 15°15 - 5985
k Deflection = 0°75 in. at D + 2°48 - 4°49 + 2°57
1 Residuals + 011 - 0434 - 033
m Deflection = 0,50 in. at D + 1°'655 - 2°'99 + 1°71
n Deflection = 0°30 in, at C - 2°155 + 303 - 1°125
p Residuals - 0°32 - 0°30 + 0°185
q Deflection = 0°2 in, at C - 0°205 + 0°30 - 0°12
r Residuals - 0°+595 0°+0 + 04085
s Deflection = 0°1500 in, at B + 1°+94 - 1°815 + 0°495
t Deflection = 01610 in. at C - 1°735 + 9244 - 0°965
u Deflection = 0°1375 in, at D + 0°+455 « 0°82 + 0°47
v Residuals + 0°065 - 0°+005

+ 0°085%




Table II. The unbalanced moments which result may be balanced by use of
lines 1A and 2A of Table IIT and the result is recorded in lines 7 and 8 of
Table IT, It will be noted that the moments and forces on either side of B .
are balanced, similarly at C and D, Table II is the only one which need be
retained for record purposes. The solution of the problem is illustrated
in fig. 5. :
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This exsmple has been described in some detail in
order to demonstrate some of the advantages of the method described. It
is, ofcourse, obvious that other methods could have been used to obtain the
solution; one of these gave the following:

37

_—

Deflections Forces applied to Mast Bending Moments
(in.) (Tons) (Tons in.)
D 3-7856 118 o
c 3°32011 177 255
B 35°+13095 7°08 1053
A 0 378 1933

‘ It will be seen that the solution by relaxation is
in error by only a few per cent, but it should be remembered that the
"precise" solution is only correct if the assumptions on which it is based
are correct. The value (3000 tons/in?) of the modulus of elasticity of
the forestays is particularly open to question; some suthorities quote
4000 and even 5000 tons/in® For practical purposes, therefore, the relax-
ation solution is quite accurate encugh. -

The method described here for taking account of
the partial constraint need not be combined with the relaxation method of
solution; in this example,other methods were quicker. The adventege: of
the relaxation method grows ss the mmber of joints is increased. It is
not the purpose of the example to show this, but only to illustrate a method
which can be used to solve more complicated problems in which partial
constraint is a factor.



 13) Exemple 4. Trensverse Strength (continued).

In this example the structure to be snalysed has
one mexber which is curved, of non-uniform cross section, end is partially
constrained at both ends. The structure and loading are identical to that
analysed in Example 2 (page 16) except that the bilge freme is curved
instead of having a square corner. The structure is sho‘fl in fig, 6A, It
differs from that of exsmple 2 by having a radius of bilge equal to 190 in,
(This psrticular value was chosen to be equal to the draught of the ship
afloat, for mathematical convenience), and is representative of that part
of the ship which is some distence from viidships. The problem is the same
as in example 3, viz: to find the change in bending moments when the ship
is dry docked. The analysis of the frame-floor axch CBAB'C' is carried out
using the equations in Section 9 after calculating the stiffness, eand hence
the flexibility, of the constraining structure beyond C and C°'.
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The first step is to assume that there are three
hinges at C, A end C'., The statically determinate bending moments are then
calculated by the usual method of analysis of three-pimmed arches (see,for
example, ref. B4, Art. 194). By integrating these bending moments, with
respect to distance measured round the frame, the values of B and A.
are found:

<
B = - | Y% as = 4+ 4592  radienms,
EI E
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(4

By evaluating - | Y7 as and dividing by B it is found that the
E I
‘l

centroid of the diagrem of M/EL is 119°5 in, below the waterline when
the ship was afloat, i.e: 70°5 in, sbove the keel. Hence A, may be calce
ulated when the centre of area of the diasgrem of 1/EI has been located.

Next calculate the required properties of the
diagrem of 1/EI, The easiest way to do this is to consider the diagrem
in convenient parts, calculate the values for each component separately,
and then to compute the figures for whole diagram. The letter is most con~

;reniently carried out in a teble; the work in this problem is surmarized in
able V,

TABLE V

CAICULATION OF PROPERTIES OF 1/EI DIAGRAM (BOTH SIDES OF SHIP).

Iten a ; a ; a ? i
Floor 0°0118  -190°0 = 2°324 + 436 -
Bilge fremes 07240  -121°0 = 8760  + 10800 2476
Side frames 0°3574 + 53°0  + 13°65 + 723 ‘2888
2 x Flexibility at C 0°1032 +106°0 4+ 10°83  + 1149 -

1°0954 - 59°7 65°36 12898 5364

This preliminary work is simple and consists of
four calculations of a,l and centroid of dlagrams of 1/EI of each of the
following:

i) Floor. (Straight. I = 30140 ins )

ii) Two side frames. (Straight. I = 834 ine )
i11) Two bilge fremes. (Quadrsnt of circle. I = 824 in: )
iv) Flexibility at C and C'.

Only the last of these requires explanation. The
structure sbove C is identical to that in example 2 and the stiffnesses of



deck CD and frame CE are found by the methods described when discussing
exsmples 1 and 2. They.are:

K, = 2°64 E tons in./radien
Kee = 16°95 E tons in./radien

The flexibility ¥, at C is the reciprocal of
the stiffness of the end structure:

F, = 1 — = 0°0511 radien/ton in.
2°64 £ + 16°05 E E

For en assumed exis at the waterline of the ship
afloat, the properties of the diagram of 1/EI are surmarized in Table V.
Note that the fact that the ends of the frames are pertially constrained
at C and C' involves no more than a rapid estimate of the flexibility of
the end structures above C and C', end an extra line in Table V.

. From the algebraic sum of the colurmns in Table V
the properties of the diagrsm of 1/EI were found to be:

t

a = 1°0954 radien/in. ton

E

i’ (5364 + 12898 ‘= 59°7 x 65°36)/E
= 14364 radian in,/ton -
E

The centroid of area of the diagram of Ms/ EI was
found previously to be 119°5 in below the waterline so that it is 59°8 in.
below the centraid of the diegrem of 1/EI:

Hence As = - 4592 x 59°8 radien in.
E ‘.
Ofcourse A), = 0 by symmetry.

The statically indeterminate bending moments My
associated with the restoration of continuity of slope of the structure at
C, A and C' are obtained by substituting in equation 9°6:

M, = B+ A7 = 4592 - (4592 x 59°8) ¥
o i, 1°0954 14364

= 4190 - 19°12 y tons in.



where y is measured positively uimards fram & horizontal axis
130°3 in, above keel.

The total bending moments are given by the sum of
Ms + M, and are shown dlagramatically in fig. 6B. The full line
shows the chenge in bending moments (measured perpendicular to the outline
of the cross section) when the upper ends of the frames are partially con=
strained, and the two dotted lines indicate the changes in bending moments
which would occur if the frames were either completely fixed at C and C',
_or freely supported at C-sand C', These three curves show the effect of
the constraint on the bending moments iz the frames and floor.

It is interesting to compare the bending moments
shown by the full lines in fig, 6B with those shown in fig., 2B, The letter
represent the same ship under the seme change of load calculated on the
usual assumption that the éross section may be approximated by straight
iniform structural members., It will be observed that the approximastion made
in exemple 2 is not a very good one if the radius of bilge is not small,

|
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Pig., 6B Changes of Bending Moment calculated iﬁ'Exmnple 4,
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CHAPTER TII

SHEAR LAG IN STIFFENED FLATING

Note This chapter contains a summary of the paper on this subject which
was published by the Institution of Naval Architects in 1955,
together with & note on some work not mentioned in the paper. The
paper snd discussion ere bound as an appendix at the end of this
thesis.

14) Introduction.

In Chapter I it was assumed that the flexural prop-
erties of the beam cross sections (moment of inertia etc.) were known or
could be calculated. Most of the structure of a ship, however, consists of
renels of plating stiffened by rolled bers. When 2 panel is bent out of
its plene the stiffeners act as beams end it is clear that the plating
between them must act as a flange to each stiffener. When the stiffeners
are widely spaced these flanges are very broad, end it is known .that the
usuatl assumption, that plene cross sections of a beam at right angles to
the plane of bending remain plane after bending, may not be accurate.
(Shear strains associated with the shearing stresses across a wide flange
cause decrease in its efficiency, and the problem is known as that of shear
lag. A more detailed explanation will be found on pages 2 end 3 of the
Appendix.) The question then srises - how much of the plate may be consid-
ered to act as a flange of the stiffener ? This is a2 problem which faces
the navel srchitect every time he tries to calculate the strength of a
penel of stiffened plating, and a similer problem arises in the design of
aircraft.

Many papers have been written about shear leg end
their very number indicates an unsatisfied desire for information on the -
subject. An exsmination of a large number of the papers (refs. S 1 to
S 16 are rerresentative but by no mesns exhaustive), showed that there
were several gaps in knowledge of the subject and very little experimental
verification of the various theories had been attempted. Much confusion
appeared to have been caused by the lack of a detailed explanation of the
mecheniem of shear lag snd by the fact that instability can also ceuse
weakness of thin plating (when it is in compression). It may be shown that,
after local instability of plating on the compression side of a beem has
been established, the effective width of plate is a function of its thick-
ness, Pietzker (ref. S 1) introduced into naval architecture the idea of
an effective breadth of plate which depended upon the thickness but he
incorrectly applied this criterion to plating in tension also. Unfortun-
ately this 111 oonceived method is very easy to apply and meny naval
architects still use it for plating in both tension and compression (and
in any case amit to calculate the stress at which buckling of the pleting
would commence). Modern suthors such as Schade (ref. S 9) and Vedeler
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(ref. R 7) distinguished between lopal instability of plating and shear 1lag,
and Schade introduced a notation which will undoubtedly clarify the situation.
Th"é‘z'é'f"a clear description of the causes of shear lag has also ensbled it to
gain prominence in cases where its neglect would be justified. Schade was
content to say "The plate is loaded only by virtue of the transmission

of shear through the plate from the web of the stiffener, and therefore the
direct stress diminishes as distance fram the web increeses”, Most of the
mathématical authors, however, have neither explanation nor diagrem to help
their readers, while the pespers that described the more approximate methods
usually contained only a brief description of the action of shear, upon
which the theory rests. In consequence the practical men frequently spends
valueble time trying to estimate an effective breadth of plate to be assoc-
iated with a stiffener in circumstances where shear lag is likely to be
negligible, and measured departures from the simple beam theory due to
unknown ceuses sre often ascribed to shear lag when there is in fact no
reason to expect shear lag to be important (see for example refs. G 2 +to
G 9). It must be clearly understood that the effectz of shear lag only
become noticeable when the breadth of plate is so large that sheer strains
can ceuse warping of the cross sections which are able to affect the direct
stresses, and that the effect upon the direct stresses is dependent upon
the rate of change of shear force with respect to distance along the beesm,
i.e: upon the distribution of losd on the besm. A full eppreciation of
this fact is essential if the results of shear lsg theory are to be applied
correctly in practice.

Ever since the introduction of the idea of an
effective breadth much effort had been expended in the evaluation of this
quantity for the benefit of the practical man. In some modern work the
concept appeared to have been carried too fer. In many pspers diagrams of
effective bresdth associated with shear lag were published without comment
on their significance and some were not a little obscure. Vedeler, for
exsmple, included in a recent peper (fig. 8 of ref. R 7) seversl diagrsms
of effective breadths of plating associated with beems consisting of a
stiffener attached to 2n infinitely wide plate, under various conditions
of loading. Considering a uniformly loaded beam he showed that when there
were no constraining moments at the ends of the beam the effective breadth
did not vary much along the ppsn, but when the same beam was completely
fixed at the ends the effective breadth veried considerably along the span
and tended to infinity near the points of zero bending moment. It was
difficult to understand how bending moments applied at the ends of a beam
could have such a lerge effect on shear lag throughout its length. Further-
more, the difference between the effective bresdths in the two cases
indicated en apperently insuperable difficulty when calculating the integ-
rels represented by symbols a and i in Chapter I, prior to finding the
bending moments which sacted upon a besm. It was clear that the concept of
an effective bresdth must be examined more closely if it led to difficulties
of this nature.

Many papers contained results expressed in terms
of infinite series of trigonometricel terms. If the origin wes et one end
of the beam, series of sine terms were used to represent the stresses in
simply supported beams, and series of cosine terms applied similarly to
beems which were completely fixed at the ends, The stiffened plating in
a ship is constrained at its bounderies in some manner intermediste between

these conditions, and in general the amount of constraint at the ends of
the stiffeners has a:.far grester effect on the stresses in them than shear
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lag in the plating. Clearly any shear ia'g theory used in practice must be
applicable to beams which sre partially constrained at the ends, but the
sine or cosine series in the papers examined did not include this case.

, Experimental work should, in my opinion, always
follow theoretical analysis and it is surprising that so few experiments
have been performed on wide flanged beams when so much time has been devoted
to the publication of theoretical papers. Quite a lot of the experimental
work which has been done has been divorced from thorough theoretical analysis
with the result that many of the theoretical conclusions were not properly
chetked. '

The earliest experiments were made by Miller (ref.
S 4) who carried out some systematic experiments apparently under Metzer.
His specimens were between 30 and 100 cm., long. Two specimens were milled
from solid blocks of steel, two consisted of aluminium I-bars riveted to
plates 1 mm. thick, and one was mede of wood. The steel and wooden spec-
imens consisted of single bars of rectangular cross section with wide
flanges. The ratio of length to breadth of flange was the msin varisble.
An ordinary tensile testing machine was adapted to apply a load at the
centre of span, and the ends were simply supported. Deflections were meas-
ured, and also strains in the steel specimens only. Various experimental
difficulties were experienced but the results were cleimed to show some
agreement with Metzer's theoretical work (ref. S 3).

Winter (ref. S 7) carried out some experiments
with wide flanged I-bars and, although details of the experiments were
omitted from his paper, it wzs stated that the results indiceted a general
agreement with his method of calculating the effective breadth of flange.

Hartmen and Moore (ref. S 14) made a systematic
experimental investigation of shear lag in panels of stiffened plating
which might be found in aircraft. The specimens were of aluminium and the
stiffeners had cross sections commonly used in the aircraft industry. The
investigators started with single stiffeners at the centre of very wide
plates, Two further stiffeners were added later at the extreme edges of
the plates, and later still two stiffeners were added at intermediate
positions so that the final specimens consisted of a plate with five equally
spaced stiffeners. In this way the ratio of length to breadth of plate was
varied. Strain gauges were fitted so that in the final specimens there was
a line of gauges along each stiffener and one along the plate between each
stiffener. Results from the single stiffener specimens showed that there
was considersble deflection of the plate so that its distance from the
neutral surface of the beam was not constant (Miller also experienced this
difficulty). The three-stiffener specimens represented a case intermed-
iate between the two theoretical extremes usually considered and were not
comparsble with either., The five-stiffener specimens had insufficient
gauges to show the distribution of stress in the plate between each stiff-
ener, but the maximum end minimum stresses were indicated and agreed fairly
well with theory. ‘

To sum up, the number of theoretical papers that
had been published sbout shear lag greatly exceeded those which described
experimental work, sand there had been inadequate correlation between the



two. After studying all the papers, there were still a number of anomalies
and several queries left unanswered., Shear lag in stiffened plating where

the stiffeners were partially constrained at the ends seemed to be a part-

icularly fruitful field for investigation.

15) Summary of Investigation into Shear Lag in Stiffened Plating,

The examination of the various theories of shear
lag, the formulation of a rational exposition of the subject and some
extensions of previous theories, werecarried cut concurrently with a set of
experiments designed to exhibit the main features of the phenomenon with
particular reference to beams which were partially constrained at their ends.
This work was fully described in a paper published in 1955 by the Institution
of Naval Architects and a copy of this paper, together with the discussionm,
is bound as an appendix at the end of this thesis., It is the purpose of
this Section to discuss the research in genersl terms and to call attention
to advances made in the knowledge of the subject.

The paper is in three parts. The first part was
written for the practising naval architect and desoribes the investigation
in a manner which was intended to appeal to persons with limited mathem=
atical knowledge. In this way it was hoped that some of the mystery which
had surrounded the subject would be removed and that this would lead to a
proper application of shear lag theory when, and only when, necessary.
(Remarks in the discussion showed that this was appreciated) The second
pert of the paper deals with the theory and includes one or two extensions
of it which will be mentioned later in this Section. The third part
describes experiments carried out in the James Watt Engineering Laboratories
of the University. These were the first experiments to be carried out in -
which the effects of shear lag were clearly demonstrated, and compared with
theory.

The usual theory of shear lag is set out in
articles 7 to 13 of the Appendix, and a summary is given in article 5. The
theory given is based on the work of Chwalla (ref. S 5). The basis of the
solution is the use of the Airy stress function to describe the stresses in
the wide pates and to satisfy the boundary conditions along their junctions
with the stiffeners or along the plate edges parallel to them. In this way
the condition that plane cross sections of the stiffened plating remain
plane after bending is removed so that it no longer applies to the wide
pleting., (Plane sections across the stiffener alone are assumed to remain
plane after bending).

In all previous papers which had been examined,
the 'boundary conditions at the ends of the plate had not been discussed.
At the end of article 10 it is shown that the choice of sine or cosine
for the term in x of the product solution, governs the boundary conditions
which may be satisfied at the ends of the plate, i.e: at x =0 and x =1I.
In article 11, when the elementary solution is extended in the usual way by
means of Fourier series, this distinction between the end conditions is
clearly made. (The fact that a half range series of either $ine, or cosine
terms can be made to represent any bending moment diagram was also emphas-
ised because this point had not been made clear in previous papers).
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The other advance in the theory may be appreciated
better after considering the experimental results. The experiments are
described in Part IIT of the Appendix and were carried ocut on a beam which
was speclially designed to exhibit measurable shear lag effects. Figs., 16
to 19 of the Appendix show very clearly the effects of shear lag and
demonstrated that the theory agrees well with the experiments, except
possibly at the theoretical extreme ends of a beam. The difficulty of
designing a beam such that the ends would satisfy either of the theoretical
end conditions is discussed an earticle 17, and in fig. 22 the actual
conditions achieved are compared with the two theoretical end conditions,
treating section K as if it were one end of the beam KXK', A qualitative
comparison is also to be found in figs 1B and 10 and fig. 21 (Experiment I).

In Experiments I, IT end IV an identical load,
approximstely uniform, was applied to the span KXK' while the constraining
moments applied at K and K' were varied considerably. Observe that between
sections A and G the difference between the stresses associated with the
ordinary bending theory (shown by dotted lines) and those which include
shear lag (shown by full lines) is identical in each experiment and the
effect is uniform along the span. In Experiment III, in which no load was
applied between sections K and K', there was no shear lag between sections
A and G. In each of these experments the shear lag effect of a concent-
rated load at K (in this case a negative load due to reaction at the support)
was clearly shown, and was demonstrated to be a local effect associated with
the diffusion of the disturbance into the beam. These experiments demon-
strate clearly that shear lag is associated with the distribution of load
along the beam and is directly proportional to itsmagnitude. Originally it
had been intended to compere the various approximate theories of shear lag
with the exact theory and the experiments, but time did not permit this.

It is interesting to note, however, that the early approximate method of
Lockwood=Taylor (ref. S 13) predicts results of this nature, (but incorr-
ectly in detail - see page 41 of Appendix), whereas the papers of v. Karman,
Metzer, Chwalla,Sandorff etc. give mathematically correct solutions but
fail to express the results in such a way as to call attention to the
salient features of the phenomenon.

