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ANALYSIS OF HIGH VOLTAGE IMPULSE GENERATOR CIRCUITS.

Resume of Thesis by L. Martin Haddow.

A study is made of transient or oscillatory voltages 
which arise in an impulse generator of the two-column Marx type 
during the firing process (i.e. between the breakdown of the first 
and the last spark-gap and immediately thereafter). These volt­
ages are liable to appear on the external test and measuring 
equipment, but this aspect is not dealt with, nor are the spark- 
gap characteristics investigated systematically.

The voltages are shown to be relatively independent 
of the main circuit elements, but to be set up in the stray 
capacitative and inductive fields in the generator, structure.
These fields are resolved into an equivalent circuit involving 
measurable parameters. A matrix method is developed to analyze 
its dynamic properties, the solution being given in terms of 
eigenvalues. It is particularly suited to numerical treatment 
on a digital computer. The theory is extended, tentatively, to 
the evaluation of optimum damping resistances.

By a second approach, the generator is represented by 
a one-dimensional lattice circuit. Although an explicit solution 
is not obtained, some propagation characteristics are determined, 
enabling comparison to be made with the one-column type of 
generator (and with such analogous problems as transformer 
windings).

The gaps cannot in general be assumed to fire 
simultaneously. The transient voltages are of primary importance 
in causing their successive breakdown, but the instant of break­
down due to an overvoltage cannot be determined from present data. 
Again, the firing of the gaps constitutes the excitation to the 
circuit, but it is doubtful whether they behave as ideal switches. 
These two factors make a complete solution impracticable.



The experimental work made use of a four-stage 
generator. Voltages calculated from measured parameters are 
compared with oscillographic measurements. Sources of error 
in the capacitance-divider circuit are investigated and 
compensation for the connecting leads shown to be desirable.
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List of Symbols used in Section 2.1,

A = a diagonal matrix, in Equation 9.
B a matrix in Equation 19.

c(t) = diagonal matrix of cos cupt - terms (Equ. 9).
Cl, Cp ... = partial capacitances.

C = symmetrical matrix of capacitance coefficients
Cii.

D = d/dt.
e(t) = (column-matrix of) impressed emf(s) ep eg ...
E(p) = £ e(t).

f = frequency.
f(w), f(z) = characteristic matrices of U, Y Equ. 4(a,b).
F(w), F(z) = adjoints of f(w), f(z).

hp = modal row, or eigenvector, of mode r.
h = square matrix formed of rows hp.

i(t\) = mesh currents,
= unit matrix of order n. 

kp = modal column of mode r.
k = square matrix formed of columns kp.
K = matrix conjugate to k.
L = symmetrical matrix of inductance coefficients

^ij •
£ = "Laplace transform of".
n = No. of conducting gaps = order of matrix.
p = transform parameter.

q(t) = (matrix of) charge displacements in arbitrary
meshes.



■ 6.

.List of Symbols used in. Section 2.1 (continued).

q(t) = ditto in norma,l meshes.
Q(p) = £ q(t).

r = 'typical mesh number.
R = resistance matrix.
S = = matrix of elastance coefficients, S^ j.
t = time.
U = CL = dynamical matrix (square).

v(t) = voltage difference across terminal pairs.
V(p) = £ v(t).

2 2 w = - l/p = l/ü) .
W = diagonal matrix formed by wg .. .
X = arbitrary column matrix in Equ. 17.
Y . = C“^ = U“^.

p g ... ^
z = -p = Ü) ; = root of a (z ) = 0.
Z - diagonal matrix formed of zq, Z2 ...
0) = 2 TT f.

A(w ), A(z ) = determinant of f(w), f(z),
A*(w), a ’(z ) = d A(w)/dw, d A(z)/dz.

Suffixes to e, i, q refer to,arbitrary meshes.
'* " h, k, q, w, z, œ refer to normal modes or meshes.

Double Suffixes to 0, L, S refer to mutuals between arbitrary
me she s.
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List of Symbols used in Section 2.3.

a = wave number = l/wavelength in sections,
b = cos k = parameter in Equations 6 and 8.
C = capacitance from node to earth.

Cl, C2 ... = capacitances at ends (Figure 8).
f = frequency,
k = 2 TT a.

Kq K2 = capacitance between adjacent, alternate nodes.
L = inductance per section,
n = section number.
N = total number of sections.
p = parameter of Laplace transform with respect to t ,
q = constants in Equation 4.
t = time.

U(p,z) = transform of v(t,n) with respect to both t and n.
v(t,n) = voltage from node n to earth at time t .
V(p,n) = Laplace transform of v(t,n).

Vq, Vg . . . = ditto at nodes i, 2, ... N.
= voltage across Gap m following firing of Gap n. 

y - constants in Equation 1.
z = parameter of sequence transform with respect

to n.
0) = 2 TT f .
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SECTION 1 - THESIS.

1.1 Introduction.
The analytical work that has been done elsewhere on 

the multi-stage impulse generator has been concerned mainly with 
the "external" phenomena, viz. with the wave-shaping and test­
load circuits connected to its terminals, and the main series 
circuit through the generator after it has fired. It is rather 
fortuitous that equipment based on Marx's original circuits 
should tend to work at all, even though the processes involved 
have been only incompletely and imperfectly understood. A paper 
by Edwards, Husbands and Perry (Reference 4) describes the 
development of the machine over about 25 years. In that time, 
three or four basic physical arrangements of the main components 
have emerged, and it is now a standard piece of high-voltage 
equipment in both research laboratory and industrial test-house. 
Yet even now there is no thorough understanding of what takes 
place internal to the generator between the firing of the first 
and the last spark-gap. Transient oscillations, overvoltages, 
and photo-irradiation effects are all involved.

The successful operation of the generator depends on 
the several spark-gaps firing simultaneously, or with very little 
time-lag between them. Actually, this tends to occur automatic­
ally provided the gaps are reasonably well adjusted. Neverthe­
less, generators having designs that appear suitable for the 
intended output, have been found, when assembled and tested, to 
operate anomalously. The authors of Reference 4, for instance, 
mention an 8-stage, 1000 kV. generator "which could not be made to 
work consistently at charging voltages in excess of 60 kV. when 
arranged to deliver a wave of 5 microsec. wavetail". The over­
voltages appearing across the first two or three successive gaps 
were then calculated, taking into consideration certain stray 
capacitances and tail resistors. This led to a better under­
standing of that particular anomaly, and hence to improvement in



the machine's performance. Goodlet, (Reference 6) also discusses 
the influence of the gaps on the output wave-shape, as have many 
others in the field.

With the early oscillographic methods, high-frequency 
superimposed oscillations due to transients within the generator 
were either not recorded at all, or were indistinguishable from 
spurious oscillations produced in the measuring circuit itself. 
Improvements both in high-speed oscillographic equipment and in 
the associated potential dividers have made for far more precision 
in impulse work, as for instance in fault detection in machine 
windings. There has thus arisen the need for purer and smoother 
output voltages, and hence a real interest in the behaviour of 
the internal elements of the impulse generator.

Many of these circuit elements exist, however, more 
by accident than by design. Apart from the spark-gaps, they 
include the inductances of connecting links, and capacitances of 
insulated supports and of the air-space between the main 
electrodes and the earthed surroundings. Although never the 
same for any two installations, the predominant elements are 
characteristic for each basic physical arrangement of generator 
components. This thesis will deal only with the type of gener­
ator shown in the photographs and in Figure 2, which comprises 
stage capacitors and spacers arranged alternately in two vertical 
columns.

A certain amount of work has already been done on the 
internal analysis of generators in addition to that mentioned in 
Reference 2. Eisner (Reference 5) regards the generator stack as 
a transmission-line type of network, with infinitely small 
batteries spaced between the uniformly-distributed parameters. 
Partial differential equations are set up to give a system of 
travelling waves. These waves appear as oscillations super­
imposed on the terminal impulse voltage, but seemingly they do not 
agree well with the recorded oscillations. Provoost (Ref. 19) 
extends the same theory to show how travelling waves can be made 
aperiodic by the insertion of terminating resistance.
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In an attempt to obtain a truer representation of the 
machine, Miller, in a Thesis to London University (Ref. 15) 
reviewed by Professor John (Ref. 12), regards it as a ladder net­
work, having the same number of stages as there are generator 
stages, and made up of lumped parameters. Finite batteries 
between sections represent the charged capacitors. Difference 
equations are set up, which are successfully manipulated to take 
account of the superposition of transients produced by the simult­
aneous firing of several gaps. To obtain a solution, however, 
the capacitances of the spacers have to be neglected, although 
they are several times the inter-stage capacitances that have been 
included. Further, his theory does not set out to determine the 
over-voltages across the gaps prior to their sparking over, all 
gaps being assumed to fire at time t = 0, There is room for 
further improveiĵ ient in the agreement with the measured output 
voltage.

What appears to be required now is, on the one hand, 
an extended and more analytical study of the problem discussed in 
Reference 4 of the firing of the successive gaps, and, on the 
other, an improved analysis in terms of oscillations in an extended 
network. A general theory should result from a successful meet­
ing of these two approaches to the problem.



1.2 DIGEST OF STUDY.

1.2.1 Scope.
1.2.2 Scheme of Work and Preliminaries
1.2.3 Matrix Analysis.
1.2.4 Lattice Analysis.
1.2.5 Oscillographic Measurements.
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1.2 DIGEST OF STUDY.

1.2.1 Scope.
In the present study of the impulse generator, only 

the firing process will be dealt with. This covers the events 
between the firing of the first and the last spark-gap, and the 
oscillations arising therefrom, the charging process being com­
pleted prior to this. The external components used to control 
and measure the waveshape applied to a test-object, and the test- 
object itself, will not be involved, although the analysis should 
make it possible to determine the internal oscillations that are 
liable to be impressed on them.

Such superimposed or picked-up oscillations can be 
troublesome in practice, and a knowledge of their origin is an 
advantage. Generally, each type of generator, and even each 
installation, has its own characteristic features. Here, the 
primary concern will be with the two-column, Marx type, the one 
used in the experimental work being a 4-stage machine (actually 
part of a 9-suage installation; see Section 3.1 and Figure 2).

The object of the mathematical theory is to determine 
the pattern of internal voltages, and hence the gap overvoltages. 
The latter are of particular interest in understanding the 
tripping range and consistency of cascading. The ultimate aim 
is to make possible a stage-by-stage analysis, whereby the over­
voltage on the second gap due to the firing of the first is first 
obtained, and then, after arriving at the instant at which the 
sec"nd gap fires, to find the overvoltage on the third due to the 
firing of the first two; and so on. Clearly, with each success­
ive stage, the complexity of the system will increase, and the 
method should be applicable to generators of perhaps a dozen or 
more stages.
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1.2.2 Scheme of Y/ork and Preliminaries.
The various sub-divisions of the work are indicated 

diagrammatic ally in Figure 1. This shows how the three basic 
elements in terms of which the generator is first seen, viz♦ 
physical structure, damping and loading components, and spark-gaps, 
are re-interpreted into the more abstract elements of passive 
parameters, arbitrary connections, and switches and excitation 
functions. The precise natures of the latter elements have to be 
defined before combining them in a mathematical analysis.

The passive parameters are discussed in Sections 3.2
and 3.3. When frequencies of 20 - 30 mc/s. are involved in a
structure of this size, retarded-potential and energy-radiation 
factors become significant. Nevertheless, it is shown that to 
assume "near-zone" conditions does not introduce significant 
error, and allows of ordinary circuit theory to be used.

There is no unique system of passive parameters by
which the electro-magnetic complex can be described. One may be 
more suitable for measurement purposes, and another for the math­
ematical treatment, and it thus becomes necessary to transform 
from one to another. Again, apart from the fact that both are 
involved in the numerical calculations, there is a close relation­
ship between the measured values and the choice of mathematical 
analysis. For, the suitability of the latter may depend on the 
relative unimportance of some complicating parameter-element, 
which only the measurements can disclose. The result, in the 
present instance, are the alternative equivalent circuits of 
Figures 3, 4 and 8.

The spark-gaps are discussed in Section 3.4. In 
general, their firing is not assumed to occur simultaneously, but 
to depend on the over-voltages appearing across them. Since 
these over-voltages take the form of short-duration pulses super­
imposed on a steady voltage, the breakdown characteristics are 
very uncertain. This makes it almost impossible, with present
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knowledge, to predict the instants of breakdown, given the over­
voltages and the gap settings. Thus only in certain simple 
conditions can the theoretical and experimental results be com 
pared.

When a gap fires, it changes from a non-conducting to 
a conducting state, and at the same time cancels the voltage 
across it. An ideal gap can therefore be regarded either as a 
simple switch, or as the source of a voltage chop; in either 
case it will excite the passive network. But also discussed in 
Section 3.4 is the possibility that the change is a more gradual 
transient ; also that there may be appreciable energy absorbed by 
the spark-format i on.

The arbitrary connections mainly consist of opening 
out, shorting, or precise setting of spark-gaps, and of arrange­
ments to charge one or more of the main capacitors. They apply 
both to the cases considered in the mathematical analysis, and to 
the experiments in which the voltages are measured oscillographic- 
ally. The latter will be discussed presently.

There are, broadly, two approaches to the problem;- 
either to regard the generator as a single unit, or as a series 
of similar^ recurrent units. The former is the more strictly 
correct in any case, since the floor, ceiling, and surrounding 
laboratory equipment prevent the stages from being exactly similar 
units. More especially is this so when there are only four 
stages available, v/hich also puts a limit to correlation of an 
extended network analysis. But with a large number of stages, a 
recurrent pattern in the parameter values should appear, and a 
recurrent network analysis would have certain advantages.
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1.2.3 Matrix Analysis.

The method of analysis described in Section 2.1 uses 
the first of these approaches. It combines Laplace-transforms 
and matrix techniques for the solution of the simultaneous 
differential equations for the equivalent circuit. The matrix 
methods follow closely those described in "Elementary Matrices" 
by Erazer, Duncan and Collar (Reference B6) to which direct 
reference is made for definitions and proofs of theorems. 
References 3, 22 and 24, were afso of assistance here.

As a result of the preliminary study of Section 3.2 
the complete generator can be represented by the equivalent 
circuit of Figure 3. When the effects of the resistances are 
ignofed, and the stage capacitors left out of account in the 
oscij-latory circuit, the result is the simplified analytical net­
work- of Figure 4(a). This represents a linear conservative 
system, having Lagrange-type of equations for mesh currents.
When in general matrix form, these equations can refer to any 
number of generator stages, although their solution will depend 
on the ability to deal with matrices of high enough order. Thus, 
for the charge-displacements round the meshes, q(t), we have

(L + S)q = e ... Equ. 1 of Section 2,1 *
together with the supplementary or boundary conditions. The 
number of equations, and therefore the order of the matrices, 
equals the number of conducting (or shorted) spark-gaps. The 
solution consists of finding the latent roots of the dynamic 
matrix CL (or its reciprocal), and its model matrix k. (These 
are also known as eigenvalues and eigenvectors respectively.)
When CL is expressed with numerical elements, a numerical solution 
is possible, and an iterative method is described. The result 
of one calculation for a 4-stage ease done on a digital computer 
is included.

* See List of Symbols.
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The latent roots represent the frequencies of 
oscillation of the network, while the modal matrix governs their 
relative amplitudes in each mesh. For the conditions assumed 
(gaps acting as simple switches, closing at t = o), and given an 
initial charge distribution q(o), the solution has the form

q(t) = k c k“^ q(o) ... Equ. 13 of Section 2.1
where c is a diagonal matrix of elements coscop t.

A similar solution in terms of the voltages is
v(t) = K c V (o) Equ. 23 of Section 2.1,

It is shown that these two are closely related, so that we can 
write k'K = 1. By means of these modal matrices, the complete 
original system can be transformed into a system of normal or 
"primitive" networks, each involving only one frequency. It is 
then suggested that this property enables an optimum arrangement 
of resistances to be found which will damp out these oscillations 
to any desired degree. This suggestion is quite tentative, with­
out proof or experimental confirmation, however, and the resulting 
resistance network cannot necessarily be incorporated in a 
practical generator.

The method in general can take account of one or more 
gaps firing at t - o, and gives the voltage at any point in the 
generator, including the over-voltages across the unfired gaps 
(still ignoring the effects of all resistances). The same 
method, repeated stage by stage, could also deal with the case of 
the gaps firing at given intervals of time. In that case, 
currents as well as charge-displacements at the instant of firing 
of a gap would be involved in the boundary conditions, these being 
evaluated from the solution of the previous stage. The practical 
problem does, however, depend on Imowing the instants of firing of 
the successive gaps and, as discussed in Section 3.4, this appears 
to be beyond present information on their spark-over characterist­
ics.
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The approach adopted was to assume various arbitrary 
modes of firing of the gaps, and to try to reproduce them in the 
generator, so that the calculated and the oscillographically 
measured responses could be compared. In the general case, one 
group of gaps is assumed to be conducting, the rest remaining non­
conducting, Usually, only one of the former, say Gap N, is 
assumed to fire at t = o, the others, say the first N-1 gaps in 
the column, being already conducting (or made so by shorting to 
simulate the test condition). Simultaneous firing can be 
represented by super-positioning, the modal analysis being the 
same for all cases having the same N conducting gaps.

