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PREFACE

The work reported in  th is thesis was conmenced in  19b6 with a general 

survey o f  the lite ra tu re  and ex istin g  methods. Equipment was b u ilt  up in 

order to  te s t  some o r ig in a l ideas fo r  seism ic d etectors . In August 19h7 we 

were inv ited  by the B ritish  Shipbuilding Research A ssociation  to a ss ist in a 

research programme to  investigate the e f fe c t s  o f entrained water on vibrating 

ships and ship models. This assistance was to  take the form o f advice about 

instrumentation and e lectron ic  measurement techniques. A range o f special 

instruments was designed and constructed fo r  the programme and developments 

have continued over a period o f nine years. In the resu lt we now have a set 

o f  instruments fo r  producing v ibration  at a known and accurately controlled 

frequency and fo r  measuring the v ibration  both in  magnitude and phase. As

commercial equipment was generally unsuitable fo r  the purpose, th is  

instrumentation has given substantial aid  to  the progress o f  the programme.

Thanks are due to  the fo llow ing

P rofessor B. Hague, fo r  the use o f the fa c i l i t i e s  o f the 

E le c tr ica l Engineering Department, and fo r  encouraging the long-delayed 

production o f th is  th e s is .

Messrs. A. S ilv e r  lea f and P.H. Tanner, who used the equipment at 

Leven Shipyard, Dumbarton, and Ship D ivision , National Physical Laboratory. 

Their comments and cr itic ism s led  to the development of apparatus which was 

adequate fo r  dealing with the sp ecia l problems o f the research.

Mr. R. Smith, who constructed much o f the f in a l apparatus.



The B ritish  Shipbuilding Research A ssociation , which sponsored the 

work and enabled the author to  v i s i t  various establishments to  discuss 

methods and apparatus with sp e c ia lis ts  in  the f i e ld .
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I .  INTRODUCTION

1.1  Importance o f V ibration with Particular Reference to Ships 

I t  i s  improbable that any normal v ibration  which is  at a l l  tolerable

could cause damage to  the main structure o f a ship, although damage to 

component parts, p a rticu la rly  under resonance conditions, can occur. How

ever, as the comfort o f  crew and passengers is  o f  considerable importance, 

i t  i s  desirable that v ibrations which could a f fe c t  their comfort do not 

occur. As i t  i s  very d i f f i c u l t  and expensive in  general to  eliminate such 

vibrations a fte r  construction , i t  is  necessary to predict the c r i t ic a l  

frequencies with accuracy at the design stage and to  take suitable 

precautions to  avoid ex citin g  forces  at these frequencies.

himself with the fr e e -fr e e  v e r t ica l  two-node v ibration  where the frequency 

f  i s  given by the formula

L ■ length

I * moment of inertia of the midship section

<P = empirical coefficient.

There are a number o f  d i f f i c u l t ie s  in  the p ra ctica l application  of

th is  formula, including lack o f knowledge about certain  o f the quantities 

and, as a re su lt , unless values are known fo r  a very sim ilar vessel, the

The ca lcu la tion  o f the natural frequencies o f  a sh ip 's  hull is  not 

easy fo r  a number o f reasons but, as fa r  back as 188U, Schlick^ concerned

f

where A  ■ displacement
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formula i s  o f  l i t t l e  use.

Much work has been carried  out since then to  produce methods of 

pred icting  c r i t i c a l  frequencies a t the design stage. I t  i s  found, fo r  

example, that the frequencies are sen sitive  to  the d istrib u tion  o f mass 

along the length o f the ship but not very sen sitive  to the d istribu tion  

o f moment o f in e r t ia . On the other hand, the loading and draught have

a pronounced e f f e c t ,  as has a lso  entrained water and clearance between 

the bottom o f  the h u ll and the sea bed in  shallow water^.

I t  i s  apparent that the problem is  complex and under these 

conditions, model tests  are possib ly  capable o f y ie ld in g  useful results 

more readily  than ca lcu la tion .

1.2 Instrumentation

The measurement o f mechanical v ibrations by mechanical methods 

has been carried  out f o r  many years and much ingenuity has been devoted 

to  designing d e te cto rs . However, most o f these are o f the seismic type 

and of considerable weight, p articu larly  i f  su itab le  fo r  measuring low 

frequency v ib ra tion s . A lso, th e ir  upper frequency response is  generally 

lim ited by the in e r t ia  o f the mechanical lever systems and recording or 

ind icating  dev ices . Where a fix e d  reference is  ava ilable , the problem 

is  s im p lified  but in  th is  work, dealing with fr e e ly  floa tin g  ship models 

which may heave, r o l l  or p itch  in  addition to  v ibrating, no such reference 

is  a v a ila b le . For these reasons, as w ell as convenience and general 

v e r s a t i l it y ,  e le c t r ic a l  methods o f detection  are necessary.
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The v ibrations had to  be excited  in  the models in  such a way that 

the condition  o f  the model was changed as l i t t l e  as possible by external 

restra in ts  or the mass o f the e x c ite r . Early tests  indicated that the 

v ibra tion  modes o f in terest covered the frequency range o f 5 to 200 c /s .  

For these reasons, i t  was decided that a mechanical exciter  would be best 

as i t s  fo rce  output per unit weight could be re la tiv e ly  large.

As the work progressed, further instrumentation in  the form of 

speed s ta b ilisa t io n , phase measurement and automatic p lottin g  units was 

developed. Where commercial equipment was available th is  was purchased.



Fig. 1. (a) Complex waveform;

(b) Waveform o f (a) analysed in to  i t s  
component parts.



2 . THEORY

2 .1  V ibratory Motion

A v ib ra tion  is  a p eriod ic  motion. F ig . 1(a) shows a ty p ica l p lo t  

o f  displacement to  a base o f  tim e. A fter a period , T, the waveform 

repeats i t s e l f .  This i s  a complex waveform, which may be analysed in to  

harmonic components, F ig . l ( b ) .  As a l l  waveforms may be reduced to  a 

number o f  s in u soida l components, a stucfy o f  the conditions f o r  each 

component w i l l  enable the cond itions fo r  the complex waveform to be 

synthesized.

Let the displacement x o f  a poin t on a v ibra tin g  body be represent

ed by

x * x0 s in  cot (1)

where Xo * amplitude o f  the v ib ra tion  

and co * angular frequency * 2 * f .
£  mThe period  T i s ,  th ere fore , given by For most mechanical

purposes, i t  i s  convenient to  employ a time un it o f  seconds so that f  w il l  

be in  cy c les  per second.

The v e lo c ity  and a cce lera tion  o f the point are obtained by 

d iffe r e n t ia t io n , thus

■ x * co x0 cos cot (2)

and * x * -co? x0 s in  cot * -co2x (3)
dt7

The maximum or peak values o f  v e lo c ity  and a cce lera tion  are thus 

cox © and co?x0 r e s p e c t iv e ly .



/ / . / / / ■ ' ' V / / / / / /

P  -  F oS in u jt

F ig . 2 S ing le-degree-of-freedom  system w ith ex tern a l 
e x c itin g  fo r ce  P = P0 s in  cot.
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2.2 Degrees o f  Freedom

A r ig id  body in  fre e  space has s ix  degrees o f  freedom -  three 

tran slation al and three ro ta tion a l -  so that s ix  co-ord inates are necessary 

to define i t s  p os it ion  uniquely. I f  the body can have re la tiv e  motion be

tween i t s  parts, then the number o f degrees o f freedom is  increased -  up to 

in f in ity  in  a completely f le x ib le  system. The general analysis o f such a 

system becomes im practicable and, fo r  the purposes o f  th is  work, the 

(dynamics o f  a system with one degree o f freedom w il l  be adequate.

2.3 Equation o f  Motion o f  Spring-Mass System with Damping

The components o f  a simple system, F ig . 2, may be considered as a

mass m, a spring o f s t i f fn e s s  k and a damping fo rce  due to  f r i c t io n  or 

other losses  which occur only when the mass is  moving. I t  is  convenient 

to assume that th is  damping fo rce  c is  proportional to  the v e lo c ity  and

acts in  a d ire ct io n  opposite to  the motion.

While the assumption o f  pure viscous damping is  commonly made as 

i t  s im p lifie s  the mathematics, in  p ra ctice  many forms may occur, such as 

dry f r i c t io n a l  which is  independent o f  v e lo c ity  or hydraulic which is  

proportional to  the square o f v e lo c ity . However, the viscous condition  

covers quite adequately the conditions to  be considered here.

Any consisten t system o f units may, o f  course, be used but in  

th is work the Ib -in -se c  system is  convenient.



I f  a force  P0 sin  cot acts on the mass, and Newton1s second law 

f  motion, fo rce  -  mass x acce lera tion , is  applied, the follow ing 

’ f f e r e n t ia l  equation resu lts  -

ncc + cx ♦ kx = P0 sin  cot (1;)

Making the right-hand side zero and solving, gives the general

in tegra l -
At K Aot

(5)

-  ! l  (6)

-  6 -
I

and

. A it  ^ Apt x = Ae ♦ Be

1 A i  "  ~ k

A 2 "  -  I s - J [ k

2

-  - 1  mj (7)

The p articu lar  solu tion  may be obtained in  various ways, a neat
p

method being that o f  Den Hartog ;  giving

P0 sin  (cot -  cp)
^ |c o ?  c ^  + (co^m -  k ) 2 j

where cp = tan” -̂  — —— n------k -  oô m

x =
( 8 )

(9)

The complete so lu tion  is  thus given by the sum o f equations (?) 

and (8 ) .  Equation (? ) gives the motion o f the mass under damped free 

v ib ra tion  conditions and equation (8) the motion under forced  vibration  

con d ition s.

Free Vibration

From the so lu tion  fo r  the free -v ib ra tion  condition i t  is  seen

that when

k
m

or c

( s f

2m/y/k/m

the term under the square root is  negative and, therefore, the motion is

(10)
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o s c il la to r y  but damped, that i s ,  the amplitude o f the v ibration  is  

decreasing with tim e.

*  • - I s  ?  * ; 3 1 ' (u >
• „  -  A , X lt  « B ^ 2t• •

= e 

= e‘ (12)

= Ae(a  + jb ) t  ♦ Be(a '  j b ) t  

= Aeat e Jbt ♦ Beat e " jb t

T A (cos b t + j  s in  bt) + B(cos bt -  j  sin  bt)J 

at [  (A + B) cos bt + j  (A -  B) s in  b t ]

Thus the damped natural frequency o f  v ibration  fn  is  given by

= 2nfn ■ b ^ 5  " ( I s )  (13)
For large values o f damping no o s c i l la t io n  takes place and the 

tra n sition  occurs when

s )
(lWor c = 2 f i t

This value o f c i s  ca lle d  the c r i t i c a l  damping Cc*

I f  there i s  no damping present, from equation (13), the angular

frequency

ce0 = ^ k / m

and 22  - J l  -  ( c / c c ) 2
co0 'V

Forced V ibrations

a t )

(16)

In the absence o f damping from equation (8)

v = - Po s in  cot
c*ŷ m -  k

so that x th eore tica lly  becomes in f in ite  when 

a? = k/m or co ^/l(/m = co0 .

(17)



-  8 -

In p ra c t ic e , damping is  always present and i t  is  therefore convenient 

to  p lo t  response curves fo r  a system with d iffe re n t  amounts o f damping. I t  

i s  a lso  convenient to  p lo t  these curves non-dimensionally so that they may be 

v e rs a t ile  in  a p p lica tion . The abscissae are, th erefore , the ra tio  a/coo and 

the ordinates X o/xs tat> where Xg-^t i s  the steady d e fle c t io n  o f the spring 

due to  the fo r c e  Po, that i s ,  X g -^  ■ P c/k .

By su b stitu tin g  the values fo r  c c and co0 derived above in  equation 

|( 8) and rew ritin g

(P c /k js in  (cot -  cp)

^ [< 2 i s  y 2 * ( i  -

>r the amplitude o f  the displacement

Pc/k

(19)

(18)

J t

(2 iL  « )2 + d  .
COO ^ c  .

or x0
xsta t /R2 05 c ,

aJ L oSo ^o£
(20)

fhich i s  the expression  fo r  the displacement amplitude in  non-dimensional

>rms.

At resonance when co * coo

* o ____
^ sta t

££ ■ Q 
7c

(21)

where Q i s  the "M agnification  Factor11 or "Q uality Factor" o f the system.

A number o f  curves are p lo tted  fo r  various values o f the damping 

a t io  c / c c ,  F ig . 3 .
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The information given by the above expression is  completed by

p lotting  the phase relationsh ip  between fo rce  and displacement fo r  the

same range of conditions, F ig. U. 

From equation (9) -

’ - - - 1 ( 2 2 )

2.U Analogies

I t  is  often  usefu l to  be able to  compare e le c t r ic a l  and mechanical 

systems and, where both systems are present in  the one unit, as fo r  

example, in  a gramophone pick-up and reproducer system, the overa ll 

response can be computed i f  the e le c t r ic a l  and mechanical constants are 

known.

In a series c ir c u it  consisting  o f resistance, inductance and 

capacitance, R, L and C respective ly , supplied from a source o f e .m .f.

E0 s in  cot, the current i  is  given by the expression ,-

which is  d ire c t ly  equivalent to  the mechanical equation o f motion already 

derived.

*.s
This analo©r is  given in  d e ta il in  Table 1.

L (23)

I f  the charge q * I i .d t  is  substituted in  th is equation

‘' "

.. . 1or L q  ♦ R q ♦ q q * E0 sin  cat C2U)



Fig .  h.

I

F * E Q u e „ C Y  R h< <  3

Phase angle between +v,

« e s



TABLE 1
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Mechanical E le ctr ica l

Force P E.M.F. e

D eflection X Charge q

Velocity •
X Current i

Mass m Inductance L

S tiffn ess k 1
Capacitance V c

Damping c Resistance R

Potential Energy I  kx2 E lectrosta tic  Energy i  1 „2  
“ C

Kinetic Energy \ mx2 Electromagnetic Energy i Li2

Mechanical Impedance Z -  P/x E le ctr ica l Impedance Z = e / i

While the above analogy is  commonly used, i t  has been pointed out 

that, as e le c t r ic a l  series and mechanical p a ra lle l combinations are being 

compared, serious d i f f i c u lt ie s  may be introduced when i t  is  applied to

complex systems.

A very useful suircning-up of various analogies and a reasonably 

comprehensive bibliography is  given in  a paper by Prache^. I t  arrears 

that the series analogy due to Firestone^ has much to recommend i t  although 

in it ia l ly  strange and apparently cumoersome.