The obscurity of many of the more mathematical
papers seems to be associated with the pre-occupation of the authors with
the calculation of "quasi-"*effective breadths of plate. The bending
stresses calculated by the ordinary theory of bending (i.e: sssuming plane
cross sections remsin plane) are directly proportional to the Bending
moments, which depend upon the combined action of the applied load and
réactions together with the constraining moments. But the modifications
to these stresses caused by shear lag depend upon the local variation of
load along the beam and, in general, these effects are not linked in any
simple way to the variation of bending moments. It seems illogical,

* The "quasi® effective breadth is called the "overall® effective
breadth in the Appendix hut the word "quasi®™ is used here in defer-
ence to Prof. Schade's criticism on page 37, - see asuthor's reply
on page 41.



therefore, to attempt to evaluate the modified stresses entirely in terms
. of the bending moments, This suggests that more rational results would be
achieved if the stresses due to bending and to shear lag were considered
separately, end this is done in article 14 of the Appendix by the simple
expedient of subtracting the stresses associated with ordinary bending
(plane sections remain plane) from the total stresses found by the theory
of bending with shear lag. .

Equations 48 and 49 converge extremely slowly (60
terms were required to obtein a reasonably accurate answer for a concen-
trated load) and they would be of no practical use by themselves. Because
shear lag is a local effect, however, it is possible to estimate its effect
by considering the forces applied to a besm to be divided into a number of
discrete loads each spread over a short distance, Any distribution of load
may be represented approximately in this manner, To meet the needs of
practical men, equations were derived in article 14 of the Appendix, which
represent the additional stresses in the stiffener associated with shear
leg caused by the application of a load W spread over a distence A along
the beam. These equations may be written: ‘

where
P = Additional stress in stiffener at its junction with the plate.

P, = Additional stress in stiffener at centroid of area of
stiffener alone. :

W = Loed spread over distance 4°

Breadth of plate between stiffeners.

h = Distance between eentroid of stiffener alone and middle of
thickness of plate. :

I = Moment of inertia of cross section of stiffener alone.

o
"

Bt/ 0°91 A
t = Thickness of plate.

A = Area of cross section of stiffener alone.

K = 1 + .h_ﬂ.
X



k = Radius of gyration of area of cross section of stiffener alone.

8 is given by a complicated expression - equation
52 on page 21 of the Appendix. The important case in practice is that of
a panel of plating with many stiffeners, and for this case wvalues of S weve
calculated. A value of Poisson's ratio equal to 0°3 was used, but normal
variations of this quantity have little effect in practice. It was found
that S is independent of the ratio. I/d provided that I/b is greater
than 4. (The quasi-effective breadth is ususlly expressed in terms of I/b).
Values of S are expressed graphically, for & concentrated load and three
values of 4, in fig. 3 of the Appendix, The figure shows the variation of
8 along the stiffener from the centre of the load, in units of distance
measured in terms of breadth of plate. S is shown for one side of the
centre of loed only; its variation on the other side is identical. The
distribution of stress across the plate is of the same charscter as that
shown in fig. 20 of the Appendix (which is drawn for the experiments), but
in practice it is usually sufficient to know the stresses in the stiffener.
The stress varies linearly across the stiffener so that the values found
for the two specified points enable one to find the stress at any other
point in the stiffener.

There is a quicker method when it is desired to
know the shear lag effects associated with water pressure, In article 4
of the Appendix it is demonstrated in a very elementary fashion that the
shear lag stresses due to water pressure at & given depth were the same as
those drue to a uniform load per unit length equal to that at the depth
considered, The additional stresses due to shear lag associated with a
uniform load may be calculated directly by use of the following equations:

- 2
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p. = wBn_S'
IK 400

where ps' , end p's . = Additional stresses associated with a uniform load.

w = Load per unit length (measured along the beam).

The other symbols have the same meaning as before and values of S' are given
in Table IT on page 8 of the Appendix, which were calculated from equation
55 on page 22, These equations may be used to calculate the additional
stresses associated with a uniform loed or a load which varies lineerly
like water pressure against a vertical besm. If, in addition, there are
concentrated or other loads, the stresses due to shear leg associated with
these mey be estimated using the previcus pair of equations, end the

results added together to give the total additionsl stress.

' Thus the system of equations developed ensbles one
to estimate the effects of sheer lag in eny beam, however loaded, Unlike
the quasi-effective breadth method, it is not necessary to have a large



number of charts - one for each sort of bending moment diagram - and the
method is altogether more logical besause it treats separately the stresses
vhich depend upon two different types of action.

A short theoretical investigation was underteken
in an attempt to evaluate the importence of shear lag in practical ship-
building and this is summarized in article 16 of the Appendix, The results
simply confirmed the conclusions of previcus authors, but they also dem=-
onstrated that for the spacing of stiffeners usually encountered in practice
shear lag is unimportant, except possibly in way ef a relatively concen-
trated load.

16) Effect of Shear Leg on the Analysis of Continuous Beams
by Moment Distribution.

In Chapter I of this thesis some problems concern-
ing the strength of ships were solved by use of the moment distribution
method. In addition to the work described in the Appendix a short invest-
igation was carried cut to exsmine the effects of shear lag on this method
and some remarks om the subject are set out below.

_ It has already been shown that shear lag is neglig-
ible in practice, except in way of a relatively concentrsted load. The
most obvious occurrence of a concentrated load in practice is in panels of
plating which are stiffened by two sets of beams which intersect at right
engles. These often consist of large numbers of hydrostatically loaded
small stiffeners with one or more deep girders affording them support at
intervals. The point at which shear lag may be expected to be important
is in the plate flanges of the light stiffeners where they intersect the
heavy girders, - The reactions at the girders may be considered to be
comperetively large negative loads applied to the stiffeners at points of
maximum bending moment. Such a set of beams is analysed in Section 5§ of-
“hepter I, where for exemple, the relatively small bulkhead stiffener BE
is assumed to be supported by heavy transverse girders at C and D, A
further example is to be found in Chepter IV,

When analysing the small stiffeners, they are
treated as continuous beams over the supports and the moment distribution
process is applied at each support. It is assumed in this process that at
each step the change of slope is the same on each side of each support,
but in the presence of shear lag the usual equations for stiffness, carry-
over factor etc., which satisfy this condition may need modification. The
amount of the modification would depend upon the relative magnitude of the
concentrated load. Seversl possible methods of adapting the moment dist-
ribution method to the situation appear to be possible:

a) The Fourier series type of solution of the shear lag problem
could be used to develop equations for finding the stiffness
and earry-over factor of each span of the contimocus besm.
There is an objection to this, viz: the theory can only be
applied when the end cross sections of each span are either
free to warp or completely restrained ageinst warping. By



this means only the upper and lower limits of the required
quantities could be found.

b) One could calculate the quasi-effective breadths of plate in
way of the concentrated lead (assuming an approximate
magnitude), analys@ the beam on this basis, make a closer
estimate of the load and then adjust the breadths and repeat
the process if necessary.

¢) It would be possible to develop an equation which would allow
for the extra change of slope associated with shear lag near’
the ends of each span and to modify the moment distribution
technique to take account of it, so that as the relaxation
proceded the shear lag effect could be adjusted to correspond
to the magnitude of the concentrated load.

In fact, however, all of these methods would be
cumbersome to apply and it would probably be better to adopt a different
method of analysis. Wilson's method of analysing continuous beams (ref.

B 3, article 90) could be adapted for this purpose. The method pmonsists

of flnd.lng the reactions at the intermediate supports by equating the
upward deflections caused at every support by all the supporting forces, to
the downwerd deflections which the load would cause at those various points
if the beam were supported at the ends only. Deflections of any emount at
one or more of the supports can be taken in%o account very simply bv this
method. If the two sets of deflections are calculated by equations 40 or
44 of the Appendix, shear lag throughout the beam is allowed for autom-
atically. When using Wilson's method it is necessary to find the deflect-
ions more accurately than is the case in other methods and although the
equations for deflection with shear lag converge rapidly it is necessary
to use several terms of the series.

In order to assess the practical importance of the
effect of shesr lag on the moment distribution process, Wilson's method was
used to find the bending moments in a uniformly loaded continuous beam,

250 inches long, suvported at four equidistant points. The cross section
was identical to that of the bulkhead stiffener of the ship mentioned in
Chapter IV, in which the 6 in. angle bar stiffeners were 25 in. apart.
(This example was chosen in view of the experimental results described in
Chapter IV and will be referred to in that Chapter).

It was found that the effect of shear lag was very
small indeed. The reactions at the middle two supports were decteased by
0°03 % and the two end reactions were increased by O° 1 6o The bending
moment at the two middle supports was decreased by 0°4 % so that the net
increase of bending moment at the centre of the middle span was 1°4 %

(the latter was about one third of the maximum hending moment at the
middle two supports). Although it.is not a good thing to argue from the
particular to the genersl, this stiffener is representative of normal ship-
building practice and it is reasonable to conclude that for stiffened
plating of average proportions shear lag may be neglected. The moment
distribution process may be applied as usual, neglecting shear lag, and
the additional stresses associated with shesr lag may be estimated
afterwards if necessary.
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CHAPTER TII

ANALYSTS OF THE FXPERIMENTS AT GLENGARNOCK ON SHIP STRUCTURAL MFEMBERS.

17) History.

For some years past a considerable amount of
experimental work has been going on at Glengarnock to examine the behavicur
of stiffened plating. Specimens consisting of a plate 2 ft. wide stiffened
by a typical ship stiffener are loaded in a specially constructed testing
mechine under conditions as near as possible to those in a ship. This part
of the thesis is a record of an examination of the results of the first 300
tests carried cut at Glengarnock, in order to determine what precautions
must be taken when using the theory of bending in practice, and to draw
general conclusions from the test results.

The experiments were ccumenced in 1939 by a sub-
comnittee of the Welding Research Council, later the British Welding Research
Association, and the work contimied throughout the War. Shortly after the
War the investigation ceme under the aegis of the British Shipbuilding
Research Associstion and is still going on. A summary of the main object-
ives and the experimental procedure will be found in ref. G5, The tests
were carried out by the authors of refs. Gl to G8 inclusive and I was
neither able to take part in them nor to influence their course in any way.
The B.S.R.A. end the investigators themselves gave me all the help they
could; permission was readily granted to enable me to examine the actusl
figures recorded during the experiments and the investigators could not
have been more willing to co-operate.

It soon became clear, however, that the investig-
ators could throw little light on reasons for the observed behaviour of the
specimens, Hardly any theoretical analysis had been done and a fair idea
of the "practical” outlook of the people in charge may be obtained by
reading their reports (refs. Gl to G15 incl.). I decided to disregard
their opinions entirely and to treat the results on their merits. An
attempt was made to modify the usual method of applying the theory of
bending until it fitted the facts as reported. The principle was adopted
that the theory should be as simple as possible and the most elementary
assumptions were used unless comparison with experiment showed that they
required modification. Full use was made of the work described in
Chepters I and II.

18) Preliminery Work.

The experimental procedure was to increase the
load applied to the specimens until rough measurements indicated maximum
stresses in the neighbourhood of 12 or 14 tons/in? On removal of the load
some permenent set was usually observed, which was taken to indicate that a
certain amount of yielding had taken place at stress concentrations,



riveted joints and welds, etc. (A small amount of this is known to ceuse

no harm). No further yielding takes place unless the load is raised above
the previously applied maximum but the seme maximum load was re-applied two
or three times to ensure elastic behaviour of the structure. The stresses
and deflections quoted by the investigators in their reports (refs. G2 to
G9) are those read during the final applications of load. (Generslly strains
were reed during one load cycle and deflections during the next cycle in
ordér to avoid the use of both sets of instruments simmltanecusly.)

The first essential was to plot the measured
stresses (strains x Young's modulus) as ordinates with loads as abscissae.
In general the stresses were proportional to load but there were exceptions.
Fig, 7 shows a typical set of graphs of the individual stresses at four
positions across the web of the 6 inch channel bar measured during test 91,
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The poifts plotted for geauges 12 and 15 in the lower diagram lie on straight
lines through the origin. Those for gauges 13 and 14 lie on straight lines
vhich do not pass through the origin., Concerning the latter, it was

decided that more weight should be given to the four measured stresses at

2, 3, 4 and 5 tons load than to the zero measurement, and it wes assumed that
the true stresses lay an a line passing through the origin with the same
slope as that of a line passing through the four measured stresses, as showmn
by dotted lines in fig, 7. (The location of the average line was not always
so simple; in some experiments there was considerable scatter of the
readings). The mean measured stress was then read from each line at a
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convenient load (5 tons in this particular case) and these were used to
draw a diagram of stresses across the section of the beam as shown in the
upper diagram of fig. 7.

Before using the measured stresses to determine
the bending moments, it was necessary to compute the geometrical properties
of cross section of the various specimens. Much had been written about the
positions of neutral axes and corresponding effective breadths of plate of
the specimens (refs. G2 to G9 incl. g. Variations of the latter between 15
inches and 30 inches had been recorded whereas the actual breadth was 23°5
inches (nominally 24 in.). It had been suggested that shear lag in the
plate might be responsible for the variations but an investigation described
in aerticle 16 of the Appendix to this thesis showed that this was not so.
It was found that the increases in stress at mid-span caused by shear lag
(expressed as percentages of the stresses due to bending) were never more
than 4% at the plate and 1% at the tsble of the tee bars and most other
cross.sections, Exceptionally there were greater increases and the max-
imum increase occurred in the 6 inch deep flat bars in vwhich increases were
never more than 10% at the plate and 0°7% remote from it. The latter
figures refer to flat bar specimens which were very heavily constrained and
in these specimens the theoretieal point of zero stress was moved in a
direction away from the plate by about 0°05 inch., The corresponding move-
ments in other apecimens were all less than this. It followed that the
variations of the position of the point of zero stress observed at Glengarn-
ock (which smounted to as much as one inch in some of the larger tee bars),
must be due to some cause other than shear lag. In fact, for all practical
purposes, shear lag in the specimens used at Glengarnock was negligible.

Examination of the measured stress distribution
across the webs of a considerable number of specimens showed that the
measured position of zero stress could not be expected to define the pos-
ition of neutral axis in the majority of cases, for the following reasons:

i) Measured stresses varied up to % 0°3 ton/in? from the mean
line, a2nd the position of zero stress could not be found accur-
ately from them.

ii) Tension of compression in the specimens due to restraint of the
end structure added direct stresses to stresses due to bending,
This effect was negligible compared with the maximum stress in
the specimen, in most cases, but a small tensile or compressive
stress could cause an appreciable shift of position of zero
stress’in the web,

jii) Tilting of specimens added transverse bending stresses to those
due to bending in a vertical plane and there was a slight move-
ment of the position of zero stress due to this,

It was there fore assumed that the full breadth
of plate associated with each stiffener was effective., It was also assumed
that there was no difference between the behaviour of riveted and welded
specimens since the riveting of the faying flange to the plate was under
very low stresses at all times., The corresponding geometrical properties
of the cross sections of the specimens are given in Table VI. It wns




TABLE YI

GEOMETRICAL FROPERTIES OPF CROSS SECTIONS

OF SPECIMENS INCLUDED IN ANALYSIS

Thick Properties of
' -ness 'Soctions
Ref. Scantlings (inches) Type of

Plate I Uy

(in.) (ax) (in?)
A 13 x 2 x 0°75/0°42 T 0°-32 26909 30°5
B ditto T 044 2975 51°35
¢ ditto T 0°63 331°5 32°65
D 12 x 8 x 0°75/0°43 T 0°32 514°7 757
E ditto T 0°43 5850 78S
F ditto T 0°61 6477 81°4
¢ 12x 5:’zx 8. x 0°40/0°60 CH  0°43 3575 383
H 12 x 32 x 32 x 0°46/0°60 CH 041 370°6 40°6
I 12 x 3% x 0°40/0°54 TA  0°42 358°1 36°8
J 12 x 32 x 0°40/0°60 TA 0°43 546°0 $8°1
X 12 x 3% x 0°45 BA 0°42 346°8 37°6
L 12 x 0°45 BP. 0°43 3575 374
M 13x4x 0°5 FP 0°41 85940 40°5
N 10 x 1°125 TB 0+43 2%56°4 51°85
P 9x3x5x 0°33/0°44 CH 0°43 1%9°8 18°5
Q 9 x 3 x 0°32/0°44 IA 0°42 157°9 18°5
R 9 x 5 x 0°40/0°38 T 0°43 136°4 18°55
S 9x3 x 044 BA  0°42 145°8 19+25
T 9 x 0°44 BP  0°43 142°7 19°1
i 6x5x35x 0°30/0°38 CH 038 49°8 954
v 6 x 3 x 0°30/0°%8 TA 038 49°3 955
v 6x3x 038 BA 0°38 37°6 697
X 6 x 0°40 BP  0°38 38°9 77
Y 6x35x 045 OA 0°4 29°S 5+32
z 6 x 0°45 B 038 29°+% 536



assuned that these properties of the cross sections were constant throughout
the length of the specimens, except in way of brackets. This table of values
was used throughout the analysis and when comparing theory with measured
results no evidence was found to justify rejention of the assumptions upon
which it was based.

During the first series of experiments (ref. G2)
an important decision had been made, viz: that tests on dingle specimens
would give the same results as tests on three stiffeners side by side. Mr,
Turnbull stated:

"Originally it had been intended to test specimens consisting
of & plate stiffened by a single stiffener but there was some doubt as
to whether or not the deflections and stresses derived from a specimen
with a single stiffener could be considered as truly representative.
It was, therefore, decided in the first instance to test specimens
with three stiffeners, and then to cut them up so as to give three
separate specimens each having a single stiffener,

The results indicated that the deflections of the individual
stiffeners of the intact three-stiffener specimens were similar and
that the behaviour of three separate stiffeners tested together were
almost identical with that of the intact specimen and gave similar
deflections for the side and centre specimens.

It is therefore considered that the results of single stiff-
ener specimens are suitable for the purposes of the investigationl

The tests referred to were carried ocut on three
identical specimens and the conclusions are no doubt valid in this case, but
it was also inferred that correct results would be obtained when three
specimens having different geometrical properties of cross sections were
tested side by side, The actual order of testing the specimens was as
indicated in Table VII. Each line shows three specimens tested simultan-
eously; the letters refer to the sections identified in Table VI and the
numbers below each letter refer to the tests carried out. It will be ob-
served that in some of the early tests specimens having ratios of stiffness
up to 2:1 were tested side by side, but after about test 90 the three
specimens of each set had nearly the same stiffness. In the early tests,
therefore, the possibility of interaction of different specimens through
the end structures had to be considered. In some of the later tests
attempts were made to reduce tilting of unsymmetrical stiffeners by conn-
ecting the adjacent plate edges together (see Section 33). It is probable
that under these circumstances there was a tendency for load to be trans-
ferred from one specimen to another, The magnitude of theseceffects could
not be determined, but it appeared that many of the discrepancies between
theory and measurement could have been caused by interaction between the
specimens in one form or another. As these were secondary effects they
were ignored when formulating the theory upon which the analysis was based,
but sometimes in later work these possibilities had to be considered when
deciding whether the results of one or two of a group of experiments should
be given more or less weight than the remainder.

On the assumption that the specimens acted
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45-54, 58

P
67-69
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TABLE VII

ORDER OF TESTING SPECIMENS

G
1-3, 9-23

5
4.8

B
24-26

(0)*
55-57

c
61-65

I
86-90

X

101-104, 129-138

Y

149-158, 176-186

P
195-21%

H
216-~253

T
334A~240A

R
341A-247A

J
248-261

M

263-289

Z
394-300

D
30-523

K
53-44, 59, 60

E
64-66

N
81-85

v
97-100, 130-128

z
159-167, 187-194

P

H

(0) indicstes 10 inch specimens not included in analysis,



jndependently, there were three essential elements in each test (Ref. G1):
i) The stiffener and its associated plate acting as a beam.

ii) The end structures which tended to resist changes in slope of the
ends of the stiffener.

iii) The bracket or other connection between the stiffener and end
structures.

