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ABSTRAGT

Thin-walled structural forms exhibit in their behaviour under
compressive actions, features normally suppressed by the heavy section
outlines used in hot rolled constructions; Thus, over-a2ll instability
under a combination of torsion and flexure, is obtained in a much wider
range than in hot rolled sectionsy and local instability, i.e.;
bug?ling of the plate components (flange or web), disregarded in hot
rolled construction becomes one of the chief characteristics of thin-
walled behaviours The subject-matter of the thesis deals with these
two forms of instability both theoretically and experimentallye.

The contents of the thesis are divided into 4 main parts, each
part being furthér subdivided into convenient sections.

Part I presents a critical review of published work relevant
tos
(15 over-all instability in torsion-flexure, and
(11) 1local instability of plate components of struts in flexure.

This reveals the absence of theoretical treatment ofs

(1) mixed boundary conditions in torsional-flexural buckling, eeg.,
a hinged end strut with warping restraint,'and

(ii) the determination of the critical stress in local buckling

of plates subjected to linearly varying compressive load actions,
applicable to the plate components of structural sections subjected

to eccentric axial loadinge



There also appears to be a gcarcity of experimental investigations
in this latter field.

The review is followed by the theoretical analysis presented
in Part II. This develops an iterative method of general application
to problems of instability. The method is first applied to the
derivation of the torsional-flexural buckling load for mixed boundary
conditions not hitherto solved, such as the combination of hinged
ends with warping restraint. The second application of the iteration
method is the derivation of the local buckling strength of plates
elastical;y supported along one longitudinal edge and free along the
other. The loading for these boundary conditions, not hitherto
considered in published literature, is an axial compressive action
linearly varying across the width of the plates This is applied to
assess the strength in local instability of eccentrically loaded
thin-walled channel sections.

The experimental work described in Part III presents the results
of some 190 strut tests to destructions These consisted of equal and
unequal angle and channel specimens of 65 S.W.Ps Aluminium Alloy,

3 inches to 132 inches long. The tests were designed to investigate
the effects on over-all and local buckling of the variation of load
eccentricity, length, section profile and method of menufacture (cold

formed versus extruded).



In Part IV the results obtained are analysed and compared with
the theory showing good agreements

The textual part of the thesis concludes with a Summary which
draws attention to the main features of instability conditions
investigated, as indicated by the theory and confirmed by the experi-
smental worke
) | The thesis concludes with a Bibliography, followed by 7 Appendices
in which the detasils of various aspects of the work are presenteds

Certain portions of the theoretical and experimental work carried
out by the author, are incorporated in a paper to be published by The
Institution of Engineers and Shipbuilders in Scotland, in December,

1955 (42).
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The following symbols are used throughout the text. Ahy

symbol not listed is defined where it first appears.
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= Rectangular co-ordinates.

-~ Components of displacement in x=- and y- directionse.
- Angle of twist at any sectiona

-~ Deflection out of the plane of a plate.

~ Number of sinusoidal half waves.

=~ Cross sectional area,

= Length of a strut.

- Length, breadth and thickness of a plate.

= Effective width of a plates

- Width of web of a channel section.

= Dimension ratios

= TFlexural rigidity of a plate.

- Coefficient of edge fixitye

= Co-ordinates of the shear centre.

= Principal radii of gyrations

= Principal moments of inertia.

- Polar moment of inertia about the shear centre axis.
2 a . I,,.Ig

x‘ + ‘ﬂ. g \.

~ Plate constant, 2




Channel constant referred to the flenge plate.
Zccentricities in the x~ and y- directionse.
Young's lModulus.

Rigidity Modulus.

Poisson's Ratio.

Torsionél rigiditye

Warping rigidity.

Intensity of forces per unit length in the
middle plane of a plates

Critical value of forces
Euler buckling loadse

Pure torsion buckling loads
Critical load.

Direct stresse

Critical stresse

Euler buckling stresse
Yield stresse

Proof stress.

Ultimate stresse
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PART I.

CRITICAL REVIEW OF PUBLISHED WORK.

OVER-ALL INSTABILITY IN TORSION AND FLEXURE
(1) Analytical Investigations.

(i1) Experimental Investigations.

LOCAL INSTABILITY OF PLATE COMPONENTS OF
STRUTS IN FLEXURE,

(1) Analytical Investigationse

(i1) Experimental Investigations.

)



1., OVER-ALL INSTABILITY OF STRUTS IN TORSION AND FLEXURE.

(1) Analytieal Investigations,

Stmté were first observed to fail by torsion when open thin-walled
sections were used in eircraft design. Some torsionally weak struts have
since besen observed to fail by combinsd torsion and flexure.

Wagner(1,2) investigates torsional buckling of open thin-walled
sections and introduces the concept of "unit warping® in his analysise.
This is dencted Ly ”w\\ s the warping of the cross section due to unit
rate of twlst about the shear centre and is given by the relation

w:isrtds-{—r‘:\t | . @

where Y‘t end ¥, are the lengths of the perpendiculars frbm the shear

centre to ths tangent and the normal &t any particular point on the mean
outline of the section respectively.

Wagner assumes that only torques act on the member at any section
along the strut, and neglects the deformation due to the variation of
normal stress along the length of the strute He gives the load for

an eccentrically loaded strut as
2

an:;_“f(c*'c'%) . @




where r;a = 2

re
.
I

by
% = distance of dA4 from the neutral axis,
and r ’

distance of dA from the shear centre axis.

Wagner points out that for a centrally loaded strut there is no
conpectibn between Eulerian buckling and twisting, the section is to be
computed either for buckling (Buler) or twisting, according to which
phencmenon corresponds to the smalleat buckling loade

Lundquiet and Fligg(3) give an exact theory for the primary feilure
of centi'ally loaded struts with cross sections symmetrical about their
principal axese They assume that both torque and bending actions are
present at any section along the strut, the combined effect of which is
to cause the cross section to twlst about an axis, other than the shear
centre axis, parallel to the strute The general equation for a centrally
loaded strut 1s given by

C C, «*
OEP. - -T; + Ip LZ @

where Ip is the poler moment of inertias of the cross section about the axis

—

of rotation, and C is the torsion-bending constant (i.e., warping rigidity),
depending upon the location of the axlis of rotation,

Lundquist and Fligg extend the use of their proposed formulee to -
stresse_;a beyond the limit of proportionality by the imtroduction of the
effective moduli £ and G in the values of C and C .
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Kappus(4) presents a theory for centrally loaded struts besed upon
Wagner! g concept of unit warping. He emplois the energy method and the
calculus of variations to derive the differemtisl equations for the strain
quantities. Uxilike Wagner, Kappus realises the posgibility of buckl‘!.ng
by simultaneous torsion and flexures " He considers the movement of the
cross sections as pui‘e rotations about certain axes of rotation, the location

of which are defined in his analysis.
The eritical value of the stress Ocr is ealculated from

C -0 (0‘;+cé+03> +o‘(010'2+ 02‘-03*-630“—/2;-/1‘/3)
- 2 2 2 |
s gL - A -4 5~ (20 )= 0 ©,
v ET wiE L C —"—-2C
W‘\ev‘e O’;= . Y ")05:‘— . 2® , 03: 'sz ]
24 2 4 I,
w* E Ry | vER, _ wEIL,

= . = —_— /O =
G A T C R
Ry = Jpchm s R = ngdﬂ

Goodier(5,6) extending the ideas of Wagner and using the shear centre
as the origin of the system of co-ordinates , presents a simplified thecry.
Complications, associated with the evaluation of consgtants for various
centres of rotation, are avolded by considering the movement of the cross
sections not as pure rotation, but as a translation and rotation about

the shear centre.



The critical value of the load Pcr. for a pin ended, eccentrically

loaded strut is given by
(- B B)(- B) (- B)(-B) (X, wx
P P P. P P TH* T
_ , 9 : 2 %
R R
(- B (- B

where K, = 576 (x?'-.. 31) da - %, A v?

K, = |9 (% d)da -y v

He also presents an alternative solution by the energy method, in a

- manner similar to that followed by Kappus, and shows that the critical

load is again given by equation @ .
Timoshenko(7), taking the centroid as the origin of the system of co-

. ordinates, presents a general thecry for centrally and eccentrically loaded

strutse The method is essentially similar to that of Goodler's and leads
to similar results. '

The critical value of the load P

cr Tor a pin ended, eccentrically

loaded strut is ealculated from the cuble

7'(F’. P,)(p_pz){p <, . ey *;em@z F’)}

_kP2<5,-e!>2(P- Pz) P* ( -e) (p P)—o
®
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2 2
where P,z_.«_Ej lef_]:_y P__'__( A
E > 12 E > 3= C*C'—L—.i),
y- dA %Y dA
IQ‘:\SA +JAH "zﬂo‘
1.
2
A = i P da « g ida . 2%,
I
Y

F. Bleich(8) presents a theory for torsional buckling based upon the
differential equations of bending and twisting of struts with open thin-
walled polygonal cross sections. The method of approach is the seme as
presented in an earlier paper by F. and H. Bleich(9)s The basic differ-

sentiel equations are developed without using Wagner!s idea of unit warp.
The assumption is made that Navier!s hypothesis remaing valid for each
of the flat plate components of th; strute The centroid of the cross
section 1s taken as the origin of the system of co-ordinatese.

For a centrally locaded strut with symmetrical cross section about
the y-axis, the critica.l stress o, is given either by

o3¢ =

cr
O ‘
F G = "€ @

L 2
(%)
whichever is the smallests
Where r, 1s an equivalent radius of gyration to be calculated from
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and Yk is defined by
2
- S, Ko

2
Theseequations also apply in the inelastic range by introducing the tangent
noduld Eq-, and Gﬂ, in the calculations.

In all the investigations it is assumed thet the cross sections warp
but that their geometric shape does not change during buckling.

(11) E:@ermental_lnvestiéatiom.

Wegner(2) conducted tests on thin-walled aluminium slloy struts to
check his thearetical analysis of buckling due to fwiet. The struts were
loaded bgth centrally and eccentrically, and were of plain and lipped angle
sectione There is quite close agreement between his experimental and o
theoretical- results. Discrepaﬁcies in the short strut results are attri-
sbuted to the inaccuracj in calculating C.' .v It can be proved that

-~

Cl = Clu + Can

The constant C, relates to the direct strain in the middle plane of the

u
wells (arising from veriation of warping of the cross section along the
length, due to non=linear rate of twist about the shear centre)s The

constant C'n relates to the direct strain across the thickness of the
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walls (arieing from variation of curvature of the walls along the length,
due to non-Linear rate of .'.bwist about the shear centre)e As C ' is
generally very small compared to C'u » Wagner neglects the value of C'n
in calculating Cl » This approximation cannot be justified in cases such
as angles for which C“u vanishess Discrepancies are also caused by the
unavoidable lateral deflections, especially in the eccentrically loaded
struts, and the subsequent variable stress distribution over the length of
the strute

Baker and Roderick(10) carried out a comprehensive series of centrally

loaded strut testse The struts were made of various aluminium alloys and
inclu&ed angle, channel, T and I sections. The experimental failure stresses
are presented in graphical form with theoretical values for convenient com-
sparison, e.g., Figure 1l¢ The theoretlical curves represents
- (1) A modified form of the Perry formula, )
(11) Local buckling of outstanding plate components,
(114) Torsional flexual buckling based on the general theory
-p:_resented by Timoshenko(7)e
The absence of a formula that takes into account restriction of
warping. at the ends is noteds Until this more accurate solution is avail-
sable they suggest taking :
P v E I, P _ " E I,
e - 2 ’
L .
and assuming that the critical load for purely torsional buckling has the

-

same value as for a strut with built in ends, i.e.,
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,Satisfacto:y‘corréspondence-is shown when using these wvalues in the general
equation for buckling in térsion and flexuree

The values of critical loads given by the genersal theory are satis-
sfactory for the higher values of slenderness ratio. For the lower wvalues,
ﬁhere the breskdown of the material controls, no satisfactory golution is
available.

g};gg(ll) carried out a series of tests to obtain an experimental
verification of the theoretical formulae for torsional failure developed by
LIundquist and his asgociatess The observed critical loads and twist-axis
iocations are sufficiently close to the valueg obtained by the formmlae to

eatablish the validity of the latter.



2]
2. LOCAL INSTABILITY OF PLATE COMPONENTS OF STRUTS IN FLEXURE,
|
|

(1) Anmlytical Investigationss

The numerous investigations in this field are generally based on

one of the two following methods of analysiss~

(a) Differentiel equation methods

The differential equation, Timoghenko(14), for the deflected surface
of a plate with forces applied in the middle plane is

4

|
;, D W BAco S"w - B w aaw f‘w
Ev A S NN 5 (%55 N‘J‘z&?*wﬂi«—ag)
El The plate is assumed to buckle slightly under the action of the applied
forcess The magnitudes of the forces necessary to maintaln this buckled
shape are the required critical wvaluese.
(b) Energy methoda
This method is useful in cases where a rigorous solution of
equation is unknown and only approximate values of the critlical forces
are requireds Equating the energy of bending and twisting to the corres-
sponding work done by the forces acting in the middle plane of the strut,
i:imoshenko(n), gives

ﬂ{N bu) (_b-"ﬂ)a_,_ N*H:: Bwldxdtj
2GR )BT )

] dx dy

®
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If the work done by the forces is smaller than the strain energy of bending
and twigting for every possible shape of lateral buckling, the flat form
of equilibrium of the plate is stables If the same work done becomes

larger than the emergy of bending and twisting for any shape of lateral

~deflection, the plate is unstable and buckling occurse

A dovelopment of the enargy method, called the Lagrangian multiplier

method, Budiansky and Pai(15,16), makeg use of functions of w which approx-

simately satisfy the boundary conditions, to give conservative results.