The equivalent systems are shown in F ig. 5 and i t  is  seen that i f  

the fo rce  P acts through the mechanical system (corresponding to current i)  

and i f  p is  an impulse given by J Pdt, then

j t p + 2 p * J B " X
k c m



F ig . 5 .

R L C
— W V — — 1|— ■

Electro-m echanical analogy according to  
F irestone.



A table o f e le c t r ic a l  and mechanical equivalents may now be drawn 

up 1 and i t  becomes apparent that th is analogy has advantages over the 

conventional one, p articu larly  in  complex systems where combinations o f 

chanical impedances in  series  and p a ra lle l have to  be evaluated.

Some consideration  was given at one time to  the possib le  

construction  o f  an e le c t r ic a l  analogy- o f  the ship model with provision  for  

adding equivalent "mass'* to  allow fo r  the e f fe c t  o f  entrained water. Due 

to  the re la t iv e  complexity o f the system, no p ra ctica l action  was taken.

. -  11 -
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2 *  *  ^  *  i . «  « m ft. r < w «  *

3 . measurement of vibration

As mentioned in  Section  2 .2 , a r ig id  body has s ix  possib le  degrees 

freedom, so that a complete determination o f the motion o f a point on 

le body would require a measurement o f the displacement o f the point with 

fo r  each o f  the tran slation al and ro ta tion a l freedoms. The resultant 

>tion o f  the poin t could then be computed from the six  components. 

Fortunately, a v ibrating  member i s  usually constrained so that the number 

o f components which make substantial contributions to  i t s  motion is  

r e la t iv e ly  sm all.

3 .1  Methods o f Measurement

The measurement o f a v ibration  may be attempted in  four d istin ct 

way s, namely:

3 .1 .1  D irect measurement o f displacement using a fixed  

reference sta tion .

This technique has the advantage o f being absolute and, where 

a ctica b le , i s  very o ften  the sim plest. I ts  lim itations are obvious in 

e case o f ships a flo a t , where additional motion is  superimposed on the 

v ib ra tion  to be measured. These lim itations may be overcome to some 

extent by the use o f f i l t e r s  in  the measuring equipment, but the method 

was not considered sa tis fa ctory  in  th is  particu lar app lication .

3 .1 .2  Measurement o f flu ctu atin g  stra in  at points in  the
" “

structure and hence computation of the vibration  

con d ition s.

This system has certa in  advantages and has been used 

■ extensively  in  many problems involving the determination o f stresses in

-  12 -

th



X ,
T  '

J C = X s  niuut

Elements of a vibrometer



ills  and airfram es. However, i t  i s  often  d i f f i c u l t  to  determine absolutely 

ie magnitudes o f the v ibrations and to  arrange that d iffe re n t modes o f 

.bration can be iso la ted  and measured.

3 .1 .3  A spring-and-mass system whose natural frequency is  

lower than the frequency o f the vibrations to be 

measured.

I f  the device shown in  F ig. 6 is  placed on a body with a

re r tica l component o f v ibration , the mass m tends to remain stationary in

nt which is  proportional to  the v e r t ic a l  acceleration  o f the u n it. Damp- 

g must be introduced to  reduce transient e f fe c t s ,  to  correct the output 

r any harmonic content o f  the v ibration  and to  extend the useful frequency 

nge o f the instrument. This form o f detector i s  termed an accelerom eter.

From the above b r ie f  comparison o f  methods o f measurement, i t  w ill  

apparent that e ith er  3 .1 .3  or 3 .I .U . could form the basis  fo r  a suitable 

brometer. A simple analysis o f  th e ir  dynamic ch a ra cteristics  is  therefore 

ven.

{pace and hence provide a fixed  reference. In order to extend the useful 

‘requency range and to  reduce the transient e f fe c t s ,  damping may be in tro - 

ced. Such a unit is  termed a seismic d etector .

3.1.U  A spring-and-mass system whose natural frequency is  

higher than the frequency o f the v ibration  to  be 

measured.

The diagrammatic representation o f th is  unit w i l l  be the same 

that fo r  3 .1 .3 . ,  but in  th is case, the mass w il l  have a dynamic d isp lace-
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3 .2  Spring-Mass Vibrometer C haracteristics

The elements o f the vibrometer are given in  F ig . 6 and consist of 

a spring-mass system with damping contained in  a r ig id  box, which is  

mounted on the v ibrating body. The analysis is  kept simple by assuming 

a [p e r fe ct ly  e la s t ic  spring and viscous damping.

, Let the displacement o f the vibrating body be sinusoidal and

Lven by x = X sin  cot, where co * 2nf and f  is  the frequency o f v ibration .

I  I f  the re la tiv e  displacement between the seism ic mass m, and the

vibrometer box i s  instantaneously x i ,  then the equation o f  motion o f the 

rstem may be w ritten :

m (x  ♦ x^) *  cx^ ♦ kx^ * 0 , ( 26)

lere c and k represent the damping and spring constants resp ective ly .

As b e fore , the undamped natural frequency o f the spring-mass 

system f 0 * coc/2n is  given by:

a>o * in or co02 = k/m

and since x = X sin  cot

X ■ CO X cos cot 

and x * -co2 X s in  cot

Further, i f  s u ff ic ie n t  damping is  introduced so that the free 

v ib ra tion  ju s t  becomes aperiod ic, then, th is  amount o f  damping, given 

before as the c r i t i c a l  damping

cc ■ 2,0cm = 2C0QIT1 or “ 2coo
cc



-  15 -

Rewriting the equation o f motion and substituting these values:

*1 * 200(0/ 0^ x 1 * oo2 *1 a? X sin «ot

ch has the complete solution 

xi ■ e "^ 0®)®0̂  [  A sin o^t * B cos â t J

re

X ( ^ )  sin  (a t -  *)

J [ ( i - 2 2>* .

«n " “ to M  1 -  ( c / c c )
2 ( c /c c ) (fl/q>o) 
1 -  (a/ caq)

<P tan-1

(27)

( 28)

(29)

(30)

The f i r s t  term o f the solution , containing the arbitrary constants 
■
A and B which depend on the in it ia l  conditions, represents the transient 

response and may be neglected in  the analysis o f the behaviour of an 

instrument subjected to steady-state conditions. With reasonable damp

ing, the e ffe c t iv e  output of the vibrometer due to any such transient is

. h ort-liv ed .

From the second term of the solution , the displacement o f the 

seismic mass re la tive  to the box is  seen to be sinusoidal and to  have a 

ak value

Xl - K f e ) 2

^ [ < 1  -  * > 2
(31)

This motion in  general lags the vibration fcy the angle 9 whose 

talue is  given in  equation (30) above, which is  the same expression as was 

iven in  equation (2 2 ).
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FREQUENCY RATIO

F ig . 7. Dynamic m agnification  fa c to r  f o r  v ibrom eter.



The instrument dynamic m agnification  fa c to r

Q = X1 -  - 2/^ o 2   (32)
^ ”  ^ J ( l  -  032/(002)^ ♦ ( 2 { c / c c|{o/(oj) 2j

Curves o f  Q p lo tte d  to  a base o f  frequency r a t io  g/ coq f o r  various 

ralues o f  damping r a t io  are shown in  F ig . 7.

I t  can be seen from these curves that a seism ic instrument, whose 

atural frequency is  le s s  than on e-th ird  o f  the low est v ib ra tion  

requency to  be measured, w i l l  in d ica te  true amplitude w ith sm all error  

or a wide range o f  damping c o e f f i c i e n t .  This accuracy, however, i s  

^attained at the expense o f  a r e la t iv e ly  large phase e r ro r , which may vary 

considerably i f  the frequency range is  la rg e . Curves o f  phase angle 

[plotted to a base o f  frequency r a t io  a/a>o f o r  various values o f  damping 

r a t io  have been given in  F ig . U.

On the other hand, fo r  v ib ra tio n  frequencies appreciably  le s s  than 

/he natural frequency o f  the instrument, i t  can be seen from F ig . 7 that 

/he dynamic m agnification  fa c to r  i s  approximately p a ra b o lic  in  form 

or Q ■ OC a? (33)

But i f  x  “  X s in  a>t

x ■ -co? X s in  cot ■ -co^x 

. ’ . Q OC x (3U)

That i s ,  the response o f  the instrument i s  p rop ortion a l to  the 

v ib ra tion  a cce le ra tio n . The actu a l response departs from the id e a l by 

an amount which depends on the damping and frequency r a t io s .  From 

equation (31) th is  i s  seen to  be
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F requency R rtio wXu,

Accelerometer response showing e f fe c t  o f 
viscous damping.



actual reading 
Ratio true rea<iing

v CO,

' W l  -  <o2/<o02) 2 + (2 c / c c 2_)2 j
(35)

A family o f curves, showing th is re la tion sh ip , i s  p lotted  in  

|Fig* 8. I t  can be seen that errors le ss  than over a frequency range 

of 0 to  0.8 oiQ are obtainable i f  the damping is  about 0 .6  o f the c r i t i c a l  

value. This value o f  damping is  about the optimum and substantial 

errors can a rise , p articu larly  at the higher v ibration  frequencies, i f  

there is  any appreciable departure from th is value.

3*3 Damping

Most designs fo r  accelerometers require damping add itiona l to  that 

occasioned by hysteresis in  the spring material or f r i c t io n  in  p ivots or 

other forms o f energy d iss ip a tion . In commercial units th is  damping is  

commonly obtained by f i l l i n g  the box containing the spring-mass system 

with a s ilicon e  o i l .  This has the advantages o f  r e la t iv e  cheapness and 

a v is co s ity  not too dependent on temperature. However, i f  the unit is  

to  be used in  a wide range o f ambient temperatures, some care must be 

taken i f  large errors are to  be avoided. Typical response curves fo r  a 

commercial accelerometer o f resonant frequency 6$ c /s  and nominal damping

0.6$ c c at 20*̂ 0 are shown in  F ig . 9 . A more constant damping fa cto r  

could be obtained by employing a dashpot system with a valve adjustable 

either manually or autom atically to  compensate fo r  the change in  v is co s ity  

o f the f lu id .  Generally speaking, such a refinement would be d i f f i c u l t  

to  design and hardly worth the additional com plication .



In some forms o f pick-up employing powerful permanent magnets 

edcfy-current damping is  read ily  arranged. This appears to  be very 

sa tisfactory  and much less  dependent on temperature • However, i f  the 

magnet is  not already part o f  the unit, i t  is  again doubtful i f  the 

advantages o f th is type o f  damping generally ju s t i fy  i t s  in s ta lla t io n .

Sponge rubber, s o f t  p la s t ic  and sim ilar m aterials are used to  

some extent, but no figu res are ava ilable  fo r  th e ir  p ra ct ica l performance 

and i t  is  to be expected that they are temperature sen sitive  and, in  

some cases, severely a ffected  by ageing. In add ition , th eir  damping 

force probably departs considerably from the id e a l,

3.U Vibrometer Output

The output from seism ic and accelerom eter v ib ra tion  detectors is  

mechanical in  the f i r s t  instance. This output is  generally in  the form 

of a displacement o f an element o f the detector re la t iv e  to  the casing 

or spring support and may be observed d ir e c t ly  as such. For small 

amplitudes, a mechanical lever or an o p tica l pointer system may be em

ployed to  obtain a greater movement. The waveform o f the v ib ra tion  may 

be recorded by pen on paper, scratch  on c e llu lo id  or the e f f e c t  o f  the 

lig h t  beam on photographic f i lm . While a purely mechanical instrument 

of th is type has mary uses and can y ie ld  valuable re su lts , i t s  scope is  

generally lim ited and a more v e rsa tile  instrument resu lts  i f  the 

mechanical displacement is  converted in to  an e le c t r ic a l  s ign a l, which 

may be am plified, operated on, read at a d istance, or recorded in  one or 

more o f  several ways fo r  future re feren ce . The conversion is  performed 

in  a m echano-electric transducer, or transducer fo r  sh ort .
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Fig. 9 . Response curve fo r  accelerom eter at d if fe r e n t  
ambient temperatures.
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U. m N SD uciis

The p ossib le  forms o f th is  device are many and a few o f the more 

(Jommon v a r ie t ie s  which are relevant to  the work and o f which the author 

has had some experience are described .

While a three-phase a lternator is  a transducer by the above 

d e fin ition , i t  i s  improbable that i t  would make a su itab le  energy con

vertor fo r  in clu sion  in  a v ib ra tion  d etector . I t  i s ,  th erefore , 

convenient to  l i s t  the general requirements which may have to  be s a t is f ie d . 

R eliable •

Output a lin ear  function  o f input.

Zero (or constant) phase d iffe ren ce  between output and input signals

I with varying frequency.

Output independent (o r  a simple fu nction ) o f frequency fo r  a given 

signal le v e l .

Large " transduction fa c to r ’*, that i s ,  large output s ign a l fo r  a given

I input, so that very high gain am plifiers fo llow in g  the transducer are

unnecessary and a high s ign a l/n o ise  ra t io  may be more rea d ily  obtained. 

Free from d i f f i c u l t  e le c t r ic  supplies (that i s ,  supplies highly stable 

in  frequency or v o lta g e ) .

Economical in  consumption so that sm all b a tte r ie s  may be used fo r  

portable equipment.

L ight.

Robust.

Cheap.
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Easy to use and maintain.

Simple,

The re la tiv e  importance o f any o f  the above fa ctors  depends on the 

particu lar application , and no one system can s a t is fy  a l l  requirements com

pletely,

U .l Strain Gauges

4 These may be o f  the bonded or unbonded types. In the form er, a 

m etallic wire or f o i l  is  made in  the form o f a f l a t  grid and cemented

to a base o f paper or p la s t ic .  Further p rotection  i s  generally given to

the unit by a top covering o f paper, p la s t ic  sheet or varnish. The gauge 

is attached to the ob ject being tested by some type o f  adhesive, which must 

produce an exceptionally  good bond i f  the gauge is  to  fo llo w  exactly  the

deformation o f the o b je c t .

In the unbonded type, the wire is  stretched in  a ir  between two 

insulators which are connected r ig id ly  to  the o b je c t  being tested .

The resistance o f  the gauge is

a .  - i f -  <*>

iere ? * s p e c if ic  resistance o f  the wire or f o i l  (commonly 

constant an *  h9 pficm)

1 ■ to ta l  length o f the wire or f o i l

A * cross -se ction a l area o f  the wire or f o i l .



