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Abstract

This thesis studies the field of asset price bubbles. It is comprised of

three independent chapters. Each of these chapters either directly or

indirectly analyse the existence or implications of asset price bubbles.

The type of bubbles assumed in each of these chapters is consistent

with rational expectations. Thus, the kind of price bubbles inves-

tigated here are known as rational bubbles in the literature. The

following describes the three chapters.

Chapter 1: This chapter attempts to explain the recent US housing

price bubble by developing a heterogeneous agent endowment econ-

omy asset pricing model with risky housing, endogenous collateral

and defaults. Investment in housing is subject to an idiosyncratic risk

and some mortgages are defaulted in equilibrium. We analytically de-

rive the leverage or the endogenous loan to value ratio. This variable

comes from a limited participation constraint in a one period mort-

gage contract with monitoring costs. Our results show that low values

of housing investment risk produces a credit easing effect encouraging

excess leverage and generates credit driven rational price bubbles in

the housing good. Conversely, high values of housing investment risk

produces a credit crunch characterized by tight borrowing constraints,

low leverage and low house prices. Furthermore, the leverage ratio was

found to be procyclical and the rate of defaults countercyclical consis-

tent with empirical evidence.

Chapter 2: It is widely believed that financial assets have considerable

persistence and are susceptible to bubbles. However, identification of

this persistence and potential bubbles is not straightforward. This

chapter tests for price bubbles in the United States housing market

accounting for long memory and structural breaks. The intuition is

that the presence of long memory negates price bubbles while the

presence of breaks could artificially induce bubble behaviour. Hence,



we use procedures namely semi-parametric Whittle and parametric

ARFIMA procedures that are consistent for a variety of residual bi-

ases to estimate the value of the long memory parameter, d, of the

log rent-price ratio. We find that the semi-parametric estimation pro-

cedures robust to non-normality and heteroskedasticity errors found

far more bubble regions than parametric ones. A structural break was

identified in the mean and trend of all the series which when accounted

for removed bubble behaviour in a number of regions. Importantly, the

United States housing market showed evidence for rational bubbles at

both the aggregate and regional levels.

In the third and final chapter, we attempt to answer the following

question: To what extend should individuals participate in the stock

market and hold risky assets over their lifecycle? We answer this ques-

tion by employing a lifecycle consumption-portfolio choice model with

housing, labour income and time varying predictable returns where

the agents are constrained in the level of their borrowing. We first

analytically characterize and then numerically solve for the optimal

asset allocation on the risky asset comparing the return predictabil-

ity case with that of IID returns. We successfully resolve the puzzles

and find equity holding and participation rates close to the data. We

also find that return predictability substantially alter both the level of

risky portfolio allocation and the rate of stock market participation.

High factor (dividend-price ratio) realization and high persistence of

factor process indicative of stock market bubbles raise the amount of

wealth invested in risky assets and the level of stock market partic-

ipation, respectively. Conversely, rare disasters were found to bring

down these rates, the change being severe for investors in the later

years of the life-cycle. Furthermore, investors following time varying

returns (return predictability) hedged background risks significantly

better than the IID ones.
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Preface

The three chapters in this thesis studies the field of asset price bubbles. In the first

chapter, we develop a theoretical model and show how housing price bubbles can

emerge in equilibrium. The second chapter provides an empirical investigation

into the timely identification of housing price bubbles. In the third chapter, we

examine how price bubbles can influence household asset allocation and stock

market participation rates. The common theme in all the three papers is asset

price bubbles. We start our introduction by citing a historical example of an asset

bubble.

Perhaps the earliest known example of an asset price bubble is the tulip bubble

in Holland that started in 1634 and burst in February 1637. Amid the general

fascination with rare species of tulips among the Dutch, prices on rare tulip bulbs

rose, attracting the attention of speculators. Since the supply of rare bulbs was

severely limited in the short run, and demand sky-rocketed due to the influx

of speculators, prices rose rapidly amid heavy trading. At the bubble’s peak,

a single tulip bulb sold for an equivalent of $60,000 today. Following the Dutch

tulip mania, there have been numerous episodes of boom-bust phenomena in asset

markets. The last decade saw a bubble in the United States housing market.

House prices peaked in early 2006, started to decline in 2006 and 2007, and

reached historic lows in 2012. The collapse of this housing bubble was followed

with widespread mortgage defaults and created a credit crisis which is widely

considered to be the primary reason behind the 2007-09 economic recession, see

Brunnermeier et al. (2012).

These events underscored the importance of financial frictions and their role

in asset price volatility. The financial friction that played a large role in the recent

crisis came from residential and commercial lending activities. A large part of the

lending in current economies is secured through some form of collateral: residential

and commercial mortgages are secured by the mortgaged property itself, corporate

bonds are secured by the physical assets of the firm, and collateralized mortgage

obligations and debt obligations and other similar instruments are secured by

pools of loans that are in turn secured by physical property. The total of such

collateralized lending is enormous: in 2007 at the peak of the housing bubble, the

value of US residential mortgages alone was roughly $10 trillion, see Geanakoplos

and Zame (2014). Not all of the assets of the borrower can be pledged as collateral.

This can be due to several reasons. They can be either because some of the agents

are not participating in the market or because the information is imperfect or



because of institutional frictions such as limited commitment or enforcement, see

Holmstrom and Tirole (2011). The fact that only a fraction of the assets can be

collateralized implies intuitively that this fraction is an important determinant of

borrower-lender dynamics. For a residential borrowing where the collateral is the

stock of house owned by the borrower, this fraction is called the Loan to Value

ratio. Changes in this loan to value ratio influences the availability of credit,

default probabilities and asset prices.

In the first chapter, we attempt to understand these dynamics between the

loan to value ratio, mortgage defaults and house prices. Importantly, we model

how house price booms and busts can arise in equilibrium. The environment of

our model includes an endowment economy with heterogenous agents, similar to

Zhang (1997) and Rytchkov (2014). Agents differ in the level of their discount

factor. We assume two types of agents or households, one type with high discount

factor and the other with a low discount factor. Households with high discount

factor are patient, called as Savers, and in equilibrium will lend to those with low

discount factors, called as Borrowers. Both these household types derive utility

from a durable housing good which is traded intertemporally. To finance the

purchase of housing stocks, borrower households agree to a one period mortgage

contract with the Savers. The stock of borrower household’s housing is secured

as the collateral. The structure of the mortgage contract we study is very close

to that used by Bernanke and Gertler (1989), Carlstrom and Fuerst (1997) and

Bernanke et al. (1999). We assume that the borrowers are hit by an idiosyncratic

shock to their housing stock after the contract is agreed. Savers (Lenders) can

observe these shocks only if they pay a monitoring cost. Those households who

experienced a bad shock will find it optimal to default on their mortgages while

the households who had a good shock will repay their loans with interest. Thus,

in equilibrium, some mortgages will be defaulted on. The presence of defaults aids

us in analytically deriving an expression for the loan to value ratio. This ratio

is endogenous and depends on the deep parameters and variables which includes

the stock of collateral, the monitoring costs, the realized shock etc. This ratio

measures the net share of housing value that goes to the lenders as repayment.

We restrict our analysis to finding the steady state equilibrium values.

The main contribution of this chapter is to produce a tractable way of analysing

the impact of endogenous loan to value ratio and endogenous defaults that lead

to equilibrium house price bubbles. The approach is simple, straightforward and

can easily be extended to study more complicated dynamics. Our model thus

extend the literature which assume that margin on the collateral is exogenous or

5



rule out defaults, see Aiyagari and Gertler (1999), Coen-Pirani (2005), Santos and

Woodford (1997), Miao (2014) and He et al. (2015). Furthermore, the few stud-

ies that do accommodate both defaults and endogenous margins usually assume

highly complicated theoretical structures in the form of heterogenous beliefs and

incomplete markets, see for example Geanakoplos (2003), Kubler and Schmedders

(2012), Simsek (2013) and Brumm et al. (2015). These models, except for the

two period case, cannot be studied analytically.

We find some important results. Firstly, the endogenous loan to value ratio

and leverage was found to be procyclical in nature consistent with Geanakoplos

and Zame (2014). High leverage is observed under high house prices and low

leverage under low house prices. Secondly, low values of idiosyncratic risk of

housing generates a credit-easing effect boosting excessive borrowing resulting in

a rational price bubble in housing goods. Thirdly, high values of idiosyncratic

risk causes a credit-crunch effect tightening the borrowing constraint restricting

lending and thus lowering house prices. Fourth, the probability of default rises

with declining house prices and increased uncertainty (risk). These results thus

explain the foreclosure crisis observed after the burst of the housing bubble in the

US wherein a substantial portion of mortgages were defaulted on.

Thus in chapter one, we show how endogenous collateral constraints with risk

of defaults lead to housing price bubbles in equilibrium. The natural question

then is how do we identify price bubbles from empirical data. This would then

aid policy makers in designing a priori appropriate lending standards and prevent

financial disasters from occurring.

In our second chapter, we undertake such a task and deal with the identifi-

cation of house price bubbles in an accurate and timely manner. Our focus is

on the United States housing market. Ever since the works of Blanchard (1979),

Blanchard and Watson (1982a) and Diba and Grossman (1988), we know that

identifying price bubbles involves monitoring for any deviation of the asset’s price

from its fundamentals. This is the theoretical definition of a rational bubble, see

Brunnermeier and Oehmke (2013). As we focus on bubbles in the housing mar-

ket, the fundamentals here would be the rents. The rents are kind of a payoff

accrued to the homeowner and is generally considered in the literature as the real

estate equivalent of stock market dividends, see Himmelberg et al. (2005). As the

dividend-price ratio is a financial ratio for the stock market, we can equivalently

consider the housing rent-price ratio as a financial ratio for the housing market,

see Plazzi et al. (2010). The presence of a unit root in this rent-price ratio would

6



mean that the housing price and its fundamentals, the rents, are not moving to-

gether. That is, they do not share a common trend implying the existence of a

rational bubble in the housing market. As argued by Phillips and Yu (2011) the

identification of price bubbles thus involves testing for the presence of a unit root

in the rent-price ratio series.

The application of standard unit root tests to detect rational price bubbles

have had mixed success, see Diba and Grossman (1987), Evans (1991b), Lamont

(1998) and Horvath and Watson (2009). The primary reason for this is that these

tests have low power in differentiating a unit root process with a near unit root

process, see Diebold and Rudebusch (1991). If we represent d as a parameter

that measures the persistence of a series, then d = 1 is a unit root process which

implies the presence of rational bubbles but d = 0.9 is not a bubble process. Such

processes with values of d close to one but not a unit root have a special property in

that they are mean reverting in an extended period of time. This means that these

series although divergent in the short run will eventually return to their mean, in

our case the fundamentals, and thus rejects any bubble behaviour. These type of

mean-reverting but persistent series are called long memory processes, originally

identified by Granger and Joyeux (1980).

In this light, we use long memory models to identify house price bubbles. The

use of these models involve estimating the memory parameter, d. The value of d

indicates the persistence and thus the presence or absence of a rational bubble.

We employ econometric tests in both the time domain, called parametric tests,

and also the frequency domain, called semi-parametric tests, to test the null of

a unit root d = 1 bubble process against a mean reverting d < 1 no bubble

process. This is the first contribution in our chapter as existing literature have

concentrated on using only one of these two methods. Furthermore, more often

these methods have been applied to study stock price bubbles and not housing

bubbles, see for example Koustas and Serletis (2005) and Cuñado et al. (2005).

It is well known ever since the work of Perron (1989) and Diebold and Inoue

(2001) that the presence of structural breaks could artificially induce an unit

root. In our context, structural breaks would mean a change in the fundamentals

of the economy. Hence, accounting for such breaks is essential for an efficient

identification of bubbles. We use standard break tests to identify any endogenous

break in the mean and trend in the series and then demean and detrend it to arrive

at an unbiased estimate of the persistence. This forms the second contribution of

our chapter.
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The third contribution involves the use of both regional metropolitan level

data along with the aggregate data. This is motivated by the literature on housing

supply elasticity. As elaborated by Green et al. (2005) and Levitin and Wachter

(2012), housing price appreciation depends to a large extent on its supply elasticity

and furthermore, with changing demographics and geography these elasticities

differ widely. Our analysis thus identifies regional price bubbles along with their

aggregate counterparts. The dataset we use covered the quarterly 31 year time

period of 1982Q4-2013Q4.

Our results extend the literature in multiple dimensions. We first find that

as expected the long memory methods provided better estimates compared to

standard unit root tests. Secondly, the semi-parametric estimates of persistence

were found to be more reliable than the parametric ones. These values were

well above a unit root. Thirdly, when examined for endogenous breaks, one

structural break was observed in all the series. This breakdate, around the year

2003, corresponded with the period of a change in the borrowing standards in

the American credit market, see Glaeser et al. (2013) Once we adjusted for these

breaks, all of the series gave comparatively lower values of persistence. However,

one of the aggregate price series and 8 out of 12 regional series continued to

exhibit unit root tendency. We concluded that there were price bubbles in the

US housing market.

In the first and second chapters, we explicitly deal with asset price bubbles.

While the first chapter explained how endogenous collateral constraints and mort-

gage defaults lead to credit driven housing price bubbles in equilibrium, the sec-

ond chapter provided an empirical study on the timely identification of bubbles in

housing markets. The presence of a bubble indicates some kind of inefficiency in

the financial market, see Fama and French (1988, 1992). If markets were efficient,

prices would never deviate from fundamentals and we would have no bubbles. As-

set bubbles are not the only consequence of an inefficient financial market. Several

puzzling phenomenon observed in the asset pricing literature can be attributed

to these inefficiencies. The well known equity premium puzzle first studied by

Mehra and Prescott (1985) is an example.

In the third chapter, we attempt to resolve two puzzles that are observed in

asset markets that relates specifically to household portfolio choice. These are

the stock market participation puzzle and the asset allocation puzzle. The 2007

Survey of Consumer Finances data reveal that only about 50% of US households

invest in stocks, either directly or indirectly (via mutual funds in retirement and

nonretirement accounts), and participation in European countries is even lower,
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see Bucks (2006) and Guiso et al. (2008). This is called the Stock Market Partici-

pation Puzzle. Furthermore, it has been observed in microeconomic panel income

data by several economists that the few people who do participate in the stock

market hold very little wealth in risky equities. This level of wealth in risky equi-

ties is found to follow a hump-shape through the investor’s life-cycle, see Canner

et al. (1997), Vissing-Jorgensen (2002) and Ameriks and Zeldes (2002). This is

the Asset Allocation Puzzle.

Traditional models in portfolio allocation theory are at odds with these em-

pirical facts. For instance, Merton (1969, 1971) and Samuelson (1969), consider

a dynamic portfolio optimization problem in which investors maximize expected

utility through their choice of risky and risk-free investments subject to a wealth

constraint and obtain closed form solutions. Their theory predicts that the share

invested in the risky asset is affected neither by the level of wealth nor by the

consumption decision. In other words, an optimal investor should put 100% of

his wealth in risky stocks, a counter-factual prediction. In fairness, the Merton

and Samuelson results were derived under many restrictive assumptions, including

power utility, independent and identically distributed (IID) returns on the risky

and risk-free investments, the absence of market frictions, the absence of labour

income or any durable goods.

In an attempt to reconcile the theory with the empirical facts, several authors

have relaxed these assumptions. This has been achieved through incorporating

labour income (Bodie et al. (1992), Benzoni et al. (2007)), generalizing pref-

erences (Campbell and Viceira (1999), Gomes and Michaelidis (2005)), making

intertemporal utility non-separable in a durable good such as housing (Grossman

and Laroque (1990), Flavin and Yamashita (2011)) and analysing the effects of

time variation in equity premium (Campbell et al. (2001), Michaelides and Zhang

(2015)). Despite these advances, the puzzles still remain unresolved. One reason

is that the focus on most of these studies incorporate only one or two dynamics,

for example Gomes and Michaelidis (2005) generalizes preference and adds labour

income but abstracts from durable housing and other factors. Importantly, with

the exception of Campbell and Viceira (1999) and to an extent Viceira (2001)

analytical studies are non-existent.

In the third chapter, we fill this gap in the literature and successfully resolve

the two puzzles. We start with a reasonably rich model which is analytically

solved to derive an expression for the optimal asset allocation in risky stocks. We

then enrich the model in a life-cycle context and incorporate all relevant factors

that influences stock market participation and life-cycle asset allocation puzzles.
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The optimization problem is solved with numerical methods and policy functions

are simulated.

Our analytical exercise gave valuable intuition in how and what factors de-

termine the level of wealth invested in the risky asset when the household faces

changes in the investment opportunity set, shocks to the labour income and shocks

to durable housing prices. In this way we extend the seminal work of Campbell

and Viceira (1999) to include durable goods and labour income. This is the first

contribution of our chapter. The second contribution, as stated earlier, is in incor-

porating all relevant dynamics in a rich life-cycle model. Importantly, we extend

the works of Cocco (2004) and Vestman (2012)’s life-cycle portfolio choice model

which has both housing and risky labour income by including time varying re-

turns, Epstein-Zin preferences, a bequest motive and uncertainty of death. Time

varying returns implies that investors in our model can use a factor such as the

log dividend-price ratio to predict future returns. Hence, this can also be called

as return predictability.

Our main results can be summarized as follows. Firstly, our simulated data

from the theoretical model gave levels of asset allocation and stock market par-

ticipation rates which are very close to the estimated ones from the Survey of

Consumer Finance dataset. In this way, we successfully resolve the stock market

participation and the asset allocation puzzles, respectively. Secondly, we find that

in the presence of housing both the stock market participation rate and the risky

asset allocation share is found to be hump-shaped over the life-cycle consistent

with empirical evidence, seeGuiso and Sodini (2013). This is consistent with other

papers that include housing in the portfolio choice such as Cocco (2004), Yao and

Zhang (2004) and Vestman (2012). We find that housing initiates a crowding out

effect restricting younger liquidity constrained households from market participa-

tion and holding risky stocks.

The third result we find is that portfolio choice and market participation

profiles are significantly different in the return predictability case relative to the

IID case. We find that when returns are predictable from a factor such as the

log dividend-price ratio, the optimal risky share of liquid wealth invested in the

risky asset varies largely depending on the factor’s: realization, persistence and

volatility. High realizations and high persistence of the factor, specifically unit

root or above, substantially shifts up both the risky equity allocated as well as

the rate of stock market participation. Likewise, a huge dip in the factor or

a high volatility suggesting a ”rare disaster” in the economy brings down the

liquid wealth invested in risky stocks. Unlike the bubble scenario, a rare disaster
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such as a market crash was found to have a heterogenous response over the life-

cycle with older and retired households, over the age of 65, being more affected

(adversely). In addition to this, investors under return predictability were able to

hedge background risks, such as labour income or house price volatilities, better.
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Chapter 1

Endogenous Collateral
Constraints, Defaults and House
Price Bubbles

1.1. Introduction

A variety of factors contributed to the global financial crisis of 2007-09. One such

factor was the growing availability of subprime mortgage credit in the mid-2000s

in the United States. Households were able to borrow higher multiples of income,

with lower required downpayments. The onset of the crisis was characterized by

a fall in house prices, an increase in mortgage defaults and home foreclosures.

These events initially affected residential construction and the financial sector,

but their negative effects spread quickly to other sectors of the economy. This

crisis thus underlined the need for economic models to accommodate the financial

sector.

Bernanke and Gertler (1989) and Kiyotaki and Moore (1997) were the pioneers

in emphasizing the role of the financial sector in a general equilibrium model. The

role of the financial sector in these papers comes from the entrepreneurs (firms)

need of external finance possibly to meet an investment opportunity. They find

that the presence of agency costs mean that borrowing is limited and needs to

be secured by some kind of a collateral. In general, the optimal lending contract

would entail the entrepreneur to pledge a fraction of his assets as collateral. These

studies show that when the collateral goes down in value, so would the amount

that can be borrowed against it. Furthermore, the presence of financial frictions in

the form of these collateral constraint result in amplification mechanisms whereby
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any real shocks to the economy (for instance, productivity) will get multiplied

and propagated to other sectors of the economy.1 Kiyotaki and Moore (1997)

calls these credit cycles. A problem with this stream of thought, as stated by

Geanakoplos (2003) is that it keeps the loan to value ratio constant. The loan to

value ratio is the fraction of the asset that is collateralized (pledged). Changes

in the loan to value ratio has amplification effects on leverage, asset

prices and the broader macroeconomy.

We can make this statement clear by the following example. Consider the case

of a homeowner (or hedge fund or a big investment bank) who takes out a loan

using a house as collateral, he must negotiate not just the interest rate, but how

much he can borrow. If the house costs $100 and he borrows $80 and pays $20 in

cash, we can say that the margin or downpayment is 20%, and the loan to value

is $80/$100 = 80%. The leverage is the reciprocal of the margin, namely the ratio

of the asset value to the cash needed to purchase it, or $100/$20 = 5. If you are

leveraged five to one and the asset increases or decreases 1%, your wealth goes

up or down 5%. In essence, the borrower is more sensitive to changes in housing

wealth and prices, see Geanakoplos and Zame (2014).

We can formalize this example by specifying a mortgage contract where the

loan to the borrowing agents is secured with the agent’s asset (house) as collateral.

Lt+1 ≤ ψPt+1Ht+1, where 0 < ψ < 1 (1.1)

where Lt+1 is the loans offered to borrowers at time t, Pt+1Ht+1 is the value

of the physical asset, the house, which is collateralized where Pt+1 is the price

of the house and Ht+1 is the stock of house. Importantly, ψ here is defined

as the Loan to Value Ratio (LTV). It is the fraction of the collateral that is

actually pledged. If the borrower defaults, the lender gets this fraction of the

collateral value. It follows then that 1− ψ is the margin, (1− ψ)Pt+1Ht+1 is the

1The key mechanism involves the link between “external finance premium”, the difference
between the cost of funds raised externally and the opportunity cost of funds internal to the firm,
and the net worth of potential borrowers. With credit-market frictions present, and with the
total amount of financing required held constant, standard models of lending with asymmetric
information imply that the external finance premium depends inversely on borrowers’ net worth.
This inverse relationship arises because, when borrowers have little wealth to contribute to
project financing, the potential divergence of interests between the borrower and the suppliers
of external funds is greater, implying increased agency costs; in equilibrium, lenders should be
compensated by higher agency costs through a larger premium. To the extent that borrowers’
net worth is procyclical, the external finance premium will be countercyclical, enhancing the
swings in borrowing and thus in investment, spending, and production, see Bernanke and Gertler
(1989) and Bernanke et al. (1996, 1999).
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downpayment and the leverage (ratio) is 1
Margin

= 1
1−ψ . Here we have subsumed

the interest rate on Loans within the variables.2 The main objective of this

chapter is in endogenizing the loan to value ratio ψ. Once the parameter

ψ is endogenized, we then analyse its implications to asset pricing and

default rates. We use the terms margins, leverage, pledgeability parameter and

loan to value ratios interchangeably throughout this chapter. As is clear from the

above example, all of these concepts are contained in one variable, ψ.3

The underlying mechanism that generates the endogenous loan to value ratio

is a one period mortgage contract agreed between a borrower and a lender. In

our study, we assume an endowment economy model standard in the general equi-

librium asset pricing literature such as Lucas Jr. (1978) and Zhang (1997). The

economy is populated with two types of households who only differ in the dis-

count factor. Households with a low discount factor are impatient and are hence

called “Borrowers” and households with a high discount factor are patient and

thus called “Savers” as in Rytchkov (2014). In equilibrium, the saver households

will lend to the borrower households. These households have preferences defined

over a durable housing good. This housing good is traded between the two house-

holds. Thus, the housing good provides both consumption services and also acts

as an investment asset, see for example Cocco (2004) and Iacoviello (2004).

Borrowers use their houses as collateral for mortgages and experience idiosyn-

cratic housing investment shocks. The realized shock is not observable to the

lender. Lenders must pay a monitoring cost to observe borrower’s realized hous-

ing return. This is the agency cost in the contract. Borrowers experiencing low

realizations of the idiosyncratic shock default on their mortgages; Borrowers who

repay their mortgages pay a state-contingent adjustable mortgage rate that is

typically above the risk-free rate. The kind of mortgage contract that we discuss

in this chapter is a one period mortgage contract. The contract is negotiated at

the beginning of a period and resolved by the end of that same period. Borrowers

who are unable to repay their loans, because of some kind of a bad realization of

the shock, will default on their loans. In case of defaults, the borrower will lose

2Quadrini (2011), Miao and Wang (2012) and Miao et al. (2015) consider intratemporal
loans meaning that no interest is charged by the lenders. Unlike these papers, in this chapter
we model loans as intertemporal where the interest rate on loans are predetermined at the time
of the contract agreement.

3In the context of our chapter, as the collateral here is the stock of housing, the appropriate
term is the loan to value ratio. However, it is not unusual in the literature to call this parameter
ψ as a margin, see for example Brumm et al. (2015).
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his collateralized asset. In this way, our model as in Carlstrom and Fuerst (1997)

allows for endogenous defaults in equilibrium.

The endogenous collateral constraint is derived from a limited participation

constraint faced by the lenders in the optimal contract. For the structure of the

contract, we follow Carlstrom and Fuerst (1997) and Bernanke et al. (1999) and is

based on the costly state verification framework of Townsend (1979). Carlstrom

and Fuerst (1997) and Bernanke et al. (1999) use the contract to understand the

borrowing dynamics at the firm level where the collateral is the capital owned

by the firm. We apply it to the households problem in our context where the

collateral is the stock of house owned by the borrowers. We assume that the

idiosyncratic shock follows a log normal distribution. Following Bernanke et al.

(1999) the cumulative distribution function then gives us the probability or the

rate of default. We derive the endogenous margin or loan to value ratio as a

specific function of the underlying shock distribution. This ratio measures the

net share of the housing value that goes to the lenders for repayment. This

ratio depends on the realized level of the shock, the parameters that affect the

equilibrium value of the shock, the monitoring cost of the lenders and also the

borrower’s housing stock. The implication here is that the loan to value ratio

is endogenous.

The solution to the optimization problem faced by the borrower and saver

households gives us the equilibrium steady state. We quantify the steady state

values by an appropriate calibration of the parameters. We compare and contrast

different steady state equilibrium that arises from different levels of risk. The risk

is captured by the standard deviation of the idiosyncratic shock. We focus on

three key variables, namely, the endogenous loan to value ratio (which also gives

the leverage ratio), the probability of defaults and house prices. In what follows,

we describe the main contributions and the results obtained from our study.

Contribution and Results. This chapter contributes to the literature in

several ways. The main contribution of this chapter is in modelling a tractable

method of analysing the impact of endogenous loan to value ratio and endoge-

nous defaults that lead to equilibrium house price bubbles. We do this by for-

mulating a borrowing contract secured by the level of housing stock held by the

borrower. Constraints on limited participation added with the presence of idiosyn-

cratic shocks mean that for a specific distribution assumption of the idiosycratic

shock, the collateral constraint can be derived endogenously. This collateral con-

straint gives us the endogenous loan to value ratio which accommodates defaults.
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The equilibrium can then be solved as a standard optimization problem. The equi-

librium conditions are solved to understand the link between house price bubbles,

collateral margins and default rates. Predominant literature in this field either

assume that margin on the collateral is exogenous or rule out defaults, see Aiya-

gari and Gertler (1999), Coen-Pirani (2005), Santos and Woodford (1997), Miao

(2014) and He et al. (2015). Furthermore, the few studies that do accommodate

both defaults and endogenous margins usually assume highly complicated theo-

retical structures in the form of heterogenous beliefs and incomplete markets, see

for example Geanakoplos (2003), Kubler and Schmedders (2012), Simsek (2013)

and Brumm et al. (2015). These models, except for the two period case, cannot

be studied analytically. Also, Models with heterogeneous beliefs (non-common

priors) have the drawback that it is more difficult to conduct a thorough welfare

analysis. It is not clear which beliefs should one assign to the social planner.

We find the following four results in this chapter. Firstly, the endogenous

loan to value ratio was found to be procyclical in nature. As the loan to value

and leverage are the same, we say that the endogenous leverage in our model is

procyclical. High leverage is observed under high house prices and low leverage

under low house prices. Secondly, low values of idiosyncratic risk of housing

generates a credit-easing effect boosting excessive borrowing resulting in a rational

price bubble in housing goods. Thirdly, high values of idiosyncratic risk causes

a credit-crunch effect tightening the borrowing constraint restricting lending and

thus lowering house prices. Fourth, the probability of default rises with declining

house prices and increased uncertainty (risk). These results thus explain the

foreclosure crisis observed after the burst of the housing bubble in the US wherein

a substantial portion of mortgages were defaulted on.

Related Literature. Our chapter is close to the subject of housing bub-

bles, endogenous mortgage defaults and endogenous collateral constraints. We

review some related papers, mainly concentrating on those set in a general equilib-

rium framework. Aiyagari and Gertler (1999), Coen-Pirani (2005) and Rytchkov

(2014), are three studies that focus on the effects of collateral constraints on

equilibrium asset prices (housing). While Aiyagari and Gertler (1999) finds that

binding constraints lead to highly volatile asset prices, Coen-Pirani (2005) finds

no effect of the constraint on prices. However, both these papers assume exoge-

nous margins. Rytchkov (2014) considering a continuous time model with two

types of agents endogenizes the margin by assuming it is a function of the state

variable (consumption share) and finds that time varying margin constraints lead

to an increase in the price of the risky asset. Rythckov’s model, however, rules
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out any possibilty of default. Brumm et al. (2015) studies collateral requirements

and asset pricing with default costs and endogenous margins in a rich dynamic

context. Their results reveal that assets with different collateralizabililty possess

different returns, there exists a collateral premium in these assets prices. Their

model is much richer than ours but the approach in which they endogenize the

margins is different. They follow the theory of Geanakoplos (2003) in doing this.4

He and Krishnamurthy (2013), Santos and Woodford (1997), Caballero and

Krishnamurthy (2001), Hellwig and Lorenzoni (2009), Miao and Wang (2012)

Jose A. Scheinkman (2013) and Miao and Wang (2014) are some papers that

investigate the possibilty of bubbles arising from borrowing constraints. However,

all of these assume exogenous margins and rule out defaults.

Our chapter is also close to the literature on mortgage defaults with endoge-

nous loan to value ratios. In a recent paper, Campbell and Cocco (2015) study

the mortgage default decision using a partial equilibrium theoretical model of a

rational utility-maximizing household. They solve a dynamic model of a house-

hold that finances the purchase of a house with a mortgage, and must in each

period decide how much to consume and whether to exercise options to default,

prepay, or refinance the loan. They find that the level of negative home equity

that triggers default depends on the extent to which households are borrowing

constrained. As house prices decline, households with tightly binding borrowing

constraints will default sooner than unconstrained households, because they value

the immediate budget relief from default more highly relative to the longer-term

costs. A higher LTV ratio (smaller down payment) was found to increase the

4Stein (1995) is an early work that considered an ad-hoc endogenous loan to value ratio in a
static framework. An alternate interpretation to the margin parameter was given by Holmstrom
and Tirole (2011) who assumed non-pledgeability in that firms (as well as consumers) can count
on liquidating only part of their wealth whenever they need funds. Holmstrom and Tirole define
shortage of inside liquidity as a scenario in which internal funds (profits) generated by the firm
is not enough to meet its next period investment demands. This forces the firm to approach
an external financial intermediary such as a bank for funds. They derive key insights regarding
implications of aggregate shocks to financial market liquidity and explain underlying reasons
behind the sub-prime crises. However, pledgeable income in their work cannot be directly
compared to collateral in this chapter. Collateral can be different from pledgeable income in
many contexts. The value of the assets backing up debt is often higher than the value of debt
(the debt is over-collateralized). This may be because the underlying assets are risky and do not
protect the investor’s claim in all states of nature. Or it may be, because the value of collateral
is worth less to the investor than it is to the borrowing firm. Note that even if the collateral is
worth very little to the investor it can provide proper incentives for repayment of debt as long
as the borrower prefers to repay the debt than lose his collateral and has the means to do so.
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probability of negative home equity and mortgage default. The LTV ratios con-

sidered in this paper are exogenous and furthermore, the housing stock is fixed

and doesn’t change with time.

As far as the structure of the contract analysed in our model is concerned,

it is very close to both Carlstrom and Fuerst (1997) and Bernanke et al. (1999).

The key difference from these papers is that our model analyses a mortgage con-

tract and thus the collateral is the housing stock owned by the borrowers. In this

sense, Forlati and Lambertini (2011) comes close to our paper as they too apply

the Bernanke type contract in a housing mortgage context. However, their study

focuses on monetary policy shocks and its implications to risky mortgage defaults

and is thus different from our analysis. One main difference from Kiyotaki and

Moore (1997) is that the underlying contract in our model is based on the costly

state verification model of Townsend (1979). In contrast, Kiyotaki and Moore

(1997) build on the work of Hart and Moore (1994) and analyze the contract-

ing in an environment in which there is ex-post renegotiation and inalienability

of human capital. The consequence of such a contract is that borrowing is so

tightly constrained by the level of the collateral that default never occurs in equi-

librium. In contrast, our framework is similar to Bernanke and Gertler (1989)

and Carlstrom and Fuerst (1997) in that default is an equilibrium phenomenon.

Roadmap. This chapter is organized as follows. The following §1.2 describes

a selective review of the literature on rational bubbles, endogenous margins and fi-

nancial constraints. The subsequent §1.3 describes in detail the theoretical model

and defines the equilibrium. The results are reported in §1.4. Finally, §1.5 dis-

cusses the results and §1.6 concludes.

1.2. Literature Review

This section reviews the literature connected with the concepts explored in this

chapter. Our chapter connects endogenous margins in collateral (borrowing) con-

straints with price bubbles. Hence, this literature review starts with the im-

portant studies that connect endogenous margins with price bubbles and later

move towards the concept of a rational bubble and its formation from financial

constraints.
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1.2.1. Endogenous Margins and Asset Prices

The existing literature on endogenous margins and collateral constraints can be

split into two. One that assumes heterogeneity, incomplete markets and defaults

as in Geanakoplos (2003) and the second strand that uses the Value-at-Risk ap-

proach asin Brunnermeier and Pedersen (2008). In this section, we describe briefly

the main studies in these fields.

The first major study on endogenous margins and its effect on asset prices was

by Geanakoplos (2003). He finds that variation in leverage has a huge impact on

the price of assets, contributing to economic bubbles and busts. The underlying

assumption behind the Geanakoplos model is heterogenous valuation or beliefs

and incomplete markets. Heterogenous valuations meaning that there is always

a class of buyers for whom the asset is more valuable than it is for the rest

of the public (standard economic theory, in contrast, assumes that asset prices

reflect some fundamental value). Endogenous incomplete markets can arise when

not all the assets are collateralizable.5 These buyers are willing to pay more,

perhaps because they are more optimistic, or they are more risk tolerant, or they

simply like the assets more. If they can get their hands on more money through

more highly leveraged borrowing (that is, getting a loan with less collateral),

they will spend it on the assets and drive those prices up. If they lose wealth,

or lose the ability to borrow, they will buy less, so the asset will fall into more

pessimistic hands and be valued less. In the absence of intervention, leverage

becomes too high in boom times and too low in bad times. As a result,

in boom times asset prices are too high, and in crisis times they are too low.

He calls this behaviour, the leverage cycle, see Geanakoplos (2010) Fostel and

Geanakoplos (2008) and Simsek (2013) are some other studies that follow the

same path and analyse leverage cycle and Aymanns and Farmer (2015) uses an

agent based dynamic model to get quantitative results.

Brunnermeier and Pedersen (2008) builds a four period model in which the

margin is endogenously determined by financiers who try to limit their counter-

party credit risk.6 They consider three groups of agents: customers and specula-

5This is a key assumption in his model that makes the margins endogenous. See for example
Brumm et al. (2015) for a recent example.

6they do this by linking two liquidity concepts that determine the health of the asset market,
funding liquidity and market liquidity. They define market liquidity as the ease with which the
assets can be traded and funding liquidity as the ease with which investors or traders can obtain
funding. They argue that both these liquidity concepts are interrelated. They define market
liquidity as the difference between the transaction price and the fundamental value, and funding
liquidity as speculators’ scarcity (or shadow cost) of capital.
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tors who trade assets and financier’s who lend speculator’s positions. Speculators

face the constraint that the total margin on their positions xt cannot exceed their

capital Wt: ∑
j

(xj+t mj+
t + xj−t mj−

t ) ≤ Wt (1.2)

where j is an index used to identify the security, xj+t ≥ 0 and xj−t ≥ 0 are the

positive and negative parts of xjt , respectively, and mj+
t and mj−

t are the dollar

margins on the long and short positions respectively. Speculators borrow from

financiers who in turn set the margins such that their counterparty credit risk is

minimized. The financier makes sure that the margins are big enough to cover

their positions’ π value at risk. For example, margins on a long positions mj+
t is

set such that:

π = Prob(−∆pjt+1 > mj+
t |Ft) (1.3)

the price drops (∆pjt+1) that exceed the margin mj+
t will only happen with a

probability π. The probability is exogenously chosen to be a small positive num-

ber close to zero such that the financier minimizes its risk from possible defaults

by traders. The financier’s margin depends on its information set Ft. The fi-

nanciers can be either perfectly informed in the sense that they know not just

the fundamental value of the assets but also the aggregate shocks that hit the

market or be imperfectly informed in that they only observe the asset’s prices.

The deviation of the asset’s price from its fundamental value, pht − νjt , is con-

sidered as a proxy measure for the market’s illiquidity. When they assume that

financiers are completely informed, they counterfactually conclude that the mar-

gins are decreasing in times of liquidity crises. Imposing information asymmetry

between the financiers (lenders) and leveraged traders (speculators) makes the fi-

nanciers unable to distinguish between fundamental shocks from liquidity shocks

and thus tighten constraints (higher margins) producing a destabilizing effect on

asset prices.

Both these studies although different in their approach produces qualitatively

similar results. The approach of Geanakoplos (2003) finds that in a world where

agents are heterogeneous and markets incomplete, the ability to use an asset

as a collateral (i.e., buying on margin) increases its price in equilib-

rium. This happens because buying on margin makes it possible for a subset

of agents who value the asset the most to determine its price. The increase in
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price represents a deviation from the Law of One Price (LOP), since two assets

with the same payoff in all states of the world are priced differently. When assets

can be used as collateral to borrow money, their prices not only reflect future

cash flows but also their efficiency as liquidity providers. An identical result is

obtained by Adrian Shin using the Brunnermeier and Pedersen (2008) Value at

Risk approach. Essentially, they find that the price of any asset can be decom-

posed into two parts: its payoff value and its collateral value. The payoff value

reflects the assets owner valuation of the future stream of payments, i.e. it is the

value attached to the asset due to its investment role. But assets can also be

used as collateral to borrow money. The collateral value reflects the asset owners

valuation of this second role. This can theoretically create deviations from Law

of One Price since two assets with identical payoffs can be priced differently if

they have different collateral values.

An apparent weakness in the approach of Geanakoplos is that except for highly

stylized two period versions of the model, the estimation and the results are

not analytically tractable. Also, Basak and Shapiro (2001) analysing optimal

consumption and wealth policies for a finitely lived agent finds some undesirable

results when the Value-at-Risk is embedded in the optimizing framework. In

particular, VaR risk managers incur larger losses than the non VaR counterparts

in the most adverse states of the world.

This section explained how endogenous leverage (margins) can create asset

price booms and busts. To further understand the concept of asset price move-

ments, we introduce the concept of rational bubbles. The next section describes

rational bubbles in a simple partial equilibrium framework and the following one

reviews some of the literature that investigate the role of borrowing constraints

and collateral in the creation of such bubbles in a general equilibrium framework.

1.2.2. Rational Bubbles

One of the first theoretical studies on rational bubbles was by Blanchard (1979)

and Blanchard and Watson (1982a). Blanchard and Watson (1982a) using a

partial equilibrium model finds that rationality of behaviour and expectations

does not always imply that the market price of an asset be equal to its fundamental

value. There can be rational deviations, in other words bubbles.

Blanchard and Watson characterize such a rational bubble using the efficient-

market or the no arbitrage condition between stocks and a riskless asset. Let pt
be the price of a stock, dt be the dividend, and r be the rate of return on the
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riskless assumed, constant over time. Then if risk neutral individuals arbitrage

between stocks and the riskless asset, the expected rate of return on the stock,

which is equal to the expected rate of capital gain plus the dividend-price ratio,

must equal the riskless rate:

E[pt+1|It]− pt]
pt

+
dt
pt

= r (1.4)

or by reorganizing

pt = aE[pt+1|It] + adt, where a =
1

1 + r
< 1 (1.5)

The coefficient a is the one-period discount factor and is less than one as long

as long as the interest rate is positive: the price today depends on the expected

price tomorrow but by less than one for one.

The linear difference equation (1.5) can be solved recursively by repeated

substitution relying on the law of iterated expectations.7 Solving the equation

recursively up to time period T , we can arrive at many solutions depending on

whether the transversality condition holds or not. The first solution is written as

p∗t =
∞∑
i=0

ai+1E[dt+i|It] if lim
T→∞

aT+1E[pt+T+1|It] = 0, (1.6)

says that the price of the stock is the present discounted value of expected future

dividends, the fundamentals. When the transversality condition do not hold,

many other solutions are possible. One such solution can be written as

pt = p∗t + bt, E[bt+1|It] = a−1bt (1.7)

7The law of iterated expectations states that if Ω is an information set and ω is a subset of
this information set, then for any variable x,

E[E[x|Ω]|ω] = E[x|ω]

or, heuristically, if one has rational expectations and is asked how she would revise her expec-
tation were she given more information, the answer must be that she is as likely to revise it up
or down so that on average the revision wil be equal to zero. Applied to the information set It
this implies in particular that

E[E[p|It+1]|It] = E[p|It]
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where p∗t is the solution from eq. (1.6). As long as E[bt+1|It] = a−1bt, equation

(1.7) is also a solution to the linear difference equation (1.5). Since a is less than

one, bt explodes in expected value, lim
i→∞

E[bt+i|It] = a−1bt → +∞ if bt > 0 and

−∞ if bt < 0. As long as the process bt 6= 0, the price of the stock will rationally

deviate from its fundamentals. for this reason, Blanchard and Watson (1982a),

calls bt a rational bubble. Empirical testing for the possibilty of these bubbles were

justified by Shiller (1983) and later West (1988). The theory of rational bubbles

literature in a general equilibrium framework is extensive. It is beyond the scope

of this chapter to review this. We provide a section in the Appendix that surveys

some of the important works. The rational bubbles that we study in this chapter

arises from borrowing constraints, these are essentially credit driven bubbles. In

the next section we detail some of the studies in this area.

1.2.3. Rational Bubbles and Borrowing Constraints

Ever since the seminal work of Bernanke and Gertler (1989) and Kiyotaki and

Moore (1997), recent papers in the rational bubble literature have incorporated fi-

nancial constraints, specifically borrowing constraints in different forms, see Brun-

nermeier et al. (2012) and Miao (2014) for surveys of the rational bubble literature.

Borrowing constraints are an important determinant of firm growth and survival

and thus the general economy. Such constraints may arise in connection to the

financing of investment opportunities faced by firms or temporary liquidity needs,

like those needed to survive a recession, see Albuquerque and Hopenhayn (2004).

We give some examples of such constraints, their implications to asset prices and

limitations.

Suppose that an entrepreneur has an investment technology that produces one

unit of output using one unit of investment. The entrepreneur can finance the

investment It by his endowment wt, one-period debt bt, and a bubble asset Bt. A

bubble asset is an asset that is intrinsically worthless but grows at the rate of the

interest, see eq.(1.7). The debt has to be repaid the next period with interest.

Furthermore, the lenders (such as banks) impose a borrowing constraint on the

entrepreneur

(1 + rt+1)bt ≤ λIt, λ ∈ (0, 1) (1.8)

where rt+1 is the one period interest rate from time t to t + 1. This constraint

says that the debt repayment in period t + 1 is limited by a fraction λ of the

23



investment return It because the entrepreneur can only pledge this amount as

collateral. Farhi and Tirole (2011) finds that in this case the investment satisfies

It =
Bt + wt

1− λ/(1 + rt+1)
(1.9)

This equation says that the presence of a bubble Bt > 0 essentially raises the

entrepreneur’s net worth and hence investment. Thus bubbles can crowd in

investment, rather than crowd out investment as in Diamond (1965) and Ti-

role (1985). Kocherlakota (2009) study another type of borrowing constraint.

Kocherlakota examine a model economy in which capital re-allocation is critical.

This re-allocation is accomplished via collateralized lending backed by land. How-

ever, land is scarce and so all entrepreneurs face borrowing constraints that bind

infinitely often into the future. this constraint can be written as

(1 + rt+1)bt ≤ Pt+1Lt (1.10)

where Pt+1 is the land price in period t + 1 and Lt represents the land holdings

chosen in period t. These two ingredients imply that equilibrium bubbles nat-

urally emerge in the price of land, the collateral. The resulting bubbles

expand entrepreneurial borrowing capacity and generate more output, consump-

tion, and welfare.

Kiyotaki and Moore (2012) consider a downpayment constraint given by:

bt ≤ ψPtLt, ψ ∈ (0, 1) (1.11)

where PtLt represents the date t purchase price of the land and the fraction 1−ψ
of the purchase value must be paid by the entrepreneur’s net worth. As land is

considered as an asset with no intrinsic value, this means that in the absence of

a bubble Pt = 0 and hence there is no collateral for borrowing. The presence of a

bubble in land prices makes Pt > 0 and thus the upper bound on the constraint

gets relaxed. This is called the ”credit easing” effect of bubbles. The bubble

can help solve the collateral shortage problem. The movements of the bubble in

land affect the borrowing capacity directly and thereby investments. One of the

results we get in our analysis in this chapter is that once we endogenize the

margin (ψ here) the credit easing effect creates the bubble and not the other way.

A higher margin relaxes the liquidity shortage faced by the borrower.

In general, most of the literature that use financial constraints assume that it

is of the form:

Loant ≤ ξ.Collateralt (1.12)
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meaning that the borrower can borrow up to a proportion ξ ∈ (0, 1) of the value

of the collateral. The critical assumption here is that this parameter ξ, also

called the pledgeability parameter (or the downpayment rate) is exogenous. The

implication is that changes in financial conditions do not affect the level of the

margin which is an unrealistic assumption. Some other papers in the literature

that use such constraints include Santos and Woodford (1997), Caballero and

Krishnamurthy (2001), Hellwig and Lorenzoni (2009), Miao et al. (2015), Miao

and Wang (2012), Martin and Ventura (2012), Jose A. Scheinkman (2013) and

Miao and Wang (2014).

Unlike the studies reviewed in this section, our model derives endogenous

margins on collateral constraints (loan to value ratio), allows for defaults and

price bubbles arise in equilibrium. As the underlying model and the plans and

actions of all the agents are consistent with rational expectations, we call these

bubbles as rational bubbles. Now that we have reviewed the relevant literature,

we proceed to a detailed description of our theoretical model.

1.3. A Model of Endogenous Collateral and

House Prices

Our model is built on a standard endowment economy asset pricing framework

such as Lucas Jr. (1978) and Zhang (1997). It features a discrete time, infinite

horizon economy with uncertainty. Time is denoted by t = 0, 1, 2 . . .∞ and con-

tinues forever. There is no production in the economy. The economy is populated

with two types of households. One type of these households are called ”Borrow-

ers” and the second type are called as ”Savers”. We assume that these two types

of households differ in their discount rates. This is inspired from several housing

models in the literatures such as Iacoviello (2005), Monacelli (2009), Iacoviello and

Neri (2010) and Forlati and Lambertini (2011). Households with high discount

rates are patient and hence called ”Savers” and households with low discount

rates value current consumption more than future consumption and are hence

called ”Borrowers”. All the households in a group are identical, in other words,

our model has a representative borrower and a representative saver. Households

who are impatient will borrow from households who are patient to smooth their

consumption over time. Instead of assuming an exogenous borrowing constraint

we derive it endogenously by explicitly modelling a one period mortgage contract

between Savers (the Lenders) and Borrowers.
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Following Iacoviello (2004) we assume that both the agents receive in each

period some exogenous perishable endowment given by Yt. They have preferences

defined over only the durable housing. Aggregate housing is normalized to some

constant and is in constant supply. However, shifts in housing demand across the

two groups will affect housing prices as well as the allocation of housing between

the borrowing and saving households.