1.2.4 Lattice Analysis.
As the number of stages increases, so does the work 

of resolving the matrices, and an analysis in terms of a one­
dimensional lattice becomes more attractive. This is discussed 
in Section 2.3, and is based on "unified" parameters of stray 
capacitance (see Section 3.2.4 and Figures 8 and 13). These 
comprise equal shunt capacitances, C, from each stage to earth, 
and equal coupling capacitances, Kq and K2, between adjacent and 
alternate stages along the lattice respectively. Coupling 
between more remotely separated stages is ignored. There are 
capacitance terminations at each end. The node-points are 
connected through the spark-gaps and inductances in a single line 
(Figure 8). The same circuit can alternatively be regarded as 
identical 6-terminal sections in cascade (Figure 11).

The former type of circuit has been studied quite 
extensively by Rudenberg (Ref. 20) and others (Ref. 14? 18, 25) 
in connection with surges in transformer windings, The charact­
eristic equations are partly differential with respect to time,t , 
and partly of finite differences with respect to the stage number, 
n, and two theories have been developed, interpreting the 
solutions in terms of standing waves and travelling waves 
respectively. Lewis, in Reference 14, discusses the relation­
ship between the two.



Sec. 1.2.4. ^ *

A feature common to all the above papers, however, is 
to ignore capacitance coupling other than that between adjacent 
sections (Kq), although considerable attention has been devoted 
to more-remote mutual inductances, Eisner and Miller (Refs. 5 
and 1 5 ) also ignore Kp in the circuit for the impulse generators. 
But although this may be justified for the single-layer trans­
former winding and for the single-column generator, in the case 
of the 2-column type of generator, Kp is mainly the capacitance 
of the spacers between the main capacitors, and the measurements 
of Section 3.3.1 make Kp about three times Kq. On the basis of 
steady-state voltages, alone, the characteristics of the two are 
very different (Section 2.3.2).

The problem has been more adequately dealt with by 
Brillouin in Reference B.3 for the analogous system of a row of 
particles having equal masses, and inter-acting forces between 
them extending over any distance. His work is mainly concerned 
with the propagation characteristics at any section of the lattice, 
and he points out that reflections at the terminations make the 
complete solution extremely complicated. In the present problem, 
couplings across three sections (Kq) and beyond are ignorable, 
and a solution seemed feasible. The work of Section 2.3 is the 
result, but an explicit solution of the voltage equation was not 
achieved. The difficulties were algebraic, however, and may 
yield to different treatment. The recurrent-section method was 
also not piursued far, although it might likewise respond to more 
advanced treatment, A recent paper by Waldvogel and Rouxel 
(Ref. 2 5 ) suggests that an extended matrix form of solution may 
be used,
1.2.5 Oscillographic Measurements.

The second major part of the work was to obtain sets 
of oscillograms of the voltages from the various points on the 
generator to earth. Each set was for arbitrary circuit condit­
ions, chosen because it revealed some characteristic feature of 
the performance, or corresponded to a conveniently calculated
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condition. It was hoped to obtain correlation of both 
frequencies and amplitudes of the component oscillations, 
although the decrements would be governed by the rather indeter­
minate losses.

Considerations of recording with a capacitance 
divider are given in Section 3.6. The divider itself was 
required to have a low gross capacitance, both to avoid unduly 
disturbing the field of stray capacitances, and to enable it to 
respond to the high frequencies. That used (Figure 21) was of 
quite simple construction. Numerous tests indicated that the 
screening of the middle electrode was adequate. The gross capac­
itance was estimated at 15 pF. Since all voltage amplitudes 
could be related to the charging voltage of the first stage, a 
knowledge of the exact value of the divider-ratio v/as not required, 
provided this ratio remained constant with, or could be corrected 
for, variations in voltage and frequency (or rate of change of 
voltage). The capacitance unit itself appeared to be sufficiently 
linear, but a major source of non-linearity was introduced by the 
inductance of the loop formed by the connections, and by the 
series resistance required to damp out the oscillations in this 
loop.

A response-frequency calibration of the complete 
divider was attempted, but v/as not satisfactory for the higher 
range of frequencies (above about 5 me/s.). A theoretical 
response curve was calculated, and the correction factors, when 
applied to the recorded amplitudes, gave much improved correlation 
with calculations for the simplest generator arrangements (one and 
two stages). But this is not considered a sufficiently sound 
basis for comparison, especially in the more complex waveforms 
that are obtained from multi-stage arrangements, Additional 
uncertainty arises because the possible characteristics of the 
spark-gaps can also cause the large initial decrements, (Section 
3.4), which are the main feature of the divider-response.
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1.3 CONCLUSIONS.
The four principal features of the investigation are 

the f oil 0vying : -
(a) Resolution into, and measurement of the passive

circuit parameters.
(b) Mathematical analysis into oscillatory modes,

assuming step-function excitation.
(c) Representation of spark-gaps for both time-lag and

nature of breakdown.
(d) Oscillographic measurement.

(a) The various impedance matrices and equivalent circuits 
appear to have been formed satisfactorily except possibly for the 
inductances. Thitual inductances might have improved the correl­
ation of frequencies. Dissipation has not been included in the 
original parameters. The validity of the Lattice equivalent 
circuit requires to be confirmed after measurements of partial 
capacitances on a generator of more than four stages, and a 
further study of the inductances of an extended generator.

(b) Given the equivalent circuit, and the assumptions 
relating to gap breakdown, the matrix analysis developed in 
Section 2.1 is put forv/ard as a satisfactory and quite general 
method of solution. It is not dependent on any special pattern 
existing in the stray capacitances and inductances. The treat­
ment depends on numerical analysis, unlike the methods used 
previously in impulse generator, transformer, and other analogous 
problems, (except in some very recent papers on the application 
of computers) in which the solution is given in symbolic form.
It is therefore particularly adapted for solution on a digital 
computer, and avoids the need for major approximations in the 
equivalent circuit. Further, provided the relationship between 
gap over-voltage and gap breakdown is knov/n, a stage-by-stage 
solution could be carried out quite economically. Dissipation
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factors could not be introduced very easily, in the initial 
solution, although resistance values for optimum damping can 
probably be evaluated.

The one-dimensional lattice and the recurrent network 
circuits of Section 2,3 are only to be regarded as sketches of 
methods which may offer advantages in the case of a very large 
number of stages. The difference equations, involving a new
system of voltages, might be formed into matrices which are
easier to resolve than those of Section 2.1, while an analytic 
solution might reveal a pattern in the frequencies v/hich the 
numerical method obscures. Both the steady-state voltage dis­
tributions and the propagation characteristics indicate that the 
firing process of the 2-column construction of generator is 
markedly different from that of the single-column type, and this
does not appear to have been revealed in previous work.

(c) Although the analysis enables the frequencies which 
can occur to be calculated, the amplitudes of oscillation under 
normal operating conditions cannot be predicted without a 
detailed knov/ledge of the gap-breakdown characteristics. This is 
also a factor which seems to be ignored in previous analytical 
investigations. The instant'of breakdown, the nature of the 
change to a conducting state, and the possible effects on the 
decrements are unknovn factors, outwith the scope of this thesis, 
and probably of present-day knowledge. Some of the problems 
raised might form subjects of future investigations,

(d) Further work is also required on the oscillographic 
measuring technique. The construction of an inherently linear 
divider circuit does not appear to be feasible, and a frequency 
calibration up to at least 20 me/s., with a view to compensating 
the lower arm, would seem to be the most hopeful approach. 
Nevertheless, the very simple construction of capacitance divider, 
used with an ordinary commercial oscilloscope enabled much 
relevant information to be obtained on the firing process.
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2.1 MATRIX ANALYSIS OF OSCILLATORY NETWORK.

2.1.1 Introduction.
2.1.2 Formation of Equations.
2.1.3 Resolution of Modes of Oscillation.
2.1.4 Normal co-ordinates.
2.1.5 Iterative Treatment.
2 .1.6 Conjugate voltage solution and normal transformation.
2.1.7 Damping of Oscillations.
2.1.8 Two Stage Case.
2.1.9 Special case when LqCl = L2C2 .

The List of Symbols used in Section 2.1 follow the 
Contents Page.

2.1.1 Introduction.
In the present mathematical approach, the generator 

is to be analysed as a single, complex unit as shown in Figure 4. 
The natural modes of oscillation and the frequencies and ampli­
tudes due to the firing of the spark-gaps in any arbitrary manner 
are to be found. The immediate objective is to do the analysis 
for the 4-stage generator shown, but with a view to extending the 
method to a larger number of stages. In order to make the work 
manageable, the analysis will be done for the equivalent conserv­
ative system, in which series resistors are shorted out, and shunt 
resistors removed (or, in tests, increased to very large values). 
Figure 4 shows the result, which is a system of capacitances and 
a system of inductances. The two are completely segregated 
except at the terminal points.
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: Each spark-gap will he interpreted, arbitrarily, in
one of the following ways :- as an open circuitwhen the voltage
across it corresponds to an over-voltage ; as a short circuit,
because it has fired at some previous instant (or has been shorted
for the test); or as a source of excitation for the whole system,
because, in firing, it cancels any voltage across it, and closes a 
me sh.
2.1.2 Formation of Equations.

A 2-stage generator (or any generator in which two 
gaps are conducting) will be used occasionally to illustrate the 
method. Ignoring resistances, it can be visualized as three 
main electrodes (in reality, stage capacitors) with a capacitance- 
field between them, and having two inductive connections through 
the spark-gaps, (Figure 5(a). The field is fully described by 
the partial capacitances Cl, 02? 0], (or by their reciprocals, the 
elastances Sp, S2 , S3 ), Figure 5 (b). The straightforward method 
of analysing this circuit would be to choose three meshes, 
including, say, one round the three capacitances, and set up 
three equations. Since, however, there is no initial displace­
ment round this mesh, it can be ignored provided the capacitance 
network is re-described by a matrix of self and mutual capacitance 
or elastance coefficients relative to the ’’external" meshes 1 and 
2 . j cii , C1 2 '] ^ r(ci + C3 ) , C3

IC21 , C22j “ I C3 (C2 + C3 ),

and C-1 = S = ' "12 j
I S 2 1  . 8 2 2  !

The general metnod of obtaining the C- or S- matrix 
is given in Section 3.2.2. The capacitance network can then be 
shown as a "box" with pairs of access terminals^as in Figure 4(a). 
A similar "box" represents the inductance system, which, when 
connected to the same pairs of terminals, ’enclose the two meshes.
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Mutual inductance terms will be included when setting up the 
equations, but later neglected. The equations will be in terms 
of the charge displacements, q(t), round the arbitrarily chosen
meshes, and the impressed voltages e(t), and can be written

(D^ 111 + Spi) qp (t) + (D^ Ip2 + Spp) qg (t) = ep (t)
(D^ L2P + S2p) qp (t) + (D^ 122 + ^2 2 ) Iq = ®2 (^)

D2 r L i i  Li 2 ' S l l 812" r 4 11 "’ei'i
— » +

L2I  L22, . 12^ S22 S22, U 2 j

(L d2 + s) q e (1)

where 1 = d/dt, so that a mesh current equals

i(t) Dq dq/ dt

If mutual inductances are neglected. Ip2 = I2P = 0 , and 1 
becomes a diagonal matrix.■ The order of the matrices is equal to 
the number of meshes (or conducting gaps).

2 .1.3 Resolution of Modes of Oscillation.
The solution of (11 + S)q = e consists of the

2complementary function, which is the solution of (111 + S)q = 0 
and involves the initial conditions q(o) and 4 (0 ), and the 
particular integral, v/hich involves e(t). In the general 
problem, dealing with spark-gaps firing at different instants, 
both initial conditions and impressed voltages would have to be 
taken into account, but> for the present, the case of only one 
gap firing in a quiescent circuit will be considered. This can 
be done in two ways. In one, Heaviside's conditions can be 
assumed, vis. that there is neither charge nor current in the 
circuit at t = 0 , when the firing of a gap impresses a unit-step
voltage (say e^ = 1). The other approach assumes that there arc
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initial charges q(o) (calculated from the steady voltage across 
the gap before it fires), but no impressed voltages. The 
currents begin to frov/ at t = o as the system seeks a new condit­
ion of equilibrium.

This distinction ceases to exist when the Laplace 
transform is taken of the whole equation. In doing this, the 
time-functions e(t) and q(t) become the p-functions E(p) and Q(p) 
according to the following relations.

The Laplace transform of q(t) = £ q(t) = Q(p), where

q(t) dt , (and likewise for E(p) ).Q(p) = P £
0

£  5(p) = £ Lq

£ q(p) £ H q

P Q(p) - P q(o)

Q(p) - q(o) - p q(o)

where q(o) and q(o) are the values of charge and current at 
t = o.
Hence Equation 1 becomes

(L p^ + S) Q(p) = L p^ q(o) + L p q(o) + E(p) . (2)
Symbols denoting the same matrices as before.
In the present case, all currents are initially sere. If the
second approach is used, E(p) = o, but there are voltages v(o) 
initially across the capacitance-terminals, corresponding to 
charges q(o) = C v(o). The voltages, v(o), are numerically 
identical with--E(p) if the latter represents only shorted gaps or 
step-functions (Figure 5b).

There are two slightly different v/ays of writing the 
transformed equation; both will be useful in determining the 
oscillations :

(L p^ + S) Q(p) = p^ L q ( o ) ............... (3a)

(Lp^ + S)Q(p) = E(p), = -v( o) - -S q(o) • (3b)
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Prom (3a) (p^ I + L”"̂  C“^) Q = P^ q(o)

. . (z I - y) Q = z q(o) . . . .  (4a)

and from (3b) (“ol + CL) Q = - — o q(o)p^ P

. . (w I - U) Q = - w q(o) . . . . (4b)

where S = C“^, Y = L“^ C"^, U = CL
O y 2z = - , V7 = - 1/p , I = unit matrix of the same

order, n, as the system.
The Equations (4a) and (4b) are of the same form, all 

the system characteristics being contained in either Y or U.
(U is sometimes known as the dynamical matrix of the system). 
f(z) = z I - Y i s  called the "characteristic matrix" of Y

. . f(z)Q ^ z q(o), . . Q(p) - z f ^ q(o) . . . (5).

The problem is to resolve the right-hand-side into explicit 
functions of p.
Let P(z) - adjoint of f (z) (the adjoint being the transpose 
of the matrix made of the co-factors of the original.).
and A (z) = determinant of f (z)

= (z - zq)(z - zp)   (z - Zn)
It will be assumed that zq, zp ẑ ,̂ the roots of A = o
(also called the latent roots of Y ) are all distinct.

Also let / d A \  = A'(zr)
\ d z / z = Zp

Then f“^(z) =
A (z)

F (zr)
A ' ( zp) z - zr
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2If we put zp = m p , then
2

— -̂-- =  p  p = Laplace transform of cos cup t
Z — Z p  P  +  GU p

E ( zp ). . from (5 ), q(t) = >  -------  cos t . q(o) . . . (6 )
^  A'(zr)

Thus the charges oscillate in n characteristic modes.
Nov/, since A (zp) = o (zp all different), f (zp) is

a simply degenerate matrix, having n-l independent rows. Then 
(see Ref, B6 Section 3.5) its adjoint, R (zp) must have only one 
independent row, the others being in proportion. It can there­
fore be expressed as a product of a column and a row, say
F(zr) = kp hp ........................................ (7)

q(t) = ^  kr . . hr q(o) . . . .  (8 )
r A' (zr)

and by simple summation
. . q(t) = k . A . c(t), h . q(o) .  (9)

where k and h are square matrices made up of the columns kp and 
the rows hp respectively, and A and c(t) are diagonal matrices 
formed of the terms l/A ' (zp) and cos o) pt respectively.

Again (see Ref. B6 Section 3.8) it can be proved that
hp kr = A'(zp) . . . . . .  (10)

. \  h k = A”^ , . ’. h = k"^

. . q(t) = k, c(t) . k“^ q(o) .................... (ll)
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It is now apparent that definite ratios exist 
between the amplitudes of a particular frequency-component in the 
various meshes which are given by the modal column, kp. The 
column kp can be chosen proportional to any non-zero column of 
P (zp), or, as explained later, can be found by a numerical 
iterative method from Y.

The alternative form of the transformed equation 
gives a similar result.