* -  -*• - *  t '  .* T  "  {

T̂ US i f  the gauge is  stra in ed

dR » d l  _ (37)

t iD ^fo r  a c ir cu la r  wire o f  diameter D, A ■ —

, dR _ d l _ * dD
. ~R " I  2 “ E ( 38)

According to  Poisson*s Law

®  -  -|x ^  (39)

where p * P oisson ! s R atio

= 0.33 f o r  constantan
• dR d l - % »> *

. . “  —  (1  ♦ 2»i) (UO)

ius the gauge fa c to r  or s e n s it iv ity  constant

k -  ®  -  i i  .  x .  2(l ( ia )

* 1.66 fo r  constantan.
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In fa c t ,  fo r  reasons which are not very c le a r , but may be due to 

tanges in  the s p e c i f i c  res ista n ce  with s tra in , the gauge fa c to r  commonly 

s a value o f  about 2 .

li .1 .1  Temperature E ffe c ts

For most p r a c t ic a l  purposes the change in  res istan ce  o f  the 

gauge due t o  stra in  i s  sm all and the change due to  temperature change is  

comparable. Where the gauge i s  being used to  measure v ib ra tio n s , the 

imperature e f f e c t  i s  o f  l i t t l e  consequence but fo r  slow v a r ia tion s  in  

[tra in , account must be taken o f  temperature v a r ia tio n  during the period 

o f t e s t .  This is  conven iently  done by having a second sim ila r gauge



c lose  to  the measuring gauge but not su bject to load . This second dumny 

nuge can be connected in  the resistan ce  measuring c ir c u it  to  compensate 

varia tion s in  resistance due to  temperature.

A further temperature e f fe c t ,  which may introduce error in  the 

jasurement o f  slowly varying stra in  is  the d if fe r e n t ia l  lin ear 

c o e f f ic ie n t  o f expansion between the gauge m aterial and the material of 

le body or structure under te s t .
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the

in

The c o e ff ic ie n ts  o f  expansion o f mild s te e l  and constantan are 

3$ x 10rfy°C and 17.0 x 10~fy°C resp ective ly , so that the error due to 

s e f f e c t  i s  small where the range o f temperature is  moderate. Also, 

resistance temperature c o e ff ic ie n t  o f  constantan is  variously quoted 

the range o f -0.U  x 10“ ty°C to  + 0 ,1  x 10"V °0 so , again, compensation 

means o f a dumny gauge is  generally adequate fo r  normal measurements.

U.1.2 A pplication  to  Vibrometer 

In the pick-up, the gauges may be applied to  lea f springs 

supporting the mass. With a gauge above and below each o f  two springs, 

a l l  fou r  arms o f the bridge may be stra in  gauges giving automatic 

temperature compensation and greater se n s it iv ity  .

By supporting a mass in  a form o f  " c a t 's  cradle" made up o f un

bonded stra in  gauges, an accelerom eter can be constructed to  give three 

outputs corresponding to the tran sla tion a l accelerations in  the x -y -z  

d ire c t io n s .



,

.

F ig . 10. Simple resistance b r id g e .



U.1.3 S en s it iv ity  o f  a Wheatstone Bridge 

The arms o f  a simple resistance bridge, F ig , 10, fo r  stra in  

gauge measurements have values in  the range 100 to  2000C, The detector 

be a sen sitive  galvanometer or a more robust instrument preceded by 

an e le ctron ic  am plifier. In e ith er  case, fo r  an approximate an a lysis , 

i t  i s  assumed that the detector input impedance i s  in f in i t e .  Hence

* 1  .  * 3
Rl + 'S~  1*3 e (U2)

I f  R|_ i s  the resistance o f  the a ctiv e  gauge and i t  su ffe rs  a 

small change o f resistance A R i , the resu ltin g  change in  output voltage

A * »  R2 A&1
V "  (R i ♦ R2)y ^ 3 )

Thus, fo r  small resistan ce  changes, there i s  an approximately 

lin ear re la tion sh ip  between the output voltage and the s tra in .

Optimum s e n s it iv ity  occurs when is  su bstan tia lly  equal to  R2 

so that

A v  ■ e A * l _  (Uli)

Greater s e n s it iv ity  resu lts  i f  two or a l l  fou r arms o f the bridge 

are active  gauges, Section  U .l .2 .

U.2 D iffe re n t ia l Transformer

Various forms o f  th is  type o f  transducer have been described in  

t ie  lite ra tu re  and some are ava ilable  coitm ercially. F ig . 11 shows



diagrammatically the unit which was used as a detector in the assembly 

described in  Section  l£ .  By employing a re la tiv e ly  large magnetic flux, 

an output su ff ic ie n t  to operate a r e c t i f ie r  instrument without am plifi

cation was ea s ily  obtained with some s a cr ifice  o f lin e a r ity . To obtain 

an output proportional to  displacement, the maximum displacement must be 

Snail compared to  the a ir  gap.

Better lin ea r ity  over a wider range o f displacements can be 

obtained by arranging the c o i ls  coax ia lly  with a common cy lin d rica l moving
o ^

core . One such unit i s  stated to be linear within -  1  ̂ fo r  movements up 

to 0.1" and to  give in  the most sen sitive  range, fu ll-s ca le  deflection  of 

jfce ind icator fo r  a movement o f 0.0001". I t  would probably be a l i t t le  

d i f f i c u l t  to  design a sa tis fa ctory  vibrometer around this unit.

t l

I f  the waveform o f the v ibration  is  o f in terest, i t  is  necessary 

§ )  insert a "p o laris in g" signal in  series with the transducer output as 

e output is  independent o f the sense o f the movement. I f  the transducer 

tput is  zero in  the rest p os ition , the arrangement is  equivalent to the

Suppressed carrier" system in  conmunications and a carrier must be re-
%

troduced to avoid the "double-frequency" e f fe c t .  Circuits for  phase- 

n sitive  detectors are given in  the litera tu re  and need not be disc issed 

re . F ig . 12 gives a simple c ir c u it ,  which is  adequate fo r  rough 

easurement purposes.

U.3 Variable Inductance

There are a number o f  commercial manufacturers of th is type, whic 

han have various forms. In one o f these, a spring-mounted core of
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F ig . 12. Phase-sensitive d etector .



Ferroxcube or other su itab le  m aterial is  arranged so that, when the unit 

i s  subjected  to  a cce leration , the core moves and the inductance o f a 

c o i l  in  proxim ity to  the core changes. In an improved version , there 

are two c o i l s  arranged so that movement o f  the core produces equal and 

opposite changes o f inductance. The inductances are approximately equal 

when the core i s  in  the r e s t  p o s it io n .

Some experience has been gained with a Lan-Elec Transducer, Type

I .T . 1 -  22, i llu s tra te d  in  Plate l ( b ) . This unit is  o f  the balanced 

construction  described above and has the fo llow in g  ch a ra cter is tics  

Weight 2 j  oz

Supply 10V at 2000 c /s  (maximum current in

c o i ls  6 mA.)

C o il Inductance 70 mH t, 10 mH

Natural Frequency 100 c /s

Damping c o e f f ic ie n t  0.8

The damping is  produced by f i l l i n g  the unit with s ilic o n e  o i l  so 

that " c "  does not vary excessive ly  with temperature. The unit is  claim

ed t o  have a constant output with a given acce leration  fo r  frequencies up 

to  50 c / s .  Tests on the v ibratin g  tab le  showed that th is  was true with

in  -  5/6. Further te s ts  showed that the output was proportional to  

a cce lera tion  up to  i t s  maximum rated value o f 1 5g (1930 iq /s e c ^ ) . The

e f fe c t  o f  temperature was not in vestiga ted .
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F ig . 13
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A phase-sh ift o s c il la to r , am plifier and phase-sensitive detector 

were constructed follow ing conventional c ir cu its  with minor m odifications 

but, as the cry sta l pick-up in  use was found to  be adequate, these units 

were not put to p ra ctica l use.

U.3.1 Bridge S en s itiv ity

The bridge connections may be as shown in  F igs. 13(a) or ( b ) . 

The s e n s it iv ity  conditions can be read ily  derived, assuming that the 

external re s is to rs  R are equal and that * L2 11 L in  the r e s t  condition . 

When the transducer is  subjected to  an acce leration , the core is  displaced 

and Li i s  increased by an amount AL^ and L2 decreased by an amount A l^ .
9

Id ea lly , these increments are equal in  magnitude. An in f in ite  impedance 

detector in  the form o f a valve am plifier is  normally used.

Connection (a)

i l  '  h

*2 "  (ZL + A l i  -~2&d—  ' M

* * v “ a  * R • [jco (2li v 'A q ~ - " A ^ ) ] x [jm (L" Ax̂ }]

-  e f J  -  o t L  _____ _ 1
[  2L ♦ -  Ah  J

.  e f  21* A h  - A h  -  2L ♦ 2 A L2I
L 2 (2L *Al±-Al? J

e

e

[
2L ♦ A ll - Ah  -  21

7
Ah. *Ah 

2 (2 L  ♦  A h  ^ 2 )'

r A h  ♦ A h \ (1*7)



Output to

flmplifiiter

Ferrous Plate, (if repaired)

(a)

F ig . lU. Telephone headpiece, moving-iron e le c tro  
magnetic transducer.
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or, assuming \Ahj\  -  \Ai^\  -

7L CU8)v /e  =

Connection (b)

i i  «--------  ®------------------------  (U9)
R ♦ jcD (L^ ♦ A  Li)

±2 " --------  2----------------------  (50)
R ♦ ja> (L2 -  A L 2)

Making the same assumptions as before , and in  addition , taking 

the cond ition  fo r  maximum s e n s it iv ity , namely, R ■ caL

A l q  ♦ AL2
v • 6 2L

o r y / e  ?  (52)

I t  fo llow s that th is  connection gives approximately twice the 

output f o r  a given acce leration  compared to  the former connection.

In  p ra ctice , the analysis i s  not quite so simple, as the 

inductances and th e ir  increments are not necessarily  equal. Resistance

is  associated with the inductance and i t  can be shown that, i f  the c o i l
*

has an impedance (r  ♦ jcoL), the optimum se n s it iv ity  is  obtained when 

R2 ■ r2 ♦ o>2 L2 .



Flexible
Diaphragm fn°v,1,3 Coil

Output to
flm plifi■itr

Pot IJIaymt
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U.U Variable Reluctance

Where a very simple qu a lita tive  or a rough quantitative te s t

is  required, an ordinary telephone headpiece, F ig . lU, is  very u sefu l and 

ea s ily  rigged in  certa in  circum stances. The output, -which is  

approximately proportional to  v e lo c ity  i f  the displacement i s  small com

pared to  the a ir  gap, may be heard without am plification  in  headphones or 

am plified  to  operate some form o f in d ica tor . The author has used th is 

su ccess fu lly  in  the tests  described in  S ection  13 and a lso  to  look fo r  

v ibra tion s in  marine turbine reduction gearing^.

Hence the output is  proportional to  v e lo c ity  provided is  constant,

The mean a ir  gap A0 chosen is  a compromise between se n s it iv ity  

and l in e a r ity .

U.5 Moving C o il

The m oving-coil generator, F ig . 1$, can be designed to  give 

an output signa l which i s  accurately proportional to  the r e la tiv e  v e lo c ity  

between the c o i l  and the f i e ld  magnet and which is  independent o f  c o i l  

p o s it io n  f o r  a wide range o f displacem ents. For these reasons, i t  is  a

I f  the a ir  gap is  x * A0 ( l  ♦ A  s in  cot) and there i s  a 

magnetic f lu x ^  corresponding to  the gap A0, then the generated e .m .f.

=  k l !  •  [ a °  ( 1  + A s i n £ a t ) ]

(53)

d§

which i s  nearly true i f  1 .
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popular form o f transducer in  many commercial p ick -ups. Electro-m agnetic 

damping which is  accurately proportional to  v e lo c ity  and not greatly  

dependent on temperature, can a lso  be read ily  incorporated . The precise  

workmanship necessary to  produce such units, p a rticu la r ly  i f  they are 

small and l ig h t , tends to  make them r e la t iv e ly  expensive.

The i n i t i a l  tests  on the wax ship models were carried  out with a 

seism ic detector  o f th is type. I t ,  however, was large and cumbersome, 

weighing about 1$ lb .  I ts  natural frequency was about 3 c /s  and a certa in  

amount o f  edcfy-current damping occurred in  the s te e l  core o f  the moving 

c o i l .  Due to  i t s  large mass, i t s  use was discontinued as soon as more 

su itab le  equipment became a v a ila b le .

Iu 6  P iezo -E le ctr ic

Certain m aterials such as quartz, Rochelle s a lt  and barium 

titanate  produce an e le c t r i c  charge when stra in ed . This charge is  

proportiona l to  the stra in  and hence may be used as a measure o f  the 

stra in . Because o f  the nature o f  these m ateria ls, the p ie z o -e le c tr ic  

e f fe c t  i s  normally used only in  accelerom eter type pick-ups where the 

natural frequency o f the system can be high. F ig . 16 shows diagrammatic a lly  

a ty p ica l unit employing barium titan ate  d is c s .

U .6.1 Barium Titanate

Widely varying claims have been made fo r  titanate  elements 

but an au thoritative source g ives the fo llow in g  constants fo r  a m aterial 

containing 96# Ba Ti O3 and h% Fb Ti O3 p o larised  at 750 V/mm a t lliO°C
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Charge se n s it iv ity  Qs ■ 0.66 x 30" 15 coulomb/dyne 

Perm ittivity * 1200 -  1$00

The cry sta l output is  shunted by the input impedance o f  the 

am plifier, so that a compromise between se n s it iv ity  and low-frequency 

response has t o  be sought.

For a unit o f  capacitance U00 pF carrying a mass o f l.U  gm

the open -circu it output voltage, using the above m aterial, is

v .  Qsmg .  0,66 x 1 0 -^  x l . l t  x 981 .  0.0022 V/g (& )
C 1*00 x  10-12 & v '

/  1 0The resonant frequency is  about 37 k c /s  .

C alculation  shows that the output i s  down by 30^ at 800 c /s  

with an am plifier input resistance o f 0 .5  MS, but that the equivalent 

low frequenqy response is  extended to  UO c /s  i f  the input impedance is  

increased to 10 MB.

In order to  obtain a good l * f .  response, a head am plifier with 

a very high input impedance is  necessary. A su itable battery-operated 

cathode fo llow er c ir c u it  i s  given in  F ig . 17. By situ atin g  th is  unit 

close to  the pick-up, the shunting e f fe c t  o f  the cable capacitance is  

minimised and the upper frequency response is  also improved.

U.6.2 Rochelle S a lt

The pick-up used in  most o f the tests employed a Rochelle 

sa lt  c ry s ta l contained in  a heavy d ie -ca st  housing sealed to  prevent the 

ingress o f  moisture, Plate l (C ) . L it t le  inform ation was obtainable from

-  30 -  .
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the manufacturers about i t s  construction  or ch a ra cte r is tics , except that 

the maximum acceleration  should not exceed 7g. When used with a Dawe 

V ibration  Meter, Type 1U02C, the response is  claimed to  be w ithin t  \Qff> 

from U to  1000 c /s .  Tests on the vibrating table showed that i t  was 

within these lim its over the frequency range 10 to  80 c / s .

