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1. Introduction.

Since Poldert in 1949, first discovered the gyromagnetic nature
of magnetisation in a ferrite medium, large-scale investigations have
taken place into the behaviour of guided electromagnetic wave propagation
in ferrites and numerous devices have been built which depend for their
existence on the reciprocal and non-reciprocal nature of the propagation.
Included in this category are the isolator, circulator and non-reciprocal
phase-shifter. Before proceeding to discuss the particular interest in
ferrite propagation in this thesis, an account of the fundamental nature
of propagation in ferrites is given.

Polder's initial discovery was that, in order to relate the
magnetic flux density and field intensity in a ferrite medium, a tensor
permeatility is required, i.e.,

B = p.E
where [: is the ferrite tensor permeability.

At low frequencies ( ~ 100 Mc/s), the off-diagonal component
of the tensor becomes negligibly small &ndﬁireducos to a scalar. The
discussion in this thesis is confined to ferrites operating in the
microwave region, ( 1 =~ 100 Gec/s) where the off-diagonal component is
significant. The total magnetisation vector of a magnetised ferrite
has associated with it, an angular momentum arising from the aggregate
of the angular momenta of all the unpaired electron spins. Because of
this angular momentum, the magnetisation behaves as a gyroscope, i.e.
if the magnetisation vector is displaced from its equilibrium position
under the influence of a uniform d.c. magnetic field, it will precess

like a top round the axis of the d.c. magnetic field at a



frequency determined by the magnitude of the d.c. magnetic field. Due to

the damping mechanism in the ferrite crystal structure, the magnetisation
vector tends to line up with the d.c. field after an interval of time which

is typically 10-8 sec. However, the precession can be maintained by forced
oscillations which take the form of an applied r.f. magnetic field at right -
angles to the d.c. biassing field. If the precession frequency, determined
by the magnitude of the d.c. magnetic field, coincides with the frequency

of the driving field, a large precession angle is possible and a large

amount of power is absorbed from the driving field and dissipated in the
ferrite crystal lattice. This situation is described as ferromagnetic resonance.
When the magnetisation precesses, a component of magnetisation and hence,
magnetic flux density is set up at right-engles to the d.c. field. The tensor
nature of the permeability follows from this fact. When the d.c. field acts

in the z=-direction,the tensor is given by:i=

n =i K 0
fk = +jK M 0
i : i M°J

where M and K are related to the d.c. field,H,the saturation
magnetisation,M and the operating frequency,f.

In an infinite magnetised ferrite medium, two types of propagation
are normally consideredzi- in the direction of the d.c. field and normal to
the de.c. field. In the former case, it has been shown3 that the normal
modes have circularly polarised magnetic fields and that the tensor

permeability reduces to a scalar which is different for the two senses of



polarisation. For the positive sense, where the magnetic field rotates in
the same direction as the precession, the permeability is 4 - K , and in
the opposite sense, pu + K + Owing to the different propagation constants
for opposite senses of circular polarisation, the electric field vector of

a linearly-polarised wave is rotated as the wave passes through the ferrite
medium. This rotation has been termed Faraday rotation. In the case of
propagation normal to the direction of the d.c. field, the ferrite behaves
as a dielectric medium when the magnetic field is parallel to the d.c. field
and possesses an effective scalar permeability when the electric vector is
parallel to the d.c. field.

Although analyses of wave guide configurations using ferrites
would be valuable, it is usually sufficient to consider the propagation of
plane waves together with a physical reasoning for a working explanation.

In this thesis, an attempt is made to discover means of broadbanding
the microwave resonance isolator, using uniform field biassing. A description
of the operation of the three main types of isolator and a brief history of
the resonance isolator is given as an introduction.

When an energy source operates into a mismatched load, a certain
amount of power is reflected back into the generator, Apart from the fact
that the energy is lost from this load, this effect is undesirable because
it may have serious effects on the output of the source. The source frequency
may be shifted - this effect is called frequncy - pulling -, the output power
is also affected and the reflected energy is dissipated in the source.
Previous attempts to prevent the reflected power from reaching the source
have been to insert an attenuating pad between source and load. The pad,

of course, not only attenuates the reflected energy but also reduces the

3



energy transmitted to the loads The latter effect is always undesirable.
However, the isolator is a device which overcomes this difficulty. It
absorbs large amounts of reflected power without significantly affecting the
power travelling from the source to the load. The isolator is, by nature,
non=reciprocal.s The loss in db suffered by a reflected wave travelling
through the isolator is called reverse loss and the small loss occuring

in the opposite direction of propagation is called forward loss. The three
common types of isolator used in pratice are discussed.

The Faraday rotation isolato;+consists of a circular waveguide
holding an axially-magnetised ferrite rod together with resistive vanes
orientated at 45° at either end of the circular section. When the d.c.
field and fregque..cy are adjusted to produce 45° of rotation of a linearly-
polarised wave, the device works as an isolator. The input and dutput wave-
guides are rectangular and this necessitates transitions into the circular
waveguide. The nom=-reciprocal nature of the rotation insures that waves
travelling in opposite directions have their electric vectors parallel and
normal respectively to the attenuating vanes. Thus, the wave travelling in
one direction is absorbed by the vane and the wave in the opposite directiom
is left unattenuated. The bandwidth of this isolator is narrow and is
operation is critically dependent on temperature,.

The field=-displacement isolator,5’6’7’ using rectangular waveguide
has a thin ferrite strip, transversely magnetised, with a resistive card
placed against one side of the ferrite. When the d.c. biassing field and the

ferrite position are suitably fixed, an electric field null appears at the

ferrite face where the card is located for one direction of propagation but



not for the other. A high reverse loss occurs in the resistive card whilst
the forward loss remains low. The field=-displacement isolator operates far
from resonance so that the size of the biassing magnet can be small. However,
the isolator is difficult to build because of the sensitivity of the isolation
ratio with respect to the position of the strip, the d.c. field amplitude and

the low-field loss in the ferrite. Furthermore, the field-displacement

isolator is limited to low-power operation as there is no good heat sink from
the ferrite.

The most widely-used isolator is the resonance type. The earliest
isolatorssemployed a thin strip of transversely-magnetised ferrite assymetrically-
positioned in a rectangular waveguide. The ferrite biassed to resonance and
absorbs power from the travelling wave in the waveguide. If the r.f. magnetic
field is circularly-polarised in the same sense as the elctron spin precession,
a large amount of power is absorbed. For the other sense of polarisation,
the wave passes almost intact. The ferrite is placed in a position of
circular polarisation and non-reciprocal attentuation results. This is
because a wave polarised in one sense and travelling in the +z-direction
looks to the ferrite like a wave polarised in the other sense when travelling
in the =-z-direction. The losg in the +z-direction is called the reverse
loss and in the =g-direction, the forward loss. In general, the magnetic
field in the rectangular waveguide is elliptically- polarised causing the
isolation to have a finite bandwidth. (The linewidth of the ferrite resonance

also affects the bandwidth).

High reverse losses were obtained with the full-height ferrite slab



but the isolation ratio, (the ratio of reverse-to-forward loss), was disappointingly
lowe. Fox?found that making the ferrite slab very thin to avoid the variation
of circular polarisation with position across the ferrite, did not entirely
eliminate the presence of considerable forward loss. It was also observed
that by using a ferrite of less than full guide height, the isolation ratio
was much improved over the full-height case. This occured at the expense

of reverse loss per unit length,. Weis;1has investigated the isolation
properties of the H=plane and E-plane isolators. In the H-plane isolator,

two ferrite slabs were placed on the top and bottom faces of the wave-guide,
respectively,with the broad slab dimension parallel to transverse H. The
broad face was parallel to transverse E in the E-plane isolator. In both cases
the isolator ratio was much improved on the performance of earlier isolators -
isolation ratios of 75 to 1 for H-plane and 60 %o 1 for the E-plane isolators
to be compared to 25 to 1 for earlier isolators.

Weiss also showed that dielectric loading of the waveguide results
in generally-improved performance. The reverse loss was increased due
to the energy concentration in the dielectric. Also the reverse-to-forward
loss was improved.

The bandwidth of the isolation can be increased by using different
types of ferrit;f tapering of the d.c. magnetic field by means“of tapered pole
pikeces or using different thicknesses and heights of ferrites in tandems. A
broadband resonance isolatogzwith a bandwidth of 4.5Gc/s has been built at

S band in parallel=-plate transmission line by using dielectric concentration

effects in conjunction with a narrow-linewidth ferrite biassed with an

inhomogeneous magnetic field.



The broadbanding effect can also be achieved by using waveguide
structures where the dependence of the position of circular polarisation
with frequency is made small. This can be arranged by removing, as far as
possible, the variation with freguency of the axial propagation constant,
two such structures as the dielectric loaded rectangular waveguidésand the
ridged waveguide. A coaxial line resonance isolator which uses dielectric
loading to create regions of circularly-polarised field at the dielectric face,
has been reported in the literature. Also, resonance isolator;hiorking at
C= and S band have been reported which use ridged waveguide with dielectric
loading between the ridge and the top waveguide wall.

With uniform field biassing, the bandwidth of the resonance
isolator depends on (a) the linewidtﬁgof the ferrite and (b) the degree
to which the r.f. magnetic field remaing circularly polarised with respect
to frequency at the ferrite location. The linewidth may suitably be dealt
with by a suitable choice of ferrite material and by field tapering
mentioned earlier., The second factor is more serious than the first, in
the present state of the art, and the discussion in this work on resonance
isolators is exclusively concerned with the behaviour of the circular
polarisation of the r.f. magnetic field.

The conventional approach to problems of this kind has been to
investigate the fields in structures which are expected to have the necessary
conditions of circular polarisation and to place the ferrite in the position

of the circular polarisation predicted by theory. This procedure has the

obvious limitation that, if the perturbation of the fields by the ferrite is



large, the theoretical results are invalid. Fortunately, the ferrite
perturbation does not secem to be serious when its cross-section is smll.
From a mathematical point of view, this is very convenient because the
derivation of the electromagnetic fields in most ferrite configurations
in waveguides is exceptionally difficult. Thus an analysis is made of
the waveguide structure without the ferrite and the ferrite properties
used to determine the behaviour in the presence of the ferrite.
Basically, problems concerning the propagation of electromagnetic
waves in waveguides are solved by finding the appropriate solutions of
Maxwell's equations which satisfy the prescribed boundary conditions on
the waveguide walls. In a loss-less and source-free region of space,

e

Maxwell's equations are ' —

curl E = §

curl H = 1)_

div B = O

div D = O
where D = eE and B = n H

Eliminating either E or H from the above equations we obtain

the vector wave equation:

In a rectangular cartesian coordinate system, each component

of E or H satisfies the wave equation,



V2¢ +w2/,x€¢ = 0
where ¢ is any component of E or H.

When the waveguide being considered has circular boundaries,
it is possible to find a wave equation through which all the propagating
field components may be derived. Assumin_ that propagation takes place
in the waveguide, in the axial z-direction with dependence e-jﬁz’ the

wave equation may be written in its two-dimensional form,

V§¢+k2¢ = 0
where 't' denotes transverse coordinates.
K2 = w 2. '32

The fields in waveguide structures are found on solution of
the wave equation in the particular configuration being considered.
The normal method of solution is to separate the wave equation into two

ordinary differential equations and to find the solutions of these which

satisfy the boundary conditions. In many cases, however, this procedure
is not simple especially when the boundzxy conditions are complicated,

e.g. the ridged waveguide. The resultin: mathematical complexity of the
solution makes the preparation of programmesfor an automatic digital
computer a difficult task. A numerical method seems to be more suited

to the problem of finding particular solutions in waveguide structimres.
Young and Ho‘nmamn,~7 have used a relaxation procedure to determine the
cut-off frequencies of single and double ridged waveguides. In this work,
a finite difference method is used which allows both the eigen-vectors and

eigenvaluesof the wave equation to be determined simultaneously. Although

)



most of the problems discussed in this work are concerned with resonance
isolators, it must be stressed that the finite-difference method is quite
separate and a powerful tool in dealing with waveguide problems in general.
The first part of the thesis is concerned with a definition
of the polarisation factor and the analytical solution of the wave equation
for dominant mode propagation in the dielectric loaded waveguidse, (section
3) and the ridged waveguide, (section 4). Section 5 begins with an
introduction to finite-differences and proceeds to show the application of
the theory to the simple problem of dominant mode propagation in the rect-
angular waveguide, for which the solution is already known. The section
ends by dealing with the ridged waveguide by finite-differences and
comparing the results to those of section 4. Certain inhomogeneous
waveguides are discussed in section 6, also by finite-differences. The
experiments performed are described in section 7 and the results given.
Calculations of loss in dielectric and ferrite samples in waveguides are
given in section 8 and further applications of the finite-difference

method to problems involving cylindrical geometries, in section 9.



2. Polarisation Characteristics of Waveguide Structure.

The discussion in this section is limited to waveguide
structures excited in the dominant H-mode, whose field components
are expressed in rectangular cartesian coordinates. The y-axis is
taken as the direction of the d.c. magnetic field, and the z-axis as
the direction of propagation in the absence of the ferrite. The
unloaded fuide fields are assumed to be perturbed negligibly by the
ferrite sample. Shapes of cample for which this procedure is wvalid
are discussed by Soohooi
The x and y components of microwave magnetic field may
be related throuzh the equation
B = & ( %78 ) H 2.1
The quantity, P, is defined as the polarisation factor at
frequency f, at a point x,y, in the waveguide cross-section. When
the r.f. magnetic field is circularly polarised
P (xo,yo,fo) = 1 Ss
The object of the investigation into the behaviour of P in
certain waveguide structures is to find how the deviation of P (xo,yo,f )
from unity can be minimised. A suitable standard for comparison
purposes is the rectangular waveguide, operating in the HOl mode, of

broad dimension A, cut-off frequency fc’ which has a value of P given

by )
P = ( (g/£)% - 1) #tan "X 2.3.
c A
C
where f = — , AN = 2A
(o] (]

A,
2 B -l R : |
This formula indicates that Sf 18 minimised in the neighbourhood



of unity P by taking £ > :f‘c. This criterion

is limited by the onset of propagation of the Hozmode at £ = 2fc.
2 P ) 4 g . . This
However, >F "y also be minimised by reducing fc may be

accomplished by (a) introducing a dielectric slab into the waveguide

or (b) inserting a ridge intoc the waveguide cross-scetion. The effect
of these alterations is discussed in sections 3 and 4 respectively. it
is also feasible to obtain the minimising effect by increasing A, thereby
lowering fc. The main objection to this is that the problem of matching
the section of waveguide with increased width to ordinary waveguide

of width A, is considerable, especially when the match is required

over the whole operating frequency range. I'or this reason, the idea

of increasing A is abandomed and in all cases where X band waveguide

is mentioned, A is the standard 0.90".



3. Dielectric Slab Loaded Waveguide.

3.1. Indroduction.

The relation between free-space wavelength, xo’ and guide
19

wavelength )E’ in a rectangular waveguide is given by

5 2
A U
g - = )o 2 3.1.1.
L=k Ac )

where %c is the cut-off wavelength.
However, when the rectangular waveguide is partially filled with a
dielectric slab, there is no such simple relation between )\o and
A & This is because the transverse wavenumber (equal to -%;:

in the case of the rectangular waveguide) is no longer constant, but

is frequency-dependent, and has separate values in air ,kﬁ, and in

dielectric, k. . In fact

D
e 2o pta (23002 L (B 5.1.2.
2 2 2 2 oy (2
k * Pt = B S -~ RN o T Fidan.
where e

r 1is the dielectric permittivity.
The relation betwenn KA and kD is determined from the character-
istic equation which is derived by applying the continuity conditions
at the dielectric face to the field expressions in the two media.
From the characteristic equation, the dispersion curve may be drawn:
i.e. the variation of %g wi th AO. (nly then is it possible to calculate

the dependence of P with frequency and with position in the cross-section.

12



20
The characteristic equation, derived by Lewin, is obtained in the following

section.
5.2, Characteristic Equation.

The geometry of the dielectric slab loaded waveguide is shown
schematically in the Fig. 3.1. The dominant H-mode is assumed to
propagate along the z-axis with longitudinal field dependence e-jPz.

The field expressions in regions 1, 2, and 3 may be written down, omitting

the dependence e-"‘j(mt R lsZ):

Region 1
Ey = sin k.A X
H = —E—- sin k, x. Belde
X w M A
jk
A
Hz = cos kA X,
Region 2
Ey = M sin ka + N cos kD X
B - —E—(M sin k. x + N cos k_ x) 3.2.2.
% W ED D
E = 9% ,
z e (M cos ky x = N sin k) x)
Region 3
Ey = L sin kA (A - x)
H = fL sin k, (A - x ) %6245
X wp A
= =3
By = D Leosk, (A -x)
wp A
We define the non-dimensional quantities, 84 and 8, to be
d = 2
51 T 4 P T &

1h
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As previously mentioned, the characteristic equation is found

by applying the continuity conditions at x = slA and x = SZA'
1. (Ey)l = (Ey)2 at x = sA

sin kAA82 = M sinkDAs2 + N cos kDAs2 Be2edks
2 (Hz)l = (HZ)2 at x = sA

k, cos ky, A s, = ky (M cos kAs, - N sin kg Asz) 3.245.
3. (Ey)2 = (Ey)3 at x = s,A

L sin k, A (1 - sl) = M sin kj As, + N cos k As, 3.2.6.