In the following a swmary covering & representative selection of
contributions is presenteds
Generally the buckling stress of a plate under compression can be

represented, Timoshenko(l4), in the fom

G=‘aa(| )<> | @

cr,

where K 1s a numerical factor depending on the edge conditions and the
length to breadth ratio of the plate.

Values of the plate constant K , for various edge support conditions,
have been calculated for plates uniformly loade’d along two opposite edgese.

In all cases the loaded edges were assumed to be simply supporteds
Values of K (17 to 20), for free, simply supported and fixed edge

‘conditions are shown in Figure 2. In most practical cases intermediate
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degrees of elastic restralnt against rotation exist along the unloaded
edges. Values of K for a longitudinally compressed plate with one
unloaded edge free and the other elastically restrained are given in
Figure 3. The plate constant values for both unloaded edges elastically
restrained against rotation are given in Figure 4. The values of K in
Figures 3 and 4, K__:_'.g:_L;;I._(zf?.), are given as functions of € and A , where
€ 1is defined by

¢ -4 S,

=5 /b

in which So is the stiffness of the elastic restraining medium assumed

constent along the plate, and A is the buckled helf wave. For a given
plate and a given restraining medium the minimum value of K is obtained
by trial and error computations of mutually consistent € and )\ walues.

The form of the critical stress can be extended to cover the case of
an assembly of plates, l.e., a structural section, by evaluating the
constant K appropriate to any particular section forme A representative
selection of the numerocus contributions in the field followse

Tables prépared by Kroll(21) cam be used to evaluate the stiffness
of elastic restraint provided between plate components of built up sections.
The charts of figures 3 and 4 (22) can be applied if 50 the stiffness of
'Ehe' elastic edge restraint is constant along the sdges This necessitates
the application of simisoidally varying moment along the straining medium.
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Lundquist and Stowell(23) give a solution for the case of a plate

supported by a "Sturdy Stiffener”. |
Chilver(24) gives a more direct solution for the cese of a plain
channel sectione The buckling stress values obtained are shown in Figure
5e | |
Harvey(25) gives a complete analysis for the case of centrally
loaded plain and lipped channel section strutse The values of K given

in Figure 6 are based on the flange dimensionse The critical stress is

given by 5
B t
% = K 2 (1- 1% (b) ©

Davidson(26) gives buckling loads for a flat infinitely long elastic

plate cdmpressed in its own plane by thrusts which act parallel to the two
opposite edges, and which vary linearly between thems One of these edges
is assumed free, and the other fixed in position but elastically clamped.
The method is applied fb the case of an I-section under pure bendinge The
elastic support provided by the web is estimated from tables given by
Kro11(21).

A plate after buckling mey, in some cases, carry without failure a
load many times larger than the critical load at which buckling beginse
For reasons of safety and economy it is important to consider not only the
eritical load‘but also the ultimate load that a plate may carry before

complete collapses
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Stowsll(27) presents an exact theory to calculate the ultimate load
for the case of a plate with simply supported and free edge conditionse The
theory takes into account large deflections and the inelastic behaviour of
the materiale. |

Kerman(28) gives an approximate solution for the case of a compressed
rectangular plste with simply supported edges. It is agsumed that the load
transmitted to the plate is carried by two strips of width C , one on each
side of the sheet, and that the load distribution is uniform across these
strips, Figure 7. The ultimate load 1s then reached when the uniform stress
in the edge strips becomes equal to the yleld stress oy of the material.
More recent investigations were carried out by Marguerre(29) and Levy(30),
again assuming that the ultimate load is reached when the stress in the
edge stzfips becomes equal to the yield stress and in additlon assuming that
the stress in 'i'.he central strip remains equal to the buckling wvalue.

Harvey(25), applying Karman's assumption, gives the equivalent
flange width of a centrally loaded cﬁannel strut as

oy 12 (1-4%)

and the ultimate stress referred to the actual proportions of the flange

s = wt | Ke £ oy @
’ bjmo_yﬂ

b =

e
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(11) Experimental Investigations.

Winter(31l) obtained the local buckling stresses from tests on a
serieg of I-section strutse These together with the theoretical buckling
stresses by the formula |

4;15_ ‘t; 2 | .
%r, = O.5 !2('-u2) (b) - @

are shown in Figure 8. Winter suggests an empirical curve shown dotted

on the graphoh

Chilver(24) tested cold-formed steel channels under concentric
loade Some experimental results are compared with the theoretical stresses
in Figure 9« There is a deviation from the elastic line in the high stress
region wvhere thé sections are most prone to yielding of the materiale  The
collapse loads for a mumber of struts all having the same cross Sectional
forms but of different lengths are shown in Figure 9, When the lengths of
the sections are sufficient to develop more fhan one half wave the collapse
loads are not appreciably effected by changes in length.

Harvey(25) carried out tests on plain and lipped steel channel
struts. The éxperimentai results are shown in Figures 10 and 1ll. .The
theoretical elastic and ultimate stress curves compare reasonably well with

the experimental values.
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Davidson(26) describes tests cerried out on I-section beams under
pure bending. The theoretical and éxperimental results are shown in Figure
12 The theoretical buckling bending moments are obtained from tables
prepared by Kroll(21)e The experimental buckling moments are assessed by
the Southwell plot method(32). The reason for the rather large differences
between theory and experiment is éttributed to the inaccuracy of the Southwell

plot methode The results confirm the predictions of Pai, Lundquist and

Batdorf(33), and Cox(34) in giving experimental critical values above the
theoreticale
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PART II.

THEORETICAL INVESTIGATION,

DEVELOPMENT OF THE ITERATIVE METHOD.

THE ITERATIVE METHOD APFLIED TO OVER-ALL INSTABILITY.
(i) Concentrically Loaded Strutse

(i1) Eccentrically Loaded Strutse

FLANGE PLATE INSTABILITY OF THIN-WALLED CHANNEL
SECTIONS UNDER COMBINED BENDING AND CCOMPRESSIONe

35.
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l. DEVELOPMENT QOF THE ITERATIVE METHOD.

In the field of structural stability a number of cases obtain where
due . to cértain combinations of boundary conditions or load distributions,
rather more complex than usual, neither the equation method nor the energy
method are capable of direct solution by classical means. In the following
the principle of an iterative method is presented which has proved to be
of general applicability both in the computetion of over-all and local
instability conditions. The method is generally that of assuming a form
for the governing function satisfying the "important" boundary conditionse.
This converts the basic equation into a directly integreable forme The
integration is then carried out yielding a new corrected form for the
governing function as a second approximations The process is then
repeated and continued until the required degree of accuracy is achievede.

As an illustration, giving a comparison with the rigorously derived
values, the case of a flat plate uniformly compressed in a longitudinal

direction is presented.
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Fig. 13.
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Buckling of Uniformly Compressed Rectangular Plates

The rectangular plate shown in Figure 13 is simply supported along
the edges x =0 and %= Q, elastically built in along the edge y=o0
and free along the edge Y=b . The plate is subjected to a uniform
compressive force per unit length of magnit.ﬁde N, « The differential
equation for the deflected form of a longitudinally compressed plate, with

N, positive for compression, is given by Timoghenko(14) as
4

4 2
D W ° W > w Ny Ow
- = + 2 + — = .
> 222 2yf D 2

The boundary conditions to be satisfied are

W = o
-For x=0 and x=a @
bzw 'bl
w
3 t Y T3 = 0©
x Yy
w = o
for 320
:‘ﬁ_’ - r dw  _ 4
y? Y
A
2 D w
o) = O
2+ L —3
S for 90 ®
3
D w
3 - O
T W 2-J =
—_— + ( >})‘¥-sz



where r is the coefficient of edge fixity, Timoshenko(14).

The conditions at x = 0 and = = g are satisfied by assuming that

the plate buckles in ™ sinusoidal half waves, i.e., the solution of

equation can be written in the form

W = YSl.Y\ W\o‘h"i‘

in which Y is a function of y only.
Substituting this in equatiogives
4 2 2 ,2 4
dY _ amaw d°Y (m""ff_ moa N, N
dy? foody? Y > D
Y

|

Q Q

i
LQ
Q

The appropriate boundary conditions in terms of Y and for

= 0,25 s relevant to equation are now

for y=o0-—-~0
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2 2

9,.__.\...2'/ — 2.467 __"Di Y = o
a
dY for 4=b @)
3
fi_\f - 17.27 D’f _‘3'_1/ - ©
dy? " dy

For comparatively short plates the smallest value of /V, is
obtained by taking Mm=1 , i.e., by assuming that the plate buckles in one
half wave in the direction of compression. The magnitude of the corres-

sponding critical compressive load can be represented by the formuls

i 2
(), = k=P _ @

in which K 1is a numerical factor depending on the magnitude of the ratio

2 and the coefficient of fixity r .

Equation is solved by the iterative method as followss
The first approximation to the deflected form of the plate in the

y- direction is assumed to be given by

2 2 3 3 3
Y:ﬂ(ba_bu kN bﬂ)
‘ 4 s T za " Zrb, @

vhere {1 1is a constant.
Substituting in the right hand side of equation gives
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where Y, is the second approximation.

Successive integration of this equation leads to

' 2 .4 2 é
48 1206 720
2,6 a7 8 3,5
+BQ,<_b3+ by y° Y )
\440 5040 40320 240rb

2

3
Y
t Rz« S5 Ty v @

where R, S ,T and V are integration constants.

Using this form Y and the appropriate boundary conditions
and @ s the following equations for the four integration constants
are obtained.

V=o |

T=_§_ @)

A 6
A0 (0125 b_ 0.03426 £ )

ot
8 6 8

B_Q_( 0.01389 136+ 0.0012 84 _,?.-- 0-08333.@-.,, 0.01028 .b._ )

t g a* rb arb

3

+R (b_ o.an%)

o b |
+S(|—"234Z§ - 2.467 = ) = 0 ——————

oV
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s 5
,4_(1(0.1557 b _ 0.8635 _b—>
a‘l
:

5 2 7
+BQ (-0.05 b+ o.osm_ki - o.25£ + 0.3598 b )
Q’l rb ozl"b

2
+R (l_ 8.635 —%—)
a

_17.27S($+qfrb)= o

Due to the bulkiness of symbolic computation it is convenient
to evaluate the constants of integration for particular numerical cases.
For example, for the case of r b=2 and Ql; = | , the constants

of integration are
. R .
= - 0.1275 4 L) b + 0.05121 B b
4 6
0.0106949 Q0 b - 0.0129) B2 b

5 7
0.005345 9 Q0 b _ o.006455 BL1L b

< 3 0 x
i

= O

For the boundary conditiong given the maxinmum deflection occurs

at y-b « This gives

(Y.) 0.375 O b

max.

6
(\’2) - 0.003326 AL) b°_ 0.006979 BQ b

max.
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TABLE 1.
% | |15 |1:8] 2 |23 |25 |27 3
rb =12
ITERATIVE |1-455| 0-98 0.87 0-886 - 10:97
TIMOSHENKO| 1:49 | 101 | 0-90 Q-90 0-98
rb=38
ITERATIVE |1-563 {1143 |{1-097-} 1-167 1-296
TIMOSHENKO[I-58 | 116 | |- 1] 1-18 I-30
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after substituting the constants just calculateds
The first approximation to the critical load is obtained by

equating (Y‘)ma to (Yz) « In the case quoted this reduces to
x. _ .

mox.
2 2
0.375 = 0.003326 Ab _ 0.006979 Rb
Noting that
2lfh2‘\'t'2
A =
Ql
2
and R - (m"‘r"_ K.f.'.- m1177'>
ot bz at ‘
. 2 s
« D
where (/\44) = K ) @
cr, b

Equation- @ finally gives

| = ©0.175 - 1.812 + (812 K

hence K = (.455

Similar calculations were made for rb=2 and rb= 8 with several
valuesg of % e Values of K calculated by the iterative method and the
corresponding values given by Timoshenko(M), using the classical equation

method are given in Table l.



Fic. 14.
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qu a clearer comparison a graphical presentetion of results is
given in Figure 14. A maximum difference of 3+3% in the values of K ,
on the safe side, for rb=2 and 95 =2 is well ;}ithin required engineering
accuracys Further correction by a gecond approximation is unnecessary.

Tt remains to be noted that the closer the assumed deflection
form is to the actual case, the more accurate will be the results obtainede.
The ideal selution is that which requires one approximation to give the
i-equired degree of acctﬁ"acy. A short critical discussion as regards the
choice of a deflected form appropriate to the problem considered 1is given
in Appendix 1, from which it is concluded that the accurecy of the iterative
method as applied'is governed by the accuracy of estimating the position
of maximum déflection, rather than by choosing a particular deflected

b Oi'm.
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2. THE ITERATIVE METHOD APPLIED TO OVER-ALL INSTABILITY.

(1) Concentrically Loaded Struts.

