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Chapter 1 .
Introduction.

Considerable experimental data exists for 
collisions between the lightest nuclei, and intensive 
theoretical investigations have been proceeding for 
some time.

At low energies two major difficulties arise. 
Firstly, approximations which are comparatively easy 
to apply, such as the Born approximation or the 
impulse approximation, are invalid. Secondly, the 
details of the nuclear potential have only begun to 
clarify recently.

The first of these difficulties may be obviated 
by using wave-functions of resonating group form.

It has not yet been possible to perform 
calculations using a realistic nuclear potential, but 
this is obviously the ultimate aim.

Many features of these interactions can be 
described in terms of an "equivalent central” potential 
between pairs of nucleons of the form:-

(ij) = V(r^ j) j + + f.j S*/ (l.l)

ij “ -i“-jwhere r̂  . = r ,- r . and r. and r. are the position—i —j — 1 — j ^
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vectors of the nucleons i and j. ^ it* i and j
are protons and is zero otherwise. ^
are the Majorana, Bartlett and Heisenberg exchange 
operators (defined in chapter (l*2)), and w,m,b and h 
are constants determining the exchange nature of the 
interaction, normalised so that :-

m + h + w + b = l
m - h + w - b = x  (1.2)

where x is the ratio of the strength of the interaction 
between particles of opposite and the same spin 
respectively (Buckingham and Massey (l94l)). x is 
usually tadcen as 0*6 (Motz and Schwinger 19^0).

In the following work we are concerned only with 
this approach (that is the use of a resonating group 
wave-function in conjunction with a potential (l.l), or
(1 .1) with additional terms allowing for tensor forces 
or spin-orbit coupling).
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1.1 The Wheeler Model.
In 1937 Wheeler formulated a method of construction 

of nuclear wavefunctions starting from an analogy with 
molecular structure.

The nucleons in the nucleus were taken to move in 
groups well defined enough for their motion to be 
described by a group co-ordinate*

Here the analogy with molecular structure ends, 
since the total wave-function is taken as a sum of 
properly anti-symmetrical wave-functions corresponding 
to each partition of the nucleons, so that the system 
could be regarded as resonating between the various 
physically possible configurations.

If we consider a system of m protons and n neutrons, 
we have a number of possible configurations of the 
(m+n) nucleons into groups of particles described by 
functions Cp̂

The (p; will then consist of products of wave- 
functions describing the motion within each group,
all multiplied by a function depending on the 
relative co-ordinates of the groups within the i^^ 
configuration and the total spin of this configuration.

A sura of the terms including all permutations
of the neutrons and protons between groups of this
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configuration is then formed, with appropriate signs
for each term to give anti-symmetry in neutrons and
in protons* This sum ^  (-) (p; is then the^ perm ' ' r ̂
wave-function corresponding to one particular 
partition.

The total wave-function for the system is then:-

3F = (1.3)# F /
The ^  will be variationally determined or approximate 
wave-functions for the corresponding groups* Thus the 
method makes possible the use of knowledge of the
wave-functions of smaller systems to build up a wave-
function for a larger one*

The only unknowns are now the P^, which are 
determined so as to give the best wave-function 
satisfying the variation principle :-

Se = O, E . JSltllsll
(1.4)

where H is the total energy operator for the system, and 
jd^ indicates integration over the configuration space 
of

Fully general expressions for the wave-function, 
including explicit anti-symmetrisation are given in
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Wheeler's original paper but they will not be 
reproduced here since the illustration by examples 
later is sufficient *

It should be noted that in this work the proton 
and neutron are treated as different particles. No 
fundamental difference appears if the isotopic spin 
formalism is used however.
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1.2 The Exchange Potentials.
The operators in the potential

which is the nuclear force part of (l.l), are defined 
as follows : -

The Ma j or ana operator M̂ ĵ exchanges the space 
co-ordinates of particles i and j. The Bartlett 
operator B^^ exchanges their spin co-ordinates and 
the Heisenberg operator H^j both space and spin 
co-ordinates.

We enumerate the various force types which have 
been used.
"Ordinary” Force. (WB)

m = 0, h = 0, w = i(l+x), b = ^(l-x) (l.5)

This is an unsaturated type of force and is a combin­
ation of ordinary (Wigner) and spin-dependent forces.
Majorana-Heisenberg.(MH)

This is a saturated force of the type originally 
suggested. It is the exchange analogue of the WB force.

w = 0, b = 0, m = -|(l+x) , b = ^(l-x) (l.6)
m,h,w.b all finite.
Symmetric or MHWB force.

This was suggested according to the criterion
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that all constants were fixed so that no ordinary 
force appeared in their differential equations for 
the relative motion of a neutron and deuteron.
(Buckingham & Massey (l94l)).

2w = = h, 2b = = m (l.?)

Serber Force.
w = ^(l+x) = m, b + -Ĵ (l-x) = h (1.8)

This type of exchange force has had great success in 
applications to scattering. Indeed it appears that 
a force of near this type may be reasonably expected 
to give good agreement with experiment.
Linear Combinations.

Various linear combinations of the above forces 
have been used. Since we will be considering forces 
between the Serber and symmetric types, we define 
such that:-

An intermediate force between the Server and 
symmetric is given by:-

y(Serber) + (l-y)(Symmetric)
i.e. m t ^y(l+x) + l/3(l-y) (l-t-3x) 

w = iy(l+x) + l/6(l-y)(i-3x) 
b = iy(l-x) + l/6(l-y)(l+3x)
h = iy(l-x) + 1/3(l-y)(1-3%) (1.9)
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1.3 Previous Applications.
It was recognised early that the scattering of 

neutrons by douterons provided a useful tool for the 
study of nuclear forces, and work on this problem is 
reviewed by Massey (1953)i and de Borde and Massey 
(1955)' We are interested here in calculations carried 
out by Buckingham and Massey (l94l), and Buckingham,
Hubbard and Massey (1952) on n-d scattering. These 
were extended to include p-d scattering in the second 
of these papers. They used a potential of the form
(l.l) with

V(r^j) = -A exp(-2r^j/a), x - 0.6 (l.lO)

and A = 242 mc^, a = 1.73 % 10 ^^cm.

This was chosen to fit the low energy nuclear data 
known at that time (l94l) including the binding energy 
of the triton. Their results only agreed with experi­
ment if exchange forces were used. Discrepancies 
between their results and observation were resolved by 
de Borde and Massey (1955) by the addition of higher 
phase shifts, resulting in good agreement up to 20 MeV 
for a Serber exchange force. It should be noted, however, 
as pointed out by de Borde and Massey, that to fit the
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now known two-body data the range parameter in (l.lO)
—  13should be a = 1*35 x lO" cm., giving too large a 

binding energy for triton. This apparent discrepancy 
between the two and three-body data was resolved by 
Pease and Feshbach (1952), who showed that it could 
be explained by tensor forces. Bransden, Smith and 
Tate (1958) have extended the method to include 
tensor forces. Christian and Gamme1 (1953) produce 
evidence suggesting that the neglect of polarization 
in this problem is not serious* This is supported by 
Burke and Haas (1958)*

Work on n- o< and p- < scattering was carried out 
by Hochberg, Massey and Underhill (1954), and Hochberg,
Massey, Robertson and Underhill (1954-) in the energy 
range 0-4 MeV. using for s-wave scattering a potential 
of the form (l.l) with a gaussian well ; -

V(r^ ) = A exp(-pr^^), A = -45 MeV, g = 0.2657 x 10^ cm"^

and X = 0.6 (l.11)

These values give good agreement for the binding 
energy of the deuteron and alpha-particle, but too 
large a binding energy for the triton. They incorpor­
ated a spin orbit coupling term by adding V(r^j)Sit
( s . + 8 . ) . r .. X  (p.-p.) to (l.l), and found the best X — J ' — ij 'i:x — j' '
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overall agreement with experiment with y = O.9O (See 1.9) 
and S = 0.10. Bransden and McKee (1954) had concurrently 
done a calculation (also using resonating groups) on 
the same problem with a variational method but without 
the same degree of success. This was probably due to a 
more consistent method and improved accuracy by Hochberg, 
Massey, Robertson and Underhill, in particular the use 
of the pilot ACE computer at the National Physical 
Laboratory.

With the advent of electronic computers generally, 
more detailed and accurate work has been possible, and 
the last few years have seen comparatively intensive 
application of the model, and a useful growth in the 
amount of theoretical data available.

Burke and Robertson (1957) recalculated n-d 
scattering for incident neutron energies less than 
16.6 MeV. They used (l.l) with a gaussian well 
V^exp(-prj2) , in conjunction with a deuteron wave- 
function of the form : -

) (1.12)

where 1% is the inter-nucleon distance. They considered 
five values of p, = 0.2(0. l)0.6 x 10 cm" , adjusting
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in each, case to give the observed binding energy of 
the triton (-2.22 MeV). Their total cross-section 
agrees with experiment very well over the whole

26 —  2energy range with p, = 0*3 x 10 cm" (corresponding to
= -51.39 MeV, giving a deuteron binding energy of

-2.119 MeV). They found very little dependence on
the exchange nature of the force.

They also test an adaptation of the variational
methods of Hulthen (1944) and Kohn (1948) against their
exact calculations, and conclude that polarization
could be allowed for with its help without much difficulty.
Later (Haas and Robertson 1959) this calculation was
extended to use a Yukawa potential for the interaction.

Bransden, Robertson and Swan (1956) and Bransden
and Robertson (1958) performed calculations on the
scattering of nucleons by triton and ^He. Swan (l953)

3 3had already performed calculations on n- H and n-"^He
scattering, and the later work differed in that exact
solutions to the scattering equations were obtained
using ACE, and also the equations used were more

3 3consistent with the approximate H and He wave-functions 
used. They used (l.l) with a gaussian well of the form
(1.11) and the calculations were performed for forces
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of the Serber and symmetrical types (y = 1 and y = O),
Serber giving much better agreement throughout.

Biel (1957) has performed successful calculations
8 12on the binding energies of Be and C and gives a

formalism for applying the method to a-particle nuclei
in general. He used the range and depth parameters
(1.11), together with an exchange force with y = 0.7*

Thus it appears that the use of a resonating
group wave-function together with an exchange force
(1.1) of near the Serber type and well parameters

2
corresponding to a Guussian well V^e ^^ij with

= -45 MeV and p, 0.3 x lO^^cm"^, is likely to 
give fruitful results in the investigation of the 
properties of light nuclei at low energies.

Calculations, whose outcome was known after the 
work reported here was started, will be discussed along 
with the results of the present work.
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Chapter 2.
3 3The Scattering of Nucleons by and He»

It is necessary for completeness to include a 
number of remarks about the published note included 
with this thesis (pÿ^.iP^O, 22.» 144 )• It is also 
convenient to give much of the description of the 
numerical methods used here, since the same methods 
are applied to the six-body calculations.
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2.1 Remarks on the Calculations by Bransden. Robertson 
and Swan »

1. The calculations on four-body scattering by 
Bransden, Robertson and Swan (1956) and Bransden and 
Robertson (1958)> (hereafter referred to collectively 
as BRS) used a gaussian potential well V(r^j) with
(l.l), such that

exp(-nr^j^), = -45 MeV,

and |l = 0.2669 X  10^ cm""̂  (2.1)

These values had previously been used by Swan (l953)*
They are consistent with the four-body bound state 
(giving a binding energy for the alpha-particle of 
E = -27 MeV) and with the binding energy of the 
deuteron, although of longer range than that now 
suggested by present two-body data (BRS). However, 
it must be remembered that since no tensor force is 
included, the "equivalent" central force used here is 
giving some sort of representation of the tensor force 
contribution.