4. (HZ)2 = (HZ)3 at x = sA
- L cos kAA(l - sl) = ¥ (M cos kA s, - N sin kDAsl) -

Dividing 3.2.4. by 3.2.5. and 3.2.6. by 3.2.7., there results

the following pair of equations for ! e

N
k
A
— tan As - tan As
S | D *e2 s o 3.2.8.
N %D
l + — +tan As. tan Kk, s
k, kp 4=, 452
tan k_ As +itank A(1 - s,)
M kD 1 kA A i §
302e9e
" kp
D tan k, A(1 -s,) . tan As, =1
kA A i & kD 2



Equating the right-hand sides of equations 3%.2.8. and 3.2.9.

and rearranging, we have : =

tan k, A (1 - sl) + tan k, As

FD A 2
- =0 3.2.10.
tan kD.A(sl s2) + k, AR

1 - (=) tan kA A(l - sl) tan kAAsz

5

Equation 3%.2.10. is the characteristic equation mentioned in section 3.1.
For the purpose of convenience, the characteristic equation is written in

the following form:-

tan F + tan (Gl - G2) = 0 LB P
F = ki (sl - s2) 5. 2:32,
k
A
where tan G1 = kD tan kA A52 Do dSe
K
and tan G, = —= tan k, A1 - sl) 3224,

. )
Ba D Solution of the Characteristic Equation.

The parameters of equation 3.2.1l. are s

1? 82 and er.
2o : .
The variable, u = —=— 1is introduced and inserted into equation
=}

3.2.11. The only unknown remaining is E%a) which my be found by
trial-and-error or by iteration. The iteration procedure is
admirably suited to automatic computation and, for this reascn a
programme in alphacode interpretive scheme has been written for the
DFUCE computer. An outline of the procedure involved is described

at this Jjuncture.

16



The solution of equation 3.2.11. is: -

F + G1 + G2 + mmw = 0 30301,
where m is zero for the dominant mode.

Having specified all the parameters of the waveguide and the
variable, u, a guess is assumed for the value of F which satisfies
equation 3.3.1.

According to Taylor's theorem, the true value of the left-

hand side of equation 3.3.1., (f(¥) ), may be expanded in terms of

the value obtained from the guess and its derivatives, i.e.

f(g) = f(Fl) . hfl(El) 3,342

where h = F - F
1 0

Therefore, since f(Fo) is zero,

~ f(Fl)
h = S [ P8 P
f (rl)
A better approximation to the true value of ¥ is now obtained

by adding h to the previous value of F. The whole process is repeated

until the value of F is close enough to Fo so that

f(Fr ) € o 3.3.4.
where © is an arbitraril, small number. At this point
the iteration is stopped and the value of 2%75 calculated algebraically
from ' by means of equations 3.1.2. and 3.2.11. Thus, one point on
the dispersion curve is located - usually the cut-off condition (u = 0)

is obtained first. Other points on the dispersion curve are obtained

17



by increasing the value of u and repeating the iteration procedure
described above using the old value of ¥ as the first approximation to
the new . On the digital computer, the dispersion curve is obtained
automatically by prescribing a set interval in u.

At any point on the curve, the unknown field coefficients
L, M and N may be calculated, enabling the field components over the
whole cross-section to be worked out. Also the polarisation factor, P,
and the ratio of the transverse magnetic field strength to the square root
of the total power flow are simply deduced. This last quantity is of
importance in deciding the axial length of the ferrite material to be
placed in the position of circular polarisation because the attenuation
per unit length of the ferrite depends on the magnitude of the r.f.
field presented to it. The overall power flow is calculated from the

complex Poynting vector, E X H,*
A S E
W = E X H) . ds 55 0
s

where S is the waveguide cross-section.

The integral in equation 3.3.5. is split into three parts -

Wi and W5 to give the power flow in regions 1 and 3, and W2 to give the
power flow in the dielectric, (Fig. 3.1.).
On evaluation of the integrals we find that
e sin 2k, As
0 A 2
e wR (s, - %, A ) 3.3.6:

18



e
W, = —2aRH45%)

sin 2(k As. + @)
[(81-82) 2 kD 1

e o 2k A
sin 2(k.  As_ +6) -
= oy 585 J
2 ey & 5. 3.6
e sin 2k, A(1 - s.)
i — R (1-5s)) - A . ]
Mo 2k, A
W
5 o
where R = ;—% (-—e—:—> & = tan k (%L) 5.3.7.

The ratio of Hx to W% introduced earlier in this section
may beworked out for region 1 by means of equations 3.2.1. and 3.3.6.
This expression, however, is not dimensionless and 2 dimensionless form

is defined by the following equation

)§ where Hx is dimensionless

|

[

==
= |

= (u}h sin kAx Be DB
g
where g =
sin 2k, As, , , sin 2(kAAsl +0)
(32 - ) + (M + N )[(sl - 82) - +
QKAA ZKAA %
sin 2(k,As, +9) ] . sin 2k A (1 - s,) 2L
; j - L {(l - sl) - X
2k A
ZkAA A

19



The corresponding expression for ﬁx in a rectangular waveguide

propagating the dominant H-mode is

1
_ B X
(ﬁx)A (u)® sin i 3.3.10.
1 a
The maximum value of @I_X)A is 5 when ¥ is 3 andu = 1.

A comparison of Ex with the maximum value of (Ex)A is useful in deciding
the ratio of the axial lengths of ferrite to be used in the case of

the rectangular waveguide and the dielectric slab loaded waveguide.



344, Discussion of results.
The following quantities have been computed for a series

of parameters,s and e, as a function of u ¢-

1%
dss dA/>\o
2. P(saA,y,f)

S¢ M

(0
vl
o
lus
ks

1

(4

)

=2

These gquantities are presented as a function of u in Table
5.1. for a typical dielectric loaded waveguide, ( e = 12, t/A = 0.20)
The cut-off wavelength is sharply increased when the dielectric is
introduced into a rectangular waveguide. The dispersion curve rises
rapidly at values of 2A/ X, bear cut-off but levels off for larger
values. In X band, ( 1.2C <IEA/'>O £ 1.86 ), the values of u are all
greater than unity, ( see Table 3%.1. ). Consequently, for this parti-
cular loading, the phase velocity of the travelling wave is less than
that of light throughout X band and the air-filled section of the
waveguide is transversely cut-off, i.e. kA is imaginary. The energy
in the wave tends to concentrate in the dielectric, setting up a
high field strength at the dielectric face, ( see ﬁx in Pavle S5.%0x )
This situation should be compared with that of tne empty rectangular

waveguide where the phase velocity is always greater than that of

2



Table 3.1. Dispersion curve and fields; s, = 0.6 s. = 0.4

0.0| C.4212 0.0000 0.0000 0.4229 |-0.37106 1.0000

0.4 0.4269 0.2337 | 0.6274 | 0.3906 |-0.3543 1.0000

0.8| o0.4453 | 0.4655 | 0.8900 | 0.2611 |-0.2620 | 1.0000
1.2 L'"fdl6 O. 6(1:“\' 100&69 O. d‘/f—); -LJ.J(SZ? lcoooo

2.0l 0.6732 | 1.0377 | 1.4605 | 0.3725 |-2.4509 | 1.0000

2.4 0.9226 1.0862 1.6326 |-3%.0415 |-7.3%885 1.0000
2.5 L.4179 | L.0702 | 1.6680 |-04.657 |-14.504 1.0000

3.2| 2.7615 1.0527 1.%63%8 |-24062. 4shép, 1.0000
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light and the field dependence is sinusoidal.

The field coefficient,L, which is theoretically unity
when the dielectric is symmetrical about the centre of the waveguide
is calculated by means of equation %.2.5. from ¥ and N. The close-
ness of the computed value of L to unity determines the accuracy of
the soluticn of the transcendental eguation and provides a check
that no error exists in the computer programme.

The effect of slab thickness and permittivity on the
polarisation factor,F, is shown in Figs.3.2a. and %.2b.,( the variat-
ion of P with y is zero since the fields are independent of y for the
dominant mode ). In Fig.3.2a., P(SEA,y,f) is plotted over X band for
three dielectric slabs having permittivity, g B 12, but different
thicknesses. On the same Figure, P is drawn over X band for the case
of the rectangular waveguide in the guide position where P is unity
at 2_‘1!./)\o = 1.60. In Fig.3%.2b., the variation of P(SZA,y,f) is plotted
for three dielectric slabs having the same thickness, but different
permittivity.

In Fig.%.2a., The curve of polarisation factor against
frequency rises very sharply, in the case of the rectangular wave-
guide, on either side of the centre frequency. Defining the bandwidth
of circular polarisation as the range in frequency for which P is
less than 1.10, it is apparent that, as compared with the dielectric
loaded guides, the rectangular waveguide is narrow-band. From the
curves referring to the dielectric loaded waveguides, it is observed

3

that the minimum value of P over the band is obtained for the dielec-
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tric with the largest thickness and that, in each case, the bandwidth
of circular polarisation covers the whole of X band. It is observed
from Fig.3%.2b. that, for a given thickness, the minimum valuéé‘of P
are obtained with the dielectric of highest permittivity. The situa-
tion, however, is complicated by the fact that the higher-order mode,
the Ho2 sy begins to propagate at a frequency which is determined
by the magnitude of the dielectric thickness and permittivity. The
larger the dielectric thickness and permittivity, the lower the cut-
off frequency of the H02 mode. Since it is necessary to gvoid the
propagation of higher-order modes in_the operating frequency range,
a compromise has to be made in the size and permittivity of slab
which can be used. For this reason, a dielectric constant of 12 has
been used throughout and the thickness chosen so that the cut-off
frequency of the H02 mode occurs near the upper end of X band.
Experiments are described in section 7.2. in which the
magnetic field polarisation is measured in the dieleciric loaded
waveguide by means of a small ferrite sphere. The results show that,
for the loading considered, the r.f. magnetic field is substantially

circularly polarised over the measured frequency range.

24




4. Rudqed Waveguide - Orthogonal Modes.

4el. Introduction.
21

Cohn and other authors have shown that the introduction of
a ridge into a rectangular waveguide depresses the cut-off frequency of
the dominant mode whilst having little effect on the cut-off frequencies
of the higher-order modes. The difficulty which may be met with in the
use of dielectric slab loaded waveguides for isolator applications -
the propagation of unwanted modes at higher frequencies - is thus avoided
in the ridged waveguide. To the present author's knowledge no published
figures have been presented for the field expressions in the ridged wave-
guide. In the present section the cut-off relations and the field express-
ions are found by orthogonal mode approach similar to that used by P.N.
Butche;UZn the slotted ridged waveguide. The complicated set of boundary
oonditions on the ridged waveguide walls are satisfied by expressing the
field components as infinite Fourier series in terms of fundamental solutions
of the wave equation. Satisfaction of the boundary conditions results in
an infinite number of linear equations in the coefficients of the Fourier
series. The determinant of these equations must be zero for a non-
trivial solution. It is necessary to use an approximation to the doubly-
infinite determinant and a 2 x 2 determinant is chosen as a reasonable
approximation. The solution of the determinantal equation provides the
cut-off wavelength, and the field expressions and circular polarisations
factor, P, may be deduced.

4.2, Solution of the Wave Equation.

The transverse cross section of a typical single-ridged waveguide
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is chosen in Fig. 4.1. The a . r-filled region, in which solutions to the
two dimensional wave equation are sought, is divided into two rectangular
regions, 1 and 2.
. A A
Region 1. ("2"—8.)\<X\<"§, - B + bp)fy<- B

4.2.1.
: -B< y<o0.

Region 2. 0SS xY
Solutions of the wave equation satisfying the boundary conditions
on the metal walls and the axis of symmetry, are written down as infinite

series whose coefficients are determined by applying the remaining boundary

condition on the line of continuity of the two regions:

y = —B N -2' - 8,\<X\<E 4.202.
Thus in region 1,
_ -ip=z ; y+B+b Mmooy &
N e Z;g #, sinh p, ¢ soei=—(x -5)s 4.2.%s
In region 2,
-if = }Zj ¥y ... mX
¢2 = e ¢2m cosh pZmA sin == 4.2.4.
m=1
2
2 2 2 2 mA
p- o= (BT =P ) BT )
1m 4.2.5.
2 2 2 2 2
p2m = (F == %0) A + (mw)
2
2 % w
where (p - P o) = (2'7tg )

The electromagnetic field components are derived from @ through

equations 5.1.1.

On the line of continuity between regions 1 and 2, all field
components are continuous.

In the case of Ex,
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T il
¢2m sinh p, T sinmvxp, = 0 0<£x< (A -a) 4.2.6.

m=1 A 2
(odd)

no =

: b L Ay A
g);d 1p Pip Sinh Py g cos m (x-z),z-asxS

and in the case of Hz,

=0
. L > b cmw
Z ¢2 cosh ¢ sin = ¢l cosh p,_ 3 cos il - 2) A8 Ts
m=1 m=0 a
(0dd)
Multiply 4.2.6. by sin n;rx and integrate from O to %
. B i -~
Porflon 5100 Py p = 2 #1n Pip Sind plm% X m SR
A
Ko j2 sin n- -}Ecos mj}(x-%)dx 4.2.9.
2 nT T
= -463) % i 812 2sin A .n (n o0dd) 4.2.10.
a° — 5
&)
r. : " Tr A\ - A A
Multiply 4.2.7« by cos r = (x - -5) and integrate from -z—a.to >
B a b
rZ_ ¢2 cosh p, T K = ¢lm ( - )Am cosh p,_ T & SLHE,
(0dd)
A = 2 m 54 0
m
Am = 1 m # O

Substituting in 4.2.8. for @, from 4.2.11,

plm

b
Knm'Krm° tanh iy

- ¢2n sinh p2n 1—}3- = Z Z ¢ cosh p2 f .
(odd) m

)

=
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g
-2 4, p_ocosnp, Z
p=]l 2r “nr 2r A 4.2.12.

(odd)

Therefore:
o3
B B
%E; ¢2T cosh Poy 3 (Pnr 4 Snrtanh Pon i = 4+2.13.
(odd)
K UK
A 1 zzr b "nm “rm
L p,, tanh p. = 4:.2.14.
nr 2a Pon, =0 1m lm A .

For a non-trivial solution, the doubly infinite determinant
of the function in the brackets of equation 4.2.13. is zero, i.e.
B
A

However since Pnr tends to zero as n,r, become large, and tanh

b -
Det ( P__ + oy 200 Py 0 4+ 2:15.

nr

p2n f-tends to one as n becomes large, then a reasonable approximation

to equation 4.2.15. is a two-by-two determinant

B
Pyp + tanh p,y 7 P

13
B = 0 4.2.16%
P51 P55 + tanh pZBI

Solutions of equations 4.2.16 were found by means of a digital
computer, DEUCE. A brief description of the method of sclution is given
in section, 4.4.

An alternative method of finding the cut-off wavenumber and field
components is to sub-divide the waveguide cross=-section into two rectangles
whose intersection is defined by the straight line

x =%ﬂ’ 0Ly<-B (Fig. 4.1.)

and repeat the orthogonal mode analysis applied above.
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4.3, Alternative Solution of the Wave Equation.

The followinsz analysis is introduced principally to provide
a suitable comparison for the calculations of cut-off wavelength performed
in the previous section. The fields found by the two approaches could
also be compared, but it is assumed that if substantial agreement exists
between the cut-off wavelengths, then the fields are likely to be in
agreement also.

The two regions in which the cross-section is divided are defined
by the equations,

A
= = &

, 0<y < -(B+d)

A
(N o

Region 3,
4.3.1.

V4

Region 4, 0<x <X -a, 0Sy< -B

(N

The solutions to the wave equation in regions 3 and 4 satisfying

the boundary conditions on the waveguide walls are written as follows:-

¢3 « gif" Z 5253 cosh Py L—l) cos L 459,

=t A Btb
¢ -« pd = Z ¢  sinh X cos 2L 4.3.3
4 m=0 *4m Pim & B v ae
2
2 2 2y o2 (mwa)
Pry = (f° - p ) & B+ b
= 4.3.4.
2
2 2 2\ .2 (m7A)
p4m = ( F - po) A + B

The remaining boundary condition to be satisfied is the continuity

of all the field components along the line

For the continuity of Hz’ we have that
o o l & " -
a nvy = S sinh oo ) cos LBl A
ZET ¢3m cosh Dy T €08 F Iy 7 ¢4m B (2 i B
=0 m=0
0g y< -B 4.3.5.
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In the case of Ey’ we have that

oy
a m
- Z ¢3mp3m ulnhPBmA cos F4% = 0 -B<y € - (B+b)
m= 4-3.6
> oy
m
= $,. P, c08hp, (5-7 0<y< -B
m=g = 4m 4r1r 4m *2 A B
Multiply 4.3.5. by cos _B—X and integrate from O to =B
co
Z¢ cosh p, = ¢ =-l‘-¢ sinh p (l =& ) K o
h 3r 3r A rm 2 74m 4m ‘2 A m S
Multiply 4.3.6. by cos g—-'::y—g and integrate from 0O to =~ (B+b).
B+b % a 1
55 P30 Pan 8370 D5, TH - Zgo Py Pam ©OSB Po 2% %am  4.3.8.
- X -B _'"I nvwy
Cmr_Bar cos cos T % dy.
.. mmTB
_ B. m. cos rw. sin B+ b 4.3.9.
2
2 B m
B + Bc ¥ 3 Tr . 1 o ('—B‘;TE' T )
Combining 4.3.6. and 4.3.8., we have
C C
. a Tm nm
¢ P, sinh p, — A = 42__ Z #._ cosh p Py, ——— ocoth p
n “3n n A n G0 Tl 3r 3r A 3m Am 3m
1l_a
(3-8
Thus
rz=0 ¢3 cosh p3 (Q‘nr + 3 tanh p5 = 0 (ef. equ. 4.2.13) 4.3.10
o = _ 8
f p4m rm Cnm otk p4m (2 A)' B 4.5, 11
G = 4 .
m=0 p A A B+ Db
3r m T

As in the previous section, a 2 X 2 approximation to the
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doubly~-infinite determinant of equation 4.3%.10 is taken,

a
+ tanh p.. =
QOO 30 A Q10 N -0 4.3.12.
%1 Gy % EERRe
Since COm = 0 m ;4 0
= 1 m = 0, then

__B = . &
Qo =T+ omPp(3-7)

Also
QOl = 0 unless m = O
2 P .. TB
= = _~40 sin l_a _
- Py 7 b Ot Pyg ( = =¥ Yo (m o)
and P ™ B
O s—— 3 a
Q =l-‘A_Sin coth (= -=) (m = )
10 = pBO B+b 2 A

Qll is the only term in equation 4.3.12. for which the infinite
series of equation 4.3.11 must be evaluated. The other 'Q' terms reduce
to the simple forms shown above. Consequently the solution of equation
4.3.12. is very much more simple to find than the solution of equation
4.2.16., in which each of the 'P' terms involves an infinite series.