The equations governing the behaviour of a concentrically loaded
strut subjected to lateral deflection and cross-section rotation, Figure

15, are given by Timoshenko(7) as

Id“ = -Pu+y,9) | ®

ET j_'% P (r- %9
4.4 2 2

C dd? = (c_r;ZP)g_gg P "o:—,:; Od?) &)

Timoshenko solves the three simultanecus equations for two

particulér cases of boundary conditions, namely,

(i) u

U
S
u
Q
1\
o

{or 2=0 and 2

W

-

<
I
S
i\

Q
"
o

1Cor' 2=z0 ond =L @
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No solution has so far been available for mixed boundary conditions.
The boundery conditions relevant to the experimeintal work carried
out arey free rotation of the ends about the principal axes but fully

res'bre.izaed regarding twisting and warping, il.e4

Uu=u =¢ (e}

; " , xor z2=z0 and .Z:L__——

\l

<
"
S
"
Q
0
o

These conditions are satisfied by

U, = /7, sin E
L_\
PR ®
vio= 42 sin L @
- - 272
® = A, (l cos 3

It should be noted that although the assumed solutions satisfy
the boundary conditiong they do not fully satisfy equétions @ )

and @ « The following, therefore, is a first order approximation of

the rigorous solutione

Putting u-Uu, , and @= P in the right hand side of equation

@ glves

2
du, _ ] 22
El 152 = - P[/)l sin = + 30/)3 (\- cos T):l

Integrating ﬁrice leads to



o T2 c_s?'E
€1, Uy = -P{-". Tt a4 (e )
()
+ B2 + C

Using the appropriate boundary conditions the integration

constants are obtained as

B = Pﬂo '%.: 43
C = Py (54

Substituting for B and C in equation and putting w,= U
at 2:% gives
2 2 o,
EIB/), = P(q—l\-:-) A+ Pﬂo‘gf‘"’z - 2P50 _7‘?-1?),43

2
Multiplying both sides by ({_) and grouping terms

2
(P EIHL)AI+.I'733 Pyoﬂs = 0 @
Similarly, putting U'=U and @=@ , in the right hand side

of equation gives

2
)

~®
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Integrating twice leads to

22

ELy = P\:ASZ\) ‘xoﬂa(-%l*co_s,'_%i)]"'Dg*E
L

Uging the appropriate boundary conditions . the integration

constants are obtained as

D = —an-l;_-Ag
E = - Px (1';)2,43

Substituting for D and E in equation and putting (j=0Ur

at 2= _,Lz: gives

ELA, = P( /42- p%_é-A -2Px ( )/4

2
L g
Multiplying both sides by (—L—) and grouping terms

(P- EL —“—r—l)/) - 1733 P x 4, = ©

2 2 2
du. do_du de d@
Putti = 2= =2_" and =— = 22 4n the
ngd2 d#t  d=t ozt of dz?

right hand side of equation @ gives

Cd(Pz—Rcos?:-%+ RZSIY\% ’

dz
where R = (C—r"P) ),4
w Rz Pl (@), (5)4]

b
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successive integration leads to
2r2
C RCOS RSML-\-F_——\-G -(-HZ""k .
(Pz ('z«) ) 6 . , @

To evaluate the constants of integration, the boundary conditions

used are

P

|

"
wl\,
P P
|
N
v
lr’
o
S—”
i

o - o
L
-‘: =0 —— .
7—'“') sin 222 "

i
o)

L
R A

The additional boundary conditions are selected to conform to the
conditions which prevail in the experimental worke The constants of

integration are obtained as

F = ©
N
G — R'z _;l_: (%)3
K = —R‘ (__;_‘_)4
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Equation now can be rewritten

Putting CQZ = q7| at 2--.-,.';. in equation and collecting

terms
2C, Ay = -2R, (‘i’l:?) - R, (%-)(‘1":") + Rs(’;'?‘)

substituting for R\ and R,
rR

2G4y = -2 (C-P)(E )4y r Prk(E) An-Pya (G)E)
aE)(E) 4+ Py, (5S4

2
Multiplying both sides by ({—) and collecting terms

2
0.215Py 4 -0.215 Pr.4, 4 Eac‘ ¢r) —"ic*é'%lp]ﬁ?*: o

To simplify the writing the following notatlons are introduceds

\g t > [ 4 7
P = _ i -1 +

Equations . and can be rewritten



(P_ P|) A, + 1.7133

(P - Pz),q2 - 1733

Pujc 43

Px, 4,

0.215 Py 4 - 0.215Px_4, +

\
o

54,

©
&

0-5",,2 (P_I%)Az = 0

Equating to zero the determinant of egquations @ ’ @ and

,

which after evaluation, gives the following cubic equation for caleulating

the critical value of P

v (P-R)(P-R)(P-R) - 0244y} (-R) - 0744 P (P-R) = o

(P-R) o
) (P..P,_)
0-215 Pyo - 0.215 Py

1733 Py

-/.733 Pxo

- o5t (P-R)

\

&

If the x-axis of a cross section is an axis of symmetry, then

Y.=° and the general equation @ reduces to

¢



55.

(P-R) [\:’ (P-R)(P-R) - 0744 "2“3] =0 Ge)

One of the roots of equation is P=F , the other roots are given
by the quadratic

rf‘ (P—\%)(P-f-g) ~ 0.744 szf = o @

If the cross section is symmetrical about both axes the general

equation @ reduces to

(P-R)(P-R)(P-5) = o

In all cases the smallest root gives the critical value of [P .

The second order approximation in which the initial values of

U,, U, and ¢, are assumed as followss

sin T cos re 2 L\
woog At amt o gafaga ()

(&)

P sin T2 cosﬁ? L\
A B R S B Rl AT R AT Rl =)
«L (%) (
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is given in Appendix 2.

Applying the first and second approximations, to the calculation
of the critical load of a concentrically loaded, 40 inch long, aluminium
strut of 2+5% x 2:5" x 10G. angle cross section, it is seen that the
second appéomimation does not change the value significantly, indicating

that the value given by the first approximation 1s sufficiently accurate.



(1i) . Eccentrically Loaded Strutss
Timoshenko(7) gives the following equations for an eccentrically

loaded strut

4 1
519'_“-,-_.Pd“ P(y-2,)9
E 'id

dv d'vr
EI__:_P__.,_P<9¢_Q)

“df dz?

(C Payﬂ Pz(B Pr) P(y 23)‘2'_29..,.13 x_a D_'f?_’

ol3? ° */dz*
w here A, = L,‘idﬂ-\—fﬂzgdﬂ - 2y
I, ‘
3
and ﬁ?. = JA * oA -r_L 'X-'j?'dlq - 2x
I (-]
Y

As in the case of concentric thrust the assumed end conditions

" n , ;—or 2=0 and 32=1L

These conditions are satisfied by
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\
. w2
U o= A sin T
. A
v = /)q_sm—L-_ b
212
7= Ay (1-co T

Hence, following the seme procedure as in the concentrically loaded
case (made considerably more complex by the fact that all three equations
are of the fourth order, see Appendix 3), the following three equations

are obtaineds

~

(P-R)A, + 3-733P(3°_¢9) Ay = © ——
(P-R)4y- 1733P (1-4) 4, = ¢ — @

2,8 + 2
o,:,gP(go_ 29),4'- o.zlsP(txo—eﬂ) Ay + 0.5 y;" {P(H- yh + - Az )—%‘Xﬁazo

%
G
As for concentrically loaded struts P, , P, and B

ere given by @ .
*  Equating to zero the determinant of equations ’ and

(P- p,) 0 1733 P (50" zq)
o (P-B) - F733P ("af ) B
0,2,5[3(30- eg) —~0.215 P(ﬂco- 2“) a,sﬁ*-[P(‘*Q&lﬁ *;-;/Bz)—%-l

?
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which, after evaluation, gives the followling cubic equation for calculating
the critical value of P °

S I SOV

v

or40 2y, (p) - oue P e o o) -

If the xz ~ plane is a plane of symmetry and the thrust P acts
in that plane the general equation reduces to.

(P—P.){rf(P— R) P+ 22)-R]- 074aP’ vs,—a)z} =0

Y.

° ,

As in the case of concentric struts it appears to be unnecessary

to solve for higher orders of approximation.

To give a comparison of the effects of the end conditions on the
critical strength of angle and channel section struts, indicated by the
theoretical treatment presented in (i) and (ii), Figures 16 and 17 were
preparede From Figure 16 it can be seen that the effect of warping
restraint becomes very appreciable in the shorter lengthse The theoret-
sical buckling loads for the channel struts, Figure 17, exhibit the same
;haracteristics. The most interesting feature is the close agreement

obtained between Baker_‘ s proposed formula and the iterative methods

s
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FIG.
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3. FLANGE PLATE INSTABILITY OF THIN-WALLED CHANNEL
SECTIONS. UNDER COMBINED BENDING AND COPRESSION,

One aspect of this problem is presented, namely, the flange plate
instability of thin-walled channel struts under ecceatric loade The load
is applied in the plane of symmetry of the channel such that the maximum
intensi_ty of load is at the free edge of the flange.:

The flange is considered as a flat plate, compressed by thrusts of
uniformly varying intensity in its own plane and parallel to the longitud-
sinal edges, Figure 18, The edges Y=b and Yy =0 are free and elastically
I;uilt in respectively, the edges x =0 and x =Q are assumed to be simply

supporteds The intensity of the applied load is given by
_ Ly (-1 .‘L) (70
N, = N, ( - + \l- = ) B @

vhere A, is the intensity of the applied load at the edge Y= b and ¢

is the ratio of the stress at the free edge to the stress at the elastically
built in edgse.
' The solution of the particular case when the stress ratio in the

flange equals 4 1is presenteds The intensity of compressive load is
then given by equation tald.ng. X = 4

= —J‘-—/\/O (l + % - ’@

N

x
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The differential equation for the deflected form of the flange

is again given by equation s sSubstituting for Nx from @ gives
4 : ,
S, fe Loy (233 ®
A Ed owt D4 e P/ 2% .

The boundary conditions to be satisfied are

W = o

N a f-or‘ 20 and x=q @
o + V 2w _ o

'a,x?. 37.

W= o , |

for y=o ®

JW 2w : ©
2y? oY ' ‘
2 2
b.f.".. + b -?———ui = 0
Dyt x? 4._ b
b3w > 2w or 4= @
= + (Q.—U)___Tl——--zo

Y By

Assuming that the flange buckles in m sinusoidal half waves,

the solution can be written in the form

W = sin WMTX .
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in which Y is a function of Y only. This satisfies the boundary conditions
along the simply supported edges x=0C and x=Q .

Substituting in equation @ gives

4 2
dyY - 2 meet d Y _ [VM44V4-_ __?'_T_fz_/\_/& (‘+_3__H_)‘X\(
dy* ot oy a et aDR b
2
-4 E'_T.: + BY + CyY 3
y
2 2
where A4 = Z-L:-?:E
B = mA'u’4_ w\l'trl N,)
- (B -
C = MmN o3
a- 4 b

The appropriate boundary conditions in terms of Y and for

V= 0.32, relevant to equétion @ are now

_<
i
o

2 for y=o _—‘

|
|

Q
_.<
Y
Q.\Q.
< <
i
(o)

Q.
[ -
~
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2 .
9’.)./ =, |57_"_"_i Y = o
2
dsﬂ Q gor S:b @0
d’Y _ 658 mo 94T _ o .

dy3 a? dq

For comparatively short channels the flange buckles in one half
wave in the direction of compression, i.e., the smallest value of
(/vg)cr is obtained by taking M=! in the csleculations. The magnitude

of the corresponding critical compressive load can be represented by

¢z
<M>Ch = KF Trb'zD

The first aspproximation to the deflected form of the flange in

the y-direction is assumed to be given by

372 7 3 A 5
_ 3by” s5by b Y 3b3)
\1~n(2_6+_‘5_+,_.+_._ @

where L) is a constante

Substituting in the right hand side of equation (::) gives

a
d T - A <3b3—5b25+ b‘j”—t— 93)

-dgd'
32 23 4 5 4
aby  5by by Y 3b3>
cea (gt 20 B 2L 2
73 2 & 5 § 4 2
L CcQ ﬁiﬂ_ﬁﬁi_+éi+_i.+iﬂlﬁ)
7 6 \ 20 rb
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vhere ﬁ/z is the second approximatione

Successive integration of this equation leads to

A

& 24 360 840

v a0 (b3‘ﬂ4 b"gs L yS 7)
2 = - + —

é 2.7 8 9 4 .5
bY bl by Y b Y
+BOL[(— - — + + +
240 |008 20160 60480 4Ao0rl

3,7 . q
bY B4 by y' b yS
+COl—-=—4 + —— +
560 2016 36288 |0ogoo 120t b
3 2 |
Y | T

Using this form of Y and the appropriate boundary conditions

and@a s the following equations for the four integration constants
are obtaineds

0
T _i_

\

i

il




]

b 05 \:g' 0.07893
4.().b 0.8- 02756_-)... Bnb[(o 0873 5/ = 0.01023+TE_)
ozs 0.0263 o
+C_O.b[(o 05014+ L2 )--——(o 004 183+ \orb )]-\' R56—0-526;{>
2
s[ _5 3157 _
+S|-bsrs < 2T < o
b( - b -5 b 2,073
ALb (l.og3 - 5.248 )+B.Qb ‘:03\66... it ( 0.3083+ rb)]
X b 0.829 b
+CQ (02294+ ) = @.14721r .rb)]-‘- R (l.- 8-29-;{)

-!6-588-5(!4.\—:-5) = 0

For the case of rb= 8 and % = | the constants of integration

a
Rz —0.8740b-015 BA_o. 0802 COb
S = 0.5 40 b5.+ 0.0574 B_(lb7+ 00369 CL1L bs

é
T = o0.0143849.0b + 0.0071715 Bﬂb8+ ©.0046173 C.ﬂ_g

\/:C)
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For the boundary conditions given the maximum deflection occurs
et y=b, This gives

(\ﬁ)w\ax.:- L5 A b . (@2

9 1o
(Y‘l)max‘: 0‘0'414‘0";"' 0.01616 BN b 4 0.01204CLL b .