As mentioned in chapter (1.3)9 these constants 
give values for the binding energies of ^H and ^He 
which are too large (-5*49 MeV for ^H as against -8.38 MeV 
observed, and -4.74 MeV for ^He against -7*55 MeV
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observed) .
32. They used for the He wave-function:-

exp/- (2.2)

3and for H:-
.̂ (123) = +N.J. exp [- ^  '03'’* (2.3)

with ?i = 0.l4o4 X lO^^cm ^ and = 0.1436 x lO^^cm 
They determined ^ and y by minimising the binding 
energies of the three-body nuclei.

3. It should be noted that in the course of their
analysis, BRS used equations for the three-body nuclei 
satisfied by the approximate wave-functions which they 
used (2.2 and 2.3)9 unlike Swan's earlier work, where 
the equations,which would be satisfied by exact three- 
body wave-funetions, were used together with approximate 
wave-functions. The BRS work is thus more consistent.

4* Their results give quite good agreement with
experiment for a Serber force except below 2 MeV, 
where they attribute the disparity to the neglect of 
polarization.
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2.2 Wave-function and Scattering Equation.
The resonating group wave-functions used by BRS 

are set out below. In each case the two groups are 
the incident nucleon and the appropriate three-body 
nucleus.

The wave-function for the system is thus of the
f orm : -

%(1234) = A ^  (123) Pg(4) (1234) (2.4)

where A is an operator which anti-symmetrises the 
wave-functions, ^  is the three-body (ground state)
wave-function, and , which will be the unknown part
of the wave-function, depends on the co-ordinates of 
the incident nucleon with respect to the centre of mass 
of the three-body nucleus. <y^ is the appropriate 
spin wave-function and "s" denotes the spin state.
(a) n - ^He

With particles 1 and 2 protons, and 3 and 4 neutrons, 
with totally symmetric in 1, 2 and 3, and with the
following spin functions , the wavefunetion

%(1234) = i(l-P^2̂) (l23)Pg(4) <ri(i234) (2.5)

has the correct antisymmetry properties. exchanges
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all co-ordinates of particles i and j.
The total spin is taken as s = 0, 1*

For 3 = 0. <5-^(1234) = fi(ihih))

3 = 1 .  rf*(l234) IS

<y*(l234) =

<y_*(l234) (2.6)

the spin functions for the three-body groups being

= oi(z)

= /iCi) ( ^0)/Ut)- fio) o<C7))

where a and g have their usual significance.

(b) n -

!Ç(1234) = ^  (l23)Pg(4) 0^,(1234) (2.8)

with particle 1 a proton, and 2, 3» 4 neutrons, give
the correct anti-symmetry. The functions are
defined by (2.6).

The proton cases will have the same wave-functions 
as the neutron ones with the same symmetry.
That is :-
(c) p - ^H.

ïj (1234) = i(l-P^^) P^^(123)f ^(4) <5-1,(1234) (2.9)
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with 1 and 2 neutrons, and 3 and 4 protons.

(d) p - & e .
^  V (  123)Pg(4) «5-̂ (1234) (2.10)

with 1 a neutron and 2, 3» 4 protons.

The functions and used were those given
by (2.2) and (2.3)•

By the methods described later in connection with 
the six-nucleon calculations, a radial equation was 
obtained of the form:-

( ^ (2.11)

where F^(4) = F^(r), say, and
Fs(r) = J f^(r)P^(cos ©), r = /r/ .
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2.3 Numerical Methods.
The equation (2.11) is solved by the use of 

programmes prepared by Dr. H.H. Robertson (1956).
There are three principal programmes.

(a) The first of these calculates the kernels k^(V,
(2.11) in the form of (30 x 30) matrices, and this 
will be dealt with later. (The kernels for the 
calculations on the four-body problem using a force 
type with y = O .7 were formed merely by taking linear 
combinations of the Serber and symmetric kernels which 
had already been produced for the BRS calculations.)
(b) The second calculates the solutions of (2.11). The 
infinite upper limit on the integral on RHS is replaced 
by a suitable limit R^ = 29h, where h is the interval 
between the points of r and of r^ in the kernel matrix, 
h is chosen so that k^ has died away sufficiently at R^. 
Using finite difference techniques (cf. chapter 6 the 
equation is put into tjie form of a system of homogeneous 
linear equations with 30 points of f^(r) (^;^j ' 29h = %  )
as unknowns, and including accurate allowance for the
difference correction. These are then solved subject to
the boundary conditions f^(o) = 0, f^(h) = 1.

It should be noted that the programme reads
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A (v,V) and separately, where

= Â (/y,/y' ) + N )

and the variation of the scalar N gives the energy
dependence of k^. Thus, kernels are only tabulated
for different values of angular momentum for each
value of y , and results for different energies found
by reading in different values of the parameter N.
(c) Calculation of the Phase Shifts.

When the products of the collisions are charged
(the proton collisions in this case) the asymptotic
form of f^(r) is n '

f^(r) sin(kr - (n9C)/2 - a log 2kr + ) (2.12)

where a = and yi = arg J^n+l+ia) , p being the

momentum of the incident particle (Mott and Massey 194-9»
Ch.3).

When direct Coulomb terms are absent (the neutron 
collisions) the asymptotic form is

f (r)'^ 5fcn(kr - (n^)/2 + ) (2.13)n
sis the quantity of interest. Where there is no 

direct Coulomb term, it is calculated by considering 
the ratio f^(29h)/f^(28h) and using (2.I3). To 
check that this ratio is being taken for large enough r
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h

(i.e. (2.13) is accurately enough obeyed) values of 
the phase shift are calculated for various intervals 
h and compared.

Where there is a direct Coulomb interaction, the 
are computed previously and, together with a, read 

into the programme, which proceeds as before but form 
and subtracts the expression (*^^* CLlog 2kr) from the 
result.
(d) Prom the phases the angular distribution l(o) is 
computed in the usual way, using the following relations.

1(e) = 3/4 Pg(e)j ̂  + i/4Pg(e)/^ (2.i4)

where . j , . , _ # _
^  ^  (2.15)

where is the triplet phase corresponding to
angular momentum n, and the singlet.

The total cross-section for elastic scattering 
is then; -

Q = 2tc I x (q )s 9̂  O d e  (2.16)
Jo

Examples of phases calculated for this problem are 
given in Tables 1 (a), 1 (b) and 1 (c).



• — 22 —

2*4 Phase Shifts for p»^He and n-^He Elastic Scattering* 

Table l(a). p-^He at 19#4 MeV (Lab*) Incident Proton Energy*

Biel Force Serber Force. *
n Singlet Triplet Singlet Triplet
0 + 76.2 -98.9 +78.1 -101.5
1 + 44.8 + 27.1 +37.8 + 50.9
2 - 3.2 - 6.4 - 3.1 - 1.5
3 + 2.4 + 1.4 + 2.5 + 2.7
4 - — 0.2 — 0.1 -

Table l(b), n-^He at 17.5 MeV (Lab. ) Incident Neutron Energy

n
Biel

Singlet
Force

Triplet
Serber

Singlet
Force•

Triplet
0 -71.0 +74.9 + 78.8 -69.7
1 + 17.3 +49.6 ■*•59.5 +37.0
2 + 21.7 - 3.2 - 0.7 + 25.1
3 + 0.5 2.1 + 2.6 + 0.8
4 + 0.4 — 0.1 - + 0.4
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Table l(c)» p-^He and n-^He at 8 MeV - Biel Force

P-^He n-^He
n Singlet Triplet Singlet Triplet

0 -69.5 -73.3 -64.7 -77.7
1 +48.1 +32.0 - 3.8 + 34.8
2 — 1.8 — 2.6 + 7.1 — 2.0
3 + 0.3 + 0.3 — 0.1 + 0.4
k — - - -

N.B. 1. Phases are given in degrees and decimals and
is given if exceeds %/Z,

2. ”Biel Force” is used to mean y = 0.7*
3* A dash indicates that the computed phase shift 

was less than 0.1 in modulus.
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Chapter 3.
The Six-Body Problem.

After the successes of the calculations on 
nudeon-nucleus types of collisions, interest was 
obviously turned to extending the application to new 
systems, especially nucleus-nucleus collisions.

3Calculation had already begun on D+D, D+ He, 
and (a+a) scattering and it was therefore decided to 
perform calculations on scattering involving six 
nucleons.

We now give a formulation of the scattering of 
six nucleons for those cases where the initial and 
final states involve only two nuclei. Considerable 
experimental evidence is available for comparison with 
the results of calculations.

The processes divide into two types with differ­
ing symmetry properties.

(a) A single channel system
(^He + ^He) and (^H + ^H) elastic scattering.

(b) A two channel system
3 o .( He + H - d + a) elastic and inelastic

scattering. (Also by use of appropriate boundary
6conditions, a bound state of Li should be found from
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the equations derived for (b)).
The method is similar to that used in most of the 

calculations already mentioned, and consequently has 
been described many times before. We shall nevertheless 
give a complete exposition, omitting, however, large 
amounts of the rather tedious algebra involved. Due 
to the complication of the problem, it was decided 
not to include spin-orbit coupling or tensor forces 
in the first instance.

In common with the majority of earlier authors, 
we make no explicit allowance for polarization effects. 
(There will be some allowance for distortion effects 
implicit in the method - Blatt and We is shop f— (l^ ■)
^ ^  MoÜ Cu m4 />•
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3*1 Type (a) - Derivation of Equation - ¥ave-function.
Both of the type (a) reactions will be dealt 

with in the same analysis. For the resonating group 
structure wave-function the two groups correspond to 
identical three-body nuclei and the correct symmetry 
properties for the six nucleons are given by:-

(123436) = (1 - - P^^ - Pj 4̂ - ^23 “ ^24) %  (3 .1)

The subscript s refers to the spin state etnd 
is again the operator which exchanges all co-ordinates 
of particles i and j.

^  = ^(125) Y(346) <y^(l25.346)Fg(l25 - 346) (3 .2)

Particles 1,2,3»4 are alike and 3 » ̂  are alike.
The ^  * s are the ground state wave-functions for

3 3 Sthe He or H nuclei, and ^ ^  is an appropriate spin
function. F is the internuclear wave-funetion s
(depending on the distance from the centre of mass of 
one nucleus to the centre of mass of the other.)

s = 0 

s = 1

The spin wave-functions are taken as follows :-

= [ «t/t (,

f I (3.3)
where («%?)= ̂  c ( ( S ) ( « / ( ‘f))
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For the correct symmetry properties in the three-body 
nuclei in (3.1), since these have spin l/2, we must have:

Fg(l25 - 346) = (-l)®Fg(346 - 125) (3.4)

and the allowed angular momentum states are : - 
h • o I Ss A j • 2 j o .
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3•2 Co-ordinate System and Notation (Type a)

Figure 1.

The co-ordinates are chosen according to Figure 1, 
that is, if T, is the position vector of the nucleon i, 
we choose the co-ordinates ;-

¥ = 5  ~ f '2ÜO ,

X =- y  - j

i ’ - — 3 4̂. -f  ̂. (3*5)
Notation.