The measurements were nearly all made onithe
stiffeners; records elsevwhere were confined to a few deflections of the end
structures. The most fruitful source of information was the strains
measured in the stiffeners. The calculated section modulus and the stresses
found from the measured strains were used to deduce the net bending moment
acting on the beam at any point. The net bending moment is the sum of the
bending moment calculated on the assumption that the ends of the beam are
simply supported, and the bending moment associated with the moments of
constraint applied by the end structures to the ends of the specimen. In
nearly all the tests the structures at eanh end of a given specimen were
identical so that the bending moments due to constraint were constant along
the span. Fig. 8 shows the bending moment diagram for two typical identical
specimens, one loaded on the stiffener side of plate and the other on the
clear side. The full line represents the bending moments celculated from
the distribution of loads shown in fig. 2 of ref. G5 on the assumption that
the load applied by each ram was distributed evenly over the 14 inch long
wooden pad (shown in f£ig. 1 of the same reference) and that the ends of
the specimen were simply supported. The experimental values were plotted
at a distance from the free bending moment line equal (to scale) to the
measured net bending moments at the positions where strains were measured,
It will be observed that the experimental points lie on a straight line
(within the limits of experimental error) and the distance of this line
from the base represents the bending moments associated with constraint at
the ends of the specimen, In this manner the constraining moments present
in each experiment weré determined.
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The next step was to correlate deflections comp-
uted from the bending moment diagrems by integration, with measured deflect-
ions., This was?‘straightforward matter when the specimen had a constant
croas section throughout its length. It is well kmown, however, that the
ordinary theory of bending does not apply to a beem where the cross sections
are not approximately uniform along its length and it could not be expected
to apply in way of brackets. Very few opportunities had been taken to
measure strains in the brackets, but the results given by Mr. McCallum
(ref: G9) indiceted that the distribution of stresses was similar to that
rredicted by the tapered beam theory. The stresses within the brackets
were all very low except near their toes and it was clear that this would
not be a very rewarding field for research. In order to keep the theory as
simple as possible it was necessary to make sssumptions about the oversll
behavicur of brackets. Considering only welded brackets mesntime, the very
low stresses and great depth of the brackets compared with the besms indic-
ated that the deformation of the brackets was very much less than that of
the beams clear of the brackets. In fact a bracket behaved approximately
as & rigid plate over most of its srea. At the toes of a bracket there was
some deformation and it was necessary to allow for this, It was therefore
assumed that the bracket was rigid from its heel to within a distance from
its toe equal to two thirds of the depth of stiffener, but that it had no
effect on the cross section beyond that point. In other words it was
assumed that the bracket rotated as a unit when the beam was loaded,
possible distortion near its toe being accounted for by assuming complete
rigidity over only part of its nominal length. The distance over which the
bracket was assumed to be rigid will be referred to as the effective length
of bracket. That this assumption gave results very near the truth was born
out by the analysis as a whole. Comparison with experiments 294 and those
subsequent to it (ref. G9) showed that measured deflections and those
computed from bending moments were within a few thousandths of an inch
throughout the length of the beams(which - alone in these experiments-
were simply supported so that measured bending moments could be checked).
In genersl, computed and measured deflections agreed very well if the cross
section of the specimen was symmetrical about its web, Measured deflections
tended to be greater than those computed, especially in the deeper sections
but when the deflections associated with shear deformation of the webs of
the stiffeners (computed by the method described by Timoshenko in ref. Bl)
were sdded, agreement was better. Examples will be found in fig, 15 in
Section 24. Unsymmetrical specimens tended to twist under load and this
ceused additional deflections which sre discussed in Sections 22 and 23,

Fig. 9 shows how the brackets affected the bending
moments and deflections. It was convenient to express the bending moments
in the standard form:

M

I
Q

where W was the total load applied to the specimen and L was its
length (16 feet in every case) and C was a numericel constant. If the
specimen was freely supported at its ends the bending moment at midspan due
to the Glengarnock loading was given by C = 3:516. If the specimen was
completely fixed at both ends the fixing moment was given by C, = 2°342 when
the specimen had a uniform cross section throughout its length. As the
effective length of bracket was incressed the end moment required for
complete fixity was also increased and the left hand disgrem of fig. 9



shows the values of C, for the fixing moments plotted on a base of ratio of
effective length of brackets to total length of specimen. It will be
observed that there was a considerable increase in the moment required for
camplete fixity as the size of bracket was increased.
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Similerly it wes convenient to expressthe deflect-
ions & in the form

& = Cs WL
S84EX

where 1 was the moment of inertia of specimen at mid-spen and the
other symbols had the same meaning as before. At mid-span of a uniform
beam with the Glengarnock loading C,; = 5°887 when the ends were freely
supported, and C; = 1°199 when the ends were completely fixed. The
right hand diasgram of fig. 9 shows the values of these coefficients as the
effective length of brackets was incressed.. It will be observed that the
déflection with freely suppotrted ends was not affected much, but that the
deflection with completely fixed ends was considerably reduced as the
effective length of brackets was increased.

Fig. 9 also demonstrates clearly the importance
of the degree of constraint in determining the bending moments and deflect-
ions. The effect of constraint was one of the most important factors which
had to be taken into account in the analysis end this will be discussed in
Section 20.

19) Classification of Experiments.

The, experiments fell breadly into five main groups
end are classified in Tables VIII to XII. In the left hand column of these
tables the cross sections tested are identified by the letters used in
Table VI and the second column indicates whether the load wes applied to
the stiffener, or the clear side to the plate of the specimens. The symbol
* jndicates a scalloped specimen, The type of end comnection or size of
bracket is indicated at the top of the remasinder of the columns; two
columns are given for each, one for rivéted connections and one for welded
ones denoted by R and W respectively. For details of the structure in any



TABLE VIII

SCHEDULE OF TESTS ON SPECIMENS WITH BRACKETLESS END CONNECTIONS.
STANDARD BASE STRUCTURE

Pads Short Long Extension
Lugs - Lugs Pieces
¥ R W R w Free R W
A C a7
B C 24
C C 61
D C 30
E C 64
P C 67
G C 11
S 13
H C 216 217 218 219
I C 86
S 88
J* C 249
K C 40
S 34 35
L C 50
] 46
M C 263
M*C 377
N C 8l
S 83
P C 196 198 . 197 200
Q* C 290,292
U 8 91
vV 8 97
w C 169 171 170
] 139 144 141 140 143
X 8 101 »
Y C 177 179 178
S 149 154 151 150 152
Z C 188 190 : 189
S 159 163 161 150



TABLE IX

SCHEDULE OF TESTS ON SPECIMENS WITH EQUAL SIDED BRACKETS,
STANDARD BASE STRUCTURE

S8ize of Bracket (inches) 36 56
X X
21 27 30 28 30 35
R W R W R W R W w W R W
AC 29
B G 26
S 7,8 4
cC ¢ 83
D C 53
E C 66
P C 69
G C 14 15 16 17
s 1 S
H C 220 231 223 235 3234 235 236 237
I ¢ 87
] 89
¢ 253 . 254 253
K C 43 44
s 56 (37)
L C 54 55
] 48
¥ C 267 268 269
¥*C 281 283 283
N C 83
s 84
P C 202 205 3206 207 209 3210 213 213
Q C 242 245 244 245 246 247
Q* C 291,293
R C 242A 343A 244A 245A 246A 247A
S C 235 256 257 238 239 240
T C 335A 236A 237A 2358A 259A 240A
U s 110 112 95 95
VvV S 99
v C 173 175 174 175
S 145 146 147 148
X s 103
Y C 180 181 182 183 184 185 186
S 155 156 157 158
Z C 191 193 193 194
S 164 165 166 167



TABLE X

' SCHEDULE OF TESTS ON SPECIMENS WITH UNEQUAL SIDED BRACKETS.

STANDARD BASE STRUCTURE

Size of Brackets

35 x 45 35 x 85 55 x 64

R w R W R . i
H C 2338 229
J* C a56 357 258 259 260 261
M C 270 271 73 373 374 275
¥* C 284 285 286 287 288 289
P C 214 215

* Indicates scalloped specimen.

TABLE XI

SCHEDULE OF TESTS ON BRACKETED SFECIMENS WITH REINFORCED BASE.

Size of Brackets

4

15 x 15 27 x 37 30 x 50 Angle 36 x 30

v W R W W v
B 8 6
G s 21
I s 90
K S 38 59 60 59
L S 49
N S 85
U s 113 96 116,117
v s 125 100 136,137
X s 134 104 137,138




TABLE XII

SCHEDULE OF TESTS ON SPBCIMENS WITH ENDS OF STIFFENERS SNAPED

Angle of cut at end of Stiffener
measured from plate (degrees)

25 30 60 75 90
A G 28
B G 25
c ¢ 82
D ¢ 31
E C 65
y 68
¢ C 9,10
s 13
J* G 248
K C 41,42
s 33
L ¢ 52 51
s 47 45
M C 262
M* C 276
P C 195
Q C 241
R C 241A
s ¢ 234
L 254A
U S 02
v 8 08
w C 168
s 143
X S 102
Y ¢ 176
s 153
z ¢ 187
8 163



particular test the reader is referred to the statistical reports (refs. G2
to G9), where a disgram of the arrangemént of each test will be found. The
test machine itself is described in ref. Gl. Each table shows along the
rows the identification numbers of the experiments carried cut on each cross
section, and down the columns the identification numbers of the experiments
carried out on each type of end connection.

Experiments analysed but not included in the tebles were as follows:

Tests 105 to 109
114 to 115
130 to 124 End connections at each end not identical.
129 to 133
135 to 136 )
199

Tests 250 and 351 g :
264 and 265 Ends connected to standard base by “gussets)
278 and 279 ) . :

Tests 20 and 22 Ends connected to standard base by angle brackets.
Tests 294 to 298 Specimens freely supported at ends.
Tests 2 and 5 Base struts released.

Some tests were carried ocut with the connections
halfway between the riveted and fully welded conditions, e.g: only the toes
of a bracket were welded and a test carried out, and then a further test
was carried out after welding had been completed. Intermediate experiments
of this nature have also been omitted from the tables, but these tests
were analysed and the results are mentioned where significant.

The following experiments were not included in the

analysis:
Test a3 12 in. x 4 in. tee bar specimen.
Tests 55 to 57 ) 10 inch non-standard cross sections.
70 to 80 ) '

Test 299 6 inch flat bar with non-standard end connections.

The results of the tests on specimens with welded
end connections will be discussed at some length in following Sections.
From these alone a great deal cen be learned sbout applications of the
theory of bending to the structural members of ships. BRiveting is not so
importent in shipbuilding as it used to be, end consideration of the
experiments on specimens with riveted comnections will be deferred until

Section 38,



30) Method of Analysis.

With the assumptions mentioned in Section 18 it
was possible to apply the theory described in Chapter I of this thesis.
When applied to a symmetrically loaded symmetrical structure likeé the
majority of the specimens tested in the Glengarmock machine, equation 9°7
used as described in Section 11, gives values of the indeterminate bending
moments M. associated with constraint at the ends of the specimen:

M. =

p |

If M, = Bending moment associated with applied load if specimen

was simply supported at its ends.

E = TYoung's modulus of elasticity.

I = Moment of inertia of cross section between brackets.

L = Total length of specimen.

e = Effective length over which brackets are assumed to

behave rigidly.

- the value of § was given by:

Le
B = -| M ax
EI
-(%-9

If X, is the stiffness of one end structure, and if F,

- the velue of a was given by:

%~Q
a = 1 ax + 3 F,
EI
(579
= L ~ 2e *

(20°1)

= ]/KE

(20°2)




Hence %'e
- |\ s ax
EI
M, = (/e e) (20+3)
L= 2e +

(a1

It may also be of interest to find the value of
the ratio Me/M; where Mg is the constraining moment associated with
complete end fixity. Complete fixity implies that F, = 0 and it is easy
to show that:

n

n
™

™

(30+4)

2 =
"
=
m
+
o
H

It is clear from this equation that the constrain-
ing moment is proportional to the mcoment My required to fix the ends of the
beam completely against changes of slope. The ratio M/M¢ is a function
of the ratio between the stiffness K: of the end structure and the bending
stiffness of the specimen, the latter being expressed by

K, = 2 EI
L - 3e

Equation 20*4 is illustrated graphically in fig.
10 which covers the range of values encountered in the tests. A logarithmic
scale was used for the abscissae,

Fig. 10 -0
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STIFFNESS K, OF END STRUCTURE (~E)

All the quantities off the right hand side of
equation. 203 were easily calculated except the stiffness K: of the end

‘'structures. The values of M, could be found fram the experiments, however,



and it was then possible to solve equation 20°4 for Kg:

K, = M. . g= (30°5)
M, - M, (L= 2e)

<

The method of analysis was to find experimental
values of K. in this way, and to use them as a basis for comparison between
~ the effectiveness of different arrangements for obtaining end constraint.
In many cases equation 20°5 made it possible to obtain several estimates of
K. of a given end structure, one for each experiment in which thet end
structure was used,

An almost complete catalogue of the K: values for -
welded end structures was made (see Sections 31, 24 and 35) and from these
it is possible to find theoretically the bending moments acting on any size
or shape of specimen, thus extending the range of usefulness of the exper-
iments without further experimental work (see Section 36). The possibility
of calculating K¢ from first principles is discussed in Section 27.

21) Experiments on Specimens With Bracketless End Connections (Welded).

These were considered first because the specimens
had constant cross sections throughout their length and were, therefore,
the simplest experiments to ahalyse theoretically. The tests in this
category are summarized in Table VIII on page 63.

The laygest group of experiments was that shown in
the first column, in which the ends of the specimens were welded to pads on
the end structures. TFor each test the strains measured at each position
were first plotted on a base of load and the mean increase in strain per
unit increase in load was estimated, From these figures the stresses and
hence the bending moments acting on the beams were calculated, and this
information was used, as described on page 59, to find the constraining
monents, Using the known or calculated quantities on the right hend side
of equation 20°5 a value of the stiffness K. of the end structures was
estimated from the results of each test. It was found that the values of
K, varied considerably but that they fell into quite well defined groups
depending upon the size of end comnection. The average value of K¢ for
12 inch connections was estimated to be 1*O E ton im/ radian and that for
6 inch connections was 0°15 E ton in./radian, Values of K. found experiment-
ally for welded pads at the ends of specimens of different sizes were plotted
and are shown in fig., 11. With the help of this diagram it would be possible
to estimate the bending moments and deflections of gny stiffener less than
12 inches deep with its ends welded to pads in the Glengarnock machine.

The theory indicates that for a given value of K.
the variation of constraining moment depends upon the moment of inertia of
cross section of the specimen. To illustrate this Table XIII was prepared
and shows the theoretical stresses and deflections of all the 12 inch
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Fig. 11. Stiffness of End Structure from Experiments on Specimens
connected to it by Welded Pads.

specimens tested at Glengarnmock with welded pads, assuming K¢ = 1*0 ton in.
per radian, compared with the values actually 'Qeﬁwred at midspan., The
variation of stiffness of the specimens was n?:tfbut was sufficient to
indicate the validity of equation 30°3. (A better example of the applic-

ation of the theory will be given in Section 34). The table demonstrates
the following points:

a) Constraint of stiff specimens was less than that of more slender
specimens, as predicted by theory.

b) The stresses in specimens with symmetrical cross sections agreed
fairly well with theory.

c) The stresses in specimens with unsymmetrical cross sections
agreed with theory within limits, but there was a considerable
departure from the theoretical distribution of stress over the
cross section, the stress near the junction of flange with wedb

being greater than it would b2 in a similar symmetrical specimen.
The theory which accounts for this is described in Section 23.



TABLE XIII

COMPARISON OF THEORETICAL STRESSES AND DEFLECTIONS WITH THOSE

MEASURED DURING TESTS ON SFECIMENS WELDED TO PADS ON END STRUCTURE,

Theoretical Stiffness of End Structure K. = 1°0 E ton in./radien.
associated with 13 inch stiffeners.

Stresses at 13 tons load. Deflections
M, (tons/in?) (inches) Test
Cross I - |

' Section 4 M Theory
E (in,) Theory Experimental {Bending With Expt.
; Heel Av, Toe| only shear
A (c) 269°3 0°283 | 9°19 9+9 0°286 0°300 0386 a7
gB (c) 2975 0°244 | 902 89 0+264 0°+378 0310 24
Cc (C) 3315 0°324| 8°26 86 0°242 0°356 0°295 61
I (C) 336°1 0°332 | 7°81 9°4 9°*1 9°0/0°238 0°353 0°340 86

(s) =10°2 -8°9 .7°3 0°328 88
L (C) 337+3 0°222 | 7°69 73 0°237 0°350 0°372 50
) -8°1 0°260 46
D (C) 5147 0°157 | 3°99 4+3 0°164 0°178 0°230 . 30
E (C) 5850 0°4141 | 3°91 37 0°148 0°1632 0°156 64
P (C) 647°7 0°139 | 3°79 37 0°136 0°+150 0*142 67

For each test, the measured stresses and deflections were plotted on
a base of load, and mean lines drawn through the points obtained. The
experimental values quoted were read from the mean lines at 12 tons load.



d) The theoretical deflections calculated by bending theovy were
slightly less than the measured deflections. When the theoret-
ical deflections due to shear strain in the webi were added
agreement was better, but in several cases this addition did
not account for the whole of the difference.

A The remaining specimens to be considered in this
Section were constrained either by long lugs or by extension pieces. The
only welded long lugs were those fitted to the 6 inch flat bar (Z) and an
enalysis of experiments 163 and 190 showed that the end stiffness K¢ in
these experiments was 0°75 E tons in./radisn. The end stiffness of the
same specimen with extension pieces was 3°35 E tons in./radien. The end
stiffness associated with larger stiffeners and extension pleces was much
greater and it was clear that this was accounted for by the fact that the
extension piece was the seme size as the specimen itself. The values of
end stiffness were as shown in Table XIV,

TABLE XTIV

VALUES OF END STIFFNESS K. ASSOCIATED WITH EXTENSION PIECES.

Specimen Stiffness K Test
tons in./radisn
H 12 inch Channel bar 7+35 E 219
P 9 inch Channel bar 75 E 200
w 6 inch Bulb angle 50 E 143
Z 6 inch Flat bar 225 E ( 180

(Angle bar similar) , ( 189

It should be noted that both B and P were
unsymmetricel specimens and the anomalous values of K, may be associated
with the diffaculty of estimating the bending moments when the stress
across the flange showed a considerable variation. The difference in ::
behavicur between symmetrical and unsymmetriéal sections noted above was
common to all the experiments. It was desirable to exsmine the theoretical
explenation and this will be discussed next.
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22) Behaviour of Specimens with Unsymmetrical Cross Sections.