1.3.1. Borrowers

We start with describing the preferences and constraints for the Borrower house-

holds. The discount factor for these Borrowing households denoted by β is lower

than that of Savers, γ, that is β < γ.

The objective of the Borrowers is to maximize the following expected dis-

counted utility function:

E0

∞∑
t=0

βtU(HB
t+1), 0 < β < 1, (1.13)

where E0 is the expectations formed at time zero, β is the household’s subjective

discount factor and U(HB
t+1) is an utility function which has its arguments the

durable (housing) services denoted as Ht+1. Here we have assumed that the agent

gets utility only from his stock of durable goods, housing, and does not value non

durable consumption. This is primarily to maintain reasonable tractability in our

analysis. With this simplification we can directly analyse the price of housing

coming from the financial variables which we model later. It is assumed that the

housing services that is carried over to period t (alternatively beginning of period

t) are equal to Ht+1, see Forlati and Lambertini (2011). We assume that the

utility function U(.) is continuous, concave and strictly increasing. We use the

superscript B to differentiate the borrower type households from savers. We have

included housing as part of the household’s utility function so that housing is not

just an investment asset but also provides valuable utility services.

Following Cocco (2004) we define the utility function for the borrower house-

holds,

U(HB
t+1) =

(HB
t+1)1−σ

1− σ
(1.14)

as being a Constant Relative Risk Aversion (CRRA) functional form where as

usual σ is the coefficient of relative risk aversion.
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We assume that the stock of housing depreciates at the rate δ > 0 every period

and that the services derived from the house is quantitatively equivalent to its

stock. At time t, the Borrowers face the following budget constraint:

PH
t H

B
t+1 + [1− Ft(ωt)](1 +RZ,t)L

B
t = LBt+1 + Y B

t + (1− δ)[1−Gt(ωt)]P
H
t H

B
t

(1.15)

The left hand side of this equation (1.15) gives the financial expenses incurred by

the household at time t. This includes the total value of housing stock chosen at

time t, PH
t H

B
t+1, where Ht+1 is the total units of housing and PH

t is the price of

one unit of housing; and also payments on loans taken at period t− 1 that have

to repaid now [1 − Ft(ωt)](1 + RZ,t)L
B
t . This loan repayment is the product of

three components: the state contingent interest rate charged on the loans given

by RZ,t; the total amount of loans taken at time t − 1, LBt ; and also a fraction

[1− Ft(ωt)]. To understand what this fraction means, we reiterate the argument

that our model generates endogenous defaults in equilibrium. This means that

not all the loans taken by the borrowers will be repaid. Some of it is defaulted.

The value [1−Ft(ωt)] indicates the fraction of loans that is repaid to lenders. The

intuition behind this specific formulation and its construction will be explained

later on.

The right hand side of the budget constraint (1.15) gives the total income

available for the borrower households at time t. This includes the loans taken

at time t, LBt+1; the endowment income Y B
t and net housing value carried over

from period t− 1, (1− δ)[1−Gt(ωt)]P
H
t H

B
t where δ > 0 is the depreciation rate

on housing stock. The value [1 − Gt(ωt)] is a fraction which indicates the left

over stock of housing after the borrower’s default in period t− 1. Naturally, the

term Gt(ωt) indicates the fraction of the stock of Borrower’s housing that was

captured or seized by the lenders (Savers) as a consequence of default in period

t − 1. The interpretation and construction of ω, F (.) and G(.) and the terms of

the one period mortgage contract are explained in the following paragraphs. For

the specification of the contract, we follow Bernanke et al. (1999) and Forlati and

Lambertini (2011).

We assume that each household consists of many members. The choice of

housing investment Ht+1 and state contingent interest rates on the loans next

period depend on the contractual agreement of a representative member with the

lender. Each member of the household, denoted by i, receives equal resources to

purchase housing stock HB
i,t+1. The total housing stock for the Borrowers would

be then
∫
i
HB
i,t+1di = HB

t+1. The ith member finalizes the mortgage contract
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relating to the housing stock HB
i,t+1. All the members in the household are ex-

ante identical. Once the loan contract is agreed, the ith member experiences an

idiosyncratic shock ωit+1 to his level of housing stock HB
i,t+1. The ex-post housing

value for this member is given by ωit+1P
H
t+1H

B
i,t+1. The implication here is that

investments in housing is risky. The underlying mechanism behind the results in

this chapter rely on constraints formed from the mortgage contract between the

borrower and the lender.

The timing of this contract and the actions of each agents can be written as

follows:

1. At time t, the Borrower household assigns an equal amount of resources to

each of its i members.

2. These members purchase housing stock HB
i,t+1 following the instructions

of the household and manages it. The purchase of new housing stock is

financed by a one period mortgage contract with a lender. The borrower

receives a loan Lt+1.

3. Once the contract is agreed, this household member experiences an idiosyn-

cratic shock ωit+1 on his stock of housing.

4. At time t+1, the lender pays a monitoring cost characterized by a proportion

µ of the stock of the borrower’s housing value. This monitoring cost ensures

that the borrower will truthfully reveal his realized value of the shock.

5. The interest rate charged on the borrowers are now set so that it is state

contingent (on the realised shock), RZ,t+1.

6. The household member chooses its decision to default based on the ex-post

realization of the shock on his housing value, ωit+1(1− δ)PH
t+1H

B
t+1 vis-a-vis

the gross repayment to lenders, (1 +RZ,t+1)LBt+1.

7. If the member defaults, he loses his pledged collateral (the stock of housing).

As in related contracting models of Bernanke and Gertler (1989), Bernanke

et al. (1996), Carlstrom and Fuerst (1997) and Bernanke et al. (1999) we as-

sume that the random variable wit+1 is independent and identically distributed

(i.i.d) across members of the same household and log-normally distributed with

a cumulative distribution function Ft+1(ωit+1). The mean and variance of lnωit+1

are deliberately chosen in a way that the Et(w
i
t+1) = 1 for every time period
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t. The key implication here is that although there are idiosyncratic shocks for

the household members, the household in itself does not experience any risk,

Et(ω
i
t+1H

B
i,t+1) = HB

t+1. This important assumption will ensure that we do not

need to keep track of each household’s distribution of housing stocks across time

and helps in making our model analytically tractable. Alternatively, we could

assume shock not to individuals but to each households which is qualitatively

similar to the Bewley (1987)-Aiyagari (1994) type models and would require the

employment of numerical analysis.

As in Bernanke et al. (1999), we assume that the cumulative distribution func-

tion of the idiosyncratic shocks, Ft+1, is continuous and at least once differentiable.

Furthermore, the hazard rate of the shock satisfies the following constaint

∂ωh(ω)

∂ω
> 0, (1.16)

where h(ω) = ∂F (ω)
1−F (ω)

is the hazard rate. The log normal distribution we assumed

for the shock satisfies this restriction and is thus the primary motivation behind

its use here. However, unlike the Bernanke et al. (1999) contract, we assume that

housing investment riskiness can change over time. In other words, the cumulative

distribution function of the shocks Ft+1(ωit+1) is time variant. We achieve this by

letting the standard deviation σω,t of lnωt to follow an exogenous time varying

process.

Once the idiosyncratic shocks are realized, the household member decides

whether to repay his mortgage or default. If the member experiences good (high)

realizations of shocks, he will repay the loan. However, if he faces bad (very low)

shock realizations, he will find it optimal to default on his loans. The implication

here is that the choice of default depends on the realized value of the shock

ωt+1. It is then natural to assume a cutoff or threshold value of the shock

ωt+1 that will make the household indifferent between defaulting and

non-defaulting . Ever since the seminal work of Bernanke and Gertler (1989),

several others have used this insight to analyse endogenous defaults in equilibrium:

Arellano (2008), Mendoza and Yue (2012) and Chatterjee and Eyigungor (2012)

are some examples of sovereign defaults.

The threshold value of the shock ωt+1 is defined by8

ωt+1(1− δ)PH
t+1H

B
t+1 = (1 +RZ,t+1)LBt+1 (1.17)

8This constraint can be considered as the housing equivalent of the Bernanke et al. (1999)
constraint, see eq. (3.3) in their paper, imposed on borrowing firms. In their model, the
borrowing firm pledges its capital as a collateral.
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This can be considered as a no-default condition for the borrowers. The left hand

side of this eq. (1.17) indicates the ex-post value of the collateral, that is, the

value of the house after the shock has been realized. We have multiplied with

(1 − δ) in order to capture the depreciation that the house experiences between

the time periods. The right hand side shows us the gross payment the borrower

pays to the lender. The level of loans chosen at period t is given by Lt+1 and the

gross interest on borrowing is (1 + RZ,t+1). As we said before, the interest rate

on borrowing is state contingent and set only after the state of nature, the shock

has been realized.

From eq. (1.17) we can infer that when the realized shock falls at or above this

threshold value ωit+1 ≥ ωt+1, that is if ωit+1 ∈ [ωt+1,∞], the borrower will repay

his loans. If on the other hand the realized shock falls below the threshold value

ωit+1 < ωt+1, that is if ωit+1 ∈ [0, ωt+1), the borrower will find it optimal to default

on his loans. In other words, the choice of default depends on the idiosyncratic

shock realization.

Bernanke et al. (1999) derives eq. (1.17) from an optimal contract between

borrowers and lenders in a costly state verification framework, first analyzed by

Townsend (1979). In our context, the agency cost means that lenders do not

observe the realized shock on the housing stocks faced by the borrowers. There-

fore, the lender pays a monitoring cost that will induce the borrower to truthfully

reveal his shock. The presence of monitoing costs thus removes the informational

asymmetry and moral hazard problems. Before we detail the monitoring cost and

its specification we discuss the costs of default to the borrowers.

In our model as in Campbell and Cocco (2015), the loans are nonrecourse.

This means that although the loans (or mortgages) are secured by pledging the

collateral (house), there is a restriction to the amount that can be collected by the

lender in case the borrower defaults. In case of defaults, the household members

lose their housing stocks to lenders. Nonrecourse loans means that the borrowers

cannot be held personally liable for any differences that may arise between this

collateral value and the actual loans that were given. The lender cannot force the

borrower to pay from his future income. As loans in our model are essentially

mortgages on houses, the assumption of non recourse debt is empirically consis-

tent. For example, Crowe et al. (2013) says that non recourse debt explains the

reality of subprime mortgage delinquencies which were at the core of the 2007-09

financial crises. Now that we have explained the cost of defaults to the borrowers,

we proceed to the monitoring cost charged by the lenders.
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Bernanke et al. (1999) assumes that the monitoring cost is equal to a fraction

µ of the realized gross payoff to the defaulting firm’s capital. We follow them

and assume that the cost charged by the borrower is equal to a fraction of the

housing value, µωit+1P
H
t Ht+1. The implication of this cost is that defaults causes

a decline in the stock of housing and thus its services. In other words, the attempt

to monitor the project results in the destruction of µωit+1P
H
t Ht+1 level of housing

wealth, see Carlstrom and Fuerst (1997).

As far as the defaulting members of the household are concerned, we follow

Forlati and Lambertini (2011) and assume that there is perfect risk sharing among

household members so that consumption of non-durable housing goods and ser-

vices are ex-post identical across all the members of the Borrower household. This

means that Borrower household members are ex-post identical.

Now that we have explained the costs, benefits and actions of the borrowers

in the contract we move on to the Lenders. For the contract to be feasible, the

lenders need some incentive to participate. In the contract theory literature, this

is explained using a participation constraint. The incentive for the lender in this

contract is that they are guaranteed a pre-determined rate of return on the loans

given. At time t the lenders make total loans Lt+1 to Borrowers and demand

the gross rate of return (1 + RL,t). This rate of return is predetermined at t and

non-state contingent. Hence, the time t participation constraint of lenders can be

written as:

(1 +RL,t)L
B
t+1 =

∫ ωt+1

0

ωt+1(1− µ)(1− δ)PH
t+1H

B
t+1ft+1(ω)dω

+

∫ ∞
ωt+1

(1 +RZ,t+1)LBt+1ft+1(ω)dω (1.18)

where ft(ω) is the probability density function of ω, which is time variant. The

return on total loans, (1 +RL,t)L
B
t+1, supplied by the lenders is equal to the sum

of two terms. The first term indicates the housing stock adjusted for monitor-

ing costs and depreciation of defaulting Borrower members,
∫ ωt+1

0
ωt+1(1−µ)(1−

δ)PH
t+1H

B
t+1ft+1(ω)dω. The second term shows the repayment of non-defaulting

members,
∫∞
ωt+1

(1 + RZ,t+1)LBt+1ft+1(ω)dω. After idiosyncratic shocks have real-

ized, the threshold value ωt+1 and the state-contingent mortgage rate RZ,t+1 are

determined so as to satisfy the participation constraint above. It is important

to note here that the participation constraint holds state-by-state and not in ex-

pected terms. This means that an aggregate state that raises ωt+1 and the rate of

default on mortgages generates an increase in the adjustable rate RZ,t+1 paid by
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non-defaulting members in order to satisfy the participation constraint eq. (1.18)

in that state. This implies that periods characterized by rising default rates are

also accompanied by rising interest rates in our model.

For convenience, we express the expected value of the idiosyncratic shock

conditional on the shock being less than or equal to the threshold value ωt+1 as,

Gt+1(ωt+1) =

∫ ωt+1

0

ωt+1ft+1(ω)dω (1.19)

where Gt+1 is the expected value, ωt+1 is the shock and the rest
∫ ωt+1

0
ft+1(ω)dω

indicates the probability of default which is nothing but the cumulative distri-

bution function in the interval [0, ωt+1]. Furthermore, we express the expected

share of the housing value that goes to the lenders gross of the monitoring costs

as,

Γt+1(ωt+1) = ωt+1

∫ ∞
ωt+1

ft+1(ω)dω +Gt+1(ωt+1) (1.20)

Now we can rewrite the lender’s participation constraint eq. (1.18) more com-

pactly by substituting in eq. (1.19) and eq. (1.20) as:

(1 +RL,t)L
B
t+1 = [Γt+1(ωt+1)− µGt+1(ωt+1)](1− δ)PH

t+1H
B
t+1 (1.21)

As this participation constraint of lenders arises out of a secured loan agreement

between the lenders and the borrowers, it resembles the standard aggregate col-

lateral constraints derived in models with Kiyotaki-Moore-like financial frictions.

We can interpret the term

[Γt+1(ωt+1)− µGt+1(ωt+1)] (1.22)

as the endogenous loan to value ratio or the endogenous margin or

as the endogenous collateral pledgeable parameter . This is the variable

ψ that we mentioned in the introduction to this chapter, see eq. (1.1). This

parameter for us, unlike most of the related literature (see Kiyotaki and Moore

(1997), Jermann and Quadrini (2012) and Miao and Wang (2012) for example)

is not a constant but an endogenous variable. It depends on several parameters

such as the monitoring cost µ, the variance of the idiosyncratic shock to housing

investment σ2
ω,t, the parameters affecting the equilibrium value of the shock, and

also the Borrowers’ housing stock (the asset that is collateralized).9 As far as

9It has to be noted here that the monitoring cost is not the parameter µ, but µ of the housing
value which means that as the housing value changes so will the monitoring cost.
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the lenders are concerned, this endogenous Loan to Value ratio measures the net

share of the housing value that he will receive as repayment in case the borrower

defaults. It is important to note here that this ratio talks about the share of the

collateral and usually lies in the interval [0, 1].

If the borrower decides to default at time t, they are left with an amount of

housing stock given by,∫ ∞
ωt+1

ωt+1(1− δ)PH
t Ht+1ft+1(ω)dω = [1−Gt+1(ωt+1)](1− δ)PH

t Ht+1 (1.23)

where we have used the assumption that Et(ωt+1) = 1. We used the right hand

side term in the borrowers budget constraint. We substitute the value of RZ,t+1

from eq. (1.18) in the Borrowers budget constraint and rewrite this constraint in

the form,

PH
t H

B
t+1 + (1 +RL,t−1)LBt = LBt+1 + Y B

t + (1− δ)[1− µGt(ωt)]P
H
t H

B
t (1.24)

Now that we have all the relevant equations for the Borrower type. We can

proceed to its optimization problem. The optimization problem for the Borrower

households involves maximizing their intertemporal utility eq. (1.13) subject to

the budget constraint eq. (1.24) and the participation constraint eq. (1.21). The

choice variables are the stock of housing HB
t+1, the loans LBt+1 and the threshold

level of idiosyncratic shock ωt+1. We solve this by formulating a Lagrangian of

the form:

L = E0

∞∑
t=0

βt

{
U(HB

t+1) + λBC,t

(
LBt+1 + Y B

t + (1− δ)[1− µGt(ωt)]P
H
t H

B
t

−PH
t H

B
t+1 − (1 +RL,t−1)LBt

)
+ λPC,t

(
[Γt+1(ωt+1)− µGt+1(ωt+1)](1− δ)PH

t+1H
B
t+1

−(1 +RL,t)L
B
t+1

)}
(1.25)

where λBC,t and λPC,t+1 are the Lagrangian multipliers on the borrowing con-

straint and the participation constraint respectively. For maximization, we take

the first order conditions (F.O.C) with respect to the choice variables.

The F.O.C’s with respect to the choice variables are given by,

33



∂L
∂HB

t+1

= U ′HB
t+1
− λBC,tPH

t + β(1− δ)Et
{

[1− µGt+1(ωt+1)]PH
t+1λBC,t+1

+λPC,t+1P
H
t+1[Γt+1(ωt+1)− µGt+1(ωt+1)]

}
= 0 (1.26)

∂L
∂LBt+1

= λBC,t − (1 +RL,t)Et

[
βλBC,t+1 + λPC,t+1

]
= 0 (1.27)

∂L
∂ωt+1

= −βλBC,t+1µG
′
t+1(ωt+1) + λPC,t+1

[
Γ′t+1(ωt+1)− µG′t+1(ωt+1)

]
= 0.

(1.28)

Here U ′
HB
t+1

is the derivative of the utility function with respect to housing stock.

We cannot put expectations on the first order condition with respect to ωt+1 as

this equation will hold only state by state.

In this section, we started with specifying the preferences and constraints for

the borrower households and derived an endogenous margin or loan to value ratio

from a participation constraint of the lenders who agree to a one period mortgage

contract with the borrowers. We then stated the optimization problem faced by

the borrowers and derived the first order conditions for maximization. In the next

section, we describe the problem faced by the saver households.

1.3.2. Savers

As we described in the introduction of this model, the second type of households

called ”Savers” are characterized by their high discount factors. These households

are patient and act as lenders to the Borrower type of households. They maximize

the expected discounted value of future utilities where the preferences are defined

over both non-durable goods and durable housing services. We use the supercript

S to differentiate the variables of savers from that of borrowers. The lifetime

expected discounted utility for the savers is given by,

E0

∞∑
t=0

γtU(HS
t+1), 0 < β < γ < 1, (1.29)

where E0 is the expectations formed at time zero, γ is the household’s subjective

discount factor and U(HS
t+1) is the utility function which has its argument the
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durable (housing) services denoted as HS
t+1. Savers just like borrowers receive an

endowment given by Y S
t . We assume that the utility function U(.) is continuous,

concave and strictly increasing. As before, housing is part of their utility function

so that this durable good is not just an investment asset but also provides valuable

utility services.

We define the utility function for the savers households similar to the borrow-

ers,

U(HS
t+1) =

(HS
t+1)1−σ

1− σ
(1.30)

as being composed of only the durable housing good. As before, σ is the coefficient

of relative risk aversion which is the sames as that of borrowers implying that the

heterogeneity in our economy comes only from the discount factor. As in the

borrowers, we assume that the stock of housing depreciates at the same rate

δ > 0 every period. At time t, the savers face the following budget constraint:

PH
t H

S
t+1 + LSt+1 = Y S

t + (1− δ)PH
t H

S
t + (1 +RL,t−1)LSt . (1.31)

The interpretation of these variables are the same as those of borrowers. The left

hand side of this constraint shows the financial expenses incurred and the right

hand side indicates the total income that the household holds at time t.

The optimization problem for the saver households involves maximizing the

utility function eq. (1.29) subject to their budget constraint eq. (1.31) with

respect to the two choice variables: housing stock HS
t+1 and loans LSt+1. We write

the associated Lagrangian as follows:

L = E0

∞∑
t=0

γt

{
U(HS

t+1) + λSBC,t

(
Y S
t + (1− δ)PH

t H
S
t + (1 +RL,t−1)LSt

−PH
t H

S
t+1 − LSt+1

)}
(1.32)

where λSBC,t is the Lagrangian multiplier on the savers budget constraint. The

first order conditions with respect to the choice variables can be written as,

∂L
∂HS

t+1

= U ′HS
t+1
− λSBC,tPH

t + γ(1− δ)Et[λSBC,t+1P
H
t+1] = 0 (1.33)
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∂L
∂LSt+1

= −λSBC,t + γ(1 +RL,t)Et[λ
S
BC,t+1] = 0 (1.34)

Now that we have described the actions and problems of both the agents in

the economy, we proceed to the definition of equilibrium.

1.3.3. The Equilibrium

The following definition characterizes the equilibrium in our economy.

DEFINITION 1: An equilibrium for our endowment economy is a set of alloca-

tions, namely,

{Hj
t , H

j
t+1, L

j
t , L

j
t+1}, where j = B, S. (1.35)

such that

1. Each Borrower household in the economy maximizes its expected discounted

lifetime utility subject to a stream of budget constraints and borrowing con-

straints summarized by equations (1.26,1.27 and 1.28).

2. Each Saver household in the economy maximizes its expected discounted

lifetime utility subject to a stream of budget constraints summarized by the

equations (1.33 and 1.34);

3. For each state of the world, the commodity markets clears:

Y S
t + Y B

t =
(
HB
t+1 − (1− δ)[1− µGt(ωt)]H

B
t

)
+
(
HS
t+1 − (1− δ)HS

t

)
(1.36)

which says that the aggregate endowment in the economy is equal to the con-

sumption of durable goods by the borrowing households plus the consumption

of durable goods by the savers households. The consumption of durable hous-

ing at time period t is given by the net accumulation obtained by subtracting

the initial stock of housing with the end of period housing stocks. These

variables are given in the left and right hand sides of the households budget

constraints eq. (1.24) and eq. (1.31), respectively. This equation takes into

account the fact that a fraction of borrower’s housing stock proportional to

the monitoring costs µGt(ωt) paid by the savers is effectively lost due to de-

fault. Thus, the net accumulation of housing accounts for both depreciation

and defaults.
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4. For each state of the world, the credit market clears:

LBt = LSt (1.37)

which says that the net supply of loans is zero.

1.4. Results

To solve for the equilibrium results, we first need functional forms for the fraction

of housing stock lost in case of defaults Gt+1(ωt+1) and the expected share of

housing value obtained by the lenders, Γt+1(ωt+1). This would come from the

distributional assumption on the idiosyncratic shock ωt+1. We follow Bernanke

et al. (1999) and assume that the shock follows a log normal distribution given

by,

ln(ωt+1) ∼ N(−
σ2
ω,t+1

2
, σ2

ω,t+1) (1.38)

where −σ2
ω,t+1

2
is the mean of the distribution denoted by µω,t+1 and σ2

ω,t+1 is the

variance of the distribution set such that Et(ωt+1) = 1.10 Also, to make housing

investments risky we assume that σω,t+1 = σω + εω,t+1 where the error process

εω,t+1 is an AR(1) innovation given by:

εω,t+1 = ρωεω,t + et+1 (1.39)

where ρω is the persistence of the innovation and et+1 is assumed to be a white

noise process. This implies that the distribution functions G(.) and Γ(.) can be

written as follows:

Gt+1(ωt+1) =

∫ ωt+1

0

ωt+1ft+1(ω)dω

= exp
(
µω,t+1 +

σ2
ω,t+1

2

)[1
2

+
1

2
erf
( ln(ωt+1)− (µω,t+1 + σ2

ω,t+1)
√

2σω,t+1

)]
(1.40)

10For a random variable X that follows the log normal distribution, the expected value is
given as, E(X) = exp(mean+ variance/2). Substituting values for the mean and the variance
we can show that E(X) = 1.
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Γt+1(ωt+1) = ωt+1

∫ ∞
ωt+1

ft+1(ω)dω +Gt+1(ωt+1)

=
ωt+1

2

(
1− erf

( ln(ωt+1)− µω,t+1√
2σω,t+1

))
(1.41)

where as we explained in the modelling section f(.) is the probability distribu-

tion function and erf is the Gaussian error function. We calibrate the constant

standard deviation of the shock σω to estimate the above equations (1.40) and

(1.41). The optimal endogenous leverage which is one of the key variables in our

model is then obtained by these equations and the equilibrium conditions. Now

that we have specified all the necessary equations, we proceed to calibrating our

parameters.

The parameters values for our benchmark calibration are reported in Table

1.1. We follow Monacelli (2009) in choosing the values for the discount factors

for Borrowers and Savers and the rate of depreciation for housing. The Saver’s

discount factor γ is set equal to 0.99 and Borrower’s β is set equal to 0.98. We

choose an annual depreciation rate for housing of 4 percentage points, implying

that the parameter δ = 0.01. The Saver discount factor pins down the steady-

state interest rate at RL = 0.0101 ( 1
1+RL

= γ) on a quarterly basis. This implies

an annual interest rate equal of 4.1 percentage points.

Furthermore, following Carlstrom and Fuerst (1997) we set the standard de-

viation of idiosyncratic shock, σω = 0.2 and the persistence of this time varying

volatility, ρω = 0.983. This implies that the shocks to the mortgage are highly

persistent as is suggested by Campbell and Cocco (2015). We assume that the

monitoring cost to be 12% of the house value consistent with other literature that

have analysed the housing market in the United States, see Cagan (2006). Fi-

nally, the coefficient of relative risk aversion for the borrower and saver household

preference is set to 2 following Cocco (2004) and the endowment income for the

borrower and saver households are fixed at Y B = Y S = 50. There are no specific

reasons for this endowment value, other values will produce qualitatively the same

results
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Table 1.1. Baseline Parameters

Description Parameter Value

Coefficient of Relative Risk Aversion σ 2
Discount Factor of Borrower Households β 0.98
Discount Factor of Saver Households γ 0.99
Depreciation Rate of Housing Stock δ 0.01
Standard deviation of Idiosyncratic Shocks σω 0.20
Monitoring Cost Proportion µ 0.12
Persistence of Idiosyncratic Shocks ρω 0.983
Endowment of Borrowers Y B 50
Endowment of Savers Y S 50

Notes: This table reports the calibrated parameters for the benchmark
model.

We have now specified the equilibrium characterizing equations and calibrated

the parameters of the model. We proceed to estimate the steady state values

for the three key variables in our model, the endogenous Loan to Value Ratio

(LTV), the probability of default or the rate of default given by the cumulative

distribution function F (.) for an optimal shock ω and the housing price, PH .

In principle, we can report the values for the stock of housing, leverage finance

premium, loans etc. However, we concentrate only on the dynamics between

the endogenous loan margin (LTV), the leverage ratio, default rates and house

prices. To understand these dynamics we find steady state value for all the three

variables under different values of the standard deviation σω of the idiosyncratic

uncertainty shock. These steady state values are reported in Table 1.2.

The first column in Table 1.2 describes the variables and the second to the

fourth columns, the corresponding steady state values. Each column indicates

a particular assumed value for the standard deviation of the idiosyncratic shock

and the resulting steady state values. Hence, each column represents an

equilibrium (steady state). We will infer about bubble behaviour in house prices

by comparing these equilibria. The endogenous loan to value ratio is defined in

eq. (1.22). For an optimal shock ω, we can obtain this ratio by considering the

functional forms of F (.) and G(.) from eq.’s (1.40) and ((1.41)). Default rates are

nothing but the cumulative distribution function F (.). House prices are obtained

by solving the first order conditions reported in the equilibrium definition.
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Table 1.2. Steady State House Price, LTV and Default Rate

Steady State Values

Variable σω = 0 σω = 0.2 σω = 0.4 σω = 0.8

Loan to Value Ratio 55.21% 47.18% 30.25% 19.18%
Leverage Ratio 2.23 1.89 1.433 1.237
Housing Price 4.01 3.11 2.99 2.10
Default Rate 0% 3.5% 8.7% 15%

Notes: This table reports the steady state values for the endogenous loan to value ratio,
house price and the probability of default (default rate) for different values of σω. The
second column with σω = 0.2 corresponds is the benchmark calibration given in Table
1.1. Both the loan to value ratio and the default rate are expressed in percentages. The
leverage ratio is given by 1

1−LTV where LTV is the loan to value ratio. Housing price is
normalized by the aggregate endowment.

A direct result we can infer from Table 1.2 is that as σω increases the endoge-

nous loan to value ratio decreases and the default rate increases. As we described

earlier, a higher standard deviation of the shock does not change the mean of our

distribution (by construction), that is Et(ωt+1) = 1. This means that any changes

in the uncertainty can be called as a mean preserving spread of the distribution

F (.). Consequently, a rise in the standard deviation will keep the mean unchanged

but will increase the skewness of the distribution of ωt. As we followed Bernanke

et al. (1999) and assumed a log-normal distribution, this means that F (.) cannot

take negative values implying that an increased skewness will result in the lower

tail of the distribution becoming thicker. A thicker tail will hence imply a higher

cumulative distribution function which of course means a higher rate of defaults

on mortgages. In the presence of high mortgage defaults, the share of housing

value (collateral) that the lender will receive will go down, that is the loan to

value ratio will decline, see eq. (1.22).

A higher mortgage risk first impacts adversely the financial condition of the

borrowers. The now worse borrower members of the household will default on

their loans and lose the housing stock which was put up as collateral. In addition,

as the loan to value ratio declines, the borrowers now experience a tightening in

their credit arrangement. This reduces the capacity of the borrowers to take loans

out of their stock of housing. Thus, the fact that the loan to value ratio is

endogenous means that the effect of uncertainty is multiplied. Higher
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uncertainty now influences the economy through two channels, the collateralized

asset and the endogenous margin (loan to value ratio).

We now examine the changes to the house prices. It is observable that there

is a steady decline in house prices with increasing idiosyncratic risk. The first

column reports results for the no shock case, σω = 0. This means that the

borrowers now face no risk to their housing investments. The steady state house

price (normalized by endowment) is found to be 4.01. With no risks to holding

housing goods, there is an increased demand for housing. The fact that the Loan

to Value ratio is very high, 55.1%, means that household borrower members can

take bigger loans to finance their investments in housing. Naturally, the price

of the house would then be high. Thus, there is a “credit-easing” effect.

Relaxed borrowing conditions induce high asset prices. We call this steady state

equilibrium as a Bubbly Equilibrium. This bubbly equilibrium is consistent

with rational expectations but is driven by credit, hence the type of bubbles we

find here are similar to the credit driven rational bubbles studied by Miao and

Wang (2012). This credit easing effect works purely because the loan to value

ratio here is endogenous. A fixed ratio would produce no such effects in the

absence of any uncertainty.

Several studies such as Caballero and Krishnamurthy (2001), Miao and Wang

(2012) and Miao (2014) for example in the literature talks of the credit easing

effect caused by rational bubbles in the price of the collateralized asset. Unlike

these papers where the loan to value ratio is exogenous, we have an endogenous

margin. The implication here is that upward price movements arise directly from

a shift in the endogenous loan to value ratio. Increased borrowing thus implies

that the borrower households would invest more in housing stocks raising its

equilibrium price.

The Bubbly equilibrium is thus characterized by high house prices, high loan

to value ratios, no uncertainty and no defaults. High house prices and high loan

to value ratios originate through the credit easing channel. The fact that high

house prices can be obtained with no uncertainty and no defaults is an important

result that justifies the use of endogenizing the loan to value ratio. This result thus

extends those of Kocherlakota (2009) who found bubbly prices in the collateralized

land only under the case of uncertainty.

An alternative way to explain this bubbly steady state equilibrium is to con-

sider the leverage ratio. The values for the leverage ratio are reported in the

second row. It is no coincidence that the bubbly equilibrium with the highest
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price of housing comes when the leverage ratio is also at its peak. This situa-

tion was observed in the recent sub-prime mortgage crisis when at the peak of

the bubble, borrowers were excessively leveraged. In an important study, Corbae

and Quintin (2015) notes that better access to loans with low down payments

made it possible for more households to obtain the financing necessary to pur-

chase a house. In our case, the high loan to value ratio means a low downpayment

(1− LTV ).

An upward change in risk lowers the steady state house price from a value of

4.01 when the idiosyncratic shock has a standard deviation of σω = 0 to a value of

2.1 when σω = 0.8. This can be explained as follows. First, a high risk in holding

housing stock will lower the demand for this asset by households. Second, high

risk is also associated with very tight borrowing margins. In other words, the loan

to value ratio is very low (relatively). For instance, the steady state equilibrium

value for LTV when σω = 0.8 is just 19.18%, a significant decline from the 55.21%

value. This tight collateral margin will imply that borrowers are severely restricted

in their borrowing capacity. This is called a ”credit crunch” in the literature,

see Brunnermeier and Sannikov (2014). An implication of such a credit crunch

situation is that a significant amount of household members would find it optimal

to default on their mortgage contract. A high rate of defaults by the borrowing

household members means that these households have to downsize because of their

lost collateral that was seized by the lenders. Borrowers will need to replenish their

stock of housing and will demand more from the saver households. However, the

tight margin constraints mean that there is in effect little demand for housing and

thus prices go down. The credit crunch thus produces a steady state equilibrium

characterized by low asset prices.

This credit crunch effect is what characterized the foreclosure crisis in US. The

events that occurred in the US housing market can be described chronologically

as follows. There was a fall in house prices and a rise in foreclosures since early

2006. House prices dipped around 2006-Q2 and then, except for a small rise in

early 2007, fell continuously until 2009-Q2. At that point house prices stabilized

for about a year, fell again for half a year and eventually began to rise. The rate

of new foreclosures rose continuously between 2006-Q2 and 2008-Q4. Chatterjee

and Eyigungor (2015) explains this foreclosure crisis in a general equilibrium

model where homeowners experience three unanticipated shocks, one of which is

in the stock of housing. Their analysis involves solving for the optimal policy

functions. Our results here are at steady state levels but it can still provide

us with the intuition behind this foreclosure crisis. As we see in our Table 1.2,
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the default rates rose steadily with increasing shocks. If we consider the no

shock equilibrium representing the year 2006, the rest of the steady state values

would then correspond to each subsequent year exhibiting falling house prices and

increased foreclosures.

Analysing the last two rows of Table 1.2 we observe that as steady state house

prices declined, the default rates increased. This evidence is consistent with what

was observed in the United States during the last decade. For instance, Mayer

et al. (2009) empirically documented this phenomenon and stated that roughly 1.7

million foreclosures were started in the first three quarters of 2008, an increase

of 62 percent from the 1.1 million in the first three quarters of 2007. Garriga

and Schlagenhauf (2009) for example use a general equilibrium model to analyse

mortgage defaults and finds that falling house prices generates sizeable default

rates at the aggregate level. Furthermore, in a recent paper Campbell and Cocco

(2015) also finds that both adjustable rate mortgages and fixed rate mortgages

experienced high default rates when there were a large decline in house price. The

results of Campbell and Cocco (2015) were obtained using a partial equilibrium

model where house prices were considered as exogenous. Our analysis here proves

that even under market clearing endogenous prices, the results would still hold

true.

In summary, our key results can be stated as follows. Firstly, increasing risk

in housing stocks generates steady state equilibrium values characterized by high

defaults, low prices and low LTV and leverage ratios, respectively. Secondly,

the endogenous loan to value ratio amplifies any uncertainty present in the fi-

nancial market. Thirdly, endogenous loan to value ratio leads to a credit-easing

effect where the upper bound on borrowing is relaxed resulting in rational bubbly

equilibrium in house prices. When hit with an idiosyncratic shock, endogenous

LTV gets tightened restricting borrowing and producing a ”credit crunch” effect

bursting any bubble and lowering house prices.

Now that we have finished reporting and explaining the results, we proceed to

a discussion section where we take a broader perspective of our results comparing

it to other literature, explain the limitations of our analysis here and provide an

alternative tractable ways to derive endogenous margins.

1.5. Discussion

One of the results in the previous section could appear to be counterfactual,

specifically the relationship between equilibrium values for the LTV ratio and the
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default rate. It is observed that high LTV, in other words, low downpayment, was

found to generate low default rates. For instance, when the standard deviation of

the shock to housing stock is zero, the downpayment rate is 44.79% (1 − LTV )

while the default rate is zero. We can compare these values to the other extreme

of σω = 0.8, where the downpayment rate now is 81% and the default rate to be

15%. These results suggests that households default when downpayment rates are

very high which is not true. There are two reasons for this finding in our model.

Firstly, in our model the rational bubble equilibrium is given by the first

column of Table 1.2. At this point, households have accumulated a lot of leverage

but defaults have not yet started. Defaults occur when σω ↑ which lowers prices.

This is well explained by Corbae and Quintin (2015) who using estimation as well

as observing the Survey of Consumer Finances data finds that delinquencies and

foreclosures start as soon as the bubble bursts and prices decline. The leverage is

only accumulated during the boom phase. This boom phase is thus characterized

by little or no defaults. Secondly, we have assumed that the shock follows a mean

preserving spread. This was done to ensure that the expected mean of shock will

always remain at unity, Et[ωt+1] = 1.

Our results also showed that an increase in house price is associated with an

increase in leverage. That is, leverage is high during asset price booms and low

during asset price busts. Hence, leverage in our model as in reality is procyclical.

As far as the modelling of the mortgage contract is concerned, we have used

here a one-period debt contract similar to Bernanke et al. (1999) for tractability

reasons. In reality, standard mortgages in the United States generally have a fixed

30-year term and about 70% of these mortgages have fixed rates, see Campbell

and Cocco (2015). Moreover, subprime mortgages with nontraditional features

(that is, adjustable rates) were at the heart of the recent crisis. Our model does

not consider these alternative mortgage instruments and therefore cannot capture

their role.

To introduce uncertainty, we considered only one idiosyncratic shock which

applied to the stock of housing. A growing empirical literature, see for example ?

and ? uses pre- and postcrisis mortgage data to study the importance of various

shocks in households’ decisions to default. This literature has documented that

most defaults involve negative equity (loan value greater than the value of the

collateral) but, at the same time, most households with negative equity choose not

to foreclose. Most foreclosures thus appear to involve a combination of negative

equity and other shocks.
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In the recent crises, unlike the previous ones, the initial disruption started

in the financial sector. It was not a shock in the real sector that was amplified

through financial frictions but uncertainty which originated in the financial sector.

One way to model this would be to add a shock to the endogenous leverage (LTV)

itself. These could then be considered as financial shocks that arise independently

from the real sector. For instance, Jermann and Quadrini (2012) assume that the

pledgeability parameter as an independent stochastic process unrelated to market

conditions. They interpret the parameter as the probability that the lender can

recover the full value of the collateral and thus its complement as the probability

that the recovery value is zero. They call exogenous shocks to the margin as

”financial shocks”.

We started this chapter by mentioning the research by Geanakoplos (2003)

on leverage cycles. Our model in its present form cannot accommodate this

behaviour. However, we can apply the theory developed by Gu et al. (2013)

and generate leverage cycles. These cycles originate and propagate in the credit

sector. These can be shown to exhibit deterministic, chaotic, and stochastic

cycles. One attractive feature of these type of cycles are that they exist even

when fundamentals are deterministic and time invariant. The key friction in this

theory is limited commitment, meaning that borrowers (agent) have the option

to renege on their contract and can divert funds from the lender (principal). In

the appendix, we show how such leverage cycles can be modelled from an optimal

contract between two firms.

In this chapter, we analysed the link between endogenous margins, collateral

constraints and asset price bubbles. Our model was a departure from the stan-

dard asset pricing framework in that agents face constraints to the level of their

borrowing. These constraints which we call collateral constraints can also be con-

sidered as rational debt constraints or solvency constraints. There are other ways

in which we can depart from the frictionless asset market and endogenize the mar-

gins. First, is the consideration of exogenous incomplete markets in which there

are not enough securities to insure against all possible states of nature, see the

examples in Radner (1972) and Geanakoplos (1990). Second, there are models of

liquidity constraints in which individual agents are restricted from borrowing as

much as they wish in the credit market. Bewley (1987) is an example of this types

of models. Third, there are also models of adverse selection and moral hazard, see

Townsend (1979) and Prescott and Townsend (1984). All these types of models

can be used to derive endogenous collateral constraints and thus the loan to value

ratio.

45



1.6. Conclusion

In this chapter we modelled an endowment economy asset pricing model with

heterogenous agents, endogenous loan to value ratios and endogenous defaults on

mortgages to understand the boom and bust in house prices. The steady states

of our model revealed several important results.

We find that credit driven rational bubbles can form in steady state house

prices when a high leverage induces a credit easing effect that relaxes the bor-

rowing constraint. Increased borrowing coupled with no uncertainty meant that

house prices in this state were high. Conversely, a credit crunch situation evolved

when the loan to value ratio declined following an increased risk. In this situation,

the borrowing constraint tightened restricting the availability of loans and thus

demand for housing resulting in lower asset prices. A direct consequence of these

two effects was that the leverage ratio was high during asset price booms and low

during asset price busts, that is pro-cyclical.

We restricted our analysis to just the steady states here. However, we could

enrich this model and compute the optimal policy functions to get better insights

on the dynamics between leverage, asset prices and defaults, see Brumm et al.

(2015). Importantly, the fact that the leverage is endogenous implies that policy

makers can regulate the collateral margin requirements and can thus prevent

financial shocks from adversely affecting the economy. This can be achieved if

they set margins (or the parameters that endogenizes the margin) such that they

become counter-cyclical.

Incorporating money and price stickiness into this framework can help us in

understanding how leverage frictions can influence of transmission of monetary

policy. In this chapter we have assumed that the initial disruption is completely

exogenous. There are authors such as Suarez and Sussman (1997) who have

proposed models in which adverse selection could generate economic fluctuations

even in the absence of exogenous shocks.
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1.A. Endogenous Collateral and Leverage

Cycle

In this section we describe a model that endogenize the leverage and generates cy-

cles. The model is kept deliberately simple so as to allow a transparent exposition

of the mechanism. The key mechanism or the friction that drives leverage cycles

is limited commitment. This limited commitment leads to endogenous collateral

constraints. The model is described in the following paragraphs.

We consider an infinite horizon economy. Time is assumed to be discrete,

denoted by t. Each period in the economy is assumed to have two subperiods.

The economy is populated by two types of agents of equal measures, these are

called Firms (or borrowers) and Households (or Lenders).

In each period t, there are two subperiods. These can also be considered as

beginning of period t and end of period t. Both the agents have different needs

in the two subperiods. In the first subperiod of t, the firms need investments

in the form of capital which they consume to generate returns, denoted by y,

in the second subperiod. Households are endowed with k units of consumption

goods (can be considered as capital) at the beginning of every period. We assume

that this good is non-storable and thus depreciates completely by the end of the

period. Furthermore, households do not have investment opportunities meaning

that they cannot use the k units of good to produce y. Thus, households value

consuming y in the second subperiod more than holding on their endowment good

k. This implies that there are gains to be had from trade.

The trade relationship between the firms and the households works as follows.

The firms borrow k units of goods from the households in the first subperiod and

promise, that is, sign a contract to deliver y to households in the second subperiod

when the firms have finally realised the fruits of their investments.

The utility from this trade agreement is UF (k, y) for the firms and UH(y, k)

for the households.11 The ordering of the arguments inside the utility functions

indicates the preference for each agents. Firms value more of k which is their

consumption than y, that is, ∂UF (k,y)
∂k

> 0 is strictly increasing and ∂UF (k,y)
∂y

< 0 is

strictly decreasing. Similarly, households value more of their consumption y than

k, ∂UH(y,k)
∂y

> 0 and ∂UH(y,k)
∂k

< 0. We assume here that the utility is concave and

twice differentiable. Furthermore the utility is non-negative for both the agents,

U i ≥ 0, where i = F,H.

11The superscript F represents Firms and H represents the households.
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The underlying mechanism that drives our result is the friction of limited

commitment or enforcement. Once investment returns, y, are realized at the end

of the period the firm has the incentive to renege from the contract and divert

these funds y to their own benefit. If the firm behaves in this manner, it gets

a payoff λy over and above its utility UF (k, y). Hence, λ is a parameter that

indicates the temptation to renege. To prevent this from happening, we impose

an additional constraint in the form

UF (k, y + y′) + λy′ ≤ UF (k, y), ∀x, y y′ ≥ 0 (1.42)

This constraint says that the firms never finds it optimal ex ante to divert resources

y′ as he is better off not producing in the first place. This does not mean that

the firm is not tempted to divert resources ex post after the production has taken

place. The incentive to honour the obligation to the contract arises from the

threat to exclude the firms from any future borrowing. This means that the

firm will have an autarky (no trade) payoff of zero. Motivated by related limited

commitment contract models in the literature such as Gu et al. (2013) we allow for

imperfect monitoring. This means that if the firm defaults, there is a probability π

that it will get caught. Consequently, with 1−π probability the lender will not be

caught. Now that we have specified the environment and trading arrangements in

the model, we proceed to explicitly state the contract variables and its associated

constraints.

The contract between the firms and the households at time t is

characterized by the pair of allocation (kt, yt). This contract specifies

that the borrower (firm) gets kt from the lender (household), and the

borrower promises to deliver yt to the lender. Consider V F
t and V H

t to

be the value functions for the firms and households, respectively. The discount

factor across periods is given by β ∈ (0, 1). We assume that the discounting

across subperiods is contained within the utility functions for each agent and do

not model it explicitly. These value functions can be written as:

V F
t = UF (kt, yt) + βV F

t+1, (1.43)

V H
t = UH(yt, kt) + βV H

t+1, (1.44)

For a contract to be feasible, the lender must offer the agent a utility level that is at

least as high as the utility level that the borrower obtains outside the relationship.

These constraints are called as participation constraints in the literature. The
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firms outside opportunity level is normalized to zero. Thus, the participations

constraints can be written in the form,

UF (kt, yt) ≥ 0 (1.45)

and

UH(yt, kt) ≥ 0. (1.46)

In addition to these constraints, there is an added constraint called the repayment

constraint which gives our leverage limit. The repayment constraint applies only

for the borrower (firm) and ensures that it is always optimal for the borrow to

repay the loan at the end of the contract period. In our model, this constraint

can be written as,

λyt + (1− π)βV F
t+1 ≤ βV F

t+1 (1.47)

This equation says that the continuation value to remain in the contract βV F
t+1 is

always greater than the value the firm will obtain if it reneges on the debt, that

is defaults. In case of defaults, the firm gets the deviation payoff λyt plus the

continuation value obtained in case it was not caught (1− π)βV F
t+1.