. *, (w I - U) Q = w . q( 0 )  (4b)

Setting up similar functions f, P, A gives
P (Wp) Wp
A ’ ( Wp ) w • - Wp

Q  ( p )  =  5  . _ n _  q  ( O )  . . . . ( 1 2 )
t A I TKr__ I MiT . _

If Wp - 1/6 p , - P^ = £ cos ±,
2 2 W -  W p  p ^  +  0) p ^

r

Hence q(t) = k.A . c(t).h.q(o) = k.c(t).k ^*q(o) . . (13) 
which is in the same form as before, although note that the 
actual matrices k, h. A, etc. are now different.

2.1.4 Normal Co-ordinates.
If now new co-ordinates (i.e. systeip: of meshes) q, 

are adopted, given by q = k q
q (t) = c(t) q (0 ) . . . . . . .  (14)

i.e. qq (t) = qq (o) cos o>q t.
qp (t) = qp (o) cos 0) 2 t , etc.

The meshes in which the displacements q occur are known as the 
normal co-ordinates or meshes. Each involves only one charact­
eristic frequency, the amplitude of which is equal to the initial 
charge displacement in that mesh. As a rule, such normal meshes 
cannot be readily identified on the equivalent circuit of the 
system. An interesting result follows from putting Lq Cq = Lp Cp
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in the 2-stage case, when the two normal meshes can be easily 
located, (see Section 2.1.9).

2.1.5 Iterative Treatment.
Although the form of solution given by Equ. 11 (or 13) 

is very convenient, the practical difficulty lies in obtaining the 
roots of A(z) = 0 and in evaluating E (zp)/A*(zp) by ordinary 
algebra. However, a numerical iteration method is given in 
Ref, B6 Chap. 10 whereby the roots (or frequencies) and the modal 
columns can be obtained directly from the original equation

(D^ I - Y) q(t) = 0

Substituting q(t) - k c(t) k”^ q(o)

. . ( - k Z c(t). k ̂  + Y k.c(t). k ̂ ) q(o) = o
where Z is the diagonal matrix formed by zq, zp, ...

2 2 since D cos w pt = - Wp coscopt = - Z p C o s c D p t .
This is true for all t, so put t = o

- k Z k”^ + Y k I k”^ = 0

. '. Y = k Z k ̂  . (15a)

2 - 1 - 1  2 -1. . Y ^ -  k Z k  . k Z k  = k Z k

. '. f  ̂ = k Z ^ k“^ .......................... (16)

For convenience, let this be post-multiplied by an arbitrary 
column of constants x

Y ^ x  = k Z ^ . k ^ x .
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Now, if there is one dominant root zq, corresponding to a maximum 
frequency component cu ̂  (where zq = ) so that zq Zg etc
then Zp^, etc. wi.ll be negligible by comparison with 
provided m is large enough.

. = (-1 kp . .. m

k1 m
a k-

21 , 0 , 0 . .
0 , 0 ,
0 , 0 ,

. X (17)
.-1where kq is the first row of k“ , making k^ x a scaler. Thus

the column Y^x is proportional to the first modal column k^,
and further pre-multiplation of it by Y multiplies the result by 

2Zq — CD 2 *
The procedure for finding the maximum, frequency and 

its modal column is to pre-multiply an arbitrary column of con­
stants, say f 1, 1, 1 •••] , by Y = L“^ C"^ repeatedly
until the ratios of the elements in the resulting column become 
sufficiently constant. This can be observed by dividing out say 
the top element at each stage. In the end, this factor willpapproach zq = cd^ and the remaining column can be taken to be
a-

The alternative•form of transformed equation would 
have given U = k V/ k”^ ..... (I5b) v/here U = CL,
W = diagonal matrix formed of V/- = l/ 0).'1 - -q , ^2 - -p
The above procedure would then result in cu ̂  being the lowest or 
fundamental frequency, and k^ its modal column.

The d]/7iamical matrix U = CL contains all modes of 
oscillations as its latent roots. In order to evaluate the 
first sub-dominant root by the present method, it is necessary to 
modify U (or Y) so that it will represent a system in which the

= l/o) 2 etc.
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dominant frequency is absent. This is done by introducing an 
equation of constraint for the first normal mesh.

0 (18)lq - . q

is the first row of k”"̂. This reciprocal cannot be 
calculated directly from the k^ - column already found, but v;e
where k^ -1

have
-1 W = U k = k"^ C I k.

-1Since C, L, W, are symmetrical matrices, it follows that k must 
be proportional to either k' or k' 1 in order to preserve
the symmetry# (i.e. k"^ = a k' L, say, where a is a diagonal 
matrix). For the present purpose, therefore, we can take 
k^ = k^'1, where ’ is the transposed of k^. (The same condit­
ions hold for the alternative form Y = k Z k”^.)

This equation of constraint, k^ q = o, can be 
re-exnressed as followss

= — - È Ü  . A i  ,3
-11 -11

• é • •

. q = 0 » “ -igZ-ii ' - %3/kii , ...
f  \

0 1 0 ^2

0 , 0 1

L • (: )
(19)

2 2or write q = B q , say, and then D q = B D q.

" Sect. 1,13 of he C. EC.
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Substituting this in one side of the differential equation 
( D ^ I - Y ) q  “ 0 , i.e. h^q = Y q

we get D^q = YBq , I - YB) q = o . . .  (20)

Thus multiplying by B transforms Y for the original system to YB
for a system constrained so that there is no displacement, q^ ,
round the normal mesh 1. The dominant root and mode of this 
system can be found by the same iterative method, and will be the 
first sub-dominant of the original. The procedure can be 
repeated to yield the other roots.

2.1.6 Conjugate Voltage Solution and Normal Transformation.
The mesh equations and their solution given above are 

in terms of the charge-displacement functions and the initial 
charges, but no currents. They can therefore be re-stated in 
terms of voltage functions and initial voltages, since
q(t) = Cv(t), and q(o) = Cv(o).
Equation 4 becomes

(p^ I + C~^ 1“^) V(p) = v(o)
(z I - Y') V = z . v(o) . . . .  (21)

and Equ. 11 becomes

(l/p2 + LC) V = v(o)/p2
,'. (w I - U') V = w . v(o) . . . .  (22)

Y ‘ and U* being the transposed matrices of Y and U, since L and C 
are symmetrical. These equations are of exactly the same form 
as before, and yield solutions of the same form, viz.

v(t) = K C K"^ v ( o ) ......................... (23)
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It should he noted that these are voltages across node-pairs and 
not in the meshes. It will be convenient in future to regard q 
as charge-displacement between node-pairs, and in the present case, 
this can be done without change.

The modal matrices k and K  are related as follows. 
Equation 11 gives

Q = C V = k c k “^ q(o) = k c k~^ C v(o)
. . V = k.c.k”^ C. v(o) = K  c v(o) identically.
Thus K  must be proportional to C~^k, and as was shown in forming
Equation 19, k"^ is proportional to k*C“^. And now the arbitrary
proportional elements can be so chosen that

k* K = 1    . (24)

This equation indicates that there is an orthogonal relationship 
between the two modal matrices, and brings out the conjugate 
properties of the voltages and charge-displacements. In tensor 
algebra (see Ref. B.ll) they are the co- and contra-variant 
quantities of the system. Further, there is a system of normal 
voltages, V, given by v = K v, corresponding to q = k q.

As with the normal charges, each normal voltage 
involves only one frequency. The relationship between the 
original and normal systems can be interpreted as a transformation
between the original network and a set of "primitive" networks, as
shown in Figure 4(b), The capacitance matrix can be transformed 
as follows

q = C V , .*. k q  = C K v

q = k " ^ C K v  = K ' C K v  = C v

C = K' 0 K  and 0 = k C k ' ...................(25)
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where C is the capacitance matrix of the primitive system, and is 
diagonal, (i.e. without mutual terms) since K* OC'

Similarly, L = K L K* and L = k ' L k ................ (26)

The above process is analogous to that developed by 
Kron (Ref. B.ll) to effect transformations between the original 
network, and a set of primitive networks, each consisting of an 
element of the former. In the present case, however, there is 
no identification of the original and normal quantities (except 
the frequencies, and, implicitly, the energies). In fact the 
latter are not even unique, but depend on an arbitrary scale- 
factor contained in k or K.
2.1.7 Damping of Oscillations.

It is now proposed to apply the transformation concept 
just developed to calculate the resistances required to effect 
damping in any of the natural modes of oscillation. It is 
suggested, by analogy, that if each primitive network be shunted 
by the resistance necessary to give the desired degree of damping 
of its mode, (Pig. 4c) the resulting resistance matrix R can be 
transformed to R = K R K pertaining to the original system 
(Figure 4d). More conveniently, if reciprocal-resistance, or 
conductance G is used, then G = k G k ’. This will be similar to

the original C-matrix, which (see Figure 14) can be readily 
interpreted into individual admittances between terminals. The 
resistances have been calculated for complete damping of the 2- 
stage case in Section 2.2.4. The values appear to be of the 
right order, but the arrangement has not been tried experimentally
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2.1.8 Two-Stage Case.
For the case in which the first two gaps are conducting 

(one or both having fired at t = o), the expressions can be 
obtained more directly. Assuming = ^21 ~ ^

U = CL = 011
, 0^2 j 0 , L

'"hi h i ,  h z  h z  

h z  h i ’ ^zz h z

. . Y 1
A 0

^22 ^22 * ~~ ^12
^±2 h i  ’ h i  h i

where A 0 ( h i  *̂ Z2 *^12 ) h i  h z

f (z) f(p") z 0^2 h z /  '^0 ’ h z  h z /  o

' h z  hi/  ̂ 0 ’  ̂“ h i  hi/  ̂  0

P(z)

A (z) = z - z

fz Gqi hi/'^ 0 ’ h z  h z /  '̂ o

'■ “ h z  h i /  0 ’ ^ “ ®22 h z /  ̂  0 '

( h i  h i  *̂ Z2 h z ^  /'^o ■*■ h

(z - z^)(z - Zg)

In this case it is easy to show that

P (z^) = 1
~ h z  h i

h  ^0 h i  h i

[ h  “ h i  h i / ^ o ’ “ h z  hz/'^ol

= h^ , say, (cp. Equ. 7)
and similarly F (zg) = ^2 ^2 •
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Also A^ = 1/ A' (z^) = l/(z^ - z^)

Ag = 1/ A* (zg) = l/(z2 - z^)

Substitutions also show that k~^ = A h . . .  (as Equ. 10).

q(t) = (A^ h^ cos CD2 t + A^ kg hg cos w g t) q(o)

= k . c(t) . A.h.q(o)

q(t) = k . c(t),k""^ . q(o) as Equ. 11.

2.1*9 Special Case when C^ = Lg Cg

The special case of C^ = Lg Cg (see Figure 7b) 
will be considered,

A (z) = + p " ( ( h  h  (^2 R )  h )
L^Lg(C^Cg + CgC, + C,C^)

1
LiLg(CiCg 4- CgC^ + C^C^ )

Substituting L^C^ = LgCg, and manipulating, gives

A(Z) = fp^ + h  + h ___________[ (Lj_ + Ig)(0]^Cg + CgC^ + C^C^)
p p p p

= (p + ü)̂  )(p + Ü) g ) as before

2 1

p2 + _ h _ i h _
EiLg(Ci + Cg)

(Dl

0)

(L^ + Lg)(C^ + C^Cg/(C^ + C,. ))
2 1 1

2 (Cq -f C2 )LqL2/(Lq . + L2 ) Lq Cq
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Substituting these in the modal matrix expression,

k

q(t) k c k ^ q(o)

k 1
^1 ^2

'1 L '1'2 
— Lg

hi'
<12,

1 I f cos (Ô t , 0 Ï, qi(o)
Lg  ̂1, L^/Lg I  ̂ 0, cos CD gt Lg —Lg I qg(0)

1
Lq+Lg

Lg cos cü̂ t, Lg cos Ü) gt 
Lg cos CD2̂ t, ~**L-j cos CD gt

q^(o)Lglj2 + l2(°)
 ̂qq(o) -1 2 (0 )

Prom this result, it is apparent that cd̂  refers to an 
oscillation round Mesh 1' , Figure 7(c), through the two induct­
ances in series. The q-inatrix shows that the current of this 
component flows with equal amplitude in Meshes 1 and 2. None of
this current flows in the connection from the mid-point ; in fact 
it is the current which would flow if this connection v/ere opened. 
Similarly, cOg refers to opposing oscillations in the meshes formed 
by L^C^ and LgCg. The current in the common connection divides 
in the two meshes in the ratio Lg:L^, making the voltage-component
across zero so that it could be opened without affecting cd 2
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2.2 NUMERICAL CALCULATIONS.

2.2.1 Steady-State Voltages.
2.2.2 One-Stage oscillations.
2.2.3 Two-stage oscillations.
2.2.4 Two-stages : normal networks and damgiing.
2.2.5 Iterative Solution of 2-Stage case.
2.2.6 Four-Stage oscillations.

In this section, the theory of Section 2.1 and the 
measured parameters of Section 3.3 will he used to evaluate the 
transients in the 4-Stage generator for a number of arbitrary
conditions (i.e. arrangements of connections). These are to be
compared with oscillographic measurements in Section 3.7.

2.2.1 Steady State Voltages.
From the C- and 8- matrices alone, it is possible to 

calculate the steady-state components of the over-voltages 
produced across the unfired gaps by the firing of the others. If 
the voltage changes are A v, corresponding to charge displacei^ients 
A q (and assuming there is no charge lost through resistive leaks)

A q = C. AV  . v/here r is the number of
(l,r) (r,r)(l,r) conducting gaps

, • . Av = S. Aq = 8 . 8'^ . A v
(1,4) (r,4)(l,r) (r,4) (r,r) (l,r)

(The figures in the brackets indicate the number of rows, columns 
in the matrix. Refer also to Section 3.2.3.)
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(a) Gap 1 firing alone 

A V =

changes from - 1 to 0 ,

' hi
Sgi

1 Y1.07 1
f "-V1

h i  ' -0.88 1.07 -.824
h i 0.24 0.224
#41 ,! -0.24

y i-.224_.

Thus, if there were a voltage of -1 initially across each gap, 
Gaps 2 and 4 will now tend to he fired by voltages of -1.824 and 
-1.224 respectively, while the firing of Gap 3 will be inhibited, 
as shown in Figure 7(a).
(Note, the negative signs follow the conventions of Figure 3.)

(b) Gaps 1 and 2 firing (i.e. assuming Gap 4 does not fire under
-1.224).

A V = "l.07 -.89 ,1 1.53 , 0.72 1 h  I ^ ' 1 '
-.88 1.90 ( 0.72 , 0.865) . 1.1 1
0.24 -1.15 -1.28

. -.24 0.63 . 0,46
The steady-state voltage across Gap 3 is now -2.28, while that 
across Gap 4 will fall to -1 + 0.46 = -0.54.
(c) Gaps 1, 2 r-ind 3 firing. Similarly by inverting the

(3,3) S-matrix gives A v = < 1 , 1 , 1 ,  -1,36 > .
These results have been plotted in Figure 7. This 

shows that as each successive gap fires, the overvoltage on the 
next, unfired, gap increases.

2 .2 . 2 One-Stage Oscillations.
Consider the case when Gap 1 fires, all other remain­

ing non-conducting. Then will oscillate with S^^, giving the 
simple equation
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( + S-n ) Q-i = - V-, ( 0 )'11' "'I 1 1

Qq (P)
L q  P +  S q q

lO
1.8 p^ + 1.07»'»'**

0.93 0.11^^ •o"'9 p i tp + 0.77

since from Section 3*3, “ 1*8 x 10 ^ H, S^^ - 1,07 x 10̂ *̂  F ^

lq (t) 0.930--COS 0) t). / o-<o

where co = 0.77 rad/sec. , f 12.3 mc/s.

v(t) = Sq = -0,93 1. OTXl-cos cot) = 
- 0*89

 ̂ 1  3 ( l - C 0 S CO t  )

-0.83
0.24 0.22

1-0.24; [-0 .22,
#

With a charging voltage of 1 unit, the initial voltage across 
each gap will be -1 (see Figure 3).
After Gap 1 fires,

v(t) = - f Cos cot
1 + (0.83 - 0.83 cos cot)
1 - (0.22 - 0.22 cos cot)

,1 + (0.22 - 0,22 cos cot),.
Thus both Gaps 2 and 4 will tend to fire due to the transients of 
Gap 1 , while the tendency for Gap 3 to fire will be reduced.
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2.2*3 Two-Stage Oscillations.
The measured values of parameters are given in

Section 3.3,

h i = 1.8 X 10 -6
f h 2 = 1 .3 X  10 ®

s
(2 ,2 ) = f  1-07

1-0.89
f

f

-0 ,
1 ,

■ 891 
,9oJ

10"^° (l/Farad)

C = n . 9 o f 0, Sg'i r 1.53 , 0*72
( 2 ,2 ) 10.89 1. 07 V rr I 0.72 , 0 . 8 6 5 ^

(l.07 X 1 . 90 -  c . 8 9 0 ( See Section

X 10 (Farad)

Then, A

(1.53 X  0.865 - 0.72^) X  1.8 x 1.3 x 10“^^ 

1.884 X 10~^^ (Farad - H e n r y u n i t s .

A (z) + z(1.53 X 1.8 + 0.865 x 1.3) x 10^^
1.88

(z + 0.303 X 10^^)(z + 1,76 x 10^®)

+ 1032
1.