U.6.3 Other Materials

The com position and properties o f titanate elements are 

very variable  but, in  general, the advantage o f  the high charge 

se n s it iv ity  is  n u lli f ie d  by the high perm ittiv ity . Rochelle s a lt  is  

more sen sitive  but i s  lim ited in  use by i t s  temperature and moisture 

ch a ra cte r is t ics . A number o f  other m aterials have been investigated , 

and a good case has been made fo r  using strontium formate dihydrate which 

has a charge se n s it iv ity /p e rm ittiv ity  ra t io  about three times that o f 

Rochelle s a l t ^ .

However, as in  the case o f the titanate elements, a great deal 

o f development work w il l  probably be necessary before these sp ecia l 

m aterials can be used in  re lia b le  and con sisten tly  accurate accelerom eters.

U.6.U Screened Cable 

Standard screened or coax ia l cable often  exh ib its a pseudo 

p ie z o -e le c tr ic  e f f e c t ,  which may introduce r e la t iv e ly  large signals in to  

a high-impedance c ir c u it .  This e f f e c t  is  possib ly  due to  the development 

o f e le c t r ic  charges on the surface o f  the insu lation  next to  the braided 

outer conductor. Various cures are p oss ib le , including a thin graphite 

deposit on the d ie le c tr ic  surface.
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The e f fe c t  is  most serious with a large-displacem ent, low- 

frequency v ibration  and the cable connecting the moving pick-up head to  

a stationary vibrometer. In these circumstances, a battery-operated 

cathode-follow er unit c lose  to , or as part o f , the pick-up w il l  act as 

an impedance transformer and e f fe c t iv e ly  elim inate the trou ble . This 

unit must not be microphonic in  any respect, as i t  i s  being subjected 

to  the v ib ra tion .

In the ship-model tests the e f f e c t  was noticed but, a fte r  

some in vestiga tion , i t  was decided that the signal introduced by cable 

noise was n eg lig ib ly  small compared to the c iy s ta l output.

U.7 Triode Transducer Valve

The construction  o f th is device is  shown in  F ig . 18. The 

anode is  continued through the centre o f a thin metal diaphragm and 

displacement o f the external shaft a lters the grid-anode spacing which, 

in  turn, changes the anode current. A ty p ica l ch a ra cteris tic  is  given 

in  F ig . 19, from which i t  w ill  be seen that the se n s it iv ity  i s  about 

UOV/degree o f angular d e fle c t io n . With a weight o f l / l 6  oz and an over

a l l  length o f 1 l/U ,! th is  device has many ap p lica tion s. The natural 

frequency o f the anode-diaphragm spring-mass system is  12 k c /s .

A usefu l accelerom eter o f  low mass was constructed round this 

valve, Plate 1 (a ) . The resonant frequency was reduced to  about U00 c /s  

by attaching a small extension p iece to  the anode sh a ft. The valve was 

contained along with i t s  anode load res is to r  in  a small brass box, which 

was f i l l e d  with o i l  to give the requ isite  damping.



F ig. 20. Simple arrangement fo r  a vi 
capacitance transducer.
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The output from the pick-up was re la tiv e ly  high, but i t  tended 

to be noisy, possib ly  due to  the whole valve being vibrated,and no 

extensive p ra ctica l use was made o f i t .  Where the sh e ll o f  the valve 

can be attached to  a fix e d  reference and the v ibrating  body connected to 

the anode shaft through a rod, the output w ill  be about 20V/.0011*, which 

would make a very sen sitive  and compact transducer,

U.8 Miscellaneous

There are many more possib le  devices fo r  converting a mechanical 

to  an e le c t r ic a l  s ign a l. Some o f these are mentioned below,

U.8.1 Change in  resistance o f  a semi-conductor when 

strained.

The e f fe c t  is  generally greater than that obtained from 

the m etallic  stra in  gauge, but temperature and voltage e f fe c t s  tend to be 

serious and lim it i t s  p ra ctica l use,

U .8,2 Capacitance bridge, F ig , 20.

Sim ilar in  use and app lication  to the inductance bridge.

By using high ca rrier  frequencies very compact units may be designed.

U.8.3 Optical methods.

F ig . 21 indicates how a mechanical displacement may be 

used to  modulate the lig h t fa l l in g  on a p h oto -e le ctr ic  c e l l  and so 

produce a voltage proportional to displacement. The shape o f the fixed  

aperture may be modified to  compensate fo r  n on -lin earity  o f the c e l l  or 

am plifier response, or to give any required transfer function  between 

incut and output s ign a ls .
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system.
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U.9 Carrier Systems

Where the v ibration  frequency spectrum extends down to 0 c /s  

or very low frequencies, i t  may be convenient or necessary to employ a 

carrier system.

U .9*l Amplitude Modulation

The inductance bridge, F ig . 13, is  normally balanced so 

that there i s  no output when A L  * 0, the supply or ca rrier  frequency is  

thus suppressed. I f  the bridge is  now appreciably unbalanced by a lte r 

ing one o f the re s is t iv e  arms, there w i l l  be an output at the ca rr ie r  

frequency when A  L ■ 0 and the amplitude o f this output w il l  vary with 

both the magnitude and the sign  o f A L, that i s ,  the output now responds 

to the sense o f  the displacement. The block diagram, F ig . 22, ind icates 

the e ssen tia l components o f an amplitude modulation system.

With a ca rrier  frequency f c and a v ibration  frequency f s , the 

waveform of the modulated ca rrier  i s  given by an expression o f the form, 

v “  V ( l  + k sin  2n f st ) s in  2n f ct  (55)

Analysis o f th is expression shows that the required frequency 

band fo r  the am plifier i s  twice the maximum vibration  frequency centred 

on the ca rr ie r  frequency. This am plifier is  o ften  easier t o  design 

and more r e lia b le  than a stable d .c . am plifier o f  the same gain. There 

is  the add itional com plication of the demodulation c ir c u it .

Amplitude modulation is  a lso  app licab le  to re s is t iv e  stra in  

gauge and capacitance bridges as w ell as valve and p h o to -ce ll transducers.



The ca rr ie r  frequency is  a matter o f  convenience but generally 

i t  should be several times the highest v ibration  frequency to  sim plify  

the demodulation f i l t e r  c ir c u it .  Too high a ca rr ie r  frequency may 

introduce com plications, such as the e f fe c t  o f  c ir c u it  and component 

reactances.

il.9 .2  Frequency Modulation

In an alternative system, the mechanical s ig n a l varies one 

of the elements in  an o s c i l la to r  c ir c u it ,  so that the o s c il la to r  frequency 

changes in  sympathy with the s ig n a l. As the range o f frequency is  

usually only a very small fra ct io n  o f the carrier  frequency, sp ec ia l 

c ir cu its  have been devised to detect the modulation. F ig . 23 shows an 

elementary system. The two halves o f  the detector are tuned to 

frequencies above and below the unmodulated ca rrie r  frequency and th eir  

outputs are subtracted e le c t r i c a l ly .  The resu lt  is  an output which is  

linear over a reasonably wide frequency range. Two o f the more obvious 

advantages o f  the system are that zero or very low-frequency modulation 

may be used and the discrim inator and presentation unit may be situated  

at a d istance from the pick-up head without any loss  o f  accuracy.

U.10 Integration  and D ifferen tia tion

The e le c t r ic a l  output from a v ibration  pick-up may be
« *  • •  • • •

proportional to  x, x, x or x, depending on whether the spring-mass system

operates above or below i t s  natural frequency and on the type o f transducer. 

I t  is  convenient, therefore, to  include in  an e le ctro n ic  v ib ra tion  meter, 

c ir cu its  that w il l  operate on the e le c t r ic a l  s ign a l representing the
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vibration  to  give the required parameter. Most commercial units give a 

choice o f  parameter by operation o f a se lector  switch.

v, V1 “  vo

U.10.1 Integration . F ig . 2li

i j 1 . dt
t*

V1 ^
%

V]_ dt

1_
CR

\

1
CRt

R
. dt

dt

(56)

provided that the second term is  sm all. This occurs when R 

fo r  a l l  frequencies o f  in te re s t . A usefu l c r ite r io n  is  that 3$ 

accuracy is  obtainable with a time constant o f 1 sec at a frequency o f 

50 c / s .

At low frequencies accurate in tegration  with a simple c ir c u it  

may be d i f f i c u l t  and i t  i s  then common to eraplqy a f!M iller Integrator’1. 

This i s  an am plifier with 180° phase s h if t  and capacitance feedback be

tween output and input. I t  has a number o f  advantages over the simple
12c ir c u it  given above •

U.10.2 D iffe ren tia tion . F ig . 2$

I f  v0 the charge on the capacitor q * Cv^

and i dq^dt T C
dt

. . vo
provided R

iR
dvi

CR-a £ (57)

1

=



I t  i s  apparent that, f o r  e ith er in tegration  or d iffe re n t ia tio n , 

there must be considerable attenuation o f  the s ign a l i f  accuracy is  to be 

attained. An extra stage o f am plification  is  normally necessaiy to  

compensate f o r  th is  lo s s .
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5. PRESENTATION 

The method o f  presentation depends on the equipment available 

and the type o f  te s t  being carried  out. For laboratory work, where only 

one or two detectors are being employed and note i s  being taken o f the 

e f fe c t  o f  change in  the various experimental parameters, a d ire c t  

ind ication  on a d ia l instrument has much to  recoimend i t .  This can be 

usefu lly  supplemented by v isu a l presentation o f the v ibration  waveform 

on a cathode-ray tube, so that immediate note may be taken o f 

p ecu lia r it ie s  in  th is  waveform, such as harmonics or the presence o f 

v ibrations o f other frequencies.

For the simultaneous operation o f a number o f p ick-ups, th is  

method is  laborious and can lead to  error, due t o  changing conditions 

while the readings o f the several detectors are being noted. Here, 

some type o f recording is  d esirab le . I t  may take one o f several form s:

Simultaneous photography o f a number o f instrument d ia ls  or 

cathode-ray tube screens.

M ultiple-channel oscillograph , employing taut-suspension r e f le c t 

ing galvanometer movements and a moving photographic f i lm  to  

record the movements o f  the lig h t  beams.

M ultiple-pen recorder -  usually o f the m oving-coil type, which 

lim its  the upper-frequency response t o  a maximum o f about 100 

c / s .
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Magnetic-tape recorder. This does not seem to  have been 

developed commercially in  th is  country to  the extent o f being 

s u ff ic ie n t ly  accurate fo r  measurement purposes.

The raultiple-pen recorder has much in  i t s  favour where the 

frequencies o f in terest are w ithin i t s  range, as the records are 

immediately ava ila b le .

In the ship-model tests  no recording equipment was available

and a l l  measurements were presented on a r e c t i f i e r  m oving-coil

instrument. As the vibrations were substantia lly  sinusoidal, th is gave

accurate readings. Where the signa l waveform i s  non-sinusoidal, errors
13

which may be large, are introduced • These errors are a lso  a function  

o f the phase relationsh ips between the components o f  a complex wave, so 

that ca lib ra tio n  fo r  non-sinusoidal waveforms is  v ir tu a lly  im possible. 

However, by introducing a tuneable se le ct iv e  am plifier before the 

instrument, the magnitudes of the several components may be measured 

in d iv id u a lly .

The errors mentioned in  the previous paragraph arise because 

the instrument d e fle c tio n  is  proportional to  the rectified-m ean value 

of the s ign a l while the sca le  is  ca lib ra ted  in  r .m .s . values f o r  a 

sinusoidal input. Where accurate r .m .s . values are required in  the 

presence o f harmonics, some form o f thermal instrument is  recommended. 

The r e la t iv e ly  long time constant o f therm o-junction instruments i s  

also an advantage fo r  obtaining a steady reading.
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Where the v ib ra tion  waveform departs su bstan tia lly  from the 

sinusoidal form and peak values are o f in te re s t  fo r  determining peak 

d e fle ction s  and fo rce s , a valve voltm eter with a su itab le  R-C time 

constant i s  d es ira b le .

From the above, i t  can be seen that the poin ter instrument 

can be arranged to in d ica te  the r .m .s . ,  mean or peak value o f  a waveform 

and th is  inform ation is  o ften  adequate. Where the waveform i s  of 

in te rest , the cathode-ray o sc illo s co p e  is  the most v e rs a tile  instrument, 

but i t s  accuracy may be lim ited  by a number o f  fa c to rs , namely:

(a) n on -lin ea rity  o f  the am plifiers over the frequency range;

(b) n on -lin ea rity  o f the tim e-base;

(c )  non-proportionality  o f  the spot d e fle c t io n  to  the applied  

voltage ;

(d) dependence o f  spot b r ill ia n cy  on w riting  speed, making 

photographic recording and analysis d i f f i c u l t  with marked 

non-sinusoidal waveforms;

(e) width o f  trace or spot s iz e ;

( f )  parallax and "sine-tangent11 e rrors . These may be accounted 

fo r  in ( c ) ;

(g) camera errors due to poor lenses and d is to r t io n  o f the record

ing film  or paper during the development process.

By ca re fu l design and manufacture and by taking su itab le  

precautions, good accuracy can be attained in  sp ite  of the above sources 

of e r ro r .
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Photographic recording has the disadvantage that the record 

is  not ava ilable  u n til the film  i s  developed, so that in  the event o f  

the record  being unsatisfactory , considerable trouble and expense may 

be involved in  repeating the te s t .  I f  the sp ecia l m aterials and 

cameras, advertised in  the U.S.A. lite ra tu re , fo r  g iv ing a u sefu l record 

in  less  than a minute a fter  exposure are re a lly  sa tis fa c to ry  and become 

available here, they w il l  provide a marked advance in  photographic 

recording technique.

Magnetic-tape recording th e o re tica lly  should o f fe r  maiy 

advantages and mary claims are made fo r  sp ec ia l instruments. However, 

i t  appears that even in  the b est o f  tapes, the ch ara cteristics  can vary 

by about 10# so that a d ire ct  amplitude recording, although r e la t iv e ly  

simple, i s  not su itab le  fo r  accurate work. Various frequency-modulation 

systems have been reported, the best o f these has a tape speed o f 

60 i r /s e c  and a nominal carrier  frequency o f U5 k c /s .  This unit is  

claimed to  be capable o f handling s a t is fa c to r i ly  a signa l range o f 0 

to  10 k c /s .  Elaborate methods o f  con tro llin g  the tape speed have been 

suggested and described, but the one which appears to  o f fe r  the best 

a ll-round  performance is  the recording o f  a reference frequency on a 

second channel o f the same tape as the s ign a l. The mechanical problems 

o f speed con tro l appear to  be more in tra cta b le .
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6 . PRODUCTION OF VIBRATION

V ibrations may be induced in  a system by a number o f methods. 