The solutions of equations 4.3%.12. and 4.2.16 are presented
for the same set of ridged waveguide parameters in Table 4.1. The

results which refer to sections 4.2. and 4.3. are labelled with the

subscript P and Q respectively.

1 =
Table 4.1. Cut-off Wavelength - % = Z B + ;2_ = %
E’ 0.1C 0.15 0.20 0.25 0.30

(A 0.911  0.847 0.768  0.686  0.601
c’p
(z%\c)Q 0.902  0.838  0.766  0.686  0.600

B e 3]




In table 4.1., there is good agreement between the two separate
calculations for 2 %\c which is morepotounced for larger values of %,
i.e., when the ridge height is large. It may be deduced that the

employment of the 2 X 2 approximtion to the doubly-infinite determinant

in both cases considered, is Jjustified as long as the P

i3 is greater than

0.10.

Once 2 %c has been determined, it is possible to find the field
distribution over the ridged cross-section through equations 4.2.3%. and
4.2.4. Since a 2 X 2 approximation has been taken for the determinantal
equation, only the first two terms in the series expansion for the field

components need be considered. Accordingly,

-iB 2 y+B+b y+B+b !
o (¢10 sinh Py =3 + ¢ll ginh py, —5— - €08 3

%

(x _%) ) e L 8

ik

%

L s X ¥ k., 20X
(¢21 cosh p,, 4 sin =¢ + ¢23 cosh Ppz y Sin < ) 42018

In section 5.7. the magnetic field components Hx and Hz are compared with

those found by the finite-difference approach, along the line,

y = 0 0<€x (%
By setting y = 0 in equation 4.2.18. and using equation 5.1.1.

the HZ and Hx expressions are found to be:-

4
_ . Tx 2% . STx
Hz2 = ¢21 ( sin = *+ bt sin <F )
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e T 9T e )

¢21
g, (cos = + 3 cos
21 A ¢23 A

The ratio, agl y 18 determined from equaticn 4.2.13 when the
23

solution of the determinantal equation is complete.

P (x,0,f,) is determined from the ratio of H,  toH,. In region

(2)’ ¢21
X é mX
COo8 = w—_ cos
(X,O,f) = J ﬁAz ( = ¢* 2 2 )
(kA ) . 21 ool B
s1in— + sSin
i s i

A discussion of the field distribution in the ridged wvarguide

is left over until section 5.7.

4.4. Numerical Computations.

The determinantal equation 4.2.16. being trancendantal, is best
suited to solution by iteration. Since one of the ridge parameters,
f-, occurs in a simple form in the equation, it was decided to make-f
the 'unknown'. In order to evaluate the 'P' terms, it is nesessary
to specify'i-, E-, and %%b' From the physical point of view, it would be
better to prescribe all the ridge parameters and to determine the cut-off
from these. However, since %éb occurs in all the 'P' terms and 'tanh' terms
in equation 4.2.16., it is more convenient to approach the solution
in a roundabout way. Having evaluated all the expressions in the deter-
minantal equation, it is relatively simple to findf by t®al-and-error

or iteration. The infinite series involved in the expression for Pnr
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converges quite rapidly. Yor, as m increases, the mth term varies as

—3 . It is quite sufficient only to evaluate the first five terms in the
zeries, to obtain P to within 0.1% The iteration procedure was carried
out on a DEUCE computer using a Tabular Interpretive Programme (T.I.P.)

in which computations for thirty values of 2 %5 are dealt with
simultaneously. The values for a given set of ridged parameters are then
found by linear interpolation.

Since only a few results were required for the solution of

equation 4.3.12., the computations were carried out by trial-and-error

using a desk calculation machine.
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Be Finite Differences.

Bele Defining Equations.

In a lossfree and uniform, homogeneous waveguide, only uncoupled
23
H- and E-modes can exist. The electromagnetic field components are then

defined, for a pericdic time dependence, ert and axial dependence emJpz

24
by the following equations:-

H-modes
,“z@c " iR
k%_it = +jup(gz x chf) 5,351
H2 = ¢

E-modes

kB, = -3V, v
%,

k = -J V 4 elele
jwe(, x V.4 ) T X
El = Y
where k2 - h>2ft€- @ 2, is the axial propagation constant,

g; is a unit vector in the z-direction and the subscript 't' refers to the
transverse (x and y) components of the vector.

The functions  and are solutions of the wave equation:-

(Vf + k2)¢ = 0 O (e,

subject to the boundary condition:

ﬂ~0; L 4

9n

Further boundary conditions may arise in particular modes due to symmetry

o on the perfectly conducting waveguide walls.

conditions.
De2a Finite differences in two Dimensions.
This section begins with a brief account of the basic idea of the

25
finite-difference method which may be found in the standard texts.
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Consider a function ¢ of the transverse Cartesian coordinates
x and y which is analytic in a region of the xy-plane. A particular
point O in the region is surrounded by four eqiiidistant points as in Fig.
5.1. The separation between O the four points 1 - 4 is labelled ™m'.
By means of a Taylor series expansion, the values of ¢ at the points 1 - 4

may be written down in terms of h, ¢ and its derivatives at the point O:-

e 3 3
h 7
¢1 . ¢o+h¢:§+ 3.755); +?.7¢$o...... 5.2.1.
s = Fy = "+ P - T i 5.2.2.
2 2 5 .3
7 h h
¢2 = ¢O+h¢z+ ‘?ﬁ.{ +_3_.’_¢}o' B e o a1 e 5’2‘3‘
¢4 = ¢0 - M F W o W R L W R 5+244.
n n
S ¢§ = 2—2%;-) at the point O
X
n "
= ( -zlég-) at the point O
oy

Adding equations 5.2.1l., 5.2.2., 5.2.3., and 5.2.4., neglecting all terms

in (h)4 and higher order, we obtain the following equation:-

4 g m® € 2 (g2

‘£1¢S-4¢O = v+ ) = (V) AT
Equation 5.2.5. shows the basic representation, in terms of surrounding
function wvalues, of ‘73 ¢ at any point in the regiom. If ¢ satisfies the

wave equation, equation 5.2.5. may be written as:-

M

2 .2
g - 4, = 2K g 5.2.6.

To apply the finite-difference method to prop}gation in rectilinear
waveguides, the waveguide cross-section is sub-divided into a number of

square sub-regions of side length 'n', the intersections of which are
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labelled field-points (Fig. 5.2.). The waveguide shown has, for the
purpose of generality, boundaries which are rectilinear but otherwise
arbitrary. At each point in‘the waveguide cross-section, equation 5.2.6.
is applied, points on the boundary being dealt with in the following way:-
The point O, in Fig. 5.2. lies on the waveguide boundary. Since the

boundary condition on the wavezguide wall for H-modes is:-

28 _
Dn

then, to a first approximation, the value of ¢ at the point 2 is equal
to the value of ¢ at the point 4, i.e.
g, = +¢,
Therefore, in this case, equation 5.2.6. becomes
2 2
In the case of E-modes, ¥ = O on the boundary so that

¥, - '\k4
Therefore, for E-modes, equation 5.2.6. becomes
2. 2
W - = - o0
" 4w, k" 5.2.8

Difference equations at points on the remaining boundaries are
dealt with in the same manner.

It is sometimes advisable to have field-points not on the
waveguide boundary but rather, half a mesh length away from the boundary.
This may be visualised by considering all the points O - 4 in Fig. 5.2.
moved down half a mesh length. In this case, the difference equaticn
5.2.6. for ¢ and ¥ becomes:-

b+ 8,48, -, = 0K g 5.2.9.

Wy o ¥s + iy, - By = -hzkzy/o 5.2.10.
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When equation 5.2.6. has been written down at all the interior
points of the cross-section with the relevant modifications made for points
next to the boundary, a system of 'n' linear equations is obtained (n is
the total number of points in the cross-section). These mey be written
conveniently in the form:-

B¢ = A¢ L 0 s I

Where B is a n x n band matrix of known integer elements, ¢
isa 1 xn vector of ' unknown values of @ and A is the unknown latent
root of matrix B, which, from equation 5.2.6., is identically -h2k2.

The 'n' latent roots of matrix B correspond to the first 'm' cut-off
wavenumbers of the waveguide for the particular type of mode in question

(H or E ). Each latent root, >\r has a latent vector, ¢r’ which is

automatically obtained together with )\r when equation 5.2.11. is solved.

5¢3e Finite Differences in Une Dimension.

Certain waveguide propagation problems are, by nature, one-
dimensional, e.g. dominant H-mode propagation in rectangular waveguide.
In order to deal with problems which are nne-dimensional, it is necessary
to derive a one-dimensional analogue of equation 5.2.6. Since the function
¢ introduced at the beginning of section 5.2. depends in this case on only
one transverse coordinate, say x, the equation is simply derived by adding
equations 5.2.1l. and 5.2.2.3- .

g+ ¥s -2, = h2(¢§) = h2(V§¢)O - -h2k2¢o EEw

Equation 5.3.1.is the one-dimensional analogue of equation 5.2.6.

Instead of dividing the waveguide cross-section into square

sub-regions as in the previous section, the x-axis (along which ¢ varies )
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is subdivided into a number of equal lengths, h, from one waveguide wall
to the other. At each point of subdivision, equation 5.3.1l. is applied,
with no suitable modifications at the ends of the line. As in section 5.2.,
all the equations are written in the matrix from of equation 5.2.11.

It is advisable to use the one-dimensional representation of
equation 5.1.%. wherever possible since, for a given number of points
n, it is possible to obtain a very much finer mesh of points in this
case.

The methods used for obtaining the numerical solution of equation

5.2.11. are discussed in the following section.

el Solutions to the Matrix Equation.

The solution of equation 5.2.11l. is accomplished by means of
an automatic digital computer, in this case, DEUCE. Three separate
programmes have been used for finding the latent roots and vectors of matrix B.
(1) Ilanczos-Wilkinson. n < 31

This programme finds all the latent roots and vectors of a
n xn square matrix, where n £ 31l. The method involved wses pivotal
condensation and back substitution. The matrix data has to be punched in
binary, with 12 elements per card and a parameter card giving the dimensions
of the matrix and the number of binary places. A square matrix of order
20 requires 41 cards to be prepared for the computer. The computer takes
about 30 minutes to punch out all the latent roots and vectors of the matrix.
Owing to the fact that this programme is slow and camnot deal with matrices
of large order, it was found necessary to use another method of calculation.

26
(2) TInversion and Iteration. n < 83
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This programme is in two sections, (1) inversion of a square
matrix by the standard ILVOl programme, and (2) iteration with a guess
vector until the machine arrives at the lowest latent root and vector.

The theory underlying the operation is as follows:-

Multiply equation 5.2.11l. by the inverse of matrix B.
371 B g N g
¢ *E ¢ since B B~
Suppose the ™' latent roots of matrix B, %1, ké’ %3, N s %n, are

arranged in order of ascending modulus. An arbitrary vector X, is taken

1

I
=

5¢4.1.

and two sequences of vectors X, and y; are formed from

-1
Vil = B X, 5ede2e

X1 Yia1 / meximum slement of vector Yi41 H5ede3e
Each member of the sequence X, has as its largest element, unity. The

initial vector X may be written in terms of the '™n' latent vectors,

A T

X
0

n
Zi a, # Sedede

If equation 5.4.2. has been applied 'k' times, then

5 K z h ST
ox, = Laf /" . = = afhe s, ) B, 5.4.5.
1 A j=2 .
3 i
where C is the largest element of Yy
Since %1 is the smallest latent root,
Hence Cx, — —;¥-a ¢ Bed b
k Nk 171
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Which means that Vi tends to ¢1. The speed at which convergence
takes place depends on the ratio >\1 i N * VWhen the iteration has been
carried out often enough that successive vilues of X, agree to as many places
as is required, the iteration is stopped and the last values of . /Ck and
X, taken as the smallest latent root, A]. and latent vector, ¢1, of
matrix B.

A General Interpretive Programme (G.I.B) for the DEUCE computer
has been written to carry out the above iteration procedure and is described
in the Appendix.

(3) Solution of Linear Equations and Iteration. n £ 256.

The method of solution in this programme is again iteration as
in (2). Howev'r, the laborious process of inverting a large matrix is
avoided and instead a very fast programme, LEO 7B, is used which solves
directly the equation

Bf = b Beide T
where the right hand side, b, is known and matrix B is in band form.
IEQO 7B is restricted to dealing with matrix of order less than 256 and
whose band may not exceed 29. The iteration is carried out as in (2)
with the only exception that the step involved in equation 5.4.2. is
replaced by the solution of
Byi+1 = X 5¢4.8.
In (2) the inversion procedure is carried out only once and

. . oo . : g
successive steps involve multiplication of matrix B = with a wvector.

However, here the solution of linear equations involved in equation 5.4.7.
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is performed during every iteration. Although there may seem to be a
disadvantage involved in sclving equation 5.4.7. on each iteration this
is not so, because the inversion procedure takes about 1%-- 2 hours on
DEUCE for a matrix of order 80 whereas the solution of linear equations
takes only about 9 minutes, for a matrix of the same order. Also the
limit on the order of matrix which can be dealt with in (2) makes (3)
the more attractive method.

When the convergence of the iteration is slow, it is possible
to speed it up. If p 1is an approximation to the lowest latent root,
Ai’ equation 5.2.11l. is written as

(B-2I)f = (X -p)F
The iteration is carried out using the matrix (B - pI) in place

of matrix B. Equation 5.4.5. becomes

. k
i )‘l—p
o = (- )k(31¢1+ Zai(ki-p) g ) ke 3
e i=2
The rate of convergence now depends on
AL -
1~ P
-
g =P
Ay = A
Since X——:fE- has been arranged to be smaller than 5:— sy the rate of
2 2

convergence is improved.
Occasionally, it is necesszry to find the second lowest latent
root of matrix B (see section 6). If the required latent root is known to

first order, then improved convergence procedure described above is
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carried out with p as the approximation to AZ' This step is equi-

valent to shifting the origin of the latent roots so that )2 is the

smallest. The iteration procedure automatically produces the latent

root, %21 and vector, ¢2. The G.I.P. programme which has been used

on DEUCE to perform the iteration is described in the Appendix.

The accuracy of the one and two-dimensional representations

5.5 Higher approximations to the Laplacian.
of the Laplacian depends mainly on the fineness of the subdivision
of the waveguide region. If

the mesh length, h, is not small,

then

higher approximations to the Laplacian involving more neighbouring

points than used in equation

Three approximations for the

5.2.6., are available in the literature.

a7

two-dimensional wave eguation have been

used and these are summarised below. The numbering of the points

refers to Fig.5.35.

1 1 FD4 formula
L
2. g-4g =- %P,
1

Error is of order (I‘Ik)i+

2e rD20 formula.

g o
Error is of order (hk)

+ B hL*kL’ ) & 5.5.2.
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. D formula.

180

b 8 12
52) § +125 # + ) # - 1808 = (-60 Bk 6 e -—;- 18°) g
1 5 9

8 5¢5:3
Error is of order (hk)

In the case of the one-dimensiocnal wave equagion, it is
usually unnecessary to use higher approximations. This is because it
is possible to obtain a very fine mesh so that the error involved in
using the first approximaetion to the Laplacian is negligible. The

one-dimensional formula is regquoted for neatness :-

4 FD2 formula

2: 2
¢1+¢3_2¢o= - hkP 5 o 5o ¥
Error is of the order (hk)A.

5.6. Rectangular waveguide.

The conventional rectanguiar waveguide provides a very
simple example of the application of the finite-difference procedure.
For the lowest order mode, there is no field dependence on the y-
coordinate. This allows the one-dimensional form of the difference
formulae, FD2 y, to be used. Since @ is zero for this mode at x zero
( the symmetry plane of the waveguide ), only the region C $-xw$—%
need be considered. Results are given in Table 5.1. for values of
(kAf.'2 and of @ at certain of the field points when the value of 'n'
is taken as 5, 25, and 50 respectively. The formula FD, has been

2

used in conjunction with programme 3. These results are comparde
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in the sane Table with the values obtained from the well-known

formulae :-

CERd ™ s = b T sin - 5. 6uls

For the purposes of clarity, the matrix for the case,

n =5, is written down in square and band form. The five field points

lie on the line - y = 0 ; - at f = 0.1 ( 0.1) 0.5. The matrix

elements are obtained from eguation 5.5.4.