Throughout the experiments it was observed that
although the symmetrical specimens behaved according to the simple beam
theory those with unsymmetrical cross sections did not. 1In the latter
there was a tendency to twist under load and the stress in the flange was
decreased at its outer edge and steadily increased across the flange until
it was well above that calculated by the bending theory where the flange
joined the web., This behaviour was due to the action of shearing forces in
the beams at right angles to their longitudinal axes. )

Consider a beam cross section consisting of
elements of plate at right angles to each other, for example a wertical web
with horizontal flanges., In each flange there is a resultant force F along
the beam due to the bending moment at a distance x from the origin, which,
if M varies, will be incressed to P + 3F on the section distant x + 8x
from the origin. The increase 5F represents the longitudinal shearing
force on the flange where it joins the web and this force ts equal to the
integral of the shearing stresses in a longitudinsl direction across the
flange miltiplied by the area over which they act. It is well known that
shearing stresses acting on an element of material in one direction are
accompanied by equal complementary shearing stresses at right angles to
that direction. The integral of these shearing stresses in the flange
maltiplied by the area over which they act represents a horizontal force
perpendicular to the longitudinal axis of the beam. There are similar
forces in all the elements which make up the cross section. The sum of the
vertical forces is equal to the increasel$V in vertical shear force over the
distance 6x along the beam, In a symmetrical cross section the horizontal
forces in the various elements cancel out giving a net zero force. In an
unsymmetrical cross section, however, there are unbalenced horizontal
forces which form a couple tending to twist the beam, If the applied
vertical force is displaced horizontally so that, together with the result-
ant vertical force associated with shear stresses across the section, there
is a couple which balances the moment of the couple tending to twist the
beam, there will be no torsion and the beam will bend about its neutral
axis (in a mammer similar to a beam with a symmetrical cross section):

This argument could also be applied to loading in a plane perpendicular to
the one discussed above, and clearly there must be one point in the cross
section of every beam through which loads applied to the beam must pass if
twisting is to be avoided. This point is known as the ghear centre and its
location must be found whenever bending of an unsymmetricel cross section
is considered. The theory is not so well known as it should be but some of
the modern textbooks on strength of materials, such as those by Den Hartog
(ref. BS5) and Salmon (ref. B2), include a short discussion of the main
points. The textbooks only deal with the simplest cases but Stelling in
1929 (ref. T3) gave a general semi-graphical method which might be useful
in the more dAiffycult ones. Some excellent experiments were carried cut on
channel bars by Seely et al (ref. T1) in 1930. More recently Terrington
(ref. T2) published a summary of the theory.

For the present analysis a simple relationship
was developed for the position of shear centre in the unsymmetrical cross
sections which were used at Glengarnock, viz: an inverted angle bar welded
to a plate (or its riveted counterpart - a channel bar riveted to a plate),



The shape of cross section to be considered is shown in fig. 12. The theory

SHEAR
CENTRE

Fig. 13

was confined to sections of this shape, eand it was found that to clarify its
rresentation it was convenient to let the symbols represent only numerical
values of the quantities concerned end to indicate their direction in the
text. By considering the shearing stresses across the section it can be
shown that under the action of shearing force the following foroces act in

a direction perpendicular to the léngitudinel exis of the beam:

A) If the beam is bent sbout the horizontal neutral axis through the
centroid without twisting (assuming that with the cross section as shown
in fig. 13 the plane of the peper is vertical), and if there is shearing
force V per unit length of beam acting down:

i) The horizontal forces P, in the plate cancel each other,
giving zero resultant force.

ii) A horizontal force F, acts in the flange from béft: 1o tight
(as drawn).

iii) A vertical force W, acts in the web in an upwards direction.
B) If the beam is bent sbout a vertical axis through its centroid, without

twisting, end if there is a shearing force S per unit length of beam
from left to right:

i) A horizontal force P; acts in the plate from right to left.
1i) A horizontal force F; acts in the flange from right to left.

i1i1) A vertical force W, acts in the web in a downwards direction.



It is clear that the shear centre in this cross
section must be ebove the plate and to the left of the web (whereas the
centroid of the cross section is to the right of the web). Let e be the
rmumerical value of the horizontal distance of the shear centre measured
from the middle of the plane of the web and let J be the vertical distance
of the shear centre above the mid-plane of the plate. Then for bending
without twisting, the forces V and S pass through the shear centre, and by
taking moments sbout this point a pair of simultaneous equations for e and
j eare obtained:

F (w-3) - W,e = 0  (23°1)
B J - Fplvw - J) + Ve = o (232+2)

It is sassumed that the thickness of each component
of the cross section is amall compered with its other dimension and the
work is simplified by replacing the actual cross section by one approxim-
ately equivalent to it. Let w be the distance between the mid-thiclmess
of the flange and mid-thickness of the plate and let u be the thickness
of the web such that (wu) is equal to the cross sectional area of the
actual web., Let f be the distance between the mid-thickness of web and
the remote edge of the flange and let v be the thickness of flange such
that (fv) is equal to the cross sectional area of the actual flange,

Let 2p be the breadth of plate and let t be the thickness of plate.
Then the equivalent section will have a cross section as shown in fig. 12.
Also let:

r = Numerical velue of distance of centroid of section from
plane of flange.

n = Numerical value of distance of centroid of section from
plane of web, :

I. = Moment of inertia of cross section sbout horizontal axis
through its centroid.

)
1}

Moment of inertia of cross section sbout vertical axis
through its centroid.

I. = Produet of inertia of cross section about horizontal and
vertical sxes through its centroid.

I, = Moment of inertia of plate alone about vertical axis through
centroid of plate alone.



By integrating the shearing stresses across the
section the following equations are obtained for the forces:

P = 0

v, = ¥ w|(6tv - Sumr - uw|
T, 6

F, = ¥ fivr
I, 2

P, = 8 3tp°
I), o]

W, = 8 !K(f - 2n)fv = mm]
1,3
y

F, = 8 vf (3¢ - 3n)
I), 6

By considering the calculation of moment of
inertia and product of inertia of the cross section it may be shown that
these equations are equivalent to:

PA = 0 Ps = 8 I,
I)’
W, = Y I = V W, = S I,
I, I,
F = ¥V I, F, = S (T, - I1.)
A T 4 8 T 7

x
~

4 Substituting in equations 23°1 and 232°2, and
solving, it is found that:

I.I.w

e = o (22°3)
LI, - I‘,r
3 = [I*(Iy - 1) - IE} hd (23°4)
LI, - *xy

It will be observed that in sections of normal proportions
J is very small and it may usually be assumed to be zero.
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It was found that the shear centres in the un-
symmetrical cross sections tested at Glengarmock were about one inch from
the webs of the chammel bars and inverted angle bars, on the opposite side
of the web from the centroid of cross section. For example in the 12 inch
inverted angle bar (I) the distences were e = 0°94 inch and J = 0°14 in, ,
and in the 6 inch inverted angle bar (V) the distances were e = 0°96 inch
and § = 0°04 inch.

With one or two exceptions, the loads were applied
in the Plenes of the webs of the stiffeners. The calculation of the
resulting stresses and deflections involved the following steps:

1) The applied load R at eny section was replaced by an equal and
parallel load R' acting through the shear centre, and a twisting
moment T equal to the moment of the load (in the plane of the web)
about the shear centre,

2) The stresses and sngle of twist of the specimen associated with the
twisting moments T were calculated by the method described below.

3) The load R' was resolved at the shear centre into rectangular comp-
onents R}, and R} , each parallel to one of the principal axes of
the cross section (tazking account of the twist of the specimen
relative to the direction in which R' was applied),

4) The flexural stresses and deflections associated with R} sand R},
were calculated in the usual way using the principal moments of
inertia I, and I, of the cross section, and superimposed to find
the effect of R' acting at the shear centre.

5) The stresses and deflections found in (2) and (4) above were added
(algebraically) to find the total stresses and deflections due to
the loading.

In the Glengarnock analysis steps 1, 3, 4 and §
were straightforward but to calculate step 2 it was necessary to develop
equations which applied to the cross sections and loading used. The
treatment given by Timoshenko (ref. Bl) for the simple cases of I and
channel beams loaded at midspan was extended, and an ocutline of the theory
applied to an inverted angle bar welded to plating is given below. In
order to simplify the computation it was assumed that the loads R exerted
by each ram of the testing machine were applied at discreet points along ﬂﬂ—sau(o
the specimen instead of each load being apread uniformly over a distance — —
of 14 inches as was assumed in the calculation:6f bending moments.

Considering any one peir of the loads, their
action was to apply a constant torque along those perts of the specimen
between their point of application and the ends of the specimen, but there
was, ofcourse, no torque along the specimen between the two loads. If the
cross section had been circular the torques would have been yesisted
entirely by shear and there would have been no stresses between the two
sections at which the loads were applied. With any other cross section,
however, the applied torques are resisted by bending actions as well as
those associated with shear., In the Glengarnock specimens, although no



torque was applied between the two loads which formed each symmetrical pair,
the flange, web and plate were subjected to bending all along the specimen,

end these bending actions were responsible for the unusual distributions of

stress over the cross sections of the specimens at midspan.

By symmetry, the cross section at midspan must
remein plane during twisting and it was convenient to take the origin of
co-ordinates at midspan. (When the specimen twisted the co-ordinate system
rotated with the section at midspan, and the actual rotation of the fidspan
cross section was calculated by finding theoretically the rotation of the
ends of the specimen with respect to the cross section at midspan). The
mathematical treatment was the same as for a cantilever built in at the
origin end subjected to torques applied at specified positions along its
length., '

Let:
$§ = Angle of twist at any cross section of beam.
= df/ax = Angle of twist per unit length of beem.
T, = Torque balanced by shearing forces associated with torsion.
Ts = Torque balanced by shearing forces associated with bending

of the components of the cross section.

The cross section of the beam was divided into a
number of narrow rectangles and the dimensions of the cross section were
taken to be those shown in fig. 13. Then:

T = ce (22°5)

where C is the torsional rigidity of the bar celculated in the
usuel manner (ref. T4) from the properties of the narrow rectangles into
which the cross section had been divided:

c = (v + wm® + 2pt?) G (33°6)

In order to determine Ty , bending of the flange,
web and plate must be considered. Rotation of the cross section takes place
sbout the shear centre. (If it did not the shear centre would be displaced
whereas it has been postulated that this is not so). For this reason the
shear centre is also known a8 the centre of twist. Rotation of the cross
section about the shear centre causes bending of the flange, web and plate,
about their respective centroids and the shearing stresses at their junct-
ions build up a force in each component. Reférring to fig. 13, which shows
a short length dx of the beam, and using the signs appropriate to the
directions of the axes shown, it is found that:
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a) In the flange:

Longitudinal strain in flange =  + S¢ (32+7)
due to force S, in flange. fvE _
Deflection of flange. = 3z, = (w=23)9 (22°8)
Curvature of flange. = &z, = (w-J) 3 (22°+9)
ax? ax?

Longitudinal strain in flange = + £ (w- 3) 8°¢ (22°10)
at web=flange Jjunction due to 2 ax?
bending of flange.

b) In the web:
Longitudinal strain inweb at = + we d°Q (23°11)
web-flange junction due to 2 ax3
bending of web.
Longitudinal strain in web due =  + Sv (22-13)

to force S,. wu E



Longitudinal strain inweb at = - we 3¢ (22°13)
web=-plate junction due to 2 ax®
bending of wedb
e) In the plate:
Longitudinal strain at web- = 0 since joint is at N.A,
plate Jjunction due to of plate.
bending of plate.
Longitudinal strain due to = 4 Se | (232°14)

force Sp . 2pt E

By equating strains at the web-flange junction
the following equation is obtained:

+ £(w-3) 88 + S = + we #3 + _Su (22°15)
2 s vE 2 ok

and by equating strains at the plate-flange junction:

_Se = - mwe &4 + Su (22°16)
2pt E P’ ax? wE

For equilibrium of the cross section:
i) The total longitudinal force on the cross section must be zero

i.e: S; + 8, + 8 = 0 (22+17)

ii) The total moment of longitudinal forces about any point on cross
section must be zero. In particular, taking moments vertically
about plate:

S + M

w w

]
Qo

wS. o+ (22-18)

vhere M  is moment due to bending of web.




By solving equations 22°15, 22°16 and 22°17 it was found that:

Sw = if8w(w-3) - fvwe + 3ptwelw E a°¢ (22-19)
2(fv + wa + 2pt) ax®

S. = §xue + dptwe - Zptf(w- 4) - wuf(w- i)} tvE a9
3(fv + wu + 3pt) ax?

Pl

(32°20)
S, = f{fiv(w~3) - wue - 2fvywe} 3pt E ¢ (22°21)
2(fv + wu + 3pt) ax®
Note that M/I, = Ee & where I, = Inertia of web alone about
A its om centroid,

so that:

Mw = X gsw = Lw SP
6 2pt

and equation 22°18 was satisfied. By integrating the shear
stresses in the web it was found the the total force in the web was zero.

Now, the bending moment = E y° (w-3) &9
acting in the flange. 12 ax®

‘and by integrating the associated shear stresses it was found that
the total shear force in the flange

= £ & - (w-3)z* B &8 (22°23)
3 ax 12 axd

Similerly, total force in plate

= 2Ejtp® a9 ' (32+23)
S ax®




On substituting for S; it was found that these two
forces were equal and acted in opposite directions. They therefore formed
a couple, the moment of which was equal to one of them mmltiplied by the
the distance between them, viz: w. This is the part of the torque applied
to the beam which was balanced by shearing forces due to bending of the
flanges, that is to say it is T,

But the total torque on the cross section is

T = T, + 'I."a

By using equations 23°5, 22°6, and 23°32 with 22°20, or 232°33, and
writing @6/dx®* for &®@/ax® it is found that this equation can be

written:

:

(22-25)

%
A
Q
%

¥ = +{(8pt + 4w + t)(w- P -  (wu_+ 4pt)5we‘§f'vwE
12(fv + wu + 3pt) c

or

For small bars on wide plates it is better to use the first expression.

T(x) is the applied torque per unit length. In the Glengarnock
machine the function T(x) is defined to be:

T(x) = 0 0 < x € a
= T ' e < x B
= T B < X < (¢ ]

= ar T > 0

where T is the torque due to the load applied by one ram
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acting through the horizontal distance between the shear centre and the
line of action of the load, and the rams are placed at distances a, § and
w from midespan of the specimen.

The solution of equation 23°25 by the usual methods
would be difficult because T(x) is discontimuous. The equation would
normally have to be solved for each range of x separately and 6 of the 8
arbitrary constants in the solutions would have to be evaluated by using
the conditions of continuity at a, p and w. This is avoided by solving the
equation by means of the Laplace transformation, which has remsrkable
properties for simplifying this type of problem.

Although the solution will apply to both halves of
the specimen, the origin was chosen to be at mid-span because the loading
was symmetrical about this point. Each half of the specimen may be con-
sidered separately and it is convenient from the mathematical point of view
to assume that T(x) is zero at all points to the left of the origin. (The
solution derived faor the right hand half of the specimen applies, however,
to the left half by symmetry). It is assumed that © is sectionally cont-
inuous in every finite interval in the range x 2 O and that © is of
exponential order as x-» ., (As in most engineering problems these
assumptions are obviously justified). The Laplace transform of such a
function is obtained by multiplying the function by exp(~sx) and integrat-
ing the product with respect to x, from zero to infinity. The transform is
then a funétion of the new varisble s. Applying this theory to the diff-
erential equation 22°25 it 1s transformed into the following algebraic
equation:

e r

f.e(s) - sl6] - [g_e_l - | £(s)

= - _T Yexp(-as) + exp(-ps) + eggf-ws!% (22-28)
Ko s s s .

By symmetry, the cross section at x = O remains
plene and hence [Glf 0. The value of {d6/dx) is unknomn and may be
represented by the constant A, the value of which will be found later.
Equation 22°26 may then be written:

(& - Ve)£(s) = A - T iex;p(—a.sl + exp(-ps) =+ eggs-ms%
K*C 8



Or, solving for f(s) and rearranging by means of partial fraction:

A
f - V)

f(S) = (

(s*

Qi
™
@ |-

]

s exp(-as) + exp(-Bs) + exp(-ws)
~ it o)
‘ (33°27)

] The function £(s) is the Laplace transform of 6(x)
and the value of the latter is given by the inverse transform of equatipn
32°37, which may be found by the methods described in refs. M3 and 4.

It is:

D
"

Ak sinh(x/k) + 2[1 - cosh x = a.]
c

] (-]

\1 = coshx=208 + T|l1 - coshx-=- u;
‘ k c k
g

(33°28)
where the terms in square brackets are taken to be zero when the

value of x 1is less than the subscript outside the bracket.

The derivative of equation 22°28 is

Ck k

&l

a8 = A cosh(x/x) - _;r_[sinh X = a.l
X

-+ _;r_[sinhx-gl - _'r_[sinhx-m:\
Ck k Ck k
’3 w
(22+29)



Hence, at mid-span d"g = ae = A
(i.e: when x = 0)

It may now be seen that equations 23°7 to 22°14
can be used to find the stresses at mid-span, which are associated with
twisting. The determination of the constant A from the remaining boundary
condition will be discussed shortly.

The angle of twist of the specimen with respect to
the section at mid-span was obtained by integrating equation 22°28 or by
dividing its Laplace transform, equation 22°27, by s and finding the
inverse transform.

g = k’Agcosh( /) - 1} * -g-‘_(““) B ksm;‘iﬁl

o

+ _'!.‘_{(x-ﬂ) - ksinhx-@l
G X
B

k

+ %Vx-w -ksmhi;ﬂ}

o

(33+30)

The angle of twist at the end of the specimen with
reapect to mid-span was found by putting x = 1/2 in this equation. This
is equivalent to the angle of twist at midespan with respect to the ends of
the specimen.

The constant A may be evaluated by using the
boundary condition at x = I/2 (where L is the length of specimen between
end structures). There are two cases to consider:

i) If the ends of the specimen are not free to warp the boundary cond-
ition:is 6 =0 when x = 1/2. Substituting in equation 23°28 it
was found that :

A = - _1_ 3 - coshl/2-a = coshl/2 -8 = coshl/2 -
k k k

kC

sinh (I/2k)

(23°31)



ii) If the ends of the specimen are free to warp the boundary condition
is d6/dx = O when x = 1/2 Substituting in equation 22°29 it
was found that ' '

isinh_l_.{?-a. + sinhly2-8 + sinhly2 -w
k k k

kC cosh (I/2k)

(22°33)

The actual end conditions are between these two
theoretical extremes.

23) Application to Experimental Specimens.

The theory was used to find the distribution of
stress over the cross section at mid-zpan of some of the unsymmetrical
specimens. TFig. 14 shows (full lines) the theoretical stresses, plotted
on an cutline of the cross section of the 12 inch inverted angle bar "I"
compared with the stresses measured during tests 86 and 88 (shown by
circles). This cross section was chosen as an example becsuse it was the
only weldéd unsymmetrical cross section with ends welded to pads which was
tested with loads applied to both clear and stiffener sides of the plate
(see Teble VIII).

The position of the shear centre was at the point
marked "SC" and was found to be 0°94 in., left of the centre line of wedb
(as drawn). The centre of area of the cross section was at the point
marked "CG". The loeds were applied through push rods equidistant from the
web as indicated by the arrows. The theoretical stresses were calculated
as described in the previous Section, after finding the bending moment at
mid-span on the assumption that the end stiffness was X = 1°0 E ton in,
per radien, as shown in fig. 11. The bending moment at mid-span was
resolved into components in the directions of the principal axes of the
cross section, taking account of the angle of twist at each value of the
applied load, and the stresses due to bending were calculated. The theor-
etical angle of twist at mid-span was 2°35° at 12 tons load (no exper-
imental measurements), and the dotted lines in fig. 14 show the distrib-
utions of stress across the flanges et that load due to bending alone.

It will be observed that the small change in the angle of the plane of the
applied bending moment had an insignificant @ffect upon the distribution
of stress, which agrees well with that calculated in the usual way and
quoted in Table XIII,

Without considering twisting, the experimental

" points show that the stresses in the flanges of the two specimens were
greater than those attributable to the calculated bending moment: The
experimental values of stress near the neutral exis of the section show
little evidence of axial forces on the cross section and it is clear that
the actual applied bending moment was greater than the calculated one.
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This discrepancy is not easy to account for, but it is probebly associated
with the fact that the 12 inch inverted angle bar "I" was tested as the
middle one of three specimens, the outer two being 10 inch specimens, see
‘Table VII.. Both of the cuter specimens had approximately 2/3 of the stiff-
ness of the middle one, It follows that with the same load applied to each
specimen the change of slope at the ends of the 12 in. specimen would tend
to be less than the changes of slope at the ends of the 10 in, ones. This
difference between the changes of slope at the ends of the adjacent spec-
imens would involve a twisting of the horizontal angle bar and associated
plating of the end structures to which the specimens were connected, with
the result that the constraining moment applied to the 13 in. specimen
would be less, end that applied to the 10 in, specimens more, than the
calculated values. The result would be sn increase in the net bending
moment at mid-span of the 12 inch specimen, as observed. (It should be
noted that this explanation is purely conjectural. There is no positive
experimental evidence for the suggested intersction between the specimens
via the end structures. Very early during the period of my research I
asked the B.S.R.A, committee which guided the experiments for permission
to carry-ocut tests in order to determine the extent of this effect - and
others - but the request was rejected. No reascn was given).