These are considered b r ie f ly .

6 .1 .1  Shock

The system is  h it  a blow, preferably o f  known and 

repeatable force,and  the resu lting  v ibra tion  i s  recorded. The analysis 

o f th is  record  is  mathematically in terestin g  and can y ie ld  much inform

ation , but the method was never seriou sly  considered in  this p ro je c t .

6 .1 .2  Mechanical

The system can be excited  by a cam or eccen tric drive 

which moves the system re la tiv e  to  the ground or a large reference mass. 

This method is  not ea s ily  applicable to  a fr e e ly  supported system. An 

alternative mechanical method is  to  u t i l is e  the cen trifuga l fo rce  o f a 

rotating out-of-ba lance mass. This method was adopted and is  discussed 

further in  Section  6 .2 .

6 .1 .3  E le ctr ica l

Certain o f  the transducers discussed in  Section  U exh ib it 

a re c ip ro ca l e f fe c t  in  that an e le c t r ic a l  input produces a corresponding 

mechanical fo rce  output. The most popular is  the m oving-coil e x c ite r , 

which is  ava ilab le  commercially in  a l l  s izes  up to  large units capable 

of force  outputs o f 10,000 lb .w t. I t  has many advantages, but was not 

considered su itab le  fo r  ship-model work. Some doubt has since been f e l t
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about th is  d ecis ion , as the mechanical disadvantages o f  the scheme 

applied to  the fr e e -fr e e  condition  may be outweighed by the e le c t r ic a l  

convenience. At the lower frequencies, some trouble may be experienced 

in  designing a su itab le  transformer fo r  matching the am plifier output to 

the moving c o i l .

Other e le c t r ic a l  methods include the moving-iron e le c tro 

magnetic e x c ite r , which has been used fo r  the tests on wax bars (Section  

13), as w e ll as e le c t r o s ta t ic , p ie z o -e le c tr ic  and m agneto-strictive 

e f fe c t s .  The la s t  two are used extensively  at the higher frequencies.

6.2 Rotating Out-of-Balance E xciter

I f  a ca re fu lly  balanced wheel has a mass m attached to  i t  

at radius r  and the wheel is  rotated at f  = o/2n revolutions per 

second, there is  a cen trifu ga l force

F = (58)

The d ire ct ion  o f the force  i s  ra d ia lly  outward from the axle, so that 

there is  a considerable p o s s ib ility  o f  excitin g  several modes o f 

v ibration  simultaneously with th is simple system.

I f  two ca re fu lly  balanced gear wheels with attached masses m

are arranged as in  F ig . 26, the horizonta l components o f the cen trifu ga l
#

forces balance out while the v e r t ica l  components add to  give a resultant

F * 2o?  t % s in  cot (59)
• ©

By disp lacing one o f the masses 180°, the v e r t ic a l  forces  cancel and a 

horizontal sinusoidal fo rce  plus a couple are produced.
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Other arrangements o f two, three or four out-of-ba lance 

weights can be designed, but they a l l  involve more com plication in  

gearing which outweighs th e ir  other advantages, p articu larly  fo r  high- 

frequency operation.

6.3 Development o f  E xcitation  System

I n it ia l ly ,  l i t t l e  was known about the precise  requirements 

and a simple e x c ite r , F ig. 27, con sistin g  o f a -h .p . shunt motor 

with a d isc  flyw heel and a s in g le  out-of-ba lance mass was mounted in  a 

wax model. This unit had a maximum speed o f  3000 rev/min, speeds be

ing measured by an e le ctron ic  stroboscope. With the model mounted on 

m odified wooden kn ife-edges, resonances were read ily  detected by touch. 

Some attempt at quantitative measurements was made with the seism ic 

detector mentioned in  Section  U.5>, but the resu lts  were s u ff ic ie n t ly  

inaccurate to have l i t t l e  value.

From these early  te s ts , i t  was apparent that:

Comparatively l i t t l e  power was required to  generate amplitudes 

detectable by accelerom eters available commercially.

The resonances were s u ff ic ie n t ly  sharp to  be d i f f i c u l t  to hold by 

the simple slid e -w irq  resistance speed con tro ls .

The simultaneous existence o f  complex v ib ra tion  modes -  v e r t ica l, 

horizon ta l and to rs io n a l -  was caused by the simple rotating  out- 

of-balance mass.
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Both the e x c ite r  and detector were too  heavy.

The speed range o f  the motor was in s u ff ic ie n t .

As a resu lt  o f experience with th is e x c ite r , an improved 

arrangement, F ig . 28, con sistin g  o f  a r e la t iv e ly  large d .c .  shunt motor, 

"shore-based11, driv ing an e x c ite r  through a f le x ib le  speedometer cable 

was constructed. The motor was connected to  the cable through a three- 

step V -b e lt pulley drive, so that a wide range o f ex c ite r  speed was 

available with a comparatively small range o f motor speed. This, along 

with the large in e r t ia  o f the motor armature led  to greater ease o f  

speed con tro l. The ex cite r  speed was measured on a 10-inch "C irsca le11 

voltmeter, supplied from a d .c .  tachometer generator driven from the 

exciter  sh a ft. The ex c ite r  proper consisted  o f  two accurately machined 

bak elized -fabric  gears with provision  fo r  attaching out-of-ba lance masses 

The complete arrangement o f th is  equipment, as used at Leven Shipyard, is  

shown in  Plate 2 . In the experiment shown, an aluminium-alloy model o f 

rectangular cross -se c tion  is  being te s te d .

The Mark II  unit was a great improvement on the o r ig in a l Mark 

I , but i t  was s t i l l  d i f f i c u l t  to  hold a resonant speed s u ff ic ie n t ly  long 

fo r  the v ib ra tion  amplitude to reach i t s  f in a l  value and an accurate 

reading to  be obtained from the vibrom eter. I t  was a lso  im possible to  

p lot am plitude/frequency curves near the resonant frequ encies. The 

accomplishment o f  accurate speed con tro l was now the major outstanding 

problem o f  the ex c iter  design.
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In  order to  expedite the programme, a Mark I I I  e x c ite r  with 

e lectron ic  speed con tro l was rap id ly  constructed. The fu nctiona l 

diagram, F ig . 29, shows the system employed. The output from the 

tachometer generator is  compared with a reference voltage derived from 

a dry battery  and a p oten tia l d ivider network. The d ifferen ce  voltage 

is  chopped by a v ibrator tuned to  5>0 c /s  and fed  to  a high-gain am plifier 

which, in  turn, con trols  the motor armature current.

The resu ltin g  speed con tro l was fa i r ly  e f fe c t iv e  over the

range 300 to  6000 rev/min but, owing t o  the sm all torque o f the motor,

only small ou t-o f-ba lance  masses could be employed and the usefulness 

o f the unit was lim ited .

P late 3 shows the general appearance o f the unit and the

complete c ir c u it  i s  given in  C ircu it 1 .

6.U F inal Design o f E xcitation  System

With the above experience as a guide, a Mark IV e x c ite r  using

a Velodyne Motor-Generator, Type 7U, was designed and constructed.

The weight o f th is  machine, 7i lb , i s  too  great fo r  i t  to be

mounted on the model, so the e x c ite r  i s  driven by a short length o f

tors ion a lly  s t i f f ,  f le x ib le  con tro l cab le .

The e x c ite r  con sists  o f two p rec is ion  bronze gears, 3 inches 

in diameter, mounted on b a ll  bearings and running in  a to ta lly  enclosed 

o i l  bath. By adopting a l ig h t  but s t i f f  brazed construction , the
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weight o f the exciter  with i t s  mounting f i t t e d  in  the model is  less than 

3\ lb .  This construction  i s  seen in  Plate U. A set o f twelve pairs 

o f accurately matched weights is  ava ilab le , so that a wide range of force  

outputs over the required speed range can be obtained. The ca lib ra tion  

curves fo r  these weights are given in  F ig . 30. The larger weights can 

produce fo rce s  s u ff ic ie n t ly  great to  damage the b a l l  races at quite 

modest speeds. The maximum perm issible force  is  a function  o f speed 

and the expectation  o f  l i f e  fo r  the b a l l  races. No ca lcu la tion  has 

been made fo r  a su itable maximum force  output, but an arbitrary lim it

o f 1$ lb .w t. has proved to be s u ff ic ie n t  to excite  vibrations o f

s u ff ic ie n t  magnitude under a l l  conditions of model testin g  and the l i f e  

o f  the b a l l  races has been sa t is fa c to ry . A fter more than 1000 hours o f 

running tim e, a small amount o f  noise is  detectable .

6 « lu l Velodyne Motor-Generator Control System

The p rin cip le  o f operation i s  shown in  F ig . 31. The

motor armature is  supplied with an e f fe c t iv e ly  constant current o f 5A 

through a series  resistance from the d .c .  mains. The back e .m .f.

(UV per 1000 rev/min) has v ir tu a lly  no e f fe c t  on the armature current, 

so that the unit produces a constant indicated  torque over the whole 

range o f  speed from 0 to 10,000 rev/m in. This torque i s  o f the order o f 

1500 gm cm or 20 oz in  but, due to  f r ic t io n  and windage losses , i s  less  

at high speeds.

Mechanically coupled to  the motor is  a d .c .  generator, whose 

output o f  hOV/lOOO rev/min is  accurately proportional to  speed. The
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d .c .  supply fo r  the generator f i e ld  i s  e le c tro n ic a lly  s ta b ilis e d , so 

that the output i s  su bstan tia lly  independent o f  mains va r ia tion s . The 

generator output is  connected in  ser ies  with an e le c tro n ica lly  

s ta b ilis e d  reference voltage, which is  variable  from zero to  300V. The 

d iffe re n ce , or error voltage, i s  am plified  in  a d .c .  balanced am plifier, 

whose output i s  applied to the motor f i e ld  c o i l s .  F u ll f i e ld  current 

is  obtained from an input o f 120mV, corresponding approximately to  

$ rev/m in, F ig . 32. Thus, f u l l  torque is  developed with an error in 

put o f  5 rev/m in, g iv ing  a th e o re tica l accuracy o f speed con tro l o f  

0.17$ at 3000 rev/min with f u l l  range o f torque v a ria tion .

The in e r tia  o f the motor generator alone i s  about 8 o z .in .s e c  

and the time constants of the am plifier and feedback c ir cu its  are low, 

so that very rapid rates o f  speed change are possib le  -  up to 

9C00rev/mir\/sec -  and the e f f e c t  o f  transient loading has a very short 

duration -  about £0 n sec.

When used with the ou t-of-ba lance e x c ite r , the in e rtia  o f the 

system is  increased by about $0$ and an additional com plication is  in tro 

duced by the f le x ib le  shaft coupling between the velodyne and the 

e x c ite r . With a s t i f fn e s s  o f  about 60 o z .ir /ra d ia n  f o r  a length o f  

lU in , the ca lcu lated  resonant frequency fo r  the system is  about 8 c / s .

In p ra ct ice , with normal rates o f  change o f speed and due to the damping, 

no trouble  has been experienced with th is  form o f coupling.
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The associated con tro l and am plifier units have been 

designed with modest ra tin g  o f a l l  components, so  that they have 

functioned without fa ilu re  fo r  about 2000 hours o f running time. The 

c ir c u it  o f the d .c .  am plifier is  su bstan tia lly  sim ilar to  that 

described by Williams and U t t l e y ^ #

Complete d e ta ils  o f  a l l  the units are given in  C ircu its  2,

3 and h and they are i llu s tra te d  in  P lates £ and 6 .

6.U.2 Measured Accuracy o f Velodyne Speed Control 

Owing to the lack o f  p rec is ion  speed-measuring equip

ment at Glasgow, tests  on th is  unit were lim ited  to some simple 

observations. For example, with the shaft o f  the motor apparently 

sta tion ary , when illum inated by an e le ctro n ic  flash in g  stroboscope 

u n it, the change in  speed from zero to fu l l - lo a d  torque was estimated 

at about 10 rev/min. T h eoretica lly , i t  should be nearer U rev/m in. 

Later, te s ts  at the National Physical Laboratory indicated  that 

constancy o f speed in  the region  o f  1 to  2 rev/min was obtainable over 

a wide range o f speeds with a fa i r  range o f torque. I t  was a lso  found 

that the se lected  speed remained constant over a long period o f tim e. 

Some tests  to  determine the ca lib ra tion  accuracy o f the unit showed 

that, once se t  up, the actual speed was w ithin  0*5% o f  the indicated  

speed. As the re s is to rs  making up the reference voltage p oten tia l 

d iv ider were a l l  wire wound and adjusted to  better  than 0.1^, the 

d iffe ren ce  is  probably due to  neon varia tion s and the e f f e c t  o f 

commutator-brush contact p o ten tia l in  the generator.
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6.U.3 Close Speed Control

The speed o f  a motor may be p rec ise ly  con tro lled  in  

speed under certa in  cond itions. For example, i f  the speed is  continuous

ly  monitored by some form o f d ig ita l  counter and the error  used as a feed

back signa l, the resu ltin g  con tro l should be absolute w ithin the accuracy 

o f the counting system. However, i f  a generator output is  compared with 

a reference voltage, then a number o f errors may enter in to  the system. 

For example, a ty p ica l sintered a llp y  permanent magnet has a varia tion  in  

flu x  o f 0.03$ /°C  and th is  may be s u ff ic ie n t  to  rule out the use o f a 

permanent magnet generator fo r  high s ta b i l it y  use. I f  a d .c .  f i e ld  is  

used, i t  i s  commonly excited  from a r e c t i f ie d  supply, which is  s ta b ilis e d . 

A second s ta b ilis e d  supply i s  used fo r  the reference voltage . In order 

to  a tta in  precise speed con tro l, certa in  precautions must be taken.

Some quoted temperature c o e ff ic ie n ts  are + .07$ fo r  dry c e l ls ,  ♦ .01$ fo r  

lead acid c e l l s  and -.005$ fo r  neon s ta b ilis e r  valves, a l l  values being 

per °C. Neon s ta b ilis e r s , th erefore , appear most su itable but, in  

addition , they are su bject to  the e f fe c t s  o f variations in  mains voltage. 