Square Matrix, n = 5. Band matrix, n = 5.(bandwidth
Column Column. od - %

Row 1 2 2 b 5 Row 1 2 3

1 -2 2 0 0 0 1 O -2 e

2 1 -2 1 0 0 e 1 -2 :

3 0 i =2 1 0 3 - =2 1

L 0 0 1 =2 1 L 1 =2 1

5 O 0 0 1 -2 5  § -2 0



Table I.

FIELD POINTS 3
EXACT g
5 25 50
(ka )2 9.78870 9.86635 9.86878 9. 86961
1.0000000  1.0000000  1.0000000  1.0000000 0.50

.9921147 .9921147 9921147  0.46
.9510565 .9510565 .9510565 .9510565  0.40
.9048270 .9048271 .9048271  0.36
) . 8090170 .8090170 .8090171 .8090170  0.30
. 7289686 . 7289688 .7289686  0.26
. 5877852 + 5877852 « 5877854 « 5877853 0.30
+4817537 «4817538 « 4817537 0.16
.3090170 . 2090170 .3090171 .3090170  0.10
.1873813 .1873814 .1873813  0.06
.0000000 .0000000 .0000C00 .0000000  0.00

The results given in Table I show that the field vector, ¢

is accurate to seven decimal places in each of the three cases considered.

As expected, the value of ’kA)2 is least accurate when the number of
points is small.

is less than 1%.

The error in LkA}z for the case 'n' equal to five

When the number of points is fincreased to fifty, the

error drops sharply to less than 0.01%.
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Having obtained kA and ¢, the remaining field components Ey
and Hx can be determined. Referring to egquation 5.1l.1l., it is seen that
these are defined in terms of f and the x-derivative of . The

differentiation is performed numerically on the computer using the formula
¢ 1 .
( s ) : B (¢1 ~ ¢3) (see Fig.5.1.) 5¢64 20

For n equal to five, the derivative is found to be in error

by less that 2% and n fifty by less than 0.1%. Higher order
approximations for the derivatives wou.d of course reduce the error.
It has been shown how the fields and cut-off wavenumbers of the dominant
H-mode in rectangular waveguide may be determined. Higher order H-modes
are considered by finding the appropriate latent roots and vectors of
matrix B.

E-modes are dealt with by applying the following boundary

conditions to the function

VY = 0 on the waveguide walls
dy : .
-y $ O on the axis of symmetry (magnetic wall or odd modes )
' = 0 nonon " " (electric wall or even modes)
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5.7« Magnetic polarisation in ridged waveguide.
Dominant H-mode propagation in ridged waveguides has received
considerable attention in recent years. By treating the ridged waveguide

21
at cut-off as a two-dimensional transmission line,Cohn has obtained

29
figures for cut-off wavelength and waveguide impedance.Marcuwitz has
published design parameters for ridged waveguides having specified cut-

29
offs.Further work along the same lines has been published by Hopfer and

Chegf However,by their nature, the methods normally used to calculate
cut-off wavelength have only been capable of giving limited information
on the electromegnetic field configuration. The ridged waveguide is of
interest as a broadband propagating structure which is easily matched
to coaxial line owing to its low wave impedance, and also in the design
of broadband resonance isolators.Since the cut-off wavelength of the
ridged waveguide is higher than that of a rectangular waveguide having
the same broad dimension,then the variation of guide wavelength with
frequency is reduced,( see equation 3.1.1.).

The dependence of the circular polarisation of the r.f. magnetic
field on frequency is reduced if the cut-off frequency is depressed.One
advantage the ridged waveguide possesses over the dielectric loaded
waveguide is that the cut-off frequencies over higher-order H-modes
are not depressed in the same way as the dominant mode.In the design of
a ferrite resonance isolator,it is advisable to locate the region in the
waveguide cross-section at which the function,P,defined in section 2,
is close to unity. Assuming that P is unity at a position ( xo,yo) for
a frequency fo,it is useful to plot (a) the variation with frequency,f,

of P ( X_3¥ oo f ) and (b) the variation with position ( x,y ) of P ( x,y,fo)
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The result of step (a) determines the bandwidth over which the ellip-
ticity of the r.f. magnetic field is not greater than a specified walue,
§ .The calculation in (bD gives an indication of the dimensions of the
ferrite which can be used,while ensuring that the ellipticity of the
r.f. magnetic field over the ferrite cross-section does not exceed & .

It will be shown that by use of finite-difference methods,
it is possible to derive the cut-off wavelength and the longitudinal
magnetic field in the ridged waveguide simultaneously.The remaining
field components are derived through the axial field from equation
5.1.1.

The geometry of half the cross-section of a single-ridged
waveguide is shown schematically in ¥ig.5.4.,the field points of the
subdivided cross-section being identified by a column letter A-J,and
row number 1-9.The boundary conditions for the symmetric H-modes under
consideration are also shown.As in the case of the rectangular waveguide
the difference equations are applied at each point in the cross-section
from Al te J5. The matrix form of these equations is as defined in
equation H.2.1l.

The solution of the matrix equation yields both kr and ¢r
and hence the cut-off wavelength and longitudinal magnetic field are
determined for 'n' modes of the structure.The difference equation for
the derivatives of the function @ is employed in the derivation of
the rest of the field components.Since the relation between BA and the
frequency is uniquely determined by a knowledge of kA ,the field components

as a function of frequency are now known.
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Since all the field components satisfy the two-dimensional
wave equation,it is possible to employ an alternative procedure from
the one mentioned above,for determining the field components other than
2t .Por instance,the component Hx satisfies the wave equation and it
follows that the difference equations listed in section 5.5. hold when
¢ is identified as Hx' The matrix equation 5.2.11. also holds but the
elements are slightly different from those for the 'EZ' ma trix. This

fact arises from the different boundary conditions which apply to HZ and.

Hx on the waveguide walls and the axis of symmetry,viz.,

%I{z = 0 on all perfectly conducting walls
dn

Hx = 0 if the waveguide wall is parallel to the y-axis
VE, o« 048 the wavepuide wwil ii Pemelbul, Bo) s ey,
On

With these restrictions in mind,it is possible to construct
the matrix B for Hx which only differs from the HZ matrix in rows which
refer to points on the waveguide boundary where the conditions on HZ
and Hx differ. The solution of the matrix equation thus obtained for
the magnetic field component H_,gives () the cut-off wavelength and
(b) the distribution of H_ over the cross-section.Theoretically,the
latent roots corresponding to dominant mode propagation of the Hx and
H_ mtrices,are identical and equal to - h%k2,and the H_field distri-

bution may be derived from.Hz by taking the numerical x-derivative

of HZ at each point in the cross-section.However,it is found in practice,
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that when a matrix of order 140 is used,the two latent roots differ
by a significant factor for the ridged waveguide whose parameters are
given in Table 5.2. The latent root of the Hz matrix lies very close
to the value given by other authors and to the experimental value.The
error in the Hx latent root may be due to the different boundary con-
dition holding at the two faces of the ridge causing a discontinuity
in the value of the field at the ridge edge. The latent vector for HX
lies within 5% of the vector calculated from the x-derivative of HZ.
Due to the anomaly in the two latent rcots,the alternetive method,(hx)
for finding the latent roots and vectors has not been used.The field
components other than Ez are derived by point-to-point numerical
differentiation in the cross-section.

Calculated results are given for dominant mode propagation
in a ridged waveguide whose dimensions are given in Table 5.2. The
effect of higher approximations and variable mesh length,h,on the com-
puted value of cut-off wavelength is also shown in Table 5.2. together

with the results obtained by other authors.
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Table 5.2. Cut-off wavenumber.

a__ _1 B+b _ 4 b 2
A 4 A 9 A 9
. . h 2 2
n Matrix band Difference formula & ( KA/ )%= (2a/) c)
21 1
2 “Pag 1/9 0.638
65 21 FD, 18 0.585
65 36 FD. 69 1/18 0.580
140 27 FD 4 1/87 0.558
140 29 FD,4 1/27 0.551
2]
Cohn 0.585
Orthogonal modes( section 4 ) 0.535
7
Young and Fohmann 0,533
Experimental ( by interpolation ) 0.527

It is seen that the use of 21 field points leads toa a rather
inaccurate result.This may be accounted for by the fact that the mesh
length,h, is not sufficiently small for the number of points on the

boundary to be sufficient to describe the boundary conditions accurately.
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The two calculations carried cut for the 65 and 140 field points indicate
that higher approximations to the Iaplacian do not significantly affect
the result.As might be expected,the crucial factor affecting the accuracy
is the number of mesh points in the cross-section. Since the experi-
mental value of ( kA )2 differs by about 5% from the value given for
both matrices of order 140,and by about 10% for both matrices of order
65, it is reasonable to expect that the error would be reduced to less
than 2% by using a matrix of order 300. A computer large enough to
deal with such a matrix is,unfortunately,not available.
ield distribution.

Values of the magnetic field components at selected points
in the cross-section are given in Table 5.3. The field points refer to
the drawing in Pig.5.4. The transverse components of field are normal-

ised so that

P . - B s
By M iy
(ka ) 2h
The transverse electric field,E,, is obtained from H, through

t t

W
the H-mode wave impedance, ?gl. The figures in Table 5.3%. are found

for the case, n = 65, the difference formula used being FD20.
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Table 5.3. Magnetic field components - ridged waveguide.

Point H_ H ﬁ&
Al 0.8476561 0. 0000000 0.0000000
A3 0. 8666364 0.0000000 0.0%63394
A5 0.9164984 0.0000000 0.0567317
AT 0.9710453 0.0000000 0.0428127
A9 09945004 0.0000000 0.0000000
Ccl 0. 7979906 0.0990417 0.0000000
C3 0. 8186906 0.0968947 0.0418506
c5 0.8802867 0.0770311 0.0744891
c7 0.9541842 0.0295533 0.0576786
C9 0.9851566 0.0148273 0.0000000
El 0.6509737 0.1912215 0.0000000
B3 C.6704992 0.1988041 0.0430714
w5 0.7550565 0.2377621 0.1540593
B7 0.9228579 0.0141920 0.1070004
E9 0.9715302 0.0055723 0.0000000
G 0.4223191 0.2572361 0.0000000
G3 0.4304988 0.2671818 0.0140347
G5 0.4432416 0.2979094 0.0000000
I1 0.1456591 0.2913182 0.0000000
I3 0.1472892 0.294578€4 0.0024334
15 0.1491116 0.2962232 0.0000000




At this point a comparison is made between the magnetic field
components Hx and HZ along the top waveguide wall,calculated by finite-
differences and by the orthogonal mode approach described in section 4.
In both cases the component HZ is normalised to be unity at the side
wall and the component Hx to be unity at the centre plane of symmetry.
The fields are drawn in Fig.5.5. There is close agreement between the
two calculations for both Hx and HZ s the difference never exceeding

e
Ciecular polarisation.

For the case, n = 65, the points on the top waveguide wall,
(y =0 ),at which P ( Xgr 0 4 £ ) is unity, are found for three values
of frequency,f, in X band - one a2t either extreme,and the third in the
centre. The variation at x = x, of P over the X band frequency range,

0

( 8.4. - 12.4 Ge/s ), is defined as dP_.. If X,,X,,and X, are such that

£ 3
P ( Xy, 0, 8.4 Gefs ) =1
P (x, 0,10.4 Gefs ) =1
w1

P ( Xz, 0 ,12.4 Gefs )

_ X " 5 .
then Xl x3 is defined as XP at x2

The quantity SXP is the shift in the position of circular polarisation
as the frequency moves from one end of X band to the other. The calcul-
ated values of 5Pf and 5xP for three ridged waveguides having the

same width,a, but different heights,b, are compared in Table 5.4. with
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the corresponding values in rectangular waveguide. The ridged waveguide

parameters are given by :-

B+ b 2a b
Ao BN A A Beb
Guide 1 4/9 11/18 1/2
Guide 2 4/9 11/18 3/8
Guide 3 4/9 11/18 1/4
Table 5.4. Dependence of 5Pf and 51?.
Rect. guide Guide 1 Guide 2 Guide 3.
SxP C.106" 0.061" 0.050" 0.037"
SPf 0.65 0.52 0.48 0.44

The top waveguide wall is chosen for two reasons,(l) the
metal wall provides an excellent heat sink for the power dissipated in
the ferrite at resonance, and (2) the variation of P ( x, y, £ ) with
y is slight in the region of circular polarisation at the top face.

From Table 5.4.,it may be seen that the change in P over
X band,at a given position, x, is least for the ridged waveguide having
the lowest cut-off, ( Guide 3 ). The change in P, &P, becomes progress-
ively smaller as the cut-off frequency of the waveguide is decreased.This
result is in accordance with eguation 5.7.1. However,the variation in

position, Xps where the r.f. field polarisation goes from unity at
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8.4 Gec/s to unity at 12.4 Ge/s also becomes smaller. This means that
although the frequency bandwidth is enhanced by using a ridged wave-
guide with a large ridge, the effect may be lost by a sharp iqcrease
of the dependence of P on x. Comparing the rectangular waveguiae with
the ridged waveguide, the frequency bandwidth is increased in the latter
case, but at the expense of reduced ferrite cross-section brought
about. because SXP is smaller. In order to achieve the same overall
loss as in the rectangular waveguide, it is necessary to increase the
proposed axial length of the ferrite. This is because the position of
near-unity P in'the ridged waveguide is much closer to the side wall
than in the rectangular waveguide, Nearer the side wall, the electro-
magnetic fields are weaker and the attenuation in the ferrite is
reduced.

Experimental results are presented in page 93 which
show the maximised reverse and forward loss in a slab of ferrite
located at the position of circular polarisation on the top waveguide
wall. For a given slab position, the results indicate that at one
frequency, the forward loss passes througha a minimum while thé for-
ward-to-reverse loss ratio remains small. On either side of the centre
frequency which agrees well with the calculated value, the forward
loss rises rapidly. This situation should be compared with that of
the dielectric loaded waveguide where the forward loss remasins small
throughout the freguency band, sece Fig. 7.3%. These results are in
accordance with the calculations of circular polarisation of the r.f.

magnetic field which are given in graphical form in Fig.3.2a. in the



the centre freguency, the forward loss rises rapidly and increases

to 1.5 times its minimum value over a range of 2.9.Gc/s when D = 0.135".
It is concluded that the dependences of P on position, x, and frequ-
ency, I, tend to cancel and, in conseguence, the bandwidth of the
ridged waveguide as measured above, is not a great improvement on the
rectangular waveguide. The situation is improved, however, if dielect-
ric loading techniques are used,( see section 6.4. ). This follows
because (a), the field strenpgth at the ferrite location is increased,
(b), the region of circular polarisation is locked to the ferrite
position and (c¢), the effect of the ridge keeps the cut-off frequency

of higher-modes from intruding into X band.
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6.Inhomogenecusly-loaded waveguides - finite differences.
6.1.Introduction.

It is proposed to show how the finite-difference method is
applied to the investigation of mode propagation in dielectric slab
loaded waveguide,and later on,to H-mode propagation in a ferrite
loaded rectangular waveguide,section 6.3.

The air-dielectric interface is assumed to lie parallel to the
coordinate axis,y.The waveguide cross-section is subdivided as before,
into square sub-regions of side length 'h',such that certain field
points lie on the interface.In the presence of the dielectric,the
transverse wavenumber,kA,is not constant.It has one value in air,k,A,

A

and another,kDA,in dielectric,and is also freguency-dependent.In fact

2 2 3 B
kA = (w Ko e = P ) il ls
2 2\ %

where e, is the dielectric permittivity.
The FD4 formula,applied at points lying in the air region,
gives,by equation 5.2.6.,

6.1.3‘

S8 -ad, - -vals,
 §

For ordinary points in the dielectric medium,the correspon-

ding difference equation is written as:-

N ball BT
1

6+1.4.
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where u = (k,/ k ) °.

The difference equations on the interface are more difficult
to obtain.This is because the normal derivative of ¢ is always discon-
tinuous at the interface,causing the difference formulae so far obtained
to break down.Further,if the derivative of @ with respect to y is non-
zero on the interface,all the propagating modes are hybrid,i.e. they
all have a longitudinal component of both H and E.The situation is
first discussed where the derivative of @ with respect to y is zero on
the interface,allowing pure H-modes to propagate.

6.2. Dielectric slab loaded wavezuide.

The field components for propagating H-modes are given in

equation 5.1.1l. On the dielectric-air interface,Fig.é.l.,Hx is contin-

uous giving the condition that

1o(ae\ - - (8¢ 6.2.1.
k2 (QIBD Kg (31\1)

Since kA f kD,it follows that the notmal derivative of ¢ is
discontinuous at the interface.In order to resolve the difficulty of
dealing with discontinuous functions, 'image' values of ¢ at points 1
and 3 are introduced which make the normal derivative of § on the inter-

face continuous.In this way,the difference expression of equation 6214

becomes
__1_;5 ( ‘51 - ¢3A) = _]_.5. ( ¢1.D - ¢3 ) 6.2.2.
oY s

wherelﬁlD and ¢§A are the image values of ¢.fﬁese are the

bo
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values ¢ would have at points 1 and 3 were no air and no dielectric
present respectively.With this formulation,equation 5.2.6. is then

applied at the point O,giving separate equations in ¢1D and ¢3A:-

oo+ B, + s+ #, - 4 = - nKlH 6.2. 3.

b, + 8,8y + 8, - 4B, = - 0Ky, 6.2.30.