When the theoretical stresses associated with
twisting were added to those due to bending, the theoretieal stress distrib-
ution shown by full lines in fig. 14 (pege 88) was obtained. If the diff-
erence discussed in the last paragraph is ignored, the agreement with the
experimental stresses is quite good and confirms the validity of the theory
described in Section 32. It will be observed, however, that in Test 86 the
stresses associated with horizontal bending of the flange due to twisting
were less than predicted by theory. On the other hand in Test 88 they were
greater. It is suggested that the explanation lies in the fact that in
Test 86 the flange of the angle bar wes in tension and this would tend to
reduce horizontal bending and deflection, whereas in Test 88 the flange was
in compression and this would tend to increase horizontal bending and
deflection,

Similer results are obtained if the theory is
applied to other specimens. It was found that the values of the constant A
given by equations 22°31 and 22°32 were almost identical and an aversge
value was used to obtain the stresses. It may be concluded that the end
conditions do not affect the stresses at mid-span significantly. When
considering bracketed specimens it is sufficiently accurate to take as L
the distance between the ends of the brackets, for the purpose of finding
the stresses associated with twisting. In some of the tests there were
discrepancies between theory and experiment which were not easy to account
for theoretically. In particuler, an attempt had been made during tests
195 to 247A to reduce the twisting by connecting the plating of the two
outer specimens to the inner one (see ref. G7, page 6). Later, during
tests 248 to 293 (ref. G8) the stiffeners had been mounted 24 in. apart .
on a strip of plating 72 in, wide, except three tests - namely 248A, 2624
and 276A, in which the specimens were sepasrate as in tests 1 to 194. By a
comparison between the results of these tests and the results of tests 248,
362 and 276, in which the plating waw continuous it was observed that
making the pleting continuous reduced the tilt (but did not eliminste it),
reduced the deflections, and reduced the stress at the heel of bar and
increased it at the toe, as might be expected. Although the stiffnesses
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of the specimens tested side by side in these tests were almost identical
the two outer specimens had one cross section (usually unsymmetrical) whilst

the centre one had another (usually symmetrical).

This method of testing

caused difficulties when an attempt was made to include the Yesults in the
present analysis. For exsmple, two 9 inch inverted angle bars "Q" were
tested one on each side of the 9 inch tee bar "R", with the plates comn-

ected by means of bolted strips.

The flanges of the inverted angle bars

pointed inwerds towards the tee bar, and although the amount of twisting
was reduced (not eliminated) some of the load applied to the two outer
specimens must have been transferred to the imner one in the process, with
consequent changes in the bending moments and deflections.



It may be concluded that the twisting of the
specimens could be attributed to the cause described in!the previous _
Section, and that the theory given accounts for the major change in stress
distribution provided that the specimen was free to twist as assumed. If
the unsymmetrical flange is in compression the twisting is increased, and
if it is in tension the twisting is decreased. In general, the twisting
and methods adopted to reduce it made the ummodified deflections an unrel-
isble guide to the degree of constraint, but it was found that an estimate
could be made of the net bending moment acting at mid-span by teking the
bending stress at the flange to be the average of the measured stresses at
the heel, and at the centre of the flange. The net bending moment so found
could then be used as described on page 59 to find the constraining moments.

In practice where an area of plating is stiffened
by a number of parallel unsymmetrical stiffeners, usually the flanges of the
bars all point the same way. In this case the twisting will probably be
considerably reduced without modification to the bending moments (except
near the boundsries of the panel parallel to the stiffeners).

24) Experiments on Specimens with Equal Sided Welded Brackets on
Standerd Base Structure.

The experiments on specimens with equal sided
brackets were the most comprehensive of all the groups tested at Glengarne
ock. The main reason for this was, ofcourse, that the experiments were
designed in the first instance to compare welded with riveted construction
and in the letter one is almost bound to fit brackets. The experiments in
this category are indicated in Table IX, In this Section only the tests on
welded brackets are considered; riveted brackets are discussed in Section
38, The method of anaslysis of the experiments was that described in
Section 20 using equation 20°5. The cross sections of the specimens were
constant along their lengths except in weay of the brackets and the effect-
ive length of brackets was decided in each case by the criterion suggested
in Section 18.

It was found that the measured value of end stiff-
ness K gwas approximately 10°0 B tons in./rsdien for all welded brackets
reaching to "adjacent floor" of the end structure. This was the largest
group of specimens having the same walue of Kg . Four symmetrical specim -
ens having the widest possible range of moments of inertia - Fy B, R and
Z (see Table VI) - serve to illustrate the validity of equation 20°3 and
a comparison between theory and experiment is shown in fig. 15. Using
the experimental value Kg = 10,0 E tons in./ radisn and calculated values
of the other quantities, the value of M was found for each of thése

middle row of diagrsms in fig. 15. These values of M. were used to find
the net bending moments and hence to calculate the stresses and deflect-
jons shown by full lines in the upper and lower rows of diagrams, The
corresponding experimental values are shown by the circles, those in the
middle row of diagrsms being bending moments calculated from the flange
stresses, plotted from the theoretical bending moment diagram for freely
supported ends, in the manner described on page 59. The dotted lines
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indicate bending moments for completely fixed ends, end deflections for
for freely supported and completely fixed ends respectively. Although the
end structure was the same in each ease the end constraint varied consid-
erably as the stiffness of the specimens was altered. The important point
is that this was predicted by equation 20°3 and it may be concluded that
the equation correctly describes the variations of constraint.

Fig. 15 also gives an indication of the accuracy
of the theory of bending when variations of cross section along the length
of a beam end of end constraint are taken into account. It is clear that
the accuracy is good encugh for practical purposes except that the measured
deflections were generally slightly more than the theoreticael figures
associated with bending alone, as shown by full lines in fig. 15, but some
of the difference could be accounted for by the addition of the theoretical
deflections associated with shear strains in the webs of the stiffeners as
indicated by the chain dotted lines. (The discrepancies noticeable in the
experiment on section F may be explained partly by the fact that this
specimen was tested with specimens C and E (see Table VII) which had con-
siderably different stiffnesses and examination of the diagrem of stress



across section F at mid-apan indicated that there was a considerable com-
pressive force along the axis of the specimen.)

It may be concluded that, provided K; could be
calculated from the scantlings of the end structure, equation 20°3 could
be used to estimate fairly accurately the constraining moments and hence
the stresses and deflections of symmetrical specimens (and also of unsymm-
etrical ones by means of the theory in Section 22). The possibility of
calculating K, will be discussed in Section 27.

Meanwhilé it is of considerable interest to cont-

inue to estimate values of K¢ from the experimental results so that the .
various different end structures etc. may be compared. It was found that
the values of Kg associated with other bracketed specimens again fell into
groups. They varied according tb the size of bracket and to the size of
angle bar which connected the ends of the brackets to the "adjacent floor"
of the end structure. The K¢ values appeared to conform to a logical
pattern and they are shown graphically in fig. 16.

|

i

| p—
1 — iO'E
¥"‘>—-
OLsE
L & |
w
- _
= —1
> | _
B i 2! 7 30 7
i 1 [ U I O A O I I A | L1 1 ¢+ 1 11
NOMINAL SIZE OF BRACKET
INCHES
Fig. 16.

Values of stiffness KF. of end structure associated with welded brackets.

Three curves are shown which refer to brackets having 4, 5 and 6 inch bars
between the bracket and adjacent floor of the end structure.
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25) Experiments on Specimens with Brackets Welded to Reinforced or
Weakened Base Structure.

The stiffness of the base structure could be
altered as explained by Mr. Jensen in connection with fig. 5 of ref. GS5.
Only two experiments were carried cut with the base struts released at both
ends but an analysis of these and the experiments in which the struts were
released at one end only, showed that the effect of this modification was
not so great as might have been expected.

A larger number of experiments was carried out
on specimens attached to ends reinforced by welding and these are shown in
Table XI., An analysis of these experiments showed thet compared with the
end stiffness of the standard base structure (fig. 18), the values of K¢
were increased by about 50% when the brackets reached to the "adjacent
floor" but the increase diminished rapidly as the size of bracket was
reduced, being about 35% with 30 inch brackets and only 10% with 27 inch
brackets. When 15 inch brackets were fitted there was no significant
increase in K; when the base was reinforced.

26) Use of Results of Analysis to Predict Behaviour of Other Specimens
in the Glengarnock Machine,

: The analysis described above was concerned solely
with 16 ft. long specimens which were symmetrical about mid-span, symmetric-
ally loaded, and attached at each end to structures which were identical.
The analysis has made it possible to deduce from the experiments,values of
stiffness K¢ of the end structures associated with the various forms of end
comnection (brackets, pads etc.) and enablel comparisons to be made of their
effectiveness in producing end constraint. By means of the theory descr-
ibed in Chapter I of this thesis these results may be used to predict the
behaviour of more complex specimens and of other specimens which might be
tested. Indeed, within wide limits the behaviour of any welded specimen in
the Glengarnock machine acted on by any given form of loading could be
estimated.

The Glengarnock testing machine was built so that
it could test specimens 8 ft., 16 ft. or 24 ft. long., So far it has only
'beer% used for specimens 16 ft. long and the analysis has been concerned
withzca‘fone. With the values of stiffness of end structure deduced, however,
equation 20°3 may be used to find the theoretical bending moments if
specimens of lengths other than 16 ft. were tested. It will be noted that
if the length of specimen is increased, keeping the same structural arr-
angements at its ends, the ratio M¢/Mg will be increased but Mg decreased
(and vice versa), see figs. 9 and 10,

If altminium specimens were tested, equation 20°3
could be used to predict the results (due regard being paid to the different -
Young's modulus), provided that the end connections were made of steel. If
the end connections were of aluminium, this would alter the stiffness of the
end structure in a manner which would have to be determined. If the whole
of the end structures were made of aluminium the equation could be used as
before.



Equation 20°3 could also be used to find the
bending moments acting in specimens with any other form of loading (e.g:
uniform load, concentrated loads etc.), the only restriction being that the
loads must be arranged symmetrically asbout mid-span, and thet the ends must
be structurally identical. If these conditions are not fulfilled it is
necessary to use the more general theory described in Chapter I. There
were only a few experiments carried out at Glengarnock in which the condit-
ions mentioned were not fulfilled; these were concerned with specimens in
which the end structure at one end differed fram that at the other. To
illustrate the application of the theory in Chapter I together with the
results of the analysis described above, two examples have been chosen.
In one of these, test 199, the specimen had a constant cross section through-
out its length and the theory of Section 3 could be applied. In the other
example, test 129, there was a bracket at one end but not at the other, and
it was necessary to use the more complex theory of Sections 9 and 1l.

The first example chosen was test 199, in which
the 9 in. chamnel bar (P) was loaded with one end welded to a pad on the
end structure while the other had a welded extension piece fitted. Thus
the specimen was of constant cross section throughout its length but was
connected to end structures which differed in stiffness:

Stiffness K. at left hand end = 0*34 E ton 1n/ radian.,
(Welded lugs - see fig. 11)

Stiffness K¢ at right hand end = 75 E - tons in./ radiasn.
(Welded extension piece -
see Teble XIV)

4
Moment of Inertia I of cross section (Table VI) = 139.,8 in,

Hence

e, = 0°1045 ceg = 0°720

For a specimen which had uniform cross section the
bending moment required for complete end fixity was

My = 2342 YL

24

Substitution into equations 3°4 and 3°5 of
Chapter I of the thesis gave the results:

M, = 0°378 WL M 2505 WL
24 24



Fig., 17A shows the theoretical bending moment
coefficient C, of the equation

M = c, YL

24

The bending moments associated with the load applied
to the beam assuming frealy supported ends and with end constraint are shown
separately, the latter being represented by a straight line.
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The measured bending moments acting in experiment
199 were first computed from the mean lines through graphs of load as
abscissae and the "mean stress across flange" quoted in ref. G7, as ordine
ates. These were plotted so that their distances from the free bending
moment line were equal to scale to the net bending moments and are shown in
fig. 17 A as circles. One would expect these points to lie on a straight
line which would represent the experimental bending moments associated with
constraint. In fact the circles lie on a curved line. This can only be
accounted for by the possibility that the "mean mean stress across flange"
quoted includes part of the effect of twisting;(¥he cross section was an
unsymmetrical one). When the load is not applied at the shear centre, the
theory in Section 22 indicates that the bending moment acting at any cross
section could be computed with fair accuracy from the mean of the measured
stress at the heel of the flange and the measured stress at the middle of
the .flange. (See fig. 14). Bending moments were computed in this way my at
sections of the beam where all the readings were available, and were
plotted in the same manner as before. These are represented by + symbols
in fig., 17 A and it will be seen that they lie approximately on a straight
line. The theoretical constraining moment line agrees quite well with the
experimental constraining moments found in this way.

A more complex example was test 1329 in which the



6 inch bulb plate (X) was attached by a welded pad to the end strutture at
its right hand end, and by a 27 in. welded bracket to the end structure at
its 1éft hand end, which was also reinforced by welding. The stiffnesses
of end structures were:

Stiffness K¢ at left hand end = 5'1 E tons in./radian
(27 in. welded bracket - fig. 16

increased 10% to allow for

reinforcement, see Section 25)

0°15 E ton in./radien

Stiffness K¢ at right hand end -
(6 in. welded pad - see fig. 11)

The moment of inertia I of the cross section clear
of the bracket was 38°9 inf (see Table VI), and referring to the theory in
Sections 9 and 11 of Chapter I it was convenient to tabulate the calculation
of a and i as follows:

TABLE XV

Lever
Item Ea about Eal Eal? Ei
mid-span

Specimen 434 + 11°5 + 50 570 10330

Flexibility of 6°66 + 96°0 +640 61400 -
right hand end

Flexibility of 0-18 - 96°+0 - 17 1650 -
left hand end ,
Total 11-18 + 60°1 +673 63630 10330
Ei = 10330 + 63630 - 60°1 x 873
Hence

11°18/E ton' in!

a
i = 33450/E ton' | in,
Centroid of 1/EI - diagram was 60°1 in, to right of mid-spans

Consider now the diagrem of M;/EI. It was imown
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from previous work that the area under the Mg diagram,was 0°0972 WL?

tons in? with its centroid at mid-spen. When caleulating the value of B
the bracket at one end had to be accounted for, and this was done by
assuming that the specimen was rigid over the effective length 23 inches in
way of the bracket. Using the moment of inertia of cross section of the
specimen equal to 38°9 in# along the remainder of the length, it was
found that

(‘;,333/ A ‘

B = = | Msax = — 11 W
EI E 24
- ( '9)/7. ‘

The centroid of this diagrem was found to be 3°1 in.
to the right of mid-spen, i.e: 57°0 in. to the left of the centroid of the
1/EI diagram.

Equation 9°7 of Chapter I gave the following
equation for the constraining moments in Test 129:

M = {- 11°1 + (=11°1) (=57) x|WL

11°18 55450 24

= ( - 0°992 + 0°+0189 x ) WL
24

where x is messured (positive to right) from an origin 60°1 in.
to the right of mid-span.,

The terms in the bracket correspond to the
coefficient C;, in the equation

M, = ©C, WL

The theoretical bending moments, represented by
coefficient C, , are shown in fig. 17 B. Again the experimental bending
moments were plotted from the free bending moment line to give the
experimental bending moments associated with end constraint.

The cross section of the specimen was almost
symmetrical and little or no twisting was present. The experimental points
(shown by + symbols) lie on a straight line as expected. The corresp-
onding theoreticel line is rather high and the most probable reason for
this was that the estimated stiffness of end structure associated with



97

4
'- - = —
A 3

3
= % -'219‘4— - + /\)9
© 9 ) + 27 Fig. 17 B.,
Z ™
0 w
Z O | —
w o
m ————— —
1Ol

the 27 in. bracket was slightly too great.

, In figs.1l7 the theoretieal constraining moments
for the experiments in which both ends had equal stiffness sre indicated
by dotted lines. It will be observed that the common shipyard practice of
Joining the constraining moment thus found for one end of the besm, to the
constraining moment found similarly for the other end, in order to find the
constraining moment line for the intermediate case (as suggested in ref, X5
for exsmple), gives incorrect results.

27) Calculation of Stiffness of the End Structures from the Scantlings.

It has been shown that the behaviour of the
specimens can be accounted for by the theory described, but values of Kg
were found experimentally. In order to calculate theoretically the constr-
aint of besms in practice it would be necessary to estimate the values of
stiffness K¢ by consideration of the scantlings of the end structure. The
complexity of the end structure, coupled with the lack of experimental
evidence about its behaviour, rendered this task very difficult. This
Section is a record of an attempt to estimate the stiffness of the end
structures in the Glengarnock machine from first principles. It was
assumed that the stiffness was derived from strmcture in the immediate
vicinity of the ends of the specimens and that the form of end connection
played a major part in determining the structural action., The estimested
values of stiffness are compared with those found experimentally.

It was apperent that the stiffness of the end
structure when the ends of the specimen were welded to pads, was derived
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from a complicated action which involved bending of the plating of the end
structure. Calculation of this was likely to lead to some difficult math-
ematics and the attempt to do so was abandoned. It is suggested that the
experimental values in fig. 11 would serve as a useful guide for the estim-
ation of values of K¢ in practice because it seems most unlikely that the
stiffness arises from any action other than the local bending of the plate,

The calculation of end stiffness when the end
structure was fitted with welded extension pieces was then esttempted. It
was assumed that any increase in stiffness of end structure sbove that
associated with ends welded to pads, was derived from resistance of the end
extensions to bending. The plating associated with the extension pieces
was very wide compared with the diménsions of the stiffener and it was to
be expected that there would be shear lag in the plate. Reférring to fig. 7
of the Appendix to this thesis, however, it was clear that if the problem
were to be solved by a Fourier series method the effective breadth of
plating would be not more then 0°36 x (length of extension piece). If this
breadth were used the moment of inertia so found would be the maximum which
could occur and stiffnesses of end structure rather greater than the actual
ones would be calculated.

Considering the 6 inch flat bar (2) and using this
criterion for the effective breadth of plate it was found that the stiffness
was approximately 3°'0 E tons in./radian, if the remote ends of the exten-
sion pieces were freely supported. To this value must be added the stiff-
ness found for ends welded to pads only: 0°15 E tons in./rsdisn., Comp-
aring this theoreticel figure with that found from experiments 180 and 189,
vizt 2°25 E tons in./radien, it may be concluded that assumptions upon
which the calculations were based yield results which are rather too large,
as expected., (This conclusion was supported by similar results from an
analysis of experiments 163 and 190 in which the ends of the 6 inch flat
bar (Z) were constrained by "long lugs".) In experiments 160 and 189 the
specimen was quite heavily constrained (Mc/M¢ = 0°88) and the variation of
stiffness of the end structure did not affect the stresses as much as it
would if the constraint were less, so that this method could possibly be
used in practice with sufficient accuracy in some cases. The stress at
8 tons load calculated using the value of end stiffness estimated theor-
etically was 12°4 tons/in® at the edge of the flat bar at mid-span, and
the meesured stresses at the seme place in experiment 160 were between
- 12'6 and - 15°7 tons/in® (meamsured on both sides of the bar) and in
experiment 189 about 11°8 tons/ind

A similar calculation to that described in the last
paragraph was carried out for the 6 in., bulb angle specimen (W) but comp-
arison with aesults of experiment 142 showed that the calculated value of
end stiffnessﬁ‘ar too low. Reference to Table VII showed that the bulb
angle specimen was tested between the flat bar on one side and the angle
bar on the other. Examination of the diagram in ref. G5 showing the
structure of this test, and a comparison with fig. 3 of ref. Gl, showed that
whereas the extension pleces of the cuter specimens extended to the back
plate of the end structure, the extension pieces of the middle specimen
were welded to a diaphragm plate so that the extension pieces were about
half as long as those fitted to the ocuter specimens. Using this shorter
length a revised stiffness of end structure was calculated on the assumption



that the coefficient of constraint ¢ = 0°5 at the end of the extension
piece welded to the heavy diaphragm. The calculated stresses were then very
near the experimental onesj;ubecause of the high end constraint this again
was not a very good check of the theory.