A ty p ica l figu re  is  t  .06$ change in  output fo r  a !  10$ change in  mains 

supply. Therefore, where high s ta b i l it y  i s  o f importance, a double
15s ta b ilis e d  supply, as shown in  F ig . 33, is  usefu l • A rough 

ca lcu la tion  shows that th is  c ir c u it  should give a vexy sa tis fa cto ry  out

put. However, i t  appears from the lite ra tu re  that n eon -stab ilisers  are
l6su b ject to other d e fic ien c ie s  which make elaborate c ir cu its  fu t i le  •

17A new reference source has been suggested by Shields • The 

saturation  voltage (breakdown region) in  the reverse ch a ra cte r is tic  o f



a s i l i c o n  diode can be arranged to  have a value from a few v o lts  to  

several hundred v o lt s .  The temperature c o e ff ic ie n t  is  given as 

0.06V/°C, which does not compare very favourably with ex is tin g  sources. 

However, the advantage o f low voltages may be considerable.

A l l  precautions fo r  securing a standard reference may be 

invalidated  by commutator-brush contact p oten tia ls . Various 

suggestions have been made to  improve conditions in  th is  respect and 

s ilv er -g ra p h ite  brushes on a silver-palladium  commutator have been 

claimed to  be su ccessfu l but would doubtless be p roh ib itive ly  

expensive fo r  a machine o f  the size  used.



7 . MEASUREMENT OF PHASE

When i t  became apparent that usefu l resu lts  could be obtained 

from the model te s ts , there was a request fo r  a method o f measuring the 

phase re la tion sh ip  between the e x c itin g  fo rce  and the v ib ra tion  d isp lace

ment. The estim ation of phase from e l l i p t i c a l  patterns on a cathode-ray 

tube was considered to  be too  laborious, so an instrument was developed 

fo r  the purpose.

The measurement o f  phase i s  important fo r  two reasons,-  

f i r s t l y ,  the ca lcu la tion  o f power input to the v ibrating body and, 

secondly, the determination o f  the resonant frequency o f  a highly-damped 

stru ctu re . The amplitude/frequency response fo r  a highly-damped 

structure i s  very f l a t  near the resonance frequency and i t  may be 

d i f f i c u l t  to  determine th is  frequency with accuracy. On the other hand, 

the rate o f  change o f  phase angle with frequency is  greatest near 

resonance so that phase-measuring technique can lead to a more accurate 

estimate o f  the resonant frequency.

7 .1  Phase-Measuring Unit

As the experimental technique required a r e la t iv e ly  large 

range o f  frequency, the measurement o f  phase rela tionsh ips o ffe red  some 

d i f f i c u l t y .  However, as the waveforms o f in terest were su bstan tia lly  

s in u soida l, the problem was considerably s im p lified . I t  was important 

that there should be more than one channel so that the performance o f a 

complex structure could be evaluated* The ba sic  p rin cip les  o f the unit

-  £2 -
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as f in a l ly  constructed are shown in  F ig . 3U. A two-phase alternator 

driven from the same shaft as the e x c ite r  produces a c ircu la r  time-base 

on a cathode-ray tube. There i s  provision  fo r  three signals in to  the 

u n it ,-  namely, a reference signa l and two others whose phase re la tiv e  to  

the reference is  to  be compared. The technique is  that each signa l is  

am plified as necessary, clipped , am plified, clipped again, 

d iffe ren tia ted  and, a fte r  further am plification , fed  to the grid  o f the 

cathode-ray tube to  produce a dark or a bright spot, according to  

p o la r ity , on the c ircu la r  tim e-base.

In fron t o f  the screen is  a cursor made o f thick Perspex with 

a number o f  concentric c ir c le s  and a ra d ia l lin e  engraved on both sides 

to  elim inate parallax errors . This d isc  is  rotatable in  a metal hood 

which is  i t s e l f  capable o f being rotated . Engraved round the hood are 

360 degree d iv is ion s . The procedure fo r  operation is  to  centre the 

time-base and set the hood to  0°  and the rad ia l lin e  on the cursor to  

the reference spot. The hood and cursor are then turned together u n til 

the lin e  is  over the spot due to the pick-up signa l. The phase angle 

is  read o f f  from the graduated sca le . Although the accuracy o f  reset is  

b etter  than 1° , i t  i s  probable that the lim itin g  accuracy due to  defocus, 

harmonic content o f the v ibra tion  waveform, unequal phase s h ift  in  the 

am plifiers and parallax errors , i s  nearer * U°« In addition , i f  there 

is  flu ctu a tion  in  the v ibra tion  fo r  any reason, th is  w i l l  resu lt in  some 

lo ss  o f d iscrim ination . Under normal conditions with good speed control 

there i s  no noticeable flu ctu a tion .
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Although in  no sense a precis ion  instrument, the unit appears 

to be s u ffic ie n t ly  accurate fo r  the purpose fo r  which i t  was designed.

7.1*1 D etails o f Construction

The whole unit, Plate 7, is  contained in  a box 

16 3/U11 x 7 3/U!l x 8M, and, as can be seen from the photographs, the 

available volume has been e f fe c t iv e ly  f i l l e d .  External to  the unit is  

the two-phase generator, which i s  a modified 2” Magslip Transmitter,

Type E -3 -A /l. This generator i s  f le x ib ly  coupled to the Velocyne Motor 

Generator and is  connected e le c t r ic a l ly  to the phase-measuring unit by 

an e igh t-core  cable and plug-and-socket system. The connections fo r  th is 

portion  o f the unit are given in  C ircu it

The output from the magslip is  f i l t e r e d  to remove any unwanted 

ripp le  and to  reduce the harmonic content, C ircu it 5- The output from 

the f i l t e r  is  am plified, C ircu it 6, and fed  to  the X and Y d e flectin g  

plates o f  the cathode-ray tube. The resulting trace i s  e f fe c t iv e ly  a 

c ir c le  over the frequency range o f 10 to  200 c /s .  At the higher 

frequencies, the magslip unit tends to  run a l i t t l e  warm but i t  has 

operated continuously fo r  long periods at speeds around 5>000 rev/min 

(83 c /s )  apparently without damage. Due to  the nature o f  the f i l t e r  net

work, the diameter o f  the c ircu la r  trace is  not proportional to  speed and, 

over a reasonable speed range, the magslip excita tion  may be l e f t  untouched 

without the diameter o f the trace changing s u ff ic ie n t ly  to cause inaccuracy.
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The gain o f each o f the three separate s ign a l channels is  

adjustable and a choice o f three d iffe ren tia tin g  networks depending 

on the frequency is  available, C ircu it 7# After d iffe re n tia tio n , the 

pulses are fed  to  cathode-follow er stages and thereafter combined in  

a common pulse am plifier, C ircu it 8. The output may be taken from 

either the anode or cathode o f the la s t  stage, giving blanking or 

brightening signals resp ectiv e ly .

The power supplies, cathode-ray tube network and s h ift  

c ir c u it s  are conventional, C ircu it 9*

An e a r lie r  design o f the unit with a d iffe ren t type o f 

a ltern ator, using four telephone headpiece inserts and an 

eccen tric  rotating  iron  armature, was used fo r  a short time but 

d i f f i c u l t y  was experienced, due to the re la tiv e ly  small output o f 

the generator and due to  hum and stray s ign a ls . I t  w ill  be seen 

that the la ter  c ir cu its  are thoroughly smoothed and decoupled. This 

has proved most e f fe c t iv e  in  giving a ftclean,f p ictu re .

I n it ia l  tests  on the magslip unit showed that i t  was 

necessary to keep the ex c ita tion  current small in  order to  maintain 

a good sinusoidal output waveform. The excita tion  current is  

derived from a small power supply which is  w ell smoothed and the 

maximum current i s  about 30 mA, which is  s u ff ic ie n t  to  give a 1 3/Un 

diameter trace at 10 c / s .
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8.  LIMITER

A common arrangement fo r  measuring vibrations is  shown in  

F ig . 35(a)* I f  the v ibration  amplitude is  flu ctu atin g , both the 

v ibra tion  and frequency meter readings w il l  fluctu ate and i t  is  

d i f f i c u l t  to  estimate the v ibration  amplitude and generally impossible 

to  determine the frequency with any degree o f  accuracy.

Where the flu ctu ation  is  fa ir ly  rapid, an improvement in  

the amplitude measurement i s  obtained by shunting the in d ica tin g  

instrument by a large capacitor. In the case o f  the frequency meter, 

the improvement due to  th is  technique i s  not so marked, p ossib ly  due 

to the e f f e c t  o f  the frequ ency-selective  c ir cu its  on an input whose 

frequency and/or amplitude i s  changing irreg u la r ly .

The e f f e c t  was serious on some o f  the e a r lie r  ship-model 

experiments and a substantial improvement resu lted  from the 

in sertion  o f  a lim iter  unit between the v ib ra tion  meter and the 

frequency analyser, F ig . 3 5 (b ). I f  the flu ctu ation s are due to  

varying frequency, then the lim iter  does not s ta b ilis e  the analyser 

readings.

I n it ia l ly ,  a battery-operated  lim iter  was used but la ter  

a more v ersa tile  mains-operated, two-channel unit, capable o f deal

ing with the whole range o f v ib ra tion  frequencies was constructed. 

D etails o f this unit are shown in  Plate 8 and C ircu it 10. In
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operation, the gain o f the am plifier is  increased u n til the instrument 

on the panel indicates that lim iting action  is  taking p lace. An 

accurate reading o f the fundamental frequency may then be obtained.

As the v ibration  waveform is  o f  necessity  d istorted , no evaluation o f 

the harmonic content is  obtainable. The response o f the unit is  

shown in  F ig . 36.

The lim iter  was found to  be unnecessary in  the la te r  tests , 

when the Mark IV exciter  was used and the model was iso la ted  by the 

rubber support system.
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When a structure contains v ibrations o f  d iffe re n t frequencies 

i t  is  o ften  necessary to employ some form o f f i l t e r  to carry out 

measurements at one frequency or over a lim ited spectrum and to  r e je c t  

a l l  other frequencies. There are fou r main ty p es ,- namely, low pass, 

high pass, band pass and band stop .

F ilte rs  fo r  frequencies above a few hundred cycles per 

second are dealt with comprehensively in  the litera tu re  on communications 

but sa tis fa ctory  f i l t e r s  fo r  frequencies below 100 c /s  are generally 

quite d iffe ren t in  design. They may be e le c t r ic a l  or mechanical, and 

e ither or both may be necessary fo r  particu lar purposes. In the 

e le c t r ic a l  form, i t  i s  probably easier to  use R -  C rather than L -  C 

networks, p articu larly  fo r  the very low frequencies.

The mechanical type is  p a rticu la rly  valuable when the 

frequency o f in terest is  contained among other signals o f  much greater 

magnitude. The f i l t e r  is  interposed between the structure and the 

pick-up head. Hence the pick-up is  not overloaded nor does d istortion  

due to excessive input occur in  the matching unit between the pick-up 

and the rest o f the v ibration  meter. However, such f i l t e r s  may be 

d i f f i c u l t  to  design and construct in  reasonable s ize  and weight and may 

be su bject to  variations in  ch a ra cteristics  with temperature and other 

operating cond itions.

9 .  FILTERS
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Fig. 38. Response curve fo r  e le ctro n ic  low-pass 
f i l t e r  o f F ig . 3 7 .



The e le c t r ic a l  f i l t e r  on the other hand, can be lig h t , 

compact and reasonably versa tile  in  i t s  app lication .

In the course o f  th is  programme, i t  became apparent that 

i f  accelerometer type pick-ups were to  be used fo r  the low frequencies 

on board ship, then the output due to  high-frequency vibrations of 

small displacement would have to be suppressed. For th is  reason, 

some thought was given to  a p ra ctica l design of f i l t e r .  A fter some 

experimental work the c ir c u it  o f F ig . 37 was evolved. For a wide 

range o f  c u t -o f f  frequencies an experimental unit with switched 

capacitors and ganged res is to rs  i s  proposed. The response curve fo r  

th is  unit i s  shown in  F ig . 38 . I t  w il l  be seen that the response is  

adequate fo r  many purposes and compares very favourably with that 

obtainable from L -  C c ir cu its  at low frequencies.

Interchanging the resistance and capacitance elements in  

the f i l t e r  would give a high-pass u n it. By connecting two tuneable 

f i l t e r s ,  one high pass, the other low pass, in  series or p a ra lle l, an 

extremely versa tile  band-pass or band-stop f i l t e r  respective ly  would 

re su lt . Such a device would be very useful and this c ir c u it  should 

lend i t s e l f  to  the production o f a re la t iv e ly  cheap un it.



F ig . 39. Block diagram o f (a) se le ctiv e  am plifier 
and (b) heterodyne forms o f waveform 
analyser.
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10. OTHER ELS3TRONIC APPARATUS

The foregoin g  sections have d ea lt with equipment which was

available com nercially in  several forms and, therefore, had to  be con

sidered c r i t i c a l l y  with a view to se lectin g  the most su itab le ,

te ch n ica lly  and econom ically. They have a lso  dealt with the sp ec ia l 

equipment which was designed and constructed to  meet the requirements 

o f  the work.

Some very usefu l items fo r  a vibrations laboratory have 

not been d iscussed, and these are mentioned below.

10.1 Wave-form Analyser

Where complex waveforms are being measured th is  i s  an 

essen tia l t o o l .  In the ship-model te s ts , a Dawe A.F. Analyser, Type 

lUOlC, was used, not so much fo r  i t s  proper purpose, but as a frequency 

meter. I t s  range i s  2.5 to  7,500 c /s  with an accuracy o f t  2%.

• For v ibration  work where the frequencies o f  in te re s t  are 

usually low, the se le ct iv e  am plifier type o f analyser, F ig . 3 9 (a ), i s  

generally used. The heterodyne type, F ig . 3 9 (b ), has a lower 

frequency lim it  o f  about 30 c / s .  By arranging an automatic sweep o f 

the tuning, e ith er  mechanically or e le c tro n ica lly , the several 

frequency components o f  the v ib ra tion  may be presented panoramically 

on a cathode-ray tube. A l i t t l e  experience has been gained with a 

commercial panoramic analyser supplied by Industria l E lectron ics and



i t  i s  f e l t  that, without a great deal o f experience, th is  instrument is  

more qu a lita tive  than quantitative in  i t s  app lications.

10.2 E lectron ic Counter

Several commercial forms o f th is instrument are now 

available and much o f the work dealing with damping and the e f fe c t  o f 

entrained water would have been greatly  sim plified  by i t s  use. To 

obtain maximum v e rs a t i l ity , a double purpose instrument is  d esirab le . 