• * — — CD1 ■0.303 X 10^^ , Zg = - w 2 16

(A) 1 0.55 X 108 CO

1 8.77 mc/s.

= -1.76 X 10

1.325 X 10®
(Rad/sec.) 

= 21.1 mc/s.

Also, ^ ^ 1 1
.0.59 , -2.35J ,

k-1 60.80 , 0.34 " 
10.20 , -0.34.

and 0.80
■ 0.34

0.203
-.34/
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The initial charges must be so disposed as to give 
the pre-breakdown voltage across each gap about to fire at t = o, 
and zero across the already-conducting gaps. With the sign 
conventions indicated in Figure 5, the initial charges and volt­
ages will be negative, when the stage charging voltage is, say,
1 unit positive. The charges can be calculated from q(o) = Cv(o).
Case (a). Suppose Gap 1 fires on unit voltage, Gap 2 being 

shorted
"1.53 0,72 '-1.53'

t=o 0.72 0.855 I F .-0.72.,

Suppose Gap 1 is shorted, and Gap 2 fires

f il me.
' -0.72 ■'

I ̂ 2 ̂ t = 0 <-0.865>

The various numerical matrices can now be substituted
in

1 = k c k ^

Case (a) .

ll 1 1 1 COS t,

lq ̂ . 0.59, -2.35.) V 0 COS (D

r COS (D^t COS CO g t

, 0.59 COS o)̂ t -2 .35 COS (0

0.80, 0.34 '-1.53''
-0.72 ,

, —0.06 j

'1.47 , 0.06
0.87 , -0.14 .

cos œ^t I 
, cos Ü) gt j
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Further, the voltage across each node-pair is given by v = Sq, 
If q(t) for the meshes with open-circuited gaps be taken as zero 
S is the first two columns of the 4 x 4  S-matrix,

V1
V,

V

V

1.07 ,
—0,89 ,
0,24 ,

-0.89 ] 
1.90 

-1.15 I
0.63

1.468, 0.063 ] c
0 .8 7 1, -.147 1

0.796 , 
0.348 , 
-.649 ,
0.196

0.199 I

-.335
0.184 I
-0.108 I

cos 03̂ t ) 
cos COgt

At t = 0 , this gives v = 4-1, 0, 0.47, -0.09j
The voltages of 0.47 and -0.09 indicated to be across Gaps 3 and 
4 initially are due to the change displacements q(o) in Meshes 1 
and 2. If, as in normal operation, Stages 3 and 4 were charged,
the initial volta.ge across, say, Gap 3 v/ould be - 1 .,. i,e, due to a
displacement through the charging resistors, there would be a volt­
age change of -1,47. Thus when Gap 1 fires, there would be
additional voltages of -(0.47 - O .65 cos w^t + O.I8 cos Wgt)
superimposed on Gap 3, tending to make it fire, and (0.09 - 0.20 
cos Cü̂ t + 0.11 cos o>gt) on Gap 4, tending to retard firing
Case (b). Similarly:- 

l'il]
V '

V2
V-
V 4̂ '

r0.871 
I0.517

-0.1511
0.354 '

; COS
■cos

" 1
CO 2

0.472 -0.4761 f COS
0.207 0.806 I COS Cl) g

-0.385 -0.443
0.117 0.259,
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2.2,4 Two Stages ; Normal Networks and Damping.
The parameters of the normal or primitive networks

are given by
V = K' C K = f 1.47 , 0 ■ 10"^h.1

I 0 , 0.063 I

Ï = k' L k = f'2.26 . 0 1 10"®H.
i 0 9.0J

Check that l/tq^ Cqq = 0.302 = as before.

I/Ï22 C22 = 1.77 = w 2"

Shunt resistance for critical damping = -i- o)L,
hence completely to damp out w^ and oDg requires

ilE. -, =  i X  0.55 X  10® X 2.26 X  10 ® = 62 ohms.

Gqq = l/Hqq = 1.61 X  10 ^

Similarly Ggp - 0.168 x 10 ^

.’. G = k G k' = ;1*78 0.561 ^ 1 (G^ + G^), O3 )
10.56 1 .4 9/ ' G^ , (&2 + G^) I

Gq = 1.22 X  10"^ .•. Rq = 82 ohms
G2 = 0.93 " Eg = 107 "
G. = 0.56 " R3 = 178 "

These are shown in Figure 5 (d), and at (e) are in possible 
situations in the actual generator. It should be noted, however, 
that they are only about 10% of the practical values of tail 
resistors.
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2.2.5 Iterative Solution of 2-Stage Case.
The modal matrix, k, can also he found by the iterat­

ive method, although it is not really justified for a 2 x 2
matrix.

U = Cl = fi.53 , 0.72 "I [1.8 , 0 ") X 1 0"^® M-Hy.
10.72 , 0 .865] [ 0 ", 1.3

X 10-16
2.76 , 0.935
1.3 , 1.12

Let the arbitrary column be x = 1, 1

Then Ux \ h i11 _ r 3.70 = 3.7
I 2.42 I

Repeated multiplication of the column by U

: 1
10.655;

Iteration No.
X

1 2 3 4 5

1 3.70 1 3.38 1 3.33 1 3 .3 2 ] 1 3.32 1
1 2.42 0 . 66 2.04 .605 1.98 .595 I.9 7 I.593

*
1.96 0.59

/ 1 'This gives k-, = { ; , while the constant factor i;
10.59.1

+Wq = 3.32 = l/ u)q' 8
1as before. Then k^ = k̂ "̂  L

CO 1 = 0. 55 X 10

= [l.8 , 0 .7 6 ]
= 1.8 fl . 0.426

0 -  0.426 
lo 1
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* . U, B = . I 2.76 , 0.9351 ro , -.426% ^
1.3 1

! 0 , -0.240 I 
 ̂0 , 0.566(

UgX

Ug^x

i - 0.24 j
0.566 ;

r 0.5661 
-1.33

-0.24 I

0.566

1
1-2.35;

1  ̂
I-2 .35J

The result is thereafter constant.
The column matrix is k

.8
2 and 4- Wg = 0.566 = 1/ 0)

• • Cl) 2 
calculation.

= 1.33 X 10 rad/sec. both the same as by direct

2.2.6 Four-Stage Oscillations.
The following results in resolving the 4-Stage case 

have been obtained with the aid of the Ferranti "Pegasus" computer 
at King's College, Newcastle, by another person in the course of 
experimental programme work. Only the latent roots and modal 
columns were obtained on the meichine, the rest being done by 
slide-rule, although the latter, too, could have been computed 
with a small extension to the programme. The form of matrix 
equation developed in the last Section (actually Equation 22 was 
used) appears to be particularly suita le for solution by 
computer. The programme, once made, v/ill deal with any 
dynamical matrix, U ' = LC, up to about the l6th order (and 
possibly to twice this order, by operating on the inverse 
matrix Y ’). Mutual terms in the inductance matrix would 
present no difficulty, but damping or dissipation could not be 
readily dealt v/ith.
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Inductance matrix, L = fri.8 0 0 0
! 0 1.3 0 0
I 0 0 1.3 0
! 0 0 0 1.3.

(10 Henry)

Capacitance matrix as given in Figure 14.

Latent roots, w, of = LC, and equivalent frequencies :-
»

Mode , / 2 w = 1/ o>
0)

(10^/sec)
f = ( J O /2TT 
(mc/s)

1
2
3
4

4.9183 ... 
1.6138 
0,7427 ... 
0.2951 ...

0.489
0.787
1.16
1.84

7.79
12.55
18.5
29.3

Vector columns as computed :-

Mode 1 Mode 2 Mode 3 Mode 4

1.0
0.6594 ...
0 .4655 ... 
0.1663 ...

-.9259 ...
0.1538 ... 
1.0 
0.6120 ...

-.6747 .
1.0
-0.0398 
-.9234 . ,

-.3049 ...
0.7378
-0.9293 ..
1.0

Changing ratios of columns, for convenience, gives 

k

k-1

r 1 -1 -1 -1 1
j 0.66 0.17 1.48 2.43
1 0.47 1.08 -0.06 -3.05
10.17 0.66 -1.37 3.29,

'■ + .513 + .469 + .334 + .1131
-.314 + .067 +, 462 + .277
-.149 + .309 -.012 — .286

,-.030 + .093 — . 116 + .122.
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Now, “by Equation 23, v(t) = k c k”^ v(o).
Consider only the case where Gap 1 closes at t = o, all others 
being conducting (or shorted). Then v( o ) =  1, 0, 0, 0 so
that the last three col'uunns of k”^ can be omitted. Writing out 
the 2nd order expressions (showing the elements of k"*̂  underlined)

ni -  i hi k
ni h2i k

= j hi k
I hi k

12 ! ! ^1
22 i ! 0

k-

ai
-12 J

k^gl j cos CD ^ t '

> kgg ^12 i “ 2

In the same way, for the 4-stage case, we get

h ' .51 .31 .15 .03/)

^2 .34 -.05 -.22 -.07
.24 -.34' • 01 .09

74, .09 -.21 .20 -.10

cos 0)̂  t 
cos Wp t

i
cos Wg t :! 3

I cos Ü) . tI 4

The expressions for voltages to earth (corresponding to the 
measured quantities) are

^^1 ' .51 .31 .15 .03" cos h 1 1

^1 + ^2 .85 .26 — • 07 -.04 COS o>2 t

^1 + n  + ^3 1.09 -.08 06 .05 cos (03 t

/ I + Vg + V3 + ^ 1,18 -.29 .14 -.05 COS h t

Two of these have been plotted in Figure 23.
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2.3 ANALYSIS AS ONE-DIMENSIONAT LATTICE.

2.3.1 Introduction.
2.3.2 Hypothetical Steady-State voltages.
2.3.3 Dynamical analysis of lattice.
2.3.4 General. Propagation Characteristics.
2.3.5 Note on Pocurrent Section analysis.

The List of Symbols in Section 2,3 follows the Content;
Fage.

2.3.1 Introduction.
The equivalent circuit of a generator extended to a 

large number of stages is shown in Figure 8 (Section 3.2.4).
Before attempting a dynamic analysis, the hypothetical distribut­
ions of steady-state voltage as each gap fires will be considered. 
Figure 6. These are based on the uniform stray capacitances 
derived from Figure 13? and ignoring the inductances and resist­
ances.

2.3.2 Hypothetical Steady State Voltages.
The upper diagrams are for coupling between adjacent 

stages only, being comparable with C. This is the circuit 
condition studied by Eisner (Ref. 5) and Miller (Ref. 15). It 
corresponds more to the single-column generator than to the 
present 2-column type. There is the usual hyperbolic distribut­
ion, so that a positive over-voltage appears at each unfired gap 
as soon as Gap 1 fires, that at Gap 2 being the greatest. The 
over-voltage across an unfired gap increases as more of the .pre­
ceding gaps fire. Thus, by very careful adjustment, it is
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possible for Gap 1 to cause all the remaining gaps to fire 
practically simultaneously. On the other hand, unless is 
small compared with C, the over-voltages, and hence the tripping 
range, will bo small, and firing may be irregular.

In the lower diagrams, only capanitance coupling 
between alternate nodes, Kp, is assumed. This corresponds more 
closely to the 2-column type of impulse generator and has quite 
a different voltage-distribution characteristic. After Gap 1 
fires, a positive over-voltage appears across Gaps 2, 4, 6, etc., 
while at the odd-numbered gaps the voltage change tqnds to 
inhibit firing. (e.g. V^^). This pattern is reversed when Gap 2 
fires (increasing the voltage across Gap 3 to amd again with
the firing of the others. Because, in practice, these changes do 
not occur instantaneously owing to the inductances and resistances, 
the whole firing process may take an appreciable time, if the gaps 
fire strictly in turn. If, however, the gaps are very critically 
set, so that is only slightly greater than V^, it is conceiv­
able that all the even-numbered gaps fire simultaneously. The 
remaining gaps should thus fire at the next swing of the voltage 
distribution. Compared with the previous case, the over-voltages 
do not decrease as is increased, and in practice are likely to 
be greater, at the start. '^pl’ ^ i n s t a n c e ,  can approach 200^
of , c

When both and Eg are present, the distribution 
characteristic will be intermediate betv/een these two.
In the generator the estimated values are

E^ = 10 pF, Eg = 33 pF, 0 = 30 pF.
so that the second characteristic will predominate. Distributions 
calculated from the capacitance matrices, are given in Section
2.2, and Figure 6 can be seen to agree with this. One or two 
points found experimentally are also in agreement.

This shows the importance of taking Eg into account 
with the 2-column type of generator. It also shows how the
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measured values of parameters determine the choice of mathemat­
ical technique. The influence of vmll again he discussed 
later in this Section in connection with the propagation 
characteristics of Figure 9.

2,3.3 Dynamical Analysis of Lattice.
Turning again to the equivalent circuit of Figure 8, 

the one-dimensional dynamical lattice extends from Node 0 to 
Node N, and is excited by the firing of a gap between Nodes N-1 
and N. The terminations consist of C2 , as shown.
Equating to zero the branch currents flowing into node n using 
the "operational" or transformed voltages.
P ̂2(1+2 + 1-2 - 21)

+ + P 1)(1+1 + 1-1 - 2V̂ ) - P G = 0

1 (1+2 1-2) l̂ l+l 1-1 ) 0̂ 1 °
(1)

where = P Kg , 1  pi P 1

7 q = + 2 p Kg + 2 p + pC

2yg + 2y^ + pC.

It is proposed to attempt a solution of this differ­
ence equation, using the sequence transform given in Reference 13 
by Lawden. If u - u(mT) is a function of time known by samples 
taken at intervals T, so that t = mT, then u can be transformed 
into a new function

TT f \ -mU(z) - u. z
m=b
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This is a generalized Laplace transform, and reverts to it in the
limit (T = 0). It has the _property that the transform of

x-r
r  ̂  (2)u(mT + xT) = U(z) + ' ‘ u z^ ^

r=o

where , .... ^x-1 the initial conditions (m=0).
The transform is also used by Barker (Reference 2) and, in a
slightly different form, by Gardner and Barnes (Ref. B7, Chap. 9), 
both of whom give useful tables of transformed functions. (Also 
References 16 and 23).

In the present application, the transform has to be 
made with respect to the node-number n (instead of time). Let 
the voltages at the first few functions be V(p,0) = V ,
V(p,l) = , etc., aid; restate Equation 1 for Node (n + 2), for
convenience,

• ' • ^2 1 + 4  + 1  1 + 3  - ^0 1 + 2  + 1  1 + 1  + 3'2 1  = °
. • . » . ( 3 )

Applying the sequence transform

^2 (z^ U + 1 + + z2 Vg + Z V3 )

+ yq (z^ U + 1 + z2 + z Vg)

-  K q (z2 U + 1 + z Vj_)

+ 1 (z U + z v p + 72 ^ = 0

u (p.z)
(I3 z^ + 12

2z + q^ z +

^2 z^ + yq -  ^0 ^ + yq z + ^2

(4)
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where 1  = 1  V q

92 = 1  V o +  y g  V q

9q " 1  V q +  y q  V q + y g  V g

^0 = 1  V o -  V q  V q
+ 1  V g +  y g

V 3

h a v e t o  b e i n t e r p r e t e d i n t e r m s o f  t h e b o u n d a r yVo , 1
conditions at the ends of the lattice, which comprise the capacit­
ances C^, Co, C^, C^, and the impressed voltage = 1.

At the hase-end, = 0, ^

Since C^ = > the equation for currents into Node 1 is

“ ]̂_) + ^2(^3 “ ) *” (l]_ yp ^ = 0

♦ ' • - 3̂ 0 1  + 1  Vg + yg V3 = 0

But this also equals q^ , . q^ = 0.