By eliminating the image functions ¢1D and ¢3A between
equations 6.2.2. and 6.2.3%.,the following equation is obtained for

points lying on the interface -

o+ufy+31+u)( g+ ¢, -48)=-nilg  6.2.4.

Equation 6.2.4. has been obtained by employing the simplest
formula for the x-derivative of ¢ together with a double operation of
the FD4 formula. Higher approximations to the derivative and to the
difference representation are prohibitively difficult when the 'image'
technique is employed for interface points.

The 'n' field points are completely covered by applying equa-
tions 6.1.3.,6.1.4.,0r 6.2.4.,whichever is relevant at a particular point.
The right-hand sides of these equations are identical, ( - hzgf g,) and
hence the matrix formulation of equation 5.2.1l. is again obtained.

A complication occurs,however,since some of the elements are frequency-
dependent owing to the presence of 'u'.Thus the matrix equation must

be solved for discrete values of u corresponding to the investigation
of the fields and wavenumbers at selected frequencies in the range of
interest.This situation should be compared with that of the rectangular

waveguide where equation 5.2.11. need only be solved once to determine
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completely the fields and wavenumbers throughout a given frequency

band.

A further observation can be made that direct application
of equations 6.1.3.,6.1.4., and 6.2.4. to H-mode problems is inefficient
since these are one-dimensional in the coordinate 'x'. The one-dimen-
sional analogue of equation 6.2.4. is obtained by setting ¢2 and ¢4

equal to zero.

g, +ufy -2 @+u)g, = -0k 6.2.5.

The one-dimensional formulation leads to substantially-
increased accuracy in the final results over a two-dimensional treat-
ment,for a given number of field points.It should not be concluded,
however,that the two-dimensional equations are unimportant since they
are,indeed,essential when discussing hybrid modes,see section 6.4.

A simple illustration of the above theory is obtained by
considering the fields and transverse wavenumbers of the dominant
H-mode in a rectangular waveguide loaded with a centrally-located
dielectric slab parallel to the narrow waveguide wall.Une symmetrécal
half of the waveguide cross-section is shown in Fig.6.2. Calculations
were carried out for a waveguide containing a slab of permittivity,
6.~ 12, and ratio of thickness to waveguide broad dimension, t/A = 1/5.
Three values of u were taken corresponding to frequencies at the lower
end,centre,and upper end of the X band frequency range in X band
waveguide.In each case,fifty field points were used at equal intervals

in the range 0 ¢ x € - A/2. The one-dimensional difference formula

was employed throughout.
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The results are drawn up in tabular form. In Tables 6.1.
and 6.2.,the transverse wavenumbers at each frequency,and the magnetic
field components at the centre frequency,respectively,are compared
with those predicted by the separaticon-of-variables method in section
3

Table 6.1l. Transverse wavenumber.

u Finite-difference Separation-of-variables %%
0
2 2
(k,A) (k,A)
- 1.50 - 117.4 - 117.8 1.345
- 2.00 - 181.8 - 182.5 1.587
- 2.50 - 252.2 - 252.8 1.807
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Table 6.2. Field components ;

b

= 1.587

Point Finite-differences Separation-of-variables 'i%‘
Hz Hx Hz Hx

1 0.0091 0.0000 0.0091 0.0000 0.50
5 0.0105 0.0055 0.0105 0.0055 0.46
9 0.0150 0.0127 0.0149 0.0126 0.42
13 0.0239 0.0236 0.0238 0.0235 0.38
LT 0.0400 0.0415 0.0398 0.0414 0.3%4
21 C.0589 0.0718 0.0587 0.0717 0.30
25 0.1160 0.1234 0.1158 0.1232 0.26
29 0.1987 0.2119 0.1984 0.2115 0.22
33 0.3404 0. 3636 0.3403 0.3630 0.18
37 0.583%4 0.6223 0.5828 0.6217 C.14
a1 1.000C0 1.0680 1.0000 1.0668 0.10
45 0.6640 1.5516 0.6640 1.5497 0.06
49 0.2325 1.8123 0.23%26 .8074 0.02
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Table 6.3. Magnetic polarisation.

2A
X 1.350 1.587 1.807
Point  H, A i B H/MH,H B B
1 0.0263 0.0000 0.000 0.0091 0.0000 0.000 0.0035 0.0000 0.000
5 0.0288 0.0136 0.438 0.0105 0.0055 0.524 0.0042 0.0025 0.595
9 0.0368 0.0277 0.753 0.0150 0.0127 0.847 0.0067 0.0061 0.910
13 0.0518 0.048¢ 0.927 0.0239 0.023 0.987 0.0120 0.0123 1.025
17 0.0766 0.0774 1.010 0.0400 0.0415 1.038 0.0223 0.0235 1.054
21 0.1161 L.1217 1.048 0.0679 0.0718 1.057 0.0420 0.0446 1.062
25 0.1777 1.1891 1.064 0.1160 0.1235 1.065 0.0790 0.0842 1.064
29  0.2732 0.2926 1.071 0.1987 0.2120 1.067 0.1490 0.1588 1.066
3% 0.4208 0.4518 1.074 0.3404 0.3634 1.068 0.2811 0.2995 1.066
37  0.6486 0.6972 1.075 0.5834 0.6231 1.068 0.5302 0.5650 1.067
41 1.0000 1.0000 1.0000
45 0.6543 1.4645 2.238 0.6640 1.5517 2.337 0.6718 1.6373 2.437
49  0.2275 1.6718 T7.349 0.2325 1.8123 7.795 0.2365 1.9477 8.236

b5




The magnetic field components and ellipticity at each of three frequencies
are presented in Table 6.3%. The field components are normalised so
that Hz is unity at the dielectric-air interface.

In tables 6.1. and 6.2.,the results obtained by finite-difference
methods and the separation-of-variables technique agree to within 1%. In
table 6.3%.,it may be seen that the fields tend to crowd more into the
dielectric at higher frequencies, and that the ellipticity remains small
over a substantial part of the air region throughout X band,( assuming
that A is the width of the X band waveguide ). Since the r.f. magnetic
field is almost circularly-polarised over the whole of X band,and has
a relatively high value at the dielectric-air interface, it appears
that a suitable sample of ferrite material placed at the dielectric
face would exhibit non-reciprocal attenuation with a low forward loss
under the proper condition of d.c. magnetisation.

Experimemts have been carried out with a small ferrite sphere,
transversely-magnetised,at the dielectric face to confirm the calculated
results by direct measurement.Another experiment is also described where
the ferrite 'probe' is a long,thin slab against the dielectric where
the reverse loss is of the same order as that in a practical isolator,

( 20db ).
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S Do Ferrite Slab Loaded Waveguide.

The complexity of the mathematical difficulties invelved in
solving preblems concerning propagation through ferrites is mainly due
to the tensor preperty of the ferrite permeability. In certain simple
cases, the tensor reduces to a scalar, e.g. in the propagatien ef
electromagnetic waves in an infinite axtally-magnetised ferrite
medium where the normal modes have circularly pelarised magnetie fields.
In the case of the ferrite slab loaded waveguide, it is founglthat the
ferrite has an effective scalar permeability when the dominant H-mode
prepagates. The fields in this configuration are of interest in the
design ef field displacement isolators, resonance iselators and non-
reciprecal phase shifters. The problem is capable of treatment by
the finite-difference method and an indication of the technique to be
used is described below.

The cross-section of the structure te be discusses is drawn in
Fig. 6.3. Since the fields are independent of y (this condition is
essential for H-mode propagation), a one-dimensional treatment can be
used. As in the case of the dielectric slab, the line y = O, is
subdivided inte small equal interwvals, h, in the range - A/2 &x QA/2
In the special case where the ferrite is central, an axis of symmetry
exists at x = 0 and only the regien 0<x SfA/Z need be considered.

The propagating fields in the air medium are given by:-

E. = ¢

y
H o= -F/wryf 6.3.1.
B, » =i ok

z b 9X
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Where @ is identified with Ey and satisfies the wave equation

( Vi + kf) g = o 6.5.2.
g L .2 2 63515,
#A W M€ T F

32
It has been shown that the field behaviour in the ferrite region, is

given byi:-
B = .
. ¢
1 v M, 0f
g 5 (F Bl 6.3.4.
x 2 = w w9
Iul"P‘g =
z g 2 w 2T 5
,Al-pm W X
where @ satisfies
2
(VZ+ k2) g = o 0
k§ = U2Pcer-pz 6.3.6.
2
Nl-#g
fkc = ———7:-——- = ferrite 'effective' permeability 643 Te
X
GI‘ = ferrite permittivity.

The ferrite tensor permeability is given by

- _ 1
f‘l ¥ Jf*g 0

Moo= Iy My 0 6+3.8.
0 0 }*O

The finite difference equatiens applying at peints lying in the air and

ferrite regien are found with little difficulty. In air,

2% g - 2¢O = - hzgf ¢C (by equatien 6.3.2.) 6.3.9.
T ‘
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In ferrite

2
2 ¢ - h2k§¢ (by equatien 6.3.5.) 6.3.10.
1 °
At the ferrite-air interface, the continuity conditions on Ey’ Bx and Hz
ensure that ¢ is continueus but 3¢ /3x is discontinuous. Empleying
'image' functions values at the points 1 and 2 en either side of the

interface peint, as in section 6.l., we may express the continuity

of Hz across the interface as follews:

1 (0
(__) = L Pgf Py %4
w M, (? x) }*i '}AS( 3 ¢0 + = ('bx) >F 6.3.11,
Hence,
oM
(¢1A - ¢2) = L;_,‘f—z_g ¢ 2Fh' ¢0 + %(¢1-¢%’) 6:3.12,
1 ~Fe i T

The double application of the FD, formula at the peint O results

2

in separate equatiens in ¢1A and @ -
2. 2
P+ 9, - #, = -bRP

¢1 * ¢2F - 2¢o - - h2k§¢o

Eliminating ¢l& and ¢2F between equatiens 6.3.12. and 6.3.13., we have

6+3.13.

for the difference equation teo be applied at the interface peint,
26, + 2. F - 2(1+ F -Bh.T -Eg) g = - h2¢ (k2 + kf,F) 6.3.14.
2 1 );.1 o o' A

Where F = Eo 6.3.15.
Po

69



The occurence of the term in F in equation 6.3.13 is to be expected
since the fields are non-reciprocal with respect to the direction of pro-
pagation unless the ferrite is in the centre of the waveguide. Fer the
purpose of expressing all the difference equatiens in matrix form, it is
exsential for the right-hand sides to be identical. It is possible te
eliminate the term is P by taking advantage of the fact that under a
reversal of the d.c. biassing magnetic field, the prepagation constants in

opposite directions differ only in sign. Thus, if

When H is reversed,
d.c
i, . = =5, B = -p eand F = F_ 6:3:17-

For the twoe conditiens of opposite polarity of the d.c field, equations
6.3.13. may be written down and the term in @ eliminated between them.

In this way, the fellowing equation is obtained fwr the interface peint:-

1TF++(P1)_ 1+ F_ 2752(_1__+_(_f‘_1_)_.i)+2¢1(1+(l*1)-
l‘4~ (b)y . T (F1)s - (P,
TP TR 2[:2‘— jo S Sl
(1), " c 1+F, (py), 1+ F_
= g%y 6.3.18.

Equatiens 6.3.13. are rearranged to give the same right-hand side as 6.3.18.

2

g, +8,-(2- (hcl) ) g, = n%p 2 g, (air) 6.3.19.
2

¢1 - ¢2 - (2 - @Eﬁé -%f; ) ¢o = ‘h2% 2¢0 (ferrite) 6.3.20.
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It is now pessible by means of equations 6.3.18., and 6.3.19.,
and 6.3.20., to write down the elements of matrix B, equatien 52..from
which the latent reot, h2§2 and vertor can be found. The tensor
elements,}»l and p, are known once the d.c. biassing field, Ho’
saturation magnetisation, M and the angular frequency,w are prescribed.
It follows from equations 6.3.15.and 6.3.7. that F+, F,pm_and My
are known.

Having obtained the matrix equation, the derivation of the field
distribution and propagation constants may be accemplished on a high-

speed digital computer.
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6.4. Dielectric loaded ridged waveguide.

One of the structures mentioned in section 6.2. which has
been useghin conjunction with a magnetised ferrite as a broadband
resonance isolator at C and S band, is the dielectric slab loaded ridged
waveguide,shown schematically in Fig.6.4. Since the structure is not
uniform in the y-direction,there is a dependence of electromagnetic field
along the y-coordinate. It is found that attempts to satisfy the inter-

face boundary conditions, assuming a pure H-mode leads to the conflicting

condition that

-!;-LEEL- and —Ei-zJé- be continuous at the dielectric-air
k2'ay kd ray
interface. Hence,pure H-modes cannot exist for the structure,and for the
same reason,neither can pure E-modes.It is necessary,in order to satisfy
all the boundary conditions,to consider a mode which is a combination
of the fundamental H- and E-modes. Such a mode has a longitudinal comp-
cnent of both H and E and is commonly termeiia hybrid mode.It is true to
state that,if a waveguide contains two media which are contiguous along
a line parallel to one or both of the transverse coordinates,and there is
a dependence of field slong these coordinates,then the only propagating
modes are hybrid. The interface couples the E- and H-modes.

Superposition of equations 5.1.1l. and 5.1.2. gives the fodlowing

expressions for the electromagnetic fields referred to a rectangular

coordinate system,

2 ? w
k% H =-3b —¢+jweoer
* ?x Ty

b7 1 8



J ey O 'F ax
HZ:.-'- ¢
6‘4.1‘
kdE =-J$ 9w _jw}LM
% gx gy

[,
sz =-jp_uj_+ju%.a_i

E = V¥

@ and ¢ are solutions of equation 5.1.3. subject to the

boundary conditions s~

?
E;Q- =0 3 W = U on the perfectly conducting walls
n

( 6:4:2:)

according to the boundary conditions at the inyerface of the
two dielectric media,all the H components and all the E components with
the exception of EX are continuous, ( Dx is continuous at the interface).
Expressing the derivatives of ¢ and ¢ in terms of the fields from

eqguations 6.4.1l., we find that

o
<

]
[

(Wp B, - FE )

F\)QD
<

( B Hx-wd%) J

0

»

W 6sde5s
2 x

QD

(Wi B # BB, ) =

J

=

H +W€E ) = -
( ¢ H ) S

From these equations and the known continuity conditions on
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the field components,it is found that

0 g P,
~ are discontinuous at the interface and

° x °x
g ov .

- are continuous at the interface.
3y Ry

The finite-difference equations derived in section 5 are
invalid if the functions dealt with are discontinuous or if they have
discontinuous first or second derivatives.It is necessary to reformulate
the equations,as was dorne in section 6.l. Use is made,therefore,of image
function values at points 1 and 3, ( see Fig.t.l. ) to resolve the diffi-
culty of having discontinuous x-derivatives. The equations of continuity
of Hx and H are written down with a numerical approximation,used in
equation 5.6.2.,substituted for the spatial derivatives of ¢ and \ .

For Hx,

%{p( gy - By) - we, (¥, - w4)}= By - 8,) - e, (W,m ¥, )
6edede
In the case of Hy’

b8, 800 00, (v = vyl BB =800 bas (Vi - w))
6ede5e

The FD4 formula is again applied at the point O of Fig.6.1l. to

give separate equations in ¢1D and ¢3A=-

¢1D+¢2+¢3+¢4'4¢o='h2k§¢o 6.4:6-

2 2
P+ 0, + Py +8,- 48 = -0k b 6.4.7.



The image function values are eliminated between equations
6eded.y6.4.60,and 6.4.7. to give the following equation for @ at the

interface point 0 ;-

¢1+¢5+§(1+u)<¢2+¢4—4¢0)+2(eru—1)(le2-’rL4)
2.2
= = b7 ¢0 644+ 8.
i/
2 W €o %
where u = ( kA/ kD )¢ and mn = ];Z- ( ;:;) Y 6.4.9.
The function 7 is introduced instead of Y for two reasons.It
first allows equation 6.4.8. to be written in non-dimensional form and
w
secondly absorbs the unknown phase velocity,-g y of the travelling wave.
When ¢,"1, and RA are determined through the solution of the matrix
equation for a given value of u, the phase velocity is determined through
kA and u, and hence, so is the function W .
Using the equivalent formulation of equations 6.4.6. and 6.4.7.
to eliminate the image functions 1113 and 413A y the following equation

is obtained for il at the point O on the interface :-

——-1}_er{2q1+2eru'q5+(eru+1)(*(]2+»q4-41lo)

$ 1= a)l g, = ¢4 )} - hzkf %0 6.4.10.

To solve a hybrid mode problem,the difference equations for
¢ and 1 must be set up separately at the ' field points in the cross-

section. For points not lying on the interface,fhe ¥D, type formulae

4

given in equations 6.1.3. and 6.1.4. are applied directly.Interface points

15



require the special procedure outlined above and summarised in equations
6+4.8. and 6.4.10. Thus, 2n linear algebraic equations are obtained,

given u, for the Q&J n:r values over the waveguide cross-section in terms
of the unknown eigenvalue,gf. These equations may again be written in

the matrix form of equation 5.2.11. In this case,however, half the elements

in the column vector are ¢¥ values and the remainder,vzr values. The

matrix is conveniently written in partitioned form :-

B g
B =
C B
—2 —
" 3

In this matrix, H is an H-mode matrix, E an E-mode matrix,and
El and QQ are coupling matrices between the modes due to the field
dependence on the transverse interface coordinates. With these modifi-
cations,the solution to the given problem is then obtained by the procedpre
described for homogeneous waveguides and H-modes in inhomogeneous wave=-
guides. The method is,of course, capable off extension to cylindrical
geometries and these are discussed in section 9.