For convenience, in the analysis for type (a) 
processes we use the following abbreviations:-

+ Pĵ/j + Pg^ + ^24 ;
dT^ = ‘̂‘̂125 “ ÉM'dX , 
dt'3 = = dv.^ ,
«•* = (125, 346)̂

= X  (125) X
X j = X(325) X (146) = .



— 29 “•

= binding energy of appropriate three-body 
nucleus.

and jôfT* indicates integration over the configurât ion 
space of the nucleus indicated.
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3.3 The Scattering Equation (Type a).
We determine F^(r) by requiring the wave-function 

(3 *1) to satisfy _
/ y

(3.6)
* * *under variations F — ^  F + F and F — —>F + F ,S 3 s s s s

where J  dHT = ^ 1# ^  and H = T + tf*-f C.
T is the kinetic energy operator and in terms of

co-ordinate set (3*5) is;-
T = - W V  (3.7)

M is the nucleon mass. Tx = (3*8)

where 1/ (i j ) = V(r. . ) (mM. . + bB. . + hH. . + iv)
^  ij ij ij ij

c = + d(r^g)"^) and c = 0,
d 9 1 for (^H + ^H); c = 1 , d = 0 for
(^He + ^He). (3 .9)

We now use the fact that the functions ^  

satisfy the equations : -

and

(3.11)

For consistency we use values for the E^ predicted
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by the a p p r o x i m a t e  and H wave-functions.
(These values are given in Chapter 2.1 (l).

satisfies (3 .IO) and (3 »H).
(3 .6) is satisfied if (H-E)3^ = 0 i.e. (T + + C - E)^ =

.... (3 .12)
Multiplying (3.12) by summing over spin

directions and integrating over the internal co-ordinates 
of the groups gives :-

-£)  ̂ p ]  Fsfs)

(3 .13)

where = H j  (E - 2E ), and we have used (3.IO) and
(3.11).

It can be seen that we have now integrated out 
the internal motion of the groups. The contribution 
of this motion is represented in k by (-2E^).

The effects of the operators , ®ij’ ^ij 
on the integrand on the RHS of (3*13) were then 

explicitly written out, and the summation over spins 
performed using the spin matrix elements tabulated in 
appendix A. Assuming complete symmetry of the wave- 
function ^  in the co-ordinates of the three particles,
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the exchange effects can be expressed in terms of the 
operator . That is the RHS of (3.13) can be 
reduced to a sum of matrix elements of the two types

where J{ is V(ij), T, oi* E.
Using again the symmetry of the ^  and (3.4), 

the nuclear and coulomb force terms were reduced to 
eight types.

Re-arranging in this way emd using the change of 
variable we find : -

+  k ( y ‘J(p*(t,^OfirxO<ie*

■f- ^ s f [F O r .r O  ^  M h ,y )J  P'sCtOér^. (3.i4)
where C(r) - ^  ̂

u(r) = 5 W  KAf) éf é £ é ï

QVaC»«V= 3 M  t
//'/«■' f  V = 3Afe’*'i'*y^,X'ï <(y 4 X
PCrt'îO = *^4x<fî Af/>;*

and = 3 M  J  Y»

with Y(",y)>

= V(r^g), v’7 = V(r^2>> = V(r^^)

' c *  4 '  ; 6 'and C
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The constants a, 3, S' are given in terms of
c, d and w, m, b, h in Table 2.

To exhibit more clearly the dependence on the 
different types of exchange force, these constants 
are also expressed in Table 2^ in terms of x (l.2) 
and y (1.9).

It can be seen that the effect of varying the 
exchange forces will only occur in connection with the 
nuclear terms i = 1 and i = 8 , and the term V(r), the 
latter having much the largest effect.

We now expand in a harmonic series in the usual 
way. That is, putting P (r) = Pt̂ (cosù) (3 .I5)

and P^(on&), ('tt'm

with similar expansions for H^(r, ^(z$ — )# and N(r ̂ )
This leads us to our final integro-differential 

equation:-
Aét* y . **£fii'0/VW« ( o i C M * - f - J  

with KJ/'T.vV »
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Table 2. Constants for type (a) Scattering Equation

s = 0
■ --- ■ ” ----- 1

8 = 1

a +4c + d +4c + d
0 +9w+3b-m-5b 9w+5b-3m-5bi

y"- f .f )
y\y^]

+9m+3h-w-3b 

-2(w+m)+2(b+h) 

-(w+m)-2(b+h)

9m+5b.-3w-5b

-6(w+m)

-3(w+m)

y' -4(w+m)-2(b+h) -12(w-m)-10(b-h)
f' +d-2c

-2c

—d—2c 

-2c

€*, r + c -c
+ 2 c—2d —6c—2d

S -1 -3
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Table 2 . Nuclear Term Constants in Terms of x and y

8 = 0 8 = 1

0 i(3+5x)y + x(l-y) 3/2y(l+x) - 1/3(l-y)

t i(3+5x)y+(3+4x)(i-y) 3/2y(l+x) + 1/3(10+9%)(l-y)

r^.y^)
h e / -2x -3(x+l)

y ,y^)

-i(x-3) -3/2(x+l)

y' -(x+3) +l/3(l-y)(ll+9x)

Note. It is seen that y appears for Qthe triplet state in y .
.8Q, corresponds to matrix elements of the type

and V(r) to the ̂ direct^ interaction term J'̂ i ^
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Chapter 4 .
Processes (b). The Reactions (^He +  ̂̂ He + «
(^He + > d + 0,) , (d + CL — »^He + ^H) and (d+d— .

4.1 Wave-function.
We consider two partitions :- into groups of (3+3)

3 3particles corresponding to the He and H nuclei 
represented by the wave-functions and and into
(4+2) particles corresponding to the alpha-particle and 
the deuteron, represented by wave-functions a n d .

The correct anti-symmetry properties are given by 
the following wave-function:-

with ^  ^  (143) Xw (236) f L  (l45,236)Pg(l45-236)

and y» = ^^(14) (23.56) (l4,2356)$g(l4-2356) (4.2)

Particles 1,2,3 are protons and 4,3*6 neutrons. The 
notation is in accord with chapter 3*

Since the deuteron has spin 1, and the alpha- 
particle spin zero, the (d+a) grouping does not exist 
for s = 0. We therefore uncouple the system for this 
case by putting = 0.
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The spin functions are taken as :-
os = 0

5 = 1

- ̂ rX,Oir)

<*■/ * *̂ T»/*
<r ' <% (nc))^2.

<r,| : <*T-\ /<4 W <«V 

and for s = 1 only * z ('W *G( e 

where ^  (•£M(US'i ~~ cfr.

<ŷ { AvI - oi(0ct(tfi 

S ^ \ (»îr6)-- ^

(4.3)
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4,2 Co-ordinate Systems and Notation.

Set (a)» (3 + 3) partition.

Figure 2.

u V

£ = ^12^: (4.4)(a)
SSet (b), (2 + 4) partition.

Figure 3,
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a = ii-Xzj» b = Sj-^2’ - = -5“-6* 
d = «(rg+r^) - i(rg+rg),

a = i(£i+r^) - ^(Zg+iy+r^+a:^)
V -  ^ ^  ; (4.4) (b)
/'= '̂2 f%G f ■

Notation*
¥e use the abbreviations:-

«^7%^ <(y<(/

" X®
^ '■ 4k és-^

<j^i «**M »3<3 (l^P>x~P’0(t~f'>tt.-I^û~i

5r s ^  '(HfiZ9rù) ^'P.* /■/'/.*-/îiX^^*-

and again j df indicates integration over the appropriate 
configuration space*
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4.3 Scattering Equations*
is required to satisfy the variation principle 

in exactly the same manner as in chapter 3*3*
In this case H = T + C (4.5)
Using co-ordinate set (a) the kinetic energy 

operator T is

and set (b )
T = y & W  (4.6)

Ip'S ^  ^Ctj) given by (3.8)
iij

c = e^(rj^2~^ + ^13~^ + (4.7)

The variational principle will be satisfied if
(T + C - E) 'Sîs = 0 (4.8)

Multiplying (4.8) by ̂ tXh } integrating over
he sp
3

*3the space of the internal co-ordinates of the H and
He nuclei, and summing over spin directions, we find:-

F^(r)

- f r - t v i - h c - e  )^Fj)çrXH /xj

(4.9)
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where - E^), and we have made use of
(3#10) and (3*11) in the same way as before.

Repeating the above procedure, but pre-multiplying 
by ^  and integrating over the space of the
internal co-ordinates of the deuteron and alpha groups 
(i.e. over a, b, and d) we have, for s = 1 only 2 -

*' (4 .10)

where - E . - Ê )̂ , and we have made use of
the equations;-

= 0 (4.11)

and

fy« ■> * 4 ' cfia)
w

Thus we have two coupled integro-differential 
equations in the intergroup wave-functions (r) and
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The (^He + ^ ̂ He + % )  Terms,
Substituting (3.8) for ij) and treating (4.9)

in the same way as (3 *13) was treated in the single
channel system, using the spin matrix elements in
appendix A, it becomes:-

= C»ioo ^oo ^
+  '-k y L f ( ^ L  k  i'ocf^L ry,f)nrx')4£:

o o+ (cross-terms, He + H — > d + a, for s = 1 only)
...(4.13)

with c^^(r) = ;jfT /*»>*)''

Uoo(r) = ^  fcts éx 4Jf4y
/'x,a')= X tX h f=of,-.9.

Q[cfr<2') = ^  [%fJ<éiày^XTX» h '  "

N^o(r.r^) =

Ngo(r,r^) = ^  ^^3* <'̂ )(TXM )

and H^^(r,r^) = ^  ATX'* ' %  ^  ̂ '
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with = yC'fn)} /* ' K*!: V f'*■»}} j

K'̂ z V[xjJ,V~’- Vht,s),

and V®"^^ = V^.

"'-■ ' ' ^ * " 4  ' ^ ‘' ' • 4  ' 4 '

4  f t > ^*^‘ 4  ■

The constants Y , ' .& , B , and/r * are-Too CO ) oo  ̂oo ^ oo

given in Table 3»
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Table 3. Constants for (b); + ^He  ^ + ^He.

s = 0 s = 1

% o 2 2

Poo 9w+3b-m-3^ 9w+3b-m-3h

ylo -2w-4b+^m+3h -2w+ 4b+Om+ 5h

'oo * ̂ oo< 
y4 -y3 \ 
'oo *'oo

-4(w+m)+(b+h) -(4w+4m+b+h)

y6 Y?
» oo'*00 -2(w+m)-(b+h) -2(w+m)+(b+h)

y ®‘ 00 —8w-4b+4ra+2h -8w-4b+4m+ 6h

T 0 0
(w-b)(-l)^ (w+b)(-l)^

ylO 11^
^ 00’ f 00) yl2 yl3j 
f 0 0  * 0 0 '

2(w+m) (b+h) (-1)^ 2(w+m)-(b+h) (-1)^

yl4 yl5 
<00 * 00 (w+m)-(b+h) (-1)^ (w+m+b+h) (-1)^

yl6
^ 0 0

(4w+2b-8m-4h)(-l)^ (4w+6b-8ra-4h)(-1)^
c***00

ÔOO
s' ) ^0 0 '^00\

^00* ̂ 00^

c
/  rî00’ 00)

C  i

-2

( - 1 ) ^

-1

-2

( - 1 ) ^

-2

( - 1 ) ^

-1

-2

( - 1)^
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Note ; 1. is parity. % = -1 for odd and +1 for even
states of (r).