The first approximation to the critical load is obtained by
equating (\ﬁ)qu‘to (Y"—)mu o This reduces to

2 S
V75 = o0.c1a24db 4+ 0.0616 Bb4+ 0.01204 Cb —————
Noting that
4 - 2M7_"2
= —
B = - (W‘A“A— ik X W‘“l)
o Fag: ot
2
ond C = k.3 e
Fab® ot
T
w he re A = Ko D .
( O)CI’- F b2 @

Equation f£inally gives

75 = 0.1802 -~ 1.574 + 0.3934 K + 0.8788 K,
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ECCENTRICALLY LOADED CHANNEL SECTION STRUTS
STRESS RATIO ACROSS FLANGE x =4
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Fig. 19.
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hence \-(,_. - 1,939

The results of celculations made for various values of r b
and for L/ =0.32 are given in Figure 19« Curves for m= 2,3 , elce,
mey be obtained by k.eep:l.ngr the K, ordinates the same but multiplying the
corresponding % ordinates by the value of m « The construction is

indicated in Figure 19.

The elastic edge restraint provided by the web plate of =
concentrically loaded channel section strut is obtained as follows,
Harvey(25) s

Thegdeflected form of the uniformljr compressed web and flange
plates is given by ;

A )
b4w+2?>w_‘+ ?f’w_____N,c dw
x P2 2yt D d«x?
The general solution of this equation can be presented in the
fornm | |

-y =< Y
W = <C.e +C2€ + C3 cosf85+ CA sfnﬁﬂ)sfﬂ mvz
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N

2 2 2
S N (A
Ot?' D az

)

g = mt ()2
ar D ot

Considering first the supporting platey in this case, the web

~

!l -

« /&K ’ ' .
S (C‘ e 'lj‘+ C,e "9":._ C, cosB, Y, +C% sin /6| 3‘) sin mTx

a
The boundaxy conditions are
W = o0 Lor \j‘ = - % :
w, =0 'FOI/’ I5| = %

dW, _ _
= o for y = ©

the origin being taken at the centre of the web plate, Figure 18.

The fourth necessary condition is obtained by assuming tiat the
bending inoment at the edge connecting the web and flange varies in a
sinusoidal fashion along the length of the plate, l.e.,

My = M Sl‘n M:‘#
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where /M is the bending moment at the connecting edge at the centre of a
longitudinal half wavee
Substituting these boundary conditions in equation s the

values of the constants are obtained as

cl= ¢ = _ M W
(200 woshn 3) ("< £2)

; - —
(D, cos g, ) (<24 B2) $

M
I

M
f
o

4 )

Considering now the buckling platey in thls case, the flangs

-~

-0ty o
w = (C, e v+ Ce 94. Cieo88Y + C, sin {35) sin mT%
a

®

The boundary conditions are

w = © “:OV‘ Y=o
2 O
3_3"."_-;- (’l—))) 2w = O 'For ‘j-:b
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the origin being taken at the edge of the flange plate, Figure 18.
The fourth necessary condition is obtained from the webs By

substituting the velues of the constants given in in equation

and differentiating, the slope at the connecting edge, i.e., for

b

5‘_—,_2_\_ is
b, t b,
2w = sin mrz | G tonh 2 s Alang 3
A
bﬁ‘ D\ <0(\2‘1' ‘Bui)

\
My, 7,

where ¥ is the coefficient of edge fixity and

. 0(‘2+ /8\7-
X\ tanh o(,—bil "':8. tan @ _\-OZJ
or roo— %+ «g?'
| <, tanh Ho(,% + B tan HA 71‘?.
where H = b

b

It should be noted that the nsture of the load carried by the web,
in the case of the eccentric loading analysed, is the same as in the |
concentric cases For the eccentric loading of the type considered
expression is applicable substituting __A‘{_o for /\(x in the values of

2

2
oL‘ and ,8. .
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For any value of r© the ratio % at which Kp is a minimm,
can be obtained from Figure 19« Using these values the corresponding
value of .H is then obtained from equation e The results of these
calculations are shown in Figure 20, A typical example of the method is

presented in Appendix 4.
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EXPrR IMENTAL INVESTIGATION

EXPERIMENTAL APPLIANCES.
(1) Testing Machines.
(i1) Universal End Clamps.
(i11i) Strain Gauge Bridgee

(iv) Measuring Devicose

METHOD OF TESTING,
(1) Load Capacity Tests.
(11) Stress Distribution Testse

(iii) Tensile Tests.

EXPERIMENTAL RESULTS.
(1) Angle Section Struts.

(ii) Channel Section Struts.
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The experimental work was planned to invastiga’ce over-all failure
in torsion-flexure and local plate failure in flexure of thin-walled
angle and channel section strutse The loading conditions included
concentric and eccentric axiasl loadss. The following variables were
investigated =~ eccentricity of load, section profile, length and
method of manufacture.

The specimens were cold formed from sheet or extruded,in 65 S.W.P.
Aluminium Alloy. A complete list of some 190 gpecimeng is given in
Appendix 5. Tensile tests to determine the méterial characteristics

were carried out, as described in Appendix 6.
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l. EXPERIMENTAL APPLIANCES.

(1) Testing Machines.

Most of the strut specimens were tested in a horizontal 100 ton
Avery Testing Machine, Figure 21, All the 12 inches long channels |
were tested in a vertical 50 ton Denison Testing Machine, Figure 22.
A 30 ton Avery Universal Testing Machine, Figure 23, wasg used for the
tensile tests carried out to determine the materiel constants. All

three machines are hydraulically operateds

(11) Universal End Clamps.

Special end clamps, Figure 24, were designed to insure loading
of the strut with pin-end conditions. One set of clamps were used
for all the specimens testedes These could aiso be used for other
sections of similar over-all cross sectional dimensions. Special
distance pieces were made to clamp the different sections in position,
such that the centroids of the sectlions are always in line with the
centres of the clampse Provision was made so that loads could be
applied concentrically or eccentrically, in either of the two principal

directions to within 1/100th of an inch.
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Either crossed-knife edges or ball ends could be used as required.
Crosgsed-knife edges were adopted in preference to ball ends due to
their small frictional torque and to the fact that they prewvent relative
tvisting of the strut endse Figure 25 shows & clamp with crossed-knife
edges in position &uring a test.

All parts were made of mild steel with the exception of the base
plate which was of hardened ground flat stock steelse The distance

pieces were case hardened and ground to size.

(111i) Strain Gauge Bridge.

A Savage and Parsons, 50 gauge capacity strain.gauge bridge,
Figure 26, was used for the stress analysis and in connection with the

tensile tests to determine Poisson's Ratio.

(iv) Measuring Devices.

Vertical and horizontal deflections of the shear centre were
measured by means of Baty dial gsuge comparatorse Small cast iron
discs, with one quarter cut out, were attached in the manner shown in
Figure 27 to facilitate deflection measurements. A émall surface
plate, placed conveniently in pogition under the strut in the 100 ton

machine, served as a datum plane for these measurements.
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Angles of twist were measured at the two énds end centre of the
strut by means of optical lever twist metrese These consist of
galvanometer mirrors placed conveniently at the shear centre and
telescopes and scales placed in line with the mirrorse This set-up is
shown in Figure 28.

Other measuring instruments included inside and outside micro-

smeters and & Hounsfield extensometer for the tenglile testse



86.

AVEPAQt LONGITUDINAI*® STRESS VARIATION °S
S AMCQOSS CKMTP AL SECTION

CONCENTRIC ALLY LOAOCD 9 5»*35*nlO¢ AMAQLE
SPCCIMCN LPNQTW 30 IN#,

HCOMP

[/
7

F1Q . 29.



AVERAGE VLONGITUDINAL STRESS VARIATION
ACROSS CENTRAL SECTION

ECCENTRICALLY LOADED 2 5* *2 5 '"* 10GANGLE

SPECIMEN length 30 ins ECCENTQiciTV €x - 0 228 INS
T
COMP -<
A~/
A I / /

STRESS ScCALE

0 14 i
0 Tc.;ni,
R — 25 TONS
———— 5ms

Fig. 50.



AEPACE UPWGITUPINAL STPS*
K ' ACROSS CENTRAL _&EST10N

I OOMCINTIHCAU.V LOAORO
I

VACTWIQi*

}'a3*«QQ CHANNEL
>P»CIMEN LgNQTM 60 IN».

-COMP

m.
U

ii 1
I Ton
-2 ToNsS
-—--3 TON s

35 ToNs

FiG.



89.

LONqiTUDINAL STPESS VAPIATW "
ACROSS CENTRAL SECTION.

ECCgNTglClkLLV LOADED 3\ 3 * IIO CHANNEL
SPgC1MgN LEMCTM 60 IN# - ECCENTPICtTV 0 45 'Ns.

#TPASH SR*E

O 1 4 2/

TON

TONS

Fic. J2.



90,

Re METHOD OF TESTINGe

(1) Load Capacity Testss

All the specimens were measured and mean values of thickness and
width of plate components recordede The clemps were adjusted for the
required eccentricity and a specimen fitted into the clampse The
strut was then placed in position in the testing machines The load
was épplied gradually and zero values of deflection and angles of
twist were recordeds This procedure was repeated for each load
getting till failures The general behaviour of the specimen was care-
sfully observed, the failure load recorded and the observed mode of

feilure noted for comparison with the theoretical worke

(11) Stress Distribution Testse

The longitudinal stresses at the central section of four specimens

" were recorded by means of electrical resistance strain gauges as a feature

of general interest, and as a check on the concentricity and eccentricity
of the loads applieds The stress distributions are shown in Figures 29
to 32« It can be seen'fhét in the case of the concentricallyﬂloaded

angle strut there is a slight tendency towards a stress increase in the

fegion of the heel, due to the effect of the gradually developing twiste



In the case of the eccentrically loaded struts the distributions

gorrespond to the eccentricities applied.

(i11) Tensile Tests.

Strips suitable for tensile tests were cut from a number of

representative specimenss The procedure and results of the tensile

tests are given in Appendix 6.

q1,
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3. EXPERIMENTAL RESULTS.

(1) Angle Section Struts.

Three typical modes of failure were observed, torsional-flexural,
purely flexural and material failuree Torsional-flexural failure was
denoted by a gradual increase of central deflection and twist as the
load approached the feilure load, then by a sudden increase of twist at
failures Figureg 33, 34, 29 and 30 show typical deflection, twist and
stress dlstribution walues respectivelye Figure 35 shows a typical
excmple of this mode of failure. Pure flexural failure was character-
sised by a sudden collapse of the specimen due to bending or bowing
in the shorter specimens, or a gradual bending action in the longer
specimens, with little or no twiste Figures 37 and 38 show typical
deflection and twist veluess Figure 36 shows a concentrically loaded
equal angle strut after failure by pure flexure. Material failure

occurred in some of the shorter specimense

(i1) Channel Section Strutse

The three typical modes of failure observed were torsiomal-flexural,

purely flexural and plate component failuree Torsional-flexural and
purely flexural failure were denoted by similar‘characteriétics es for

angle strutsy typical deflection and twist values are shown in Figures
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‘39and 40. Figures 41 and 42 show typical examples of torsional-flexural

and purely flexural failure, respectively. Plate component failure wa.s
characterised by the failure as a plate of either the flange or web
components of a channel strut. Flange failure was denoted‘by symmet;
srical vaving of the flanges, Figure 43, which increased with load. As
£he failure load was approached sudden excessive flange deflections
occurred at one of the wave peaks, while the other ﬁaves were "ironed
out"s In some tests failurefof the web suddenly occurred near the
niddle of the strut lengthe Figure 44 shows a close-up of the failed
part of a web of an eccentrically loaded channel,which had deflected
considerably due to relatively high eccentricitye The two different
types of plate failure were readily recognisede In most cases of web
failure, secondary flange failure occurredes Typical stress distribution
values are shown in Figures 31 and. 32.

| In the tests to investigate the effeci of the section profile,
it was observed that the channels with broader flanges were generally
more susceptible to flange plate failure than thoge ﬁith narrower flanges,
which failed either by material failure or due to flexure, depending on
the length of the specimen. Most of the 12 inch- * eccentrically
loaded channels failed by flange failurey those with narrower flanges
failed by meterial failures The set-up for the 12 inch - specimens in

the 50 ton Denison Machine is shown in Figure 45
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All the experimental failure modes and loads are listed in

Appendix 5.
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PART IV,

ANALYSIS AND DISCUSSION OF EXPERIMENTAL RESULTS.

STRUT TESTS ON ANGLE SECTIONS.

STRUT TESTS Oil CEANNAZL SECTIONS.
(1) Concentrically Loaded Channelss

(11) Eccentrically Loaded Channelse

lo2.
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ECCENTRICALLY LOADED ANGLE STRUTS
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1. STRUT TESTS ON ANGLE SECTIONS.

The modes of collepse encountered in the angle strut tests were
mainly two over-all failure types - torsion combined with flexure and
pure flexuree Some of the shorter specimens failed due to failure of
the material. The unequal angle struts all failed by combined torsion
and flexurey but the longer struts failed primarily in flexure.