, Y2 need to he stated in terms of the conditions at the other 
end, but me ant ime ; -

U(p,z) = _ 1  1  + (Vq + yg l)z;2 _ _ . (5)
4 3 2

y q Z  +  Y q Z  -  V q Z  +  y^^z + yg

Since the denominator is a reciprocal function in z, it can be
factorized in the form

y2 (2^ - 2b^ z + 1)(z^ - 2bg z + 1)

2(bg - q ) y g z —21Dt z+1 z “2bgZ+l

. . . . . (6)
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Barker, (Reference 2) gives the sequence transform pairs :-

U(z) V(n)

- 2bz + 1
sin kn 
sin k

where cos k = b 1

sinh kn 
sinh k

where cosh k = b 1

z
z 2bz + 1

sin(k+l)n sinh(k+l)n
sin k sinh k

Hence the inverse transform of U(p,z) , assuming b 1 , 

V(p,n) =
("sin k^(n+l) sin kg(n+l)
! sin kq sin k2

+

IS

j sin k-,n
H  + 1  R )

2 yg (cos kg - cos k^)

sin kgn 
sin k2

. . . (7)

In order to eliminate and Vg from this equation, 
it is apparently necessary to find first the expressions for V̂ ,̂
V^ etc. and substitute in the equations for currents at Nodes 
N and N-1. No way has been found of doing this without involving 
extremely cumbersome expressions. And even then, the poles of 
the resulting expression for V(p,n) have to be determined in 
order to find the inverse Laplace transform v(t,n), end hence to 
interpret the solution in physical terms.
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2,3.4 General Propagation Characteristics.
Nevertheless, the general propagation characteristics 

of the lattice can he found from an examination of the parameters 
h^, hg. By equating coefficients of the denominators of 
Equal ions 5 and 6, we get

bq + bg = - y^/2 yg , 2 + 4 q  bg = - y^/yg

4 yg b^ + 2y^ b - 2 y g - y ^  = 0 . . . . ( 8 )

This is a quadratic containing both roots for b = cos k.
Assuming the solution is made up of travel ling-wave

components, so that

v(t,n) = i - W .....................(9,

we can, by putting
P = jo) = j 2 TT f , where f = frequency

and k = 2 it a, where a = wave number (or reciprocal
of the wavelength in sections)

and substituting for V g ,Yq.Yg , write 

0^2 = 2 (1 - cos k)/L

____________2 (1 - cos k)/L_____________ . . . (qo)
C + 2 Kj(l - cos k) + 2 Eg(l - cos 2k)

This is the general propagation equation for travell­
ing waves in the lattice, and takes no account of the end- 
conditions. The significance of this relationship between the 
frequency, f, and the v/ave-member, a, is discussed in the earlier
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chapters of Reference jB3 by Brillouin, It allows the separate 
effects of and Kg to be found, as shown graphically in 
Figure 9? using values for the circuit elements estimated in 
Section 3.3.

V/hen = Kg = 0, the lattice is that of a simple 
artificial line, and

LC

This shows that there is then a cut-off frequency of 
^max ~  1 / ttvTTG = 51 mc/s. Any component of a higher
frequency v/ould be attenuated with distance from the point at 
which it is impressed. Tne cut-off frequency corresponds to 
a = -J-, or a wavelength of 2 sections. This is in accordance with 
general theory: in the analagous mechanical system of particles
discussed by Brillouin, the minimum wavelength equals twice the 
distance between the particles. It can also be regarded as the 
natural frequency of a section comprising inductance L and two 
capacitors C/2 in series, As a travelling wave, the velocity is 
f/a, and therefore varies with frequency. The minimum velocity 
is therefore about 100 x 10^ sections/second.

When the coupling coefficients and Kg are intro­
duced, the maximum frequency occurs when

cos k = - 1, k = 2 TT a = tt , a = -J , as before.

Then œ H  = -7--- ' giving = 33 mc/s. (approx.
max L(K^ + 0/ 4 )

This mode of oscillation is independent of Kg, and correspond: to 
current in the mesh shown in Figure 10(a), The introduction of 
Kĝ  thus reduces the maximum frequency which can be propagated in 
the lattice.

A thorough search for the natural modes of oscillation 
on this basis has not been attempted, but two others are shown.
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One is given for a = cos k = 0, and then

CO ̂  — —  —  and f = 14 mc/s. (Figure lOh)
2L(Ky2 + Kg + C/4)

Another is for cos k = 1 - \FC/4 K^ , and

0)2 1 1
L(K^ + 4 Kg) NL(K^/N + 4 Kg/li)

and f = 12 mc/s.

This is equivalent to an oscillation along the whole length of 
the lattice, as shown in Figure 10c. It is not immediately 
apparent why this should be independent of the value of 0, since 
the C's will gain or lose charge during a cycle. It probably 
depends on the initial distribution of the voltage being along 
the whole lattice.

These natural modes of propagated waves correspond to 
the standing waves discussed by Lewis (Ref. 14). They cannot 
necessajfily be interpreted on the equivalent circuit (compare the 
discussion on the 2-mesh case in Section 2,1.9). The propagation 
equation cannot give a complete analysis for this reason, and also 
because it takes no account of the boundary conditions.

2,3.5 Note on Recurrent-Section,—     .— —

The recurrent section is shown in Figure 11 from 
which the admittance matrix has been directly derived. By simple 
manipulation, this has been converted to a matrix relating the 
"input" to "output" quantities. The response of N such sections 
in cascade would be given by the Nth power of this matrix.
However, the matrix does not appear to be amenable to such treat­
ment, and the method has not been pursued further.
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3.1 DESCRIPTION OF IMPULSE GENERATOR.
The impulse test plant used for the experimental work 

is shown in the photographs (frontispiece), its electrical dispos­
ition being given in Figure 2. V/hen permanently installed, the 
impulse generator will have 9 stages, giving a nominal output of 
1500 kV with a stored energy of 10.5 kW-sec. It is of the two- 
column type ; each column is made up of a stack of outwardly- 
identical porcelain containers consisting of the stage-capacitors, 
(0,085 M-F each) and oil-filled spacers, arranged alternately.
The principal dimensions are: column-centres 6 ft., height 22 in. 
per stage, diameter of units 28 in. Connections tc the horizont­
ally mounted spark gap are made through clip-on shorting rods. 
Resistors (usually of 25 oiims each) can be substituted for inter­
nal series damping and wavefront control. The charging and tail 
resistors are mounted diagonally between the flanges. The 
number of stages can therefore be increased, within limits, by 
merely increasing the number of units in the columns. A recent 
installation of this design is of I8 such stages, with a nominal 
output of 4000 kV.

During the present investigation, only the first four 
stages could be erected, ov/ing to limitations of space in the 
laboratory - mainly roof-truss ties. The proximity of other 
equipment would be about normal, so that a fairly typical system 
of stray capacitances should have obtained for these four stages. 
The most prominent sources of stray-capacitance fields v;ere the 
corona-shielded flanges between the units. This is further dis­
cussed in Section 3.2.

For most of the tests, the 25 ohm v/ave-front resistors 
were not inserted. Although of a "non-inductive" wire-wound 
construction, they were found to have about 5 m-H inductance, 
which considerably altered the frequencies of oscillation, vhilo 
providing no appreciable damping effect. (See Section 3.3.3). 
Again, the normal wavetail resistors were sometimes replaced by 
higher-value carbon resistors, mainly to increase the duration of 
over-voltage s.



59.
Sec, 3.1.

The normal surge potentiometer consisted of two 
600 kV units of about 60 pP each in the upper arm. It v/as, un­
suitable for inter-stage measurements because its capacitance was 
large enough to disturb the stray-field system, and inductance in 
both the upper-arm loop and in the lower arm unit made its 
response too slow for 20-30 mc/s. The divider used is described 
in Section 3.6,

The high frequencies and low divider capacitance also 
made it undesirable to use a delay cable. The original trip- 
control system, (shown in the photographs), which consisted of 
two sets of 3-electrode gaps, could not be made consistent enough 
for recording on fast time-sweepsj and it was replaced by a 
Trigatron-controlled gap (Section 3.5). Although consistent 
enough, the behaviour of this device under certain conditions was 
8ome what an omalou s.

Two transient recorders were used. Southern Instruments 
models "T.R..10" and "T.R.12", both using 10 kV tubes (G.E.G. 903 
BCG). Most of the work was done when only the former was avail­
able. Triggering of its time-sweep was tnrough a 3-electrode 
magnesium gap, vmth 1 microsec. maximum sweep speed. The T.R.12 
model had electronic triggering, with a maximum sweep speed of 
0,2 microsec.
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3.2 RESOLUTION INTO PASSIVE PARAMETERS.

3.2.1 General.
3.2.2 Capacitance field system,
3.2.3 Matrices for Fewer than Four Stages,
3.2.4 Parameters of Lattice networks.

3.2.1 General.
The impulse generator used in the investigation is 

described in Section 3.1. Fi^pare 2 is a diagram of the main 
circuit connections (in the 9-stage arrangement) the components of 
which control the output wave-shape. None of them plays a major 
part in the analysis of the firing process, the phenomena of which 
are principally rooted in the physical structure of the generator 
and its surroundings, and in the characteristics of the spark-gaps. 
The present object is to visualize this electro-ma^metic complex 
in terms of suitable mathematical parameters,

A cursory series of oscillograms was made of the 
voltages appearing at the more obvious points of the 4-stage 
generator. These showed that frequencies of about 20 mc/s. 
could occur. At that frequency, it becomes questionable whether 
normal circuit theory can be applied. The problem is discussed 
in Reference B.IO, A general field system can be resolved into 
the mathematical components of induction and radiation fields.
Under so-called "near-zone" conditions, of small physical dimens­
ions and low frequencies, the latter field is negligible, and the 
former leads to conventional circuit elements. The criterion is 
that the maximum separation of currents and charges that exert a 
significant and uncancellod effect on one another be much smaller 
than v/o), where v is the velocity characteristic of the medium 
between them, and w - 2 TT f . Here, o) = 10^ rad./:.,ec. , so that
for the error due to the neglect of the radiation field not to
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exceed 1^, the separation must not exceed 3 cm. : for an error of
10^, 30 cm.

Clearly, the actual dimensions will, at these 
frequencies, bring the system into the intermediate zone, in 
which radiation and potential retardation should be taken into 
account. The solutions of problems in this zone are seldom 
practicable, although in the border-line region, the effects are 
mainly to alter the values of the lumped-circuit parameters as 
measured at low frequencies, and still allov/ the use of circuit 
theory. In the case of a loop conductor, the effect would be to 
reduce the inductance slightly, and to introduce a radiation 
equivalent,resistance. For a square loop of 1 m. sides, this 
resistance is in the order of % olim for a> = 10 ,̂ and this is 
probably negligible. Further, when discussing over-voltages 
across spark-gaps, the electrodes of which are fairly close 
together, retardation of potentials induced by other parts of the 
system may be unimportant. The effect on the potentials of more 
widely separated parts of the system, although difficult to pre­
dict, is likely to be only of second order, because the interact­
ions between them must decreasr- with the separation.

On the whole, therefore, it seems justified to use the 
near-zone conditions of ordinary circuit theory, and to assume 
that parameters measured at low frequencies can be applied at 20- 
30 mc/s. without much error. The structure is to be resolved 
into a capacitance system between a number of electrodes, and 
inductive (and possibly resistive) connections between them.

The preliminary oscillograms showed that transient 
voltages on either side of the main .085 p F capacitors were 
practically identical. Their internal impedance can therefore 
be neglected at these frequencies, and each regarded as a single 
electrode. One of these capacitors is mounted on the earthed 
base-plate, and hence forms part of the earthed surroundings.
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There are also the capacitances associated with 15-cm. 
diameter spark-gap hemispheres and their mountings. These are 
strictly speaking separated from the above by inductive connect­
ions (which may consist of 25 ohm resistors) but considering their 
relatively small values it seems justified to lump them in with 
the main capacitors to which they are connected.

The capacitance system of the 4-stage generator now 
consists of four isolated electrodes and the earthed surroundings. 
This can be resolved either into the 10 inter-electrode, partial 
capacitances shown in Figure 12; or into a set of Maxwell's 
coefficients of capacitance or elastance (i.e. reciprocal capacit­
ance ). The former (which include the capacitances of the spacer 
units) were the most convenient to obtain by bridge measurements, 
(Section 3.3.1) and can be transformed into any other set mathem­
atically. First, however, the other components of the generator 
will be dealt with.

The main interconnect ions between the electrodes are 
through those spark-gaps which are either shorted or conducting 
at the time being considered (Figure 3). The whole of the 
inductance in the system is assumed to be located in these connect' 
ions. A rough calculation indicated that mutual inductances 
between adjacent connections would be less then 10^ of the self- 
inductances, so that it seemed justified in ignoring them in the 
analysis.* Self-inductance values were estimated as in Section
3.3.2. The wave-front control resistors also normally form part 
of these connections, but in most of the tests they were replaced 
by shorting links.. Their damping effect at the frequencies con­
cerned was negligible (25 ohms compared with a critical damping in 
the order of 500 ohms) whereas the self-inductance of the normal 
resistors (Section 3.3.3) considerably altered .the natural 
frequencies.

There remain the charging and tail resistors (Eq a^d 
Rp in Figure 2). Both are essential to the charging of the main

(* But see Corrigendiun at end of Section 3.7).
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capacitors, but their practical vfalues are so large that they 
cannot involve any fresh oscillations, and have only a shunting 
effect on the transient circuit. Besides tending to damp out 
oscillations, this shunting increases the decrement of over­
voltage pulses across the gaps, and can have an important effect 
on their firing. Nevertheless,any analysis of oscillatory 
circuits is best done v/ithout damping in the first instance, so 
in the experiments these resistors were made large enough not to 
affect the transients during firing, and they need not be 
included in the equivalent circuit at the present stage. Their 
omission leads to the simplified oscillatory network of Figure 4a,
3.2.2 Capacitance Field System.

The theory developed in Section 2.1 requires the cap­
acitance field system to be described in terms of capacitance or 
elastance coefficients. These have to be calculated from the 
inter-electrode capacitances already found. Treating the system 
as a "box" with four pairs of access terminals, the voltages and 

^  currents vd.ll be related by an elastance-matrix, as follov;s“-

; V.1
V2 i
V

I h  j

that is, 
Now if

i v J

i d

I d

V

1
P I hi h3 h4

|hi S22 S23 ®24

®32 ^33 h4 t h1
/ 4I S42 ®43 h4. 1. h

1
P SI, in ordinary matrix notation 

0- I3 - I4

h  i h f i
p s2 1 1

I h i  Ih

h i p ' V h '
Sgi V g / h

^31 V3/I1

hi. . V h .
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Each elastance coefficient, say > is given by p-times the 
ratio of the voltage appearing across (2 ) and the current 
impressed on terminals (l), all terminal-pairs other than (l) 
being open-circuited.

But this response is not easy to calculate directly 
from the partial capacitances. On the other hand, the response 
based on the capacitance matrix can be written down by inspection 
using the relationship I = p 0 V.
If Yr 3 4 0

- Vf p [ C-J -, Ii;

: I

■4

'1

'31

'11
C21

1
P

C41

"31 
C41,

I :i/^i

1 12/^1I !

^4/̂ 1 !

Thus the capacitance coefficient * for instance, is given by 
^/p times the ratio of the current flowing in terminal-pairs (2 ), 
and the voltage impressed across terminals (l), all terminal pairs 
other than (l) being short-circuited.

The result of mailing these short-circuits can be seen 
in Figure 14. The current through each short-circuit is simply
that through one or a number of parallel capacitors, so that, for
instance, “ ^5 + Cg + ̂1 0 *

Nov/ the equation I = pCV can be inverted to give
V = — C*~̂  I, and this must be identical withp V = I S I,

-1 Thus 8 can be obtained most easily by inverting
the C-matrix after substituting numerical values.
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3.2.3. Matrices for Fewer than Four Stages.
The C- and S- matrices refer to a network in which all 

four currents are taken into account. V/hen some of the spark- 
gaps remain open-circuits throughout the period considered, it is 
convenient to reduce the number of mesh-equations, and hence the 
order of the system.

V/hen an S-matrix is involved in these equations, it is 
simply a sub-partition of the 4 x 4 S-matrix, the columns corres­
ponding to the zero currents being omitted. The reduced C-matrix 
is not, however, a sub-partition of the 4 x 4  C-matrix, but the 
reciprocal of the active part of the new S-matrix, Thus, if Gaps 
3 and 4 remain open,

: V2

Then P

1
P

C V

11 b 2 l  I h i
S,

(2 ,2 )

21 "22 

where c(2,2)

= 1.8. I,
P(2,2)

-1

say.

S
(2,2)

where the figures in the brackets denote the number of rows, 
columns in the matrix.

3.2.4 Poj^ameters of Lattice Network.
In the case of a generator with a larger number of 

stages, it might be expected that a definite pattern v/ould exist 
in the values of capacitances between electrodes (except, possibly, 
at the top and bottom of the stack). Referring to Figure 13 it is 
suggested that the partial capacitance from each isolated electrode 
(i.e. main-capacitor unit) to the earthed surroundings is C = 30 pF 
that between adjacent electrodes (considered in the order in which 
they are connected through the gaps), = = 10 pF; that between
alternate electrodes (which is largely the capacitance of the 
spacer-unit) = Kp = 33 pF; that between third (and more remote)
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electrodes = = negligible. This 'pattern of capacitances
requires changes of less than 10‘yo in the values measured on the 
4-stage generator (Figure 12) (except that which was only
that of a corona shield, is increased from 17 pF to 30 pF in the 
extended case). It is also reasonable to suppose that the 
inductances of interconnections will remain constant at the value 
found for Lp = 1.3 pH. Thus an approximate but very convenient 
equivalent circuit for a generator of any number of steps can now 
be drav/n, and the L- and C- matrices written down by inspection, 
as has been done for a 9-stage generator, Figure 15.