2. It can be seen that the constants depending
1 8on force type (i.e. on y) are p , y , y ,

OO

OO *^00 *^00
1 6
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The (d+g) ^(d+g) Terms.
Similarly (4.10) becomes:-

[Vi 7̂ *+• k[] ^ c„ xqj 1- „ f/„ /^)) ?r<()

■+f~ y„ Î Q * ' ^  F,i j h '„ ( x » ^ o 04^^

+  S' %flP,!(y,i') h/J X4,t'jJ 04f'. ( ^  • 1 ^ )
+ (cross terms for (d+a + ^He) .

with Cj^(î) = ^^^JcfTo dTct Xo »i■'

?'4' ) = %  J ^ ' ^ U X ‘>X-f (F,2Xi>X<)^' a  

%fi( g'f') = ^ y  / -  /*- -, /J.

^ i i (

Ni^(f'7')= \tJdr'D4)(t,

and H^^( ) 9 i = 1 ,2,....,13» are the same as Q^^( ̂ tq')
with V^ replaced by C^, i.e. V( ) replaced by /^J 

y\ V'/v̂ .çl, v4- v[r.j),
v ‘ .  v t - ^ h  y " '  ''*-■  *■ ' .  ►'■'-• IT’, V", y {- Yfr',
v ‘-. y’, y"i= y S c )

The constants are tabulated in Table 4.
iuJpCcccU^ t̂k'vé̂ Ŷttétffkx éÂe oj tkt tÛ ¥r»é

cx̂j/î'vzrp'̂CL̂ ‘J
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Table 4. Constants for (d+0, — > d+q,) Terms.

="11 1

h i (8w+4b-2m~4h)

y h (-2w-4b+8m+4h)

fil -6w-2b+4m+6h

yîi>yïi\

y h  )
-6(w+m)

yîi>yli -2

fil 4w+6b-6m-2h

fil'fil 4(w+m)-2(b+h)
„11 _12\

ylî ! J.

-2

s* + 1
1

Su -1
z

€ Il -2

}
-1

t*.,, 0

th,l +1
i\: J
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The Cross Terms.
Both of these were evaluated as a check. 

The term ^He + d + a.
By the same methods we find the equation (from 

(4.9)):-

^K/ ^elastic scattering terms (labelled oo)J

with ' h I /'
O ô ,   ̂ ^ J X r X ' ^ X ’̂ X^ ^

Q o t  ^ y  I' " 6r7, c.

0 0 !  I Y .y^'? Yw x * ^ y*^''
/&♦ j for i ss 1,2,3 are the same as t

respectively with T in place of V^.

N qi for i = 1,2,3 are the same as ^Oi with
(E^ + E^) in place of T.

are the same as 0/^ /^i^jwith ^ .

The constants are tabulated in Table 5*
in place of V(r^j^) .
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We now have (for s = 1) two coupled integro-differential 
equations : -

MecCoo(f)-t /ie>« ('<))Fs Cz }

-t #  y'L (^,3'^ f-

f  y'o! f ^ o e  f^>q} -f- ^ooJH'o,fy,qj

'f- ^  Nio rcr.y)7/^/:TVf(f/

and
(% k,*) X„C<iJ -f- ('Xu Un ))§sCi)

^  f  /V.yM/'vy <ér f- f  (if,y)t^sr:f)cUf

' ^ f ^ ’i o J [ C f 4 > y ) - ^ ^ ^  A/<; yq,y)JJ=ir^)cu ('‘•^7)
where the functions for the cross-terms (d+CL + ^He)
are :- , ' r

0 % ' ? )  = J t'̂ i,*, - s'

Q \ o  ^  j  %'< y  ̂^ 6 / 7/ " /;.

/a' <' Ï t̂ , /r, - -
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I ' \
Similar alterations to give ^#o and

H ‘,g as in the (Ol) case, and Yo, ) 1̂»=̂  ^ it j ^ '

¥e expand in harmonic series in exactly the same 
manner as in chapter (3 *3)•

F (r) = r“^ « ^

oLr^'y')-' f

Q • ; , T . V '4''^ t T M nnr

with similar expansions for the other functions.
Then (4.l6) and (4.17) become of the form :-

—   ̂^  ~ Coc C''} t , >ca J'ju (>̂ )

(4.18)

and / . 5 \

. (4.19)
" ' y»'» ~ i'*‘jJ
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Table 5. Constants for the Cross Terms*

fo i 4m+3b-6w-5b ^o. -2

-3(w+m) fol 0

7oi -1 e i l 0

7oi —2w+2m—b—h 0

7oi -3 (w+m) fC, -1

7oi -6w'-5b+4w+3b € 01 4

7oi 8(w+m)+2(b+h) 2

7oi 4(w+m)*(b+h) 0

fox 7^1 € ̂ ei 2

to i 2 t 0

t l 7oi 2

to i 2(w+m)-(b+h) 2

to i = ^12
»01 e : 0

to i 7oi rC €>t -1

to i 7oi -1

to t 7oi g -1

7o I 7oi 0
18

roi 7oi fo f 0

-1 + 2

« d ; -1
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Chapter 5 .

5•i Evaluation of the Integrals for the Single Channel Case (a) 
(^He + ^He) and (^H + Elastic Scattering.

It has been shown by Swan (l953) that if a gaussian 
well is used and the wave-functions ^  taken to be of 
gaussian form, the kernels K^(V|Y*) can, apart from some 
contributions due to the Coulomb force, be reduced to a 
sum of terms of the type : -

J, -  A
.Jît, = « i C  Cks'T'rO (5.1)

where W  " [ x'J  ̂ . (5.2)

For this reason the wave-function and well used 
were gaussian, with the parameter used earlier in the 
four-body calculations and given by (2.I), (2.2) and (2,3).

To make for uniformity in the numerical work, and 
keep down the number of programmes, as many of the 
terras of K^( as possible were reduced to the form
(5.1).
(a) The Nuclear Force Kernels.

As an example of how these were dealt with, we will



- 53 -

consider Q ^ ( ^ # It is convenient to define a new 
set of co-ordinates,

- ■* “ - \ . ^13—= 1/3 ( -  ̂£4 + £6 - £1 - -2 ~ -5)'
same as before.

W  = - £5. 1 = £4 ■ - 6 *
&  =-£1 + 2 (£2 + £5)., t  = P13R
Z =-£3 + i (£4 + £é)>. z^ = P13Z (5-3)

The following relations exist between co-ordinate sets
(3.5) and (5.3):-

Z = £ - 3/2(r - r ) + 3/4(r + r'
J  ̂  Ctv dV tf/y J f ciw (it ct li ct Z  y ^  r dt d R

(5.4)

From (2.1), (2.2) and (2.3) we have 

V(r^3) =

(To cover some of the kernel evaluation for the (^H + ^He)
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terms in chapter 4, we take our general matrix element

Then to obtain the formulae for scattering of type (a), 
we need only put A = ^  ).

In terms of co-ordinate set (5*3)

d w d t d j  e  ^

X" e
—  /* *

r__^ = (r_ - r„)^ = Ut4^ + Jv^-X/ly,Using the relations
Dj D j ””

between j ^  » and w% t,R, we express this in
3rms of the latter three.  ̂ a

x j ^  a  Jctji a - ^

By repeated use of the integrals in appendix B, this
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reduces to the required form. The other nuclear 
kernels are treated similarly, and in general, we have;-

where y = cos (tP$ 

giving

where integral 4 ^ of appendix B has been used,
Â *'̂  I and ' are tabulated in Table 6 (a) ,

(b) The Term /^I'^Vand the Functions U(r) and C(r) .
By straightforward application of appendix B, ^ /

and U(r) were reduced to : -

U(r) . <5.,)

^  fAn)^'e

c(r) = ^ M j . ^ y - v ^ r

We employ the change of variable s = r̂ ^̂  = / r̂  ̂ - ,
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dj4 = qJ cand using^  om = o/d^ and appendix B, this is reduced 
to the form

C(r) = Ac ^ f A ^ ) (5.9)

where 2^ is the error function ^
The constants for (5*7)» (5*S) and (5.9) are

given in Table 6(b).
(c) The Kinetic Energy Term.

Expressed in terms of the variables (5*3)» this 
takes the form:-^ y\ )  ̂ jÛjÿdJtdX (3n’f')fcLi A (y)7\t 7? 7— /

' 6 -  f  A Y- £  X?*y*Jx3

4. T  4.^’ (<r X  J

By expressing this in terms of R, r, r , and t and 
using appendix B this is reduced to the form

^ A f > ‘ff' ^ ^
(5.10)
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where A(p) = At,, . ./1(2£a }
ûJ-tf(t.(k'»r') expressed using

the recurrence relations for Bessol functions as ;-

■  Æ . ,

fk

or by a similar formula in terms of /wy >/j
Using these relations we have : -

pt, ( nr.-,’) = - — —  ’Uu('*,y') ( à —  ^  h-r^-o < - r t ' )
M ( U a \ k p X

-f- dnrf>'kl^^/rr,-r>)

or O m M*»'/- —  Y’ ^ >/î i
7 /ifit'A) J

The constants are given in Table 6(b)•
y  \

(d) The Coulomb Kernels *

/ iy €x4kj>^rf*r)

Using ^  ^ eA^we have : -

y f é i d ï é X  *rj y / eXfî

V r r %  f  h '
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where with a potential

Vo
Another change of variable gives

(3.XX)

^This integral, however, does not apply to all
Coulomb terras, since in infinities arise out
of the ^ « terra.) The integral over ”x ” is then
expressed as a sum over terms of the type (5*l)*

h^ and h^ have r- and ~ for their respective C^*s n n W  t
and thus using integral (Appendix B (?)) can be reduced 
directly to (5.1)»

The term ^ was the most difficult Coulomb
term to evaluate. It was finally reduced to the form;-

-  / . - , / ;  K . y
(5.12)

and a special programme written to deal with it.
The constants are given in Table 6(c)^
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Table 6. Constants for Type (a) Kernels.

Use has been î ade in evaluating these of the 
relation

(a) Constants for ^

i

1

2 _____17 i 2)

^  ̂  ̂  ̂  j 1

* J

3 #Y j

4 = ^2

5 = A3 4{3rUS-y}-)

5 ^ A ̂  ̂ - 5  / A N

7 6 A
•'T

8 / «Î J 7 ^

^  ̂  Ayix + y X A v ^  V  /

1  ^ 3 ^  j



Table 6(a) - Contd.
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i /T' 4 '

1 /-»'

2 VyV
^  L ^  Y f, Y ? 14 '/

3 9 fy^ Cy-t3-k)-t‘ ^5 ^AY ?nyj 7

4

5

6 y?" Z i  A-*y ^

7
H

8 5  M  ’y '' 7 _____27''/^^
A yvj ^  4 & A  Ay» Y

y/t% «y- (d
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Table 6(b)

‘ y« ̂  ”  i f
" §[âhpLVl^7.

Ay = -----^ -----  •/<# - - “  —
^  "Y t»  ̂ Ça*f Y 3pn A •* 2̂ *y .