The élastic critical instability loads in torsion-flexure were
deduced by Southwell-Lundquist plots (32,3B), of the measured angles of
twiste These, as shown in Figure 46, come so close to the experimental
failure loads that the latter have been used in all comparisonse

To obtain an over-all view of all the results it was essential
to present the relevant theoretical results in the form of a single
curves The experimental values, including failures in both pure
flexure and flexure combined with torsion; could then be represented on
the same graphe This has been done by utilising the device of an
equivalent slenderness ratio and a nominal stress concepte

The equivelent slenderness ratio of a strut was obtained by
equating the theoretical critical lcad R, of the particuler strut consid-
sered in torsion-flexure, to the critical load in pure flexure, of an

“équivalent“ strut of the same section profile, i.e.,
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The nominal critical and nominal failure stresses o, and

O, BT the averages of the critical and failure loads over the

cross section, l.e.,
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The reduced theoretical curve and the experimental results are shown
in Figure 47.

It is geen that on the whole the agreement between experimental
and theoretical values is quite satisfactory. The characteristic |
feature of the strut instability curves, namely the tendency of the
theoretical values to be slightly higher at the higher wvalues of slender-
sness ratio is manifesteds This is due to the increasingly greaﬁer
;ffects of accidental occentricities as the length of the specimen
increasese In the shorter strut range, the experimental values are
more evenly distributed on both gsides of the theoretiecal curve. Teking
account of these considerations, Figure 47 clearly indicates that the
theoretical values obtained,using the iterative method of salution put

forward in the theoretical part of the thesis, form & rational and
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roliable basis of assessing the torgional-flexural buckling strengths
of angle sectionse

Figurés 48 to 52 present a sample selection of the experimental
resulte of Figure 47 in greater detail to indicate the wvariations
corresponding to different failure modess

The effect of different eccentricities on struts of equal anglé
cross section and varying length is shown in Figure 48 The following
points are apparents
(1)  In the torsional-flexure failure range the nominal failure
stress ORLE increases as the point of applied load approaches the
shear centre from the direction of the centroid, i.e., eccentricity has,
as indicated by the theory, a definite influence on the value of the
elagstic critical load.
(11) In the pure flexural failure range it is seen that, irrespective
of the applied eccentricity, the nominel failure stress OvE remaing
sensibly constant for a given lengthe This is the well-known concept
of over-all instability in pure flexure.
(111) The theoretical curves indicate a sharp change over from
torsional flexural failure in the shorter lengths to pure flexural
failure in the longer lengthse This sharp transition could not be
obtained experimentally, since at Such change-over points the failure
mode becomes extraordinarily sensitive to the effects of unavoidable

irregularitiess

(iv) Agreement between the theoretical and experimental results is
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reasonable, keeping in mind that specific individual values rather
than = range,are being compareds The tendency appears to be a slight
underestimate of the torsional-flexural failure stress on short lengths.
This may be due to an underestimate of the torsional gtiffness of the
section outline, It is significant to polnt out that while these
separate values appear to be slightly higher than the theoretical, as
can be seen in Figure 47, the distribution of.the collective results
show a balancing number of experime%bal results slightly below the
theoretical valuese

Figure 49 shows the effect of variation of profile at a constant
eccentricity on the stress-length curve. The results éenerally show
good agreement with the theoretically computed valuess The experimental
valués are slightly lower than the theoretical throughout the range
considered, except for the shortest strutse It is of interest to note
that tﬁe curves of failure-stress versus length for equdl angles show,
aé mentioned, a sharp change over from the ;orsional-flexural to the
purely flexural mode of failuree This is replaced for unequal angles
by a variation corresponding to toréional-flexnral failure throughout,
predominantly torsional in character on the shorter lengths, tending
to predominantly flexural for the longer lengthse

Figure 50 shows the theoretical and experimental values correspond-
ving to those of Figurs 49, but for extruded sections of similar over-
;11 section dimensionse Agreement is again obtained between experi-

smental and theoretical valuess

-
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Figure 51 gives a direct comparison between equivalent cold formed
and extruded section profile struts. It can be seen that there is
literally no difference bhetween the behaviour of cold fofmed and
extruded sections under eccentric axiel loads.

Figure 52 ghows the effect of eccentricity on the critical stress
of gtruts of various lengthe The main feature, which has already been
mentioned, is a decrease or an increase from the critical load under
concentric loading, depending upon whether the load point moves away
or towards the shear centre from the centroide The failure mods
encountered, in the range of strut lengths considered, changes from
torsional-flexural to a stable material failure in bending at the higher
eccentricities when the load is between the centroid and the shear centre.

Agreement between theory and experiment is again reasonable.
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2. STRUT TESTS ON GHANNEL SECTIONSe

The exéerimental work was degigned to investigate' local instability
(i.8., flange failure) of cold formed aluminium channel struts, when the
specimens were concentrically and eccentrically loadede The eccentri-
swcities abplied were along the axis of symmetry of the channels. &s
z;. further gtep, a preliminary investigation of the relation between
direct and bending stress values, under varying eccentricity, was also

includede.

(i) Concentrically Ioaded Channelse

Figure 53 presents a comparison of the expefimental and theoretical
values obtainede The theoretical curves are based on equations @
and @ of Part I« These define the theoretical and ultimate stresses
and are restated as followss

£ t & @
%r. F |2(j —.U%) <.t))
o = 't JK,,— E op
b1z (1-1%) -
replacing o7 for oy in equation @ e The value of the plate

P
constant K . can be obtained using Figure 20.

~

{)
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It can be seen that, if the bagis of plotting is taken as
b
T 17— s then single theoretical curves are obtained for channels of
t Jk,
any cross sectional dimensionse
The stresgses are presented for clearer comparison as frzctions of

the proof stress, i.e.,

(04
Zer. and SV for the theoretical values,
oy P O’p 4
and COF for the experimental results,
Sp .
where oL is the average direct stress at failure.

The introduction of the proof stress to allow generalisation for
the slightly different grades of material used, strictly speaking,
upsets the single curve presentation, since there is one curve for
each value of the proof stresse These differences, however, are so
small for the range of proof stress values encountered, that the differ-
sences in the various curves cannot be shown up and the single curves,
as indicated, are an accurate representation of both the elastic and
ultimate conditions in the range considerede

The 12 inches long specimen results approximate to pure plate failure,
since the lateral deflection of the edge of the flange commected to
the web is negligibles The experimental wvalues exhibit the same
characteristics as those obtained for steel, Harvey(25), namely as the

width to thickness ratio. of the flange increases, the post elastic load

carrying capaclty increases and the experimental points tend towards

the ultimate curvee
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In the 36 inches long specimens, this same effect is obscured by
the effect of length which, by permitting lateral deflections of signi-
sficant magnitude, induces a drop in plate strengthe This is the reason
%or the apparently good agreement of the long specimens with the cfitical

curve for elastic conditionse

(i1) Eccentrically Loaded Channelss

The iterative method, the application of which to the instability
of flat plates under longitudinal compression, is presented in Part II,
Section 3, of the thesis, may be generally applied to any type of
longitudinel load variation. The laborious computation involved, however,
precluded its application in the range of work undertaken to more than
one case of load distributions The chosen instance was that of the
variation shown in Figure 18. [Experimentally this was achieved for the
12 inches long specimens, by appropriately altering the load eccentricity
to give the required load distribution.

The theoretical and experimental results are again presented greph-
sically, using e single graph plot by utilisling the group variable
5 —— as befores The theoretical elastic critical stress at the

TJ"

free edge of the flange is given in Part II, Section 3, as
mgtD‘

(N")cr. N \<F
2

i O

o (), 7 e 2)(-—- ©)

It is assumed that collapse of eccentrically loaded wide flanges obtains

)
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at the same load as that carried by a plate of width be of the same
edge fixity and stress distribution as the wide flange, with a free edge

stress = c'p s leee,

t
C e ) ©
‘ % F e (l - D'L) @
hence be = wt J
12 (1 1) S
Lrom which o, = - wt _—k .
v - F'
b G b 12 (1~ ) @
The stresses O, , O;U and o, s are again presented as fractions
» <r F

of the proof stresse

It should be noted as & matter of interest that the theoretical
graphs are identical with those of the centrallyAloaded channelss  The
difference for the same channel section, between concentric and eccentric
loading conditions, is manifested by a horizontal shift of the relevant
point on the curve, because of the change in the K value.

Figure 54 shows a comparison between theoretical and experimental
values obtained for the eccentrically loaded channels in the plate fail-
sure range. It can be seen that the general tendency is the same as
£hat for conceﬁtrically loaded channels, but the experimental results
in this case tend to approach the ultimate conditions more closely,
within the same range of ? J-‘— valuess This is anticipated as a
characteristic of load eccentricity and results in the relatively greater
post elastic carrying capacity of an unsymmetrically loaded flangee

In the stress distribution investigated, the connected edge carried
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: of the stress at the free edgey thus, when the free edge éﬁress
reached its appropriate criticalﬁvalue, the connected edge was still
capable of sustaining a greater amount of post critical stressing than
in the concentric loaded éase, vhere the free and connected edges are
both at the same uniform stress value. Keéping this in mind, the

degree of agreement obtained between the experimental and the theoretical

velues is comparable to that obtained in the concentrically loaded channels

The results of a set of preliminary tests into the relationship
between direct and meximum free edge bending stress for channels, are
presented in Figure 55. The section outline used was of square form
and incorporated thickness ﬁnd length variationses The investigation
was not inﬁended to be carried beyond the stage reached, i.e., tentative
interaction curvese It can be seen that the bending and direct stresseé
corresponding to the eccentric failure loads.(computed on the basig of
the simple bending theory), appear to give straight lines indicating
that these struts fail at some constant maximum stresse This matter

forms part of future research programmes.
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SUMMARY AND CONCLUSIONS,

l. An iterative method of general application to problems

of instability is presented.

2. This is applied to obtains
{i) The critical load initiating ove;-all instability in torsion-
flexure for boundary conditions corresponding to "hinged" ends in
flexure accompanied by complete warping restraint at these endse
(1i) The critical load initiating local instability in flexure of

eccentrically loaded channel sections of short lengthe

3¢ The experimental work carried out consisted of strut
tests to failure of alumihium alloy equal and unequal angle and
channel specimensy under varying conditions of length, eccentricity,
cross sectional dimensions and method of manufactures The range
investigated included failure due to over=-all instability in torsion-

flexure and local instability in flexure.

4o The following theoretical and/or experimental results
obtained are of particular interests
(i) %arping restraint at the ends éppreciably increases the buckling

gtrength of struts in torsion-flexure.
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(i1) The buckling strength is influenced by the eccentricity of

the applied load, increasing as the point of applied load approaches

the shear centre from the direction of the centroid.

(iii) There appears to be no difference between the behaviour of

cold formed and extruded angle section struts under eccentric axial
loads.

(iv) Local buckling of channel sections under eccentric axial loads

may be treated in the same manner as the buckling of uniformly compressed
sections, provided the effect of eccentricity on the appropriate

support conditions of the‘weakest plate component (in the case considered

the flange), is taken into account.

Se¢ In general the theory developed and presented in the thesis
gives good agreement with the experimental results in both the over-all

end local instability cases investigated.
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APPENDIX I.

INFLUENCE OF THE ASSUMED POSITION OF

THE MAXIMUM DEFLECTION ON THE ACCURACY

OF THE ITERATIVE METHODs
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INFLUENCE OF THE ASSUMED POSITION OF THE MAXIMUM
DEFLECTION ON THE ACCURAGCY OF THE ITERATIVE METHOD.

To demonstrate the effect of the assumed deflected form on the
accuracy of the iterative method, the case of a square plate under
various load conditions is considereds Two deflected forms are
assumed and the plate constant K is calculated by iteration for various
load conditionse The values of K calculated by the iterative method
are compared with those given by Timoshenko(14) using the energy methods

The rectangular plate shown in Figure 58 is simply supported
along all edgese Distributed forces,' acting in the middle plane of
the plate are applied along the edges x =¢© and xza 3 their intensity

~

is given by the equation

Nx=l\/o<l-o(%> ‘

where N, 1is the intensity of compressive forces at the edge Y=o and

o¢ is a numerical factore By changing o¢ various particular cases are
obtained, e«.gs, for uniformly distributed compressive forces o = o and
for pure bending «=2 o If « is between zero and two, a combination
of bending and compression is present, as indicated in Figure 56.

The differential equation for the deflected form of the plate is
again given by equation o Substituting for N, from gives
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2
A 4 A Y d
2w D w ) w
ow L, % 22 - ____/\/o<l-o¢—" —,
The boundary conditions to be satisfied are
W = ©
N gor =0 and x=a
> w E- ’
— -.'-)) —-—; = (o]
b'p‘z Blj
w =0
& = awnol =b .
! — +tV— =0
| 232 R-Y,2

\ Conditions and (for minimum requirements of stability)
are satisfied by taking the solution of equation in the form

. A
= 14}
w Y si = a

in which Y is a function of Y only.

Substituting in equation gives

dgA dy?
2 2
where A = Zm
Q'Z.
2 2
B - m'l.«l.- mr N,
az Q?- D
C = _wm N o
T D b
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The appropriate boundary conditions in terms of Y relevant

to equation are now

(i) Single Sine Wave.