The repayment constraint eq (1.47) can be rewritten in the form:

yt ≤
βπ

λ
V F
t+1 (1.48)

Equation (1.48) says that the repayment yt cannot exceed the discounted continu-

ation value of the firm adjusted for monitoring costs and a fraction λ. Intuitively,

this is the limit on the loans that the firm can take on. We call this the leverage

limit. We can express eq. (1.48) as

yt ≤ ψt (1.49)

where ψt = βπ
λ
V F
t+1 is the endogenous limit on firms loans. In the lines of Alvarez

and Jermann (2000) we can say that the equilibrium loan limit φt is defined such

that the firms are indifferent between repaying φt and defaulting. For any feasible

allocation, payoffs and thus φt should be bounded. Following Gu et al. (2013) we

can define the equilibrium as follows:

DEFINITION 2: An equilibrium is given by nonegative and bounded sequences

of loan limits {φt}∞t=1 and contracts {kt, yt} such that (i) ∀t, (kt, yt) solves the

conditions given yt and (ii) φt solves the equilibrium conditions given {kt, yt}∞t=1.

The debt limit can be then expressed as a first order difference equation which

can be solved and illustrated to depict leverage cycles.
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1.B. Rational Bubbles in Overlapping

Generations

Tirole (1982, 1985) extended the partial equilibrium framework of Blanchard and

Watson (1982a) to a general equilibrium one. Tirole (1985) used Diamond (1965)’s

two period overlapping generations model of capital accumulation in a production

economy (inelastic labour), and gave necessary and sufficient conditions for the

existence of a rational bubble. Tirole found that bubbles crowd out productive

savings and cannot grow faster than the economy, their existence depends on

a comparison between the interest rates and the growth rates of the economy.

If the economy is dynamically efficient, the interest rate will exceed the growth

of the economy, there cannot be a steady state with a positive valued bubble.

However, if the economy is dynamically inefficient, there exists an equilibrium

with a positive bubble value. In such a bubbly equilibrium, the growth rate of

bubbles of is equal to the economy growth rate, which is equal to the interest

rate.

Theoretical arguments can be made to rule out rational bubbles in a finite

horizon framework through backward inductions. Since a bubble cannot grow

from time T onwards, there cannot be a bubble of this size at time T − 1, which

rules out this bubble at T −2, etc. However, there is ample experimental evidence

that individuals violate the backward induction principle. Most convincing are

experiments on the centipede game, see Brunnermeier and Oehmke (2013).12

Furthermore, Allen et al. (1993) show that, when common knowledge is absent

and short sale constraints bind, a bubble can exist for a finitely-lived asset. They

describe an example in which the market price of a security can deviate above the

present value of its dividends even though all the agents are rational and knows

the dividends with certainty. The reason is that the agents’ do not know each

other’s beliefs, in other words there is asymmetric information (i.e., there is a

lack of common knowledge that was assumed in the previous backward-induction

reasoning). Moreover, at the time or state when the bubble occurs, every agent is

12In this simple game, two players alternatively decide whether to continue or stop the game
for a finite number of periods. On any move, a player is better off stopping the game than
continuing if the other player stops immediately afterwards, but is worse o§ stopping than
continuing if the other player continues afterwards. This game has only a single subgame perfect
equilibrium that follows directly from backward induction reasoning. Each player’s strategy is
to stop the game whenever it is her turn to move. Hence, the first player should immediately
stop the game and the game should never get off the ground. However, in experiments players
continue to play the game - a violation of the backward induction principle
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either short sale constrained or will be constrained at some possible contingency

in the future. As beliefs are not common knowledge, even though all agents know

that the price of the asset is over-valued, they all rationally believe that they will

be able to sell the asset at a higher price to someone else before the true value is

completely revealed.

Farhi and Tirole (2011) and Martin and Ventura (2012) introduce financial

frictions to the Tirole (1985) model and show that bubbles can exist even though

the equilibrium without bubbles is dynamically efficient. They show that dynamic

efficiency and low interest rates are compatible in the presence of capital market

imperfections.
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Chapter 2

U.S. Housing Market Bubbles: A
Long Memory Approach

2.1. Introduction

House prices in the United States rose rapidly between the early 1990’s until the

mid 2000’s. Figure 2.1 graphically illustrates the time series behaviour of the

Standard & Poor Case-Shiller House Price Index. The Index started its upward

trend around 1996 reaching a peak in the first quarter of 2006. After the peak

in 2006, they declined sharply and reached a low in 2012, see Case et al. (2012).

Several explanations have been offered by scholars for this boom-bust episode

such as misguided monetary policy; a global savings surplus; government policies

encouraging affordable homeownership; irrational consumer expectations of rising

housing prices; inelastic housing supply, mortgage securitization to name a few,

see Levitin and Wachter (2012).

The 1997-2006 real house price appreciation prompted numerous economists

and the national media to conclude that there was a bubble in the U.S. Hous-

ing Market. These proclamations arise from observing the largest crash in U.S.

real estate market’s history in 2007 that erased a significant portion of household

wealth. Such a decline in household wealth has adverse macroeconomic effects,

as already overextended consumers reduce spending to boost saving and improve

their weakened financial position. In this context, a wide consensus among ana-

lysts and commentators has emerged on the importance of timely identification

and understanding of a ”housing bubble”.1 Consequently, there is a growing body

1The motivation for exploring the housing market is because of the large role that it had
in the financial crisis. According to the Flow of Funds Accounts compiled by the Board of
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of papers that examine for housing bubbles, see Abraham and Hendershott (1996),

Higgins (1997), Himmelberg et al. (2005), Glaeser et al. (2008) and Phillips and

Yu (2011) among others.2

Figure 2.1. S&P Case-Shiller House Price Index
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Notes: Time series plot of the Standard & Poor Case-Shiller Real House Price Index
in the time span 1987Q1-2013Q4. The peak of the price index, illustrated with a
straight line, occurs in the first quarter of 2006.

In this chapter, we focus on rational bubbles in the U.S. Housing

Market .3 To begin with we have to address the question of defining an asset

Governors of the Federal Reserve System, households held about $14.6 trillion in real estate
at the end of March, 2003. By comparison, households held about $12.8 trillion of corporate
equities and mutual funds in January, 2000 - the peak of the stock market. Moreover, equity
holdings are concentrated at the upper end of the wealth distribution, whereas housing is the
major asset for most households, see Tracy and Schneider (2001). Examining booms and busts
in home prices is thus important.

2See Mayer (2011) and Glaeser and Nathanson (2014) for a survey on the literature and
Levitin and Wachter (2012) for possible reasons to the recent bubble in the United States.

3We often use the words Housing Market and housing prices throughout our narration. In
the context of this chapter, they are one and the same. A bubble in the housing market means
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price bubble. Despite the huge volume of literature on this topic, a consensus on

the definition of an asset price bubble remains elusive. The most common and

widely accepted definition relates an asset price bubble to any divergence from

its fundamental price, see Blanchard and Watson (1982b), Diba and Grossman

(1988) and Kindleberger and Aliber (2005). In case of the stock market, equity

prices contain a rational bubble if investors are willing to pay more for the stock

than they know is justified by the value of the discounted dividend stream i.e.

the fundamentals, see Shiller (1989) and Gürkaynak (2008). This is because they

expect to be able to sell it at an even higher price in the future, making the current

high price an equilibrium price implying the existence of a rational bubble in the

stock market.

As in the stock market, rational bubbles can occur in the housing market

when there are deviations from the fundamental value of the house. An important

fundamental value explaining house prices is the rental price, see Kivedal (2013).

Hence, an investigation on its relationship with the house price, the house rent-

price ratio, will give us valuable insights to the persistence and thus the possibility

of bubbles in the housing market. The housing rent-price ratio is a financial ratio

akin to the dividend-price ratio for the stock market. A low rent to price ratio

indicates that the return on the housing asset for homeowners is low compared to

other assets that they could hold and thus is unlikely to persist. For the return to

rise to a level comparable with returns on competing assets, house prices would

have to fall, see Hatzius (2002) and Case et al. (2005). The ratio of the Owners’

Equivalent Rent Index from the Consumer Price Index (CPI) series to the House

Price Index is often treated as the real estate equivalent of a dividend to price

ratio for corporate equities, see Meese and Wallace (1994), Himmelberg et al.

(2005), Kivedal (2013) and André et al. (2014).4 In this chapter, we follow these

papers and use the real rent to real house price ratio to detect rational bubbles

in the housing market.

In addition to the theoretical problems of defining as asset bubble, researchers

have found it a challenging task to empirically test for a bubble, see Gürkaynak

(2008). One approach is to test for cointegration between dividends and stock

prices. Cointegration implies that two or more series cannot drift apart indef-

initely as they must satisfy a long run equilibrium condition. For example, a

a bubble in the housing prices and vice-versa.
4Gallin (2008) also used a long horizon regression approach and show that the rent to price

ratio can accurately forecast housing prices and thus, lends empirical support to the use of this
financial ratio as an indicator of valuation in the housing market.
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cointegrating relationship between stock prices and dividends is inconsistent with

rational bubbles, since stock prices and dividends are tied together in the long

run. Another approach is to make use of the present value relation. The present

value model says that the stock prices are equal to the sum of the expected dis-

counted dividend sequence which is also called the fundamental price of the stock.

Deviations from the present value model will imply that the stock market is not

efficient, i.e. the existence of asset bubbles, see Koustas and Serletis (2005).

Univariate time series testing procedures such as unit root testing on present

value model variables like the log dividend-price ratio is a possible way to test for

price bubbles, see Diba and Grossman (1988) and Koustas and Serletis (2005).

The presence of a unit root in the log dividend price ratio implies rational bubbles

as in effect this means that stock prices and dividends do not share a common

trend. In the context of the housing market, a rational bubble means that the

housing prices and rents do not move together and consequently there is a unit

root in the housing rent-price ratio. Phillips and Yu (2011) uses a sequential unit

root test to date housing bubbles in the Case-Shiller log price to rent ratio. Some

other studies that apply unit root tests on U.S. House prices (ignoring rents)

include Meese and Wallace (1994), Meen (2002) and Canarella et al. (2011) to

name a few.

Empirical papers which uses standard unit roots for bubble identification have

had mixed success, see Lamont (1998) and Horvath and Watson (2009). This is

mainly because of the low power of these integer order tests to reject the null

of a unit root against the possibility of fractional roots.5 For instance, standard

unit root tests cannot distinguish between a unit root process and a near unit

root process. Univariate processes that have persistence close to but not equal

unity have a special property in that they have long memory. This means that

the effect of a shock will last for an extended time period (hence the term ”long

memory”) and will thus look like a bubble when in fact they are mean reverting.

As such near unit root processes which revert to their mean in the long run can

be mistakenly considered as possessing bubble behaviour. Hence, standard unit

root tests are not adequate in testing for rational bubbles.

In this chapter, we use long memory models to investigate for

the presence of housing bubbles . The long memory models, also known in

the literature as Autoregessive Fractionally Integrated Moving Average processes

(ARFIMA) stemmed from the seminal contribution made by Granger and Joyeux

5In addition to this, there is an enormous literature which argue that the presence of any
structural breaks affects the performance of standard unit root tests, see Perron (1989, 1997).
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(1980). There is evidence that long memory processes successfully model some

economic and financial data, see Diebold and Rudebusch (1991), Hassler and

Wolters (1995), Bhardwaj and Swanson (2006). The presence of long memory in

the rent-price ratio will mean that even though there is a temporary deviation

in house prices, they will eventually return to their fundamentals, i.e. rents. In

other words, the presence of long memory negates bubble activity.

The presence of long memory in a series is detected by estimating the level of

fractional integration, alternatively called the memory parameter, in the series.

This parameter is denoted by d in this chapter. This is the key parameter of

interest. An estimated value of d below 1 indicates mean-reversion, implying that

exogenous shocks have temporary effects, while a value equal to or above 1 implies

that exogenous shocks have permanent effects. The value of the integer d thus

indicates the persistence of the series.6 Intuitively, the value of d then shows the

presence or absence of a bubble in the series. Long memory processes can also

be non-stationary process when the value of d greater than 0.5. Non-stationarity

in itself does not imply the presence of bubbles. As long as there is no unit root

persistence, there will be no bubbles meaning that a non-stationary long memory

process has no bubbles.

In this chapter, we first estimate the value of d and then test for the null

hypothesis of a unit root d = 1 against that of a fractional unit root, d < 1. This

is achieved by employing the Efficient Fractional Dicky Fuller Test of Lobato and

Velasco (2007). Unlike standard unit root tests, this test is robust to the presence

of fractional roots. If the null is not rejected, we conclude that there is a bubble

in the rent-price ratio series.7 Now that we have detailed the basic premise of

our chapter, we state the key contributions that we make towards the existing

literature.

This chapter makes three main contributions. The first contribution is in the

use of long memory models to identify housing bubbles. To the best of our knowl-

edge, there has been no study that use long memory models to test for bubble

prevalence in the housing market. Existing papers, namely Koustas and Serletis

(2005), Cuñado et al. (2005), Cuñado et al. (2012) and Kruse and Sibbertsen

(2012), use long memory models to test for stock market bubbles. Inferences on

6Persistence measures the extent to which past economic shocks lead to permanent future
changes. In a highly persistent series like a unit root process the effect of an economic shock
will be permanent. In time series econometrics, persistence is usually tied to the value of the
memory parameter, d.

7In the actual estimation procedure, we use the natural log of the rent-price aeries. This is
motivated by our theoretical model where we derive an expression for the log rent-price ratio.
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bubbles are based from the estimated value of persistence parameter, d, of the

dividend-price ratio. The few papers, that test for persistence in the housing mar-

ket, uses standard unit root and cointegration tests. For example, Gallin (2008)

finds no evidence of cointegration between house prices and per capita income

in the United States, whether using national level data from 1975 to 2002 or a

panel of 95 metropolitan areas from 1978 to 2000. On the contrary, Gallin (2008)

finds cointegration between U.S. house prices and rents over the period 1970 to

2005. Standard unit root tests, we discussed before have low power compared to

the long memory tests which could explain these ambiguous results. Connected

to the use of the long memory model is the type of procedure that is used to

estimate the memory parameter d.

The literature on long memory estimation briefly classify the different methods

to estimate d as either semi-parametric or parametric. Koustas and Serletis (2005)

and Kruse and Sibbertsen (2012) use a parametric procedure of Sowell (1992)

known as Exact Maximum Likelihood to test for bubbles in the S&P 500 Index.

A major limitation of this approach is that it is not consistent when the time

series follows a non-stationary process. Hence a unit root bubble process may

be mistakenly rejected by this procedure. Also, parametric methods that are not

specified correctly for non-normal or heteroskedastic errors will produce inefficient

estimates of d and thus bubble presence. Standard inferencing using t or F tests

would thus lead to erroneous conclusions. Furthermore, they suffer from small

sample biases. To overcome these problems, we make use of Shimotsu and Phillips

(2005) and Shimotsu (2009) semi-parametric methods that are both consistent

under non-stationarity and also robust to heteroskedasticty. We compare these

estimates with a parametric procedure by Beran (1995) called Non-Linear Least

Squares which is also valid for non-stationary d.

The second contribution of our chapter is that we account for endogenous

structural breaks when estimating the long memory parameter for the housing

market. There is a huge volume of papers which argue that long memory can be

spuriously induced by a structural break, see Diebold and Inoue (2001). Also, it

is well known from works such as Perron (1989) that failure to allow for struc-

tural breaks in an intercept or trend can result in spuriously high estimates of

the persistence parameter: Once one allows for changes over time in the mean,

then deviations from this time-varying mean do not seem as persistent. Mayoral

(2012) develops a time domain test of I(d) versus I(0) plus trends and/or breaks,

and finds that the null of I(d) is not rejected in the U.S. inflation data. Choi
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and Zivot (2007), estimate the memory parameter, d, of an exchange rate for-

ward discount series after adjusting for breaks in their mean. They find that the

demeaned forward discount series produced significantly lower persistence values.

Despite these findings, current papers on long memory and stock market bubbles

do not account for possible structural breaks.8 Additionally, with the exception

of Barari et al. (2014) that test for unknown breaks in the aggregate Case-Shiller

Index, estimation of structural breaks in the U.S. HPI’s has been to the best of our

knowledge non-existent. Moreover, the break test used by Barari et al. (2014) is

not consistent for non-stationary series meaning that the number of breaks could

be over estimated. Our work here fills this gap by using the Andrews (1993) and

Andrews and Ploberger (1994) F statistic based structural tests to examine the

presence of an endogenous break in the mean and trend of each series. Infer-

ence for break presence/absence was based on Hansen (2000)’s Fixed Regressor

Bootstrap asymptotic p values that are consistent under non-stationary regres-

sors and robust to heteroskedastic residuals. We estimate persistence after

adjusting for potential breaks making our bubble analysis efficient.

This ensures that the net persistence will account for time varying

changes in fundamentals. If we ignore these breaks, the gross persistence

values will be inflated and will include both the bubble component as well as

changes in fundamentals.

The third contribution is that we use both aggregate and regional level data

in our empirical study. This is because the House Price Index (HPI) used can

have dramatic ramifications on the assessment of whether a house price bubble

exists, see McCarthy and Peach (2004). Furthermore, there is a plethora of re-

search which suggests that an house price appreciation (depreciation) to a large

extend depends on inelastic (elastic) housing supply, see Green et al. (2005) and

Levitin and Wachter (2012) among others. The implication being that as hous-

ing supply elasticity differ from region to region so will the persistence of house

prices. This would mean that national aggregated indices could hide possible

bubbles which are regional in nature. Empirical papers, for example McCarthy

and Peach (2004), Phillips and Yu (2011) and Nneji et al. (2013), that restrict

their analysis to just the national indices could produce questionable findings. In

this paper, we perform our analysis on not just the national indices but also on

several metropolitan statistical areas. Additionally, we use a dataset ending in the

8Kruse and Sibbertsen (2012) does consider a structural break in their analysis by testing
for changes in persistence. However, their test do not distinguish between mean-reverting and
unit root persistence and consequently does not identify bubble behaviour.
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last quarter of 2013 encompassing both the boom phase as well as the subsequent

bust helping us in answering a key question of whether house prices have finally

reverted to their fundamentals.

We can preview our results as follows. First, we find that the long memory

models produced better estimates of the persistence when compared to standard

unit root tests. Secondly, between the semi-parametric and parametric long mem-

ory estimation methods, it was found that the semi-parametric procedures gave

reliable values of d. Based on these estimates we found that the persistence values

were well above the unit root. This was true both for the aggregate and regional

HPI’s. Thirdly, we found one endogenous break in the mean and trend of each

series. The break date coincided with the turnaround in the credit conditions

in the borrowing market and was thus consistent with our a priori expectations.

Finally, when we adjusted for these breaks by detrending and demeaning each

series we found that the new persistence values (d) were significantly lower. Con-

sequently, a few series now exhibited below unity persistence consistent with mean

reverting long memory behaviour devoid of bubbles. Nevertheless, the aggregate

Case-Shiller Index and 8 of 12 regional HPI’s still indicated unit root bubble be-

haviour. We thus conclude that in the estimated time period of 1982Q4-2013Q4

the United States housing market shows evidence for rational price bubbles.

The rest of the chapter is organised as follows. In section 2.2 we provide a

brief description of the present value relation of the Housing Market under rational

expectations and introduces the notion of housing price bubbles. We then derive

an expression for the log rent-price ratio. Section 2.3 outlines the long memory

model and properties of the long memory parameter. Section 2.4 briefly goes

through the structural break test that we implement, section 2.5 the different

estimation methods. section 2.6 describes the dataset, section 2.7 the empirical

results and finally section 2.8 concludes.

2.2. Theoretical Model of Housing Bubbles

2.2.1. Set-up

We begin by setting out some key concepts in modelling housing price bubbles.

We start with a simple consumers’ optimization problem to derive the basic asset

pricing relationship assuming no arbitrage and rational expectations. Following

Campbell and Shiller (1987, 1988), the expected discounted utility driven from

consumption at time t, u(ct), is maximised in an endowment economy,
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maxEt

{ ∞∑
t=0

βtu(ct)
}

(2.1)

with discount rate β and Expectation Et subject to the budget constraint:

ct = yt + (Pt +Rentt)xt − Ptxt+1 (2.2)

where yt is the endowment at time t, xt is the asset, Pt is the after-payoff price of

asset and Rentt is the payoff (dividend) received from the asset. In this chapter,

we are looking at the asset class of the housing market and hence, Pt here is

the real housing price and Rentt is the rent obtained from owning a house. We

now proceed to the household’s optimisation problem to derive the present value

relation of the Housing Market.

2.2.2. Present Value Model of Housing Market

To solve the optimisation, we begin by substituting the constraint (2.2) into the

objective function (2.1),

max
xt+1

E0

{ ∞∑
t=0

βtu(yt + (Pt +Rentt)xt − Ptxt+1)
}

(2.3)

This is solved by the use of a Bellman equation which can be written as,

V (xt, yt, Rentt) = max
xt+1

{
u
[
yt+(Pt+Rentt)xt−Ptxt+1

]
+βEt[V (xt+1, yt+1, Rentt+1)]

}
,

(2.4)

where V (.) is the value function. The first order condition of the Bellman equation

with respect to xt+1 is given by,

∂V (xt, yt, Rentt)

∂xt+1

= u′(ct)(−Pt) + βEt

[∂V (xt+1, yt+1, Rentt+1)

∂xt+1

]
= 0 (2.5)

The first derivative of the Bellman equation with respect to xt:

∂V (xt, yt, Rentt)

∂xt
= u′(ct)(Pt +Rentt) (2.6)

Taking eq. (2.6) one-period ahead,

∂V (xt+1, yt+1, Rentt+1)

∂xt+1

= u′(ct+1)(Pt+1 +Rentt+1) (2.7)
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Combining eq (2.5) and eq (2.7) gives us the Euler equation:

u′(ct)Pt = βEt[u
′(ct+1)(Pt+1 +Rentt+1)] (2.8)

which simply says that given house prices Pt and rents Rentt, agents will find it

optimal to increase their demand of the asset if the expected future gains to doing

so are greater than the costs. It is generally assumed for asset pricing purposes

that the utility function is linear, which implies constant marginal utility and risk

neutrality, see Cochrane (2007). Hence,

Et

[u′(ct+1)

u′(ct)

]
= 1 (2.9)

and eq (2.8) solves to

Pt = βEt(Pt+1 +Rentt+1) (2.10)

Assuming further the existence of a riskless bond available in zero net supply with

one period net interest rate, R (where β = 1/1 +R), no arbitrage implies

Pt =
1

1 +R
Et(Pt+1 +Rentt+1) (2.11)

This is the Present Value Model of house prices which forms the basis for most

asset pricing tests, see West (1987), Diba and Grossman (1988) and Evans (1991a).

In eq (2.11) 0 < 1/(1 + R) < 1 is the discount factor.9 Solving eq (2.11) forward

j periods yields

Pt =
( 1

1 +R

)j
Et[Pt+i] +

m∑
i=1

Et[
( 1

1 +R

)i
Rentt+i] (2.12)

Assuming that the expected discounted value of the house in the indefinite future

converges to zero:10

lim
k→∞

( 1

1 +R

)j
Et[Pt+i] = 0 (2.13)

This allows us to obtain the fundamental value of the house, as the expected

present value of future rents:

Ft =
( 1

1 +R

) ∞∑
i=1

Et[Rentt+i]. (2.14)

9Here we have treated discount rate as equal to returns. Alternatively, discount rates can
be considered as a constant, return plus risk premia or consumption based Cochrane (1992).
However, testing for bubbles with these specifications is not straightforward.

10The transversality condition is not testable in finite samples, so this assumption is held with
caution, see Cochrane (1992) and Diba and Grossman (1988).
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in (2.14), Ft is the fundamental value of the house. This is equal to Pt as long as

there are constant returns. Abandoning the convergence assumption leads to an

infinite number of solutions any one of which can be written in the form

Pt = Ft +Bt, Bt =
( 1

1 +R

)
Et[Bt+1] (2.15)

The second term Bt is the ”Asset Price Bubble”. Now that we have shown how

asset price bubbles can exist using a simple present value model derived from a

consumption utility function, we now extend this constant discount rate model

to a time varying one and then subsequently derive the expression for the log

rent-price ratio. This is detailed in the following section.

2.2.3. The Rent-Price Ratio and Housing Price Bubble

By allowing the discount rate to vary over time, we are in turn implying that

the housing returns are also stochastic. Furthermore, if the housing returns are

stochastic, the expected present value is a nonlinear function of rents and housing

prices. This section derives and discuss the log linear approximation of the housing

rent-price ratio. Following the seminal paper by Campbell and Shiller (1987), the

log linear dividend-price ratio relation has become one of the central equations in

empirical finance research, particularly those on asset price bubbles.11 Eq (2.11)

can be rearranged with stochastic Rt+1 to express the one period gross housing

return from time t to t+ 1 as,

Rt+1 =
Pt+1 +Rentt+1 − Pt

Pt
(2.16)

Rearranging eq (2.16) as follows:

1 +Rt+1 =
Pt+1 +Rentt+1

Pt
(2.17)

Taking the natural logarithm on both sides of eq (2.17),

rt+1 = ln(1 +Rt+1) (2.18)

= ln(Pt+1 +Rentt+1)− ln(Pt) (2.19)

= ln
[(

1 +
Rentt+1

Pt+1

)
Pt+1

]
− ln(Pt) (2.20)

= ln[1 + eδt+1 ] + pt+1 − pt. (2.21)

11For example Campbell and Shiller (2001),Koustas and Serletis (2005), Cuñado et al. (2005,
2012) apply the model for stock markets and Campbell et al. (2009) and Ambrose et al. (2013)
for the Housing Market.
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The last step is obtained by defining

δt+1 = ln
Rentt+1

Pt+1

(2.22)

where δt+1 is the log rent-price ratio (rentt−pt) and e is the exponential function.

Lower case letters, pt and rentt, represent the natural logs of real housing prices

and real rents, respectively. The first term in (2.21) is non-linear in the log rent

price ratio.

f(δt+1) = ln[1 + eδt+1 ] (2.23)

The first order Taylor approximation of this term, similar approach in Engsted

et al. (2012), is as follows:

f(δt+1) = f(δ̂) +
[( 1

1 + eδ̂

)
eδ̂(δt+1 − δ̂)

]
(2.24)

where δ̂ is the point around which the linearization is done.12 Setting ρ = (1+eδ̂)−1

implies,

(1 + eδ̂) =
1

ρ
(2.25)

and also,

eδ̂ =
1− ρ
ρ

(2.26)

Combining eq’s (2.24), (2.25) and (2.26) we get:

f(δt+1) = ln
(1

ρ

)
+ (1− ρ)δt+1 − (1− ρ) ln

(1− ρ
ρ

)
(2.27)

Substituting eq (2.27) into (2.23) and the result in (2.21) we obtain an expression

for the stochastic logged interest rate

rt+1 = k + ρpt+1 + (1− ρ)rentt+1 − pt (2.28)

where k is a constant given by k = ln(1
ρ
)−(1−ρ) ln(1−ρ

ρ
). Adding and subtracting

rentt in (2.28), we have

rt+1 = k + δt − ρδt+1 + ∆rentt+1 (2.29)

12 δ̂ here is the unconditional mean of the rent-price ratio which is the usual norm in literature,
see Engsted et al. (2012) and also Cochrane (2007).
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Eq. (2.29) can be interpreted as a linear forward difference equation in δt:

δt = −k + ρδt+1 + rt+1 −∆rentt+1 (2.30)

We solve the above expression by forward recursive substitution method assuming

that the transversality condition holds. Imposing the no rational bubble condition

(or the transversality condition),

lim
j→∞

ρjδt+j = 0 (2.31)

we get:

δt ≈
∞∑
j=0

ρj[rt+j+1 −∆rentt+j+1]− k

1− ρ
. (2.32)

We can consider eq. (2.32) as an ex ante relationship. Taking expectations on

both sides conditional on the information available at time t,

δt =
∞∑
j=0

ρj[Etrt+j+1 − Et∆rentt+j+1]− k

1− ρ
. (2.33)

Eq. (2.33) states that the log rent-price ratio, δt can be written as the discounted

sum of all future log returns minus the discounted sum of all future log rent

changes less a constant term. The above expression also implies that if the log

returns and the log rent changes are stationary stochastic process, then the log

rent-price ratio is a stationary stochastic process under the transversality condi-

tion Craine (1993). On the contrary, the presence of a unit root in δt is consistent

with asset price bubbles in the log rent price ratio. This is because the presence

of a unit root will imply the lack of a cointegrating relationship between rents

and price.

In summary, housing bubble presence depends on the persistence of the log

rent-price ratio. In time series econometrics, we measure the persistence of a series

by its autocorrelation function which is dependent on the value of the memory

parameter d. Formal econometric tests for distinguishing between d = 0 a sta-

tionary non-bubble process and d = 1 a unit root bubble process exist in the

literature, see, for example, Dickey and Fuller (1979) and its various extensions.

However, the jump from d = 0 to d = 1 is often too extreme in the sense that

you are not considering fractional values of d. These fractional roots have the

interesting property that they possess long memory but eventually return to their
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mean. In this chapter, we test for bubbles in the Housing Market by differenti-

ating between long memory processes and unit root process. By their definition,

rational bubbles are highly persistent and their effect is permanent implying unit

root behaviour. If the tested data exhibits unit root type behaviour then we con-

clude that it has a bubble. In contrast, if the series possesses long memory then

we conclude that it does not contain a bubble. This is only one of the reasons

that motivates us to use long memory models. The second reason is related to

aggregation. Granger and Joyeux (1980) has shown that time and cross-sectional

aggregation can generate long memory in aggregate processes. Testing for bub-

bles is done on house price indexes which are aggregates of several regional ones.

We employ both aggregate and regional series in our study to prevent any bi-

ases in the testing for bubbles. The third reason is related to structural breaks.

Granger and Hyung (2004) and Diebold and Inoue (2001) have shown that pro-

cesses with certain kind of structural changes in mean appear indistinguishable

from long-memory processes. Given the significant shocks that have beset the

world economy over the past three decades, as well as the likelihood of structural

change occurring over this period, a measure that allows for such change is clearly

desirable.

2.3. Fractionally Integrated Processes - Long

Memory Models

In this section, we introduce the econometric methodology crucial to our study

on housing price bubbles and describe the distinction between long memory and

bubbles. We start with a brief introduction on long memory processes, then move

on to fractionally integrated processes I(d) and discuss when and why fractionally

integrated processes possess ”long memory” and the ramifications on asset price

bubbles. The presence of long memory in a time series can be defined in terms of

its spectral density function or the autocorrelation function, see Robinson (1994).

Let xt, t = 0,±1... be a time series indexed with time t. It is covariance

stationary if the mean, E(xt) = µ, and the covariance, Cov(xt, xt+j) = γ(j), do

not depend on t. The spectral density of xt is formally given by,

f(λ) =
1

2π

∞∑
j=−∞

γ(j)e−ijλ,− π ≤ λ ≤ π (2.34)
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The series xt is then, said to have ”long memory” if

f(0) =
1

2π

∞∑
j=−∞

γ(j) = 0 (2.35)

so that f(λ) has a ”pole” at frequency zero. Another way to look at long memory

models is in connection with persistence in autocorrelations. The extent of the

persistence is consistent with an essentially stationary process, but where the

autocorrelations takes far longer to decay than the exponential rate associated

with the ARMA class. The phenomenon has been noted in different data sets

by Hurst (1951) among others. When viewed as a time series realisation of a

stochastic process, the autocorrelation function exhibits persistence that is neither

consistent with an I(1) process nor an I(0) process. As the correlations decay to

zero very slowly, they are not summable i.e.,

∞∑
k=−∞

|%(k)| =∞ (2.36)

The intuitive interpretation is that the process has ”long memory”, see Baillie

(1996). This is in contrast to ”short memory” processes where the correlations

decay quickly to zero such that,

∞∑
k=−∞

|%(k)| <∞ (2.37)

For example, in an ARMA process, the asymptotic decay of the correlations is

exponential in the sense that there is an upper bound

|%(k)| ≤ bak (2.38)

where 0 < b <∞, 0 < a < 1 are constants.

The fractional integrating process I(d), d is a fractional number, can be re-

garded as a halfway house between the I(0) and I(1) paradigms. Formally, a

time series is defined as integrated of order d, denoted as I(d), when applying

the differencing operator (1−L)d renders it a stationary, invertible autoregressive

moving average (ARMA) process. When d is not an integer, the series is said to

be fractionally integrated.

In this case the series is represented by an Autoregressive Fractionally Inte-

grated Moving Average (ARFIMA) model,

Φ(L)(1− L)d(yt − µ) = Θ(L)εt (2.39)
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where L is the lag operator, Lkyt = yt−k, and Φ(L) = 1 −
∑p

i=1 φiL
i, Θ(L) =

1+
∑q

i=1 θiL
i, respectively, represent stationary autoregressive and moving average

components, see Granger and Joyeux (1980) and Robinson (2003) and others.

Further, εt has an unconditional N(0, σ2) distribution, and d can take non-integer

values. The fractional differencing operator is defined by its binomial expansion

(1− L)d =
∞∑
j=0

Γ(j − d)

Γ(j + 1)Γ(−d)
Lj (2.40)

where Γ(.) is the Gamma function.

(1− L)d = 1− dL− d(1− d)

2!
L2 − d(1− d)(2− d)

3!
L3 − ..... (2.41)

In general, an ARFIMA(p, d, q) model can be represented in the following form,

(
1−

p∑
i=1

φiL
i
)

(1− L)d(yt) =
(

1 +

q∑
i=1

θiL
i
)
εt. (2.42)

When the lag order is zero, ARFIMA(p, 0, q) follows an ARMA(p, q) process

with constant mean and variance over time. When d = 1, ARFIMA(p, 1, q) is

a non stationary process containing a unit root ARIMA(p, 1, q). The effects of

each shock persist and accumulate over periods of time, these integrated process

are not mean reverting.

The εt term in eq (2.42) is the innovation in the process. Normally, this term

is assumed to have a constant variance throughout. However, there is consider-

able empirical evidence that both U.S. aggregate and metropolitan housing prices

exhibit time changing variance, see Crawford and Fratantoni (2003), Miller and

Peng (2006) and Miles (2008).13 Furthermore, Cont (2005) shows that investor

inertia (due to high transaction costs and tax considerations) can cause volatility

clustering. As a result, volatility has to be parameterized to reflect time varying

effects.

Engle (1982) defined an ARCH process for εt of the form εt = ηtσt, where ηt is

an independently and identically distributed (i.i.d.) process with E(ηt) = 0 and

V ar(ηt) = 1. Clearly, εt is serially uncorrelated with a mean equal to zero, but its

13Miller and Peng (2006) use a VAR model and calculates the impulse response functions to
evaluate the effects of volatility shocks to several fundamental housing variables and Crawford
and Fratantoni (2003) assess the efficiency of different time series models in forecasting house
prices and find that GARCH type models perform better.
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conditional variance equals σ2
t and may change over time. This can be modelled

by Autoregressive Conditional Heteroskedasticity Methods (ARCH). A variety

of ARCH models exist in the literature the main difference among them being the

functional form of σ2
t . The conditional variance in the Engle (1982) formulation

is a distributed lag of past squared innovations.

σ2
t = ω +

p∑
i=1

αiε
2
t−i, (2.43)

The ARCH model can describe volatility clustering. The conditional variance of

εt is an increasing function of the shock that occurred in period t − 1. A large

absolute value in εt−1 implies that σ2
t and εt (in absolute value) are expected

to be large. As a way of modelling persistent movements in volatility without

estimating a very large number of coefficients in a high order ARCH process,

Bollerslev (1986) suggested the Generalized ARCH (GARCH) model

σ2
t = ω +

q∑
j=1

βjσ
2
t−j +

p∑
i=1

αiε
2
t−i. (2.44)

There are some limitations to this GARCH model. The non-negativity conditions

on the conditional variance may be violated by the estimated method, since the

coefficients of model probably are negative. Furthermore, GARCH does not allow

for any direct feedback between the conditional variance and the conditional mean.

For these reasons, we make use of the asymmetric exponential GARCH model

of Nelson (2009). These are absolute value GARCH models and can accommo-

date effects of both positive and negative shocks. The EGARCH models is

expressed as follows

ln(σ2
t ) = ω + [1− β(L)]−1[1 + α(L)]g(ηt−1) (2.45)

Since the ln(σ2
t ) is modelled, the significant advantage of EGARCH models is

that even if the parameters are negative, σ2
t will be positive.

g(ηt−1) = γ1ηt + γ2[|ηt| − E|ηt|] (2.46)

The α parameter represents a magnitude effect or the symmetric effect of the

model, theGARCH effect and β measures the persistence in conditional volatility.

When β is relatively large, volatility takes a long time to die out following a crisis

in the market. The γ parameter measures the asymmetry or the leverage effect,
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the parameter of importance so that the EGARCH model allows for testing of

asymmetries. If γ = 0 , then the model is symmetric. When γ < 0 , then

positive shocks (good news) generate less volatility than negative shocks (bad

news). When γ > 0 , it implies that positive innovations are more destabilizing

than negative innovations. E|ηt| depends on the assumptions made regarding the

unconditional distribution of ηt. For a normal distribution which we assume in

our analysis, E|ηt| =
√

2/π.

In this chapter, we couple the EGARCH(1, 1) model with the ARFIMA

model and then parametrically estimate it by the Quasi-Maximum Likelihood

method on the log rent-price data. The purpose of this estimation exercise is

to find the value of the persistence of the log rent-price ratio. The next sec-

tion describes the implication for bubble prevalence under different values of the

estimated persistence, d.

2.3.1. Persistence and Bubbles

Bubble behaviour of the Housing Market is tested using the estimated values of

the fractional integrating parameter, d, of the log rent-price ratio. Table 2.1 sum-

marizes bubble analysis for different values of d. Fractionally integrated processes

possess long memory when d lies between zero and one. They are also mean

reverting in this interval, which means that in the case of the housing market,

housing prices will return to its fundamentals ruling out the presence of price

bubbles.

Table 2.1. Bubble Analysis

Order of integration(d) of δt Analysis*
−1/2 < d < 0 anti-persistent and no bubbles
d = 0 stationary process and no bubbles
0 < d < 1/2 covariance-stationary

and mean reverting implying no rational bubbles
1/2 < d < 1 non-stationary and possess long memory

but also mean reverting implying no rational bubbles
d ≥ 1 non-stationary explosive process, no mean-reversion implying rational bubbles

Figure 1 plots simulated AR(1) process for different values of d. It is clearly

seen that as d approaches 1, the series mimics the slope of an asset price bubble.

This is especially true when d=0.99 very close to a unit toot process but possess
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the property of mean reversion and hence cannot be called a bubble. Standard

empirical methods that look for a unit root in financial ratios do not consider the

possibility of fractional roots and thus could mistake a mean reverting process as

a bubble.

Figure 2.1. Simulations of I(d) processes
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Notes: This figure graphically illustrate Autoregressive (AR(1)) simulations of I(0 ≤
d ≤ 1) processes. The top row traces paths for different covariance-stationary pro-
cesses. The second and third row depict changes in the persistence as d approach
unity.

The analysis here assumed no structural breaks. The presence of structural

breaks in the time series distorts an efficient estimation of the integrating factor d,

see Diebold and Inoue (2001). We implement structural change tests to account

71



for this problem. The next section details a brief discussion on structural change

literature and how it affects long memory estimation.

2.4. Structural Changes versus Long Memory

The problem of detecting structural changes in linear regression relationships has

been an important topic in statistical and econometric research, see Hansen (1996)

for a discussion. Existing literature on long memory and asset price bubbles do

not account for structural breaks, see Cuñado et al. (2005), Koustas and Serletis

(2005) and Cuñado et al. (2012). However, many studies indicate that the time

series with structural breaks can induce a strong persistence in the autocorrela-

tion function and hence generate ”spurious” long memory, see Diebold and Inoue

(2001), Granger and Hyung (2004), Perron and Qu (2007). Perron and Qu (2007)

show how a stationary short memory process with level shifts can generate spuri-

ous long memory. Kruse and Sibbertsen (2012) considered a range of stable shifts

and a change in persistence in several simulated experiments and simulation re-

sults confirm theoretical arguments which suggest that spurious evidence for long

memory can easily be found.

Since the work of Quandt (1960), several methodologies (i.e. Andrews and Fair

(1988), Perron (1989), Bai and Perron (1998, 2003) etc.) have been suggested to

test for possible known or unknown single or multiple structural changes. How-

ever, a limitation of a majority of these tests is that the distribution theory used

for these tests is primarily asymptotic and has been derived under the maintained

assumption that the regressors are stationary. This excludes structural change in

the marginal distribution of the regressors. As a result, these tests technically

cannot discriminate between structural change in the conditional and marginal

distributions.

In this chapter, we make use of Hansen (2000)’s ’fixed regressor bootstrap’

method that is consistent for non-stationary regressors, achieves first-order asymp-

totic distribution and allows for arbitrary structural change in the regressors and

accommodates heteroskedastic error processes. In the following paragraphs, we

briefly describe this break methodology in the context of our chapter.

Consider the following linear regression with m breaks (m+ 1 regimes):

yni = µni + ψni + uni, (2.47)

where i = 1, . . . , n,, yni = δni is the log rent-price ratio, µ is the intercept or the

mean and ψ is the trend. Testing for structural change in the mean and trend is

72



all about checking whether or not µ and ψ is constant. Hansen (2000) finds that

the distributions are different when the regressors are non-stationary and that the

size and power distortions can be quite large. The structural change in µ (or ψ)

can take the form

µni =

{
µ i < t0,

µ+ θn i ≥ t0.
(2.48)

The parameter t0 ∈ [t1, t2] indexes the relative timing of the structural shift, and

θn indexes the magnitude of the shift. Essentially, structural breaks are tested by

the null- H0 : θn = 0 against H1 : θn 6= 0.

Hansen (2000) assumes that θn takes the form

θn = ζσ/
√
n (2.49)

with ζ fixed as n→∞. The parameter ζ indexes the degree of structural change

under the local alternative H1 : θn 6= 0. We denote the ordinary least squares

(OLS) estimators as µ̂ and ψ̂, the residuals as û and the variance as σ̂2 = (n −
m)−1

∑n
i=1 û

2
i . Under the alternative H1 : θn 6= 0, the model can be written as

yni = µ+ θnI(i ≥ t0) + ψ + θnI(i ≥ t0) + uni (2.50)

For any fixed t, eq. (2.50) can be estimated by OLS, yielding estimates (µ̂t, ψ̂t, θ̂t),

residuals ûit and variance estimates σ̂2
t = (n− 2m)−1

∑n
i=1 û

2
it. Let t̂ = arg min σ̂2

t

denote the least squares estimate of the breakdate and set µ̃ = µ̂t̂, ψ̃ = ψ̂t̂ and

ũi = ûît.

The standard test for H0 against H1 for known t (eg., Chow (1960)) is the

Wald statistic:

Ft =
(n−m)σ̂2 − (n− 2m)σ̂2

t

σ̂2
t

(2.51)

When the true changepoint t0 is unknown, Quandt (1960) proposed the likelihood

ratio test which is equivalent to

supFn = suptFt, (2.52)

where the supremum is taken over t ∈ (t1, t2). Andrews and Ploberger (1994)

suggested an exponentially weighted Wald test

ExpFn = ln

∫
exp(Ft/2)dw(t), (2.53)
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and the average F test

AveFn =

∫
t

Ftdw(t), (2.54)

where w is a measure putting weight 1/(t2 − t1) on each integer t in the interval

[t1, t2]. Andrews and Ploberger (1994) and others assume that the regressors are

stationary which as illustrated by Hansen (2000) affects the asymptotic distri-

butions of the test statistics in complicated ways. Hansen (2000) advocates an

alternative bootstrap distribution called ’Fixed Regressor Bootstrap’.

The bootstrap procedure for the SupF test is discussed below. There are two

forms of fixed regressor bootstrap, one appropriate if the error uni is (1.) ho-

moskedastic and under (2.) heteroskedasticity. For the homoskedastic bootstrap,

let {yni : i = 1, . . . , n} be a random sample from the N(0, 1) distribution. Regress

yni(b) on µni and ψni to get the residual variance σ̂2(b) and regress yni(b) on µni,

µniI(i ≤ t), ψni and ψniI(i ≤ t) to get the residual variance σ̂2
t (b) and Wald

sequence

Ft(b) =
(n−m)σ̂2(b)− (n− 2m)σ̂2

t (b)

σ̂2
t (b)

(2.55)

The bootstrap test statistic is SupFn(b) = supt1≤t≤t2Ft(b). The bootstrap p-

value pn = 1 − Gn(SupFn), where Gn(x) = P (SupFn(b) ≤ x|Jn) denote the

conditional distribution function of SupFn(b) and x is the regressors (µ and ψ).

The bootstrap test rejects H0 when pn is small. We can allow for heteroskedastic

errors by making a small modification. Set yhni(b) = zi(b)ũi, where {zi(b) : i =

1, . . . , n} is an iid N(0,1) sample. The heteroskedasticity corrected p-value is then

phn = 1−Gh
n(SupFn) where Gh

n is the modified conditional distribution.

In this chapter, we implement the three break tests based on the F statistic

(SupF , ExpF and AveF ). We then use Hansen (2000)’s methodology to compute

the heteroskedasticity corrected bootstrap p-values to make inference on presence

of structural changes. The results are reported in §2.7.4. Now that we have

detailed persistence characteristics on bubble behaviour and the implications of

structural breaks on it, we proceed to a review of the methods that we employ

to estimate the long memory persistence of the log rent-price ratios in the U.S.

Housing Market.

2.5. Long Memory Estimation

The literature on estimating long memory models is extensive with a wide range

of methods, see Li and Mcleod (1986), Hassler (1993) and Taqqu et al. (1995). In
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general, the estimators of the fractional order of integration, d, can be categorized

into two groups - semi-parametric and parametric methods. ‘Semi-parametric’

methods do not require the modelling of a complete set of parameters, we are only

interested in d. If a complete model is specified, such as an ARFIMA we term

the estimation ‘parametric’.14 The main disadvantages of parametric methods

are that they are computationally expensive and are subject to misspecification.

On the other hand, semi-parametric models consider d as the most important

parameter of interest and it is robust to mis-specification. A correctly specified

’parametric’ model aids us in analysing both the short run and the long run

memory of the series whereas the semi-parametric procedures only concentrate

on the long run persistence. However, we are only interested in the long run

persistence d in this paper. Hence, we believe the semi-parametric methods which

do not require the modelling of the short run dynamics and thus free of any

specification errors should perform better. Our results in §2.7.4 validates this

argument. Nevertheless, we implement both these estimation procedures, these

are explained in brief in the following two sections.

2.5.0.1. Parametric Estimation Methods

Parametric ARFIMA modelling can capture the long term persistence through

the order of integration and also the short term persistence through the ARMA

process.

This chapter makes use of a full parametric estimation method, namely the

Non-Linear Least Squares Estimation method of Beran (1995) which unlike Sowell

(1992)’s Exact Maximum Likelihood (often used in the literature), is consistent

in the non-stationary region as well. Beran (1995) developed an approximate

maximum likelihood estimator based on minimising the sum of squared naive

residuals, which is also applicable for non-stationary ARFIMA processes with

d > 0.5. The approximate log likelihood known as Non-linear Least Squares

(NLS) is given by

logLA(d, φ, θ, β) = c− 1

2
log

1

T − k

T∑
t=2

ẽ2
t , (2.56)

14Parametric methods can be in both the time domain and the frequency domain. Here,
we concentrate only on time domain parametric methods for an effective comparison with the
frequency domain semi-parametric ones.
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where ẽt are the one-step prediction errors from the naive predictions defined near

the AR(∞) representation of zt

zt =
∞∑
j=1

πjzt−j + εt, (2.57)

where zt = xt − µt. The results for the Beran (1995) estimation procedure for

the U.S. housing market is reported in §2.7.2. A major drawback of the para-

metric estimation is that the computed values are highly biased under misspec-

ification. Presence of non-normal/ARCH/autocorrelation errors will lead to in-

efficient estimates. Importantly, for small samples most of the persistence would

be concentrated in the ARMA part and thus the d value would be significantly

over-differenced. This motivates our use of the semi-parametric procedures.