As an example of the inhomogeneous waveguide structure which
propagates a hybrid mode,the dielectric loaded ridged waveguide is
chosen, Fig.6.4. The structure has been used together with two trans-
versely magnetised ferrite slabs as a broadband resonance isolator.

( A double ridge was used actually ). The method for deriving the matrix
equation has already been described in this section.

For simplicity in presentation,the field components and phase

constants are given at one frequency for a particular structure.The
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variation of the field components along row 2, ( see Fig.6.4. ),where
the region of near circular polarisation of the r.f. magnetic field

exists,is given in Table 6.4. The electric field components are normalise

so that
B Al
T (,8)° 2 "
E, = ¢ EZ
8 w e,
Table 6.4. Field components; u =-2.5 24/ Ng = 1.045
Point H H_ He 'ﬁz -Ex Ey
A2 0.07411 ©0.00000  0.00843 0.00000 0.00810 0.00000
B2 0.08578 0.05248  0.01000 0.00003 0.00961 0.05052
c2 0.12460 0.12199  0.01431 0.00008 0.01372 0.11743
D2 0.20310 0.22958  0.02106 0.00020 0.02011 0.22096
E2 0.34530 0.40402  0.02566 0.00056 0.02425 0.38878
2 0.59125 0.67724  0.01995 0.00162 0.01751 0.65150
G2 0.99519  1.09600 0.00490
H2 C.72669 1.58231  0.00492 0.00192 0.00119 1.52522
18 0.38319 1.88371  0.00164 0.00085 0.00048 1.81451
J2 0.00000 1.98767  0.00000 0.00058 ©.0C000  1.91440

R

The phase constants are given by ;




( kA )% = -84.662 ( kA ¥ 33.865 ( fA )2 = 95 4l o

The fields in Table 6.4. are normalised so that the axial
magnetic component is unity at the point Gl. Owing to the discontinuity
in the normal derivatives of Hz and EZ at the interface, it is not
possible to work out the transverse fields there by numerical differ-
entiation. However, when the component varies smoothly acroes the interface
it is possible to find the approximate value by interpolation. In this
way, the value of Hx at the interface,(G2), which is necessary for the
evaluation of the ellipticity of the r.f. magnetic field,is found.
Interpolation is not possible with the value of Ex at the interface since
it is discontinuous there.

It is observed from the figures in Table 6.4. that the propa-
gating fields resemble closely those of a2n H-mode - Hy is small compared
with H_and H_and similarly E, and E_are small compared with Ey' (In
a rectangular waveguide propagating the dominant H-mode,only Hz’Hx and
Ey are non-zero. This H-mode appearance is more pronounced in the dielec-
tric region than in the air. Under these conditions, the r.f. magnetic
field can be regarded as elliptically-polarised. In isolator applications
the d.c. magnetic field acts in the y-direction and the y-component of
r.f. magnetic field has second order effect on the precession anyway.

According to the figures in Table 6.4., the polarisation
factor,P, at the location of the dielectric interface,is close to 1.11
and remains near this value over most of the waveguide region next to the
top wall. It is found,as in the case of the dielectric loaded rectangular
waveguide that the variation of P with frequency 'is small when the air

2 :
region is well above transverse cut-off,i.e. kA is negative and large.
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When the guide width is 0.90",the frequency range over which P remains
close to unity extends throughout X band. The presence of the ridge in

an empty waveguide has been shown to have little effect on the cut-off
frequency of the HOZ mode. Also,the cross-sectional area of the dielectric
is much smaller than that used in the case of the dielectric loaded
rectangular waveguide. It is to be expected,therefore, that in the caee

of the dielectric loaded ridged waveguide,the unwanted higher-order modes
do not cause the complications in the design of a ferrite resonance
isolator that arise in the dielectric loaded rectangular waveguide.

The behaviour of the axial magnetic field over the whole cross-
section is shown in Fig.6.5. The values of'HZ are printed at the relevant
mesh points in the cross-section. Also shown in Fig.6.5. are the parameters
of the ridged waveguide structure together with the normalised free-

space wavelength.
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Te Experimental Work.

Tedis Cavity Measur ements.

The cut-off frequencies of three ridged waveguides were
determined experimentally using a savity technique. A drawing of one
of the ridged transmission-type cavities is shown in Fig. 7.1l.

The ridged waveguides were made by brazing the central oblong
brass ridge onto the lower face of a seciion of ordinary X band waveguide.
The ridge is also held by three supporting screws on the waveguide to
provide better electrical contact. Two square end flanges were brazed
on at either end of the waveguide. The cavities were formed by placing
two copper plates acress the ends of the waveguide. Placed behind the
copper plates were two cast-iron plates bolted tight against the square
flanges at each corner of the flange. In this way, the end plates
were found to make good contact wifh the flanges and the end of the
ridged section. The short circuits were tested and found, in each case,
to give a standing wave ratio (V.S.W.R.) in excess of 28 d.b.

On ez2ch end plate, the outer conductor of a 50-ohm coaxial
line is soldered. The inner conductor penetrates into the cavity and is
formed into a loop, coupling to the Hx component of magnetic field.

The magnetic probe is centred a quarter of the guide width from the side
wall to avoid contact with the end of the ridge. An identical probe
is situated on the other end plate.

Shown on Fig. 7.2. is a block diagram of the experimental set-up.

A CW klystron source, with a nominal power output of 10 mw over frequency

band, and square-wave modulated at 3.2ko/s, feeds into a coaxial tee
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junction where the input signal is divided into two parts. The

signal in one arm is detected at once, passed to input A of a
frequency-selective amplifier, tuned at 3.2 kc/é, at used as a power
monitor. No signal is transmitted through the cavity unless the cavity
is resonant. This occurs when the supply frequency is such that the
cavity length, L, is an integral number of half guide wavelengths,

n

L = >

xg where n 1is an integer T:Ll.
The rescnance has a finite frequency-bandwidth which is determined
by the loaded Q of the cavity. The cavities used in this experiment
have a @ of 200, which is adequate for measuring the frequency at
rescnance to within p ;- mc/s. The number n, is determined by means
of a small metal bead attached to a thin string. As the bead is drawn
through the cavity, a small dip in the output signal is detected when
the bead moves into & region of maximum electric field. The number of
dips counted as the bead passes from one end of the cavity to the other,
is equal to n. In this experiment, frequency measurements were confined
to X band (8.4 - 12.4 Ge/s)and C band (4 - 6 Ge/s).
At resonance, the free-space wavelength, xo’ is measured
by means of a high-Q, high precision wavemeter. The guide wavelength
is given by equation 7.l.l. and the cut-off wavelength determined from

>‘° and )‘g using equation 3.1.1.

al




Resultse.

the following parameterss:-

Cavity 1
Cavity 2

Cavity 3

Guide
width

0.90"
0.90"
0.90"

Ridge
width

0.45"
0.45"
0.45"

Guide
height

0.40"
0.40"

0.40"

the calculated values of Ac for each cavity.

Ridge

height
0.135"
0.180"

0.225"

The three ridged waveguides measured in the experiment have

The measured XO, frequency and n are tabulated together with

Table T.1l. Cut-off wavelength by cavity measurement.

Cavity 1. L = 15.00 cms.

n 1 2 3 4 7 8
f(Ge/s) 5.575 5.840 6.252 6.780 8.885 9.692
* (cms.) 5.376  5.132  4.794  4.420  3.373  3.093
N (ems.) 5.464 5.462 5.463 5.471 5.465 5.468

Cavity 2 L = 15.02 cms.

n 2 3 4 7 8 9 10
£(Ge/s) 5.355 5.790 6.350 8.565 9.394 10.256 11.141
)o(cms.) 5.602 5.173 4.712 3.500 3.191 2 .923 2.691
X, (cms) 6.034 6.043 6.051 6.049 6.555 6.053  6.054
Cavity 3 L = 15.00 cms.
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Cavity 3 L = 15.00 cms.

n

f (Ge/s) 5.390  5.990  6.692  9.160  10.046  10.951
A (cms) 5.560  5.003  4.478  3.275 2.986 2.739
>\c( cms. ) 6.689 6.715 6.728 6.723 6.721 6.720

The accuracy of the cavity-type measurement is extremely good
because it depends on the accuracy with which the length of the cavity,
and the frequency at resonance, can be measured. The high-precision
wavemeter measures frequency to within-%ﬁMc/s and the length of the cavity
can easily be found to 0.01C". The values of Ab calculated for cavity
1 have a maximum deviation from the mean of 6 parts in 5000. The
deviation in the other two cases is greater than this. This may be
explained by the fact that, if there is a small gap between the ridge
end and the short-circuiting end plate, the series capacitance of the
gap has a much larger effect on the impedance at lower frequencies than
at higher frequencies, ( Xc -i;% . For this reason, we might expect
the calculated values of Ab to differ more violently at smaller values
of n. From the experimental Teble T7.l., this effect is noticed. It
is reasonable to expect, then, that the most accurate value of )b is
found at the higher resonant frequencies. The effect of the wire

probes on the cut-off frequency and loaded @ of the cavity has been

ignored since both lie in a region of small electric field.
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T 2. Measurement of Ferrite Loss.

The object of the experiment is to measure the magnetic loss
occuring in a ferrite loaded waveguide when the ferrite is biassed to
resonance. The ferrite is transversely-magnetised in a uniform d.c.
magnetic field provided by an electromagnet. For opposite senses of
d.c. polarity, two such resonance losses are found. The smaller of
these is called the forward loss, ¥, and the larger, the reverse less, R.

The experimental set-up is shown in block diagram in Fig. 7.2.
The power source used was a reflex klystron operating at 7 - 12 Gc/é
with an average power output of 10 mW, CW, and square-wave modulated at
3.2 kc/s. The klystron has a built-in piston attenuator which controls
the power output and gives the wvalve some protection from undesirable
relections. At high frequencies, the attenuator has to be wound right
in to give a reasonable signal level and an isolator is used to give
added protection to the klystron. The signal from thevklystron is
fed by means of a coaxial line to waveguide transformer to a 4-port,

20 db directional coupler. Arm 3 is ended with a matched termination.
The signal in arm 1 is used as a reference signal and is detected and

fed to input A of a frequency-selective amplifier tuned to 3.2 kc/s.

The 3-stup tuner in arm 1 is provided to match the crystal detector

to give maximum power output. All actual measurements are taken in

arm 2 where the input passed through a set-level attenuator, rotary-vane
attenuator and the test waveguide to the detector. The rectified current
is supplied along coaxial line to imput B of the selective amplifier.

The frequency of operation is measured with a high-Q absorption-type
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wavemeter, calibrated from 8 - 12 Gc/b, with a reset accuracy of-%*Mc/é.
A 3-stub tuner is used to match the arm at each frequency. All measurements
of attenuation are made with the grade 1 rotary-vane attenuator.

The d.c. magnetic field is provided by an electro-magnet
which takes a current of O-54 from the d.c. supply. The magnetic field
is variable from 0-5 k oersted and can withstand 6-7A for a short time.
The pole pieces have a gap of 0.55", a width of 0.4" and length of 4".

The test waveguide contains a ferrite material, transversely-
magnetised, in which all the magnetic losses take place. The ferrite
cross-section is small enough that the reflections from it are not
serious.

Two techniques are used to measure the ferrite loss, (1)
when the loss is small, (typically 0.5 db) and the other, (2) when
the loss is such that high sensitivity is not essential, (typically 1 db).
(1) Loss measurement.

The skep-by-step procedure for measuring the ferrite loss is
given belows

: B Tune the klystron re¥lector, the modulator and both 3-stub
tuners for maximum signal output from arms 1 and 2.
2. Measure the frequency and set the rotary-vane attenuator

reading to zero.

3 Apply the d.c. magnetic field to the ferrite until the

ferrite is resonant. This occurs when the signal from arm 2 passes

through a mimimum.
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4. Using opposite polarity crystals in the two detectors, switch
the selective amplifier in the set-level attenvators in arem 1 and 2.
5e Remove the applied d.c. field and wind in the rotary-vane
attenuator until the pointer again passes through a minimum.

6. Read the attenuator setting and reset to zero.

Te Reverse the direction of the d.c. magnetic field and repeat
steps 3 - 6.

The two readings obtained on the attenuator in step 6 are the
forward and reverse loss in the ferrite, ¥, and R, resepctively. By
this method, attenvations of 0.03 db can be detected. This facility
is necessary when trying to measure losses in the region 0.10 - 0.50 db.
High accuracies could be obtained if the null found in step 4 could be
brought nearer zero. This would meke theswing in the number of scale
divisions for a small change in attenuation, much larger. The limitation
in how near to noise level the null can be set, is imposed by the
summing network in the selective amplifier. Howevery the two outputs
from arms 1 and 2 can be fed into a coaxial tee junction and the signal
in the third arm sent into input A or B of the selective amplifier. In
t.is way, attenuations of 0.0l db can be detected, and a change in
attenuation of O.l. db made to correspond to 100 scale divisions.

When the losses to be measured are greater than 1 db, an
alternative procedure is used which is less sensitive than (1).

(2) 1Loss Measurement.
This method is commonly used in practice to measure losses

in ferrites. The step-by-step procedure is given as follows:-
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l. Tune the klystron, modulator and both 3-stub tuners for maximum
signal in arm 2.

2. DMeasure the frequency and set the rotary-vane setting to zero.

3. Apply the d.c. magnetic field to the ferrite until the ferrite
is resonant.

4. Adjust the setting on the selective amplifier until the pointer
reads 50 scale divisions.

5« Remove the applied d.c. field and wind in the rotary-vane attenuator
until the pointer again reads 50 scale divisions.

6. Read the setting on the rotary-vane attenuator and reset to
Zero.

T. Reverse the direction of the d.c. matnetic field and repeat
steps 3 - 6.

The two readings obtained in step 6 are the forward and reverse

losses in the ferrite. By this method, an attenuation of 5 db can be

measured to within 3 0.1 db. The dielectric slab loaded rectangular wavec}uidp_ |

considered in sections 3 and 6.2. has been shown to have the required
characteristics for a structure to be used in conjunction with a ferrite
as a broadband ferrite resonance isolator, viz., a magnetic field which
is almost circularly polarised over the band and a high field strength
in the ferrite position. The next higher order mode, H02’ can be

shown to propagate in the upper half of X band for all the loadings
considered in section 3. It was decided to carry out an experiment

to determine how the magnetic field polarisation behaves with frequency.

For this purpose, a magnetic field probe is required. A small sphere
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of Yttrium-Iron Garnet (YIG) was chosen as the probe because (a) a
spherical shape is hecessary to ensure that the fields inside the ferrite
are uniform, (b), the cross-section of the sample must be small compared
with the guide cross-section to reduce the initial field perturbation and
(¢) the loss in the smaple must be large enough to measure. The last
reason, (c), follows because the ferrite loss depende on the saturation
magnetisation of the ferrite and the resonance linewid¢h, AH.A
polyerystalline YIG material having a linewidth of 55 oersteds and

4TM of 1750 oersteds was chosen. Most ordinary ferrite materials have
linewidths much in excess of the YIG linewidth, and are therefore un-
suitable. The single crystal YIG has narrower linewidth than the
polyerystalline material (typically 5 oersted) but alsg4has a preferred
axis of magnetisation and anisotropic internal fields which affect the
uniformity of the intermal r.f. fields. These factors as such as to
debar the use of single crystal mterial. An indication ofthe amount of
loss to be expected in the polycrystalline sphere is given in section
8.1. The loss calculated for the dielectric configuration in Fig.

was calculated to be 1.23 db in the reverse direction at 10 Ge/s,

when the ferrite properties are as given in section 8.1. The forward
loss is calcdated to be less than 0.0l db. It would be possible to

use more than one YIG sphere so that the ferrite diameter could be
reduced to give less perturbation. However, since the loss in the YIG
depends on its volume, a reduction in the ferrite diameter by a factor of
2, for the same loss, could only be achieved by using 8 ferrite spheres.

Obviously some compromise has to be made,and it was decided to use a YIG

sphere of diameter 0.050".
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When the ferrite is biassed to resonance,it absorbs the component of

r.f. magnetic field which is circularly polarised in the same sense as

the ferrite electron precession. This component is called the positive
wave. The negative wave,i.e. the component of circularly polarised field
which rotates in the opposite direction to the ferrite precession, is
unattenuated. Also, if the r.f. field is elliptically polarised, both
forward and reverse losses are non-zero and the ratio of the two is small
if the ellipticity of the r.f. field is small. In this way, the ferrite

is used as a probe for detecting circular polarisation of an r.f. magnetic
field.

The ferrite YIG material supplied by Microwave Chemicals, was
ground into a spherical shape by a carborundum powder. The YIG was first
cut into approximately cubic shape and the frinding done in a cylindrical
metal box. The cubes were circulated by a jet of air blown in tangient-
ially through a hole in the rim of the box. By this method, it was
possible to make spheres of diameter 0.02" - 0.08".

The dielectric slab loaded waveguide shown in Fig.6.2. was
assembled with a small YIG sphere placed against the dielectric face.

The dielectric, Stycast HiK, of permittivity 12, thickness 0.12" and
height 0.40" was provided with 3-step Tchebyscheff quarter-wave matching
transformergsat either end. The matching sections to rectangular wave-
guide ensure that the standing-wave ratio does not exceed l.1lk over the
frequency band, ( 8 - 12 G¢/s). The dielectric slab was supported in the
centre of the waveguide by two polyzote sections. In one of the polyzote

slabs, the YIG sphere was placed contiguous with the dielectric. Polyzote
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has a very low microwave loss and permittivity close to unity and
consequently does not interfer in the measurement.