‘0 -  ’f '  ; /)= 6 % ) " '

a  =  -  f

^  ^ ^  é Ĵ 'tj ^ éA'^ ̂ ^

Table 6(c) fU/tiC ^ ̂  ) •

a(A^) = fU)^f^X,){%)^'^^-'^'"

y  =

K = A .
A a v -  r % / ;  V -  

/x‘ '- 'j‘ = V .  ^ ■

(tyk̂ f̂ **̂  ̂ ^ Î'ŷ Jand the constants for the other Coulomb
kernels are found from (5.11).
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5*2 Numerical Work.
The programme used in the four-body collisions 

(Chapter 2*3a) were employed to calculate K^( f ) 
as (30 X 30) matrices with elements corresponding to 
points (r = r^ + m h ^ y w i t h  (m,n = 1,2,•••,29} 
for all terms except ktp,* ,

This programme calculates terms of the form;-

Ssi ^ (5.13)

where y^ is an even powered octic.

ra.or7Y*,YvV*,Y-*>Y------terms up to r«)

The programme can deal with p up to 8.
The values of p,,E.y-and E^ were the same as those

used in chapter 2.1. The approximation was taken that
^ ^  o When ^ = 'W is put into the kernel formulae7 ' 7
(Table 6(a) and (b) ) the nuclear contributions z/, ^3)
the coulomb contributions ^ a n d  
and all terms of V ) except that involving
or could be reduced to five terms of the form (5*3) *

The remaining terra of p̂ (T̂ 'v̂ ) was calculated by a 
separate application of the programme, as was 'Mg,
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(corresponding to B^('V,^’) of chapter 2.5oi).
2 5 8For the kernels h ...#h and h a four-pointn n n

gaussian integration formula was used, and again the
same programme employed.

To calculate g'^^( a programme was written
in GIP (General Interpretive Programming) and this
is discussed in appendix C.

This gave five matrices for each *̂ n” which were
added to give ) .

Test cases were calculated for h = 0.33(0*05)0*5
and h = 0.43 was chosen as the probable most accurate,
with r = r^ = D. o o

The equation was solved and phase shifts found in 
the manner described in chapter 2.

Kernels K̂ (̂ ,'>̂ *) were produced corresponding to 
y = 1 (Serber) and y = O .7 (Biel) exchange forces, and 
kernels corresponding to other mixtures of Serber and 
symmetric force types found by taking linear combinations 
of these.

The angular distributions were calculated using 
a programme written by Dr. B.H. Bransden in T.I.P. 
(Tabular Interpretive Programming). This calculates
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the angular distribution for scattering angles of 
13°(l5°)90° in the centre of mass system (for 
identical particles), the scattering being, of course.
symmetrical about 90°.

-T7i€ j&riMAAAM, : —
lie)' j t l A - y - t y

c

1 ;c

= ^*yv M CO

where and are the coulomb and nuclear phases
respectively, were used.

It is necessary for Dr. H.H. Robertson * s programme 
for the solution of the equation and the calculations 
of the phases respectively to calculate previously the 
values of the function C(r) for r = M h, n = 1,2,..#29, 
and the function ̂  = arg I (l + #% + idf) (See Chapter 2.^c).

h
The former was computed by hand and the latter using 
a TIP programme.
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5.3 Results (l)
O OThe cross-section for ( H + H) elastic scattering 

has been measured by Hohn and Argo (1956) in the 
energy range 1.6 MeV to 2 MeV. An analysis by Frank 
and Gamme1 (l955) has shown that the result can be 
best fitted by assuming a single s-wave phase shift, 
such that ^  = -ka, with a = 2.35 x 10 ^^cra.(corresponding 
to hard sphere scattering) , k being the momentum in 
the centre of mass system. A more recent measurement 
by Allen and Jarmie (1958) suggests that the earlier 
cross-sections were approximately 20^ too large, so 
that a will be less than 2.35 x 10 ^^cm. At 2 MeV 
should be close to 30°.

Some preliminary results were calculated, omitting
all Coulomb terms except h  ̂ ) and h  ̂ ) , andn * n
the results of these used to compare with the above 
data. (The effect of the Coulomb terms was later found 
to be indeed negligible at these low energies.)

The symmetric force produces s-wave phases of the 
correct size and energy variation to fit the experimental 
data ; but the calculated p phase shift is about 6°, and



— 66 —

this is large enough to upset the fit. Figure 4 
illustrates the comparison between calculated and 
observed cross-sections, and table 7 gives the 
(^H + ^H) phase shifts. Figure 3 shows the variation 
of with exchange force type at 2 MeV.
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Table 7. Phase Shifts for (^H + Elastic Scattering
(Coulomb Contribution Neglected).

Energy in MeV (Lab) 1.5 2 5 10

(Berber (y=l)
S* . ,(Symmetric (y=0)

-32.8*
-24"

-53.2^
-28

-84.8 ̂  

-52''

D+ 71 
-79"

f  I " = '
0-6 0-9

g

0

-9*5 -58''
( y = 0 -liT -6 -22 -45""

y = 1 » + 6 +8 ^
U - o - - -

ù
-1.5
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5.4 Results (^He + ^He).
The other experimental data available for 

comparison was on (He + He) elastic collisions at 
29, 26 and 20 MeV (Lab). At 29,4 and 26 MeV by 
Bredin, England, Evans, McKee, March, Mossinger 
and Toner (1960), and at 25 and 19 MeV by Rosen,
Stuat and Brolley (1960). The angular distributions 
are compared with their results in figures 8 , 9 and 
10 and the phases obtained tabulated in table 8 .
Sketches of the behaviour of the Serber angular 
distribution with energy, and the behaviour of phases 
with exchange forces are also given.

A search was carried out using the values y =
0 .0(0 .1)1.0 in an attempt to find a satisfactory fit 
with experiment, hut Serber was found to be the best.
It can be seen that in all the comparisons with 
experimental data the calculated differential cross- 
sections agree reasonably well at large angles, but 
fail to reproduce the very deep minimum at 30^ to 40°. 
This would suggest that the s wave phase shifts predicted 
are reasonable but that the p-wave ones are too high.
The p-wave is triplet and the s-wave singlet, so that 
any exaggeration of the p-phase shift will be amplified
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in its effect on the angular distributions. The p 
phases are probably more model dependent than the 
s phases.

The alterations in the potential, if any exist, 
which would reduce the higher phase shifts, are not 
clear, but since the angular distributions improve 
continuously in going fro%a symmetric to Serber force 
types, and since the latter contains more ordinary 
(Wigner) force, a potential with this might succeed.
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Phase Shifts for (^He + ^He) Elastic Scattering 
Table 8 Serber Force (y = l.O)

MeV
(Lab) 2 5 10 20 26 29

S o -29.3^ -68 ^ +82.7® + 60.2 ** +51.0*̂ +46.4*
Sf a- 2,5 e>-17.2

o
-43.9

. O
-86.4®'

 ̂ o
+73.3^

o
+65.3**

- + 2,8 +12.4 + 18,6 +18.3 +19.6
— - O- 3,1 -14.4®' -26.2“ -30.3

S v — - + 0.7 +10,0^ +29.0“ 0+41.0

Table 9 Biel Force (y = 0,70) and Symmetric Force (y = Q.O)

MeV Biel Symmetri c
(Lab) 20 26 29 20 26 29

So +31.6 * +26.2^ +19.4*" —48 8,0 0-52.6 0-53
Sr —82 • 0 +78,4"" +70.7* —67 -84.9* 88. fT
s. + 5.8'' + 4.3* + 2,/T -14, «.9 -21.3* -23.8*
S ? -14,3*" -23.4* 0-27.1 - 9- 0,1 â-15.0 0-17.7
S 4 &+ 7.5 + 19.4* 0

+27.1 + 2, 0
► 5

0+ 6,1 + 9.3
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3*5 Recent Calculations and Conclusions.
Since the work reported in chapters 2-5 was 

started, Butcher and MacNamee (1959) have published 
the results of an application of the method used here 
to (0(+0^) scattering* They found that a Biel (y = 0*7) 
force fitted experimental data well over the whole 
energy range (0-40 MeV)*

This appears rather surprising bearing in mind the 
results reported in the previous chapter* However, there 
are two possible explanations*

(1) It was pointed out in the last chapter that the 
rather large p phases predicted by the method were 
weighted 3:1 against the s phases in the angular 
distribution (being triplet state phases). On the 
other hand in the (a 4 a) calculation the p wave and all 
odd angular momentum states were excluded*

(2) The alpha-partide is much more tightly bound 
than the triton and thus the alpha group is more stable 
during the collision.

Other calculations have been by Burke and Laskar 
(1958) on d+d scattering. Their results fitted
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experiment practically independently of the exchange
3force used. They have also formulated d + He 

scattering*
Sugie, Robertson and Hodgson (1957> 1958) have 

considered the contribution of tensor forces to 
(n+ ̂  ) collisions.
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Chapter 6.
The Binding Energy of the Triton*

A large amount of theoretical attention has been 
paid for some time to the binding energies of the 
three-body nuclei* It would be out of place here 
to give more than a very brief mention of the previous 
calculations•

Calculations using a gaussian potential well have 
been done by Feenberg and co-workers (1935» 193^)»
Fluegge (1937) and Margenau and co-workers (1937, 1938, 
1939); using a Yukawa well by Brown, and Brown and 
Plesset (1939), and using an exponential well by 
Ravita and Present (1937)* Some later calculations 
used a square well (Ravita and Schwinger (19^1);
Gerjuey and Schwinger (19^2); Feshbach and Ravita (19^9))* 

The effect of tensor forces has been given 
attention (Pease and Feshbach (l95l)» Irving (l95l))» 
and the effect of a repulsive core considered by 
Omhura, Merita and Yamada (I960), and Blatt and 
Derrick (l959) •

Other calculations have been done by the following
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authors ; -
Hylleraas and Rydberg (l9^l)>
Svarthohn (l9^5> 19^8). (See Chapter 6.2) 
Frohlich et alia (19^6, 19^7)
Clapp (1949)
Derrick and Blatt (1959) (Classification of the

triton wave-functions). 
Skorniakov and Ter-Martirosian (l957) (The three-

body problem for short 
range forces.)
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6.1 The Calculations by N. Swartholm.
(a) Potential and Wave-function used.

We give a fuller account of Swartholm*s calculations 
since it is intended to use the same values for the 
well parameters as he used, with a view to providing 
a test of the resonating group method.

Swartholm uses the now well-known variation- 
itération method.

He assumes charge independence of the forces and 
introduces spin dependence by using for the force 
between nucleons j and k : -

Vjj^(r) = -B(l - g + g 
is a Bartlett operator, and g gives a measure of the 
relative strength of the spin dependent force.
Vjk(r) 1]̂  fact the WB force described in chapter 1.3.

For the triton he takes a wave-function (in 
momentum space);-

where (I23) are the spin co-ordinates on which the 
B act. The space wave-function is taken as

Ÿ  t'a 'ù) - )
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corresponding in momentum space to
-  ; & V

is then used as a trial function and iterated to 
give which is then used as the wave-function
in the rest of the calculation. He calculates in 
fact X = BMa^ and substitutes the observed binding 
energy to give values of the force constants X,
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(b) Swartholm*s Results for a Gaussian Well.
With B = 35»6, a = 2.25 x 10 and g = 0.2,

Margenau and Warren (1937) found = -7*21 MeV, 
estimating the convergence at -7*7 MeV. This was 
later changed to -7*3 MeV (Margenau and Tyrrell (1938). 
Swartholm found the following:-
For E = -7.21 he finds B^ = 37.07, B^y^ = 35*88,

= 35.28 MeV. and for 
E = -7.30, - B^ = 37.18, B^y^ = 35.88, B^ = 35*49 MeV.