2.5.0.2. Semi-parametric Estimation Methods

We use three semi-parametric estimation methods to evaluate the memory pa-

rameter, all of which are robust to both conditional heteroskedasticity and non-

normality. We start with the Local Whittle Estimate (LWE) developed by Kuen-

sch (1987) and Robinson (1995). It starts with the following Gaussian objective

function, defined in terms of the parameters d and G

Qm(G, d) =
1

m

m∑
j=1

[
log(Gλ−2d

j ) +
λ2d
j

G
Ix(λj)

]
, (2.58)

where the parameter m , usually referred to as the truncation point or the window

bandwidth, is a function of n (the sample size), chosen such that as n → ∞,

m/n → 0. Also, Ix(λj) is the periodogram of Xt evaluated at the fundamental

frequencies. Also, Xt is a fractional process with order d.

The local whittle procedure estimates G and d by minimising Qm(G, d), so

that

(Ĝ, d̂) = arg min
G∈(0,∞),d∈[∆1,∆2]

Qm(G, d), (2.59)

where ∆1 and ∆2 are numbers such that −1/2 < ∆1 < ∆2 < ∞.15 Henceforth,

we denote the Local Whittle estimation of d as d̂LWE. Shimotsu and Phillips

(2004) finds that this Local Whittle estimator is not reliable when the value of d

15Robinson (1995) showed that
√
m(d̂−d0)→d N(0, 1/4) as n→∞ under certain conditions.

Here d0 is the true value of the d parameter.
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is in the non-stationary zone (d > 1/2). The asymptotic theory is discontinuous at

d = 3/4, at d = 1 and not consistent beyond unity. Although data differencing and

tapering have been recommended (Velasco (1999) and Hurvich and Chen (2000)),

these approaches do have some disadvantages, such as the need to determine the

appropriate order of differencing and the effects of tapering on data trajectory

and asymptotic variance.

Shimotsu and Phillips (2005) proposed an Exact Local Whittle Estimation

procedure that does not rely on tapering or differencing pre-filters and which is

consistent when d ≥ 1/2. If for the fractional process Xt

(1− L)dXt = ut1{t ≥ 1}, t = 0,±1,±2 . . . (2.60)

where ut is an I(0) process with mean 0 and 1{.} is an indicator function. If the

spectral density of Xt is given by fu(λj) ∼ G and I∆dX is the periodogram of d-th

difference of Xt, the fractional order d is estimated by

d̂ELW = arg mind∈[∆1,∆2]R(d), (2.61)

where

R(d) = log Ĝ(d)− 2d
1

m

m∑
j=1

log λj (2.62)

and

Ĝ(d) =
1

m

m∑
j=1

I∆dX (λj) (2.63)

d̂ELW is called the Exact Local Whittle (ELW) Estimator of d.

Most economic and financial series is modelled with a mean and a time trend.

In fact, the rent-price series we analyse in this paper does exhibit a polynomial

trend in its trajectory. Shimotsu (2009) extended the ELW estimator to accom-

modate an unknown mean and a polynomial time trend. When the data Xt are

generated by

Xt = µ0 +X0
t ; X0

t = (1− L)−d0ut1{t ≥ 1} (2.64)

where µ0 is a nonrandom unknown finite number. Shimotsu (2009) prescribes

estimating the unknown mean, µ0, as a linear combination of the sample mean,

X̄, and the first observation, X1:

µ̃(d) = w(d)X̄ + (1− w(d))X1, (2.65)
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where w(d) is a twice continuously differentiable weight function such that w(d) =

1 for d ≤ 1/2 and w(d) = 0 for d ≥ 3/4.16 With this estimate of µ0, consider the

modified ELW objective function:

RF (d) = log ĜF (d)− 2d
1

m

m∑
j=1

log λj, ĜF (d) =
1

m

m∑
j=1

I∆d(x−µ̃(d))(λj). (2.66)

d is then estimated by applying a 2-step procedure on this objective function

under the assumption that f(λ) is bounded for λ ∈ [0, π]. They call this the

2-step Exact Local Whittle Estimator, d̂2ELW , which is given by

d̂2ELW = d̂T −R′F (d̂T )/R′′F (d̂T ), (2.67)

where d̂T , known as the first stage estimator, is a tapered local Whittle estimator

of Velasco (1999) and Hurvich and Chen (2000). RF is the modified objective

function defined in eq. (2.66). d̂2ELW is asymptotically normal and
√
m consistent.

This two-step ELW estimator can be extended to the cases where the data has a

polynomial time trend in addition to an unknown mean:

Xt = µ0 + β1t+ β2t
2 + . . .+ βkt

k +X0
t ; X0

t = (1− L)−d0ut1{t ≥ 1}. (2.68)

d can be estimated by regressing Xt on (1, t, . . . , tk) and then applying the two-

step estimation to the residuals X̂t. In this chapter, we consider both an unknown

mean and a polynomial trend and the d estimate is denoted as d̂2ELW . Both the

ELW and the 2ELW inherit the desirable properties of the local whittle procedures

in that they are robust to normal errors and conditional heteroskedasticity.

However, one problem in computing the Whittle estimators concerns with the

choice of bandwidth m in finite samples. Hence, we follow Kumar and Okimoto

(2007) and choose m based on simulations. We simulate Yt = (1− L)−dεt, where

εt is a Gaussian white noise process, with sample size 125.17 The optimal m

is the one which minimizes the sample Mean Squared Error (MSE) for several

choices of m, that is m = {n0.60, n0.65, n0.70, n0.75, n0.80}. Based on the simulation

results, we select m = 0.75 for both 2ELW and ELW and m = 0.80 for the

LWE. The simulation results also showed that the 2-step ELW estimator gave

consistent estimates which were closer to the true value of d. The results for the

semi-parametric procedures are reported in §2.7.3

16An example of w(d) for d ∈ [1/2, 3/4] is (1/2)[1 + cos(4πd)].
17This is the sample size of the data that we use later on in our empirical section.
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To summarize our key methods so far, we shall seek to apply non-stationary

consistent parametric ARFIMA and semi-parametric Whittle methods to esti-

mate the order of integration d. These d values are examined for asset bubbles.

We also examine whether endogenous breaks induce any bubbles.

2.6. Rent-Price Data

Having described a theoretical framework that defines housing bubbles and an

econometric framework to test for the existence of these bubbles, we now introduce

the dataset. We use a log normalized house rent to house price ratio of three

national HPI’s and 12 Metropolitan Statistical Areas (MSA). The dataset spans

the quarterly 31 years time period 1982Q4-2013Q4. The fact that we use an

updated dataset ensures that our analysis incorporates both the upswing as well

as the subsequent collapse in U.S. house prices.

The aggregate level price of residential housing is measured by the HPI (House

Price Indexes) published by the Federal Housing and Finance Agency (FHFA),

the Standard & Poor 500 Case-Shiller Index (Case-Shiller) and the United States

Bureau of Census (Census). Both the FHFA and the Case-Shiller measure house

prices as changes to the price of owner occupied housing by reviewing repeat

mortgage transactions on single-family properties whose mortgages have been

purchased or securitized by Fannie Mae or Freddie Mac, see Calhoun (1996). The

US Bureau of Census produces a constant-quality HPI which employs the hedonic

methodology adjusting for several physical attributes.18

The FHFA also publishes regional HPI data for MSA’s belonging to the four

census regions :- Midwest, Northeast, South and West. In this chapter, to augment

the aggregate level analysis we use HPI data of 12 MSA’s, three each from the

four census divisions.

18Adjusted to attributes such as geographical location, lot size, number of bedrooms, num-
ber of bathrooms, type of parking facility, construction method, types of heating and air-
conditioning systems etc. As such this index is a more reliable estimate of changes in housing
prices than either the Case-Shiller or the FHFA. The Census index is also superior to other
home price indexes such as the median price of existing homes sold by the National Association
of Realtors (different from the NAR affordability index used here) and the median price of new
homes sold published monthly by the Bureau of the Census of the United States Department
of Commerce due to three main reasons. Firstly these two indices are not seasonally adjusted
despite apparent seasonality; secondly there is high volatility in the short run as regional and
product mix of sales varies from month to month; and thirdly as the underlying price data
reflect only recent sales, the series may not accurately demonstrate housing stock values, see
McCarthy and Peach (2004).
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The rental data is extracted from the Owner’s Equivalent Rent of Primary

Residence belonging to the Consumer Price Index (CPI) market basket published

by the Bureau of Labor Statistics (BLS) following Ayuso and Restoy (2006),

Clayton (1996) and Mankiw and Weil (1989) among others. This index is based on

the following question that the Consumer Expenditure Survey asks of consumers

who own their primary residence: ”If someone were to rent your home today, how

much do you think it would rent for monthly, unfurnished and without utilities?”.

The ratio of this rental index and the HPI indexes gives us the nominal rental

price ratio which is then deflated to real values by the region specific Consumer

Price Index Excluding Shelter as in Abraham and Hendershott (1996). Both the

HPI’s and the rental data are also seasonally adjusted using the X-12 Census

procedure.

There are several papers in the literature that use similar HPI and Rental

Indexes to look for asset price deviations in the United States Housing Market.

Abraham and Hendershott (1996) used repeat sales Fannie Mae and Freddie Mac

index to assess contributions of several macroeconomic factors to the appreciation

in real house prices in 30 MSA’s belonging to the four census regions. Ayuso and

Restoy (2006) use an FHFA quarterly dataset spanning 1987Q1 - 2003Q2 and

a CPI-Rent data from BLS to examine for overvaluation of real housing prices

in relation to rents. Barros et al. (2012) also use quarterly national and state

level FHFA HPI data from 1975:1 till 2010:7 to check for fractional co-movement

between regional and the national indexes. Campbell et al. (2009) make use of

FHFA national and 23 MSA level HPI and rental data to decompose the variability

of the rent-price ratio.

Figure 2.1 plots the national log rent-price ratios (δt) of FHFA, Case-Shiller

and Census. When house prices are high relative to housing rents (i.e. fundamen-

tal values), the rent-price ratio is low. Thus, it can be concluded that a rent-price

ratio far below its historical average indicates that asset prices have increased

beyond fundamental values suggesting a possible bubble in the housing market.

The non-availability of high frequency data for rental prices is the primary rea-

son behind using a quarterly level analysis. It goes without saying that volatility

effects (GARCH) will not be as prevalent as in the monthly series. However, hous-

ing unlike other assets such as stocks are illiquid because of the high transaction

and labour costs involved. This coupled with the fact that buying and selling

are done at irregular intervals imposes heteroskedasticity in the price indexes by

construction. This is one of the reasons why we find substantial GARCH effects

when using parametric ARFIMA−GARCH estimation.
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Figure 2.1. National Rent-Price Ratio’s

Notes: This figure provides a graphical illustration of the log rent-price ratio of aggregate
FHFA, Case-Shiller and Census. The general trend is downward in the log rent-price ratio
associated with the upward trend in house prices.The second row plots the autocorrelation
functions and the spectral densities.

On visual inspection, it is observable that the δt’s of FHFA, Case-Shiller and

Census follow a similar trend in that they gradually decline to a historical low in

the 2006-2007 period (suggesting a bubble phase) followed by a gradual apprecia-

tion. This is in agreement with Krainer and Wei (2004) who calculate US FHFA

house price to CPI rent ratio and find that house prices have been rising faster

than implied rental values during the period of 1997-2004.

The autocorrelation function, second row in Figure (2.1), shows a slow decline

with increasing lags and the spectral density plot has an upper bound at zero

frequency both suggesting long memory in the national indices.19 All the 12

Metropolitan Statistical Areas plotted in Figure (2.B.1) in the Appendix B follow

a similar pattern in that they appear to be correlated with each other agreeing

with Case et al. (1991) who demonstrate that house prices in the four regions of

the United States are serially correlated.

19The spectral density of a covariance stationary process can be written as f(λ) ∼ Gλ−2d as
λ→ 0+ where d as usual is the memory parameter, d ∈ (0, 1) and G ∈ (0,∞). When d = 1/2,
f(λ) approaches to a positive constant at zero frequency, d ∈ (0, 1/2) it approaches to zero and
when d ∈ (1/2, 1) it tends to infinity, see Robinson (1995).
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Table 2.1. Descriptive Statistics

Housing Market Mean Min Max Std Dev Skewness Kurtosis Jarque-Bera Prob. N

FHFA 0.182 -0.308 0.710 0.314 -0.056 1.671 9.266 0.019** 125
Case-Shiller 0.920 0.367 1.384 0.294 -0.280 1.728 8.691 0.012** 108

Census 1.309 0.941 1.681 0.230 -0.085 1.624 10.018 0.016** 125

Midwest
Chicago 0.887 0.348 1.522 0.333 0.169 2.029 5.510 0.050* 125
Cleveland 0.818 0.449 1.372 0.291 0.512 1.891 11.872 0.011** 125
Detroit 0.794 0.275 1.496 0.365 0.373 1.843 9.869 0.016** 125

Northeast
Boston 0.728 0.172 1.660 0.399 0.218 2.123 5.003 0.060* 125

New York 0.820 0.226 1.646 0.373 0.018 2.112 4.113 0.087* 125
Philadelphia 0.845 0.251 1.518 0.375 -0.204 1.829 8.002 0.025** 125

South
Atlanta 0.715 0.261 1.248 0.307 0.041 1.590 10.396 0.015** 125
Dallas 0.600 0.206 0.926 0.227 -0.384 1.610 13.131 0.009*** 125

Houston 0.442 0.018 0.799 0.245 -0.348 1.674 11.676 0.011** 125

West
Los Angeles 0.670 -0.123 1.346 0.421 -0.113 2.059 4.879 0.063* 125
San Francisco 0.756 0.021 1.600 0.475 0.159 1.956 6.199 0.041** 125

Seattle 0.787 0.073 1.541 0.439 0.191 1.942 6.592 0.036** 125

Notes: These are descriptive for statistics on the log rent-price ratio for th complete set of dats
aeries that we described in this section. The dataset spans the quarterly time period 1982Q4-
2013Q4 (N=125) except Case-Shiller which starts in 1987Q1 (N=108). The Jarque-Bera statistic
has a joint hypothesis that the skewness and the excess kurtosis is zero, i.e. null that the data is
normally distributed. ’***’, ’**’ and ’*’ indicate rejection of the null at the 1%, 5% and 10% levels
respectively. Deviations from the Normal distribution (fat tails) indicates the possibility of swings
in the data.

The descriptive statistics for both aggregate (national) and regional rent-price

ratio’s are recorded in Table 2.1. Null of normality is uniformly rejected across

the entire dataset indicating the presence of fat tails in the distribution, a char-

acteristic generally observed in most of the financial time series data. Deviations

from normality also imply that there are possible swings in the data or in other

words, an asset price bubble. We also observe high standard deviation in the

Western region comprising Los Angeles, San Francisco and Seattle. Case and

Shiller (2003) find comparatively higher growth in house prices in the West Coast

of the United States. Malpezzi (1996); Malpezzi and Wachter (2005) among oth-

ers believe that the high magnitude of price appreciation in such regions is due to

the metropolitan housing market’s supply inelasticity. To further understand the

time series properties of the US housing market and to infer about persistence

and bubbles, we proceed to implement the tests discussed in section 2.5.
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2.7. Empirical Results

This section reports and discusses the core empirical results obtained in this chap-

ter on the existence of bubbles in the U.S. Housing Market. We start with some

preliminary unit root tests to set the scene. Given the limitations of standard

unit root testing we then progress to parametric and semi-parametric estimation

of the fractional order of integration (d) parameter. Before we conclude we test

whether the estimates of d are from a true long memory process or induced by a

structural break.
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2.7.1. Evidence for Bubbles - Unit Root Tests

Table 2.1. Unit Root Results

Housing Market Unit Root Tests Conclusion

ADF DF-GLS KPSS
FHFA -2.202 -2.350 0.090 I(0)/I(1)

Case-Shiller -2.455 -2.333 0.104 I(0)/I(1)
Census -2.471 -2.524 0.088 I(0)/I(1)

Midwest
Chicago -2.398 -2.219 0.114 I(0)/I(1)
Cleveland -0.674 -1.499 0.229*** I(1)
Detroit -1.622 -1.691 0.213** I(1)

Northeast
Boston -3.034 -2.965* 0.078 I(0)/I(1)

New York -2.458 -2.341 0.083 I(0)/I(1)
Philadelphia -1.741 -2.116 0.095 I(0)/I(1)

South
Atlanta -2.288 -2.315 0.120* I(1)
Dallas -2.936 -1.813 0.201** I(1)

Houston -1.258 -1.618 0.163** I(1)

West
Los Angeles -1.710 -2.046 0.072 I(0)/I(1)
San Francisco -0.553 -1.219 0.081 I(0)/I(1)

Seattle 0.288 -1.188 0.115 I(0)/I(1)
Crit. Value

1% -4.042 -3.565 0.216
5% -3.450 -3.018 0.146
10% -3.150 -2.728 0.119

Notes: This table reports the unit root test results for the log rent-price ratios of the three national
indexes (i.e. FHFA, Case-Shiller and Census) and the 12 regional MSA’s. The sample spans the time
period 1982Q4-2013Q4, except Case-Shiller which is 1987Q1-2013Q4. Critical values (1%, 5% and 10%)
for the tests is given in the last three rows. All the unit root test statistics reported assume the presence of
an intercept and a trend. p-values/Critical Values for DF-GLS, KPSS is obtained from MacKinnon(1996)
and Kwiatoski-Phillips-Schmidt-Shin (1992). The null hypothesis for all the tests except KPSS is that δt
has a unit root. The null hypothesis for KPSS is that the series is stationary. Lags are fixed at 12. For
the KPSS test, the Newey West automatic method using Bartlett kernel selects the bandwidth. ”*”,”**”
and”***” indicate rejection of the null hypothesis at the 10%, 5% and 1% levels respectively. The last
column gives the resultant conclusion of the unit root tests, specifically says whether the series is stationary
I(0), a unit root bubble process, I(1) or I(0)/I(1) when the tests contradict each other.

Integer order tests are implemented to examine the stationarity, I(0), or non-

stationarity, I(1), of the log rent-price ratio (δt). The presence of a unit root,

I(1), in δt is consistent with the presence of housing price bubbles.

Table 2.1 reports the unit root results for the Housing Market. Column 1

defines the housing series estimated and columns 2-4 report test statistics of all

the different tests implemented. We use two tests, namely the Augmented Dicky-

Fuller (ADF) and the GLS-detrended Dicky-Fuller Elliot et al. (1996). Both these
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tests have a null hypothesis that the rent to price ratio has a unit root. The way in

which classical hypothesis testing is carried out ensures that the null hypothesis is

hard to reject. Kwiatkowski et al. (1992) argue that such unit-root tests often fail

to reject a unit root because they have low power against relevant alternatives,

such as, fractionally integrated series. They propose tests, known as KPSS tests,

with the null hypothesis of stationarity against the alternative of a unit root.

They argue that such tests should complement unit-root tests and that by testing

both the unit-root and the stationarity hypotheses, one can distinguish between

series that appear to be integrated, series that appear to be stationary, and series

that are not very informative about whether or not they are stationary or have a

unit root. The KPSS test statistics are reported in column 4 of Table 2.1. The

lags for all these tests are fixed at 12 and the tests employ the presence of an

intercept and a trend in the test regression.

The results in Table 2.1 aid us in presenting a preliminary empirical evidence

on the presence of price bubbles in the U.S. Housing Market. The last column in

the Table shows the conclusions we draw from the three tests. There are three

cases we have to consider here. First, the case of unit root and bubbles - I(1).

This occurs when both the ADF and the DF-GLS test were unable to reject the

null of a unit root and the KPSS test rejected the null of stationarity, I(0). We

find that 5 out of 15 series showed this behaviour.

Second, the case of no bubbles I(0) when the ADF and the DF-GLS test reject

the null of a unit root and the KPSS test do not reject the null of stationarity.

We observe that none of the series exhibited this behaviour.

Third, the case of I(0)/I(1) when the tests contradict each other. In this

scenario, no conclusion can be drawn about bubbles from the tests. We will

explain this with an example. Take the case of the aggregate FHFA series. The

ADF and the DF-GLS both were unable to reject the unit root which should

mean that the KPSS test will reject the null of stationarity. However, the KPSS

test do not reject its null. In this case, we conclude that the series could be

either an I(0)/I(1). The majority, 10 out of 15 series, fall in this category. These

series which include all the aggregate ones may possess long memory and mean

reversion implying no bubbles or unit root or explosive indicating bubbles.

It is this inability of these standard unit root tests that validate our use of

the fractional order methods. In the following sections, we make use of both

parametric and semi-parametric estimation methods and also consider structural

breaks to arrive at an efficient method to analyse housing bubbles.
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We discuss the results for the regional series in more detail here. The results for

the FHFA Regional MSA’s are mixed. All the West and the Northeast regions as

well as Chicago from the Midwest follow the national indexes in that they could be

mean-reverting (I(0)/I(1)). However, Cleveland and Detroit from the Midwest;

and Atlanta, Dallas and Houston from the South; show unit root tendency.20 Most

of the current literature that analyse the time series properties of U.S. Housing

Indexes do not consider the ratio of rental to housing price series and tests for

rational bubbles. They concentrate on merely the persistence of the house prices.

Hence, an effective comparison with our results is not possible. Nevertheless, they

uniformly find unit root persistence in the U.S. HPI’s. For instance Canarella

et al. (2011) who uses the DF-GLS test and finds overwhelming evidence to the

presence of a unit root in the Case-Shiller MSA’s for the monthly 23 year time

period, January 1987-April 2009. Using quarterly data from 1975 to 1996 from the

50 US states, Muñoz (2004) also finds unit roots in house price changes, using the

Dickey-Fuller Generalised Least Squares (DF–GLS) test. Meen (2002) compares

the time-series behaviour of house prices in the US and the UK. Using quarterly

data from 1976 to 1999 for the US and from 1969 to 1999 for the UK, Meen

(2002) conducts both Augmented Dickey–Fuller (ADF) and Phillips–Perron (PP)

unit-root tests on the level of house prices. He finds that in both countries house

prices follow a difference stationary process. That is, house prices are I(1).

It is clear from the results in Table 2.1 that the standard unit root tests do

not provide a clear analysis about the exact persistence of the rent-price ratio’s

primarily because these test are too restrictive in that they consider only two

possible values of d in the real space d ∈ [0, 1]. A recent unit root test by Cavaliere

and Xu (2014) is widely applicable in series which are naturally bounded. THis

test unlike the conventional ADF tests do not over-reject the null hypothesis.

Nominal interest rates, unemployment rates and target zone exchange rates are

examples of such bounded series. However, the use of this test in a model designed

to detect bubbles which are marked by deviations from any bounds based on

fundamentals is not appropriates. Nevertheless, this test complements the unit

root tests used here. Furthermore, much research argues that the presence of

structural breaks distorts the validity of standard unit root tests (Perron (1989,

1997)). This motivates our use of both parametric and semi-parametric methods

for estimating the actual persistence or memory parameter (d). Koustas and

Serletis (2005) also finds that unit root tests like ADF have low power in detecting

20Firstly, the KPSS test rejects the null of stationarity and secondly, both the ADF and the
DF-GLS do not reject the null of a unit root.
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asset price bubbles in the dividend-price ratio and advocates the use of ARFIMA

based parametric estimation methods. The following two sections describe their

results.

2.7.2. Evidence for Bubbles - Parametric Estimation

The use of a full parametric estimation in the time domain, makes it possible to

analyse both the short run (using ARMA) and the long run persistence (using

d) simultaneously. Having two null hypothesis of d = 1 (unit root) or d = 1

(stationarity) allows our long memory methods to encompass both the ADF and

KPSS tests in the previous section.

Existing literature that use maximum likelihood methods to estimate long

memory in the time domain such as Koustas and Serletis (2005) and Kruse and

Sibbertsen (2012) apply the Exact Maximum Likelihood method of Sowell (1992)

on the dividend-price ratio in the U.S. Stock Market. A major drawback of this

approach is that the Exact maximum Likelihood gives valid estimates of d only

for stationary ARFIMA process i.e., d < 1/2. At every step of the optimisation

procedure, d is forced to take stationary values and hence, the resulting value of d

is an over-differenced estimate. An additional problem in using a full parametric

approach is that the precision with which the memory parameter is estimated

hinges on the correct specification of the model, see Hauser et al. (1999). Thus,

it is imperative to know the underlying data generating process before applying

likelihood methods.

In this chapter, to circumvent these problems, we make use of the the Non-

Linear Least Squares estimate (NLS) proposed by Beran (1995) which is consistent

for d > 1/2 and we select the optimal model for the ARMA part using the

Bayesian Information Criterion (BIC). NLS given by eq. 2.56 in §2.5.2.5.0.1 is

estimated on the following ARFIMA equation for each time series,(
1−

p∑
i=1

φi

)
(1− L)d(δt − µ) = (1 +

q∑
i=1

θiL
i)εt, (2.69)

where p and q are the optimal AR and MA lags selected by BIC. The results of

this estimation for the Housing Market dataset is reported in Tables 2.2 and 2.3.

The two parameters that are of interest to us are d, the long memory pa-

rameter, and ρ the sum of autoregresive coefficients (SARC), ρ =
∑p

i=1 φi - a

conventional measure of short run persistence in time series literature proposed

by Andrews and yuan Chen (1994). Tests for bubbles are based on imposing
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linear restrictions, d = 1 and d = 0, respectively. We also test for ρ = 1, that

is unit root in the short run. However, we are only concentrated on the long

run behaviour of the log rent-price ratio’s we conclude for bubble behaviour only

when there is a unit root in d. Hence, the linear restrictions helps in examing for

the stationarity or unit behaviour of the rent-price ratios and whether these are

rational bubbles. Shaded columns indicate the series in which the null of a unit

root in the long memory (d = 1) cannot be rejected and thus exhibits bubbles.

The first column of these tables shows the parameters, residual tests and linear

restrictions while the other columns report the corresponding estimated values

with standard error in parentheses. In addition to computing the parameters,

we also implement residual tests namely, for normal, ARCH and autocorrelation

errors. The reported p-values less than 0.05 indicate rejection of the null and

implies the existence of these errors at the 5% significance level. The gray shaded

columns indicate series with bubble behaviour.
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Table 2.2. Parametric ARFIMA Estimation - National δt’s

Est FHFA Case-Shiller Census

AR(4)MA(0) AR(4)MA(0) AR(3)MA(0)

d̂ 1.290 (0.256) 1.276 (0.359) 0.074 (0.083)

φ̂1 0.215 (0.261) 0.596 (0.342) 0.914 (0.118)

φ̂2 -0.175 (0.103) -0.209 (0.109) 0.041 (0.097)

φ̂3 0.262 (0.134) 0.090 (0.069) 0.028 (0.031)

φ̂4 0.215(0.088) 0.117 (0.056)
µ 0.672 (0.139) 0.488 (0.899) 0.787 (0.350)
ρ 0.517 0.794 0.983

Residual Tests
Normality 0.000*** 0.000*** 0.002***
ARCH 0.044** 0.077* 0.102

Autocorrelation 0.216 0.960 0.542

Linear Restr.
d = 0 0.000*** 0.000*** 0.370
d = 1 0.257 0.442 0.000***
ρ = 1 0.000*** 0.000*** 0.471

Notes: This table reports the Non-Linear Least Squares parameter estimates of the
log rent-price ratio’s corresponding to the three national HPI’s. The sample spans
the quarterly time period 1982Q4-2013Q4 (N = 125), except Case-Shiller which is
1987Q1-2013Q4. d is the fractional integration parameter, φi’s are estimated AR
parameters of p order and µ is the constant mean used in the regression.’*’, ’**’
and ’***’ indicate rejection of the null at the 10%, 5% and 1% levels respectively.
Numbers in parentheses are standard errors of the estimated parameters. The null
hypothesis in the residual tests are normality, no ARCH effects and no autocor-
relation. The unit root hypothesis is tested by the linear restriction d = 1 while
the stationarity hypothesis is tested by d = 0. The ARCH effects are analysed
using Engle’s ARCH 1-1 (F stats) and the autocorrelation using Portmanteau (χ2

stats). The Linear Restrictions use a χ2 test statistic with one degree of freedom.
Shaded columns indicate the possibility of unit roots in d and thus housing price
bubbles. Estimation is done using the arfima package in OxMetrics, see Doornik
and Ooms (2003). ρ is the sum of autoregressive coefficients, for a stationary process
−1 < ρ < 1.

Both the Case-Shiller and the FHFA report long memory estimates (d̂) greater

than 1 suggesting explosive roots and bubble behaviour. This is confirmed by the

Linear Restrictions on d, the null of stationarity (d = 0) is rejected while that of

a unit root (d = 1) is not. These long memory tests thus improve upon the ADF

and KPSS tests as the reported results are much clearer and is hence a consistent

estimator for bubble testing.

The Census has a d value close to zero suggesting covariance-stationarity.

Also, the null of a unit root is rejected while that of stationarity is not negating

bubble behaviour. Unlike for FHFA and Case-Shiller the SARC (ρ = 1) here is

non-stationary suggesting that while in the long run Census reverts to its mean

there are significant bubble like deviations in the short term. This contrasting

behaviour is expected as the Census unlike the FHFA and the Case-Shiller is
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a constant quality index meaning that any improvements to an owner occupied

housing will reflect in its price. McCarthy and Peach (2004) also find that the

Census unlike other HPI’s reverts to its mean in the long run. The unit root

persistence in the short run is probably due to the housing bubble that was

observed in the 2006-07 period. It is also important that we examine whether the

residuals are sensible for estimation in Table 2.2.

Residual Tests suggest the presence of non-normality and heteroskedasticity

in all the aggregate series.21 The presence of ARCH errors leads us to question

the usefulness of the ARFIMA approach but we control for these errors later on.

We now turn to the disaggregate data given by the 12 metropolitan areas.

Table 2.3 describe parametric estimates for 12 such Metropolitan Statistical Ar-

eas,i.e. three MSA’s each from the four census regions:- Midwest, Northeast,

West and South. In contrast to the aggregate δt’s, all 12 regional MSA’s with

the exception of New York report d values less than unity. Inferences for unit

root bubble behaviour are made from the p-values reported for the linear restric-

tions. As described earlier, a rejection of stationarity (d = 0) and an inability to

reject the unit root null (d = 1) would imply the possibility of bubbles. These re-

gions are shaded in grey. These include two MSA’s from the Northeast (Boston,

New York) and all three West areas (Los Angeles, San Francisco and Seattle).

The non-shaded series comprising 2/3 from Midwest (Cleveland, Detroit), 1/3

from Northeast (Philadelphia) and 3/3 from the South (Atlanta, Dallas, Hous-

ton) shows unit root behaviour in the short run i.e. ρ=1 is not rejected. We can

imply that these series probably contained bubble episodes but are now reverting

to their long run mean.

Of interest is the aggregate FHFA series showing a persistence of d̂ = 1.290

much greater than any of the regional ones. This is suggestive of an aggregate

bias in the construction of the FHFA House Price Index.

The residual tests in Table 2.3 for the disaggregate data again reported nor-

mal and ARCH errors in most of the series implying that we have to model the

variance. The presence of heteroskedastic errors in repeats sales indexes (FHFA,

Case-Shiller) as argued by Goodman and Thibodeau (1998) has to do with the

timing of house sales. Goodman and Thibodeau (1998) examine whether the

21The presence of heteroskedasticity can bring severe problems. Under classical assumptions,
ordinary least squares regression procedure (OLS) gives best linear unbiased estimators (BLUE).
However, with heteroscedasticity, OLS estimators are unbiased but not best, i.e. they are not
minimum variance. Additionally, the variance calculated by standard OLS procedures are biased
and this implies that the standard tests (t, F, etc.) are unreliable, see White (1982)
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likelihood that houses have different-vintage renovations can contribute to het-

eroskedasticity. For example, owner occupied homes tend to be improved (by

the seller or the buyer or both) at the time of sale. In their empirical analysis,

they hypothesize that the shorter the time between sales, the less extensive the

undocumented improvements are likely to be, and hence the more accurate the

predictions of house prices and of subsequent appreciation rates can be. They

report that the interval between two sales contributes significantly to the size

of residual variance. Fletcher et al. (2000) extends the work of Goodman and

Thibodeau (1998) and finds that heteroskedasticity is present in hedonic based

house price indexes (Census). Their study concluded that the appearance of non-

constant residual variance was not because of outliers in the data but due to

heterogeneity of houses i.e. the variance of the disturbance term differed between

types of property (detached, semi-detached, terraced) and the age of the property.

These studies imply that heteroskedasticity is an inherent part of the house price

indexes and hence, has to be accounted for in the estimation procedure.

To address the problem of ARCH errors in the residuals, we include an

EGARCH term (see Bollerslev and Ole Mikkelsen (1996)) in the ARFIMA

model (2.69). Maximum Likelihood Estimation is done on an ARFIMA(p, d, q)−
EGARCH(1, 1) process.22 The addition of the EGARCH process implies the es-

timation of (2.69) along with the following equations:

σ2
t = ω +

q∑
j=1

βjσ
2
t−j +

p∑
i=1

αiε
2
t−i. (2.70)

ln(σ2
t ) = ω + [1− β(L)]−1[1 + α(L)]g(ηt−1) (2.71)

where

g(ηt−1) = γ1ηt + γ2[|ηt| − E|ηt|] (2.72)

We assume the innovations ηt to be normal so that E|ηt| =
√

2/π.

22Estimation of ARFIMA-EGARCH is done using the Simulated Annealing algorithm for
optimizing non-smooth functions with possible multiple local maxima. Starting from an initial
point, the algorithm takes a step and the function is evaluated. When minimizing a function,
any downhill step is accepted and the process repeats from this new point. An uphill step
may be accepted. Thus, it can escape from local optima. This uphill decision is made by the
Metropolis criteria. As the optimization process proceeds, the length of the steps decline and
the algorithm closes in on the global optimum. Since the algorithm makes very few assumptions
regarding the function to be optimized, it is quite robust with respect to non-quadratic surfaces.
Several initial values are tested to obtain strong convergence.
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Tables 2.4 and 2.5 report likelihood estimates of the parameters for the na-

tional and the regional log rent-price ratio’s when the variance follow an EGARCH(1, 1)

process. In general, the estimated long memory is significantly different to those

of the pure ARFIMA estimates (Tables 2.2 and 2.3). The magnitude and sign

of the difference is largely dependent on normality of the residuals rather than

heteroskedasticity. Efficient estimation of maximum likelihood relies on the as-

sumption of Normal Distribution, in other words the series is linear. The pure

ARFIMA results (Tables 2.2 and 2.3) indicated non-normal residuals and hence

those estimates are not efficient i.e. unit root bubble testing which relies on linear

restrictions on d (F stat.) could be unreliable. The addition of the EGARCH

term in the estimation process ensured that the residuals are normal and free of

ARCH errors. However, the residuals in most series do indicate serial correlation

implying the results are subject to this caveat.
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Table 2.4. Parametric ARFIMA-EGARCH Estimation - National δt’s

Est FHFA Case-Shiller Census

AR(4)MA(0) AR(4)MA(0) AR(3)MA(0)

d̂ 0.692 (0.000) 1.591 (0.250) 0.484 (0.216)

φ̂1 0.617 (0.001) 0.483 (0.392) 0.297 (0.273)

φ̂2 0.091 (0.001) -0.043 (0.581) 0.406 (0.068)

φ̂3 0.111 (0.001) 0.301 (0.346) 0.277 (0.222)

φ̂4 0.193 (0.000) 0.259 (0.168)
µ̂ 2.907 (0.000) 11.815 (4.765) 0.372 (2.919)
ω̂ -9.538 (0.165) -8.817 (0.262) -8.345 (0.206)
α̂1 0.225 (0.155) 1.247 (0.809) 1.041 (0.259)

β̂1 -0.724 (0.028) 0.145 (0.702) -0.719 (0.092)
γ̂1 0.279 (0.120) 0.004 (0.304) 0.343 (0.149)
γ̂2 0.744 (0.146) 0.700 (0.613) 0.679 (0.528)

ρ 1.042 1.000 0.980

Residual Tests
Normality 0.973 0.364 0.108
ARCH 0.418 0.611 0.954

Autocorrelation 0.000*** 0.007*** 0.120

Linear Restr.
d = 0 0.000*** 0.000*** 0.025**
d = 1 0.000*** 0.715 0.017**
ρ = 1 0.255 0.450 0.100

Notes: This table reports Maximum Likelihood Estimates of the ARFIMA −
EGARCH model on the national δt’s. The sample spans the quarterly time pe-
riod 1982Q4-2013Q4 (N = 125), except Case-Shiller which is 1987Q1-2013Q4. d is
the fractional integration parameter, φi’s are estimated AR parameters of p order,
µ and ω are the constant mean and variance respectively. Numbers in parentheses
are standard errors of the estimated parameters. The null hypothesis in the resid-
ual tests are normality, no ARCH effects and no autocorrelation. ’***’, ’**’ and
’*’ indicates rejection of the null at the 1%, 5% and 10% levels, respectively. The
unit root hypothesis is tested by the linear restriction d = 1 while the stationarity
hypothesis is tested by d = 0. The ARCH effects are analysed using Engle’s ARCH
1-1 (F stats) and the autocorrelation using Portmanteau (χ2 stats). The Linear
Restrictions use a χ2 test statistic with one degree of freedom. Shaded columns
indicate the possibility of housing bubbles. Estimation is done using the arfima
package in OxMetrics, see Doornik and Ooms (2003). ρ is the sum of autoregressive
coefficients, for a stationary process −1 < ρ < 1.

In contrast to the pure ARFIMA results, only Case-Shiller in Table 2.4

amongst the aggregate δt’s exhibits unit root in long memory (and also in short

memory). FHFA is observed to have stationary d although there is a strong non-

stationarity in the short memory component highlighted by the high value of ρ

(1.042). Among the 12 MSA’s in Table 2.5 only three (New York, Los Angeles

and Seattle) exhibit long run unit root persistence (d = 1 is not rejected). The

rest of the nine MSA’s are stationary in d but possess unit root in the short mem-

ory AR component i.e. ρ = 1 is not rejected. In general, we can deduce that

accounting for heteroskedasticity reduces the number of series which exhibited
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bubble behaviour. Specifically, the aggregate FHFA and the regional MSA’s of

Boston and San Francisco no longer show unit root persistence in the long mem-

ory. This explicitly depicts the effects that non-normal and ARCH errors has

on the d value. Parametric methods imply there is no considerable evidence of

bubbles in housing prices.

Hypothesis tests based on asymptotic theory can be misleading when you

have a small finite number of observations, 125. The likelihood based parametric

ARFIMA estimates could be biased and confidence levels for Wald tests may

deviate significantly from the normal levels. One way to address this issue is to

use parametric bootstrap methods to investigate the comparative performance of

the estimates in a similar sample. Parametric bootstrap inference can be used

to test for any value of d. For example in related literature on parametric long

memory estimation, Koustas and Serletis (2005) generate 1000 pseudo-samples

by drawing from completely specified ARFIMA data generating processes with

independent normal errors. For each pseudo-sample they compute parameter

estimates and associated t-values for tests on the true data generating process.

Although the use of parametric procedure separates the long run persistence

from short run dynamics, the results as we found are sensitive to both normality

and conditional heteroskedasticity. This motivates our use of semi-parametric

methods in the frequency domain that are robust to both these errors.

2.7.3. Evidence for Bubbles - Semi-parametric Estimation

We described in detail three semi-parametric methods to estimate the value of the

long memory parameter d, namely the Local Whittle Estimator, d̂LWE, the Exact

Local Whittle Estimator d̂ELW and the 2-step Exact Local Whittle Estimator,

d̂2ELW . While d̂LWE is not consistent when d > 0.5, the d̂ELW and d̂2ELW in

contrast provide good estimates even in the non-stationary region. Importantly,

all the three Whittle based estimation methods are robust to conditional het-

eroskedasticity and non-normality, see Robinson and Henry (1999), Henry (2001)

and Nielsen and Frederiksen (2005). However, a drawback of using these semi-

parametric procedures is that the estimate depends on the value of the bandwidth

parameter or Fourier frequency m, see Baillie (1996).23

23Semi-parametric estimates have a slower rate of convergence than parametric ones but better
robustness properties. However, parametric estimates are consistent under short samples, see
Robinson and Henry (1999).
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To address this issue, we follow Kumar and Okimoto (2007) and choose m

based on simulations. We simulate Yt = (1 − L)−dεt, where εt is a Gaussian

white noise process, with sample size 125.24 The optimal m is the one which

minimizes the sample Mean Squared Error for several choices of m, that is m =

{n0.60, n0.65, n0.70, n0.75, n0.80}. Based on the simulation results, we select m = 0.75

for both 2ELW and ELW and m = 0.80 for the LWE. The simulation results

also showed that the 2-step ELW estimator gave consistent estimates which were

closer to the true value of d. Armed with the optimal m, we estimate the memory

parameter using the three Whittle procedures. The results are reported in Table

2.6. We include the parametric results for comparison.

In general, it is seen in Table 2.6 that the Exact Local Whittle methods,

d̂ELW and d̂2ELW , report a higher persistence value compared to the Local Whittle

procedure. This is expected as the Local Whittle Estimate, is less preferred and

d̂LWE, gives over-differenced values when the series is non-stationary, see Shimotsu

and Phillips (2005).

Unit root testing on the frequency domain Whittle estimates is implemented

by the application of the Efficient Fractional Dicky-Fuller Test (EFDF) of Lobato

and Velasco (2007). The EFDF tests the null of a unit root (d = 1) against the

alternative of a fractional root (d = d̂ < 1). The numbers in bold indicate that

the null of a unit root was not rejected.

It is observed that only three aggregate or disaggregate series exhibit unit root

behaviour consistent with price bubbles. These are the log rent-price ratio’s of

the aggregate Census and the Southern MSA’s of Dallas and Houston. This is

despite the fact that the 2-step ELW estimates are higher than unity for most

of the series. This is because the EFDF that examines unit root behaviour can

only accommodate stationary values of d in the alternative, i.e. d < 1. To the

best of our knowledge, right-tailed unit root tests in the frequency domain do not

exist in the literature. In order to overcome this limitation, we impose a Linear

Restriction of d = 1.5, i.e. an explosive root in the frequency domain. I(d > 1)

in column 5 indicates that a null of an explosive root was not rejected or in other

words a bubble exists.

24This is the sample size of our dataset.
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Table 2.6. Semi-parametric and Parametric Estimates of National and Regional
δt’s

Housing Market Semi-Parametric Estimates Parametric Estimates

d̂LWE d̂ELW d̂2ELW Conclusion d̂ARFIMA ρARFIMA d̂ARFIMA−EGARCH ρARFIMA−EGARCH Conclusion

FHFA 0.965 1.077 1.368 I(d > 1) 1.290 0.517 0.692 1.042 I(0)
Case-Shiller 0.951 1.059 1.615 I(d > 1) 1.276 0.794 1.591 1.000 I(1)

Census 0.924 1.031 1.192 I(1) 0.074 0.983 0.484 0.980 I(0)

Midwest
Chicago 0.962 1.039 1.343 I(d > 1) 0.764 0.941 0.841 0.906 I(1)

Cleveland 0.955 1.034 1.195 I(d > 1) 0.088 0.976 0.378 0.997 I(0)
Detroit 0.930 1.037 1.309 I(d > 1) 0.577 0.988 0.276 0.995 I(0)

Northeast
Boston 0.934 1.034 1.487 I(d > 1) 0.996 0.933 0.295 0.969 I(0)

New York 0.989 1.050 1.568 I(d > 1) 1.000 0.892 1.039 0.876 I(1)
Philadelphia 1.096 1.118 1.376 I(d > 1) 0.685 0.950 0.667 0.952 I(0)

South
Atlanta 0.960 1.042 1.244 I(d > 1) 0.517 1.074 0.334 1.002 I(0)
Dallas 0.941 1.053 1.074 I(1) 0.102 1.004 0.267 1.000 I(0)

Houston 1.069 1.203 1.221 I(1) 0.223 0.960 0.244 0.953 I(0)

West
Los Angeles 1.086 1.161 1.690 I(d > 1) 0.979 0.413 1.175 0.522 I(1)

San Francisco 1.120 1.147 1.577 I(d > 1) 0.830 0.742 0.567 0.972 I(0)
Seattle 1.139 1.177 1.458 I(d > 1) 0.648 0.933 1.345 0.354 I(1)

Notes: This table reports semi-parametric estimates of d for the log rent-price ratios of the three national HPI’s and 12 MSA’s. The sample
spans the quarterly time period 1982Q4-2013Q4 except for Case-Shiller which is 1987Q1-2013Q4. The optimal frequency, m, selected by
simulations is n0.80 for LWE and n0.75 for ELW and 2ELW (de-trended), where n is the sample size i.e. 125. The asymptotic standard
error for LWE is 0.072 and for ELW and 2ELW is 0.081. Unit root test for the semi-parametric whittle estimates is done by implementing
the Efficient Dicky-Fuller Test (EFDF). This tests for the null of a unit root (d = 1) against the alternative of fractional roots (d = d̂ < 1).
For the parametric procedure, Linear Restrictions on d and ρ acts as unit root tests. Numbers in bold indicate that the null of a unit root
cannot be rejected. Parametric estimates are extracted from Tables 2.2, 2.3, 2.4 and 2.5.

We can summarize that the log rent-price ratio’s of all three aggregate and 12

MSA’s follow a process consistent with housing bubbles. These results contrast

strongly with the parametric test. Barros et al. (2012) estimate Whittle and log pe-

riodogram estimates on regional FHFA HPI’s of several U.S. States and find long

memory values of d > 1 in most of them. They also implement semi-parametric

Whittle estimate on FHFA national HPI in the quarterly span of 1975:1-2010:7

and get a value of d̂LWE = 1.500 and a parametric value of 1.478. They reject the

null of a unit root. However, they did not consider either explosive alternatives

or the rental series in their analysis.

The three MSA’s from the Northeast region (Boston, New York and Philadel-

phia) on average reported higher than unity persistence in the long memory based

on the 2ELW method (and also the parametric EGARCH one for New York).

In general there is widespread consensus in the literature (see Case and Shiller
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(2003); Case et al. (2012)) and anecdotal evidence for self-fulfilling price expec-

tations or housing bubbles in the Boston and New York metropolises.

One reason for such high persistence in these cities, as argued by Gyourko et al.

(2013), is that the marginal home buyers in ”superstar” cities are high income

household who have moved from other parts of the city. This pattern would imply

that the median homes in such cities are purchased by new residents whose income

exceeds that of the median income. Furthermore, our result provide empirical

validity to arguments by Green et al. (2005) and others who hypothesize that

house price appreciation depends largely on elasticity of housing supply. They

compute supply elasticities for 45 MSA’s and find that densely populated regions

like New York and Los Angeles have highly inelastic housing supply. This explains

why we obtain higher than average d values in the Northeast and West MSA’s.

Columns 6-9 in Table 2.6 report the parametric results extracted from the

previous section. Comparisons can be made using the two most reliable esti-

mators, the semi-parametric d̂2ELW and the parametric d̂ARFIMA−EGARCH . It is

evident that the estimated values of long memory by the 2-step Whittle is sig-

nificantly larger than the ARFIMA − EGARCH one. Most of the persistence

for the parametric procedure is concentrated in the AR part reflected by near

unity values of ρ. The Census series is a perfect example for this phenomenon.