Further, the connection of a load-capacitance C 
would only require the matrix to be enlarged by another row and 
column, each element of which equals C^, and all the original 
elements to be increased by C .

More important, the circuit can now be regarded as a 
uniform, one-dimensional lattice network, (Figure 8), or alternat­
ively -as a row of identical sections, of the kind shown in 
Figui’e 11, in cascade. In each case there are special end- 
terninations. At the top there are the capacitances Cp, C^, ,
representing the remaining unfired stages of the generator, or 
some other impedances representing the external loading. At the 
base-end there is the capacitance of the first spacer, 
approximately.
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3.3 MEASUREMENT OF PARAMETERS.

3.3.1 Partial Capacitances.
3.3.2 Self Inductance per Stage.
3.3.3 Inductance of 25 ohm Resistors

3.3.1 Partial Capacitances.
The capacitance system of the 4-stage generator con­

sists of four isolated electrodes, and a fifth made up of the 
first stage capacitors, the generator bedplate and the earthed 
surroundings. The ten pertial capacitances which exist between 
these nodes (Figure 12) were found from measurements made with the 
10 kc/s substitution bridge shown in Figure 16. All measurements 
were of capacitance to earth from one or more of the isolated 
electrodes, the others being earthed. Fifteen groupings of this 
kind were possible, giving a like number of simultaneous equations 
in the ten capacitances, ten of which were then solved and checked 
against the other five. (Table, Figure 17).

The bridge, made up of standard screened components, 
needs no special explanation, but it may be noted that all connect 
ions to the generator were made through fixed wires coming to a 
small terminal board. All interconnections were made at this 
board, thus minimising changes in the lead capacitances. Then 
with the wires in the same positions, but disconnected from the 
generator, their respective capacitances to earth were measured. 
Allowances were made for them before solving the simultaneous 
equations. Such precautions were found necessary because the 
solution involved differences of fairly large numbers. The 
detection was very sensitive, and permitted indicated readings to 
better than 0.1 pF on the variable air capacitor when set around 
500 pF. Substitution of the ten capacitance values in the five 
unused equations gave a consistency of better than 1^ between the 
two sides.
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The group capacitances were also measured by means of 
a Q-meter at 208 kc/s, and 646 kc/s, but without the precautions 
of using fixed connecting wires. The results were all between 
the "gross" and "net" values given by the above method, and the 
difference in the values at the two frequencies was in the order 
of 1^.

3.3.2 Self-Inductance per Stage.
The stage inductance of the generator (without the 

internal damping resistors) is that of the spark-gap assembly and 
connecting links and one stage capacitor. The arrangement shown 
in Figure 30d comprising two stage capacitors, each supported on 
spacers, one being in the position normally occupied by the spacer 
a/d , should form a loop of twice this inductance. With one gap 
permanently shorted, one capacitor was charged to about 20 kV, and 
then discharged into the other through the trigatron-controlled 
gap, the oscillations at the point B being recorded. (Osc. 1085). 
The frequency was 0.5 mc/s. and there were two - 0.085 microfarad 
capacitors in series, so that the loop inductance was 2.56 or 
say 1.3 |jL H per stage. (Q-meter measurements gave a loop induct­
ance of 2.8 uH, but the detection was not sensitive.)

Since the first stage inductance included that of the 
base-plate of the generator, a separate test was made, (Fig. 30e). 
Oscillogram 1053 indicated a frequency of 0.59 mc/s. and the loop 
inductance worked out to 1.8 m-H. This is practically the same as 
the stage inductance, since the 0.08 m-F capacitors were shown to 
have negligible inductance.

The inductance was also estimated by calculation from 
the dimensions, as given in Figure 18. The connections through 
the spark gaps are assumed to be straight conductors of 2 r^ = 
0.025 m. diameter, ana the stage capacitors cylinders of 2R = 0.2m. 
diameter, length of conductors = a = 1,8 m., separation of 
conductors = b = 0.2m.
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The self-inductance of the rectangular loop ABCD is 
proportional to the flux through it due to an equal current in the 
four sides, Attwood (Ref. Bl, Chap.10) gives formulae for calcu­
lating the contribution of each side.
Neglecting internal flux, that due to AB is

______ \ r = b

hs. - 2 TT
I ----------------- r  2 2|jL J 2 2 . a a + ra + r - r - a logg  ----- :---   ;

r = ro
where r is a radius out from the axis of AB, rg = radius of 
Conductor AB.
There will be a similar expression for BC, so that, after substit­
ution, half loop inductance

= L2 = + IgQ = 1.26 + 0.15 - 1.41 m-H (compared with
1.3 pH.

Mutual inductance between adjacent loops is proport­
ional to the flux from AB betweeb CD and EP, represented by the 
limits r = b and r = 2b. This gives M^^ ~ 0.16 p H .

Mutual inductances can probably be neglected for the approximate 
calculation intended here. (But see Corrigendum to Section 3.7).

3.3.3 Inductance of 25 ohm Resistors.
The internal series (or wave-front) resistors used 

with the generator consist of 25 ohm v/ire-wound units which can be 
inserted in place of the tubular connecting links on either side of 
the gaps. They serve as damping in the whole generator- circuit, 
which includes the load, but do not damp out the internal oscillat­
ions. V/hen a single stage fires, the oscillation is about 12 mc/s 
as indicated in Oscillograms 1112-1117, Fig. 32,a, and the estim­
ated inductance is 1.8 pH. Inserting a 25 ohm resistor reduces 
this to about 6 mc/s. indicating an additional 5.4 pH in the 
circuit.
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An approximate direct measurement was made, using a 
Q-meter and the arrangement shown in Figure 19. 1' is a series
"ballast" inductance inserted to increase the Q of the resonant 
circuit, which, even then, was low and the indicated resistance 
unreliable, L is the change of inductance caused by replacing 
the shorting link with the resistor, and the two values obtained,
5.3 and 4,8 pH, are considered consistent enough with the previous 
value.
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3.4 GAP BREAKDOWN CONSIDERATIONS.

The excitation of the system arises from the cancell­
ations of voltage across the gap electrodes, and the changes from 
an open-circuit to a short-circuit condition between them, when 
the gaps fire. Except in hypothetical treatment, the gaps cannot 
be assumed to fire simultaneously. The first gap-voltage to be 
cancelled will be the steady charging voltage V^; but that of 
any later gap will involve superimposed oscillatory voltages as 
well. Thus, both this transient voltage function, and the instant 
of its cancellation, need to be known in any realistic analysis.
But the instant of firing of a gap appears to be governed by con­
siderations other than the direct breakdown voltage, , of, and 
the instantaneous voltage across, the gap.

Consider the first two stages of the generator,
Figure 26(a), and equivalent circuit (b), derived from Figure 3.
As stated in Section 3.2, the voltages across the stage capacitors, 

, remain unchanged for the duration of the firing process; and 
az'e represented by "batteries". This is the situation considered 
by Edv/ards, et (Reference 4), with the addition of the induct­
ance. On Gap 1 firing, the voltage of B will be (l - cos cut), 
neglecting damping, where œ/2rr  ̂ 10 me/s. A fraction of this
voltage (actually 0.8 from Section 2,2.1) v/ill be superimposed on 

across Gap 2, v/hich is set at (perhaps lOfo greater than ). 
The resistive losses produce exponential damping, with the result 
shown in Figure 26(c). If, in addition, 1^(0^ + 0^) is comparable 
with the period of oscillation, there v/ill be a decrement of the 
axis of oscillation from 1.8 to as shown at (d).
(For Og = 9 pF, 0^ = 56 pF, R^ =- 1 kilohm, this tim.e-const ant = 
0.07 microsec. For R^ = 60 kilohm, 1' = 4 microsec.). The gap- 
voltage exceeds as shown by the areas shov/n shaded in (c) and 
(d). Thus the overvoltage on Gap 2 is a variable function, and 
can consist of a series of pulses of initially about 1.5 and 
then of decreasing amplitude, and of less than 0,1 microsec. 
duration each.



12Sec. 3.4.

Data of breakdov/n characteristics under these condit­
ions are not easy to obtain. Some work by Hardy (.Reference 8) 
shows that the initial direct potential may have a marked and very 
variable effect on time-lags, and in any case tends to increase 
the peall-value of the impulse required to cause breakdown. It is 
further increased by the steepness of the front (or sharpness of 
the pulse).

Hardy's observations are for constant irradiation.
How although Gap 2 is usually said to be irradiated by the spark 
of Gap 1, this irradiation does not commence earlier than l/20 
microsec. before the crest of the first pulse, and may not grow to 
an adequate intensity instantaneously. This question has been 
discussed by H.G. Y/hite (quoted in Reference B.14, Chap. 4) in 
explaining times of this order for brealcdown v/ith 10 - 20^ over­
voltage.

Thus, while Oscillograms 914-918 (Figure 31, and 
and see Section 3.7) show that quite long time-lags can occur 
within the working range of the generator, the calculation of the 
delays between the firing of two gaps from a knowledge of the 
voltage-function and gap-setting is quite complicated,and probably 
impossible with present data. One compromise basis for the 
analysis is to assume the delays are long enough for the oscillat­
ions due to the preceding gap(s) to die out, but not for the 
decrement of their axis (or "steady-state value") to be aj^preciable 
This condition obtained in the experiments when = 60 kilohms.

In some oscillogramis, particularly for Gap 1 firing 
alone, there is a large decrement on the first loop of the oscill­
ation (see Osc. 912,913 in Fig. 31 a, b, and Osc. 1112-7, Fig.32,a) 
Its relationship to the normal exponential decrement is shown in 
Figure 26(e). The question is raised (Section 3.7) v/hether it is 
correct to regard the firing of a gap as an instantaneous change 
from a non-conducting to a conducting state. An exponential 
collapse, with a time-constant of l/30 microsec. would explain the 
observed initial decrement. Such times (in the order of 10 sec.
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for the formation of the highly-condnoting part of the spark- 
channel seem not unreasonable « judging by published results (e.g. 
in Reference B.14, Chap. 4).

Another explanation of this initial decrement has been 
considered. The loss of energy in a conducting spark-gap through 
radiation, etc. would appear to be relatively small, and, being 
constant, can be included in the overall damping of the circuit. 
If, however, energy were absorbed at a very much greater rate 
during the formative period of the spark channel, it would account 
for the observed effect. Some data by J.W, Flowers are quoted 
(rather diffidently) in Reference B.14, page 393. In the present 
case, the only source from which such a block of energy can be 
taken is the stray capacitances. If these total 100 pF, chargedp
to 50 kV, energy = & CV = 0 . 1  watt-second. Peak current under 
a 10 mc/s, free oscillation = 400A, There is also the current 
from the stage capacitor through the tail resistor:- about lA. 
for R^ = 60 kilohm, and 60A, for R^ = 1 kilohm. These figures 
differ considerably from those given in the reference. Neverthe­
less, a closer study may well show a connection between this 
aspect of the breakdown mechanism and the behaviour of the 
generator.

Note: as described in the next Section, G-ap 1 was
normally a self-illuminating triggering device, or Trigatron, the 
behaviour of which was always suspect. But one experiment 
suggested that the behaviour of a simple sphere gap was no differ­
ent. (Oscillograms 1356, 1358, Figure 29c),

A similar, though smaller, initial decrement can be 
observed in the train of oscillations set up on the firing of a 
sphere-gap connected across an u'" " divider. (See Osc. 846,
1237 in Figure 30c).'
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3.5 TRIGATRON DBVICE.
In order to provide, without the use of a delay cable, 

a triggering pulse to the oscilloscope in advance of the signal 
from the divider, ’’controlled firing” of the first stage of the 
generator was necessary. The method provided by the manufact­

urers consisted of two sets of 3-electrode gaps and an R-C net­
work, and proved to be too slow and inconsistent for use with fast 
timesweeps. It was replaced by the well-lmown "’Trigatron" 
device (see References 8 and 11), the construction and associated 
circuit used being shown in Figure 20.

The voltage tripping range was adequate, being as 
much as 50^ of the self tripping voltage on - V + polarities.
The tripping delay could be varied by altering the values of the 
resistor, r, and capacitor, c, v/hich controlled the front of the 
pulse. Although not constant, it was usually sufficiently so for 
the purpose. The chopped pulse is shovm on several of the series 
of oscillograms marked T. (See Sec. 3.7 for abbreviations used,)

No systematic study of the performance v/as made, but 
much time was spent on investigating anomalies in its behaviour 
during other tests. In some cases, with Trigatron polarity - V + > 
steps appeared on the tail of the v/ave. (Figure 29). The step is 
upwards in Osc. 889 (Figure 29a) when the tail resistor (B/z ) is 
1 kilohm, and downwards in Osc. 890 when R^ = 60 kilohm.
This is further illustrated in Osc. 982-984 (Figure 29b) in which 
the step appeared when the point was flush with the hemisphere, 
and did not appear when the point v/as withdrawn about i inch into 
the glass tube. The frequency of oscillation also changes, being 
9 mc/s. and 12 mc/s, respectively. Apparently the point elec­
trode T first sparked over to the opposite hemisphere B', while 
the step occurred when the annular gap broke down, bringing the 
main capacitor into circuit. The step never occurred when the 
polarity of the point was the same as the facing hemisphere.
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However, tests in the series Osc. 1156-1170 (see 
Fig. 291; e, f, g) when the trigatron was at G-ap 2, showed that 
anomalous behaviour was possible with -V-/+V+ conditions. The 
figures on the traces give the main charging voltage, V^, the 
tripping pulse being about 12 kV. peak. The smooth waves, some­
times leading to a step occurred when was near the self­
tripping value. Osc. 1170 confirms the relative polarities. 
These anomalies appeared to depend partly on circuit conditions, 
as they did not occur when the device v/as at Gap 1. The explan­
ation must lie with a better understanding of the physical 
processes obtaining in the device than is provided by existing 
literature. In most of the tests the -V- condition was used, 
and apart from the possible cause of the initial decrement (see 
Section 3.4) there is reasonable confidence that the Trigatron 
has not affected the oscillations appearing in the other oscillo­
grams.
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3.6 POTENTIAL DIVIDER FOR OSCILLOGRAPHIC MEASUREMENTS.

3.6.1 General.
3.6.2 Frequency Response of Measuring Circuit,
3.6.3 Resign of Idealized Divider.
3.6.4 Bridge Measurements on Divider,
3.6.5 Oscillographic Tests,

The essential requirements of the potential divider 
were as follows, very approximately.

Working voltage 100 kV.
Divider ratio l/l50.
Frequency range 1-30 mc/s.
D.C. time constant 10 microsec.
Max, capacitive shunting, 15 pF.
Inherent inductance of connections 5 puH.
Desired accuracy. - 10^
Max. pickup of spurious voltages 

of order 100 kV.

No delay cable was required, as the generator was operated 
in a controlled manner throughout. The divider was to be used 
in association with a Southern Instruments Ltd, "T.R.IO" 
Oscillograph.
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3.6.1 General.
Various recognized forms of potential divider were 

considered (Reference B.5, Chap. 9). A pure resistance divider 
would not he difficult to design for this voltage, but was not 
recommended for high frequencies on account of distributed capac­
itances in the upper arm, and the capacitance of the plates and 
connections of the oscillograph shunting the lower anm. Since 
the voltages most of interest were those between pairs of adjacent 
points, both at a potential above earth, the use of tv/o matched 
dividers, in a symmetrical arrangement similar to that used by 
Hohl (Reference 9) might have been possible. But until a 
generator arrangement with a large number of stages was being 
studied, it offered no advantage over the single-unit capacitance 
divider, which was also the simplest to make. Provided the gross 
capacitance to earth was not more than about 15 pF it should be 
possible to allow for any disturbance to the waveform due to its 
connection. To obtain a faithful linear response was a more 
serious problem, however, as v/ill be shown later.

The divider shown in Figure 21 (actually two very 
similar units were made) is practically the same as that incorpor­
ated in the oscillograph described by Nuttall^(Reference 17) in 
that it comprises a single arrangement of electrodes and a 
screened connection from the low voltage electrode to the plates 
of the oscillograph. Oil instead of air was used for the main 
dielectric, making for a more compact construction. It was 
found necessary to add a .001 piF mica capacitor across the lower 
arm to give the required ratio, and a resistor of lOOn to suppress 
oscillations of about 100 mc/s, between it and the co-axial 
connection. Some adjustment of the upper-arm capacitance was 
possible by raising or lowering the h,v. electrode, but the 
smaller and Op, the greater the chance of spurious pickup for 
the same screening. Further, reducing 0-, did not a.ppreciably 
reduce the gross capacitance which, as v/ill be shown later, is 
fixed by the voltage and the dielectric material used, and by the
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basic shape and proportions of the electrodes, which are deter­
mined by the shielding required.