This establishes the accuracy of his results.
Maltauch and Flugge (1942) found E^ to be -8.38 MeV. 

(Toliestrys (l950) finds E^ = -8.492 MeV).
Using this result, Swartholm finds (with a =

2.25 X 10“^^)
B = 35.63 MeV

However, for g = 0 with an error function potential,
— 11"a" must decrease to 1.94 x 10 cm.

This gives B^y^ = 37*67 MeV (6.I)

(c) Choice of Well Parameters.
It was decided to take an extrapolated value for 

for the last result mentioned, which is the one 
which applies here.
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For E = -7.21 MeV.

= 1 .0363433, °l/2 = 1.0110237, fo = 1.0477677
®l/2 ®1 ®1

For E = -7.3 MeV.

fo = 1.032319, °l/2 = 1.010989, fo = 1.047619
«1/2 «1 «1

Making an estimate (from = 37*67), of B^ =
39.04 and Bĵ  = 37.26 MeV, gives

^  = 1.03636. &  = 1.14777, , 1.011003.
«1/2 «1

The well parameters decided on were 
a = 1.94 X 10 ^^cm. (corresponding to p = 0.2669 x lO^^cm ^) 
and B^ = 37.26 MeV. (6.2)
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6.2 Description of Method.
As a preliminary attack on the problem it was 

decided to consider the grouping (n+d). As was 
mentioned in Chapter (l.3), (n+d) scattering has been
formulated using a resonating group wave-funetion a 
number of times and the final form of the equation used 
by Burke and Robertson (l957) was assumed.

That is, for W = 0

(6.3)

where r is the distance of the neutron from the centre
of mass of the deuteron,

where 3,q,y,p,a and U are set out in appendix D.
This equation is now dealt with as follows : -

This is expressed by finite difference techniques in 
the form

A 4 + k^By. = 0 (6.5)

where A and B are matrices and ^  a vector corresponding
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to y ( r ) .
Thus with k'“ = - ^ and B = C, we have : -

(C - V  I) /  = 0  (6.6)
2and k can be found by finding the latent root of C 

having a vector of the appropriate physical boundary 
conditions•

We follow Burke and Robertson in using the deuteron 
ground state wave-function (l.12).

For the binding energy of the deuteron we have

which is explicitly -ijj*

(6.8)
(Burke and Robertson Eqn.lO).

This expression was minimised with respect to a,
P and c for the potential parameters (6.2) and the 
corresponding values of E^ and a, g and c substituted 
in the equation.
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6.3 Numerical Work.
(a) Minimising of E^(equation 6.8).

An alpha-code programme was written which simply
calculated the expression for a mesh of values of a and
P, for a particular c. This was done for various values
of c and the mesh tightened until the value of was
sufficiently accurate. It was found (agreeing with
Burke and Robertson) that E . was very insensitive to' min
changes in c.
(b) Latent Roots.

We express (6.4) in terms of finite differences.
As in the programme used in the scattering calculations 
(chapter 2.3(b)), the upper limit = 29h is set on
the integral and the 30 points of r^ taken as r* = mh, 
m = 0 , r , . . . , 29 , and ^ ^

We choose the same points in the pivotal range for 
r, and let * /h / A  J “
Using the formula: -

r y / .  f / - . '

we have (for (6.4));- ^ .

where w* ~ ^ ^ Y #&#̂

and f-Kiv, = - . Vk : - f h *
SMc4 '
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We now apply the central difference operator (l + l/l2 ) (Fox and Goodwin 19^9) to reduce the order of the 
difference correction.

This leaves the equations;- ^
/ h w  (l-i- 7i A

-fil* ^  Tl̂  f -ffO +•/2 ^

-f. f-/u-|4^«^/n f V ^  'i f 0 Lu» -/ i / * ^ y

That is, in the notation of equation (6,5)î-

Anm -  -  ^  't it ̂   ̂ "Tz ^

'f' w, //-f KiM-fl) +  uw -+ )

and B = A(? f-nm '
f  7L, ^ ,

where ^ i s  the Kroneckeir ^
Simpson* s rule was used to give the weights *7*%̂

owith the /8*s rule at one end of the range to obviate
the difficulty of having an even number of pivotal points.

The reqson for choosing 30 points was in order to
make use of Dr. H.H, Robertson*s programme again for
producing the kernels K and L . A GIF programme wasnm nm
written to calculate A and B from these (appendix C).nm nm ' ’

The latent roots were calculated by a programme
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kindly lent by Mr Williams of the Glasgow University 
Computing Laboratory. This used Lanczos* method. 
(Buckingham (1957) ch. 12).

The m h  force (l.6) was used, since this was 
the one used by Svartholm (and also by Margenau et al.).
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6.4 Preliminary Results.
? 6 2(a) Using p = 0.2669 x = -37*26 MeV, the

expression (6.8) was minimised. A very unrealistic 
result for was found, however, being E^ = -0.39083 
MeV, corresponding to 0, = 0.01433, P = 0.1362^ *
(The binding energy of the deuteron is experimentally 
-2.22 MeV. Tolleftrtfp (l930) ) .

(b) Burke and Robertson point out that it is difficult 
to decide what interval to use in the kernels for 
the following reasons : -
a) The q kernels very very rapidly near the origin, 
and thus inaccuracies will occur if h is too large.
b) The p and n kernels extend out much further, and 
hence some of their contribution may be lost if h 
is too small.

However, since the gaussian wave-function dies 
away fairly rapidly, it was decided in preliminary 
calculations to use an interval h = 0.45 (by study 
of a table given by Burke and Robertson)•

The inaccuracies due to this, if any, could 
then be simply tested by calculating a result for, 
say h = 0.5, and comparing.

(c) Using h = 0.45, the latent roots of C have been 
calculated. The asymptotic form of ^  (r) should
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ikrbe ̂  , and thus for a bound state k will be
imaginary, that is, will be positive.

Six of the roots found were real, and only one
of these positive : -

- 0.1184 = -k^ = — B , where E is the
energy of the neutron.

This corresponds to E^ = -3*69 MeV.
Using the extremely high value obtained for E^, this
would suggest for the binding energy of the triton

E_ = E + E- = -4.08 MeV, which is less T n d
than half the total observed binding energy.

It should be remembered that only the (n+d)
grouping has been considered. (a  recent calculation
by Kurepin and Neudadini (1960) suggests that the
probability of finding the triton in the (n+d)
grouping is 0.4).

The next step will consist of considering a wave-
function of two groups : -

tp % é i •i' ) •7
It should be pointed out with regard to the above 

result that tests of whether the interval h used was 
large enough, have not yet been done.
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Conclusion.
The usefulness of the resonating group approach is 

without doubt when^ the large amount of data correlated 
with its aid is considered.

The use of an equivalent central potential with 
full allowance for exchange forces has described the 
behaviour of many light nuclear systems to a fair degree 
of quantitative accuracy. It is surprising that the 
exchange force type which produces agreement with 
observed data is in general so nearly the same in the 
systems to which the method has been applied.

The conclusions of the work on the six-body 
collisions must be that they are out of line with other 
calculations in that a force between the Serber 
symmetric types does not give agreement with observed 
data. It is hoped, however, to carry out an investigation 
of this system with exchange forces between the ¥B and 
Serber types. The result may still give a *near-Serber* 
fit. (This would still have it out of line with what 
was anticipated, since the force was expected to move
nearer to the symmetric type as the number of particles
increased (Butcher and MacNamee I960).

In general, it may be said that there is no doubt
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of the necessity for an approach of the resonating 
group type at low energies, and the limitation on the 
success of applications up to the present, may be 
supposed to stem from the unrealistic nature of the 
potentials used in conjunction with it.
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Appendix A .
Spin Matrix Elements.

1, Matrix Elements required for Type (a) Collision. 
Singlet State (Table A1).

"'ij €/P,y

1 + 1 + 2 +i
^12 -1 1“2 1~2
^ 1 3 + 2 + 1 -i
^l4 + 2 1-2 +1

^ 1 5 + 2 +i
^ 6 +i +i + 4
^ 2 3 +i -2 + 1

^ 2 4 +i + 1 1-2

il

25
26
34
35
36 
*45 
'46 
56

+ 2

+ 2
-1

+ 2

+i
+ 2
-1

a

+ 4

+i
-i
+ 4

+i

+i

4ri
+i

+i
+i
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Triplet State (Table A2).

ij

12

13
14
15
16 
'23
*24

i

i
1
i
i

^ij Pcj ̂

•0 1 i 4.25 2 4 4

^26 i i i
^34 -1 -1 -i

^ 3 5 i 4 4

^36 i i 14
^ 4 5

12 i 14
^ 4 6 2 i 14
^ 5 6 1 12 2

s* (sr ̂ 'S ̂ f̂/j î o' f̂ij

and Zz ^ f’rj Psrt, ̂  = ~*~ '

Similar symmetries exist for the type (b) elements.
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Spin Matrix Elements Required for Type (b) Collisions

2. The Terms .
Singlet State (Table A3).

r̂'y /fa cr

1 + 1 +i •►i
^12 + 2 +1 +i +i

^ 1 3 + 2 -i -i
^ 1 4 + 2" +i -i -i
^ 1 5 + 2 +1 +i
^ 6 -1 -i 1"2 -i
^ 2 3 -1 -2 1"2 -i
^ 2 4 +i
^ 2 5 +i +4 +T +i
^26 +i "2" +i -i

P34 +i +i +i +i
^35 + 2 -i
^36 +i +1 -i

^ 5 -1 -i “i -4
^ 6 +i +i +1 +2
^5 6 , +i +i 1”2 -i

_________________
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Triplet State (Table A4).

^  J r4'j <r'

1 +1 +i +i
+i + 1 +i

^ 1 3 + 2 1"2 + 4 -i

^i4 ■*̂2 + 4 + 2 +i
+i +i 0 0

^ 6 + 1 +i +i +i

^ 2 3 -1 -i -i

^ 2 4 + 2 +i +i + 4

^ 2 5 +i +i +i 0

^26 +i +i +i +i
P34 +i +i +i 0

^ 3 5 4-2 + 4 +i
^36 +i 0 +i 0

^ 4 3 -1 "i 1"2 “i

^ 4 6 +i +i +1 + 2
^56 fi +i 1-2 -i



- 93 -

3 • The Terms ( d+O,) — > ( d+a) 
Table A3 «

(s=l only).

^  ̂  P\ j «- ;F<r fy ar

1 + 1 +i +i
^12 +i +1 +i
^ 1 3 +i -i +i -i
^ 1 4 +1 +i + 2 + 4
^ 1 5 + 2 +i +i + 4

+i + 4 0 0

^ 2 3 -1 -2 -i -i
^ 2 4 + 2 + 2 4̂ i + 4
^ 2 5 + & +i + 4 + i
^26 +i + -4 "#̂ 4 0

^ 3 4 + 2 0 +i 0

^ 3 5 + 2 +i +i 0

^ 3 6 +i +i +i +i
+ 2 +i +1 +i
+i +i -2 -i

^ 5 6 -1 ""i -i - 4
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4. The Cross-Terms (s = 1 only).
Table A6 . (^H + ^He) + q) Terms.