Here the 2-step ELW gave a unit root long memory value of 1.192 while the

ARFIMA−EGARCH procedure estimated d as 0.484 which is stationary. This

is primarily because of the short sample size we use, for small samples most of

the persistence will be carried by the short run ARMA components resulting in

low values of d. The persistence in the short run indicated by ρ for the Cen-

sus was 0.980 with a unit root. Furthermore, our results from the parametric

ARFIMA−EGARCH model is not completely reliable as the residual tests did

indicate normal and autocorrelation errors in some of the series. Nevertheless,

we caveat both the parametric and the non-parametric results to the presence

of structural breaks which if present can induce spurious long memory. It is im-

perative that we examine for any endogenous breaks and account for it in our

estimation.

2.7.4. Evidence for Bubbles - Structural Changes

So far we have identified evidence of rational bubbles in house prices using our

most reliable method, namely, the semi-parametric tests. Structural breaks in
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time series generate slowly decaying autocorrelations and can thus generate spu-

rious long memory behaviour. In this section, we test for the presence of abrupt

breaks in the mean and trend of the log rent-price ratio’s. We then estimate the

d parameter after adjusting for these breaks.

2.7.4.1. Estimating Break in Mean and Trend

To complement the ocular evidence presented in the plots of the national and

regional rent-price ratios (Figure 2.1 and Figure 2.B.1) we implement three tests,

namely the SupF test of Andrews (1993) and the ExpF and AveF of Andrews

and Ploberger (1994) (refer eq. (2.52), (2.53) and (2.54) from §2.5.1) to test

for possible breaks in the mean and trend of each series. Inference for presence

or absence of breaks is based on Hansen (2000)’s bootstrap heteroskedasticity

corrected p-values. We limit our analysis to one break considering the relatively

short sample size we are estimating on.

Table 2.7. Structural Change Tests on National and Regional δt’s

Housing Market SupF ExpF AveF Breakdate

Test Stat. Bootstrap p Hetero- p Test Stat. Bootstrap p Hetero- p Test Stat. Bootstrap p Hetero- p

FHFA 488.186 0.000*** 0.000*** 239.635 0.000*** 0.000*** 83.092 0.000*** 0.000*** 2004Q4
Case-Shiller 210.574 0.000*** 0.000*** 101.105 0.000*** 0.000*** 64.012 0.000*** 0.000*** 2003Q1

Census 348.712 0.000*** 0.000*** 170.718 0.000*** 0.000*** 60.832 0.000*** 0.000*** 2004Q3

Midwest
Chicago 466.886 0.000*** 0.000*** 229.448 0.000*** 0.000*** 117.522 0.000*** 0.000*** 2003Q2

Cleveland 795.594 0.000*** 0.000*** 394.258 0.000*** 0.000*** 350.387 0.000*** 0.000*** 2003Q2
Detroit 1317.230 0.000*** 0.000*** 654.215 0.000*** 0.000*** 515.738 0.000*** 0.000*** 2003Q1

Northeast
Boston 65.951 0.000*** 0.001*** 29.831 0.000*** 0.001*** 33.870 0.000*** 0.000*** 1989Q4

New York 90.028 0.000*** 0.000*** 41.159 0.000*** 0.000*** 34.680 0.000*** 0.000*** 2004Q4
Philadelphia 158.642 0.000*** 0.000*** 75.380 0.000*** 0.000*** 40.127 0.000*** 0.000*** 2004Q4

South
Atlanta 564.129 0.000*** 0.000*** 277.694 0.000*** 0.000*** 132.966 0.000*** 0.000*** 2003Q4
Dallas 255.068 0.000*** 0.000*** 123.601 0.000*** 0.000*** 152.733 0.000*** 0.000*** 1999Q4

Houston 100.265 0.000*** 0.000*** 46.521 0.000*** 0.000*** 64.974 0.000*** 0.000*** 2004Q1

West
Los Angeles 161.429 0.000*** 0.000*** 76.369 0.000*** 0.000*** 37.796 0.000*** 0.000*** 2005Q1

San Francisco 128.458 0.000*** 0.000*** 60.427 0.000*** 0.000*** 41.437 0.000*** 0.000*** 2004Q4
Seattle 302.679 0.000*** 0.000*** 147.719 0.000*** 0.000*** 85.516 0.000*** 0.000*** 2004Q4

Notes: This table reports the test statistics of the SupF test of Andrews (1993) and the ExpF and AveF of Andrews and Ploberger (1994)
(refer eq. (2.52), (2.53) and (2.54) from §2.5.1) and Hansen (2000) bootstrap p values under homoskedastic (Bootstrap p in the table)and
heteroskedastic (Hetero- p in the table) residuals. All the three tests examine the null of no breaks against the alternative of breaks in the mean
and trend. The trimming parameter is set at 0.15 which means the starting index for break search is 18.
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Table 2.7 reports the test statistics of the three break tests (SupF , AveF

and ExpF ) along with Hansen (2000)’s bootstrap p values under homoskedastic

and heteroskedastic residual processes. All the three tests examine the null of no

change against the alternative of a structural change in the mean (µ) and trend

(ψ) of the log rent-price ratio’s. The reported p values uniformly reject the null

hypothesis at the 1% level strongly implying the presence of a structural break in

the mean and trend of all the log rent-price series. The estimated breakdate for

the national series is illustrated in Fig. 2.1.

Figure 2.1. Estimated Breakdates of National Rent-Price Ratio’s

Notes: This figure provides a graphical illustration of the estimated breaks in mean and trend
of the log rent-price ratio’s of FHFA, Case-Shiller and Census aggregate series. The break date
of each series is given in text in the corresponding plots.

A brief review of the estimated breakdates reveal that in general they are

centered around 2003Q1-2004Q4. On visual inspection it is clear that there is

a marked change in the trajectory of the log rent-price ratio’s between 1982Q4-

2003Q1 and then on. This is consistent with a sudden upsurge followed by down-

turn in housing prices highlighted by a U shape in the δt trajectory from 2004Q4.

Our structural change test revealed one endogenous break in all of the series. The

breakdate was found to lie in general in the 2003-04 time period.

101



This breakdate suggests a shift in household beliefs. For example, Piazzesi

and Schneider (2009) using Michigan Consumer Survey data finds that the U.S.

housing boom had two distinct stages. In the first stage, during 2002-03, about

72% of households cited favourable credit conditions and believed that the time

for buying a house was good. From 2004, in the second stage, houses were con-

sidered too expensive but the number of agents who were optimistic about future

price increased from 10% in 2003Q4 to over 20% by 2005Q2. Our results thus

empirically validate these arguments.

From the breakdates for the regional MSA’s, it is apparent that they mirror

the national series i.e. the breakdates found are in and around the 2004-05 time

period. The exception to this was Boston (1989Q4) and Dallas (1999Q4). This

divergent behaviour we believe has more to do with regional rental changes rather

than house prices. Severe regulations cap the rent you can charge on residential

households in several MSA’s in the United States which includes the Boston and

Dallas metropolises.

A recent forecasting paper by Barari et al. (2014) found four structural breaks

in the aggregate Case-Shiller Index (1991:1-2009:12) by applying the Bai and

Perron (1998, 2003) procedure. It is well documented that the Bai and Perron

(1998) procedure could overestimate the number of breaks when the regressors

are non-stationary. Canarella et al. (2011) applied the Lumsdaine and Papell

(1997) and the Lee and Strazicich (2001) tests to the Case-Shiller 10 city regional

HPI’s and found two breaks in the intercept and trend for all the 10 metro areas.

Specifically the tests indicated that the second breakdate for the most of the metro

areas (Chicago, Los Angeles, San Francisco, New York) was found to occur around

2005-2006 time period concurring with our results. Both these papers however

do not take into account the effects of the rental series. Nevertheless, Nneji et al.

(2013) use a Markov switching approach to the aggregate FHFA price-rent ratio

in the period 1960-2011 and finds that the housing market switched from a low

price-rent ratio to a high price-rent ratio around the year 2000.

Now that we have identified breaks we proceed to a robust estimation of long

memory on the de-meaned and de-trended series, i.e. δt− µ̂− ψ̂. The next section

reports and discusses these results.
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2.7.4.2. Long Memory Estimation on De-meaned and De-trended δt’s

Table 2.8. Long Memory on De-meaned and De-trended δt

Housing Market Semi-Parametric Estimates Parametric Estimates

d̂LWE d̂ELW d̂2ELW Conclusion d̂ARFIMA ρ d̂ARFIMA−EGARCH ρARFIMA−EGARCH Conclusion

FHFA 0.646 0.662 0.662 I(0) -0.107 0.834 0.687 0.337 I(0)
Case-Shiller 0.864 1.078 1.079 I(1) 0.185 0.815 0.738 0.645 I(0)

Census 0.585 0.645 0.652 I(0) 0.037 0.645 -0.184 0.743 I(0)

Midwest
Chicago 0.772 0.906 0.930 I(1) 0.016 0.874 0.803 0.172 I(1)

Cleveland 0.880 1.007 0.991 I(1) 0.046 0.909 0.134 0.911 I(0)
Detroit 0.900 1.137 1.123 I(1) 0.105 0.960 0.207 0.811 I(0)

Northeast
Boston 0.965 1.089 1.092 I(1) 0.149 0.929 1.233 -0.101 I(1)

New York 0.978 1.055 1.136 I(1) 0.104 0.945 0.106 0.919 I(0)
Philadelphia 0.768 1.090 1.032 I(1) 0.620 0.329 0.192 0.772 I(0)

South
Atlanta 0.668 0.692 0.691 I(0) 0.412 0.377 0.637 0.278 I(0)
Dallas 0.840 0.907 0.915 I(0) -0.060 0.900 -0.276 0.883 I(0)

Houston 0.673 0.905 0.940 I(1) 0.021 0.841 -0.152 0.894 I(0)

West
Los Angeles 1.008 1.140 1.132 I(1) 0.130 0.877 0.666 0.977 I(0)

San Francisco 0.910 1.082 1.060 I(1) 0.103 0.895 0.122 0.907 I(0)
Seattle 0.770 0.949 0.972 I(1) 0.118 0.823 0.746 0.837 I(0)

Notes: Evaluation is done on the residual equation yt − µ̂ − ψ̂. Detailed description of the detrending and demeaning procedure
is described in section 2.4. The optimal frequency, m, selected by simulations is n0.80 for LWE n0.75 for ELW and 2ELW, n is
the sample size i.e. 125. The asymptotic standard error for LWE is 0.072 and for ELW and 2ELW is 0.081. For the parametric
estimation, AR(1)MA(0) is the optimal model selected by BIC. The residual tests indicated the presence of normal errors in all the
series. Addition of the EGARCH process removed ARCH and autocorrelation errors but not the normal errors. Unit root tests for
semi-parametric methods is done by applying the EFDF test and for the parametric method by applying Linear Restrictions, that
is d = 1 and ρ = 1. Numbers in bold indicate that the null of a unit root was not rejected at the 5% level. The test statistics and
critical values of the EFDF test is reported in Table 2.C.1.

Table 2.8 reports semi-parametric (i.e. d̂LWE, d̂ELW and d̂2ELW ) and parametric

(ARFIMA and ARFIMA − EGARCH) persistence estimates for each series

after adjusting for structural breaks. Estimation is done on the filtered demeaned

and detrended series, δt − µ̂ − ψ̂ where is the µ̂ mean and ψ̂ is the trend. As

expected, the d̂ values for the de-trended series are much lower validating the

arguments by Diebold and Inoue (2001) and Granger and Hyung (2004) that the

presence of level or trend shifts could spuriously generate long memory.

Unit root tests for the semi-parametric estimates are conducted using the

Efficient Fractional Dicky-Fuller (EFDF) tests of Lobato and Velasco (2007). The

test statistics and critical values for this test is reported in Table 2.C.1 in the

Appendix. Linear restrictions of d = 1 and ρ = 1 effectively tests for the null
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of a unit root in the long run and in the short run AR process in the case of

the parametric estimation. Bold numbers in Table 2.8 indicate regions where the

null of a unit root was not rejected at the 5% level. Columns 5 and 10 in the

Table describe the conclusions we can draw from analysing the two most reliable

estimators, the 2-step ELW and the ARFIMA− EGARCH.

We find that the semi-parametric procedure performs better than the para-

metric one. The residual tests of the ARFIMA−EGARCH procedure indicated

the presence of non-normality which implies that the likelihood estimates that we

recorded in Table 2.8 are inefficient and unit root tests, d = 1, unreliable. In fact,

parametric estimation on some series (the aggregate Census, South MSA’s of

Dallas and Houston) produced negative values of d i.e. anti-persistence. Granger

and Hyung (2004) also find negative or over differenced d values on a de-meaned

Standard & Poor 500 stock returns series. This is probably due to the existence

of some form of nonlinearity, such as a smooth transition, a nonlinear trend, etc.

in the series which is not adequately captured by the linear ARFIMA model.

The semi-parametric methods on the other hand are robust to non-normal and

heteroskedastic errors. As discussed earlier in §2.7.2, the studies of Goodman and

Thibodeau (1998) and Fletcher et al. (2000) prove that both repeat sales and

hedonic based house price indices suffer from heteroskedasticity. The addition of

the EGARCH term takes care of the heteroskedasticity problem. However, the

issue of non-normal residuals still remain unresolved.

Furthermore, data limitation of the rental series meant that we used a small

sample size in our analysis, T = 125. In the parametric procedures, the ARMA

part captures most of the persistence resulting in low d values. There are ad-

ditional problems we encounter during the optimization of the ARFIMA −
EGARCH model. We use the Simulated Annealing Algorithm for optimiza-

tion which requires specifying starting values. We simulated different values to

get strong convergence. However, despite these efforts some series only converged

weakly.

While the semi-parametric procedure detected unit root persistence consistent

with bubbles in two national (Case-Shiller and the NAR Housing Affordability In-

dex) and 10 regional series, the parametric procedure identified bubble behaviour

in only two regional MSA’s (Chicago and Boston). None of the aggregate indexes

showed any unit root tendencies under the parametric method.

Comparing the three national indexes (FHFA, Case-Shiller and Census) we
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arrive at two main conclusions.25 Firstly, we find substantial heterogeneity in the

persistence of the aggregate HPI’s. The semi-parametric estimates reveal that

the Case-Shiller HPI, unlike the FHFA and the Census HPI’s, follows a unit root

process consistent with housing bubbles. The most reliable estimated long mem-

ory value of d = 1.079 for Case-Shiller in Table 2.8 suggests an explosive process

agreeing with Phillips and Yu (2011) who implemented a sequential right-tailed

unit root test on Case-Shiller price-rent ratio and rejected the null of a unit root

against an explosive alternative consistent with housing bubbles. Although the

ARFIMA − EGARCH model rejects a unit root here, the computed d value

(0.738) is the highest among all the three aggregate HPI’s. This contrasting

behaviour between Case-Shiller and the other two aggregate series (FHFA and

Census), we believe, lies in the way the three HPI’s are constructed. Although

both FHFA and Case-Shiller use a weighted repeat sales methodology, the HPI

of FHFA is based only on homes sales with conforming home mortgages (loans

less than $417,000), which eliminates a fair percentage of real estate transactions.

Case-Shiller looks at all home sales, regardless of the mortgage amount. Further-

more, the S&P Case-Shiller Indexes are value-weighted, meaning that price trends

for more expensive homes have greater influence on estimated price changes than

other homes. FHFA, on the other hand, weights price trends equally for all prop-

erties. The geographic coverage of the indexes also differs. The S&P Case-Shiller

National Home Price Index, for example, does not have valuation data from 13

states. FHFA’s aggregate index is calculated using data from all the states.

Secondly, among all the three aggregate HPI’s, the estimated long memory

persistence, by both d2ELW and dARFIMA−EGARCH , are lowest in the Census In-

dex. This mirrors the result in McCarthy and Peach (2004) who also found that

the price deviations from fundamentals in the Census HPI is much lower than

either FHFA or Case-Shiller as the Census is a constant-quality index. That is,

both the FHFA and the Case-Shiller Index do not take into account changes in the

physical characteristics of homes and so does not control for depreciation or addi-

tions and alterations between sale dates that could have changed the quality and

thus price of the house. In essence, Census accounts for the heterogeneity among

25Although we are estimating on the rent-price ratio’s we can make effective comparisons
between the three national HPI’s as the national rental series (in the numerator) is the same.
That is, any appreciation or depreciation differences between the three δt’s has more to do with
the particular HPI variations than any aggregate rental changes.
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houses.26 Furthermore, both Case-Shiller and FHFA use a ”repeat sales” method-

ology to examine house price changes which has its own important caveats. Most

importantly, the index is based only on the sample of homes that have sold at

least twice (hence the term ”repeat sales”), a fact which serves to exclude all new

construction (which can account for more than 10% of real estate transactions).

For these and other reasons, McCarthy and Peach (2004) argue that the Census

series is the most appropriate among all the three HPI’s to infer on house price

appreciation relative to fundamentals such as rents in the United States. Case

et al. (1991) compares the hedonic methodology with the repeat sales one and

finds that the hedonic based HPI possess lower bias and inefficiency problems.

As the log rent-price ratio of the Census Index in the 31 year time span 1982Q4-

2013Q4 is found to follow a stationary mean-reverting long memory process, we

can say that in the national level the United States is devoid of bubble behaviour

i.e. the housing market is efficient agreeing with Capozza and Seguin (1996),

Linneman (1986) and Meese and Wallace (1994) who observe that in the long run

the aggregate United States Housing Market is efficient in that they follow the

present value relation. They believe that high transaction costs, measurement

errors and failure to account for a risk premium in the homeowner cost of capital

can cause a short run violation of rationality but in the long run, the U.S. hous-

ing markets are bubble free. The presence of a unit root in the NAR Housing

Affordability Index implies that housing is now more affordable to single family

households earning the median income thus validating our no bubble result.

The FHFA regional rent-price ratios,δt’s, in general contrasted their aggregate

counterpart such that 10 out of 12 metro areas exhibited unit root long memory

persistence consistent with housing price bubbles. To our knowledge time series

analysis of FHFA MSA’s is absent. A recent paper by Canarella et al. (2011)

applied structural break and non-linearity adjusted unit root tests to the Case-

Shiller 10 city regional index. They found that although tests indicated that

structural breaks existed in the rate of capital gain from the sale of houses during

the early 1990s and the first half of the 2000’s yet they were unable to reject the

null of a unit root in most of the metropolitan regions agreeing with our results.

Atlanta and Dallas metro areas from the South in contrast to the other 10 MSA’s

26No two houses are the same. At the very least, they differ in location. They may differ
in neighborhood, city, or metro area. Even the difference of a few hundred feet can have an
appreciable price effect. Obviously, so too will other attributes, both locational and physical.
The combination of these characteristic attributes can be considered as the house’s ”quality”,
see Rappaport (2007).
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rejected the null of a unit root in d. They thus paralleled their aggregate FHFA

counterpart and negated any bubble activity. This can be attributed to the low

rentals in the South region as argued by Thibodeau (1995) who constructed a

constant quality hedonic house price index for several MSA’s. The study revealed

that in general the shelter rental estimates for the Northeast and the West regions

were about 2.9 to 4.6 times those of the South region.

2.8. Discussion

We began our empirical analysis with standard unit root tests i.e. ADF, DF-GLS

and KPSS, which gave ambiguous evidence to the presence or absence of a unit

root in most of the series. This was primarily due to the fact that these tests are

too restrictive such that they consider just two values of d in the real space [0,1] i.e.

they ignored the possibility of fractional roots. We thus, proceeded to estimate

the fractional value of d using two methods: Parametric ARFIMA in the time

domain and Semi-Parametric Whittle estimates in the frequency domain. Both

the methodologies applied procedures that were consistent in the non-stationary

region (d > 1/2). We found that the long memory procedures allowed us

to identify the persistence more accurately . Among the two long memory

methods, the semi-parametric procedure was more reliable and produced

better estimates than the parametric ARFIMA method.

The parametric pure ARFIMA estimates found bubble behaviour in the log

rent-price ratio’s of two aggregate HPI’s (FHFA, Case-Shiller) and four FHFA

regional MSA’s (2/3 from Northeast and 3/3 from the West regions). The addition

of the asymmetric EGARCH removed non-normal and heteroskedatic residual

errors and concluded bubble processes in fewer regions (aggregate Case-Shiller

HPI, 1/3 from Northeast and 2/3 from the West regions). This implied that the

presence of these residual errors does impact the value of long memory persistence.

Semi-parametric estimates which do not require the modelling of the short run

dynamics and are hence robust to these errors reported significantly higher values

of d and implied bubble behaviour in all the three national and 12 regional series.

A comparison between the two methodologies revealed that the parametric pro-

cedures captured most of the persistence in the short run ARMA component i.e.

the null of a unit root was not rejected in the Sum of Autoregressive Coefficients

(ρ). This we believe is primarily due to the relatively short sample size we use,

data limitations of the rental series preclude us from further investigation. Hence,
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we concluded that the semi-parametric procedure is a superior methodology and

thus more reliable as far as our analysis is concerned. Thus our results argue for

employing semi-parametric methods against parametric time domain ones.27

Although linear methods are widely used when testing for long memory, it is

documented in the literature that presence of structural breaks in the levels or

trends could slow down the d convergence generating ”spurious” long memory.

In light of this, we tested for endogenous breaks using three tests based on the

Quandt (1960)’s F statistic (SupF , ExpF and AveF ). To infer for presence of

breaks we computed Hansen (2000)’s ”Fixed Regressor Bootstrap” asymptotic

p-values that are consistent under non-stationary regressors and heteroskedastic

residuals.

We found one endogenous structural break in the rent-price series.

This estimated breakdate for the mean and trend of the log rent-price ratio’s in

general occurred in the 2003/04 time period. This validates arguments made in

the literature about change in household beliefs characterizing this period. For

instance, in a study of data from the Michigan Survey of Consumers, Piazzesi and

Schneider (2009) report that ”starting in 2004, more and more households became

optimistic after having watched house prices increase for several years.”28 The

presence of a break means a shift in the fundamentals of the housing

market, as we are examining for rational bubbles, that is deviations

from fundamentals, we cannot neglect this break . Accounting for this

break will ensure that the net persistence of the series will contain only deviations

that arise from non-fundamental factors or bubbles. We do this by demeaning

and detrending each of the series.

27In contrast, Baillie and Kapetanios (2007) argues that a correctly specified parametric
model is superior to other alternative procedures. The small sample size we use implies that
the maximum likelihood parametric methodology captures most of the persistence in the short
run ARMA part resulting in a biased low value of d. Furthermore, Goodman and Thibodeau
(1998) and Fletcher et al. (2000) argue that the House Price Indexes inherently contain het-
eroskedasticity due to several factors such as the differences in the timing of house sales. We
find that this is true from our results.

28Cerqueti and Costantini (2011) present empirical evidence of the bubbles phenomena in the
international stock markets over the period 1992:1- 2010:6 for a panel of 18 OECD countries.
They use a similar theoretical model like ours, namely the log–linear present-value model of
Campbell and Shiller (1988), and investigate the presence of rational bubbles in the log dividend-
price ratio and total returns. They use panel unit root and cointegration methodology, and allow
for multiple endogenous structural breaks in the individual series. Their procedure regarding
structural breaks in the dividends and returns data shows that breaks occur around the same
dates for most of the countries, in particular around the ”tech-stock” bubbles period.
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Long memory was then estimated on the new filtered series. The ex-post

persistence values were significantly lower validating our approach. When applied

to the demeaned and detrended series, the semi-parametric method found unit

root process consistent with housing price bubbles in just one national HPI (Case-

Shiller). Nevertheless, 10 out of 12 FHFA MSA’s continued to exhibit bubble type

behaviour. As before, these conclusions differed drastically from the parametric

procedures. The ARFIMA − EGARCH model in contrast found I(1) type

behaviour in only two MSA’s (Chicago and Boston). Considering the small sample

bias and the presence of residual errors, we infer for bubble behaviour from

the semi-parametric Whittle estimators, specifically the 2-step Exact Local

Whittle of Shimotsu (2009).

Among the three aggregate HPI’s only the value weighted repeat sales S&P

Case-Shiller Index indicated bubble behaviour. FHFA which is also constructed

based on a repeat sales weighted procedure was devoid of bubbles, so was the

Constant Quality House Price Index from Census. The following question arises -

”Which of these three national HPI’s best describes aggregate housing price trend

of U.S.?” The answer to this depends, as argued by Rappaport (2007), on one’s

purpose.

A bubble type behaviour in the value weighted aggregate Case-Shiller Index

suggests price rises in expensive houses in big metropolises. Mean-reverting ten-

dency in the FHFA Index describes that in general the aggregate value of the

household has returned to mean levels. The Census Index which provides lit-

tle evidence of housing bubbles says that the residential construction sector is

healthy.

Our results for the FHFA regional MSA’s indicated that persistence was on

average higher in the Northeast and the West regions. The metropolitan areas

like New York (Northeast), Los Angeles and San Francisco (West) are densely

populated possessing highly inelastic housing supply and thus we empirically val-

idate theoretical arguments put forward by Green et al. (2005), Glaeser et al.

(2008), Glaeser et al. (2012) and others that supply elasticity and price growth is

positively correlated. A further implication is the possibility of aggregation bias.

In contrast, we found that the aggregate series exhibited a lower persistence than

other disaggregate ones. This indicates that some region specific factors average

out in the aggregation, i.e. no aggregation bias. This agrees with Campbell

et al. (2009) who also find that the FHFA rent-price ratio is 30% more volatile

in the regional level than the national level suggesting that some region-specific

factors average out in the aggregate. This is because regional housing markets
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may not always respond at the same time to a common economic shock as re-

gional sensitivities to demand and supply varies due to differences in area specific

factors such as migration patterns, per capita income, availability of mortgage,

labour mobility, demographics, degree of urbanization, rental housing market etc

see, Malpezzi (1996) and Barros et al. (2012).

Our results of high persistence in the rent-price ratio agrees with that of André

et al. (2014) who investigated the persistence of housing price-to-income and price-

to-rent ratios in 16 OECD countries over a 40-year period, using a fractional

integration framework. They find that these ratios tend to fluctuate around a

stable level over the very long term, they are generally not found to be mean-

reverting over the sample. They find that the order of integration of price to

income and price to rent ratios are above unity for most countries, and thus

exogenous shocks to these ratios will be permanent. Moreover, the integration

order is in most cases significantly higher than 1, suggesting that shocks are in

fact amplified. However, a drawback of their approach is that even though they

use the semi-parametric method for estimation they use Whittle methods which

are not powerful in case of non-stationarity. Furthermore, they do not find any

evidence for structural breaks.

It can be argued that our investigation of bubble presence examined the di-

verge of prices from only one fundamental factor, the rents. However, there are

several other fundamentals such as interest rates, construction costs, labour costs,

geographical location etc that influence the movement of house prices. In a re-

cent paper, Kivedal (2013) finds that our analysis is consistent as far as the recent

boom-bust episode in the U.S. is concerned. Kivedal (2013) shows that there is

an explosive root in house prices, while the rental price does not contain explosive

elements. This implies bubble behaviour consistent with our results. This also

holds in the case where the net rental price is used, indicating that the declin-

ing interest rate in the period before the subprime financial crisis is not a strong

enough effect to explain the large increase in the house price that exceeds the

increase in the rental price.

In an important paper, Evans (1991a) addresses the inability of standard unit

root tests in detecting a special class of rational price bubbles which are positive,

explosive and periodically collapsing. Standard unit root tests incorrectly reject

the null of a unit root when such bubbles are present in the data. Phillips and

Yu (2011) developed a recursive unit root testing procedure (PSY) that accom-

modates such periodically collapsing bubbles, these test for the null of a unit root

(d = 1) against an explosive root (d > 1). These right tailed tests do not consider
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the possibility of either a structural break or long memory. The methodology

used in this chapter can be easily extended to consider such collapsing bubbles.

Appendix 2.A simulates these types of bubbles and reports our results. We find

two key results. Firstly, the value of long memory, d, rises as the probability of a

bubble to collapse increases and Secondly, a Wald Test that looks for a change in

d values can successfully detect these types of bubbles.

2.9. Conclusion

In this chapter we use long memory models to estimate the persistence of the log

rent-price ratio’s in the national and regional House Price Indexes in the United

States and thereby investigate the presence of price bubbles in the housing market.

We based our analysis of bubble presence (absence) depending on unit root (mean-

reverting) persistence. Essentially, we test for the null of a unit root, I(1), against

the alternative of stationarity/mean-reversion, I(d < 1). We analysed a quarterly

dataset that spanned the 31 year time period 1982Q4-2013Q4 encompassing both

the observed upturns and downturns in US housing prices.

Our results revealed that the semi-parametric procedures which are robust to

contaminations in the form of short term correlation, normality and heteroskedas-

ticity found bubble behaviour in far more regional markets than when using the

parametric procedure. Results for bubble identification were different for different

House Price Indexes. While the Census and the FHFA series showed no unit root

bubble behaviour, the Case-Shiller Index did. We also found that the regional

indexes were far more volatile than the aggregate ones. Finally, we found an en-

dogenous break in all the series. This breakdate coincided with the turn of credit

market conditions in the United States. When we adjust the series for this break,

we find significantly lower persistence. In summary, we conclude that there is

strong evidence for the presence of housing bubbles in the U.S. housing market.

Furthermore, more of the regional series exhibited bubble type behaviour than

the national ones.

This study opens up several possible areas for future investigation. The chief

one relates to the time varying characteristic of long memory. To the best of

our knowledge, appropriate methods to estimate a changing d parameter robust

to structural breaks is not available. Roueff and von Sachs (2011) construct a

semi-parametric procedure to estimate d when it is time varying. However, the

procedure is only consistent for stationary processes. Efficient estimation of the d
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parameter free of short run contaminations will help in the timely identification of

bubbles which has wide scale advantages. The accurate estimation of persistence

will directly assist policy makers in the United States housing industry to make

optimal decisions. In fact, when realtor authorities have a priori knowledge of the

persistence on housing prices, they can design appropriate housing strategies to

adjust persistence in house prices benefiting urban consumers.
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2.A. Robustness - Periodically Collapsing

Bubbles

In this section, we see whether the semi-parametric long memory methods used

in this chapter can be used to detect a special type of bubbles introduced by

Evans (1991a). These are a class of positive and explosive periodically collapsing

bubbles which are consistent with rational expectations. They take the form:

Bt+1 =

{
(1 + r)Btut+1 if Bt ≤ α[
ω + (1+r)

π
θt+1(Bt − 1

1+R
ω)
]
ut+1 if Bt > α

(2.73)

where ω and α are positive parameters with 0 < ω < (1+r)α, ut+1 is an exogenous

i.i.d positive random variable with Et(ut+1) = 1, θt+1 is an i.i.d Bernoulli process

which takes the value 1 with probability π and 0 with probability 1−π. As long as

Bt ≤ α, the bubble grows at mean rate 1 + r and when Bt > α the bubble bursts

into a phase in which it grows at the faster rate (1 + r)/π as long as the eruption

continues. The bubble collapses with probability 1− π per period and eventually

falls to a mean positive value of ω, from which the process begins again.

These bubbles appear to be stationary when unit root tests are applied even

though they contain explosive roots, except in the case where the probability of

collapse is very close to zero. We simulate periodically collapsing bubbles for

different values of π and then estimate the long memory parameter for these

processes. Figure 2.A.1 plots these simulated bubble processes. The following

table describes the results for long memory estimation.
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Figure 2.A.1. Simulations of Periodically Collapsing Bubbles
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Notes: This figure depicts simulated Evans (1991a) periodically collapsing bubbles at four
different probabilities of bubble collapse (1−π). The bubles were simulated using r=0.05, α=1,
ω = 0.5, initial Bt=ω, ut+1 = exp(yτ − τ2/2) where yτ ∼ N(0, τ2) and τ=0.05.

Table 2.A.1. Long Memory Estimation of Simulated PCB’s

m = 40 m = 60 m = 80

π dLWE d2ELW d2ELWdet dLWE d2ELW d2ELWdet dLWE d2ELW d2ELWdet

1.0 0.906 2.287 2.273 0.905 2.163 2.176 0.885 2.189 2.206
(0.079) (0.079) (0.079) (0.064) (0.064) (0.064) (0.055) (0.055) (0.055)

0.85 0.539 0.590 0.607 0.624 0.714 0.714 0.672 0.836 0.835
(0.079) (0.079) (0.079) (0.064) (0.064) (0.064) (0.055) (0.055) (0.055)

0.70 0.369 0.397 0.385 0.485 0.563 0.598 0.530 0.678 0.679
(0.079) (0.079) (0.079) (0.064) (0.064) (0.064) (0.055) (0.055) (0.055)

0.55 0.161 0.180 0.155 0.278 0.338 0.331 0.357 0.487 0.485
(0.079) (0.079) (0.079) (0.064) (0.064) (0.064) (0.055) (0.055) (0.055)

Notes: This table reports the semi-parametric estimates of long memory for the simulated
periodically collapsing bubbles. We use three different bandwidths, m, and four different
probabilities of bubble collapse, 1−π. n is the sample size which is 200. dLWE is the Local
Whittle estimator, d2ELW and d2ELWdet are 2-step Exact Local Whittles estimators
without and with de-trending. The asymptotic standard errors for the estimates are given
in parenthesis.
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It is apparent from Table 2.A.1 that the estimated value of long memory d de-

creases as the probability of bubble collapse π increases. Presence of periodically

collapsing bubbles will thus lead to erroneous conclusions about bubble behaviour.

A stationary mean reverting series could thus potentially contain bubbles. The

Shimotsu (2006) can be used in the frequency domain to detect these types of

bubbles as described below. Table 2.A.2 show that as the bandwidth window

(m) and the number of subsamples (b) increases, the Wald statistic gets better in

detecting periodically collapsing bubbles. Simulations help us in using this test

as an effective way to test for periodically collapsing bubbles in the U.S. Housing

Market. On testing in our dataset, we did not find periodically collapsing bubble

phenomenon and thus we omit the discussion in our text.

Table 2.A.2. Detecting periodically collapsing bubbles

m d̂ d Wc

π b=10 b=20 b=10 b=20

1.0 40 2.217 1.412 1.920 0.020 13.018
0.85 40 0.590 1.028 1.535 13.568 8.675
0.70 40 0.397 1.181 1.739 29.191*** 15.199
0.55 40 0.180 0.713 1.468 3.421 17.210

1.0 60 2.163 1.438 1.515 0.034 8.213
0.85 60 0.714 1.103 1.791 22.001*** 46.370***
0.70 60 0.563 1.189 1.907 48.614*** 110.934***
0.55 60 0.338 0.817 1.459 7.291 68.467***

1.0 80 2.189 1.487 1.600 0.069 12.334
0.85 80 0.836 1.185 2.216 29.384*** 154.236***
0.70 80 0.678 1.289 2.563 62.184*** 424.969***
0.55 80 0.487 0.900 2.262 11.824 501.339***

Notes: The Wc statistic tests the null that the memory parameter has remained constant through-
out the subsamples and is χ2 distributed with b − 1 degrees of freedom where b is the number
of subsamples. *** indicates rejection of the null at the 5% level indicating the presence of
periodically collapsing bubbles.
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2.B. Rent-Price Ratio - FHFA Regional

Figure 2.B.1. Regional

Notes: This figure provides a graphical illustration of the log rent-price ratio of 12 FHFA
Regional MSA’s. The second row plots the autocorrelation functions and the spectral
densities.
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2.C. Efficient Fractional Dicky-Fuller Test

Table 2.C.1. EFDF Test on break adjusted semi-parametric estimates

Housing Market Break adjusted (EFDF)

d̂LWE d̂ELW d̂2ELW
FHFA -2.880*** -3.005*** -3.005***

Case-Shiller 0.146 0.183 0.184
Census -3.085*** -3.266*** -3.248***
NAR 0.970 1.041 1.056

Midwest
Chicago -1.406 -1.348 -1.317
Cleveland -0.067 -0.021 -0.037
Detroit 0.779 0.779 0.777

Northeast
Boston 0.895 0.928 0.931

New York 0.225 0.230 0.290
Philadelphia -0.866 -0.798 -0.855

South
Atlanta -2.874*** -3.001*** -3.002***
Dallas -2.111** -2.111** -2.186**

Houston -1.100 -1.071 -1.033

West
Los Angeles 0.211 0.269 0.261
San Francisco 0.129 0.139 0.119

Seattle -0.438 -0.453 -0.419
Crit. Value

1% -2.551 -2.551 -2.551
5% -1.904 -1.904 -1.904
10% -1.564 -1.564 -1.564

Notes: This table reports the Efficient Fractional Dicky-Fuller test statistics on the demeaned and de-
trended log rent-price ratio’s of the four national and the 12 regional MSA’s. The sample spans the
quarterly time period 1982Q4-2013Q4, except Case-Shiller which is 1987Q1-2013Q4. The EFDF tests
for the null of a unit root (d = 1) against fractional roots i.e. d = d̂ < 1, where d̂ is one of the three

semi-parametric estimates ( ˆdLWE , ˆdELW and ˆd2ELW ). Critical values (1%, 5% and 10%) for the tests
is given in the last three rows. Critical values for Case-Shiller are -2.527, -1.876 and -1.533 at the 1%, 5%
and 10 % levels respectively. ’***’ indicate rejection of the null of a unit root at the 1% level.
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Chapter 3

Optimal Life-Cycle Asset
Allocation with Return
Predictability, Risky Housing and
Non-Tradable Labour Income

3.1. Introduction

Financial advisors and much of the academic literature argue that young investors

should place most of their savings in stocks, which historically have paid a high

risk premium relative to US Treasury securities, and switch to less risky assets as

they age. For instance, Malkiel (1996) recommends putting a percentage of assets

equal to the number 100 minus an investor’s age in a well-diversified portfolio of

stocks.

However, low stock market participation rates and moderate equity

holdings for stock market participants are observed in US data . In this

chapter, the key variable of interest is the proportion of assets held in risky assets

and is denoted by αt. The 2007 Survey of Consumer Finance (SCF) shows that

only 55.3% of US households have direct or indirect holdings of risky assets. This

low stock market participation by households despite high expected returns is

called the STOCK MARKET PARTICIPATION PUZZLE. Furthermore,

data from the Panel Study of Income Dynamics (PSID) for the 1968-2007 period

show that the median household direct risky asset holdings and indirect risky asset

holdings are zero. Moreover, lifecycle risky asset holdings are “hump shaped.”

Young investors typically hold very little stock, progressively increase their risky
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assets holdings as they age, and decrease their exposure to stock market risk

when they approach retirement, see Vissing-Jorgensen (2002), Ameriks and Zeldes

(2002), Alan (2006) and Campbell (2006). Canner et al. (1997) calls this the

ASSET ALLOCATION PUZZLE.

Interest in these puzzles are not confined to stock brokers. Extensive privati-

sation in countries ranging from the financially developed, such as the United

States, to emerging market economies hinges on developing and maintaining a

broad base of stockholders. While initial participation is encouraged by extensive

advertising or by enthusiasm for market structures, the sources of the reluctance

to hold stocks in a financially mature country such as the United States or the

United Kingdom are puzzling, see Haliassos and Bertaut (1995), Poterba (2002).

Stockholding was shown by Mankiw and Zeldes (1991) to have implications for

the widely researched ’equity premium puzzle’, see Mehra and Prescott (1985),

confining attention to stockholders lowers the risk aversion implied by the equity

premium.1

Several explanations for the observed limited stock market participation have

been offered in the literature. Haliassos and Bertaut (1995) find theoretical evi-

dence in an expected utility maximisation framework that presence of short-sales

constraints and business cycle risks can deter stockholding. Hong et al. (2004)

empirically analyse data from the Health and Retirement Study, and find that

social household - those who interact with their neighbour or attend church -

are substantially more likely to invest than non social households controlling for

wealth, education, race and risk tolerance. van Rooij et al. (2011) finds using

survey data that respondents who displayed reasonable levels of financial literacy

in terms of grasping concepts such as interest compounding, inflation and time

value of money hold stocks in their portfolio implying that financial literacy af-

fects stockholding. It is conventional in the literature to club all these factors such

as social interaction, financial literacy etc., in the form of a fixed entry cost that

deters equity market participation, see Haliassos and Michaelides (2003), Guiso

et al. (2003) and Alan (2006) among others. In this chapter, we follow these

papers and consider an exogenous fixed cost of stock market participation.

1The equity premium puzzle is a phenomenon that describes the anomalously higher his-
torical real returns of stocks over government bonds. The equity premium, which is defined
as equity returns less bond returns, has been about 6% on average for the past century. It is
supposed to reflect the relative risk of stocks compared to ”risk-free” government bonds, but
the puzzle arises because this unexpectedly large percentage implies a suspiciously high level of
risk aversion among investors.
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The choice of whether or not the investor pays the fixed cost and participates

in the stock market depends on his level of wealth which varies with the investor’s

age. The Survey of Consumer Finances data on household portfolios reveal that,

portfolio share devoted to risky assets has a hump shaped profile with respect

to age (Campbell (2006), Flavin and Yamashita (2011)). That is, as households

accumulate wealth they tend to invest an increasing fraction of their wealth in

risky assets. In contrast, conventional wisdom maintains that for reasonable levels

of risk aversion, young agents should place a large proportion of their wealth

into the market portfolio, and this proportion should decline as the agent nears

retirement, see Davis and Willen (2013).

Both empirical observation and conventional wisdom seem at odds

with the academic literature . Early and enduring theoretical contributions in-

clude Merton (1969, 1971), and Samuelson (1969). Merton (1969, 1971) considers

a dynamic portfolio optimization problem in which investors maximize expected

utility through their choice of risky and risk-free investments, subject to a wealth

constraint. Closed form solutions for optimal portfolio shares are obtained using

dynamic programming arguments when returns are generated by a Brownian mo-

tion process, and for hyperbolic absolute risk aversion (HARA) utility functions, a

class that includes constant relative risk aversion (CRRA) and constant absolute

risk aversion (CARA). One important result that emerges from Merton’s analysis

is a two-fund separation theorem. It states that given n assets with log-normally

distributed prices, there exists a unique pair of “mutual funds” consisting of a

linear combination of the assets, such that independent of preferences, wealth

distribution, or time horizon, investors will be indifferent between choosing from

a linear combination of these two funds or a linear combination of the original n

assets. This reduces the analysis of many assets to a two-asset case. With CRRA

utility, and one risky and one risk-free asset representing the two funds, the the-

ory has the testable property that the share invested in the risky asset is affected

neither by the level of wealth nor by the consumption decision, see Curcuru et al.

(2004).

These early studies conclude counter-factually that a long-lived

agent should hold a constant fraction of his wealth in the risky asset

throughout his life . When calibrated to historical values of the equity premium

and stock market return volatility, these models predict that the appropriate pro-

portion of wealth placed in the risky asset is large, sometimes higher than 100%.

These models generate little heterogeneity in stock market participation even if

there is significant variation in risk aversion across agents. These results are also
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derived under many restrictive assumptions, including power utility, independent

and identically distributed (IID) returns on the risky and risk-free investments,

the absence of market frictions, the absence of labour income etc., see Benzoni

et al. (2007).

In an attempt to reconcile theory and observation, many of the restrictive as-

sumptions underlying the Merton (1969) and Samuelson (1969) results have been

progressively relaxed. This has been achieved through incorporating labour in-

come (Bodie et al. (1992), Benzoni et al. (2007)), generalizing preferences (Camp-

bell and Viceira (1999), Gomes and Michaelidis (2005)), making intertemporal

utility non-separable in a durable good such as housing (Grossman and Laroque

(1990), Flavin and Yamashita (2011)) and analysing the effects of time variation

in equity premium (Campbell et al. (2001)).

Although each of these dynamics have been used independently in several

studies, to the best of our knowledge, none of them incorporates all the dynamics.

Furthermore, analytical expressions for αt in a substantially realistic model in

discrete time setup is more or less non-existent. In this chapter, we do both.

First, we use a reasonably stylized model to derive an expression for risky asset

demand, αt. In the second section, we extend this model to incorporate all the

above discussed features in a life-cycle context. The next subsection describes the

main contributions and key results that we obtain.

3.1.1. Contribution and Results

We have contributions in both the analytical and the numerical sections of this

chapter. We start with a moderately stylized model in Section III abstracting

from life-cycle dynamics but still having time varying returns, a risky durable

good and uncertain labour income with Epstein-Zin preferences. We then ana-

lytically characterize the optimal risky asset demand. This approach is closer to

Campbell and Viceira (1999), Viceira (2001) and Yogo (2006) in that we derive

approximate log linearized Euler equations and budget constraints. These equa-

tions incorporate a risky labour income and are potentially useful for empirical

research, particularly in explaining the cross-sectional variation of asset returns.

Importantly, we express the optimal risky equity demand as the sum of two com-

ponents, a myopic demand and an intertemporal hedging demand. Our analytical

characterization provides valuable intuition to the factors that determine the level

of wealth invested in the risky asset when the household faces changes in the in-

vestment opportunity set, shocks to the labour income and shocks to durable
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housing prices. In this way we extend the seminal work of Campbell and Viceira

(1999) to include durable goods and labour income.

In Section IV we extend the stylized model by incorporating short-sales and

borrowing constraints, calibrated hump-shaped labour income, and a risky stochas-

tic house price process in a life-cycle context. Essentially we extend Cocco (2004)

and Vestman (2012)’s life-cycle portfolio choice model which has both housing and

risky labour income by including (i.) time varying returns, (ii.) Epstein-Zin pref-

erences, (iii.) a bequest motive and uncertainty of death. Time varying returns

implies that investors in our model can use a factor such as the log dividend-

price ratio (log dividend yield) to predict expected excess returns and can devise

strategies in response to changing opportunities. We then numerically solve it

to understand the evolution of risky asset demand, αt, and the level of stock

market participation over the life-cycle. Our results provide valuable insights to

the resolution of these puzzles and other portfolio problems. Our results can be

summarized as follows.

Firstly, we find that in the presence of housing both the stock market par-

ticipation rate and the risky asset allocation share is found to be hump-shaped

over the life-cycle consistent with empirical evidence, see Attanasio et al. (2012)

and Guiso and Sodini (2013). Thus, consistent with other models that include

housing such as Cocco (2004), Yao and Zhang (2004), Li and Yao (2007) and Vest-

man (2012), housing initiates a crowding out effect restricting younger liquidity

constrained households from market participation and equity market investments.

Secondly, we find that both risky asset allocation as well as the stock market

participation rate is extremely sensitive to factor realization, factor volatilities and

the persistence of the factor process. We find that both, a high factor realization

and a high factor persistence are positively related to the equity allocation. By

factor, we mean the dividend-price ratio. In other words, unit root persistence in

the factor process indicative of stock market frenzies such as bubbles can generate

substantially high levels of equity demand and market participation. Furthermore,

a huge drop in realized levels of the return predicting factor and high volatility in

the factor produces a subsequent fall in risky asset allocation. The drop was much

larger in the later years of the life-cycle (65-100). These suggest a ”rare disaster”

in the economy. Our results thus extend the disaster literature, Barro (2006,

2009) and Wachter (2013), to understand household asset allocation. We also

find that investors can hedge background risks such as labour income and house

prices better under return predictability compared to the IID case. Intuitively,
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this means that substantial welfare losses arising from investment mistakes can

be avoided, see Calvet et al. (2009) and von Gaudecker (2015).

Thirdly, we resolve both the stock market participation and the asset alloca-

tion puzzles. Our simulated results predict levels of asset allocation and stock

market participation rates which are very close to the estimated ones from the

Survey of Consumer Finance dataset. Importantly, our results arise without re-

sorting to preference heterogeneity which is the case with Gomes and Michaelidis

(2005) and Vestman (2012). In other words, a moderate level of risk aversion

and a moderate level of elasticity of substitution can successfully replicate the

observed participation and equity shares.