Experimental results are given in Fig.T7.3. of the maximised
forward and reverse loss in the ferrite as a function of frequency. The
theoretical reverse loss is included for the purposes of comparison. The
reverse loss, as indicated by equation 8.l1.14. increase with frequency,
the theoretical and experimental values agreesing well. The forward loss
is low throughout the measured band, indicating that near circular
polarisation of the r.f. magnetic field exists in the ferrite over the
frequency range. However, the forward loss predicted by the theory is
significantly less than the experimental. One cause for this effect is
that the presence of the ferrite at the dielectric interface produces
a perturbation of the original field configuration. The pertuebation,
assumed to be small, has a much larger relative effect on the forward
loss than on the reverse loss because the forward loss is very small.
Also, irregularities in the spherical shape of the ferrite cause a
distortion of the fields, setting up an elliptically polarised wave. The
positive component of this wave couples to the ferrite electron precession
and suffers absorption. At a frequency of 1l.5 gc/s, an absorption
effect was observed in the forward direction different from that at
lower frequencies. As the magnetic field was increased from zero,the
ferrite began to absorb energy immediately. The loss increased to a
value of 3db at a d.c. field of 5 k oersted. No resonance effect was
noticed. Two loss peaks were observed with the d.c. field in the reverse

direction which were of the same order of magnitude - 4db. It was presumed
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that the loaded waveguide was 'multi-moding',i.e. that the next higher-
order mode had begun to propagate. The solution of the dispersion equation

for the cut-off frequency of the H,, mode confirms that propagation

02
begins at 11.3 Gc/é. The propagation of higher-modes in the structure has
undesirable effects on the isolator characteristics of the structure. Two
remedies are suggested - (1), the insertion of two metal plates in the
loaded waveguide at a distance of A/4 from the side walls, and (2), the
removal of the side walls and the reduction of the width,A, of the
waveguide. In (1), the metal plates are in a position of maximum electric
field for the higher-order mode and,therefore, extinguish it. The plates
have little effect on the dominant mode because the electric field is
confined mostly to the dielectric region. Alternatively,(z), the removal
of the side wall of the waveguide and the reduction of the width effect-
ively raises the cut-oif frequency of the higher-modes. As the microwave
energy is mainly confined to the dielectric region,it is feasible to
remove the side plates without perturning the dominant mode fields
significantly.

Using a thin slab of ferrite F5X,made by Ferranti,the forward
and reverse losses as a function of frequency were measured. The experi-
mental results are presented in Fig.7.4. The dielectric,in this case,
was matched into ordinary waveguide with 74 tapers at either end. The
calculated reverse and forward losses at 10Gc/s are found from equation
B8.1.14. to be 24.4 and 0.45 db respectively.The measured reverse loss
agrees with the theotetical figure but the forward loss is measured at

2db. The calculation of the losses involves the evaluation of g.For

this,the demagnetising factors of the ferrite slab are required. Since
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the ferrite shape is not ellipsoidal, it is not stricly true to say

that the demagnetising factors have any meaning because the fields in
the ferrite are non-uniform.This explains why the measured forward loss
is high and it is concluded from this experiment that,in order to keep
the forward loss as low as possible, the ferrite shape should be ellip-
soidal. If this is not possible, the shape should approximate to that of
an ellipsoid as closely as possible. The lowest forward loss is to be
expected when the demagnetisation factor, Qs is unity, i.e. the ferrite

is spherical.
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Ridged waveguide.

The measurement of magnetic field polarisation in the
ridged waveguide by means of a ferrite slab, is described in this
section. The method used in measuring the forward and reverse losses
in the ferrite is identical with that used in the case of the dielec~-
tric loaded waveguide and described at the beginning of section 7.2.
In this case, however, the ferrite has a rectangular cross-section
and a long axial length. This choice of ferrite is made rather than
the spherical sample because the fields are weak at the position
of the ferrite and a substantial volume of ferrite is reguired to
produce a measureable loss. The slab was positioned on the top wave-
guide wall where the fields are calculated to be circularly polarised.
Three locations were tried » D = 0.13", 0.15%", 0.17". D is the distance
of the ferrite centre plane from the side wall. The corresponding
frequencies of circular polarisation at the centre plane are calcul-
ated by the methods described in 5.7. to be:i- f = 9.8 Ge/s, 8.5 Ge/s
and 7.1 Ge/s respectively. The maximised reverse and forward losses
for these three cases are plotted in Fig.7.5. as a function of freque-
ncy.

The forward losses pass through minima at frequencies close
to those given above. The forward losses do not become zero at the
centre frequency because the polarisation is only circular at one
section of the ferrite and becomes more elliptical further away from
thes section. An averaging effect takes place over the ferrite cross-

section which results in a non-zero forward loss. On either side of
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case of the dielectric loaded waveguide, and in Table 5. . in the case
of the ridged waveguide.

It is concluded that (a2), the ridged waveguide is inherently
more broadband than the rectangular waweguide, (b), the bandwidth
increases with ridge height, (¢), P varies more sharply with position
‘as the ridge height increases and (d), as compared with the rectan-
gular waveguide, the position at which P(xo,yo,fo) is unity, is

shifted towards the side wall.
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Te3. Insertion loss measurement.

A loss occurs when a dielectric is placed in a waveguide which
may be due to (a) reflections caused by a mismatch or (b),an absorption
in the dielectric. This loss is called the insertion loss. In resonance
isolators,the insertion loss is usually classed as part of the forward
loss and for this reason, it is necessary to reduce the insertion loss
as far as possible. By using a dielectric of small cross-eection and low
loss,it is relatively simple to produce a good match and low insertion
loss. However, in the dielectric loaded rectangular waveguide discussed
in sections 3 and 6.2., the dielectric has full guide height and large
cross-sectional area. Two methods have been used to match the loaded
guide to the air section, (1), tapering of the dielectric and (2), using
stepped transformer sections. It has been found that the latter method
gives,by far, the best results. It has been shown by Cohgg;hat, for a given
bandwidth, the minimum standing-wave ratio over the band is achieved by
using a matching section with a Tchebyscheff response. Following Parkes
and Sulliva:: a¥section transformer has been built to cover a bandwidth
of 40% centred at 10 Gc/s with a maximum standing-wave ratio of 1.07. A
drawing of the transformer is made in Fig.7.6. together with a block
diagram of the experimental arrangement usec to measure the insertion
loss.

The klystron source,operating CW in the frequency range 7 - 12
Gc/é, and modulated at 3.2.kc/s, is protected by an isolator and piston

attenuator which is also used to control the level of the output power.
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The frequency at which the measurement took place was measured with a
high-Q,high-precision wavemeter. The standing-wave ratio, S, in the line
is found by means of a slotted-line section with an electric field probe
A matched detector is used as a termination to the line. Better accuracy
can be obtained with a matched load, ( S = 1.05 ) but, in this experiment
a crystal detector,liberally padded, was considered satisfactory. Use of
the detector means that fewer alterations are made to the system to
measure absorption loss and S. simultaneously. The signals from the
standing-wave indicator and the detector were fed to inputs A and B of
a frequency-selective amplifier tuned at 3.2 kc/é.
The insertion loss due to loss and reflection was measured by

the step-by-step procedure described below :=-

1. Tune the klystron, and the modulator for maximum signal output
from the detector. Tune also the slotted line.

2. Measure the frequency by observimg the dip in signal caused
by absorption in the coaxial wavemeter.

3. Measure the V.S.W.R. in the line when the test waveguide is in

position,S.. Set the pointer on the selective amplifier to read 50 scale

|
divisions.
4. Remove the test waveguide and replace with an empty waveguide.
5. By adjusting the calibrated attenuator,bring the pointer on the
selective amplifier to reread 50 scale divisions, L db.
6. Measure the V.S.W.R. in the slotted line,Sz.

7. Change the frequency of operation,reset the attenuator to zero

and repeat steps 2-6.
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The attenuator reading,L db, is the total loss in the test
waveguide due to reflection and absorption. The reflected portion of the
measured loss can be found by calculating,from the V.S.W.R.,the reflected
loss. When the test waveguide is matched,{ S<1.20 ), the loss due to
reflection is neglected in comparison with the absorption loss.

A comparison is made in Fig.7.7. between the measured absorp-
tion loss and the loss calculated in section 8.2. The V.S.W.R. due to
the dielectric loading is drawn on the same Figure. The insertion loss
in the loaded waveguide considered is typically 0.3 db, which is rather
high. This is one of the reasons why the dielectric loaded ridged
waveguide is used in isolator applications because the dielectric cross-

sectional area is reduced and,consequently, the insertion loss is lower.
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8. Loss Calculations.

8.1. TFerrite Magnetic Loss.

In the experiment described fully in section 7.2. to measure
the loss in a YIG sphere sitting in a position in a dielectric loaded
waveguide of near circular polarisation, the reverse loss is typically
2 db for the configuration and ferrite properties considered. An attempt
is made here to calculate the losses to be expected in the system and to
compare them with the experimental values.

The loss occuring in a ferrite medium are of two kinds - those
due to the finite conductiwvity of the ferrite, (dielectric loss) and those
entirely due to energy transfer from the travelling wave to the electron spin
precession (magnetic loss). For the small samples of ferrite usually
used in waveguides the latter loss is t''e more significant especially
as the dielectric loss tangent of the ferrite is small. The resonance
loss in a small ferrite sphere is calculated below by means of the ‘
Poynting vector theorem:-

Maxwell's equations written for a ferrite medium are
VXE = -jBw= -ju(p HE+M¥) 8.1.1.
XHE = JDws= jw%E*O’E 8.1.2.

The complex Poynting vector is given by:-
" : 2 2 . *
2V(E x E) = -olE|® + 3 (e |B)® - p_ |H®) - jo@E) 8.1.3.

The power dissipated in the ferrite medium due entirely to the

magnetic loss is given by:-
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P = FigwRe vj JMH . dv. 8144

where V is the ferrite volume.
Assuming that the fields are uniform and unperturbed over the

ferrite sample, the magnetic loss becomes

1 P
Piig 2w V. Re (JM.H) 8.1.8.

The magnetisation vector and the internal field in the ferrite

are related through the landau-Lifshitz equationm,

d:fl'r 4 dI\‘I
d—t‘ Y0 X 8) # — 0 X0 8:1.6s

where ¥ is the gyromagnetic ratio ( = 2.8 Mc/s/oersted) and « is
a parameter determining the magnitude of the damping action. Since we
assume that the d.c. magnetic filed acts in the z-direction and the r.f.
field in the xy-plane, the magnetisation vector and the internal magnetic

field in the ferrite may be written down:-

" m m
E = =8 ° g vl -8 0 Nl Tt el ==l
P * Po P A A
8.1.8.

where u , u , U are unit vectors in the x,y and z directions
e el
respectively. Nx ’ Ny’ Nz are the ferrite demagnetising factors
By substituting equation 8.1.8. in equation 8.1.6. and re-
arranging, we obtain the following expressions for m and my.
W W ‘i
M ( Oghx+3why)

m ‘ 8.1.9.
* wodw (o -w +Fjlv] 0E )
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w -3 \
M ( -jwh_ + w/g . l‘y )
my = 8.1.10
Wi W (w_ -Ww +%jl¥|lbda)
O 0
where AH is the ferromagnetic linewidth.
Mo
HO + (N - Nz e
2 . Fo 2
g = Iul b.loll
E o+ (N -N_ ) c
o
and 5 is the Kittel resonance frequency defined by :-
> > RO MO
W = ¥ (E +(u_ -w ) =—2)(H + (N -0N)==) &.1.12.
o 0 X Z 0 y z
o} e}
M
W == 8.1.13.
1 jAO
. 7/ . ..‘ \ . 7 . » { 1 11+
Js & MaB 3 = @X :;:th + z'yhy Oadkos 14,
W 2 L2 R * A
) M (wo Q Ihx‘ + UO/S, .ln;|+ Jw\hyhx - h nx)
M.H = 8.1.15.
(W +w ) (uo-u-t- % jl¥] AH )
I'ne expression for the power dissipated in the ferrite can

now be evaluated by means of equations

8.1.5. and &.1.15.

q 1% % :
P yw o m BUY B | ‘26‘“ S w, G |n 2,
W (= w) 0 s~
1 2 7S
s> ” A% h 0 .
¢ \hy\ ) 210|hx y‘ } 0.1.16
At resonance, W = LJO and the dissipated power is -
M
P = 14 o £ 1! 2 2'th. b :
l‘dis' ﬂtdvkpoﬁ}i) {9Wx\+ _E_ |h3( = | le[ } [0 100 17 48

he power flow in a rectangular weveguide propagating the

dominant f-mode is
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P = 4 B 8.1.18
where h is the amplitude of the hx component.
Therefore
P.. B VP M
- Po AH A g

The power flow in the dielectric loaded wav:cguide isgiven by equation

3.3.6.
po b 2
B S
P—Z(E)Hx/g 8.1.20.

(o}

where g has already been computed and Hx,is the value of the
transverse magnetic fidd at the dielectric wall. Combining equations
8.1.17. and 8.1.20., we have the ratic between the power dissipated in the

ferrite and the total power flows

. WA v M 2
dis = . . ( ___A%Ef_) g2 ( o + 3 X * 2X ) 8sls 21
c A% B Mo 8

The reverse and forward losses occuring in a small ferrite
sphere placed against the dielectric wall in a dielectric loaded rectangular

waveguide may be calculated by means of equation 8.1.21.

Sample calcul=tion.
The ferrite properties and dielectric parameters used in the
experiment described in section 7.2. are given below:-

0.05™ Dielectric constant = 12

Ferrite diameter

Saturation magnetisation 1750 oe " thickness = (Q.12"

lol



Ferrite linewidth = 55 oe. Frequency = 10 Gc/%.

g, and X are o! tained from the results of section 3. For a sphere,
§ = 1, since the demagnetising factors are the same in all directions.

The calculated reverse loss = 1.79 db

" " forward " 0.01 db

For ferrite shapes other than spherical, f may be calculated once
the demagnetising factors are known. In cases where the shape is not
ellipsoidal, the demagnetising factors are only approximate. The de-
magnetising factors for several different shapes, e.g. the this disc, long

18
rod, and the this slab, have been given in the literature.
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8.2. Dielectric Loss.

The attenuation to be expected by placing a dielectric sample
in a rectangular waveguide, is calculated by means of the Poynting vector
theorem. The loss derived is due solely to the non-zero concuctivity of
the dielectric medium and is called dielectric insertion loss. The
power dissipated per unit length of a uniform sample of dielectric, assumed

to be matched, is defined as Pd'

2
P, = We tan g |El © as, 8.2.1.
B4
where S1 is the cross-section of the dielectric in the waveguide,

and tan § is the dielectric loss tangent.

The total power flow along the waveguide is given by

I J\Elz as, 8.2.2.
W
i S,
where 52 is the waveguide cross-section.

The loss in the dielectric causes an exponentigl decrease in
-0l :
the amplitude of the fields in the axial direction, e ot According
to Lamont,

2 & = Pd 8.2030

Over a length of dielectric, L, the loss in the dielectric
in decibels, is

T  tand .F
Toss (dB) = 454 (-‘fcA )2 pe, = o S 8.2.4.
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where A is the rectangular waveguide broad dimension and

¥ - 8.2.5.

j%# is determined from the dispersion curve at any frequency. The

energy factor, ¥, is found graphically from the electric field distribution

over the cross-section.
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9«.further applications of the finite-difference method.
9.1.Homogeneous cylindrical waveguides.

So far,the treatment of propagation down waveguides has been
restricted to those waveguides which have rectilinear boundaries.How-
ever,in practice,the use of waveguides having cylindrical boundaries
is also extensive,e.g.,the circular waveguide and the coaxial line.
(The coaxial line is treated here as a type of circular waveguide ).

In both cases,the boundaries of these transmission lines are most con-
veniently described in cylindrical polar coordinates with the origin
on the longitudinal axis of symmetry.

The propagating fields and the cut-off fregquencies of the
dominant Hll mode and other higher-order modes in circular waveguide
have been know37for some time.This is also true for the TEM mode and
higher-order waveguide modes in coaxial line.As an introduction to the
topic of the application of finite-difference methods to waveguides
having cylindrical boundaries,it is proposed to show how the fields
and cut-off wavelength of waveguide modes in a homogeneous circular
waveguide are found.A somewhat different procedure is necessary for
the dominant TEM mode in coaxial line because the equation satisfied
by the field components is not the wave equation but laplace's equation.
The general method is then applied to deal with more complicatde cylin-
drical waveguides and finally to a section on inhomogeneously-loaded
waveguides where conventicnal analytical methods are very cumbersome

As in the case of the rectilinear waveguide,the electro-

magnetic fields of the travelling wave may be shown to be derived from
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a scalar wave function @ which satisfies the two-dimensional wave

equation
2
VES 4k f =0 9.2.1,

The field components are given in the case of H-mode and E-
mode propagation by equations 5.l.l. and 5.1.2. respectively.By the
finite-difference method,half of the circular waveguide cross-section
is subdivided into a number of curvilinear meshes by lines drawn with
constant radius,r,and angle,®,see I'ig.9.la.The basic finite- difference
approximation to the laplacian operator at any point O in the cross-

3%
section is given in the literature and gquoted here:-

2 2 _ ( ’ h ) _..i_l_ B ___22 !
h vt¢_¢1+¢2+¢5(1+21‘0).r¢4(l 21.0) 4¢0_ hk¢0 9.1.2

where h is the mesh length,rO is the radius from the origin
to the point O,and the points 0-4 refer to the drawing in Figure 9.1lb.
At each point in the subdivided cross-section,the difference approx-
imation to the wave equation is applied with the boundary conditions
incorporated in the eguations holding at the points on the waveguide
boundary.The ™' linear equations obtaimed at the 'm' mesh points are
written in the matrix form of equation 5.2.11.In contrast to the case
of the homogeneous rectilinear waveguide,the elements of the band matrix
are not all integers owing to the presence in the difference equation
of the fractional terr E; in the cosfficients of f and f,.This faot
causes a certain amount of difficulty in the preparation of the matrix

data for computation where it is simple and quick to punch all the

elements in binary.lon-integer elements must be punched in decimal and
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thus,it requires two separate programmes to read the data into the
computer.