Pifpire 22(a) shows the divider reduced to an idealized 
form. The objective is to measure without picking up a com­
ponent of through C,̂ . is reduced by extending the shield
upwards while still allov/ing sufficient clearance for the access 
of

3.6.2 Frequency Response of Measuring Circuit.
So far the divider would be expected to have perfectly 

linear response to the voltage applied between its h.v. and earth 
terminals. But what is required is a response to tne voltage at 
points on the generator, and it is inevitable that the connections 
must form a loojp of at least 1 metre square, having, therefore, an 
inductance in the order of 5 M'H. This is liable to oscillate 
with the 15 pF gross capacitance at 17 me/s., and will do so if 
the voltage being measured contains components greater than this 
frequency, so that series resistance damping is necessary. (In 
this case the critical resistance is about 1000 n ). In either 
case the response becomes non-linear.

Howard (Reference 10) has calculated the response of 
a similar arrangement to a steadily rising voltage. In this work 
the response to a sinusoidal voltage, arid in particular to 
(1 - cos 0) t), is required. The response can be given in terms 
of the voltage across the whole capacitance unit (since c^/cg is 
constant). (see Figure 23).
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2 2 2Laplace transform of (1 - cos fjut) = o) /(p + co )

Response = voltage across capacitance, C
2
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IZ eÇ CD
pL + R + l/pC p^ + CD ̂ 

2CD 0 CD'
2 ? 2 2 p + 2cD^rp + (D p + Ü)

where cD ̂  = 1/ \T L*C  = natural frequency, and r = R/2 cd ̂ L = 

fractional-damping factor. Also let to = k cd and

r 2 \7 2a = r - r  - 1 ,  b = r + r - 1 , provided r / 1,
4 2

then response-transf orm =   ^ o ^______________
(p + a C0g)(p + b u)^)(p^ + A  )

response time-function

e _ k^ e _ cos(mt - 0 )
a(b-a) ( a^+k^) b(a-b) (b^*k^ ) a^+k^ ) (b^+k^ )'

2where tan c = 2rk/(l-k ).

In particular, the amplitude of the main oscillation, of frequency 
f = CD/2TT , is reduced in the ratio

1/ R â k F T C b Â ï f )  = l/'^h+(4 r^-2)k^+l = 1/( k^+1)
when r = 1.
This response ratio is plotted against k for a number of damping 
factors in Figure 23.
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The distortion is considerable for all components 
with a frequency in the order of w For k = 1, m = cu and
r = 1, the amplitude is reduced to half. The only way of obtain­
ing even the most approximate of pra.ctical results with a divider 
of this form would be to increase o) ̂  well beyond the range of 
expected, and this can only be done by reducing the gross divider 
capacitance.

3.6,3 Design of Idealized Divider .
The gross capacitance of the idealized divider of 

Figure 22(a) is mainly the effective upper-arm and the "bushing 
capacitance", C^o A formal analysis of the field system to 
relate the bushing capacitance to (and hence to optimize the 
conflicting requirements of access and shielding) has not been 
attempted.

For the present it v/ill be assumed that if, somewhere
between the h.v. electrode and the earthed shield, there is a 
region, sufficiently free from external coupling, in v/hich the 
middle electrode can be located, the latter can be left out of 
account. The field system, whatever its practical shape, may be 
imagined to be transformed into the field betv/een two concentric 
spheres (Fig. 22(b)). Their dimensions and the dielectric 
between them have then to be chosen to v/ithstand 100 kV. with 
minimum capacitance.

From simple electrostatic theory:-

\  " and C = 4TT Eg E j g V  |  •

Minimum capacitance is obtained for r^ = '̂ /e > = infinity,
and then - 4tt (̂ 1̂/e ).V.

Minimum overall size requires r^ = 2 (^/k) , r^ = 4(^/E) 

and then 0 = 4  0 . .
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The curves of Figure 22(c) give relative dimensions and capacitance 
values between these two extremes, and a practical compromise 
would probably be to make r^ = 1.2 (^/h) or thereabouts.

A more significant point is that for a given voltage, 
the capacitance is controlled by the factor (^^/e ), i.e. by the 
dielectric material. The Table gives the results for various 
commonly-used materials. There is very little to choose between 
air and transformer oil, both indicating that the capacitance will 
be in the order of 5 and 7 pF. for an idealized capacitance with 
r^ = 1.2 E. Assuming a practical divider could be designed to 
have the same gross capacitance as this, the frequency range could 
only be increased by about 50^.

Certain other dielectric materials appear attractive 
from this point of view, Pyrex glass and carbon-tetrachloride 
(CCl^) being outstanding. No proper investigation of the use of 
these materials has been made here, although a very crude divider 
incorporating a 1" dia. test-tube filled with CCl^ v/as put together 
and generator oscillations of about 50 kV. were observed visually. 
The results, although promising, were too late to affect the rest 
of the work.

3.6.4 Bridge Measurements on Divider.
The above discussion indicates that a divider with pure 

capacitances in the lower arm cannot, for present purposes, give a 
linear response. Further, the use of the mathematical formula as 
a means of applying a correction to the amplitudes of the recorded 
oscillations is not altogether satisfying, unless the formula can 
be confirmed experimentally. What is considered necessary is to 
add inductance and resistance in the lower arm in such proportions 
that the ratio and y-hase-angle of the divider remains constant v/ith 
frequency. About 8 ohms and 0.05 would need to be added, and 
accurate measurements of the small capacitances and inductances 
would be very uncertain by any direct method.
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An overall frequency calibration of the divider was 
therefore attempted. A similar calibration had already been done 
in the Electrical Engineering Department on a 300 pE divider by 
Aked, Reference 1. The maximum frequencies used were 2-3 me/s., 
beyond which the limitations of the supply- and detector- 
components of the bridge were reached. Figure 24 shows the 
response, or transfer function, of the present divider with a 
connection to the upper arm of approximately the usual size, but 
without damping resistance, made with the same equipment.

The apparatus is shown in its final form in Figure 25 
after a series of modifications. One arm of the bridge, viz. the 
upper arm of the divider, and its connecting lead, had to remain 
unscreened. Pick-up to this arm v/as not considered to be very 
important as a high degree of accuracy was not required. The 
detector had however to be screened very thoroughly because of the 
strong electric and magnetic fields. The symmetrical detector 
input, after passing through a de-coupling transformer, was ampli­
fied by a tuned anode stage before being fed into the probe-unit 
of a valve milli-voltmeter. The probe-unit and batteries supply­
ing the 8D3 Valve were all contained in an outer box. The design 
of the transformer was an adaption of that described by Sinclair 
(Reference 21),

In order to have about 1 mV detector signal for 1^ 
sensitivity, an output of about 20 volts was required. This 
represented quite a large power v/ith a load of about 50 pF at 
20 mc/s. Two "807" Pentodes were used in parallel in a tuned- 
anode/cathode-follower power unit supplied from a signal generator. 
The cathode resistance was about 1000 olims.

The bridge now appeared to be satisfactory technically, 
but useful results were still not obtained. The response of the 
divider with damping resistor of 1000 ohms is also shown in 
Figure 24, and the ratio is seen to increase with frequency, and 
to be indeterminate beyond about 7 mc/s. This is contrary to the



83.
Sec. 3.6.4.

theory, see Figure 23? and to observations of oscillograms. The 
work was terminated before any more definite results could be 
obtained, but enough was done to show that a bridge-calibration 
up to even 20 mc/s. would be quite difficult with the equipment 
available.

3.6.5 Oscillographic Tests.
The disturbance-level of the measuring circuit is 

indicated by the pick-up recorded v/hen the divider is connected to 
"earth". The divider and oscilloscope were earthed to a point Z-̂ 
on the generator base directly below B. (Figure 21). The trace 
when the divider is connected to Z-̂  (Osc. 1097, Figure 32b) is 
therefore due to electrostatic (and possible electro-magnetic) 
pickup. It differs slightly from that at Z^ (a point below A) 
and at the c.r.o. chassis (Osc. 1111 and 1098). However, the 
pickup is considered to be small enough to make corrections 
unnecessary.

Another effect is the disturbance of the electro­
static field system due to the capacitance of the divider. Its 
magnitude was assessed by noting the effect of connecting the 
other divider, regarded as a capacitor of about the same value, 
to the same point. This was done for a number of conditions, the 
most severe effect being at H, where the steady-state level was 
reduced by about 20^, the oscillations being practically unaffected 
This is the expected result of connecting 15-20 pF between H and Z, 
and the divider itself can therefore be assumed to have about the 
same effect. (See Figure 30b, Osc. 1234, 1236).

The natural frequency of oscillation of the divider 
circuit was found as indicated in Figure 30c. It was dependent 
on the size of the connecting loop through the sphere-gap: in
Osc. 846 the loop was about 1 metre square, and the frequency 
17 mc/s. A minimum loop gave about 23 mc/s. The appearance of 
this frequency in the record when an undamped divider is used for
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voltage measurements has been mentioned in Section 3.7 (Osc. 1215- 
1236, Fig. 30b). A damping resistor of 1000 ohms appears from 
Osc, 845, 1239 (Fig. 30c) to be slightly less than critical, 
which agrees with a gross capacitance of 15 pF. Its effect on 
the response is further discussed in Section 3.7.
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3.7 DISCUSSION OF OSCILLOGRAMS.
Reproductions of selected oscillograms are given in 

Figures 29-33. Except where otherwise indicated, the records 
were made v/ith the arrangement of Figure 21, the letters A, A ’ ... 
Z corresponding to the points shown on the outline of the 
generator, the Oscillogram number being given alongside. Data on 
the generator stage connections and other conditions are given in 
the small tables, in which the following abbreviations have been 
used.

T = gap triggered by Trigatron device.
F = gap fired by overvoltage, etc,
S = gap made conducting by being shorted.
0 = gap non-conducting by being opened out.

'x’cm = gap spacing approximately.
= corresponding direct breakdown voltage (by meter)
= charging voltage.

R^ = tail resistor value.

c.r.o. = nominal timesweep and timing oscillation.
Trig. = Trigatron polarity arrangement.*

All series resistors 'were replaced by normal shorting links. 
Charging resistors were 60 kilofims each. When a stage was not 
charged, the charging resistor was removed, and a resistor of 
about 150 kilohms connected across the stage capacitor.

* The first i sign is the polarity of the main electrode B ', 
the second i sign that of the pulse applied to the trigger--point 
T, both relative to the main electrode A ’, V indicates that
A' is at the charging voltage above earth. Thus with
positive, and a negative tripping pulse, Trig = -V-.
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Before analysing the oscillations for normal 1, 2 and 
4 stage conditions, various factors influencing the firing of Gap 
2 will be discussed, see Figure 31. In Osc. 914-918, Gap 2 was 
set with 65^ greater than V^, with the result that Gap 2 fires 
a considerable time after Gap 1. The tv/o events appear in the 
voltage waves at all points on the generator. Before Gap 2 fires, 
the oscillations are the same as when Gap 1 fires alone (compare 
traces from Osc. 912, 913? in (a), (b) ). Thereafter a new 
double-frequency oscillation appears. The delays are progress­
ively shortened as is reduced to 41^ (e,f.) and 13^ (h,i) above
h -

The voltage at B ' always follows closely that at A' 
apart from the steady voltage on A, which is not recorded. The 
same applies between O' and D' after Gap 2 fires, at which instant 
D' increases by approximately 2 Before Gap 2 fires, the
difference between the transients at O' and B ' is the over-voltage 
across Gap 2. The mean voltage at O' is raised by above its 
original value; that at D ' by 0.2 ,due to the position of
Capacitor III (D,B) in the capacitance field. Thus the average 
overvoltage is 0.8 and remains fairly steady owing to the large
value of (60 kilohms).

After éFap 2 fires, a similar condition occurs between
E' and F ' at Gap 3 (which is not allowed to fire). The mean
overvoltage is now about 1.4 (see j) and remains fairly 
constant when R^ = 660 kilohms between E,F,

The effect of the tail resistors on the overvoltage is 
shown in (g), where R^ = 1 kilohm between D,F. Point F* now 
returns to the potential of E' (less V^) with a time-const ant of 
about 1/5 microsec., which makes the overvoltage pulse quite short. 
The same applies at (c ,d). The effect is explained theoretically 
in Section 3.4.

The records show that the maximum overvoltage occurs 
on the gap adjacent to the one that has just fired. The next gap 
has a small, negative overvoltage (see c,k) and the next again a
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small positive overvoltage (see d).
In all cases, the transient voltages on either side 

of a main stage capacitor are the same, the charging voltage, if 
present, not being recorded by the arrangement of Figure 21.
This shows that these capacitors present negligible impedance to 
the transient currents.

The oscillograms in Figures 32, 33? form the basis for
correlation with the results of the theory of Section 2. There
are two methods of comparison. The mathematical result can be 
drawn out graphically, and the waveform compared, more or less 
qualitatively with the oscillogram; or the recorded wave can be 
analysed into its steady-state level, and the component 
frequencies, amplitudes and decrements of its oscillations.

The second method, which has been adopted for the 1 
and 2 stage cases, follows mainly that given in Manley’s "Waveform 
Analysis" (Reference B.12, Chap. 4), although there is here the 
additional factor of decrements. All amplitudes are referred to 
the stage charging voltage, generally indicated by the level of 
the axis of oscillations of the voltage at B or C. Two component 
frequencies are separated as follows. The lov/er frequency is
sketched on tracing paper in such a way that when placed either
above or below the composite wave it forms an envelope to the 
higher frequency component. The distance between the two 
envelopes is the double-amplitude of the latter. See Figure 27(b). 
The results of this analysis on the oscillograms in Figures 32,33, 
for a variety of conditions in which one and two gaps are conduct­
ing, are given in the Table at the end of this Section.

The simplest arrangement (gap condition "T,0,0,0") 
comprises only one inductive loop oscillating with the stray 
capacitances. Assuming that none of the inductance is directly 
between point B and .the datum Z (and in fact there is only the 
oil-filled spacer and external strays) the voltage-oscillâtion at 
B (Osc. 1113; Fig. 32a) should theoretically have' an initial ampli­
tude of unity, measured from the axis of oscillations, followed by
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exponential decrement. In fact there is a large initial decre­
ment (see also Figure 26e). Allowing for an exponential 
decrement of about 0.7 per half-cycle, the initial amplitude is 
only about 0.15.

Non-linearity of the measuring circuit would tend to 
distort the recorded waveform in this way, as discussed in /
Section 3.6, but the calculations indicate that the response to x
12 mc/s, oscillation should be at least 0.7 of its original ampli­
tude, for the critically-damped divider. The voltage v/as again ||
measured with the damping resistance removed, and the result ^
(Osc. 1 1 8 7 , Figure 30a) appears much more reasonable. Neverthe­
less, the curves for r = R/2co^L = 0. (Figure 23) show that the 
response should be considerably magnified, (in tha+ case, 
k = CD/(D̂  = 12 me/s/15 mc/s. = 0.8.) The result is therefore (|
quite unreliable, and further if the original component frequencies 
exceed 15 me/s., the divider oscillations will predominate (see 
Osc. 1215-1 2 3 6 , Fig. 30b).

An alternative explanation is that Gap 1 does not 
break down instantaneously, but takes in the order of 1/30 micro­
sec. to become conducting. The difference between A' and B ' in 
Osc, 1112, Fig. 32a) in fact gives a "front" of about this 
duration, instead of a unit step. (Figure 27a). This is discussed 
in Section 3.4. Again, slight variations in the initial ampli­
tude occur between one trace and another, which would agree with 
irregularities in firing. The Trigatron device in Gap 1 was 
frequently suspected of causing these effects, and indeed often 
behaved anomalously, see Figure 29. Nevertheless, Osc. 1356,
1 3 5 8 , show that it could behave the same as a sphere-gap (Fig. 29c)

Most of the steady-state voltages agree approximately 
with those calculated. The overvoltage across Gap 2 is about 
0.8.



89.
Sec. 3,7.

The generator with two gaps conducting can be excited
in a number of different ways, the normal one being when both 
capacitors are charged and both gaps fire without appreciable 
delay between them. (T,F,0,0, in Osc. 1097-1111, Fig. 32b).
Analyses of the voltages at the main capacitors are given in the 
Table (see also Figure 27b). The two frequencies are fairly 
close to the theoretical values as is the steady-state level at 
F,G (it is rather too low at H). The amplitudes again do not 
compare well, even after allowing for the divider response.

It can be seen from the records of Figure 31 that the 
oscillations are much the same, whatever instant Gap 2 fires.
This is understandable if it is the "slow" firing Gap 1 which 
inhibits the oscillation in the first loop. The condition 
actually obtaining, therefore, is one in which Gap 2 fires on an 
approximately steady voltage of 1.8, Gap 1 being merely conducting. 
This condition (S,T,0,0) has been calculated in Section 2,2, and 
the results are compared in the Table with the analysis of Osc. 
1171-1175 (Fig. 33d). The comparison is again not very good, 
possibly because of the large initial decrement, but multiplying 
the theoretical values by 1.8 gives a rather closer comparison 
with the measurement of the lower frequency component for the 
T,F,0,0 case (Osc. 1097-1111)(Fig. 32a).