The rest of the chapter is organized as follows. In §3.2 we describe the lit-

erature review, in §3.3 we detail a reasonably stylized model of discrete time

portfolio choice and §3.4 describes the corresponding analytical characterization

for the Euler equations, budget constraints and importantly the optimal risky as-

set demand. §3.5 extends this model to a richer life-cycle one which is empirically

calibrated and the simulated results are then plotted, tabulated and described in

§3.6. Finally, §3.7 concludes.

3.2. Literature Review

In this section, we briefly review the literature on each of the modifications that

are critical in our model on household portfolio choice. These include labour

income, risky housing, return predictability and recursive preferences.

3.2.1. Labour Income and Portfolio Choice

A crucial element one needs to consider when discussing portfolio choice over

the life-cycle is labour income and the risk associated with it. For many agents,

the human capital (i.e., the certainty-equivalent present value) tied up in terms of

future wages dwarfs their financial wealth. As such, it is intuitive that the optimal

portfolio choice that takes labour income into account may generate significantly

different predictions.

Benzoni et al. (2007), discusses the role of labour income risk in explaining

lifecycle asset allocation decisions. They argue that the correlation between shocks

to stock market returns and wages is an increasing function of the investment

horizon. For a young investor, this effect generates a large positive correlation

between stock returns and the unobservable return to human capital. That is, the

124



present value of future labour income flows acquires features identical to stocks in

that returns can be volatile and unpredictable. However, older investors, who have

shorter times to retirement, are much less exposed to long-run labour income risk.

Hence, their remaining human capital becomes more identical to bonds in that

returns are stable and highly predictable, see also Heaton and Lucas (1997) and

Viceira (2001). Together, these effects create a hump-shaped optimal portfolio

decision over the investor’s lifecycle, consistent with empirical observation. In

conclusion, the level and risk of labour income risk varies with age over the lifecycle

and portfolio choice for an investor depends on these changes. We thus consider

labour income, that is calibrated to capture the hump-shape, in our lifecycle asset

allocation model.

Recent literature on portfolio selection in the lifecycle context considers labour

income risks. However most of these papers do not explicitly account for housing,

see for example Dammon (2001), Ameriks and Zeldes (2002), Campbell (2006),

Cocco et al. (2004), Gomes and Michaelidis (2005) and Davis et al. (2006) among

others. For most households, a house is the single most important consumption

good, appearing, as an argument of the utility function and at the same time, the

dominant asset in the portfolio. On average over 1952-2013 in the US, housing

wealth accounts for 35% of household assets and 40% of household net worth

(assets minus liabilities), while home equity (housing wealth minus mortgage debt)

is 23% of assets and 26% of net worth. Furthermore, two-thirds of all households in

the U.S. own their home and for most home-owning households, housing accounts

for a substantial portion of total wealth, see Davis and Nieuwerburgh (2014).

In the following section we review the literature that accommodate housing in

making portfolio choice decisions.

3.2.2. The Role of Risky Housing in Portfolio Allocation

As argued by Corradin et al. (2014) and Davis and Nieuwerburgh (2014), there

are several housing specific characteristics that make portfolio allocation decisions

nontrivial. First, housing is illiquid in the sense that changing the quantity of

housing may take time and/or require incurring substantial transaction costs.

Therefore, homeowners would optimally want to rebalance their housing position

less frequently than other investment assets. Second, house is an indivisible good,

that is, a limited assortment of types and sizes are available for purchase at any

time which in general includes a minimum size. Third, home ownership and

housing consumption are generally intimately related. Most households own only
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one home and live in the house they own. Fourth, housing has an investment

dimension in that households can use it as a collateral against which they can

borrow. Investment in housing is much more leveraged than investments in other

financial assets and the value of owned housing limits the amount of leverage in

households’ portfolios. Finally, house prices move with business cycles and exhibit

both persistence and volatility making them a risky investment.

Despite these implications of housing on optimal portfolio choice, most papers

do not consider an individual’s investment in a home (i.e., a durable consump-

tions good). Grossman and Laroque (1990) present the first exception as they

develop a theoretical model with a single illiquid durable consumption good (e.g.,

a house) from which an infinitely lived investor derives utility. The illiquidity

derives from the fact that transaction costs are born when the good (house) is

sold. In addition to the durable good the individual can invest in a risk free

asset and a set of risky financial assets. At each time, the individual must de-

cide whether to acquire a larger (smaller) house and how to allocate his or her

remaining wealth among financial assets. Grossman and Laroque show that it is

optimal for the individual to wait for large increases (decreases) in wealth to raise

(reduce) their consumption of the durable consumption good. In addition, they

conclude that transaction costs cause the individual to allocate a smaller portion

of their financial wealth to risky assets than would occur if the individual could

adjust homeownership continuously. A drawback of their analysis is that only

the durable good is considered in the utility function, ignoring completely non-

durable consumption, implying that the potential spillover effects on nondurable

consumption or the implications for portfolio allocation of housing risk arising

from variation in the relative price of housing.

In a paper designed to explain the equity premium puzzle Chetty and Szeidl

(2007) show, in a two good model, one of which is a durable consumption good,

that a “consumption commitment” (e.g., for a house), will result in individuals

acting as if they are more risk averse. These authors conclude that their model

can fully resolve the equity premium puzzle. Alternatively Piazzesi et al. (2007)

and Yogo (2006) consider the effect of “composition risk” on asset pricing.2 Here

2The standard Consumption-Capital Asset Pricing Model focuses on consumption risk, which
relates changes in the conditional distribution of a single factor, the aggregate consumption
growth, to asset prices. However, consumption-savings decisions depend not only on the un-
certain overall size of future consumption bundles, but also on their uncertain composition, for
example, between housing and other consumption. Composition risk is an added risk which
relates changes in asset prices also to changes in expenditure shares of housing relative to other
non-durable goods.
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the individual’s utility function is not separable between the consumption of a

durable good and a non-durable good. These authors find that composition risk,

variations in the consumption of the durable good relative to the consumption

of other goods can help explain time variations in the equity premium. The

presence of such composition risk makes investors highly risk averse boosting

their precautionary savings motive and thus shifts down risky asset allocation.

This effect is particularly severe in recessions.3

Flavin and Yamashita (2002); Flavin and Nakagawa (2008) study the impact

of the portfolio constraint imposed by the consumption demand for housing on

an individual’s optimal holdings of financial assets. In addition to a house, the

individual can invest in T-Bills, T-Bonds, stocks, and borrow through a mortgage

loan. They use PSID data to explore the life cycle impact of the “housing con-

straint” (as reflected by the ratio of housing to net worth) on the individual’s op-

timal holding of financial assets. Flavin and Yamashita (2002) use mean-variance

analysis to characterize optimal portfolios of financial asset over the life cycle.

They conclude that an exogenous increase in the value of the house owned results

in a relatively large shift from equities to bonds in a mean-variance optimal port-

folio. All these papers immensely contributed to our understanding of the role of

the durable good in portfolio choice decision, but they did not consider life-cycle

dynamics.

In an important paper, Cocco (2004) developed an empirically parameter-

ized model of consumption and portfolio choice when there is an illiquid durable

consumption good (a house) in a life-cycle setting. In his paper the individual

purchases a home for the consumption services it provides. The individual has a

stochastic income and can invest in two financial assets: a risky stock and risk-

less Treasury bills. Cocco uses this portfolio optimization model to predict the

cross-sectional pattern of variation in the composition of wealth by age and net

worth.

In a similar life-cycle environment, Yao and Zhang (2004) investigate the op-

timal portfolio decisions of an individual who can obtain housing services from

renting or by buying a home. They investigate the decision as to how an indi-

vidual should obtain these services (i.e., rent or buy) and the implications of this

3During recessions, because investors expect higher future consumption, they try to sell
stocks today to increase current consumption. This intertemporal substitution mechanism drives
stock prices down in bad times. Investors’ concern with composition risk implies that recessions
are perceived as particularly severe when the share of housing consumption is low. That is, a
new intertemporal substitution mechanism increases the downward pressure on stock prices in
severe recessions.
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decision on investment choices. In their model the expected real rate of home

value appreciation is assumed to be zero. Yao and Zhang find that homeown-

ership has an important impact on the individual’s portfolio choice; specifically

homeowners substitute home equity for risky stocks. These authors find that,

over the life-cycle, the policy of always renting or buying a home can results in

large losses in welfare, with the largest being born by individuals with substantial

net wealth who are constrained to rent or older individuals with very little net

worth who are constrained to buy.

Yogo (2009) develops a life-cycle model in which a household faces stochastic

health depreciation, which affects its marginal utility of consumption and life ex-

pectancy, to analyse the portfolio choice in retirement. The household receives

retirement income including Social Security and chooses consumption, health ex-

penditure, and allocates wealth between bonds, stocks, and housing to maximize

its lifetime utility that includes a bequest motive. Yogo finds that in addition to

the housing risk, health expenditure also significantly affect the level of risky stock

allocation- households are more likely to invest in stocks when they are healthy.

A limitation in this paper, acknowledged by Yogo, is that the analysis is restricted

to the retirement phase and ignores the working period of the household.

In a recent empirical paper, Chetty and Szeidl (2014) distinguish between

home equity wealth and mortgage debt, as they have opposite signed effects on

portfolio choice. They find that increases in mortgage debt reduce stock holding

significantly, whereas increases in home equity wealth raise stock holding. In addi-

tion, they provide evidence that higher housing investment substantially reduces

the amount that households invest in risky stocks.

Although these papers provide valuable insights to the issue of durable goods

impact on risky asset allocation over the life-cycle, they ignore a very important

stylized fact in the financial economics literature, which is that stock returns are

time-varing and is predictable through financial factors such as the log dividend-

price ratios.

3.2.3. The Role of Return Predictability and Rare Disasters in
Portfolio Allocation

A large body of empirical literature has documented the long-term predictabil-

ity of asset returns and the linkages between wealth and other macroeconomic

variables. An important reason for the interest in this relation is that expected

excess returns on assets appear to vary with the business cycle. For instance,
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Chen (1991) studies the relation between changes in the financial investments

opportunity set and the macroeconomy. Chen (1991) finds that state variables

such as the dividend-price ratio, the default premium, the term premium etc are

good indicators of recent and future economic growth. Importantly, he finds that

these variables are positively correlated with expected excess return and future

economic growth; and negatively correlated with recent economic growth. The

counter-cyclicality of risk premium is found to hold even when post 1990 stock

market data is considered, see Henkel et al. (2011).

Different explanations have been offered for this empirical result, namely: in-

efficiencies of financial markets (Fama and French (1988, 1992) and Fama (1998));

the rational response of agents to time-varying investment opportunities driven

by variation in risk aversion Campbell and Cochrane (2000) or in the joint distri-

bution of consumption and asset returns.

One area where return predictability has profound implications is asset allo-

cation. For long-term investors the static Markowitz Mean-Variance model will

only be suitable under very strict assumptions, one of them being that investment

opportunities are constant over time, meaning that returns are unpredictable. If

this is not the case, long-term investors can benefit from the return predictability,

both in the form of market-timing and in the form of intertemporal hedging of fu-

ture return risk. Neither of these effects are captured by the static Mean-Variance

model.

Lynch (2001) assesses the impact of return predictability on portfolio choice

for a multi-period investor by characterizing the intertemporal hedging demand in

a continuous time setting. Lynch finds that parameters such as the persistence of

the return predicting process can have a large impact on the optimal risky share of

asset allocation. He attributes the variation in the risky share to hedging motives.

However, his model is highly stylized and abstracts from life-cycle dynamics,

labour income, any durable good or short sales constraints. Nevertheless, these

results are consistent with what we find.

There have been a few recent papers which argue how ”rare disasters” in the

economy can resolve several puzzles in the finance literature including but not

limited to the equity premium puzzle (Mehra and Prescott (1985)), the risk free

rate puzzle (Weil (1990)) and the excess volatility puzzle (Shiller (1981)).4 This

4The risk free rate puzzle emerges out of the equity premium puzzle: why are the risk free
rates so low if the agents are so averse to intertemporal substitution. The excess volatility puzzle
is the stylized fact that volatility of dividends (fundamentals) cannot explain the much larger
volatility in stock returns.
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strand of literature can be traced back to Rietz (1988) who models the possibility

of a low probability depression like state and shows how such a state can explain

these puzzles. The motivation is that Risk-averse equity owners demand a high

return to compensate for the extreme losses they may incur during an unlikely,

but severe, market crash. To the extent that equity returns have been high with

no crashes equity owners have been compensated for the crashes that happened

not to occur.

An open question has therefore been whether the risk is sufficiently high, and

the rare disaster adequately severe, to quantitatively explain the equity premium.

Recently, Barro (2006) revitalized this literature by analysing 20th century dis-

asters using GDP and stock market data for 35 countries and showed that it

is possible to explain the high equity premium when the disaster probability is

set at roughly 2% per year. The framework of his model is based on Lucas’

representative-agent, fruit-tree model of asset pricing with exogenous, stochastic

production with tractable elements of closed economy and complete markets. The

investor is allowed to hold two assets, one of which is risky and the other riskless.

At every date, the agent faces a constant exogenous probability of disaster risk,

and an associated size of this collapse. These parameters act as determinants in

the analytical closed form solutions of Barro’s optimal expected risky premium

and risk free return.Since Barro (2006), several papers have come out and have

been successful in explaining several asset market puzzles such as the excess stock

return volatility (Wachter (2013))

If rare economic disasters can solve the pricing puzzles, intuitively they should

also explain the observed household portfolio holdings (quantity) and/or the lim-

ited rates of equity market participation. In other words, perceived risk associated

with a disaster in stock markets should be revealed in household portfolios. How-

ever, such endeavours have been by and large unsuccessful.

For example Alan (2012) examines whether such rare economic disasters as

argued by Barro (2006) can explain the asset allocation and stock market partic-

ipation puzzles. Alan (2012) finds that it is difficult to reconcile the results of the

calibrated model with observed levels of limited asset allocation and participation

rates unless an implausible level of labour market stress is assumed at the time

of the disaster.

In a related exercise Fagereng et al. (2013) develop and numerically simulate

the standard life-cycle model of portfolio allocation incorporating labour income

risks and IID investment opportunity sets adding a small subjective probability

of a large loss when investing in stocks (a ”disaster” event) where the parameters
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are calibrated to Norwegian Household Panel Data. Their study predicts a joint

pattern and level of participation and the risky asset share over the life cycle

similar to the one observed in the data, with early rebalancing of the risky share

before retirement. However, the stock market participation rate is found to be,

counter-factually, 100% for most part of the agent’s life.

Michaelides and Zhang (2015) who solve for optimal portfolio choice and con-

sumption in a standard life-cycle model without housing but with recursive pref-

erences and undiversable labour income risk and importantly accommodating a

predictable time varying equity premium. They find that in the presence of return

predictability ignoring market information can lead to substantial welfare losses.

In this chapter we model return predictability following Michaelides and Zhang

(2015) but we do not focus on welfare analysis.

Some recent papers have investigated the impact of return predictability in

house prices on optimal portfolio choice. For instance, Fischer and Stamos (2013)

study the decisions of households facing time varying expected growth rates in

house prices and show that homeownership rates, as well as the sizes of housing

and mortgages, increase during good periods of housing market cycles. Their

results do not point to a statistically significant impact of the regime of housing

market cycles on stock holding. However, Corradin et al. (2014) find that the share

of wealth invested in risky assets is lower during periods of high expected growth

in house prices and that the decrease in risky portfolio holdings for households

moving to a more valuable house is greater in high-growth periods. Unlike these

papers, we do not model return predictabiity in house prices but assume that

excess stock returns are predictable. There is considerable empirical evidence

that house prices and stock prices are uncorrelated and that return predictability

in stock prices crucially affects risky portfolio choice.

3.2.4. Role of recursive preferences in portfolio choice

An often made assumption in several portfolio choice models is homogeneity in

preferences. In other words, investors are assumed to have Constant Relative

Risk Aversion (CRRA). This implies that as agents become more risk averse, they

simultaneously become more intolerant of intertemporal variation in consumption.

Consequently, higher risk aversion results in higher predicted levels of savings.

The importance of the equity premium relative to the fixed participation cost

increases with the level of savings. For some parameters, more risk-averse agents
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are therefore, counter-intuitively, more likely to participate in the stock market,

see Curcuru et al. (2004).

This counter-factual prediction arises because of the shortcomings of the CRRA

utility function - the coefficient of relative risk aversion and the elasticity of in-

tertemporal substitution are represented in just one parameter. In some sense,

this is consistent with the way the risk is modelled in expected utility framework:

uncertainty is the expansion of the decision making scenario to a multiplicity of

states of nature. Total utility is the expected value of optimal decision making

in each of these states. Thus, there is no difference between time and states of

nature. Time is just another subindex to identify states of the world. However,

households seem to regard time and uncertainty as essentially different phenom-

ena, see Weil (1990). It is natural then to seek a representation of preferences that

can treat these two components of reality separately. This has been addressed by

Epstein (1988), who axiomatically worked on non-expected utility and came up

with a non-expected utility function representation for a preference relation that

considers time and states of nature as more than just two indices of the state of

the world.

The advantage of such a separation has been highlighted by the empirical lit-

erature on the behavior of asset returns and consumption over time. Expected

utility, representative agent, optimizing models have not performed well empiri-

cally, Hansen and Singleton (1983) and Mehra and Prescott (1985). One possible

explanation for this poor performance is the above noted inflexibility of the ex-

pected utility specification, see Epstein and Zin (1989).

Svensson (1989) analysing the portfolio choice problem in a non-stochastic

environment conclude that the optimal portfolio choice depends only on the risk

aversion parameter but not on the intertemporal elasticity of substitution. Simi-

larly, Weil (1990) assuming independent and identically distributed (IID) interest

rates over time finds that asset allocations are myopic and does not include a com-

ponent to hedge against intertemporal changes in the investment opportunity set.

However, Campbell and Viceira (1999), Chacko and Viceira (2005) and many oth-

ers who allow for non-IID stochastic investment find that both these parameters

matter in determining optimal consumption-portfolio choice decisions.

Campbell and Viceira (1999) solves analytically the optimal portfolio choice

assuming Epstein-Zin-Weil preferences, however, ignoring life-cycle labour income

dynamics or the presence of a risky durable housing good. In the first section of

this chapter, we extend their work by including both risky labour income and a
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durable housing good and then derive an approximate analytical characterization

of the optimal risky portfolio choice.

Gomes and Michaelidis (2005) numerically solves a realistically calibrated life-

cycle model incorporating recursive preferences and attempts to resolve the asset

allocation and the stock market participation puzzles. Vestman (2012) extend

Gomes and Michaelidis (2005) model to include housing (without return pre-

dictability) and analyse the owning versus renting decisions of households and its

impact on stock market participation. They find that the life-cycle model, when

calibrated to Swedish household level data, predicts lower market participation

for renters relative to homeowners. Importantly, both these papers find that

heterogeneity in preferences can explain the allocation and participation puzzles.

3.3. A Dynamic Model of Consumption,

Housing and Portfolio Choice

In this section, we describe a stylized model of consumption and asset allocation.

We then derive Euler equations which are log-linearized to derive an expression

for the optimal risky asset allocation, αt, the key variable of interest.

3.3.1. Assumptions on Investor Preferences

We consider a partial equilibrium problem in which the investor’s preferences are

described by the recursive utility proposed by Epstein and Zin (1989, 1991) and

Weil (1990). These preferences allow us to disentangle the relative risk aversion

and the elasticity of substitution parameters. As these preferences are vital to

our analysis, we explain them in detail in the following paragraphs.

To arrive at the recursive preferences we start with the standard expected

utility time separable preferences defined as the expected discounted sum of util-

ities derived from the consumption of non-durable goods (Ct) and housing (Ht)

services:

Vt = Et

∞∑
s=0

βs−tU(Ct+s, Ht+s) (3.1)

where U(.) is the concave, increasing and twice continuously differentiable per-

period utility function, Et denotes the expectations at time t and β is the time
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preference rate. This value function, Vt, can be defined recursively as

Vt = U(Ct, Ht) + βEtVt+1 (3.2)

Scaling with (1− β) 5

Vt = (1− β)U(Ct, Ht) + βEtVt+1 (3.3)

Epstein-Zin-Weil generalize this value function and express it recursively over

current (deterministic) consumption and a certainty equivalent µt(Vt+1) over to-

morrow’s utility

Vt = W (U(Ct, Ht), µt(Vt+1)) (3.4)

where W is an aggregator and the Certainty Equivalent part is defined as:

µt(Vt+1) = G−1(EtG(Vt+1))

with W and G increasing and concave. µt(Vt+1) = Vt+1 if there is no uncertainty

on Vt+1 (future consumption). The more concave G is and the more uncertain Vt+1

is, the lower is µt(Vt+1). We follow most of the related literature (Campbell (1993),

Campbell and Viceira (1999) for instance) and consider a Constant Elasticity of

Substitution (CES) form for the aggregator W and a power functional form for

G as

W (c, z) = [cζ + βzζ ]1/ζ , 0 6= ζ < 1, 0 < β < 1 (3.5)

G(x) =
x1−Ψ

1− Ψ
, Ψ > 0 (3.6)

with elasticity of substitution ψ = (1 − ζ)−1. Thus, ζ is a parameter that is

understood to reflect substitutability and Ψ is the relative risk aversion coefficient.

Expressing the recursive utility in these functional forms results in the utility

function we make use of in this chapter:

Vt =

{
(1− β)u(Ct, Ht)

1− 1
ψ + βEt

[
V 1−γ
t+1

]1/κ
} 1

1−1/ψ

(3.7)

where κ = (1−γ)/(1−1/ψ) specifies the preferences for the timing of the resolution

of the uncertainty. If κ < 1 agents prefer earlier resolution of uncertainty and late

5Homogeneity of the recursive preferences implies that they are scale invariant, that is, the
order of preferences do not change.
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resolution otherwise. This reduces to the standard nonseperable expected utility

form as in Ogaki and Reinhart (1998) when ψ = γ−1. We further assume that

the intratemporal utility follows the constant elasticity of substitution form:

u(Ct, Ht) =

{
[δC

1−1/ρ
t + (1− δ)H1−1/ρ

t ]
1

1−1/ρ if ρ 6= 1

Cδ
tH

1−δ
t if ρ = 1.

(3.8)

where δ ∈ (0, 1) measures the relative importance of housing to non-durable goods

consumption and ρ ≥ 0 is the intratemporal elasticity of substitution. For high

values of ρ, agents are willing to substitute the two goods within each period. The

two goods become perfect substitutes as ρ→∞ and perfect complements as ρ→
0. Taking the limit as ρ → 1 yields the Cobb-Douglas specification. Equations

(3.7) and (3.8) describe the inter and intratemporal utility functions, respectively,

that describe the preferences for the consumers in our model. We have derived

these equations to ensure that the risk aversion parameter is separated from the

elasticity of substitution parameter.6

3.3.2. Assumptions on Labour Income and Human Capital

For most people, labour wealth, that is the present value of future wages, also

known as human capital, dwarfs financial wealth. Furthermore, unlike other assets

human capital cannot be traded. We assume that labour is supplied inelastically

and in the context of our work, it is exogenous.

We follow Viceira (2001) and assume that there are two states for labour in-

come that occur with constant probabilities, employment and retirement. The

employment state occurs with probability πe wherein the investor receives a re-

alization of the income process. The retirement state occurs with probability

πr = 1 − πe with 0 < πr < 1, and it is irreversible: If this state occurs, labour

income is set to zero forever. After retirement, the individual faces each period a

constant probability of death πd. Blanchard (1985) and Gertler (1999) have used

this probabilistic device to understand horizon effects on decision making, while

preserving analytical advantages of an infinite-horizon model. In section §3.4 we

consider a more realistic but less tractable life-cycle model with a finite horizon.

In the employment state, labour income is subject to permanent, multiplicative

shocks. We model the labour income as in Carroll and Samwick (1997):

Yt = Yt−1 exp(g + ξt) (3.9)

6In the Appendix, we give a detailed explanation of the recursive equation used here.
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where ξt ∼ NIID(0, σ2
ξ ). This equation says that the Labour Income at time t,

Yt, is expressed as the product of last period, t−1, income Yt−1 and the exponent

of a mean growth in income term g added to a stochastic component ξt. An

equivalent way for expressing eq. (3.9) is by taking logs on both sides which

would gives us an AR(1) equation with a drift component. We define permanent

income in the form of Carroll (1997) as the level of capital income the household

would have received in the absence of any transitory shocks. Empirical evidence

reveals that the labour income is subject to both transitory and persistent shocks.

To make our model analytically tractable and also motivated by Viceira (2001)

that transitory shocks have little impact on portfolio allocation, we abstract from

the use of these type of shocks. Nevertheless, we do consider these shocks in the

numerical section.

It is interesting to note that to the best of our knowledge, existing literature

that work with Epstein and Zin (1989, 1991) preferences and aim for deriving

analytical solutions do not explicitly consider labour income. This is surprising

considering Epstein and Zin (1991) themselves remarked that although ’ ’ . . . a

term measuring labor income is not present in our wealth constraint. If labor

income is nonstochastic and there is a riskless asset, then the sequence of incomes

can be discounted back to period 0 and treated as part of the initial endowment.

If labor income is stochastic, then the wealth return form is still applicable pro-

vided that the wealth measure is reinterpreted . . . ” We follow their advice and

reinterpret wealth when deriving the Euler equations noting that the two states

of nature for income, that is employment and retirement, will now translate to

two states of nature for the new wealth. However, when log linearizing the bud-

get constraint, we explicitly decompose the wealth into financial wealth, labour

income and housing wealth to understand the effects of each on optimal portfolio

choice and consumption.7

3.3.3. Assumptions on Housing

We assume a correspondence between the size of the house the investor owns

and the consumption benefits (flow of service) derived from it. We also assume

that the investor owns the house, ignoring rental occupied housing. At any time

period t the investor owns Ht units of the durable housing good. The size and

7Campbell (1996) and Jagannathan and Wang (1996) consider ”tradable” income as div-
idends of human capital. They then modify the gross portfolio return as a weighted linear
combination of financial wealth and human wealth.
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quality of the house is dynamic in that it depreciates at the rate ν ∈ (0, 1] in

each period. After depreciation, the household chooses housing expenditure EXt,

which can be negative in the case of downsizing. Following Yogo (2006) the

housing accumulation follows

Ht = (1− ν)Ht−1 + EXt (3.10)

The price of housing fluctuates over time. The price of other consumption goods

(the numeraire) is fixed and normalized to one and consider PH
t to denote the

real price of house. This real house price would be used later when we describe

the budget constraint.

3.3.4. Assumptions on Investment Opportunities

There are two financial assets that the investor holds, namely a risky stock and a

riskless bond. The household can freely trade in both the assets without incurring

any transaction costs. The gross return on the portfolio that the investor yields

from period t to t+ 1 is given by:

Rp,t+1 = Rf + αt+1(R1,t+1 −Rf ) (3.11)

This equation says that the return on the portfolio, Rp,t+1, is the sum of the return

from the risk free asset, Rf and the total expected excess return on the risky asset.

The variable αt is the portfolio weight on the risky asset.8 Following Campbell

and Viceira (1999), the expected excess return on the risky asset, R1,t+1−Rf , can

be expressed in two different forms. First, they can be IID and not predictable,

rt+1 − rf = µS + εSt+1 (3.12)

where R1,t+1 = exp(r1,t+1), Rf = exp(rf ) and αt is the proportion of total wealth

invested in the risky asset at time t. Second, they can also be time varying and

predictable with a single factor, ft, that can predict future excess returns as in

Pástor and Stambaugh (2012) or Michaelides and Zhang (2015):

rt+1 − rf = ft + zt+1 (3.13)

where

ft+1 = µS + φ(ft − µS) + εSt+1 (3.14)

8Here we have suppressed the expectation term for convenience.
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Here εSt+1 and zt+1, the two innovations to excess returns are assumed to be i.i.d

normal random variables with mean zero and variance σ2
S and σ2

z . The factor ft
can be considered as the log dividend-price ratio. Eq. 3.12 is when the returns

are IID and the rest two arises only when they are predictable. One of the key

contributions of this chapter is in comparing the values for risky asset allocation

αt, that is the weight on risky asset, when the returns are predictable eq. (3.13)

against when they are not eq. (3.12).

3.3.5. The Inter-Temporal Optimization Problem

The investor’s optimization problem involves maximizing the utility function sub-

ject to the intertemporal budget constraint which is constructed as follows. At

every period t the household enters with financial wealth Wt and stock of durable

housing Ht. The household then receives labour income Yt, this combined wealth

is used to meet consumption Ct and housing expenditure EXt at the price PH
t .

The wealth remaining after these expenditures, the savings, is allocated between

risky stocks and riskless bonds. The flow of wealth from t to t+ 1 is written as:

Wt+1 = (Wt + Yt − Ct + PH
t (Ht − EXt))(Rp,t+1) (3.15)

where it is to be noted that Wt+1 is the financial wealth at time t+ 1. The total

wealth will include both the financial welath as well as the housing wealth. As we

care mainly about the optimal risky asset allocation we do not model the wealth

explicitly. We leave this task to the numerical §3.4 of this chapter. Here Rp,t+1 is

the one period return on wealth from time t to time t + 1 and is given as before

by

Rp,t+1 = Rf + αt+1(R1,t+1 −Rf ) (3.16)

For the time being, we do not consider adjustment costs to housing. Following

Cuoco and Liu (2000), Bansal and Yaron (2004), Yogo (2006, 2009) and João

F. Gomes et al. (2009) we define the intertemporal marginal rate of substitution

(IMRS) as

Mt+1 =

[
β
(Ct+1

Ct

)−1/ψ(v(Ht+1/Ct+1)

v(Ht/Ct)

)1/ρ−1/ψ

R
1−1/κ
p,t+1

]κ
(3.17)

where

v
(Ht

Ct

)
=

[
1− δ + δ

(Ht

Ct

)1−1/ρ
]1/(1−1/ρ)

(3.18)
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Mt+1, also known as the Stochastic Discount Factor (SDF) or the pricing kernel,

is the discounted ratio of marginal utility tomorrow to marginal utility today.9.

The novelty of Epstein-Zin preferences is that the pricing kernel (SDF) for each

individual asset depends not only on the present and future consumption but

also on the household’s total market return, see Vissing-Jorgensen and Attanasio

(2003).

Depending on the realized state for labour income Yt, there are two sets of

first order conditions for this intertemporal optimization problem. We derive the

Euler equations in the Appendix. The Euler equation for the employment state

is written as,

1 = Et

{([
πeβe

(Ce
t+1

Ce
t

)−1/ψ v(He
t+1/C

e
t+1)

v(He
t /C

e
t )

1/ρ−1/ψ

R
1−1/κ
p,t+1

]κ
+ (3.19)[

(1− πe)βr
(Cr

t+1

Ce
t

)−1/ψ v(Hr
t+1/C

r
t+1)

v(He
t /C

e
t )

1/ρ−1/ψ

R
1−1/κ
p,t+1

]κ)
Ri,t+1

}
(3.20)

and the retired state as

1 = Et

{[
βr
(Cr

t+1

Cr
t

)−1/ψ v(Hr
t+1/C

r
t+1)

v(Hr
t /C

r
t )

1/ρ−1/ψ

R
1−1/κ
p,t+1

]κ
Ri,t+1

}
(3.21)

where βe = β and βr = (1−πd)β and e, r represents variables in the employment

and retirement states. Both these equations hold irrespective of the number of

tradable assets available. In this chapter, i denotes the riskless bond, the risky

security or the investor’s portfolio p. When i = p, the Euler equations reduce to10

1 = Et

{([
πeβe

(Ce
t+1

Ce
t

)−1/ψ v(He
t+1/C

e
t+1)

v(He
t /C

e
t )

1/ρ−1/ψ
]κ

+[
(1− πe)βr

(Cr
t+1

Ce
t

)−1/ψ v(Hr
t+1/C

r
t+1)

v(He
t /C

e
t )

1/ρ−1/ψ
]κ)

Rκ
p,t+1

}
(3.22)

and

1 = Et

{[
βr
(Cr

t+1

Cr
t

)−1/ψ v(Hr
t+1/C

r
t+1)

v(Hr
t /C

r
t )

1/ρ−1/ψ
]κ
Rκ
p,t+1

}
(3.23)

9The derivation of the stochastic discount factor and the Euler equation is given in the
Appendix

10The superscript in consumption C here refers to the employment state. When we begin
our log linearisation we remove this superscript and analyse the two cases separately. The
expectations in those equations are subsumed with an upper script e which refers to expectations
and not employment.
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In the absence of arbitrage and under complete markets, there exists a strictly

positive stochastic discount factor, Mt+1, which satisfies equation’s (3.22) and

(3.23) for any number of tradable assets (see Campbell (2000)).11 These Euler

equations (3.22) and (3.23) reveal that when the utility is not additively separable

in the non-durable and durable consumption goods, marginal utility has an extra

multiplicative term v(H/C)κ( 1
ρ
− 1
ψ

). The effect of the expediture share of the

durable to the non-durable good (H/C) on marginal utility depends on the relative

magnitudes of ψ and ρ. When ψ = ρ, i.e. when utility is additively separable in

durable and non-durable consumption goods, the marginal utility is independent

of the durable consumption. If ψ < ρ, then for a given level of non-durable

consumption, marginal utility decreases in the ratio of stock of durables to non-

durables (see Yogo (2006)).

The Euler equations (3.22) and (3.23) represent equilibrium conditions for a

consumer who holds risky assets and wishes to smooth consumption over time.

Although we have refrained from using borrowing constraints or transaction costs,

we stress that the corresponding Euler equations under the presence of such mar-

ket imperfections will be similar as long as the constraints are not binding between

two given time periods, see Attanasio and Weber (2010).

3.4. An Approximate Analytical

Characterization

Exact closed form solutions for this optimization problem do not exist unless we

restrict our analysis to the retirement state and assume that the investment op-

portunity set is constant, see Merton (1973). Thus, we are left with either solving

it numerically or approximating the non-linear equations with their percentage

deviations from the steady state, that is log-linearizing. We pursue both these

methods. Firstly, we find an approximate analytical solution in the lines of Camp-

bell (1993), Campbell and Viceira (1999) and Viceira (2001). We then extend this

11The more familiar notation of these Euler equations is the form

Et[Mt+1Ri,t+1] = 1, i = f, p

meaning that there are state prices, positive discount factors one for each state and date such
that the state price of any asset is merely the state price weighted sum of future payoffs. This is
the basis for all modern asset pricing models, each one with a specific form of SDF, see Bansal
and Yaron (2004)
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literature to a more realistic life-cycle model with calibrated exogenous variables,

add collateral constraints on housing etc which is then solved numerically.

We derive the approximate analytical solution building on the method pro-

posed by Campbell (1993). Firstly, we log-linearize the Euler equations and the

budget constraints around the stationary steady state. We approximate the Euler

equation using a second order expansion to capture the second moment effects

such as precautionary savings. 12 Then, we characterize the properties of, αt, the

optimal savings allocation on the risky asset in terms of its determinants.

3.4.1. Log Linearized Euler Equations

The first step in the solution method is to log linearize the Euler equations for

the employment eq. (3.22) and the retirement eq. (3.23) states. Appendix (3.C)

details our approach. The log linear Euler equation for the retirement state is

derived as

0 ≈

(
Et

[
κ ln βr − κ

ψ
(crt+1 − crt )−

κδ

ψ
(hrt+1 − hrt ) +

κδ

ψ
(crt+1 − crt ) + κrp,t+1

]
+

1

2
V art

(
κrp,t+1 −

κ

ψ
(crt+1 − crt )−

κδ

ψ
(hrt+1 − hrt ) +

κδ

ψ
(crt+1 − crt )

))
(3.24)

where lower case letters denote variables in logs. This equation implies that

there is a linear relationship between expected log consumption growth and the

expected log return on wealth. The retirement state is characterized by no labour

income. Thus, this equation can be considered an extension of the Campbell and

Viceira (1999) log Euler equation with a durable consumption good. As long as

the return on wealth and consumption (both durable and non-durable) growth

is conditionally log normal, this equation will hold exactly. Our assumptions on

return on wealth makes it conditionally log-normal.13

12Precautionary savings comes from σ2, the volatility of consumption. When consumption
is more volatile, consumers are more worried about the low consumption states than they
are pleased by the high consumption states. Therefore, people want to save more bringing
down interest rates. A measure of precautionary savings requires that the utility be third
differentiable, that is to say, Linear-Quadratic preferences exhibit no prudence, see Attanasio
and Weber (2010).

13If X ∼ LN ,X is lognormal, such that logX follows a normal distribution with logX = x ∼
N(µ, σ2). Then, EX = exp(µ+σ2/2) and logEX = E logX+ 1

2V ar(logX) .The approximation
lnE exp(z) ≈ Ez + σ2

z/2 is exact when z is a normal random variable.
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Unlike retirement, while employed the investor faces the risk of being retired

in the next state. Hence, optimal inter-temporal consumption now is weighed for

the possible states of nature. The log linear Euler equation for the employment

state, given by,

1 ≈
∑
s=e,r

πκs

(
Et

[
1 + κ ln βs − κ

ψ
(cst+1 − cet )−

κδ

ψ
(hst+1 − het ) +

κδ

ψ
(cst+1 − cet ) + κrp,t+1

]
+

1

2
V art

(
κrp,t+1 −

κ

ψ
(cst+1 − cet )−

κδ

ψ
(hst+1 − het ) +

κδ

ψ
(cst+1 − cet )

))
(3.25)

is equal to the probability weighted sum of the log-linear Euler equations for both

states of nature of the labour income process, the employment and the retirement.

A crucial assumption we made while deriving both these Euler equations is

that the intra-period felicity follows a Cobb-Douglas form with intra-temporal

elasticity of substitution ρ = 1. This assumption is primarily to maintain tractabil-

ity. Also, empirical estimates such as by Ogaki and Reinhart (1998) and by Yogo

(2006) find ρ to be very close to 1. Theoretically, if ρ 6= 1, this introduces another

state variable Ht/Ct to the model, and the share of durable consumption varies

with time. Furthermore, as Yang (2011) elaborates, when ρ is not very differ-

ent from one, this generates only small temporal variations in the quantities of

interest.

If we subtract the loglinear Euler equation for the riskless asset (i = f) from

the loglinear Euler equation for the risky asset (i = S), for the retirement case,
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we find that:14

Etri,t+1 − rf +
1

2
V art[ri,t+1] =

κ

ψ
(1− δ)cov(ri,t+1,∆ct+1) +

κδ

ψ
cov(ri,t+1,∆ht+1)

+(1− κ)cov(ri,t+1, rp,t+1)
(3.26)

This equation says that the expected excess log return on the risky asset is deter-

mined by its own variance and by a weighted combination of three covariances.

The first covariance is between log return on the risky asset and consumption

growth with weight κ
ψ

(1− δ), the second covariance is between durable consump-

tion growth (housing) and log return on the risky asset with weight κδ
ψ

and the

third one is between log returns on the risky asset and log return on the portfo-

lio with weight (1 − κ). Equation (3.26) is the starting point of our analysis of

optimal portfolio choice.

Following Campbell (1993, 1996) and Viceira (2001) we also log-linearise the

budget constraint for both states around the mean consumption to income ratio,

the wealth to income ratio and the housing wealth to income ratios. For the

employment state we obtain,

wet+1 − yt+1 = ke + ρew(wet − yt)− ρec(cet − yt) + ρeh(p
h
t + ln(1− ν) + het−1 − yt)−∆yt+1 + rep,t+1

(3.27)

where we have suppressed the Expectations operator in the superscript e. The

details of the derivation is given in Appendix. The log-linearisation constants ke

and the ρ’s are endogenous in that they depend on the average log consumption

to income, log wealth to income and log housing wealth to income ratios. The ap-

proximation should hold exactly when these ratios are constant. In the retirement

14For a general risky asset, i = S, we use log-linearized forms of the Euler equation (3.21)
meaning that now we have an extra term in both the expectation and variance operators in eq’s.
(3.24) and (3.25) given by (κ− 1)ri,t+1. Furthermore, while deriving this equation we make use
of the following properties for variance and covariance

V ar(X + Y ) = V ar(X) + V ar(Y ) + 2cov(X,Y )

V ar(X + a) = V ar(X)

cov(X,Y + Z) = cov(X,Y ) + cov(X,Z)

cov(X,Y + a) = cov(X,Y )

cov(X, a) = 0,

where X,Y, Z are random variables and a is a constant. With these results, the derivation is
straight forward and is hence omitted.
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state, there is no labour income (Yt = 0), thus the log linear budget constraint

simplifies to

wrt+1 − wt = kr + ρrh(p
h
t + ln(1− ν) + hrt−1 − wt)− ρrc(crt − wt) + rrp,t+1 (3.28)

where kr and the ρ’s are again log-linearisation constants interpreted as before.

The log-linearised budget constraints took the return on the wealth portfolio

as given, and does not relate it to the returns on individual assets. We can

approximate the log portfolio return on wealth as 15

rp,t+1 − rf = αt(rt+1 − rf ) +
1

2
αt(1− αt)σ2

t (3.29)

where αt is the vector of risky asset weights, σt
2 is the vector containing the

diagonal elements of Σt.

We can now use these log-linearised equations to characterise the investor’s

approximate optimal portfolio choice policy in each state of the labour income.

As once the retirement state occurs, the investor cannot revert back to being

employed, the optimal rules in this states are independent of those in the employ-

ment state. On the contrary, in the employment state, the investor must take

into account the off-chance of being retired in the near future when deciding on

asset allocation.

3.4.2. Characterizing the Optimal Portfolio Choice

In the last section, we derived the log excess return on the risky asset for the

retirement state, eq. (3.26), as

Etri,t+1 − rf +
1

2
σ2
it =

κ

ψ
(1− δ)σri,t+1,∆ct+1 +

κδ

ψ
σri,t+1,∆ht+1

+(1− κ)σri,t+1,rp,t+1 (3.30)

where V art[ri,t+1] = σ2
it, covt(ri,t+1,∆ct+1) = σri,t+1,∆ct+1 , covt(ri,t+1,∆ht+1) =

σri,t+1,∆ht+1 and covt(ri,t+1, rp,t+1) = σri,t+1,rp,t+1 . As in the retirement state, with

no labour income, our strategy, following Campbell and Viceira (1999), is to

characterize the covariance terms as functions of the exogenous risky asset return

15The derivation of log approximation to portfolio return is standard in the literature, see for
example Campbell and Viceira (2002).
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and the stationary consumption-wealth ratio. The covariance between log risky

asset return and non-durable consumption growth is written as,

σri,t+1,∆ct+1 = covt(ri,t+1,∆ct+1)

= covt(ri,t+1, (ct+1 − wt+1)− (ct − wt) + ∆wt+1)

= covt(ri,t+1, (ct+1 − wt+1))− covt(ri,t+1, ct − wt) + cov(ri,t+1,∆wt+1)

= covt(ri,t+1, (ct+1 − wt+1)) + covt(ri,t+1,∆wt+1)

= σri,t+1,(ct+1−wt+1) + covt(ri,t+1, rp,t+1)

= σri,t+1,(ct+1−wt+1) + αitvart(ri,t+1)

= σri,t+1,(ct+1−wt+1) + αitσ
2
it (3.31)

where the second equality is trivial algebra, the third uses properties of the covari-

ance operator for random variables, and the rest follows from substituting values

for ∆wt+1 and rp,t+1 from the retirement state log linearised equations (3.28) and

(3.29). In addition to these we also use the fact that cov(xt+1, zt) = 0, see Camp-

bell and Viceira (1999). In similar fashion, the covariance between log risky asset

return and durable (housing) consumption growth is derived as

σri,t+1,∆ht+1 = σri,t+1,(ht+1−wt+1) + αitσ
2
it (3.32)

and finally the covariance between log risky asset return is a direct implication of

equation (3.29):

σri,t+1,rp,t+1 = covt(ri,t+1, rf + α′t(rt+1 − rf ) +
1

2
α′tσ

2
t −

1

2
α′tΣtαt)

= αitσ
2
it (3.33)

Now that we have characterized the three covariance terms, we substitute these

terms into (3.30) to get

Etri,t+1 − rf +
1

2
σ2
it =

κ

ψ
(1− δ)(σri,t+1,(ct+1−wt+1) + αitσ

2
it)

+
κδ

ψ
(σri,t+1,(ht+1−wt+1) + αitσ

2
it) + (1− κ)αitσ

2
it (3.34)

which can be rearranged using the fact that the parameter specifying the timing

of the resolution of uncertainty is κ = (1 − γ)/(1 − 1
ψ

). We substitute to get

the optimal portfolio allocation on the risky assets for the retirement state. The

employment state follows the same procedure. These results are described in the

following Proposition.
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PROPOSITION 1: The optimal portfolio share of risky assets for the

retirement state is 16

αrit =
1

γ

Etri,t+1 − rf + 1
2
σ2
it

σ2
it

+
( 1

1− ψ

)(1− γ
γ

)((1− δ)σi,(ct+1−wt+1) + δσi,(ht+1−wt+1)

σ2
it

)
(3.35)

= αMDr
it + αHDrit . (3.36)

where V art(ri,t+1) = σ2
it, cov(ri,t+1, ct+1−wt+1) = σi,ct+1−wt+1 and cov(ri,t+1, ht+1−

wt+1) = σi,ht+1−wt+1.

and for the employment state is

αeit =
1

γ

Etri,t+1 − rf + 1
2
σ2
it

σ2
it

+
( 1

1− ψ

)(1− γ
γ

)(∑
s=e,r

πκs

[(1− δ)σri,(cst+1−wt+1) + δσri,(hst+1−wt+1)

σ2
it

])
(3.37)

= αMDe
it + αHDeit . (3.38)

where V art(ri,t+1) = σ2
it, cov(ri,t+1, c

s
t+1−wt+1) = σi,cst+1−wt+1 and cov(ri,t+1, h

s
t+1−

wt+1) = σi,hst+1−wt+1.

Proof : See Appendix (3.E).

The first equation characterizes the optimal portfolio choice for the risky asset

in the retirement state when there is no labour income and the second one with

labour income. These equations have two parts. The first part, αMD
it captures

any asset demand induced completely from the current risk premium adjusted

for Jensen’s inequality by adding one half the own variance, called the ”myopic

demand” of risky asset. The myopic demand corresponds to the single-period

16Equation (3.36) gives us valuable information to the determinants of optimal risky asset
allocation, however, it is not a complete solution of the model because the current optimal port-
folio allocation is a function of future portfolio and consumption decisions which are endogenous
in our model. This dependence on future consumption and portfolio decisions operates through
the conditional covariances. The conditional covariances depends on the log non-durable con-
sumption to wealth ratio and log durable housing consumption to wealth ratio. These equations
can be solved forward and expressed in terms of expectations of future consumption and port-
folio returns, see Campbell (1993) equation (3.9).To solve for an exact solution to optimal
consumption and portfolio policies, the method of Campbell and Viceira (1999) can be applied
to guess a functional form for these policies and identify the parameters using the technique of
undetermined coefficients. This analysis is beyond the scope of this chapter and is left for future
work. Instead we characterize the solution as we are only interested in the economic intuition
behind these solutions. The quantitative analysis is left for the numerical section.
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demand for an asset, when there are no changes in the investment opportunity

set, as in the traditional single-period portfolio choice problems. This myopic

component is directly proportional to the risk premium, Etri,t+1 − rf + 1
2
σ2
it, and

inversely proportional to the investor’s risk aversion, γ.

The second term, αHDit describes Merton (1969, 1973)’s ”inter-temporal hedg-

ing demand”. The hedge demand corresponds to the additional demand for an

asset, when the changes in the investment opportunity set are incorporated in

the portfolio choice problem, as in the multi-period portfolio choice problem of

Merton (1973). This component arises when the investor seeks to hedge against

future shocks to the investment opportunity set. As investment opportunities are

varying over time, long-term investors care about shocks to investment opportu-

nities. In other words, the productivity of wealth also matters and not just the

wealth itself.