The solution of the matrix equation gives the cut-off con-
dition and the longitudinal field distribution from which the remaining
field components may be derived.When the mode considered is H-type,the
longitudinal field is magnetic,and when E-type,the longitudinal field
is electric.The type of mode is determined by the boundary conditions
on the wave function.Higher-order modes of the system are dealt with
as before,by considering the appropriate latent roots and vectors of
the matrix.

The coaxial transmission line is treated in the same manner
as the circular waveguide,the only difference in the two cases being
the extra boundary condition on the inner conductor of the coaxial
line.As pointed out earlier,the finite-difference procedure only applies
to the waveguide modes of the coaxial line.An alternative method of
solution is possible in the case of the coaxial line by transforming
the circular boundaries and the wave equation into rectangular co-
ordinates and solving the resulting problem by finite-differences.This
method will be referred to as the 'transfermation' methed.Under the
conformal transformation

y=1logr 3 =x=6 (see Fig.9.2.)

the tubular cross-section of the coaxial line transfocrms
into a rectangle.If H-modes are considered,the boundary conditions on
the rectangle are known - there are electric walls at y = 0 and y =

log a, and magnetic walls at x = 0 and x =vw . The inner radius of
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the coaxial line is normalised to be unity and the plane of symme try
taken at © = O so that the origin of the rectangular axes coincides
with a corner of the rectangle.Analegous boundary conditions to those
given above hold when the mode considered is E-type.The two-dimensional

wave equation transforms into
° 2 L B

In the transformed cross-section,square meshes are drawn which
cover the whole region exactly as in the case of the réctangular wave-
guide.It is advisable to arrange that the width of the rectangle, ,is

an integral number of half mesh lengths,h,

rh
2

so that,if there is a mesh point at x = O,there is either a

where r is an integer.

mesh point at x =7 ,or two mesh points which straddle the point at x =7
In this case,the expression of the boundary condition in terms of the
function values at the boundary is much simplified.Since a square mesh

is normally employed,then

log a = B where s is an integer.

2
Consequently,it is preferable to choese the outer radius of
the coaxial line to satisfy this equation rather than to deal with an

arbitrary radius.This condition on 'a' is not essential but more

convenient.

From symmetry conditions on particular modes,it may be possible
to consider only one half of the rectangular cross-section,i.e. one

quadrant of the coaxial line.The finite-difference representation of
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of equation 9.1.4. is simply
2 2 2
ey(‘%¢-4¢o)=-hk¢o 9.1.5.

Applying equations 9.1.5. at each point in the cross-section

the matrix formulation of the resulting equations is obtained again.

As in the case of the circular waveguide,the elements of the matrix

are complicated by the presence of non-integer terms which,in this case
arise from the exponential factor in equation 9.1.5.

The cylindrical ridged waveguide has found use,in practice,
in the developmenisgf a broadband circular waveguide rFaraday rotator.
In order to maintain constant rotation of the linearly-polarised electric
field,it is desirable to make the axial propagation constant insen-
sitive to change in frequency.lor this reason,the ridged waveguide is
chosen rather than the empty waveguide.A quantitative idea of the be-
haviour of the fields and propagation constants are necessary for the
design of the broadband rotator.The actual configuration used in
reference 3%1is not suitable for an analysis by finite-differences
because the ridge shape is rectangular.However,the situation most con-
venient for the difference method,(where the ridge edges lie parallel
to r and © ) is similar to the above case.

The direct method of applying the finite-difference equations
9.1.2. to the mesh points in the subdivided cross-section,is uded to
determine the propagating fields and cut-off frequency of the dominant
mode.The only difference in treatment between this structure and the
ridged rectangular waveguide is in the derivation of the matrix B.

The transformation method described earlier in this section may not be
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applied in this case because the transformed cross-section is not
rectangular.
9.2.Inhomogeneous cylindrical waveguides.

Attempt:qto build a resonance isolator in coaxial transmis-
sion line has led to the use of unsymmetrical loading of the line with
a high-permittivity dielectric.The dominant mode in coaxial line is
the well-known TENM mode which has no component of field in the direction
of propagation.The transverse magnetic field is linearly-polariseéd and
consequently,there can never be any condition of circular polarisation
in the air-filled structure.In order to create a longitudinal component
of magnetic field,the region between the two conductors is loaded with
a dielectric in one half of the cross-section.The other half remains
air-filled.Cwing to the disconuity in field caused by the dielectric,
an axial component of H is set up with the result that the total mag-
netic field vector is,in general,elliptically polarised.It is surmised
from the results of intense dielectric loading in other waveguide
structures,that the ellipticity of the magnetic field close to the
dielectric-air interface,is small.In order to determine the dependence
of circular polarisation on frequency,it is necessary to investigate
the propagating fields in the structure.In addition,a knowledge of
the wave impedance and the dependence of guide wavelength on frequency
is most valuable in determining the design of Tchebyscheff quarter-
wave matching sections into the ordinary homogeneous circular wave-
guide.

As was pointed out in section 6.4.,only hybrid modes can
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propagate in a wavguide structure which contains a dielectric when
there is a dependence of field along the transverse dielectric face.
The dielectric loaded ridged circular waveguide is such a structure.
By transforming the boundaries of the structure according to equation
9.1.3.,the cross-section becomes that of a dielectric loaded remtan-
gular waveguide,see Fig.9.3. As in the case of the air-filled coaxial
line,the wave equation transforms into equation 9.1.4.Since the pro-
pagating modes are hybrid,it is not possible to describe the fields

by means of a single wave function.Instead,two wave functions are used
whose solutions are identified as HZ and Ez respectively.The field
expressions are found by combining the separate terms due to H; and E,
alone.The finite-difference solutions of the wave equations are accom-
plished in a similar mamner to that used in the case of the dielec-
tric loaded ridged rectangular waveguide.The vector,¢, in the matrix
equation consists of half ¢r values and half \r values.By comparison
with 2 structure propagating only H or E modes,the matrix size needs
to be doubled to gain the same degree of accuracy.With the computer
programmes available at present,this is a stringent condition on the
accuracy of the solution.

Wnhen the hybrid mode propagates,all three components of r.f.
magnetic field are non-zero.However, since the propagating dominant
mode is predominantly H-type,(see the section on the dielectric loaded
ridged rectangular waveguide ),it may be assumed that the radial com-
ponent of H,viz.,Hr, is small in comparison to Hz and HQ.To a first

approximetion,the fields may be regarded as being elliptically-polar-

ised.
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The finite-difference solution may also be found by direct
application of equation 9.1.2. together with the relevant modificatndns
at points on the dielectric interface.Just as in the case of the
dielectric loaded ridged rectangular waveguide,the normal component
of electric field at the interface,Ex,is discontinuous,so is the
component E¢ in dielectric loaded coaxial line.

The circular waveguide axially-loaded with a dielectric is
sometimes used as a reciprocal phase-shifter.The dispersion curve for
the dominant mode is useful#;s the first stage in a perturbation cal-
culation of the curve for a magnetically-saturated ferrite rod.The
analysis of the most interesting modes of the structure by finite-
differences is carried out by the direct method describved for the
empty circular waveguide,with modifications of the difference equations
at points in the dielectric region and at the interface.In the case
of modes having independence of the azimuthal coordinate,8,the pro-
pagating modes are not hybrid and the solution is relatively simple.
The transformation method doed not work for circular waveguides since
the transformed cross-sectioh is not a bounded rectangular region.
Clarricoats has studied a number of the possible propagating modes
in the structure and it seems that the finite-difference method has
a particular advantage here over other procedures in that all the modes
of one type can be considered simultaneously.

9.3. Conclusions.

The finite-difference method described in this thesis,has

been applied to propagation in various types of homogeneous and in-

homogeneous rectilinear waveguides and the extemsion of the method
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to include cylindrical structures pointed out.In all cases,a matrix
equation is derived from the finite-differences representation of the
wave equation at mesh points in a bounded waveguide region.As compared
with conventional methods of solving propagation problems in waveguides,
the finite-difference technique produces the longitudinal electromag-
netic field and the transverse wavenumbers in a single matrix operation.
It is also possible by finite-differences,to give similar information
about the higher-order modes of the system.This is done simultaneously
if the requisite computer programmes are available which give all the
latent roots and vectors of a matrix.It is pointed out,however,that
the computed latent roots and associated vectors diverge further from
the physical quantities which they represent 8s the order of the higher
mode increases.This is simply explained by the fact that the fields
in the higher-order modes vary more rapidly across the waveguide
cross-section than for the dominant mode.As a consequence,the finite-
difference representation to the Iaplacian becomes less accurate.
Detailed information on the higher modes can only be obtained by
taking a sufficiently large number of mesh points in the waveguide
cross-section.

Tn a waveguide configuration where any one dimension is
small compared with the others,the finite-difference method is
unsuitable.As an example of this situation,the case of the dielectric
loaded rectangular waveguide is considered where the slab thickness
is small comparde with the guide width.Due to the small area of the
dielectric section,the proportion of mesh points in it is small.

Since the finite-difference method can only be accurate when there
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a sufficient number of mesh points in any region to describe the
physical situation adequately,it is to be expected that inaccuracies
crop up.Subdivision of the mesh length to increase the number of
points in the dielectric region leads to large matrices which cannot
be dealt with by the computer.Similar difficulties arise in the case
of the ridged waveguide when the ridged height is small in comparison
with the guide height and also when the ridge height is very close

to the guide height.It is concluded that perturbation or variational
techniques are most suitable in these situations.

The lack of high-speed large-capacity computers to deal with
large matrices is the most important single factor determining the
accuracy available with the finite-difference method.In the case of
the ridged waveguide,it has only been possible to use a matrix of order
140 which gives the eigenvalue with an error of less than 5%1 In the
case of the dielectric loaded ridged waveguide where the fields vary
more rapidly,it is not expected that the eigenvalue is accurate to
less than 10%.

The finite-difference method is capable of dealing with a
wide range of problems in the field of microwave propagatioA.For the
most part,it is simple and fast and flexible in that only minor
modifications to the general method are necessary to deal with widely-
different waveguide configurations.The application of the method to
propasation in ferrite-loaded structures has only been investigéted
in the relatively simple case of H-mode propagation in a ferrite slab

loaded rectangular waveguide.
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Another more complicated range of problems than hitherto dis-
cugsed is concerned with microwave devices employing electromasgnetic
modes that owe their existence to the presence of a magnetised ferrite.

L Lo, bl
These have been partially explored by Seidel,Clarricoats)and Trivel-

43
piece but much work remains to be done.It may well be that finite-
difference techniques will find considerable future application in

this direction.
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10. Conclusions.

The magnetic field polarisation in several waveguide
structures has been calculated and the theoretical resultis compared
with experimental values. The ridged waveguide has been shown to
be more broadband than the rectangular waveguide as far as frequency
is concerned but the positional dependence of the circular polaris-
ation somewhat obscures this effect. Dielectric loading technigues
have been shown to improve this situation by creating a region
close to the dielectric where the r.f. magnetic field remains
substantially circularly polarised throughout a large frequency band.
Higher-order modes may be dealt with by technigques which all depend
on keeping the cut-off frequency beyond the upper limit of X band.

The measurement of magnetic field polarisation, accomplished
by ferrite probes in the waveguide, is made difficult by the necessity
of using a ferrite which suffers a measureable loss and at the saue
time does not perturdb the fields appreciably. Moreover, it is also
necessary to use a ferrite sample which is ellipsoidal so that the
internal fields are uniform. To satisfy these requirements, it is
best to employ a spherical ferrite. with a very narrow linewidth.

It is possible with present-day garnets, (YIG), to obtain a linewidth
of around 40 oersteds with a polycrystalline sample. For the purpose
cf measuring the magnetic polarisation, the small sphere of narrow
linewidth gives satisfactory results although, ideally, it would be
preferable to use a material of extremely narrow linewidth.

Employing the methods described in this work for the
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determination of the fields and wavenumbers in propagating waveguides,
it would be possible to use the results as a basis for the design of
a resonance isolator. The large bandwidth regmirement of a resonance
isolator can be obtained in two ways. Firstly, by using a narrow
linewidth material with d.c. field tapering employed to resonate
different sectiocns of the ferrite at different frequencies in the band,
it is possible to obtain a large reverse-to-forward loss ratio over
a large bandwidth. At any single freguency, the portion of the ferrite
not at resonance acts as a dielectric . Secondly, the bvroadband
effect can be obtained by using a ferrite of extremely large linewidth
with uniform d.c. field biassing in a structure where the circularly
polarised r.f. field is insensitive to freguency,e.g., the dielectric
loaded waveguide.

The work on gagnetic field polarisation in waveguides may
be applied to structures other than resonance isolators, e.g. ihe
non-reciprocal phase shifter, where constant rotation of a linearly
polarised wave is required over a f{recuency band. In this case, it
is necessary to look for a structure which has a propagation constant
independent of frequency. The propagation constant is often aifficult
to determine due to the complexity of the transcendental equations
which naturally occur. In these circumstances, the finite-difference
wethod is extremely uvseful since, in most cases, the wavenumbers
and fields of the dominant moae are simply determined. The longi-
tuainal propagation con:tant is also of interest in the design of

Tchebyscheff matching transformers to the empty wavepuide.
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1l Appendix.
1ds s Inversion and Iteration Programme.

The inversion procedure is carried out on the computer (DEUCE)
by the standard LVO1 programme on a square matrix whose order is restricted
to 83. The output of the inversion, (B-l)t, is used as the input for
a G.I.P. programme which performs the iteration. G.I.P. uses standard
ibricks' to perform matrix and scalar operations. The use of the bricks
is controlled by a set of codewords which are presented below. The
number of the brick is given under the 'r' columm. The brick operates on
matrices stored at 'a' and 'b' and stores the result at 'c'. In this
programme, the vector obtained in each iteration is normalised by dividing
the vector by the ratio of the root mean squares of the elements of the

current vector and the previous vector.

CODEWCURDS
No. a b c -
0 0 0 16 1  Read inverted matrix, (B-l)t.
1 16 0 16 2  Standardise (B‘l).
2 16 0 16 3 Transpose matrix (B-l).
3 0 0 10 1 Read guess vector, X .
4 16 10 1% 5  Multiply - B'lxn = X q.
5 10 10 0 4 TForm x2 = K.
6 5 B | 4 TForm x°.. = k°

n+l n+l

7 o 0 o 9  Divide kﬁ by ki_l - K121.
8 1 1 10 8 Expand Ki as a 1X1 matrix.
9 10 0 13 10 Form Kn.
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10 11 0 0 11 Punch Kn'

11 11 13 10 5 Form Kn'xn+1 and replace X

12 10 2 0 13 Convert to scheme A.

13 0 0 0 12 Reverse sign of matrix.

14 0] i | 10 13 Convert to scheme B.

15 10 0 0 11 Punch out vector Knxn+l'

16 0 0 4 33. Jump to instruction 4 and obey.
Bricks

No.

1 Read matrix IROTB/2

2 Standardise matrix LZ69B

3 Transpose matrix LTO3

4 Scalar product INOTB

5 Matrix multiply IMO5B (3 sections)

8 Expand scalar as matrix LZ19B/1

9 Scalar divide LZ0o6A

10 Matrix square root LZ18B/1

il Punch matrix IP15BT

12 Reverse signs LZ04A

13 Convert to scheme A or B LZ20B
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11. 2. Linear Equations and Iteration.

The whole operation ¢f solving the linear equations and performation
is done by a G.I.P. programme. The normalisation of the vectors is done
by dividing by the largest element in thevector. The codewords and

bricks for this programme are given below:

Codewords
No. a b c T
0 0 0 170 1 Read guess vector, X, s 1l X n.
1 0 0] 40 ) Read band matrix B, n X n.
2 170 n 1 T Change parameters ton X 1.
3 40 170 40 2 Compound matrices, B and xi.
4 40 1 164 48 Plant auxialary codeword.
5 29 6 22 3 Obey LEO 7B and form X5.1°
6 164 1 n 7 Change parameters to 1 X n.
7 164 0 162 8 Find maximum element of X q°
8 162 0 0 9 Punch out maximum element, c.
9 4 0 0 48 Plant divide codeword.
10 164 162 170 10 Divide Xi1 by ¢ and replace X
11 170 0 0 9 Punch out X, / c.
12 170 n 1 7 Change parameters to n X 1.
13 0 0] 1 25 Jump to codeword 1 and continue.
Bricks
No.
i Read binary matrix LR16BT
2 Compound matrices Lz0o8B / 1

j20



10.

Solve linear equations
Change parameters of matrix
Find maximum element

Punch matrix

Term by term arithmetic

[

LEOTB
LZ51B
LZ21B/1
LP15BT

LZ61B



12.

-l
12.
L5

14,

15
16
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