/îa
!

1 1"2 +Ï 1"2

^12
1“2 12 -1

^13 -i 1"*2 -i +i

^Ik -i 1“ 2 0 -i

^ 5 0 1"2 + 4 -i

^16
1“2 -1 +Ï -i

P23 +i + 1 -4 +i

^2k -i 1"2 0 -4

^25 -i “i +i -i

^26 -i “i + 4 -i

^34 -i -i +i -4

^35 -i JL “ 2 0 -i

^36 -i -i 0 0

^45 +i +1 -i +i

^46 -1 -i -i X-4-

P56 +i "i +& -i
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Appendix B .
Integrals Used in the Analysis.

<?

I /I »  /ft/, ■ > Æ  ^ Î
Ifith K = 0, (2) is obtained.
3- A  = h  - p" ^  A.8f''/£y'^e

T 5 = J e  ( 4 ^ }  ëf

yy
(B.r = Br cos = Br j[cos ^y^^cos im zm^]^

where is the angle between B and r etc. The sine
terras disappear under the integral and p = cos ).
Thus I_ = —  J# /,,  ̂ Hence result.J l/\l n<’ c

4. = Jgn-Tf' ^  f

^  ^ ", J (^'''/* y ̂  (Rodrigues' formula)

_ ( ' / t t v r O r ' ( f  - / « P  ‘*W/M
2"-'. ^ /

= RHS (l.N, Sneddon (195^), p.126).
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This is easily seen by differentiation with respect to 
K under the integral sign in I. .

v a  V. f

Ï  jC.H-S.j yrtierv ^ (*) =• ^  ^

,. J-,. f>ti i (%r''CMi’ ('̂"'1
r_ - -t- J2s'Tj->)J, = - A t  sc ^/ where u, = cos "r

7o

= /?. /V. S ,
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Appendix C 
Programmes

1. Programme for r ,r ).
To calculate;- 

Ilf ••Am C z

where s = 0,1,•..,29» t = 0,1,...,29*
The DEUCE interpretive scheme GIP 5/1 was used.
(The programme will deal with any number of pivotal points. 
Seven point Gaussian integration was actually used).
Bricks. 1. LR07B (Read Binary Matrix)

2,3 . LZ6lB (Term by term matrix algebra)
4. LZ63BM (Term by term exponential).
5. LZ12B (Select Element)
6. LZ18B (Term by term square root).
7. LS02B (Scalar multiplication).
8 . LWOIB (Matrix Subtraction)
9 . LHOIB (Matrix Addition)

10. LZ19B/1 (Expand scalar)
11. LP05B (punch binary matrix).
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Codewords.
No . a b c r Notes .

0 13 0 0 48 Replace by 0.
1 0 2 1 47 Read 2nd triad.
2 0 3 2 47 Read 3rd triad.
3 0 0 0 1 Read f
4 0 0 1 1 Read [h *4 ♦
5 0 0 2 1 Read
6 0 0 3 1 Read
7 0 0 4 1 Read V*

•r f*# ̂ 1--« 4y
8 3 0 0 48
9 4 4 6 2 2r

10 4 4 31 9 2r
11 0 12 14 42 Obey (0+12), add P 

to 12 and go to l4?
12 4 0 0 5
13 0 0 0 0
14 31 0 9 7
15 1 29 11 10 if <^ (identical elements]1
16 3 0 0 48
17 11 11 13 2 Y'*
18 13 6 11 9 + -y "
19 11 9 13 9
20 11 9 15 8 ( nr -  -nr ^
21 0 0 0 5 Select (y-
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Card No. a b c r Notes•
22 11 0 17 7 A =
23 4 0 0 48
24 11 9 27 2
25 4 0 0 48
26 13 9 19 2
27 4 0 0 48
28 15 9 21 2
29 13 0 9 6
30 15 0 11 6 J

31 0 0 35 1 DL 35 0
32 0 33 34 42 Obey (33+0), add 

to 33 and go to
33 3 0 0 5
34 13 0 45 7 Xj  ̂r nr • ) ̂

35 15 0 47 7
36 19 0 51 7 y J ' ^

37 21 0 53 7 V.-Z nf* I ̂
38 0 1 0 5
39 45 0 45 7 X
4o 47 0 47 7 Y
4l 17 45 45 9 A + X
42 17 47 47 9 A + Y 

- fPrtKJ43 45 0 23 4 e



— 1 0 0  —

Card No* a b r Notes•
44 47 0 25 4
45 3 0 0 48
46 23 9 45 2
47
48

3
25

0
11

0
47

48
2

49 27 51 29 8
50 Nn N n 51 46 Ph (y>)
51
52

3
29

0
45

0
55

48
2

53 27 53 29 8 ^2
54 55 46
55
56

3
29

0
47

0
57

48
2

57 55 57 57 8 (1) - (2)
58
59

0
2

59
0

60
0

42
5

Obey (0+59), add P.
to 59 and go to 607

6o 57 0 57 7
61 57 35 35 9 5  wy Â/-- (5/ J
62
63

69
35

33
0

32
5

37
11

Replace 32, by
(69-33).
Punch row of n

64 70 0 33 4o Replace 33 by 70.



-  1 0 1  -

No • a b c r Notes•
65 71 0 59 4o Replace 59 by 71*
66 72 12 11 37 Jump to 11 if 72 

12.
67 73 0 12 4o Replace 12 by 73-
68 0 0 0 33 Go to codeword 0.
69 3 N 0 5
70 3 0 0 5
71 2 0 0 5
72 4 29 0 5
73 4 0 0 5
74 1 0 0 5)
75 1 29 29 10)
76 0 0 0 33)

77 3 0 0 48)
78 29 29 65 2)
79 7 1 0 5) 3/2
80 65 0 65 7) 3/2 y^
81 1 2 0 5) 1/2
82 1 29 29 10)
83 65 29 29 8) P((y)
84 0 0 0 33)

r was assumed negligible for n ^  2,
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2. Programme for the Coulomb Phases ^  s 6 ^  //-fM-»/
This programme uses alpha-code and forms ^ 

for ^  =0, 1, 2, 3* 4. The formulae;

II = -0.577215665a + ^  l"Vs -
IÙ '

= y» ^  ̂

are employed.
Card No. r R A B Function C D

1 23 1 DATA XI ka
2 23 R1 1 DATA X2 k
3 04 X3 XI DIVIDE X2 a
4 05 JUMP SI
5 24 5 RESULTS XIO
6 05 JUMP R1
7 l4 STOP
8 19 SI SUBROUTINE
9 11 X4 CONSTilNT RO

10 (-0.377213665)
11 11 X5 CONSTANT RO
12
13 02 x6 x6 MINUS X6
i4 02 X9 X9 MINUS X9
13 01 R50 x6 x6 PLUS 1 s
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Card No. r R A B Function C D
16 04 X7 X3 DIVIDE X6
17 36 X8 t a n"^ X7
18 02 X7 X7 MINUS X8
19 01 X9 X9 PLUS X7
20 09 X7 BIGGER X5 R50

THAN
21 03 XI0 x4 )IULTIP X3
22 01 XI0 XI0 PLUS X9
23 00 R51 X6 N50 MOVED RO n
24 01 X6 x6 PLUS 1 n+1
25 04 x6 X3 DIVIDE x6
26 36 x6 TAN~^ x6
27 12 N50 N50 MODIFY
28 01 XI1 XIO PLUS x6
29 10 N50 UP TO 4 R5I
30 20 END OF 51



- 104 -

3• Programme to Calculate Angular Distribution for 
Identical Particles ( ̂  '̂ 4- ) .

The system used is alpha-code. The subroutine SI
used is the same as that used in programme 2 (i.e. cards
8-30).
Card No. r R A B Function C D

1 23 2 DATA XI k9(,k
2 04 X3 XI DIVIDE X2
3 05 JUMP SI (gives

'Vo) " —  x/A.).
h 23 10 DATA XI5
5 11 X25 CONSTANT RO
6 (ic/l2)
7 11 X26 constant RO
8 (0.5)
9 11 X27 CONSTANT RO

10 (3)
11 11 X28 CONSTANT RO
12 (5)
13 11 X29 CONSTANT RO
14 (35)
15 11 X30 CONSTi\NT RO
16 (30)
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Card No. r R A B Function C D
17 11 X31 CONSTANT RO

18 (0.01745329)
19 11 X33 CONSTi\NT RO
20
21 11 X34 CONSTANT RO
22
23 12 RIO NIO NIO MODIFY
24 03 XI5 XI5 MULTIP X3I
25 10 NIO UP TO 10 RIO
26 12 R3 N1 N1 MODIFY IVl
27 01 XI5 XIO PLUS XI5
28 12 N1 N1 MODIFY N1
29 01 X20 XIO PLUS X20
30 12 N1 N1 MODIFY N1
31 01 XI3 XI3 PLUS XI5
32 12 N1 N1 MODIFY N1
33 01 X20 X20 PLUS X20
34 12 N1 N1 MODIFY N1
33 01 XIO XIO PLUS XIO
36 12 N1 MODIFY N1
37 30 x 45 SINE XI5
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No. r R A B Function C D
38 12 N1 MODIFY Nl
39 31 X50 COSINE XI5
4o 12 N1 MODIFY Nl
41 30 X35 SINE X20 Km
42 12 N1 MODIFY Nl
43 31 x6o COSINE X20 C*A xj]

44 12 N1 MODIFY Nl
45 30 X65 SINE XIO
46 12 N1 MODIFY Nl
4? 31 X70 COSINE XIO «y»
48 12 N1 Nl MODIFY Nl
49 02 x45 x45 MINUS X65
50 12 Nl Nl MODIFY Nl
51 02 X50 X50 MINUS X70
52 12 Nl Nl MODIFY Nl
53 02 X55 X55 MINUS X63
54 12 Nl Nl MODIFY Nl
55 02 X60 X60 MINUS X20
56 10 Nl UP TO 5 R3
57 02 X35 X35 MINUS X35
58 01 R2 X35 X35 PLUS X25 0

59 31 X36 COSINE X35
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Card
No • r R a B Pune tion C D
60 03 X37 X36 MULTIP X36
61 03 X38 X37 MULTIP X36
62 03 X39 X38 MULTIP X36
63 03 x4o X27 MULTIP X37
64 02 x4o x4o MINUS 1 3H^-1
65 03 x4o x4o MULTIP X26 P^(H)
66 03 X38 X38 MULTIP X28 3,3
67 03 X4l X36 MULTIP X27 3,
68 02 X38 X38 MINUS X4l 5,3-3,
69 03 X38 X38 MULTIP X26 P^(,)
70 03 X39 X39 MULTIP X29 35,'"
71 03 X37 X37 MULTIP X30 30,^
72 02 X39 X39 MINUS X37 4 2 35|i -30p.̂ -
73 01 X39 X39 PLUS X27
74 03 X39 X39 MULTIP X26
75 03 X39 X39 MULTIP X26
76 03 X39 X39 MULTIP X26 p/jC,)
77 01 X37 x4o PLUS 0 P2 (,)
78 03 x4o X35 MULTIP X26 ^/z