For normal use at the higher frequencies i t  i s  arranged to  count the 

number o f  cycles in  an accurately determined in terva l o f time, say 1 

or 10 seconds. For lower frequencies, the resu lting  accuracy would 

be poor, unless a very long in terva l was chosen and th is  is  usually 

undesirable. The unknown low-frequency signal i s ,  therefore, used to  

operate an e le ctro n ic  11 gate” so that, over the period o f one cyc le , 

the unit counts microsecond pulses from an accurate cry sta l. By these 

means, a l l  v ibration  frequencies can generally be measured to  better 

than 0 . 1$ within one second.



11. SUSPENSION OF MODEL

I n it ia l  te s ts  were carried  out with the wax models balanced 

on wooden knife-edges placed at estimated nodal lin e s . This was 

quickly found to be unsatisfactory  when quantitative resu lts  were re 

quired. As the model has appreciable depth, due to a v e r t ic a l  

v ib ra tion  mode, there w il l  be a horizonta l displacement at the p osition  

o f a knife-edge situated  several inches below the neutral ax is .

Models were then suspended from a gantry by systems o f  m ultiple 

rubber ropes located  at approximate nodal p o s it io n s . Plate 2 shows a 

ty p ica l t e s t  r ig  with the Mark I I  e x c ite r . The employment o f th is " s o f t *1 

suspension was found to elim inate the need fo r  precise position ing  o f the 

supports and the number o f  rubber ropes may be read ily  changed when the 

mass o f the model under te s t  i s  grossly  a ltered . Tests have shown that 

considerable changes in  the p os it ion  and the spring constant o f  the 

supports have no detectable e f fe c t  on the v ibration  frequencies or 

amplitudes in  the model. This v e r i f ie s  that the supports is o la te  the 

model from the gantry and that the lo ss  o f  energy from the v ibrating  model 

to  the gantry is  sm all.

1 1.1  Simple Analysis o f Suspension Conditions 

For a body with a sing le  degree o f freedom, supported 

on e la s t ic  m aterial having a lin ea r  force/displacem ent ch a ra cteristic  

and no damping, the equation fo r  the natural frequency o f  v ibra tion  is
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F ig . Ul. Diagrammatic representation o f ship model 
and v ibration  ex c ite r  suspended from gantry 
by damped- spri ng sys tern.
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f °  = -  3 -i 3 V

where f 0 = natural frequency (c /s )

k = spring s t if fn e s s ( lb /in )

W = weight o f boc^r (lb )

g * acceleration  due to  gravity (iq /sec^)

S = s ta tic  d e fle c tion (W/k in)

(6 0 )

This expression is  given graphically in  F ig . UO.

11.2 Theory o f Iso la tion

F ig . h i represents the model with ex citer  suspended 

from the gantry by a spring o f  s t iffn e s s  k and damping c .

In practice  the system is  somewhat d iffe re n t , as the m ultiple 

suspension system can give heaving, p itch ing and ro llin g  movements 

but, fo r  the purpose o f analysis, these may be ignored as transient 

and irrelevan t e f fe c t s .

The force  acting on the mass is  P = P0 sin  cot and the motion 

o f the mass w il l  be o f the form x = x 0 sin  (cot + <p). A dynamic 

fo rce  F = F0 sin  (cot ♦ <p) w il l  be transmitted to the gantry by the 

suspension and from the equation o f  motion previously analysed, i t  

can be shown that

£o = 1 + 0 % , ^ ) 2

?0 \  ( l  -  ^ 4 )  5 ♦ ( 2—  £ - ) 21/  \  U0C/  '  too C c '

(61)



Fig, -̂0* Relationship between the natural frequency 
and s ta t ic  d e fle ction  o f  a spring-mass 
system.



-  6U -

The values o f Fq/P q or the transmission fa c to r  are p lotted  

in  F ig . U2 fo r  various values o f  damping.

From these curves, i t  i s  apparent that fo r  frequencies 

greater than x the natural frequency o f the suspension, th is  ra tio  

is  less  than unity fo r  a l l  values o f damping. As the value o f c /c c 

f o r  the rubber is  le ss  than 0.2 and the te s t  frequencies are at least 

fou r times the natural frequency o f  the suspension,less  than 10$ o f 

the vibratory fo rce  at the model is  transmitted to  the gantry.

Further, since the supports are attached at the nominal nodal lin es  

where the displacements and fo rce s  are in  practice  small, the e f fe c t  

o f  these supports on resonant frequencies and damping is  very small.

In p ra ctice , too , i t  i s  found that the in tr in s ic  damping o f 

the supports is  s u ff ic ie n t  to avoid trouble with transient e f fe c t s  and 

mode coupling. Low damping gives a more e f f ic ie n t  support so that 

the optimum design fo r  p ra ct ica l purposes is  a compromise. No 

precise.measurements have been made, but i t  would be usefu l to 

estimate the energy loss  in  the supports when attached to  points not 

exactly  at the nodes. Tests with varying p osition  have indicated 

that the proportion o f v ib ra tion  energy lo s t  to the suspension is  

very sm all. While a ll-ru bber supports have been adequate fo r  te sts  

so fa r , i t  may be that with the demand fo r  more accurate measurements, 

a mixture o f rubber and low -loss  s te e l spring supports may give an 

even b e tte r  compromise.
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Fr e q u e n c y  R atio
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T ransm issibility  o f  s ing le -degree-o f-freedom  
system with various values o f  damping.



The above d iscussion  assumes that the displacement o f  the 

gantry is  n e g lig ib le . This assumption was shown to  be true by 

applying the pick-up to various points on the gantry.

11.3 Water Tests

Tests in water were carried  out with the model f lo a t 

ing completely free , except fo r  the f le x ib le  cables carrying the 

drive to  the ex c ite r  and the output from the pick-up. There is  a 

tendency fo r  the model to d r i f t  and, i f  necessary, l ig h t  restra in t 

with thin rubber cords could have been applied.
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F ig . U3. Block diagram o f  equipment and interconnections 
used fo r  instrument checking and ca lib ra t io n .



12. TESTING OF APPARATUS

As a number o f re la tiv e ly  complex units were employed in  

the measurements, a technique fo r  checking th e ir  ca librations and 

accuracy by reference to the fundamentals o f length, time and mass 

was developed.

The equipment fo r  th is  purpose is  shown diagrammatically

in  F ig . U3.

12.1 Vibrating Table

Accelerometer type pick-ups are not amenable to  

s ta t ic  ca lib ra tion  and, therefore, i t  is  necessary to  calibrate them 

on a su itable vibrating table which can give a range o f  known d is 

placements or accelerations over the required range o f frequencies.

I t  i s  a lso  convenient i f  the table has a sinusoidal movement. Two 

tables fo r  th is purpose were constructed.

One of these i s  shown in  Plate 9. A lig h t  but r ig id  

aluminium beam is  pivoted at one end and is  driven at the other end 

by an eccen tric  o f variable throw. In order to reduce shake and 

ra tt le  to  the minimum, loaded b a ll  races are used at the driven end. 

The pick-up under te s t  can be mounted at one o f four pre-selected  

points along the beam, so that a wide range o f amplitude is  ava ilable . 

The displacement is  measured by an ordinary d ia l gauge. This table 

was found to be useful fo r  pick-ups up to 1 lb  in  weight.



The second table was constructed o f lig h t s te e l tube o f 

square cross -section  and was exceedingly r ig id  and free  from resonances. 

Owing to  the greater mass o f  th is construction , i t  was not used at 

frequencies greater than about 50 c / s .  By employing an eccen tric  o f 

r e la t iv e ly  large variable throw, the e f fe c t  o f  shake at th is  point is  

minimized and small v ibra tion  amplitudes are obtained by mounting the 

pick-up under te s t  near the pivoted end o f the tab le . Shake at th is 

end is  elim inated by using crossed f le x ib le  springs as p ivots .

12.2 Test Procedure

The ca lib ra tion  o f the speed con trol unit was checked 

fundamentally by a revolu tion  counter and stop-watch, while secondary 

checks were obtained from an e le ctron ic  stroboscope and the waveform 

analyser. I f  an e le ctron ic  tachometer had been ava ilab le , th is 

ca lib ra tion  could have been carried  out much more accurately and with

out the tedium o f revolu tion  counting over re la tiv e ly  long periods o f 

tim e• •

The v ibration  meter was checked fo r  displacement, v e lo c ity  

and acceleration  readings, the amplitude and frequency at the pick-up 

head being known.

The phase sh ifts  occurring in  the pick-up and vibration  

meter can then be checked by the phase meter over the frequency range 

o f in te re s t . With a crysta l pick-up, the input resistance (100 k2)
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to  the phase meter w il l  a f fe c t  the ca lib ra tion  and a pre-am plifier o f 

high input impedance and known gain and phase s h if t  is  necessary.

By the above procedure a l l  units with the exception o f the 

waveform analyser output le v e l and the phase meter are ca lib ra ted . 

However, the construction  o f these two units i s  such that their 

accuracy w i l l  not normally be a ffe c te d  by ageing or p a rtia l fa ilu re  o f 

components.

During the period o f three years that measurements were be

ing a ctiv e ly  carried  out at Leven Shipyard, the Dawe V ibration Meter 

and i t s  cry sta l pick-up were tested at in tervals on the table and some 

minor adjustments were made to correct i t s  ca lib ra tion .

The wave-form analyser was checked occasionally  fo r  

frequency ca lib ra tion , a u sefu l te s t  fo r  th is purpose being to apply 

the output from a sqiare-wave generator synchronised to  the $0 -c/s  

mains. This gave a quick check o f amplitude and frequency at $0, l$0 

and 2^0 c / s .  No trouble was experienced with th is unit, but i t s  

response i s  such that the measurement o f  a second harmonic o f small 

amplitude i s  not possib le  with any accuracy.

As the necessity  fo r  phase-measurement had not m aterialised 

during th is  period, no tests were carried  out on the v ibra tion  meter 

to  determine the phase-sh ift o f the pick-up head, am plifiers and 

in tegrating  un its. I t  i s  thought, however, from some early
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oscilloscop e  observations that variations in these phase-shifts with 

frequency might have proved large and, therefore, power measurement with 

th is equipment would have been d i f f i c u l t .

12.3 Other Test Methods

The simple cam- or crank-driven vibrating table is  of 

lim ited use fo r  testin g  at the higher frequencies and a lso  has the d is

advantage o f having high-frequency harmonic noise components in  it s  

output. Even i f  these are small in  displacement value, their 

acceleration  is  high and, therefore, can lead to very inaccurate 

ca lib ra tion  o f accelerometer type pick-ups.

For these reasons, the electro-m echanical or m oving-coil 

ex citer  has particu lar advantages, but i t  too must be used with care 

i f  accurate results are to be obtained. Due to the greater fo r c e / 

moving mass ra tio  obtainable in  th is form of ex cite r , i t  may produce up 

to 30 g in  the frequency range 20 to 200 c /s .  For higher frequencies 

the output i s  reduced and i t  i s  very d i f f i c u l t  to measure the resulting 

small displacements with accuracy. P iezo -e le ctr ic  exciters are 

available fo r  frequencies up to abcut 10 k c /s , but again i t  is  d i f f i c u l t  

to obtain precise measurements o f displacement.

1 o
Interferometer methods have been used with success fo r  the 

measurement o f displacement but, even with an acceleration  of 10 g at 

3 k c /s , the to ta l displacement is  approximately equal to the wavelength 

o f sodium lig h t (23 p inch). This statement is  ind icative o f the great 

d if f ic u lty  o f carrying out calibrations at even quite modest
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frequencies, p articu larly  i f  low accelerations are o f in terest.

Even neglecting the problem of displacement measurements, 

there are a number o f  fa ctors  which must be watched i f  anything lik e  

an accurate ca lib ra tio n  is  t o  be obtained. For example, the 

impedance o f a m oving-coil ex citer  unit is  a function o f frequency 

and, th ere fore , there is  o ften  a certa in  d if f icu lty  in securing a 

match between th is un it and the am plifier output over a range o f 

frequency. As good waveform is  dependent on good matching, th is is  

a matter o f  importance. Resonances in  the c o i l  supports may disturb 

the operation and produce sideways movement.

The output from the ex citer  may be measured in  a number of 

ways, a l l  o f  which have certa in  disadvantages. An obvious and 

relatively simple technique is  to  have a signal c o i l  which produces 

an output p rop ortion a l to the main c o i l  v e lo c ity . Inaccuracies in 

this method include variations in  flu x  due to power supply, 

temperature and p o s it io n  changes and the e f fe c t  o f sideways movement. 

Internal m echanical resonances may also be troublesome, particu larly  

at the higher frequ en cies .

I f  a small p iece of carborundum, glass fragment or other 

sharp c r y s t a l-like m aterial is  attached to the moving system and 

trightty illu m in ated  and viewed through a measuring microscope, i t  

is Possible, by adjusting the illum inating source, to  obtain a bright
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l in e  tra ce , whose length is  the peak-to-peak amplitude o f  the v ib ra tion . 

I t  i s  not possib le  without e laboration  to d etect d is to r t io n , but side

ways movement w il l  produce an e l l i p t i c a l  tra ce .

Any form o f  v ib ra tion  pick-up could be used to  ca lib ra te  the 

ta b le , but accuracy presupposes that th is  pick-up can a lso  be 

independently ca lib ra ted , s t a t ic a l ly  or in  some other way.

I t  i s  in terestin g  to note that a recent American a r t i c l e ^  

stated  11 at the present time, ca lib ra tio n  accuracies o f  the order o f  1# 

are lim ited  to  frequencies between 20 and 1^0 c /s  and to acce leration s
9

below lg .  When the errors due to  measurements o f harmonic content, 

side-sway and resu ltin g  crossta lk , amplitude and frequency averaging, 

and r e la t iv e  phasing o f these cond itions are combined, i t  i s  not 

su rprisin g  to  see o v e r -a ll  errors o f  t  30$ unless extreme precautions 

are employed in  con junction  with an appropriate variety o f  test 

equipment sp e c ia lly  engineered to  meet exacting standards11.

. The low-frequency ch a ra cte r is tics  o f  the m oving-coil unit 

are determined by the matching transform er, which becomes bulky and 

expensive i f  good waveforms are to  be maintained at frequencies below 

20 c / s .
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13. THE PHYSICAL PROPERTIES OF PARAFFIN WAX

Before th is  p ro ject was commenced, some doubt was expressed 

whether wax ship models would vibrate and i f  indeed they did so, 

whether the in tr in s ic  damping of the m aterial would not be too great 

fo r  useful results to  be obtained. Early tests  showed that th is fear 

was u n ju stified  and that wax behaved under dynamic conditions as an 

e la s t ic  m aterial. No values fo r  the constants were l is te d  in  the 

various reference books consulted, so a short investigation  was carried * 

out to determine them.