The first approximation to the deflected form of the plate in
the y-direction (again corresponding to the minimum requirements of

stability) is assumed to be given by

Y,:.().S.lh%

wvhere ) 1is a constent. This satisfies the boundary conditions N

Substituting in the right hand side of equation gives

4 A 2
dv _ _Aaﬂzs.‘nﬁ,[g-cﬂﬂsinm" ©
b
dy? b b
where Y,_ is the second appré:d.mation.
An expregsion for Yz is obtained by successive integration;

the integration constants are evaluated by applying the boundary

condltions .
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The maximum deflection occurs at 3-:%% s The first approximation
to the critical load is obtained by equating (Y.)ma to (\Q)MM .
K. .

This, after evaluation, gives the following relationships

(l*%':)—i_t%(l—%>:o @

At the critical loading condition

2
T E ®
D b?
hence ( 2 2
a o) x
2 ks (1ig) e — @
Q
or for a square plate, i.e., —6 = |
4
= ©
p- X
A

(ii) Double Sine Wave.

The first approximation to the deflected form of the plate in

the y-direction is assumed to be given by

- in %Y Qa2
Y,__()_sm_g.\_?_smb
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where () is a constant. This satisfies the boundary conditionms

.

Substituting in the right hand side of equation gives

4 2 2
d% - _a0 (_sz. sin T 2% gp 274 )
4 B b b b

o) [B-Cﬂ(sin%.,..!z.sinz_“:’. ®

Integrating and evaluating the integration constants as before,

gives an expression for Y, .

The maximum deflection occurs at Y= %. Agein equating

<\/‘ )VV\Q\(- and (n)man.gives

a4 3 | zN
1.299 —E‘; + 2.166.:“[3i + 0-394 - a P (o-oqoé— 0.0384 )= o

_.___.____.

Using equation @ this reduces to

A 2 2
).299 2. + 21662 4 0.394 - K& (0-894 - 0-375'0<) =0
5 b2 b’

,

—
—

or for a square plate, i.ee,

2
b

4.3749
§

(o. 39 4 _ 0.375"0()
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The values of K' calculated by the iterative method for several
o4 velues, and the corresponding values given by Timoshenko(14) using
the energy method, are gifen in Teble 2 For a clearer comparison a
graphical presentation of results is given in Figure 57.

It can be seen that any desired degree of approximation may be
obtained byvthe appropriate choice of the deflected forme The point of
importance which has been borne out by other subsequent work is that in
defining the assumed deflected form, it is of greater importance to
assess, as neérly as poséible, the true position of the point of maximum
deflection rather than the particular type (sine. , perabolic, etc.) of
deflected forme This is quite strikingly demonstrated by the rapid
decreagse of accuracy of the single sine asgumption as the applied load
changes from uniform loading to pure bendings The changeover to the
double sine assumption and the consequent shift of the assumed point of
maximum deflectlion towards the position of that of the actual deflected
formysubstantially improves the approximatione |

The full importance of this feature is realised when dealing with
problems such as plétes, free along one longitudinal edge, where the
position of maxirmm deflection of the laterally deflected form is
fixed by the physical conditions of the plate supports. In such cases,
it is perfectly permissible to use any algebraic expression most suited
to ease mathematical working, provided it gives the maximum deflection -
at the free edges In the theoretical development presented in the text,

polynominal expressions were found to be most suitables
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APPENDIX 2.

THE ITERATIVE METHOD ~ CONCENTRICALLY

LOADED STRUTS.

le First Order Approximation.
2« Sscond Order Approximation.
3. Comparison of Critical Load Values

Obtained by the First and Second
Order Approximationse
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THE ITERATIVE METHOD = CONCENTRICALLY LOADED STRUTS.

l. First Order Approximatione

Restating equations @ N @ and @

2
Iy G = 7P (e ) @
E1 g_z‘_{ = —-P(ur- %9
’ O“I;Z (2 d ?'CP) dv _, £
CGF PG PGE ) ©

The boundary conditions to be satisfied are

Uzuvr=¢@¢-z=o

. ¥or 2=0 and 2:z=L

/
U=U=-@ =0

These conditions are satisfied by

2
i
A\
Ww
{
n
o)
"
3
LY
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Putting U=U and @= q:l in the right hand side of equation

@ and integrating twice gives
d -
Eg_i;-:_ [Asun-t.,.gA(_c,osZL%)]
EI dug - —P[A cos '_rr_ < sin —"" ] 8
1 dz ) zﬂ') ) + @
‘lf 27
ELu, = - [,4 sin ‘f r Y. 3(22 %%)]+BE+C
L
From . z2=0, U,=o C
From'. 2'—‘—]_, Uz-.-_o B = P‘j

1}

2
7%) A

L
?’43

Substituting for B and C in equation and putting

uz: Ul. at ‘2:% gives
2 2 2
LY, L L
e4 = P(Efa Pyl oPy ()

2
Multiplying both sides by (—E-) and grouping terms

(P EIL)A +I733P5/J
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Similarly, putting V'=Y and 9 = cg in the right hand gide

of equation end integrating twice gives

dztf . T
Efxa.j :-P[ﬂzsm --!:

EI E{_C:i __P -/ Cos T
% 2
2 NG,
EI U, =-P _42?;_)'5 _
L L

From : 2=-20 ,
From '. 2

Substituting for

L=y at 2:-2‘:— gives

L\ Lz
L4, = P(£)4, -PrLa, - 2P

q
0
Q

=0

2
Multiplying both sides by G—r_:) and grouping terms

(P- Er“-"l-'_;z

),42 - 1733 Pz A,

= - P

=)

+D— @

- P, ('EL? 1/")3

-p-D}'I'E

.
= “3

D and E in equation and putting

2

Ay

o
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dt A oo AP _ o
. u u, v ( = .7
Putt _— — — = — a - =
e de T oA 0 dat oz 0 ole? ol =2?
in the right hand side of equation gives
o @
C - R cos 2R + R sin T2 .
! 0!2& ' L 2 L @
) 2
where R‘ - (C._I’; P> %) A'
& - r
e R = P[ ¥ <f D+ 3»({) "71:\
Integrating
d3q> : T Mz
Stn L cos T
CI pr : = R\ o - R?_ = + F @
() ()
2 177 .
C(_?_(_‘f;___-R ces T R s'm? Fz « G
' d}.‘_ ' (E‘_f_)?' 1 2:)1 <+
L -
.oy e
@ sin cos T
C‘;(_‘_—R‘ 2mr )3 +R‘ 2 +F}-*G%+H @
X\
? ) )
L v . .
Ce sin
C# = R =T g L L FZL.6E  HatK
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To evaluate the constants of integration, the boundary conditions

used are

? = A, (l - C.osz'wz’) = ©

for 220 — ()
!
—- v 2™

¢ = /)3 (_._L..) sin = - o

/

P = /)3 (Z—T) sin 2™ - o

L L _L

O for 223 —— (@
P :-—,43 (_l:) sin T - a

The additional boundary conditions are selected to conform tec the

conditions which prevail in the experimental work

From @ 2
3
Erom @ Qi) 20 , @ H =—Rz(%>

(i) }7%—_—9 ?

(o)

]
S
Q &
1
(o)
T
i\

Q
]
o

3

0"
o
()
{

2
RSL"’

fom @ eo s 9= K=-R(E]
Equation now can be rewritten

yAsd . T

a
C¢=R T RIS (L? R()? R (&)

A Y. =y
(%) (
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Putting $,=9 at 2 =l—.. in equation and collecting terms

2G4y = 2R (L) - R (L)L) + R, (L)
substituting for R and R
2.C,/43:-2.<C Y., P)(zw)'q + P‘x-— )ﬁ - P34<%)< )

_Pxo(zx?)'q' o Py, (?)

2
Multiplying both sides by (-T_i) and collecting terms

2
0.215 Pﬂoﬂ' - 0.215 cho,é)z_,.‘}zcl (-"E)__‘i C+3 CZP] = o

To simplify the writing, the following notations are useds

FDI:EIH{; s pzf‘EIxJE.‘j ? P (C-rCAL“}) @
Equations @ ’ and can be rewritten
(P—P,)/J, + 1733 Py A, = o @
(P-P) A, - 17133 Pa_a, = o D

o.215 Pﬂf': - 0.215 P"ﬁ’z + O'FGZ(P- P3)43 = 0
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Equating to zero the determinant of equations @ ’ @
and , gives the following cubic equation for calculating the critical

vaelue of P

Z(P-R)(P-R)(P-R) - 0142Py* (P-P,) - 0744 P (P-R) =0

@ -
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2. iSecond Ord@.ém.x_i}@i@o
T{In abbreviated form).
The values of u,, v, and c? s derived in Part II, Section 2,

are taken as the solutions of equations @ ) @ and @ s satisfying
the boundary conditions .

Where o
e 2 2
%-‘--ff S<"“- ——-“(;'- yn, 2 -y ALE -y 4 (L )}
g —

P 1\‘% 2’“'} 3 ? '4 L)’L
g = -1 sm _%43_{+x4 L= o‘}(

EL, (1') ( L)2
q‘;: BL cos 2_3 R’L sin T_‘ R,_ (-“— 22_ R,_ (« 2R 2«)

and R, = P[—Z—g (%)2-43 + Y (-E—)LA,]

Prbceeding, as in (i) by putting u = u, , U= ,» =9,
2 2 2
d‘u._duz dlf du; dd’-?,_.d% )
o3 - olz? ofg olz dzt —d—{z in the right hand side of

equation @ ) . and @ , integrating and evaluating the constants
of integration from the boundary conditions, the following' expressions

are obtained .
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2 q ¢l
L (c-v*P) 2 (c-n'P) , P
4P (%) [-3—3 -

L* [ sz?; Pzt\: ]
+Ay — +
e EIL, EI,

‘3 {A. Py (&) {(C-n’P)_ P ]

c, ET,

-4, L) [(C-rf P P ] }

C, EI,
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Putting u'3 = M?. N U".s-:. U-‘2. and C?az ¢2at 2 :%
in equations @ and s these finally reduce to

A, (P— R +61a3 P5° E ) — Ay ©0.193 Py.% ETLy
C, C,

4[:696%33_0433( )HEI‘f_l’zqu]——o

2
—4,0:193 Proyo ELa ~ A, <F>_F>,Lar 0.193 __p"° ____EI*)
C, C,

—'4 K\ 696 P'x' - 0433(C )’?'Fa %o EL, 1.738%0]-:. )

@

2 2
-4, (0.054 Pg (_C_-r., P) + 212 Py _ o025 P Y%
C\ L'Z Er'j—
2 -
+ A, [o 054 Px_ <C L202 P% o a5 P
C, L* EL, |
_ 2 Z U2 (N}
+ A, [o.;zs@__‘f"_@_,_a.qs@_:}l___ o518 D% ° , 0.378 P9°]: o
<, > EI, EL,

3
whevre P = T Ef_q anol R EL
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To satisfy equations s and @ for a buckled form

of equilibrium, their determinant must equal zeroc. This gives an

equation for calculating the critical value of P

For a cross section with the x-axis an axis of symmetry y = o
]

and the determinant reduces tos

~

(P- P,) o) o
2
P ter C-ro P)
o (P- B+ 0.193 %&) - Q.equxo-o-as's( = % ET,
- /-73%1,) -5
2
2 2 )
.0 (o.om Px (C=6P) 212 Pre (ouas C-r'P), 4a3 @_';;.i:)
e ¢ L2 C, L
v3 <2
-0.215 E_'f°) + 0.378 E—zﬁ )
ET, ETL,
Hence

25\ _r2p) 2 a2
(P- P,XP_QL,»o. 193 P__"EEI")Q:-M (C___,"‘ P) 4 4.93 @——";p +0.37g B )
]

C, L EIL,
2 2
+ (P-R)(o.om Pxo(_c_'.E’.E) +212P%_ o5 E.’.‘o)
C, L* ET,
2
(l.me Px - 0.433@'"’ P)onIx- l-73F;x°> = 0
° C

| @
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3. Comparigon of Critical Load Values Obtained
by _tho _first and Second Or: pAnproxinationgy

Tho case of o centrally loaded, 40 inches long, aluminim strud
having & 3.5" x;z-s_", x 10G. angle cross aection is considereds

-~

(1) st Approximations

The critical load is obtained from oquation (56) , namely,

(p_'e) [roz (P_ Pz)(P- F{,) - 0.744 P‘xf'] -0 -

2 2
P = «"EI, _ wxa470x0.181 3.88 T
L? Aot
2
Pz. = «ZEI,, = 1r;<447o';<o.615 - 16.95 T
L2 40°
1 st
P::_L(C_C_‘;_f. 5.6 8.11 —— = 2.83 T
3 raq. [ Lq. 205— + 40,_

The emallest root of equation givsa

P = 2.68 T

<r,
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(11) Second Approximation.

The critical load is obtained by trial and error from equation

@ of this Appendix.
Taking the critical load %: = 2.687T , the following computations

are mades
2 z
0193 P%EIy  _ 0193 x268x0.894 x 4470 x 0615 _
C‘ g. 11 -
y 2 C
2
0.125 (C" Yo P) = ©.125 (5'6 - 2.05x 2'68) = 0.000I54
C, 8.1
2
4.93 (C———-—:" P) - 4.93 x o = 0.000308
L 4 0%
2 2 2 1
0.378 P % — 0.378x 2.68 x0.894 _ , 0pe79
EI;:. 4470x 0.615
0.54 Pu (C— ro"P) -~ 0.54x2. 68x0.894 x o1 _ o.001595
° C, 8.n
219 P, _ 2,12 x2.68x 0,894 = ©0.00318
K 4A0”
7 2
0.215 P x, - ©0:215%2.68 » 0.894 _ g 400502
EI.,(_ A470 x 0. 615

1) -

4.06

]

1.696 Px 1.696 x 2.68 x 0.894
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2
0.433 C"n P)%EI: &_433X°-|K°-8q4x4470x°_6|f—

C, ° 7 &\ =
173 5% = 173 x16.95 w0.894 = 26.2
Again P - 3.88 T
anod P, = 1695 T

Substituting in equation @ gives
(2-68— |6.95 4 l40)<0-000'5"4 + 0.000308 +O-00079>
¥ @-0015%'-1- 0.00318 — 0.000502) (4.05 - 13,1 — 26-'2.)