79 30 x4o SINE X40 /tilt 7%
80 03 x4o x4o MULTIP x4o
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Card
No. r R A B Function C
81 28 X4l LOG x4o
82 03 X4l X4l MULTIP X3
83 02 X4l XI0 MINUS x4i
84 11 x 42 CONSTANT
85 (x)
86 01 X4l X4l PLUS X42
87 30 x 43 SINE x4i
88 31 X44 COSINE x4i
89 04 x 43 x 43 DIVIDE x4o
90 04 X44 X44 DIVIDE x4o
91 03 x 43 X3 MULTIP x 43
92 03 X44 X3 MULTIP x44
93 01 X75 0 PLUS 1
94 03 X76 X27 MULTIP X36
95 03 X77 X28 MULTIP X37

96 01 X78 X28 PLUS 1

97 01 X78 X78 PLUS 1
98 03 X78 X78 MULTIP X38
99 03 X79 X27 MULTIP X27

100 03 X79 X79 MULTIP X39
101 02 X80 X80 MINUS X80
102 02 X81 X81 MINUS X81

D

RO

p

?
s Pff/*)

6

7

9
9p^(,)
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Card
No. r R A B Function C D

103 02 X82 X82 MINUS X82
104 02 X83 X83 MINUS X83
105 12 R4 N2 N2 MODIFY N2
106 03 X145 X75 MULTIP X45
107 12 N2 N2 MODIFY N2
108 03 X150 X75 MULTIP X50
109 12 N2 N2 MODIFY N2
110 03 X155 X75 MULTIP X55 Cn
111 12 N2 N2 MODIFY N2
112 03 XI60 X75 MULTIP X6o Dn
113 12 MODIFY N2
114 01 X80 X80 PLUS X145
115 12 MODIFY N2
116 01 X81 X81 PLUS XI50
117 12 MODIFY N2
118 01 X82 X82 PLUS XI55 2  Cy/,
119 12 MODIFY N2
120 01 X83 X83 PLUS XI6O
121 10 N2 UP TO 5 r 4
122 01 X80 X80 PLUS x44 AilGJ

123 02 X81 X8l MINUS x 43 B, {&J

124 01 X82 X82 PLUS X44 A3Û9J
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Card No ♦ r R A B Function C D
125 02 X83 X83 MINUS X43
126 03 X80 X80 MULTIP X80
127 03 X81 X81 MULTIP X81
128 03 X82 X82 MULTIP X82
129 03 X83 X83 MULTIP X83
130 01 X80 X80 PLUS X8l
131 01 X82 X82 PLUS X83
132 03 X80 X33 MULTIP X80
133 03 X82 X33 MULTIP X82
134 01 XSO X80 PLUS X82
133 o4 X80 X80 DIVIDE X2
136 04 X80 X80 DIVIDE X2
137 03 X80 X80 MULTIP X26
138 03 X80 X80 MULTIP X26
139 12 N5 MODIFY
i4o 01 X85 X80 PLUS 0
l4i 24 12 RESULTS X85 H2
142 05 JUMP HI
143 14 STOP

(81)
144 18 FINISH
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4. Programme to form expression (6.8) for E,.
Alpha-
(6.8)

code (mark II) 
is of the form

is used.
u.

VoÏÏ

Card 
No • r R A B Function C D Notes.
0 23 6 DATA XI 1 ^  S',
1 23 R1 2 DATA X7
2 01 X9 X7 PLUS X7 2a
3 01 XIO X8 PLUS X7 a + p
4 01 XI1 X8 PLUS X8 2p
5 05 JUMP SI
6 03 T6 T6 MULTIP X5
7 03 t 6 t 6 MULTIP X5
8 03 T7 T7 MULTIP T2
9 03 T7 T7 MULTIP X5

10 03 T7 T7 MULTIP X7
11 03 T7 T7 MULTIP X8
12 03 T7 T7 MULTIP X4
13 01 X31 t 6 PLUS T7
14 01 X31 X31 PLUS t 4 I
15 03 X31 X31 MULTIP XI
16 00 X8 T8 MOVED III
17 01 X9 X9 PLUS X2 p + 2a
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Card
No • r R A B Function C D Notes
18 01 XIO XIO PLUS X2 |i + a + 3
19 01 XI1 XI1 PLUS X2 , + 2p
20 05 JUMP SI
21 03 T8 T8 MULTIP X3
22 01 X31 X31 PLUS T8
23 Ok X31 X30 DIVIDE X8 "®d"
2k 2k 1 RESULT X31
25 05 JUMP R1
26 Ik STOP
27 19 SI SUBROUTINE
28 ok T1 X6 DIVIDE X9 •h

29 ok T2 X6 DIVIDE XIO
30 ok T3 X6 DIVIDE Xll 'A
31 25 T4 ROOT T1 x“^
32 25 T5 ROOT T2 y-*
33 25 t 6 ROOT T3 z"2
34 03 T1 T1 MULTIP T4
33 03 T7 T2 MULTIP T5
36 03 T3 T3 MULTIP T6
37 03 T5 T7 MULTIP X5 c y
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Card
No • r R A B Function C D Notes•
38 01 13 T3 PLUS T3
39 03 T3 T3 MULTIP X3
4o 03 T3 T3 MULTIP X3 c ■ ’'4

41 01 T8 T3 PLUS T3
42 01 T8 T8 PLUS T1
43 20 END OF SI
44 18 FINISH
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5. Programme to calculate A and B for chapter 6.
GIP5/1 is used. I/A^is of the form

% - C7 ''T 1-f 6 ^ Ù^Q

Bricks
1 . LR07B Read binary matrix.

2,3 . LZ61BM Term by term matrix arithmetic.
4 . LZ12B Select Scalar.
3. LS02B Scalar multiplication.

6,7 . LD02B Diag. post-mult.
8, LZ63BM/I Term by term exponential.
9. LZ14b/12 Expand diagonal.

Codewords.
0 0 1 1 47
1 0 2 2 47
2 0 0 1 1 Read [Aj «.,f
3 0 0 2 1 Read r(Vector f A, —
4 3 0 0 48
3 2 2 4 2 r^
6 1 4 0 4
7 4 0 6 3 c,
8 1 3 0 4
9 4 0 8 3 Cz

10 1 6 0 4

 ̂C(Uf'f)
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11 4 0 10 3
12 6 7 2 8 e

- r,13 8 7 4 8
_ - C) nr %14 10 7 6 8

15 1 1 0 4 — r» nr ï
16 2 0 2 3 a,
17 1 2 0 4

-

18 4 0 4 3 ? e
19 1 3 0 4 _ c J V i
20 6 0 6 3 tu ̂  6
21 1 0 0 48
22 6 2 8 2
23 1 0 0 48

^  - r/or ?
24 8 2 2 2 ^  T, e

25 1 0 0 4
26 2 G 2 3 - Vu

27 2 0 4 9
28 0 0 34 1 Read
29 0 0 136 1 Read Tm
30 30 34 64 6 K Tnm m
31 1 0 0 48
32 64 4 4 2 ^nm ’*■ ^nm^m
33 0 0 92 1



- 1 1 6 -

34 8 0 6 32 Replace bricks 8 and 9 by; -
8. LT02B/1 Transpose matrix.
9. LP05B Punch binary matrix. 
10,11,12. LN03B Matrix rmUt.

13. LH02B Add unit matrix.
35 92 0 0 4
36 4 0 4 5 (V + 12. nm
37 4 0 4 13 A^ = I +
38 4 0 30 8
39 G G 93 1 Read =
4o 93 30 93 10
41 G 0 123 1 Head I_ =
42 123 30 123 10
43 30 G 30 8 A°
44 92 2 0 4
45 30 0 30 5 10A°
46 1 0 G 48
47 30 93 6g 2
48 1 G G 48
49 6g 123 4 2 1GA° + A^
50 0 G 34 1 Read I =
51 92 1 G 4
52 34 G 34 5 -121
53 1 0 0 48

(V + K : fZ nm nm
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34 34 4 4 2 A = —121 +
55 4 4 5 9 Punch A.
56 0 0 4 1 Read Lnm
57 4 156 34 6 L Tnm m
58 34 0 34 13
59 92 0 0 4
6o 34 0 34 5
61 34 0 63 8 [sv'

62 0 0 93 1 p
63 93 63 93 10
64 0 0 123 1
65 123 63 123 10
66 63 0 30 8 B°
67 92 2 0 4
68 30 0 30 5 lOB^
69 1 0 0 48
70 30 93 60 2
71 1 0 0 48
72 60 123 4 2 B = 10B° +
73 4 5 5 9 Punch B.
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Appendix D .
Functions for Equation (6,4)
(form Burke and Robertson 1957)*

a = 2w — b + — h , 3 = 2rn - h + g-w - b , y  = .

q(r,r^) = A, expC_ f ̂  Qr̂ p J tf f- _z2s

"f s. Q\p (^fli*)
i i  '  J ,

n(r,r ) = \ q x  A4, (2a^) -t -^i (erp{<tt̂ h) -fitliph* •*<>)))

•* /
p(r,r^) = -Aj^(exp.Cj^ + exp.c^)^ J eyf? i

f  / (/Tprp# /dE;» f J
2; ) if L

cr/>

-f/ ĵ f  67/» Ûf f f  e i X ^^^3 {-Sa)) " ^ y  <Vj
'4‘ C {( ̂  t’v'Z ̂  «V * ) ^  ë̂ 3 j €rxfz (ck% )

^  ( dt^rx Oy^pf^t'*^z0%f
-  (A:/, «-vyr-/♦*,; }

•̂ ĉ ĉ pCh.*hxYb̂  X,ùb,) - ̂j.
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where = 3ot*!r MVp-r^' y), . /J, A U ^ i n
SI » ' p; ' '

®1 = - ^  ̂  ^A-4v/*r»'

^1 =

4
* 'f ^  ̂  ̂  'f- 2u(t

d„ =

^3 “ ' !^ pt^' t "**5- —  ^

d^ = -  ̂  V   ̂ if, J -- -  «y?/'/v;

a I =

d, =

•2 «qf f f  tir»' *J| —  ^  ; i>t̂ c ~2 ~̂tf.
^£L1±-Jl A  ' T. /yy «  ̂ t j -  ^  (j/4( f ;?/<? ) T* ",

a

4 «Xiyÿ

5 = f
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Appendix E .
Coulomb Phases y  for (^He + ^He) and + ^H)

(l) + & .  (2) & e  + ^He.
MeV. n radians) MeV n % (radians)
29 0 -0.029164 29 0 -0.113611

1 +0.021407 1 +0.086134
2 +0.046709 2 +0.187043
3 +0.063579 3 +0.234429
4 +0.076231 4 +0.303002

20 0 -0.033896 20 0 -0.135092
1 +0.023783 1 +0.104093
2 +0.036247 2 +0.223345
3 +0.076360 3 +0.306433
4 +0.091955 4 +0.367308

10 0 -0.049497 10 0 -0.183529
1 +0.036483 1 +0.148443
2 +0.079553 2 +0.319208
3 +0.108276 3 +0.433634
4 +0.129821 4 +0.319618

5 0 -0.069402 5 0 -0.239921
1 +0.031636 1 +0.213759
2 +0.112328 2 +0.432894
3 +0.133138 3 +0.6i4019
4 +O.I83019 4 +0.735321
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MeV,
2

n radians) MeV n Y (radians)
0 -0.108348 2 0 -O.3OI8II
1 +0.081963 1 -0.354973
2 +0.178329 2 -0.722902
3 +0.242189 3 -0.974447
4 +0.290335 4 -0.116485
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