Samuelson (1969) and Merton (1971) state conditions under which a long term

investor finds it optimal to act myopically, choosing the same portfolio as a short

term investor. These include power utility and IID returns. Power utility (also

logarithmic utility) implies constant relative risk aversion nullifying our model of

recursive preferences. Next, if returns are IID no new information arrives between

one period and the next, so there is no reason for the portfolio choice to change

inter-temporally. Thus, both conditions imply that there are no changes in time

over investment opportunities that might induce changes in consumption (durable

and non-durable) relative to wealth. Campbell and Viceira (2001) equate these

conditions to a constant consumption-wealth ratio meaning that

σi,ct+1−wt+1 = 0

σi,ht+1−wt+1 = 0.
(3.39)

Thus, we are left with just the myopic part of risky asset demand,

αrit = αMDr
it =

1

γ

Etri,t+1 − rf + 1
2
σ2
it

σ2
it

(3.40)

which is exactly the result of Viceira (2001) for the retirement state. This equation

states that optimal portfolio choice is independent of the level of wealth and is

only optimized over the mean and variance of the risky return. The presence

of a durable good makes no difference to the portfolio rule. In contrast, our

model specifies time varying investment opportunity sets, as expected returns are

state dependent, and hence the hedging component is non-zero meaning that the

presence of the durable good does influence the proportion of wealth invested in
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the risky asset. Unfortunately as we do not have a complete analytical solution

we cannot exactly pin-point the way in which the durable housing good impacts

αt. The only point we make is that housing forms a kind of background risk for

the investor meaning that it is undiversifiable and hence should, all else constant,

bring down αt.

Nevertheless, three important results can be derived from the Proposition.

Firstly, we find that the relative risk aversion parameter γ is inversely related

to αt and the elasticity of intertemporal substitution ψ is directly related to αt.

Both these parameters are thus found to have opposite affects on the optimal

risky equity demanded. The fact that increasing risk aversion decreases risky

asset demand is universal throughout the literature, see Campbell and Viceira

(1999), Barberis (2000), Campbell (2006) etc. This is true even in the presence

of housing, for example Flavin and Yamashita (2002) find decreasing amount of

wealth invested in risky stocks or housing with increasing risk aversion in their

quantitative analysis using PSID data. However, existing literature is conflicted

regarding the effect of the EIS parameter on αt. For example Vissing-Jorgensen

(2002), Gomes and Michaelidis (2005) and Gârleanu and Panageas (2015) find

that higher EIS motivates more consumption smoothing and thereby higher sav-

ings and risky asset accumulation. However, Vestman (2012) predicts using a

lifecycle portfolio choice model (with housing) that higher EIS lowers risky equity

demand. In this chapter consistent with our analytical prediction, Proposition 1,

our numerical model also shows the same positive relationship between EIS and

αt.

A second result that we can derive from Proposition 1 is that in the absence

of any correlation between consumption, house prices, labour income or risky re-

turns, the optimal portfolio share of savings in the risky asset simplifies to the

myopic demand. In other words there is no hedging component. If we set all the

correlations or covariances to zero, we get αit = αMD
it . This proposition becomes

very valuable in our numerical analysis where for the benchmark model we set all

correlations to zero. We then impose empirically calibrated covariances or corre-

lations of labour income, housing prices etc with returns so that we can quantify

the hedging demand. It has to be noted that the absence of hedging motives does

not imply that the risky asset demand is fully myopic because investors, specially

when returns are mean reverting, can accrue huge wealth by timing the market.

That is, optimal strategies contains some planning for the future.

A third and final result that we get from Proposition 1 is that risky asset

demand under time varying returns or return predictability can be substantially

148



different from the IID case. Importantly, if the factor predicting returns is high

so will be the expected excess returns and hence a higher risky asset is demanded,

refer eq. 3.12 and the subsequent ones. Furthermore, a higher persistence φ of

the return predicting factor also results in an increased share of the risky equity

demanded. A unit root persistence is suggestive of a market bubble implying

under such speculative markets αt goes up. Eraker et al. (2003), Broadie et al.

(2007) and Elkamhi and Stefanova (2015) to name a few finds strong evidence

for jumps in returns during the periods of stock market bubbles. A very low

realization of the factor can arise due to a market crash, alternatively termed as

”rare disaster”, when there is a huge drop in all macroeconomic variables. Hence,

αt is found to be procyclical and as factor processes follow a long run mean growth

rate so will the risky equity demanded. This explains why some recent empirical

studies such as Guiso and Sodini (2013) find that the level of wealth invested in

risky equities has been steadily increasing.

The proof for these three results are fairly obvious from Proposition 1 and

requires no algebraic work, hence omitted from discussion. The analysis in this

section abstracted from realistic arguments such as the presence of transaction

costs, borrowing constraints, etc. Furthermore, the proposition 1 was more intu-

itive, the arguments were not based on an exact solution of either consumption

or portfolio choice.

3.5. A Life-Cycle Exercise - Quantitative

Results

In the last section we derived an analytical expressions for the risky asset alloca-

tion demand, αt, for the two cases of labour income: employment and retirement.

Proposition 1 describes the derived expression for αt. This Proposition gives two

important results. Firstly, the risky equity demanded is inversely proportional to

the risk aversion and directly related to the elasticity of intertemporal substitu-

tion. Secondly, the risky equity demanded is significantly different when returns

are predictable (time varying) compared to the IID case. Importantly for high

factors (such as the dividend-price ratio) the investor increases his holdings of the

risky asset, αt ↑.
The analysis though insightful abstracted from realistic labour income dy-

namics. In this section, we extend the stylized model to a realistic life-cycle one

with short-sales and borrowing constraints, bequest motive, uncertain survival
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probability and importantly an empirically calibrated labour income process. We

then calibrate the parameters and simulate it to get quantitative results. We also

check how our numerical results differ from our analytical characterization in the

previous section.

3.5.1. The Life-Cycle Model

3.5.1.1. Modified Preferences

We extend the preferences to a discrete time life-cycle model where t denotes

adult age and is given by effective age minus 19. Each period corresponds to 1

year and agents live for a maximum of T periods (T = 81). The probability that

a consumer or investor is alive at time t + 1 conditional on being alive at time t

is denoted by pt. This p should not be confused with the price of housing used in

the last section. We will use the superscript h when we refer to housing prices.

The presence of conditional survival probabilities means there is now uncertainty

regarding mortality and hence, this induces the ”precautionary savings” motive

of the investor.

In each period t, a household as before, derives utility from consuming non-

durable goods Ct and durable housing Ht. The household’s modified preferences

are defined by:

Vt =

{
(1− βpt)u(Ct, Ht)

1− 1
ψ + βEt

[
ptV

1−γ
t+1 + (1− pt)b

(Wt+1/b)
1−γ

1− ρ

] 1−1/ψ
1−γ

} 1
1−1/ψ

(3.41)

where β is the time discount factor, ψ is the Elasticity of Inter-temporal Substi-

tution, γ is the coefficient of Relative Risk Aversion, b determines the strength of

the bequest motive and Wt+1 denotes the wealth at time t+1. β denotes the time

preference, or impatience, inducing conditional survival probabilities multiplica-

tively with β implies that consumers get more and more impatient with age. A

bequest motive is a reason for why households do not run down their wealth faster

during retirement. The terminal condition for the recursive equation is expressed

in terms of the bequest motive and terminal wealth as:

VT+1 = b
(WT+1/b)

1−ρ

1− ρ
(3.42)
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The intra-period consumption aggregator as before takes a constant elasticity of

substitution (CES) form, see eq. (3.8), reproduced here for convenience.

u(Ct, Ht) =

{
[δC

1−1/ρ
t + (1− δ)H1−1/ρ

t ]
1

1−1/ρ if ρ 6= 1

Cδ
tH

1−δ
t if ρ = 1.

(3.43)

where δ ∈ (0, 1) measures the relative importance of housing to non-durable goods

consumption and ρ ≥ 0 is the intratemporal elasticity of substitution.

3.5.1.2. Modified Labour Income Risk

Empirically, it has been found that the flow of labour income is well represented as

a sum of three components: an aggregate component that is subject to economy-

wide fluctuations; an idiosyncratic component, which captures individual specific

shocks; and a deterministic component due to lifecycle predictability in wages,

see Bodie et al. (1992), Carroll and Samwick (1997) and Gourinchas and Parker

(2002). These three components combine to create a hump-shaped deterministic

lifecycle labour income profile, wages increase with age when workers are young

and then decline when they approach retirement.

We extent our stylized model in §2.2 to now include both persistent and tran-

sitory shocks. Furthermore, instead of having exogenous retirement probability,

we fix the retirement date at K corresponding to actual age 65. The investor

j works for the first K periods of his life supplying labour inelastically in each

period and receive stochastic labour income Yjt against which he cannot borrow.

The investor j’s age t labour income before and after retirement is exogenously

given by:17

log(Yjt) =

{
f(t, Zjt) + νt + ωjt for t ≤ K

λf(K,ZjK) for t > K,
(3.44)

where f(t, Zjt) is a deterministic component of age t:

f(t, Zjt) = β0 + β1agejt + β2age
2
jt/10 + β3age

3
jt/100 (3.45)

Thus, the prior retirement log income is the sum of a deterministic component

that can be calibrated to capture the hump shaped earnings over the life-cycle and

17In reality labour income is not exogenous, individuals must decide how many hours to work
and how much effort to put on the job, decisions that will influence the amount of labor income
received. By having exogenous labour income, we rule out the possibility that an individual
who has had a bad portfolio return can work more hours to compensate for it
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two random components, one transitory and one persistent. Also, νt represents

the aggregate component and ωjt captures idiosyncratic shocks. Following the

literature, we assume that the idiosyncratic labour income risk ωjt is an IID nor-

mally distributed random variable - ωjt ∼ N(0, σ2
ω). Furthermore, the aggregate

shock νt follows a random walk:

νt = νt−1 + ενt (3.46)

where ενt is IIDN(0, σ2
ν). Retirement is assumed to be exogenous and deterministic

with all households retiring in time period K, corresponding to age 65 (K =

46). Following Gomes and Michaelidis (2005) retirement income is modelled as a

constant fraction λ ∈ [0, 1] of permanent labour income in the last working year:

log(Yjt) = log λ+ f(K,ZjK) (3.47)

3.5.1.3. Modified Illiquid Housing with Constraints

In our analytical section, we had several restrictive assumptions on the durable

good, housing. We refrained from any transaction costs which made the house

a liquid asset. In reality, the household has to decide every period if he should

move or not and faces substantial costs when doing so. This can be endogenous or

even exogenous depending on labour income or family specific shocks. We start

by assuming that:

Ht ≥ Hmin ∀t (3.48)

where Hmin is the minimum house size. This constraint basically takes care of the

indivisibility property of the house. As in Yao and Zhang (2004) and Hu (2005),

we assume that in each period t, with probability πh the household is forced to sell

the house and buy an other one. Cocco (2004) calls this an ”involuntary move”.

With probabililty 1 − πh the household is not forced to move, but may still do

so if that is optimal. We use a state variable InvMovet to capture involuntary

house trades which takes the value of 1 if at t the household is in a state where it

if forced to move, and zero otherwise.

The house sale is associated with a monetary cost equal to a proportion Λ of

the house value and instead of assuming that the house depreciates every period,

we assume that there is an annual maintenance cost equal to a proportion mch of

the house value.
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The price of housing fluctuates over time. The price of other goods consump-

tion (the numeraire) is fixed and normalized to one. Let pht denote the real log

price of house. We follow Campbell and Cocco (2003) and assume that the real

house price growth is given by

∆pht = µh + εht (3.49)

a constant µh and an i.i.d normally distributed shock with mean zero and variance

σ2
h.

3.5.1.4. Financial Assets and Credit Markets

We improve on our analytical modelling section with the addition of a fixed cost

of equity market participation and the existence of a mortgage. As before, we

assume that there are two assets that the household can invest: a riskless asset

with gross real return Rf = exp[rf ], which we call Bonds, and a risky asset with

gross real return Rt = exp[rt], which we call Stocks. The existing literature that

analyse optimal portfolio choice with housing assume a constant opportunity set

or in other words I.I.D returns. In contrast, we consider two cases for the log

excess return on the risky asset. The excess log return can be either an IID

process as in Cocco (2004), Yao and Zhang (2004) or Hu (2005):18

rt+1 − rf = µS + εSt+1 (3.50)

or time varying with a single factor, ft, that can predict future excess returns as

in Pástor and Stambaugh (2012) or Michaelides and Zhang (2015):

rt+1 − rf = ft + zt+1 (3.51)

where

ft+1 = µS + φ(ft − µS) + εSt+1 (3.52)

Here εSt+1 and zt+1, the two innovations to excess returns are assumed to be IID

normal random variables with mean zero and variance σ2
S and σ2

z . The factor

ft can capture the widely documented mean-reversion aspect of stock market

returns, see Campbell and Viceira (1999). We calibrate this factor as the log

dividend-price ratio. The dollar amount the investor has in Treasury Bills and

Stocks are represented as Bt and St respectively. We follow Cocco (2004) and

18This is the same equation we use in the analytical section, see eq. (3.12).
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Cocco et al. (2004) and assume that the investor cannot short-sell either of these

assets so that:

St ≥ 0, (3.53)

Bt ≥ 0 ∀ t (3.54)

An implication of these constraints is that the household cannot lever up us-

ing future labour income or retirement wealth to invest in the stock market. It

also means that the allocation of wealth to both stocks and bonds remain non-

negative at all dates.19 Furthermore, there is a fixed cost involved in equity market

participation. This fixed cost can be considered as the cost of opening a broker-

age account, understanding how the market works, the cost of financial literacy

etcetera. Alan (2006) estimate this cost as 2% of annualized labour income while

Gomes and Michaelidis (2005) calibrate this fixed cost as 6% . Following these,

we assume that the investor incurs a fixed one time cost which is a proportion F

of the permanent component of labour income.

In addition to the two financial assets, the investor who is also a homeowner

can borrow against the value of the house, which we call mortgage, at a gross real

fixed rate of RD. The dollar amount the investor owes in mortgage at date t is

denoted as Dt. Following Cocco (2004), the investor can borrow up to the house

value minus a down-payment, which is assumed to be a proportion d of the value

of the house so that:

Dt ≤ (1− d)PtHt, ∀ t (3.55)

3.5.1.5. The Household’s Modified Optimization Problem

The investor maximizes

max
(Ct,Ht,Dt,FCt,Mt)Tt=1

E(V0) (3.56)

where V0 is given by eqn’s 3.41, 3.42, 3.43 and is subject to the Labour Income

Constraints 3.44, 3.45, 3.46 and 3.47, the housing constraint 3.48, the financial

assets constraints 3.50, 3.51, 3.52, 3.53, 3.54, 3.55 and the budget constraints

19Benzoni et al. (2007) find that the presence of short-sale constraints can limit equity market
participation, specially young and poor investors who have a high incentive to short stocks.
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expressed in terms of cash on hand Xt:
20

St +Bt =

{
Xt − Ct − FCtFYt −mchPtHt−1 +Dt, ∀t
Xt − Ct − FCtFYt −mchPtHt−1 +Dt + (1− Λ)PtHt−1 − PtHt, ∀t

(3.57)

where the first one is the no house trade case and the second one expresses the

house trade case. Here, we define cash in hand, Xt, along the lines of Deaton

(1991) and Carroll (1997), as the sum of liquid or financial wealth and labour

income:

Xt = (RtSt−1 +RfBt−1 −RDDt−1) + Yt (3.58)

Here, αt denotes the level of wealth invested in risky stocks over stocks plus bonds

at any time t. This is akin to αt in our analytical section. Also, FCt is an indicator

variable which is allowed to take the value of 1 if the investor chooses to pay the

fixed cost and zero otherwise. Wealth at date T + 1, the bequeathed wealth after

the terminal period T , is given by

WT+1 = XT+1 −mchHTPT+1 + (1− Λ)HTPT+1 (3.59)

This is the bequeathed wealth which is equal to financial wealth plus housing

wealth net of debt outstanding. The numerical solution method we use is standard

Value function Iteration and is explained in the Appendix (3.G).

3.5.2. Calibration

The parameters for our benchmark model are reported in Table 3.1. We follow

the literature and set standard values for the preference parameters as γ = 5

(risk aversion), ψ = 0.2 (EIS), β = 0.96 (discount factor) and ε = 0.10 (IES).

These values for γ and ψ imply that we are in fact assuming γ = 1/ψ or in other

words CRRA preferences. This is mainly to make our results comparable to the

literature. We do change these values later on to test for the sensitivity of our

results for these parameters.

The investor dies with probability 1 at age 100. Prior to this age, conditional

survival probabilities for other ages have been taken form the National Center

for Health Statistics as in Winter et al. (2012). Following Gomes and Michaelidis

(2005), we set the bequest motive at 2.5. We also present sensitivity analysis for

this parameter. Table 3.1 reports all the calibrated parameters of our model.

20For a detailed discussion on how we construct these budget constraints, refer to Appendix
(3.F).
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Table 3.1. Baseline Parameters

Description Parameter Value

Coefficient of Relative Risk Aversion γ 5
Elasticity of Intertemporal Substitution ψ 0.2
Time Discount Factor β 0.96
Intratemporal Elasticity of Substitution ρ 0.10
Preference for Housing 1 - δ 0.10
Minimum House Size Hmin 0.20
Maintenance Cost mch 0.01
Transaction Cost Λ 0.08
Probability of Involuntary Move πh 0.03
Mean Growth Rate of House Prices µh 0.012
Standard deviation of house price shocks σh 0.048
Bequest Motive b 2.5
Downpayment d 0.15
Fixed cost of equity participation F 0.025
Riskless rate Rf 1.02
Mortgage rate RD 1.04
Mean Stock return µS 1.06
Persistence of excess stock return φ 0.9
Std of stock returns σz 0.18
Corr. between factor and the return innovation ρz,εS -0.6
Innovation to the factor σεS 0.007

Notes: This table reports the parameters for the benchmark model. The
minimum house size and fixed costs are expressed as proportions to labour
income.

For labour income we follow Cocco et al. (2004), who estimate the determin-

istic and permanent components of the labour income process using PSID data.

As age profiles differ in shape across education groups, they control for education

by splitting the sample into three groups: those without high school education; a

second group with high school education but no college degree; and finally college

graduates. Estimated parameters for the labour income process are reported in

Table (3.2). The large estimate for the replacement ratio (λ) during retirement

(93% for the college educated) arises from using both social security and private

pension accounts to estimate the benefits in the PSID data and is consistent with

not explicitly modelling the tax-deferred saving through retirement accounts. The

labour income process is deflated with the Consumer Price Index to account for

156



inflationary effects.

Table 3.2. Labour Income Process : Coefficients in the Age Polynomial

No High School High School College

Constant -2.1361 -2.1700 -4.3148
Age 0.1684 0.1682 0.3194

Age2/100 -0.0353 -0.0323 -0.0577
Age3/100 0.0023 0.0020 0.0033

λ 0.88983 0.68218 0.938873
σω 0.136 0.131 0.133
σν 0.019 0.019 0.019

Notes: These are values estimated by Cocco et al. (2004) for a third
order age polynomial, λ is the constant fraction for the retirement
period. σω and σν are the standard deviations of the idiosyncratic
and aggregate shocks, respectively. The coefficients and the standard
deviations were estimated by fitting eq.’s 3.44 - 3.47 on the Panel
Study of Income Dynamics dataset.

We calibrate several parameters related to housing. We follow Cocco (2004)

and set it at 15%.21 Regarding the house price process in eq. (3.49), we need

to estimate parameters of the random walk with drift process. One approach

could be as in Cocco (2004) who uses self-assessed house values from the PSID

data from 1970-1992 to construct a House Price Index. However, PSID data

on house prices suffer from measurement errors as they are self-assessed values.

Furthermore, PSID surveys are conducted only every two years. In light of these

arguments, Pelletier and Tunc (2015) use the Case-Shiller Index. This is again

not an ideal procedure as the repeat-sales Case-Shiller Index do not control for

changes in quality of the house and gives a higher weightage to expensive houses.

To address these concerns, we use the seasonally adjusted constant quality

house price index brought out by the U.S. Bureau of Census for the years 1970 -

2014. We first deflate the house prices using the Consumer Price Index to get real

prices and then estimate for values of the real growth rate µh and the standard

deviation σh. Our estimates reveal that µh = 0.012 and σh = 0.048, we set them

accordingly.

Regarding the financial assets and credit market parameters, we set the mean

equity premium µS at 4.00%, a level considered reasonable by Mehra and Prescott

(1985); Mehra (2012). The risk free rate is fixed at 2% and the annual mortgage

rate is set at 4% following Campbell and Cocco (2015). As a proxy for a factor to

predict stock returns we use the log dividend yield. This is widely considered as

21Yao and Zhang (2004) and Hu (2005) set the required downpayment rate at 20% of the
house value.
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one of the most important predictors of stock returns based on OLS regressions

over long horizon data, see Campbell and Shiller (1988).

For the rest of the return predictability parameters, we follow Pástor and

Stambaugh (2012) and Michaelides and Zhang (2015) who use an annual fre-

quency CRSP stock return data to estimate time varying excess return variables.

They find a high persistence parameter of φ = 0.9 and the unconditional stock

market volatility, σz given by the unconditional standard deviation of stock re-

turns is found to be equal to 0.18. The correlation between the factor and the

return innovation, ρz,εS , is an important parameter as this along with factor pro-

cess determines whether the stock returns exhibit the attractive property of mean

reversion. A negative correlation coupled with an AR(1) factor process implies

mean reversion, see Choe et al. (2007). Pástor and Stambaugh (2012) estimate

this parameter to be -0.6. Furthermore, the factor innovation is seen to be smooth

in the literature and we set it as σεS = 0.007 for the baseline model. When we

report our results we compare this values with the case of a more volatile factor

innovation (σεS = 0.017).

3.6. Life-Cycle Portfolio Choice - Simulated

Results

In the following subsections, we discuss our simulated results for the optimal port-

folio choice over the life-cycle from the policy functions obtained from our Value

Function Iteration procedure. We start with the case of IID returns, followed

by return predictabiity. We finish this section with a discussion on the reported

levels of stock market participation with and without housing and quantify the

impact of preference heterogeneity.

3.6.1. Asset Allocation over the Life-Cycle - IID Returns

The theoretical and the empirical literature provide counterfactual evidence re-

garding the portfolio share invested in stocks vis-a-vis age. The theoretical lit-

erature predicts that as long as labour income is uncorrelated with risky stocks

the proportion of wealth invested in stocks is decreasing over life (see Heaton and

Lucas (1997) and Cocco et al. (2004)) while the empirical literature has found

that this risky share is actually increasing over life-cycle, see Ameriks and Zeldes

(2002). Our results reported in Table 3.1, assuming that the excess returns on
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the risky asset is independent and identically distributed, IID, complement those

of Cocco (2004) in that we provide an explanation to this puzzle.

Table 3.1. Portfolio shares by age predicted by the model - I.I.D Returns

Liquid Assets Financial Assets Total Assets

Asset <35 35-50 50-65 ≥ 65 <35 35-50 50-65 ≥ 65 <35 35-50 50-65 ≥ 65

Stocks 0.023 0.348 0.612 0.740 0.009 0.075 0.310 0.102 0.004 0.035 0.121 0.088
Bonds 0.977 0.652 0.388 0.260 0.035 0.035 0.045 0.020 0.005 0.005 0.020 0.009
Liquid Assets 1.000 1.000 1.000 1.000 0.044 0.110 0.355 0.122 0.009 0.040 0.141 0.097
House Value 0.956 0.890 0.645 0.878 0.145 0.168 0.304 0.820
Financial Assets 1.000 1.000 1.000 1.000 0.154 0.208 0.445 0.917
Human Capital 0.846 0.792 0.555 0.083
Total Assets 1.000 1.000 1.000 1.000
Debt 0.702 0.502 0.345 0.625 0.101 0.099 0.188 0.488
Stock Mkt. P. 0.025 0.245 0.680 0.800

Notes: This table reports mean portfolio shares of various assets relative to liquid assets, financial assets and total assets when our
model was simulated under the calibrations specified in Table (3.1) for 10,000 agents and when the returns are assumed to be IID.
We report the results only for the college educated income group. Qualitatively similar results were obtained for the other two
groups. We follow Cocco (2004) in defining the composition of the various asset classes, consistent with our model specification.
Hence, Liquid Assets are defined as the sum of risky stocks and riskless treasury Bills. Financial assets are liquid assets plus house
value and Total Assets are financial assets plus human capital. Debt is reported relative to financial assets and total assets. Stock
Market Participation (Stock Mkt. P. in the Table) is the proportion of investors who decide to participate in the stock market.
The investors are categorized by 15 year age groups. These results assume no correlation between labour income to house prices
or risky stock returns.

The first four columns in Table 3.1 reports the change in the share of wealth

invested in the risky stocks and the riskless bonds predicted by the model. It

is clear that our model which incorporate housing predicts an increasing share

of stock investments, starting from 2.3% in the <35 age group to almost 74%

in the retirement period (≥ 65). The presence of an illiquid asset in the form

of housing implies that in the early part of adult life, the investor is liquidity

constrained (depicted by the high level of debt) and thus chooses not to pay the

fixed cost for participating in the stock market. Inspecting values for the stock

market participation rate, which is the proportion of households who participate

in equity markets, it is clear that only 2.5% of all investors enter the stock markets

in the early life period. In fact, for this 20-35 lower age group liquid assets form

only 4.44% of financial assets, all the rest of the wealth is held as real estate

(housing).

With rising age, the level of other asset holdings in the form of labour income

and house value becomes large enough to entice more and more investors to pay

the fixed cost. Thus the market participation rate increases and so does the level

of wealth invested in risky stocks. Investors accumulate enough wealth to both

afford their mortgage and also to partake in risky investments. This explains
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why old investors are more willing to accept risk in their portfolio of liquid assets

since future consumption is less correlated with the return on the liquid assets

portfolio. It is noteworthy that a large proportion of wealth relative to financial

assets is held in housing and this varies between 95% in the 20-35 age group to

64% in the 50-65 age group. This result confirms almost all existing studies that

a majority of wealth of households is held in the form of real estate, see Mian and

Sufi (2009).

The last four columns report the level of assets relative to total assets, where

total assets comprises both financial wealth and human capital. We define human

capital following Heaton and Lucas (2000) as the expected value of future labour

income discounted at the annual interest rate of 5%. It is apparent that human

capital, equivalently labour income, is an important determinant of wealth at all

ages. Particularly for the young investors, in the 20-35 category for whom 84%

of total assets comprises human capital. As investor’s age, there is decreasing

importance of labour income which explains the increasing share of wealth in

housing relative to total assets.

The reported results in Table 3.1 are identical to those of Cocco (2004) which

was expected as our model is built on his and we also used similar calibrations.

Although Cocco (2004) uses CRRA preferences, our benchmark calibration values

implicity meant that the relative risk aversion is equal to the reciprocal of the

relative risk aversion.

One of the main contributions of this chapter over related literature is jointly

modelling time-varying risky stock returns in the presence of non-diversifiable

labour income risk when the investor is liquidity constrained from investment in

risky housing. Table 3.1 reported our simulated results when the log returns on

the risky asset is I.I.D. Now we proceed to the case of time varying returns (return

predictability).

3.6.2. Asset Allocation Over the Life-Cycle - Time Varying Re-
turns

As the effects of time varying equity premium or return predictability on risky

portfolio choice is best seen through a graphical illustration, we plot the results

rather than tabulating it. We modelled the return predictability through the log

dividend-price ratio, see eq.’s (3.51) and (3.52). The expected excess return on

risky stocks is positively correlated with this dividend-price ratio. Hence, high

dividend-price ratio implies high stock returns and as we learned from Proposition
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1 this implies a higher level of risky asset demanded. This effect is exactly what

we observe in our numerical simulation results validating our analytical charac-

terization. Figure 3.1 plots the risky asset allocation over the life-cycle under two

different realizations of the log dividend-price ratio. To better understand our

results, we also plot the IID case.
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Figure 3.1. Risky Asset Allocation (αt) over Life-Cycle: IID vs Time Varying
Expected Returns (TVR) Under Different Factor Realisations. This figure plots the
simulated mean asset allocation for three cases. The constant investment opportunity set or
the IID case and for two different realisations when the expected excess returns on the risky
stocks are time varying - a high factor realisation and a low factor realisation. The dashed
plots are two extreme possibilities of the log dividend-yield. The horizontal axis describes the
adult age which is actual age - 19 and the vertical axis represents the share of wealth in stocks
(αt ∈ [0, 1]). Results are calculated by taking the average value over 10,000 simulated investors,
using the derived optimal policy functions and for each investor simulating a different path for
the exogenous stochastic processes.

The IID case in Figure 3.1 is a graphical illustration to the tabulated results

in Table 3.1. As reported in the Table, mean share of wealth invested in risky

stocks is very low, close to zero, in the first part of the life-cycle as households are

liquidity constrained for two reasons: (i) from investing in the house and (ii) low

earnings due to higher time discounting of labour income. As the investors grow

older (and richer with increasing human capital) and accumulate wealth, they

start investing more and more into the risky asset expecting high returns. This is

also motivated by the fact that in midlife, saving for retirement becomes a crucial
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determinant of the agent’s behaviour. The risky asset investment reaches its peak

around the age of 65 when the investor retires. Here around 80% of the total

wealth is being invested in the risky asset. This hump-shaped profile of αt that

we predict is consistent with the findings of other lifecycle portfolio models (IID)

with housing such as Cocco (2004), Yao and Zhang (2004), Davis et al. (2006)

and Vestman (2012) among others. Davis et al. (2006) do not include housing in

their analysis but as our tabulated results showed, housing is a deterrent only in

the initial years of an agent’s life.

Retirement brings with it a fall in labour income, and hence a fall in wealth

allocated to financial assets. The optimal allocation is then determined by the

speed of the fall in wealth. This depends both on the discount factor which is

adjusted for mortality risk (conditional survival probability) and the strength of

the bequest motive. It is noticeable that the pace of decline in risky investment

during the last years (ages 65-100) is slow which is primarily because agents have

a motive to bequeath their wealth when they die. This is why unlike models

without the bequest motive, see Davis et al. (2006) and Cocco et al. (2004) for

example, we do not have a steep negative slope in the retirement period.

The two dashed lines represent the time varying returns cases. When returns

are independent and identically distributed (IID), there is no added information

between periods or in other words the future looks exactly like the past. However

in reality, information changes all the time and the investors can use this to

re-optimize before the end of their investment horizon. Time varying expected

returns is equivalent to return predictability, that is φ 6= 0. In our calibration,

we followed the literature (see Campbell and Shiller (1988)) and chose the log

dividend-price ratio as a factor that can be used to predict future returns.

The two time varying return curves indicate two different realizations, high

and low, of the return predictable factor- the log dividend-price ratio. This factor

describes the investment opportunity set. When the factor realizations are high,

there is a favourable investment environment for the household. Equivalently,

when the factor realizations are high, the expected excess returns on the risky

asset is also high.22 Higher expected excess returns does not necessarily mean

high αt. This is easily seen through our analytical characterization, see Lemma

(1), where we split the optimal share of asset allocation into the expected excess

return (myopic) component and an intertemporal hedging component. Thus,

22This is not always true. Despite the overwhelming literature that argue for return pre-
dictability, some recent studies such as Goyal and Welch (2008) question their poor out-of-sample
predictions.

162



there can be a scenario where the investor decides to increase his investment in

the risky asset to take advantage of the higher returns, especially, in the initial

years and thus ↑ αt. The investor can also realize that with the higher expected

returns, he needs less money to achieve the same dollar return and thus ↓ αt.
Essentially, change in αt depends on the hedging and the market timing motive

of the investor.

The reported results in Figure 3.1 are for our benchmark calibrations where

we abstracted from any type of correlations. Thus, there are no intertemporal

hedging motives, refer Lemma 1. However the investor can aggressively time

the market. As the two TVR cases significantly departures from the IID line,

we can say that our model predicts aggressive timing strategies by the investors

concurrent with the results of Michaelides and Zhang (2015). However, unlike

Michaelides and Zhang (2015) we have included housing which provides an ad-

ditional wealth component and also a risk component. These components mean

that the divergence from the IID case is much larger.

Higher factor realizations mean higher expected stock returns and an almost

parallel upward shift in the mean share of liquid wealth allocated to stocks. The

difference is much more pronounced in the initial stages of the life-cycle. Between

the ages of 20-35 whereas the IID returns predict only 2.3% allocation of liquid

wealth in stocks, under high expected returns it is almost 10 times that- averaging

at well over 20%. The intuition behind this is that although the presence of

housing makes agents liquidity constraint, the attraction of high expected excess

returns entices household to pay the fixed cost and venture into equity markets.

This is true as long as the return on equity (Rt+1) is significantly higher than the

mortgage rate (RD). Our benchmark calibration ensures that this is always true.

Also, the equity market participation rates, as we later find, is also much higher

even among the constrained young households.

Similarly, if investors expect very low risky returns, the share of wealth in-

vested in stocks drops down substantially. However, it is observable that the fall

in αt is strong in the retirement ages of 65-100. This is expected as households

in this stage of their life would rather invest in riskless bonds as they anticipate

the returns on stocks to be very near to that of bonds but without any risk,

Etrt+1 − rf u 0. There is no reward for holding the risky asset. Furthermore,

as Michaelides and Zhang (2015) argue factors such as the log dividend yield are

highly persistent and thus it takes a substantial amount of time for a change (in

αt) to happen and when it does happen like in the retirement period the portfolio

moves relatively quickly.
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It is noteworthy that the speed at which investors run down their wealth after

retirement (65-100) is marginally higher in both the time varying return processes.

This is because investors are more sensitive to uncertainty in the later years of

their life. The presence of mortality risk coupled with extra risk from the factor

(dividend-price ratio) process and the absence of any hedging motive imply that

investors would desire to divest his liquid wealth from risky stocks to riskless

bonds. In the last years of the agent’s life, the bequest motive kicks in and the

slope stabilizes.

An important contribution that we can make from Figure 3.1 is that the

impact of a low factor realization on αt is much more pronounced than a high

factor one. The huge drop in the financial factor is indicative of a market crash

or in the words of Rietz (1988) a ”rare disaster”. The recent financial crisis is one

example. Barro (2006, 2009) and others have been successful in explaining several

asset market puzzles by incorporating such a disaster. Our result here contribute

to this literature in that we observe that these rare events can also explain the

limited risky asset allocation puzzle. As we see, a very low factor suggestive of a

disaster event results in a significant decline in risky assets demanded and, as we

later find out, in the rate of stock market participation. As Figure 3.1 shows, there

is also marked heterogeneity in the αt profile. In the possibility of a disaster risk,

old and retired households rebalance their portfolio more towards risk free assets

than young and employed ones. Retired households have low levels of human

capital, fast depreciating, and thus prefer risk free investment.

It has to be emphasized here that we do not explicitly model the probability

of an event risk as is the norm in the disaster literature. Instead the probability

is implicitly contained in the discretization process. The continuous time returns

process in eq. 3.51, for computation, was discretized into 15 Markov states of

nature. Each state has a probability attached with it. An extremely high or

extremely low factor states of nature are associated with low probabilities. Hence,

these probabilities can be considered as indicative of an event risk. These are

qualitatively equivalent to assuming that each date the investor faces a constant

exogenous probability of a drop in returns.

An additional way to assess the impact of rare events such as a market crash

on life-cycle asset allocation is through the volatility of the factor process. High

volatility is an observed phenomenon in such disasters, see Wachter (2013). A high

volatility in the log dividend yield process makes investment in stocks riskier. The

expected excess returns for low factor realizations, a disaster, could be negative.
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A rational investor should thus rebalance his portfolio towards riskless bonds or

even not participate in the stock market at all.

Our simulated results reveals that αt is sensitive to the conditional volatility

of the factor process and are thus consistent with the above reasoning. Figure

3.2 shows the effect of different factor volatilities relative to the IID model. The

deviation from the IID model is found to be larger when the factor is perceived

to be more volatile (σεS = 0.017) than for the benchmark moderate volatility

(σεS = 0.007).
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Figure 3.2. Risky Asset Allocation (αt) over Life-Cycle: IID vs Time Varying
Expected Returns (TVR) Under Different Factor Volatilities. This figure plots the
simulated mean asset allocation for three cases. The constant investment opportunity set or
the IID case and for two different factor volatilities, high (σεS = 0.017) and low (Benchmark
σεS = 0.007), when the expected excess returns are time varying. The horizontal axis describes
the adult age which is actual age - 19 and the vertical axis represents the share of wealth in
stocks (αt ∈ [0, 1]). Results are calculated by taking the average value over 10,000 investors,
using the derived optimal policy functions and for each investor simulating a different path for
the exogenous stochastic processes.

A high factor volatility suggestive of a rare disaster in the economy shifts

down the risky asset allocation curve. Importantly, the response in αt to a higher

risk in stocks are heterogenous over the life-cycle. Unlike the factor realizations

scenario, see Figure 3.1, the effect on young investors is insignificant, see Figure

3.2. Until the age of 30, investment in risky assets is almost the same. The effect

is more visible in the middle age group, specifically between the ages of 35-55.
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Retirement ages and then on until death also do not exhibit any marked changes

vis-a-vis the IID case. This is because when faced with higher volatilities most

younger workers do not react much since they have several decades to adjust

before they retire but as they get older they realise that they have little time to

adjust their wealth. Hence, they aggressively hedge such risks through bonds.

Our results agree with that of Chai et al. (2011) who estimates a life-cycle

model with return predictability, flexible labour income and finds that financial

risk/stock market shocks have little or no effect on young households but the

older and retired households invest more in equities. However, Michaelides and

Zhang (2015) finds that the average share of wealth in risky assets is substantially

lower among the young households compared to the older ones. This is mainly

because of the absence of housing in their model. Their simulated αt counter-

factually predicts almost a 100% allocation in stocks in the 20-35 age group. For

expositional clarity, we plot the change in financial wealth over the life-cycle under

high factor volatilities or disaster risks.
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Figure 3.3. Mean Normalized Financial Wealth over Life-Cycle: IID vs Time
Varying Expected Returns under different factor risks. This figure plots the simulated
mean financial wealth normalized by the permanent component of labour income (total labour
income net of transitive component) for heterogenous households over the lifecycle under the
baseline parameters and assuming that there is a fixed cost of equity participation. The dashed
lines represent the TVR cases when the volatility of the factor process is 0.007 and 0.017. The
vertical axis displays the normalized wealth and the horizontal axis the adult age. Results are
calculated by taking the average value over 10,000 investors, using the derived optimal policy
functions and for each investor simulating a different path for the exogenous stochastic processes
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Figure 3.3 plots the life-cycle financial wealth normalized by the permanent

component of labour income for different factor volatilities. The continuous line

represents the IID case with no factor volatility while the dashed lines represent

a small (0.007) and a high (0.017) volatility case, respectively.

It is apparent from Figure 3.3 that the financial wealth which is the sum of

liquid wealth and housing wealth increases with increasing dividend-price volatil-

ity. This is despite the fact that the share of wealth invested in risky stocks has

gone down, see Figure 3.2. The logical explanation in this circumstance is that

the housing wealth rose enough to more than make up for the decline in liquid

wealth. This means that households anticipating a market crash hedged this risk

by the illiquid housing asset. This result although agreeing with Michaelides and

Zhang (2015) is not consistent with empirical studies.

For instance, Barro (2006, 2009) and Wachter (2013) associate a market crash

or a rare disaster with almost 25% drop in consumption with equivalent levels in

household wealth. There are several reasons for our counter-factual result. Chief

among them is the assumption we made in our calibration that the stock and

housing markets are not correlated. This implies that as long as households can

afford to pay the transaction costs they are freely able to hedge any such risks

through the housing asset. In reality, housing is highly procyclical meaning that

disasters will almost certainly be accompanied by a drop in house prices nullifying

any sort of hedging strategies by the investors.

Nevertheless, the hump shaped profile of life-cycle financial wealth is consistent

with recent empirical work on micro data (Survey of Consumer Finances). For

instance, Fernández-Villaverde and Krueger (2011) finds that households keep on

accumulating wealth from the beginning of their lives until retirement, at which

point they start running down their wealth.

It is a stylized fact that the log dividend-yield is highly persistent. A value of

zero persistence in the factor, φ = 0, implies no influence of the factor process or in

other words no return predictability or simply IID. As the value of the persistence

rises, so does the ability to predict returns. Our benchmark specification for φ

was set at 0.9. This value is representative of mean reversion in returns. Our

benchmark calibration also set a negative correlation between innovations to the

stock return and the factor, log dividend-price ratio. A direct implication of this

parametrization, along with the assumed AR(1) process for the factor, is that

stock returns exhibit the property of mean reversion. Mean reversion in stock

returns reduces long-term risk relative to short-term risk, that is, stocks are less

167



risky in the long run. Hence, mean reversion makes stocks attractive to a life-cycle

investor.

Highly persistent stock returns (i.e. the persistence parameter is greater than

or equal to one, φ ≥ 1) will generate abnormal returns for the investor. Such

an explosive process is indicative of an ”asset price bubble”. Although there has

been several studies that examine the impact of mean reversion on risky asset

allocation, cases of bubbles have never been examined. Intuitively if φ affects the

risky returns, it is natural then that the risky asset allocation decision is affected

as well. To test this, we compute the optimal risky portfolio shares for a grid of

persistence values. The results are graphically illustrated in Figure 3.4.

Figure 3.4. Risky Asset Allocation (αt) over Life-Cycle and over Persistence of
the Factor Process. This figure plots the simulated mean asset allocation for the life-cycle
when the persistence, φ, of the log dividend-price ratio vary from zero corresponding to the IID
case to an explosive process, φ = 1.2. The x-axis describes the adult age which is actual age -
19, the y-axis shows the range of values for φ and the z-axis represents the share of stocks in
wealth (αt ∈ [0, 1]). Results are calculated by taking the average value over 10,000 investors,
using the derived optimal policy functions and for each investor simulating a different path for
the exogenous stochastic processes. To get a smoothed continuous curve, we first evaluated αt
for a grid of values for the persistence parameter which was then plotted.
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It is clear from Figure 3.4 that as the persistence parameter, φ, has a monotonic

increasing relationship with risky asset allocation. This holds even for young

liquidity constrained investors. For example, when φ = 0 returns are IID and

the level of αt is almost 2.5% at the age of 25. However at the same age when

φ = 1.2, risky asset share is close to 18%. As we discussed before a value of φ ≥ 1

indicates the possibility of a bubble in the stock market. Our results predict that

if investors have self-fulfilling price expectations they would invest more in risky

assets even if it entails paying a substantial amount to participate in the equity

markets.

We will examine this result by parts. First we will talk about the non-bubble

case, φ < 1. When the coefficient of the factor is positive and strictly less than

unity, stock returns are mean reverting. Mean reversion boosts demand for risky

assets. This is consistent with our predictions in Figure 3.4. It also agrees with

several important studies in the literature. For example, Campbell and Viceira

(1999) consider an infinitely lived investor with Epstein-Zin utility defined over

consumption. They estimate the parameters of the model from post-war U.S.

data and find that the estimated mean reversion dramatically increases the aver-

age optimal equity allocation of a conservative long-term investor. Lynch (2001)

also find that the predictive persistence parameter, φ, has a large impact on the

optimal risky asset allocation. For example, he predicts that varying the param-

eter from 0.85 to 0.96 raises the average share of wealth allocated to risky assets

by 6%. Both these papers are highly stylized and unlike ours do not consider non-

tradable labour income or risky housing and is not designed to explain life-cycle

dynamics.

More recently Benzoni et al. (2007) uses a rich life-cycle portfolio choice model

assuming a cointegration between aggregate labour income and stock market re-

turns (dividends) and also considering return predictability find that young agents

should short the risky stock. That is, the young agent chooses to sell the mar-

ket portfolio short to hedge the risk associated with her human capital position.

They also find that as they decrease φ to zero, results approach the IID case.

In the presence of short sales constraints, agents do not participate in the stock

market at all. However, at even small increases in φ such as 0.08 to 0.10, young

agents (20) invest all of their wealth in risky stocks due to the hedging demand

contrasting empirical evidence. This is mainly because of the lack of an illiquid

good that can restrict consumption smoothing abilities.

In essence, our prediction of increasing wealth allocated to risky stocks (αt)

with increasing persistence of the return predicting factor (φ) for the no-bubble
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mean reverting case is consistent with the literature. However, the case of unit

root φ = 1 and explosive roots φ > 1 is not clear. When the factor process follows

a random walk, returns are not predictable implying all else constant the share of

risky assets should go down. Our results contradict this finding. We find that αt
is strictly increasing even at such non-stationary values. This increase is apparent

uniformly at all ages of the agent’s life-cycle. This is mainly because we find an

upward drift in the level of households participating in equity markets as soon as

φ reaches unity. In other words, the arrival of bubble brings with it an increased

participation in equity markets, see Figure 3.7. As more investors participate the

average risky share of liquid wealth invested in stocks goes up. This is a realistic

argument as it is observed in general that stock market bubbles are characterized

by a large volume of trades and increased participation, see Basak and Makarov

(2014).

High persistence in the log dividend-yield is not necessarily indicative of a

stock market bubble. For example, it is widely documented that abrupt changes

in the form of structural breaks or regime shifts can induce non-stationarity in

the persistence parameter. However, we argue that even if that is the case, our

results would still hold. Firstly, the presence of high quality structural break

tests have only been recently available in the public domain. They have not

been available long enough to allow an investor to utilize these new techniques

in real time to search for structural breaks to rebalance their portfolio allocation

decisions. Secondly, the identification of structural breaks is a purely statistical

exercise mostly unrelated to predictable or observable economic events. For these

reasons, we can safely justify our result that on an average, households invest

more of their liquid wealth in risky stocks in the presence of a bubble.

Of interest is the fact that we do not observe any shift of wealth from stocks

to housing when we analysed the wealth profiles (not reported). The so called

”wealth effect” hence is absent in a stock market boom unlike a housing market

boom. Fischer and Stamos (2013) argues based on impulse response analysis that

a housing market boom raises the value of the home in which the household lives

and substantially increases its housing wealth. Both owners and renters decrease

their equity and bond holdings as an immediate reaction to a housing market

boom. In the long run, however, both bond and equity holdings are higher, due

to the positive wealth effect resulting from the housing market boom. Motivated

by their study, we analyse the impact of several parameters related to housing in

forming the optimal asset allocation. We do this exercise in the next subsection.
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3.6.3. Asset Allocation over the Life-Cycle - House Price Risk and
Hedging Motives

To analyse and measure the effects of housing on portfolio allocation, we compare

the results of the benchmark model which incorporates housing with a model

excluding housing. The no housing model includes all the features of the existing

one discarding everything related to housing: there is no durable good in the

utility function (δ = 1) and no collateral in the investment set (Dt = 0, pht = 0).

Essentially, this model simplifies to the Gomes and Michaelidis (2005) one.
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Figure 3.5. Risky Asset Allocation (αt) over Life-Cycle: Housing versus No
Housing Model. This figure plots the simulated mean asset allocation for the benchmark
model with housing against a no housing model. The horizontal axis describes the adult age
which is actual age - 19 and the vertical axis represents the share of wealth in stocks (αt ∈ [0, 1]).
Results are calculated by taking the average value over 10,000 investors, using the derived
optimal policy functions and for each investor simulating a different path for the exogenous
stochastic processes.