An attempt to apply the same theory to experiments
200 and 219, on sections P and H respectively (see Table VI), failed. The
calculated stresses were too low. Analysis of the experimental figures
showed that the end stiffness in experiment 219 was approximately one third
of the calculated value. It is suggested that the discrepancy was not due
entirely to the assumption of too great an effective breadth of plate in the
end structure but might be accounted for either by shear in the webs of the
short deep extension pieces or by relative deflections of the end structures
at the ends of the extension pieces, or both. Unfortunately both the
experiments in question were carried ocut on unsymmetrical specimens and the
distribution of stresses across the flanges was far from uniform so that
accurate comparison was impossible, In view of this the mstter was not
pursued further.

‘ The majority of specimens were tested with a
bracket which either reached to the bulb angle called the "adjacent floor"
of the end structure, or was comnected to it by a short angle bar or flat
bar. When the bracket reached the "ddjacent floor" it seemed reasonable

to assume that the bracket acted as a rigid plate and that when load was
applied to the specimen rotation of the bracket as a unit was resisted by a
horizontal force, associated with deflection of the "adjacent floor",
acting through a lever arm L,. Whenthe bracket did not reach to the °
"adjacent floor" but was connected to it by a short bar, the bracket would
rotate an additional amount due to flexibility of the bar.

Let the load which would be required to cause unit
deflection of the "adjacent floor" in way of the bracket be k tons /inch
deflection, and let the distance between the "adjacent floor" and the point
about which the bracket trotates be L, inches. Then the angle through which
a rigid bracket reaching to the "adjacent floor" would fotate under a
moment M is given by:

0, = M

If a smeller bracket, of effective length b, is
fitted and its toe is comnectad to the “adjacent floor" by a bar, there is
an additional rotation because of flexure of the bar. It was assumed that
the end of the bar was freely supported at the "adjacent floor" and that
the moment of inertia of the cross section of the bar and associated
plating was I, int Thena little consideration on the lines indicated in
Section 8 {I) of Chapter I of this thesis, showed that if the additional
rotation of the bracket was €, radiens, under the same applied moment$¥

M = 5 EI'Lag e.
(L, - b)°
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Hence
- 3
6, + 6 = u + (L -1)° M
k14 3 EI 1A

This may be rearranged to give the following
theoretical expression for the stiffness of end structure when a welded
bracket is fitted at the end of a specimen:

Ke = .__..l.{__.
6. + 69
= k 14 (3741)
1 + (L' - b)a k
3ETI,

To use this equation it was necessary to estimate
values of k, L, , and I, . Examination of fig. 3 of ref. Gl, showed that
the value of k must depend considerably on the behaviour of the bulb
angle and the short struts which comprise the structure of the "adjacent
floor", and the work described in Section 25 had shown that a small amount
of welded reinforcement had a very significant effect. It was therefore
unlikely that any calculation of the deflection per unit load applied by
the toe of the bracket would be successful. In view of this it was decided
to take the value of the end stiffness of a bracket reaching to the
"adjacent floor" to be that found experimentally in Section 24 and to : .
deduce from this the value of k for the "adjacent floor" of the standard
base structure of shhe Glengarnock machine.

i.e: k 18 10 E

The point about which the bracket rotated must be
very near to the plate of the specimen and as a first approximation the
point of totation was assumed to be at the level of the top of the plate,
so that L, = 36 inches, Then equation 27°1 becomes::

K¢ = 10 E tons in./ radian
1+ (88-1)° -~ (37+2)

389 I,
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A difficulty now arose about the magnitude of I, .
The breadth of plate was so large that shear lag could not be neglected, but
the shear lag theory in the Appendix did not deal with a beam which hed a
large part of its length rigid in way of a bracket. Referring to fig. 7 of
the Appendix, however, it was clear that if the problem were to be solved
by a Fourier series method the effective breadth of plating would be not
more then 0°36 (L, - b). The magnitude of I, caloulated assuming this
breadth of plate to be effective would be the upper bound of I, and stiff-
nesses calculated using this value of I, would be rather greater than the
actual stiffnesses. Using this criterion for effective breadth of plate,
values of I, were found for each size of bracket connecting bar and equation
27°3 was then solved to find theoretical values of K. . The calculations
were carried out for all sizes of brackets from 12 in., to 36 in. , with
4 in,, 5 in., and 6 in. bars connecting them to the "adjacent floor". The
theoretical values of K¢ are shown by the full lines in fig., 18. The corr-
esponding results deduced from the experiments were shown in fig. 16, and
are repeated in fig. 18 as dotted lines. (The theoretical and experimental
values were identical when the brackets reached to the "adjacent floor"
because this was one of the assumptions upon which the theory wes based).

| ——— EXPERIMENT

- 10E  __ ThEoRy 7

Fig., 18.

VALUES OF K¢

| (7 310
I T T U A S T A T
NOMINAL SIZE OF BRACKET
INCHES

There is a remarkable similarity between the gen-
eral character of the theoretical and experimental curves and agreement is
particularly good when the smaller brackets are considered. The theor-
etical values of K¢ were always greater than the experimental ones as was
anticipated when making the assumption regarding the effective breadth of
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COMPARISON OF THEORETICAL STRESSES AND DEFLECTIONS WITH THOSE

MEASURED DURING TESTS ON SPECIMENS WITH WELDED BRACKETS.

Test Nominal Flange Stresses (tong/in?) Deflections (inches)
No. size of
Bracket Theory Measured Theory Measured
B (in.) H . P
Section H, 12x3x3x 0'46/0'66 Channel bar, Load 24 tons.
237 35 7°7 7°9 68 6°0 0°216 0+245
225 a7 8+6 84 77 6°5 0°243 0°+273
223 21 9°6 97 8+6 73 0284 0°+285
221 15 109 9°9 08 98 0330 0+360
Section P. 9 x3x 3 x 0°32/0°44 Channel bar. Load 12 tons.
213 35 56 62 54 4+5 0-181 0-172 -
210 27 68 75 8°7 6°1 0+206 0°212
207 21 8+0 93 8°Q 7+0 0°255 0°+246
203 15‘ 9+45 113 9°6 93 0-318 0+352
Section Z, 6 x 0°45 TFlat bar. Load 6 tons.
104 35 5°9 58 5°8 0°143 0-159
167 - 6°3 0°+151
193 27 765 77 0°214 0°-337
188 - 8°2 v 0°-227
192 21 9+45 9°6 0309 0324
185 - 9°9 0+321
191 15 12°8 12°0 0°+487 0°+466
- 12°0 0-445
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plate for calculating I, . The error was largest with 30 in. brackets and
was as much as 20% in the case where the bracket was connected to the
"adjacent floor" by a 4 inch bar. Even in this case, however, reference
to fig. 10 showed that the maximum error in the ratio: M./Me¢ would be only
10% The error is probably due largely to the assumption of too great an
effective breadth of plating, but it is possible that deflection of the
bar itself due to shear deformation.in addition to bending, also played its
part in reducing the stiffness of the actual end structure.

An estimate of the accuracy of equation 27°2 by
comparison with the experimental results mey be obtained by considering
Table XVI (page 102) in which the theoretisal and measured stresses and
deflections are side by side for experiments in which bracket size was
varied from 35 in., to 15 in, As'usual the measured stresses and
deflections were plotted on a base of load, and mean lines drawn through .':
the points obtained. The experimental values quoted were read from the
mean lines at the load stated. The theoretical values of K¢ were calcul-
ated from equation 27¢2, and the theoretical stresses and deflections were
calculated after finding the constraining moments from equation 20°+3.
Deflections associated with shear deformation of the webs of the stiffeners
have been included, Note that sections H and P were channel bars and (as
indicated in Section 23) they twisted when loaded so that measured deflect-
ions were increased and the stresses across their flanges were not uniform.
Hy, ¥ and T in Table XVI indicate heel, middle and toe, of the flange. Note
also that the theoretical values were found entirely by calculation except
the value of k which had to be estimated from experiments ort specimens
with brackets reaching to the "adjacent floor" of the end structure. It
may be concluded that when brackets are fitted the stiffness of an end
structure similar to that of the Glengarnock machine could be calculated
with fair accuracy provided that an estimate could be made of the deflection
per unit load of the structure to which the toe of the bracket was attached.

A general conclusion from the work described in
this Section was that the stiffness of end structure could be calculated by
using the theory described in Ghspter I of this thesis, provided that the
members within the end structure were not so’short compared with their
other dimensions that deformations due to shear strains became comparable
with those due to bending. ' ‘

28) Experiments on Specimens with Riveted End Connections.

In Chapter I it was assumed in Section 10, which
dealt with flexible connections, that tiveted Joints would behave elastic-
ally. The experiments at Glengarnock on specimens with riveted brackets
show that this assumption was fully justified. Fig. 19 (page 104) shows
typical graphs of deflection measured during a series of experiments on the
9 inch channel bar (P) when attached to the standard end structure by 21 in,
brackets. In test 204 each arm of the unflanged bracket was connected by
four 5/ 4 inch diam, rivets. Inltest 205 the number of tivets was increased
to seven and in test 208 a 3 in. flange was added to the brackets. It will
be observed that in all cases deflection was proportional to applied load.
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The increase in mumber of rivets caused a small
decrease in deflections whereas the effect of adding flanges to the brackets
was only slight. In test 207 the brackets were welded to both the specimen
and the end structures and the decrease of deflection, corresponding to an
increase in constraining moment, was substantial. It is clear that the
additional flexibility associated with riveting must be taken into account
in the analysis of the experiments in which this method of connection was
used. To apply the theory desciibed in Chapter I it seems reasocnable to
assume that most of the flexibility of the joints occurred near the toes
of a bracket, because the rivets there experienced much higher forces than
those near its heel. It was postulated, therefore, that there would be two
regions of increased flexibility, one of which would result in a reduced
stiffness Ky of end structure, and the other could be allowed for by
assuming additional flexibility Fg of the specimen near the toe of each
bracket. It was assumed that the centre of the flexibility Fg associated
with each bracket was located at the end of the length e over which the
brecket was assumed to be rigid (see Section 18). An equation for the
constraining moment similar to that derived in Section 20 could then be
found as follows. As before the basic equation is:

M. = 8
a

In the case of a specimen with riveted connections
to brackets at each end:

L-e '
1
B = - [‘ﬁ% dx + 2 M, Fq g

-t/

The first term in the brackets is the same as for
a welded specimen and represents change of slope associated with the bending
of the specimen., The second term represents the changes of slope at the
toes of the two brackets, due to the flexibility of the riveted connections
acted upon by the bending moments M;, at distance e from the ends of the
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specimen (the bending moment at this position being that which is-assoc-
iated with the load applied to the specimen on the assumption of simple
supports at its ends). \

The equetion for a must also be modified to take
account of the flexibility of the riveted connections, and it becomes:

L - %e + 2F£¢ + 2]5‘g
i .

a

Again the first term on the right hand side is
associated with the bending flexibility of the specimen itself and is the
same as for welded specimens. The second term represents the flexibility
of the end structures (modified by the inclusion of the more flexible
riveted comnection to the bracket.)., The last term takes account of the
flexibility of the riveted connections between the toes of the brackets and
the specimen. _

The equation for the indeterminate bending moment
M. associated with end constraint may therefore be written:

l-e

1
- j_&dx + 3 M F,
JET
M, = we (28°1)
L -3¢ + 2Fe: + 3 F, :
ET

Velues can be calculated or estimated from results
of eny chosen experiment, for all the terms in this equation except Fpe and
Fg . There are tiw.unknowns, but only one equation. This difficulty could
have been overcome if the step from the entirely riveted bracket to the
entirely welded bracket had been made in two stages. TFor example, the
connection between brackets and end structures could be welded first, The
results of an intermediate test could then be used to find Fg on the
assumption that the stiffness (or its reciprocal, the flexibility) of end
structure was the ssme as for the all-welded specimens analysed in previous
Sections. Alternatively, the connections between brackets and specimen - :.
could be welded first and the stiffness K;; of the end structure with
riveted bracket could be estimated by the methods described in previous
Sections. In either case the welding of the bracket could then be comp-
leted to make an all-welded specimen. Unfortunately however, throughout
the whole series of experiments welded specimens were converted from
entirely riveted specimens in one step - by welding both arms of the
brackets. An analysis of the type envisaged in this paragreph was there-
fore impossible.

An attempt was made to circumvent this difficulty
by analysing the results of two tests simultaneously thus obtaining two
independent estimates of the required quantities in equation 28°1, and
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solving the resulting two similtaneous equations to obtain F.p; and ¥z .

The number of tests to which even this technique could be applied was found
to be extremely limited because there were very few specimens which had
identical riveted connections and end structures. A trial with specimens
with equal sided riveted brackets (Table XI) soon demonstrated that the two
simultaneous equations obtained from the results of two tests on specimens
with nearly equal stiffness were "ill conditioned" and gave poor results.
The 6 in., 9 in. and 12 in. specimens were connected by brackets to 4 in.,
5 in. and 6 in., angle bars respectively in the end structures, so that
identical end structures were only to be found when 35 in. brackets were
fitted (in which cese the size of angle bar probebly did not matter). For
the purpose of analysis, the following specimens with 35 in., riveted
brackets were chosen:

12 in, channel bar H _ Test 226
9 in, chamnel bar P Test 212
6 in. bulb angle W Tests 148 end 175

Using the average of the results of the tests on
the 6 in, specimens, three equations were obtained. These were solved in
peirs, yielding three values of each of ¥, and F,, given in Table XVII.

TABLE XVII
FB FER KER

Equations solved
(redian/ton in.) (radiern/ton in.) (ton in./redien)

Hend P 0+46/E 0+128/E 7+8 E
H and W 0+27/E 0+15 /E 747 E
P and W 0°1%/E 0°185/E 5°4 E

In the 6 in, end 9 in. specimens the brackets were
connected by single rows of rivets, whereas in the 12 in, specimen there
were two rows of tivets (reeled). This may sccount for the higher values
obtained for X., in the solution of the two sets of equations which included
the results from the 12 in. specimen. It should also be observed that in
the equation obtained from test 226 the net bending moment in the region of
the toe of the bracket was nearly zero so that the value of Fg had little
effect on the result. In fact if Pz was assumed to be zero in this case,
the equation associated with test 226 could be solved directly and it was
found that K., = 75 E,

Summing up, it seems to be likely that if a 35 in.



riveted bracket with a single row of 3/4 in. dia. rivets is substituted for
a 35 in. welded bracket, the stiffness of the standard end structure will
be halved and in addition the flexibility of the riveted joint between the
bracket and specimen is approximately 0°12/E radian/ton in. If the
riveted bracket is connected by a double row of rivets (reeled), the
stiffness of end structure will be reduced to about three quarters of the
value it would have if the bracket was welded. The bending moment acting
in the specimen near the toe of the bracket was too small to allow an
estimate to be made of the flexibility of the riveted joint there.

The broad conclusion is, however, that no analysis |
of the type applied to welded specimens can be made of the -experiments on
specimens with riveted brackets. It is fortunate (from the point of view |
of practical usefulness of the enslysis) that welded construction has long
since proved its superiority over riveted construction, so that the need
for comparison has disappeared.

e e

29) Experiments on Specimens with Unequal Sided Welded Brackets
on Standard Base Structure.

During tests to discover the optimum size of
bracket (Table X) an apparently anomslous result was observed, viz: an
incresse in size of bracket did not necessarily result in a decrease in
stress (Ref. G7, page 9). Although they were looking for the size of
bracket which involved the least stress at mid-span, the investigators o
were surprised at this result and coungilled caution in accepting it until ‘M’/
they had carried out further experiments. They need not have been
surprised, however, because the result might have been anticipated theor-
etically. Table XVIII shows the theoretical effect on stress in a typical
specimen, of increasing the size of brackets reaching to "adjacent floor"
of the end structure., It will be noticed that as the effective length of
bracket along the specimen was increased, the ratio MC/MF was decreased
while M; was increased. The relative rates of decrease and increase of
these controlled the variation of constraining moment M, end hence of
stress. The latter reached a minimum in the case considered when the
effective length of bracket was about 45 inches, (compare with fig. 2 of
Ref. G7). It cannot be expected that the use of the idea of an effective
length of bracket as defined in Section 18, would yield accurate results
with brackets of the shape considered here but the general trend found in
the experiments is reflected in the theoretical results. In the tests, the
brackets smeller than 35 inches did not reach to the "adjacent floor" of
the end structure and these had velues of Kg less that 10°0 E ; the
constraint was considerably less than with brackets of the same size along
the specimen but reaching to the "adjacent floor" and the measured stresses
are correspondingly higher (See Table XVI). Therefore, when the actual
size of bracket was increased, the stress was repidly reduced until a
bracket reaching to the "adjacent floor" was fitted, After this the -
stiffness of the ends remained the same and further increases in size of
bracket served only to stiffen the specimen, with the results shown in
Table XVIII,

/



108

TABLE XVIIT

EFFECT ON STRESSES OF INCREASING THE SIZE OF BRACKET

REACHING TO THE "ADJACENT FLOOR" OF THE TEST MACHINE

9 inch Channel Stiffener (P). 12 tons load.

I = 159°8 in I/y = 18°5 in: K, = 10°0 E tons in./radian

M_= 337'5 tons in. at mid-span for freely supported ends.

Effective , Stress at
length of M. M, M, mid-spen.
bracket M,

(in.) (tons in.) (tons in.) (tons/in?)
12 * 0-858 251°0 215°4 6°60
24 * 0+836 2738 2287 5+87
36 0811 2037 238°1 537
48 0774 300°3 239°5 530
60 0720 3310 231°3 574
72 0631 3313 2090 6°94

* Denotes ‘l;,heoretical brackets reaching to "adjacent floor" but
having no practical counterpart of this size in the experiments.

Before leasving this Section it should be noted
that there seems to be little practical application for the work described.
If a 132 inch channel bar with 35 inch equal sided brackets wes fitted
instead of the 9 inch channel bar with 64 inch brackets, it would occupy
less space and reduce the maximum stress (at mid-span) by approximately
30 % (compere test 215 with test 237), end e similar substitution could be
made in other cases where these unusual brackets were tested.
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%0) Observations on Some Additionsl Experiments.

When a long series of experiments such as those
under consideration was undertsken, it wes ineviteble that a number of
tests would be maede which did not fit into the general pattern of the
reseerch, but which nevertheless, were related to it. During the Glen-
garnock experiments several auxiliary tests of this nature were carried out
to find the effects of fitting wrmsual end comnections, and of holes of
various shapes in the stiffeaners. Some tests were carried on until the
specimens collapsed; it is a pity that there were not more of these.
During the work described in previous Sections, the results of these -
additional tests were examined along with the rest, and some general
observations on them are made in this Section. These observations may not
be valid outside the range of loads applied to the s‘pecim?ns.