The wax as supplied is  black in  colour and has a density at 

20°C o f 57 lb /c u . f t .  or 0.033 lb /c u .in .

13.1 Young1 s Modulus

An in i t ia l  attempt was made to measure Young1 s Modulus 

o f  E la s t ic ity  by loading a wax bar o f rectangular cross -section  supported 

on knife edges near i t s  ends and measuring the resulting d e fle ction .

This attempt at evaluating E was unsuccessful, as the sta tic  d e fle ction  

was su b ject to creep even with very low stresses. Recourse was now 

made to  dynamic methods, as these would give conditions approximating 

to  those occurring in  the model te s ts . By using a vibration  technique 

the stress may be applied rapidly , so that creep e ffe c ts  are minimized. 

This technique a lso  enables some estimation o f the internal damping to 

be made.
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The problem now resolves i t s e l f  in to  two parts, namely, a 

choice between longitudinal and transverse v ibration  modes in  a bar, 

probably o f  rectangular cross -section  and a choice between a number o f 

d iffe re n t  methods o f  e x c itin g  and detecting the v ib ra tion s.

F ig. UU(a) shows the arrangement f i r s t  adopted. A wax bar,

2U" x 1§ "  x l ,f, was clamped in  a s t e e l  framework and vibrations excited  

by a telephone headpiece acting on a small piece o f transformer 

lamination melted in to  the bar. V ibrations at the fundamental, f i r s t  

and second overtones were excited  and the frequencies were sharply 

defined and detected by touch. These te s ts  were not considered very 

accurate, due to  doubt about the clamp conditions and due to doubt about 

the frequency ca lib ra tion  and d r i f t  o f  the driving o s c i l la to r ,  which was 

o f  the beat-frequency type. There was some scatter in  the several

values o f  E so obtained. The mean value was abcut 2 x 10^ lb /s q .in .

which was considered to be a good f i r s t  approximation.

Recent te s ts , using a stable o s c il la to r  with the bar

vibratin g  in  a two-node, fr e e -fr e e  condition  have given more consisten t

re s u lts . In these tests very small p ieces o f transformer lamination were 

used, so that the mass d istr ib u tion  and s t iffn e ss  were not appreciably 

a ffe c te d . The v ib ra tion  was detected by a second telephone headpiece 

and measured on a cathode-ray tube. Frequencies were measured by an 

e le ctro n ic  counter. Support e f fe c t s  were minimized by resting  the bar 

on s o ft  rubber rods about J11 in  diameter at the approximate nodal 

p o s it io n s . F ig . UU(b) shows the arrangement diagrammatically.
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F ig . U$. TVpical frequency responses o f  wax bar fo r  
various positions o f the supports. ndn s 
6 and Gh inches fo r  curves A, B and C 
resp ective ly .



In order to  obtain a number o f values two bars 

2U,f x l|-M x 1* and 2Ulf x l w x 3/U11 nominal s ize  were tested  in  two 

p o s it io n s . The mean value o f  E from the four values thus obtained 

is  2 . 1*7 x 10  ̂ lb /s  q. in .

D etail figu res fo r  the tests  are given in  Table 2. The 

ambient temperature during these te s ts  was 19°C.

Table 2

-  7k  -

Bar 1 Bar 2

Breadth in 1.02 i .5 o 0.73 0.98

Depth in 1.50 1.02 0.98 0.73

Frequency c /s 138 95 95 71*

E 10^ lb /s q .in 2 . 1*2 2 . 1*2 2.52 2.51

Over the small range o f  resonant v ibration  amplitude which 

was measurable, no change in  the value o f E with amplitude was 

detected .

On the other hand, the supports had a fundamental resonance 

about 30 c /s  and could not be considered id e a l.
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13.2 Damping Constant

Using the arrangement o f F ig . l*I|.(b), several resonance 

curves fo r  one o f the bars were p lotted  fo r  d iffe ren t positions o f the 

supports. These response curves are given in  F ig . 1*5 and indicate 

that serious losses occur in  the support system when located away from 

the nodes. I t  was also noted that temperature made a substantial 

d ifferen ce  to  the damping. As f a c i l i t i e s  were not available fo r  

maintaining constant temperature, no further investigation  has so fa r  

been carried  out, but i t  is  obvious that a le n g th  programme o f tests  

to  determine the e f fe c t  o f  temperature, frequency and stress on the 

value o f  E and the damping constant are necessary. I t  may a lso  be 

that the wax is  not homogeneous throughout the re la tiv e  large block 

(up to 20 f t  long) from which the ship models are machined.

From the above comments, i t  w il l  be apparent that the 

resu lts  o f these tests  are suspect, but they do at lea st give the 

order o f damping as c /c c = 0.009 or the m agnification factor  Q = 55.

F ig. i*6 shows the variation  in  resonant frequency and Q 

fo r  various support p os it ion s . As these resu lts  were obtained at 

d iffe re n t times and at d iffe re n t temperatures, l i t t l e  can be said 

about them except that they emphasize the importance o f a properly- 

designed and constructed support system.



Ik . VIBRATION CRITERIA

When e le c t r ic a l  methods o f measurement are used i t  is  simple

to convert displacement, v e lo c ity  or acce leration  values in to  whichever

parameter is  desired by integrating or d iffe ren tia tin g  c ir c u it s .  The

tendency has been to  express the magnitude o f a v ibration  in  terms o f

i t s  displacement and th is  gives an immediate, i f  mistaken, idea o f the

quality  o f  the condition , as the fo rces  involved are proportional to

the displacement and the square o f the frequency. The late  H.G. Yates

has put forward a very good case fo r  the adoption o f  the v e lo c ity  
20c r ite r io n  • His arguments may be summarised in  the general 

p roposition , in  which he s ta te s :

"Mechanical vibrating systems, having geom etrical s im ila rity  

and constructed o f  the same m aterials, when vibrating fre e ly  

in  the same mode with equal lin ear v e lo c it ie s ,  w il l  su ffer  

the same v ibrational stresses11.

Tests on sim ilar machines o f  widely d iffe r in g  s izes  have 

shown that the v e lo c ity  c r ite r io n  holds true fo r  re la tiv e  smoothness 

o f running and the fo llow in g  table gives approximate con d ition s.



TABLE 3

D escription V elocity  iV s e c  r .m .s .

"Spins lik e  a top11 0.05

Very good 0.1

Normal 0.2

S ligh tly  rough 0.5 -

Unsatisfactory 1.0

Dangerous 2.0

Van Santen^ on the other hand, appears to favour the 

displacement cr ite r ion  and gives a sim ilar table to which has been 

added a column o f v e lo c it ie s , so that his figures may be compared 

with those o f Yates. The figures contained in  Table i* re fer  only 

to  3000-rev/min turbo-alternator s .



TABLE h~
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D escription Displacement 
in  x 10~3 r.m .s.

V elocity  
ir /s e c  r.m .s.

Very smooth O.lU -  0.25 0.05 -  0.08

Good 0.29 -  0.U2 0.09 -  0.13

Fair 0.U5 -  0.70 O .l l  -  0.21

S ligh tly  Rough 0.73 -  1.23 0.22 -  0.38

Rough, needs
correction 1.25 -  2.26 0.39 -  0.71

Very rough, immediate 
correction  required. Over 2.26 Over 0.71

Tables 3 and U show close agreement and v e lo c ity  may well 

be adopted as the most useful cr ite r io n  in specifying vibration lim its . 

However, fo r  laboratory tests and where structures o f sim ilar size and 

construction are being compared, there is  no marked advantage in  th is 

c r ite r io n  and displacement s t i l l  has much to recommend i t .

In the litera tu re , mean, r .m .s ., peak and "double

amplitude11 or peak-to-peak values are quoted. Where i t  is  made quite 

c lea r  which is  being used, th is additional complication need not be 

confusing, and where the waveform is  approximately sinusoidal, i t  is  

o f l i t t l e  importance which is  used. For laboratory tests dealing with 

sinusoidal forces and displacements, the root-mean-square values are 

preferred . On the other hand, the stresses in  a structure are 

proportional to the displacements, so that peak values o f displacement
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provide a usefu l warning o f excessive stra in s.

As mentioned in  the Introduction, human comfort o ften

influences the assessment o f  v ibration  and an attempt has been made to

corre la te  some published and unpublished information on the e f fe c ts  o f
22 23vibrations on humans 9 . The observations reported show wide

divergence, possib ly  due to  variations in  the methods o f te s t  and to  

in s u ffic ie n t  subjects of widely varying age, p ty s ica l condition and 

other attributes being tested . F ig . U7 summarizes some o f th is  

inform ation and shows that the the v e lo c ity  c r ite r io n  and, in  fa c t , 

any other simple c r ite r io n  is  not w idely app licab le .
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F ig . 1*8. Block diagram o f  demonstration assembly.
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1$. DEMONSTRATION ASSEMBLY

Plate 10 shows an assembly o f e lectron ic  units fo r  

carrying out v ibration  tests on a s te e l cantilever. This equipment 

was demonstrated at The South o f Scotland E le ctr ic ity  Board’ s 

E lectron ics and Productivity Conference and Exhibition in  the Kelvin 

Hall, Glasgow, in  February 1956.

The interconnections o f the several units are shown in  

F ig. I[8. The Mark IV out-of-balance exciter  ( l )  is  used to vibrate 

a s te e l cantilever attached to a massive bedplate at i t s  f i r s t  over

tone (about 83 c / s ) .  The resu ltin g  v ibration  is  detected by a 

balanced-transformer pick-up, (2) with i t s  associated supply and 

demodulation unit, (3 ) .  D etails o f  th is unit are given in  C ircu it 

11. A small osc illoscop e  (U), with a 2i”  tube shows the displacement 

waveform.

The phase-measuring unit (5) is  fed  with signals from the 

ex citer  and the v ibration  meter, so that i t  indicates the phase 

rela tionsh ip  between the excitin g  force  and the resulting displacement. 

The c ircu la r  time-base is  produced by a two-phase alternator (6) coupled 

to the ex c iter  sh a ft.

Interposed between the Velodyne control unit (7) and the 

Am plifier (8) is  the Modulator (9 ) .  The construction o f  this unit is  

shown in  Plate 11 and C ircu it 12. A geared motor drives a two-gang,



\

vjire-wound potentiometer through a "back-lash11 automatic reversing 

switch to  produce a poten tia l alternating lin early  about zero at a 

frequency o f about 3 cycles/m inute. This potentia l is  in jected  

into  the feed-back loop o f the control system, so that the speed 

of the ex citer  is  slowly scanned about i t s  mean value by an amount 

indicated on the modulator instrument.

The output from the second potentiometer is  applied to 

the X -plates of a long-persistence cathode-ray tube (10) through a 

d .c . am plifier. The Y-plates of th is  tube are fed  through a 

second d .c .  am plifier with the output from a demodulator with a 

long tim e-constant supplied from the vibration  pick-up. The 

resu ltin g  trace on the cathode-ray tube is  a p lo t o f the vibration

, amplitude to  a base o f frequency.

This demonstration ran more or less  continuously fo r

four days and performed very w ell w ithin i t s  lim itation s.
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16, CONCLUSIONS

When th is  p ro ject was commenced the only available 

commercial units which were considered su itable were the Dawe 

vibrometer and analyser. As a resu lt , equipment was constructed 

to  su it  the job  and, on the whole, i t  has performed adequately and 

r e lia b ly .

A Velodyne unit (Servomex) is  now available conm ercially 

and a phase-measuring unit sim ilar to  the one constructed has been 

d e scr ib e d ^ . I t  i s  s ig n ifica n t, however, that, although a number 

o f small pick-up heads are available and many associated vibrometer 

c ir c u it s  are described in  the lite ra tu re , no manufacturer appears 

to  market a complete unit en tire ly  su itable fo r  th is p ro je c t .

Various suggestions fo r  future work have been made in  

the foregoing text and at present the greatest need seems to be fo r  

a good light-w eight pick-up. This should have a to t a l  weight of 

le ss  than 1 oz and, along with i t s  associated am plifiers, be capable 

o f  covering the frequency range with reasonable s e n s it iv ity . The 

en tire  unit should be simple and sta b le , so that i t s  accuracy can 

be r e lie d  upon without the need fo r  too  frequent ca lib ra tion .

The out-of-balance e x c ite r  could be improved by reducing 

i t s  s iz e  and using a l ig h t -a llo y  case, h e lica l gears and b a ll  or 

r o l le r  bearings capable o f  withstanding high loads, so that the same 

fo rce  outputs as a t present could be obtained with less  s ta t ic  mass.
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Other equipment which would sim plify  some sections of the 

work include a p recis ion  tachometer and a multiple-channel pen 

recorder o f adequate frequency response. The la tter  would be 

invaluable fo r  the determination o f damping by the decrement method 

and should greatly a ss is t  the investigation  into  the properties of 

wax. This investigation  is  l ik e ly  to  prove tedious with so many 

fa ctors  a ffe ctin g  these p roperties.
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Over the past few years a mass o f  litera tu re  has been 

published, dealing with instrumentation su itable fo r  the production 

and measurement o f  mechanical v ib ra tion s. Out o f a l l  th is , over 

300 references have been abstracted as being of some relevance to 

th is p ro je c t . L isted below are the publications referred  to  in  the 

tex t and a number o f others which have been selected  fo r  th e ir  

fundamental nature or because they contain extensive and useful 

b ib liog ra p h ies .
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PLATE 6

(a) Am plifier fo r  Mark IV Exciter Unit (above)

(b) Control Unit (below ).
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Modulator Unit.
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19. CIRCUITS

1. Control Unit fo r  Exciter Mark I I I .

2. Control Unit fo r  Mark IV Exciter System.

3. D.C. Am plifier fo r  Mark IV Exciter System.

k. Interconnections fo r  Mark IV Exciter System.

Phase-Measuring Unit. Two-phase Generator and F ilte r .

6. Phase-Measuring Unit. Two-phase Amplifier.

7. Phase-Measuring Unit. Signal Amplifier and Pulse-Forming
Unit.

8. Phase-Measuring Unit. Pulse Am plifier.

9 . Phase-Measuring Unit. Power Supplies and Cathode-Ray 
Tube Connections.

10. Two-Channel Limiter.

11. Balanced-Trans former Pick-up, Phase-Sensitive Demodulator
and Oscilloscope Connections.

12. Modulator Unit and Timebase for  O scilloscope.

Conventions

1. ,f£H is  normally omitted in  resistance values. Thus 120, 
12k and 1M represent 1202, 12k2 and 1M2 respectively .

2. A number beside the symbol for  a capacitor represents its  
capacitance in  pF. For any other unit of capacitance the 
appropriate abbreviation is  used.
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