A similar condition holds for Osc. 1122-1126,
(Figure 33a) in which Gap 2 fires under the over-voltage alone.
The oscillations are of correspondingly smaller amplitude, but of 
much the same shape. The condition T,S,0,0 of Osc. 1132-1135 
(Fig, 33c) was done because it was of an easily calculated form.
The slower oscillations are of the expected amplitudes, relative 
one to another, but only about 0,4 of the calculated values.

Two conditions in which all four gaps are conducting, 
the excitation being by one gap only in each case, are given in 
Osc. 1137-1141 (Fig. 33b) and Osc. 1142-1147 (Fig. 33e). Four 
frequencies would be expected, but only one of about 6 mc/s. 
appears predominantly. The higher components are likely to be
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attenuated by either (or both) the effects already mentioned.
The conditions for the former series are the same as for the 
calculations in Section 2.2 for the 4-Stage case, the resolution 
of the dynamic matrix of which was done on a digital computer.
The theoretical waveforms contain predominant frequencies of 7.8, 
12,6, 18,5 mc/s. and are plotted for two points in Figure 28 for 
comparison with Oscillograms 1137 and 1141, (Those of 29.3 mc/s. 
are of less than 10^ in amplitude and are ignored,) No correlat­
ion can be claimed here; even the predominant frequency in the 
oscillograms (6.2 mc/s. and 5.5 mc/s. respectively) is consider­
ably lower than the calculated value. Assuming the measured 
frequencies to be correct, the discrepancy might be put down to 
inaccuracy of inductance (including omission of mutuals).

Corrigendum.

After the work had been brought to a close, it became 
apparent to the writer that the conception of the inductances 
given in Section 3.3.2 is not correct. The field of self­
inductance round one of the horizontal connectors cannot be said 
to extend only as far as an adjacent connector, (Figures l8 and 
30d), since the latter does not necessarily form the return path 
for any part of the current through it. The return current can 
flow through non-adjacent conductors and through the various 
partial-capacitance fields. Strictly speaking, it would be 
fallacious to state any definite value of inductance for a 
conductor that is not part of a single, closed, current path.
The lumped parameters given in the equivalent-circuit analysis are 
approximate, and depend on the inductance field being concentrated 
close to the conductor. In a horizontal connector, nearly 90% 
lies between radii r^ and b,and this space should contain only a 
small part of the displacements in the capacitance field system. 
Nevertheless, the discrepancies in the frequencies may well be 
due to such errors in assessing the parameters.
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TABLE OE CALCULATED AND MEASURED COMPONENTS OP VOLTAGES.

All voltages are relative to the charging voltage, Vq , as 
given hy the steady-state,level at B (or at D in the STOO case). 

The response factor, q, of the divider is obtained from
Figure 23, assuming CÜ 15 mc/s.

I.G. CONDITION T,0 
(Rd = 1

,0,0
kilolim) T,0,0,0 (Rd == 0)

OSCILLOGRAMS 1112 -- 1117 1185 -- 1190
GENERATOR POINT B,C D,E F,G H

I
B,CjD,E F,G H

STEADY STATE calc. 1 0.17 0.39 0.17 1 .39 .17
LEVEL me as. 1 0.2 0.29 0.14 1 0.2 .29 .14

OSCILLATION gale. 12.3 - -
j
12.3 11 " 11

FREQUENCY (mc/s) me as. 12 12 12 12 12 »» If

Amplitude calc. 1 0.17 0.39 0.17 1 0.17 0.39 0.17
calc. X (q = 0. 7, 1.6) ' 0.7 0.12 0.28 0.12 1.6 .27 . 63 .27

meas. 0.2 0.05
!

.05 .05 0.9
L_ _

0.2 0.28 0.13

Table continued.
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I.G. CONDITION 8, 0, 0 8 1 T, 0, 0 !
OSCILLOGRAMS 1132 - 1135 1171 - 1175 1i

GENERATOR POINT B,C D,E F,G H B,C D,E P,G H

STEADY STATE calc. 1 1 0.53 0.61 0 1 0,17 0.54
LEVEL. meas. 1 1 0.4 0.4 0 1 0.2 0.35

LOW FREQUENCY calc. 6.74 !! II II 8.74 II It II
COMPONENT (mc/s) meas. 9.1 It II II 8.3 II II II

Aiiipl itude . 0.81 1.15 0.50 0.69 0.48 0.68 0.29 0.41
calc. X (q = .75) 0.61 0.86 0.37 0.52 0.35 0.51 0.22 0.31

meas. 0.25 0.4 0.17 0.2 0.17 0.20 0.10 0.1

HIGH FREQUENCY calc. 
COMPONENT (mc/s) meas.

21
nil

1! It II 21
nil

II II II

Amplitude PPzLPv 0.19 0.15 0.04 0.07 0.48 0.32 0.12 0.13
calc. X (q = .35) 0.07 0.05 0.01 0.03 0.17 0.11 .04 .05

meas. nil 1 nil
■

Table continued.
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TABLE (cont'd.)

I.G. CONDITION 
OSCILLOGRAMS

T, P, 0, 0
1097 - 1111

T, E, 0, 0 *
1097 - 1111

GENERATOR POINT B,C D,E E,G

STEADY STATE calc.
LEVEL meas

1
1

LOW FREQUENCY calc.
COMPONENT (me/s) niea^s.

Amplitude calc.
calc. X (q = 0.75)

meas.

8.74
8 . 8

1.28
0.96
0.50

8.3

1.83
1.37
0.64

0.71
0.63

8 . 8

0.79
0.59
0.30

H

1.2
0.77

8,6

1.1
0.82
0.34

B,C

1
1

8.74
8.8

0.87
0.65 
0.50

D,E ,F,G H

1.25
0.94
0.64

0.71 1.2 
0.6310.77

0.52|0.75
0.39
0.30

0.56
0.34

HIGH FREQUENCY calc.
COMPONENT (mc/s meas.

Amplitude 
calc. X (q

cal c. 
0.35)

meas.

21
18.7

0.28
0.1
0.12

19

0.17
0.06
0.20

0.08
0.03
nil

18.9

0.06
0.02
0.07

21
18.7

0.87
0.32
0.12

i' II
II

0.58
0.2
0.20

0.230.24 
0.08 0.09 
0 !o .07

* In this case, the calculations are based on Gap 2 firing on 
a steady voltage of 1.8, the oscillations (but not the steady- 
state components) due to the firing of Gap 1 having died cut.
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4-STAGE I.G. ANALYTICAL NETWORKS, FIGURE 4.
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(a) Electrostatic Fields.
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(d ) Damped Circuit. (e) Estimated Resistance Values 
for Critical Damping.

TWO-STAGE I.G. THEORY. FIGURE 5
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STEADY-STATE VOLTAGES ACROSS GAPS. FIGURE 7.
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Partial Capacitances. (10 F)

Cg C] 04 C5 06 0? 08 O9 OlO67.1 8.9 10.5 11.1 56.3 31.9 32.9 35.3 1.2 17.1
(Derived from Bridge Measurements: Pig. 16 and 17)

4-STAGE I.G. PARTIAL CAPACITANCES. FIGURE 12.



-r-K

k'T

pF. Compare Values from Figure 12:-
0 =30 

= 10
2̂ = 3 3  

K. = 0
^2 = Kg = 3 3  
%  + C = 73 
K2 + C = 6 3

Og = 35 , C^Q = 1 7 . 2  (Flange only)
Cg = 8.9, C3 = 10.5, C^ = 11.1
Cg = 31.9, Cy = 32.9*
Cg = 1.2

C^ = 67.1
C5 = 56.3

EXTSNDST GENERATOR PARTIAL CAPACITANCES. FIGURE 13.



r

OE%= I

T )

41
<-2.

HH

4F

£■3 = 0

Cl

C .o

= O

41-C4-

1

Condition for evaluating terms in 2nd Column of C-matrix.
^32 “ P^2 ” ^6 ^ ^ ^ ^10*

C^ + C5 + Cg 

^  ^ 1 0
Cg + Cg + Cĵ Q ° 8  + °1 0 ^1 0

C5 + Cg + Cĵ Q
C2 + Cg + Cg 

+ Cg + Cq +C20
^6  ^8  **■ ^9  

*** ^1 0
^9  ^1 0

°8 + °1 0
Cg + Cg + Cq 

■*■ ^1 0

C^ + Cg + Cy 
^CIq 4. Cg + CiQ

Cy 4- Cg 4 C^Q

<^10 ° io Cy + Cg + C^Q 4̂ 7̂ **■ ^g  

^1 0

By Substitution of Measured Values from Figure 12 :-

C = (10"12p) s = c-1 (10^°/F)
175 108 52 17
108 150 85 18
52 85 128 51
17 18 51 62

1.07 -0.89 0.24 -0.24
-0.88 1.90 -1.15 0.63
0.24 -1.15 2.01 -1.38

-0.24 0.63 —1.38 2.68

DERIVATIO N OF CAPACITANCE AND ELASTANCE M ATRICES.

FIGURE 14.



1 2 I u S C> 7 9

4h

4
3̂3

41-
33

1*̂

to

\̂■33
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l-3y-U

to lo to lO
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30

IQ

3 0

4f a

30

With Load capacitor C^» matrix is enlarged by one row and column, 
and all elements increased by C^. pF-units.

346 273 210 180 150 120 90 60 30

273 316 243 180 150 120 90 60 30

210 243 286 213 150 120 90 60 30

180 180 213 256 183 120 90 60 30

150 150 150 183 226 153 90 60 30

120 120 120 120 153 196 123 60 30

90 90 90 90 90 123 166 93 30

60 60 60 60 60 60 93 136 63

30 30 30 30 30 30 30 63 73

i_ I------------1

9-STAGE I.G. CAPACITANCE MTRIX. FIGURE 15.
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BRIDGE MEASUREMENTS OP PARTIAL CAPACITANCES.
FIGURE 16.



Group Stages
Group

in Partial Capacitances 
Measured.

Group
Capacitance.

No. II ni IV ^1 ^2 "4 "6 C7 ^8 C5 "10
Gross
(pF)

Wires
(pP)

Net.
(pF)

1 » « ♦ • fl 4-1 fl fl 222.3 46.7 175.6

2 » 1
1

+1 4-1 fl fl 1 1 9 .6 10.6 1 0 9 .0

3 * +1 4-1 4-1 fl 117.3 9.7 108.6

4 * 1 + 1+ 1 4-1 fl 100.9 12.1 88.8

5 # 4-1 fl fl fl 76.8 14.3 62.5

6 « *
+1 + 1 4-1 4-1 f l fl 220.2 20.3 199.9

7 ♦ *
I

+1 +1 + 14-1 f 1 fl 1 5 6 .6 22.7 133.9

8 ♦ * + 1 4-1 fl fl fl fl 355 . 5 26.4 129.1

9 * * + 1 4-1+ 1 + 1 flfl 1 2 9 .6 24.0 1 0 5 .6

10 » « » + 1 4-1 -kl fl 4l f l 235.5 32.4 203.1

11 * ♦ * +1 +1 4-1 fl fl fl 208.5 37.0 171.5

12 » «

t 1 

* ■fl -Hi fl f l fl f l 187.8 36.1 151.7

13 ♦ » * + 1 -kl4-1 4-1 4-1 f l 2 2 9 .6 34.6 1 9 5 .0

14
■ T' 
*

i
* 4-1+ 1 4-1 fl fl fl 194.0 24.9 169.1

15 . * ■fl 4-1 4-1 fl fl fl 1 9 8 .2 21.8 176.4
I

Wires:- II = 10.6 pF, III = 9.7 pF, IV = 12.1 pF, V = 14.3 pF. 
Example: No. 1 represents the equation

Un + Cc + Cg + C^Q - (wires II + III + IV + V)'1 ' ^5
Solutions given in Figure 12.

= 175.6 pF.

PARTIAL - CAPACITANCE EQUATIONS FIGURE 17.



a, =■ ï • 8

t> =  0 -5 b n r>

r 0

b * 0-Sb#T

H I2ro= O ' 02 S  m. D* A

r = radius out from AB.

ORIGINAL CALCULATION OF INDUCTANCE.»

Mutual Inductance 
= 0.16 mH.

Self Inductance 
= 1.4-1 kH/Stage

Ballast Inductor

Resistor (R + jwL) 
Shorting Link

Variable Capacitor.

FORIÆULAE: R = 1 ( 1 1 \ L = Cl
U)

— Cp
(JÜ V ̂ 2 2̂ ^1 o j  ' GlOp

f (mc/s) Ql Q2 Ci(pF) C2(pF) L(^H) R( ohms)

100 1.12 113 ~ 20 154 148 5.3 40
50 1.58 127 23 154 144 4.8 25

MEASUREMENT OF INDUCTANCE OF 2^ OHIvl RESISTOR.

* FIGURE 18.
FIGURE 19.
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© — /
5K
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TRIGGER INPUT

IIVÎIULSE GENERATOR TRIP-CONTROL CIRCUIT.

FIGURE 20.



4-STAGE OUTPUT TERMINAL.-OO

O O

O O

IMPULSE GENERATOR IN OUTLINE

10001) Damping Resistor.
1 ” Dia. Sphere supported on brass rod

Oil-filled Bakelite container

Metal foil Electrode

reening canister

Co-ax connection - 7 ft. long - 
/  air dielectric

OSCILLOSCOPE.POTENTIAL DIVIDER.

OSCILLOGRAPHIC MEASURETAENT OF VOLTAGES.

FIGURE 21.



Access V. 
y/ shielding

Cb

i) Shielding require, to make Cy «  ,

DIELECTRIC 
Permittivity K-
Dielectric 

Strength E

a "8

z-oI sI o

(b) "Transform" of Capacitor* 
TABLE: Comparison of Dielectrics.

(c) Relative Dimensions

(KV - pF - cm Units)

DIED CTRIC %
Max.
E

E
%

r^^oo, C f2 = rn*n . ̂ 0
r. = v/£ c r, =2v/£ fa = 2 r. C

AIR 1 30 30 3.3 3.7 6.7 13.3 14.8

OIL 2.5 100 40 1.0 2.8 2.0 4.0 11.0
"PYREX" 4.5 900 200 0.11 0. 56 0.22 0.44 2.16

C.CI4 2.2 660 300 0.15 0.37 0.3 0.6 1.47

DESIGN OF IDEALIZED DIVIDER CAPACITOR.

FIGURE 22
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FIGURE 23



0~ to'

•007

F RÊOueiMCy :/s.

RD
RD

0 case measured with original bridge. 

1000 ohms " ” later bridge.
Ratio output/input voltage.

Phase shift.

IÆj:ASURRD FREQUENCY RESPONSE OF DIVIDER.

FIGURE 24.
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MARCONI VACVE
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Most Recent Form of Detector.

BRIDGE CIRCUIT FOR CALIBRATION OF POTENTIAL DIVIDER.

FIGURE 25
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( c )  R t  ( P z +  C 5 )  L A R G E

(a) Two Stages of Generator.
k = o

4-

QL) «b (Cz-hCg) SMALL

(b) Equivalent Circuit>
(c,d) Overvoltage Puises on Gap 2 .

OF CSyRP ±

llilTlAU AIMPLITUOE

EXPONENTIAL DECREMENT

INiTIAL DECREMEN

APPROACH VOLTAGE 

A CROSS G A P 2 = \A

(e) Transient Oscillation due to Gap I Firing,

THEORY OF OVERVOLTAGES ON GAP 2.
FIGURE 26.



G R A D I E N T  20 / l  M I C R O S E C  A P P R O X .

/• O “
DIFFERENCE

0 * 1  M I C R O S E C .  T I M I N G  M A R K S

(a) Apparent Voltage-change at Gap 1*

F R E O U E N C y  ^  I N I T I A L  A M P L I T U D E

0-2 V,
2-0

f

8 - 8  M C / S ,  O S V,

STFAPy-STAT£- 
L C V E L  ^ V .--

0-12 Y

O M  MICROSEC t i m i n g  MARKS

(b) Oscillations in 2-Stage Case.

GRAPHICAL ANALYSIS OP OSCILLOGRARIS.

FIGURE 27



voltage at B due to Gap 1. 
Compare Ose. 1137, Fig. 33b.

1*0

•2 M I C R O S E C ,
0-6 0-8

2-0

voltage at H 
due to Gap 1 firing.
Compare Ose. 1141, 

Fig. 33b.

S T ê A D V - S T A T E  L E V EL

OG0  2 MtcRosec

4-STAGE I.G. CALCULATED VOLTAGES, FIGURE 28.
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