It is clear from Figure 3.5 that the life-cycle profile of risky equity demanded

is substantially different in both cases. The difference is marked in the initial

years of the household. In the absence of housing, agents are no more liquidity

constrained. Thus, household invests their entire liquid wealth (100%) in risky

stocks to take advantage of the high equity premium. Around the age of 35 - 40,

as the value of human capital starts decreasing and financial wealth grows, the

household starts rebalancing its portfolio towards riskless bonds. This explains the
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downward slope between the age of 35-65. In contrast, the housing model shows

an upward sloping αt curve. This is largely because the presence of housing

increases the total wealth that the investor holds. The housing wealth offsets

changes in labour income. At the age of retirement, the portfolio share invested

in risky stocks in the presence of housing is significantly higher at 80% compared

to 62% without housing. The intuition is that as soon as the agent retires, around

adult age 46, the household starts dissaving. If the investor owns a house, he has

more savings that can be invested in stocks.

The no housing model, consistent with Cocco et al. (2004), Gomes and Michae-

lidis (2005), Benzoni et al. (2007), Michaelides and Zhang (2015), predicts very

large portfolio risky shares for young households. This prediction is counterfac-

tual. For instance, in the last wave of the Survey of Consumer Finances (SCF)

only 12% of participating young households have a share of risky assets that

exceed 80%, see Guiso and Sodini (2013). The predictions of our benchmark

housing model, hence, are more in line with empirical results. Housing initiates

a crowding out effect keeping liquid assets low and young agents from investing

in risky stocks. As we have seen that housing plays a major role in constructing

the life-cycle profile of risky portfolio shares, it is intuitive that shocks to housing

prices should affect the level of αt. Furthermore, there is substantial evidence

that house prices are correlated with aggregate labour income shocks. These are

investigated and the simulated results are plotted in Figure 3.6.
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Figure 3.6. House Price Risk on αt over the Life-Cycle: IID versus TVR. This
figure illustrates the change in the level of risky equity demanded over the life-cycle from the
Benchmark model when the returns are (i.) IID and when they are (ii.) time varying and return
predictable. To initiate the change in αt we jointly assume that the aggregate labour income
shocks are positively correlated with the log house prices, ρν,h = 0.553, and that there is an
increasing in house price volatility from σh = 0.048, the Benchmark specification, to 0.14. The
right graph plots the intertemporal hedging demand relative to the Benchmark model. The
hedging demand is computed in terms of percentage deviations, hedge = 100 ∗ α

′−αBenchmark

αBenchmark

where α′ is the new portfolio risky share. The horizontal axis describes the adult age which is
actual age - 19 and the vertical axis represents the proportion of liquid wealth in stocks.

To understand the impact of house price risk on risky asset allocation, αt,

we first impose a positive correlation between aggregate labour income shocks

and log house price, a realistic assumption which we ignored in our benchmark

calibration.23 The correlation between income shocks and house prices is set at

a value of ρν,h = 0.553 consistent with other studies, see Cocco (2004). Next we

increase the level of house price volatility, σh from the benchmark value of 0.048

to 0.14. We examine the change in αt when returns are (i.) IID and when they are

(ii.) time varying and predictable (TVR). The continuous line in the left panel

of Figure 3.6 represents the Benchmark case and the other dashed lines represent

the new risky share when returns follow the two different processes.

Two results can be derived from the above figure. Firstly, under higher riski-

ness in housing, the αt curve shifts down and thus the risky portfolio share is lower

throughout the life of the investor. Secondly, the change in αt is higher (more neg-

ative) when the returns are IID than when they are time-varying meaning that

investors hedge the housing risk better under the TVR case.

23We emphasize here that imposing a positive correlation between labour income and house
prices brings no qualitative change to any of the results that we discussed in the preceding
sections.
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As characterized in Proposition 1, the absence of any correlation between any

of the variables implies that there are no hedging effects. Hence, the two dashed

curves, which are in the presence of correlations can be called as the hedging effect,

the benchmark model being the myopic one. The right panel of the above figure

depicts the intertemporal hedging demand, which is nothing but the percentage

deviation from the benchmark model.

The divergence (zero represents the benchmark model) is very high when the

investor is young, close to 100% in absolute terms at the age of 20. There are two

forces at play here. The increased volatility means that investment in housing is

now risky. The positive correlation with labour income shocks means that housing

is no more a good hedge against labour income risk. Both these effects combine

to force investors to tilt their financial portfolio toward liquid financial assets, in

the form of bonds, and away from the risky illiquid housing bringing down αt.

As these shocks are positively correlated with labour income, the effect lasts until

retirement. This explains why the divergence is close to zero and remains that

way from the age of 65.

The results for the IID case is consistent with other papers in the literature.

For instance, Cocco (2004) finds using data simulated from a similar model that

the portfolio share of stocks relative to financial assets is 13% lower for young

households and 9% for older ones. Curcuru et al. (2004) and Kullmann and

Siegel (2005) use regression models to investigate the role of housing wealth for

both stock market participation and equity shares conditional on participation.

Curcuru et al. (2004) report a negative effect of the house value to financial wealth

on participation. Kullmann and Siegel (2005) finds that housing price risk is as-

sociated with lower stock market participation and, conditional on participation,

lower equity investments.

The more interesting and a contributory result that we get is the variation be-

tween IID returns and time varying returns (TVR). A look at the right hand panel

of Figure 3.6 reveals that the deviations from the benchmark model is substan-

tially lower when returns are predictable compared to the case of no predictability.

In fact, the hedging demand for the IID case is almost double (negative) at all

ages until retirement. The fact that returns are predictable, under the TVR case,

means that investors can strategize and time the market. Market timing implies

that substantial gains can be made by investing in risky stocks. Hence, despite

the rise in background risks (labour income) investors are able to hedge these risks

so that the fall in risky portfolio shares is limited. However, when the returns are

IID no such predictability can happen.
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Cocco et al. (2004) and Calvet et al. (2009) finds that substantial welfare losses

are incurred by households who move away from stocks. Hence, a normative

implication of our result is that if households can reasonably predict returns by

following a factor such as the log dividend yield, they can safeguard themselves

from cycles (risks) prevalent in the housing market.

3.6.4. The Stock Market Participation Rates Over the Life-Cycle

In this section, we attempt to shed light on the limited equity market participation

puzzle. The predicted levels of participation over the life-cycle and over different

levels of the factor persistence, φ, is plotted in Figure 3.7.
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Figure 3.7. Stock Market Participation over the Life-Cycle and over Factor
Persistence. This figure illustrates the proportion of households that participate in the equity
market over the life-cycle and over a grid of values for the persistence of the log dividend-price
ratio. The case of φ = 0 represent the Benchmark model with IID stock returns; when 0 < φ < 1,
returns are mean reverting and time varying predictable; and unit root and above indicate a
possible bubble in the stock market. The x-axis describes the adult age which is actual age -
19, the y-axis describes the persistence of the dividend-price ratio and the z-axis represents the
proportion of households that participate in the equity market in the range - [0, 1].. Results
are calculated by taking the average value over 10,000 investors, using the derived optimal
policy functions and for each investor simulating a different path for the exogenous stochastic
processes.

Participation rates are monotonically increasing throughout the life-cycle. It

is no coincidence that the shape of the curve is similar to the risky equity share,

αt plotted in Figure 3.4. Several related studies, Gomes and Michaelidis (2005)

and Guiso and Sodini (2013), have found that the participation decision is an

increasing function of wealth and the optimal share of wealth invested in the

risky assets. The decision to invest in equity markets involves paying a fixed

cost of participation. Thus, it is natural to find that only 52.8%, on an average,

of households decide to venture into stock markets. The rate of participation is

very low in the beginning of the life-cycle, increasing through the middle ages
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and reaching its peak around the age of retirement. From then on until death,

households deem participation too risky considering the low level of human capital

and thus there is a slow but steady decline. This result is consistent with the

literature that model housing in life-cycle portfolio allocation, see Cocco (2004)

and Vestman (2012).

An interesting contribution that we derive from Figure 3.7 is when the persis-

tence of the factor, φ is at or above a unit root. This imply an explosive process

for the dividend-price ratio indicating a ”major event” such as a bubble. When

such an event happens, there is a marked upward shift in the participation rate

even at the initial stages of the life-cycle. Young households despite being liq-

uidity constrained from investing in the house still pay the fixed cost of market

participation enticed with an abnormally high expected returns to risky stocks.

The money illusion aspect associated with market frenzies, as argued by Brunner-

meier and Julliard (2007), exacerbates this phenomena. This also explains why

in Figure 3.4 we found a big upward shift when the persistence transitioned from

a mean reverting to a unit root process.

Major market events, such as the Dot-Com bubble of 1995-1999, will draw

immediate attention from all investors, wherein agents who can observe the time-

varying investment opportunities can strategize (buy and hold for example) and

stand to benefit relative to IID investors. Thus, fixed information costs of partic-

ipation can effectively be diluted. In effect, this means that households following

an IID process are committing a financial mistake (Calvet et al. (2009) and von

Gaudecker (2015)) and are losing out on substantial wealth gains

A unit root is a permanent effect. Thus, our results give a theoretical expla-

nation to the fact that several empirical studies based on SCF data have found

that participation rates have been steadily increasing over the years. For exam-

ple, Poterba (2002) argue that baby boomers are participating more heavily in

the stock market. Furthermore, Ameriks and Zeldes (2002), Curcuru et al. (2004)

and Guiso and Sodini (2013) attribute this steady increase to changes in expected

returns, steady growth of stock market and low cost mutual funds.
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Figure 3.8. Stock Market Participation over the Life-Cycle: Comparative Statics.
This figure illustrates a comparative statics exercise for the equity market participation rate for
households over the lifecycle. Panel A compares the benchmark model incorporating risky
housing with a no-housing model. Panel B shows how the participation rate varies as the
importance of housing represented by the parameter 1 - δ is increased from the benchmark
value 0.1 to 0.15 and when it is lowered to 0.05. Panel C shows the impact of changes in the
fixed cost of equity market participation (F ), low 1.5% and high 3.5% relative to the Benchmark
F of 2.5%. Panel D plots the impact of a high discount factor, β = 0.99 . The horizontal axis
describes the adult age which is actual age - 19 and the vertical axis represents the level of
stock market participation. The continuous line in all the four panels illustrate the Benchmark
calibrations.

Figure 3.8 illustrates the level of market participation when we change several

underlying parameters of the model. We compare the changes relative to the

Benchmark Case.

Panel A and B illustrate the importance of housing wealth for agents. As we

expected and in line with our results in Figure 3.5, we find that when households

are no longer constrained by investment in housing (Panel A) there is 100% partic-
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ipation in equity markets at a relatively young age of 35. In contrast, the presence

of housing prevents a substantial portion of agents from investing in equities. The

effect is more apparent in Panel B of the figure where we both increased and de-

creased the importance of housing (1 - δ) to 0.15 and 0.05, respectively. More

households participated under lower housing and vice-a-versa. Interestingly, the

equivalent change in participation was more with higher housing than when it

was lowered.

For our benchmark calibration, we imposed a fixed cost of equity participation,

F , which was exogenously set as a proportion of the permanent component of

labour income following Gomes and Michaelidis (2005). This proportion, 2.5%

of households annual income, reflects both the monetary cost associated with the

initial investment in the stock market as well as the opportunity cost involved

in obtaining the necessary information for making such an investment. If the

average household has an annual labour income of $35,000, then this fixed cost

would come up to about $875. It is intuitive that any change in this fixed cost

would affect the participation decision in the opposite direction. Consequently,

we find in Panel C that a high F (3.5%) brings down the rate of participation

and a low F (1.5%) shifts up the rate.

Panel D, shows the effect of raising the discount factor β from the benchmark

value of 0.96 to 0.99. A high discount factor means that investors save more

and are more willing to pay the costs of equity participation agreeing with Cocco

(2004).

3.6.5. Preference Heterogeneity and the Puzzles

In the introduction and the modelling sections, we stressed the importance of

preference heterogeneity. In other words how the CRRA preference assumption

that tie both the risk aversion and the intertemporal substitution parameters to

be reciprocals of each other is too restrictive. In our analytical characterization

in Lemma 1, we found that both EIS and RRA affect the level of risky asset

allocation in opposite directions. αt was found to be inversely proportional to

risk aversion and directly proportional to the EIS (inverse with a negative sign).

Our benchmark preference values were ρ = 5 and ψ = 0.2, thus we implicitly

assumed CRRA preferences. We now keep one of the parameter constant and

change the other to see how these influence the asset allocation and participation

decisions. The results are reported in Table 3.2.
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Table 3.2. Stock Market Participation and Stock Holdings

Stock Mkt. Participation (%) α (%)

Survey of Consumer Finances 51.94% 54.76%
Benchmark Model (ρ = 5 and ψ = 0.2) 52.8% 50.8%
Model (Case I - ρ = 5 and ψ = 0.3) 54.2% 54.1%
Model (Case II - ρ = 7 and ψ = 0.2) 50.2% 48.9%

Notes: This table reports the stock market participation rates and the risky stock holdings (α), in percentages.
These are obtained by taking the average value from all the simulated agents. The first row reports the
statistics estimated by Gomes and Michaelidis (2005) based on the 2001 wave of the Survey of Consumer
Finances. The second row reports the simulated results for our Benchmark model. The third and fourth rows
report values when we change the benchmark preference parameters, the coefficient of relative risk aversion ρ
and the elasticity of intertemporal substitution, ψ.

The first row of Table 3.2 reports estimated levels of stockholding and partici-

pation from the 2001 wave of the Survey of Consumer Finances (SCF), reproduced

from Gomes and Michaelidis (2005). Validating our approach, our benchmark

model with homogeneous preferences, second row in the Table, predicts an aver-

age stock market participation rate of 52.8% and conditional on participation an

average risky stock holdings share of 50.8% which matches very well the Survey

data.

This finding contrasts with both the theoretical and empirical literature that

argue for preference heterogeneity. Using microeconomic data, Vissing-Jorgensen

(2002) estimate the level of risk aversion and elasticity of intertemporal substitu-

tion accounting for limited market participation. They find that loosening the link

between EIS and risk aversion and offer risk aversion estimates for stockholders at

around 5-10 and EIS estimates around 1. In a partial equilibrium life-cycle port-

folio choice model much like ours with recursive preferences, but without housing,

Gomes and Michaelidis (2005) simultaneously matches stock market participation

rate and risky asset allocation conditional on participation when they allow for

preference heterogeneity. By considering a 50% split between investors with low

risk aversion (ρ = 1.2) and low EIS (ψ = 0.2); and investors with moderate risk

aversion (ρ = 5) and moderate EIS (ψ = 0.5), they predict a participation rate of

52.1% and an equity share of 54.5% in line with the empirical evidence (row 1).

As our benchmark results showed, we do not need such heterogeneity in pref-

erences (Gârleanu and Panageas (2015)) to match the data. In fact when we

assume preference heterogeneity, as the third and fourth rows of the Table 3.2

indicate, the levels of asset holdings in particular are found to be much worse.

The third row of Table 3.2 reports simulated results when 50% of investors fol-

lowed the Benchmark specification and the rest 50% had the same risk aversion

(ρ = 5) but a higher EIS (ψ = 0.3). We find that the participation rate as well
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as the share of equity holdings went up. This is expected as consistent with our

analytical characterization, see Lemma 1, higher levels of EIS imply more desire

to smooth consumption and the investors accumulate more wealth. This means

increased participation and increased equity share. Conversely, when we consider

a 50% separation between benchmark calibrated agents and a 50% with higher

risk averion (ρ = 7) but the same EIS we find higher participation and equity

allocation. These results are consistent with Vestman (2012) who incorporates

housing in the portfolio allocation model and consequently find lower participa-

tion and asset allocation with higher EIS (0.33) and higher participation with

lower ρ.

It is to be noted that the presence of housing amplifies the effective risk aver-

sion for the investor. This effect has recently been documented by Brunnermeier

and Nagel (2008) and Zanetti (2014). This explains why our model gives a rela-

tively lower stock holding value compared to the SCF data, 50.8% against 54.76%.

In our analysis in Table 3.2, we used SCF data from the 2001 wave while

we incorporated recent data when estimating the moments of the house price

process. This is not an ideal approach when there is substantial evidence that

both participation rates and stock holdings have been rising throughout the years,

see Guiso and Sodini (2013). However, the fact that recent studies have been

concentrated in Scandinavian countries and not the United States forces us to use

the 2001 data.

3.7. Discussion

To summarize the results section, we find five main results. Firstly we were able

to find a hump-shaped profile of lifecycle risky asset allocation concurrent with

the empirical literature. Secondly, we found that the risky asset share is highly

sensitive to factor realizations when returns are time varying and predictable.

High factor realizations or high dividend-yield shifts up the αt curve at all ages.

Extremely low factor realizations or very high factor volatility can indicate a rare

disaster in the sense of Barro (2006, 2009) and this adversely affects the level of

equity demanded. Thirdly, a unit root or explosive roots in the dividend-yield

process indicative of a bubble significantly increases both the participation rate as

well as the equity share conditional on participation. Fourthly, if investors have

the option of return predictability they can hedge risks associated with housing

cycles better compared to no predictability- the IID case. Finally, the presence of
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housing can resolve both the limited asset allocation and the limited participation

puzzles without resorting to preference heterogeneity.

Fernández-Villaverde and Krueger (2011) demonstrate that consumer durables

are crucial to explain the life cycle profiles of consumption and savings. House-

holds begin their economic life without a stock of durables and they are pre-

cluded from building this stock immediately because of the presence of limited

intertemporal markets. As a consequence, during the first part of their life cy-

cle, households are forced to progressively accumulate durables and compromise

on their consumption of nondurables and accumulation of financial assets. This

phenomenon can explain why we observe that empirical life cycle consumption

profiles, both of durables and nondurables, are hump shaped, even after control-

ling for demographics characteristics and why most households do not hold any

substantial financial wealth until they enter into their forties.24

Before we conclude, some important caveats are worth mentioning. In our

theoretical model we made two assumptions that can alter some of the major

results. Firstly, we imposed short sales constraints on the investor meaning in that

in the presence of rare disaster in the economy, investors/market participants are

unable to hedge these risks by shorting the risky asset. For example Munk and

Sørensen (2010) finds that in the absence of short-sales constraints, in the very

early years (20-25), stocks are so attractive that the investor typically has 100% in

stocks, but after a few years the long-term bond enters due to its hedging qualities.

Secondly, we imposed the condition that every household has to own a house.

This is why the participation rates are very low in the 20-25 age group. This

forced homeownership meant that younger and poorer households have no option

to rent. This explains why Yao and Zhang (2004) and Li and Yao (2007) find

relatively higher levels of participation and risky asset allocation in the early years.

Thirdly, several studies have found that the parameters in the time varying return

predictable process is highly uncertain. In an influential paper, Stambaugh (1999)

finds that the optimal buy-and-hold stock allocation can be higher at low values

of the current dividend yield than at high values, even though the long-horizon

stock return has a lower mean at the low dividend yield and can have at least

as high a variance. This result can be traced to skewness in long-horizon stock

returns arising from uncertainty about parameters, particularly the autoregressive

coefficient of dividend yield. The skewness in the predictive distribution of returns

is positive at low dividend yields and negative at high yields, and the effect of this

24The original version of this article was published as a working paper in 2001 and was the
harbinger of multiple papers in this literature.
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skewness can be strong enough to produce a textitnegative association between

the optimal stock allocation and dividend yield.

3.8. Conclusion

In this chapter, we combine two important streams of literature in financial eco-

nomics, the return predictability of stocks and the portfolio choice in the presence

of risky illiquid housing, to examine patterns of risky asset allocation and stock

market participation through the life-cycle. We successfully resolve two important

puzzles observed in household data, the limited stock allocation puzzle and the

limited equity market participation puzzle. We also looked at how these puzzles

behave when there is a rare event in financial markets such as a bubble or when

there is a disaster such as the recent economic crisis. Our results contribute to

the literature in multiple ways.

The models closer to ours in the literature are Campbell and Viceira (1999),

Cocco (2004), Gomes and Michaelidis (2005) and Michaelides and Zhang (2015).

Campbell and Viceira (1999) solves for optimal αt analytically but assumes a

highly stylized model with no labour income or durable housing. In the analytical

section of this chapter, we extended their work to include both housing and labour

income. As in Gomes and Michaelidis (2005) we have recursive preferences and

a calibrated labour income process in a lifecycle context to which we add the

durable housing good. Cocco (2004) is perhaps the closest model to ours in that

it models housing both as part of the utility function and allows collateralized

borrowing. However, Cocco assumes that the returns are IID. We nest the IID

as special case of expected returns which can be time varying and predictable.

Michaelides and Zhang (2015) analyses return predictability in a lifecycle context

but without housing.

The main result we find is that portfolio choice and market participation

profiles are much different in the return predictability case relative to the IID

case. We find the when returns are predictable from a factor such as the log

dividend-price ratio, the optimal risky share of liquid wealth invested in the risky

asset varies largely depending on the factor’s: realization, persistence and volatil-

ity. High realizations and high persistence of the factor, specifically unit root or

above, substantially shifts up both the risky equity allocated as well as the rate

of stock market participation. Likewise, a huge dip in the factor or a high volatil-

ity suggesting a ”rare disaster” in the economy brings down the liquid wealth
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invested in risky stocks. Unlike the bubble scenario, a rare disaster such as a

market crash was found to have a heterogenous response over the life-cycle with

older and retired households (65-100) being more affected (adversely).

Furthermore, investors are able to hedge background risks, such as labour

income or house price volatilities, better when they can predict expected excess

returns implying that substantial welfare losses can be avoided vis-a-vis the IID

case. Finally, the presence of housing predicted a hump-shaped profile for risky

asset allocation and participation with simulated rates very close to the Survey

of Consumer Finances estimates without any preference heterogeneity.

There are several interesting extensions to our model which are worth pur-

suing. We only considered three financial assets, ignoring assets such as cash,

which also acts as a medium of exchange and with it comes the risk of interest

rate changes. Another possible area of future research is incorporating ideas of

parameter or model uncertainty in the time varying regression framework, see

Michaelides and Zhang (2015).
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3.A. The Euler Equations

We follow Bansal and Yaron (2004) and simplify the portfolio choice problem

through a change of variables in order to utilize the arguments made by Epstein

and Zin (1991). Each period the household invests available wealth after the

labour income is realized in the financial assets, the households savings in period

t is :

2∑
i=0

Bit = Wt + Yt − Ct − PH
t EXt (3.60)

Given that, the intertemporal budget constraint can be expressed as

Wt+1 =
2∑
i=0

BitRi,t+1 (3.61)

where Bit represents all the financial assets that the household owns at time t.

The Euler equations that we derive hold for any number of assets that the investor

owns, however for tractability, we only consider two financial assets. The risky

stocks and the riskless bonds who have a time varying equity premium. Housing in

our model is considered as a liquid asset which can be costlessly traded without

incurring any transaction cost. Defining the gross rate of return from housing

from period t to t+ 1 after accounting for depreciation ν as

RH,t+1 =
(1− ν)PH

t+1

PH
t

, (3.62)

B3,t = PH
t Ht, (3.63)

W̃t = Wt + Yt + (1− µ)PH
t+1Ht. (3.64)

where W̃t is the redefined wealth, comprising the financial wealth, labour income

and the housing wealth.25 The fact that we include labour income inside the new

wealth variable implies that the two states of nature for inome process will now

25It has to be noted that RH,t+1 is the gross return on housing which is given by

RH,t+1 = 1 + simple return, where

Simple return =
Pt+1(1− ν)− Pt

Pt
=
Pt+1(1− ν)

Pt
− 1
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translate into two states for the wealth process, one for retirement and the other

for employment. The intraperiod budget constraint can be defined as

3∑
i=0

Bit = Wt + Yt − Ct + PH
t (Ht − EXt) = W̃t − Ct (3.65)

and the intertemporal flow of wealth is

Wt+1 =
3∑
i=0

BitRi,t+1. (3.66)

Then following Yogo (2006) when the portfolio weight αit = Bit/(W̃t − Ct), we

end up with the equation in the wealth return form that we follow in the main

text:

Wt+1 = (W̃t − Ct)
3∑
i=0

αitRi,t+1 (3.67)

The Bellman equation for the household’s intertemporal optimization problem in

the employment state takes the form

V e
t (W ) = max

Ce,αe1,α
e
2,α

e
3

{
(1− β)u(Ct, Ht)

1− 1
ψ + βEt

[
V 1−γ
t+1

]1/κ
} 1

1−1/ψ

(3.68)

where the continuation value Vt+1 is a weighted sum over the probability of em-

ployment πe and retirement (1 − πe). When the agent is employed, he faces

uncertainty in the next period.

Vt+1(Wt+1) = πeV e
t+1(Wt+1) + (1− πe)V r

T+1(Wt+1) (3.69)

As in Epstein and Zin (1991), the homogeneity of the value function imply that

the optimal value can be written as a function of only wealth

V e
t (W̃t) = φtW̃ e

t (3.70)

Since PH
t Ht = α3,t(W̃t − Ct), Ht can be substituted out of intraperiod utility as

u(Ct, Ht) = Ct

[
1− δ + δ

(α3,t(W̃t/Ct − 1)

Pt

)1−1/ρ
]

(3.71)

= ṽ
(W̃t

Ct
, α3,t

)
(3.72)

187



We simplify the notation ṽ
(
W̃t

Ct
, α3,t

)
≡ Ṽt and let Θ = ṽ

1−1/ρ
t , Ξ ≡ W̃t/Ct − 1.

Using the intertemporal budget constraint (3.67) the first order condition of the

Bellman equation (3.68) w.r.t consumption can be written as

(1− β)(Ctṽt)
−1/ψ

(
ṽt − ϑ

1
1−1/ρ

−1Ξ−
1
ρ δ
(α3,t

PH
t

)1− 1
ρ
(W̃t

Ct

))
− β(W̃t − C∗t )−

1
ψEt[φ

1−γ
t+1 ]

1
κ = 0.

(3.73)

Let Et[φ
1−γ
t+1R

1−γ
p,t+1]

1
κ ≡ µ∗. Noticing that

Ξ−
1
ρ δ
(α3,t

PH
t

)1− 1
ρ (W̃t

C∗t

)
=
ṽt

1− 1
ρ
−(1−δ)

W̃t

C∗
t
− 1

(3.74)

and ϑ1/(1−1/ρ)−1 ≡ ṽt
−1/ρ yields

(1− β)(1− δ)(C∗t )−
1
ψ ṽt

1
ρ
− 1
ψ W̃t − (1− β)(C∗t )1− 1

ψ ṽt
1− 1

ψ = β(W̃t − C∗t )1− 1
ψµ∗

(3.75)

Substituting optimal consumption C∗t to the Bellman equation (3.68) and using

(3.70) we get

φtW̃t =

[
(1− β)(C∗t ṽt)

1− 1
ψ + β(W̃t − C∗t )1− 1

ψµ∗

] 1
1−1/ψ

(3.76)

Plugging (3.75) to (3.76) gives

φt =

[
(1− β)(1− δ)ṽt

1
ρ
− 1
ψ

] 1
1−1/ψ(C∗t

Wt

) 1
1−ψ

(3.77)

Yogo (2006) shows that using the arguments made by Epstein and Zin (1991) one

gets the set of FOC’s w.r.t Ct and portfolio choice αi,t for i = 1, . . . , 3

Et[M
∗
t+1R

∗
p,t+1] =

(
1− α3,tuH

PH
t uC

)κ
, (3.78)

Et[M
∗
t+1(Ri,t+1 −Rf,t+1)] = 0, i = 1, . . . , 3 (3.79)

Et[M
∗
t+1(Rf,t+1 −R3,t+1)] =

uH
PH
t uC

(
1− α3,tuH

PH
t uC

)κ−1. (3.80)

which together imply that

Et[M
∗
t+1Ri,t+1] =

(
1− α3,tuH

PH
t uC

)κ−1

. (3.81)
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After normalization, we get the standard Euler equations in the text. The case

of retirement and employment affects only the discount variable and hence it

is straightforward. For the employment state, we write the expectations as a

probability weighted average of the two values while under retirement there is no

uncertainty.

3.B. Intratemporal Optimization

Following Yogo (2006) and Bednarek (2014) the marginal rate of substitution

between the durable and the non-durable housing consumption good is

uH
uC

=
δ

1− δ
(H
c

)−1/ρ
. (3.82)

where uC is the marginal utility with respect to consumption and uH with Hous-

ing. The optimal consumption of the durable housing requires an intratemporal

first order condition in the form

uHt
uCt

= PH
t − (1− ν)Et[Mt+1P

H
t+1] = Qt (3.83)

Qt here is interpreted as the user cost of the service flow for the housing good.

As the durable good in our model is a house, the user cost is nothing but the

rent. This equation simply says that the marginal rate of substitution between

the durable good and nondurable good consumption goods must equal the relative

price of the durable good. When the depreciation rate ν = 1 and the intratemporal

substitution ρ = 1, this equation reduces to δ/(1 − δ) = PH/C, meaning that δ

can be interpreted as the expenditure share of the durable good.

3.C. Log Linear Euler Equations

We first derive the log linearized version of the highly non-linear Euler equations

for the retirement state. We can write equation (3.22) as

1 = (πe)κEt

[
exp

{
κ
(

ln βe − 1

ψ
ln(Ce

t+1/C
e
t ) + (

1

ρ
− 1

ψ
) ln(v(Ce

t+1, H
e
t+1)/v(Ce

t , H
e
t )) + lnRi,t+1

)}]

+(1− πe)κEt

[
exp

{
κ
(

ln βe − 1

ψ
ln(Cr

t+1/C
e
t ) + (

1

ρ
− 1

ψ
) ln(v(Cr

t+1, H
r
t+1)/v(Ce

t , H
e
t )) + lnRi,t+1

)}]
(3.84)
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Denoting log variables with lower case letters

1 = (πe)κEt

[
exp

{
κ
(

ln βe − 1

ψ
(cet+1 − cet ) + (

1

ρ
− 1

ψ
)(v(cet+1, h

e
t+1)− v(cet , h

e
t )) + ri,t+1

)}]

+(1− πe)κEt

[
exp

{
κ
(

ln βe − 1

ψ
(crt+1 − cet ) + (

1

ρ
− 1

ψ
)(v(crt+1, h

r
t+1)− v(cet , h

e
t )) + ri,t+1

)}]
(3.85)

Assuming intraperiod utility as a Cobb-Douglas form with ρ = 1,

u(Ct, Ht) = Cδ
tH

1−δ
t (3.86)

= Ct

(Ht

Ct

)δ
(3.87)

= Ctv(Ct, Ht) (3.88)

implying

vt(Ct, Ht) =
(Ht

Ct

)δ
(3.89)

Taking logs,

ln(vt) = δ(ht − ct) (3.90)

Plugging this into the Euler equation we get

1 = (πe)κEt

[
exp

{
κ
(

ln βe − 1

ψ
(cet+1 − cet )−

δ

ψ
((het+1 − het ) + (cet+1 − cet )) + ri,t+1

)}]

+(1− πe)κEt

[
exp

{
κ
(

ln βe − 1

ψ
(crt+1 − cet )−

δ

ψ
((hrt+1 − het ) + (crt+1 − cet )) + ri,t+1

)}]
(3.91)

Following Viceira (2001), we can write this Euler equation in two variables

1 = πκEt[exp{xt+1}] + (1− π)κEt[exp{yt+1}] (3.92)

where xt+1 is the first term and yt+1 is the second term on the right hand side.

Taking a second order Taylor expansion of exp{xt+1} and exp{yt+1} around x̄t =
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Et[xt+1] and ȳt = Et[yt+1], we get

1 ≈ πκEt

[
exp{x̄t}

(
1 + (xt+1 − x̄t) +

1

2
(xt+1 − x̄t)2

)]

+(1− π)κEt

[
exp{ȳt}

(
1 + (yt+1 − ȳt) +

1

2
(yt+1 − ȳt)2

)]
(3.93)

≈ π exp{x̄t}
(

1 +
1

2
V art(xt+1)

)
+ (1− π) exp{ȳt}

(
1 +

1

2
V art(yt+1)

)
(3.94)

A first order Taylor expansion around zero, as in Viceira (2001), gives the result

1 ≈ πκ
(

1 + x̄t +
1

2
V art(xt+1)

)
+ (1− π)

(
1 + ȳt +

1

2
V art(yt+1)

)
(3.95)

Substituting the values of xt, xt+1, yt, yt+1 to eq. (3.91) we get the log linear euler

equation for the employment state

1 ≈
∑
s=e,r

πκs

(
Et

[
1 + κ ln βs − κ

ψ
(cst+1 − cet )−

κδ

ψ
(hst+1 − het ) +

κδ

ψ
(cst+1 − cet ) + κri,t+1

]
+

1

2
V art

(
κri,t+1 −

κ

ψ
(cst+1 − cet )−

κδ

ψ
(hst+1 − het ) +

κδ

ψ
(cst+1 − cet )

))
(3.96)

for i = p. The corresponding equation for the retirement state is straightforward

when we notice that under the retirement state the labour income is zero and

furthermore there is no uncertainty, that is, it is an irreversible state. The log

linear euler equation for the retirement state is thus

0 ≈

(
Et

[
κ ln βr − κ

ψ
(crt+1 − crt )−

κδ

ψ
(hrt+1 − hrt ) +

κδ

ψ
(crt+1 − crt ) + κri,t+1

]
+

1

2
V art

(
κri,t+1 −

κ

ψ
(crt+1 − crt )−

κδ

ψ
(hrt+1 − hrt ) +

κδ

ψ
(crt+1 − crt )

))
(3.97)

3.D. Log-Linear Budget Constraint

The wealth-return intertemporal budget constraint for the employment state is

given by

Wt+1 =
(
Wt + Yt − Ct + PH

t (Ht − EXt)
)
Rp,t+1 (3.98)
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Following Campbell (1993, 1996) and Viceira (2001) we start the log-linearization

by dividing with the labour income and express it as

Wt+1

Yt+1

=
(

1 +
Wt

Yt
− Ct
Yt

+
PH
t (Ht − EXt)

Yt

)( Yt
Yt+1

)
Rp,t+1 (3.99)

As PH
t (Ht−EXt) is nothing but the net housing wealth after accounting for any

expediture (EXt), we denote this by a new variable WH
t .Taking logs

wt+1 − yt+1 = ln
(

1 + exp(wt − yt)− exp(ct − yt) + exp(wht − yt)
)
−∆yt+1 + rp,t+1

(3.100)

where lower case letters as usual denote log variables and ∆ is the first difference

operator. The first term in the right hand side, ln(1+exp(wt−yt)−exp(ct−yt)+

exp(wht − yt)), is non-linear. We linearise this term by taking a first order Taylor

expansion around the stationary log consumption-income, log wealth-income and

log housing wealth-income ratios. That is, the equation

ln(1 + exp(wt − yt)− exp(ct − yt) + exp(wht )− yt)) (3.101)

is linearized around (wt − yt) = E[wt − yt], (ct − yt) = E[ct − yt] and wht −
yt = E[wht − yt]. For simplicity, we represent mt = wt − yt, nt = ct − yt and

ot = wht − yt and then log-linearize around m̄t = E[mt], n̄t = E[nt] and ōt = E[ot]

we approximate the non-linear equation (3.101) as

ln(1 + exp(mt)− exp(nt) + exp(ot)) ≈ ln
(
1 + exp(m̄t)− exp(n̄t) + exp(z̄t))

+ ρw(mt − m̄t)− ρc(nt − n̄t) + ρh(ot − ōt)
(3.102)

where

ρw =
exp(m̄t)

1 + exp(m̄t)− exp(n̄t) + exp(ōt)
, (3.103)

ρc =
exp(n̄t)

1 + exp(m̄t)− exp(n̄t) + exp(ōt)
, and (3.104)

ρh =
exp(ōt)

1 + exp(m̄t)− exp(n̄t) + exp(ōt)
(3.105)

Plugging this log linearized equation in (3.100) and substituting the values for

mt, nt and ot we get,

wet+1 − yt+1 = ke + ρew(wet − yt)− ρec(cet − yt) + ρeh(w
he
t − yt)−∆yt+1 + rep,t+1

(3.106)
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where we have added the superscript e to differentiate from the retirement state.

The constant ke is given by

ke = ln(1 + exp(m̄t)− exp(n̄t) + exp(ōt))− ρwm̄t + ρcn̄t − ρhōt (3.107)

We also have

Ht = (1− ν)Ht−1 + EXt (3.108)

that is

Ht − EXt = (1− ν)Ht−1 (3.109)

implying

PH
t (Ht − EXt) = PH

t (1− ν)Ht−1 (3.110)

In logs

ln(PH
t (Ht − EXt)) = pHt + ln(1− ν) + ht−1 (3.111)

or

wht = pht + ln(1− ν) + ht−1 (3.112)

Plugging this into eq. (3.106) we get the log linear intertemporal budget constraint

for the employment state,

wet+1 − yt+1 = ke + ρew(wet − yt)− ρec(cet − yt) + ρeh(p
h
t + ln(1− ν) + het−1 − yt)−∆yt+1 + rep,t+1

(3.113)

For the retirement state, there is no labour income, hence,

Wt+1 =
(
Wt − Ct +WH

t

)
Rp,t+1 (3.114)

Dividing through Wt,

Wt+1

Wt

=
(

1− Ct
Wt

+
WH
t

Wt

)
Rp,t+1 (3.115)

The rest of the derivation is in similar fashion as the employment state (above).

Taking logs and then linearizing around stationary log endowment wealth to hous-

ing wealth ratio, wht − wt = E[wht − wt] and log consumption to wealth ratio,
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ct − wt = E[ct − wt] we arrive at the log linearized intertemporal budget con-

straint for the retirement state,

wrt+1 − wt = kr + ρrh(w
hr
t − wt)− ρrc(crt − wt) + rrp,t+1 (3.116)

where we have added the superscript r to indicate retirement state. Expressing

housing wealth in price form,

wrt+1 − wt = kr + ρrh(p
h
t + ln(1− ν) + hrt−1 − wt)− ρrc(crt − wt) + rrp,t+1 (3.117)

Here the constant kr is

kr = ln(1 + exp(E[whrt − wt])− exp(E[crt − wt]))− ρrHE[wht − wt] + ρrcE[crt − wt]
(3.118)

and

ρrh =
exp(E[whrt − wt])

1 + exp(E[whrt − wt])− exp(E[crt − wt])
, (3.119)

ρrc =
exp(E[crt − wt])

1 + exp(E[whrt − wt])− exp(E[crt − wt])
. (3.120)

3.E. Optimal Portfolio Choice in the

Employment State

The result for the retirement state follows directly from the discussion in the

text. In what we follows we detail the derivation for the employment state. In

the employment state, the log Euler equation for a general risky asset (stocks or

house) is given by

1 =
∑
s=e,r

πκs

(
Et

[
1 + κ ln βs +

κ

ψ
∆cst+1(δ − 1)− κδ

ψ
∆hst+1 + (κ− 1)rp,t+1 + ri,t+1

]
+

1

2
V art

(
ri,t+1 + (κ− 1)rp,t+1 +

κ

ψ
∆cst+1(δ − 1)− κδ

ψ
∆hst+1

))
and for a risk free asset i = f is:

1 =
∑
s=e,r

πκs

(
Et

[
1 + κ ln βs +

κ

ψ
∆cst+1(δ − 1)− κδ

ψ
∆hst+1 + (κ− 1)rp,t+1 + rf

]
+

1

2
V art

(
(κ− 1)rp,t+1 +

κ

ψ
∆cst+1(δ − 1)− κδ

ψ
∆hst+1

))
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Subtracting the second equation from the first and simplifying we get,

Et[ri,t+1]− rf +
∑
s=e,r

πκs
1

2
V art(ri,t+1) =

∑
s=e,r

πκs

(
(1− κ)cov(ri,t+1, rp,t+1) +

κ

ψ
(1− δ)cov(ri,t+1,∆c

s
t+1) + κ

δ

ψ
cov(ri,t+1, δh

s
t+1)
)

(3.121)

We make an assumption that πκe + (1 − πe)κ u 1. This approximation is exact

under CRRA preferences , that is when κ = 1. Equation (3.121) simplifies to

Et[ri,t+1]− rf +
1

2
V art(ri,t+1) =(1− κ)cov(ri,t+1, rp,t+1)

+
∑
s=e,r

πκs

( κ

ψ
(1− δ)cov(ri,t+1,∆c

s
t+1) + κ

δ

ψ
cov(ri,t+1, δh

s
t+1)
)

(3.122)

We derived expressions for the three covariance terms as functions of wealth and

portfolio choice for the retirement state:

cov(ri,t+1, rp,t+1) =αeitσ
2
it

cov(ri,t+1,∆c
s
t+1) =cov(ri,t+1, c

s
t+1 − wt+1) + αeitσ

2
it

cov(ri,t+1,∆h
s
t+1) =cov(ri,t+1, h

s
t+1 − wt+1) + αeitσ

2
it

These will hold for the employment state as well. Substituting these values and

rearranging for αeit using the fact that κ = 1−γ
1− 1

ψ

:

αeit =
1

γ

Etri,t+1 − rf + 1
2
σ2
it

σ2
it

+
( 1

1− ψ

)(1− γ
γ

)(∑
s=e,r

πκs

[(1− δ)σi,(cst+1−wt+1) + δσi,(hst+1−wt+1)

σ2
it

])
(3.123)

where V art(ri,t+1) = σ2
it, cov(ri,t+1, rp,t+1) = σri,t+1,rp,t+1 , cov(ri,t+1, c

s
t+1 − wt+1) =

σi,cst+1−wt+1 and cov(ri,t+1, h
s
t+1 − wt+1) = σi,hst+1−wt+1 .

3.F. Constructing the Budget Constraints

For any time period t > 1, the consumption Ct of other non-durable goods for

the investor or the household can be written as:

Ct = Financial Wealtht + Labour Incomet − Expensest − Asset Allocationt
(3.124)
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That is, at each period t the investor can consume what is left of once he allocates

his income and wealth towards expenses and accumulating assets. The financial

wealth at time t is the gross returns from the three assets, Stocks, Bills and

Mortgage, he held in period t− 1:

Financial Wealtht = RtSt−1 +RfBt−1 −RDDt−1 (3.125)

Also,

Labour Incomet = Yt (3.126)

At every period the investor can choose to spend the fixed cost involved in equity

market participation (if he has not done so before). We let FCt take the value of

1 if the investor chooses to pay the fixed cost of equity market participation in

period t and zero otherwise and F the monetary value involved in the participa-

tion. Furthermore, at every period the investor has to spend money on housing

maintenance. The total expenses is, thus given by:

Expensest = FCtFYt + δPtHt−1 (3.127)

The investor allocates the remaining wealth after expenses into the three financial

assets:

Asset Allocationt = St +Bt −Dt (3.128)

Plugging the four expressions into the budget constraint:

Ct = (RtSt−1 +RfBt−1 −RDDt−1) + Yt−
(FCtFYt +mchPtHt−1)− (St +Bt −Dt) (3.129)

We define cash on hand, Xt, in the lines of Deaton (1991) and Carroll (1997),

as the sum of liquid or financial wealth and Labour Income:

Xt = (RtSt−1 +RfBt−1 −RDDt−1) + Yt (3.130)

Expressing the budget constraint in terms of cash on hand and rearranging we

get the date t inter-temporal budget constraint for the investor:

St +Bt =

{
Xt − Ct − FCtFYt − δPtHt−1 +Dt, ∀t
Xt − Ct − FCtFYt − δPtHt−1 +Dt + (1− Λ)PtHt−1 − PtHt, ∀t

(3.131)
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Also, consumption must be non-negative at all dates:

Ct ≥ 0, ∀ t (3.132)

and we define M as the proportion of liquid assets held in stocks over stocks plus

bills:

Mt =
St

St +Bt

∀ t, Mt∈ [0, 1] (3.133)

Wealth at date t+ 1 is given by

WT+1 = XT+1 −mchHTPT+1 + (1− Λ)HTPT+1 (3.134)

3.G. Numerical Solution

The life-cycle constrained optimisation problem cannot be solved analytically.

The setup of the model with discrete choice of stock market investment, fixed

costs and the presence of borrowing constraints imply that we cannot rely on

the existence of smooth first order conditions that could otherwise have used to

solve the model efficiently. Hence, we resort to Value Function Iteration, a robust

method of optimization based on the Contraction Mapping Theorem.26

As this is a finite time optimization problem, a solution exists and is deduced

by the Backward Induction Algorithm. At the terminal period, the value function

reduces to the bequest function. Iterating each period backwards, we get the

optimal policies for consumption, housing, debt and asset allocation. The stock

market participation decision is made based on comparing the value functions

conditional on having paid the fixed cost with the no fixed cost value function.

Similarly, the decision to move house is based on choosing the action that gives

the maximum value function conditional on no movement against movement.

Shocks to the equity premium, house prices and labour income were approx-

imated using Gaussian-Hermite Quadrature. Optimization over different choices

were implemented using grid search. We reduce the state-space dimensionality

through standardizing by the permanent component of labour income for faster

computation.

26According to the Contraction Mapping Theorem, there is an operator T [.] that maps the
value function into itself, v = T [v]. Under particular conditions, T [.] has a unique fixed point,
say v∗, such that v∗ = T [v∗], and that a sequence of v’s, vn+1 = T [vn], initiated at any v0
converges to this fixed point if the state space is a complete metric space.
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3.H. Recursive Utility

In this section we explore the construction of recursive utility used in this chap-

ter and detail the implications for the temporal behaviour of consumption and

portfolio allocation. Epstein and Zin (1989) analytically prove (i) the existence

of recursive intertemporal utility functions, and (ii) the existence of optima to

corresponding optimization problems.

Epstein and Zin (1989) follow Kreps and Porteus(1978) and define the con-

sumption space in terms of temporal lotteries to model the way in which consump-

tion uncertainty is resolved over time. Each temporal lottery d can be pictured

as an infinite probability tree in which each branch corresponds to a determin-

istic consumption stream y ∈ R∞+ . The lottery d can be identified with a pair

(c0,m) where c0 ≥ 0 denotes the nonstochastic period 0 level of consumption and

m, a probability measure over the set of t = 1 nodes in the tree, represents the

uncertain future.

To understand the structure of recursive utility, consider V as a utility function

defined as

V (c0, c1, . . .) = W (c0, V (c1, c2, . . .)) (3.135)

for some function W , termed as an aggregator as it combines current consumption

and future utility to determine current utililty. In the presence of stochastic terms,

future utility is random and thus it is natural to compute a certainty equivalent

for random future utility and then to combine the certainty equivalent utility level

with c0 via an aggregator. The utility function V is recursive if it satisfies the

following equation on its domain:

V (c0,m) = W (c0, µ(V [m])) (3.136)

for some increasing aggregator function W : R2
+ → R+ and some certainty equiv-

alent µ. For the existence of utility functions in the form of eq 3.136 requires that

the aggregator W has the Constant Elasticity of Substitution form given by

W (c, z) = [cρ + βzρ]1/ρ, 0 6= ρ < 1, 0 < β < 1 (3.137)

with elasticity of substitution σ = (1 − ρ)−1. Thus, ρ is a parameter that is

understood to reflect substitutability. Assuming that the certainty equivalent

form is in the Kreps and Porteus (1978) class,

µ(p) = (Epx̃
α)1/α, p ∈M(R+), (3.138)
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where 0 6= α < 1 can be considered as the risk aversion parameter, consequently

V follows

V (c,m) = [cρ0 + β(EmV
α(.))ρ/α]1/ρ (3.139)

Regarding the attitudes towards the timing of the resolution of uncertainty, given

the functional form of eq. 3.139, early (late) resolution is preferred if α < (>)ρ. it

is noteworthy that the timing of this uncertainty differs between different classes

of utility functions, the von-Nuemann - Morgenstern Expected Utility form gives

indifference towards any kind of resolution of uncertainty.
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