Several of the tests were concerned with different
forms of end connection. Curved brackets were about as effective as straight
ones (ref. G2). Brackets cculd be replaced by angle bars reaching to the
"adjacent floor" (e.g: tests 58, 60) but this arrengement was improved if
the end of the stiffener was also attached to a small bracket (e.g: tests
126, 127). The overall behaviour of brackets within the range of loads
applied was not significantly affected by fitting them with flenges, but
the latter reduced the stresses at the ocuter edges of the brackets and
would probably help to prevent premature failure by buckling of the bracket.
Specimens in which the ends of the stiffeners were not attached to the end
struotures experienced very little end constraint. Those in which the end
of the stiffener was also snaped so that the angle between the snaped edge
and the plating to which the stiffener was attached was less than 45°,
experienced higher stresses locally at the snaped edge than at mid-span.

(It may be noted in passing that when the ends of the stiffeners are free
the force applied to the specimens mast be reacted by shearing forces at the
ends, which are carried by the plating slone). When the ends of a specimen
were connected to the end structures by gussets (horizontal brackets) the
constraint was little greater than if the end of the stiffener had been
welded directly to the plating of the end structure without a bracket.

A small hole drilled in the flange of an inverted
angle bar or channel bar (e.g: tests 87B, 90B, 119) hed no significant
effect on the overall behaviour of the specimen, within the range of loads
applied, but caused a local stress concentration in the flange comparable
to that which would be experienced by a flat bar in tension with a similer
hole, ‘

Scallops cut in the web of a-stiffener (ref. G8)
increased the stresses in the specimen, when tested at low loads, to the
negligibly small extent which would be expected if the properties (I, I/ y)
of the cross section were calculated in the usual way, taking account of the
material removed, but the decreased area of web eaused an increase in
deflections associated with shear strains in the web. Provided that
sufficient material remained between the scallops to resist the shearing
forces in the vicinity of the neutral axis of the cross section it appeared
that their effect was negligible at low loads. Scallops may, however,
cause premature failure of the specimen. The latter occurred when the
loads were increased in test 293 and it is remarksble that, whereas in the
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elastic range the specimen tended to twist in one direction, it finally
failed by deformation in the opposite direction. This apparent anomally
seems to have puzzled the investigators, but a likely explenation is as
follows. Imagine the cross section of the specimen with plate at bottom
and inverted angle above it with flange pointing to the right. The shear
centre is to the left of the web and load applied vertically upwards in the
plane of the web causes the specimen to twist in a counter clockwise sense.
The twisting csuses the flange to be bent to the left and it resists this
action and applies to the web a force acting to the right. 1In addition to
this the whole section is bent upwards and the flange of the bar is in
tension; beesuse the specimen is bent there are vertical components of the
tension in the flange and these act to pull it downwards. Thus the forces
in the flange act upon the top of the web so that it is pulled to the right
and given a clockwise turning moment. Both of these tend to bend the web
so that it would deférm concave to the right. The web is thus acting as a
cantilever and the vertical bending stresses are greatest at its Joint with
with the plate. Very little material is left between the scallops to
resist this bending moment and the yield point of the material is soon
reached as load is increased. Deformation of the web concave to the right
rapidly increases when the material between the scallops yields and the
apecimen collapses by gross deformation of the cross section to the finel
form shown in fig, 1 of ref. G8.

31) Summary of Major Conclusions.

1) The ordinary theory of bending may be used to
calculate the behaviour of structural members of ships in the testing
machine at Glengarnock, within the elastic range of the material, provided
that attention is paid to the following: :

a) Variations of moment of inertia of cross section along the
length of a beam must be taken into account when finding
changes of slope, deflections etc: In particular, where
brackets are fitted the beam in way of them may be considered
to be rigid over most of the length of the bracket (e.g: over
the effective length defined in Section 18, page 60).

b) The degree of constraint afforded by the structure to which
the beam is attached must be estimated., This may be done with
the aid of the theory described in Chapter I of this thesis,
(provided that none of the structural members of the end
structure is so short that deformations due to shear strains
become comparable with those due to bending).

¢) If the cross section of the beam is not symmetrical about the
plane in which the loads are applied, the beam will twist
(unless the load is applied through the shear centre of an
unsymmetrical cross section). The stresses and deflections
assocliated with torsion must be added to those due to bending.
This effect is more serious when the load is applied on the



111

stiffener side, than when it is applied on the cleer side of
the plate. ‘

d) Riveted comnnections are much less efficient than welded ones
and in riveted construction the flexibility of the riveted
joints must be taken into account. (It was not found to be
possible, however, to estimate the flexibility of riveted
joints from the results of the Glengarnock experiments).

2) In the range of specimens tested at Glengarnock a
nunber of unimportant departures from results predicted by the ordinary
theory of bending (used as in 1 sgbove) were noted. It was thought that
these were associated with the following: ‘

a) Tension, and sometimes compression, scting along the length of
a specimen, associated with restraint of the ends of a spec-
imen by the end structures. (This was largest in bracketed
specimens, probably because of displacement of the reactions
at the end structures).

b) Deflections due to shear deformation in the webs of stiffeners.
¢) Interaction between specimens tested side by side.

d) Deflection of plating due to loads applied to it, causing
deformation of the cross section and hence changes of its
bending stiffness.

e) Shear lag in the plating.

3) The amount of constraint at the ends of a beam
depends upon the rotational stiffness of the end structures relative to the
bending stiffness of the beam itself. To achieve a high degree of constraint
the end of the beam mist be anchored to a firm foundation by a stiff
connecting member. One of these conditions alone is not enough.

4) The experimental values of end stiffness found
in the analysis may be used together with equation 20°3 to compare the
relative merits of the various sizes and types of end connections.
Extension pieces provide a particularly meat method of achieving com=
paratively high end constraint and they have the advantage that they do
not take up so much room as a bracket. On the other hand the magnitude of
the constraining moment which can be achieved with extension pieces is
limited, because it cannot be greater than M¢ found when e = O (see for
exsmple fig. 9). By fitting a bracket it is possible to increase Mg, and
if by this means the stiffness of end structure can also be made large
compared with that of the stiffener, it is possible to achieve very high
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constraining moments, and small deflections, (an example of which is test -
194 shown in fig. 155. The fitting of large brackets is not necessarily

a good thing, however, and it is often possible to design a bracketless
specimen which is as strong even if it is less constrained at its ends, and
which is lighter and takes up less room than its bracketed counterpart.
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CHAPTER IV

EXPERIMENTS IN A SHIPYARD ON A TYPICAL BULKHFAD STTFFENER.

32) Introduction

It has been shown that the theory of bending, used
as described, can account for the major phenomena observed in the Glengarn-
ock experiments. There was some doubt about the applicability of these
results to ships, however, because it seemed to be unlikely that the end
structure of the Glengarnock machine could accurately represent the whole
possible range of actual ship structures. For this reason it had originally
been intended to include in the research described here, a series of exper-
iments on a variety of actual ship structures in order to determine the
range of end stiffnesses encountered in practice. It was found that this
proJect was too ambitious and the attempt had to be abandoned.

Two experiments were carried out, however, at the
shipyard of Messrs. Alex. Stephen and Sons, of Linthouse, during the summer
of 1950, the first year of the three-year research period. Advantage was
taken of routine tests on the deep tanks during the construction of two
sister ships built to Lloyd's requirements; strain and deflection measure-
ments were attempted on one selected stiffener of the bulkhead between the
deep fuel tank and the engine room. It is the purpose of this chapter to
describe some of the difficulties encountered, and to discuss the results
of the second experiment during which some strain measurements and a
reliable set of deflections were obtained.

33) Water-proofing of Strain Gauges.

The majority of stiffeners on the boundary bulk-
heads of ship tanks are within the tanks and are immersed during tests on
the bulkheads, which are carried out by filllng the tenks with water.
Electric resistance strain gauges were(only available means of measuring
remotely strains in the stiffeners, and to do so they had to be water-
proofed. Preliminary experiments were carried out in the James Watt
Engineering Laboratories. There appeared to be two methods: either to
build a water-tight box around each gauge or to cover each gauge with an
impermeable material. The first alternative was disregarded because it
was considered that it would be most difficult to ensure water-tightness of
any temporary hollow object stuck to steel under water pressure, and also
because the presence of a substantial structure around the gauge might
interfere with the stress distribution in the stiffener.,

A small test beam submersible in a few inches of

ter was made, Teddington (British Thermostat) strain gauges were affixed
and known changes of ‘bending moment were applied. After a little persev-
erance readings accurate to * 0°1 ton/ in. were cbtained (geuges dry) over
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a period of several days. Several organisations were consulted and a
nunber of experiments were carried out with various water-proofing sub-
stances. The following conclusions were drawn from these experiments:

a) Durofix (recommended by N. P. L. as the best adhesive for the
strain gauges) does not adhere to steel in the presence of water.

b) Water-proofing substances having solvents étronger than acetone
(the solvent of Durofix) tended to cause disintegration of the
gauges as the solvent attacked the bonding.

c) Synthetic resins which require heat treatment were attractive
(Catalin Ltd., recommended their Resin 999B which required 150° ¢
for 35 minutes to set) but adequate heating and temperature
control on board ship would be difficult and was beyond my
caracity.

d) Synthetic resins which may be applied in the plastic state and
set after addition of an (acid) accelerator could not be used
because the acid appeared to attack the fine wires of the gauges.

e) Di Jell 171 (the substance universally used for damp proofing
these gauges) was not completely water-proof after a short period
of total immersion in water, but provided a good general protect-
ive covering and was easy to apply.

f) The most usual indication of the commencement of breakdown in the
water-proofing was a steady movement of the point of balance of
the Wheatstone bridge used for the measurements.

g) The procedure described in ref. W3 was too elaborate for this
particular purpose. ‘

A method recommended by the Royal Naval Scientific
Service gave satisfactory results over several days and was finally adopted.
This consisted of allowing the Durofix to set and then applying molten
Okerin wax No. 5561 up to 1/2 inch thick. The application of wax was
comparatively simple on a horizontal surface, but to apply it to a vertical
surface (e.g: bulkhead stiffener) was not so easy. The successful tech-
nique was to heat a soldering iron and to hold it touching the steel above
the gauge. A stick of wax was allowed to melt gradually on to the soldering
iron end the molten wax ran down the surface over the gauge where it solid-
ified if not too hot. Considersble time and patience were required to build
up a satisfactory coating.

34) First Shipyerd Experiment

The first experiment on board ship was carried out
on the bulkhead of an oil fuel bunker amidships in a cargo liner being
built by Messrs. Alex. Stephen and Sons. The stiffener selected was a 6 x
3 inch inverted angle bar welded to the bulkhead inside the bunker - see
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fig. 20A, The test head wes about 25 feet above the top of the stiffener,
which was 19 feet high and was continuocus over three spans between top and
bottom of bunker and two horizontal girders. Nine active strain gauges
were stuck on the flange of the stiffener and each was accompanied by a
dummy geuge for temperature compensation. These were connected by four-core
cables, through a specially erected stand pipe, to measuring apparatus on
the upper deck. (The top of the pipe was just higher than the test head
and this obviated the necessity for water-tight glands). A deflection

datum bar was made and knife edge brackets fabricated and welded ocutside

the tank opposite the test stiffener.*

The strain gauges were affixed to the stiffener in
the normal way but the weather was exceptionally wet and condensution in the
tank over night prevented adhesion. The gauges were re-affixed and this
time remained firm, after which they were allowed to dry out for three days
and were then waterproofed. The filling and emptying of the tank were very
slow operstions and the gauges were immersed for about five days. There
was a continuous apparent change of resistance of the gauges throughout the
test, similer to that mentioned in f of Section 33 above, and it was not
possible to chtain any strain readings. A good set of deflection readings
was obtained but it was suspected that the datum bar had been accidentally
moved during the test. After the test the gauge water-proofing was founéd to
have been ineffective, partly because of damp enclosed by the water-proofing
initially, and partly because of the entry of water along the holes in the
weX where the wires entered. Meny men were working in the tenk until the
last moment before test and although most of them gave me every considerat-
ion and assistence there were many strangers, particularly during the night,
to whom I could not spesk personally. At least two of the nine geuge
positions were accidentally dsmaged by pulling the wires but the damage
was not evident until the water-proofing was removed after the test.

*

This experiment would not have been possible without the magnif-
icent co-operation which I received from all quarters. When I first
approached the shipyard I found that the only suitable tank test for many
weeks was due to start 15 days later, whereas I had no strain gauges or
other apperatus immediately availeble., Within a few days (my diary shows)
I was able to borrow strain apparatus from Lloyd's Register of Shipping,
who also supplied strain geauges (which I later replaced), and Dr. J. Small
of the Electrical Engineering Dept. of the University found a local firm
who were able to supply 200 yards of four-core ceble. The shipyerd placed
at my disposal one of their techniciens who worked like a Trojan. With his
aid, and the blessing of the ship manager, the gauge positions were prepared
and the gauges stuck and water-proofed. The cable pipe (which passed
through three decks) and deflection datum bar etc. were mede and erected
for me. Although the tank test commenced one day sahead of schedule, all
these preliminasries were completed in time. '
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35) Second Shipyard Experiment.

The second experiment was carried out in the same
shipyard on an identical stiffener in a sister ship of the one mentioned
above., Much more time was available, and also construction of the ship
itself was further advanced so that the intensity of other work was less
than before. ZFrevious experience had shown that natural drying out of the
strain gauges was unsatisfactory; it was necessary to ensure that the gauges
were absolutely dry before applying the water=proof material. Two 1000 watt
fires were arranged to heat the gauges as they dried, one fire being
employed at each gamge position. The gauges were affixed as early as
‘possible in the day and heated, gradually incressing the air temperature to
about 50° to 60° C late in the afternoon. (An initial low temperature
avoids boiling the acetone solvent in the glue and creating bubbles in it).
The gauges should reach full sensitivity after 24 hour's drying at normel
temperatures, but experiments had showm that full sensitivity could be
attained in about 6 hours by careful application of heat. The water-proof
covering of wax was applied as late as possible but this had to be done
before evening because the fires conld not be left burning all night. It
was not found to be possible to build up a coating of wax greater than
1/8 inch thick in the time available and the protection was completed with
Di Jell 171 which was gently heated to melting point during application.

It was possible to complete two gauge positions per day in this manner, all
wiring being arranged and soldering completed while the gauges were drying
out, By good fortune no gauges were dsmaged, mainly because only a few
workmen were in the tank and there was no night shift, so that 1 was able
to explein to 211 what I was trying to do and obtain their co-operation.

The strain readings obtained during the second
test were much better then the first, but gauges on the lower span and all
but one on the middle span showed evidence of deterioration of the insul-
ation (later confirmed by tests with a Megger) and no steady readings were
obtained from them. The gauges on the upper span gave steady readings but
the stresses were very small (as might be expected in this region) and one
could hot be sure that they were not subject to error.

An: examination of the gauges after the tank had
been drained showed that the smallest bubble in the wax or the slightest
scratch ori the surface of the metal was sufficient to allow water under
pressure to reach the gauge, but some gauges had failed although neither of
these minor defects had been observed. The conclusion was drawn that it
was impractical, with the recources at my disposal, to continue work of
this nature with reasonable hope of success. It was therefore decided that
the experiments should be abandoned in favour of a more profitable line
of research. :

Deflections were agein read during the second
test and a good set of readings was obtained., The measurements were made
at approximately 9=-inch intervals between a datum bar and the bulkhead
plate opposite the web of the stiffener. The detum bar was a 3 x 3 inch
angle bar suspended from crude knife edges at the top and pressed against
a stop at its lower end. The measurements were made by inside micrometer,
the advantages of which lay in the accuracy of the instrument used, and the
fact that only one was required and no instrument was left in the ship
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zero, loaded, and zero - was made twice independently and the figures
egreed within 0°005 inch in nearly all cases.

The deflections of the horizontal girders had a
very great influence ox the deflections of the stiffener. The deflections
of the girders, and consequently of the stiffener, in the second ship were
about three times as great as the deflections in the first ship although
the two structures were identical. The only explenation which can be
offered is that the filling and testing of adjacent tanks influenced the
deflections of the horizontal girders in the first ship, whereas in the
second ship no other tanks in the vicinity contained water, but the
suspected movement of the datum bar in the first ship may alsoc have affected
the results. Although the stiffeners had unsymmetrical cross sections no
twisting was detected. The deflections measured are shown in Teble XIX, on
page 119,

36) Theoretical Analysis of Results.

Despite the failure to obtain reliable strain
measurements, a comparison of the measured deflections with those predicted
theoretically is of interest. The deflections of the stiffener were
profoundly influenced by the deflections of the two horizontal girders
which were supposed to support it. The main interest of the experiments
was the degree of constraint at the top and bottom of the stiffener and,
because this particuler bulkhead presented a particulaerly difficult case
of grillage analysis, it was considered to be sufficient to arrange that
the theoretical deflected form of the stiffener would pass through two
points at the heights of the two girders, at deflections from zero equal to
the measured deflections of the girders at those two positions. With this
premise, the bending moments and deflections were calculated for three
conditions at the ends of the stiffener:

a) Ends completely fixed.
b) Ends partislly constrsined, as in the ship.
¢) Ends simply supported.

The calculations for (a) and (c) were straight-
forward, but before (b) was started it was necessary to estimate the
stiffness of the end structures. The stiffener and the structure in its
vicinity are shown in fip. 20A. It was assumed that the constraint was
derived only from structure very close to the ends of the stiffener. The
double bottom was supported at many points by keel blocks on the building
slip and it seemed to.be reasonable to assume that the double bottom floor
adjacent to the one beneath the bulkhead, would afford a comparatively
rigid support for the end of the 3 in. flat bar by which the stiffener
bracket was connected to it. Using the method described in Section 27 of
Chapter III ond by means of equation 27°1 of that Section, the stiffness
of the end structure at the lower end of the stiffener was found to be just
under 5°2 E tons in./radian. If the deck beam had been rigid the
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DEFLECTIONS MEASURED IN SECOND SHIFPYARD EXPERTMENT.

Distance
above
inner

bottom.

Inches

221
210
302

193
183°5
174°5

165°5
156
147°25
1385
139°5
120

111°5
102°5
95°75

84
745
65°5

3845
29°5
321°5

Deflection
from zero
when load

was applied.

Inches
1000

16
31
55

65
79
93

94
109
143

173
189
301

196
177
158

133
130
132

59
30

Permanent
deflection
after load

was removed.

Inches
1000

Difference.

Inches
1000

18
31
55

61
74
80

89
108
125

148
167
178

173
152
1237

114
98
101

a7
29
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stiffness of the structure at the top of the stiffener would have had this
value also, but it was necessary to allow for deflection of the deck beam,
The beam ran across the ends of brackets of a number of identical stiffenerws
spaced 235 in. apart, but 50 in. on each side of the top of the test stiff-
ener there were heavy longitudinal deck girders. It was assumed that the
deck team was fixed at these two girders and its deflection under equal _
loads applied to it by the three stiffener brackets between the girders was
estimated. The stiffness K; at the top of the stiffener was then calculated
by use of equation 27°1 of Chepter III and was found to be slightly more
then 4°0 E tons in'/redien. (The stiffenere of the bulkhead sbove the deck
did not coincide with those on the test bulkhead and were left out of account
in this calculation). Using these values of end stiffness the bending
moments acting on the test stiffener were estimated by making a calculation
similer to that described in Example 3 of Chapter I. It was assumed that
shear lag was negligible and the deflections were adjusted so that, in way
of the two horizontel girders, they were equal to those measured at these
two positions during the second experiment.

I
| L |
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DECK BEAMS | 295 m f.m \ ’
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Fig, 30, Comparison between maasured and calculated bending
moments and deflections - Second Shipyard experiment.