= 125,732 x0:001252 + ©.060 4273 % (— 35.24)

0.1S7 . 0.151 = 0C.00¢§ £ O

Hence Rr 2.68 T

It is seen that the effeect of the second approximation is

negligible.



APPENDIX 3.

THS ITERATIVE METHOD = ECCENTRICALLY

LOADED STRUTS.

First Order Approximationa
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THE ITERATIVE METHOD - ECCENTRICALLY LOADED STRUTS.

First Order Approximatione

Restating equations . . and

159 .

4
grde _ _ pdu
Udf sz B P(B -29>d27'
du _ o5
El;a';;—-—P?ﬁ.;A- P(xo--e")gl
4
d& _ 2
s (oo P p-p) 22 o) ey
where B = jﬂ 4 dA « 54¢5d4 2 y
4 -
I, o
and ,82 = Jﬂ o4 ;IA »§'da - 2%
The boundary condi’gions to be satisfied are
U U= = o

These conditions are satisfied by
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2 2 2
Putting Ej.._uzz C_"ﬁ-‘. and Eﬂ = Oﬁ' in the right hand side of
[

equation @ gives

a4
El;i—:: =P %)ZA‘ s;n!E_ P(y°-¢5)<_1£_)14'43co$ Z—T‘_? - @

successive integration leads to

172
EIu—PAs'."? P( e),q cos T B£+C33+ Dz + E
y T2 '—(,,,,—)i" J%y)A4, 2 ¥ 2% 2

(&)

To evaluate the constants of integration, the boundary conditions

r

used are
u = 4, sin T = o
u = -4 l)zsm T - o for 220
- -— ) L T —
]

u = A (X)) cos 2 = ©
l (L )3 L _For 5= _l:_ @

W 7

u = - 4, (.1{) oS EL—Z_' )

" The constants of integration are obtained as



Equation now can be written

y 2 ' 11)1 o Y (z - 477737
L

Plra) 54 +P(-a)E) 4 —-———-

Putting = u, atz :..‘2:_. in equation and collecting

terms

| 2
FL, A = P(L) A + P (4,-2)(8) +a,+ P (4- 2, )= 4,

Multiplying both sides by ( ) and regrouping

(p.. EIq.ZE:),q + k733 P(y -2y ) A, =0 @

2
j.?i;_' :ll: and ji Ta -z_in the right hand
2

side of equation gives

Similarly, putting

161,



er o4 _ P(-——)A sin T2

Successive integration leads to

- |
ELg =P T p(,‘Q)ACos L+F_%_+G

@©°

To evaluate the constants

used are
Ay =
h v \¢ w2
vo= "'42('1') shn—T =
?
v o= (_“f. cos ¥ T -
AZ L) L
U « \3 .
o= -4y () = =

F = o
S = P(x-¢,)4,
H = —p(x’e‘x)—l;- 43

162 .

+P(%- J(“’)Mcosz—ﬁ

VALK
+Hz+ K

&)

of integration, the boundary conditions

) f'or * =0
o
(o]
; For ‘?:':--%

obtained as
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Equation now can be written

ELy = P4, 5'(“ ;‘?+P(°= %)% °°(i«l+"(% 5 )AL
P(r-2)5ae - P(R-e)(E) L 4, —————

U at 2= ..‘2:. in equation and collecting terms

2 A 2
ElA = p('alr;) A- P (“o"%)(T'v—’)'é_‘Ag = P(*’o' Qz)% 44

Putting U=

A
Multiplying both sides by ( —E—) and regrouping

(P— EI«E)"‘? ~ L1733 P( -Q)A

ol u _ d U, ol u_ o ur
dt T olx?
hand side of equatn.on . gives

Putting

and_c-'—? = __C_Q in the right
di?  ofy?

o

4
C,S;? /\/(-—- 44, cos —= L. : 4P (y -—29)( )/4 sin "_"L__.

P (r-e ) (E) 4, sn T2

wheve N= (C- Pef - Pe - PY)

Successive integration leads to



1GA .

- cos ?:'—T_% in = in 2%
Cg=NA + F’(ge-zg)t), st P('xa-ex),qz T

2 )? 2
(2; . (t) @)"
+ Qg— +RZ + Sz +T .

To evaluate the constants of integration, the boundary conditions

used are
P = A (\_cosm = O
AT e e
¢ = ,43(3—3-) sin’.'_L.? = O
1 13
? = Aa(?:g)S\n-z—L- = O L
P -Ay () e o o for 273
L L

The constants of integration are obtained as

o)

Q

R

HS =- P(B,' ”3)(‘«‘3)'4: - P (’3' 2") (%) A2

P (Ho‘eﬂ)%\:/)' - P (%o"ﬁx)% '4?_

T =‘NA3('4%)
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Equation now can be written

1,1(% P
C ¢, = N4, C°ZML' P(‘ﬂ )»431‘_:;1 P(ar e,,)/?z T t):
Pl )Ea TP (rn)E AL (s 4)(5)0

Pla) B4z - M (E)F A, —
Putting )= ¢, at 2= in equation and collecting terms
C24, = -N(-l: u"’a +P(4- ‘q)(k)lﬁ - P(ys ‘5)(%) %‘ A,

“P(" ) z*P(" )(%)%"71

2
Multiplying both sides by (—T—_—) and regrouping

O.ZI‘S'P(':I 2,)4, - 0.u15 P(z,-¢,) 4,

1-054[( 5/3""«/3) __<C C‘?..'_'.‘-)]A—o
Equations @ ’ . and @ can be rewritten

(P-—F?)A. + 1733 P(aa- ‘23)143 =0

,
(P— P,_) A, - 11733 P('X,- Qg) 43 =0
025 P (y-2)4 - o215 P (x, - a,)»Az

+ 0.5 .{‘[p(u_ "'qﬁ\:z%ﬁz>_%) 4, = o

-]



2 2
W"Iere p‘ - EL“W . Pz EI%: ,
* L
1 4«1
ONd ps = —r—z (C + C‘ -—-l—-i' )

Bquating to zero the determinant of equations :
and ’

; (P-R) o 1733 P (y _ 2,)
o (P-7) ~ 1733 P (%,- 2,)
0.215 P(go- 49) - o-‘2l5 P <7c°- e") 0.5 r:' [P (I . 2 B, +r°:ﬂz)_ @]

1]
o

which, after evaluation, gives the following cubic equation for calcul-
vating the critical value of P .

RE-RIP-R)[P(+ 1) B - 0744F (42 ) (P-R)

- 0744 P" %.,—2,)2(9— P)=o @

If the xz-plane is a plane of symmetry and the thrust P acts

in that plane, the general equation @ reduces to
2
_ ) 2 2 2 2
(P F!;) Yo (P 91) [P (\ + —"‘:f-)- F;] - 0744 P (% - e,) - 0
©

©

166 .



APPENDIX 4.

TYPICAL EVALUATION OF THE DIIENSION RATIO

H CORRESPOIDING TO A GIVEN RESTRAINT FOR

FLANGE BUCKLING .OF Al ECCENTRICALLY LOADED

CHAIMNEL SECTION STRUTe

167.
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TYPICAL EVALUATION OF THE DIMENSION RATIO H
CORRESPONDING TO A GIVEN RESIRAINT FOR FLANGE
BUCKLING OF AN BCCENTRICALLY LOADED SECTION STRUT. .

The equatien defining the elastic edge restraint provided by
the web; during buckling of the flange of an eccentrically leaded
channel section strut, similar to that described in Part II, Section 3,
is given by

«, tanh H o, = + A tan H,B‘_E.’__

where H =

2 2.2 2
and A AL (No)<m1’>
ot 40 ot
- Kr'“'z Ne
Taking m=1| and substituting -BT for ¢, the following
D 4

expressions for o(\ and ,8‘ are obtaineds

~
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TABLE 3.

rb K(min.) coa:(zla/s,t;onome
70 K(min.)

8 |- 26 2-3

4 15 2.4

5 12 2-45

2 |-04 '25
1-75 1-02 2-525
-5 0-995 2-55
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The 8 ratios corresponding to verious minimum values of K,
are obte.in.eci:> from Figure 19 and presented in Table 3. -

The values of H for varioms values of I'b can be obtained from
equation a8 illustrated in the following examples

For rb=4 and m=! , K . 1s IIS corresponding to L= 2.4,

(min.) b
Figure 19« Hence

i

& 1J0|735+0208‘/ = 198
\
b b
0.7
= 135 ozoa,/ - =
Ghd /8‘ b[ Q.1 -+ b
Substituting in equation
98 2 o 7
l‘ .
+ —
t8) « (%)
4 =
. -q 0‘7 2—7
s

tan o037H + 2.83 tanh 093K = 1.575



which gives H= 054

The values of H for varicus values of K

-graphical form in Figure 20,

. are presented in
min.)

(]
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TABLES OF FAILURE MODES AND LOADS FCR

ANGLE AND CHANKWEL SECTION STRUTS TESTEDs




TABLE 4.
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0 | Z LENGTH ecery [FalLuRE Moper
W _ SECTION OF e LoaD - | oF GERERAL
o § SPEC. x DESCRIPTION
n | % COREED (ToN)  [FalLuRE
lLa| | |25'x25x10c| 45 |-0-2 | 11525 | T.F | CONSTANT
2 ANGLE 45 | -0-1 2-05 T.F LENGTH
i (coLp ForRMED) jz é)I l'2(—9|-75 E. ;; VARV ING
+0- . F.
c 4E 1400 8 or ECCENTRICITY
Lb.| 6 30 |-0-2 | 1875 |TF
7 30 |-0-1 | 2-68 | TF
8 30 0 2.925 | TF
9 30 @) 2-95 TF
IO 50 |+01 | 3.575 | TF
| 30 |+0-15| 3-375 P.F
12 30 |+0-2] %125 | PF
lec. | 13 15 |-0:2 | 2-575 | TF
14 15 -0-1 5-125 T.F.
15 15 0 3875 | TF
16 15 |[+0-l 5625 | TF
|7 15 +0-2 5-75 M.F.
18 (5 [+0:3 | 4.975 | MF
2.ai19 |25%2:5'x10G| 69 |-02 | 0-925 | PF | CONSTANT
0 ANGLE 60 |-02 | 1-125 PF |ECCENTRICITY
g| (coLo FormeD)| 51 |-0:2 | 1-375 | TF VAQYING
2 4? =0-2 | 1625 TF LENGTH
23 33 |-0-2 | 1.775 TF
24 7 | -0-2 { |-85 TF
5 21 1-02 | 2.2 T.F.
26 I5 -02 | 235 | TF
27 9 -02 | 3-7 TF.
% T.F. = TORSIONAL - FLEXURAL
P.F. = PURELY FLEXURAL
M.F. = MATERIAL FAILURE




TABLE 4 (conT?)

\14.,

w | Z LENGTH ety [FaiLunE MonEs
%J U SECTION S,SF e LoAD OF GENERAL
| a EC. | =X DESCRIPTION
R, (N | () | (ToN) |FaILure
2b |28 |25x2-5'x 10G.| 69 O | 0925 | P.F | CONSTANT
29 ANGLE 60 0 .25 P.F |ECCENTRICITY
.7;([) (coLo ForMmED) i; 0 ;1 I;.F. VARYING
0 g . F
) 33 | o | 3395 | g | CENCTH
33 27 @) 1 2-G65 TF
34 21 O 5.4 TF
35 15 0 3.6 TE
20 9 0 5-55 T.F
2c. | 37 6 |+02 | 1.0 | PF
38 60 |+0-2 1-25 PF
39 51 +0:2 [-475 P.F
40 42. | +0°2 2.025 P.F
4| 33 |+02 | 2.8 PF
47 27 +0-2 3625 PF
43 21 +02 |. 3.8 TP
44 15 +0:? 5.95 M.F.
45 9 |+0.2 | 7125 | MF
5.al 19 |25%25%10c | 69 -0-2 | 0-925 PF SELECTED
20 ANGLE 60 | -02 | 1-125 P.F |ECCENTRICITY
21 |(coLp FormED) | 51 | -02 | 1375 | TF | iouine
7 47 -0-2 I-625 TF LENCTL
‘23 33 ‘O-'Zj I-775 T F.
24 27 -02 | |-87 T.F
25 21 -0 ‘2-’2 TF
26 15 -0-2 | 2-35 TF
27 9 ~-0-2 3-7 TF.
XTE = TORSIONAL - FLEXURAL
P.F. = PURELY FLEXURAL

M.F.