Fig. 20 B shows the calculated bending moment
diagram for the partially constrained stiffener. The full line in fig.
20 C shows the corresponding deflections and the two chain dotted lines
indicate the deflections for freely supported, and completely fixed ends,
The circles in fig. 30 B represent bending moments calculated from the
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stresses measured during the second experiment, but what agreement there is
may be coincidental in view of the failure of other gauges lower on the
stiffener., The deflections were more reliable and those measured during the
second experiment are indicated by circles in fig., 20 C. The test load was,
ofcaurse, the first to be applied to the bulkhead and when it was removed
there was some permanent set, although the maximum stresses were of the
order of 5 tong/in® Following the Glengarnock practice, (see Section 18),
the permanent deflections were deducted from those measured at maximum load
and the differences so found are the deflections represented by circles in
fig. 20 C.

At the top of the stiffener the measured snd
theoretical slnpes of the bracket agree well and correlation between deflect-
ions over the upper span of the stiffener is quite good. At the lower end
of the stiffener the actual constraining moment applied was evidently
greater than that calculated on the basis of the assumptions mentioned
above. The most probable explenation is that the weight of water acting on
the inner bottom of the ship caused a change of slope at the lower end of
the stiffener in the direction indicated by the experimental results. This
could be accounted for theoretically as described in Example 1 of Chapter I
but in this case the calculation would probably have to be concerned with
the whole bottom structure of the ship in this vicinity treated as a grillage
and some allowance would have to be made for the building blocks beneath the
ship.

The deflections of the centre span of the stiff-
ener were considerably greater than those to be expected from theory, but
clearly the cause of this did not lie in errors in the estimates of con-"
straint at the upper and lower ends of the stiffener. Additional deflect-
ions associated with shear deformation of the web of the stiffener only
increased the theoretieal deflections to those indicated by the dotted
lines, and hence were not responsible for the discrepancy either. It was
thought that possibly shear lag in the vicinity of the concentrated react-
ions in way of the two horizontal girdere might have caused weakness of the
stiffener in these regions. If this was so there would be a decrease in the
constraining moments at each end of the centre span, which would involve
larger deflections of the latter. An investigation of the effect of shear
lag on bending moments in a contimicus beam of similar proportions was
carried out and is described in Section 16 of Chapter II, In this example
the supports did not deflect at all and conseqnently the two centre react-
jons (corresponding to the horizontal girders in the ship) were consider-
ably greater than in the ship and shear lag effects in the example would
be greater than in the ship stiffener. The example clearly showed that
shear lag was not responsible for the increased deflections. A possihle
explanation is that the axial load applied to the top of the stiffeners by
the weight of structure above the bulkhead, caused an increase in deflect-
ions so that they were greater than those caused by water pressure alone,
but this hypothesis could not be checked.

The measured permanent deflections (See Table XIX)
indicate a weakness in the design. They are apparently associated with
yielding of the main bulkhead plating in way of the slots cut in the
horizontal girders to allow the stiffener to pass through. This could have
been avoided by making some other comnection between them.
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CHAPTER V

ANALYSIS OF BEAMS IN SHIPS BY THE PLASTIC BENDING THEORY.

37) Introduction.

: Although elastic analysis of the structures
discussed in previous chapters was to a large extent successful, a number
of difficulties have been noted particularly in Chapter IV, The plastic
bending theory, originally introduced by Baker after the Steel Structures
Committee of the 1930's had failed to reconcile elastic analysis of steel
building fremes with experiments (ref. X4), has now been extended to many
fields of application (ref. L8) and has found wide acceptance in some of
them. A natural question is whether this method would prove successful
when applied to ships. The case for the application of plastic design
theory in shipbuilding was forcibly put by Baker himself in 1951 (ref. 14).
In fact the shipbuilder has no quarrel with the general philosophy and the
design of columns and of riveted joints are examples of structural comp-
onents of ships the strengths of which have, for many years, been based on
the limiting loads which the components could sustain without failure.

(The American term "limit design" seems more appropriate here than "plastic
design"). It is the purpose of this chapter to examine more fully scme of
the problems which arise,

The first two chapters of this thesis were con-
cerned with two special problems in the elastic bending theory which arise
in shipbuilding, viz: the constraint at the ends of beams and, in panels
of stiffened plating, the effectiveness of the plate as a flange of the
stiffeners. Similar problems must be solved in order to apply the plastic
design theory to structural components of ships.

38) Plastic Collapse of Partially Constrained Beoms.

In his 1951 paper (ref. 14) Baker referred to
beams which were partially constrained at the ends, saying “.... lack of
complete fixity which makes nonsense of exact elastic analysis has no
effect on the collapse load of the structure so long as the ends of the
beams are so attached to the abutments that the full plastic moment of the
section can be developed. He supported this statement with results of some
experiments on partially constrained beams and said ".... these tests form
e conclusive demonstration that the degree of stiffness of connexions has
no effect on the collapse load of a structure. It is necessary to examine
the application of this conclusion more closely and to find under what
conditions the qualification at the end of the first statement quoted is
applicable.



The plastic design theory is concerned with loads
rather than deflections, but the criterion of failure is that small load
increases above the critical value would produce much larger deflections
then lower loads. To examine the effect of end constraint on the plastic
collapse of beams an investigation was made of the relationship between
deflections at mid=-span and loeds from zero to ultimate collapse in three
possible cases. The results of the calculations are shown in fig. 231,
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Fig. 21. Relation between Deflection and Load for Partially
' Constrained Beams.

The diagrams all have similar characteristics and
using them as a basis, Baker's first statement quoted may be re-worded and
expressed quantitatively as follows: "When the plastic design theory is
used to calculate the ultimate collapse load of partially constrained
beams, it may be assumed that the full plastic moment will be developed at
each end of the beam and that large deflections will not occur before final
collapse, provided that the coefficients of constraint at each end of the
beam are greater than 0°5 approximately. Thus when the plastic design
theory is applied it is necessary to estimate the coefficients of const-
raint at the boundary of the loadedpart of the structure in exactly the
same manner as in elastic analysis. In a great many cases it will be found
that the coefficient of constraint is greater than 0°5 and for the purposes
of plastic design these beams may be treated as completely fixed at the
ends., If the coefficient at one end of a beam is less than sbout 0°5 it is
necessary to examine the deflections reached just prior to collapse and for
this purpose the simple method described by Symonds and Neal (ref. LS) cen
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be used. Although it is usually assumed that the construction of steel
frames used in civil engineering is such that the coefficient is more than
0°5, the analysis of the results of the practical tests carried out at
Glengarnock showed that this is not always the case in shipbuilding, end
recent work by Roderick (ref. L7) showed that when stenchions are considered
the constraint may be very important in civil engineering also.

It is difficult to estimate the positions at which
plastic hinges will form in a curved member under loads applied in itz own
plene, end it may be noted in passing that the theory described in Section '
9 may be used for this purpose. The usual elsstic anslysis would be carried ﬁ
out first and the position of the first plastic hinge can then be found from !
a knowledge of the properties of cross sections and the combined bending
moments and direct forces acting. (The latter sre important in curved
menbers and must be taken into account). The additionel load which may be
withstood after the first plastic hinge has been formed can be calculated
by means of a further "elastic" analysis in which the plastic hinge already
formed is treated as a semi-rigid joint which has infinite flexibility. r
This leads to the position of the second plastic hinge. A similar calcul-
ation may be performed to find the further additional load before the third
hinge forms and the position of the latter. The member is then statically
determinate for the purpose of further analysis and the additional load it
can withstand before final collapse as a mechanism may easily be determined.
Once the properties of the 1/EL diagrsm have been calculated as described
in Chapter I partiel constraint may be taken into account, and little extra
work is involved in the additional calculations. '

39) Plastic Bending_of Stiffened Plating.

The plastic theory of bending was developed
originelly for use in civil engineering and the cross sectiors normally
considered have two axes of symmetry. Tee bar or flat bar stiffeners with
wide plate flanges have .only one axis of symmetry, however, and the plastic
modulus of these will now be considered., The following analysis is based
on the usual assumptions and idealization of the stress/strain diagrem for
mild steel. Almost without exception, the cross sectional area of plating
associated with one stiffener in bending is greater than the sectional ares
of the stiffener alone snd in what follows it will be assumed that this is
80,

During elastic bending of the cross section the
highest stress is at the fibres remote from the plate, because the neutral
axis is near the plate., As the bending mcment is increased the material at
the extreme fibres of the stiffener will yield. Considering, for example,
a tee bar stiffener, first the material in the table of the tee bar will
become plastic and the stress over the whole of the table will be equal to
the yield stress of the material. Then the plastic zone will extend down

~ the web until the whole of this sustains the yield stress too. Meanwhile

the stress in the plate is incressed, but is still below the ylield stress
provided that the area of plate is greater than that of the stiffener.
This may be proved by considering the equilibrium 5% the forces acting in
the material of the cross section. If P, is the yield stress of the



136

materiel it is clear that the direct force F; acting over the cress
sectional area A of the stiffener alone is:

FS = vApy

: But for equilibrium, the sum of all the forces _
acting over the cross section must be zero, so that the direct force in the
plating must be equal (but opposite in sense) to F. end is given by:

| Fa = 2bt PP = - B

s

where P, is the stress in the plate. Hence

P = -_A P ‘ (39°1)
P abt

Since it was assumed that 2bt > A +the stress
in the plate must be numerically less than the yield stress..

The two equal and opposite forces form a couple
Ah p, which, (since bending stiffness of the plate may, as usual, be
considered to be negligible), is equal to the moment of resistance of the
section end, ofcourse, to the applied bending moment. This moment of
resistance can only be increased if the two forces or the distance between
them can be increased., But this cannot be done because the whole of the
material in the stiffener has reached the yield point, and hence the
limiting plastic moment is:

(39+3)

MP = Ah P,

The plastic modulus of beems which consist of
symmetrical bars used as stiffeners of plating (under the conditioris
mentioned above) is given by:

Z, = Ah provided 3bt > A (39°3)

The ratio of the plastic modulus to the elastic
modulus, known as the shape factor, for stiffened plating of the type
discussed above is rather larger than the corresponding ratio in civil
engineering in many cases.

40) Application to Shipbuilding,

The application of the plastic theory of bending
to ship structural members would be sdvantagecus (as opposed to the elastic
theory) from the points of view both of simplicity of epplication and of
the more rational criterion of strength. On the other hand there gre’seriocus

d
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objections to its use in some circumstances.

It is very doubtful whether unsymmetrical stiff-
eners (e.g: the inverted angle bars or channel bars commonly used in : .
merchant ships) could be made to behave in accordance with the idealized
plastic theory used sbove., As was demonstrated in Chapter III, stiffeners
of these shapes have a tendency to twist as well as bend under load, and
they would fail by lateral "tripping" long before the full plastic modulus
was developed unless special precautions were taken to prevent them doing
so. It is clear that it will not be possible to apply plastic design
methods until the shipbuilding industry can be supplied with an adequate
range of rolled sections which are relatively free from this defect by
reason of being symmetrical or nearly symmetrical.

There are meny structural problems in shipbuilding,
however, for which the use of plastic design methods would be unwise even
if lateral instability could be avoided. Many parts of a ship sustain
reversible loads, for example the inter-tank btulkhead analysed in Example 1
of Chapter I may be subjected to loads on either side, and elestic analysis
would be required to ensure that no plastic hinge could form under normal
working of the ship. (If plastic hinges were permitted to form under loads
of opposite sense alternately, failure could occur after only a few cycles
of load). In other cases elastic anelysis must be used even when loading is
normally in one direction only, because if a plastic hinge formed this
would spelil the shape or appearance of the ship; the structures analysed in
Examples 3 and 4 of Chapter I are typical of this.
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CHAPTER VI

EPILOGUE

41) Review of Research.

The modern designer of structures has the choice
of two general methods of deciding the strength of beams. He may either
base his design on the ultimate collapse load calculated by means of the
theory of plastic bending, or he may use an enalysis based on the theory of
elastic bending and keep the working stresses below a limit known from
experience to be safe, The former method is more rational because the
factor of safety against failure can be estimated whereas in the latter it
is less well défined. The application of -the plastic bending theory to
shipbuilding was discussed briefly in Chapter V (page 123) but before it
could be generally adopted shipbuilders would require experimental evidence
of its applicability to ships. This would involve the loading of structures
to failure, the cost of which could only be born by a large research organ-
isation. Moreover, as discussed in Section 40 (page 126) there are many
circumstances in the structural design of ships in which recourse must be
had to elastic analysis. TFor these reasons the main body of the thesis was
concerned with the elastic theory of bending which is in general use today.

The main purpose of the research was to decide
which of the many possible variations of the elastic theory of flexure are
important in practical shipbuilding. The research has shown that the use
of the ordinary theory as described in the elementary textbooks (as is
usual in shipyards), would rarely give accurate results in the design of
the structural members of ships. Of the many possible reasons for this only
a few are important, and the theories which deal with these aspects of the
bending of beams have been extended and modified to make them more suitable
for use in naval architecture. Departures from the usual theory of flexure
which need to be taken into account are: the constraint at the ends of the
loaded structural members (and the flexibility of riveted connections, if-
any), variations of the cross sections of the beams along their length,
twisting of beams having unsymmetrical cross sections and, in very short
members only, modifications of the bending theory associated with shearing
strains, The main experimental evidence upon which these conclusions are
based was an analysis of the extensive tests carried out by the shipbuilding
research organisations at Glengarnock (See Chapter III, page 53). In
addition an experiment was carried ocut in a shipyard and elthough this
revealed difficulties which were not encountered in the Glengarnock work, it
lent support to the conclusions at the end of Chapter III (See page 110).

The elementary teaching of strength of beams is
usually confined to straight uniform beams, the ends of which are either
completely fixed or freely supported., By far the most important modific-
ation which is required when applying the theory in shipbuilding is to take
account of the actual degree of constraint at the ends of the beams, The
first chapter of the thesis was devoted to an exposition of a new theory
for teking account of partial constraint, which is gimple to0.understand and



Jjust as easy to apply as the corresponding theories which do not include
the effects of constraint. The experiments discussed in the third and
fourth chapters amply Jjustify the basic assumptions of the theory and it is
shown that quite an accurate estimate may be made of the constraint in
practice, provided that the theory of flexure is applied correctly to all
parts of the structure. In most cases the constraint may be estimated by
considering no more than the structure in the immediate vicinity of the end
of the beam. The theory may be applied to all welded types of beams met in
shipbuilding, but where riveted connections are used further research would
be required to determine the flexibility of the joints (See Section 28,
page 103).

The cross sections of all the beams in a structure
must be studied before any theoretical analysis is started. If the cross
section varies along the length of a beam this fact must be taken into
account in the anelysis (See Sections 7 to 13, page 20). In particular, if
welded brackets are fitted they may be regarded as rigid over an effective
length defined in Section 18 (page 60). By fitting a bracket between a
beam and a substantial structure at its ends it is possible to increase the
constraining moment considerably (but this does not necessarily lead to the
most economical design).

It is a misfortune of the present situation in
shipbuilding that hardly any steel sections are rolled specially for the
fabrication of welded ships. Shipyards are forced to build welded ships
with rolled sections originally designed for riveted construction or to cut
tee bars from I joists normally used for other purposes. This has led to
extensive use of ordinary angle bars to stiffen: panels of plating, by
welding the edge of one flange to the plate so that it forms a web, with
the other flange remote from the plate and parallel to it. The total cross
section of the beam so formed is unsymmetrical and, in general, the load is
not applied at its shear centre so that in addition to being bent the beam
is also twisted, (See Sections 223 and 23, page 73). This constitutes a
considerable weakening of the beam compared with its symmetrical counter-
part, particularly when the stiffener is on the loaded side of the plating,
and this situation is asgravated when slots are cut in the web of the
stiffener (See Section 30, page 109). It seems to be likely that compared
with the effects measured at Glengarnock, the twisting would be reduced in
a ship because of the restraint afforded by the continuous plating, but
shipbuilders do not seem to have given the matter attention it deserves.

One of the fundamental assumptions of the ordinary
theory of flexure is that cross sections which were plane before bending
remain plane after bending. It is commonly assumed by naval architects
that this is not so in wide plate flanges of stiffened plating. Research
into this resulted in some advances in the theory and the first thorough
experiments ever carried out on this subject confirmed the theoretical
assumptions and illustrated the effects of shear lag (See Appendix and
Chepter II). It was shown that deformations of the cross sections assoc-
iated with shearing strains are normally negligible in practice, so that
the plane sections assumption is usually Jjustified. To cater for occasions
when this is not so, however, a new method was developed by which the
stresses due to bending and shear lag could be calculated independently.
Beams should be analysed by the theory of bending ignoring possible shear
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lag, and if necessary the additional stresses associated with shear lag in
the plating may be estimated later by the method described in the Appendix,

Shearing deformation also occurs in the webs of
stiffeners ‘and this ceuses a slight increase of deflections. In Chapter III
the latter were calculated by the usual method (ref: Bl) but the correction
rarely exceeded 10% of the maximum bending deflection. Usually the measured
deflections of the Glengarnock specimens were greater than the corrected
theoretical deflections (See Section 24, page 90), but in many cases the
increases were associated with twisting of specimens with unsymmetrical
cross sections. In the shear lag experiments described in the Appendix the
usual correction for deflections due to shearing streins in the web was
also found to be slightly too small. In short stocky beams the effects of
shearing strains are important and this was found to be the case when
attempts were made to estimate the stiffness of the end structure of the
Glengarnock testing machine (See Section 27,page 97). It appeers that
further research into this aspect of the problem would be useful.

One of the anomalies in the use of the elastic
banding theory is that although the structure is designed so that the
general level of stress is well below the yleld stress, a clause requiring
considerable ductility of the material is nearly always included in its
specification. This is necessary beaause slthough the general stress level
is low, it will be much higher arocund the stress concentrations which are
almost inevitable in practical construction (e.g: near the toes of brackets) s
and if the material was not ductile it might fracture before the general
level of stress had reached a ressonable working figure. It is shown in
the theory of plastic bending (ref. Ll) that when a load is applied such
that part of the structure yields, the behaviour of the structure is
elastic during its recovery when the load is removed, and during subsequert
applications of load provided that they do not exceed that already applied,
For this reason, when carrying out experiments to verify an elastic theory
the strains and deflections during the first application of load may not
correlate well with the theory, but readings made during subsequent un~
loading and during subsequent applications and removals of load should do
so. (This principle guided the investigators at Glengernock - see page 53
and it was adopted in the analysis discussed in Chapter IV). Conversely,
if a comparison with the plastic bending theory is required, the experinent
must be carried out during the first epplication of the load. In any cese,
however, readings should always be taken during the first load applicetion,
because unexpected weaknesses may be revealed which would not be detected
in subsequent experiments. An interesting example was the permanent
deflections measured over the middle span of the stiffener discussed in °
Chapter IV (See page 121).

42) Generel Conclusions.

With the provisos mentioned in the last Section
the elastic theory of flexure may be used with confidence to calculete tae
stresses and deflections in the structural members of ships. In other '
words, the conclusions in Section 31 (page 110) regerding the Glengarroct
results appear to hold also in practice.
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This does not mean, however, that the strength of
any beam in a ship may always be calculated easily by the elastic bending
theory. For exesmple, the experiments discussed in Chapter IV indicated
that in order to estimete the bending moments in the bulkhead stiffener it
would be necessary to calculate the deflections in way of the two heavy
horizontal girders and to do so would involve consideration of the whole
bulkhead as a grillage of intersecting beems. There was also the anomaly
of the relatively large deflections measured in the centre span of the
stiffener, which remsined unexplained.

In genersl, the plastic bending theory is essier
to use then elastic analysis and provides a more logicel basis for design,
There sppears to be considerable merit in applying it wherever possible,
provided that the o'baec‘tlons mentioned at the end of Chapter V (page 127)
do not apply.
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