MATERIAL FAILURE




TABLE. 4 (ConT?) e

v °z LE;STH EccTY [FAILURE h{\ODéx GENERAL
c | SECTION ) coec. (?x) LOAD | OF | hescripTioN
ula () N | (TON) |FAILURE
3b| 46 [2-5"x2'x 106 | 69 |-02 | O'5 T.F | SELECTED

47 ANGLE 60 |-0.2 | 0575 | T F |ECCENTRICITY

jga (coLd FORMED) i:z -gz (‘I)ZS5 :F. VARYING

- . . . F

50 3 [-02 | .5 | T | CENCTH

51 30 |-0-2 -7 TF

52 24 |-02 | 22075 | T F

53 8 |-02 | 2325 | T.F

54 2 |-02 | 3 TF

55 6 |-02 | 57 M.F.
3c |56 (26% I15"x 10G.| 54 |[-0-2 | 0:35 T.F

57 ANGLE 48 |[-0-2 .| 0-35 T.F

58 |(coLp FormeD)| 42 |-0-2 | 0-6 TE

59 % |-02 | 075 | TF

60 30 |-0-2 1-025 | TF

6l 24 |-0-2 | 1-375 TF

62 8 |-02 | 117 | TF

63 2 |[-02 | 235 | TF

o4 9 |-02 | 29 T.F

65 6 |[-0°2 3-825 | MF.
3d]66 [25"%x 1"x10.G. | 45 -0-?2 0-125 TF

67 ANGLE 39 |-0-2 | 0175 | TF

68 (coLp FormeD) 33 |[-0-2 | 0-3 TF

69 27 | -02 | 0-45 TF

70 21 |-02 | 0725 | TF

71 I5 -0-2 0975 | T.F

12 2 |-02 | 11175 | TF

73 9 [-02 | I-55 TF

14 6 -0 1.9 M.F

15 3 |-02 | 2.8 M.F

X TF = TORSIONAL - FLEXURAL
MF =

MATERIAL FAILURE



TABLE 4 (conTP)

176.

v | Z o LENCTH e ety [FalLuRE |MoDEY
5 | 9| secTion 5:; €y | LoaD | oF | GENERAL
w3 (n) (in) | (ToN)  |FAILuRE DESCRIPTION
4a |16 |25"x2"x0125| 69 [-0-2 | 055 | T.F | SELECTED
7 ANGLE 60 |-0-2 0-675 | T.F |ECCENTRICITY

78 | (exTRUDED) | 51 |-02 | 0975 | TF VARY ING
79 4?2 | -0 1:275 | T F LENGTH

80 36 |-0°2 [-5 T. F

81 30 |-02 .65 | T.F:

82 24 |-02 | 2 TF

83 I8 {-02 | 2375 | TF

84 2 |-02 3-05 T F

85 6 |-0° 4.875 | M.F

Ab.|86 |2:5"x1:5"'x 0125 54 |-0-2 | 0475 | T.F

87 ANGLE 48 |-02 | 0515 | T. F

88 | (ExTRUDED) | 42 [-02 | 0725 | T.F

89 36 |(-02 | 0-95 TF

90 0 |-02 | 113 T F

9l 24 | -0 -6 TF

9?2 8 [-02 | 2- T F

93 2 |-02 | 2.8 TF

94 9 -0.2 3.375 T F

95 o |-0°2 5 M.F.

4c.|96 25"« 1"x 0:125"| 45 |-0-2 | 04125 | TF

97 ANGLE 39 |-0-2 | 0175 TF

98 | (exTruDED) | 33 |-0.2 | 0275 | T.F

99 27 |-0-2 | 04 TF

100 21 -0-1 0-65 T.F.

101 5 |-0-2 | 1-075 | T.F

102 1?2 [-02 1-35 T.F

103 9 |-02 | I8 T.F

104 6 -0 2-45 M.F.

I05 3 -0 | 3125 | MF

K TF = TORSIONAL - FLEXURAL

MF = MATERIAL FAILURE



TABLE 4. (conT?)

iT17.

" % LE;E’TH Ecc TY|FAILURE |MODEY
5 § SECTION spec. | ©x LOA? oF D?;;QEIE;\‘:ZDN
w | B () | (N | (ToND (FAILURE
50.0106] 3"x 3" x 12G. | 132 {-04 | I-5 TE | coNsTANT
07| CHANNEL 132 | -0:2 125 TF LENGTH
108|(coLo FormeD)| 132 | © 125 | TF | vaavine
109 152 [+0-05 [-65 TF |ECCENTRICITY
110 132 |+0-I -7925 | T.F
[ 132 [+0-15 1-75 TF.
e 132 |+0.2 .65 P.F.
5b.| 13 60 |-0-4 2-1 FF
114 60 |-02 2-15 F.F
5 60 0 3-5 F.F
6 60 {(+0-05| 4-625 FF
(7 o0 |+0-15| 5-8 FF
118 60 |[+0-3 | 5-925 | WF
5.c.| 119 36 -0-4 -6 F.F
120 36 | -0-2 31 F.F
121 56 0 35 FF
122 36 |+005| 4575 | EFE
123 3% (+0-15] 4.9 FF
124 30 |+0-15 57 FF
125 36 |+03 | 92 W.F
126 36 |[+0-45| 8.35 W.F.
ba|119]3"x3"x12G. | 36 |-04 | 26 FF | SELECTED
20| CHANNEL %6 | -0-2 3.1 F.F LENGTH
(21 |(CoLD FORMED)| 26 0 3.5 FF | vanving
1272 36 |+0-05| 4-575 | FF ECCENTRICITY
123 36 {+0-15 4.9 FF
124 3 [(+0:15| 5.7 FF
125 36 |+0-3 Q-2 W.F.
126 26 [+045| 835 |.WF
X T F. = TORSIONAL-FLEXURAL FF = FLANGE FAILURE
P.F = PURELY FLEXURAL WFE = WEB FAILURE




TagLE 4. (conT?)

(18,

‘L{J_’ °2 LE;STHECCTY FAILURE |MODE~ CENERAL
a | v SECTION €x | LOAD oF
W SPEC. DESCRIPTION
hla (1) (IN.) i (ToN) |FAILURE
6b.127] 3"x 3'x 14a. | 36 |-0-4 -2 FF SELECTED
128 | CHANNEL 36 -0-72 -5 FF LENGTH
129 [(coLD FormED)| 36 0 I-875 | FF VARY ING
150 56 14015 | 23 FE |l gccenTRIcITY
[3i 36 | +0:15 | 2-375 FF
1372 36 |+0-3 3-5 F.F
133 36 |+045| 5-8 W.F
134 36 |+0-5 5-85 W.F
6.c.|1353"x 3"x18G. | 36 |-0-4 | 0-18 FF
126 | CHANNEL '3 |-0-2 | 0-225 | FF
137 |(coLo FormeD)| 36 0 0-325 | F.F
138 36 |+0-15| 0425 | F F
139 %6 |+0-3 | 055 | FF
140 36 (+0-45| 0-8 FF
14 36 |+0:55 11125 | FF
T.al 42| 3"x3"x 10G. 36 0 77 F.F. |CONCENTRICALLY
143 " 12 0 8.7 FF LOADED
144 | 3'x 2-5'x10G. | 36 0 10.925 | F.F | CHANNELS
145 " 12 0 9-25 FF
146 | 3'x 2"x106 | %6 | & 8775 | PF
147 " 12 0 (-4 M.F
148 | 3"x I-5"'x 10G. | 36 O | 37715 | PF
149 n 12 O [1-0 MEF
150 3"x 1" x10G. 36 @) 0-975 PFE
151 » 12 0 6-75 M.F
CHANNELS
(coLD FORMED)
% P.F = PURELY FLEXURAL F.F. = FLANGE FAILURE
MF = MATERIAL FAILURE W.F. = WERB FAILURE ‘




TABLE 4 (CONTD>

179.

ol s T Tlenand oy X
2151 secron | o |FEThne Moo cenenn
o p e
WY SPEC. | DESCRIPTION
5| g (1) (IN) (ToN) FAILURE
Tb 152 3"x3'x 14G. 36 0 -875 F. F |CONCENTRICALLY
153 12 0 2-9 F.F | LOADED
154 | 3"x 2-5"x14G. | 36 O | 2:315 | FF | CHANNELS
155 |2 0 3.25 F F
56| 3"x 2" x 4G | 36 o) 3.575 | FF
157 |2 O 3.7 F F
58] 3"x I-5"x 14G. | 36 0 R.525 | PF
159 12 0 o-1 FF
60| 3"x I'x 4G | 26 0 0625 | PF
16l |2 O 61 M.E
TJc. | 162] 3'x 3"x 18c. | 36 0 0-325 | F.F
163 12 O 0-74 FF
64| 3'x 2:5"x 18G. | 36 O | 042 FF
165 |2 0 - 05 FF
166 3"'x 2'x 18G. | 36 O | 0475 | FF
67| . 12 0 111 FF
168 | 3"x I-5"x 18G.| 36 0 0-7 . F.F
169 12 0 [-23 FF
70| 3"x 1" x 18G. | 26 0 0-3 PF
(7 - 2 0 |-66 FF
CHANNELS :
(coLp FORMED)
" " ECCENTRICALLY
Balll? 3" x 3 )f, 10.G 12 {-0-458 5-3 F. F LOADED CHANNELS
73| 3 x2'5 x10.G. 12 |-0-388 5175 F. F
l—’4 3”)( Q”x lOG |2 _0.5'4 686 F F THE ECCENTRICITY
i " €x CHQSEN SUCH
1751 3" x -5 x 10.G. 12 -0-23 6-2 M.F | THAT THE RATIO
176 | 3"x 1" x 10.G. 1?2 |~0-141! 3%.92 M.F. |OF STRESS AT THE
. |FREE EDGE OF THE]
CHANNELS FLANGE TO THE g
(coLp FORMED) STRESS IN THE
| WEB EQUALS 4 |
% P.F. = PURELY FLEXURAL FF = FLANGE FAILURE"
M.F. = MATERIAL FAILURE '




TABLE 4 (conT?)

180.

0. LENGTH . Xt
& 0 SPEC, X ESCRIPTI
wla (i) (IN.) | (TON) [FAILURE DESCRIPTION
8b 177 3"x 3" x 14 G 1?2 |-0-474| 1-9 FF
178 | 3'x 2-5"x 14G.| 12 |-0-405 2.02 | FF
179 | 3"x 2" x14a 2 |-0.327] 2-3 FF
180 | 3'x I-5"x |4 q 12 |-0-238| 2-79 F. F
181 | 3"x 1" x 14a. 12 |-0-15 2-48 M.F
18.c.| 182 3"x 3"x 18G. 12 |-0-485| 0-.55 FFE
183 3"x2-5"x18G. | 12 |-0-413| O-7 F.F
: 184| 3"x 2x18G. | 12 |-0-337| O-74 | F.F
| 85| 3"x{-5"x18a. | 12 |-0-256] 0-72 | F.F
186 3" x I"x 18& 12 |-057| 093 | FF
CHANNELS
5 (coLp FORMED)
9a |87 25 25'x106, 30 | O | 3815 | T.F | CONSTANT
188 30 [+0228 3-375 | PFE | -LENGTH
ANGLES VARYING
(coLD FORMED) ECCENTRICITY
0b 189! 3"x3"x 12 | 60 0 2.5 FF STRESS
90 60 [+045 5-375 W.F  |INVESTIGATION
| CHANNELS TESTS
'(coLD FORMED)
X P.F = PURELY FLEXURAL FF = FLANGE FAILURE
MFE = MATERIAL FAILURE  W.F. = WEB FAILURE
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APPENDIX 6.

MATERIAL CHARACTERISTICS OF SPECIMENS

CUT FROI{ SECTIONS USED IN THE EXPERIMINTAL
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TYPICAL AVERAGE TRANSVERSE AGAINST AVERAGE
LONGFTUDINAL STRAW GAUGE READINGS ON A
TENSION SPECIMEN
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NIES

POUSONn'S ratio i/ m 0329
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MATERTAL CHARACTERISTICS OF SPECIMENS CUT
FROM SECTIONS USED IN THE EXPERIMENTAL WORK,.

(1) Experimental Appliances.

The material characteristics were determined from tensile tests
carried out on specimens cut from a selected number of struts after
failure. The specimens were tested in a 30 ton Avery Universal
Testing Machine, Figure 23. The dimensions of typical tensile specimens
are given in Figure 58.

A Hounsfield extensometer with a 2 inches gauge length was used
to measure longitudinal strains, Poisson!s Ratio was determined by
using eléctrical resistance strain gauges %o measure longitudinal and

transverse strains on both sides of tension specimens.

(11) Iypical Experimental Results.

The results of typical tensile tests on two specimens cut from
a 2.5" x 2.5" x LO G. angle gection are presented in graphical forme
Young's Modulus ( E ) and the 0.1% Proof stress ( O‘F,) are obtained from
the load-extension graph shown in Figure 60. Poisson's Ratio ( p)

is obtained fram the straight line of Figure 69.
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TABLE 5

AL YOUNGSMODULUJPQOOS-!S‘V;QESS% p%.ji“i;ps
I B VAN B/ S S
10 GAuGE 4490 18-5 0-32

12 GAUGE 4490 17-07 —

14 GAUGE 4490 17-85 —

I8 GAUGE 4470 17-35 —
0-125 IN 4470 177-98 —

|




i8¢

(141) Summary of Tensile Teste.

The average results of not less than 10 tensile tests per gauge

thickness for ( E) and (0,3) are given in Table 54 The average value

of (b) is determined from tests on 4 specimens.

The values used in calculations presented in the test ares

Young's Modulus (E) = 4470 T/ ia? )

Torsion Modulus (G) = 1690 'T'/ Y

Poisgon's Ratio (U) = 0.32



